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SOMMAIRE

Cette thése porte sur I’étude de certains aspects des systémes de Hitchin
généralisés, définis par Bottacin et Markman.

Ces systemes sont définis sur l'espace des paires stables qui consistent en
un fibré vectoriel holomorphe et une 1-forme méromorphe & valeurs dans les
endomorphismes du fibré, les pdles étant les points correspondant 4 un diviseur
D fixé.

Nous obtenons dans un premier temps une description algébro-géométrique
de ces systémes en terme de courbes spectrales et de fibrés en droite, puis
nous construisons des coordonnées de Darboux naturelles pour ces systémes.
Ces coordonnées permettent de déterminer une correspondance “birationnelle”
entre ces systémes et le produit symétrique d’une surface symplectique qui leur
est naturellement associée.

Dans des cas particuliers (en genre zéro et en genre un), les fibrés sont
rigides, et ces systémes peuvent étre exprimés en utilisant des matrices R
classiques qui sont rationnelles, elliptiques ou trigonométriques. Les systémes
obtenus sont alors les modéles de Gaudin respectivement rationnels, elliptiques

ou trigonométriques. Les formules sont explicitées pour ces trois cas.
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Par la suite, nous considérons cette fois les systémes de Hitchin généralisés
pour un groupe réductif complexe G arbitraire. Nous démontrons alors que la
structure locale de ce systeme intégrable est celle d’une fibration Pr — U par
des variétés de Prym généralisées au-dessus d’un ouvert U, qui paramétrise une
famille de courbes W-invariantes, W étant le groupe de Weyl de G.

Les systemes de Hitchin généralisés satisfont & une condition de rang 2
généralisée, ce qui permet d’en déduire une variété X qui va les caractériser.

Soit b la sous-algebre de Cartan de g et K le fibré canonique au-dessus de
la surface de Riemann E On démontre que X est 1’éclatement K;[B]/Qb h de
I'espace total du fibré vectoriel Kx[D] ® h sur . Les points éclatés sont les
points d’intersection de la courbe spectrale S et I'image inverse dans K5[D]®}
du diviseur D dans X.

Il y a une correspondance locale bijective entre ces systémes intégrables et

les variétés éclatées Kx[D]® b munies de 2-formes appropriées & valeurs dans

B.
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INTRODUCTION

Les systémes de Hitchin ont fait leur apparition en 1987 & travers les articles
[Hil] et [Hi2]. Les espaces de modules de fibrés vectoriels stables au-dessus
d’une surface de Riemann avaient été étudiés jusque 13 sous différents aspects,
mais Nigel Hitchin a apporté une toute nouvelle vision de ces espaces en faisant
appel & la géométrie symplectique de leurs fibrés cotangents. I1 démontra que
Von obtenait alors un systéme intégrable d'une fagon trés naturelle. Dés lors,
ces systemes sont devenus le théatre d’activités scientifiques trés intenses. De
nombreux mathématiciens et physiciens se sont effectivement penchés sur ces
systemes, chacun y apportant ainsi son grain de sel, et permettant d’obtenir de
plus en plus de propriétés.

Mais les choses ne pouvant s’arréter 14, cing années plus tard, une généralisa-
tion de ces systémes naquit. On la doit & E. Markman et & F. Bottacin.

Indépendamment ([M], [Bo]), et sous des aspects quelque peu différents, ils
ont tous deux démontré que 13 encore, on obtenait un systéme intégrable. II
fallait donc & présent vérifier si les différents résultats obtenus pour les systéemes
de Hitchin restaient valides pour les systémes de Hitchin généralisés. A travers
les deux articles qui constituent le corps de cette these, je tente d’éclaircir le

point sur certaines de ces questions.
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Avant de donner davantage de précisions sur le travail qui a été réalisé, je
vais faire un bref rappel des notions de base qui seront utilisées au cours de ce

travail.

Tout d’abord de quel espace de modules s’agit-il 7 [Hi2]

Soit ¥ une surface de Riemann, Ky son fibré cotangent holomorphe, G un
groupe réductif complexe connexe et E un G-fibré au-dessus de .

Soit M I’espace de modules des G-fibrés holomorphes stables au-dessus de ¥.
(La stabilité est une condition technique nécessaire & 1'existence d’une “bonne”
structure d’espace.)

L’espace cotangent 7*M sera donc I’ensemble des paires (E, ¢), olt E est
un G-fibré holomorphe stable et ¢ une section holomorphe de ad(E) ® Ky,
c’est-a-dire une 1-forme & valeurs dans le fibré adjoint associé & E.

Hitchin a démontré que pour les groupes classiques (Gl(r), Sp(r), SO(2r)
et SO(2r + 1)), I’espace cotangent 7* M de I'espace de modules des fibrés sta-
bles au-dessus d’une surface de Riemann posséde un systéme complétement
intégrable naturel. Faltings a étendu ceci aux groupes algébriques linéaires con-
nexes sur un corps de caractéristique zéro.

Généralisant ce systéme, on peut considérer ’espace Np des paires (E, ¢),
ou E est un G-fibré holomorphe et ¢ une section holomorphe de ad(E) ® K'5[D)],
c’est-a-dire une section méromorphe de ad(E) ® Ky admettant des pdles en un
diviseur D fixé. Np est I’espace de phase des systémes de Hitchin généralisés.
Dans les deux cas, les hamiltoniens peuvent se décrire comme coefficients des
équations définissant une courbe spectrale. Pour chaque paire (E,¢) de Np (le
cas T*M correspondant au cas ot D = 0), on considére la courbe spectrale
S de ¢ qui est dans l'espace total Xp ® h du fibré vectoriel K (D) ® b au-
dessus de X, h étant la sous-algébre de Cartan de g. Elle est découpée par les
équations p;(h) = a;(z), ol les p; forment une base homogene de polynémes
W-invariants sur § et les a; sont donc des sections de (Kyx(D))®des(pi) ay-
dessus de ¥. En exprimant les a; dans une base de HO(S, (K(D) ® b)®degp:),
Pespace des sections holomorphes globales de (K (D) ® h)®99P:, on obtient des
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fonctions qui commutent sous le crochet de Poisson et qui définissent un systéme
complétement intégrable sur Np.

Dans le cas de Gl(r), un point de Np peut étre représenté par un fibré vec-
toriel stable £ de rang r et une section ¢ € H(E, End(E) ® K (D)) admettant
des poles aux points du diviseur D. Pour chaque paire (E, ¢), on considére la
courbe spectrale S définie par det(¢ — ¢I) = 0 dans Pespace total Xp du fibré

vectoriel K (D), ainsi que le fibré en droite déterminé par la suite exacte:
* * p=CI 4
0= 7m"EQ® Ks(—D)—7*E — L — 0.

ot 7 : Kp — T est la projection.

A partir de la paire (S, L), on peut reconstruire la paire (E,¢), et ainsi
considérer Np comme I’ensemble des paires (S, L). Les hamiltoniens seront
alors les coefficients de ’équation de la courbe spectrale. S est une constante
du mouvement et le flot de L est linéaire sur la jacobienne.

Considérons le cas oit & = P! et G = GI(r). Le fibré E, s'il est semi-stable
et de degré 0, est alors isomorphe & Q9.

Dans le cas des systémes de Hitchin, 7* M est un point. Par contre, pour
les systémes de Hitchin généralisés (D # 0), le ¢, sur E trivial, devient une
fonction rationnelle & valeurs dans gl(r).

En identifiant les 1-formes holomorphes sur P! avec les fonctions ayant un

zéro double & I'infini, on a:

Npiose = {f : P! = gl(n)admettant des poles aux points du diviseur D}.

Si D = %04 avec o # a; si i # j alors:

") Npize = {N() = ZipE—}.

La variété Npyoc est une variété de Poisson, dont les feuilles symplectiques
sonf obtenues en fixant l'orbite coadjointe Oy, des y;. La formule (*) met en

évidence un symplectomorphisme entre les feuilles symplectiques de Npiooo €t
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les produits des orbites coadjointes O, x...xO,, . Pour obtenir les hamiltoniens,

il suffit alors de considérer le polyndéme
p(X, () =det(N(A) - (I)=0

et de déterminer les coefficients p;;(A) = res(trtA*N7())) de cette équation.

Les équations du flot sont alors données par:
N = [(res(trA*N?~1)),, N]

ou + dénote la partie polaire du développement de I’expression.

Considérons comme exemple, l'oscillateur de Neumann: on a £ = P!, G =
Gl(2) et
0 -1/2
— y=1
N() =2 (0 0 )

_’_E_l_ _E?=1$iyi/(/\ = ai) _Zley'l,z/()‘ = O!i) .

Le flot correspondant 3 I’hamiltonien de IV est

T T
- 'y At+y'y
N =[B,N] avec B = (—:vTa; A ) :
On peut linéariser le flot en passant & des coordonnées elliptiques A, avec des
impulsions correspondantes ¢,. Elles sont données par les équations suivantes:

sn T i
=X - oy a(N) S 275, —

et on démontre que (A, (,) définissent un systéme de coordonnées de Darboux.

Ces deux équations sont équivalentes &

[(¢T = N(AD)]agi(1,0)T =0,

ou adj représente la matrice des cofacteurs.



Dans le cas plus général de G = GI(r) sur P*(C), on a la suite exacte:
0= O(=n)@ ' ENper 1,1, g

et on démontre encore [AHH] que les coordonnées de Darboux (A,,(,), sont
données explicitement par [((I — N(A))].q4(1,0,...,0)T = 0.

Par ailleurs, d'un point de vue algébro-géométrique, le fait que (Au, Cu) solent
des coordonnées de Darboux se traduit de la facon suivante: les variations de
la courbe S dans l’espace total 7 correspondent 3 des sections du fibré normal
N & la courbe S dans T, c’est-3-dire des éléments de H(S, N). L’espace des
variations permises dans une feuille symplectique peut ensuite étre identifié &
HY(S8,Ks) ol Ky est le fibré canonique. Par ailleurs, vu que les variations du
fibré en droite L correspondent au groupe de cohomologie H* (S,0), on peut

décomposer I'espace tangent de 'orbite comme la somme:
HY(S,K)® HY(S,0).

Par une relation de Serre, les deux espaces sont duaux l'un de l'autre. On
obtient une forme symplectique naturelle wg sur ’espace tangent. On démontre
qu’il s’agit en fait de la forme de Kostant-Kirillov. Ceci peut &tre vu comme
une “abélianisation”. On réduit la forme de Kostant-Kirillov 3 une expression
concernant des fibrés de rang 1, en passant & un revétement S — ¥. On peut
ensuite calculer la forme wg, et on trouve que (Au, €u) sont des coordonnées de
Darboux

Dans le premier article “Separating coordinates for the generalized Hitchin
systems and the classical R-matrices”, qui constitue le Chapitre 1 de cette
these, ces résultats pour P; sont généralisés aux cas d’une surface de Riemann
quelconque. Dans cet article, une attention particulidre est apportée aux deux
cas suivants (le cas ol la surface de Riemann est la sphére de Riemann ayant
eté traité par M.R. Adams, J. Harnad et J.C. Hurtubise):
- la surface de Riemann est une courbe elliptique,

- la surface de Riemann est une courbe nodale rationnelle.
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Ce sont des cas ol le fibré E est rigide. On obtient alors respectivement
les systémes de la matrice R elliptique et trigonométrique. Les coordonnées ex-
plicites sont obtenues & partir du cas général des systémes de Hitchin généralisés.

