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RESUME

Le théme principal de cette thése est d’introduire plus de flexibilité dans les mod¢les
d’évaluation des actifs financiers en temps discret tout en maintenant leur tractabilité .
Nous appliquons nos mode¢les a différents domaines de la finance, incluant 1’évaluation
des produits dérivés, I’analyse de la structure a terme des taux d’intérét, et ’évaluation
du risque. D’un point de vue théorique, nous montrons comment évaluer les produits
dérivés quand il y a non-normalité et hétéroscédasticité conditionnelle. L’approche de la
modélisation des séries financiéres étudiée dans cette thése est nouvelle et consiste en la
spe’ciﬁéation de la dynamique de la fonction caractéristique conditionnelle. Elle est moti-
vée par le fait que de nombreux problémes structurels rencontrés en analyse des risques
peuvent naturellement s’écrire en terme de fonction caractéristique conditionnelle du
processus d’intérét.

Le premier chapitre construit un modele dénommé "modele affine généralisé". Les
modeles affines sont trés populaires dans la modélisation des séries financiéres parce
qu’ils permettent un calcul analytique de la structure a terme des taux d’intérét et des _.
prix des produits dérivés. La principale propriété des modéles affines est que la fonction
cumulant conditionnelle du processus d’intérét, qui se définie comme le logarithme de la
fonction caractéristique conditionnelle, est affine en cette variable d’intérét. Par consé-
quent, un mod¢le affine est Markovien, comme les modeles autorégressifs, ce qui est
une limite d’un point de vue empirique. Ce chapitre généralise les modeles affines en
ajoutant dans I’expression de la fonction cumulant d’aujourd’hui le passé de la fonction
cumulant. Par conséquent, les mode¢les affines sont non-Markoviens comme les modéles
ARMA et GARCH, permettant de dissocier les dynamiques de long et de court terme
du processus d’intérét. Ce chapitre étudie les propriétés statistiques du nouveau modele,
dérive les équations des moments conditionnels, les formules analytiques des moments
inconditionnels, et la prévision de la distribution pour une maturité donnée, ce qui est
important dans 1’analyse des problémes de structure a terme. Dans ce chapitre, nous
dérivons également les formules analytiques de la structure a terme du taux d’intérét

ainsi que des options Européennes. Différentes méthodes d’estimation sont proposées,
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incluant le maximum de vraissemblance (MLE), le quasi-maximum de vraissemblance
(QMLE), la méthode des moments généralisées (GMM) et la fonction caractéristique
. empirique (ECF).

Le deuxiéme chapitre étudie de fagon plus spécifique le modéle de structure a terme
VARMA avec absence d’opportunités d’arbitrage (AOA). Dans ce modéle nous mon-
trons que les taux d’intérét sont affines en la variable d’état et son espérance condi-
tionnelle. Le facteur d’escompte stochastique est similaire a celui proposé par Ang et
Piazzesi(2003), a la différence que le prix du risque est une fonction affine de la variable
d’état et de I’espérance conditionnelle de sa réalisation future. Pour un choix particulier
de la variable d’état (constituée de deux taux d’intérét, court et long, et de deux variables
macroéconomiques, inflation et mesure du niveau d’activité), nous investiguohs les per-
formances empiriques du modele VARMA aussi bien en séries temporelles qu’en coupe
transversale. Dans la dimension séries temporelles, nous trouvons des composantes MA
significatives, en coupe transversale nous trouvons des prix du risque significatifs pour
I’espérance conditionnelle de la variable d’état. Un exercice de prévision établit qu’un
modéele VARMA d’AOA sur les trois facteurs traditionnels prédit mieux toute la courbe
des taux et a tous les horizons qu’un VAR d’AOA sur les mémes facteurs et une variable
macroéconomique.

Dans le troisiéme chapitre, nous fournissons des résultats sur 1’évaluation des op-
tions Européennes pour une large classe de dynamiques du sous-jacent. Notre principe
d’évaluation utilise une mesure martingale équivalente (EMM), s’applique en temps dis-
cret, et dans un espace état a dimension infinie en s’appuyant sur le principe d’AOA.
Notre approche s’accdmmode a toutes les formes d’hétéroscédasticité du sous-jacent, et
les résultats d’évaluation dans un cadre homoscédastique en sont un cas particulier. La
non-normalité conditionnelle est prise en compte, ce qui est important étant donné que
I’hétéroscédasticité conditionnelle a elle seule ﬁe suffit pas pour capter les "smiles" ob-
servés sur les prix d’options. La dynainique risque neutre des rendements est de la méme
famille que I’historique. Nous ne faisons aucune restriction sur la prime de risque, encore
moins sur la forme de non normalité. Par conséquent notre cadre englobe les résultats

de Duan (1995), Heston et Nandi (2000). Nous donnons des extensions dans le cadre



des modeles discrets de volatilité stochastique, et nous analysons les relations entre les
principes d’évaluations en temps discret et continu. Un exercice empirique démontre
I’utilité de la non normalité conditionnelle dans la réplication des faits styliéés dénom-
més "smirk".

Le quatrieme chapitre développe un mode¢le affine a facteurs multiples en temps dis-
- cret et a composantes inobservables dans lequel la variance et I’asymeétrie conditionnelle
des rendements sont stochastiques. De fagon cohérente, nous dissocions la dynamique de
la variance conditionnelle de celle de 1’asymétrie conditionnelle. Notre approche permet
a la distribution des rendements journaliers courants d’étre asymétrique conditionnelle-
ment aux facteurs courants. Dans notre modéle, I’asymétrie conditionnelle est la résul-
tante, d’une part des effets de levier, et d’aufre part de I’asymétrie de la distribution des
rendements courants conditionnellement aux facteurs courants. Nous dérivons des for-
mules analytiques pour différentes conditions de moments utiles pour I’inférence par la
méthode des moments généralisée. En appliquant notre approche aux rendements jour-
naliers de plusieurs indices boursiers, nous montrons que la distribution des rendements
courants conditionnellement a la volatilité courante est positivement asymétrique, et né-
cessaire pour reproduire 1’asymeétrie inconditionnelle et les corrélations négatives entre
rendements courants et carrés des rendements futurs. L’effet de levier est significatif et
négatif tandis que 1’asymétrie conditionnelle est positive, impliquant que 1’asymétrie de
la distribution des rendements courants conditionnellement a la volatilité courante do-
mine I’effet de levier dans la détermination de 1’asymétrie conditionnelle.

Mots clés: Modéles affines, fonction cumulant, structure a terme des taux d’in-
térét, VARMA, prix du risque, GARCH, principe d’évaluation risque-neutre, ab-
sence d’arbitrage, innovations non-normales, volatilité stochastique, asymétrie sto-

chastique, effet de levier, méthode des moments généralisée.



ABSTRACT

The main goal of this thesis is to introduce more flexibility in discrete time finan-
cial models while maintaining tractability . We apply our models in several domains
in Finance including derivative pricing, term structure of interest rate and evaluation of
risk. From a theoretical point of view, we show how we can still price derivative when-
ever non-normality, heteroskedasticity and time varying higher moments are taken into
account. We introduce a different way of modeling financial time series, notably using
conditional characteristic functions directly. The main motivation of this new approach
is to extend affine model to non-Markovian ones.

The first chapter builds a new class of model terméd "generalized affine models".
Affine models are very popular in modeling financial time series as they allow for an-
alytical calculation of prices of financial derivatives like treasury bonds and options.
The main property of affine models is that the conditional cumulant function, defined as
the lbgarithmic of the conditional characteristic function, is affine in the state variable.
Consequently, an affine model is Markovian, like an autoregressive process, which is
an empirical limitation. The chapter generalizes affine models by adding in the current
conditional cumulant function the past conditional cumulant function. Hence, general-
ized affine models are non-Markovian, such as ARMA and GARCH processes, allowing
one to disentangle the short term and long-run dynamics of the process. Importantly, the
new model keeps the tractability of prices of financial derivatives. This chapter studies
the statistical properties of the new model, derives its conditional and unconditional mo-
ments, as well as the conditional cumulant function of future aggregated values of the
state variable which is critical for pricing financial derivatives. It derives the analytical
formulas of the term structure of interest rates and option prices. Different estimating
methods are discussed (MLE, QML, GMM, and characteristic function based estimation
methods).

The second chapter models joint dynamics of short term rate, term spread, inflation
and economic growth factor in a Vector Autoregression and Moving Average (VARMA).
We combine VARMA processes with the no-arbitrage restrictions and study the fore-



vii

castability of yields and macroeconomic variables. The paper shows that adding a Mov-
ing Average [MA] component to a standard VAR process offers substantial improve-
ments in forecasting future yields, inflation, real activity and future interest rate risk
premia where our benchmarks are either a standard VAR model or a dynamic version of
the Nelson-Siegel model. An important hindsight from our results is that using VARMA
processes break the tight link between current value of the state variable and the current
conditional expectation of the future realization of the state variable, implicit in VAR
models. Moreover, we show that the state variable follows a VARMA process under the
risk-neutral probability measure only if the price of risk is linear in the current value of
the state variable and the current conditional expectation of the future value of the state
variable.

In the third chapter, we provide results for the valuation of European style contingent
claims for a large class of specifications of the underlying asset returns. Our valuation
results obtain in a discrete time, infinite state-space setup using the no-arbitrage prin-
ciple and an equivalent martingale measure. Our approach allows for general forms of
heteroskedasticity in returns, and valuation results for homoskedastic processes can be
obtained as a special case. It also allows for conditional non-normal return innovations,
which is critically important because heteroskedasticity alonle does not suffice to cap-
ture the option smirk. We analyze a class of equivalent martingale measures for which
the resulting risk-neutral return dynamics are from the same family of distributions as
the physical return dynamics. In this case, our framework nests the valuation results
obtained by Duan (1995) and Heston and Nandi (2000) by allowing for a time-varying
price of risk and non-normal innovations. We provide extensions of these results to more
general equivalent martingale measures and to discrete time stochastic volatility models,
and we analyze the relation between our results and those obtained for continuous time
models.

Finally, the fourth chapter develops a conditional arbitrage pricing theory (APT)
model where factors and idiosyncratic noises are both heteroscedastic and asymmetric.
The model features both stochastic volatility and conditional skewness (SVS model), as

well as conditional leverage effects. We explicitly allow asset prices to be asymmetric
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conditional on current factors and past information, termed contemporaneous asymme-
try. Conditional skewness is driven by conditional leverage effects (through factor load-
ings) and contemporaneous asymmetry (through idiosyncratic skewness). We estimate
and test three versions of the SVS model using several equity and index daily returns,
as well as daily index option data. Results suggest that contemporaneous asymmetry
is particularly important in several dimensions. It helps to match sample return skew-
ness, negative and significant cross-correlations between returns and squared returns,
as well as positive and significant cross-correlations between returns are cubed returns.
Further diagnostics suggest that SVS models with contemporaneous asymmetry show a
better option pricing performance compared to contemporaneous normality and exist-
ing affine GARCH models, especially, but not only, for in-the-money call options and
short-maturity contracts.

Keywords: Affine models; cumulant function; option pricing; term structure
of interest rates; VARMA; Price of risk; GARCH; risk-neutral Avaluation; no-
arbitrage; non-normal innovations; stochastic volatility; stochastic skewness; lever-
age effect; GMM.



TABLE DES MATIERES

RESUME . . . . . . . e iii
ABSTRACT . . . . . ... .. R vi
TABLEDES MATIERES . . . . . . . . . . i, ix
LISTEDESTABLES . . . . . . . . . . . i e Xiv
LISTEDES FIGURES . . . . . . . . . .. . .. e e Xvi
LISTE DES APPENDICES . . . . . . . . . . .. . . . . ... xviii
DEDICACE . . . . . . . i, L. xix
REMERCIEMENTS . . . . . . e e XX
INTRODUCTION GENERALE . . . . . . . . . . 1
CHAPTER 1: GENERALIZED AFFINEMODELS . . . . . .. .. ... 16
1.1 Introduction . . . . . . . . . . . . . . e e e e 16

1.2 Generalized Affine Models . . . . . . e e e e e e e e 21
1.2.1 Examples . . . . . . . . ... ... 22

1.2.2 Existence of Generalized AffineModels . . . . ... ... ... 28

1.2.3 Conditional Cumulants and Moments Structures . . . ... . . 32

1.2.4 Unconditional Cumulants and Moments Structures: Conditions

forstationarity . . . . ... ... ... ... ... 35
1.2.5 Forecasting and Conditions for stationarity . . . ... ... .. 41
1.3 Analytical Formulas of Prices of Financial Derivatives . . .. . . .. -~ 43

1.3.1 The Term Structure of Interest Rates . . . . . ... ... .... 44
1.3.2 OptionPricing . ... .. .. e e e e e e ... 50
1.3.3  Generalized Affine process under the Q-Measure . . . . . . .. 53



1.4 Estimation of generalized affine models . . . . . . R 55
1.4.1 Empirical characteristic function . . . . . . ... . ... ..., 55

1.42 Generalized method of moments . . . . .. ... ... ..... 57

1.4.3 Maximum and quasi-maximum likelihood method . . . . . .. 58

1.5 Empirical Application: No-Arbitrage VARMA Term Structure Models . 59

1.6 Conclusion . .. ... ... . ... ... ... e 62
BIBLIOGRAPHY . . . . . . . . . .. . . 64

CHAPTER 2: NO-ARBITRAGE VARMA TERM STRUCTURE MODELS

2.1
2.2

2.3

2.4

2.5

WITH MACROECONOMIC VARIABLES . ... .. .. 87
Introduction . . . . . ... ... .. L. e 87
VARMA Model of Yields, Inflation and Real Activity . . . . . ... .. 89
2.2.1 Model Specification . .. .................... 89
222 Data. .. .. ... e e 91
223  EstimationResults . . .. ... ... ... ..... .. .... 92
224 ImpulseResponses . . .. .................... 94
Forecasting . . . .. .. .. ... ... .. ... 95
231 Discussion . . .. ... e 96
Term Structure Model . . . . . .. ... ... .. ... L. 96
24.1 ThePricingKernel . . .. ... ... .............. 96
2.4.2 Risk-Neutral Dynamics . . . . ... ... ............ 98
243 BondPrices . . . ... ... ... o 99
Estimation of Risk Premia Parameters . . . . . .. .. ......... 101
2.5.1 EstimationMethod . . . . .. ... ... ... ... .. ... 101
2.5.2 Latent Factors: Rotation . . . ... ... ............ 102
2.5.3 Risk Premium Estimates . . . . ... ... ........... 103

2.54 Term Structure Loadings . . . . . ... ............. 105
2.5.5 ImpulsesResponses . .. ............. I 106
2.5.6 Variance decompositions . . . . . . . ... ... ... ... .. 107

25T Forecasts . . . . . . . . e e e e e e e e e 108



Xi

25.8 Discussion . . . ... ... oo 109

2.6 Robustness Checks: comparison with the Nelson-Siegel model . . . . . 109

27 Conclusion . . ... .. ... 110

BIBLIOGRAPHY . .. .. ... . . .. . . 111

CHAPTER 3: OPTION VALUATION WITH CONDITIONAL HETEROSKEDAS-

TICITY AND NON-NORMALITY . . ... ... ...... 142

3.1 Introduction . . . ... ... ... .. ... ... ... 142

3.2 Conditionally heteroskedasticmodels . . . ... ... ......... 146

3.2.1 Thestockpriceprocess . . . . . . . ... .. ... ... 146

3.2.2 Specifying an equivalent martingale measure . . ... . .. L. 148

323 SolvingfortheEMM . . . .. ... ......0........ 150

3.2.4 Characterizing the risk-neutral distribution . . .. ... .. .. 152

3.2.5 Characterizing the risk-neutral conditional variance . . . . . . . 154

3.2.6 Characterizing Risk-Neutral Conditional Skewness . . . . . .. 156

3.3 Generalized EMM:s and Option Price Bounds . . ... ... .. .. 157
3.3.1 Generalized EMMs in GARCHmodels . . .. ... ...... 157

3.3.2 Nesting the Linear EMM . . . . . e e 160

3.3.3 A Quadratic EMM Under Conditional Normality . . . . . . . . 162

3.3.4 Market Incompleteness and Bounds on Option Prices . . . . . . 163

3.4 The valuation of European style contingent claims . . . . . . . . | ... . 165

3.5 Importantspecialcases . . . ... ... ... ... .. ... .... 169

3.5.1 Flexible risk premium specifications . . . . ... ... ... .. 170

3.5.2 Conditionally inverse Gaussian returns . . . . . ... ... .. 171

3.5.3 Conditionally Poisson-normal jumps . . . . . ... ... .... 173

3.6 Some continuous-time limits . . . . .. ... ... ... ... ... 175

3.6.1 Homoskedastic normal refums .................. 175

3.6.2 Homoskedastic inverse Gaussianreturns.. . . . . ... .. ... 176.

3.6.3 Heteroskedasticnormalreturns . . . . . ... ... ... .... 178

3.7 Stochastic VolatilityModels . . . .. .. ... ............. 180



3.7.1 A discrete-time stochastic volatility model . . . . . . .. .. ..
3.7.2 A diffusion limit of the discrete-time stochastic volatility model
3.7.3 The relationship with the continuous-time affine SV model . . .
3.74 Stochastic Volatility and GARCH . . ... ...........
38 Conclusion . ............... e e e e
39 Appendix . .. ... .. e e e e e e e e e e e e e
39.1 Proof of Proposition3.2.2 . . ... ... ............
392 Proofof Lemma4 .. ... . ... ... ... ...
3.9.3 Proof of Proposition3.23 . ... ...... e e
BIBLIOGRAPHY . . . . . . . . . ..

CHAPTER 4: AFFINE STOCHASTIC SKEWNESS MODELS . . . ..

41
42

4.3

4.4
4.5

Introduction . . . . . ... ...
Discrete-Time AffineModels . . . . . ... ... ... .........
4.2.1 Definition and Overview . . . . . . . ... ... ... .....
4.2.2 Modeling Conditional Skewness and Leverage Effect in Affine

SVModels . .. ... ... .. ... .
An Affine Multivariate Latent Factor Model with Stochastic Skewness .

43.1 GeneralSetup ... ......... ... ... .. ... ... ‘

4.3.2 Expected Returns, Conditional Variance, Skewness and Lever-
ageEffects . . ... ... ... .. ... . ... . .. . ..
433 Continuous-Time Limits . . . . . ... ... ..........
434 GARCH versus SVS: Filtering the Unobservable Factors . . .
Asset Pricing with Stochastic Skewness . . . .. ... ... . ... ..
Estimation and Comparison of Affine SVS, SV and GARCH Models
Using Equity and Index Daily Returns . . . . . ... ... .......
4.5.1 Estimation MethodologyandData . . . . . ... ........
4.5.2 Parameter Estimation . . . . . . J S

4.53 StateEstimatiom . . . . . . . .. .. . e

Xii



Xiii

4.6 Estimation and Comparison of Affine SVS, SV and GARCH Models

Using Index OptionPrices . . . ... ... ............... 237
4.6.1 Estimation Methodology . . . . .. ... ... .. ....... 238
4.6.2 Risk-Neutral Volatility and Conditional Skewness . . . . . .. 239
4.6.3 Model Diagnostics . . . ... ... ... ........ ... 239
4.7 Conclusionand Future Work . . . . . ... ... ... ......... 242
4.8 Appendix.........‘.; ................... ... 243

4.8.1 Cumulant Generating Functions of Affine SV and GARCH Models 243
4.8.2 Change of Measure, Risk-Neutral Dynamics of Returns and Op-

tionPricing . . . .. .. ... 243

4.8.3 Second Order Log-normal Approximation of Positive Random
Variables . . ... .. ... ... ... ... L . 246
4.8.4 The Unscented Kalman Filter . . ... ... .. e 247

4.8.5 Approximated Moments of a Function of a Normal Random
Variable . . . . . . . S 248
BIBLIOGRAPHY . ... .. . o 250



1.1
1.2
1.3
1.4
1.5

2.1
22
2.3
2.4
25
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

LISTE DES TABLES

Monte carlo exercise forthe GMM. . ... ... ........... 82
Monte carlo exercise forthe QMLE. . . . . ... ... ........ 83
Out-of-sample 1-month-ahead forecasting results. . . . . . . . . .. 84
QOut-of-sample 6-months-ahead forecasting results. . . . . . . . . .. 85
Out-of-sample 12-months-ahead forecasting results. . . . . . . . .. 86
Summary statisticsofdata . . . . . . . ... ... ..., ........ 117
Autoregressive Matrixof VARand VARMA . . . . . .. ... ... ... 117
Unconditional variance and MA coefficients . . . . . . . ... ... 118
State variable forecasting errors: RMSE . . . . . . e e 119
VAR Risk premia parameters . . . . . . . . .. ‘. I B
VARMA Risk premia parameters . . . ... ............. 120
Proportion of variance explained by macroeconomic variables . . . 120
Proportion of variance explained by yield factors . . . . . . . . . .. 121
Cross Section Root Mean SquaredErrors . . . . . . ... ... ... 121
Yield curve forecasting errors by horizon . . . . . . I 122
Out-of-sample 1-month-ahead forecasting results . . . . . . ... .. 123
Out-of-sample 6-months-ahead forecasting results . . . . . . . . .. 125
Out-of-sample 12-months-ahead forecastingresults . . . . . . . .. 127
Summary Statistics of Daily Stocks Returns for the Period 1990-2005. 255

Estimation Results on Small Stocks. . . . ... ... ......... 256
Estimation Results on BigStocks. . . . . . . .. ... ........ 257
Estimation Results on Market Indexes. . . . . ... ......... 258
Estimation Results. ¢’s coefficients. . . . . . .. ... ... ... ... 259
Moment Matching for Small Stocks. . . . . . . ... ... ...... 260
Moment Matching for BigStocks. . . . . . ... ... ... ..... 261
Moment Matching for Market Indexes.. . . .. ... ... ...... 262

Summary Statisties for Strike Price and Maturity Categories. . . . . 264



XV

4.10 Estimation of Structural Parameters of Risk-Neutral Processes . . . 265
4.11 Relative RMSE by Moneyness and Maturity . . ... ... ... .. 265
4.12 Relative Bias by Moneyness and Maturity e 266
1 MLE Estimation ARIG . . . .. ........ B xxvii

1.2 Implied volatilities, Option prices RMSEs and bias by Moneyness . xxviii
1.3 Implied volatilities, Option prices RMSEs and bias by Maturity . . xxix

III.1 Parameter Estimates and Model Properties . . . . . .. ... ... .. Lo xIve



2.1
22
2.3

24

2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
32

33

4.1
4.2
43
4.4
4.5
4.6

LISTE DES FIGURES

Bond yields and macro principal components . . . . . . . ... .. ... 129
Impulse responses from the VAR and VARMA on yields and macro factors 130
Impulse 'responses from the VAR and VARMA on yields and macro

factors. . . . . . . . . . . 131
Impulse responses from the VAR and VARMA on yields and macro
factors. . . . . . . . .. 132
Impulse responses from the VAR and VARMA on yields and macro '
factors. . . . . . . . . . . . 133
Priceofrisk . . . .. . ... . ... ... .. ... 134
a, and by , for the VAR and VARMA models . . . . . .. ... ... 134
b; , for the VARand VARMAmodels . . ... ... ......... 135

Impulse responses from the VAR and VARMA on yields and macro factors 136
Impulse responses from the VAR and VARMA on yields and macro factors 137
Impulse responses from the VAR and VARMA on yields and macro factors 138
Impulse responses from the VAR and VARMA on yields and macro factors 139

Responses of yields from Inflation and real activity . . . . . .. ... .. 140
Responses of yields from levelandslope . . . . . . . ... ... ..... 141
Option Prices from Linear and Quadratic EMMs. . o 201
Convergence of Homoskedastic Inverse Gaussian to Black-Scholes Option

Price . . . . . . . . e e 201
Convergence of GARCH to Stochastic Volatility Option Price . . . . . . . 202
Return Series. . . . . ... ... ... . ... ... . ... 263
Autocorrelation of Squared Returns. . . . . . . ... ......... 266
Cross-Correlations Between Returns and Squared Returns. .. c... 267
Cross-Correlations Between Returns and Cubed Returns. . . . . . . 268
Portfolios Volatility and Skewness: Market Indexes . . . .. .. .. 269

Portfolios Volatility and Skewness: Small and Big Stocks . . . . . . 270



4.7
4.8
4.9

I.1
1.2
L3
L[4
I.5
1.6
L7
L8

11
I11.2
1.3
1.4
L5

111.6

1.7

I11.8

Risk-Neutral Volatility and Conditional Skewness . . . . . . .. .. 271
Implied BSM volatility by Moneyne§s, Maturity and Model . . . . . 271
Implied BSM volatility by Maturity, Moneyness and Model . . . . . 272
GARNIG term structureof VaR . . . . . ... .. ... . XXX -
ARNIG term structureof VaR . . . . . ... ... .......... XXX
Term structure of VaR: low varianceday ... ............ XXXi
Term structure of VaR: median varianceday . . . ... ... .. .. XXXi
Term structure of VaR: high variance déy ............... XXXii
Implied Volatility Bias . . . . . . .. ... ... ............. XXXii
Option priceBias . . . . .. .. ... ... ... ..., ...... - XXXiii
Implied Volatility Root mean squarederror . . . . . . ... ... .. XXXiii
Implied Volatility Smirks. Model and S&P500 Index Option Data. . . . . xlvi
Quantile-Quantile Plot of S&P500 Returns Against the Normal Distribution xlvi
Autocorrelation Function of Absolute S&P500 Returns . . . . . . . . . . xlvii
Autocorrelation Function of Absolute GARCH Innovations . . . . . . . . xlvii
Quantile-Quantile Plots of GARCH Innovations Against the Normal Dis-
tribution . . . . .. ... e xlviii
Quantile-Quantile Plots of GARCH Innovations 'Against the SVYG Distri-

bution . . . . . ... e e xlviii
Implied Volatility Functions for Normal and SVG Independent Return

Models . . . . . . . . . . . e e e e e e xlix
Implied Volatility Functions for Normal and SVG GARCH Models . . . . xlix



Appendix I:

Appendix II:

Appendix III:

LISTE DES APPENDICES

Additional Empirical resulté :Chapter1. . . . . . .. .. xxii
Technical Appendix of Chapter 3: Option Bounds . . . . xxxiv

Empirical illustration using GARCH-SVG model: Chapter



A ma meére, Jeanne Djoumessi, et mon pere, Emmanuel Kamkui



ACKNOWLEDGMENTS

Je suis particulierement heureux d’écrire ces mots pour exprimer toute ma recon-
naissance a toutes les personnes qui m’ont soutenu de prés ou de loin et sans condition
pendant toutes ces années de thése.

Je pense a Nour Meddahi, mon directeur de thése. Nour m’a souvent dit que je suis
le premier étudiant qu’il a encadré en temps que directeur, j’en suis trés fier. Toutn’a pas -
été parfait, mais nous avons su surmonter quelques incompréhensions et développer de
vrais liens solides. Je pense ensuite @ René Garcia, mon co-directeur. René m’a toujours
fait confiance et a beaucoup. contribué a mon initiation a la recherche et a I’économie
financiére. Je vous remercie tous les deux d’avoir cru et de continuer a croire que je
pourrai faire un bon chercheur.

J’ai ensuite une pensée a tous mes co-auteuré, en particulier Peter Christoffersen,
Kris Jacobs, Redouane Elkamhi, Chistian Bontemps et mes amis Roméo Tedongap et
Jean-Sébastien Fontaine. J’ai beaucoup appris et je continue de le faire a leurs cotés. Je
suis particuliere reconnaissant a Rym Ben Hamadi pour ses précieux commentaires et
suggestions.

Je suis trés flatté de ’attention que Christian Gouriéroux a porté a4 mes travaux, en
m’accueillant au CREST et en acceptant d’étre I’examinateur de cette these. Je le remer-
cie également pour ses précieux commentaires. Je voudrais, par ailleurs, exprimer ma
reconnaissance a Kris Jacobs et a Peter Christoffersen pour avoir accepté de faire partie
du Jury

Je suis reconnaissant au département de sciences économiques de 1’Université de
Montréal, au Centre Interuniversitaire de Recherche en Economie Quantitative, au Cen-
tre Interuniversitaire de Recherche en Analyse des Organisations, 4 I’Institut de Finance
Mathématique de Montréal, a la Banque Laurentienne et au Centre de Recherche en
Economie et Statistique pour les fonds de recherche qui ont financé ce travail.

Je remercie tout le personnel administratif du département de sciences économiques
de I’Université de Montréal. Je pense principalement & Lyne Racine, Josée Lafontaine,

Jocelyne Demers et Suzanne Larouche. Je remercie également le groupe de finance et de



xxi

comptabilité de I’Imperial College London ainsi que le groupe de finance et d’assurance
du CREST de Paris pour I’hospitalité qui m’a été offerte de travailler avec leurs chercheurs.

Pendant ma visite au CREST, j’ai eu le privilege de connaitre et de sympathiser avec
des personnes trés accueillantes que je tiens a remercier. Je pense a Fanda Traoré, Na-
dine et William Guedj, Imen Ghattassi, Nazim Regnard, Mathieu Rosembaum, Nicolas
Dromel, Fulvio Pegoraro, Idriss Kharroubi, Guy Lalanne, Jean-Frangois Chassagneux,
Kenza Benhima, Sophie Osotimehin, Marie-Anne Valfort, Olivier Simon et Vincent
Lapegue.

Pendant mes années doctorales, j’ai eu la chance de continuer & entretenir de bon
rapports professionnels, personnels et fraternels avec des collégues et amis de longue
date. Je remercie Paul Samuel Njiki, Didier et Carine Tatouchoup, Foutse Khomh, Eric
Bahel, Bertrand Djembissi, Constant Lonkeng, Eric Tchouaket, Anicet Choupo et Hervé
Momeya pour le chemin que nous avons parcouru ensemble et pour toute I’harmonie,
I’estime et I’entente qui animent encore aujourd’hui notre collaboration et notre amitié.
Les rapports entretenus avec tous mes collégues et amis de 1’Université de Montréal
et d’ailleurs m’ont été bénéfiques. Je remercie Selma Chaker, Abderrahim Taamouti,
Prosper Dovonon et son épouse Olivia, Firmin Doko, Octave Keutiben, Fulbert Tchana,
Bertrand Hounkannounon, Pavel Sevcik et Rachidi Kotchoni.

Mes remerciements s’adressent également a tout mon réseau d’amis du Cameroun et
d’ailleurs, ainsi qu’a toutes les personnes qui ont été plus ou moins proches de moi pen-
dant toutes ces ann€es. Je pense & Alex Chimé, Jean Silatchom, Eric Defo, Antoine
Tambué, Hermine Gayum, Octavie Mbiakoup, Jean-Christophe Bobda, Justin Bem,
Kouontchou Serge, Patrick Mzogang, Charlie Tchinda, Guy Chapda, Alain Job, Hugues
Ibata et au Dr Raymond Todem.

Finalement, je remercie toute ma famille proche et lointaine, et en particulier mes
parents, mon grand frére et ami Aubin, mes fréres et soeurs Madeleine, Yves, Hervé,
Laure, Carine, Lynda, Léa, Yannick, Cyrille, Estelle, mon oncle Jean-René et son épouse
Yvonnes, ma fiancée Gwladys. Notre chemin a été tortueux et plein d’embiches, mais
vous avez été présents tout le temps, m’encourageant et me soutenant dans toutes mes

initiatives. Je vous en suis infiniment reconnaissant.



INTRODUCTION GENERALE

Cette thése est constituée de quatre chapitres portant sur des modeles théoriques et
empiriques d’évaluation des titres contingents. Tout d’abord elle construit un modele
plus flexible que le modéle affine, le modéele affine généralisé qui contient des modéles
non Markoviens du type ARMA et GARCH, et garde 1’atout majeur du modele affine,
a savoir les formules analytiques de la structure a terme des prix des titres contingents.
Ensuite, une application est faite en structure a terme du taux d’intérét ou nous nous
focalisons sur le modele VARMA avec absence d’opportunités d’arbitrage (AOA). Par
ailleurs, dans un autre registre nous nous intéressons a la problématique du changement
de probabilité eta la caractérisation de la dynamique risque neutre des rendements quand
I’historique est conditionnellement hétéroscédastique et non normale. Enfin une modé-
lisation de I’asymétrie conditionnelle dans un cadre SV, par opposition au GARCH, est
proposée. |

Le premier chapitre introduit le modele affine généralisé qui est une extension des
modeles affines. Les modeles affines sont souvent utilisés dans la modélisation de la
structure a terme des taux d’intérét parce qu’ils permettent un calcul analytique du prix
des bonds et des options, a toutes les maturités. En outre, les taux d’intérét sont des
fonctions linéaires de la variable d’état (taux court dans les modéles a un facteur), ce
qui facilite 'inférence statistique. Cette approche a été introduite en temps continu par
Vasicek (1977) ou le taux court suit un processus autorégressif gaussien d’ordre 1. Une
extension a plusieurs facteurs a ensuite été proposée par Duffie et Kan (1997). Une étude
théorique des modeles affines en temps discret a été initiée par plusieurs travaux de
recherche, parmi lesquels Darolles, Gourieroux et Jasiak’ (2006) et Gourieroux, Monfort
et Polimenis (2002). D’autres études (Piazzesi (2005), Ang et Piazzesi (2003)) ont utilisé
ces travaux théoriques pour caractériser les interactions entre la structure a terme des taux
et la macroéconomie. Piazzesi (2003) a fait une synthése des travaux sur la structure a
terme affine des taux d’intéréf en temps continu. Dans le domaine de 1’évaluation des
. produits dérivés tels que les options européennes, les processus affines sont utiles parce

qu’ils permettent un calcul analytique du prix de ces produits. Dans cette littérature,
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on distingue comme en structure a terme des taux, les modéles en temps discret des
modéles en temps continu. En temps continu Heston (1993) a décrit la dynamique jointe
des rendements et de la volatilité a I’aide des modéles affines, et une généralisation avec
sauts a été proposée par Duffie, Pan et Singleton (2000). En temps discret des modéles
GARCH affine ont été proposés par Heston et Nandi (2001) et une généralisation avec
asymétrie conditionnelle variable a été proposée par Christoffersen, Heston et Jacobs
(2006). |

Un processhs en temps discret x; est dit affine si sa fonction cumulant conditionnelle,
notée y;(u), et définie comme le logarithme de sa fonction génératrice des moments

conditionnels, c’est a dire,

Vi (u) = log[E[exp(ux; 1) | X7, T < 1],

est donnée par

v (u) = o(u) + a(u)x;. (D

Tout processus autorégressif d’ordre un, AR(1), avec innovation i.i.d. est affine. Tout
processus défini par (1) est Markovien, ce qui pourrait €tre une limitation dans la modé-
lisation de certaines variables financiéres. Une des caractéristiques des séries financiéres,
comme la volatilité des rendements des actifs, est la limitation des modeles ARCH Mar- -
kovien de Engle (1982) qui ne repliquent pas les autocorrélations observées, ce qui a
conduit a I’introduction des modéles du type GARCH par Bollerslev (1986). Par ailleurs,
I’introduction des composantes non markoviennes dans un modéle, comme des compo-
santes du type moyenne mobile (MA), permet de dissocier les dynamiques de court et
de long terme du processus d’intérét, ce qui pourrait étre important pour la modélisation
de la volatilité des rendements d’actifs et des taux courts (Andersen et Lund (1997)).
Des généralisations du modele affine de base (1) ayant plus de mémoire et préservant
les formules analytiques ont été proposées dans la littérature. Dai et Singleton (2003),
Dai, Singleton et Yang (2006) ont supposé que les coefficients du modéle affine suivent
un processus de Markov avec changement de régime. La pertinence empirique de cette

approche a été démontrée, quoi que les méthodes de filtrage soient requises pour 1’esti-



mation et I’évaluation du modéle. Darolles, Gourieroux et Jasiak (2006) ont ajouté des
retard de x; dans (1), en proposant de définir des modéles affines d’ordre p > 1. Mon-
fort et Pegoraro (2007a) ont appliqué cette approche avec succes a la structure a terme
des taux, méme si plusieurs retards sont requis entrainant ainsi un nombre élevé de pa-
ramétres a estimer (voir aussi Ang et Piazzesi (2003) ou un VAR(12) est utilisé pour
modéliser les variables macroéconomiques). Dans un autre article, Monfort et Pegoraro
(2007b) ont combiné les deux approches susmentionnées, c’est a dire ajouter a la fois
des retards et supposer que certains parameétres suivent un processus Markovien avec
changement de régime. Cette approche nécessite des techniques de filtrage pour étre
implémentée en pratique.

Dans ce chapitre, nous adoptons une approche plus traditionnelle en incluant une
composante du type MA dans le modele affine. Les exemples suivantillustrent notre

approche. Supposons que le processus x; suive un modéle ARMA(1,1)
Xt :a+bx,_1 + & —C&_1, & i.i.d., |b| < 1, 'Ci < 1,

ou la fonction cumulant de € est notée ¢ (-). On peut montrer (voir Section 2 du chapitre

1) que

W) = (ua+ (1 - ) e () +ulb — i + ey (),

ce qui suggere d’étendre le modéle affine (1) comme suit

Y (u) = 0(u) + o ()5 + By (u). 2)

Cette nouvelle généralisation du modéle affine est similaire a I’extension des modéles
- AR aux modeles ARMA. Mais ’interprétation dépasse le cadre de la modélisation AR.
En effet ’équation (2) implique que toute puissance du processus X, suit un modéle
ARMA. Ceci est dﬁ\ au fait que la fonction cumulant conditionnelle de x; est autorégres-

. -
S1ve.



Supposons que le processus x; suit un modele VARMA(1,1) donné par
Xt =4 +BXf_1 + & -_C£f_.1, & lld, |B| < 1, |C| < 1,

ou la fonction cumulant de € est notée We(-). On peut montrer (voir la Section 2 du

chapitre 1) que
Vi (u) = (A + we(u) — We (C'u)) + 1/ (B—C)x; + w1 (C'u),
ceci suggeére la généralisation suivante du modele (1)

v (u) = o(u) + a(u)x + i1 (0u). 3)

Notre approche comporte plusieurs avantages. Elle nécessite moins de parameétres que
I’approche de Darolles, Gourieroux et Jasiak (2006). L’évaluation des produits dérivés
et les procédures d’estimation du modeéle sont plus simples que celles des modeles avec
changement de régime comme Dai, Singleton et Yang (2006). Un autre avantage im-
portant de notre approche est qu’elle permet de dissocier les dynamiques de court et
de long terme du processus x;. En effet la fonction a(u) définie dans (1) assume une
double fonction, ce qui pourrait étre contraignant. On sait par exemple dans la littérature
sur la volatilit¢ que les modeles GARCH permettent plus de persistance que les mo-
deles ARCH et ceci est important empiriquement. Nos différents exercices empiriques
attestent ce fait.

Certains modeles dynamiques de structure a terme des taux d’intérét avec variables
macroéconomiques introduisent des variables latentes dans le vecteur d’état; voir Ang
et Piazzesi (2003). Cette approche est justifiée par le fait que les variables macroécono-
miques a elles seules n’expliquent que partiellement la structure & terme des taux. Ce-
pendant, c’est toujours un exercice difficile de comprendre et d’interpréter exactement
ces variables latentes. Il est bien connu dans la littérature de la modélisation des séries
temporelles que les modéles AR avec variables latentes, appelés modéles structurels, im-

pliquent des formes réduites avec représentations ARMA sur les variables observables.



Par conséquent, on pourrait interpréter nos nouveaux modeles comme des formes ré-
duites des modeles affines avec facteurs latents.

Nous introduisons une version plus générale que celle proposée dans 1’équation (2)
en permettant au coefficient qui pré-multiplie y;_; d’étre une fonction de u, c’est a dire,

nous étudions le modele défini comme suit :

Wi (u) = o(u) + o (u)x + B () yi—1 (u)- 4)

Nous dénotons ce modele par le modele affine généralisé de type I. Pareillement au
type I, nous introduisons une version légerement plus générale que celle proposée dans
I’équation (3) en permettant a I’argument de la fonction y;_(.) d’étre une fonction pas
nécessairement linéaire de u et aussi en pré-multipliant y;_(60(u)) par un coefficient,

autrement dit, nous étudions le modéle défini comme suit :

i () = @(u) + o (u)x + Byr—1(8(u)). ©)

Ces extensions sont théoriquement importantes parce que 1’équation (2) implique
que le vecteur (x;,m;), ou m; = E[x;11 | x7,T < t], suit un modeéle bivarié afﬁne,.ce qui
n’est pas le cas pour les modeles définis par les équations (4) et (5). En outre, nous
permettons différents retards de x; et y;_|(u) dans les équations (4) et (5), ce qui revient
a considérer les modeles du type ARMA(p,q).

Ce chapitre a plusieurs contributions. Premierement, nous étudions les propriétés sta-
tistiques des nouveaux modeles et nous dérivons les équations des moments condition-
nels ainsi que les formules analytiques des moments inconditionnels. Nous caractérisons
aussi, via la fonction cumulant conditionnelle, la distributioh conditionnelle du vecteur
(X041, Xt 425 -y Xt g ) impliqué'e par nos modeles. Cette fonction sera I’ingrédient clé du
calcul analytique de la structure a t;erme taux d’intérét et des prix des options. Nous‘
étudions alors la structure a terme des taux d’intérét en supposant que la dyhamique du
taux court est décrite par (4) ou (5) sous les probabilité historique et risque neutre (ceci

nécessite une spécification du taux d’escompte stochastique). En outre, nous étudions



1’évaluation des options européennes quand la dynamique jointe des log-rendements et |
de la volatilité est donnée par (4).

Nous étudions également les différentes méthodes d’estimation des modéles pro-
posés. Dans certains cas nous pouvons calculer analytiquement la vraisemblance du
modele (ce qui est le cas des exemples empiriques proposés). Autrement, on pourrait
utiliser les procédures ECF (fonction caractéristique empirique) proposées par Singleton
(2001) ou les GMM (méthodes de moments généralisées) proposées par Hansen (1982).
Il existe aussi une apbroche plus simple qui consiste a utiliser les équations des deux
premiers moments combinées avec les densités gaussienne ou gamma pour estimer les
parameétres : ceci correspond a la méthode dite de quasi-maximum de vraisemblance.

Une des motivations du premier chapitre était le fait que les modéles du type VARMA
n’entrent pas dans la famille des modéles affines définis en (1). Ce modéle entre dans la
famille des modeles affines généralisés. Dans le deuxieme chapitre nous étudions théori-
quement et empiriquement la structure a terme des taux d’intérét quand la variable d’état
suit un modele du type VARMA. Plus précisément nous discutons de la spécification de
la variable d’état, taux d’intérét, variables macroéconomiques et facteurs latents. Nous
nous intéressons aussi a la spécification du facteur d’escompte stochastique, au probléme
d’inversion quand il y a des composantes inobservables dans la variable d’état. Nous dé-
rivons la formule analytique des taux d’intérét a toutes les maturités et montrons que les
taux sont des fonctions affines de la variable d’état et de son espérance conditionnelle.
Une généralisation du résultat a des ordres (p,q) est fournie en appendice.

Comme le démontre nos résultats, la composante moyenne mobile est particuliére-
ment utile quand il y’a des facteurs macroéconomiques dans la variables d’état. Plu-
sieurs articles de recherche se sont intéressés aux différents liens qui existent entre la
structure a terme des taux, et les variables macroéconomiques, entre' autres nous pou-
vons citer Ang et Piazzesi(2003), Diebold, Piazzesi et Rudebusch (2005), Ang, Piazzesi
et Wei (2006), et Diebold, Rudebusch et Aruoba (2006). Toutes ces recherches ont mis
en exergue ’importance de la relation entre les marchés financiers et la macroéconomie
dans la prévision de la courbe des taux. Tous ces articles ont utilisé un modéle VAR

pour décrire la dynamique jointe des taux et des variables macroéconomiques. Ang et



Piazzesi (2003) ont insisté sur I’importance d’introduire plusieurs retards dans le modéle
affine de base afin de bien décrire la dynamique jointe de I’inflation et de la mesure de
I’activité économique. \Ils ont utilisé un VAR(12) a cet effet. Pourquoi ne pas utiliser un
VARMA ? Etant donné que comme I’indique le premier chapitre, un calcul analytique
des taux reste faisable dans ce cadre. En général, une caractéristique générale des va-
riables macroéconomiques telle que mentionnée par la littérature est leur dépendance de
plusieurs réalisations passées. Un autocorrélogramme de la mesure d’inflation est empi-
riquement bien approximé par un processus ARMA (voir Ang, Bekaert et Wei (2006)).
La différence qualitative entre les modeles de type AR et ARMA réside sur le fait que un
ARMAC(1,1) essaie de séparer les composantes imprévisible et prévisible de 1’inflation,
ce qui n’est pas le cas des modeles AR(1).

Le principal objectif du deuxieme chapitre est de construire un modéle VARMA
de structure a terme avec absence d’opportunité d’arbitrage qui généralise le modéle
de Ang et Piazzesi (2003). Nous voulons mettre en évidence I’importance d’une com-
posante MA. Etant donné I’importance des variables macroéconomiques en structure
a terme des taux d’intérét, nous étudions plus en détail le cas ou la variable d’état est
constituée des taux d’intérét et de variables macroéconomiques. Nous utilisons le taux a
un mois (ce qui est une approximation du niveau de la courbe des taux), et la différence
entre le taux a cinq ans et le taux a un mois (approximation de la pente de la courbe des
taux). Nous ne considérons pas le facteur courbure, car certains auteurs ont souligné I’in- -
signifiance de ce facteur a des fréquences d’observation mensuelle et trimestrielle. Les
variables macroéconomiques sont constituées d’une mesure de 1’activité économique et
d’une mesure de I’inflation. D’un point de vue théorique nous montrons comment spé-
cifier le. facteur d’escompte stochastique quand la variable d’état suit un VARMA.. Cette
spécification généralise celle de Ang et Piazzesi (2003) et permet toujours un calcul
analytique des taux a toutes les maturités.

Nous montrons que comparé au modéle VAR(1), le modéle VARMA(1, 1) offre une
meilleure représentation de la dynamique de la variable d’état. Les erreurs de prévision
des composantes de la variable d’état sont moins élevées dans un modele VARMA(1,1)

que dans un ¥4R(1) et un modéle de marche aléatoire. La conclusion est valide a diffé-

o



rents horizons de prévision et autant a 1’intérieur de I’échantillon qu’a I’extérieur. Une
analyse des fonctions de réponses impulsionnelles révele des différences significatives
dans les modeles VAR et VARMA, en particulier dans la réponse des variables macroé-
conomiques aux chocs sur le niveau et la pente de la.courbe des taux. Par rapport au
modeéle VAR(1), le modéle VARMA(1, 1) nécessite I’inclusion de la moyenne condition-
nelle dans la spécification du prix du risque. Ainsi le prix du risque est une fonction
affine de la variable d’état et de son espérance conditionnelle. Par conséquent pour une
maturité donnée, le taux est une fonction affine de la variable d’état et de son espé-
rance conditionnelle. Pour un modéle VAR, le coefficient de 1’espérance conditionnelle
s’annule. Nos résultats indiquent que I’information passée (résumée ici par 1’espérance
conditionnelle de la variable d’état) a un impact élevé pour les courtes maturités, et que
cet impact diminue graduellement quand la maturité augmente. Le modéle VARMA pré-
dit mieux toute la courbe des taux comparé a la marche aléatoire et au VAR.

Les résultats indiquent que les modeles VAR et VARMA s’accordent sur I’impact
positif de I’inflation et de la mesure d’activité espérées sur la courbe des taux, mais
divergent sur les composantes inattendues de ces deux agrégats. Le modele VAR prédit
un impact positif d’un choc sur I’inflation et I’activité économique sur la courbe des
taux, alors que le modele VARMA prédit le contraire. Un exercice de décomposition de
la variance montre que les variables macroéconomiques expliquent a peu pres 60% de la
variation de la courbe de taux.

A I’aide des données utilisées dans I’article de Diebold et Li (2006), nous avons
comparé les performances hors échantillon de plusieurs modéles d’absence d’opportu-
nité d’arbitrage VAR et VARMA au modele intitulé "Nelson-Siegel avec facteurs dyna-
miques AR(1)" (qui est le meilleur dans Diebold et Li (2006)). Le modeéle VARMA(1,1) |
sur les taux a 1, 24 et 96 mois est meilleur. Il fait mieux que "Nelson-Siegel avec fac-
teurs dynamiques AR(1)", la marche aléatoire et surtout le modéle ¥4R(1) sur les taux
a 1, 24 et 96 mois et I’inflation. Nous concluons que contrairement au modéle VAR, le
modele VARMA sur le traditionnel vecteur de trois facteurs (niveau, pente et courbure)
permet de prendre en compte les facteurs non financiers tels que les variables macroéco-

nomiques.



Le troisiéme chapitre de cette thése, intitulé "Evaluation des options avec hétéroscé-
dasticité et non-Normalité conditionnelle" développe et étudie les propriétés d’un chan-
gement de probabilité en temps discret utile pour I’évaluation des produits dérivés quand
le sous-jacent suis un modele paramétrique (non spécifié) avec variation de volatilité
conditionnelle et non-Normalité conditionnelle. 11 differe de I’esprit des deux prémiers
chapitres dans le sens ou la préoccupation n’est pas 1’obtention des formules analytiques
des prix des options, mais on se pose la question de la spécification d’une mesure de
martingale équivalente (ou de fagon équivalente d’un facteur d’escompte stochastique)
qui puisse s’appliquer a un plus grand nombre de modeles et qui soit compatible avec la
notion d’absence d’opportunité d’arbitrage.

Un titré contingent est un actif dont la valeur future dépend de celle d’un autre actif.
Une relation d’évaluation est une expression qui' lie la valeur du titre contingent a celle
de I’actif sous-jacent et d’autres variables. Le principe d’évaluation des titres contingents
le plus populaire est la relation d’évaluation risque neutre (RNVR).

La plupart de la littérature sur les titres contingents et la plupart des applications du
principe RNVR ont été faites en temps continu. Bien que 1’approche en temps continu
offre plusieurs avantages, I’évaluation des titres contingents en temps discret est aussi
d’un intérét certain. Par exemple, dans la couverture des positions prises sur des options,
les décisions de recomposition de portefeuille se prennent en temps discret, et dans le cas
des options américaines et exotiques, les décisions d’exercer avant échéance sont faites
en temps discret. Cependant, la relative facilité de I’inférence économétrique demeure de
loin I’atout principal du temps discret. La complexité qui résulte du probléme de ﬁltrage
pour les processus qui captent de maniére adéquate les faits stylis€és (comme le modéle
de volatilité stochastique de Heston (1993)) rend difficile I’estimation des processus en
temps continu. Par contre, le filtrage est trés simple pour la plupart des modeéles étudiés
dans ce chapitre.

Pour des raisons de convenance économétrique, la plupart des faits styiisés caracté-
risant les actifs sous-jacents ont été étudiés en temps discret. L’hétéroscédasticité condi-
tionnelle est un fait important des rendements d’actif, elle a €té a I’origine des modéles

GARCH de Engle (1982) et de Bollerslev (1986). Vraisemblablement, grace a cette évi-
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dence, la plupart des travaux empiriques récents en évaluation des options en temps
discret se sont focalisés sur les processus GARCH. Puisque la distribution des innova-
tions sur le rendement des actifs est continue, 1’espace état du model GARCH est infini.
Dans ce cas le marché est incomplet, et il est en général impossible de construire un
portefeuille non risqué constitué de 1’actif contingent et du sous-jacent.

Pour obtenir un RNVR, la littérature sur [’évaluation des dérivés dans un cadre
GARCH a suivi I'approche de Rubinstein (1976) et Brennan (1979), qui démontrent
comment obtenir un RNVR pour les distributions normale et log-normale et dans un
cadre ou la moyenne et la variance sont constantes. Ceci s’opere en spécifiant une éco-
nomie avec agent représentatif et en caractérisant des conditions suffisantes sur les pre-
férences. Pour une dynamique donnée de 1’actif sous-jacent, des hypothéses spécifiques
doivent étre faites sur les préférences afin d’obtenir une risque-neutralisation. La condi-
tion de premier ordre résultant de cette économie implique une équation d’Euler qui
peut-étre utilisée pour évaluer tout actif, Pour des rendements d’actifs log-normaux et
conditionnellement hétéroscédastique, le résultat standard est celui de Duan (1995). Le
résultat de Duan s’appuie sur I’existence d’un agent représentatif avec indice relatif (ou
absolu) d’aversion pour le risque constant.

A cause de la difficulté qu’on rencontre dans la caractérisation d’un modele d’équi-
libre général qui sous-tend un RNVR, trés peu de résultats sur 1’évaluation des titres
contingents sont actuellement disponibles dans le cadre des processus conditionnelle-
ment hétéroscédastiques et non normaux. Dans ce troisiéme chapitre, nous argumentons
qu’il est possible d’investiguer I’évaluation des options pour une large classe de proces-
sus conditionnellement hétéroscédastiques et non normaux, a condition que la fonction
génératrice des moments conditionnels existe. Il est aussi possible de prendre en compte
une classe trés large de prime de risque. Notre cadre différe de celui de Brennan (1979)
et de Duan (1995) et est plus reli€¢ & 1’approche utilisée en temps continu : nous ne
nous basons que sur des arguments d’absence d’opportunité d’arbitrage et sur quelques
conditions techniques sur les stratégies d’investissement pour montrer 1’existence d’un
RNVR. Nous démontrons 1’existence d’une mesure martingale équivalente (EMM) que

nous caractérisons, sans faire d’hypothese explicite sur la fonction d’utilité d’un agent
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représentatif. Nous montrons alors que le prix d’un actif contingent défini comme 1’es-
pérance conditionnelle des gains escomptés futurs est un prix d’absence d’opportunité
d’arbitrage et nous caractérisons la dynamique risque neutre. Nous donnons des résultats
pour le processus GARCH et plus généralement pour le modele a volatilité stochastique
en temps discret. Nous analysons aussi quelques limites en temps continu des modeles
discrets considérés, et nous discutons des relations entre la risque-neutralisation faite en
temps continu et celle faite en temps discret pour les modeéles a volatilité stochastique.

Pourquoi sommes nous capables de fournir un résultat plus général sur I’évaluation
des titres contingents que la littérature existante ? A notre avis, les analyses de Bren-
nan (1979) et de Duan (1995) répondent a deux questions a la fois : premiérement, une
question plus technique qui caractérise la dynamique risque neutre et 1’évaluation des
options ; deuxiémement, une question plus économique qui caractérise le cadre d’équi-
libre général qui sous-tend le principe d’évaluation. La littérature existante a pour la plu-
part considéré ces deux questions comme €tant inextricablement liées, et s’est de ce fait
largement limitée aux processus (log)normaux et quelques cas spéciaux non-normaux.
Ce troisi¢me chapitre différe de fagon subtile mais importante de la plupart des études
existantes. Nous argumentons qu’il est possible et désirable de traiter ces questions sépa-
rément. Nous n’ambitionnons pas de caractériser la distribution bivari€e des préférences
et des rendements qui sous-tend la relation d’évaluation risque neutre. Mais, nous nous
restreignons plutot a une classe de dérivées de Radon-Nikodym et nous cherchons un
EMM dans cette classe. Ceci permet de fournir des résultats généraux sur 1’évaluation
des options sous 1’hypothése de non-Normalité conditionnelle des rendements d’actifs
sans recours a des arguments d’équilibre général. Nous montrons aussi comment le mo-
dele normal et des modeles non-normaux existant sont des cas particuliers de notre cadre
d’analyse.

Une approche similaire consistant a séparer ces deux problématiques existe aussi
dans la littérature sur I’évaluation des options dans le cadre des mode¢les en temps
continu avec volatilité¢ stochastique, a I’instar du mod¢le de Heston (1993). Ces mo-
deles impliquent différents EMMs pour différentes spécifications de la prime de risque

de la volatilité. Pour une spécification donnée de la prime de risque de la volatilité, on
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peut trouver un EMM et caractériser la dynamique risque neutre en utilisant le théoreme
de Girsanov. Pour obtenir ce résultat, et pour évaluer des options, il n’est pas néces-
saire de caractériser explicitement la fonction d’utilité qui sous-tend la prime de risque
de la volatilité. Cette tache est trés instructive, mais est différente de la caractérisation
de la dynamique risque neutre et du prix de 1’option pour une dynamique donnée des
rendements sur le probabilité historique. Cette derniére tache est un exercice purement
mathématique. Pourtant la premiére fournit le cadre économique qui sous-tend le choix
particulier de la prime du risque de la volatilité, et de ce fait aide 4 comprendre si un
choix particulier de la prime de risque, qui est souvent opéré pour des raisons de conve-
nance mathématique, est aussi raisonnable d’un point de vue économique.

