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Sommaire

Nous construisons les classes de conjugaison de sous-algébres maximales abé-
liennes (SAMAs) des algébres de Lie pseudo-euclidiennes réelles e(p, g) sous 1’ac-
tion des groupes de Lie pseudo-euclidiens correspondants. L’algébre e(p, ) est la
somme semi-directe de I’algébre pseudo-orthogonale o(p, ) et de I'ideal abélien de
translations T'(p+¢). Nous utilisons tout d’abord cette structure particuliére pour
écrire les SAMAs “splitting” comme sommes directes de sous-algebres de o(p, q)
et T(p + q). Les SAMASs “splitting” permettent alors de construire les SAMAs
“nonsplitting” d’algébres e(p, q). Les résultats pour ¢ = 0,1 et 2 sont explicites.
Les SAMAs d’algébres e(p, 0) et e(p, 1) sont utilisées pour construire les systémes
de coordonnées qui sont non-équivalents sous la transformation conforme et pour
lesquels ’équation d’ondes et ’équation d’Hamilton-Jacobi permettent la sépa-
ration des variables.

La réduction par symétrie de deux équations aux dérivées partielles est donnée
comme illustration de la classification des sous-algébres. Les solutions analytiques
de I'équation de Landau-Lifshitz et de ’équation de diffusion nonlinéaire sont
obtenues par la méthode de la reduction par symétrie. Les groupes de symétrie
des deux équations sont obtenus et tous les sous-groupes de dimension deux sont
classifiés. Les sous-groupes sont alors utilisés pour réduire ces deux équations
en équations différentielles ordinaires, qui sont résolues en termes de fonctions
elliptiques.
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Abstract

We construct the conjugacy classes of maximal abelian subalgebras (MASASs) of
the real pseudoeuclidean Lie algebras e(p, ¢) under the conjugation by the corre-
sponding pseudoeuclidean Lie groups E(p, ¢). The algebra e(p, ¢) is a semi-direct
sum of the pseudoorthogonal algebra o(p, q) and the abelian ideal of translations
T(p+g). We use this particular structure to construct first the splitting MASAs,
which are themselves direct sums of subalgebras of o(p, ¢) and T'(p+ ¢). Splitting
MASASs give rise to the nonsplitting MASAs of e(p,q). The results for ¢ = 0,1
and 2 are entirely explicit. MASAs of e(p,0) and e(p, 1) are used to construct
conformally nonequivalent coordinate systems in which the wave equation and

Hamilton-Jacobi equations allow the separation of variables.

As an application of sﬁbgroup classification we perform symmetry reduction for
two nonlinear partial differential equations. The method of symmetry reduction
is used to obtain analytical solutions of the Landau-Lifshitz and a nonlinear
diffusion equations. The symmetry group is found for both equations and all two-
dimensional subgroups are classified. These are used to reduce both equations to

ordinary differential equations, which are solved in terms of elliptic functions.
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Introduction

This thesis deals with maximal abelian subalgebras (MASAs) of pseudoeuclidean
real Lie algebras and their application in physics. It consists of three articles
[1, 2, 3]. The first one is published as a preprint, CRM-2615, and is submitted to
Linear Algebra and Its Applications, the second one will appear in the July 1998
issue of Journal of Mathematical Physics and the third one is already published
in Journal of Physics A - Mathematical and General. Each chapter of the thesis
contains one article. The material in the articles is selfcontained and therefore we
do not repeat here the general notions and facts concerning MASAs. All necessary
definitions and basic theorems are given in the introductory and general comments
sections in Chapters 1 and 2, corresponding to articles [1] and [2], respectively.

There is an extensive literature devoted to the classification of MASAs of semi-
simple Lie algebras. Cartan subalgebras are a special type of MASAs. They are
self-normalizing and consist of nonnilpotent elements. Cartan subalgebras have
been completely classified and constructed by several authors [4, 5, 6]. Over the
field of complex numbers only one class of Cartan subalgebra of given semi-simple
Lie algebra exists. However, for the real semi-simple Lie algebras the number of
conjugacy classes is finite, not necessarily equal to one.

Another important type of MASAs are maximal abelian nilpotent subalgebras
(MANSES) - consisting entirely of nilpotent elements. A MANS can be represented
by nilpotent matrices in any finite-dimensional representation. Basic results on
MANSs of sl(n,C) and sl(n,R) were obtained by Kravchuk [7] and further de-
veloped in book on commutative matrices by Suprunenko and Tyshkevich [8].
MASAs of maximal dimension for all complex simple finite-dimensional Lie alge-
bras were studied by Maltsev [9]. Those of minimal dimension were studied by
Gerstenhaber [10] and Laffey [11].

More recently a series of articles by P. Winternitz and collaborators was de-



voted to study of MASAs of classical simple Lie algebras namely, symplectic
sp(n,C) and sp(n,R) [12], pseudounitary su(p,¢) [13], orthogonal o(n,C) [14]
and pseudoorthogonal ones o(p, ¢) [15].

Recently, the study of MASAs was extended to the finite dimensional affine Lie
algebras. The first study was done for the complex Euclidean Lie algebras e(n, C)
[16]. The next step was to consider real pseudoeuclidean Lie algebras e(p, g), first
only for the small values of ¢ (¢ = 0,1) [2], and then to study MASAs of e(p, q) for
any values of p, ¢ [1]. The results of these studies are the content of the presented
thesis.

There are several reasons for studying MASAs of a given Lie algebra. Of
mathematical interest is the classification of all subalgebras of a given Lie algebra. -
The classification of MASAs is part of such a program. It is an extension of a
different problem: finding the conjugacy classes of elements of a Lie algebra under
the action of the corresponding Lie group.

Apart from purely mathematical interest in classification of subalgebras there
is also a motivation coming from mathematical and especially physical appli-
cations. These applications are for example a systematic study of symmetry
breaking (spontaneous or explicit) [17, 18, 19, 20|, the construction of complete
sets of commuting operators and maximal sets of additive quantum numbers
in quantum-mechanical problems and the construction of integrals of motion in
involution in classical systems.

Other applications are related to differential equations. Let G be the sym-
metry group of a differential equation (or of a system of differential equations).
Then subgroups of G can be used to construct group invariant solutions [21, 22].
In particular, abelian subgroups for linear partial differential equations (PDEs)
are related to the separation of variables in coordinate systems with a maximal
number of ignorable variables (variables which do not figure in the metric tensor)
[23, 24, 25, 26]. For nonlinear PDEs abelian subgroups provide the simplest way
of symmetry reduction (reducing the number of independent variables).

In the present thesis we contribute to the classification problem by classifying
the MASAs of the real pseudoeuclidean Lie algebra [1]. Also, we give the exam-
ples of application by constructing conformally nonequivalent coordinate systems
in the Minkowski space-time [2]. Another example of application is symmetry re-

duction. We use the method of symmetry reduction to obtain analytical solution



of (2-+1) dimensional spin systems [3].

The first chapter deals with MASAs of e(p,q). The MASAs of e(p,q) are
classified under the action of the group E(p,q). The general procedure uses the
fact that e(p, ¢) is a semi-direct sum of a pseudoorthogonal Lie algebra o(p, ¢) and
translation algebra T'(p+ ¢). First we construct “splitting” subalgebras which are
direct sums of subalgebras of o(p,q) and subalgebras of T'(p + q). Section 4 of
this chapter contains complete and explicit results for splitting MASAs of e(p, q).
The complementary “nonsplitting” MASAs are constructed in Section 5. They
are constructed explicitly for free-rowed MANSs. The problem of classifying non-
splitting MASAs containing non-free-rowed MANSs is more complicated. There
exist several series of non-free-rowed MANSs of o(p, ¢). For two of these series
we construct all MASAs of the corresponding e(p, ¢). Section 7 of this chapter
contains a detailed study of MASAs of e(p, 2). The algebra e(p, 2) is already rich
enough to contain all possible types of orthogonally indecomposable subalgebras
of o(p, 2) and still simple enough to provide completely explicit results.

The second chapter is devoted to the detailed study of MASAs of e(p,0)
and e(p,1). They are classified into the conjugacy classes under the action of
the corresponding Lie groups E(p,0) and E(p, 1), respectively. Also, we classify
MASAs under the action of larger group, namely the conformal groups O(p+1,1)
and O(p+ 1, 2) of Euclidean and Minkowski spaces, respectively. The results are
used to show (for ¢ = 0 or 1) which MASAs of e(p, q) are also MASAs of o(p +
1,¢9+1), and which MASAs that are inequivalent under E(p, q) become equivalent
(conjugate) under the conformal group O(p+ 1,q + 1). These MASAs provide
us with conformaly nonequivalent separable coordinate systems in Euclidean and
Minkowski space, respectively. These coordinate systems allow the separation of
variables in the Laplace and wave equation with a maximal number of ignorable
variables [23, 24, 25, 26].