Ce travail a été réalisé pour le cas ol le groupe considéré initialement est
Gl(r). La question qui vient inévitablement & l'esprit est: Que se passe-t-il
lorsque ’on considére un groupe réductif 'complexe quelconque? L’objectif de
larticle “The generalized Hitchin systems and Prym varieties”, qui constitue le
Chapitre 2 de cette these, est de répondre 4 cette question. A travers cet article,
il est démontré, dans un premier temps, que ce systéme peut étre percu comme
I’ensemble des paires constituées d’une courbe spectrale S qui vit dans I’espace
total de K[D]® b et d'un H-fibré au-dessus de S (H étant le sous-groupe de
Cartan de G et h I'algebre de Lie qui lui est associée).

Nous démontrons alors que la structure locale de ce systéme intégrable est
celle d’'une fibration Pr — U par des variétés de Prym généralisées au-dessus
d™un ouvert U, qui paramétrise une famille de courbes W-invariantes, W étant
le groupe de Weyl de G. Cette structure symplectique permet d’obtenir une
nouvelle fois une abélianisation (réduction de G & H).

Ces systeémes satisfont 4 une condition de rang 2 généralisée qui permet de
mettre en évidence une variété X qui va les caractériser. Cette variété X est
'éclatement Ks[D]® h de P'espace total du fibré vectoriel Kx[D]® h sur %, les
points éclatés étant les points d’intersection de la courbe spectrale S et I'image
inverse dans Kx[D] ® b du diviseur D dans X.

Il y a une correspondance locale bijective entre ces systémes intégrables et

e

les variétés éclatées Kx[D] ® h munies de 2-formes appropriées 3 valeurs dans

b.



CHAPITRE I

Article 1: “Separating coordinates for the generalized
Hitchin systems and the classical R-matrices”

Cet article, écrit en collaboration avec le professeur J.C. Hurtubise, sera publié

dans la revue “Communications in Mathematical Physics” (2000).



Separating coordinates for the generalized
Hitchin systems and the classical r-matrices

J.C. HURTUBISE AND M. KJIRI

ABSTRACT: We exhibit natural Darboux coordinates for the generalized Hitchin systems
studied by Bottacin and Markman. These systems are defined on spaces of stable pairs consisting
of a vector bundle and a form-valued meromorphic endomorphism of the bundle. In special cases
(genus zero, genus one), the bundles are rigid and one has the rational, trigonometric and elliptic
Gaudin systems. Explicit formulae are given in these cases.

1. Introduction

Integrable Hamiltonian systems occur in a wide variety of contexts in math-
ematical physics, ranging from the very classical problems of 19th century me-
chanics to the systems occuring in Seiberg-Witten theory. One general class
of system which appears in all these guises is the system, due to Markman
[Ma] and Bottacin [Bo], which is also known as the generalized Hitchin sys-
tem. It is defined on a moduli space of pairs (holomorphic vector bundles over
a Riemann surface, meromorphic section of the adjoint bundle). Specializing
to various cases, mostly over the Riemann sphere, gives the classical examples
(tops, geodesics on the ellipsoid, etc.) as well as many interesting and impor-
tant integrable systems of current interest (Gaudin model, Landau-Lifschitz,
and others). More precisely (see the book [FT], the survey [RS2], and the
references therein, or the articles [M, AvM, RS1, AHP, HH]):

- Over rational curves, and in some cases, over elliptic curves, and their
degenerations into nodal curves, one has that the bundle is rigid, and one
is dealing with endomorphisms of a fixed bundle. The systems can then
be expressed in terms of classical r-maftrices, either rational, elliptic or
trigonometric, and the systems one obtains are often referred to as the

rational, elliptic or trigonometric Gaudin model.

- Specializing further, one can fix the curve to be rational, fix the rank, and

The authors of this article would like to thank NSERC and FCAR for their support



9

of the classical systems: the Neumann oscillator, the various tops, as well
as finite gap solutions to the KdV, the NLS, the CNLS and the Boussinesq

equations.

- In the elliptic case, one can also further specialize, for example, to the

Landau-Lifschitz equation, or the Steklov top.

One natural question in integrable systems is of course solving the equations
and finding the flows, and this usually involves some form of separation of
variables. This note is devoted to the question of separation of variables for the
generalized Hitchin systems, and we will find that there are separating Darboux
coordinates which are very natural from a geometric viewpoint, corresponding
to the standard algebro-geometric description of these systems in terms of curves
and line bundles. This can then of course be specialized to all the cases alluded

to above, and in this specialization, one obtains quite detailed formulae.

The coordinates also define a “birational” map between the systems and a
symmetric product of a symplectic surface naturally associated to each system.
(More properly, rather than a symmetric product, one should be saying a Hilbert
scheme of O-cycles). Other systems with such coordinates (“rank two systems”)

were studied in [Hul].

In the special cases of interest to mathematical physics corresponding to
when the bundle over the Riemann surface is rigid under deformations, there are,
as we mentioned above, three cases. When the Riemann surface is the Riemann
sphere P!(C), one has the rational r-matrix systems, and the separation of
variables was given in [AHHI], as a consequence of a direct calculation. Here we
finish the problem and treat the case when the curve is elliptic (elliptic r-matrix)
or a nodal rational curve (trigonometric r-matrix), and the explicit coordinates
will follow from the general considerations on the Bottacin-Markman systems;
such a procedure can also be used to give another derivation of the results of

[AHHI]. Similar coordinates were produced in the rank two elliptic case by
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Sklyanin [S].

Section two of the paper will begin by recalling some facts about the gen-
eralized systems, following [Ma]. In section three, we will show how the coordi-
nates arise, show that they are Darboux coordinates, and explain how they lead
to an easy integration of the equations of motion. Section four specializes to
the special case of an elliptic curve, and section five to the nodal curve. Finally,
there is another context in which the same r-matrices are used, and that is in
defining integrable systems over Poisson-Lie groups. In section 6 we will explain

how the results of the paper should extend to cover this case.
2. The Bottacin-Markman or generalized Hitchin systems.

Let 3 be a closed Riemann surface of genus «y, D a positive divisor of degree
n on Y. We consider over £ the moduli spaces M(r, D, d) of Higgs pairs (E, ¢),

where
- E is a degree d rank r holomorphic vector bundle over X.

- ¢, the Higgs field, is a holomorphic section of the associated adjoint bun-
dle End(F), twisted by Ks(D), where Ky is the canonical bundle of X:
¢ € H°(X,End(E) ® Kx(D)). Alternately, ¢ is a meromorphic End(E)-
valued 1-form, with poles at the divisor D. The pairs must satisfy an ap-
propriate stability condition; see [Bo],[Ma]. The case considered by Hitchin
in [Hi1],[Hi2], is that of D = 0.

The first result is that the M(r, D, d) are Poisson. The Poisson structure
can be defined directly ([Bo] or [Ma], section 7), but it is easiest to obtain it by

Poisson reduction of a larger space, the cotangent bundle of the moduli space

of bundles with level structure at D.

Following [Ma], we consider the moduli space U(r, D, d) of vector bundles
with level structure at D, that is the moduli space of pairs (E,tr) where E is

rank r vector bundle over X, and tr is a trivialization of E over the divisor D,
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that is an isomorphism between F|p and (’)%". Again, there is an appropriate
stability condition one must impose to get a good moduli space. The tangent
space to U(r, D,d) at (E,tr) is canonically isomorphic to H(X, End(E)(—D));
dually the cotangent space is H°(Z, End(E) ® Kx(D)). The cotangent bundle
T*U(r, D,d) is then identified with a space of triples (E,tr, ¢), with E, tr as
above and ¢ € H°(Z, End(E) ® Kn(D)).

There is a natural action of Gi(r, D), the invertible Op-valued r x r ma-
trices, on U(r, D, d), simply by modification of the trivialization ¢r. The action

lifts to a symplectic action on the cotangent bundle, and one has:

PROPOSITION (2.1) [Ma)] 1) The action of Gl(r, D) has as moment map

p:T*U(r,D,d) — gl(r, D)*

A (2.2)
(B,tr,¢) — ¢

where qg 1s the expression of the polar part of ¢ over D in the tr-trivialization,

and gl(r, D)* is identified with gl(r, D) ®o, (Kz)|p by a trace-residue pairing.

2) The quotient T*U(r,D,d)/Gl(r,D) is then Poisson, and is naturally
identified over an open dense set with M(r,D,d). Its symplectic leaves are

obtained as inverse images under p of coadjoint orbits.

The next step is to define the integrable system on M(r, D,d), that is to
specify the ring of Hamiltonians. This is given by considering for each pair
(E, $), the spectral curve S of ¢. This curve lies in the total space Kp of the
line bundle K(D) over . It is cut out by the equation

det(¢ — ¢I) = 0. (2.3)

Here ( represents the tautological section of 7* K (D) over Kp, where 7 : Kp —

Y. is the projection. The adjunction formula tells us that the genus of S is

(r-1)rn

g=r*(y-1)+ g

+1. (2.4)
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We expand (2.3) in powers of (:
Cr -l—a.]Cr_l +a2§’""2+...+ar = 0. (25)

We have that the a; = a;(F, ¢) lie in HO(Z, (K(D))®*). These spaces have di-
mension d; = (2i+1)(y—1)+in. Let vy, ...vg4, ; be a basis for H(Z, (K (D))®?).
Expanding a;(F, ¢) as

d;
ai(B,¢) = f;4(E, $)vss (2.6)
j=1

gives one functions f;; on M(r, D, d).

PROPOSITION (2.7) [Bo, Mal]l) The functions f;; Poisson commute, and
define a completely integrable system on M(r,D,d). Joint level sets of the
fji are given by fixing the spectral curve S, so that the spectral curve map

M(r,D,d) — (family of spectral curves) defines a Lagrangian foliation.

2) The symplectic leaves of the Poisson structure on M(r, D, d) correspond

to fixing the intersection of the spectral curve with the divisor x~ (D).

3) On the generic symplectic leaf, the leaf of the Lagrangian foliation at a

smooth spectral curve S is a Zariski open set of the Jacobian of S.

The leaf of the Lagrangian foliation at S is thus a family of line bundles on
S. The line bundle L corresponding to (E, ¢) is defined via the exact sequence

of sheaves over the surface Kp:
0o mEQKL(-D)YrE oL 0. (2.8)

When the spectral curve is smooth, L is a line bundle supported on the spectral

curve.

PROPOSITION (2.9) [Hul] One can then reconstruct (E, ¢) from (S, E):

- E=n,(L),
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- ¢ is the map induced on E by multiplication by the tautological section ¢

on L.
REDUCTION TO SL(r,C)

In more generality, one can consider similar structures for arbitrary reduc-
tive groups G. The bundle F then gets replaced by a principal G-bundle P,
and the bundle End(E) gets replaced by ad(P). We will not consider these
structures in such generality; see however [Hu2], and the references therein. We
consider the case G = SL(r, C). One then has a moduli space M(SL(r,C), D, d)
of pairs (E, ¢), with E a rank r vector bundle with A” (E) holomorphically triv-
ial, and ¢ a meromorphic s!(E)-valued 1-form, with poles at the divisor D. We
now exhibit how these spaces can be obtained from a symplectic reduction, at

least up to an r-fold covering.

The group Picy(X) of degree zero line bundles on the base curve ¥ acts on

M(r, D, d) by
' Pico(X) x M(r, D, d) — M(r,D,d)

, (2.10)
(V,(E,¢)) ~ (E®V,9)

Alternately,
(V. (S, L)) = (S, L@ V). (2.11)

This action is symplectic, and is indeed Hamiltonian, being the flow of the

Hamiltonians

tr(¢) € H(Z, Kx(D)). (2.12)

If we take the reduction at 0 € HO(Z, Kx(D)) with respect to the action
of this group, one fixes the trace of ¢ to be zero, then quotients out the action
on E of tensoring with a line bundle. Up to an r-th root of the trivial bundle,

one can achieve this by fixing the maximal exterior power of E to be a fixed

line bundle V| giving:
PROPOSITION (2.13) The space of pairs

My (r, D,d) = {(E, ¢) € M(r, D, d)|A"(E) = V, tx(¢) = 0} (2.14)
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embeds in M(r, D, d), symplectically over its smooth locus. It is a covering of
the quotient tr~1(0)/Pico(X).