Le quatriéme et dernier chapitre de cette thése, intitulé " Modéles Affines a Asymé-
trie Stochastique ", développe un modele affine a facteurs multiples en temps discret et
a composantes inobservables dans lequel la variance et ’asymétrie conditionnelles des
rendements sont stochastiques. Plus important encore, dans le cas du modele a deux fac-
teurs, le vecteur constitué par rendements, la volatilité et I’asymétrie suit un processus af-
fine. La variation temporelle dans la volatilité des rendements trouve son origine dans les
modeéles autorégressifs a hétéroscédasticité conditionnelle (ARCH, Engle (1982)) ou ses
extensions (GARCH, Bollerslev (1986), et EGARCH, Nelson (1991)). Alors que dans
les modeles ARCH et GARCH la volatilité des rendements est complétement déterminée
par I’historique des rendements observes, une approche alternative, devenue populaire
dans la littérature récente, est le modele a volatilité stochastique (SV), dans lequel la
volatilité¢ des rendements est une composante inobservable qui subit des chocs de source
différente de celle générant les chocs sur les rendements. La plupart des applications
des modeles GARCH et SV supposent que la distribution conditionnelle des rendements
est symétrique. Méme si cette hypothese permet de générer les queues €paisses obser-
vées pour la distribution inconditionnelle des rendements, il reste encore a expliquer la
variation temporelle et le signé des asymétries conditionnelles (asymétrie et effets de le-
vier) et les queues de la distribution conditionnelle des rendements (voir Hansen (1994)).
Les asymétries conditionnelles sont importantes car, pour la valorisation des options par

exemple, 1’hétéroscédasticité conditionnelle ne suffit pas a expliquer ce fait empirique
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important qui dans la littérature est qualifiée de "sourire des options". Au premier plan,
nous développons un modele affine a facteurs multiples, a volatilité stochastique dont
les innovations sur les rendements sont asymétriques. Christoffersen, Heston et Jacobs
(2006) étudient également un modele semi-affine des rendements avec asymétrie va-
riable dans le temps. Cependant, I’asymétrie conditionnelle dans leur modéle est liée
de fagon déterministe a la variance conditionnelle, ce qui est également le cas pour le
modeéle a un facteur dans notre cas. Cependant, la volatilité et 1’asymétrie condition-
nelles dans leur modéle subissent les mémes chocs que les rendements puisqu’il s’agit
d’une variante des modeles GARCH. Au contraire, notre modele a un facteur est une va-
riante des modéles a volatilité stochastique, qui nouvellement peuvent étre étudiés dans
un cadre affine ne supposant pas la normalité conditionnelle des rendements. Mieux en-
core, dans notre cas a deux facteurs ou plus, nous brisons le lien déterministe entre la
volatilité et I’asymétrie conditionnelles qui se comportent des lors comme deux facteurs
linéairement indépendants caractérisant de maniéres différentes la dynamique tempo-
relle des rendements et subissant des chocs de sources différentes de celle générant les
chocs sur les rendements. -

Harvey et Siddique (1999) considérent également une distribution conditionnelle
asymétrique des rendements dont la volatilité et I’asymétrie conditionnelles sont deux
facteurs linéairement indépendants avec des dynamiques de type GARCH. Leur asymé-
trie conditionnelle autorégressive est une fagon simple de modéliser I’asymétrie condi-
tionnelle et fournit également une méthodologie d’estimation de 1’asymétrie condition-
nelle qui est facile a mettre en oeuvre précisément par I’applicabilité du maximum de
vraisemblance. Cependant, un défaut d’application, et non pas le moindre, de la mo-
délisation de Harvey et Siddique (1999) est que leur modeéle est non-affine et devient
cotiteux en temps d’exécution pour la résolution des modéles d’évaluation d’actifs fi-
nanciers, précisément a cause ‘de la non-existence de formules analytiques-entrainant
une résolution numérique ou par simulations. Notre modéle est une alternative conve-
nable au modele de Harvey et Siddique (1999). Nous modélisons 1’asymétrie par une
combinaison affine de facteurs stochastiques linéairement indépendants. L’existence de

la fonction génératrice des moments offre un cadre de résolution analytique des mode¢les
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d’évaluation d’actifs financiers permettant de gagner énormément en temps d’exécution.

Nous montrons aussi comment cette fonction génératrice des moments permet d’es-
timer le modele par la méthode des moments généralisée en se basant sur des conditions
de moments exactes. Dans notre cadre a facteurs stochastiques, nous distinguons 1’infor-
mation de I’agent économique de celui de 1’économetre et fournissons explicitement les
équivalents GARCH de la volatilité, de I’asymétrie et des effets de levier conditionnels.
L’autre objectif est de développer et d’implémenter un algorithme pour le calcul ana-
lytique des moments inconditionnels exacts de la variable observable, dans un modéle
semi-affine général en temps discret a facteurs multiples qui englobe notre modele. Une
étude similaire a €té conduite par Jiang et Knight (2002) dans le cadre des processus
affines en temps continu. Ces auteurs dérivent de maniére analytique la fonction caracté-
ristique inconditionnelle conjointe du processus de diffusion vectoriel. Cependant, cette
question, bien que d’une importance a ne pas sous-estimer, n’a pas été examinée pour
les processus affines en temps discret. Premiérement, les formules analytiques pour les
moments inconditionnels permettent d’évaluer I’impact direct des parameétres du modele
sur des moments inconditionnels critiques tels que I’asymétrie, I’aplatissement excéden-
taire, 1’autocorrélation des carrés des rendements et les corrélations croisées entre les
rendements et les carrés des rendements. Deuxiémement, les moments inconditionnels
en population peuvent étre directement comparés a leurs contreparties empiriques. En
plus, cette évaluation s’avere indispensable dans un exercice de calibrage ou les para-
métres du modéle sont fixés de sorte a reproduire les valeurs échantillonales de certains
de ces moments inconditionnels. Plus important encore, cette comparaison entre mo-
ments en populations et moments empiriques permet la mise en oeuvre d’une procédure
d’estimation du modéle par la méthode des moments généralisée avec 1’avantage inqua-
lifiable de se baser sur des conditions de moments exactes. Cette technique d’estimation
permet également d’évaluer I’habileté du modele a répliquer les faits empiriques connus
tels que la persistance dans la volatilité des rendements a travers 1’autocorrélation des
carrés des rendements, ’absence d’autocorrélation des rendements, les effets de levier
négatifs a travers les corrélations croisées entre les rendements et les carrés des rende-

ments, 1’aplatissement excédentaire positif et 1’asymétrie négative. Chacun de ces faits
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stylisés est pris en compte par une ou plusieurs conditions de moments particulieres
faisant partie du vecteur des conditions de moments utilisé pour I’estimation du modéle.

Nous appliquons cette nouvelle procédure d’estimation des modéles semi-affines
pour notre modéle a un facteur, en utilisant les séries de rendements journaliers de plu-
sieurs portefeuilles d’actions et d’indices boursiers. Pour estimer les facteurs stochas-
tiques, nous appliquons une variante du filtre de Kalman pour les modeles non-linéaires.
Les paramétres du modéle sont tous significatifs et les implications du modele sont frap-
pantes. D’abord, la distribution des rendements journaliers courants conditionnellement
a la volatilité courante est positivement asymétrique. De plus, cette asymétrie positive est
nécessaire pour reproduire des statistiques échantillonales significatives telles que I’asy-
métrie inconditionnelle et les corrélations négatives entre rendements courants et carrés
des rendements futurs. Ensuite, cette distribution positivement asymétrique engendre
également une asymétrie positive de la distribution des rendements courants condition-
nellement aux rendements passé€s. Ce résultat est contraire a certaines conclusions d’une
large partie de la littérature existante (Forsberg et Bollerslev (2002)). Finalement, lorsque
la distribution des rendements journaliers courants conditionnellement a la volatilité cou-
rante est contrainte a la normalité, alors le modéle engendre une asymétrie négative de
la distribution des rendements courants conditionnellement aux rendements passés, ce
qui corrobore la littérature existante. Cependant, sous cette hypothése, le modele ne re-
produit plus ’asymétrie et les effets de levier inconditionnels. En plus, les tests de res-
trictions sur-identifiantes rejettent le modele contraint aux niveaux conventionnels tandis
que ces tests ne rejettent pas le modeéle non contraint générant une asymétrie condition-
nelle positive de la distribution des rendements courants conditionnellement aux rende-

ments passés.



CHAPTER 1
GENERALIZED AFFINE MODELS

Abstract

Affine models are very popular in modeling financial time series as they allow for
analytical calculation of prices of financial derivatives like treasury bonds and options.
The main property of affine models is that the conditional cumulant function, defined as
the logarithmic of the conditional characteristic function, is affine in the state variable.
Consequently, an affine model is Markovian, like an autoregressive process, which is an
empirical limitation. The chapter generalizes affine models by adding in the current con-
ditional cumulant function the lagged conditional cumulant function. Hence, generalized
affine models are non-Markovian, such as ARMA and GARCH processes, allowing one
to disentangle the short term and long-run dynamics of the process. Importantly, the
new model keeps the tractability of prices of financial derivatives. This chapter studies
the statistical prdperties of the new model, derives its conditional and unconditional mo-
ments, as well as the conditional cumulant function of future aggregated values of the
state variable, which is critical for pricing financial derivatives. It derives the analytical
formulas of the term structure of interest rates and option prices. Different estimating
methods are discussed including MLE, QML, GMM, and characteristic function based
estimation methods. In a term structure of interest rate out-of-sample forecasting ex-
ercise, our results suggest that for a many horizons, a simple multivariate generalized
affine model on observed yields predicts the whole term structure of the interest rate

better than the VAR and the Nelson-Siegel’s model with AR(1) factor dynamic.

1.1 Introduction

Affine models are often used when one models the short term of interest rates because
they lead to closed form of the bond prices and yields whatever the maturity. In addition,

these yields are linear functions of the state variables, often the short term interest rate.
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when one considers a one-factor model, which makes the pricing and the statistical infer-
ence simple. This approach has been introduced in continuous time by Vasicek (1977)
where the short term interest rate is assumed to follow a Gaussian autoregressive process
of order one and extended by Duffie and Kan (1997) to more non-negative models. Dis-
crete time versions of affine models are studied in Ang and Piazzesi (2003), Darolles,
Gourieroux, Jasiak (2006) and Gourieroux, Monfort, and Polimenis (2002) among oth-
ers while several papers, including Piazzesi (2005) and Ang and Piazzesi (2003), used
them to characterize the term structure of interest rates and its interaction with macroe-
conomic variables; see Piazzesi (2003) for a survey on affine term structure models.
Likewise, several authors used the affine processes for modeling the stochastic volatility
of asset returns and characterized analytically the formulas of option prices; see Heston
(1993) and Duffie, Pan and Singleton (2000) in continuous time and Heston and Nandi
(2001) in discrete time.

A discrete time process x; is called affine when its conditional cumulant function,

denoted y; (), and defined as the logarithmic of the moment generating function, ! i.e.,

v (u) = log[E[exp(ux;+1) | x7, T < 1]],

is given by

v (v) = o(u) + o (u)x:. | (1.1)

Any autoregressive process of order one, AR(1), with i.i.d. innovations, is affine. A
consequence of (1.1) is that an affine process is Markovian, which could be a limitation
for modeling some financial data. It is well known that financial data, like volatility of
asset returns, exhibit serial correlation that Markov ARCH models of Engle (1982) do
not describe well, which leads to the introduction of the GARCH models in Bollerslev

(1986). Likewise, we do know that allowing for non-Markovian components in a model,

1. Instead of considering the moment generating function, one could use the charactenistic function
which exists for any random variable while the moment generating function does not exist for some ran- -
dom variables. The theory developed in this chapter holds for characteristic functions. However, we
decided to use the moment generating function for convenience and due to its familiarity with researchers
in financial economics.
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like moving average (MA) components, allows one to disentangle the short-term and
the long-run dynamics of the variable of interest, which could be important for some
financial data like volatility of asset returns and short term of interest rates (Andersen
and Lund (1997)).

Several generalizations of affine models have been introduced in order to include
more memory in the basic model (1.1) and maintaining the tractability of affine models.
Dai and Singleton (2003) and Dai, Singleton and Yang (2006) assumed that the coef-
ficients driving the affine model follow a Markov switching model. The authors show
the empirical usefulness of this approach, although filtering techniques are needed to
price and estimate the model. Darolles, Gourieroux and Jasiak (2006) added lags of x; in
(1.1), i.e. they proposed an affine model of order p > 1. Monfort and Pegoraro (2007a)
successfully applied this approach to the term structure of interest rates, although one
could need many lags leading to the estimation of many parameters. In a different chap-
ter, Monfort and Pegoraro (2007b) combined the two approaches describe above, i.e.
they added lags and assumed that some parameters are driven by a Markov switching -
model. Again, such a method needs filtering techniques for both pricing and estimating
the model.

In this chapter, we follow a more traditional approach by including MA component
in the model. The following examples highlight our approach. Assume that the process
x; 1s an ARMA(1,1) given by

xx=a+bx,_1+&—cg_1, &iid, |b| <1, |c] <1,

where the cumulant function of € is denoted ¢ (-). One can show (see Section 2) that
yi(u) = (ua+ (1 —c)ye(u)) +u(b—c)xc +cyi-1(u),

which suggests the following extension of (1.1)

v () = o(u) + o (u)x; + By (u). (1.2)
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One could view the new model as an extension of AR models to ARMA ones. It is worth
noting that Eq. (1.2) implies that any power function of x; is an ARMA process. This is
the case because the conditional cumulant function of x, is an auto-regression.

Let us now consider a multivariate version of our model. Assume that the process x;
is an VARMA(1,1) given by

xx=A+Bx,_1+&—Cg_y, &iid., |B|<1,|C|<1,
where the cumulant function of € is denoted W (-). One can show (see Section 2) that
Wi () = (WA + ye(u) — we(C'u)) + 4/ (B — C)xi + w11 (C'w),
which suggests the following extension of (1.1)
v (u) = o(u) + o(u)x + W—1 (Bu). (1.3)

Our approach has several advantages. Its involves less parameters than the approach
adopted in Darolles, Gourieroux and Jasiak (2006). The pricing and estimation proce-
dures of the model are simpler than those of a model with Markov switching factors
like Dai, Singleton and Yang (2006). Another important advantage of the approach is
to allow one to disentangle the short term dynamics of x, from its long-run ones. When
one considers an affine model (1.1), the function a(u) has to match the two dynamics,
which could be restrictive. We do know from the volatility literature that GARCH mod-
els allow for more persistence than ARCH models and that this is empirically important.
Our empirical examples highlight this advantage.

Several dynamic term structure models with macroeconomic variables assume latent
variables in the affine state variable; see Ang and Piazzesi (2003). Such approach is
often done because current values of the macroeconomic variables do not fully explain
the term structure of interest. However, it is somewhat difficult to understand what
exactly these latent variables are. It is well known from the time series literature that

AR models with latent variables, called structural models, imply reduced form ARMA
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representations for the observable variables. Consequently, one could interpret the new
model as a reduced from of affine models with latent factors.
We introduce a slightly more general model than (1.2) by allowing the coefficient in

front of y,_(u) to be a function of u, i.e., we study the model defined by

wi(u) = 0(u) + a(u)x, + B(u)yi-1 (u). (1.4)

We denote this model as the generalized affine model of type I. We also introduce a
slightly more general model (type II) than (1.3) by allowing the argument of y;_;(.) to
be a function of », which is not necessarily linear, and by allowing a coefficient in front

of y;—1(0(u)), i.e., we study the model defined by

Vi) = () + () + B -1 (8(w)- (1.5)

These extensions are theoretically important because Eq. (1.2) implies that the vector
(x¢,m;), where my = E[x;1) | x7,T <], is a bivariate affine model while it is not the case
for models defined by Eq. (1.4) and (1.5). Likewise, we allow for several lags of x;, and
W;—1{(u) in Eq. (1.4) and (1.5), i.e., we consider ARMA(p,q) type models.

The chapter has several contributions. First of all, we study the statistical properties
of the models and derive several conditional and unconditional moments and cumulants.
We also derive the cohditional cumulant function of the vector (x;+1,X+2,---,Xr+4). This
function is critical when one wants to derive analytical formulas of yields and option
prices. We then derive the Treasury yields when assuming that short term of interest
rate is given by (1.4) or (1.5) under the risk neutral measure or the physical measure (the
latter needs the specification of the price of the risk). Likewise, we derive the formulas of
options prices when assuming a stochastic volatility where the dynamics of the stochastic
variance is given by Eq. (1.4).

One can use several methods to estimate to model. - Sometimes one could charac-
terize the likelihood of the model as in our empirical analysis. Otherwise, one could

follow Singleton (2001) by using the characteristic function of the process x; and the
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instrumental variable approach of Hansen (1982). Actually, an efficient use of the whole
characteristic function leads to an efficient estimation of the parameters comparable to
the maximum likelihood estimators; see Carrasco and Florens (2001, 2006) and Car-
rasco, Chernov, Florens, and Ghysels (2006). It is also possible to use the conditional
mean and variance of the process x; combined with the Gaussian quasi-maximum likeli-
hood approach to consistently estimate the parameters.

Our results suggest that using observable variables in a no-arbitrage VARMA model
can do better than "Nelson-Siegel with AR(1) factor dynamic" in forecasting the entire
yield curve at any horizon. Macro-economic factors add new information which are not
contained into affine yields only model, but we can cope with these macro-economic
factors by implementing a no arbitrage generalized affine model (here the VARMA) on
the classic three factors model.

The rest of the chapter is organized as follows. Section 2 provides the simple general-
ized affine model and provides its statistical properties. Section 3 provides the analytical
formulas of the term structure of interest rates when the short term of interest rates is a
generalized affine process under the physical or the risk-neutral measure. Likewise, sec-
tion 3 provides the formulas of the option prices when the volatility of the stock returns
is a generalized affine process under the physical or the risk-neutral measure. We discuss
several estimation methods in section 4. Section 5 provides an empirical application in
the term structure of interest rate modeling where used VARMA models, while Section
6 concludes. Appendik A provides an example where the function f3(-) is not constant.

All the proofs are provided in Appendix B.

1.2 Generalized Affine Models

This section introduces and studies the two simple generalized affine modes.
Definition: Generalized Affine Process. A process x; is called a generalized affine

process of Type I and order (1,1) when the conditional cumulant function of x,,; given
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its lagged values x;,x,_1, ..., is characterized by

v (u) = logE[exp(uxsy1) | x7, T <1]'= o(u) + a(u)x, + B (u) W1 (u). (1.6)

A process x; is called a generalized affine process of Type II and order (1,1) when the

conditional cumulant function of x;; given its lagged values x;,x;_1, ..., is characterized

by
v, (u) = logElexp(ux;+1) | x7,7T < t] = @(u) + a(u)x,+ Byi—1(0(u)). (1.7)

To simplify the exposure, we combine the two types in the same framework and we
provide the following general definition: '
A process x; is called a generalized affine process of order (1,1) when the conditional

cumulant function of x,; given its lagged values x;,x,_1, ..., is characterized by
Vi (u) = logE[exp(uxi+1) | x¢, T <t] = o(u) + a(u)x; + B(u)yi—1(0(u)).  (1.8)

1.2.1 Examples

Severai well know examples in the time series and financial literatures are general-
ized affine. Obviously, affine models correspond to the case B(u) = 0. Other examples
are given below.

1.2.1.1 Linear and Non-Linear ARMA(1,1) Models

Assume that x; follows a linear ARMA(1,1) whose innovation process is i.i.d., i.e.
Xy :a+bx,_1 +&—C&_1, & lld, |b| < 1, |Cl < 1,

where the cumulant function of € is denoted y¢(-). Denote the conditional mean of x;
by my, i.e.,

ny EE[X[+] |xT,TSt] =a+bx,—c£,.
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Observe that

me=a+(b—c)x;+cm_,.

Hence,

Vi () = log E,[exp(uxsy1)] = ume + W (u) = u(a+ (b —c)x;) + We (u) +ucmy_
= u(a+ (b— %) + V() + (Vi1 () — ()
= (ua+ (1= c)ye(u)) +u(b—c)x +cy—1 (u),

i.e., any ARMA(1,1) process with i.i.d. innovations defined is a generalized affine pro-

cess given in (1.6) where
() =ua+ (1 ~c)ye(u), a(u) =u(b-c), B(u) =c.

Let us now assume that the conditional mean of x; is non-linear but still has an MA(1)
structure, i.e.,

Xt :f(x,_l)-}-a,—ce,_[, & lld, ‘C‘< 1.~

The condition mean of x; | denoted m;, is given by
me = f(x) —ce = f(x) —exe +emy_y.
Hence,

W (u) = log Eq[exp(uxit1)] = um; + we(u) = u(f(x) — cxt) + We(u) +ucmy
= (1 —c)we(u) +u(f(x) —cxe) + ey (u).

Consequently, a non-linear ARMA(1) process with i.i.d. innovations is not a generalized

affine process but belongs to the family defined by

i (u) = O(u) + a(u,xe) + B (u) yr—1 (u). (1.9)
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This family is currently under study in a different paper and called generalized non-affine
models.
1212 Linear VARMA(1,1) Models

Assume that x; follows a linear VARMA(1,1) where the innovation process is i.1.d.,
i.e.

Xt :A+th_] + & —Cet_l, & lld, |B| < l, lCl < l,

where the cumulant function of € is denoted y,(-). Denote the conditional mean of x; |
by my, i.e., V

my; :A+th —Ce,.

Observe that
my; = A+ (B - C)x, +Cm,_1 .

Hence,

Wi (u) = logE [exp(d'xi 1) = 'me + We (u) = v/ (A + (B—C)xt) + We (u) +4/Cmy
— (A4 (B—C)x) + o) + Vit (C') — e C'a)
= (A + Ye(u) — ye(C'u)) + 4/ (B — C)x + w11 (C'u),

i.e., any VARMA(1,1) process with i.i.d. innovations defined in (1.2.1.2) is a generalized
affine process of Type 2 given in (1.7), where

(O(u) =u'4 + WE(u) - WE(C’u)’ ‘a(u) = u’(B_C), B =1, 9(”) =Clu

1.2.1.3 GARCH(1,1) Type Models

We start the analysis by considering the model introduced in Bollerslev (1986), i.e.,

Xy = ‘u-+£1 = ‘u-+ \/ h,_lz,, Zy 1.i.d. JV(O, ].), ht = (O+a£,2+ﬁh,_1,
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with @ > 0,8 > 0,x+ 3 < 1. By doing the same calculations as in the ARMA exafnple,

one gets

u? |
) = (1= Pt 0% ) +J0uls -+ Pya). (L10)

In other words, the GARCH(1,1) is nota generalized affine process as (1.6) but a gener-
alized non-affine process given by (1.9).

It is well known that the GARCH(1,1) does not lead to closed forms of option prices.
Heston and Nandi (2000) proposed a different specification for 4, that solved the problem

where A, is given by 2

hy =0+ o(z, — y\/ 1) +[3h,1

Likewise, one can show that the conditional cumulant function of x; is given by

) = (1= - o)+ 5 @+ a0 EE 2yt~ ) ) 4 B+ ahwics ()
: (1.11)
Consequently; the Heston and Nandi (2000) model is a generalized non-linear model
defined by (1.9) where the function o (x;,u) depends x; and h,_9, i.e., the whole past of
Xy. |
, Eq. (1.11) looks more non-linear than Eq. (1.10), which is puzzling given that the
Heston and Nandi (2000) model leads to analytical formulas for option prices while the
Bollerslev (1986) does not. As already mentioned, affine models lead to closed form of
prices of derivatives. It turns out that the variance process #, is affine when one considers
the Heston and Nandi (2000) while it is not the case for the traditional GARCH model.

More precisely, one has |

Heston & Nandi : logE[exp(uhy1) | by, T < t] = u® + W,y (o) + (B + ay)u—274uP)h

Bollerslev : logE[exp(uhiy)) | he, T <t =uw+ wxz(l)(auh,) + Buhy,

2. There is an additional coefficient y that appears in (1.2.1.3) which captures the leveragé effect. One
could easily add such term in the Bollerslev’s GARCH equation.
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- where y,2()(-) denotes the cumulant function of the x%(1) distribution. We will con-
sider again the Heston and Nandi model when we will derive the option pricing formulas

of generalized affine models.

1.2.1.4 ACD(,1) type models
Engle and-Russell (1997) introduced the autoregressive conditional duration (ACD)
model where the duration x; between two consecutive trades follows the process
Xi =M1 Vi, v;i.i.d., v; > d, E[V,'] =1,n= a)-i-ax,--i-Bn,-_l.
If one assume that v; follows an exponential distribution whose density function is
fv(v) = exp(—v), then one gets

1 <t
1 —un; N

Vi = Ej[exp(ux;y1)] =

I

which is not a generalized affine model. However, it is the case for the logarithmic

duration model of Bauwens and Giot (2000) defined by
x; = exp(Ni-1) vi, vi i.i.d., v; >0, E[v] = 1, log(n;) = @+ aclog(x;) + Bni—1-
For this model, log(x;) is an ARMA(1,1) and therefore a generalized affine process.

1.2.1.5 The generalized autoregressive gamma process

The autoregressive gamma process (ARG) studied in Meddahi (2001) and Gourier-
oux and Jasiak (2006), corresponding to the discretization of the Cox-Ingersoll-Ross dif-
fusion process (Cox, Ingersoll, Ross (1985), is an affine model, whose cumulant function

is given y;(u) = 0(u) + a(u)x,, where @(u) = —~vlog(l —up) and a(u) = 1‘_’—:#.
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One can show that it admits the following state space representation:

x
%|U,+1,1, ~ Y(v+Us41)

Px:
Uiy ~ P(—),
t+|t m |

with /; defined as the sigma algebra generated by (x;,s < ¢), ¥(+) is the standard gamma
distribution and P(-) is the Poisson distribution.
We generalize the ARG process to the GARG process which is built through the

following state space representation:
— -1 )
Xt+1 — [3’9'Z,+1 + Z'Zt-ji—l’
Jj=0

with Z_r+1, Z,(i)l for j=0,...,t—1, 1+ 1 conditionally (conditional on /) independent
random variables, Z_r+1 ~ Yo (u), and
()

Zih . 0) 0)
1 ‘U,_H,I, ~ Y(Vj+Ut+1>

. X
Ui ~ _P(—pf : f)
H

where
vi=vB/, u=ue’, pj=pp/e’
We can show that

Wi (u) = @(u) + o(u)x + Byi—1 (0u)

Then x, follows a generalized affine model of Type 2 given in (1.7).
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1.2.2 Existence of Generalized Affine Models
1.2.2.1 The Function J(-) is Constant.

Generalized affine models are defined recursively by their conditional cumulant func-
tion in (1.8). Therefore, one needs to show that the function y;(-) in (1.8) is a proper
cumulant function. The rest of this subsection focuses on the case where () is constant,
the other case being studied in section 1.2.2.2.

The first important property of cumulant function is that the sum of cumulant func-
tions is a cumulant function. Consequently, when @(u), ot(u)x,, and By;_1(0(u)) are
cumulant functions, the function y;(u) defined in (1.8) is a cumulant function. Observe
that often, as in our empirical examples, @(u) + o¢(u)x, is the cumulant function of an
affine model. Therefore, the generalized affine model is well defined when By;_(6(u))
is a cumulant function.

The second important property of cumulant functions is related to infinitely divisible
random variables. A random variable z whose cumulant function is denoted y,(u), is
called infinitely divisible when for any positive number ¢, cy;(u) is a cumulant function.
Oi)serve that a consequence of this definition is that cy;(u) is the cumulant function
- of an infinitely divisible random variable. Such variables appear in central limit the-
orems; examples of infinitely divisible random variables include normal, Poisson, and
Gamma random variables. The first version of Darolles et al. (2006) provided suffi-
cient conditions such that an affine process is infinitely divisible. In particular, popular
affine models in Finance, i.e., the Gaussian and the square root processes are infinitely
divisible.

The third important property of cumulant functions is still related to infinitely divis-
ible random variables. For a given positive random variable z whose cumulant function
is denoted y;(u), and an infinitely divisible cumulant function 0(u), y.(0(u)) is a well
defined cumulant function. In the characteristic function literature, this type of construc-
tion is recognized as the subordination of processes.

The second and third properties on cumulant functions are quite important for our
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purpose. By expanding recursively y; () given in (1.8), one gets

213 9°’ )+ (6 (u)xi—i) + B o (6 (u))

where yo(u) is the unconditional cumulant function of x; and 6% () denotes func-
tion 6(.) compounded i times with itself. Consequently, when 8 > 0, 6(.) a cumu-
lant of an infinitely divisible positive random variable (which implies that w(6° (1)) +
(0% (u) )X~ is the cumulant function of an indivisible random variable like some affine
models derived in Darolles et al. (2006)), 8°(@(6° (1)) + (6 (u))x,—;) is a cumulant
function of an infinitely divisible random variable. The definition of infinitely divisible
random variables implies that the sum of infinitely divisible random variables is also an
infinitely divisible random variable. Therefore, ¥_, B (®(6%(u)) + (0% (u))x,—;) is
the cumulant function of an infinitely divisible random variable. Consequently, y; (u) is l
the cumulant function of an infinitely divisible random variable when one assumes that
this is the case for yy(u). In other words, sufficient conditions to guarantee that ; (u)
defined in (1.8) is a proper cumulant function are: 8 > 0, 6(-) an infinitely divisible cu-
mulant function of a positive random variable, w(u) + a(u)(x) and yo(u) are cumulant
functions of indivisible random variables.

The previous argument handles the case of positive random variable. To analyze
random processes which have the whole real set as support, we will treat the two types
of generalized affine models differently. In the Type I case, in general 3 need not to
be positive for processes which have the whole real line as support (the Gaussian Vec-
tor Autoregressive Process for instance). The only needed conditions are || < 1 and
function w(u) being an infinitely divisible cumulant generating function. Iﬁdeed we can
write y; (u) = w(u +Z, ° 0 0(u)B'x,—;. Since (u) an infinitely divisible cumulant gen-
erating functlon and 175 > 0 then %‘& isa cumulant generating function (c.f.g). By
denoting y,_; = B'x,_;, we have that for each i a(u)y,—; is a well defined c.f.g. Using the
fact that the sum of c.f.g is a c.f.g, we get that y,(u) isa c.f.g.

In the case of Type II, we consider the following restrictions 8 > 0 and 0(u) = 6u
(which is the case of VARMA models). Then, (1.8) is well defined for processes with
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the whole real line as support. Indeed if w(u), a(u) and yo(u) are infinitely divisible
cumulant functions, we can show that w(cu), ot(cu) and yy(cu) are infinitely divisible
cumulant function whatever the sign of c. Therefor for each i, @(6°u) + o(8u)x,—; is
a cumulant function of an infinitely divisible function. This implies that (1.8) is well
defined. _
Another question not studied here is the existence of a stationary solution of (1.6). As
usual, such a question is very difficult for discrete time non-linear models like GARCH
models and it is left for future research. In the sequel of the chapter, we assume such

existence.

1.2.2.2 The Function 3(-) is Varying.

It is worth noting that in all the examples discussed in section 1.2.1, the function
B (u) given in (1.6) does not depend on u. In this section we provide two flexible classes
of generalized affine models that generalize any positive affine model w(u) + a(u)x;
where () is a cumulant generating function of a positive random variable and ot(u) =
q(f(u) — 1) with f(-) the moment generating function of a positive random variable. We

provide more details on the construction of such processes in Appendix A.

Proposition 1.2.1. We show in Appendix A that the following model is a well defined
generalized affine model of order (1,1).

Wi (u) = 0(u) + o (u)x: + B () yr—1 ()
B(x)

B = 2 afu) —un-+gt) -1, 00 =up— 2 (1) hwy(1- ),

where g(u) is a Laplace transform of a positive random variable, h(u) is a cumulant of a

positive random variable and 1L > 0.

Notice that this family of generalized affine processes of order (1,1) is very flexible

in the sense that it is defined up to uﬁépeciﬁed functions g(-) and A(-). The only required
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conditions are that g(-) and A(-) are respectively moment and cumulant generating func-
tions of positive random variables.

Given the properties of the functions g(-), 4(-) and (+), it is straightforward to show
that p—u(—) is a moment generating function of a positive random variable, and a(-) is
a cumulant function of an infinitely divisible positive random variable. But one can
not conclude that () is a cumulan;(g)ene;rating function of a positive random variable,

“) 1

unless one imposes that 4(u) = % with g > max(0

,ﬁ) and u < 1. In that

case @(-) is a cumulant generating function and one can reformulate @(-) as follows:

o(u) =up +

with ¢* = g — ﬁ. The following proposition gives a generalization of Proposition

(1.2.1) to order (2,1).
Proposition 1.2.2. We show in Appendix A that the following model is a well defined

generalized affine model of order (2,1).
Wi (u) = @(u) + o (u)x + o (u)xi—1 + B () wi—1(u)
with

B(u) = pf(u), on(u) =up+g(u)—1,
000 = (1 = ) ) ~ (0, @) = (1= Bw) (wp+ 2+ ) ~ pet).
where f(u) is a moment generating function of a positive infinitely divisible random,

g(u) is moment generating function of a positive random variable, h(u) is a cumulant of

a positive random variable and 1L > 0.

The order (1,1) example built in Proposition (1.2.1) is obtained by imposing o (u) =
0. The following affine process of order (1,1) is obtained by imposing t = p =0

Wi (u) = h(u) + (g(u) — Dx.
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We are then able to prove the following general theorem.

Theorem 1. The following affine model y, (u) = h(u) + q(g(u) — 1)x, defined on positive
process x;, with q > 0, h(u) a positive cf.g, g(u) a positive m.g.f, can be extended to
a generalized affine model of order (1,1) or (2,1) with non-constant B(.) as shown in

Propositions 1.2.1 and 1.2.2. The corresponding generalized model is

yi () = (1) + o (8)x: + 0 (u)xe—1 + B () 1 ()

with
Bu)=pf(u), ou(u)=uqu-+q(g(u)-1),

(1) = gu((1 — ) £ () — g (W), () = (1= B(w)) (up S +h(u>) ~ pe(u).

where |1, p > 0.
This family of affine processes which have been generalized is well known in the
literature as the family of compound processes with positive value, and it contains the

autoregressive gamma process of Gourieroux and Jasiak (2006) and the autoregressive

inverse gaussian process.

1.2.3 Conditional Cumulants and Moments Structures

We now derive some conditional moments and cumulants implied by the generalized
affine model. Given that the process x; is defined by its conditional cumulant function, it
is more convenient to derive the conditional cumulants of x,.| and then the conditional

moments. The conditional cumulant of x;; of order n denoted x,,, is given by
e = W (0),
where /) (.) denotes the n-th derivative function of f(-). We will also use the notation

K = (K15 Koy eees Kng) ' (1.12)
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From the following paragraph to the end of this chapter, we will use the following defi-
nition of function B, ; (u).
n—i n . L .
Bui(w) =Y (j)ﬁ(l) (4) Bu—j i (9(1) (u),0 (u),...,00n—i=i+1) (u)) ,
J=0 '

where B, s (a1,a2, ...,a,—k+1) denote the Bell polynomials

Proposition 1.2.3. Let x, be a generalized affine process defined by (1.8). Then,

Kng = @ (0) + o™ (0)x, + Y Bni (0) ki1, (1.13)
i=1
and
En,t = 03n+&nxt+§n’?n,t—la (1'14)
where
o (0) ) [ a(0) )
0 (0) a(0)
5n = 3 &n == )
o™ (0) a (" (0)
\ \
and

Bii(0) 0 0 . 0
B21(0) B22(0) 0O

ﬁn,l (O) ﬁn,Z (O) h ﬁn,n—l (O) Bn,n (O) )
A direct consequence of Proposition (1.2.3) is that k,, is a VAR(1). Indeed using
relation (1.14), it can be established that

Et—l [En,t] = (Bn +5n’—(-n,t-—la (115)



34

where

aD()+B (0) 0 0 S0 )
aD(0)+B2,1(0) B22(0) 0 - 0

al")(0)+By1(0) Br2(0) = Bun-1(0) Bun(0) )
An important implication of Proposition (1.2.3) is that any conditional cumulant x;,,
is a linear combination of x; and its lagged values. This property is a characteristic of
generalized affine type models.

One has different forms when one considers generalized non-affine models defined
in (1.9). Another consequence of the VAR representation is that when () is not con-
stant or 6(-) is not linear, a conditional cumulant variable admits an ARMA represen-
 tation of higher order. On the one hand when B(-) is constant and 8(«) = u, one has a

GARCH(1,1) type equation for k;
Kt = 0" (0) + " (0)x, + B i1

Likewise, when (-) = 1 and 8 (u) = 6u, one has the following GARCH(1,1) type .equa-
tion for K,

Kine = 0(0) + &) (0)x + "1

We will show below that x, admits an ARMAC(1,1) representation, implying that &,
admits an ARMA(2,1) representation.

There is a mapping between cumulants and moments of a random variable, which
allows one to derive the conditional moments of x,,; from its conditional cumulants.

Denote the conditional moments by m,,, i.e.,
Mt :_E[x7+1 | x,7 <1,

Then, the conditional moment m, is related to conditional cumulant ki 4,...Ky, through
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the complete Bell polynomial by
'm”’{ =B”(K]J,..., Kﬂ,f)’ (1.16)

where Bn(ay;...; a,) is the the nth complete Bell polynomial. Using (1.16) we can deduce
the following relations for the first 6 moments. -

mp,=Ki,

1 1

my, =K+ K'|2,1

1

3
mi =K+ 352K+ K7,

’

‘ m47; = K'47; +4K‘37r K N +3K22,f + 6’(27’ 'qz,r + Kﬁf
s = Ks+5Ka K1 ¢+ 10K3 K + 1063, K7, + 15K3 K10 + 1062, K7 + K,
me = Kgr+6Ks5 K1+ 15K K2+ 15K4, K'|2,, + lUK‘i, +60K3 K2 (K1 ¢

+20K3,K7, + 1563, + 453 ki, + 15Kaexct  + K.

Therefore, by using the results of Proposition 1.2.3, one gets the conditional moments

Ofx;‘F] .

1.2.4 Unconditional Cumulants and Moments Structures: Conditions for station-

arity
1.2.4.1 Unconditional first and second moments of process x, and cumulant E,,,,

As in affine models, we can compute unconditional moments which are useful to
understand the dynamics of the model and to estimate unknown parameters. We start by
focusing on the covariance structure of the process x; which will allow us to show that x;
is an ARMA(1,1) with possibly heteroskedastic innovations. At every step we will pro-
vide required conditions on stationarity which are needed to compute time-independent
‘unconditional moments.

Let x; be a generalized affine process of order (1,1) defined in (1.8). By using Eq.
(1.14) for n = 1 and by taking the unconditional expectation of both sides of the equation
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we have, _
w
1—a—p

It is important to mention that this result is valid if only if we made a first-order station-

E(x)=E(x1,) =

u

arity assumption. The unconditional mean process is stationary if only if
E(KI,O) =u and |&1 +ﬂ1| <1.

In general the unconditional expectation of the vector of cumulants &, is straightfor-
wardly computed by using Eq. (1.15) and by taking the unconditional expectation of

both sides of the equation. Indeed, we have
E (Kng) = (In—Pn) ™" @ = fin. (1.17)

This time-invariant unconditional expectation of &, is obtained under the following

necessaries and sufficient conditions:

E (En,O) = .En

The largest eigenvalue of p,, has a modulus smaller than one. (1.18)

For the case n = 1, condition 1.18 coincides with condition 1.17. For the case n = 2,
condition 1.18 is satisfied if and only if condition 1.17 is satisfied and |, 2(0)| < 1.
For the second order unconditional moments, we first look at the unconditional vari-
-ance. Consider Eq. (1.14) for n = 1, and square the two sides of the equation and take
the unconditional expectation. Let Denote ¢ = ot + [;1 Then, if |¢| < 1 we have:
_ Of +0FE (k1) + 201 9E (K1 1)

E(,) = o .

In addition if |8, 2(0})| < 1 then E (x?) and Var (x;) are time invariants, and are computed
using the following relations £ (x7) = E(k},) +E (xy,) and Var (x,) = E (x}) — E (x)%.

The unconditional variance of the vector of cumulants (k) is obtained by taking the



unconditional variance of the two sides of Eq. (1.14). By doing so, one gets

Var(Kuy) = Var(x,)(inanT + B.Var( En,,)BnT + Aucov(xe, K g1 )BnT + Aycov(Ky —1,%;) Och.
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Using the fact that cov(Ky—1,%;) = cov(Kn (1, Ki 1) and by replacing K, ,_ and Ky ;|

by their recursions given in Eq. 1.14, one gets

COV(En,r—l X)) = Var(x)oyo,+ (alﬁn + Blp_n) COV(En,t—Z:xt—l)

= Var(x,) ot 0ty + Pncov(Kn1—3,%—1).
Consequently if we assume the following conditions

cov(Kn0,%1) = cov(Kn0,K1.0) = Var(x) oy (I, — pn) ™" & = Ay

The largest eigenvalue of p, has a modulus smaller than one,

then one has

cov(Kng—1,%) = An,

which implies that

Var(i,,) = Var(x)on, +BaVar(iG—1)By + 0, BT + BaAncr)

BoVar (Kn—1)B, + 6.

By using the formula
vec(AXB) = (BT ®A) vec(X),

one gets

vec [Var (Kn.)] = vec(8,) + E,, @ E,,vec [Var (Kns—1)]-

(1.19)
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Consequently, under the following assumption

vec [Var (K,0)] = (I, — B,® [;,,) “vec(6,) = Q,

the largest eigenvalue of [;,, ® [;,, has a modulus smaller than one, (1.20)
one gets the time invariant unconditional variance-covariance matrix of E,,,,
vec [Var (Kn1)] = Q.
The unconditional autocovariance cov(x; ., x;) is obtained using the following recursion
cov(x 1 p,Xt) = Pcov(Xeph—1,%t),
which is a consequence of Eq. (1.14) applied at » = 1. This implies that
cov(Xpn,x;) = 0"Var(x,).

Hence, x; is an ARMA(1,1) whose autoregressive root equals ¢. Similarly to the un-
conditional mean and variance results, this new result on unconditional covariance of
process x; can be generalized to cumulant K, ;.

Since Ky, is a VAR(1), by using induction arguments and the double expectation

formula and by making the following two assumptions:
1. the largest eigenvalue of E,, is smaller than one,
2. Var(x,,) < ~ and constant in time,

one gets that

p == ~h
Pnh= Corr[Kn,ta K.n,t—l] =Py

We can also comute the unconditional covariance between x, and X, .. Indeed, by

using again Eq.(1.14), E(x,X,,;+4) is computed recursively as follows

E(®npsn) = E(0)@n+E(2) 0+ BuE (onrinot), (121)
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with the first term of the recursion given by
E(xRny) = E (%) 0n + E (] ) O + BoE (K1, Kns),
where E (k1 /%,,) is deduced from the variance-covariance matrix of X, ;.

1.2.4.2 Higher order covariance

In this subsection, we use results on first and second unconditional moments of x;
and K, derived in the previous subsection to compute the third and fourth unconditional
moments of x;. We begin by deriving the third moments.

Using the relation between moments and cumulants, we have
E(x)) = E(m3,) = E(K3;) +3E(KaK1,) + E(x7,). (1.22)

From the previous subsection, all the terms in the right hand side of Eq. (1.22) are
known, except E (Kf’,). E (Kf’t) is obtained by cubing the two sides of Eq. (1.14) for

n =1, which implies that

(1-9)E(x},) = @ +aE(Ks,)+3010E (K1,K,) + 307 OE (K1 )

+ 3@y(of +BYE(K],) + 3010 E (Ky).

Consequently we can deduce the closed form expression of E(x;).
We now consider E (x.x? )+ Using the relation between moments and cumulants, we

have

E(xxti ) = E(xikappna1) +E (ki opi)- (1.23)

E(xX2444—1) is deduced from Eq. (1.21). We need to evaluate E(x; Klz,t-i-h—l)' By
squaring the two sides of Eq. (1.14) for » = 1 and multiply by x;, we show that

E(xxt,) = OFE(x)+20101E(2) + aFE(}) + (B2 +2@1 B1)E(xF,)
+ 2&1ﬂ1E(k1’,K2,,)+2(§1ﬂ1E(K‘13,,)-
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' 2 2
In general, for any integer /, when one knows E (x; ki, ;,_; ), one can compute E (x; K, ;)

as follows:
E(x, Klz,t+h) = a_)le(x,) + &IZE (x, K2,t+h—l) +2(l_)1 ¢E(x,x,+h) + ¢2E (Xt Klz,t+h—l ) (124)

All the terms of the right hand side of Eq. (1.24) are known, consequently we can deduce
the closed form expression of E (x,x7, ).

We will conclude on this section on third order moments by evaluating E (x? En’,+;,).
To achieve this purpose, we need to know £ (Kﬁ, Kn:). By using the relation (1.14), we

have:

(In—¢2ﬂn)E(K12,t’?nJ) = a_’le(En,t)+¢2E(K12,t)a_’n+&12E(K2,t)a_’n+&12E(K3J)an

_|_

O BrE (K21 Kng) + 02 E(K7,) O + (30 + 001 B ) E (K1 K1 1) O

26(_)1 &1E(x, En,,) + 20_)1ﬂ1E( Kis—1 En,,).

_|_

Hence,
E(X2%ns) = E(52) 0y +E (%)) G + BB (K2,1Kns) + BaE (K2 ).
We are now able to compute E (x? Kns+h) Using the following recursion:
E(Rr1) = EC) B+ E() G+ B (2R,

We will now compute the fourth moments of x,. By using the relation between

moments and cumulants, we have
E(x:‘) =E(m4;) = E(x4,) +4E(K30K61,) + 3E(K22,:) +6E (K2, Klz,;) +E(Kﬁ1)-

Except E (Kf’,), all the terms in the right hand side are known. E (Kﬁ,) is obtained by
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raising the two sides of Eq. (1.14) for n = 1 to the fourth power. Indeed, one has.

(1—¢ME(x},) = of +4070E (K1) +607 07 E (k2,) + 405 01 E(K3,) + 60792 E (k1)

+1200 @ QE (K 1K) + 405 OE(K3,K1,) +30E(KS,) + 6079 E (Ko, K1,) + 40 9 E (K7 ).

Consequently, we can deduce the closed form expression of E (x¥).

Let us consider the autocorrelation of x?>. One has
2 2
E(x?xt+h) = E(xtz K'2,t+h—l) +E(xt Klz,t+h—l )

From the results derived in the calculations of the third order moments, one knows

E(x2K2,+4—1). Hence, one can derive E (x? Klz’, 1) recursively as follows:
E(th "12,:+h—1) = E(x})+ &le(xtzK2J+h-2) + ¢2E(x,21<1,,+h_2) + 2, ¢E(x,2x,+h_2),
with the first term of the recursion bejng
E(2x,y) = E(cb,) + E(x, k).
Then we obtain the closed form expression of the autocorrelation of x?

125 Forecasting and Conditions for stationarity

An important formula used in the analytical calculation of the term structure of inter-
est rates and option prices is the conditional distribution function of 2?:1 uix4; for given
real numbers u;. Affine models allow one to derive the conditional cumulant function of
(¥t+1,% 42, ., X+4) and consequently the one of Y.} ; w;x,4;. It turns out that this is the
case for generalized affine models.

Let us denote %, = (u1,u2,...,us)  and Wi a(un) = logE; [exp (T2, UiXeti) |-

Proposition 1.2.4. Assume that the process x, is generated by (1.8), then the conditional
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cumulant function of (X41,%1+2, -, Xi+4) Is given by

h
Wi (i) = by(ian) + an(ian)x+ Y, Be (vien) Wi 1 (0 (Vi) (1.25)
k_
with
ho_
ap(n) = Bu=1 (Vi) & (B=1 (Vi) »
k=1
, .
by () Z, LZ Bi-1 (vin) @ (8j-1 (vi) ) | -

The sequence (v 4) is defined recursively as follows: vy , = uy, and fork < h— 1:
h—k _
Vi,h = Bk + Z Bi-1 (Vk+j,h) a (91'4 (Vk+j,h)) ;

j=1

where functions Ej() and 6;(-) are related to 3(-) and 6(-) as follows:

0;(u) = 6% (u)

Bo(u) = 1

Ej(") ﬁﬁ (81 (4)), for j>1.
. k=1

The proof is provided in Appendix B. We will often use Eq. (1.25) in the next section
when we derive yields and option prices. When f8(#) = 0 or 8(u) = 0, we obtain the well
known affine model’s result which stipulates that the conditional log-moment generating
function of (x11,%/42,...,%4) is affine in x,. We can rewrite v, ,(u;) in term of the
present value of process x, x;, and all the past realizations x; , | <s <¢— 1. Indeed, one
has -

Wi h(up) = by p(up) + Z aj,h(la)xr—j, (1.26)
. . j=I
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with
_ ho
ajp(up) = l;lBk+j—1(Vk,h)a(6k+j—l (vin))
W[ k=1 _
by (up) = kz,l{BHk—l (Vi) Wo (Brak—1 (Vi) + 21 [Bi=1 (vin) © (6,1 (Vk,h))}}-
= j=

Eq. (1.26) can be useful to provide some conditions on the existence of a stationary un-
conditional distribution. A stationary unconditional cumulant generating function (de-
noted here by y(-)), when it exists, has to be the limit of y; ;(u) = logE; [exp (ux;44)]
when & — oo, Using Eq. (1.26), we conclude that when y/(-) exists, one has

y(u) = ;}1_{210 by y(u).

This limit have been obtained by making the following assumptions, which are in fact

conditions on the existence of the stationary distribution

lim a; ,(u) =0, V.

h—roo
1.3 Analytical Formulas of Prices of Financial Derivatives

This section characterizes the yields and option prices when one assumes a general-
ized affine model for the interest rate and the stochastic volatility respectively. For each
of them, we follow two approaches. We assume the generalized affine model under the
physical measure (P-measure) and specify the price of risk and then derive the price of
the financial derivatives (bonds or options). The second approach consists on specifying
the generalized affine model under the risk neutral measure (Q-measure) and then derive
the prices of the financial derivatives. We start the analysis by studying the term structure

model
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1.3.1 The Term Structure of Interest Rates
1.3.1.1 Generalized Affine Model Under the P-Measure

We assume that under the P-measure, the short term of interest rate denoted r, follows

a generalized affine process given in (1.6), i.e.,

W (u) = InE/[exp(uri11)]
= o (w)+ o (Wr+ L W)Wl (67 (u)).

When B (u) = 0 or 67 (1) = 0, one gets affine models like those of Vasicek (1977), Cox
et al. (1985) and Duffie and Kan (1996) who derived the term structure of interest rates.

In order to derive the dynamics of », under the Q-measure and the yield curve, one
needs to specify the stochastic discount factor denoted here M, ,; or the price of risk.
We follow the general approach of Gourieroux and Monfort (2007) who proposed the

following formulation:

M, v1 = exp(yrie1+6r). (1.27)
Given the restriction
exp(—r1) = E] [My1+1], (1.28)
one gets
6, = —ri—y(y) and M 1= exp(Yri+1 —re — Wi (7)) (1.29)

In the sequel, we define B(¢, ) and r, 5, as
h

log(B(¢t,h
HM+i_1,,+i] | v = —2BEGR) (130)

B(t,h) = EF
t i=1 h

We are now able to derive the term structure of interest rates, i.e., the formula of r,

when A varies.

Proposition 1.3.1.

h
Ye.hn = dp+ Ch ot +Z,(_)1 ;
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with

o (6] ( ))—[i_l(dk)w(e,-_l(dk))),

bl'—‘

/—\
i M»

Cho =

h—
h k"}’
t()l = Z{
k=1

l3k 1(1) o” (67 ( ))—@(_l(dk)a(ek_l(dk)))},

S| =

71 (68(n) - ﬁ"id") vl (6F (dk))] .

The sequence dj for £ < h— 1 satisfies the following backward recursion: dj_| =

Y—landfork<h-2

—1-— _
dp=y—1+ Z [Bj—1 (At j) & (81 (di+j)) — Bj-1 (1) e (8;-1 ()] -

We will study now the special case case of constant function 3(+) and linear function

0(-). One has the following model for the short term rate:

yr (u) = o(u) + a(u)r + By, (Bu)
where 8, 8 > 0, . Since r, is a positive random variable, @(u) and o (u) are cumulant
functions of positive random variables. The yield to maturity » formula is given by:
-1

}’t(”) = dn,t+zcn,jrt—ja
j=0

n—1 t+k—1

dny = _z (Bt+k 1[ (9t+k l"y) w(])’(et+k—l )] z Bi- 1 N 1 7) — (ei—lck))>’
l+/§1Bk_l (a (Gk‘ly) —a (Ok‘lck))] ,

1
n
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and for j > 1

n—1 Bj-t—k—l

Cn,j =

(a(077) e (0ar)),

withc,_j=y—landfor0<k<n-2

=1

w=r=1+ 3 B (@ (8 ) ot (6717)).
j=1
One issue of interest.is the positivity of yield. In this simple particular case, we are
able to specify some conditions under which yields generated by our model are always
positive. The functions @(u) and a(u) are defined on » < 0 and are absolutely monotone,
in particular @'(u) , o (u) > 0. This implies that w(«) and a(u) are increasing functions.
The model is well defined if we choose the price of risk ¥ < 0, it implies that ¢, <y <
0. Since o/(u) is an increasing function, it implies that ¢,_» < ¥y < 0. By using the same
type of arguments, we deduce that ¢, < y<Ofork<n-—1.
Since ¢, < Y < 0 for k < n—1, it follows that ¢, 0 > 0, d, > 0 and

’il%k [V’ﬁl (9"}'> — P (e"ck)] > 0.

k=1

(n)

Consequently our model is coherent because it generates positive yield y; ~ at any given
maturity.
We will now characterize the dynamics of 7; under the Q-measure. We denote by

I[I,Q(u) the conditional cumulant function of r;,| under the Q-measure, i.e.,
2(u) =logE? 1.31
i (u) = log Ef[exp(ury. ). (1.31)

We will restrict our analysis to the generalized affine of type I (i.e., we restrict function
so that 07 (u) = u).
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Proposition 1.3.2. Dynainics of r, under the Q-measure. One has

wP(u) =y (u+7)— v (). (1.32)

Hence if 0F (u) = u,

w2 (u) = 0?(u) + a2(u)r + L)yl () + Bu+7) - BWIw(y),  (1.33)

where
Q@) = o (u+7) - 0°(y), a€(u) = o (u+7) — (), BL(u) = BF (u+7). (1.34)

Eq. (1.32) is model free, i.e., it does not depend on our generalized affine spec-
ification. In particular, the same equation appears in affine models; see Gourieroux
and Monfort (2007) and Monfort and Pegoraro (2006a). An additional term appears in
(1.33) which vanishes when f3(-) is constant, as in our empirical examples. When this
term does not vanish, the short term of interest rate ié not a generalized affine under
the Q-measure. However, the following proposition characterizes the conditional cumu-
lant of (rs41, u/,’:_l (7)) which will allow us to understand the dynamics of 7,4+ under the
Q-measure. In the sequel, lVQ

ny()
(re+1, W5 (7)) under the Q-measure.

(u,v) denotes the conditional cumulant function of

Proposition 1.3.3. 8°(«) = u implies

ll’,?w(y),; (u,v) = a)lQ (u,v) + (Oqg(u,v) re+ azQ (u,v) uf,‘”(y)) +BIQ (u,v) Wr?w(y),l;l (u,v)
— (%) BP (4, V) W2, (¥)

7

(1.35)
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where

of (u,v) = v’ (y) [1-B7 (u+val (v)+7)] + & (u+val (y) +7v),
alQ (u,v) = of (u+vaP(y)+Y), %Q(y,v):vBP(y)— 1,
B (uv) = BF(ut+val (y)+7).

While the definition of generalized affine models (1.6) is given for univariate pro-
cesses and of order (1,1), the extensions to multivariate and higher order is not very
difficult. Eq. (1.35) means that the bivariate vector (r11, W’ (7)) is a generalized
affine process of order (2,1). Consequently, one can characterize formulas of financial
derivatives, including yields, by using the generalized affine dynamics of (r,+1A, vl ()

- under the Q-measure.

1.3.1.2 Generalized Affine Model Under the Q-Measure

We now assume that the short term of interest rate », follows a generalized affine

" process given in (1.8) under the Q-measure, i.e.,
log E2(exp(ures1)] = y2(u) = 0(u) + 0@ (u)re + BO(u) w2 (02(w)).

The following proposition provides the formula of the yield curve.

Proposition 1.3.4. The yield at horizon n is given by

"~ Be(d) w2, (6 (d
r,,,,-:b,,+a,,r,—z"=1 Bi( k):’t—l( k k))’ (1.36)

where

1= 3070 B (de) 2@ (641 (i)
-Z [Z',Ll Bj-1 (di) 02 (8- (dk))]

bn—l = n 3

?
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’ n—1-k _ )
de==1+ Y Bj_i(der;) @2 (0;-1 (diy))) , for k<n—1, dp_y=—1.
j=1

One could also characterize the dynamics of », under the P-measure if one assumes
a stochastic discount factor. We assume again that the stochastic discount factor is given

by 3 (1.27). Hence, one gets

v (u) = vl(u—7)— v2(~7). (1.37)

Again, this equation is model free and appears in affine models (Gourieroux and Mon-
fort (2007), Monfort and Pegoraro (2006a)). Likewise, r,, is not a generalized affine
process under the P-measure. However in the case of generalized affine model of type
I, the vector (r;41, Wr+1(—7)) is a generalized affine procesé of order (2,1) as shown
in the following proposition. In the sequel, wf Yy denotes the conditional cumulant

function of (r, 11, ¥+1(—7)) under the P-measure:

Proposition 1.3.5. 07 (u) = u implies that

wa(—y),t (u’v) = wlP (uav) + (alp (uvv) re+ O'/f (u>v) th (_Y)) +ﬁlp (uav) W,-Q (=7)—-1 (u,v)

— 2w, v)Bf ()W (—),
(1.38)

of ) = vl (=) [1-B2 (u+val(-y) - 7)| + & (u+vel (-1 -7),

of wy) = a2 (u+val(=9)—7), of (uy)=vB2(-1) -1,

Bl (wy) = B2 (u+val(-7)-7).

3. Observe that when one specifies the dynamics of 7, under the Q-measure as a generalized affine
process, one could allow v in (1.27) to be time-varying and adapted to the information available at time

t. A consequence is that the short term of interest rate will not be a generalized affine process under the
P-measure; see Gourieroux and Monfort (2007) for the same discussion about affine models.
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1.3.2 Option Pricing

We now consider models of stock returns where we assume that the conditional vari-
ance of the returns is time-varying and is generalized affine. In what follows r; denotes

the log-returns of the stock price, i.e.