In the third chapter we use group theoretical methods of symmetry reduction
[21, 22, 27, 28] to find the solutions of the Landau-Lifshitz [29] and nonlinear
diffusion equation [30]. Although both equations are physically important [31,
32, 33, 34|, there are only few analytical results for them [35, 36]. We used
a MACSYMA package [37] to find the symmetry groups of both equations; in
each case we obtained three different symmetry groups (depending on the values

of parameters in the equations). In general, to perform a symmetry reduction



systematicaly one needs to classify all subgroups of a given symmetry group. In
this case we classified all two-dimensional subgroups of the symmetry group for
each equation. In each case four of these subgroups were abelian and they were
present for all three symmetry groups. We used all two-dimensional subgroups
to reduce the equations to ordinary differential equations. These were solved in
terms of elliptic functions when possible. In other cases we obtained the equation

for the Painlevé transcendent Py .
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Maximal Abelian Subalgebras of e(p,q) algebras

Z. Thomova and P. Winternitz

CRM - 2615

Abstract

Maximal abelian subalgebras of one of the classical real inhomogeneous
Lie algebras are constructed, namely those of the pseudoeuclidean Lie al-
gebra e(p,q). Use is made of the semidirect sum structure of e(p, q) with
the translations T'(p + ¢) as an abelian ideal. We first construct splitting
MASAs that are themselves direct sums of abelian subalgebras of o(p, ¢)
and of subalgebras of T'(p + ¢). The splitting subalgebras are used to con-
struct the complementary nonsplitting ones. We present general decom-
position theorems and construct indecomposable MASAs for all algebras
e(p,q), p > ¢ > 0. The case of ¢ = 0 and 1 were treated earlier in a physical
context. The case ¢ = 2 is analyzed here in detail as an illustration of the

general results.

Les sous-algébres maximales abéliennes (SAMAs) d’une algébre réelle
classique non-homogene sont construites, en particulier, celles d’algébre
de Lie pseudo-euclidienne e(p,¢). On utilise la structure de la somme
semi-directe de e(p,q) avec les translations T(p + ¢) qui représente un
idéal abélien. Nous avons construit, en premier, les SAMAs ”splitting”,
qui sont des sommes directes des sous-algebres abéliennes de o(p,q) et
de sous-algébres de T'(p + ¢). Les sous-algébres “splitting” sont utilisées
pour construire les sous-algebres complementaire -"nonsplitting”. Nous
présentons les théorémes généraux de décomposition et nous construisons
les SAMAs indécomposables pour toutes les algébres e(p, q), p > ¢ > 0. Les
cas de ¢ = 0 et 1 sont déja traités dans un context physique. Le cas g = 2

est analysé ici en détail comme une illustration des résultats généraux.



1 Introduction

The purpose of this article is to present a classification of the maximal abelian
subalgebras (MASAs) of the pseudoeuclidean Lie algebra e(p, g). Since this Lie
algebra can be represented by a specific type of real matrices of dimension (p +
g+1) x (p+q+1), the subject of this article is placed squarely within a classical
problem of linear algebra, the construction of sets of commuting matrices.

Most of the early papers in this direction [1-3] as well as more recent ones [4—
8], were devoted to commuting matrices within the set of all matrices of a given
dimension. In other words, they studied abelian subalgebras of the Lie algebras
gl(n,C) and gl(n,R). For a historical review with many references see the book
by Suprunenko and Tyshkevich [9].

Maltsev constructed all maximal abelian subalgebras of maximal dimension
for all complex finite-dimensional simple Lie algebras [10]. An important subclass
of MASAs are Cartan subalgebras, i.e. self-normalizing MASAs [11]. The simple
complex Lie algebras, as well as the compact ones, have just one conjugacy class
of Cartan subalgebras. The real noncompact forms of the simple Lie algebras can
have several conjugacy classes of them. They have been classified by Kostant [12]
and Sugiura [13].

This article is part of a series, the aim of which is to construct all MASAs of
the classical Lie algebras. Earlier articles were devoted to the classical simple Lie
algebras, such as sp(2n, R) and sp(2n, C) [14], su(p, ¢) [15], o(n, C) [16] and o(p, q)
[17]. General results for MASAs of classical simple Lie algebras are presented in
[18]. More recently MASAs of some inhomogeneous classical Lie algebras were
studied, namely those of e(n,C) [19], e(p,0) and e(p,1) [20]. Here we consider
e(p, q) for all p > ¢ > 0. The two special cases, ¢ = 0 and ¢ = 1, treated earlier,
are of particular importance in physics and are also much simpler than the general
case.

The motivation for a study of MASAs was discussed in previous articles [14—
20]. As a mathematical problem the classification of MASAs is an extension of
the classification of individual elements of Lie algebras into conjugacy classes [21—
23]; A classification of MASAs of classical Lie algebras is an important ingredient
in the classification of all subalgebras of these algebras.

In applications in the theory of partial differential equations, MASAs provide



coordinate systems in which invariant equations allow the separation of vari-
ables. More specifically, they provide ”ignorable variables” not figuring in the
corresponding metric tensors, when considering Laplace-Beltrami or Hamilton-
Jacobi equations. In quantum physics they provide complete sets of commuting
operators. In classical physics they provide integrals of motion in involution.

The classification problem is formulated in Section 2, where we also present
some necessary definitions and explain the classification strategy. Section 3 con-
tains a brief summary of the known results on MASAs of o(p,q) [17]. They are
needed in the rest of this article and we reproduce them in a condensed form to
make the article self-contained. Section 4 is devoted to splitting subalgebras of
e(p, g), i.e. subalgebras that are direct sums of subalgebras of the algebra o(p, q)
and those of the translation algebra T'(p + ¢). The complementary case of non-
splitting MASAs of e(p, ¢) is the subject of Section 5. The results on MASAs of
e(p, ¢) obtained in Sections 4 and 5 are reformulated in terms of a decomposition
of the underlying linear space S(p,¢) in Section 6. Indecomposable MASAs of
e(p, q) are described in the same section. Section 7 is devoted to a special case in
which all results are entirely explicit, namely MASAs of e(p, 2).

2 General formulation

2.1 Some definitions

The pseudoeuclidean Lie algebra e(p, ) is the semidirect sum of the pseudoorthog-

onal Lie algebra o(p, q) and an abelian algebra T'(n) of translations

e(p,q) =o(p,q) dT(n), n=p+q. (2.1)

We will make use of the following matrix representation of the Lie algebra
e(p,q) and the corresponding Lie group E(p,q). We introduce an ”extended

K 0
Ke:( o 01), (2.2)

K=KTeR™™ npn=p+gq, detK #0, (2.3)
sgnK = (p,q), p>gq>0. (2.4)

metric”

where K satisfies



Here sgnK denotes the signature of X, where p and g are the numbers of positive
and negative eigenvalues, respectively. Then X, € e(p,q) and H € E(p,q) are

represented as

X aof i
X(X,a) =X, = 5 6 , X e Rv*n, a € R¥>*™, (2.5)
T
H _ ( ﬁ al ) , G = Rnxn’ ac Rlxn, (26)
XK+ KXT=0, GKGT =K, XK.+ K.XT =0. (2.7)

The vector oo € R™™ represents the translations. We say that the translations

are positive, negative or zero (isotropic) length if -
aKo® >0, aKo' <0, aKa' =0, (2.8)

respectively.
We will be classifying maximal abelian subalgebras of the pseudoeuclidean
Lie algebra e(p, ¢) into conjugacy classes under the action of the pseudoeuclidean

Lie group E(p,q). Let us define some basic concepts.

Definition 2.1 The centralizer cent(Lg, L) of a Lie algebra Ly C L is a subal-

gebra of L consisting of all elements in L, commuting elementwise with Lg
cent(Lo, L) = {e € L|[e, Ly] = 0}. (2.9)

Definition 2.2 A mazimal abelian subalgebra Ly (MASA) of L is an abelian

subalgebra, equal to its centralizer
[Lo, Lo] =0, cent(Ly, L) = Ly. (2.10)

Definition 2.3 A normalizer group Nor(Lg, G) in the group G of the subalgebra
L[) Q L is
Nor(Lo,G) = {g € G|gLog™" C Ly}. (2.11)

Definition 2.4 A splitting subalgebra Ly of the semidirect sum
‘L=F 3N, [F,F|CF, [F,N]JCN, [N,NJCN (2.12)
i itself a semidirect sum of a subalgebra of F and a subalgebra of N

‘ LQ == F(] EN[), FO Q F, ND g N. (213)



10

All other subalgebras of L = F' ® N are called nonsplitting subalgebras.
An abelian splitting subalgebra of L = F N is a direct sum

LOZF()@N(), F()QF, N()gN (214)

Definition 2.5 A mazimal abelian nilpotent subalgebra (MANS) M of a Lie al-
gebra L is a MASA, consisting entirely of nilpotent elements, i.e. it satisfies

(M, M] =0, [[L,M]M]..], =0 (2.15)

for some finite number m (we commute M with L m-times). A MANS is repre-

sented by nilpotent matrices in any finite dimensional representation.

2.2 Classification strategy

The classification of MASAs of e(p,q) is based on the fact that e(p,q) is the
semidirect sum of the Lie algebra o(p, ¢) and an abelian ideal T'(n) (the transla-
tions). We use here a procedure related to one used earlier [19] for e(n,C) and

[20] for e(p, 1). It proceeds in five steps.

1. Classify subalgebras T'(k4,k_, ko) of T(n). They are characterized by a
triplet (k4, k_, ko), where k, k_ and ky are the number of positive length,
negative length and isotropic vectors, respectively.

2. Find the centralizer C(ky, k_, ko) of T'(ky, k_, ko) in o(p, q)

C(/ﬁ,‘_|_, k-, kO) = {X € 0(p7 Q)l[X’T(k-H k-, ko)] = 0} (216)

3. Construct all MASAs M (k. k_, ko) of C(k,, k_, ko) and classify them under
the action of normalizer Nor[T'(ky,k_, ko), G] of T'(ky, k_, ky) in the group
G ~ E(p, q).

4. Obtain a representative list of all splitting MASAs of e(p, q) as direct sums
Mk k-, ko) ® T(ky, k_, ko) (2.17)

and keep only those amongst them that are indeed maximal (and mutually

inequivalent).

5. Construct all nonsplitting MASAs from splitting ones as described below
in Section 5.1.
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3 Results on MASAs of o(p, q)

3.1 General results

Let us briefly sum up some known [17] results on MASAs of o(p,¢) that we
shall need below. We shall represent these MASAs by matrix sets {X, K} with
notations as in (2.3) ...(2.7).

