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Sommaire 

Les applications holomorphes sont étudiées entre des variétés surtout equidimen-

sionelles en considérant le comportement des vecteurs tangents sous l'action des 

différentielles de ces applications. Les métriques différentielles définies sur ces 

variétés pour mesurer les longueurs des vecteurs tangents représentent le language 

le plus efficace dans l'étude des expansions et des distortions des applications holo-

morphes. En particulier, dans l'étude des applications holomorphes avec expan-

sions bornés, quelques théorèmes classiques de la théorie des fonctions complexe 

à une variable sont généralisés. Une sous-classe de fonctions à expansion bornée, 

appelée fonctions semi-Bloch, est caractérisée dans des domaines de C. . Dans 

l'étude des applications à distortion bornée, en exhibant un contre-exemple, nous 

apportons une réponse négative à la question de l'existence d'un théorème de Bloch 

pour cette classe. Dans le cas d'une variable, les applications (fonctions) locales 

sont approchées par des applications globales avec zéros prescrits et une propriété 

d'inj ectivité. 
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Abstract 

Holomorphic mappings are studied between mostly equidimensional manifolds con-

sidering the behavior of the tangent vectors under the differential of these map-

pings. The differential metrics defined on these manifolds to measure the length 

of the tangent vectors is the most efficient tool in the study of expansion and 

distortion of holomorphic mappings. In particular in the study of holomorphic 

mappings with bounded expansion, certain classical theorems in complex function 

theory of one variable are generalized. A subclass of holomorphic functions with 

bounded expansion, called semi-Bloch functions is characterized on domains of Cl' . 

In the study of mappings with bounded distortion, by giving a counterexample, 

the question of the existence of Bloch's theorem for this class, will be answered 

negatively. In the one variable case, local mappings (functions) are approximated 

by global ones with prescribed zeros and a certain injectivity property. 
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Introduction 

The Riemman mapping theorem is one of the most important theorems in complex 

analysis. This theorem asserts that except for C, every simply connected domain 

in C is biholomorphic to the unit disk. Poincaré proved that for n > 1, the n-

polydisk DxDx• •• x D and the unit ball in Cn are not biholomorphic. This shows 

that for n > 1, the topological property simple connectedness is not sufficient to 

guarantee that, for example, bounded domains in Cn are biholomorphic. 

In 1926 C. Carathéodory introduced a pseudo-distance C on domains of Cn, 

which is "invariant" under biholomorphic mappings. Applying this object one can 

decide whether two given domains are biholomorphic. By a distance we mean a 

metric as we have on metric spaces. The words "metric" and "difierential metric" 

will be used for other objects such as Hermitian metrics. 

Carathéodory proved that if 5-21  C 01, Q2 C Cm are domains and f : el -->" e2 

is holomorphic, then f is distance decreasing, i. e. for each x, y G Q1 

c(f(x), f(Y)) 5_ c(x, Y). 

In particular, if f is biholomorphic on Q1  C Cn , then C(f (x), f (y)) = C(x, y). 

This means Carathéodory pseudo-distance C is invariant under biholomorphic 

mappings. 

In 1967 S. Kobayashi, by dualizing Carathéodory's construction, introduced 

a new pseudo-distance K. On the unit disk D in the complex plane, these two 

pseudo-distances coincide with the Poincaré -Bergman distance p which is invariant 

under automorphisms of the disk. Kobayashi pseudo-distance K is the largest 
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pseudo-distance on Q c Cr', such that all holomorphic mappings f : (D, p) - — - + 

(Q, K) are distance decreasing. 

The pseudo-distance K has applications in a number of areas, including dio-

phantine geometry [40] and value distribution theory of holomorphic functions [47]. 

For example in generalizing Picards theorems to higher dimensions, this invariant 

distance has been applied as a principal tool. 

A Riemann surface is called hyperbolic if its universal covering space is the 

unit disk. Most Riemann surfaces are hyperbolic. In particular every compact 

Riemann surface of genus > 2 is hyperbolic. On the other hand the Kobayashi 

pseudo-distance K can be defined on every manifold. For a compact Riemann 

surface X of genus > 2, Kx  coincides with the distance on X obtained from a 

Hermitian metric of negative curvature. This was the motivation for Kobayashi to 

call a complex manifold M "hyperbolic" . 

A complex manifold M is said to be hyperbolic if the pseudo-distance Km  is a 

distance on M. The infinitesimal form km  of Km  which is called the Kobayashi-

Royden differential metric, was introduced by Kobayashi [36] and Royden [52]. 

Invariant pseudo-distances, their infinitesimal versions and their applications have 

been investigated for three decades [37], [38]. 

The Poincaré-Bergman metric is a powerful tool in function theory on the unit 

disk in the complex plane. Applying the natural generalization of this metric, we 

wish to extend varions concepts in the classical case on the unit disk to bounded 

domains in Cil and hyperbolic manifolds. 

Bloch and normal functions are holomorphic functions defined on the unit disk 

having bounded expansion with respect to the ordinary metric on C and spherical 

metric on the Riemann sphere Cco  , respectively. The literature on Bloch and 

normal functions in one complex variable is extensive. But in several complex 

variables it is less developped. 

K. T. Hahn applied Hermitian metrics on the unit ball in Cn [28], [29] and 
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on Hermitian manifolds [30] to investigate the extension of certain problems of 

classical function theory. R. M. Timony generalized the notion of Bloch functions 

in several complex variables to functions on bounded homogeneous domains with 

Bergman metric [55], [56]. Hahn [31] studied the asymptotic behavior of normal 

mappings of several complex variables. He applied the Kobayashi-Royden metric 

on hyperbolic manifolds to define normal mappings. S. Krantz [39] considered 

Bloch functions on strongly pseudoconvex domains with Kobayashi-Royden metric. 

We define Bloch and normal mappings on hyperbolic manifolds by considering 

mappings of bounded expansion on hyperbolic manifolds. We distinguish between 

Bloch and normal mappings according to non-compactness or compactness of the 

target manifold. 

In 1925 Bloch proved that there exists a positive number 0 such that every 

holomorphic function on the unit disk D with the normalization f (0) — 1 maps 

some subdomain of D biholomorphically onto a disk of radius 0. The "largest" 

such i3 is called the Bloch constant. Many investigations have been done to find 

the precise value of the Bloch constant [2], [4], [11], [13]. 

We study the qualitative aspect of Bloch's theorem in several complex vari-

ables. Bochner initiated the study of Bloch's theorem in higher dimensions. He 

showed that one has a Bloch constant if one imposes additional restrictions on 

the class of functions considered. In fact the Bloch constant in higher dimen-

sions for general normalized holomorphic mappings does not exist. H. Wu in [60] 

among other things reproved that, for a subclass of holomorphic mappings on lk 

called quasiregular holomorphic mappings, a Bloch constant exists. S. S. Chern 

[14], applying differential geometric techniques, considered this problem for certain 

Hermitian manifolds. R. Greene and H. Wu [27] proved the existence of a Bloch 

constant for meromorphic functions. K. T. Hahn [28], [29], [30] considered differ- 

ent classes of holomorphic mappings such as the family of bounded holomorphic 

mappings and he estimated the Bloch constant for these families. D. Minda [43] 
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studied holomorphic and meromorphic functions on hyperbolic Riemann surfaces 

using conformal metrics and gave upper and lower estimates for Bloch constants 

in this context. 

X. Liu [41] considered Bloch mappings on the unit ball in Cn and applying 

Bonk's method [11], obtained lower and upper bounds for Bloch constants for 

various subfamilies of Bloch mappings defined on 01 . C. FitzGerald and S. Gong 

[19] studied such holomorphic mappings on classical domains. 

In 1928 Grotzsch introduced quasiconformal mappings in the complex plane, 

which were a generalization of the notion of conformal mappings. Quasiregular 

mappings in Rn are a generalization of analytic functions of one complex variable. 

A more general situation is the case that a mapping f : e --> Cn is simultaneously 

holomorphic and quasiregular, where 5.2 c Cn. Bloch's theorem fails for the class 

9-1( Ig , C") of general holomorphic mappings, for n > 1. Bochner proved that 

Bloch's theorem does hold for the subclass of quasiregular holomorphic mappings. 

On the space of holomorphic mappings on the unit ball in Cn , we define a 

function /3 and we prove that this function is lower semi-continuous on the space 

of quasiregular holomorphic mappings. As an application of this theorem, we will 

prove the existence of a Bloch constant for quasiregular holomorphic mappings. 

By a counterexample we will prove directly that Bloch's theorem does not hold 

for the class of quasiregular smooth mappings defined on the unit disk D in the 

complex plane. 

Bloch's theorem leads to strong geometric information on how entire functions 

must behave. For example, it implies Picards theorem. In order to prove the 

sharpness of many theorems, one needs to know how an entire function may behave. 

That is, one needs to show the existence of entire functions having prescribed 

behaviour. One of the most powerful tools for this purpose is the theory of complex 

approximation. Using approximation, we shall show the existence of an entire 

holomorphic function having an arbitrarily prescribed sequence of "biholomorphic 
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disks" in its image. 

In chapter four we will consider the problem of approximation of functions 

defined on a closed set F c C by meromorphic functions with prescribed poles 

and zeros outside the set of approximation. 

The spectacular theorem of Picard may be the prime mover, historically un-

derlying the theorems of this thesis: hyperbolicity, expansion, distortion, and ap-

proximation. 

Indeed, the study of Bloch functions (functions of bounded expansion) leads to 

Bloch's theorem which implies Picards theorem. The introduction of hyperbolic 

manifolds gave rise to a beautiful generalization of Picards theorem to higher di-

mensions. Picards theorem was highly refined by value distribution theory (Nevan-

linna theory). The problem of showing that this refinement was "sharp" (in some 

sense, ultimate), was known as the inverse problem of Nevanlinna theory. To 

attack the inverse problem Arakelian developed the theory of approximation on 

unbounded sets. Finally, the inverse problem was completely settled by Drasin 

[17] using quasiregular mappings (mappings of bounded distortion). 



Chapter 1 

Prelirninaries 

1.1 	Basic properties of hyperbolic manifolds 

The manifolds considered throughout this dissertation are connected and second 

countable. Our main references for this preliminary chapter are [40], [47] and [60]. 

Let M be a complex manifold and TM be its complex tangent bundle. A dif-

ferential metric is a mapping F :TM --->R>0  satisfying the following conditions: 

F(aX x ) = lajF(X x ), for any X, E Tz M and a G C. 

Moreover, if F is continuous and for each tangent vector X z  Tz — {O z }, F(X x )> 

0, then we call F a Finsler metric. 

On complex connected manifolds of dimension one, that is, on Riemann surfaces 

a differential metric is a conformal metric. 

Indeed, let 	zi) : i e 1-1 be a covering of a Riemann surface M by coordinate 

neighbourhoods. For each j E I consider the holomorphic local frame 

d , 
si(x) :=I. 	on

azj 
Uri. 

If U n U 	q, then Tii 	dzi /dzi  is holomorphic non-vanishing and 

si(x) = Tii(x)si (x). 

6 



7 

Let F : TM —› R>0  be a differential metric on the Riemann surface M. Then 

define pi  : 	R>0  by pi(x):= F(si(x)), for each i G I. It follows that, for each 

E Uj  n 	q5, 

pi(x) = F(si(x)) = F(Tij(x)si(x)) 

=1Tii(x)1F(si(x)) 	 (1.1) 

-= !Ti./ (x) 	(x). 

Sometimes the last equality in (1.1) is expressed by pi (zi ) =1dzi ldzi lpi(zi ). In the 

literature the conformal metric p is often denoted by p(z)IdzI. 

The following example is one of the most important differential metrics on a 

complex manifold. 

Let M be a complex manifold and consider km  : TM —R>0  as follows. For 

each X x  G TM, define 

a 
km(X x ) := inffa > 0 : 	:D 	M, (p(0) = x and 4a(Fz)o) = Xx}, 

where D is the unit disk in C. 

The proof of the following lemma can be found in [47] or in [52]. 

Lemma 1.1.1 The mapping km  :TM —>R>0  is a differential metric. 

kM is called the Kobayashi-Royden differential metric. On the unit disk ID in 

the complex plane, km, coincides with the Poincaré metric 

11  
2 

1-  1,Z1 

For general complex manifolds the continuity of km  is not known, but we have 

the following theorem proved by Royden [52]. 

Theorem 1.1.2 Let M be a complex manifold. Then the Kobayashi-Royden dif-

ferential metric km  is upper semicontinuous on TM, i. e. for each e > 0 and 

X G TM, there is a neighbourhood U of X in TM such that, for each Y E U, 

km(Y) < km(X) E. 
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Note that a Hermitian metric on the tangent bundle of a complex manifold 

gives a differential metric, in fact, if h: TM X TM —› C is a Hermitian metric, 

then h is positive definite and smooth, so 

h(X p ) := h(Xp, 7 
p)112 , 

is a Finsler metric. We will consider this Finsler metic on TM, when we refer to 

a Hermitian manifold M. 

