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Abstract

In this thesis, we study the possibility for excitons to form a highly correlated

state which can be associated with Bose-Einstein Condensation and has finite ex-

tent in space. In particular, we study solitonic mechanisms ofexciton superfluidity.

We provide a theoretical explanation of recent experiments on the propagation of

exciton packets in semiconductors. In these experiments, the excitonic transport

under the action of a laser pulse has been studied. It turned out that under

certain conditions this transport becomes anomalous and the excitons propagate

through the crystal in a wave packet without diffusion. We propose a model for

this phenomenon which relies on the presence of an exciton-phonon interaction

and the formation of exciton-phonon condensate. In this model, the subsonic ex-

citon propagation is described by soliton solutions of the nonlinear Schrodinger

equation. The theory predicts two critical velocities for propagation of the packet,

and this is in a good qualitative agreement with experimental data. In addition,

we explain the results of experiments on strong nonlinear interactions between

moving excitonic packets by introducing the exciton-phonon droplets with Bose-

cores inside them. Such cores are characterized by a finite correlation length and

can be considered as a kind of Bose-Einstein condensate.

We also study a model of a nonideal Bose-gas moving in a channel. It is

known that the vortex model of superfluid dissipation cannot predict correctly

the value of the critical velocity of superfluidity in planar geometry. We show

that the existence of superfluidity in the Bose-gas can depend on the strength of

the boundary interactions with channel walls. Indeed, if the dilute moving Bose-

gas interacts with the walls via hard-core repulsion, boundary (boson-phonon)

excitations can be introduced. They can reduce the value of the critical velocity

of the superfluid. Such surface modes seem to exist in "soft matter" containers

with flexible walls; they can be one of the sources of friction in anomalous excitonic

transport in semiconductor heterostructures as well.
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n Résumé

Dans cette thèse, nous étudions la condensation de Bose-Einstein (CBE) des

excitons dans les semi-conducteurs. Contrairement aux gaz atomiques dilués dans

un piège, la recherche concernant la CBE des excitons et des excitons-polaritons

est encore en cours. Il est généralement admis que l'état extrêmement corrélé

qui correspond à la condensation de Bose-Einstein peut être obtenu. Toutefois,

contrairement à la condensation de Bose-Einstein conventionnelle dans l'espace

des moments, un condensât pourrait avoir une étendue finie dans l'espace réel et,

de plus, se déplacer dans un cristal. Les paquets en mouvement ont un avantage

évident: l'exciton ne peut pas être converti en un photon directement, et donc il

pourrait y avoir un temps suiEsant pour développer la cohérence de Bose-Einstein

dans le gaz excitonique. De plus, les techniques expérimentales modernes perme-

ttent de prolonger la durée de vie des excitons à une échelle telle qu'ils peuvent

parcourir des distances macroscopiques à travers un cristal.

En particulier, nous avons étudié les mécanismes solitoniques de suprafiuidité

des excitons. Nous présentons une explication théorique des expériences récentes

sur la propagation des paquets d'excitons dans les semi-conducteurs. Dans ces

experiences, le transport excitonique provoqué par des impulsions laser a été

étudié dans des monocristaux de cuprite (CuaO). Il se trouve que dans certains

cas, ce transport devient anormal et les excitons se propagent à travers le cristal

sous forme de paquet d'onde sans diffusion. Les vitesses balistiques enregistrées

pour tels paquets excitoniques s'avèrent être toujours moindres, mais relative-

ment proches de la vitesse de son longitudinal dans le cristal, v < Cg. De plus,

l'interaction entre les paquets indique une sorte d'interference constructive lorsque

les paquets se chevauchent. Il faut mentioner que la forme des tels paquets cor-

respond bien avec la fonction solitonique cosh-2(a;), avec une longue trainee en
arrière du soliton.

Nous proposons un modèle de ce phénomène qui est basé sur la présence d'une

u



u

VI

interaction exciton-phonon et la formation du condensât correspondant. Afin de

comprendre la physique du transport excitonique anormal, nous posons comme

hypothèse que la fonction d'onde macroscopique ^o ~ (t'o e vc peut être associée à

la partie cohérente du paquet excitonique.

Dans ce modèle, la propagation subsonique des excitons est décrite par les

solutions solitoniques de l'équation non-linéaire de Schrodinger.

À la température limite inférieure (T —> 0), l'interaction entre le cœur Bosien
du paquet et le nuage non-condensé peut être ignorée. Les équations suivantes

concernant la fonction d'enveloppe, 4>o{x}-i peuvent alors être écrites:

-|/z| ^{x) = -(^/2m,) 9^o(^) - [^ol ^^) + ^ ^(^). (l)

Ici, /^ est le potential chimique efficace du gaz d'exciton, mx est la masse d'un

exciton, et î>j, j" == 0, l sont des intensités d'interaction rénormalisés qui provien-
nent des interactions exciton-exciton et exciton-phonon. La partie cohérente du

champs de déplacement, UQ = (uo; 0, 0), s'écrit alors,

Q^UoÇx) w -consto <f)2,(x) + consti ^(x). (2)

Dans l'étape suivante, nous prenons en compte les fluctuations du condensât et

introduisons ses excitations élémentaires. En restant dans l'approximation semi-

classique, nous estimons le spectre d'énergie de ces excitations. En gros, celles-ci

peuvent être divisées en des excitations à l'intérieur et à l'extérieur du condensât

(trainee).

La théorie prédit deux vitesses critiques, Vo et Ver, qui sont importantes pour

comprendre la propagation des paquets, ce qui est en accord qualitatif avec les

données expérimentales. La première vitesse critique, Vo, résulte de la renormali-

sation de l'interaction de deux particules exciton-exciton due aux phonons. Puis,

l'état de soliton "clair" de l'équation (l) peut être formé à -u > Uo- Le plus impor-

tant paramètre qui contrôle la forme et la largeur caractéristique de la fonction

d'onde du condensât est le potentiel chimique adimensionnel, \p.\/l-t* < l, avec
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p,* == (3/16) l^o l /^i- La deuxième vitesse, 'Ucr» dérive de l'utilisation des argu-

ments de Landau pour évaluer l'instabilité / stabilité dynamique du condensât en

mouvement. Il est possible d'introduire l'échelle d'énergie correspondante, /icr, et

remission des excitons est alors contrôlée par le valeur de \p\/ p,cr-

En ce qui concerne l'approximation semi-classique pour les excitations du con-

densat, nous avons trouvé que plus v est proche de Cg (jUcr < \p.\ < p*), plus le

paquet cohérent est stable. De plus, nous discutons de la possibilité d'observation

d'un régime instable dans lequel le condensât peut être formé sous une forme in-

homogène avec v 7^ 0, mais avec Vo < v < Ver (ce qui correspond à \/j.\ < ^çr)-

Un tel condensât doit disparaître pendant son passage à travers un monocristal

pur utilisé lors des expériences. Du fait que la forme du paquet en mouvement

dépend du temps, la forme du signal enregistré peut dépendre de la longueur du

cristal et changer du profil solitonique au profil de densité de diffusion standard.

Ainsi, la théorie fournit une description qualitative des observations ainsi que des

valeurs raisonnables pour les vitesses critiques, par exemple, Uo ^ (0.5 — 0.6) Cg.

En fait, le condensât d'exciton-phonon auto-cohérent représente seulement une

partie du paquet réel en mouvement. La partie non-cohérente correspondante, à

savoir les excitons non-condensés An(a;, t) et le vent de phonons uni-directionnel

/\u(x,t), affecte la propagation du condensât. Nous traitons la question de

la possibilité de la diminution (et idéalement l'extinction) du vent de phonons

après la formation du condensât d'exciton-phonon en mouvement. Une géométrie

spécifique du cristal prenant en compte le paquet d'exciton-phonon en mouvement

est proposée. En conséquence, nous nous attendons à ce que les excitons non-

condensés difïusibles puissent être retardés, et que le signal cohérent et le signal

non-cohérent soient séparés dans le temps. De plus, nous expliquons les résultats

des expériences sur les interactions fortes non-linéaires entre les paquets exci-

toniques en mouvement par l'introduction des gouttes d'excitons-phonons com-

portant des cœurs Bosiens. De tels cœurs sont caractérisés par une longueur

de corrélation finie et peuvent être considérés comme une sorte de condensât de
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Bose-Einstein.

Pour récapituler, nous mentionnons que les phonons jouent un rôle crucial

dans presque tous les modèles actuels qui visent à expliquer ou prédire le com-

portement cohérent des excitons dans des semi-conducteurs. A l'aide du modèle

solitonique du condensât d'excitons-phonons, la largeur des paquets d'excitons-

phonons quand T —> 0 peut être prédite, mais il faut que le modèle soit généralisé

dans le cas où. T ^ 0. Par exemple, les excitons thermiques (e.g., la trainee faible

qui est observée derrière le soliton) et les phonons thermiques du cristal doivent

être pris en compte.

Nous avons aussi étudié un modèle de gaz Bosien non-idéal se déplaçant dans

un canal. Ne perdons pas de vue que plusieurs "vieux" problèmes dans la Physique

de la Matière Condensée, tels que la cinétique de la condensation de Bose-Einstein,

la nature de suprafluidité, le problème de la vitesse critique, restent encore des

sujets très étudiés. Par exemple, il est bien connu que le modèle de tourbillons de

la dissipation suprafluide ne peut pas prédire correctement la valeur de la vitesse

critique de suprafluidité en géométrie plane. Ainsi, l'étude des mécanismes de

dissipation de la suprafluidité dans des canaux planaires est important.

Nous avons montré que l'existence de suprafluidité du gaz Bosien peut dépendre

de l'importance des interactions aux limites avec les parois du canal. Mathémati-

quement, l'observation-clé est qu'une des catégories de solutions périodiques (à

savoir les solutions elliptiques) de l'équation non-linéaire de Schrôdinger,

^,(x) = -(h2/2m^9^(x) + ^o ^(x), ^{x = 0) = 0o(^ = ^) = 0, (3)

peut être utilisée pour décrire le comportement des excitations non-homogènes

dans le système "condensât suprafluide + parois du canal". Ici, L est la largeur

de canal. Une étude détaillée des propriétés analytiques de ces solutions aboutit à

une conclusion théorique intéressante: une valeur non-nulle de la vitesse critique

dans les systèmes étudiés peut être obtenue seulement au-delà de l'approximation

semi-classique. En fait, si le gaz Bosien dilué en mouvement interagit avec les

parois via la répulsion de cœur dur, des excitations (bosons-phonons) peuvent

u
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être introduites aux limites. Elles peuvent réduire la valeur de la vitesse critique

d'un suprafluide. De tels modes de surface semblent exister dans des matériaux

en "matière molle" avec des parois flexibles. Ils peuvent aussi être une des sources

de friction lors du transport excitonique anormal dans les structures hétérogènes

semi-conductrices.

Mots clés:

condensation de Bose-Einstein, superfluidité, vitesse critique, excitations élémen-

taires, transformation de Bogoliubov, spectre d'énergie, stabilité, dissipation,

semi-conducteurs, excitons, cuprite, paraexcitons, transport anormal, conden-

sat stationnaire, longueur de correlation, interaction exciton-phonon, interaction

exciton-exciton, équation non-linéaire de Schrôdinger, soliton de Davydov, soliton

clair.
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n Summary

In this thesis, we study the Bose-Einstein condensation (BEG) of excitons

in semiconductors. Unlike the dilute atomic gases in a trap, the search for the

BEC of excitons and exciton-polaritons is still in progress. It is believed that the

highly correlated state which can be associated with Bose-Einstein Condensation

can be achieved. However, unlike the conventional Bose-Einstein condensation in

momentum space, a condensate may have a finite extent in the real space and,

moreover, move in a crystal. The moving packets have an obvious advantage: the

exciton cannot be converted into a photon directly, so it could be enough time

to develop the Bose-Einstein coherence in the excitonic gas. Moreover, modern

experimental technique allow to extend the lifetime of excitons to such a scale

that they can pass macroscopic distances through a crystal.

In particular, we study solitonic mechanisms of exciton superfluidity. We pro-

vide a theoretical explanation of recent experiments on the propagation of exciton

packets in semiconductors. In these experiments, the excitonic transport under

the action of a laser pulse has been studied in the cuprous oxide, CugO. It turned

out that under certain conditions this transport becomes anomalous, and the ex-

citons propagate through the crystal in a wave packet without diffusion. The

registered ballistic velocities of such excitonic packets turn out to be always less,

but relatively close to the longitudinal sound speed of the crystal, u < Cs. In

addition, the interaction between the packets hints at a kind of constructive in-

terference when the packets overlap. Note that the shape of such packets fits

well into the solitonic cosh- (a;) function with the long-lasting tale behind the

soliton. We propose a model for this phenomenon which relies on the presence

of exciton-phonon interaction and formation of exciton-phonon condensate. To

understand the physics of anomalous excitonic transport, we assume that the

macroscopic wave function ^o ~ 4>o evc can be associated with the coherent part

of the excitonic packet.

0



Xl

/

u

In this model, the subsonic exciton propagation is described by soliton solu-

tions of the nonlinear Schrodinger equation. In the low temperature limit, T-4-0,

one can disregard the interaction between the Bose-core of the packet and the non-

condensate cloud and write down the following equation on the envelope function

<f>o{x):

-|^| ^(x) = -(h2/2m^ 92Mx) - [^1 ^{x) + y, ^(x). (l)

Here, p, is the effective chemical potential of the exciton gas, mx is the exciton

mass, and ^,, j = 0,1 are the renormalized interaction vertices originated from

exciton-exciton and exciton-phonon interactions. The coherent part of the dis-

placement field Uo = (uo; 0, 0) can be written as follows:

Q^UoÇx) w -consto ^(a;) + consti <p4,{x). (2)

As a next step, we take into account the fluctuations of the condensate and

introduce the elementary excitations of it. Within the semiclassical approxima-

tion, we estimate the energy spectrum of these excitations. Roughly, they can be

divided into inside- and outside-condensate excitations.

The theory predicts two critical velocities, Vo and Vcr; which are important

to understand the propagation of the packet, and this is in a good qualitative

agreement with experimental data. The first critical velocity, Uo, comes from

the renormalization of two particle exciton-exciton interaction due to phonons.

Then, the "bright" soliton state of Eq. (1) can be formed a.t v > Vo. The

important parameter that controls the shape and the characteristic width of the

condensate wave function is the dimensionless chemical potential, \p-\/p'* < 1-

Here, p* = (3/16) \VQ\2 /fi. The second velocity, •Ucr, comes from use of Landau

arguments for investigation of the dynamic stability / instability of the moving

condensate. It is possible to introduce the corresponding energy scale, //cr, and

the emission of excitations is controlled by the value of |/^[//^cr.

Within the semiclassical approximation for the condensate excitations, we

found that more close v is to Cs (//cr < \lA < P*} more stable the coherent packet
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is. We also discuss the possibility of observation of the instability regime in which

the condensate can be formed in the inhomogeneous state with u 7^ 0, but with

VQ < v <VCT. (In other words, we have \p,\ < p.cr) Such a condensate has to

disappear during its move through a single pure crystal used for experiments. As

the shape of the moving packet depends on time, the form of the registered sig-

nal may depend on the crystal length. Then, with the same initial conditions,

one can obtain the solitonic profile for a short crystal and the standard diffusion

density profile for a relatively long crystal. Thus, the theory yields a qualitative

description of the experiments and reasonable values for the critical velocities,

e.g., -Uo ?» (0.5 - 0.6) Cg.

In fact, the self-consistent exciton-phonon condensate is only a part of the

real moving packet. The noncoherent part of it, namely, the noncondensed ex-

citons /\n(x,t) and the unidirectional phonon wind /\u(x,t), effects the propa-

gation of the condensate. We address the question on whether it is possible to

diminish (ideally, to turn off) the phonon wind after the moving exciton-phonon

condensate has been formed. A special geometry of the crystal with the moving

exciton-phonon packet is proposed. As a result, we expect that the diffusive non-

condensed excitons can be delayed, and the coherent signal and the noncoherent

one are separated in time. In addition, we explain the results of experiments on

strong nonlinear interaction between moving excitonic packets by introducing the

exciton-phonon droplets with Bose-cores inside them. Such cores are characterized

by a finite correlation length and can be considered as a kind of the Bose-Einstein

condensate.

To sum up, we note that the phonons play a crucial role in almost all the

current models aimed to explain or predict coherent behavior of excitons in semi-

conductors. Within the solitonic model of the exciton-phonon condensate, one

can predict the width of the exciton-phonon packet ai T —> 0, but the model

has to be generalized to the case of T 7^ 0. For example, one has to take into

account the thermal excitons (e.g., the weak tail that is always observed behind

u
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the soliton) and the thermal phonons of the crystal.

We also study a model of a nonideal Bose-gas moving in a channel. Recall that

some "old" problems in Condensed Matter Physics - such as, the kinetics of Bose-

Einstein condensation, the nature of superfluidity, the critical velocity problem,

etc. - still remain the subject under consideration. For example, it is known that

the vortex model of superfluid dissipation cannot predict correctly the value of

the critical velocity of superfluidity in planar geometry. Therefore, the study of

dissipation mechanisms of superfluidity in planar channels is important.

We show that the existence of superfluidity of the Bose-gas can depend on the

strength of boundary interactions with channel walls. Mathematically, the key

observation is that a certain class of periodic (so-called elliptic) solutions of the

nonlinear Schrodinger equation,

^(x) = -(h2/2m^)9^(x) + ^o ^(x), Ux = 0) = ^o(a; = ^) = 0, (3)

can be employed to describe the behavior of inhomogeneous excitations in the

system Superfluid Condensate + Channel Walls. Here, L is the width of the

channel. A detailed study of analytic properties of these solutions then leads

to an interesting theoretical conclusion: a nonzero value of the critical velocity

in systems under consideration can be obtained only beyond the semiclassical

approximation. Indeed, if the dilute moving Bose-gas interacts with the walls

via hard-core repulsion, boundary (boson-phonon) excitations can be introduced.

They can reduce the value of the critical velocity of a superfluid. Such surface

modes seem to exist in "soft matter" containers with flexible walls; they can be

one of the sources of friction in anomalous excitonic transport in semiconductor

heterostructures as well.
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Introduction

Six articles published during the years 1997-2000 are included into this thesis.

All of them are devoted to the problem of Bose-Einstein condensation (BEG).

Recently, this correlated state of matter was achieved in dilute Bose-gases (e.g.,

Li, Rb) contained within artificially prepared traps [1]. In the context of Solid

State Physics, the search for the BEG of excitons and exciton-polaritons in semi-

conductors is still in progress.

At near band-gap excitations of a semiconductor and small electric fields, ex-

citons can be introduced as the quanta of the induced polarization field [2], and,

roughly, they are boson-like excitations of a crystal. Nowadays, there is a lot ofex-

perimental evidence that excitons in semiconducting crystals and heterostructures

can form strongly correlated states. In some cases, they can be assigned to the

excitonic Bose-Einstein condensate (BEC) [3]. As a rule, the excitons are created

by the electromagnetic radiation (e.g., laser light), and we expect that the cloud

of excitons will reach the ground state with the zero average quasi-momentum,

{hk} ^ 0. (In many cases, they are in a quasi-equilibrium state with some effec-

tive température T* (t) cooling down toward the crystal temperature T.) In the

low density limit, it is a good approximation to consider the excitons as a dilute

Bose-gas [4]. In the high density limit, the fermionic nature of the exciton can be

important but this case is not discussed in this thesis.