Definition 3.1 A MASA of o(p, q) is called orthogonally decomposable (OD) if
all matrices in the set {X, K} can be simultaneously represented by block diagonal
matrices with the same decomposition pattern. It is called orthogonally indecom-
posable (OID) otherwise.

Proposition 3.1 Every OD MASA of o(p, q) can be represented by a matriz set

X =diag(Xy, Xo, ..., Xy), K = diag(Ky 4, Kpsggs- - -2 Kpp g )s

? Pk,
Xijj,qj s Kp,»,qujT =0, X;, Kpj,qj c R +Qj)X(Pj+(1j)’
Kpj,qj = Kg;-,qj7 SgnKPj:‘]j = (Pj,‘]j), (3-1)
dethj,f}j 7é 0’ 1 S] S k: 2 S k S [ﬁgﬂ] L)

k k
25=Pi=P G =0 P aZpte>. Zptg >,
where:

i) For cach j, the matriz set {X;, K, ..} represents an OID MASA of o(p;, ¢;);
let us call it My, 4..

i) At most one of the MASAs M,, ;. is a mazimal abelian nilpotent subal-
gebra (MANS) of o(p;,q;). In particular only one pair (p;,q;) can satisfy
pij+q; = 1. The corresponding pair {X, K} is (0,1) and represents a MANS
of 0(1,0) or 0(0,1).

To obtain representatives of all O(p,q) classes of OD MASAs of o(p,q) we let
My, q;, for all j, run independently through all representatives of O(p;,q;) congju-
gacy classes of OID MASAs of o(p;, q;), subject to the restriction (ii). Conversely,
each such matriz set represents a conjugacy class of OD MASAs of o(p, q).

The problem of classifying MASAs of o(p, ¢) is thus reduced to the classifi-
cation of OID MASAs. Under the field extension from R to C an OID MASA
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can remain OID, or become orthogonally decomposable. In the first case we
call it absolutely orthogonally decomposable (AOID) in the second nonabsolutely
orthogonally indecomposable (NAOID). The following types of orthogonally inde-
composable MASAs of o(p, q) exist:

1. Maximal abelian nilpotent subalgebras (MANSs). They exist for all values of
(p,q), min(p,q) > 1. They are discussed below in Section 3.2. They are AOID
MASAs.

2. MASAs that are decomposable but not orthogonally decomposable (AOID
but D). They stay OID when considered over €. They exist for all values of

p = q > 1. Their canonical form is

M:{Xp,pz(A ) K:( I")}, (3.2)
~ AT I

where A = RI, & MANS of si(p,R).
3. MASAs that are indecomposable over R but become orthogonally decompos-
able after field extension to C (NAOID, ID but NAID). They exist for p = 2k,

g = 2l, min(k,l) > 1. Their canonical form is

I
M = RQ & MANSs of su(k, 1), K:( o 3 )
—42]

-1 0
4. MASAs that are indecomposable over R and decomposable over C (but not

orthogonally decomposable even over C) (OID, AOID but NAID). They exist for
p=gq = 2k, k > 1. Their canonical form is

1
Q = diag(F, ..., Fy) e ROHH0 ) — ( ; ) (3.3)

M =RQ ® OID but D MASAs of su(k, k)

with @ as in eq.(3.3).

An exception is the case of 0(2), itself abelian. Thus, for p = 2, ¢ = 0 or
p =0, ¢g=2,0(2) is AOID but NAID.
5. Decomposable MASAs that become orthogonally decomposable over C (NAOID
and D). They occur only for p = ¢ = 2k, k > 1. Their canonical form is

() () e
—AT 1oy,
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where

H= RQQk @ MANSs of 81(2]41, C)

3.2 MANSSs of o(p,q)

A MANS M of a classical Lie algebra is characterized by its Kravchuk signature,
which we will denote KS [3,9,17,18]. It is a triplet of integers

ApA), 2x+p=n, >0, 1<A<g<p, (3.5)

where A is the dimension of the kernel of M, equal to the codimension of the
image of M. A MANS can be transformed into the Kravchuk normal form

0 A Y 1)
N=|0 S —KAT |, K= K :
0 0 0 Iy
AER ™, Y=_YTeR™  SK4+KST =0, (3.6)

SerRt, K=KT eR¥#, sgnK =(p—\q— N

and S nilpotent.
There are two types of MANS of o(p, g):

i) Free-rowed MANS. The first row of A has pu free real entries. All other

entries in A and S depend linearly on those yu free entries.

ii) Non-free-rowed MANS. Any combination of rows of A contains less than u

free real entries.

The results on free-rowed MANS of o(p,q) [17] are stated in the following
proposition.

Proposition 3.2 A representative list of O(p,q) conjugacy classes of free-rowed
MANSs of o(p, q) with Kravchuk signature (A 1 \) is given by the matriz sets

0 A Y Iy

N=|90 8 —EAT |, K= K
00 0 1

, (3.7)
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alh
fe al)y o € R+ 8
=| & |" e _grogem (3.8)
a@y
Qi € R/JJXIJ’ Qi-[% == KQT: [Q'LJ QJ] = Oa (39)

Q=1 TrQi=0, 2<i< A

The entries in o and Y are free. The matrices Q; are fized and form an abelian
subalgebra of the Jordan algebra jo(p— A, g — A). In the case A = 2 we must have
Q2 # 0. There ezists a Ay € Z,1 < Ay < A such that Q, ..., Q) are linearly
independent and @Q, =0, A\, +1 < v <A,

Proofs of the Propositions 3.1 and 3.2 and details about MASAs of o(p,q) are
given in Ref. [17]. The results on non-free-rowed MANS of o(p, ¢) are less complete

and we shall not reproduce them here [17].

4 Splitting MASAs of e(p,q)

4.1 General comments on MASAs of e(p, q)

A MASA of e(p, q) will be represented by a matrix set {X,, K.}

[ N e )
Xon o7
Pj0; 5J'T J (4 1)
4%
Or. ¥

\ 0
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Ko \
I(ply(ll
Iy = Kp, 4, , (42)
Iy,
—I_
\ 0, /
P=P0+k0+zg=12?i+k+7 q=q0+k0+Z{=1 ¢+ k-, (4.3)

where My, o = {Xpiqis Kpii}» @ = 1,...7 is an OID MASA of o(p;, g;), that is
not a MANS. The vector £ has the following form

=
- i z,7y € Rixko -
= ﬂT [ € R1*(po+g0) (4.4)
Y

and N is a MANS of o(py + ko, go + ko) with Kravchuk signature (ko potqo ko)
and is given by

O, A Y ‘ 0 0 I
N=| 0 § K, A" |, Ko=| 0 Kpq 0 (4.5)
0 0 Ok, Iy, 0 0
Y =-YT,  SKp e+ KpogST =0
A € Rkox(po+ao), Sc R(Po+40)%(Po+g0) Y € Rkoxke (4.6)

KPOaQO = Kg;,qga SgnKquo = (PO,QO)

The entries in 2,z and y are free and represent the positive, negative and
zero length translations contained in T'(k., k_, ko). The entries in 3, and é; are
linearly dependent on the free entries in A,Y and X, ,,. If they are nonzero (and
cannot be annulled by an F(p, ¢) transformation), we have a nonsplitting MASA.
This case will be discussed in Section 5. |

4.2 Basic results on splitting MASAs

In this section we shall construct all splitting MASAs of e(p, q).
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Theorem 4.1 Every splitting MASA of e(p,q) is characterized by a partition
P=po+ ks +ko+ Y pi g=qo+k_ +ko+ X, 6
k0+k++k_7ép+q—1, ngogq

A representative list of E(p,q) conjugacy classes of MASAs of e(p, q) is given by

the matriz sets {X., K.} of eq.(4.1) and (4.2) with

(4.7)

&=0, i=1,...5, ¢=| 0o |. (4.8)

If ko = 0 then the MANS N s absent. M,, ,. is an orthogonally indecomposable
MASA of o(pi, ¢;) which is not a MANS. Running through all possible partitions,
all MANSs {N, Ky} and all MASAs M, ,, we obtain a representative list of all
splitting MASAs of e(p, q).

Proof. We start by choosing a subalgebra T'(ky, k_, kg). Calculating the cen-
tralizer of T'(ky, k_, ko) in o(p, q) gives us

M K
C(k-f-a k—, k(]) == Ok4+ ! K= Ik
O
sgnK = (p—ky,q — k_).

, (4.9)
[

M is a subalgebra of o(p — k4+,q — k) which commutes with the translations
corresponding to £ = (z,0), £ € R>*@+te-k+—k-) > ¢ Rk and with no other
translations. To obtain a MASA of e(p, ¢) we must complement T'(k, k_, ko) by
a MASA F(ky,k_, ko) of the centralizer C'(ky,k_, ko). F(k.,k_,ky) must not
commute with any further translations, hence F(k,,k_, ko) is either a MANS of
o(p — k4,q — k_) with KS (ko, p—k+—ko+g—k_—ko, ko) or an orthogonally
decomposable MASA containing a MANS N with KS (ko p ko). For kg = 0 the
MANS N is absent. This leads to eq. (4.8) and each M, o, = {X,, 4, Kp, 4} is an
OID MASA of o(p;, g;) of the type 2,3,4, or 5, listed in Section 3.1. O

5 Nonsplitting MASAs of e(p, q)

5.1 General comments

First we describe the general procedure for finding nonsplitting MASAs of e(p, q).
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Every nonsplitting MASA M (k,, k_, ko) of e(p, g) is obtained from a splitting
one by the following procedure:

1. Choose a basis for F(ky,k_, ko) and T'(k4, k—, ko) e.g. F(ky,k_, ko) ~
{Bl, ey BJ}, T(k+, ]‘{J_, ko) = {Xlu e XL}

2. Complement the basis of T'(ky, k_, ko) to a basis of T'(n).

T(n)/T(ks, k-, ko) ={¥1,...,Yn}, L+ N=n.
3. Form the elements

N
By=B,+ ) ayY;, a=1,..,J (5.1)
j=1

where the constants d,; are such that B, form an abelian Lie algebra
[Ba,Bb] = 0. This provides a set of linear equations for the coeflicients

(tg;. Solutions ¢&,; are called 1-cocycles and they provide abelian subalge-
bras M (ky,k_, ko) ~ {Ba, X3} C e(p, q).