S,
Y11 =1In (:S'_+,1)

The key approach behind the analytical calculations of Heston (1993), Duffie, Pan, and
Singleton (2000), and Heston and Nandi (2000) is the possibility to write the joint pro-
cess (r:,h) as an affine process, where A, is the conditional variance of r;; given
an information set that contains r; and its lagged values and possibly another variables,
possibly latent ones as in stochastic volatility models. In what follows, we will allow
for both cases. We will write the joint model of (r;1,h,+1). The variable A, could be
the conditional variance of r., given {r¢,h;,T < ¢} (including GARCH type models).
The variable A, could be an observable variable like realized volatility as in a different
paper we are writing. '

In the rest of this section the information set /; is the sigma algebra generated by
{rz,he,T < t}. The conditional expectation operator E[- | ;] will be denoted E,[-]. Like-

wise, we restrict ourself to the generalized affine model of type 1.

1.3.2.1 Generalized Affine process under the P-Measure

We denote the conditional cumulant function of (r,1, %) under the P measure by

v (u,v):
vl (u,v) = log EF [exp(ur 1 +vhii1)] = oF (u,v) + of (u,v)h —l—ﬁP(u,v)\p,{l(u,v)._

When one assumes that #, is exactly the conditional variance of 7, |, one needs to impose

the following restrictions on the cumulant function in order to guarantee this assumption:

2P . 2P P
2 0.0=0 %% 00=1,2

auz auz (0’0) = 07 ﬁP(Oa 0) = 07 (139)
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which implies

92
37”2"(0,0) = Varl[r 1] = hy.

We denote by r the short term interest rate supposed to be constant for simplicity. We

consider the following stochastic discount factor

M 111 = exp(yrie1 +Ahp1 +6r). (1.40)

Observe that both Heston and Nandi (2000) and Christoffersen et al. (2006) assumed
that A = 0. There is no theoretical foundation for such assumption other than simplicity.
In other words, we allow the volatility to be priced.

In addition, one needs to impose restrictions in order to guarantee that M,i1isa
stochastic discount factor, which implies that prices under the Q-measure are martin-

gales. This is the purpose of the following proposition.

Proposition 1.3.6. The parameters y and A are restricted by the following system of

equations

o(l+r,A)—o(r,A) = r(1-B(rA)),
a(l+7,4) = a(ri),
B(1+7v,4) = B(r,4).

Observe that when f3(-) is a constant function, the third equation in the previous
system holds, which leads to a fully identified system.
We will now characterize the dynamics of (r;41,/+1) under the Q-measure by de-

riving its conditional cumulant function denoted w2 (u, v).

Proposition 1.3.7. We have

Y2 (u,v) = PP (u+y,v+A) =¥ (1,1), (1.41)
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and

WP (u,v) = (0P (u+ 1,V +4) — 0P (1,2))
+(oP U+ 1,v+A) =P (LA A+ Bu+rv+A)PE | (u,y)  (142)
+(Bu+71,v+A) = B(1,A) Wi (1, 4).

Several remarks are in order. Similarly to the term structure of interest rates, an ad-
ditional term appears in (1.42), implying that the process (r;+1,5;.+1) is not generalized
affine process under the Q-measure. Likewise, this additional term vanishes when the
function f(-) is constant. Again, one can still prove that a particular vector is a gener-
alized affine model of higher order, which will allow us to derive option prices. Indeed,

one can show that the vector (rr.+1,h+1, Wi+1(Y,4)) is a generalized affine process of

order. We now provide the formula of the option prices.

Proposition 1.3.8. The price at time t of a European call option with payoff (S, — X)*
at time t + h is given by

C; = exp(—rh)S8;Cy s — exp(—rh)XCyy, (1.43)

where

exp (rh) teo ] . : X
Ciy = —2—+/0 Elm exp ‘I‘,Q’,+h(1+zu)—zuln 5 du,

1 oo 1 X .
Cy = 5 +/0 Elm {exp (—lu In (S ) +\P1Qt+h (’“))} du,

and
: h
W) = anwher b+ 3, (B W) = B (1A YA (1))
=1

with

h
= ¥ (B" (@) o’ (d) - BP(r, 1) o (1, 1)),

k=1
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b (1—BP () __l—ﬂp(?’,l)k P )
g(l—ﬂpdo“’(d") =gy @ )
and
h—1 .
de = wtupv)+ 3 B(d) T 0,a(djy)) fork<h—1,  (1.44)
=k
dy = (u+tup,vy),
where
up = Y, vp=A4A,

_ h—j
uj = Y—a(%l)llféy(’x) for1 < j<h,

1—B(y,A)F ,
vi = A—a(rA) lfé}l(},’;) Jor 1< j<h,

W) = 0P(de)+ o (e +BF(de) Wl 5 (de)

__ol(d) S i
= TP(Z/() +of (dy) (;0 BF(dy) h,_l_,.) .

This proposition uses Fourier transforms, which is a traditional approach in affine
models. It is important to note that, for this purpose, we had to use the logarithmic of the
characteristic function instead of the logarithmic of the moment generating function. A

simple modification of the notation is sufficient to do this change.

1.3.3 Generalized Affine process under the Q-Measure

This subsection specifies the dynamics of (r,, 1,4, 1) under the Q-measure, ‘I’,Q (u,v),

and derives the option prices. We assume that

‘I’gH (u,v) =0 (u,v)+a(u,v)h 1 +p (u,v)‘I’,Q (u,v). (1.45)
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A well defined risk-neutral distribution fbr log-returns must satisfy
exp(r) = EQ [exp (r+1) )],
where r is the risk-free rate. Thus W2 (1,0) must satisfy
$2(1,0) =r.
Proposition 1.3.9. Eq. (1.43) is a valid risk-neutral model if and only if

w(1,0)

—po ~ "
a(1,0) = 0.

(1.46)

The result is an implication of the following representation:

oa

w(u:v) i
lFrQ-H( v) = m+a(u,v)2ﬁ(uav)hr—f+l.

i=0
We are now able to characterize the option prices.

Proposition 1.3.10. When (1.46) holds, the price at time t of European call option with
payoff (Sian —X)" at time t + h is given by

C; = exp(—rh)§;Ci — exp(—rh)XCyy,

where

exp(rh) Eaadl | 0 _ X
C = #—i-fo Elm exp ‘}’r'H_h(l-{-tu) iuIn S, du,

1 +oo ] X .
G, = 5 ‘f‘,/o Hlm {GXP (“"uln (S ) +‘yrQr+h (lu))} du,

=

Vo) = @by + X (BE) vinr(dh).
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with
() = l k=1 2 — L(1—B(d)
)= 3, (B atd). ot = 3 (TR0 ),
o) -
Yi—1(dk) = B(dy) + o(d) (izz(,)ﬁ(dk) ht—l—:) ,

and the sequencé (di) 1 <k<p is defined as follows:

h—1 .
di = (u,0)+ Zkﬁ(d,-+1)f"‘(0,a(d,-+1))fork§h—1, (1.47)

=

dh = (u, 0).
We will use these formulas in the empirical section.

1.4 Estimation of generalized affine models

In general we can distinguish between parametric and non-parametric estimation
methods. In the 2002 version of Darolles et al.(2006), a detailed discussion have been
made on non-parametric estimation of discrete time affine models. In this section we
focus on parametric methods. This implies that we consider the general affine model
defined by (1.8) where the functions (), a(-), B(-), and 6(:) are specified up to un-
known vector of parameters, which we aim to estimate. Among parametric methods
we will consider empirical characteristic function method (ECF) which has been used
by Singleton (2001), the generalized method of moment (GMM), the quasi-maximum

likelihood and the maximum likelihood.

1.4.1 Empirical characteristic function

Our modeling strategy differs fundamentally from the "classic" approach which con-
sists in writing down an equation for each component (it could be the mean, the variance,
the intensity of the jump component...) of the conditional distribution of the process of
interest. We model directly the conditional characteristic function of the process. For this

reason the ECF seems to be the most natural approach to estimate efficiently our gener-
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alized affine models. The basic idea behind ECF is to match the theoretical characteristic'
function given by the model and the empirical characteristic function obtained from data.
This approach has several advantages. It avoids difficulties inherent in calculating and
maximizing the likelihood function. Although the likelihood function can be unbounded,
its Fourier transform (which is the characteristic function) is always bounded. The im-
portant theorem which establishes the one-to-one correspondence between characteristic
function (CF) and the cumulative distribution function (CDF) suggests that estimation
and inference via the ECF should be as efficient as the likelihood-based approaches
(Carrasco and Florens (2002)).

Let first recall the ECF principle in the case of affine models. It means that we are
considering B(u) = 0 or 8(u) = 0. Let denote Ay the unknown parametef to estimate. -

We can rewrite the affine model (1.1) as follows:
E [exp (ux;11) — exp (0(u; Ao) + a(u; Ao)x; ) [x5,s <] =0Vu. = (1.48)

This implies that for any weighting function, w (often termed instruments in the GMM

literature), we have:

E [(exp (uxt+1) — exp (0 (u; Ao) -+ a(u; Ao)x:)) w(xe,v)] = 0 Vuu, v. (1.49)

This leads to continuum of moments restrictions; hence we can estimate by applying
the GMM to a continuum of moments restrictions (see CarraSco, Florens (2000)). The
ML efficiency is achieved by choosing Carrasco et al. (2002) weighting function, i.e
w(xe,v) = ™

Let us consider now the generalized affine model (1.8), the model can be rewrite as

follow:

i () = B () wie (6 )ib‘ )00k () + (B (i) 0150
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This implies that for any weighting function, w(-,-)

E [(emﬂ _ P (520)y0(6: (1520);0)+ iy B 1 (1320) [@( -1 (4320); A0+ B -1 (u;m;ao)x,_m]) wix,, v)] =0
(1.51)

Yu,v, where x, = (x,_q+1,...,x,)/ and v = (vl,...,vq)/. Similarly to the affine model

results, we specify the following weighting function w(x,,v) = e%".

1.4.2 Generalized method of moments

One of the advantages of the discrete time affine models is that we can compute
unconditional moments of any component of the process of interest. This point have
been studied in detail in Feunou and Tedongap (2009). This is an important result for
estimation purpose because even when there are some unobserved corhponents in the
process of interest, we can still compute the moments of observed components and use
them to implement a GMM estimation routine. It turns out that we keep this advantage
in the generalized affine model as shown in section 2. In the case of observable variable
of interest, there is no need to compute the unconditional moments. We can use the
conditional moments equations which have been derived in section 2. The derivation of
conditional moments equations has nothing to do with the affine structure of the model,
but it is the consequence of the fact that we have written a model directly on conditional
characteristic function. This means that in the case of generalized non-affine models
(1.9), we can still compute conditional moments equations.

The following moment conditions have been used in the literature by Bollerslev and

zhou (2002) to estimate one factor and two factors stochastic volatility models by means
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of conditional moments of realized variance:

where 10 = E(x;4+1), Ho,0 = E(x2, ), i s = E¢ [xr41] and pp, = E; [x?,,]. We simulate
the generalized autoregressive gamma (GARG) model built section (1.2.1.5) with y =
2.784E — 05, v =0.1394, p = 0.1125, B = 0.9227 and 6 = 0.9066. These parameters
have been obtained by estimating the GARG on realized variance data. For different
sample sizes (T") and number of replications (N) we estimate the GARG and report in
table 1.1 different statistics (mean, median and root mean square errors (RMSE)) across
different replication sizes. The GMM does well if we consider the longest sample size

(1000) and the biggest number of replications (4000).

1.4.3 Maximum and quasi-maximum likelihood method

In general, the conditional likelihood can be obtained from the conditional charac-

teristic function using the following inversion formula:

; 1 +oo
fGslh) = 5 [ exp(~iusiyr + yiiu))du (1.52)

1

oo
= — [ Relexp (<iwsees + ya(i))]

Most of the time, we do not have the likelihood function in closed form, except for some
specific generalized affine processes like VARMA, GARG with 8(u) = u. When 0(u) #
u, we estimate the GARG on interest rate and realized variance data by maximizing
(1.53) (using numerical integration tools), we obtain significant estimators of parameters

B and 6. We did not report the results in this chapter. To circumvent the numerical
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integration diﬂiéulties, we can derive the first two conditional moments equations (see
section 2 for details on conditional mdments structure) and then implement a quasi-
maximum likelihood. In the case of processes with positive support, we can use the
standard gamma density (with two parameters), a Gaussian density being used when the
support is the whole real line. Finally we run the same Monte-Carlo exercise as in section
1.4.2, but we use the QMLE method (with gamma density) instead of the GMM. Results
are summarized in table 1.2. Compared to GMM, the QMLE have some difficulties in

estimating the parameters v and u.

1.5 Empirical Application: No-Arbitrage VARMA Term Structure Models

We give more details on VARMA term structure models in a companion paper (Feu-
nou (2009)). Ang and Piazzesi (2003) argued that macro-economic variables add some-
thing new in traditional three factors term structure models. One motivation of gen-
eralized affine models studied in this chapter is the possibility that they allow one to
reduce the dimension of the state vector usually used in affine models. In particular
we argue that an affine model on a vector of dimension n + 1 is less parsimonious and
would yield poor out-of sample forecasts compared to a generalized affine model of or-
der (1,1) on n components of the same vector. In the context of this example, we will
compare for instance a VARMA model on three observed yields to a VAR on the same
three observed yields and one macroeconomic variable. We will run an out-of-sample
forecasting exércise to compare the considered models. In the literature the “Nelson-
Sielgel with AR(1) factor dynamic” is known as one of the best performer in forecasting
the entire yield curve at different horizons (Diebold and Li (2006)). Our competitors
are then the “Nelson-Sielgel with AR(1) factor dynamic” and the random walk model
(Duffee(2002)) where the random walk model is shown to provide better out-of-sample
forecasting results compared to a many of affine models.

The state vector is denoted by Z;,;, we consider the following VARMA(1,1) dy-
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namic under the historical probability measure P:
ZH—I =u-+ (PZ, +Z(8y+1 — 98]) , Enrv i.id. ,/V(O,I)

As shown in section 1 and 2, this model is part of the generalized affine class. Indeed
the conditional cumulant function of Z; | denoted y; (u) satisfies the following recursive

relation:

vi(u) = 0(u) + () Z + -1 (8(x)),

with
o(u)=uvu+ %u’Z (Is —©0) Lu, a(u) =o' (¢ —ZOL7Y), O(u) = (Z@Z_l)/u.
The specification of the pricing kernel is similar to one used in Ang and Piazzesi (2003),
M1 =exp (_yt(l) - %AITL - A,Tét+1) .

To maintain the tractability of the model, affine price of risk (4,) is often used A, =
Ao + A1Z;, (see Ang and Piazzesi (2003)). In the context of our VARMA model, Feu-
nou(2009) discusses this specification and adds the conditional expectation of the state

vector Ey(Z,,1), i.e., he assumes
AM=A+MZ+ME(Z11). (1.53)
Several interpretations can be given to Eq. (2.3). First, we can reformulate it as follows:

A = A+MZ+A(u+ (9 -Z0Z7) Z +XZOZ7E,_((Z))
= M +AMZ+ 1 E(Z),

where
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Thus, the parameter A, captures the past information impact on the current market price
of risk. Another way of rewriting the price of risk is to express it in terms of the expected

variable E;_)(Z,) and the unexpected news X¢&:
A =25 + A2+ (A + X)) E—1(Z)).

Feunou (2009) shows that bond yields (with maturity ») are no longer affine of the state
variable Z;, but are rather affine function of the state variable Z; and it lagged conditional

expectation E;_1(Z,), i.e.,
W = ay+b],Z+ b3 ,E_1(Z). (1.54)
Another representation derived in Feunou (2009) is
W = an+ (bin+ban) "E1(Z) +b] 2, (1.55)

where the coefficients ay, by 5, and by ,, are given in Feunou (2009) (next chapter of the
thesis).

The estimation of the unknown parameters, i.e., the parameters of the historical dis-
tribution and those of the price of risk, is done in two steps. The first step estimates
the parameters of the historical distribution of the state vector by using the maximum
likelihood method. By taking the parameters of the historical dynamic to their estimated
values (results of the first step), we estimate in the second step the pricing kernel’s pa-
rameters by minimizing the squared difference between the model implied yields and
the observed yields (in practice, the maturities are 3, 12, 36, 60 and 120 months). Since
there are observed yields in the state vector, Feunou (2009) (see also Ang et al (2006))
argued that the second step is a constrained optimization problem.

The yields data used have been obtained from unsmoothed Fama-Bliss forward rates
(see Diebold and Li (2006) for full details on the construction and description of these
yields data) and they are the same used in Diebold and Li (2006). The Macroeconomic

Data are the two factors termed “inflation” and “real activity” used in Ang and Piazzesi
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(2006). We estimate and forecast recursively, using data from 1985:1 to the time that the
forecast is made, beginning in 1994:1 and extending through 2000:12. In Tables (1.3)
to (1.5), we compare h-months-ahead out-of sample forecasting results from “Nelson—
Siegel with AR(1) factor dynamic” to no arbitrage VAR and VARMA models, for matu-
rities of 3, 12, 36, 60 and 120 months, and forecast horizons of # = 1,6 and 12 months.

To summarize the RMSE results, the best model in DL(2006) (“Nelson—Siegel with
AR(1) factor dynamic model”) performs better only at horizon 1 for 3 and 120 months
yield. In general the best performer is the VARMA(1,1) model on 1, 24, and 96 months
yield, except for the 10 years yield at horizon 6 months where the VAR(1) model oh 1,
24, and 96 months yield and inflation performs better.

In conclusion, by using observable variables in either a no-arbitrage VAR or VARMA
model we can do better than “Nelson—-Siegel with AR(1) factor dynamic” in forecasting
the entire yield curve.at any horizon. Macro-econorpic factors add new information
which are not contained in affine yields only model, but we can cope with these macro-
economic factors by implementing a no arbitrage generalized affine model (here the
- VARMA) on the classic three factors model. In other words, we find out empirically that

the generalized affine model is a reduced form of an affine model with more variables.

1.6 Conclusion

This chapter extends affine models by introducing moving average type components
in the conditional cumulant function. The extension is important theoretically because
important models like ARMA are not affine, beside that we show how we can build
parsimonious infinite order affine models. The extension is also empirically important
as shown in the empirical example. In particular, the term structure exercise shows that a
generalized affine model on traditional three factors term structure model forecasts better
the entire yield curve than an affine model on three factors and macroeconomic variable.

We are currently implementing the same model in two applications using realized |
volatility (Feunou and Meddahi (2009), and Feunou, Christoffersen, Jacobs, and Med-
dahi (2009)). The preliminary results are quite promising.
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There is an alternative approach that leads to non-Markov affine processes. It uses the
conditional Laplace transform of the process x; defined as .% (1) = exp(y;(u)) instead

of the cumulant function. The traditional affine models are characterized by
Zi(u) = exp(0(u) + o (u)x).
In a companion paper, we are currently studying the process defined by

Zi(u) = y(u) +-exp(@(u) + o (u)x;) + B(u) Zi—1 ().
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Appendix A
In this appendix, we build a generalized affine model of type I where the function () varies.

Let us consider a positive process X; with conditional cumulant function ‘¥,.

E, lexp (uKi4n)] = exp (¥ ().

We define ¥, (1) recursively as follows:

Yo(u) = (u)+ao(u,Xo)
¥ (u) = o(u)+ao(u,X1)+ar(u,Xo)

¥, (u) = (u) + ag (u,Xz) +a (u,Xl) +az (u,Xo) ,

and generally, we have

¥, (u) = w (u) + ztéa,- (u, X—;). (1.56)

The first issue is to give some conditions on sequence functions a;(w,x) and @ () such that ¥, (u)
is a well defined cumulant function.

If @ (u) and a; (4, x) are cumulant functions V i, then ¥, () is a well defined cumulant func-
tion. Indeed, the sum of cumulant function is a cumulant function.

Consequently we will choose @ () and a; (#,x) such that they will be always cumulant func-

tions. Another consequence is the fact that we can write X, as follows
14
X1 =N+ X, Zigqr,
i=0

where 7,4 and Z;, 4, are mutually conditionally independent with cumulant function w () and
a;(u, X;—;). This give us a simple approach to simulate X .-
The final goal is to rewrite definition of ¥, («) given by (1.56) recursively. To achieve this

goal the following expression is given to cumulant function a; (u,x)

ai(ux) = P@lexpla@i+b@)-1] (157)
P(x) = exp (Ao + A1d)x.

As it was the case with ¥, (#), we need to make sure that (1.57) is a valid cumulant function,
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This is done using Lemma 5.4.1 of Lukacs (1970) (page 111) where it is shown that p(g(u) — 1)
is an infinitely divisible cumulant function whenever g(u) is a characteristic function and p > 0.

Thus if a(u) and b (u) are cumulant functions and X a positive process, then g; (u,x) is a
cumulant function. Since process X, is built using cumulant generating function, it is hard to
simulate. We give an answer in the following lines. Proposition 1.6.1 shows how a random

variable with cumulant function a; (#,x) can be simulated.

Proposition 1.6.1. p(g(u) — 1) is the cumulant function of Z iff

where random variables N and Y, are mutually independent, N follows Poisson distribution of

parameter p and the moment generating function of Y, is g(u).

Since ¥, (u) is the conditional cumulant function of X;.; (which is a positive random vari-
able), we must then choose @ (u), a(u) and b(u) such that ¥, () is a cumulant function of a

positive random variable. The following proposition addresses this issue.

Proposition 1.6.2. Ifa(u), b(u) and  (u) are cumulant functions of positive random variable,

then Y, (u) is a well defined conditional cumulant function of positive random variable X, ..

We are now ready to write ¥, (u) recursively.

W) = o)+ P exp(a(w)iebw)— 1]

i=0

- w<u>+§n<)r,~i>exp<a<u>i+b<u>>—gp,-(X,_»

— o)+ Y exp((@(m)+ A)i+Ao+b(w) Xii— S exp (Ao i) Xi_s.
i=0 ) i=0

Proposition 1.6.3. ® (u) can always be reformulated as following

_ c(u) (0
l—exp(a(u)+Ar) 1—exp(l)

o (u)

As shown below, the proof of Proposition 1.6.3 is a direct consequence of the fact that @ (u)

is a cumulant function.
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We can then rewrite ‘¥, (#) as following.

with
fitw) = 1 _exPC(“(’l?u) + A1) ;F‘Z)GXp((a(u) + A1) i+ Ao+ b (u)) Xi-s
= ) ex u tex a(u ix._.
B l—exp(a(u)+ll)+ p(4o+b( ))Z(') pla(u) + A1) Xi-i..

Proposition 1.6.4. f;.| (u) evolves recursively as follows:

Jeri () = c(u) +exp (Ao + b () X1 +exp(a(u) + A1) /i (w)

An immediate consequence of Proposition 1.6.4 is the recursive formulation of ¥, () given

by proposition 1.6.5.

Proposition 1.6.5.

¥, () = a0 (1) + 01 () £i(0) + 02 () fi1(0) + B (1) oo (u), (1.58)
where
wo(m) = c(u)—c(0)e!®
ag (u) = eb(“) —1
o) = éeh [ea(u) _ eb(u)]
Bu) = ghtalu)

Note that in the right hand side of equation (1.58), we have f;(0) instead of X;. For this

reason the conditional cumulant generating function of £,(0) is evaluated. The joint conditional
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moment generating function of X, and £, (0) is:

E, [exp (uXer1 +v£i+1(0))] = E, [exp (uX,+| +v (c(O) +eA°X,+| +e}"f,(0)>>]
= exp (vc(O) +vel £(0) + ¥, (u+ ve“)) :

Thus if we denote ¥¢ (u,v) = In (E; [exp (uXi+1 + v£i+1(0))]), we have

¥ (u,v) = ve(0)+vel £(0) + P, (u+ ve)
= vo(0) + veb £;(0) + o (u+ ve®) + 0 (v £,(0)
+Otz(u+ve )ﬁ 1{ +ﬂ(u+ve )‘I‘,_1(u+ve’1°)
= vc(0) +veM £,(0) + wy (u+ve’1°> + o (u+ve’1°>f,(0)
+on ( +ve ) fimr(0)+ B (u +veﬂo) [ ¢ (u,v) —ve(0) — ve}“f,_l(O)] .
The whole expression of ¥¢ (u,v) is summarized in the following proposition.

Proposition 1.6.6.
\Ptc (u’v) = W(u7v) +4, (u7v)ﬁ(0) +4; (u’v)ﬁ—l (0) +B(u7v) \Ptc—l (uav) ’

where

W(uy) = vc(O)(1—ﬁ(u+ve*°))+ax,(u+veﬂo)
A () = ve'+oy (u+ve"°)

Ay(uv) = o (u+ve"°)—ve’1'ﬁ(u+ve"°)
B(u,v) ='ﬁ(u+ve%).

In conclusion the vector (X1, f;+1(0)) is a generalized affine of order (2,1), implying a

univariate generalized affine for £, (0) as stated in the following corollary.

Corollary 1. Notice that by imposing u = 0 we have a generalized aﬁnev model of order (2,1)
Jor £:(0).



72

Indeed

Elexp (i (0)] = exp (¥ ()

= exp(¥/(0,v)),

with
lPtc (O,V) = W(O,V) +Al (O,V)ﬁ(O) +A2 (O,V)ﬁ_l(O) +B(07V) lIJtc—l (O,V) .

v/ (u) = & (u) + of () fi + o () fo—i + B/ (W)W (u),

where

W) = In[E(expufin))]
B/u) = pnf(w)
ol (W) = up+g)—1
of () = (1~ pu)f(w)—g(u))
_ Y
W) = (1=B/w) (wp-+ T2 +hw) ) ~ pet)

with g = M, f(u) = ¢¢) a moment generating function of a positive infinitely divisible
random, g(u) = eb(#¢%) 3 moment generating function of a positive. random variable and 4(u) =
@(ue®) a cumulant generating function of a positive random variable.

Hence we get the result stated in proposition (1.2.2).
Proposition 1.6.7. Generally, for any givens, (1;(0), f;(s)) is a generalized affine of order (2,1)

We can restrict f;(0) to be positive by just imposing ¢(0) to be positive and considering
positive initial value f5(0). On the other hand f;(0) can take any sign if any restriction is made

on c(0) and f;(0). All these assertions are consequences of the recursive definition of f;,; (0)

Ji+1(0) = c(0) +exp (o) Xy +exp (A1) £ (0) .

Since X;1 is a positive random variable, if f; (0) > 0 and ¢(0) > 0, then f;+;(0) > 0. ¢(0) is an
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undetermined parameter with undetermined sign. This implies that if the sign of ¢(0) and £; (0)
are undetermined then £, (0)’s sign is also undetermined.

Generalized affine of order (1,1) (for £;(0)) can be obtained by restricting functions g and b
to satisfy 4, (0,v) = 0. Solving 4, (0,v) = 0 implies

b(v)=a(v)+In (1 - vell—"O) ,

which in fact is equivalent to imposing the following restriction to the moment generating

function f.

1) = £

We then get the result of proposition (1.2.1).
Proof of Proposition 1.6.1: The proof is quite easy, in fact it is done by realizing that if G is
the distribution function corresponding to characteristic function g (or moment generating func-
tion), then F =e P37 ;L';G"* is the distribution function corresponding to characteristic function
(or moment generating function exp (p(g(u) — 1))). In this expression G™ means the convolu-
tion of » identical distribution function G. The simulation of random variable corresponding to
distribution function F is also easy to deal with. Let consider a sequence of iid random variable
(¥i)i=) »...» and a discrete random variable N which is independent to (¥;),_, , = and which follows
a Poisson distribution with parameter p. The following random variable X has F" as distribution

function:

where Yj is a constant.
Proof of Proposition 1.6.2: The result is the consequence of the fact that p(g(u) — 1) is the
cumulant function of positive random variable when g (u) is the moment generating function of
a positive random variable. This result is deduced from the previous Proposition, indeed since
p(g(u) — 1) is the cumulant function of Z = 3, Y;, and g(u) the moment generating function
of ¥, ¥, >20=2>0

Proof of Proposition 1.6.3: In fact, for any given choice of a cumulant function of positive
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random variable @ (u), choose ¢ (u) as follows

o

c(u) = (l —exp(a(u)+ll)) G)(H)'f—Tp(m s

for any real 8. Since @ (u) and a(u) are a cumulant functions, thus @ (0) = a(0) = 0, which
implies that

c(0) =

Proof of Proposition 1.6.4: Indeed

c(u) +exp (Ao +b(u)) Xiv1 +exp(a(u) +41) f; (u)

= c(u)+exp(Ao+b(u)) Xi + e;ﬁ[_)(;i)u() -*(_A)I_):; )) + exp (Ao + b (u ZCXP u) + A1) Hly

i=0

c( ) 1+1 .
[—exp(a (@) + )-f—expv(ﬂo-f—b(u))j:zaexp(a(u)+Al) Xov1;

= fiti (U)

il

Proof of Proposition 1.6.5:

fovn () = o (1) +exp (Ao + b (1)) Xis +exp(a(u) + Ar) £ (1),

and

imply that

FW)+£(0) = o)+ [£(0)=c(0) — b /-1 (0)
+eh e N )+ £ (0)].
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Proof of Proposition 1.6.7: Indeed

u(c X, ',
E,[exp (ufis 1 (0)+vfir1(5)] = E {exp(+ ( (c(0) + X1y + €4 £,(0)) )I

c(s) +Hblx, | 4 ehtall g, (s))

N uc(0) + ve(s) + uet £,(0) '
+veh1t96) £(5) + W, (ueho + velothls))

exp (¥ (u,v)) .

Wi (uv) = uc(0)+ve(s) +ue £(0) + veM T £ (s) + W, (ue + velotbl))
= uc(0) +ve(s) +ueM £,(0) +veh ) (5) + an (ueks + )
+a (ue)“’ + ve)“""b(s)) £:(0) + o (ue10 + ve*o+b(5>) £i-1(0)
+B (ue’10 + ve"”"m) W, (uel 4 vete))
= uc(0) + ve(s) + ue (0)+ ve!1+40) £, () + ay (ue’l" + ve’l""'b(s))
+o (ue’l" - ve’l""'b(s)) £(0)+ o (ue’l" - ve’l"“'b(s)) fi-1(0)

4B (ue’10 —+—ve’1"+b(°")) {‘{‘f’_sl (u,v) —uc(0) — ve(s) —ue £, (0) —ver 70 £ (s5)|.
Hence
Wi (u,v) = WS (u,v) + 45 (u,v) £,(0,5) + 45 (4,v) £1-1(0,5) + B (u, v) ¥ (uy),

where

71(0,5) = (ﬁ (0))

Ji(s)

W< (u,v) = (uc(0) + ve(s)) (1 -p (ue’10 + ve’l"'*'b(‘))) + ay (ue’10 + ve’l""'b(’)) .

. Mo oy (ueh + velothls)
AJl (u7v) = (ue I£Zl|+a(s)v ))
P B o (uelo + vezo+b(s)) —uehp (uezo + ver+b(s)),
2 wy) = ( —yehi+als) g (ueau + veM+b(s)) ) ‘

B(uv)=8 (ue’10 + veM+b(s)) .
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Appendix B
This appendix provides the proofs of Section 2 and Section 3. Proof of Proposition
1.2.4:

From (1.8) we have

Vi () = B () Wi (6; () +I§Ek__l (1) [0(Bk1 (1)) + (B () risn].

[ h
exp (Vin(un)) = Ei|exp (zuixt+i)

i=1

h-1

= E; |exp (z UiXpti + Yih— (uh))]
i=1

[ CXE(ZL_ ! UiXeyi) X
% exp B Br (4n) Wi—1 (8h (un))
I + Zhe1 Beot (un) [0(Bk—1 (un)) + 0t(Bk—1 (un))X1h—t]

_ ep [ B Wt O+ B () (B () |
+ it Bt (un) ©(Bk—1 (un))

= E

h-1
<E, |exp (z())] ,
i=1
thus
= B 0 6 B () ()
+Zﬁk— (u;,)) (Gk— ( (h))) + Vi p—1(un-1),
where

R G e
A B () 5 ()

uj = uj.
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Let denote

dk = ul(ck) y

we have dp =up and fork < h—1

de = u =ul**V 1 By (dir) @ (80 (dis))
= w4 By (dira) (61 (div2)) + Po (di1) @ (60 (dis1))

= (h)+2ﬁ1 (die+7) 0 (8j-1 (de+s))
= uk+,~§‘lﬁj" (et ) & (8j-1 (det)) -
Thus

Vinin) = Bu(d) Wim1 (6 (dn)) + Bro1 (dh) 0 (B4 (di))x, +
h _
> Bt (dn) @ Okt (dh)) + Vi1 (stn-1)
k=1

= Biu(dn) Vie1 (8n(dn)) + Broi1 (dh-1) Wim1 (0(B4-1 (dh-1))
+ [Bat (di) 0 (Bh=1 (dn)) + Baea (di—1) @ (Oh—2 (dr1))]

h _
+ 2 Bi—1 (dn) @ (61 (dn))
k=1

—1 _
+ Y, Beei (dnoy) @ (6ry (diy)) + Vi p—2(un—2)
ho_
= an (un)x:+bn (un) + 3, Be (di) Wi (6 () ,

k=1

where

M=
‘Dn

ap(up) = —1(di) o (61 (di))

e
Il
—_

by (un)

il
Il Mr

ko
ADDRICEICE mam}

Proof of Proposition 1.3.4. The yield to maturity n ( ,( )) is related to the short term rate as

following
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forn=1we havey(') =r,forn>2

yﬁnJ _ _%m {E,Q -exp ( Zyt+k)] }
_ " 2 M+kt+k+l ex
k 0 t+k M+kt+k+l] P H-k
— —%ln {E,P exp( P+ ( Witkt Wﬁ-k(?’)))]}
= —-}l;ln{Ef Lexp( Zy,+k+2( i 1(}’))}}
(1)
_ m_l]n{ﬂ’ [exp(Z(}’ 1) y:+k Z‘VPH )}}

k=1

= Ef lexp "—I('Y—l)yr(i)k"f( 3 el )+ ))]

S BE (1) [@F (62, (1) + ™07, ()W ko]

)x

n-2| _
= exp( 2'1 |:I3 (Vi (6f (Y)+ZI3P (1) (67, (7))
n—I n-=2
exp( (r= 1)y — Z (2/3 a® (67, ( )y:+k z+|))] .

i n—1| n—2 k _ |
EF Lexp ( | (y— 1)}’,(2/( -y (Z BiZi (7) 21 () yt+k—t+l) )]
i —1 n—2 kK _
= El|exp| X (y- 1)}’,(2/(— > ( If——_[ (1)’ (6 (Y))y{(-:-)j))j'
i j

n-2 —
(SRS (Z BE; (e’ (8 ( ))) y,('ﬁj)J

b j=]
]
exp U’r(+)k) }

E RS
Il
- -
-
I
-

i
I
2
S
o
M

X =
T

(-
LK



where

where

Cn o
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gy = y—1

n—2 _
uj = y—1-3 B ;(Na’(6;(y)) for j<n—1.
k=)

w +yE )+ 3323 [BE () w7 (6F (0) + 351 B2 () 07 (67, (1))]

n

_Gn-1 (G )P + baey (ney) + Yo B (de) v, (6 (de))
n

w+ 3 (5 B2 (n) @7 (62, (1)) + Tic! Be () W2, (687 ()

n

S B (e (6, (1)

n
nt () b (i) + X2 B (d) W (8F ()
n

o n—lrm .
oo+ 3 | B2 (67 () - Sy (o ()

dn + Cn,Oyt(l) + z[(n)l H

- %:};‘(Zﬁ, 2L~ B () o <,1<dk>>)
_ "_1[+z Bect (1)@ (8.1 (1)) — Bict () ¢ (B (dk»)}

diy=y7—landfork<n-2

d =

n— —

1k
-1+ Z [Bj-1 dk+1) (8j-1 (desj)) - ﬁf'() (6; 1(7))]‘



Proof of Proposition 1.3.6. One has

E /My = exp(-r)

EMyiexp(rr)] = 1,
which leads to

9[+\P[(’y,).) = —-r
6+%¥ (1+y,1) = 0.

Hence,

8 = —r—¥.(v,A)
Y, (1+7y,A)~¥ (y,A) = r

By using the following expression of the model:

o (u,v)

Wit (u,v) = 1—_m

+ a(H,V) Zﬁ (uwv)iht—i+l)
=0
onc gets,

(J.)(l-f—’y,).) a)(%)') - i i _
R T T S U A el n )= e () b=

which implies

o(l+yd) o)

1—ﬁ(1+’}’,).) l_ﬁ(%)')
ﬁ(l+Y'J)')la(l'f_%)')_ﬁ(%)')’a(’y,)') = 0,Vvi>0.

Therefore,

w(l+rd) el)
1-B(1+y,4) 1-B(y,1)
B(1+71,4) = B(1,4)

a(l+7,1) = a(rl).




Proof of Proposition 1.3.7.
EP lexp (ury 1 + V¥ (V)] = EP[exp (ur+v(o () +a (V) +BM¥ (M)
thus

¥ (u,v) = vo(y)+vB (Y)Y (y) +¥2 W)
= vo()+vBMY W)+ @ +7y) ¥ (1),

where

ut =utva(y),

this implied that

¥ (wy) = vo+0BM) - DY (1) +¥is @ +7)
= vo(N+EBM-D¥Ym(+e@E +7)
+a (@ + )+ B + Y)Y (" +7)
= vo+EBMN-D¥ i (N+e@ +7)+
+a(u + )+ B @+ 1) [ (u,v) —vor (1) — (vB (¥) = D, (7)].

&1



Table |.l: Monte carlo exercise for the GMM.
Mean, Median and RMSE of parameters estimates across N samples (of T observations). Parameters used in the simulation of GARG
mode| are 4 =2.78E-05, v =0.139, p =0.112, B =0.922 and 8 =0.906

- Par  Mean Median RMSE Mean Median RMSE Mean Median RMSE

N=1000, T=250 N=1000, T=500 N=1000, T=1000
2.58E-05 3.66E-05 1.6BE-05 26I1E-05 3.66E-05 1.66E-05 2.64E-05 3.66E-05 1.64E-05

u

1% 0.077 0.109 0.079  0.077 0.109 0.078 0.078 0.109 0.077

ol 0.104 0.115 0.018 0.104 0.115 0.018 0.105 0.115 0.018

B 0.695 0.946 0.437 0.702 0.946 0.430 0.710 0.946 0.423

6 1.318 0.879 0.780 1.307 0.879 0.770 - 1.293 0.879 0.755
N=2000, T=250 N=2000, T=500 N=2000, T=1000 ,

H 2.80E-05 3.67E-05 1.55E-05 2.90E-05 3.66E-05 1.49E-05 297E-05 3.66E-05 |.44E-05

1% 0.083 0.109 " 0.072 0.086 0.109 0.069 0.088 0.109 0.066

P 0.106 0.115 0.017 - 0.107 0.115 0.016 0.108 0.115 0.015

B 0.744 0.946 0.395 0.766 0.946 0.372 0.784 0.946 0.353

] 1.248 0.879 0.733 1208 0878 0.693 1.175 0.878 0.657
N=4000, T=250 N=4000, T=500 N=4000, T=1000 «

H 3.20E-05 3.66E-05 1.28E-05 3.24E-05 3.66E-05 1.25E-05 3.27E-05 3.66E-05 1.24E-05

v 0.095 0.109 0.056 0.096 0.109 0.054 - 0.097 - 0.109 0.053

ol 0.110 0.115 0.012 0.111 0.115 0.012 0.111 0.115 0.011

B 0.837 0.946 0.291 0.847 0.946 0.278 0.852 0.946 0.270

2] 1.084 0.879 0.557 1.066 0.878 1 0.533 1.056 0.879 0.517

[



Table 1.2: Monte carlo exercise for the QMLE.
Mean, Median and RMSE of parameters estimates across N samples (of T observations). Parameters used in the simulation of GARG
model are y =2.78E-05, v =0.139, p =0.112, B =0.922 and 8 =0.906

Par Mean Median RMSE Mean Median RMSE Mean Median RMSE
N=1000, T=250 N=1000, T=500 N=1000, T=1000

4 6.00E-05 5.13E-05 5.37E-05 5.97E-05 S5.20E-05 5.19E-05 6.13E-05 5.31E-05 5.43E-05

1% 0.142 0.051 0.453 0.154 0.051 0415 0.148 0.050 0.427

P 0.110 0.109 0.029 0.108 0.109 0.027 0.108 0.106 0.028

B 1.028 0.959 0356  1.048 0.960 0415 1.066 0.964 0.488

(4] 0.879 0.909 0.189 0.875 0.908 0.204 0.870 0.909 0.206
N=2000, T=250 N=2000, T=500 N=2000, T=1000

M 5.45E-05 5.02E-05 4.20E-05 5.46E-05 4.99E-05 4.12E-05 5.56E-05 5.15E-05 4.23E-05

v 0216 0.057 0.963 0.220 0.055 0915 0.179 - 0.052 0.711

p 0.109 0.109 0.023 0.107 0.107 0.023 0.107 0.107 0.024

B 0.998 0.937 0.270 0.993 0.941 0.243 1.001 0.947 0.255

6 0.891 0.918 0.164 0.893 0.918 0.158 0.888 0.915 0.161
N=4000, T=250 N=4000, T=500 N=4000, T=1000

1] 5.30E-05 S5.07E-05 3.82E-05 5.26E-05 S5.17E-05 3.57E-05 5.30E-05 S5.31E-05 3.57E-05

v 0.244 0.048 0.942 0.373 0.049 3.038 0.275 0.050 2.347

p 0.108 0.109 0.022 0.108 0.107  0.021 0.107 0.106 0.021

B 0.969 0.940 0.168 0.963 0.941 - 0.146 0.966 0.964 0.147

(7] 0.901 0.914 0.126 0.905 0913 0121 0.903 0.909 0.122
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Table 1.3: Out-of-sample 1-month-ahead forecasting results.

We present the results of out-of-sample 1-month-ahead forecasting using eight models, as described in detail in the text. We estimate all
models recursively from 1985:1 to the time that the forecast is made, beginning in 1994:1 and extending through 2000:12. We define
forecast errors at t+1 as y, () — ,+1(7), and we report the mean, standard deviation and root mean squared errors of the forecast errors,

as well as their first and 12th sample autocorrelation coefficients.

Maturity Mean Std. Dev. RMSE p(1) p(12) Mean Std. Dev. RMSE p(l) p(12)
Random walk Nelson-Siegel with AR(1) factor dynamics
3months 0.033 0.176 0.179 0220 0.053 -0.045 0.170 0.176  0.247 0.017
| year 0.021 0.240 0.241 0340 -0.153 0.023 0.235 0236 0425 -0.213
3 years 0.007 0.279 0.279 0.341 -0.133 -0.056 0273 0279 0332 -0.117
5 years -0.003 0.276 0.276 0275 -0.131 -0.091 0.277 0.292 0333 -0.116
10 years -0.011 0.254 0.254 0215 -0.145 -0.062 0.252 0.260 0.259 -0.115

VAR(1) on 1, 24, 96 months yields ' ' VARMAC(I,1) on 1, 24, 96 months yields
3months -0.043 0.196 0.200 0.126 0.320 -0.021 0.231 0.230 0.014 0.299
| year -0.011 0.235 0.234 0380 -0.139 0.004 0.230 0.229  0.055 -0.006
3 years 0.018 0.269 0.268 0.358 -0.153 0.023 0.250 0.249 0.143 -0.095
5 years -0.014 0.281 0.280 0375 -0.154 -0.007 0.267 0.265 0.266 -0.100
10 years -0.163 0.274 0.318 0.386 -0.094 -0.152  0.264 0.304 0.348 -0.066

VAR(1) on 1,24, 96 months yields and inflation VAR(1) on 1,24, 96 months yields and real activity
3 months  0.078 0.196 0210 0.120 0.295 -0.082 0.202 0.217 0.143 0.3l6
I year 0.088 0.227 0243 0328 -0.144 -0.057 0.239 0.245 0411 -0.149
3 years 0.134 0.261 0292 0294 -0.099 0.024 0.265 0264 0332 -0.139
5 years 0.052 0.273 0276 0315 -0.107 -0.031 0.278 0.278 0.351 -0.136
. 10 years -0.050 0.269 0272 0354 -0.100 -0.107 0.277 0.296 0.403 -0.092

¥8



Table 1.4: Out-of-sample 6-months-ahead forecasting results.
We present the results of out-of-sample 6-months-ahead forecasting using eight models, as described in detail in the text. We estimate
all models recursively from 1985:1 10 the time that the forecast is made, beginning in 1994: and extending through 2000:12. We define
forecast errors at 1+6 as yr16(T) — y,1.4/,(7), and we report the mean, standard deviation and root mean squared errors of the forecast errors,

as well as their sixth and eighteenth sample autocorrelation coefficients.

Maturity Mean Std. Dev. RMSE p(6) . p(18) Mean Std. Dev. RMSE p(6) p(18)
Random walk - Nelson—Siegel with AR(1) factor dynamics

I months 0220 0.564 0.605 0381 -0.214 0.083 0510 0.517 0301 -0.190

| year 0.181 0.758 0.779  0.139 -0.150 0.131 0.656 0.669 0.168 -0.174

Jyears  0.099 0.873 0.879 0018 -0.211 -0.052 0.748 0750 0.049 -0.189

Syears  0.048 0.860 0861 0008 -0249 -0.173 0.758 0.777  0.069 -0.273

10 years -0.020 0.758 0.758 0019 -0.271 -0.251 0.676 0721 0.058 -0.288

VAR(]) on 1, 24, 96 months yields VARMAC(L,1) on 1, 24, 96 months yields
3 months -0.074 0.494 049 0.193 -0.109 0.001 053] 0.528 0312 -0.163
1 year -0.040 0.696 0.693 0.085 -0.142 0.015 0.665 0.661 0.208 -0.168
3 years -0.089 0.777 0.777 -0.014 -0.197 -0.028 0.725 0.721  0.047 -0.200
5 years -0.180 0.789 0.805 -0.006 -0.220 -0.103 0.735 0.738 0.049 -0.223
10 years  -0.388 0.735 0.827 -0.019 -0.186 -0.297 0.681 0.739 0018 -0.198

VAR(1) on 1,24, 96 months yields and inflation VAR(1) on 1,24, 96 months yields and real activity
3 months 0.590 0.464 0.750 0.143 0.116 -0.184 0.508 0.537 0.156 -0.042
| year 0.562 0.671 0.872  0.028 -0.025 -0.151 0.712 0.723  0.067 -0.113
3 years 0.396 0.769 0.861 -0.045 -0.135 -0.116 0.787 0.791 -0.020 -0.19]
5 years 0.186 0.789 0.806 -0.023 -0.178 -0.218 0.798 0.822 -0.007 -0.219
10 years  -0.040 0.727 0.723 -0.060 -0.187 -0.341 0.739 0.810 -0.019 -0.187
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Table 1.5: Out-of-sample 12-months-ahead forecasting results.
We present the results of out-of-sample 12-months-ahead forecasting using eight models, as described in detail in the text. We estimate
all models recursively from 1985:1 to the time that the forecast is made, beginning in 1994:1 and extending through 2000:12. We define
forecast errors at t+12 as y,412(T) — y,412/,(7), and we report the mean, standard deviation and root mean squared errors of the forecast

errors, as well as their their 12th and 24th sample autocorrelation coefficients.

Maturity Mean Sid. Dev. RMSE p(12) p(24) Mean Sid. Dev. RMSE p(12) p(24)
Random walk Nelson-Siegel with AR(1) factor dynamics

3 months 0.416 0.930 1.019  -0.118 -0.109 0.150 0.724 0.739  -0.288 0.001

| year 0.388 1.132 1.197 0268 -0.019 0.173 0.823 0.841 -0.332 -0.004

3 years 0.236 1.214 1.237  -0.419 0.060 . -0.123 0910 0918 -0.408 0.015

5 years 0.130 1.184 1.191  -0.481 0.072 -0.337 0918 0978 -0.412 0.003

10 years -0.033 1.051 1.052 -0.508 0.069 -0.531 0.825 0981 -0.433 -0.003

VAR(1) on I, 24, 96 months yields VARMA(1,1) on 1, 24, 96 months yields
3 months -0.152 0.792 0.801 -0.214 -0076 -0.137 0.708 0.716 -0.059 -0.123
| year -0.188 0.913 0926 -0.307 -0.027 -0.170 0.794 0.807 -0.143 -0.076
3 years -0.325 0.953 1.001 -0.393 0.001] -0.267 0.832 0.868 -0.269 -0.043
5 years -0.459 0.956 1.055 -0413 -0.006 -0.371 0.849 0921 = -0.305 -0.049
10 years -0.710 0.875 1.123  -0.440 -0.006 -0.596 0.775 0974 -0.357 -0.053

VAR(1) on 1,24, 96 months yields and inflation VAR(1) on 1,24, 96 months yields and real activity
3 months 0.854 0.851 1.202 0.020 -0.045 -0.329 0.852 - 0908 -0.245 -0.081
I year 0.743 1.002 1.242  -0.137 -0.005 -0.359 0.994 1.051  -0.344 -0.030
3 years 0.436 1.044 1.125  -0.286 0.016 -0.390 1.018 1.084 -0.420 -0.008
5 years 0.153 1.050 1.054 -0.323 0.001 -0.528 1.007 1.131 -0.430 -0.014
10 years -0.143 0.933 0937 -0414 -0.001 -0.682 0.90!l 1125  -0455 -0.011
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CHAPTER 2

NO-ARBITRAGE VARMA TERM STRUCTURE MODELS WITH
MACROECONOMIC VARIABLES

Abstract

This chapter combines VARMA processes with the no-arbitrage restrictions and
studies the forecastability of yields and macroeconomic variables. The chapter shows
that adding a Moving Average [MA] component to a standard VAR process offers sub-
stantial improvements in forecasting future yields, inflation, real activity and future inter-
est rate risk premia where our benchmarks are either a standard VAR model or a dynamic
version of the Nelson-Siegel model. An important hindsight from our results is that uéing
VARMA processes breaks the tight link between current value of the state variable and
the current conditional expectation of the future realization of the state variable, implicit
in VAR models. Moreover, we show that the state variable follows a VARMA process
under the nisk-neutral probability measure only if the price of risk is linear in the current
value of the state variable and the current conditional £xpectation of the future value of

the state variable.

2.1 Introduction

How can we combine tractability and flexibility when pricing financial instruments
like bonds and derivatives? Affine models are considered as the ideal set-up to answer
this question. To cope with non-Markovian state variable, the dimension of the state vari-
able is often increased by adding several past observations. Non-linearities are handled
by introducing unobserved component in the state variable. All these approaches in-
troduce difficulties in the estimation, among which high number of unknown parameters
(for multi-iags affine models) and an unobserved state component’s filtering. Feunou and
Meddahi (2007) introduce a new class of models, the generalized affine model, which

is a parsimonious infinite order affine model (just like the GARCH process is an infinite
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order ARCH process), and which still leads to closed form solutions to term structure
problems. Within the class of generalized affine models, ARMA models and more gen-
erally VARMA models are the most popular, but surprisingly to our knowledge VARMA
models have not yet been studied theoretically and empirically in the term structure of
interest rate literature. They are the main focus of this chapter.

Interest rates combine expectations of future short rates, inflation and real activity
as well as an adjustment for risk. Therefore, our results are important empirically and
economically for two reasons. First, estimating a VARMA specification for the historical
dynamics of the state vector délivers better in-sample and out-of-sample forecasts of real
activity, short rates and term spread compared to standard VAR models. This implies that
a VARMA specification for the short rate better captures the expectation component of
interest rates. We use impulse responses and conclude that the results depend crucially
on the ability of the MA component to filter the time-varying conditional mean of the
state vector from its past and current noisy realizations. Intuitively, innovations to a
given stafe variable are allowed for different correlation structures with the next period
realization of the state vector and with its conditional mean.

Second, the more flexible specification of prices of risk allowed by the VARMA
structure delivers substantial improvement of in-sample fit and out-of-sample forecasts
of interest rates across the term structure. Again, the results suggest that allowing for a
different impact of the state, z;, and its conditional expectation, E;[z;11], on the evolu-
tion of the risk premia is crucial. Intuitively, the impact of shocks to a state variable, say
inflation, on its own or other variables’ prices of risk, depends on whether the current
conditional expectations of other state variables, e.g. the short rate, is high or low. To-
gether, the improvements in out-of-sample forecasting are a significant contribution to
the literature given the strong presumption that more flexible models suffer from' over-
parametrization and offer inferior forecasts.

Term structure models often treat the determinants of interest rates as latent and use
a filtering approach to estimate model parameters from observed yields. This approach
offers a parsimonious fit of the data and three factors combined within a simple VAR

dynamics are generally thought to capture many stylized facts about interest rates. In-
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tuitively, latent factors can approximate non-linearities and Markov processes of higher
order in the dynamics of the true economic variable. However, latent factors introduce
many estimation challenges and, more importantly, offer only few hindsights about the
underlying economic structure. In contrast, the MA component in a VARMA process
can capture some stationary process of possibly infinite order but can still be estimated
via standard MLE. We check the relative contribution of using latent variables in a simple
setup, increasing the dimension of the state vector in VAR(1)-based model, and using a
VARMA specification on yields only, and find that the latter offer the best out-of-sample
fit. |

The chapter is organized as follows. Section 2 summarizes the data used, a discussion
on state vector specification and the dynamic under the historical probability measure is
performed, the VARMA(1,]) model is compared to a VAR(1) in term of likelihood. In
section 3 we discuss state vector’s forecasting. Section 4 presents the pricing kemel
and gives closed form expression of yield in function of state vector and its conditional
expectation. Estimation of price of risk as well as results ére discussed in Section 5.
Different out of sample forecasting exercises are implemented in section 6 while séction

7 concludes.

2.2 VARMA Model of Yields, Inflation and Real Activity

This section introduces the k-dimensional vector of state variable z; and discusses
the benefits of a VARMA specification under the historical probability measure. We
focus on the case where z; combines yields and macroeconomic variables and estimate
its dynamics directly from observed data. The results indicate that the Moving Average
component is significant and we show through the impulse function analysis and out-of-

sample forecasting how this component improves upon the simpler VAR model.

2.2.1 Model Specification

In principle, a VAR dynamic combined with a.sufficiently high number of latent

factors, f; within z;, can capture a rich set of dynamics, including Markov processes of
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high order. Nonetheless, the curse of dimensionality raises many estimation challenges
and the literature has settled around a small number of factors combined with a flexible
specification of the price of risk. This approach potentially captures stylized properties
of the term structure of interest rates but does not shed light on the linkages between the
latent factors and the underlying macroeconomic structure. For this purpose, the state
vector must be observable and a VAR(1) may be too restrictive.

Consider the general reduced-form VARMA(1,1) model
Zp1 = U+ 0z +Z(&41 —OF,), (2.1)

where € ~ i.i.d.N(0,1;), I; is the identity matrix. This VARMA(1,1) is equivalent to the

following more familiar form
Zyp1 = U+ ¢z + U — Oy,

indeed, we have u;, 1 = Zg41 and O = TOX~!. (2.1) is more convenient for pricing

purpose. The conditional expectation of z,; is
my = U+ ¢z — XOg,

we have

Zip1 = my + L&,

and, if |Z| # 0 (where |-| denotes the determinant operator), we have that
Er1 =27 (zer1 —my).
This implies the following recursive representation for m,

Myl = ,U+(¢—Z®E—-l)z,+1+292—lm,,
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and, the following VAR(1) representation of the conditional mean
Mt = L+om+(9—ZOT 7).

This implies that, contrary to VAR(1) model, the components of a VARMA(1,1) model
are univariate representations of a "two-component model". To see this, note that if ® =
0, and that we have a VAR(1) process, then the evolution of the conditional expectations,
my, coincides with the evolution of z,. Otherwise, if © # 0, the state vector is not a

sufficient statistic of the process.

2.2.2 Data

In practice, we will use the following observable state variables. Define x; = (x 1y,,x2,,)T
and y; = (yl’,,s,)T where x) , is a measure of inflation, x; ; 1S a measure of real activity,
Y1, 18 the yield on a zero-coupon bond with one month to maturity, and s; is the term
spread ¥ — y{!). The state vector is then z, = (x;, v, ). Rather than restricting our-
selves to specific measures of inflation or output, we use the inflation factor and the real .
activity factor constructed by Ang and Piazzesi (2003). ! Each of these factors is the first
principal component of a group of variables: an inflation group and a real activity group.
The data on zero-coupon yields spans the period from June 1952 to December 2000. We
use yields at maturities of 12, 24, 36, 48 and 60 months from the Fama-Bliss CRSP files
and the one-month rate is from the CRSP Treasury Bill files. Table 2.1 displays some
summary statistics. As expected, the average yield curve is upward sloping, and yield
standard deviations decrease with maturity. Also, yields are highly autocorrelated and

the autocorrelations increase longer maturity. The yields and macroeconomic factors

exhibit mild excess kurtosis and right-skew.

1. The first principal components of each group of macro variables were graciously provided by
Monika Piazzesi.
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2.2.3 Estimation Results

This observed VARMA model can be estimated using standard MLE techniques but

requires further identification restrictions. We use the following notation

¢ = (¢y)
X = (o)
0= (6y),
and assume
o = 0,forj>i+1

0;; = 0,forj<i+1.

The restrictions on X are common in the VAR literature, and are due to the fact that
the likelihood depends only on the variance matrix X ". In consequence, only ZX7 is
identifiable; besides ZX T is symmetric positive definite if and only if it can be written as
the product of a lower triangular matrix and its transpose. For this reason we choose to
restrict X to a lower triangular matrix. This implies that innovations to inflation are not
correlated with innovations in real activity and yields and that innovations in real activity
are not correlated with innovations in yields. On the other hand, innovations in yields
are correlated with innovations in macro variables. These restrictions reflect the fact that
while yields react to current economic conditions, the reverse is not true.

