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Résumé 

Le premier des trois essais qui composent cette thèse démontre empiri­

quement que la contrainte de crédit à laquelle font face les intermédiaires 

financiers affecte leur capacité à supporter un marché, liquide. Dans le cadre 

des marchés américains, cet essai mesure les variations du' prix de cette 

contrainte et les relient aux variations des primes de risque dans différents 

marchés. L'évidence démontre que cette contrainte financière induit un fac­

teur de risque agrégé et cause des variations importantes et communes des 

primes de liquidité à travers les marchés monétaires et obligataires. 

Le second essai s'intéresse au contenu informatif des taux d'intérêts et 

des contrats à terme liés aux décisions futures de la Réserve Fédérale améri­

caine. Je développe un modèle joint de la politique monétaire, de la structure 

des taux d'intérêts ainsi que des contrats à termes. En particulier, le modèle 

permet une prime de liquidité différente dans chaque marché. Les résultats 

montrent que cette approche permet d'identifier plus précisément les antici­

pations incorporées dans le prix de ces actifs et, ainsi, d'améliorer la prévision 

des décisions monétaires. L'identification, par le modèle, des variations dans 

la prime de liquidité contribuent pour beaucoup à ces résultats. 

Finalement, le dernier essai s'intéresse à l'importance de l'asymétrie des 

rendements boursiers. En particulier pour expliquer les écarts systématiques 

observés entre la volatilité des rendements futurs et celle implicite dans les 

prix d'options liées aux rendements futurs. Le modèle prévoit, et les résultats 

supportent cette conclusion, que tenir compte de l'asymétrie anticipée, telle 

que mesurée à partir de prix d'options, apporte une contribution à la prévi­

sion de la prime de risque et à notre capacité à mesurer et couvrir les risques 

reliés aux options. Les liens entre l'asymétrie des rendements et l'écart de 

volatilité sont des élément-clés pour notre compréhension des rendements 

boursiers. 

Mots-clés Économie financière, Économétrie financière, prime de li­

quidité, taux d'intérêts, prix d'option, asymétrie et prime de risque. 
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Abstract 

The first essay of this thesis provides evidence that the credit constraint 

of financial intermediaries affect their ability to support liquid markets. The 

essay studies the case of US markets and provides a direct measurement, 

based on observed asset priees, of that constraint's price variations. The 

evidence shows that these variations represent an aggregate risk factor and 

induce large common variations of the liquidity premia across money markets 

and bond markets. 

The second essay considers the information content of interest rates and 

futures contracts linked to future policy decision by the US Federal Reserve. 

l develop a joint model of the monetary policy response function, of inter­

est rates and of futures rates. In particular, the model allows for different 

liquidity premia across the two markets. Empirically, this approach identifies 

more precisely the expectations of future policy implicit in observed priees 

and, henee, enhances our ability to forecast monetary decisions. Measuring 

the liquidity premium contributes significantly to these improvements. 

Finally, the last essay studies the importance of the skewness of stock in­

dex returns. In partieular, we analyze the role of skewness in the systematic 

spread between the observed volatility of equity returns and the volatility 

implicit in index option prices. The model predicts and the evidence supports· 

that conditioning on implied skewness, as measured from option prices, im­

proves our ability to predict the risk premium and our ability to measure 

and hedge option-related risk exposures. We argue that the linkages between 

skewness and the volatility spread are key to our understanding of the equity 

premium. 

Keywords : Financial Economies, Financial Econometries, Liquidity 

Premium, interest rates, option prices, skewness and risk premium. 
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Bond Liquidity Premia 

Jean-Sébastien Fontaine 
Université de Montréal and CIREQ 

René Garcia 
EDHEC Business School 

Abstract 
Recent asset pricing models of limits to arbitrage emphasize the role of 

funding conditions faced by financial intermediaries. In the VS, the repo 
market is the key funding market. Then, the premium of on-the-run V.S. 
Treasury bonds should share a common component with risk premia in other 
markets. This observation leads to the following identification strategy. We 
measure the value of funding liquidity from the cross-section of on-the-run 
premia by adding a liquidity factor to an arbitrage-free term structure model. 
As predicted, we find that funding liquidity explains the cross-section of risk 
premia. An increase in the value of liquidity predicts lower risk premia for 
on-the-run and off-the-run bonds but higher risk premia on LIBOR loans, 
swap contracts and corporate bonds. Moreover, the impact is large and 
pervasive through crisis and normal times. We check the interpretation of 
the liquidity factor. It varies with transaction costs, S&P500 valuation ratios 
and aggregate uncertainty. More importantly, the liquidity factor varies with 
narrow measures of monetary aggregates and measures of bank reserves. 
Overall, the results suggest that different securities serve, in part, and to 
varying degrees, to fulfill investors' uncertain future needs for cash depending 
on the ability of intermediaries to provide immediacy. 

JEL Classification: E43, H12. 
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" a part of the interest paid, at least on long-term securities, 

is to be attributed to uncertainty of the future course of interest 

rates." 

(p.163) 

" ... the imperfect 'moneyness' of those bills which are not money 

[ ... ] causes the trouble of investing in them and [causes them] to 

stand at a discount." 

(p.166) 

"... ln practice, there is no rate so short that it may not be 

affected by speculative elementsj there is no rate so long that it 

may not be affected by the alternative use of funds in holding 

cash." 

(p.166) 

John R. Hicks, Value and Capital, 2nd edition, 1948. 

Introduction 

3 

Bond traders know very well that liquidity affects asset priees. One promi­

nent case is the on-the-run premium, whereby the most recently issued (on­

the-run) bonds sell at a premium relative to seasoned (off-the-run) bonds 

with similar coupons and maturities. Moreover, systematic variations in 

liquidity sometimes drive interest rates across several markets. A case in 

point occurred around the Federal Open Market Committee [FOMe] de ci­

sion, on October 15, 1998, to lower the Federal Reserve funds rate by 25 basis 

points. ln the meeting's opening, Vice-Chairman McDonough, of the New 

York district bank, noted increases in the spread between the on-the-run 

and the most recent off-the-run 30-year Treasury bonds (0.05% to 0.27%), 

the spreads between the rate on the fixed leg of swaps and Treasury notes 

with two years and ten years to maturity (0.35% to 0.70%, and 0.50% to 

0.95%, respectively), the spreads between Treasuries and investment-grade 

corporate securities (0.75% to 1.24%), and finally between Treasuries and 

mortgage-backed securities (1.10% to 1.70%). He concluded that we were 

seeing a run to quality and a serious drying up of liquidityl. These events 

attest to the sometimes dramatic impact of liquidity seizures2 . 

1 Minutes of the Federal Open Market Committee, October 15, 1998 conference cali. 
See http:j jwww.federalreserve.gov jFomcjtranscriptsj1998j981015confcalLpdf. 

2The liquidity crisis of 2007-2008 provides another example. Facing sharp increases 
of interest rate spreacis in most markets, the Board approved reduction in discount rate, 
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A common explanation for that and the more recent market turmoil 

is based on a common wealth shock to capital-constrained intermediaries 

or speculators (Shleifer and Vishny (1997), Kyle and Xiong (2001), Gromb 

and Vayanos (2002)). Intuitively, lower wealth hinders the ability_t~:LP~ue ;7 
quasi-arbitrage opportunities across markets. In practice, the~~et is 
the key market where investment banks, hedge funds and other speculators 

obtain the marginal funds for their activities and manage their leveraged 

exposure to risk (Adrian and Shin (2008)). Then, the risk premia for each 

market intermediated by a common set of intermediaries share a compo-

nent measuring tightness in the funding market (Brunnermeier and Peder-

sen (2008), Krishnamurthy and He (2008)). This paper tests the implication 

that tightness of funding conditions in repo markets should be reflected in 

risk premia across financial markets. 

We introduce liquidity as an additional factor in an otherwise standard 

term structure model. Indeed, the modern term structure literature has not 

recognized the importance of aggregate liquidity for government yields. We 

extend the no-arbitrage dynamic term structure model of Christensen et al. 
-~ .... _-- _. .-

(2007) [CDR, hereafterJ ~:':Ving for liquiditr and we extract a common 

factor driving on-the-run premia across maturities. Identification of the liq­

uidity factor is obtained by estimating the model from a panel of pairs of 

U .S. Treasury securities where each pair has similar cash flows but different 

ages. This sidesteps credit risk issues and delivers direct estimates of funding 

liquidity value: it isolates priee differences that can be attributed to liquid­

ity. A recent empirical literature suggests that liquidity is priced on bond 

markets4 but these empirical investigations are limited to a single market. 

Moreover, none consider the role of funding constraints. 

Our main contribution is precisely to show that funding liquidity is an 

aggregate risk factor that drives a substantial share of risk premia across 

interest rate markets. In particular, we document large variations in the 

liquidity premium of U.S. Treasury bonds. By construction, an increase in 

the liquidity factor is associated with lower expected returns for on-the-run 

target Federal Funds rate as weil as novel policy instruments to deal with the ongoing 
liquidity crisis. 

3This model captures parsimoniously the usuallevel, slope and curvature factors, while 
delivering good in-sample fit and forecasting power. Moreover, the smooth shape of 
Nelson-Siegel curves identifies smalI deviations, relative to an idealized curve, which may 
be caused by variations in market liquidity. 

4See Longstaff (2000) for evidence that liquidity is priced for short-term U.S. Treasury 
security and Longstaff (2004) for U.S. Treasury bonds of longer maturities. See Collin­
Dufresne et al. (2001), Longstaff et al. (2005), Ericsson and Renault (2006), Nashikkar 
and Subrahmanyam (2006) for corporate bonds. 
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bonds. What we show is that the risk premium of any V.S. Treasury bonds 

also decreases substantially. On the other hand, tight funding conditions 

rai se the risk premium implicit in LIB OR rates, swap rates and corporate 

bond yields. This pattern is consistent with accounts of flight-to-quality but 

the relationship is pervasive even in normal times. This adds considerably to 

the existing evidence pointing toward the importance of funding liquidity as 

an aggregate risk factor. Moreover, it suggests that different securities serve, 

in part and to varying degrees, to fulfill investors uncertain future needs for 

cash. 

We estimate the model and obtain a measure of funding liquidity value 

from a sample of end-of-month bond prices running from December 1985 un­

til the end of 2007. Hence, our results cannot be attributed to the extreme 

influence of 2008. In a concluding section, we repeat the estimation includ­

ing 2008 and find, not unexpectedly, that importance of funding liquidity 

increases. Our empirical findings can be summarized as follows. Panel (a) 

of Figure 1.1 presents the measure of funding liquidity value. Clearly, it ex­

hibits significant variations through normal and crisis periods. In particular, 

the stock crash of 1987, the Mexican Peso devaluation of December 1994, 

the LTCM failure of 1998 and the recent liquidity cri sis are associated with 

peaks in investors' valuation of the funding liquidity of on-the-run bonds. 

The relationship with the risk premium of government bonds is illustrated 

in Figure 1.2. Panel (a) compares the funding liquidity factor with annual 

excess returns on a 2-year to maturity off-the-run bond. Clearly, an increase 

in the value of liquidity predicts lower expected excess returns and, thus, 

higher current bond prices. For that maturity, a one-standard deviation 

shock to liquidity predicts a decrease in excess returns of 85 basis points 

[bps] compared to an average excess returns of 69 bps. We obtain similar 

results using different maturities or investment horizons. Intuitively, while 

an off-the-run bond may be less liquid relative to an on-the-run bond with 

similar characteristics, it is still viewed as a liquid substitute. In particu­

lar, it can still be quickly converted into cash, at low costs, via the funding 

market. 

Next, we consider the predictive power of funding liquidity for the risk 

premium on short-term Eurodollar loans. Panel (b) of Figure 1.2 shows 

that variations of LIBOR excess returns are positively linked to variations 

of funding liquidity. The relationship is significant, both statistically and 

economically. Con si der excess returns from borrowing at the risk-free rate 

for 12 months and rolling a 3-month LIBOR loans. On average, returns 
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from this strategy are not statistically different than zero since the higher 

term premium on the borrowing leg compensates for the 3-month LIBOR 

spread earned on the lending leg. However, following a one-standard devia­

tion shock to the funding liquidity factor, rolling excess returns increase by 

42 bps. We reach similar conclusions using LIBOR spreads as ex-ante mea­

sures of risk premium. The effect of funding liquidity also extends to swap 

markets. Panel (d) compares the liquidity factor with the spread, above the 

par Treasury yield, of a swap contract with 5 years to maturity. We find 

that a shock to funding liquidity predicts an increase of fi bps the 5-year 

swap spread. This is economically significant given the higher sensitivity 

(i.e. duration) of this contract value to changes in yields. In each regression, 

we control for variations in the level and shape of the term structure of Trea­

sury yields. The marginal contribution of liquidity to the predictive power 

is high. 

Finally, we consider a sample of corporate bond spreads from the NAIC. 

We find that the impact of liquidity is significant and follows a fiight-to­

quality pattern across ratings. For bonds of the highest credit quality, 

spreads decrease, on average, following a shock to the funding liquidity fac­

tor. In contrast, spreads of bonds with lower ratings increase.· We also 

compute excess returns on AAA, AA, A, BBB and High Yield Merrill Lynch 

corporate bond indices (see Figure 1.3) an~ reach similar conclusions. Bonds 

with high credit ratings were perceived to be liquid substitutes to government 

securities and offered lower risk premium following increases of the liquidity 

factor. This corresponds to an average effect through our sample, the recent 

events suggests that this is not always the case. 

These results raise the all important issue of identifying macroeconomic 

drivers of the liquidity factor. Can we characterize the aggregate liquidity 

premium in terms of ecoriomic state variables? First, consistent with theory, 

our liquidity factor varies with measures of transaction costs on the bond 

market. Second, we find that funding liquidity is linked to stock market 

valuation ratios and option-implied volatility from S&P 500 index options. 

These results support empirically the link between conditions on the funding 

market, the ability of intermediaries to provide liquidity and the level and 

risk of aggregate wealth. Most importantly, we find that measures of changes 

in monetary aggregates and changes in bank reserves are key determinants 

of our liquidity measure. These findings support our interpretation of the 

liquidity factor as a measure of conditions on the funding market. This 

provides a third important empirical contribution. 
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Related Literature 

A few empirical papers document the effects of intermediation constraints 

in specifie markets5 but we differ in significant ways from existing work. 

First, we me as ure the effect of intermediation constraints directly from ob­

served priees rather than quantities. Priees aggregate information about and 

anticipations of intermediaries wealth, their portfolios and the margins they 

face. Second, we study a cross-section of money-market and fixed-income 

securities, providing evidence that funding constraints should be thought as 

an aggregate risk factor driving liquidity premia across markets. 

We introduce a measure of funding liquidity value based on the higher 

valuation of on-the-run bonds relative to off-the-run bonds .6 The on-the­

run liquidity premium was first documented by Warga (1992). Amihud and 

Mendelson (1991) and, more recently, Goldreich et al. (2005) confirm the 

link between the premium and expected transaction costs. Duffie (1996) 

provides a theoretical channel between on-the-run premia and lower financing 

costs on the repo market. Vayanos and Weill (2006) extend this view and 

model se arch frictions in both the repo and the cash markets explicitly.7 

The key frictions differentiating bonds with identical cash flows lies in their 

segmented funding markets. The link between the repo market and the on­

the-run premium has been confirmed empirically. (See Jordan and Jordan 

(1997), Krishnamurthy (2002), Buraschi and Menini (2002) and Cheria et al. 

(2004).) 

We differ from the modern term structure literature in two significant 

ways. First, the latter focuses almost exclusively on .l.ootstrapped zero­

coupon yields8 . This approach is convenient because a large family of models 

delivers zero-coupon yields which are linear in the state variables (see Dai 

and Singleton (2000)). However, we argue that pre-processing the data wipes 

out the most accessible evidence on liquidity, that is the on-the-run premium. 

5See Froot and O'Connell (2008) for catastrophe insurance, Gabaix et al. (2009) for 
mortgage-backed securities, Gârleanu et al. (2009) for index options and Adrian et al. 
(2009) for exchange rates. 

6The V.S Treasury recognizes and takes advantages of this price differential: "In ad­
dition, although it is not a primary reason for conducting buy-backs, we may be able to 
reduce the government's interest expense by purchasing older, "off-the-run" debt and re­
placing it with lower-yield "on-the-run" debt." [Treasury Assistant Secretary for tinancial 
markets Lewis A. Sachs, Testimony before the Rouse Committee on Ways and Means]. 

7Kiyotaki and Wright (1989) introduced search frictions in monetary theory and Shi 
(2005) extends this framework to include bonds. See Shi (2006) for a review. Search 
frictions can also rationalize the spreads between bid and ask priees offered by market 
intermediaries (Duffie et al. (2005)). 

BThe CRSP dàta set of zero-coupon yields is the most commonly used. It is based on ') 
the bootstrap method of Fama and Sliss (1987) [FS). 
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Therefore, we use coupon bond priees directly. However, the state spaee is no 

longer linear and we handle non-linearities with the Vnseented Kalman Filter 

[VKF], an extension of the Kalman Filter for non-linear state-space systems 

(.lulier et al. (1995) and Julier and Vhlmann (1996)). We first estimate a 

model without liquidity and, notwithstanding differenees in data and filtering 7 
methodologies, our results are consistent wit~owever, pricing errors 

in this standard term structure model reveals systematic differences within 

pairs, correlated with ages. Estimation of the model with liquidity produces 

a persistent factor capturing differenees between priees of reeently issued 

bonds and priees of older bonds. The on-the-run premium increases with 

maturity but decays with the age of a bond. These new features complete 

our contributions to the modeling of the term structure of interest rates in 

presenee of a liquidity factor. 

We also differ from the reeent literature using a redueed-form approach 

that model a convenienee yield in interest rate markets (Duffie and Singleton 

(1997) ). A one-factor model of the convenienee yield cannot match the pat­

tern of on-the-run premia across maturities. Moreover, the link between the 

premium and the age of a bond cannot be captured in a frictionless arbitrage­

free model. Still, Grinblatt (2001) argues that the convenienee yields of V.S. 

Treasury bills can explain the V.S. Dollar swap spread. Recently, Liu et al. 

(2006) and Fedlhütter and Lando (2007) evaluate the relative importanee of 

credit and liquidity risks in swap spreads. Other empirical investigations are 

related to our work . .lump risk (Tauchen and Zhou (2006)) or the debt-gdp 

ratio (Krishnamurthy and Vissing-.lorgensen (2007)) have been proposed to 

explain the non-default component of corporate spreads. Finally, Pastor and 

Stambaugh (2003) and Amihud (2002) provide evidence of a liquidity risk 

factor in expected stock returns. 

The link between interest rates and aggregate liquidity is supported else­

where in the theoretical literature. Svensson (1985) uses a cash-in-advanee 

constraint in a monetary economy. Bansal and Coleman (1996) allow gov­

ernment bonds to back checkable accounts and redueed transaction costs in 

a monetary economy. Luttmer (1996) investigates asset pricing in economies 

with frictions and shows that with transaction costs (bid-ask spreads) there is 

in generallittle evidenee against the consumption-based power utility model 

with low risk-aversion parameters. Holmstr6m and Tirole (1998) introduce a 

link between the liquidity demand of financially constrained firms and asset 

priees. Acharya and Pedersen (2004) propose a liquidity-adjusted CAPM 

model where transaction costs are time-varying. Alternatively, Vayanos 
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(2004) takes transactions costs as fixed but introduces the risk of having 

to liquidate a portfolio. Lagos (2006) extends the search friction argument 

to multiple assets: in a decentralized exchange, agents with uncertain future 

hedging demand prefer assets with lower search costs. 

The rest of the paper is organized as foUows. The next section presents 

the model and its state-space representation. Section II describes the data 

and Section III introduces the estimation method based on the UKF. We 

report estimation results for models with and without liquidity in Section IV. 

Section V evaluates the information content of liquidity for excess returns 

and interest rate spreads while Section VI identifies economic determinants 

of liquidity. Section VIII concludes. 

1 A Term Structure Model With Liquidity 

We base our model on the Arbitrage-Free Extended Nelson-Siegel [AFENS] 

model introduced in CDR. This model belongs to the affine family (Duffie 

and Kan (1996)). The latent state variables relevant for the evolution of in­

terest rates are grouped within a vector Ft of dimension k = 3. Its dynamics 

under the risk-neutral measure Q is described by the stochastic differential 

equation 

('1.1 ) 

where dWt is a standard Brownian motion process. Combined with the 

assumption that the short rate is affine in aU three factors, the model then 

leads to the usual affine solution for discount bond yields. 

In this context, CDR show that if the short rate is defined as Tt 

Fl,t + F2,t and if the mean-revers ion matrix KQ is restricted to 

(1.2) 

then the absence of arbitrage opportunity implies the discount yield function, 
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with loadings given by 

b1(m) = 1, 

b2 (m) = C -eX!i -mÀ)) , 

b3 (m) = C -eX!i-
mÀ

) -exp(-mÀ))' (1.4) 

where m ~ 0 is the length of time until maturity (see Appendix C for the 

a(m) term). 

These loadings are consistent with the static Nelson-Siegel representation 

of forward rates (Nelson and Siegel (1987), NS hereafter). Their shapes 

across maturities lead to the usual interpretations of factors in terms of 

level, slope and curvature. Moreover, the NS representation is parsimonious 

and imposes a smooth shape to the forward rate curve. Empirically, this 

approach is robust to over-fitting and delivers performance in line with, or 

better than, other methods for pricing out-of-sample bonds in the cross­

section of maturities9 . Conversely, its smooth shape is useful to identify 

deviations of observed yields from an idealized curve. 

A dynamic extension of the NS model, the Extended Nelson-Siegel model 

[ENS], was first proposed by Diebold and Li (2006) and Diebold et al. (2006). 

Diebold and Li (2006) document large improvements in long-horizon interest 

rate forecasting. They argue that the ENS model performs better than the 

best essentially affine model of Duffee (2002) and point toward the model's 

parsimony to explain its successes. A persistent concern, though, was that 

the ENS model does not enforce the absence of arbitrage. This is precisely 

'the contribution_oLCDR. They derive the class of continuous-time arbitrage­

free affine dynamic term structure models with loadings that correspond 

to the NS representation. Intuitively, an AFENS model corresponds to a 

~="o~n~ic=a=l...:a:::ffi=ne::..:;m=-o=-:d~e~l-.::i::n-.::D=-a~i=--a=n=-d=-=S::in~g~l~et~o~n~( 2:::.:0::..:0::..:0~)_w ___ h~e::.:r~e~t:.:.h:.::e...:l::-o=ad=in:::g~s::..:h=a~p:..:es 
have been restricted through over-identifying assumptions on the Rarameters 

governing the risk-neutral dynamics of latent factors. CDR compare the ENS J 
and AFENS models and show that implementing these restrictions improves 

forecasting performances further. 

Interestingly, CDR show that we are free to choose the drift and variance 

9See Bliss (1997) and Anderson et al. (1996) for an evaluation of yield curve estimation 
methods. 
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term for the dynamies under the physieal measure 

(1.5) 

and we impose that E is lower triangular and that K P is diagonal10 . We 

can then cast the model within a discretized state-space representation. The 

state equation becomes 

(1.6) 

where the innovation Et is standard Gaussian, the autoregressive matrix tP is 

(1.7) 

and the covariance matrix r can computed from 

(1.8) 

Finally, we define a ~w latent state variable, Lt, that will be driving the 

liquidity premium. lts transition equation is 

(Lt - 1 - 1 1 L) = <p (Lt-l - L) + 0' Et, (1.9) 

where the innovation Ef is standard Gaussian and uncorrelated with Et. 

Typieally, term structure models are not estimated from observed priees. 

Rather, coupon bond prices are converted to forward rates the 

strap method. This is convenient as affine term structure modeis deliver 

~ that are linear in state variables. Is is also thought to be in­

nocuous beeause bootstrapped forward rates aehieve near-exaet pricing of 

the original sam pIe of bonds. Unfortunately, this extreme fit means that 

a naive application of the bootstrap pushes any liquidity effects and other 

priee idiosyncracies into forward rates. Fama and Bliss (1987) handie this 

sensitivity to over-fitting by excluding bonds with "large" priee differenees 

relative to their neighbors. 11 This approaeh is eertainly justified for many 

lOFormally, the assumption on E is required for identification purposes. In practice) 
the presence of the off-diagonal elements in the K P matrix does not change our results. 
Moreover, CDR show that allowing for an unrestricted matrix K P deteriorates out-of­
sample performance. 

I1The CRSP data set of zero coupon yields is based on the approach proposed by Fama 
and Bliss. See also the CRSP documentation for a description of this procedure. BrieHy, 
a first filter includes a quote if its yield to maturity falls within a range of 20 basis points 

ç7 
r 1 
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\ 
of the questions addressed in the literature, butit removes any evidenee of 

large liquidity effects. Moreover, the FB data se~ foc uses on discount bond 

priees at annual maturity intervals. This smooths away evidenee of sm ail 

liquidity effects remaining in the data and passed through to forward rates. 

These effects would be apparent from reversais in the forward rate function 

at short maturity interval. Consider three quotes for bonds with suceessive 

maturities Ml < M2 < M3. A relatively expensive quote at maturity M2 

induees a relatively small forward rate from Ml to M2. However, the follow­

ing normal quote with maturity M3 requires a relatively large forward rate 

from M 2 to M3. This is needed to compensate the previous low rate and 

to achieve exact pricing as required by the bootstrap. However, the reversai 

cancels itself as we sum intra-period forward rates to compute annual rates. 

Instead of using smoothed data, we proceed from observed coupon bonds 

with maturity, say, M and with coupons at maturities m = ml, ... , M. The 

priee, Dt(m), of a discount bond with maturity m, used to priee intermediate 

payoffs, is given by 

Dt(m) = exp (-m(a(m) + b(mf Ft}) m 2:: 0, 

which follows directly from equation (1.3) but where we use vector notation 

for factors Ft and factor loadings b(m). In a frictionless economy, the ab­

sence of arbitrage implies that the priee of a coupon bond equals the sum of 

discounted coupons and principal. That is, the frictionless price is 

\. 
M 

P*(Ft, Zt) = L Dt(m) x Ct(m), (1.10) 

where Zt includes (deterministic) characteristics relevant for pricing a bond. 

In this case, it includes the maturity M and the schedule of future coupons 

and principal payments, Ct(m). 

However, with a short-sale constraint on government bonds and a col­

lateral constraint in the repo market, Luttmer (1996) shows that the set of 

stochastic discount factors consistent with the absence of arbitrage satisfies 

from one of the moving averages on the 3 longer or the 3 shorter maturity instruments or 
if its yield to maturity falls between the two moving averages. When computing averages, 
precedence is given to bills when available and this is explicitly designed to exclude the 
impact of liquidity on notes and bonds with maturity of less than one year. Amihud and 
Mendelson (1991) document that yield differences between notes and adjacent bills is 43 
basis point on average, a figure much larger than the 20 basis point cutoff. The second 
filter excludes observations that cause reversais of 20 basis points in the bootstrapped 
discount yield function. The impact of these filters has not been studied in the literature. 
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P ;::: P*. These constraints match the institutional features of the Treasury 

market. An investor cannot issue new bonds to establish a short position. 

Instead, she must borrow the bond on the repo market through a collat­

eralized loan. Then, we model the priee, P(Ft, Lt, Zt), of a coupon bond 

with characteristics Zt as the sum of discounted coupons to which we add a 

liquidity term, ? 

Here Zt also includes the age of the bond. Note that the liquidity term 

should be positive to be consistent with a Luttmer (1996). 

That the on-the-run premium is related to the short-sale constraint on 

government bonds and the collateral constraint in the repo market is justified 

by the results of Vayanos and Weill (2006) (see also Duffie (1996)). They 

show that the combinat ion of these constraints with search frictions on the 

repo market induces differences in funding costs that favor recently issued 

bonds. Intuitively, the repo market provides the required heterogeneity be­

tween assets with identical payoffs. An investor cannot choose which bond 

to deliver to unwind a repo position; she must find and deliver the same 

security she had originally borrowed. Because of search frictions, then, in­

vestors are better off in the aggregate if they coordinate around one security 

to reduce search costs. In practice, the repo rate is lower for this special is­

sue to provide an incentive for bond holders to bring their bonds to the repo 

market. Typically, recently issued bonds benefit from these lower financing 

costs, leading to the on-the-run premium. Moreover, these bonds offer lower 

transaction costs adding to the wedge between asset priees (Amihud and 

Mendelson (1986)). Empirically, both channels seem to be at work although 

the effect of lower transaction costs appears weaker than the effect of lower 

funding rates. 12 

Grouping observations together, and adding an error term, we obtain our 

measurement equation 

(1.11) 

where Ct is the (N x M max ) payoffs matrix obtained from stacking the N 

12 Amihud and Mendelson (1991) and Goldreich et al. (2005) consider transaction costs. 
Jordan and Jordan (1997), Krishnamurthy (2002) and Cheria et al. (2004) consider funding 
costs. See also, Buraschi and Menini (2002) for the German bonds market. 
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row vectors of individual bond payoffs and M max is the longest maturity 

group in the sample. Shorter payoff vectors are completed with zeros. Simi­

larly, «(Lt , Zt) is a N x 1 vector obtained by staking the individualliquidity 

premium. Dt is a (Mmax xl) vector of discount bond priees and the measure­

ment error, Vt, is a (Nx 1) gaussian white noise uncorrelated with innovations 

in state variables. The matrix n is ass,umed diagonal and its elements are a 

linear function of maturity, 

which reduce substantially the dimension of the estimation problem, How­

ever, leaving the diagonal elements of n unrestricted does not affect our 

results13. 

Our specification of the liquidity premium is based on a latent factor 

common to aH bonds but with loadings that vary with maturity and age. 

The premium is given by 

(1.12) 

where aget is the age, in years, of the bond at time t. The parameter 

f3M controls the average on-the-run premium at each fixed maturity M. 

Warga (1992) document the impact of age and maturity on .the average 

premium. We estimate f3 for a fixed set of maturities and the shape of f3 is 

unrestricted between these maturities. 14 Next, the parameter fi, controls the 

on-the-run premium's decay with age, The graduai decay of the premium 

with age has been documented by Goldreich et al. (2005). For instance, 

immediately following its issuance (Le.: age = 0), the loading on the liquidity 

factor is f3M x 1. Taking fi, = 0.5, the loading decreases by half within 

any maturity group after a little more than 4 months following issuance : 

«(Lt , 4) ;::::: ~((Lt, 0)). While the specification above reflects our priors about 

the impact of age and maturity, the scale parameters are left unrestricted at 

estimation and we allow for a continuum of shapes for the decay of liquidity. 

However, we fix f310 = 1 to identify the level of the liquidity factor with the 

average premium of a just-issued 1Q-year bond relative to a very old bond 

may be due to the fact that the level factor explains most of yields variability. 
Its impact on bond priees is linear in duration and duration is approximately linear in 
maturity, at least for maturities up to 10 years. Bid-ask spreads inerease with maturity 
and may also eontribute to an inerease in measurement errors with maturity. 

140pportunities of arbitrage may arise if {3 follows a step process aeross maturities. We 
thank an anonymous referee for this remark. 
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with the same maturity and coupons. 

Equation (1.11) shows that omitting the liquidity term will push the 

impact of liquidity into pricing errors, possibly leading to biased estimators 

and large filtering errors. Alternatively, adding a liquidity term amounts to 

filtering a latent factor present in pricing errors. However, Equation (1.11) 

shows that this factor captures that part of pricing errors correlated with 

bond ages. Our maintained hypothesis is that any such positive factor can 

be interpreted as a liquidity effect. Clearly, the impact of age on the priee 

of a bond can hardly be rationalized in a frictionless economy. 

Intuitively, our specification delivers a discount rate function consistent 

with off-the-run valuation but Je mains silent on the linkage with the equi­

librium stochastic discount factor. A~al specification of the liquid~ 

premium raises important challenges. The on-the-run premium is a real ar-
"-
bitrage opportunity unless we explicitly consider the costs of shorting the 

more expensive bond or, alternatively, the benefits accruing to the bond­

holder from a lower repo rate. These features are absent from the current 

crop of term structure models with the notable exeeption of Cheria et al. 

(2004) who allow for a convenienee yield, due to lower repo rates accruing 

to holders of an on-the-run issue. Clearly, theory suggests that using repo 

rates may improve the identification of the premium. Unfortunately, this 

would restrict our analysis to a much shorter sam pIe where repo data are 

readily available. In any case, a joint model of the term structure of repo 

rates and of government yields may still not be free of arbitrage unless we 

also model the convenienee yield of holding short-term government securi­

ties. This follows from the observation that a Treasury bill typically offers 

a lower yield than a repo contract with the same maturity. Moreover, the 

stochastic properties of repo rates are not well known, as well as the form of 

their relationships with bond yields. This is beyond the scope of this paper. 

Our strategy bypasses these challenging considerations but still uncovers the 

key role funding liquidity. We now turn to a description of the data. 

II Data 

We use end-of-month priees of U.S. Treasury securities from the CRSP data 

set. Our sample covers the period from January 1986 to Deeember 2008. 

However, we estimate the model both with and without 2008 data. Before 

1986, interest income had a favorable tax treatment compared to capital 

gains and investors favored high-coupon bonds. The resulting tax premium 
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and the on-the-run prerniurn cannot be disentangled in the earlier period. 

When interest rates are rising, reeently issued bonds had relatively high 

coupons and were priced at a prerniurn both for their liquidity and for their 

truc benefits. Green and 0degaard (1997) document that the high-coupon 

truc prerniurn rnostly disappeared when the asyrnrnetric treatrnent of interest 

incorne and capital gains was elirninated following the 1986 tax reforrn. 

The CRSP data set15 provides quotes on aU outstanding U.S. Treasury 

securities. Vve filter unreliable observations and construct bins around rna­

turities of 3, 6, 9, 12, 18, 24, 36, 48, 60, 84 and 120 rnonths.16 Then, at 

each date, and for each bin, we choose a pair of securities to identify the 

on-the-run prerniurn. First, we want to pick the on-the-run security if any 

is available. Unfortunately, on-the-run bonds are not directly identified in 

the CRSP database. Instead, we use tirne since issuance as a proxy and pick 

the rnost recently issued security in each rnaturity bin. Second, we choose 

the security that rnost closely matches the bin's rnaturity (e.g. 3 rnonths, 

6 rnonths, ... ). Note that pinning off-the-run securities at fixed rnaturities 

ensures a stable coverage of the terrn structure of interest rates. AIso, by 

construction, securities within each pair have the sarne credit quality and 

very close tirnes to rnaturity. Vve do not match coupon rates but coupon 

differences within pairs are low in practice. 

The rnost important aspect of our sam pie is that whenever a security 

trades at prerniurn' relative to its pair cornpanion, any large price difference 

cannot be rationalized frorn srnaU coupon or rnaturity differences under the 

no-arbitrage restriction. On the other hand, priee differenees cornrnon across 

rnaturities and correlated with age will be attributed to liquidity. Note that 

the rnost recent issue for a given bin and date is not always an on-the-run 

security. This rnay be due to the absence of new issuance in sorne rnaturity 

bins throughout the whole sarnple (e.g. 18 rnonths to rnaturity) or within 

sorne sub-periods (e.g. 84 rnonths to rnaturity). Alternatively, the on-the­

run bond rnay be a few rnonths old, due to the quarterly issuanee pattern 

observed in sorne rnaturity categories. In any case, this introduees variability 

in age differences which, in turn, identifies how the liquidity prerniurn varies 

with age. 

