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Abstract

A dynamic network loading (DNL) model is any model that defines a mapping from the
time-dependent path demand flows to the time-dependent arc variables of flow, density
and speed. A DNL model is an integral component of a dynamic trafGc assignment
(DTA) model, which is a mapping from the (time-dependent) origin-destination demand
flows to the path demand flows. All DNL models have some underlying mechanism of
flow propagation, which may be based on macroscopic traffic theory (fluid dynamics),
microscopic traffic theory (car following models), or on approaches derived from static
network equilibrium models (e.g., travel time fiinctions).

0

This work presents an original discrete flow traffic model, derived from a simplified car-
following relationship. When the sources of delay are located at fixed positions in a
network, the model can be solved by only considering the traffic flow at these positions.
TraflFic networks satisfy this criterion, since the sources of delay - such as traffic signals
and highway merges - are located at the nodes. The model can thus be solved directly for
the trafiFic flow at these nodes, without the longitudinal discretization of arcs. This
property is unique to this trafGc model, and results in exceptionally fast computation
times. The traffic model is extended to a multi-lane arc model, which considers the

congestion effects due to the lateral motions of vehicles (i.e., changing lanes). The multi-
lane model requires that the lane by which a vehicle will exit a given arc be chosen
before it enters this arc. The model thus defines a mapping from the time-dependent lane-
based demands (by arrival and departure lane) to the arc variables of flow, density, and
speed, using a discrete-event procedure. Several supply/demand scenarios are tested for a
small network, and the results are found to compare very well with those obtained using
the AIMSUN2 trafGc simulator. Execution times ranged from roughly one-tenth to one-
fifteenth of the time required by the AIMSUN2 simulator when ninning in batch mode
(without animation).

0
The node problem associated with a discrete-event discrete-flow arc model is defined,
and a solution procedure is proposed. The solution procedure takes as an input the pair-
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wise precedence relationships obtained using a gap-acceptance model, and returns the
next vehicle to enter the node. The algorithm is embedded in a discrete-event network
loading procedure. Heuristics are proposed for the lane choice required by the arc model,
and the complete DNL model is tested on a small network representing a section of
highway connected to a ser/ice road with two ramps. The results compare quite well with
those obtained using the DsTTEGRATION traffic simulator. Execution time was roughly
one two-hundredth of that required by the DsTTEGRATION simulator, which does not
have the option of mnning in a high-speed mode without animation. Noticeable
discrepancies occur in flow and density on arcs where a high degree of lane changing is
combined with delays propagating from downstream arcs. These discrepancies are
restricted to relatively short arcs however, and thus have very little effect on overall path
travel times, which are the critical measure for dynamic traffic assignment algorithms.

0

Compared to existing traffic models, the proposed model provides a unique combination
of accuracy and computational speed. For this reason, it is particularly well suited for use
with dynamic traffic assignment algorithms. Further testing of the model using empirical
data from real networks is recommended.

0
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Résumé

Un nouveau modèle dynamique de chargement de réseau ("dynamic network loading",
égal à DNL) de flot discret fait l'objet de la présente thèse. Un modèle DNL est un
modèle qui définit la projection du flot de demande sur les chemins (en fonction du
temps) aux variables d'arc. (les variables étant le flot, la densité et la vitesse, en fonction
du temps) Un modèle DNL fait partie intégrante d'un modèle d'affectation de trafic
(DTA), qui est la projection des flots de demande des toutes les origines à toutes les
destinations (en fonction du temps) aux flots de demande des chemins. Le modèle est
basé sur un modèle de poursuite ("car following model") simplifiée. Une des propriétés
importantes de tels modèles est le rapport empirique bien connu entre le flot et la densité
(souvent appelé le diagramme fondamental du trafic), alors que plusieurs modèles

proposés dans la littérature comme modèles DNL ne possèdent pas cette propriété.

Le modèle proposé ressemble à un modèle de Gipps, mais avec les contraintes sur
l'accélération et la décélération relaxées. Ce modèle ressemble donc aux modèles de trafic

basés sur les "Cellular Automata" (ÇA). Une difference entre les ÇA et le modèle
proposé est que les ÇA sont basés sur une notion discrète de temps; par contre, le modèle
proposé utilise une mesure de temps continue. Le modèle proposé a la propriété suivante:
lorsque les trajectoires sont inversées — de x(t) à t(x) — il en résulte un modèle dont la
solution provient des valeurs de /(x) pour chaque véhicule aux positions où il y a des
causes de retard sur le réseau. Puisque les retards sur le réseau — appelés également
mécanismes de congestion — se rencontrent habituellement aux nœuds, en raison des
feux de circulation ou bien des bretelles d'entrées sur les autoroutes, la solution proposée
par le présent modèle est définie strictement en termes de temps de passage de chaque
véhicule à chaque nœud sur son chemin. La solution donc n'implique pas la discrétisation
de l'espace entre les nœuds; c'est à dire, n'exige pas la discrétisation des arcs. Il s'agit
alors d'une solution au niveau des arcs. L'algorithme est une procédure à événements
discrets, et non à temps discret. Cette approche est utilisée également pour les modèles
de files d'attente. L'algorithme développé sert comme mécanisme de propagation du flot
pour le modèle DNL proposé.
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-^ En général, un modèle DNL doit résoudre deux autres problèmes de trafic, autre que le
problème de propagation du flot. Un de ces problèmes concerne le comportement du
trafic aux nœuds, où le flot sur les arcs en amont peut définir une demande pour les arcs
en aval qui dépasse leur capacité. Il faut donc définir un modèle de nœud qui détermine
comment I'ofi&e est distribuée parmi les demandes provenant des arcs en amont. Aux
intersections dans les réseaux routiers, il faut souvent utiliser des voies spécifiques pour
effectuer certains mouvements (d'une rue en amont à une rue en aval). Les véhicules donc
doivent souvent efifectuer des changements des voies pour rester sur un chemin
particulier. Ces changements des voies peuvent générer des demandes pour une voie
excédant sa capacité. Il faut donc définir un modèle d'arc qui distribue l'oflfre de chaque

voie parmi les demandes de chaque voie.

Le modèle de flot de trafic proposé a été adapté aux arcs à voies multiples de façon à
tenir compte de l'interaction entre les voies sans perdre la propriété de solution au niveau
des arcs. Le modèle permet un seul mouvement latéral par véhicule par arc. Par ailleurs,
la voie de sortie doit avoir été choisie avant l'entrée du véhicule dans l'arc. Le modèle à

voies multiples définit donc la projection du flot de demande provenant des voies (voie
d'arrivée et de sortie) aux variables d'arc. (flot, densité, vitesse) Le modèle a été implanté
en C++, et a été testé sur un petit réseau qui présentait un grand nombre de changements
de voie. Les résultats étaient comparables à ceux obtenus en utilisant le micro-simulateur
de trafic AIMSUN2 pour plusieurs scénarios d'ofifre et de demande. Il a été possible de
conclure que les contraintes du modèle, incluant la limite d'un seul mouvement latéral par
véhicule, suffisent pour reproduire de façon satisfaisante les effets des changements de
voie sur les statistiques d'arc. L'exécution du modèle proposé prend (au pire des cas) dix
(10) fois moins de temps par rapport à l'AIMSUN2. Les postulats du modèle impliquent
une description microscopique de la trajectoire de chaque véhicule. Les postulats ont
donc pu être évalués à l'aide d'un petit exemple qui a été résolu à la main et animé
seconde par seconde.

Le problème des nœuds correspondant à un modèle de flot discret et d'événements
discrets a été défim, et un algorithme a été proposé pour le résoudre. Le modèle des
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nœuds utilise le concept bien connu de l'acceptation de l'intervalle ("gap acceptance")
entre les véhicules pour résoudre les conflits entre les paires de véhicules. L'algorithme
proposé reconnaît le véhicule qui devrait précéder les autres dans le nœud compte tenu
des résultats des comparaisons entre chaque paire. Ce problème est non trivial.
L'algorithme utilisé pour résoudre le problème des nœuds est intégré à une procédure de
chargement de réseau à événements discrets. Par conséquent, chaque fois que les données
impliquées dans cet algorithme changent à un nœud quelconque, l'algorithme est exécuté
de nouveau pour ce nœud. Des règles heuristiques pour le choix des voies, nécessaire au
modèle d'arc, sont proposées. Le modèle complet a été testé sur un petit réseau contenant
12 arcs et 12 nœuds, représentant un tronçon d'autoroute entre une bretelle d'entrée et une
bretelle de sortie, avec une voie de service parallèle. Il a été testé dans des conditions où
l'ofFre et la demande variaient en fonction du temps. Les résultats étaient comparables à
ceux obtenus avec le micro-simulateur du trafic. Des divergences non-négligeables ont
été repérées dans le flot et la densité lorsqu'il y a, à la fois, un nombre élevé de
changements de voie et des retards provenant des arcs en aval. Il est recommandé
d'efifectuer davantage de tests en utilisant des données concrètes. Le temps d'exécution
d'INTEGRATION est deux cents (200) fois plus grand que celui du modèle DNL

proposé.

Mots clés : chargement dynamique de réseau, théorie de flot de trafic, modèles de
poursuite, modèles de files d'attente, simulation de trafic, affectation dynamique du
trafic.

0
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Extended Abstract

This work presents an original discrete-flow dynamic network-loading (DNL) model. A
DNL model is any model that defines a mapping from the time-dependent path flows to
the time-dependent arc variables of flow, density and speed. A DNL model is an integral
component of a dynamic traffic assignment (DTA) model, which is a mapping from the
(time-dependent) origin-destination flows to the path flows. In general, there is
interdependence between a DNL and a DTA model, as the path flows are dependent on
the arc speeds (or travel times), while arc speeds are dependent on the path flows. The
proposed model is derived from a simplified car-following relationship. An important
property of car following models is that they yield a well-known relationship between
flow and density, often referred to as the fundamental diagram of traffic. Models that
satisfy this relationship should generally obtain the correct arc densities, which implies
that the total path delay experienced by a vehicle is correctly distributed in space. This is
an important property for obtaining correct path travel times when certain arcs are shared
by several paths. Many DNL models proposed in the literature do not yield the
fundamental diagram of traffic.

The proposed car following relationship is similar to a model proposed by Gipps, but
with the constraints on acceleration and deceleration removed. The proposed model is
thus quite similar to Cellular Automata (CA) traffic models, and in particular, to a
deterministic CA model known as CA-184. An important difference is that time is
continuous in the proposed model, while it is discrete in CA traffic models, which makes
the former considerably easier to calibrate against empirical data. The proposed model is
found to have a very unique property. Upon inverting the trajectories - from x{t) to t{x]
- it is found that the model can be solved by considering only the values of t{x) for each
vehicle at those positions in the network where sources of delay are found. Because the
sources of delay - also called the mechanisms of congestion - in a network are generally
found at the nodes, either due to trafiSc signals or highway merges, the solution of this
model can be defined solely in terms of the time at which each vehicle crosses each node
on its path. The solution thus does not require the discretization of space between nodes,
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and for this reason is referred to as an arc-based solution. The algorithm is a discrete-
event - as opposed to discrete-time ~ procedure. This type of procedure is typically used
for simulating queueing models. This model is the underlying mechanism of flow

propagation for a new DNL model.

In order to define a DNL model, two other questions must be addressed. One question is
how to model the traffic behaviour at nodes. At a node, the demand flows on the

upstream arcs may exceed the supply on the desired downstream arcs. A node model
must be defined that determines how the supply is distributed to these demands. The
second problem is analogous to the first, but pertains to multi-lane arcs. In real networks,
specific lanes on a road must often be used in order to execute certain movements at

intersections. As a result, vehicles may be obliged to change lanes in order to stay on a
specific path. These lane changes may result in a demand flow for a lane that exceeds the
supply it can offer. An arc model must be defined to determine how this supply is to be
distributed. The arc model should also properly account for the reductions in arc capacity
due to the interactions of lane-changing maneuvers of vehicles destined for different
lanes.

L-

The proposed traffic flow model was extended to the multi-lane case in such a way that
the interactions between lanes could be addressed without losing the arc-based property
of the solution. This model allows each vehicle only one lateral movement per arc, and
requires the departure lane to be selected before a vehicle may enter an arc. The multi-
lane model thus defines a mapping from the lane-based demand flows (by arrival and
departure lane) to the arc variables (flow, density, and speed). The model was coded in

C++ and tested on a small network where a high degree of lane changing was incurred on
one arc. The results were found to compare very well with those obtained using the
AIMSUN2 traffic simulation package, under a number of different supply/demand
scenarios. The general conclusion was that the underlying constraints of the model - such
as the restriction to a single lateral movement - were sufFicient to capture the basic
effects of lane changing on the arc variables. The execution time of the proposed model
did not exceed one tenth of the execution time of AIMSUN2. The assumptions
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underlying this model are consistent with a microscopic description of the trajectory of
each vehicle. This allowed the model assumptions to be validated for a very small
example that was solved by hand and animated on a second-by-second basis.

0

The node problem corresponding to a discrete-flow discrete-event arc model is defined,
and a solution algorithm is proposed. The node model uses the well-known concept of
gap acceptance to resolve the pair-wise conflicts that are identified. The proposed
algorithm identifies the most logical vehicle to precede all others into the node given the
results of the pair-wise comparisons. This problem is found to be non-trivial. The
algorithm for resolving the node problem is embedded in a discrete-event network
loading procedure, which ensures that the node problem is re-evaluated any time the
inputs to this problem should change in the course of the simulation. Heuristics rules for
choosing lanes in conjunction with the arc model are proposed, and the complete DNL
model is tested on a small network consisting of 12 arcs and 12 nodes. The model
represents a section of highway bounded by two ramps with a parallel service road, and is
tested under time-varying demand and supply conditions. The results compare quite well
with those obtained using the INTEGRATION traffic simulation package. Noticeable
discrepancies occur in flow and density on arcs where a high degree of lane changing is
combined with delays propagating from downstream arcs. Further testing of the model
using real-world data is recommended. The execution time of the proposed DNL model is
roughly one two-hundredth of that required by INTEGRATION.

Key words: dynamic network loading, traffic flow theory, car-following models,

queueing theory, traffic simulation, dynamic traffic assignment.
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Introduction

This work presents a time-dependent model of traffic flow for general networks, or
dynamic network-loading (DNL) model. A DNL model is a mapping from the time-
dependent path demand flows to the time-dependent arc variables of flow, density, and
speed. Models of this kind are an integral component of the dynamic traffic assignment
(DTA) problem, which is the determination of the time-dependent path choices of
vehicles in a network given the time-dependent demands from each origin node to each
destination node. In general, these path choices are fiinctions of the arc variables
mentioned above. Many different approaches to the DNL problem have been developed
in the past. These approaches are distinguished primarily by the way they represent traffic
flow, which may be continuous or discrete. Solution techniques for these models are
usually discrete-time methods, where the state of the network is determined over short
time intervals of constant length. For most DNL models, the DTA problem is solved in
an iterative fashion. An initial set of time-dependent paths is chosen, the DNL model is
executed, and the path choices for the next iteration are adjusted as a function of the path
times obtained (Smith and Wisten, 1996; Er-Rafia, 2000). Another approach to dynamic
traffic assignment is based on a feedback mechanism within a single iteration of the DNL

model. This approach - which is a feature of some commercial trafSc simulation
packages - uses current network conditions as an input to the path choices at the origins.
Although the iterative approach tends to converge in empirical tests (ibid.), convergence
is not easily obtained using the feedback method.

0

Discrete-flow DNL models can be further broken down by the representation of space,
which may also be either discrete or continuous. Discrete-flow trafiTic models based on
car-following (CF) logic are defined on continuous space (Rothery, 1999; Gabard 1991),
while those based on the cellular-automaton (CA) paradigm use a discrete notion of space
(Nagel, 1996A). In the latter case, the space discretization is relatively fine, equal to the
length of a single vehicle. Both CF and CA-based models explicitly represent the
individual lanes of a roadway. All solution methods for discrete-flow models in the
literature are discrete-time approaches, with the exception of direct applications of



0

2

queueing methodology to modeling traffic flow. It should be noted that traffic models
defined in this way do not respect the well-known empirical relationship between traffic
flow and density, often referred to as \hQ fundamental diagram of traffic (May, 1990).

Continuous-flow DNL models are generally either defined over the entire length of an
arc, or on arc segments sometimes referred to as cells. The family of analytical - or link-
based - models belongs to the former case, while the macroscopic models belong to the
latter. The analytical models are inspired from the solution to the static traffic assignment
problem, and are usually based on travel time functions. These models are not based on -
nor do they yield - the fiindamental flow-density relationship. This is in contrast to the
macroscopic models, which are closely related to the theory of fluid dynamics.
Continuous-flow approaches do not explicitly model the lane-to-lane interactions that
occur in multi-lane flows (lane changing), and are usually applied to the entire width of a
roadway.

0

L.

The different approaches have varying degrees of practical application, due to the varying
limitations of each approach in modeling traf5c flow realistically. It is generally believed
that the most realistic models are those that use car-following logic, referred to as micro-
simulation models. These models are based on a very detailed representation of the
physical network, and employ a relatively large number of traffic parameters and
heuristics. This renders these models difficult - if not impossible - to calibrate for large-
scale networks. Moreover, these models are relatively slow in terms of computation time.
This last point is significant in the context of real-time applications of dynamic network
loading and dynamic traf5c assignment. Applications of this kind include the
determination of route-guidance information (e.g., to be posted on variable message signs
on highways), and adaptive network control. Even when the DTA logic is based on a
single run of the DNL model, micro-simulation models are currently not fast enough on
the hardware typically available to be used for such applications on large-scale networks.
Although computer memory and speed are incessantly increasing, this does not diminish
the potential usefulness of a relatively simple DNL model with a degree of realism that
approaches that of the micro-simulation models. In particular, a model with fewer
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parameters, and based on a less-detailed definition of the network, should be easier to

execute and calibrate, especially for medium to large-scale networks.

In the following, a brief review oftrafFic flow models is presented. The term traffic flaw
is used to imply that a model yields the fundamental flow-density relationship of trafiTic.
The models reviewed include the macroscopic (fluid dynamic), car-following, and
cellular automata models. Although the analytical methods are not discussed here, a short
section on the application of queueing theory to modelling trafiGc is included at the end of
the chapter.

Fluid Dynamic Models

u

Theories relating to the description of vehicular traffic as a continuous medium are
defined upon the variables of flow (q), density (K), and speed (v). Due to the relationship
q=kv, only two of these variables are independent. The first fluid dynamic theory

proposed for describing traffic flow was that of Lighthill and Whitham, and Richards
(Lighthill and Whitham, 1955; Richards, 1956) - hereafter referred to as the LWR theory.
The underlying hypothesis of this theory is that flow is strictly a function of density:
cl = QW- This is equivalent to saying that speed is strictly a function of density:

v = V(k). One may thus write the fiindamental conservation law of fluid dynamics as

follows (jbid):

Qk ô{kV(k))^^
Qt ox

or alternatively as:

(2) |+CW|="
where: C(k) = dQ(k}ldk.

The theory states that slight changes in flow are propagated upstream along kinematic

waves, whose velocity (relative to the road) is given by c =C(K}, i.e., the slope of the

graph of flow vs. density. These waves represent regions of constant density, and move
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0 along straight lines, called characteristics, in space-time. The model is solved by
determining the function k(x,f), given the appropriate boundary conditions. This can

either be done using graphical techniques (Lighthill and Whitham, 1955) or numerically
(Daganzo, 1994; Lebacque, 1996).

Different variants of the model can be characterized by the relationship v = F(A-), or

equivalently, e = CÇk). To be realistic, C(k) must be monotonically decreasing, or at

least non-increasing, with increasing density. The original proposition of the LWR model
used a well-known relationship between speed and density, due to Greenshields (1935).
This is a linear relationship, defined as:

(3) v= v
max 1--

k

kmax~)

where: vmax = the maximum speed of the traffic

À-max = the maximum (jam) density of the traffic

L.

In this case, the complete model - by substitution of(3) into (1) - is given by:

(4)
Qk
Qt

-+
vfvmax)^-l

'9x [k

max \Qk2

max Sx
=0

It has been noted that with the addition of a term involving the appropriate diffusion
constant, (4) becomes a nonlinear difîusion equation known as the Burgers equation
(Nagel, 1996A). Another relationship that has been used in conjunction with the LWR
theory is the following piecewise linear relationship between flow and density:

\kvmm for k<kf
q=\a(kmw-k) for kïkf

*,.max

where: a =
k\

A-max -k'

The density k , called the critical density, corresponds to the maximum flow. The
following equivalent relationship for C(k), in conjunction with (2), defines the LWR

model based on (5):
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0

(6) C(k)=
fvmax for k<k"
- a for kïk"

In this special case of the model, there are thus only two wave speeds. This version of the
model is of some interest, as it has been used in the proposition of a simplified theory of
kinematic waves (Newell, 1993), based on determining the cumulative number of

vehicles that pass fixed positions of interest in linear networks. These networks permit
inflow and outflow at intermediate nodes, thus producing the necessary congestion. A
unique property of this method is that it does not require the discretization of space over
the length of an arc. If no flow is entering or leaving the network, the cumulative count
may be determined directly for whatever positions are of interest. The model must also be
solved at all positions of inflow and outflow. Solving the model in this way is done using
graphical techniques. It should be noted that these techniques are considerably simpler
that those originally proposed for solving the LWR model with a non-linear flow density
relationship. An approximate solution to Newell's model may be calculated using an
automated (computer) algorithm defined on a space-time lattice. Again, the algorithm is
remarkably simple. Newell also discusses at some length the suitability of this two-linear-
segment flow-density model for describing real traffic (ibid).

u

At about the same time, another simplified model - known as the cell transmission model
- was proposed, this time based on a three-linear-segment flow-density relationship
Daganzo, 1994. The third segment defines a maximum flow constraint, somewhere below
the maximum flow defined for the two-segment model. The linearization of the flow-
density relationship simplifies the numerical solution algorithm, which is defined on a
space-time lattice. This model thus requires the discretization of space into cells. In
principle, the cell transmission model can be applied to general networks with the
addition of appropriate node models. A piecewise-linear flow density model, used in

conjunction with the conservation equations, is also used in another dynamic assignment
model (Chang et. al, 1985; Mahmassani, Hu and Jayakrishnan, 1995). As with all
continuous-flow approaches, lane-interactions are not modeled explicitly in either the
simplified theory ofNewell or the cell-transmission model ofDaganzo.



0

6

By assuming that speed is only a function of density, the LWR theory predicts that
vehicles react instantaneously to changes in density. This is equivalent to the assumption
that acceleration is unbounded, i.e., that changes in velocity may be instantaneous. The
theory is in fact a special case of a more complete fluid dynamical formulation, with the
momentum equation left out. The momentum equation may be stated as follows
(Prigonine and Herman, 1971):

(7) ^^^farce^

Using this relationship, Payne proposed a model that overcame the basic problem of
instantaneous changes in velocity of the LWR theory (Payne, 1971). The model contains
a relaxation term - which limits how quickly the flow may adapt to changes in density -
as well as an anticipation term, which "looks ahead" to the downstream density. An
interesting mathematical motivation for the anticipation term, based on centering the
local density for a vehicle halfway between itself and the vehicle in front of it, is due to
Kerner ÇNagel, 1996A). Payne's momentum equation thus reads as follows (ibid):

(8) ^,^.i[^)_,]_f41^
9t 9x TL v / •' [ k ]ôx

where: Cg = the wave speed of the linearized flow density relationship

This model is known to predict wholly unrealistic traffic conditions under certain
circumstances (Ross, 1988). For example, when freely flowing trafFic comes to a red

light, or the back of a stationary queue, density increases without limit before relaxing
down to its equilibrium value. Although it may be a straightforward matter to simply add
a density constraint, other causes of unrealistic behaviour in the model are known that
cannot be solved very easily, if at all (ibid). With the addition of a diffusion term, one
obtains the momentum equation of Kuhne (1993), and Kerner and Konhauser (1993),
which reads:

^ , -.^ lrrr/^ -.1 fc02l5Â- , Ô2V
(9) ^7+vz:=TlFW-VJ-l-Mi:+u:

ôt Qx T' ' ' ' \^k )Qx Sx

0
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0 where: u a diffusion constant

The model of Kuhne et al. is the only fluid dynamical model known to produce
spontaneous jam formation. Analysis of this model requires the methods of nonlinear
dynamics {ibid).

Car Following Models

Car following models describe the way in which the space-time trajectory of one vehicle
may depend on that of the vehicle in front of it. As such, these models apply to the study
of vehicles traveling on a single lane of a road. These models are defined upon the notion
of discrete flow, moving through continuous space and continuous time. The models are
solved by discretizing time, leaving space as the only continuous variable. One of the first
such models, proposed by Pipes, stated simply that the follower's speed is proportional to

the spatial separation (spacing) between the two vehicles (Pipes, 1953) :

(10) v^)=a{x^)-x^))

where: n = the vehicle's identifier: vehicles are numbered, starting with 1,
in the order in which they cross some fixed position in space

v (/) = the speed of vehicle n at time t

This model implies an instantaneous reaction on the follower's part, to changes in the
spacing between himself and the vehicle in front of him. To improve the model's

predictions, a lag term, T, was added in order to account for the follower's reaction time.

The general form of the model became:

(11) v^+r)=a(x^t)-x^

u
Further development led to an entire family of models, sometimes referred to as the
stimulus-response car following models (Gerlough and Huber, 1975). The stimulus is the
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right hand side of the equation, and the response is the left hand side of the equation.
These models are of the following general form (ibid.):

v(Qmm
(12) ^(/+r)=a

k-i (0-^(0]̂
k-i(Q-^(0].

where m and / are constants. An important result concerning these models was the
derivation of the associated steady state relationships between flow, density, and speed.
The values of m and / could thus be determined by fitting these curves to empirical data.
Many other car following models have been developed along similar lines. The
underlying feature of all of these models is that they are based on a differential equation
relating the trajectory of vehicle n (the follower), at time t+r, to some information
regarding the trajectories of both vehicles n and n-\ at time t. Vehicle n-\ is referred to as
the leader.

Another general type of car following model is derived from (11). Applying a first order
Taylor series expansion to the left hand side, and rearranging terms, leads to the
relationship (Whitham, 1990) :

(13) ^(Q=a(x^(0-^(0)-^(0

Other models of this general variety have been developed as well (Gerlough and Huber,
1975). These models are thus based on a differential equation involving both the leader's
and follower's trajectories, at the same instant in time.

i

u

Gipps proposed a model that employs a second order approximation of the distance
traveled, rather than a first order approximation of the change in speed (Gipps, 1981).
Moreover, the model is based on taking the minimum of two inequality constraints, rather
than using a single equality relationship. The model is of the general category of(14): the
follower's velocity at time t+T is calculated as a function of both its own, and its leaders,
trajectories at time /. The general statement of the model is as follows:
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n (14) v^+r}=MIN[v^(t),vs^(t)\

where: vam(t)

^(0

the maximum speed allowed by the acceleration constraint,

which may be thought of as the vehicle's demand speed

the maximum speed allowed by the safety constraint, which

may be thought of as the prevailing supply speed

The supply speed is derived from an equation that yields the maximum speed that vehicle

n may have at time t+r, supposing that vehicle n-ï begins to decelerate at time t. This
equation is derived from the following inequality constraint:

(15) ^(Q+ \w+v^t+r)T
2

+V^(t+T)6-Vn(t+r)2

1b
<^-i(0-

n

\-^y
2^-i

--À.
n-1

where: T

X,(Q

v,(Q

^,

^
/\

e

the response time of a driver/vehicle

the position of vehicle ; at time t

the velocity of vehicle / at time t

the minimum distance between the front bumpers of two

vehicles at zero speed, called the effective vehicle length

the deceleration rate of vehicle /

the deceleration rate of vehicle ;', as estimated by vehicle

/+7

a user defined parameter

u

The term in square brackets is a second order approximation for the distance traveled by

the follower over the time lag, r. This constraint is derived from the assumption that
vehicles decelerate at a constant rate. The actual rate at which the leader will decelerate is

not considered to be information that the follower could actually know, hence it is

considered to be an estimated value, è^_i.
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Setting (15) to equality, and solving for v (t+T~), yields the supply speed, vsp(t+r).