Contrary to X, restrictions on © are not common in the literature, in fact in princi-
ple © is fully identifiable. We impose restrictions on © in order to reduce the number
of parameters. These restrictions on © imply that the conditional expectation of macro
variables are affected by the evolutions of yields through the moving average compo-
nent. This captures the fact that the endogenous response of yields, and in particular of
monetary policy, influences the future path of macroeconomic quantities. Finally, we set

g1 and U equal to zero since the inflation and real activity factors are centered around

zero and we impose that y; = —@13y1.7 — Q1457 and Uy = —@3y1.7 — d245T, Where y| r
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and s7 are the sample means of y; ; and s;, respectively.

Parameter estimates from VAR and VARMA speciﬁcatioﬂs are provided in Table 2.2,
which displays estimates of i1 and of the autoregressive matrix ¢. Table 2.3 displays es-
timates of the standard deviation matrix, Z, and of the moving average matrix, ®. Not
surprisingly, results from the VAR model indicate that inflation, real activity and the
short rate interest rate of are persistent while the spread is slightly less persistent. Esti-
mates of the autoregressive coefficients are 0.9988, 0.9725, 0.9407 and 0.8244, respec-
tively. Looking at interactions between state variables, we see that increases in current
real activity lead to higher future inflation while higher current inflation is associated
with lower future real activity. Furthermore, an increase in the short rate leads to lower
inflation but, surprisingly, this coefficient is not significant. Finally, the short rate is ex-
pected to rise and the term structure to flatten whenever current inflation or real activity
rises.

An increase in the short rate has a weak effect on expected inflation and may be .
considered as evidence against this VAR specification. Introducing a Moving Average
component increases the likelihood significantly (i.e. the LR-statistic is close to 70, with
5 more significant parameters). Also, the‘autoregressive matrix is substantially the same
but the slope of the term structure is more persistent (0.8817) and yield variables are less
responsive to economic conditions through the auto-regressive component. However,
Table 2.3 indicates that the short rate has a significant impact on future inflation through
the © matrix. In other words, an increase in the short rate impacts future inflation only
through its conditional expectation, m, ,. The VARMA model breaks the link between
inflation expectations and current inflation. Moreover, it implies a different impact of
interest rates on each component. While the short rate has close to no jimpact on current,
noisy, measures of inflation, an increase in the short rate has a lastirig impact on infla-
tion expectations. Similarly, while the short rate has close to no impéct on real activity
through the autoregressive component, an increase in the short rate decreases the con-
ditional expectation of output. This is the evidence that the VARMA process correctly
captures the true relationship between these variables. | |

Note that the results imply that it is the evolution of the short rate that affects real
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activity and inflation. This contrasts with the common predictive results that document
a significant effect from the spread on future output and inflation. This is consistent with
Ang and Piazzesi (2003). Interestingly, their results stem from imposing no-arbitrage
restrictions but we show that a more flexible specification captures these interactions

without the need for these restrictions.

2.2.4 Impulse Responses

Another way to interpret these results is through impulse responses analysis. Fig-
ures 2.2 to 2.5 present the response of the state vector to a shock to each of the state
variables in turn. Figure 2.2 shows that estimates from the VAR and VARMA models
imply similar responses of real activity, the short rate and the term spread to an infla-
tion shock. Similarly, Figure 2.3 shows similar responses of each state variable to a real
activity shock.

However, in line with the observations made above, inflation and real activity re-
spond differently to yield factors in the VARMA model than in the VAR model. In the
VAR model, current inflation rises following a short rate shock. This reflects the en-
dogenous correlation induced by the monetary policy response. However, the impact on
future inflation simply decays toward zero suggesting that policy has no laéting impact
on inflation. In contrast, in the VARMA model, the impact is eventually large and nega-
tive. Inflation decreases by close to 1.5% below the initial level around 4 years following
a tightening in policy. Real activity also exhibit these contrasting pattern to interest rate
shocks in each model. Turning to term spread shocks, the VAR model implies that in-
flation aﬁd real activity rise following an increase in the slope of the term structure.
However, the impact is more pronounced in the VARMA model in part because of the
higher peréistence of the spread, but also because a higher spread implies lower condi-

tional expectations of the short rate through the MA component (i.e. 8,, ; = 0.2053).
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2.3 Forecasting

As a last check of the VARMA model to capture the true, conditional, correlation
structure of the state vector, we compare its out-of-sample forecasting performance with
a Random Walk [RW] and VAR(1) process. Clearly, the observations above suggest that

improvements are expected. This is because the A-horizon forecast can be written as

myy = (14— (Ph_l) (Lh—0) ' u+¢"m,

which shows that the forecasting performance will differ across models whenever the
implied processes for m; differ.

In practice, we estimate each model using the first 384 observations and forecast each
variable 4 periods ahead up to # = 12. We then extend the estimation sample by one,
using 385 observations, and repeat the forecasting exercise until we reach the end of the

sample. We measure the forecasting performance using Root Mean Squared Errors

RMSE (I) = \/ % (E¢ (oan) = lon)™.

Out-of-sample results are displayed in Table 2.4. We also display in-sample results
for comparison. The VARMA model provides large improvements in predicting the
term structure at all horizons. In the case of the short rate forecasts RMSEs decrease
from 0.54 to 0.51, from 0.76 to 0.68, from 0.98 to 0.88 and from 1.38 to 1.12 at horizons
of 1, 3, 6 and 12 months, respectivély. Similar results are obtained for the term spread,
but the VAR model provides results that are only marginally inferior. Finally, the VAR
and VARMA models provide similar improvements in real activity forecasts, and the im-
provements increase with the forecasting horizon. There, the VARMA model appears to
be doing marginally better. However, neither the VAR or the VARMA model improves
significantly over the random walk to forecast inflation. This reflects the extreme persis-
tence of the inflation process and the impact of a large noisy component in measures of

inflation.
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2.3.1 Discussion

The inability of the VAR model to disentangle conditional expectations of inflation
and output from their cﬁrrent realization leads to the conclusion that monetary policy
has only a weak effect on future economic conditions. On the other hand, impulée re-
sponses from the VARMA model indicate that the short rate has a lasting negative impact
on inflation and real activity. Conversely, the VARMA model provides much improved
forecast of the short rate in response to variation in inflation or real activity. The im-
proved out-of-sample performance shows that a VARMA model does not suffer from
over-parametrization.

This has important implications for term structure modeling. The specification of
the short interest rate process is a key building block of any term structure model. In
the context of macro-finance term structure models, the results above suggest that a
simple VAR process is not able to correctly capture the observed response of monetary
policy to inflation and real activity and, conversely, the response of future inflation and
output to current changes in the short interest rate. This raises an important empirical
question which the following sections turns to. In the following we specify, and evaluate,
a no-arbitrage model of interest rates. At this point, the missing building block is the
specification of the pricing kernel. In particular, in the VARMA context, the kernel will
not only depend on the current state vector, z;, but also on its conditional expectation,

my.

2.4 Term Structure Model

24.1 The Pricing Kernel

This section introduces the pricing kernel and discusses the specification of the price
of risk when the state vector follows a VARMA processes. We consider the following

conditionally log-normal pricing kernel

1
M 1 =exp ("}’x(l) — EltTlt - /LT&H) , (2.2)
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where A; contains the market prices of risk for each shock. Then, the moment generating

function of the state vector z; under the risk-neutral probability measure is
1
E,Q [exp (uTz,+1)] = exp (uT (my —ZA) + EuTZZTu) ,

which shows that A, must be linear to obtain an affine process under the risk-neutral
measure. Moreover, the vector of prices of risk must be linear in the state vector, z,
and the conditional expectations, m;, for the dynamics under the risk-neutral probability
measure to remain within the family of VARMA process. This is because the state vector
and the conditional mean, together, are sufficient statistics of VARMA processes. We
discuss this in the next section. Therefore, we assume a price of risk vector, A;, of the
form

A= Ao+ Aize + Ao, (2.3)

where io is a 4 x 1 vector while 11 and 12 are 4 x 4 matrices.

This framework generalizes the risk premia specification of Ang and Piazzesi (2003)
which is obtained by imposing A2 =0. The price of risk aséociated with one component
of the state variable, say A;;, depends not only on the current state, z,;, but also on its
current conditional expectation, m,. This will have a large impact on the results. An

alternative way to interpret iz follows if we re-write the price of risk, A,, as
A = /16 +/71'1*Zt+§-2*mt—1,

where

A = Ao+ Aop
At =Ai+2 (¢ —x027h)
23 =25037

which shows that A, controls the impact of past realizations of state variable on the

current prices of risk. Finally, note that the risk-neutral conditional expectation of z; is
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shifted, that is m2 = EZ[z,,1] = m; — ZA,.

2.4.2 Risk-Neutral Dynamics

The dynamic of the state vector z; under the risk-neutral probability is given in the

following proposition.

Proposition 2.4.1. If the state vector z; follows a Gaussian VARMA(1,1) under the his-
torical measure, and given the pricing kernel specified in Equations 2.2 and 2.3, then the

state ve_ctbr z; follows a VARMA(2, 1) process under the risk-neutral probability measure
Z = IJQ + ¢1QZt—l + ‘PzQZt—Z +Z (th - ®Q£tQ—1)
where

el =x"l1-zh)zex 1-2i) s
pl =(1-2h)p —2(1- 092

o =0 -2 (Li+1a(0-09))

o2 =209,

with €2 = & + M_y and €2 ~ i.i.d.N(0,1,).

Moreover, we show in Appendix B that for the general case of a VARMA(p,q) pro-
cess we have a VARMA(max(p,q+1),q) process under the risk-neutral measure and we
provide the mapping between parameters from the historical to the risk-neutral measure.
Proposition 4.1 has some important corollaries. First, 12 breaks the link between the
moving}average coefficients under each probability measure (i.e. ©¢ and ©). Second,
A =0 implies that the-state vector follows a VARMAC(1,1) dynamic under Q. Finally,
if z; follows a VAR(1) under the historical probability measure then z also follow a
VAR(1) under the risk neutral probability measure.

This last remark has implications for the identification of the price of risk parameters.
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Note that the conditional moment generating function of the VAR(1) process under Q is
s 1 s s
E,Q [exp (uTz,_H)] = exp (uT (/.L -X (20 + 2.2/.1)) + EuTEETu+ u' ((j) —Z(A — 2.2(1))) z,) .

Hence we can only identify io + 12 U and 11 + 12¢. Therefore, in the case of a VAR(1)
process we set A2 = 0 but, more generally, A, can be identified in the case of VAR(p) ,
processes with p > 1 (see Appendix B). Finally, we need the following result to com-
pute bond prices. The conditional moment generating function under the risk-neutral

probability measure is
Q T T _ T T
E; [exp (u Zip1+v m,+1)] = exp (a (u,v) + b1 (u,v) zt+ by (u,v) m,) ,
where

a(u,v) =—w' Zho+ %szsz+ vl

bi(uv) =—AZTw

by(u,v) =w+ (2OE ) v = A= Tw
weut (p-zez )

2.4.3 Bond Prices

The price at time ¢ of a zero coupon bond with maturity # is

“n—1 ()
exp (— Zmi)]
i=0

= exp (—y,(l) + A4, +BI,,Z, +Ban,)

R = E?
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where the scalar 4, and the 4 x 1 coefficient vectors, By , and By ,, are functions of the

maturity n. These can be computed from the following recursions

An+l :An+a(_e3 +Bl,n > BZ,n)
Bipt1 =bi(—e3+Bin; Bay)
Byp+t1=b2(—e3+Bin; Bay),

with initial conditions 4; =0, By = (0,0,0,0)T and By = (0,0,0,0)T and where
e3 = (0,0,1,0)T. It follows that bond yields are affine in m, and z,

y,(n) =ap+ bInz, + b;—’nm,, 2.4

and we can see the importance of the MA component and the split between the con-
ditional expectation and current innovation, if we rewrite Equation (2.4) in terms of

my_1 = E;_1(z,) -and an unexpected component X&
A = an+ (brn+ b2) TEemi(z) + b ,Zer. @.5)

Finally, the loadings are computed recursively

— h —1y/ R IR
brny1 = n+1(2®2 ) [(1 TA;) b1’n+b27n]
e n 53 B -3 Y _ —1y
bl’,,_}.] i +n+1 {((1 le)((l) IOX ) Zﬂ,l) bl,n+(¢ 2OX )bz,,,:|
n = ~ n
an+1 = nt+ 1 I:an+((l—z;{'2).u_22'0)lbl,n +.u-lb2,n_§ ll,nzzlbl,n]a

with initial conditions

a; =0
b2,1 =(0,0,0,0)7
b1 =(0,0,1,0)".
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Appendix B presents similar results for the case where the state vector z, follows a

VARMA(p,q) process and considers latent state vectors.

2.5 Estimation of Risk Premia Parameters

This sections presents the estimation of risk premia parameters. We follows Ang et
al. (2006) and use a two-step procedure. We take as given VARMA estimates obtained
above, and estimate the risk-neutral parameters from observed yields. Note that we
impose the appropriate restrictions so that the dynamics of the spread are consistent with
the pricing equations. The results indicate that the break between the current state vector,
z;, and its conditional expectation, m,, induce significant changes in the behavior of the
price of nisk between the VAR and VARMA specifications.

2.5.1 Estimation Method

As in Ang et al. (2006), we use a two-step procedure to estimate the model. Parame-
ters of the VARMA process under the historical probability measure (i.e. i, ¢, X and ©)
are estimated in the first step using Maximum Likelihood. In the second step, we min-
imize the sum of squared fitting errors for yields by a choice of parameters Ao, At
and 1, given estimates obtained in the first stage. We use the model-implied yields,

5(n)

Vo =an+ bInz, + b;: ,Mt—1, and minimize

T3 (57 —y)’

_ min. GRET N 2.6)
{40, 4, 22} (S =

where N is the number of yields used at estimation and 7 is the number of observation
periods. Next, we must ensure the consistency between the implications of the historical

dynamics for yields and the implications from the pricing equation. That is,

60 T T
7% = ago + by 602 + by gorm-1,
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which implies that

60 1 T
J’r( - r():a60+(b1,60—e3) Zr+b;:60mr—l,

which is true if we impose that
agg =0, bigp =e3+es, bygo =0. .7

Note that, Equation (2.7) and the fact that g; =0, bi,1 = e3 and by} = 0, imply that y,(l)

0 . :
and y,@ ) are measured without errors.

2.5.2 Latent Factors: Rotation

A two-step procedure is feasible whenever the state vector is observable. We now
consider the case where some components of the state vector are latent. Assume that
the first m —/ components of z; are observed and that the / last components are latent.

We can invert / yields y;("' ),---1)’;("[)

for the values of the latent factors under the standard
assumption that these yields are measured without error.

Equation (2.4) implies that

Ve =ai+byzi+ by yme_y

_ r _ -
where y; = (yt("l)a _“,y‘(m)) yaj= (anl ) maan/)la bl,l = (bl,m ) ---abl,n/)l and bl,l = (b2,n| ) ---abl,n/)/-

Denote z; = (z|,...,Zm_1,),)’, we then have
zz=a+bizi+bym_4 (2.8)

where a = (0,...,0,a)', by = (e1,...,ea—1,5, )’ and by = (Opm, .., 0m, b ;). We note ¢;
the (m x 1) vector whose component i equals to 1, and 0 elsewhere, 0, is a (m x 1)

vector of zeros.
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We can then use (2.8) to write the latent variables as a function of observable yields

z=b'(z—a—bym_y), (2.9)

and substitute the results in Equation (2.4) to obtain yields in term of observable variables
only
A =G+ b7 7+ b i, (2.10)

. 1= 1 1 7 AL
where 4, = a, — b/l,nbl 'a, b’l’n =) b7 and by, = by, — b’l’nbl b,. Finally, the con-

ditional expectation m;, can be filtered recursively from the observed state vector z;
M1 =L+ 9z41 +Omy,

where

2.5.3 Risk Premium Estimates

This section presents parameter estimates for the price of risk, A,, when z; follows a
VAR(1) and a VARMAC(1,1) process. In the case of a VAR process, we impose =0
which leaves 20 parameters to be estimated with 5 constraints. In the cése of a VARMA
process, we have 36 parameters with 9 constraints. Tables 2.5 and 2.6 present the results
and we discuss the evolution of the price of risk for each variable in turn. In particular,
we contrast the difference between estimates from the VAR model and estimates from
the VARMA model. One important conclusion is that imposing a tight link between the
current state, z;, and its conditional expectation, m,, as in the VAR(1) is not innocuous
for the purpose of term structure modeling. Figure 2.6 illustrates the path of the price of
risk for each variable in the case of VAR and the case of VARMA.
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2.5.3.1 Inflation

|
The price of inflation risk is negative on average implying higher vlaluations for assets

that tend to have higher payoffs in states of the world with higher inﬁat;ion. Moreover, the
price of inflation risk becomes more negative when current inflation lS higher. Inflation
is also riskier when current real activity, the current short interest rate ;or the current term
spread is higher. When we allow for a Moving Average component,‘vthe impacts of the
short rate and the term spread increase. Future inflation is much riskier when the current
short rate or term spread is higher in a VARMA framework. On the other hand, the
impact of the expected short rate and term spread is of the opposite sjign, so that the net
effect of yield shock is ambiguous. In other word the price of inflation risk may be lower
following an increase in the short interest rate if future monetary policy is expected to
be tighter (and credible). This result depends on the connection between the current

realization of each of these variables and their conditional expectations.

2.5.3.2 Real Activity

The price of real activity risk is positive on average, implying higher valuations for
assets that have higher payoffs in a state of the world with lower real activity. As in
the case of inflation, estimate from the VAR model implies that higher current inflation
and higher real activity increase the price of real activity risk. Surprisingly, the impact
of the short rate is very small while the impact of the term spread is modest, but this
does not hold in the VARMA model. An increase in the value of the current short rate
decreases the risk of real activity, while an increase in expected short rates leads to a
large increase in the price of real activity risk. On the other hand, the impact of the
term spread becomes insignificant. Again, a VARMA process disentangles the contem-
poraneous changes in interest, possibly due to higher output, wealth and, hence, higher

intertemporal substitution from the endogenous response of future monetary policy.

|
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2.5.3.3 Short Term Interest Rate

The price of short rate risk is negative on average, implying higher valuations for as-
sets that have higher payoffs in states of the world with a higher short rate. Surprisingly,
estimates from the VAR model imply little or no variations in the price of interest rate
risk. Again, estimates from the VARMA model paint a very different picture. First, an
increase in real activity increases the price of short rate risk while an increase in expected
real activity leads to a large reduction in the price of short rate risk. Second, an increase
in current inflation does not have an impact on the price of short rate risk but an increase
in expected inflation decreases the price of short rate risk. Looking at the impact of yield
variables, we see that short rate variations do not have a significant impact on the own
price of risk. However we find that a higher term spread is associated with higher price
of risk as expected, but an increase in the ekpected slope leads to a large decline in the

price of short rate risk.

2.53.4 Term Spread

Estimates from the VAR model imply that the price of risk associated with the un-
certain future term spread is negative but small. In contrast, estimates from the VARMA
model imply that it is negative and large. Again, the difference is due to the difference
between the current value and the expected value of the state vector. A higher current
real activity, a lower short rate and a higher term spread raise the price of term spread
risk. In contrast, higher expected real activity, a lower expected short rate and slope lead

to substantial decrease of the price of term spread’s risk.

2.5.4 Term Structure Loadings

Figures 2.7 and 2.8 plot the constant a,, the factor loadings b;, and the conditional
mean loadings b», across maturities. Estimates from the VAR and VARMA models
imply a similar constant a,, and, hence, a similar average term premium across maturities.
However, the factor loadings are very different across the two models. In the VAR model,

higher inflation generally implies higher yields with the maximum loadings around a
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maturity of one year. In contrast, higher current inflation leads to lower yields for short
maturities, with a maximum impact at the shortest maturity. What matters for longer
maturities is an increase in expected inflation which is associated with higher yields
across all maturities. Next, the loadings on real activity and expected real activity follow
a similar pattern in each model. Finally, the loadings on the short rate and the term
spread are generally higher in the VARMA model and the loadings on the expected term

spread induce a steeper term structure.

2.5.5 Impulses Responses

The state vector z, has the following infinite order MA representation

z=(L—®) ' pu+Ze+ Y O [OZ-20]gy,
k=1

which implies that yields have the following infinite order MA representation

W= apt (bratbyy) (a—®) ' p+b] e

+(brp+ban) i o1 [@ -0z '] ey,
k=1
which allows us to analyze the response of yields to variations in the state vector. Figures
2.9 to 2.14 display the results.

In both models, the responses of the yield curve to an inflation and real activity
shocks are positive and hump-shaped. The responses to a short rate shock are initially
high, but decay with maturity and with time. The responses to term spread shock are,
not surprisingly, a steeper term structure, but the effect decays very quickly with time.
Contrasting both models, we find that responses from shock to inflation are higher in the
VARMA model while responses to real activity shocks are lower in the VARMA model.
Responses to short rate shocks are similar across models. However, the responses to a

term spread shock are different across models.
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2.5.6 Variance decompositions

The h-step ahead forecast of the state variable is
A (14 - cp”—') L= @) u+ " E [z11],

the infinite order MA representation of the h-step forecasting error is

‘ h—1
Zt+h —'E[ {zl-l-h] = E£r+h + 2 (Dh_k_] [(DE“’ E@] E[.{./”
k=1

and, therefore, the relation between the h-step ahead yield forecast error and the h-step

ahead state forecast error is

,(:)h y,(+,, —E |:y}+)h:| (bl,n + bZ,rJ)T (Zr+h -k {Zz+h]) - b;_r,nzet+h-

Then, using that & ~ i.i.d..4#'(0,13), the variance of forecast errors is

var(,+h) Zl}‘k,,lpkn:ii[lpk" ]

J=1k=1

where ¥, , = ETbl,,, and fork < h-—1
| Y
Pin=[@E-20]T (®7) " (bin+b20)

and, finally, the proportion of variance explained by state vector component j is

i [Wen )]
var (s,(:_)h)

Tables 2.7 and 2.8 display the proportions of variance explained by macroeconomic

vanables and yield factors, respectively. The fraction of the variance explained by
macroeconomic vanables increases with the forecasting horizon. Overall for infinite

horizon forecasts, real activity explains the highest proportion (40%) of the variance
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across maturities. Inflation and real activity together explain roughly 60% of the vari-
ance. These proportions are stable across maturities. This contrasts with results from
Ang and Piazzesi (2003) where the proportion of variance explained by macroeconomic
variables decreases with the maturity. The fraction of the variance explained by the short
rate decays quickly with time and with the yield maturity. Finally, the fraction of yield
variances explained by the term spread is highest at long maturity and decays only slowly
with the forecasting horizon.

The proportion of yield variances explained by the short rate and by inflation is higher
(more than 2%) in the VARMA compared to VAR, while the proportion explained by real
activity and the term spread are lower in the VARMA model.

2.5.7 Forecasts

In this section, we follow Duffee (2002) and compare the relative performance of
different models at forecasting future yields. We use the random walk process as a
benchmark, because Duffee (2002) shows that it performs better than existing affine
models. Table 2.9 presents the forecasting errors by maturity and model. We also per-
form an out-of-sample forecasting exercise. We apply the two-step estimation procedure
to a progressively longer sample, estimating from the 384 + i observations and forecast-
ing the n = 12,24,36,48 horizons. Table 2.10 summarizes the out-of-sample forecasting

errors. We use the following relation to forecast yields

E, [}’,(:?h] = E [ﬁffh] =E; [an+b?—,nzt+h+bznmt+h—1]

= ap+ (bl,n +b2,n)Tml,h-

In-sample, the VAR and VARMA models improves upon the random walk for horizons
of 3, 6 and 12 months and the improvements are higher for longer maturities. However,
the VARMA model generally offers some improvement over the VAR model. Out-of-
sample, the VAR model improves upon the random walk only for the longest maturities.
On the other hand, the VARMA model still improves upon the random walk at horizons

of 3 months or more. Moreover, the improvement are relatively larger compared to
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the in-sample results. The VARMA improves upon the VAR and the random walk while
using a much more flexible specification of the dynamics and the price of risk is a striking
result. More flexible models generally fail this test. This is a strong evidence supporting

the specification proposed in this chapter.

2.5.8 Discussion

Overall, while risk premium parameters from the VAR model appear to be precisely
estimated, they lead to weak or counterintuitive results. The results from the VARMA
model suggest that imposing a tight link between m;, and z;, as in the VAR model, con-
fuses the effect of the current shock to the state vector with the effect of expected change
in the state vector. The VARMA model appears to disentangle the endogenous nature
of the short interest rate and of the term structure. The impact of current shocks on the
price of risk depends on their relative influence on the state vector and the conditional
expectation vector. In particular, the price of real activity risk is higher when the current
short rate is low but lower when the short interest rate is expected to be lower and the
term structure steeper in the future. The former is likely a reflection of the monetary pol-
icy responding to bad economic outcomes with a lower short interest rate while the latter
is likely due to the effectiveness of a lasting, credible loosening in monetary policy. In
a VAR model, the price of the risk associated with short rate fluctuations does not seem
to vary significantly with variations in the state vector within the VAR model. This is a
standard result (see Ang and Piazzasi (2006)) even with a VAR with longer lags. This
reinforces the flexibility of the MA component to capture the relevant stylized facts from

the data and support the importance of the MA model to fit the cross-section of yields.

2.6 Robustness Checks: comparison with the Nelson-Siegel model

In this section we compare results from the VARMA term structure model against
different specifications of the VAR model. The main question we seek to answer is
whether increasing the dimension of the state vector in a VAR model suffices to capture

the forecasting improvement observed in the case of the VARMA model. In this section,
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we focus on forecasting performance. Therefbre, we allow for maximum flexibility and
- use a VARMA(1,1) model on yields. We also evaluate the performance of the following
model. First, the Nelson-Siegel [NS] model with AR(1) factor dynamics of Diebold and
Li (2006) is our benchmark. This approach is based on latent factors and displays in-
sample and out-of-sample performance improvements compared to a standard VAR term
structure model. Diebold and Li (2006) find that this model provides the best forecasting
performance at horizons of 6 and 12 months. Then, we consider VAR models with three
yield factors, and then successively add inflation, real activity, and both to the state
vector.

We use unsmoothed Fama-Bliss forward rates which differ from the yields used
above. This provides a further check of the robustness of our results. Also, all the
VAR and VARMA term structure models are estimated following the two-step proce-
dure described above using yields with 3 months and 1, 3, 5 and 10 years to maturity.
We estimate and forecast recursively, using data from 1985:1 to the time that the fore-
cast is made, beginning in 1994:1 and extending through 2000:12. Tables 2.11 to 2.13
compare h-month ahead out-of-sample forecasts for # = 1,6 and 12 months. Overall, the
VARMA models with yields offer the best performance at horizons of 6 and 12 months,

surpassing models based on latent factor or richer state vector.

2.7 Conclusion

We study a no-arbitrage VARMA model of the term structure. From a theoreti-
cal view we show how to extend a no-arbitrage VAR model to a no-arbitrage VARMA
model. In particular, the price of risk is now linear in the state vector and its conditional
expectation and, thus, depend on the entire history of the state vector. The model is eas-
ily estimated through a two-step procedure and we show that disentangling the impact
of innovations on the current state vector and its expectationé improves out-of-sample

forecasting of yields and of the risk premium compared to standard VAR-based models.
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Appendix A

In this Appendix, we will show that the state vector z, is a VARMA(2,1) under the risk neutral
measure Q.

It will be useful to notice that a state vector z, has the following Gaussian VARMA(2,1)
dynamic z,) = U + @12, + d2z,—1 + Z(&.+1 — OF), if and only if the conditional mean m, evolves
recursively as m, 1 = U+ (¢ — ZOZ Nz, + drz, + ZOZ " Im,.

The risk neutral conditional mean of the state vector z, (say m; ) is related to the historical
conditional mean (m,) as follows m,Q = m, — ZA,. Using the expression of the time varying price

of risk A, = Ao + A1z, + A>m,, we can establish that
my = —23) " 'm2 +(I—2A) " 2R + A12.).

Using the fact that
M =+ (¢ —ZOZ Nz +ZOZ I m,,

one gets easily,
m:Q+1 = pl+ (¢1Q 2025 Nz + ¢2Qz, +20%5" 1mf

This implies that z, is a VARMA(2,1) under Q.

Appendix B
In this Appendix, we will derive the yield curve formula when the state vector z, isa VARMA(p,q)

under the historical probability measure P. The dynamic of z, under P is:

Zpp =M+ Z Ojzir1—j+Z(&+1 — Z@ E+1-j)
J=1 Jj=1
where & ~ iid.#'(0,I). The conditional mean of z,1| (E,(z;+1) = m,) is:

P q
me=p+ Y $izrij— 3, ZOE 1.
Jj=1 J=1



We can show that this conditional mean evolves recursively as follows:

p
Ml =P+ D 9jziya-j— 22@ Tz i+ Zzejz Mir1_ .
Jj=I1 J=1 Jj=1

Using the following relationship between historical and risk neutral conditional mean:
m=(I—212) ' m2 + (1—2A2) " 'Z(Ao + Aiz/),

one can show that:

max(p,g+1)
m = n+ 2 d’ Z42-j ZZOQZ Zi42-j T ZZOQZ m —j
Jj=1 J=1 J=1
where
¢ = z(1-2X)ze,27 (1-34) 7'z,
- 9 . ‘
pe = (I-Zh)p—2(- Y 09,
j=1
o8 = o2 (hi+h(o-09),
and

0¢ = Z(09 A +60%%)+ (I—ZAy)¢; for2 < j < min(p,q),
0¢ = (09,4 +6%1,) for min(p,q) < j <4,
ZO,,QM + (I =ZA2)0ys11441 < P,

=g
gl
!

0° = (I-Zh)g, forg+1<j<max(p,q+1),
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In conclusion z, is a VARMA(max(p,q+1),q) under the risk neutral probability measure Q. The

dynamic of z, under Q 1s:

max(p,q+1)

iy =H+ 2 ¢ zl+l—_/‘+'z 1+1 ZGQEH.I _/)a
j=1
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where s,Q ~€ i.i.d..#(0,1). In order to derive the pricing relationship, we need to compute the

multi-horizon risk-neutral conditional mean (E,Q (zr4n) = m,Qh) and the multi-horizon risk-neutral
conditional variance (Var,Q (ZZZ' | Zi+k) = Qg) . We can show that this risk-neutral conditional

mean can be computed using the following recursion:

m,QJ = m’Q,
max(p,g+1)
mo, = ul+ z 0Pzs2-j— ZZGQZ Zt+2—1+229Q2 m,+1_,+Z¢Q m,_jfor2<h<gq,
=h Jj=h Jj=h
ma’C(PqH)
th,h = pl4 2‘;’ ¢Qz,+2_j+z¢ m,hjforq+1<h<max(p,q+1)
Jj= j=1
max(p,g+1)
th,h = ul+ z ¢Q ,hjforh>max(p,q+1)

To compute the variance QQ we will decompose the state vector z,., in function of risk neutral

iid shocks €2 Assume that,

t+1" t+h

h
h
Ziph =Aip+ z 25- )81+j
j=1

then using the following equation,

max(p,q+1)

ht1—j

(h+1

Zephrl = Arprt + ¢1Q z Z el :+,)+Z( t+h+1 Z =1 :+h+1—1)
) j=1 i= J
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we can easily establish the following recurrence relationship between the Zj.h) forl1 <j<h

() _
i = 3
Bl h+4-1—i A .
f2<h<qthenZ") = 3 o251 1502 | for1<i<h,
=1
(h+1) & O (h+1-j)
Ifg+1<h<max(p,q+1)thenX”™ "’ = o7 L Y fori< h—q,
J=1
(1) M o=
Ifg+1<h<max(p,q+1) then Z; = Y oPr 156l | forht+1-g<i<h,
=
(1) M ocrt=))
If h > max(p,q+ 1) then Z; = Y o075 Viori<h-—g,
=l
0 B A PRI S :
If h > max(p,q+ 1) then X, = ¢rZ; +X20p, _;forh+1—g<i<h.

Jj=1

We can deduce that :
o b (tow)(Low)
Q=2 |2y || X

The yield to maturity n (yE")) is an affine function of the state vector z, and the risk neutral

conditional mean m,Qh

T n—1 TO2
(n _ €3 0 e3 Q€3
== |z+ ) m, | ———

Y n ( ! k§| t,k) 2n
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Table 2.1: Summary statistics of data _
The 1, 12, 24, 36, 48 and 60 month yields are annual zero coupon bond yields from the Fama—
- Bliss CRSP bond files. The inflation measure is the first component of CPI, PCOM and PPI which
refer to CPI inflation, PCOM spot market commodity price inflation, and PPI (Finished Goods)
inflation respectively. The real activity measure is the first component of HELP, EMPLQY, IP
and UE, which refer to the Index of Help Wanted Advertising in Newspapers, the growth rate
of employment, the growth rate in industrial production and the unemployment rate respectively.
For the macro variables, the sample period is 1952:01 to 2000:12. For the bond yields, the sample
period is 1952:06 to 2000:12,

Central moments Autocorrelations
Mean  Stdev  Skew - Kurt Lagl Lag2 Lag3
1 month 5.1482 2.7893 1.0690 4.6051 0.9720 0.9512 0.9273

12 months 5.8810 2.8436 0.8566 3.9065 0.9841 0.9643 0.9474
24 months 6.0689 28112 0.7852 3.6376 09878 0.9715 0.9574
36 months 6.2199 2.7624 0.7442 3.5209 0.9893 0.9760 0.9643
48 months 6.3317 2.7482 0.7043 3.4103 0.9899 0.9783 0.9686
60 months 6.3970 2.7245 0.6857 3.2839 0.9912 0.9807 0.9715

Inflation 0.0109 09979 13342 4.5088 0.9906 0.9760 0.9584
Real Activity 0.0036 1.0041 -1.0523 3.6937 0.9692 0.9235 0.8606

Table 2.2: Autoregressive Matrix of VAR and VARMA

VAR Panel A VARMA Panel A
parameter  xj, ] X2(-1 Yig-1 S-1 X1 t—1 X2(-1 Yig—1 §-1
u 0.1207 0.0264 ‘ 0.1747 -0.0159
(0.0796) (0.0709) (0.0737) (0.0579)

6 x. 09988 00364 -0.0052 00004 09929 00356 -0.0041 -0.0039
(0.0080) (0.0060) (0.0028) (0.0058) (0.0096) (0.0070) (0.0033) (0.0077)

xa, 00343 09725 00007 00143 -0.0229 09663 -0.0039  0.0213
(0.0138) (0.0103) (0.0048) (0.0099) (0.0165) (0.0121) (0.0057) (0.0135)

yiy 01790 00948  0.9407 0.1461  0.1435 00748 09472  0.0762
(0.0364) (0.0273) (0.0128) (0.0262) (0.0354) (0.0255) (0.0123) (0.0285)

s -0.1215 -0.0781 0.0372  0.8244 -0.0913 -0.0633 0.0313  0.8817
(0.0324) (0.0243) (0.0113) (0.0233) (0.0273) (0.0199) (0.0095) (0.0217)




Table 2.3: Unconditional variance and MA coefficients '

sample period is 1952:06 to 2000:12.
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Panel A: VAR Panel B: VARMA
X1—1 X20—1 Yig—1 §r—1 X1-1 X2,0—1 Yig—1 $—1
2 x1, 0.1426 0.1412
(0.0041) (0.0041)
x, 0.0174 0.0924 0.0127 0.0873
(0.0100) (0.0263) (0.0098) (0.0243)
yi,  0.2436 0.6293 -0.0159 0.2371 0.6164 -0.0126
(0.0071) (0.0184) (0.0238) (0.0069) (0.0180) (0.0210)
8y 0.0872 0.0124  -0.4594  0.3393 0.0754 0.0110  -0.4451 0.3388
(0.0264) (0.0236) (0.0194) (0.0099) (0.0257) (0.0227) (0.0192) (0.0099)
0 xy -0.1247  0.0203  -0.1642 0.0188
(0.0386) (0.0426) (0.0356) (0.0496)
X2y -0.1245 0.1139  -0.0467
(0.0506) (0.0482) (0.0447)
Yig -0.0501  -0.2053
(0.0449) (0.0449)
5y 0.0483
(0.0468)
Lik -450.3976 -415.8590
Bic 1.0783 1.1283
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Table 2.4: State variable forecasting errors: RMSE
We measure the difference between the model forecast of state variable z,, for a given horizon
h (E,[z;+4]) and the observed state variable z,, . RMSE = \/% YT\ (Eilzi4n) — zon)? In sample
period is 1952:06 to 2000:12. Out of sample exercise is conducted by successively estimating on
200+i th first observations and forecasting the 200+i+1

1 60 1 1
X1t X2t J’t( ) J’t( )—J’t( ) X1t X2t J’t( )

IS RMSE 1 month horizon IS RMSE 3 months horizon
RW 0.1368 0.2491 0.6601 0.6049 0.2880 0.5309 1.0632 0.8731
VAR 0.1312 0.2439 0.6271 0.5705 0.2651 0.4993 0.9722 0.7678
VARMA 0.1296 0.2372 0.6116 0.5586 0.2631 0.4858 0.9692 0.7615
OS RMSE 1 month horizon OS RMSE 3 months horizon
RW 0.1248 0.1367 0.5424 0.5874 0.2782 0.2557 0.7559 0.7818
VAR 0.1244 0.1367 0.5161 0.5684 0.2799 0.2545 0.7264 0.7515
VARMA 0.1212 0.1375 0.5076 0.5681 0.2779 0.2493 0.6829 0.7254
IS RMSE 6 months horizon IS RMSE 12 months horizon
RW 0.4461 0.9014 1.3589 1.0510 0.7319 14017 1.7494 1.2651
VAR 0.3915 0.8034 1.2137 0.8711 0.6142 1.1155 1.5490 0.9487
VARMA 0.3885 0.7796 1.2012 0.8586 0.6096 1.0646 1.5406 0.9437
OS RMSE 6 months horizon OS RMSE 12 months horizon
RW 0.4154 0.3983 0.9770 0.9765 0.6149 0.6192 1.3765 1.2150
VAR 04197 0.3819 0.9556 0.9078 0.6182 0.5488 1.1998 0.9481
VARMA 0.4186 0.3722 0.8761 0.8702 0.6187 0.5272 1.1204 0.9336

60 1
SRy

Table 2.5: VAR Risk premia parameters
The sample period is 1952:06 to 2000:12. Standard error in parenthesis. They have been calcu-
lated using GMM procedure on first order conditions

Inflation Real Activity Short Rate  Spread

Zo 13301 1.7022 03790  -0.1686
(0.0008)  (0.0170)  (0.0035)  (0.0017)
A1 -0.9654  -0.7687 -0.1974  -0.8370
(0.0140)  (0.0079)  (0.0057)  (0.0234)
1.6296 1.0599 0.0068  0.8881
(0.0193)  (0.0093)  (0.0004)  (0.0184)
0.0969 0.0566 -0.0682  0.0348
(0.0013)  (0.0002)  (0.0011)  (0.0006)
0.0379 0.0098 0.0278  -0.1186

(0.0004)  (0.0003)  (0.0011)  (0.0023)
RMSE : 0.2466 |
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Table 2.6: VARMA Risk premia parameters
The sample period is 1952:06 to 2000:12. Standard error in parenthesis. They have been calcu-
lated using GMM procedure on first order conditions

Inflation Real Activity Short Rate  Spread Inflation Real Activity Short Rate  Spread

Ao
0.8619 2.3873 20.0750  -0.7245
(0.6254)  (0.3146)  (0.0255)  (0.1026)
Al A
204302 -0.3456 “1.6447  -1.7944 04157  -0.4043 14552 1.2905
(0.1155)  (0.4860)  (0.5558) (0.2073) (0.2206)  (0.1505)  (0.4470)  (0.5139)
0.5910 0.3732 22473 -1.9016  0.6980 0.5745 22894  2.4499
(0.2666)  (0.1251)  (0.6730) (1.9740) (0.3121)  (0.3791)  (0.8684)  (2.4225)
-0.0579  -3.3396 04000  -2.1077  0.5557 3.7152 02608 23644
(0.0378)  (0.0221)  (0.4561)  (0.1949) (0.0379)  (0.0370)  (0.4676)  (0.1434)
0.0091 1.7152 -1.8345  -1.0487  -0.3323 -1.9232 19472 0.8613

(0.0100)  (0.0851)  (0.0577) (0.5883) (0.1073)  (0.0268)  (0.0674) (0.7392)
RMSE : 0.2348

Table 2.7: Proportion of variance explained by macroeconomic variables

Proportion of variance explained by Inflation Proportion of variance explained by Real Activity
Forecast horizon h Forecast horizon h
1 month 12 months 60 months oo I month 12 months 60 months oo

VAR

1 month 1.846 14.562 20.034 18.128 2.071 12.842 41.816 44.888
12 months  5.609 17.380 21.467 19.086 5.082 ° 14458 41.386 45.224

24 months  6.438 15.487 21.555 18.994 5.462 11.717 37.814 42.804
60 months  6.220 12.563 21.978 19.239 3.661 6.789 © 32401 39.168
VARMA

1 month 1.446 12.432 21.045 20.006 1.938 12.467 39.455 41.794
12 months  3.947 14.440 22.340 21.034 2.691 13.767 38.858 41.843
24 months  4.293 13.095 22.476 21.058 3.499 11.354 35.504 39.390
60 months  4.759 11.268 23.022 21.480 3.547 6.888 30.510 35.812

This table displays the contribution of the macroeconomic variables to the h-step ahead forecast
variance of the 1, 12, 24 and 60 month yield for the VAR and VARMA models.
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Table 2.8: Proportion of variance explained by yield factors

Proportion of variance explained by Short Rate Proportion of variance explained by Term Spread
Forecast horizon Forecast horizon
1 month 12 months 60 months oo 1 months 12 months 60 months oo
VAR
1 month 96.081  60.566 21.103 19.117 0 12.028 17.045 17.864
12 months 78.048  39.052 12.675 11.341 11.258 29.107 24.469 24.346
24 months 54.985  29.361 10.300 9.081 33.113 43.433 30.329 29.119
60 months  18.065 17.572 7.858 6.810 72.051 63.074 37.761 34.782
VARMA
1 month 96.614  60.781 23.609 22.135 0 14.318 15.888 16.063

12 months 64.762  41.019 15.323 14.093 28.598 30.772 23.477 23.028
24 months 45.146  31.243 12.577 11.348 47.061 44.306 29.441 28.202
60 months 18.669  18.521 9.575 8.426 73.022  63.320 36.891 34.280

This table displays the contribution of level and slope to the h-step ahead forecast variance of the
1, 12, 24 and 60 month yield for the VAR and VARMA models.

Table 2.9: Cross Section Root Mean Squared Errors

We measure the difference between model-yields 5" and observed yield ™. RMSE®™ =

2
\/]TZ¢T=| ()71(") - y,(")) In sample period is 1952:06 to 2000:12. Out of sample exercise is con-

ducted by successively estimating on 200+i th first observations and forecasting the 200+i+1

w? Y Y Totl
In Sample :

VAR 0.3669 0.2519 0.1774 0.1774 0.2466
VARMA 03529 0.2433 0.1740 0.1740 0.2385
Out of Sample

VAR 0.3867 0.2832 0.1866 0.0846 0.2607
VARMA 03636 0.2679 0.1781 0.0830 0.2462




~(n)

(E: t+h

]) and observed yield y

Table 2.10: Yield curve forecasting errors by horizon
We measure the difference between model forecast of yield to maturity », for a given horizon m

D RMSE®) (h) =

\/Tz, (&

~(n)
t+h
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- +h) In sample period

is 1952:06 to 2000:12. Out of sample exercise is conducted by successively estimating on 200+i
th first observations and forecasting the 200+i+1

y,“z) y,(24) y’(36) y’(48) y{(lZ) yt(24T y,(36) y’(48)
IS RMSE 1 month horizon IS RMSE 3 months horizon
RW 0.5065 0.4395 0.4034 0.3898 09221 0.8201 0.7377 0.6884
VAR 0.5650 0.4624 0.4125 0.3829 0.8638 0.7619 0.6876 0.6479
VARMA 0.5493 0.4533 0.4083 0.3814 0.8524 0.7570 0.6858 0.6481
OS RMSE 1 month horizon OS RMSE 3 months horizon
RW 0.3297 0.3386 0.3434 0.3487 0.6299 0.6671 0.6551 0.6472
VAR 0.5024 0.4356 0.3808 0.3464 0.7368 0.6971 0.6438 0.6117
VARMA 04656 0.4115 03675 0.3414 0.6783 0.6636 0.6239 0.6039
' IS RMSE 6 months horizon IS RMSE 12 months horizon
In Sample :
RW 1.2328 1.1003 0.9938 0.9375 1.6257 14786 1.3614 1.3059
VAR 1.1274 1.0021 0.9086 0.8562 1.4826 1.3475 1.2284 1.1645
VARMA 1.1106 0.9929 0.9031 0.8541 1.4694 13378 1.2202 1.1601
OS RMSE 6 months horizon OS RMSE 12 months horizon
RW 0.9455 0.9785 09531 09318 14762 1.4753 14156 1.3777
VAR 1.0187 0.9651 0.8976 0.8491 1.3991 1.3413 1.2597 1.1914
VARMA 0.9440 09180 0.8676 0.8339 1.3237 1.2831 1.2166 1.1622




Table 2.11: Out-of-sample 1-month-ahead forecasting results

‘Maturity Mean Std. Dev. RMSE p(1) p(12)
Nelson—Siegel with AR(1) factor dynamics

3 months -0.045 0.170 0.176  0.247 0.017
1 year 0.023  0.235 0236 0425 -0.213
3 years -0.056 0.273 0.279 0332 -0.117
5 years -0.091 0.277 0292 0.333 -0.116
10 years -0.062 0.252 0.260 0.259 -0.115
VAR(1) on 1, 24, 96 months yields

3months -0.043 0.196 0.200 0.126 0.320
1 year -0.011 0.235 0.234 0380 -0.139
3 years 0.018 0.269 0.268 0358 -0.153
5 years -0.014 0.281 0.280 0.375 -0.154
10 years -0.163 0.274 0318 0.386 -0.094
VAR(1) on 1, 24, 96 months yields and inflation
3months 0.078 0.196 0210 0.120 0.295
1 year 0.088  0.227 0.243  0.328 -0.144
3 years 0.134 0.261 0.292  0.294 -0.099
5 years 0.052 0.273 0.276 0315 -0.107
10 years  -0.050 0.269 0.272 0354 -0.100

VAR(1) on 1, 24, 96 months yields and real activity

3 months
1 year

3 years

5 years
10 years

-0.082
-0.057
0.024

-0.031
-0.107

0.202
0.239
0.265
0.278
0.277

0.217
0.245
0.264
0.278
0.296

0.143
0411
0.332
0.351
0.403

VAR(1) on 1, 96 months yields and inflation

3 months
1 year

3 years

5 years'
10 years

0.263
0.366
0.243
0.087
-0.158

0.252
0.361
0.402
0.355
0.318

0.363
0.513
0.468
0.364
0.354

0.186
0318
0.104
0.108
0.383

0.316

-0.149
-0.139
-0.136
-0.092

0.287
-0.035
-0.074
-0.131
0.012
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Table.2.l 1: Out-of-sample 1-month-ahead forecasting results (continued)

Maturity Mean  Std. Dev.

p(12)

VARMAC(1,1) on 1, 96 months yields and inflation

3 months 0.224 0.271
1 year 0.333  0.293
3 years 0.223  0.269
5 years 0.073  0.267
10 years  -0.158 0.269

RMSE p(1)

0351 0.118
0443 0.362
0.348  0.263
0276 0236
0.311 0314

0.152

-0.086
-0.086
-0.098
-0.073

VAR(1) on 1, 96 months yields inflation and real activity

3months 0.196 0.236
1 year 0.365 0.292
3 years 0.208 0.280
5 years 0.077 0.277
10 years -0.085 0.275

VARMAC(1,1) on 1, 24, 96 months yields

3 months -0.021 0.231
1 year 0.004 0.230
3 years 0.023  0.250
5 years -0.007 0.267
10 years -0.152 0.264

0.306
0.467
0.348
0.286
0.286

0.230
0.229
0.249
0.265
0.304

0.208
0.493
0.394
0.335
0.376

0.014
0.055
0.143
0.266
0.348

0.311

-0.032
-0.122
-0.092
-0.099

0.299

-0.006
-0.095
-0.100
-0.066
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Note: We present the results of out-of-sample 1-month-ahead forecasting using eight models,
as described in detail in section 2.6. We estimate all models recursively from 1985:1 to the
time that the forecast is made, beginning in 1994:1 and extending through 2000:12. We define
forecast errors at t+1 as y,+)(7) — Jr+1(7), and we report the mean, standard deviation and root
mean squared errors of the forecast errors, as well as their first and 12th sample autocorrelation

coeflicients.



Table 2.12: Out-of-sample 6-months-ahead forecasting results

Maturity Mean Std. Dev. RMSE p(6) p(18)
Nelson-Siegel with AR(1) factor dynamics

3 months 0.083 0.510 0.517 0301 -0.190
1 year 0.131  0.656 0.669 0.168 -0.174
3 years -0.052 0.748 0.750 0.049 -0.189
5 years -0.173  0.758 0.777  0.069 -0.273
10 years  -0.251 0.676 0.721 0.058 -0.288
VAR(1) on 1, 24, 96 months yields

3 months -0.074 0.494 0496 0.193 -0.109
1 year -0.040 0.696 0.693 0.085 -0.142
3 years -0.089 0.777 0.777 -0.014 -0.197
5 years -0.180 0.789 0.805 -0.006 -0.220
10 years  -0.388 0.735 0.827 -0.019 -0.186
VAR(1) on 1, 24, 96 months yields and inflation

3months 0.590 0.464 0.750 0.143 0.116
1 year 0.562  0.671 0.872 0.028 -0.025
3 years 0.396 0.769 0.861 -0.045 -0.135
5 years 0.186 0.789 0.806 -0.023 -0.178
10 years -0.040 0.727 0.723  -0.060 -0.187
VAR(1) on 1, 24, 96 months yields and real activity

3 months -0.184 0.508 0.537 0.156 -0.042
1 year -0,151  0.712 0.723 0.067 -0.113
3 years -0.116 0.787 0.791  -0.020 -0.191
5 years -0.218  0.798 0.822 -0.007 -0.219
10 years -0.341 0.739 0.810 -0.019 -0.187
VAR(1) on 1, 96 months yields and inflation

3months 0.768  0.506 0918 0.284 0.161
1 year 0716  0.705 1.002  0.125 0.025
3 years 0373 0.832 0.907 -0.0l6 -0.087
5 years 0.117 0.839 0.841 -0.019 -0.146
10 years -0.228 0.781 0.809 -0.065 -0.207

125



126

Table 2.12: OQut-of-sample 6-months-ahead forecasting results (continued)

VARMAC(1,1) on 1, 96 months yields and inflation

3months 0.519 0469 0.698 0.231 0.134
1 year 0.512 0.639 0.816 0.098 0.007
3 years 0.250 0.754 0.790 -0.048 -0.134
5 years 0.031 0.792 0.787 -0.042 -0.185
10 years -0.269 0.754 0.796 -0.063 -0.188

VAR(1) on 1, 96 months yields inflation and real activity
3months 0.563 0.538 0.776 0.238 0.157
1 year 0.567 0.730 0.921 0.098 0.012
3 years 0.281 0.800 0.843 -0.036 -0.144
5 years 0.051 0.834 0.830 -0.024 -0.190
10 years -0.193 0.779 0.798 -0.054 -0.192

VARMAC(1,1) on 1, 24, 96 months yields

3 months 0.001 0.531 0528 0.312 -0.163
1 year 0.015 0.665 0.661 0208 -0.168
3 years -0.028 0.725 0.721 0.047 -0.200
5 years -0.103 0.735 0.738 0.049 -0.223
10 years -0.297 0.681 0.739 0.018 -0.198

Note: We present the results of out-of-sample 6-months-ahead forecasting using eight models,
as described in detail in section 2.6. We estimate all models recursively from 1985:1 to the time
that the forecast is made, beginning in 1994:1 and extending through 2000:12. We define forecast
errors at t+6 as y46(T) — ¥,46/(T), and we report the mean, standard deviation and root mean
squared errors of the forecast errors, as well as their sixth and eighteenth sample autocorrelation
coefficients.



Table 2.13: Out-of-sample 12-months-ahead forecasting results

Maturity Mean Std. Dev. RMSE p(12) p(24)
Nelson-Siegel with AR(1) factor dynamics

3months 0.150 0.724 0.739  -0.288 0.001
1 year 0.173  0.823 0.841 -0.332 -0.004
3 years -0.123  0.910 0918 -0.408 0.015
5 years -0.337 0918 0.978 -0.412 0.003
10 years -0.531 0.825 0.981 -0.433 -0.003
VAR(1) on 1, 24, 96 months yields

3 months -0.152 0.792 0.801 -0.214 -0.076
1 year -0.188 0.913 0926 -0.307 -0.027
3 years -0.325 0933 1.001  -0.393 0.001
5 years -0.459 0.956 1.055 -0.413 -0.006
10 years -0.710 0.875 1.123  -0.440 -0.006
VAR(1) on 1, 24, 96 months yields and inflation

3months 0.854 0.851 1202  0.020 -0.045
1 year 0.743  1.002 1.242  -0.137 -0.005
3 years 0.436 1.044 1.125  -0.286 0.016
5 years 0.153 1.050 1.054  -0.323 0.001
10 years -0.143 0.933 0.937 -0.414 -0.001

VAR(1) on 1, 24, 96 months yields and real activity

3 months
1 year

3 years

5 years
10 years

-0.329
-0.359
-0.390
-0.528
-0.682

0.852
0.994
1.018
1.007
0.901

0.908
1.051
1.084
1.131
1.125

-0.245
-0.344
-0.420
-0.430
-0.455

VAR(1) on 1, 96 months yields and inflation

3 months
1 year
3 years
5 years
10 years

0.952
0.800
0.359
0.058
-0.337

0.889
1.050
1.102
1.083
0.958

1.299
1.314
1.152
1.077
1.010

0.077

-0.097
-0.280
-0.342
-0.428

-0.081
-0.030
-0.008
-0.014
-0.011

~0.055
-0.005
0.035
0.026
-0.009
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Table 2.13: Qut-of-sample 12-months-ahead forecasting results (continued)

Maturity Mean

p(2a)

VARMAC(1,1) on 1, 96 months yields and inflation

3 months 0.534
1 year 0.447
3 years 0.123
Syears  -0.122
10 years -0.454

Std. Dev. RMSE p(12)
0.797 0.955 0.079

0.942 1.037  -0.099
1.001 1.002  -0.303
1.016 1.016 -0.359
0.920 1.021  -0.446

-0.074
-0.021
0.011
0.002
0.001

VAR(1) on 1, 96 months yields inflation and real activity

3 months 0.483
1 year 0.400
3 years 0.127
5 years -0.122
10 years -0.388

VARMA(1,1) on 1, 24, 96 months yields

3 months -0.137
1 year -0.170
3 years -0.267
5 years -0.371
10 years -0.596

1.004
1.168
1.150
1.140
1.006

0.708
0.794
0.832
0.849
0.775

1.108
1.228
1.150
1.139
1.071

0.716
0.807
0.868
0.921
0.974

-0.083
-0.222
-0.363
-0.391
-0.465

-0.059
-0.143
-0.269
-0.305
-0.357

-0.012
0.009
0.018
0.006
0.007

-0.123
-0.076
-0.043
-0.049
-0.053
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Note: We present the results of out-of-sample 12-months-ahead forecasting using eight models,
as described in detail in section 2.6. We estimate all models recursively from 1985:1 to the time
that the forecast is made, beginning in 1994:1 and extending through 2000:12. We define forecast
errors at t+12 as y412(T) — Yr412/:(7), and we report the mean, standard deviation and root mean
squared errors of the forecast errors, as well as their their 12th and 24th sample autocorrelation

coefficients.
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Figure 2.1: Bond yields and macro principal components

The top panel shows a plot of (annualized) monthly yields of maturity at 1 month and 60 months.
The bottom panel plots the two macro factors representing inflation and real activity. The sample
period is 1952:06 to 2000:12
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Figure 2.2: Impulse responses from the VAR and VARMA on yields and macro factors
We fit these models to inflation, real activity, short rate and term spread. The plot shows the
impulse responses to a Cholesky one standard deviation innovation to inflation. Time is measured
in months on the x-axis.
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Figure 2.3: Impulse responses from the VAR and VARMA on yields and macre
factors o

We fit these models to inflation, real activity, short rate and term spread. The plot shows the
impulse responses to a Cholesky one standard deviation innovation to real activity. Time is
measured in months on the x-axis.
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Figure 2.4: Impulse responses from the VAR and VARMA on yields and macro

factors

We fit these models to inflation, real activity, short rate and term spread. The plot shows the im-
pulse responses to a Cholesky one standard deviation innovation to short rate. Time is measured

in months on the x-axis
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Figure 2.5: Impulse responses from the VAR and VARMA on yields and macro
factors

We fit these models to inflation, real activity, short rate and term spread. The plot shows the im-
pulse responses to a Cholesky one standard deviation innovation to short rate. Time is measured
in months on the x-axis
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Figure 2.6: Price of risk

We fit these models to inflation, real activity, short rate and term spread. The plot shows the
evolution of price of risk component through time. Time is measured in months on the x-axis
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Figure 2.7: a, and b , for the VAR and VARMA models
The figure displays a, and b, , as a function of maturity n
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‘ Figure 2.8: b , for the VAR and VARMA models
The figure displays b; , as a function of maturity n
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Figure 2.9: Impulse responses from the VAR and VARMA on yields and macro factors

We fit these models to inflation, real activity, short rate and term spread. The plot shows the
impulse responses to a Cholesky one standard deviation innovation to inflation. Time is measured
in months on the x-axis
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Figure 2.10: Impulse responses from the VAR and VARMA on yields and macro factors

We fit these models to inflation, real activity, short rate and term spread. The plot shows the
impulse responses to a Cholesky one standard deviation innovation to real activity. Time is
measured in months on the x-axis
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Figure 2.11: Impulse responses from the VAR and VARMA on yields and macro factors

We fit these models to inflation, real activity, short rate and term spread. The plot shows the im-
pulse responses to a Cholesky one standard deviation innovation to short rate. Time is measured
in months on the x-axis
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Figure 2.12: Impulse responses from the VAR and VARMA on yields and macro factors

We fit these models to inflation, real activity, short rate and term spread. The plot shows the
impulse responses to a Cholesky one standard deviation innovation to term spread. Time is

measured in months on the x-axis
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Figure 2.13: Responses of yields from Inflation and real activity

We fit these models to inflation, real activity, short rate and term spread. The plot shows the
impulse responses to a Cholesky one standard deviation innovation to inflation. Time is measured
in months on the x-axis
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Figure 2.14: Responses of yields from level and slope

We fit these models to inflation, real activity, short rate and term spread. The plot shows the im-
pulse responses to a Cholesky one standard deviation innovation to short rate. Time is measured
in months on the x-axis '



CHAPTER 3

OPTION VALUATION WITH CONDITIONAL HETEROSKEDASTICITY AND
NON-NORMALITY

Abstract

We provide results for the valuation of European style contingent claims for a large
class of specifications of the underlying asset returns. Our valuation results obtain in a
discrete time, infinite state-space setup using the no-arbitrage principle and an equiva-
lent martingale measure. Our approach allows for general forms of heteroskedasticity in
returns, and valuation results for homoskedastic processes can be obtained as a special
case. It also allows for conditional non-normal return innovations, which is critically
important because heteroskedasticity alone does not suffice to capture the option smirk.
We analyze a class of equivalent martingale measures for which the resulting risk-neutral
return dyhamics are from the same family of distributions as the physical return dynam-
ics. In this case, our f_ramework nests the valuation results obtained by Duan (1995) and
Heston and Nandi (2000) by allowing for a time-varying price of risk and non-normal iﬁ-
novations. We provide extensions of these results to more general equivalent martingale
measures and to discrete time stochastic volatility models, and we analyze the relation

between our results and those obtained for continuous time models.