We now investigate sorne features of our sarnple of 265 x 22 = 5830 ob­

servations. The first two colurnns of Table 1 present rneans and standard de­

viations of age for each liquidity-rnaturity category. The average off-the-run 

15See Elton and Green (1998) and Piazzesi (2005) for discussion of the CRSP data set. 
16See Apppendix A for more details on data filter. 
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security is always older than the corresponding on-the-run security. Typi­

cally, the off-the-run security has been in circulation for more than a year. 

ln contrast, the on-the-run security is typically a few months old and only 

a few weeks old in the 6 and 24-month categories. A relatively low average 

age for the reeent issues indicates a regular issuanee pattern. On the other 

hand, the relatively high standard deviations in the 36 and 84-month cate­

gories reftect the decision by the U.S. Treasury to stop the issuanee cycles 

at these maturities. 

[Table 1 about here.] 

Next, Table 1 presents means and standard deviations of duration17 . Av­

erage duration is almost linear in maturity. As expected, duration is similar 

within pairs implying that averages of cash ftow maturities are very close.' Fi­

nally, the last columns of Table 1 show that the term structure of coupons is 

upward sloping on average and the high standard deviations indicate impor­

tant variations across the sample. This is in part due to the general decline 

of interest rates. Nonetheless, coupon rate difJerences within pairs are small 

on average. To summarize our strategy, differenees in duration and coupon 

rates are kept small within each pair but differenees of ages are highlighted 

so that we can identify any effect of liquidity on priees that is linked to age. 

III Estimation Methodology 

Equations (1.6), (1.9) and (1.11) can be summarized as a state-spaee system 

(Xt - X) = 1>X(Xt-l - X) + ~Xft 
Pt = \lI(Xt , Ct, Zt) + nZlt , (1.13) 

where X t == [Ft LtV and \li is the (non-linear) mapping of cash ftows Ct, 

bond characteristics, Zt, and current states, Xt, into priees, Pt. 

Estimation of this system is challenging because we do not know the 

joint density of factors and priees. Various strategies to deal with non-linear 

state-spaee systems have been proposed in the filtering literature: the Ex­

tended Kalman Filter (EKF), the Particle Filter (PF) and more reeently 

the Unseented Kalman Filter18 (UKF). The UKF is based on a method 

17 Duration is the relevant measure to compare maturities of bonds with different 
coupons. 

18See Julier et al. (1995), Julier and Uhlmann (1996) and Wan and der Merwe (2001) for 
a textbook treatment. Another popular approach bypasses filtering altogether. It assumes 
that sorne priees are observed without errors and obtains factors by inverting the pricing 
equation. In our context, the choice of maturities and liquidity types that are not affected 
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for calculating statistics of a random variable which undergoes a nonlinear 

transformation. It starts with a well-chosen set of points with given sam­

ple mean and covariance. The nonlinear function is then applied to each 

point and moments are computed from transformed points. This approach 

has a Monte Carlo fiavor but the sample is drawn according to a specific 

deterministic algorithm. It delivers second-order accuracy with no increase 

in computing costs relative to the EKF. Moreover, analytical derivatives are 

not required. The UKF has been introduced in the term structure literature 

by Leippold and Wu (2003) and in the foreign exchange literature by Bakshi 

et al. (2005). Recently, Christoffersen et al. (2007) compared the EKF and 

the UKF for the estimation of tenn structure models. They conclude that 

the UKF improves filtering results and substantially reduces estimation bias. 

To set up notation, we state the standard Kalman filter algorithm as 

applied to our model. We then explain how the unscented approximation 

helps overcome the challenge posed by a non-linear state-space system. First, 

consider the case where W is linear in X and where state variables and bond 

prices are jointly Gaussian. In this case, the Kalman recursion provides 

optimal estimates of current state variables given past and current prices. 

The recursion works off estimates of state variables and their associated MSE 

from the previous step, 

Xt+ll t == E [Xt+lISStl , 

Qt+llt == E [(Xt+l1t - Xt+l)(Xt+llt - Xt+lf] , (1.14) 

where SSt belongs to the natural filtration generated by bond prices. The 

associated predicted bond prices, and MSE, are given by 

Ft+ll t == E [Pt+lISStl 

= w(Xt+ll t ' et+l, Zt+l), (1.15) 

Rt+llt == E [(Ft+llt - lht}(Ft+l1t - Pt+lf] 
, T ' , 

= w(Xt+l1t ' et+l, Zt+l) Qt+llt w(Xt+l1t , et+l, Zt+l) + D, (1.16) 

using the linearity of W. The next step compares predicted to observed bond 

by measurement errors is not innocuous and impacts estimates of the liquidity factor. 



prices and update state variables and their MSE, 

where 

Xt+1lt+1 = Xt+1lt + Kt+1(Pt+1 - Pt+1lt), 

Qt+1lt+1 = Qt+1lt + Kltl (Rt+1lt)-1 K t+1, 

K t+1 == E [(.Xt+1l t - X t+1)(Pt+1lt - Pt+1f] , 

= Qt+1ltw(Xt+1lt, et+1, Zt+1), 
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(l.17) 

(l.18) 

(l.19) 

measures co-movements between pricing and filtering errors. Finally, the 

transition equation gives us a condition al forecast of X t+2 , 

Xt+2lt+1 = <I> X Xt+1lt+1, 

Qt+2It+1 = <I>I-Qt+1lt+1 <I> x + ~x ~I-. 
(l.20) 

(l.21) 

The recursion delivers series Alt-I and Rtl t- I for t = 1,··· , T. Treating 

XIIO as a parameter, and setting R Ilo equal to the unconditional variance of 

measurement errors, the sample log-likelihood is 

T T 

L(B) = Ll(Pt;B) = L [log <p(A+1lt, Rt+1lt)] , 
t=1 t=1 

(l.22) 

where <PC·) is the multivariate Gaussian density. 

However, because w(·) is not linear, equations (l.15) and (l.16) do not 

correspond to the conditional expectation of prices and the associated MSE. 

Also, (l.19) does not correspond to the conditional covariance between pric­

ing and filtering errors. Still, the updating equations (l.17) and (l.18) remain 

justified as optimal linear projections. Then, we can recover the Kalman 

recursion provided we obtain approximations of the relevant conditional mo­

ments. This is precisely what the unscented transformation achieves, using a 

small deterministic sample from the conditional distribution of factors while 

maintaining a higher order approximation than linearizationl9 . We can then 

use the likelihood given in (l.22), but in a QML context. Using standard 

results, we have ê :::::: N(Bo, T- I Ç2) where ê is the QML estimator of Bo and 

the covariance matrix is 

(l.23) 

19See Appendix B. 
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where (H and (op are the alternative representations of the information 

matrix, in the Gaussian case. These can be consistently estimated via their 

sam pie counterparts. We have 

/ = _T-1 [cP L(Ô)] 
..,H fj()fj()' (1.24) 

and 

(1.25) 

Finally, the model implies sorne restrictions on the parameter space. In 

particular, 1J1 and diagonal elements of <I> must lie in (-1,1) while '" and ). 

must remain positive. In practice, large values of '" or ). lead to numerical 

difficulties and are excluded. Final!y, we maintain the second covariance 

contour of state variables inside the parameter space associated with positive 

interest rates. The filtering algorithm often fails outside this parameter 

space. None of these constraints binds around the optimum and estimates 

remain unchanged when the constraints are relaxed. 

IV Estimation Results 

We first estimate a restricted version of our model, excluding liquidity. Fil­

tered factors and parameter estimates are consistent with results obtained by 

CDR from zero-coupon bonds. More interestingly, the on-the-run premium 

reveals itself in the residuals from the benchmark mode!. This provides a 

direct justification for linking the premium with the age and maturity of 

each bond. We then estimate the unrestricted liquidity mode!. The nul! of 

no liquidity is easily rejected and the liquidity factor captures systematic dif­

ferences between on-the-run and off-the-run bonds. Final!y, estimates imply 

that the on-the-run premium increases with maturity but decreases with the 

age of a bond. 

A Estimation Without Liquidity 

Estimation20 of the benchmark model put the curvature parameter at ~ = 

0.6786 when time periods are measured in years. The standard error is 0.0305 

and 0.0044 when using the QMLE and MLE covariance matrix, respectively. 

20 Estimation is implemented in MATLAB via the fmincon routine with the medium­
scale (active-set) algorithm. Different starting values were used. For standard errors 
computations, we obtain the final Hessian update (BFGS formula) and each observation 
gradient is obtained through a centered finite difference approximation evaluated at the 
optimum. 
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This estimate pins the maximum curvature loading at a maturity close to 30 

months. 

[Table II about here.] 

Figure 1.1 displays the time series of the liquidity (Panel (a)) and the 

term structure (Panel (b)) factors. Estimates for the transition equation are 

given in Table lIa. The results imply average short and long term discount 

rates of 3.73% and 5.45%, respectively. The levei factor is very persistent, 

perhaps a unit root. This standard result in part reflects the graduaI decline 

of interest rates in our sample. The slope factor is slightly less persistent and 

exhibits the usual association with business cycles. Its sign changes before 

the recessions of 1990 and 2001. The siope of the term structure is aiso 

inverted starting in 2006, during the so-called "conundrum" episode. Finally, 

the curvature factor is closely related to the slope factor. 

Standard deviations of pricing errors are given by 

a(Mn) = 0.0229 + 0.0284 x Mn, 

(0.017, 0.0012) (0.021, 0.0006) 

with QMLE and MLE standard errors for each parameter. This implies 

standard deviations of %0.05 and $0.31 dollars for maturities of 1 and 10 

years, respectively. Using durations of 1 and 7 years, this translates into 

yield errors of 5.1 and 4.4 bps. Table IlIa gives more information on the 

fit of the benchmark model. Root Mean Squared Errors (RMSE) increase 

from $0.047 and $0.046 for 3-month on-the-run and off-the-run securities, 

respectively, to $0.35 and $0.39 at lO-year maturity. As discussed above, the· 

monotonous increase of RMSE with maturity reflects the higher sensitivity 

of longer maturity bonds to interest rates. It may also be due to higher 

uneertainty surrounding the true priees, as signaled by wider bid-ask spreads. 

In addition, for most maturities, the RMSE is larger for on-the-run bonds. 

For the entire sample, the RMSE is $0.188. 

Notwithstanding differences between estimation approaches, our results 

are consistent with CDR. Estimating using coupon bonds or using boot­

strapped data provides similar pictures of the underlying term structure of 

interest rates. Also, the approximation introdueed when dealing with non­

linearities is innocuous. However, preliminary estimation of forward rate 

curves smooths away any effect of liquidity. In contrast, our sam pIe com­

prises on-the-run and off-the-run bonds. Any systematic priee differences 

not due to cash flow differenees will be revealed in the pricing errors. 
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[Table III about here. J 

Table IlIa confirms that Mean Pricing Errors (MPE) are systematically 

higher for on-the-run securities. On-the-run residuals are systematically 

higher than off-the-run residuals. For a recent 12-month T-Bill, the average 

difference is close to $0.08, controlling for cash flow differences. Similarly, 

a recently issued 5-year bond is $0.25 more expensive on average than a 

similar but older issue.21 To get a clearer picture of the link between age 

and priee differences, consider Figure 1.4. The top panels plot residual dif­

ferences within the 12-month and 48-month categories. The bottom panels 

plot the ages of each bond in these categories. Panel (c) shows that the U.S. 

Treasury stopped regular issuance of the 12-month Notes in 2000. The liq­

uidity premium was generally positive until then but stopped when issuance 

eeased.· Afterwards, each pair is made of old 2-year Notes, and evidence of a 

premium disappears from the residuals. Panel (d) shows that there has been 

regular issuance of 4-year bonds early in the sample. As expected, the dif­

ference between residuals is generally positive whenever there is a significant 

age difference between the two issues. 1foreover, in each case, on-the-run 

(Le. low age) bonds appear overprieed compared to off-the-run (i.e. high 

age) bonds. This correspondence between issuance patterns and systematic 

pricing errors can be observed in each maturity category. The premium 

increases with maturity but decreases with age. 

Bonds with 24 months to maturity seem to carry a smaller liquidity 

premium than what would be expected given the regular monthly issuanee 

for this category. Note that a formai test rejects the nul! hypothesis of zero­

mean residual differences. Interestingly, Jordan and Jordan (1997) could not 

find evidence of a liquidity or specialness effect at that maturity22. A smaller 

priee premium for 2-year Notes is intriguing and we can only conjecture as 

to its causes. Recall that the magnitude of the premium depends on the 

benefits of higher liquidity, both in terms of lower transaction costs and 

lower repo rates. However, it also depends on the expected length of time a 

bond will offer these benefits. Results in Jordan and Jordan (1997) suggests 

that 2-year Notes remain "special" for shorter periods of time (see Table l, 

p.2057). Similarly, Goldreich et al. (2005) find that the on-the-run premium 

on 2-year Notes goes to zero faster than other maturities,' on average. This is 

21Note that the price impact of Iiquidity increases with rnaturity. This is consistent 
with the results of Amihud and Mendelson (1991). 

22See .Jordan and Jordan (1997) p. 2061: "With the exception of the 2-year notes 1 ... 1, 
the average price differences in Table II are noticeably larger when the issue examined is 
on special." 
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consistent with its short issuance cycle. Alternatively, holders of long-term 

bonds may re-allocate funds from their now short maturity bonds into newly 

issued longer term securities.If the two-year mark serves as a focus point 

for buyers and sellers, this may cause a larger volume of transactions around 

this key maturity, increasing the liquidity value of surrounding assets. 

B Estimation With Liquidity 

Estimation of the unrestricted modelleads to a substantial increase of the 

log-likelihood. The benchmark model is nested with 15 parameter restric­

tions and the improvement in likelihood is such that the LR test-statistic 

leads to a p-value that is essentially zero23 . The estimate for the curva­

ture parameter is now ~ = 0.7304 with QMLE and MLE standard errors of 

0.0857 and 0.0043. Results for the transition equations are given in Table 

IIb. These imply average short and long term discount rates of 4.09% and 

5.76% respectively. Interestingly, the yield curve level is higher once we ac­

count for the liquidity premium. Intuitively, the off-the-run yield curve is 

higher than an otherwise unadjusted estimate wou Id suggest. The standard 

deviations of measurement errors are given by 

0.0227+ 0.0251 x Mn, 

(0.016,0.001) (0.0021,0.0006) 

with QMLE and MLE standard errors for each parameter in parenthesis. 

Then, standard deviations are $0.048 and $0.274 for bonds with one and ten 

years to maturity, respectively. Using durations of 1 and 7, this translates 

into standard deviations of 4.8 and 3.9 bps when measured in yields. Overall, 

parameter estimates and latent factors are relatively unchanged compared 

to the benchmark model. 

We estimate the decay parameter at K, = 1.89 with QMLE and MLE 

standard errors of 1.23 and 0.45 respectively. Estimates of (3 are given in 

Table IV. Note that the level of the liquidity premium increases with matu­

rity.24 The pattern accords with the observations made from residuals of the 

model without liquidity.~ Moreover, Table IlIa shows that the model elimi­

nates most of the systematic differences between on-the-run and off-the-run 

bonds. There is still sorne evidence of a systematic difference in the lO-year 

category where the average error decreases from $0.31 to $0.26. We conclude 

23The benchmark model reached a maximum at 1998.6 while the liquidity model reached 
a maximum at 3482.6. 

24The estimated average level is lower in the 10-year group relative to the 5-year and 
7-year group. This is due to the lower average age of bonds in this groups. 
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that part of the variations in the lO-year on-the-run premium is not common 

with variations in other maturity groups. Finally, Table IlIb shows RMSE 

improvements for almost aU maturities while the overaU sam pIe RMSE de­

creases from $0.188 to $0.151. . 

[Table IV about here.] 

Figure 1.5 draw the residual differences within the 12-month and 60-

month category, respectively. This is another way to see that the model re­

moves systematic differences between residuals. Overall, the evidence points 

toward a large common factor driving the liquidity premium of on-the-run 

U.S. Treasury securities. We interpret this liquidity factor as a measure of 

the value of funding liquidity to investors. The results below show that its 

variations also explain a substantial share of the risk premia observed in 

different interest rate markets. 

V Liquidity And Bond Risk Premia 

In this section, we present evidence that variations in the value of fund­

ing liquidity, as measured from a cross-section of on-the-run premia, share 

a corn mon components with variations of risk premia in other interest rate 

markets. In other words, conditions prevailing on the funding ma~ket in­

duce an aggregate risk factor that affects each of these markets. Of course, 

an increase in the liquidity factor necessarily leads to lower excess returns 

for on-the-run bonds. We show here that it also leads to lower risk premia 

for off-the-run bonds as well as higher risk premia on LIB OR loans, swap 

contracts and corporate bonds. Thus, although the payoffs of these assets 

are not directly related to the higher liquidity of on-the-run securities, their 

risk premium and, hence, their price, is affected by a corn mon liquidity fac­

tor. To summarize, exposure to liquidity risk in the U.S. Treasury funding 

market carries a substantial price of risk in the cross-section of bond returns. 

The impact across assets is similar to the often cited "flight-to-liquidity" phe­

nomenon but remains pervasive in normal market conditions. This common­

ality across liquidity premia accords with a substantial theoreticalliterature 

supporting the existence of an economy-wide liquidity premium (Svensson 

(1985), Bansal and Coleman (1996), Holmtrom and Tirole (1998, 2001), 

Acharya and Pedersen (2004), Vayanos (2004), Lagos (2006), Brunnermeier 

and Pedersen (2008), Krishnamurthy and He (2008).). The following section 

presents our results.25 

25 Ali the results below are robust to choice of the off-the-run yield curve used to 
compute excess returns or spreads. Unless otherwise stated we use off-the-run yields 
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A Off- The-Run U.S. Treasury Bonds 

We first document the negative relationship between liquidity and ex­

pected excess returns on off-the-run bonds. This is the return, over a given 

investment horizon, from holding a long maturity bond, in excess of the 

risk-free rate for that horizon. Figure 1.3a displays annual excess returns 

on a 2-year off-the-run bond along with the liquidity factor. The negative 

relationship is visually apparent throughout the sample but note the sharp 

variations around the crash of October 1987, the Mexican Peso crisis late 

in 1994, around the LTCM crisis in August 1998 and until the end of the 

millennium. At first,this tight link between on-the-run premia and returns 

from off-the-run Treasury bonds may be surprising. Recall that on-the-run 

bonds trade at a premium due to their anticipated transaction costs and 

funding advantages on the cash and repo markets. However, off-the-run 

bonds can be readily converted into cash via the repo market. This is es­

pecially true relative to other asset classes. In that sense, seasoned bonds 

are close substitutes to on-the-run bonds. Then, the risk premium of aIl 

Treasury bonds decreases in periods of high demand for the relative funding 

liquidity of on-the-run bonds. Longstaff (2004) documents price differences 

between off-the-run U.S Treasury bonds and Refcorp bonds26 with similar 

cash fiows. He argues that discounts on Refcorp bond are due to " ... the 

liquidity of Treasury bonds, especially in unsettled markets.". 

[Table V about here.] 

We test this hypothesis through predictive regressions of off-the-run bond 

excess returns on the liquidity factor. We use the off-the-run curve from the 

model to compute excess returns and include term structure factors to control 

for the information content of forward rates (Fama and Bliss (1987), Camp­

bell and Shiller (1991), Cochrane and Piazzesi (2005a)). The term structure 

factors spans forward rates but do not suffer from· their near-collinearity. 

Table V presents the results. We consider (annualized) excess returns from 

holding off-the-run bonds with maturities of 2, 3, 4, 5, 7 and 10 years and for 

investment horizons of 1, 3, 6, 12, and 24 months. First, Panel (a) presents 

from the Svensson, Nelson and Siegel method (Gurkaynak et al. (2006)) available 
at (http:j jwww.federalreserve.govjpubsjfedsj2007). Vsing model-implied zero-coupon 
yields does not affect the results. Also, for ease of interpretation, we standardize each 
regressor by subtracting its mean and dividing by its standard deviation. For each risk 
premium regression, the constant corresponds to an estimate of the average risk premium 
and the coefficient on the liquidity factor measures the impact on expected returns, in 
basis points, of a one-standard deviation shock to liquidity. 

26Refcorp is an agency of the V.S. government. Its liabilities have their principals backed 
with V.S. Treasury bonds and coupons explicitly guaranteed by the V.S. Treasury. 
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average risk premia. These range from 153 to 471 bps at one-morith horizon 

and from 69 to 358 bps at annual horizon. These large excess returns are 

consistent with an average positive term structure slope and with a period 

of declining interest rates. Panel (b) presents estimates of the liquidity co­

efficients. The results are conclusive. Estimates are negative and significant 

at all horizons and maturities. Moreover, the impact of liquidity on excess 

returns is economically significant. At a one-month horizon a one-standard 

deviation shock to our measure of funding liquidity lowers expected excess 

returns obtained from off-the-run bonds by 187 and 571 bps for maturities 

of two and ten years respectively. At this horizon, R2 statistics range from 

7.34% to 4.23% (see Panel (c)). Regressions based on excess returns at an 

annual horizon correspond to the cased studied by Cochrane and Piazzesi 

(2005a) who document the substantial predictability of US Treasury excess 

returns from forward rates. The impact of funding liquidity is substantial. A 

one-standard deviation shock decreases expected excess returns by 103 basis 

points at 2-year maturity and by as much as 358 basis points at lO-year ma­

turity. At this horizon, R2 are substantially higher, ranging from 43% and 

50%. Of course, these coefficients of variation pertain to the joint explana­

tory power of all regressors. Panel (c) also presents, in bracket, the R2 of 

the same regressions but excluding the liquidity factor. The liquidity factor 

accounts for more or less half of the predictive power of the regressions. 

The regressions ab ove used excess returns and term structure factors 

computed from the term structure model. One concern is that model mis­

specification leads to estimates of term structure factors that do not correctly 

capture the information content of forward rates or that it induces spurious 

correlations between excess returns and liquidity. As a robustness check 

against both possibilities, we re-examine the predictability regressions but 

using excess returns and forward rates available from the CRSP zero-coupon 

yield data set. From this alternative data set, we compute annual excess 

returns on zero-coupon bonds with maturity from 2 to 5 years. As regres­

sors, we include annual forward rates from CRSP at horizon from 1 to 5 

years along with the liquidity factor from the model. Table VIa presents the 

results. Estimates of the liquidity coefficients are very close to our previous 

results (see Table Vb) and highly significant. We conclude that the pre­

dictability power of the liquidity factor is robust to how we compute excess 

returns and forward rates. 

[Table VI about here.] 

Furthermore, this alternative set of returns allows to check whether the 
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AFENS model captures important aspects of observed excess returns. Ta­

ble Vlb provides results for the regressions of CRSP excess returns on CRSP 

forward rates, excluding the liquidity factor. This ls a replication of the un­

constrained regressions in Cochrane and Piazzesi (2005a) but for our shorter 

sample period. This exercise confirms their stylized predictability results in 

this sam pIe. That is, the predictive power of forward rates is substantial 

and we recover a tent-shaped pattern of coefficients across maturities. Next, 

Table VIc provides results of a similar regressions with CRSP forward rates 

but using excess returns computed from the model. Comparing the last two 

panels, we see that average excess returns, forward rate coefficients, as weIl 

as R 2 sare similar across data sets. This is striking given that excess returns 

were recovered using very different approaches. The AFENS model captures 

the stylized facts of bond risk premia, which is an important measure of 

success for term structure models. 27 

The evidence shows that variations of funding liquidity value induce vari­

ations in the liquidity premium of Treasury bonds. Empirically, off-the-run 

US Treasury bonds are viewed as liquid substitutes to their recently issued 

counterparts and provide a hedge against fluctuations in funding liquidity. 

Note that this link between conditions on the funding market and the risk 

premium on a Treasury bond can hardly be attributed ta traditional ex­

planations of bond risk premia such as inflation risk or interest rate risk. 

Instead, we argue that frictions in the financial intermediation sector affect 

the Treasury market. The following section considers the impact of funding 

liquidity on LIBOR rates. 

B LIBOR Loans 

In this section, we link variations of the liquidity factor with variations 

in the risk compensation from money market loans. We consider the returns 

obtained from rolling over a lending position in the London inter-bank market 

at the LIBOR rate and fun ding this position at a fixed rate. This measures 

the reward of providing liquidity in the inter-bank market. In contrast with 

the government bond market, higher valuation of funding liquidity predicts 

higher excess returns. Figure 1.3b highlights the positive correlation between 

27Fama (1984b) originally identified this modeling challenge but see also Dai and Single­
ton (2002). Other stylized facts are documented in Fama (1976), (1984a), and(1984b), as 
weil as Startz (1982) for maturities below 1 year. See also Shiller (1979), Fama and Bliss 
(1987), Campbell and Shiller (1991). Our conclusions hold if we use Campbell and Shiller 
(1991) as a benchmark. We also conclude that the empirical facts highlighted by Cochrane 
and Piazzesi (2005a) are not an artefact of the bootstrap method. See the discussion in 
Dai et al. (2004) and Cochrane and Piazzesi (2005b). 
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liquidity and rolling excess returns. Again, note the spikes in 1987, 1994, in 

1998 and around the end of the millennium. 

Thus, interbank loans are poor substitutes to U.S. Treasury securities 

in time of funding stress. The reward for providing funds in the inter-bank 

market is higher when the relative value of on-the-run bonds increases. Thus, 

the spread of a LIBOR rate ab ove the Treasury yield reflects the opportunity 

costs, in terms of future liquidity, of an interbank loan compared to the 

liquidity of a Treasury bonds on the repo or the cash markets. Indeed, in 

order to convert a loan back to cash, a bank must enter into a new bilateral 

contract to borrow money. The search costs of this transaction depend on 

the number of willing counterparties in the market and it may be difficult at 

critical times to convert a LIBOR position back to cash.28 

As in the previous section, we test this hypothesis formally through pre­

dictive regressions of excess rolling returns on the liquidity factor. Again, we 

use term structure factors to control for the information content of forward 

rates. We consider investment horizons of 1, 3, 6, 12 and 24 months and 

rolling investments in LIBOR loans with 1,3,6 and 12 months to maturity. 

The LIB OR data is available from the web site of the BBA and we use a 

sample from .January 1987 to December 2007. Table VII presents the results. 

For each loan maturity, the average excess returns is around 25 bps for the 

shortest horizon. Returns then decrease with longer horizon and become 

negative at the longest horizons. This reflects the average positive slope of 

the term structure. In practice, funding rolling short-term investments at 

a fixed rate does not produce positive returns on average. Still, the impact 

of liquidity is unambiguously positive for all horizons and maturities with 

t-statistics above 5 in most cases. 

Interestingly, the impact of the liquidity increases with the horizon. A 

one-standard deviation shock to the value of liquidity increases returns on a 

rolling investment in one-month LIBOR loans by 16 and 90 bps at horizons 3 

and 24 months, respectively. Results are similar for other maturities. In fact, 

the impact is sufficiently large that returns are positive on average, and the 

risk premium is higher than the slope of the term structure. This reflects the 

persistence of the liquidity premium. The R2 from these regressions range 

from 30% to 50%. Moreover, the contribution of the liquidity factor to the 

predictability of LIBOR returns is substantial, generally doubling the R2 , 

or more. In the case of annual excess rolling returns from 3-month loans, 

28Note that this does not preclude that part of the LIB OR spread is due to the higher 
default risk of the average issuer compared to the V.S. government. 
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the predictive power increases from 10.8% to 43.2% when we include the 

liquidity factor. 

An alternative indicator of ex-ante returns from investment in the inter­

bank market is the simple spread of LIBOR rates above risk-free zero-coupon 

yields. As an alternative test, we compute LIBOR spreads on loans with 

maturities of 1, 3, 6 and 12 months and consider regressions of these spreads 

on the liquidity and term structure factors. Panel (c) shows the positive 

relationship between liquidity and the 12-month LIBOR spread. Table VIlla 

presents results from the regressions. A one-standard deviation shock to 

liquidity is associated with concurrent increases of 16, 12, 8 and 6 bps for 

loans with maturity of 1, 3, 6 and 12 months, respectively. 

C Swap Spreads 

The impact of funding liquidity extends to the swap market. This section 

documents the link between the liquidity factor and the spread of swap rates 

above the off-the-run curve. To the extent that swap rates are determined 

by anticipations of future LIBOR rates, results from the previous section 

suggest that swap spreads increase with the liquidity factor. Moreover, vari­

ations in funding liquidity may affect the swap market directly sinee the 

same intermediaries operate in the Treasury and the swap markets. We do 

not distinguish between these alternative channels here. 

[Table VIII about here.] 

We obtain a sample of swap rates from DataStream, starting in April 

1987 and up to Deeember 2007. We focus on swaps with maturities of 2, 

5, 7 and 10 years and compute their spreads above the yield to maturity of 

the corresponding off-the-run par coupon bond. Figure 1.3d compares the 

liquidity factor with the 5-year swap spread. The positive relationship is 

apparent. Table VIIlb shows the results from regressions of swap spreads 

on the liquidity and term structure factors. First, the average spread rises 

with maturity, from 44 to 53 bps, and extends the pattern of LIBOR risk 

premia. Next, estimates of the liquidity coefficients imply that, controlling 

for term structure factors, a one-standard deviation shock to liquidity raises 

swap spreads from 5 to 7 basis points across maturities. The estimates are 

significant, both statically and economically, given the higher priee sensitiv­

ities of swap to change in yields. For a 5-year swap with duration of 4.5, say, 

the priee impact of a 6 basis point change is $0.27 while the priee impact of 

the 6.3 bps rate change for a l-year LIBOR loand is $0.063.29 Finally, the 

29We do not use returns on swap investment to measure expected returns. Swap in­
vestment requires zero initial investment. Determining the proper capital-at-risk to use 
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explanatory power of liquidity is high and increases with maturity. 

Interestingly, funding liquidity affects swap spreads and LIB OR spreads 

similarly. This suggests that anticipations of liquidity compensation in the 

interbank loan market, rather than liquidity risk, is the main driver behind 

the aggregate liquidity component of swap risk premium. This supports 

previous literature (Grinblatt (2001), Duffie and Singleton (1997), Liu et al. 

(2006) and Fedlhütter and Lando (2007)) pointing toward LIBOR liquidity 

premium as an important driver of swap spreads. However, we show that the 

liqu'idity risk underlying a substantial part of that premium is not specifie 

to the LIBOR market but reflects risks faced by intermediaries in funding 

markets. 

D Corpomte Spreads 

The impact of funding liquidity extends to the corporate bond market. 

This section measures the impact of the liquidity factor on the risk premium 

offered by corporate bonds. Empirically, we find that the impact of liquidity 

has a "flight-to-quality" pattern across credit ratings. Following an increase 

of the liquidity factor, excess returns decrease for the higher ratings but 

increase for the lower ratings. Our results are consistent with the evidence 

that default risk cannot rationalize corporate spreads. Collin-Dufresne et al. 

(2001) find that most of the variations of non-default corporate spreads are 

driven by a single latent factor. We formally link this factor with funding 

risk. Our evidence is also consistent with the differential impact of liquidity 

across ratings found by Ericsson and Renault (2006). However, while they 

relate bond spreads to bond-specifie measures of liquidity, we document the 

impact of an aggregate factor in the compensation for illiquidity. 

Our analysis begins with Merril! Lynch corporate bond indices. We con­

sider end-of-month data from December 1988 to December 2007 on 5 indices 

with credit ratings of AAA, AA, A, BBB and High Yield !HY] ratings (i.e. 

HY Master II index), respectively. In a complementary exercise, below, we 

use a sam pie of NAIC transaction data.3D As in earlier sections, we measure 

the impact of liquidity on corporate bonds through predictive excess returns 

regressions. For each index, and each month, we compute returns in excess 

of the off-the-rim zero coupon yield for investment horizons of 1, 3, 6, 12 

and 24 months. We th en project returns on the liquidity and term structure 

in returns computation is somewhat arbitrary. It should be clear from Figure 1.3d that 
receiving fixed, and being exposed to short-term LIBOR fluctuations, will provide greater 
compensation when the liquidity premium is elevated. 

30We thank Jan Ericsson for providing the NAIC transaction data and control variables. 
See Ericsson and Renault (2006) for a discussion of this data set. 
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factors. Again, term structure factors are included to control for the infor­

mation content of the yield curve. The first Panel of Table IX presents the 

results. 

First, as expected, average excess returns are higher for lower ratings. 

Next, estimates of the liquidity coefficients show that the impact of a rising 

liquidity factor is negative for the higher ratings and becomes positive for 

lower ratings. A one-standard deviation shock to the liquidity factor leads 

to decreases in excess returns for AAA, AA and A ratings but to increases in 

excess returns for BBB and HY ratings. Excess returns decrease by 2.27% 

for AAA index but increase by 2.38% for the HY index. For comparison, the 

impact on Treasury bonds with 7 and 10 years to maturity was -4.52% and 

-5.42%. Thus, on average, high quality bonds were considered substitutes, 

albeit imperfect, to V.S. Treasuries as a hedge against variations in funding 

conditions. On the other hand, lower-rated bonds were exposed to funding 

market shocks. 

The differential impact of liquidity on excess returns across ratings sug­

gests a fiight-to-liquidity pattern. We consider an alternative sample, based 

on individual bond transaction data from the NAIC. While this sample covers 

a shorter period, from February 1996 until December 2001, the sample com­

prises actual transaction data and provides a better coverage of the rating 

spectrum. Once restricted to end-of-month observations, the sample includes 

2,171 transactions over 71 months. To preserve parsimony, we group ratings 

in five categories.:.n We consider regression of NAIC corporate spreads on the 

liquidity and term structure factors but we also include the control variables 

used by Ericsson and Renault (2006). These are the VIX index, the returns 

on the S&P500 index, a measure of market-wide default risk premium and an 

on-the-run dummy signalling whether that particular bond was on-the-run 

at the time of the transaction. Control variables also include the level and 

the slope of the term structure of interest rates.:n . 
The panel regressions of credit spreads for bond i at date tare given by 

where Lt is the liquidity factor and I(Gi = j) is an indicator fun ct ion equal 

31 Group 1 includes ratings from AAA to A+, group 2 includes ratings A and A-, group 
3 includes ratings BBB+, BBB and BBB-, group 4 includes ratings CCC+, CCC and 
CCC- while group 5 includes the remaining ratings down to C-

32We do not include individual bond fixed-effects as our sample is small relative to the 
number (998) of securities. 
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to one if the credit rating of bond i belongs in group j = 1, ... ,5. Control 

variables are grouped in the vector Xt+h' Table IXb presents the results. 

The flight-to-quality pattern clearly emerges from the results. For the high­

est rating category, an increase in liquidity value of one standard deviation 

decreases spreads by 31 and 20 basis points in groups 1 and 2 respectively. 

The effect is sm aller and statistically undistinguishable from zero for group 

3. Coefficients then become positive implying increases in spreads of 25 and 

26 basis points for groups 4 and 5, respectively. This is an average effect 

through time and across ratings within each group.33 

The results obtained from spreads computed from Merrill Lynch indices 

and spreads computed from NAIC transactions differ. While results from 

Merrill Lynch were inconclusive, estimates of liquidity coefficients obtained 

from NAIC data confirm that a shock to funding liquidity leads to lower 

corporate spreads in the highest rating groups but higher corporate spreads 

in the lowest rating groups. Two important differences between samples may 

explain the results. First, the composition of the index is different from the 

composition of NAIC transaction data. The impact of liquidity on corporate 

spreads may not be homogenous across issues. For example, the maturity 

or the age of a bond, the industry of the issuer and security-specific option 

features may introduce heterogeneity. Second, Merrill Lynch indices coyer a 

much longer time span. The pattern of liquidity premia across the quality 

spectrum may be time-varying. 