Given that the temporal discretization step used to solve the model is T, the acceleration
constraint proposed by Gipps is of the following general form:

(16) ^m(t)=v,(t-r)+a-(v,(t-r))T

0

The acceleration constraint serves the purpose of maintaining realistic limits on the
vehicle's acceleration. This constraint also implicitly contains the following constraints
on speed:

^(t)^v-
v,(t)^0

max

(17)

This is accomplished by having amax (y (t)) -^-0 as v (t~)^0, and also as v^ Ct) -> vmax.
A negative lower bound on the vehicle's acceleration is also needed, but this bound is

respected implicitly by (15).

Cellular Automata

Cellular automata (CA) are unlike fluid dynamical models and car following models, in
that there is no distinction between the formal statement of the model and its solution.

The models discussed thus far are defined on continuous space, and time - it is only in
the solutions, or simulations, of these models, in which one or both of these dimensions

are discretized. CA are simulation models, where both space and time, as well as flow,

are discrete. For this reason, they are sometimes called "particle-hopping models",
because they describe the behaviour of discrete particles hopping on a space-time grid.
One- and two-dimensional-space CA models for vehicles, as well as pedestrian traffic,
have been developed - see (Nagel, 1996A) and references therein. Due to the discrete
nature of space, time, and flow, the notion of speed (or velocity) in these models is
necessarily discrete as well. These models typically use between one and five discrete

(positive) speeds. The maximum speed is denoted by vmax.

u
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A fairly primitive one-dimensional model of this types dates back to 1955 (Gerlough,
1956). The main feature of this work was a single-bit representation of each vehicle - the
traffic dynamics, per se, left much to be desired. This approach remained undeveloped
for some 30 years, when the same one-bit approach was extended with somewhat more
sophisticated dynamics (Cremer and Ludwig, 1986). This work exploited byte and word-
based Boolean operations to achieve high computational efficiency, but lacked proper
analysis and testing of the traffic flow model. The one-bit representation has since been
abandoned, due to the need to store more information - such as routes - with each

vehicle.

More recently, a stochastic CA for one-dimensional vehicular trafiTic has been proposed

(Nagel and Shreckenberg, 1992). The model is referred to as the Stochastic Traffic

Cellular Automaton (STCA). The STCA uses a value of vmax = 5, and is defined by

algorithm STCA, below. Essentially, this model defines the maximum distance that

vehicle ; may travel in the next time step, as a function of the position of vehicle ;-1 in the

current time step. There is a lag effect in this model due to the simultaneous updating of

the vehicles: the cause (or stimulus) is in one time step, while the effect (or response) is

seen in the next time step. The randomness introduced by the variable pnoise is responsible

for such model properties as the critical density, k*, that separates the uncongested and

congested flow regimes, as well as the maximum flow observed at bottleneck conditions.

A substantial part of the discussion concerning the STCA has to do with the probability

of spontaneous jam formation (congestion). The critical density is defined in this model

as the density below which there is zero probability of such a jam lasting an infinitely

long time. Another related property of the STCA is the phenomenon of jams breaking up

into regions of laminar flow between high-density pockets. It should be noted that

analytical results regarding these phenomena have not been found for the STCA - the

model remains, above all, a simulation model. Due to the stochastic nature of jam

formation in the STCA, this model shows the bi-stability property. This refers to the fact

that laminar flow may exist well beyond the average value of k\ but will not remain
laminar at these densities for an infinite period of time. This property is somewhat
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complementary to the definition of k' given above. Another property of the STCA is that
it has unbounded deceleration.

The deterministic limit of the STCA, along with some related deterministic models, has
also been investigated (Nagel and Herrmann, 1993). The deterministic limit of the STCA
is defined by setting the randomization probability, pnoise-, to zero. This model was found
to produce "...the rather simple situation of a low density phase with particles having
maximum velocity, a high density phase of low velocity waves, and a simple transition
between the two" (ibid). In addition to the simultaneous updating approach, this model
was also evaluated using sequential updating from left to right, and from right to left.
Such models are no longer CA, but are still valid particle hopping models. The left-to-

right update was found to yield the same result as the simultaneous update, while the
right-to-left update produced markedly different behaviour. This is simply because the
former maintains the lag effect, while the latter does not.

0

0

Algorithm STCA

1. Velocity update: for all particles / simultaneously, do the following:

IF (v, > gap ^ ) (deceleration due to close following)
^ gap, -1 with probability p, if possible (v < 0 not allowed)
[gap, else

ELSE IF (v, < v^^ ) (acceleration)
[v, with probability p^,,
[v,+l else

ELSE (free driving)
|vmax-1 ^th probability p^

vi =

END IF

vi =•

v_
max

else

2. Movement step: move all particles ; to x; (^ +1) = x^ (t) + v;.
where: gap, =x,_,(t}+x,(t}

;' -1 = the vehicle ahead of vehicle ;
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One can further simplify the deterministic version of the STCA by setting vmax = 1 . This
model is known as CA-184, due to its equivalence with cellular automaton rule 184 in
Wolfram's notation (Nagel, 1996B). It has been reported that the general behaviour of the
model does not change due to this simplification CNagel, 1996B). The only practical

difference obtained by setting vmax = 1 is that the acceleration is now unbounded as well.

An important feature of CA-184 is that its fluid-dynamical limit is known. This limit is
obtained by making the cells and time steps increasingly smaller while increasing the
number of particles, such that the average density of particles remains constant CNagel,
1996B). The fluid dynamical limit for CA-184 is defined by:

(18)

where:

q=kvïmK if k<kf
\-Àk

q=

r=

T
;/ k^k'

l

Â+VmaxT

All of the variables are as defined in the previous section on car following models. This is
identical to (5), the two-linear-segment flow-density relationship. It may be conjectured
that CA-184 is essentially equivalent to the LWR model proposed by Newell (Newell,
1993). The existence of only two distinct wave speeds in Newell's model - one for each
of the two flow regimes - is consistent with the behaviour ofCA-184. Moreover, both
models implicitly allow instantaneous acceleration and deceleration. Like the LWR
theory, CA-184 does not produce spontaneous traffic jams.

0

The equivalence of these models may also be considered as follows. LWR theory is
based on the conservation of mass, and the fundamental assumption that flow (or speed,
or wave speed), is strictly a function of density. In the special case ofNewell's simplified
model, it is sufficient to say that mass is conserved, and that there are exactly two wave
speeds, as given by (6). It is obvious that CA models conserve mass. Thus, the only
remaining condition to verify is that CA-184 implies, in a strict way, the same wave
speeds as (6). Although this is not demonstrated here, it is a known property of CA-184
(Nagel, 1996B).
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Queueing Models

A single-seryer FIFO (first-in-first-out) point queue model has been used successfully in
estimating waiting times and queue lengths at isolated bottlenecks, such as vehicles
waiting at a red light. DifGculties commonly arise in such applications, however, when
the arrival process is non-stationary, and in particular when the demand exceeds the
capacity of the system during some portion of the period in question. Although one may
simulate such a queue quite easily, predictions such as waiting time and queue length are
only applicable to the isolated intersection case. Even in the simplest possible network
consisting of two sequential servers defining the entrance and exit of a single arc, it has
been observed that point queues cannot be adequately applied without careful
incorporation of wave phenomena (Daganzo, 1995A). Queueing theory has also been
applied to modelling the process of pedestrians or vehicles crossing a road (Edie, 1973).
The service process in these cases consists of the gaps between vehicles on the road to be
crossed. Modelling this process also suffers from the inability to consider wave
phenomena, i.e., when the distribution of the gaps depends on downstream conditions.

It should be noted that some additional constraints have been added to queueing models
in order to satisfy some basic physical rules that apply to trafBc flow. Rather than moving
vehicles (or customers), instantaneously from one server to the next queue, a lag time
may be used to offset these departure and arrival processes (Heydecker and Addison,
1996). This time would be equivalent to an estimate of the minimum time required to
traverse a section of roadway between two intersections, where the intersections are of
course the servers in the model. In this way, a maximum speed constraint is respected.
Moreover, one may assign a physical length to each vehicle, which, along with the
physical length of a section of road, yields an obvious (storage) capacity constraint for
each queue. The addition of such constraints does not however incorporate the wave
phenomena. The difficulty is that queueing models are incapable of describing how
vehicles are spread out in space. This information is necessary in order to determine the
spatial extension of a queue, which may often extend beyond a single arc. Spatial queue
extension is thus required to determine when a vehicle enters and exits a given arc along
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its route. Accurate arc travel times, in turn, are necessary for applications such as
dynamic traffic assignment (DTA). To spread vehicles out in space, however, requires
the concept of density, which is not a feature ofqueueing theory.

Discussion

0

Many traffic models have been proposed in the literature. In the context of dynamic

traffic assignment, where highly detailed dynamics and stochastic behaviour may be less
important than the computational speed of the model, it is the simpler models that are of
particular interest. In this regard, it is significant that two of the three major approaches to
traffic theory - namely, macroscopic theory and cellular automata - yield a two-segment

flow density relationship in a limiting, simplified case. Although this relationship is an
input (rather than an output) in the LWR theory, it is known to yield less sophisticated
dynamics than non-linear relationships (Velan, 2000), and thus truly represents a
simplified theory as suggested by Newell (1993). It may be noted that in both the LWR

theory and CA-184, positive and negative acceleration are unbounded. It may be
conjectured that for the purposes of dynamic traffic assignment, it is sufficient for a DNL

model to satisfy the two-linear-segment flow-density relationship.

Another question of importance concerns the features of a complete DNL model that lie

beyond the theory of traffic flow. Such features include the modelling of nodes, as well
as the lane interactions that are features of multi-lane CF and CA-based simulation

models (Gipps, 1986; Rickert et al, 1997). Concerning node models, it should be noted
that many applications of continuous flow models apply constraints at the node that are
based only on the demand for, and the capacity of, each of the arcs downstream of the
node. Without considering the geometry of the turnings at the node, these models capture
only the congestion effects due to the merging of flows. Another important situation
involves flows that cross, i.e., that share neither an upstream nor downstream arc at the
node. This type of constraint is generally included in discrete-flow approaches. As
mentioned above, continuous-flow models are not well suited to considering lane
interactions within arcs, which are known in the traffic engineering literature to be non-
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negligible as mechanisms of congestion (Transportation Research Board, 1998). It would
seem that any improvements in the area of simplified traffic modelling - that might be
useful in the context of DTA - should be focused on the discrete-flow approach in order
to be well suited to the consideration of node and arc-based constraints that go beyond
the basic traffic dynamics.

0

Outline and Contributions of the Thesis

The main objective of the thesis is to develop a traffic model that is well suited for
dynamic trafFic assignment (DTA) applications for large-scale networks. To be of
practical use for large scale networks, it is important that the amount of input data
required by a traf&c model, and in particular the number of parameters needed to describe
the traffic behaviour on each arc of the network, be kept to a minimum. To be of practical
use within the context of an iterative DTA algorithm, it is important that a trafiRc model
have relatively short execution times, even on large networks. For these two reasons this
thesis is concerned with simplified traffic models, and with the trade-off between
accuracy and computational effort in this type of model.

The body of the thesis is composed of four articles. The first article, entitled "Behavioural
Car Following Models", was prepared during the course of a preliminary literature
review on the topic of car following models. One contribution of the paper is a unique

formulation of the well-known relationship between two sequential vehicles based on
maintaining a safe distance between them, in which the variables describing the trajectory
of each vehicle are referenced to a single point in time, but no two vehicles are
referenced to the same point in time. It is found that this formulation more readily permits
the derivation of some basic properties associated with car following models, such as the
equilibrium relationship between density and flow and the property of asymptotic
stability. Another contribution is the proposal of an alternative fiinction for the
deceleration trajectory of a vehicle. The equilibrium relationship resulting from the use of
the proposed function is found to resemble very strongly the general shape suggested by
empirical data, and hence is very well suited to calibration against such data. At the same
time, the parameters of the equilibrium relationship represent physically meaningful



n

17

quantities, such as reaction time, maximum speed and vehicle length, which allows such
a relationship to be constructed for a road section when empirical flow-density data are
not available. An earlier version of this paper was presented at the 78 Meeting of the
Transportation Research Board (United States). The paper in its current form is under
review for publication in Transportation Science, a journal that remains uncontested as
the most prestigious in the field.

In the second article, "From Traffic Flow to Queueing Theory", an important contribution
is made to the area of simplified traffic models through the discovery of a discrete-flow
model that is essentially a special type of point queue whose resource is one-dimensional
space-time, rather than one-dimensional time. The result is a queueing model that
respects the fiindamental diagram of trafTic, which is the equilibrium relationship
between the traffic variables of flow and density. This simple, one-lane trafiFic model can
be thought of as the continuous-time counterpart of a deterministic cellular automaton
traffic model. With respect to continuous-flow models, its closest counterpart is the
simplified kinematic wave model proposed by Newell. The paper was recently presented
at the 8 Annual Meeting of the EURO Working Group on Transportation - EURO is the
Organization of European Operational Research Societies. Papers presented at the
meeting are currently under consideration for a special issue of the European Journal of

Operations Research (EJOR).

This new model provides the underlying structure for a more general model presented in
the third paper, "A Discrete Flow Arc Model of Traffic Dynamics Based on the Space-

Time Queue". The generalized model is designed to capture the effects of interactions
between parallel lanes where lateral movements (lane changing) may occur. Designing
such a model is a problem that has not been attempted before, as there are no other "one-
lane" discrete-flow models - i.e., discrete-flow models of longitudinal dynamics - in the
literature that do not require the longitudinal discretization of space. The proposed multi-
lane model successfully captures the necessary interactions in a physically meaningful
way without resorting to such a discretization, and hence requires remarkably little
computational effort. Properly capturing the effects of lane-to-lane interactions,
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particularly on highways, is critical to the potential of such a model to be used for real-
world applications. Hence, the high quality of the results produced by the model for the
low computational cost required represents an important contribution to field of traffic
simulation, and more generally to the domain of dynamic network loading.
Dissémination of this paper will be pursued after the review has been received for the
second paper. Publication will be sought in Transportation Research B: Methodology, a
very well respected journal that has published much of the relevant literature on traffic

modelling.

The application of the multi-lane arc model for general networks is the topic of the fourth
article, "A Discrete Flow Model for Dynamic Network Loading". The first problem to be
addressed in this paper is that of resolving conflicts between competing trafiTic streams at
network nodes (intersections), referred to as the node problem. Because virtually all
existing traffic models are solved using discrete-time procedures, while the proposed arc
model is most efficiently solved using a continuous-time (or discrete-evenf) procedure,
the design of an appropriate node model represented yet another problem that had not
been addressed in the literature. Although the proposed node model uses the basic
concept of gap-acceptance that has been developed and studied in the literature, more
attention is paid here to how this concept is applied in the context of a model for general
traflTic nodes. In particular, it is found that this concept alone cannot prevent "dead-lock"
situations and that additional constraints or heuristics are required in order to obtain
realistic results. The proposed solution algorithm for general networks is based directly
on the node model, and thus provides the modeler with a very clean separation between
the arc model, node model, and solution algorithm modules. The proposed algorithm may
thus be used for solving other continuous-time discrete-flow models, such as those based
on the direct application of traditional queueing methodology. Moreover, the overall
structure permits other types of node models to be tested very easily in conjunction with
the proposed arc model. A very cursory description of the model, along with a discussion
of the results presented in this paper, can be found in "A Comparison of Three Methods
for Dynamic Network Loading", which has been accepted for presentation at the 80
Annual Meeting of the Transportation Research Board, and for publication in
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Transportation Research Record. The meetings of Transportation Research Board are
undoubtedly the largest annual meetings of the transportation research community, and
the quality of the work accepted for publication in the associated journal (Transportation
Research Record) is well recognized. Due to its focus on the procedural aspects of the
model and the evaluation of its overall performance, the complete paper will be sent to
Transportation Research C: Emerging Technologies. Although this journal is relatively
new, it is well recognized in the field for publishing high quality work.



0

0

Behavioural Car Following Models

Michael Mahut, University of Montreal, Centre for Research on Transportation
M.ontreal, Canada

Abstract

This paper presents and analyzes a generalization of the car following model originally
proposed by Gipps (1981). The generalization is with respect to the safe-stopping, or
safety constraint. In addition to the usual quadratic expression for the deceleration
trajectory, a second deceleration function is proposed, which yields a logarithmic
relationship between speed and stopping distance. For each of these two deceleration
trajectories, two models are defined : one for unconstrained vehicles, and another for
constrained, or interacting, vehicles. Although the unconstrained models are non-linear
inequalities - involving roots or logarithms - the constrained models are essentially linear
equations, involving only powers of ± l. This implies a significant increase in the
efficiency of the model as a network becomes congested. The macroscopic (steady state)
curves corresponding to these two deceleration trajectories are derived under the
assumption of homogeneity of the traffic stream, and are found to be functions of four
parameters: maximum speed, maximum density, driver response time, and a safety
parameter. It is found that the response time and safety parameter can be derived from the
capacity (maximum flow) and speed at capacity of the trafBc. Sample calculations are
found to yield very realistic response times. The macroscopic curve derived from the
logarithmic function is a "single regime" curve, and is very well suited for calibration to
empirical data. A necessary condition for the asymptotic stability of these models is
defined, which yields a theoretical envelope on the fiindamental traflfic flow diagram,
under the assumptions of asymptotic stability and homogeneity of the traffic. An
extension of the quadratic model to include a linear safety parameter is also presented.
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l Introduction

The car following paradigm investigated here is based on a very simple rule, which is
already well known in the literature (Gerlough and Huber, 1975; Gipps, 1981; Krauss,
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1998). The follower attempts to maximize his instantaneous speed subject to two
constraints: an acceleration constraint, and a safety constraint. This may be stated as
follows:

(1.1) v^t)=MIN[v^(t),v^(t)]

where: Vf(f) = the follower's speed at time f
Vfdem(/)= the maximum speed allowed by the acceleration constraint,

which may be thought of as a "demand speed"
Vf (^) = the maximum speed allowed by the safety constraint, which may

be thought of as a "supply speed"

The acceleration constraint is a statement of a vehicle's physical limitations for speed and
acceleration, as well as of a driver's desire for comfort. Essentially, it describes the
trajectory of a vehicle that is free to accelerate to its maximum desired speed in the
absence of downstream vehicles. It is not necessarily a constant value: it may be a
function of the vehicle's speed, for example (see Gipps 1981). The safety constraint is a
statement of how a vehicle's trajectory is affected by the next downstream vehicle. The
remainder of this article will be concerned only with the safety constraint, and with the
properties of the trafSc flow that can be detemuned from it. In particular, it will be
shown that both the steady state properties, as well as a necessary condition for
asymptotic stability, can be determined directly from this constraint. A diagram
illustrating the derivation of this constraint is shown in Figure 1, where the vehicles
interact as follows: if the leader (indexed by /) should begin to decelerate to a stop at
some time /, then the follower (indexed by /), starting at time t+-c, must be able to
decelerate to a stop in a safe way. The lag time T is the follower's response time, while
the time T is the moment the follower arrives to a stop. Hence, to avoid a collision, the
follower's trajectory must satisfy the following inequality constraint, hereafter referred to
as the safety constraint:

(1.2) ^(/4-T)+ô(Vf(/+T),Pf)+X<^(0+ô(v,(Q,P,)

u

where: T = the response time of a driver/vehicle
X = the minimum distance between the fi-ont bumpers of two

vehicles at zero speed, refen-ed to as the effective vehicle length
X{ = the follower's position
x\ = the leader's position
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Vf = the follower's speed
vi = the leader's speed
5(v,P) = the deceleration distance function: the distance required to

decelerate from speed v to a stop, with deceleration parameter P
Pf = the desired deceleration parameter: a parameter that reflects the

way in which the follower would like to decelerate to a stop
Pi = the anticipated deceleration parameter: a parameter that reflects

the way in which the follower anticipates the leader will decelerate
to a stop

It should be noted that the traffic stream is assumed to be homogeneous. That is to say
that the vehicle parameters, such as x, \, pi, Pf, etc... will be assumed to be constant for
all vehicles, as is typically done in order to simplify the analysis of the steady state and
stability properties implied by a model. In particular, the speed at which vehicles attempt
to travel, often referred to as the desired speed, o\ free-flaw speed, is considered to be
constant for all vehicles. This parameter is referred to here simply as the maximum speed,
and is denoted by V. The state vector of a vehicle, at any moment in time, consists of its
instantaneous position, speed, and acceleration: the latter is denoted by a(t).

Figure 1: Safe deceleration to stop diagram
POSITION

Xf(t+T) Xl(t)
_L

Xf(T) Xi(T)

t -l—

t + T -l— f

T ^-.

TIME

u

l <-
5(vi(t),Pi)

->•

{— f l
l

A ->
l

J

ô(Vf(t+T),Pf) À
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A useful property of such a model is that all of the parameters involved correspond
directly to physical or behavioural properties of the traffic stream: vehicle length,
response time, maximum speed, and desired and anticipated deceleration. For this
reason, Gipps (1981) referred to his model as a behavioural car following model - and
hence the usage of the tenn here — contrasting its parameters with those required by a
different car-following paradigm, based on the notion of stimulus and response (Herman
et al, 1959; Gazis et al, 1959), which do not necessarily correspond to physical or
behavioural quantities. The advantage of such an approach is that most of these quantities
are measurable, at least in principle. The more of these parameters that are directly
measurable, the fewer degrees of freedom there are in the calibration process. Moreover,
if one has even an intuitive idea of what are reasonable values for these parameters, due
to their physical interpretation, one can say something about the plausibility of such a
model.

Typically, in the formulation of a safety constraint equivalent to (1.2), all variables are
referenced to the same time /, by estimating the follower's state vector at time f+T as a
function of his state vector at time / (Gerlough and Huber, 1975; Gipps, 1981; Krauss,
1998). The approach taken here is to allow the state vectors of / and/to be referenced to
different points in time, i.e. to t and /+T, respectively. Although this will have no effect
on the discretized solution formulas for the problem, it will permit the identification of an
analytical solution for a special case. If the function o(v,P) is invertible in v for a given P,
one may solve (1.2) for the supply speed as follows:

(1.3) v,(/+T)^5:l(x,(Q-x,(^T)+5(Vi(0,Pi)-^p,)=vr(/+T).

This inequality will be referred to as the unconstrained car following model. It can be
applied when the safety constraint \s inactive (not binding), and can be used to determine
the point at which the safety constraint becomes active, i.e. the point at which the
follower's trajectory becomes constrained by its leader's. This is done by discretizing
time into fixed increments, and finding a numerical solution to the right hand side of
(1.3). Typically, one would estimate Xf(t+t) by assuming constant acceleration from the
last known state vector of vehicle / When the safety constraint eventually becomes
active, i.e. when:

(1.4) ^(/+x)+5(Vf(f+T),|3f)+X=^(0+5(v,(api),

•
*

•
i

j

.<

0
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it is likely to stay that way for some time, under realistic traffic conditions. When this
happens, the derivatives of the right and left-hand sides of (1.4) must also be equal over
this interval. Assuming now that the fiinction 5(v,P) is differentiable with respect to v,
one may take the derivative of (1.4) with respect to time, which yields:

(1.5) Vf(/+T)+5;(v,(?+T),P,)^^+T)=v,(r)+5',(v,(0,Pi)a,(0,

where the function 5'y (v,P) is the derivative d5(v,p)/dv. What makes this relationship
very convenient is that it can be solved easily for a/(/+ï):

,Vi(Q-v,(/+T)+5;(Vi(Q,Pi)a,(/)
(1.6) Û?,(/+T)=

5;(v,(/+r),Pf)
3

0

which can be interpreted as the maximum safe (or "supply") acceleration on the interval
(/, /+-c). Thus, once the safety constraint becomes active, one may use (1.6) to calculate
the appropriate values of Vfsup(/+ï). This equation will hereafter be referred to as the
constrained car following model. To solve (1.6) numerically, one would again have to
use the last hiown state vector of/, this time to approximate Vf (/+T). Although an
analytical solution to (1.4) and (1.5) does not exist in general, one such solution does
exist for a special case which is discussed and interpreted below.

0

2 Steady state properties

The objective now is to determine the steady state behaviour toward which the traffic will
tend. The term steady state here is used in reference to a vehicle's state vector, and
corresponds to the condition that its acceleration equals zero. Since the follower always
attempts to maximize his instantaneous speed, he will achieve a constant speed only upon
reaching the maximum speed of the traffic stream (V), or upon reaching a minimum safe
distance behind a leader who is also moving at constant speed. In the case of the latter,
the leader's speed must be less than the maximum speed (F). Clearly then, the safety
constraint (1.2) is active for all steady state speeds less than the maximum speed of the
traffic stream, where the follower's trajectory is given by the differential equation (1.5).
Substituting afÇî+x) == ai (/) = 0 into (1.5) yields:

(2.1) V,(f+T)=V,(Q.

Letting v = Vf(/+ï) = YI (Q, and noting that for Of (Q = 0,
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n (2.2) x,(t+-c)=x^ï)+vr,

c~.'

one may find the steady state spacing by substituting (2.1) and (2.2) into the active safety
constraint (1.4), which yields:

(2.3) x,(0-^(0=5(v,Pf)-5(v,p,)+VT+X, Vv<7.

Defining so(y~) as the steady state spacing as a function of speed, (2.3) becomes:

(2.4) ^M=S(v,Pf)-5(v,P,)+vx+^ Vv<F.

The steady state flow and density, as functions of speed, can be derived from (2.4) in the
usual way, using the relationships q = kv, and k = Vs, where q and k are the flow and
density of the trafBc stream, respectively. In the case where v = F, the only necessary
condition is that the safety constraint (1.2) be satisfied, and thus all possible values of
spacing that satisfy this inequality are possible steady state values for v = F. It can thus
be seen that 5(v,Pf) - 5(v,Pi) represents a measure of the level of safety of the traffic
stream, since the greater the distance between two vehicles, the less likely it is that a
collision will occur.

3 The Quadratic Deceleration model

The question now turns to the nature of the deceleration distance function, 5(v,P). This is
often posed as a constant deceleration (with time) trajectory (Geriough and Huber, 1975;
Gipps, 1981), representing a -worst case stopping scenario. Under this assumption, the
deceleration distance function, its inverse, and its derivative are defined as:

(3.1) v
2

6(v,P)^. S,'(x,P)=V2px,
v

5;(v,P)=p.