3.1 Introduction

A contingent claim is a security whose payoff depends upon the value of another
underlying security. A valuation relationship is an expression that relates the value of the
contingent claim to the value of the underlying security and other variables. The most
popular approach for valuing continéent claims is the use of a Risk Neutral Valuation
Relationship (RNVR). ‘

Most of the literature on contingent claims and most of the applications of the RNVR

have been cast in continuous time. While the continuous-time approach offers many ad-
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vantages, the valuation of contingent claims in discrete time is also of substantial interest.
For example, when hedging option positions, rebalancing decisions must be made in dis-
crete time, and in the case of American and exotic options, early exercise decisions must
be made in discrete time. However, by far the most important advantage of working
in discrete time is econometric convenience. It is difficult to estimate continuous-time
processes, because of the complexity of the resulting filtering problem for processes that
adequately capture stylized facts, such as Heston’s (1993a) stochastic volatility model.
In contrast, for many of the models we study in this chapter, the resulting filtering prob-
lem is extremely simple.

Because of the econometric convenience, most of the stylized facts characterizing
underlying securities have been studied in discrete-time models. One very important fea-
ture of returns is conditional heteroskedasticity, which can be addressed in the GARCH
framework of Engle (1982) and Bollerslev (1986).! Presumably, because of this ev-
idence, most of the recent empirical work on discrete-time option valuation has also
focused on GARCH processes. 2 The GARCH model amounts to an infinite state space
setup, with the innovations for underlying asset returns described by continuous distribu-
tions. In this case the market is incomplete, and it is in general not possible to construct
a portfolio containing combinations of the contingent claim and the underlying asset that
make the resulting portfolio riskless. 3

To obtain a RNVR, the GARCH option valuation literature builds on the approach
of Rubinstein (1976) and Brennan (1979), who demonstrate how to obtain RNVRs for
lognormal and normal returns in the case of constant mean return and volatility, by spec-

ifying a representative agent economy and characterizing sufficient conditions on pref-

1. See for example French, Schwert and Stambaugh (1987) and Schwert (1989) for early studies on
stock returns. The literature is far too voluminous to cite all relevant papers here. See Bollerslev, Chou
and Kroner (1992) and Diebold and Lopez (1995) for reviews on GARCH modeling.

2. See Bollerslev and Mikkelsen (1996), Satchell and Timmermann (1996), Garcia and Renault (1998),
Heston and Nandi (2000), Christoffersen and Jacobs (2004), Christoffersen, Heston and Jacobs (2006),
and Barone-Adesi, Engle and Mancini (2008) for applications to option valuation.

3. In a discrete time finite state space setting, Harrison and Pliska (1981) provide the mathematical
framework to obtain the existence of the risk neutral probability measure, to demonstrate uniqueness in
the case of complete markets, and to get a RN'VR for any contingent claim. See also Harrison and Kreps
(1979), Cox, Ross and Rubinstein (1979) and Cox and Ross (1976) for discrete-time finite state-space
approaches.
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erences. For a given dynamic of the underlying security, specific assumptions have to
be made on preferences in order to obtain a risk neutralization result.* The first order
condition resulting from this economy yields an Euler equation that can be used to price
any asset. ‘For lognormal stock returns and a conditionally heteroskedastic (GARCH)
volatility dynamic, the standard result is the one in Duan (1995). Duan’s result relies
on the existence of a representative agent with constant relative risk aversion or constant
absolute risk aversion. °

Because it is difficult to characterize the general equilibrium setup underlying a
RNVR, very few valuation results are currently available for heteroskedastic processes
with non-normal innovations.® In this chapter, we argue that it is possible to investi-
gate option valuation for a large class of conditionally non-normal heteroskedastic pro-
cesses, provided that the conditional moment generating function (MGF) exists. It is
also possible to accommodate a large class of time-varying risk premia. Qur framework
differs from the approach in Brennan (1979) and Duan (1995), and is more intimately
related to the approach adopted in continuous-time option valuation: we only use the no-
arbitrage assumption and some technical conditions on the investment strategies to show
the existence of an RNVR., We demonstrate the existence of an EMM and characterize
it, without first making an explicit assumption on the utility function of a representa-'
tive agent. We then show that the price of the contingent claim defined as the expected
value of the discounted payoff at maturity is a no-arbitrage price and characterize the -
risk-neutral dynamic. We provide results for GARCH processes and for more general

discrete-time stochastic volatility models. We also analyze several important limit results

4. Brennan (1979) characterizes the bivariate distribution of returns on aggregate wealth and the un-
derlying asset under which a risk-neutral valuation relationship obtains in the homoskedastic case. Camara
(2003) uses this approach to obtain valuation results for transformed normal dynamics of returns and state
variables. See also Schroder (2004).

5. See also Amin and Ng (1993) who study the heteroskedastic case by making an assumption on the
bivariate distribution of the stochastic discount factor and the underlying return process.

6. Duan, Ritchken and Sun (2005) analyze a heteroskedastic model with Poisson-normal innovations
and Duan (1999) analyzes a conditionally fat-tailed heteroskedastic model. Christoffersen, Heston and
Jacabs (2006) use a heteroskedastic return dynamic with inverse Gaussian innovations. Other studies
analyze non-normal innovations. Madan and Seneta (1990) use the symmetric and i.i.d. variance gamma
distnbution. Heston (1993b) presents results for the gamma distribution and Heston (2004) analyzes a
number of infinitely divisible distributions.
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for the discrete-time processes we consider, and we discuss the relationships between
risk-neutralization in these models and continuous-time stochastic volatility models.
Why are we able to provide more general valuation results than the existing litera-
ture? In our opinion, the analysis in Brennan (1979) and Duan (1995) addresses two
important questions simultaneously: First, a mostly technical question that characterizes
the risk-neutral dynamic and the valuation of options; second, a more economic one that
characterizes the equilibrium underlying the valuation procedure. The existing discrete-
time literature for the most part has viewed these two questions as inextricably linked,
and has therefore largely limited itself to (log)normal return processes as well as a few
speciai non-normal cases. Our chapter differs in a subtle but important way from most
existing studies. We argue that it is possible and desirable to treat these questions one
at a time. We do not attempt to characterize the preferences underlying the risk-neutral
valuation relationship. Instead, we assume a class of Radon-Nikodym derivatives and
search for an EMM within this class. This allows us to provide some general results
on the valuation of options under conditionally non-normal asset returns without fully
characterizing the economic environment. We also show how the normal model and
"available conditional non-normal models are special cases of our setup.
The same approach of separating these two questions occurs in the literature on op¥
“tion valuation using continuous-time stochastic volatility models, such as for instance in
Heston’s (1993a) model. These models yield different equivalent martirigale measures
for different specifications of the volatility risk premium. For a given specification of the
volatility risk premium, one can find an EMM and characterize the risk-neutral dynamic
using Girsanov’s theorem. To derive this result, and to value options, there is no need
to explicitly characterize the utility function underlying the volatility risk premium. The
latter task is very interesting in its own right, but differs from characterizing the risk-
neutral dynamic and the option value for a given physical return dynamic.’ The latter is
a purely mathematical exercise. The former provides the economic backgroﬁnd behind
a particular choice of volatility premium, and therefore helps us understand whether a

particular choice of functional form for the risk premium, which is often made for con-

7. See for instance Heston (1993a) and Bates (1996, 2000) for a discussion.
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venience, is also reasonable from an economic perspective.

The chapter proceeds as follows. In Section 2 we define a class of heteroskedastic
stock return processes, and we characterize the condition for an EMM for this class of
processes. We then show sufficient conditions for an EMM to exist and we derive the
risk neutral distribution of returns. In Section 3 we further discuss the choice of EMM
in Section 2, and introduce a more general class of EMMs. Section 4 derives the no-
arbitrage option price corresponding to the EMM. Section 5 discusses several special
cases of return dynamics that can be analyzed using our approach. Section 6 provides
continuous-time limits of a number of important models. Section 7 introduces an exten-
sion to discrete-time stochastic volatility models and compares it with the benchmark

continuous time model. Section 8 concludes.

3.2 Conditionally heteroskedastic models

In Section 3.2.1 we define the stock price process that we use in Sections 3.2 through
3.6. This process is able to accommodate the class of ARCH and GARCH processes. In
Sections 3.2.2-3.2.6, we then analyze the risk-neutralization of this stock price process
using a particularly convenient candidate Radon-Nikodym derivative.

We use P to describe the physical distribution of the states of nature. The financial
market consists of a zero-coupon risk-free bond index and a stock. The dynamics of
the bond are described by the process {B,},T=0 normalized to By = 1 and the dynamics
of the stock price by {S,},T=O. The information structure is given by the filtration [ =
{F|t=0,...,T} generated by the stock and the bond process.

3.2.1 The stock price process

The underlying stock price process is assumed to follow the conditional distribution

D under the physical measure P. We write

] |
R =1n (S—]) =t~ it &lFi 1 ~D(0,6),  (.1)
t—
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where S; is the stock price at time ¢, and 0',2 is the conditional variance of the log return

in period ¢. The mean correction factor, ¥, is defined from

exp (%) = Er—1[exp(&)],

and it serves to ensure that the conditional expected gross rate of return, E,_; [S;/S;-1],

is equal to exp(u, ). More explicitly,

E1(S/S-1] = Ei—i[exp(u—%+&)] =exp(ty)
> exp(¥) = Ei— [exp(&)]-

Note that our specification (3;1) does not restrict the risk premium in any way, nor does
it assume conditional normality.

For now, we follow most of the existing discrete-time empirical finance literature by
focusing on conditional means y, and conditional variances 0',2 that are F;_; measurable.
We will relax this assumption in Section 3.7. We do not constrain the interest rate r,
to be constant. It is instead assumed to be an element of F;_; as well. This setup is
able to accommodate the class of ARCH and GARCH processes proposéd by Engle
(1982) and Bollerslev (1986) and used for option valuation by Amin and Ng (1993),
Duan (1995, 1999), and Heston and Nandi (2000). Our results also hold for different
- types of GARCH specifications, such as the EGARCH model of Nelson (1991) or the
specification of Glosten, Jagannathan and Runkle (1993).

In the following, we show that we can find an EMM by defining a probability mea-
sure that makes the discounted security process a martingale. We derive more general
results on option valuation for heteroskedastic processeé compared to the available liter-
ature, because we focus on the narrow question of option valuation while ignoring the
economic question regarding the preferences of the representative agent that support this
valuation argument in equilibrium.

We use a no-arbitrage argument that is similar to the one used in the continuous-time

literature. We first prove the existence of an EMM. Subsequently we demonstrate the
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existence of a RNVR by demonstrating that the price of the contingent claim, defined
as the expected value of the discounted payoff at maturity, is a no-arbitrage price under
this EMM. 8 The proof uses an argument similar to the one used in the continuous-time
literature, but is arguably more straightforward as it avoids the technical issues involved

in the analysis of local and super martingales.

3.2.2 Specifying an equivalent martingale measure

The objective in this section is to find a measure equivalent to the physical measure P
that makes the price of the stock discounted by the riskless asset a martingale. An EMM
is defined as long as the Radon-Nikodym derivative is defined. We start by specifying.
a candidate Radon-Nikodym derivative of a probability measure. We then show that
this Radon-Nikodym derivative defines an EMM that makes the discounted stock price
process a martingale. This result in turn allows us to obtain the distribution of the stock
return under this EMM. |

For a given predetermined sequence, {V;}, we define the following candidate Radon-

Nikodym derivative

dg '
b F,—exp( Z{ vigi + i ( ))), | (3.2)

where ¥, () is defined as the natural logarithm of the moment generating function
Ei—) [exp(—ug)] = exp (P, (u)).

Note that we can think of the mean correction factor in (3.1) as % = ¥, (—1). Note also
that in the normal case we have ‘¥, (u) = %c;‘,zu2 and y =¥, (—1) = %0',2.

We can now show the following lemma

8. Duan (1995) refers to RNVR as Local RNVR in the case of GARCH. The reason for the distinction
is that (under normality) the conditional volatility is identical under the two measures only one period
ahead. In the remainder of the chapter we will drop this distinction for ease of exposition. We emphasize
that the result that the conditional volatility differs between the two measures for more than one period
ahead is to be expected as volatility is random in this case. This feature is very similar to the continuous
time case, which has random volatility for any horizon.
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d
Lemma 1. H}QD

Fy is a Radon-Nikodym derivative

d
Proof. We need to show that B—IQ,
E(I; [%}Q) F,] = 1. We have

F; > 0 which is immediate. We also need to show that

F,}—P

exp( z’: vig; + W v,)))]

i=1

E{;[ﬁ

Using the law of iterative expectations we can write

_ ’ -
E{;[E F,] = EF|EP..EP [exp zl(v,e,+\1'(v,)))
= -
[ -1 t
= E§|\E{..Ef yexp| — Y, viei— D Wi (vi) | E_ exp(—vi&)
i=1 i=1
' [ -1 t
= EV|EP..EP yexp| =Y vigi— Y Wi(vi) | exp (W (v))
i=1 =1
» i -1 —1
= E, LE{’...E,Pizexp 1v,z-:, Z{‘P, vi) |-
=

Iteratively, using this result we get

E{;{E

} = E(I;[exp(—vlsl—‘l‘l(w))]
= exp(—¥1(vi))exp(¥1(n1)) =1,

and the lemma obtains. ' ' O

We are now ready to show that we can specify an EMM using this Radon-Nikodym
derivative.
Proposition 3.2.1. The probability measure Q defined by the Radon-Nikodym derivative
in (3.2) is an EMM if and only if

¥ (vi— 1) =¥, (Vi) = %+ 0F =0, (3.3)



150

He — 1y
where ¢ = o7
S St ) S B
Proof We need E¢ [—’- F}_l] =2l or equivalently E€ [—i— d F}_l} =1. We
B, By St—1" Bi-1
have
- @‘F}
EQ [SSI BB[ F;_l:| _ EP ddP SS[ BB[ F;__l
-1 Br- I FIQD Fp_y ] St=1 Br-
C /[ d
P FIQ"F’ St
= E 0 S exp(—rr) | Fi-1
| \ @p|fi-1 ) 7

= E"[exp(—vier— Wi (vi)) exp(i — ¥ + &) exp(—r.)| 1]
= exp(~¥; (Vo) + e —r — W) EF [exp ((1 — vi) &) |Fi—1]
= exp(-VY/(vi)+—ri—ypn+¥:(vi—1)).

Thus Q is a probability measure that makes the stock discounted by a riskless asset a

martingale if and only if
W (vi—1) =W (V) — %+ 07 =0. (34)

This result implies that we can construct an EMM by choosing the sequence {v;} to
make (3.4) hold.® . |

3.2.3 Solving for the EMM

In this section we develop various results on the existence of a solution to (3.4),
conditional on our assumption regarding the family of Radon-Nikodym derivatives.

Note first that in the conditional normal special case we get the solution to be the
well-known price of risk v; = ¢ = (1, — ) /6. Note also that if we additionally specify
the conditional mean of the excess return to be affine in 0',2, so that i, = r; + /10',2, then

v; is simply a constant A.

9. See Shiryaev (1999) for an introduction to the conditional use of the Radon-Nikodym derivative.
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When allowing for conditional non-normal returns, we need to put some structure on
¥, (.) in order to analyze the existence of a solution to (3.4). In Section 3.5 below we
consider some important non-normal special cases where an explicit solution for v; can

be found. More generally, we provide the following result.

Proposition 3.2.2. If'\Y is strictly convex, twice differentiable, and tends to infinity at
the boundaries of its domain (uy,u2) where uy + 1 < uy, then there exists a solution to

equation (3.4). This solution is unique. Note that u) and uy are not restricted to be finite.
Proof. See the Appendix. ‘ O

Proposition 3.2.2 provides a set of sufficient, not necessary, conditions for a unique
solution to exist within the class of Radon-Nikodym derivatives defined by (3.2). A sim-
ilar result can be obtained assuming that P is strictly concave. However, the parametric
examples we consider below are part of the class of infinitely divisible distributions, thus
ensuring that strict convexity holds (Feller, 1968), and therefore the strict convexity as-
sumption in Proposition 2 is more realistic for our purposes. Gourieroux and Monfort
(2007) provide similar conditions in a setup with a stochastic discount factor. They do
not relate their result to the class of inifinitely divisible distributions. In Section 3.5 be-
low, we discuss the other conditions in Proposition 2 on a case-by-case basis, and thus
verify that overall these conditions are very reasonable.

In the absence of sufficient conditions, an approximate solution to the EMM equation

in (3.4) can be obtained from the second-order approximations

Y (vi—1) = ¥ (0)+¥(0)(v,— 1)+ 1%/ (0) (v, - 1)?
Wi (vi) ~ W (0)+W(0)vi + 37 (0) V]

From the definition of the mean-zero shock & we have that ¥, (0) =E,_,[&] =0, and
W/ (0) = Var,_, [&] = 67, so that the approximation along with the EMM condition

(3.4) gives us

—r 1 Y
VR + - — = 3.5
t O_rz 2 O'rz ( )
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Notice that this approximation is exact in the normal case, where ¥ = %0',2 and vy =
(te — ) /7. This approximate solution.can be used in place of the exact solution, or it
can be used as a starting value in a numerical search for the exact v;.

Note finally that (3.4) suggests that the problem of finding a solution for v; can be
circumvented altogether if one is willing to put more structure on the return process in

(3.1). If the conditional return mean is specified as follows
pe=ri+¥ (vi) =¥ (vi 1)+, (3.6)

then the EMM condition in (3.4) is trivially satisfied for any value of v;. Thus v; can
be set to a constant v, to be estimated as part of the return dynamic. This approach is
viable but suffers from the drawback that the return mean dynamic is now motivated by
convenience rather than empirical relevance. Note that in the normal case this approach

yields

R = n+¥ (v)—-¥(v-1)+g £,|F}_1~N(0,c,2)

= rn+ve}—1ic+e,

which corresponds to an affine risk premium.

We emphasize that the uniqueness result in Proposition 3.2.2 and the solution strate- |
gies in (3.5) and (3.6) are conditional on the assumption on the Radon-Nikodym deriva-
tive in (3.2) and are therefore not fully general. In Section 3.3 we present a more general
result, but we are ﬁot able to completely characterize the class of all possible RN deriva-

tives.

3.2.4 Characterizing the risk-neutral distribution

When pricing options, using Monte Carlo simulation, knowing the risk neutral dis-
tribution is valuable. In this section, we derive an important result that shows that for
~ the class of models we investigate and using the class of Radon-Nikodym derivatives

in (3.2), the risk neutral distribution is from the same family as the original physical
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distribution.
We first need the following lemma where we recall that P, («) denotes the one-day

log conditional moment generating function

Lemma 2.

EZ | lexp(—ug)] = exp (¥, (v, +u) — ¥, ().

Proof.

E2 [exp(-ug)] = EF

dO\F
ddP# exp(—ug&)|F-1
3%|E—1

= EPlexp(—vig& — ¥ (V) exp(—ue,)|F_1]
= exp (¥ (vi+u) =¥ (v)).

|

From this lemma, if we define ‘P,Q (u) to be the log conditional moment generating

function under the risk neutral probability measure, then we have
Y2 (u) =¥, (Vi +u) — ¥, (V). (3.7)

While other candidate risk-neutral log MGFs are available, corresponding to other choices
of Radon-Nikodym derivatives, this particular specification is extremely convenient be-
cause for many physical innovation distributions, it provides a tractable risk-neutral dis-

tribution, building on the work of Esscher (1932). '° From this we can derive

O¥L (—u)
B2 e} = =5 0 =—¥i(w).
u=0
Define the risk neutral innovation
& =6—E2 [e]=&+¥ ). (3.8)

10. For applications of the Esscher transform in option valuation, see Buhlmann, Delbaen, Embrechts
and Shiryaev (1996, 1998), Gerber and Shiu (1994), and Siu, Tong and Yang (2004). See Dai and Single-
ton (2006) for an application to term structure models.
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The risk-neutral log conditional moment generating function of &, labeled ‘P,Q* (u), is

‘then
() =—u¥, (v)+¥2 (). (3.9)

We are now ready to show the following

Proposition 3.2.3. If the physical conditional distribution of & is an infinitely divisible
distribution with finite second moment, then the risk-neutral conditional distribution of

g is also an infinitely divisible distribution with finite second moment.
Proof. See the Appendix. ' O

In the special case of the normal distribution we get simply
gt* =& +\P;(Vt) = £t+,uvt — F,

and ‘P,Q* (u) = %’G,Zu2 so that the risk-neutral innovations are normal and correspond to
the physical innovations shifted by the equity risk premium. In the more general case, the
relationship between physical and risk-neutral innovations is not necessarily this simple.

Because of the one-to-one mapping between moment generating functions and dis-
tribution functions, the proposition can be used to derive specific parametric risk-neutral
distributions consistent with the parametric physical distributions assumed by the re-

searcher.

3.2.5 Characterizing the risk-neutral conditional variance

The conditional risk-neutral variance, 6,2, is of particular interest in the dynamic
heteroskedastic models we consider. It can be obtained by taking the second derivative
of the risk neutral log conditional moment generating function ‘P,Q* (1) and evaluating it

at u = 0. Using equations (3.9) and (3.7) we get

22" (—
0,*2 — t ( u) _ \P;I (Vt) )

Lt ou? . -
u=
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Recall that by definition, the conditional variance under the physical measure is 67 =
P/ (0). Thus in general we have the following relationship between the (one day ahead)

conditional variances under the two measures

\ll//( )
*2 2 T,V
O, =G,

! ! lP;I(O)

..

For conditionally normal returns, we have ‘¥, (u) = %()',zu2 and v, = (4 — ;) /67, s0
that ¥/ (v,) = P/ (0) and thus 6;*> = 67, but this will not generally be the case for non-
normal distributions. Non-normality drives an additional wedge between the physical
and risk-neutral conditional variances. Interestingly, this phenomenon is often observed
empirically, as physical volatility measures from historical returns are systematically
lower than risk-neutral volatilities implied from options. See for example Carr and Wu
(2007).

We can use our results to provide some more insight into this wedge between one
day ahead physical and risk-neutral conditional variances. Consider the following ap-
proximation to the risk-neutral variance

62 =¥/ (vi) = ¥/ (0) + ) (0)v, + w\zﬁ
Denoting conditional skewness by skew; and conditional excess kurtosis by kurt,, we
have W) (0) = —skew, 6} and ¥}’ (0) = kurt,6;*. Therefore
kurty 4 -

~ c,z—skew,c,3v,+70', V2. (3.10)

O.’*Z
From (3.5), v; can be thought of as a modified Sharpe ratio, and will generally be pos-
itive. Therefore, from (3.10), the risk neutral variance will always be larger than the
historical variance if conditional skewness is negative and/or excess kurtosis is positive.

Furthermore, we can characterize the risk-neutral conditional variance dynamic. As

an example, start from the simple GARCH(1,1) dynamic of Bollerslev (1986) for the
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physical conditional variance
o7 = Bo+ B0t + B0 e, - (3.11)
which can be shown to lead to the risk-neutral variance dynamic

* * * 2
Oy 2= Bo,s +ﬁ1,t0'1_21 +Bay (8;_1 _\P,(Vt——l)) ;

where
W (vi)

ﬁo,t = ﬁOW,ﬁl,t = ﬁl

‘P;I(Vt) \P;I—I(O) _ Wi ()
wr0) ¥, () P2 = Py

t—1

Under normality By, = Bo, B1, = Bi1, and B, = B, and therefore
* * " 2
62 = Bo+ P10y + B (6 — ¥ (vie1)) . (3.12)

Taking into account that under normality we also have 0',*2 = 07, this can be re-written

as

0'12:ﬁ0+ﬁ1012—1+[32(8t*—1“\P,(Vt—l))z- 3.13)

Note that (3.13) can also be derived by using the expression for the risk-neutral inno-
vation (3.8) in (3.11). This derivation does not depend on normality. Therefore, (3.13)
holds in general but it is only under normality that the risk-neutral variance (3.12) fol-
lows the same dynamic with the same coefficients, which is consistent with the finding
that 6,2 = o/ for conditionally normal returns. We will discuss the implications of con-
ditionally non-normal refums further below, and give explicit examples of non-normal
distributions that generate the interesting and important empirical feature that physical

and risk-neutral one day ahead conditional variances differ.

3.2.6 Characterizing Risk-Neutral Conditional Skewness

We can also derive a useful result on risk-neutral skewness. Using

¥ (0) = —skew,0; and V)" (v,) = —skew]c;>,
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as well as
¥ (v;) =¥ (0) 4+ (0) v, and W]" (0) = kurt, o},
we gét that
—skew! o = —skew, 0} +kurt,c}tv,
6[4‘,[

O.t*3 .

o, 3
skew; =~ skew, (;) — kurt,

!

, 3
Note that for the empirically relevant case where o; < o, we have skew, (%i) < skew,.
Therefore skew; < skew, for the empirically relevant case where the price of risk v, > 0

and kurt, > 0.

3.3 Generalized EMMs and Option Price Bounds

While the one-shock stock price processes in Section 3.2.1, and the GARCH pro-
cesses nested in it, imply an incompleté-markets setup, we do obtain a unique price
conditional on the choice of Radon-Nikodym derivative. Clearly therefore there have to
be other valid prices corresponding to other choices of Radon-Nikodym derivative. We'

now characterize EMMs corresponding to other classes of Radon-Nikodym derivatives.

3.3.1 Generalized EMMs in GARCH models

We use the dynamic of the stock price process under the physical measure in (3.1),
with W, (u) the natural logarithm of the moment generating function. In order to allow
for as much generality as possible while still staying in our framework, we define a class
of Radon-Nikodym derivatives defined by a general log-MGF under Q, call it Q, (u).
We then show which restrictions need to be placed on €, () in order for it to result in a
proper EMM.

First, define the following candidate Radon-Nikodym derivative for a given prede-
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termined sequence of log moment generating functions {2, (#)}, which is F;_; adapted,

Hf+ exp ( iu£j+Q( iu)) du

| [S T exp (—iug;j+ ¥ (—in)) du’ 3.14)

Lemma 3. % F; is a Radon-Nikodym derivative

Proof. We need to show that ;,% F; > 0. For each j, exp (Q (— zu)) is a characteris-

tic function which is absolutely integrable over (-eo, +o<). Using the inversion formula
(Lukacs (1970, p. 33)), ¢, (€;) = & f° exp( iug; +<; (—iu)) du is the correspond-
ing density function. Similarly p; (EJ) o= [ exp (—iug; + P, (—iu)) du is a density

function. Therefore

aQ ! qj (Ej)
’ j=1Pj (EJ)
We have —‘sz

EL | %1 F] = 1. We have

F; > 0 because density functions are always positive. We also need to show

o8 55[e] st |1 257

Using the law of iterated expectations we have

! £
] — Eé’ EP ErP[qu(j)
. j= lp_l E.I

EY [ﬁ

(&)
= Ef|Ef. E,”zl_[q’(ej)EP L 8’)}
Jj= lpJ(EJ)

Note
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Therefore EF q—‘%% = [q(&)dg =1and

l—lp, &

dQ
Ef [d—P

=1 . (e
1:;] —EF [E{’...E,’;z 1E (Ef)} .

j=1Pj (Ej)

Itératively using this result we get

E(‘f[d—Q

dP

ol =5 e =

and the lemma obtains. U
We are now ready to show the restriction required on €2, («) so that we can specify
an EMM using this Radon-Nikodym derivative.

Proposition 3.3.1. The probability measure Q defined by the Radon-Nikodym derivative
in (3.14) is an EMM if and only if

Q(—-1)—%+¢0? =0, (3.15)
U —r
where ¢ = o7
S, S - ¢ B
Proof. We need E€ {—’ F;_l} ==l orequivalentlyEQ[ S /= F;_l} =1. We
\ By Bl—l —1 B,
have
G F
B ar |t B
EQ{ > 5 p;_.] = EF > s 5k
S—1" B %}Q) F_, ] S B
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[ d
P # F; S[
= FE 20 S exp(—r;)| Fr—1
| \ @ |Fr-1) 7!
= EFP qt(et)ex — Y+ &)exp{—r F_}
e (&) p(l — Y + &) exp(—rt) | Fr—1
Qt(Et)
= ex —F— Ep[ex ) F-}
p(ut ! Yf) p( t)pt(et)l t—1

~ exp(u—ri—7) [[exp(a) 2450 (a) de

= oxp(u—ri— 1) [ exp(e)ai (&) de
= exp(ty—ri— %+ (-1)),

since by definition Q, (u) is the log-MGF which corresponds to the density ¢, (¢). By

‘taking logs the lemma obtains. O

This result shows that a Radon-Nikodym derivative can be defined such that any log-
MGF €, (u) satisfying equation (3.15) will provide a suitable EMM. The result implies
that a wide class of EMMs are possible.

Note that while (3.15) characterizes a more general class of EMMs compared with
the result in (3.3), it is still conditional on the choice of Radon-Nikodym derivative in
(3.14). We are not able to completely characterize the class of potential Radon-Nikodym

derivatives for the general class of distributions considered in this chapter.

3.3.2 Nesting the Linear EMM

We now demonstrate how the class of Radon-Nikodym derivatives in Section 3.2.2,
which is linear in the stock return innovation, is nested in the class of Radon-Nikodym
derivatives discussed above. For a given sequence, {V;}, we restrict the function €, (u)
in (3.14) as follows N |

Q (u) =Y (u+v) =¥ (vr). (3.16)
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Note that this partibular risk-neutral log MGF €, (v) corresponds to the ‘P,Q (u) defined
in (3.7). The condition (3.15) becomes

‘Pr (Vt—l)—‘Pt (Vt)—'}'t+¢t0't2 =O, (317)

which is equal to (3.3). Substituting (3.16) in (3.14) gives

WIE  [rexp(—iug +Y (—iu+v) =¥ (v))) du
49 |Fi [*=exp(—iug +¥, (—iu)) du

[ exp(—iug + ¥, (—iu+v,))du
[12 exp (—iug, + ¥, (—iu)) du
[ exp(—i(u+ivi) & +¥ (=i (u+iv,))) du
[*2exp(—iug + ¥y (—iu)) du
[T exp (—iu*e + ¥, (—iu*)) du*
[*2 exp (—iugs + ¥ (—iu))du

= exp (=¥ (v))

= exp(—vi&—"¥ (W)

= exp(—wvig— ¥ (v))

= exp(—vi& — ¥ (v)),

where we have used the fact that i? = —1, as well as a change of measure, v* = u +
iv;. Note that this result corresponds exactly to the assumption on the Radon-Nikodym
derivative in (3.2).

We have thus demonstrated how the class of Radon-Nikodym derivatives in (3.2)
obtains as a special case of the general characterization of the class of Radon-Nikodym
derivatives in (3.14). In Section 3.2.4 above, and below in Section 3.5, we demon-
strate that this special case is of great interest because it allows us to characterize the
risk-neutral dynamics in closed form for a large class of return innovations. Such char-
acterizations are as a rule not possible with the more general class of Radon-Nikodym
derivatives. However, given that Radon-Nikodym derivatives typically used in empirical
work are of the form in (3.2), and that the resulting risk-neutralizations have éome em-
pirical shortcomings, it may be of interest to analyze richer specifications of the Radon-

Nikodym derivative.
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3.3.3 A Quadratic EMM Under Conditional Normality

We now analyze a somewhat more general case that still allows for some analytical
results. Specifically, we analyze the case of a quadratic rather than linear EMM, but we
restrict ourselves to normally distributed innovations.

For a given sequence {v1 %Y, }, consider the following candidate Radon-Nikodym
derivative

dg

dP

{
F, =exp (— > (vi,i€i+ va,i€f +8 (Vi Va,is Gf))) : (3.18)

i=1

S, B
By solving the EMM equation, EQ | — d

F,_l} = 1, we can show that the prob-

St—1" Bi-1 .
ability measure Q defined by the Radon-Nikodym derivative in (II.3) is an EMM if and
only if

Lo . * '
g v2in07) = 5 (vi,o7"~In(07/0;%)), where (3.19)
2 0 o’
o' = Var?, (g)=——"—,and 3.20
_ Hi ri 1 )
Vi = |:O'_,2 - O'—,*i} +2 (,Lli—- EO'i ) Vo . (3.21)

An interesting feature of this EMM is that we get a wedge between the physical
and risk-neutral variance—an empirically observed fact—even when assuming conditional
normality of returns. In this case the wedge is driven by the quadratic term, v, ,, in the
pricing kernel. Recall that in Section 3.2.5 above a wedge was created by non-normality
in the conditional return distribution.

Note that we have two EMM parameters, v; ; and v; ;, but only one equation defining
v1,; as a function of v, ;. In order to complete the model we could impose that the
proportional wedge between 0,? and 67 is constant. If we for example set 6?/0,"* = 7,
we get V2, = 5 (o — 1) / o2

Next we consider how this quadratic case fits into our general setup discussed in

Section 3.3.1. Since we are working with normal innovations, we can use the inversion
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formula to write

dQ |__exp (— L&+ 2 2

IR q: (&) ovamXP\ T2 g7 1(g+6) g o]

iQ = = 5 = exXp —E—G*—z EEE +ln 'E;
F_ Dr (& 1 _1l¢g

a5 [Fi—-1 e (&) Glmexp( 25”7) t f t

- exp —V1:& — Vo +E + 1n _t - !
1, &t 2,[ 2
’ g Gt* 20[ ’

where §;" is the risk-neutral mean of & and where

Vi = o and v, = ( : :
1t = 0',*2’ ‘ 2t — ) O_t*z O_tz .
From normality we have that Q; (—1) = 16,2 — §;2 and from the EMM condition in

(3.15) we have that Q, (—1) =y, —r, — %0',2. These equations provide an expression for

the risk-neutral mean of & in the quadratic model
: L. "
6[ zu,—r,-I—E(O',Z—O',Z). (322)

Using this equation for 8, and the equation for v, in the equation for v, , yields (11.6).
We have thus shown how in the normal case the quadratic EMM in (IL.3) is a spééial
case of the general class of EMMs defined by (3.14). Note also that by setting v, =0,

we obtain the affine EMM as a special case.

3.3.4 Market Incompleteness and Bounds on Option Prices

Market incompleteness results in a wide range of available Radon-Nikodym deriva-
tives and thus multiple EMMs and option prices. In order to illustrate this incomplete-
ness consider Figure 1. We use the linear and quadratic EMMs to compute the price of a
one-month-to-maturity, at-the-money call option with an underlying asset price of 100.
We assume a risk-free rate of 5%, an underlying mean asset return of 10% and a physical
asset volatility of 20% pér year. In the quadratic EMM we let the ratio of the physical
to risk-neutral variance, 62/6*? = s vary from 0.5 to 1. Figure 1 shows how the op-

tion price from the quadratic EMM depends critically on 75 and thus v; in (I1.3). The
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horizontal line shows the option price from the linear EMM where 75 = 1 and v, = 0.
Figure 1 shows that the range of option prices can be wide even when staying within the
quadratic class of EMMSs. This illustrates the potential of non-linear EMMs to explain
outstanding empirical puzzles such as the high prices of deep out-of-the-money index
put options.

The literature on option pricing bounds provides ways to quantify the degree of mar-
ket incompleteness. Key early papers in this literature include Perrakis and Ryan (1984),
Levy (1985), and Ritchken (1985) who all applied single-period models. Perrakis (1986)
and Ritchken and Kuo (1988) extended this work to a multi-period setting, and Constan-
tinides, Jackwerth and Perrakis (2009) contain a recent application to S&P500 index
options. These papers proceed by considering a portfolio of an option, an underlying
asset and a risk-free bond and derive bounds on the option price without assuming a
particular EMM but instead relying only on the principle of stochastic dominance. The
bounds are defined so that observing an option price outside the bounds would induce a
stochastically dominating trading strategy.

While the work in this literature has evolved to allow for trading costs and other
frictions (see Constantinides and Perrakis, 2002, 2007) until recently the results were
developed in an i.i.d. setting, thus ruling out the GARCH effects considered in this
chapter. However, current work by Oancea and Perrakis (2007) extends the stochastic
dominance approach to derive intervals of admissible option prices using bounds al-
lowing for GARCH effects. In contrast with the i.i.d. case, in the GARCH case it is
necessary to assume that the representative investor has constant relative risk aversion.

The recent so-called good-deal bounds approach of Cochrane and-Saa-Requejo (2000)
presents another interestirig venue for generating option pricing bounds.'! Good-deal
bounds are derived using a distance measure between a given stochastic discount factor
(SDF) and a benchmark SDF. This approach has been adapted to option pricing un-
der continuous-time stochastic volatility by Bondarenko and Longarela (2004). We can

show that it is possible in the discrete GARCH framework to derive good-deal bounds

11. See Bjork and Slinko (2006) for a generalization, and Bernardo and Ledoit (2000) for a related
approach.
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on option prices when using a quadratic EMM. 12

3.4 The valuation of European style contingent claims

In a general return model with time-varying conditional mean and volatility and non-
normal shocks, we have characterized conditions under which there exists an EMM Q
that makes the stock discounted by the riskless asset a martingale.

We now turn our attention to the pricing of European style contingent claims. Ex-
isting papers on the pricing of contingent claims in a discrete-time infinite state space
setup, such as the literature on GARCH option pricing in Duan (1995), Amin and Ng
(1993) and Heston and Nandi (2000) value such contingent claims by making an as-
sumption on the bivariate distribution of the stock return and the endowment, or an
equivalent assumption. While this approach, which most often amounts to the charac-
terization of the equilibrium that supports the pricing, is an elegant way to deal with the
incompleteness that characterizes these markets, we argue that it is not strictly necessary
to characterize the equilibrium. Instead, we adopt an approach which is more prevalent
in the continuous-time literature, and proceed to pricing derivatives using a no-arbitrage
argument alone.

To understand our approach, the analogy with option valuation for the stochastic
volatility model of Heston (1993a) is particularly helpful. In this incomplete markets
setting, an infinity of no-arbitrage contingent claims prices exist, one for every different
speciﬁcatioh of the price of risk. When one fixes the price of volatility risk, however,
there is a unique no-arbitrage price. For the purpose of option valuation, one can simply
pick a price of volatility risk, and the resulting valuation exercise is purely mechanical.

The question whether a particular price of risk is reasonable is of substantial interest
in its own right, and an analysis of the representative agent utility function that support
a particular price of risk is very valuable. However, this question can be analyzed sepa-
rately from the option valuation problem. For the heteroskedastic discrete-time models

we consider, a similar remark applies. The link between our approach and the utility-

12. This result is available in appendix II.



166

based approach in Brennan (1979), Rubinstein (1976) and Duan (1995) is that assump-
tions on the utility function are implicit in the specification of the risk premium in the
return dynamic in our case. !> The representative agent preferences underlying this as-
sumption are of interest, but it is not necessary to analyze them in order to value options.

We have already found an EMM (). We therefore want to demonstrate that the price

A

The proof proceeds in a number of steps and requires defining a number of concepts -

at time ¢ is defined as
C, = E9 [M B,
Br

that are well-known in the literature. Fortunately, even though our methodology closely
follows the continuous-time case, we economize on the number of technical conditions
in the continuous-time setup, such as admissibility, and avoid the concepts of local mar-
tingale and super martingale. The reason is that the integration over an infinite number
of trading times in the continuous-time case is replaced by a finite sum over the trading

days in discrete time.

3.4.0.0.1 Definitions

1. We denote by 7, & and y, the units of the stock, the contingent claim and the bond
held at date ¢. We refer to the F; predictable processes 7, & and y; as investment

strategies.

2. The value process
Vi =nSi + 6C + v By,
describes the total dollar amount available for investments at date ¢.
3. The gain process
=1 r—1 -1
G = Y Mi(Six1 = S) + Y, &(Cir1 —C) + Y, wi(Bir1 — By),

i=0 i=0 i=0

captures the total financial gains between dates 0 and ¢.

13. See Bick (1990) and He and Leland (1993) for a discussion of assumptions on the utility function
implicit in the specification of the return dynamic for the market portfolio. We proceed along the lines of
Jacod and Shiryaev (1998), and Shiryaev (1999).
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4. We call the process {n;, &, u/,},T:—Ol a self financing strategy if and only if V; = G,
ve=1,..,T. '

5. The definition of an arbitrage opportunity is standard: we have an arbitrage oppor-
tunity if a self financing strategy exists with either ¥y < 0, V7 > 0 a.s. or }j <0,
Vr > 0 a.s.

6. We denote the discounted stock price at time ¢ as S5 = g—’t and the discounted
contingent claim as C? :’l%. Similarly, the discounted value process is denoted
VB = Bﬂ, and the discounted gain process GZ = %’.

Note that for a self financing strategy, we have V2 = G? because ¥; = G, and B, > 0.

Furthermore, we can show the following.

Lemma 4. For a self financing strategy we have
B_"N (B NI B
GE =Y (S, S+ Y &(CE,-CB) We=1,.,T.
i=0 i=0

Proof. The proof involves straightforward but somewhat cumbersome algebraic manip-

ulations of the above definitions. See the Appendix for the details. O

We know that under the EMM we defined, the stock discounted by the risk free asset
is a martingale. We now need to show that the contingent claims prices obtained by
computing the expected value of the final payoff discounted by the risk free asset also

constitute a martingale under this EMM.

Lemma 5. The stochastic process defined by the discounted values of the candidate

contingent claims prices is an F; martingale under the EMM.

Proof. We defined our candidate process for the contingent claims price under the EMM
asC, = E¢ [ %‘:T)B, ‘ F}] . The process for the discounted values of the contingent claims

prices is then defined as
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We use the fact that the conditional expectation itself is a O martingale. This in turn
follows from the law of iterated expectations and the European style payoff function.

Taking conditional expectations with respect to F; on both sides of the above equation

yields
C Cr(S
EQ[_’ Fs] :EQ{EQ[M F}} F:v:| V> s,
Bt BT
Now using the law of iterated expectations we get
C Cr(Sr) Cs
EC| 2R | = | R =2=C8 W
FERE U SLES
which gives the desired result. | - O

Lemma 6. Under the EMM defined by (3.2), the discounted gain process is a martingale.

Proof. Under the EMM Q, the process {S}B}tT:l is a Q martingale. Using a standard
property of martingales the process defined as SS? = Zf.;l 11,-(S,B_}_1 — S? ) then is a Q
martingale, since the investment strategy 7, is included in the information set. '4 Fur-
thermore, from Lemma 5 we get that {C,B }tT=1 is also a @ martingale. Then using the
fact that & is an F; predetermined process and using the same martingale property as
above we get that the process CC? = Zi.;(l) 8i(C8_, — CP) is a Q martingale. Then since
from Lemma 4 the discounted gain process {Gf? }1T=1 is the sum of two Q martingales,

SSf and CCP, it is itself a Q martingale. , O

At this stage, we have all the ingredients to show the following result.

Proposition 3.4.1. If we have an EMM that makes the discounted price of the stock a
martingale, then defining the price of any contingent claim as the expected value of its
payoff, taken under this EMM and discounted at the riskless interest rate, constitutes a

no-arbitrage price.

14. Note that because we are working in discrete time there is no need to investigate the integrability of
SSB.
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Proof. From Lemma 6 G2 is a Q martingale. Because we are considering self financing
strategies we get that V2 is a martingale. We prove the absence of arbitrage by con-
tradiction. If we assume the existence of an arbitrage opportunity, then there exists a
self financing strategy with type 1 arbitrage (Vo < 0,Vr > 0 a.s.) or type 2 arbitrage
(Vo <0,Vr >0 as.). Both cases lead to a clear contradiction. Consider type 1 arbitrage:
we start from the existence of a self financing strategy with V) < 0 that ends up with a
positive final value. ¥y < 0 implies that V(f" < 0 since the numeraire is always positive
by definition. Also since V7 > 0 we have V}? > 0. Taking expectations and using the fact
that V2 is a Q martingale yields V2 = E(?[V}?] > 0. This is a contradiction because we
assumed that we start with a negative value ¥y < 0. A similar argument works for type 2

arbitrage. Thus, the C; from the EMM Q must be a no-arbitrage price. d

In summary, we have demonstrated that in a discrete-time infinite state space set-
ting, if we have an EMM that makes the underlying asset price a martingale, then the
expected value of the payoff of the contingent claim taken under this EMM, discounted
at the riskless asset, is a no-arbitrage price. In Section 3.2.2, we derived such an EMM.
Altogether, we have therefore demonstrated that for any contingent claim paying a final

payoff Cr(Sr) the current price C; can be computed as

3.5 Important special cases

In this section we demonstrate how a number of important existing models are nested
in our setup, using the class of linear Radon-Nikodym derivatives in (3.2). We first
consider various specifications of the equity risk premium in the conditional normal
setting. We then consider two conditional non-normal specifications relying on inverse

Gaussian shocks and Poisson jumps respectively.
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3.5.1 Flexible risk premium specifications

One of the advantages of our approach is that we can allow for general specifications
of the time-varying equity risk premium. Here we discuss some potentially interesting
ways to specify the risk premium in the return process for the underlying asset. In order
to demonstrate the link with the available literature and for computational simplicity, we
assume conditional normal returns, although this assumption is by no means necessary.

The conditional normal models in the Duan (1995) and Heston and Nandi (2000)‘

models are special cases of our set-up. In our notation, Duan (1995) assumes
Fy =1, and = r-I—lO',,

which in our framework corresponds to a Radon-Nikodym derivative of

dQ _ ! &; 1 5
F;—exp (_Z‘i (a/l'i‘zl )) ’

dpP

and risk neutral innovations of the form
Heston and Nandi (2000) instead assume

|
ro=r,and t, =r+Ac?+ 50',2,

which in our framework corresponds to a Radon-Nikodym derivative of

d

= t ( 1) 1( 1)2 2))
F = — A+=|g+=|A+= ; ,
exp( i=§1( > > > o]

dpP

and risk neutral innovations of the form

| 1
g =&+Ac}+ 50',2.
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However, many empirically relevant cases are not covered by existing theoretical
results. For example, in the original ARCH-M paper, Engle, Lilien and Robins (1987)

find the strongest empirical support for a risk premium speciﬁcatioh of the form
”t =¥ +.Z., ln(O’,) + %Gtz,

which cannot be used for option valuation using the available theory. In our framework

it simply corresponds to a Radon-Nikodym derivative of

d
—Q F=exp

2
99 _2’: lln(o,-)+%o,?8‘+l(vlln(o,-)+%o-i2) o

ol ) o2 i ’

=1 i i

and risk neutral innovations
g =&+ Aln(o) + So?.

Our approach allows for option valuation under such specifications whereas the existing

literature does not.

3.5.2 Conditionally inverse Gaussian returns

Christoffersen, Heston and Jacobs (2006) analyze a GARCH model with an inverse

Gaussian innovation, y; ~ 7G(6?/1?). We can write their return dynamic as

R, = r+(¢+n7") o} +¢&, where (3.23)

g = Myi—n_'o? (3.24)

and where the conditional return variance, 67, is of the GARCH form. The inverse
Gaussian belongs to the class of infinitely divisible distributions, which yields the strict
convexity in Proposition 2, and the other conditions of Proposition 2 are also satisfied.

From the MGF of an inverse Gaussian variable, we can derive the conditional log
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MGF

The EMM condition
¥ (v — 1) =, (v,) =¥ (-1) + ¢,07 =0,

is now solved by the constant

) .
_yo L@t
V,—V—EI:W—I ,Vt,

which in turn implies that the EMM is given by

= exp (_i (V8i+ (V+@> %2))

i=1

dP

= exp (—vt?, — 5t0'_,2) ,

where €, = - 21—1 €, 0', _1 Zf_l 0'2, and § = ¥ 4 1=v/1+2vn V:szn

These expressions can be used to obtain the risk-neutral distribution from Christof-
fersen, Heston and Jacobs (2006) using the results in Section 3.2. Recall that in general

the risk neutral log MGF is
P (1) = —u¥) (V) + ¥, (V+u) =¥, (V).

In the GARCH-IG case we can write

. 1 —v/1+2un*\ o*?
\P,Q(u>=(u+ an“”)‘j;*,

where ,

* n *2 O',

n"=———and g, = —,
1+2vn t (1 +2vn)3/2

which indicates that generally the risk-neutral variance will be different from the physi-
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cal variance. The risk neutral return model can be written as

S . * * *— * *
R,Eln(—t) =r— ¥ (=)+g& =r+(*+n _1)0'124‘8:,

t—1

where

* 1-2 *_Vl_z * * *_ K
= 0 72 0 andg =1y, —n

The risk neutral process thus takes the same form as the physical process, confirming

x—1 O.[*Z.

Proposition 3.2.3 in Section 3.2.4.

3.5.3 Conditionally Poisson-normal jumps

Another interesting model that can be nested in our framework is the heteroskedas-
tic model with Poisson-normal innovations in Duan, Ritchken and Sun (2005). !> For
expositional simplicity, we consider the simplest version of the model. More complex
models, for instance with time-varying Poisson intensities, can also be accommodated.
The conditions of Proposition 2 can again readily be verified, in part because the Poisson-
normal is part of the class of infinitely divisible distributions.

We can write the underlying asset return as

R = x;+¢€&,where

& = O't(-]t—ﬂﬁ)y

where J; is a Poisson jump process with N, jumps each with distribution N ([I , (52) and
jump intensity ¥. The conditional return variance equals (1+ 9 (ﬁz + (52)) 67, where
o? is of the GARCH form. The log return mean x; is a function of 67 as well as the

jump and risk premium parameters.

15. Maheu and McCurdy (2004) consider a different discrete-time jump model but do not use it for
option valuation.
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We can derive the conditional log MGF as

Wi(w) = In(E_[exp(—u0 (J; — OM))])
|
= udlo, + Euzo',2 + 9 [exp (—ﬁuo-, + %62“20’2) — 1} _

The approach taken in Duan et al (2005) corresponds to fixing v, = v and setting
Ky :r—l-‘I’, (V)—lI’f(V— 1),

which in turn implies that the EMM is given by

Y

dP

— _ 1 ! _ |
F, =exp (—vt.e, — VOIS, — Etvzcr,2 +0t—19 ) exp (—uvidi + E(EZV,?G,‘Z)) ;

i=1

where & and 0'_,2 are the historical averages as above.
We can again show that the risk-neutral distribution is from the same family as the

physical distribution

Y2 () = InEZ, [exp(~ue)]

o 1 * T 1
= wd ;0 + Euzo',2 + 7, [exp (—u, uc; + E(ﬁzuzo}z) — 1} ,

where

L
9 = Dexp (—ch, + E(ﬁzvzo',z) and I} = [I - @*oyv.

Note that in this model the mapping between the risk-neutral and physical returns is
‘Et* =& +lI1; (V) =&+ 0 (1.9[]— 19,*H,*) ,
and the mapping between the physical and risk-neutral conditional variance is

*2 2 * 2 (2 | %2
o/ =0/ +00 (¢°+1;7).
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3.6 Some continuous-time limits

Tn order to anchor our work in the continuous-time literature we now explore the
links between some of the discrete-time models we have analyzed above and standard
continuous-time models. We study three important cases: a homoskedastic model with
normal innovations, a homoskedastic model with non-normal (inverse Gaussian) inno-

vations, and a heteroskedastic model with normal innovations.

3.6.1 Homoskedastic normal returns

Consider the homoskedastic i.i.d. normal model for a given discrete-time interval A,
Ry =In(S;) —In(S,—a) = pA— L6%2A+ 0 V/Az z|F_1 ~N(0,1), (3.25)

and for simplicity also consider a constant risk-free rate. The EMM condition (3.4)
is solved by choosing a constant v = (i — r)/6?, and the discrete-time risk-neutral

dynamic is given by
In(S;) —In(S,_a) = rA—16?A+ o VAz} Z|F—  ~N(0,1).  (3.26)
The continuous-time limit of this risk-neutral process is given by
d(In(Sy)) = (r — 162 dt + odz* (1),

where z*(¢) is a Wiener process under Q. This is the risk-neutral process in the Black-
Scholes-Merton (BSM) model. In the diffusion limit the options are thus priced using
the BSM formula.

Consider a European option with strike price K and T — ¢t = MA days to maturity.

The call price can be written as

Cay = e~ "™MAg, 2 [ MR, v > In(K /S))]] — e ™MAKPOIR, 31 > In(K /S))],
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where R; pr = In(S;ma) — In(S;) and where /[« is the indicator function. Under the
assumption of an i.i.d. normal risk-neutral process in (3.26) we can rewrite the call price
as

—rMA —rMA
CA,t =e " StPI,t,A —e™’ KPZ,t,Aa

where

Pia=eM0 In(Si/K) + (r + 30%) AM v Pra=® In(S,/K) + (r— 30%) AM )
H ovVaM h ovVAM

where @ is the c.d.f. of the standard normal distribution.

Note therefore that for the i.i.d. normal discrete-time process, using the parameter-
ization in (3.25), and given the choice of Radon-Nikodym derivative (and thus EMM),
the option value is equal to the BSM price for any A.

3.6.2 Homoskedastic inverse Gaussian returns

Consider now a homoskedastic version of the inverse Gaussian (IG) model in (3.23)

written for a discrete-time interval A,

R = rA+(S(A)+n(a) ) o*(A) +&

& = n(Ay—n(a)"'o*(A)
a?(A)
a IG(HZ(A))'

As shown above for the heteroskedastic IG case, the risk neutral return distribution is in

the same family as the historical model, and can be written as follows

R = rA+ (L (A)+n*(8)) 0% (8) +¢

g = n*(Ay;—n*(a)" o} (A)
. o*2(A)
Y NIG(n”(M)’
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where
. _ n(A)
T = @G
o o2(4)
B = Trvam@)”

and where v(A) solves (3.4) and is given by

1 [2+¢a)yn(a)y)’

2n(a) | 45(A)Pn(a)?

v(A) = -1,

Consider a European option with strike price K and T — ¢t = MA days to maturity. The

call price can be written as
Cry=e ™MBg, Py g — e ™MAKP) 5. (3:27)

The formulas for Py, A and P, o can be computed using Fourier inversion of the risk-
neutral log MGF of ‘Pthl (u)

o MA oo exp (‘PIQ;{!(—I — iu) —iuln (%))
Pya = —+ 3 .
2 0 imu

exp (—iu In (SK,) +Wg;4(—iu))

imTu

du

| e
PZ,I,A = §+/ ‘%-l du,
0

where

— un* . *2
q’fQJ’fl‘“)Elf‘(ErQ[“”‘P“‘Rwﬂ)=~(rA+c<A>cr2<A>)Mu+[(1 W)G o]

Christoffersen, Heston and Jacobs (2006) show that in the heteroskedastic case, the

stochastic volatility model in Heston (1993a) with perfectly correlated shocks can be
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obtained as a limit of the IG-GARCH model when A and 1(A) go to zero. '® This limit
obtains when using a particular parameterization for the IG-GARCH model and the pa-
rameterization {(A) = A —1(A)~! for the return mean, where A can be interpreted as the
price of equity risk. As the homoskedastic IG model is a special case of the IG-GARCH
model it will converge to the homoskedastic Heston (1993a) process which is simply the
geometric Brownian motion underlying the Black-Schoies model. The continuous-time

limit of the risk-neutral process is thus again given by
d(In(S;)) = (r— %0'2) dt+odz*(t).

Figure 2 illustrates the convergence of the homoskedastic IG option price in (3.27) to
the BSM price when A goes to zero. In the figure we plot the ratio of the homoskedastic
IG option price to the Black-Scholes price against the number of trading intervals per
day. We use » =0, K = 100, S = 100, MA = 180. We let n(A) = nA, 6%(A) = 62A,
and set Ao = .07 to match a 7% equity risk premium. Return volatility is set to 10%
per year (62 = .01) in the top row and 20% in the bottom row (62 = .04). The IG
parameter 7 is set so as to generate a daily skewness of -1 in the left column and -0.5 in
the right column. The figure shows that even for these relatively high levels of skewness
the convergence of the skewed IG discrete-time option price to the Black-Scholes option

price is quite rapid.