4. Classify the subalgebras M (ky, k_, ko) into conjugacy classes under the ac-
tion of the group E(p,q). This can be done in two steps.

i) Generate trivial cocycles t,;, called coboundaries, using the translation
group T'(n)

e'i®s Boe " = B, + 0;[P;, Bo] = Bu + Y tu; P;. (5.2)
i

The coboundaries should be removed from the set of the cocycles. If
we have G&,; = t,; for all (a, ) the algebra is splitting (7.e. equivalent
to a splitting one).

ii) Use the normalizer of the original splitting subalgebra in the group
O(p, q) to further simplify and classify the nontrivial cocycles.

The general form of a nonsplitting MASA of e(p, q) is M, = {X,, K.} given
by eq. (4.1) and (4.2). Requiring commutativity [X., X’] = 0 leads to
Xm,q;dtT = Xp a0

Nf’T — ]:;I?TZ (53)
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From the eq.(5.3) we see that the entries in d; depend linearly only on X, 4.,
i.e. only on the MASA M, ,. of o(p;, g;).

Each M, ,, belongs to one of the four types of OID MASAs of o(p;, ;) which
were listed in the Section 3.1 - AOID but D MASAs, AOID but NAID MASAs,
NAOID ID but NAID MASAs or NAOID but D MASAs.

We will make use of the following result:

Lemma 5.1 If M is a MASA of o(p, q) when considered over R, then it will also
be a MASA of o(n,C), n = p+ q, when considered over C.

If any of the vectors §; were non zero then after field extension we would
obtain a nonsplitting MASA of e(n,C) of a type that does not exist [19]. This
implies that all of the d!s are zero. .

Any further study of nonsplitting MASAs of e(p, ¢) is reduced to studying the
matrices
(N £
Msom 0

with £ and NV as in eq.(4.4) and (4.5), respectively. Further, we can see from
eq.(5.3) and (5.4) that the study of nonsplitting MASAs is in fact reduced to the
study of nonsplitting MASAs of e(py + ko, go + ko) for which the projection onto
the subalgebra o(po + ko, go + ko) is a MANS with Kravchuk signature (kg p ko),
p = po+qo. Further classification is performed under the group E(po+ ko, go+ko)-

The MASAs of e(pg + ko, go + ko) to be considered will thus be represented by
the matrix sets {X,, K}

Oko A Y ZT Iko
¥ o= S _KPO,QDAT IBT K. = Kpo,fm
2 0 Okg ’}’T , ¢ Iko ’
0 0 0 01
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where Y = —Y7, and 3 € R*#, v € R** depend linearly on the free entries in
A and Y. Using the commutativity [X,, X!] = 0 we obtain

A,BIT+Y’YIT == AlﬁT—i—Yl')’T (56)
S,BIT _ Kpo,quT"Y’T — SIIBT . Kpo,qu’T")/T

The translations

) TERlxu,CERIXkO. 5l
O O O gT
ko

0 0 0 0O

will be used to remove coboundaries from § and v and the remaining cocycles
will be classified under the action of the normalizer of the MANS /V in the group
O(po + ko, qo + ko).

The situation will be very different for free-rowed and non-free-rowed MANS
of o(py + ko, go + ko). The two cases will be treated separately.

5.2 Nonsplitting MASAs of e(py + ko, g0 + ko) related to free-
rowed MANSs

Let N be a free-rowed MANS of o(pg+kg, go+kp). The corresponding nonsplitting
MASAs of e(py + ko, g0 + ko) can be represented as follows.

Theorem 5.1 A nonsplitting MASA of e(p, q) must contain a MANS of o(py +
ko, qo + ko) with 1 < kg < q, min(po -+ ko, o + ko) > 1. All nonsplitting MASAs of
e(po + ko, go + ko) for which the projection onto o(py + ko, qo + ko) is a free rowed
MANS N with Kravchuk signature (ko p ko), tt = po + qo can be represented by
the matriz sets {X,, K.} of eq.(5.5) with S =0 and A and Y as in eq.(5.8).
1. For ky > 3 we have

g = aA, oy =] (5.8)

A € R¥*® satisfies the following conditions:

A iFE, 758 S At T (5.9)

P0,490 Po.90
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2. ko =2, un>2. A satisfies eq.(5.9) for j =2 and
8 =alA+yp, ’yz( T), =111, .:0) (5.10)
et

for @ following

01
0 0
Q= , , Kgw=| 1 @ : (5.11)
. 0 Kpo—l,qo—l
For all the other @)
0
0 = al, 7:(()). (5.12)
. ko = 2, = 1
0
B=yp, 7 = ( ) : (5.13)
ap + pay

where (p, p2) s (1,0),(0,1), or (1,1).
4. ko =2, u=0, there is no B and we have

¥ = ( g ) A (5.14)

B = aA, A= AT, v=0. (5.15)

8=4, =it (5.16)
The case kg =1, p =0 is not allowed.
Two free-rowed non-splitting MASAs of e(po + ko, g0 + ko), M(po, go, ko, A) and
M'(po, qo, ko, A'), are E(py + ko, qo + ko) conjugated (for cases 1 and 5) if the

matrices A, A’ characterizing them satisfy:
1 =
A= g—GQ(A —= ) QK 0)Ga (5.17)
! k=1

Jor some g1,9; € R, 0, € R, G2 € o(py, qo) such that

1
Qj = angQQJ'G;l' (518)
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Proof: 1. ky > 3 We start from a free-rowed MANS in eq.(5.5). Requiring
commutativity [X., X.] = 0 leads to the following equations

(@@)BT +yjavy = (@Q))BT + YjuTa

(5.19)
@)y = (@)
The entries in 3,y are linearly dependent on those in Y and o, i.e.
B = a4} cichano YikPiks A € R¥H, py € RVH (5.20)
v = oW+ ElSKkSko YikPik, W e R#k0, Py € R

We substitute § and + into eq. (5.19) and compare coefficients of oy, for 4 and
j fixed. First consider the case j = 1. We obtain that

A:AT; Pik,a:O, i<iwhk, 1=2a Plk,a:Pla,,lca

pir =0, 2<i<k Wo=pn, a2>2, (5.21)
Qj AI{I;J%‘IO = AI{;OI,QO QJ"

For j = 2 we obtain

i =0 3I<igk, Py, = —Py
k,1 >t 12, 2 1T (5.22)
pie = 0 k>3, Wi = —Qapps.
And for 7 = 3 we get
W =0, P = 0, Byr=0 for. k> 3, (5.23)
Using the translations we obtain the coboundaries 6;
etPize %P = 7 _ 9,[Z, P). (5.24)
This leads to replacing A by
.k0
N =A-> 0:QrKpg g (5.25)

k=1

All §; are free and can be used to remove all coboundaries. In particular if K, 4

is chosen to satisfy TrKy 4 # 0 we can use #; to make A traceless. Equation

(5.17) corresponds to transformations of A using the normalizer of N in E(p, q).
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2. ]{10 = 2, o Z 2
Here there is only one matrix @ = )y, the vector v is v = (y1,72) and ¥ =

0
( Y ) We have
B = alA + yp, p € Rix# (5.26)

m=ow! +py, v2=oaw; +py, wi,wz €RZE ppeR (5.27)

From the [X,, X!] = 0 we obtain that

A=AT, QAK,! =AK.! Q (5.28)
B=ah+yp, 7= ( —O‘QTPT ) . (5.29)
_ ap
Equation (5.19) for j = 2 leads to
QT (aTd! — a'Ta) + (aTa — aTd)Q)p" = 0. (5.30)

Writing eq.(5.30) in components and choosing « and ' such that ¢, = 1,0} =1

and all other components vanish, we obtain

m
(QT)iaps — (QT)ippa + Z(5iank — 0iaQpi) o = 0, Vi, a,b. (5.31)

k=1

This provides us with two types of relations

Qaips — Quipa =0,  a#1, b#1 (5.32)
o
~Qipa+ Quipi + ) Quepr =0,  a#i. (5.33)
k=1

The matrix @ is block diagonal,

Q=diag(]1,.]2,...,Jr), 22:1 dZsz = U
(5.34)
dimdJy > dimJy > ... > dimJ, > 1,

where each J; is an indecomposable element of a Jordan algebra jo(p;, ¢;), pi+¢; =
dimJ; (see e.g Ref. [23]). The matrix K, 4 has the same block structure. Possible



23

forms of elementary blocks in () are

g 1
g 1
Js qgi) = ¥
(¢:) g
qi
r, 8 0
—S8; Ty 0 1 (535)
Ji(ri +8i) = 1 0
0
T S;

\ “ai 1)
After complexification the second type of block reduces to the first one, so it
actually suffices to consider the first type of block only (see Lemma 5.1).

