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Résumé

Verification des spécifications tempi
des interfaces et des contrôleurs

0^
^

De nos jours, les systèmes micro-électroniques se composent généralement de com-
posants tels des (ASICS), de circuits intégrés dédiés et d'autres IPs (Intellectual pro-
perties). Ces composants sont la plupart du temps conçus par différentes équipes
travaillant dans différentes organisations. Dans ces systèmes, les composants com-
muniquent entre eux via des interfaces. Il est donc très important de s'assurer de la
compatibilité de ces interfaces, et aussi de s'assurer que les implementations de ces
interfaces respectent les spécifications de ces dernières.

Ce présent travail traite de la vérification des spécifications temporelles des interfa-
ce et de la vérification de implementations.

La vérification des spécifications temporelles des interface inclut la notion de com-
patibilité et aussi d'autres propriétés temporelles qu'il faut garantir. Dans ce travail,
nous résolvons les problèmes de vérification des spécifications temporelles en uti-
lisant le temps maximum de séparation entres les événements dans un graphe de
contraintes tire des spécifications. Les interfaces en question sont spécifiées comme
des boucles exprimées avec le langage HAAD (Loop over a leaf Hierarchical An-
notated Action Diagram). Nous appliquons notre solution pour la vérification de
certaines propriété temporelle qu il faut garantir dans la modélisation de la modéli-
sation de la spécification d'une opération de lecture répétée d'un microprocesseur
d'une mémoire.

J

La vérification des contrôleurs d'interfaces, avec leur spécification consiste a que
1'implementation produira les bons événements aux bons moments, comme décrits
dans la spécification, en supposant que les événements aux entrées du contrôleur
sont émis temps ainsi spécifiés dans la spécification. Dans ce travail, nous présen-
tons une méthode pour vérifier si l'implementation d'une machine à états pseudo-
synchrone (entrée échantillonnée) d'un contrôleur en temps réel satisfait les spéci-
fications de son diagramme temporel.

On applique notre méthode a un contrôleur de bus qui provient d'un design indus-
triel et nous vérifions deux cycles d'ECRITURE avec la modélisation de la spécifi-



^ Abstract

D

Timing Verification of Interface Specifications and Controllers

Microelectronic systems are normally composed of components such as Applica-

tion Specific Integrated Circuits (ASICs), custom integrated circuits and other in-

tellectual properties. These components are generally designed by different teams

from different organizations. In the systems, components are connected and com-

municated with each other through interfaces. To make the systems work, it is very

important to verify that the interface specifications of components are compatible

with each other and the implementations of interfaces are correct with respect to

their specifications.

This work deals with timing verification of interface specifications and the verifi-

cation of the interface controller implementations against their specifications.

The timing verification of interface specifications includes compatibility and the

verification of the safety timing property. In this work, we solve the timing verifi-

cation problems using maximum time separation between events in constraint

graphs transformed from the specifications. The interested interfaces are specified

as loops over a leaf Hierarchical Annotated Action Diagram (HAAD) language. We

apply our solution technique in verifying several safety timing properties of a spec -

ification modeling a repeated READ operation of a microprocessor from a memory.

J

The verification of interface controllers against their specification consists in mak-

ing sure that the implementation will produce correct events on time as given in the

specification, under the assumption that the inputs events fed to the controller are

on time as also stated in the specification. In this work, we present a method for ver-

ifying whether a pseudo-synchronous (sampled input) finite-state machine imple-

mentation of a real-time controller satisfies its timing diagram specification.



0
We apply our method to a bus controller from an industrial design and check against

its timing diagram specification modeling two consecutive asynchronous WRITE

cycles.

All the algorithms and verification methods in this work are implemented in a Con-

straint Logic Progranmiing environment based on Relational Interval Arithmetic.

0

0
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Chapter 1

Introduction

0

0

This work deals with interface timing verification problems in microelectronic sys-

terns. Microelectronic systems are normally implemented as a hierarchy of func-

tional blocks. The blocks communicate with each other through interfaces. The

functional blocks can be Application Specific Integrated Circuits (ASICs) or cus-

torn Integrated Circuits (ICs). With design reuse methodology, the ASICs and cus-

torn ICs can be intellectual properties (IPs). As a result, the systems are composed

of blocks which are possibly designed and verified by different design teams from

different organizations. This makes the system-level verification task to assure cor-

rectness of interfaces between blocks one of the most challenging problems in mi-

croelectronic system design.

Interfaces in a microelectronic system are places where different blocks meet and

communicate with each other. An example of interfaces is the place where a micro-

processor interacts with a memory. When blocks are connected to form a system,

each block is connected through interfaces to the environment composed of the oth-

er blocks in the system. For a block to work properly in a system, the environment

must respect assumptions made on the interface of the block. This verification can

be achieved by a compatibility checking of the environment specification with re-

spect to the specification of the block. If the environment is verified as incompatible

with the interface specification of that block, then an interface transducer has to be

designed to bridge the differences between the block and its environment. In this

work, we are concerned with timing property (compatibility and other safety timing

property) verification of interface specifications and the verification of implemen-

tations of interface controllers against their specifications.

We use mathematical methods to check the complete behaviour of interface speci-

l
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fications and controller implementations. The work is thus in the domain of formal
verification. We use a subset of Hierachical Annotated Action Diagrams (HAAD)

[17] language, which was developed specifically for interface specification and ver-

ification in the laboratoire LASSO, University of Montreal, as the specification lan-

guage of interfaces. We use finite state machine (FSM) derived from models in

hardware description languages such as Verilog [68] or VHDL [75] as the imple-

mentation of the interface controllers.

0

In the first part of the work, we concentrate on algorithms for computing the maxi-

mum time separations between events in constraint graphs describing timing rela-

tionship between events in interface specifications. The algorithms are directly

applicable for compatibility verification of interface specifications. They can also

be applied to check other safety timing properties of interface specifications. In the

second part of the work, we propose a methodology to verify the correctness of an

interface controller implementation with respect to its specification. In both cases,

we implemented the solution techniques in a constraint logic programming (CLP)

environment based on Relational Interval Arithmetic (RIA) and domain narrowing

[66].

In this introduction, we first describe in more detail the two problems of interest to

us, namely timing verification of interface specifications and verification of real-

time controllers against their specifications, in Sections 1.1 and 1.2, respectively.

We then summarize the contributions of our work in Section 1.3, and give a plan of

the thesis in Section 1.4.

u

1.1 Timing Verification of Interface Specifications

The work on timing verification of interface specifications started about a decade

ago. Several members in the laboratoire LASSO have worked on this subject

([17] [20] [36] [37] [50] etc.). Their work is mainly on semantics and timing verifica-

tion ofHAAD specifications. Their timing verification method is applicable to in-
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terfaces specified by leaf HAAD specifications, a subset of the HA.AD

language[17]. There, the timing verification problems are solved by finding the

maximum time separation of events in constraint graphs extracted from the specifi-

cations. The original motivation of the first part of our work is to extend the solution

techniques of computing the maximum time separation to specifications modeling

a more general cyclic interface behaviour (Loop over a leaf HAAD specification

[17]). We show that the maximum time separation solution techniques developed

in this thesis can be used to solve compatibility and other safety timing verification

problems. We apply our solution technique to verify several safety timing proper-

ties of an interface specification modeling a repeated microprocessor READ access

to a memory.

0

In this section, we first survey fonnal specification models related to system and

timing property specifications. Then we give the reasons for adopting the HAAD

language [17] as the formal specification language. After that, we summarize the

work on the timing verification of interface specifications.

1.1.1 Specification Languages

An interface specification describes the communication protocol on an interface.

Traditionally, interface specifications in general specifications (GS) of a device are

given in the form of timing diagrams. There are normally additional textual anno-

tations written in natural languages such as English, and the timing constraints usu-

ally appear in tables describing timing relationships between signal transitions on

ports of the interfaces. The annotations are necessary for designers to understand

the specification, but they make it difficult to model the specification in a fonnal

language for analysis, because there is no formal semantics for such descriptions.

In the following, we first summarize related fonnal specification languages, and

then illustrate why these models arc not powerful enough to specify interface be-

haviours directly.

u
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In the literature, there are many formal specification models such as Timed Tempo-

ral Logics, Real-Time Logics, Timed Process Algebras, Timed Automata, Time

Trace Structures, Timed Petri Nets, etc., which can model real-time systems and

properties. These timed specification models have been used to specify and verify

timing properties in real time systems, software engineering, and VLSI CAD com-

munities. In the following, we briefly describe these timed models.

Temporal Logics are languages based on propositional or first order logic with spe-

cial operators for reasoning about qualitative time (e.g., 0 for "eventually" and a

for "always"). Different mechanisms have been used to include quantitative time

infonnation in temporal logics. The popular ones include the use of bounded-time

temporal operators (e.g., 0[2,4] meaning "eventually within 2 to 4 time units."), in-
troduction of an explicit clock variable, and temporal quantification of time varia-

blés. Examples that use bounded temporal operators are Real-Time Computational

Tree Logic (RTCTL) [24], Timed Computational Tree Logic (TCTL) [2], Metric

Temporal Logic (MTL) [54]. An example of using explicit clock variables is Real-

Time Temporal Logic (RTTL) [67]. An example of using temporal quantification

of time variables is Timed Propositional Temporal Logic (TPTL) [3].

Real Time Logics (RTL) was developed by Jahanian and Mok to specify, verify,

and synthesize real time systems [46]. RTL is a restricted fonn of First Order Logic.

A special occurrence function is used to keep track of the n-th occurrence of an

event, which leads to a fairly expressive logic. However, theories in RTL are unde-

cidable. In [45], decision algorithms were developed to verify safety timing prop-

erties for systems expressed in a subset of RTL. Later in [63], Millet extended the

work in [45] for verifying safety timing properties expressed in an extended subset

of RTL. To specify more complex real time systems, a hierarchical graphical spec-

ification language Modechart was developed [46] with RTL as its semantics.

Modes and transitions are used as the basic structure representing the control state

and the control flow of a specification. Since the underlying semantics of Mode-
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chart is RTL, general theories in Modechart are undecidable, and whether a partic-

ular Modechart satisfies a particular RTL formula is also undecidable. A Modechart

toolset [46] was developed for specifying and verifying safety timing properties for

real time systems. The tool verifies whether a timing property expressed in RTL sat-

isfies a real time system described in Modechart. Several subsets of RTL in which

the verification problem is decidable were described in [76]. In the Modechart

toolset, a model checking technique is used to check the tmth of a safety timing

property expressed in RTL with respect to a computation graph which is a finite

representation of all the behaviours of the Modechart specification. Like all data

stmctures used in model checking, the computation graph suffers from the state ex-

plosion problem.

0

Process algebra such as CCS, CSP and ACP were developed for describing and an-

alysing communicating concurrently executing systems. A process algebra consists

of a language with precisely defined semantics and a notion of equivalence. To ver-

ify a system using a process algebra, one writes a specification as an abstract proc-

ess and an implementation as a detailed process. To prove correctness, the two

processes are shown to be equivalent or a preorder between the two processes is

shown. Recently, several timed process algebra were developed by adding the no-

tion of time and including a set of timed operators to the untimed process algebras.

Extensions of CCS include the Algebra of Communicating Shared Resources,

ACSR [12][56]; Temporal CCS [64]; Timed CCS [82]; Algebra of Timed Process-

es ATP [65]; and Algebra of Communication Timing Charts (ACTC) [8] which was

proposed especially for the specification and verification of interface behaviours.

Extensions of CSP include Timed CSP [73] and Timed LOTOS [10]. The latter is

based on CSP and was applied to several industrial projects. ACP was extended to

Timed ACT in [6], [34].

<J

Alur and Dill [1] proposed an extension of Btichi and Muller ©-automata to include

metric dense time. Transitions are labelled by time constraints on 'clock variables',

and while executing a transition, a clock can be reset to zero. A trace is accepted by
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a timed automaton if its transitions are performed at times that satisfy all clock con-

straints. A tool, KRONOS [60], was developed to assist the user with validating

complex real-time systems. The tool checks whether a real-time system modelled

by a timed automaton satisfies a timing property specified by a TCTL formula.

KRONOS was used to verify a variety of time-dependent protocols and MOS cir-

cuits [60].

0

0

Dili [27] used trace theory to specify and verify speed-independent circuits. In trace

theory, circuit behaviour is described by sets of traces, where a trace is a sequence

of transitions. Dill's approach does not include metric integrate time in the model.

Burch [14] extended Dili's work by incorporating discrete time and various delay

models into the trace theory analysis, aiming at hardware design verification. Au-

tomata-based techniques were used to do the verification. The mn time is exponen-

tial in the number of components and heavily dependent on the size of the delay

values in the model.

Pétri nets are a graph model that was also used extensively to model concurrent sys-

terns. They are bi-partite graphs composed of two types of nodes called places and

transitions. Many different models of time were defined for Petri nets, mostly by

imposing timing constraints on the enabling and firing mles of untimed Petri nets.

These constraints can be represented by constants or functions. The former includes

Timed Petri nets which treat a timing constraint as a single delay[40], [70], [71],

Time Petri nets which treat a timing constraint as a time interval defined by a lower

and an upper bound [59], [61], [72], and Timing Constraint Petri nets which asso-

ciate each place with a time interval and each transition with a duration [77]. The

latter includes Stochastic Petri nets [58] which treat a timing constraint as a proba-

bility function of the transition firing rate, and ER nets [32] which treat a timing

constraint as a function of coloured tokens in input places. Time Petri nets were

used for analysing the recoverability of communication protocols and the safety of

real time systems. Timed and Stochastic Petri nets have also been used for perform-

ance evaluation. Timing Constraint Petri nets which are more like the graphical rep-
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resentation of the subset of RTL described in [45] were used to check schedulability

of a specification, where a specification is defined as schedulable if every event in

the system can be assigned an occurrence time satisfying all the imposed timing

constraints [77].

0

In [29] [30] [31], Escalante et al developed an "interface specification" to model be-

havior of a component in a system. An interface specification consists of two parts:

a timed signal transition graph (a probablistic timed petri net), and a restriction on

the component's environment (a set of constraint mles). Then the system behaviour

is described by "merging" interface specifications of all the components in the sys-

tern. They proposed a verification technique to check time consistency for the so-

called "closed systems", a type of systems that are self-contained and do not interact

with any environment. In their approach, all the delays are represented by random
variables.

Unfortunately, it is far from trivial to specify interface timing directly by the above

formal timed specification models. The reasons are twofold. On the one hand, it is

difficult to extract a formal interface specification from the data sheet in the GS. On

the other hand, timing constraints describing the timing relationship on interfaces

in the GS such as latest, earliest and linear constraint combinations, and delay cor-

relation between constraints which are necessary to reason about interface timing

behaviour are too complex when expressed by the existing specification models.

Efforts have been made in two directions to address these problems. One is to for-

malize timing diagrams, and the other one is to extend formal specification models

to handle complicated timing constraints. The combination of the efforts in these

two directions lead to a formal language called Hierachical Annotated Action Dia-

gram (HAAD) [17] which was inspired by Timing Diagrams and Process Algebras.

The HAAD language was developed to specify systems with complex timing and

functional behaviour on interfaces. In the HAAD language, timing information on
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interfaces is shown through timing constraints over actions on interface ports and

internal signals, while the functional behaviour on interfaces is described by anno-

tating actions using variables, predicates and procedures. In this way, the timing in-

formation is presented orthogonally to the functional behaviour. Formal semantics

has been defined for the HAAD language without annotation. This is sufficient as

a specification language for the purpose of fonnal timing verification. In this work,

we are only interested in the timing behaviour on interfaces, we thus adopt the

HAAD specification without annotation as the interface specification language

(from now on, we will use "HAAD" instead of "HAAD without annotation" for no-

tational simplification).

1.1.2 Timing Properties on Interfaces

To the best of our knowledge, Brozozowski et al [13] are the first ones to address

the problems of checking timing properties on interface specifications. In [13] and

[35], they pointed out that constraints that require the device environment to pro-

vide the proper inputs (denoted as assume constraints) and those that specify what

the environment can expect from the device if the input conditions are met (denoted

as commit constraints) should be distinguished. They proposed two timing proper-

ties that should be verified to guarantee the correct interaction between connected

blocks in a system. The two properties are consistency and satisfiablility. A timing

diagram specification is consistent if occurrence times can be assigned to all actions

without violating any constraints. Interface satisfiablility of two timing diagram

specifications is defined to hold if the time separation between each pair of actions

implied by a commit constraint of one timing diagram is tighter than the separation

between the same pair of actions implied by the assume constraints of the other tim-

ing diagram.

0

It was demonstrated later by Cemy et al [17] [20] [50] that the notions of consistency

and satisfiablility of timing diagrams in [13][35] are not sufficient for verifying that

two or more blocks will interact correctly when built according to their local spec-
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ifications. They define formal operational semantics of the leaf TDs based on a

block machine which is derived from interface specifications in the form of leaf

TDs. They give sufficient conditions in [50] for a specification to be realizable

(causal) and further prove that a block machine derived from a realizable specifica-

tion has the same timed traces as those from the specification itself. They define the

compatibility of an interface specification as follows:

All combinations of the block machines derived from realizable specification are

free of dead lock.

0

They guarantee that a causal implementation of compatible specifications can inter-

act correctly in a system. They further proposed compatibility conditions for leaf

timing diagrams of a HAAD specification with linear tinning constraints [17][50].

It is illustrated there that the conditions can be verified by finding the maximum

time separation between events in constraint graphs transformed from the interface

specifications. The work was extended by Girodias et al. [36][37] to verify the com-

patibility of leaf timing diagrams of HAAD specifications containing linear, max

(latest) and min (earliest) constraints. The solution technique can also deal with de-

lay correlation between the timing constraints.

In a HAAD specification, leaf timing diagrams model elementary operations on the

interface (e.g., READ, WRITE of a processor to a memory). The complete interface

behaviour is modeled by a hierarchy of leaf timing diagrams using composition op-

erators. The solution techniques in the previous work ([17][20][50]) can only verify

behaviour modeling elementary operations on interfaces.

u

We are interested in verifying timing properties of interface specifications which

can describe more general interface behaviours than those described in [36] [37]

(e.g., repeated READ or WRITE of a microprocessor to a memory). More specifi-

cally, we are interested in verifying interface specifications modeled by the HAAD

language containing hierarchical operators. In the first part of this work, we consid-
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er "Loop" operator over a leaf action diagram (a timing diagram), a type of specifi-

cation which can describe an infinite repetitive behaviour without a choice on an

interface.

0

1.2 Verification of Interface Controllers Against Their Specifications

In this section, we introduce the problem of verifying an implementation of an in-

terface controller against its specification and then discuss related literature.

In the design of Systems on a Chip (SoC) from predesigned building blocks, it is

important to assure that these blocks can communicate correctly. This means that

much effort is spent on designing and verifying bus controllers and other commu-

nication control logic. Even if the processor bus protocol is asynchronous, the con-

trailers of such a bus in the connecting devices are often designed as synchronous

finite state machine (FSM), operating on synchronized input signals from the bus.

Timing simulation is the usual method for verifying that the controller can operate

in the full range of the bus protocol. This is generally far from satisfactory due to

the large number of different timing situations that could exist on the input signals.

To perform this verification exhaustively, yet without the full explicit enumeration

of all situations, we propose a method based on Constraint Logic Programming for

verifying whether a pseudo-synchronous (sampled input/output) finite-state ma-

chine (FSM) implementation of a real-time controller satisfies its leaf TD specifi-

cation.

u

The problem can be defined as follows: given an implementation of an interface

controller in the form of an FSM, a clock frequency and a specification in the form

of a leaf TD, we check whether the FSM implementation always produces the cor-

rect outputs and within the timing constraints stated in the specification, provided

that the inputs meet the assumptions as also stated in the specification.

Although there are many published results regarding static timing verification of
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synchronous sequential circuits, most of them are concerned with set-up and hold

time checks on sequential elements (Hip-flops, latches, memories etc.). In our work,

we arc interested in the timing information as determined by the functionality of the

circuit, i.e., a mixture of timing and behavioural verification over a number of clock

cycles. This kind of verification could potentially be carried out using models based

on Timed Automata (TA) [2] or timed Pétri Nets [40], however, the TA models and

the accompanying verification techniques based on reachability analysis of the de-

rived region graphs are unnecessarily difficult and complex in this practical context

of verifying realistic RTL designs of hardware interface controllers.

0

u

Clocksin [26] at University of Cambridge used logic programming to carry out sim-

ulation of synchronous sequential circuits. He used rule based unit clauses which
resemble standard truth tables to model relations in the modules of the circuit to be

simulated. As we shall show, such an approach leads to exponential time explosion,

because most of the possible FSM executions are enumerated. Instead, we use con-

straints rather than mle based clauses to model the execution of sequential circuits

in real time. This consists of unrolling the FSM over a sufficient number of clock

cycles to cover the range of time implied by the TD specification, expressing the
unrolled instances of the FSM as a series of constraints. We then link these con-

straints to the timing constraints from the TD using a set of automata that convert

event occurrences on signals in the TD to signal levels required/produced by the

controller FSM. In addition, since we inherently deal with uncertainty intervals as

to the time of occurrence of events, we can carry out this verification under varia-

tions in the clock frequency and delay correlation, similarly as in [17] [36].

The representation of the sets of states, the output traces of the TD automata, and

the implementation FSM is compact (linear with time) in tenns of the number of

constraints, while the number of traces thus characterized may grow exponentially

with time. Although we verify only finite behaviours as described by the leaf timing

diagram, most realistic bus protocols usually return to an initial state after executing

a particular operation cycle. We can thus verify that at the end of the finite trace the
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final state of the automaton and the maximum separations of the last events on each

port correspond to the initial state. In a more general approach, we plan in future

work to estimate an upper bound on the number of unfoldings required of the com-

bined TD plus FSM system before all the maximum event separations start to re-

peat. The approach can be compared to model checking on finite computations

derived from a Kripke structure using a satisfiablility procedure [7].

0

1.3 Contributions of the Work

The contributions of this dissertation can be summarised in three main points.

a) We developed a method for performing compatibility and other safety timing

property verification of interfaces specified by a HAAD language in the form of

Loop over leaf TDs. We solve the verification problems by providing algorithms

for computing the maximum time separation of events in infinite constraint graphs

derived from the specifications.

b) We propose a method for verifying the correctness of an interface implementa-

tion in the fonn of an FSM against its leaf HAAD specification.

e) Applications: We verified causality and several safety timing properties on a

HAAD specification modeling a repeated microprocessor READ operation (in-

spired by MC68360) from a memory; we also verified the FSM implementation of

a bus controller with respect to its leaf HAAD specification.

0

Regarding the algorithms of finding the maximum timing separation between

events in constraint graphs transformed from HAAD specifications in the form of

Loop over leaf TDs, we show the way to transform the HAAD specification with

linear-plus-latest timing constraints to constraint graphs. We derive well-formed-

ness conditions of these constraint graphs, and define the maximum time separation

problem in the constraint graphs. We propose algorithms for computing the maxi-
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mum time separations in constraint graphs with linear-only, linear-plus-latest, and

restricted linear-plus-latest constraints which relates to realizable (causal) specifi-

cations.

0

In the case of linear-only constraint systems, the proposed algorithm is polynomial

in the number of events in the constraint graph which is also the number of events

in the leaf timing diagram of the HAAD specification.

In the case of linear-plus-latest constraints, we show that the time separations will

become periodic functions of event indices. The number of unfoldings needed for

the time separations to become periodic depends on the delay values in the specifi-

cation. We give a sufficient condition to determine when this happens and propose

an algorithm for computing the maximum time separation. The algorithm consists

of a step by step unfolding of the constraint graph and computing the time separa-

tion in the unfolded constraint graphs. The computation continues until the time

separation becomes a periodic function and no further unfolding is need. Since the

number of unfoldings required for the time separation to become periodic depends

on the delay values in the specification, the algorithm is not practical for real com-

plex problems. We then restrict the linear-plus-latest constraint graphs to causal

ones which correspond to realizable specifications. In such causal constraint

graphs, we are able to give an upper bound on the number of unfoldings that one

has to consider in order to compute the maximum time separation. Unlike the case

of linear-only systems where the upper bound is dependent only on the number of

events in the constraint graph, the upper bound here is also dependent on the delay

values in the specification. But the value of the upper bound can be detennined after

a time separation calculation in a finite process graph containing events and con-

straints of a number of unfoldings. For most practical application, this number is

fairly small. We then obtain an exact and efficient algorithm for computing the

maximum time separation in causal constraint graphs with linear and latest con-

straints.

0
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Regarding the problem of verifying the correctness of real time interface controllers

against their specifications, the contributions can be stated in more detail as follows:

•

0

Modeling a timing diagram specification as communicating "TD" automata that

accept event traces respecting the timing constraints;

The representation of the finite unfolding of the implementation FSM, the finite

execution of the TD automata and timing requirements in the form of con-

straints;

Formulating the FSM versus TD timing verification problem as a consistency

check of a series of constraint systems;

Implementation of the method using Constraint Logic Programming within a

Relational Interval Arithmetic environment;

Acceleration of the convergence of the implemented algorithm by adding

redundant constraints.

We applied the solution techniques to real designs. We verified the causality and

two safety timing properties of an interface specification modeling repeated micro-

processor READ operations (inspired by MC68360) from a memory. It is based on

computing the maximum time separation of events in restricted constraint graphs

containing linear-plus-latest constraints. We also verified that the FSM model of a

real-time controller extracted from its RTL Verilog description satisfies its timing

diagram specification.

Part of this work has been published in [18] [19] [49].

u

1.4 Organization of the Thesis

The thesis consists of two major parts. The first part, Chapter 2 through Chapter 6,

describes algorithms for solving the maximum time separation problem in con-

straint graphs transfonned from HAAD specifications, and their application in safe-

ty timing property verification of interface specifications. The second part, Chapter
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7 and Chapter 8 describes a solution technique for verifying pseudo-synchronous

interface controllers against their leaf HAAD specifications, and its application to

a real industrial design.

Chapter 2 is an introduction to the first part of the work. We first describe HAAD

specifications, and then demonstrate that for a block in a system to interact correct-

ly, the interface specifications involved must satisfy the causality and compatibility

conditions. We then show that the causality and compatibility conditions can be

verified by the maximum time separations between events in constraint graphs

transformed from HAAD specifications.

0

In Chapter 3, we define the constraint graphs extracted from HAAD specifications

in the form of Loop over leaf timing diagrams. We then give well-fonnedness con-

ditions of such graphs and formally define the problem of maximum time separa-

tion of events in such constraint graphs. We show through a real example that the

maximum time separation can be used to verify other interesting safety timing prop-

erties on interfaces.

In Chapter 4, we develop and prove the correctness of an algorithm for computing

the time separation of events in finite unfolded constraint graphs. The algorithm is

a variation of the one proposed by McMillan and Dill [62]. The difference between

the two algorithms is that ours finds the maximum time separation from one start

event to all the events in the graph while the one in [62] finds the time separations

between all pairs of events in the graph. We use extensively the variation algorithm

to solve the maximum time separation problem in the infinite constraint graphs of

interest in Chapter 5 and Chapter 6.

u

In Chapter 5, we discuss algorithms for finding the maximum time separation of

events in constraint graphs extracted from HAAD specification in the form of Loop

over leaf timing diagrams. In the case of linear-only systems, we propose and prove

the correctness of an algorithm which is polynomial with the number of events in
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the leaf timing diagrams. In the case of linear-plus-latest systems, we show that the

maximum time separation will become periodic functions of event occurrence in-

dex. We give a sufficient condition to check when this happens. The speed of con-

vergence of the iteration algorithm depends on delay values in the specification,

which makes the algorithm impractical for real complex problems.

In Chapter 6, we restrict the constraint graph in such a way that events in unfolded

constraint graphs can be partitioned into a set of topologically ordered blocks that

respect the causality conditions. The restricted graphs reflect realizable designs and

can be used to model most realistic systems. We propose and prove a practical and

exact algorithm of computing the maximum time separations between events in the

restricted constraint graphs. We then simplify the algorithm of finding a time sepa-

ration in a restricted finite graph with linear-plus-latest constraints. After that, we

derive an algorithm of computing the maximum time separation in causal cyclic

constraint graphs. Since the causality conditions of constraint graphs need the in-

formation of the maximum time separation between events, there is an interleaving

between computing the maximum time separations and the causal conditions of the

cyclic constraint graph. We give sufficient causal conditions based on the maxi-

mum time separation between events under the assumption that the system is caus-

al. Finally, we apply the solution technique to verify causality and two safety timing

properties of interface specifications modeling continuous READ of the microproc-

essor from the memory.

u

In Chapter 7, we describe the methodology for verifying finite state machine (FSM)

implementation of a real-time controller against its timing diagram specification.

We use constraints to model the execution of the implementation in real time. We

solve the problem by formulating the verification problem as a consistency check-

ing of a constraint system. The consistency check is implemented in a Constraint

Logic Programming environment (CLP) based on relational interval arithmetic

(RIA) [66].
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0
In Chapter 8, we apply the method developed in Chapter 7 to an industrial design.

We verify that the implementation of a bus controller meets the specification under

all timing situations.

In Chapter 9, we conclude the work and give some future directions of research.

0

u
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Chapter 2

Interface Specifications and Verification

This chapter serves as an introduction to the first part of the work (Chapter 2

through Chapter 6). It consists of 4 sections. In Section 2.1, we describe specifica-

tions of interfaces using Hierarchical Annotated Action Diagram (HAAD). In Sec-

tion 2.2, we summarize the causality and compatibility conditions of interface

specifications. In Section 2.3, we show that these conditions can be verified by find-

ing the maximum time separations between pairs of events in constraint graphs de-

rived from interface specifications. In Section 2.4, we give a survey of the work

related to computing the maximum time separations.

0

2.1 HAAD Specifications of Interfaces

Timing Diagrams as given in the data sheets of GS have been used for decades by

designers to describe timing relations between signal transitions on interface ports.

They are easy to understand, but they are an infonnal language with no formal se-

mantics to interpret them unambiguously.

In [11], Borriello proposed a formalized timing diagram. A formalized timing dia-

gram is a hierarchy of segments which consist of a collection of events and timing

constraints between the events. It supports the hierarchical operators: Parallel,

Choice, Sequential Composition and Loop. It has been used for the synthesis ofin-

terface transducers.