The optically active excitons are unstable against conversion into photons, i.e.,

such excitons have a finite life time. Usually, the state of Bose-Einstein conden-

sation is looked among these excitons. However, the time scale necessary for the

well-defined coherent phase to be developed in the stationary cloud with the av-

erage concentration larger than the critical one (i.e., nx > "c and the temperature

T* = T < Te, and n-^(t) = const) seems to be strongly renormalized in the case

of the non-stationary cloud [5], [6]. In the later case, we have n^(t =0) = no> n^

u
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and the number of photons np^(t = 0) w 0, bvit9tn^(t) < 0 and 9f7iph(ï) > 0. If

we consider the excitons as an ideal three dimensional Bose-gas, the critical con-

centration rie and température Te of the Bose-Einstein condensation are related

to each other as follows 7 :

{h2/2m^nY^T^.

However, the Bose-Einstein condensation of interacting basons immersed into a

crystal lattice can be different from the conventional BEG of a dilute Bose-gas.

Recall that one can think of the Bose-Einstein condensation as the existence

of a macroscopically occupied state in the following decomposition of the density

matrix of the system 8 :

p(x, x/, t) = (^(x,ï)^(x/,<)) = ^;n,(^)^(x^)C,(x^). (l)

Here, '0t(x) is the creation operator of a boson of the Bose-gas of TVx particles,

dx^(x,f)^(x,ï))=7V^'X;

and ^j(x,t) is the wave function of the one-particle basis set {Cj}, and njCt) is

the corresponding occupation number. The standard commutation relations are

[Vi(x,A),^(x',^)]=^(x-x/) and [^x,t), ^',t)} = Q.

In the case of T = 0, the brackets (• • •) mean the ground state average, and, in

the case of T 7^ 0, they imply the standard temperature average,

Tr (... exp(-^/T)) /Tr exp(-Jf/T).

In the non-equilibrium case, the brackets mean averaging the Heisenberg operators

inside them with the initial density matrix of the Bose-gas, Tr(- • -p)/Trp.

If nj=o{t) cï TVx ^> 1 and all the other njCt) ^ 1, see Eq. (1), one can call the

corresponding ^'=o(x, t) the macroscopic wave function of the system. It is better,

however, to renormalize ^o(x, t) (J dx |^o(x, e) |2 = 1) by introducing another wave
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function, namely, ^o(x,A) = ^/A^o(ï) €o(x,*). Here, Jdx |^o(x,^)|2 = A^o(^) and
No(t) is the condensate occupation number. Then, we can rewrite the density

matrix as follows

/?(x, x/, t) = ^(x^)^o(x^) +^n,(A)€;(x,<)^,(x/,<). (2)
3^0

Usually, the conclusion about the presence of Bose-Einstein correlations among

the excitons (actually, a low-energy problem within the scale of the exciton Ryd-

berg energy) is based on unusual properties of the direct photoluminescence signal

(high-energy photons) from the excitonic cloud [3]. However, such an interpreta-

tion is not always convincing, and the non-equilibrium Bose-Einstein condensation

is far from being completely understood [8].

Almost all the articles included into this thesis are motivated by experimental

data on the transport properties of excitons that move in 3D crystals, such as

the cuprous oxide CusO [9], or 2D sheets in Bils [10], or exciton-polaritons in a

semiconductor microcavity [11]. The moving packets have an obvious advantage:

the exciton cannot be converted into a photon directly, so it could be enough time

to develop the Bose-Einstein coherence in the excitonic gas. Moreover, modern

experimental technique allow to extend the lifetime of excitons to such a scale

that they can pass macroscopic distances through the crystal. Therefore, instead

of unusual photoluminescence properties, one can expect unusual transport prop-

erties of the correlated excitons at T < Tc- Then, spatial characteristics of a

packet and its stability, and details of the correlation properties of the excitons

are among the subjects to investigate.

It is important to prepare the following initial conditions: a relatively dense

cloud of excitons with the density of nx > nc(T) to be in a moving state with

{Hïa^} ^ 0. (For cuprous oxide, n^T == 2K) fv 8.7x 1016cm-3 and the gas

parameter n^a^ <^i l, ûx ^ 6 — 7 A.) For example, one can expect non-trivial
physical effects if

(^kx) ^mxCg,
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where Cs is the sound speed. In the case of CuzO crystals, these conditions can

be achieved because there is approximately the same number of long wavelength

acoustic phonons being formed in the same place as the excitons, Np^ ^ A?x

and £ph ^ l — 5meV. Due to the exciton-phonon interaction and (important!)

quasi-one dimensional geometry of the initial conditions, the acoustic phonons and

excitons can form a packet with the nonzero average quasi-momenta, {H'k.ph) / 0

and (^kx) 7^ 0, so that

^k,)||^kph)]|0rr (3)

and £x = m^v2/2 < mxC^/2 ~ 10-3£'x. Here, Cg = 4.5 x 105cra/s is the (longitu-

dinal) speed of sound, and £'x ^ 0.15 eV is the exciton Rydberg, and mx ^ 1.5 me

is the exciton mass. Note that if the excitation area is smaller (usually, much

smaller) than the surface area of the crystal, Eq. (3) is not valid. A classical

analog of the quasi-one dimensional initial conditions could be the excitation of

solitons on the shallow water surface in pipes and channels used in laboratory ex-

periments on the surface waves. The simplest theoretical model to describe such

a case is the (ID) KdV equation [12].

In recent experiments on excitons an interesting phenomenon has been ob-

served: the excitons created under the action of a laser pulse form a quasi-one

dimensional soliton-like packet and propagate without diffusion through a crystal

when the intensity of pulse is high enough or the temperature of the crystal is

low enough, see Figs. 1, 2, and 3. It seems that the exciton-phonon interaction is

crucial to understand this phenomenon.

We assume that this is a critical phenomenon, namely, a Bose-correlated

exciton-phonon core can be formed inside the exciton-phonon packet under these

conditions. Then, such a packet can move ballistically through the whole crystal

at T < Te, and the coherence of the Bose-core can be revealed by the packet-packet

interaction or by stimulated scattering into the packet with the condensate. (And

such experiments were done with the paraexcitons in cuprous oxide, see [13] for

a detailed account.) ÏÎT > Tc or nx < nc(T), the exciton-phonon packet exhibits

u
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the standard diffusive behavior 9 . Thus, the 3D droplets that could contain the

excitonic Bose-Einstein condensate are found in a spatially inhomogeneous state

with the well-defined characteristic width Lch in the direction of motion. Note

that this width L^h can be different from the Bose-Einstein correlation length

of the Bose-core LQ. (For example, {tjj}(x,t')'^{x',t)} w 0 sA, \x— x'\ > LQ and

LO < I/ch)- The estimates LQ ~ 10- I/ch and, for the corresponding duration in

time,

TO ~ 50 - 60ns ~ 10-lïch, 7-ch ^ 0.2 - 0.4 ^s, (4)

can be extracted from the experiments on two packet interaction a,t T < Tc [9].

Here, we used the simple formulas, Lch = Cg Teh and Lo = CsT-o, to introduce the

characteristic length and time scales. Indeed, one can expect strong nonlinear

interaction between the two co-moving packets if the distance between them is

^o,i ~ XQ s < LQ. Meanwhile, the interaction is week ifa;o,i — ^0,2 ^ ^ch although

the packets are well overlapped.

The registered ballistic velocities of such excitonic packets turn out to be

always less, but relatively close to the longitudinal sound speed of the crystal,

v < Cs. Note that the paraexcitons in pure CugO crystals have an extremely

large lifetinie, T ^> 13 /^s, and a moving exciton with ^Aa; ~ m^ Cg cannot be

converted into a photon directly. Then, one can exclude the photons from simple

models describing the transport of a single packet of excitons in a periodic medium

and the interaction between two packets in the comoving regime. Moreover, we

neglect the ortho-para exciton conversion inside the formed packet of the moving

paraexcitons in CuaO crystals. We assume that all the orthoexcitons (15') are

down-converted into the paraexcitons (J = 0) during the initial stage of the

packet formation. This means A^x, para ^ const > Nc, A^x, ortho ^ 0, for discussion

see [14]. Thus, details of the inner structure of an excitons are not important

in almost all the problems discussed in this thesis. That is why we employ the

creation / destruction operators '0t(x), ^(x) in the real space without any inner

degrees of freedom. (Roughly, x is the coordinate of the center-of-mass of an

u
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exciton taken as a structureless boson.)

Note that it is common and certainly convenient to treat the gas of excitons

and lattice phonons by use of the language of Bose creation and annihilation op-

erators in the k-space from the beginning, i.e. from writing out the corresponding

Hamiltonian(s), see [15] and [5] for a review. Then, the macroscopically occupied

mode is chosen to be (roughly) the k = 0 state [16], [17], and the exciton and

phonon operators are normalized to the same volume V equal to the volume of

the crystal. Here, we mention some works which do not follow this standard way.

For example, V. Gergel' and the co-workers [18] described the Bose-condensed

repulsive excitons by the nonlinear Schrodinger equation (NLS) with an efïective

friction term. (As the excitons have a finite life time, the condensate decays.)

They discuss whether the superfluidity of such excitons is possible. However, E.

Hanamura 19 proposed that the careful investigation of the exciton-exciton in-

teraction can lead to an effective attraction, and the sign of an effective interaction

term in the NLS can be negative. Later, A. R. Vasconcellos et al. [20] general-

ized the above-mentioned works to investigate the dynamics of coherent exciton

packets.

To understand the physics of anomalous excitonic transport, we also assume

that the macroscopic wave function ^o(x,t) ^ (f)oevc can be associated with the

coherent part of the excitonic packet at T < Tc. Here, ^c is the coherent phase

of the condensate. Indeed, the experimental results [9],[10] suggest the following

decomposition of the density of excitons in the packet:

n(x, t) = ricoh(x, A) + An(x, <), (5)

where ncoh(x,^) KS "core (^ — vt) is the ballistic (superfluid) part of the packet,

ïcoTe(x-vt)^\^Q\2{x-Vt')=(f)2,(x-vt), (6)n,'core

and An(x,A) is the non-condensed part of it.

The following decomposition can be written for the out-of-condensate part:

An(x,^) = (5^t5'0(x,*)) ?y (încioud(x,<) + 5ntaii(x,t). (7)

u
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The challenging problem is how to describe the spatially inhomogeneous state

of the moving droplet with the excitonic BEG inside in terms of ^/o(~x.,t) and

5-0(x, t), where Si/} is the "fluctuating" part of the exciton Bose-field. For example,

within the quasistationary approximation and in the comoving frame, one has to

calculate

"core (a;) = (f>o(x/Lo) and An(a;) ^ 5no,cioud(^/^ch) + (întaii(a;), (8)

and understand how the different characteristic lengths and coherence properties

could appear in the theory with the Bose-condensate at T ^ 0. Note that if

the excitonic packet moves in a crystal (or another semiconductor structure), it

interacts with thermal phonons and noncondensed excitons (T 74 0), impurities,

and other imperfections of the lattice. Then, there is always a noise factor acting

on the system. Although the coherent core of the packet is assumed to be in a

quasistable state during the observation time, the fluctuations of <f)o(x — vt) and,

especially, ipc(x,t) can be of a great importance to interpret the experimental

data.

Exciton-Phonon Condensate

(J

To obtain the necessary density of excitons nx in the excitonic cloud and, thus,

meet the BEC conditions, the crystals are irradiated by laser pulses with fiuji, ~^>

£'gap, and the temperature of the crystal isT^ l ~ 5K. If the cross-section area 5'

of an excitation spot on the surface of the crystal can be made large enough, such

as S w S'surf, the hot droplet of paraexcitons can acquire an average momentum

during its thermalization process (T*(t) —>• T). Indeed, the phonon wind, or the

flow of nonequilibrium phonons, blows unidirectionally from the surface into the

bulk 34 and transfers the nonzero momentum to the excitonic cloud,

P, ^ IV, {hko} ^ 0 and Px ± 5surf, (9)
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see Figs. 1, 2, and 3. As a result, the packet of moving excitons and nonequilib-

rium phonons of the phonon wind (Nph ^ N-^ is actually the system that under-

goes the transition toward developing the Bose-Einstein correlations at T* < Tc.

Let us assume that the condensate has been already formed inside the moving

excitonic droplet, and the following representation of the exciton Bose-field holds:

^=^o+ 5^, (5^) = 0.

Note that the kinetics of condensate formation will not be explored, so we assume

Tcioud ^ T, and the simplest case to begin the discussion is T ->• 0. For the

displacement field of the crystal u, we introduce a nontrivial coherent part too,

i.e.,

û = uo + où, {Su) = 0,

and UQ / 0. Recall that introducing anomalous averages (in our case, ^o and UQ,

and also (5'0<5'0), {6^8^}, etc.) is the easiest way to describe a system with the

Bose-Einstein condensate [21]. Then, the question of the presence of condensate

is the question of the long-range structure of the corresponding classical fields,

^o(x,<) anduo(x,t) [22].

We can write the exciton density matrix in the following form (compare with

Eq. (2)):
p,(x, x/, A) =^(x^)^o(x^)+(^t(x,t)^(x/,f)), (10)

and the similar formula can be written for the phonon density matrix. For exam-

P^e, Pph,ïa;(x, X', A) = (ûa;(x,t) ^(x',^)) has the following classical part,

Pph,^(x, X', t) = •Uo(x,t)uo(x',*) + {Sûx(x,t)5û^x',t)}.

This means that while the macroscopic number of excitons occupies the state

^o the phonons form a coherent state which is analogous to the phonon part

of the Davydov soliton [23]. Recall that the Davydov soliton describes an one

dimensional system of (Frenkel) excitons in a chain of atoms, and, within the long

u
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a
coherent "core"

of the packet is formed

energy-^
pump u

b

^

îi
-a

l K +m

)

x e

Figure 1: Excitonic packet moving in a crystal.

A medium, in which the exciton-phonon droplet can propagate, is presented in

the form of the channel 'abed' on this Figure. After some amount of energy has

been pumped into the medium during a short time interval and absorbed near a

boundary, a localized excited state is formed near the face 'ad'. It is schematically

shown here as a mixture of excitons and phonons. If there is a mechanism of the

momentum transfer to the excited state, the droplet begins to move toward the

opposite face 'be' with the velocity (v). Then, such conditions can favor the

appearance of an inhomogeneous coherent state inside the droplet if the average

density of the excitons n-^ > nc(T). Moreover, a sort of Bose-condensate can

appear because of the effective attraction among the basons (excitons) at T < Te.

The profile of the excitonic part of it, ncore(^i ^) ^ |^o(^, *)|2; is shown by the bold

line and the intensity of the elastic (phonon) part, 9j;Uo,x(x,t), is represented by

changements of the intensity of the background color. When the packet reaches

the face 'be', the total density of excitons n(x) (N-^ > A^ore) is converted into a

measurable electric current, i(t). It is possible to create an electric field near the

surface 'be', (e is depicted on the Figure). It can be strong enough to break the

coining exciton into holes and electrons.

u
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n wavelength approximation, it can be written as the following trial wave function:

~ / dx^{x,t)^(x) x

exp(—î/^ / dxconstùo(x,t)7Vs: — coiist'9tûo(x,t')ûx) |0 : ex,phon). (11)

Here, Co(x,t) is the exciton wave function and the Davydov soliton is the one-

exciton state, f dx\^o(x,t)\ = l. Meanwhile, ûo{x,t) = {ûj;} and p9tûo{x^t) ==
{71-3;) are the amplitudes of the displacement field of the medium and its conjugated

momentum, and p is the mass density. In fact, Eq. (11) is the many-phonon state

of the displacement field of the crystal, a kind of the Glauber coherent state

[24]. The dynamic equations on ^,o(.x,t) and uo(x,t) turn out to be a system of

coupled Schrodinger and wave equations. For example, the simplest model has

the following form:

h2
ih9t^(x,t) = --^9^(x,t)+ao9^ùo(x,t)^(x,t),

(9^-c^^u^x,t)=p-lao9^{\^\2(x,t)}. (12)

In the case of many excitons and many phonons, we can write the following

ansatz for the many-particle wave function of the coherent state:

~exp( / dx^o(x,t)^(x')} x

exp( -i / h f dxuo(x, t) TTy: - const QfUoÇx, t) ua; ) ]0 : ex,phon). (13)

Then, the dynamic equations on ^fo{x,t) and Uo(x,t) can be written out as a

system of coupled nonlinear Schrodinger and nonlinear wave equations. The non-

linearity has its origin in the many-particle nature of the considered coherent

phenomenon, namely, in the exciton-exciton interaction (scattering processes),

e.g., iïx-x ~ J rfx (^0/2)'0^^ V''0, and the phonon-phonon interaction (cubic an-
harmonicity of the crystal), e.g., iïph-ph ~ Jdx (/<3/3) (Vu)3. Note that the
two-particle exciton-exciton interaction is described by the (oversimplified) con-

tact interaction, Î7(x,x') = fo 5(x - x'). Here, VQ = const > 0, [vo] = energy L3,

u
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Figure 2: Time-resolved photocurrent at a constant temperature.
Time-resolved photocurrent obtained in a CuzO sample following intense laser
excitation of the opposite surface for different excitation intensities and a constant,
temperature of 1.85 K. The intensity increases from the bottom to the top curve
from 3.75x 104 to 1.5xl06W/cm2. The curve marked by the arrow, which shows
a dramatic difference from the curve with slightly less intensity, is for an intensity
of6xl05 W/cm2 (from Réf. 9).
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u

is the corresponding interaction vertex proportional to the exciton-exciton scat-

tering length. The coupling between the exciton and phonon fields comes from

the exciton-(LA) phonon interaction in the form of Deformation Potential, for

example, -Hx-ph ~ J* dx o-o'î/'t'0 (Vu) with the positive constant o-o. Note that
the exciton-phonon interaction is also described by the (oversimplified) contact

interaction, ^/(x,x/) == o-o o(x — x/), [o-o] = energy.

As the two particle interaction (^ VQ ('0t)2'02 ) can be strongly renormalized

because of interaction with other fields, we include an additional hard core in-

teraction term modeled by repulsion ~ z^i (•0t)3'03 in -?fx-x- We assume that

the "bare" characteristic energies of the particle-particle interactions satisfy the

following inequality:

0 < ^i/a^ < (<) VQ/a^ ^ constEx, const ~ 10,

see [25] for discussion. Here, Ox and E^ are the exciton Bohr radius and character-

istic Rydberg energy, respectively. However, it is the coupling o-o that is responsi-

blé for formation of the moving exciton-phonon coherent state in the form of the

"bright" soliton. Note that it is crucial to write out everything in the coordinate

space. We could write the moving condensate in terms of the standard exciton

and phonon operators defined in the momentum space, e.g.,

r^exp^o aîo) x exp^ Ug(t) bg - u^t) b^ [0 : ex,phon)
g

with ^o ~ \/No, but such a representation does not give any insight. Note that

there is a better approximation of the ground state of the moving interacting

basons occupying the volume V [26]:

—exp(^oâL+(l/2)^^ât^â^)|0), |^o| » l, |<?i>J < l.

To discuss the inhomogeneous state of basons, we can rewrite this wave function

as follows:

|9x) ~exp^ &^o(^,i)^t(^) + (1/2) / dxdx'^i(x,x',t)^(x)^{x'^\0: ex).
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It includes the quantum depletion of the condensate oc |^ri(a;,a;/,<)|2. In the same
manner, one can include fluctuations of the displacement field into the coherent

phonon part of the exciton-phonon condensate (13), for example, [27 ,

|6ph) ~exp((l/2) / dxdx'T>^x,x',t~)û{x)û(x'))\0: ph).

If the depletion of the condensate is small, one can start from the coherent state

approximation alone, see Eq. (13), and calculate the functions ^'-^(x,x',t) and
T>i(x,x',t} as small corrections to the known ^!o[x,t) and Uo{x,t}. However, in
this thesis, we use the mean field theory to describe the out-of-condensate part.