If we consider the case d = 0, V trivial, then E is an SL(r,C)-bundle, and
then Mo(r, D,0) = M(SL(r,C), D, 0).

3. Symplectic geometry of M(r, D,d)

We are thus in a situation in which we have two Lagrangian fibrations: the
first, on the cotangent bundle T*U(r, D, d), is given by projection to (r, D, d),
and the second, on the reduced space M(r, D, d), by the integrable system, that

is, a map to the space of spectral curves.

Corresponding to the first fibration, we have that the tangents to the fibers
are given by elements of H°(X,End(E) ® K(D)); on the base, deformations of
the bundles, along with the level structure, are given to first order by elements
of H'(Z,End(E)(—D)). One then has an exact sequence:

0 — H°(Z,End(E) ® K(D)) = T(T*U(r, D,d)) - H*(Z,End(E)(-D)) — 0.
(3.1)
We would like to split this sequence at (E, tr, ¢), allowing us to write:

T(T*U(r, D,d)) ~ H'(Z,End(E)(-D)) ® H*(Z,End(E) ® K(D)). (3.2)

Cover & by n + 1 open sets, Uy = & — support(D) and U;,i = 1,..,n disjoint
discs centered at the points p; of D. Choose trivializations of E on Uy, and
also trivializations on the U; compatible with #r at Di, and let Fp; be the
transition functions of E from U; to Uy for these trivializations. Now let V be a
subspace of the space of cocycles for End(E)(—D), mapping isomorphically to
H'(Z,End(E)(—D)). The (E',t') near (E, tr) can be obtained from transition

functions Fo ; - exp(vo,i), with (vo;) = v € V. This defines a parametriszation
V —=U(r,D,d),
and so a symplectic map

V x V* = T*U(r, D,d). (3.3)
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This gives a splitting, but it is not the one that we want. We repre-
sent a one parameter family of elements (E(t),tr(t), ¢(t)) of T*U(r, D,d) by
(Fo,i(2), do(t), ¢:(2)), with ¢o(t)) = Fo,i(t)¢:(t)Fo,i(t)~" on the overlaps UpyNT;,
and choose Fp ;(0) = Fp ;. Att =0, the corresponding tangent vectors are given
by wvoi = Fy; Fo, do, i, with

$o = Fo; - ([vos, di] + i) - B

One can split (3.1) as follows: one can write the Serre duality pairing explicitly

as

<v,¢>= Ztr(resz-('vo,i - $i))-

For any sections ¢; over U} define % € H%(X, End(E)® K (D)) by asking that
foralw eV

< w, 9% >= Ztr(resi(wo,i - 1;). (3.4)

Applying this to our vectors gf),; defines the splitting of (3.1). Composing with
the differential at the origin of the map (3.3), we have a map from V x V* to
H*'(Z,End(E)(-D)) ® H°(Z, End(E) ® K(D)) which is given by

(©.8) = (0,6 + 5o, 1)

Using this, we find that the symplectic form with respect to our splitting of
(3.1) is given by:

(v, ), (v, 6*)) =< v,¢* > — < v*,¢ > + < [1,0],¢ > (3.5)

From the point of view of the second Lagrangian fibration, the first order
deformations of the spectral curve at a fixed spectral curve S are given by
sections of the normal bundle Ng, that is, via the adjunction formula, the
bundle Ks ® K¢ . We note that the canonical bundle of Kp is m™O(-D), so

that Ng = Ks(D). If one is interested in the deformations of the spectral curve
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which have fixed intersection with 7*(D) (so that in M(r, D, d) one is moving
along a symplectic leaf £ ), we then have that our infinitesimal deformation

space for the curves is given by sections of K.

In turn, noting that deformations of a line bundle on S are given by
the cohomology group H'(S,0), we have that the tangent spaces at (S, L)
to M(r, D,d) and to the leaf £ in M(r, D,d) fit into exact sequences:
0 — HYS,0) - T(M(r,D,d) — HYS,Ks(D)) — 0
(3.6)
0 - HYS,0) - T(L) — HY%S,Ks) — o.
Again, we want to split this last sequence at (S, L): the geometric way of doing
this is to extend the line bundle to a neighbourhood of S in Kp, giving us a

way of moving the curve while keeping the line bundle fixed. One then has
T(L) ~ H'(S,0)® H*(S, K5s). (3.7)

On this sum there is again a natural skew form Qg, as the summands are again
Serre duals. The extension of the line bundle and the splitting (3.7) it produces
are not unique, but the splittings all define the same symplectic form, as a

consequence of (3.8) below.
b) Abelianization: Qg = Q5 red

Our first result “abelianises” the symplectic form Qs by lifting to the curve
S:

PROPOSITION (3.8) On the leaves £ in M(r, D, d), over the locus of smooth

curves, {ds = Qs ,.q, the reduction of the form on T*U (r,D, d).

ProoF: It suffices to prove the identity on a dense set, and so we will make
the assumption that the spectral curve over the divisor D is unramified. The
symplectic reduction by Gi(r, D) from T*U(r, D, d) to £ can then be thought
of as a two step process: one first restricts to the subset 7" in T*U (r,D,d) of

elements (E,tr, ¢) such that ¢ is diagonal over D in the tr-trivialization, then
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takes the symplectic quotient under the residual action of the torus Tir, D}
Let us then take a two parameter family A(z,y) = (E,tr, ¢)(z,y) of elements
of T lying in the inverse image of £, and compute the form x(Az, Ay) on this
family at (z,y) = (0,0). Corresponding to A(z,y), there is a family of curves
7 : S(z,y) — X, and line bundles L(z,y) over S(z,y); the trivialization of E at

D in an eigenbasis of ¢ gives a trivialization of L at x~ (D).

We again cover the base curve ¥ by open sets Uy = X — support (D), and
Uiyi = 1,...,n non-intersecting discs around the points p; in D, so that the
curves S(z,y) are unramified over U;. Let ); be coordinates on the U; centred
at pi, so that d); is a trivialization of K; let p be a trivialization of K over Uj.
Over U;, we let the r branches of the curves S (z,y) have coordinates in X given
by forms ; ;(z,y, A;)dAi, j = 1, ...,7; these have poles at \; = 0. Similarliy, in
the p-trivializations, let the r branches of the curve be given by fi,j (z,9, \)p
Choose trivializations of the L(z,y) over the open sets =1 (U;),i = 0,..,n, in
such a way that they are compatible with the trivializations over n~1(D), and
let the transition functions for L(z,y) from 7=1(Up) to #~1(U;) be given by an

r-tuple of functions f;(A;) = f;(As, z,v), one for each branch of the curve.

Over U;, given the trivializations of L, we have a natural basis for E =
7« (L), whose j-th element is given by a section which is only non-zero on the
J-th branch of S over £, and coincides with the trivialization on that branch.

In this basis,

¢(£U, Y, ’\'L) = diag(sz,j (x7 Y, )‘z))d)‘z (39)

On the open set Uy, using the section p of K~ K, we have an identification
L(z,y) ~ n*(Ks(D)). The tautological section ¢ of Kx(D) over Kp then gets
identified with a global section of L over the spectral curve, which identifies
sections of E' = ,(L) as polynomials in ¢ of degree r — 1 with coefficients in
Oy, essentially by Lagrange interpolation. In the basis 1,¢,¢%, ..., the matrix
of ¢ is in rational canonical form. The transition function for E from this

rational canonical basis to the diagonal basis over U; is then given in terms of
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the Vandermonde matrix I//T)_.,-,k = (fi,j(a:,y, X))l k=1,.,r by

A—-l .
Foi=VD - diag( fz-,j)%, (3.10)

where f; ; = f;(A\).

Now let us take derivatives along our family parametrised by tr. The
cocycle representing the variation in the bundle E in the z direction at (z,y) =

(0,0) is given in the U; trivialization (setting F = Fy; ) by
F) F=diag, (In(f:,5))s)+diag; (£} )-diag; (($:,7(0,0,0:))2)-VD' - VD " diag, (f1.;), (3.11)

where ﬁ;k = (J—1)(Gi,j(z,y, A:))*~2. There is a similar expression for F~1F,.

The derivatives of ¢ in the U; trivializations are given by
¢z = diagj(((};,j(o, 0, )\z))m)d)\, (3.12)

With this in place, the evaluation of Qs (A4,, A,) is given by

Zrespi (P Fe) - (by) = (FT'Fy) - (60)) + (F7'Fs, F1F,] - 9))). (3.13)

Now we can substitute the values of (3.11,3.12), and get

o5 Yesl(n(Fi,5)) 2 (€6, (0,0,%:))y — (In(£:,5))y (2,7 (0,0,A:)) 2]+
Z ! J y/\/ /\jl J Ll Al Lt ) (3'14)
2, restr([diag; (($:,5(0,0,0:))2)- VD VD™ diag; ((6:,;(0,0,7:))y)- VD' -¥D ~'1,6)

The second term, however, vanishes, as one can replace fi,j by /\?rdp : (D)Ci’j
and replace 171\), 17-1\)' by the corresponding VD,V D' defined using /\?rd" R i
instead of §; ;. The derivatives (/\?rd”" - (IG5 be (/\;)rd” (D) ¢i,j)y vanish at the
origin to order ord,, (D), since we are taking the symplectic reduction. This

gives a trivial residue. The evaluation of Oy (Az, Ay) then reduces to

2 _res[(In(f:,1))a(G5(0, 0,0))y — (In(f 1))y (6,50, 0, As))a). (3.15)

1,5
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From the explicit version of the Serre duality pairing
H'(S,0)® H°(S,Ks) — H'(S,Ks) — C,
this is, however, exactly Qg(A4,, 4,).

REMARK (3.16): The proof given above shows us that a trivialization of L
over 7~ !(U) gives us a ”Lagrange interpolation basis” 1, ¢,¢%.. for E = 7, (L),
and so a basis for the line bundle det(E). If, in particular, L is the line bundle
associated to some divisor C supported away from the branch locusof 7 : S — 2,
this gives us in a straightforward fashion:

r{r—1)

det(E) = [x(C)] ® (K4(~D))®=. (3.17)

¢) Divisor coordinates for Qg.

The pairs (curve S of fixed genus g, line bundle L on the curve of fixed
degree d) parametrize the symplectic leaves of the moduli space. Let us fix a
spectral curve Sp and a line bundle Ly, and let (S, L) denote a nearby point.
Choose a line bundle Ky of degree g—d on a neighbourhood of Sy such that the
line bundles I = Ky ® L (which are then of degree g) on the nearby curves have
a one-dimensional space of sections. Corresponding to such generic L, there is
then a well defined divisor E# gu- These points lie in the curve S, and so in
the surface Kp. The point of this section is that when these points are distinct,

they can be thought of as providing Darboux coordinates for the varieties M.

