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Sommaire 

Nous construisons les classes de conjugaison de sous-algèbres maximales abé-
liennes (SAMAs) des algèbres de Lie pseudo-euclidiennes réelles e(p, q) sous l'ac-
tion des groupes de Lie pseudo-euclidiens correspondants. L'algèbre e(p, q) est la 
somme semi-directe de l'algèbre pseudo-orthogonale o(p, q) et de l'ideal abélien de 
translations T (p+ q). Nous utilisons tout d'abord cette structure particulière pour 
écrire les SAMAs "splitting" comme sommes directes de sous-algèbres de o(p, q) 
et T(p + q). Les SAMAs "splitting" permettent alors de construire les SAMAs 
"nonsplitting" d'algèbres e(p, q). Les résultats pour q = 0, 1 et 2 sont explicites. 
Les SAMAs d'algèbres e(p, 0) et e(p, 1) sont utilisées pour construire les systèmes 
de coordonnées qui sont non-équivalents sous la transformation conforme et pour 
lesquels l'équation d'ondes et l'équation d'Hamilton-Jacobi permettent la sépa-
ration des variables. 

La réduction par symétrie de deux équations aux dérivées partielles est donnée 
comme illustration de la classification des sous-algèbres. Les solutions analytiques 
de l'équation de Landau-Lifshitz et de l'équation de diffusion nonlinéaire sont 
obtenues par la méthode de la reduction par symétrie. Les groupes de symétrie 
des deux équations sont obtenus et tous les sous-groupes de dimension deux sont 
classifiés. Les sous-groupes sont alors utilisés pour réduire ces deux équations 
en équations différentielles ordinaires, qui sont résolues en termes de fonctions 
elliptiques. 
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Abstract 

We construct the conjugacy classes of maximal abelian subalgebras (MASAs) of 
the real pseudoeuclidean Lie algebras e(p, q) under the conjugation by the corre-
sponding pseudoeuclidean Lie groups E(p, q). The algebra e(p, q) is a semi-direct 
sum of the pseudoorthogonal algebra o(p, q) and the a,belian ideal of translations 
T (p + q). We use this particular structure to construct first the splitting MASAs, 
which are themselves direct sums of subalgebras of o(p, q) and T (p + q). Splitting 
MASAs give rise to the nonsplitting MASAs of e(p, q). The results for q = 0, 1 
and 2 are entirely explicit. MASAs of e(p, 0) and e(p, 1) are used to construct 
conformally nonequivalent coordinate systems in which the wave equation and 
Hamilton-Jacobi equations allow the separation of variables. 

As an application of subgroup classification we perform symmetry reduction for 
two nonlinear partial differential equations. The method of symmetry reduction 
is used to obtain analytical solutions of the Landau-Lifshitz and a nonlinear 
diffusion equations. The symmetry group is found for both equations and all two-
dimensional subgroups are classified. These are used to reduce both equations to 
ordinary differential equations, which are solved in terms of elliptic functions. 



Acknowledgements 

It is my pleasure at this place to say thank you to the many people without whom 
this thesis would not have been possible. 

First I would like to thank to my supervisor Pavel Winternitz for suggesting an 
interesting mathematical problem, for his guidance during all these years, his 
patience and time as well as his financial support. 

I thank to Professors Decio Levi, Wojtek Zakrzewski, Véronique Hussin and Bram 
Broer for helpful discussions and collaboration. 

I would like to thank the secretaries and staff of the Department and the CRM 
for all the help through the bureaucratic jungle, the computer support - Miguel 
and Hélène, and TeXing - André. 

Thanks go to fellow students and postodcs (Jacqueline, Yannis, Mounia, Hassan, 
Ania, Alex, Robert ... , students from McGill Physics - Alex, Rainer, Sean, Mikko, 
Martin, May, Graham, Jake, ... and their *friends) for sharing this student life 
and experiences with me, to Stéphane for all the long hours of computations, 
talks and his help with French. Special thanks to Bre() and his family for always 
being in a good mood and smiling. 

I thank the "Falcons" (Josef, Maruâka, Ludvik, Tereza, Jana, Alice ...) for all the 
volleyball practices. 

Thank you to the "biologists" - ZeeBee, Pavla and Zdenék, and Mei for all those 
evenings and nights, especially the introduction to Irish beer. 

A special thank you goes to the Martinû family (Alenka, Ludvik, Tereza and 
Kristina) where the doors were always open, I felt as I would at home, and the 
G&T was always ready. 

vi 



vii 

A very special thank you to my mom, grandparents and all my family in Koece 
for their encouragement, support and for being there for me. 

Last but not least, I would like to thank my husband Martin and my brother-
in-law Lubog, who helped with almost anything I asked for. I would have never 
even attempted to do it without you guys. 



Contents 

Sommaire 

Abstract 

Acknowledgments 

iv 

vi 

Introduction 1 

1 Maximal Abelian Subalgebras of e(p,q) algebras 5 
1 Introduction 	  7 
2 General formulation 	  8 

2.1 	Some definitions 	  8 
2.2 	Classification strategy 	  10 

3 Results on MASAs of o(p, q) 	  11 
3.1 	General results 	  11 
3.2 	MANSs of o(p, q) 	  13 

4 Splitting MASAs of e(p, q) 	  14 
4.1 	General comments on MASAs of e(p, q) 	  14 
4.2 	Basic results on splitting MASAs 	  15 

5 Nonsplitting MASAs of e(p, q) 	  16 
5.1 	General comments 	  16 
5.2 	Nonsplitting MASAs of e(po  + leo , qo  + ko ) related to free- 

rowed MANSs 	  19 
5.3 	Nonsplitting MASAs of e(po  + leo , qo  + ko ) related to non- 

free-rowed MANSs 	  25 
6 Decomposition properties of MASAs of e(p, q) 	  30 
7 A special case: MASAs of e(p,2) 	  31 

viii 



ix 

2 

8 	Conclusions  	36 

Maximal Abelian Subgroups of the Isometry and Conformal 
Groups of Euclidean and Minkowski Spaces 	 40 
1 	Introduction  	41 
2 	General formulations  	43 

2.1 	Some definitions  	43 
2.2 	Classification strategy  	45 
2.3 	Embedding into conformal Lie algebra  	47 

3 	MASAs of e(p, 0) and o(p, 1)  	47 
3.1 	Classification of all MASAs of e, 0)-_.=,. e(p) 	 47 
3.2 	MASAs of o(p, 1) 	  48 
3.3 	Behavior of MASAs of e, 0) under the action of the group 

0(p + 1, 1) 	  48 
3.4 	Summary of MASAs of e(p, 0) 	  49 

4 MASAs of e(p, 1) 	  50 
4.1 	Splitting MASAs of e(p, 1) 	  50 
4.2 	Nonsplitting MASAs of e(p, 1) 	  52 
4.3 	A decomposition theorem for MASAs of e, 1) 	 54 

5 Embedding of MASAs of e, 1) into the conformal algebra o(p + 1, 2) 55 
5.1 	Introductory comments 	  55 
5.2 	MASAs of o(r, 2) 	  55 
5.3 	MASAs of e, 1) classified under the group 0(p + 1, 2) . 	 58 

6 Separation of variables in Laplace and wave operators 	 62 
6.1 	MASAs and ignorable variables 	  62 
6.2 	Ignorable variables in Euclidean space M(p) 	 64 
6.3 	Ignorable variables in Minkowski space M(p, 1) 	 64 

7 Conclusions 	  67 

3 Solutions of (2+1)-dimensional spin systems 69 
1 Introduction 	  72 
2 The symmetry group and its two-dimensional subgroups 	 76 
3 Solutions of the Landau-Lifshitz equation 	  79 

3.1 	General procedure 	  79 
3.2 	Solutions of the elliptic function equation 	  81 



x 

3.3 	Individual reductions 	  86 
4 	Solutions of the nonlinear diffusion equation 	  91 

4.1 	General procedure 	  91 
4.2 	Individual reductions 	  93 

5 	Conclusions 	  96 

Bibliography 	 104 



Introduction 

This thesis deals with maximal abelian subalgebras (MASAs) of pseudoeuclidean 
real Lie algebras and their application in physics. It consists of three articles 
[1, 2, 3]. The first one is published as a preprint, CRM-2615, and is submitted to 
Linear Algebra and Its Applications, the second one will appear in the July 1998 
issue of Journal of Mathematical Physics and the third one is already published 
in Journal of Physics A - Mathematical and General. Each chapter of the thesis 
contains one article. The material in the articles is selfcontained and therefore we 
do not repeat here the general notions and facts concerning MASAs. All necessary 
definitions and basic theorems are given in the introductory and general comments 
sections in Chapters 1 and 2, corresponding to articles [1] and [2], respectively. 

There is an extensive literature devoted to the classification of MASAs of semi-
simple Lie algebras. Cartan subalgebras are a special type of MASAs. They are 
self-normalizing and consist of nonnilpotent elements. Cartan subalgebras have 
been completely classified and constructed by several authors [4, 5, 6]. Over the 
field of complex numbers only one class of Cartan subalgebra of given semi-simple 
Lie algebra exists. However, for the real semi-simple Lie algebras the number of 
conjugacy classes is finite, not necessarily equal to one. 

Another important type of MASAs are maximal abelian nilpotent subalgebras 
(MANSs) - consisting entirely of nilpotent elements. A MANS can be represented 
by nilpotent matrices in any finite-dimensional representation. Basic results on 
MANSs of sl(n, C) and sl(n, IR) were obtained by Kravchuk [7] and further de-
veloped in book on commutative matrices by Suprunenko and Tyshkevich [8]. 
MASAs of maximal dimension for all complex simple finite-dimensional Lie alge-
bras were studied by Maltsev [9]. Those of minimal dimension were studied by 
Gerstenhaber [10] and Laffey [11]. 

More recently a series of articles by P. Winternitz and collaborators was de- 
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voted to study of MASAs of classical simple Lie algebras namely, symplectic 
sp(n,C) and sp(n, IR) [12], pseudounitary su(p, q) [13], orthogonal o(n, C) [14] 
and pseudoorthogonal ones o(p, q) [15]. 

Recently, the study of MASAs was extended to the finite dimensional affine Lie 
algebras. The first study was done for the complex Euclidean Lie algebras e(n, 
[16]. The next step was to consider real pseudoeuclidean Lie algebras e(p, q), first 
only for the small values of q (q = 0, 1) [2], and then to study MASAs of e(p, q) for 
any values of p, q [1]. The results of these studies are the content of the presented 
thesis. 

There are several reasons for studying MASAs of a given Lie algebra. Of 
mathematical interest is the classification of all subalgebras of a given Lie algebra. 
The classification of MASAs is part of such a program. It is an extension of a 
different problem: finding the conjugacy classes of elements of a Lie algebra under 
the action of the corresponding Lie group. 

Apart from purely mathematical interest in classification of subalgebras there 
is also a motivation coming from mathematical and especially physical appli-
cations. These applications are for example a systematic study of symmetry 
breaking (spontaneous or explicit) 117, 18, 19, 20], the construction of complete 
sets of commuting operators and maximal sets of additive quantum numbers 
in quantum-mechanical problems and the construction of integrals of motion in 
involution in classical systems. 

Other applications are related to differential equations. Let G be the sym-
metry group of a differential equation (or of a system of differential equations). 
Then subgroups of G can be used to construct group invariant solutions 121, 22]. 
In particular, abelian subgroups for linear partial differential equations (PDEs) 
are related to the separation of variables in coordinate systems with a maximal 
number of ignorable variables (variables which do not figure in the metric tensor) 
[23, 24, 25, 26]. For nonlinear PDEs abelian subgroups provide the simplest way 
of symmetry reduction (reducing the number of independent variables). 

In the present thesis we contribute to the classification problem by classifying 
the MASAs of the real pseudoeuclidean Lie algebra [1]. Also, we give the exam-
ples of application by constructing conformally nonequivalent coordinate systems 
in the Minkowski space-time [2]. Another example of application is symmetry re-
duction. We use the method of symmetry reduction to obtain analytical solution 
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of (2+1) dimensional spin systems [3]. 
The first chapter deals with MASAs of e(p, q). The MASAs of e(p, q) are 

classified under the action of the group E(p, q). The general procedure uses the 
fact that e(p, q) is a semi-direct sum of a pseudoorthogonal Lie algebra o(p, q) and 
translation algebra T (p + q). First we construct "splitting" subalgebras which are 
direct sums of subalgebras of o(p, q) and subalgebras of T (p + q). Section 4 of 
this chapter contains complete and explicit results for splitting MASAs of e(p, q). 

The complementary "nonsplitting" MASAs are constructed in Section 5. They 
are constructed explicitly for free-rowed MANSs. The problem of classifying non-
splitting MASAs containing non-free-rowed MANSs is more complicated. There 
exist several series of non-free-rowed MANSs of o(p, q). For two of these series 
we construct all MASAs of the corresponding e(p, q). Section 7 of this chapter 
contains a detailed study of MASAs of e(p, 2). The algebra e(p, 2) is already rich 
enough to contain all possible types of orthogonally indecomposable subalgebras 
of o(p, 2) and still simple enough to provide completely explicit results. 

The second chapter is devoted to the detailed study of MASAs of e(p, 0) 
and e(p, 1). They are classified into the conjugacy classes under the action of 
the corresponding Lie groups E(p, 0) and E(p, 1), respectively. Also, we classify 
MASAs under the action of larger group, namely the conformal groups 0 (p +1, 1) 

and 0(p + 1, 2) of Euclidean and Minkowski spaces, respectively. The results are 
used to show (for q = 0 or 1) which MASAs of e(p, q) are also MASAs of o(p + 

1, q + 1), and which MASAs that are inequivalent under E(p, q) become equivalent 
(conjugate) under the conformal group 0(p + 1, q + 1). These MASAs provide 
us with conformaly nonequivalent separable coordinate systems in Euclidean and 
Minkowski space, respectively. These coordinate systems allow the separation of 
variables in the Laplace and wave equation with a maximal number of ignorable 
variables [23, 24, 25, 26J. 

In the third chapter we use group theoretical methods of symmetry reduction 
[21, 22, 27, 28] to find the solutions of the Landau-Lifshitz [29] and nonlinear 
diffusion equation [30]. Although both equations are physically important [31, 
32, 33, 34], there are only few analytical results for them [35, 36]. We used 
a MACSYMA package [37] to find the symmetry groups of both equations; in 
each case we obtained three different symmetry groups (depending on the values 
of parameters in the equations). In general, to perform a symmetry reduction 
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systematicaly one needs to classify all subgroups of a given symmetry group. In 
this case we classified all two-dimensional subgroups of the symmetry group for 
each equation. In each case four of these subgroups were abelian and they were 
present for all three symmetry groups. We used all two-dimensional subgroups 
to reduce the equations to ordinary differential equations. These were solved in 
terms of elliptic functions when possible. In other cases we obtained the equation 
for the Painlevé transcendent Pv. 



Chapter 1 

Maximal Abelian Subalgebras of 
e(p,q) algebras 

5 



Maximal Abelian Subalgebras of e(p,q) algebras 

Z. Thomova and P. Winternitz 

CRM - 2615 

Abstract 

Maximal abelian subalgebras of one of the classical real inhomogeneous 
Lie algebras are constructed, namely those of the pseudoeuclidean Lie al-
gebra e(p, q). Use is made of the semidirect sum structure of e(p, q) with 
the translations T (p + q) as an abelian ideal. We first construct splitting 
MASAs that are themselves direct sums of abelian subalgebras of o(p, q) 
and of subalgebras of T (p + q). The splitting subalgebras are used to con-
struct the complementary nonsplitting ones. We present general decom-
position theorems and construct indecomposable MASAs for all algebras 
e(p, q), p > q > O. The case of q = 0 and 1 were treated earlier in a physical 
context. The case q = 2 is analyzed here in detail as an illustration of the 
general results. 

Les sous-algèbres maximales abéliennes (SAMAs) d'une algèbre réelle 
classique non-homogène sont construites, en particulier, celles d'algèbre 
de Lie pseudo-euclidienne e(p, q). On utilise la structure de la somme 
semi-directe de e(p, q) avec les translations T (p + q) qui représente un 
idéal abélien. Nous avons construit, en premier, les SAMAs "splitting", 
qui sont des sommes directes des sous-algèbres abéliennes de o(p, q) et 
de sous-algèbres de T (p + q). Les sous-algèbres "splitting" sont utilisées 
pour construire les sous-algèbres complementaire -"nonsplitting" . Nous 
présentons les théorèmes généraux de décomposition et nous construisons 
les SAMAs indécomposables pour toutes les algèbres e(p, q), p > q > O. Les 
cas de q = 0 et 1 sont déjà traités dans un context physique. Le cas q = 2 
est analysé ici en détail comme une illustration des résultats généraux. 
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1 Introduction 

The purpose of this article is to present a classification of the maximal abelian 
subalgebras (MASAs) of the pseudoeuclidean Lie algebra e(p, q). Since this Lie 
algebra can be represented by a specific type of real matrices of dimension (p + 
q +1) x + q +1), the subject of this article is placed squarely within a classical 
problem of linear algebra, the construction of sets of commuting matrices. 

Most of the early papers in this direction [1-3] as well as more recent ones [4-
8], were devoted to commuting matrices within the set of all matrices of a given 
dimension. In other words, they studied abelian subalgebras of the Lie algebras 
gl(n,C) and gl(n,R). For a historical review with many references see the book 
by Suprunenko and Tyshkevich [9]. 

Maltsev constructed all maximal abelian subalgebras of maximal dimension 
for all complex finite-dimensional simple Lie algebras [10]. An important subclass 
of MASAs are Cartan subalgebras, i.e. self-normalizing MASAs [11]. The simple 
complex Lie algebras, as well as the compact ones, have just one conjugacy class 
of Cartan subalgebras. The real noncompact forms of the simple Lie algebras can 
have several conjugacy classes of them. They have been classified by Kostant [12] 
and Sugiura [13]. 

This article is part of a series, the aim of which is to construct all MASAs of 
the classical Lie algebras. Earlier articles were devoted to the classical simple Lie 
algebras, such as sp(2n, R) and sp(2n,C) [14], su(p, q) [15], o(n, C) [16] and o(p, q) 
[17]. General results for MASAs of classical simple Lie algebras are presented in 
[18]. More recently MASAs of some inhomogeneous classical Lie algebras were 
studied, namely those of e(n, C) [19], e(p, 0) and e(p, 1) [20]. Here we consider 
e(p, q) for all p > q > 0. The two special cases, q = 0 and q = 1, treated earlier, 
are of particular importance in physics and are also much simpler than the general 
case. 

The motivation for a study of MASAs was discussed in previous articles [14-
20]. As a mathematical problem the classification of MASAs is an extension of 
the classification of individual elements of Lie algebras into conjugacy classes [21-
23]. A classification of MASAs of classical Lie algebras is an important ingredient 
in the classification of all subalgebras of these algebras. 

In applications in the theory of partial differential equations, MASAs provide 
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coordinate systems in which invariant equations allow the separation of vari-
ables. More specifically, they provide "ignorable variables" not figuring in the 
corresponding metric tensors, when considering Laplace-Beltrami or Hamilton-
Jacobi equations. In quantum physics they provide complete sets of commuting 
operators. In classical physics they provide integrals of motion in involution. 

The classification problem is formulated in Section 2, where we also present 
some necessary definitions and explain the classification strategy. Section 3 con-
tains a brief summary of the known results on MASAs of o(p, q) [17]. They are 
needed in the rest of this article and we reproduce them in a condensed form to 
make the article self-contained. Section 4 is devoted to splitting subalgebras of 
e(p, q), i.e. subalgebras that are direct sums of subalgebras of the algebra o(p, q) 
and those of the translation algebra T (p + q). The complementary case of non-
splitting MASAs of e(p, q) is the subject of Section 5. The results on MASAs of 
e(p, q) obtained in Sections 4 and 5 are reformulated in terms of a decomposition 
of the underlying linear space S (p, q) in Section 6. Indecomposable MASAs of 
e(p, q) are described in the same section. Section 7 is devoted to a special case in 
which all results are entirely explicit, namely MASAs of e(p, 2). 

2 General formulation 

2.1 Some definitions 

The pseudoeuclidean Lie algebra e(p, q) is the semidirect sum of the pseudoorthog-
onal Lie algebra o(p, q) and an abelian algebra T (n) of translations 

e(p, q) = o(p, q) D T (n), 	n = p + q. 	 (2.1) 

We will make use of the following matrix representation of the Lie algebra 
e(p, q) and the corresponding Lie group E(p, q). We introduce an "extended 
metric" 

0 
K =

0  
(K 

(2.2) 

where K satisfies 

K=KT ER7 x 2 , 	n = p + q, 	cletK 0, (2.3) 

sgnK = (p, q), 	p > q > O. (2.4) 
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Here sgnK denotes the signature of K, where p and q are the numbers of positive 
and negative eigenvalues, respectively. Then X e  E e(p, q) and H E E(p, q) are 
represented as 

X T  
X,(X, a) Xe  = 

0 0 
nxn 	a  e  Rlxn , 	(2.5) X e 

( G aT  H= 	 G E nrxn, 	a E lexn , 	(2.6) 
0 1 

XK + KX T  = 0, GKGT  = K, 	XeKe  + KeX = 0. 	(2.7) 

The vector ci e lxn represents the translations. We say that the translations 
are positive, negative or zero (isotropie) length if 

cEKceT  > 0, aKaT  < 0, aKcgr  = 0, 	 (2.8) 

respectively. 
We will be classifying maximal abelian subalgebras of the pseudoeuclidean 

Lie algebra e(p, q) into conjugacy classes under the action of the pseudoeuclidean 
Lie group E(p, q). Let us define some basic concepts. 