Let us first assume dimJ; > 3. Writing relation (5.33) fori =land2<a <r
we obtain p3 = ps = ... = p, = 0. Taking @ = 1,7 = 2 in (5.32) we then obtain
pz = 0. Taking a = 1,b = 2,7 = 3 in (5.33) we obtain p; = 0. Thus, if the largest
block J;(q) satisfies dimJi(q) > 3, we have p = 0.

Now let us assume dim.J;(g) = 2 so that all other blocks have dimension 2
or 1. By the same argument we have p3 = ps = ... = p, = 0 and also ps = 0.
If @ has the form (5.11), then all relations (5.32) and (5.33) are satisfied and
py remains free. If any of the other diagonal elements, say ()33 is not zero, then
relation (5.33) for ¢ = 3,a = 1 implies p; = 0. If we have ¢ # 0 in J1(g), then at
least one other diagonal element of () must satisfy Q. # 0,a > 3, since we have
Tre) = 0.

Finally, let @ be diagonal. We have ¢ # 0,7rQ = 0, hence at least two
diagonal elements are nonzero. Relations (5.32) and (5.33) then imply p; = 0,i =
10

Using the normalizer G = diag(g1, g2, G2,9; ", 9; ') we normalize p; to p; = 1
far p; # 0.

3. ky=2pu=1

There is no matrix ) and we have

B = da+ py, AER (5.36)



24

Y1 = awr + 1Y, Y2 = GWsg + Paly wy, wo, p1,P2 € R

Condition [X., X!] = 0 implies w; = 0,p; = 0 and after removing the cobound-
aries we obtain

B=py, m=0, P=ap+py. (5.37)

Using the normalizer G = diag(g1, g2, g3, g4, g5, 1), satisfying GK,GT = Ky, we
can normalize (p, p2) to one of the following: (1,0),(1,1), (0, 1).

4. kg=2, =0

Using the normalizer G = diag(g;, G, 51;, 1) we obtain eq. (5.14).

9. ko=1,u2>2

In this case Y = 0 and A = a € R™# in eq. (5.5). Then we have

B8 = aA, y=awT, BeR™X, ~yekR (5.38)
From the [Xg, X}] = 0 we obtain that
A=AT, w=0 (5.39)
Removing the coboundaries leads to replacing A by
AN =A-0K, 4, (5.40)

where ¢ can be chosen to annul trace of A (if Tr K, 4 # 0).
B Eg=), u=1
The proof is trivial and can be found in Ref.[20].
Using the normalizer of the splitting MASA (4.8)in the group E(pq + ko, go +
ko) we can simplify A further. The normalizer is represented by block diagonal

matrices
G = diag(G1, Gy, GTH,1). (5.41)

Choosing G1 = diag(gy,...,9k), G2 satisfying GoKp, oGE = Kpo 4 leads to
equations (5.17) and (5.18).
This completes the proof of the Theorem 5.1. ]
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5.3 Nonsplitting MASAs of e(py + ko, go + ko) related to non-
free-rowed M ANSs

The general study of non-free rowed MASAs of o(p, q) is less well developed.

Many different series of MASAs of o(p, gq) exist. We will consider only two of

them, which we denote A(2k + 1,0) and A(2k + 1,1), by analogy with series of

non-free-rowed MANSs of o(n, C) [16].
1. The series A(2k + 1,0) of o(p, q) is represented by the matrix set

(0 aq 0 ay ... Qg 0\

ag

¥ = @ | (5.42)

K = Fopyr = , (5.43)

where all a}s are free.

o(k+1,k) for k even
o(k,k+1) fork odd
o(k+1,k) for k odd
o(k,k+1) for k even.

Thus for e =1 we have M C {
and for ¢ = —1 we have M C {

The splitting MASA of e(p, q) for this series (in accordance with Theorem 4.1)
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is written as follows:

00 a9 0 a ... a 0 «
ap 0
= a 0 (5.44)
0 0
a; O
0 0
\ 0

Theorem 5.2 Every nonsplitting MASA of e(p, q) corresponding to the splitting
MASA (5.44) is E(p,q) conjugate to the following one

(0 a 0 a ... ... o 0 «
g, . o 0
0 ag
Xe = W, wy oGy 0 aKe¥(F2k+1 O)(SAS)
0 as
a; 0
0 o

\ 0

where all entries in X, are free.

Proof: We will construct a nonsplitting MASA from the splitting one (5.44)
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0 a@ 0 ao ... a, 0 «
0 a 0 ay ... ar [
0 5
X! = e g Baes | (5.46)
0 fBok-1
a1 Dok
0 Bokta

\ 0 )
where ['s are linearly dependent on a}s. Before imposing commutation relations

we will remove the coboundaries.

Consider one element of the algebra (5.46)

(01 0 0 .. o000
0 1 0 e ... 0O 041’2
0 a3
Al = .0 1 9k—2 ) (547)
0 oy9k-1
1 Q1,2
0 12641
0
where oy ,! = 2,...,2k + 1 represent the translations. We note that a1 ... o1 2k

correspond to coboundaries and can be eliminated by conjugation by the trans-
lation group. Thus only @ 9x41 is left in A4;.
Now consider an element A; of algebra (5.46), obtained by setting a; = 5,
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Qi 2k—2 . (5.48)
G 2k—1

Q4 2k

o o o =

G5 2k+1
0

Commuting A]_ with all Az,?, = 2,.. .k we obtain that Ojok—2543 = 12k+1,
Jj=2,...,k and all other «;; have to be zero.
Using the normalizer G of the form

G=(g% gL 0% (5.49)

we can normalize o541 to @y 2k41 = 1. This leads to the MASA (5.45) and
completes the proof of Theorem 5.2. O
2. The series A(2k + 1, 1) of o(p, g) is represented by the following matrix set:

[0 ai 0 ay ... ag 0 b\

a2

F,
: K:( At 1), (5.50)

0
0
a; 0
0
0

\ 0 —eb
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where all a}s and b are free. The corresponding metric is

( e 0

Fopq " 5
B =2 ( 1 ) ” » (5.51)

0O 0 ... ... 0

o(k+1,k+1) for k odd

ok +2,k) for k even
o(k+1,k+1) fork even
o(k +2,k) for k£ odd.

Thus for € = 1 we have M C {

and for e = —1 we have M C {

Theorem 5.3 Every nonsplitting MASA corresponding to the splitting MASA
(5.50) is E(p,q) conjugated to the MASA of the form

(O aa 0 as ... a. 0 b o \
= g™ ag 0 Ab
0 0 0

o, = Y- e e oy 00 (5.52)

S 0 0 0
ap 0 0
0 0 0

—eb 0 Aay+ ub

\ 00 0 )

with the metric as in (5.51). The entries a;,b and « are free. Parameters \ and

w are one of the following sets:

(0,1)
(A p) = (0, —1) (5'53)
(L,p), peR

Proof: The proof is similar to that of Theorem 5.2 and we omit it here. |
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6 Decomposition properties of MASAs of e(p, g)

The results of Sections 4 and 5 can be formulated in terms of a decomposition
of the underlying pseudoeuclidean space S(p, ¢). Both splitting and nonsplitting
MASAs have been represented by matrix sets {X, K.} as in eq.(5.4), (4.2). We
shall call a MASA of e(p, ¢) decomposable if the metric K, in (4.2) consists of 2 or
more blocks. The projection of such a MASA onto the o(p, q) subalgebra is then
an orthogonally decomposable MASA of o(p, ¢). Let M,(p, ¢) be a decomposable
MASA of e(p, g). The space S(p, q) then splits into a direct sum of subspaces

l

1 i
S, =P Swnaw), Y. m=p D a=q (6.1)
=1 =1

=1
and each indecomposable component of the decomposable MASA of e(p, q) acts
independently in one of the spaces S(p;, ¢;). We shall write

Me(p, (J) e @ME(p’Hq'L) (62)

i=1

Each individual indecomposable MASA M,(p;, ¢;) C e(p;, ¢;) can then be consid-
ered separately.

Consider the matrix set {X., K.}, X, given by eq.(5.4), K. as in eq.(4.2),
where each block is indecomposable. The blocks to be considered consist of a
block on the diagonal in X, plus an entry from the right hand column in X,.

The following types of indecomposable MASAs M, (p;, ;) C e(p;, ¢;) exist.

o dimS = 1. The MASAs are pure positive or negative length translations.

M,(1,0) = {(8 ‘8) zeR, K:((l) g)} (6.3)
M,(0,1) = {(8 g) yeR, Kez(_ol 8)} (6.4)

A MASA M.(p,q) of e(p,q) contains k, of the first ones and k_ of the
second.

e dimS = 2. The MASAs are 0(2) rotations in a (++), or (——) type sub-



space, or o(1, 1) pseudorotations in a (+—) space:

(/0
M.(2,0) = | —
L 0
f( 0
M.(0,2) = | -z
L\ 0
I
M(1,1)= (| 0

\

i
0
0

(el s N

O O oo o0 o o o
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0
o Y. (67
0

e dimS = k > 3. There are two possible types of indecomposable MASAs

of e(p,q) for p+ ¢ > 3. Both of them have k, = k_ = 0 (no nonisotropic

translations).

i) M.(p,q) contains ko isotropic translations with kg > 1. The projec-
tion of M,(p,q) onto o(p, ) is then a MANS of o(p, q¢) with Kravchuk
signature (ko, p+q—2k, ko). The MANS can be free-rowed or non-free-

rowed. The MASA of e(p, q) can be splitting , or nonsplitting. Such

MASAs exist for any p + ¢ > 3, min(p,q) > 1. They were treated in

Sections 4 and 5.

ii) M(p,q) is an orthogonally indecomposable MASA of o(p, ¢) that is not
a MANS. It gives rise to a splitting MASA of e(p, q¢) which contains no
translations (ko = 0). As reviewed in Section 3 such MASAs of o(p, q)

exist only for p + ¢ even.