Indeed, the surface Kp comes equipped with a standard meromorphic two-
form w, with poles at the inverse image in Xp of the divisor D. Choosing again
a two parameter family A(z,y) = (S(z,y), L(z,y)), with (5(0,0),L(0,0)) =
(So, Lo), we can take the derivatives (9u)e, (gu)y of the corresponding curves

gu(z,y) in Kp. We have:

PROPOSITION (3.18)

> w((@u)s (gu)y) = Qs (4s, Ay). (3.19)
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PROOF: Let us write a local equation for the curves S(z,y) as g(z, y, A, €] =1
With respect to some suitable covering of the curves by open sets, we can
suppose that the zeroes of the sections of f,(x, y) are cut out by s(z,y, A, ¢) =0,
so that the g, are given by the simultaneous vanishing of g and s. We note that
transition functions for L over S are given by the function s on punctured disks

surrounding the zeroes of s. We have:

w

w((gu)ss (qu)y) = Res ((Sygm — smgy)ﬁ) : (3.20)

where Res denotes the two-dimensional residue; if w is F(A, Q)dAAdC, then this

expression is simply:

f(/\> C) : (Sygm - smgy) ; (3(9)\ - SAgC)_l- (3-21)
Over the curve S, the “Poincaré residue” reduces this to a residue on the curve:

Sy gz Sz gyw
—= PR(=—)—- —= PR(Z2) ). 3.22
o, (2 PR(E) - 2 p (%) (3.22)

The terms p, = P.R(%2%), p, = P.R(%£*) are simply the expressions of the
sections of the normal bundle giving the deformations as a 1-form, under the

various identifications which come into play, giving us
s s
2 @@ (@) = D resq, (2 py - 22 ), (3.23)
" 7
which is the Serre duality form Qg on (3.7), applied to A,, A,.

From this, if one chooses Darboux coordinates (2,¢) for the form w on

Kp, then expressing g, in these coordinates as pairs (z,,(,), one has Darboux

coordinates on M.

One can then linearize the flows by a standard Liouville generating function
technique. Let Cy,...C; denote a basis for the Casimir functions amongst the

Hamiltonians, and choose a complementary basis Hy, ...Hy for the rest of the
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Hamiltonians. Fixing C; determines a symplectic leaf £, and fixing the H; as

well determines a spectral curve S, and so defines ¢ implicitly in terms of z and
the H;, Cj: ¢ = ((2,H;,C;). We set

Flz, H;, Cj) =3 / * S0, (3.24)
M

Since 0F/0z, = (,, the Liouville generating technique tells us that the deriva-
tives Q; = OF/0H; provide linearizing coordinates for the H; flows. Setting
P(z,¢) = det(d(z) — ¢T), we have

BP/ 0H;)
d 3.25
Z j[ (8P/8z) 0z) Wz
The integrands, as H; varies, give a basis of the Abelian differentials over the
spectral curve. This is a consequence of the Poincaré residue formula and
the corresponding exact sequence for differentials over the surface Ko (see,

e.g.[GH]). This gives the linearization one expects from the algebro-geometric

picture.
d) The systems as symmetric products of surfaces

These Darboux coordinates are a particular manifestation of a more gen-
eral phenomenon. Indeed, suppose that we have a local integrable system of

Jacobians, that is a Lagrangian fibration
H:J—U. (3.26)

where U is a ball in C9, and J is 2g-dimensional, symplectic (with form Q). The
fibers are Jacobians of smooth genus g curves, and so, corresponding to J there

is a family of curves S, with

H:S—=U. (3.27)

The Abel map gives us an embedding

A:S—=7. (3.28)
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This map is not unique, but depends on the choice of a base-point in the fibre
Jp for each h in U. One has

THEOREM (3.29) [Hul]

(i) Let A*Q A A*Q = 0. Under the embedding A, the variety S is coisotropic.
Quotienting by the null foliation, one obtains, restricting U if necessary, a

surface Q to which the form A*Q projects, defining a symplectic form w
on Q. The curves Sy, all embed in Q.

(i) If A, A are two Abel maps with A*Q A A*Q = 0, A*Q A A*Q = 0, then
A*Q = A*Q, when 9 = 3, and so Q depends only on S and not on the
particular Abel map chosen. For g = 2, A*Q A A*Q is always zero.

(iii) There is a symplectic isomorphism
®:5P°(Q,w) = I,

defined over a Zariski open set, between a desingularisation g\ﬁg(Q,w)
= 3’\159(62) of the g-fold symmetric product SP9(Q) of Q and J. The
symmetric product SP9(Sy,) of the curves is Lagrangian in sP° (@), and
the restriction of ® to SP9(S}) is the Abel map

SPg(S},,) — Jp .

ﬁg(Q) is the Hilbert scheme of length g 0-dimensional subschemes of Q.

The case studied here is an example of this phenomenon. Indeed, in our
case, the spectral curves are all embedded in the surface Kp, which has a
canonical meromorphic two-form w, with poles along D. On the other hand,
the spectral curves on the symplectic leaves also have fixed intersection with
D. Blowing up the surface at these intersection points gives a surface Kp in

which the curves move freely, and in which the lift of the w is holomorphic.
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Proposition (3.18) is in effect expressing the moduli space as the symmetric
product of Kp. Similar theorems can be proven for integrable systems of Prym

varieties; see [HM].
4) The elliptic Gaudin system.
a) Elliptic Lie-Poisson structures.

We first recall the elliptic Lie-Poisson structures and the integrable elliptic

Gaudin systems, following [RS2]. Let g = exp(2mi/r), and set

010 ... 0
0 0 1 0
Iy = diag(1,g,9% ..., ¢"Y), Jper gt " 1. (4.1)
0 0 0 1
1 00 0
Then
LLITY =g, (4.2)

We consider the algebra £, of semi-infinite Laurent series in the variable z — v

with values in sl(r, C):

Ly={ i ¢i(z—v)', k€ Z, ¢; € sl(r, O}. (4.3)

i=—k
Let £ be the subalgebra of series with ¢; = 0 for i < 0. Now let D,.q4 represent

a sum vy + Vs + ... + v, of distinct points v; in the fundamental domain of an

elliptic curve
L =C/(w1Z + weZ). (4.4)
Set
L= @iﬁuu £+ = GB'LE;:,
and define the subalgebra 7 € £ of meromorphic functions with values in

sl(r,C) and with poles only at the translates of the v;, satisfying the quasiperi-

odicity relations:
¢(Z + wi) = Iz(ﬁ(z).[;l, 1= 1, 2. (45)
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One can split £ as a sum £ = £t & 7. Furthermore, we have on £ a bilinear
form given by (a,b) — tr(3_,res,,(ab)). This identifies 7 with the dual of
Lt; we equip 7 with the canonical Lie Poisson bracket; one has that along
symplectic leaves, the order of the poles at D,y and the conjugacy class at
D,..4 are both fixed.

Following either the theorem of Adler, Kostant and Symes [AKS] , or by
using the r-matrix formalism as in [RS2], one has that the functions on 7

defined as the coefficients of the equation of the spectral curve:

det(¢(z) —¢I) =0

Poisson commute on 7, and define an integrable system. The flows are given

by Lax equations:
$(2) = [P(£(9(2), 2)), $(2)], (4.6)
where P is the projection from £ to 7, and f is a function depending on the

choice of Hamiltonian.
b) Bundles on an elliptic curve

Vector bundles on an elliptic curve were classified by Atiyah [A]. As a

consequence of his results, one has:
PROPOSITION (4.7) Let (r,d) = 1.

(a) The stable bundles E of rank r, degree d on ¥ are classified by their
top exterior power A"(E). One has that E ® L, L € Pic®(X) is isomorphic to
E ifand only if L™ ~ O.

b) For0<d<r, h%(Z,E) =d.

By the theorem of Narasimhan and Seshadri[NS] , stable bundles corre-
spond to irreducible representations of a Z-central extension of the fundamental
group; the center, for bundles of degree d, rank r , is mapped to ¢%. In our case,

that of bundles over an elliptic curve, we are looking at a central extension of
Z x Z.
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We fix the degree to be one. The generators Ty, Ty of Z x Z satisfy the

relation

T = g7 T, (4.8)

From this, one sees that T3 commutes with 73, T5 and so for an irreducible

representation, must be central. Similarily, 77 is also central.

Multiplication of Ty, Tp by scalars corresponds to tensoring the vector
bundle by a line bundle, and so one might as well begin by classifying irreducible
representations satisfying 7{ = T3 = 1. One can begin by conjugating 7} to
the diagonals:

Ty = diag(¢™,¢™, ...,¢™), (4.9)

with 0 < m; < my < ms... < r — 1. The relation (4.8) tells us then that
(T2)i; = 0 unless m; — m; = —1, modulo r. From this, one sees that the
only way to avoid having an invariant non-trivial proper subspace is to have
m; =i —1 (we had arranged the m; in increasing order) . One can then choose
the basis so that

0 1 0 0
0 0 1 0
Ty = (4.10)
0 00 1
1 0 0 0

In short, we can set T; = I;.The stable bundle E determined by the mon-
odromy matrices I; over an elliptic curve is then unique, up to tensoring by a
line bundle. It has a non-zero section, which we will compute. In terms of the
matrices I;, sections will be given by functions on C with suitable automorphy
properties when one translates by a lattice point. Also, as the degree is one,
the functions must get multiplied by g as one winds around a fixed puncture
in the curve [AB]. We normalize the periods w;, so that the elliptic curve X be
given as C/(;Z @ Z), with a projection IT : C — . Let p be II((1 7}/2r)).
We have:
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PROPOSITION (4.11)(a) A section of the bundle E is given by an r-tuple
¥ = (11, ..., ¥,) of functions which are r-valued over the inverse image in C of

the punctured curve ¥ — {p}; These functions must satisfy
U(e+1/r)=11-¥(z), ¥(z+7/r) =1, - ¥(2), (4.12)
and be of the form
(z = ((1 + 7)/2r))™ (holomorphic) (4.13)

near the inverse images in C of the puncture.

(b) Let L. be the line bundle determined by the monodromy factors 1,
exp(2mic); then E, = EQ L. has monodromy matrices Ii,exp(2nic)ly; E, ~ Ey

iff ¢~ ¢’ = (n+ m7)/r for some integers n, m.

(c) A section of End(E,) is given by a matrix M of functions on C, satisfying

M(z+1/r)=5 -M(z)-I7*, M(z+7/r) =L, - M(2) o (4.14)

The sections of sl(F) with poles at D,.q are then precisely the elements of
the subalgebra 7" defined above. Now recall that our bundle E is rigid, up to
tensoring by a line bundle. If one reduces by the action of Picy(X) ~ %, the
class of a pair (F, ¢) is determined by ¢, which is of trace zero, and corresponds
by (4.5) to an element of 7. We have the following result of Markman, referring
to (2.13):

PROPOSITION (4.15) [Ma] Let 7p be the Poisson subspace of T of functions
whose polar divisor is bounded by D. () The open set U of M(r, D, 1) for which
the bundle is a stable bundle of the form E, (and so for which the sections ¢ are

given by the automorphy relations (4.14)) is Poisson isomorphic to the space
2 x C x Tp by the map

(Ees §y = (c,tr(9)/r, ¢ — tr()/7)
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(b) Reducing U by the action of Pico(X), referring to (2.13), gives a sub-
space Uy of My (r, D, 1) isomorphic to Tp

The isomorphism intertwines the Hamiltonians of the integrable systems

defined on the two subspaces.

The proof proceeds by remarking that for both spaces, there is a well
defined Poisson embedding into a product of the duals of finite dimensional Lie

algebras, given in both cases by taking polar parts at the divisor D.
¢) Sections of the bundle E.

Let us take the r-th powers f; = U7 41 of the components of ¥, so that:
1
V. = f’__l (4'16)

- We would then like to find an r-tuple F of functions (fo, ..., fr—1), which are of

the form z~!(holomorphic)* near the punctures, satisfying
F(z+1/r)=F(2), F(z+1/r) = I, - F(2), (4.17)

and are such that the r-th roots along the real and imaginary axes satisfy

()7 (2 +1/r) = ¢(£)7 (2)

1 1 (4.18)
(f)7 (2 +7) = (f:)7 (2).

Since IT = I} = 1, one is dealing with functions over the elliptic curve ¥’ =
C/(Z & TZ); let 6 be the standard theta function for this curve; recall that it
has a simple zero at the points ((1+7)/2) + Z + 7Z, and is otherwise non-zero

and holomorphic. We distinguish two cases:
Case 1: r is odd.