Definition 2.1 The centralizer cent(Lo ,L) of a Lie algebra Lo  c L is a subal-
gebra of L consisting of all elements in L, commuting elementwise with Lo  

cent(Lo , L) = te E LI[e,L0 ]= 01. 	 (2.9) 

Definition 2.2 A maximal abelian subalgebra Lo  (MASA) of L is an abelian 
subalgebra, equal to its centralizer 

[Lo , Lo] = 0, cent(Lo , L) = Lo . 	 (2.10) 

Definition 2.3 A normalizer group Nor(Lo ,G) in the group G of the subalgebra 
Lo  C L is 

Nor(Lo ,G) = Ig E GlgL0 g-1  C L01. 	 (2.11) 

Definition 2.4 A splitting subalgebra Lo  of the semidirect sum 

	

'L = F DN, [F, C F, [F, N] C N, [N, N] C N 	(2.12) 

is itself a semidirect sum of a subalgebra of F and a subalgebra of N 

Lo  = F0  DNo , Fo  C F, No  C N. 	 (2.13) 
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All other subalgebras of L=F N are called nonsplitting subalgebras. 
An abelian splitting subalgebra of L=F3DN is a direct sum 

	

Lo  = Fo  ED No, Fo  C F, No  C N. 	 (2.14) 

Definition 2.5 A maximal abelian nilpotent subalgebra (MANS) M of a Lie al-
gebra L is a MASA, consisting entirely of nilpotent elements, i.e. it satisfies 

[M, M] = 0, [[[L, M]M] 	= 0 	 (2.15) 

for some finite number rn (we commute M with L m-times). A MANS is repre-
sented by nilpotent matrices in any finite dimensional representation. 

2.2 Classification strategy 

The classification of MASAs of e(p, q) is based on the fact that e(p, q) is the 
semidirect sum of the Lie algebra o(p, q) and an abelian ideal T (n) (the transla-
tions). We use here a procedure related to one used earlier [19] for e(n, C) and 
[20] for e(p, 1). It proceeds in five steps. 

1. Classify subalgebras T(k+,k_,k0 ) of T(n). They are characterized by a 
triplet (k+ , k_, ko ), where k+, k_ and ko  are the number of positive length, 
negative length and isotropie vectors, respectively. 

2. Find the centralizer C(k+,k_,k0 ) of T(k+,k_,k0 ) in o(p,q) 

C(k+ ,k_,k0 ) = {X G o(p,q)1[X,T(k+,k_,k0 )]= 01. 	(2.16) 

3. Construct all MASAs M(k+,k_,k0 ) of C(k+,k_, ko ) and classify them under 
the action of normalizer Nor[T(k+,k_,k0 ),G] of T(k+,k_,k0 ) in the group 

G r  E(P, q)- 

4. Obtain a representative list of all splitting MASAs of e(p, q) as direct sums 

	

(k+ , k_, 4 ) ) ED (k+, k-, ko) 
	

(2.17) 

and keep only those amongst them that are indeed maximal (and mutually 
inequivalent). 

5. Construct all nonsplitting MASAs from splitting ones as described below 
in Section 5.1. 
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3 	Results on MASAs of o(p, q) 

3.1 General results 

Let us briefly sum up some known [17] results on MASAs of o(p, q) that we 
shall need below. We shall represent these MASAs by matrix sets {X,10 with 
notations as in (2.3) ... (2.7). 

Definition 3.1 A MASA of o(p, q) is called orthogonally decomposable (OD) if 
all matrices in the set {X, K} can be simultaneously represented by block diagonal 
matrices with the same decomposition pattern. It is called orthogonally indecom-
posable (OID) otherwise. 

Proposition 3.1 Every OD MASA of o(p,q) can be represented by a matrix set 

	

X = diag(X i , X2,. 	Xk ), 	K = diag(K pi ,qi , 	, 

X K pi = 0, 	X, Kpj,qj e R(Pi )x (Pi +qi) 

K = 

	

Pj,qi 	 sgnKpie = 	qi), 	 (3.1) i  
detK pi 	0, 	1 < j < k, 	2 < k < [PI+1 ] , 

ik  =119‘i =p,E3k. =1 	+qi > P2 + q2 > . . > pk  + qk  > 1, 

where. 

i) For each j, the matrix set {X K pi  ,qi } represents an OID MASA of o(p, gi ); 
let us call it M 

At most one of the MASAs M pi  ,qi  is a maximal abelian nilpotent subal-
gebra (MANS) of o(pi ,gi ). In particular only one pair (pi , gi ) can satisfy 

=1. The corresponding pair {X, K} is (0, 1) and represents a MANS 
of o(1,0) or o(0,1). 

To obtain representatives of all 0(p, q) classes of OD MASAs of o(p, g) we let 
M pi ,q  for all j, run independently through all representatives of 0(pi ,gi ) conju-
gacy classes of OID MASAs of o(pi ,gi ), subject to the restriction (ii). Conversely, 
each such matrix set represents a conjugacy class of OD MASAs of o(p, g). 

The problem of classifying MASAs of o(p, g) is thus reduced to the classifi-
cation of OID MASAs. Under the field extension from R to C an OID MASA 
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can remain OID, or become orthogonally decomposable. In the first case we 
call it absolutely orthogonally decomposable (AOID) in the second nonabsolutely 

orthogonally indecomposable (NAOID). The following types of orthogonally inde-
composable MASAs of o(p, q) exist: 
1. Maximal abelian nilpotent subalgebras (MANSs). They exist for all values of 
(p, q), min(p, q) > 1. They are discussed below in Section 3.2. They are AOID 
MASAs. 
2. MASAs that are decomposable but not orthogonally decomposable (AOID 
but D). They stay OID when considered over C. They exist for all values of 
p = q > 1. Their canonical form is 

M = {X p = ( 

A 
(3.2) 

where A = RIp  e MANS of sl(p, IR). 
3. MASAs that are indecomposable over but become orthogonally decompos-
able after field extension to C (NAOID, ID but NAID). They exist for p = 2k, 
q = 21, min(k,l) > 1. Their canonical form is 

(M = RQ e MANSs of su(k, 1), 	K = 12k  

0 1) 
Q = diag (F2 , . , F2 ) E R2(k+1)x2(k+1) F2= ( 

	
(3.3) 

—1 0 

4. MASAs that are indecomposable over R and decornposable over C (but not 
orthogonally decomposable even over C) (OID, AOID but NAID). They exist for 
p = q = 2k, k> 1. Their canonical form is 

M = RQ OID but D MASAs of su(k, k) 

with Q as in eq.(3.3). 
An exception is the case of o(2), itself abelian. Thus, for p = 2, q = 0 or 

p = 0, q = 2, o(2) is AOID but NAID. 
5. Decomposable MASAs that become orthogonally decomposable over C (NAOID 
and D). They occur only for p = q = 2k, k> 1. Their canonical form is 

M = {X 
= (A 	

K = 12k  121e  )} 	 (3.4) 
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where 
A = RQ2k  E13 MANSs of sl(2k,C). 

3.2 	MANSs of o(p, q) 

A MANS M of a classical Lie algebra is characterized by its Kravchuk signature, 
which we will denote KS [3,9,17,18]. It is a triplet of integers 

() p, A), 	2A + 1,1 = n, 	/-1 > 0, 	 (3.5) 

where A is the dimension of the kernel of M, equal to the codimension of the 
image of M. A MANS can be transformed into the Kravchuk normal form 

N= 

	

0 A 	Y 	\ 
OS_kAT 

\ 0 	0 	0 	/ 
K= 

/), 

A e llexP, 	Y = 	RAxA, 	Sk 	= 0, (3.6) 

S 	RP'11 , 	k=kT ERpx ,sgnk = (p — 	— A) 

and S nilpotent. 
There are two types of MANS of o(p, q): 

i) Free-rowed MANS. The first row of A has ici, free real entries. All other 
entries in A and S depend linearly on those ,u, free entries. 

ii) Non-free-rowed MANS. Any combination of rows of A contains less than jt 
free real entries. 

The results on free-rowed MANS of o(p, q) [17] are stated in the following 
proposition. 

Proposition 3.2 A representa,tive list of 0(p,q) conjugacy classes of free-rowed 
MANSs of o(p, q) with Kravchuk signature () fi A) is given by the matrix sets 

0 A Y 	\ 
N= 0 0 —k AT  K= k (3.7) 

\ 0 0 0 	/ 



cuQ1 
c/Q2 a E Ri x 4  
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A= (3.8) 
Y = —YT E RA", 

\ aQ), 

Qi 	e", 	Qik = 	 = 0, (3.9) 

Q=I,TrQi = 0, 	2i( À.  

The entries in a and Y are free. The matrices Qi  are fixed and form an abelian 
subalgebra of the Jordan algebra jo(p — A, g — À). In the case A = 2 we must have 
Q2 	0. There exists a Ai E Z, 1 < Al  < À such that Q1,...,QA1  are linearly 
independent and Q, = 0, )%1  + 1 <v < A. 

Proofs of the Propositions 3.1 and 3.2 and details about MASAs of o(p, g) are 
given in Ref. [17]. The results on non-free-rowed MANS of o(p, g) are less complete 
and we shall not reproduce them here [17]. 

4 	Splitting MASAs of e(p , q) 

4.1 	General comments on MASAs of e(p, q) 

A MASA of e(p, g) will be represented by a matrix set {Xe, Ke} 

XPial 

X pi ,qi T 
Ok+ 	XT  

Ok_ YT  
01 

N 

X e  = (4.1) 



K 

KPi,(11 

KPi 

Ik+  
«rk 

K= 

15 

(4.2) 

P = Po + ko + 	pj + k+, 

01 / 

k°± 	+ k_, 	(4.3) 

where Mpj ,qj = {X pi ,q„ K pi , g, }, i = 1, . j is an OID MASA of o(pi , qi ), that is 
not a MANS. The vector has the following form 

c Rixko  

E R1x(po+q0) (4.4) 

and N is a MANS of o(po + ko, qo + ko) with Kravchuk signature (k0  po+qo ko ) 
and is given by 

	

0  ko A 	Y 1 0 	0 	1k0 \  
N= 	0 S —1(7,,,q0 AT 	,K0  = 	0 K po ,q 0  0 	(4.5) 

	

\ 0 0 	Oh 	 \ I% 	0 	0 I 
= —YT  , 	S K pom 	,q0  ST  = 0 

A E Rk° x (P°+`/° ) , 	S c R(P°±ex(730+.70), 	y c  Rkoxko, 	(4.6) 

K— KT 	gni(  po,qo = (Po, go) 

	

po ,qo 	po ,q0 7 

The entries in z,x and y are free and represent the positive, negative and 
zero length translations contained in T 	k_, k0 ). The entries in 0, -y and õ are 
linearly dependent on the free entries in A, Y and X 73, . If they are nonzero (and 
cannot be annulled by an E(p, q) transformation), we have a nonsplitting MASA. 
This case will be discussed in Section 5. 

4.2 Basic results on splitting MASAs 

In this section we shall construct all splitting MASAs of e(p, q). 

zT 

ßT 
\ 7T  
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Theorem 4.1 Every splitting MASA of e(p, q) is characterized by a partition 

P = po ± k+  + k0+Eii=1.13,, 
k0 l-k+ +k_p+q-1, 

= go + k- + ko +ELi gi 
0 < ko  < q. 

(4.7) 

A representative list of E(p,q) conjugacy classes of MASAs of e(p,q) is given by 
the matrix sets {X e , Ke } of eq. (4.1) and (4.2) with 

ZT 

= 0, 	i 	1, 	 j, 	 0 
	

(4.8) 
o 

If /cc, = 0 then the MANS N is absent. Mp,,q, is an orthogonally indecomposable 
MASA of o(pi ,qi ) which is not a MANS. Running through all possible partitions, 
all MANSs {N, K0 } and all MASAs ltdp ,qi we obtain a representative list of all 
splitting MASAs of e(p,q). 

Proof: We start by choosing a subalgebra T (k+  , k_, k0 ). Calculating the cen-
tralizer of T (k+, k IO in o(p, q) gives us 

Ok_) 	 —1-k_) 

C (k+ , k_, ko) = 	Ok+ 	 K = 	Ik+ 	, (4.9) 

sgnl? = (p — k+ , q — k_). 

11~1 is a subalgebra of o(p — k+ , q — k_) which commutes with the translations 
, 	, (z 0) 	e 	x(p+q—k+—k_l corresponding to = 	 z  c 	and with no other 

translations. To obtain a MASA of e(p, q) we must complement T (k+ , k_, kt)) by 
a MASA F(k+,k_,k0 ) of the centralizer C(k+ ,k_,k0 ). F(k+,k_,k0 ) must not 
commute with any further translations, hence F (k+, k_, ko ) is either a MANS of 
o(p —k+,q — k_) with KS (ko, p—k+ —ko+q—k_—k0 , ko ) or an orthogonally 
decomposable MASA containing a MANS N with KS (k0  ,u k0). For ko  = 0 the 
MANS N is absent. This leads to eq. (4.8) and each Mpi ,q, = {X p,,q, 	 is an 
OID MASA of o(pi , qi ) of the type 2,3,4, or 5, listed in Section 3.1. 	D 

5 	Nonsplitting MASAs of e(p, q) 

5.1 General comments 

First we describe the general procedure for finding nonsplitting MASAs of e(p, q). 
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Every nonsplitting MASA M(k+,k_,k0 ) of e(p,q) is obtained from a splitting 
one by the following procedure: 

1. Choose a basis for F(k+ ,k_,k0 ) and T(k+,k_,k0 ) e.g. F(k+ , k_, ko ) 
, Bjl, T(k+,k—,ko) ^) {Xi, • X1.}. 

2. Complement the basis of T(k+,k_,k0 ) to a basis of T(n). 

T(n)IT(k+,k_,k0 ) = {Y1 , 	, YN}, 

3. Form the elements 

= Ba  + 

L + N = n. 

a = 1, 	, J, 	 (5.1) 

where the constants (lai  are such that ija  form an abelian Lie algebra 
[-Éja, /5\] = O. This provides a set of linear equations for the coefficients 

aj• Solutions aai are called 1-cocycles and they provide abelian subalge- 
bras .11- 	k_, ko) 	Xb} C e(p, q). 

4. Classify the subalgebras .1f/I-r(k+,k_,k0 ) into conjugacy classes under the ac-
tion of the group E(p,q). This can be done in two steps. 

i) Generate trivial cocycles tai , called coboundaries, using the translation 
group T(n) 

e°3 P3 É- ae.--°3 P3 = 	[ Pi , 	= Èa E 	(5.2) 

The coboundaries should be removed from the set of the cocycles. If 
we have itai = tai  for all (a, j) the algebra is splitting (i. e. equivalent 
to a splitting one). 

ii) Use the normalizer of the original splitting subalgebra in the group 
0(p, q) to further simplify and classify the nontrivial cocycles. 

The general form of a nonsplitting MASA of e(p, q) is Me  = {X e , 	given 
by eq. (4.1) and (4.2). Requiring commutativity [Xe , X'e] = 0 leads to 

	

X pt ,qt ÔiiT  = 	 e 

	

NeT  = 
	 (5.3) 
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From the eq.(5.3) we see that the entries in 5 depend linearly only on X7,,,q„ 
i.e. only on the MASA Mpi ,q, of o(pi , qi ). 

Each Mpj ,qj  belongs to one of the four types of OID MASAs of o(pi , qi ) which 
were listed in the Section 3.1 - AOID but D MASAs, AOID but NAID MASAs, 
NAOID ID but NAID MASAs or NAOID but D MASAs. 

We will make use of the following result: 

Lemma 5.1 If M is a MASA of o(p,q) when considered over then it will also 
be a MASA of o(n, C), n = p+ q, when considered over C. 

If any of the vectors å were non zero then after field extension we would 
obtain a nonsplitting MASA of e(n, C) of a type that does not exist [19]. This 
implies that all of the Siis are zero. 

Any further study of nonsplitting MASAs of e(p , q) is reduced to studying the 
matrices 

f N 

Mpi,qi 0 

X== 0 (5.4) 

Ok+ 0 

Ok_ 0 

01 / 

with e and N as in eq.(4.4) and (4.5), respectively. Further, we can see from 
eq.(5.3) and (5.4) that the study of nonsplitting MASAs is in fact reduced to the 
study of nonsplitting MASAs of e(po +k0, go + ko) for which the projection onto 
the subalgebra o(po  + k0 , qo  + 4) is a MANS with Kravchuk signature (k0  p ko), 

= po+ q0. Further classification is performed under the group E (po  + 4 , q0+ k0). 
The MASAs of e(po  + ko , qo  + ko ) to be considered will thus be represented by 

the matrix sets {Xe, Ke} 

O ko  A Y zT  1.ko  
0 S ßT

x 
—Kpo,qoAT 

K, = Kpoao 
0 0 0k0 7T  -1-k0  

0 0 0 0 01) 
(5.5) 
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where Y = —YT, and 13 E R1X4, ye  Rixkp depend linearly on the free entries in 
A and Y. Using the commutativity [Xe , X] = O we obtain 

The translations 

= 

A pIT + y ,ylT = 

S eiT  - K po ,qo AT 'y'T 	= 

7 0k0 	0 	0 	0 	\ 
0 TT  °PO fqo 	O   
0 	0 	0  k 0 	(T  

\ 	O 	0 	0 	01 / 

AI ßT + y - 7T 

sißT — K po ,q0  AIT  'yT  

E R1", ( c  xko  

(5.6) 

(5.7) 

will be used to remove coboundaries from 13 and -y and the remaining cocycles 
will be classified under the action of the normalizer of the MANS N in the group 
0 (po  + k0 , q0  + ko ). 

The situation will be very different for free-rowed and non-free-rowed MANS 
of o(po  + ko, qo  + ko). The two cases will be treated separately. 

5.2 	Nonsplitting MASAs of e(po  ko, qo  ko) related to free- 
rowed MANSs 

Let N be a free-rowed MANS of o(po+ko , go+ ko ). The corresponding nonsplitting 
MASAs of e(po  + ko , qo  + ko ) can be represented as follows. 

Theorern 5.1 A nonsplitting MASA of e(p,q) must contain a MANS of o(po  + 
ko , go+ ko) with 1 < ko  < q, min(po  + ko , qo  + ko ) > 1. All nonsplitting MASAs of 
e(p0 + k0 ,q0 + ko ) for which the projection onto o(po  + k0 ,q0 + ko ) is a free rowed 
MANS N with Kravchuk signature (4)  k o ), t = po  + qo  can be represented by 
the matrix sets {X e , K0 } of eq.(5.5) with S = 0 and A and Y as in eq.(3.8). 
1. For ko  > 3 we have 

= aA, 	y=O 
	

(5.8) 

A E R"P satisfies the following conditions: 

A = AT , 	 AKp-olm  = AKp-olm  Qi . 	 (5.9) 



2. ko  = 2, p > 2. A satisfies eq. (5.9) for j = 2 and 
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= cuA 	YP, 	7= 
o

\ p =- (1,0,... ,0) (5.10) 

for Q following 

/O 	1 

0 o 1 

KPo,q0 1 	0 
) 

(5.11) 

K 14 _1,q, _1 

0 

For all the other Q 

o 
ŒA, 	7 = 

3. ko  =- 2, p, = 1 

0 
(5.12) 

O 
= YP, 	7T  -= (5.13) 

ap + p2y 
where (p,p2 ) is (1, 0), (0, 1), or (1,1). 
4. ko  = 2, p, = 0, there is no /3 and we have 

-YT  ( 	) 
(5.14) 

5. ko  =1, p> 2 

/3 -= aA, 	A = AT, 	7=0. (5.15) 

6. ko  =1, p =1 

¡3=0, 	-y =a. (5.16) 

The case ko  = 1, p= O is not allowed. 
Two free-rowed non-splitting MASAs of e(po  + ko , qo  + ko ), M(po , qo ,k0 , A) and 
1VP(po ,q0 ,k0 ,N), are E(po  + k0 , q0  + ko ) conjugated (for cases 1 and 5) if the 
matrices A, A characterizing them satisfy: 

1 
A' -= —G2 (A — 	OkQkKpo,q0)G 

for some gi,  9'3  G R, Ok E R, G2 E o(po, q0 ) such that 

Q3 = 193G2Q 
gl 

(5.17) 

(5.18) 
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Proof: 1. ko  > 3 We start from a free-rowed MANS in eq.(5.5). Requiring 
commutativity [Xe, Xe ] = 0 leads to the following equations 

(aQi)01T  +Yia-ra = (n/CMOT  +Y ijea 
(QiceT )7.1i = (C2icVT )-Yi• 

The entries in ,6, -y are linearly dependent on those in Y and a, i.e. 

(5.19) 

aA + Ei<i<k<ko yikpik, 

= ceW Ei<i<k<ko YikPik ,  

A E 11Lx1L , pik 
R1x4 

W c  Raxko pik  R1 xko (5.20) 

We substitute i3 and -y into eq. (5.19) and compare coefficients of ozio, for i and 
j fixed. First consider the case j = 1. We obtain that 

A = AT; 	Pik,a  = 0, 2 < i < k, 1 < a; 	Plk,a = Pla,k, 

Pik = 0, 2 < i < k; 	Wa — 	a> 2, 	(5.21) 

C2jAK q0  = AR q0 Qi. 