E Discussion 

Focusing on the corn mon component of on-the-run premia filters out local 

or idiosyncratic demand and supply effects on Treasury bond prices. The 

results above show that this measure of funding liquidity is an aggregate 

risk factor affecting money market instruments and fixed-income securities. 

These assets carry a significant, time-varying and common liquidity pre­

mium. That is, when the value of the most-easily funded collateral rises 

relative to other securities, we observe variations in risk premia for off-the­

run U. S. government bonds, eurodollar loans, swap contracts, and corporate 

bonds. Empirically, the impact of aggregate liquidity on asset pricing ap­

pears strongly during crisis and the pattern is suggestive of a flight-to-quality 

behavior. Nevertheless, its impact is pervasive even in normal times. 

33We do not report other coefficients. Briefly, the coefficient on the level factor is 
negative and significant. Ali other coefficients are insignificant but these results are are 
not directly comparable with Ericsson and Renault (2006) due to differences of models 
and sample frequencies. 
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Note that these r~gressions assumed a stable relationship between risk 

premium and funding liquidity. One important alternative is that the sign 

and the size of the impact of funding conditions itself depend on the intensity 

of the funding shock, as suggested by the recent experience. In particular, 

while corporate bonds with high ratings may be substitutes to Treasury 

bonds in good times, they experience large risk premium increases in funding 

crisis. We leave this for further research but note that this may explain the 

weak statistical evidence above in the case of corporate bonds. In any case, 

the main result of this section is that a substantial fraction of the risk premia 

is linked to variations in funding liquidity. 

Jointly, the evidence is hard to reconcHe with theories based on variations 

of default probability, inflation or interest rates and their associated risk pre­

mia. Instead, we link risk premium variations with conditions in the funding 

markets. This supports the theoreticalliterature that emphasizes the role of 

borrowing constraints faced by financial intermediaries (Gromb and Vayanos 

(2002), He and Krishnamurthy (2007)) and, in particular, that highlights the 

role of funding markets in financial intermediation (Brunnermeier and Ped­

ersen (2008)). Different securities serve, in part, and to varying degrees, to 

fulfill investors' uncertain future needs for cash and their risk premium de­

pend on the ability of intermediaries to provide immediacy in each market. 

In this context, it is interesting that the liquidity premium of government 

bonds appears to decrease when funding liquidity become scarce. This con­

fers a special status to government obligations, and possibly to high-quality 

corporate bonds, as a hedge against variations in funding liquidity. We leave 

for further research the cause of this special attribute of government bonds. 

The next section identifies candidate determinants of liquidity valuation and 

characterizes aggregate liquidity in terms of known economic indicators. 

VI Determinants Of Liquidity Value 

The liquidity factor aggregates very diverse economic information. The value 

of liquidity services on the funding market depends on investors' demand for 

immediacy on markets where intermediaries are active. Next, funding costs 

will also vary with the capital position and the access to capital (present and 

future) of financial intermediaries that obtain leverage through secured loans. 

Finally, conditions on the funding market are affected by the availability of 

funds and, thus, by the relative tightness of monetary policy. In this section, 

we find that the value of funding liquidity, measured by the on-the-run factor, 
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varies with changes in monetary aggregates and in bank reserves. AIso, the 

value of funding liquidity increases with aggregate wealth and aggregate 

uncertainty as measured by valuation ratios and option-implied volatilityof 

the SP500 stock index. Finally, the on-the-mn premium rises when recently 

issued bonds offers relatively lower bid-ask spreads34 . 

A Macroeconomie Variables 

Ludvigson and Ng (2009) [LN hereafter] summarize 132 US macroeco­

nomic series into 8 principal components. They then explore parsimoniously 

the predictive content of this large information set for bond returns. Their 

main result is that that a "rea!" and an "inflation" factor35 have substantial 

predictive power for bond excess returns beyond the information content 

of forward rates. They also find that a "financial" factor is significant but 

that much of its information content is subsumed in the Cochrane-Piazzesi 

measure of bond risk premium. 

Table X displays results from a regression of liquidity on macroeconomic 

factors (Regression A) from LN.36 This shows that the funding liquidity fac­

tor shares tight linkages with the macroeconomy. Macroeconomie factors 

with significant coefficients are FI, F2 and F4, the "rea!", "financial" and 

"inflation" factors of LN that also predict bond risk premium. In addition, 

factors F5, F6, and F7 are also significant. As we discuss below, F6, and 

F7 can be interpreted as "monetary conditions" factors and F5 is a "hous­

ing activity" factor. Finally, the R2 ls 58% and individual coefficients have 

similar magnitude. 

[Table X about here.] 

The "financial" factor relates to different interest rate spreads, which is 

consistent with the evidence above that the liquidity factor is related to risk 

premia across markets.37 The F6 and F7 factors share a similar and ex­

tremely interesting Interpretation: these are "monetary conditions" factors. 

34We al80 considered the Pastor-Stambaugh measure of aggregate stock market liquidity 
and found no relationship. 

35Ludvigson and Ng (2009) use univariate regressions of individual series on each princi­
pal component to characterize its information content. For example, the "real" factor was 
labeled as such because it has high explanatory power for real quantities (e.g. Industrial 
Production). 

36 A significant link between liquidity and one of the principal components of LN does not 
necessarily requite that this component predicts bond excess returns. The liquidity factor 
is endogenous and its loadings on the underlying macroeconomic variables is unlikely to 
be linear nor constant through time. 

37LN found that the information content of the "financial" factor for excess returns is 
subsumed in the CP factor. Recall from Section A that the information content of the 
funding liquidity factor is not subsumed by the Cochrane-Piazzesi factor. 
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Both have highest explanatory power for the rate of change in reserves and 

non-borrowed reserves of depository institutions. Next, factor F6 has most 

information for the rate of change of the monetary base and the Ml mea­

sure of money stock and sorne information from the PCE indices. Beyond 

bank reserves, factor F7 is most informative for the spreads of commercial 

paper and three-month Treasury bills above the Federal Reserve funds rate. 

This suggests an important channel between monetary policy and the in­

termediation mechanism and, ultimately, with variations in the valuation 

of marketwide liquidity. These results are consistent with Longstaff (2004), 

who establishes a link between variations of RefCorp spreads and measures 

of flows into money market mutual funds, Longstaff et al. (2005), who docu­

ment a similar link for the non-default component of corporate spreads and, 

finally, Chordia et al. (2005), who document that money flows and monetary 

surprises affect measures of bond market liquidity. 

We find that the liquidity factor is also related to the "real", "inflation" 

factors, indicating that sorne of the predictability of macro factors for bond 

risk premium could be measured in funding markets. This may also result 

from the impact of the Fed's actions on funding markets. The F5 is a "hous­

ing activity" factor and is also significant. It contains information on housing 

st arts and new building permits. Nonetheless, its significance appears to be 

limited to the early part of the sample and it is not robust to the inclusion 

of bid-ask spreads information (see below). Finally, the "real" and "inflation" 

factors are not robust to the inclusion of stock index implied volatility. 

B Transaction Costs Variables 

Coupon bond quotes from the CRSP data set include bid and ask prices. 

At each point in time, we consider the entire cross-section of bonds and com­

pute the difference between the median and the minimum bid-ask spreads. 

This measures the difference in transaction costs between the most liquid 

bond and a typical bond. Table X presents the results from a regression of 

liquidity on this measure of relative transaction costs. The coefficient is pos­

itive and significant. The liquidity factor increases when the median bid-ask 

spread moves further away from the minimum spread. That is, on-the-run 

bonds become more expensive when they offer relatively lower transaction 

costs. The explanatory power of bid-ask information is substantial, as mea­

sured by an R2 of 37.7%. However, there is a sharp structural break in this 

relationship. Most of the explanatory power and all of the statistical evi­

den ce is driven by observations preceding 1990 as made clear by Figure 1.7a. 
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The first break in this pro cess coincides with the advent of the GovPX plat­

form while the second break, around 1999, matches the introduction of the 

eSpeed electtonic trading platform. Although transaction costs contribute 

to the on-the-run premium, the lack of variability since these breaks implies 

a lesser role in the variations of liquidity on Treasury markets. 

C Aggregate Uncertainty 

The valuation of li qui dit y should increase with higher aggregate uncer­

tainty. We use implied volatility from options on the S&P 500 stock index as 

proxy for'aggregate uncertainty. The S&P500 index comprises a large share 

of aggregate wealth and its implied volatility can be interpreted as a forward 

looking indicator of wealth volatility. The sam pIe comprises monthly obser­

vations of the CBOE VOX index from .January 1986 until the end of 2007. 

Table X presents results from a regression of liquidity on aggregate uncer­

tainty (Regression C). The R2 is 7.9% and the coefficients is positive but 

the evidence is statistically weak. Figure 1. 7b shows the measures of volatil­

ity and funding liquidity until the end of 2008. Clearly, peaks in volatility 

are often associated with rises in liquidity valuation. The weak statistical 

evidence is due to the period around 2002 where very low funding liquidity 

value was not matched with a proportional decrease of implied volatility. 

In any case, the coefficient estimate suggests that a one-standard deviation 

shock to implied volatility raises the liquidity factor by 0.052. 

D Combining Regressors 

Finally, Table X reports the results from a regression combining all the 

economic information considered above (Regression D). The coefficient on 

the relative bid-ask spread decreases but remains significant. On the other 

hand, the information from the VIX measure is subsumed in other regres­

sors. Its coefficient changes sign and becomes insignificant. In particular, 

the VIX measure is positively correlated with the stock market factor and 

this factor's coefficient doubles. Next, the inflation, real and housing activ­

ity factor become insignificant. However, the "monetary conditions" factors 

also remain significant when conditioning on transaction costs and aggregate 

uncertainty information. 

Overall the evidence points toward two broad channels in the determi­

nation of the value of funding liquidity. First, similar to the model of Krish­

namurthyand He (2008), aggregate uncertainty and aggregate wealth affect 

the intermediaries' ability to provide liquidity. Second, the Fed implements 

its monetary policy primarily through the funding market. To some extent, 
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it also support to the stability of the financial system through that channel. 

Then, these policies, through their impact on funding conditions directly 

impact risk premium in other markets. 

VII The Events Of 2008 

We repeat the estimation of the model including data from 2008. Figure 1.7 

presents the liquidity (Panel1.8a) and the term structure (Panel1.8b )factors. 

The latter shows a sharp increase in the cross-section of on-the-run premium. 

In fact, this large shock increases the volatility of the liquidity factor substan­

tially. Looking at Figure 1.7b and 1.7a we see that this spike was associated 

with a large increase in the SP500 implied volatility but, interestingly, the 

spread between the minimum and median bid-ask spread remained stable. 

This supports our interpretation that the liquidity factor finds its roots in 

the funding market. 

Adding 2008 only increases the measured impact of the common funding 

liquidity factor on bond risk premia. Each of the regression above leads to 

higher estimate for the liquidity coefficient. An interesting case, though, 

is the behavior of corporate bond spreads. Clearly corporate bond spreads 

increased sharply over that period, indicating an increase in expected returns. 

What is interesting is that this was the case for any ratings. Figure 1.8 

compares the liquidity factor with the spread of the AAA and BBB Merrill 

Lynch index. In the sample excluding 2008, the estimated average impact a 

shock to funding liquidity was negative for AAA bonds and positive for BBB. 

The large and positively correlated shock in 2008 reverses this conclusion 

for AAA bonds. But note that AAA spreads and the liquidity factor were 

also positively correlated in 1998. This confirms our conjecture that the 

behavior of high-rating bonds is not stable and depends on the nature or 

the size of the shock to funding liquidity. Note that this does not affect 

our conclusion that corporate bond liquidity premium shares a component 

with other risk premium due to funding risk. Instead, it suggests that the 

relationship exhibits regimes through time. 

VIII Conclusion 

We augment the Arbitrage Free Extended Nelson-Siegel term structure model 

of Christensen et al. (2007) by allowing for a liquidity factor driving the on­

the-run premium. Estimation of the model proceeds directly from coupon 

bond priees using a non-linear filter. We identify from a panel of Treasury 
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bonds a common liquidity factor driving on-the-run premia at different ma­

turities. Its effect increases with maturity and decreases with the age of a 

bond. 

This liquidity factors measures the value of the lower funding and trans­

action costs of on-the-run bonds. It predicts a substantial share of the risk 

premium on off-the-run bonds. It also predicts LIBOR spreads, swap spreads 

and corporate bond spreads. The pattern across interest rate markets and 

credit ratings is consistent with accounts of flight-to-liquidity events. How­

ever, the effect is pervasive in normal times. The evidence points toward 

the importance of funding liquidity for the intermediation mechanism and, 

hence, for asset pricing. Our results arerobust to changes in data set and to 

the inclusion of term structure information. 

The liquidity factor varies with transaction costs on the secondary bond 

market. More importantly, we find that the value of liquidity is related to 

narrow measures monetary aggregates and measures of bank reserves. 1 t also 

varies with measures of stock market valuations and aggregate uncertainty. 

The ability of intermediaries to meet the demand for immediacy depends, in 

part, on funding conditions and induces a large common liquidity premium in 

key interest rate markets. In particular, our results suggest that the behavior 

of the Fed is a key determinants of the liquidity premium. It remains to be 

seen if the impact of aggregate liquidity extends to the risk premium for 

stocks. In this context, the measure of funding liquidity proposed here can 

be used as real-time measure of liquidity premia. 
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We use end-of-month prices of U.S. Treasury securities from the CRSP 
data set. We exclude callable bonds, flower bonds and other bonds with 
tax privileges, issues with no publicly outstanding securities, bonds and bills 
with less than 2 months to maturity and observations with either bid or ask 
prices missing. Our sample covers the period from January 1986 to December 
2008. We also exclude the following suspicious quotes. 

CRSP ID 
#19920815.107250 
#19950331.203870 
#19980528.400000 
#20011130.205870 
#20041031.202120 
#20070731.203870 
#20080531.204870 

Date 
August 31st 1987 

December 30th 

May 30th 1998 
October 31th 

November 29th 2002 
May 31"t 2006 

November 30th 2007 

CRSP ID #20040304.400000 has a maturity date preceding its issuance 
date, as dated by the U.S. Treasury. Finally, CRSP ID #20130815.204250 
is never special and is excluded. 
B Unscented Kalman Pilter 

The UKF is based on an approximation to any non-linear transformation 
of a probability distribution. It has been introduced in Julier et al. (1995) 
and Julier and Uhlmann (1996) (see Wan and der Merwe (2001) for textbook 
treatment) and was first imported in finance by Leippold and Wu (2003). 

Given Xt+JIt a time-t forecast of state variable for period t + 1, and its 

associated MSE Qt+1lt the unscented filter selects a set of Sigma points in 
the distribution of X t+1lt such that 

x = L w(i)x(i) = Xt+llt 
i 

Julier et al. (1995) proposed the following set of Sigma points, 

i=O 

i = 1, ... ,K 

i = K + 1, ... ,2K 
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with weights 
i=O 

1, ... ,K 
i = K +1, ... ,2K 

where is the i-th row or column of the matrix square root. 
(i) 

Julier and Uhlmann (1996) use a Taylor expansion to evaluate the approxi­
mation's accuracy. The expansion of y g(x) around x is 

jj E[g(x+Llx)] 

g(x) + E [DAX(9) + D~~(9) + D~;?) + ... ] 

where the D~x(g) operator evaluates the total differential of g(-) when per­
turbed by Llx, and evaluated at X. A useful representation of this operator 
in our context is 

D~,:(g) = ~ (~ Llx .~) i g(X)1 
z! t! L....t J 8xj 

J=1 x=x 

Different approximation strategies for jj will differ by either the number of 
terms used in the expansion or the set of perturbations Llx. If the distribu­
tion of Llx is symmetric, all odd-ordered terms are zero. Moreover, we can 
re-write the second terms as a function of the covariance matrix Pxx of Llx, 

Linearisation leads to the approximation Y/in = g(x) while the unscented 
approximation is exact up to the third-order term and the cr-points have 
the correct covariance matrix by construction. In the Gaussian case, Julier 
and Ulhmann (1996) show that same-variable fourth moments agree as weil 
and that aU other moments are lower than the true moments of Llx. Then, 
approximation errors of higher order terms are necessarily smaUer for the 
UKF than for the EKF. U sing a similar argument, but for approximation 
of the MSE, Julier and Uhlmann (1996) show that linearisation and the 
unscented transformation agree with the Taylor expansion up to the second­
order term and that approximation errors in higher-order terms are smaller 
for the UKF. 
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. C Arbitrage-Free Yield Adjustment Term 

Christensen et al. (2007) show that the constant, a(m) is given by 

m2 [1 1 - e-m>. 1 _ e-2m>.] 
a(m) = -aî1 6 - (a~l + a~2) 2),2 - m),3 + 4m),3 

- (a~l + a~2 + a~3) 

[ 
1 e-m>. me-2m>' 3e-2m>' 2(1 - e-m>.) 5(1 _ e-2m>.)] 

x 2),2 + ~ - 4), 4),2 - m),3 + 8m),3 

[
m e-m>. 1- e-m>.] 

- (alla21) 2), + ---:>:2 - m),3 

[
3e-m >. m me-m >.] 

- (alla31) ----:\2 + -2), + ), 

- (a21 a31 + a22a32) 

[ 
1 e-m>. e-2m>' 3(1 - e-m>.) 3(1 - e-2m>.)] 

x ),2 + ---:>:2 -~ - m),3 + 4m),3 . 



Table r: Summary statistics of bond characteristics 

We present summary statistics of age (in months), duration (in months) and coupon (in %) for each maturity and liquidity category. New refers to the 
on-the-run security and Old refers"to the off-the-run security (see text for details). In each case, the first column gives the sample mean and the second 
column gives the sample standard deviations. Coupon statistics are not reported for maturity categories of 12 months and less as T-bills do not pay 
coupons. End-of-month data from CRSP (1985:12-2007:12). 

Age Duration Coupon 
Maturity Old New Old New Old New 

3 12.01 9.31 1.64 0.09 3.01 0.03 4.38 0.09 
6 16.93 6.27 0.12 0.11 6.00 0.10 5.90 0.11 
9 14.45 6.05 4.42 4.88 8.89 0.11 10.00 0.40 
12 13.11 5.78 2.51 3.90 111.77 0.23 12.14 1.08 
18 28.29 11.92 - 6.74 0.62 17.14 0.50 16.81 0.59 7.12 2.81 6.84 3.06 
24 22.90 13.45 0.33 0.52 22.56 0.59 22.68 0.72 7.11 2.82 6.74 3.13 
36 24.64 10.17 4.61 6.74 32.56 1.42 32.75 2.63 7.49 2.96 7.10 2.82 
48 18.42 9.57 4.42 3.00 41.95 2.30 44.17 4.40 7.38 3.03 7.25 2.86 
60 29.06 21.58 2.29 3.85 50.41 3.09 51.36 3.02 7.72 2.80 7.13 2.90 
84 34.41 8.61 12.51 11.82 65.85 5.04 68.71 8.45 7.74 2.56 7.55 2.63 
120 14.91 18.59 4.02 7.56 84.43 8.34 85.55 9.16 7.15 2.24 7.44 2.71 
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Table II: Parameter estimates of transition equations. 

Panel (a) presents estimation results for the AFENS model without liquidity. Panel (b) 
presents estimation results for the AFENS model with liquidity. For each parameter, 
the first standard error (in parenthesis) is computed from the QMLE covariance matrix 
(see Equation 1.23) while the second is computed from the outer product of scores (see 
Equation 1.25). End-of-month data from CRSP (1985:12-2007:12). 

(a) 

F K I: (x102
) 

0.0545 0.169 0.68 
Level (0.0136) (0.177) (0.42) 

(0.0093) (0.069) (0.03) 
-0.0172 0.182 0.76 0.84 

Slope (0.0277) (0.088) (0.75) (0.46) 
(0.013) (0.071) (0.06) (0.04) 
-0.0128 0.891 -0.14 0.41 2.31 

Curvature (0.0061) (0.860) (1.86) (1.64) (0.66) 
(0.0045) (0.283) (0.15) (0.17) (0.13) 

(b) 

F K I: (x102 ) 

0.0576 0.198 0.85 
Level (0.0165) (0.165) (0.86) 

(0.0154) (0.098) (0.02) 
-0.0167 0.222 -0.81 0.85 

Slope (0.0092) (0.293) (0.85) (0.44) 
(0.0165) (0.145) (0.06) (0.05) 
-0.0189 0.887 0.57 0.25 2.27 

Curvature (0.0057) (1.414) (0.82) (1.91) (1.66) 
(0.0088) (0.325) (0.13) (0.20) (0.12) 

L <Pl al 

0.32 0.955 0.06 
Liquidity (0.42) (0.034) (0.066) 

(0.09) (0.021) (0.011) 
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Table III: Mean Pricing Errors and Root Mean Squared Pricing Errors 

Panel (a) presents MPE and Panel (b) presents RMSPE from AFENS models with and 
without liquidity. The columns correspond to liquidity category where New refers to 
on-the-run issues and Old refers to off-the-run issues. End-of-month data from CRSP 
(1985: 12-2007: 12). 

(a) Mean Pricing Errors 

Mean Pricing Errors 

Benchmark Model Liquidity Model 
Maturity Old New Old New 

3 0.015 0.026 0.003 -0.002 
6 -0.002 0.02 0.018 -0.011 
9 -0.031 0.026 -0.012 0.008 
12 -0.041 0.037 -0.023 0.016 
18 -0.064 -0.061 0.002 -0.001 
24 -0.028 4e-5 0.007 -0.005 
36 0.005 0.069 0.014 -0.012 
48 -0.008 0.079 -0.019 -0.003 
60 0.006 0.25 0.013 0.023 
84 -0.167 -0.041 0.035 -0.015 
120 -0.239 0.07 -0.157 0.107 
Ail -0.058 0.043 -0.011 0.010 

(b) Root Mean Squared Errors 

Root Mean Squared Pricing Errors 

Benchmark Model Liquidity Model 
Maturity Old New Old New 

3 0.047 0.046 0.04 0.021 
6 0.035 0.041 0.038 0.023 
9 0.054 0.062 0.038 0.036 
12 0.072 0.078 0.057 0.049 
18 0.092 0.09 0.04 0.034 
24 0.063 0.085 0.056 0.062 
36 0.102 0.139 0.101 0.072 
48 0.171 0.183 0.161 0.088 
60 0.226 0.318 0.217 0.108 
84 0.327 0.298 0.235 0.176 
120 0.353 0.394 0.285 0.308 
Ail 0.177 0.197 0.145 0.089 
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Table IV: On-the-run Premium 

Each line corresponds to a maturity category (months). The first two columns provide the 
average of residual differences in each category for the AFENS model with and without 
maturity, respectively. The last three col~mns display estimates of the liquidity level, /3, 
followed by standard errors (in parenthesis). The first standard error is computed from the 
QMLE covariance matrix (see Equation 1.23) while the second is computed from the outer 
product of scores. (see Equation 1.24). End-of-month data from CRSP (1985:12-2008:12). 

S 
Maturity Re idual Differences (3 Standard Error 

Bencllmark Liquidity QMLE MLE 
3 0.0111 -0.0053 0.2642 0.0304 0.0232 
6 0.0221 -0.0295 0.2837 0.0326 0.0273 
9 0.0566 0.0202 0.3158 0.0370 0.0331 
12 0.0783 0.0396 0.3026 0.0362 0.0335 
18 0.0025 -0.0036 0.0428 0.0248 0.0352 
24 0.028 -0.0117 0.2005 0.0320 0.0350 
36 0.0644 -0.026 0.5325 0.0739 0.0842 
48 0.0892 0.0165 0.7446 0.0945 0.0880 
60 0.2477 0.0102 1.227 0.1369 0.1197 
84 0.125 . -0.0509 1.2174 0.1026 0.0978 
120 0.3106 0.264 



Table V: Results from off-the-run excess returns regressions 

Results from predictive regression, 
(m) (m) ,,(ml L j3(m)T F. (m) 

XT t + h = ah + h t + h t + €(t+h)' 

the liquidity, Lt, and term structure factors, Ft, from the AFENS model where xT;~2 is the excess returns at horizon h (months) on a bond of maturity 
m (years). Regressors are demeaned and divided by its standard deviation. Panel (a) contains estimates of a and Panel (b) contains estimates of" with 
t-statistics based on Newey-West standard errors (h+3 lags) in parenthesis. Panel (c) presents R 2 of including or excluding [in bracketsJ the liquidity 
factor. End-of-month data from CRSP (1985:12-2007:12). 

(a) Average risk premia 

Bond Maturity 
Horizon 2 3 4 5 7 10 

1 1.53 (7.07) 2.09 (lLl7) 2.59 (15.00) 3.03 (18.53) 3.80 (24.86) 4.71 (33.49) 
3 1.36 (4.17) 1.90 (6.64) 2.39 (8.89) 2.83 (10.89) 3.57 (14.36) 4.44 (18.90) 
6 LlO (2.67) 1.63 (4.38) 2.10 (5.89) 2.51 (7.22) 3.21 (9.53) 3.99 (12.53) 
12 0.69 (1.37) 1.21 (2.59) 1.66 (3.62) 2.07 (4.50) 2.78 (6.03) 3.58 (8.07) 
24 0.00 (0.00) 0.61 (0.96) 1.11 (1.67) 1.56 (2.20) 2.34 (2.94) 3.26 (3.78) 

(b) Liquidity Coefficients 

Bond Maturity 
Horizon 2 3 4 5 7 10 

1 -1.39 (-2.49) -2.27 (-2.53) -3.01 (-2.47) -3.61 (-2.39) -4.52 (-2.27) -5.42 (-2.07) 
3 -1.35 (-3.28) -2.12 (-3.14) -2.74 (-2.97) -3.23 (-2.84) -3.98 (-2.64) -4.70 (-2.34) 
6 -1.25 (-4.67) -2.00 (-4.51) -2.59 (-4.29) -3.07 (-4.09) -3.84 (-3.75) -4.69 (-3.26) 
12 -0.85 (-5.47) -1.63 (-5.63) -2.24 (-5.63) -2.73 (-5.57) -3.44 (-5.18) -4.08 (-4.15) 
24 0.00 (0.00) -0.53 (-3.24) -0.91 (-3.23) -Ll7 (-3.27) -1.51 (-3.29) -1.75 (-2.91) 

(c) R 2 

Bond Maturity 
Horizon 2 3 4 5 7 10 

1 4.74 [2.28] 4.65 [2.02J 4.51 [1.95] 4.34 [1.93] 4.03 [1.92] 3.55 [1.89] 
3 13.56 [6.84] 13.33 [6.83] 13.07 [7.03] 12.78 [7.18] 12.07 [7.17] 10.52 [6.57] 
6 24.23 [10.34] 24.50 [11.21] 24.57 [12.26] 24.61 [13.11] 24.44 [14.10] 22.92 [14.02] 

..,.. 
0:> 

12 35.36 [11.23] 37.71 [12.66] 39.24 [14.96] 40.32 [17.20] 41.46 [21.00] 40.54 [24.42] 
24 0.00 [0.00] 35.53 [16.92] 31.91 [13.91] 29.46 [11.92] 26.56 [10.32] 25.82 [12.69] 
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Table VI: Off-the-run excess returns and funding liquidity 

Results from the regressions, 

(m) (m) ;:(m)L (3(m)T f (m) 
xrt+12 = Ct + u t + t + €(t+12)' 

where xr;:;~ is the annual excess returns on a bond with maturity m (years), Lt is 

the liquidity factor and ft is a vector of annual forward rates ftCh
) from 1 to 5 years. 

Regressors are demeaned and divided by their standard deviations. Panel (a) presents 
results using returns and forward rates directly from CRSP data but with the liquidity 
factor from the mode!. Panel (b) excludes the liquidity factor. Panel (c) exclu des the 
liquidity factor and uses excess returns from the mode!. Newey-West t-statistics (in 
parenthesis) with 15 lags. End-of-month data from CRSP (1985:12-2007:12). 

(a) Excess returns and forward rates from Fama-Bliss data with the liquidity factor 

Maturity est f?) ft(2) /3) 
t 

fPI) ft(5) Lt R 2 

2 0.72 0.29 -1.31 1.88 0.93 -0.95 -0.78 41.65 
(3.49) (0.49) (-1.18) (1.50) (1.04) (-1.60) (-5.97) 

3 1.31 0.15 -2.26 4.32 0.76 -1.49 -1.55 41.66 
(3.41) (0.14) (-1.13) ( 1.89) (0.48) (-1.27) (-5.93) 

4 1.79 -0.51 -1.74 4.58 1.53 -1.85 . -2.18 42.82 
(3.53) (-0.35) (-0.66) (1.51) (0.75) (-1.13) (-6.07) 

5 1.98 -1.51 -0.24 4.57 0.36 -0.81 -2.66 40.87 
(3.23) (-0.84) (-0.07) (1.24) (0.15) (-0.39) (-5.83) 

(b) Excess returns and forward rates from Fama-Bliss data 

Maturity est ft(Jj fP) /3) 
t 

ft(4) ft(5) Lt R 2 

2 0.72 -0.43 -1.34 2.66 0.99 -1.53 21.04 
(2.95) (-0.57) (-1.06) (1.50) (0.95) (-2.13) 

3 1.31 -1.27 -2.33 5.86 0.88 -2.64 19.29 
(2.87) (-0.87) (-1.04) (1.77) (0.46) (-1.86) 

4 1.79 -2.52 -1.83 6.74 1.70 -3.46 19.86 
(2.95) (-1.26) (-0.62) (1.51) (0.67) (-1.76) 

5 1.98 -3.96 -0.35 7.20 0.56 -2.79 18.27 
(2.71) (-1.65) (-0.10) (1.35) (0.19) (-1.14) 

(c) Excess returns from the model and forward rates from Fama-Bliss data 

Maturity est fP) fP) f
t
(3) li) ft(5) Lt R 2 

2 0.66 -0.13 -1.91 2.97 0.93 -1.51 2T.Ti) 

(2.71) (-0.17) (-1.53) (1.69) (0.91) (-2.09) 
3 1.27 -1.15 -2.04 4.97 1.19 -2.43 18.19 

(2.82) (-0.79) ( -0.90) ( 1.50) (0.63) (-1.73) 
4 1.74 -2.46 -1.26 6.09 1.18 -2.92 17.22 

(2.83) (-1.24) (-0.41) (1.34) (0.46) (-1.47) 
5 2.09 -3.86 0.00 6.62 1.06 -3.12 17.15 

(2.80) (-1.61) (0.00) ( 1.20) (0.34) (-1.26) 



Table VII: LIBOR rolling excess returns and funding liquidity 

Results from the regressions, 
(m) (m) 8(m) L f3(m)T F. (m) XTt + h = ah + h t + h t + E(t+h)' 

where XT;:'~ is the returns at time t + h (months) on rolling investment in loans with maturity m (months), Lt is the liquidity factor and Ft is the vector 
of term structure factor. Each regressor is demeaned and divided by its standard deviation for interpretation. Panel (a) contains estimates of average 
returns. Panel (b) contains estimates of 8~m). Newey-West t-statistics (h+3Iags) in parenthesis. Panel (c) presents R 2 from the regressions including and 
excluding [in brackets] the liquidity factor. End-of-month data from CRSP (1985:12-2007:12). 

(a) Average Excess Returns 

Loan Maturity 
Horizon 3 6 12 

1 0.277 (0.347) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 
3 0.183 (0.248) 0.265 (0.245) 0.000 (0.000) 0.000 (0.000) 
6 0.062 (0.322) 0.144 . (0.264) 0.239 (0.165) 0.000 (0.000) 
12 -0.153 (0.615) -0.070 (0.560) 0.029 (0.439) 0.253 (0.151) 
24 -0.537 (1.120) -0.453 (1.079) -0.351 (0.985) -0.120 (0.743) 

(b) Liquidity Coefficients 

Loan Maturity 
Horizon 3 6 12 

1 0.184 (7.837) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 
3 0.162 (7.853) 0.149 (6.364) 0.000 (0.000) 0.000 (0.000) 
6 0.193 (6.139) 0.173 (6.985) 0.101 (5.699) 0.000 (0.000) 
12 0.360 (5.700) 0.340 (6.364) 0.277 (7.329) 0.076 (3.695) 
24 0.732 (5.578) 0.715 (5.909) 0.664 (6.395) 0.526 (7.366) 

(c) R2 

Loan Maturity 
Horizon 1 3 6 12 

1 46.4 [28.0] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0] 
3 44.7 [16.8] 50.6 [26.5] 0.0 [0.0] 0.0 [0.0] """ 6 24.7 [1.4] 30.7 [2.9] 44.8 [20.4] 0.0 [0.0] 00 

12 29.2 [7.1] 30.3 [6.6] 32.3 [6.7] 35.2 [18.6] , 
24 38.8 [12.3] 38.9 [11.7] 39.4 [11.2] 41.2 [10.1] 



Table VIII: LIB OR and swap spreads and funding liquidity 

Results from regressions, 
sprd;m) = a(m) + ,,(ml Lt + fj(m)T Ft + E~0)' 

where sprd;m) is the spread at time t and for maturity m (months), Lt is the liquidity factor and Ft is the vector of term structure factor. Spreads 
are computed above the off-the-run U.S. Treasury yield curve and we use par yields to compute swap spreads. Each regressors is demeaned and 
divided by its standard deviation. Panel (a) presents results for LIBOR spreads. Panel (b) presents results for swap spreads. Newey-West t-statistics (3 
lags) in parenthesis. Finally, R2 from regressions including and excluding [in brackets] the liquidity factor. End-of-month data from CRSP (1985:12-2007:12). 

Avg Spread 
,,~) 

Avg. Spread 
,,~) 

0.423 
0.183 
58.4 

0.384 
0.094 
37.8 

1 month 
(0.027) 
(6.463) 
[44.9] 

24 
(0.016) 
(4.556) 
[35.41 

(a) LIBOR Spreads 

3 months 
0.422 (0.023) 
0.153 (5.939) 
59.4 [47.8] 

(b) Swap Spreads 

60 
0.483 (0.018) 
0.104 (4.525) 
38.0 [34.2] 

6 months 12 months 
0.406 (0.019) 0.429 (0.019) 
0.106 (5.166) 0.080 (4.410) 
53.2 [42.2] 53.9 [37.7] 

84 120 
0.477 (0.019) 0.432 (0.020) 
0.107 (4.395) 0.095 (3.917) 
45.5 [38.6] 51.7 [38.5] 



Table IX: Corporate bond excess returns and funding liquidity 

Results from the regressions 
(r) dr)L (3(r)T D (r) 

Yt = Q" + u" t +" rt + E(H">' 

where Yt is either a spread, sprd',;', observed a time t for rating r or an excess retums, xrt;>" over an horizon h (months) on an investment the Corporate 
index with rating r, L, is the liquidity factor and Ft is the vedor of term structure factor. See Equation 1.26 for the spread panel specification. Panel (b) 
presents results for corporate spreads. Panel (a» presents results for excess returns. Individual 'corporate bond yields are obtained from NAIC. Corporate 
bond returns are computed using Merrill Lynch indices obtained from B1oomberg. Spreads and excess returns are computed above the Treasury off-the-run 
yield curve. Each regressor is demeaned and divided by its standard deviation for interpretation. Newey-West t-statistics in parenthesis and R2 from 
regressions including and excluding [in brackets[ the Iiquidity factor. Results from Merrill Lynch indices cover the entire sample. Results from NAIC 
corporate bond yields ·is monthly from February 1996 until December 2001. 