0

However, since fonnalized timing diagrams do not distinguish the constraints that

characterize the assumptions on the environment and those produced or guaranteed

by the device, the formalized timing diagrams cannot specify the assumption and

reaction relationship between signal transitions on interface ports.

18
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In [53], a structured language, Hierarchical Annotated Action Diagrams (HAAD)

were developed for describing the behaviour of digital systems as seen from their

interfaces. In the HAAD language, the interface behaviour is captured as a hierar-

chy of timing diagrams. In the hierarchy, leaf timing diagrams model elementary

behaviours (operations such as READ, WRITE), complex behaviours are formed

hierarchically using composition operators such as Concatenation, delayed Choice,

Concurrency, Loop, and Exception. In the following, we first introduce the Loop

operator and then give a definition of leaf timing diagrams. We do not include the

definitions of the other hierachical operators here, since they are not used later on
in this thesis. The interested reader can refer to [17] for the formal definition of all

the hierarchical operators and formal semantics of the HAAD language.

0

A Loop over a leaf timing diagram as shown in Figure 2.1 models the following in-

terface behavior: the same behaviour described in the leaf TD repeats an infinite

number of times.

i
[Loop) a leaf TD

Figure 2.1 Hierarchical Loop over a leaf timing diagram

A leaf timing diagram TD is composed of a set of waveforms and a set of tinaing

constraints. A waveform is a sequence of signal transitions (events)1 between

steady state signal values. Timing constraints relate waveform events. The con-

straints are of two possible intents: assume and commit [20]. Assume constraints

express assumptions on the occurrence times of input events, and commit con-

straints define the limits on occurrence times of the output events to be satisfied by

L) A signal transition on a waveform corresponds to an action in HAAD specification and an event in
a leaf TD specification
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the implementation under the input assumptions. More formally, a leaf timing dia-

gram TD is defined as follows [17].

Definition 2.1: A leaf timing diagram TD is a 4-tuple, TD = (W, E, A, C), where

• W= {w^, ..., w^} is the set of waveforms;

• E = {e^, ..., e^} is the set of events on the waveforms;

• A = {AI, ..., Ap} is the set of assume constraints;
• C={Ci, ..., Ça} is the set of commit constraints.

A timing constraint (e^, e^, [Tuymin' Tuvmax]) e A u C, Tuvmin < Tuvmax. Tuvmin. Tu-

vmax e ^  e set of real numbers), from ey (the source event of the constraint) to e^

(the sink event) represents the following inequality between the occurrence times ty

and ty of Cy and e^, respectively:

uvmin ^ '•v ~ Lu^: •luvmax- (2.1)

A tiining constraint can be one of two types, that is, precedence or concurrence con-

straint. A precedence constraint (Tuvmin > 0) from e^ to Cy denotes that e^ must pre-

cede By in occurrence time, while a concurrence constraint (Tyvnun < 0, Tuvmax >- 0)

from eu to Cy means that there is no definite order in the occurrence times of the two

events. In a TD, it is possible that two or more constraints sink at the same event Cy,

all these constraints are combined together to determine the occunrence time of Cy.

For an event e^, let U be the set of all u such that Cy is an event and (e^, Cy, [Tyynyn,

T
uvmax]) is a constraint to Cy. A HAAD specification allows three types of constraint

combinations defined as follows.

0
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Definition 2.2: If the constraints to e^ are combined using a linear operator, then

the occurrence time ty must lie within the intersection of the intervals [ty + T^j^in,

ty + TuvmaxJ' for a11 u e U. In other words, all the constraints to e^ are to be satisfied

simultaneously as given in (2.2).

0

maxueu{tu + Tuvmin} < tv < ™nygu{tu + Tuvmax} (2.2)

Definition 2.3: If the constraints to Cy are combined using the max operator, then

the earliest (latest) occurrence time ty is determined by the source event e^ which
makes ty + Tyy^n (ty + Tuvmax) be the maximum among all the u's as given in (2.3).
All the constraints to e^ must be precedence.

maxueu{tu + Tuvmin} <tv<: maxu6u{tu + Tuvmax}- (2.3)

0 This composition can model, for instance, the timing behaviour of a rising transition

on the output of an AND gate caused by the rising transitions on the inputs of the

gate.

Definition 2.4: If the constraints to e^ are combined using the min operator, then

the earliest (latest) occurrence time ty is determined by the source event e^ which

makes ty + Tyymin (t^ + T^n^x)13G t^G minimum among all the u's as given in (2.4).

All the constraints from e^ to Cy must be precedence.

minueu{tu + Tuvmin} < tv ^ minueu{tu + Tuvmax}- (2.4)

This composition can model, for instance, the timing behaviour of a falling transi-

tion on the output of an AND gate caused by falling transitions on the inputs of the

gate.
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Figure 2.2 and Figure 2.3 show leaf timing diagrams of a memory device and of a

memory controller. The operations on the interfaces are an end of a read cycle, fol-

lowed by a write cycle and then beginning of another read cycle.

0

WE
(in)

OÊ
(in)

ADDR "a''d
(in)

DATA
(incut)

^ IWP2

nh ^\F-~
'^

a\ t^\\

0̂. ^ t\
Q0

\ V \ validvalid
\

^^*^sr^ tWC

'0/1

in out / validvalid val» 3»

•^- commit (max)

out

-^- commit (min)

assume (linear)

[0,0]

-^- commit (linear)

Figure 2.2 A timing diagram specification of a RAM interface (end of a read cycle

- a write cycle - beginning of another read cycle)

Table 2.1: Constraints for the timing diagram in Figure 2.2

Name Delay Value (ns) Name Delay Value (ns)

tAA (0, 10] tHZOE (0,°°)

tAH

tAOE

tAS

tAW

tDH

tDS

(0,0°)

(0,7]

(0,0°)

(10,°°)

(0,-)

(8,-)

tHZWE

tLZOE

tLZWE

tOH

tWC

tWP2

(0,7]

(0,7]

(9,°°)

(9,°o)

(15, °o)

(12,°°)

0
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0
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WE
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OÊ
(out)

ADDR valid
(out)
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/ s-^

à ^^
Z' \\ n

>•6
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\\ ^/0//
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assume (linear)

•i^- commit (linear)

0
Figure 2.3 A timing diagram specification of a controller interface (End of a read -

write cycle - beginning of another read cycle)

Table 2.2: Constraints for the timing diagram interface in Figure 2.3

Name

tCAl

tCA2

tCLK

tCOEl

Delay Value (ns) Name

[18, 19.8] tCOEh

[18,20] tCWEl

[25.73, 25.73] tCWEh

[16,18] tOH

Delay Value (ns)

[31.8,33]

[22,28]

[38.8, 45]

(3,-)

2.2 Verification of Interface Specifications

In this section, we summarize the formal semantics and the verification of causality

and compatibility of interface specifications as discussed in [36], [50]. The seman-

tics of causality and compatibility guarantees that causal HAAD specifications are

u
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realizable (can be simulated by a causal system [50]) and components of compatible

specifications can interoperate correctly when forming a system. We show that cau-

sality and compatibility conditions can be verified by computing the maximum time

separations between events in constraint graphs extracted from the specifications.

0

In [50], the realizability of a leaf HAAD specification is stated in terms of the ex-

istence of a causal block machine derived from the specification, the derivation is

based on a partition of the action set of the specification. The authors in [50] proved

that all causal block machines derived from an action diagram have the same timed

trace set as that of the TD specification. The compatibility of an interface specifica-

tion is then defined as the absence of dead lock when any combinations of causal

block machines are executed. It is thus guaranteed that the components included in

a compatible specification can interoperate correctly in a system. In the case of sys-

terns with linear-only constraints, the authors in [50] give the compatibility condi-

tions. The compatibility conditions consists of realizability of each interface

specification, consistency and satisfiablility of the composition of the interface

specifications. The work is extended later in [36] to systems specified by leaf TDs

containing linear, latest, earliest constraints and also delay correlation.

In the following, we summarize the consistency, causality and compatibility condi-

tions from [l 3] [36] [50] which are applicable to leafHAAD specifications.

The consistency condition of a timing diagram is as given in [13] and [35]: A TD is

consistent if all events in the TD can be assigned an occurrence time without vio-

lating any timing constraint.

To state causality and compatibility conditions, we first give a definition of the

maximum and minimum time separation between events satisfying all constraints

in a TD.

u



0
25

Deïïnition 2.5: Given a TD = (W, E, A, C), a start event s and an end event e,s, e

e E, the maximum (A(s, e)) and the minimum (ô(s, e)) time separations from s to e

are defined as:

u

A(s, e) = max(ï(e) - ï(s)) (2.5)

and

ô(s, e) = min(ï(e) - ï(s)) (2.6)

0

subject to the constraints in A u C

The causality conditions of a TD are developed in [50]. We need the following def-

initions to state the causality conditions.

DeHnition 2.6: A block B of aTD = (W, E, A, C) is a nonempty subset of events

in E, i.e., B e E. A block partition P of a TD is a set of disjoint blocks of all the

events in E, i.e., a collection of blocks satisfying the following two conditions.

a) V BI, Ë2 e P, either BI =B^orB^nB^=0 and

b)UBepB=E.

For every block B of a partition P, there are triggers and local constraints of the

block. A trigger of a block is the source event in another block whose sink event is

in the block, i.e.,

trigs(B) ={eJ (e^, e^, [T^^n' Tuvmax]) eA u C,e^B ande^ e B}. (2.7)
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The local constraints of a block B are the constraints that either relate events in the

block or relate triggers of the block to the events in the block, i.e., the local con-

straints are {(e^, ^, [T^nun' Tuvmaxl) e AuC | eye trigs(B) uB ande^ e B}. Let

B(v) denote the block containing event e^.

0

The causality conditions of a TD can now be stated as follows ([20] [50]): A leaf TD

is causal if a partition P of the TD satisfying the following three conditions can be

found.

Causality Condition l : In and out actions do not share a block B of P, where In (put)

actions correspond to signal transitions on input (output) ports,

Causality Condition 2: For all events Cy eB and for all triggers e^ e trigs(B(v)),

ô(ey, Cy) < 0, (2.8)

where ô(ey, e^) is the minimum time separation from Cy to e^ satisfying the local

constraints of B. In other words, the triggers must be in the past of all Cy e B (well-

defined triggers [50]).

Causality Condition 3: for all B e P, the maximum time separations between pairs

of triggers of B computed using all the constraints in the TD are strictly tighter than

those between the same pairs of triggers computed using the local constraints of B.

Interface specifications TD^, ..., TDp are compatible if the following three condi-

tions are satisfied [36] [50]:

Compatibility Condition 1: Each TD,, i = 1, ...,n, is causal.

u
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Compatibility Condition 2: The composition TD ofTDp i=l, ..., n, is consistent,

where the composition TD is defined as a timing diagram that includes all the ac-

tions and all the commit constraints from all TDp i = 1, ...,n.

0

Compatibility Condition 3 (satisfiablility in [13] [35]): The maximum time separa-

tions between all pairs of events computed in the composition TD must be less than

those between the same pairs of events computed in the TD including all the actions

and all the assume constraints from all TDp i = 1, ...,n.

In the next section, we shall show that the consistency, causality and thus the com-

patibility conditions can be verified by computing the maximum time separation of

events.

2.3 From Verification of Timing Diagrams to Maximum Time Separation

To verify the consistency of a TD, we can create a directed graph G = <E, R>, based

on the TD specification, where E, the set of events, represents actions in the TD; R,

the set of rule edges, represents the timing constraints in the TD.

A TD is consistent if all actions in the TD can be assigned occurrence times without

violating any timing constraint. That is, for any two events in G, it is possible to

compute the maximum time separation between them. In the case of linear-only

systems, a TD is consistent if there is no negative cycle in G [35], [20].

The second causality condition can be verified by computing the maximum time

separation of events in the constraint graph derived from the composition TD. The

condition can be verified by checking whether the minimum time separations from

the events in the block to the related triggers are smaller than 0, i.e., the maximum

time separations from the triggers to their related sink events in the block are greater

u



0
28

than 0.

The third causality condition is explicitly stated as comparing the maximum time

separation between the same pairs of events in two different constraint graphs.

Since the compatibility of interface specification can be verified by consistency and

causality of individual or composition of timing diagrams involved in the specifi-

cations, we can conclude that compatibility verification can be solved by computing

the maximum time separation of events in constraint graphs extracted from the

specification.

0

2.4 Related Work

As illustrated in Section 2.3, the causality and compatibility verification of interface

specifications can be reduced to computing the maximum time separations between

pairs of events in constraint graphs. In Chapter 3, we shall show that the maximum

time separation of events can also be applied to solve other safety timing properties

of interface specifications.

The maximum time separation problem has been explored by many researchers

from different fields. Algorithms have been proposed under various restrictions on

the constraint systems ([21][22][37][50][62][78][80][83]). All the restrictions can

be put into two categories: a) on the type of constraints, and b) on whether the

events in the specification are allowed to occur repeatedly. When the events in the

specification can occur only once, the problem is well solved in any combination of

timing constraints. The complexity of the algorithms ranges from polynomial for

the linear-only systems to NP-complete for max-plus-min-plus-linear systems. This

can be summarized as follows:

u
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For systems with linear-only constraints, a shortest path algorithm, e.g., Floyd-

Warshall algorithm [33] [35] can be used, the complexity of the algorithm is 0(n3)
where n is the number of events in the constraint graph. Vanbekberge [78], and

McMillan and Dill [62] proposed algorithms for max-only and inin-only systems

with complexity 0(n3). Yen et al. [83] gave an algorithm to calculate the maximum
separations in systems combining either max or min constraints with linear con-

straint in the complexity of 0(n log n). Walkup and Borriello [80] [81] presented
an algorithm for solving the same problem with the complexity of 0(n6) which is
unproven. The complexity of the algorithm by McMillan and Dill [62] is pseudo

polynomial in 0(n3SijSy), where SySy is the sum of all the initial timing separations
(the timing bounds in Relations (2.2) and (2.3)). They showed that whenever both

max and min constraints are present, the maximum time separation problem be-

comes NP-complete. A branch-and-bound algorithm based on an algorithm for

max-plus-linear or inin-plus-linear constraints is appropriate in such cases. Burks et

al [15] proposed a branch-and-bound algorithm and a mixed integer linear program-

ming method to compute the maximum time separation in systems containing min

and max constraints. Girodias et al. [37] use Constraint Logic Programming (CLP)
environment based on Relational Interval Arithmetical (RIA) to solve the maxi-

mum time separation problem for linear-only, max(min)-only, max(min)-plus-lin-

ear, and max-plus-min-plus-linear systems with similar complexity as the other

algorithms. Their approach can also solve the problem when delay correlation ex-

ists in the system, a problem which is difficult to handle by the other approaches

[36]. Chakraborty et al. [22] presented a polynomial-time approximate algorithm

for computing the maximum time separations in systems containing min-plus-max
constraints.

All the above algorithms are only applicable to acyclic finite specifications. Cycles

are necessary to model repetitive interface behaviours (e.g., Loop over a leaf TD in

u
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HAAD specifications). Cyclic behaviours make the problem more complicated be-
cause the effective number of events and constraints becomes infinite.

0

There are fewer concrete results for cyclic systems. Hulgaard et al. ([5] [4l] and

[42]) give an algorithm for computing the maximum time separations of events in

systems specified as cyclic process graphs with latest-only constraints. The algo-

rithm is based on a functional decomposition technique that permits an implicit

evaluation of an infinitely unfolded process graph. The algorithm has also been ap-

plied for timing analysis of a class of safe Petri nets with no conditional behaviour,

where interval time delays are specified on the places of the nets and the latest firing

semantics are adopted [41]. Chakraborty et al. [21] worked on cyclic systems with

min-plus-max constraints. They restricted the systems to be tightly-coupled. They

can compute the maximum time separations in such cyclic systems by using the ap-

proximate algorithm [22] developed for acyclic constraint graphs. They applied the

method to the timing verification of an asynchronous differential equation solver

chip.

In the following four chapters, we concentrate on developing new algorithms for

computing the maximum time separations in constraint graphs transformed from

HAAD specifications containing a Loop operator over a TD, a type of cyclic sys-

terns containing linear-plus-latest constraints. We define the constraint graphs

transformed from the HAAD specifications and the maximum time separation

problem in the constraint graphs in Chapter 3. The maximum time separation in

such a constraint graph is the maximum over an infinite number of time separations

in a graph containing infinite number of events and constraints. We solve the prob-

lem by starting from an algorithm for computing the max time separations in graphs

with a finite number of events and constraints in Chapter 4. We then extend the al-

gorithm to solve our problem in Chapter 5. Since the complexity of the algorithm

developed in Chapter 5 depends on the delay values in the specification and is im-

0
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0
practical for real complex problems, we restrict the HAAD specification to causal

ones and present a more practical solution to this restricted problem in Chapter 6.

0

u
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Chapter 3

The Maximum Time Separation Problem

0

In Chapter 2, we have shown that the timing verification problems of interface spec-

ifications can be reduced to finding the maximum time separations in constraint

graphs transformed from the specifications. As summarized in Section 2.4, the

maximum time separation problem has been solved in various restricted systems.

Here, we are interested in interface timing verification problems in more general

systems where the events in the specifications can occur an infinite number of

times. This corresponds to HAAD specifications consisting of a Loop over a leaf

TD. As an example, consider the repetitive READ of a microprocessor (inspired by

MC68360) from a memory specified by a Loop over a leaf TD which describes the

interface behaviour of one READ cycle. The Loop and the leaf TD specifications

are illustrated in Figure 3.1 and Figure 3.2, respectively.

In this chapter, we first define in Section 3. l a constraint graph from such HAAD

specifications. Note, our constraint graphs are more general than the so-called proc-

ess graphs in Hulgaard et al [42] which allow only the latest tinning constraints. We

allow linear, latest and mixed linear and latest timing constraints. We present the

well formedness conditions and the execution model of such constraint graphs in

Section 3. 2. Then we define a finite unfolded constraint graph in Section 3. 3. After

that, we give the definition of the maximum time separation problem in such con-

straint graphs, and show on an example in Section 3. 4 how to formulate some use-

fui safety timing properties as the maximum time separation problems.

r
[Loop} a READ cycle

u
Figure 3.1 HAAD hierarchy for a repetitive microprocessor READ from a memory
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0 Figure 3.2 A leaf timing diagram specifying one READ cycle of a microprocessor.

3.1 Constraint Graphs

In this section, we define a constraint graph from a HAAD specification.

Definition 3.1: Given a HAAD specification in the fonn of Loop over a leaf TD,

where TD = (W^, E^, A^, C^), we define a constraint graph, G = <E,R> as fol-

lows:

The events in E are in one to one correspondence to the events in E^, i.e., E = E^j;

The mle edges in R are transformed from the constraints in the HAAD specifica-

tion. The transformation rules are as follows:

0
For each timing constraint (u^, v^, [Tuvmin' Tuvmaxl) e Atd u ctd'wherc utd' vtd are

events in the same operation cycle (e.g., events in the same READ cycle), there is
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T L 0
an edge « L'«^"""^a^ veR.

For each timing constraint in the HAAD specification, (u^, v^, [Tuvmin' Tuvmaxl)

eAtd u Ctd, where u^, v^ are events in two adjacent opération cycles, there is an

[7'....„..•.-. 7'.....„„„]» E
edge u uvmin' uvmax^ ^ e R in G, where E is either -l or l depending on the

relative position of u^ and v^ in the specification: if u^ is in the current operation

cycle and v^ is in the next cycle, then e = 1; ifu^ is in the next operation cycle and

v^d is in the current cycle, then £ = -1.

0

In the example of the HAAD specification modeling the repeated READ of the mi-

croprocessor from the memory, there are 15 events (e^ to e^) in the leaf TD as

shown in Figure 3.2. All the rule edges transformed from the constraints between

events in the same READ cycle have e = 0; the rule edge corresponding to the con-

straint from eg of the current READ cycle to e^ of the next READ cycle in Figure

3.2 has e = 1; and the rule edge corresponding to the constraint from e^ of the next

READ cycle to e^ of the current READ cycle in Figure 3.2has £ = -1. We thus get

the constraint graph as shown in Figure 3.3.

0
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Figure 3.3 A constraint graph specifying a repeated microprocessor READ from a

memory derived from the HAAD specification in Figure 3.1 and Figure 3.2.

In a constraint graph, the events in E and the rule edges in R are repeatable (will

appear an infinite number of times). We denote the k-th occurrence of event v as v^,

and the occurrence time of v^ as ï(v^). Each rule edge in a constraint graph corre-

spends to an infinite number of constraints (Vk >. max(0, E), T^^n ^ T(v^) - ï(Uk.

g) < Tyvmax)' all the occurrences of a constraint are of the same type (precedence or

concurrency as defined in Section 2.2.1). When more than two edges in G have a

common sink event v, the occurrence time of v^, k ^ 0, is affected by a combination

of the constraints. We consider here three types of combinations: latest (max), con-

junctive (linear), and mixed latest and linear" combinations, defined as follows.

0

Definition 3.2: If all the constraints to event v e E are combined with the linear

(conjunctive) operator, then the occurrence time of v^, k > 0, is determined by Re-

lation(3.1).
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maxu e sources(v^W + buv^ ^ ^vk~) < minu e sources(v^xW + B^} , (3.1)

where u e sources(Vk) if there is an edge u uv' Mv -> y in G and k > max(0, e).

The edge can be either a precedence or a concurrency constraint.

Definition 3.3: If all the constraints to v e E are combined using the max (latest)

operator, then the occurrence time of v^, k > 0, is determined by Relation (3.2).

max. 6 preds(v^u) + du^ ^ T(v^) ^ ma^ e preds^W + ^,} (3.2)

0

where u e preds(Vk) if there is an edge u uv' Mv > y in G> k> max(0, e), and
the edge must be a precedence constraint.

Definition 3.41: If some constraints to event v, v e E, are combined by a linear op-
erator while the others are combined by a max operator, then the occurrence time

of v^, k > 0, is determined in the following manner: first, the linear and latest oper-

ators play the role independently, then their results affect the occurrence time of v^

conjunctively, that is, V k ^ 0, Relation (3.1) is satisfied where u e sources(Vk) if

the edge u Mv Mv > y in G is involved in a linear combination and k >. max(0,
e), meanwhile, Relation (3.2) is also satisfied where u e preds(Vk) if the edge

[^-..., 0.,.],Ë
u uv —Mv > y in G is involved in a max combination, k > max(0, e), and the

edge must be a precedence constraint.

0

Instead of [T^miw Tuvmax]'we use the notation [d^, D^] and [b^, Byv] to identify

the bounds of timing constraints in max and linear combinations, respectively, and

l. A constraint combination like this can always be decomposed into a latest combination consisting
of all the constraints originally involved in a latest combination, a linear combination consisting of
all the constraints originally involved in a linear combination, and another linear combination con-
sisting of two timing constraints with the delay value [0, O], one from the result of the latest combi-
nation, the other one from the result of the linear combination. Then the constraint will have a
correspondent in HAAD specification as defined in Definition 2.3 and Definition 2.4.
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we use preds(Vk) and sources(v^) as the source events of constraints involved in

max and linear combinations, respectively. We do these to distinguish the type of

the constraints in max combinations, which are restricted to precedence, from those

in linear combinations, which can be precedence or concurrency constraints.

0

The constraint graph includes all the information contained in the original HAAD

specification. We define an infinite unfolded constraint graph G to explicitly de-
scribe the infinite interface behaviour.

Definition 3.5: G00 = <E°°, R°°> is a graph with an infinite number of events and

rule edges, where E°° = {v^ | ve E,k>0} u [root]. Node root is included in E00 to

model the initial start up behaviour of the system, R°° = {constraints from Relations

(3.1) and (3.2) for v^, k > 0} u Rg, where RQ contains user specified start up rules

in the form of root trv7n!"'rvmSX]^., where ve E, i > 0,Tymax > Tvmin > °• They
may be combined with other constraints using linear or latest operators.

As shown in the example of the repeated READ of the microprocessor to the mem-

ory, the timing constrains are all in the form of intervals, there are many possibili-
ties for the occurrence times of events. We define an execution of the constraint

graph to model one of these possibilities.

Definition 3.6: An execution of the behaviour defined by G is an assignment of oc-

currence times to events in E which is consistent with the constraint system repre-

sented by R00.

u

We restrict our analysis to well-formed constraint graphs such that in any execution

of the constraint graph, the occurrence times of all events in G cannot go

backwards as the event indices advance. The precise definition of a well-formed

We allow the occurrence times of some events stuck at some value with the advance of the event
indices to comply with the specifications in [42]
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constraint graph is given in Section 3. 2

3. 2 Well-formed Constraint Graphs

As stated in Definition 3.6, in an execution of a constraint graph, all the constraints

represented by G°° must be respected. This requires that Relation (3.1) (related to
all the linear constraints), the left hand side of Relation (3.2) (related to lower

bounds of all the max constraints), as well as part of the right hand side of Relation

(3.2) (relate to the upper bounds of the max constraints which determine the right

hand side max function of Relation (3.2)) must be satisfied simultaneously. The up-

per bounds of the max constraints which fail in determining the max function of the

right hand side of Relation (3.2) do not play any role in determining the occurrence

times of events in an execution of a constraint graph.

0

u

To derive well-formedness conditions which guarantee that the occurrence times of
all the events in G will not retreat as the event indices advance, we first analyse all

possible timing behaviour of every event in G with the advance of its occurrence

index while respecting both bounds of all the linear constraints and the lower

bounds of all the max constraints in G. From there, we get sufficient conditions that

prevent the occurrence of any event from going backward with the advance of the

event index. Since the occurrence times of events satisfying all the constraints in Gc

are constrained more than those satisfying all the linear constraints and the lower

bounds of all the max constraints (by the upperbounds of max constraints which win

in detennining the max function of the right hand side of Relation (3.2)), the solu-

tion space of the occurrence times in the executions of a constraint graph are subsets

of those satisfying the lower bounds of the max constraints and both bounds of all

the linear constraints. Therefore, the sufficient conditions that prevent the occur-

rence of any event from going backward with the advance of the event index while

satisfying all the linear constraints and the lower bounds of all the max constraints

are also sufficient to prevent the occurrence of any event from going backward with

the advance of the event index while satisfying all the constraints in G.
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To analyse all the possible changes in occurrence times of an event, we construct a

directed graph G^ = <E, Rm> as follows.

Definition 3.7: Given a constraint graph G = <E, R>, the graph G^ = <E, R^> is

constructed as follows: for each edge u uv uv -^ y in R involved in a max

combination, there is an edge V-^£M in R^, for each edge u [ ^B^ v

in R involved in a linear combination, there are two edges u

-b -E
not oo) and v Ml/> u (if byy is not -°°) in RjQ.

BU.'E
v (if Buy is

0

To prevent the occurrence times of all events in Gjn from retreating as the event in-

dices advance, every event in Gjn has to lie on a cycle in G^, otherwise, the event

may be isolated with no timing constraint to it, and thus the event could be assigned

an arbitrarily occurrence time. This would violates the requirement that the occur-
rence times of all the events cannot retreat as the event indices advance. We also

require that there is a time separation between any two events in G^, i.e., for all

pairs of nodes i and j in G^, there is a path from i to j and from j to i, in other words

Condition 1: G^ is strongly connected [38], that is. Vu, v e E, there is a path from

u to v and a path from v to u in Gjn.

To satisfy the constraints represented by G^, Vk >. max(0, e), T(v^) - T(u^.g) < w

must hold for every edge u
w, e

in Gm, and Vk > max(0, e(c)),

T(Vk)-T(Vk_e(c))<w(c) (3.3)

<J
1G^ is the dual of the compulsory graph used in [83] for computing time separations in finite graphs.
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has to be satisfied for every event v along a cycle, where w(c) is the sum of the w

values of the edges along the cycle.

We distinguish three types of cycles in G^: (1) max cycles where all the edges along

the cycles correspond to the rule edges in G involved in max combinations; (2) lin-

ear cycles where all the edges along the cycles correspond to the constraints in-

volved in linear combinations; and (3) mixed cycles where some edges along the

cycle correspond to the rule edges involved in linear combinations and others cor-

respond to those involved in max combinations.

If Condition 1 is satisfied, then every event in Gj^ lies on at least one of the above

three types of cycles.

0
In the following, we first analyse the kinds of changes in occurrence times of the

events along each type of cycle as the event indices change, and derive the sufficient

conditions to prevent the occurrence times of the events from retreating as the event
indices advance. The well-formedness conditions of G are then introduced.

3.2.1 Events Along a Max Cycle

As all constraints involved in max combinations are precedence constraints, we

have w(c) < 0. From Relation (3.3), V k > max(0, E(c)), T(y^) - ï(Vk_ ^ < w(c) must
hold for every event v along the cycle, i.e., v^ has to occur no later than v^. ^)-
There are three cases to consider depending on the sign of 6(c).

a) e(c) < 0, then k < k - e(c), the events along the cycle can not go backward in their

occurrence times as the event indices advance from k to k - £(c).

u

b) E(c) = 0, then w(c) has to be 0 (or else the system of constraints is inconsistent).

Therefore, all the events along the cycle have to occur at the same time. We require

that all the events along such a max cycle be represented as one event in the con-
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straint graph.

0

e) e(c) > 0, then k > k- e(c), and the occurrence time of events along the cycle could

retreat as the event indices advance from k- e(c) to k.

Generally, if we can prove 'if not A then not B', then A is a necessary condition of

B, and if we can prove 'if A then B ', then A is a sufficient condition of B. Therefore,

s(c) < 0 is a necessary and also a sufficient condition to prevent the occurrence time

of events along a max cycle from retreating as the event indices advance.

3.2.2 Events Along a Linear or a Mixed Cycle

For events along a linear or a mixed cycle, it follows from Relation (3.3) that for

every k > max(0, e(c)), ï(v^) - t(v^ g^)) < w(c) must hold for every event v along
the cycle. There are also three cases to consider depending on the sign of e(c).

a) e(c) < 0:

If w(c) > 0 then v^ may still be assigned an occun-ence time smaller than that of

vk- e(c)' l-e-' t'le occurrence time of v will not retreat when the event indices
advance from k to k - e(c). For example, in the constraint graph shown in Figure
3.4a, all constraints are involved in linear combinations.