Let
Or,j(2) =0(z + (—k—#)-), 0<k,j<(r-1). (4.19)
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We have the relations:

Bk,j (Z -+ m) =9k,j(z),
(k+J7)

2

Ok,j (2 + m7) =ezp(~mim?r — 2mim(z + )0k, (2),
Ok, (2 + %) =bk+1,5(2), (4.20)
(2 + =) =0n,i41(),0 < j < (r 1),

Or r—1(z+ ;) =0g,0(2)exp(—miT — 2mi(z + —IE))

where m is an integer. Now if

] (4.21)

pi = (

we set

. e o r—1 9T_-2z9'2+p-7‘
fi(z) = ezp (27rz'7' (‘J’"(zr—” n (T—1)§(3+1))) 11 ( kg (2)0ni(z + piT)

=1
k=0 Z:O,E;ﬁj Or,e(2)
(4.22)

Using the relations given for the 01,5, one checks that it has the correct form

near the punctures, and that (4.17) holds. Now let 7 be imaginary. Let us
consider the involutions f(2) — f(—2), f(2) — f(2). Both these involutions
preserve the poles and zeros of fy. From this, one has that fo must be even, as
fo(0) # 0. Using the second involution, one can then multiply fo by a constant
c so that cfo(0) is real. The function is then real on both imaginary and real
axes, and has no zeros. From this, one has that (4.18) holds for f,. From the
relations (4.20), (4.18) follows for the other f;. Deforming, the same then must
hold for arbitfary T

Case 2: v is even

We then set

,g(2) = 0z +

kth) - (1;;7)),0 <kj<(r-1). (4.23)
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We have the relations:

€k,i(z +m) =& ;(2),

] 1
€k,j(z + m7) =exp(—mim?®T — 2mim(z + (k -l;jT) _ ;;T) )ér.i(2),

i
€rg (2 + =) =Crt1,4(2), (4.24)
iz + 7) =€r41(2),0 <G < (r = 1),

. : k- (1+7
kr—1(z + I) =&k, 0(2)exp(—mit — 2mi(z + = — L0 A )))
a r 2
where m is an integer. We then define
T ;
pi=5—1 (4.25)

and set

s B i W e | Gk | AT T (O (2)Bk,i(z + p;7)
fi(z) = (-1) p(2 ( = ))kI:IO( NETE ) (4.26)

Again, the r-th roots of the f; define our section.

In a similar way we can compute a section ¥, of E,; this complicates the

formulae somewhat..
d) Darbouz coordinates and integration of the system

Given ¥., we can then simply apply our theorems of section 3, and obtain
separating coordinates for our integrable systems (for the Gl(n,C) case) on
M(r,D,1); we then reduce to the SI(n,C)-case; for this case, one only needs
v,

The canonical line bundle of the elliptic curve is trivial, and we can write
the total space K as C/(1Z ) TZ) x C, with corresponding coordinates z, (.
The symplectic form on K can then be written as dz A d¢{. We can then use
the map K — Kp to transport these coordinates over to D, at the same time
trivializing the bundle X (D) with a singularity over D. The coordinates (4,0}
are Darboux coordinates on the blow-up Kp.
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Our coordinates were defined as the zeroes (z,,(,) of a suitably normalized
section of the line bundle L of (2.8). Recall that L is the cokernel of (¢ —¢1); it
is then a quotient of E, and so there is a natural map p of E to L. Both E and
L here have a one-dimensional space of sections, and projecting the section ¥
of F gives that of L. The projection p(¥) to E vanishes iff ¥ lies in the image
of (¢ — (I). Let &(z, ¢) be the matrix of cofactors of (¢ — ¢I), so that

&(2,¢) - (¢ — CI) = det(¢ — ¢T) - 1.

If the spectral curve is smooth, then all of the eigenspaces are of dimension one
[AHH2], and one has that p(¥) = 0 iff

&(2,¢) - U(2) = 0. (4.27)

To summarise: starting from the matrix ¢, one computes the matrix of cofactors
&, then solves (4.27), using the fixed section computed in section c). There are
generically g distinct solutions (z,(,) to this equation ([AHH1),[AHH?2]) and

these are our Darboux coordinates on M(r, D, 1).

For the coordinates on 7 = My (r, D,1), we must reduce. One restricts
first to ¢ = 0, so fixing the bundle to E = Eg, and in particular fixing its
determinant. Recall from (3.16) that the line bundle det(E) corresponds to the
divisor on ¥ given by D' + >_u(24), for some fixed divisor D’. It follows that
the centre of mass in ¥ of the coordinates z, must be a constant. The reduction
to 7 can then be effected explicitly by normalising the ¢, also to > uSu =0,

as one does for centre of mass coordinates.

e) A rank two example

Formulae (4.16), (4.22), (4.26) and (4.27) give an explicit way of deter-
mining the Darboux coordinates from ¢. We briefly exhibit the formulae for
the case 7 = 2. This case was treated in [S]. It is difficult to see whether the

coordinates obtained are the same, though they seem to have common features.
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For r = 2, we write the matrix ¢ as

CON®
c(z) —a(z) )’
The periodicity relations work out to:

! -1 1
ale+3)=a(a), bla+z)==bz), o+ 3)=—clz),
a(z + 12-) = —a(z), b(z+ %) =efz)
Let D = 3 v;. The coefficients a, b, ¢ are then linear combinations of, respec-
tively, elliptic functions a;, b;,¢; with poles only at v;, v; + 1 [2,v; + T/2,v; +

(1+7)/2 and their translates. These are fairly straightforward to write out in

terms of theta-functions. For example, setting p; = v; + %
H ek’J (z
k,§=0,1 eky.f’ (Z )

The matrix of cofactors of ¢ — (T is given by:

b= ("0 B2

The section ¥ is given by

1
\Ill = H
= [ 6.1(2)05.1(2) v
_ _e—mlr —kM
Uy = I;[ (Ek 0(2)€k,1(z ))}

The coordinates (z,,(,) are then the solutions to the equations:

1/2
(6k,0(z)9k,o(z - T))
€k,0(2)&k,1(2)

(—a(2) = Q)1(2) = b(2) T (2) = 0
~c(2)¥1(2) + (a(2) = () Ta(z) = 0

5) The trigonometric case
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We now exhibit another set of classical systems associated to rigid vector
bundles over a curve: those associated to “trigonometric” r- matrices. Our
curve here will be a singular nodal rational curve, that is a Riemann sphere P!
with two points identified. Such curves arise as degeneracies of elliptic curves,

and we shall see many common features with the elliptic case.

The rigid bundle E we consider is obtained from the sum of line bundles
Ec=0(1)@0&0...® O on P! with transition matrix

diag(z~%,1,1,...,1) (5.1)

from Up = {2 # oo} to U = {2z # 0}. E is built by identifying the fiber of E,
over 0 with that over oo via a non-singular matrix M. The bundle FEy is rigid,
and we shall see that the glueing matrix M is essentially unique for a stable
bundle, once one adjusts by a suitable automorphism of Ey, and fixes the top

exterior power of E.

Indeed, consider Ey = O(1)@ 0”1 on P;. We would like to find conditions
on M to get stability of the bundle. A destabilising bundle is obtained by glueing
from Fy = O(1) @ OF, and one finds that one has a subbundle for the glueing iff
the vector e; = (1,0,0,..,0) belongs to an M-invariant subspace of dimension
less than r. Thus, the bundle is stable iff e; is cyclic for M. So if the bundle is

stable one can write the matrix M as

000 ..0 a
1 00 ... 0 a

M=|" " - ; (5.2).
0 00 ... 1 a4

Now, one can modify M by automorphisms of O(1) ® O™"1, and in particular,
by the following automorphism:
€1 —rex

5 bj e C. (5.3).
e; —re;+ bjel
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When we compute det(M — zI), we can see that with a suitable choice of b;,
we can get det(M — 2I) = (~1)"*'ao. In other words, by an automorphism,
we can set a3 = az = ... = a,—1 = 0, and the glueing only depends on ag.
The determinant ag € C* represents the highest power AT E of the bundle E in
Pic. Thus, when the determinant is fixed, the bundle is rigid since the bundle
O(1) ® O"! on P, is infinitesimally rigid and the glueing is rigid.

Let us set ap = 1; we will take the Si(r, C) moduli space and so consider

@’s which are traceless.

We can change trivializations so that the transition matrix becomes:

0 1.0 ... 0
0 01 ... 0
T(z) = ; (5.4)
0 0 0 ... 1
27 0 0 ... 0

instead of the diagonal matrix (5.1). The glueing matrix M is then the identity.
The unique (up to scale) section of F is then represented over Uy by the vector
of functions

(1+21,1,..,17.
Conjugating T by

r—1

"

S = diag(1, 27, 27, ... 2

transforms it to

STS™ =271,

with I, the matrix of (4.1). This can be thought of as a multi-valued change of

trivialization. The section is then represented by

(142,27, 2%, .., 2°7). (5.5)

More generally, meromorphic sections of E are then represented by vectors of

functions F = (fo,...fr—1) on C* such that
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- fi= z%-(meromorphic),
- lim, o F(2) exists,
- limz_,ooz‘_‘rlIzF(z) exists,
- and the two limits coincide.

Changing variables by z = exp(2ni rz), one is still dealing with functions
fi(z) satisfying fi(z + 1) = ¢*fi(z), that is,

Flz+3) = LF(), (5.6)

the other matrix I now being used for the boundary conditions at iz — +oo.

Similarily, sections of the End(E) get represented by matrices M (z) with

M(z + %) = L M(z)I7 .

As in section 4 , there is a splitting of a loop algebra £ of the periodic
functions satisfying the appropriate boundary conditions into a £+ of positive
series and a 7 of meromorphic functions satisfying only one periodicity condi-
tion. Corresponding to this, there is an integrable system, as for the elliptic
case. Our construction above shows us that the elements of 7 can be inter-
preted as sections of a rigid bundle E, and so Markman’s result (extended to
handle singular base curves ) gives us a Poisson isomorphism between the coad-
joint orbits in 7" and the symplectic leaves in the corresponding moduli of Higgs
pairs. One then obtains, as in the elliptic case, suitable separating coordinates

for these systems.
6) Poisson-Lie groups

There are three main cases of a curve with a rigid bundle, yielding a corre-
sponding splitting of the loop algebra of matrices into a sum of two subalgebras
which are dual to each other and so allowing us to define an integrable system,

using either the Adler Kostant Symes theorem, or more generally the r-matrix
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formalism. The curves are either rational, elliptic or nodal rational, and corre-
spond to the rational, elliptic and trigonometric r-matrices respectively. These
r-matrices can also be used to define quite different, if related, Poisson struc-
tures, the quadratic or Sklyanin bracket. Again these come in three types,
rational, elliptic and trigonometric. They are obtained, very roughly, by think-
ing of (generically invertible) matrix valued functions as elements of a group,
rather than an algebra, and applying the formalism for constructing Poisson
Lie groups, as in [RS2]. Again one has integrable systems, defined again in
terms of spectral curves: the Lagrangian foliations for both the Lie Poisson and
Sklyanin structures share the same leaves. The symplectic leaves of the two
types of structure are however quite different. In any case, one can ask if there

is any analogue of the separating coordinates in the quadratic case.

The answer for the rational quadratic bracket is yes, and can be found
in [Sc]. One has, as for the rational Lie Poisson case, a spectral curve, line
bundle, and section giving a divisor Xp, on the spectral curve. This curve lies
in the same surface as in the Lie Poisson case, that is the total space of the
line bundle (D) over the curve P'. The divisor then gives an isomorphism
I of the symplectic leaves with a symmetric product of this surface. Let z
be a coordinate on PP;, and ¢ the corresponding cotangent coordinate, and let
a(z) = 0 cut out the divisor D. In the Lie Poisson setting, the form a(z) " tdzAd¢
on K(D) induce a symplectic form on the symmetric product and turn the
isomorphism I into a symplectic one. In the rational quadratic case, one has
the same result, but with the form ¢~1dz A d¢.