(a) Merrill Lynch Indices Excess Returns 

3.130 (15.291) 3.162 (15.618) 
-1.626 (-1.341) -1.154 (-0.913) 

(b) NAIC Corporate Spreads 

(c) Merrill Lynch Spread Indices 



Table X: Macroeconomie determinants 

Results from regressions of the liquidity factor on selected economic variables. BA is the difference between the minimum and the median bid-ask spreads 
across bonds on any given date. V XO is the implied volatility from S&P500 cali options. FI to F8 are principal components of macroeconomic series 
from Ludvigson and Ng (2009). Newey-West standard errors (3 lags) are included in parenthesis. End-of-month data (1986:01-2004:12). 

Regressors . 
Model cst BA VXO FI F2 F3 F4 F5 F6 F7 F8 R2 

-A- 0.36 0.046 0.091 -0.001 0.051 0.050 -0.035 0.037 -0.030 ~ 
(16.7) (2.13) (5.73) (-0.06) (2.51) (3.14) (-2.34) (2.28) (-1.84) 

B 0.34 0.114 37.7 
(17.5) (5.35) 

C 0.34 0.052 7.9 
(13.4) (1.91) 

D 0.36 0.076 -0.087 0.218 0.075 0.004 0.023 0.021 -0.030 0.031 -0.059 55.5 
(19.9) (4.13) (0.43) (1.40) (4.50) (0.37) (1.45) (1.35) (-2.10) (2.29) (4.90) 
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Figure 1.1: Liquidity and Term structure factors 
Factors from the AFENS model with liquidity. Panel (a) displays the 
liquidity factor. The scale is in dollar. Panel (b) displays the term structure 
factors. The scale is in percentage. End-of-month data from CRSP 
(1985: 12-2007: 12). 
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Figure 1.2: Excess returns and funding liquidity 
The liquidity factor and the risk premium in different markets. Panel (a) 
displays annual excess returns on 2-year off-the-run D.S. Treasury bonds. 
Panel (b) displays annual excess rolling returns on a 12-month LIBOR 
loan. Panel (d) displays the spread of the 1-year LIBOR rate above the 
off-the-run 1-year zero yield. Panel (d) displays the spread of the 5-year 
swap rate. Excess returns are computed above the off-the-run Treasury 
risk-free rate. End-of-month data from CRSP (1985:12-2007:12) . 
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Figure 1.3: Corporate spread and funding liquidity 
The liquidity factor with corporate bond spreads for different ratings. 
Panel (a) compares with the spreads of Merrill Lynch indices for high 
quality bonds: AAA, AA and A ratings. Panel (b) compares with the 
spread of Merrill Lynch BBB and High Yield corporate bond indices. 
Spreads are computed ab ove the off-the-run lO-year Treasury par yield. 
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Figure 1.4: Residual Differences - Benchmark Model 
Comparison of residual differences and ages for the benchmark AFENS 
model without liquidity. Panel (a) presents differences between the residuals 
(dollars) of the on-the-run and off-the-run bonds in the 12-month category. 
Panel (b) presents the residuals 48-month category. Panel (c) and (d) 
displays years from issuance for the more recent and the seasoned bonds in 
the 12-month and the 48-month category, respectively. End-of-month data 
from CRSP (1985:12-2007:12). 
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Figure 1.5: Residual differences - Liquidity Model 
Comparison of residual differences for the AFENS model with liquidity. 
Panel (a) present differences between residuals (dollars) of on-the-run and 
off~the-run bonds in the 12-month category. Panel (b) presents differences 
between residuals (dollars) in the 48-month category. End-of-month data 
from CRSP (1985:12-2007:12). 
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Figure 1.6: Determinants of Liquidity 
Panel (a) traces the liquidity factor and the difference between the median 
and the minimum bid-ask spread at each observation date. Panel (b) 
traces the liquidity factor and implied volatility from S&P 500 caU options. 
The liquidity factor is obtained from the AFENS model with liquidity. 
End-of-month data from CRSP (1985:12-2008:12) 
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Figure 1.7: Liquidity and Term structure factors including 2008 Data 
Factors from the AFENS model with liquidity. Panel (a) displays the 
liquidity factor. The sc ale i8 in dollar. Panel (b) displays the term structure 
factors. The 8cale i8 in percentage. End-of-month data from CRSP 
(1985: 12-2008:12). 
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Figure 1.8: Corporate spread and funding liquidity including 2008 data 
The liquidity factor with corporate bond spreads for different ratings. 
Panel (a) compares with the spreads of Merrill Lynch index for AAA bonds. 
Panel (b) compares with the spread of Merrill BBB corporate bond index. 
Spreads are computed above the off-the-run 10-year Treasury par yield. 
End-of-month data from CRSP and Merrill Lynch (1988:12-2008:12). 
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Abstract 

Priees of Federal funds futures contracts are widely used to measure antici­

pations of monetary policy in the V.S. but a time-varying risk premium blurs 

their information content. This paper proposes a joint no-arbitrage model 

of the Federal Reserve policy function, of Federal funds rate futures and of 

LIBOR rates. The policy function follows a pure step proeess and has a 

Taylor rule interpretation. It is driven by the current policy rate, a macro 

factor, which captures the state of the economy as perceived by the mone­

tary authority, and a liquidity factor, which captures deviations between the 

risk premium implicit in LIBOR and futures rates, respectively. The model 

extracts the expectation component common to both markets and offers real­

time measures of policy anticipations. Empirically, combining LIB OR and 

futures rates leads to substantial improvements of policy rate forecasts at 

horizons up to one year. In practiee, the second factor is the most important 

predictor of risk premium variations and, hence, an important contributor 

to forecasts of future Fed funds rate. 1 interpret deviations between futures 

and LIBOR rates as the reflection of forward-Iooking hedging activities. 
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1 Introduction 

Priees of Federal funds futures are widely used to measure anticipations of 

future monetary policy in the US. Indeed, futures-based forecasts are unbi­

ased predictors of future Target rates at short horizons (Hamilton (2009)). 

However, the presence of a time-varying and counter-cyclical risk premium 

blurs market anticipations at horizons beyond 2 months (Rudebusch (2006), 

Piazzesi and Swanson (2006)). This paper proposes a joint no-arbitrage 

model of the Federal Reserve [the Fed] monetary policy response function, 

of Federal funds [Fed funds] futures rates and of the term structure of London 

.Interbank Offered Rates [LIBOR]. The Target for the overnight Fed funds 

rate follows a step pro cess with jumps occurring upon FOMe meetings and 

where state variables drive the conditional distribution of jumps. This is a 

discrete-time analog to Piazzesi (2005) but extended to futures markets and 

allowing for a different liquidity premium in LIBOR and futures markets. 

The main contribution of this paper is twofold. First, it combines interest 

rates with information from futures priees to achieve a sharper decomposition 

of rates into policy expectations and a risk premium. LIBOR and futures 

rates provide non-overlapping information on the future path of the Target 

ratel, even in a risk-neutral world. Moreover, as discussed below, their risk 

premia differ. This provides further· identification of the corn mon expectation 

component in LIBOR and futures rates. Empirically, 1 estimate the model at 

the daily frequency and find that mod~l-implied forecasts significantly out­

perform the common regression-based approach. Moreover, model-implied 

forecasts can be extended beyond the the maturity of the longest available 

futures contract. 

Second, the model measures the risk premium specifie to each market. 

Fed funds futures require no exchange of principal and have daily margin re­

quirements that mitigate credit exposures. In contrast, LIB OR loans carry 

substantial default risk since they are fully funded and uncollateralized. 

Needless to say, participation in the LIBOR market is limited .. Further­

more, investments in LIBOR loans cannot be reversed as easily, especially in 

periods of turmoil. Then, LIBOR rates include a compensation for liquidity 

and credit risk. 1 introduce a liquidity factor2 which captures variations in 

lThe Fed target the overnight Fed funds rate. The effective overnight rate is a weighted 
average of rates on brokered unsecured loans between large banks. The LIBOR rates pro­
vide the natural term structure associated with the overnight market as they corresponds 
to the rates at which large bank are prepared to lend to each other on the London Eu­
roDollar market. 

2Hereafter, 1 refer to this factor as a liquidity factor and the risk premia specifie to 
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the relative compensation for liquidity and credit risk between these markets. 

Empirically, this factor is the most important predictor of futures exeess re­

turns and, ultimately, leads to significantly improved policy rate forecasts. 1 

interpret these small but informative deviations between futures and LIBOR 

rates as liquidity pressures in the futures market revealing the information of 

market participants hedging their interest rate exposures (e.g. banks). This 

supports similar results obtained by Piazzesi and Swanson (2006) who link 

excess returns to variations of commercial banks' open interest. 

The paper is also a contribution to the literature on the measurement of 

monetary shocks (see Christiano et al. (1998)). The recursi ve identification 

scheme of structural VAR is hard to justify wh en including financial data: 

can we tell whether interest rates react to policy or whether the reverse hold? 

A more sensible approach is to consider monetary policy actions and inter­

est rates as jointly determined. This is precisely what an integrated model 

of policy and the term structure delivers .. The model provides closed-form 

densities of policy changes at any horizon and the no-arbitrage restrictions 

ensure that forecasts at different horizons are consistent with each other. As 

noted by Hamilton and Jordà (2002), changes in monetary policy anticipa­

tions contain a size and a timing component. A decision by the FOMC that 

does not accord with expectations built in market priees can be interpreted 

as a surprise in timing, a surprise in size, or both. 

Related lite rature 

This paper is closely related to Piazzesi (2005) but differs in sorne key 

dimensions. Using information from the futures market provides better iden­

tification of the expectation and risk premium components of interest rates. 

Moreover, combining assets and allowing for different risk compensations 

uncover an important forward-Iooking component. Finally, the asymmet­

ric policy function introduees variations in the higher-order moments of the 

Target rate and, henee, further variations in the risk premium. Hamilton 

and Jordà (2002) also exploit the discrete nature of Target rate changes but 

do not impose no-arbitrage restrictions. They model the probability of a 

change as a conditional hazard model while the size of a change follows an 

ordered response model. Hamilton and Jordà èonclude that current interest 

rate spreads are essential to model the hazard rate at short horizons. How­

ever, predictions of the policy rate at longer horizons are difficult because 

LIBOR loans as a liquidity premium. This is in part for simplicity but also because the 
results below suggests that in this sample, variations in the spread are mainly due to the 
price impact of hedging activities. See below for further discussion. 
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spreads are themselves difficult to predict. In contrast, a joint model of the 

policy rule and of the term structure can use current priee information to 

forecast consistently at all horizons. 

Krueger and Kuttner (1996) were first to consider predictions of future 

monetary policy based on futures contracts. Since, Gurkaynak et al. (2007) 

have shown that Fed funds futures and eurodollar futures outperform other 

market instruments when forecasting future U .S. policy rates. Hamilton 

(2009) finds very litt le predictability of priee changes for near-term futures 

contracts. He concludes that daily changes in futures priees accurately re­

flect changes in market's expectations of future monetary policy. In contrast, 

the evidence presented here suggests that part of these changes may be at­

tributable to the priee impact of hedging demand. This is consistent with 

Piazzesi and Swanson (2006). They documented that variations of banks' 

open interests in the futures market are closely related to excess returns 

on futures contracts. Moreover, Piazzesi and Swanson show that macroeco­

nomic indicators, su ch as a recession dummy and changes in non-farm payroll 

employment are important predictors of futures excess returns. Hence, fu­

tures priees include a significant, time-varying and pro-cyclical risk premium 

(see also Sack (2004)). This implies that the bias in Target rate forecasts 

tends to increase as we enter a recession, precisely at a time when the central 

bank is likely to cut interest rates. While measures of employment and eco­

nomic activity are available only at low frequencies, the forecasts presented 

here can be updated daily to provide risk-adjusted measures of future policy 

anticipations. 

Kuttner (2001) uses futures to measure unanticipated Target changes and 

document the link with interest rate changes at different maturities. This 

contrasts with the usual result that total Target changes have a weak impact 

on the term structure. Similarly, Bernanke and Kuttner (2005) use futures 

to document the impact of unanticipated policy actions on stock priees. 

Recently, Rudebusch (2006) uses futures at longer horizons to argue that 

monetary policy in the U .S. do es not follow a partial adjustment rule but, 

instead, adjusts the Target rapidly following the arrival of new information. 

In all cases, the conclusion relies on the implicit assumption that variations 

of the risk premium are unimportant. Alternatively, Cochrane and Piazzesi 

(2002) measure policy shocks from unanticipated changes in the Target Fed 

funds rate. 

The Federal funds market is covered by a large literature.3 Hamilton 

3See Hamilton (1996) and Stigum (2004) for detailed discussion of the Fed funds mar-
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(1996) introduces a mixed-normal ARCH model of the Fed funds rate that 

highlights the importance of jumps, of time-varying volatility (see also Das 

(2002)).4 .lumps are more likely on Wednesday and on Thursday and on 

days of FOMC meetings. The former transitory day-of-the-week effects are 

related to microstructure of the Fed funds market while the latter FOMC 

meeting jumps are persistent. Johannes (2004) provides conclusive evidence 

that these persistent jumps affect the evolution of other short-term rates. 

The rest of the paper is organized as follows. Section II introduces the 

model and the state variables. l also derive the associated (affine) conditional 

multivariate Laplace transform. Next, Section III introduces the stochastic 

discount factor and shows that the Laplace transform remains within the 

same family under the risk-neutral measure. This leads to closed-form solu­

tions for risk-free interest rates, LIBOR rates and futures rates. Section IV 

summarizes the data and the Quasi-Maximum Likelihood estimator while 

Section V presents the estimation results. In particular, l use the unscented 

Kalman filter to handle non-linearities in futures prices. Section VI evaluates 

the forecasting implications of the model, relative to the usual regression­

based approach. AIso, l measure the information content of the liquidity 

and of the macroeconomic factor for excess returns on futures. Section VII 

concludes. 

II Model 

A Short Rate Dynamics 

The overnight Fed funds rate is the main policy tool used by the Federal 

Reserve to reach its long-term objectives. Figure 2.1 draw the Ta,rget rate. 

Since 1994, the FOMC, which determines the Target overnight rate, has 

announced each change publicly and has initiated almost all of its policy 

changes following a scheduled meeting. Due to this operating procedure, the 

path of the Target Fed funds rate, Tt, traces a step function through time.5 

This suggests the following representation of the policy rule' 

ket. 
4 Also, the Fed funds rate tends to decrease over the 2-week reserve maintenance period 

before a surge on settlement day (i.e. it is not a martingale over the reserve maintenance 
period) and this surge is accompanied by a sharp rise in volatility on the settlement day. 
This pattern of volatility over the maintenance period has been confirmed in more recent 
data by Barolini et al. (2002). 

5This has not been always the case. The uncertainty associated with the Fed's policy 
caused continuo us variations of the overnight rate as new economic information arrived. 
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Figure 2.1: Target Federal Funds Rate (1994-2007) 

2 
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rt+l = ro + Ll L ( n,/ ni) 

i=l 

= rt + Ll ( nf+l - nt+l) , (2.1) 

for t ~ 0 and where Ll = 0.25% is the fixed increment. Conditional on time-t 

information, nf+l and nt+l are independent Poisson random variables with 

jump intensities 

.xf+l =.x +.xr (X;+l 

.xf+l =.x -.xr (X;+l 
X) 

X) , (2.2) 

respeetively, on scheduled FOMC meeting days. A small number of poliey 

actions oceurred following unscheduled meetings. l allow for the arrivaI of 

these rare events but with constant intensities >'0 and >.g. 
B State Variables 

When deciding on the course of the Target rate, the committee knows 

the previous Target, 'rt-l, and its spread with the effectivé overnight rate. 

The committee also observes a wealth of macroeconomic and financial infor-

effective (i.e. market) Fed funds rate is published by the Board of Governors of 
the Federal Reserve System (see statistical release R.15). The effective rate is an average 
of brokered transactions weighted by the arnount of overnight funds traded. 



73 

mation captured by a first latent variable, Zt. Conditional on the occurrence 

of a FOMC meeting, the distribution of a Target rate change is driven by 

the distance of each state variable relative to its long-term mean. 

In the following, estimation is based on observations of LIBOR and Fed 

funds futures rates. In the absence of arbitrage opportunities, the Fed funds 

futures rates is related to the path of futures Fed funds rates as 

F(t, n) = Et [Mt,t+TnD;;l. I: (rt+i + St+i)] 
.=Tn-Dn 

where Mt,t+Tn is the Stochastic Discount Factor [SDF7] , Tn is the number 

of days until the end of the reference month and Dn is the number of days in 

that month. Similarly, the priee of risk-free zero coupon bond with maturity 

mis given by 

Finally, l introduce a liquidity factor that further discounts LIBOR loans. 

The priee of a LIBOR loan with maturity m is 

where lt captures the spread between Fed funds futures and LIBOR rates 

unexplained by anticipations of futures policy rates and the associated risk 

premium. Then, the information set of the FOMC previous to any policy 

decision is summarized by the vector Xt+l of state variables, 

(2.3) 

where the time-subscript on the Target rate differs. For private agents, 

following a policy announcement, if any, the vector of state variables, X t , is 

(2.4) 

The spread between Target and effective rates, St, is included in the state 

variable for the pur pose of computing futures priees. However, in the follow­

ing l assume that ÀU,8 = Àd,8 = 0 and, thus, that the Fed does not consider 

the current spread in its evaluation of the appropriate policy stance. The 

next section describes the dynamics of the remaining state variables. Their 

7The SDF and the associated risk-neutral probability measure are discussed below. 
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The state variables driving the policy function in Equation (2.1) and 

(2.2) follow standard autoregressive processes. First, the spread, St, of the 

effective overnight rate above the Target rate follows a pro cess with jumps 

that captures its leptokurtic distribution, 

(2.5) 

where El '" N(O,l). The jump term follows a compound Poisson distribu­

tion with number of jumps nl+l '" P(>\s) and jump size Jt+l '" N(vs,w;), 

conditionally on the number of jumps. These random variables are mutually 

i.i.d .. Next, the latent factors, Zt and lb follow 

Zt+l = f.tz + cPzZt + (J"zE: 

lt+l = f.tl + cPllt + (J"IE~ 

where Et and E~ are mutually i.i.d. standard gaussian shocks. 

D Conditional Laplace Transform 

(2.6) 

(2.7) 

Conditionally on X;, Target rate changes have a Skellam distribution. 

This corresponds to the distribution of the difference of two Poisson pro cesses 

for which the density and characteristic functions are known explicitly (Skel­

lam (1946)). Then, the conditional distribution of the state vector, X t , can 

be characterized through its conditional multivariate Laplace transform, 

T(u,Xt+l) == Et [exp (uTXt+dJ 

= exp (A(It+l' u) + B(It+l, uf X t) (2.8) 

where u belongs to JR4 and It is an indicator function equal to 1 if an FOMC 

meeting is scheduled at t + 1 and 0 otherwise.8 Coefficients A(·) and B(·) 

are given in Appendix A. 

E Discussion 

Modeling the Target rate as a two-sided step process is motivated by 

the data. However, information about the underlying economic state vari­

ables arrives following smooth autoregressive processes. This information is 

summarized by the conditional intensities of "up" and "down" jumps that 

8This model belong to the class of discrete-time compound autoregressive (CAR) pro­
cesses introduced by Oarolles et al. (2002). 
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drive the distribution of future Target changes. This specification allows for 

time-variation of all conditional moments of the Target rate. In fact, the 

relationship between the jump intensities and condition al moments of Tar­

get changes provides interesting interpretations. The first three conditional 

moments of Target changes are 

Edrt+l - rt] = 

Vardrt+l - rt] = 
skewdrt+l - rt] = 

First, in the stationary state where each state variable is equal to its uncon­

ditional mean, the distribution of Target rate changes is symmetric around 

zero with variance 2À~2. Next, consider the conditional expectation of a pol­

icy change. It has an interpretation similar to a Taylor rule. The expected 

change depends on the deviations of each state variable from its long-run 

mean. Suppose that high values of the macro factor, Zt, are associated with 

higher than average inflation or employment. Then, given the Fed's man­

date, we expect interest rates to ri se when the macro factor, Zt, is above its 

long-run average, and, conversely, to decrease when it is below its long-run 

average. That is, Àu + Àd should be positive. But note that parameters of 

this Taylor rule, Àu and Àd, cannot be identified separately using the condi­

tional mean equation only. However, the variance and skewness of the policy 

rate depend on the difference Àu - Àd' These higher-order moments are time­

varying whenever the policy rule is asymmetric and Àu =1- Àd' In the case 

where policy is more aggressive in recessions (i.e. À~,z > À~) the variance 

of policy changes decreases when conditions deteriorate and its distribution 

is skewed toward the left. Then, estimating a linear symmetric policy rule 

when the true policy rule is asymmetric is likely to produce cyclical forecast 

errors. But conditional moments are difficult to estimate in practice and the 

asymmetry of the policy rule is hard to measure. Extending the model to 

include asset prices provides identification of these parameters. 

Before we proceed to complete the model note that sorne restrictions are 

necessary to ensure the stationarity of the Fed funds rate. Intuitively, the 

intensity of an "up" change in the Target rate must decrease and the intensity 

of a "down" change must increase when the Target rate increases relative to 

its long-term average, Tt. In other words, if Àu,r and Àd,r are negative then 

the policy function induces reversion of the Target rate toward its long-term 

average, T. 1 also assume that St, Zt and lt are stationary and that cPs, cPz 
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and CPt belong to the unit interval (-1,1). 

III Asset Pricing 

This section provides a pricing kernel and completes the specification of the 

asset pricing model. 1 derive the conditional dynamics un der the risk-neutral 

measure and compute explicit priees of futures and LIBOR rates. 

A Stochastic Discount Factor 

ln the standard endowment economy, obtaining a pricing kernel from first 

principles requires the specification of preferences over consumption paths 

and a stochastic proeess for endowment. 1 choose instead to use the following 

exponential-affine specification of the stochastic discount factor [SDF1, Mt+l' 

where 5t is a vector of priees of risk. 

Allowing for time-varying priees of risk is motivated by empirical evi­

denee. Piazzesi and Swanson (2006) document the counter-cyclical varia­

tions in the risk premium of Fed funds futures. 9 Note that the model allows 

for two sources of risk premium variations. First, the risk premium may 

vary with the priees of risk. Second, the risk premium may vary with the 

volatility and higher-order moments of Target changes. This is so even if 

the priee of risk is constant. Intuitively, the SDF is of the same form as 

the SDF of economies with power utilities. In this case the risk premium 

depends on the varianee, skewness and excess kurtosis of future Target rates 

(see e.g. Polimenis (2006)). Then, to the extent that interest rate risk is 

prieed, variations in the higher moments of the policy rate lead to variations 

of the interest rate risk premium. 

Following Duffee (2002), the priee of risk vector is affine in the state 

vector 

(2.10) 

where 50 is a K x 1 vector and 51 is K x K matrix. This representation is con­

sistent with absence of arbitrage since we have Et [Mt+ll = exp (-rt - St), 

the priee today for a dollar received tomorrow in the Federal funds market. 

This paper focuses on variations of the risk premium at the business cycle 

frequency, which is captured by variations in Zt. Then, 1 only allow the priee 

9But variations of the risk premium appear minimal for the short est maturities. See 
Hamilton (2009). 
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of risk of Zt to vary through time. That is, 

(2.11) 

with 

(2.12) 

B The Priee Genemting Function 

Asset priees can be derived from the price of the payoff exp (uT X t+m ) for 

sorne maturity m. This is a generating system of the set of all payoffs (Duffie 

et al. (2000) and Gourieroux et al. (2002)). In particular, the safe payoff is 

obtained when u = O. Assuming that no arbitrage opportunity exists, the 

discounted value of the generating payoff is the priee generating function, 

r( u, t, m) = Et [Mt,t+m exp (uT X t+m)] 

= Et [Mt+lr(u, t + 1, m -1)], 

where 1 define Mt,t+i == Mt+l ... Mt+i'lO Consider first the case m = 1 which 

delivers the conditional Laplaee Transform under the risk-neutral probability 

r(u, t, 1) = TQ(u,Xt+d = Et [Mt,t+l exp (uTXt+l)] 

= exp (AQ(It+l, u) + BQ(It+l, uf X t ) , 

with coefficients given in Appendix B. The conditional distribution of the 

state vector is the same under the risk-neutral measure but with risk-adjusted 

parameters. In particular, the Target rate is Skellam under both measures. 

Extending to longer maturity m > 1, the priee generating function has the 

following exponential-affine solution 

r(u, t, m) = exp (eo(u, t, m) + e(u, t, mf X t ) , 

where coefficients satisfy (see appendix B), 

eo(u, t, m) = eo(u, t + 1, m - 1) + AQ(It+l, e(u, t + 1, m - 1))) 

e(u, t, m) = BQ(It+l, e(u, t + 1, m - 1)), 

(2.13) 

(2.14) 

with initial conditions eo(u,t,O) = 0 and e(u,t,O) = u given by r(u,t,O) = 

10 Also, Mt.Hl = MHl and by convention Mt,t = Mt=l. 
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exp (uT X t ). 

C Computing Recursions 

The recursions in Equation 2.14 have a time and a maturity dimension 

because the FOMC meeting schedule changes over time. That is, al! future 

meetings closer by one day every day. At first, it would seem that a 

different recursion must be computed to match each (t, m) pair, implying a 

dramatic increase in computing costs. Fortunately, there is a way around 

this. The key is to note that future meeting dates are known in advance 

and, therefore, that coefficients A(·) and B(-) are not stochastic. Then, for a 

given date, and for given parameter values, we can compute coefficients for 

the price of an asset maturing on this date but for past observation dates 11 

since the recursions are increasing in m but decreasing in t. As an example, 

consider the priee, at some date t + h, of an asset maturing on that day. Its 

price is exp(uTXt+h), and the coefficients, co(u,t + h,O) and c(u,t + h,O) 

correspond to the initial values in the recursions. Next, consider the priee of 

that asset on the previous day. Its maturity is now one and the coefficients, 

coCu, t + h 1,1) and c(u, t + h -1,1), are given directly from the recursions 

above. We can then work our way back until we reach t, the first date in the 

sample where an asset matures at time-t + h. Finally, varying the maturity 

date, t, provides us with ail the needed coefficients12 . 

D Risk-Free Discount Bonds 

The priee at time-t of a risk-free discount bond with maturity m is easily 

obtained by setting u = 0, that is 

DT!(t,m):= Et [Mt,t+ml 

= r(O,t,m) 

= exp ((fr/ (t, m) +~! (t, m)T X t ) 

where d~! (t, m) := Co (0, t, m) and dT! (t, h) c(O, t, m) for m ~ O. 

(2.15) 

11 Another approach that reduces computing cost is to assume a constant time interval 
between meetings beyond the nearest schedule meeting date, as in Piazzesi (2005). How­
ever, the use of Fed funds futures contracts make this approximation problematic as it 
may place some future meetings in the wrong month, implying severe mispricing of the 
corresponding futures contracts. 

12This implies that some recursions must be started for some date t + h beyond the end 
of the sample. Coefficients are discarded as we proceed backward in time until we reach 
the last observation date of the sample. 
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E LIBOR Loans 

LIBOR loans are short-term unsecured inter-bank loans. Like risk-free 

rates, LIBOR rates reftect anticipations of future Target rates and a compen­

sation to lenders for the uncertainty surrounding future rates. However, as 

discussed above, 1 allow for a further term that drives a difference between 

the term premium implicit in LIB OR rates and futures rates. The priee, 

DI(t, m), of a LIBOR loan with maturity mis, 

D1(t,m) Et [Mt,t+mexp (-~ li) 1 
exp (d&(t, m) + dL(t, m)T X t ) , (2.16) 

with coefficients in the Appendix. The interpretation of lt is straight-

forward. It represents the extra yield, relative to the risk-free asset, required 

by investors to hold LIBOR loans. This extra component may be due to 

barriers to entry, capital constraints of liquidity providers and arbitrageur, 

or counterparty default risk. Ultimately, these frictions due to market power, 

illiquidity or default risk prohibit arbitrageurs from exploiting (risk-adjusted) 

differences across market priees. This redueed-form approach borrows from 

Grinblatt (1995) and Duffie and Singleton (1997) but my focus is on the 

identification of poHcy anticipations and 1 do not try to distinguish between 

the liquidity and the credit components of LIBOR spreads. 

F Federal f'unds Futures 

A futures contract delivers, at the end of a given referenee month, the 

difference between the contracted futures rate and the average overnight 

Fed funds rate realized during that referenee month, ft. With no 1088 of 

generality, 1 standardize the notional of the contract to 1. The time-t priee, 

pet, n), of a Fed funds futures contract for the referenee month n is 

pet, n) = 100 - F(t, n) x 3600, 
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where the Futures rate13 F(t, n), is the discounted expectation of the monthly 

average of overnight rates, 

F(t, n) = Et [Mt,t+T;;D;;l_ t rt+i] 
t-Tn-Dn 

Tn 

= D;;l L Et [Mt,t+T*rt+i] 
i=Tn-Dn 

Tn 

= D;;l L f(t, i, T~), 
i=Tn-Dn 

(2.17) 

where Tn is the number of days until the end of the reference month and 

Dn is the number of days in that month. In practice, due to weekends or 

holidays, the settlement date, t + T;;, may not coincide with the last day 

of the month, t + Tn . In the following, 1 simplify the presentation and set 

T* =T. 

Equation (2.17) shows that we need only consider a single day in the 

reference month. 1 define the rate, at time-t, of a singleton futures contract, 

f(t, h, T), for the reference day t + h and settling at date t + T as 

f(t, h, T) =.Et [Mt,t+Trt+h] , 

=:: Et [Mt,t+Texp(urt+h)] 1 ,O:S; h:S; T, 
vU u=o 

(2.18) 

(2.19) 

which can be computed explicitly from the price generating function (see 

Appendix B). The singleton futures ~ate is 

f( t, h, T) = exp (d~f (t + h, T - h) + Co (u * , t, h)) + c (u * , t, h f X t) 

x [c~(u*,t,h)Cr+XrC'(u*,t,h)Cr], (2.20) 

where u* = d(t + h,T - h) and Cr = [11 0 of. The coefficients c~(-) and 

c' (.) satisfy recursions that can be obtained as the derivatives with respect 

to u of Equation (2.14). That is, 

c~(u, t, h) = c~(u, t + 1, h - 1) + A'Q(It+l' c(u, t + 1, h - l))c' (u, t + 1, h - 1) 

c' (u, t, h) = B'Q(It+l' c(u, t + 1, h -l))c' (u, t + 1, h -1), (2.21) 

where the derivatives of the Laplace transform coefficients are taken with 

13In practice we observe P(t,n). The Futures rate is computed as F(t,n) = (100 -
P(t,n))/3600. l use the 30/360 convention throughout. 
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respect to the second argument and given in the appendix. The initial con­

ditions can be obtained by noting that J( t, 0, T) = DT f (t, T)rt which implies 

that c~(u*,t,O) = 0 and c'(u*,t,O) = l for any t. 

IV Data and Method 

A Data 

l construct a sample of daily Target and effective overnight Fed funds 

rates from January Ist, 1994 to the end of July 2007. The Federal Re­

serve Bank of New York publishes overnight Fed funds rates on its web site. 

l inc1ude LIBOR rates at monthly maturities of 1 to 12 months and Fed 

funds futures rates for monthly horizons of 1 to 6 months available from 

Datastream. Futures contracts at horizons beyond 6 months exhibit low liq­

uidity for most of the sample and are exc1uded. In this sample, Target rate 

changes were announced public1y by the FOMe following each meeting and 

each Target change was a mu~tiple of 25 basis points [bps]. Finally, l exc1ude 

the period following July 2007. Since then behavior of LIB OR and futures 

rates are qualitatively different this change is left for further research. 

B Summary Statistics 

The properties of LIBOR and futures rates show that these assets of­

fer different compensations for risk. Table B presents summary statistics 

for LIBOR rates, LIBOR forward rates and futures rates across maturities. 

Panel (a) shows that the average term structure of LIBOR rates is upward 

sloping, from 4.32% to 4.70%, revealing a positive average term premium. 

The term structure of LIBOR volatilities is almost flat, ranging from 1. 76% to 

1.78%, but with slight hump-shape at maturity of 5 months. Next, Panel (b) 

presents statistics of LIBOR forward rates. These forward rates are more 

comparable to futures rates since they cover the same future time period. 

The average term structure of forward rates is steeper, from 4.32% to 5.07% 

and the hump shape in volatilities is more pronounced. Panel (c) c1early 

shows that futures rates are on average, lower, less volatile and exhibit a 

flatter term structure than forward LIBOR rates. 

Figure 2.2 compares the time series of forward LIB OR rates and futures 

rates at maturities of 2, 4 and 6 months. Again, forward rates are higher 

than futures rates. However, while variations in the levels of forward and 

futures rates seem to agree about the future behavior of the Target rate, their 

difference exhibits variations through time. Table B and Figure 2.2 show 

that futures and LIBOR rates carry different risk premia. This highlights 
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the potential of using both markets to identify their common expectation 

component. 

C State-Space Representation 

The joint conditional likelihood is available in closed form but two of 

the state variables are unobserved. 1 formulate the estimation problem as 

a state-space system and use a Kalman-based algorithm to evaluate the 

likelihood function and obtain filtering estimates of the latent factors. The 

state transition equation is given by Equations 2.1, 2.5, 2.6 and 2.7. The 

measurement vector is obtained by stacking -LIBOR rates and futures rates. 

The (non-linear) measurement can then be written as 

(2.22) 

where pricing errors, ti,t, are i.i.d. mean zero gaussian random variables with 

standard deviation Wi. The non-linearity cornes from the pricing equation 

for futures. The overall measurement equation stacks the yield vector, yt 
with the rate and the effective spread. The extended measurement 

vector is then ft [Tt St ytf· 
Because futures rates are non-linear, the Kalman filter is not. applica­

ble. Moreover, the optimal fil ter is not available in closed form. 1 use the 

Unscented Kalman Filter [UKF], which is based on a recent method for cal­

culating statistics of a random variable which undergoes a nonlinear trans­

formation (see Appendix E). This approach has a Monte Carlo flavor but 

the sample is drawn according to a deterministic algorithm. It reduces the 

computational burden considerably, relative to simulation-based methods, 

but provides greater accuracy than linearization. The UKF has been used 

recently in the term structure literature by Leippold and Wu (2003) and 

Fontaine and Garcia (2008). AIso, Christoffersen et al. (2007) show that the 

UKF improves filtering and estimation performance in the context of a term 

structure model of swap rates. 



Table 1: Means (/-l) and standard deviations (a) of LIBOR rates and forward LIB OR rates for maturities from 1 to 12 months as 
well as futures rates for horizons of 1 to 6 months. Data from 01:01:1994 to 31:07:1996. 