On every bounded domain Q c Cn, there exists a canonical Hermitian metric 

called the Bergman metric, namely, we have h : TQ x TS-2 --+ C, defined by 

h(,77) 
	 z E S2, 	e 

z, -1 

where the entries of the Hermitian matrix [hij (z)] with respect to the usual basis 

of Cri are 

1  82  

2 aziaii 
log B(z, i), 

for 1 < i , j < n, where 	is the Bergman kernel function for Q. The kernel 

function is defined as 
CO 

B(z,  
n=1 

where 	is an arbitrary orthonormal basis for the Hilbert space 

{f: Q—› C: f holomorphic 
,f 

 (4124 < oc}. 

is the Lebesgue measure on C. B(z, 2) is continuous and positive on Q. 

The following theorem asserts that the Kobayashi-Royden differential metric is 

"contracted" by holomorphic mappings and hence invariant under biholomorphic 

mappings. 
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Theorem 1.1.3 Let M and N be complex manifolds and f: M --> N a holomor-

phic mapping. Then k N (f t (X.)) 5_ km(X x ). In particular, if f is biholomorphic, 

then k N (f' (X x )) = km(JG) 

Let 7 : [0, 1] —› M be a piecewise smooth curve. Define 
1 

Lm(7) := f k m(7' (t))dt, 
0 

where 7/(t) := 7* ((g)t ) is the differential of -y at the point t. Since km  : TM —› 

R>0  is upper semicontinuous kivi(-)/(t)) is Lebesgue integrable and Lm(7) is finite. 

For x, y c M, we define 

K m  (x , y) := infIL m  (7) : 7 is a piecewise smooth curve joining x and yl. 

We have: 

• Km(x,x)= 0, 

• K m(x , y) = K Al(y, x), 

• Km(x,z)< Km(x,y)+Km(y,z). 

Therefore Km  is a pseudo-distance. 

This pseudo-distance is called the Kobayashi pseudo-distance. From Theorem 

1.1.3 we have the following distance decreasing principle which is one of its most 

important properties. 

Theorem 1.1.4 Let M and N be complex manifolds and f :M—+N a holo- 

morphic mapping. Then for each x,y E M we have 

KN(f(x), f (Y)) 5_ Km(x, Y). 

In particular, if f is biholomorphic, then KN(f (x), f (y)) — Km(x, y). 

A consequence of this theorem is that the Kobayashi pseudo-distance is con- 

tinuous. 
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Definition 1.1.5 A complex manifold M is called a hyperbolic manifold if the 

Kobayashi pseudo-distance Km  is a distance. Moreover, if Km  is a complete dis-

tance, then M is called a complete hyperbolic manifold. 

Let M be a Riemann surface. The universal covering space 11-/-  of M is a simply 

connected Riemann surface, so it is Cc° , C or the unit disk D. Consider a Riemann 

surface M with the universal covering D and the covering projection z : D ---> M. 

The Kobayashi-Royden metric km  is obtained by projecting the Poincaré metric p 

to M [47, p. 7]. Let x, y E M be arbitrary points and take E D with 7[-( - ) = x. 

Then we have 

K m  (x, y) = inftKED( -d, D) : D E D, z( -9) = y}, 

and Km  is a distance and M is complete [47]. Hence such a Riemann surface 

is hyperbolic. Compact Riemann surfaces of genus > 2 are hyperbolic and if 

there exists a Green function on a Riemann surface then it is hyperbolic and non-

compact. 

The next theorem proved by Royden, states criteria for hyperbolicity [52] 

Theorem 1.1.6 For a complex manifold M the following conditions are equiva-

lent. 

(i) M is hyperbolic. 

(ii) The topology induced by Km  is equivalent to the original topology on M. 

(iii) Let F : TM —› R>0  be a Finsler metric. Then for any x e M, there is a 

neighbourhood U of x and a constant c> 0 such that km(X) > cF(X y ) for 

all ; e TM with y E U. 

(iv) Let F : TM ---> IR.>0  be a Finsler metric. Then, for any X e TM, there is 

a neighbourhood W of X and a constant c> 0 such that km  > cF on W. 
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Let M, N be complex manifolds. The set of all continuous and holomorphic 

mappings from M to N will be denoted by C(M, N) and 1-1(M, N), respectively. 

We equipe C(M, N) with the compact open topology. A sequence {fT,} c C(M, N) 

is called compactly divergent if given any compact set K in M, and compact K' 

in N, there exists no  E N such that f(K) n K = 0, for all n > no. 

Definition 1.1.7 .7 c C(M, N) is called normal if every sequence in .7-  contains 

a subsequence which is either convergent in C(M, N) or compactly divergent. 

The following theorem [38] will clarify the relationship among different concepts 

such as normality and equicontinuty. 

Theorem 1.1.8 (Arzela-Ascoli) Let X be a locally compact, separable space and 

Y a locally compact metric space. Then, a family F cC(X,Y) is relatively compact 

in C(X,Y) (i.e., every sequence of mappings fn , E F contains a subsequence which 

converges in C(X,Y)) if and only if 

(a) ..r.  is equicontinuous at every point x E X; 

(b) for every x E X, the set {f (x) : f E F} is relatively compact in Y. 

Let us state the classical theorem of Montel, which will be applied frequently 

in this dissertation. 

Theorem 1.1.9 (Montel) Let M be a complex manifold. Then a locally uni-

formly bounded family of holomorphic mappings from M into Cn is equicontinuous 

and hence normal in 7-I(M,Cn). 

A complex manifold M is called taut if the family W(I[D, M) is a normal family. 

Theorem 1.1.10 R7.1 Let M be a complete hyperbolic manifold then the family 

3i(D, M) is a normal family. 

Therefore, every complete hyperbolic manifold is taut. On the other hand 

tautness provides us with valuable information about hyperbolicity of a manifold 

and continuity of the Kobayashi-Royden metric. 
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Theorem 1.1.11 [52] If M is taut, then it is hyperbolic and km  is continuous on 

T M . 



Chapter 2 

Bloch and normal mappings on 

manifolds 

2.1 Definitions and basic properties 

In this chapter, we assume that M and N are connected complex manifolds of 

dimensions m and n with differential metrics Fm  and FN, respectively. 

Definition 2.1.1 We say that a mapping f E 1-1(M, N) is of bounded expansion 

if it satisfies 

Ilfil := suP{lInAll : P G M} < oo, 	 (2.1) 

where 

Ilt(P)11:= suAfFN(f i  (P)Xp) : Xp eTpM, PlivI(Xp) =11. 	(2.2) 

Usually, M will be hyperbolic and Fm  will be the Kobayashi-Royden metric km  

while N will be Hermitian and FN will be the Hermitian metric hN . To avoid confu-

sion, when there are different differential metrics on M and N, we will sometimes 

use the notations Ilf (p)1IFFmN and1 1 f ILF,FmN , to denote (2.1) and (2.2) respectively. 

The class of mappings of bounded expansion will be denoted by g(M, N). 

13 



= sup 
km(P,e) 

hN(f (p), f(P))  
(2.4) 
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Let Fl  and F2 be two differential metric such that for each Op 	E T pM 

F(X) 0 

Then 

Xp 	Fl ( XP ) 	
- F2  (Sxil21,3) 	

Fl ( XP ) 
sup 

(2.3) 

	

= 	sup hN(f' (p)X p ). 
F1(x-9 )=1 

If M is hyperbolic and (p, e) is the representation of a tangent vector Xp  E T pM 

in a coordinate neighbourhood of p G M, then, by Theorem 1.1.6 (iii), km(p, e) e 0 

for e 0, and by (2.3) we have 

	

hN  (f 	fi (P))  
(p)II = sup 	k 	e) 

	

km (P,e)e0 	M  

hN(f'(p)xp) _ 	hN ( fi (p)xp)  

where 	is the Euclidean norm in cm. 

Note that (2.4) does not depend on the coordinate neighbourhood around p E 

M and the representation (p, e) of the tangent vector Xp  G T pM. 

If N is noncompact, we refer to mappings of bounded expansion as Bloch 

mappings and if N is compact we refer to them as normal mappings. 

The sets of all Bloch and normal mappings from M to N will be denoted by 

B(M,N) and N(M, N), respectively. 

For the case of normal mappings our definition is consistant with Hahn's defi-

nition of normal mappings in [30], [31]. 

Example 2.1.2 Consider D with Poincaré metric 

	

P(Z1) = 		21 
1- 1.31 
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and C with Euclidean metric e(z,e) = C. Also on the Riemann sphere C, 

considering two charts (cp0 ,U0 ) and (ço,,, U) where U0  := C\  {oo} and Uo„ := 

C\  {O} with (p0(z) = z and co(z) = 1/z, the chordal metric a is defined by 

lel  a(w,e) 

	

	 vw Ui, 
1+ ly9i(w) 

Then a function f : D —> C is Bloch if and only if 

sup(1 — 1z12)1t(z)l< cc, 
zED 

and a function f : D --> Cc, is normal if and only if 

sup(1— lz12)f#(z) < oo. 
z ED 

where, f#(z) is 	(41[1 + If (z)12 ] or 1(1/f)'(z)1/[1 + 1(1/f)z12] if f (z) 	oo or 

f (z) = oo, respectively. 

This shows that our definitions coincide with the classical definitions of Bloch 

and normal functions, respectively. 

Definition 2.1.3 Let N and -À-T be connected complex manifolds. If Ñ is compact 

and N c ÀT is open, then we call N-  a compact extension of N. 

Examples 2.1.4 . 

(a) Consider the n-dimensional complex projective space Ir with the canonical 

projection 7 : Cn+1  \{0} 	Pn. Let Wi  := {z = (z1, 	, zn+i) E Cn+1  : z, =- 1} 

and U, := 7r(Wi). Then Pn  is a compact extension of ci, because the neighbour-

hood U, c 1Pis isomorphic to Cn. 

(b) Set 

Cn 	Coo  X Coo  • • • X Coo  
n —times 

where Coo  is the Riemann sphere. In some references C is called the Osgood clo-

sure of C. Consider the two canonical charts (c,o0, U0) and (vo° , Uoe) of each factor 
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Coo  , which have been introduced in Example 2.1.2. Then we obtain coordinates 

on Cn by considering 

X [Ji2  X . . . Uin  

and 

: (CP21 (P221 	(Pin) Uil 	 Cn 

where 	e {0, co}. Obviously Cn is compact and Cn 	U0 ,0 ,..,0  c Cn is an open 

subset. Hence Cn is a compact extension of C. 

We are going to verify whether various properties of Bloch and normal functions 

in the classical case are still satisfied in this more general setting. 

It is well known that, in the classical case, every Bloch function is normal. 

If N and -./S'T are Hermitian, with N open in /ST' and hÑ <  hN  on TN and M is 

hyperbolic, then clearly any mapping f e ?-1(M, N) of bounded expansion is also 

of bounded expansion, considered as a mapping in 7-1(M, iS.T). If, moreover -/S-T is a 

compact extension of N, we may then write B(M, N) c Ar(m,m. Thus, every 

Bloch mapping to N is a normal mapping to Ñ. 

Moreover, if f e B(M, N) then the family { f o çalço e AutM} as a family of 

holomorphic mappings to /ST is a normal family, where AutM denotes the group of 

holomorphic automorphisms of M. In fact, since the Kobayashi-Royden differential 

metric is invariant under ço e AutM, i.e., for each p e M and e e Cr' we have 

km(P, 	= km(So(P), Soi(P)e), so 

hN((f o  (p)(p), (f 0 (p)'(p)e)  _ hN(f(v(P)), (40(P))S0' (P)e)  
k m (P, e) 	 km(V(P),Sd(P)e) 	• 

Therefore 

sup 11(f o cp)(P)11 = suP Ilt(go(P))11 = suP Ilt(q)11. 	(2.5) 
pEM 	 PEM 	 qEM 
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Since f is Bloch, there exists a such that for all ça E AutM and p E M we have 

11(f o (py(p)11 < a. Hence for each p E M and eE Cm  

hN((f ° 40 )(P), (f 0 so)1(P)) 	akm(p,e). 

Integrating along any Ci-  curve connecting any two points pl  and p2  in M implies 

((f °S0)(Pi), (f 0 (p)(P2)) í  aKm (pi, p2), 	Vço E AutM. 

Thus the family If o çalp E AutM} is equicontinuous. Since ÀT is compact, by the 

Arzela-Ascoli Theorem the family If o ça  l ça E AutM} is a normal family. 

Note that the property hÑ < hN  in the classical case is fulfilled for C C Coo  

Pl . This is also the case for Cn and projective space IP'n with the Fubini-Study 

Hermitian metric: 

[(l + 1z12 )1e12  — 	e)1211/2  hpn(z,e) 
1+ 412  

where z represents inhomogeneous coordinates of a point in Pn, E ,Cn and ( , ) 

is the usual inner product in C. 