For j = 2 we obtain 

Pik,1 = 0  

Plk = 0 

And for j -= 3 we get 

3 < i < k, 
k > 3, 

P12,a = — P2a,1 
W1 	= Q 2 fg2 • 

(5.22) 

W=0, 	Pik = 01 	= 0 
	

for kt)  > 3, 	(5.23) 

Using the translations we obtain the coboundaries Oi  

	

= Z — Oi [Z, 	 (5.24) 

This leads to replacing A by 

ko 
= A — j 0 Qk K pom . 	 (5.25) 

k=1 

All Oi  are free and can be used to remove all coboundaries. In particular if Kpoe, 
is chosen to satisfy TrKpoe, 	0 we can use 01  to make A traceless. Equation 
(5.17) corresponds to transformations of A using the normalizer of N in E(p,q). 
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2. ko  = 2, j> 2 

Here there is only one matrix Q = Q2, the vector y is y = (71,72) and Y = 
( 0 y )

. We have 
— y 0  

Yi = awi +PiY, 

= ctA. + yp, 	 p E 

72 = ckwI + P2Y, wi, tv2 

 

1></i ,  

(5.26) 

P1,p2 E R (5.27) 1'; 

 

From the [Xe , X'e ] = 0 we obtain that 

A = AT, 	QAKI;j,q0  = AKizi,q0 Q 	 (5.28) 

(— aC 2 PT  ) 
= 

ap 
= aA + YP, 	 (5.29) 

Equation (5.19) for j = 2 leads to 

[QT( aT al alTa) (a/Ta ceTcul)Q] pT = o. 	 (5.30) 

Writing eq. (5.30) in components and choosing a and a such that Œa  = 1, a1  = 1 
and all other components vanish, we obtain 

(eice - ( eibpa + 
	

( 6ibC2ak 6i.aQbk)Pk — 
	Vi, a, b. 	(5.31) 

k=1 

This provides us with two types of relations 

QaiPb QbiPa — 0, 	a 	b i 	 (5.32) 

—QiiPa QaiPi 
	

C2akPk — 0, 	a i. 	 (5.33) 
k=1 

The matrix Q is block diagonal, 

Q = diag 	J2 • • • • •17- 	ir=  di m = 
(5.34) 

dimJi  > dimJ2  > . . . > dimJ, > 1, 

where each J is an indecomposable element of a Jordan algebra jo(pi , qi ), 	= 
dimJi  (see e.g Ref. [23]). The matrix Kpoe, has the same block structure. Possible 



(5.35) 

ri 	si  
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forms of elementary blocks in Q are 

qi  1 
qi 	1 

= • . 	1 

qi / 
ri  si  1 0 

—si  ri  0 1 

• J,(ri  + si) = 

—si ri  

After complexification the second type of block reduces to the first one, so it 
actually suffices to consider the first type of block only (see Lemma 5.1). 

Let us first assume dimJi  > 3. Writing relation (5.33) for i = 1 and 2 < a < r 
we obtain p3  = p4 = 	= 	= O. Taking a = 1, i = 2 in (5.32) we then obtain 
P2 = O. Taking a = 1,b = 2,i = 3 in (5.33) we obtain p, = 0. Thus, if the largest 
block Ji (q) satisfies dirnJi(q)> 3, we have p = 0. 

Now let us assume dimJi(q) = 2 so that all other blocks have dimension 2 
or 1. By the same argument we have p3  = p4  = 	= p = 0 and also p2  = 0. 
If Q has the form (5.11), then all relations (5.32) and (5.33) are satisfied and 

remains free. If any of the other diagonal elements, say Q33 is not zero, then 
relation (5.33) for i = 3, a = 1 implies Pi = 0. If we have q 0 in Ji (q), then at 
least one other diagonal element of Q must satisfy Qaa  0, a> 3, since we have 
TrQ = O. 

Finally, let Q be diagonal. We have Q 	0, TrQ = 0, hence at least two 
diagonal elements are nonzero. Relations (5.32) and (5.33) then imply pi  = 0, i = 
1, P. 

Using the normalizer G = diag(gi ,g2 , G2, gi  , g2  ) we normalize P1  to  Pi = 1 

far Pi 	O. 
3. ko  = 2, p = 1 
There is no matrix Q and we have 

E 	 (5.36) 
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= awi +PiY, 	'72 = aw2 +P2Y 	w2,P1,P2 E R. 

Condition [Xe , X ie ] = 0 implies w1  = 0, pi = 0 and after removing the cobound-
aries we obtain 

	

= PY, 	0, 	72 aP +P2Y. 	 (5.37) 

Using the normalizer G = diag(gi , g2 , g3 , g4 , g5 , 1), satisfying Gk0GT 	we 
can normalize (p, p2 ) to one of the following: (1,0), (1,1), (0,1). 
4. k0  = 2, bt = 0 
Using the normalizer G = diag(gi , G2 , 	1) we obtain eq. (5.14). 
5. k0  = 1, it > 2 
In this case Y = 0 and A = a G R1xg in eq. (5.5). Then we have 

= ceA, 	= awT , ß E IlxP, 7 E R. 	 (5.38) 

From the [X0 , Xi) ] = 0 we obtain that 

A = AT, 	w = 0. 	 (5.39) 

Removing the coboundaries leads to replacing A by 

A = A — OK pc,,q,„ 	 (5.40) 

where G can be chosen to annul trace of A (if TrKpo,qo 0)- 
6. ko  = 1, p, = 1 

The proof is trivial and can be found in Ref[20]. 
Using the normalizer of the splitting MASA (4.8)in the group E(po  ko , qo  

k0) we can simplify A further. The normalizer is represented by block diagonal 
matrices 

G = diag(Gi, G2) Gj-1 , 1). 	 (5.41) 

Choosing G1  = diag(g i , 	, gko ), G2  satisfying C2-Kpo,goG = Kpo,qo leads to 
equations (5.17) and (5.18). 

This completes the proof of the Theorem 5.1. 
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5.3 	Nonsplitting MASAs of e(po  + ko , qo  ± ko) related to non- 
free-rowed MANSs 

The general study of non-free rowed MASAs of o(p, q) is less well developed. 
Many different series of MASAs of o(p, q) exist. We will consider only two of 
them, which we denote A(2k + 1, 0) and A(2k + 1, 1), by analogy with series of 
non-free-rowed MANSs of o(n, C) [16]. 
1. The series A(2k + 1, 0) of o(p, q) is represented by the matrix set 

/O al  0 a2 	ak 0 

ak  

a2  (5.42) 

0 

al  
0 

E \ 
—e 

x = 

K = F2k-Fi -= (5.43) 
—e 

\ E 	l 
where all aies are free. 

o(k + 1, k) for k even Thus for e = 1 we have M C 
o(k , k + 1) for k odd 
o(k + 1, k) for k odd and for € = —1 we have Mc 
o(k, k + 1) for k even. 

The splitting MASA of e(p, q) for this series (in accordance with Theorem 4.1) 
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is written as follows: 

0 al  0 a2 ak  0 a 

ak  0 

X, = a2  0 (5.44) 
0 0 

al  0 
0 0 

Theorem 5.2 Every nonsplitting MASA of e(p,q) corresponding to the splitting 
MASA (5.44) is E(p,q) conjugate to the following one 

/ 0 al  0 a2 	ak  0 	\ 

ak  0 

0 ak 

X, = a2 0 

0 a2 

al 0 

0 
0 

Ke 
F2k+1 5.45) 

0 

    

where all entries in X, are free. 

Proof: We will construct a nonsplitting MASA from the splitting one (5.44) 
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/ 0 al  0 a2 	ak  0 	a 
0 a1  0 a2 	ak  02 

0 03 

(5.46) 02k-2 

02k-1 

132k 
02k+1 
0 / 

Xe' 	 a2  

0 

0 

where es are linearly dependent on as. Before imposing commutation relations 
we will remove the coboundaries. 

Consider one element of the algebra (5.46) 

01 0 0 	.. 0 0 
0 1 0 	.. 0 cu1,2 

0 

A1 === (5.47) o Œ1,2k_2 

o Œ1,2k_1 

1 Œ1,2k 

0 (1,  -1,2k1-1 

where c ,1 , l = 2, ... , 2k + 1 represent the translations. We note that am. • • a1,2k 

correspond to coboundaries and can be eliminated by conjugation by the trans-
lation group. Thus only Œ1,2k+1  is left in Al. 

Now consider an element Ai  of algebra (5.46), obtained by setting a, -= (5,3, 
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j > 2 

/ 0 0 0 1 0 0 	\ 

0 0 0 1 0 Œi,2 

0 ai,3 
: 

Ai  = 1  n'-i,2k-2 (5.48) 

0  n'-i,2k-1 

0 ai,2k 

0  ai,2k+1 

Commuting A1  with all A , i = 2, ... k we obtain that aj,2k-2j+3 = Œ1,2k+1, 
j = 2, ... , k and all other ai j  have to be zero. 

Using the normalizer G of the form 

C= (91;,, • • • , 	gk 	Sk 3 • • • gk-k ) 

	

(5.49) 

we can normalize Œ1,2k+1  to  Œ1,2k+1 = 1. This leads to the MASA (5.45) and 
completes the proof of Th.eorem 5.2. 
2. The series A(2k + 1, 1) of o(p, q) is represented by the following matrix set: 

f 0 	al 	0 a2 	. ak 0 b 

ak 0 

x = 0 
K = (F2k+1 , 	(5.50) 

0 0 

a1  0 
0 0 

0 —€h 0 

0 
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where all as and b are free. The corresponding metric is 

E 0\ 
—e 	0 

K F2k+1 = 

    

   

(5.51) 

  

—c 	 0 
0 

0 	0 1 / 

   

   

{o(k + 1, k + 1) for k odd 
Thus for E = 1 we have /14-  c 

o(k ± 2, k) 	for k even 

and for e = —1 we have M c o(k 
+ 1, k + 1) for k even 

o(k + 2, k) 	for k odd. 

Theorem 5.3 Every nonsplitting MASA corresponding to the splitting MASA 
(5.50) is E(p,q) conjugated to the MASA of the form 

i 0 ai 	0 a2 	ak  0 b a \ 

ak  0 Ab 

0 0 0 

Xe  — a2  0 0 (5.52) 
0 0 0 

al 0 0 
0 0 0 

—eb 0 Aal  + 
0 0 01 / 

with the metric as in (5.51). The entries ai , b and a are free. Parameters A and 
p. are one of the following sets: 

={

(0,1) 
(0, -1) 
(1, 1,1) , p E R  

(5.53) 

Proof: The proof is similar to that of Theorem 5.2 and we omit it here. 	D 



i=1 	 i=1 
(6.1) — 13 , 
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6 	Decomposition properties of MASAs of e(p, q) 

The results of Sections 4 and 5 can be formulated in terms of a decomposition 
of the underlying pseudoeuclidean space S(p, q). Both splitting and nonsplitting 
MASAs have been represented by matrix sets {X,, Ke} as in eq.(5.4), (4.2). We 
shall call a MASA of e(p, q) decomposable if the metric Ke  in (4.2) consists of 2 or 
more blocks. The projection of such a MASA onto the o(p, q) subalgebra is then 
an orthogonally decomposable MASA of o(p, q). Let Me  (p, q) be a decomposable 
MASA of e(p, q). The space S(p, q) then splits into a direct sum of subspaces 

and each indecomposable component of the decomposable MASA of e(p, q) acts 
independently in one of the spaces S(p, qi ). We shall write 

(P, 	11/ Me 	qi ). 	 (6.2) 
i=1 

Each individual indecomposable MASA Me(pi , qi) c e(pi , qi) can then be consid-
ered separately. 

Consider the matrix set {Xe, Ke}, X, given by eq.(5.4), Ke  as in eq.(4.2), 
where each block is indecomposable. The blocks to be considered consist of a 
block on the diagonal in Xe, plus an entry from the right hand column in X,. 

The following types of indecomposable MASAs Me(pi , qi ) C e(pi , qi ) exist. 

• dimS = 1. The MASAs are pure positive or negative length translations. 

.111, (1 , 0) 

M6 (0,1) 

= 

= 

( 00  

( 0°  

x0  ) 

Yo  

, 	x E R, 

, 	y E R, 

	

( 1 	0 
K = 

	

0 	0 

( —1 
= 

0 

) 

0 
0 
) 

(6.3) 

(6.4) 

A MASA Me(p, q) of e(p, q) contains k+  of the first ones and k_ of the 
second. 

• dimS = 2. The MASAs are o(2) rotations in a (++), or (--) type sub- 



0 x 0 
—x 0 0 

) 
K., = 

( 

0 0 0 

0 x 0 
—x 0 0 

) 
, 	K6 = ( 

0 00 

a 0 o\ 

0 —a 0 , 	K6=l  
0 0 0 ) 

111, (2, 0) 

Me (O, 2) 

M,(1, 1) 

-12 

o 

(6.5) 

(6.6) 

(6.7) 

space, or 0(1, 1) pseudorotations in a (+—) space: 
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• dimS = k > 3. There are two possible types ofindecomposable MASAs 
of e(p, q) for p + q > 3. Both of them have k+  = k_ = 0 (no nonisotropic 
translations). 

0 Ade (p, q) contains ko  isotropic translations with ko  > 1. The projec-
tion of 11 de (p, q) onto o(p, q) is then a MANS of o(p, q) with Kravchuk 
signature (ko ,p+q-2k0 , k0). The MANS can be free-rowed or non-free-
rowed. The MASA of e(p, q) can be splitting , or nonsplitting. Such 
MASAs exist for any p + q> 3, min(p, q) > 1. They were treated in 
Sections 4 and 5. 

ii) M (p, q) is an orthogonally indecomposable MASA of o(p, q) that is not 
a MANS. It gives rise to a splitting MASA of e(p, q) which contains no 
translations (k0  = 0). As reviewed in Section 3 such MASAs of o(p, q) 
exist only for p + q even. 

7 A special case: MASAs of e(p,2) 

The case q -=-- 2, like q = 1 and q = 0, presented earlier [20] is simpler than that 
of q > 3. All MASAs can be presented explicitly, in particular those involving 
non-free-rowed MANS of o(p, 2). 

The possible decomposition patterns (6.2) for MASAs of e(p, 2) are 

Me (P, 2) — Me (pi , 2) 9 1+M6 (2, 0) H- k+ Me(1, 0) 	 (7.8) 
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Pi = l, or P1 _> 2, 	+ 21+  + k+  = p 

Me(P, 2 ) = Me(Pi, 1) El) Me(P2, 1) ED 1±M,(2, 0) + k+M,(1, 0) 	(7.9) 

Pi +p2 + 21+  + k+  p 

Me(p, 2) = M,(0, 2) ED /±/1/16(2, + k+M,(1, 0) 	 (7.10) 

2/+  + k+  = p. 

The algebras Me(2, 0), M,(0, 2) and M6(1, 0) are already abelian (and one dimen-
sional) as are M6(0, 1) and /4(1, 1). The MASAs Me(p, 1) of e(p, 1), p > 2 were 
studied in our earlier article [20]. 

Thus, we need to treat only indecomposable MASAs of e(p, 2). As was stated 
in Section 6 for general e(p, q), two cases arise, namely ko  = 0 and 1 < ko < 
min(p, q), where ko  is the number of linearly independent translation generators 
present. 
1. kt)  = 0 
Then M(p, 2) is an orthogonally indecomposable MASA of o(p, 2) that is not a 
MANS. These exist only when p is even > 2). 

For p = 2 three inequivalent OID MASAs that are not MANS exist and the 
corresponding splitting MASAs of e(p, 2) are given by the following matrix sets: 

i) M(2, 2) is AOID but D 

 

a b 	0 
0 a 	0 

—a 0 0 
—b 	0 

01 

   

X, =- K= 
/ 	12 

12 

01 ) 
(7.11) 

    

ii) M(2,2) is AOID, ID but NAID 

0 a 0 b \ 
—a 0 —b 0 0 

X, = 0 a 0 
—a 0 0 

01 / 

with K, same as in 0. 

(7.12) 



a1-1 0 0 c o\ 
0 a1-1 —c 0 0 

—a1  0 0 
0 —a1  0 

0 b —a1_1 0 
—b 0 0 —a1_1  0 

0 b 0 
—b 0 0 

/0 b al 0 
—b 0 0 a l  

0 b 
—b 0 

Xe  = 

\ 01 I 

iii) M(2, 2) is NAOID but D 
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Xe = 

	

(a b 	o\ 

	

—b a 	0 
—a b 0 
—b —a 0 

(7.13) 

\ 
	

01 / 

with K., same as in i). 

For p = 21, 1 > 2 we have just one OID MASA of o(p, 2) (NAOID, ID but 
NAID), namely M = RQEDMANS of su(i, 1). The corresponding splitting MASA 
of e(p, 2) is represented as following matrix set 

i 	12 	\ 

Ke  = 

 

121-2 

 

(7.14) 
12 

\ 

  

  

01 1 

 

2. kc, = 1 
The projection of Ille(p, 2) onto o(p, 2) will be a MANS of o(p, 2) with Kravchuk 
signature (1 p 1). This MANS can be free-rowed, or non-free-rowed, so we obtain 
two splitting MASAs of e(p, 2) represented, respectively, by 
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i) free-rowed 

X, = 

	

7 0 	oe 	0 	z 

	

0 	0 	—K0aT 	0 

	

00 	0 	0 
01 / 

= 

	

/0 	0 	1 

	

0 	K0 	0 	, 	(7.15) 

	

\1 	0 	0 

where K0  has signature (p —1,1), a ER1 x  1 < p 

ii) non-free rowed 

0 	a 	a 	0 	b 0 	z \ 
0 	0 	a 	0 —b 	0 

0 	0 	0 —aT  
Xe = 0 	—a 0 	0 

0 —a 	0 
0 	0 

01 / (7.16) 

Ke  = /„+1  

1 	0 

0 	0 

o 
0 

1 0 00 0 
1 0 0 00 0 

01 

a E Ri", 1 < v and r/ = p — 3. 

The MASA (7.15) gives rise to three different nonsplitting MASAs for p > 2 
which can be expressed as 

Xe = 

/ 0 a 

	

0 	0 
00 

	

\ 0 	0 

0 
—KoaT  

0 
0 

z 	\ 

BK0aT  
0 
0 	/ / 

, 	Ke = 

7 	1 
Ko  

1 

\ 

01 / 

. 	(7.17) 

K0  is the same as in (7.15) and B satisfies the condition BKo -= KoBT  , i.e. B 
is an element of the Jordan algebra jo(p —1,1). A classification of the elements 
Jordan algebras was performed in the paper by Djokovic et al [23} and the couple 



ii) 

( a 	0 o 1 \. 
B= 1 	a 

Bo ) 
K0 = 1 0 

I 
(7.19) 

iii) 

a 0 0 / O  o 1 

B = 1 a 0 
Ko  = 0 1 	0 

0 1 a 1 0 	0 
Bo  

(7.20) 

0 a 0 z \ /O o 1 

Xe  = 0 0 —a 0 KG = , 0 1 0 
0 0 •0 a 1 0 0 

\O 0 0 0 \ 0 0 0 

o 
0 
0 
01  

 

(7.21) 
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{B, Ko} can have one of the three different following forms (keeping in mind the 
signature of Ko ): 

i) 

B (a B0 ) 
K0 = -1  

 

(7.18) 

  

where Bo  is a diagonal matrix. 

For p = 1 the nonsplitting MASA corresponding to eq.(7.15) is 

The MASA (7.16) for v > 2 gives rise to one type of nonsplitting MASA that 
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can be represented as 

/Dac/ 
0 	0 

0 

0 
a 
0 

b 

O 
O 

0 
—b 

— aT 

apT 

a pT + AaT 

Xe = 0 —a 0 0 (7.22) 
0 —a 0 

0 0 0 

01 

with A = AT. Using the normalizer G = diag(g, gi,  G2 , g3 , 1/gi , g ,1), G2  e Ru", 
g, g i , g3  e R, satisfying G2GI = 	g 2  = A 1 we can transform A, p) into 

1 	 , 	1 
A' = 	 p = 	G2p. 

g 	 glg3 

We can use G2  either to diagonalize A, or to rotate p into e.g. p -= 	0, 	, 0). 
3. ko  = 2 
The projection of 31,(p, 2) onto o(p, 2) is a free-rowed MANS with Kravchuk 
signature (2 p — 2 2). The corresponding splitting MASA of e(p, 2) is given in 
Theorem 5.1 with q = ko  = 2 and K po ,q0 = 	 In this case Q2  can be chosen 
as Q2 = diag(1, q2 • • • p) 	= 1  > 1q21 > . . . > lq,41. This MASA in turn gives 
rise to the following non-splitting MASAs. 

0 	0 a 0 y z1  

0 	0 ŒQ —y 0 z2 
0 	0 0 —ceT —QaT ATaT 

Xe = (7.24) 
00 0 0 0 0 
00 0 0 O 0 

\ 0 	0 0 0 O 01  

Here A is a diagonal matrix, TrA = 0 and Kg  is same as in eq.(5.5). 

8 Conclusions 

The main conclusion is that we have presented guidelines for constructing all 
MASAs of e(p, q) for any fixed values of p and q. Some of the results are en-
tirely explicit, such as Theorem 4.1 describing all splitting MASAs of e(p, q), and 

(7.23) 



37 

Theorem 5.1 presenting nonsplitting MASAs containing a free-rowed MANS of 
o(po  + ko , qo  + ko) c o(p, g). The results on MASAs of e(p, g) involving non-
free-rowed MANS of o(po  ko , qo  ko ) are less complete and amount to specific 
examples (see Theorems 5.2 and 5.3). The decomposition results of Section 6 
allow us to restrict all considerations to indecomposable MASAs of e(p, g), both 
splitting and non-splitting ones. The results for e(p, 2) presented in Section 7 
are complete and explicit, like those given earlier for e(p, 0) and e(p, 1) [20]. In 
particular we have constructed all MASAs related to non-free-rowed MANSs. 