The unconstrained car following model thus becomes:

(3.2) v,(/+T)^j2^uad|x,(t)+^--x,(/
V. ^Pi'

+T)-X|.

u
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where: (3fquad = the absolute value of the follower's desired deceleration rate
(m/s ), and

Piq = the absolute value of the leader's deceleration rate as anticipated
by the follower (m/s ).

Substituting (3.1) into (1.6), one obtains the following constrained car following model
for the quadratic deceleration function:

^(,^)=p;.^^(0-fi^]-il
"f^ ' ^~^! \^(Ï+T)[^ ' P?uad.

0

•u

An imponant characteristic of (3.3) is that it is essentially a linear equation, i.e., it
involves only powers of ± 1, and is thus very inexpensive from a computational point of
view. The steady state spacing is found by substituting (3.1) into (2.4), which yields:

(3.4) ^o(v)=-
V2 V2

-+VT+À,, Vv<F.
2p^d 2?^

Introducing the notion of a quadratic safety parameter, t,^ defined as

l l
(3.5) y 2p^uad 2p^uad '

the steady state spacing (3.4) becomes:

(3.6) ^(v,Çquad)=v2Çquad+VT+X, Vv<F.

A useftil property of this model is that appropriate values of T and ^q" can be determined
uniquely as functions of the capacity (Q) and speed at capacity (Fg) of the trafGc stream.
One begins by defining ^ as the inverse of the jam density (K):

(3.7)
X=l

K

Defining the steady state headway as ho (v)= so(y)/v, one can then define:

(3.8) ^e =argmin(Ào(v)).

Setting the derivative ho (v) equal to zero, one obtains:
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n (3.9) Çquad=ir.
^2

0

The relationship ho(Vo) == 1/0 yields the following relationship for T:

(3..0) .-^.

Figure 2: Steady-state curves for the
quadratic deceleration model

120 n

0 50 100

Density (veh/km)

0

xi=0.0s2/m

xi = 0.1 s2/m

'. xi = 0.2 s2/m

x xi = 0.3 s2/m

3000-1

1002500-1 N
ï ^
x

S î :80-12000-1 ••
x

^t-=- ^ ï i^ x £x^ ï i :J»;

S 1500^ xt 60-i
T î î.'>^ -0

X* <u x * •
<u î^.'
5- 40-1uC

iœo -l IX X*

v ÂV^, Xl
\ Xt

20-1500 -]

l

00
1000 2000

Flow(veh/hr)

3000

0

Although the traffic stream parameters allow one to uniquely define the safety parameter,
Çquad, one can make no inference about the car following parameters Pfquad and Piquad from
this information. To calibrate the car following models (3.2, 3.3), one would have to
estimate Pfquad from observation (since one cannot directly measure Piquad ), and then
calculate piquad as a function ofpfquad and ^quad.

For the traffic flow parameters ^=100 km/hr, K=Ï25 veh/km, Q= 2000 veh/hr, and VQ
= 70 km/hr, the corresponding model parameters are A, == 8.00 m, x = 0.977 s, and ^quad =
0.0212 s /m. It is encouraging to note that for a realistic set of traffic stream parameters,
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the resulting value of T is remarkably close to empirical measurements of response time.
Figure 2 shows the macroscopic curves for this model when the parameters F \, and T are
held constant at 100 km/hr, 8.0 m, and 1.0 s, respectively, while the value of Cquad is
varied. In the case of v = V, the steady state spacing may be any value that satisfies the
safety constraint (1.2), and thus the steady state curve for this model is represented by a
two-part function.

0

4 The Logarithmic deceleration model

By assuming different forms for the deceleration distance function, one can develop
alternative behavioural models. A second model is developed here in this way, assuming
that the follower is anticipating an expected deceleration trajectory on the leader's part,
rather than a -worst case trajectory. The form of the expected trajectory is posed here as:

(4.1) v(x)=V(ï-exp(-^x))

where: ,yexp(y) = ey
V = the maximum speed
P = a trajectory parameter

This function in fact describes an

acceleration trajectory in x, but if one
measures x backwards from the zero

velocity position, it can equally well
describe a deceleration trajectory to zero
speed. Upon inverting (4.1);

(4.2) x(v)= -l"[l-^^,

Figure 3: Logarithmic deceleration
trajectory
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one can describe the deceleration distance from a given speed (v) to zero speed, as a
function of the maximum speed V and the parameter P. The corresponding formula for
v(t) is given by:

(4.3) v(/)=[^exp(-P^)j

ï

i
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Figure 3 shows a plot of equation (4.3). This curve provides a realistic form for the
decelerating trajectory: deceleration is gradual at first, becomes more severe, and then
gradual again as speed approaches zero. Defimng the deceleration distance function and
its derivative as:

(4.4) 6(v,P)=-ln[l-^j-, 5;(v,f3)
The unconstrained car following model is given by:

l

P(F-v)

(4.5) Vf (/ + T) ^ î^| 1-expp?'^,(f)-x,((+T)-X-ln^l-^)j^. ? •

(')

where: Pf g = the follower's desired deceleration parameter (1/m), and
p log the leader's anticipated deceleration parameter (1/m),

The inverse function 5v (x,P) is given in (4.1), above. The constrained car following
model for the logarithmic function becomes:

(4.6) a,((+T)»P;o'(^-v,(f+,))Cv,(()-v,((+t)+p?^^j.
<

One may note that the constrained model (4.6) is once again a linear equation.
Introducing a logarithmic safety parameter, £,log, defined as:

(4.7) Ç'08 =
l l

^ ^

The steady state spacing (2.4) corresponding to this trajectory becomes:

(4.8) ^(v^lQ8)=-^Bln|l-^-|+vT+X, Vv<7,

where X = \IK, as before. Setting once again the derivative of the steady state headway
equal to zero, one obtains:

^-'

(4'9) ÇI°'=«l-^)+fe])

î

u The value of T for this model is given by:
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n (4.10)
l KIf. QT=-:+—l^°81n|l—|-X|,

vo'^l

0

which is again derived from the relationship ho {VQ) = 1/0. For the trafl5c stream
parameters V =100 km/hr, ^ = 125 veh/km, 0 = 2000 veh/hr, and VQ = 70 km/hr, the
resulting model parameters are X = 8.0 m, E, Ë = 7.08 m, and T = 0.95 s. Once again, the
realistic value obtained for T is very encouraging. Figure 4 shows the macroscopic
curves for this model when the parameters V, X, and T are held constant at 100 kin/hr, 8.0
m, and 1.0 s, respectively, while the value of^log is varied. As with the quadratic model,
one cannot fully calibrate the car following models (4.5, 4.6) from the traffic stream
parameters. In this case, one would again have to measure the desired deceleration
parameter, Pflog.

Figure 4: Steady-state curves for the
logarithmic deceleration model
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A major difference between the macroscopic curves for the quadratic and logarithmic
models is that the latter is a "single regime" curve. This occurs even though vehicles can,
in general, be in either constrained or unconstrained states, and is due to the fact that the
deceleration distance goes to infinity as speed approaches the maximum speed. Hence,
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all steady state vehicles are in a constrained state, and the result is a single regime
macroscopic curve.

5 Stability of the Behavioural Models

The notions of local and asymptotic stabilities of car following models have been
examined in some depth for a family of models known as the "stimulus-response" models
(Hennan et al, 1959; Gazis et al, 1959). In the case of asymptotic stability, which is
concerned with the way a perturbation moves through a platoon of vehicles, one analyzes
a steady state platoon. In the case of a platoon at zero speed, this corresponds to an
analysis of queue dispersion. For the steady state condition defined by (2.1), i.e., Vf(f+ï)
= vi(/), the constrained car following model (1.6) becomes:

(5.1) ,,«^)=^2^«)
'fvl u/-5',(v,P,)^

0

If one now refers to a platoon leader as '0', his follower as '1', and to the subsequent
followers as2, 3, ... n, one obtains:

fi^r..('),(5.2) ^(f+nr) .S:(v,P,)J

where / is the moment in time the leader's trajectory is perturbed. It can be seen from
(5.2) that the question of asymptotic stability is related to the value of5'v(v,Pi)/S'v(v,Pf),
since asymptotic stability implies that a perturbation to the flow diininishes in magnitude
as it propagates upstream from one vehicle to the next. One can thus make the following
statements regarding the value of 5'v(v, Pi)/8'v(v, Pf) as a necessary condition for
asymptotic stability, instability, and the stability boundary:

(5.3) asymptotically stable flaw => [a (t + nï) < flg (/)]:

(5.4) asymptotically unstable flow => [a (t + nr) > Og (?)] :

5:(v,Pi)

(5.5) stability boundary [a^î+m~)=a,(t)]:

.§^(v,Pf)

S;(v,f3,)
.5;(v,P,)

5;(v,Pi)
.5;(v,Pf)

<1

>1

•l

3

î

l.)
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It can be further stated, from (5.2), that the more stable the flow, the smaller the value of
5'v(v,Pi)/5'v(v,pf). Moreover, if one keeps Pr fixed, then the following is implied if PI]
corresponds to more stable flow than p2i:

(5.6) §:(v,Pli),5;(v,(32,)
<

5:(v,P,) " 8;(v,P,)
[(5;(v,P,)-5;(v,pl,))>(5',(v,p,)-5;(v,p2,))]

In addition, ifd(ô'v(v,P))/d(5(v,P)) is strictly positive, as is the case with the quadratic and
logarithmic models presented above, it can be seen that:

(5.7) [(5:^Pr)-5:(v,pl,))>(5;(v,P,)-ô;(v,p2,))]
=>[(S(v,(3,)-ô(v,pl,))>(5(v,|3,)-5(v,p2,))].

And furthennore;

(5.8) [[ô(v,^)-ô(v^l,)}>[ô(v,^)-6(v,p2,)}\^[s,(v,^)>s,(v,^)},

where ^1 and ^2 are ftinctions of(Pf,pli) and (Pf,P2i), respectively. The right hand side of
(5.8) implies that pli yields a higher level of safety than p2i, since a higher spacing
implies higher safety. Hence, by (5.6-5.8), an increase in the stability is equivalent to an
increase in the level of safety, for a given value of Pf.

For both the quadratic and logarithmic deceleration models, the value of o'v(v, Pi)/5'v(v, pf)
is in fact constant over all values of v, and is equal to the ratio piquad /(3fquad, and Pilos/Pf
8, respectively. As a result, the measure of stability suggested here is constant over all v
given the choice of these parameters. It may be noted that the stability boundary case,
which implies Pi = Pr, yields a value of zero for the quadratic and logarithmic safety
parameters, while asymptotic stability and instability yield positive and negative safety
parameters, respectively. It may also be noted that empirical results reported by Gipps
(1981) suggest that behavioural models are non-oscillating, and hence locally stable,
regardless of the values of Pi and Pf. Similar tests carried out by the author support this
possibility.

A physical interpretation of the stability boundary case

In the case of the stability boundary, one may substitute a common deceleration
parameter, P, for pi and Pf. The constrained car following model (1.5) thus becomes:

i
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(5.9) ^-(^-^)+5'v(^^+T),P)a,(/+T)=v,(Q+5:(Vi(Q,P)^(Q

Clearly, a solution to this differential equation is simply Vf (t+T) = v; (f), which is the
steady state condition as defined in (2.1). Substituting this result, along with Pi = (3f, into
the active safety constraint (1.4), yields;

(5.10) ^(/+T)+X=X,(O

What this implies is that if the initial condition satisfies the steady state condition, the
follower's trajectory will be an exact copy of the leader's trajectory, displaced T units in
time and À, units in space. Practically speaking however, one may consider the follower's
trajectory to be sufficiently close to (5.10) after a relatively short time from when the
safety constraint becomes active, particularly when the leader's speed is close to zero due
to heavy congestion or traffic signals. To interpret the stability boundary in a physical
way, one might consider the case of queue dispersion at a traffic signal. All vehicles
stopped in queue at the moment the signal turns green, as well as all those that arrive to
the end of the queue behind a near-stationary leader (vi » 0), approximately satisfy the
steady state condition (vf (^+ï) w vi(Q). By (5.10), the last vehicle in queue would
accelerate with virtually the same trajectory as the first vehicle in queue, offset in time
and space. This does not seem to be very realistic: coinmon experience would indicate
that acceleration is typically less severe, the further back one is in the queue. It is not
possible to say, however, whether this phenomenon is due to the existence of a "positive
safety factor", or simply due to the non-homogeneity of the traf5c.

u

6 The Linear Safety Parameter

Another behavioural hypothesis is that the follower maintains a distance behind the
leader that allows him a response time that is longer than his actual response time (Gipps,
1981). Since the follower's actual response time no longer corresponds to the response
time implicit in his behaviour, the follower's trajectory at time / is determined as a
function of where he might be some short time later. For simplicity, a linear prediction
will be used here. Introducing a linear safety parameter, 6, one assumes that:

(6.1) v,(/+9)=vr(0,

(6.2) x,(t+Q~)=x^ï)+Qv,(ï).
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0

0

The safety constraint (1.2) thus becomes:

(6.3) x,(/+T)+9v,(/+T)+5(v,(/+T),p,)+X^Xi(Q+5(Vi(^Pi)

This hypothesis thus yields a variant of the original safety constraint (1.2), by adding the
term Ovf (/+T) to the left hand side. This variant cannot be used with the logarithmic
model, since it would not be possible to solve the inequality (6.3) for V{(ï+x), in order to
define the unconstrained car following model. One may apply this extension to the
quadratic model, however, the result being essentially equivalent to Gipps' (1981) car
following model. In this case, (6.3) becomes quadratic in velocity, and the approach
taken by Gipps was to solve for Vf using the quadratic formula. When the follower's
trajectory is constrained, however, one may solve the constrained car following model
(analogous to (1.6)) corresponding to the quadratic version of (6.3);

(6.4) ^(^T)=P?'l quad v,(0
v^t+x) ,l+i^j-(l+e)l-

which is again a linear equation, and thus easier to solve than the quadratic fonnula.
Furthermore, the steady state spacing in this case is given by:

(6.5) s,(v^\Q)=v2^+(Q+r)v+\, \/v<V.

It may be noted that (6.5) is of the same form as the steady state spacing (2.4) developed
for the original safety constraint (1.2): the only difiFerence between the two is in the
inteqîretation of the linear coefficient. Whereas originally, this term was assumed to
yield the response time, T, it is now assumed to yield the response time plus a linear
safety parameter. To be calibrated, such a model (6.4) requires that both the parameters
Pf and T be determined empirically. However, since the linear coefiTicients determined in
the above examples are virtually equivalent to typical values of driver response time, it
does not appear that the linear safety parameter can be used in conjunction with a
quadratic safety parameter. That would imply response times significantly less than 1
second, which may be unrealistic. The linear safety parameter will thus be considered
here as an alternative to the quadratic safety parameter, and will thus be analyzed only
for the case where Pf = Pi. Defining a common deceleration parameter, Pq , the
unconstrained car following model, constrained car following model (6.4), and steady
state spacing (6.5) become, respectively:
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(6.8) ^^9)=(6+T)v+^

where X = 1/À", as before.

Vv<F,

35

(6.6) v,«+,)sp<- -e+^'-^-x,(()-^-+^((+,)+^

<") a^-^[-.&(l+^)-^}

•i
'

j

= i

t

!
i

0

u

Figure 5: Steady-state curves with the
linear safety parameter only
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Since the derivative of headway is now negative for all v, the speed at capacity is always
equal to the maximum speed (V). Given the value of capacity (0), 6 can be calculated as:

(6.9) e^-^-..
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The macroscopic curve is again composed of two segments: a linear segment equivalent
to the maximum speed (P) for all values of spacing satisfying the safety constraint (6.6),
and the boundary based on the steady state spacing for v < 7(6.8). The traffic stream
parameters V=l00 km/hr, X':=125 veh/km, and Q = 2000 veh/hr yield the model
parameters À, = 8.0 m and 6+T = 1.5 s. Assuming for example, that x equals 1.0s, this
implies a linear safety parameter of 0.5s, which seems quite plausible. Figure 5 shows the
macroscopic curves for this model when the parameters V, X, and t are held constant at
100 km/hr, 8.0 m, and 1.0 s, respectively, while the value of 6 is varied. An analysis of
the stability of the constrained car following model (6.7), analogous to that carried out in
section 5, yields the same relationship between stability and the linear safety parameter:
asymptotic stability implies 6 > 0, instability implies 6 < 0, and the stability boundary
implies 6=0.

7 Discussion and Conclusions

0

As can be seen from the results in Figures 2, 4, and 5, there is a clear trend toward higher
capacities with lower values of the safety parameters. This implies that for given values
of maximum speed, eflfective vehicle length, response time, and desired deceleration (pf),
higher capacity implies both a lower level of safety and lower stability in the traffic
stream. It may also be observed that for the quadratic and logarithmic models, (Figures 2
and 4) the speed at capacity decreases as the safety parameter increases. If asymptotic
stability is considered to be a necessary property of the traffic stream, the stability
boundary represents a theoretical limit on the macroscopic curve, as a function of the
maximum speed, effective vehicle length, and response time. This envelope takes on a
triangular shape in the space of flow vs. density (see Figures 2, 4, and 5). The left side of
the envelope represents uncongested conditions, and is defined by the slope V from the
origin to a maximum capacity value, Qmax. The right side of the envelope represents
congested conditions, and is defined by the slope -X/T, from the point (0,K) to the
maximum capacity, Qmax. Since real traffic is not necessarily stable, nor homogeneous,
this envelope may in fact be exceeded by empirical data, particularly when they are
measured over relatively short intervals. It would be interesting to investigate, however,
whether empirical data respect this boundary when the appropriate values of V, X, and T
are known. The capacity corresponding to the stability boundary is given by Qmax =
V/(TV+Â). The parameters V= 100 km/hr, X = 8.0 m, and T = 1.0 s, yield Qn,ax= 2795
veh/hr. This is considerably higher than empirically observed capacities, and suggests
that the safety parameters will take on positive values when these models are calibrated to
empirical data.
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An important property of the constrained car following models (equations 3.3, 4.6, and
6.7) is that they are linear models, and thus very inexpensive fi-om a computational point
of view. Of course, one can only use these models when the safety constraint is active:
when inactive, it must be handled using the appropriate unconstrained, and non-linear,
model. However, as a network becomes congested, the fraction of linear calculations
should steadily increase, and thus the efEciency of the model will increase. Given the size
of real networks, and the interest in real-time applications of micro-simulation, this
increase in efficiency as congestion increases should prove to be an important advantage
of these models. Another important property of behavioural models is that most of the
parameters correspond to measurable quantities, and all have a physical interpretation.
This allows one to form an opinion about the plausibility of the model, by constructing
theoretical (macroscopic) curves based only on the knowledge of these parameters, and
comparing them with empirical curves. Conversely, one may compute values of the
behavioural parameters from empirically obtained macroscopic parameters, and compare
the former to corresponding empirical measurements. Using typical macroscopic
parameters, the latter approach was used to obtain very realistic values of response time,
suggesting that these behavioural models may be quite plausible, indeed.

By comparing the shapes of the macroscopic curves (Figures 2, 4, and 5) to empirical
data, one may consider the plausibility of the dififerent behavioural assumptions
considered. On the basis of purely qualitative comparisons with standard curves in the
literature (May, 1990), the logarithinic model appears to be the most plausible of the
three. Although the decrease in speed, as uncongested flow approaches capacity, may in
reality be much less pronounced than commonly believed (Cassidy, 1998), the
logarithmic model is the only one of the three that predicts a gradual decrease in speed in
this region of the curve. Unlike the quadratic model (with linear safety parameter), which
has not only been implemented by Gipps (1981), but also in a very modern micro-
simulation package (Barcelô et al, 1994), the logarithmic model has yet to be
implemented in a computer program. As an avenue of further research, unplementation
and testing of this model in a micro-simulation environment may be very promising.

u
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Abstract

Simplified theories - or models - of traffic flow have received considerable attention over the
last decade. One motivation for the development of such models is the need for faster-than-real-
time traffic models that can be used for dynamic traffic assignment on large networks for
Intelligent Transportation Systems (ITS) applications. A simple traffic flow model is proposed
here which is defined on a discrete notion of flow and continuous space and time. It is found that
the model can be solved by an algorithm that only evaluates the flow at the entrance and exit
points of an arc. It is also found that the model yields the same waiting time as a single-server
first-in-first-out queue, and that the spatial extension of delay propagation along an arc is
governed by the same mles that determine queue length in a point queue model. The
mathematical stmcture of the model is thus very similar to that of a point queue, but the model is
also shown to yield a two-linear-segment relationship between flow and density.
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l Introduction

Over the last decade, several simplified models of vehicular traffic have been proposed in the
literature. These have included discrete-flow models (Nagel and Schreckenberg, 1992),
(Schreckenberg et al, 1995), and continuous-flow models (Newell, 1993), (Daganzo, 1994).
Although discrete and continuous-flow are fijndamentally different approaches, the macroscopic
relationships between flow and density associated with these models are very similar. It should
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be noted that in the case of discrete-flow models, this relationship is a result of microscopic
interactions between the vehicles - and hence an output - while in the case of continuous flow,
this is an exogenous relationship - and hence an input. The discrete-flow models mentioned
above, which are cellular automaton (CA) traffic models, yield a two-linear-segment
relationship, which is also the general shape of the relationship underlying the model proposed
by Newell. The model proposed by Daganzo - known as the cell transmission model - includes
a third linear segment defining a lower maximum flow than that obtained using the two segments
alone.

From the point of view of computational effort, all of these approaches are similar. The
discretization schemes may be different, but the discrete quantities of space, time, and flow that
these models work with are generally of the same order of magnitude. These quantities are
usually smaller in ÇA - and hence there are more calculations to execute - but these models use
simpler mathematical operations. The general point of similarity between these different models
is that the coarser the discretization the lower the fidelity of the results, and hence comparable
results require comparable computational efiFort. An exception to this rule is a method discussed
by Newell for solving the model he proposed, which can be applied over an entire arc at a time.
Although Newell does not provide an automated algorithm for this method - it is carried out "by
hand" - it is nevertheless significant that the fidelity of the results does not degrade with
increasing arc length. This solution is thus of a different class than the other, automated
algorithms. Moreover, it demonstrates that with respect to the number of calculations, the other
algorithms are not of the lowest computational order needed to move flow along an arc in a way
that is consistent with a two-linear-segment flow-density relationship.

In what follows, a simplified discrete-flow trafRc model is presented, which can be solved by an
automated algorithm on an arc basis, i.e., without evaluating the flow at intermediate points
along an arc. The stmcture of the model is found to be very similar to a capacitated point queue,
where the arc length defines the maximum number of vehicles that may be in queue. For an
arbitrarily long arc, vehicle delay is found to respect Lindley's recursion for a single-ser/er
(GI/G/1) FIFO (first-in-first-out) point queue, and the spatial extension of delay propagation is
found to behave as the queue length in a point queue. An important difference between this
model and a point queue is that delayed vehicles do not stack up "vertically" at the server, but
along a diagonal line in space time defined by the (constant) negative wave speed associated
with the model. As a result, the notion of queue length does not refer to the number of vehicles in
queue at any moment in time, but rather to the spatial extension of the queue. This is the distance
between the last vehicle on the arc to have incurred any delay, and the exit of the arc. This model
is furthermore found to yield the two-linear-segment relationship between flow and density when
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the average speed of vehicles is the same over some space-time domain. For these reasons this
model is referred to here as a space-time queue (STQ). Numerical results are presented for an
example with time-varying demand and supply.

2 Model Statement

To begin with, some trafiTic flow parameters will be defined. All vehicles are assumed to be
identical, and are described by two parameters. The effective vehicle length, denoted by A, is
equal to the inverse of the maximum - or jam - density, denoted by K. This parameter is thus
equal to the average vehicle length plus the average distance between vehicles when stopped in
queue. The response time, denoted by r , is the average time required for the driver/vehicle to
observe, decide, react, and ultimately affect its space-time trajectory. The model developed here
is concerned only with longitudinal dynamics, and is thus restricted to the context of a single arc
in a network. The arc is defined by two parameters: F denotes the maximum -or desired - speed
of the vehicles, and X denotes the arc length. The primary variables are space (x), time (/), and
cumulative vehicle count (/!). The process of traffic flow may thus be described by any one of the
following three relationships: ~x(t,n), t(n,x), or n(x,t). Space and time are continuous, while
vehicle count is discrete. Space and time are scaled to /l and T , i.e., the units of space, time and
speed are À, r , and A/r, respectively. For clarity, these units will often be included in the
fomiulas that follow.

Cellular Automaton (CA) traffic models, as well as some car-following models, move vehicles
by maximizing their speeds in the presence of certain constraints. Such constraints ensure that
the vehicle trajectories respect certain bounds on position, speed, and acceleration: in particular,
they ensure that accidents do not occur. These constraints are used to determine, at each discrete
point in time, what the vehicle's speed will be over the next time step. In such models - indeed,
in all car-following models - congestion is caused by vehicle deceleration due to these
constraints. The constraints used to define the STQ are a simplified fomi of the car-following
model proposed by Mahut (1999a/b), which is based on the well-known idea of safe-stopping
distances. Removal of the acceleration constraint from this model leaves only the upper and
lower bounds on speed to constrain the movement of a vehicle with no leader. Removal of the
deceleration constraint from this model leaves only the following constraint to ensure that
accidents do not occur:

(2.1) xÇt,n)^x(ï-T,n-r)-À .



42

n
Without a constraint on deceleration, the stopping distance is zero. As a result, the speed at
which a vehicle may be travelling is not constrained by the presence of obstacles (vehicles or
traffic signals) downstream - until the presence of the obstacle requires the vehicle to actually
stop. This in turn implies that the constraints on a vehicle's trajectory need only be concerned
with when a vehicle passes some position, but not how fast (c.f. the description of car-following
models above). More precisely, since vehicles may have zero speed, the STQ constraints are
concerned with when a vehicle may arrive to and depart from some position x, which motivates
the following notation:

•r

(2.2)
tA (n, x) = /Àe time of arrival of vehicle n to position x

t (n, x~) = the time of departure of vehicle n from postton x

By convention, the arrival and departure times refer to the position of the front of the vehicle. It
can be seen then that each vehicle's space-time trajectory will be composed of straight line
segments of only two different slopes: one representing the maximum speed (V), the other
representing zero speed. This property is also characteristic of a (deterministic) CA model often
used for modelling trafFic, known as CA-184 (Nagel, 1996). Using the above notation, the
constraints and objective function defining the STQ queue will now be presented.

There are two boundaries to the arc: the entrance (x = 0), and the exit (x=X}. A demand
process is defined at the entrance, and a delay process is defined at the exit. These two processes
are analogous to the arrival and service processes, respectively, of a point queue. The demand
process yields the earliest possible time that a vehicle may depart from the position x = 0, due to
its trajectory upstream of this point - or, for that matter, due to some model used to generate
vehicles at an origin in a network. This time, tdm(n), called the demand time of vehicle n, is
defined in terms of a demand sequence, a(n), as follows:

(2.3) tdm(n)=tdm(n-\)+^+^+aW
By convention, ^m(o) is equal to (-T-2/F). The quantity ï'im(n)-ïdm(n-ï) is referred to as
the inter-demand time of vehicle n: a(n)is the variable part of this quantity. The role of the tenn

(î- + A/F) will be discussed later on. The demand time defines a lower bound on the departure
time from x = 0 as follows:
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Q (2.4) ^(^o)^^m(n)=^m(^-l)+^4-^j+a(n)

u

Vn.