The next theorem is a characterisation of normal mappings on complex mani-

folds due to K.T. Hahn [31]. 

Theorem 2.1.5 Assume that N is compact and M is hyperbolic and homogeneous, 

i.e., the group AutM of holomorphic automorphisms of M is transitive. Then, for 

f E 1-t(M, N) the following statements are equivalent: 

(a) f Ar(M,N); 

(b) the family If oylye AutM} forms a normal family; 

(c) f G W(M,N) is uniformly continuous, i.e., for each e > 0 there exists a 

> 0 such that for all p,q G M with K A,r(p,q) < õ we have 

dN(f (p), f (q)) í c, 

where Km(p,q) is the Kobayashi distance on M. 
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To prove our next theorem we need two lemmas, which indicates the relation 

between a distance and the " derivative" of that distance. 

Lemma 2.1.6 Let Q be a domain in Cn , 6 : x cn---> 11 >0  a Hermitian metric 

and let d be its corresponding distance. Then, for each a E Q and e E cn, 

1 
lim -d(a, a + te) = (a, e). 
t-›0+ t 

(2.6) 

Proof: By definition d(a, b) := inflfol  ô(a(7), a1 (7))ch-} where the infimum is 

taken over all piecewise smooth curves a : [0,1] 	Q joining a and b. Fix a e 
and C  e Cn, C  0. Taking a(T) := a + tye, we see that 

1 	 1 
lim sup -d(a, a + te) < lim sup - f ô(a + 
t-›0+ t t->o+ t o 

1 t  
= lim sup - f b(a + se, - )ds 

t-w+ t o 
G 6(a, e). 

So far, we have used the fact that õ is a differential metric and upper semicontin- 

uous. 

Conversely, fix 0 <O < 1. Since ô is continuous, for no  e Cn with 17701 = 1, there 

exist neighbourhoods Un°  C Q of a and V770  C Cri of 770  such that 6(z, ri) > 06(a, ri) 

for each z E Un°  and 77 E 177/„. Since 

Sn-1  := {77 G Cn  : [01 = 

is compact there exist 	, 77, G Sn-1  such that Sn' C 	Take U := 

Then U is a neighbourhood of a and 6(z, ri) > 06(a, 71) for each z E U 

and 77 E S. Since 6(z,.) is a C-norm, it follows that for each z e U and 77 e Cn, 

ô(z, 77) > OS (a, ri). 
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For small t > 0, there exists a geodesic -yt  : [0,1] --> C/ c U, with -yt(0) = a, 

7t(1) - a + te. Therefore 
1 

d(a, a + te) =f Ô (-yt  (7), -y't  (7) ) dy, 
o 

?  0 f
1 

(5 (a, -)1(r))d'r , 
o 1 

> 96(a, f -y;(7- )dr), 
o 

= 195(a, 7t(1) — -Mo)), 
=- 06(a,te). 

The second inequality follows from the fact that (S(a, .) is a complex norm. It 

follows that 

lim inf 1 — d(a, a + te) 	0 (5 (a, e). t_>0+ t 
Hence, the proof is complete. 

CI 

Lemma 2.1.7 Let Q and 6 be as in the previous lemma, Q1  c Cm and f: QI. —› 
Q a holomorphic mapping. Then, for a E Qi  and C  E Cm, 

lim —1d( f (a), f (a + t)) = 6(f (a), f(a)C). t—›o+ t 

Proof: We shall prove that for each b E Q, there exist M ,r > 0, such that 

d(z' , e) < milzi -z"11, for all z', e G I, (b) C G. To see this, fix b E S2 and choose 

r > 0 such that le, (h) C Q. Since d is upper semicontinuous, there exists M > 0 

such that 6(z, e) < mile, for each .z• E Ir, (b) and each e E C. It follows that for 

z' ,e E W (b) we have 

d(z' , z") < 

We claim that 
fo 

1 

(5(z + t(z" _ z1) , z1( — zi )dt < lez' — zil  II. 	(2.7) 

1 Ô (b, eo) . iim -d(b, b + te). ti_4( ) ii._ t (2.8) 
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Choose M and r as above. Then for 0 < t < (r/2)/(11e011 + r/2) and e 

we have 11b + .t — bll < r/2. Hence, by (2.7), 

d(b ± te 0 , b + te)  < m-tme — ed . 

 

r/2 (eo) Ir 

 

Therefore, 

d(b, b + t. ) < d(b , b + teo ) + d(b + te 0 , b + t) 

< d(b, b + teo ) + M tg" — Co ll. 

Similarly, 

d(b,b + t&)) < d(b,b + teo) + mtme — eoll. 	 (2.9) 

Applying the previous lemma we have, 

lim —
1 

d(b,b + te) --= lim —
1 

d(b,b + t6) = 6(b, 6)• 	(2.10) 
t-40+ t 	 t—›0+ t 
e—>eo 

Hence our claim in (2.8) is proved. With the help of this fact, for a E QI  and 

C E Cm we have, 

1 
lim —d( f (a), f (a + t")) -= lim

—  —
1
d(f (a), f (a) + t( f i  (a)e + o(1))), 

t—›o+ t 	 t›o+ t 

= 6(f (a), f(a)C). 

D 

For the next theorem we will give two proofs. The first proof is based on the 

application of Lemmas 2.1.6 and 2.1.7, while the second proof is a direct proof. 

Theorem 2.1.8 Let M and N be hyperbolic and Hermitian manifolds, respec-

tively. Then the function f 1—> pfill from the class of holomorphic bounded ex-

pansion mappings ¿(M, N) equipped with the compact open topology to IR is lower 

semicontinuous. 
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Proof (1) : Let {fri} be a sequence in ¿(M, N) which converges to a holomorphic 

mapping f uniformly on compact subsets of M. Let {Ilfu} be a subsequence 

of {Hf} converging to a. For a given E > 0 and p, q e M, p q, there exists 

n, E N such that for nk  > n, we have 

I 	< 2Km(p,q)' 
	 (2.11) 

and 

cIN(fn,(P), f (P)) 	E / 4 , 	cIN(f.,(q), f (q)) 	E/4. 	(2.12) 

On the other hand, since for each n E N, f7 , E A r(M, N), according to the 

definitions of 11,fli (x)11 and Ilfa, for each x E M and e E Cm 

hN(fri(x),f,(x)e) 

By integrating along any Cl  curve connecting p to q, we have 

cIN(fn(P), fri(q)) 5_ IlfaKm(p,q). 

Hence employing (2.11) and (2.12), for nk  > n, we obtain 

c/N(f (P), f (q)) 	dN (f (P), frik(P)) + dN(f.,(p), fri k (q)) 

+ dN(fn(q),  f(0) 

< E/2 + IlfiuKm(p, q) < E aK ivi(p,q). 

Therefore 

dN(f (P), f (g)) í ai( (P, q). 
	 (2.13) 

Now applying Lemma 2.1.7 and also the first part of Lemma 2.1.6 locally, for 

each p e M and each ee Cm, we have 

hN f (P), r(P)C) 	l'ciN Cf (P), f + te)) 

< a lim sup —Km(p,p + t") 
t 

< cekm(p, 
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It follows that f E E(M, N) and f < a. The assertion is thus proved. 

Proof (2) : Let {fn} be a sequence in E(M, N) which converges to a holomor-

phic mapping f uniformly on compact subsets of M. We wish to show that 

lim 	 11t11. 
Since {fn}  is a sequence of holomorphic mappings and limn—>oo f = f, it follows 

that 	=- f'. So for each p E M, we have f (  p) ---> f'(p). Fix X p  E TpM. 

Then (p)X p  --> f(p)X. Since hN  is continuous, 

liM hN(f:1(P)X p) = hN (Ait (P)XP)' n—roo 

Thus, if Kivi (X p ) = 1, Ilf(p)11> hN(f(p)X p ) and so 

lim inflIf',(p)11> hN(f(p)X p ). 
n—>oo 

Taking the supremum over X p  E TpM with km(X) = 1, we have 

1iminfllf(p)H 	Ilf(P)115 	VP E M. 

Hence, for each p E M, lim 	 > Ilfi(p)11. Thus 

lim inf 	> 
n—>oo 

2.2 Bloch mappings to Cn 

Bloch functions on the unit disk have been studied by many authors, see for ex-

ample [6]. In several complex variables they have been studied by R. Timony [55] 

on homogeneous bounded domains, and on strongly pseudoconvex domains by S. 

Krantz and D. Ma. Applying the Kobayashi-Royden metric, we will study Bloch 

mappings from hyperbolic manifolds to Euclidian space Cm. 

Applying a lemma due to Hahn [31], we shall give a Marty type criterion on 

hyperbolic manifolds. 
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Lemma 2.2.1 [31] Let M be hyperbolic and N compact. A family F c 7-1(M, N) 

is normal if and only if for each compact K c M there exists a constant C(K) 

such that, for each p G K, 

	

sup{11t (p)11 : f E .T} < C(K) 	 (2.14) 

Theorem 2.2.2 Let M be a hyperbolic manifold. A family .T c 7-1(M, C) is 

normal as a family of holomorphic functions to Cco  if and only if for each compact 

K c M there exists C(K) such that, for each p G K, 

sup{11 neek / (1 + If (P)12 ) : f E Fl < C(K), 	 (2.15) 

where 11 fi (p)n := suptlf (p)X pl : km(X) = 11. 

Proof: Suppose .T c 7-1(M, C) is normal, so that by the previous lemma, for 

K c M compact, there exists a constant C(K) > 0 such that for each p G K and 

each f E ..T., 

suP111 f ' (dl : f E Fl < C(K). 

Hence, for each p E K and each X p  E TpM with km(X p ) = 1 we have, 

InP)Xpl  < c(K)  
1  + If(P)12  — 

Therefore it(p)X p l 5 C (K) (1 + If (p)12 ) . It follows that for each p E K and each 

f E F, 

Ilf(Allic  < C(K). 
1  +1.f(P)12  —  

Conversely, let 

Ilf i(P)e  <C(K), 	Vp E K Vf e F. 
1  + If (P)12  — 

Thus for each p E K and each Xp  E T pM with km(X) = 1, we obtainlf(p)Xp l< 

C (K) (1 + If (p)12 ). Therefore 

sup 	crecoo  (f(p)X p ) < C(K), 
k m (Xp)=1 
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where a is the chordal metric on C. . Now Lemma 2.2.1 will complete the proof. 

The following theorem will confirm that several equivalent statements concern-

ing Bloch functions [6] in the classical case, are valid in a more general setting. 

We will consider Bloch mappings from hyperbolic manifolds to Cn , however 

it would also be interesting to consider the case where the target space N is a 

Hermitian manifold. 

Timony in his paper [55] considered Bloch functions on bounded homogenous 

domains with Bergman metric. This metric is a Hermitian metric. We will consider 

hyperbolic manifolds for which the Kobayashi-Royden metric is continuous. From 

this point of view our construction is more general than Timony's work. However 

as Krantz pointed out in [39], for the case of strongly pseudoconvex domains, the 

Bergman, Kobayashi, and Carathéodory metrics are "equivalent" in the sense that 

the Bloch spaces defined in terms of the three metrics are the same. 

For the next theorem we need to define the notion of sequence of P-points. 

This version of this notion was introduced by P. M. Gauthier [22] and was applied 

by Hahn [31] in studying normal mappings on hyperbolic spaces. 

Definition 2.2.3 Let dm  and d N  be distances on complex manifolds M and N, 

respectively. A sequence {pn} of points in M is called a sequence of P-points of 

f e 7-I(M, N) if there exists a sequence {qn} in M such that 

lim dN(f (p.), f (qn) > O. 
n—Yoo 	 n—>oo 

Theorem 2.2.4 Let M be a hyperbolic homogenous manifold, f be a holomorphic 

function on M and po  G M. Then the following statements are equivalent: 

(a) f B(M,C). 

(b) f : (M, Km ) ---> (C,1 .) is uniformly continuous. 

lim dm (Pn, qn) = 0, 	and 
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(c) f E R(M, 	has no sequence of P-points in M. 

(d) The family 

f o (p)(p) — (f (p)(po ) : E AutM} 

is normal as a family of holomorphic functions to C. 

(e)  

sup{11(f o 41 (130 )111: y E AutM} < oo. 

Proof: (a) = (b). If (a) holds then there exists a constant a such that for each 

p E M and e e cm, 

If(p)1 < akm(p, e). 

Integrating along any C1  curye 7 connecting any two points pi  and p2  in M we 

deduce 

If (Pi) — f(P2)1 	ai( Ad (pi, P2). 

Hence f is uniformly continuous in the designated metrics. 