JlLib 

aLib 

JlFor 

aFor 

1 
4.32 
1.76 

1 
4.32 
1.76 

2 
4.37 
1.77 

2 
4.41 
1.78 

JlFut 

aFut 

3 
4.41 
1.78 

3 
4.49 
1.80 

1 
4.18 
1.74 

4 
4.44 
1.78 

4 
4.53 
1.80 

(a) LIBOR Rates 

5 
4.47 
1.78 

6 
4.50 
1.78 

7 8 
4.54 4.57 
1.78 1.78 

(b) Forward Rates 

5 
4.61 
1.80 

6 
4.66 
1.80 

7 
4.73 
1.79 

(c) Futures Rates 

2 
4.21 
1.75 

3 
4.25 
1.75 

4 
4.28 
1.76 

8 
4.79 
1.79 

9 
4.60 
1.78 

9 
4.84 
1.79 

5 
4.33 
1.76 

10 
4.63 
1.77 

10 
4.95 
1.78 

6 
4.37 
1.75 

11 12 
4.67 4.70 
1.77 1.77 

11 12 
5.01 5.07 
1.77 1.74 
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D Quasi-Maximum Likelihood Estimation 

Given the filtering procedure, a Quasi-Maximum Likelihood IQMLI esti­

mator is feasible. The joint log-likelihood is given by 

T 

L(O;Y) = Llog (i (ftlft-l;O)) 
t=l 
T 

= L log (!(rt+1 - rtIX;+1lt)!(St+1lsd!(YtIXt+llt)) 
t=l 

where ail model parameters are grouped in the vector 0. 14 The following 

constraints were imposed on the parameter space. First, 1 impose >'r,u ::;; 0 

and >'r,d ::;; 0 to ensure stationarity of the Target rate process. Similarly, ~8' 

~z and ~l must remain within the unit circle. AIso, the jump component of 

the effective rate is well-defined only if >'J,8 2: O. 1 also impose that >'z,d 2: 0 

and >'z,u 2: 0 because their signs cannot be identified separately from the 

sign of Zt. 

More importantly, >'f and >'f must remain non-negative so that the dis-

. tribution of Target jumps remains weil defined. These constraints cannot 

be easily imposed on the parameter space as they can only be checked re­

cursively as we filter the state variables. In practice 1 impose that >.~ 
max (0, >'~). This leaves the state variables unrestricted but cons trains the 

policy function. The restriction is reasonable. As >'i approaches zero, the 

probability distribution of the corresponding jump nf approaches the triv­

ial distribution with a unit mass at zero. When it reaches zero, the policy 

function becomes one-sided and can then be summarized as a Poisson dis­

tribution. 

The constrained QML estimàtor is givèn by 

âQML = argmax L(O; Y) 
() 

S.t. 0 E S 

where S ç JRK and we have â rv N(Oo, T- 1D) for sorne true parameter value, 

00 , in the interior of the parameter space. Finally, as in Piazzesi (2005), >'0 
and >,g are poorly estimated because of the lack of policy changes outside 

of scheduled FOMe meetings. 1 calibrate them so that the distribution of 

set !(xJ!xo) = !(xI) and use the unconditional mean' and covariance to initiate the 
Kalman recursion. Estimation is carried out using the active-set algorithm from the IMSL 
Fortran optimization library. 
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policy moves is symmetric outside of scheduled FOMe meetings, that the 

probability of a 50 basis points move matches its empirical probability (i.e. 

3 occurences) and, finally, that the variance of Target changes matches the 

sam pIe variance. Results are robust to the choice of calibration strategy. 

V Estimation Results 

This section reports estimation results. The key conclusions are the fol­

lowing. First, the model provides a good fit of LIB OR and futures rates. 

Second, parameter estimates indicate that the policy rule is not symmet­

ric. In particular, the policy function exhibits mean-reversion but the Fed's 

mean-reverting behavior is st ronger when the interest rate is below its long­

run average than when it is above. Also, filtering results show that the 

macroeconomic factor leads business cycle fluctuations in Target rates and 

aggregates forward-looking information about monetary policy. Finally, the 

liquidity factor increases in periods where financial markets were tense, reach­

ing peaks in the summer of 1998, and around the turn of the millennium. 

Still, the liquidity and macro factors exhibit rich co-movement patterns. 

Their sam pIe paths exhibit numerous cases where the two factors display 

sharp changes but of opposite signs. In practice, this allows futures rates to 

lead LIB OR rates and suggests that the spread between futures and LIBOR 

rates contains forward-looking information. 

Parameter values are reported in Table II. Panel (a) displays estimated 

values for the parameters driving the Target rate change intensities. Panel (b) 

display price of risk parameters. Panel (c) displays estimated values for pa­

rameters driving the dynamics of the spread, the macroeconomic factor and 

of the liquidity factor. Both latent factors are very persistent, but this is 

not surprising given the daily observation frequency and the persistence of 

interest rates. Finally, Panel (d) displays estimated standard deviations of 

pricing error at each maturity for LIBOR and futures rates. 

A Policy Function 

The estimated policy function is asymmetric. In our sample, which coyer 

much of the Greespan 's era, the Fed exhibited a stronger tendency to rai se in­

terest rates when the Target rate was relatively low then to decrease it when 

it was relatively high. Similarly, it showed a st ronger tendency to raise rates 

as economic conditions, as measured by Zt, improved, then to decrease rates 

when conditions deteriorated. Moreover, the observed asymmetry induces 

substantial variations in the (conditional) variance of Target changes. In par-
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ticular, variance is high and skewness is negative when economic conditions 

are below their long-term averages, and the reverse is true when economic 

conditions are relatively good. Together, the estimates suggest that the Fed 

acted more rapidly, and that the uneertainty surrounding future policy was 

lower, when it faeed improving economic conditions. This has important 

implications for the interpretation of existing, symmetric, Taylor-rule esti­

mates. In particular, forecasts based on linear symmetric rules will exhibit 

cyclical performanee variations. 15 

B Risk Premium 

The priees of policy rate risk is positive. That low interest rates are asso­

ciated with bad states of the world is likely to be caused by the endogenous 

response of the Fed to economic conditions. The priee of liquidity risk is also 

positive. Then, the difference between the risk compensations implicit in 

futures and LIBOR rates co-vary positively with economic conditions. This 

is a first indication that, in this sam pie, variations in lt are linked to the 

relative illiquidity of the LIB OR market. Indeed, it seems unlikely that its 

priee of risk would be positive if lt was a measure of the default risk for the 

average LIBOR market participant.16 

Also, the average priee of macro risk is positive. Not surprisingly, lower 

values of Zt are also associated to bad states of the world. While positive on 

average, the priee of macro risk varies through time. It is lower when the pol­

icy rate is relatively high and, presumably, the Fed has room to lower interest 

rates in the advent of a worsening economic outlook. Also, ail else constant, 

the priee of macro risk decreases when the liquidity factor is high, and that 

futures rates are relatively low compared to LIBOR rates. This is consis­

tent with an increase of lt being a signal of improving economic conditions. 

Together with a positive price of risk for the liquidity factor, this suggests 

that these transitory deviations between LIBOR and futures rates, gener­

ally thought as unimportant, in fact incorporate important forward-looki'ng 

information. This will be confirmed in the forecasting exerCÎses below. 

15The asymmetry in the conditional mean may be due to the asymmetric response of 
the economy to monetary policy. See Garcia and Schaller (1999). Also, the conditional 
variance of future policy changes may be due to an asymmetric pattern of economic 
uncertainty. In any case, forecasts based on linear symmetric homoscedastic rule will be 
affected. 

16 As mentioned before, this does not preclude that variations in default risk also affect 
LIBOR rates. What the results suggest is that variations in the wedge between LIBOR 
and futures risk premium were primarily caused, ultimately, by their relative illiquidity 
in this sample. Clearly, the credit component is an important factor in the recent credit 
crunch. 



Table II: QML parameter estimates 

Parameter estimates for the joint Target, LIBOR and futures model from a daily sample eovering .January 1994 to .July 2007. Panel (a) displays parameter 
estimates of the poliey funetion. Panel (b) displays priee of risk parameters. Panel (e) displays parameters of the state variable dynamies and Panel (d) 
displays measurement error standard deviation parameters. In eaeh case, standard errors based on the Hessian of the likelihood funetion evaluated at the 
maximum is provided in parenthesis. The estimate for>. is 0.1669 and its standard error is (0.034). 

Months 
LIBOR 

Futures 

St 

Zt 

1 
3.01 

(0.0037) 
1.22 

(0.0015) 

(a) Parameter of Target Rate Intensities 

r 
-1.067 X 104 

(1.91 X 102
) 

-2.101 X 103 

(8.56 X 102
) 

r 
6.694 X 104 

(1.99 X 103
) 

-2.187 X 10-2 

(6.64 X 10-4
) 

3.176 x 10 7 

o 
0.2851 
0.9978 

(2.82 x 10-4 ) 

0.9921 
(3.19 x 10-4 ) 

o 
3.556 X 10-8 

(1.49 x 10-1°) 

s z 
8.759 x 10 2 

(1.27 x 10-3
) 

4.837 X 10-2 

(3.86 x 10-3 ) 

(b) Priee of risk parameters 

s 
-4.679 X 102 

(7.12 X 101) 
o 
o 

(e) State Dynamies Parameters 

a 

z 
3.491 x 10 
(1.27 x 10-3

) 

1.437 X 10-2 

(1.99 X 10-4
) 

4.409 x 10 6 3.223 x 10 8 

0.3765 
(1.79 x 10°3) 
2.133 X 10-7 

(3.54 x 10-9 ) 

(d) Standard Deviations of Measurement Errors (x 10-6
) 

2 3 4 5 6 7 8 
2.01 1.58 1.09 0.71 0.37 0.25 0.25 

1.339 X 105 

(1.47 X 104
) 

2.753 X 105 

(5.88 X 103
) 

v 
7.400 x 10 6 

9 10 
0.31 0.25 

8.354 X 103 

(7.43 X 102
) 

-6.459 X 104 

(2.74 X 102
) 

w 

0.260 

11 
0.15 

(0.0025) (0.0020) (0.0014) (0.0093) (0.0057) (0.0043) (0.0038) (0.0041) (0.0035) (0.0040) 
1.46 1.84 2.30 2.61 2.69 

(0.0018) (0.0023) (0.0028) (0.0032) (0.0033) 

12 
0.29 

(0.0048) 00 
-..j 
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C LIBOR rate loadings 

Figure 2.3 displays the loadings of LIBOR rates on each factor for ma­

turities from 1 day to 1 year. Not surprisingly, parameter estimates imply 

that the current policy rate is a level factor. A rising Target rate lifts aU 

LIBOR rates but the impact is slightly less for the longest rates due to 

mean-reversion. Next, both the liquidity and the macroeconomic factors 

carry positive loadings. That is, LIBOR rates rise whenever the state of 

economy improves or the liquidity factor rises. The macroeconomic factor 

(Panel (c)) is a slope factor with no impact at the shortest maturity (except 

on FOMC meeting dates) but quickly rising with maturity. In contrast, the 

liquidity factor's loading is one, by construction, at a maturity of one day. 

It reaches a maximum at around 3.5 ata maturity of 180 days and slowly 

decreases afterwards. (Panel (d)). FinaUy, the spread between the Target 

and the Effective rate only affects yields for maturities up to a few days (see 

Panel (b)). This reflects the spread 's highly transitory nature and should 

not come as a surprise given the effort of the Fed to meet any expected 

deviations from the Target with open market operations. 

D State· Variables 

Figure 2.4 displays the filtered time series of state variables. Panel (a) 

shows the path of the Target rate between 1994 and July 2007. Panel (b) 

shows deviations of the Effective rate from Target. More interesting is the 

path of the macroeconomic factor (Panel (c)), which shows that this factor 

leads variations of the policy rate. This reflects the forward-looking informa­

tion contained in the term structure of LIBOR and futures rates. As market 

participants anticipate changes in future economic activity and, hence, a 

tighter or looser policy, current interest rates fluctuate. These changes are 

captured, in part, by the macro factor. 

Panel (d) displays the path of the liquidity factor. This factor captures 

deviations between (risk-adjusted) expectations of Target rates implicit in 

LIB OR rates relative to those implicit in futures rates. EmpiricaUy, the liq­

uidity factor exhibits peaks in periods of tension on financial markets: the 

Mexican Peso crisis in 1994, the failure of LTCM in 1998 and fears of the 

Millennium bug. Moreover, the liquidity factor is not unrelated to economic 

conditions. Figure 2.5 compares the liquidity and the macro factors. These 

appear to be positively related at the business cycle frequency. In this sam­

ple, the contemporaneous correlation of the liquidity factor with the Target 

rate and the macro factor are 0.42 and 0.38, respectively. However, there 
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are multiple occurrences of negative co-movements at a higher frequency. In 

many cases, a rapid change in the macro factor is associated with a rapid 

but opposite change of the liquidity factor. Intuitively, when anticipations of 

economic conditions change, as revealed by interest rates, the macro factor 

changes in the same direction (i.e. its loadings are positive). However, the 

liquidity factor reveals that the spread between futures and LIBOR rates 

decreases. That is, futures rates increase faster than LIBOR rates when 

conditions are improving, and decrease faster when conditions are deterio­

rating and the impact is larger at maturities around 6 months (see LIBOR 

loadings). In other words, the futures market leads the LIBOR market. 

Note that this is consistent with a positive price of risk for the liquidity fac­

tor. Again, the evidence suggests that the liquidity factor reflects important 

forward-Iooking information. 

E Pricing Errors 

The standard deviations of measurement errors are low, between 0.5 and 

10 bps, annually. Mean Pricing Errors [MPE] and Root Mean Squared Pric­

ing Errors [RMSPE] for LIBOR and futures are reported in Panels (a) and 

(b) of Table III, respectively. Results are reported in bps (annualized). Av­

erage pricing errors do not indicate any significant bias, averaging less than 

1 bps except for the shortest LIBOR maturities. LIBOR RMSPE decrease 

with maturities from 6.28 bps at 1 month to below 0.5 bps for the longest 

maturites. In contrast, futures RMSPE increase with maturity, from 2.56 to 

6.18 bps. These are low, by any standard. 

VI Forecasting Policy and Excess Returns 

Estimates of the structural model completely characterize the distribution 

of Target rates at any future date via the conditional Laplace transform. 

Empirically, the model improves on OLS-based forecasts commonly used in 

practice. Moreover, the improvements increase with the forecast horizon. In 

fact, 1 obtain reliable forecasts at horizons up to 12 months. This raises the 

question as to what factors are the most informative in these forecasts. We 

know from theory that forecasts based on asset prices rely on the ability to 

predict excess returns. Therefore, the forecasting results above indicate that 

the model provides better forecasts of the risk premium. In the following, 1 

measure the relative ability of each factor to explain the risk premium on fed 

funds futures. As expected, the macroeconomic factor and the Target rate 

predict variations of the excess returns. However, the liquidity factor is the 



Table III: Mean Pricing Errors [MPE] and Root Mean Squared Pricing Errors [RMSPE] using QML estimates. The sample ranges 
from January 1994 to July 2007. Results are reported in basis points (annualized), for LIBOR rates and futures rates at maturities 
of 1 to 12 months and 1 to 6 months, respectively. 

(a) Mean Pricing Errors 

1 2 3 4 5 6 7 8 9 10 11 12 
LIBOR -3.17 -1.56 -0.29 -0.11 0.16 0.12 0.10 0.00 -0.23 -0.07 0.04 0.00 
Futures 0.28 0.25 -0.06 -0.31 -0.57 -0.76 

(b) Root Mean Square Pricing Errors 

1 2 3 4 5 6 7 8 9 10 11 12 
LIBOR 6.28 4.18 3.28 2.23 1.43 0.72 0.44 0.46 0.61 0.48 0.22 0.54 
Futures 2.56 3.24 4.15 5.21 5.92 6.18 

CD 
o 
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most significant predictor of excess returns. 1 argue that transitory deviations 

between LIBOR and futures rates, although due to their relative illiquidity, 

reflect demand pressure from participants seeking to hedge exposures to 

future interest rates. 

A Forecasting Target Rate 

Forecasting Function 

ln this section, we are interested in forecasting future monthly effective 

fed funds rate averages, ft,n. First consider the following forecasting fun ct ion 

for the overnight rate at any future date t + h, 

where 1 use the fact that the information set at time-t can be summarized 

by the filtered state variables, x = kt. Using the the multi-horizon Laplace 

transform, we have 

(2.23) 

with coefficients aU and b(·) given in Appendix D. Then, the time-t forecast 

of rt,n is also linear, 

Wr(x, n) == Edrt,n], 

= D;;l L ar+8 (It+1, h) + br+8 (It+1, hf x, (2.24) 

- T 
= a(It+1,n) +b(It+1,n) x. (2.25) 

Benchmark Model 

As a benchmark of forecasting performances, 1 use regressions of rt,n 

on current futures rates (Krueger and Kuttner (1996)). Gurkaynak et al. 

(2007) show that using futures delivers the best market-based forecasts of 

future policy rates. The forecasting regressions 1 consider are 

- TS + (3TS ,T, (X' h) + h,TS Tt,h =ah h ""r t, Et 

rt,h =a~LS + (3fLS F(t, h) + E~,oLS 
rth =a~ + (3; kt + E~'X , 

for each horizon h where kt is the filtered estimates and where F(t, h) is 

the futures contract for the corresponding months. The first regression uses 



92 

forecasts from the model. The second regression uses futures rates, and the 

last regression uses filtered state variables in an unrestricted way. 1 include 

this case to see whether the specifie combination of state variables imposed 

by Equation 2.23 uses ail the information included in the state variables. The 

regressions are estimated with daily data for reference months up to 6 months 

ahead in the case of futures-based regressions and up to 12 months ahead 

in the case of model-based regressions. In the former case, this implies 184 

horizons, and as many regressions, while the latter case implies 360 horizons. 

Forecasting Results 

The R2 and RMSE obtained from these regressions measure the forecast­

ing performance. Figure 2.7a presents the R2 and Figure 2.7b the Root Mean 

Squared Error [RMSE] in bps (annualized). Forecast errors are typically low 

at an horizon of 1 month or less, with R2 very close to 1.17 This strong re­

suit is standard. One-month ahead forecasts of the Target rate are accurate 

when the information set includes the corresponding futures contract. Fore­

casting performances then deteriorate slowly as we consider longer horizons. 

The R2 of futures-based forecasts decrease to 92% and 78% at 3-month and 

6-month horizons, respectively. The corresponding RMSE are 49 bps and 80 

bps. This deterioration is halved when we used model-based forecasts. The 

R 2 from model-based regressions are still 98% at an horizon of 3 months and 

92% at an horizon of 6 months. The corresponding RMSE are 23 bps and 47 

bps. Moreover, the model extends beyond the longest available contract. At 

an horizon of one year, model-based forecasts achieve an R2 and RMSE of 

65% and 85 bps, similar to futures-based forecasts at the shorter six month 

horizon. 

Strictly speaking, under the null of the model, Equation 2.23 implies that 

f3rs = 1 and ars = O. This wou Id imply that the model accurately captures / 

the average level and the variations of the risk premium. Figure 2.8a displays 

coefficient estimates at each horizon. These are close to their theoretical 

values at each horizon. One year ahead, we have â close to 0.25 and and /J 
close to 0.92. In fact, at these horizons the estimates are not significantly 

different from 0 and 1, respectively. Panel 2.8b displays the t-statistics of 

these tests, at each horizon. The tests reject the null only for intermediate 

17For a one-month forecast horizon, the RMSE is close to 1 bps and 12 bps when using 
model and futures-based forecasts, respectively. The relative performance of the model 
at this horizon is due to the implicit adjustment for the remaining number of days. At a 
1-day horizon, unadjusted forecasts based on futures are extremely volatile. See Hamilton 
(2008) for a treatment of the adjustment for the number of days to maturity of the current 
month contract. 
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maturities. However, the discrepancies are not economically large, and the 

statistical evidence disappears at horizons beyond 6 months. The model 

meets this stringent test with sorne success. This is a strong and novel result, 

at these horizons the model provides unbiased forecasts of future monetary 

policy. Finally, Figure 2.6 includes the R2 and RMSE from the unrestricted 

regressions. The results suggest that minor improvements can be achieved 

at horizons beyond 6 months. 

B Forecasting Excess Returns 

The model's ability to improve forecasting performances is tightly linked 

to its ability to predict the risk premium. The realized returns, from entering 

a futures position today until settlement date is the difference between the 

current futures rate and the realized monthly average effective rate. That is, 

Xrt,n fr: ft,n' Take expectations and re-arrange to get 

Et [ft,n] = Fr' - Et [xrt,n] , 

which shows that improvement in forecasting performance, relative to simple 

futures-based forecasts, must come from the ability to predict excess returns. 

Then, the forecasting results suggest that the information content of the 

macroeconomic and liquidity factors is significant. A simple way to evaluate 

the relative contribution of each state variable is through the following excess 

returns regressions, 

(2.26) 

Excess returns from futures contract positions are computed each day, for' 

the 1 to 6-month ahead contract. Results from the regressions are presented 

in bps (annualized) in Table IV. In-sample, excess returns averaged between 

0.66 bps for the one-month contract and up to 15.6 bps for the 6-month 

contract. Predictability is small at short horizons with R2 slightly below 1% 

and 6% for the current month and the month-ahead contract, rèspectively. 

However, predictability then rises substantially reaching 12%, 17%,25% and 

27% for the 3, 4, 5 and 6-month ahèad contracts. Target rate coefficients 

are al! positive and ail significant but for the first month. This implies that 

periods when the policy rate is high are associated with higher risk premium 

on futures contracts. A one-standard deviation shock to the Target rate 

leads, on average, to increases in risk premium of 7 and 19 bps in 3-month 

and the 6-month contracts, respectively. Next, coefficients on the macroe-
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conomic factor are negative at aU horizons, but smaU and significant only 

for the intermediate maturities. More important is the information content 

of the liquidity factor. When futures rates are relatively lower than LIB OR 

rates, and lt increases, the risk premia on futures contract also decrease. A 

one-standard deviation shock to the liquidity factor is associated with a re­

duction of 6 and 24 basis points for the 3-month and the 6-month contracts, 

respectively, on average. This effect is large and statistically significant. 

Table IV: Excess Returns Regressions 

Results from regressions of futures excess returns on state variables obtained 
from the model, 

Regressors are centered around zero and normalized by their standard devia-
tion and excess returns are in basis points (annualized). Coefficient estimates 
provide the change in expected excess returns due to a change of one stan-
dard deviation in one of the state variables. 1 include t-statistics based on 
Newey-West standard errors (30 lags) below each estimate and R2 at the 
bottom of each column. 

1 2 3 4 5 6 
a 0.615 2.674 5.194 8.294 12.098 16.369 

(2.217) (3.631) (3.956) (4.220) ( 4.616) (4.882) 
fJr 0.430 3.158 6.959 11.109 15.427 19.478 

(0.767) (2.002) (2.632) (2.835) (2.835) (2.735) 
fJ. -0.019 0.257 -0.043 0.335 -0.129 -0.027 

( -0.094) (1.227) (-0.108) (0.534) ( -0.176) (-0.032) 

fJz 0.187 -0.866 -1.757 -2.089 -0.755 0.889 
(0.277) (-0.466) ( -0.630) (-0.517) ( -0.135) (0.122) 

fJl -0.143 -2.135 -5.573 -10.385 -17.595 -24.285 
( -0.398) (-2.261) ( -3.318) ( -4.111) ( -5.326) (-5.849) 

R2 [0.7] [5.7] [12.0] [17.5] [24.8] [27.5] 

C Discussion 

The results above shed light on the interpretation of the liquidity factor. 

This factor affects model-implied forecasts via three different channels. First, 

the liquidity factor affects the risk premium associated with Target rate risk 

through its impact on higher moments of future Target rates. We have that 

).d,l < ).u,l and this implies that the variance of Target rate changes increases, 

and skewness is pu shed to the right when the liquidity factor decreases. The 

impact on the risk premium will depends on the relative impact of lt on the 

conditional variance and skewness of Target changes. Second, the liquidity 
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factor affects the price of risk of the macro factor directly. Since JI 1 < 0 the , 
price of macro risk decreases when the liquidity factor increases. Third, the 

liquidity factor allows for a wedge between the risk compensation of LIBOR 

and futures rates. An increase in the liquidity factor may be caused by 

an increase of LIBOR rates or a decrease of futures rates. The latter case 

induces lower excess returns on futures following a shock to the liquidity 

factor. These last two channels imply negative liquidity coefficients in excess 

return regressions. 

Empirically, increases in the liquidity factor predicts lower excess returns 

on futures contracts and conditioning for the forward-looking information 

contained in the liquidity premium is key to improve forecasting perfor­

mances. In other word, when the liquidity factor increases, futures rates 

tend to be lower on average relative to LIB OR rates and relative to future 

realized monthly average. This suggests that the information content of the 

liquidity factor should be interpreted in terms of futures rates relative to 

LIBOR rates. A likely explanation is that hedging demand put pressures on 

the intermediation mechanisms of futures markets and causes transitory de­

viations of futures rate to compensate liquidity providers for their services. 

While 1 assumed that only the LIBOR market suffered from illiquidity, it 

is likely that both markets are affected by intermediation frictions, but to 

different degrees. That shocks to .hedging demand are revealed in futures 

markets suggests that they are more liquid, less costly, or that participation 

is less limited, than LIBOR markets. This complements the evidence pro­

vided in Piazzesi and Swanson (2006) who showed that excess returns on 

futures varies with banks' hedging demand in anticipation of policy changes. 

Finally, note that the lack of a perfectly liquid interest rate contract and 

of measures of the frictions interest rate markets imply that we cannot iden­

tify the liquidity component in each market separately. However, we can 

measure their difference. This is precisely what estimates of lT achieve given 

the assumption of a zero liquidity component in futures markets. In par­

ticular, the liquidity component identified here cannot be directly measured 

from the spread between LIBOR and futures rates. 

VII Conclusion 

This papers provides a joint model of the monetary policy response function, 

of LIBOR rates and of Fed funds futures rates. Combined with no-arbitrage 

restrictions, this provides better identification of the price of risk parameters 
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and delivers significant improvements in policy rate forecasts. Moreover, and 

perhaps unexpectedly, allowing for transitory deviations between these two 

markets captures forward-looking information about the future path of the 

policy rate. Demand for immediacy pressures the intermediation mechanism 

of futures markets. Note that this liquidity premium is hard to disentangle 

from other components of futures rates without a joint model. In any case, 

the evidence leads to the important conclusion that liquidity premium in 

interest rate markets are relevant to macroeconomic researchers. 



VIII A ppendix 
A Conditional Laplace Transfmm 

Skellam Distribution 
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The dynamics of state variables is summarized by Equations 2.1,2.5,2.6 
and 2.7. Although the process for rt is novel, the conditional multivariate 
Laplace Transform of the state variables is exponential affine. Conditional 
on the past, changes in the Target rate follow a Skellam distribution (Skellam 
(1946), Johnson et aL (1997)). This distribution is characterized as the dif­
ference between two independent Poisson random variables. Both its Laplace 
transform and its density are known in closed-form. Consider two univariate 
Poisson variables N 1 and N2 with parameters >'1 and >'2, respectively. The 
Laplace Transform of their difference Z == N 1 - N2 is 

while its probability mass function is 

(
>. )Z/2 

f(Z = z) = exp( -(>'1 + >'2)) >.: Iz (2V>'1>'2) , 

where Ik (y) is the modified Bessel function of the first kind. In our context, 
the coefficients of the conditional Laplace transform vary through time be­
cause of the evolution of the underlying state variables and because of the 
(deterministic) variation in the FOMC meeting schedule. Hence, computa­
tion of the transform depends on the occurrence of a FOMC meeting in the 
next period and the two cases must treated separately. 

No FOMe Meeting 

1 first consider the case where no meeting is scheduled to occur. Then, 
since the innovations driving the state vector, Xt, are independent, the con­
ditional transform is 

T(u,Xt+1IIt+1 = 0) == Et [exp (uT X t+1) IIt+1 = 0] 

= exp (A(It+1 = O,u) + B(It+l o,ufxt ) , 

where It is a binary variable that is equal to 1 if a meeting occurs at time-t 
and ° otherwise. The coefficients are given by 

A(It = 0, u) = >.g(eÂUr 
- 1) + >.g(e-ÂUr 1) 

1 ( 2 2 2 2 2 2) 
+~~+~~+~~+i~~+~~+~~ 

+ >'J,s (T{us• Ji+1) -1) 
_. T I T ( s ) -90{Ur )+u J.L+i u nu+>'J,s T(us,Jt+1)-1 



and 

where 1 defined 

B(It = 0, z) = [ur us4Js uz4Jz ut4Jtf 

= <I>u, 

J.L = [0 J.Ls J.Lz J.Ltl
T 

<I> = diag([1 4Js 4Jz 4Jtf) 

n = diag ([0 17; 17; ulf), 
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go(x) = À~(ell.Ur - 1) + Àg(e-ll.ur - 1) and where diag is the usual operator 
from the vector space to the space of diagonal matrices. 

FOMe Meeting 

Computation of the multivariate conditional Laplace transform is slightly 
different when a FOMC meeting occurs in the following period. Conditional 
on the realization of 8t+1, Zt+1 and lt+1, we have 

T(u,Xt+1IIt+1 = 1) == Et [exp (uTX t+1) IIt+1 = 1] 

=Et [ESt+1 ,zt+l,tt+l [exp (uTX t+1) IIt+1 = 1]] 

= Et [exp (-G(ur f X + À(ell.ur + e-ll.ur - 2) + G(urf X;+1 + uT X;+1)] , 

where 

X;+1 = [Tt 8t+1 Zt+1 lt+1l 

G(y) = [gr (y) gr(Y) gz(y) gt(y)f, Y E R, 

and the functions 9k(Y), k = T, 8, Z, are defined as 

We then have that 

T(u,Xt+1IIt+1 = 1) = exp (A(It = l,u) +B(It = l,ufxt), 

with coefficients 

A(I, u) = - G( Ur f X + À(ell.ur - 1) + À(e-ll.ur - 1) + ks( Ur )J.Ls + kz( Ur )J.Lz + kt( Ur )J.Lt 

+ ~(ks(ur)2U; + kz(ur)2u; + kt(ur )2ul) 

+ ÀJ,s (T(ks(ur ), J{+1) - 1) 
T - T 1 T 

= - G(ur) X + h1(ur ) + (G(ur ) + u) J.L +"2 (G(ur ) + u) n (G(ur ) + u) 

+ÀJ,s (T(gs(ur) + US, J{+1) - 1) 
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and 

B(I, u) = [gr(ur) + Ur (gs(ur) + us)q;s (gz(ur) + uz)q;z (gl(Ur) + Ul)q;!lT 

=<1> (G(Ur) + U). 

Risk-Neutral Distribution 

It is easy to show using results from the previous sections that 

TQ(u, Xt+l) = Et [Mt,t+l exp (uT Xt+1)] 

= exp (AQ(It+l,u) + (BQ(It+l,u) - CrfXt) , 

with Cr = [1 1 0 oV and coefficients given by 

Q T 1 T A (O,u)=go(ur+JO,r)-gO(Jo,r)+u (1L+~JO)+2"u Ou 

+ ÀJ,s (T(us + Jo,s, Jt+l) - 7'(Jo,s, Jt+l)) 

AQ(I, u) =gl(Ur + JO,r) - gl(JO,r) - (G(ur + JO,r) - G(Jo,r)f X 
1 T 1 T 

- 2"G(Jo,r) OG(JO,r) + 2" (G(ur + JO,r) + u) 0 (G(ur + JO,r) + u) 

+ (G(ur + JO,r) + u)T (IL + OJo) 

+ÀJ,s (T(gs(ur + JO,r) + Jo,s + us, Jl+l) - T(gs(Jo,r) + Jo,s, Jt+l)) 

and 

BQ(O, u) = (<1> + OJI) u 

BQ(I, u) = (<1> + OJ l ) (G(ur + JO,r) - G(JO,r) + u). 

Note that the persistence of the factors is shifted whenever Jo =f. o. That 
is, the persistence under the risk-neutral measures will be shifted whenever 
interest rate risk is prieed even if the vector of priees of risk is constant (i.e. 
JI = 0). 
B Generating Funetion for Priees 

Consider the priee at time-t of the payoff exp( uT X t+m) at maturity m, 

f(u, t, m) = Et [Mt,t+m exp (uT Xt+m)] 

= EdMt+lf (u, t + 1, m - 1)]. 

Substituting the guess r(u, t, m) = exp (eo(u, t, m) + e(u, t, mf X t) gives 

r(u, t, m) =Et [Mt+l exp (eo(u, t + 1, m - 1) + e(u, t + 1, m - If Xt+I)] 

= exp (eo(u, t + 1, m -1) + AQ(It+l, e(u, t + 1, m - 1))) 

x exp ([BQ(It+l' e(u, t + 1, m - 1)) - Cr ( Xt) , 



which implies the following recursion that coefficients must solve: 

co(u, t, h) = co(u, t + 1, h -1) + AQ(It+1,c(u, t + 1, h -1)) 

c(u, t, h) = BQ(It+1'c(u, t + 1, h -1)) - Cr, 
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(2.27) 

(2.28) 

for 0 S h S m. Note that f(u, t, 0) = exp (uT Xt) implies co(u, t, 0) = 0 and 
c( u, t, 0) = u for arbitrary t 2: 1 and u. 
CAsset Priees 

Discount Bonds 

Of particular interest is the case u = O. This corresponds to the priee, 
D(t, m), of a risk-free discount bond with maturity m, 

Drf(t, m) == f(O, t, m) = EdMt,t+m] 

= exp (d~f (t, m) + drf (t, mf X t) , 

where d~f (t, m) == co(O, t, m) and drf (t, m) == c(O, t, m). 
LIBOR loan 

A LIBOR loan is an asset with unit payoff which is further discounted at 
the rate lt to offer compensation for illiquidity or counterpartyrisk. The priee 
of a LIBOR loan can also be obtained from the priee generating function by 
noting that 

DL(t,m) = Et [Mt,t+mexp (-}; lt+i) 1 
= Et [Mt~t+ml 

with M/+i = Mt+i exp( -lt+1)' 1 guess and verify that the solution is exponential­
affine, DL(t, m) = exp (dt(t, m) + é(t, m)T Xt) with solution 

dt(t, m) = dt(t + 1, m - 1) + AQ (It+1' é(t + 1, m - 1)) 

é(t,m) = BQ (It+1, é(t + 1,m -1)) - CL, 

where CL = [110 l]T. Finally, note that DL(t, 0) = 1 implies that dt(t, 0) = 
o and é(t, 0) = 0 for any t 2: 1. 

Singleton futures Priee 

A difficulty arises when computing a singleton futures rate because the 
referenee date t + m, at which the payoff is determined, is not generally the 
same than the settlement date t + T, at which the payment is made. That 
is, we have 

f(t, m, T) = EdMt,t+Trt+m] = 

= aa Et [Mt,Texp(urt+m)] 1 == aa ff(u,t,m,T)1 ' 
u u=o U u=o 
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where m STand uER. It seems at first that the priee generating function 
derived above will not help whenever m is different than T. However, we 
can use the law of iterated expectations and get 

r f( u, t, m, T) Et [Mt,t+m exp( uTt+m)Et+m [Mt+m,t+Tll 

= Et [A.-ft,t+mexp(uTt+m)D(t + m,T - m)] 

= Et [Mt,Hm exp (d~f (t + m, T - m) + [d'"f (t + m, T - m) + uCrV XHh)] 

exp(%f(t+m,T m))r(d'"f(t+m,T m)+uCr,t,m). 

We can then use the results above to obtain 

rf(u,t,m,T) exp(d~f(t+m,T m)) 

x exp (co (drf (t + m, T m) + uCr, t, m) + c(drf (t + m, T m) + uCr, t, m)T Xt ) . 