Thus, in the limit of T ^ 0, we obtain the following system:

h2
ih9t^^x,t)=Ëg^^x,t)-—^92^^x,t)+

+ (vo |^o|2 ^o{x, t) + ^i |^o|4 ^o(a;, ^)) + ^0 QxU^x, t) ^o(a;, t),
(9,2 - c^)u^x,t) - c^,9.{9^(x,t)}2 = p-la,9.{W\x,t)}. (14)

This system can be considered as a generalization of the Zakharov system which

appeared in Plasma Physics first, [28]. The main difference is that in the case
of collective phenomena in Condensed Matter Physics Eqs. (14) define the main

part of the moving packet. There is always a depletion of the condensate. In

fact, in the case of T 74 0 and, generally, in all the nonstationary cases, these two

equations have to be coupled with another system of equations on the so-called

out-of-condensate excitations [21]. The dynamics of these excitation states can
strongly influence the dynamics of the "parent" condensate: for example, one can

expect effective dissipation terms to appear in Eqs. (14).

The important property of the exciton-phonon condensate is a kind of self-

consistency condition. Roughly, we have

Vuo(a; - vt) w 9^Uo{x - vt~) oc \^Q{x - v€)\î, (15)

as it is for the Davydov soliton within Eq. (12). (In fact, this is only the first term

in an expansion of a complicated formula, Q^Uo = -F(|îfo|)-) Thus, the moving

u
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packet contains both the macroscopically occupied exciton-phonon condensate, or

the Bose-core î'o(x, t) • Uo(x, t), and out-of-condensate excitons and phonons. The

macroscopic wave function of excitons ^o(x,t) is normalized as follows:

^ \^o\2{x,t) dx = 5^ l^(x/Lo) dx=N,^ l, (16)

where Ny is the macroscopic number of condensed excitons, and, generally, No(T)

< A^x. Here, <S'j_ is the cross section area of the crystal. Usually, within the

quasistationary approximation at T ^ 0, the following assumption simplifies the

theory:

No(T) = const » 5A^(T) =N^-N0= const', r < Te.

Obviously, this implies stability of the moving packet with the Bose-core during

the finite observation time and, in fact, this is questionable. As we showed in [30],

it is more realistic to obtain (see Fig. 4 (a) and (b))

QtNo < 0 and entail > 0,

during the packet moves through the crystal, although this process is relatively

slow. This means that the energy of the Bose-core of the packet is not conserved.

Recall that solitons are known to move ballistically through a medium without

changement of their shape [29]. In practice, the shape of moving inhomogeneous

states changes, and a long lasting tail appears behind the soliton. Such a behavior

can be described within a model of exciton-phonon condensate as a dynamic effect

in soliton transport. For example, the coupling between bosonic excitations of

the medium, such as excitons, and elastic modes of it, such as phonons, can be

responsible for these effects. Then the following coupling terms can appear in the

Heisenberg equations describing the exciton field:

Eg-lfJ -^ Egtj} + CTO ÔjÛj if), (17)

-{h2/2m^)A^ -> -(h2/2m^A^ - ^Qjûj^. (18)

Here, Eg = £1gap — -E'x, and o-o and î9o are the coupling constants of the exciton-

phonon interaction written in the form of Deformation Potential. Developing a

u
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theory, we have a freedom with the sign of '!?o; its value, however, can be roughly

estimated as \'ôo\ ^ hz/2m-^ whereas o-o ^ Eg.
In terms of the lattice analog of the medium Hamiltonian, we made the hopping

matrix element t, tij in H gas ~ S <u '?/;J^') of the lattice boson ^ to be dependent
on the lattice deformation field u,,

tij -^ tij(Ui, Uj) W tij + t9o (ui - Uj~).

Meanwhile, the energy on a site, £-0,1 = ^o in Hgas ~ Y^£o,i'4}i'4Ji, depends on the
lattice displacements too, for example,

£o,i -^ £o+ào {ui+i - Ut-i),

see [31], [32] for discussion. In the model with 'ÔQ / 0, the simple ballistic ansatz,

e.g.,

tp(x, t) ^ expÇîkQX — ZUJQÎ + y>c) <f)(x — vt)

with Hko = m-^v and a;o(^o) c< A;^, and the steady envelope function <p(x/Lo), is

not a good one anymore.

Unlike the "true" solitons and kinks, it is possible to introduce inhomogeneous

corrections to the ballistic velocity v ^- v+ov(x,t) and the coherent phase of the

condensate (^ç -^ (/9c + 8ip{x^ t) that control the changement of the packet shape.

Then, the amplitudes of the soliton and kink, $o and 2Co, respectively, change in

time as well, see Fig. 4, pp. 17,18. And the tail starts growing behind the localized

packet. The total packet can be associated with an exciton-phonon "comet" with

the quasistable coherent Bose-core and incoherent tail moving in the medium.

Note that such an image, i.e. the "comet" with the non-trivial nucleus, coma,

and tail, can be also used in attempts to interpret the latest experiments on

selective amplification of the moving exciton-phonon packets in CugO [33].

However, the quasistationary approximation is the simplest to deal with, and

we explore a model based on the coupled Nonlinear Schrodinger equation (NLS)

and Nonlinear Wave equation (NLW) to describe the exciton-phonon condensate.

u



17

0
1.0

0.8

0.6

0.4

0.2

,2
^x't=t])+8ntail

<tlo(x't=t2)+811tml
v

22 (x,t=0)$ 00
v

'l v
' l

n
l \

,''l l ] 1

' l f l

l l / l

J l

l l

(l)

\ x/2L
0*^

0 2 4 6 s 10 12 14 16 18

These two components of the model have different covariances: the first one is

Galilean invariant while the second one is Lorentz invariant (c —^ Cg). That is why

the effective exciton-exciton interaction depends on the velocity of the packet: it

becomes attractive in the propagation direction if the velocity exceeds a critical

one. Then, the packet propagation can be described by the soliton solution of

the effective NLS. The critical velocity known from the theory of superfluidity

appears from the investigation of stability of the moving soliton.

To model the ballistic motion of a single packet, we use the following ansatz

to describe the Bose-core of the packet:

^o(x,ï) = e-i^+mxu2/2-^)t//te^c+fcoa:) ^(a; - vt), (19)

uoj(v.,t) =Uo(x-vt)Sij, (x,y,z =1,2,3). (20)

where Eg = £'gap — -E'x, y?c = const is the macroscopic phase of the condensate,

hko = m^v, and p, = ^(A7o) < 0 is the effective chemical potential of the conden-

sate. Note that by use of this simple ansatz we prescribe the "rigid" phase (pc to

the condensate and, for the superfluid velocity, we have Vs{x,t) oc 9j;!pc{x,t) = v.

At T <C Te, one can disregard the interaction between the Bose-core and the out-

of-condensate cloud and write down the following one-dimensional equations on
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Figure 4: Soliton and kink with a leakage into their tail.

To model transport properties of the boson-phonon soliton in the case of effective

dissipation (the "leakage" ), we started from the symmetric soliton without a tail

as an initial condition at t = 0. Dynamics of the boson (exciton) part of the

packet is presented on Fig. 4(a), page 17, in the form of moving |^o(^ —

v(x,t')t)\2 + Sn{x,t), where Sn{x,t) ^ Sn^a at x < -(2 - 3) I/o. The coherent

phonon part (a moving kink of the displacement field) is depicted on Fig. 2(b);

the phonon part of the tail {{9xôûj:)2}(t) ^ 0 is not presented on this figure. The

initial value of the interaction parameter <^(u) $^ ^ OVtop/v is taken to be +0.05.
Here, C is proportional to the exciton-phonon interaction strength (<^ ex 'i9o o'o > 0)

and Svtop = '"top — '"• Then, the visible changements occur after the packet has

traveled the distance of (20 — 30) LQ, which corresponds to the effective value of

ôvtop(t) /\t/Lo{t) ~ l. Note that the energy of the total moving packet (coherent
part + tail) is conserved at T —>• 0.
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the envelope function (f)o{x/Lo) and the coherent part of the displacement field

Uo(x/Lo) (see Eqs. (14)):

-|^| ^{x) = -(h2/2m^ 92Mx) - \î>o\ (f,3,{x) + ^ ^(x),

Q^UoÇx) PS! -consto (f)2,(x) + consti ^(x). (21)

Here, Vj = Vj(v} and constj = constj('u), ^ = 0,1, are the renormalized interac-
tion vertices originated from exciton-exciton, exciton-phonon, and phonon-phonon

interactions, see Eqs. (14), so that tildes are used to emphasize this fact. They

can be calculated exactly at T = 0.

At T/0, T < Te, we choose the quasistationary approximation to write out

the decomposition of the exciton and phonon fields of the moving droplet,

^o(x, t) = exp{iipc(x, t) ){<po(x - vt~) + S^x - vt, X_L, t}},

ûoj(x,t) = Uo(x - vt)5^j +ôûoj(x - vt, xj., t). (22)

Then, the following correlation functions have to be included into an analog of

Eq. (21): the "anomalous" ones, such as m(a;) = {Sipoot^o}, the exciton-phonon

correlators, such as c, = {QjSuyj St/}o(x, xj_, t)), and the out-of-condensate density

of the excitons and phonons,

ôn^x) = {S^5^(x, x^, t)} and Q^(x) = {WÛ^Y}.

As a result, we have the following system (compare with Eqs. (14)):

ihQ^^x, t) = Eg ^0(2;, t)-^ 9^^x, t) +
+ (^0 |^o|2 ^o(3;^) + ^1 |^o|4 ^o(^ï) +

+ 6^1 ^(x,*) |^o|2 ^o(^^)+^i m*(x,<) ^ ^o(a;^)+3^ m(x,A) |^o|2 ^(^^) ) +
+ 2^o ^"o(x, t) ^0(2;, t~)+i^o m(x, t) ^(2;, f)4-ao 9a:u^x, t) ^^(x, t)+ao (q^+Qy+q^,

{9^ - cf92,) u^x, t) - c^s 9,{9^(x, t)}2 =

u



20

n = p~lao9^{\^o\ (x,t)+ôno(x,t)}+iï3^9^Q^. (23)

At this stage one can predict that the bare vertex ^o > 0 in the exciton-exciton

interaction term vo\^o\2'^o(x,t~) will be renormalized not only because of the

coherent part of the displacement field 8s:Uo{x,t) but also because of m(x,^) 7^ 0

and 6no{'x.,t) -^ 0 being taken into account at T < Tc. (And the same fact seems

to be true for the vertex v-^ > 0.)

We substitute the ballistic ansatz (22) into Eqs. (23) to rewrite them in the

comoving frame of reference. Thus, it is possible to generalize Eqs. (21) to the

case of T 7^ 0. Here, we present the simplest version of such a generalization:

-( \f^\ + Ô^X} ) ^o(^) = -(^2/2m*) 9^o(^) + (^0 + 5^^)) ^^) +

+^+8^(x))^(x), (24)

9xUo(x) K; -constp 0o(2;) + œnst'i (f)^{x) - |consttaii|, {x < 0). (25)

To a first approximation, we disregard all the dissipation terms (and the noise

factors), and assume T* ^ T, the crystal temperature. Then, ^o = <Poetvc can
be interpreted again as a macroscopically occupied state of the excitons with

the defined ("rigid") envelope function and phase. To simplify the nonlinear

equation on the condensate wave function coupled with the inside- and outside-

excitations by ôp.{x), ôvo(x), etc., we have to make some assumptions on the

asymptotic behavior of the so-called u- and v-wave functions of the inside- and

outside-excitations. In the homogeneous case, they are ~ constfc exp(îkx)/v/V7

(recall the Bogoliubov transform). In fact, the u(x) and v(x) functions define
the spatial behavior of the unknown correlation functions in Eqs. (23) in the

inhomogeneous case. For example, these assumptions can lead to the following

formulas:

Sn^(x) ^ ...+ const^/2'v2) ^0(2;) + const^l) ^(a;) 4- •• -,

m{x) -^•••+ const^/2;l/2) <f,^x) + const^'1) ^{x) + • • •,
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n Sno,out(x) -^ const and Ç^, out (^) -^ œnst' a; < 0,

where const^i and const^n are dimensionless and real. Then, the corrections

to the effective chemical potential \p,\ and the exciton-exciton and exciton-phonon

interaction vertices, vj and constj in Eqs. (24) and (25), can be reduced to

the constants which depend on the temperature T through the above mentioned

correlation functions.

This means Eqs. (24) and (25) with the unknown constant interaction vertices

can be solved formally: again, they can be reduced to the well-known NLS. In

fact, they have to be solved together with the equations on the out-of-condensate

excitons and phonons, 5'0o and S^, and 5-uo,j and ^71-0 j. Usually, these equations
are simplified by use of linearization so that they can be diagonalized by the

generalized u-v Bogoliubov transform. For example, the following formula can be

used to calculate the depletion of the condensate

ôn^x)^Y^(\u,{x)\2+\v^x)\2)nw(^/T)+\^{x)\z,
s,3

(26)

where riBE(^) = (exp(a;)—l)~ and u.s{x) and Vs(x) are the Bogoliubov-deGennes

amplitudes; the energies of the elementary excitations Hujs have to be taken in

the laboratory frame. A similar formula can be written for m(2;). Thus, the

assumption on the asymptotic behavior of 5no,in(^/-^ch) and ïh\.a(x / L^} can be

justified. To obtain some insight on how to deal with the inhomogeneous part of

the elementary excitations at T < Tc, one has to study the case ofT = 0 in detail.

At T —> 0, we can write out the linear equations on the out-of-condensate part,

and all the coefficients and vertices are known. (Eqs. (21) were solved before.) We

have the following system in the comoving frame of reference:

+

ih9tôi^o(x,-s{.^,t') = -(7l2/2m) A5'0o(^,xj_,^) + |^|^o+

{ (^o+^o) ^(x)+(2^+^) ^(x) } ô^+{^ ^(x) + 2^ ^(2;) } 5^{x, ^t)
+ (TO <f>o(x] 9jSÛoj(x, X_L, t),

+

(27)
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-zh9tS^x,^,t)=-Çh2/2m)^S^x,^,t)+\ij,\8^+

+ { (^o+^o) ^(rK)+(2^+^i) ^(rc) } ô^+{^ ^(x) + 2^ ^(rc) } S^{x,^,f) +
+(TQ(f)o(x)9jôÛoj(x,V._L,t). (28)

{ (9, - v9^2 - c2^ - cj9i} Sû^(x, ^ t) =

= p-lao9j[^(x)(ô^(x,^,t)+ô^(x,^,t))}, j=2,3(=±), (29)
{ {9t - v9^2 - e2, 9l - c^l} ôû^(x, x^, t) -

-ôc^{x)9^5ûo^(x,x_L,t) ~{9^Sc^{x) }9^Sûo^(x,x_L,t) =

= p~lao9^(x){S^(x^^t)+6^{x,^,t))Y (30)
Here, ô^{x) ^ e2, 2-r(v) \^\ {^IM^ {a? ^{x}} oc ^(a;), and ^ = î;2/(c,2 -
v2), and M = pa;3 is the mass of an elementary cell of the crystal. This approach is
no more than the standard mean-field approximation [35], and only the condensate

is included into the mean field at T = 0. We can introduce elementary excitations

of the exciton-phonon condensate. For example, the two branches of them can be

described by the Bose-operators aj^s and o;^,, j = 1, 2, and

[â3,s, âl,p\ = SjpS,p and [âj,,, âg,p] = 0. (31)

One can write the generalized Bogoliubov transform for aj^s [1],

à,,, = /rfx ( £/,,,(x) ^o(x) + V,,,(x) ^(x) + ^,(x) ^o,.(x) + 4,(x) ^o,,(x) ) ,
and, roughly, s ^ k = (kj:, kj^). On the other hand, we can write out the back

transform, for example

^o(x) = ^ui,,(x) ai,, + v^(x) â^ + ^U2,,(x) 02,, + v^(x) Q!^, (32)
l,s 2,s

5âo,r(x) = ^ C^(X) ai,, + q:,(x) âî,, + ^ C^(X) 02,, + C^(X) â^, (33)
l,s 2,s
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In the comoving frame of reference, one has to rewrite the phonon part of the

exciton-phonon Lagrangian as follows:

^2,phon = J^d^p/2 { (9t - v9^6û^ }2 - pc?/2 (^(ÎÛo,,)2+
Then, we have 07Toj(x,t) = p(9t— v9j;)ôûoj(-x.,t), and it is easy to represent

ÔTToj as a sum of âj^, â^ , see Eq. (33). Indeed, the effective Hamiltonian that
leads to Eqs. (28) - (30) is supposed to be diagonal in terms of a, Q;t,

6È2[S^o, ô^, Sûo, S-Ro} -^ y^hu)j,sà[,aj,s,
û,s

(34)

and we have

t ^^ _ ^âjÂt') = â^ exp(-ta;j,^) and â},(ï) = â^ exp(?^,^). (35)

Obviously, one has to divide the excitations of the condensate into the inside-

condensate excitation (i.e., they are localized and move with the condensate) and

the outside-condensate ones (roughly, the tail without any characteristic length)

to proceed. For example, the tail consists of the uncoupled excitons (j = l)

and phonons {j = 2) moving in the laboratory frame of reference behind the

condensate. (Indeed, ^o(^) = ^of(x/Lo) —>0 at x < -(3 ~ 4) Z/o and £x ^

Eg + h2k2/2m^ » ^a;ph(k) in the laboratory frame.) To describe the inside-
condensate excitations, we can introduce smooth envelope functions as follows:

u^,,(x) ~ u^f(x/Lo) exp(î^,,(x)), v^,,(x) - Vj,,f{x/Lo) exp(î^,,(x)),

C,,,(x) ~ C^ f2(x/Lo) exp(^j,,(x)), (36)

Here, ^-,s(x) —^ ^',k(x) = y?k+kx is used to describe the quickly oscillating parts

of the inside-excitations and u^s, v^s, and Cj^s are constants. It is worthy of note

that the Bose commutation relations (31) lead to the important orthogonality

conditions for the functions v.j s, Vj,s, and Cjs, for example,

ydx(u^,ui,,,(x)-v^,vi,^(x)) + (zl^Y^Jd^ (Cï>(-^^ - ^)C^,,(x) -
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-{/,(^,,-^)CÏ:JC^(x))=^.

At T 7^ 0, it is possible to write out almost the same system (see Eqs. (28) -

(30)) although after a lot of assumptions. The most important assumptions con-

cern the asymptotic behavior of inside- and outside-excitations mentioned before

and the possibility to neglect the interaction SH^-p^ = f d'x.aoS^ôi^oQjSûo^.
As a result, one can "hide" the unknown correlation functions appearing in the

(formally) linear equations on the out-of-condensate part. Again, this will be no

more than the simplified mean-field approximation at T 7^0 so that one can use

Eqs.(32) and (33) to introduce the elementary excitations and diagonalize the

corresponding SH^^ see Eq. (34). Note that the interaction vertices staying at the

inhomogeneous coefficients of Eqs. (27)-(30) become now the unknown parame-

ters which depend on temperature like the vertices in the simplified Eqs. (24) and

(25). The calculation of the out-of-condensate correlation functions will make the

presented approach self-concistent.

Alternatively, it is possible to develop a kind of the Landau-Ginzburg ^-theory

with the phenomenological constants /^(T) and Vj(T), e.g., ^o(T) oc —(1 —T/TcY.

In this case, ^{x, t) is the order parameter [36] to describe the solitonic part of

the packet.

It is important that atT ^e 0,T <Tc the effective interaction vertices in Eq.

(24) are strongly renormalized in comparison with the "bare" ones staying in the

Hamiltonian of the exciton-phonon system. As a result, the localized solution for

(f)o(x/Lo) (a kind of the "bright" soliton of the cubic-quintic NLS equation) exists

due to the effect of such a strong renormalization, z>o + Si/y < 0 and fi + ovi > 0.