(b) <=> (c). As in Hahn [31], this follows directly from the definition of uniform 

continuity and the definition of a sequence of P-points. 

(b) = (d). Since by Theorem 1.1.4 holomorphic mappings are distance decreas-

ing in the Kobayashi pseudo-distance, for each p, q G M and yo e AutM, we have, 

K m  (p, q) = K m(y(p), y(q)). Hence from the uniform continuity of f it follows 

that the family 1( f (ço(p)) — f (y(pc,)) : ço E AutM} is equicontinuous. Therefore, 

by the Arzela-Ascoli Theorem this family is normal. 
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(d) = (e). This follows from Theorem 2.2.2 with K =- {po}. 

(e) = (a). We have seen in (2.5) that 11(f 0  So)(Po) 	= 	((p(p0 ))11 le, and since 

AutM is transitive we have sup{l f (p)117, : p e M} < oc, as required. 

El 

Note that, by Proposition 2.3.19 in ([1, p. 204]), since M is hyperbolic and 

homogenous, km  is continuons. However, we did not use this fact in our proof. 

We can apply the previous theorem to Bloch mappings from a hyperbolic man-

ifold M to CTh. Indeed a mapping f E7-l(M,Cn) is a Bloch mapping if and only if 

each component f e 7-1(3/, ,c) is Bloch. This obviously can be deduced from the 

fact that 

for each p G M, and X p  E Tp M. 

We shall give an example to show that the homogeneity condition on M cannot 

be waived, for the equivalence (a) < 	> (d) in Theorem 2.2.4. For this example 

we consider a hyperbolic manifold M of dimension one. That is, M is a Riemann 

surface for which the unit disk D, is its universal covering space. To state the 

example we need to consider another criterion for Bloch functions on hyperbolic 

Riemann surfaces. 

Definition 2.2.5 Let M be a Riemann surface, f E 7-1(M, C) and p E M. By a 

schlicht disk at f (p) (or unramified disk), we mean an open disk Dr  (f (p)) in f (M) 

with the property that there exists a neighbourhood V of p in M such that fly is 

injective onto Dr  (f (p)). 

It is well known [6] that f E 7-1(D, C) is Bloch if and only if the radii of schlicht 

disks in the range of f is bounded above. we will prove the analogous theorem on 

hyperbolic Riemann surfaces. 
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Theorem 2.2.6 Let M be a hyperbolic Riemann surface. Then f E 7-1(M, C) is 

Bloch if and only if the radii of the schlicht disks in the range of f are bounded 

above. 

Proof: Let 7F : D —> M be the universal covering map. Then, for p E M 

there exists V open in D and zo  E V such that, 7r(z0) =- p and 7r11, : V --> U is 

biholomorphic. With the help of the remark after Definition 1.1.5 and considering 

the chart (cp := (7r1v )-1,U) around p, we have 

f(q)11 = sup  If i(q)el 
iewi km (g, e),  

1(f 0 

  

(2.16) 1 	, 
1.11  

= (1 —  q e U, ço(q) = z. 

Therefore f e 9-/(M, C) is Bloch if and only if f 0 7 E 7-0, C) is Bloch. 

For f G 7-1(M, C) and x G M, set 

)5(p, f) := sui*. > O: Dr  (f (p)) is a schlicht disk at f (p) contained in f (M)}. 

We take [1(p, f) = 0 if there is no schlicht disk at f (p). 

Hence by the above remark f 0 7 E 7-1(113, C) is Bloch if and only if 

ß(f 0 7r) := suP{P(z,(f 0 7r)) : z G D 1, 

is bounded above. By the monodromy theorem 0(z, f oz) = /8(7r(z), f). Therefore 

f G 7-1(M, C) is Bloch if and only if 

)3(f) := suP{O(P, f) : P e M}, 

is bounded above. The assertion is thus proved. 

El 

As we mentioned, the following example shows that the homogeneity condition 

on M cannot be waived, for the equivalence (a) < 	> (d) in Theorem 2.2.4. 
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Example 2.2.7 Consider the annulus 

Ar,R  = {Z e C : r < 1z1 < R}, 

where 0 < r < R < oo. 

One can easily prove that the group AUt(Ar,R) consists only of the rotations 

p,(z) = uz, for u a unimodular constant and reflection o-(z) = Rr I z, and composi-

tions of these two types of functions. Therefore Ar,R  is not homogenous. In fact if 

Z1, z2  E Ar,R  with Izi l 	1z21 and if 1zi l 	RrAz21, then there is no automorphism 

of Ar,R  which sends z1  to z2. 

Since ID is hyperbolic, Ar,R  is hyperbolic. Indeed we can find the universal 

covering map 7r : ID —> Ar,R, explicitly. It is defined by 

i 	111(

1.  
ln  RIr 1 — z ) 

z(z) := (Rr)1/2  exp 
7i- 	+ z • 

Now consider f : Ar,R --> C defined by 

f (z) :=. 
R + z' 

f is not a Bloch function since the radii of schlicht disks in the range of f o 7r are 

not bounded above. 

On the other hand for a fixed holomorphic function f : Ar,R --- C, consider 

the family 

{(f o (p)(z) — (f o (p)(zo ); ça E Aut(iir,R)}, 

for some zo  E Ar,R. Let K be a compact subset in Ar,R  which contains zo and Qi 

a closed concentric annulus in Ar,R  containing K. Then Q2  =: 0-(Qi ) is compact 

and by definition of o- , cr(Q2) = Qi. Consider the compact set Q := Qi  U Q2 , we 

have a(Q) = Q and hence for every (,o E AUt(Ar,R), p(Q) C Q. Therefore 

U{(p(K) : p E AUt(Ar,R)} C Q. 

It follows that, for each y E Aut(Ar,R), 

supl(f o ço)(z)1 5.  sup If (41 = MK • 
zEK 	 zEQ 

R — z 
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Hence, for each y E Aut(Ar,R) and z E K, 

l(f 0 w)(z)- (f 0)(41 2mK, 

and by Montel's theorem 

l(f 0 (P)(z) - (f 0 (P)(zo) : ço e Aut(A.,,K)}, 

is normal. 

2.3 Semi-Bloch functions 

A function g e W(1111), C) is called a semi-Bloch function if for each complex number 

À, the function f ), := exp(.4(z)) is a normal function, as a function to C. This 

function space on the unit disk ID, was introduced by F. Colonna [15]. She proved 

that a semi-Bloch function is a normal function and showed that there exist semi-

Bloch functions which are not Bloch functions. She also asked whether the sum 

of two semi-Bloch functions is a semi-Bloch function. This question was answered 

negatively by R. Aulaskari and P. Lappan [8]. They gave analytic and geometric 

characterizations for semi-Bloch functions on the unit disk in the complex plane. 

With the help of the Kobayashi-Royden metric, we will define semi-Bloch functions 

on bounded domains in C and give a characterization of these functions. 

Definition 2.3.1 Let Q be a bounded domain in C . Then g E 7-/(Q, C) is called 

a semi-Bloch function, if for each E C, f(z) = exp(Ag(z)), as a function from 

Q with Kobayashi-Royden metric to Cc,, is a normal function. 

Let Q be a bounded domain in C and g E B(Q, C). Set f(z) := exp(g(z)). 

Then considering f E 7-/(Q, C„„), we have 

	

Il f i (z)11 := sup 	  

	

11=1. 	kn  (z,)' 
(2.17) 



lexp(g(7))1 
1 +1exp(g(z))121Ig'(z)II. (2.18) 

where acco  (w, ri) is the chordal metric on C. Thus, 

lexp(g(z))11gi(z)e1 	1  
f(z)11 = suP ler=1 1 +1exp(g(z))12  lç çl(z, )' 
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Therefore f is a normal function. This shows that every Bloch function is a semi-

Bloch function. 

Before stating the main result of this section, we remark that if Q is a bounded 

domain in Cn, then one can easily see that for each constant c E C, f E 9-t(Q, C) is 

a semi-Bloch function if and only if f + c is a semi-Bloch function. We will follow 

Aulaskari and Lappan [8] to prove the next theorem. 

Theorem 2.3.2 Let Q be a bounded domain in Cn and g e R(Q,c). Then g is a 

semi-Bloch function if and only if, for each line L in the complex plane, 

supflIgi (z)11 : g(z) G L} = C L  < œ. 

Proof: Suppose g E 9-1(Q, C) is a semi-Bloch function and L is the imaginary axis. 

Set f (z) := exp(g(z)). 

For z E g-i(L), we have If (z)1 = 1 and, considering f E 

lexp(g(z))1  , 	1 f  
11f(z)11= 

1 +1exp(g(z))121Ig (z)II = -21Ig (411. 

Since f is normal, it follows that 

supflIg'(z)11 z e g-i (L)} = CL  < œ. 

Now let L be any line in the complex plane. There exist complex numbers 0 

and -y such that L := fez + -y : z E LI is the imaginary axis. Moreover, by the 

above remark :g = 0g + -y is a semi-Bloch function. Therefore, considering :g, we 

can complete this part of the proof. 
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Conversely, suppose A 0 is given. Let L be be a line in the complex plane 

such that {Az : z E L} is the imaginary axis. Consider f A(z) := exp(Ag(z)). Then, 

for z e g-i(L), we have, considering A e 9-1(Q, C„), 

Inz)11 = 
1 +lexp

IÀ(),1
g(z))12

11g1 	= 

	

(z)11 	LA2 1 11g'(z)11. 

Thus, 

sup{11A(z)11 : z e g-1(L)} =1A1 C.L, < oo 

	

2 	. 

The line L has (many more than) 5 distinct elements. Therefore, by Corollary 

3.12 in ([34, p.360]) f), is normal and the proof is complete. Note that in Corollary 

3.12 in [34] the authors used the notion of uniformly normal, which is based on 

Proposition 1.6 (3) and Example 2.22 of this paper; this notion is equivalent to 

the normal property of f. 
D 

2.4 A characterization. of Bloch mappings 

Lohwater and Pommerenke [42] studied necessary and sufficient conditions for a 

function to be non-normal. Their idea was extended in [31] to normal mappings f e 

9-/(D, N), where N is a compact Hermitian manifold. Minda [44] by adapting their 

idea, established a necessary and sufficient condition for a function f e 9-t(Q, C) 

to be non-Bloch, where Q is a hyperbolic region. In this section following [44] we 

will study this problem for f E 9-1(Q,Cn ), where Q is a domain in Cm. In the next 

theorem S Q(p) := d(p, 0Q), denotes the Euclidean distance from p to M. 

Theorem 2.4.1 Let 5-2 be a bounded domain in Cm. If f e 9-/ (Q, Cn ) satisfies 

	

SUP 1 1 f l (P)11:6n (P) = CG, 
	 (2.19) 

pESZ 
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then there are sequences {pi}  in 5-2 and {r i}, ri  > 0 with 

r i  
lim 	 i—e,3 8n(pi) = 0'  

(2.20) 

such that If (pi  + riw) — f (pi )} converges locally uniformly in Cm to a nonconstant 

holomorphic mapping g E 

Proof: Let S2 =U =1 	where for each i , 52i  is a domain in Cm, S j  is compact 

and Qi  C Qi+1. Consider 

= max{ I I f 	(P) P e 

We claim that there exists pi  E 	such that Mi  = Ilf(pi )11:6s-2,(pi ), for each i. 

Otherwise, since 6ç (p) = 0 for p e 0s2i, we have Ilf(p)6ni (p) = 0 for p e i. 

But dpi (p) 	0 on j, hence 11,r(p)11 = 0 for p G 	Since f is holomorphic, 

fi 1=1 0 on S2 which contradicts (2.19). 

We also claim that limi_>. 	= oo. If not, since M C Mi+1, there exists 

M > 0 such that for each i , M < M. Thus 

Ilf(P) (P) M, 
	 (2.21) 

for all p E Oi  and all i. Now take qo  e52. Then qo  E SI, for all sufficiently large i 

and limi, js-zi  (go ) = 5n(q0 ). Applying (2.21) we deduce that 11f(qo)6í (qo ) < M 

which is a contradiction with (2.19). 

Define ri  := (5ç2i (pi )/Mi. Since ri/k(pi ) < ri/dpi (pi ) = 1/Mi , it follows that 

limi,,,„ rib5n(pi ) = 0. If 1w1 <M = 8ç (p)/r, then rw < Ôni  (pi ). Therefore 

pi  + riw E l 5 (pi) (pi ) := {z E Cm  : z -Pi < âni  (pi )} . 

Since 	C 	we have pi  + riw e Qi  and the holomorphic mapping 

gi(w) := f (pi  ± r i w) — f (pi ) is well defined on lm  (0) := tw E Cm : 1w1 < 

Moreover g(0) = 0 and Ilg'i (0)11 = 	=- 1, for each i. 
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Let K be a compact subset in Cm. Since 	oc, there exists N E N such 

. (0), for all i> N, and for w E K, 

Ôni (Pi+ wri) 	1  
Ilgaw)11: = 	+ wriM ee 	ri Ôni 	(pi  ± wri)  = 	Ôni(pi)  

< (1 — 11 6ni (Pi  ± wri) 1) 
6Pi  (Pi) 

Note that 6s-2i  is a Lipschitz function of order 1. So for each 

1 8sz, (Pi) — dni  (pi + wri)1 < 1w1ri. 