7 A special case: MASAs of e(p,2)

The case ¢ = 2, like ¢ = 1 and ¢ = 0, presented earlier [20] is simpler than that

of ¢ > 3. All MASAs can be presented explicitly, in particular those involving

non-free-rowed MANS of o(p, 2).

The possible decomposition patterns (6.2) for MASAs of e(p, 2) are

M.(p,2) = M,(p1,2) &1 M.(2,0) + k, M,(1,0)

(7.8)
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=1 or p 22 pt2ly+ki=p

Me(p,2) = Me(p1,1) © Me(p2,1) @ 1 Mc(2,0) + k4 M,(1,0)  (7.9)
p+pe+2l +k=p

Me(p,2) = M.(0,2) ®1:M.(2,0)+ ki M(1,0) (7.10)
g+ kL =mp.

The algebras M,(2,0), M,(0,2) and M,(1,0) are already abelian (and one dimen-
sional) as are M.(0,1) and M,(1,1). The MASAs M,(p, 1) of e(p, 1), p > 2 were
studied in our earlier article [20].

Thus, we need to treat only indecomposable MASAs of e(p, 2). As was stated
in Section 6 for general e(p,q), two cases arise, namely kg = 0 and 1 < kg <
min(p, ), where kg is the number of linearly independent translation generators
present.

1. kp=10
Then M(p,2) is an orthogonally indecomposable MASA of o(p, 2) that is not a
MANS. These exist only when p is even (p > 2).

For p = 2 three inequivalent OID MASAs that are not MANS exist and the

corresponding splitting MASAs of e(p, 2) are given by the following matrix sets:

i) M(2,2) is AOID but D

a 0
0 a 0 I,
A== —a 0 0 |, Ke=| L (7.11)
—b —a 0 0,
0y
ii) M(2,2)is AOID, ID but NAID
0 a 0 b 0
—a 0 =b 0 0
X, = 0 a O (7.12)
—a 0 0
01

with K, same as in 3).
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iil) M(2,2) is NAOID but D

a b 0
—-b a 0
Ky = —a b 0 (7.13)
-b —a 0
01

with K, same as in 1).

For p = 2[, 1 > 2 we have just one OID MASA of o(p,2) (NAOID, ID but
NAID), namely M = RQ®MANS of su(l,1). The corresponding splitting MASA
of e(p, 2) is represented as following matrix set

0 b ap 0 ... a1 0 0 0

-b 0 0 a ... 0 a1 -—c 0 0

0 b —a; 0 0

-5 0 0 —ai 0

X, = _

0 —a;_1 0 i

-b 0 0 —aqi—; 0

0 b 0

—b 0 0

0, )
I
Iy
K= o , (7.14)
I
0
2. ko =1

The projection of M, (p,2) onto o(p,2) will be a MANS of o(p, 2) with Kravchuk
signature (1 p 1). This MANS can be free-rowed, or non-free-rowed, so we obtain

two splitting MASAs of e(p, 2) represented, respectively, by
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i) free-rowed

0 0 Koo' 0 0 01
X, = B , K.=|o0 K 0|, (115
0 0 0 0
1 0 0
0,

where K has signature (p—1,1), a e R*? 1 <p

ii) non-free rowed

(0 a a0 0 2\
00a 0 —b 0
00 0 —of
Xe = 0 —a 0 0 1
0 —-a
0
\ 0, (7.16)
/ 10
10
e I, 00
1 0 00
10 0 00
01

acR> 1<vandv=p-3.

The MASA (7.15) gives rise to three different nonsplitting MASAs for p > 2
which can be expressed as

0 a 0 z 1
~Koal BKoaT K,
x,= |0 9 Koo Y, K, = 2 . (7.17)
00 0 0 1
00 0 0 0

K, is the same as in (7.15) and B satisfies the condition BKy = K(B”, i.e. B
is an element of the Jordan algebra jo(p — 1,1). A classification of the elements
Jordan algebras was performed in the paper by Djokovic et al [23] and the couple



35

{B, Ko} can have one of the three different following forms (keeping in mind the

a -1
B:( BO), ng( I) (7.18)

signature of Kj):

i)

i)

a 0 0

B=|1a , Ko=|10 (7.19)

By I

iii)
a 0 00

010
B a s : (7.20)

01 a 1 0 0

By 1
where By is a diagonal matrix.
For p = 1 the nonsplitting MASA corresponding to eq.(7.15) is
0

- (7.21)

o O O O
S a O W
o = O D

1
0
0
0

o O O R
o O = O

0

The MASA (7.16) for v > 2 gives rise to one type of nonsplitting MASA that
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can be represented as

0 a a 0 0 z
0 0 a b apt
00 0 —af ap’ +AdT
X, = 0 —a O 0 (7.22)
0 -a 0
0 0 0
0,

with A = A”. Using the normalizer G = diag(g, 91, G, g3,1/91,9,1), G2 € R"*,

9, 91, 93 € R, satisfying GoGZ = I,,, g? = g2 = 1 we can transform A, p) into
A= ngAGg”, P = LGzp. (7.23)

g 9193

We can use G, either to diagonalize A, or to rotate p into e.g. p = (p1,0,...,0).

3. kp=2

The projection of M.(p,2) onto o(p,2) is a free-rowed MANS with Kravchuk

signature (2 p—2 2). The corresponding splitting MASA of e(p,2) is given in

Theorem 5.1 with ¢ = kg = 2 and K 4, = Ip,—2. In this case @2 can be chosen

as Q2 = diag(l,q2,...,qu), ;1 =1 > |g2| > ... > |g,|- This MASA in turn gives

rise to the following non-splitting MASAs.

[00 a« O y 2\
0 0 aQ -y 0 )
X, = 00 0 =g —Qa8 &a” (7.24)
00 0 0 0 0
00 0 0 0
\0 0 0 0 0, |

Here A is a diagonal matrix, TrA = 0 and K, is same as in eq.(5.5).

8 Conclusions

The main conclusion is that we have presented guidelines for constructing all
MASAs of e(p,q) for any fixed values of p and ¢q. Some of the results are en-
tirely explicit, such as Theorem 4.1 describing all splitting MASAs of e(p, g), and
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Theorem 5.1 presenting nonsplitting MASAs containing a free-rowed MANS of
o(po + ko, 90 + ko) C 0(p,q). The results on MASAs of e(p,q) involving non-
free-rowed MANS of o(pg + ko, go + ko) are less complete and amount to specific
examples (see Theorems 5.2 and 5.3). The decomposition results of Section 6
allow us to restrict all considerations to indecomposable MASAs of e(p, ¢), both
splitting and non-splitting ones. The results for e(p,2) presented in Section 7
are complete and explicit, like those given earlier for e(p,0) and e(p, 1) [20]. In
particular we have constructed all MASAs related to non-free-rowed MANSs.

Work concerning the application of MASAs of e(p, ¢) is in progress. In par-
ticular, we use MASAs of e(p, q) to construct the coordinate systems in which
certain partial differential equations (Laplace-Beltrami, Hamilton-Jacobi) allow
the separation of variables.
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Abstract. The maximal Abelian subalgebras (MASAS) of the Euclidean e(p, 0) and pseudo-
euclidean e(p, 1) Lie algebras are classified into conjugacy classes under the action of the
comresponding Lie groups E(p, 0) and E(p, 1), and also under the conformal groups O(p+1, 1)
and O(p + 1, 2), respectively. The results are presented in terms of decomposition theorems.
For ¢(p, 0) orthogonally indecomposable MASAs exist only for p = 1 and p = 2. For e(p, 1),
on the other hand, orthogonally indecomposable MASAs exist for all values of p. The results
are used to construct new coordinate systems in which wave equations and Hamilton—Jacobi
equations allow the separation of variables,

Résumé. Les sous-algebres maximales abéliennes (SAMAs) d’algibres Euclidiennes e(p, 0) et
pseudo-euclidiennes e(p, 1) sont classifiées en classes de conjugasion sous I'action des groupes
de Lie correspondants E(p, 0) et E(p, 1). Elles sont aussi classifiées sous I’action des groupes
conformes O(p + 1,1) et O(p + 1,2). Les résultats sont presentés dans des théoremes
de decompositions. Pour e(p,0), les SAMAs orthogonallement indecomposables existent
seulement pour p =1 et p = 2. Pour e(p, 1), les SAMAs orthogonalement indecomposables
existent pour toutes les valeurs de p. Les résultats sont utilisés pour construire des nouveau
systemes de coordonnées, dans lesquelles les équations d’onde et les équations de Hamilton—
Jacobi admettent la separation de variables.

1. Introduction

The stage for much of mathematical physics is the real flat space R" with a non-degenerate
indefinite metric of signature (p, ¢). We shall denote this space M(p, q) with p +¢g = n.
The isometry group of this space is the pseudo-euclidean group E(p, ¢) and the conformal
group is C(p, q) ~ O(p+1, g + 1) (the pseudo-orthogonal group in p+ g +2 dimensions,
acting locally and nonlinearly on M (p, g)).

The purpose of this article is to present a classification of the maximal Abelian
subalgebras (MASAs) of the real Euclidean and pseudo-euclidean Lie algebras e(p, 0) =
e(p) and e(p, 1). The classification is first performed with respect to conjugation under the
corresponding Lie groups E(p,0) = E(p) and E(p, 1), respectively, and it also provides a
classification of the connected maximal Abelian subgroups of the corresponding groups
E(p) and E(p,1). We also present a classification of MASAs of the corresponding
conformal algebras c(p, 0) ~ o(p+1, 1) and ¢(p, 1) ~ o(p+1, 2) under the corresponding
groups O(p +1,1) and O(p + 1,2). This classification is used to show (for ¢ = 0 or 1)
which MASAs of e(p, g) are also MASAs of o(p + 1, g + 1) and which MASAs that are
inequivalent under E(p, g) are nevertheless mutually conjugated under the larger conformal
group O(p+1,9 + 1).