Q^],l

b

.[-4,6],2,

a) A constraint graph G.

0,-1

6,2
ba

5,1

b) Gjjj corresponding to G.

u Figure 3.4 A well fanned constraint graph
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In corresponding G^ (Figure 3.4b), there is a cycle with e(c) =-2- 1 =-3 <0 and

w(c) =4+0=4>0. We can still assign occurrence times of events in G as follows:

ï(ao) = l, T(bo) = 0, T(ai) = 3, T(bi) = 2, ..., and T(aj) = 2i + l, ï(bi) = 2i, for all i >

1. All timing constraints are satisfied because T(b,+i) - T(a,) =2i+l -2i= l e [O,

5], T(âi) - z(b^2) = 2i+ l - 2(i+2)=-3 e [-4, 6]. Hence, in the constraint graph in

Figure 3.4a, all event occurrence times advance as the event indices advance. We

will further discuss the reasons for the well-formedness of this graph at the end of

this subsection.

If w(c) < 0, then v^ has to be assigned an occurrence time greater than that of

vk-e(c)' an<^ ^e occurrence times of events along the cycle must advance as the
event indices advance from k - e(c) to k.

0
The condition e(c) < 0 => w(c) < 0 is thus only a sufficient condition which guaran-

tees that the occun-ence times of events along such a cycle will not retreat as the

event indices advance.

b) e(c) = 0:

If w(c) < 0, then ï(V]ç.) - T(v^) < w(c) can not be satisfied, i.e., the system of con-

sbraints is inconsistent.

If W(c) > 0, T(V^) - T(v^) <: w(c) always holds, it does not add any constraints on the

occurrence time of ï(v^). Consequently, E(c) = 0 => w(c) > 0 is a necessary condi-

tion.

C) E(c) > 0:

u
If w(c) < 0, then v^ has to be assigned an occurrence time no later than v^_ ^) and
k > k - E(c). Hence the occurrence times of events along the cycle can retreat when
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the event indices advance.

If w(c) > 0, then v^ can be assigned an occurrence time later than that of v^_ ^, the
occurrence times of events will not go backwards when the event indices go for-

wards.

Therefore, e(c) > 0 ==> w(c) > 0 is a necessary and also a sufficient well-formedness

condition.

The above discussion yields the following 3 well-formedness conditions.

Condition 2: For all max cycles c in Gjn, E(c) < 0 must hold1.

0
Condition 3: For all linear or mixed cycles c in Gjn.

a. if e(c) = 0 then w(c) > 0,

u

b. if E(c) > 0 then w(c) > 0.

Condition 4: If neither Condition 2 nor Condition 3 apply, then the event must be

on a mixed cycle such that w(c) < 0 and e(c) < 0.

Definition 3.8: A constraint graph G is defined as well-formed if the above Condi-

tions l through 4 are satisfied.

In the example shown in Figure 3.4, Condition 1 is obviously satisfied; Condition

2 doesn't apply; Condition 3 holds because there are four linear cycles in G^: d

with E(cl) = 0 and w(cl) = 4, c2 with e(c2) = 3 and w(c2) = 11, c3 with e(c3) = 0

and w(c3) = 10, and c4 with E(c4) = -3 and w(c4) = 4. Since all events satisfy Con-

lThe 6(c) in G^ equals to -E(c) in G, hence, this condition is the same as in [42] for latest only sys-
terns.
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ditions l to 3 with E(c) > 0, the constraint graph in Figure 3.4 is well-fonned.

3.3 Finite Unfolded Constraint Graphs

To compute the maximum time separation of events in G, we need the information

about the occurrence times T(v^) for all k > 0. We examine the timing behaviour of

the events by unfolding G step by step. We thus need to define a finite unfolded con-

straint graph here.

LetUa={Va|ve E},a>0 (3.4)

From Equation (3.4), for each v^ e U^, Vy 4. ^ is in U^ + ^ for a^ k > 0. Therefore,

there is the same number of events in U^ for all a S 0. Let \V^\ = n, n is also the

number of events in G.

Define iteratively the a-unfolded constraint graph Ga = <E , R > of G as follows:

^0 0-fA.EU=roof,RU=0;

E1 = E° u UQ, R1 = Rlo u{ constraints between events in UQ}, where Rlo is a non-
empty finite number of constraints from root to events in UQ which is composed of

two parts: the start up mle edges to the events in UQ given by the user, Rloi, and the

start up rules Rlo2 added to assure that all events occur after root. R 02 is constmct-
ed as follows:

u

For all VQ e UQ, if VQ is a sink event of constraints involved a linear combination,

[0,°°]
add to Rio2 a precedence constraint root >~VQ to the linear combination, else if

it is a sink event of constraints with a max combination, add a precedence constraint
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u

[0,0]
root >-TO to t''le max combination, else it is a sink event of constraints with

mixed combinations, then add a constraint either as in a linear combination or as in

a max combination. The constraints in Rlo2 add paths from all events to root in UQ.
When we say that there is a path from all events to root in U^.^, a > 0, we mean that

there is a path from the event to root in Gjn", which can be constructed from Ga in

the same way as G^ from G in Definition 3.7. We can thus guarantee that all events

in UQ occur after the root.

For all a > 1, Ea= E(x-l u Ua_i, Ra = Rao u Ra-l u {constraints between events

in Uy_i} u {constraints between events in Ua-2 and events in Ua-i}, where Rao =

Raoi u Rao2- Raoi includes all user defined start up rules. Since there is a finite

number of user given start up rules, there exists a Kg such that there is no user given

start up rule to the events in Uy for all a > Kg. Rao2 is constructed in the same way

as R 02 in G • Since G^ is strongly connected, after adding constraints to Rao2> for
a = 0, ..., KC, where K^; = [ maX(;(e(c)) |, cis a cycle in Gjn, there is a path from all

events in Uy.^ to root, for all a > Kg.

We call the addition of U^, a > 0, and the related constraints to Ga as the addition

of one unfolding to Ga. For all a > K, where

K = max(Kg, Kç;), (3.5)

adding one unfolding means adding a fixed number of events (n) and rule edges.

3.4 Maximum Time Separation of Events - Problem Definition

The problem we address is as follows [42]: Given two events, s and e in E (s for

start, e for end), and a separation P in the occurrence indices, determine the largest
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u

0 and the smallest A such that

Va > max(0, P), 5 < T(ea+p) - ï(Sa) < A

subject to all constraints in G

(3.6)

Finding an algorithm for the maximum time separation A is sufficient, because 0

can be obtained by formulating it as the maximum separation problem Va >. max(0,

-P),-A^T(s,,)-T(ea-(-p))<-ô.

Let Aa be the least value such that ï(ea+p) - T(s^) < A (we also use the notation

A(s^, Ca+B) instead of A when the start and the end events need to be emphasized).

We call A the maximum time separation from s to e, and A the time separation

from SQ to Qa+ç, A is the maximum time separation from s^ to e^+p satisfying all

the constraints in G°°. Without loss of generality we suppose that P > 0 (when P <

0, the situation is similar). A can then be expressed as

A=max(A°,Al,A2,...) (3.7)

The maximum time separation in constraint graphs as defined in Equation (3.6) can

be applied directly to compatibility verification ofHAAD specifications in the fonn

of Loop over a leaf TD. For instance, Causality Condition 2 (Equation (2.8)) for all

finite unfolded constraint graph Ga, a ^ 0, can be expressed as follows:

Va^O,T(ev,oc)-T(eu,oc)<0.

where Cy ^ and e^^ are the a-th occurrence of e^ and Cy respectively.

(3.8)

The maximum time separation problems can also be applied to check other safety

timing properties on interfaces. In the example of the MC68360 processor specified
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in Figure 3.1 and Figure 3.2, there are several important properties that should be

verified. For instance, there should not be any overlap on the activation and deacti-

vation of ACK and DATA signals. I.e., the ACK and DATA signals have been de-

activated by one device before it is activated by possibly a different device in the

following read cycle. This corresponds to the requirement that:

V a > 0, T(eio, a) ^ T(ell, a+l)' and
V a > 0, T(ei4^ J < T(ei5^ a+i)

(3.9)
(3.10)

where e^j is thej-th occurrence of event e^. We can check these requirements by per-
forming a maximum separation analysis, detennining the smallest Al and A2 such
that

0

V a > 0, T(en, „) - T(eio, a+l) < Al and
V a ^ 0, ï(ei5^ a) - ï(ei4^ a+i) < A2.

If Al > 0 or A2 > 0, then there may be a timing requirement violation.

(3.11)
(3.12)

From the definition in Section 3. 4, Aa is the time separation from s^ to e^+p satis-
fying all the constraints in G°°, which contains an infinite number of events andcon-

straints. It is impossible to find the time separation in this infinite graph directly.

We have to find a way to perform the calculation in a finite graph. Even though both

the start event s^ and the end event e^+p are in Gcl+P+l, the time separation Aa may
depend on the occurrence times of the events in later unfoldings (Uy+p+i, Uy+p^'

...) because of the linear combinations of constraints in G . It may be impossible

to calculate Aa in Ga+P+l, but we shall show that A" can be calculated in a finitely
unfolded constraint graph Ga+P+r where r is an integer such that the time separation

from s^ to e^+p computed in Ga+^+r is the same as that computed in G°°. The exist-
ence of such r will be proven and its value will be determined in Chapter 5.

u
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We can thus calculate A in Equation (3.7) in two steps: In the first step, we calculate

A for all a < K, where K is as defined in Equation (3.5). This can be achieved by

using an algorithm for computing the maximum separation in the finite unfolded

constraint graphs Ga+^+r. In the second step, we add unfoldings to GK+^+r to con-
struct GK+i+P+r, i > 0, and find the time separations AK+i. As the newly added con-
straints repeat themselves in each unfolding, we can analyse the series AIVT1, i > 0,

and deduce the maximum time separation A.

0

In the next Chapter, we develop and prove an algorithm for computing time sepa-

rations in graphs with a finite number of events and constraints.

u
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Chapter 4

Maximum Time Separation in Finite Linear-PIus-Latest Systems

As defined in Chapter 3, the maximum time separation in constraint graphs needs

the information of time separation Aa from s^ to e^+p for all a > 0. We start first

with computing one A . We consider in this chapter the time separations for finite

graphs containing linear-plus-latest constraints. The algorithm developed here is a

variation of that proposed by McMillan and Dill [62]. It finds time separations from

one start event to all events in a directed graph while the original algorithm finds

time separations among all events.

In Section 4.1 and 4.2, we develop and prove the correctness of the variation algo-

rithm. We then give several examples in Section 4.3. Finally, we analyse the com-

plexity of the algorithm in Section 4.4.

4.1 The Variation Algorithm

Given a directed connected graph G = <E , R >, which corresponds to a finite un-

folded constraint graph G in Section 3.3, with a finite number of vertices (events)

Ef and a finite number of edges Rf. Each edge represents a timing constraint which
can be one of the two types: precedence or concurrency as defined in Section 2.1.

Events here cannot repeat and thus are not indexed. When more than one edge sink

at the same event v in the graph, the occurrence time of v is determined in one of

the three ways as defined in Section 3. 3, i.e., linear, max and mixed combinations.

Suppose that root has been included in Gf and constraints from root to events in G
have been added as in Section 3. 3 such that there is a path from every event to root

in G m, where G ^ is constructed from Gf in the same way as G^ from G in Section

3. 3. Now, given a start event s and an end event e in G , we wish to calculate the

49
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smallest A(s, e) respecting all the constraints in G .

0

It is well known that, in linear-only finite graphs, A(s, e) is the shortest distance

from s to e in G ^ where G ^ is derived from G as defined in Definition 3.7.

In max-only constraint graphs, A(s, e) can be calculated using the following two

steps [42]:

Step 1: Construct Gf^ from Gf. For all events v e Ef, calculate m(v) as:

m(v) =
fsd(s, v) if sr^-v
l °° if s^ v

(4.1)

where s r^-v (so^v) denotes that there is (is not) a path from s to v in Gfm, and sd(s,

v) is the shortest distance from s to v in Gf^.

Step 2: set A(s, root) = m(roof), and for all events v e E , let A(s, v) be

0

A(s, v) = min(m(v), maXy ç preds(v)(À(s' u) + Duv)) (4.2)

In linear-plus-latest constraint graphs, McMillan and Dili gave the following algo-

rithm to calculate the maximum time separation A(u, v) in Gf in [62], where u, v e

Ef:

Step 1: for all u, v in Gf let Syy = min(Buv, -byu. -dyu)'

repeat

Step 2: for all u, v, w in G , let Syy = min(Suv, Sy^, + s^y),

Step 3: for all u, v in Gf, let s^ = min(Suv, max^, g preds(v)(suw + Dwv))'
until condition 1 : for some u, s^u < 0, or
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condition 2: no change from the previous iteration.

The algorithm requires iterations on all events in the graph for both u and v. This

makes it difficult to extend the algorithm to compute the maximum time separation

in constraint graphs defined in Chapter 3, where our strategy is to compute on A ,

and then compute Aa+l, Aa+2, ..., incrementally while adding more unfoldings.
With the algorithm in [62], whenever more unfoldings are added, iterations on all

events in the new graph are inevitable. This prevents the reuse of computation re-

suits obtained when computing Aa to calculate Aa+l. In the following, we present a
variation of the above algorithm which lets us compute time separation from one

start event to any event in the graph. We will extend this variation algorithm to com-

pute time separations in the infinite unfolded constraint graph G°°.

0

To facilitate understanding of how the linear-only and the max-only algorithms are

used to develop an algorithm for the linear-plus-latest constraint systems, we first

rewrite the algorithm for the finite linear constraint graphs into a similar form as for

the max only case:

Step 1: Construct G ^ from Gf. For all events v e E , calculate m(v) using Equation
(4.1).

Step2: Set A(s, root) = m(root), and for all events v e Ef, define msources(v) as all

source events of v in G m, calculate A(s, v) = m(v) = min^ g msources(v)(^(s' u) +
sd(u, v)). This can be written as follows:

<J

A(s, v) = min(m(v), mm^ç msources(v)(À(s' u) + sd(u' v))) (4.3)

We can now combine the algorithms for linear only and max only graphs to obtain

the following algorithm for finite linear plus max constraint graphs.
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Algorithm 4.1: Time separation of events in a finite constraint graph with linear-

plus-latest constraints

Given a finite constraint graph Gf = <Ef, Rf>, a start event s and an end event e, the
time separation A(s, e) from s to e can be computed in the following three steps:

Step 1: Construct Gfm from Gf. For all events v e Ef let m(v) be calculated as in

Equation (4.1). For each vertex v e E , let msources(v) be the set of all the source

events of v in Gfj^, and let P and ~P be the sets of events reachable and not reachable

from s in G^, respectively.

0

Step 2: Set A(s, root) = m(root\ and for all v e P, let

A(s, v) = inin(m(v), maxy g preds(v)(A(s» u) + Duv))î (4.4)

where preds(v) is the set of source events to v involved in a max combina-

tion in Gf.

0

Step 3: Initialize A(s, v) = °o for all v e ~P, repeat computing A(s, v) as in Equation

(4.5) for all v e ~P, until either

a) there is a v e P such that miny g msources(v)(A(s' u) + s(^(u' v)) < m(v) ^oes not

hold (report inconsistency of the constraint graph) or

b) no change in A(s, v) from the preceding iteration in which case report the maxi-

mum time separation A(s, v).

A(s, v) = min(m(v), minu g msources(v)(À(s. u) + sd(u, v)),

maxu e preds(v)(À(s' u) + Duv))' (4-5)
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where sd(u, v) is the shortest distance from u to v in G1^.

0

Informally, the algorithm works as follows:

In Step 1, for every v eP, m(v) determines the latest occurrence time when v can

occur after s without considering the upper bounds of constraints involved in max

combinations. For v e ~P, m(v) is set to oo, meaning that there is no constraint to

satisfy without considering these upper bounds. sd(u, v) is the latest occurrence

time of v after the source u considering all path(s) from u to v except again the upper

bounds of the max constraints. In Steps 2 and 3, for all events v, the occurrence time

is restricted by considering the upper bounds of the max constraints, while still sat-

isfying all the other constraints. As A(s, v) in Equation (4.5) depends on A(s, u)

which is unknown at the beginning, iterations in Step 3 is necessary.

In the following section, we prove the correctness of Algorithm 4.1.

4.2 Proof of the Algorithm 4.1

Theorem 4.1: If the constraint system represented by G1 is consistent, then A(s, v)

expressed in Equations (4.4) for v e P and for v e-Pis an achievable upper bound

on the time separation from s to v.

u

Proof:

The proof consists of three parts. First, for any consistent timing assignment T sat-

isfying constraints in G in the form of Relations (2.2) and (2.3), we prove that T(v)
- ï(s) <: Afs, v^, where A(s, v) is given in Equation (4.5). This relation also holds for

all v e P if A(s, v) is as expressed in Equation (4.4). These are proven in Lemma 4.2.

Second, we show in Lemma 4.3 that the class of timing assignments satisfying z(v)

= Â(S, V) + T(s), where A(s, v) is given in Equation (4.5), corresponds to legalexe-
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cutions, and thus T(v^) - T(s) = ^(s, v) is an achievable upper bound for all v e E .

Then, we prove in Lemma 4.4 that if the constraint system represented by G is con-
sistent, then A(s, v) as expressed in Equation (4.4) is also an achievable upper bound

on the time separation from s to v for all v e P. Therefore, A(s, v) as expressed in

Equation (4.4) for v e P and in Equation (4.5) for v e ~P is an achievable upper

bound on the time separation from s to v.

Since Equation (4.5) is a strictly monotonous function and there are only a finite

number of constraints in a constraint graph, Algorithm 4.1will terminate.

If we use Equation (4.5) to calculate A(s, v) for all events in G1, then inconsistency

of G1 is detected during iterations when A(s, s) < 0 as in [62]. We use Equation (4.4)

instead of Equation (4.5) to calculate A(s, v) for v e P. This may lead to some kind

of inconsistency that could be undetected during the iterations in Step 3 of the var-

iation algorithm. However, from Leimna 4.3 and Lemma 4.4, we have that m(v) <

mlnu e msources(v)(^(s' u) + sd(u, v)) for all V £ P if the system is consistent. There-
fore, we can use this relation to detect the inconsistency of the constraint system.

a

To prove Lemmas 4.2, 4.3 and 4.4, we need the following Lemma 4.1.

Lemma 4.1: For any consistent timing assignment T satisfying the constraints in

G , the following relation holds for all v in G :

T(v) - ï(s) < m(v) (4.6)

Proof:

0
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If v e P, then since m(v) is the shortest distance from s to v in G ^, we have ï(v) -

T(s) < length(p), where p is a path from the start event s to v in G ^. This relation

holds for every path p. It follows ï(v) - r(s) < min(length(p)). However,

min(length(p)) = sd(s, v) = m(v) in Equation (4.1). Therefore, ï(v) - ï(s) < m(v)

holds for all v e P.

0

u

Else if v e ~P, then m(v) = oo and Relation (4.6) holds. a

Lemma 4.2: For any consistent timing assignment T satisfying constraints in G,
the following relation holds:

T(V) - T(S) < A^, V), (4.7)

where A(s, v) is computed according to Equation (4.5). Relation (4.7) also holds for

all v e P if A(s, v) is expressed as in Equation (4.4).

Proof:

We first prove that Relation (4.7) holds for a(s, -v) as expressed in Equation (4.5)

by induction on events in G1.

Basis: v = root, A(s, root) = m(roof), by Lemma 4.1, x(root') - ï(s) < m( roof) is true,

hence, Relation (4.7) holds.

The induction hypothesis is that Relation (4.7) holds for the source event of a con-

straint from u to v in G , i.e., z(u) - T(s) < Afs, u) holds. We prove r(v) - ï(s) < ^(s,

v) by showing that for any consistent timing assignment, z(v) - ï(s) is not grater than

each argument of the min function of Equation (4.5).
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For the first argument, T(v) - z(s) < m(v) holds due to Lemma 4.1.

For the second argument, since sd(u, v) is the shortest distance from u to v in G m,

we have T(v) - z(u) < sd(u, v) for every path from u to v in G ^. Adding this relation
to the induction hypothesis yields T(v) - T(s) < A(s, u) + sd(u, v). Hence, ï(v) - ï(s)

< min^ e msources(v)(À(s' u) + sd(u, v)) holds.

For the third argument of the min function in Equation (4.5), from Relation (2.3) we

have T(v) ^ maxy ç preds(v)(T(u) + Duv))- Subtract ï(s) from both sides to get ï(v) -

T(s) < maXy g preds(v)(T(u) - T(s) + Duv))- However, T(u) - ï(s) < ^(s, u), and thus z(v)

- T(s) < maxu ç preds(v)(À(s' u) + Duv))-

Therefore, Relation (4.7) holds for v. As G ^ is a connected graph, starting from

root. Relation (4.7) holds for all events in Gfm (and also for all events in G ).

If A(s, v) is as expressed in Equation (4.4), Relation (4.7) still holds, because A(s,

v) in Equation (4.5) contains one more term in the min function than that in Equa-

tion (4.4). Therefore, it can not be grater than A(s, v) as expressed in Equation

(4.4). a

Lemma 4.3: For all v e Ef the class of timing assignments

T(v) = à(s, V) + -C(S), (4.8)

where A(s, v) is as expresses in Equation (4.5), corresponds to legal executions, i.e.,

the timing assignments of Equation (4.8) satisfy all the timing constraints in G1.

Proof:

0
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By substituting A(s, v) in Equation (4.5) to Equation (4.8), and by substituting z(u)

- T(s) by A(s, u), we get the timing assignments to v as follows:

r(v) = min(m(v) + z(s), min^c msources(v)(T(u)+ sd(u' v))'

maXuep^s(v)(T(u)+Duv))- (4.9)

Obviously, z(v) <: maXy g preds(v)(T(u) + Duv) holds, i.e., the right-hand side of Re-
lation (2.3) is satisfied.

From Equation (4.9), we have T(v) < miny g msources(v)(T(u)+ sd(u' v))- As sourc-

es(v) e msources(v), we have ï(v) <: rmn^ g sources(v)(T(u)+ sd(u' v))- However,

sd(u, v) < BUV for every u e sources(v), therefore, z(v) < miny g sources(v)(T(u)+ Buv)

holds, i.e., the right-hand side of Relation (2.2) holds.

For every u e preds(v), v e msources(u) is tme in Gfm. When calculating A(s, u)

using Equation (4.5), we have

A(s, u) < min^ e msources(u)(À(s' w) + sd(w' u)) <! A(s' v) + sd(v' u)-

However sd(v, u) < - dyy, and we have A(s, u) < A(s, v) - dyy, i.e., A(s, v) > A(s, u)

+ dyy. Adding ï(s) to both sides, and applying Equation (4.8) to u and v, we get

ï(v) > ï(u) + dyy. As this relation holds for every u e preds(v), we get

T(v) > max^g preds(v)('I'(u) + duv) ' Le-'the left-hand side of Relation (2.3) holds.

For every u e sources(v), we have v e msources(u) is tme in G m. When calculating

A(s, u) using Equation (4.5), we have

u A(s, u) < minw e msources;(U)(A(S, w) + sd(w, u)) < A(s, v) + sd(v, u).
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However since sd(v, u) < - byy, we have A(s, u) < A(s, v) - byy, i.e., A(s, v) > A(s, u)

+ byy. By adding T(s) to both sides, and applying Equation (4.8) to u and v, we get

T(v) > ï(u) + byy. This relation holds for every u e sources(v), i.e., the left-hand side

of Relation (2.2) holds.

It follows that Relations (2.2) and (2.3) are satisfied. a

0

Lemma 4.4: If the constraint system represented by Gf is consistent, then for all
v e P the class of timing assignments given by Equation (4.8) where A(s, v) is as

expresses in Equation (4.4) corresponds to legal executions, i.e., the timing assign-

ments of Equation (4.8) satisfy all the timing constraints in G1.

Proof:

By substituting A(s, v) from Equation (4.4) to Equation (4.8) and by substituting

ï(u) - T(s) by A(s, u), we get the following timing assignment to v:

T(v) = min(m(v) + T(s), maXu e preds(v)(T(u) + Duv)) (4.10)

Obviously, ï(v) <: maxy g preds(v)(T(u) + Duv) holds, i.e., the right-hand side ofRe-
lation (2.3) is satisfied.

u

Applying Equation (4.10) to u yields

T(u) = inin(m(u) + ï(s), max^ ç preds(u)(T(w) + Dwu))î (4.11)

We prove the right-hand side of Relation (2.2) by showing that ï(v) - Byy is not grat-

er than each argument of the min function of Equation (4.11). If T(u) takes the value
m(u) + T(s), then for every u e sources(v), m(v) < m(u) + B^ holds. Adding ï(s) to
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both sides yields m(v) + ï(s) < T(u) + Byy. However, T(v) < m(v) + T(s) due to Lem-

ma 4. l, therefore, ï(v) < T(u) + Byy holds. Else if T(u) = max^, g preds(u)(T(w) + I)^,y),
then T(v) < max^, g sources(u)(T(w) + ^wu) + Byy has to hold, otherwise, the con-

straint system represented by G is inconsistent (meaning that r(u) takes the maxi-
mum possible value and we still cannot find an assignment to T(v) that satisfies the

relation T(v) < ï(v) + B^y). Therefore, the right-hand side of Relation (2.2) is satis-

fied if Gf is consistent.

0

0

We now prove the left-hand side of Relation (2.3) by showing that

maXy g oredsfv')(T(u) + ^uv) ls not grater than each argument of the min function in

Equation (4.10). For the first argument, it can be proven as follows: for every u e

preds(v), m(u) < m(v) - dyy holds, i.e., m(u) + d^ < m(v), hence maXy g preds(v)(m(u)
+ dyy) <: m(v). Adding ï(s) to both sides yields maxy g preds(v)(m(u) + T(s) + dyy) <
m(v)+ ï(s). However, by Lemma 4.l,ï(u)< m(u) + ï(s), hence maXy g preds(v)(T(u) +
dyy) < m(v)+ ï(s) holds. For the second argument, as dyy < Dyy, we immediately get

that maxy g preds(v)(Â(s. u) + T(s) + duv)) < maxu (Â(s' u) + T(s) + Duv)- Hence, the
left-hand side of Relation (2.3) is satisfied, i.e., max^g preds(v)(T(u) + ^uv) <T(V)-

For the left-hand side of Relation (2.2), we show that, if the constraint system rep-

resented by G is consistent, then for every u e sources(v), ï(u) + byy is not grater
than each argument of the min function in Equation (4.10). If T(v) takes the value

m(v) + ï(s), then for every u e sources(v), m(u) < m(v) - b^ holds, i.e., m(u) + byv

<: m(v), m(u) + z(s) + byy < ï(v). However, ï(u) <: m(u) + ï(s) due to Lemma 4.1,

therefore, ï(u) + byy < T(v) is satisfied. Else if T;(v) = maXy g preds(v)(T(u) + ^uv)'
then maXu g sources(v)(T(u) + Duv)> T(u) + buv has to be satisfied, otherwise, the con-

strain! system represented by G1 is inconsistent (meaning that T(v) takes the maxi-

mum possible value and we still cannot find an assignment to T(u) that satisfies the
relation T(v) > ï(u) + byv). Therefore, the left hand side of Relation (2.2) is satisfied
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if Gf is consistent.

It follows that Relations (2.2) and (2.3) are satisfied if Gf is consistent. a

0

In the McMillan and Dili's algorithm [62], inconsistency of the constraint system

can be detected during the iterations when A(u, u) < 0. In the variation algorithm,

instead of Equation (4.5) we use Equation (4.4) to calculate A(s, v) for all v e P.

This may leave some kind of inconsistency undetected by A(s, s) < 0 dunng the it-

erations in Step 3. However, from Lemma 4.3 and Lemma 4.4, we have that m(v)

< min^ ç msouices(v)(^(s'u) + s^(u' v)) for all v e P if the system is consistent. There-
fore, we can use this relation to detect the inconsistency, as stated in the following

Corollary to Theorem 4.1.

Corollary 4.1: Inconsistency of the constraint graph containing max and linear

constraints can be detected by a) the presence of a negative cycle in G m, or b) there
exists a v e P such that min^ g msources(v)(A(s' u) + sd(u' v)) < m(v)-

4.3 Examples

Example 4.1: Consider a constraint graph Gf as shown in Figure 4.1, Let the start
event be b, and the end event be g, i.e., we wish to calculate A(b, g).

0
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Figure 4.2 Gfm for constraint graph Gf in Figure 4.1

0

Step 1:

m(b) = 0, m(a) = 0, m(c) = 3, m(d) = m(e) = m(f) = m(g) = m(h) = m(i) = °°,

P = {a, e}, ~P = {d, e, f, g, h, i}, msources(a) = {b, e}, msources(b) = (a, d),

msources(c) = {d, a}, msources(d) = (h, e), msources(e) = (d, h, i), msources(f) =

(h, i, g), msources(g) = (f, i), msources(h) = (f), msources(i) = (e).

Step 2: A(b, a) = m(a) = 0, A(b, c) = m(c) = 3.
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Step 3: Initialize A(b, d) = A(b, e) = A(b, f) = A(b, g) = A(b, h) = A(b, i) = °°.

0

First iteration:

A(b, d) = min(°o, min(°°+sd(e,d), °o+sd(e,d)), max(0+4, 3+7)) = 10,

A(b, e) = min(°o, inin(10+10, °°-!, °°+5)) = 20,

A(b, h) = min(°°, °°+sd(f,h), max(10+6, 20+5)) = 25,

A(b, f) = min(°°, min(25+4, °o-l, °o+8)) = 29,

A(b, g) = min(°°, min(29+8, °°+0)) = 37,

A(b, i) = min(°°, 20+6, max(29+2, 37+10)) = 26.

No inconsistency is detected.