Hence 11 g(w) 11 	(1 —  

Since 1w1 is uniformly bounded on K and 1im,0  M = oo so IU11: : i E 	is 

uniformly bounded on K. We also have g(0) = 0, for each i. Thus {gi  : i 	is 

locally uniformly bounded on Cm. Therefore by Montel's Theorem 1.1.9 the family 

Igi  : i E 	is a normal family. Hence by passing to a subsequence, which will 

be denoted again by {gi  : i E N}, we can suppose that it converges uniformly on 

compact sets of Cm to a holomorphic mapping g E 9-/(en, Cn). Since Ilgi(0)11 = 1, 
g is not constant and the proof is complete. 

D 

The following theorem is a "weak" converse of the previous theorem. The proof 

is almost the same as that of Theorem 6.1 in [31] with a modification by applying 

the implication (a) 	(c) in Theorem 2.2.4 in the second statement. 

Theorem 2.4.2 Let S-2 be any bounded domain in Cm and f E W(Q, Cn). Suppose 

that there exist sequences {N} in Çì  and {r n}, rn  > 0 with the property (2.20), 

such that {f(p + rnw) — f (Pn)} , converges locally uniformly to a nonconstant 

holomorphic mapping g G (Cm , Cn ). Then there exists a sequence of P-points 

for f.  Moreover, if 52 is a homogeneous domain in Cm, then sup{11f(p)111 : p 

5-21= oo and f is non-Bloch. 

that K c IL 
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Now we consider the case where m = 1 and 52 is the open unit disk D in C. 

Then 

Ilf(z)111 = suP If i(z)e1(1  — 1z21). 
le1=1 

Since 

8D(z) < 1 —1z21 < 25 

(2.19) and (2.20) will become supzeD  Ilf(z)117, = oo and 	ri/(1 —14) = 0, 

respectivly. Therefore we can deduce the following theorem: 

Theorem 2.4.3 The map f E (D, Cn) is not Bloch if and only if there exist 

sequences 	in D, {ri}, ri  > 0 such that 

ri  lim 	 =0, 
i—>oc,  1 — 

and {f (z + riw) — f (zi )} converges locally uniformly in C to a nonconstant holo- 

morphic mapping g E 	Cn). 



Chapter 3 

Quasiregular mappings 

3.1 Quasiregular holomorphic mappings 

In this section the quasiregular holomorphic mappings and their relation to Bloch 

constants will be studied. Our basic refrence for quasireqular mappings is [48], 

however our approach in this section is holomorphic rather than the smooth ap-

proach in [48]. The applications of this class of holomorphic mappings in value 

distribution theory has been studied in [61]. 

Let V and W be finite dimenional inner product spaces (Euclidean spaces). The 

inner products on both V and W will be denoted by < , > and 142  :=< x, x >, 

will denote the square of the length of a vector x. We also denote by f(V, W) the 

set of all linear transformation of V to W. For a linear mapping L G L(V, W), let 

114 -= suP 1441- 4-1 

The following lemma can be found in [48]. 

Lemma 3.1.1 Let V, W be finite-dimensional Euclidean spaces and T G .G(V, W), 

T 	= O. Then there exist orthonormal systems of vectors u1 ,. . . , uk  in V and 

v1, ... , vk  in W and numbers Ai  > 0 such that {u1 ,. . . , uk } is a basis of ImT* and 

35 
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{v1 , 	,vk } is basis of ImT and for 1 < i < k, 

Tu i  = Ai vi, rvi  = A iui , 

where T* is the adjoint of T. 

The quantities A i , À2 , 	, Ak  are called the principal dilatation coefficients or sin- 

gular numbers of T. 

Now let dim V = dim W = n. As the previous lemma shows, for every T 

£(V, W) we can find the square root of eigenvalues of TT*. Let us arrange these 

quantities in an increasing order: 

0  < 	< A2 < • ' • < An• 

If there exists K > 0 such that An  < KAI , then we say that T is K-quasiregular. 

Let dim V = dim W = n and the mapping T e .C(V, W) be nonsingular. Then 

dim ImT = dim V = n and all principal dilatation coefficients of T are positive. 

We want to determine the image of the sphere 

Si(0) := fx = x1u1  + x2u2 + • • • + xnui, c V : x ± 4 ± • • • ± X2n  = 11, 

in V, under the nonsingular linear mapping T e r(V, W). A point x = xivi  + 

• • • + xnv, is in T(S1(0)) if and only if, 

\ 	X1 	X2 	 X fl  
T-1(x) 	 •11,2 + • " 	E Si(0). 

Al 	A2 	 An 

Hence x C T(S1(0)) if and only if, 
22 	 2 

xl x2 	xn 
—
Aî 

+ + • • • + 	= 1. 

This means that T(S1(0)) is an ellipsoid with axes of lengths Ai , 1 < i < n. 

Consider x = xiui  + • • • + xriun  C V with lx1 = 1. Then T(x) = A ix i vi  + • • • + 

4,XnVri, so we have 

1T (x)12  =< T (x), T (x) > = Aïx .  + • • • + A2ri x27., 

< An2 	+ • • • + xn2 ) = AnIx12  = )‘2ri• 
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Thus if jx1 = 1, then 	< An and if x =u then IT(x)1 = 	hence 

117111 := sup 	= À. 	 (3.1) 
1.1=1 

Similarly, we can prove 

1(T) := iefir  IT(x)1 = À. 	 (3.2) 

Let V = TV and T E £(V, V) be nonsingular. Then by Lemma 3.1.1 there ex- 

ist {u1, 	, un}, 	, vr,} bases of ImT* and ImT, respectively and principal 

dilatation coefficients Ai  of T with 0 < Ai <À2 < • • • < À, such that, for 1 < i < n, 

Tu i  = Aivi, T*vi  = Aiui. 

Suppose ço is an orthogonal transformation on V with go(vi) = ui. Then for L := Tgo 

we have Lvi  = Aivi. Since det L = A01 /42  ... An  and det L = det T det yo, we have 

A1A2 • • • An — det 
	

(3.3) 

If 	= A2 = • • • = An, = À, then for all x E V, L(x) = 	So L is a homothety 

and T = Lv-1. 

Conversly if T = Lço where L is a homothety and cp is an orthogonal, trans-

formation, then one can deduce that all principal dilatation coefficients of T are 

equal. 

For every nonsingular operator T e ,C(V, V), define 

K(T):= A9711M‘2 ... 	= JTJJ7J det 	 (3.4) 

Then, K(T) > 1, and K(T) = 1 if and only if T = Lgo, where go is orthogonal 

and L is a homothety. Thus an orthonormal transformation T e L(V, V) carries 

every sphere in V into another sphere and the quantity K(T) for an arbitrary 

nonsingular mapping T E £(«V, V), characterizes the degree of nonorthogonality of 

the mapping T. 



38 

The following definition is the general definition of a quasiregular holomorphic 

mapping on a Hermitian manifold, however we will consider the flat Hermitian 

metric on Cn 

Let M be a complex Hermitian manifold of dimension n, so there exists a 

Hermitian bilinear form h: TMx T IVI --> C, which is positive definite and 

smooth, i.e., in a coordinate neighbourhood U c M, we have 

hp(e, 71) = E hi ,i(p)dzi (e)dzi(7)), 

where hi  = h(k.  , -47) is Hermitian and C" on U. 

g 	is symmetric and defines a Riemannian metric on M, as a 2n-dimensional 

real manifold. Let us denote by RT M the real tangent bundle to M. 

Definition 3.1.2 Let M and N be Hermitian manifolds of the same dimension n, 

then f E R(M,N) is called holomorphic K-quasiregular if for each p E M, f(p) : 

RTpM ---> RT f(p)N is K-quasiregular, that is for each p E M, \2n(p) KA].(P)• 

As we have shown in (3.1) and (3.2), when X p  ranges over the unit vectors in 

RTpM, 

Il f (P)I1 = suP If' (P)xpl = 2n(P) X p 	 (3.5) 
/(f 1(P)) = 	f l (P) X PI = Ai (P) • 

Note that : 

• Quasiregular mappings are defined more naturally between Riemannian man-

ifolds. 

• For n = 1, all holomorphic functions f E 7-1(M, N) are 1-quasiregular. 

• For n> 1, holomorphic K-quasiregular mappings are locally biholomorphic 

(see [49]). 
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We can consider the finite dimensinal complex inner product spaces (unitary 

spaces) V, W, to define the principal dilatation coefficients for a mapping T G 

£(17, W). 

Now let M and N be complex Hermitian manifolds of the same dimension 

n and f E 7-1(M, N). For each p e M, consider the holomorphic differential 

f(p) : TpM —> T f(p)N, with principal dilatation 0 < Ài(P) < À-  2 (p) < • • • < Àn. (P) 1 

where TpM and T f(p)N are n-dimensional unitary spaces. Applying (3.1) and (3.2), 

we have Ilf (p)11 = À7,(p) and l(f(p)) = À i (p). This means f E 7-1(M, N) is K-

quasiregular if and only if .Ân (p) < K5t1(p). Greene and Wu [27] and Hahn [30] 

used this fact to define the K-quasiregular holomorphic mappings on Hermitian 

manifolds. 

3.2 Bloch constants 

Consider a nonconstant map f E 9-1(Ig , Cn), where IV is the unit ball in Cn 

centered at 0. Recall that a ball with center f (a) is called a schlicht ball of f at 

f (a), if f maps an open subset of 

 

containing a biholomorphically onto this ball. Ig 

 

For z G 

 

let e(z, f) be the supremum of radii of schlicht balls centered at f(z), 1 

 

and 

Of = sup0(z, f) : z 
	

1. 	 (3.6) 

The Bloch constant relative to a family .T.  C 7-/(Ig , Cn), is defined by 

ß(J) := inft3f  : f E Fl. 

We will prove that the function f 1—> O f  from 7-1( 

 

, Cn) equipped with the compact IL 

 

open topology to [0, oc] is lower semicontinuous. 

To prove our next lemma we need to state Rouché's theorem in several complex 

variables. 
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Let Q be a domain in Cn, f G 7-1(Q, Cn) and E f  denote the set of zeros of f. 

If f(a) 	O at an isolated point a of E f , then a is called a simple zero of f By 

Proposition 2.1 in [5, p. 19], if the closure of a neighbourhood (la  of a zero a of 

the mapping f c W(Q, Cn) does not contain other zeros, then there exists an e > 0 

such that for almost all 	l (0) the mapping 

(3.7) 

has only simple zeros in Ua, and their number depends neither on nor on the 

choice of the neighbourhood Ua. The number of zeros of (3.7) in Ua  is called the 

multiplicity of the zero a of the mapping f. 

Note that, since E f  is an analytic set, if f is holomorphic on the closure of the 

bounded domain Q and as-2 does not contain zeros of f,  then f has only isolated 

zeros in Q. 

Theorem 3.2.1 (Rouché principle) Let Q be a bounded domain in Cn, f, g E 

9-1((2,Cn) and suppose the boundary aQ does not contain zeros of f If for each 

point z E OQ there is at least one index j, (j =1, 2 ... n) such that 

(41 < 

then the mapping f + g has the same number of zeros in Q (counting multiplicity) 

as f . 

The proof of this theorem can be found in [5, p. 20]. 

Lemma 3.2.2 Let Q C CTh be a domain and {f i} be a sequence inli(Q,Cn) which 

converges to an injective function f uniformly on compact subsets of Q, then for 

every compact K C Q, there exists JK E N, such that for every j > JK, f is 

injective on K. 

Proof: Taking G such thatKcGce, if necessary, we can suppose that 00 is 

smooth, S-2 is compact and f, f3  are holomorphic on a neigbourhood of S=2. Since 
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0S2 and K are compact and f is injective, there exists p, such that, 

0 < 	< (a) — f (z)1 	Va E K 	V z E 0Q. 

converges uniformly to f on K and aQ, so there exists JK  E N such that, for 

every aEK,zE 0S2 and j > JK  we have, 

I fi (z) - f (z)I < P/2  and 	(a) — f (a)1 < p/2. 

Hence, for a E K and z e 0Q, 

	

I fi (z) - f (z) - (Ma) — f(a)) 1 < /2 , 	e JK. 
	 (3.8) 

Fix a E K and define Fi(z) := fi(z) — fi (a) and F(z) := f (z) — f (a) on Q. By 

(3.8), for z E 00, we have 

I 	(z) - F (z)1 < p 5- If (Z) f (a)1= F(z), \/j E JK. 