3.6.3 Heteroskedastic normal returns
Consider the Heston and Nandi (2000) model

R =rA+ Ao} + 0.z (3.28)

62 a=w+Bo? +a(z—pa).

16. Christoffersen, Heston and Jacobs (2006) also show that an alternative pure Jump limit can be
obtained in the inverse Gaussian model.
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Defining v, 4 = 62 /A, we have

Viga = Oy + v+ oy (Zt—.Pv\/V_;)z, (3.29)

with @, = /A, &, = a/A and p, = pv/A. The conditional correlation is

sign(py) /2575
v/ 1+ 2p5v, ’

so that the correlation goes to plus or minus one when the interval shrinks to zero. Using
the parameterization ot(A) = %ngz, B(A) =0, w(A) =(x0— %gz)Az, and p(A) = —gzz -
g, and following Foster and Nelson (1994), Heston and Nandi derive the diffusion limit

Corri_a (VH-A>RI) =

for the physical process

dIn(S;) = (r+Av)dr+/vdz (3.30)
dv = k(0—v)dt+ ¢/ vdz,

which corresponds to a special case of the stochastic volatility model in Heston (1993a)
with perfectly correlated shocks to stock price and volatility.

The Heston-Nandi discrete-time option price is
Cia=SPia—e ™MEP 4,

where the formulas for P s o and P, 4, which rely on Fourier inversion, are provided in
Heston and Nandi (2000).

Note that markets are complete in the limiting case with p = —1 because there is only
one source of uncertainty. Below we analyze the more general case of a discrete-time
two-shock stochastic volatility model and its continuous-time limit where —1 < p < 1,
which implies that markets are incomplete even in continuous time. ~

Figure 3 shows the convergence of the Heston and Nandi (2000) discrete-time GARCH
option price to the continuous-time SV option price in Heston (1993a). We plot the ratio

of the Heston and Nandi (2000) price to the Heston (1993a) price as the number of trad-
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ing intervals until maturity gets large. Weuse r =0, K =100, § = 100, MA = 180, k =2,
and shock correlation p = —1. Return volatility is set to 10% per year (v =0 = .01)
in the top row and 20% in the bottom row (v = 6 = .04). The volatility of volatility
parameter ¢ is set to 0.1 in the left column and 0.2 in the right column. |
Figure 3 indicates that convergence is very fast, suggesting that the added incom-
pleteness arising from discrete time is minimal. By comparison, convergence is slower
in Figure 2 because of the conditional skewness in the discrete-time process. Note that
following Heston and Nandi (2000), Figure 3 has trading intervals until maturity (180
days) on the horizontal axis whereas Figure 2 has trading intervals per day on the hori-

zontal axis. Thus convergence is indeed extremely fast in Figure 3.

3.7 Stochastic Volatility Models

In this section, we first develop a discrete-time two-shock stochastic volatility model
and derive its continuous-time limit. Subsequently we compare the risk neutralization
for this model with the risk neutralization in the continuous-time SV model, and we
discuss risk neutralization in the GARCH model as a special case of this approach. We
also discuss the issue of market incompleteness and the resulting non-uniqueness of
option prices, again by discussing similarities and differences between the continuous-

and discrete-time setups.

3.7.1 A discrete-time stochastic volatility model

Popular continuous-time stochastic volatility models such as Heston (1993a) contain
two (correlated) innovations, whereas the GARCH processes considered in this chapter
contain a single innovation. Nelson (1991) and Duan (1997) derive a continuous-time
two-innovation stochastic volatility model as the limit of a GARCH model, but as noted
by Corradi (2000) for instance, a given discrete-time model can have several continuous-

time limits and vice versa. !”7 As shown above, Heston and Nandi (2000) derive a limit

17. See also Nelson and Foster (1994), Foster and Nelson (1996), Nelson (1996) and Ritchken and
Trevor (1999) for limit results.
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to their proposed GARCH process that contains two perfectly correlated shocks. This
limit amounts to a one-shock process, and is therefore intuitively similar to a GARCH
process. _

With this in mind, we now analyze the limits of a class of discrete-time stochastic
volatility processes, which contain two (potentially correlated) shocks.'® We derive
the continuous-time limits for these processes, and then analyze the GARCH limit as a
special case.

Consider the return and volatility dynamics

R = ln(S’/S’_l):u’+O"Zl”

O',2+1 = f(O',z,zz’,),

where

I p
Zr = (Zl,taZZ,t), ~N (0,0),,

p 1

The log MGF is given by

1
Fi(ur,uz) = log[Ey— (exp(—u1z1, —1r22,))] = 5 [(ul +pu2)’ + (1-p?) u%] :

By analogy with the one-shock linear case (3.2), we define the following Radon-Nikodym

derivative

i=1

d ' |
d_g‘F’ = exp (— 2 (v17,~217,- + V222 -I-‘P,'(Vlyi, Vz’,'))) . (3.3

Using an approach similar to the one-shock case, one can show that the probability

measure Q defined by the Radon-Nikodym derivative is an EMM if and only if |
1
Yi(Vig— 01, Vo) =¥e(Vi, Vo)l —r = 56,2 —(Vig+pva)oi+ i —r=0. 3.32)

This is one equation in two unknowns, namely v;, and v,,. Thus the second shock

18. See Ghysels, Harvey and Renault (1995) for a review of discrete-time stochastic volatility models.
See Feunou and Tedongap (2009) for a recent discrete-time multifactor stochastic volatility model.
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provides a new source of non-uniqueness to be discussed further below.

The risk neutral log MGF is given by

¢ P %%Ft
E;q[exP(—ulZu —wzy,)| = E a0 exp(—u1z1, —u2z2,)
, dP|Ft—1

= exp(\Wi(u1 + Vit +va,) —We(Vig, vau)),
where

L p
= (Zl,hzz,t)’ g N (—Vl,t —PV2t, —Viep — VZ,I)’: . (3.33)

p 1

- We now illustrate this risk-neutralization for a specific parametric example

1
R = r+10',2—50',2+0',zl‘, (3.34)

o4 = o+Po?+a(zn,—po)’

The dynamic in (3.34) can be thought of as a stochastic volatility (two-shock) general-
ization of the GARCH dynamic in Heston and Nandi (2000). According to (3.33) the

risk-neutral model is given by

|
R = r— 50',2 + O"ZT,’ ' (335)
o'tz—i-l = O+ ﬁO',Z + 06(23,, — VP — Vo — Po't)zy

where

Z¥ =z1,+ Vi +pV 1
7= Lt 14 1t TPV g N (0’0),, p |
23 =220 F V1P + Vo p 1
In the one-shock GARCH case above, we could simply solve (3.4) by choosing the scalar
V; as a function of the GARCH parameters. Determining v;, and V>, in a model with

two innovations is somewhat more complex, but the intuition underlying the procedure
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is critical to understanding the link with the continuous-time literature. From (3.32) and
(3.34) we have v, + vo,p = Ao;. We then note that if we want to preserve the affine

structure in (3.35) we need v, ; = v, 0;, which yields the risk neutral dynamic

1
R = r—50,2+0',z’f7, (3.36)
G = 0+Bo] +a(zh,—pra),

with p* = p + v»(1 — p%) + Ap. The condition on the price of risk needed to preserve
the affine structure is similar to the one usually used in the Heston (1993a) model. Note
that conditional on the assumption regarding the price of volatility risk, Proposition 2
can be generalized to address existence and uniqueness of a solution to (3.32).

Note that while A, which is the price of equity risk, can be estimated from returns,
v,, which arises from the new separate volatility shock, is not identified from the return
on the underlying asset only. It must be estimated using returns as well as option prices.
This is of course also the case in continuous-time SV models. The analysis is therefore
very similar to the one usually employed in continuous time.

Using an approach similar to that taken in Heston and Nandi (2000), option valua-
tion in this discrete-time SV model can be done via Fourier inversion of the conditional

characteristic function.

3.7.2 A diffusion limit of the discrete-time stochastic volatility model

We first write the discrete-time stochastic volatility model as

|
R = rA+Ao,2—zo,2+o,z1,, (3.37)
Oha = @+Bo}+a(zn,—po). . (338)

. . _ 2
Reparameterizing v, 14 = 0, ,/A, we have

Viea = @y + By + 04 (22, — po/%1)? (3.39)
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with @, = @/A, a, = a¢/A and p, = pVA.
Following Heston and Nandi (2000) we use the parameterization &t(A) = ¢2A?,

B(A) =0, ®(A) = (x6 — ;¢?)A?, and p(A) = glA — £. As A — 0 the dynamic in (3.37)

and (3.39) converges to

1
din(S;) = (r+Av,— 5v,)dt+\/\7,dzl (3.40)
dv, = K(G-—v,)dt+g\/v_,d22,

where z; and z; are two Wiener processes such that dz;dz; = —pdt. Note that the .

discrete-time conditional correlation is given by

corry_a (Viea,Re) = _PSign(pv)m.

As A — 0, the variance asymmetry parameter p,(A) approaches positive or negative

infinity, and therefore the correlation approaches p or —p in the limit. Also, as A — 0, the

risk neutral discrete-time stochastic volatility model (3.36) converges to the following

dynamic
1
din(§;)) = (r— Ev,)dt+\/\7,dz’{ (3.41)
dvi = [x(0—v))+g(va(1—p?) +Ap)vidt +¢\/vidz5.
where 2] and z} are two Wiener processes such that dzjdz} = —pdt.

3.7.3 The relationship with the continuous-time affine SV model

Both (3.40) and (3.41) are squaré root stochastic volatility models of the type pro-
posed by Heston (1993a). We now link our discrete-time stochastic volatility model
and its risk-neutralization to the conventional risk-neutralization in the Heston (1993a)
model. Assume for simplicity that the parameterization of the conditional mean dynamic

under the physical measure is given by (3.40). Heston (1993a) proposes the following
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risk neutralization !°

dln(St) = (r— %v,)dt —+ ﬁdz’i‘ (342)
dv = [k(8—v)—gx™vildt+g\/vidz,

where z} and z3 are two Wiener process under the risk neutral probability Q and

1
dzy = dz1+ (X - —2—) Vvt (3.43)
dzy = dzy+x*\/vdt.

In the discrete-time stochastic volatility model, the parameter A in (3.34) captures the
price of equity risk, and v, captures the price of volatility risk. In the Heston model, the
price of equity risk A plays the same role as in the discrete-time model, and we have also
a price of volatility risk y* which ensures the affine structure of the risk-neutral process.
Comparing (3.42) and (3.41), we find

x*=w(l-p?)+Ap. (3.44)

which amounts to the assumption on the price of risk used in Pan (2002). Note that for
p = 0, the continuous-time price of volatility risk x* is not related to A, but is simply
equal to the discrete-time price of volatility risk vo. Moreover, this mapping between the
price of volatility risk in discrete-time and continuous-time stochastic volatility models
also provides insight into the relationship between the discrete-time GARCH model and
the available continuous-time literature. While the GARCH model contains a single in-
novation, it can usefully be thought of as a special case of the two-shock discrete-time
stochastic volatility model in (3.35), for p =1 (or p = —1). In this case, from (3.44),
x* = A (or —A). Because the GARCH model contains a single shock, the specification of
the equity risk premium A does double duty: it also implicitly defines the price of volatil-
ity risk, which is perfectly correlated with the price of equity risk by design. In other

19. Notice that for ease of interpretation, in our notation the price of volatility risk ¥* has been rescaled
by 1/¢ compared to the notation in Heston (1993a).
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words, the GARCH return dynamic implicitly makes an assumption about the volatility
risk premium. The parameter governing the equity risk premium also determines the
volatility risk premium. Strictly speaking therefore, in the case of the GARCH model
the only assumption we make in our approach is on the form of the Radon-Nikodym
derivative. All other assumptions needed for risk-neutral valuation are implicit in the
speciﬁéation of the return dynamic. Put differently, some important assumptions on
the equilibrium supporting the valuation problem are implicitly incorporated in the risk

premium assumption for the return dynamic.

3.7.4 Stochastic Volatility and GARCH

The discussion above indicates that while it is useful to distinguish between one-
shock and two-shock models; our analysis of discrete-time GARCH option valuation
models is very similar to the analysis of continuous-time SV_ option valuation models.
Most existing papers on option pricing in discrete time assume normally distributed re-
turns and, in the words of Rubinstein (1976), “complete” the markets by assuming a
representative agent with certain preferences, such as for instance constant relative risk
aversion. 2% Our approach, much like the one used in the continuous-time stochastic
volatility literature, is to let the researcher specify an empirically realistic return dynamic
for the underlying asset, and subsequently provide an equivalent martingale measure
that enables option pricing using a no-arbitrage argument. Proposition 3.2.1 provides
the form of the EMM and Proposition 3.4.1 provides the no-arbitrage option pricing re-
sult. Whereas the assumption on the representative agent’s utility function “completes”
the market in the standard normal discrete-time setting, the Radon-Nikodym deriva-
tive “completes” the market in our setup. Conditional on the choice of Radon-Nikodym
derivative which is linear in the return innovation, our approach provides a unique EMM.

The only difference between GARCH option valuation and option valuation with
stochastic volatility is that GARCH models can be viewed as special cases of discrete-
time stochastic volatility models. In the GARCH model, one parameter determines the

volatility risk premium as well as the equity risk premium, and therefore the volatility

20. See for example Rubinstein (1976), Brennan (1979), and Duan (1995).
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risk premium is implicitly speéiﬁed by the GARCH dynamic. This is .consistent with
the interpretation of the GARCH model as a one-shock model with perfectly correlated
equity and volatility innovations. 2!

Section 3.3 illustrates that it is possible to generalize the EMM specification, al-
though in most cases it is not straightforward to obtain analytical results. We therefore
limit our discussion to the case of the quadratic EMM with normal innovations in Sec-
tion 3.3.3, which contains the linear EMM as a special case. This indicates that the
uniqueness result obtained for the GARCH model discussed above is due to the choice

of the linear EMM. In the more general quadratic case, we obtain an infinite number of

valid EMMs, as illustrated in Figure 1.

3.8 Conclusion

This chapter provides valuation results for contingent claims in a discrete-time in-
finite state space setup. Most of our analysis focuses on a class of Radon-Nikodym
derivatives for which the risk neutral return dynamic is the same as the physical dynamic
for a wide class of processes, but with a different parameterization which we are able
to characterize completely. We also discuss more general choices of Radon-Nikodym
derivatives. Our valuation argument applies to a large class of conditionally normal and
non-normal stock returns with flexible time-varying mean and volatility, as well as a po-
tentially time-varying price of risk. This setup generalizes the result in Duan (1995) in
the sense that we do not restrict the returns to be conditionally normal, nor do we restrict
the price of risk to be constant.

Our results apply to some of the most widely used discrete-time processes in finance,
such as GARCH processes. We also apply our approach to the analysis of discrete-time
processes with multiple innovations, such as discrete-time stochastic volatility processes.

To provide intuition for our findings, we extensively discuss the relationship between our

21. While it could be argued that this structure limits the usefulness of the GARCH model, one has
to keep in mind that this structure is exactly what makes the GARCH model econometrically tractable.
Indeed, the success of the GARCH model in modeling returns, and its growing popularity in modeling
options, are precisely due to the fact that despite its simple structure it provides a very good fit.



188

results and existing results for continuous-time stochastic volatility models, which can
be derived as limits of our discrete-time dynamics.

Our results suggest a number of interesting avenues for further research. First, an
extensive empirical comparison of option valuation with non-normal and heteroskedas-
tic innovations should prove interesting. Combining noﬁ-normality and heteroskedas-
ticity attempts to correct the biases associated with the conditionally normal GARCH
model. These biases are similar to those displayed by the Heston (1993a) model, which
the continuous-time literature has sought to remedy by adding (potentially correlated)
jumps in returns and volatility. 2> A comparison with these modeis may prove valuable.
Second, it is well-known that the risk-neutralization of existing models is not satisfac-
tory from an empirical perspective. 2> The implications of alternative Radon-Nikodym
derivatives for the option valuation models’ empirical performance therefore ought to
be studied. A comparison bétween linear and quadratic EMMs for normal innovations
may provide a valuable starting point. Third, while we advocate separating the valuation
issue and the general equilibrium setup that supports it, the general equilibrium founda-
tions of our results are of course very important.. It may prove possible to characterize
the equilibrium setup that gives rise to the risk neutralization proposed for some of the
processes considered in this chapter. However, this is by no means a trivial problem, and

it 1s left for future work.

22. See for example Bakshi, Cao and Chen (1997), Bates (2000), Broadie, Chernov and Johannes
(2007), Carr and Wu (2004), Eraker, Johannes and Polson (2003), Eraker (2004), Huang and Wu (2004)
and Pan (2002).

23. See for example Broadie, Chernov and Johannes (2007).
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3.9 Appendix

3.9.1 Proof of Proposition 3.2.2.

Define f(v) = W(v) —¥(v —1). Existence is obtained if f(v) can take any real
value. Uniqueness is demonstrated if /(v) = E [R — r] = r has a unique solution for any
given value of x. By assumption, ¥ tends to infinity at the boundaries of its domain,
therefore W () = +o0 and ¥(u;) = +oo. ‘¥ is also continuous because it is twice differ-
entiable on its domain. The domain of f(V) is (#; + 1,u2). Since ¥ is continuous f(.)

is also continuous. We get

flur+1) = Pl +1)—Pu) = —F(u;) = —oo
f(uz) = ‘P(uz) —‘P(uz — 1) = ‘P(uz) = oo,

since W(u;) = +oo and ¥(uy) = +-o. Hence f(.) is continuous and can attain —eo or
+oo. Thus there exists a value v in the domain of the continuous function f(.) such
that f(v) =z for any value 7 € (—oo, +0). Furthermore, we have that /" (u) =¥ (u) —
W (u—1). Convexity of ¥ implies that ¥/(.) is increasing. Thus, if f'(u) = ¥ (u) —
W (u—1) > 0, then f(.) is increasing. Therefore, f(.) is increasing and continuous,

which implies that f(.) is a bijection, and uniqueness follows.

3.9.2 Proof of Lemma 4.

For a self financing strategy we have

Grr1 = Vi1t = Me+1St41 + 841C41 + Wi+ 1Brn

= NeSi+1+ 6Crv1 + YiBity.

We also have

t—1 t—1 t—1
G = X Mi(Six1 = Si) + 2, 8:(Civ1 —C) + Y, Wi(Biv1 — By).-
i=0 i=0 i=0



It follows that

Grr1— Gr = Me(Se41—8t) + & (Crv1 — Cr) + Wi (Bey1 — Byr).

We can trivially also write

B, B,

~ s/

- Giv1 G
Ghi—GP =ty — G+ (Gt -Gt

v

=0

This implies that

1 1
GF+1 - GF = (NeSt+1 + 6Cr1 + WeBry1) (B,.H - E)
1

+B_t (Ne(St+1=81) + 8(Cr1 — C) + W (Bi+1 — By))
1 1 1
=1 [Siet [ — = ) + = (81 =8
L/ [ t+1 (Bt+l Bt) Bt( t+1 t):|

+6 |:Ct+1 (E,l.;_—l - B%) + i(Ct+.1 - Ct)}
)

1 1 1
+ WiBi+1 (Bt+1 _E) + = Wi (Br+1 — By).

’:O

Ny

Then

1 1 1 1
GE -GB=n |5 —— ]+ —(S+1 -8 C
t+1 f =Tt [ t+1 (Bt+l Bt) +Bt( t+1 t)] + & [ t+1 (

S, S, C
= nt(SFH _SF) +51(CF+1 _CF) + (n:%l —ntil) + (51 ad
t

and therefore

G?+1_GF:77t(SF+1—SF)+51(CF+1—C,B). ve=1,...
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Because Gy = G2 = 0 the discounted gain can be written as the sum of past changes

t—1
Gl =Y.(G},-GHvt=1,..,T.
i=0

Therefore the discounted gain can be written
B_'C . (B By O 5 (B B
Gy = 2 Ni(Siy) — 87 )+ z 6i(Ciy1 —C7),
i=0 i=0
and the proof is complete.

3.9.3 Proof of Proposition 3.2.3.

From Lukacs (1970), page 119, we have the Kolmogorov canonical representation of
the log-moment generating function of an infinitely divisible distribution function. This
result stipulates that a function ¥ is the log-moment generating function of an infinitely
divisible distribution with finite second moment if, and only if, it can be written in the

form
dK (x)
x2

)

Y (u) = —uc—}-_/::o (e™ —1+ux)

where c is a real constant while K (u) is a nondecreasing and bounded function such that

K (—<0) = 0. Applying this theorem gives the following form for ¥, (u),

dK,_l (x)

~+oo
Y, (1) = —uc,_ +/ (e™ —1+ux) =2

, (3.45)

where ¢, is a random variable known at ¢ — 1, and K, _ (x) is a function known at ¢ — 1,
which is nondecreasing and bounded so that K;_| (—eo) = 0. Using relation (3.9) and the

characterization (3.45) we can write por (u) as

Foo dK* . (x
w2 ()= [ (e ) KO

where

)= [k o).
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This implies that

Kt*—l (—°°) =0,
K
because K;_1 () < o, and e~ " is a decreasing function of y which converge to 0.

(x) is obviously non-decreasing since K;_; (x) is non-decreasing, K; | (o) < oo,

Recall that v; is the generalized price of risk, which is positive and known at time ¢ — 1.
In conclusion we have constructed a constant ¢;_; (= 0) and a non-decreasing bounded

function K" | (x), with K* | (—ee) = 0, such that

o e
WE™ (u) = —uc]_, +/ (e™ —1+ux)

Hence, according to the Kolmogorov canonical representation, the conditional distribu-

tion of &/ is infinitely divisible.
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Figure 3.1: Option Prices from Linear and Quadratic EMMs.
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We use the linear and quadratic EMMs to compute the price of a one-month to maturity, at-the-
money call option with an underlying asset price of 100. We assume a risk-free rate of 5%,
an underlying asset mean return of 10% and a physical asset volatility of 20% per year. In the
quadratic EMM we let the ratio of the physical to risk-neutral variance, x5, vary from 0.5 to 1.

Figure 3.2: Convergence of Homoskedastic Inverse Gaussian to Black-Scholes Option Price
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We plot the ratio of the homoskedastic IG option price to the Black-Scholes price as the number
of trading intervals per day gets large. We use r =0, K = 100, S = 100, MA = 180. We let
n(A) = nA, GZ(A) = o0?A, and set A62 = .07 to match a 7% equity risk premium. Return
volatility is set to 10% per year (62 = .01) in the top row and 20% in the bottom row (62 = .04).
The IG parameter 7] is set so as to generate a daily skewness of -1 in the left column and -0.5 in

the right column.
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Figure 3.3: Convergence of GARCH to Stochastic Volatility Option Price
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We plot the ratio of the Heston and Nandi (2000) discrete-time GARCH option price to the
continuous-time SV option price in Heston (1993a) as the number of trading intervals until ma-
turity gets large. We use r = 0, K = 100, S = 100, MA = 180, xk = 2, and shock correlation -
p = —1. Return volatility is set to 10% per year (v =6 = .01) in the top row and 20% in the
bottom row (v = 6 = .04). The volatility of volatility parameter ¢ is set to 0.1 in the left column
and 0.2 in the right column.



CHAPTER 4
AFFINE STOCHASTIC SKEWNESS MODELS

Abstract

We develop a conditional arbitrage pricing theory (APT) model where factors and
idiosyncratic noises are both heteroscedastic and asymmetric. The model features both
stochastic volatility and conditional skewness (SVS model), as well as conditional lever-
age effects. We explicitly allow asset prices to be asymmetric conditional on current fac-
tors and past information, termed contemporaneous asymmetry. Conditional skewness
is driven by conditional leverage effects (through factor loadings) and contemporaneous
asymmetry (through idiosyncratic skewness).. We estimate and test three versions of the
SVS model using several equities and indexes daily returns, as well as daily index op-
tions data. Results suggest that contemporaneous asymmetry is particularly important in
several dimensions. It helps to match sample return skewness, negativé and significant
cross-correlations between returns and squared returns, as well as positive and signifi-
cant cross-correlations between returns and cubed returns. Further diagnostics suggest
that SVS models with contemporaneous asymmetry show a better option pricing per-
formance compared to contemporaneous normality and existing affine GARCH models,

especially for in-the-money call options and short-maturity contracts.

4.1 Introduction

Three relevant stylized facts have emerged from the analysis of financial time series,
namely, time-varying conditional variance (or heteroscedasticity), time-varying condi-
tional leverage effect, and time-varying conditional skewness. Since these time series
characteristics are common to many financial assets, and given that these assets are likely
to be affected by the same economic risk factors, time series properties of the factors
combined with asset’s systematic risk and idiosyncratic characteristics, will have impor-

tant implications for the time series of asset returns. This article develops a conditional



204

arbitrage pricing theory (APT) model where factors and idiosyncratic noises are both
heteroscedastic and asymmetric. Heteroscedasticity in the factors implies heteroscedas-
ticity in asset returns, as well as time-varying conditional skewness and leverage effect.
Our approach does not tackle independently time series and cross-sectional characteris-
tics of. asset returns. In fact, leverage effect arises from asset systematic risk (asset’s
factor loading or beta), heteroscedasticity results from asset’s beta and idiosyncratic
volatility, and conditional skewness relates to both asset’s beta, idiosyncratic volatility
and idiosyncratic skewness.

- The autoregressive conditional heteroscedasticity (ARCH, Engle (1982)) and its gen-
eralization (GARCH, Bollerslev (1986)) have been widely used in modeling time-series
variation in conditional variance. While return volatility is completely determined as
a function of past observed returns in ARCH and GARCH ‘models, an alternative ap-
proach, which has become more popular recently, is the stochastic volatilify (SV) model,
where return volatility is an unobserved component which undergoes shocks from a dif-
ferent source other than return shocks. Most empirical applications of SV and GARCH
models assume that the conditional distribution of returns is symmetric. Even if these
models help matching the observed unconditional kurtosis in actual data, they fail to
match unconditional asymmetries (skewness and leverage effects). Allowing for condi-
tional leverage effect in GARCH models (Nelson (1991) and Engle and Ng (1993)) helps
to match these unconditional asymmetries. Heston and Nandi (2000, hereinafter HN),
Christoffersen et al. (2008) and Christoffersen, Heston and Jacobs (2006, hereinafter
CHJ) are examples of GARCH models which belong to the discrete-time affine class,
and feature conditional leverage effect, while only CHJ sfudies also conditional skew-
ness. Conditionally nonsymmetric return innovations are important as in option pricing
for example, where heteroscedasticity and leverage effect alone do not suffice to explain
the "option smirk". However, skewness in the CHJ’s model is still deterministically
related to volatility and both skewness and volatility undergo return shocks.

Existing affine GARCH and SV models are univariate and do not have a straightfor-
ward generalization to multiple returns and multiple volatility components without loos-

ing their main advantage. They also focus on explaining time-series characteristics of
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returns and loose interest on the cross-sectional dimension. As argued in the beginning,
financial assets are likely to be affected by the same economic risk factors. Then, time
series properties of the factors combined with asset’s systematic risk and idiosyncratic
characteristics, will have important implications for the time series of asset returns. Our
model belongs to the discrete-time affine class, features both stochastic volatility and
skewed return innovations (SVS model), and appropriately takes part into multiple as-
sets and multiple factors. The affine property of the model allows for a closed-form
derivation of asset’s risk premium and option prices under no arbitrage. We derive the
risk-neutral version of our conditional APT model and show that asset’s risk premium
and option prices are also a function of asset’s beta, idiosyncratic volatility and idiosyn-
cratic skewness. The model then allows for a direct analysis of the sensitivity of an
individual asset’s option prices to asset’s beta, idiosyncratic volatility and idiosyncratic
skewness. The affine property of the model also leads to a GMM estimation based on
exact moment conditions (see Jiahg and Knight (2002) for the case of continuous-time
processes, and Feunou and Tédongap (2008) for the discrete-time setting). We distin-
guish agent and econometrician information sets in our SV setting and provide explicit
GARCH counterparts of volatility, conditional skewness and leverage effects.

Harvey and Siddique (1999, hereinafter HS) also consider a nonsymmetric condi-
tional distribution of return with volatility and skewness as two separate factors which
follow GARCH-type processes. Their autoregressive conditional skewness is a simple
way to model conditional asymmetry and provides an easy methodology to estimate
time-varying conditional skewness because of the availability of the likelihood function.
However, the non-affinity of their model is a practical limitation, for example for solving
option pricing models. The price of a european call option does not exist in closed-form,
as opposed to affine GARCH models previously cited. Therefore, solving such a price
would involve numerical methods or simulation techniques which are time-consuming.
Our model is affine with skewness and volatility being affine combinations of the same
factors. We assume that factors follow a multivariate autoregressive gamma process and
that idiosyncratic noises are combinations of inverse Gaussian shocks whose variances

and skewness are functions of the factors. In consequence, all conditional moments of
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returns are affine combinations of the factors, with coefficients given by cross-sectional
characteristics of the asset. Interestingly, our discrete-time conditional APT model has
several continuous-time limits, including affine jump-diffusion models with stochastic
intensities.

We apply the GMM procedure suggested by Feunou and Tédongap (2008) to es-
timate a single factor univariate SVS model using several equities and indexes daily
returns. Because we only use asset returns at this stage, this corresponds to the historical
dynamics. This estimation technique permits a direct evaluation of the model perfor-
mance in replicating well-known stylized facts as the persistence of volatility through
the autocorrelation of squared returns as shown in Figure 4.2, the negative correlation
between returns and future squared returns as shown in Figure 4.3, and the positive corre-
lation between returns and cubed returns, especially for small stocks, as shown in Figure
4.4. We apply the unscented Kalman filter to estimate cumulants of the factors condi-
tional on observable returns, as they are necessary to evaluate GARCH counterparts of
volatility and conditional skewness. We further estimate the single factor and the two-
factor SVS models uéing index daily option data. This corresponds to the risk-neutral
dynamics. We test for a specification that allows for contemporaneous asymmetry, and
also for a specification with contemporaneous normality. We compare the SVS model
performance to the GARCH(1,1) model of Heston and Nandi (2000) and the IG GARCH
model of Christoffersen, Heston and Jacobs (2006).

By estimating the historical dynamics, the model’s parameters are significantly esti-
mated and the model’s implications are striking. We find that contemporaneous asym-
metry is positive, and this result is robust across all assets under consideration. Con-
temporaneous asymmetry is particularly important to match sample return skewness,
as well as negative cross-correlations between returns and squared returns. When con-
temporaneous normality is imposed, unconditional skewness is not matched. We also
find that the HN GARCH and the IG GARCH models have the same performance as
the SVS with contemporaneous asymmetry in matching significant return moments, but
only when cross-correlations between returns and cubed returns are not important. The

SVS model with contemporaneous asymmetry performs better in matching significant
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cross-correlations between returns and cubed returns in addition to other relevant mo-
ments of returns. The positive contemporaneous asymmetry in the SVS model domi-
nates negative components of the conditional skewness, and leads to a positive historical
conditional skewness, although unconditional skewness is negative and well matched.
However, when contemporaneous normality is irhposed, conditional skewness becomes
negative, consistent with the CHJ’s model. However, the model does not match uncondi-
tional skewness and short-term leverage effects, and tends to be rejected at conventional
level of significance.

Fitting the risk-neutral dynamics using option data, we find that, explicitly allowing
for contemporaneous asymmetry leads to substantial gains in option pricing, compared
to existing GARCH models with equal or superior number of parameters. The single fac-
tor SVS model with contemporaneous asymmetry performs well in-sample, compared
to the HN and CHJ’s models. The two-factor SVS model has the best in-sample perfor-
mance, which is not surprising since it nests the single factor SVS model and provides
more flexibility in conditional skewness modeling. Contemporaneous asymmetry is neg-
ative and this also is not surprising since a more negative risk-neutral conditional skew-
ness is needed to capture strong biases in short-term options. Empirical evidence shows
that in-the-money call prices are relatively high compared to the Black-Scholes price,
a stylized fact often represented by the well-known “volatility smirk”. Our results sug-
gest that all SVS models outperform the HN and CHJ in fitting the actual Black-Scholes
implied volatility for in-the-money and deep-in-the-money calls, when one considers
short-maturity contracts (less than three months).

The rest of the chapter is organized as follows. Section 4.2 presents the general affine
multivariate latent factor model of asset returns. Section 4.3 introduces our discrete-time
SVS model, discusses continuous-time limits, derives GARCH counterparts of volatility
and skewness, and discusses the filtering method. Section 4.4 presents assets risk-neutral
valuation and derives the closed-form option pricing formula consistent with SVS model.
Section 4.5 estimates univariate SVS, SV and GARCH models using several equities and
indexes daily returns and provides comparisons and diagnostics. Section 4.6 estimates

univariate SVS, SV and GARCH models using index daily option data and provides
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comparisons and diagnostics. Section 4.7 concludes. The appendix contains technical

material and proofs.

4.2 Discrete-Time Affine Models

4.2.1 Definition and Overview

We consider a discrete-time affine multivariate latent factor model of returns with
time-varying conditional moments, characterized by its conditional cumulant generating

function:
¥ (5,33 0) = InE [exp (x rir +3 I )| =A(x,50) + B(x330) 1y @)

where E; || = E [- | I] denotes the expectation conditional to the o — algebra generated
)T

by (rs,15),s < t (we denote this information set by I;). r, = (rys,..,rny) is the vector

of observable returns, /; = (/1;, ..,lK,)T 1s the vector of latent factors and 8 is the vector
of parameters. | Notice that the conditional moment generating is exponentially linear
in the latent variables /;. The vector process (r,T AN " is then semi-affine in the sense
of Bates (2006). The conditional cumulant generating function of a fully affine process
would be also linear in #;. In all what follows, the parameter 0 is withdrawn from
functions 4 and B for expository purposes.

In practice, such processes are specified through the joint dynamics of observable
returns » and latent factors /, from which the cumulant generating function (4.1) is ob-
tained. All conditional cumulants of returns are affine functions of the latent factors. In
particular, a latent factor /; itself can be a specific conditional cumulant of returns, which
implies some restrictions on the first derivatives of the functions 4 (x,y) and B;(x,).
Proposition 4.2.1 below gives necessary and sufficient conditions under which the latent

factor /; is the conditional variance or the conditional asymmetry of the return ;.

1. Darolles, Gourieroux and Jasiak (2006) study in details conditions for the stationarity in distribu-
tion of vector affine processes. The vector process (r,T AT )T is stationary in distribution if the condi-
tional moment-generating function E; [exp (x"ri4r +y " /1z)] converges to the unconditional moment-
generating function E [exp (x"r,+y])] as T approaches infinity.
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Proposition 4.2.1. The factor l; is the conditional variance of returns r; if and only if

9?4 (x,y)

2
axj

asz (x7y)

=0 and
an ax3

x=0,y=0

=1y 4.2)

x=0,y=0

The factor l; is the central conditional third moment of returns r; if and only if

3y . 3p
I Axy) —0 ana 2B = 1gmsy. (4.3)
8xj ax.
x=0,y=0 J x=0,y=0

Affine models of the form (4.1) with a single return and a single latent factor cor-
responding to the conditional variance have been widely studied in the literature as
GARCH and stochastic volatility models. An extensive review of this literature is given
in Shephard (2005). Example 1 below lists most common affine GARCH and SV models

that have great success in the literature.

Example 1. Stochastic Volatility. _
Discrete-time semi-affine univariate latent factor models of returns considered in several

empirical studies, are the following stochastic volatility models:
Frol = M — At + Ay + /o, 4.4)

the volatility process (h) satisfies one of the following dynamics:

w1 = (1= 0n) thy — 0t + (0 — 0By) he + 0t (8:+1 - ﬁh\/h_t)27 4.5)

her1 = (1~ &) Up + Onhy + Op€r41, (4.6)
Beer = (1= 0p) iy + Onbye + 0/ s, 4.7)

U, and &4 are two i.i.d standard normal shocks, in some cases u,1| and &, are
correlated. p,, denotes the correlation between u; 1 and &.,.

The HN model corresponds to equations (4.4) and (4.5) with p,;, = 1. We provide also
a generalization of the HN model denoted by HN-S. HN-S combines equations (4.4) and
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(4.5) where p,, is not necessarily restricted to 1. The autoregressive Gaussian volatility
model corresponds to equations (4.4) and (4.6) with p,, = 0. Finally the square-root
volatility model corresponds to equations (4.4) and (4.7). Christoffersen, Heston and
Jacobs (2006) also study an affine GARCH model specified by:

Fig1 = O+ Aphy + Npyet1 (4.8)

2

By = Wi+ bphy +Chy1 +ap—— 4.9)
Yi+1

where, given the available information at time t, y,1| has an inverse Gaussian condi-
tional distribution with degrees of freedom parameter h, / nf. As in the original chapter,
we refer to this specification as IGGARCH.

The functions 4 and B characterizing the cumulant generating functions for these
GARCH and SV models are explicitly given in Appendix 4.8.1. One should notice that
the volatility processes (4.6) and (4.7) are not well defined since 4, can take negative
values. In simulations, one should be careful when using a reflecting barrier at a small
positive number to ensure positivity of simulated volatility samples.? This can also arise
with the process (4.5) unless parameters satisfy a couple of constraints. Note also that if
the volatility shock &1 in (4.6) is allowed to be correlated to the return shock #, in
(4.4), then the model becomes non-affine. The HN-S and the IG GARCH specifications
will be examined in more details in the empirical part.

A known case of a well-defined affine stochastic volatility model assumes that 7,
follows an autoregressive gamma process (see Gourieroux and Jasiak (2001) for more
details). However, when combined with the return process (4.4), the model presumes
that within a period, return and.volatility shocks are mutually independent, what appears
to be a counterfactual assumptibn against the well-documented conditional leverage ef-
fect (Black(1976) and Christie (1982)). As discussed above, the autoregressive Gaussian

dynamics (4.6), coupled with the return equation (4.4), cannot allow for leverage effect

2. Because of this limitation, autoregressive Gaussian and squared-root stochastic volatility models
have been mainly explored in continuous time. To avoid negative values of /, in simulations for examples,
one relies on the true dynamics of In /, using the It6 lemma and works through the logarithmic model.
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without the model losing its affine property. This counterfactual assumption is not re-
quired for classical SV models (Taylor (1986), Andersen (1994)) and GARCH models
(Bollerslev (1986), Nelson (1991), Engle and Ng (1993)). However, these latter models
are less tractable in empirical studies because of their non affine property. Then, there
has been a trade-off between tractable affine models with counterfactual assumptions
and non-tractable non-affine models that do not require these assumptions. In this chap-
ter, we aim at combining both the affine model and the ability of a SV model to take into
account important features of the data (fat-tailedness, asymmetry and leverage effect) in

a coherent way.

4.2.2 Modeling Conditional Skewness and Leverage Effect in Affine SV Models

While return models of Example 1 are such that the vector _(r,+1,h,+1)T of returns
and volatility is affine, the conditional skewness of returns in these models is zero, the
exception being the IGGARCH studied below. The literature on asset return models
has evolved so far and empirical evidence upon path dependence of conditional skew-
ness as well as its importance and contribution to risk management and asset pricing
rose in recent studies. Higher moments, and especially skewness, are implicitly priced
in nonlinear asset pricing models (Bansal and Viswanathan (1993), Bansal, Hsieh and
Viswanathan (1993), Harvey and Siddique (2000)). Harvey and Siddique (2000) reject
the constant conditional skewness assumption and argue that time-varying conditional
skewness is relevant in asset pricing.

In their original paper, CHJ argue that while specification (4.4) combined with (4.7)
or (4.5) generated multi-step ahead conditional skewness, single-period innovations re-
main Gaussian in these models which explains their failure to fit short-term options. The
necessity to model return skewness has thus become of first order importance.

Harvey and Siddique (2000) model conditional skewness as a GARCH process and
the IGGARCH process (described in Example 1) restricts conditional skewness to be
deterministically related to volatility (s, = 37,/v/h;). Liesenfeld and Jung (2000) in-
troduce SV models with conditional heavy tails. However, SV models with conditional

asymmetry have received less attention so far. We depart from previous literature by
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allowing skewness, as well as other higher order moments, to undergo unobservable
shocks, which in general can be uncorrelated or linearly independent from returns and
volatility shocks. Most importantly, we keep the affine property of the overall system,
with a straightforward generalization to a cross-section of returns.

In this section, we explain our approach for accounting for both conditional skewness
and leverage effect in a general affine univariate SV -type model. Existing affine SV

models basically lead to a couple of equations of the form:

rev = e () + Vi (4.10)
hur = m (he) + /v (k)€ (4.11)

where 4,1 and & | are two errors with zero means and unit variances. Written in this
form, the conditional skewness of returns is zero unless ,, | is conditionally asymmetric.
These models do not allow for the leverage effect unless the shocks #,,; and & are
correlated. However, it is generally assumed that ,, ; is Gaussian and therefore unusual
to assume a conditional correlation when at least one of the shocks is non-Gaussian.
This is a potential limitation that typically arises when u, | is Gaussian and equation
(4.11) is such that 4, is an autoregressive gamma process. Since the leverage effect is
the nonzero conditional covariance between returns and volatility, projecting 7,41 onto
h, 41 should lead to a nonzero slope coefficient. Therefore, we suggest to account for
skewness and leverage efféct in asset returns by projecting returns 7,4 onto volatility
hy+1 and characterizing the projection error. This will basically lead to a return equation

of the form:

Fron =g (h) + Bhig +\/ht—B2V(ht)ut+1 (4.12)

where u,, is an error with mean zero and unit variance. One could still endow w1
with a suitable distribution conditional on (hi31,1;) such that combining (4.11) with
(4.12) leads to an affine stochastic volatility model of asset returns. The model will now

account for the leverage effect through 8. The conditional skewness will also depend
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on B as well as on the asymmetry of the shock #,1; conditional on (h;11,1), if any.
We refer to the asymmetry of observable returns conditional on current factors and past
information as the contemporaneous asymmetry.

It is easier to conceive a semi-affine one-factor SV model as in Example 1, with a‘
directly specified equation for volatility dynamics, precisely because of tractable prop-
erties of the standard normal distribution appearing in both return and volatility shocks.
However, it is more challenging to think of a semi-affine two-factor model with stochas-
tic skewness as additional factor, such that both equations for volatility and skewness
dynamics are directly specified. The reason is that, while conditional asymmetry of re-
turns appears to be a necessary and sufficient condition to generate time-variation in
conditional skewness, asymmetric distributions are not as tractable as the normal distri-
bution. A strategy to get équations which explicitly characterize the joint dynamics of
returns, volatility and skewness would be to first specify a semi-affine two-factor model
with arbitrary linearly independent latent factors, and:

— find volatility and conditional skewness in terms of the two factors,

— then, invert the previous relationship to determine the two factors in terms of

volatility and skewness,

— and finally, replace the factors in the initial return model to get the joint dynamics

of returns, volatility and skewness.
In the next section, we develop a semi-affine multivariate latent factor model of returns
such that both conditional variance 4, and conditional skewness s, are stochastic. More-
over, the vector (r,+1,h,+1,s,+1h,34/_21)T is affine in the case of a single return and two.

linearly independent latent factors.

4.3 An Affine Multivariate Latent Factor Model with Stochastic Skewness

4.3.1 General Setup

The dynamics of returns in our model are built upon shocks drawn from a stan-
dardized inverse Gaussian distribution. The cumulant generating function of a discrete

random variable which follows a standardized inverse Gaussian distribution of parameter
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s, denoted S7G (s), is given by:

v (4;5) = InE [exp (uX)] = =35 'u+ 9572 (1 —1/1- %su) : (4.13)

For such a random variable, one has E [X] =0, E [X?] =1 and E [X?] =s, meaning
that s is the skewness of X. In addition to the fact that the S/G distribution is directly
parameterized by its skewness, the limiting distribution when the skewness s tends to
zero is the standard normal distribution, that is S/G(0) = .#"(0,1). This particularity
makes the S7G an ideal building block for studying departures from normality.

For each variable in all what follows, the time subscript denotes the date from which
the value of the variable is observed by the economic agent. We assume that components
of the vector r, of N returns on financial assets follow the dynamics:

Sji+1 X

K K
s, Mot > Ai (0 — ) + X Bji (Ofa1 — i) + X, VjiGisw1¥jie1
] - : A

) i=1 =1 i=1

rj’t+1 =In

(4.14)

where S, is the price of the j** asset and uj; 41 | (02 |, 1) ~ SIG (lei ('x/'jo'j’[.*_l)—l).
The components of the latent vector 7 are K linearly independent positive factors driv-
ing all returns’ dynamics. For identification, we impose ¥;; = 1, Vi. The NK return
shocks u;,, 1 are mutually independent conditionally on <o;2+1,L>. If n;; = 0, then
Ui +1 is a standard normal shock. The time ¢ information set /; contains past ;ealizations

of returns r, = {r,#,—1,...} and latent factors o} ={c?,c?

'~ »---}- The return dynamics

(4.14) can also be written in vector forms:

ris+1 = Ojy +ﬂjT0'12+1 +0'111 (Yjuje1) oF rp1 =6 +ﬂT0}2+1 +(Yut+1)T0't+l
(4.15)

where 8 = ijo — (A; +B;) T +A] 6} and & = o — (A + B) "1 + A T 62. The vector
u is the unconditional mean of the stationary process 6. In consequence L is the

vector of unconditional expected returns. A, B and n are K x N matrices such that
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AT =[A], BT = [Bs] and nT = [n;i], and A;, B; and n; arf:‘ the j*h column of the
matrices A, B and 7 respectively. Similarly, yu,. is the K X N matrix process such that
(Yurr1) | = [Yjitijig+1] and yju; .41 represents the j* column of yu, ;. ‘

Under previous assumptions on %1, the cumulant generating function of returns
conditional to (6?2, ,,1;) is given by:

K N

E |exp (xTrest) | 67, | =578+ X 3 (Biy+ W (x5 0i) 1) O (4.16)
i=1j=1

2

The process o7 is assumed to be affine with the conditional cumulant generating function

W7 () = InE [exp (702 ) | 1] =a()+b0) " 7. (4.17)

. . . .
In this case, the vector (rrTH, () ) is semi-affine in the sense of Bates (2006). Its

conditional cumulant generating function is given by:

i (x,9) =InE [exp (x T repn +37 02 ) | ] =4 (6) +B(x) o,

with

]
4(5y) = (Ho—A+B) k) x+al(f(x)) (4.18)
B(xy) = Ax+b(/ (x.y)), (4.19)

N
T .
where f(x,y) = (/1 (x,91),.., fk (x,yx)) * with fi (x,3:) = yi+ Zl (ﬁjixj + v (x5m5) szr)
j= .
Since the factors are positive, we assume that the vector o; follows a multivariate autore-

gressive gamma process. This process also represents the discrete-time counterpart to

continuous-time multivariate square root processes that have previously been examingd
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in the literature. ® Its log conditional Laplace transform has the form (4.17) with:

K K 0y
a(y)=——2v,-ln(1—a,~y,-) and b; (y) = Z4 (4.20)

i=1 Sl

" The K x K matrix ® = [(l),- j] represents the persistence matrix of the vector 6;? and the au-
toregressive gamma processes o7 are mutually correlated if the off-diagonal elements of
® are nonzero. The factors are mutually independent conditional on /; if the off-diagonal
elements are zero. In this latter case we note ¢; = ¢;;. In the single factor case, the fac-
tor 67 has the conditional cumulant generating function w@ (y1) = a(y1) + b1 (1) 63,
where a(y1) = —viIn(1— oyy1) and by (y1) = ¢1y1 /(1 — ouy1). The parameter ¢; is
the persistence of the factor and the parameters v; and «; are related to persistence and
unconditional mean y; and variance @ as v; = pu# /oy and o = (1 —¢1) @y /11 -
Although our empirical focus will be on the time series dynamics of a single re-
turn, it is important to notice that equation (4.15) is a multifactor conditional arbitrage-
pricing model. In fact, we assume that a true conditional multifactor representation of
expected returns in the cross-section is such that log returns are linear in the factors and
the idiosyncratic noise. The vector 3; represents the loadings of asset j on the factors,
" and this asset’s conditional beta is time-invariant. The factors are heteroscedastic and
the idiosyncratic noise is a combination of independent heteroscedastic and asymmetric
shocks. This constitutes a substantial depart from previous literature, as the true data
generating process in existing APT models is, in general, specified such that factors as
well as idiosyncratic shocks are implicitly or explicitly homoscedastic and normally dis-
tributed. Considering latent factors is also appealing as, in the original APT model of
Ross (1976), factors are unknown. Also, focusing on positive factors in not restrictive as
any arbitrary economic factor, say F;, can be written as a difference of two nonnegativ'e

2 _ 42 2 2
factors, say o}, — 05,, where o, = max (F;,0) and 03, = max (—F;,0).

3. See for example Singleton (2001).
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4.3.2 Expected Returns, Conditional Variance, Skewness and Leverage Effects

In the previous section, we do not model directly volatility and conditional skewness
as well as other higher moments of returns. Instead, we relate returns to a finite number
of stochastic linearly independent positive factors. In this section, we relate expected
returns, conditional variance, skewness and leverage effects to these factors and discuss

important features of the model.

Proposition 4.3.1. Conditional on I, the mean uj’-t, the variance hj; and the skewness

s of returns r; are expressed as follows:

K
;u'_;:l = o —(A;j+ ﬁj)T“ + leo'tz + BJTm? = Cjo,u + Z Cji,uo':%’ (4.21)

i=1

_ K
T
hj = ﬁjT VeB+ (}92) my = cjon+ chi:ho'i%’ (4.22)

i=1

K
Sjthj’t/z = (Bj ® Bj) TStUﬁj +3 (}ﬁz) ! VeB;+ (ﬁnj) ! mp = cjo,s + Z Cji,sO'l%, (4.23)
i=1

where the coefficients c;, ; depend on model's parameters,
2 2 2 T
mi =E [0/ | 1], VtG:E[(GtH_m?) (671 —m7) |It]

and
;
S¢ =E (0% —mf) @ (021 —mf)) (o1 —mf) " | 1].

This proposition is established by taking the first, second and third derivative of the
conditional cumulant generating function of returns r, given by equations 4.18 and 4.19.

The linearity of expected returns, volatility and conditional asymmetry of returns in
terms of the factors results from the fact that components of the vector m?, and of the
matrices ¥,° and SC, are also linear in the 62’s. This is a consequence of the affine
structure of the process 0',2. Also, note that the bivariate vector (h ity j,hj,/ Z)T is not
deterministically related to contemporaneous and past returns as for GARCH-type pro-

cesses (Harvey and Siddique (1999) and Feunou and Tédongap (2009)), as well as many
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other authors.# For this reason, we label the present model stochastic volatility and

skewness (SVS).

Proposition 4.3.2. Conditional on I,, the covariance between returns r; and volatility

. 2 .
h; (leverage effect) and the covariance between returns r ; and skewness s fh;/ are given
by:

K

T yoa 2 _ T 2

Cov (rjur1,hjest | 1) = Ve Bj = cjorn+ 2 jirhGi = Cj0rh +¢j.raC
i=1

(4.24)

K
3/2 T 1,0 2 T 2
Cov (r Ja+ oSty [ ) = ¢} VOB = cjoss+ X, CjirsOi =Cjos +€j,s0F (4.25)

i=I
where the coefficients ¢y, depend on model’s parameters.

It is not surprising that the parameter f8; governs conditional leverage effect as it
represents the slope of linear projection of returns on current factors. For a negative
correlation between spot returns and variance, and consistently with the postulate of
Black (1976) and the leverage effect documented by Christie (1982) and others, the
parameter f3; may be expected to be negative, in particular for the single-factor case.

It should be noted that, in our SVS model, although the parameter 1, dictates contem-
poraneous asymmetry of returns (that is, the asymmetry of returns conditional on current
factors and past information), it is not the only parameter determining conditional skew-
ness as shown in equation (4.23). The parameter 3;, which alone characterizes leverage
effect, also plays a central role in generating conditional asymmetry in returns, even if
returns are contemporaneously normally distributed, that is when n; = 0. -In contrast
to existing SV models with leverage effect as discussed in Example 1, where leverage
effect generates skewness only in multiple-period returns, in our setting, leverage effect
invokes skewness in single-period returns as well. If 8; = 0, there is no leverage effect.

In addition, there is also no skewness unless 7; # 0. Then, contemporaneous asymmetry

4. Hansen (1994), Jondeau and Rockinger (2003), and Leon, Rubio and Serna (2005), do not explicitly
model conditional skewness, but related shape parameters of the conditional return distribution using
GARCH-type dynamics.
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in this model reinforces the effect of the leverage parameter f3; in generating conditional
'skewness. In other words, time-varying conditional skewness in this model is a com-
bination of conditional leverage effect (through ;) and contemporaneous asymmetry
(through n 7).

To better understand the flexibility of the SVS model in generating conditional skew-
ness, we refer to the single-factor SVS. Equation (4.23) shows that conditional skewness
is the sum of three terms. The first two terms have the same sign, which is the sign of 3,
as components of the matrices ,° and S7 are positive. The last term has the sign of n); as
my{ is positive. As discussed previously, a negative value of f3; is necessary to generate
the documented negative leverage effect. If so, the first two terms in (4.23) are negative.
The sign of conditional skewness will depend on contemporaneous asymmetry 1n;. If n;
is zero or negative, then conditional skewness is negative over time as in the IGGARCH
model. This also arises if n); is positive, but not.enough that the third term dominates the
first two. If it does, then conditional skewness is positive over time. Also remark that
skewness of the j* financial asset may change sign over time if i ié positive and such
that cjo scj1s < 0. This will then be consistent with the empirica[l evidence in Harvey
and Siddique (1999) that conditional skewness changes sign over time. The findings in
Feunou and Tédongap (2009) also suggest that returns’s innovations are conditionally
normal or weakly positively skewed most of the time, but undergo imfrequent and large
drops in conditional skewness. However, it is recognized in the literature that a nega-
tive conditional skewness is particularly important for explaining strong biases in option
prices.

While 0'12,, . 0',2<, are the primitive predictive variables in our SVS model, predictabil-
ity when K > 2 can also be related to conditional variance and skewness which are eco-
nomically interpretable. For example, empirical facts tend to support that an increase
in volatility drives up expected returns, as the economic agent requires more premium
when it becomes more riskier to invest in stocks. The economic ageﬁt dislikes high
return volatility, as he prefers positive skewness, i.e; extreme positive returns are more
likely to realize than extreme negative returns. Therefore, economic agents would pay

a premium in exchange of positive skewness, and require a premium to compensate for
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negative skewness. In the two-factor case, K = 2, and if ¢ ycjo 5 # €j1,5Cj2,5, ONE Can
invert relations (4.22) and (4.23) to obtain 0'12, and 0'22, in terms of /4, and s j,hj.,/ 2, By
plugging these relations in (4.14), one gets returns in terms of volatility and skewness,
instead of initial factors. The IGGARCH does not disentangle skewness from volatil-
ity whereas the two-factor SVS disentangles these two measures while maintaining a
semi-affine structure of the model. This separation results from the decomposition of
return shocks into two linearly independent IG components with individual conditional

variances having specific affine dynamics.

4.3.3 Continuous-Time Limits

Although the present SVS model is written in discrete time, we are interested in its
continuous-time limits. These limits are useful to make the link with the huge litera-
ture on stock’s returns modeling which have been casted in continuous time. Following
several papers which derive continuous-time limits of discrete-time processes (among
which we can cite Nelson (1991), Foster and Nelson (1994)), we write the model for a
small time interval, and let the time interval shrink to zero. For a small time interval A,

the return’s equation (4.14) becomes:

K
YjiCit+aljis+a- (4.26)

S; g S
In T — ot 3 (0~ )+ DB (g 1) +
’ = i=1 i=1

For simplicity we assume that the factors are independent. Let us consider the following
parameterizations
Bji exp{—KA
1jo (A) = MjoA, Bji(A) = f, Aji(A) = Aji— ﬁji%
w:A? 2exp (—KiA)

vi(A) = 6;(1 —exp(—K;A))

() = e (k) @i (8) = 7 i
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Letting vy = 0'1.2’, / A represents factor per unit time, by taking the limit as A approaches

zero, it follows that v; converges weakly to the following square-root process:
dv,', = K; (9, — v,-,) dr+ \/Ei\/v_,-,dB,-,, (427)

where dBj, is a Wiener process. Similar arguments can be found in HN and CHJ. We also
refer to Gourieroux and Jasiak (2006) where it is shown that the discrete time univariate
autoregressive gamma process converge weakly to a square-root process. G; ;4 VAu Jig+A
has two different continuous time limits depending on the value of the parameter 1;;, see
CHJ for more details.

If 1;; = 0 then 0',',,+A\/Zu jit+A converges to /vy dWj;, as A shrinks to zero, where
Wi, is a Wiener process. In contrast if 1;; # 0, then 0';,,+A\/Zu jig+a converges to
— (3yjivie / n)-i) dt+ (nji /37i) dJjiy as A shrinks to zero, where Jj;, is a pure jump
inverse Gaussian process with degree of freedom 9}’]2';"’11 / njz-i on interval [¢t,7 4 dt|. We
then show that the limiting distribution of the SVS model in continuous time is a stochas-

tic volatility process where the return is a sum of diffusion and pure jump inverse Gaus-

Sian Processes:
K 3},]2‘1,1.’ K
dlnSj, = ujo+22.j,-(v,-,—9,-)— Z dt+2ﬂji\/5i\/v_i;d3it
i=1 i:nj,-;éo n—” i=1
+ Y v+ Y Ldr,. @28
3
ini=0 in;i#0 ‘

4.3.4 GARCH versus SVS: Filtering the Unobservable Factors

In GARCH models, the information set /; is exactly the sigma algebra generated by
(rs,s < t) (r, hereafter), hence both the economic agent and the econometrician view
the same informaﬁon. This is a strong assumption that is implicit in GARCH models.
In SV models in general, and the present SVS model in particular, the econometrician
does not observe 0'_,2 (the sigma algebra generated by (02,5 < t)), only known by the
 economic agent. While the moments in Proposition 4.3.1 are conditional on informa-

tion, =r,J 0',2, one can also derive their GARCH counterparts, meaning same return
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moments now conditional on econometrician’s information, r; only. Without loss of
generality, we derive these conditional moments for the case of a single return (N = 1).
However, the formulas can be generalized to multiple returns as well. Let [.L,”G, hC and
s3 respectively denote the mean, the variance and the skewness of r,,| conditional on

;. One has:

[,L,r’G = Cou +cZGw and h,G = cop +C;,rGyt +CZGhtCua _ (4.29)

3/2 .
s,G (h,G) = cos + c;r Gur + cZ Gucp + (cu ® cu) Gscy (4.30)
where

Gu =E[c?|r] and G;,,-—:E[G,z (62)" |r_,] ~E[6?|n]E[c?|n]", 431)
Gy =E [(0',2®0',2) (O’,Z)T |r_,] —3E[(6}®0}) | n] E [0} | ﬂT

+2(E [o,2|ﬂ®E[o,2|d)E[o,2|ﬂT, (4.32)

are mean, variance and third central moment of the latent vector 67 conditional upon
observed returns r;.