Second iteration:

A(b, d) = min(°°, min(20+10, 25+0), max(0+4, 3+7)) = 10,

A(b, e) = min(°°, min(10+10, 25-1, 26+5)) = 20,

A(b, h) = min(°°, 29+7, max(10+6, 20+5)) = 25,

A(b, f) = min(°°, min(25+4, 26-1, 37+8)) = 25,

A(b, g) = min(°°, min(25+8, 26+0)) = 26,

A(b, i) = min(°°, 20+6, max(25+2, 26+10)) = 26.

No inconsistency is detected.

Third iteration, a fixed point is reached.

Consistency check: A(b, a) + sd(a, c) =0+3 =3 = m(c), A(b, b) = min(0, inin(0+5,

10-1)) = 0 = m(b), therefore, the constraint system is consistent.

Example 4.2: An inconsistent constrain graph is shown in Figure 4.3. The start

event is a and the end event is d, i.e., we wish to compute A(a, d).

u
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Figure 4.3 An inconsistent constraint graph

0

Step 1: G m is constructed as shown in Figure 4.3b. The m values are: m(a) = 0,
mÇroot) = 0, m(b) = m(c) = m(d) = oo. p = [root, a}, ~P = {b, e, d}.

Step 2: A(a, root) = m(root) = 0,

Step 3: Initialize A(a, b) = A(a, c) = A(a, d) = °o.

First iteration:

A(a, b) = min(°o, min(°°-2, °o-4), max(0 +0,0 + 3)) = 3,

A(a, e) = min(~, °o-2, max(0 + 10, 3 +3))= 10,

A(a, d) = min(°°, min(3 + 5, 10 + 4)) = 8.

A(a, a) = min(0, min(3-4, 10-7)) = -l < 0, therefore, Gfis inconsistent.

In this example, there is no negative cycle in Gfm, but the constraint system is not
consistent, because to satisfy the constraints from a to c and then from c to d, T(d) -

T(a) > 9 must hold, on the other hand, to satisfy the constraints from a to b and then

from b to d, r(d) - z(a) < 8 has to hold.

u
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4.4 Complexity of the Variation Algorithm

Compared to the algorithm in [62], we calculate A(s, v) for v e P in one step using

Equation (4.5) instead of doing an iteration. In the worst case, no event in G1^ is

reachable from the start point except the start point itself. In that case the complex-

ity of the variation algorithm is comparable to that in [62], it is pseudo polynomial

in 0(n2SijSy), where n is the number of events in Gf, SySy is the sum of all initial
timing separations (timing bounds in Relations (2.2) and (2.3)). In the best case, all

events are reachable from the start point, in which case the complexity of the algo-

rithm is polynomial.

0

0
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Chapter 5

Maximum Time Separation Algorithms in Cyclic Systems

In this Chapter, we give algorithms of computing the maximum time separation of

events in cyclic systems. The chapter consists of 2 sections dealing with cyclic sys-

terns containing linear-only and linear-plus-latest constraints, respectively.

5.1 Cyclic Linear-OnIy Systems

In this section, we develop an algorithm of computing the maximum time separa-

tion in a cyclic system with linear-only constraints. We first show that if the con-

straint system represented by G is consistent, then the time separation from s^ to

e^+p computed in a finite unfolded constraint graph Ga+P+r is the same as computed
in the infinite unfolded constraint graph G°°, where r is an integer. We then give an
upper bound of r. The upper bound can be determined by the number of events in

the constraint graph. At last, we obtain an algorithm with complexity in 0(n9) for
computing the maximum time separation between events in linear-only cyclic sys-
terns, where n is the number of events in G.

u

From the definition in Section 3. 4, the time separation Aa from s^ to e^+p in G°° is

the shortest distance from s^ to e^+p in the directed graph 0^°°, where G^"" is de-

rived from G°° in the same way as Gj^ is derived from G (Definition 3.7). Although

both the start event s^ and the end event e^+g are in GU-t'PT1^ the shortest path from

sato ea+P m <Jm0 may Pass through events in U^+p+i , Ua+p+2>.... In other words,
we may not compute Aa by considering only constraints in Ga+^+l. The following

theorem states that the shortest path from s^ to e^+p in a consistent G^° cannot pass

l. As defined in Equation (3.4), Ua= {Va | ve E}, a > 0.

65
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through any event in U^+p+r+i, V^+^+T+Î, ••-, where r is an integer constant, i.e., Aa
can be computed in Gma+^+r.

0

Theorem 5.1: If the constraint system represented by G°° is consistent, then V a >

K, where K is as defined in Equation (3.5), the shortest path between any two events

Ua and VQ, u, v e E, will not pass through any event in U^+r+i for r > P(n, 2) +1,

where P(n, 2) = n • (n-1) is the 2 pennutation of n, and n is the number of events in G.

Proof: By contradiction.

Suppose that the shortest path from u^ to v^ passes through at least one event in

Ua+r+l, then the shortest path passes through at least two events in each of U^+i,

Ua+2' • • • ' Ua+r. As there are n events in Uy for all a S 0, and r is greater than P(n,

2), there exist some u', v' e E,p, qe [a +1, ..., a +r], p ^q, such that u'p, v'p,
u'q, and v'q lie on the shortest path, as shown in Figure 5.1.

ua4-

va

u,a

v p_

ù'

u"

u,a+1 u,
p

u,
q

=^---
u+r-q+p

u"
a+r

u,a+r

<J

Figure 5.1 The shortest path from u^ to v^

As a > K, the constraints between events in U^+i and those between events in Vy^

and U^+i+i are the same for all i > 0. Hence, as shown in Figure 5.1, corresponding

to the path from u'g to v'g passing through u"^^ (which is on the shortest path from
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ua to va)' there is a path from u'p to v'p passing through u"c(+r.Q+p. The lengths of

these two paths are identical. As the shortest path from u'p to v'p passes through u'q
to v'q and u"a+r, we have that d = d(u'p, u'q) + d(v'q, v'p) < 0, where d(u'p, u'q) and
d(v'q, v'p) are the distances from u'p to u'q and from v'q to v'p, respectively, along

the shortest path from u'p to v'p. Consequently, when further (q - p) unfoldings are

added, the shortest distance from u'p to v'p will decrease since d < 0. That is, when
more and more unfoldings are added, the shortest distance from u'p to v'p will be
approaching -°o. On the other hand, from the well-formedness Condition l, G^is

strongly connected, this means that there is a path from u'p to v'p with a finite dis-
tance, hence there is a negative cycle containing events u'p, u'q, u'p+2(q-p)>

v'p+2(q-p)' v'q' v'p ln the Gm°°- Therefore, the constraint system represented by 0^

(and thus G°°) would be inconsistent.

Theorem 5.1 gives a condition which allows us to determine whether the constraint

system G°° is consistent.

), ••-,

00

Corollary 5.1: If there exist some a>K, 0 <i <r, and u, v e E, where K is defined

as in Equation (3.5), such that the shortest path between Uy and v^ in Gya passes

through u^+i and v^p where r = P(n, 2) +1, P(n, 2) is the 2 permutation of n, then

G"" is inconsistent.

(J

Consequently, if G°° is consistent and a > K, then the shortest distance from s^ to

e^+p calculated in Gjna+P+r is the same as that calculated in G^00.

Symmetrically to Theorem 5.1, we also have that if G is consistent, then V a >K +

r, the shortest path between two events Uy to Vy cannot pass through any event in

Ua-r-l- In other words, the time separation from Uy to v^ is determined by con-
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straints in Ua-r, Uy.j.+i, • • •, Ua,..., Uc(+;., for a > K+r, otherwise there is a negative

cycle in Gjn°°. Since the constraints in Uy.p U^r+i, ..., Ua, ..., ..., V^^ are the

same for all a >K+ r, we have that the time separation from Uy to v^ are the same

for all a> K +r. Similary, the time separation from Ua to v^+p is determined by

constraints between events in V^.r, Ua.r+i, ..., Ua, ..., Uy+p+j., fora > K +r, oth-

erwise there is a negative cycle in Gjn . Since the constraints in U^-p U^.j.+i, ...,

UQ, ..., ..., Uy+p+r are the same for all a> K +r, we have that the time separation

from u^to v^+p are the same for all a> K+ r. We thus can compute time separation

fromUatoVa+pinGa+P+r.

0

u

To find the maximum time separation A in the infinite constraint graph G , we first

calculate the shortest distance Aa from s^ to e^+p in Ga+P+r where r = P(n, 2) + 1
for a < K (K is as in Equation (3.5)). Second, we add unfolding Ug+i+p+j. to

QK+i+p+r^ o < i ^r^ and calculate AK+i as the shortest distance from SK+, to 0^+1+3 in
QK+i+p+r ^g maximum time separation is then A = max(A°, A1, ..., AK+r,

AK+r+1,...) = max(A°, A1, ..., AK+r).

Algorithm 5.1: Maximum time separation in cyclic systems with linear-only con-

straints

Step 1: Constmct GmK+p+r from GK+p+r, if there is a negative cycle in it, then stop

and report inconsistency of G°°. Else if there is a pair of events Up and Vp, such that

the shortest path from Up to Vp passes through another pair of events, Uq and Vq, p ^

q, p, q > K, then stop and report inconsistency of G . Else for a = 0, ..., K+r, find

the shortest distance Aa from s^ to e^+p in Gjn p .

Step 2: À = max (A°, Al, ..., AK+r).
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The complexity of Algorithm 2 can be analysed as follows:

In Step 1, the number of events in GK+P+r is (K+r+ (3) • n+ 1. The complexity of
detecting a negative cycle in a graph is in the order of the cube of the number of

events in GK+p+r, i.e., it is in 0(((K +r+ P) • n+ I)3). The complexity of detecting
a negative cycle is thus in 0(n9), since r = P(n, 2) + 1 is in 0(n ) and K is a constant.
The number of pairs of events in U^+i is in 0(n2), the complexity to find the short-
est path between one pair of events is in the square of the number of events in the

graph, hence the time needed to check the consistency of G°° is in 0(n • ((K + r +
P) • n + l)2), because the number of events in GK+p+r is (K+r+ P) • n+ l.The
complexity to check the consistency of G°° is thus in 0(n8). The complexity to find
A°, A1, ..., AK+r is (K+r+ l) • (K+ 2r+ P)2, which is in 0(n6). The time needed
in Step 2 is in 0(K+r) where K is a constant and r is in 0(n ). It follows that the
complexity of Algorithm 5.1 is in 0(n9).

5.2 Cyclic Linear-plus-Latest Systems

In this section, we address the maximum time separation problem in cyclic systems

with linear-plus-latest constraints. Similar to the linear-only systems, we begin with

one A", the time separation from s^ to e^+g satisfying all the constraints in the infi-

nite unfolded constraint graph G°°.

Even though both the start and the end events are in Qa+P+l, the time separation Aa
may depend on the occurrence times of the events in later unfoldings (U^+p+i,

Uoc+p+2' • • •) because of the presence of linear constraints in G°°. We thus may not
be able to compute Aa in Ga+P+l. In this section, we show that Aa can be calculated
in a finitely unfolded constraint graph Ga+P+r where r is an integer such that the
time separation computed in Ga+P+r is the same as that computed in G°°. In Section
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5.2.1, we prove that such r exists and that it takes the same value P(n, 2) + l as in

linear-only systems, where n is the number of events in G. In Section 5.2.2, Algo-

rithm 4.1 is extended to compute Aa+i (i > 0) in Ga+i+p+r. We show that the time
separation will eventually become a periodic function of i. We give a condition to

detect this situation. Thereafter further unfoldings are unnecessary for computing

the maximum time separation. We show that the number of unfoldings needed for

the time separations to become periodic depends on the delay values in the specifi-

cation. We propose an algorithm for computing the maximum time separations by

unfolding the constraint graph step by step while checking whether the condition is

satisfied until the separation exhibits a periodic behaviour.

5.2.1 Algorithm to Compute A"

Aa can be calculated by applying Algorithm 4.1 in Section 4.1 to Ga+P+r due to the
following theorem:

Theorem 5.2: If the constraint system G°° is consistent, then V a >K, Aa can be

calculated in Ga+P+r, where n is the number of events in G, K is defined as in Equa-
tion (3.5), r = P(n, 2) +1, and P(n, 2) is the 2 permutation of n.

Proof:

All the latest constraints are precedence, hence the occurrence times of the sink

events of latest constraints are determined by their predecessors. However, the oc-

currence times of the predecessors do not depend on these max constraints. In other

words, the max constraints in the later unfoldings cannot influence the occurrence

times of events in earlier unfoldings. The linear constraints in later unfoldings are

considered when the m values are calculated. If G00 is consistent, then 0^°° is con-

sistent too. By applying Theorem 5.1 to 0^°°, we get that V a > K, the shortest path

u
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between any two events Uçç and v^, where u, v £ E, will not pass through any event

in Va+T+l' l-e-> the m-values in Step I of the Algorithm 4.1 can be calculated in

Gma+ r- Therefore, Aa can be calculated in Ga+p+r if the constraint system rcpre-

sented by G°° is consistent.

0

Algorithm 5.2: A in linear-plus-latest constraint graphs

Step 1 : Check the consistency of G^°° based on Corollary 5. l. If G^ is inconsistent,

then stop, otherwise, go to Step 2.

Step 2: Construct Gma+p+r from Ga+p+r, and set m(,Sa) = 0. For all events u e E, 0
<i < a+ P, calculate the m-values using Equation (4.1).

Step 3: Set A(SQ(, root) = mCroot), initialize A(Sa, v,) = m(vi) for all the events reach-

able from the start point Sy in Gma+^+r, initialize A(s^, v^) = o° for all v not reachable
from Sr'a-

Step 4: Compute A(Sa, v^), v^ e Up repeatly using Equation (4.5), until either there

is a v reachable from s^ such that miny g msources(v)(^(s' u) + s<^(u' v)) < m(v) ln
which case report inconsistency of the specification, or there is no change in A($a,

v,) in which case report the maximum time separation is A = A(SC(, e^+p).

Example 5.1: Consider a constraint graph as shown in Figure 5.2. We wish to cal-

culate A from a^ to b^. We have n = 2, P(n, 2)+ l = 3, therefore, additional three

unfoldings are needed to calculate A .

u
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Figure 5.2 . The constraint graph G for Example 5.1

Step 1: Based on Corollary 5.1, the constraint system G°°^ is consistent.

Step 2: Constmct G6^ as in Figure 5.3. The m-values are:

m(â2) = 0, m(b2) = min(7-l, -5+30) = 6, m(bi) = niin(-l, 7-1-5) = -l, m(ai) = niin(-

5, -1-1) = -5, m(bo) = min(-l-5, -5-1) = -6, m(ao) = min(-5-5, -6-1, -1-5) = -10,

mÇroot) = min (0-10, 0 - 6) =-10.

All events are reachable from the start point a-^.

Step 3: A(â2, root) = m(root) = -10, A(a2, ao) = m(ao) = -10, A(a2, bo) = m(bo) = -6,

A(â2, ai) = m(ai) = -5, A(a2, bi) = m(bi) =-!,...

u
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Figure 5.3 The graph G6^ of constraint graph in Figure 5.2

Step 4: A(â2, rooî) = m(root) = -10, A(a2, ao) = min(-10, -10 + 0) = -10, A(a2, bo)=

min(-6, max(-10 + 2, -10 + 0)) = -8, A(a2, ai) = min(-5, max(-10 + 10, -8 + 6)) = -

5, À(â2, bi) = min(-l, max(-5 + 2, -8 + 20)) = -l, A(a2, b2) = min(6, max(0 + 2, -l

+ 20)) = 6.

Step 5: The constraint system is consistent, and A(a2, b2) = 6.

If we calculate the maximum time separation only in G3, then A(a2, b2) = 19 which
can not to satisfy all the constraints in the original constraint graph.

This example illustrates the situation when the time separation between a^ and b^ is

inïïuenced by the constraints in later unfoldings U3, U4,..., but as the system itself

is consistent, we can calculate the time separation by considering only a few more

unfoldings. In fact, in this example, one additional unfolding is enough, after that,

the time separation does not change with the addition of further unfoldings.

u
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0

5.2.2 Algorithm for Cyclic Linear-PIus-Latest Constraint Systems

As shown in Section 5.2.1, A(s^ e^+p), a > K, can be computed in Ga+13+r. Starting
from AK, AK+i, i > 0, can be computed step by step in GK+i+p+r. Due to the fact that
the newly added constraints keep repeating (because a >. K), A(s^+^ eK+i+p)w1^ 10G~

come a periodic function of i, i.e., A(s^+i, e^+i+p) = A(sK+i+c^ eR+i+c+p) for a large
enough i, where c is a constant. When this happens, the maximum time separation

A can be obtained by

A == max(maxo < a < K+i(À(sa, ea+p))' maXa ^ K+i(A(sa, ^a+p)))

= max(maxo < a < K+i(À(Sa, Ca+p))' ^^K+i < a < K+i+c-l(A(sa, ea+p))) (5.1)

In Equation (5.1), there are only a finite number of A(s^^ e^+p) and every A(SQ^ Ca+p)

can be computed in a finite unfolded constraint graph Qa+P+r. In other words, we
can compute the maximum time separation A in a finite number of finite unfolded

constraint graphs.

We show next that A(s^+i, eK+i+p) will in fact become a periodic function of i.

5.2.2.1 Repetition of sd(s^ Vj)

When computing à(s^ Ca+p) by applying Algorithm 4.1 to Ga+P+r, m(Vj) is the
shortest distance from s^ to Vj in Gma+^+r, where Vj is an event in unfolding Uj, 0 <
j <a+ |3 +r. Asthe structure of G^a+^+r is repeating after K unfoldings, it is well
known that the m(Vj) values are determined by the minimum ratio cycles of G^ [38]
which is derived from the constraint graph G in the way as described in Definition

3.7. Here, a minimum ratio cycle c is such that w(c)/e(c) = p where

u
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p = min^ w<£)
te(c)

c is a simple cycle in G
m

(5.2)

u

A simple cycle in G^ is a cycle on which no vertex is repeated.

Then [38], there exist integers K* and e* such that for all a > K*,

m(Vj) - m(Vj+e*) = pE*, 0<j < a- K*, (5.3)

where K* is the number of unfoldings such that all the m-values start repeating and

e* is the period of this repetition. From the well-formedness conditions in Section

3. 2, we have p > 0.

0

Example 5.2: Consider the constraint graph G of the repeated microprocessor

READ cycle in Figure 3.3. Its G^ is shown in Figure 5.4.
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Figure 5.4 G^ of the constraint graph in Figure 3.3.

In Gjn, we get8* = 1,K* = 3 and p = 100 (the minimum ratio cycle is highlighted

in Figure 5.4).

Then, m(v,) in Gma+p+r, 0 <j < a-K*, can be calculated by m(v;) also in Gma+p+r,
a-K*<i<a+|3+r, using Equation (5.3) for a > K*.

In the following Lemma, we show that the m values of events in Ga+P+e*+I' can be
computed from the m values of events in Qa+^+T for a > max (K*, K).

Lemma 5.1: If a ^ max(K*, K), then

u
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0
sd(Sa+g*, vj) = sd(Sa, v^ + pe*, 0<j <K +r+ 8*,

sd(sa+e*' vj) = sd(sa' vj-e*)' K+r+e*<j<a+p+r+e*,

(5.4)

(5.5)

where sd(s^, Vj) and sd(Sa, Vj-e*) are the shortest distances from s^ to Vj and to Vj_g*

in Gjn p+r, respectively, while sd(Sa+g*, Vj) and sd(Sa+e*, Vy+e*^ are the shortest
distances from s^+g* to v, and to v,+g* in GiQU't'p't't'"t'1, respectively.

Proof:

The G^ graphs corresponding to Ga+P+r and Ga+P+e*+r are as shown in Figure 5.5.
We first prove Equation (5.5).

0
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Figure 5.5 The G^+T and G^a+P+e*+r

0 From Theorem 5.1, if the cyclic system G is consistent, then sd(Sc(+g*, Vj), K + r +
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E* <j < a+ (3 +r+ e*,isthe shortest distance from Sy+g* to Vj in Gma+^+Ë*+r. By
applying Theorem 5.1 to G^a+^+E*+T, the corresponding shortest path can only pass
through events in U^+g*+i, ..., Ua+p+r+e*-i. On the other hand, sd(Sa, Vj.g*), K + r
+e*<j<a+P+r+E* (i.e., K +r<j- £* ^ a+ P+r), is the shortest distance from

sa to vj-e* m Gjna+P+r. By applying Theorem 5.1 to G^a+^+r, the corresponding
shortest path can only pass through events in U^+i, ..., U^+p+j..i. But, the con-
straints in UK+£*+I, ..., Uo(+p+e*+r.i arc the same as in U^+i, ..., Ua+p+r.i, because
all these unfoldings are after U^-. Therefore, Equation (5.5) holds.

Now, we prove Equation (5.4). Since a > max(K*, K) > K*, we can apply Equation

(5.3) to Vj in Gma+p+e:!:+r, where 0<j <a+ e* - K*, and obtain

sd(SOC+6*' vj) = sd(sa+E*' VJ+E*) + Pe*' 0<j <a+ E* -K

In the following, we consider two cases for j :

* (5.6)

Case l:K+r<j<K+r+e*. That is,j + E* > K+r+ e*, by applying Equation

(5.5) to v^+g*, we have sdCs^+g*, v^+g*^ = sd(s^, Vj). By substituting this relation to
Equation (5.6), we get sd(Sa+g*, ^+g*) = sd(s^, vj) + pE*. I.e., Equation (5.4) holds
forK+r<j<K+r+e*.

Case 2: 0<j < K+r. By applying Equation (5.6) x times where x =FK + r-j/ E*1,
we obtain

u

sd(Sa+e*, Vj) = sd(Sa+e*, Vy+^g*) + xpE*

sd(Sa+g*, v^e*+e*) + XPE* + Pe* (5.7)

Since x =FK + r-j/ e*1 and0<j <K +r, we have j + xe* + e* >K+r+ e*. We
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can now apply Equation (5.5) to Equation (5.7) and obtain

sd(sa+e*' vj) = sd(sa' VJ+XE*) + XPe* + PË*' 0 <j < K+r. (5.8)

On the other hand, ifO <j < K+r, by applying Equation (5.3) x times in Gjn p

we obtain

sd(Sa, Vj) = sd(Sa, v^g*) + xps*, 0<j < K +r. (5.9)

Comparing Equations (5.8) and (5.9), we can see that Equation (5.4) holds for

0^j<K+r.

By combining the two cases, we conclude that Equation (5.4) holds. a

0
In the following, we show that the periodicity of the sd values as indicated in Equa-

tions (5.4) and (5.5) also applies to the time separations from s^ to Vj*, where vj* is

an event on the shortest path from s^ to the root in Gmu''rp-rl.

5.2.2.2 Repetition ofA(Sa, Vj*)

Lemma 5.2: In a finite graph G containing linear-plus-latest constraints, if v is on

the shortest path from s to root in Gfm, then A(s, v) = m(v).

Proof:

By induction on the events in the reverse order as they appear on the shortest path

from s to root in G^.

u
Basis: v = root, A(s, root) = m(root) is tme.
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The induction hypothesis is that A(s, v) = m(v) holds. We then prove that A(s, u*)

= m(u*) also holds, where u* e msources(v) and u*, v are on the shortest path from

s to root.

As both u* and v are on the shortest path from s to root in G ^, and

u* e msources(v), then u* must be on the shortest path from s to v, i.e., m(v) =

minu e msources(v)(m(u) + sd(u' v)) = m(u*) + sd(u*> v)- Then' from Equation (4.5),
Vu e msources(v), A(s, u) + sd(u, v) > A(s, v), and A(s, v) = m(v) due to the induc-

tion hypothesis. Hence, Vu e msources(v), A(s, u) + sd(u, v) > m(v) = m(u*) +

sd(u*, v). Applying this relation to u* yields A(s, u*) >. m(u*). On the other hand,

from Equation (4.5), we have A(s, u*) < m(u*). Therefore, A(s, u*) = m(u*).

From Lemma 5.1, we have that the shortest path from s^+g* to Vj* which is on the

shortest path from s^+g* to root in Gma+^+8*+r, a ^ max (K*, K), can be computed

using Equations (5.4) and (5.5). From Lemma 5.2, we have that A(Sa+e*> Vj*) =

sd(Sa+e*, Vj*) in G^a+P+ESI!+r and A(Sa, Vj.g**) = sd(Sa, Vj_g,:i:) in Gma+p+r. Combin-
ing this result with Equation (5.5), we obtain

A(Sa+e*, Vj*) = A(Sa, Vj.g**), K+r+6*<j<a+|3+r+e;l: (5.10)

For a > K^ax' where

u

K^=K*+K+r+e*, (5.11)

we have K+r+e*<a- K*. Form Equation (5.3), we get sd(s^, Vj*) + pe* = sd(s^,

Vj.g**). By combining this with Equation (5.4), we obtain

A(Sa+e*, Vj*) = A(Sa, Vj.e**), e* <j < K +r+ E*. (5.12)
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Combining Equations (5.10) and (5.12) yields

0

A(SCC+E*,VJ*)=A(S^VJ.^)J>£* (5.13)

In other words, the time separations for events on the shortest path from Sy to root

are periodic functions with period e*. In the same way as we compute sd(s^+g*, Vj*)
values using Equation (5.4) and (5.5), A(s^+g*, Vj*) can be calculated as follows:

A(Sa+e*, vf) = A(Soc, ^^ + pe*, 0<j < K+r+ e*, (5.14)

A(SO(+£*, Vj*) = A(Sa, Vj-.g**), K+r+ E* <j < a+ P+r+ e*, (5.15)

where A(Sa, Vj*) and A(S£(, Vj-e**) are the time separations from s^ to Vj* and to Vj.

;** in Ga+^+r, respectively, while A(SC(+£*, Vj*) and A(s^+g*, v/'+g**^ are the time
separations from s^+e.* to vj* and to Vj+g** in Ga+P+e*+r, respectively.
e

That is, for a > K^ax the A values of events which are on the shortest path from s^

to root in G^a+P+r wlll present the same periodic behaviour as the sd values.

5.2.2.3 Repetition ofA(Sa, Vj)

Due to the repetition of the m values and of the structure of the unfolded constraint

graphs, all A(s^, Vj) values will eventually repeat periodically as indicated in Equa-
tion (5.13). But, we do not know when the periodic behaviour begins. In the follow-

ing, we show that if there is an a=K' ^ Kj^x such lhat the equations between the

A values of all events Vj, in GK'+P+e*+r and those in GK'+P+r are as Vj* in Equations
(5.14) and (5.15), then K' is an upper bound on the number of unfoldings such that

for all i > 0, ACs^'+i, e^'+i+p) will be a periodic function with a period of e*.

u
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Theorem 5.3: Let A(SK', Vj) and A(SK', Vj_g*) be the time separations from s^- to Vj-

and to Vj.g* in GK'+^+r, respectively, and let A(SK'+£*, Vj) and A(s£'+g*, vy+g*) be the
time separations from s^'+g* to Vj and to Vj+g* in GK'+13+e*+r, respectively, where K'
is an integer. If K' satisfies K' ^ K^ax such that

A(SCC+£*, Vj) = A(Sa, v^ + pE*, 0 <j <K+r+ e* (5.16)

A(Sa+e*, Vj) = A(Sa, Vj.g,), K+r+ e* <j < a+ P+r+ e*, (5.17)

hold for a = K', then Equations (5.16) and (5.17) also hold for a= K' + 1.

Proo/(of Theorem 5.3):

By induction on the iterative computation of A(sQ+2e*' vj) m G p .

In the first iteration, ^(s^^^, Vj) = sd(s^2e*' Vj), 0<j ^K' + P +r+ 2e*, where
AI is the time separation in the first iteration. By applying Lemma 5.1 to

GK'+2£'+P+r, we obtain that

sd(Sa+2e*' vj) == sd(Sa+g*, v^ + pE* 0 ^j < K+r+ 2e*, (5.18)

sd(Sa+2e*> Vj) = sd(Sa+g*, Vj_g*), K+r+2E* <j <K' + P +r+ 2e*, (5.19)

That is, Equations (5.16) and (5.17) hold fora= K' + l in the first iteration.

The induction hypothesis is that Equations (5.16) and (5.17) hold in (K-l)-th itera-

tion. From Equation (4.5), it follows that

ÂK(sK'+2E*'vj) = min (sd(sK'+2e^ vj)' minu e msources(vp (ÀK-l(SK'+2E^ u) + sd(u'
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Vj)), max^ g prdes(vj) (ÀK-l(SK'+2E^ u) + DuVj )) and (5-20)

ÂK(sK'+e*'vj) = min (sd(sK'+e*, Vj), min^/e msources(vj)(AK-l(SK'+e*' u') +

sd(u',Vj)), max^, ^ p^es(vj) (AK-l(SK'+6*' u) + ^^ ))' (5.21)

where A^ and A^._i are the time separations in the K-th and the (K - l)-th iteration,

respectively.

IfO <j < K+r+ e*, by comparing the computation of A,((s^'+2e*)Vi) and that of

^K(SK'+e*'vj)' m Bquations (5.20) and (5.21), we can see the following 3 facts:

a) all events u in Equation (5.20) are in one to one correspondence with events u'

in Equation (5.21);

b) sd(sK'+2g*, Vj) = sd(sK'+e*, Vj) + pe* (Equation (5.4)), ^-l(.SK'+2^ u) = ÀK-
l(SK'+e*' u') + PE* (^ue to (5.16) in the hypothesis), sd(u, Vj) = sd(u',Vj);

^ ^.. = DVj ~ ""/vj •

Therefore, A(s^'+2E*,Vj) = A(sK'+e*;Vj) + pE* forO <j <K +r+ E*, i.e., Equation
(5.16) holds in the K-th iteration.

u

IfK+r+E*<j^K+r+ 2e*, from Equation (4.5) we have

ÂK(SK'+E*'VJ-E*) = min(sd(sK'+e*, Vj_g*), m^'ç msomces(v,)^-l^'^, u') +
sd(u' ,Vj.e*)), max^/ ç prdes(Vj) (ÀK-I(SK'+E^ u) + Du/Vj )) (5-22)

By comparing the computation ofA|c(sK'+28*'vj) to lhe computation ofA^(s£'+g*,Vj_
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g*) in Equations (5.20) and (5.22), we can see that:

a) all events u in Equation (5.20) are in one to one correspondence with events u'

in Equation (5.22);

b) sd(sK'+2e*, Vj) = sd(sK'+g*, Vj_g*) (Equation (5.5)), ^-l(.SK'+2s.^ u) = AK-l(SK'+e*'
u') (due to Equation (5.17) in the hypothesis), and sd(u, Vj) = sd(u',Vj);

c)Duv^=Du^-

Therefore, A(s^'+2e*'vj) = À(sK'+e*,Vj.g*) forK+r+E*<j<K+r+ 2e*, i.e., Equa-
tion (5.17) holds in the K-th iteration.