We conjecture that a similar result holds for the quadratic or Sklyanin
bracket in both the elliptic and the trigonometric cases. One again has divisor
coordinates on a surface K(D) defined over an elliptic or a nodal curve; instead
of taking the symplectic form on K(D) with poles along 7w~1(D), one chooses
the form with a pole along the zero-section. Choosing Darboux coordinates

(2,¢) for this form, and expressing the divisor corresponding to the pair (line
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bundle, curve) in these coordinates as a sum (2, (,) should give us separating

Darboux coordinates. The validity of this result could be checked with a direct

but probably rather difficult calculation, as in [Sc], but does not seem to be

feasible with the methods of this paper.
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The G-generalized Hitchin systems
and Prym varieties

M. KJIrI

ABSTRACT: In this article, we consider the generalized Hitchin systems, introduced by
Bottacin and Markman, for an arbitrary reductive complex group (; they have the structure of
Lagrangian fibrations Pr — U by generalized Prym varieties over sets U parameterizing fam-
ilies of Weyl-invariant curves. The (G-generalized Hitchin systems satisfy a rank two condition

and one can find invariant varieties X which distinguish these systems. It is then shown that
N

there is a correspondence between these integrable systems and the varieties X = K b3 [D] ® b,
which are equipped with an appropriate two form with values in the Cartan subalgebra §.

1. Introduction.

The moduli spaces of stable vector bundles over a Riemann surface have
been studied for many years from different aspects. In 1987, Hitchin intro-
duced a new way of seeing them, that is through the symplectic geometry of
their cotangent bundle. Through the article “Stable bundles and integrable sys-
tems” [Hil], he proved that there were natural algebraically integrable Hamilto-
nian systems on the cotangent bundle, that is complex integrable systems, such
that the joint level sets of the Hamiltonians when compactified and desingular-
ized are Abelian varieties, in such a way that the linear structure given by the

Hamiltonian flow is that of the Abelian variety.

Since then, a lot of work has been done on these systems -called the Hitchin
systems- and many different properties of them have been proven. In 1994 a
generalization of these systems was introduced independently by E. Markman
[Ma] and F. Bottacin [Bo], which has been a source of considerable interest [ F,
Scl, Sc2, HK]. The question was essentually to try to see if the results obtained
for the Hitchin sytems could be generalized.

There are versions of these systems for any reductive complex group G. One

considers the moduli space of stable pairs (P, ¢), where P is a G-bundle over
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2, and ¢ a meromorphic ad(P)-valued 1-form with poles at a divisor D. One
would like to know if there is some invariant that distinguishes these integrable

systems.

When G = Gl(r,C), these systems are integrable sytems of Jacobians and
the question was studied in [Hul] for the Hitchin systems and in [HK] for
the Gi(r, C)-generalized systems. One has a Lagrangian fibration J — U of
Jacobians, where U is an open set in €9, a corresponding family S — U of
Riemann surfaces and an Abel map A4 :S — J. A first invariant is the rank of
the pull-back A4*(Q) of the symplectic form on J. When the rank is two, that
is A*(2) A A*(Q) = 0, there is a null foliation of dimension g — 1 on S which
one can quotient out to obtain a symplectic surface Q. The system, at least
in a neighborhood of any Lagrangian leaf, is birational to the g-th symmetric
product of Q so that the invariant is first the rank, and secondly the surface Q;

at least locally, these invariants are complete.
Now, what happens if G is any reductive complex group?

The question was studied in [HM] for the Hitchin systems. The authors
have shown that the systems can then be seen as rank-2 integrable systems of
Prym varieties for a suitably generalized notion of rank, and found an appropri-

ate variety X equipped with a two form with values in the Cartan subalgebra
hof g.

The aim of this article is to show that those results extend to the G-

generalized Hitchin systems.

In section 2, we will summarize the most relevant results for what follows
from the article by J.C. Hurtubise and E. Markman, “Rank two integrable

systems of Prym varieties”.
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In section 3, we will consider the generalized Hitchin systems, and we will
see how to the Higgs pair (P, ¢), where P is a G-principal bundle over a Riemann
surface & and ¢ a meromorphic ad(P)-valued 1-form with poles at a divisor D,
one can associate a spectral curve S lying in the total space X of the vector
bundle Kx(D) ® h and an H-bundle over S, § being the Cartan subalgebra of
g and H the corresponding Lie group; we will see that both the curve and the
bundle are invariant under the action of the Weyl group W,

In section 4, we will see that the local structure of the integrable system is
that of a fibration Pr — U by generalized Prym varieties over a set [J param-
eterizing a family of W-invariant curves. These Prym varieties parameterize
W-invariant H-bundles over the spectral curve S. We will then prove the fol-

lowing theorem:

Theorem 1.1. The G-generalized Hitchin system for an arbitrary reductive
group satisfies a rank two condition. The variety associated to it is a blow up

Kxs[D]®h of Ks[D]®Y and it comes equipped with an appropriate h-valued

two form.

2. Rank two integrable system of Prym varieties.

In this section, we will define a rank two condition for integrable systems
of Prym varieties and review some results obtained by J.C. Hurtubise and E.
Markman in [HM] that will allow us to see later that the generalized Hitchin

systems can be viewed as rank two integrable systems of Prym varieties.

One considers for a fixed finite group W, a family U of W-invariant curves,
and a representation of the group on a finite dimensional lattice x = Z%, in-
ducing a representation on the complex vector space V = x ®z C . One has an
action on the Jacobians J, of the curves and so a diagonal action on J, ®z x .

The generalized Prym varieties will be the connected component of the origin



43

of the fixed point set (J, ®z x)V.

Let Pr — U be the associated fibration of such Pryms : we will assume
that Pr is symplectic and this fibration is Lagrangian. We will define what
it means for this system to have rank 2 and see that under some genericity
conditions, there will be a (v + 1)-dimensional complex manifold X, into which
all the curves S, embed. This variety comes equipped with a generically non

degenerate V*-valued two form Qy .

We will see that under some genericity hypothesis, this induces a 1-1 corre-
spondence between rank 2-integrable systems of Prym varieties and appropriate
(v +1)-folds X with a (x* ® C)-valued two form.

This section will be then divided in three parts: a first part where we will
fix the notation that will be used and recall some definitions, a second part
where we will consider the different types of closed two-forms that we have and
define the rank two condition, and a third part in which we will review the most

relevant theorems for the purpose of this paper.
a) Definitions and properties.
Let:
- W be a finite group which will here be a Weyl group,

- X, a free Z-module of rank v on which W acts linearly,

V = x ®z C, the corresponding complex representation of W,

U C C%, an open ball

o : 8 = U, a holomorphic submersion whose fiber at v € U is a compact

Riemann surface S, of genus g. We suppose that W acts on § — U,
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inducing a trivial action on U, so that W acts on each S,. We suppose
that W embeds into Aut(S,).

- p:J — U, the corresponding fibration of Jacobians on which W also acts.

For each Jacobian J,, we consider J, ®z x which is isomorphic to the
cartesian product (J,)”. Let py : J®zx — U be the associated fibrewise tensor
product.

Definition 2.1. We can associate to the group action on (Ju®z x)" a gener-

alized Prym variety

Pry = (Ju Rz X)gva

the connected component of the identity of the fixed point set of the diagonal
W -action on J, ®z x. Let Pr — U be the corresponding fibration: since U is

contractible, it is a component of the fixed point set of the W-action on J ®g, X-

b) Symplectic structures and rank two systems.

We consider the following closed two-forms:
1) a V*-valued two form Qy € H°(J, (A2T*J) ®c V*) on the fibration J — U,
2) an ordinary two form 2 on the fibration J ®z x = U,
3) the restriction w of Q to the fibration Pr — U.

We assume that Qy,Q and w are isotropic on their respective fibrations,

as well as on their zero-sections.

Let ey, ...,e, and €', ..., ¢ be arbitrary dual basis of x and x* respectively.
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We have the contractions:

I®z x =]

N\

U

and the tensoring maps:

Ne;
J—=JI®z x

N

Proposition 2.2. [HM]

a) There is a canonical one to one correspondence between the forms Qv and

{2 which is given by:

v

Q=3 (m)"(Ale)), Qv =) k()] @,

i=1

where A is the contraction.

b) The form Qy is invariant with respect to the Joint W-action on J and V*

if and only if the form ) is invariant under the diagonal action on J ®z X.

¢) There is a canonical one to one correspondance given by restriction between

the W -invariant forms  and the forms w.

Definition 2.3. Let A be the Abel map, we say that the system has rank two,
if
A*(Qy) A A*(Qy) =0,
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as a section of A*(T*S) @ V* @ V*.

For a basis e; of V, let ; be the contraction of Qy with e;. The system
has rank two iff

A () A AT () = 0,

for all 4, 7.

If the A*(S%;) are non-vanishing, using a theorem of Darboux, we can
say that there exist functions z;,y; with non-vanishing differentials such that
A*(€;) = dz; A dy;. Note that then, dz; A dy; Ndzj Ady; =0

c) Rank two integrable system of Prym wvarieties and associated (v+1)-

varieties.

Genericity Assumption A. The pull-back A*(Qy) is nowhere vanishing on

S and its null-space is everywhere transverse to the curves S,,.

Note that the rank two condition tells us that the span of dz,dzs,... is at

most (v + 1)-dimensional.

Genericity Assumption B. The span of dzy,...,dTy, dy1, ..., dy, is every-
where (v+1)-dimensional. More invariantly, the null-space of Qv has codimen-

sion (v + 1) everywhere.

Proposition 2.4. [HM] Locally, under the genericity assumptions A and B,
there exists forms ¢q, ¢1, ..., ¢, on X such that A* () = ¢o A ¢;.

Genericity Assumption B’. The null-space of Qy is of codimension (v+1)
over a dense open set O. Over the set O, this null space defines a vector

bundle which extends to a globally defined W -invariant subbundle of the tangent
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bundle. Similarly, the subbundle of the tangent bundle defined over O as the
kernel of ¢ extends to all of S as a W-invariant subbundle of the tangent
bundle.

Theorem 2.5. [HM] Let the system Pr — U have rank two, and assume
that it satisfies genericity conditions A and B’. Restricting U if necessary and

quotienting by the null foliation of V,

(i) There is a v+ 1 dimensional complex manifold X into which the curves
Su all embed. It is equipped with a generically non-degenerate V*-valued two

forms Qy. The group W acts on X, preserving Qy .

(ii) Let v > 2. The manifold X comes equipped with a codimension 1 W -
invariant foliation (cut out by ¢ = 0). The form defines a bundle map between
the tangent spaces to the leaves, and the tensor product of the conormal bundle
to the leaves with V'*.

(iii) X admits a W-invariant fibration to a closed curve . The quotient
curves Sy /W are sections of X/W — X. All the quotient curves S,/W are

isomorphic to X.

The following theorem gives us a converse to Theorem 2.5 (the appropriate
definitions are in [HM)]):

Theorem 2.6. [HM] Let X be a v + 1 dimensional complex manifold, with
a submersion onto a closed curve . Let X be equipped with a minimally
non-degenerate V*-valued two form Qy, such that the group W acts on X,
preserving Qy and the fibers of the map to ¥. Assume that there is a smooth
W -invariant curve Sy in X, on which W acts generically freely with quotient ¥.
Then, deforming Sy in X, the family of smooth W -invariant curves S, defines

a rank-2 integrable system of Prym varieties.
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3. The generalized Hitchin systems.

The motivating example of this work was introduced by Hitchin [Hil,Hi2],
and generalized for Gi(n) by Bottacin [Bo] and Markman [Ma)]. Many authors
have been working on those systems, among them we have Faltings [F] and
Scognamillo [Sc1,Sc2]. In [HM], the authors showed how the results described
in section 2 could be applied for the case of the Hitchin systems. In section 4,

we will see how this work extands to the more general case.