A delay time, <a(n), is assigned to each vehicle at (x=X). The delay time defines a lower
bound on the departure times from the exit of the arc as follows:

(2.5) îu(n,X)>tA(n,X)+û)Çn) Vn.

The demand and delay sequences may follow any arbitrary distributions. These two sequences,
along with the values of A, r , î/r and ^ constitute the inputs to the model.

An important property of this model is that vehicle delays will always be incurred at integer
distances from the exit of the arc. This is because the only possible delays - or perturbations - to
the traffic stream must originate at the exit of the arc, due to the delay sequence co(n) : there are
no sources of delay within the arc itself. Since vehicles will always decelerate instantaneously
when delayed, any and all delay experienced by vehicle n due to cûÇn) will be incurred at
position x= X . If vehicle n+ 1 should furthemiore be delayed by vehicle n, any and all such
delay will be incurred at position x = ^f-Â . This argument extends to all vehicles so delayed,
and thus all delays are incurred at integer distances from the exit. If one furthennore constrains^
to be a whole multiple of 2, this property can be extended to a network of arcs: if the last
vehicle on an arc is stopped at position x=A, the first vehicle on an upstream arc will stop at
position x= X . Under this last constraint, not only will all vehicles stop at integer distances
from the exit, but also at integer distances from the entrance. This in turn allows the constraints
on the vehicle trajectories to be defined only on integer values of x, even though the model itself
is defined on continuous space. For the remainder of this discussion it will be assumed that x is a
non-negative integer.

A parallel consequence of this last constraint is that the distances traveled during the moving
segments of all vehicles' trajectories are always whole multiples of /l. This in turn guarantees
the following relationship at all times:

(2.6) ^AtAÇn,x^tD(n,x-A)+J;^ Vn,Vx>Â.

This last result allows the model to be written in terms of either tA(n,x) or t°{n,x}. The
remaining constraints on the vehicle trajectories may now be developed. There are two principal
types of constraints on a vehicle's movement: demand constraints, and supply constraints. The
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n demand constraints ensure that a vehicle's speed lies between zero and the maximum speed, V.
As such, they define the earliest possible times that a vehicle may arrive and depart from some
position x as a fiinction of its trajectory upstream of this position. These constraints are stated as
follows:

(2.7)

(2.8)

ïA(n,x)>tD(n,x-A)+^
tDÇn,x)>tA(n,x)

V/7,Vx>0,

V/î,Vx>0.

.0

Analogous constraints in a discrete-time model might be stated as follows:

(2.9) x(t,n)<.x{t-t,n)+Vr, Vn,V/>0,

(2.10) x(t,n~)> x(t-T,n) Vn,V/>0,

where / is a whole multiple r. The supply constraints provide the earliest times that a vehicle may
arrive and depart from some position x as a function of the trajectory of the next downstream
vehicle. These constraints are stated as:

(2.11) tA(n,x)ïtA(n-\,x+^)+T \/n>\,\/x<X

(2.12) tD(n,x)ïtD{n-\x+^+T ^n>î,\/x<X

These constraints are derived by writing (2.1) in temis of t(n,x~), rather than x(t,n). The
objective of speed maximization is represented here by minimizing the departure time for each
vehicle from each position x:

(2.13) MIN[tD{n,x)\

This completes the definition of the model. As an aside, it may be noted that combining (2.6),
(2.8) and (2.12) yields:

(2.14) tDÇn,x)-tDÇn-ï,x)^+r
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Since it is not possible that the temporal separation between two vehicles be less than -r + ÀV,
this constant appears in the definition of inter-demand times given by (2.3). Moreover, since
(2.14) is also valid if t°(n,x) is replaced by tA(n,x), the minimum time between successive
departures from the arc is given by:

0

(2.15) tD^X)-tD{n-l,X)>[r+^+^(n-\)
The quantity on the right-hand side of (2.15) is referred to as the service time of vehicle /2-1. It
represents the duration between the departure times of vehicles n and n-\ when the supply
constraints are active. Another property of some interest is the minimum distance separation, or
spacing, between successive vehicles at a given moment in time. This spacing can only be
achieved if the leading vehicle moves at speed V for at least one r , in which case (2.9) and (2.1)
can be combined to yield:

(2.16) x(t, n -1) - x{t, n)>{l+ VT~}

3 The Cell-Based Solution

The solution to this model is trivial: it consists of taking the maximum over all of the constraints
for tA(n,x~) and tD(n,x~) as defined above for the different regions of the (n,x) domain, and
making the appropriate substitutions using (2.6). This solution is given by the following
relationships:

0

(3.1) îu(n,x)=tdmÇn,x) n=l,x=0,

(3.2) tDÇn,x)=tD(n,x-Â)+^

(3.3) tD(n,0)=MAX[tdm{ïî),tDÇn-ï,Â)+Î-

n=ï,x>0,

n>ï,

(3.4) tD{n,x)^MAX\ ïD(n,x-À)+^,ïD(n-ï,x+À)+r n>ï,0<x<X,
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F~^ (3.5) t°(n,X)=MAX\ tD^X-A)+^,tD(n-l,X)+r+^ + û){n) n > l.

(

Of course, t°{n,x) must be calculated in a sequential way, due to the dependency of tD{n,x) on
/°(/?, x-2) and /'°(/!-1, x+2). The fact that these dependencies always move forward in time
allows the model to be solved by discrete-event ("event-based") simulation. This property is also
a basic requirement of any sensible model of physical interactions. Due to the discrete nature of
both space and flow, the calculations may also be carried out using a spreadsheet. This solution
to the model will be referred to as the cell-based space-time queue (CSTQ), since it is based
upon a discretization of space into cells of length /Î,, much like CA traffic models.

A Numerical Example

A simple example of the CSTQ was solved using a spreadsheet. The arc length was 20/1, and the
maximum speed was A/T . For simplicity, a(n) was set to zero for all n. This represents a traffic
stream moving at its maximum speed, and at the maximum flow rate permitted at this speed.
This special case demonstrates some important properties of the model. The delay sequence,
<a(n), was drawn from a negative exponential distribution with a mean of T .

Figure 1 shows a sample of the output from the spreadsheet. As discussed earlier, the trajectories
are composed of straight-line segments, with only two different slopes. On the right-hand side of
the plot, the vertical line segments at x = 20 indicate the delays incurred due to u)(n) . This plot
clearly shows the propagation of these delays upstream through the platoon of vehicles. The
speed with which these delays propagate is - A/T , as indicated by a dashed line drawn through
(20,20) with this slope. This property suggests that the model has a constant negative wave
speed, and thus a two-linear-segment flow-density relationship. Such a relationship is indeed
derived for this model in a later section.

It should also be noted that, given the demand process used in the example, the delays remain of
exactly the same magnitude as they move upstream. Since the demand flow represents a traflRc
stream in "steady-state" (i.e., moving at constant speed, flow, and density), and at the minimum
spacing at this speed, this property indicates that the model is on the boundary between
asymptotic stability and instability. Asymptotic stability of a car-following model is concerned
with whether a perturbation to the first vehicle of a platoon moving at constant speed and
maximum density, increases or decreases in magnitude as it moves upstream fi-om one vehicle to
the next. Since perturbations to the traffic in this model are measured in terms of delay, and these
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delays remain of exactly the same magnitude as they move upstream, this model can be said to
be boundary-asymptotically stable. It may be noted that this property is also true of the original
car-following model from which the supply constraints were derived, when the deceleration
parameter for the leading and following vehicles is taken to be the same (Mahut, 1999^).

4 The Arc-Based Solution

In most applications of traffic models, statistics are calculated solely on the basis of tD(n,G) and
t°(n,X'), which define the movement of vehicles from one arc to another. For practical
purposes, it is thus sufficient to know only these processes. With this in mind, a more compact
solution to the STQ can be derived as follows. Substituting (3.4) for the first term inside the
A/£^A" operator in (3.5) yields:

(4.1) tA(n,X)=MAX tA{n,X-2^+^-,tD(n-ï,X)+r+^ +(2)(n)

s

^

•ï

("' !

Substituting (3.4) once again for the first term inside the MAX operator in (4.1), and repeating
this operation {X -1) times, yields:

(4.2) tD(n,X)=MAX\
ÀtD{n,X-^^^MAX,
V 3 ,e{0,...,X-2}\

tD(n-ï,X-jÀ>)+T+(1^-)Â
v

+û)(n)

Combining the demand constraints, (2.7) and (2.8), yields:

(4.3) tD^x)>tD(n,x-^+^,

which may be applied to the terms inside the second MAX operato! in (4.2), to yield:

(4.4) tu(n,X)=MAX^(n,o)+^(n-l,X)+[r^ +co{n) n>\

For n = 1, the departure time from the exit of the arc is simply:

(4.5) tD(n,X)=tD{n,Q)+j- 72=1
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A relationship for t°(n,0) may be developed in a similar way. Substituting (3.4) for the second
term inside the A^Y operator in (3.3) yields:

(4.6) tu{n,Q~)=MAX\ tdm{n),tD(n-ï,^+r+^,tD(n-2,2A-)+2r

Substituting (3.4) once again for the last term inside the A^A" operator in (4.6), and repeating this
operation {X -1) times, yields, Î.Q! n> X :

(4.7) ÏD(}Î,O}=MAX\ tdm{n\ MAX
' ;e(i,..,-r-i tD(n-i,{i-ïW+ir^ \,tD{n-X,X^}+Xr\.

The supply constraint (2.12) may now be applied to the tenns inside the second A^A" operator in
(4.7), which then simplifies to:

(4.8) tD{n,o}=MAX\ tdm{n),ïD{n-Ï,o)+r+^,tD(n-X,X^Xr ?î>X.

For n<X,itis not possible that tD {n,0) be afifected by the delays experienced at the exit by any
preceding vehicles, and hence:

(4.9) tD(^0)=tdm^O) n^X . j

The equations (4.4), (4.5), (4.8) and (4.9) will be referred to as the arc-based space-time qiieue
(ASTQ). This solution is based solely upon the departure times of each vehicle at the entrance
and exit of the arc. Clearly, this solution has an important advantage over the CSTQ in terms of
computational effort. It is readily apparent that the computational cost is constant in the arc
length, and thus linear only in the number of vehicles to pass through the arc. The computational
cost is thus comparable to that of a point queue model. The data requirements are quite modest as
well: each arc must store the last departure time at the entrance, and the last JSf departure times at
the exit.

5 The Equivalent Point Queue

In this section, the relationship between the STQ and the well-known point queue (PQ) model is
considered. This relationship will be developed under the assumption of an arbitrarily long arc,
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on which the exit delays can never propagate back to the arc entrance. Under this assumption, it
can be seen that:

(5.1) îD{rî,0)=tA(n,0)=tdm{n,0)=tD{n-ï,0}+r+^+a(n} V^î.
The total delay time of vehicle n, denoted by W^, is now defined as:

(5.2) W, =tD(n,X)-^n)-^--tD(n,0).
This is simply the total travel time along the arc as defined by the departure times at the entrance
and exit, minus the exit delay and the minimum travel time. Since the exit delay is not included,
this is analogous to the waiting time in queue - rather than in the system - in a point queue.
Substituting (4.4) into (5.2) yields:

(5.3) W, =MÂX 0,,"(n-l,X)-,D(n,o)+r^-^-

Substituting (5.1) into (5.3) and reducing, yields:

(5.4) W, =AUX[Q,W^+û}{n-ï)-a{n)].

This last equation is Lindley's waiting time recursion for a first-in-first-out (FIFO) single-server
(GI/G/1) point queue (Lindley, 1952), which demonstrates that the waiting time in the STQ (for
an arbitrarily long arc) is exactly as would be determined by a point queue with arrival and
service processes defined by a{n) and co{n), respectively. It should be noted that a{n) and
û)(n) do not represent the inter-arrival and service times, but only the variable portions of these
quantities. The inter-arrival and service times are given by u:(n)4-T+A/P' and u)(n)+r+llV,
respectively - see (2.15) and (5.1), above. Of course, had it been assumed from the begimiing
that the traflBc could be modeled as a point queue, (5.4) could have been obtained directly from
the inter-arrival and service time distributions, as:

n
(5.5) W^ = MAX

and thus:

0,^,_,+^+^+^-l)j-^+^+ff(^J ?

(5.6) W, = MAX[0, W^, + cù{n -1) - a(nj\.



50

n

('

This is precisely Lindley's observation that "the waiting-time distribution depends only on the
distribution of the difference between the service time and [inter-amval] time and not on their
individual distributions" (Lindley, 1952). What may appear to be counter-intuitive here is that
the variability of the inter-arrival and service time distributions should be reduced in this way,
leading to shorter delays and queue lengths than would otherwise be calculated.

The derivation of (5.4) of course suggests that not only is the waiting time in the STQ equivalent
to that obtained in a point queue, but that there may be an equivalent notion of queue length as
well. Intuitively, an important difference between the two models is that in the STQ, sequential
vehicles experiencing delay due to a specific exit delay do not experience this delay at the same
time. As a result, any notion of a queue in this model that grows and decays like a point queue
defined by a(n) and co(n) cannot refer to the state of the vehicles as seen at one instant in time.
This makes the comparison with point queues somewhat difficult, as the usual approach to
defining the relationship between waiting time and queue length depends on being able to define
the state of the system at each point in time - for example, see Little (1961). The second basic
difference between the two models is that in the STQ, sequential vehicles experiencing delay due
to a specific exit delay do not experience this delay at the same position.

These differences can be overcome by the development of an equivalent point queue, which is
done by graphical means as follows. For simplicity, it will be assumed that the demand process
(2.3) now represents the demand time for exiting the arc, i.e., x=0 is now taken to be the arc
exit. Since arc length is not considered in this development, the vehicles will be allowed to
accumulate indefinitely along the negative x-axis. A third axis is added to the plot, which starts at
the point (0,0) with slope - 2/î-. This axis lies in the x-t plane, and will be called the z-axis. One
unit on this axis is equivalent to a space-time displacement of (- 2, r). It may be noted that the
positions and times at which any delays experienced by vehicles in the STQ must lie above the z-
axis (see Figure l). As a result, the demand process td"(n) may be translated to the z-axis as an
arrival process, zA(fî). The next step is to translate the delays as defined on the /-axis to the z-
axis, in such a way that the departure times from the arc, tD(n,X}, remain unchanged. The
departure times thus translated to the z-axis define a departure process, zD{n). It is very easy to
show that quantities measured on the t-axis can be translated to the z-axis in this way by division
by (î- + /Î./7). To simplify the formulas that follow, (r + A/F) will hereafter be denoted by C.
These transformations were carried out on the trajectories shown in Figure 1, and the resulting
"trajectories" are shown in Figure 2. Where these trajectories cross the horizontal and vertical
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axes remains unchanged relative to the bottom right comer of the graph, which is now labeled as
(0,0), rather than (20,20). The arrival and departure processes from the z-axis are defined as:

(5.7) ^M=^)=''"("-l)^(")+c=^(»-l).l^aW

(5.8) zD(n}=MAx[zA{n\zD(n-ï)+\]+^-

Together, these two processes define what will be referred to as the point space-time qiieue
(PSTQ), since they represent a point process along a line - namely, the z-axis. This line is neither
space, nor time, but a one-dimensional space-time. What is normally referred to as the state of
the (point queue) system "at some point in time, f", is now the state of the (STQ) system at some
point in space-time, z. This state is the queue length, and is calculated as the number of arrivals
to the z-axis minus the number of departures from the z-axis that have occurred before reaching
some given value of z.

The separation between arrival and departure along the z-sxis now represents a modified notion
of waiting time, which will be denoted by W^. Following (5.5) and (5.6), this quantity is given
by:

(5.9) W^=MAX\
n

0,^+1 14-û)(".-ir
e

1+^'
e J.

:MAX\ o,y.-_, .a'(n-^-a(")

Multiplying (5.9) by C recovers the original waiting time relationship (5.4) - note that by the
translation nile given above, W = W^C . The queue length as defined for the PSTQ can also be
translated onto the x-axis, but the notion of discrete vehicles occupying discrete cells on the arc
obviates the need for a multiplication factor. Since the exogenous delays in the STQ always
occur at the arc exit, the queue length as given by the PSTQ simply yields the distance from the
back of the queue to the exit of the arc. This does not, however, imply that there are this many
vehicles in queue at some instant in time: what the queue length in these models provides is the
physical distance between the end of the arc and the last vehicle on the arc to have incurred any
delay.

Since both the demand times and departure times at the arc exit remain unchanged, the PSTQ is
equivalent to the STQ for an arbitrarily long arc. At the same time, the PSTQ is a single-server
FEFO point queue; and thus, steady-state point queue formulas must be applicable to the STQ
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when the effect of arc length can be ignored. Of course, it is also to be expected that a
capacitated PSTQ, equivalent to the STQ with a fixed arc length, can be further defined by
merely adding the appropriate constraint on the queue length.

6 The Fundamental Diagram

An underlying relationship between flow and density will now be derived for the STQ. For the
purpose of discussing such a relationship, it is important that these two quantities be defined
upon the same domain. It was thus decided to use the definitions of flow and density (or
concentration) as defined by Edie, based on a sequence of vehicle trajectories defined upon an
area ofspace-time (Edie, 1974). The quantities of interest are the area of the space-time domain
in question (XT), the total distance traveled by all vehicles over this domain (NX), and the total
time spent by all vehicles over this domain (NT). Flow (gr) and density (A-) are then defined as:

(6.1) q
NX
XT

k=
NT
XT

The space-time domain may be of any general shape. These definitions will now be applied to an
arbitrary number (m) of trajectories defined over a space-time domain, with one restriction: all
trajectories must be either constrained, or unconstrained. The trajectory of vehicle n is
constrained if the supply constraints (2.11-12) are active - otherwise the trajectory of vehicle n is
said to be unconstrained. It will also be required that the average speed of the vehicles, defined
as v = NX f NT, be equal to the average speed of each vehicle over the domain in question. In the
case of constrained trajectories, this last condition is enforced by defining the domain over a
sequence of trajectories that each spans a distance X, and a duration T. Rather than being
rectangular, the domain is defined using lines of slope -^/T to demarcate the trajectory
segments of interest, as shown in Figure 3. The total time and total distance traveled by the m
vehicles over this domain are simply mT and mX, respectively.

The area of this space-time domain can be broken down into two exact parallelograms, as shown
in Figure 4: one defined by trajectory segments at speed V, the other by those at zero speed. The
area of the former is given by mX{r+llV}, while the area of the latter is mA{T-X/V).
Substituting the appropriate quantities into Edie's definitions for flow and density yields:

X , T
(6.2) q=rx+n"

k=
T^+ÀT'

T ï XfV .

This may be re-written as:
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^ (6.3) q{k)=
1-^fc A-^r

T

where k is the inverse of the minimum spacing between two trajectories at speed V, as given by
(2.16). When all of the trajectories are unconstrained over some space-time domain, it is clear
that the average speed of the traffic is V, and thus the relationship between q and k is simply:
(6.4) q=kV k<kf

The relationships (6.3) and (6.4) are exactly the two-linear-segment flow-density relationship, as
derived for CA traffic models CNagel, 1996), when T is equal to the CA time step. The
relationship proposed by Newell is also of this general form (Newell, 1993). It should be noted
that (6.3) and (6.4) were derived on the assumption that the average speed of each vehicle is the
same, rather than on the stronger assumption that each vehicle's speed is constant, as is done in
the analysis of car-following models (Geriough and Huber, 1975). Constant speed is a limiting
case of the conditions used here, as the number of delays goes to infinity, and the average delay
duration goes to zero.

Numerical Results

In this section, the inputs and outputs of one simulation run of the arc-based model will be
discussed. Demand a(n) and delay u){n) sequences were drawn from negative exponential
distributions with means denoted by a:(/) and co(t), respectively. In order to obtain a wide range
of density values, the means of the demand and delay distributions were varied over time. At the
entrance, the demand flow, (a(/)+C)- , started off very low and gradually increased to the
maximum flow permitted by the arc. At the exit, the mean supply rate, (&>(/) + C)-l, started at
1800 veh/hr and then decreased gradually to almost zero. Figure 5 shows a plot of flow vs.
density for one run of the model. Superimposed on this plot is the two-segment linear
relationship between flow and density derived above. The flows and densities were calculated
over a rectangular domain, defined by the arc length and a 60s duration (o0r), using Edie's
definitions as described above. The result is a scatter of points that follows the two parts of the
linear-segment relationship, but at some point traces a path between them. The curvilinear
"shape" of this scatter is quite realistic in comparison with empirical data described in the
literature - see, for example May (1990). It should be noted that the discrepancy between the
derived two-linear-segment relationship and the numerical simulation results is due to the use of
such a large space-time domain. In general, the closer the actual conditions in any space-time
window correspond to the assumptions in the above derivation (i.e., that all vehicles be either in

l
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a constrained or unconstrained state), the closer the numerical results should be to the derived
relationship. This idea is very similar to that presented by Cassidy on the effect of data
aggregation on the observed relationship between flow and density (Cassidy, 1998).

A second simulation was run where the demand flow peaked at 1800 veh/hr. The resulting flow-
density plot was similar to that shown in Figure 5, but this time there were no points above 1800
veh/hr: instead, there was a roughly horizontal line of points at this value, connecting the two
arms of the linear-segment relationship. The overall "shape" of this scatter resembled the three-
linear-segment flow density relationship used in the cell-transmission model (Daganzo, 1994). It
appears then, that when the data are aggregated in an arbitrary way, the flow-density plot may
take on a variety of curvilinear "shapes", depending on the local demand and supply conditions.

7 Conclusions

A simplified model of traffic flow was presented, defined on a discrete notion of flow and
continuous space and time. The model - named the space-time queue (STQ) - was solved in two
ways. One solution is based on a discretization of space into cells equal in length to an average
vehicle, and is called the cell-based STQ (CSTQ). The second solution, called the arc-based STQ
(ASTQ), is defined only upon the counting processes at the entrance and exit of an arc. The
computational effort required to solve the latter solution is thus constant in the arc length, and
linear in the number of vehicles to pass through the arc. This unique property is shared only by a
method suggested by Newell for solving a simplified kinematic wave model (Newell, 1993),
which is based on a continuous notion of flow.

A point queue model equivalent to the STQ was developed by graphical means, and it was thus
demonstrated that when the effect of a finite arc length can be ignored, waiting time in the STQ
is identical to that obtained using a point queue (with the appropriate definitions of inter-arrival
and service time), and the spatial extension of delay propagation behaves exactly as the queue
length in a point queue. The interpretation of the length of a point queue as the spatial extension
of the STQ is quite useful, as it may be used to estimate when, or with what probability, the
delays at the exit of the arc will "spill-back" to the entrance. In general, however, the conditions
under which steady-state formulas are applicable are not often found in realistic situations of
practical interest (Hurdle, 1990).

The steady-state relationship between flow and density was derived for the model, and is given
by a two-linear-segment fijnction. Not surprisingly, this relationship is identical to the fluid-
dynamical limit of CA traffic models CNagel, 1996). Moreover, it is of the same general form as
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the relationship underlying Newell's simplified kinematic wave model (Newell, 1993).
Numerical results were obtained ,for the flow-density relationship by simulation, and were found
to produce a curvilinear pattern, much like the empirical "fundamental diagram" in the traffic
engineering literature (May, 1990). The reason for the discrepancy between the numerical results
and the derived two-linear-segment relationship is that the space-time domain over which the
points were measured was quite large, and hence some points represent averages between the
two linear segments of the derived relationship. This supports the idea that the observed shape of
empirical flow-density relationships may be quite sensitive to how the data are aggregated, as
suggested by Cassidy (1998).

Another similarity with Newell's model is the uniqueness of the solution, which is not tme of
macroscopic models in general (Lebaque, 1996). The STQ most closely resembles CA traffic
models, in particular the deterministic CA-184 CNagel, 1996). One distinction between the STQ
and CA traffic models concerns the question of calibration. Calibration is the process of
choosing appropriate values for the model's parameters, in order to reproduce empirical data.
The discretization of flow, space and time in CA restricts the possible values of maximum speed
and minimum spacing to discrete values as well. These parameters can be calibrated to any
desired accuracy in the STQ, because time is real-valued in this model.

Overall, the STQ appears to have considerable potential as the basic mechanism of flow
propagation for a high-speed network simulation model. Such models are currently needed for
dynamic traffic assignment modules that must be executed in real-time, in support of Intelligent
Transportation System (ITS) applications, such as the determination of real-time route-guidance
and network control strategies. This model is readily applicable, in principle, to a general
network. Moreover, the use of discrete vehicles makes the model more amenable to the use of
fairly complex models of driver/vehicle behaviour at nodes, such as those used in micro-
simulation trafGc models (Barcelo et al, 1994). An important restriction of the ASTQ is that in its
current form, it does not permit vehicles to enter or exit the traffic stream between nodes, and
thus cannot model the effects of lane changing on multi-lane arcs. The CSTQ, on the other hand,
could easily be modified to model this behaviour, but this model would then have no real
advantage over the use of existing cell-based approaches such as CA traffic models.
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Figure 1: Space-Time Trajectories
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Figure 2: The "Point" Space-Time Queue
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Figure 3: Space-Time Domain For Constrained Trajectories
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Figure 4: Space-Time Areas For Constrained Trajectories
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Figure 5: The Fundamental Diagram
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n A Discrete Flow Arc Model of Trafïïc Dynamics Based on the

Space-Time Queue
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Abstract

This work is an extension of a simplified discrete-flow model of traffic dynamics recently
proposed by the author. The main limitation of the earlier work is that it only applies in a
strict way to single-lane flow, or to situations that can reasonably be modeled as such.
The model proposed here captures the reductions in flow due to lane-changing maneuvers
that result in crossing, or "weaving", patterns of vehicle trajectories within an arc. This is
done without losing the arc-based nature of the solution algorithm to the original one-lane
model. As with the original model, the assumptions used here are consistent with a
"microscopic" description of the trajectory of each vehicle. A small example in the form
of a microscopic animation is presented and solved by hand. Simulation results obtained
by computer are presented for a larger example, and are found to compare very well with
those obtained with the AIMSUN2 traffic simulator. Execution time of the proposed
model is below one tenth of that required by this traffic simulator.
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l Introduction

u

This work is an extension of a simplified discrete-flow model of traffic dynamics recently
proposed by the author (Mahut, 2000). The main limitation of the earlier work is that it
only applies in a strict way to single-lane flow, or to situations that can reasonably be
modeled as such. It is well known that multi-lane flow cannot be modeled in this way in
general, due to the possibility of conflicting movements within an arc, often referred to as
"weaving" conditions (Transportation Research Board, 1998). This situation arises when
the turning movements at the exit of an arc require vehicle trajectories to cross within the
arc. The efifects are most visible in non-signalized ("uninterrupted flow") conditions, such
as highways (ibid.), and result in a reduced overall flow capacity of the arc. Although
there is some published work on the modeling of multi-lane discrete-flow traffic, it is in
the context of micro-simulation approaches where each vehicle's trajectory is updated
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frequently (Gipps 1986; Rickert et al, 1997). The main concern of these efforts is upon
modeling the driver decision as to when and why to change lanes, as a function of local
information that is updated frequently.