0
IfK + r + 2e* <j<K+P+r+ 2e*, by comparing the computation of A^(sK'+2e*'vj)
to the computation of A^(s^'^_g*,v,), the right hand sides of Equations (5.20) and

(5.21), we can see that:

a) all events u in Equation (5.20) are in one to one correspondence with events u'

in Equation (5.21);

b) sd(sK'+2e*, Vj) = sd(sK-+e<., Vj) (Equation (5.5)), ^-l(.SK'+2£*'u) = ÀK-l(SK'+E*'u')
(due to (5.17) in the hypothesis), and sd(u, Vj) = sd(u',Vj);

c)Duv^=Du^-

Therefore, A(sK>+2g*,Vj) = A(SK'+E*,VJ) forK+r+2e*+l<j<K+P+r+ 2e*, i.e.,
Equation (5.17) holds in the K-th iteration.

u It follows that Equations (5.16) and (5.17) hold in the K-th iteration, and thus The-
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orem 5.3 is tme.

a

Theorem 5.4: If Equations (5.16) and (5.17) are true for a = K', then, \/ i>.0

V i > 0, A(sK'+(i+i)e*, Vj+(,+i)g*) = A(SK'+ie*, Vj+ig*), K+r<j<K'+|3+r. (5.23)

I.e., A(SK'+^*, Vj+ig*) is a periodic function of i with period e*.

Proof:

0

By induction on i. The induction base is i = 0, then by applying Theorem 5.3 to K',

Equation (5.23) holds for i = 0. The induction hypothesis is that Equation (5.23)

holds for i = j. Then, by applying Theorem 5.3 to K' + j, we have that Equation

(5.23) holds fori =j + 1. Therefore, Theorem 5.4 is true.

a

Equations (5.16) and (5.17) indicate that the time separation from s^'+g* to Vj, 0 ^j

< K +r+ e* behaves the same way as sd(sK'+g*, Vj). In other words, the time sepa-
ration A(s^'+e*, Vj) is determined by A(sK'+e*^ Vj*) and the constraints from Vj* to

Vj, where Vj* is the set of events in unfolding Uj- which are on the shortest path from
SK'+e* to the wo?.

0

The maximum time separation A = maxc; > o(A(s^, e^+p)) can thus be calculated
by finding an upper bound K' > K^ax on the number of unfoldings such that

^(SK'+i' eK'+B+i)ls a periodic function for all i>0. Ifs* = 1, then from Theorem

5.3, A = maxa > o(Â(Sa, e^p)) = maxo ^ ce < K'(A(Sa' ea+p))- If £* ^ 1' then we
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have to find Kg', ..., Kg*.^' such that the corresponding conditions in Theorem

5.3 are satisfied. Thereafter, A can be computed as

0

A=maxo<j<g*.i(maxo<^<^/(A(Sa,ea+p))).

The above discussion leads to the following algorithm for computing the maximum

time separation in cyclic linear-plus-latest constraint systems.

Algorithm 5.3: Maximum time separation in cyclic linear-plus-latest constraint

systems.

Step l: Pre-calculate K*, E*, and Kj^ax' where K*, e* are calculated such that Equa-

tion (5.3) are satisfied, and K^axls computed using Equation (5.11)

Step 2: ForO < a< K^ax' aPPly Algorithm 4.1 to compute A(Sa, Ca+p) in Ga+P+r

Step 3: Initialize i =0, J= {0, ..., E*}

0

G

Repeat

Vj e J, compute A(s^_+j+ig*, e^^^+j+,g*+p) in
K^+j+ie*+P+r

•max •max

î

add 8* unfoldings to the graphs G

if the conditions in Theorem 5.3 hold for some j, then

J=J-{j},Kj'=K^+i£*
else increment i and go back to the repeat loop

endif

until J = 0
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Step 4: return A = maxo <j < g*_i(maxQ < ^ ^ K./ (A(sa' ea+p)))-

0

Complexity of Algorithm 5.3:

Similar to the max-only systems in [42], the values of K*, Kj' and E* are dependent
on the values of the bounds of the constraints in the constraint graph G. The upper

bound on the number of unfoldings, Kj', for the time separation to become a peri-

odic function may be very large. As stated in [42], in reality, e* is a small value, but

K* can be very large if there is a cycle in G^ with w(c)/s(c) very close to p. We do

not know anything about Kj' except that Kj' > K*.

In the next Chapter, we restrict the constraint graph G such that all the unfolded

constraint graphs of G are causal. We find a way to determine the upper bounds of

K,' and thus get a practical algorithm of computing the maximum time separation

of events in the restricted constraint graphs.

0
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Chapter 6

Maximum Time Separations in

Causal Linear-plus-Iatest Cyclic Systems

0

0

As mentioned in Section 5.2, even though we gave a condition in Theorem 5.3 to

check when A^ becomes periodic function of a, the number of unfoldings needed

for Ay to become periodic depends on the delay values in the specification and can

be very large. Due to the fact that finding even one Ac; is fairly complex (pseudo

polynomial in the number of events and additional iterations are normally inevita-

blé due to linear constraints). In other words, Algorithm 5.3 is impractical for real-

istic complex problems.

We reduce the complexity of the problem by restricting the constraint graph speci-

fications. The constraint graphs are restricted in such a way that events in the un-

folded constraint graphs can be partitioned into a set oftopologically ordered blocks

that respect the causality conditions. The restricted graphs reflect realizable designs

and can thus model most realistic systems. We can now detennine an upper bound

on the number ofunfoldings to compute the maximum time separation A and obtain

a practical algorithm.

This chapter consists of five sections. In Section 6.1, we give the restrictions on the

cyclic constraint graphs. In Section 6.2, we simplify Algorithm 4.1 for finding the

time separation in a restricted finite unfolded graph with linear-plus-latest con-

straints to an algorithm applicable only in causal finite graphs. In Section 6.3, we

derive an algorithm of computing the maximum time separation in restricted cyclic

constraint graphs. Since the causality conditions of constraint graphs need the in-

formation of the maximum time separation between events and our algorithm is de-

veloped under the assumption that the system is causal, there is an interleaving

88
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between computing the maximum time separations and causality checking. In Sec-

tion 6.4, we present sufficient causal conditions and we apply our solution tech-

nique to verify two safety timing properties of the interface specification describing

a repeated microprocessor READ from memory as stated in Section 3. 4. Finally in

Section 6.5, we conclude this Chapter.

6.1 Restricted Constraint Graphs

We restrict constraint graphs with linear-plus-latest timing constraints to causal

ones. A constraint graph is said to be causal if all the unfolded constraint graphs are

causal. More formally, we give the definition of a causal constraint graph as fol-

lows:

Definition 6.1: A constraint graph G = <E, R> is causal if Va >. 0, the unfolded con-

straint graph G is causal.

Recall that in Section 2.2, we give causality conditions of leaf TD specifications.

Here we define causality of a finite constraint graph G = <Ef R > containing linear-
plus-latest timing constraints [36].

Definition 6.2: A finite graph G = <E, R > with linear-plus-latest constraints is
causal if the following three conditions are satisfied:

1. For every event v e E where v is involved in a latest constraint, B(v) is a sin-
gleton, i.e., B(v) = {v}. In this case, B(v) is called a latest block.

0

2. For every event v e Ef where v is involved in a linear constraint, all other events
in B(v) are also involved in linear constraints. Furthermore, for all v e B and for all

triggers u G trigs(B(v)), the trigger u must occur in the past of all v in B (called well-

defined triggers [50]). In this case, B(v) is called a linear block.
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3. For all B e P (see Definition 2.6 for a block partition P), the separation between

triggers of B satisfying all the constraints in the graph G are strictly tighter than
those computed using the local constraints of B.

0

From these conditions it follows that there is a topological order ^ of the blocks, i.e.,

V(u, v) e Rf B(u) < B(v).

In Definition 6.1, we define a constraint graph as causal if all the unfolded con-
straint graphs are causal. Based on the semantics of causal finite constraint graphs

described in [50], the block partition of the unfolded causal constraints graphs is

past-dominated.

Definition 6.3 [50] : A block partition P of a finite graph G is past-dominated if each
block B, B e P, is past-dominated.

As stated in [50] the occurrence times of the events in B are independent of the oc-

currence times of events in topologically later blocks. More formally, consider a fi-

nite graph Gf with a causal block partition B^ <B^ ... < B^, let Gf be the finite
k

constraint graph induced by the vertices E = U B^ for some 1 < k< n, then for
i= l

any consistent timing assignment T' for Gf, there exists a consistent timing assign-
ment T for Gf such that Vv e Ef, ï(v) = T'(v).

0

In the next section, based on the properties of finite causal constraint graphs, we de-

rive a simplified Algorithm 4.1 for computing the time separation between events

in finite causal constraint graphs.

6.2 Simplification of Algorithm 4.1 in Restricted Acyclic Graphs

Recall that the time separation from event s to an event v e E in a finite constraint
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^ - ^-T?f T? f-graph Gl = <E1, Rl> can be expressed as in Equation (4.5), i.e.,

A(s, v) = min(m(v), min^ ç msources(v)(À(s> u) + sd(u' v))' maxu e preds(v)(A(s>
u)+D^)) (6.1)

where msources(v) are all the source events to v in G m, prcds(v) is the set of source

events to v involved in a max combination in Gf, and sd(u, v) is the shortest distance

from u to v in G1^. In the following, we will simplify Equation (6.1) based on the

properties of causal finite graphs.

Consider an event v in a latest block B(v): As all constraints from earlier blocks to

v are latest constraints (from preds(v) to v), these max constraints are transformed

to edges from v to preds(v) in Gfm (Section 3. 2). Hence, Vu e prcds(v) in G, v e

msources(u) in Gfm. In other words, Vu e prcds(v) in Gf, u gmsources(v) in G m,
and all the events in msources(v) are in topologically later blocks than B(v). It fol-

lows that min^ g msources(v){^(s' u) + s<^(u' v)} w1^ not P^ay any ro^e m Equation

(6.1). Therefore, for an event v in a latest block, Equation (6.1) can be rewritten as

A(s, v) = inin(m(v), maxy g preds(v){À(s' u) + Duv}) (6.2)

Consider now an event v in a linear block B(v): Since B(v) is past-dominated, then

the occurrence time T(v) of v is detenrdned by the occurrence times of the triggers

and the local constraints of B(v). The relationship between the latest occurrence

times of u and v, Tmax(u) an(^ Tmax(v)' u e trlgs(v)' can t)e expressed as follows:

^max(v) = minue trigs(v){Tmax(u) + sdl(u, v)} (6.3)

where sdl(u, v) is the shortest distance from u to v satisfying the local constraints of
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B(v).

0

As A(s, v) is the maximum time separation from s to v satisfying all the constraints

in G , by setting s as the reference point and subtracting ï(s) from both sides in
Equation (6.3), we obtain

A(s, v) = minu e trigs(v){À(s' u) + sdl(u> v)} (6.4)

From Equation (6.1), we know that Vv e E ,

A(s, v) < m(v). (6.5)

Therefore, A(s, v) = min^ g trigs(v){A(s' u) + sdl(u, v)} < m(v).

This Equation (4.5) can be rewritten to a form similar to the equation for a latest

block (Equation (6.2)), yielding

A(s, v) = min(m(v), rmn^ g trigs(v){À(s' u) + sdl(u, v)}) (6.6)

Since all the linear blocks in G are past-dominated, starting from the root and per-
forming the calculation in Step 3 of Algorithm 4.1 block by block in the topological

order of the blocks, we can compute A(s, v) in one iteration. We thus get the follow-

ing simplified algorithms of finding the time separation of events in a finite causal

constraint graph.

Algorithm 6.1: Time separation in a finite causal constraint graph with linear-plus-

latest constraints.

u
Given Gf = <E, R > and its causal partition P, the start event s and the end event e,
the time separation A(s, e) from s to e can be computed in the following three steps:
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Step 1: Construct Gfm from Gf.

Step 2: V(u, v) e Ef, compute the shortest distance sd(u,v) from u to v in G m. For
all linear blocks B e P, Vu, v e B, compute sdl(u,v) using local constraints of B.

Step 3: Set A(s, root) = m( roof),

For B e Pin a topological order, do

if B is a latest block, then {v} = B and let

A(s, v) = min(sd(s, v), maXy g preds(v)(A(s' u) + Duv))'
else (B is a linear block). Vu, v eB, let

A(s, v) = min^g trigs(v){A(s' u) + sdl(u> v)}.
endif

Since the complexity of finding the shortest distances in Steps 1 and 2 of Algorithm

6.1 is in 0(n3), the complexity of Step 3 can be analyzed as follows: the maximum
number of events in preds(v) or trigs(v) is (n-1), the complexity of computing the

min and the max functions in Step 3 is in 0(n), there are totally n A(s, v) need to be

computed, therefore, the complexity of Step 3 is in O(n^). Therefore, A(s, v) in a

causal finite constraint graph G can be computed in 0(n ).

6.3 Maximum Time Separation in Restricted Cyclic Constraint Graphs

We now consider the problem of determining the maximum time separation in re-

stricted causal cyclic constraint graphs. We will only consider identical block par-

titions in each unfolding. That is, each unfolding U^, 0<i^ a-1 is partitioned into

a set of disjoint blocks BI = [B^,B^, ...,B^} satisfying Equation (6.7),
lr

Vke [l,j],ifVieBik,thenVmeBmkforallme [0, a-1] (6.7)

0

Example 6.1: For the example of the specification of repeated READ of the

MC68360 processor to a memory specified in Figure 3.3, one possible block parti-
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tion P in each unfolding is as shown in Figure 6.1: BQ = {e^, e^, 63, 69, e^}, BI =

{eio, 614}, BZ = {e4, 65, ee, eg, 613}, 83 = {e^o, e^}, and 84 = {67}, where BQ ~ B3

are linear blocks and 84 is a latest block. The (only) possible order of the blocks is

Bo,B4,Bi,B2,B3.

B^ __________
Bi_ _ __ _Ir -IB^_ _ _ ___OT 32,0-l ~1

-5,0 elrt »
l

20,01 0<e e L J,u20, 15
l 10,0-15,0

14,0
20,120 20.0®6 el 62 ,0es »

0,0 0,0,00.3,0
-3 nB4Q l 0,010,0

el®8 -3,0 l

13,0 JL0,4l
L. v),'0' — — ,0

el0,0 30
-10,0 l

L——————J

t-20, nB3
el

^L___w_ J
-70,0

0

Figure 6.1 Block partition of the constraint graph of Figure 3.3

When the constraint graph is causal, we can determine the time separation Aa in

0"+P+r using Algorithm 6.1 (Section 6.2). However, the causality conditions (the
existence of a past-dominated block partition with well-formed triggers) must be

checked by determining the maximum time separation between the triggers and

also the separation from the triggers to the events in the triggered blocks. In other

words, there is an interleaving between causality checking of a constraint graph and

the calculation of the maximum time separation. In this Section, we assume that the

constraint graph G is causal, and based on this assumption, derive an algorithm for
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determining the maximum time separation in such graphs. We will then derive cau-

sality conditions in Section 6.4 using the maximum time separation algorithm de-

veloped here.

As defined in Section 3. 4, the maximum time separation A, is determined as the

maximum over A for all a > 0 (supposing P > 0). In causal systems, each Ay value

can be computed in the unfolded constraint graph containing a + R+ 1 unfoldings

UQ, ..., U^+p. That is, Aa is the time separation from s^ to e^+p in G p =
(Ea+P+l,Ra+P+l) where

Ea+P+l={vj| ve E,0^j<a+P},and

0
Ra+p+l={uj_, [d'D]'^v l Uj.e, Vj e Ea+P, u tduv'Duv]LË

ve E}.

We can avoid explicitly analysing Aa for all values of a by exploiting the periodic-

ity of A(Sa, Va+p) for sufficiently large values of a.

As mentioned in Section 5.2, the values of sd(Sa, Vj) for Vj e Ea+^+l are eventually
detennined by the minimum ratio cycle of G^ as given in Equation (5.2), i.e., there

exists integers K* and E* such that for all a > K*, the relation

m(Vj) - m(Vj+g*) =pe:f:, 0 ^j < a- K* (6.8)

holds.

u

We have proved in Chapter 5 that in cyclic linear-plus-latest constraint graphs,

A(SC(, Vj) exhibit a periodic behaviour similar to the m values. In the following, we
show that for causal constraint graphs, we can obtain an upper bound on the number
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of iterations for the time separation A(s^, Ca+p)to become a periodic function.

Theorem 6.1: Let G = <E, R> be a cyclic causal constraint graph. Consider deter-

mining the maximum time separation from s^ to e^p in Ga+P+l, a > K*. There ex-
ists an integer F such that

A(Scc, Vj+e.) - A(Sa, Vj) = p6*, F<j ^ a-K* - E*

To prove this theorem, we need several properties of A(S(^, v,) in Q p .

0

The first property is as given in Lemma 5.2 in Section 5.2.2, i.e., A(s^, Vj*) = m(Vj*)

for events Vj* which are on the shortest path from §„ to the root in Gma+^+l. For
such v,*, we have that

A(SCC, Vj+e.*) - A(s^, Vj*) = rnCvj+e.*) - m(Vj*) (6.9)

Theorem 6.1 then follows immediately from Equation (6.8). For those Vj where

A(Sa, Vj) -fc m(Vj), A(Sa, Vj) must be determined by the upper bounds of some latest
constraints.

Definition 6.4: Given a constraint graph G = <E, R>, a graph GM = <E, RM> ls con-

structed as follows: for each edge u uv' uv -> y in R involved in a max com-

bination, there is an edge v -^.u in RM, for each edge a [ "v'Buv]^ ^ in R
sdl(u,v)),E

involved in a linear combination, there are two edges in Rj^: u > v if

sdl(v,u),-e
sdl(u, v) is not oo and v —>- u if sdl(v, u) is not °o.
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Let D(c) denote the sum of the weights on the edges of a cycle c in GM. A cycle c

in GM is said to be constraining Vj if A(s^, Vj) < m(vj) and A(s^, Vj) = A(Sy, Vj.g^)
+ D(c). In order to determine F in Theorem 6.1, we need to argue about e(c) of such

constraining cycles. We first show that for a cycle c to be constraining, D(c), must

be strictly less than pe(c).

Lemma 6.1: Let c be a constraining cycle for v, e g^-i-p-'-1 with j ^ a - K*. Then

D(c) < pE(c) (6.10)

0

0

Proof: To simplify the notation, we assume e* = 1. Let u, be a vertex on the shortest

path from s^ to the root such that B(vj_g((;)) < B(Ui) < B(Vj) (such a vertex always

exists). Asj <a - K*, u^_g^^ is also on the shortest path from Sy to the root in

_a+P+l
'm

A(Sa, Vj) < sd(Sa, Vj)

sd(Sa, Uj) + sd(Ui, Vj)

c is constraining Vj.

property of shortest paths

= sd(s^, Ui.g(cp + pe(c) + sd(Uj, Vj) from Equation (6.8). (6.11)

In a causal constraint graph, A(Sa, Vj.g(c)) > À(Sa, u^e^)) + sd(ui.g^), Vj.e(c)), and
A(SQ(, Ui_g^p = sd(s^, Uj.g((;)) since Ui.g(^ is on the shortest path from s^ to the root.
Combining these two facts, we obtain

-A(Sa, Vj.g(c)) < -sd(Sa, Ui.g(c)) - sd(u,_^, Vj.^c)) (6.12)

By adding Equations (6.11) and (6.12) and realizing that sd^j.g^, Vj-.g^) = sd(Up



n

0

0

98

Vj), we derive that

D(c) = A(Sa, Vj) - A(Sct, Vj_g(c)) < pE(c) (6.13)

a

Lemma 6.2: Consider two vertices u, and Vj of Ea+P+l, such that j < a - K*, u, has
a path to Vj in Ga+13+l, and u^ is on the shortest path from Sy to the root. Then there
is a constant C(u, v, j - i) such that

A(Sa, Vj) - A(Sa, Ui) >: C(u, v, j - i) (6.14)

Proof: Let <v°, v\ ..., vn> be a path from Ui to Vj in Ga+p+l with v0 = u; and v" =
Vj. In the following, we prove that ^(s^, v1) - A(s^, vl-l) > Clfor 1 <l ^n. The lem-
ma follows by setting C(u, v, j - i) = Sn^iC .

There are two cases to consider:

a) If vl is a sink event of a latest constraint, we have from Equation (6.2) that

A(Sa, vl) ^ min(sd(Sa, vl), A(s^ v1-1) + D^_^,).

,1-1Subtracting A(s^, vl-l) from both sides, we obtain

A(s<,, vl) - A(S(,, v1-1) > min(sd(Sa, vl) - A(s^ v1-1), D^,.^,)

As A(Sa, v1-1) < sd(Sa, v1-1) and sd(Sa, v1-1) ^ sd(Sa, vl) + sd(v\ v1-1), it follows that
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A(s<,, vl) - A(Sa, v1-1) > min(-sd(v\ v1-1), D^_, i).

0

l ,,l-1-Let Cl = min(-sd(v\ v1-1), D ,_i^)

b) If vl is a sink event of a linear constraint, we have from Equation (6.5) that

A(Sa,vl-l)^A(s^vl)+sdl(v\v1-1)

< A(Sa, vl) + sd(v\ v1-1)

0

Since vl e msources(vl-l), we obtain

A(s^, vl) - A(Sa, v1-1) > -sd(v\ v1-1).

Let Cl = -sd(v\ v1-1).

Notice that sd(v1, v1 ) is a constant (independent of i) since j < a - K*. a

This lemma allows us to bound the number ofunfoldings within which a constrain-
ing cycle can determine the time separation. This is stated more formally in the fol-
lowing Lemma.

Lemma 6.3: Consider two vertices u; and Vj ofEa+P+l, such that j <: a - K*, u, has
a path to Vj in Ga+P+l, and u; is on the shortest path from s^ to the root. If there is a
constraining cycle c in G^ between Vj_fg(e) and Vj, then
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^ < A(sa> vj-fe(c)) - À(sa' ui-fE(c)) - c(u' VJ - i)
pe(c)-D(c)

(6.15)

Proof: (We assume E* = 1). From Lemma 6.2, we know that

A(Sa, Vj) - A(Sa, Ui) > C(u, v, j - i)

Since u^ is on the shortest path from s^ to the root, from Lemma 5.2 and Equation

(6.8), it follows that

A(Sa, Vj) > A(Sa, Ui.fe(c)) + fp8(c) + C(u, vj-i) (6.16)

From the definition of a constraining cycle, we have

À(Sa, Vj) = À(Sa, Vj.fg(c)) + D(c),

combining this with Equation (6.16) results in the bound on f as given in Relation

a

Thus, eventually the time separation A(Sy, v,) is determined by those events u^ that

are on the shortest path from s^ to the root in Gina+P+l and the constraints from u,
to Vj. Let Ui be an event on the shortest path from s^ to the root such that there is a

path from u, to v, in Q p , and let A'(Sy, v,) be the time separation determined in

the sub-graph of Ga+P+l induced by the vertices in {vl e Ea+P+l | there is a path
from Ui to vl in Ga+p+l}. We have that:

u A'(Sa, Vj) = A(Sa, Ui) + C(u, vj -i)forj e [F, a- P- K*] (6.17)
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where C(u, v,j - i)is a constant, F is the upper bound such that Equation (6.15) holds

for all j with Vj to which there are constraints from UL[. Using UQ as a reference point
and combining this identity with the bound on f in Equation (6.15), we obtain a
bound on F in Theorem 6.1:

0

F < l + Tnflx{(sa'vl)-^(sa'vly e e is a simple cycle in GM with D(c) < p} (6.18)
pe(c)-D(c)

where 1 is such that there is a path from UQ, UQ e UQ, to v^ in Ga+P+l for all v e E,

A(Sa, v^) and A'(s^, v^) are determined in the GK*+P+l+l. Thus, after F unfoldings,
and A(SC[, Vj) is determined entirely by the constraints from UQ, i.e.,

A(Sa,Vj)=À'(Sa,Vj),j>F (6.19)

Proo/'(Theorem6.1):

A(sa> vj+e*) - À(Sa' vj) = À'(sa' vj+e*) - A'(sa' vj)' J > F From Equation (6.19)

;A'(Sa'ui+E*)-À'(Sa'ui)

sd(Sa, Ui+e*) - sd(Sa, Ui)

From Equation (6.17)

From Lemma 5.2

•*=PE From Equation (6.8)

a

Example 6.2: Consider a constraint graph shown in Figure 6.2 where all the con-
straints are combined in max combination. Let a and b be the start and end event,

respectively. We wish to determine F value.

0
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[8_9],1

,ii],iQ b[10

^J
[20, 22],1

[l, 2],0

a. A constraint graph

9,1

'b )22, la

2,05

b. The correspondent GM

Figure 6.2 A constraint graph G and its corresponding GM.

ao -m aL -in a2. -in a3- -ina4. -in a5
^ -l." —/ -^ — :-LU— ^—=±u-/ -^—^Lu- ^ ~

°/:\7-\ /-\y^\f^f-\
roor-Q—^-^-^-^T ^-20- ^-20- ^^-2U-b'5

0 Figure 6.3 Gjn" of the constraint graph in Figure 6.2

The following m values can be obtained in G^6 as shown in Figure 6.3:

m(â5) = 0, m(b5) = °°, m(â4) = -10, m^) = -8, m(a3) = -29, m(b3) = --28, m^) =

-49, m(b2) = -48, m(ai) = -69, m(bi) = -68, m(ao) = -89, m(bo) = -88, mÇroot) = -

89.

Comparing to Equation (6.8), we have that K* = 3, e* = 1.

Consider the time separations from 05. Since the shortest path from a5 to root is (a5,

b4, b3, b2, bi, bo, root), we know that the tiime separation from ^ to these events

equals to their m values. Let us look at the time separations to other events in the

graph.

u
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A(â5, ao) = min(m(ao), A(â5, root) + 0) = -89.

A(â5, a^) = min(m(ai), max(A(â5, ao) + 11, A(â5, bg) + 9) = min(-69, max(-89 +11,

-88 + 9) = -78 . A(â5, ai) < m(ai), and A(a5, ai) = A(â5, ao) + 11, where 11 is the

D(c) of the constraining cycle highlighted in Figure 6.2b. In this case, A'(a5, a^)

which is determined locally by A(a5, bg) and the constraint from bo to a^ equals to

-88 + 9 = -79.

A(â5, â2) = min(m(a2), max(A(â5, a^) + 11, A(a5, bi) + 9) = min(-49, max(-79 +11,

-68 + 9) = -59. A(â5, a^) < m(a^), but A(â5, ay) is determined locally by A(â5, b^)

and the constraint from b^ to a^.

0

In other words, F = l in this example.

We now present an algorithm for determining A(s, e, P) in a causal constraint graph.

In the following we need the notion of a cutset of Ga+P+l. For a set of vertices X c
Ea+p+l, let R(X) denote the set of vertices of Ga+p+l reachable from a vertex in X.
The set of vertices not reachable from any vertex in X is denoted as R(X). A cutset

C is a finite subset ofEa+P+l such that every path from the root to a vertex in R(C)
passes through some vertex in C. Furthermore, we also require that C be a cutset for

any later unfolding, i.e., given a positive integer i, the set {Vj+, | Vj e C} must be a
cutset of Ga+P+i+l.

u

Recall that A(s, e, P) is defined as max^ > o(A ). Using Theorem 6.1 we show that

only a finite number ofunfoldings are necessary to determine A:

Theorem 6.2: Let G = <E, R> be a causal constraint graph. Then
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0
A(s, e, P) = max{A": 0 <a <K:t: + 6* +F}, (6.20)

where K* and £* are as given in Equation (5.3), F can be calculated using Equation

(6.18).

Proof: We will relate the values of A(Sy, v,) in two different finite unfolded con-

straint graphs Ga+p+l and Ga+p+eli!+l, a=K* + 6* +F. Let C be the cutset {vp: v

e E}, and let Aa(vj) denote the time separation from s^ to Vj in Ga+p+l and Aa+E*(Vj)
denote the time separation from s^+g* to Vj in oa+P+e*+l. From Theorem 6.1, we
have that

0

u

,a+e* a+e*/for all Vj e C, ACC+E'(Vj+g*) = Aa+E'(vj) + pe*

Since sd(Sa, Vj) in Ga+p+l is equal to sd(Sa+g*, Vj) + pe* in Ga+p+l+E* for j < F,

<a^.^ _ ACt+e* foraiïVj£R(C)uCAa(Vj)=AU+E'(Vj)+pe*

Combining these two facts, we get that

Aa+e*(Vj+g*) = Aa(Vj) for all Vj G C.

Since sd(Sa, Vj) in Gcc+p+l is equal to sd(Sa+g*, j+g*) in Qa+p+l+e*, it follows that

Aa+e'(Vj+g*) = Aa(Vj) for all Vj e R(0

a+e*^,, ^_A^and thus AU+t"(Vj+g*) = AU(Vj) a
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This theorem leads to a straightforward algorithm: compute A for increasing val-

ues of a using Algorithm 6.1 and choose the maximum of A . The efficiency of this
algorithm depends on the number of times Algorithm 6.1 is called, i.e., on the val-

ues of K*, e*, and F. These numbers all depend on the delay ranges and arc not pol-

ynomial in the size of the constraint graph. In most realistic constraint graphs, 6* =

1 and F is a small constant (for all the 4 examples in [43], we have F = 0). K* is

more of a concern because it can be large if there exists a cycle G^ such that w(c)/

e(c) is very close to p.

In practice, we can improve the performance of the algorithm by applying sufficient

conditions that detect when further unfoldings cannot result in a larger value of A.