Therefore by Theorem 3.2.1 F(z) and Fi(z) have the same number of zeros on 

Q. Since F(z) = f (z) — f (a) has only one zero on Q, thus for j > J K , F j(Z) 

— f (a) has only one zero z = a. Therefore, fi  assumes the value fi  (a) once 

on Q and hence once on K. 

El 

Theorem 3.2.3 Let Q be a domain in C. Then the funetion b : 	—› 

[0, oo] defined by b( f) := e f  is lower semicontinuous. 

Proof: Without loss of generality we suppose that e f  > O. Let f E 	Cn) 

and 0 < r < 	Choose r i , r2  such that r < r2  < ri < Of• 

According to the definition of ßf  there is a domain G1  c Q such that fe l  G1 

is biholomorphic, where l is an open ball in Ci with radius r1. 

Consider 

 

T2 ( with the same center as ri  ) and G2 := (fIG1)- 

 

o f1G2 : IF 
11) T2 

 

G2 	igr2  is biholomorphic and af(G2 ) = f (aG2), with the same argument for 

1:. , we can define G3  := (f 1G1)-1(l) • 
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Now let f i  e 1-/(S2, Ci)  where {f i} converges to f uniformly on compact subsets 

of a For e < r2  — r there exists J G N such that for every j > J and for every 

z G 8G2 

	

If(z) 	f(z)1 < 

By Lemma 3.2.2 there exists J2  E N such that for every j > J2 , f  is injective on 

G2 , SO f  is open. Therefore fi(8G2 ) D 8f i (G2)• 

Since {f i} converges to f uniformly on 0G2 , for e < r2  — r there exists J3  > Ji 

such that for every n> J3  and z G 19G2) 

	

j(Z) 	 f 	e e. 

For z e 8G2  one has 

d( 	(z), a 

 

< d( f i  (z), f (z)) + d(f (z), 0 

 

11; e E 	r1  — r2  

 

< r1  — r = d(5 , 

So fi (5G2) n ll 	0, but 8fi(G2) = M5G2), hence 5fi(G2 ) n 	q5, and 

fi(G2) D . Therefore 	:= Ofi  > r and lim 	> r, for every r < e f . so 
lim 	> 

D 

Let ED be the unit disk in C and consider the family of normalized holomorphic 

functions 

:={f91 	e R(1111),C) : (0) = 11. 

In 1925 Bloch proved that e 	e(7-1)> O. Since then, many efforts have been 

made to find the precise value of this constant. The following upper and lower 

estimates for ,3 were shown by Ahlfors and Grunsky [4] and [2]. 

F(1/3)F(11/12) 
.43 • • • = 	< < 	 =.47... 

F(1/4)(1+2) 
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There was no improvement in this estimate for over half a century. In 1990 Bonk 

[11] improved the lower estimate to -N/à/4+10-14  < O. Recently Chen and Gauthier 

[13] improved this lower bound to f3-/4 + 2 • 10' < O. 

Applying Theorem 3.2.3 for n = 1 and a lemma of Brody [12], we will prove 

Bloch's theorem: the existence of a Bloch constant for normalized holomorphic 

functions on the disk. 

For n > 1, Bloch's theorem for the family of holomorphic mappings from II; 

to Cn, with normalization Idet fi (0)1 = 1, does not hold [60]. One may argue 

that the correct generalization of the normalization f (0) = 1 to several variables 

is f (0) = /, where / is the identity mapping. However, for this case there also 

exist counterexamples [16]. Therefore, special classes of holomorphic mappings 

have to be considered. Bloch's theorem for the holomorphic classes of quasireg-

ular, bounded and Bloch mappings has been proved by Wu [60], and Liu [41], 

resp ectively. 

Applying Theorem 3.2.3 we will modify Wu's proof [60] for the existence of a 

Bloch constant for quasiregular holomorphic mappings in case n> 1. 

The following lemma of Brody is an important lemma not only in complex 

hyperbolic space and value distribution theory [40] but also in complex dynamics 

[20]. This lemma reparametrizes holomorphic mappings from disks in C to Her-

mitian manifolds in such a way that the reparametrized mappings enjoy certain 

properties. We state Brody's lemma only for holomorphic mappings from the unit 

disk to Cri and then extend it to holomorphic mappings from the unit bail in Cn 

to Cn. 

Lemma 3.2.4 (Brody)[/2] Given f G R (D, Cn  ) with Ilf (0)11 > c > 0, then there 

exists I c w(D, c.) with 

sup Mhz)11(1 — 1z21) = UMM = c. 
zED 

(3.9) 
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Proposition 3.2.5 Let f 	, Cn) with Idet P(0)1 = 1. Then, there exists 

cp E Autw and 0 < to  < 1 such that f := f to  o satisfies 
a±i 

sup I det r(z)1(1 — lz12 ) 2  = Idet r (0)1 = 1, 
zE 

where f to  : 	---> C7  is defined by f to (z) := f (toz). 

Proof: For t G [0, 1), consider ft  : 	, f t (z) := f (tz). Define 

s(t) 	sup det Mz)1(1 — lz12 ) n-21 , 
ZEIrn 

and 

 

K(z) := 

 

Hence 

(1 —1z12 ) 2  

Therefore we have: 

Idet .fl(z)1 	tn  (1—  1Z1 2)  

is(z) 	(1 — ItZ12 ) 2  

Idet f' (tz)1  
iç(tz) 

(3.10) 

• For fixed t, 0 < t < 1, Idet Mz)1/K(z) is continuous on the closure of 

so it is bounded on this compact set and hence 0 < s(t) < oo. Note that 

by (3.10) Idet f(z)1/x(z) = 0 for Pl = 1. Therefore the supremum of this 

function is at a point zt  E . Hence 
n±.1 

S(t) = sup Idet Mz)1(1 — 1,4 2 ) 2  . 
ZE n 

• Since the function Idet Mz)l/k(t) is continuous on [0,1) 

tinuous on [0,1). 

s(t) is con- 

such that 

Idet 	(z)1 	(1 — 	2  	I det Atizi.)1  

	

s(to = sup 	= 	 L1±1- 

	

zEBn 	K(Z) 

Set z2  = tizi/t2. By a straightforward calculation, we obtain 

Idet  (z)1  det (z2)1  

	

s(t i ) = sup 	< 	2 	< 8(t2 ). 

	

ZEIBM 	k(Z) 	(Z2 ) 	— 

• Let 0 < ti < t2  < 1. Then we have zi E 

(1 — 1442 ) 2 	n(tiZi) 
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• Since fo  = f (0), s(0)=0. On the other hand 

s(t) > e ldet f'(0)1 tn .  
K(o) 

Therefore lim inf t,i  s(t) > 1. Hence there exists to , 0 < to  < 1, such that s(to) = 1, 

or s(t) < 1, for all t, 0 < t < 1. In the latter case, lim supt,i  s(t) < 1, and hence 

limt,i  s(t) = 1. Thus, since 

= 	Idet  f' (tz)1  
s(tz) Idet (z)1(1 — 1z12) 71-2+i  

it follows from (3.10) that we may take f = f. If s(to ) = 1 for 0 < to  < 1, then as 

we explained above, there exists a 41  E IL with 

)1 

s(to)  _= Idet .flo(z0)1 =1. 
K(zo ) 

Let cp E Aut 	with (p(0) -= zo. Set f = fto  o (p. Since 

Idet (p/ (0)1= (1 —1,z01 2 ) n21 , 

Idet flo  (y(0))11det go'(0)1 = Idet(fto  cp)' (0)1 = 1. On the other hand, 

IL 

suP Idet f;o (z)1(1 — 1,42 ) 2  = supll det(fto  0 0)1(0)1 : e c Aute 
ze 

= sun det(fto  o  (,c,  o '0)1(0) 1 	C AUt 

n11  = SUP 1 det(fto o  (P)1(Z) 1 (1  — 1z1 2) 2-  • 
zE Irn 

Therefore 

71-1  sup 	det f' (z)1(1 — 1,42 ) 	= Idet P(0)1 = 1. 
zE 

Lemma 3.2.6 Let Q and D be domains in C. Let y e 7-/(Q, D) and f e 

Cn). Then 

Ofo cp 	Of• 
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Proof: Suppose f o y maps a domain G C 52 biholomorphically onto a domain 

B C Cn. Then y is injective on G and hence y maps G biholomorphically onto 

y(G). Thus, f = f o ço1G  o cp1G-1  maps y(G) biholomorphically onto B. 

D 

Theorem 3.2.7 There exists a normalized f on D such that /3 f  = p. 

Proof: Since 0 = inf Of : If 1 (0)1 = 1}, for every n, E N there exists fn  E 9-/(D) 

such that 1f(0)1 = 1 and Ofn  = n c e+-• 
By Proposition 3.2.5 there exist 0 < tn  < 1 and (pn  E AutD, such that In := 

ftn o (Ion E 9-1(ID)) satisfies 

suplfni(z)1(1 — 142) = 1fni(0)1 = 1, 
zEED 

where ftn  (z) --= fn(tn.z). So for every z E D, 1In i (z)1 < 1/(1 — 1.42). Therefore the 

sequence {fn  } is uniformly bounded on compact subsets of D. 
... 

By defining .g~n(z) := J (z) — f-n (0) if necessary, we can suppose f-n (0) = O. 

Hence applying the Cauchy theorem, we have 

Ifn(z)1 5_ Ir fn'(z) dz1, 

so In  is uniformly bounded on compact subsets of ID). Therefore we can suppose 

In converges to I G 7-1(D) uniformly on compact subsets of D and 1P(0)1 = 1. 

We shall prove that )377,  < Pfn . In fact if Dp(in (z0)) is a schlicht disk for In , 
then for constant 0 < tn  < 1, Do  (f.(tngan(z0))) is a schlicht disk for fn . Indeed, if 

,.‘'`C D is a domain and In 1 :5.- : Š ---> Dp(in(z0 )) is biholomorphic, then considering 
s  := .v e D  : t1nço77,1() G ,...'1, and fnls : s ---> Dp(fn(tn(pn(zo))), one can prove 

that fn ls is biholomorphic. 

Since b is lower semicontinuous, we have fi/  < lim  inf,,, )(3-n < liminfn—>. /3n = 
11111n_400  O'n  = fl. On the other hand p < e, so e ,_ e„. 
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Corollary 3.2.8 The Bloch constant for normalized holomorphic functions on D 

is positive. 

This is Bloch's theorem. 

Lemma 3.2.9 Let (pi  : 	be a sequence of holomorphic mappings such 

that (pi converges to I in the compact open topology on 9-1( ,Cn). Then j3 foyi  

converges to o f , for every f E 
	cn).  

Proof: Since f := f o çoi  converges to f uniformly on compact subsets of 

and by Theorem 3.2.3, b is lower semicontinuous, so o f  < lim infi, o f,. On the 

other hand by Lemma 3.2.6 lim 	< 0 f SO lim 	 = ßj. 

D 

As a consequence, we have that the Bloch constant for many families of nor-

malized holomorphic mappings on the open ball (if it exists) is the same as for the 

closed ball. Indeed, if f is a normalized holomorphic mapping in f 7-1(11 ,C) 

and vi (z) = (1 — 1/j)z, then gi (z) = f o vi (z)1 (1 —11 j) is a normalized mapping 

in 'H( , Cn) and {ai} converges to f. This explains why, in the literature, the 

classical Bloch theorem for holomorphic functions in the unit disk is stated some-

times for the open disk and sometimes for the closed disk. The statements are 

equivalent. 

Theorem 3.2.10 [60] For every sequence of K-quasiregular mappings {f i} in 

1-1(IP ,Cn) with det (0)1 = 1 there exist sequences Ibil in len and {r}, 0 < ri  < 

1 such that the sequence { 	C 7-1(V, Cn ), defined by fi (z) := f i (bi  + (ri /2)z) — 

is a sequence of K-quasiregular mappings which converges uniformly on 

to a holomorphic map f with )3,, O. 

Recall that the normalization which we will consider on quasireqular mappings f 

is det (0)1 = 1. 
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Theorem 3.2.11 [60] The Bloch constant for the family of holomorphic normal- 

ized K-quasiregular mappings on 	is positive. 

Proof: Applying the definition of 6, for each j G N there exists a normalized 

K-quasiregular holomorphic mapping f , such that 6i  := Ofi  < 6 + 1/j. 

By Theorem 3.2.10 there exists b e Ig and 0 < ri  < 1 such that the sequence 

converges uniformly on in, to a holomorphic map f, where 

h(z), fi (bi  + 1i7z)— fi (bi ). 