The main objective of the work presented here is to maintain the arc-based property of
the solution algorithm of the underlying (one-lane) traffic flow model, i.e., that the
computational efifort required per vehicle per arc be independent of the time spent by the
vehicle on the arc. An important advantage of such a model over the well-known micro-
simulation approaches is that real-time applications, such as route-guidance and adaptive
signal control, could benefit from the significantly shorter execution times that can be
obtained. Another disadvantage of micro-simulation models is that it can be quite
difficult to calibrate these models for medium to large-scale networks (Hugusson and
Andersson, 1999). In general, simpler models should be easier to calibrate. Since this
approach does not permit the vehicle trajectories to be regularly updated, the structure of
this model is quite different from those referenced above. The main focus of this work is
on modeling appropriately the reduction in flow capacity that results from a given traffic
demand that is lane-based, i.e., given the local flows by exit lane for the flows arriving by
each entrance lane. As a result, the lane choice is taken as given. The intention is to
represent only mandatory lane changes, due to the lane permissions associated with the
path a vehicle is following. The question of when (or where) within the arc the actual
lane-change maneuver takes place must also be considered in this type of model.

This reduction in flow is due to the fact that when a vehicle moves from one lane to a
neighbouring lane, it temporarily blocks both of these lanes, effectively taking up twice
as much space as it does when moving forwards within a single lane. If a vehicle is to
move across two lanes at once, it will occupy three times as much space, etc... This space
must be empty before a vehicle can occupy it. Thus, if one vehicle is occupying some
amount of space that a neighbouring vehicle is about to occupy, one of the vehicles must
decelerate or accelerate in order to provide sufiBcient longitudinal separation between the
two vehicles such that the lane change may take place. Since the trafBc flow model upon
which this work is based assumes that all vehicles are moving as quickly as the prevailing
constraints will permit, it is not possible that this separation be achieved through the
acceleration of one of these vehicles; Thus, one of the two vehicles must decelerate, and
hence incur delay.

An example of this situation is shown in Figure 1.1. The vehicles are moving from left to
right, and the lanes are numbered from bottom to top, starting at l. The vehicle labeled 2
must move from lane 2 to lane 1, continuing its trajectory between the vehicles labeled 1
and 3. It should be noted that the minimum (longitudinal) separation between two
vehicles is generally a function of vehicle speed, and thus the space requu-ed is greater
than the physical length of the vehicle as seen in the figure. Thus, in order for vehicle 2 to
move into lane 1 between vehicles 1 and 3, vehicle 3 must decelerate. Alternatively,
vehicle 2 may decelerate and attempt to move to lane 1 behind vehicle 3. In this case,
vehicle 4 may decelerate, or, vehicle 2 may decelerate again, and attempt to change lanes
behind vehicle 4. This process may continue as long as there is a sequence of vehicles in
lane 1 that are sufficiently close together.
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Micro-simulation models of traffic flow resolve the decision as to which vehicle will
slow down in such a situation using gap-acceptance models (Barcelo et al, 1994; Van
Aerde, 1999). A gap acceptance model is defined upon two vehicles, one of which must
have priority over the other. The decision is then made by the lower priority vehicle as to
whether the space - or gap - is suflRcient to allow the lane change to take place. In the
example of Figure 1.1, it would generally be assumed that vehicle 2 has lower priority
than those vehicles already in lane 1. Given, for example, that the driver of vehicle 2
accepts the gap between vehicles 1 and 3, there is no guarantee that the driver of vehicle
3 will find the remaining space between vehicles 2 and 3 sufficient. The deceleration of
vehicle 3 under these circumstances is not detennined by a gap-acceptance model, but
rather by a car-following model. As a result, vehicle 3 may decelerate after vehicle 2 has
begun to move laterally, but the effect is essentially the same as if vehicle 3 had
decelerated first in order to provide the necessary space.

Figure 1.1: Lane Changing

2

4 3 7

0

Because a driver cannot accept a gap that is smaller than the physical space required for
his vehicle, an unlimited number of gaps may be refused when the unoccupied space
between two sequential vehicles is less than the vehicle length. Under these conditions, a
driver attempting to change lanes may be delayed indefinitely, blocking the lane from
which the lane change is to be made. This in turn can have a drastic effect on the through
flow of this lane, which in turn may lead to severe congestion. In this situation, the
assumptions underlying the gap-acceptance logic fail to accurately represent what
happens in reality, when the driver of a high priority vehicle decelerates in order to
permit the lower priority vehicle to change lanes (Hugusson and Andersson 1999). For
this reason, a simulation model may predict much higher congestion than occurs in
reality. As a result, more recent lane-changing mles used in micro-simulation models
tend to include some form oî courtesy yielding logic for the higher priority vehicles.

It should be noted that each vehicle in a simulation model is typically given a route to
follow, and that the turning movement from one arc to another is usually restricted to
certain lanes. Thus, severe congestion can occur because a single vehicle is unable to
change lanes in order to leave the arc by a lane that permits a required turning. One way
of reducing the severity of this problem is to allow vehicles to change their routes when a
required lane change cannot be made without incurring excessive delay. This logic is
used, in conjunction with the courtesy yielding rules, by at least one micro-simulator
(Barcelô et al, 1994). Although it is arguable that this type of logic is realistic - i.e.,
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drivers do in fact change, or lose, their paths due to the inability to access the necessary
lanes - it can underestimate congestion and lead to unrealistic flows if the original paths
are abandoned too quickly. Recent experiences with some micro-simulators have
indicated that the prediction of traffic conditions can be significantly improved - in some
particular cases - when the lane choice logic considers not oriy the next arc on a vehicle's
path, but the next two arcs (Ben Akiva et al, 2000; Barcelô et al, 2000). This was found
to be of particular importance when the arcs in question were fairly short, and drivers (in
reality) were choosing lanes by which to exit one arc based on the knowledge of which
lane would be used to exit the next arc.

Another decision that must be modelled by the lane-changing rules concerns the location
at which a driver first attempts to make a lane change, given that the desired exit lane has
not yet been reached. For this purpose, the arc is usually divided spatially into three zones
(Barcelô et al, 1994; Van Aerde, 1999). In the first zone, the driver does not attempt to
changes lanes; in the second zone, the driver attempts to change lanes, but does so in a
non-aggressive manner; in the third zone, the driver attempts to make the necessary lane
changes in a more aggressive manner. The smaller the gap a driver is willing to accept,
the more aggressive his behaviour is said to be. Thus, as the vehicle approaches the
(downstream) end of the arc, the driver becomes increasingly aggressive about looking
for gaps, but in a discrete, deterministic way. In general, experience with traffic
simulation has indicated that fairly sophisticated driver decision processes must be
modelled if the trafific conditions are to be predicted with any accuracy.

The idea of choosing the position at which the lane change may first be executed purely
as a function of the distance from the end of the arc may also eventually require revision.
Imagining a signalized roadway, where there is enough demand that significant queues
are usually present at the start of the green light, it makes intuitive sense that a driver will
attempt to make any necessary lane changes before arriving to the back of the queue. This
makes sense for the simple reason that the spacing between vehicles increases with speed,
which is a direct consequence of the well-known fundamental diagram of vehicular
traffic (May, 1990). Thus, the driver is much more likely to find an acceptable gap before
arriving to the back of the queue.

The model presented below is concerned primarily with modelling the traffic flow given
the lanes by which each vehicle enters and exits an arc. Because the solution algorithm is
strictly arc-based, the choice of exit lane must be known at the moment a vehicle enters
an arc, and cannot be revised afterwards. Rather than using gap acceptance logic, which
can potentially lead to excessive congestion, a simple first-in-first-out (FIFO) mle is used
instead. Under this assumption, the vehicle to decelerate is always the one that arrived
later to the arc. The question of where a vehicle ought to change lanes is addressed by an
assumption that takes into account the downstream traffic conditions, and prevents a
vehicle fi-om blocking the lane by which it entered the arc.
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2 Model Definition

In this section, the simplified discrete flow traffic model proposed by Mahut (2000) -
referred to as the space-time queue (STQ) - will be extended to the case of a multi-lane
arc. The STQ is based primarily on the following two constraints, referred to as the cell-
based demand and supply constraints, respectively:

(2.1) ïDÇn,x)ïtD(n,x-Â)+^»û D Vn,Vx>0,

(2.2) tD(n,x)>:tDÇn-î,x)+r+^
and the objective:

(2.3) MIN[tD(n,x)}

Vn>LVx<^,

0

û

where: tD(n,x)
T

À
v
x

departure time of vehicle n from position x.
reaction time of the driver/vehicle system
effective vehicle length (physical length and buffer space)
; maximum vehicle speed (speed limit), in A/T
the length of the arc, in 2

The relationship in (2.1) describes the constraint on the trajectory of vehicle n as
determined by the vehicle preceeding it, while (2.2) describes the constraint of the
trajectory of vehicle n on itself. It may be noted that in both cases, the right-hand side
refers to an earlier moment in time than the left-hand side, indicating that causes must
precede effects. When the order of vehicles between two fixed in space points - x = 0
and x= X -is unchanging, as would be the case on a one-lane road, the strict FIFO
(first-in-first-out) property implied by this ordering can be exploited to yield the
following relationships, referred to as the arc-based space-time queue (ASTQ) {ibid.):

(2.4) t°(n,X)=MAX\ t^n,o)^,tD{n-W+[r^
v

À'
^.

+a>(n)

(2.5) tD{n,X}=tD{n,0)+^

(2.6) tD{n,o)=MAX\ tdm(n,0\ïD{n-l,0)+^+^,tD(n-X,X^+Xr\

(2.7) tD(n,Q)=tdmÇn,0)

7Î>1

/î=l

n>X

n<X

l

l
;

l



65

n

0

where: x =0 = the upstream, or entrance, position of the arc
x= X = the downstream, or exit, position of the arc
/<:?m(/î,0) = the minimum value of t° (n,G) as due to processes upstream of

the arc, such as a vehicle generation procedure, referred to as the
demand time of vehicle n

co(n) = the delay incurred by vehicle n at x= X due to processes
downtream of the arc, such as the downstream node.

The following discussion will focus on the extension of equations (2.4) and (2.6), of
which (2.5) and (2.7) are special cases, respectively.

2.1 The Demand Constraint

This section is concerned primarily with the extension of the first tenn inside the max
operator in equation (2.4) - referred to as the demand constraint - to define the earliest
time a vehicle may exit an arc, t (n, X), as a function not only of its entrance time,
t (n,0), but also of the decelerations incurred due to lane changing maneuvers. Some
preliminary notation is as follows:

n

.A

0

= the vehicle's arc-based identifier: vehicles are labelled in the order in
which they enter the arc.

mA(n) = the lane by which vehicle n enters the arc, called the arrival lane.
m (n) = the lane by which vehicle n exits the arc, called the departure lane.

Some preliminary assumptions are as follows; for convenience, they are grouped into
paragraphs and labeled:

(A. 1) Each vehicle is assigned (or chooses) an arrival lane and a departure lane
before entering the arc. The departure lane choice cannot be reconsidered
once the vehicle has entered the arc. FIFO is enforced by destination lane,
i.e., all vehicles destined for the same lane must exit the arc in the order in
which they entered. Overtaking may thus only occur between vehicles
destined for different destination lanes.

(A.2) The cell-supply constraint (2.2) ensures a minimum time separation
between two vehicles that sequentially pass the same position in space.
This constraint is extended to the multi-lane case by defining the departure
time from position x of vehicle n on lane 777 as tD(n,x,m). Considering the
FIFO rule mentioned above, the only vehicles that may have been the last
to occupy a specific position (x, m) on the arc before vehicle n are the last
vehicles to have arrived to the arc for each origin-destination lane pair,
before the arrival of vehicle n. These vehicles are referred to as the leaders
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n

0

of vehicle n, and are denoted by /y (n). The set of leaders is denoted by
L(n). The (multi-lane) cell-supply constraint may now be stated fonnally
as:

(2.8) tD(n,x,m)>MAx[tD(l,(n\x,m)}+^+^ V(',7).

0

If I,j (n) never occupies position (x,m), then tD[ly{n),x,m] is considered
to be zero by default.

(A. 3) Vehicles n and I ^ (n) are said to be in spatial conflict if the vehicles'
trajectories diverge (share the same arrival lane), merge (share the same
departure lane), or cross in space along the arc. The subset of leaders that
satisfies this condition will be reffered to as the set of spatial leaders of n,
denoted by SL{n). The arrival gap between vehicles n and l,j{n), denoted
by u;,y(n), is furthermore defined as:

(2.9) a,(n)=tD{n,0,lW}-^(^'°'i)-[T+^)-
The set of spatial-temporal leaders of vehicle n, denoted by STL(n), is
now defined as:

(2.10) STL{n)=^(n)\a,(n)<o}

In plain language, there is a conflict between vehicle n and each member
of STL(n), such that one of the two vehicles must be delayed if the two
trajectories are to cross in space without violating the cell-supply
constraint (2.8).

(A.4) If a vehicle's departure lane is not the same as its arrival lane, the vehicle
will move from its arrival lane to its departure lane in one movement, i.e.,
at one instant in time. Moreover, this movement will occur at one position
along the arc, denoted by x° (n). Thus, the lateral movement of a vehicle
is assumed to be instantaneous. This assumption is also used in multi-lane
cellular automata traffic models (Rickert et al, 1997). Considering the
lateral movement of vehicle n from mA(n) to mD(n}, this implies that:

(2.11) tD(n,xo{n),m)=tD(n,x°{n\mA(n)) ,
^me[mA(n),...,mD(n)}\mD{n),
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i.e., no delay is incurred on any of the intermediate lanes since the vehicle
has no forward motion on these lanes. The position x° (?î) is moreover the
first position at which vehicle n incurs any delay, i.e., every vehicle moves
at its maximum speed in its arrival lane from x = 0 to x=x° (??), and
thus:

(2.12) tA(n,x°{n\mA{n))=îD(n,0,^XOM
The position x° (n) is furthermore defined as:

(2.13) x° (n) =M/A^[x0 (/„.(/?))]-A \fl,(n)^STL{n)
(A. 5) AU lane-changing conflicts are resolved by using a strict FIFO rule, i.e.,

no gap acceptance models are applied.

In order to determine how delays due to lane-changing are passed from one vehicle to
another, it is necessary to make some assumptions about driver behaviour that are
appropriate for a simplified model. The fundamental assumption made here is that once a
vehicle has stopped at x° (n), it will leave its arrival lane as soon possible - as permitted
by the cell-supply constraint (2.8) - and thus incurs as little delay as possible in this lane.
The remainder of the delay is incurred in the departure lane. The total delay due to lane-
changing - referred to as the total arc delay - is denoted by A(n), while the amount
incurred only in the origin lane - referred to as the initial arc delay - is denoted by
A°(/2). Figure 2.1 shows the three cases for calculating the initial and total arc delay of a
vehicle, as a function of the initial and total arc delays of its spatial-temporal leaders, and
of the geometry of the spatial conflict between it and each of these leaders. These
calculations are based on the direct application of the cell-supply constraint (2.8). On the
left side of the figure is an algorithm that identifies three types of spatial conflicts. On the
right side, examples are given for each of the three cases, in the same order that they are
identified in the algorithm. Vehicle motion is again from left to right, and the lanes are
again numbered from bottom to top, starting at 1.

The three cases are distinguished by the contribution of /y(n) to A(n): A(/y(n))-u;,y is
used when a spatial conflict remains after both vehicles have changed lanes (i.e., both
vehicles are destined for the same lane); A°(/y(/?))-Q:y is used when a spatial conflict
remains after vehicle n has changed lanes, but not after /,y (n) has changed lanes; - a,j is
used when no spatial conflict remains after vehicle n has changed lanes. It should be
noted that if /y(n)e5'7Z(n), vehicle n always changes lanes before /y(n). This property is
a direct conséquence of the assumption that each vehicle incurs as little delay as possible
in its origin lane, and the definition of x°(/i) given in (2.13). For this reason, there are no
cases concerned with whether a spatial conflict exists after /y (n) has changed lanes, but

{
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•^
before n has changed lanes. In all three cases, A° (n) is always determined by - a , given
that a spatial conflict exists. Thus, vehicle n must wait in its arrival lane exactly as long
as it takes to satisfy (2.8) with respect to all of its spatial leaders. When vehicle n has no
lane change to execute, the initial arc delay is set equal to the total arc delay, by
convention.

It can be seen that the relationships given for A(/?) and A° (n) are simply adaptations of
Lindley's waiting time recursion for a single-server FIFO queue (Lindley, 1952), where
the leader's delay as perceived by the follower depends on the geometry of the spatial
conflict between the two vehicles.

0

Figure 2.1: Delay Rules for Lane Changing

|v(/,y)û?o .-

if{mD(n)=mD(}^
A(n)= max [A(n),A(/,,.)-ay.,o]
A°(/!)=max[A°(n),-a.,o]

eîseif (m°(/î)e {?,..., 7})
AW=m^[Â(n),À°(/,)-a,,o]
ÂO(n)=max[AO(n~),-ay,o]

elseif (n~l^
A(n)=max [Â(n\-ay,o]
^o(n)=max[^o(n),-a,,o]

eïidif

end
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-> -> •>
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The last vehicle to have arrived to the arc destined for mD(n}, before the arrival of
vehicle n, is denoted by 1° (n). This vehicle will be the last to have exited the arc by
mD(?ï), before the departure of vehicle n. The extended version of the demand constraint
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(2.4) on the departure time of vehicle n from the exit of the arc may now be stated as
follows (the lane identifier is not included in ;'°( ) when it is not necessary):

(2.14) tD(n,X)ïMAX\<I'M+^.+AW,<0(/°W,A')+[T+^ + û){n)

2.2 The Supply Constraint

The arc-supply constraint (2.6) was derived in the context of a sequence of vehicles in
single file, where each sequential pair of vehicles must respect the (original) cell-supply
constraint (2.2). By assuming that each vehicle moves as quickly as possible at all times -
see (2.3) - it is ensured that if (2.2) is active for any pairs of sequential vehicles in the
sequence (n(t),n-ï(t-T\...,n-X{t - XT)), these pairs fonn a continuous sequence of
the form (n - X{t - XT\ n-X +\{t-{X - l)r),...). This is because no independent causes
of delay are permitted within the arc, and thus a vehicle can only be delayed at position x,
if its leader is delayed at position x + /l, and if the delay the leader incurs at x + 2 is
greater than the arrival gap, tD(n,o)-ïD{n-\0)-T-À/V - c.f. (2.13). In this way, all
delays incurred on the arc are ultimately derived from the sequence <»(n). The basic idea
underlying the e?rtension of (2.6) to multiple lanes is that, rather than treating the arc
delays as an independent mechanism of delay, they are treated as temporary spatial
conflicts that can potentially pass along residual amounts of the &>{n) from a leader to its
followers, in exactly the same way as just described for the one-lane case.

It may be instructive to first consider how the ASTQ - (2.4), (2.5), (2.6), (2.7) - can be
applied to describe the motion of each vehicle on a cell-by-cell basis. Equations (2.4) and
(2.6) can be combined to define the entire trajectory of vehicle n as follows:

(2.15) /û(n,x)=max tD(n,Q)^,tD{n-(x-x\X)+(X-x)r 0<x<X.

u

It is straightforward to show that (2.2) is redundant foî 0<x<X, &s long as it respected
at x = 0 and x = ^ by the use of (2.4) and (2.6) applied to each lane. The two terms
inside the max operator of (2.15) are referred to as the non-local demand and supply
constraints, respectively. At every position x, 0 <x<X, one of these two constraints
must be active. The trajectory of a vehicle is constrained when the non-local supply
constraint active; when the non-local demand constraint is active, the trajectory is said to
be unconstrained. By convention, when both constraints are active, the trajectory is said
to be unconstrained, since a vehicle in this state is not incurring any delay. Thus, if the
supply constraint is inactive at x = 0, it may become active at some later position x<X ,
before the vehicle leaves the arc. This is the position at which the vehicle first incurs
delay on the arc, and it is only of direct interest if it is desu-ed to know the temporal
distribution of the length of the queue. If the empirical measures of the system are
restricted to arc-based statistics (as is done here), then it is only of interest when the



70

position at which delay is first incurred reaches x
^ yields.

0, which is exactly what the ASTQ

Thus, an important assumption made here is that the position at which vehicle n changes
lanes, x°{n), when none of its leaders changes lanes - and thus no valid x°(/y.) exist - is
the position at which the non-local supply constraint becomes active. However, the way
in which this constraint is defined in (2.15) must be extended to the multi-lane scenario.
This is accomplished by identifying multi-lane sequences of vehicles, over which the
cell-supply constraint must be applied, by identifying conflicts between each vehicle and
its leaders. By counting forwards x-X vehicles along any such sequence starting at
vehicle n, it is possible to define a non-local supply constraint for vehicle n with respect
to the departure times of vehicles from each lane. In the one-lane case, every vehicle has
only one leader, every pair of sequential vehicles is in spatial conflict, and there is only
one sequence of vehicles with active cell-supply constraints. Thus, the vehicle identifier
is sufficient in this case in establishing the position (i.e., order) of vehicle n relative to
any other vehicle in the sequence, and thus sufl6cient as a notation for defining the non-
local supply constraint. In the multi-lane case, a vehicle must have associated with it a
count that defines its order in a sequence relative to each lane of the arc.

It must also be taken into consideration that the sequences so defined are time dependent.
After vehicle n has changed lanes, for example, the conflicts with its leaders may change,
as may the conflicts with the following vehicles for which n is a leader. Thus, the counts
of a vehicle with respect to each lane must be time-dependent. It was observed in the
previous section that it is not necessary to know when or where /y (n) will change lanes
in order to determine if it will delay vehicle n, because of the assumption that all vehicles
travel at the maximum speed between x=0 and x=x° (n) . By the same rationale, it can
be determined at the moment a vehicle enters an arc what the counts associated with this
vehicle will be both before and after it changes lanes. The basic idea is that changing
lanes does not change the original set of leaders, but only the temporal gap and (arrival,
departure) lane pair used to identify the spatial and temporal conflicts with this set. In this
way, two sets of counts are determined for each vehicle at the moment it is ready to enter
an arc: cA{n,k) is the count for vehicle n with respect to lane A- before it changes lanes,
while c° (n, k} is the count for vehicle n with respect to lane k after it changes lanes.

It is assumed that immediately after changing lanes, a vehicle incurs its residual arc
delay, A(^)-A°(n), at position x°(n) in lane mD(n). Once the total arc delay has thus
expired, all temporal conflicts between vehicle n and the set L(ri) have sinularly expired.
At this moment, the only conflict of interest is between vehicle n and lD{n) - its
departure-lane based leader. Thus, by identifying vehicles in order of their arrival to the
arc, by departure lane, and denoting this identifier by d{n), it is known that a the count of
vehicle n with respect to mD(fi) becomes d(n) after A(n) expu-es, at which time its
count with respect to all other lanes becomes zero.

j

J
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To summarize, the trajectory of each vehicle is broken down temporally into three states:
before A° (n) has expired; after À0 (n) has expired but before A(n) has expired, and after
A(/î) has expired. Each state is associated with a different vector of counts. Moreover,
spatial conflicts identified with the vehicle before A°(n) has expired are based on
[mA(n),mD(n)), while those identified with the vehicle after A°(n) has expired are based

on m°{n) alone.

Procedures for determining cA(n,k) and cD{n,k) are given below as algorithms CA(n)
and CD(n), respectively. The basic logic is, as follows. When a vehicle is identified as a
leader for vehicle /?, the size of the gap (ay {n}) between the two vehicles determines
which of the count vectors is to be used in determining the vector cA(n,k). This is
analogous to the mles given in Figure 2.1, where the geometry of spatial conflict
determines what value of arc delay is "passed along" from /y (n) to n. Then, once the
value of A° (n) has been determined, the vector c° (n, k) can be calculated in much the
same way. The only difference is that for determining spatial conflict only mD (n) is now
considered, and that for the detemuning temporal conflict, ce,.{n) has effectively
increased by the value of A°(n). Denoting the number of lanes on a given arc by M, it is
readily apparent that the worst case complexity of these two algorithms is in the order of
M3. The outer/o/- loop, governed by V(7,y), results in M2 iterations, while the inner/o/-
loops, governed by \/k, result in M iterations each.

0

Algorithm CA(n)

^/(i,j)do:
if (^(l,)-a, ^0)

if(j^^A{n),...,mD(n^
CA (n, j) = max[cA (n,j\nD (/„.)+ ij

endif

elseif^[l^-a^Q)
if{j^A(n\...,mD{n)}

^k do:

if(cD(l,,k)>o)
cA(n,k)=max[cA(n,k),cD(îy,k)+ï\

endif
endif
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elseif{n~l^
VA: do :

tf{cA(l,,k)>Q}
cA{n,k)=max[cA(n,k\cA(!y,k)+ï\

endif
endif

end

0

Algorithm CD{n)

^(i,j)do:
7/(A(/,)-a,-A°M^o)

if{j==mD{n)}
cD^,j)=max[cd(n,j),nD(l,)+\\

endif

^7/(AO(/,)-a,-A°W<o}
if{j^mD(n}}

VA- do :

if{cD(l,,k)>Q}
CD {n,k} = max[cD {n,k},cD (/, ,À-)+1

endif
endif

elseif(mD(n}G[i,...,j})
VA: do :

if{cA(l,,k)>0)
cD(n,k)=max[cA(n,k),cA[ly,k)+l\

endif
endif

end

0

Since the counts cA(n,k) yield the position of a vehicle in a sequence associated with a
specific lane, the departure times that are used in conjunction with these counts must be
sequenced not by the index n, but by the counting process as seen at the exit position of
each lane. As the index of vehicle n with respect to the departure lane mD(n) is denoted
by d(îî}, the notation n~\d,k} will be used to identify the vehicle associated with a
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given position in the counting process as seen at the exit of lane k. Denoting the last
vehicle to have arrived to the arc by lane mA{n) before the arrival of vehicle n as lA{n),
the multi-lane version of equation (2.6) can now be written as:

(2.16)^(n,o)=/nax| /dm(n),tD(lA(n),o)+[r+^,m^[tD(n-ï(cA(n,k)-X,k),x)}+Xr
<< VA

It should be noted that in equation (1.6), the count of a vehicle is simply its identifier, n.
As a result, this quantity depends only on the count of the next downstream vehicle, but
not on the time separation between the two vehicles. Under the conditions described
above this property is lost, because the cA[n,k) are a function of the arrival time, and are
thus time dependent. This yields a circularity in equation (2.16), which requires a
procedure to ensure consistency, i.e., that the t°(n,0) obtained is the same as that used to
calculate it. The criterion proposed here for the uniqueness of the solution is to choose the
lowest possible value of t° (n,o) that is consistent. In this way, each vehicle enters the arc
at the earliest possible time, which seems reasonable.