We can observe from Equation (6.5) that sd(Sa, Vj) is an upper bound on A(SQ, Vj).

If A(Sa, Vj) happens to be equal to sd(s^, Vj) for all Vj e C and a > K*, then there is

no reason to consider any further unfoldings since they can only make A, i > a
smaller.

Lemma 6.4: Let C be a cutset for Ga+P+l where a > Po'If A(Sa,Vj) = sd(Sa, Vj) for
all Vj e C and a > K*,then

A=max{Ai:0<i^a}.

Proof: For i >. 0, A(Sk+i,Vj+,), Vj e C, in Ga+P+i+l is smaller or equal to sd(Sy+p Vj+i)
which is equal to sd(Sa, Vj) in Ga+p+l. That is, for all Vj e C, A(Sa+i,Vj+i) in Gct+p+i+l
is smaller or equal to A(Sa,Vj) in Ga+p+l. Since C is also a cutset for Ga+p+i+l, it
follows from Equations (6.2), the repetition of the m values, and the monotonicity

of addition, maximization and minimization that Aa+^+i < Aa.

u
The same observation can be used to determine an upper bound on A. Let A^f de-
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note a number such that A^1' > max{A : i > a}, i.e, A^t is an upper bound for any

further unfoldings after Ga+P+l. If A^t is smaller than or equal to A' = max{Ai: 0

^ i < a} then A =A'. To compute A t, we use Algorithm 6. l except Equations (6.4)

and (6.6) are not used for all Vj e C (this makes A(s^, Vj) equal to sd(Sa, Vj) for Vj
e Q. With this optimization, the algorithm for determining the maximum time sep-

aration in a causal cyclic constraint graph can be stated as follows.

Algorithm 6.2: Maximum time separation in a causal cyclic linear-plus-latest con-

straint graph

Step 1: Pre-calculate K*, e*, and F, where K* and e* are as given in Equation (5.3),

F can be calculated using Equation (6.18),

0

u

Step 2: a<-0, A <- -o°,

Step 3: Repeat

a^-a+1,

Aa <- A(Sa, e^+p) in Ga+p+l using Algorithm 6.1
A <- max{A, Aa}

if there exists a cutset C in Ga+p+l and a > K* such that Vvj e C: sd(Sa, Vj)
= A(Sa, Vj) then

return A

A^t <- Upperbound(Sa, ëa+p) in Ga+p+l

until A > À t ora=K* + 8* +F

return A

Example 6.3: We continue with the repeated microprocessor READ example, to

determine the maximum time separations Al, A2 in Equations (3.11). Algorithm 6.2

yields Al = 0 and A2 = 0, i.e., for all consistent timing assignments z,
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Va>0,ï(eii, a)-ï(eio,oc+ 1)<0==> Va>0,ï(eii, a)<T(eio, ot+ l) and

Va >. 0, T(ei5, oc) - T(e^, a+ l) <0 : Va > 0, T(ei5, ce) < z(ei4, a + l).

0

That is, there will not be any overlap on the activation and deactivation of ACK and

DATA signals in the specification.

6.4 Sufficient Causal Conditions

Algorithm 6.2 assumes that the constraint graph is causal, i.e., all blocks in the un-

folded constraint graphs are past-dominated and have well-defined triggers. The

past-dominated property can be checked using the causality conditions (2 and 3) in

Definition 6.2. For convenience, we restate them here:

Theorem 6.3[50]: A block B in a finite constraint graph is past-dominated if

1. All events in B occur later than all the triggers of B (well-defined triggers), and

2. V ui, U2 e trigs(B), A(UI, U2) ^ Aiocai(ui> "2), where Aiocai(ui, "2) is the maximum

time separation determined by only the local constraints of B.

Notice that if a block satisfies these two conditions, then all its triggers are well-

defined and the block is past-dominated. Every latest block is inherently past-dom-

inated since all constraints from the triggers to the events in the block are prece-

dence constraints and are combined by max combinator. For linear blocks, we can

use Algorithm 6.2 to verify whether the two conditions in Theorem 6.3 hold.

Theorem 6.4: Let G = (E, R) be a finite constraint graph with a block partition P.

A linear block B e P is past-dominated if

u
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l. V u e trigs(B), Vv e B, Acom(v, u) < 0 and

u

2. V ui, U2 e trigs(B), \om^ U2) < Àlocal(ul' U2)'

where A(;om(u^, 03) is the maximum time separation computed using Algorithm 6.2.

0

Proof: We show that the two conditions of Theorem 6.4 imply those in Theorem
6.3. Let u, v be two vertices of G. We shall show that the value Aco^(u, v) computed

by Algorithm 6.2 which is an exact separation if the graph is causal becomes an up-

per bound on the separation when the graph is not causal. This is because Acpm is

detennined from Equations (6.2) and (6.6) while the real maximum time separation

in a non-causal graph would be determined from Equation (6.1). The later contains
more terms in the min function than Equations (6.2) and (6.6), and also sdl(u, v) >
sd(u, v). Therefore,

Àcom(u' v) ^ A(u' v) (6.21)

Combining Equation (6.21) with Condition 1 of Theorem 6.4, it follows that

A(u,v)^Acom(u.v)<0 (6.22)

Consequently, for all consistent timing assignments T, ï(u) < ï(v) is true. that is,
condition 1 of Theorem 6.3 is satisfied.

Similarly, by combining Equation (6.21) with Condition 2 of Theorem 6.4, it fol-
lows that

V ui, U2 e trigs(B), Acom(ui, ^2) < Aiocal(ul' "2), (6.23)
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and thus Condition 2 of Theorem 6.3 is also satisfied. a

0

Theorem 6.5: Let G = <E, R> be a constraint graph with a block partition P. A

linear block B e P in Ga+P for a > 0, is past-dominated if

l. Vu etrigs(B), v eB, Acom(v, u) < 0 and

2. Vui, U2 etrigs(B), Acom(ui. "2) < Aiocal(ui, U2),

where A^omls the maximum time separation computed under the assumption that

the system is causal (i.e., the value determined by Algorithm 6.2) and ^\ocalls the

maximum separation considering only the local constraints of B.

Proof:

From the definition of A in a constraint graph in Equation (3.7), it follows that

Va > Pô, Aa < À.

Thus the theorem follows by applying Theorem 6.5 to each unfolding GUTP.

a

u

The amount of calculation needed to verify that a cyclic constraint graph is causal

can be reduced using the following observation.

Corollary 6.1: If all local constraints of a linear block B arc precedence constraints,

then B has well-formed triggers.
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Example 6.4: To ensure that the result of the timing analysis in Example 6.3 is val-

id, we use Algorithm 6.2 to check that the block partition is past-dominated and has

well-formed triggers. Only block 83 = {e^o, e^} contains concurrent constraints.

The only trigger of this block is 67. Condition 1 of Theorem 5 is satisfied, because

the results of the two separation analyses are non-positive.

Àcom(eio' e7) = ° and Acom(el4' 67) = -10

Condition 2 of Theorem 6.5 does not apply since block B^ has only a single trigger

event.

Therefore, the system is causal and the time separations computed in Example 6.3

under the assumption that the system is causal are reachable maximum time sepa-

rations, and there will be no conflict between the back-to-back cycle transitions on

signals ACK and DATA.

6.5 Conclusion

In this Chapter, we addressed the problem of determining the maximum time sepa-

ration between two events in a constraint graph which contains both linear and latest

constraints. We developed an exact algorithm for solving this problem for the class

of causal constraint graphs, i.e., those that have a past-dominated block partition

with well-defined triggers. We also stated a sufficient condition for checking the

causality of the cyclic specification.

u

In the last five chapters, we have discussed the compatibility and other safety timing

property verification of interfaces specified by loop over a leaf HAAD. We solved

the verification problems using maximum time separation between events in con-

straint graphs transformed from the specifications.



Ill

0
In the following two chapters, we will verify implementation of interface control-

lers against their specifications where we will also see the application of computing

the maximum time separations.

0

u
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Chapter 7

Verification of Real Time Controllers

Against Timing Diagram Specifications

In the last five Chapters, we developed algorithms of computing the maximum time
separation between events in constraint graphs transfonned from Loop over a leaf
HAAD specification containing linear-only, linear-plus-latest timing constraints.

The algorithms can be applied directly in verifying compatibility and other safety
tiining properties of interface specifications. In the next two Chapters, we are inter-

ested in verifying correctness of interface controller implementations with respect
to their leaf HAAD specifications with linear-only timing constraints.

u

7. l Introduction

In the design of Systems on a Chip (SoC) from predesigned building blocks, it is
important to assure that these blocks can communicate correctly. This means that
much effort is spent on designing and verifying bus controllers and other commu-

nication control logic. Even if the processor bus protocol is asynchronous, the con-
trailers of such a bus in the connecting devices are often designed as synchronous

Finite State Machines (FSM), operating on synchronized input signals from the bus.

Timing simulation is the usual method for verifying that the controller can operate
in the full range of the bus protocol. This is generally far from satisfactory due to

the large number of different timing situations that could exist on the input signals.

To perform this verification exhaustively, yet without the full explicit enumeration
of all situations, we present in this Chapter a method for verifying whether a pseu-

do-synchronous (sampled input/output) finite-state machine (FSM) implementa-

tion of a real-time controller satisfies its timing diagram (TD) specification. That is,

given a clock frequency and a TD specification, we check whether the FSM imple-

mentation (given as an RTL verilog or VHDL code) always produces outputs with-

112
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in the time constraints stated in the specification provided that the inputs meet the

assumptions as stated in the specification.

Although there are many published results regarding static timing verification of

synchronous sequential circuits, most of them are concerned with set-up and hold

time checks on sequential elements (flip-flops, latches and memories etc.). In our

work, we are interested in the timing information as determined by the functionality

of the circuit, i.e., a mixture of tiining and behavioural verification over a number

of clock cycles. This kind of verification could potentially be carried out using mod-

els based on Timed Automata (TA) [2] or timed Petri Nets [40], however, the TA

models and the accompanying verification techniques based on reachability analy-

sis of the derived region graphs are unnecessarily difficult and complex in this prac-

tical context of verifying realistic RTL designs of hardware interface controllers.

We show that constraint logic programming [44] [66] provides an interesting alter-

native for solving the stated problem.

Clocksin [26] at the University of Cambridge used logic programming to carry out

simulation of synchronous sequential circuits. He used rule based unit clauses

which resemble standard tmth tables to model transitions of the circuit to be simu-

lated. As we shall show, such an approach leads to exponential time explosion, be-

cause most of the possible FSM executions are enumerated. Instead, we use

constraints rather than rule based clauses to model the execution of sequential cir-

cuits in real time. This consists of unrolling the machine over a sufficient number

of clock cycles (as determined by algorithms we developed in Chapters 2 to 6) to

cover the range of time implied by the TD specification, expressing the unrolled in-

stances of the FSM as a series of constraints. We then link these constraints to the

timing constraints from the TD using a set of automata that convert between event

occurrences on signals in the TD and signal levels required/ produced by the con-

trailer FSM. In addition, since we inherently deal with uncertainty intervals as to

the time of occurrence of events, we can carry out this verification under variation

of the clock frequency.
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The original contributions of this chapter are:

0

• The modeling of a TD specification as communicating "TD" automata

which accept event traces respecting the TD constraints (here we con-

sider TD specifications with linear-only constraints); their states indicate

the signal values of the waveforms that are read/output by the FSM con-

trailer. These machines permit establishing the correspondence between

events and signal values.

• The representation of the finite unfolding of the implementation FSM

and the finite execution of the TD automata and timing requirements in

the form of constraints.

• Formulating the PSM versus TD timing verification problem as a con-

sistency check of a constraint system.

• Acceleration of the solution by the addition of redundant constraints to

the constraint system.

The representation of the set of states, the output traces of the TD automata, and the

implementation FSM is compact (linear with time) in terms of constraints, while the

number of traces thus characterized may grow exponentially with time. Although

we verify only finite behaviours as described by the leaf timing diagram of HAAD

specification, most realistic bus protocols usually return to an initial state after ex-

ecuting a particular operation cycle. We can thus verify that at the end of the finite

trace the final state of the automaton and the maximum separations of the last events

on each port correspond to the initial state. The approach can be compared to model

checking on finite computations derived from a Kripke structure using a satisfiab-

lility procedure [7].

0 The chapter is organized as follows: In Section 7. 2, we introduce pseudo-synchro-
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nous (sampled input/output) finite-state machine (FSM) real time controllers and

TD specifications, and we define the verification problem. In Section 7. 3, we

present details about our modeling techniques and the verification method. In Sec-

tion 7. 4, we give the implementation of the verification procedure in CLP(BNR)

Prolog [66]. In Section 7. 5, we discuss how to improve the efficiency of the veri-

fication procedure and we compare the results of our procedure with one that uses

a set of mle-based Prolog clauses to define the executions of the machine. In Sec-

tion 7. 6, we present experimental results of the two procedures for an example and

present conclusions.

0

7. 2 Problem Definition

In this section, we first introduce a pseudo-synchronous controller and its TD spec-

ification, then we state the verification problem.

7.2.1 A pseudo-synchronous controller

A pseudo-synchronous controller is usually implemented as a synchronous FSM

(sequential circuit) as shown in Figure 7.1. It consists of a combinational logic

block and registers holding the values of state variables. The combinational logic is

fed by the sampled (synchronized) primary inputs (PI) and by the outputs of the

state registers. We assume that there is a register on every output signal which filters

possible glitches on the outputs of the combinational circuit (i.e., it can be viewed

as a Moore machine). We further assume that all flip-flops are driven by the same

clock, and that the clock frequency and the delays in the circuit are such that set-up

and hold times are satisfied on all nip-flops (except of course on the flip-flops that

sample the asynchronous inputs).

u
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Figure 7.1 An implementation of a pseudo-synchronous controller.

0

We will use the Moore FSM in Figure 7.2 as an example throughout the Chapter,
and adapt the model to a more realistic situation in Chapter 8.

_û_
0l SU l ^^S9^ l l s ss ls ^ ^^ ^
l

l l

0 0 0s sss ï ï^^^
0

u

l

Figure 7.2 Example FSM.

7.2.2 Timing Diagrams

Timing Diagrams (TD) are as defined in Definition 2.1 on page 20. In this chapter,

we denote a timing constraint from a source event e, to a sink event ej as Cy = (e;,
ej' [Tijmin' Tymax]) e A U C, Ty^ < Ty^x. Tymin, Tijmax e ^- Then corresponding
to Equation (2.1), the timing constraint c^, delimits the relationship between occur-

renée times t, and tj of e, and ej.

u
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0

0

ijmin — ^j ~ ^i— ^ ijmax (7.1)

In a TD specification, when more than one constraints sink at the same event e,, the

occurrence time tj is determined by a combination of these constraints. As defined
in Definition 2.2 to Definition 2.4 on page 21, there are three types of combinations

in a leaf HAAD specification. In this Chapter, we only consider one of them, con-

junctive combination, i.e., all of the constraints must be satisfied simultaneously.

To illustrate our method, we shall use the specification TD as shown in Figure 7.3

for the design in Figure 7.2. It is composed of two waveforms {X, Y}, four events

{eXl' eX2' eYl' eY2}' tWO assume constraints ((origin, exi, [1, 16]), (eyi, ex2, [61,

78])), two commit constraints ((exi, eyi, [70, 80]), (exz, ey2' [70, 80])). Origin m-

dicates the initial state (values of the signals) at the time origin. We set arbitrarily

'•origin =

origin

in

exi eX2

[70,80] [70,80][1,16] [61,78]

|eY2

» ^

CYout

assume

commit

Figure 7.3 A TD specification for the example in Figure 7.2

7.2.3 The Verification Problem

In this section, we define models of the TD specification and the implementation

FSM, and then we state the verification problem. The relatively complex model is

due to the fact that TDs are event based, while the pseudo-synchronous sequential

circuits operate on signal levels. Therefore, much of the definitions that follow are

needed to establish a relation between the two representations - event based and lev-

el based.

u
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Definition 7.1: A wavefonn WV is a vector (wvo, wvj, ..., wVj^) of values, where

wv, e B,B= {0, l}, such that their indices 0,1,..., m increase monotonically with

time and the change from wv^ to wv^i denotes the i-th transition (event) of the

waveform, WVQ is the initial value of the signal at origin.

0

Definition 7.2: A wavefonn transition automaton WTA = (V, E, G, VQ, Vf) associ-

ated with a waveform WV is a 5-tuple where

•V= {v^} = {0, l, ..., m} is the setof states represented by the set of

indexes of the waveform vector WV;

• E= {e^, e2, ..., e^} is the set of events on the waveform;

• G: VxE—> Vis the state transition function defined as G(i, e^+i) =• i+1,

0 < i <m;

• VQ =0 e V is the initial state;

• Vf= m e V is the final state.

Definition 7.3: With each occurrence of an event e, e E in a waveform transition

automaton WTA, we associate an occurrence time t,, t, e 91.

When WTA is in state i, the value of the waveform is wv;.

Definition 7.4: A TD transition automaton, TDTA = (V, E, G, VQ, Vf) is defined as

the Cartesian product of the WTAs of the waveforms in the TD. Without loss of

generality, consider a TD with two waveforms WTA^ and WTÂ2. TDTA = WTAi

x WTÂ2 is defined as:

u V=ViXV2;
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0
•E =E^ u Ë2is the set of events in the TD;

G: V xE ^ Visthe next state transition function defined as

G((i> J)> ei,i+i) - (i+1, j) iff Gi(i, ei^i) = i+1 m WTAi,

G((i, J), ezj+i) = (i, j+1) iff G^, e^ = j+1 m WTÂ2;

. VQ = (0, 0) e V is the initial state,

Vf = (m^, m2) e V is the final state.

0

The occurrence time of a transition (event) in TDTA is the occurrence time of the

event in the respective WTA as defined in Definition 7.3.

The set of events E can be partitioned into Ej^ and Eouj- such that events in E^ are

input events while events in EQUT ars output events, E]^ u EQU^ = E and Ej^ n

EOUT = 0- V can be partitioned into Vj^ and VQUT such that the waveform values

in WV corresponding to Vjj^ are from the input waveforms, and those correspond-

ing to VOUT are from the output wavefonns, V = Vj^ x VQUT.

For example, in the case of the timing diagram in Figure 7.3 we get:

Waveform X: WVx = (0, l, 0); Vx = {0, l, 2}; VXQ = 0; Vxf= 2; G = ((0, exi) -> l,
(l, 6x2) -> 2. Similarly for waveform Y. The product of these two automata forms

the TDTA, however, we shall never construct this automaton explicitly, but rather

describe its behavior by the concurrent execution of its constituent WTAs, synchro-

nized through the timing constraints.

Definition 7.5: A timed trace of a TDTA, tr^Q = ((e^, t^), (e2,13), ..., (en, tn))is a

sequence of pairs (event e,, occurrence time of e,), 0 <i < n, such that

u
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vo-^vi^v2^---^vn'vi€ V,G(Vi,e^i)=Vi+i,ti+i>ti,0<i<n,Vn=Vf,and
the occurrence times t^, ..., t^ satisfy the timing constraints in A u C. Let TR-j^ =

{tr^]-)} be the set of all possible timed traces of a TDTA.

For example, a possible timed trace of the TDTA in our example is as follows

^origin = O): tr = ((exi, 10),(eYi, 80), (exz, 150), (ey2, 220)). It corresponds to the
following run of the TDTA: (0, 0) -exi-> (l, O) -eyi-> (l, l) -ex2-> (2, l) -eY2->

(2, 2). Depending on the occurrence time assignment to the events (satisfying the

TD timing constraints), there may be infinitely many different timed traces of the

same (untimed) run (exi-> 6Yi-> ex2-> eY2) of the TDTA.

We shall relate the occurrence times of events tp i = 1, ..., with the i-th change of

the state of the WTA, thus obtaining the related wavefomi values needed by the

controller, while constraining the occurrence time by the timing constraints on t^.

Next we shall define the controller FSM and its execution in time given the clock

period P and its Clk-th occurrence in time.

Definition 7.6: A sampled input/output Moore state machine controller imple-
menting the protocol specified by a timing diagram is defined as M = (S, WV^, N,

0, Sg), where

• S is the set of states;

• WVj^ = (wviN(J-in)), l <j_in < n_input, is a vector of the input wave-

form values of the related TDTA, where wv^G-in) G WV^(j_in),

WVQsj(j_in) is the correspondent input waveform defined in Defini-

tion 7.1 and n_input is the number of input waveforms in the TD

u : In a trace tr^D, it is possible that there are sets of events {e,}such that all have the same occurrence dme t; to simplify the
presentation, we shall assume that in TR^D there are traces behaviorally equivalent to tr-rj-i consisting of all the possible orders
of the events in {e;} that satisfy tj+; > tj
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specification;

N: S x WV^ -> S is the state transition function;

0: S -> WVour = (wvour0_out)), l <j_out < n_output, is the output

function, where wvou^(j_out) e WVou^(J_out), WVour(j_out) is

the correspondent output wavefonn defined in Definition 7.1 and

n_output is the number of output waveforms in the TD specification;

SQ e S is the initial state.

0

In the example shown in Figure 7.2, n_input = 1, S = {SQ, ..., s^}, WV^ = {0, 1,

0}, Nis as in the following table 12,

Table 7.1: Next State Function of the FSM in Figure 7.2

WVIN = 0

WViN = l

so Si S2 S3 S4 S5 S6 S7 S8 S9 S10

so Sg S9 SIQ S6 S7 so Sg Sç S10 S6

Si S2 S3 S4 S5 sll Si S2 S3 S4 S5

sll

S7

sll

and the output function 0 is as follows: the output value is 0 if the current state s e
{SQ, ..., 84} and is 1 if the current state s e {85, ..., s^}. SQ is the initial state.

Deïïnition 7.7: An input/output sequence of machine M of length k, seq =
(((wvoiNOJn)), (wvoourO-out))), (((wviiNCJ-in)), (wviourO-out))), ...,

(((wvkiN(J-in))' (wvkour(j_out))), where (wViiNO-in)) e WV^, (wViourCJ-out))

e WVour, l <j_in < n_input, l ^j_out < n_output, 0<i ^k, is a sequence of pairs

of input output values of M from the initial state SQ such that

(^(j_m^) (wv^fjjn)^ (wvBgOJn)) ^ ^^ ^ ^^ ^ ^ (wv,n,0_in))),
i > 0; (wViourG-out)) = 0(Si).

0
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Definition 7.8: The arrival time of machine M to state Sj, j > 0, is the moment when
input signal values change from (wV(j.2)iN(J-m)) to (wv(j-i)iN(J-m)) and the ma~
chine M is experiencing a state transition from s,_^ to s,.

Given a period P of the clock of machine M, the arrival time of M into state s, is

given byïj =j * P+ô,j > 0, where 0 <Ô < Pisthe phase shift delay of the clock
generator relative to origin. At time tyrigin (= 0)' machine M is in state SQ.

Definition 7.9: The controller machine M samples input signal values in each

clock cycle. In a specific clock cycle, if the sampled value on an input waveform is

different from that in the previous clock cycle, then an input event is detected at the

beginning of that clock cycle by machine M on the corresponding input port.

An input event e, e Ej^ is detected by machine M in the transition

Sj ' -^' ^-Sj ^ i if (wvj.i^(j_in)) ^ (wVjjNCJ-in)), and the difference in values of
the signal corresponds to e,. The observed occurrence time of an input event e^ is

thus Ti=(j + l) * P+5, rather than q.

Definition 7.10: The controller machine M generates outputs in each clock cycle.

In a specific clock cycle, if the signal value on an output generated is different with

that in the previous clock cycle, then an output event is produced at the beginning

of that clock cycle by machine M on the corresponding output port.

u

An output event Gy e EQUT is produced in state Sj+i if 0(Sj) ^ 0(Sj+^), the difference
in signal values on the corresponding output port identifies the output event Cy. The

produced occurrence time of an output event CgisTo =0 + 1) * P+5. It is equal to

the actual occurrence time to if for now we ignore output delays in combinational

circuitry and interconnects. To simplify the notation in what follows, we assume 5
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=0.

0

Definition 7.11 : A controller M accepts events of a TD automaton if the controller

M detected all the input events Ej^ and observed all the output events EQ^JT of the

TDTA.

Definition 7.12: A timed trace tr = ((e^, ^), (e^, £,2)' •••' (en> ^n))' of a controller

M that accepts events of a TD automaton is a sequence of pairs (ep ^), ^+1 > £,? i

> 0, such that if e^ is an input event, then ^ = t^; else if e^ is an output event, then ^

= Tp i.e., the time when e, is produced by machine M under the observed inputs. Let

TR = {tr} be the set of all possible timed traces tr.

TR is different from TR-^ in that the occurrence times of the output events in TR

are those produced by the implementation FSM under the sampled inputs of the in-

put signals in the TD.

The verification problem we wish to solve can now be stated as follows:

Given a TD specification (a leafHAAD specification with linear-only timing con-

straints) and a sampled input/output FSM implementation, does the protocol (the

occurrence of events that matches what is expected) and timing of the output events

in TR satisfy the commit constraints C in the TD, i.e., given the assumptions on input

timing, is the set of traces produced by the controller included in the set of traces

specified by the Timing Diagram, TR c TRj-Q?

u

7. 3 The Verification Method

In this section, we present our modeling and verification method using a system of

constraints. Each set of traces TR and TR-J^) is characterized by a set of constraints

derived from the next-state functions, event identification as state changes, and the
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timing constraints from the TD specification. The two sets share the assume con-

straints from the TD specification. Therefore, to verify that the trace produced by

the controller is within TR-pp, we verify that the timing of the produced output

events is not outside that permitted by the commit constraints in the TD specifica-

tion. That is, we check that the system of constraints characterizing TR and the ne-

gation of the commit constraints form an inconsistent system of constraints.

7.3.1 The Set of Timed Traces ofTDTA

From Definition 7.5, the set TR^]-) of timed traces of the timing diagram is produced

by generating all events in the TD transition automata and imposing assume and

commit constraints on the occurrence times of the generated events. To describe the
generation of all the events in the TD, we define executions of a WTA and a TDTA.

0
A sampled execution of a waveform transition automaton WTA starts at time t = 0,
and at that time the WTA is at its initial state 0. The value of time increases contin-

uously. In a dock cycle Clk, i.e., the time interval [Clk * P, (Clk+l)*P), the WTA

makes a transition from v,.i to v^ if e^ occurs, i.e., t^ e [Clk * P, (Clk+l)*P). Other-

wise, the WTA stays at v^p An execution a = VQ\^ .. .v^ of the WTA in k clock cy-

des is accepted by the WTA if a sequence of events eg, e^,..., e^, e^ e E, 0 <i <m

occurred in the k clock cycle, in that case, v^ = m. In this case, the state sequence of

WTA in the execution is0,..., m, and the corresponding sequence of waveform val-

ues is WVQ, ..., wVm, which is exactly the same as the value sequence on the wave-

form with which the WTA is associated. At the end of an accepted execution, all

the events on the waveform have occurred. We give formal definitions of an execu-

tion and an accepted execution of a WTA in k clock cycles as follows:

Definition 7.13: An execution a = VQVp. .v^ of a WTA in k clock cycles is a se-

quence of k state values of the WTA, where VQ = 0, and v^ik, Clk > 0 is

u
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vcik-1 ifvej e E' tj ^ [Clk x P, (Clk + l) x P]
'clk ~ lvcik-l+1 if3ejG E,tjÊ [ClkxP,(Clk+l)xP]

Definition 7.14: An execution o = VoV^.. .v^ of a WTA in k clock cycles is accepted

iff v^ = m, where m is the number of events in E of the WTA.

A sampled execution of a TDTA modeling all the waveforms in the TD specifica-

tion starts at time tnrioir, = 0, at that time all the automata are in the initial states. An

execution of the TDTA is accepted in k clock cycles if the execution of each WTA

is accepted in k clock cycles.

0

It follows that at the end of an accepted execution of a TDTA, all the WTAs are in
their final states and all the events in the TD have occurred. We thus can extract a

timed trace tr^-Q = {(e^, t]),..., (CQ, tn)} from an accepted execution of the TDTA

such that

ei e^ e,V0-^ vl-^ V2-> ••• -^ vn' vi G v' G(vi' ei+l) = vi+l' ti+l >ti, 0 <i <n, Vn= Vf.

The execution of a WTA in a clock cycle Clk can be represented by the following

constraints:

[((q < (Clk + l) * P) and (t, > Clk * P) and (vp = i -1))-^ (vn = i)] and

[(not((t; < (Clk + l) * P) and (t, > Clk * P)) and (vp = i -1)) -> (vn =i -1)] (7.3)

where vp and vn are the current state and the next state variables of the WTA, re-

spectively, and t—>t is an implication.

0

The constraints whose solutions are the traces in TR-J-D in k clock cycle (we will dis-

cuss the determination of k at the end of Section 7.3.2) can thus be described as fol-
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lows:

0

0

1. Initialize tg^g^ = 0, Clk = 0, vpi =0, ..., vp^, = 0, where vpp 1 <i <w, is the
current state of the WTA modeling waveform i, and w is the number of wave-

forms in the TD

2. In a clock cycle Clk do

2.1 If Clk < k, then include a constraint for each event in the TDTA in the

form of (7.3).

2.2 If Clk = k, then vpi = m^,..., vp^, = m^,, where m^, ..., m^ are the final

states (the numbers of events on the w waveforms), go to Step 4.

3. Increment Clk by 1, assign the current state values of the WTAs as the next state

from the last cycle and goto Step 2.

4. Include timing constraints for A u C in the form of relation (7.1).

7.3.2 The Set of Timed traces TR

From timed trace of the TD specification TR-^ characterized by the constraint sys-

tern described in Section 7.3.1, we can get the sampled input sequences observed

by machine M as follows:

Vei e BIN, (ti < Clk * P) and (t, > (Clk -l)* P) -> (T, = Clk * P) (7.4)

We feed the sampled inputs (observed at T;) to the FSM to generate the outputs of

machine M. To model the execution of machine M in k clock cycles, we model the

next state and the output functions of the FSM using constraints. For example, the

next state function of the Moore machine in Figure 7.2 can be represented as con-



Q
127

straints between the current state (SP), the next state (SN) and the input values of

the FSM as shown in Figure 7.4.