Disentangling the agents and the econometricians information sets in return model-
ing can be crucial. In the single-factor SVS model, return’s conditional variance and
third central moment are perfectly correlated to the agent, whereas it is the contrary
to the econometrician, unless returns are unpredictable by the factor (¢, = 0). When
cy # 0, the SVS model generates, conditional to observed returns, an asymmetry that
is not perfectly correlated to the variance, although this correlation remains high for a
persistent factor. In contrast, conditional variance and third central moment are perfectly
correlated in the IGGARCH, given past observed returns.

GARCH counterparts of leverage effect and conditional covariance between returns

and skewness are defined by:

' 3/2
Cov (r,H,hﬁ_l |Q) and Cov (r,“,sg_l (hg_l) | Q) .
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These two quantities are difficult to express in terms of the moments of the latent vector

o conditional on observed returns ;. Instead, we consider the following two quantities:

Cov (rret,hurt | 1) = copn+¢,Gur + ¢, Gu® ¢ (4.33)
3/2 :
and, Cov (r:+1 aSH—th/_l | Q) = Cors + Cs Gt + ¢ Gu® ¢, (4.34)

where ® represents the persistence matrix of the latent vector.

We now describe how to compute expectations in (4.31) and (4.32). Various strate-
gies to deal with non-linear state-space systems have been proposed in the filtering liter-
ature: the Extended Kalman Filter, the Particle Filter and more recently the Unscented
Kalman Filter that we apply in this chapter.> Since our SVS model has the standard
state space representation, on can use Kalman Filter-based techniques to compute G,
G and Gy. As these methods will not guarantee that £ g | ;] is positive, it would be
more convenient to filter @w; = In 0'5. Let o = (ayy, .., a)k,)T.

The basic framework of Kalman filter techniques involves estimation of the state of

a discrete-time nonlinear dynamic system of the form:

rie1 =H (01,174 1) (4.35)
W1 =F (wfagt*+l)a (4.36)

where »;, ; and g, ; are not necessarily but conventionally two Gaussian noises. For this

reason, we log-normally approximate our model, which in the one-factor case leads to:

x () 9
H(a)h,_H,ul’H_l)=u0+B1exp(a)1,,+1)+exp( 1;‘“) exp | In -
s(@1441)/S(O1041)"+9
2
s(@1)"+9Y 3
In | ot T2 S 4.37
T n( -9 )ul’tH 5 (01441) #37

5. See Leippold and Wu (2003) and Bakshi, Carr and Wu (2005) for application in finance, Julier et
al. (1995) and Julier and Uhlmann (1996) for details and Wan and van der Merwe (2001) for textbook
treatment.
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and .

F (o€l 4) =In :

m@)® (m(wn)%v(wu))g*
V(@) +v(ar)

where

0)]
s(@y41) = mexp (—%)

m(wy) = (1—¢1) 1 + ¢ exp (wy,)

2(1—(})1)({)10’12
W

vio)=(1-¢1) o7 + exp (@1/).

Details on this log-normal approximation of the one-factor SVS model are provided in
appendix 4.8.3.

Let @, ; be the estimate of @ using returns up to and including time 7, rr, and let

O : : : A P : T 4T T
P;| '@ be its covariance. Given the joint distribution of (@, ,u}/,, &1,

ry, the filter predicts what future state and returns will be using process models. Optimal

)T conditionally to

predictions and associated mean squared errors are given by:

W1 =E [ | n] =E[F(an,87) |n] (4.39)
Festfe =E [r | n] = E[H (0n1,841) [ 7 (4.40)
P8, = E [(@r1 = @) (@131 = i) | (4.41)

iy =E :(r,+| — Frgle) (e —rr+1|:)T | r_r} ‘ (4.42)
P =E [(0us1 = 01a1) (e — i) [ 7] (443)

The join distribution of (CO,T,u,*L,e,*L) conditionally to r, is conventionally as-
sumed Gaussian. To the contrary of the standard Kalman filter where the functions A
and F are linear, the precise values of the conditional moments (4.39) to (4.43) can not

be determined analytically in our model because the functions H and F' are Strongly
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nonlinear. Alternative methods produce approximations of these conditional moments.
The Extended Kalman Filter linearizes the functionals H and F in the state-space
system to determine the conditional moments analytically. While this simple lineariza-
tion maintains a first-order accuracy, it can introduce large errors in the true posterior
mean and covariance of the transformed random variable which may lead to sub-optimal
performance and sometimes to divergence of the filter. The Particle Filter uses Monte-
Carlo simulations of the relevant distributions to get estimates of moments. In contrast,
the Uncented Kalman Filter adresses the approximation issues of the Extended Kalman
filter and the computational issues of the Particle Filter. It represents the distribution of

* T E*T

T e . : .
1 & +1) conditional on , by a minimal set of carefully chosen points. This

(o7 u
reduces the computational burden but maintain second-order accuracy. Details on the
Unscented Kalman Filter are provided in appendix 4.8.4.

The next step is to use current returns to update estimate (4.39) of the state. In the
Kalman filter, a linear update rule is specified, where the weights are chosen to minimize

the mean squared error of the estimate. This rule is given by:

O (|41 = Orpp)p + K ("t+1 —"t+1|t) (4.44)
T
Pt‘f?ltﬂ :Ptcic;)h — K1 t4r-1|th+1 : (4.45)
. -1
Keor =B (B) (4.46)

Once the Kalman recursion outlined above delivers the estimates |, and Pt‘|‘t’“’ for
the whole sample, the statistics Gy, Gy, and G, can be computed using approximations
of moments of a nonlinear function of a Gaussian random variable. Without loss of

generality, appendix 4.8.5 derives corresponding formulas in the univariate case.

4.4 Asset Pricing with Stochastic Skewness

In the context of asset and derivative pricing, one would like to characterize a prob-
ability measure under which the expected gross return on any risky security equals the

gross return on a safe security. It is sufficient to define a change of measure Z, ;| from
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historical to risk-neutral, or equivalently to specify a stochastic discount factor M; 4
from which investors value financial payoffs (see Gourieroux and Monfort (2006) and
Christoffersen et al. (2009)). The change of measure Z; ;.| should satisfy the following

conditions:

E[Ziyw1 | &) =1 and E* [exp (rj+1) | i) = E [Zysp1exp (rjer1) | ] = exp (rpis1),
(4.47)

where r; ;41 and rs,4 refer to the j* risky return and the risk-free rate from date 7 to
date ¢ + 1, respectively, and where E* |- | ;] = E[Z, ;41 (*) | I;] denotes the risk-neutral
expectation associated with the density Z; ;1.

Given the historical return dynamics (4.14), we would like to find a change of mea-
sure such that risk-neutral return dynamics is also an affine SVS model similar to (4.14).

Exploiting the affine property, we assume that the change of measure Z; ;| is given by:
Zy 111 = €Xp (—A (k,m)—B(K,m)" G2+ K rel+ RTO}ZH) : (4.48)

which, by definition and specification, satisfies £ [Z,,,H | ] = 1. In appendix 4.8.2 we
show that the necessary and sufficient condition (on the change of measure) such that
the SVS model is preserved under both measures is f(x, ) = 0 where f(+) is defined in

equations 4.18 and 4.19. It implies that
Z;’;+1 = exp (—KT& + KT"}+1 + ﬂ'TO-tz_'_l) and £ I:Z;’;_;_l | <0.t2+1711>] = 1. (4.49)

In particular, an implication of the second equation is that the moment generating func-

tion of o2

1> conditional to /;, does not change from the physical to the risk-neutral mea-

sure. Thus, the factors still follow the same multivariate autoregressive gamma under

the risk-neutral dynamics. Appendix 4.8.2 finally shows that the risk-neutral dynamics
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of returns is given by:

K
rjt+l—rf a q_[ _[ th q 1t+2 _[lqjl ll+l+2¢lcl’+1u_/ll+l
i=1 i=1 i=1

(4.50)

-1
with o, | (021, 11) ~ SIG (n}‘i (Yj‘ic,-,,ﬂ) ) and where q29* denotes the K x 1

vector with components g ,9* The risk-neutral parameters are defined by:

g=(1-(2/3)n;x;) ™ and 65 =B+ v (L)) v

Bji= (Bji+ ¥ (xj3m)i) 712:) /‘Ifia ";i:”ji/(l_ (2/3) njix;) and Vi = 4iVji-

The return dynamics (4.15) and the no-arbitrage restrictions (4.47) lead to the character-

ization of the asset’s risk premium, which in our model is given by:

Ho,j—ryf=—a (‘159}‘) +(B;—b (‘159;))T“' (4.51)

In most empirical studies, ingredients of the return dynamics that are important for
explaining actual time series propertiés of returns, and which turn out to be relevant
also for explaining characteristics of observed option prices (for example leverage ef-
fects and conditional skewness), are studied separately from features that relate to actual
cross-sectional properties of asset returns. We argue that time series and cross-sectional
properties of returns result from the same features, and that these features should not
be modeled independently.® We see for example that, if the factors are heteroscedastic
and idiosyncratic shocks are heteroscedastic and asymmetric, as in our model, lever-
age effects are determined by asset’s factor loadings (j3;), and conditional skewness is
determined by both factor loadings and idiosyncratic skewness (7). In addition, no-

arbitrage equilibrium restrictions imply that asset’s risk premium depends both on factor

6. A similar argument can be found in Santos and Veronezi (2008). The authors argue that the eq-
uity premium puzzle and the value premium puzzle cannot be tackled independently, as any economic
mechanism proposed to address one of them immediately has general equilibrium implications for the
other.
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loadings, idiosyncratic volatility (y;) and idiosyncratic skewness. Our model offers a
tractable framework to address simultaneously time series and cross-sectional properties
of asset returns as well as of asset’s option prices.

When factors are independent (¢;; = 0 for i # j), it is convenient to write the risk-

neutral return dynamics as:

K K
rigpr=rr—a( be or)o, +Zﬂ1: Oitrt+ X, O tligr s (4.52)
i=1
K
Fjg+1 = rf_a* (9;*) - Zbr (9** Z i O ll-l—l + Zy*l ll+1ujll+1’ 2 <] <N,
i=1

i=1

where o —ql,O',,Wlthqll (1_(2/3)771!'(1) Y2 ultt—|—1|< t+1’1’> SIG(T'II 1*I+ll)

~1
and %,y | (0721, 4) ~ SIG (ﬂf; (ﬁi*d,-f,ﬂ)- ) The vector process o, is a multi-
variate autoregressive gamma under the risk-neutral measure, with parameters of the i

factor, 0',, , given by:
o =q3,045, Vi =v; and ¢ = ¢;.
Parameters in the first risk-neutral return equation (j = 1) are given by:

Bl = (Bu+ v (x1;n1)) /q%iv nfi=nn/.(1—(2/3)nm<1) and 67; = B{;+y(1;n7;).

The functions a* (-) and b* (-) are analogue to the functions a(-) and b(-) in (4.17),
and similarly characterize the cumulant generating function of the multivariate autore-
gressive gamma process o;"2 under the risk-neutral dynamics. Parameters in the second

risk-neutral return equation (2 < j < N) are given by:

ﬂ;i* = jlqjl/qll ’ r’jl - r’j’/(l - (2 /3) T’j,’K']) and e}(i* = j)'ki*+ W(l’nj*l) ﬁi*z

Because 6; is related to ) and ny, and 9;* is related to B7*, Y;* and n} for2 <j<N,

the risk-neutral dynamics of every asset has K parameters less compared to its historical
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dynamics. This is analogous to the IGGARCH risk-neutral model of CHJ (which is a
single-factor model) where the parameter governing conditional skewness is a function
of other parameters. This result is in fact more general, and, as we show in this arti-
cle, for a K factor model, the risk-neutral dynamics of an individual asset return has K
independent parameters less compared to the physical model.

In the single return case (N = 1), the joint dynamics of returns and factors under the

risk-neutral distribution is characterized by the following cumulant generating function:
Wi (x,y) =InE” [exp (xrm +yTGt2+1) | I:] = 4" (x,y) +B* (x,y) o}

where the functions 4* (-,-) and B* (-,-) are analogue to the functions 4 (-,-) and B(,-)
in (4.18) and (4.19) respectively. Let ¥}7, ; (x) denote the conditional log moment gen-
T

erating function of aggregate returns Y, r,4;, under the risk-neutral measure. One has
i=1

E*

exp (x i r,+i) | l,} = exp (‘P:;H (x)) =exp (A;‘ (x;T)+ B; (x; T)T Gtz) ,
i=
where the sequence of functions 4; (x;7) and B} (x; T) satisfy _the following recursion:
A (x;T) =4 (x5;T— 1)+ A" (x,B; (x;T—1)) and B} (x;7) = B* (x,B; (x;T— 1)),
with 4% (x; 1) = 4% (x,0) and B? (x;1) = B* (x,0).

The price at date ¢ of a european call option with strike price X and maturity 7, is

given by

X 1 X 1 X
C (T, o, —S—t) =exp(—rT) [S, (§exp (r1)+Cy (T,O’,Z,E)) -X (5 +C (T, 0',2,5))} ,
! !
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where

X te ] X

Ci (T,O',z, 5) = /0 a[m (exp ( *(14iu;T) +B* (1 +iw;7) | 67 — iuln (5))) du.
X te ]

G, (T,O',z, Ex) = /0 Elm [exp (A* (iu;T) + B* (iu;T) ' 67 — juln (g))} du.

4.5 Estimation and Comparison of Affine SVS, SV and GARCH Models Using
Equity and Index Daily Returns

4.5.1 Estimation Methodology and Data

Return unconditional moments can be computed in closed-form in a discrete-time
affine multivariate latent factor model, as shown in Feunou and Tédongap (2008). All
these moments are functions of the parameter vector 6 that governs both returns and
factors dynamics. We can then choose M informative moments to perform GMM es-
timation of the model. Assuming a single return, we choose M moments of the form
Wy (n,m) = E [r;'r;';j] such that 1 < j<J,0<n<Q and 0 <m< Q—n, that
means M among Q+JQ (0 — 1) /2 moments of order less than or equal to Q. Since
moments of observed returns implied by a given model can directly be compared to their
sample equivalent, our estimation setup is more likely to evaluate the performance of
a given model in replicating well-known stylized facts like autocorrelation of squared
returns, absence of autocorrelation of returns, leverage effect which can be captured
via autocoskewness, unconditional fat-tailedness and asymmetries of returns. Model
performance in replicating these empirical facts is assessed by including corresponding
momenfs.

Letg (0) = [rf"' rry i — B (mi,mi) - denote the M x 1 vector of retained mo-

<i<M
ments. We have E [g;(0)] = 0 and we define the sample counterpart of this moment
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condition as follows:
E\[rflrt”-li-ljl} = tnjy (m1,m1)
g(0) = ' ) (4.53)
E (17, | = b (st mag)

Given the M x M weighting matrix W, the GMM estimator 8 of the parameter vector is
given by:

o~ o~

0 =argm9in§(9)TW§(9). (4.54)

Interestingly, the variance-covariance matrix of g, () does not depend on the vector
of parameter 6. This is an advantage since with a nonparametric empirical variance-
covariance matrix of moment conditions, the optimal GMM procedure is readily imple-
mented in one step. In addition, for two different models estimated via the same moment
conditions and weighting matrix, the minimum value of the GMM objective function it-
self is a criterion for comparison of alternative models.

In some cases, this GMM procedure also has a huge numerical advantage compared
to the maximum likelihood estimation even when the likelihood function can be derived.
Maximum likelihood estimation becomes difficult to perform numerically especially
when the support of the likelihood function is parameter-dependent. This is the case
in the IG-GARCH model of Christoffersen, Heston and Jacobs (2006) which can also
be estimated through this GMM method. On the other hand, the maximum likelihood
estimation of semi-affine latent variable models of Bates (2006) and the quasi-maximum
likelihood estimation based on the Kalman recursion have the limitation that critical un-
conditional higher moments (skewness and kurtosis) of returns can be poorly estimated
due to the second order approximation of the distribution of the latent variable condi-
tional on observable returns. Moreover, in single-stage estimation and filtering methods
like the Unscented Kalman Filter and the Bates (2006)’s algortihm, one can argue that

approximations affect both parameter and state estimations. Instead, our GMM pro-
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cedure matches critical higher moments and requires no approximation for parameter
estimation. Provided with the GMM estimates of model parameters, Bates (2006)’s pro-
cedure or any other filtering procedure like the Unscented Kalman Filter can be followed
for the state estimation. In this sense, approximations required by these techniques will
only affect state estimation.

We estimate the single-factor SVS, the HN-S volatility and the IG GARCH models
using daily returns on S&P500 and CRSP indexes, as well as daily returns on the six
Fama and French size and book-to-market sorted portfolios. As explained in Fama and
French (1993), the six portfolios are the outcome of the intersection of two independent
sorts. Stocks are sorted into two size groups— S (small; that is, market capitalization
below the NYSE median) and B (big; that is, market capitalization above the NYSE
median)—and into three book-to-market groups—G (growth; that is, in the bottom 30
percent of the NYSE book-to-market), N (neutral; that is, in the middle 40 percent of
the NYSE book-to-market) and V (value; that is, in the top 30 percent of the NYSE
book-to-market). The six portfolios are commonly labelled SG, SN, SV, BG, BN and
BV. Table 4.1 summarizes basic descriptive statistics of these returns. It shows the well-
documented facts that asset returns are negatively skewed and fat-tailed. Small stocks
are generally more negatively skewed than big stocks and a growth portfolio has lower
average returns and higher negative skewness compared to a value portfolio of the same

size.

4.5.2 Parameter Estimation

To perform the GMM procedure for each series, we need to decide which moments

to match. To achieve this task, we refer to the relative importance of return moments.

(e[},

in order to match the critical first moments of asset returns. Indeed, we do not estimate

We consider the moments

the unconditional mean of returns tp, which we set to its sample counterpart. Figure

4.2 displays autocorrelations of squared returns which are significant up to the twentieth
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lag. Given the positive and significant autocorrelation of squared returns, we consider

the moments
2.2
{E [r, rH-j] }jZI ’
in order to match these autocorrelations. For this set, we choose up to five leads for all

stocks under consideration. To assess the ability of our SVS models to match significant

autocoskewness and autocokurtosis, we add the following moments

{E [r,r,2+j] E [r,r,'”ﬂ] }121 .

The negative and significant cross-correlation between returns and squared returns for
various leads as shown in Panel A of Figure 4.3 is an empirical fact characterizing the
well-known leverage effect. We choose up to five leads for small stocks and up to three
leads for big stocks and market indexes. As shown in Panel B of Figure 4.3, similar
cross-correlations for various lags are not significant. The cross-correlation between
returns and cube returns is positive and significant, at least for the first three leads as
shown in Panel A of Figure 4.4, especially for small stocks. Panel B of Figure 4.4 shows
that similar cross-correlations for various lags are not significant.

The moments are weighted by the diagonal of the inverse of their covariance matrix:

W:Diag{ (@[g,])‘l}.

This matrix is nonparametric and puts more weight on moments with low variability.
Estimation results for one-factor SVS models are shown in Table 4.2 for small stocks, in
Table 4.3 for big stocks and in Table 4.4 for market indexes, both for contemporaneous |
asymmetry, contemporaneous normality, as well as alternative SV and GARCH models.
For single factor SVS models, the parameter A; is not estimated. The reason is that, due
to the high expected persistence of the factor, it would be difficult in the return equation
(4.14) to identify A; and B, separétely. To avoid this identification problem, we set
A =0.

We first focus on the first panel of Tables 4.2, 4.3 and 4.4, for estimation results in
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the context of contemporaneous asymmetry of returns, that is, 7; is estimated. Start-
ing with the measure equation (4.14), estimation output confirms that projecting returns
onto the latent factor results in a significant and negative coefficient f3;, then corroborat-
ing the story that an increase in contemporaneous volatility lowers asset payoffs. The
coefficient 7); in the return equation is significant and positive and this results is robust
across all stocks under consideration. This suggests that the distribution of daily returns
conditional upon contemporaneous volatility is asymmetric. This result contrasts with
the findings of Forsberg and Bollerslev (2002) that daily returns are normal conditional
upon current realized volatility. Coming to the state dynamics, estimation results show
that the factor governing daily return dynamics is highly persistent, with significant esti-
mates of the coefficient of persistence, 0.963 and 0.948 for S&P500 and CRSP indexes
respectively. This also means that daily return volatility and conditional asymmetry as
perceived by agents are highly persistent as well, since they are linear in the factor. All
estimates for the single factor SVS with contemporaneous asymmetry are significant.
In addition, the J-test of over-identifying restrictions does not reject the model, but on
small value stocks.

- We now assess how important is contemporaneous asymmetry for asset return mod-
eling. The second panel of Tables 4.2, 4.3 and 4.4 shows estimation results in the con-
text of contemporaneous normality of returns, that is, with the constraint 17; = 0. As for
cdntemporaneous asymmetry, all parameters are significantly estimated and, in compar-
ison, there is a decrease in the magnitude of the leverage parameter and an increase in
the persistence of the factors— estimate of the persistence even becomes unrealistically
greater or equal to 1 for some assets under consideration as we do not explicitly impose
a restriction on this parameter in our estimation. For estimation results with a realistic
persistence of factor, models are or tend. to be rejected in the data. The maximum p-value
for the J-test of over-identifying restrictions is 0.05. The sharp decrease in GMM cri-
terion from contemporaneous normality to contemporaneous asymmetry also suggests
that tests favor the latter compared to the former. The GMM criterion falls from 94.72
to 34.12 for CRSP index, and from 101.87 to 24.06 for S&P500 index.

The third panel of Tables 4.2, 4.3 and 4.4 shows estimation results for the HN-S
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volatility specification discussed in Section 4.2.1, and the fourth panel of Table 4.4
shows estimation results for the [G GARCH specification also discussed in Section 4.2.1.
For big stocks and market indexes, HN-S volatility and IG GARCH specifications are
comparable to the single factor SVS with contemporaneous asymmetry. Notice that,
cokurtosis moments are not significant for these stocks and therefore not included for
the GMM estimation. Instead, cokurtosis moments are significant for small stocks and,
when included for the GMM estimation, results show that the single factor SVS model
is preferred to the HN-S volatility specification.

For small stocks, Table 4.6 compares model unconditional moments to their sample
counterparts across different models. Tables 4.7 and 4.8 show similar comparisons for
big stocks and market indexes. Tables show ratios of model unconditional moments to
their sample counterparts. The closer to one is the ratio, the better the model matches
the moment. Mean, variance and kurtosis are perfectly matched by all models and this
is robust across all stocks. It is also the case for autocorrelations of squared returns. A
straightforward remark is how accurate the model with 17; # 0 matches selected moments
better than the model with 1 = 0. In particular, Table 4.6 shows that skewness (moment
3) is not well matched by the rhodel with contemporaneous ﬁonnality, and, as shown
in Tables 4.7 and 4.8, this matching is the worst when autocokurtosis is not significant.
Contemporaneous normality matches autocoskewness better at long horizons (j > 2)
than at short horizons (j < 2), while it is the contrary for contemporaneous asymmetry.

Finally, as we mentioned previously, the choice of the moments used in the GMM
procedure is crucial when intended to reproduce important empirical facts. While the
cross-correlation between returns and cubed returns is in general not significant for big
stocks and market indexes, these moments are not matched by the GMM estimates when
selected for estimation, except for the first lead where it appears weakly significant for
some of these stocks. However, for small stocks, this moment is significant empirically
as shown in Panel A of Figure 4.4 for the three first leads, and Table 4.6 shows that the
GMM estimates reproduce the moments as well. Next, we filter the latent factors using

the GMM estimates of parameters.
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4.5.3 State Estimation

We use the Unscented Kalman Filter algorithm with our GMM estimates to filter
the latent factor 0'12, that we use to compute GARCH counterparts of volatility and
conditional skewness, i.e hS and s°. Figure 4.5 displays the time series of GARCH
counterparts of volatility and conditional skewness for the CRSP and the S&P500 in-
dexes, for contemporaneous asymmetry (1; # 0) as well as for contemporaneous nor-
mality (1, = 0). Asset returns in our sample as plotted in Figure 4.1, are characterized
by moderately high volatility at the beginning of the sample (1990-1992), followed by
low volatility (1993-1996), then high volatility (1997-2003) and low or moderately high
volatility at the end of the sample (2004-2005). This volatility pattern is well-matched
by the volatility time series plotted in the first and the second rows of Figure 4.5. Also
notice the slightly difference between volatility time series in different columns of the
figure, due to the effect of contemporaneous asymmetry. Volatility is more persistent for
contemporaneous normality.

The third and the fourth rows of the figure show the pattern of the GARCH coun-
terpart of conditional skewness. Overall results are striking. As shown in the figure,
conditional skewness is negative for contemporaneous normality, and this is consistent
with the IG-GARCH model of 'Christoﬁ”ersen, Heston and Jacobs (2006). We also re-
call that critical unconditional third order moments of returns, skewness and leverage
effects, are not well-matched by GMM estimates under contemporaneous normality. In
contrast, if contemporaneous asymmetry is allowed, we find that GMM estimates match
unconditional skewness and leverage effects very well and, in this case, Figure 4.5 shows
that conditional skewness is positive, and its mean has a larger magnitude compared to
the contemporaneous normality case. Figure 4.6 confirms that these results hold for

individual portfolios as well.
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4.6 Estimation and Comparison of Affine SVS, SV and GARCH Models Using

Index Option Prices

We conduct our empirical analysis using 9 years of data on S&P500 index call op-
tions. We use option data for Wednesday only in the the period from 1996 to 2004. If
Wednesday is a holiday, we use the next trading day. Using only Wednesday data allows
us to study a long time series, which is useful considering the highly persistent factors.
Besides, using Wednesday is common practice in the literature to limit the impact of
holidays and day-of-the week effects (see Heston and Nandi (2000), Christoffersen and
Jacobs (2004, 2006)).

Table 4.9 presents the number of contracts used by moneyness (Panel (a)) and ma-
turity (Panel (b)), and provides a cross-tabulation across moneyness and maturity (Panel
(c)). From panel (a), we can observe a skewed Black-Scholes IV curve which is mate-
rialized by a high in-the-money call option implied volatility, compared to out-of-the-
money. This suggests a necessity to model risk-neutral skewness in a flexible way. This
pattern differs substantially across maturity groups. Short maturity options display an
asymmetric smile pattern with high deep out-of-the-money implied volatility. This pat-
tern reverses gradually when maturity increases to finally yield a smirked curve with .
high deep in-the-money implied volatilities.

Implied volatility show little variation across maturities, but a variable pattern across
moneyness classes. For deep out-of-the-money call, implied volatility decreases with
maturity, while it shows a smile-shape for out-of-the-money. For in-the-money, implied
volatility increases with maturity while it shows an asymmetric smile pattern for deep
in-the-money. Later, we evaluate empirically the ability of different models to replicate
these observed patterns. Smirked implied volatility patterns for short maturities suggest a
skewed one-step ahead conditional return distribution, while the reversion of this pattern
and its pérsistence for longer maturities suggest more than one factor in risk-neutral con-
ditional return distribution. Conditional skewness controls short-term properties while
multiple factors control the long-term.

In this section, we estimate risk-neutral versions of the following models: single



238

factor SVS both with contemporaneous asymmetry (SVS1f) and contemporaneous nor-
mality (SVS1f, n = 0), two-factor SVS with contemporaneous asymmetry (SVS2f), HN
GARCH and IG GARCH. One challenge facing with unobservable factors is the joint
estimation of risk-neutral parameters and latent factors. Several methods have been used
in the literature and can be divided into two categories. The first approach considers
latent factors as parameters (Bakshi, Cao and Chen (1997), Bates (2000) Huang and Wu
(2004) and Christoffersen Heston and Jacobs (2007)), and the second approach filters
latent factors using time series of underlying returns in a Bayesian framework (see Jones
(2003) and Eraker (2004)). |

4.6.1 Estimation Methodology

We follow the first approach here described. Without loss of generality we describe
the method for an SVS model, as the same approach is applied to others. Consider a sam-
‘ple of T Wednesdays of option data (T = 463 corresponds to the number of Wednesdays
in our sample). Given starting values for the structural parameter vector 8* and the vec-
tor 0,2 of latent factors under the risk-neutral model, the iterative procedure proceeds as
follows:
Step 1: For a given set of structural parameters, 0, solve T sums of squared pricing

errors optimization problems of the form:

N,
&2 =argmin Y, (Cu —Co (6%,6:2))°, 1=1,2,..,T, (4.55)
n=1
where C,, is the observed price of contract » on day ¢ and C, (9*, 0',*2) is the correspond-
ing model price. N, is the number of contracts available on day ¢.
Step 2: For a given estimated factor 6,2 obtained from Step 1, solve one aggregate sum
of squared pricing errors optimization problem of the form :

T N
6 =argmin ¥ Y (Cu—Cn (67%,67%))". (4.56)

t=1n=1

The procedure iterates between Step 1 and Step 2 until no further significant decreases
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in the overall objective function in Step 2 are obtained.

4.6.2 Risk-Neutral Volatility and Conditional Skewness

Table 4.10 shows parameter estimates of risk-neutral models. As shown in the table,
all models deliver persistent factors. Even for the two-factor SVS model, the second
factor is still very persistent. For the two-factor model, estimates of the two parame;
ters driving contempora’neoﬁs asymmetry of returns (1] and 7)7) are negative, but lower
in absolute value, compared to the corresponding parameter in the single-factor SVS
model. This negative contemporaneous asymmetry contrasts with the positive contem-
poraneous asymmetry found when estimating the single-factor SVS using return data.
Because the conditional risk neutral distribution is highly negatively skewed, a negative
contemporaneous asymmetry is needed. Also in the two-factor risk-neutral SVS, the fac-
tor associated with the lowest'(in absolute value) negative contemporaneous skewness is
the most persistent.

Figure 4.7 shows annualized time series of risk-neutral volatility and conditional
skewness for all models. The figure shows high co-movements of volatility and skewness
across different risk-neutral models. Meanwhile, the level of volatility increases with the
flexibility in conditional skewness modeling. The two-factor SVS model generates the
highest level of volatility, then follows the SVSIF, the IG GARCH, the HN GARCH and
finally the SVSIF with 1 = 0. The risk-neutral one-day ahead conditional skewness is
the highest with the IG GARCH, while still comparable to the SVS1F, and the lowest in
the SVS1F with 1 = 0. By construction, it is zero in the HN GARCH model. Conditional
skewness in the IG GARCH increases (in absolute value) as volatility lowers. Relaxing

this link as in other specifications reduces the level of conditional skewness.

4.6.3 Model Diagnostics

For all models, Table 4.11 shows the relative root mean squared error (RRMSE), that
is the root mean squared error (RMSE) divided by the sample mean of call price, across

different moneyness and maturity classes. As expected, the SVS2F model has the best
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in-sample fit in every moneyness class as well as every maturity class. It provides more
flexibility than other models as it has a superior number of parameters/factors, twice the
number of parameters/factors in other specifications. Using all available option data,
the RRMSE for the SVS2F is 5.8%, followed by 7.8% for the SVSIF, 8.5% for the IG
GARCH, 9.2% for the HN GARCH and finally 10.3% for the SVS1F with 1 = 0. In this
order, we argue that flexibility in conditional asymmetries modeling also reduces option
pricing errors. For short it should be noted that, even if the one-day ahead conditional
skewness is zero in the HN GARCH model, it is not the case for the multi-day ahead
conditional skewness, due to the leverage effect. A negative one-day ahead conditional
skewness reduces pricing errors for short-term option contracts. This intuition is con-
firmed in CHJ (2006), where the authors find an improvement of the IG GARCH over
the HN GARCH on short-maturity options. Our results shed light once moré on this fact,
and we argue that flexibility in one-day ahead conditional skewness modeling decreases
the RRMSE for short maturities. As shown in Panel (b) of Table 4.11, for maturities
less than one month, the best performance measured by the RRMSE is attributable to
the SVS2F (6.2%), then SVS1F models (10.6% and 10.5%), the IG GARCH (11.6%)
and the HN model (11.8%). The two-factor model has the best performance along all
dimensions as also shown in Panel (a) 6f Table 4.11. ‘

We summarize the model relative bias (the bias divided by the average price) in
Table 4.12. Although the bias is generally low for all models under consideration, for
maturities less than one month, it is the highest for the IG GARCH, which is comparable
to that of the SVS1F, n = 0, and more than twice the bias for the S‘VSIF. The HN
GARCH does better among single factor models for these maturities, and is comparable
to the SVS2F. For deep in-the-money call options, the SVS1F bias the least, followed by
the IG GARCH, then the SVS2F, the HN GARCH and the SVSI1F, n =0.

We finally represent, the obsefved and model’s Black-Scholes implied volatilities
along different dimensions. We retain our analysis to in-the-money call options and
short-maturity contracts. In Figure 4.8 we fix the maturity class and represent implied
volatility as function of moneyness. Using all available option data, the first panel of

Figure 4.8 shows that all SVS models outperform HN and IG GARCH models in fit-
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ting deep in-the-money implied volatility, and have comparable performances for in-
the-money implied volatility. For same options but maturities less than one month, the
SVSIF and the HN GARCH fits perfectly in-the-money are outperform the IG GARCH
deep in-the-money. For maturities between one and two months, the SVSIF, 11 = 0 per-
fectly fits deep in-the-money, while all SVS models outperform GARCH models and
have comparable fits in-the-money. The SVS1F maintains its lead over GARCH models
for maturities between two and three months, both in-the-money and deep in-the-money.
In Figure 4.9 we fix moneyness class and represent implied volatility as function
of maturity. For short-maturity contracts as shown in the first panel of the figure, the
SVS2F outperforms all models at every maturity. The SVSIF and the HN GARCH on
one hand, and the SVS1F, 11 = 0 and the IG GARCH on the other hand, have comparable
fits for maturities less than one month. Coming to in-the-money call options in the
fifth panel, the SVS1F and the HN GARCH have comparable fits of the IV curve for
maturities less than three months and outperform the IG GARCH. For deep in-the-money
call options of less than three months of maturity, the SVS1F and the SVS2F have the
lead over GARCH models in fitting observed Black-Scholes implied volatilities. Finally,
these implied volatility curves confirm main analyses and model rankings resulting from
RRMSE. The SVSIF, 11 = 0 even seems to do better in terms of implied volatility fit.
Two main findings can summarize this section. First we confirm CHJ (2006)’s result,
which is the one-step ahead conditional skewness is particularly useful to price short ma-
turities options. It also relaxes the link between the multi-step ahead skewness and the
asymmetry in the volatility’s motion imposed by the conditional normal GARCH or SV’s
models. Second it is important to include more than one factor in the returns’ dynamic,
this allows to disentangle the one-step ahead conditional volatility and skewness, and it
helps to match the whole term structure of the risk neutral conditional volatility, skew-
ness and kurtosis (the two factor SVS model outperforms all the others in the maturity

dimension).
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4.7 Conclusion and Future Work

This chapter presents a new approach for modeling conditional skewness in a discrete-
time affine multivariate latent factor model with volatility. The model explicitly allows
returns to be asymmetric conditional on current factors and past information. This con-
temporaneous asymmetry is shown to be particularly important for the model to fit both
return and option data. An empirical investigation suggests that the flexibility that the
model offers for conditional skewness, increases its option pricing performance relative
to existing affine GARCH and SV models. In particular, SVS models with contempo-
raneous asymmetry outperform existing affine GARCH and SV models especially, for
in-the-money calls and short-maturity contracts. ) |

Although the model is flexible enough to accommodate both multiple returns and
multiple factors, our analysis focuses on the single return case. In a future research, it
would be interesting to study the implications of the model for a parsimonious multiple

returns setting as well.
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4.8 Appendix

4.8.1 Cumulant Generating Functions of Affine SV and GARCH Maodels

The functions 4 and B characterizing the cumulant-generating functions for GARCH and SV

models in Example 1 are given by:

1
A(0y) = (= Anttp) 2+ (1= @n) n — 0) y — 5 In (1 — 204y) (4.57)
l any 2
B =A — 0By + ox° —pr 4.58
(%) = Mnx+ (9 — 04fi) y + 5 T 20y PP (4.58)
for the HN-S specification, by
. 1
A(x,y) = (Hr = Anttn) X+ (1= 0n) bay + 5 03 (4.59)
. .
B(x,y) = Apx+ dny + 57, (4.60)
for the autoregressive Gaussian specification, by
A(x,y) = (tr — Anttn) x + (1 — On) Ly (4.61)
1
B(x.y) = hwx+ 0wy + 5 (" + 20400 + 045%) (4.62)
for the square-root specification and finally, by
1, . '
A(x,y) = ox+way = In (1~ 2aM;ty) (4.63)
L=/ (1=2am}y) (1 = 2m4x = 219)
B(x,y) = Apx + by + > , (4.64)
h

for the IG GARCH specification.

4.8.2 Change of Measure, Risk-Neutral Dynamics of Returns and Optibn Pricing

For the multifactor SVS model, we assume a change of measure Z; ;.| given by:

Ziss1 = exp (—A (k,m)—B(x, 1) G2+ K ry1 + 17 G2, 1) : (4.65)
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and which, by definition and specification, satisfies £ [Z; ;1 | ;] = 1. We are interested in deriv-
ing return dynamics under the risk-neutral measure. We first look at expected returns conditional

to <0,2+l,1,>. For the return r; we show that:

E*[rjust | (021, 0)] = E* [Zueniriun | {031, 1)]

X
= |8+ 2 (Bi+ ¥ (1) ) 0?,,“] exp (—¥7 (f (k,m) + £ (x,m) GF1 ), (4.66)
i=1

where ' (+;) is the first derivative of y (-;-) with respect to its first argument.

Expected returns are linear on factors under the physical measure. They will also be linear on
factors under the risk-neutral measure if and only if f (x, w) = 0. We assume that the parameters
k and 7 in our change of measure specification satisfy this condition. Also notice that this

condition implies the followings:
Zy 141 = exp (-xTS, +xTry+ nTo,zH) and E [Z 41 | (0} 1)] = 1. (4.67)

In particular, an implication of the second equation is that the moment generating function of
G,ZH, conditional to /,, does not change from the physical to the risk-neutral measure. Thus, the
factors still follow a multivariate autoregressive gamma under the risk-neutral measure. Return

innovations under the risk-neutral measure, and conditional to <U¢2+1 ,1,), are given by:

K
Fja+l —E* [P‘j,t+l ’ <U:2+111t>} = Z)’ji(fi,IH (uji,t+l - ',U’ (Kj;nﬁ) )’,~i0;,,+|) . (4.68)

=
Finding the distribution of the tenﬁs YjiOig+1 (Wjigr1 — W (K551} ¥jiGis+1) will achieve the re-
turn dynamics under the risk-neutral measure. This distribution can be detected through their

moment generating function. We show that:

E* [exp (x;7jiGis41 (wjigr1 — W (K515} ¥jiGig1 ) G 1]
= exp ((w(xj+ x55m50) — w(xsnp) —x v (x:15)) j,-U,-Z,,H)
= exp (v (x;315) 45,7500 41) (4.69)
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where we have also shown that
W (xj+ Km0 — W (K5 15) — 5w (k55150 = g5 (xj3m5) (4.70)
with
2 -3/2 2 -1
q?i: (l—gnj;'(j) and n;i:nji (1—5771‘1"9) . (471) )

Equation (4.69) means that the term ¥;;0;,4| (u g+l — W (K55 Mji) ﬁici,[+]) can also be written

YiGit (Wjigr1 — W (Kj3M5) ¥jiOiga1) = YiiGis+1%i 41 - (4.72)
- where
* 2 x —1
Vi =4q;iYi and uj, | <Gr+h]l> ~ SIG (nji (ijici,wl) ) . (4.73)

The return r; should also satisfies the no-arbitrage condition:
E*lexp (rj 1) | L] = exp(rrs+1) (4.74)
wheré rrs+1 1S the risk-free rate. We show that:
E*[exp(rjur1) | 1] = exp(8; +¥7 (f (¢j + X, 7)) = exp (8 +¥7 (6))) (4.75)

where ¢; is the N x | vector with all components equal to zero but the j# component equals one,

and 8; = f(e; + x, ) is the K x 1 vector which components are given by:
8)i = Bji+ (w(1+ K551, —w (K::M53)) 1 (4.76)
We further show that

61 = 43,0}; where 6, = B+ v (1in};) v and B = (B + v/ (ki) 13) /5. (477)
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Assuming that the risk-free rate is constant and equal to ry, equation (4.75) implies
Aj=—b(0,) and po;=rr+(A;+B8;) n—a(8)). (4.78)

Finally, the dynamics of returns under the risk-neutral measure are given by:

K K K
Vjgel =rf—a (qf 6;) - 21 bi (qf 0;) o + 21 ﬁ;iqﬁioft+l + Z ViiCht+ 1 Wi g1 - (4.79)
j= i=

i=1

where ¢?

207 denotes the K x 1 vector with components ¢7;6;.

i

4.8.3 Second Order Log-normal Approximation of Positive Random Variables

As mentioned in section 4.3.4 we now provide more detail on the log-normal approximation
of the one factor version of our model. This approximation is required in order to implement
the Unscented Kalman Filter. The second order lognormal approximation of a positive random

variable X with mean L, and variance ¢? is given by:

2 2 2
~ My Hi + O

where €y is a standard normal random variable.

Given (4.80), the second order lognormal approximation of a standardized inverse Gaussian

random variable » with positive skewness s is given by:

9 249 3
= —_— 1 - - .
e (ln (s s2+9) - n( 9 )8) s *8D)

where € is a standard normal random variable.

Given (4.80), the second order lognormal approximation for the dynamics of a stationary
univariate autoregressive gamma process X;.; with mean [, variance o7 and persistence ¢, is

given by:

X,)? X)) +v(X '
Xy ~exp | In m(X;) + | LW Ex 41 (4.82)
m(X) :
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where

m(Xe) = (1 — ¢) e + X (4.83)
)20.2+ 2(1 _¢x)¢x0'x2

X

v(X)=(1- ¢ X (4.84)

and €y 4 is a 1.i.d. standard normal shock.

4.8.4 The Unscented Kalman Filter

As mentioned in section 4.3.4, we now provide more details on the Unscented Kalman Filter.
The Unscented Kalman Filter is essentially an approximation of a nonlinear transformation of
probability distribution coupled with the Kalman Filter. It has been introduced in the engineering
literature by Julier et al. (1995) and Jullier and Uhlmann (1996). (See also Wan and van der
Merwe (2001) for general introduction) and, to our knowledge, was first imported in Finance by
Leippold and Wu (2003). ' |

The Unscented Filter selects a set of sigma points in the distribution of (a),T,u*T

t+l’8*T)T

141
conditional on r;. This distribution is assumed Gaussian with mean

T
~ T =T T
X= (w[|[7u € )

and variance
Pw (0] Pwu P(D€

Lt

PXX — pue  puu  pue
Pew Psu Pee

-
Following Julier et al. (1995) we consider the 2n+ 1 sigma points y; = (a),T ul 8-T> with

associated weights W; defined by:

Xo=X» Wo=x/(n+x)

n=x+ (\/(n-i— K)PXX) . Wi=1/2(n+x) (4.85)

i

titn =1~ (VI F O PEZ) | Wi=1/2(n+x),

xT
t+1

xT

o . T . .
where 7 is the dimension of the vector ((o,T UL €L ,) , K 1s an appropriately chosen real num-
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ber and ( (n+x) PXX) is the ith column of the matrix (n+ k) PXX.

These sigma points are transformed through state and observation functions to obtain:

Oy =F (wi,t|nui) and Vi) =H(wi,t+1|n8i)

from which approximations of predicted means and covariances are computed as:

m=2mwi,t+l|t and m=_22’;Wi"i,t+1|t | (4.86)
= | =

:+1|: ZW( 10— a),+1|,)( Oppary = Bgr) | (4.87)
B7, = Z Wi (Tigre = Fonte) (Figwtp = Fia i) | ' (4.88)
:+1|: ZW( i1 — M)'(rw”,—rﬁ]\,,)T (4.89)

4.8.5 Approximated Moments of a Function of a Normal Random Variable

As mentioned in section 4.3.4, we choose to filter the distribution of @y = In(0}?) in order to
guaranty the positivity of o?. We nowdescribed in detail a procedure to recover the distribution
of g?. Consider a normal random variable X with mean y, and variance o?. Let Y = f(X),
where f is a twice differentiable real function. The variable Y admits the second order Taylor

approximation

= (1) 1 (k) (X = )+ 51 1) (X = 1, 490)

which implies that the mean of Y can be approximated by:

= E[¥] = /(1) + 5/ (1) 7. (491)
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It follows that:

Y=ty = £ (1) (K= ) + /" (1) [(X = e = 2] @92)
(Y =) = f (1) (X~ )+ 1 (1) /7 (1) [(X— )’ — a2 (X — /,Lx)}
S () [0 - )~ 202 (X - P+ o, “99)

(V=) = 1 (e (€= 1) + 3 (1S (1) [ (X = 1) = 02 (X = )]
+ %f (1) " (1) [(X — )’ =202 (X — ) +af (X— u,)}

+ %f” (1) [(X— 1)’ =362 (X — po)* + 302 (X — ) — oﬂ : (4.94)

The third and fifth central moments of X are zero whereas the fourth and sixth central moments
of X are respectively 367 and 155°. Based on that, taking expectations of (4.93) and (4.94) gives

the following approximations for the variance and the third moment of Y

o2 = Var[Y] = /' () 02 + % S (e o, (4.95)

E[(r =)’ =3/ ()" () 02 + 1" (1) oF. (4.96)
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Table 4.1: Summary Statistics of Daily Stocks Returns for the Period 1990-2005.
The entries of the table are summary statistics of daily stock returns. Means and standard devi-
ations are annualized values using 252 trading days per year, whereas skewness and kurtosis are
daily values. Return data span the period January 2, 1990 to December 30, 2005.

r Mean Std. Dev. Skewness Kurtosis
SG 6.11 19.12 -0.46 6.61
SN 13.84 13.45 -0.46 6.36
SV 15.45 12.50 -0.61 6.99
BG 10.05 17.24 -0.06 6.78
BN 11.30 14.34 -0.19 7.04
BV 10.88 14.09 -0.30 6.88
CRSP 10.10 15.54 -0.21 7.21

S&P500 9.17 16.09 -0.01 6.69




Table 4.2: Estimation Results on Small Stocks.
The entries of the table are GMM parameter cstimates of the single factor SVS, the HN-S volatility and the HN GARCH(1,1) modcls on small stocks.
To perform the GMM estimation for all the three models, we use the same sixteen moment conditions that are all significant for small stocks as depicted

14 5 3
in Figures 4.2, 4.3 and 4.4. The corresponding moments are {E [r,’] } o {E ['77'7’“] , E [r,r;’“] } - and {E [r,r,ﬂj] } g Return data are daily
=2 J= Jj=

and span the period from January 2, 1990 to December 30, 20035, for a total of 4036 observations. Standard errors (in parenthesis) are given below the

estimates.

HN-S Volatility

SVSIf, n #0 SVSiI,n=0
SG SN SV SG SN SV SG SN SV
B -24.25 -36.51 -52.77 B -20.47 -29.02 -40.62 A -14.12 -22.36 -33.68
(3.73) (7.01) (8.61) 3.3 (5.95) (6.95) (2.45) (6.36) (6.75)
m 5.25E-03  3.34E-03  3.79E-03 m : i 1.42E-04  7.16E-05  6.29E-05
(1.16E-03) (1.03E-03) (9.86E-04) (1.60E-05) (7.94E-06) (6.31E-06)
M 1.35E-04  6.82E-05 5.76E-05 m 1.38E-04  7.00E-05  6.00E-05 O 0.983 0.988 0.941
(1.43E-05) (7.12E-06) (5.37E-06) (1.50E-05) (7.48E-06) (5.71E-06) (0.029) (0.022) (0.027)
& 0.979 0.979 0.930 Iy ~1.0l6 1.019 0.979 ay, 2.46E-06 8.40E-07  3.69E-06
(0.027) (0.023) (0.025) (0.028) (0.024) (0.026) (3.87E-06) (1.59E-06) (1.68E-06)
Vo 1.42E-04  6.75E-05 5.54E-05 N 1.42E-04  6.83E-05  5.76E-05 Pri 0.607 0.587 0.324
(1.86E-05) (7.64E-06) (5.87E-06) (1.92E-05) (8.00E-06) (6.23E-06) (0.521) (0.546) (0.132)
By 476.36 767.80 333.12
Criterion 125.04 128.66 126.01 Cnteérion 168.00 171.50 183.80 (367.61) (729.89) (88.73)
J-Stat 17.77 15.50 2648 J-Stat 22.49 13.54 22.29 Criterion 142.46 154.57 162.02

p-value 0.06 0.11 0.00 p-valuc 0.02 0.26 0.02

J-Stat 22.58 13.59 25.04
p-valuc 0.01 0.14 0.00

>
-

9¢



Table 4.3: Estimation Results on Big Stocks.
The entries of the table arc GMM parameter cstimates of the single factor SVS and the HN-S volatility modecls on big stocks. To p;rtorm the GMM
estimation for all the threc models, we use the same eleven moment conditions that are all significant for big stocks and market indexes as depicted

374 3
in Figures 4.2, 4.3 and 4.4. The corresponding moments are {E [r,’} } ) { [r‘rfu]} 0 and {E [ r;ﬁ]} o Retumn data arc daily and span the
/7-

peniod from January 2, 1990 to December 30, 2005, for a total of 4036 observations. SLandard errors (In pdl’t.nthblb) are given below the cstunates.

SvSit,n#¢ SvSif,n=¢6 HN-S Volatility
BG BN BY BG BN BY BG BN BV
Bi -26.45 -21.95 -19.74 B -12.00 -13.26 -14.40 A -1.44 -5.38 -8.76
(5.37) 6.11) (5.98) (2.73) (4.66) (5.3 (2.96) (3.82) C(4.88)
n 8.83E-03 4.77E-03 2.97E-03 m I 1.18E-04 8.15E-05 7.83E-05
. (1.85E-03) (1.30E-03) (1.36E-03) (1.20E-05) (¥.73E-06) (8.80E-06)
Hi 1.09E-04 7.81E-05 7.61E-05 i I.15E-04  8.03E-05 1.75E-05 i ‘ 0.930 0.969 0.995
(1.04E-05) (8.26E-06) (8.12E-06) (1.14E-05) (8.54E-06) (8.54E-06) : (0.035) (0.036) (0.004)
(] 0.946 0.973 1.005 (0] 0.961 0.995 1.021 ay 5.24E-06 1.65E-06  4.05E-07
(0.035) (0.041) (0.026) (0.031) (0.040) (0.026) (3.52E-06) (2.07E-06) (3.51E-07)
N 1.12E-04  8.69E-05 8.48E-05 N 1.26E-04  8.90E-05 8.54E-05 Pri 0.662 0.620 1.000
(1.45E-05) (1.43E-05) (1.58E-05) (1.73E-05) (1.52E-05) (1.65E-05) (0.162) (0.423) (0.000)
B 42].08 765.96 1267.48
Criterion 33.12 16.43 10.45 Critcrion 117.18 50.95 30.03 (152.61) (513.86) (520.29)
J-Siat 893 6.55 3.33 J-Stat 18.72 12.36 7.34 Criterion 32.56 16.52 10.81

p-value 0.11 0.26 0.65 p-valuc 0.00 0.05 - 029

J-Stat 11.56 7.02 4.45
p-valuc 0.02 0.13 0.49

LST



Table 4.4: Estiination Results on Market Indexes.
The entrics of the table arc GMM paraincier estimates of the single factor SVS, the HN-S volatility and the IG GARCH models on market indexes.
To perform the GMM estimation for all the three models, we use the saine eleven moment conditions that are all significant for big stocks and market

T4 5 ; 3
indexes as depicted in Figures 4.2, 4.3 and 4.4, The corresponding moments arc {E [r,’]} o {E [rfr,z“]} ., and {E [r,rf+j]} - Retum data are
jo-2 s J

daily and span the period from January 2, 1990 10 December 30, 2005, for a total of 4036 observations. Standard errors (in parcnthesis) are given below

the estimates.

SVSH, n #0 SVSIL,n =0 HN-S Volatility IG GARCH

CRSP  S&P500 CRSP  S&P500 CRSP  S&P500 CRSP S&P3500

b -30.09 2529 B -17.19 1046 A, -5.29 035 A, 8.20E+02  9.74E+02

(6.44) (5.84) (3.76) (3.11) (3.03) (3.03) (9.29E+02)  (1.17E+03)

m 7.65E-03 ~ 7.76E-03 m Ha 9.58E-05  1.03E-04 -1.23E-03  -1.03E-03

(1.76E-03)  (1.64E-03) (1.04E-05)  (1.0SE-05) (1.41E-03)  (1.26E-03)

H 8.79E-05  9.67E-05  p, 9.28E-05  1.01E-04 ¢, 0.939 0945 5.24E-06  5.42E-06

(9.05E-06)  (9.72E-06) (9.81E-06) (1.02E-05) (0.049) (0.042) (4.22E-06)  (3.62E-06)

¢ 0.948 0963 ¢ 0.990 0968  a 3.83E-06  3.4BE-06 by -2.026 -2.533

(0.043) (0.039) (0.040)  (0.035) (4.05E-06) (3.59E-06) (2.471) (3.338)

V@ 9.43E-05  9.89E-05 V@ 1.02E-04  1.10E-04  p, 0.645 0712 4.44E-06  3.69E-06

(1.16E-05)  (1.34E-05) (1.38E-05)  (1.57E-05) (0.244) (0.315) (6.67E-06)  (5.53E-06)

By 495.16 52114 ay 1.50E+04  2.8KE+04

Criterion 34.12 2406  Critcrion 94.72 101.87 (304.31)  (303.81) (1.21E+05)  (1.26E+05)

J-Stat 8.24 719 J-Stat 13.49 17.50  Criterion 35.27 2396 Criterion 35.14 23.99
p-value 0.14 0.21 p-value 0.04 0.01

J-Stat 10.02 1246 J-Stat 10.19 11.27

p-value 0.04 0.01 p-value 10.04 0.02

S

8¢



Table 4.5: Estimation Results. c’s coefticients.
The cntries of the table arc loadings of expecied retums, volatility, asymmetry and leverage effects on factors, using GMM paramcter estimates of the
~ single factor SVS, the HN-S volatility and the [G GARCH models on small stocks and market indexes. To perform the GMM estimation tor all three
models on small stocks, we use the same sixtecn moment conditions that are all significant for small stocks as depicted in Figures 4.2, 4.3 and 4.4. The
144 5 3
corresponding moments are { E [r,’ ] } , {E [r,zrf1 ,-] E [r,rf,, }]} | and { E [r,rf,r j] } - For all four models on market indexes, we use the same
2 - J=

j=2 =
cleven moment conditions that are all significant for big stocks and market indexes as depicted in Figures 4.2, 4.3 and 4.4. The corresponding moments

244 5 3
are {E [r,’] } o {E [rfr,l”] }jtl and {E [r,r,zﬁ] }j=l' Retum data are daily and span the period from January 2, 1990 to December 30, 2005, for a

J“
total of 4036 observarions.