Work concerning the application of MASAs of e(p, g) is in progress. In par-
ticular, we use MASAs of e(p, g) to construct the coordinate systems in which 
certain partial differential equations (Laplace-Beltrami, Hamilton-Jacobi) allow 
the separation of variables. 
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Abstract. The maximal Abelian subalgebras (MASAs) of the Euclidean e(p, 0) and pseudo-
euclidean e(p, 1) Lie algebras are classified into conjugacy classes under the action of the 
corresponding Lie groups E(p, 0) and E(p, 1), and also under the conformai groups 0 (p+1, 1) 
and 0(p + 1, 2), respectively. The results are presented in terms of decomposition theorems. 
For e(p, 0) orthogonally indecomposable MASAs exist only for p = 1 and p = 2. For e(p, 1), 
on the other hand, orthogonally indecomposable MASAs exist for all values of p. The results 
are used to construct new coordinate systems in which wave equations and Hamilton—Jacobi 
equations allow the separation of variables. 

Résumé. Les sous-algèbres maximales abéliennes (SAMAs) d'algèbres Euclidiennes e(p, 0) et 
pseudo-euclidiennes e(p, 1) sont classifiées en classes de conjugasion sous l'action des groupes 
de Lie correspondants E(p, 0) et E(p, 1). Elles sont aussi classifiées sous l'action des groupes 
conformes 0(p + 1,1) et 0(p + 1, 2). Les résultats sont presentés dans des théoremes 
de decompositions. Pour e(p, 0), les SAMAs orthogonallement indecomposables existent 
seulement pour p = 1 et p = 2. Pour e(p, 1), les SAMAs orthogonalement indecomposables 
existent pour toutes les valeurs de p. Les résultats sont utilisés pour construire des nouveau 
systèmes de coordonnées, dans lesquelles les équations d'onde et les équations de Hamilton—
Jacobi admettent la separation de variables. 

1. Introduction 

The stage for much of mathematical physics is the real flat space R" with a non-degenerate 
indefinite metric of signature (p, q). We shall denote this space M(p, q) with p + q = n. 
The isometry group of this space is the pseudo-euclidean group E(p, q) and the conformal 
group is C(p, q) 0(p +1, q + 1) (the pseudo-orthogonal group in p +q +2 dimensions, 
acting locally and nonlinearly on M(p, q)). 

The purpose of this article is to present a classification of the maximal Abelian 
subalgebras (MASAs) of the real Euclidean and pseudo-euclidean Lie algebras e(p, 0) ..-
e(p) and e(p, 1). The classification is first performed with respect to conjugation under the 
corresponding Lie groups E(p, 0) E(p) and E(p, 1), respectively, and it also provides a 
classification of the connected maximal Abelian subgroups of the corresponding groups 
E(p) and E(p, 1). We also present a classification of MASAs of the corresponding 
conformal algebras c(p, 0) o(p + 1, 1) and c(p , 1) — o(p+ 1, 2) under the corresponding 
groups 0(p + 1, 1) and 0(p + 1, 2). This classification is used to show (for q = 0 or 1) 
which MASAs of e(p, q) are also MASAs of o(p + 1, q + 1) and which MASAs that are 
inequivalent under E(p, q) are nevertheless mutually conjugated under the larger conformal 
group 0(p +1, q + 1). 

0305-4470/98/071831+28$19.50 C) 1998 IOP Publishing Ltd 
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The classification of the MASAs of e(p, q) (q = 0, 1) will be used to address a physical 
problem: the separation of variables in Laplace—Beltrami and Hamilton—jacobi equations 
in the corresponding spaces M(p, q). 

The motivation for our study of subgroups of Lie groups and subalgebras of Lie 
algebras is multifold. For instance, consider any physical problem leading to a system of 
differential, difference, algebraic, integral or other equations. Let the set of all solutions of 
the system be invariant under some Lie group G, the symmetry group'. Special solutions, 
corresponding to special boundary, or initial conditions, can be constructed as 'invariant 
solutions', invariant under some subgroup of the group G [1, 2]. For linear equations, 
or for Hamilton—Jacobi type equations, solutions obtained by separation of variables are 
examples of invariant solutions. While all types of subgroups Go c G are relevant to this 
problem, Abelian subgroups provide particularly simple reductions and particularly simple 
coordinate systems. Indeed, each one-dimensional subalgebra of an Abelian symmetry 
algebra will provide an 'ignorable variable [3-8], i.e. a variable that does not figure in the 
metric tensor (a cyclic' variable in classical mechanics). 

Another example of the application of maximal Abelian subgroups of an invariance 
group is in any quantum theory, where Abelian subalgebras provide sets of commuting 
operators that characterize states of a physical system. The system itself is characterized 
by the Casimir operators of the group G. Complete information about possible quantum 
numbers would be provided by constructing MASAs of the enveloping algebra of the Lie 
algebra L of G. MASAs of the Lie algebra itself provide additive quantum numbers. 

A third application is in the theory of integrable systems, both finite and infinite 
dimensional, where MASAs of any underlying Lie algebra provide integrals of motion 
in involution, commuting flows, and other basic information about the systems. 

A series of earlier papers was devoted to MASAs of the classical Lie algebras, such 
as sp(2n, R) and sp(2n, C) [9], su(p, q) [10], so(n, C) [11] and so(p, q) [12]. In all 
MASAs of simple and semisimple Lie algebras Cartan subalgebras on the one hand, and 
maximal Abelian nilpotent algebras (MANSs) on the other, play a special role. The Cartan 
subalgebras are their own normalizers [13] and consist entirely of non-nilpotent elements. 
For a complex semisimple Lie algebra there is, up to conjugacy, only one Cartan subalgebra. 
For real semisimple Lie algebras they were classified by Kostant [14] and Sugiura [15]. 
Maximal Abelian nilpotent subalgebras consist entirely of nilpotent elements (represented by 
nilpotent matrices in any finite dimensional representation). They were studied by Kravchuk 
for sl(n, C) and his results are summed up in book form [16]. Maltsev obtained all MANSs 
of maximal dimension for the simple Lie algebras [17]. Those of minimal dimension have 
also been studied [18]. 

More recently, the study of MASAs was extended to inhomogeneous classical Lie 
algebras, or finite dimensional affine Lie algebras, starting from the complex Euclidean Lie 
algebras e(n, C) [19]. 

The next natural step is to consider the real Euclidean and pseudo-euclidean algebras 
e(p, q) for p 	q 	0. This study is initiated in the present paper, where we concentrate 
on the values q = 0 and 1. On the one hand, these are the most important in physical 
applications, since they include the Lie algebras of the groups of motions E(p) of Euclidean 
spaces and E(p, 1) of Minkowski spaces. On the other, they are the simplest ones to treat, 
so all results are entirely explicit. The general case of q..>„ 2 will be treated separately and 
is more complicated from a mathematical point of view. 

The classification strategy and some general results on the MASAs of e(p, q) are 
presented in section 2. The real Euclidean algebra e(p) is treated in section 3, where 
we also list the MASAs of o(p, 1) and the classification of MASAs of e(p) under the 
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action of the group 0(p ± 1, 1). Section 4 then treats MASAs of e(p, 1). Section 5 lists 
results on MASAs of o(p, 2) and the classification of MASAs of e(p, 1) under the action 
of the conformai group 0(p ± 1,2) of the compactified Minkowski space M(p, 1). In 
other words, certain MASAs not conjugated under E(p, 1) are conjugated under the larger 
group 0(p +1, 2). MASAs of e(p, 1) are used in section 6 to obtain the maximal Abelian 
subgroups of E(p, 1). These in turn provide us with all separable coordinate systems in the 
Minkowski space M(p, 1) with a maximal number of ignorable variables. Some conclusions 
are drawn in section 7. 

2. General formulation 

2.1. Some definitions 

We will be classifying maximal Abelian subalgebras of the pseudo-euclidean Lie algebra 
e(p, q) into conjugacy classes under the action of the pseudo-euclidean Lie group E(p, q). 
A convenient realization of this algebra and this group is by real matrices Y and H, satisfying 

X e >  S E Rnx I (2.1) 

H = (G a 

0 	1 ) 	
G c Rn " a E ]R/x1 	 (2.2) 

respectively, where X and G satisfy 

X K 	K XT  =- 0 	GKGT  = K 
K  = KT c  Rnxn 	n = p q detK 0 	 (2.3) 

sgn K = (p, q) 	p>q>O 

respectively. Here sgn K denotes the signature of K, with p the number of positive 
eigenvalues of K and q the number of negative ones. We shall also make use of an 
`extended matrix Ke  G le+1  

( K 0 
Ke  = 	

01  ) 	
Y Ke --1- 	= O. 	 (2.4) 

0  

A convenient basis for the algebra e(p, q) is provided by n translations Pi, and n(n-1)/2 
rotations and pseudorotations L. The commutation relations for this basis are 

1Lik, Lubl = ‹IcaLib 	SkbLia 	8iaLkb 	SibLka 

[Lce, L y8 ] = S ßLa& — 8,6 ,5 Lay  — Say  L fiÔ  SasLßy  

[Lik, Lß] = 8kaLie — 8iaLkfl 	 (2.5) 

[Lia , Lti y ] = 8atiLi y  — 8ay L i p 

[La p, Li g ] = åflLa i 	Sail l i ! , 

where k, a, b p and p < a, p, y, 8, µ q 

[Pa , L in) ] = gP, — ga P 

[Pm, Pv1= 0 
	 (2.6) 

) x ( n+1)  satisfying 
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for 0 < a, g, V p q, 

gll = g22 	" = gPP = — gP+1, P+1  = • • • = — gP1- £1 , P-Fq = 1  
g,= 0 	for 

A standard realization of this basis in terms of differential operators is given by 

	

a 	 a 
P = 	

a 
Lk = Xi 	xk 	 (2.7) 

	

aX)1 	
i axk 	oxi  

forl.i<kporp-El.<„i<k.“-Eqand 

a 
Lik = — (Xk —  + 	) ax, 	axk 	

..<„ip  

From the above discussion we see that the pseudo-euclidean Lie algebra is the 
semidirect sum of the pseudo-orthogonal Lie algebra o(p, q) and an Abelian algebra T(n) 
of translations. 

Since T(n) is an ideal in e(p,q), we can consider the adjoint representation of o(p,q) 
on T(n). Abusing notation, we use the same letters Pi ..... P,,, Pp+i , 	, Pp-Fq for basis 
vectors in this representation. The metric tensor g defined above provides an invariant 
scalar product on the representation space 

(P, Q) = 	 (2.8) 

We shall call vectors satisfying P2  > 0, P2  < 0 and P2  = 0 (P 	0) positive length, 
negative length and isotropie, respectively. 

We also need to define some basic algebraic concepts. 

Definition 2.1. The centralizer cent(Lo, L) of a Lie algebra Lo G L is a subalgebra of L 
consisting of all elements in L, commuting elementwise with Lo: 

cent(Lo, L) = le E Lfte, Lo] = 0}. 	 (2.9) 

Definition 2.2. A maximal Abelian subalgebra Lo  (MASA) of L is an Abelian subalgebra, 
equal to its centralizer 

[Lo, Lo] = 0 	cent(Lo, L) = Lo . 	 (2.10) 

Definition 2.3. A splitting subalgebra Lo of the semidirect sum 

L = F N 	[F, F] c F [F, N] c N [N , N] c N 	 (2.11) 

is itself a semidirect sum of a subalgebra of F and a subalgebra of N: 

Lo = Fo > No 	Fo  c F No c N 	 (2.12) 

(or conjugate to such a semidirect sum). 

All other subalgebras of L = F> N are called non-splitting subalgebras. 
An Abelian splitting subalgebra of L = F > N is a direct sum 

Lo = Fo El) No 	Fo c F No c N 	 (2.13) 

Definition 2.4. A maximal Abelian nilpotent subalgebra (MANS) M of a Lie algebra L is 
a MASA, consisting entirely of nilpotent elements, i.e. it satisfies 

[M, Ad] = 0 	[[[L, M]M] • • •lm  = 0 	 (2.14) 

for some finite number m (we commute M with L m times). 
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Let us now consider the pseudo-euclidean space M(p, q), i.e. R, n = p q with an 
invariant quadratic form given by the matrix K of equation (2.3): 

ds2  = dirKdx. 	 (2.15) 

The group and Lie algebra actions are given by 

x' = Gx ± a 	x' = Xx 	 (2.16) 

respectively, with (X, ce) and (G, a) as in equations (2.1) and (2.2). 

Definition 2.5. A subalgebra Lo c e(p, q) is orthogonally decomposable if it preserves an 
orthogonal decomposition of M(p, q) 

M(p, q) = M (p l , qi) El) M (p2 , q2 ) 	pi  p2  = p qi q2  q 	 (2.17) 

into two (or more) non-empty subspaces. It is called orthogonally indecomposable 
otherwise. 

2.2. Classification strategy 

The classification of MASAs of e(p, q) is based on the fact that e(p, q) is the semidirect 
sum of the Lie algebra o(p, q) and an Abelian ideal T (n) (the translations). We use here a 
modification of a procedure described earlier [19] for e(n, C). We proceed in five steps. 

1. Classify subalgebras T 	k_, ko) of T (n). They are characterized by a triplet of non- 
negative integers (k+ , k_, 1( 0 ) where k+ , k_ and ko are the numbers of positive, negative 
and isotropic vectors in an orthogonal basis, respectively. 
2. Find the centralizer C(14, k_, k0 ) of T(k+ ,k_, ko) in o(p, q): 

C(14, k_, ko) = {X E o(p, q)1[X, T(1, k_, k0 )] = 01. 	 (2.18) 

3. Construct all MASAs of C(k+ , k_, ko) and classify them under the action of normalizer 
N or[T (k+ , k_, 1(0 ), G] of T (k+ , k_, ko) in the group G 	E(p, q). 
4. Obtain a list of splitting MASAs of e(p, q) by forming the direct sums 

C(14, k_, ko) T (k+ , k_, ko) 	 (2.19) 

and dropping all such algebras that are not maximal from the list. 
5. Complement the basis of T(1+, k_, 1( 0 ) to a basis of T (n) in each case and construct all 
non-splitting MASAs. The procedure is described below in subsection 4.2. 

This general strategy can also be expressed in terms of sets of matrices of the form 
(2.1)—(2.4). 

The subalgebra T (k+ , k_, ko ) can be represented by the matrices 

 

Ok„ 

  

= 
0  p-1-q-2k0-14-k_ 

(2.20) 

    



04  Ã Ÿ 

M= I0 Š—kii-T 
0 0 Oko  

(2.22) 
Ok+ 

ok_ 

= 

46 

1836 	Z Thomova and P Winternitz 

Ik„ 

K0 

0\ 

(2.21) Ke  = Iko  

Ik+ 	0 
—4_ 0 

01 
where Ko  has the signature (p — k+  —ko, q—k_ —k0). 

The centralizer C(k+ , k_, k0 ) of T(k+ ,k_, ko) will then be represented by the block 
diagonal matrices 

The Lie algebra of matrices 1/1} represents a subalgebra of o(p—k+ , q —k_) and we 
need to classify the MASAs of o(p —k+ , q —k_) contained in {il;/}. Such MASAs were 
studied elsewhere [12] and we shall recall some basic facts here. 

A MASA of o(p, q) is characterized by a set of matrices X and a metric matrix 
K, satisfying equation (2.3). A MASA can be orthogonally indecomposable (OID), or 
orthogonally decomposable (OD). If it is OD, we decompose it, i.e. transform it, together 
with K, into block diagonal form. Each block is an OID MASA of some o(p, qi), 
E pi = p, E qi = q. At most one of the blocks is a MANS. 

From the above we can see that the MASA of e(p, q) will have the following general 
form: 

	

Ok„ A 	Y 

	

S 	— K p , q , AT  

Oku  
M 1  

Ok, 	X 

Clk_ Y 
01 

Iko  

KP242 

Ik+  

—4_ 
01  

where M1  is a MASA of o(P2, qz) not containing a MANS, p = pi + p2 + k+  + ko  and 
q = qi q2, k— ko. The MASA M1  can be absent (when pz = q2 = 0). It may be 
orthogonally decomposable. 

(2.23) 

(2.24) 

M= 

Ke  = 



Ok0  
Mo = f  

y ± yT = 

A Y ) 
S 	—K mg , AT  
O 	Ok„ 

K p i g i  ST  = 0 

(2.25) 
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The block 

represents a MANS of o(p i +ko, q i  +4), so S E (P, ±q1) x (Pl±q1)  is a nilpotent matrix. For 
1c0  = 0 the MANS M0  is absent. 

2.3. Embedding into the conformai Lie algebra 

The algebra o(p + 1, q ± 1) contains the rotations and pseudorotations Le, translations 
1='! ,, the dilation D and the proper conformal transformations Ce. The realization of the 
additional basis elements in terms of differential operators is given by 

a 	 a 	 a 
D = x10 -- 	Ca = gaaXaXa —  — 

1 
—(Xagcep) ,.. 	• 	 (2.26) 

axe 	 ax„ 2 	dxo 
They satisfy the following commutation relations: 

[Pa , Ca ] = 2g /ÅŒ D — 2g1010 La10  

[Ca , L„,] = g10i ,C1, — ga ,Ca  

[D, L] = 0 	 • 	 (2.27) 

[Pm., D] = PI, 

[Ca , D] = —Ce. 
A matrix representation of o(p + 1, q ± 1) is 

d a o 

Mc = pi' xo —KoaT Kc = 	Ko ( 	

) 

0 —ßK0  —d 	 1 	1 ) 

Xe°  ± KoX'cr, = 0 
where a, p, d, Xo represent translations, conformal transformations, the dilation, rotations 
and pseudorotations, respectively. K0  has the signature (p, q). We have 

Mc Kc  + Kc lliî, = O. 	 (2.29) 
We see that in equation (2.28) the algebra e(p, q) is embedded as a subalgebra of one of 

the maximal subalgebras of o(p+1, q+1), namely the similitude algebra sim(p, q) obtained 
by setting p = 0 in (2.28). The MASAs of e(p, q) are thus embedded into o(p+1,q+1). In 
each case we shall determine whether a MASA of e(p, q) is also maximal in o(p +1, q +1). 
Conversely this representation can be used to determine whether a MASA of o(p +1, q +1) 
is contained in e(p, q). Finally, we shall use it to establish possible conformai equivalences 
between MASAs of e(p, q) that are inequivalent under E(p, q). 

3. MASAs of e(p, 0) and o(p, 1) 

3.1. Classification of all MASAs of e(p, 0) e(p) 

The metric is positive definite and, hence, a subspace of the translations is completely 
characterized by its dimension. 

(2.28) 
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A basis for e(p) is given by Lik, 1 	i < k 	p, and P1  , • • • , Pp• 

Theorem 3.1. Every MASA of e(p, 0) splits into the direct sum M(k) = F(k) e T(k) and 
is E(p, 0) conjugate to precisely one subalgebra with 

F(k) = {L12, L34 ..... L21-1,21} 
	

T(k) = {P21+1, • • • , Pp} 

where k is such that p — k is even (p — k =21). 

Proof We take T(k) = {Pp-k+i, 	, P p}. Its centralizer in o(p, 0) is o(p — k, 0). This 
algebra has just one class of MASAs, namely the Cartan subalgebra: 

1. frk = {L12, L34, • • • , p-k-1,p-k} 	if p — k is even; 

2. frk = {L12, L34, • • • , Lp-k-2,p-k-1} 	if p —k is odd. 

The splitting MASAs would then be T(k) G Pk , but for p — k odd, the subalgebra 
is not maximal. The elements of a non-splitting MASA would have the form X = 
La ,„+i + jiiCX a ,jPj where a = 1, 3, ... , p — k — 1. After imposing the commutation 
relations [X, Y] = 0 we obtain that all cXa , j = O. There are no non-splitting MASAs. 	LJ 

3.2. MASAs of o(p, 1) 

We present here some results from [12] on MASAs of o(p, 1). A MASA of o(p, 1) can be 

1. Orthogonally decomposable. Two decomposition patterns are possible, namely: 
(a) /(2, e (k, 1) for k = 0, 1, 	, p — 2 (l>1) where (k, 1) is a MANS; 
(b) (1, 1) e (1, 0) e /(2, 0). 

2. Orthogonally indecomposable. Then the MASA is a MANS of o(p, 1). 

A representative list of 0(p,1) conjugacy classes of MANSs of o(p, 1) is given by the 
matrix sets 

X = 

The entries 

0 	a 	0 

	

(0 0 	 K = 

0 	0 	0 

in a are free, and the dimension 

dim M = p — 1 = 

1 	1 ) 

of 

= (a i . ....a,) 

M is hence 

R. (3.1) 

(3.2) 

The algebra o(21 + 1, 1) has a single (non-compact) Cartan subalgebra, corresponding 
to the orthogonal decomposition /(2, 0) e (1, 1). The algebra o(21, 1) has two inequivalent 
Cartan subalgebras, corresponding to the decompositions /(2, 0) e (0, 1) (compact) and 
(1, o) e(1, 1) G 1(2, 0) (non-compact). 

The situation is illustrated in figure 1. 

3.3. Behaviour of MASAs of e(p, 0) under the action of the group 0(p + 1, 1) 

Theorem 3.2. All MASAs of e(p, 0) inequivalent under E(p, 0) are also inequivalent under 
the action of the group 0(p -I- 1, 1) and are also MASAs of o(p 1, 1). 