The basic property of this model that can be exploited is that the counts can only change
at discrete points in time, and that these points are given by the solutions of
A(/,y)-ffy. =0, and A°(/,,.)-a,,. = 0, ^{ij), in temis of tD(n,0). These solutions
detennine which of the possible cases is identified by algorithm CA(n). These solutions
are of course themselves time independent, and only those that are greater than tdm(n) -
which is determined exogenously - are of any practical interest. Thus, algorithm CA[n]
can be implemented iteratively as shown in algorithm TDS(n). The process is initialized
with tdm(n), and on each pass through the algorithm, the current value of tdm(n) -
denoted by t^m (n) - is used to calculate the next value - denoted by t^m [n) - as follows:

(2.17) t,dm = m^tD(n,Q)>t^ | W-a= o)^°(l,)-a= o)\,
Thus, the lowest solution to the equations used to distinguish between different cases in
algorithm CA(n), greater than the current value of tdm(fi), is used to initialize the next
loop. The process continues as long as the set defined on the right-hand side of (2.17) is
non-empty, as long as the supply time - denoted by /^(n) and given by equation (2.16)
- is non-increasing, and as long as the demand time is less than the supply time. The
maximum number of iterations through the outer while loop in this algorithm is 2M2.
The calculation of the supply time, by equation (2.16), requires M iterations, while the
demand time calculation of equation (2.17) requires M iterations. Both of these
calculations are dominated by the call to CA(n), which has a worst-case complexity in
the order oï M3. The worst-case complexity of algorithm TDS(n) is thus in the order of
Ms.

y
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Algorithm TDS{n)

îdm = 0

tâ,m =tdm(n)
tv =00
^=œ
w^((^m>^m)n(^<^))

am ^. dm

^p
'0 ~ tl

CA(n)

tv = max /dm(n),tD(lA{n),Q)+[r+-^[tD(n-ï(cA(n,k)-X,k),x)}+Xr
, dm

ll ^ 10

return{tàm)
endif
tcîm

I min\tD(nfi)>^m \ (A(/,)-ff = o)^°{î,)-a = o)J
V(.j)L

if^m>tv}
retvm[tv)

endif
endwhile

if(ïv^ts,p)
retum(max[^m,îv^

else

reîurn(max[^m ,ts^
endif

^J

3 A Numerical Example

In this section, a small example of the above procedures is presented. In addition to
giving the results of the calculations for a sequence of vehicles entering a short arc, an
"animation" is provided to show the cell-by-cell trajectories of the vehicles that the above
assumptions imply. The animation is shown in Figure 3.1. The arc is 9 cells long, and
three lanes wide. Vehicle movement is from left to right, and the lanes are numbered
from bottom to top, starting at 1. The maximum speed on the arc is A/T, and hence the
minimum spatial separation between two vehicles (at the same point in time) traveling at
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this speed is 22. The minimum temporal separation (at the same point in space) between
^^ two vehicles traveling at this speed is 2r. For simplicity, all vehicles with the same

arrival lane share the same departure lane. Vehicles entering by lane 1 are all destined for
lane 3; those entering by lane 2 remain on lane 2; those entering by lane 3 are destined for
lane 1. The number used to identify each vehicle is the arc-based identifier, n. The
example was conceived in such a way that all delays incurred are multiples of r, and
hence each vehicle is exactly on a cell at each increment of T in time. Thus, the animation
moves forward through time in constant discrete intervals of T. The numbers on the cells
indicate the exact position of vehicle n at the value of t indicated to the left of each
picture in the animation. The position x == 0 is the last cell upstream of the arc. It can be
seen that any delay incurred by vehicle /; at this position is the value of u){n) for the
upstream arc.

Figure 3.2 contains a table showing the arc delays and counts calculated for each vehicle,
along with the basic information upon which these calculations are based. In particular,
the demand time, arrival lane, and departure lane are indicated in the table. Each row in
the table indicates the calculations made with respect to a specific leader. For brevity, the
argument n is generally not included in identifiers, and the value of k, where applicable,
is written as a sub-script. The departure lane counts in the last three columns are
calculated only after the arc delays have been determined for all leaders. Below the
calculations for each leader, a row in bold font indicates the maxima over all leaders for
the various values as determined for each vehicle n. For brevity, only the last vehicles to
have arrived by each lane are considered as leaders in the calculations given, as this is
sufficient for obtaining the correct results in this particular example. Vehicles 1 to 9
required no iterations in algorithm TDS, as the consistency criteria was satisfied for the
initial value of tdm{n}, given in the 5th column. For this reason, each leader is considered
only once in detennining the arc delays and counts for each of these vehicles. Vehicles 10
and 11 each required one iteration, and thus there are two sets of calculations for each
leader for these vehicles.

The niles that govern the cell-by-cell movements are summarized as follows. Every
vehicle moves forward in its arrival lane until the non-local supply constraint becomes
active, at which time the vehicle waits for a duration A°(n), before moving
instantaneously to its departure lane. The vehicle is then delayed for a duration
A(/?)-A°(/2) in its departure lane, at the same position x at which the lateral movement
was made. After the total arc delay has been incurred, each vehicle is free to traverse the
remaining distance at the maximum speed. The latter statement is only true because there
are no node delays in this particular example, i.e., u)(n)=0, Vn. In the general case,
every vehicle moves forward in its departure lane after its total arc delay has expired,
following exactly the same rules as in the original (one-lane) STQ.

0
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n
Figure 3.1: Animation of Vehicle Trajectories

x=0 x=l x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9

0

u

t=l

t=:2

t=3

t=4

t=5

t-6

t=7

t=8

t=9

t=10

t =11

t =12

t=ï3

t =14

t=15

t =16

-2_.

'~T"1

::3:"1

~"4"

"6"

j^

"7"

--9--

-11-4.
"iô~

.-ll_-4.

'~î5'

-îô-

-Ï5~

.-11-4.
~ïô'

^_

^L:

::3::

A

::6:

^8:
"7"

--9--

:9:

-9--

•9'

X:

"3:

^L

A:

:6::

^m
^

-L—8-

^:

"8"

-9--

JT:

1o~

^

::3::

^:
^

::6:

~^L

^

^8:

::9::

7JT.
"10:'

^2:

::3:

^5^
3L

::6::

::6:

-5"

î

-8^

::9:

JL:
:ïo~

~JI.

::3::

^-
-^

7T.

7T.

:6::

-F

::9::

'To"~J

m

::3:

--4-

--4-

^4:

J:

~^K

::9:

^ÎL
~10'

~JI.
nr

:F:

:3::

:3::

-4-
:3::

.6-.

-9--

^2:

~^.

n:

^L

1^

ïE

î

's'

7
'6"



77

n
Figure 3.2: Calculations for Animation Example
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This example provides an opportunity to clarify an important detail regarding the solution
/^^ algorithm. In the application of (2.16) in algorithm TDS, if the vehicle identified as

n~l[cA(n,k}-X,k) for some {n,k) has not yet left the arc, the value of
îD(n~}[cA(n,k)-X,k),X) is not known. This situation occurs in the evaluation of
/D(n,0) for vehicles 10 and 11, with respect to the original demand times of 7 for these
vehicles. When this occurs, the supply time is considered to be infinite, and the algorithm
continues. If repeated iterations of the algorithm can obtain no lower supply time, the
supply time for this (arrival lane, departure lane) pair cannot be evaluated until the
vehicle identified as n~l[cA{n,k)-X,k) leaves the arc. In this situation, the lane k is said
to be inactive, and a Boolean variable is used to indicate this state. When the next vehicle
leaves the arc by this lane, it is then known that a supply time calculation is "waiting" for
this event, and algorithm TDS is called to re-start the process. This situation occurs when
the number of vehicles on the arc destined for some lane k is equal to the maximum
number that can be stored in one lane of the arc.

0

4 Simulation Results

The algorithms presented above were programmed in C++, and tested on the network
shown in Figure 4.1. The arc in the middle is 960 metres long, and 2 lanes wide. The
remaining 4 arcs are each 480 metres long and consist of one lane. The effective vehicle
length was 7.5 m, and the reaction time was 1.0 s. The same maximum speed was used
for all 5 arcs, and the network was tested at three different speeds: 54, 81, and 108 km/hr
(these speeds were chosen because they are multiples of 2/r). The demand consisted of a
flow fi-om node 1 to node 3, and from node 2 to node 4. Thus, all vehicles entering the
middle arc by the right lane were obliged to exit by the left lane, and vice-versa. In all
tests, the two demand flows were equal to the maximum one-lane flow at the maximum
speed. The maximum flows corresponding to the speeds given above (in increasing order
of speed) are 2400, 2700, and 2880 vehicles/hour. Due to the 'weaving' of the two
demand flows on the middle arc, the average flow on this arc tends to be significantly
less than the total demand from its two upstream arcs. The simulated time of each test
was 60 minutes.

The same network was tested using the AIMSUN2 micro-simulator. The parameters were
chosen in such a way as to be comparable with those given above. Since AIMSUN2 uses
Gipps' car-following model (Barcelô et al, 1994), which uses a temporal safety factor of
1.5 (Gipps, 1981), the reaction time used in AIMSUN2 was 0.67s. The desu-ed speeds of
the vehicles were set equal to the maximum speeds on the arcs, and the effective vehicle
lengths were as used above. The lengths of the zones were detemuned as follows. Zone 2
- the position at which a vehicle begins to look for a possible lane change - was set equal
to the length of the middle arc, as this is consistent with the assumptions of the model
presented here. What length to use for zone l - the position at which a dnver begins to
look more aggressively for a lane change opportunity - was less obvious. It was decided
to set this value to roughly one half the length of zone 2. The number was not chosen
precisely; rather, a value was selected for each of the speeds in such a way that the
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position at which vehicles were observed (in the animation) to begin changing lanes was
roughly the same.

Time-series plots of flow and density are shown in Figures 4.2 and 4.3, respectively, for
the 81 km/hr test. Qualitatively, these plots are indicative of the general patterns observed
for the two models. The results obtained with both models tend to stabilize after a short
penod of time, but those obtained with AIMSUN2 tend to have a slightly higher variance
about this value. A second test was run with the same demands, but with the outflow of
the middle arc controlled by a signal. The signal ran on a 60 sec cycle, with 30 sec green
and red phases. During the red phase, no flow was allowed to exit. The time-series plots
of flow and density for the 81 km/hr test are shown in Figures 4.4 and 4.5, respectively.
In this case, the density plot obtained with AIMSUN2 yields a slightly lower variance
than that obtained with the STQ-based model.

Figures 4.6 and 4.7 show the average flows and densities, respectively, obtained with
each model for each of the 3 speeds for the two tests - without the signal, and with the
signal, respectively. The data fi-om the signalized test are denoted with an s following the
model identifier, either STQ. or A2, in the legends. For the first test, the average flows
produced by the models are very similar, and appear to be invariant across the three
speeds. The average densities for this test are also very closely matched for the two
models, but there is a definite decreasing trend with speed. The second test shows a
slightly increasing trend in flow with speed, which is again captured by both models. The
average densities for this test do not show a definite trend with speed. A fairly sigmficant
discrepancy is found for this statistic between the two models for the 108 km/hr test.

Figure 4.1: Test Network
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5 Conclusions

0

t

A simplified model of longitudinal trafRc dynamics recently proposed (Mahut, 2000)was
extended to a general multi-lane arc model. The principal concern was to properly
capture the effects of vehicle conflicts - the diverging, merging, and crossing of vehicle
trajectories - within the arc, without sacrificing the arc-based nature of the original
solution algorithm. Another objective was that the model be consistent with a precise
description of the vehicle trajectories on a cell-by-cell basis. This allows the model
assumptions to be verified using an animation approach, much like the graphical
animation of micro-simulators is used to verify the inputs and assumptions of such
models. A small animation example was presented, along with the associated
calculations. The vehicle trajectories seemed quite plausible.

Tests were executed on a larger scale network by programming the algorithms in C++.
The network consisted of 5 arcs, with two origin-destination flows, and was simulated
over a period of 60 minutes. Adding a traffic signal to the network produced a second set
of results. These two scenarios were also tested using the AIMSUN2 micro-simulator.
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The outputs were average flows and densities for one-minute intervals. For both of these
statistics, both models stabilized to fairly stationary conditions after a short period. The
STQ-based outputs generally had lower variance than AIMSUN2 in the time-series plots,
though not always. Both scenarios were run at three dififerent speeds with both models.
The average densities and flows were observed. The flows obtained with the STQ-based
model were consistently higher than those obtained with AIMSUN2, while the densities
obtained were consistently lower. In general, these statistics were found to match quite
well between the two models. A significant discrepancy was found between the average
densities obtained with the two models for the highest speed (108 km/hr) test, when the
traffic signal was present.

The execution time ofAIMSUN2 was roughly 10 times longer than that required for the
STQ-based model in the first test. This ratio went up to roughly 15 for the second test.
The execution times were virtually the same for the STQ-based model, at a little under 1
sec. The increased ratio was entirely due to a longer execution time for AIMSUN2, which
was attributable to the higher densities (and hence higher travel times) that occur in the
second test. This ratio should increase not only with increasing arc densities, but with
increasing arc lengths as well. It should be noted that AIIVISUN2 is a very sophisticated
micro-simulator, and no doubt some of the execution time was associated with model
features that the code developed here simply did not have. The calculation of vehicle
emissions (pollutants) is but one example. The models were tested on a Pentium II 450
MHz computer under the Windows 98 operating system.

Overall, the performance of the model proposed here appears to be very promising. The
solution algorithm is arc-based, i.e., the computational effort per vehicle per arc is
independent of the vehicle's travel time on the arc. This feature results in particularly fast
execution times, which are of interest for real-time applications such as route guidance
and adaptive network control. The results of the tests matched quite well in general
between this model and the AIMSUN2 micro-simulator. It is significant that the results
obtained with the STQ-based model were in general more 'fluid' (i.e., higher flows and
lower densities) than those obtained with AIMSUN2. This difference may be explained
by the fact that the STQ does not take into consideration the limits on acceleration and
deceleration that are respected by the micro-simulation model. Although the simulation
tests presented were by no means trivial, the testing of the model is still in the early
stages. Further testing with more complex patterns of vehicle interaction within the arc
would be a desirable next step. The model also requires the addition of a sufficiently
general node model, which uses the event-based solution approach, in order to model
large-scale networks of practical interest.

0

References

Barcelô, J. (2000). Personal communication.
Barcelô, J, J. L. Ferrer and R. Grau (1994). AIMSUN2 and the GETRAM Simulation
Environment. Internal Report, Departamento de Estadistica e Investigaciôn Operativa.
Universitat Politècnica de Catalunya. See also http ://www.tss-bcn. corn.



83

n

0

Ben Akiva, M., H. Koutsopoulis, and T. Toledo (2000). MITSIMLab: Recent
Developments & Applications. Presented at the INFORMS Spring 2000 Conference, Salt
Lake City, May 7-10, 2000. See also http://www.its.mit.edu.

Gipps, P. G., (1986). MULTSIM: A Model for Simulating Vehicular Trafl5c on Multi-
lane Arterial Roads. Mathematics and Computers in Simulation 28, pp. 291-295.
Hugosson, B., and H. Andersson (1999). Evaluation of AIMSUN2 in Stockholm. The
"SMARTEST" Project. http://www.its.leeds.ac.uk/smartest.

Leutzbach, W. (1988) Introduction to the Theory of Traffic Flow, Springer-Verlag Berlin,
Heidelberg.

Lindley, D. V. (1952). The Theory of Queues with a Single Server. Proceedings of the
Cambridge Philosophical Society, 48:277-89.
Mahut, M. (1999b). Behavioural Car Following Models. Report CRT-99-31. Centre for
Research on Transportation. University of Montreal. Montreal, Canada.
Mahut, M. (2000). From Traffic Flow To Queueing Theory. To be presented at the 8th
Annual Meeting ofEuro Working Group on Tranportation. Rome, Itatly, September 11-
14, 2000.

May. A. D. (1990) Traffic Flo\v Fundamentals. Prentice-Hall, Englewood Cliffs, NJ.
Rickert, M., K. Nagel, M. Schreckenberg, and A. Latour (1997). Two lane traffic
simulations using cellular automata. PhysicaA, 234:687.

Traffic Science. D.C. Gazis, (ed). Wiley, New York, 1973.

Transportation Research Board (1998). Special Report 209: Highway Capacity Manual,
3 éd. National Research Council.

Van Aerde, M. (1999) INTEGRATION® Release 2.20 for Windows: User's Guide.

•u



n A Discrete Flow Model For Dynamic Network Loading

0

Michael Mahut, University of Montreal, Centre for Research on Transportation
Montreal, Canada

Abstract

This paper presents a node model for use in conjunction with the discrete-flow discrete-
event arc model proposed by Mahut (2000b), which is based on a simplified model of
traffic dynamics proposed by the same author (Mahut, 2000a). A discrete-flow node
problem is presented as the determination of the next vehicle to enter a node given the
necessary information concerning the first vehicle on each of its upstream lanes. A
solution algorithm is proposed, and is embedded in an event-based network-loading
procedure. This procedure ensures that the algorithm is executed at any time the relevant
inputs should change in the course of the simulation. Heuristic rules for choosing arrival
and departure lanes in conjunction with the arc model are suggested. The model is tested
on a small network under time-varying supply and demand conditions. The output is
found to compare quite well with that obtained using the INTEGRATION micro-
simulator. The execution time of the proposed model is on the order of one two-
hundredth of that required by INTEGRATION.
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l Introduction

This paper presents a general node model for use in conjunction with a discrete-flow
discrete-event arc model recently proposed by Mahut (2000b). Due to the discrete-event
nature of the model, the available information concerning other discrete-flow approaches
to modeling traffic - such as the many micro-simulation traffic models (Gabard, 1991;
Rothery, 1999) - is generally inapplicable as these models use a discrete-time approach
to solve the underlying trafBc model. The output required of a discrete-event procedure is
quite different than that of a discrete-time approach, as discussed below. The model takes
as inputs the next downstream arc and lane of the first vehicle on each of the upstream
lanes of a node, as well as the earliest time at which each of these vehicles may exit its
current arc. Pair-wise precedence relationships are established between these vehicles
using the familiar concept of gap-acceptance (Velan, 1997). The output of the model is
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the identity of the next vehicle to enter the node - refen-ed to as the node leader - and the
time at which this event will occur. These results remain valid as long as the inputs to the
model do not change between the time this event is predicted, and the time it takes place.
If a change to these inputs should occur during this time interval, these results are re-
calculated, and a new node leader and event time are established. The output of a
discrete-time model is, by contrast, the velocity and/or acceleration of the first vehicles
on each of the upstream lanes of a node. These results remain valid for a fixed interval of
time, and cannot be re-calculated before this time interval has expired.

It is found that in some cases, the pair-wise precedence relationships determined by the
gap acceptance logic do not directly imply a logical choice for the next vehicle to enter
the node. A solution algorithm is proposed which avoids the unnecessary delays that can
be implied by a naive inteq)retation of the pair-wise relationships. This algorithm is
embedded in a discrete-event network-loading procedure, which re-evaluates the
selection of the node leader any time the relevant inputs should change for any node. The
procedure is analogous to an event-based approach for modeling a network of capacitated
queues, where the event of a vehicle entering service at one server may simultaneously
affect the states of two other servers: the server upstream of the queue from which the
client has just departed (should this queue be at its maximum storage capacity), and the
server downstream of the queue the client is about to enter (should this queue be empty).

Heuristics are then proposed for the problem of choosing arrival and departure lanes for
the arc model proposed by Mahut (2000b), as a function of the current trafBc conditions
on the arc. The choice of arrival lane is based on the use of strict lane permissions. Given
the upstream arc from which a vehicle is arriving to a downstream arc, there is a specific
set of lanes that are potential arrival lanes for this vehicle on the downstream arc. The
choice of departure lane from the upstream arc is based on a less strict notion of target
lanes. These lanes are defined for an upstream arc given the downstream arc to which a
vehicle is destined. The departure lane choice generally respects the target lanes, unless
these lanes are inaccessible due to excessive traffic congestion. Two different rules for
departure lane choice are proposed. The complete model is then tested on a small
network under time-varying demand and supply conditions. The results obtained using
the two different heuristics are presented, along with results obtained with the
INTEGRATION micro-simulator (Van Aerde, 1999). The results are found to compare
quite well in general. Some notable discrepancies are found to occur under specific
conditions, but it is not clear that these differences imply a deficiency in the model. The
execution time of the proposed model is roughly one two-hundredth of that required by
INTEGRATION.

u

2 The Node Model

This section presents a node model that is combined with the arc model referenced above.
Essentially, the problem that must be solved at a node is the determination of precedence
among conflicting vehicles in a realistic way. This definition applies to any discrete-flow
traffic model, regardless of whether it uses car-following (CF), cellular automata (CA), or
the space-time queue (STQ) as the mechanism of moving vehicles within an arc. All such
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models also share a similar network representation. Since each discrete unit of flow
/^ represents one vehicle, each arc is defined by an integer number of lanes. What differs

among the different approaches is the information that is available to describe the state of
each vehicle (position, speed, acceleration, etc...), and the nature of the solution
algorithm used to solve the flow propagation model. With respect to the latter, the space-
time queue is fundamentally different fi-om both CF and CA models, because it is solved
using a discrete-event, rather than a discrete-time approach. A discrete-event algorithm is
based on the notion that specific causes have specific consequences at predictable
moments in time. This approach is used for simulating queueing systems, where the
service time of each client is drawn randomly from a distribution at the moment the client
begins service. As a result, the moment when the next client may begin service can be
predicted at this time. A basic property of such models is that time is real-valued.
Discrete-time algorithms, on the other hand, are based on the notion that the underlying
system evolves in a continuous - rather than discrete - way, and provide a description of
the system at regular intervals in time. This approach is used for CF and CA traffic
models, where the time interval is typically on the order of one second or less. As already
mentioned above, node models intended for use with a discrete-time traffic model are
fundamentally different than those required by a discrete-event approach.

0

u

2.1 A Procedure For Determining Precedence Among Conflicting Vehicles

It should be understood that a node model is primarily concerned with the (spatial-
temporal) conflicts of vehicle trajectories at an intersection, and thus only requires
information pertaining to the first vehicle on each upstream lane. Each such vehicle must
have the following information associated with it: the downstream arc for which it is
destined, referred to as the "supply arc" of the vehicle, the lane by which it will arrive to
this arc (the arrival lane), and the lane by which it will leave this arc (the departure lane).
The arc model then uses this information to detennine the earliest time that the vehicle
may execute the movement fi'om its current arc to its supply arc, which is referred to as
the demand time of the vehicle - see (Mahut, 2000b). These four data define the state of
the vehicle. Given the supply arcs and arrival lanes of the first vehicles on all of the lanes
upstream of a node, the spatial conflicts among these vehicles can be identified. Spatial
conflict implies that the trajectories of two vehicles - as given by the pairs of lanes
(upstream, downstream) associated with their movements at a node - either merge,
diverge, or cross at the node. The condition of spatial conflict between the first vehicles
on two upstream lanes (u, ,u^} will be denoted as u^ ~ "2 •

A node model must also enforce any control measures that are in place at the intersection,
such as traffic signals. The state of a node, at any moment in time, will include the state
of any control mechaiiism and the state of the first vehicle on each of its upstream lanes.
The node state also includes the identity of the next vehicle to execute a movement from
its current (upstream) arc to its supply (downstream) arc. This vehicle will be referred to
as the node leader. The (discrete-event) node problem is thus defined as identifying the
next node leader as a function of the node state. A desirable property of any node model
that solves this problem is that it yields a unique solution. Given any node state, there
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must only be one possible node leader. Of course, it is also important that the model be
/^~^ plausible, i.e., realistic. Once the node leader has been chosen in this way, the demand

time of this vehicle yields the time at which it will enter the node, i.e., the intersection.

Micro-simulation models oftrafFic resolve conflicts between vehicle trajectories at nodes
in essentially the same way as conflicts due to lane changing, by using gap-acceptance
models (Velan, 1997). Only the type of information used to define the state of a vehicle
restricts the type of gap acceptance model that can be applied. Knowledge of the
upstream and downstream lanes of the movement associated with each vehicle, along
with the corresponding demand time, is sufficient for the general type of gap-acceptance
model used in CF-based simulation models, many of which can thus be directly applied
here (ibid). As in the case of lane changing, the purpose of such a model is to determine
precedence between two conflicting vehicles given their states. This in turn requires that
one of the vehicles be given priority over the other. The arc pair (upstream arc,
downstream arc) associated with a vehicle's movement at the node is generally used to
determine priority. The precedence relationship that results between the first vehicles on
two upstream lanes (",,"2) will be denoted by -^, i.e., ^ -^u^ implies that the first
vehicle on lane u, must follow the first vehicle on lane u^.

The general form of such a model is given below, as algorithm Resolve{u^,u.,), where
u, and u, denote two upstream lanes of a node. The demand time of the first vehicle on
lane u is denoted by t(u}. An exogenous function gap(u^,u^) is called to calculate the
required gap. A trivial gap(u^,u^) function would simply return zero in all cases,
resulting in a FIFO (first-in-first-out) ordering of all mutually conflicting vehicles. A set
of mutually coiiflicting vehicles is defined here as a set of vehicles such that each pair is
in spatial conflict.

ResolveÇu^,u^)
if {^~^}

//fr(Ml ) - /(U2 ) ^ ^°P("I » U2 )}
u, ->u^

else

Z<2 ->Ui
endif

endif
end

u

The remaining discussion will assume that an exogenous function gap(u^,u^) is used to
solve the gap acceptance problem, i.e., it will be assumed that a model is available, which
takes as inputs the states of two vehicles, and returns as an output which vehicle will
precede the other. The vehicle that is thus detemiined to precede the other will be referred
to as the leader, while the succeeding vehicle will be referred to as the follower. The
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discussion will now focus on the problem of how to solve the node model, given the
results of the gap acceptance model for each pair of vehicles.

This problem is trivial if there is only one pair of conflicting vehicles, or if there is more
than one such pair, but no vehicle belongs to more than one of them. An example of such
a situation is given in Figure 2.1. This figure contains a graph representation of the results
obtained by calling Resolve(y^,u^} successively for all pairs (u,,»;), as indicated by the
arcs. The nodes of the graph represent the vehicles in question, or equivalently, the
upstream lanes of the node. For convenience, the nodes are drawn from left to right in
decreasing order of t(u). A simple nile for determining the node leader in this case is to
traverse the list fi-om right to left, and to select the first node that does not have an
outgoing arc, which would be node 3. Thus, vehicle 3 is the node leader for this node
state.

Figure 2.1: First Node Confllict Example

3 /(4)>f(3)>?(2)>^(l)
^[4

QQ$)^l 2

it
4

A more interesting situation is depicted in Figure 2.2. There are two pairs of conflicting
vehicles, but vehicle 1 belongs to both pairs. The results obtained from Resolve(u^,u^)
are again shown to the right of the diagram. In this case, using the rule above would yield
vehicle 4 as the node leader. This may not be the most reasonable solution, under the
general assumption that each vehicle attempts to proceed forward as quickly as possible.
This solution requires vehicle 3 to be delayed unnecessarily, since vehicle 1 must wait for
vehicle 4. It seems reasonable then that vehicle 3 should be the next node leader, by
virtue of /(3)< /(4), which requires invalidating the result 3 -> 1. One way to modify the
above rule might be to consider only those arcs in the graph that point to the left. This
would imply that if a vehicle has already been discarded as a possible candidate, it may
no longer prevent other vehicles from being chosen. Applying this mle in Figure 2.2
indeed yields vehicle 3 as the node leader. This modified rule does not however provide
the most reasonable solution for the example presented in Figure 2.3. Applying the
modified rule, the node leader is vehicle 2. In this case, however, since vehicles 3 and 4
must wait for vehicle 2, vehicle 1 is delayed unnecessarily. The most reasonable node
leader is thus vehicle 1 .

i

;

•

i

The proposed solution is reasoned as follows. If a vehicle is the follower in even one
conflict, all of the conflicts in which it is the leader are ignored. Of course, before such a
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decision can be made, it must be ascertained that the conflict in which this vehicle is the
follower is in fact valid, i.e., that the leader in this conflict is not a follower in some other
conflict, and so on... The idea is to first identify all vehicles that are not followers in any
conflicts, and proceed from there. The procedure is given in algorithm ResolveNode,
below. This algorithm uses two lists to store the vehicles: a leader list, and & follower list.