However, unlike the cubic NLS equation, the value of \i>o + OVQ\ has to be larger

than some critical one for the "bright" soliton to exist. (This is a way how a

correction to the critical temperature of the non-ideal Bose-gas could appear in our

theory of the excitonic soliton formed by the interacting basons.) For comparison,

the BEG can be achieved in an atomic gas system with the attractive two particle

interaction (the scattering length age < 0 and VQ ex age) if the dilute Bose-gas was
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^ put into a trap. However, the number of particles N has to be N < Ne for the

condensate to be (quasi)stable [8]. Moreover, one can change the sign of the two

particle scattering length from, e.g., use > Oto age <0 and back by changing the

strength of an external magnetic field. (Experimentally, a system of 85Rb atoms

was investigated near the so-called Feshbach resonance conditions [37].)

Note that the dependence of no(x/Lo) on No is a highly nonlinear one. As a

rough estimate, we can write no oc ^o (T —^ 0). This suggests that the estimates

presented in [38] without any assumption on Bose-Einstein correlations among the

excitons have to be revisited. In fact, ifTcioud < Tc, a delicate balance between the

two energies ^cioud = E{N^, Nph, v) and ^coh. cloud = E(Ncob = No + SNo, v, \p,\)

(it has to be a free energy of the coherent packet at T 74 0) defines the coherent

and noncoherent components of the moving packet. This means that after the

ordering process we can write -E'cioud ~> -E'coh. cloud + AE'. For example, for the

moving non-correlated exciton-phonon packet, we can estimate

belaud (T = 0) ^ ^{^ + (^/2mx)(k^) + 2^ "x } + A^ph (^c),

where h(koy:) = 'rn^{v} < mxCg, {koy} = (koy} fv 0, i/o > 0 is the "bare"

exciton-exciton interaction strength, and rix is the average 3D density of excitons

in the packet, and, for the phonon energies of the acoustic and optic branches,

hu}'^ < huopt,mm- Recall that the average {kyx} / 0 is the result of interaction

between the paraexcitons and the phonon wind, and TVph ^ A^x.

At T<: Te, we can use the following estimate for the energy of the moving

condensate (A^coh = ^Vo):

-E'coh. cloud -^ EyÇNo, //, u) = £'x,o + £'int,o + £'ph,o ^

^o(l"^(^+"f
2

^4MW+"\2
-7Vo(|A|+î.o^/3)+

(")(^)2j(a'3^}. (37)

u



26

Here, $o is the dimensional amplitude of (f)o(x) = ^of(x). As a rough estimate,

we have (assuming the interaction vertices v^ —> 0 and Ky -^ 0)

|^int,o|/^o ^ [^0 (^)| ^/2 + ^0 ^/3 ^ (^0/^ ) {a3^ ) < ^, (38)

Eph,o/No w
M (e,2 + v2)

2
^N^v) ^ Mc^(N^v), (39)

where

^{N,, v] = ( 7^)
2

,'^y i ('•?<";) «i,M^) i(a'$°)<:1' (40)
o-o is the strength of exciton-phonon interaction. Within the harmonic approx-

imation for lattice displacement field and the s-wave scattering approximation

for the exciton-exciton interaction, we can write a^2, oc ( No/N^ ) , where A^
is a large number, N^ ^ 6'j_/a^. Thus, if the condensate is formed, the scale of
the energy changement per exciton is very small, so the most important thing is

phasing among the particles. Some qualitative results obtained for the coherent

exciton-phonon packets are presented on Fig. 5.

In this thesis, we discuss another transport problem in the theory of super-

fluidity: the problem of critical velocity. It is known that the vortex model of

superfluid dissipation cannot predict correctly the value of the critical velocity of

superfluidity in planar geometry. To address this problem, we discuss a model

based on the observation that the existence of superfluidity of the Bose-gas can

depend on the strength of boundary interactions with channel walls. Obviously,

the moving superfluid liquid interacts with the channel which contains it. In the

simplest case, for example, the dilute moving Bose-gas interacts with the walls

via hard-core repulsion and boundary excitations can be introduced. In particu-

lar, the coherent boson-phonon excitations can exist in the system "gas + walls".

Mathematically, the key observation is that a certain class of periodic (so-called

elliptic) solutions of the Nonlinear Schrodinger equation,

^ ^{x) - -(h2/2m^ 9^{x} + ^o ^(a;), ^(^ = 0) = ^{x = L) = 0, (4l)
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Figure 5: Two comoving ballistic packets.

Two ballistic packets with two exciton-phonon condensâtes (ei'ftc(-x't^(f)o(x—xo—vt)-

Uo(x—xo—vt) ôij ) inside were created with the same concentration of excitons and

the same ballistic velocity, v, in a crystal. (The face 'ad' on Fig. 1 was irradiated

by the same laser pulse two times.) The time delay between the pulses, or, is a

free parameter. Roughly, 8r ~ (2:0,1 —^o,2)cs, see Eq. (4). Then, two different
interaction regimes are possible. The first one corresponds to the case in which

the Bose-cores of the packets overlap. This is a strong interaction case, and the

packets can merge into one droplet. The second regime, in which the Bose-cores

do not overlap, is the case of weak interaction between the packets. It is depicted

on this Figure. However, the second moving packet (the left one) can "feel" the

first packet (the right one) through the interaction with the exciton-phonon tail

of the first one. As a result, the second packet slows down, v' < v, and becomes

more broad.
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can be employed to describe the behavior of inhomogeneous excitations in the

system "Superfluid Condensate + Channel Walls". Here, L is the width of the

channel, and the condensate wave function is

^o(x,^) - exp(-î^) exp(îA;oy) ç!>o(^)-

The walls occupy the area outside the band (x,y): 0 <x < L. The boson-

phonon excitations can reduce the value of the critical velocity of a superfluid.

Such surface modes seem to exist in "soft matter" containers with flexible walls;

they can be one of the sources of friction in anomalous excitonic transport in

semiconductor heterostructures as well.
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Chapter 1

Solitons and exciton superfluidity

The first article, in which a many-particle generalization of the Davydov soliton

was introduced, is included into this chapter. The quasi-one dimensional model

for the excitonic soliton is derived and solved at T —> 0, but only the outside-

condensate excitations were taken into account to investigate the stability of the

soliton. It turns out that to describe the moving condensate of excitons one can

use the nonlinear Schrôdinger equation known in the theory of BEG as Gross-

Pitaevskii equation. Note that the repulsive excitons can form the bright soliton

state (oc exp(zkox)/ cosh(x—vt), [29]) due to the coherent phonons of the exciton-

phonon packet.

This article raised discussion whether a moving exciton-phonon packet could

contain a condensate so that a macroscopic wave function of the correlated ex-

citons could be introduced. For example, S. Tikchodeev and the co-authors pro-

posed to describe the moving packet of excitons by a kind of diffusion equa-

tion [34], [5]. To obtain the soliton-like shape of the concentration of excitons,

n{x,t) ^ n{x — vt, t) oc 1/cosh (a; — vt) instead of n{x,t) r^ exp(—x2/Dt) typi-

cal for the difFusion process, they introduce a special drift term in their dynamic

model. This term is responsible for the interaction between the two packets, the

excitons and phonon wind.

The arguments supporting the interpretation in terms of the Bose-Einstein

condensation are presented in the end of this chapter in the form of a short reply

to Tikchodeev's criticism [38]. For example, the physical phenomena sensitive to

the phasing of the excitons in the condensate could be observed; they are absent

within any model based on the classical diffusion or KdV equations, see also [39 .
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Abstract

The presence of exciton phonon interactions is shown to play a key role

in the exciton superfluidity. It turns out that there are essentially two

critical velocities in the theory. Within the range of these velocities the

condensate can exist only as a bright soliton. The excitation spectrum and

differential equations for the wave function of this condensate are derived.
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The problem of critical velocities in the theory of superfluidity arose a long

time ago when the experiments with liquid He showed a substantial discrepancy

with quantum-mechanical predictions. Later, the effect was analyzed and its

phenomenological description was given (e.g. see [1 ). The fact that liquid He

could not be treated as a weakly non-ideal Base gas was believed to be the main

reason for the inconsistency between the microscopic theory and experimental

data.

For a long time He has been the only substance where superfluidity can be

observed. The recent experiments with a dilute gas of excitons [2], [3] provide

new possibilities for studying different types of superfluidity.

In this series of experiments a CuzO crystal was irradiated with laser light

pulses of several ns duration. At low intensities of the laser beam (low concen-

tration of excitons) the system revealed a typical diffusive behavior of exciton

gas. Once the intensity of the beam exceeds some value, the majority of particles

move together in the packet. Their common propagation velocity is close to the

longitudinal sound velocity, and the packet evolves as a bright soliton.

Some alternative explanations of the phenomena are known. One of them [2]

implies that the bright soliton is a one-dimensional traveling wave which satisfies

the Gross-Pitaevskii (nonlinear Schrodinger) equation [4] for the Bose-condensate

wave function ^{if.,t)

iha4=-SnA9+v^ W
with attractive potential of exciton-exciton interaction ^ < 0.

A quantitative treatment given in 5 provides an iterative solution for the

Heisenberg equation with the use of perturbational methods. In this picture the

second order interactions, neglected in the Bogoliubov approximation, contribute

to the negative value of v. However, the influence of exciton-phonon interactions

on the dynamics of the condensed excitons is not treated [5].

Another interpretation is based on a classical model [6] where the normal exci-

ton gas is pushed towards the interior of a sample by the phonon wind emanating
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from the surface. Such an explanation seems to be in discrepancy with the ex-

périment, because the signal observed is one order of magnitude longer than the

excitation pulse duration 3 .

In this study we give an alternative and, in our opinion, more intrinsic inter-

pretation of these phenomena. We argue that it is a propagation of a superfluid

exciton-phonon condensate which is observed experimentally. The presence of

exciton-phonon interactions is crucial for a "soliton-like superfluidity". This inter-

action plays a key role when the propagation velocity approaches the longitudinal

sound velocity.

We start with the Hamiltonian of the exciton-phonon system

H = JÏex + -^Dh + H\'int,

Hex=~^n/ ^(x)A^(x)dx + ^ / ^(x)^(y) ^(x - y) ^(x)^(y)dxdy,
^ph=/{è7r(x)2+2(vû(x))2}dx'

^int = ^(x- 2/)^(x)^(x) (Vû(y))dxdy, (2)
where ^ and û are the operators of the exciton and phonon fields correspondingly,

c is the longitudinal sound velocity and p denotes the mass density of the crystal.

The field variables obey the following commutation relations

[^(x), ^*(y)] = 5(x - y), [7T,(x), û,(y)j = -z?i^, 5(x -y),i,j= l, 2,3.
In (2) we omit the terms with the transverse sound velocity, since the interaction

of excitons with transverse sound waves is much weaker than with the longitudinal

ones.

It is convenient to change the reference system when we consider a uniform

motion of the Bose gas. The transition to the reference system moving uniformly

with the velocity v = (v, 0, 0) is immediate. In new coordinates the classical field

equations become:

9 h2 . mv
Ifi^+2i.A+^

,2

- /^(x-y)|^(y,i)|2d2/3)^(x,A)
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0 =^(x,<) / a(x-y)(Vu(y,i))dy
J

â-2^+ï2â-c2A)u(x't)4v/'7(x-y)wy-<)i2dy-
(3)

(4)

where -0(x, t) = ^(x-^ + vt, x-^, X3,t) exp (—imvxi/h).

The l.h.s. of Equation (3) is Galileian invariant, while the l.h.s. of (4) is

Lorentz invariant. As a result, the system (3), (4) is neither Galileian nor Lorentz

invariant. As we will see later, it is due to this noninvariance that the effective

potential of exciton-exciton interactions depends on velocity.

Let us consider slowly varying solutions of the system (3) , (4). In this (long

wavelength) limit one can replace v(x) and a(x) by Voo(x) and o-o5(x), where

VQ (> 0) and o-o denote the zero-mode Fourier components of the corresponding

potentials.

Solving (4), one can express the bounded at infinity tiine-independent solution

u.{x) in terms of ^(x). The effective potential of the exciton-exciton interaction

is obtained after substituting this expression into (3). The phonon field makes

this potential long-range, anisotropic and v-dependent. The potential becomes

asymptotically attractive along the v-direction and asymptotically repulsive in

directions perpendicular to v. It follows that stability of the corresponding solu-

tions ^ = (f)(xi)exp(—iLLi()t), u, = ^iç(a;i) is preserved under the one-dimensional

reduction of the system (3), (4). The functions <^(a;i), g(a;i) obey the following

equations

^ 92 .\ ^ ^ _ ^,
2^^ - x) (f)(xl) = [vo - (c^

mv2

(e2 — vr

9g(^^

(f)(x^'d, A=-^o-—+C'^o,(5)
2

ff00(^l)2 (6)
9x-i (e2 — u2)p

where the integration constant C is fixed by the condition q —>• const as a;i —^ oo.

In the last equations <j) assumed to be real. This choice does not change the result

but simplifies our calculations.
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It follows from (5) that the effective potential becomes attractive when v ex-

ceeds the critical velocity

VQ = ^C2 - {d^jvQp). (7)

But if v exceeds the sound velocity c, the potential becomes repulsive again. As

for the solution varying in the direction n = (ni, "-2,713), i/J = /(nx) exp(—îù;o^),

u = nç(nx), the critical velocity is vo(-n) = Vo/ cos(0), \ cos(0)\ > VQ/C, where 0 is

the angle between n and v.

When v is less than the critical velocity (7), equations (5), (6) have the following

stable stationary solutions

(i) (^) = (f)o = \/N/V = const, u = const, and

9q{xi) (TO^ l
(iï) ^)= (f>o tanh (/?ç!»o(^i - ")),

Qx-i (c2-^)pcosh2(^o(^i-a))
-, (8)

a0 ^ .2 .2'"' -/UO^- -vo)^= ^00^^—1. C' =
,2o'o^Jmvo\v^-v2\

' = V ~W\c2-v2\' A = {{c2-v2)p ~ v0} (po = ^ç)oc2—y2' u = (c2-v2)p-
In (8,i) TV and V stand for the number of particles in the condensate and the

volume of the system.

When v exceeds •UQ; we have only one stable stationary solution

ç!>o 9q(xi) o-o^ l
4>=

cosh (^çi>o(^i - a)) ' <9a;i

À_&(_ o-,.20
-^0 ) =

(c2-v2)/9cosh2(/?^(^-a))'

^4^4, c=o. (9)
2 \{cî-vî)p '"y - 2 c2-vî''

To find the excitation spectrum of the system we expand the field operators near

the proper classical solutions:

^(x,ï) = (^(a;i) +^(x,t))e-iuot, ûi(x,<) = ^iç(a;i)+77,(x,t).

The Hamiltonian of the system can be written as follows

H=Ho+hH^+..., (10)

u
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n where Hy = H ((j)e~i^ot ^ q) stands for the classical part of H. It is important that

H'i is bilinear in ^(x,^), f](x,t), whereas the linear terms are absent in (10) (since

the classical fields satisfy the stationary equations (5), (6)). From now on we are

working in quasiclassical approximation and neglecting the terms of power greater

than one (in h).

The quasiclassical Hamiltonian (10) is reduced to the normal form

ff2 = $^^^^ + const, [&„ ^] = ^., [^, ^] = 0. (11)
i

Indeed, since H^ is a bilinear function of ^-, 77, the equations of motion are lin-

ear in field operators. They coincide with the corresponding classical equations

(i.e. equations (3),(4) linearized around "0(x,^) = (f)(x^ exp(-iiiiot'), Ui(x,t) ==

SiiqÇxi)):

ih^ + ^—A -\+C(TO+
2m

a,
.2
0

(e2 - v2)p
- 2^o ^ ^(rc)2 ) x

-^o^)Y-(7o^)(Vr?)=0, (12)

czA-y2Qî
9x2^

+2v
Qî^-3"+?vwl:>(x+x'))=()' <13)

The quantities uji in (11) are characteristic frequencies of the system (12), (13).

Let us consider the homogeneous Bose gas moving uniformly with velocity

v < VQ. The condensate wave function is given by (8,i). The difi'erential equations

(12), (13) have constant coefficients so that the characteristic frequencies Ct;(k) are

determined as roots of the following characteristic polynomial

(tf-^)[^+^)2-^(^42vu-A}^)]-
h2k2 a^k2

=0, (14)
2m p

where 0 = tt;(k) — vAi are the excitation frequencies in the crystal reference

frame. In the limit o-o —>• 0 one gets the Bogoliubov [7] spectrum hu(k) =

V^n (.2m + 2î/0<?<>i) ^or the exciton gas as well as the free phonon spectrum

u
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fl, = ck. When we switch on an exciton-phonon interaction, the spectrum Li;(k)

becomes v-dependent.

The quantization near the translationally noninvariant classical solution (8,ii)

in the region v < VQ yields the same continuous spectrum a;(k). The only new fea-

ture is that there appears a bounded state ata; = 0 in the v-direction. This fact

has a simple explanation: the family of the solutions (8,ii) contains an arbitrary

translation parameter a, which, in fact, is a collective coordinate. Differentia-

tion of (8,ii) with respect to a gives then necessary time independent solution of

(12), (13). This bounded state does not affect the quasiclassical excitation spec-

trum and contributes only to highest approximations (e.g. see [8]).

If the velocity v exceeds (7), the characteristic polynomial (14) has complex

roots and there is no stable constant solutions. The condensate (i.e. classical)

wave function turns into the (bright) soliton (9) of the one-dimensional nonlinear

Schrôdinger equation (5). This solution decreases exponentially. This allows us

to obtain the continuous spectrum from asymptotics of (12), (13). We have

h2k2
na;(k)=A+

for the exciton branch of the model, and

2m

a;(k) = ck + vk-t

for the phonon branch. As in the previous case we get a bounded state at zero

energy. We skip the question of existence of other bound states, since it is not

essential for our purposes.

The spectrum now has a gap in the exciton branch which is equal to A. In

a sense, the situation is similar to the BCS theory: the exciton-phonon interac-

tion makes the effective exciton-exciton potential attractive, and the excitation

spectrum acquires a gap.

The transition to the ballistic regime is accompanied by the symmetry break-

down: a new condensate wave function (9) is no more translationally invariant.

u
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However, it contains a free translation parameter. We can interpret this as a phase

transition of the second order.

The value 4>o is readily computed from the normalization condition J çl>(x)2dx =
N, and A is then obtained from (9)

mv^N2 (v2-v2Q\î
8h2S2 [c2-v2) ' (15)

In (15) S denotes the packet cross-section in XzXy-pla.Tie. When v approaches

the longitudinal sound velocity c, the gap magnitude increases and the soliton

becomes more stable. The soliton energy can be estimated from (2)

r2('U2-V^) , 4 . ^ -50 99 - 9 0\ mU2
E=N[ WS^ ^ - J)/3 ("4 + 3"2C2 + "^ - 5»,2"2) + ^} + ....

It follows from the last formula that E —>• ooasv —> c. Roughly speaking, the

soliton effective mass tends to infinity when its speed approaches the longitudinal

sound velocity. Then its motion is less subjected to the external forces.

The onset of ballistical regime is determined by the condition v > VQ. It is

easy to see that the solution (9) is the most stable in the class of one-dimensional

traveling waves moving uniformly with given v{> vo) and N. We argue that (9) is

also the most stable solution in the class of all solutions with given v(> vo) and TV,

because the effective exciton-exciton potential is attractive in the v-direction and

repulsive in the perpendicular directions. We would like to stress that effective

one-dimensional solutions of three-dimensional nonlinear Schrôdinger equations

(1) with attractive potentials do not have the similar properties. In particular,

the stability of such solutions is doubtful 9].

In the present work we have discussed the properties of the system at zero

temperature. The extension of our results to finite temperatures seems to be a

more difficult problem.