Me -= 0 

Ok, xT  
01  

= 0 
—(21  0 ) 

i = 1, ... 	ai 	R 

01  

which corresponds in o(p 1, 1) to the following matrix realization: 

21 
Ke  = (1 

(3.3) 

Ok+  (3.4) 

1 

1 

Me  = 

(1.21 

Ke  = 

0\ 

0 
0 x 0 

—XT  

0J 

1) 
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1(2, 0) 	(k, 1) (all p „>. 2) 

OD 

/(2, 0) ± (1, 1) + (1, 0) (for p even) 

o(p, 1) 

OID <=> MANS (all p 2) 

Figure 1. MASAs of o(p, 1). 

Proof A MASA of e(p, 0) can be represented in matrix form as follows: 

/M1 	 0\ 

which is an orthogonally decomposable MASA of o(p 1, 1) with decomposition /(2, 0)$ 
MANS of o(p — 21 ± 1, 1) (realized as in equation (3.1)). 

3.4. Summary of MASAs of e(p, 0) 

The classification of MASAs of e(p, 0) can be summed up in terms of orthogonal 
decompositions of the Euclidean space M(p, 0) M(p). 



   

Ke  = 
121 

sgn K0  = (p — k+  — 21,1) 

   

where 
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Theorem 3.3. 1. Orthogonally indecomposable MASAs exist only for p = 1 and p = 2. 
Namely 

P= 1  {PO (3.5) 

p = 2 
	

(3.6) 

2. All MASAs of e(p, 0) are obtained by orthogonally decomposing the space M(p) 
according to a pattern 

M(P) = 1M(2) E1D kM(1) p = 21 + k 	 (3.7) 

and taking a MASA of type (3.6) in each M(2) space and type (3.5) in each M(1) space. 
3. For each partition p = 21 ± k, 0 1 [p/2] we have precisely one conjugacy class of 
MASAs, both under the isometry group E(p, 0) and the conformal group 0(p + 1,1). 

4. MASAs of e(p, 1) 

4.1. Splitting MASAs of e(p, I) 

For e(p, 1) only the values k_ = 0, 1 and ko = 0, 1 are allowed, while 0 „<_. k+ 	p. We 
can write a MASA in the following form: 

imo 
M1  

M(k+ ,k_,k0 ) M = 
M1 	0 

	

Ok+ xT 	
(4.1) 

01 / 

	

( 0 	ai 
= 

	

—ai 	0 ) 

From now on we will only write the form of Mo, y and Ko together with conditions 
on the values 1 and k±. The complete MASA can be obtained by substituing the 
appropriate Mo, y and Ko in equation (4.1). We denote the dimensions of these MASAs as 
dim M(k+ , k_, ko ) d. 

Theorem 4.1. Three different kinds of splitting MASAs exist. They are characterized by the 
triplet (k+ , k_, ko): 

	

(A) M(k+ , 1, 0), 0 k+ 	p: 

	

Mo =0 ER 	yT =z ER 	and 	Ko = —1 	 (4.2) 

p—k+  is even, 0 1 1.(p—k+ ), d = dim M(k+ , 1, 0) = 1+1+k+ , [-1(p+3)] d p+1; 



(B) M(k+ , 

where 
d..., p; 

Mo  = 

(C) M(4,0,1), 

Maximal 

0, 0), 0 

Mo  = 
(c 

p—k+  is odd, 0 

0 ..<,., 

	

( 0 
	a 	0 ) 

o o 	-CCT 

	

0 	0 	0 

Abelian subgroups 

k+ s p — 1: 

y T O ) 
o —c 

..., l ,.., 	(p—k+ -1), 

k+  .._. p — 2: 

¡z\ 
yT = 	 Oit  

0 

of Euclidean and Minkowski spaces 

	

K0  = 
(O 	1  

= (°) 	
1 	0) 

d = dim M(k+ , 0, 0) = 1+11-1(± ,[1(p+ 

K0 = ( 	Ig. 

1 	1  ) 

1841 

(4.3) 

2)] 	-...<., 

(4.4) 

where 1 	 p — 1 and 0 / -15 (p —k+  — 2), z R, a E R1  , d = dim M(k+ , 0, 1) = 
p. 

All entries a, x, z, a and c are free. 

Proof Let us use the representation (2.1) of e(p, 1). The translations are represented by 
the matrix Y with X = O. We run through the three translation subalgebras T fixed in 
theorem 4.1 and for each of them find their centralizer C(T) in o(p, 1), i.e. the set of 
matrices X and Y, such that we have 

[Y (X, 0), Y(0, a)] = O 	 (4.5) 

for the chosen set of the translations a. We must then determine all MASAs of C(T) such 
that they commute only with T and with no other translations. 

(A) For T = T(14,1, 0) we have C(T) o(p — k+ , 0) which has only one MASA: the 
Cartan subalgebra. The condition p — k+  being even is needed, otherwise the MASA will 
commute with k+  + 1 positive length vectors. We thus arrive at eq.(4.2). 
(B) For T = T (k+ , 0, 0) we obtain C(T) 	o(p — k+ , 1). The MASAs of o(p — k+, 1) 
are known (see section 3.2 above and also [12]). Any MASA of o(p — k+ , 1) containing 
a nilpotent element will also commute with an isotropic vector in T, not contained in 
T (k+ , 0, 0). Hence we need only to consider a Cartan subalgebra of o(p—k+ , 1). Moreover, 
it must be non-compact, or it will commute with a negative length vector in T. Finally, if 
p — k+  is even, the MASA will commute with k+  + 1 positive length vectors in T. We 
arrive at the result in (4.3). 
(C) Take T = T(14, 0, 1). We obtain C(T) e(p — k+  — 1, 0), an Euclidean Lie algebra 
realized as a subalgebra of o(p — k+ , 1), e.g. by the matrices 

0 
Z = (0 	R -VT  

) 
(4.6) 

0 	0 0 

where R RT  = 0, R e R( P-k-F-1)x (P-k+-1), v E  

Applying theorem 3.1 we obtain the result given in (4.4). The results concerning 
the dimensions of the MASAs are obvious; they amount to counting the number of free 
parameters in Mo, Mi, y and x in the matrix (4.1). 

51 
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4.2. Non-splitting MASAs of e(p, I) 

First we describe the general procedure for finding non-splitting MASAs of e(p, q). 
Every non-splitting MASA M(k. f ,k_, ko) of e(p, q) is obtained from a splitting MASA 

by the following procedure. 

1. Choose a basis for C(k+ , k_, ko) and T (k+ , k_, ko) e.g. C(kk_, ko ) 	{B1 , 	, B J }, 
T (k+ , k_, ko) 	IX1, • • • , X Ll• 
2. Complement the basis of T (k+ , k_, ko) to a basis of T (n). 

T (n)IT(k+ , k_, ko) = {171, • • • ,YN} 
	

L N = n. 

3. Form the elements 

	

= Ba E 	Yi 	a = 1, . . . , J 	 (4.7) 
i=1 

where the constants ai  are such that i form an Abelian Lie algebra [fia , 	= O. This 
provides a set of linear equations for the coefficients 	The solutions aj  are called 
1-cocycles and they provide the Abelian subalgebras :11;1(k+ , k_, ko) 	ijja, 	C e(p,  q)• 
4. Classify the subalgebras A71.  (k+ , k_, ko) into conjugacy classes under the action of the 
group E(p, q). This can be done in two steps. 
(i) Generate trivial cocycles t0i,  called coboundaries, using the translation group T (n) 

eRiPi fi e 	= 	 = 	E ta;  Pi. 	 (4.8) 

The coboundaries should be removed from the set of cocycles. If we have Fr ai = taj 

for all (a, j) the algebra is splitting (i.e. equivalent to a splitting algebra). 
(ii) Use the normalizer of the splitting subalgebra in the group 0(p, q) to further simplify 

and classify the non-trivial cocycles. 

Theorem 4.2. Non-splitting MASAs of e(p, 1) are obtained from splitting ones of type C 
in theorem 4.1 and are conjugate to precisely one MASA of the form 

(i) for /..t ?..• 2: 

0 	ce 	0 z 
Mo = (0 	0 	—a T yT = AaT (4.9) 

0 	0 	0 

where A is a diagonal matrix with a l  = 1 	1a21 
in (4.4) 

• • • 	_,>-1a1,1 ,.>„ 0 and Tr A = 0, K0  is as 

(ii) for =- 1 we have a special case for which the non-splitting MASA has the form 

Mo = 
0 	a 

(0 	0 
0 	0 

0 
—a 

0 
y T  = 

z 
0 

a 

Ko = 

0 
0 

1 

0 

0 

1 
0 
0 

(4.10) 

No other non-splitting MASAs of e(p, 1) exist. 
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Proof The non-splitting MASA is represented in general as follows: 
/Mo 	 Pô \ 

(4.11) 
Pir  
XT  
01/ 

where ,50  e R 1 x (P-4-21)  and pi  e R1'2 , i= 1.....l,depend linearly on the free entries 
in the MASA of o(p, 1), i.e. the matrices Mi , 0 	i 	1. We impose the commutativity 
[Ze , Z'e] = 0 and obtain 

MiP7 = Ad;,67. 
	
i = O. ....l. 	 (4.12) 

From equation (4.12) we see that vectors pi  depends linearly on the matrices Mi  only. The 
block (Mi, fi,), pi  = (ai, ai+1 ) for i = 1.....¡ represents elements of the type 

Li,1+1 + ai Pi ± 	 1 ( i ( p. 

In all cases the coefficients ai  are coboundaries, since we have 

exP(cii + ai-Ei Pi+ )Li,i+i exP(—ai 	— 	Pi+i) = Li,i+i 	ai Pi+i — 	Pi • 	(4.13) 

The coefficients ai can be chosen so as to annul ai and a,±1. Thus we have 

pi  = 0 	1jl 	 (4.14) 

for all non-splitting MASAs of e(p, 1). Hence for case (A) in theorem 4.1 there are no 
non-splitting MASAs. In case (B) the block (M0 , po ) represents the element of the type 
Lp, p+1  ap  Pp  ap+i  Pp+i  . Here again the coefficients ai are coboundaries, since we have 

exp(apPp 	p+1  P p+1 )L p, p+i exp(—ap Pp  — cz p+i p+i) L p+ I ap Pp+1 ap+1 Pp  
(4.15) 

and the coefficients ai  can be chosen so as to annul o p  and a+1.  We have that po  = 0, and 
there are no non-splitting MASAs. In case (C) the non-splitting part of Mo  is as follows: 

0 a 
0 	0 

0 	O\ 
_OET 	ßT 

Z = (4.16) 
00 0 	y 
0 	0 0 	01  / 

Commutativity [4, re ] = 0 gives us the following conditions: 
cepo'T 	oc'or (4.17) 

T 	' ce y =a T  y y E R (4.18) 

which gives 

eor  = Acir  (4.19) 

y = tieT (4.20) 

where A is a matrix and p, is a row vector. 

Ze  = 
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Looking again at the commutativity condition with equation (4.20) satisfied, we find 
that 

A = AT 	and 	/1,  = O. 	 (4.21) 
The symmetric matrix A represents the 1-cocycles. The coboundaries are represented by the 
matrix 8/ and we use them to set Tr A = 0. For further simplification and classificaation 
we use the normalizer of the splitting MASA in the group o(p, 1). The normalizer is 
represented by block diagonal matrices of the same block structure as in (4.1). The part 
acting on Mo is represented by 

G = diag(g, Go, g-1, 1) 	satisfying GoGlo.  = /. 	 (4.22) 
Computing 

GM0G-1  = Mi) 	 (4.23) 
gives the following transformation of A: 

A = —
1

(G0AG). 	 (4.24) 
g 

We use the matrix Go  to diagonalize A and to order the eigenvalues. The normalization 
a l  = 1 is due to a choice of g. The proof of case (ii) is almost identical to the previous 
one and we omit it here. The dimension of the non-splitting subalgebra is the same as the 
dimension of the corresponding splitting subalgebra. 

4.3. A decomposition theorem for MASAs of e(p, I) 

Again, all the results of this section can be summed up in a decomposition theorem. 
Theorem 4.3. 1. Indecomposable MASAs of e(p,1) exist for all values of p, namely 
p = 0: 

P0o 	

(4.25) 

L} p = 1: 	 (4.26) 

p = 2: 	{Po — 	Lo2 — LI2 	(PO ± PI)} 	K 0, +1 	 (4.27) 

p 	3: 	{Po — 	Loi — Lii + ai Pi)} 	j = 2, ... , p 

a2  = 1 	1a31 	— • 	lap l 	0 	ai  = 0 	(4.28) 

or a2  = a3  = • • , a,= 0. 
MASAs corresponding to different values of K, or different sets (a2 , 	, a p ) are mutually 
inequivalent under the connected component of E(p, 1). If the entire group E(p, 1) is 
allowed (containing 0(p,1), rather than only SO(p,1)), then K = —1 is equivalent to 
K = 1 and can be omitted. 
2. All MASAs of e(p, 1) are obtained by orthogonally decomposing the Minkowski space 
M(p, 1) according to the pattern 

M(p, 1) = M(k,l) e 1M(2, e mmo, 

p=k+21+m 0kp 01[ 9 ] 	(4.29) 

and taking a MASA of the type (3.5) for each M(1), of the type (3.6) for each M(2) and 
of the type (4.25), (4.26), (4.27) or (4.28) for M(k, 1). 
3. Each decomposition (4.29) and each choice of constants K and {ai}, respectively, provides 
a different MASA (mutually inequivalent under the group E(p, 1)). 



= GXG-1  

• 
xi ) 

= G K GT  

K2 

G E GL(r + 2, R). 

Xi 
X2 

= 
(5.2) 
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5. Embedding of MASAs of e(p, 1) into the conformal algebra o(p -I- 1, 2) 

5.1. Introductory comments 

Let us realize the algebra o(r, 2) by matrices X satisfying 

XK +KXT  =0 K,X ER 	K = K T 	sgn K =- (r, 2). 	 (5.1) 

A MASA of o(r, 2) will be called orthogonally decomposable (OD) if all matrices 
representing the MASA can be simultaneously transformed by some matrix G, together 
with the matrix K, into block diagonal sets of the form 

If no such matrix G exists, the MASA is orthogonally indecomposable (01D). 
A MASA can be orthogonally indecomposable, but not absolutely indecomposable (OID, 

but NAOID). This means it is orthogonally decomposable after complexification of the 
ground field. 

Let us now present some results on MASAs of o(r, 2) which can be extracted from [12]. 

5.2. MASAs of o(r, 2) 

We shall first consider r „>... 3, then treat the case r = 2 separately. 

Proposition 5.1. Precisely three types of MASAs exist for r = 2k 4, 2 for r = 2k+1 3: 

1. Orthogonally decomposable MASAs (any r). 
2. Absolutely orthogonally indecomposable MASAs (any r). 
3. Orthogonaly indecomposable, but not absolutely orthogonally indecomposable MASAs 

(r = 2k). 

Proposition 5.2. Every orthogonally decomposable MASA of o(r, 2) can be represented in 
the form (5.2) where each {X1 , Ki represents an orthogonally indecomposable MASA of 
lower dimension. The allowed decomposition patterns are 

1. (r, 2) = (s, 2) + / (2, 0) 	r = s + 21 l>1 

2. (r, 2) = (s, 2) + (1, 1) + /(2, 0) 	r = s + 21 + 1. 

A maximal Abelian nilpotent subalgebra (MANS) of o(p, q) is characterized by its 
Kravchuk signature (X p, À.), a triplet of non-negative integers satisfying 

2X + = p + q 	p,?-0 lqp. 	 (5.3) 

For a given MANS M the positive integer X is the dimension of the kerne] of M and 
also the codimension of the image space of M. For a given signature (X p, X) the MANS 
M can be transformed into Kravchuk normal form, namely 

	

(0 A 	Y 
X = 0 S —K0 AT 	K = ( Ko 

	

0 0 	0 	 4 
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A E exil  Y = —Yr  e RÀ" SK0  + KOST  = 0 

S GR/ Lx /1' Ko = K e Re" sgn Ko = (p — 2., q —X). 
(5.4) 

The matrix S is nilpotent, the matrix K0  fixed. The classification of the MANSs of o(p, q) 
reduces to a classification of matrices A, S and Y satisfying the commutativity relation 
[X, X'] = 0: 

AK0 A'T  = A' Ko AT 	AS = A' S 	[S, S'] = 0. 	 (5.5) 

Two types of MANSs of o(p, q) exist: 

1. Free-rowed MANS. There exists a linear combination of the Ã rows of the matrix A 
in (5.4) that contains g free real entires. 

2. Non-free-rowed MANS. No linear combination of the À rows of A contains more than 
- 1 real free entries. 

Proposition 5.3. An 
Three types of MANSs 

K =-Ko  

absolutely orthogonally 
of o(r, 2) 

1 

1 

indecomposable MASA of o(r, 2) is a MANS. 
exists. Using the metric 

Ko = 	
1) 	

(5.6) 
1  

they can be written as follows. 

1. Kravchuk signature (1 r 1), free rowed 
0 	a 	0 

X = (0 	0 	 —K0aT 	a e  RI xr .  
) 

(5.7) 
0 	0 	0 

2. Kravchuk signature (1 r 1), non-free rowed 

/0 	a 	0 	b 	0\ 
0 	0 	a 	0 	—b 

0 	0 	0 	-cir  
x= a,b ER 	a eRix(r-3). (5.8) 

0 	—a 	0 
0 	—a 

0 / 
3. Kravchuk signature (2 r -2 2), free rowed 

0 0 a 0 

X -= 
0 0 aQ 0 

_ QaT 
—x 

—aT 

) 

a  c  Rlx(r-2) 

0 0 
0 0 

diag(qt, • • • qr-2) 	0  
r-2 

Eqj = 0 

1  = 	igzi 	• • • ?-- iqr-21?- 0. 	 (5.9) 
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Proposition 5.4. The algebra o(2k, 2), k ?.. 2 has precisely one class of orthogonally 
indecomposable, but not absolutely indecomposable MASAs. It can be represented by 
the set of matrices {X, K} 

i CI a b1  b1  hk—i hk-1 0 c 	\ 
—a 0 b1  

0 
—b1  
a 

bk—i —bk_i —c 
—b1 

0 
—b1  

—a 0 —b1  61  

= 

0 
—a 

a 
0 

—bk_i 
—bk—i 

0 

—bk—i 
bk—i 

a 

(5.10) 

—a 0 

1 
1 

K= 2k-2 (5.11) 
1 

1 
The algebra o(2, 2) is exceptional for two reasons, namely we have p = q = even 

and moreover, it is semisimple rather than simple. Two orthogonal decompositions exist, 
namely those of proposition 5.2 with s = 0,1 = 1 in the first case, and s = 1,1 = 0 
in the second. The MANS of equation (5.7) also exists in this case, as does the MASA 
(5.10); however, those of (5.8) and (5.9) do not. On the other hand, two further MASAs 
exist, both decomposable, but not orthogonally decomposable. In terms of matrices, they 
are represented by 

x= 

( 

a 
= 

( 0 J 
K 

0 
—a —b) 	 0) 

—a 

= (5.12) 

and 
(a 

—b a 
X= 	 K= 	l 	 (5.13) 

—a —b) 	 J 0) 
b —a 

respectively. Thus o(2, 2) has six classes of MASAs. Propositions 5.1-5.4, as well as the 
results for o(2, 2), are proved in [12]. 

Let us now sum up the results on MASAs of o(p, 2) in terms of the physicar basis 
(2.7), (2.26), starting from the orthogonally indecomposable ones. 

1. The MANS, equation (5.7), of o(r, 2) corresponds to the translations 

{Po, Pi • • - • • Pr-11 	 (5.14) 

and is contained in e(r —1,1). 
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2. The MANS, equation (5.8), of o(r, 2) corresponds to 

{Po— 	L02 L12 + PO + P1, P3, • • • , Pr-1} 
	

(5.15) 

and is contained in e(r — 1, 1). 
3. The MANS, equation (5.9), of o(r, 2) corresponds to 

{Po — P1, Pk 	qk(Lok 	Lik), k =- 2, ... , r — 1} 
	

(5.16) 

and is contained in e(r — 1,1). 
4. The MANS, equation (5.10), of o(2k, 2) corresponds to 

12(L23  + L45 + • • • + L2k-2,2k-1) + (P0 — Pl) — (CO + C1), 

P.1 	PH-1 + Loi  + L11  — L0, j+1  — L1 ,11, j = 2, .. • , 2k — 2, Po + P11 
(5.17) 

and is not contained in e(r — 1,1). 
5. For the o(2, 2) case, equations (5.12) correspond to 

{Po — P1, D — Loi} 	 (5.18) 

and equations (5.13) correspond to 

{D — L01 , Po  — Pi  + (C0  + C1 )}. 	 (5.19) 

They are not contained in e(1, 1). 

In the orthogonally decomposable MASAs each component is an orthogonally 
indecomposable MASA of one of the types listed above. 

5.3. MASAs of e(p, I) classified under the group 0(p + 1, 2) 

Let us make use of the realization (2.28) of the algebra o(p 	1, 2) and choose Ko as in 
(4.4). The algebra e(p, 1) c o(p 	1, 2) is represented as follows: 

¡0 P+ a P- 0 	\ 
0 k ß  0 —p_ 

X = 0 —1/T _aT p_, p+ , k e R 
0 0 Y  —k 0 

\o 0 0 0 	/ 

ce,  p,  y E R1 x(p-1) 	R = — RT E 	 (5.20) 

In equation (5.20) R represents rotations in the subspace RP-1, and furthermore, we have 

P- 	Po — 	P+ Po + 	— (P2, 

k 	L01 	ß —  (L02 — L12, • • • , LOp 	Llp) 	 (5.21) 

Y "' (L02 + L12 . .... L0  + L1 ). 