0305-4470/98/071831+28319.50 (© 1998 IOP Publishing Ltd 1831
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The classification of the MASAs of e(p, ¢) (¢ = 0, 1) will be used to address a physical
problem: the separation of variables in Laplace-Beltrami and Hamilton—Jacobi equations
in the corresponding spaces M(p, q).

The motivation for our study of subgroups of Lie groups and subalgebras of Lie
algebras is multifold. For instance, consider any physical problem leading to a system of
differential, difference, algebraic, integral or other equations. Let the set of all solutions of
the system be invariant under some Lie group G, the ‘symmetry group’. Special solutions,
corresponding to special boundary, or initial conditions, can be constructed as ‘invariant
solutions’, invariant under some subgroup of the group G [1, 2]. For linear equations,
or for Hamilton-Jacobi type equations, solutions obtained by separation of variables are
examples of invariant solutions. While all types of subgroups Gy C G are relevant to this
problem, Abelian subgroups provide particularly simple reductions and particularly simple
coordinate systems. Indeed, each one-dimensional subalgebra of an Abelian symmetry
algebra will provide an ‘ignorable’ variable [3-8], i.e. a variable that does not figure in the
metric tensor {(a ‘cyclic’ variable in classical mechanics).

Another example of the application of maximal Abelian subgroups of an invariance
group is in any quantum theory, where Abelian subalgebras provide sets of commuting
operators that characterize states of a physical system. The system itself is characterized
by the Casimir operators of the group G. Complete information about possible quantum
numbers would be provided by constructing MASAs of the enveloping algebra of the Lie
algebra L of G. MASAs of the Lie algebra itself provide additive quantum numbers.

A third application is in the theory of integrable systems, both finite and infinite
dimensional, where MASAs of any underlying Lie algebra provide integrals of motion
in involution, commuting flows, and other basic information about the systems.

A series of earlier papers was devoted to MASAs of the classical Lie algebras, such
as sp(2n, R) and sp(2n, C) [9], su(p, q) [10], so(n, C) [11] and so(p, g) [12]. In all
MASAs of simple and semisimple Lie algebras Cartan subalgebras on the one hand, and
maximal Abelian nilpotent algebras (MANSs) on the other, play a special role. The Cartan
subalgebras are their own normalizers [13] and consist entirely of non-nilpotent elements.
For a complex semisimple Lie algebra there is, up to conjugacy, only one Cartan subalgebra.
For real semisimple Lie algebras they were classified by Kostant [14] and Sugiura [15].
Maximal Abelian nilpotent subalgebras consist entirely of nilpotent elements (represented by
nilpotent matrices in any finite dimensional representation). They were studied by Kravchuk
for si(n, C) and his results are summed up in book form [16]. Maltsev obtained all MANSs
of maximal dimension for the simple Lie algebras [17]. Those of minimal dimension have
also been studied [18].

More recently, the study of MASAs was extended to inhomogeneous classical Lie
algebras, or finite dimensional affine Lie algebras, starting from the complex Euclidean Lie
algebras e(n, C) [19].

The next natural step is to consider the real Euclidean and pseudo-euclidean algebras
e(p,q) for p > g > 0. This study is initiated in the present paper, where we concentrate
on the values ¢ = 0 and 1. On the one hand, these are the most important in physical
applications, since they include the Lie algebras of the groups of motions E(p) of Buclidean
spaces and E(p, 1) of Minkowski spaces. On the other, they are the simplest ones to treat,
so all results are entirely explicit. The general case of g > 2 will be treated separately and
is more complicated from a mathematical point of view.

The classification strategy and some general results on the MASAs of e(p, g) are
presented in section 2. The real Euclidean algebra e(p) is treated in section 3, where
we also list the MASAs of o(p, 1) and the classification of MASAs of e(p) under the
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action of the group O(p + 1, 1). Section 4 then treats MASAs of e(p, 1). Section 5 lists
results on MASAs of o(p, 2) and the classification of MASAs of e(p, 1) under the action
of the conformal group O(p + 1,2) of the compactified Minkowski space M(p,1). In
other words, certain MASAs not conjugated under E(p, 1) are conjugated under the larger
group O(p+1,2). MASAs of e(p, 1) are used in section 6 to obtain the maximal Abelian
subgroups of E(p, 1). These in turn provide us with all separable coordinate systems in the
Minkowski space M (p, 1) with a maximal number of ignorable variables. Some conclusions
are drawn in section 7.

2. General formulation

2.1. Some definitions

We will be classifying maximal Abelian subalgebras of the pseudo-euclidean Lie algebra
e(p. g) into conjugacy classes under the action of the pseudo-euclidean Lie group E(p, q).
A convenient realization of this algebra and this group is by real matrices ¥ and H, satisfying

X «
Y X, @)=Y = (0 0) X e R™" o e R™! 2.1
G
7= (o ‘1’) G eR™ geR™ 2.2)

respectively, where X and G satisfy
XK+EKX"=0 GKG" =K
K = KT e R™" n=p+q detK#0 (2.3)
sgnK = (p,q) pz2q=20

respectively. Here sgn K denotes the signature of K, with p the number of positive
eigenvalues of K and g the number of negative ones. We shall also make use of an
‘extended’ matrix K, € RHD*0+D gatisfying

K 0
Ko = ( . ) YK.+ K. YT =0. (2.4)
1

A convenient basis for the algebra e(p, g) is provided by » translations P, and n(n—1)/2
rotations and pseudorotations L,,. The commutation relations for this basis are

[(Lik, Lapl = kaLib — Sk Lia — SiaLip + SipLita
[Log, Lys] = 8gy Las — 8gsLay — 8ay Lgs + 8asLpy
[Lixs Lugl = SraLig — 8iuLig (2.5)
(Lia, Lpyl = 8apLiy — 8oy Lip
[Lug, Lin]l = 8puLui +8uiLpy
where i, k,a,b < p and'p <o, By, 8, u<q
[Pas Lyv] = Bap Py — gav Py

26
[Py, P,]=0 S
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forO <o, p,v< p+g,
81 =8n=""=8pp = —8ptlp+tl =" = —Eptq ptqg = 1
& =0 for p #v.
A standard realization of this basis in terms of differential operators is given by
- a I ] il
= s e —— — Nop—
i Bxﬂ 2 ! Bxk k 8x,~

forl<i<kg<porp+1<i<k<p+gqand

@7

0 0
Lip=—|xx— +x;— I1€i<p p+1gk<p+tg.
ax,- 8xk

From the above discussion we see that the pseudo-euclidean Lie algebra is the
semidirect sum of the pseudo-orthogonal Lie algebra o(p, ¢) and an Abelian algebra T (n)
of translations.

Since T'(n) is an ideal in e(p, ¢), we can consider the adjoint representation of o(p, g)
on T'(n). Abusing notation, we use the same letters Py, ..., P,, Ppyy, ..., Py for basis
vectors in this representation. The metric tensor g,, defined above provides an invariant
scalar product on the representation space

(P, Q) =guwP.0y. 2.8)

We shall call vectors satisfying P2 > 0, P2 < 0 and P? = 0 (P # 0) positive length,
negative length and isotropic, respectively.
We also need to define some basic algebraic concepts.

Definition 2.1. The centralizer cent(Ly, L) of a Lie algebra Ly € L is a subalgebra of L
consisting of all elements in L, commuting elementwise with Lg:

cent(Lp, L) = {e € L|[e, Lo] = 0}. (2.9)

Definition 2.2. A maximal Abelian subalgebra L, (MASA) of L is an Abelian subalgebra,
equal to its centralizer

[Lo, Lol =0 cent(Lg, L) = Ly. (2.10)
Definition 2.3. A splitting subalgebra Ly of the semidirect sum

L=FrN [F,F1ICF [F,NJCN |[N,N]JCN (2.11)
is itself a semidirect sum of a subalgebra of F and a subalgebra of N:

Ly = Fy> Ny FoCF NyCN (2.12)
(or conjugate to such a semidirect sum).

All other subalgebras of L = F > N are called non-splitting subalgebras.
An Abelian splitting subalgebra of L = F > N is a direct sum

Lo =F @& Ny FpCF NoCN. (2.13)

Definition 2.4. A maximal Abelian nilpotent subalgebra (MANS) M of a Lie algebra L is
a MASA, consisting entirely of nilpotent elements, i.e. it satisfies

(M, M]=0 (L, MiM]---1, =0 (2.14)

for some finite number m (we commute M with L m times).
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Let us now consider the pseudo-euclidean space M(p, g), i.e. R*,n = p + g with an
invariant quadratic form given by the matrix K of equation (2.3):

ds® = dx"Kdx. (2.15)
The group and Lie algebra actions are given by

X' =Gx+a X=Xx+a (2.16)
respectively, with (X, o) and (G, a) as in equations (2.1) and (2.2).

Definition 2.5. A subalgebra Lo C e(p, g) is orthogonally decomposable if it preserves an
orthogonal decomposition of M(p, q)

M(p,q) = M(pi1,q1) D M(pa, q2) ht+m=p g1+q=gq (2.17)

into two (or more) non-empty subspaces. It is called orthogonally indecomposable
otherwise.

2.2. Classification strategy

The classification of MASAs of e(p, q) is based on the fact that e(p, q) is the semidirect
sum of the Lie algebra o(p, ¢) and an Abelian ideal T (n) (the translations). We use here a
modification of a procedure described earlier [19] for e(n, C). We proceed in five steps.