[((SP = 0) and (input_value = 0)) -^ (SN = 0)] and

[((SP == 0) and (input_value = 1)) -^ (SN = 1)] and

0

u

[((SP = 11) and (input_value = 0)) -^ (SN = 7)] and

[((SP = 11) and (input_value = 1)) -^ (SN = 11)]

Figure 7.4 Constraints modeling the state transition of the FSM.

The input waveform values are in one to one correspondence with the states in the

WTA model of the input wavefonn. In our example, if WTA model of X is at state

0 or 2 then the input value is 0, otherwise, the input value is 1. This can be expressed

as the following constraint (XP is the current state of the WTA):

[((XP ^ l) ^ (input_value = 0)] and

(XP = l)) -^ (input_value = l) (7.5)

The output of the Moore machine is determined by the current state of the FSM. In

the example, the constraints characterizing the output values are:

[((SP ^ 0) and (SP < 5) ^ (output_value = 0)] and

[((SP > 6) and (SP < 11)) -^ (output_value = 1)] (7.6)

An output event is produced if the current output value of the FSM is different from

the value in the last cycle. It can be detected by using the current and the next states
of the WTA modeling the output waveform. If an output event can be produced in

clock cycle Clk, the occurrence time of the event is T, = (Clk + 1) * P.1n the example
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shown in Figure 7.3, event eyi (respectively eyz) is produced if the current state YP

of WTA is 0 (1) and the next state YN of WTA is 1 (respectively 2). This can be

expressed as:

[((YP == 0) and (YN = l)) -> (TI = (Clk +1)* P)] and

[((YP = l) and (YN = 2)) -^ (^ = (Clk + 1) * p)] (7.7)

where YN can be determined from XP and the output value by the constraints

shown in Figure 7.5

[((YP = 0) and (output_value = 0)) -^ (YN = 0)] and

[((YP = 0) and (output_value = l)) -> (YN = 1)] and

0
[((YP = 2) and (output_value = 0)) -^ (YN = 2)]

Figure 7.5 Constraints modeling the state transitions of WTA Y.

In general, there are more inputs/outputs of the FSM and TD, constraints modeling

the state transition of the FSM, input signal values based on input WTA states, out-

put function of the FSM, detection of an output events should be similar to what we

have in the above example. For instance, if there are more inputs and states of the

FSM, then the constraints modeling the state transition cab be obtained by enumer-

ating all SP values under all possible input values such as "(inputl_value =0) and

(input2_value = 0) and . ..". the result constraint is similar to Figure 7.4.

The constraints that characterize TR in our example can thus be generated as fol-

lows:

u
1. Initialize t^igin = 0, Clk = 0, XP = 0, YP = 0, SP = 0, input_value = 0
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2. In a clock cycle Clk

2.1 If Clk < k, then add the constraints modeling the input value from Rela-

tion (7.5), the constraints modeling the next state functions of the FSM

and WTAs (Figure 7.4, Equation (7.3) and in Figure 7.5 in the example),

the constraints modeling the output function (Relation (7.6) in the exam-

pie), and the constraints modeling the detection and occurrence time as-

signment of the detected output events (Relation (7.7) in the example).

2.2 If Clk = k, then all the WTAs have reached their final states, go to Step 4.

3. Increment Clk by 1 , assign the current state values of the WTAs modeling the TD

and the FSM as the next state calculated in Step 2.1 and repeat Step 2.

4. Include assume constraints A (Relation (7.1) in the example).

We must verify the traces over a large enough number of clock cycles k (denoted

as M.axcyclé) within which all events in the TD will have been observed (IN events)

and produced (OUT events) by the controller FSM for any possible timing of input

events as specified by the TD. Maxcycle can be calculated by the maximum time

separation from the origin to the last event in the TD (see e.g., [37] for solution tech-

niques). The set of timed traces TR is thus characterized by constructing a con-

straint system CS using the above four steps, where k is replaced by Maxcycle.

u

7.3.3 Putting It AU Together - The Verification Procedure

We verify TR c TR-pj-) in the following way: For each commit constraint in C, we

include the complement of the commit constraint in CS characterizing the timed

trace set TR and then check the consistency of the constraint system by unifying T,

with t, (adding a constraint T, = t^ in the constraint system) when e^ is an output
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event (i.e., setting the occurrence time of e^ to that produced by the FSM). For the

commit constraint to the last output event in the TD, the constraint system charac-

terizing the TR is described in Section 7.3.2 where all the assume constraints in
TD are included. For all the other commit constraints in CS, we include the com-

plement of the commit constraint and only the assume constraints related to the

generation of the particular output event of the commit constraint. These are deter-

mined based on the event block order [50]. This reduced CS is obtained by apply-

ing the four steps of producing TR in Section 7.3.2 with k = Maxcycle as

determined by the maximum time separation from origin to the output event, and

in Step 4 only the related assume constraints are included.

In the example as shown in Figure 7.3, to verify the commit constraint to eyi, the

assume constraint from origin to exi is included; to verify the coimnit constraint to

ey2> the assume constraints to e^i and e^z are included.

Our verification procedure is thus as follows for each commit constraint in TD:

Step l: PîG-ca\cuia.te Maxcycles.

Step 2: Include the complement of the commit constraints, and the related assume

constraints.

Step 3: Include the constraints characterizing TR for Maxcycle clock cycles.

Step 4: Check if the constraint system is consistent.

We conclude the above discussion to the following theorem.

u

Theorem 7.1 If the constraint system is inconsistent then the controller satisfies

that commitment, else output a solution of the problem variables (assignments to
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event occurrence times and state values) from which a counter-example can be

constructed.

0

If, for all the commit constraints, the above procedure yields an inconsistent system,

then TR c TR^D.

7. 4 Implementation in CLP(BNR) Prolog

We used CLP (BNR) Prolog which is a constraint logic programming environment

based on relational interval arithmetic (RIA).

Constraints are expressed over interval-valued variables. Consistency checking is

solved by domain narrowing and interval propagation as follows: one or more var-

iables are originally constrained by finite domains (tgriginls set to [0> 0])- All other
interval-valued variables are initialized with the value [-0°, °°]. An event-driven

mechanism repeatedly selects primitive constraints and updates the value of the var-

iables involved in these constraints until a fixed point is reached.

In a clock cycle Clk, if the occurrence time t; of an input event e, satisfies t, e

[(Clk-1) * P, Clk * P) then we have to enumerate all the possibilities for the event

to occur in sub-regions of the interval t; to achieve global consistency of the solu-

tion in CLP (BNR). The interested reader is referred to for details about partial and

global consistency in CLP (BNR) Prolog. We use a Boolean variable C^cïk.ln each

clock cycle to model the possible occurrence of an input event e^ e Ej^ as follows:

u

Ci,cik = (ti < (Clk * P)) and (t, >= (Clk -1)* P) (7.8)

The variable becomes tme if and only if the event occurs within the Clk-th cycle.

A value assignment to the Boolean variables models a possible input sequence, their
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enumeration thus ranges over all such sequences. CLP (BNR) treats Boolean vari-

ables as intervals of integers ranging from 0 to l. The Boolean variables remain un-

bounded until they are enumerated or reduced to punctual values by interval

propagation and narrowing through constraints. In most cases, inconsistency is de-

tected by the interval narrowing mechanism long before any enumeration takes

place or an assignment of point values to only a subset of the variables may be suf-

ficient to detect it, regardless the value of the remaining variables (that still carries

the interval [0,1]). Following is a small example showing how the interval narrow-

ing mechanism works and how inconsistency is detected before a Boolean variable
is enumerated.

0

Example: There are 3 events X, Y, Z in the system, between these events, there are
following three constraints of between occunrence times (all in real) of these three
events:

Z = X + DXZ, Y = Z + D^y, and Y = c*Dxyi + ~c* D^, where D^z = [l, 6], D^y =
[3, 6], D^yi = [0, l], Dxy2 = [l, 2], and c is a boolean variable with its value to be
either 0 or l.

The CLP(BNR) Prolog code to check the consistency of the above constraint sys-
tern would be:

u

check_consistency_example:-
[X, Y, Z]: real,
C: boolean,

D_xz: real [l 6], D_zy: real [3 6],
D_2tyl: real [0 l], D_xy2 : real [l 2],
{X ==0},
{Z == X + D_xz}, {Y == Z + D_zy},
{Y == C*D_3syl + ~C*D_xy2},

The interval narrowing goes as follows: originally, X=Y = Z = (-°<=>, °°). When the

procedure arrives at line 5, X changes to 0. At line 6,X= 0, Z= [1 6] and Y = [1 6]
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+ [3 6] = [4 12]. The procedure then arrives at line 7, this line says Y = ([0 l] * [0

l] +[01]* [l 2]) = [0 3] while the previous line asks Y = [4 12]. They have to be
satisfied simultaneously, Therefore Y= [03] n [4 12] = 0. The procedure thus re-

turns "no" indicating inconsistency of the system without enumerating the Boolean

variable c.

Of course, the Boolean variable will be enumerated if no inconsistency is detected

in the original constraint propagation where Boolean variables are treated as inter-
vais [0 l].

By taking the advantage of the automatic backtracking mechanism and the built-in

consistency checking techniques, the implementation of the verification procedure

in CLP(BNR) is straightforward.

0
We first calculate M.axcycles using the algorithms in (in this example, Maxcycle =

28), then we create the following clause (time_checker) to check the consistency of

the system consisting of the complement of the commit constraints and the con-

straints modeling TR. In the following, we show how the verification procedure is

coded in CLP(BNR) Prolog for the example (Tl, T2, T3, T4 are occurrence times

ofeyi, ey2, exi, e-^., respectively). We discuss the general procedure afterwards.

u

time_checker:-

[T_or-ig.in,Tl,T2,T3,T4] : real,
/*declare timing variables as real*/

{'r_orlgln==0}, /* set the reference point*/
assume_complement_commit_constraints(T_origin,Tl,T2,T3,
T4,Maxcycle, XF/YF),
create_constraint_system(Afaxcycle,0,0,0,0,Tl,T2,T3,T4,
[]).

The clause assume_ complement_commit_constraints constructs the complement
of the commit constraints and the related assume constraints. The assume con-

straints



0
134

Aj = (ëp Cj, [ly, Uy]), j = l, ...,p, can be represented in CLP(BNR) Prolog as:

lDij: real [1^3, Uij]
{Tj == Ti + Dij},

where T^ and Tj are timing variables associated with e^ and ej (In CLP(BNR), all
constraints are enclosed in '{}'.. and an equality constraints are represented by

The complement of a commit constraint C^ = (e^, e^, [\yy Uyz]), z= 1,..., q, can be

expressed as:

0

{T^ == (T^ + [11^^, _]; T^ + [_,1^])}/

where Ty and T^ are the timing variables associated with Cy and e^, and ';' represents

interval span (union) operation in which interval narrowing propagating from T^ to

Ty may split into one of the two cases.

0

The construction of the constraints modeling the unfolding of the controller FSM

and the traces of TDTA are implemented by two parallel clauses, one adds a copy

of the FSM constraints one clock cycle after the other, while the other clause gen-

erates the constraints on the states of the TDTA and the enumeration list of the

Boolean variables relating the input sequences.

create_constraint_system(Maxcycle,XF/YF,Clk,SP,YP,XP,
T1,T2,T3,T4,C):-
XN: integer(0,2),
[C3,C4, Input, Output]: boolean,
{Clk < Maxcycle},
generate_input_event(XP,Input),
next_state(SP,Input,SN),
output(SP,Input/Output),
next_y_state(YP/Output/YN),
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time_assignment_TlT2(Clk,YP,YN,Tl,T2),
input_boolean_variable(Clk/C3/C4,T3/T4),
next_x_state(XP,C3/C4/XN),
insert(C3,C,CC),
insert(C4,CC ,New_C),
Clkl is Clk+1,
create_constraint_system(Maxcycle,XF,YF/Clkl,SN,YN,XN,
Tl,T2,T3,T4,New_C) .

create_constraint_system(Maxcycle/Clk,SP,YP,XP,
T1,T2,T3,T4,C):-
{Clk==Maxcycle},
{XP==XF}, {YP==YF},
rêver s e(C,R_C ) , enzunerat e ( R_C ) ,

0

The first clause is recursive. It represents Step 2.1 of producing TR. First, the cur-

rent input value is detennined as in Relation (7.5). Then, the next state and the out-

put values of the FSM are calculated by adding the constraints as stated in Figure

7.4 and Equation (7.6). After that, constraints representing the next Y state are add-

ed as in Figure 7.5. The next clause includes constraints to detect the output events

eYl' eY2' and to assign occurrence times to them in the fonn of Relation (7.7). Then,

constraints modeling the possible input events in the form of Relation (7.8) are add-

éd. Following that, the next state of the WTA modeling the waveform X is comput-

ed as in Relation (7.3), where (q < Clk * P) and (t; >= (Clk -l)* P) is substituted by

C, cik from Equation (7.8). Next, the Boolean variables related to the input events

in the clock cycle are inserted into a list that will be enumerated at the end of the

construction of the constraint system. The clause ends with a recursive call to itself

after incrementing Clk.

The process of constructing the constraint system corresponding to the recursive

call of the first clause can be illustrated in Figure 7.6

0
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0

Timing diagram constraints:
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(Detemiine input space jointly with Controller outputs)
Coinmit
(Complement of each included one by one)

A

t
t; for all events

Automata constraints that relate events to/from signal levels

Sampling
time
constraints
for
clock cycle 1

Sampling
time
constraints
for
clock cycle 2]

Controller
FSM
constraints
for
clock cycle 1

Controller
FSM
constraints
for
clock cycle 2|

A t

Clk=l Clk=2

4L

Input and output values, t,

k clock cycles
->

Sampling
time
constraints
for
clock cycle k|

Input and output values,
sampled time of input events T^
produced time of output events t^

k clock cycles
<-———————.

Clock value Clk

k clock cycles

Controller
FSM
constraints
for
clock cycle k|

Clk=k

Figure 7.6 Constructing the constraint system

u

The second clause defining create_constraint_system represents Step 2.2 of pro-

ducing TR in Section 7.3.2. It checks the status of all the WTAs and enumerates the

list of C^c^ variables that determine all the valid input sequences. If the constraint
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system is consistent for an enumeration of the Boolean variables, the procedure re-

turns a 'yes' to the main clause, representing a violation of the specification by the

implementation. In that case, we can print the occurrence times of all the events in

the system which make the constraint system be consistent. From there we can de-

rive a counter example. Otherwise, the constraint system is inconsistent under all

possible input sequences. In that case the main procedure returns a 'no' to the query

time_checker, and we can conclude that the controller with the given clock period

satisfies the TD specification.

7. 5 Efficiency Considerations and Experimental Results

7.5.1 Encoding state-transition relations

The efficiency of the verification procedure depends heavily on the number of con-

straints in the system. We can use some heuristics to reduce the number of con-

straints. For instance, the state transition of the FSM can be implemented as the

following five constraints shown in Figure 7.7 instead of the original 22 shown in

Figure 7.4

[((SP = 0) or (SP==6)) -> (SN = input_value)] and

[(SP >= l) and (SP =< 3) -^ (SN = SP + 1+ (~input_value) * 6)] and

[((SP = 4) or (SP= 10)) ^ (SN= 5 + (~input_value))] and

[((SP = 5) or (SP= 11)) -^ (SN= 7 + input_value * 4)] and

[((SP >= 7) and (SP =< 9))-> (SN= SP- 5 +6 * (~input_value))]

Figure 7.7 Constraints modeling the next state of the FSM after optimization (~ is

a negation).

u

A similar reduction can be achieved in the transition relations of WTAs modeling

the X and Y waveforms.



138

n
A considerable improvement in the speed of detennining the consistency of the

constraint system was achieved by adding redundant constraints.

0

7.5.2 Redundant constraints

The commit constraints are verified in an order that follows increasing time (in a

total order derived from the partial order of event "blocks" [50]), starting from or-

igin. As soon as a commit constraint is verified, it is added to the constraint system.

Since it holds, it is as such redundant. However, as it usually spans a number of

clock cycles, it allows much faster propagation of interval narrowing through the

constraint network than it would be the case through the FSM constraints, one clock

cycle after another. Adding redundant constraints is a well known technique for

speeding up the narrowing procedure inside a CLP system based on Relational In-

terval Arithmetic [66]. Here it pays off by a nearly order of magnitude speed up,

especially for the cominit constraints that are near the end of the timing diagram.

7.5.3 Comparison with rule-based Prolog clauses

The state transitions of TDTA and of the implementation FSM can also be imple-

mented as Prolog rule-based clauses, which is similar to the sequential simulation

by direct execution [26]. For instance, the state transition function of the FSM can

be implemented in CLP(BNR) as follows:

u

next_state(0,0,0).
next_state(0,1,1).

next_state(5,0,6).
next_state(5,1,5).

Where next_state(present_state, input, next_state) is a prolog clause modeling the

transition from the FSM state "present_state" to state "next_state" under input "in-

put".
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0
If during an unfolding of the controller FSM in a clock cycle the Boolean variable

related to an input event is undetermined, then there may be more than one unit

clauses that can be executed. For instance, if the current X state is 0 and the Boolean

variable related to the input event exi is undetermined, then the next X state will be

either 0 or l. The correspondence can be described as follows: during the next clock

cycle, if the current state of the FSM is 0 then both the clauses next_state(0, 0,0) and

next_state(0,l,l) are true. In an execution of the Prolog program, one of them will

be selected nondeterministically, if it fails the next one is chosen and so on. In other

words, we cannot include all timing information in the constraint system in one ex-

ecution of the program as in the constraint-based method. The enumeration leads to

many constraint systems being constructed during the execution of the procedure.

When the length of the intervals in the assume constraints increases, the number of

constraint systems so constructed increases exponentially.

0
The Prolog code of the simulation procedure is given in Appendix A. The use of

rule based unit clauses is illustrated by the next state function of the FSM in Section

7.3.

7. 6 Example Results

Given the TD in Figure 7.3, the FSM in Figure 7.2, and the clock period P = 10, we

executed the prototype implementations in CLP(BNR) Prolog on a SPARC Station

5 under different values of the assume constraints. The Prolog code for this example

is also shown in Appendix A (A 1 is the implementation of our verification proce-

dure and A2 is that ofrule_based prolog clauses). Table 1 shows the CPU times and

the memory used.

u
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0

[lo3> Uo3]

[l, 16]

[1,26]

[1,36]

[1,46]

[1,56]

[1,66]

[1,76]

[1,86]

[1,96]

[1,106]

[1,116]

Table 7.2: Experimental Results

[ll4'U14]

CLP
verification
CPU time
(seconds)

[51,78]

[61,88]

[61,98]

[61, 108]

[61,118]

[61, 128]

[61, 138]

[61, 148]

[61,158]

[61, 168]

[61, 178]

Prolog
simulation
CPU time
(seconds)

15

16

17

19

20

21

22

23

24

26

27

4

7

13

9

17

22

27

33

40

46

53

CLP
verification

memory
(Kbytes)

441

472

504

536

567

599

631

663

694

726

758

Prolog
simulation

memory
(Kbytes)

85

91

98

105

115

118

125

132

139

145

152

The experiments show that the execution time of the constraint-based verification

procedure increases linearly with the increase of the length of interval in the assume

constrains, while that of the simulation increases exponentially as expected. The

constraint-based fonn consumes more memory than the rule-based form, but in

both cases, it increases linearly with the intervals in the constraints.

We can easily extend the verification procedure to deal with situation where clock

frequency is changing with an range by representing P with an interval.

u

In the next Chapter, we apply the solution technique developed here to a practical

example.
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Chapter 8

Verifying Two Continuous Write Cycles

of an Interface Controller

In this Chapter, we verify that the implementation of an interface controller will

produce output on time (i.e., within the time specified in the TD specification) un-

der the condition that all the inputs fed to the controller meet the assumptions as

stated in the specification.

0

To apply our verification method, we need the specification in the form of a Timing

Diagram (TD) and the implementation in the form of a finite state machine (FSM).

In this experiment, the TD specification of the interface controller is derived from

the general specification (GS) of the controller, while the FSM implementation is

extracted from the RTL Verilog code of the design. The implementation of the con-

trailer is more complicated than as illustrated in due to the fact that some outputs

are synchronous (outputs offlip-Hops) and some are asynchronous (outputs ofcom-

binational gates).

To deal with the asynchronous outputs in the implementation, we modify the veri-

fication procedure in Chapter 7. In this experiment, we consider only the specifica-

tion in two consécutive write cycles. We verified that all the commit constraints in

the TD specification are satisfied. In other words, we verified that the implementa-

tion of the interface controller is correct with respect to its specification in two con-

secutive write cycles.

u

This chapter consists of five sections. In Section 8.1, we briefly introduce the inter-

face controller and give the TD specification of the interface controller of two write

cycles. In Section 8.2, we show the FSM implementation extracted from RTL Ver-

141
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ilog code. In Section 8.3, we give the modified verification procedure to accommo-

date the asynchronous outputs. Finally in Section 8.5, we show the experimental

results, and concluding that the implementation is correct as far as the write cycles
are concerned.

8.1 Specification of the Interface Controller

The interface controller handles the handshaking between an external microproces-

sor and internal blocks of the AS 1C, as well as the internal handshaking between the

interface block and other internal blocks of the ASIC which have up accessible

registers and/or memories. The simplified block diagram of the controller is shown

in Figure 8.1.

0
CSN Async_Sync^ ^^ ^_^ ^K

"l ï l'T T'T

Addr
Interface Controller

t
D'tackn

I

>

Data

_trin_o Up'_axs

u

Figure 8.1 Interface controller block diagram

The controller is activated by setting the chip select pin (CSN) low. It can operate

in asynchronous or synchronous mode by selecting the Async_Syncn pin to be high

or low. In this experiment, the controller is verified in asynchronous operation

mode. The basic operations of the controller in asynchronous mode are as follows.



n
143

In asynchronous mode, on the external microprocessor side, the controller initiates

a data transfer by driving the rcad/write access enable pin (AEN) low, indicating

that the address (Addr) on the bus is valid. A high rcad/write pin (RW) indicates

that a read access is requested, while a low RW pin indicates that a write access is

requested. When no data transfer is in progress, the device tri-states the data ac-

knowledge pin (Dtackn). Immediately upon AEN being driven low, the device

drives the Dtackn_trin_o pin high and latches the address that is on the bus. During

a write access, the device pulls the Dtackn pin low to indicate to the controller that

the requested data transfer can proceed. The controller then drives the AEN pin high

during a write access to indicate that the data on the data[7:0] bus (Data) are valid.

When the AEN is driven high, the device tri-states the Dtackn pin, indicating that

no data transfer is in progress.

0

On the internal block side, read/write up data is carried out by an internal daisy-

chained microprocessor bus. In Asynchronous mode, the controller sends out a one

clock cycle pulse on Up_axs with every new read/write microprocessor access to

the internal blocks and expects to receive an acknowledge signal (a high signal on

Up_ack) upon completion of the access.

From the GS of the controller, we derived the timing diagram specification of two

asynchronous write cycles of the controller shown in Figure 8.2.

There are 9 signals Addr, Data, CSN, AEN, RW, Up_axs, Upack, Dtackn and
Dtackn_trin_o.

u
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8.2 Implementation of the Controller

The controller is implemented as a pseudo-synchronous FSM as shown in Figure

8.3. The primary inputs (PI) of the controller, a combination of FSM outputs with

Pis are sampled by synchronous registers and the outputs of the synchronous regis-

ters are fed to the FSM and the combinational logic producing the outputs of the

controller. The primary outputs (PO) of the controller are generated from PI, the

outputs of the FSM, and an output of a synchronous register through a combination-

al circuit. The FSM itself consists of a combinational logic block and registers hold-

ing the values of the state variables. The combinational logic block of the FSM is

fed by the sampled inputs and by the outputs of the state registers.

0

t>
combi-

[> =0
national

r -l

x ë> POsync combina- registers circuitregisters tionalPI
circuit

A
next state

registers" |<3== FSM
present state ^Clk

J

combina-

<'-^H tional
circuit

u

Figure 8.3 The implementation of the interface controller

In this section, we give functional information of each component in the controller

implementation. In section 8.2.1, we describe the synchronous registers. In section

8.2.2, we describe the output functions of the controller. In section 8.2.3, we give

the FSM diagram, the input function, the transition function and the output function
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of the FSM.

8.2.1 Synchronous Registers

The controller inputs, CSN and AEN, are sampled by a cascade of two registers (the

registers sampling CSN is shown in Figure 8.4, the ones sampling AEN is similar)

before entering the FSM. The inputs of these registers are CSN, CSN_M1, AEN,

AEN_M1, respectively, and the outputs of these registers are CSN_M1, CSN_M2,

AEN_M1, AEN_M2, respectively.

0

CSN D Q

/\

Clk

CSN_M1
D Q

/\

Clk

CSN_M2

Figure 8.4 Cascade registers sampling CSN

There are three other synchronous registers sampling the signals Up_ack,

Up_wmlocal, and Up_axspending, respectively, where Up_ack is a PI,

Up_wmlocal = ~Up_wmlocal_rst and (Up_arwlateh and ~RWN or ~Up_arwlatch

and Up_wmlocal_R), (8.1)

and

Up_axspending = (Up_naxspls or Up_axspending_R) and ~Up_ack. (8.2)

Here, Up_wmlocal_rst, Up_arwlatch, Up_naxspls are outputs of the FSM, and RW,

Up_ack are Pis.

u The outputs of these three synchronous registers are Up_ack_R, Up_wmlocal_r and
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Up_axspending_R, respectively.

u

8.2.2 Outputs of the Controller

There are three outputs of the controller as shown in the controller block diagram

(Figure 8.1). They are Dtackn, Dtackn_trin_o and Up_axs. The outputs are deter-

mined by primary inputs, the outputs of the FSM and an output of a synchronous

register. The output functions are:

Dtackn = CSN or Dtackn _R, (8.3)

where Dtackn_R = AEN or ~Dtackn_rst.

Dtackn_trin_o = ~(CSN or AEN) (8.4)

0
Up_axs = Up_naxs or Up_axspending_R (8.5)

where CSN, AEN arc Pis, Dtackn_rst, Up_naxs are FSM outputs, and

Up_axspending_R is an output of a synchronous register.

8.2.3 FSM Diagram

We derived the FSM inside the interface controller from the RTL Verilog code. The

simplified transition diagram of the FSM relating to asynchronous WRITE mode is

shown in Figure 8.3. It is a Mealy finite state machine. There are 4 states, 5 inputs

and 4 outputs of the FSM. The 4 states are: idle (IDLE), write wait (WWAIT), write

acknowledge (ACKW) and read end (REND). The 5 inputs of the FSM are

Up_wmlocal_R, Up_ack_R, RW, CSN_M2, AEN_M2, where RW is a primary in-

put of the controller and the other 4 are outputs of synchronous registers, the 4 out-

puts of the FSM are: Up_wmlocalrst, Up_arwlatch, Dtackn_rst, Up_naxspls.
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0
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Figure 8.5 Asynchronous interface control FSM

The state transition function is also derived from the Verilog code, which is
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((SP = IDLE) and (CSN_M2 or AEN_M2) or (SP = AREND) and

AEN_M2 or (SP = AACKW) and up_wmlocal_R and up_ack)
^ (SN = IDLE)

and

((SP = AWWAIT and ~AEN_M2) or

(SP = IDLE) and ~(CSN_M2 or AEN_M2) and ~RW)

=> (SN = AWWAIT)

and

((SP = IDLE) and ~(CSN_M2 or AEN_M2) and RW or

(SP = AACKW) and ~up_ack or (SP = AWWAIT) and AEN_M2)
=^ (SN = AACKW)

and

((SP = AACKW) and ~up_wmlocal_R and

up_ack or (SP = AREND) and (~AEN_M2))

=> (SN = AREND).

Where SP and SN represents present and next state of the FSM, respectively.

The output functions of the FSM are:

Up_wmlocal_rst = (SP = AACKW) and Up_wmlocal_R and Up_ack), (8 .6)

Up_arwlatch = ((SP = IDLE) and ~(CSN_M2 or AEN_M2)), (8.7)

Dtackn_rst = (((SP = IDLE) and ~(CSN_M2 or AEN_M2) and ~RWN) or ((SP =

AACKW) and ~up_wmlocal_R and up_ack)), (8.8)

Up_naxspls = (SP = IDLE) and ~(CSN_M2 or AEN_M2) and RWN or (SP = MW-
WAIT) and AEN_M2 (8.9)

u
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8.3 Verification Procedure

As explained in Chapter 7, if an output is synchronous, then we can detect the oc-

currence of the output based on the present and next state of the waveform autom-

aton of the output. The occurrence time of the output event can be assigned as (Clk

+ l) * P, where Clk is the clock cycle in which the automaton change from the

present state to the next state, P is clock period.

0

If an output is asynchronous, it is more difficult to determine the occurrence time

of an output events. For instance, from Equation (8.4), we know that the rising edg-

es on Dtackn_trin_o (€33 and 635) are caused by the falling edges on CSN and AEN

(ec and e^, e^ and e^)]. The occurrence time of the events corresponding to a ris-
ing edge on Dtackn_trin_o is the latest of the occurrence times of the events corre-

spending to the falling edges on CSN and AEN (because Dtackn_trin_o is ~CSN

and ~AEN). In other words, we can compute the occurrence times of 633 and 635 as
follows:

t33 = max(tç, ti3) (8.10)

t35=max(tii,ti5) (8.11)

The occurrence times of the events corresponding to the falling edges on
Dtackn_trin_o are the earliest of the occurrence times of the events corresponding

to the rising edges on CSN and AEN. We thus have

t34 = min(tio, t^) (8.12)

t36 = min(ti2, tie) (8.13)

0

The occurrence times of events on Dtackn are more complicated. By rewrite Equa-

tion (8.3), we have
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Dtackn = CSN or AEN or ~Dtackn_rst, (8.14)

where Dtackn_rst is an output of the FSM. The output of the FSM is generated syn-

chronously with clocks. Basically, we do not know who causes the signal changes

on the output Dtackn. What we did is that we examined the simulation results of the

Dtackn_rst and determined that the rising edges on Dtackn are always generated by

the rising edges on CSN and AEN, and the falling edges on Dtackn are always gen-

erated by the rising edges on Dtackn_rst. We thus have

t29=(Clk+l)*P (8.15)

t3i = (Clk + l) * P (8.16)

0

t30 = min(tl0' tl4)

t3Q = min(ti2, tie)

(8.17)

(8.18)

For the output Up_axs, from Equation (8.5), it is a combination of Up_nax and
Up_axspending_r, both of them are synchronous signals. Therefore, the occurrence

times of all the events on Up_axs (t2i, 122, ^3, 134) can be assigned to (Clk + 1) * P
(we do not consider the delay on the OR gate), where Clk is the clock cycle in which

the output automaton changes its related states.