We shall use a transformation represented by a matrix G e 0(p, 2), G e E(p, 1), 
namely 

Go 
G= ( 	 I p_ l  

Go  
GXG-1  = X 	GKGT  = K. 	(5.22) 
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The transformation (5.22) with Go •= (° 01 ) leaves R and Po - P1  invariant, interchanges 
a and p, i.e. Pi  and L01  - L11  (j -= 2, ... , p) and takes L01 , Po + P1  and L01  + L11  out 
of the o(p, 1) subalgebra that we will use to conjugate different MASAs of e(p, 1) that are 
inequivalent under E(p, 1). 

Let us now consider the individual decompositions of the space M(p, 1) listed in 
equation (4.29) of theorem 4.3. 

First of all we note that the presence of o(2) subalgebras acting in the M(2, 0) subspaces 
(for l 	1) implies an orthogonal decomposition of the corresponding MASA of o(p+1, 2). 
We are then dealing with Abelian subalgebras (ASA) of the form 

ASA[o(p + 1, 2)] = 1[o(2)] e ASA[o( j + 1, 2)] 	 j + 2/ = p. 	(5.23) 

From now on we only need to consider subalgebras of e(j,l) c o(j + 1, 2) and their 
possible conjugacy under 0(j + 1, 2). These MASAs of o(j + 1, 2) contain no rotations 
Lik. The following situations arise. 

1. k = 0, m = p - 2/ in (4.29) and j = m. The MASA of e(j , 1) consists of translations 
only:{Po, Pi , 	, }. This is the free-rowed MANS of o(j +1, 2) with Kravchuk signature 
(1 j+1 1) as in (5.7) and (5.14). 
2. k = 1, m = p 	- 1 in (4.29) and j = m+ 1. The MASA of e(j, 1) is an orthogonally 
decomposable MASA of o(j + 1, 2) of the form 

MASA[o( j + 1, 2)] = o(1, 1) Fp MANS[o( j, 1)] 

where the MANS of o(j, 1) has the Kravchuk signature (1 j -1 1) as in (3.1). In the 
physical basis it is {L01, P2, • • • 	}• 
3. k = 2, m = p -21 - 2 in (4.29) and j -= m + 2, K 0 in (4.27). We have the MASA 
1L02- Li2 ± (PO + P1), P0-P1, P2, • • • , P/1. This is a non-free-rowed MANS of o(j + 1, 2) 
with Kravchuk signature (1 j+1 1) as in (5.8) and (5.15). 
4. k 	2, m 	p - 21 - 2 in (4.29) and j 	m + 2, K = 0 in (4.27). We have the 
MASA {L02 - L12, PO - P1, P3, 	, 1)1}. The transformation (5.22) takes this algebra 
into {Po - Pl, P2, L03 - L13, • • • , L01 - L11}. Thus, if we are interested in conformally 
inequivalent MASAs, we must impose, for K 0 0, j 	3, i.e. m 	1 in (4.29). This 
MASA is a free-rowed MANS of o(j + 1, 2) with Kravchuk signature (2 j-2 2) as in (5.9) 
and (5.16). 
5. k 3, m = p -21 - k in (4.29) and j = m + k, a2  =- a3  = • • • = ai = 0 in (4.28). The 
MASA is {Po - P1 , L02. - L12, • • • , Lok - Llk, Pk+1, 	, Pi } and is conformally equivalent 
to {Po - P1 , P2, • . , Pk, LO,k+1 	L1,k+1, 	, Loi - L11}. It is a free-rowed MANS of 
o(j + 1,2) with Kravchuk signature (2 j-1 2) as in (5.9) and (5.16). 
6. k 	3, m = p - 21 - k in (4.29) so j = m + k, 1a21 = 1 	la31 	• • • 	((4.28). 
The MASA is {Po - P1 , L02 - L12 ±a2P2, • • • LOk Llk akPk, Pk+i, 	, l'i}. Again we 
have a free-rowed MANS of o(j + 1, 2) with Kravchuk signature (2 j-1 2) as in (5.9) and 
(5.16). 

We see that the MASAs listed above in cases 4, 5 and 6 are all related. Indeed, let us 
fix some value of j and consider the MANS, equation (5.9), of o(j + 1, 2). Cases 4 and 5 
correspond to the first two rows in (5.9) being 

0 	0 	a x 	0 	( 0 0 a2  • • ak 	O 	•••Ox 
4 	 p 	o -x ) 	4 o 0 • • • 0 Pk-1-1 • • • 131  o -x 

The transformation (5.22) with 
Go = ( 1 1 ) 

a b 	
(5.25) 

(5.24) 
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puts (5.24) in the standard form with 

(76) (aœ 	
œ 

c2e2 	• aak 0)0_1 - • • lei 

	

k 	13k+1 	• " 	,ß j 

with j — 1 free entries in row 1 and Q = diag(a/k _i, bii—k), with 

	

(k — 1)a + (j — k)b = 0 	b 0 a. 	 (5.27) 
An exception occurs when m = 0. The algebra then is {Po — P1 , L02 — L12, • • • , L0.1 — 

L11}. This is equivalent to {P0  + P1 , P2 , 	, Pi} and is hence not maximal in o(j + 1) (it 
would correspond to Q =- 0 in ((5.9), which is not allowed). 

Case 6 can also be transformed into the MASA of equation (5.9), i.e. equation (5.16) 
by a transformation of the form (5.22) with Go satisfying 

G0= 
b 

b + ai 0 0 	(k — 1)c + d(a2 + • • • + ak) + md = O. 	(5.28) 
c d 

Thus, all MASAs of e(k,l) discussed above in cases 4, 5 and 6 are special cases of the 
free-rowed MASA (5.9) of o(j+1, 2) with Kravchuk signature (2 j-1 2). To determine the 
decomposition of the space M(j, 1), consider a general transformation of the type (5.22). 
The entries depending on a in the first two rows of X transform as 

(a b\ 

ac  Q )  (:( c  ++ db  Q Q))) 
ad — bc 0. 	 (5.29) 

We have 

a ± b Q = diag(a bqi , a ± bq2, 	, a + 4-2) 	 (5.30) 
To obtain a decomposition we must annul as many as possible of the elements in the 

diagonal matrix (5.30) by an appropriate choice of a and b. This number is equal to 
the highest multiplicity of an eigenvalue of the matrix Q. Since we have Tr Q = 0, the 
multiplicity is at most j — 3. Let us order the eigenvalues in such a manner that the last 
entry in Q has the highest multiplicity equal to r. We then choose a and b in ((5.30) so 
that the matrix in (5.29) has the form 

i.e. the MASAs 
r2a2  Pœ'') 	

œ2 • • • 	as  

	

- • • 	rsas ßl

0 	• • • 	0 

•-• Pr) 
r+s=j 	(5.31) 

{P13 — Pl, P2 ± r2(L02 — L12), • • • , Ps 	rs(Las 	Li), Ps+1, • • • , Ps+r} 

ri  =0 2 ,j..<„s Er1 = 0 
i=2 

r2  = 1 	 jr31 	• • • 	Ir, I > O. 	 (5.32) 
Each integer s and set of numbers (r2 , 	, r.,) corresponds to an 0(p + 1, 2) conjugacy 
class of MASAs of e(p, 1). 

Finally, let us sum up the above results as a theorem. 
Theorem 5.1. A representative list of maximal Abelian subalgebras of the pseudo-euclidean 
Lie algebra e(p, 1) that are mutually inequivalent under the action of the conformal group 
0(p + 1, 2) coincides with a list of the MASAs of o(p + 1, 2) of the form 

MASA[e(p, 1)] 1[0(2)] fa) M 	j = p — 2/ 	 (5.33) 
where M is a MASA of o(j + 1, 2) contained in the subalgebra e(j, 1). Specifically we 
have the following. 

(5.26) 



61 

Maximal Abelian subgroups of Euclidean and Minkowski spaces 	1851 

1. M., o(1, 1) EDM0  where Mo  is a free-rowed MANS of o(j, 1) with Kravchuk signature 
(1 j —1 1) as in (3.1). The MASA of e(p, 1) is 

IL12, L34, • • • L21_1,21} e {P21+1, • • • , Pp_1}ED {L'op}. 	 (5.34) 

2. Mj is a free-rowed MANS of o(j +1, 2) with Kravchuk signature (1 j+1 1) as in (5.7). 
The MASA of e(p,1) is 

(L12, L34, • • • , L21-1,21} ED {PO, P21+1 • • • Pp}. 
	 (5.35) 

3. Mi is a non-free-rowed MANS of o(j + 1, 2) with Kravchuk signature (1 j+1 I) as in 
(5.8). The MASA of e(p,1) is 

{1,12, • • • L21-1,21} e {L0,21+1 	L21+1 + €(P0 + Pp), PO - 

P21+21 • • • Pp-1 	E=±1. 	 (5.36) 

4. Mi is a free-rowed MANS of o(j + 1, 2)) with Kravchuk signature (2 j — 1 2) as in 
(5.9). The MASA of e(p,1) is 

{L12 , . • • , L21_1,21} e {P2/+{ + q2/1_1(L0.2/+1 - L p,21+1), 

• • • Pp-1 + qp-1(LO,p-1 	L,,,_1),  PO - Pl)} • 

The algebra (5.34) is conformally equivalent to 

p fL12 , 	. , L21-1,21} e {Po - Pp (L0,21+1 - L,21-1-1) 	(12/+1 P21+1,  

(Los  — L ps ) as Ps, Ps+1, • • • , Pp-11 

r 	s =j 
	E ak -- 0 

	
av-ki -= 1 	la2,+21 	aJ > 0 	 (5.39) 

k=21+1 

where p — s — 1 is the highest multiplicity of any of the numbers q21+1, • • • qp• 

Let us give some examples of the last case in theorem 5.1 for e(5, 1). 

(i) {Po — P1, L02 L12, L03  — L13) El) L45 (,/ = 3). It can be represented as follows: 

0 a 
—a 0 

0 0 0 0 d 0 
0 0 b c 0 —d 

0 0 —b 
0 0 —c 

0 0 
0 

(5.37) 

(5.38) 

M= 

(5.40) 

(

K =

12 

 

J2 

J2 = 
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which is equivalent under 0(6, 2) to 

	

/O 	a 

	

—a 	0 
0 0 b c —d 0 
0 0 0 0 0 d 

M = (5.41) 
0 0 0 —b 
0 0 0 

0 0 
0 0 

Here K is as in (5.40). This algebra is 	Po — P1 , P2, P3} and is not maximal in e(5, 1) 
since we can add 1/30  + P1}. 
(ii) {Po — P1 , L02 — L12, L03 — L13} ED {P4, P5} (j = 5). It can be represented as 

M = 

	

/0 	0 	a 	b 	0 	0 	e 

	

0 	0 	0 	0 	c 	d 	0 
0 	0 	0 	0 	0 
0 	0 	0 	0 	0 

0 	0 	—c 
0 	0 	—d 

0\ 
—e 
—a 
—b 

K = 14 	 (5.42) 

0 0 
0 0/ 

This is equivalent under 0(6, 2) to 
/0 	0 	a b 	c d 

0 	0 	—a —b 	c d 0 —e 
0 0 	0 0 a —a 

= 0 0 	0 0 b —b 
(5.43) 

0 0 —c 
0 0 —d —d 

0 0 

and M 	{Po — P1 , L02 — L12 — P2, L03 — L13 — P3, L04 — L14 + P4, L05 — L15 + P5}. We 
see that here we have a free-rowed MANS of o(6, 2) with Kravchuk signature (2 4 2). 
010 {P0 — P1, L02 — L12 + P2, L03 — L13 ± aP3, L04 — L14 — (1 + a)P4, L05 — L15} M. 
This algebra is conformally equivalent to M — {Po — P1, P2 + L02 — L12, P3 + a(L03 — 
L13), P4  — (1 	a)(L04  — L14)} and hence not figure in the list given in theorem 5.1 (i.e. 
M' will figure, but M will not). 

6. Separation of variables in Laplace and wave operators 

6.1. MASAs and ignorable variables 

Let us consider an n-dimensional Riemannian, or pseudo-Riemannian space with metric 

ds2  = g,k (x)dxl  dxk 	 (6.1) 

0 0 
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and isometry group G. The Laplace—Beltrami equation on this space is 

&Bq' = EW 
n a 

ALB = g -1/2 2 --7g1/2 gif 
aXi 	0X1  i,j=1 

g = det(gii ) 
(6.2) 

and the Hamilton—Jacobi equation is 

i; 	
=E. 

8x 
as E  

g  axi axi 	* 
(6.3) 

We shall be interested in multiplicative separation of variables for equation (6.2) and 
additive separation for equation (6.3), i.e. in solutions of the form 

W(x) =- n (x,,,,,...,,n) 	 (6.4) 

S(x) 	Si(Xi, Cl, • • • 'cri) 	 (6.5) 

respectively. Here the ci are parameters, the separation constants and 	and Si  obey 
ordinary differential equations. 

A variable xi is ignorable [8] if it does not figure in the metric tensor gik . Ignorable 
variables are directly related to elements of the Lie algebra L of the isometry group G [7]. 
Indeed, let Xi.....X1  e L be a basis for an Abelian subalgebra of L. We can represent 
these elements by vector fields on M expressed in terms of the coordinates x. Let us further 
assume that these vector fields are linearly independent at a generic point x e M. We can 
then introduce coordinates (locally) on M 

(X1, . • • 	n) 	(cei , • • • , œr, si , • • • , sk) 
	

k 	n 	 (6.6) 

which straighten out this algebra 

a 
X = — 	= 1, ...,1. 	 (6.7) i 	acei  

The variables cei  are the ignorable separable variables [7, 8]. Each MASA of the isometry 
algebra L will provide a maximal set of ignorable variables, both for the Laplace—Beltrami 
and Hamilton—Jacobi equations. 

Specifically, for the spaces M(p, q) of this paper, we generate the coordinates as follows. 
We use the realization (2.2) of the group E(p, q) but restrict H to be a maximal Abelian 
subgroup of E(p, q). We have G = (exp X), where X is one of the MASAs we have 
constructed. We then write 

(xi 	
= ex 

 s 
1 

s e R 	 (6.8) 

where s represents a vector in a subspace of M(p, q) parametrized by non-ignorable 
variables (si, • • • , sk), and X is a MASA of e(p , g), parametrized by a set of ignorable 
variables. 
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6.2. Ignorable variables in Euclidean space M(p) 

For Euclidean space the above considerations are entirely trivial. In Cartesian coordinates 
we have 

	

2 	82 

	

A = — 	-I- • • • + — 	 (6.9) 

	

ax i 	04' 
In view of theorem 3.3 we split the space M(p) into a direct sum of one and two-dimensional 
spaces. In each M(1) we have a Cartesian coordinate xi, corresponding to the translation 
F. In each subspace M(2) we have polar coordinates, e.g. M12 = a/aCii corresponds to 

x1  = si cos cei 
(6.10) 

X2 = s1  sin a l  
with ai ignorable. 

6.3. Ignorable variables in Minkowski space M(p, 1). 

Here the situation is much more interesting. In Cartesian coordinates we have 
11,i W = Etlf 

ALB 	Dp,1 = 
82 	 2 	2 

— — — 
0x12 	 0X2  aX02  

(6.11) 

Consider the decomposition (4.29) in theorem 4.3. In each indecomposable subspace we 
introduce a separable system of coordinates with a maximal number of ignorable variables. 
Each space M(1, 0) corresponds to a Cartesian coordinate, M(2, 0) to a polar coordinate as 
in equation (6.9). Now let us consider the coordinates corresponding to M (k, 1). 

M(0, 1): 	xo 

M(1, 1): 	xo = ,o cosh a 	x 1  = s sinh a 

xo = p sinh a 	X2 = s cosh a 

(for x - x; = ±s2, respectively). 

M(2, 1): the algebra (4.27) with K = 1 provides two ignorable variables, z and a and we 
have 

xo +x1  = r•N/i, 2a 

xo — x1  = r a 2 	a 3  — 3 
X2 = —a 2  — arfi 

The coordinates (6.12) were obtained using equation (6.8) with 

(6.12) 

/0 aji 0 z12-  
0 0 —a./2 0 

G = ex  X= 
0 0 0 a N/ 

\0 0 0 0 
We then have 

s 
 = (

0 
0 . (6.13) 

Po — PI = -- 
az 

a 
L02 — L12 4" PO ± P1 = Oa 

(6.14) 
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and the operator in this M(2, 1) subspace of M(p,1) is 

r- 82 	1182 	1 a 	,fî 82 	1 1 a 	1 a 	1 1 a 
E12,1 = 'V2—araz + -2 —r2-0a2 —r2—ar2 —r2 —araa + .1-27 Fz 	ar 	aa .  

(6.15) 

The separated solutions of the wave equation (6.11) have the form 

W = RE„,/  (r)enizela  . 	 (6.16) 

The equation for REml(r) = R has the form 

R" + fi(r)R + '4 (r)R = 0. 	 (6.17) 

Using the transformation 

R(r) = f (r)W (p) 

( 	
(6.18) 

f(r) = r1(2-À-;̀ ')  eXp — 
mr3 4_  lr 

p = r-2  
3 	•ii,) 

we obtain the equation 

W" -I- p(p)Ir -I- q(p)W = 0 	 (6.19) 

where p(p) and q(p) are 
1 - 

P(P) = 	r 	
q(p) = -k2  + 2ar2  --1- XX'r4 	 (6.20) -2 

(A - 1) ± .1(a - 1)2  4m2  
= 	  

2 
1 - 	- = A A = 3 or 	2a = /nysfi - E. 

(6.21) 

The solution of (6.19) is a confluent hypergeometric series [20]. 
Let us consider the space M(k, 1) with k „>... 2 and the splitting MASA (4.28) with 

a2  = a3  = • • • = ak  = 0. The corresponding matrix realization is given by equation (4.1) 
with Mo and y as in equation (4.4) and all the Mi and x absent. Applying equation (6.8) 
with 

	

(0 	a 	0 	z ) 

	

0 	0 	-aT 	0 
x= 

	

00 	0 	0 

	

00 	0 	0 

we obtain the coordinates 
xk  ± xo  = r.../2 

1 
xk  - xo = -raaT — ± 

-a 
= 

xk_i = -rak-z• 
The wave operator in these coordinates 

	

02 	k -1 a 
Dk,1 	2 = 

Zfi 

is 

S = 

k-1 

( 

2 a 

(6.22) 

(6.23) 

(6.24) 
azar 	r 	Oz r 2 aa2 .  



66 

1856 	Z Thomova and P Winternitz 

The variables z and ai  are ignorable (only r figures in equation (6.24)) and indeed we 
have 

Po — Pk = —v z— 	Loi — Lki =  
az 	 aa, 

The solution of the wave equation then separates 
k-1 

= R(r)ez n  
with R(r) as follows: 

k-1 1,2 Er = r —k12 exp  (
r 2m 

R(r)   exp Fm  . 	 (6.27) 

We have shown in subsection 5.3 that this MASA is conformaly equivalent to a 
subalgebra of the algebra of translations, namely to (P0 — P - k, - P 1, • • • , Pk-1). A consequence 
of this is that we can relate these coordinates to a set of Cartesian ones. Indeed, we can 
rewrite equation (6.24) as 

82 	82 	82 
uk,1  = 

(Yo 

yk) (kl)(yo 	

Yk 

)2   vo  + yk ock_i )  
ah; ay; 

with 
1 

Xi + Xo = 	N/7, 
Yo Yk 

1 	1 	 2 2 

	

Y( 0 — 	" " y) N/2 Yo Yk 

Yo Yk 
We note, however, that the wave equation separates in coordinates (r, z, ai) but not in 
(Yo, h, • • • 5 Yk) .  

Now consider the space M(k, 1) for k ?.. 3 and the non-splitting MASA (4.28) with 
0. The coordinates we obtain are 

xk 	x0  -= 1-12 

1 
—

(
2z — 	aAaT) 

N/2 
Xj = (qi — r)ozi (6.30) 

Xk-1 = (qk-1 	r)cek-i • 
The wave operator is 

02 	k-1 	) a 	k-1 	 82 
nk,1 = 2 azar (qi 	I.)  Oz +P (qi - r)2  ace 	

(6.31) 

We see that ak, z are ignorable variables. The solution of the wave equation then separates 
and we have 

k-1 
qJ = R(r)emz  n 	 (6.32) E1 

(6.25) 

(6.26) 

(6.28) 

(6.29) 

x 1• =  	j = 1, . . . , k — 1. 
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with R(r) equal to 

1 k  b? 
exp (— . 

Er
) R(r)  =n 	

qI  -- r 

	

(q, - r)-7  exp (- —  	 (6.33) 

	

2m 	• 	2m 

We mention that the three new coordinates systems, equations (6.12), (6.23) and (6.30) 
are all non-orthogonal, hence the cross terms (mixed derivatives) in the corresponding forms 
of the wave operator. 

7. Conclusions 

The classification of MASAs of e(p, 0) and e(p, 1) performed in this paper is complete, 
entirely explicit and the results are reasonably simple. Indeed, they are summed up in 
theorems 3.1, 3.2 and 3.3 for e(p, 0) and theorems 4.1, 4.2, 4.3 and 5.1 for e(p, 1). 