Figure 2.2: Second Node Conflict Example
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Figure 2.3: Third Node Conïïict Example
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One issue that has not been discussed is the possibility of cycles in the graph. If cycles
are possible, the algorithm may not move any vehicles to the leader list in step 2. In this
case, step 3 will fail to remove any vehicles from the follower list, and the algorithm will
cycle indefinitely. One way to avoid this problem is to explicitly identify any cycles in
the graph if no vehicle is found in step 2. The vehicle that is moved from the follower list
to the leader list may then be chosen as the one with the lowest demand time among all
those belonging to any cycle. Another approach would be to impose certain constraints
on the gap(u^,u^} procedure that ensure that no cycles can occur. Figure 2.4 shows
another possible set ofpair-wise precedence relationships for the node state of Figure 2.3,
but the nodes are drawn in a way that reflects their geometric arrangement rather than
their temporal relationships. If it is assumed that all cycles must form a loop of this kind
when the nodes are drawn in this way, it can be ensured that no cycles will fomi as long
as, for any given vehicle, the gap with respect to another vehicle in the clockwise
direction is always strictly less than the gap required in the counter-clockwise direction,

5

l
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or vice-versa. In general, it appears that adding constraints of this kind could easily
render the gap(it^,u^) procedure unrealistic, and is not recommended.

Figure 2.4: Fourth Node Conflict Example
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ResolveNode

step 1: initialization
Identify all of the vehicles for •which the requested movement at the
intersection is currently permitted by the traffic signal. Initialize the
follower list with these vehicles. The leader list is empty.

step 2:
Identify all the vehicles in the follower list that are not followers in any
conflicts with other members of the follower list. Add these vehicles to
the leader list.

step 3:
Identify all the vehicles remaining in the follower list that have a
conflict with any of the vehicles just added to the leader list in step 2.
Remove these vehicles from the follower list and discard them.

step 4:
If the follower list is not empty, go back to step 2.

step 5:
Find the vehicle in the leader list with the earliest demand time. This
vehicle is the node leader, and the demand time of this vehicle is the
next event time of the node.

l

The worst-case complexity of ResolveNode can be analyzed as follows. Letting M denote
the number of lanes upstream of a given node, step 1 clearly requires M operations to
verify the signal permissions and create the original follower list. Step 2 requires that
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each pair of vehicles remaining in the follower list be evaluated. Denoting the number of
vehicles in the follower list at the beginning of iteration / by A^;, the number of
operations in step 2 of iteration ; - denoted by K'^ - is given by:

(2.1) K;=M,(M,-î)/2.

It should be noted that in step 3, it is sufficient to compare the vehicles remaining in the
follower list only with those that have just been moved to leader list in the previous step
2. Denoting by /, the number of vehicles moved to the leader list in step 2 of iteration ;,
the number of operations in step 3 - denoted by K'^ - is given by:

(2.2) ^=(M,-/,>,

Denoting by /. the number of vehicles discarded fi-om the follower list in step 3 of
iteration /, M; ; may be defined recursively as A^ , = M; - /; - /. . From the discussion
above, it should be evident that 1 < /; ^ M,, for all ;. The lower bound for the value of /
is zero. The number of operations in step 2 (2.1) may thus be written as:

(2.3) •i+I
-2 (^,-/,-/.XM,-/,-/,-l)/2

Considering equations (2.2) and (2.3), it is apparent that the values of K[ and K'^ are
both maximized when /; and /. are minimized, i.e., 7, =1 and f, =0, V;. The worst
case thus requires exactly M iterations, and the maximum number of operations is given
by:

(2.4) M.M^-^Z
2 i^i

(M-,>.(M-'XM-'-')1.

With some manipulation, this reduces to (M -2M)/3. The complexity of the worst-case
scenario is thus in the order oî M3.

u

2.2 The Node Constraint

The demand time of a vehicle is constrained not only by the rules defining the arc model,
but also by the presence of conflicting vehicles in the intersection. In general, these are
vehicles with which the vehicle in question is in conflict, and to which it was obliged to
yield the right of way. It is also possible that a vehicle in the mtersection entered it before
the vehicle in question became first on its lane, and thus the latter was never in a position
to precede the fonner. Thus, a constraint on the demand time of a vehicle beyond those
defining the arc model must be applied, to ensure a minimal temporal separation between
conflicting vehicles as they pass through an intersection. In micro-simulation models of
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traffic, the minimum separation between conflicting vehicles at a node is primarily a
^~^ function of the turning speed, which is associated with the lane pair (upstream lane,

downstream lane) of the preceding vehicle (Barcelô et al, 1994). The turning speed is
literally the speed at which a vehicle is assumed to have passed through the intersection,
and is calculated as a function of very detailed geometric information (ibid.). Clearly, if a
vehicle makes a very sharp turn at an intersection, there is an upper bound on the speed at
which it can safely execute this turn. This speed ser/es to reduce the maximum flow per
lane that may be observed for a given turning - the lower the speed, the lower the
maximum flow. The turning speeds are assumed to be taiown, and are denoted by
V(u,s), where u once again denotes an upstream lane, and 5 denotes a downstream lane.
Denoting the demand time of the last vehicle to have passed through the intersection from
lane u to lane s by tlast(u,s), and the arrival lane of the first vehicle on lane 11 as mA (11),
the following node constraint is defined on demand time:

(2.5) î(^)>tlcu'(^,s)+^+-^
A \f(u,,s)\(u,,s)~(u,,mA(u))

3 A discrete-event network-loading algorithm

u

In this section, the model presented above is embedded in a discrete-event network-
loading algorithm. The algorithm consists of a single event procedure, much like the
underlying procedure of a discrete-event algorithm for modeling a network of capacitated
queues. This procedure for this event - referred to as the node event - is executed at the
moment a node leader enters an intersection, i.e., at the demand time of the node leader.
This procedure executes the ResolveNode algorithm presented above in order to
determine a new node leader at each node event. Before selecting a new node leader, it
must be determined if there is a new first vehicle on the upstream lane of the current node
leader, and if so, determining its state. This requires the selection of the supply arc,
arrival lane, and departure lane of the new vehicle. The arc model then returns the
demand time, which is further constrained by the node constraint (2.5) above. By
applying (2.5) to all vehicles in conflict with the current node leader, the updating of the
node state is completed. With the node state updated, ResolveNode can be applied to
detennine the new node leader. If a node leader is found, a procedure called ScheduleQ is
called to post the next event in the central event list. For a description of the basic process
of discrete-event simulation, the reader may consult any general text on simulation such
as (Law and Kelton, 1991).

A node event at a particular node, at which a vehicle moves from lane u to lane s, can
further affect the node states of two other nodes: the upstream node of lane v, and the
downstream node of lane s. The former case occurs when the lane u is inactive (Mahut,
2000b). This means that the calculation of the demand time for a vehicle to enter this arc
currently depends on the departure time of the next vehicle from lane u, and thus the
calculation has been postponed until this event. In physical terms, this means that the
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n
number of vehicles currently on the arc destined for lane u is equal to the maximum
number of vehicles that can be stored on one lane. As a result, the time when the next
vehicle may enter this lane depends on the departure time of the vehicle that is currently
first on this lane, which is not yet known. The latter case occurs when the node leader is
first for the departure lane of its supply arc. In other words, the departure lane is empty,
and there is now a new first vehicle that may impact the determination of the node leader
at its downstream node (however unlikely such an impact may be). In the case where all
of the upstream lanes of the downstream node of lane ^ are currently empty, this case
serves to initialize the recursive node-event process at this node. The entire process is
initialized by the use of special origin nodes that generate vehicles and inject them into
the network.

A schematic description of this procedure is as algorithm NodeEvent(node), below. The
variables u and ^ denote the upstream and downstream lanes, respectively, of the node
leader. The upstream and downstream nodes of a lane (m) are denoted by head(m) and
tail(m), respectively. A complete simulation model would include other recursive event
procedures as well. Other events would be used for changing the state of trafiRc signals
and collecting time-dependent statistics, for example. The event procedure for changing
the state of a signal would be required to cancel the current node event, update the signal
state, call Re solveNode, and if applicable, schedule the next node event.

lo

[[ )
<^/

NodeEvent(node)

if (lane u is not empty)
Determine the state of the next vehicle on lane u:
select the supply arc
select the arrival and departure lanes
determine the demand time

endif

Update the state of node:
update the demand times of all vehicles in conflict with the node
leader of node

ResolveNode (node)

if (a node leader exists for node)
Schedule (NodeEvent(node))

endrf

if (lane s is empty)
Determine the state of the node leader for head(s)

select the supply arc
select the arrival and departure lanes
determine the demand time
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ResolveNode(head(s))

if (a node leader exists for head(s))
Schedzile (NodeEvent(head(s)))

endif
endif

if (lane u is full)
for all lanes u' oftail(u) such ihat(arc[mA(u')] = arc{u)} do:

determine the demand time t(fi')

ResolveNode(tail(u))

if (a node leader exists for tail(u))
Schedule (NodeEvenîftail(u)}}

endif
endif

end

The worst-case computational complexity of this algorithm can be detennined in a
straightforward way. Rather than developing the analysis in the context of a given node,
with known parameters (e.g. number of upstream lanes), it will be assumed that the
maximum values of such parameters for the entire network are known. In particular, the
following parameters are defined:

M.0
B,

0

0N,
p.
&

maximum number of lanes for any arc
maximum number of upstream arcs for any node
total number of nodes in the network

maximum number of nodes per path.
total number of vehicles defined by the demand flows for the network

It is assumed that a data structure is used to store the paths being used, so that selecting
the siipply arc requires a constant amount of calculation. It is further assumed that
whatever rules are used to select the arrival and departure lanes can be combined with the
determination of the demand time without changing the order of the complexity of this
calculation. This is consistent with the lane-choice heuristics suggested in the next
section. A suitably modified version of algorithm TDS{n), as proposed by Mahut
(2000b), could then be used to detennine the arrival and departure lanes, as well as the
demand time, with a computational complexity in the order of M^.

The maximum number of upstream lanes for any node is thus B^MQ . Thus, the procedure
of updating the demand time of the first vehicle on each upstream lane of a node has a
complexity in the order of ^oMgM^ = ByM^. Following the discussion presented above,

l
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the worst-case complexity of the ResolveNode procedure for any node is in the order of
M3Q . It is assumed that the data structure used to store the node events is a sorted two-
way linked list. This is the data structure used in the model implementation discussed in
the next section. Although using a heap structure is much more efiScient for inserting
events that are not currently posted, a linked list oflTers some advantages that can be
exploited in this type of model. For example, it is not uncommon that a node event
already posted must be updated when the state of a node changes. A heap requires that
the event be first removed from the heap, and then re-inserted with the new event time. A
linked list permits the position of the event in the list to be updated directly. When the
new position is very close to the old position, which is often the case in this model, the
linked list can execute this procedure more efficiently than a heap. Another advantage of
a (two-way) linked list is that the events can be inserted fi'om either end. This can be
exploited whenever it is known that certain types of events tend to end up near the bottom
of the list upon insertion. For example, the event associated with changing the state of a
traffic signal is generally predicted much further in advance than a node event. As a
result, it ultimately ends up near the bottom of the list. This can be exploited by always
searching for the insertion point for such an event by starting at the bottom of the list. The
worst-case complexity of the ScheduleQ procedure - which includes the updating of
events already posted - is thus in the order of NQ , as there is never more than one node
event (and one signal event) posted for each node of the network.

It can be seen that the same types of operations are repeated throughout the rest of the
NodeEventQ procedure. The worst-case complexity of this procedure is thus in the order
of BQM^ + NQ . The worst-case complexity for the entire DNL procedure is thus in the
order of Oo^oi-^o^o +-^o)' as there is exactly one node event per vehicle for each node
on its path.

•f

ï

f

l

4 A Simulation Example

The above procedure was implemented in C++, in conjunction with the STQ-based arc
model, and executed on the network illustrated in Figure 4.1. The numerical inputs are
also shown in the figure. The necessary inputs to the model consist of the demand flows
per path, parameters to describe each arc. The arc parameters consist of the following:
maximum speed F, maximum density K, the negative wave speed W- which is equal
to Â/î- - and the flow capacity Q. The flow capacity parameter is used to calculate a
default turning speed for all turnings destined for the associated arc, thus putting a
maximum inflow constraint on the arc. This in turn yields a trapezoidal - rather than
triangular - steady-state relationship between flow and density as shown in Figure 4.2.
An optional input is the definition of turning capacities, i.e., the number of lanes
associated with each turning for each arc pair (upstream arc, downstream arc) at each
node. The default value of turning capacity is the minimum of the number of lanes on
each of these two arcs. The default value was used for all turnings in the network tested
here.

^
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Lane Choice Heuristics

A procedure was developed to determine a set of lanes on each of the two arcs associated
with each turning. The set of lanes on the downstream arc associated with a specific
turning, i.e., with a specific upstream arc, defines the lanes that may be chosen as arrival
lanes by vehicles arriving fi-om this arc. The set of lanes on the upstream arc, sunilarly
associated with a specific downstream arc, define the target departure lanes for this
turning. These are the lanes from which it would be desired that the departure lane be
chosen upon entering the upstream arc. The procedure chooses these two lane sets for
each turning at a given node in such a way as to minimize the conflicts that result from
vehicles wishing to execute these turnings at the same time. The definition of a set of
upstream and downstream lanes associated with each turning is a typical input for micro-
simulation traffic models (Barcelô et al, 1994). The cardinality of each of these sets is
equal to the associated turning capacity, resulting in a one-to-one correspondence
between the upstream and downstream lanes associated with each turning. As a result, a
default choice of downstream lane for each upstream lane, for each turning is defined.

The general mle used for selecting an arrival lane, given this information, is to select the
nearest active lane to the default lane. If the default lane is inactive, the remaining lanes
will first be enumerated to one side of the default lane, and then to the other, until an
active lane is found. The nile for selecting the direction in which to look first for an
active arrival lane then depends on whether the default lane lies to the right, to the left, or
within the target departure lane set for the next turning, i.e., at the exit of the supply arc.
If the default lane lies to the left of this set, the search begins by looking to the right, and
vice-versa. If the default lane lies within the target departure lane set for the next turning,
the search direction chosen to be the opposite of that chosen by the last vehicle to have
confronted this decision on the same arc. In this way, vehicles will generally be spread
out equally to the left and right of a blocked center lane, when both of these lanes provide
access to the vehicles' next arcs.

Two different heuristics were implemented for the choice of departure lane. It should be
noted that if a particular lane is inactive, not only must it not be selected as an arrival lane
or departure lane, but also it must not be a member of the set [arrival lane, ..., departure
lane}. If any member of this set is inactive, the arc model will return an infinite value for
the demand time corresponding to this lane choice (Mahut, 2000b). Thus, given the
choice of arrival lane, the nearest inactive lane to the left and right of this lane define a
"corridor" within which the departure lane must be chosen. Given some lane as a datum,
one lane is said to be nearer than another lane to the given lane, if the number of lanes
that must be traversed in order to reach the former is less than that required to reach the
latter. The possible departure lanes thus defined are referred to as the candidate departure
lane set.

Ct

u

The first rule for choosing a departure lane is as follows:

ÇH1) Choose the target departure lane nearest to the arrival lane, if it is active. If not,
choose the candidate lane nearest to this lane.

<



97

0

0

The second rule for choosing a departure lane is as follows:

(H2) If the nearest active target departure lane is not equal to the arrival lane, choose
the candidate lane that yields the lowest demand time. Otherwise, choose the
arrival lane.

It may be noted that for both of these heuristics, if the arrival lane is a member of the
target departure lane set, this lane will be chosen as the departure lane. As a result, the
amount of lane changing is generally kept to a minimum.

Figure 4.1: Test Network
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Figure 4.2: Three-Segment Flow-Density Relationship
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Discussion of Results

The network depicted in Figure 4.1 represents a section of highway (arcs 1 to 5) with a
one-lane service road (arcs 6 to 8), an on-ramp (arc 10) and an off ramp (arc 11). The
only origin-destination pair with a non-zero demand and more than one path is (2,5),
which was assigned to the service road. For a more in depth analysis of the temporal
traffic conditions that occur in this particular example, the reader is referred to Astarita et
al (2000).

The demand flows result in two bottlenecks occurring in the network. The first bottleneck
forms at the exit of arc 2, because of the reduction in the number of lanes on the highway.
The second bottleneck occurs at the exit of arc 11, due to a traffic signal. During the first
30 minutes of the simulation, arc 11 receives 25% of the green time at this intersection,
and after 30 minutes it receives 67% of the green time. The signal operates on a 120 s
cycle, which coincides with the interval used to measure the average flows and densities
on the arcs. The network was simulated for 100 minutes. The same test was run using the
INTEGRATION micro-simulator (Van Aerde, 1999). Two sets of results are shown for
the STQ-based model, one corresponding to each of the departure lane heuristics
mentioned above, and labeled accordingly. The third set of results, labeled 7, was
obtained using INTEGRATION. The outflows and densities observed for the four
highway arcs upstream of the exit ramp are shown in Figures 4.3 and 4.4, respectively.
The density plots are shown on a scale of zero to 80 vehicles per kilometre per lane,
which is roughly two-thirds of the maximum density for these arcs. The differences
between the STQ-based results and the INTEGRATION output are due mainly to
differences in how the two models handle lane changing. As the most significant lane
changing is observed on arcs 2 and 4, the obser/able dififerences are related directly or
mdirectly to the performance of these two arcs. Using the lane-choice heuristics

L.
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described above, these are the only two arcs on which any lane changing occurs in the
^ STQ-based model.

Considering arc 4, there is a general trend of decreasing inflow (which is equal to the
outflow of arc 3) and outflow due to the combination of arc delays (arc conflicts), and
node delays that are passed upstream from the congested off-ramp (arc 11) before the
change of the traffic signal plan at /= 30. This outflow reduction is somewhat more
pronounced in both sets of STQ-based results than in the INTEGRATION output. The
former also show a certain instability in the observed flows during this period. It was
found that each of the low flow measurements was due to a single vehicle being delayed
for a particularly long time at node 12, due to inactive lanes on arc 4. As the arc conflicts
- and hence the arc counts [cA(n,k)) - upon which the arc model calculates the demand
times are based upon the given arrival and departure lanes, it is possible that more
sophisticated lane-choice heuristics could yield more stable results. The effect of this
reduction in flow is visible in two ways on the upstream arcs (3, 2, and l). A similar
discrepancy in flow, and an associated relative increase in density, is seen on these arcs
as these delays are propagated upstream. This also explains why the increases in density
occur slightly earlier in the STQ-based model than in INTEGRATION.

Another significant difference is observed on the density plots for arc 4. Although the
three curves are qualitatively similar, those from the STQ-based model peak at a
maximum value roughly half of that obtained with INTEGRATION. This discrepancy is
due to the rules by which the location of a lane change is determined in the two models.
INTEGRATION divides the arc into zones demarcated by a "soft wall" and a "hard wall"
(Van Aerde, 1999), much like the zones used in the AIMSUN2 micro-simulator (Barcelo
et al, 1994). In preliminary tests of the STQ-based arc model against AIMSUN2, the
parameters defining these zones were set in a way that would be roughly consistent with
assumptions about lane-changing underlying the STQ-based model, and the resulting
densities in general compared quite well (Mahut, 2000b). The parameters defining these
zones cannot be modified in INTEGRATION, and thus it was not possible to affect this
kind of calibration for the test presented here.

Lower outflows are also observed on arc 1 during the first 20 minutes of the simulation in
the STQ-based results than are observed with INTEGRATION. In this case, the only
factor is the lane-changing behaviour on arc 2, as there are no delays propagating fi'om
downstream of arc 2 at this time. This discrepancy m turn accounts for the higher
densities observed on arc 1 during this period. It may be noted that the discrepancy
between the STQ and INTEGRATION results in inflow to arcs where lane changing
occurs is independent of the discrepancy in density on these arcs. The density on arc 2
obtained using H2 was in fact higher than that obtained using INTEGRATION, although
both HI and H2 had lower inflows as mentioned above.

Another notable difference is the outflow of arc 4 after the signal-timing plan has
changed at / = 30. All three curves arrive at roughly the same value around / = 38, but the
INTEGRATION curve steadily decreases over the next 30 minutes while the STQ-based
data maintain a virtually constant mean over this period. Although the difference is
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Figure 4.3: Outflow vs. Time

4500
4000
35005

-g H^ 3000 / -'.' T"
2500?

0
2000 -j
1500 ^0

1000
a

500 -l
0

0

•H1

-H2|

.1

tB

4500

^. 4000
£ 3500

g 3000 \
S 2500 -l
= 2000 \
g 1500 -j
04 icxx) 4-

500 -l
0

20 40 60
time (min)

80 100

"•••j

-r -H^-L: Th ^1 i ,.-IhDTlt"B,4-"'
.-^j^-^L^

t-L

- u-^p-^

^

•H1

H2|

.1

0 20 40 60
time (min)

80 100

4500
4000 -j

l 3500 -j
§ 3300 -t

2500-j
2000 -l
1500-1
1000 -l

500 -f
0

T
£

!
§
n

y

•t-r~?t ^

-1 U

f—7^^--^<t?T'c:=3

n

:

n
f -13

u

•• -^'?-''1 -l-J

u

H1

H2

0 20 40 60
time (min)

80 100

0

4500

4000 y^a-i.
T -~-.' ---'0••-.'

^w-^.3500£ .^.;i.-l.J

m- H13000Si
J r^-'r-2500 H2-.î L

5 a
2000

s
3 15000
•^ 1000
a

500

0

0 20 40 60
time (min)

80 100



101

n

0

0

Figure 4.4: Density vs. Time
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relatively small, its effect on the upstream arcs (3, 2, and 1) is significant. The high
densities caused by the flow reduction before / = 30 tend to dissipate more quickly in the
STQ-based model than in INTEGRATION, particularly on arcs 2 and 3. This discrepancy
is likely due to the fact that the flow-density relationship associated with the trafBc flow
model of INTEGRATION is curvilinear and bounded above by the linear-segment
relationship of the STQ (Astarita et al, 2000). As a result, the demand flow as a function
of density tends to be slightly lower, particularly in the vicinity of the density values
exhibited by arcs 3, 2, and 1 during this period. Overall, the results obtained with the
STQ-based model compared fairly well with those obtained using INTEGRATION. It
should be noted that the former required 4.2 sec of execution time on a 450 MHz Pentium
II computer, while the latter required 780 sec on the same machine, for the network tested
here.

Although some rather significant differences are observed between the HI and H2
results, these data are generally more similar to each other than to the INTEGRATION
output. Notable exceptions might be the density plots for arcs 2 and 3. It can be seen that
the peak in density occurring in the INTEGRATION data on arcs 3, 2, and 1 at^= 32, 38,
and 40, respectively, is quite closely matched by the HI output. The H2 results
consistently predict this peak several minutes earlier on each of these arcs. In general, the
H2 results are somewhat less "well behaved" than those of HI, as they exhibit more
instability in general, and tend to oscillate between more extreme values.

l

5 Conclusions

u

A discrete-event discrete-flow node problem was defined, and a solution algorithm was
proposed. The algorithm chooses the next vehicle to enter a node given the necessary
information concerning the first vehicle on each of its upstream lanes, and the pair-wise
precedence relationships that are obtained using a gap-acceptance model. The algorithm
combines the pair-wise precedence relationships in such a way that unnecessary delays
are avoided. A discrete-event network-loading procedure was presented, which ensures
that the process of choosing the next vehicle to enter a node is executed any time there is
a change in the infomiation relevant to this decision. The algorithm was implemented in
C++, using the discrete-flow arc model proposed by Mahut (2000b), which is based on a
simplified model of traffic dynamics proposed by the same author, referred to as the
space-time queue (STQ) (Mahut, 2000a).

Heuristics for choosing arrival and departure lanes in conjunction with the arc model
were proposed, and two different departure lane-choice rules were implemented. The
model was then tested on a small network, under time-varying demand and supply
conditions. The results were compared with those obtained using the INTEGRATION
traffic simulator. Some significant discrepancies in the output were observed for arcs on
which a high degree of lane changing occurred. In general, the INTEGRATION model
was able to produce higher flows on these arcs. This was particularly evident on a
highway arc just upstream of an off-ramp, where congestion at the exit of this ramp was
spilling back onto the highway. It might be said that the vehicles in the micro-simulator
were able to react to this situation in a more efficient way than those of the STQ-based

\
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model. The latter model also produced significantly lower densities on this arc than were
predicted by INTEGRATION. Overall, the results were found to compare quite well. The
execution time of INTEGRATION for the network tested here was almost two hundred
times that required by the STQ-based model. Clearly, the proposed model may have
significant potential for real-time applications for which modem micro-simulators are
currently too slow.

The results obtained with the first lane-choice heuristic were generally preferable to those
obtained using the second rule. The first mle obliged vehicles to choose the closest lane
to the permitted lanes for the turning at the exit of the arc, which was not currently
blocked due to congestion. This rule thus minimized the number of lanes that a vehicle
might have to cross at the downstream node in order to execute this turning. The second
rule was based on minimizing the time at which the vehicle could enter the upstream
node, as a function of the departure (and arrival) lane choice for the downstream arc. This
rule resulted in more lanes being crossed at the nodes, which in turn meant more node
conflicts. In general, the second rule produced lower flows on average on those arcs
where a high degree of lane changing occurred. In general, then, it appears that the model
is more efficient (produces higher flows) when conflicts between vehicle trajectories are
resolved within the arcs rather than at the nodes.

The rather severe congestion simulated in this network presented a particularly difficult
test for the model. Nevertheless, it was possible to reduce the cause of the discrepancies
to a fairly specific situation for which the models were producing different results, for
both density and flow. With respect to flow, it is not clear whether the cause of the
discrepancy is related more to the lane-choice heuristics, or to the mathematical
constraints underlying the arc model. Further work is required to investigate both of these
possibilities. In general, lane-choice heuristics in micro-simulation models are extremely
complex, and take into account very detailed information on a second-by-second basis
(Rickert et ai, 1997; Gipps 1986). The heuristics implemented here were quite primitive
by comparison, and although the stmcture of the model does not pennit the re-
consideration of these decisions every second, it is quite likely that more sophisticated
heuristics can be developed that will improve the model performance. It is also quite
possible that the arc constraints are more conservative than those imposed by the
INTEGRATION model. Slightly relaxing these constraints should produce higher flows
and higher densities, which would reduce the discrepancies for both of these variables.

.'
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Conclusions and Recommendations

A re-formulation of the well-known car-following paradigm based on safe stopping
distances was proposed in which each vehicle is referenced to a different moment in time,

and an alternative functional form was proposed for describing the deceleration trajectory
of vehicles in such a model. The equilibrium relationship implied by the proposed
deceleration function appears to have more desirable properties than the one derived from
the well-known quadratic relationship. The functional form of the equilibrium
relationship may thus prove to be very usefiil for curve fitting exercises aimed at
characterising the flow-density relationship for different types of road facilities.

Moreover, it may be conjectured that the proposed function generally produces more
realistic results than the commonly used quadratic relationship. One avenue of fiirther
research in this area would be to implement a discrete-time solution procedure for the
proposed car-following model, and to compare it with other well-known models on some
numerical examples. In particular, it may be of interest to compare the proposed model
with other models in the literature that are known to produce similar equilibrium

relationships.