Let fi  : S 

 

be a biholomorphism. Then consider 

2 s = 	E 	
bi  e  

ri  

Ir4 

 

We can prove that fi l s  : S 	I(f i (ri12)zo +bi ) is a biholomorphism, so 6i  := 

< 6i , for each j ë N. Therefore j ( ß < + 1/j. Since by Theorem 3.2.3 

the function b is lower semicontinuous, 	< lim infi_> ,„, 	Hence 

61. < lim inf p~i  < lim inf 6i  = lim < 
3-)C<) -- 3 ›00 	3—›00 

On the other hand < 6/. Therefore 6 = > 0. 

3.3 	Bloch constants and smooth quasiregular map- 

pings 

Quasiregular mappings can be defined, not only on Hermitian manifolds, but also 

on Riemannian manifolds. In contrast to quasiregular holomorphic mappings, this 

class has been studied for a long time. (See for example [3], [49], [57], [58], [59]). 

As we mentioned in the previous section, for 7-/(1r, Cn), Bloch's theorem fails 

when n > 1. Despite this fact one might ask whether Bloch's theorem holds for 
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9-/(C, Cn). Rosay and Rudin [50] proved that, for this case also, Bloch's theorem 

does not hold. Similarly one might ask the same kind of questions for quasiregular 

mappings. For example one may ask whether Bloch's theorem holds for quasireg-

ular mappings from Rn to R. This question was answered by Eremenko [18] 

positively. We ask whether Bloch's theorem holds for K-quasiregular mappings 

from the unit ball in e to le , n > 1. In the next example we will answer this 

question negatively. 

In the following example for every K > 1, we will construct a family of K-

quasiregular mappings on the unit disk in le, (which we identify with C) for 

which Bloch's theorem does not hold. 

Example 3.3.1 Fix to  E (0, 1) we define 

{

x, 	 if x < ln to ; 

(1 - *) ln to  + kx, if ln to  < x < O. 

We also define 

fto(z) :------- exp(h(lnlz1)) exp(i arg z), 

so if 1z1 < to , then 1z1 = exp (ln 1z1) < to . Hence h (ln 1z1) = ln 1z1 and 

fto (z) = exp(ln 1z1) exp(i arg z) = z. 

Also for to  < 1.4 < 1, we have h(lnIzI) = (1 - 1/K) ln to  + (1/K) ln z. Thus 

fto(z) = exp[(1 - 1/K) ln to  + (1/K) ln PI] exp(i arg z) 
= to(1-1/101z i(i/K)-iz.  

The function h is continuous in (-oo, 0], since 

lim 	h(x) = lim (1 - 1/K) ln to  + (1/K)x = ln to. 
x->ln to+ 	x->ln to+ 

Of course h is not smooth and so fto  is not smooth. 
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Let a = ln to . For e > 0 sufficiently small, define g(x), a linear function, such 

that g(a — €) = 0 and g(a + e) = (1/K)— 1. Let t(x) = x + f:_,g(t)dt. Therefore 

h : [a — e, a + e] —> R has the following properties: 

(a) h(a — e) =- a — e. 

(b) Ma + e) = a + (1/K)e. 

(c) h'+(a — €) = 1 and îl,'_(a + E) = 1/K. 

(d) hi(x) is decreasing and by (c), 1/K < k(x) < 1 < K. 

Now if we redefine h as, 

{

x, 	 if x<a—e; 

h(x) 	 if a—f<x<a+ e; 

(1 — i)a + ic-x, if a+e<x<0. 

Then h is smooth and therefore fto  is smooth. 

We shall prove that fto , as a function from D c R2  to R2  is quasiregular. For 

z = r exp(i0), fto = (exp(h(ln r)) cos 0, exp(h(ln r)) sin 0). Let us define 

u(r, 0) : = exp(h(ln r)) cos 0, 

v(r, 0) : = exp(h(ln r)) sin O. 

Thus writing x = r cos 0, y = r sin 0 we have 

au av Ou Ov 
det f;,, = ax ay ay ax , 

(3.11) 

which is equal to (1/r2 )h'(1nr) exp(2h(lnr)). Since 0 	1/K < h', it follows that 

ft'o  is a bijection. 

Let Ai  and A2 be the principal dilatation coefficients of f t , 0 < Al  < A2. In 

order to prove f is K-quasiregular we must show that for each z e D, A2(z) < 

KA]. (z). Recall that by (3.2) and (3.1) for each z, l(f t (z)) =- A1(z) and Ilf(z) 11 = 

A2 (z). 

Let X = exp(i(3) be a unit vector. Then by Euler's formulas 2f(z)X = 



p(z) exp(i/3) + q(z) exp(-i0), where 

au av av Ou 
p = — + — + i(— - ax ay ax ay 

and 
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(3.12) 

au 	Ov f  Ov au 
g 	ax 	ay + `

,; 
'ax + a\y). 	

(3.13) 

Consequently 21f (z)X1 = Ip(z) + q(z) exp(-2i0)1. From this, we have 211 f (z)11 = 

p(z)1 + lq(z)1 and 2/(f(z)) = 1 Ip(z)1 - lq(z)11. So we have to prove that, for each 

z E D, 

	

, 	IP(z) I + I q(z) I  < K.  

	

11(z'
) 
 . 	IIP(z)I - lq(z)II - 

(3.14) 

Since 0 < 1/K < h < 1 < K, by applying (3.11) in (3.12) and (3.13), we obtain 

Ip(z)1 = 71  (111(1n r) + 1) exp h(ln r), 

and 

1 
lq(z)1 = 7-,..(1 - hi(ln r)) exp h(ln r). 

Therefore H(z) = 1/h1(ln r) < K, as required. 

The image of the unit disk under f is the disk of radius a = t1-11K . For any 

fixed K > 1, if we take t small we may make a as small as we like. This shows 

that for the family {ft  : o < t < 1} the Bloch theorem does not hold. 



Chapter 4 

Holomorphic functions with 

Mittag-Leffler constraints 

In this chapter we will consider the problem of approximation of functions defined 

on a closed set F by meromorphic functions with prescribed poles and zeros outside 

the set of approximation and then we will consider simultaneous approximation 

and interpolation by entire functions. 

A. Sauer [53] considered the problem of approximation by entire functions which 

possess certain asymptotic expansions. We will generalize his main result applying 

a different approach. 

4.1 Background 

For F c C, we denote by 7-1(F) and .A/1(F), the set of all holomorphic functions and 

meromorphic functions on F, respectively. We also denote the set of all functions 

continuous on F and holomorphic on F° by A(F), where F° is the interior of F. 

Definition 4.1.1 Let F be a closed subset of C. A speed on F is a positive, 

continuous function on F. If e is a speed on F, then F is called a set of e-

approximation, provided that for each f E A(F) and each constant A > 0, there is 
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a function g E 7-i(C) such that for z e F, 

be(z) — .9(z)1 < Ac(z). 

Definition 4.1.2 A closed subset F of C is called a set of uniform approximation 

if F is a set of 6-approximation for some (hence for each) positive constant s. 

Note that, if F is a set of e-approximation and the speed E is bounded then F is, 

a fortiori, a set of uniform approximation. 

A characterization of sets of uniform approximation is due to Arakelyan [7]. 

Theorem 4.1.3 A set F is a set of uniform approximation if and only if C,„\F 

is connected and locally connected of oc. 

A strong form of approximation where F is a closed subset in C such that 

for every speed on F and for every f e A(F) there exists g G U(C) with 

If (z) — g(z)1 < s(z) on F, was characterized by Gauthier [23] and Nersesyan [45]. 

On open Riemann surfaces this characterization is due to Boivin [10]. 

Let us state another Theorem of Arakelyan which will be useful in this paper 

(see [21, p. 39]). 

Theorem 4.1.4 Let E : [0, oo) --> (0, oo) be continuous and decreasing such that 

t-3/2  log E(t)dt > —00. 	 (4.1) 

Then for every set of uniform approximation F and for every function f G .4(F) 
there exists an entire function g such that 

I f(z) - g(z) I < E(Iz1), 

for all z e F. 

We may extend any continuous function e: [0, oo) —› (0, oo) to a function contin-

uous on all of C by setting e(z) = E (1 Z1) . Let us call such a function E satisfying the 
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conditions in Theorem 4.1.4 a canonical speed. As an example, we can consider 

e: [0 , CO) ---> (0 , oo) defined by 

E(t) := exp(—t1/3). 

Then E is a canonical speed satisfying E G 1. 

4.2 Basic results 

We will show in the next example that the decreasing condition in Theorem 4.1.4 

cannot be waived. First we will state the Two Constants Theorem which will be 

used in this example (see [32]). 

Theorem 4.2.1 Let D be a Jordan domain such that the boundary of D consists 

of two arcs a and 0 disjoint except for their end points. Then, for each compact 

set K c D there exists a constant 0 < w < 1, such that if f E 7-1(D) is bounded by 

AI and lim supIf (z)1 < m, then 

maxl f (z)1 < M I  ' m' . _ zEK 

Example 4.2.2 Consider the set of uniform approximation 

F = {z E C: Rz > 0}. 

We will construct E : [0, ce) —> (0, 1] continuous satisfying (4.1), with limt, e(t) = 

0, in such a way that F is not a set of E-approximation. 

For each n e N1  := N\111, set Fn  = tz E C : 1z1 < n, Rz > 01 and an  = 1z E 

C : 1z1 = n, Rz > 01. By the previous theorem there exists a decreasing sequence 

{En : 0 < en  G 1,n E N1, such that if f E A(Fri), Ifl < 1 and In < En On an. 

Then 

1 
maxlf(z)1 
z E K 
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where K = 1z E C : z - ij < 	Therefore if f E it(F), If I < En on an  and 

< 1, then f(z) = 0 for every z E K, so f 	0. Hence if E : [0, 00) —› (0,1] 

is any continuous function such that for n E N1 , E(n) < En , then f E A(F) and 

<e implies f 0. This shows that F is not a set of E-approximation. Indeed, 

consider f (z) 	1/(z + 1), f E A(F)\7-1(C) and suppose there exists g E I-1(C) 

such that on F 

Thus f = g on F, so f = g on C\{-1} which is a contradiction. 

Among all continuons functions E : [0, oc) —› (0, 1] with E(n) < En , n G N1 , we 

construct one which satisfies (4.1) and limt_>c.,,E(t) =- O. 

Let š : [0, oc) 	(0, 1] be a continuous decreasing function satisfying (4.1). 

For n > 1, choose En  as above, and decreasing so rapidly that En 

choose 0 < Tm < 1/2 such that 

rn±lb, 	 1 
t-3/2  log en dt > -  

Now we define a continuous function E as follows: on [n,n + nn], it is the segment 

from point (n, En ) to the point (n + 	š(n Tin)) on [n + qn, n + 1 - 

it is equal to š(t) and on [n + 1 - ]n+1, n + 11, it is the segment from point 

(n + 1 - 	š(n +1 - nn+1)) to the point (n + 1, En+i), for each n > 1. We may 

define E on [0, 1] by E(t) =- el . Thus, considering I :=- [n - 	n + nn], we deduce 

t-312  log E (t)dt = 	 t-312  log E (t)dt + f t-312  log E(t)dt 

00   > f t- 	
I 

312  log (t)dt + 	t -312  log En dt 
1 	 n=1 n 

as required. 

< 
E(n +1), and 

To prove the next theorem we need two lemmas. 
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Lemma 4.2.3 Let F be a set of uniform approximation and U an open neigh-

bourhood of F. Then, there exists a simply connected open neighbourhood U5  of F 

such that F C U, C U. 

Proof: Let W:= {W3  : j E J} be the class of all bounded components of CW. 

Using triangulation we may assume that OU is locally polygonal, so 	is locally 

finite. 

For each j E J, let W3  be the component of C\F containing Wi. W is un-

bounded because Coo  \F is connected. 

By Theorem 4.1.3, Coc,\F is locally connected at oo, so by a characterization of 

the local connnectedness of Coo  \F at oo, for every neighbourhood G1  of oo there 

exists a neighbourhood G2  C G1  of oo with the property that each point z E G2V, 

z 	oo can be connected to oo in C by a continuous curve y C Gi\F. This means 

that the continuons function -y : [0, 1] --> Gi\F with '-y(0) = z has the property 

that for any given compact set K C C there is a tK  such that, for each t > tx, 

7(t) K. Therefore there is a basis 	: j e J} of open neighbourhoods of oc 

such that, for each j, Vi+1  C Vi and each zt; E Vi.+1  can be connected to oo by a 

curve in V.i\F. 

Hence for each j e J, there exists a curve o-3  in C\F from a point w3  G W3  to 

oo and we may assume that the family tai  : j c J} is locally finite. Let Bi  be a 

connected polygonal neighbourhood of o-3  which does not intersect F. We may also 

assume that {/33  : j E J} is a locally finite family of closed sets. Hence 	is 

closed. Set U = U\UJEJ  Bi , thus F C U,. Then, C0.3  \ U = UiejW3  U Woo , where 

Woo  is the component of Coo \U which contains oo, so 

Cœ  \Us  = (uiE ,Wi  u Bi ) u {oc} u Woo , 

which is connected, therefore U, is simply connected. 
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Lemma 4.2.4 Let F be a set of uniform approximation and f E .A(F) without 

zeros on F. Then there exists a brandi, of ln f in A(F). 