1. Classify subalgebras T (k,., k_, ko) of T (n). They are characterized by a triplet of non-
negative integers (ki, k_, ko) where ki, k_ and ko are the numbers of positive, negative
and isotropic vectors in an orthogonal basis, respectively.

2. Find the centralizer C(ky, k_, ko) of T(ky,k_, ko) in o(p, q):
Clhy, k—, ko) = {X € o(p, PIX, T(ky, k_, ko)] = 0}. (2.13)
3. Construct all MASAs of C(ky, k_, ky) and classify them under the action of normalizer

Nor[T(ky, k_, ko), G] of T (ky, k_, ko) in the group G ~ E(p, q).
4. Obtain a list of splitting MASAs of e¢(p, g) by forming the direct sums

Clhy, k_, ko) ® T (ky, k-, ko) (2.19)

and dropping all such algebras that are not maximal from the list.

5. Complement the basis of T (k,, k_, ko) to a basis of T(n) in each case and construct all
non-splitting MASAs. The procedure is described below in subsection 4.2.

This general strategy can also be expressed in terms of sets of matrices of the form
2.1)-(2.4).
The subalgebra T'(k., k., kp) can be represented by the matrices

Oku 3
017+q —2kg—ky—k_
Oko

0 (2.20)

rd

b - s B

Or_
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i 0
Ky
Ke=| I 5 (2.21)
T 0
~I,. 0
0y

where Ky has the signature (p—ky —ko, g—k_ —kg).
The centralizer C(ky, k_, ko) of T(ky, k—, kg) will then be represented by the block
diagonal matrices

M ~ _
0 0, A T
&= k+ . M=}10 § —RAT
- 0 0 o (2.22)
0,
¥ =37 SKE+EF =0,

The Lie algebra of matrices {M} represents a subalgebra of o(p—ky, g —k_) and we
need to classify the MASAs of o(p—ky, g—k_) contained in {#}. Such MASAs were
studied elsewhere [12] and we shall recall some basic facts here.

A MASA of o(p, q) is characterized by a set of matrices X and a ‘metric’ matrix
K, satisfying equation (2.3). A MASA can be orthogonally indecomposable (OID), or
orthogonally decomposable (OD). If it is OD, we decompose it, i.e. transform it, together
with K, into block diagonal form. Each block is an OID MASA of some o(p;, q;),
> pi=p, ). g =q. At most one of the blocks is a MANS.

From the above we can see that the MASA of e(p, g) will have the following general
form:

O, A Y &
§ =BT
Ok,
M = M, (2.23)
Ok, x
Oy
',
Iy,
KPX‘II
Iy
K. = Kz 2.24)
I,
=1

0y
where M, is a MASA of o(p,, g2) not containing a MANS, p = p; + p» + k4 + ko and

q = g1+ g2+ k_ + ko. The MASA M, can be absent (when p, = ¢; = 0). It may be
orthogonally decomposable.
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The block
O, A Y
My=| 0 S —K,, A"
0 0 0, (2.25)

Y+Y =0 SKmm"'KquST:O

represents a MANS of o(p| +ko, g1 + ko), so S € R1+9)x(m+4a) jg 3 nilpotent matrix. For
ko = 0 the MANS My is absent.

2.3. Embedding into the conformal Lie algebra

The algebra o(p + 1, g + 1) contains the rotations and pseudorotations L,g, translations
P,, the dilation D and the proper conformal transformations C,. The realization of the
additional basis elements in terms of differential operators is given by

i a 1 0
D= xaa Co = gauxaxa'aTa = E(xagaﬂxﬂ)g)—c;' (2.26)

They satisfy the following commutation relations:
[P;u Col = ZguaD - zgaaLua

[Ca: Lus] = 8apCu — 8avCy

[D: L;w] =0 (227)
[P,,D]=P,
[C,, D] =—C,.
A matrix representation of o(p + 1,4 + 1) is
d o 0 1
Mc=|8" X0 —Ko¥ Ke = Ko
0 —BK, =1 1 (2.28)

XoKo + KoXy =0

where o, B, d, X represent translations, conformal transformations, the dilation, rotations
and pseudorotations, respectively. Ky has the signature (p, ¢). We have

McKc + KeME = 0. (2.29)

We see that in equation (2.28) the algebra e(p, q) is embedded as a subalgebra of one of

the maximal subalgebras of o(p+1, g+1), namely the similitude algebra sim(p, ¢) obtained

by setting B = 0in (2.28). The MASAs of e(p, g) are thus embedded into o(p+1, g+1). In

each case we shall determine whether a MASA of e(p, ¢) is also maximal in o(p+1, g +1).

Conversely this representation can be used to determine whether a MASA of o(p+1,g+1)

is contained in e(p, g). Finally, we shall use it to establish possible conformal equivalences
between MASAs of e(p, g) that are inequivalent under E(p, gq).

3. MASAs of e(p, 0) and o(p, 1)

3.1. Classification of all MASAs of e(p, 0) = e(p)

The metric is positive definite and, hence, a subspace of the translations is completely
characterized by its dimension.
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A basis for e(p) is given by Ly, 1 <i <k < p,and Py, ..., P,.

Theorem 3.1. Every MASA of e(p, 0) splits into the direct sum M (k) = F(k) ® T (k) and
is E(p, 0) conjugate to precisely one subalgebra with

F(k)y={Li2, L3a,..., Ly—1 2} Tk)y={Pysr,..., Pp}

where k is such that p — &k is even (p — k = 2I).

Proof. We take T(k) = {Pp_441. ..., Pp}. Its centralizer in o(p,0) is o(p — k, 0). This
algebra has just one class of MASAs, namely the Cartan subalgebra:
1. Fy={Li, Ls, ..., Lyt pk} if p —k is even;
2. ﬁk = {ng, L34, L Lp—k—Z,p—k——l} if p— k is odd.

The splitting MASAs would then be T(k) @ Fi, but for p — k odd, the subalgebra
is not maximal. The elements of a non-splitting MASA would have the form X =
Lyasv + Z]’:]k oy P where a = 1,3,..., p — k — 1. After imposing the commutation
relations [X, Y] = 0 we obtain that all &, ; = 0. There are no non-splitting MASAs. [

3.2. MASAs of o(p, 1)
We present here some results from [12] on MASAs of o(p, 1). A MASA of o(p, 1) can be

1. Orthogonally decomposable. Two decomposition patterns are possible, namely:
@ 12,0d %k, )fork=0,1,...,p—2 (I 2 1) where (k, 1) is a MANS;
G (LDHe(1,00®12,0).

2. Orthogonally indecomposable. Then the MASA is a MANS of o(p, 1).

A representative list of O(p, 1) conjugacy classes of MANSs of o(p, 1) is given by the
matrix sets

0 « 0 1
X=[0 0 —aT K= I, o= (ay,...,qa,) a €R. 3.1
0 0 0 1

The entries in « are free, and the dimension of M is hence
dmM=p—1=pu. 3.2)

The algebra 0(2] + 1, 1) has a single (non-compact) Cartan subalgebra, corresponding
to the orthogonal decomposition (2, 0) @ (1, 1). The algebra o(21, 1) has two inequivalent
Cartan subalgebras, corresponding to the decompositions 1(2,0) & (0, 1) (compact) and
(1,00 (1, 1) & 1(2, 0) (non-compact).

The situation is illustrated in figure 1.

3.3. Behaviour of MASAs of e(p, 0) under the action of the group O(p +1, 1)

Theorem 3.2. All MASAs of e(p, 0) inequivalent under E(p, 0) are also inequivalent under
the action of the group O(p + 1, 1) and are also MASAs of o(p + 1, 1).
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12,0)+ (k, 1) (all p>2)

OD

o(p, 1)

OID & MANS  (all p > 2)

Figure 1. MASAs of o(p, 1).

Proof. A MASA of e(p, 0) can be represented in matrix form as follows:

M, 0
0 a
M, = M, 0 M; = L i =1,
Ok+ xT
0y
Iy
K. = I,
0y

M, 0
M, = M, 0
0 x 0
0k+ —XT
0

Iy

1
K. =
I,

1

12,00+, D)4+ (1,00 (for p even)

..,l a,-ER

(3.3)

(3.4)

which is an orthogonally decomposable MASA of o(p+ 1, 1) with decomposition [(2, 0) ®

MANS of o(p — 21 4+ 1, 1) (realized as in equation (3.1)).

3.4. Summary of MASAs of e(p, 0)

O

The classification of MASAs of e(p,0) can be summed up in terms of orthogonal

decompositions of the Euclidean space M(p, 0) = M(p).
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Theorem 3.3. 1. Orthogonally indecomposable MASAs exist only for p = 1 and p = 2.
Namely

p=1 {Pi} (3.5)
p=12 {Mia}. (3.6)

2. All MASAs of e(p,0) are obtained by orthogonally decomposing the space M(p)
according to a pattern

M(p) =IM(2) ® kM(1) p=2l+k (3.7)

and taking a MASA of type (3.6) in each M (2) space and type (3.5) in each M (1) space.
3. For each partition p =2/ +k,0 < [ < [p/2] we have precisely one conjugacy class of
MASAs, both under the isometry group E(p, 0) and the conformal group O(p 4 1, 1).

4. MASAs of e(p, 1)

4.1. Splitting MASAs of e(p, 1)

For e(p, 1) only the values k_ = 0,1 and ky = 0, 1 are allowed, while 0 < &k, < p. We
can write a MASA in the following form:

My y!
M, 0
Mk, k_k)y=M=
M, 0
T
O, x @.1)
\ 0y
Ky
Iy
T, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>