We hope that the similar approach (involving solitonic mechanisms) can be

applied to the solution of the general problem of critical velocities in the super-

fluidity of liquid helium.
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Loutsenko and Roubtsov Reply: The model proposed in [1 can be con-

sidered as a model describing the anomalous transport of nonrelativistic bosons

in a medium with the linear dispersion law at zero temperature.

The main idea of Letter [1] is that the effective two-particle interaction be-

tween basons switches from being repulsive to the attractive one if the velocity of

collective propagation of the basons in the medium exceeds some critical speed.

This effect occurs due to different covariance of the dynamic equations that de-

scribe the nonrelativistic subsystem of bosons and the linearly dispersive medium.

As a result, the boson subsystem "collapses" into a soliton wave packet above this

threshold.

Note that the effect of such an anomalous propagation is the quantum one,

since Bose-Einstein condensation (more exactly, occurrence of the exciton-phonon

Base condensate) is essential in our consideration.

The theory developed in [1] was applied to interpret the experiments on exci-

tonic propagation in semiconducting crystals (CusO) at nonzero temperature [2].

In this series of experiments, a crystal was irradiated by laser pulses. At low in-

tensities of the laser beam (i.e. at low concentration of the excitons), the system

revealed a typical diffusive behavior. Once the intensity of the beam exceeded

some value, the majority of particles moved together in a sharp solitonic packet

with the ballistic velocity exceeding some critical speed. This coincides with the

main result of our theory.

Although this theory yields a qualitative description of the experiments and a

reasonable value for the critical velocity, the estimate of the width of the conden-

sate at zero temperature is in a strong disagreement with experimental data [2]

for the total exciton-phonon packet (at finite temperature). Indeed, we obtain [1]

Lch(^Vo,y)^4
n2

m^\ï>o{v)\
<E>o-2(^o,^), (l)

i.e., Lch = ^"Qx, where the large factor T can vary as 10 ~ 104, and Ox is the

exciton Bohr radius. Thus, the duration of the condensate can be estimated as
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ïch ^ 2 x (10-n - 10-9)s (compare with the corresponding estimate m [3]).
On the other hand, A< ^ 5 x 10- s was obtained experimentally [2].

This fact was pointed out by S. G. Tikhodeev in Comment [3]. In our opin-

ion, the crucial question is whether the Bose-Einstein condensate, or, better, any

macroscopically occupied coherent mode, exists inside the exciton-phonon packet

at T < Te. If yes, one can ask, for example, how many excitons form the coherent

core of the packet, and the value of No(T)/Ntot has to be estimated at T < Te.

Indeed, localized moving solutions for the exciton concentration n(x,t) can

be obtained within classical models (see, e.g., [4]), in which the Bose-Einstein

condensate of excitons is absent and the excitonic cloud is dragged by the sound

wave of a large amplitude created under the action of the strong laser pulse.

Here, we list several facts that support the idea that the localized excitonic

condensate has to be taken into account to interpret experimental data 2 .

• Experiments are conducted at nonzero temperature, and the excitonic con-

densate (if it appears) can constitute of a relatively small fraction of the

total number of particles. We considered the system bosons + medium at

zero temperature. Experimental data, however, show strong dependence of

the packet length on the temperature (at least, an order of magnitude in

the range of 2 — 5K). Thus, no conclusion can be made until our theory is

extended to nonzero temperatures or experiments are conducted at much

more lower temperatures.

• All the results on nonlinear interaction between two packets [2] point out to

a kind of coherent interaction. This is expected within our quantum model

of the moving exciton-phonon droplet with the "Bose-nucleus". It is an

open question whether such a behavior can be the case within any classical

model.

• If, according to experiments, the phonon source is generated at a surface by

a strongly absorbed radiation, the phonon wind [4] does not effect strongly

(J
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the excitons with a density just below the threshold one, and no appreciable

effect is detected. On the contrary, the injection of cold excitons distributed

throughout the volume leads to the appearance of a localized packet in the

above conditions.

We believe that the future theory needs both the exciton-phonon condensate

and the proper incorporation of non-condensed excitons and phonons. It can

be tested by further experiments as well. For example, one can set the crystal

geometry in such a way that the sound wave of the phonon wind theory can be

dumped out, and only the coherent part of the packet (if it exists) will continue

to propagate.

In conclusion, we note that the phonons play a crucial role in almost all current

models aimed to explain or predict coherent behavior of excitons in semiconduc-

tors, see, f.ex., 5,6,7. The fact that our simple model fails to predict the width

of the packet correctly does not mean our approach is wrong. Indeed, one has to

take into account the thermal excitons (e.g., the weak tail that is always observed

behind the soliton [2]) and the thermal phonons of the crystal to make the model

with condensate more realistic.
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Chapter 2

Exciton-Phonon packets with condensate: detailed description

In this chapter, we included two articles which generalize the approach pre-

sented in Chapter l. Almost all the important formulas are derived and discussed.

In the first article, we show how the quasi-one dimensional (toy) model follows

from a difficult three-dimensional one. In addition, inside-condensate excitations

are introduced. In the limit of T ^ 0, the inside-excitations have the same char-

acteristic length as the moving condensate. Indeed, the equations to solve are a

kind of the Bogoliubov-de Gennes equations which are linear and the coefficients

depend on the condensate envelope function, oc const (f)^(x Lo\ n = 2, 4.

It turns out that within the model with contact interactions (both exciton-

exciton and exciton-phonon ones) we need the higher interaction terms, -ffx-x ^

f rix (^i/3) (-i/'t)3 (•0)3 and -ffph-ph ^ J rix (/Î3/3) (Vu)3 to avoid the problems with
the low-k part of the inside-excitation spectrum. Then, instead of the standard

NLS equation, we have the so-called "subcritical" NLS equation to describe the

coherent state of excitons and phonons with macroscopic occupancy. Note that

in Condensed Matter Physics it is used in the theory of superfluidity and Bose-

Einstein condensation [40]. It is also applied in nonlinear optics for light pulses in

the medium with a cubic-quintic nonlinearity [4l], and it is known as the Lienard

equation in the theory of exactly solvable nonlinear equations [42] . Similar to the

model considered in Chapter 1, the repulsive excitons can form the bright soliton

state (oc exp(tfcorc) (a + & cosh (a; — vt))~1^2 ) due to the coherent phonons of the
exciton-phonon packet.

The stability of the ballistic transport against the emission of excitations is

studied in the second article in detail. The Landau arguments are based on cal cu-

lation of the energy and momentum of the moving condensate with an excitation

(or several excitations) so that SE ^ h (a;j,k + k^v) > 0. Here, they are employed

(J
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to estimate the value of the critical velocity. As for the interference of two conden-

sates, (recall that we prescribe them the coherent phases, y?c i and y 0,2), it is the

nonlinear terms of the NLS equation that makes such an interference more like

the soliton-soliton interaction than the constructive / deconstructive interference

of the linear quantum mechanics. However, we are mostly interested in the stage

of the strong nonlinear interaction itself, i.e., what happens during the time when

the condensate wave functions overlap.
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Abstract

We explore a simple theoretical model to describe the properties of Base

condensed para-excitons in CuzO. Taking into account the exciton - phonon

interaction and introducing a coherent phonon part of the moving conden-

sate, we derive the dynamic equations for the exciton - phonon condensate.

Within the Base approximation for excitons, we discuss the conditions for

the moving inhomogeneous condensate to appear in the crystal. We cal-

culate the condensate wave function and energy and a collective excitation

spectrum in the semiclassical approximation. The stability conditions of the

moving condensate are analyzed by use of Landau arguments, and two crit-

ical velocities appear in the theory. Finally, we apply our model to describe

the recently observed interference between two coherent exciton - phonon

packets in CuaO.

PACS numbers: 71.35,+z, 71.35.Lk
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l Introduction

Excitons in semiconductor crystals [1] and nanostructures [2] are a very interesting

and challenging system to search for the process of Base Einstein condensation

(BEC). Nowadays there is a lot of experimental evidence that the optically inactive

para-excitons in CuaO can form a highly correlated state, or the excitonic Bose

Einstein condensate [1], [3], [4]. A moving condensate of para-excitons in a 3D

CuîO crystal turns out to be spatially inhomogeneous in the direction of motion,

and the registered velocities of coherent exciton packets turn out to be always

less, but approximately equal to the longitudinal sound speed of the crystal [5].

Analyzing recent experimental [3],[5],[6] and theoretical [7]-[10] studies of BEG

of excitons in CuzO, we can conclude that there are essentially two different stages

of this process. The first stage is the kinetic one, with the characteristic time scale

of 10 ~ 20ns. At this stage, a condensate of long-living para-excitons begins to

be formed from a quasi-equilibrium degenerate state of the gas of excitons (p, / 0,

Teff > ïlatt) when the concentration and the effective temperature of excitons

in a cloud, Teff; meet the conditions of Bose-Einstein Condensation [1]. Note

that we do not discuss here the behavior of ortho-excitons (with the lifetime

îortho ^ 30 ns) and their influence on the para-exciton condensation process. For

more details about the ortho-excitons in CuaO, ortho-to-para-exciton conversion,

etc. see [3], [4], [l l].

The most intriguing feature of the kinetic stage is that formation of the

para-exciton condensate and the process of momentum transfer to the para-

exciton cloud are happening simultaneously. It seems that nonequilibrium acoustic

phonons (appearing at the final stage of exciton cloud cooling) play the key role in

the process of momentum transfer. Indeed, the theoretical results obtained in the

framework of the "phonon wind" model [8], [12] and the experimental observations

[3], [4], [5] are strong arguments in favor of this idea. To the authors' knowledge,

there are no realistic theoretical models of the kinetic stage of para-exciton conden-

sate formation where quantum degeneracy of the initial exciton state and possible
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coherence of nonequilibrium phonons pushing the excitons would be taken into

account. Indeed, the condensate formation and many other processes involving it

are essentially nonlinear ones. Therefore, the condensate, or, better, the macro-

scopically occupied mode, can be different from n(k = 0) S> 1, and the language

of the states in k-space and their occupation numbers n(k) may be not relevant

to the problem, see [13].
In this study, we will not explore the stage of condensate formation. Instead,

we investigate the second, quasi-equilibrium stage, in which the condensate has

already been formed and it moves through a crystal with some constant velocity

and characteristic shape of the density profile. In theory, the time scale of this

"transport" stage, A^r, could be determined by the para-exciton lifetime (ïpara ^
13 ^is [1]). In practice, it is determined by the characteristic size £ of a, high-quality
single crystal available for experiments:

Aétr ^ ^/Q ^ 0.5 - 1.5//S < Tpara,

where Q is the longitudinal sound velocity.

We assume that at the "transport" stage, the temperature of the moving packet

(condensed + noncondensed particles) is equal to the lattice temperature of the

crystal,

Teff = îlatt < îc-

Then we can consider first the simplest case of T = 0 and disregard the influence

of all sorts of nonequilibrium phonons (which appear at the stages of exciton

formation, thermalization [8] ) on the formed moving condensate.

Any theory of the exciton BEG in CuzO has to point out some physical mech-

anism(s) by means of which the key experimental facts can be explained. (For

example, the condensate moves without friction within a narrow interval of veloc-

ities localized near c;, and the shape of the stable macroscopic wave function of

excitons resembles soliton profiles 6].) Here we explore a simple model ofexciton-

phonon condensate. In this case, the general structure of the Hamiltonian of the
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moving exciton packet and the lattice phonons is the following:

Â=7ïex^t,^)-vPex(^t,V')+^ph(Û,7T)-vPph(Û,7T)+^t(^, 9j.Û,). (l)

Here -0 is the Bose-field operator describing the excitons, û is the field operator of

lattice displacements, TT is the momentum density operator canonically conjugate

to û, v is the exciton packet velocity and, finally, P is the momentum operator.

Note that the Hamiltonian (1) is written in the reference frame moving with the

exciton packet, i.e. x —^ x— vï and v = const is the packet velocity.

u

2 3D Model of Moving Exciton-Phonon Con-

densate

To derive the equations of motion of the field operators (and generalize these

equations to the case of T 7^ 0), it is more convenient, however, to start from the

Lagrangian. In the proposed model, the Lagrangian density has the form

/: = ^9^ - 9^^ + v^Ç9^^- ^9^)-
h2 ^1~E9^ ~ ^nv7/itv^ - ^(^(x^))2(^(x^))2 - ^(^(x^))3(^(x,ï))3+

+j(9<û)2 - ^ô,û, 9,^ - pv9^9^ + Ç(9.û)2-
-ao^t(x^)^(x,ï)Vû(x,*), (2)

where m is the exciton "bare" mass (m = me+m/i ^ 3me for Is excitons in CuzO),

z/o is the exciton-exciton interaction constant (^o > 0 that corresponds to the

repulsive interaction between para-excitons in CusO [14]), p is the crystal density,

o-o is the exciton-longitudinal phonon coupling constant, and v = (u, 0,0). The

energy of a free exciton is Eg + ^2k2/2m. Although the validity of the condition
[15] na^ <$; l (SB is the exciton Bohr radius) makes it possible to disregard

all the multiple-particle interactions with more than two participating particles
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in Hen we leave the hard-core repulsion term originated from the three-particle

interaction in /^, i.e. 1^1 74 0 and 0 < ^i <;fo- For simplicity's sake, we take all

the interaction terms in L in the local form and disregard the interaction between

the excitons and transverse phonons. The packet velocity v ^ Vs is one of the

parameters of the theory, and we will not take into account the excitonic normal

component and velocity, (T = 0).

The equations of motion can be easily derived by the standard variational

method from the following condition:

SS=5 l dtdx£(^(x,t), -i/'(x,t), û(x,ï)) =0.

Indeed, after transforming the Bose-fields •0t and if) by

-0(x, t) —>• exp{—iEgt/h) ex.p(imvx/h)i{j(x, t),

we can write these equations as follows:

(^9t+m-y2/2)^(x,t)=

h2=(-^A+^t^(x,ï)+^V't2Vi2(x^))^(x^)+aoVû(x,ï)^(x^), (3)
(9,2 - c?A - 2^0. + ^2^2)û(x, t) = /)-laoV(Vit^(x, t)). (4)

We assume that the condensate of excitons exists. This means that the follow-

ing representation of the exciton Bose-field holds: tp = i{)o + Sif;. Here ipo ^ 0 is

the classical part of the field operator -0 or, in other words, the condensate wave

function, and 5if) is the fluctuational part of fp, which describes noncondensed

particles.

One of the important objects in the theory of BEG is the correlation functions

of Bose-fields. The standard way to calculate them in this model (the excitonic

function <'0(x,e)i/>t(x/,^)>, for example,) can be based on the efïective action or

the effective Hamiltonian approaches [16]. Indeed, one can, first, integrate over
the phonon variables u, get the expression for Ses(^,^) and, second, use 6'eff (or

Jfeff) to derive the equations of motion for tpo, Si^, correlation functions, etc..
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n In this work we do not follow that way; instead, we treat excitons and phonons

equally [9], [17]. This means that the displacement field û can have a nontrivial
classical part too, i.e. û = UQ +5Û and UQ ^- 0, and the actual moving condensate

can be an exciton-phonon one, i.e. V'o(x, t) • Uo(x, t). Then the equation of motion
for the classical parts of the fields ^ and û can be derived by use of the variational

method from fi = ^C('0, '0*, u), where all the fields can be considered as the classical
ones. Eventually we have

(ih9t+mv2/2)^o{x,t) =

=(-^A+^o|V'o|2(x^)+^|V;o|4(x,t))^o(x,ï)+aoVuo(x,t)^(x^), (5)
(9,2 - c^A - 2y9A + ^2^)uo(x,^) = p-l(7oV(|^o|2(x,t)). (6)

Notice that deriving these equations we disregarded the interaction between the

classical (condensate) and the fluctuational (noncondensate) parts of the fields.
That is certainly a good approximation for T = 0 and T <^Tc cases [18].

In this article a steady-state of the condensate is the object of the main inter-

est. In the co-moving frame of reference, the condensate steady-state is just the

stationary solution of Eqs. (5), (6) and it can be taken in the form

<0o(x,ï) == e^p{-ifit/h) exp(2(/?)^o(x), uo(x,t) = qo(x),

where (f)o and qo are the real number functions, and ip = const is the (macroscopic)
phase of the condensate wave function. (This phase can be taken zeroth if only a
single condensate is the subject of interest.) Then, the following equations have
to be solved (/2 = /A + mu2/2):

h2
/i<^o(x) =(^ - ^A + ^o^(x) + ^i^(x) J^o(x) + aoVqo(x) ^o(x), (7)

-( (e? - ^2)^ + c?^2 + c^J )qo(x) = p-laoV^(x). (8)
Indeed, the last equation can be solved relative to Vqo. Ifu< Q, the correspond-

ing solution can be represented as follows:

Vqo(x) = (-^ - J)^ ^(x) + ^(1 - A-2) ^(x - x/)^ ^(x/) rfx', (9)
u
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where A2 = c^/(c^ — u ), and T can be expressed in terms of the Green function

of Eq. (8). Substituting Vqo in Eq. (7), we rewrite the latter in the following

form:

h2
2m

where the effective exciton-exciton interaction Uee is induced by the lattice (co 7^

0). It can be represented as follows:

A2 2^ an2

^o(x) =( - ^A + Z.o^(x) + ^^(X - x/)^(x/) rîx/ + ^^(x) )^o(x), (10)

+-
o-i.20 v2

t/et(x)=(-^-j)^
3\2x2•( l ). (11)^p(c^ - v2) ci{c] - u2)V2 V (A2a;2 + y2 + -z2)5/2 {\2x2 + î/2 + z2)3/2

The first (isotropic) term in (11) causes the renormalization of the exciton-exciton

interaction constant VQ > 0:

t/0 —>t/eff =^(U; C;,CTo). (12)

Note that t/eff can be positive or negative depending on the value of v. The

second term in the effective potential (11) is strongly anisotropic. Moreover, on

the cylinder y2 +z2 = £2, its value is negative in the vicinity of a; = 0 and positive

at the large scales of x (Oa;||v).

The possibility of the existence of specific and to some extent unexpected

solutions of Eq. (10) follows from the fact that the effective two particle interaction

between excitons can be attractive at small distances between the particles and

repulsive at large distances. For example, the wave function ^o(x) may become

strongly localized in 3D space because of this attraction.

If v > ci, the formulas for Vqo(x) and t/eff(x) are very similar to those obtained

in the case of v < ci. For instance, the solution ofEq. (8) can be written as follows:

Vqo(x) = (^ - J)^ ^(x) + ^(1 + A2) ^'(x - x')^ ^(x/) dx'. (13)
(Here A2 = c]/{v2 — c^)). Again, the renormalization (12) takes place and a
nonisotropic part of t^ff(x) appears in Eq. (10). However, the efïective two-

particle interaction between excitons remains repulsive, i.e. t/o^(x) + U^(x) > 0.

u



0

53

3 Effective ID Model for the Condensate Wave

Function

Solving Eqs. (7),(8) in 3D space seems to be a difficult problem (see Eqs. (10),(11) ).

However, these equations can be essentially simplified if we assume that the

condensate is inhomogeneous along the a;-axis only, that is ci>o(x) = ci>o(^) and

qo(x) = Çqo{x), 0,0). Such an effective reduction of dimensionality transforms

the difficult integral-differential equation (10) into a rather simple difïerential one,

and obtained in this way the effective ID model for the condensate wave function

ç!>o o ÇQ conserves all the important properties of the "parent" 3D model. Indeed,

if u < Q, the following equations stand for the condensate:

fï^(x) == {-{h2/2m)9Î + v^l{x~) + y^[x} -)^{x), (14)

Q^x) = const - (ffo/p(c? - v2)) ^(a;), (15)

where Vgs = i/o — a^/pÇcf — v2). If v > c;, Eq. (14) describes the excitonic part of

the condensate, but with the enhanced eifective repulsion v'y == i/o+a'^/pCv'2—cf).