In section 6 we have presented a first application of this classification. Namely, we have 
constructed the coordinate systems (6.12), (6.23) and (6.30) which allow the separation of 
variables in the wave equation and have the maximal number of ignorable variables. In 
turn, these coordinate systems have further applications. 

Thus, instead of the wave equation itself, let us consider a more general equation, 
namely 

[D + V(x)]x11  = EW. 	 (7.1) 

First of all, it is possible to choose the potential V(x) to be such that equation (7.1) allows the 
separation of variables in one of the above coordinate systems. The obtained equation will 
be integrable in that there will exist a complete set of p second-order operators commuting 
with H = D + V and with each other. They will be of the form X + fi(xi) where {X1 J is 
the corresponding MASA and f1  (x) is a function of the corresponding ignorable variable. 
The actual form of f depends on the separable potential V(x) [21, 22]. 

The coordinates (6.30) have been used to construct equations of the type (7.1) that obey 
the Huygens principle [23]. The Crum-Darboux transformation [24-26] can be used to 
generate specific potentials V(x) (depending on one ignorable variable in a given separable 
coordinate system) that have specific integrability properties. In particular this provides a 
method for constructing overcomplete commutative rings of partial differential operators 
and algebraically integrable dynamical systems [27-29]. 

The reason we bring this up here is that Crum-Darboux transformations have 
taditionally been performed in Cartesian or polar coordinates. The fact that they can 
be applied to other types of coordinates, associated with other types of MASAs, opens new 
possibilities. 

Work is in progress on the classification of MASAs of e(p, q) for p q_.>„ 2 [30]. 
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ABSTRACT 

We use the methods of group theory to reduce the equations of motion of two 
spin systems in (2+1) dimensions to sets of coupled ordinary differential equa-
tions. We present solutions of some classes of these sets and discuss their physical 
significance. 

Les méthodes de la théorie des groupes sont utilisées pour réduire les équations 
du mouvement de deux systèmes de spins de dimensions (2+1) à des systèmes 
d'équations différentielles ordinaires. Les solutions de certaines classes de ces 
systèmes sont presentées et les aspects physiques sont discutés. 
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1. Introduction 

In this paper we look for solutions of the equations of the Landau-Lifshitz 
model (with, perhaps, nonvanishing anisotropy) and of a nonlinear vector diffusion 
equation. The equations are given, respectively, by 

aç-b3 	-• t .oxF 

and 

where is given by 

= 2\ç-b'+ (A03  B)é3, 	 (1.3) 

where é3  is a unit vector in the 3rd  direction in the space and çb satisfies 	= 1. 
A and B are possible anisotropy coefficients. 

The motivation for this work comes from the original observation made by 
Landau and Lifshitz [1]  in their study of the ferromagnetic continuum. They pointed 
out that for phenomena for which substantial spatial variations occur only over a 
large number of lattice spacings, we can use the continuum approximation. They 
showed that a ferromagnetic medium is characterized by the magnetization vector 
ii (like the vector above) which precesses around the effective magnetic field 
and so obeys, what is now called the Landau-Lifshitz equation, namely (1.1). Since 
the original work of Landau and Lifshitz many papers have been written on the 
subject [21  and the equation has been modified by the inclusion of various additional 
terms to 1. It has been used to describe the dynamics of magnetic bubbles in a 
ferromagnetic continuum and also of vortices in HeII or in a superconductor [2] . 
Various studies of the dynamics of such topological soliton-like structures have 
been performed both theoretically and experimentally [3] [4]  and they have exhibited 
many interesting, and perhaps unexpected, phenomena - like the skew deflection 
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of these structures under the influence of a magnetic field gradient which resembles 
the more familiar Hall motion of electrons in external magnetic and electric fields [5] . 

A recent work of Papanicolaou and Tomaras [2]  as well as some earlier work of 
other people [6]  has shown that many experimentally observed facts can indeed be 
explained using the Landau-Lifshitz equation. Much of the work involved deriving 
various conserved quantities describing these structures and then using them to 
restrict the description of the dynamics. All this work has provided further evidence 
as to the relevance of the Landau-Lifshitz equation to the description of physical 
phenomena. However, as the Landau-Lifshitz equation is quite complicated, only 
some results were obtained in an analytical form. Most more recent studies [7]  
involved numerical simulations. 

The vector nonlinear diffusion equation (1.2) has fess obvious physical appli-
cations but it has been used [5]  in the study of phase ordering kinetics where one 

investigates the time evolution of a system quenched from the disordered into an 
ordered phase. This topic has attracted considerable attention in recent years [9]. In 
fact, it has been shown that many features of phase ordering in systems supporting 
topologically stable defects (for example, in systems described by the 0(N) vector 
model in d dimensions with d < 

N [10] [11]. ) , or in two and three-dimensional nematic 
liquid crystals [12]  can be understood theoretically by investigating the dynamics 

of the numerous topological defects generated during the quench. A special and 
interesting case is that of the 0(3) model system in 2 spatial dimensions. It sup-
ports topologically stable, but non-singular objects which, in the condensed matter 

community language, are called topological textures. Such systems were studied 
numerically in ref. [8]. 

Given the paucity of analytical results for both equations (1.1) and (1.2) (es-
pecially involving the dynamics) one of the aims of this paper is to see what time 
dependent solutions can be found using the group theoretical method of symmetry 

reduction [13] [14][15] 
• This method exploits the symmetry of the original equations 

to find solutions invariant under some subgroup (the classic example one can give 
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here involves seeking solutions in three dimensions which are rotationally invari-
ant). The method puts all such attempts on a unified footing and it has been 
applied with success to many equations[16]  . The method gives equations whose 
solutions represent specific solutions of the full equations; the solutions are deter-
mined locally and the method does not tell us whether these solutions are stable 
or not with respect to any perturbations. 

In a recent paper[11, two of us (PW and WJZ) together with M. Grundland, 
have applied this technique to looking for solutions of the relativistic cpl model. 

In this paper we investigate solutions of (1.1) and (1.2). We are particularly 
interested in time dependent solutions; all time independent solutions of (1.1) and 
(1.2) (when there is no anisotropy) are also the time independent solutions of the 
relativistic model and so can be found in ref [17]. 

Like in the relativistic CP1  model studied before, in order to perform the 
symmetry reductions, we have to decide what variables to use. To avoid having to 
use the constrained variables (0) it is convenient to use the W formulation of the 
model which involves the stereographic projection of the sphere çb • 0 = 1 onto the 
complex plane. In this formulation instead of using the 0 fields, we express all the 
dependence on 0 in terms of their stereographic projection onto the complex plane 
W. The fields are then related to W by 

W + W* 	.W — W* 	_ rwl2 
01=  	02 	z 	 5 03 =  	 (1.4) 

1 + el
2 	

1 ± 114712 	 1W12 

To perform our analysis it is convenient to use the polar version of the W 
variables; i. e. to put W = R exp iQ and then study the equations for R and Q. The 
advantage of this approach is that the equations become simple; the disadvantage 
comes from having to pay attention that R is real and Q should be periodic with a 
period of 27r. (If the period is not 27r then the solution may become multi-valued) 
Thus if we find solutiâns that do not obey these restrictions, then these solutions, 
however interesting they may be, cannot be treated as solutions of the original 
model. 
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In the case of the Landau-Lifshitz equation the equations for R and Q take the 

form 

atR 2 	(1  — R2)  (axQaxR 3yQ0yR) — ROT A + OyyQ) = 0 	(1.5) 
(1 -I- R2) 

1 — R2  a„R + ayyR 
atQ = B + A 	 1 + R2  

(1 — R2 ) f 	fa 	\ 	2 	 f 
4-  (1 ± R2) Cx(2)2  + luyQ)

2  )+ (1 + R2) VaxR)2 + (0yR)2 ), 

while for the diffusion case they are respectively 

aiQ 	2 (1. R2)  (3x(28x R + OyQayR) — (3x,C2 + OyyQ) = 0 	(1.7) R(1 + R2 ) 

1 — R2  n  at R + BR + AR1 + R2 uxxi Clyy 

+ (1 — R2 )R 	 2R  o.  
(1+ R2) 	

Q)2 
a' 	

(ay(2)2) ± 	((a 42 ± (&R)2)2) 
(1+ R2) 	x 

(1.8) 

Note, that, in the Landau-Lifshitz case, if we put R = 1 the equations become 
AQ = 0 and atQ = B which have a very simple solution, and in the diffusion case, 
we have to set B = 0 and then we end up with 34 — AQ = 0 as the equation for Q. 
The latter case is the nonrelativistic analogue of what was found in the relativistic 
case where R = 1 reduced the equation for Q to the linear wave equation for the 
phase Q. 

In the next section we determine the symmetry group of our equations (1.6) 
, (1.5) and of (1.7) and (1.8) . In the following sections we solve the derived 

equations and discuss their solutions. 

and 

and 

(1.6) 
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2. The Symmetry Group and its Two Dimensional Subgroups 

The symmetry group of our systems of equations, respectively (1.6) and (1.5) 
and (1.7) and (1.8) , can be calculated using the standard methods [13] [14] [15] [16] 

We actually made use of a MACSYMA package[18]  that provides a simplified and 
partially solved set of determining equations. 

Solving the determining equations we find that three different cases must be 
distinguished: 

1. A = B = 0, i.e. the anisotropy is absent. The Landau-Lifshitz equation 
and the diffusion equation have isomorphic symmetry groups, consisting of 
translations in space and time directions, rotations in the x, y plane, dilations 
and a group of 0(3) rotations between the components of the field 	The 
corresponding Lie algebra L1  has the structure of a direct sum 

8(2,1) 9 o(3). 	 (2.1) 

Bases for these two algebras are given by the following vector fields, acting on 
space-time and on the fields in the {R, Q} realization of eq. (1.5)-(1.8): 

s(2, 1) : Po = at, 	= 	P2 = a y, 

L 	—x0y  + yOx , D = 2t0t  + x0z  + y. 
(2.2) 

o(3) 	X = 

Y= 

1 
— —

R
) (9Q cosQ (R2  + 1)0R ) , 

- -
1 )0Q - sinQ (R2  + (2.3) 

Z = 0Q . 

2. A 	0. 
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The symmetry algebra for both equations is reduced to 

L2 = 	Pi, P2, Ll e {z}, 	 (2.4) 

i.e. the dilations are absent and the only rotations left are those around the 
third axis (i.e. around 03). 

3. A = 0, B O. 

The symmetry algebra for the dissipative equations (1.8) and (1.7) is still L23 
as in (2.4). That of the Landau-Lifshitz equation is 

L3 = {-130, Pll P2, L, 	e {x, Y, Z}, 	 (2.5) 

with 

= 2t3t  + xax  + yay  + 2BtOQ 	 (2.6) 

and Q is replaced by Q — Bt in X and Y, eq. (2.3) . 

In order to perform symmetry reduction we need to classify the subalgebras 
of the symmetry algebras L1, L2 and L3. We wish to reduce equations (1.5)-(1.8) 
to ordinary differential equations. To do this, we will require that the solutions 
are invariant under a two-dimensional subgroup of the symmetry group. In order 
to do this systematically we need to derive a classification of the two dimensional 
subalgebras of the symmetry algebra. Moreover, we can restrict ourselves to sub-
algebras, all elements of which act nontrivially on space-time, i.e. which do not 
contain any rotations in space. 

The subalgebra classification can be done in an algorithmic way [14];  the results 
are quite simple and we present them without a proof. 

1. A -= B = O. Every two-dimensional subalgebra of L1, each element of which 
acts nontrivially on space-time, is conjugate under the action of the group of 
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inner automorphisms to one of the following ones 

A2,1 ={Pi. + aZ, P2 ± bZ}, 

A2,2 ={L aZ, Po + bZ}, 

A2,3 ={P0 aZ, P2 ± bZ}, 

A2,4 ={PO — VPi aZ, P2 ± bZ}, v 0, 	
(2.7) 

A2,5  ={D bL + aZ, Po}, b 0, 

A2,6  =ID + aZ, Pd, 

A2,7  ={D + aZ, L + bZ}, 

Am =ID + aZ, P2}. 

The parameters a, b and v are arbitrary real numbers. In some cases their 

ranges can be further constrained but that is not important for our purposes. 

2. A 	O. 

Every two-dimensional subalgebra of the considered type is conjugate to one 

listed above as A2,1, .-A2,4- 

3. A = 0, B O. 

For the dissipative equations (1.8) and (1.7) the subalgebra classes are repre-

sented by A2,1, ...A2,4. For the Landau-Lifshitz equations (1.5) and (1.6) they are 

represented by A2,1, • •.A2,8 with D replaced by 15 and Po replaced by Po = Po +bZ. 

We can now proceed to perform various reductions. We are particularly inter-
ested in reductions that do not result in time independence as these were already 

studied in ref [17]. 
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3. Solutions of the Landau-Lifshitz Equation 

3.1. GENERAL PROCEDURE 

Our aim is to solve the Landau-Lifshitz equations (1.5) and (1.6) , using the 
method of symmetry reduction. This involves assuming that a solution is invariant 
under a subgroup Go of the symmetry group G, namely one of the two dimensional 
groups corresponding to the algebras A2,1,. . . , A2,8 of (2.7). The assumption makes 
it possible to reduce the partial differential equations (1.5) and (1.6) to a pair of 
coupled ordinary differential equations. Whenever possible, we decouple them and 
find explicit solutions for the functions R and Q, hence for W, and finally for the 
vector figuring in (1.1) . 

For all 8 algebras in (2.7) the invariant solution will have the form 

R(x, y ,t) = R() , 	Q (x, y ,t) = ce() + 0(x, y ,t) 	(3.1) 

where e and e are explicitly given and R(e) and a(e) satisfied coupled ordinary 
differential equations obtained by substituting (3.1) into (1.5) and (1.6) . 

The reduced equation (1.5) is 

( .7 e)2 ctc, + [ 2  (1  — R2) 	 (1 — R2 )  

	

CV')2Re+3,e]a = 	2 	-/k(Ve, " 	R(1 + R2 ) 	 R(1 + R2) 	VO) — AO. 
(3.2) 

For algebra A211  we have 

	

= AO = 	= 1 
	

(3.3) 

and so (3.2) reduces to Re = O. 

In all other cases we have (Ve)2 	O. Eq. (3.2) is a first order linear inhomo- 
geneous equation for ae. We can integrate it explicitly and obtain ae in terms of 



80 

R, whenever the functions C  and ß satisfy 

d (  h 	 d [h(' 	)(3)] 	hAe  = 0 	(3.4) 
(Ve)2 = , ck- 	 e)2  

where 
h() = 1 for z= O, 

(e) _ 	 (3.5) 
	 for Ae O. 

h(e) (Ve)2  

Conditions (3.4) are always satisfied for the algebras A2,2 . . A2,6, not however 
for A2,7 and A2,8. When conditions (3.4) are satisfied, we can integrate eq. (3.2) 
once to obtain 

	

S (1 + R2 )2 	1 + R2  
ae 	h R2 	± P  R2 + 

y 	 (3.6) 

where S is an arbitrary real integration constant and where we have 

ii = --1, 	v = 0, 	for 	A2,4 
1 - t = 0  , 	for 	A2,5 

11  = 01 	V  = 1
a
-Fe2 , 	for 	A2,6 

i-t = 05 	v = 0, 	for A _2,2, A2,3. 

Equation (1.6) for algebras A2,2,. 	A2,8 is reduced to a second order differ- 
enflai equation for R(e), that also involves c(e).  For reductions corresponding to 
Lie algebras A2,2,. , A2,6 we can substitute cx from (3.6) , to obtain an ordinary 
differential equation for R() alone. To transform this equation to a standard form 
we put 

R( -) = \/— U(71), 	= 	h-1(e)Ck• 	 (3.8) 

The equation for U(77) is then written as 

U 	= ( 2U+U-14  
1 	1 \ 	2S2

(U+1)(U 1)3±pU(U  +1) 
 +qU+m(U —1)2. (3.9) 

lm    

Equation (3.9) can be integrated in ternis of elliptic functions if p, q and m are 
constants. This is always the case for algebras A2,3, .. , A2,6. In the case of algebra 
A2,2 this is true if we set A = 0, B = b. 

(3.7) 
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Eq. (3.9) has a first integral that we can write as 

U 2  — —4S2U4  + KiU3  + KU 2  + K2U + K3 
	 (3.10) 

where K is an integration constant, and the constants K1, K2 and K3 are related 

to the coefficients S,p,q and m in (3.9) . 

In this article we restrict ourselves to solutions of the Landau-Lifshitz equation 

that are obtained by solving (3.10) . 

We shall first discuss solutions of (3.10) in general, then run through algebras 

A2,2 • • • A2,6 and specify the values of the coefficients in (3.10) in each case, as 

well as the independent variable n. 

Algebra A2,1  leading to a first order equation, will be treated separately. 

3.2. SOLUTIONS OF THE ELLIPTIC FUNCTION EQUATION 

We shall call (3.10) the "elliptic function equation". Its solutions are of course 

well known[19]. We shall however list those that are relevant in the context of 

solving (3.9) , and more importantly, the Landau-Lifshitz equation. 

Several comments are in order here: 

1. The functions R(7/) must be real (and nonnegative), hence U(77) must be real 

and nonpositive. 

2. For S 0 the coefficient of the highest power of U in (3.10) is nonnegative. 

this means that all real solutions of (3.10) are nonsingular. 

3. For S -=- 0, K1  0 in (3.10) the real solutions of (3.10) can be singular. Since 

we are really interested in the fields Oi we note that singular solutions of U 

will give regular functions Oi. 

4. In general, equation (3.10) is solved in terms of Jacobi elliptic functions. 

However, these reduce to elementary functions whenever the polynomial on 

the right hand side has multiple roots, or when S = K1  =- 0. 



U() = u2 1 + S2 (U2 - U1)2(17 - 70 2  
U2 — Ul (3.12) 

Let us run through individual cases. 

I. S 0 

We rewrite (3.10) as 

U71 = -4s2(U - ui)(u - (M(U - u3)(u - u4) 
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(3.11) 

1. U1CUU2=U3=U4cO 

this is an algebraic solitary wave, equal to U2 for n 	±oe, and dipping 

down to U1  for rj = no. 

2. Ui  = U2 U3 < U < U4 < 0 

U4 — Ul  
U (Ti) Ul  + 1 + S 2  (U4 — U1) 2  ( 71 — 

Also an algebraic solitary wave, rising to U = U4 for rj = 
for 77 —› +00. 

3. Ul  < U < U2 = U3 < U4, U2 < 0 

(U4  - U2)(U2 - U1)  =u2 
(U4 — Ui) cosh2  /1(7) 770) — (U2 — U1) 

p =S\/(U4 — U2)(U2 — Ui) 

(3.13) 

equal to Ui 

(3.14) 

4. Ui < U2 = U3 < U < U4 < 0 

(U3 — U1)(U4 — U3)  
U(77) -= U3 + 

(U4 — U1) coSh2  ii(7) — 710) — (U4 — U3) 
(3.15) 

with p, as in (3.14) . 

The last two solutions are solitons, the first one a well, the second a bump. 



5. Ui < U < U2 < U3  = U4 , U2 < 0 
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(U4 — U2)(U4 — Ui)  
UN =U4 

(U2 — 	) sin2  I-1(7/ 770) + U4 — U2 
p, =-S-V(U4 — U2)(U4 U1) 

6. Ui = U2 < U3  < U < U4 < 0 

(U4 — Ui)(U3 — Ui)  
U(77) =U1 + 

(u4 — u3) sin2  m(
7
) — rio) + u3 — u1 

p =S/ (u — U1)(U3 — U1) 

7. Ui < U < U2 < U3 < U4 , U2 < 0 

(U4 — U2) (U4 — Ui)  
u(77) =U4 (U2  — Ui)sn2  (I1( 71 — no) , k) + U4 — U2 

(u4 — U3)(U2 — U1) =s/(u 4 — U2)(u3 — u1), k2 
 = (U4 — U2)(U3 — Ui) 

8.  

(U4 — Ui)(U3 — Ui) 
u (ri) = 	+ 

(U4  — U3)87-12  /-1( 97 — 71o) + U3 — 

with k2  and p as in (3.18) . 

9. Ui < U < U2 < 0, U3,4 = p iq, q > 0 

(MU ]. — NU2)c71(11( 77 710), k) + MU]. + NU2  U(77) = 
(M — N)cn(p(ii — rio), k) + M + N 

2 =(/2  _ p)2 + q2, N2 	(u-1 .77)2 q2 

k 2 =  ( U2 —U1)2   — (NI — N)2
, p=2SVMN 

4M N 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Solutions (3.16) , 	, (3.20) are periodic. All the elementary solutions can be 

viewed as limits of solutions (3.18) , (3.19) and (3.20) . 
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Set 
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= 	-il Ki I (u3 — Ui 

 

(3.21) 

1. < 0 , 	= U2 < U ( U3 < 0 

U = U3 - ( U3 - U2 ) tanh2  µ(77 — rio) 

2. Ki < 0, U < = U2 < U3 , < 0 

U 
(U3 - Ui) 

	

=U3 	 
tanh2  f.t(ri — rio) 

(3.22) 

(3.23) 

3. K1 0, U U1 =U2=U30 

1 
U = 	V —Ki (7) — 770) 2  

(3.24) 

4. Ki < 0, U < 	< U2 = U3 , < 0 

U = U3 

5.  