But first, let us recall through this section some facts about those systems.
This section will be divided in two parts. In section 3.a we will recall the Gi(n)-
case and in section 3.b we will see how they generalize to an arbitrary reductive

group G.
a) The Gl(n)-case.
We first summarize the notation that will be used. Let:

- X be a closed Riemann surface of genus g,

D a positive divisor of degree n on X,

- E a vector bundle over I of fixed degree d and rank r,

¢ a meromorphic End(E)-valued 1-form, with poles at the divisor D: b€
H°(Z, End(E) ® K5(D)) where Ky, is the canonical bundle of .

Definition 3.1. A Kx(D)-twisted Higgs pair (E, ¢) is a pair consisting of a
vector bundle E and a section ¢ € H°(Z, End(E) ® K (D))

We consider over ¥ the moduli spaces M(r, D, d) of stable Kx(D)-twisted
Higgs pairs (E,¢). See [Bo],[Ma]. If D = 0, we get the case considered by
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Hitchin in [Hil],[Hi2]. There is a Poisson structure on the M(r, D,d) which
can be defined directly or by Poisson reduction of a larger space, the cotan-

gent bundle of the moduli space of bundles with level structure at D. See
[Bo],[Ma],[HK].

Definition 3.2. Let E a vector bundle over I, and D a divisor on E. A
D-level structure on E' is an isomorphism n € Isome, (E|p,®i_,0p), i.e. a

trivialization of E over D.

Let U(r,D,d) be the moduli space parameterizing rank r, degree d, 6-
stable vector bundles with D-level structure and let Gi(r, D) be the invertible
Op-valued r X r matrices. There is a natural action of GI(r, D) on U(r, D, d),
simply by modification of the trivialization ¢, which lifts to a symplectic action
on the cotangent bundle T*U(r, D, d).

This action has as moment map

p:T*U(r,D,d) — gl(r, D)*

A (3.3)
(B,t,4) = ¢

where 43 is the expression of the polar part of ¢ over D in the t-trivialization,

and gl(r, D)* is identified with gl(r, D) ®o,, (K=)|p by a trace-residue pairing.

The quotient T*U(r, D,d)/Gl(r, D) is Poisson, and is naturally identified
over a open dense set with M(r, D, d), [Ma]. The symplectic leaves are obtained

as inverse images under u of coadjoint orbits.

For each pair (E, ¢), we can consider the spectral curve S of ¢ which lies
in the total space Kp of the line bundle K (D) over £. It is cut out by the

equation

det(¢ — ¢I) = 0. (3.4)
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Here ( represents the tautological section of 7* K (D) over Kp, where 7 : Kp —

¥ is the projection. If we expand (3.4) in powers of ¢, we get
"+a" +a (" 4.+ e, =0, (3.5)
where the a; = a;(E, ¢) lie in H(Z, (K(D))®%).
Let d; be the dimension of H%(Z, (K(D))®%), and uy 4, ...uq, ; be a basis for

HO(Z, (K (D))®%). We can then write a;(E, ¢) as

d;
ai(E,¢) = f;i(E, $)uj.
=1

This gives functions f; ; on M(r, D, d) which Poisson commute and define a
completely integrable system on M(r, D, d). Joint level sets of the f;,i are given
by fixing the spectral curve S, so that the spectral curve map M(r,D,d) —

(family of spectral curves) defines a Lagrangian foliation.

The leaf of the Lagrangian foliation at S is a family of line bundles on S.
The sheaf L corresponding to (E, ¢) is defined via the exact sequence of sheaves

over the surface Kp:
0+ EQ®K4(-D)ESE > L 0. (3.6)

When the spectral curve is smooth, L is a line bundle supported on the spectral

curve. For more details about all this, one can refer to [HK].

Proposition 3.7. [Hul] One can then reconstruct (E, ¢) from (S, L):

- E=n.(L),

- ¢ is the map induced on E by multiplication by the tautological section ¢
on L.
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One can then think of the moduli space M(r,D,d) as the space of pairs
(S, L).

In the following part, we will see that similar results can be obtained if we
consider the more general case for arbitrary reductive groups G. The bundles
E then gets replaced by a principal G-bundle P, and the bundle End(E) gets
replaced by ad(P). We will see that to the pair (P, ¢), one can associate a pair

consisting of a spectral curve and an H-bundle.
b) The generalized Hitchin systems for general reductive groups.

We will keep the same notations as in Part 3.a, adding to them and modi-

fying some of them as follows:

- G a reductive connected complex group of rank r with Lie algebra g and

Weyl group W,
- P a G-principal bundle over X,

- ¢ a meromorphic ad(P)-valued 1-form, with poles at the divisor D: ¢ e
H°(Z,ad(P) ® Kx(D)) where Ky is the canonical bundle of ¥.

We now consider the moduli space M(G, D, d) of stable Higgs pairs (P, ¢)
of fixed degree d (in fact d corresponds to an element of (@)).

Let b be the r-dimensional Cartan subalgebra of g with corresponding
group H. To any element f of g, one can associate the Weyl group orbit of
elements which lie in the intersection of the closure of the G-orbit of f and b.
After choosing a trivialization of P over V C ¥, one can do this for f=o¢(),
over every point p of X: one then obtains a Weyl invariant curve over V. This
curve does not depend on the trivialization of P. Invariantly, over ¥, one has a

Weyl invariant curve S lying in the total space of the rank r bundle K'5[D]® h
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over X.

Let B be a Borel subgroup of G which contains H. We consider the lift
q*P of P to S. It has a reduction Pp to B, such that ¢*¢ lies in ad(Pg) ® K[D],
and the image of ¢*¢ via the map from ad(Pg) ® K[D] to K[D] ® b gives S.
[Sc2]

Now since we have a projection from B to H, we can associate to Pg a
bundle Pg. This bundle is not Weyl-invariant; it can however be twisted in a
standard fashion to give rise to a bundle Py which is invariant under W [Sc2].
So to the pair (P, ¢) we have associate a pair (S, Py).[F, Sc2]

We are now going to define an integrable system on M(G, D, d). To do so,
we need to specify the ring of Hamiltonians. As in a), for each pair (P, $), we
can consider the spectral curve S of ¢ which lies in the total space Kp ® b of
the vector bundle K(D) ® b over . It is cut out by equations

pi(h) = ai(2),

where p; forms a homogeneous basis of the W-invariant polynomials on §; the
a; are then sections of (Kg(D))®d€(®:) over 3. Expressing the a; in a basis
of H°(Z, (K (D) ® h)®d¢8P) gives rise to functions which Poisson commute and

define a completely integrable system on M(G, D, d).

One notes that if Pr(S) is the connected component containing the trivial
bundle of the set of the W-invariant bundles, Py does not necessarily lie in

Pr(S) but rather in a translate of it.

———

Let Ks[D] ® b be the blow up of total space of the vector bundle X (D)®h
over Y. In fact, we blow up at the points of intersection of the spectral curve §

and the inverse image in K (D) ® h of the divisor D on X.

Let NV be the moduli space consisting of pairs (P,r), where:
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- P is a holomorphic principal G-bundle of degree d
- tr is a trivialization of P over D.

The cotangent bundle T* N is then the space of triples (P, tr, ¢), where P
and ¢r are as defined above and ¢ is a section in H°(Z, ad(P) ® K5 (D)).

Proposition 3.8. [Ma] The moment map for the action of the level group
Gp = [Aut(®T0p)]/C* on T*N is given by the polar part of ¢ in the trivi-
alization tr. T*N /G is identified with M(G,D,d). The symplectic leaves are
then given by fixing a coadjoint orbit O in the Lie algebra of Gp and asking
that the polar parts of ¢ lie in this orbit.

Let M = Mp be a symplectic leaf in M(G, D, d). Theorem 3.9 below
shows that under some conditions, one can reconstruct the Higgs pair (P, ¢)
from the pair (S, P};).

Theorem 3.9. [F,Hil,Hi2,Sc2] Let S’ be an W-invariant deformation of S in
K[D]®}Y fixed at D, and Py an W-invariant H-bundle over ' lying in Pr(S").
The variety of such pairs (S, 153) is locally isomorphic to M and the projection
(8', Py) — S defines a Lagrangian foliation of an open subset of M.

One must note that curves which are deformations of S in the blow up

e

Ks[D]® Y of Kx[D]® § are deformations of § in Kx[D]® b fixed at D.

4. The G-Hitchin systems as a rank 2 integrable system of Prym

varieties .

For Gl(n), given the moduli spaces M(r, D, d) of stable Higgs pairs (E, ¢),
where E is a vector bundle over ¥ of fixed degree d and rank r, and ¢ is a

meromorphic End(E)-valued 1-form, with poles at the divisor D, we can define
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a completely integrable system on it. In [HK], it is proved that this system
(which can be seen as a rank 2 integrable system of J acobians) corresponds to

a symmetric product of a symplectic surface.

In this section, we will see following [Hi] that in the more general case, once
we consider the moduli spaces M(r, D, d) of stable pairs (P, ¢), where P is a
holomorphic G-bundle over T and ¢ is a holomorphic section of ad(P) ® K, (D),

then one have a correspondence between this system (which can be seen as a

rank 2 integrable system of Pryms) and the particular variety X = K [D] ®b.

This section will then be divided in two parts. In the first part, we will
describe the Lagrangian foliation coming from the integrable system at a generic
point of the moduli space. Then we will see that we also have a Lagrangian
foliation on the cotangent bundle of the moduli space parameterizing rank r,
degree d, é-stable principal bundles with D-level structure. We will relate the
fwo, then using them, we will compute the symplectic form. In the second part,
we will see that the G-Hitchin system is a rank two integrable system of Prym

varieties, and we will show that the variety X corresponding to it is Kx[D]®

and compute the form Qy that should be associated to it.
a) Symplectic structure.

In this section, we will keep the notation introduced in section 3b). We are

now going to compute the form.

Let N be the normal bundle to the curves in the space K;[B]/® h. Cor-
responding to the Lagrangian foliation of the Poisson manifold M(r, D,d), we

have:

0— HY(S,005)" — TM — H'(S,N)¥ -0, (4.1)

where the W-superscript denotes invariance.
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The deformations of the spectral curve correspond to sections of the nor-
mal bundle Since we have a natural h-valued two-form on the total space of
Ks [D] ® b with poles at D, obtained from the cotangent structure on K, we
get a map:

N > K[D]®h,

n— wn,.)

which induced the following isomorphism (see [H]):
H°(S,N)¥ ~ H°(S,Ks[D] @ p)"
which allow us to write (4.1) as:
0= HY(S,005)" - TM — H(S,Ks[D]® §)" — 0. (4.2)

We have that the tangent spaces at (S, L) to the leaf £ in M(r, D, d) fit into

exact sequence:
0= HY(S,09h)" - T(L) - H(S,Ks ® )W — 0, (4.3)

since we are interested in deformations of the spectral curve which have fixed
intersection with 7*(D), so that in M(r, D, d) one is moving along a symplectic
leaf L.

To split the sequence (4.3), one can extend the line bundle to a neighbor-
hood of S, getting then a way of fixing the bundle while the curve varies. We

then have
T(L)=H'(S,09h)" @ H'(S,Ks®h)". (4.4)

We then define a form Qg by using the Serre duality pairing between
HY(S,Ks ®b) and HY(S,0®%).