The effective two-particle interaction constant t^eff is negative if the velocity of

the condensate lies inside the interval Vy <v < ci, where

vo = Ve? - {allPvo) (16)

can be called the first 'critical' velocity in the model. (Note that outside this

interval fee > 0 [9].)

The estimate value of the threshold velocity Vy can be obtained from the

following formula:

V^ ^ Q ^1 - {C, - C,)2/(87T Ry+ Ry73),

where Ce — Cy is the relative volume deformation potential of a semiconductor,

(o-o c± Ce—C v), Ry* and Ry are the exciton and atom Rydberg energies, 7 = a-a/ai

and a; is the lattice constant. (The repulsive exciton-exciton interaction is taken in

the form VQ c^ 4:7fh2a^/m). In the case of CuzO oxide, we have Vo ^ (0.5 ~ 0.7)c;.
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0 In this study we will consider the case ofvo <v < ci in detail. If the sign of

the effective two-particle interaction can vary, an extra (repulsive) term should be

included into the Hamiltonian of a many-particle system to insure the finiteness of

a steady-state wave function or the absence of wave function collapse in dynamic

processes. In our case, it is the term ^i(^rt)3^r3, and 1^1 > 0 is supposed to be the

smallest energy parameter in the theory. In the framework of the considered ID

model, however, a finite steady-state solution of Eqs. (14),(15) can be obtained

without accounting for the "hard core" repulsion term ^i^. Indeed, we can write

out the corresponding solution as follows:

^(x) = ^/cosh(/3^x), 9^(x) = -(ao/p(c] - ^2))^/cosh2(/?$o^), (17)

/i = z.o^/2 - (ao2/p(c? - î;2))^/2 < 0, (18)

^-^-^i- <19)
The amplitudes of the exciton and phonon parts of the condensate, the char-

acteristic width of the condensate, LQ = (/3(u)$o)-l, and the value of the effective

chemical potential p, depend on the normalization of the exciton wave function

<po(x). We normalize it in 3D space assuming that the characteristic width of the

packet in the {y, z) plane is finite and the cross-section area of the packet can be

made equal to the cross-section area S of a laser beam. Then we can write this

condition as follows:

f\^\\x,t)d^=S f^{x}dx = TVo, (20)

where No is the number of condensed excitons. Immediately, we get the following

results:

^-^), ^.=(l ))-I,
vl(N^,^ h2

^ — ^[^W] =-:
cr

yov2-v2,(N^^^ _ h2 ,_2
ft=-^^-^^w) =-^nL02-

(21)

(22)
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The important "nonlinear" property of the obtained solution (17) is the depen-

dence of the amplitudes of exciton and phonon parts of the condensate on the

velocity v and the number of excitons in the condensate, Ny . For example,

^=^(^0^)-^2^2-^2)/(C?-^2)

stands for the exciton amplitude. Notice that the characteristic width of the con-

densate and its velocity are not independent parameters, see (21). For estimates,

the formula for LQ can be rewritten as follows:

,2\V2
Lo-1 ^ 2âBl(nâ^)l/2

V2-v^
CÏ-V2} '

s-1where n is the average density of excitons in the soliton state. Although agj

in this formula is multiplied by a small factor, this factor is not small enough

to show quantitative agreement with the experimentally observed value of I/o,

2Z/exp ^ 10- ^ 10-2 cm. It seems to be reasonable that a theory with nonzero

temperature (T > |/i| ) vyill provide a more realistic value of the effective size of

the packet.

Returning to the laboratory reference frame, we can write the condensate wave

function in the form:

i^o(x, t) • uo(x, t')Sij = exp [ —i [ Eg+ —— — \p,\ t/h ) e'xp(imvx/h')x
/

x$o/ cosh(Lo-l(a; - vt)) • ('Ço - Qo tanh(L^l(a; - -u^)) ) , (23)
where we count the exciton energy from the bottom of the crystal valence band;

2Qo(No,v) is the amplitude of the phonon part of condensate and Qo oc $o- To

calculate the energy of the moving condensate within the Lagrangian approach,

(see Eq. (2) ), we have to integrate the zeroth component of the energy-momentum

tensor 7^ over the spatial coordinates,

7^(x,f) = ^^+^-V^v^+(^/2)(^t)2^2+j(9tu)2+^9,Ufc9,^+ao^Vu.

u
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n We do not take into account the small correction to this energy due to the quantum

depletion of the condensate as well as the term (^i/3) 0^ in 7^'. Then the result
reads:

E^= f dr7^=E^+E^+.Eph=

=N^[E,+
mv2^1_^o([A|+W3)^2)+

cf+v2

ïo^s"^-y
The value \p,\ is a rather small parameter,

|/2|^6Ry*(na^(^2-^)/(c?-^2),

•N,
0\

.2
0

3(c?-^)-°p(^-^)
^>2.

and the energy of the phonon part of the condensate is estimated as -E'ph ^ (5 ~

6)No\jl\. However, the back surface of the crystal will experience some pressure

when the condensate reaches this surface and the excitons are destroyed near it.

The estimation of the maximum value of the pressure in a pulse is as follows:

.-3Pm ^ 10(7o^ ^ 10-^ - 10-3 J/cm-

and the main contribution to this value comes from the phonon part. Indeed,

one can see that the exciton-phonon condensate carries a nonzeroth momentum

03; — -' ex,a: ~t~ -rph,3:-

Pox= l dyi(n/2i)((f)'Q(x,t')9j:(f>o{x,t')-9x(l>*o(x,t)(po(x,t~))-p9tUo{x,t~)9^uo(x,t') =
J

= f d^m^W + pv Ç-^^-^KX^
2

4 Low-Lying Excitations of Exciton-Phonon Con-

densate

Although the condensate wave function (f)o(x)-qo(x) was obtained in the framework

of the effective ID model, (but normalized in 3D space), we will use this solution

as a classical part in the 3D field operator decomposition:

^(x, t) = exp(-^)(^>o(a;) + ^(x, *)), (24)

0
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ûj(x, t) = qo(x)S^j + ôûj{x, t), (25)

where p. = fi — mvz/2. Substituting the field operators of the form (24),(25) into

the Lagrangian density (2), we can write the later in the following form:

/:=/:o(e-^o(^), ÇoWi,) + /:2(^t(x,i),^(x^), (^û(x,é)) +.., (26)

where Lo stands for the classical part of £, and L-i is the bilinear form in the

^-operators. As the classical parts of the field operators satisfy the equality

ÔSo[^,ipo, uo\ = 0, the linear form in the "^-operators" vanishes in (26).

In the simplest (Bogoliubov) approximation [19],[20], L w Co+C.-i and, hence,
the bilinear form ^2 defines the equations of motion for the fluctuating parts

of the field operators. (To derive them we use the variational method: OS^ =

ô f£,'i{S^,Sip,ôu)dxdt == 0.) As a result, these equations are linear and can be
written as follows:

ih9t ^(x, t} = (-^A + |/.| + ^2^ - ^ï_ ^ } ^(^ + 3^i^(3;) ) ^(x,ï)+
+(^^(^+2^^(a;))^t(x^)+ao^(^)V5û(x^), (27)

(9^-c^-2v9t9^+v29^Su^,t) = p-la^ ^) (s^t) + ^t(x,î)) ) (28)
The same approximation can be performed within the Hamiltonian approach.

Indeed, decomposition of the field operators near their nontrivial classical parts

leads to the decomposition of the Hamiltonian (1) itself, and - as it was done with

the Lagrangian - only the classical part of H, Ho, and the bilinear form in the

fluctuating fields, H^i are left for examination:

H W Ho{^, -00, 71'0, '"o) + H^ÇS^, (5^, ^TÎ-, 5u). (29)

In this approximation, the Hamiltonian (29) can be diagonalized and rewritten in

the form:

E = H,(e-i'lt^(x), q^x) )+SE^+^h^, â^. (30)
s
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Here, 6Eo is the quantum correction to the energy of the condensate and the index

s labels the elementary excitations of the system. The operators a^, a, are the
Base ones, and they can be represented by linear combinations of the exciton and

displacement field operators:

a, = ^dx ( [/,(x) ^(x) + y;(x) 5^t(x) + X,,,(x) 5û,(x) + V,,,(x) 57T,(x) )
(31)

^ = V^x ( £7:(x) ^f(x) + y,(x) ^(x) + X^.(x) Jû,(x) + r;,(x) ^,(x) ) (32)
Note that by analogy with the exciton-polariton modes in semiconductors [21] the
excitations of the condensate (23) can be considered as a mixture of the exciton-
and phonon-type modes, but in this model the phonons come from fluctuations

of the uo(x, t)-pa,Tt of the condensate.

Since the ce-operators (see (30) ) evolve in time as simply as

â^t)=e—^ â^t)=^stà^

these operators (and the frequencies {c^s}) are the eigenvectors (and, correspond-
ingly, the eigenvalues) of the equations of motion (27), (28) obtained within the
Lagrangian method. Then, the time dependent "5-operators" in (27), (28) can be
represented by the following linear combinations of the cc-operators:

^(x,f) =^u,(x)â,e-iust + v:(x)â^3t,
s

^t(x,<) = ^u:(x)^e-t + v,(x)â,e-ta'3t,
s

5û,(x, t) = ^ C,,(x) â,e-^t + C;,(x) ^e-3t.

(33)

(34)

(35)
s

Substituting this ansatz (which is a generalization of the u-v Bogoliubov transfor-
mation) into Eqs. (27), (28), we obtain the following coupled eigenvalue equations

[9]:

(£(A) - tw,) u,(x) + {^l(x) + 2^^(3;)) v,(x) + ao^(x)^C,(x) = 0 (36)

u
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{^l{x) + 2^(x)) u,(x) + (L(A) + ^) v,(x) + ao^o(^)VC,(x) = 0 (37)

-P-lCToV^o(^)u,(x))-/9-l(7oV^o(^)v,(x))+[(-^ - v9^)i - e]/\} C,(x) = 0,
(38)

where £(A) = (-^2/2m)A + \fl\ + [2^o - ao2/p(c? - ^2) ] ^{x) + 3^{x).
To simplify investigation of the characteristic properties of the different possi-

blé solutions ofEqs. (36)-(38), we subdivide the excitations (33)-(35) into two ma-

jor parts, the inside-excitatioîis and the outside-oiies. The mszde-excitations are

localized merely inside the packet area, i.e. |x| < LQ and ^)2,(x) fti const, whereas

the outside-excitatioTis propagate merely in the outside area, i.e. |x| > (l ~ 2)Z/o

and <p^(x) ^ 4^exp(-2|2;|/Lo) -^ 0.

4.1 Outside-Excitations

For the outside collective excitations, the asymptotics of the low-lying energy

spectrum can be found easily. Indeed, if we assume that 4>2,(x') ?s 0 in the out-

side packet area, the equations (27) and (28) begin to be uncoupled. Then, Eq.

(27) describes the excitonic branch of the outside-excitations with the following

dispersion law in the co-moving frame:

^ex(k) ^ |/2| + (hz/2m)k2, (uk(x) - eîkx, Vk(x) ?. 0), (39)

and Eq. (28) describes the phonon branch and yields the spectrum a;p/i(k) = c;|k|

in the laboratory frame of reference. Then, the exciton field operator, which

describes the exciton condensate with the one outside excitation, has the following

form:

/0(x,ï) ^ exp(-î(£'g +mv /2 - \p,\)t/h)exp{imvx/h') (f>o(x - vt) +

+exp(—i(£'g + mv2/2 — |/i|)^/7i) exp{imvx/h')x

x {exp(-t(|/i| + hk2/2m + kj:v)t/h)exp{ikx) u^ }
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(x-vt)

0
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^

Figure 1: Moving exciton-phonon condensate.

Moving exciton-phonon condensate, (po{x - vt) • UyÇx - vt)Sij, and inside- and

outside-excitations of the condensate. (Longitudinal exciton-phonon excitations,

k [l Ox, are schematically depicted.)
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0 It is easy to see that such a collective excitation, a;ex = |A|/^ + ^.k2/2m + kj;v,

can be interpreted as an exciton with the energy Eg + ^2k2/2m, where Hkj =
Hkj+mvS-ij. Then we can compare the condensate energy EoCNo) and the energy

of the condensate with one outside excitation,

^o(^Vo-l)+^exc(A)+^ph(fc/) ^£1oTO-^£'o(^o)+(^+^À:2/2m)+^|A/| ^

c^+v2 2

^-^^+nc^'\^ ^(^Vo)+(^2/2m - mî;2/2)+3(|/.|+(^o/3)^)-^-^ ^cf^<
> Eo(No) in the k —> 0 limit Çk 7^ 0 for the phonon part).

Note that the energy (and the momentum) of the phonon part of the condensate

changes after exciton emission. We assume that the transformation No —> No—1

(or emission of an outside exciton) corresponds to the situation when the outside

exciton and the outside phonon(s) appear together, and the phonon is emitted

with the energy compensating the changement of —SEp^ in the phonon part of
the condensate.

However, the condensate collective excitations are uncoupled only in the k -^ 0

limit, i.e. A == 27T/A; ^> I/o. It follows from the structure of Eqs. (36)-(38) that

the coupling between the outside phonon and exciton branches is originated from

the condensate "surface" area, i.e. from the scale Lg < \x\ < 3Lo. Indeed, (f)o{x)

and (t)'o(x} ^ ±^>o(2;)Lo' cannot be put equal zero in this area, and the "partiel e"-
and the "hole"-type components of the exciton operators, namely Us ~ e and

v* ~ e-ifcï, should be both different from zero and spatially modulated in the

surface area, at least for the excitations with A < 2Lo. We left this question for

future investigations.

4.2 Inside-Excitations

To simplify the calculation of mszde-excitation spectrum (see Eqs. (36)-(38) ) we

will use the semiclassical approximation [20]. In this approximation, the exci-

tations can be labeled by the wave vector k in the co-moving frame, and the

u
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following representation holds:

u,(x)=Uk(x)e^W, v,(x)=vk(x)ewk(x\ C,,,(x) = C'k,,(x)e^k(x\ (40)

where the phase y?k(x) K: ipo + kx, and Uk(x), Vk(x), and C',-^(x) are assumed to
be smooth functions of x in the inside condensate area. Notice that the k- and

x-representations are mixed here. This means that the operator nature of the
fluctuating fields is factually dismissed within the semiclassical approximation,
However, the orthogonality relations between u, and Vg', and, hence, between Uk
and Vk' come from the Bose commutation relations between the operators as and

a\, [19], [20]. For example, Eq. (33) is modified as follows:

ô^,t) ^ f-^ (uk(x)eîv)k(x)e-îa;kWt + Vk(x)e-tvkWeîukWt) , (4l)
and the mszde-excitation part of the elementary excitation term in (30),

E, ••• ^ E,, out + E,, surf + E,,in -. can be written in the form

^ fjw^âs ^ l -^^ ^k(x) nk(x).
s,in

J (27T)3
(42)

Note that the semiclassical energy nu}k(x) of the inside-excitation mode is sup-
posed to be a smooth function of x, (i.e. at least as smooth as (j)2,(x) ?y const in
the "inside" approximation).

Although the low-lying excitations cannot be properly described within the
semiclassical approximation, we apply it here to calculate the low energy asymp-
totics of the spectrum. In fact, all the important properties of these excitations
can be understood within this approach.

Substituting (40) into Eqs. (36)-(38), we transform these differential equations
into the algebraic ones ( L(—k2) = L(A —>• —k2) ):

(L(-k2) - ^k) Uk(x) + (^o^(x) + 2^i^(x)) Vk(x) + ao^o(x)îkCk(x) = 0, (43)

(i.o^(x) + 2^i^(x)) Uk(x) + (L(-k2) + ^k) Vk(x) + ao<^o(x)îkCk(x) = 0 (44)

(J
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p~lao(/)o(x)ikj Uk(x) + p-lo-oçi>o(^)î^ Vk(x) + [(^k + v^)2 - c^k2] C'kj(x) = 0.
(45)

After some straightforward algebra, we can write out the equation for the exciton-

phonon excitation spectrum:

( (a;k + vk^)2 - c^k2) x

x [(^,)2 - (L(-k) - (^o^(x) + 2^^(x))) (L(-k) + (^o^(x) + 2^^(x)))]
= (L(-k) - (^o^(x) + 2^^(x)) ) ^^(^) (c?k2). (46)

Note that within the semiclassical description of the inside-excitatioas, the low

energy limit means k —f ko where fco is the momentum cut-off,

(^2/2m)k^ ^ 1/il = (n2/2m)L^2.

The inequality k > ko ^ Ly ensures the function ^k(x) in (46) to be real
and positive. Indeed, only the excitations with the wave lengths A < (2 ~ 3)Lo
can be considered as the inside ones. The presence of the "hard core" terms,

const v'i^Çx'), leads to a slight renormalization of the value of the momentum cut-
off". However, this renormalization does not factually change the characteristic

properties of the possible solutions of Eq. (46). We will mark the "hard core"

terms by e+ > 0. For example, in the low energy limit,

k f» ko + Sk, ôk -> 0,

the exciton part of the l.h.s. of Eq. (46) - i.e. the formula inside the square
brackets - can be reduced to the form:

^2(k2-k^)(^k)2 - {h2^mk20) + F{x) + e+) (n2(k22^k^) + JF^) + 2vo(f)2^ + £+) '
(47)

where F{x) = (o-^//)(c2 - v2) - i/o) (^^ - ^(-ï) )î and the following two estimates
hold: F(x) ^ 2\fi\(2x/Lo)2 at 3; ~ 0 and F{x) ^ 2|/2| at n; > ±2Lo.
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There are two different types of the inside-excitations, the longitudinal exci-

tations and the transverse ones. The later have the wave vectors k perpendicular

to the x (v)-direction. Although Eq. (46) can be solved exactly for the transverse

excitation spectrum 22 , taking into account the coupling term changes the values
of excitation energies slightly, and the excitations can be approximately consid-

ered as of the pure exciton or phonon types. Then we have the acoustic phonon

dispersion law for the phonon branch and the following spectrum for the exciton

branch:

(^ex,.J2 ^ (^(fc2 - /Co2) + ^) (^(^ - ^O2) + 2^(^) + 6^ Fy

h2
^ ^kî - Â;o2) 2^^^) + îv^x^ < ( |/i| + (^2/2m)fci)z .

2m
(48)

The smooth function ujk^Cx) > 0 has a gap when k -ï- ko, but unlike the case of
the outside excitations, the gap value is determined by the "hard core" repulsion

term and is much less than |/^[. Furthermore, if we let (formally) the x coordinate

in (48)change in the area of |a;| > LQ, the dispersion law ^ex,A:j_(^) reproduces the
outside excitation asymptotics, \p.\ + {h2/2m)k]_. However, inside the condensate,
we obtain a strong deviation of the collective excitation spectrum from the simple

excltonic one.