U3 - U1  
(3.25) 

sin2 1.2(77 — no ) 

U = U3 - ( U3 - U2)sn2  (p(ri — 770), k), 	k2  = 
U3 - U2 
	 (3.26) 

U3 -U1  

6. Ki < 0, U <U1 < U2 G U3,U1< 

U3 - U1  
U = U3  	 (3.27) 

sn2(P(77 	7/0), k) 

k as in (3.26) 



2A 
U =Ui + A 

1 — cn(u (77 — Tm), k) 
A2 (p uo2 q2 ,  A—p+Ui 

k 2  = 
2A 

= AKilA 
(3.30) 
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7. K1 >O,U1 U U2 =U3 =O 

U = U1 	2 
COSh 1-1.07 — no) 

 

(3.28) 

 

8. Ki > 0, < U < U2  < 0 < U3  

U = (U2  U1)8712  (11(77 — 770) , k) , 	k2  = U2— 
U3  — U1  

(3.29) 

9. Ki < 0, U1  < 0, U2,3 =p±i,q,q>0 

   

III. S = 0, 	= 0, K 0 

1. K > 0,U < < 0 < U2 

   

\/IC  U = 	— (U2 — Ui) sinh2 	(Ti
2 	

rio) 

2. K > 0,U < = U2  = 0 

U 	— exp(— 7K.  — 7)o)) 

3. K < 0 , < U < U2  < 0 

(3.31) 

(3.32) 

"V--K  U = 	+ (U2 — Ui) cos2  2  (3.33) 

IV. S = = K = 0, K2  0 

K3  K2  
U -= K2 
	(ri — 710) 2, K2 < 0, K3  < 0 	(3.34) 

4 

V. S=Ki=K=K2 =O 

U 	N/K3  (77 — 770), K3  > 0 	 (3.35) 
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3.3. INDIVIDUAL REDUCTIONS 

1. Algebra A2,1. 

This is an exceptional case when (3.2) implies Re  = O. We find that the only 
solution for W of (1.4) is 

R2 
W = RoeiQ, Q = ax + by + (B + 	(a2 b2 	ao  

1+ 4!)  
(3.36) 

where Ro and ao are integration constants. 

2. Algebra A2,2 . 

We find 

	

W =•-• R(p) exp i[a(p) + 	bt], 	e = p 	(3.37) 

where p and 0 are polar coordinates. The singlevaluedness of W requires a to be 
an integer. The phase a(p) and variable 77 satisfy 

cïp(p)  = (1 ± R2 )2  

	

pre2 	, 	= ln p 	 (3.38) 

(see (3.6) ). For the function U(77) of (3.8) we obtain the elliptic function equation 
if and only if we set 

A = 0, 	b = B 	 (3.39) 

(A and B are defined in (1.6) ). 

We have 

= K2  = 2a2  + 4S- —
K 
 K3  = —4S2  

2 
(3.40) 

in (3.10) . 



U 2  = 2(a2  — —
K 

)U(U — th)(U — U2), 4 (3.42) 
Ui U2 = 1 , 	+ U2 = K — 4a2•  

2K 
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For S 0 eq. (3.40) implies that we can have two negative and two positive 

roots in eq. (3.11) or two negative roots and two complex conjugate ones. These 

cases lead to real solutions, namely (3.16) , (3.18) and (3.20) . Note that all of 

them are periodic. In particular, for a = 0 eq. (3.11) always has a double root 

U3  = U4 = 1 and reduces to 

U 2  = —4S2 [U 2  + (1 + —)U+1] 
	

(3.41) 

For S = 0, K 4a2  we obtain the equation 

The relevant solutions of (3.42) in this case are: 

1. 2a2 í K 4a2 ,U1 íU2 í0 

solution (3.29) (with U3  = 0). For K = 2a2  we have U = —1. 

2. K> 4a2, U1< U2  < 0 

Solutions (3.26) , (3.27) , (3.22) and (3.23) (all with U3  =0).   

3. K >4a2,0íU1 U2  

Solutions (3.26) (with U3  —> U2 U2 ----> il]. 	= 0 ). 

4. K> 4a2 , U1 ,2 = p ± iq,q > 0 solution (3.30) . 

For S = 0, K = 4a2  (3.10) reduces to an elementary one and its solution is 

R(p) = 	 (3.43) 

where Ro is an integration constant. 

3. Algebra A2,3 and A2,4 
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The reduction formulas in both of these cases are 

	

W = R(e) exp i[ce (e) — at — by], e = x + vt, 77 = 	(3.44) 

with v = 0 and v 	0 for the algebras A2,3 and A2,4 respectively. Since the 

Landau-Lifshitz equation is not Galilei invariant, we cannot change the value of v 

by a group transformation. The transformation (3.8) leads to (3.10) with 

,2 
= --K  + S2  + 2(A + b) — + 2vS + 2(—B + a) 

2 	 2 
3v 2 

	

K2 = —
K 

+ 4S2  + 2(A + b2 ) + 	— 6vS + 2(B — a) 	(3.45)  
2 	 2 

K3 = —(28 — V)2. 

Eq. (3.6) in this case gives 

s  (1 + R2 )2  v 1 + R2  
R2 	2 R2  

For S 0 we obtain (3.11) with the constraint 

	

Ui U2 U3 U4 = (1 — V)2 	 (3.47) 

imposed on these roots. Hence, only even number of roots can be negative (0, 2 

or 4). This however means that all solutions (3.12) ... (3.20) can occur, though in 

some cases we must impose U4 < 0 (U4 = 0 is allowed for v = 28). 

For S = 0, all solutions (3.22) , 	(3.30) can occur. 

4. Algebra A2,5 

The reduction formula is 

W = R(e) exp i[cie (e) + —ab 0+Bt], 	= lnp+ 7)10 
	

(3.48) 

and we must set A = 0 in the Landau-Lifshitz equation. The phase cx(0 satisfies 

	

= S 
(1 + R2 ) 2 	a 

R2 	b2  + 1 
	 (3.49) 

(3.46) 

(see (3.6) ). 
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The function U = —R2(e) satisfies (3.10) and for S 0 we have 

2a2  
= K2  = — —

2 
+ 4S2 	 K3  = —4S2. 	(3.50) 

(b2  + 1)2  ' 

The solutions that can occur in this case are (3.14) , ..., (3.20). However, there 

are constraints between various parameters of the solution which follow from the 

requirement of singlevaluedness of W. 

For a = 0 eq. (3.11) again reduces to (3.41) and we only obtain the elementary 

periodic solutions (3.16) . 

For S = 0, Ki. 0 we obtain the equation 

=_Klu( U - ui )(u - u2), 

2a2  
Ui U2 = 1, 	Ui + U2 -= 2 [1 + 	

(b2  +i) 
. 

(3.51) 

For— a 2  < 	< 0 we have U1 < U2 < 0 and solutions (3.22) , (3.23) , (3.26) b2+1 
and (3.27) are obtained. 

For Ki > 0 we have 0 <U1  < U2  but we obtain no real solutions. 

For Ki < —a2/(b2  + 1) we obtain solutions (3.30) . 

Finally, for S = 0, K1  = 0 the solution is U = 	exp (+N/7K) and hence 

R = R0  exp 	Vik(ln p + G5)] 	 (3.52) 

For S = 0, Ki 0 equation (3.10) reduces to 

KiU(U 2  + 	U + 1), 	= 
K 	2a2  

	

2 	(b2  + 1)2  
(3.53) 

Real solutions are obtained only for K1  < 0. More specifically, solutions (3.27) and 
2a2  (3.30) can occur for any Ki. < 0. Solution (3.26) for K1  in the range < (b2+1)2 

2 	 2 
< 0, (3.22) for Ki. = 	a 	 a 	 (b2+ir  and (3.23) either for a = 0, or Ki. = (b2+1)2 • 
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5. Algebra A2,6 

The reduction formula is 

W = R(e) exp i[a(e) + Bt + a ln x], e = 	= arctan = 	(3.54) 

and a satisfies 
S 	(1 -1-/i2 )2  

1+ 2  R2 +1 2  ± (3.55) 

and U(0) = —R2 () satisfies (3.11) with K1 = K2 = 	4S2  2a2, K3 = -4S2 . 
For a = 0 the equation again reduces to (3.41) . 

A real solution is obtained only for K> 8S2, namely (3.16) . It is periodic in 
0 and hence singlevalued when ,a is an integer. 

For S = 0 we get a real solution for Ki.  < 0, namely solution (3.25) which in 
this case reduces to 

U(0) = — tan2  —21  -VIKi (0 — 00). 	 (3.56) 

This is a singlevalued function whenever 	is an integer. 

6. Algebras A2,7 and A2,8 

The corresponding reductions lead to equations that we cannot decouple with-
out introducing higher derivatives, so we will not treat them here. 
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4. Solutions of the Nonlinear Diffusion Equation 

4.1. GENERAL PROCEDURE 

Let us consider the system (1.7) and (1.8) , the NDLE for short. We impose 

that the solution be invariant under one of the Lie groups generated by the algebra 

in eq. (2.7) . The functions R and Q will then have the form (3.1) with e and ,13 

as in Section 3 (different for each subalgebra A2,1) • • • A2,8• 

As for the LL equation, algebra A2,1  must be treated separately. 

For A2,2, 	A2,8 we always have (V)2  O. Eq. (1.7) and (1.8) reduce to 

	

(1 — R2 )  Re 	 fe 	— R2 )  fk 
+ h f 	(4 .1) 

	

= 2  1+ R2  R ne+  f 	2fm  1 + R2  R 

	

2 	 1 	 1 — R2  1— R  f 	2R 2 	r 2 n 	21 , 	 [BR + AR 	] Rpe 	cee + g il-  (y 	 1±R2 Ree = Re ± 1 ±R2 Re  + 
1+ R2  ' 

(4.2) 

The functions f(C),  m(), h(0 and g() are defined by the relations 

f _  — Ae 	v )3 )  
f 	) 2 	m 	(v e)2  f 

2 (Vß)2  

In order to decouple equations (4.1) and (4.2) , we impose a restriction on the 

functions defined in (4.3) namely 

me + h = 0 

Eq. (4.1) can then be integrated once to give 

(1 + R2 )2  
cee = [S 	R2 	m] f() 

(4.3) 
h = 	 

C f g  (V 

(4.4) 

(4.5) 



where S is an integration constant. We substitute (4.5) into (4.2) and put 

	

R() = — u (77), 	77 = 	 f (e)de. 

The equations are decoupled and the one for U(77) is already in a standard 

f [20]  orm namely 

LI7171 2U u_i)U„2+2S2(1+U)(1—U)3 +
ir  1-Fu 	 v  

1-U 	
(4.7) 

with 
m. 	2 (,..2 m2f2  ± A \ 

f2 	 (V)2) 
2 B 

N = f2 (v 	e)2 

We now make a further restriction, namely, that M and N, defined in (4.8) are 

constants. Eq. (4.7) then has a first integral K and we obtain the elliptic equation 

(3.10) with 

K1=—=+4S2 +M+N 2 

K2 -= - + 4S2  M - N 

K3 = - 4S2 . 

(4.9) 

In many cases we have M = N = 0 and the polynomial on the right hand side 

of (3.10) has a double root at U3 = U4 = 1. The solution we obtain for S 0 is 

(3.16) with U4 =- 1 ie: 

U(r1) =1 	(1  — U2)(1 — Ui)  
(U2 — Ui)sin2  1-1(77 — no) + 1 — U2 

=S-V(1 U2)(1- Ul), Ul < U < U2 < 0 

For S = 0, K> 0 we obtain solution (3.25) i.e 

(4.10) 
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(4.6) 

(4.8) 

K , 
U —tan-  (4.11) 
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4.2. INDIVIDUAL REDUCTIONS 

1. Algebra A2,1 

We have 

R = R(t), 	Q = ao + ax + by 	 (4.12) 

where ao is a constant and Rt  satisfies: 

R(1— R2) 
(A + a2  + b2 ) — BR Rt = 

1 + R2  
(4.13) 

Equation (4.13) can easily be integrated (differently depending on whether 

(A + B + a2  + b2 )(A — B + a2  + b2 ) vanishes, or not) and we obtain a 

transcendental equation for R(t). 

2. Algebra A2,2 

The reduction formula is (3.37) . We have m = 0 and (4.4) requires b = 0 so 

the solutions are static ones. The variable ri and constants involved satisfy 

= ln p, M = 2a2  

A=B=N=b=0 
(4.14) 

Since we have b = 0 , the solutions are static ones. All solutions (3.12) , 	, (3.30) 

can occur. 

3. Algebra A2,3 

We have 

77 = x, M =2(b2  + A), N =2B, a = 0 	(4.15) 

and again, the solutions are static ones, since the reduction formula is (3.44). 

All solutions of Section 3.2 can occur. 
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4. Algebra A2,4 

The reduction formula is (3.44) and we have 

1 __(ev(x+vt) _ 1) , a = 0, A = — b2  , B = 0 

M =Nv  = 0, v 0 
(4.16) 

The obtained solutions are (4.10) and (4.11) and they are t-dependent. 

5. Algebra A2,5 

We have eq. (3.48) with 

1 

	

= 	= ln p —
b
0, A = B = N = 0, 

2a2 b2  

	

M= 	 b 0 (b2 + 1)2 ' 

(4.17) 

Since we have M > 0 we obtain the solutions (3.16), (3.18), (3.20), (3.22), 

(3.23), (3.26), (3.27) and (3.30). The parameters of these solutions must 

satisfy, however, certain constraints in order for the solutions to be single-

valued. For K = 2M we obtain 

2Iabl 	2_14  A  
U = —4pb2-1-1eb2+1,- (4.18) 

a solution that is not singlevalued. 

6. .Algebra 212,6 

The reduction formula is (3.54) and we have 

f de 	
A=B=a=M=N=0 	(4.19) 

so the relevant solutions are (4.10) and (4.11) The solutions are static and 

they are singlevalued for bt or VK/8 being integers. 



7. Algebra A2,7 

We put 
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W =RW expi[a(e) + ln t + bq5] 

 

 

x2  + y2 	1 	 1 
e  	-c-  4 de =- Ei( —  —

4
e) 

(4.20) 

where Ei(x) is the exponential integral function. Moreover, we have b = a = 

A =B=M=N= 0 and the relevant solutions are (4.10) and (4.11) 

8. Algebra A2,8 

We have 

W =RW exp i[a(e) + in 	= 	 

77 =e e- 2/4de = 
(4.21) 

where 4.(x) is the probability integral. We have M -N-A-B -a-0 

and so we obtain solutions (4.10) and (4.11) 

We see that time-dependent solutions are obtained for the algebras A2,1, A2,4> 

A2,7 and A2,8. For A2,5, A2,7 and A2,8 the solutions are trigonometric ones. 

The phases a(e) can be calculated by direct integration, since we have 

da 
= S 

 -J1)2  
d77 

 
(4.22) 

and U is already known. 

Thus for U given by (4.10) we get 

       

(Ui - 1)(U2  - 1) 
U1U2 

arctant 

 

U2(U1  - 1) 	, 
cot pu) - rio)} 

(U2  - 1) 
(4.23) 

      

(Ui - 1) 
- \/(U1 - 1)(U2 - 1) arctan{ COt M(71 - 7/0)1 + a°, 

(U2 - 1) 
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while for U given by (4.11) we have 

a = 	—
2

S cot{-V2K(77 — ?Io)} + 00. 	 (4.24) 

5. Conclusions 

The Landau-Lifshitz equation (1.1)has received quite a bit of previous at-

tention, mainly in the context of continuum Heisenberg ferromagnetic spin sys- 

tems [21] [22] [23] [24] [25] [26] [27] . The anisotropy coefficients A and B of eq. (1.3)were usu- 

ally set equal to zero. Use was made of the fact that eq (1.1)is integrable, at least 

in the one-dimensional case, or in the two-dimensional, spherically symmetric one. 

A one-soliton solution has been obtained [23][25]a radially symmetric one. In our 

variables R, Q of eq. (1.5), (1.6)this solution corresponds to 

R = 
4t+cel+cosh2[ (4t1-ai)2±a -̀-  ' 

4t1-al 	(T2 4_ 7/2)] 

where ai and a2 are arbitrary real constants. As noted by Lakshamanan and 

Porsezian[251the soliton spreads in time. 

The solution (5.1) is not among the invariant solutions obtained in this article, 

nor can it be obtained from such a solution by applying transformations from the 

symmetry group. As often happens[28] , the method of symmetry reduction that 

does not rely on integrability, provides different solutions for integrable equations, 

than the use of Lax pairs, or Backlund transformations. 

We note that eq. (1.1) with A 0 is not integrable. 

In general, we have reduced the LL equation to the ordinary differential equa-

tion (3.9). We have integrated eq. (3.9) in terms of elliptic functions whenever p, q 

and m are constants. For the algebras A2,3,. , A2,6 this was always the case. 

4t + 
(5.1) 
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For algebra A2,2 we obtained eq. (3.10) only for A = 0, B = b. Let us briefly 
consider the case when the anisotropy coefficient A does not vanish. We then 
return to the original variable = p = x2  ± y2  = expn and transform eq. (3.9) 
into 

1 	2 (a2 ± A2 p2 1 	\
ri- 	12S2

(U 1)2( U + ) 	  
UPP 	2U

1
4-  U —1) P2U  p P+  p2 	 p2 	± 2(B — b) 

(5.2) 
For a = 0, b = B this is the equation for the fifth Painlevé transcendent Pv [20]. 
However, for B b eq (5.2) does not have the Painlevé property. According to the 
Painlevé conjecture [29] {3°I , eq. (1.1) is hence, in general, not integrable. 

This has not stopped us from obtaining numerous solutions, both in integrable 
and nonintegrable cases. The algebra A2,2 (cylindrical symmetry) for A = 0, B =b 
leads to periodic solutions, as discussed in Section 3.3. The periodicity is in the 
radial variable p. The time dependence is restricted to the phase Q, as is seen in 
eq. (3.37). Moreover the time-dependence is entirely due to the presence of the 
external field B (we have b = B) that generates a rotation between the components 

451 and 02 of the original vector 

Some elementary nonperiodic solutions that we can extract from Section 3 are 

R2 	Ul  —U2S 2(U2 —Ui(lnplp0)2  
1 + S2(U2 — U1)2 ( 1nPi P0)2  

R2 = 44U1 (U2 — Ui) — U2  (U4 — Ui.)[2R p211  Î)  
(5.4) (U4 — Ui) [2R ± p211 + Ròl p-211— 4(U2 

with S, Ro, po, Ui constants and 

= s  f (1+ R2 )2  
dp+a0+Bt 

j pR2  (5.5) 

(5.3) 

in both cases. 



For S = 0 we have for instance 

R 	+ 	2 	(ln)-11" 2  --Ki Po 

2-V—UiRo 
R(3p—P 	

(5.7) 
pti +  

with 

Q = a0 + Bt + Qo 	 (5.8) 

For A 	0, as mentioned above , solutions are obtained in terms of Pv(p). 

Their time dependence is again given by the term Bt in the phase Q. 

For algebras A2,3 and A2,4 we obtain eq. (3.10)and a multitude of explicit 
solutions for all values of a, b, A and B . Note that for 

S 	0, B = a, A = —b2 	 (5.9) 

in particular for the one dimensional (b = 0), static (a = 0) with no external fields 

(A = B = 0), two of the roots in eq. (3.11)coincide and the equation reduces to 

.K1 U 2  = —4S2(U —1)2[U2 + S2 + 2)U 45,21 (5.10) 

Eq. (5.10) only allows elementary solutions like (3.12), ...(3.17), not however 

the elliptic function ones. These occur when the fields A and B are such that (5.9) 
is not satisfied. 

To our knowledge, the NLDE (1.2) has not been investigated from the point 
of view of its integrability and we have no solutions to compare ours to. 

We have derived many explicit exact solutions of both equations. Looking at 
them we note that most of them have infinite energy. They can describe coherent 
phenomena in various solid state and condensed matter applications. 
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(5.6) 
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Looking first at the solutions of the LL equation we note that some of our 

solutions have finite energy. In particular, this is the case for (3.43). This solution 

is obtained from the familiar static solution describing n solitons "on top of each 

other" [31]. Its time dependence is given by the factor eiBt  which thus describes a 
rotation of this static solution in the 01, 02  plane with the angular frequency given 
by the anisotropy B. The other solutions of this class correspond to the static 
elliptic solutions discussed in ref [17] again rotated by eiBt 

The solutions corresponding to algebras A2,1, A2,3  and A2,4  have infinite ener-

gies. As such, they describe various waves in the medium (generalizations of plane 

waves). These can for instance be spin waves; the energy per period is finite. 

An interesting class of solutions are those corresponding to algebras A2,5  and 
A2,8. Given the choice of parameters, these solutions can be of finite energy; 

however, due to their dependence on the variable 0 = arctan they may become 

singular when x and y vanish. They can be used to describe media with defects. 

Most of the comments made above apply also to the solutions of the NLDE. 

The static solutions in both cases are of course the same. When we consider non-

static solutions, the most interesting from the physical point of view, are perhaps 
solutions corresponding to algebras A2,1, A2,7  and A2,8. All of them have infi-
nite energies. The solution corresponding to A2,1 describes a structure shrinking 

towards the origin (or expanding to infinity - depending on the values of the pa-

rameters). The other solutions describe field configurations evolving in time. They 

can be used in the description of some physical phenomena in condensed matter 
or solid state physics. 

Among the questions that we plan to return to, we mention the study of "par-

tially invariant" solutions [32] [33] [34] of eq. (1.1)and (1.2), and also "conditionally 
invariant" ones[35]. A study of solutions involving Painlevé transcendents is also 
warranted. 
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