Proof: Considering a continuous extension of f on C and applying the previous 

lemma, we can suppose the existence of a continuous nonvanishing extension of f 

on a simply connected neighbourhood U, of F. Thus there exists f, :U s  --> Co  

continuous such that f,oi= f where Co  := C\101 and i : F 	U, is the identity 

map. Let cù, = c be the universal covering of Co  and J: 	-É°  be the lift of 

fs, so exp of = f, and exp of o i = f. 

We will prove that f is holomorphic on F°. Let zo  G F°, p. = f(z0 ) and Ù0 

a neighbourhood of po  such that exp(Ûo) is biholomorphic to U0  c Co . Suppose 

Vo  is a neighbourhood of zo, Vo  C F° small enough such that f(Vo) C Ûo  and 

f(V0 ) c Uo. Hence expoJv0  = f I vo  and /I vo  = (exp I u0)-1  (:) fv0.  Therefore f is 

holomorphic on F°. 

A divisor on C is a function D : C 	Z, such that the set of points z E C where 

D(z) O is a discrete set. we denote a divisor D by a formal sum 

:= 	D(()(.  
çec 

Suppose C C, fG.M(0) and ( E and let the Laurent series expansion of 

f in a neighbourhood of ( be 

f (z) = E ai(z — ()3.  
j=n 

and an  O. Then the order of f at ( is n and will be denoted by ord((f). Clearly 

f has a zero of order n at ( if ord((f) = n > 1, f has a pole of order n at ( if 

orda) = n < 0, and f has neither zero nor pole at ( if ord((f) = O. By the 

divisor of f E M(C), f 0, we mean the divisor 

D := E ord((f)(. 
(cc 
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We will call a sequence 	(possibly finite or empty) of distinct points in C 

admissible (with respect to a set F) if {zn} has no finite accumulation point and 

all zn  are contained in C\F. 

Theorem 4.2.5 Let F be a set of E-approximation, E < 1, {zn} an admissible 

sequence and {on} a sequence in Zo  := Z\101. Further, let ço e A(F) without 

zeros and bounded on F. Then there exists f E M(C) such that D = En  onzn is 

the divisor of f and lcp — f < e on F. 

Proof: We remark that 

if 	1w1 < 1. 

Consider h E M(C) such that the divisor of h is D (see [33]). Since F is a 

set of uniform approximation, by Lemma 4.2.4 there exists a simply connected 

neighbourhood of F containing no zn  and branches H and 	of ln h and ln ço 

respectively, in A(F). By hypothesis there exists G E 7-1(C) such that on F, 

— (G + (1))1 < — < 1, 
eM 

where M = supzEF  ko(z)1 and /-12/ = max{1,M}. 

Set g = e-G  and f = gh, so f E M(C), and the divisor of f is D. On F we 

have 

Iço — fl= 11 — —(p lkol 
gh 

=1- -çoço  
< e 	— G — (DI kpl 

E 
< 	E. 

eM 

Corollary 4.2.6 Let F, e, {zn} be as in the previous theorem and {on} a sequence 

in N. Then there exists f E W(C) with exactly the zeros zn  of order on  and 

1 —f < E. 
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We wish to apply the results of approximation theory to a study of asymptotic 

expansions. 

Definition 4.2.7 Let F be an unbounded set in C. A function f : F 	C has 

an asymptotic expansion in F if there exists a complex sequence {an} such that for 

all n G N 
n-1 

Zn  (f (Z) — 	 —> an  
i=o 

as z —> oo in F . We denote f (z) 	2o aiz.  

For n = 1, 2, ..., we set 

n-1 
Rn ( f , z) := f (z) — E 

i=o 

Then f (z) r,r)%az is equivalent to R,(f , z) = 0(4) for all ne N. Note 

that the asymptotic expansion of f need not converge and is therefore a formal 

power series in 1/z. 

As a particular case if a is a constant, we have that f 	a if and only if 

f (z) — a = 0(1zr), for all n E N. 

The next corollary will show that Corollary 4.2.6 is a generalization of the main 

result of [53]. 

Corollary 4.2.8 If F is a set of uniform approximation, {zn} an admissible se-

quence, and {on} a sequence in N, then there exists f e 1-1(C) with exactly the 

zeros zn  of order on  and f 1 on F. 

Proof: Taking the canonical speed e(z) := e l on F and applying Corollary 

4.2.6 implies f rs,  1. 

D 
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Theorem 4.2.9 Let F be a set of uniform approximation, {zn} an admissible 

sequence, {on} a sequence in Zo, E < 1 a canonical speed. Then, there exists 

f G M(C) such that D := En  onzr , is the divisor of f and f GE on F. 

Proof: Since F is a set of uniform approximation and E is a canonical speed, 

there exists a nonvanishing function E 9-I(C) such that 

1 

for all z e F, (see [21], p. 40). 

By Theorem 4.2.5, there exists f e M(C) with divisor D such that for z E F, 

ko(z) — f (z)1 

SO 

(z)1 < E(z), 

for all z E F. 

Corollary 4.2.10 Let F be an unbounded set of uniform approximation, {zn} an 

admissible sequence and {on} a sequence in Zo . Then there exists f e .114(C) such 

that the divisor off is En  on zn  and f 0 on F. 

By a left tail at E C (see [24]), we mean a series of the form 

E ai  — ()i , 
i=-00 

for any integer J. If a left tail is convergent in some deleted neighbourhood of ( 

then we say that it is an admissible left tail. If the coefficients of a left tail at 

coincide with the corresponding Laurent coefficients of a function f holomorphic 

in a deleted neighbourhood of C, then we say that the left tail is a left tail of f at 

the point C. For the special case where J = —1, we call it a p-tail. 



61 

Lemma 4.2.11 Let F be a set of e-approximation and Z:= {zn} an admissible 

sequence. Moreover, for each n let t n  be an admissible left p-tail at zn . Then for 

f e .4(F), there exists a function g holomorphic in C\Z such that tn  is a left tail 

of g at zn  and If —g e E on F. 

Proof: By Theorem 4 in [24], there exists a function fco  holomorphic on C except 

for isolated (possible artificial) singularities at the points of Z such that for each 

n, tn  is a left tail of foo  at Z. Since Z is an admissible sequence, f — f oo  E A(F). 

On the other hand F is a set of e-approximation so there exists go  G 7-1(C) such 

that on F, 

— f co  — go  < e. 

Set g := f oc  g o . Then g is holomorphic on C except for isolated singularities at 

the points of Z, such that for each n, tn  is a left tail of g at zn. 

Theorem 4.2.12 Let F be a set of e-approximation, E < 1, Z := 	an admis- 

sible sequence, and 

tn(z):= E wn(z—z.)i, 
i=-00 

an admissible left tail at zn . Then for f E A(F) there exists a function g holomor-

phic in C\Z such that, tn  is a left tail of g at zn  and for z G F, 

(z) — g (z)1 < • (z). 	 (4.2) 

Proof: Corollary 4.2.6 of Theorem 4.2.5 implies that there exists an entire func-

tion f with zeros exactly at zn  of order on  > jn  and on F, 

(z)  4  . 
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For each n let gn , be the p-tail of the function tn /f at zn  so tna = gn + 	locally 

at z, with cion  holomorphic of zn. 

By Lemma 4.2.11, there exists a function y holomorphic on C\Z such that gn  

is a left tail of y at zn  and for z E F, 

E (z)  
17 (41 < 4  7 

for all z in F. 

Define h := yf. Since f is an entire function so locally h = (g„ + q,)/ with q, 

holomorphic at Zn. In a neighbourhood of z„, 

h= (g, + q„)1 = 	— çon )f 

tn  (qn (Pn)f. 

Since 	— (pn )/ is holomorphic at zn  with zero of order at least on, 

tail of h at Z. 

On F we have 

Ih(z) 1 	I f(z)7(z)I 
<(f(z) — 11+ 1)17(z)1 
< E(z) 	E(z)  

< E(4z) 	4 

2 

so tn  is a left 

By Corollary 4.2.6, there exists an entire function w having zeros of order on  

at Zn  and near 1 on F. Multiplying by a constant, we may assume that on F, (2) 

is bounded and 1w1 > 1. Since F is a set of E-approximation, there is an entire 

function such that for z G F, 

(Z) 	--w ( Z )1 < 21w (z)1 .  

Set 	:= := c2)0. Then —f í e/2 on F and j has zeros of order at least on  at zn• 

Set g := h + Then g is a holomorphic function on C\Z such that for each n, 

tn  is a left tail of g at zn  and for z E F it satisfies (4.2). 
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Of course what we have done in Lemma 4.2.11 can be done for principal parts 

and also Theorem 4.2.12 can be applied to 

in 

pn(z) := E wn,i(z — zn y, 

where, for each n, in  is an integer, in  < in. 

Corollary 4.2.13 Let F be a set of e-approximation, E < 1 and {zn} an admissible 

sequence. Further, let wn ,i , n G N, j = 0,1,2, ...., jn , be complex numbers. Then 

for f E A(F) there exists g G 1-1(C) such that for each z E F, 

(z) — g(z)1 < e(z), 

and for j = 0,1,2, 	jn, n e 

g zri) = wn,i• 

Proof: By the previous theorem for 

\ 

	

tn  = Wn,0 Wn,i(Z — Z) n 	—W
'  n 2(Z — Zn)2 	 =-Wn  j (Z — z)in  

2! 	 3n! 	n  

we can find g E 7-1(C) which satisfies the desired properties. 

D 

Applying Theorem 4.1.4 in Lemma 4.2.11 and Theorem 4.2.12, analogous results 

can be deduced for sets of uniform approximation F and canonical speeds e. 

Theorem 4.2.14 Let F be a set of c-approximation, c < 1, {zn} an admissible 

sequence and {w}, {rn} arbitrary sequences of complex and positive numbers, 

respectively. Then for f E A(F), there exists g G 1-1(C) such that, for z E F, 

(z) — g(z)1 < c and for each n, g(zn ) = wn  and g(C) contains a schlicht disk of 

radius rn. 
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Proof: By Corollary 4.2.13, there exists g E 9-1(C) such that for each n, g(Zn) = 

wii , g(Zn) = 1 and on F, if (z) — g(z) I < e(z). 

For each n, consider the holomorphic function hr ,(z) := g(f n z + zri ) on the unit 

disk D with fri  := r/ß, where 0 is the Bloch constant of normalized holomorphic 

functions on D. By Bloch's Theorem, h(D) contains a schlicht disk of radius pfn. 

It follows that for each n, g(C) contains a schlicht disk of radius en  -= rn. 
D 



Chapter 5 

Conclusions 

In this dissertation, we considered the class of bounded expansion mappings from 

hyperbolic manifolds to Hermitian manifolds. According to compactness and non-

compactness of the target manifold we distinguished two cases and called them 

normal and Bloch mappings, respectively. These are natural generalizations of the 

classical normal and Bloch functions on the unit disk D in the complex plane to 

the Riemann sphere Cc a  and C, respectively. 

We proved that the function f 1—> Ilfill from the class E(U, N) of mappings 

of bounded expansion equipped with the compact open topology to IR is lower 

semicontinuous. Some equivalent statements concerning Bloch mappings to Cr' 

had been proved. The natural question is whether these statements are equivalent 

for the general case where N is any Hermitian manifold. 

Semi-Bloch functions on bounded domains of Cr' were defined and an analytic 

characterization for this class was obtained. In [8] for n = 1, a geometric charac-

terization for semi-Bloch functions has been obtained. We dont know if such a 

geometric characterization exists for n > 1. 

In chapter three we proved that the function b from 7-1(Q, 02 ) to [0, oc] defined 

by b(f) := eÿ  is lower semicontinuous, where Of  is the supremum of radii of 

schlicht balls in the range of f. We also considered the Brody lemma on 9-t(ig , Cn), 
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where Ig is the unit ball in C. . It would be interesting to prove the existence of 

a Bloch constant for quasiregular holomorphic mappings, with the help of this 

modified Brody reparametrization lemma. At the end of this chapter, for K > 1, 

we constructed a family of K-quasiregular mappings on the unit disk in le , for 

which Bloch's theorem does not hold. 

In chapter four we considered the problem of approximation of functions defined 

on a closed set F by meromorphic functions with prescribed poles and zeros outside 

F and then by considering interpolation we proved that a holomorphic function on 

a closed set can be approximated by entire holomorphic functions in such a way 

that in the range of that function there exist schlicht disks of arbitrary radii. We 

ask whether the higher dimensional generalization of such a problem is still valid. 

A preprint of this chapter as a paper with a slight modification is being prepared 

for publication [26]. 
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