In the case of the longitudinal excitations, the mode interaction is non-negligible

in the low energy limit. For instance, the "exciton" root of Eq. (46) with the

nonzeroth r.h.s. exists if kj: > 2.5-L^1. Therefore there are no distinct exciton
and phonon modes, and the cases kj; > 0 and kj: < 0 are different because of

different position of the "bare" phonon root on the energy axis. Then, on the

energy axis HLJ, the modified phonon spectrum is located higher than the phonon

frequencies and the modified exciton spectrum is located lower then Tiuj^' ^ . Yet,
like the case of transverse excitations, the same inequality and the same (formal)
asymptotics are valid for the lower branch of the spectrum:

0<u}^< \fi\ + (h2/2m)k^.
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The approximate formulas for the longitudinal spectrum are too cumbersome to

be presented here. However, the phonon component of the excitonic longitudinal

excitation, Ck,i(x) / 0, can be found approximately from Eq. (45) by use of the
Bogoliubov form for the wave functions u j (a;) and vj(a;) [20]:

,.2^^fl_\LHû±^ .2^ ^ ^_L^ ^(^2Li^^ " [^) ^^r"' •'^ K [^) ^^'^' (49)
where L(—k2) ^ hz(k2 — A;j)/2m + v^^x} + e+. The effective condensate vol-
urne Ves /^ 46'Z/o is used to normalize the u- and v-wave functions of the inside

excitations, J'dr([u/c|2 - |vfc|2) == 1. Subsequently, we get

p~lffo(j)o(x)zk^ (ufc(a;) + Vk(x) )
Ck,i{x) ^ (50)c^2-(^+^)2

One can use the zeroth approximation, Eq. (48), for u)^ in (49), (50). Then

we can roughly estimate the maximum value of |C'A:(a;)| in the low energy limit

(À;-> 2.5Lo'1, a;<c|^|):

\C,\2^Wp(c]-v2)V^L2,<«L2,. (51)

To investigate the stability of the moving condensate in relation to the creation

of inside excitations, we can calculate the energy of the condensate with the

one inside excitation described by the following set: k, ujk, u^ and Vfc, and Ck.

Although such an excitation was defined in the co-moving frame, calculations

should be done in the laboratory frame. Returning to the lab frame, we represent

the exciton and phonon field functions as follows:

4>o(x-vt, t) -^ cf)o(x-vt, t')+exp(-i{Eg+mv2/2-\p.\)t)e-x.p(imvx)5''S'('x,t), (52)

5^(x, t) = vtk(x - vt)eiïtxe-i(uk+kxv)t +Vk(x- vt)e-iîixe+i(uk+kxv)t,

Uo(x — vt) -^ Uo(x — vt~) + Ck(x - vt) exp(îkx) exp(-î(a;fc + kxV')t) + c.c.. (53)

As the inside excitation is considered as an fluctuation, the number of particles in

the condensate and its energy can be estimated a,s No— f d~x.8^Sî{} and Eo(No) —
QNEQ f d-aô^Sif), respectively.

u
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0 The zeroth component of the energy-momentum tensor can be represented in

the form

V = 7?(0o, ^o) + 7^)(2)(^t, ^, 5u | ^o, uo),

where the first part gives the condensate energy Eo and the second part will

give the energy of the inside excitation, Em- After substitution of (52),(53) into

-E'in = f dv-To , it can be rewritten as follows:

E^ = / dx(Eg + mv2/2 - |/l|)^t^ +

+ / dx h^h + ^v)(|ufc|2 - |vfc|2) + 2p\Ck\2(^ + u^)2. (54)

The first term appearing in (54), ôî/}iSif} -> |ufc|2 + |vfc|2, vanishes in the following
formula for the total energy:

^o+^in^£'oTO+(2|/2|+^o^) / rix^t5V'+ / rix^(^+À;,u)([Ufc|2-|Vfe|2)-

cf+v2 <7,.201^5^^2)^/dx^t^+/dx2/91c'Â:i2(^+UM2' (55)
Here the last two terms compensate each other approximately, and all the in-

teresting effects come form the exciton part of (55). Although u}k + kxV can be

negative, its negative value can be compensated by the term 2\p,\ + VQ^ if the ve-

locityofthe condensate is close to e; or the exciton concentration is high enough.

Therefore, there is a second critical velocity Vc in the theory. If the velocity of the

condensate is less then the velocity Vc and Vo < Vc< ci, the condensate is unstable

in relation to creation of the inside excitations, i.e. Eo + E-m(kx,v) < Eo in the

lab frame. To estimate the value of Vc, we solve the following equation:

(3 - 5)Mo-l(^) ^ (ao2/(c? - v2)p) ^(v),

which can be reduced to (3 ~ 5)^u ^ {o-^/(cf — v2)p) (A^o/251). For example, for

the packets with the exciton concentration of n ^ 1014 ~ 1015 cm"3, the estimate

is as follows:
aï, Nn 0.1ci-vç ^ ^ N, 0.1 ^ ^

e; — pcf 2S hci
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5 Interference between Two Moving Packets

There are at least two interesting problems that can be examined in the framework

of the proposed model (Eqs. (5,6) ). The first problem is the investigation of the

condensate steady-state and its stability, calculation of the low-lying excitation

spectrum, etc.. (Some part of this program was presented in the previous sections.)

The second one is the investigation of interference between two moving packets

[23]. In this case the problem is essentially nonstationary. Indeed, the amplitude

and the shape of the resultant moving packet are expected to change in time [24].

These effects, however, can be considered theoretically by a numerical solving of

Eqs. (5), (6) with the proper initial conditions. (We will disregard the influence of

noncondensed particles, the condensate depletion and nonequilibrium phonons on

the dynamic processes being considered.) For example, if two "input" packets have

the same velocity (vi = V2 == v) and shape, we can write the initial conditions in
the form

V;o(x, i = 0) -Uo(x,A= 0) = </f>o(x) . qo(x) + eî^^o(x + vr) • qo(x + vr), (57)

where 8<p = const is the macroscopical phase difference between the two "input"

condensâtes, and T = const is the time delay between them.

In the simplest (quasi-lD) model, the following equations govern the dynamics

of the two "input" packets:

nî
(ih9t+mv2/2)ij;o(x,t) = (-^—9^+yo|'i/;o|2+^i|V'o|)'i/)o(a;,*)+CTo^o(2;^)^o(^,^)

(58)

(^2 - (e? - y2)^ - 2v9t9^ )uo(x,t) = p-^o9,W{x,t). (59)

Then the initial conditions (57) can be written in the explicit ID form by using

the exact solution (17) of the model (14,15). Note that the amplitudes of (j)o(x)

and 9uo(x) are defined from the normalization condition and depend on the values
ofv and No, and, hence, the amplitudes of the "input" condensâtes in (57) have

the same values.
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Some predictions of the form of the expected solution can be made easily.

Indeed, the shape and other characteristics of the steady-state solution of (58), (57)
will depend mainly on the value of the parameter XQ/LQ where a;o = vr and Lo is
the characteristic condensate width. If XQ/LQ < l ~ 2, the nonlinear interaction
between the packets plays an important role in the process of total wave function

formation. (Notice that the lower limit of 3:0; xÏ = T*v, is defined by the time
scale of formation of a condensate wave function.) It is reasonable to assume that
in the limit of strong interaction between condensâtes, the No + No excitons can

form the single condensate wave function (17) in the steady-state regime. Then
this wave function can be written (in the laboratory frame) as follows:

tpo{x,t') -uo(x,t) ^ exp{-i(p.(2No,v)+mv /2)t)exp(imvx)x

x exp(iy)(f)o(x - vt; 2No) • qo{x - vt; 2No).

As the dynamic equations (58), (59) conserve the energy,

E^N^XQ/LQ)=E^ÎN,V},

v cannot be equal to v in theory. Moreover, if the parameter XQ/LQ is small
enough, it can be only the approximate equality, v K; v.

In the case of XQ/LQ ~^> 1, one can disregard the influence of the mutual
nonlinear interaction on the dynamics of the packets. In this approximation, the

packet moving in the crystal can be modeled by the following formula:

ipo(x,t) • UQ(x,t) e- exp(-î(/i(^Vo) - mv2/2~)t)(f)o(x; N^ • qo{x; No) +

+exp(î5(^) exp(-?(/2(A?o) - mvz/2)t')<po{x + xo; No) • qoÇx + XQ; No).

An interesting and noninvestigated case in the interference problem is the

condensate dynamics after posing nonsymmetric initial conditions. In fact, the

amplitude and the velocity of the "input" packets can be different, for example,

A^ > M and ua > '"i) Vzllvi. We use here the experimental result 5 that at
v > VQ, the velocity of the condensate depends on the laser power or, equivalently,
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on the initial concentration of excitons, i.e. v = v{N). (Note that in theory the
exciton amplitude $o is the function of No and u.)

If the exciton concentration in the first packet, ni, is close to the Bose con-

densation threshold value and the exciton concentration in the second packet,

HZ) can be made » ni, the velocity difference between condensâtes can reach

(0.2 ~ 0.3)c;. Then, in the reference frame moving with the first packet, the
initial conditions can be taken as the following:

V>o(x, t=0)- uo(x, t = 0) = (^>o(x; M) • qo(x; M) +

+ exp(z^) exp(îmJvx) ç'>o(x + XQ; A^) • qo(x + XQ; A^), (60)

where Sv == va — Vi, Xo = V-^T, and the second packet moves in this frame of

reference. In the case of such the initial conditions, the regime of strong non-

linear interaction between the condensâtes is unavoidable. Following the logic

of the soliton theory, we speculate that the steady-state solution may consist of

two packets moving with different velocities and with different exciton concentra-

tions. Roughly speaking, the "input" packets could exchange their places, i.e. the

both packets survive after collision, and the first packet arrives at the "detecting"

boundary of a crystal after the second one:

i{}o(x,t) -uo{x,t) ^ exp(-?(/2(7Vi) - mv^/2)t) (f)o(x;Ni) •Ço(a;;M)+

+ exp{-i{p.{Nî) - mv^/2 + môv'2/î)t ) exp(î5^) exp(îm 5'u x} x

X(f)o(x+xo - ôvt;Nz) • qo{x+xo - ôvt\N-i).

However, the hypothesis about the solitonic character of packet collisions in 3D

needs both numerical and experimental evidence.

u

6 Conclusion

In this study, we considered a model within which the inhomogeneous excitonic

condensate with a nonzero momentum can be investigated. The important physics
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we include in our model is the exciton-phonon interaction and the appearance of a

coherent part of the crystal displacement field that makes the moving condensate

of the exciton-phonon one. Then, the condensate wave function and its energy can

be calculated exactly in the simplest quasi-lD model. We believe that the trans-

port and other unusual properties of the coherent para-exciton packets in CusO

can be described in the framework of the proposed model properly generalized to

meet more realistic conditions.

As the exciton-phonon interaction is very important in any processes involving

excitons in lattices [26], we can speculate about the possibility of use ofpiezoelec-

trical transducers to pump acoustic waves into the system condensate + lattice.

Moreover, the transducers could be used to register the phonon part of the coher-

ent packet in experiments in which the condensate is formed by optically inactive

excitons and phonons.

We showed that there are two critical velocities in the theory, VQ and Vc. The

first one, uo, comes from the renormalization of two particle exciton-exciton in-

teraction due to phonons, and the inhomogeneous soliton state can be formed if

v > VQ. The second one, Vc, cornes from use of Landau arguments [19] for investiga-

tion of the dynamical stability / instability of the moving condensate. Within the

semiclassical approximation for the condensate excitations, we found the conden-

sate is unstable itv< Vc. It is interesting to discuss the possibility of observation

of such an instability when the condensate can be formed in the inhomogeneous

state with r 7^ 0, but with VQ < v < Vc{n,v). Such a coherent packet has to

disappear during its move through a single pure crystal used for experiments. As

the shape of the moving packet depends on time, the form of the registered signal

may depend on the crystal length changing from the solitonic to the standard

diffusion density profile.

We did not concentrate on detailed investigation of excited states of the moving

exciton-phonon condensate in this study. First, the possibility of their observa-

tion is an unclear question itself. Second, the stability conditions of the moving
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condensate - in relation to the creation of condensate excitations - can be derived

from the low energy asymptotics of the excitation spectra at T <^i Tc. However,
the stability problem is not without difficulties [22], [25]. One can easily imagine
the situation when the condensate moves in a very high quality crystal, but with
some impurity region carefully prepared in the middle of the sample. Then the
impurities could bound the noncondensed excitons, which always accompany the
condensate, and could mediate, for instance, the emission of the outside excita-
tions. The last process may lead to depletion of the condensate and, perhaps,
some other observable effects, such as damping, bound exciton PL, etc.. On the
other hand, the inside excitations could manifest themselves atT 74 0 by the
effective enlargement of the packet length, Lo —>• Les, T 74 0, orby interaction
with external acoustic waves.
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Abstract

We explore a nonlinear field model to describe the interplay between the

ability of excitons to be Bose-condensed and their interaction with other

modes of a crystal. We apply our consideration to the long-living para-

excitons in Cu^O. Taking into account the exciton-phonon interaction and

introducing a coherent phonon part of the moving condensate, we derive

the dynamic equations for the exciton-phonon condensate. These equations

can support localized solutions, and we discuss the conditions for the mov-

ing inhomogeneous condensate to appear in the crystal. We calculate the

condensate wave function and energy, and a collective excitation spectrum

in the semiclassical approximation; the inside-excitations were found to fol-

low the asymptotic behavior of the macroscopic wave function exactly. The

stability conditions of the moving condensate are analyzed by use of Lan-

dau arguments, and Landau critical parameters appear in the theory. Fi-

nally, we apply our model to describe the recently observed interference and

strong nonlinear interaction between two coherent exciton - phonon packets

in CuaO.

PACS numbers: 71.35.+Z, 71.35.Lk

u



n

76

l Introduction

Excitons in semiconductor crystals [1] and nanostructures [2], [3] are a very inter-

esting and challenging system to search for the process of Bose-Einstein conden-

sation (BEC). Nowadays there is a lot of experimental evidence that the optically

inactive para-excitons in CusO can form a highly correlated state, or the excitonic

Base Einstein condensate [l], [4], [5]. A moving condensate of para-excitons in a 3D

CuaO crystal turns out to be spatially inhomogeneous in the direction of motion,

and the registered velocities of coherent exciton packets turn out to be always

less, but approximately equal to the longitudinal sound speed of the crystal [6].

Analyzing recent experimental [4],[6],[7] and theoretical [8]-[13] studies of BEG

of excitons in CusO, we can conclude that there are essentially two different stages

of this process. The first stage is the kinetic one, with the characteristic time scale

of 10 ~ 20ns. At this stage, a condensate of long-living para-excitons begins to be

formed from a quasi-equilibrium degenerate state of excitons (p, -^ 0, Tes > Tiatt)

when the concentration and the effective temperature of excitons in a cloud, Tes,

meet the conditions of Bose-Einstein Condensation [1]. Note that we do not

discuss here the behavior of ortho-excitons (with the lifetime Tortho ^ 30 ns) and

their influence on the para-exciton condensation process. For more details about

the ortho-excitons in CugO, ortho-para-exciton conversion, etc. see [4], [5], [14],

[15].
The most intriguing feature of the kinetic stage is that formation of the para-

exciton condensate and the process of momentum transfer to the para-exciton

cloud are happening simultaneously. If the diameter of an excitation spot on the

crystal surface is large enough, 6'gpot ^ 'S'gurf, and the energy of a laser beam

satisfies ephot S> -E1gap, nonequilibrium acoustic phonons may play the key role in

the process of momentum transfer. As a result, the mode with macroscopical

occupancy of the excitons appears to be with (k) -^- 0, where h{k^ = m^v and v

is the packet velocity.

Indeed, the theoretical results obtained in the framework of the "phonon wind"
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model [10],[16] and the experimental observations [4],[5],[6] are strong arguments
in favor of this idea. To the authors' knowledge, there are no realistic theoretical

models of the kinetic stage of para-exciton condensate formation where quantum

degeneracy of the appearing exciton state and possible coherence of nonequilib-

rium phonons pushing the excitons would be taken into account. Indeed, the

condensate formation and many other processes involving it are essentially non-

liner ones. Therefore, the condensate, or, better, the macroscopically occupied
mode, can be difTerent from n(k = 0) ^> 1, and the language of the states in
k-space and their occupation numbers n(k) may be not relevant to the problem,

see [17].

In this study, we will not explore the stage of condensate formation. Instead,
we investigate the second, quasi-equilibrium stage, in which the condensate has
already been formed and it moves through a crystal with some constant velocity
and characteristic shape of the density profile. In theory, the time scale of this

"transport" stage, Aftr, could be determined by the para-exciton lifetime (ïpara ^
13 /^s [l ). In practice, it is determined by the characteristic size £ of a high-quality
single crystal available for experiments:

A^r ^ -^/C; ^ 0.5 - 2/^S< Tpara,

where c; is the longitudinal sound velocity.

We assume that at the "transport" stage, the temperature of the moving
packet (condensed + noncondensed particles) is approximately equal to the lattice

temperature,

îeff = îlatt < -?(:•

Then we can consider the simplest case of T = 0 and disregard the influence of all
sorts of nonequilibrium phonons (which appear at the stages of exciton formation,
thermalization [10]) on the formed moving condensate.

Any theory of the exciton BEG in CusO has to point out some physical mech-
anism(s) by means of which the key experimental facts can be explained. (For
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example, the condensate moves without friction within a narrow interval of ve-

locities localized near c;, and the shape of the stable macroscopic wave function

of excitons resembles soliton profiles [7].) Here we explore a simple model of
the ballistic exciton-phonon condensate. In this case, the general structure of the

Hamiltonian of the moving exciton packet and the lattice phonons is the following:

H = H^\ ^ - vPe,(V't, ^) + ^ph(û, ^) - vPph(û, TT) + iîint(^tVi, Ô.Ûfc). (l)

Here ^ is the Bose-field operator describing the excitons, û is the field operator of

lattice displacements, TT is the momentum density operator canonically conjugate

to u, and P is the momentum operator. Note that the Hamiltonian (1) is written
in the reference frame moving with the exciton packet, i.e. x ^ x— vt and

v = const is the ballistic velocity of the packet.

0

2 3D Model of Moving Exciton-Phonon Con-

densate

To derive the equations of motion of the field operators (and generalize these

equations to the case ofT 7^ 0), it is more convenient to start from the Lagrangian.
In the proposed model, the Lagrangian density has the following form in the co-

moving frame

r = ^(^9^ - 9^^) + v^(9^^- ^9^)-
h2-^W - ^^^ - ^(^(x,^))2^(x,f))2 - '-(^(x,A))3^(x^))3+

+j(9tû)2-^(9,û,)2-^^(^)3-Ç(^û^û+^û9,û)+Ç(9.û)2-
-ao^t(x,ï)^(x,^)Vû(x,A), (2)

where m is the exciton "bare" mass (m = me+m/; ~ 3me for Is excitons in CuzO),
i^o is the exciton-exciton interaction constant (^o > 0 corresponds to the repulsive
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interaction between para-excitons in CuzO 18 ), p is the crystal density, o-o is the

exciton-longitudinal phonon coupling constant, and v = (v, 0,0). The energy of a

free exciton is Eg + h ]s. /2m. Although the validity of the condition n a^ <€ 1 (OB

is the exciton Bohr radius) makes it possible to disregard all the multiple-particle

interactions with more than two participating particles in H^ [19], we include the

hard-core repulsion term originated from the three-particle interaction in /^, i.e.

^i 74 0 and

0 < ^i/â^j < ^o/a^ ^ const Ry*.

(For 3D case, one has to take const ^ 10 because Vy = 4.7T (hz/m) asc and age ^

(l ~ 3) OB; see the discussion in [20].)

Moreover, in the Lagrangian of the displacement field, we include the first

nonlinear term oc ^3 (9u)3. (The dimensionless parameter KB originates from

Taylor's expansion of an interparticle potential U(\ri—Tj\) of the medium atoms.)

Assuming that a dilute excitonic packet moves in a weakly nonlinear medium, we

will not take into account more higher nonlinear terms in (2).

For simplicity's sake, we take all the interaction terms in d, in the local form

and disregard the interaction between the excitons and transverse phonons of the

crystal. Note that the ballistic velocity v is one of the parameters of the theory,

and we will not take into account the excitonic normal component and velocity,

i.e. v = Vs ^ Vy^c, (T = 0). This means that we choose the spatial part of the

coherent phase of the packet, y>c(x), to be in the simplest form,

exp(ty?c(x)) = exp(?(y? + A;o2;)), ip = const, 7iA;o = mu. (3)

The equations of motion can be easily derived by the standard variational

method from the following condition:

SS=S l dtdxC(^(x,t), ^(x,t), û(x,<)) =0.