We modify the verification procedure in Chapter 7 using the above occurrence time

assignments to output events.

0

8.4 Redundant constraints to improve efficiency

The commit constraints are verified in an order that follows increasing time (in a

total order derived from the partial order of event "blocks" [6]), starting from origin.

As soon as a commit constraint is verified, it is added to the constraint system. Since
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it holds, it is as such redundant.

0

8.5 Experimental Results and Conclusions

We verified all the thirteen commit constraints in the specification in Figure 8.2 on

a Spare 10 workstation and no violation was found. The Prolog code for this exper-

iment can be found in the Appendix A (A3). The following table shows the CPU

time, the memory used, and the redundant commit constraints used when verifying

a coinmit constraint.

Table 8.1: Experimental Results of the Bus Controller

index

l

2

3

4

5

6

7

8

9

10

11

12

13

verified constraint
# of

unfold-

ings

index of
redundant
commit

constraints

CPU time
(seconds)

T33 - T13 e [0, 5] 2 5

T29 - T33 e [40, 600] 32 l 6

T34 - T29 e [0, J 35 1,2 20

T34 - T14 e [0, 5] 35 1,2 36

T21 - T14 e [0, 60] 38 1,2 10

T22 - T25 e [0, 40] 70 1,2,5 1,350

T35 - T15 e [0, 5] 68 1-6 19,687

T31-T25e [0,_] 88 1-7 186

T31-T35e [40,600] 88 1-7 12,055

T36-T31e [0,_] 90 1-9 1408

T36 - T16 e [0, 5] 90 1-10 11,044

T23 - T16 e [0, 60] 90 1-10 6,497

T24 - T27 e [0, 40] 90 1-12 107,699

memor

y used
(Kbytes
)

191

256

3,049

3,051

656

6,243

6,094

7,875

7,988

8,007

8,198

8,084

8,210

From the results in Table 8.1, we can see that the CPU time is not always increas-
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ing to verify constraints towards the end of the TD specification, which is the case

in the previous example in Chapter 7 as illustrated in Table 7.2. This is the effect of

including redundant constraints. We tried to verify the last commit constraints (T24

- T27 e [0, 40]) without the redundant constraints, the run did not finish after 72

hours on the same machine.

0

We developed a method using constraint logic programming for verifying

whether a pseudo-synchronous (sampled input) FSM implementation of a real-time

controller satisfies its TD specification scenario. Verification by simulation of such

real-time designs is very difficult, since many possible timing situations may exist

and the designer must foresee them all in the testbench or be satisfied with incom-

plete verification. Our method guarantees to be exhaustive on the given finite TD

specification.

Our CLP-based method can be easily extended to systems containing earliest (min)

and latest (max) constraints, and delay correlation as in [36]. An automated proce-

dure for translating Verilog or VEGDL RTL models to a system of constraints is

needed.

0



0
Chapter 9

Conclusions and Future Work

0

9.1 Contributions

Interface verification is very important in system design. In this thesis, we have pre-

sented a set of algorithms for computing the maximum time separations in con-

straint graphs transformed from a type of HAAD specification. The algorithms are

directly applicable to compatibility verification of interface specifications. They

can also be applied to check other safety timing properties on interface specifica-

tions. In the second part of the work, we have developed a solution technique to ver-

ify the correctness of real time controllers against their leaf HAAD specifications.

The main contributions of this dissertation are as follows.

In the area of timing verification of interface specifications, we extended the solu-

tion techniques in [17] [36] to interfaces specified in Loop over a leaf HAAD lan-

guage. We achieved this by

1. Giving a way to transfonn the HAAD specification to a constraint graph;

2. Providing algorithms for computing maximum time separations in the trans-

formed constraint graphs containing linear-only and linear-plus-latest constraints;

3. Formulating timing verification problems in the form of maximum time separa-

tion problems.

0

In the area of verification real time controllers against their specification, we give a

complete solution of the problem. The contributions are:

1. Modeling a timing diagram specification as communicating "TD" automata that

154
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accept event traces respecting the timing constraints;

2. The representation of the finite unfolding of the implementation FSM, the finite

execution of the TD automata and timing requirements in the form of constraints;

3. Fomiulating the FSM versus TD timing verification problem as a consistency

check of a series of constraint systems;

4. Implementation of the method using Constraint Logic Programming based on
Relational Interval Arithmetic environment;

5. Acceleration of the convergence of the implemented algorithm by adding redun-
dant constraints.

0
In both areas, we applied the solution techniques to real designs. We verified the

causality and two safety timing properties of an interface specification modeling re-

peated microprocessor READ operations (inspired by MC68360) from a memory.

It is based on computing the maximum time separation of events in restricted con-

straint graphs containing linear-plus-latest constraints. We also verified that the

FSM model of a real-time controller extracted from its RTL Verilog description sat-

isfies its timing diagram specification of two consecutive write cycles.

0

9.2 Future Work

In the direction of computing the maximum time separation in constraint graphs, the
earliest (min) constraints should also be considered. The general maximum time

separation problem in cyclic system containing linear-plus-min-plus-max con-

straints is complicated since as pointed out in [62], it is an NP-complete problem
even in the acyclic systems. But it is possible to find an efficient algorithm if the

constraint graph is restricted properly.
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In the verification of interface controllers with respect to its specifications, we are

developing algorithms for verifying cyclic scenarios with choices, e.g., read or

write cycles, and bounding the number of unfoldings needed to cover all possible

situations. In general, we should estimate an upper bound on the number of un-fold-

ings of the combined TD plus FSM system required before all the maximum event

separations start to repeat.

0

We observed that the efficiency of our verification procedure depends heavily on

the number of constraints in the system. It is interesting to look into the algorithms

and their complexity in the area of reducing the number of constraints in encoding
state transition relations ofFSM and WTAs.

0
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0 Appendix A

0

The appendix contains code in BNR Prolog of the three examples in Chapters 7 and 8. The first

one (Al) is the procedure using rule-based prolog clauses to simulate the execution of the FSM

on the example in Chapter 7. The second one (A2) is constraint-based approach for the same

example in Chapter 7. A3 contains the code to verify the interface controller in Chapter 8 using

the constraint-based approach. The execution results of the procedures in A 1 and A2 are shown

in Table 7.2, and the results of procedure in A3 are illustrated in Table 8.1.

Al. Prolog code of rule-based prolog clause approach on the example in Chapter 7

% assume and complement constraints and the final states of the automata modeling waveform

%X and Y added to verify the commit constraint from T3 to Tl

assume_complement_coimnit_constraints(Tl,T2,T3,T4,XF,YF):-

Assume_root_T3: real(l,46),

{T3==Assume_root_T3},

{T3>=0},

{XF==1},
{YF==1},
{T1<T3+70};

{T1>T3+80}.

0

% assume and complement constraints and the final states of the automata modeling waveform

%X and Y added to verify the commit constraint from T4 to T2

assume_complement_commit_constraints(Tl,T2,T3,T4,XF,YF):-

Assume_root_T3: real(l,46),

Assume_Tl_T4: real(61,108),

{T3==Assume_root_T3},

{T4==Tl+Assume_Tl_T4},

{T4>T3},{T3>=0},

{XF==2},{YF==2},
{T2<T4+70};

169
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0 {T2>T4+80}.

%create the input value according to the current state of the X automaton

generate_input_event(0,0).

generate_input_event( 1,1).

generate_input_event(2,0).

0

% the next state of the FSM according to the current state and the input value

next_state(0,0,0).next_state(0,l,l).

next_state(l ,0,8). next_state(l ,1,2).

next_state(2,0,9).next_state(2,l,3).

next_state(3,0,10). next_state(3, l ,4).

next_state(4,0,6). next_state(4, l ,5).

next_state(5,0,7).next_state(5,l,ll).

next_state(6,0,0). next_state(6, l, l ).

next_state(7,0,8).next_state(7,l,2).

next_state(8,0,9). next_state(8, l ,3).

next_state(9,0,10).next_state(9,l,4).

next_state(10,0,6).next_state(10,l,5).

next_state(ll,0,7).next_state(ll,l,ll).

% The Output tof the FSM according to the current state

output(0,0). output(l,0).

output(2,0). output(3,0).

output(4,0). output(5,0).

output(6,l). output(7,l).

output(8,l). output(9,l).

output(10,l). output(ll,l).

0

% next state of the X automaton based on the current state and the waveform value on X

next_x_state(0,0,_,0).
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n next_x_state(0, l,_, l ).

next_x_state( l ,_,0, l).

next_x_state( l,_, l ,2).

next_x_state(2,_,0,2).

% next state of the X automaton based on the current state and the waveform value on X

next_y_state(0,0,0).

next_y_state(0,l,l).

next_y_state(l,0,2).

next_y_state(l,l,l).

next_y_state(2,0,2).

0

% assign occurrence time on output events according to the current and the next state of

% Y automaton

assign_TlT2(I,0,l,Tl,T2):-{Tl==(I+l)*10},

assignt_TlT2(I,l,2,Tl,T2):-{T2==(I+l)*10},

assign_T!T2(I,0,0,Tl,T2).

assign_TlT2(I,l,l,Tl,T2).

assign_T!T2(I,2,2,Tl,T2).

0

The clause building the constraint system

crcate_constraint_system(XF,YF,I,Current_state,Current_y_state,XP,Tl,T2,T3,T4):-

[XP,XN, Current_y_state]: integer(0,2),

[Current_state, Next_state]: integer(0,ll),

[C1,C2, Input, Output]: boolean,

{Current_y_stateoYF},

generate_input_event(XP,Input),

next_state(Current_state,Input,Next_state),

output(Current_state,Output),

next_y_state(Current_y_state,Output,Next_y_state),

constraint_TlT2(I,Current_y_state,Next_y_state,Tl,T2),
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n {C1==(T3<(I+1)*10) and (T3>=I:f:10)},

{C2==(T4<(I+1)*10) and (T4>=I*10)},

next_x_state(XP,Cl ,C2,XN),

enumerate([Cl,C2]),

Il is 1+1,

create_constraint_system(XF,YF,Il,Next_state,Next_y_state,XN,Tl,T2,T3,T4).

create_constraint_system(XF,YF,I,Current_state,Current_y_state,XP,Tl,T2,T3,T4):-

{Current_y_state==YF},

{XP==XF}.

0

% the main clause

ex:-

[T1,T2,T3,T4]: real,

assume_complement_con-imit_constraints(Tl,T2,T3,T4,XF,YF),

Initial_state is 0,

crcate_constraint_system(XF,YF,0,0,0,Initial_state,Tl,T2,T3,T4),

write('Tl='),print(Tl),nl,

write('T2='),print(T2),nl,

write('T3='),print(T3),nl,

write('T4='),print(T4),nl.

A2. Prolog code of constraint-based approach on the example in Chapter 7

% append a list to another list

append([],L,[L]).

append([X|Xs],L,[X|Zs]):-append(Xs,L,Zs).

0

% reverse a list

rcverse( [],[]).

reverse([X,Xs..],Zs):-

reverse([Xs..],[Ys..]),append([Ys..],X,Zs).
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0

0

% insert an element to a list

insert(X,[Xs..],[X,Xs..]).

insert(X,[],[X]).

% assume constraints in the specification

assume_constraints(Tl,T2,T3,T4):-

Assume_root_T3: integer(l,126),

Assume_Tl_T4: integer(51,178),

{T3==Assume_root_T3},

{T4==Tl+Assume_Tl_T4}.

% complement of the commit constraints, the final states of the automata, and the maxcycle to

% verify the constraint from T3 to Tl.

complement_cominit_constraints(T l ,T2,T3 ,T4,Maxcycle) : -

{TKT3+39};

{T1>T3+50},

{Maxcycle==19}.

% complement of the commit constraints, the final states of the automata, and the maxcycle to

% verify the constraint from T4 to T2.

complement_commit_constraints(Tl,T2,T3,T4,Maxcycle):-

{T2<T4+39};

{T2>T4+50},

{Maxcycle==42}.

0

% create the constraint system

create_constraint_system(Maxcycle,I,Current_state,YP,XP,Tl,T2,T3,T4,C):-

[XN,YN]: integer(0,2),

Next_state: integer(0,5),

[Cl,C2,Input,Output]: boolean,
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0

0

0

% check stop condition

{I=<Maxcycle},

% generate the Input of the fsm from present x state XP

{Input==(XP==l)},
% generate the next_state of the fsm

{(Current_state==0) =< (Next_state==Input)},

{((Current_state>=l) and (Current_state=<3)) =< (Next_state== Cunrent_state + 1)},

{((Current_state>=4) and (Input==0)) =< (Next_state==Current_state -4)},

{((Current_state>=4) and (Input==l)) =< (Next_state==5)},

% generate the Output of the fsm

{(Current_state==0) =< (Output==0)},

{((Current_state>=l) and (Current_state=<4)) =< (Output == -Input)},

{(Current_state==5) =< (Output==l)},

% generate the next y state form present y state and Output of fsm

{((YP==0) and (Output==0)) =< (YN==0)},

{((YP<>2) and (Output==l)) =< (YN==1)},

{((YPoO) and (Output==0)) =< (YN==2)},

% assign occurrence times to outputs events

{((YP==0) and (YN==1)) =< (T1==(I-1)*10)},

{((YP==1) and (YN==2)) =< (T2==(I-1)*10)},

% detect an input event

{C1==(T3<(I+1)*10) and (T3>=I:f:10)},

{C2==(T4<(I+1)*10) and (T4>=I*10)},

% next state function of the X automaton

{(XP==0)=<(XN==C1)},

{(XP==1) =< (XN==XP+C2)},

{((XP==2) and (~C2)) =< (XN==2)},

insert(Cl,C,CC),

insert(C2,CC,New_C),

Il is 1+1,

crcate_constraint_system(MaxcycleJl,Next_state,YN,XN,Tl,T2,T3,T4,New_C).
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n
% after maxcycle iteration, constraint the final states of the automata and checking the

% consistency of the constraint system while enumerating the boolean variables

create_constraint_system(Maxcycle,I,Current_state,YP,XP,Tl,T2,T3,T4,C):-

{I===Maxcycle},

reverse(C,R_C),

enumerate(R_C),

{XP==XF}

{YP==YF}.

0

% the main clause

ex:-

[T1,T2,T3,T4]: real,

assume_constraints(Tl,T2,T3,T4),

complement_commit_constraints(Tl,T2,T3,T4,Maxcycle),

write('Maxcycle='),print(Maxcycle),nl,

create_constraint_system(Maxcycle,0,0,0,0,Tl,T2,T3,T4,[]),

write('Tl='),print(Tl),nl,

write('T2='),print(T2),nl,

write('T3='),print(T3),nl,

write('T4='),print(T4),nl.

A3. Prolog code of verifying the real-time controller in Chapter 8

append(L, [], L).

append(L, [XjXs], [X|Zs]):- append(L, Xs, Zs).

0

assume_complement_coimnit_constrants(MaxI,T,SF) : -

Maxi: integer,

[T9,T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20,T21,T22,T23,T24,T25,T26,T27,T28,T
29,T30,T31,T32,T33,T34,T35,T36]=T,

[SFcsn,SFseln, SFrwn, SFtx2upack, SFup_axs, SFdtackn, SFtrin_o]: integer,
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0

0

Assume_T9_T13: integer(0,10),

Assume_T17_T13: integer(4, 10),

Assume_T13_T14: integer(60, _),

Assume_T14_T10: integer(0, 10),

Assume_T14_T18: integer(0,10),

Assume_T21_T25: integer(0, 280),

Assume_T25_T26: integer(20,20),

Assume_T29_T14: integer(0,40),

Assume_T14_T15: integer(40,_),

Assume_Tll_T15: integer(0,10),

Assume_T19_T15: integer(4, 10),

Assume_T15_T16: integer(60,_),

Assume_T16_T12: integer(0,10),

Assume_T16_T20: integer(0,10),

Assume_T23_T27: integer(0, 600),

Assume_T27_T28: integer(20,20),

Assume_T31_T16: integer(0,40),

{T13==T9+Assume_T9_T13},

{T13==T17+Assume_T17_T13},

{T14==T13+Assume_T13_T14},

{T10==T14+Assume_T14_T10},

{T18==T14+Assume_T14_T18},

{T25==T21+Assume_T21_T25},

{T26==T25+Assume_T25_T26},

{T14==T29+Assume_T29_T14},

{T15==T14+Assume_T14_T15},

{T15 ==Tll+Assume_Tll_T15},

{T15 ==T19+Assume_T19_T15},

{T16 ==T15+Assume_T15_T16},

{T12 ==T16+Assume_T16_T12},

{T20 ==T16+Assume_T16_T20},
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0

{T27 ==T23+Assume_T23_T27},

{T28 ==T27+Assume_T27_T28},

{T16 ==T31+Assume_T31_T16},

% redundant commit constraints

{T33-T13 =<5}, {T33-T13>=0},

{T34-T14 =<5}, {T34-T14>=0},

{T35-T15 =<5}, {T35-T15>=0},

{T29-T33 =<600}, {T29-T33 >= 40},

{T31-T35 =<600}, {T31-T35 >= 40},

{T21-T14 =< 60}, {T21-T14 >= 0},

{T23-T16 =< 60}, {T23-T16 >= 0},

{T22-T26 =< 40}, {T22 - T26 >= 0},

%{T36-T16=<5}, {T36-T16>=0},

% final states of the automata

{SFcsn==4},

{SFseln==4},

{SFrwn==4},

{SFtx2upack==4},

{SFup_axs==4},

{SFdtackn==4},

{SFtrin_o==4},

SF=[SFcsn,SFseln, SFrwn, SFtx2upack, SFup_axs, SFdtackn, SFtrin_o],

%max cycle

{Maxi ==90},

%complement of the commit constraint

{T36-T16>5};

{T36-T16<0}.

0

create_constraint(I, Maxi, SF, Csn_Ml, Csn_M2, Seln_Ml, Seln_M2, Up_ack,

Up_wmlocal_R, Up_naxspls_R, Up_axspending_R, SP, SPcsn, SPseln, SPrwn,

SPtx2upack,SPup_axs, SPdtackn, SPtrin_o,T,C, States):-
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n Il: integer,

%check stop condition

{RMaxI},

[SP,SN]: integer(0,3),

[SPcsn, SPseln, SPrwn, SNcsn, SNseln, SNrwn]: integer(0,4),

[SPtx2upack, SNtx2upack]: integer(0,4),

[SPup_axs, SPdtackn, SPtrin_o, SNup_axs, SNdtackn, SNtrin_o]: integer(0,4),

[T9,T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20,T21,T22,T23,T24,T25,T26,T27,T28,T

29,T30,T31,T32,T33,T34,T35,T36]=T,

r

%Input variables of the system and the registers

[Csn, Sein, Rwn, Tx2upack] : boolean,

[Csn_Ml, Seln_Ml, Up_wmlocal, Up_axspending]: boolean,

[Csn_M2, Seln_M2, Up_wmlocal_R, Up_axspending_R, Up_ack, Up_naxspls_R]: boolean,

%0utput variables of the FSM

[Up_wmlocal_rst, Up_arwlatch, Dtackn_rst, Up_naxspls]: boolean,

%0utput variables of the system

[Dtackn, Trin_o, Up_axs]: boolean,

u

%boolean variables modeling possible input events in the clod cycle

[C9,C10,C11,C12,C13,C14,C15,C16,C17,C18,C19,C20,C25,C26,C27,C28]: boolean,

% input values

{Csn === -((SPcsn == l) or (SPcsn ==3))},

{Sein == -((SPseln == l) or (SPseln == 3))},

{Rwn == -((SPrwn == l) or (SPrwn == 3))},

{Tx2upack == (SPtx2upack == l) or (SRx2upack ==3)},

%Next state of the FSM
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n {(((SP == 0) and (Csn_M2 or Seln_M2)) or ((SP == 3) and Seln_M2) or ((SP == 2) and

Up_wmlocal_R and Up_ack)) =< (SN ==0)},

{((SP == l) and ~Seln_M2) or ((SP==0) and ~(Csn_M2 or Seln_M2) and ~Rwn) =< (SN ==

l)},

{((SP==0) and ~(Csn_M2 or Seln_M2) and Rwn) or ((SP == 2) and ~Up_ack) or ((SP == 1)

and Seln_M2) =< (SN ==2)},

{(SP == 2) and ~Up_wmlocal_R and Up_ack or (SP == 3) and ~Seln_M2 =< (SN ==3)},

writeC SN = '), print(SN),nl,

d

%0utputs of the FSM

{Up_wmlocal_rst == ((SP == 2) and Up_wmlocal_R and Up_ack)},

{Up_arwlatch == ((SP == 0) and ~(Csn_M2 or Seln_M2))},

{Dtackn_rst == (((SP == 0) and ~(Csn_M2 or Seln_M2) and ~Rwn) or ((SP == 2)

and~Up_wmlocal_R and Up_ack))},

{Up_naxspls == (((SP == 0) and ~(Csn_M2 or Seln_M2) and Rwn) or ((SP == 1) and

Seln_M2))},

%0utputs of the system

{Dtackn_R==Seln or (~Seln and ~Dtackn_rst)},

{Dtackn == Csn or Dtackn_R},

{Trin_o == ~(Csn or Sein)},

{Up_axs == Up_naxspls orUp_axspending_R},

%Inputs of the registers

{Up_wmlocal == ~Up_wmlocal_rst and (Up_arwlatch and ~Rwn or ~Up_arwlatch and
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n Up_wmlocal_R)},

{Up_axspending == (Up_naxspls or Up_axspending_R) and ~Tx2upack},

% the next state of the output waveform transition automata

{((SPup_axs==0) or (SPup_axs==2)) =< (SNup_axs ==SPup_axs+Up_axs)},

{((SPup_axs == l) or (SPup_axs==3)) and Up_axs =< (SNup_axs == SPup_axs)},

{((SPup_axs == l) or (SPup_axs==3)) and ~Up_axs =< (SNup_axs == SPup_axs+l)},

{(SPup_axs == 4) and ~Up_axs =< (SNup_axs==4)},

{((SPdtackn==0) or (SPdtackn==2)) =< (SNdtackn == SPdtackn+(~Dtackn))},

{((SPdtackn == l) or (SPdtackn==3)) =< (SNdtackn == SPdtackn+Dtackn)},

{(SPdtackn==4) andDtackn =< (SNdtackn ==4)},

0
{((SPtrin_o==0) or (SPtrin_o==2)) =< (SNtrin_o ==SPtrin_o+Trin_o)},

{((SPtrin_o == l) or (SRrin_o==3)) and Trin_o =< (SNtrin_o == SPtrin_o)},

{((SPtrin_o == l) or (SPtrin_o==3)) and ~Trin_o =< (SNtrin_o == SPtrin_o+l)},

{(SPtrin_o == 4) and ~Trin_o =< (SNtrin_o==4)},

% timing assignment of output events

{(SPup_axs==0) and (SNup_axs==l) =<(T21==I*20)},

{(SPup_axs==l) and (SNup_axs==2) =<(T22==I*20)},

{(SPup_axs==2) and (SNup_axs==3) =<(T23==I*20)},

{(SPup_axs==3) and (SNup_axs==4) =<(T24==I*20)},

{(SPdtackn==0) and (SNdtackn==l) =<(T29==I*20)},

{(SPdtackn==l) and (SNdtackn==2) =<(T30==min(T14,T10))},

{(SPdtackn==2) and (SNdtackn==3) =<(T31==I*20)},

{(SPdtackn==3) and (SNdtackn==4) =<(T32==min(T16,T12))},

0 {(SPtrin_o==0) and (SNtrin_o==l) =<(T33==max(T13,T9))},
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n {(SPtrin_o==l) and (SNtrin_o==2) =<(T34==min(T14,T10))},

{(SPtrin_o==2) and (SNtrin_o==3) =<(T35==max(T15,Tll))},

{(SPtrin_o==3) and (SNtrin_o==4) =<(T36==min(T16,T12))},

% possible input evetns

{C9==((T9<(I+l):i;20) and (T9>=I:i:20))},

{C10==((T10<(I+1)*20) and (T10>=I*20))},

{C11==((T11<(I+1)*20) and (T11>=I*20))},

{C12==((T12<(I+1)*20) and (T12>=I*20))},

{C13==((T13<(I+1)*20) and (T13>=I*20))},

{C14==((T14<(I+1)*20) and (T14>=I*20))},

{C15==((T15<(I+1)*20) and (T15>=I*20))},

{C16==((T16<(I+1)*20) and (T16>=I*20))},

{C17==((T17<(I+l):f:20) and (T17>=I*20))},

{C18==((T18<(I+1)*20) and (T18>=I*20))},

{C19==((T19<(I+1)*20) and (T19>=I*20))},

{C20==((T20<(I+l):i:20) and (T20>=I*20))},

{C25==((T25<(I+1)*20) and (T25>=I*20))},

{C26==((T26<(I+1)*20) and (T26>=I*20))},

{C27==((T27<(I+1)*20) and (T27>=I*20))},

{C28==((T28<(I+1)*20) and (T28>=I*20))},

% the next state of the input waveform transition automata

{(SPcsn==0) =< (SNcsn==C9)},

{(SPcsn==l) =< (SNcsn==SPcsn+C10)},

{(SPcsn==2) =< (SNcsn==SPcsn+Cll)},

{(SPcsn==3) =< (SNcsn==SPcsn+C12)},

{(SPcsn==4)=<(C12==0)},

{(SPcsn==4) =< (SNcsn==4)},

0 {(SPseln==0) =< (SNseln==C13)},
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n {(SPseln==l) =< (SNseln==SPseln+C14)},

{(SPseln==2) =< (SNseln==SPseln+C15)},

{(SPseln==3) =< (SNseln==SPseln+C16)},

{(SPseln==4) =< (C16==0)},

{(SPseln==4) =< (SNseln==4)},

{(SPrwn==0) =< (SNrwn==C17)},

{(SPrwn==l) =< (SNrwn==SPrwn+C18)},

{(SPrwn==2) =< (SNrwn==SPrwn+C19)},

{(SPrwn==3) =< (SNrwn==SPrwn+C20)},

{(SPrwn==4) =< (C20==0)},

{(SPrwn==4) =< (SNrwn==4)},

{(SPtx2upack==0) =< (SNtx2upack==C25)},

{(SPtx2upack==l) =< (SNtx2upack==SPtx2upack+C26)},

{(SPtx2upack==2) =< (SNtx2upack==SPtx2upack+C27)},

{(SPtx2upack==3) =< (SNtx2upack==SPtx2upack+C28)},

{(SPtx2upack==4) =< (C28==0)},

{(SPtx2upack==4) =< (SNtx2upack==4)},

pend([C9,C10,Cll,C12,C13,C14,C15,C16,C17,C18,C19,C20,C25,C26,C27,C28],C,New_C),

append([SPcsn, SPseln, SPrwn, SPtx2upack, SPup_axs, SPdtackn, SPtrin_o], States,

New_States),

u

Il is 1+1,

create_constraint(Il, Maxi, SF, Csn, Csn_Ml, Sein, Seln_Ml, Tx2upack, Up_wmlocal,

Up_naxspls, Up_axspending, SN, SNcsn, SNseln, SNrwn, SNtx2upack,SNup_axs, SNdtackn,

SNtrin_o,T,New_C, New_States).

create_constraint(I, Maxi, SF, Csn_Ml, Csn_M2, Seln_Ml, Seln_M2, Up_ack,
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0 Up_wmlocal_R, Up_naxspls_R, Up_axspending_R, SP, SPcsn, SPseln, SPrwn,

SPtx2upack,SPup_axs, SPdtackn, SPtrin_o, T,C, States):-

{I==MaxI},

[SFcsn, SFseln, SFrwn, SFtx2upack, SFup_axs, SFdtackn, SFtrin_o]=SF,

{SPcsn==SFcsn},

{SPseln===SFseln},

{SPrwn==SFrwn},

{SPtx2upack == SFtx2upack},

{SPup_axs == SFup_axs},

{SPdtackn ==SFdtackn},

{SPtrin_o==SFtrin_o},

enumerate(C),

write('TheEnd'),nl.

ex:-

I: integer,

[T9,T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20,T21,T22,T23,T24,T25,T26,T27,T28,T

29,T30,T31 ,T32,T33,T34,T35,T36] : integer(0,_),

T=[T9,T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20,T21,T22,T23,T24,T25,T26,T27,T2

8,T29,T30,T31,T32,T33,T34,T35,T36],

0

assume_complement_commit_constrants(MaxI,T,SF),

create_constraint(0, Maxi, SF, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,T,[],[]),

write('T9='),print(T9),nl,write('T10='),print(T10),nl,

write('Tll='),print(Tll),nl,write('T12='),print(T12),nl,

write('T13='),print(T13),nl,write('T14='),print(T14),nl,

write('T15='),print(T15),nl,write('T16='),print(T16),nl,

write('T17='),print(T17),nl,write('T18='),print(T18),nl,

write('T19='),print(T19),nl,write('T20='),print(T20),nl,
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<~) write('T21='),print(T21),nl,write('T22='),print(T22),nl,

write('T23='),print(T23),nl,write('T24='),print(T24),nl,

write('T25='),print(T25),nl,write('T26='),print(T26),nl,

write('T27='),print(T27),nl,write('T28='),print(T28),nl,

write('T29='),print(T29),nl,write('T30='),print(T30),nl,

write('T31='),print(T31),nl,write('T32='),prmt(T32),nl,

write('T33='),print(T33),nl,write('T34='),print(T34),nl,

write('T35='),print(T35),nl,write('T36='),print(T36),nl.

0

0