Building upon the analysis of the proposed car-following model, a simplified car-
following relationship was further proposed. The simplified relationship possesses the
particular property that for a continuous sequence of constrained trajectories, the last
trajectory can be written strictly as a function of the first, with the proper temporal and
spatial offsets. When the physical location of delays is fixed in space, the inverse of the
vehicles' trajectories - t{n,x), rather than x{t,n) - can be solved for directly at these
positions, as a function of t{n,x) at the two neighbouring (upstream and downstream)
positions. Traffic networks satisfy this property since delays occur at signalised
intersections and highway merges, both of which are fixed in space.

This general property - of being able to solve the trafSc flow model over arbitrarily long
distances - is characteristic of only one other traffic model in the literature (Newell,
1993), although only a graphical technique is shown to have this property in the original
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paper. This technique is not easily adapted to an automated algorithmic solution. The
practical applications ofNewell's model are further limited by the fact that it is based on
a continuous notion of flow. Success at extending continuous flow models to capture the
effects of interactions between parallel lanes has been rather limited (Velan, 2000).

0

It is evident that the constraints defining the proposed discrete-flow model are equivalent
to the cellular automata (CA) model known as CA-184 ÇNagel, 1996A), when the
reaction time is taken to be equal to the discrete time step. The fact that CA models are
based on discretised space, time, and flow limits the definition of speed to discrete values
as well. A well known stochastic extension of this model intended for traffic simulation

defines five possible values of speed; the maximum value being equal to 135 km/h
(ibid.). This in turn implies five discrete values for the maximum flow that can be defined
for an arc, which may not provide sufificient flexibility of calibration for practical
applications (Rillett, 2000). Because time is continuous in the proposed discrete-flow
model, maximum speed and maximum flow are real-valued, and hence can be calibrated
to any desired accuracy. The steady-state relationship between flow and density was
derived for the model, and was found to be the well known two-linear-segment
relationship characteristic of both Newell's simplified kinematic wave model (Newell,
1993) and ÇA-184 (Nagel 1996A).

This model was extended to the multi-lane case, where the effects of vehicle trajectories

in conflict due to lane changing were addressed. By using a first-in-first-out (FIFO) rule

to resolve all lane-changing conflicts, it was found that delays due directly to such
conflicts could be calculated at the moment that a vehicle enters an arc. The FIFO

assumption was used in lieu of a gap acceptance model, in constrast to multi-lane car-
following and cellular automata models (Gipps, 1986; Rickert, 1997; Van Aerde, 1999;
Barcelô et al, 1994). The multi-lane arc model defines a mapping from the time-
dependent lane-based demand flows, i.e., the partial demands by arrival lane and
departure lane, to the arc variables of flow, density, and speed. The model is consistent
with a "microscopic" description of each vehicle's trajectory. This provides a means of



0

107

validating the assumptions by constructing examples and observing the movement of
individual vehicles.

0

Two series of tests were executed on a simple network and the results were compared to
those obtained with the AIMSUN2 traffic simulation package. The tests were to evaluate
the effect of traffic weaving on a two-lane arc, with and without a traffic signal at the
downstream end. Each case was executed for three different maximum speeds. Because
the demand and supply were invariant in time (the signal produced a constant mean
supply over the duration of each cycle), the arc variables stabilised to an apparently
stationary condition after a short time. The models were thus compared on the basis of
the average values of flow and density for the different scenarios. The majority of the test
results compared very well between the proposed arc model and AIMSUN2. The
execution time of the proposed model was no more than one-tenth the execution time of
AIMSUN2. This ratio was found to decrease with increasing congestion in the network,
as would be expected by the "arc-based" nature of the algorithm. For the same reason,

this ratio would also be expected to increase with average arc length.

The question of how to appropriately resolve the conflicts between vehicle trajectories at
nodes was addressed. Conflict "resolution" refers to the decision of which vehicle will be

the next to proceed into the intersection. It was found that the application of the well-
known concept of gap acceptance - which only applies to two vehicles at a time - might
not always imply in a direct way a reasonable resolution to the general case of multiple
simultaneous conflicts at a node. A solution method was proposed, which resolves the
conflicts in such a way that unnecessary delays are avoided. Some realistic examples
were presented to demonstrate the rationale. Simulation tests of the node model used a
heuristic rule for determining the arrival and departure lanes for each vehicle for each arc.
Although the departure lane from the upstream arc essentially predetermines the choice
of arrival lane on an arc, the choice of departure lane can be quite critical in determining
a realistic prediction of the resulting trafFic conditions.
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Two different heuristics for departure lane choice were tested on a small network and the
results were compared with those obtained with the INTEGRATION traffic simulation

package. The test results in general compared quite well. Although some noticeable
differences were observed on arcs where a high degree of lane changing occurred, these
differences did not have a major impact on the overall path travel times, which are the
critical measure for dynamic traffic assignment algorithms. The execution time of the
INTEGRATION model on the test network was almost 200 times that required by the

proposed model.

It may be concluded that the simplifications made in designing the arc model did not
have a major impact on the quality of the results obtained. At the same time, the
reduction in computational efifort relative to micro-simulation approaches was quite
remarkable. Important avenues of farther research involve the application of the model
within a dynamic traffic assignment (DTA) algorithm, and exploring the possibility of
using the model for real-time Intelligent Transportation Systems (ITS) applications, such

as en-route guidance information and adaptive traflTic signal control.

Clearly, the proposed model can only be used in conjunction with DTA algorithms for
which the inputs are compatible with the available model outputs. In particular, DTA
approaches that require the derivative of travel time with respect to demand flow - such
as those inspired by static equilibrium models (Wu et al, 1998) - cannot be used since
such derivatives cannot be obtained analytically for this model. One avenue of research is
to explore the possibility of estimating such derivatives for path travel times from the
observed flow rates in the simulation model. Other possible DTA approaches that do not
require derivatives are the well-known Method of Successive Averages (MSA) - which
has been used successfully in the DYNAMIT project (Ben Akiva et al, 1999) - and a
technique used in conjunction with CA models in which a certain percentage of vehicles

with the longest travel times are re-routed after each iteration (Gawron, 1998).
Ultimately, the various potential DTA methods should be evaluated on the basis of how
quickly they converge for medium and large-scale networks.

0
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Adapting the proposed model for use in real-time ITS applications may involve more
fundamental issues related to the model itself. This is because models to be used for real-

time applications must have a mechanism by which the definition of the network state
can be periodically updated in real-time using traffic detector data. This type of update is
necessary to ensure that errors in the underlying model assumptions - in particular those
concerning route choice - are not allowed to propagate within the model, leading to a
divergence between the simulated and real network states. The ability of a model to
accept this kind of update is the fundamental difference between off-line and on-line
traffic modelling, and is currently a very active area of research in traffic simulation
(Kaumann et al, 2000). Exactly how real-time detector data can be used as an input to the
model is the cmx of the problem. Relatively naive approaches simply use off-line models
that can only accept inputs in the form of time-dependent path flows at the origins. OfF-
line models that use turning proportions at each node instead of assigning vehicles to
paths are in fact more amenable to real-time updating, but these models have less
predictive ability than path-based models. How to best ensure that the simulated network
state within the proposed model does not deviate from the actual evolution of a real
network using real-time detector data is an important and challenging direction for future
research.

u



110

0

0

u

Bibliography

Astarita V., Er-Rafia, Florian, Mahut, Velan (2000). A Comparison of Three Methods for
Dynamic Network Loading. Submitted to the Annual Meeting of the Transportation
Research Board, to be held in Washington, D.C., January 7-11, 2001.
Adamo, V., V. Astarita, M. Florian, M. Mahut and J.H. Wu (1999). Modeling of
spillback of congestion in link based dynamic network loading models: A simulation
model with applications. Transportation and Traffic Theory: Proceedings of the 14th
International Symposium. A. Céder, (éd.) Pergamon, pp. 555-574.
Adamo V., V. Astarita, M. Florian, M, Mahut and J.H. Wu (1999). Analytical Modelling
of Intersections in Traffic Flow Models with Queue Spill-back. Report 99-52. Centre for
Research on Transportation, University of Montreal. Montreal, Canada.
Ben-Akiva, M., and M. Bierlaire (1999). DYNAMIT: A network-wide traffic prediction
system. Transportation Research Board, 78th Annual Meeting, Washington , D.C. See
also http://www.its.mit.edu.

Ben Akiva, M., H. Koutsopoulis, and T. Toledo (2000). MITSIMLab: Recent
Developments & Applications. Presented at the INFORMS Spring 2000 Conference, Salt
Lake City, May 7-10, 2000. See also http://www.its.mit.edu

Barcelô, J., J. L. Ferrer and R. Grau (1994). ADV[SUN2 and the GETRAM Simulation
Environment. Internal Report, Departamento de Estadistica e Investigaciôn Operativa.
Universitat Politécnica de Catalunya. See also http ://www.tss-bcn. com.
Cassidy (1998) Bivariate relations in nearly stationary highway trafiFic. Transportation
Research B 32B (l), pp. 49-59.

Cayford, R., W. Lin and C.F. Daganzo (1997). The NETCELL simulation package:
Technical description. California PATH Research Report UCB-ITS-PRR-97-23.
Chang, G.L., H.S. Mahmassani, and R. Herman (1985) A macroparticle trafiTic simulation
model to investigate peak-period commuter decision dynamics. Transportation Research
Record \005-.107-Ï20.

Cremer, M., and J. Ludwig (1986). A fast simulation model for traffic flow on the basis
of boolean operations. Mathematics and Computers in Simulation 28:297-303.
Daganzo, C. F. (1994) The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory. Transportation Research B,
28B(4):269-287.

Daganzo, C.F. (1995A). Properties of link travel time functions under dynamic loads.
Transportation Research B, vol. 29B, No. 2, pp. 95-98.

Daganzo, C. F. (1995B). Requiem for second-order fluid approximations oftrafFic flow.
Transportation Research B, 29B (4):277.

Edie, L. C. (1974). Flow Theories, in Traffic Science (D. C. Gazis, éd.). John Wiley &
Sons, New York. pp. 7-11.



Ill

0

0

Er-Rafia, K. (2000). Un algorithme de chargement dynamique des réseaux:
méso simulation du flot dynamique avec capacités explicites. Masters thesis. Département
d'informatique et de recherche opérationnelle, Université de Montréal, 133 pp.
Friesz, T.L., D. Bernstein, T.E. Smith, D.L. Tobin and B.W. Wie. A variational
inequality formulation of the dynamic user equilibrium problem. Operations Research,
Vol. 4l, pp. 179-91, 1993.

Gabard, J. F., (1991). Car-Following Models, in Concise Encyclopedia of Traffic and
Transportation Systems (M. Papageorgiou, éd.). Pergamon. pp. 337-341.

Gawron. C. (1998). Simulation-Based TraflTic Assignment. Ph.D. Thesis, Univesity of
Kôln. Kôln, Germany.

Gazis, D.C, Herman R, and R.B. Potts (1959) Car following theory of steady state flow.
Operations Research 7 (4), pp 499-505.

Gazis, D. C, Herman, R, and R.B. Potts (1961) Nonlinear follow-the-leader models of
traffic flow. Operations Research 9 (4), pp 545-567.

Gerlough, D. L., and M.J. Huber (1975) Traffic Flow Theory, Special Report No. 165.
Transportation Research Board, National Research Council, Washington, DC, 1975.
Gerlough, D. L., in Proceedings of the 35 Annual Meeting edited by F. Burggrat and
E.M. Ward. Highway Research Board, Washington, DC, 1956, p.543. See also J. H.
Mathewson, D.L. Trautman, and D.L. Gerlough (1955). Study of Traffic flow by
Simulation. Highway Research Board Proceedings.

Gerlough D. L, and Huber, M. J. (1975) Traffic Flow Theory, Transportation Research
Board Special Report 165, Washington D.C.

Gipps, P.G. (1981) A behavioural car following model for computer simulation.
Transportation Research 15B, pp 105-111.

Gipps, P.G. (1986). MULTSIM: A Model for Simulating Vehicular Traffic on Multi-lane
Arterial Roads. Mathematics and Computers in Simulation 28, pp. 291-295.

Greenshields, B. D. (1955). A study of traffic capacity. Proc. Highw. Res. Bd.,
Washington, D.0.23:57.

Jayakrishnan, R., H.S. Mahmassani, and Ta-Yin Hu. An evaluation tool for advanced
traffic information and management systems in urban networks. Transportation
Research, Vol. 2C, pp. 129-47, 1994,
Herman, R, Montroll, E. W, Potts, R.B, and Rothery, R.W. (1959) Traffic dynamics:
analysis of stability in car-following. Operations Research 7 (l), pp 86-106.
Herman (1991) Traffic dynamics through human interaction. Journal of Economic
Behaviour and Organization 15 (2), pp. 303-311.
Heydecker, E.G., and J. D. Addison (1996). Analysis of Traffic Models for Dynamic
Equilibrium Traffic Assignment. Presented at the 4 Meeting of the EURO Working
Group on Transportation. Newcastle upon Tyne, September 9-11.

0



112

0

0

Heydecker, B.G., and J. D. Addison (1996). An Exact Expression of Dynamic TrafiTic
Equilibrium. Transportation and Traffic Flow Theory. J. P. Lesort (éd.). Proceedings of
the 13 International Symposium on Transportation and Traffic Theory (ISTTT), pp.
359-383.

Hugosson, B., and H. Andersson (1999). Evaluation of AIMSUN2 in Stockholm. The
"SMARTEST" Project. http://www.its.leeds.ac.uk/smartest.
Hurdle, V. F. (1991). Queueing Theory Applications, in Concise Encyclopedia of Traffic
and Transportation Systems (M. Papageorgiou, éd.). Pergamon. pp. 337-341.
Hurdle, V. F. (1986) Technical note on a paper by André de palma, Moshe Ben-Akiva,
Claude Lefevre, and Nicolaos Litinas entitled "stochastic equilibrium model of peak
period traffic congestion." Transportation Science, 12(3):287-289.
Kerner, B. S., and P. Konhauser (1993) Cluster effect in initially homogenous traffic
flow. Physical Review E, 48(4):R2335-2338.
Kaumann, 0.,Chrobok, R., Wahle, J., and M. Shcreckenberg (2000). TrafFic Forecast
Using On-line Simulations. Presented at the 8 Meeting of the EURO Working Group on
Transportation. Rome, Italy, September 11-14, 2000.
Krauss, S. (1998) The role of acceleration and deceleration in microscopic traffic flow
models. Preprint No. 980478, Transportation Research Board, 77 Annual Meeting,
January 11-15, 1998, Washington D. C.

Krauss, S., P. Wagner and C. Gawron (1997) Metastable states in a microscopic model of
traffic. Physical Review E, 55(5):5597-5602.
Kuhne, R. D. (1984). Macroscopic freeway model for dense traffic stop-start waves and
incident detection. Proceedings of the 9 International Symposium on Transportation and
Traffic Theory, J. Volmuller and R. Hamerslag (eds.) p. 21. VNU Science Press, Utrecht,
The Netherlands.

Kuhne R. D. (1993). Non-linearity stochastics of unstable trafFic flow. Proceedings of
the 12 International Symposium on Transportation and Traffic Theory. C.F. Daganzo
(éd.), pp 367. Elsevier, Amsterdam, The Netherlands.
Law, and Kelton (1991). Simulation Modeling and Analysis, 2 Ed. McGraw-Hill, Inc.
759 pp.

Lebacque (1996). The Godunov scheme and what it means for first order traffic flow
models. Transportation and Traffic Flow Theory. J. P. Lesort (éd.). Proceedings of the
13th International Symposium on Transportation and Traffic Theory (ISTTT), pp. 647-
677.

Leutzbach, W. (1988) Introduction to the Theory of Traffic Flow, Springer-Verlag Berlin,
Heidelberg.

Lighthill, M. J. and G.B. Whitham (1955) On kinematic waves I: Flood movement in
long rivers. II: A theory of traffic flow on long crowded roads. Proceedings of the Royal
Society of London, A229:281-345.



113

n

0

0

Lindley, D. V. (1952). The Theory of Queues with a Single Server. Proceedings of the
Cambridge Philosophical Society, 48:277-89.

Little, J. D. C. (1961). A proof for the queueing formula L = ÀW. Operations Research,
9:383-7.

Mahmassani, H. S., T. Hu and R. Jayakrishnan. (1995) Dynamic traffic assignment and
simulation for advanced network informatics (DYNAMSMART). In Urban traffic
networks: Dynamic flow modeling and control, N.H. Gartner and G. Improta (eds.).
Springer, Berlin/New York.

Mahut, M. (1999a). Speed-maximizing car-following models based on safe stopping
rules. Preprint 990351, Transportation Research Board, 78 Annual Meeting, January 10-
14,1999.

Mahut, M. (1999b). Behavioural Car Following Models. Report CRT-99-31. Centre for
Research on Transportation. University of Montreal. Montreal, Canada.
Mahut, M. (2000). From Traffic Flow to Queueing Theory. Presented at the 8th Meeting
of the EURO Working Group on Transportation (EWGT). Rome, Italy, September 11-14,
2000.

Makigami, Y., G.F. Newell and R. Rothery (1955). Three-dimensional representations of
traffic flow. Transportation Science, 5:302-13.

May, A. D. (1990) Traffic Flow Fundamentals. Prentice-Hall, Englewood Cliffs, NJ.
Nagel, K. (1996A) Particle hopping models and traffic flow theory. Physical Review E,
53(5):4655-4672.

Nagel, K. (1996B) From particle hopping models to traffic flow theory. Preprint No.
981331, Transportation Research Board, 77th Annual Meeting, January 11-15, 1998,
Washington D. C.

Nagel, K. and H. J. Herrmann. (1993) Deterministic models for traffic jams. Physica A,
199:254-269.

Nagel, K. and M. Paczuski. (1994) Emergent trafBc jams. Physical Review E, 51:2909-
2918.

Nagel, K. and M. Schreckenberg. (1992) A cellular automaton model for freeway traffic.
Journal de Physique l France, 2:2221 -2229.

Newell, G. F. (1993) A simplified theory of kinematic waves in highway trafFic. Part I:
General Theory. Part II: Queueing at freeway bottlenecks. Part III: Multi-destination
flows. Transportation Research B, 27B(4):281-313.
Payne, H. J. (1971). Models of freeway traffic and control. In Mathematical Models of
public systems, 1:51. LaJolla, CA, Simulation Council.
Papageorgiou, M. (1990). Dynamic Modelling, Assignment, and Route Guidance in
Traffic Networks. Transportation Research, 24B(6), 471-95.
Pipes, L. A. (1953). An Operational Analysis of Traffic Dynamics. Journal of Applied
Physics 24, pp. 271-2SI.



114

n

0

Prigogine, I. and R. Herman. (1971) Kinetic theory of vehicular traffic. Elsevier, New
York.

Richards, P. I. (1956) Shock waves on the highway. Operations Research, 4:42-51.
Rickert, M., K. Nagel, M. Schreckenberg and A. Latour (1997). Two lane traffic
simulations using cellular automata. PhysicaA, 234:687.

Rillet, L. R., and B. Raney (2000). Transportation Planning Implications of the Highway
Supply Relationship in TRANSIMS. Preprint 00-0762, Transportation Research Board,
79UI Annual Meeting, January 9-13, 2000.

Rillet, L. R., K. Kim, B. Raney (2000). A Comparison of the Low Fidelity TRANSIMS
and High Fidelity CORSEVt Highway Simulation Models using ITS Data. Preprint 00-
0678, Transportation Research Board, 79th Annual Meeting, January 9-13, 2000.
Ross, P. (1988). Traffic Dynamics. Transportation Research B, vol. 22B, No. 6, pp.421-
435.

Rothery, R. W. (1999). Car Following Models. Revised Monograph on Traffic Flow
Theory. N. H. Gartner, C. J. Messer and A. K. Rathi (eds.). http://www.tfhrc.gov.
Schreckenberg, M., A. Schadschneider, K. Nagel, and N. Ito. (1995). Discrete stochastic
models for traffic flow. Physical Review E, 51:2939-2949.
Simon, P. M., J. Esser and K. Nagel (1999). Simple Queueing Model Applied to the City
of Portland. International Journal of Modern Physics C, vol. 10, No. 5, 941-960.
Smith. M. J. and J. B. Wisten (1996). A Distributed Algorithm for the Dynamic Traffic
Equilibrium Assignment Problem. Transportation and Traffic Flow Theory. J. P. Lesort
(éd.). Proceedings of the 13 International Symposium on Transportation and Traffic
Theory (ISTTT). Lyon, July 1996. pp.385-408.
Transportation Research Board (1998). Special Report 209: Highway Capacity Manual,
3 éd. National Research Council

Treiterer, J. and J. A. Myers (1974). The hysteresis phenomenon in trafFic flow. 6
International Symposium on Transportation and Traffic Theory. D.J. Buckley (éd.), A.H.
& A.W. Reed Pty Ltd., Artarmon, New South Wales.

Van Aerde, M.(1999) INTEGRATION® Release 2.20 for Windows: User's Guide.
Velan, S. M. (1997). Gap Acceptance of Permissive Movements at Signalised and
Unsignalised Intersections. Master's Thesis. Queen's University. Kingston, Canada.
Velan, S., and M. Van Aerde (1998). The impact of driver and flow variability on
capacity estimates of permissive movements. Transportation Research, Vol. 32A.
Velan, S. (2000). The cell-transmission model: A new look. Ph.D. thesis. Département
d'informatique et de recherche opérationnelle, Université de Montréal, 300 p., 2000.
Whitham, G. B. (1990). Exact solutions for a discrete system arising in trafBc flow. Proc.
Royal Society London, A428:49-69.

0



115

n Wu, J. H., Y. Chen, and M. Florian (1998). The continuous dynamic network loading
problem: A mathematical formulation and solution method. Transportation Research,
Vol. 32B, p. 173-87.

Ziliaskopoulos, A. and S. Lee (1997). A cell transmission based assignment-simulation
model for integrated freeway/surface street systems. Transportation Research Record,
1997.

0

0
l



n CURICULUM VITAE

EDUCATION

09/96-12/00 University of Montreal
Ph.D in Computer Science and Operations Research
• Operations Research Option

05/94 - 08/96 University of Toronto
M.aster of Applied Science (M..A.SC.) in Civil'Engineering
• Transportation Option

09/91 - 04/93 University of Toronto
09/88-04/90
09/86-04/87
Bachelor of Applied Science (B.A.Sc.) in Civil'Engineering

Montreal, Canada

Toronto, Canada

Toronto, Canada

AWARDS RECEIVED

0
09/98-08/00 University of Montreal Montreal, Canada
Post-Graduate Scholarship (PGS-B), 'Natural Sciences and Engineering
Research Council of Canada (NSERQ

04/98 University of Montreal Montreal, Canada

Bursary , Centre for Research on Transportation (CRT)

09/96-08/98 University of Montreal Montreal, Canada
Research Assistantship under 'Professor M-. Florian, CRT

04/95-08/96 University of Toronto Toronto, Canada
Research Assistantship under Professor G. Steuart, Joint Program in
Transportation

04/93 University of Toronto Toronto, Canada
Bursary, Canadian Society for Civil 'Engineering (CSCE), Toronto Section

MEMBERSHIPS

0

01/96-present
Student member. Institute of Transportation Engineers (ITE)

01/9 8-present
Student member, Institute for Operations Research and the M.anagement
Sciences (INFORMS)

5280 BEACONSPIELD AVE. • MONTREAL QC • H3X 3R8
PHONE (514) 343-6111 X 8706 • FAX (514) 369-7121 • E-MAIL

MICHAELM@CRT.UMONTREAL.CA



r') 04/9 8-present
Friend, Commitee on Traffic 'Flow Theory and Characteristics (A3A 1 1), and
Committee on Tranportation Network Modelling (A 1 CO 5), Tranportation
Research 'Board (TRB) (United States).

TEACHING ASSISTANTSHIPS

University of Montreal
Introduction to C LMnguage Programming

University of Toronto
Transport 1 - Design
Traffic Engineering
Geomechanics

Montreal, Canada

Toronto, Canada

LANGUAGES

0

0

• Fluent in English, French, and Polish
• Rudimentary Spanish

ARTICLES ACCEPTED FOR PUBLICATION IN REFEREED JOURNALS

Comparison of Three Methods for Dynamic Network Loading
V. Astarita, M. Florian, K. Er-Rafia, M. M.ahut, S. Velan
• To be published in Transportation Research Record
• To be presented by M. Mahut at the 80th Annual Meeting of the

Transportation Research Board. Washington, D.C., January 7-11,2001.

ARTICLES SUBMITTED TO REPEREED JOURNALS

From Traffic Flow to Queueing Theory
M. M.ahut

• Presented at the 8tfa Meeting of the Euro Working Group on
Transportation (EWGT). Rome, Italy, September 11-14, 2000. Currendy
under consideration for a special issue of the European Journal of
Operations Research (EJOR)

Behavioural Car Following Models
M. M.ahut

• Submitted to Transportadon Science. Published as report CRT-99-31,
Centre for Research on Transportation, University of Montreal, 1999.

Analytical Modelling of Network Nodes in Traffic Models with Queue
Spill-back
V. Adamo, V. Astarita, M. Florian, M. M.ahut, S. Velan
• Submitted to Transportation Research Part C: Emerging Technologies



n OTHER REFERRED CONTRIBUTIONS

The Development of a Mesoscopic Traffic Simulation Model
M. M.ahut, M.. Florian, N. Tremblay
• Presented at the 7th World Congress on Intelligent Transportation

Systems, and published in the proceedings thereof (on compact disc).
Turin, Italy, November 6-9, 2000.

Modeling the Spill-back of Congestion in Link-based Dynamic Network
Loading Models: A Simulation Model with Applications
V. Adamo, V. Astarita, M. 'Florian, M. Mahut, J.H. ÏFu
• Presented at the 14dl International Symposium on Transportation and

Traffic Theory (ISTTT), and published in the proceedings thereof.
Jemsalem, Israel, July 19-23,1999. Elsevier, pp. 555-573.

Speed Maximizing Car Following Models based on Safe Stopping Rules
M. M.ahut

• Presented at the 78th Annual Meeting of the Transportation Research
Board. Washington, B.C., January 10-14, 1999. (paper #99-0351)

NON-REFEREED CONTRIBUTIONS

0
A Mesoscopic Approach to the Dynamic Network Loading Problem
M. ïilorian, M. Mahut, N. Tremblay
• Presented by M. Mahut at the spring meeting of the Institute for

Operations Research and the Management Sciences (INFORMS). Salt
Lake City, Utah, May 6-10, 2000.

Quelques observations sur la microsimulation du trafic avec Aimsun/2
M. Florian, M. M.ahut

• Submitted to the Ministry of Transportadon of Quebec in compliance
with contract #1220-97-RC01. November, 1999.

Applications of the Aimsun/2 Micro-simulator in Montreal
M. Florian, M.. M.ahut, N. Trembla^
• Presented by M. Mahut at Ae spring INFORMS meeting. Montreal,

Quebec, April 26-29, 1998.

A Parametric Analysis of Arterial Travel Time
M. M.ahut

• Report #58, Joint Program in Transportation, University of Toronto,
1996. (Master's Thesis)