We also have a Lagrangian foliation on the cotangent bundle T*{(r, D, d)
given by the projection to U(r,D,d). The tangents to the fibers are given
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by elements of H°(Z,ad(P) ® Kx(D)) and on the base, deformation of the
bundle along with the level structure are given to first order by elements of
H'(Z, ad(P)(—D)). We then have the following exact sequence:

0 — H°(Z,ad(P) ® Kx(D)) = T(T*U(r, D, d)) = H(Z, ad(P)(~D)) - 0.
(4.5)

We would like to get the following splitting:

T(T*U(r, D,d)) ~ H°(S, ad(P) ® K (D)) & H'(Z, ad(P)(—D)). (4.6)

To do so, we cover ¥ by n + 1 open sets, Uy = & — support(D) and
Ui,i =1, ..,n disjoint discs centered at the points p; of D. Choose trivializations
of P on Uy, and also trivializations on the Uj; compatible with ¢ at p;, and let
Fo,; be the transition functions of P from U; to Up for these trivializations.
Now let V be a subspace of the space of cocycles for ad(P)(—D), mapping
isomorphically to H'(Z, ad(P)(—D)). The (P’,') near (P,t) can be obtained
from transition functions Fy ; - exp(vo,i), with (vo;) = v € V. This defines a
parametrization

V —=U(r,D,d),

and so a symplectic map
V x V* = T*U(r, D, d). (4.7)
We represent a one parameter family of elements (E(s), t(s), #(s)) of the
cotangent space T*U(r, D, d) by (Fo:(s), do(s), $i(s)), with

¢0 (3) == A'dFO,i(S) Pi (S)

on the overlaps Uy N U;, and choose Fo:(0) = Fyi;. At t =0, the corresponding

tangent vectors are given by Vg = F(; ilFo,i, Q.S(), ¢'>i, with

§£0 = Fo,z' : (['00,5, §I51,] + ¢z) . FO-’il.
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One can write the Serre duality pairing as
<v,¢>= Y tr(resi(vo;- ¢:)),
i

where tr denotes the Killing form.

For any sections ¢; over U} define ¥¥ € H°(Z, End(E) ® K (D)) by asking
that for all w e V
< w, Y% >= Ztr(resi(wo,i ;). (4.8)
i

Applying this to our vectors ¢; — @& defines the splitting (4.6).

Let (v, ¢'), (v", ") represent two elements of (4.6). Using the same com-
putations as those made in [HK], we find that the symplectic form with respect

to our splitting of (4.4) is given by:
Qp((v,¢), (V" ¢")) =< o', ¢" > = <", ¢ >+ <[v',0"], 6> (4.9

where <, > denotes Serre duality on X.
Theorem 4.10. Assuming S is smooth, we have Qs = Qs reduced-

PROOF: Let us then take a two parameter family A(z,y) = (P, t,8)(z,y)
of elements of 7 lying in the inverse image of £ under the quotient & — M,
and compute the form Q5(A,, A,) on this family at (z,y) = (0,0). The fact
that S is smooth implies that ¢()) is regular. We can assume by genericity that

the polar parts of ¢ are semi-simple.

We again cover the base curve X by n+ 1 open sets Uo = X — support(D),
and U;,i=1,...,n non-intersecting discs around the points p; in D. We assume

that the curves S(z,y) are unramified over U;.

Choose trivializations of P on the U; compatible with ¢, and let Fy; be the

transition functions of P for these trivializations.
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The Higgs fields are then represented by the Lie algebra valued forms o =
Adp, ,(¢:) on the overlaps. The symplectic form is given by

Op(Az, Ay) =
D resp, (tr((Fy Fia) - (dy) — (B Fay) - ($12)) + (B Fig, F1Fy ) - 6)))
i (4.11)
where tr denotes the Killing form and F; = Fy;.

Instead of computing Q on T, we can lift it to the spectral curve (7 : § — x)

and compute there.

Now, on the spectral curve, we have a reduction to the Borel subgroup B

in such a way that ¢ lies in b. We have the following sequence of groups
0=-N—-B—-H-=0

where N is the unipotent subgroup. We then get the corresponding sequence

of Lie algebras:

0—=+n—=b—-2H—-0

We fix a principal nilpotent element e in 1, then any element h € b has a
unique representative in b of the form e+ A, up to the action of the Weyl group.
We then choose a trivialization of P over U such that #(2) = e+ ho(2), z € S;

this requires a genericity assumption on P which is implied by smoothness.

On the disc U;, restricting if necessary, we can conjugate to b, and then
write ¢ as h;(2) € b. On the overlap of U and U;, we have

hi(z) = Foi(2)(e + ho(2)).

Fy; € B can be split as Fy;(z) = F3i(2)Fo5(2), Ff, € H,F), € N, and
we then get:

F P = (F)TNFS) + (FF) T (EN) (FY) 1 FE. (4.12)
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The second term in (4.12) lies in n, and so gives zero when paired with
elements of . In (4.11),Fi‘11*"i:c and Fz-_lFiy both lies in b, so the commutator

lies in n and will then give zero when paired with elements of §.
Using this, we can evaluate the symplectic form. We have

< 61,0y >5 = < ag,b1 >g=resp[tr((ha). (F7) ' FE) — (hy) (FF) Y FH])
(4.13)

The formula (4.13) gives the explicit expression of Qg on H 08, Ksoh)" o
H'(S,0®H)", and so proves the theorem.

We can then write the moduli space as an integrable system of Prym vari-

eties with the symplectic form Qg defined above.
b) The G-Hitchin systems as a rank 2 integrable system of Prym variety.

The local structure of the integrable systems is that of the fbration
Pr — U by generalized Prym varieties over a set U/ parameterizing a family

of W-invariant curves.

In this part, we will prove the following theorem:

Theorem 4.14. The generalized Hitchin system for an arbitrary reductive
group is of rank two at every smooth spectral curve, and the variety associated

e

to it is Kx[D) ® b: it comes equipped with a h-valued two form Q.

Now, fix a spectral curve Sy and a bundle Pj. Let (S, Py) be a nearby
point. Choose an extension of Py to a neighborhood of So in Kx[D]'®@b. We
can then write all H-bundles as P% ® P}y, were Py has degree zero and is W-
invariant. The curves lie in the total space of K5, [D] ® b which comes equipped

with a meromorphic 2-form w with poles at D.



60

We have previously seen that our symplectic forms Qs and Qg, where Qg is
defined using the Serre duality between H°(S, K ® b)) and H 1S, 05" are
equal on Pr. We then get equality of the corresponding h-valued two form Qy »

and Qy, s on the corresponding associated family of Jacobians. Set Qy = Qyg.

We then take the pull back A(Qy) of this form to the space S — U under
the Abel map. Let py be the intersection of S, with a fixed fiber n~1()), where
m: Ks[D]®§ — I, and a fixed Weyl chamber. We choose pp to be our base
point for Sy. Through the Abel map, we associate to a point p away from the
branch points in a curve Sy, the line bundle corresponding to the divisor p — pg
and averaging under the Weyl group. The projection of S to X gives uniform
coordinates on all curves S, and allows us to split T'S as TU & TY away from
the branch points of 5, — ¥. We identify T with T'S,. On the other hand,
TU is in fact HY(S,N)W. Let X = K;[B]T&b be the blow up of the vector
bundle K(D) ® h over ¥ at the points of intersection of the spectral curve S
and the inverse image in K (D) ® § of the divisor D on X. The space S maps
to X, and corresponding by, there is a map of normal bundles of the curves S,

which is simply the evaluation map:
H°(S,N)" — Ng,, (4.15)

where N, is the normal bundle of S, in X.

We thus map TU to the normal bundle Ng,. The symplectic form is
obtained by first mapping vectors in TU to Ns,, then using the h-valued sym-
plectic form on X = K5[D] ® h to map to K, [D]®}, and finally pairing with

T'Sy. In particular, the vectors in the kernel of (4.15) are isotropic, showing

that the h-valued symplectic form on § is lifted from X.
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CONCLUSION

Une remarque tout d’abord se rapportant & un théoréme démontré par Ron
Donagi et Eyal Markman dans “Spectral covers, algebraically completely in-
tegrable Hamiltonian systems, and moduli of bundles”, dont 1’énoncé est le
suivant:

Soit X une variété munie d’une 2-forme w qui admet des pdles en un diviseur
D. Soit B un sous-espace qui paramétrise les courbes irréductibles sur X qui ne
sont pas dans D. Les auteurs ont démontré que le fibré Picard relatif b : M — B
était muni d’une structure de Poisson et que ’application h : M — B était une
fibration Lagrangienne. Les feuilles symplectiques sont alors obtenues en fixant
I'intersection d’une courbe S avec D.

Les résultats du Chapitre IT nous donnent précisément cette situation: dans

notre cas, X = K(D) et les variétés Lagrangiennes sont les courbes spectrales.

En conclusion, nous pourrions revenir sur certaines questions soulevées a
travers cette theése et auxquelles nous pourrions nous attaquer.

A travers larticle “Separating coordinates for the generalized Hitchin sys-
tems and the classical R-matrices”, nous avons porté une attention particulidre

aux cas ol la surface de Riemann est une courbe elliptique ou une courbe nodale
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rationnelle, le cas oit la surface de Riemann est la sphére de Riemann ayant
déja été traité [AHH]. Ces trois cas ménent 4 une décomposition de I’algébre de
lacets des matrices en une somme de deux sous-algébres qui sont duales 'une
de I’autre, permettant ainsi de définir un systéme intégrable en utilisant soit le
théoréme de Adler-Kostant-Symes, soit le formalisme de la matrice B. Selon que
la courbe soit rationnelle, elliptique ou nodale rationelle, on obtient respective-
ment les matrices R rationnelle, elliptique ou trigonométrique. Ces matrices R
peuvent étre utilisées pour définir de nouvelles structures de Poisson, le crochet
quadratique ou de Sklyanin. Nous en obtenons encore trois sortes: rationnel,
elliptique ou trigonométrique.

On définit une nouvelle fois un systéme intégrable en utilisant les courbes
spectrales: les feuilles des fibrations Lagrangiennes sont les méme que ce soit
pour la structure de Poisson ou la structure de Sklyanin. Les feuilles symplec-
tiques sont cependant différentes.

La question que I’on se pose alors, est de savoir s'il existe un analogue de la
séparation des variables pour le cas quadratique.

Dans le cas ol le crochet est quadratique rationnel, le probléme a été résolu
par D.R.D. Scott [Sc]. On considére une courbe spectrale, un fibré en droite et
une section qui pemet d’obtenir un diviseur 2p, sur la courbe spectrale. Cette
courbe vit dans le méme espace total que dans le cas du crochet de Poisson, soit
Iespace total du fibré en droite (D) au-dessus de la courbe P!. Le diviseur per-
met alors d’obtenir un isomorphisme I entre les feuilles symplectiques et un pro-
duit symétrique de cette surface. Soit z une coordonnée sur P!, ¢ la coordonnée
cotangente correspondante, et soit a(2) telle que a(z) = 0 rencontre le diviseur
D. Dans le cas du crochet de Lie-Poisson, la forme a(z)~'dz A d¢ sur K(D)
induit une forme symplectique sur le produit symétrique et l'isomorphisme I
est alors symplectique. Dans le cas du crochet rationnel quadratique, on obtient

des résultat similaires mais avec la forme ¢ tdz A dC.

Nous devrions obtenir des résultats analogues pour le crochet de Sklyanin

dans les cas elliptiques et trigonométriques. On devrait encore avoir des co-



65

ordonnées de diviseurs sur une surface K(D) definie au dessus d’une courbe
elliptique ou nodale. Au lieu de considérer la forme symplectique sur (D) avec
des péles le long de #~(D), on choisit la forme avec un pole le long de la
zéro-section. En prenant des coordonnées de Darboux (z,¢) pour cette forme,
puis en écrivant le diviseur qui correspond 3 la paire (courbe, fibré en droite) en
fonction de ces coordonnées comme une somme 2(2yu, €u), nous devrions obtenir

les coordonnées de Darboux séparées.
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