Taking the partial derivatives with respect to u and evaluating at u 0, the 
singleton futures rate is 

( rf T ) f(t,m,T) = exp do (t+m,T m)+co(u*,t,m)+c(u*,t,m) Xt 

x [c~ (u*, t,m) + X[ c' (u*, t, m)] Cr, 

where u* = drf(t+m, T -m). Note that u* is only a function of the reference 
date for the singleton futures, t + h, and the length of time between the 
reference date and the settlement date, which will not change as we vary t 
or m in the coefficient recursions. That is, for a given set of risk-free zero 
coupon coefficients, we can apply the same strategy as for simple interest 
rates to compute futures coefficients. The differentiated coefficients, c~ (.) 
and c' (.), can be computed by taking derivatives with respect to u on both 
sides of Equation (2.27). They must satisfy: 

, - ' 'Q co(u,t, h) - co(u, t + 1, h - 1) + A (It+1, c(u, t + 1, h 
"Q , c(u,t,h)=B (It+l,c(u,t+l,h 1))c(u,t+l,h 

1) + 8) c' (u, t + 1, h - 1) 

1) 

for any u, t and any h > O. Initial conditions for these differentiated re­
cursions can be found by differentiation of the corresponding initial condi­
tions or by nothing that we must have f(t, 0, T) D(t, T)Tt. This yields 
c~ (u, t, 0) = 0 and c' (u, t, 0) 1 d, where Id is the identity matrix. 

Finally, the derivatives of Laplace coefficients, AQ' (-) and BQ' (-) can be 
computed directly, 
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A'Q(l, U)l (ur + 81') - G(r) (ur + 8r )T X + G(r) (Ur + 8r)T (J.i + ~Ho) 
+ ÀsT (9s(7.Lr + 81') + Us + 88 , J!+l) (vs + (9s(Ur + 81') + Us + 8s)w;) 9~(Ur + 81')) 

+ L (9i(Ur + 8r)9~(Ur + 81')01) 
i=z,k,l 

'Q 2 2 A (1, uh =J.is + 8sCTs + (98(Ur + 80,1') + us) CTs 

+ ÀsT (9s(ur + 81') + Us + 8s, J!+1) (vs + (98 (Ur + 81') + Us + 8s )w;) 
A'Q(l, 'u)J =J.iz + 6z CT; + (gs(-u z + 60,1') + 'uz) CT; 

'Q 2 2 A (1, U)4 =J.it + 8t CTI + (9s(UI + 80,1') + Ut) CTI, 

B'Q(O, u) = [1> + n8l ], 

[

Li=r,S,Z,1 9~ (ur + 80,1') (<Pri + 80,irCTt) 
Li=rs z 19~(Us + 80,s)(<Psi + 80 ,is CTf) 

, ,t f 2 
Li=r,8,z,t9i(Uz + 80,z)(<pzi + 80,iz(ji) 
_,~,,,>.,,.,9~(-Ul + 80,1) (<Pli + 80,ilCTt) 

D Predictability Coefficients 

Multi-Horizon Laplace Transform 

The distribution of future state variables can be characterized explicitly 
from the multi-horizon conditional Laplace transform, 

for any U E RK and h ~ 1. This can be derived from the known one-horizon 
case, guessing an exponential affine solution and noting that 

Tx(u, t, h) [Tx(u, t + 1, h - 1)], 

=exp (A(It+l' z, h) + B(IHl' Z, hf Xt) , 

with coefficients given by 

A(lt, z, h + 1) =A(IHI. Z, h) + A(It, B(IHI. z, h» 

B(lt, z, h + 1) =B(lt, B(IHl, z, h», 

for any h ~ 1 with initial conditions A(IHl> z, 1) = A(IHI, z) and B(It+1, z, 1) = 
B(It+b z). 

Forecast Functions 

The forecast function for any linear combination, CT X t of the state vari­
ables can be derived at any horizon from the following partial derivative with 
respect to u, 
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where, as before, the derivatives of the multi-horizon coefficients can be 
obtained by differentiating their respective recursions. The derivatives of 
the Laplace Transform coefficients under the historical measure are given by 

1 T 
A (It = 1, u) = 

[~ 
0 0 

~l ' B'(It = O,u) = 4Js 0 
0 4Jz 
0 0 4Jl 

[9;(u,.) + 1 0 0 

~l B'(It = l,u) = 9~(Ur)4Js 4Js 0 
9x( Ur )4Jz 0 4Jz 
9; (ur )4Jl 0 4Jr 

and, hence, the multi-horizon derivatives with respect to the second argu­
ment are 

A~(It+1, 0, h) =A~(It+2, 0, h - 1) + A~(It+1, B(It+2' 0, h - 1))B~(It+2, 0, h - 1)) 

B;(It+1, 0, h)) =B; (It+2 , B(It+2' 0, h - 1))B;(It+2, 0, h - 1)), 

with initial conditions A~(It+1, 0,1) = A~(It+1, 0) and B;(It+1, 0,1) = B;(It+1, 0). 
Target and Effective Forecast 

The forecast function for future Target and Effective overnight Fed funds 
rates can by computed by setting C = Cr = [1 0 0 OlT and C = Cr+s = 
[1 1 0 oV, respectively. We then have 

wAx, t, h) =E[rt+hIXt = xl 
=ar(It+1, h) + br (It+1 , hf Xt 

Wr+s(x, t, h) =E[rt+hIXt = xl 
=ar+s(It+1, h) + br+s(It+1, hf Xt· 

E Unscented Kalman Filter 

The UKF is based on an approximation to any non-linear transformation 
of a probability distribution. It has been introduced in Julier et al. (1995) 
and Julier and Uhlmann (1996) (see Wan and der Merwe (2001) for textbook 
treatment) and was first imported in finance by Leippold and Wu (2003). 

Given Xt+1lt a time-t forecast of state variable for period t + 1, and its 
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associated MSE Qt+1lt the unscented fil ter selects a set of Sigma points in 
the distribution of Xt+1lt such that 

.Julier et al. (1995) proposed the foUowing set of Sigma points, 

x(i) = { :+ (V~ LX)(i) 
5è - ( V l!,':(ü) L:x) (i-K) 

i=O 

i=l, ... ,K 

i = K + 1, ... ,2K 

with weights 

{ 

w(O) i = 0 
(i) _ l-w(O) . - 1 K w - 2K ~ - , ... , 

l-w(O) . ----vr- ~ = K + 1, ... ,2K 

where ( J l!;:(o) L:x) (i) is the i-th row or column of the matrix square root. 

Julier and Uhlmann (1996) use a Taylor expansion to evaluate the approxi­
mation's accuracy. The expansion of y = g(x) around x is 

y = E [g(x + ~x)l 

= g(x) + E [D~x(9) + D~;/g) + D~~(9) + ... ] , 

where the Dhx(g) operator evaluates the total differential of g(.) when per­
turbed by ~x, and evaluated at X. A useful representation of this operator 
in our context is 

Different approximation strategies for y will differ by either the number of 
terms used in the expansion or the set of perturbations ~x. If the distribu­
tion of ~x is symmetric, aU odd-ordered terms are zero. Moreover, we can 
re-write the second terms as a function of the covariance matrix Pxx of ~x, -

y = g(x) + (V'T Pxx V') g(x) + E [D~~(9) + ... ] . 

Linearisation leads to the approximation Ylin = g(x) while the unscented 
approximation is exact up to the third-order term and the a-points have 
the correct covariance matrix by construction. In the Gaussian case, Julier 
and Uhlmann (1996) show that same-variable fourth moments agree as well 
and that an other moments are lower than the true moments of ~x. Then, 
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approximation errors of higher order terms are necessarily sm aller for the 
UKF than for the EKF. U sing a similar argument to the case of the ap­
proximation of the MSE, Julier and Uhlmann (1996) show that linearization 
and the unscented transformation agree with the Taylor expansion up to the 
second-order term and that approximation errors in higher-order terms are 
sm aller for the UKF. 
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Figure 2.2: Time series of forward rates and futures rates at maturities of 2, 
4 and 6 months. Forward rates are computed from LIBOR rates. 
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Figure 2.3: Libor rate factor loadings computed from the model. Pane12.4a 
presents loadings on the Target rate. Panel 2.4b presents loadings on the 
effective spread. Panel 2.4c presents loadings on the macro factor. Pane12.4d 
presents loadings on the liquidity factor. 
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Figure 2.4: Filtered state variables from QML estimation of the model in a a 
daily saIÙple of Target, effective, LIBOR and futures rates January 1994 to 
July 2007. Panel 2.5a displays the time series of the Target rate. Panel2.5b 
displays the time series of the effective spread. Panel 2.5c displays the time 
series of the macro factor. Panel 2.5d displays the time series of the liquidity 
factor. 
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Figure 2.5: Filtered time-series of the Liquidity and Macroeconomie and 
factors from the unrestricted model. Factors are reported with standardized 
units from Jan. lst 1994 to the end of July 2007. 

4~-,--,-----.-----,------,-----.--~~====~ 

3 

-4~------~----~~----~~----~------~------~------~ 
1994 1996 1999 2000 2002 2004 2006 2009 



Figure 2.6: R2 and RMSE from forecasting regressions 
Comparing forecasting performance of model-forecast based on the following regressions of realized monthly average Target rate, 
-TS 
Tt,n' 

'Ft,n 

'Ft,n 

where wr(.Xt, n) is the model's forecast, Xt are filtered state variables from the model and f(t, n) is the observed futures priees 
corresponding to a time-t, l1-mOl1th ahead, forecast of the monthly average of the effective Fed funds rate. Panel (a) compares the 
R2 from each regression (y-axis is from 0 to 1) and Panel (b) compares the RMSE in bps (al1nualized) from each regression. 
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Figure 2.7: Coefficients from the model-based forecast regressions 
The figures displays the coefficients O:n andf3n from regressions of realized monthly average of the Target rate, rt,n, on the model­
forecast, 

Tt,n O:n +f3n lTtr(Xt ,n) + Et,n, 

where ITtf(Xt , n) is the model's forecast and X t are filtered state vai:iables. Panel Ca) displays the estimates of 0: and f3 across 
horizons. Panel (b) displays the (absolute value) t-statistics of the null that 0: = 0 and that f3 1, respectively, for each horizon. In 
both cases the x-axis is the horizon, h, in the regression, from 1 to 360 days ahead. 
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Figure 2.8: Excess returns regressions 
These Figures presents actual excess returns, XTt,n on the n-month ahead futures (Panel 2.9a) and predicted excess returns 
(Panel 2.9b) from regressions of excess retl1rns on the Target rate, the macro factor and the liquidity factor, 
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Abstract 
We introduce the Homoscedastic Gamma [HG] model where the distribution 
of returns is characterized by its mean, variance and an independent skew­
ness parameter under both measures. The model predicts that the spread 
between historical and risk-neutral volatilities is a function of the risk pre­
mium and of skewness. In fact, the equity premium is twice the ratio of 
the volatility spread to skewness. We measure skewness from option prices 
and test these predictions. We find that conditioning on skewness increases 
the predictive power of the volatility spread and that coefficient estimates 
accord with theory. In short, the data do not reject the model's implications 
for the equity premium. We also check the model's implications for option 
pricing and show that the information content of skewness leads to improved 
in-sample and out-of-sample pricing performances as well as improved hedg­
ingperformances. Our results imply that expanding around the Gaussian 
density is restrictive and does not offer sufficient fiexibility to match the 
skewness and kurtosis implicit in option data. Finally, we document the 
term structure of option-implied volatility, skewness and kurtosis and find 
that time-dependence in returns has a greater impact on skewness. 
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1 Introduction 

We propose the Homoscedastic Gamma model [HG] in which innovations 

of market returns are parameterized by their mean, variance and skewness. 

The skewness parameter can be chosen independently and we ne st the Black­

Scholes-Merton [BSM] case if skewness is zero. We follow Christoffersen 

et al. (2009) and provide a Stochastic Discount Factor [SDF] under which 

stock returns are HG under both the historical and risk-neutral probability 

measures. This model delivers a sharp prediction about the relationship 

between the risk premium, volatility and skewness : the equity premium is 

equal to twice the ratio of the volatility spread to skewness. 

The HG model preserves BSM's parsimony and closed-form option prices. 

Thus, we measure the volatility and skewness implicit in option prices. We 

can then perform regressions of SP500 excess returns on the ratio of the 

volatility spread to skewness. We find that coefficients have the correct sign 

and magnitude, and that conditioning on skewness improves the predictive 

power of the volatility spread. In short, the data support the model's restric­

tions on the equity premium. Reversing the relationship, and interpreting 

the volatility spread as the returns on a portfolio of options, we show that a 

version of the CAPM conditional on skewness "explains" the returns on the 

the volatility spread portfolio. This offers an answer to the question posed 

in Carr and Wu (2009) regarding which factor may explain the variance ' 

premium. 

An important implication of this new stylized fact is that an understand­

ing of the volatility spread, and its relationship with the compensation for 

risk, demands an understanding of risk-neutral skewness. Intuitively, both 

the price of risk and the volatility spread are related to the risk-neutral 

skewness. The volatility spread has been linked to variance risk (Bakshi and 

Kapadia (2003), Bollerslev et al. (2008), Carr and Wu (2009)) or to a left­

skewed and fat-tailed returns distribution (Bakshi and Madan (2006), Poli­

menis (2006)).1 While these different channels explain the volatility spread, 

they do not have the same implications for risk-neutral skewness. This should 

help discriminate across competing theories of the observed volatility spread. 

Clearly, understanding the source of risk-neutral skewness is a key research 

objective. 

As a further check for the importance of risk-neutral skewness, we test 

l Bakshi and Madan conclude that historical skewness do not play an important role in 
the determination of the volatility spread but they do not consider risk-neutral skewness. 



119 

its pricing implications for option contracts written on the SP500 index. We 

consider the simple HG model and variants analogous to the practitioner's 

version of the BSM model [P-BSM and P-HG]. We interpret these variants 

as expansions around the HG distributions but develop, and impose, restric­

tions ensuring the identification of the skewness parameter with the true 

underlying risk-neutral skewness. OveraU, HG-based models significantly im­

prove in-sample and out-of-sample performances relative to Gaussian-based 

models but with the same number parameters or less. They also increase 

hedging performances at horizons up to 4 weeks. 

The results imply that expanding around the Gaussian density is restric­

tive and does not offer sufficient flexibility to match the skewness implicit 

in the data. Another way to view the evidence is to consider the results 

of Bates (2005) and Alexander and Nogueira (2005). EssentiaUy, for any 

contingent claim that is homogenous of degree one, option partial deriva­

tives with respect to the underlying can be computed, model-free, by taking 

partial derivatives of option prices with respect to strike prices. In practice, 

however, a parametric model is fitted to observed prices from which deriva­

tives can be imputed. The relative hedging performances of the P-BSM and 

of the P-HG models imply that accounting for skewness explicitly offers a 

better fit of the option price curve across the strike continuum, and a better 

fit of the true underlying option sensitivities. Still, the improvements come 

with no increase in implementation costs. 

Next, we introduce the implied volatility and skewness surface, an ex­

tension of the implied volatility curve. Beyond its simplicity and ease- of 

computation, the BSM's implied volatility [IV] curves deliver transparent 

comparisons of options through time and across strike prices. Repeating the 

inversion of the IV curve across values of skewness delivers the implied volatil­

ity and skewness surface. The surface provides a transparent understanding 

of IV curve variations in term of skewness. We find that the volatility­

skewness relationship is smooth in practice: negative (positive) skewness 

increases (decreases) the implied volatility of out-of-the-money [OTM] caUs 

and decreases (increases) the implied volatility of in-the-money [ITM] caUs. 

We draw two important conclusions. First, the HG model can restore the 

symmetry of the observed IV curve. Second, the level of the IV curve also 

depends on skewness. 

Finally, we study the term structure of implied volatility, skewness and 

excess kurtosis. This is a first step to understand the impact of time de­

pendence on risk-neutral moments. The HG model delivers estimates of 



120 

risk-neutral volatility and risk-neutral skewness at longer horizons than a 

non-parametric approach. The evidenee suggests that skewness decays at a 

rate slower than what implied by the i.i.d. assumption. In other words, the 

time-dependenee structure of returns has a larger impact on the term struc­

ture of skewness skewness than on volatility and kurtosis. To our knowledge, 

this differential impact of returns time-dependenee on higher moments has 

never been documented. 

Related Litemture 

The stylized observations that IV curves typically .display a smile, a 

skewed smile or a smirk have been interpreted as evidenee of skewness and 

kurtosis in the underlying risk-neutral distribution of stock priee (e.g. Ru­

binstein and Jackwerth (1998) ). In practiee, the importanee of skewness for 

pricing stock index options has been highlighted in the empirical works of 

Bakshi et al. (1997), Bates (2000) and Christoffersen et al. (2006). Bowever, 

it is generally difficult to invert option priees and obtain estimates of implied 

volatility or implied skewness. In most cases, volatility and skewness are not 

inde pendent or, else, option priees are not available in closed-form, rendering 

inversion computationally expensive. Then, although the increased sophis­

tication allows for a better fit of observed IV curves, our understanding of 

skewness remains incomplete. In particular, the linkages between skewness, 

implicit from option priees, the risk premium, measured from equity returns, 

and the volatility spread remains elusive. The i.i.d. case leads to a stylized 

model but allows us to maintain parsimony and analytical tractability. 

Option pricing based on a Gram-Charlier expansion also offers direct 

parametrization of skewness and kurtosis (Jarrow and Rudd (1982), Corrado 

and Su (1996), Pott ers et al. (1998)). However, approximations of the und er­

lying risk-neutral density often turn negative implying that estimated values 

of cumulants do not belong to a true distribution. Jondeau and Rockinger 

(2001) offer a natural remedy and impose a positivity constraint on the es­

timated density. This is not innocuous. The range of admissible skewness 

values is restrictive for option pricing applications. 2 Finally, models based 

on Gram-Charlier do not provide a change of measure linking the historical 

and risk-neutral measure.3 

2.Jondeau and Rockinger (2001) establish that their restriction imply that skewness 
takes values within (-1.0493, 1.0493). Leon et al. (2006) establishes the impact of this 
restriction for option pricing. 

3Note also that closed-form option priees typically result from a Iirst-order approxi­
mation. This may not be relevant in practice for option pricing but the impact of this 
approximation on estimates of implied skewness has not been discussed. 
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Bakshi and Madan (2000) provide a non-parametric measure of skew­

ness (and other higher-order moments) implicit from option prices. This 

was exploited by Bakshi et al. (2003), who focus on measures of skewness in 

the cross-section and on the link with index skewness. Dennis and Mayhew 

(2000) consider determinants of the cross-section of skewness and Rompolis 

and Tzavalis (2008) attribute the bias in volatility regressions to the risk­

neutral skewness. Christoffersen et al. (2008) explores the information con­

tent of option data for future stock betas. However, the pricing or hedging 

implications of skewness for option prices cannot be handled within this 

model-free framework. 4 

The rest of the paper is organized as follow. Section II introduces the Ho­

moscedastic Gamma model [HG] as weil as the SDF and contains the main 

asset pricing implications. In particular, it contains the mapping between 

parameters under each measure and derives the option pricing function. Sec­

tion III presents the data. Section IV perform regression-based tests of the 

model's implications for the equity premium and the volatility spread, and 

discusses the results in the context of equilibrium model. We introduce a 

practitioner's analog in Section VI and compare in-sam pie , out-of-sample 

and hedging performances of HG and BSM-based models in Section VII. 

Section V explores the empirical properties of the implied volatility and 

skewness surface while Section VIII provides estimates of the term structure 

of volatility, skewness and kurtosis. Section IX concludes. 

II The Homoscedastic Gamma Model 

This section introduces the Homoscedastic Gamma model for stock returns. 

The model possesses three crucial properties that makes it a natural choice 

to study the linkages between the equity premium, the volatility spread and 

skewness. First, skewness is parameterized directly and is independent of 

the mean and variance. Second, its density and characteristic functions are 

known in closed-form. Third, the distribution of returns remains HG for 

ail investment horizons under both the historical and the risk-neutral prob­

ability measures whenever the SDF is exponential in aggregate wealth. In 

particular, this delivers an explicit mapping between moments under each 

measures. Finally, we obtain closed-form prices for European options of any 

4Note, also, that this approach requires approximations of integrals over the moneyness 
domain. Although Dennis and Mayhew (2000) consider theimpact of sampling error under 
the nul! of the BSM model, the accuracy of skewness estimates areunknown in the presence 
of measurement errors or in a non-gaussian setup. 
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maturity as a function of volatility and skewness. We can then efficiently 

invert option prices to obtain implied volatility and skewness surfaces. In­

deed, when setting skewness to zero our model simplifies to the BSM and we 

recover the usual BSM implied volatility curve. 

A Returns Under the Risk-Neutral Measure 

We assume that stock prices, St, follow a discrete-time pro cess whereas 

the logarithm of gross returns, Rt, over an interval of time Do, say, follows 

ln (St+~/ St) = f.L* Do + V (7*2Do é;+~ 

SG(o.* (Do)), 

(3.1) 

under the risk-neutral measure where f.L* and (7*2 are the risk-neutral drift 

and variance, respectively. Return innovations, é;+~, follow a Standardized 

Gamma [SG] distribution with zero mean, unit variance and skewness 0.*. 

The SG distribution is defined in terms of the Gamma distribution, f(k, 0), 

as 
2 2 (4) X rv SG(o.) {::} -(X + -) rv f 2,1 , 
a. a. a. 

(3.2) 

where the scale parameter is fixed to 0 = 1. Given that the Gamma definition 

has mean kO, variance k02 and skewness 2/,jk, it follows that one-period 

returns in the HG model have mean f.L* Do, variance (7*2 Do and skewness o.*(Do). 

We express skewness as function of Do to reflect the choice of the interval's 

length. A key simplifying assumption is that the conditional distribution of 

returns does not vary through time. Still, the model could be thought as 

holding conditionally, with parameters f.Lt, (7t and o.t indexed by time. 

R Returns Under The Historical Measure 

We provide a change of measure for which the historical distribution of 

stock returns also belongs to the HG family. The result holds when the 

SDF is exponential-affine in aggregate wealth returns, which is the case in 

economies with power utility. Under this assumption, we obtain transparent 

interpretations of risk-neutral moments in terms of the historical moments 

and of the compensation for risk. In the HG case, the risk-neutral volatility is 

greater than the historical volatility when the equity premium is positive and 

skewness is negative. AIso, the volatility spread increases with the equity 

premium and with the negative asymmetry of returns. When skewness is 

zero, and returns are Gaussian, only the me an is shifted and the variance is 

the same under both measures. 

First, assume that aggregate returns follow a HG distribution under the 
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historical measure 

(3.3) 

where Ct+~ "" SDG(ex(6.)). Next, define the SDF as 

Mt = exp (-v (6.) Ct + \li (v (6.))), (3.4) 

for sorne v and where \li is the logarithm of the conditional moment generat­

ing function of va2 6. Ct+~. Then, this SDF defines an Equivalent Martingale 

Measure (EMM), under which the discounted stock priee is a martingale, for 

a unique v, as stated in the following proposition. 

Proposition 1 If stock returns follo'w Equation 3.3 and if the Stochastic 

Discount Factor belongs to the class defined by Equation 3.4 for some v, 

then, this SDF defines an Equivalent Martingale Measure for discounted stock 

priees if and only if 

v(6.) = 2 9 (6.) 
ex (6.) v' 0'26. + 9 (6.) - 1 ' 

(3.5) 

where 

(6.) _ (_ (Ji. - r)6. (6.)2 ex (6.) ~) 
9 - exp 4 (} + 2 ' . 

See the Appendix for all proofs. This is a direct application of results from 

Christoffersen et al. (2009). Note that the priee of risk, v(6.), converges to 

the usual result, (Ji. - r) /0'2, when skewness tends to zero. AIso, this result 

does not imply that the EMM is itself unique but that only one solution 

exists within the class defined by Equation 3.4. 

The following Proposition establishes that stock returns are HG under 

both measures and characterizes the link between parameters of returns dy­

namics under each measure. 

Proposition 2 If stock returns under the risk-neutral measure follow Equa­

tion 3.3 and if the Stochastic Discount Factor is as in Equation 3.4 for v 

given in Proposition 1 then stock returns are given by Equation 3.2 and 3.3 

under the risk-neutral and the historical measure, respectively, with ct = 



êt E~tlêtl and where parameters under both measures are linked as 

g(/3(~» 1 

/3(~)g(/3(~» 
0'* -a 

IL + 2 a*(~)JK 
a(~) 
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where we use /3(~) = a(~) to simplify the notation. Note that we have 

0'* --> a and IL* --> IL + !O'2 when a a* --> O. 

Due to risk-aversion and non-normality in returns, the risk-neutral volatility 

differs from its historical counterpart at any horizon. The volatility spread 

depends on the degree of returns asymmetry, a( ~) and the degree of risk 

aversion through the risk-premium, (IL r), implicit in g(.). Whenever skew­

ness is negative and the equity premium is positive, the risk-neutral volatility 

is greater than the historical volatility (i.e. 0'* > a). These results are consis­

tent with Bakshi and Madan (2006) and Polimenis (2006). Finally, because 

of the specific choiee of SDF, the risk neutral skewness is the same as the 

historical skewness.5 

To see the relationship between v and skewness, consider a first-order 

expansion of Equation 3.5 around a(~) O. For small deviations around 

the symmetrie case we have 

)
2 (1"4 

r + ï2 {3(~) 
0'3 . , (3.6) 

Note that v (~) tends toward the usual result, , when skewness ap-­

proaches zero. Then, as expected, v can be interpreted as the priee of risk. 

Moreover, it is a function of the equity risk premium, of the volatility and 

of skewness. 

Another way to see the link between the equity premium and the volatil­

ity spread is to note that 

where the middle term converges to zero as skewness approaches zero.6 Tak-

50ne can show that an SOF exists such that the returns distribution belongs to the HG 
family under both measures with both the variance and the skewness parameter shifted. 
However, this SOP i8 not in general within the exponential-affine c\ass and the link between 
moments is not transparent. 

6In the limit, as skewness becomes zero, stock returns follow the usual square-root 
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ing expectations and re-arranging reveals the following important restriction 

between the equity premium, the volatility spread and the risk-neutral skew-

ness, 

In the HG model, the volatility spread is solely due to the presence of 

skewness and not to volatility being priced. Indeed, the volatility spread and 

the equity premium increase when skewness is more negative. In particular, 

regressions of excess returns on the ratio of the volatility spread to skewness 

should be more informative than the spread itself. Moreover, the constant is 

zero and the predicted value for the coefficients is -2. This provides a simple 

test that we implement below. 

C Option Priees 

We are now ready to provide a dosed-form price for European style 

contingent daims on a stock. This simple homoscedastic model is stable 

under temporal aggregation. That is, if returns over two successive intervals 

foUow a SDG distribution then returns over the sum of the intervals also 

foUow a SDG distribution. This is a key property to obtain dosed-form 

option prices for all maturities. Consider (log) stock returns over an arbitrary 

investment horizon H. Define M == if as the number of time steps over this 

horizon. Then, 

Rt,M == ~~1 Rt+j~ = In(St+~M / St) 

= J-L* M ~ + Œ*) ~M E;,M' 

where the return innovation, E; M' is given by7 , 

M E* 

E;,M == L t~ '" SDG(a*(~)/vM). 
j=l yM 

A no-arbitrage price, Ct(K, H), of a European caU option with strike 

price K and maturity H can be obtained from the discounted risk-neutral 

expectation of the terminal payoff, 

Ct(K, H) = E? [exp( -rH) max (St+H - K,O)]. 

As usual, the solution is function of the other model parameters: the risk-

process. 
7This follows directly from the fact that the Gamma distribution is summable. 
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free rate, r, the risk-neutral volatility, u*(6), and the scaled skewness (3(6). 

Moreover, the solution depends on the direction of asymmetry. Specifically, 

the case with no skewness corresponds to the BSM formula while we have 

the following proposition otherwise. 

Proposition 3 If the logarithm of gross stock returns foltows a Homoseedas­

tic Gamma process under the risk-neutral measure, as in Equation 3.2, then 

the priee of a European calt option is 

(3.8) 

where, if the skewness is negative (i.e. a(6) < 0), 

CI,t P ((3(~)2,dl(6)) (3.9) 

C2,t = P ((3(~)2' d2 (6)) , (3.10) 

and, if the skewness is positive, (i.e. a(6) > 0), 

CI,t Q ((3(~)2,dl(6)) (3.11) 

C2,t = Q ((3(~)2' d2(6)) , (3.12) 

The functions P(a, z) and Q(a, z) are the regularized gamma functions8 de­

fined by 

P(a, z) 

Q(a, z) = 

l'(a,z) 
f(a) 

f(a, z) 
f(a) , 

respectively, with l'(a, z) and f(a, z) the upper and the lower incomplete 

gamma functions9 and where dl and d2 are defined as 

ln(K/St ) - (ri + In(1-~t~~~'(~))) H 

(3(6)u*(6) 
d2(6)(1 - (3(6)u*(6)). 

8We use the standard notation for the regularized gamma functions, P(a, z) and 
Q(a, z), possibly at the cost of sorne confusion with the usual notations for the histor­
ical and risk-neutral probability measures P and Q. 

9Note that we have P(a, z) + Q(a, z) = 1, which is a convenient property when com­
puting derivatives (see below). 
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III Data 

This section introduces the data and presents sorne summary statistics. We 

use prices of call options on the S&P500 index observed on each Wednesday 

in the period from 1996 to 2004. Using Wednesday observations is common . 

practice in the literature (e.g. Dumas et al. (1998)) to limit the impact of 

holidays and day-of-the-week effects. Consequently, the return horizon in 

Equation 3.2 is set to one week in the following. We exclude observations 

with less than 2 weeks to maturity, no bid available or with zero transaction 

volume. We also filter observations for violation of upper and lower pricing 

bounds on call prices. 

Next, we introduce a second sample that group option prices at the 

monthly frequency. This reduces the noise in the estimates of volatility 

and skewness used in excess returns regressions. Another benefit of this ap­

proach is that it ensures enough observations to estimate our model in each 

maturity group. This allows us to draw the implied volatility and skew­

ness surface in different maturity groups and, as a byproduct, to obtain a 

term structure of skewness and volatility. To group observations, we use set­

tlement dates rather than calendar months. Since each contract settles on 

the third Friday of a month, we group all observations intervening between 

two successive settlement dates. lO AU weekly observations occurring within 

su ch a sub-period can be unambiguously attributed to one maturity group. 11 

Note that settlement dates follow a regular pattern though time: contracts 

are available for 3 successive months and then for the next 3 months in the 

March, June, September, December cycle. This leads to maturity groups 

with 1, 2 or 3 months remaining to settlement and then between 3 and 6, 

between 6 and 9, and between 9 and 12 months remaining to settlement.12 

Table 1 displays the number of contracts, the average call price and 

the average implied volatility across moneyness (Panel (a)), across maturity 

(Panel (b)), and a detailed cross-tabulation across moneyness and maturity 

(Panel (c)). The Black-Scholes IV curve is asymmetric in the overall sam­

pIe, displaying a rising pattern with moneynesss, and signaling a sharp left 

skew in the risk-neutral distribution of returns. AIso, the IV curve is fiat, or 

lOThese subperiods have varying length depending on the (calendar) months they coyer. 
llTake any contract, on any observation date. This contract is assigned to the I-month 

maturity group if its settlement date occurs on the following third-Friday, to the 2-month 
group if it occurs on the next to following third-Friday, etc. 

12Within a given month, and within a given maturity group, the same contract (i.e. 
same strike price) is observed with successively shorter maturities. However it is priced 
consistently under the null of i.i.d. returns innovations throughout the month. 
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slightly decreasing, with maturity. Disaggregation reveals variations in the 

shape of the IV curve at different maturities. Starting from the shortest ma­

turity, the IV curve initially follows an asymmetric smile with higher volatil­

ity values for in-the-money options. Hereafter, the asymmetry increases as 

we consider longer maturities and the (average) IV curve eventually becomes 

monotone in moneyness for the longer maturities. 

Note that the composition of the sam pIe varies with maturities. Out-of­

the-money contracts dominate for long maturities while in-the-money con­

tracts dominate for short maturities. This is due to the issuanee pattern of 

new option contracts. Newly issued, long-maturity call options are typically 

deep-out-the-money, in anticipation of the index upward drift through time. 

As we consider shorter maturities, the composition becomes more balaneed. 

At the shortest horizon, most call options are deep in-the-money, since the 

exchange does not regularly issue short horizon out-of-the-money call op­

tions. This implies that the average IV curve reflects, in part, a composi­

tion bias with most in-the-money options having short maturities and most 

out-of-the-money options having long maturities. Bec~use short maturity 

options have higher implied volatility on average, this makes the average IV 

curve more smirked. 13 Finally, Panel (a) of Figure 3.1 presents the number of· 

available observations for each day, which averages around 40 and typically 

ranges between 20 and 50 contracts. Panel (b) de composes this number and 

presents the proportion of contracts in each moneyness category. 

IV The Volatility Spread And The Equity Premium 

A Model's Implications 

When the representative SDF can be approximated by the exponential­

shi ft given in Equation 3.4 we have a tight link between the priee of risk, the 

volatility spread and skewness. After sorne manipulation of Equation 3.7, 

we obtain 

(i) (i) _ CT*(i) - CT(i) *(i) * 
ln (St+d St) - r - wt - -2 (i) + CT CHi' 

Œt 

13This highlights the importance of using a model that can handle maturity differences. 
In particular, models based on density approximation are not robust to this composition 
effect. 
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for an investment horizon i and where r(i) is the risk-free rate for that hori­

zon and Wt is the Jensen adjustment term. 14 In the following, we test this 

implication of the HG model and its ability to capture the volatility spread 

and the equity premium. We perform regressions of SP500 (log) excess re­

turns on the ratio of the volatility spread to skewness. The key predictions 

are that the constant should be zero and that the coefficient should be -2. 

B Aggregating Data 

We obtain estimates of risk-neutral volatility and skewness from option 

data. Estimates of skewness for different maturities are noisy in weekly data. 

This is in part due to the number of option priees available each week in each 

category. One simple solution is to group priee observations at the monthly 

level where we define a month as the period between successive expiration 

dates which occur every third Friday (See Section III). Within each month, 

we have repeated observations of the same contracts over a period of 4 (or 

5) weeks. 15 This implicitly assumes i.i.d. return innovations throughout a 

month, which is consistent with the model and reasonable over this short 

time span. It also implies that the maturity date of each contract is constant 

throughout each month and, thus, that the skewness estimate pertains to a 

set of contracts that mature at fixed maturities. Finally, we measure the 

historical volatility using the observed realized volatility. 

We estimate our preferred version of the model each month through mini­

mization of squared pricing errors.16 Figure 3.2 presents the time series of our 

volatility estimates (Panel (a)) and of our skewness estimates (Panel (b)). 

Skewness typically varies around -1 but dipped close to -2.5 in the summer 

of 1998 and in the second half of 1999, and slightly below 1.5 in the Fall of 

1996 and the Spring of 2004. 

C Implied Skewness And The Risk Premia 

Table II presents the results from regressions of excess returns at horizons 

of 1, 3, 6, 12, 24 and 36 months on the ratio of the volatility spread to 

14This term is a function of both skewness and volatility but the first term of its Taylor 
expansion is the usual correction in the Gaussian case, ~a2. 

15Some contracts are not observed each Wednesday within a month. New contracts 
become available to participants as the index moves away from the range of available strike 
priees. Also, sorne contracts are not available each week because they were excluded from 
the weekly sample due to liquidity concerns. 