SVSIL, 1 #0 SVSILn =20 HN-S Volatility

SG SN SV SG SN % . SG SN %
Cou  3A4E-03  2.99E-03 344E-03  cop  3.12E-03 2.60E-03 3.00E-03  cgy 2.25E-03 2.15E-03  2.73E-03
iy -23.75 -35.76 49.07 ¢ -20.80 -29.57 3978 ¢, -14023 22362 -33.677
cop  2.80E-06 1.41E-06 4.08E-06  cp -221E-06 -1.32E-06 1.23E-06  cop 0 0 0
Cia 0.983 0.983 0949 ¢y 1.014 1.017 0983 ¢ 1 I 1
ces  1.41E-08 4.49E-09 129E-08  cg -3.15E-10 -145E-10 -1.71E-10  cq 0 0 0
¢y 4.70E-03 298E-03 241E-03 ¢ 2.89E-04 223E-04 -2.72E-04 ¢, 0 0 0
cor  -2.10E-10 -7.09E-11 -7.97E-10 ¢y -1.05E-10 -4.84E-11 -568E-11  «co, 0 0 0
¢, -1.47E-04 -9.87E-05 -3.67E-04 ¢, 9.65E-05 7.45E-05 -9.04E-05 ¢, -142E-03 -7.58E-04 -7.95E-04

SVSIL 1 #0 SVSIL N =0 HN-$ Volatility I1G GARCH
S&P500 CRSP  S&P500 CRSP  S&P500

CRSP  S&P500 CRSP

9.07E-04 4.00E-04 cop  4.94E-05 -4.79E-04

coy  291E-03  2.72E-03 coy  1.98E-03  1.39E-03 Coy
Clu -28.52 -24.34 Cly -17.02 -10.13 Clu -5.29 -0.35 Cly 4.70 826
cy, 4.61E-06 3.63E-06 cur  9.48E-07  3.24E-06 Con 0 0 Co 0 0
Ciy 0.957 0.967 Clh 0.990 0.969 Ciy 1 1 Clh 1 1
¢y 3.29E-08  2,70E-08 cos  -5.57E-11  -3.91E-10 Coy 0 0 Coy 0 0
¢y 6.35E-03  6.91E-03 cis -1.16E-04 -2.34E-04 Cls 0 0 ¢y -3.68E-03 -3.10E-03
cor -7.30E-10 -3.48E-10 cgr -1.86E-11 -1.30E-10 cor 0 0 Cor 0 0
Ir -243E-03 -2.58E-03 ¢y -3.59E-03 -3.54E-03

¢ -3.0lE-04 -1.85E-04 ¢ -3.88E-05 -7.80E-05 ¢

65T



Table 4.6: Moment Matching for Small Stocks.
The entries of the table are ratios of model unconditional moments to their empirical counterparts, based
on parameter estimates of the single factor SVS and the HN-S volatility models on small stocks. To
perform the GMM estimation for all the three models, we use the same sixteen moment conditions that
are'all significant for small stocks as depicted in Figures 4.2, 4.3 and 4.4. The corresponding moments are
identified by a 1 in the third column. Return data are daily and span the period from January 2, 1990 to
December 30, 2005, for a total of 4036 observations,
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SG SN SV

n#0 n=0 HN n#0 n=0 HN n#0 n=0  HN
Elr 1 o 098 098 098 0.99 099 099 099 099 099
E[r? 2 1 1.01 Lor 101 103 103  1.03 1.07 105  1.08
Er} 301 .04 167 127 .10 1.84 144 1.06 169  1.39
Er} 4 1 1.03  1.00  1.03 1.0s  1.02 1.04 1.01 098  1.00
Elnrgs) 5 0 790 <675  -5.13 1412 1128 953 459 387 34l
Elrtr_s] 6 0 -1096 -10.55  -6.82 -5.16 476 -3.05 322 320 -1.99
Elrnds] 7 1 129 124 131 1.84 170 181 1.54 153 1.55
Elrtr.s] 8 0 -1.95  -1.87  -1.32 -1.08  -0.93 -0.74 -1.00 -0.90  -0.75
E[rrsl 9 1 099  1.04  0.99 .00 105 1.0l 096 102 098
E fr,r,ﬂs 10 0 -143 -138 111 -425 -3.65 -3.14  -2525 -22.87 -2035
Elrrial 11 0 1.60 132 1.03 237 182 159 192 154 1.4l
Elrfra) 12 0 -5.63  -5.21  -3.49 -1.65  -1.44 -0.96 -1.53 -1.41  -0.94
Elrrd,] 13 1 124  L15  1.25 1.67 147 1.63 1.94 180 192
Elrr_s) 14 0 148 137 100 -3.01  -2.48 -2.03 538 462  3.98
Elrfrr,] 15 1 0.92 094 092 091 094 0.92 093 097 094
E :r,r,5+4 16 0 .10 102 085 470 3.88 345 266 228 213
Elrrs] 17 0 139 110 0.89 142 105 0.94 148 113 107
Elrlrs] 18 0 -8.00 -7.11  -495 246 -2.04 -143 -4.59  -3.96  -2.82
E[nr,] 19 1 139 124 140 177 147 1.70 153 132 149
Elrirs] 20 0 231 206 156 .18 093 0.79 098 080 0.72
Elr2,] 21 1 1.02 1.02 1.02 1.00 1.0l 1.00 094 095 094
Elnr,] 22 1 0.76  0.68  0.59 0.59 047 043 065 053 052
Elrriya) 23 0 4992 3820 32.08 265 190 174 1.89 137 135
Elrfre2] 24 0 295 252 -1.82 -1.94  -1.53 -1.11 -1.91 -1.54  -117
Elnr2,] 25 1 0.67 058  0.67 068 053 0.64 073 059 070
ElrRry] 26 0 -0.73  -0.63  -0.49 175 -133 -L16 -7.19  -5.55 520
E[r?r?,] 27 1 075 073 074 079 079 0.79 079 078  0.79
E jr,r{rz 28 1 217 186 166 0.70  0.53  0.50 075 058  0.59
Elrrny] 29 0 0.53 039 034 085  0.59 0.56 0.93  0.64  0.66
E[rtr] 30 0 986.72 810.83 606.84 468 -3.50 -2.67 -18.79 -14.18 -11.46
Elrr2, ] 31 1 094 077 094 .00  0.75 0.94 109 0.83 104
Elrry] 32 0 248 205 166 -431  -3.14 282 331 242 237
E[,] 33 1 112 1.08 L1l 1LI0  1.06 1.09 113 109 112
E jr,rfﬂ 34 1 0.81  0.67 0.2 .01 073 0.72 0.86  0.63  0.67
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Table 4.7: Moment Matching for Big Stocks.
The entries of the table are ratios of model unconditional moments to their empirical counterparts, based
on parameter estimates of the single factor SVS and the HN-S volatility models on big stocks. To perform
the GMM estimation for all the three models, we use the same eleven moment conditions that are all
significant for big stocks and market indexes as depicted in Figures 4.2, 4.3 and 4.4. The corresponding
moments are identified by a 1 in the third column. Return data are daily and span the period from January
2, 1990 to December 30, 2005, for a total of 4036 observations.

BG BN BV

n#0 n=0 HN n#0 n=0 HN n#0 n=90 HN

E[r] 1 0 099 099 099 0.99 099 099 099 099 099
E[r? 2 1 1.00  1.00  1.00 1.00  1.00 1.00 1.00 100 100
Er 301 0.75 -6.71 101 098 677 099 .00 201 102
Elr} 4 1 1.01 098  1.00 1.00 096 099 1.00 099 102
Elnrgs) 50 -1.52 045  -0.12 215 -0.99 -0.65 130.85 79.52  63.02
Elrtriys] 6 0 099 -047  0.12 -1.11 - -0.64 -0.04 -1.38  -098  -0.42
E[rrks 70 1.80 085  1.69 095 054 093 L19 085 114
Elrirys] 8 0 -049 -0.19  -0.03 -0.33  -0.17 -0.09 052 -034 -0.23
Elrris] 9 1 091 094  0.89 096 098 0.95 1.06  1:.08  1.04
Elnrs] 10 0 -0.54  -021  -0.02 -046 -024 -0.13 -1.37 090  -0.70
Elnrgs 110 377 110 030 -534 242 -1.62 -42.12  -2526 -20.48
Elr?ria] 120 -1.64  -0.77  0.18 093 -0.52 -0.04 -1.39 096 -0.42
Elrr,] 13 0 -13.38  -6.28 -12.85 7.61 425 7.54 6.08 423 588
Elrirq4] 14 0 097 037 0.7 -1.30  -0.65 -0.34 330 213 -1.49
E[rrt,] 15 1 L1l 1L15s 110 .02 1.04 1.02 098 099 097
Elnr,] 16 0 4470 1724 175 -0.61 -031 -0.18 -0.57  -037  -0.29
Elnrgs] 17 0 200 -0.58  -0.16 11.09 491 336 -59.56 -35.24 -29.23
E[rfrz] 18 0 2235 -1.09 023 2209  -1:14 -0.11 2230 -1.56 -0.72
Elnr2,] 19 1 209 097 205 237 129 235 134 091 131
E(rry;] 20 0 112 043 0.8 050 024 0.13 051 033 023
Elrr2,] 21 1 103  1.06  1.03 094 095 094 095 095 095
Elnr,] 22 0 -2.66  -1.01  -0.10 0.55 027 0.16 1.04 066 054
Elrnrga] 23 0 211 -0.60  -0.17 -7.14 2310 -2.17 539 315 2.67
El[rtrya] 24 0 571 -2.62 049 -1.64 -0.86 -0.10 230 -1.53  -0.73
Elrri,] 25 1 0.64 029  0.64 0.68 036 0.68 0.74 049  0.73
E[Prg] 26 0 -1.29  -049  -0.09 178  0.85 047 0.77 048 035
Elrri,] 27 1 096 098  0.97 .02 101 102 .03 1.02 104
Elnr,] 28 0 11407 4294 452 062 030 0.18 046 029 024
Elrra] 29 0 399 111 032 1.o1 043 031 050 029 025
Elrtriyy] 30 0 -1.29  -0.59  0.10 -1.01  -0.52  -0.07 -0.85 -0.56 -0.27
El[rnr,] 31 1 .01 046  1.03 0.95 049 0.95 L12 073 113
Erirny] 32 0 042 -0.16 -0.03 -0.58  -0.27 -0.15 071  -043  -0.33
E[ri2,] 33 1 099 1.00 1.0l 1.0l 1.00 1.02 .00 099 102
Elnr,] 34 0 335 124 013 071 033 021 0.64 040 034
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Table 4.8: Moment Matching for Market Indexes.
The entries of the table are ratios of model unconditional moments to their empirical counterparts, based
on parameter estimates of the single factor SVS and the HN-S volatility models on market indexes. To
perform the GMM estimation for all the three models, we use the same eleven moment conditions that are
all significant for big stocks and market indexes as depicted in Figures 4.2, 4.3 and 4.4. The corresponding
moments are identified by a 1 in the third column. Return data are daily and span the period fror January
2, 1990 to December 30, 2005, for a total of 4036 observations.

CRSP S&P500

N#0 n=0 HN 16 n#0 n=0 HN IG

E[r] 1 0 099 099 099 099 099 099 099 099
E[r? 2 1 .00 1.00 1.00 1.00 .00 1.00 1.00 1.00
Er 31 0.80 543 095 094 090 -2.81 1.02 1.04
Elr} 4 1 098 094 097 097 .00 098 1.00 0.99
Elnriys) 50 203 -098 -044 030 -1.63  -039 -0.06 0.50
Elririys] 6 0 -1.40  -098 -0.07 0.8 -1.02 039 0.18 0.63
Elrols] 7 0 1.57 110 151 156 170 065 1.60 1.62
Elrirus] 8 0 -0.58  -036 -0.12 0.12 043 -0.13 -0.01 0.15
E[ris] 9 1 089 097 089 090 091 094 090 090
Elnr}s] 10 0 -0.60 -037 -0.15 0.09 -0.52  -0.16 002 022
Elnres 11 0 739 344 161 -lI11 840 198 032 -2.63
El[rtrea] 120 -1.62  -1.08 -0.10  0.65 -1.35  -052 023 083
E[rrk,] 13 0 12.88 860 12.52 12.81 -8.19  -3.15 -7.85 -7.93
E[Prg 14 0 185  1.09 038 -0.37 1.05 032 003 -037
E[rird,] 15 1 1.03 110 103 1.04 1.08 L1l 1.08 1.08
Elnr},] 16 0 4262 2528 1039 -6.07 241 -073 010 1.06
Elnres] 17 0 -446  -1.99 -097 0.68 -1.77  -041 -0.07 057
Elrirgs] 18 0 262 -166 -0.19 101 222 08 036 135
E[rr2s] 19 1 211 134 207 211 211 081 206 208
Elrirus] 20 0 1.07 061 022 -0.21 0.79 024 0.02 -028
Err2,] 21 1 098  1.02 098 098 096 098 097 097
Elnr,] 22 0 269 153 066 -0.38 700 -2.12 029 3.13
Elnrg] 23 0 -3.66 -1.56 -0.80  0.56 242 056 -0.09 0.79
El[rtr,] 2470 -4.06 245 -033 152 -327  -127 050 198
Elnr2,] 25 1 067 041 067 067 0.66 026 0.66 0.67
ErRrs] 26 0 -1.62  -0.88 -034 032 -397  -120 -0.10 145
E[r2r2,] 27 1 0.89 090 089 0.89 0.98 1.00 100 1.00
E[nr,] 28 0 177 096 044 -025 370 112 -0.16 -1.68
Elnra] 29 0 1.89 077 042 -0.29 2481 -573 -091 829
E[r?ria] 30 0 -1.57 091 -0.14  0.57 -1.17 045 017 0.71 .
Elrnr2 ] 31 1 1.05 061 106 1.06 099 038 1.0l 102
ERra] 32 0 -0.58  -030 -0.12 0.12 036  -0.11 -0.01 0.14
E[22,] 33 1 1.05 1.04 106 1.06 0.99 1.01  1.01 1.0l
Elnr},] 34 0 1.58  0.83 040 -0.22 6.86 207 -030 -3.17




Figure 4.1: Return Series.
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Table 4.9: Summary Statistics for Strike Price and Maturity Categories.

(a) Summary statistics by moneyness

<095 095t00.975 0.975t01 1t01.025 >1.025 all

Number of Contracts 3192 2351 3851 3048 3216 15658
Average Call Price 29.412 32.625 37.292 47.294 81372 45.986
Average 1V 0.195 0.194 0.194 0.202 0.232 0.203

(b) Summary statistics by Maturity

1 2 3 4-6 7-12 all

Number of Contracts 2061 4931 2571 2974 3121 15658
Average Call Price 31.119 38.680 42,018 51.108 65.731 45.986
Average 1V 0.207 0.204 0.203 0.202 0.201 0.203

(c) Summary statistics by moneyness and maturities. For each moneyness and strike price category, the
first line gives the number of contracts and the second line give the average Implied Volatility

Moneyness
Months <0.95 0.95t00.975 0.975to1 1t01.025 >1.025
1 7 154 658 699 543
0.254 0.201 0.187 0.197  0.245
2 27 738 1389 1201 1326
0.208 0.188 0.189 0.198  0.234
3 439 494 720 454 464
0.198 0.191 0.197 0.207  0.225
4-6 928 513 574 406 553
0.193 0.194 0.199 0.207 0.223
7-12 1541 452 510 288 330

0.193 0.204 0.205 0.213  0.224
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Table 4.10: Estimation of Structural Parameters of Risk-Neutral Processes
The entries of the table are parameters estimate of different risk-neutral models. These models have been
estimate using the two steps non-linear least squared procedure detailed in section 4.6.1.

Param. SVSIF SVSIE,7,=0 __ SVS2F _ Param. AN CHJ
B? T808E+0I  -1210E+02 1348E+02 7 2410E+02  1.223E-06
o 2.135E-01  0.000E+00 -1340E-01 o 5450E-13  1.266E-06
vi 1347E-02 2.115E-01 5474E-01  p° 7.554E-01  9.730E-01
o 1.177E-04 5270E-06 1933E-16 o 3.592E-06  1223E-06
o 9.989E-01 9.824E-01 9.979E-01  n*  0.000E+00 -6.218E-02
B; 9.838E-01

n -1.856E-01

vi 1.108E+00

o 4.824E-16

o5 9.207E-01

RRMSE 0.078 0.103 0.058 0.092 0.085

Table 4.11: Relative RMSE by Moneyness and Maturity
The entries of the table are the relative root-mean squared errors, defined as the ratio between the root
mean squared error (RMSE) and the average option price.

(a) Moneyness .
<095 095t00975 0975te1 1to1.025 >1.025 all

SvSif 0.142 0.089 0.080 0.062  0.055 0.078
SVSIf,n=0 0.215 0.122 0.092 0072  0.072 0.103
SvS2f 0.105 0.052 0.057 0.047  0.044 0.058
HN 0.158 0.129 0.106 0.075  0.057 0.092
CHJ 0.147 0.112 0.094 0.072  0.056 0.085
(b) Maturity

1 2 3 4-6 7-12 all
SVSif 0.106 - 0.066 0.048 0.053  0.092 0.078
SVSif,n =0 0.105 0.069 0.072 - 0.088  0.125 0.103
Svsaf 0.062 0.038 0.038 0.052 0.070 0.058
HN 0.118 0.081 0.051 0.060  0.109 0.092

CHJ 0.116 0.069 0.062 0.057 0.100 0.085
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Table 4.12: Relative Bias by Moneyness and Maturity
The entries of the table are the relative option bias, defined as the ratio between the bias and the average
option price. The bias is the difference between model’s price and observed price.

(a) Moneyness
<095 095t00975 0975t01 1t01.025 >1.025 all

SVSIf 0.018 -0.008 0.022 0.018 -0.001 0.005
SVSIf,n =0 0.029 -0.020 -0.011 0.009 0023 0.006
SVS2f -0.009 -0.008 0.014 0.014  0.006 0.006
HN -0.015 0.026 0.036 0.015 -0.016 0.005
CHJ -0.043 0.009 0.025 0.014 -0.003 0.002
(b) Maturity

: 1 2 3 46 7112 all
SVSIf -0.027 0015 0.013 0.003  0.003 0.005
SVSIf,n =0 -0.065 0.011 0.031 0.020 -0.000 0.006
SVS2f 0.012 0.007 -0.003 0.005  0.007 0.006
HN -0.015 0.020 0.021 -0.003  -0.004 0.005
CHJ -0.067 0.007 0.036 0.017 -0.010 0.002

Figure 4.2: Autocorrelation of Squared Returns.
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Figure 4.3: Cross-Correlations Between Returns and Squared Returns.
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Figure 4.4: Cross-Correlations Between Returns and Cubed Returns.
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Figure 4.5: Portfolios Volatility and Skewness: Market Indexes
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Figmre 4.6: Portfolios Volatility and Skewness: Small and Big Stocks
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Figure 4.7: Risk-Neutral Volatility and Conditional Skewness
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Figure 4.8: Implied BSM volatility by Moneyness, Maturity and Model
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Figure 4.9: Implied BSM volatility by Maturity, Moneyness and Model
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CONCLUSION GENERALE

Dans cette thése, nous avons généralisé les modéles affines en introduisant une com-
posante du type moyenne mobile dans la fonction cumulant conditionnelle. Cette exten-
sion est importante théoriquement parce que des modéles existant comme les modeéles
ARMA ne sont pas affines, par ailleurs nous montrons comment construire des modeles
affines d’ordre infini parcimonieux. Cette extension est aussi importante empiriquement
comme le montre nos trois exemples empiriques . En particulier notre exemple empi-
rique sur la structure a terme des taux d’intérét montre qu’un modéle affine généralisé
sur les traditionnels trois facteurs prédit mieux la courbe des taux qu’un modéle éﬁ‘ine
sur les trois facteurs et les variables macroéconomiques. Ce qui nous permet de conclure
qu’ajouter une composante MA permet de prendre en compte les facteurs qui ne sont
pas éléments de I’espace vectoriel engendré par les trois facteurs. 11 existe une approche
alternative qui conduit & des processus non-Markoviens affines. Elle utilise la transfor-
mée de Laplace conditionnelle du processus x; défini comme % (u) = exp(y;(u)) en
lieu et place de la fonction cumulant conditionnelle. Le modele affine traditionnel est
caractérisé par

- Zi(u) = exp(@(u) + o(u)x:).

Dans un travail en cours, nous étudions présentement le processus défini comme suit
Zi(u) = y(u) + exp(@(u) + 0t(u)x;) + P (u) L1 (u).

Une application plus approfondie des modéles affines généralisés a été faite en struc-
ture a terme des taux d’intérét, en étudiant le modele VARMA. D’un point de vue théo-
rique nous montrons comment étendre un modéle VAR d’absence d’opportunité d’ar-
bitrage a un modéle VARMA. Dans le modele VARMA, pour une maturité donnée, le
- taux d’intérét est une fonction affine de la variable d’état et de sa moyenne condition-
nelle, par conséquent il dépend de toutes les réalisations passées de la variable d’état. En

utilisant une procédure d’estimation a deux étapes, le modéle s’estime aisément a I’aide

7. Le premier exemple a été présenté dans le chapitre 1, et les deux autres sont fournis en appendice I.
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du maximum de vraisemblance dans la premiére étape, pour I’estimation des parametres
de la dynamiqué historique de la variable d’état. Cette étape est suivie par I’estimation
des paramétres du taux d’escompte stochastique par la méthode des moindres carrés non

_linéaires contrainte. Il existe des similarités entre les structures a terme VAR et VARMA,
en particulier elles s’accordent sur le signe de I’inflation et du niveau d’activité espérées
sur la courbe des taux. Mais elles divergent sur les composantes imprévisibles de ces
deux agrégats. Finalement nos résultats indiquent qu’un modéle d’absence d’opportu-
nité d’arbitrage VARMA sur les taux a maturités 1, 24 et 96 mois est meilleur que le
modele "Nelson—Siegel avec facteurs dynamiques AR(1)".

Le troisieme chapitre nous fourni des résultats sur I’évaluation des titres contingents
en temps discret et avec un espace-€tat de dimension infini. Notre résultat d’évaluation
s’applique sur une large classe de processus avec innovation conditionnellement nor-
male et non-normale, moyenne et variance conditionnelle variables et potentiellement
des variations du prix du risque. Ce cadre généralise les résultats de Duan(1995) dans le
sens ou nous ne nous restreignons pas a la normalité conditionnelle, et au prix du risque
constant. Nos résultats s’appliquent a des processus populaires en temps discret tels que
les modeles GARCH. Nous appliquons aussi notre approche aux modéles discrets avec
innovations multiples. Pour la classe de processus infiniment divisibles, les dynamiques
risque-neutre et historiques sont dans 1a méme famille. Nous donnons quelques intuitions
de ces résultats en faisant le lien avec la risque-neutralisation faite en temps continue.

Pour démontrer la pertinence empirique de notre approche, nous fournissons en ap-
pendice I1I une analyse d’un modéle GARCH avec innovation conditionnelle qui suit une
distribution variance gamma asymeétrique construite a 1’aide de la convolution de deux
lois gamma. Par conséquent la skewness et la kutosis conditionnelle entrent directement
et distinctement comme paramétres de cette nouvelle distribution. Nous I’estimons par
la méthode du maximum de vraisemblance et montrons que le modele est largement
préféré au modele conditionnellement normal. Une analyse des "smirks" sur les options
démontre que ce modele offre plus de flexibilité pour €valuer les options. Notre ap-
proche présente une maniére de résoudre des questions méthodologiques et empiriques

importantes en €valuation des options. Il existe sans aucun doute d’autres approches. Au
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niveau empirique, une combinaison de la non normalité et de I’hétéroscédasticité per-
met de corriger les biais reliés au GARCH normaux. Ces biais sont similaires a ceux
engendrés par le modele d’Heston(1993a), en temps continu ces biais Jse corrigent en
introduisant des sauts dans les rendements et la volatilité. Ce chapitre est dés lors relié
aux études empiriques sur les modeles avec sauts. Au point de vue méthodologique, il
est probable que notre risque-neutralisation se dérive en spécifiant le taux d’escompte
stochastique en lieu et place d’une mesure de martingale e’quivalehte (MME), ou en uti-
lisant la transformée d’Esscher, mais nous commengons plutét par la spécification d’une
famille de densité de Radon-Nikodym et nous caractérisons la MME dans cette famille.
Certaines questions restent encore inexplorées. Premierement, bien que nous obtenons
une MME uniqhe pour ce choix de famille de densité de Radon-Nikodym, nous ne pou-
vons pas exclure le fait que pour une spécification donnée de la prime de risque, il existe
d’autres MMEs correspondant a différents choix de la forme fonctionnelle de la densité
de Radon-Nikodym. Deuxiemement, ce serait intéressant d’explorer plus en détail la re-
lation entre nos résultats et la littérature sur la dominance stochastique qui entraine les
bomes sur les prix d’options. Troisi€mement, bien que nous préconisions la distinction
entfe un principe d’évaluation et le modele d’équilibre général qui le sous-tend, les fon-
dements économiques de nos résultats sont bie\n siir trés importants. Cependant, cette
problématique n’est pas €vidente, et fera I’objet de recherches futures.

Dans le quatriéme chapitre de cette thése, nous avons fourni un noﬁveau modele af-
fine multivarié a variables latentes pour les rendements journaliers. Dans ce modéle, la
variance et I’asymétrie conditionnelles sont des combinaisons linéaires de facteurs sto-
chastiques. Nous avons caractérisé ces moments conditionnels critiques tels que pergus
par I’agent économique, ainsi que leurs contreparties telles que vues par 1’économétre.
Le modeéle permet d’obtenir des formules analytiques aussi bien pour les moments en po-
pulation des rendements que pour les prix d’actifs financiers. Nous développons ensuite
une procédure d’estimation par la méthode des moments généralisée. Nous argumentons
que cette procédure présente un énorme avantage par rapport a I’estimation par maxi-
mum de vraisemblance. En outre elle permet de reproduire parfaitement des moments

critiques des rendements tels que 1’asymétrie et I’aplatissement tandis que la plupart
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des méthodes y échouent. Nous avons appliqué cette nouvelle procédure d’estimation
au cas univarié de notre modéle et avons estimé le facteur latent grace a une variante
du filtre de Kalman non linéaire. Les résultats ont montré que I’asymétrie incondition-
nelle est déterminante pour 1’évaluation d’actifs financiers. Plus frappant encore, une
asymétrie positive de la distribution des rendements courants conditionnellement a la
volatilité courante est nécessaire et suffisante pour reproduire [’asymétrie et les effets
de levier inconditionnels, mais engendre une asymétrie positive de la distribution des
rendements courants conditionnellement aux rendements passés, ce qui est contraire aux
résultats empiriques connus. Ce résultat étonnant et robuste demande d’examiner plus
rigoureusement la question de savoir si un modéle reproduisant parfaitement les asymé-
tries inconditionnelles géneérerait une asymétrie conditionnelle négative. Cette derniére
‘question constitue une recherche en cours, ainsi que I’estimation du modele bivarié et
ses implications pour la valorisation des produits dérivés et la structure a terme des taux

d’intérét.



Appendix I
Additional Empirical results : Chapter 1

The Term Structure of Realized Risk

This example is studied in Feunou and Meddahi (2007a). There are two goals. The first
one is to model the joint dynamics of the returns and the realized variance. The second
goal is to compute the term structure of the value-at-risk, i.e. to characterize the quantile
function of the aggregated returns, Z,’;l i+i» When h varies.

We consider the daily realized variance computed as the sum of squared intra-daily
returns, five-minutes and thirty-minutes returns in our empirical application. The recent
literature on volatility shows the importance of such measures. The basic theory on
realized volatility assumes that the underlying process is in continuous time and shows
that the realized variance converges to the integrated variance when the length of intra-
day returns goes to zero. In our empirical analysis, we specify the model in discrete
time and we do not make the formal connection between the realized variance and the
daily returns. We will specify discrete models, affine or generalized affine, and allow
the data to select the best model. We will, however, use some insights from continuous
time when we specify the discrete model. In what follows the conditioning information
is I, = o(r;,RV;, T < t) where r, is the daily returns.

We start our analysis by modeling the realized variance as either an affine process or-

a generalized one. Consider the affine model given by
Vi () = 10 Ex[exp(uRV; 1)) = () + & (u)R:. L1)

Given the non-negativity of the realized variance process, we will consider two exam-
ples. The first one corresponds to the Inverse Gaussian case while the second is the

Gamma case, which corresponds to the exact discretization of the square-root process,
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studied in Gourieroux and Jasiak (2006)):

Inverse Gaussian: @(u) = v(l —+/1—2up), a(u) = %(exp(l —/1=2up)—1)
(1.2)
Gamma: o(u)=—vlog(l —up), a(u) = li—)l;u' (1.3)
When we extend our analysis to the generalized affine case, i.e.,
i (u) = log Ey[exp(uRV11)] = @(u) + (u)RV: + By (u), 1.4)

we still consider the same two examples of Inverse-Gaussian and Gamma. We prove in
Section 2 that this leads to a proper cumulant function. '

We use the maximum likelihood method to estimate the four models (two models
on realized variance only, and two on joint realized variance and returns). Joint esti-
mation or estimation on realized variance only yield quite the same estimator for the
realized variance dynamic. Also, inverse gaussian and gamma model provide very simi-
lar results. For this reason in this paper we report only the estimation of the dynamic of
returns conditional on realized variance and the dynamic of realized variance given by
the maximization of the joint likelihood of returns and realized variance in the inverse
gaussian case. These empirical results are provided in Table I.1. The main empirical
result is that the coefficient 3 is non-zero whatever the model or the realized volatility
measure (based on five-minutes or thirty-minutes). In particular, the increase of the log-
likelihood is substantial when one allows 3 to be non-zero. Another interesting result is
that the inverse Gaussian model describes better the data for the two frequencies.

We now want to specify a joint model for thé returns and the realized variance. When

one considers a continuous time stochastic volatility model
dlogp, = (a+ b0'3)du + 0,dW,,

and assumes that there is no leverage effect, one gets that the daily return ;.| = log(p,;+1) —
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log(p;) has the following distribution:
rlo(pr, o5, t<t,s<t+1) ~ ./V(a+bII/;+1,II/,+1),
which suggests the following discrete time model that we study:
Fo1 | Ot RV, RV 41, T < t) ~ N (a+bRV;y1,c+dRV,, ). (1.5)

We assume that RV; ;| follows (I.4) where a(u) follows either (I.2) or (I.3). By denoting

the joint cumulant function of (r,11,RV;11) as W, gy (v, u) defined by

Vrrvy (v, u) = log E;[exp(vr41 +uRVit 1)),

one gets

Wk (v, u) = (va+12¢/2) + v, (vb+vd/c+u).

Hence, the joint process 7y, RV; is indeed a generalized affine process because one has

Vg (vu) = @(v,u) + 0(v,u)RV: + BWyry 1 (v, 1), (L.6)

where
d(v,u) = (va++?¢/2)(1 — B)+ o(vb+v*d/2 +u) 1.7
0(vu) = o(vb+v*d/2 +u). (1.8)

We compute the term structure of the Value-at-Risk, i.e., we compute the 5%#quantile of

N [
Tirle+h = ﬁ zrt+i-
i=1

For this purpose, we derive the conditional characteristic function of 7, 1., and then
we invert it to get the cumulative distribution function. This approach has been used in

the affine case and continuous time by Duffie and Pan (2001).
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In practice, the value at risk of 7, ., will depend on R} its lagged values. In order
to graphically present the results, one needs to choose RV;. We proceed by taking from
the data three values for RV;: a small value (low case), a median one (median case) and
a large one (high case). Then, we use the lagged values of each of them to plot the term
structure of the value-at-risk (VaR).

Figures 1.2 to 1.5 present and compare Affine and Generalized affine term structure
of the value-at-risk. Figure 1.3 shows that in a low variance day, the VaR increases
with the maturity and that the affine model overestimates the VaR. In contrast, in a high
or median volatility day, affine model overestimates the VaR for lowest maturity and
underestimates it for longer maturities. Underestimation of the VaR could lead to impor-
tant risk management problems; see Feunou and Meddahi (2007a) for more discussions.
Likewise, we show in Feunou and Meddahi (2007a) that it is useful to consider realized
variances, i.e., we did the same approach with the Heston and Nandi (2000) daily model
and show that the model with realized volatility is the best one. We also provide in Feu-
nou and Meddahi (2007a) the term structure of another risk measure called the expected
shortfall.

Realized Option Pricing model

This subsection hinges on Feunou, Christoffersen, Jacobs and Meddahi (2007). We used
the model developed in the first empirical example and used the option pricing formulas
derived in Section 1.3.2 where h; equals the realized variance RV;. We model jointly the
dynamics of the return r, and realized variance RV, in the same way as in the previous ex-
ample, with a slight modification of the distribution of the stock log-returns r; conditional
on realized variance RV;. Following Christoffersen et al (2006), Feunou (2006) and Feu-
nou and Tedongap (2007), we used a skewed inverse Gaussian distribution, which nests
the normal distribution. This extension is empirically important.

The model is given by

1
rryt | O(re, RV, RV 11, T <t) ~ a+bRV, 11 —N(c+dRV,;1) +ﬁyt+la (L9)
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with ;41 ~ 29 (n*(c4+dRV;;1)). #9 means the standard inverse gaussian distribu-
tion. The conditional cumulant function of the return ;.| conditional on /; and RV, is
given by

Elexp(uri41)|RVi41, L] = exp(oo(u) + 0o (u)RV:41),

with

wo(u) =u(a—cn)+cn’ (1 —4/1- zn—") , and og(u) =u(b—dn)+dn’ (1 —4 /1= %) :

In the affine case, the conditional cumulant function of RV, given [; is given by (I.1)
-where @ (u) and a(u) are defined either by (1.2) for the inverse gaussian case or by (1.3)
for the gamma case. We extend this affine case to the generalized affine of order (1,2) as

follows

i (u) = log E; [exp(uRVi41)] = 0(u) + a(u)RY; + Pry—1 () + Bayi—2(u).  (1.10)

Consequently, the joint cumulant function of (r;11,RV;4;) given ; is

Wrryy (viu) = @o(v) + i (u fi'.aO(V))'

Eq. (1.10) implies that the joint process (r,RV;) is a generalized affine process
Vrgy e (vu) = @(v,u) + &(v,u)RV; + Brryy—1 (v u) + BoWr ry—2(viu),  (L11)

with @(v,u) = w(v)(1 = B1 — B2) + ©(u+ ap(v)) and &(v,u) = o (u+ op(v)).

We assume that the generalized affine model is defined under the risk-neutral prob-
ability measure. The estimation is done by minimizing the MSE of the implied Black-
Scholes volatility from the option (IVMSE) defined as

n

IVMSE = 1 Y. (6i—0i(8))*,

nia
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where the implied volatilities are obtained as
oi=BS™' (C, T;,X:,S,7) and 0;(0) = BS~1(Ci(0),T;,X,,S,7),

with BS~! being the inverse of the Black-Scholes formula, 7; the time to maturit&, X; the
strike price, S the price of the underlying stocks and r the riskless interest rate. Figures
1.6, 1.7 and 1.8 represent the daily implied volatility bias, option price bias and implied
volatility RMSE. The generalized affine model clearly outperforms the affine model in
terms of pricing errors. This result holds whatever the maturity of the moneyneés; see
Tables 1.2 and [.3.



Table 1.1: MLE Estimation ARIG
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The data is the Deutsche mark (DM) / US dollar (USD) exchange rate returns and realized vari-
ance. Sample period is 1986:12:01 to 1996:12:01 with a total of 2449 observations

30 min

Affine G-Affine
par  Est STD Est
B 0.6111
P 0.3255 0.0203 0.1754
u 0.2341 0.0114 0.1834
v 1.2565 . 0.0398 0.5045
a 0.0063 0.0139 0.0063
c -0.0214 0.0448 -0.0214
b 1.74E-08 5.709E-06 1.44E-08
d 0.9282 0.0290 0.9282
LIK -1600.0932 -1547.4719
BIC 0.8069 0.7850

STD
0.0396
0.0179
0.0087
0.0545
0.0140
0.0449
6.024E-06
0.0290

5 min

Affine

Est STD
0.3444 0.0193
0.1642 0.0071
2.0818 0.0647
0.0064 0.0180
-0.0180 0.0433
4 98E-08 1.093E-05
0.7551 0.0236
-1838.6743

0.9234

G-Affine
Est
0.5449
0.2150
0.1328
-0.9380
0.0064
-0.0180
1.54E-08
0.7551
-1790.0531
0.9034

STD
0.0419
0.0192
0.0058
0.0961
0.0180
0.0434
5.777E-06
0.0236

Table 1.2: Implied volatilities, Option prices RMSEs and bias by Moneyness
We estimate the models on a total of 16, 506 contracts with an average call price of 46.05 and
average implied volatility of 20.26. The estimation have been done by minimizing the Black-

Scholes IVRMSE

Moneyness
S/X<0.975 0975<S/X<1 1<S/X<1.025 1.025<S/X All

Model IVRMSE (%)
Affine 3.8809 4.2988 44313 5.0642 4.3768
G-Affine 2.9471 2.9476 3.2201 3.7181 3.1915
Model IV bias (%)
Affine 0.2134 -0.0661 ~0.0346 -0.3556 -0.0166
G-Affine 0.0211 0.1873 0.3723 -0.2216 0.0694
Model Option price bias
Affine 0.4357 -0.3601 -0.4654 -1.2721 -0.3124
G-Affine 0.1809 0.0281 0.0990 -0.9638 -0.1342
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Table 1.3: Implied volatilities, Option prices RMSEs and bias by Maturity
We estimate the models on a total of 16, 506 contracts with an average call price of 46.05 and
average implied volatility of 20.26. The estimation have been done by minimizing the Black-

Scholes IVRMSE

Maturity
DTM<30 30<DTM<90 90<DTM<180 180<DTM All

Model IVRMSE (%)
Affine 5.4750 43179 3.9963 3.8295 4.3768
G-Affine 3.9103 3.1432 2.8824 2.9301 3.1915
Model IV bias (%)
Affine 0.5038 -0.2423 -0.0693 0.1737 -0.0166
G-Affine 0.8447 0.1338 -0.2344 -0.4328 0.0694
Model Option price bias
Affine 0.3352 -0.5526 -0.5843 0.0199 -0.3124
G-Affine 0.8570 0.3845 -0.5387 -1.8517 -0.1342
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Tarm structure of Value-at-Risk / SQRT(Maturity) : G—-Affine
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" Figure I.1: GARNIG term structure of VaR

We use parameters estimated from the MLE to compute the term structure of value at risk. Sev-
eral cases have been considered depending on the day where the term structure is evaluated. The
cases are High volatility day (day with higher realized variance), Median volatility day and Low
volatility day

2.5

Term structure of Value—at—Risk / SQRT (Malurity): Affine

N

Low
Meadian
High

VaR / SQRT(Malurity)

10 20 30 a0 50 80 70 80 20 100
Maturity .

Figure 1.2: ARNIG term structure of VaR

We use parameters estimated from the MLE to compute the term structure of value at risk. Sev-
eral cases have been considered depending on the day where the term structure is evaluated. The
cases are High volatility day (day with higher realized variance), Median volatility day and Low
volatility day
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Term structure of Value-at—Risk / SQRT(Maturity) : Low Variance

VaR / SQRT(Maturity)

10 20 30 40 50 60 70 80 90 100
Maturity in days

Figure 1.3: Term structure of VaR: low variance day

We use parameters estimated from the MLE to compute the term structure of value at risk. We
compared Affine and Generalized affine term structure

Term structure of Value—-at-Risk / SQRT(Maturity) : Median Variance

G-Affine
Affine

VaR / SQRT(Maturity)

e

10 20 30 40 50 60 70 80 90 100
Maturity in days

Figure 1.4: Term structure of VaR: median variance day

We use parameters estimated from the MLE to compute the term structure of value at risk. We
compared Affine and Generalized affine term structure
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Term structure of Value-at-Risk / SQRT (Maturity) : High Variance
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Figure [.5: Term structure of VaR: high variance day

We use parameters estimated from the MLE to compute the term structure of value at risk,. We
compared Affine and Generalized affine term structure.

Affine and Generulizad Affine Impllod Volatllity Bias (%)
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Figure 1.6: Implied Volatility Bias

The figure displays implied volatility bias as a function of the day at which option is priced. Im-
plied volatility bias is the difference between model and observed-black scholes implied volatility.
For each day we compute average available Implied volatility bias
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Affine and Ganarnlized Afiine Option Price Bias
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Figure [.7: Option price Bias

The figure displays Option price bias as a function of theb day at which option is priced. Option
price bias is the difference between model and observed Option price. For each day we compute
average available option bias

Affine and Gensrnlized Affine Impiled Valatility RMSE (%)
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Figure 1.8: Implied Volatility Root mean squared error

The figure displays IVRMSE as a function of day at which option is priced. [VRMSE is the
square-root of the average squared difference between model and observed black scholes implied
volatility.



Appendix I1
Technical Appendix of Chapter 3: Option Bounds

We derive bounds on option prices from discrete time SV and GARCH models using
the approach of Cochrane and Saa-Requejo (2000), géneralized by Bondarenko and Lon-
garela (2004).! These bounds are derived using a distance between a given stochastic

discount factor (SDF) M, and a benchmark SDF A4, defined as

s e [(]) " e ()

Note that all expectations are taken under the benchmark risk-neutral measure, unless
otherwise indicated.

When using a linear EMM and a GARCH stock price dynamic, the resulting price
is unique. Therefore, to meaningfully analyze bounds we have to either generalize the
assumption on the EMM, or work with a more complex stock price dynamic. We first
investigate bounds on option prices using the discrete-time stochastic volatility model
in Section 7.1, while maintaining a linear EMM. Subsequently, we analyze bounds for
a GARCH model, under the assumption of a quadratic EMM. For convenience, we re-

write the implications of our choice of EMM in terms of the SDF M;, using the fact that
2
M= Qil :

dP |

Bounds on Option Prices in Discrete-Time Stochastic Volatility Models with a
Linear EMM

The EMM used in the case of the discrete-time SV model is

d t
d—IQJIF: = exp (— Y, (Viizii+ va,iz2i+ Wi(vi i, V2,i))) :

i=1

1. See Bernardo and Ledoit (2000) for a related approach.
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Under the assumption of normal innovations with correlation p we have

W, (uy,uz) = [(u1 +pu2)2 + (1 —p2) u%] .

N[ —

From this we can write the ratio of the SDFs as

M —(Vl,t—c’l,t)zl,t—(vzt—\72,t)z2,t
i P 1({,2 &2 1(.,2 2 -
M T2 (Vl,t - Vl,t) T2 (V2,t - Vz,;) = (Vivas = V1a¥2,)p

For pricing we need the distribution of the innovations under the benchmark risk-neutral

measure

Z1y o ~ o~ 1 p
~N (—(V17,+pV2,,),—(pV17,+V2,;))/,
22 p 1

This gives

) 2(Viy = Vi) (Vig+pV2,0) +2(Vay = V) (PV10 4 Vo)
E, [(T) ] =exp | +2(vi,— \71,1)2 +2(vay— \7’2,1)2 +4p (viy— Vi) (Vz,t - ‘7’2,t)

2 _ 52 2 =2 RS
- (Vl,t - Vl,t) - (Vz,z - Vz,z) —2(VigVor — Vi Vo) p

M, 2 ~ \2 <2
E, ﬁ_l = ¢Xp ((V2,1_V2,t) —(Vl,t—Vl,t) )—_1
f

= CXp ((1 _pZ) (VZ,I - \72’,)2) — 1.

We now investigate the following bound

2
(ﬁ—l) ] < 42,
M,

where 4, is known at time ¢ — 1 but pertains to the SDF for time ¢. Bondarenko and

LE

Longarela (2004) show that this type of bound is equivalent to a bound on a generalized
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version of the Sharpe ratio.

We first establish the following proposition.

Proposition IL.0.1.

M, 2 . In(1+47
(ﬁ'—l) ] <A = |voy— V| < —L_—il (IL1)

Proof.

Ei 1
t

M, 2 i
(ﬁ'—l) } gA,Z:»exp((l—pZ)(vz,,—vz,,)z) —1<42

exp ((1 —p2) (vz,, — \727,)2) <1 +A,2

—
= (1-p?)(vo,—V2;)* <In(1+4?)

5 In (14472
= (V2,t_V2,t)2S£_—p2t)

. In (14 47
— ,V2,1—V2,x|5 —%

O

This proposition states that a bound relative to a benchmark SDF M, can be re-written
in terms of a bound relative to the corresponding benchmark price of volatility risk v, ;.
We now use this result to find the maximum option price (C(V,)) and the minimum
option price (C(v,,) corresponding to a given radius around the benchmark price of risk
V.. ‘

Corollary 2. The maximum and the minimum call price C(Vy;) and C(V2,) in the fol-

lowing radius of the benchmark price of risk V

In (1 +47)

‘Vz,t—c’z,t| < 1= p?

; (I1.2)
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are given by

Vor= Vo —

We now consider the special case of an affine stochastic volatility model, which

implies v, ; = v, 0;. This gives

M, 2 5 In(1+ 42
(ﬁt_l)JSAtzﬁlvz—Vzlﬁ In{1+47)

E,_ )
I\ (1-p?)o?

If we also require the radius around v, to be constant, we get
A} =exp(4*c}) -1,
and thus

A

V1-p2

E,_
t—1 M

M\ 22 .
—-——1 Sexp(A O't)—1~=>|V2—V2|S

Under these conditions we therefore have the following corollary

Corollary 3. The maximum option price (C(V3)) and the minimum option price (C(v,)
in the radius of a benchmark SDF given by E;_, [(% — 1)2} < exp (Azo-tZ) — 1 are
obtained with
V= wi= e
e V1-p?
Given an economically relevant SDF M,, it is therefore straightforward to find the
option bounds, because we can simply plug the uppér bound and the lower bound on the

price of risk into the pricing formula.
Bounds on GARCH Option Prices with a Quadratic EMM

In the case of the stochastic volatility models, we obtain some very elegant results

for the bounds. The bound on the pricing kernel can be expressed as a bound on the price
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of volatility risk, which facilitates the computation of the bounds, and which provides
more intuition for the results. We now investigate bounds for another incomplete-market
setup, with the stock price process given by a GARCH model, and a quadratic EMM
rather than a linear EMM. This case is of substantial interest, because quadratic EMMs
have thus far not been considered in the literature. However, the quadratic EMM greatly
complicates the derivation of the bounds.

We assume normally distributed returns
Ri|F -y~ N (- %0'12, 0'12) -

For a given sequence {vly,, V2 }, consider the following EMM from Section 3.3

d t
d_g Fy =exp (— S (vii€i+ v, e} +gi)) : (IL3)
i=1
with
1
& = 3 (vi072 —In(0?/0;?)), where (IL.4)
*2 g o-i2
Wi r 1 5
;o= | —=- 2| yi—=o; ;i 1.6
v, |:0,2 O_i*2:| + (‘U, 201 ) V2, ( )
The corresponding SDF is

M, = exp (_vl,tst - V2,1312 _gt) .
We now consider the following benchmark SDF

- . ~ 2 .
M, = exp (_vl,tst — Va,§ —gt) )
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where similarly

~ 1. ~k ~
§ = E(vﬁ,o,2—1n(o,2/o,2)),and (IL.7)
, )
~#2 Oj ~ Ky i I 5\ .
62 = — 1 andv,= |2 42y -=62 ), (I8
’ L +2¥,07 b [0,2 o,*z] (“’ 2’) 2. (L)
This gives
M, . . .
ﬁ’ = exp((V1y— Vi) &+ (Vg — v ) €2 + (& — )
{
M\? N N 2 a
V2 = exp(2(Viy—viy)&+2(Voy—var) &l +2(& —g1)).
!

We now need to do some tedious computations to compute conditional expectations,

where we use the following standard result. Given € ~ N (/.1, 0'2), we have

2 a2
Eexp (ag + be? +c) = exp c—%ln(l —2b0?) —0—+M) . (1L9)

4b 1 —2bo?
. M, 2]
For the expectation E,_1 (—Mf) that we have to solve, we get

2
~ g, ~
a = 2(V1,t_vl,t):4(ut_rt_7t) (Vz,r—Vz,r)

b = 2 (92’, — Vz,,)

. “D . g,
¢ = 20-g)= (R0 ¥,0r) +n (L),

. 52 _ 2
Under the risk-neutral benchmark measure we have & |F,_; ~ N (r, — - Q’TGL, 0',*2) .

We can now use (/1.9) and the relationship between v; ; and v, to derive

ok ok *2)2
E; (ﬁ) 2 = 5 exp (67 —0”) .
M, \/o.t*z (2672 - 672) 4(26;% - 0;?)

!
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This result can then be used to derive the bounds

M\ 2 M\ 2
t—-1 (M ) =~ t t—1 (M <1+ t
_ - 12
M 2] 5 M2 22
! (M ) s A=Eally) | S0+4)
~+4 k2 *2\2
oy (6% -/ 2)2
= ex < (1447) .
0}*2 (26.t*2_0.t*2) Y 2(26.t*2_0.t*2)) —( t)

We have therefore established the following proposition

Proposition 11.0.2.
M : 2 &t*4 (62— 0',*2)2 22
- —_— — < A4 < y .

(1.10)

This result is similar to the one obtained for the stochastic volatility model with a
linear pricing kernel in (II.1). We can establish pricing bounds by using a lower bound
o7? and an upper bound 6;*in the pricing formula, as in the case of (I1.2) in the stochastic
volatility model. The difference is that it is not possible to further simplify the expression
in (IL.10), as was done for the stochastic volatility model with linear pricing kernel in

(IL.1). The lower bound o2 and an upper bound 0, must be obtained numerically from
(IL10).
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Empirical illustration using GARCH-SVG model: Chapter 3

In this section we demonstrate how the greater flexibility and generality allowed for
by our approach can lead to more realistic option valuation models. To do so, we develop
a GARCH-SVG model, which allows for conditional skewness and kurtosis, and which
has not yet been analyzed in the literature. We compute option prices using parameters
estimated from return data only, subsequently construct option implied volatility smiles,

and compare them with option data.
Conditionally skewed variance gamma returns

We now introduce a new model where the conditional skewness, s, and excess kur-
tosis, k, are given directly by two parameters in the model. ! Consider the return of the
underlying asset specified as follows

Rt:H["}/[+£[:I.l[—'}/t+G[Z[, Zy i;i'dSVG(O,l,S,k).
The distribution of the shocks, SV G(0, 1,5, k), is a standardized skewed variance gamma
distribution which is constructed as a mixture of two gamma variables. > The conditional

2

variance, o;, can take on any GARCH specification.

Let z; ; and z; ;, be independent draws from two gamma distributions

2, T4, i=1,2,

1. In Christoffersen, Heston and Jacobs (2006), conditional skewness and kurtosis are driven by func-
tions of the same parameter.

2. See Madan and Seneta (1990) for an early application of the symmetric and i.i.d. variance gamma
distribution in finance.
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parameterized as

T =\/§(s—\/-§—k—sz) and 7, = V2 (s—i—\/%k—sz) .

If we construct the SVG random variable from the two gamma variables as

z = ﬁ (T121 4+ Tazay) — V2 (Tll + Tiz) ,
then z,b will have a mean of zero, a variance of one, a skewness of s, and an excess
kurtosis of £, thus allowing for conditional skewness and kurtosis in the GARCH model,
as intended. 3

The log moment generating function of & can be derived from the gamma distribu-
tion MGF as |

P, () = V2 (17 + 17 uo, — 4772 1In (1 + ﬁrluq) —47,%In (1 + ﬁrzuo',) :
so that the mean correction variable for the return can be found as 3 = ¥, (—1).

In general, there is no analytical solution to the EMM condition for this model. With
regard to the sufficient conditions for existence and uniqueness of a solution to the EMM
condition in Proposition 2, strict convexity is assured because the distribution is part
of the infinitely divisible class (Feller (1968)), but it is not straightforward to verify
the condition u1,+ 1 < up,. The boundaries for the SVG model are u;, = _2v2 and

T20;
Uy = —%g, and therefore we need to verify ZJTZQ > o+ ZJTIQ Since by construction
71 <0, 72 > 0, the right hand side may be negative for reasonable values of o, but this
is impossible to determine in general.

Using the formula for the risk neutral conditional log MGF

P (u) = —u¥, (v)) + ¥, (vi +u) — ¥, (V1)

3. The special cases where T; or T; are zero can be handled easily by drawing from the normal distribu-
tion for the relevant mixing variable z; , or z2,. When both 7; and 1, are zero then the normal distribution
obtains for z,.
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we can show that the risk neutral model is
R,:r,—){k—{-s,*, (IIII)
where

1 1 |
¥ (u) =2 (77 o, + 1 08, ) u—41t % 1In <1+—‘L‘ o u) —4772%1n (H——r o} u) ,
t () (1 1, 2 2,1) 1 2\/51 1,t 2 | 2\/5227;

with
of = —— fori=1,2 (I1.2)
1t \/§+ :—IZ'T,'O}VI ’ y Lo | .
We see that W¥2* (u) is exactly of the same form as W, (1), and therefore that ¥ =

Yo+ (—1).
Parameter estimates from index returns

As a benchmark, we use the conditional normal NGARCH model of Engle and Ng
(1993)

Ri=1—%+0z, z "% N(0,1). (I11.3)

where 4, =+ Ao, ¥ = %0}2’ and

2
62 = Bo+Pi62 |+ PG (zi_1 — B3)*.

Notice that the B3 parameter in the GARCH variance specification allows for an
asymmetric variance response to positive versus negative shocks, z;_|. This captures the
so-called leverage effect, which is another important empirical regularity in daily equity
index returns.

Table 1 reports the maximum likelihood estimates of the GARCH parameters. We
also report parameter estimates for a version of the model where the GARCH dynamics
have been shut down, that is, where B = B, = B3 =0. Notice the large increase in the

log-likelihood function from including the GARCH dynamics.
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For the implementation of the GARCH-SVG model, y; and 6/ are the same as in
the conditional normal model in (II1.3). We can calibrate the s and k parameters in
the GARCH-SVG model by simply equating them to the sample moments from the z,
sequence from the QMLE estimation of the GARCH model. These sample moments are

reported in Table 1.
Implied Black-Scholes volatilities from model and data

Armed with the parameter estimates from daily returns, we can transform the physi-
cal GARCH-SVG process to the risk-neutral measure and then assess its option pricing
implications. Figure | contains an illustration using option contracts sampled on three
different days. Implied Black-Scholes volatilities from S&P500 call options are shown in
circles, and the model-based implied volatilities are in solid lines. Moneyness, defined
as strike over spot price is on ‘the horizontal axis in all panels. The three columns of
panels correspond to 1-month, 2-month, and 3-month options respectively. Each row of
pane'l_vs corresponds to different levels of spot volatility. The top row contains results for a
low volatility day, September 13, 2000, which has an annualized GARCH spot volatility
approximately 20% below the average volatility over the 1999-2001 period from which
we sample the options. The middle row contains results for a medium volatility day,
December 19, 2001, which has a spot volatility close to the average volatility over this
period. The bottom row contains results for March 24, 1999, which has an annualized
spot volatility about 20% higher than the average.

Figure 1 shows that the GARCH-SVG model fits the observed implied volatilities
quite well. The model slightly underprices in-the-money calls at the one-month maturity
when volatility is around average, and it slightly underprices options at the 3-month
maturity when volatility is high. For the other contracts the model-based IVs are very
close to the data.

We conclude that it is possible to build relatively simple models capturing the con-
ditional volatility and non-normality found in index returns data, and that such models

provide the flexibility needed to price options.
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Table I11.1: Parameter Estimates and Model Properties

Independent Returns GARCH Returns
Parameters Estimate  Standard Error Estimate  Standard Error
r 1.370E-04 1.370E-04
A 0.0313 0.0129 0.0312 0.0121
Bo . 1.111E-04 9.9781E-06 1.516E-06 6.050E-07
B 0.8916 0.0274
Ba 0.0617 0.0154
B3 0.7422 0.0808
Properties Independent Returns GARCH Returns
Log-Likelihood 20,615.00 21,586.28
Volatility Persistence 0 : 0.9873
Annual Volatility 0.1673 0.1734
Conditional Skewness -1.2105 -0.4127
Conditional Kurtosis  27.3304 3.4935

We use quasi maximum likelihood to estimate an independent return and a GARCH return model
on daily S&P500 returns from January 2, 1980 to December 30, 2005 for a total of 6,564 ob-
servations. We report various properties of the two models including conditional skewness and
excess kurtosis which are later used as parameter estimates in the SVG models.
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Figure II1.1: Implied Volatility Smirks. Model and S&P500 Index Option Data.
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We choose three days from the 1999-2001 period to illustrate the performance of the SVG-
GARCH option pricing model. Moneyness, defined as strike over spot price, is on the horizontal
axis in all panels. The three columns of panels corresponds to 1-month, 2-month, and 3-month
options respectively. The three rows of panels correspond days with different levels of spot
volatility. The circles indicate implied Black-Scholes volatilities from S&P500 call options, and
the solid lines indicate model-based implied volatilities.

Figure II1.2: Quantile-Quantile Plot of S& P500 Returns Against the Normal Distribution
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We take daily returns on the S&P500 from January 2, 1980 to December 30, 2005 and standardize
them by the sample mean and sample standard deviation. The quantiles of the standardized
returns are plotted against the quantiles from the standard normal distribution.
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Figure I11.3: Autocorrelation Function of Absolute S&P500 Returns
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From daily absolute returns on the S&P500 from January 2, 1980 to December 30, 2005 we
compute and plot the sample autocorrelations for lags one through 100 days. The horizontal
dashed lines denote 95% Bartlett confidence intervals around zero.

Figure I11.4: Autocorrelation Function of Absolute GARCH Innovations
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From the estimated GARCH model in Table 1 we construct the absolute standardized sequence
of shocks and plot the sample autocorrelations for lags one through 100 days. The horizontal
dashed lines denote 95% Bartlett confidence intervals around zero.



Figure II1.5: Quantile-Quantile Plots of GARCH Innovations Against the Normal Distri-
bution
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From the estimated GARCH models in Table | we compute the time series of dynamically stan-

dardized S&P500 returns. The quantiles of these GARCH innovations are plotted against the
quantiles from the standard normal distribution.

Figure I11.6: Quantile-Quantile Plots of GARCH Innovations Against the SVG Distribution
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From the estimated GARCH models in Table 1 we compute the time series of dynamically stan-
dardized S&P500 returns. The quantiles of these GARCH innovations are plotted against the
quantiles from the skewed variance gamma (SVG) distribution.
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Figure II1.7: Implied Volatility Functions for Normal and SVG Independent Return Mod-
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From the estimated independent return model in Table 1 we compute call option prices for vari-
ous moneyness and maturities and we then compute implied Black-Scholes volatilities from the
model option prices. Implied volatility is plotted against moneyness on the horizontal axis. The
three panels correspond to maturities of 1 day, 1 week, and 1 month respectively. The solid lines

show the i.i.d SVG model and the dashed lines the i.i.d. Normal models.

Figure I11.8: Implied Volatility Functions for Normal and SVG GARCH Models
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From the estimated GARCH model in Table 1 we compute call option prices for various mon-
eyness and maturities and then we compute implied Black-Scholes volatilities from the model
option prices. The implied volatilities are plotted with moneyness on the horizontal axis. The
three panels correspond to maturities of 1 day, 1 week, and 1 month respectively. The solid lines
show the SVG GARCH model and the dashed lines the Normal GARCH model.