16Specifically, we estimate a restricted version of the practitioner's HG model that allow 
for kurtosis but maintain the identification of the risk-neutral volatility and skewness (See 
Section VII). As a robustness check (not reported) we repeated the exercise using skewness 
estimated from the simple HG model presented above. The results are not qualitatively 
different. 
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skewness. 17 The results are striking. Point estimates for the slope coefficient 

are close to -2 as predicted by the model. Mo reover , at horizons of 3, 6, and 

12 months, where we would expect the forward-Iooking nature of the option­

implied estimate to be the most relevant, estimates are -2.24, -2.04 and -2.13, 

respectively. In fact, at any horizon, we cannot reject the null hypothesis 

that the coefficient is equal to -2. Next, the constant is not significantly 

difIerent from zero so that the two most important implications of the model 

cannot be rejected empirically. Finally, the predictability of excess returns 

is low at the 1-month horizon (i.e. R2 is 1.85%) but rises steadily with the 

horizon, reaching 5.6%,9.7% and 11.3% at horizons of6, 12 and 36 months. 

For comparison with results available in the existing literature, we also 

consider regressions on the volatility spread which displays sorne predictive 

power at horizons of 9 and 12 months. However, coefficients are not sig­

nificant at other horizons. Finally, we ask if the volatility spread contains 

information beyond that revealed by the volatility to skewness ratio. The 

results from the regressions are presented in Table II. Sinee volatility and 

the ratio of the volatility spread to skewness are correlated, the coefficients 

become unreliable, even changing signs. However, their combined predictive 

power does not rise above that of the volatility to skewness ratio, further 

supporting the implications of the model. 

D Discussion 

We can also interpret the results in the broader context of a general 

equilibrium model. There, the priee of risk is determined by preference 

parameters. In particular, in an economy with power utility, v corresponds 

to the risk-aversion parameter (see e.g. Bakshi et al. (2003)) which can be 

estimated given estimates ofthe risk premium, J.l-r, and return volatility, a, 

obtained from observed returns data. Equation 3.6, which is repeated here, 

shows that ignoring skewness (the last term) leads to upward bias in the 

estimate of the priee of risk and, henee, of risk aversion. Intuitively, when 

agents are risk-averse, and the risk premium is positive, a more negative 

value of skewness corresponds to an increase in the quantity of risk: the 

probability of lower returns increases. Then accounting for skewness reduces 

17precisely, our measures of risk-neutral moments pertain only to the distribution of re­
turns at a horizons of 12 months or less. Nonetheless, if these moments exhibit persistence, 
their predictive power will extend to longer horizons as is indeed the case 
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the priee of risk required to fit the observed equity premium and, ultimately, 

leads to lower estimates of risk aversion in the economy. 

Note that the effect of skewness is economically significant. Sinee 1980, 

the sample me an and volatility of one-year returns is 14.72% and 6.13%, 

respectively, and the first term of Equation 3.6 is equal to 20.5. In other 

words, if risk is summarized by the volatility of market returns, then the 

equity premium appears too large and leads to excessively high estimates of 

the coefficient of risk aversion. However, the coefficient of skewness, a, in 

the last term is 12.88. For a value of skewness, say, of -1, the estimate of the 

priee of risk is 7.63, less than half than if we ignore the impact of skewness. 

Moreover, the estimates of skewness we obtain below are often lower than 

-1. 

The results shows the linkages implied by the HG model between the 

equity premium, the volatility spread and the skewness hold (Equation 3.7). 

This suggests that an understanding of the volatility spread and of the eq­

uity premium demands an understanding of the determinants of skewness. 

Moreover, it shows that properly conditioning on implied skewness is key to 

deciphering the information content of options priees for future returns. In 

fact, reversing the relationship, and interpreting the volatility spread as the 

returns on a specifie portfolio of options, 

we see that a version of the CAPM conditional on skewness "explains" the 

returns on the volatility spread portfolio. This offers an answer to the ques­

tion posed in Carr and Wu (2009) which asks what factor may explain the 

volatility spread. 

Our results contrast with existing results (e.g. Bakshi and Kapadia (2003), 

Bollerslev et al. (2008)) where the spread is linked to varianee risk being 

prieed. In our model, the asymmetry in returns shifts the risk premium and 

the risk-neutral volatility. This induees the link between the volatility spread 

and the equity premium. Similarly, Polimenis (2006) and Bakshi and Madan 

(2006) link the volatility spread to higher order moments of the historical 

distribution. From the tight linkages we uncover, we conclude that an under­

standing of the volatility spread, and its relationship with the compensation 

for risk, demands an understanding of skewness variations. In particular, 

this new stylized fact should help discriminate across competing theories of 



132 

the observed volatility spread.18 

V Implied Volatility and Skewness Surface 

In the context of the BSM model, it was recognized early that inverting 

option priees for the volatility parameter provided a good measure of future 

returns volatility. However, the HG model offers a separate parametrization 

for volatility and skewness allowing us to easily measure both the volatility 

and skewness implicit in option prices. 19 In this section, we study the trade­

offs involved between volatility and skewness when fitting option prices. We 

first analyze how the implied volatility curve varies across different values of 

skewness and, second, how the implied skewness curve varies with volatility. 

The results are intuitive. The impact of skewness on implied volatility is 

asymmetric, depending both on the sign of skewness and of moneyness. In 

particular, negative skewness tilt a smirked IV curve toward a symmetric 

smile. On the other hand, the impact of volatility on implied skewness 

displays a more complex pattern. 

An important conclusion from this section is that the HG model exhibits 

enough fiexibility to restore the symmetry of the volatility smile. In other 

words, variations of the IV curve can be interpreted directly in term of 

skewness within the HG model. Moreover, both the level and the shape 

of the IV curve are sensitive to the choice of the skewness parameter. In 

particular, this implies that empirical studies of the volatility spread based 

on BSM implied volatility are affected by measurement errors due to the 

impact of skewness. 

A Inveriing The Implied Volatility and Skewness Surface 

Volatility and skewness cannot be inverted uniquely from a single option 

priee. Instead, for each strike priee, the HG model implies a function de­

scribing the set of volatility and skewness pairs matching the observed priee: 

a volatility-skewness curve. This is in contrast with the BSM model where 

any given option priee can be inverted uniquely for the volatility parameter. 

Of course, if the HG model is true, using options with different strike priees 

would identify uniquely a volatility-skewness couple. In fact, only two dif-

18Bakshi and Madan (2006) conclude that the historical skewness plays a relatively 
sm ail role in the determination of volatility spread but they did not consider risk-neutral 
skewness. 

19See Bates (1995) for a review of the literature on the forecasting of volatility using 
option priees and Andersen et al. (2005) for a review of volatility measurement from stock 
returns. See Kim and White (2003) for a discussion of the lack of robustness of the usual 
sample skewness estimator 
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ferent strike priees would be sufficient for this purpose. In practiee, the HG 

model extends the BSM model in only one direction, allowing for a skew­

ness parameter. Other deviations from the underlying assumptions cause 

the volatility-skewness curve to vary across moneyness in such a way that no 

unique couple can match every observed priee. Thus, in the HG model, the 

counterpart to the IV curve is the implied volatility and skewness surface. 

This surfaee is the representation of the set of volatility and skewness pairs 

matching the observed option priees for varying strike priees. 

To draw the volatility and skewness surfaee, we first pick a value of skew­

ness from a grid. Then, each day and for each available strike priee, we invert 

the option priee for the volatility parameter and obtain an implied volatility 

curve. As we vary the value of skewness we obtain different IV curves and, 

together, they yield an implied volatility and skewness surfaee. A section of 

this surfaee at a given value of skewness is one possible IV curve. Each day, 

these different IV curves are alternative, and equivalent, representations of 

the data. Each embodies ail the information about the distribution of returns 

and, in addition, measurement errors due to transaction costs, illiquidity and 

asynchronous trading. The next section provides the results. 

B Impact Of Skewness on Implied Volatility Curves 

The average volatility-skewness surface is given in Figure 3.3 in level 

(Panel (a)) and in pereentage deviations from the benchmark BSM IV curve 

(Panel (b)). Panel (a) displays the usual smirk in the IV curve wh en skewness 

is zero. More interestingly, it shows that the average IV curve is fiat for values 

of skewness around _1. 20 Next, consider the deviations from the BSM curve 

in Panel (b). The case with skewness equal to zero corresponds to a straight 

line at zero. As we consider values of skewness away from zero, the IV curve 

is tilted one way or another depending on the sign of return asymmetry 

considered. For negative values of skewness, the IV curve is tilted toward 

positive values of moneyness. Conversely, for positive values of skewness, the 

IV curve is tilted toward negative values of moneyness. In other words, as we 

shi ft probability mass toward the left (right) tail of the return distribution, 

the implied volatilities required to match observed priees increase (decrease) 

for out-of-the-money calls and decreases (increases) for in-the-money calls 

thereby tilting the IV curve back toward a symmetric smile. In the extreme 

cases, allowing for non-zero skewness can rai se or decrease measured implied 

volatility by more than 15% relative to the BSM case. Clearly, the HG model 

20The curve is not strictly fiat and this may be due to the impact of kurtosis, or to a 
composition effect. We discuss these possibilities below. 
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C Results For Different Option Maturities 
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Next, Figures 3.4 (a)-(e) present implied volatility and skewness surfaees 

within different maturity groups while Figures 3.5 (a)-(e) report the same re­

sults but in pereentage deviations from BSM values. Starting with skewness 

equal to zero, which corresponds to the BSM case, we see the the shape of IV 

curve varies substantially across maturities. As discussed in section III, the 

average BSM IV curve is a slightly asymmetric smile for short maturities: 

implied volatility obtained from in-the-money options is higher than for out­

of-the-money options. The smile then gradually disappears as we increase 

maturity and the IV curve eventually becomes smirked. For negative values 

of skewness, and for any maturity, the IV curve is tilted toward a symmetric 

smile. For short maturities, small negative values of skewness ar sufficient 

to establish a symmetric smile. As we increase maturity, however, more 

negative values are neeessary. Looking at deviations from the case with zero 

skewness (Figure 3.5) we see that the impact of a given variation in skewness 

decreases as we increase maturity. 

D Impact Of Volatility On Implied Skewness 

Figures 3.6 (a)-(f) present implied values for skewness across different 

values of implied volatility. For at-the-money options, there is no tradeoff 

between volatility and skewness. However, t,he impact of volatility on implied 

skewness is asymmetric and highly nonlinear on both sides of the moneyness 

spectrum. As the volatility of returns decreases, and the probability mass 

is closer to the mean, the skewness value required to match observed priee 

increases for out-of-the-money options, implying a higher right-tail, but de­

creases for in-the-money options, implying a lower left-tail. The reverse is 

true when we increase the value of volatility. In both cases the impact is not 

monotonie as we move away.from at-the-money. Rather, the pattern follows 

a sharp V-shape, or inverted V-shape, where changes of volatility have no 

impact on implied skewness for at-the-money options, the largest impact for 

intermediate moneyness, and a lower impact for distant moneyness. This 

is likely an indication of a trade-off between the skewness and the kurto­

sis in the HG distribution to match observed priees. Finally, the impact of 

volatility on implied skewness rises with the option maturity. 
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VI Practitioner's Models 

The previous section shows that the implied volatility and skewness surface 

can be described as the smooth tilting of the IV curve across values of skew­

ness. However, while the HG model provides enough flexibility to match 

the skewness present in option data, the IV curve typically remains slightly 

curved. This is may due to excess kurtosis2l and may bias our estimates 

of skewness. In this section, we propose HG-based option pricing formula 

that are robust to the presence of excess kurtosis. Intuitively, we consider 

one-term expansions of the HG model that allow for kurtosis. This results is 

the analog of rationalizations of the P-BSM model as a two-term expansion 

around the Gaussian density. 

The practitioner's variants of the BSM model [P-BSM] and of the HG 

model [P-HG] càpture deviations from the Gaussian or HG distributions by 

modeling volatility as a quadratic function of moneyness. That is, in the 

P-BSM case, we have 

and, in the P-HG case, we have 

where ç is moneyness and a and K are the skewness and excess kurtosis of 

the risk-neutral distribution, respectively. 

The practitioner's IV curve smooths through the cross-section of option 

prices, ignores local idiosyncracies and focuses on the impact of higher-order 

moments. This approach is pervasive because of its empirical performance 

and, also, because its parameters (i.e. aQ, /1 and /2) are usually interpreted 

in terms of the variance, skewness and kurtosis of the true underlying risk­

neutral distribution. For these reasons, parameters of the IV curve are com­

monly estimated without restrictions. In the following, we document that 

estimates of aQ, /1, and /2 vary when we allow for skewness. This contrasts 

with the usual interpretation of /1 as a measure of skewness. The remainder 

of the section provides restrictions on parameters of the IV function such 

that we can recover direct estimates of a and K from option priees. 

21In contrast with the Gaussian case, the kurtosis of the HG distribution varies with 
parameter values. Its kurtosis is proportional to the square of the skewness. 
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A Unconstrained IV Curves 

We evaluate empirically the impact of skewness on estimated IV curves. 

To do so, fix the value of Œ and estimate the P-HG model at each date. That 

is, choose values of 0'0, Il and 12 that minimized squared pricing errors. 

Next, average the unconstrained estimates through time. Finally, repeat the 

exercise for different values of skewness and trace the relationships between 

. skewness and estimates of 0'0, Il and ,2 . For simplicity we define 

c = In(SjK)(-rT) 
." iJ'JT' 

and group maturities. 

Figure 3.7 presents the results. Panel (a) presents average estimates of 

0'0. For contracts maturing at the next settlement date, at-the-money im­

plied volatility is 20% on average when skewness is zero. When skewness 

decreases to -3, estimates of at-the-value volatility increase to 23%. Intu­

itively, shifting sorne probability mass toward one side of the distribution 

involves a trade-off for pricing in-the-money versus out-the-money options. 

For a constant level of skewness, this tension can be reduced by an increase 

in the level of volatility. A similar pattern occurs at longer maturities, but 

the impact of skewness gradually decreases. Panel (b) presents the results 

for the asymmetry parameter. In line with intuition we find that il varies 

linearly with the value of f3 : both parameters are measures of the under­

lying skewness. Finally, Panel 3.8c shows that i2 also varies substantially 

with skewness but the relationship is not linear. 22 

The impact of skewness on the IV curve parameter implies that the infor­

mation on the underlying risk-neutral moments will be shared across unre­

stricted parameters estimates. Furthermore, the fact that estimates of Œ and 

of Il are (linearly) correlated suggests that they are poorly idéntified. The 

following section introduces a framework which le'ad to restrictions on 0'0, Il 

and 12 such that only â can capture the risk-neutral skewness. Absent these 

restrictions, parameters of the IV curve capture sorne of the asymmetry in 

the underlying distribution leading to biased estimates of Œ. The unambigu-

22This contrasts with the theoretical results ofZhang and Xiang (2005). They argue that 
in the Gaussian case and up to a first-order approximation ao({J, /';;) is linear in the risk­
neutral volatility, 'Y1 ({J, /';;) is linear in skewness, and 'Y2({J, /';;) is linear in kurtosis. However, 
they assume that the skewness and excess kurtosis of the underlying distribution can be 
chosen independently while in fact there is a tight link between the two for any given 
correctly specified density. Moreover, they linearize around the case where a = 0 and this 
may lead to a poor approximation. 
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ous identification of skewness is necessary to provide a measure of the risk 

premia from implied volatility and skewness and to evaluate the impact of 

skewness on option prices.23 

B HG Madel With Excess Kurtosis 

We now provide a rigorous justification of the P-HG model when the 

true distribution displays excess kurtosis. We can characterize sufficient 

restrictions on the parameters of the IV curve su ch that /3 is identified as 

the risk-neutral skewness in this more general model as weIl. In this context, 

parameters of the IV curve are restricted to (known) functions of excess 

kurtosis. In other words, any deviation from a fiat IV curve can only be 

linked to deviations of K from zero. As a by-product, we obtain an estimator 

of the kurtosis in excess of the Gamma distribution. 

Intuitively, we assume that the true density of returns can be represented 

by an Edgeworth expansion around the Gamma distribution. This is similar 

to earlier work using the Gaussian distribution (Jarrow and Rudd (1982), 

Corrado and Su (1996)) but the Gamma distribution allows an exact match 

of the first three moments. We then impose the equality of the option pricing 

formula under the true model and the P-HG model for at-the-money options. 

Suppose that the true evolution of stock returns under the risk neutral 

measure can be described as 

RT = (r - 5*) T + (7*.../Ty, 

where 5* is a risk-adjustment term, y is a random variable with mean zero, 

unit variance, skewness, a* and kurtosis, À *. We allow for non-normality 

beyond the HG and assume that the probability density of y is given by 

À * 30
02 

f( ) = h() 2 - TT d4
h(y) 

Y Y + 4! dy4' (3.13) 

where h(y) is the standardized gamma density. This is a one-term Edgeworth 

expansion of standardized gamma distribution around the case with no excess 

kurtosis. If y is normally distributed, then a = 0 and 5 = 17;2 .This approach 

captures fat tails in excess of the Gamma distribution but ignores deviations 

beyond the fourth moment. Our objective here is to allow for a non-trivial 

implied volatility ari.d skewness surface due to excess kurtosis and to derive 

explicitly the function (70(K), 11(K) and 12(K). Proposition 4 builds on a 

23Note that merely imposing '/'1(0,11:) = 0 does not identify an estimator of 0 with 
skewness. 
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no-arbitrage argument and provides a closed-form characterization of option 

priees and of the risk-adjustment term. 

Proposition 4 If the logarithm of gross stock returns has the density given 

by Equation 3.13, then the priee of a caU option, C*(K, T), with maturity 

T, underlying priee So and strike priee K is 

C*(K,T) = SoP(a*,d~)-e-rT(1+T2(7*4K4)KP(a*,d;) 

T 2(7* 
+ Ke-rT K {3*3 [-h" (d;) + (7* {3* h' (d;) - (7*2 {3*2 h( d;) ] ' 

when {3 < 0 and 

C*(K, T) = SoQ (a*, di) - e-rT (1 + T 2(7*4 K4 ) KQ (a*, d;) 

T 2(7* 
- Ke- rT K {3*3 [-h" (d;) + (7* {3* h' (d;) - (7*2 {3*2 h( dm ' 

À2-~ 
when {3 > o. We define the exeess kurtosis, K = 41 T , and 

a* 

ln(K/So) - [r + ln(l,&a,B)] T + ln(1 + T 2(74K) 

(7{3 

where h is the density of the standard gamma distribution. 

C Identified practitioner's HG 

We are now looking for the restrictions on the parameters of the P-HG 

model such that estimation of {3 delivers a convergent estimate of the risk­

neutral skewness {3*. Zhang and Xiang (2005) provide the restriction for the 

case where the Gaussian density is used in the approximation. To find the 

link between the parameters of the P-HG model with parameters of the true 

distribution, we impose the following restrictions 

C*(K, T) 

8C*(K,T) 

8K 
82C*(K, T) 

8K2 

C(K,T) 

8C(K,T) 

8K 
82C(K,T) 

8K2 
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when evaluated at-the-money (i.e. K = SoerT ). These restrictions are given 

in the appendix but note that they are trivially satisfied whenever /<; = 0 

since in this case the HG model is true and the IV curve is fiat for some 

value of skewness. Of course this corresponds to the case ao = a, (3 = (3* 

and ')'1 = ')'2 = o. We linearize the restrictions around this point (i.e. /<; = 0) 

and obtain 

ao -a 
-- = Al(a,a)/<; 

a 
ao - a 

')'1 = Bl(a, a)-- + B2(a, a)/<; 
a 

ao - a 
')'2 = Cl(a,a)-- + C2(a,a),1 + C3 (a,a)/<;, 

a 

(3.14) 

(3.15) 

(3.16) 

where the coefficients are given in the appendix.24 Then, small deviations of 

the underlying density from a HG distribution lead to deviations from a fiat 

implied volatility and skewness surface. This highlights the impact of excess 

kurtosis on the estimates of ao, ')'1 and ')'2. It also makes clear that deviations 

from a fiat IV curve are only due to excess kurtosis. More importantly, these 

restrictions ensure that a corresponds to the risk-neutral skewness and that 

the practitioner's HG model conforms to the true returns density. 

VII Option Pricing Results 

ln this section, we estimate each model and compare their performance. 

The results show that the HG framework substantially improves in-sample, 

hedging and out-of-sample performances. The improvements are robust if we 

impose identification of the skewness parameters, as discussed in the previous 

section. Indeed, the improvements remain when the only deviation from 

the simple HG model is a constant adjustment to kurtosis. Out-of-sample, 

imposing the identifying restrictions does not degrade pricing performance. 

ln other words, a fixed implied volatility and skewness surface combined 

with variations in skewness delivers most of the in-sample and out-of-sample 

improvements. We also compare the hedging performance of each model to 

highlight the importance of skewness. Again, allowing for varying skewness 

but fixing kurtosis provides significant improvement. 

Overall, our approach delivers a reliable measure of skewness while offer­

ing improved forecasting and hedging performance. In contrast, the P-BSM 

24We differ from Zhang and Xiang (2005) who linearize the restrictions around a = O. 
Arguably, linearizing around the HG distribution is likely to provide a better approxima­
tion than linearizing around the deterministic case. 
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model does not allow for sufficient flexibility to match the skewness implicit 

in the data and offers lower hedging and out-of-sample performance. While 

the more general models we consider perform better in-sample, these im­

provements disappear out-of-sample. This implies that skewness captures 

most of the persistent deviations from the Gaussian case and that excess 

kurtosis and other deviations are transitory. 

A Description Of Models 

We evaluate the basic HG model and the usual P-BSM model. We also 

include three different versions of the P-HG model based on the quadratic 

IV curve, 

where the first version, P-HG1, imposes the simple restriction that Il = O. 

This is another way to see that the usual interpretation of Il as a measure of 

skewness, while intuitive, is misleading. The second model, P-HG2, imposes 

the restrictions derived in the previous section and delivers an estimate of 

skewness robust to excess kurtosis. Finally, P-HG3 is unrestricted. This is 

a simple way to evaluate the cost, in ter ms of fit, of estimating skewness 

directly. 

We also introduce "smoothed" versions of these models where sorne pa­

rameters of the IV curves are held constant through the sample. First, the 

smoothed version of the P-HG1 model, labeled SP-HG1, still imposes that 

Il is zero but holds 12 constant through time. Next, SP-HG2 still allows 

for a flexible fit of skewness through time but keep excess kurtosis constant 

through time. We include this model as a simple way to evaluate the relative 

importance of skewness and kurtosis for option pricing and hedging. Finally, 

the SP-HG3 model imposes the following structure on the IV curve, 

which is a simple attempt to implement the observation made in Section VI 

that parameters of the IV curve vary with skewness. Finally, estimation 

is performed through minimization of squared pricing errors in the weekly 

sample. 

B In-Sample RMSE 

HG And BSM Models 

Table III presents in-sample Root Mean Squared Errors [RMSE] where 

each results is expressed as a percentage of the BSM's RMSE. Panel (a) 
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presents results across moneyness while Panel (b) presents results across 

maturities. Although the most flexible (i.e. P-HG3) model achieves an RMSE 

which is 14% of the benchmark, most of the improvement cornes from using 

the HG distribution: the simpler HG model's RMSE is 37% of the BMS's 

RMSE but with only more parameter measuring skewness. 

Practitioner's Variants 

Interestingly, even with one extra parameter, the P-BSM do es not offer 

much improvement (35% vs 37%) over the straightforward HG model. The 

models offer similar results across maturities but their performances differ 

across strike priees. The P~BSM improves pricing for in-the-money options 

at the expense of larger errors for other moneyness groups. On the other 

hand, the P-HG1 and the P-HG2 models achieve RMSEs that are 28% and 

23%, respectively, but with the same number of parameters as the P-BSM 

model. However, in contrast with the P-BSM model, the lower errors for out­

of-the-money options are not compensated by higher errors for options that 

are nearer the money. Thus, models based on the HG distribution appear 

to offer more flexibility than the practitioner's BSM in choosing risk-neutral 

skewness and kurtosis but with equal or less parameters. 

Although the naive 1'1 = 0 restriction seems reasonable, it fails in prac­

tice with larger RMSE. Comparing models, we see that imposing the correct 

identification constraints (P-HG2) provides substantial improvement over 

the P-HG1, especiaUy for short maturity, out-of-the-money caU options. Fi­

naUy, with one more parameter, the P-H3 offers much lower in-sample RSME 

(14%) than any other model across aU moneyness and maturity categories. 

Smoothed Coefficients 

Smoothed models have less parameters but the SP-HG2 model still im­

proves (31%) over the P-BSM model but with less parameters. This model 

has the flexibility to fix skewness from date to date but imposes a constant 

excess kurtosis. That is, deviations of the IV curve from the HG case are 

kept constant. Thus, in-sample, a flexible fit of the underlying risk-neutral 

skewness is key while variations in kurtosis are less important. FinaUy, while 

more flexible HG-based models improve the in-sample fit, the next section 

show that this result is not robust out-of-sample, indicating a relatively mi­

nor role for information beyond the third moment. 

C Out-of-sample RMSE 

The improved performance of models based on the HG distribution may 

be due to over-fitting and may not hold out-of-sample. This section compares 
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the out-of-sample performance of each mode!. First, we estimate each model 

from options in a given week.25 We then fix these parameters and priee 

options observed in the following week. Table IV presents one-week out­

of-sam pie RMSE for each model across strike priees (Panel (a)) and across 

maturities (Panel (b)). 

Out-of-sample, the improvement in fit relative to the BSM decreases for 

ail models. This indicates that sorne of the deviations from the Gaussian 

case are transitory. The lowest relative RMSE is now 57%, obtained for the 

P-HG3 model, with 4 parameters. On the other hand, the worst result is 

68%, obtained for the P-BSM model, with 3 parameters. This add to the 

evidence that the practitioner's version of the BSM model does not properly 

fit the persistent skewness and kurtosis present in the data. Strikingly, the 

SP-HG2 model, whieh uses 2 parameters and fixes excess kurtosis through 

the sample, actually improves out-of-sample RMSE (64%) over the more 

flexible P-HG2 and P-BSM models. Sorne of the variations in excess kurtosis 

required to match (in-sample) option priees in this category are transitory, 

degrading out-of-sample performances. Restricting pararneters of the IV 

curve to capture that part of its variations due to skewness improves the 

out-of-sample fit. 

D H edging Errors 

Hedging errors implied by each model may convey more economie sig­

nificance to risk-managers. Below, we verify that allowing for skewness sig­

nificantly alter hedging strategy theoretically, and improves hedging results 

empirically. AIso, we verify that any improved hedging performance persists 

at horizons beyond one week. The SP-HG2 model, with 2 parameters and 

where skewness is separately identified, offers the next to best performance. 

This highlights, again, the value of theoretically sound restrictions. Again, 

we find that the unrestricted P-HG3 model performs best. 

Comparing The Greeks 

As in the BSM model, we ean compute explicitly the sensitivity of option 

priees to changes in the underlying parameters, including the sensitivity to 

changes in skewness. We provide these in the appendix. These derivatives 

depend on the direction of asymmetry and everywhere the symmetric case 

(Le. {3 0) !eads to the standard results from BSM. To see the impact of 

skewness, we draw options sensitivities across strike priees for different values 

smoothed mode!, we estîmate parameters that are held constant through the 
sam pie in a first pass. 
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of skewness. In the computations, we use the average values of volatility, of 

the interest rate and of the index level. Figure 3.8 presents results for the first 

and second derivatives with respect to the underlying, Delta and Gamma, 

as weil as the derivative with respect to volatility, Vega. The results are 

reported in levels in the toppands (Panel (a) to (c)) and in percent age 

deviations from the symmetric case in the bottom panels (Panel (d) to (f)). 

First, the pattern of Delta across moneyness is familiar. The sensitiv­

ity is small for deep out-of-the-money options but grows to close to one for 

deep in-the-money options. Varying skewness does not alter this picture 

but looking at levels hides significant deviations. At skewness equal to -2.5, 

which occurs in our sample, short positions in the stock are as much as 20% 

higher for sorne out-of-the money or near to at-the money options. Next, 

the impact on Gamma is dramatic. In the symmetric case, Gamma ap­

pears quadratic in moneyness with highest values for at-the-money options. 

Decreasing skewness lowers Gamma for in-the-money options but increases 

Gamma for out-of-the-money options. When skewness is -2.5, Gamma is as 

much as 50% lower then when skewness is zero for in-the-money options and 

50% higher for out-of-the-money options. Finally, skewness has an asym­

metric impact on the sensitivity of options to variations in volatility. When 

skewness is -2.5, Vega decreases by more than 20% for out-of-the-money op­

tions but increases by nearly 20% for in-the-money options. Clearly, ignoring 

the impact of skewness can lead to large hedging errors, which is confirmed 

empirically in the next section. 

Comparing Hedging Performance 

We follow Dumas et al. (1998) and compute hedging errors as 

f - f:l.co.ctual _ f:l.Cmodel 
t - t .t+h t,t+h 

which is a measure of the impact of changes in model errors from t to t + h 

on the hedging strategy.26 By this measure, a good model delivers hedging 

errors that are close to zero on average. Table V and Table VI present the 

results for hedging horizons from one to four weeks ahead (i.e. h = 1,2,3,4). 

Consider hedging errors at the l-week horizon (Table Va). First, the BSM 

model appears to perform weil, with hedging errors averaging 1.6 cents. But 

this hides important disparities across maturities. Average hedging errors 

range from 36.7 cents for out-of-the-money options to -39 cents for in-the-

26This abstracts from the hedging errors due to discrete adjustments. See Galai (1983) 
for details. 
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moneyoptions. Moreover, the more flexible P-BSM model has higher overall 

hedging errors (-4.6 cents) with substantial average errors (-18.8 cents) for 

the lowest strike prices. 

When considering the overall mean and the dispersion of hedging er­

rors across maturities, the best performing models are variants of the P-HG 

model. Identification restrictions for skewness perform weIl. In particular, 

the SP-HG2 model offers both low overall hedging errors and low dispersion 

across moneyness. Averages remain below 10 cents across strike priees. Ta­

ble Vb draws a similar picture at the 2-week horizon. The P-BSM model 

sees its average performance deteriorate to -8.2 cents and mean hedging er­

rors now range from -21.8 to 7.1 cents. Again, HG-based models offer better 

performance. The SP-HG2 model still offers the best performance: the mean 

pricing error is 0.002 cents in the entire sample and ranges from -13.6 cents 

to 8.6 cents across moneyness. Finally, results at the 3 and 4-week horizons 

(Tables (a) and (b)) quickly deteriorate for the BSM and the P-BSM mod­

els. However, the SP-HG2 model still performs weIl. The overall averages at 

3-week and 4-week horizons are -4.3 cents and -2.1 cents. 

E Discussion 

Overall, the results favor the more general P-HG3 model. It offers lower 

in-sam pIe and out-of-sample RMSEs as well as better hedging performances 

at all horizons. This contrasts with the frequent observation that the P­

BSM model offers sufficient flexibility. lndeed, option prices based on the 

HG distribution offer better performance than the P-BSM with as many 

parameters (P-HG1 and P-HG2) or less (SP-HG2). If we interpret the prac­

titioner's models as expansions around the Gaussian or the Homoscedastic 

Gamma distributions, the results imply that expanding around the Gaus­

sian density is restrictive and does not offer sufficient flexibility to match the 

skewness and kurtosis implicit in the data. Moreover, when we consider the 

sequence of models, we see that imposing restrictions such that skewness is 

correctly measured and excess kurtosis constant does preserve most of the 

performance improvement. 

Another way to view these results is to consider the results of Bates 

(2005) and Alexander and Nogueira (2005). Essentially, they show that for 

any contingent daim that is homogenous of degree one, all partial derivatives 

with respect to the underlying can be computed by taking partial derivatives 

of option prices with respect to strike prices. This implies that, if the number 

of observed option prices is arbitrarily large, we can compute delta and 
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gamma exactly from non-parametric derivatives. In practice, however, some 

parametric model is fitted to observed prices from which derivatives can be 

imputed. The hedging performances of the P-BSM and the P-HG models 

imply that the latter offer a better fit of the true option price curve across 

the strike continuum and, therefore, a better fit of the true option's delta and 

gamma. In other words, the relatively poor fit of skewness by Gaussian-based 

expansions translates in inaccurate option sensitivity measures and larger 

hedging errors relative to approximations based on the Gamma density. 

For our purposes, the performance of the SP-HG2 model implies that 

the parametric measure of risk-neutral skewness is relevant. This provides 

a measure of skewness that is easy to compute and requires less data than 

a non-parametric measure. Moreover, together with the regression results 

from Section IV, the importance of skewness for hedging and out-of-sample 

pricing confirms the key link between the risk premium and volatility shift 

across moneyness and skewness. Indeed, imposing the additional restriction 

that excess kurtosis is constant yields the next to best out-of-sample and 

hedging performances. Interestingly, the estimate of K, is negative (-0.042). 

Then relaxing the link between kurtosis and skewness allows for more asym­

metry to be applied to the data than the benchmark HG model does. This 

adjustment is significant: to keep kurtosis constant but with K, equal to zero, 

skewness would have to be reduced (closer to zero) by 0.21. Taken together, 

the results lead us to adopt the SP-HG2 as our preferred model to measure 

the option-implied skewness. 

VIII Term Structure Of Moments 

Section V presented the trade-off between volatility and skewness when fit­

ting option data. One important observation is that a different value of skew­

ness was required to restore the symmetry of the IV curve for different ma­

turities. This suggests that the risk-neutral distribution converges at slower 

rate than implied by the i.i.d. assumption. While the time-dependance of 

returns is weil documented in the literature, the framework presented here 

allows for a transparent presentation of deviations from i.i.d. returns. We 

use the fact that skewness should decay toward zero with the square root of 

horizon, J( H). If this is verified in the data, estimates of skewness multi­

plied by the square root of the horizon should not vary with the maturity 

of an options. Otherwise, the term structure of implied skewness reflects a 

degree of dependence implicit in option prices. Similarly, the excess kurtosis 
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of returns should decay with H and annualized estimates of volatility should 

be fiat across horizons. A key question is on what moment does the time 

dependence of returns have the greater impact. 

An important advantage of our parametric approach is that we can obtain 

estimates of risk-neutral moments at much longer horizons than is usuaUy 

the case with non-parametric methods. We estimate the term structure of 

volatility, skewness and kurtosis using the SP-HG2 model discussed above. 

We minimize pricing errors separately for each maturity (1, 2 and 3 months, 

and then from 4 to 6 and from 7 to 9 months. See Section III). Figure 3.9 

presents the results. 

Figure 3.10a presents the average (annualized) implied volatility for each 

maturity. The time-series average rises from close to 21.4% for the next 

settlement month to 21.8% at a maturity of 3 months. Thereafter, implied 

volatility remains more or less fiat. Figure (b) presents results for (nega­

tive) the implied skewness. In contrast with implied volatility, the implied 

asymmetry rises sharply for aU maturities we consider. Figure 3.10c shows 

the term structure of (negative) the.implied excess kurtosis. Perhaps sur­

prisingly, excess kurtosis relative to the HG distribution decreases with ma­

turity. OveraU, the term structure evidence indicates that the distribution 

of expected returns violates the i.i.d. assumptions. However, the impact 

of dependence appears to have a much greater impact on implied skewness 

than on other moments. In contrast, measures of implied volatilities fiatten 

out beyond a maturity of 3 months while measures of implied excess kur­

tosis decrease with maturity. To our knowledge, this differential impact of 

time-dependence on skewness and kurtosis has never been documented. 

IX Conclusion 

We provide a simple extension of the BSM option pricing mode!. The Ho­

moscedastic Gamma model allows for arbitrary skewness in the distribution 

of returns and delivers closed-form option pricing formula at any maturity. 

We provide a natural change of measure under which returns are HG under 

the historical and the risk-neutral probability measures. An important impli­

cation is that the relationship between the equity premium and the volatility 

spread is conditional on skewness. It is the ratio of the volatility spread to 

skewness that predicts excess returns. EmpiricaUy, we find coefficients that 

correspond to implications from the mode!. Also, the information content 

of the volatility spread improves when we adjust for skewness. This new 
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stylized fact should help to discriminate among competing theories of the 

volatility spread. 

This link between the equity premium, skewness and the volatility spread 

implies that skewness is key for pricing and hedging options. We first intro­

duce the implied volatility and skewness surface, which we study empirically. 

This is a new tool that provide a transparent interpretation of variations in 

the shape and level of the IV curve in terms of skewness. Next, we develop 

the practitioner's version of the HG mode!. This approaches is robust to de­

viation of kurtosis from the HG mode!. Empirically, models based on the HG 

distribution perform better than their Gaussian counterparts. Hedging per­

formances are also substantially improved. The results suggest that allowing 

for flexible time-variation in skewness is key for improving option pricing. 

Fînally, we document the term structure of volatîlity, skewness, and kurtosis 

out to an horizon of 9 months. We find that dependence in returns have a 

larger impact on skewness thàn kurtosis, hîghlighting, again, the importance 

of skewness. 



X Appendix 
A Proposition 1 
Our candidate SDF is, for given v, 

Mt = exp(-v(~)Ct + 'li (v(~»), 

where 'li is the log-cumulant function of c, 

'li (u) = 2u Jh(~~» -~ ln [1 + ~ua (~) Jh (~)] . 
a '-' a (~) 2 
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Following CEFJ, this SDF defines an Equivalent Martingale Measure [EMM] if and only 
if 

'lI(v(~) -1) - 'li (v(~» - 'li (-1) + (J,I-ro)~ = 0, 

which has the following unique solution for v (~), 

v ~ _ _ 2 g(~) 
( ) - a(~) Jh(~) + g(~) -1' 

where 

( A) _ ((J,I- ro)~ (A)2 a (~) Jh(E)) 
9 '-' - exp 4 a '-' + 2 . 

Proposition 2 of CEFJ establishes sufficient conditions on 'li for the solution to be unique. 

B Limit of Risk-Neutral Volatility 
Define 

IIo==(J,I-r) 

v'/5. 
i3(~) == a(~)-2-

17'(~) == Jh·(~)/v'/5., 

and note that the drift correction term can be written as 

2 ~ - Jh(E) = 17' (~) - 17 ~ 
a (~) i3(~)' 

(3.17) 

We first study the limit of the numerator as skewness tends to zero. Using the definitions 
above we have (see Proposition 2) 

• g(i3(~»-l 
17 (~) = i3(~)g(i3(~» (3.18) 

where, with a slight abuse of notation, 

g(i3(~» == exp(-IIoi3(~)2 + i3(~)I7), (3.19) 

which leads to an indeterminacy when skewness tends to zero. We use the first order 
expansion of the exponential function, exp(x) = 1 + x + x8(x) where 8(x) tends to zero 
when x tends to zero. Substituting in Equation 3.18 leads to, after sorne simplification, 

17' ~ _ -IIoi3 (~) + 17 + 8 (13 (~» 
( ) - 1 - IIoi3 (~)2 + 13 (~) 17 + 13 (~) 8 (13 (~»' 

and taking the limit shows that 17' (~) ...... 17 when 13 (~) ...... O. 
Note then that the limit of 3.17 leads to an indeterminacy. We will again apply a 

Taylor expansion but, first, we compute the first order derivative of (3.18) with respect to 
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(3(D.) using Equation (3.19) to compute the derivative of 9 ((3(D.)) which leads to 

dao ((3(8)) _ 1 - 9 ((3(D.)) + (3(D.) (a - 2IIo(3(D.)) 
d(3(D.) - (3(D.)2g ((3(D.)) 

where again we face an indeterminacy. We use a second-order expansion of g((3(D.)) 

g((3 (D.)) = g(O) + (3 (D.) g' (0) + ~g" (0)(3 (D.)2 + (3 (D.)2 0 ((3 (D.)) , 

where O((3(D.)) tends to zero when (3(D.) tends to zero. Substituting these results in a 
first-order expansion for aO((3(D.)), 

aO ((3(D.)) = aO (0) + da~Jfl~)) (0) (3(D.) + (3(D.)t1 ((3(D.)) , 

leads to 

aO~~l)a =-(IIo+~2)+O((3(D.)), 
which, in the limit, delivers the desired result. Note that we then have 

" ~ -.jh[iS) -
J.LU + 2 0:(D. - (r _ ~2) D. + D.O((3(D.)). 

and, finally, that if we substitute the second-order expansion for g(D.) in the solution for 
v, we get 

,,2 
J.L-r+2" J.L-r 1 

v(D.) -> a2 = ~ + 2' 
C Taylor Expansion of the Priee of Risk 
We want to show that, 

where 

v ((3) 

g((3) 

_J... + g((3) 
(3a 9 ((3) - 1 

exp( -(J.L - r)(32 + (3a). 

Recall that v (0) = (J.L - r)/a2 + 4 and note that 

Vi ((3) 

g' ((3) 

9' ((3) 
(32a (g ((3) - 1)2 

(-2(J.L - r)(3 + a) 9 ((3), 

We evaluate the limit of this derivative as (3 -> a using, as ab ove , the second-order 
expansion of g((3). After tedious but straightforward computations, the result is 

Vi (0) 
(J.L - r)2 + ~ - 2(J.L - r)a2 + ~ - (J.L - r)a2 + 2(J.L - r)a2 + (J.L - r)a2 - ~ 

D Proposition 2 
From CEFJ, the logarithm risk-neutral of the risk-neutral Moment Generating Func­

tion is 

-ull!' (v (D.)) + Il! (v (D.) + u) - Il! (v (D.)) 

Jho (D.) 4 [1 0] 
2u (D.) - --2 ln 1 + -uo: (D.) ~ , 

0: 0:(D.) 2 
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implying that 

The HG model can then be written as 

where 

and with 
vh*V:::'.) = 2(g (~) - 1). 

a (~) 9 (~) 

Substituting back in the equation for returns under the risk-neutral measure, and sim pli­
fying, yields the results. 

E Greeks 
For notational simplicity we introduce a == H/!3(~)2. We begin with the sensitivity to 
changes in the underlying stock priee. The HG option price is homogenous of degree one 
in stock price and strike. Then the standard result holds and the option delta is simply 

oCt 
oSt = C l •t , (3.20) 

which depends on skewness. Next, the sensitivity of the option's delta with respect to the 
stock price is 

02 Ct e-(d,+rfH)d~-l K 

oS; 1!3la*r(a) S;' 
(3.21) 

which also depends on skewness and moneyness. The sensitivity of option prices to changes 
in the underlying risk-neutral volatility is 

oCt 
oa; 

1!3la*e(-r f H) K e-d'd~ 

a* (1 - !3a*) r(a)' 
(3.22) 

and, finally, the sensitivity of option prices to changes in the skewness of returns is given 
by 

where 

- ~ [(ln(d2) -w(a)) Ct - Ke(-rfH) P(a, d2) In(l - !3a)] 

+ ~r(a)d~St(1- !3at2FHa, ai a + 1, a + li -dl) 

2a ( ) a (-r f H) - (. .) ~r a d2Ke, F, a,a,a+ 1,a+ 1,-d2 

* -d, da K e( -r fH) __ a ___ e __ 2 

1 - !3a* r (a) , 

W (a, z) = P(a, z) ln(z) - r (a) za ,F,(a, ai a + 1, a + li -z), 

and where ,F,(·) is the regularized hypergeometric function. 

F Proposition 3 

(3.23) 

A no-arbitrage price of a European cali option with strike price K and maturity T can 
be obtained from the computation of the discounted expectation of the terminal payoff 
under the risk-neutral measure. That is, 

E Q [max (SHT - K,O)] 

exp( -rT)StEQ [exp (Rt,M) l[R t ,M>ln(K/se)ll - exp (-roT) KP
Q 

[Rt,M > In(K/St)]. 
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'Ne can compute pQ [Rt,M > In(Kj St)] from the distribution function of a gamma variable. 
Note first that 

pQ[R > In(KjS)] = pQ [(3 (~) * > In(KjS,) - JL* (~) M~ + J~M] 
t,M t J~MYt,M J~Mu* (~) (3(~)' 

where we define 

2.JM ( * 2.JM) * Q (4M ) 
a (~) Ct,M + a (~) = Yt,M ~ r a (~)2' 1 , 

based on the characterization of the standardized Gamma distribution given in Equation 
:1.2. If a (~) > 0, 

r ( T . T + In(K/s,)-Y'(~)T) 
P Q[R 1 (KjS )]__ ~,~ i3(~)<1'(~) 

t,M > n t -- ( T ) , 

r i32(~) 

where rra, x) is the upper incomplete gamma function 27 and if a (~) < 0, 

( 
T . T + In(K/Stl-Y'T) 

pQ[Rt,M > In(KjSt)] = = "'1 ~,~ T i3(~)<1'(~) 
r (i3(~)2 ) 

r (~. ~ + In(K/Stl-Y'T) 
i3(~).' i3(~). i3(~)<1'(~) 

=1- . 

r (i3(~)2) 
Similarly, 

E Q [exp (Rt,M) lIRt ,M>ln(K/Stll] 

exp (JL* (~) M ~ - u* ~~~~ ~ ) EQ [exp (u* (~) (3 (~) Y;,M) 1 [gw.Y;,M>"]] 

where we use 
In(Kj St) - JL* (~) M ~ J ~M 

Ii= +--. 
J~Mu* (~) (3(~) 

Then, if a (~) > 0, and using that Y;,M has a standard gamma distribution with parameter 
M~ h 

,3(~)2 ,we ave 

Mil 1 

{OO ( * ) (Z;,M) ~(,,)2 - * 
JI exp -Zt,M M" dZt,M 
(1-<1*(~)i3(~)) ~~ (1 _ u* (~) {3 (~)) ~(,,)2 r (i3~~2) 

r ( M~ . ( M~ + In(K/Stl-I"(~)~M) (1- * (~){3(~))) 
i3(~)2, i3(~)2 . i3(~)<1' (~) U 

M" 
r (i3~~~2 ) (1 - u* (~) {3 (~)) ~(")' 

and, using the change of variables (1 - u* (~) (3 (~)) Y;,M = Z;,M, it follows that 

EQ [exp (Rt,M) lIR t ,M>ln(K/Stll] 

(( 
* u*(~))) r(i3(~)2;(i3(~)2+ln(~\~l<1-·1d)~)T)(I-u*(~){3(~))) 

exp JL (~) - (3(~) T T' 

r (i3(~)2 ) (1 - u* (~) (3 (~)) {JI")' 

27The upper incomplete gamma function is defined as r(a,x) = JOOt,,-le-tdt while 
t.he lower incomplete gamma function is defined as "'I(a, x) = Jo" t,,-re-tdt. Note that 
rra) = rra, 0) while "'I(a) = "'1 (a, 00). 
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If, however, o:(Ll) < 0 then 

and then 

G Proposition 4 
Suppose that the underlying stock priee evolution under the risk-neutral measure ls 

given by 
RT = (r - 6) T + (r/Ty 

where 6 ls a risk-adjustment factor, y is a random number with mean zero, variance l, 
skewness, ~ and kurtosis, >'2. Suppose also that the probability density of y is described 
by the following Edgeworth series expansion around the standardized gamma distribution: 

>'2 f (y) = 9 (y) + --:-"---

where g(y) is the standardized gamma density funetion given by 

and where z == '7 y + a. Imposing that gross stock returns are a martingale under the 
risk-neutral measure, 

E~ [exp (RT)l E~[exp ((r - 8) T + av'Ty) 1 

exp ((r - 8) T) J exp (av'Ty) [g (y) + _>'2--;-;-=- ct:y~y)] dy, 

leads to the required risk-adjustment, 

The priee of a European call option is 

c~=e-rT l:. (Soexp(Cr J)T+av'Ty) K)f(y)dy 
2 

where 

We have 

di = ln (SoIK) + Cr - 8)T. 
av'T 

KjOO.t (Y)dY] . 
-d, 
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For the first integral, we have 

and for (3 :s 0, say, and di cl2 (1 - 17(3) we have 

L:. exp (uny) 9 (y) dy == (le~(7:;t P (a, di) 
2 

while 

J. 
Next, for the second Integral above, 

L:. f (y) dy == L:. 9 (y) dy + K L:. a:<:y~Y) dy 
, , 2 

with 

f
oo ra-d, "If za-le-z -

_d
2

g (y)dy Jo ~dz=P(a,d2) 

f"" ~g(4Y)dy - • [ P(a-4,cl.) 4P(a 3,d2 )+ ] -a, dy - a 6P(a-2,d2 )-4P(a 1,cl2 )+P(a,d2 ) • 

H Identifying Restriction on the P-HG 
The equality of priees from the true model and the P-HG for at-the-money options 

implies that 

P (a, dD - P (a, d2) = P (a, dr) - (1 + T 2u4K) P (a, d2) 

+ KT;3U 
[-h" (d2) + u(3h'(d2) u 2(32h(d2)] , 

while the equality of the first derivative of priees implies 

P (a, d;)+ UIOll d'2j3h{d2) = (1 + T 2 u4 K) P (a, d2 ) 
an (1 - (3uOI) 

+ Ka
2 [hlll (d2 ) +'u3 p3h{d2)] , 

and, finally, the equality of the second derivatives implies 

h [1 + (2a - di - d2) j3uIOll + + -;--=:--.!.?'-'''== 
1701 (1 - j3UOI) an {l - a 2T 

(1 + T 2u4K) h ~2) + K;2 [h(4) (d2) + u3j3.3h'(d2)] . 
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Then, linearizing the left sides of the equations around ao = a, "'(1 = 0 and "'(2 = 0, 
respectively, and the right side around ~ = 0 leads to 

aIO - a 

a 

where 

d2 

dl 

a 

~ 

-a ln (1 - a(3) 
a{3 

d2 (1 - a(3) 

T 
/]2 

613' )..2- r 
4! 
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Table 1: Summary statistics for strike priee and maturity categories. 

(a) Summary statisties by moneyness 

Moneyness 
<0.95 <0.975 <1 <1.025 >1.025 Ali 

N umber of Contracts 3343 2418 3859 3077 3809 16506 
Average Cali Priee 28.24 31.80 37.22 47.05 78.85 46.05 
Average IV 19.43 19.23 19.36 20.13 22.66 20.26 

(b) Summary statisties by maturities 

Contract Month 
1 2 3 4-6 7-9 10-12 Ali 

N umber of Contracts 4303 4016 2377 2822 1726 1167 16506 
Average Cali Priee 36.60 39.53 42.91 51.53 61.95 72.74 46.05 
Average IV 20.47 20.24 20.37 20.19 20.15 20.24 20.26 

(e) Summary statisties by moneyness and maturities. For each moneyness and strike priee 
eategory, the first li ne gives the number of eontracts and the second line gives the average 
Implied Volatility. 

Moneyness 
Months <0.95 0.95 to 0.975 0.975 to 1 1 to 1.025 >1.025 
1 96 398 1104 ll72 1533 

21.39 18.65 18.63 19.55 22.92 
2 354 668 1113 848 1033 

19.80 18.66 19.13 20.08 22.75 
3 461 445 647 406 418 

19.75 19.24 19.78 20.94 22.61 
4-6 973 481 504 371 493 

19.27 19.48 20.00 20.88 22.39 
7-9 805 262 280 167 212 

19.18 20.35 20.33 21.26 22.46 
10-12 639 157 194 89 88 

19.44 20.72 20.99 21.48 22.30 
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Table II: Predictability of Excess Returns by Implied Skewness. 

The table reports the results of n-period regressions of returns on the SP500 index in 
excess of a yield of maturity of n months: 

1 t ( (n) [Vi) _ T 
:;; j=l TM,Hj - Yj,t+j + 2 - an + bn PREDt + ên,Hn' 

The regressor PRED is a combinat ion of IV-RV and (IV-RV)jIS, where IV and 18 are 
annualized implied volatility and skewness from aH option contracts, and RV is the an-
nualized realized volatility. Reported in square brackets and in brackets are respective 
robust t-statistics for the nuH that the coefficient is equal to zero, and for the nuIJ that 
the coefficient is equal to -2. The sample period is from January 1996 to December 2004. 

3 6 12 24 36 

Constant -22.19 -5.43 -3.50 -7.14 -6.93 -18.96 
[-0.65] [-0.20] [-0.12] [-0.24] [-0.24] [-0.70] 

(IVcRV)jIS -3.28 -2.24 -2.04 -2.13 -1.58 -1.64 
[-2.66] [-2.52] [-2.69] [-3.85] [-2.38] [-2.66] 
(-1.04) (-0.27) (-0.05) (-0.23) (0.64) (0.57) 

Adj. R 2 1.85 3.11 5.59 9.72 8.06 11.28 

Constant 0.10 2.86 -8.13 -10.68 -0.63 2.31 
[0.00] [0.08] [-0.26] [-0.33] [-0.02] [0.07] 

IV-RV 7.33 6.38 8.11 8.28 4.37 2.12 
[1.76] [1.65] [3.01] [3.40] [1.51] [0.75] 

Adj. R2 -0.03 1.18 5.83 9.72 3.52 -0.11 

Constant -11. 78 -3.23 -10.59 -13.93 -5.15 -7.55 
[-0.33] [-0.10] [-0.34] [-0.44] [-0.16] [-0.25] 

IV-RV -7.46 -1.53 4.83 4.63 -1.15 -5.29 
[-0.93] [-0.25] [1.18] [1.24] [-0.27] [-1.71] 

(IV-RV)j18 -4.79 -2.55 -1.06 -1.19 -1.81 -2.59 
[-1.98] [-1.66] [-0.86] [-1.35] [-1.98] [-3.31] 

Adj. R 2 1.27 2.21 5.55 10.05 7.05 14.06 



Table III: In-sample RMSE 

RMSE by moneyness and by maturity in percentage of BSM model's RMSE. BSM is the Black-Scholes Model, HG is the Homoscedastic Gamma Model, 
P-BSM and P-HG are practitioner's versions of these models where volatility is quadratic in moneyness. P-HGl is a version where the linear term is zero 
(i.e. ,1 = 0), P-HG2 imposes that f3 is the risk-neutral skewness (see text) and P-HG3 is unrestricted. SP-BSM and SP-HG are smoothed version of these 
models where the shape of the quadratic IV curve is constant through the sam pie. 

Model 
S/X<O.95 

HG 0.584 
P-BSM 0.487 
P-HG1 0.437 
P-HG2 0.449 
P-HG3 0.298 
SP-BSM 0.545 
SP-HG1 0.562 
SP-HG2 0.488 
SP-HG3 0.485 

Model 
1 

HG D.9I6 
P-BSM 0.891 
P-HG1 0.845 
P-HG2 0.652 
P-HG3 0.547 
SP-BSM 1.018 
SP-HG1 0.892 
SP-HG2 0.771 
SP-HG3 0.916 

(a) In-sample RMSE by moneyness 

Moneyness 
O.95<S/X<O.975 O.975<S/X<1 

0.639 0.649 
0.829 0.901 
0.537 0.536 
0.583 0.579 
0.473 0.471 
0.812 0.919 
0.632 0.709 
0.629 0.709 
0.667 0.744 

(b) In-sample RMSE by maturity 

Maturity 
2 3 

---
0.729 0.585 
0.735 0.614 
0.697 0.544 
0.593 0.529 
0.450 0.405 
0.798 0.624 
0.800 0.669 
0.647 0.612 
0.678 0.542 

1<S/X<l.025 
0.681 
0.665 
0.629 
0.532 
0.453 
0.759 
0.712 
0.642 
0.692 

4-6 
0.385 
0.382 
0.355 
0.335 
0.290 
0.379 
0.493 
0.438 
0.335 

l.025<S/X 
0.570 
0.351 
0.595 
0.410 
0.313 
0.477 
0.655 
0.505 
0.469 

7-9 
0.569 
0.526 
0.420 
0.437 
0.305 
0.592 
0.530 
0.505 
0.525 

AlI 
0.368 
0.350 
0.278 
0.234 
0.135 
0.418 
0.399 
0.312 
0.322 

Ail 
0.368 
0.350 
0.278 
0.234 
0.135 
0.418 
0.399 
0.312 
0.322 >-' 

0) 
0 



Table IV: Out-of-sample RMSE 

Weekly out-of-sample RMSE by moneyness and by maturity in percentage of BSM model's RMSE. Parameters obtained for a given week are he Id constant 
to priee options observed the following week. BSM is the Black-Scholes Model, HG is the Homoscedastic Gamma Model, P-BSM and P-HG are practitioner's 
versions of these models where volatility is quadratic in moneyness. P-HG1 is a version where the linear term is zero (i.e. /1 = 0), P-HG2 imposes that f3 is 
the risk-neutral skewness (see text) and P-HG3 is unrestricted. SP-BSM and SP-HG are smoothed version of these models where the shape of the quadratic 
IV curve is constant through the sample. 

(a) Out-of-sample RMSE by moneyness 

Model Moneyness 
S/X<O.95 O.95<S/X<O.975 O.975<S/X<1 1<S/X<1.025 1.025<S/X AU 

HG 0.795 0.895 0.877 0.840 0.715 0.657 
P-BSM 0.718 0.936 0.999 0.914 0.748 0.676 
P-HG1 0.736 0.888 0.869 0.833 0.737 0.621 
P-HG2 0.730 0.906 0.892 0.829 0.840 0.658 
P-HG3 0.656 0.855 0.876 0.832 0.733 0.568 
SP-BSM 0.745 0.930 0.999 0.908 0.683 0.671 
SP-HG1 0.774 0.880 0.904 0.860 0.763 0.665 
SP-HG2 0.724 0.865 0.895 0.852 0.801 0.639 
SP-HG3 0.725 0.885 0.927 0.872 0.696 0.625 

(b) Out-of-Sample RMSE by maturity 

Model Maturity 
1 2 3 4-6 7-9 AU 

HG 1.059 0.894 0.859 0.715 0.757 0.657 
P-BSM 1.069 0.942 0.886 0.727 0.744 0.676 
P-HG1 1.023 0.902 0.871 0.718 0.695 0.621 
P-HG2 1.264 0.914 0.876 0.708 0.695 0.658 
P-HG3 0.996 0.871 0.865 0.717 0.628 0.568 
SP-BSM 1.068 0.923 0.864 0.708 0.764 0.671 
SP-HG1 1.002 0.933 0.896 0.756 0.728 0.665 
SP-HG2 1.055 0.894 0.857 0.725 0.724 0.639 
SP-HG3 1.040 0.877 0.855 0.702 0.726 0.625 f-' 

Ol 
f-' 



Table V: Hedging Errors 1 

Weekly hedging errors by moneyness in dollars. BSM is the Black-Scholes Model, HG is the Homoscedastic Gamma Model, P-BSM and P-HG are 
practitioner's versions of these models where volatility is quadratic in moneyness. P-HG1 is a version where the linear term is zero (i.e. Il = 0), P-HG2 
imposes that f3 is the risk-neutral skewness (see text) and P-HG3 is unrestricted. SP-BSM and SP-HG are smoothed version of these models where the 
shape of the quadratic IV curve is constant through the sample. 

(a) 1-week Hedging Horizon 

Model Moneyness 
S/X<O.95 O.95<S/X<O.975 O.975<S/X<1 1<S/X<1.025 1.025<S/X Ali 

BSM 0.367 0.200 -0.031 -0.207 -0.390 0.016 
HG 0.141 -0.204 -0.212 -0.021 0.177 -0.035 
P-BSM -0.188 -0.124 -0.022 0.127 0.021 -0.046 
P-HG1 0.072 -0.103 -0.094 0.042 0.127 0.001 
P-HG2 0.085 -0.117 -0.136 0.132 0.174 0.014 
P-HG3 -0.028 -0.105 -0.048 0.101 0.135 0.001 
SP-BSM -0.123 -0.122 -0.070 0.048 0.039 -0.054 
SP-HG1 -0.154 -0.071 0.086 0.260 0.025 0.023 
SP-HG2 0.075 -0.077 -0.096 -0.003 0.024 -0.018 
SP-HG3 -0.041 -0.146 -0.112 0.004 0.070 -0.053 

(b) 2-week Hedging Horizon 

Model Moneyness 
S/X<O.95 O.95<S/X<O.975 O.975<S/X<1 1<S/X<1.025 1.025<S/X AlI 

BSM 0.546 0.219 -0.059 -0.429 -0.817 -0.019 
HG 0.182 -0.311 -0.239 -0.076 0.013 -0.082 
P-BSM -0.219 -0.122 0.018 0.071 -0.130 -0.082 
P-HG1 0.047 -0.129 -0.043 0.060 -0.039 -0.019 
P-HG2 0.131 -0.122 -0.070 0.174 0.168 0.046 
P-HG3 -0.030 -0.090 0.003 0.131 0.030 0.002 
SP-BSM -0.176 -0.168 -0.059 0.006 -0.161 -0.114 
SP-HG1 -0.231 -0.021 0.252 0.363 -0.138 0.037 
SP-HG2 0.086 -0.068 0.034 0.027 -0.136 0.002 >-' 
SP-HG3 -0.082 -0.250 -0.112 -0.019 -0.049 -0.106 0) 

tv 



Table VI: Hedging Errors II 

Weekly hedging errors by moneyness in dollars. BSM is the Black-Scholes Model, HG is the Homoscedastic Gamma Model, P-BSM and P-HG are 
practitioner's versions of these models where volatility is quadratic in moneyness. P-HGl is a version where the linear term is zero (Le. 1'1 = 0), P-HG2 
imposes that {3 is the risk-neutral skewness (see text) and P-HG3 is unrestricted. SP-BSM and SP-HG are smoothed version of these models where the 
shape of the quadratic IV curve is constant through the sample. 

Model 
S/X<O.95 

BSM 0.707 
HG 0.211 
P-BSM -0.330 
P-HGl 0.067 
P-HG2 0.095 
P-HG3 -0.073 
SP-BSM -0.315 
SP-HGl -0.307 
SP-HG2 -0.002 
SP-BS3 -0.227 

Model 
S/X<O.95 

BSM 0.988 
HG 0.391 
P-BSM -0.291 
P-HGl 0.187 
P-HG2 0.240 
P-HG3 -0.028 
SP-BSM -0.243 
SP-HGl -0.201 
SP-HG2 0.126 
SP-HG3 -0.155 

O.95<S/X<O.975 
0.383 
-0.341 
-0.189 
-0.120 
-0.110 
-0.108 
-0.248 
0.049 
-0.024 
-0.331 

O.95<S/X<O.975 
0.466 
-0.274 
-0.197 
-0.043 
-0.060 
-0.026 
-0.276 
0.135 
0.087 
-0.335 

(a) 3-week Hedging Horizon 

Moneyness 
O.975<S/X<1 

-0.134 
-0.345 
-0.111 
-0.068 
-0.062 
0.014 
-0.176 
0.325 
-0.020 
-0.216 

(b) 4-week Hedging Horizon 

Moneyness 
O.975<S/X<1 

-0.327 
-0.357 
-0.237 
-0.057 
-0.063 
0.024 
-0.303 
0.346 
0.025 
-0.255 

1<S/X<1.025 1.025<S/X Ail 
-0.652 -1.212 0.015 
-0.150 -0.071 -0.116 
-0.081 -0.184 -0.197 
0.024 -0.119 -0.031 
0.185 0.155 0.037 
0.066 0.013 -0.029 
-0.067 -0.233 -0.223 
0.379 -0.250 0.018 
-0.035 -0.233 -0.043 
-0.069 -0.134 -0.211 

1<S/X<1.025 1.025<S/X Ali 
-0.930 -1.709 0.022 
-0.381 -0.391 -0.104 
-0.277 -0.463 -0.278 
-0.155 -0.416 -0.029 
-0.015 0.070 0.058 
-0.093 -0.219 -0.046 
-0.284 -0.460 -0.294 
0.265 -0.502 0.017 
-0.227 -0.483 -0.021 
-0.249 -0.352 -0.249 
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Table VII: Monthly RMSE 

Monthly RMSE by moneyness and by maturity in percentage of BSM model's RMSE. BSM is the Black-Scholes Model, HG is the Homoscedastic Gamma 
Model, P-BSM and P-HG are practitioner's versions of these models where volatility is quadratic in moneyness. P-HG 1 is a version where the linear term 
is zero (i.e. ')'1 = 0), P-HG2 imposes that f3 is the risk-neutral skewness (see text) and P-HG3 is unrestricted. SP-BSM and SP-HG are smoothed version of 
these models where the shape of the quadratic IV curve is constant through the sample. 

Model 
S/X<O.95 

HGM 0.737 
P-BSM 0.615 
P-HG1 0.628 
P-HG2 0.631 
P-HG3 0.540 
SP-BSM 0.647 
SP-HG1 0.676 
SP-HG2 0.641 
SP-HG3 0.571 

Model 
S/X<O.95 

HG 0.908 
Q-BSM 0.855 
Q-HG1 0.880 
Q-HG2 0.867 
Q-HG3 0.841 
SQ-BSM 0.852 
SQ-HG1 0.898 
SQ-HG2 0.861 
SQ-HG3 0.833 

(a) Monthly In-Sample RMSE 

Moneyness 
O.95<S/X<O.975 O.975<S/X<1 

0.894 0.924 
0.897 0.914 
0.832 0.834 
0.834 0.868 
0.777 0.796 
0.891 0.919 
0.862 0.867 
0.835 0.877 
0.800 0.808 

(b) Monthly Out-of-Sample RMSE 

Moneyness 
O.95<S/X<O.975 O.975<S/X<1 

1.019 0.996 
0.988 0.991 
1.028 0.991 
1.020 0.996 
1.001 0.990 
0.990 0.990 
1.024 0.986 
0.977 0.968 
0.998 0.979 

1<S/X<1.025 
0.774 
0.713 
0.728 
0.713 
0.661 
0.750 
0.753 
0.752 
0.686 

1<S/X<1.025 
0.902 
0.925 
0.904 
0.902 
0.918 
0.933 
0.903 
0.907 
0.913 

1.025<S/X 
0.606 
0.463 
0.662 
0.544 
0.465 
0.513 
0.740 
0.603 
0.506 

1.025<S/X 
0.746 
0.761 
0.776 
0.752 
0.764 
0.769 
0.822 
0.789 
0.770 

Ali 
0.757 
0.674 
0.700 
0.679 
0.605 
0.700 
0.747 
0.701 
0.632 

Ali 
0.913 
0.891 
0.906 
0.897 
0.886 
0.892 
0.919 
0.889 
0.881 .... 

0) 
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Figure 3.1: Number of caU option contracts at each date 

Number of Cali Contmcts Per Trading Day 
1 1 j l , 

~.~",'~_~I1~'_~H~~"~_~7~œ~_~1~'~'~~'~'~~~~' ~~~,.~~~ 
Date 

(a) Total number of contracts. 

PropottIQI'I of Ccntrac:ts; SJX<O.95 Propartion of Con1mcts :0,95< 51X<0.915 
40 

PtepOfÙOnof Contract& :1.025< SIX 

(b) Proportion of contracts in each moneyness category. 
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Figure 3.2: Time series of implied volatility and implied skewness from the 
smoothed version of the SP-HG2 mode!. This is a practitioner's version of 
the Homoscedastic Gamma model where the IV curve is restricted to depends 
only on the (constant) excess kurtosis. 
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Figure 3.3: Implied Volatility curves across values of skewness in level (Panel 
(a)) and in percentage deviation relative to the benchmark (i.e. zero skew­
ness) BSM case (Panel (b)) , The grid covers 41 equidistant values of skew­
ness and moneyness is defined as ln(Sj K)( -TT) to correct for maturity differ-ij,ft 
ences. 
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Figure 3.4: Implied volatility and skewness surfaces for different maturity 
categories where moneyness is defined as In( S / K) ( -TT). Maturity groups 
are defined using settlement dates. 

(a) Month 1 (b) Month 2 
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Figure 3.5: Deviations of implied volatility and skewness surfaces from the 
BSM IV values for different maturity categories. Moneyness is defined as 
In(S/ K)( -rT) and maturity groups are defined using seulement dates. 
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Figure 3.6: Implied skewness curve for different values of volatility, in per­
cent age deviation from BSM IV values, for different maturity groups. Mon­
eyness is defined as ln( S / K) ( -TT) and maturity groups are defined using 
settlement dates. 
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Figure 3.7: Time-series average of estimates of et = ((Tt,'Yl,t,'Y2,t) from 
the P-HG3 (unrestricted) model but for different values of skewness. The 
parameters govern the IV curve: (Ti,t = (TIO,t(1 + 'Yl,tÇi + 'Y2,tÇl,t· 

(a) fI/O,t and Skewness 
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(a) First derivative with respect to stock 
priee, in level. 
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(d) First derivative with respect to stock 
priee, in percentage deviation. 

Figure 3.8: Option priees sensitivities. 

(b) Second derivative with respect to stock 
priee, in level. 
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(e) Second derivative with respect to stock 
priee, in percentage deviation. 

(c) Derivative with respect to volatility, 
in level. 

(f) Derivative with respect to volatility 
, in percentage deviation. 
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Figure 3.9: Term Structure of implied volatility, (minus) the implied skew­
ness and (minus) the implied excess kurtosis from the SP-HG2 model. 
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Discussion Générale Et 

Conclusion 

La liquidité des marchés financiers est le thème central de cette thèse, bien 

qu'il soit abordé de manières bien différentes dans chaque article. Dans le 

premier chapitre je m'intéresse directement à l'importance des contraintes de 

crédit auxquelles font face les intermédiaires financiers. Dans ce context la 

source d'un manque de liquidité ou d'un risque d'illiquidité est bien différente· 

des sources généralement admises. Tout d'abord, il ne s'agit pas d'informa­

tion asymétrique. C'est-à-dire qu'il n'est pas nécessaire que certains agents 

ou intermédiaires n'aient qu'une connaissance imparfaite au sujet de l'actif fi­

nancier qui nous intéresse. Il ne suffit pas non plus que les coûts d'inventaires 

des intermédiaires soient variables et risqués. C'est-à-dire les coûts associés 

à la possibilité qu'un intermédiaire ne puisse pas écouler sur le marché tous 

les actifs acquis alors qu'il offrait des services de liquidité à ses clients. La 

littérature théorique récente met plutôt l'emphase sur les limites à l'emprunt 

et le risque de défaut que doivent coufronter les intermédiaires. Cependant, 

il était jusqu'à maintenant loin d'être clair comment obtenir une mesure des 

conditions d'emprunt et, subséquemment, de mesurer leurs impacts sur le 

prix des actifs financ:iers. C'est à ce niveau que nous apportons une première 

contribution. Intuitivement, nous identifions sur le marché des obligations 

du Trésor américain des paires d'obligations qui ne diffèrent que par l'aise 

avec laquelle les intermédiaires peuvent les financer. Ainsi, les variations de 

la différence entre les prix de ces deux obligations peuvent être attribuées 

aux variations dans les conditions d'emprunt des intermédiaires. Alors que 

ces variations pourraient n'avoir qu'un impact limité sur l'économie, notre 

seconde contribution est de montrer leur importance économique. En particu­

lier, nOus établissons un lieu avec: des variations substantielles de la prime de 

risque, et donc les prix, d'un éventail d'actifs financiers. En conclusion, alors 

que les primes d'illiquidité sont généralement admises comme spécifiques à 