Indeed, after transforming the Bose-fields ^ and ^ by

-0(x,<) —> exp(—iEgt/h)ex.p{imvx/h)i{}{'x.,t),

u
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n we can write these equations as follows:

(ih9t+mv^/2~)^{-K,t) =

< h2=( - ^-A + ^oW(x,t) + ^2^(x,t))^,t) + aoVû(x^) V(x,ï), (4)
(9,2 - c^A - v(^9^ + 9^9t') + v2^)û,(x, ^) - ^ ^2/î3 9jû, ^û,(x, t) =

= p-lao9,(^t^(x,f)). (5)

We assume that the condensate of excitons exists. This means that the follow-

ing representation of the exciton Bose-field holds: i^ = if)o + oi^. Here -i/'o 7e 0 is

the classical part of the field operator '0 or, in other words, the condensate wave

function, and Si{^ is the fluctuational part of ip, which describes out-of-condensate

particles.

One of the important objects in the theory of BEG is the correlation functions

of Bose-fields. The standard way to calculate them in this model (the excitonic

function ('^(x,î)'0t(x/,ï/)), for example,) can be based on the effective action or

the efïective Hamiltonian approaches 21]. Indeed, one can, first, integrate over

the phonon variables u, get the expression for <S'eff(V',^t) and, second, use Ses (or

-ffeff) to derive the equations of motion for 1^0, ôt{}, correlation functions, etc..

In this work we do not follow that way; instead, we treat excitons and phonons

equally [11], [22], [23]. This means that the displacement field û can have a non-
trivial coherent part too, i.e. û = UQ +5u and UQ 74 0, and the actual moving

condensate can be an exciton-phonon one, i.e. •0o(x,<) • uo(x,^). Then the equa-

tion of motion for the classical parts of the fields •0 and û can be derived by use

of the variational method from (L = /Z('0,'0*, u), m which all the fields can be

considered as the classical ones. Eventually we have

(^9t+mu2/2)^o(x,*)=

n2=( - ^-A + ^o|^o|2(x,<) + ^i|^o|4(x,i) )^o(x,i) + aoVuo(x,é) ^o(x,t), (6)

u
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0 {Q2t - c^A - 2v9tQ^ + u29^)uos(x, ^) - ^ ^2^ ^2uo. ^•^^(x, ^ =
3

= /)-lo-o^(|^o|2(x,A)). (7)

Notice that deriving these equations we disregarded the interaction between the

classical (condensate) and the fluctuational (noncondensate) parts of the fields.

That is certainly a good approximation for T = 0 and T •< Tc cases [24].

In this article, a steady-state of the condensate is the object of the main

interest. In the co-moving frame of reference, the condensate steady-state is just

the stationary solution of Eqs. (6), (7) and it can be taken in the form

i/>o(x,^) = exp(-î^) exp(^)ç!>o(x), uo(x,^) = qo(x),

where (f)o and qo are the real number functions, and y? = const is the coherent

phase of the condensate wave function in the co-moving frame, see Eq. (3). (This

phase can be taken equal to zero if only a single condensate is the subject of

interest.)

Then, the following equations have to be solved, (^ = p,— mv /2, s = 1, 2,3 ):

^o(x) =( - ^A + ^o^(x) + ^i^(x) )^(x) + aoVqo(x) ^o(x), (8)
-{ (e? - vî^ + c,2^2 + c^,2 }ço,(x) - c^ 2/.3 9?ço, ^ço,(x) = p-lao9.^(x).

3=x,y,z

Note that in order to simplify Eq. (7) to Eq. (9), we assumed only Uo(x,î) =

qo(x). In this model, it is enough to obtain localized solutions for the displacement
field.

(J

3 Effective ID Model for the Condensate Wave

Function

Solving Eqs. (8), (9) in 3D space seems to be a difficult problem. However, these

equations can be simplified if we assume that the condensate is inhomogeneous
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along the a;-axis only, that is

^o(x) = ç!>o(3;) and qo(x) = (go(a;), 0, 0).

Note that the cross-section area of an excitation spot, 5, has to be basically con-

stant across the sample cross-section. In this case, the problem can be considered

as an effectively one-dimensional one.

Such an eifective reduction of dimensionality transforms a difficult (nonlocal

differential) equation for the condensate wave function into a rather simple dif-

ferential one, and obtained in this way the effective ID model for the condensate

wave function ç!>o • Co conserves all the important properties of the "parent" 3D

model.

Indeed, if v < q, the following equations stand for the condensate (y(x) =

9xQo{x)):

fï^(x) = ( -(h2/2m)9^ + ^o^(a;) + ^^(^) )^o(^) + ^o 2/(^) ^0(2;), (10)

-(c^ - v2)a^y{x) - 2c?/î3 9^yy(x) = p-lao ^^(a;).

The last equation can be easily integrated,

y{x) + /î3 y (2;) = ^(a;) + const,

(11)

(12)

and solved relative to y{x). Here

.2

K3 = ,2"( ,,2 K3= 7(^)^3, ^(a;) = -
— v ^^^)=-^)^^).

Note that the medium nonlinearity parameter KS can be enhanced by the factor

of the order of 4 ~ 10 if the value of v is less, but close to c;. (For spatially

localized solutions, 9j:qo(x) c^. 0 and (f)^{x) ^ 0 at \x\ ~^> Z/ch, so that const == 0.)

If KS < 0, we can always represent the solution of (11),(12) in the following
form

y{x) = ^(x) + \ks | ^2(x) + 2/tj$3(rc) + . • -. (13)

(J
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(Indeed, the parameters of medium nonlinearity can be chosen as /î3 < 0 and

K4 > 0 [25].) After substitution of (13) into Eq. (10), Eqs. (10), (11) can be
rewritten as follows:

fi ^(x) = ( -(^2/2m) 92, + ^o ^(^ + ^1 ^(^ + ^2 )'i/'o(a;),

9^q,{x)=^{x)+\k3\^\x)+^,

where the interparticle interaction constants are renormalized as follows

VQ=VO- O-o
^0

-, ^ = ^i + ao
0\

.2
0 \R3\,

(14)

(15)

(16)
JP(C?-^2)' 'l-'i ' "U(P(C?-.2))21

and more higher nonlinear terms are designated by 63. A small parameter in Eq.

(16) comes from the term

ao/p(c? - v2) = 7(v) ( ao/Mc] ) a^

where 7(1') = e] / [e] - vz) and M is the mass of the crystal elementary cell.

The effective two-particle interaction constant VQ {v) can be negative if the

velocity of the condensate lies inside the interval Vo <v < ci, where

Vo = ^/cf - {al/pvo}. (17)

Outside this interval, ^ (i>) > 0 [11] and the velocity Vo can be called the first

'critical' velocity in the model. The meaning of this velocity can be clarified by

rewriting (16) in the dimensionless form,

^0 VQ

ffoaf3
ffo

^-7{v)[^)-
If V > V,'0;

7W{^)> VQ constRy* ag
\Mc^} ' CToaf3 ffo aï

3 '

(18)

(19)

where Ry* and a2g are the characteristic energy and the cross-section of two-

particle collisions in the exciton subsystem. The following inequalities are true

for excitons in a crystal

àB > (^)a; and constRy* < (<) o-o,
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and, usually, the value of the parameter VQ/C^Q a^ is > 1.

For para-excitons in CuaO, however, we assume the (effective) value of VQ/OQ a;

can be estimated as 0.3 ~ 0.6 < 1, whereas the value of o-o/Mc^ ^ 0.1 ~ 0.3.

This makes the inequality (19) valid at, say, v w (0.8 ~ 0.9) c;, or 7(v) c^ 5. Thus,

within the effective ID model, the critical factor 70 = j(vo) is the following ratio

70 = [^) / [~M^) '
and, for the substances with VQJCTQ a? < 1, the regime with VQ <Q can be obtained

at velocities reasonably close but not equal to c;, for example, beginning from

some 7o < 10, (7(0.95 e;) ^ 10).

On the other hand, the effective three-particle interaction constant î\ (v) is

always positive for crystals with ^3 < 0. It can be represented in the dimensionless

form as follows

2

l2 — ^u±±ou ^ ^,_^3 J /,3 ' /V/'1"'31 \ l\ui ^/f^î l •
Î71 -.„„„./ f V0 \ àB , .,^.M.. tf..f.A CTO

^ ^ const' ( ^3 j -^- + 7^J |/î3| ( 7(1;; ^j j .ao(a?)2 -'"""" Yaoa^ a;3 ' ""/l'"ûl Vv"/Mc^

Here we estimated the "bare" vertex of the three-particle collisions as

z/i ^ const Ry*a^ ^ const/ VQ à3g, const' ^ l,

and the same Ry* can be taken as a characteristic energy of collisions. The

effective vertex ^ > 0 is enhanced by the medium nonlinearity, and both terms

in the r.h.s. of (20) can be equally important at 7(1;) > 7o-

Note that in the case of strongly nonlinear lattices with excitons, the effective

interaction vertices in (14) (i7i, v-^, etc.) depend on the velocity v and the pa-

rameters of medium nonlinearity (/t3, K,^, etc.). Then the effective exciton-exciton

interaction can be strongly renormalized at sufficiently large gamma-factors 7(v)

and the vertices may change their signs as it can happen with VQ (v). In this

article, however, we consider the case of weakly nonlinear medium with excitons

(e.g., a crystal with long living excitons). More accurately, this means that at

velocities v —> ci the effective vertex vo (v) becomes < 0, while the more higher

u
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vertices, such as v^ (v) and v^ (u), do not change their sign; they remain > 0 at

7(r) > 7o. Finally, to describe the weakly nonlinear case, it is enough to take into

account the parameters ^i > 0 and ^3 < 0 and neglect more higher nonlinearities

(es and 62 in (14), (15)).
In this study, we will consider the case OÎ.VQ <v < ci in detail. Indeed, in

the case of VQ (v) < 0 and ^ (v) > 0, some localized solutions of Eqs. (14), (15)

do exist. For example, the so-called 'bright soliton' solution of (14) exists if the

generalized chemical potential is negative, fi < 0, and \p,\ < fi*. Here

,.=^J!^0.2.(W^2. (21)(16/3)^~u""u Wa,a^ •

For /î3 ~ 1 and ry(v) > 7o^3 ^ 5, we can roughly estimate the effective vertex

i^i (u) as

^^)/ao a^(l-10)(^/^o a?).

Then /^*(u) ^ (10-1 ~ 10-2) Ry*, and the larger is the value of \KS\ the smaller is

the value of p*{v}.

The 'bright soliton' solution of Eq. (14) can be represented in the following

form

^^)=^/(/3(^)^^(^o)), /?($o)=^|^(^o). (22)
Here 771 ($o) is some dimensionless parameter, and the generalized chemical po-

tential p, < 0 is given by the formula

|/.|=i/i|($o)=|^|^/2-^^/3. (23)

Like the chemical potential \fl\, the amplitude of the bright soliton, $05 satisfies

^<m2=l^|/(4/3^),

and ^=|z7o|^2/4.

For \ft\/l^* <e 1, the following approximation is valid

rj, ^ ^ (|Â|/^) + ^ (W^f « l, (24)
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solution of (14) by the following formulas

^oW ^ ^ (^l-?7i($o) cosh(/3($o)^) + (l - ^l-77i($o))) , (25)
^(^)^2^oexp(-^o)^|)/v/l-?7i for |rc| > 2/3($o)-1, 1/^1 < ^. (26)

The amplitudes of the exciton and phonon parts of the condensate, the charac-

teristic width of the condensate, and the value of the effective chemical potential

jï depend on the normalization of the exciton wave function 4>o{x). We normalize

it in 3D space assuming that the characteristic width of the packet in the (y, z)-

plane is sufficiently large, i.e. the cross-section area of the packet 6'j_ can be made

equal to the cross-section area S of a laser beam and

S^_^ S ^ SSUTÎ-

Then we can write this condition as follows:

'\^\2(x,t)d^=S l^(x)dx=N,, (27)

where No is the number of condensed excitons, and, generally, No / TVtot.

Applying this normalization condition, we get the following results

l^o(v)|^^ (28)
'°" 2{N^N^2xRy'rà(B +2i7,Çv)'

Here we used the following notations, N^ = 2S/a2g^ hz/m = 2xRy* a2g, where

Ry* = h2/2p,exc02B and X = /^exc/"î- The formula (28) is valid for \jï\/^* < 0.3 ~

0.4. We assume that, at N^/No = no > 10 (this is the important parameter!), we

always have

2^rcRyt4 > ^i (^) = £~i(|/t3|^) 4 ^ (l - 10)Ry*4-

Then, the following inequalities are valid: $^(A^>, v) < $^2 and

lAK^Vo, v) ^
1^(^)12

2{2n^Ry*â|,+4î7i(î;)}
<^*=

\^w
5.3î7i(v)"

(29)

(J
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n The characteristic length of the packet can be estimated from Eq. (22) as

follows (VQ (v) = £o(v) a3g}:

l ^. . l |£n(v)l l^N^^^K^^^^w.w
l |£oM| l

at rio > 10.
8 x Ry ÔB rio

Therefore, at 7(1;) ^ 270, we can roughly estimate

r*

^ch(^o, v) ^ 4 ^-^ no as - 4 (101 no)ÔB,
ëoW\

(30)

(31)

and, for the average concentration of condensed excitons in the packet, 72,0? we

have

no 4 ^ (A^o/^ch) ^ ^ l/n^ < 1.

Recall that the second part of the condensate, the displacement field Co(a;), is

of the same importance as the first part, the exciton wave function (f>o{x}. The

displacement field Qj;qo{x} can be represented as follows

9.g.(x) = -7(^) (^) (^^(^)) + 7^) 1/<3| (7(^) ^) (a?^(^))2.
(32)

To estimate its amplitude, B^qo, we have to estimate the parameter a] ^2 first.

For no > 10 and \£~o (v)| ^ (10-1 ~ l)Ry* (i.e. 7(u) > 270), we obtain

»?^-^
a? \£o(v)\ l i^-N;-
à3B xRy" 2n^ â^ 2^

If this parameter is small enough, such as a^ ^{No, v) ^ 10-3 ^ 10-5, we can

neglect the nonlinear corrections to the amplitude Q^qo < 0 and to the shape of

QxQoCx) as well,

%î» = -7(") ^ («? ^) {l - 7(") 1^1 (7(") ^) («? $;) } "
" -^{^>^- (33)

u
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Thus, due to the validity of noa3g <^.l, there is almost no difference between the
approximation

^(x) • 9^(x) w $o cosh-l(/3($o) x) • (-[9,ço| ) cosh-2(/3($o) ^), (34)

where

 )=V.N^ l
A^o = ^/no, no » l,X^^ÛB' N,=N^/n,, no» l, (35)

and the exact solution of the weakly nonlinear case with ^i > 0 and ^3 < 0. For

S ^ (10-2 - 10-3) cm2, à2B ^ (25 ~ 50) 10-16 cm2, we estimate N^ ^ 1013 ~ 1014.
Although the approximate solutions we used in this study are valid for No -^ N^,
they can be used at No < N^ for estimates.

Note that the effective chemical potential is a rather small parameter in this

model,

|^|(Aro, v) ^
^W ^ JfoO^i f\^v)\\ (36)

^xRr~a% " 4^ Y^Ry*^
That is why the characteristic length, Z/ch oc |Ai|-l/'2, see (30), can be estimated
as (10 ~ 10 ) as within the validity of approximations (28), (29). Moreover,
\ÎI\IP* ^ 10- and the parameter ?7i($o) in (22) can be estimated as ~ 10-2. In
this case, one can neglect it in Eq. (25).

Returning to the laboratory reference frame, we can write the condensate wave

function in the form (see Fig. I):

tpo(x, t) • Uo(x, t)S-ij w exp [-i[ Èg+ —^- -\p,\)t } exp(i(ip + mvx) ) x
/

x ^ cosh-1 (Lo-1 (a; -vt))- ÇQ^ - Qo tanh(Lp-1 (re - vt)) ), (37)
where we count the exciton energy from the bottom of the crystal valence band,

{Eg < -Egap), and 2Qo(No,v) is the amplitude of the phonon part of condensate,

^ ^(") (^) (^)a-<<: tt-
To calculate the energy of the moving condensate within the Lagrangian ap-

proach, (see Eq. (2) ), we have to integrate the zeroth component of the energy-
momentum tensor 7^ over the spatial coordinates. Consequently, we have the

u
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7?(x, t) = ^^:^ + ^V^: Vc^o + ^ (^:)2 ^ + ^ (^:)3 ^+
p, Pcî /a . ^2 , Pcî,2+ ^(^ço)2 + Ay (^ço)2 + ^L ^ (^9o)3 + ao ^^o 9^.

Here we do not take into account a small correction to this energy due to the

quantum depletion of the condensate ({5^r^^r(x))r^o 74 0 and {(^i5uj)2)T=o T4
0). Then the result reads

^o(A^o, V)= / dx7^ = ^ex+ ^int + ^ph ^

mv,2

^N^(E,+-
\

^_^(|/i]+^o^/3)

^{M(^)^{^i^}- (33)
We will disregard the terms ~ No Vi^ in £1int < 0, and the corrections oc 1^3! in
-Bph. Then we can write

l^intt/^Vo ^ 1^0 (^)| ^^/2 + ^o ^/3 ^ (^o/4 ) (à3^ ) < Ry* (39)
and

where

^ph/A^o ^ M (c;^+ u ) ^(A^o, ^) ^ Mc^(^o, ^), (40)

^o^)=(7^)^) |(a?^)«l. (4l)
Note that the parameter T9(No, v) is a rather small one, i? ~ a^$^ 10-3 ~ 10-5,
so that the value of Ep^/No can be < Ry*, and, roughly, $^ ex N^.

One can see that the exciton-phonon condensate carries a non-zeroth momen-

turn,

ox ^ rex.,x ~T •rph,2:-

PO^ = / dv.(h/2i)((f)*o(x,t)9^o{x,t)-9^*o{x,t)(l)o(x,t'))-p9tUo{x,t)9^uo{x,t) =

u
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n = / rixmv^(rc) + pu (7(1;) ^2 a;3 ^(2;) ) » A?o mu + NoMv^ÇNo, -u) =
= TVo m{l + (M/m)i9(A^o, v) } v. (42)

Thus, we obtain meff = m{l + (M/m)'i9(A7o, v)} and estimate the parameter
(M/m) i9(A^o, v) ^ l -5 at 7(1;) > 270, no ^ 10.

0

4 Low-Lying Excitations of Exciton-Phonon Con-

densate

To consider the stability of the exciton-phonon condensate moving in a lattice,
one has to couple the excitons with difTerent sources of perturbation, such as
impurities, thermal lattice phonons, surfaces, etc.. In this work, however, we will
not specify any source. Instead, we consider the stability conditions in relation
to creation (emission) of the condensate excitations that can be found in the
framework of investigation of the low-energy excitations of the condensate itself.

Although the condensate wave function (^o{x)-qo{x) was obtained in the frame-
work of the effective ID model, we normalized it in 3D space. Therefore, we can

use this solution as a classical part in the following decomposition of 3D field
operators in the co-moving frame:

'0(x, t) = exp(-î^) (^o(^) + ^(x, ^) ), (43)

Ûj (X, t) = Ço (x) 6ij + <5ûj (x, t}, (44)

where ju = /2 — mz> /2. Substituting the field operators of the form (43), (44) into
the Lagrangian density (2), we can write the later in the following form:

C,=C^-^^x}, ço(^)^) + /:2Nt(x,é), ^(x^), 5û(x,*)) +.., (45)

where Co stands for the classical part of >C, and C-i is the bilinear form in the

5-operators.
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/ \

/ \

v

v
>

l, k k \
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Figure 1: Moving exciton-phonon condensate with excitations.

Moving exciton-phonon condensate, as it appears in the quasi-stationary model,

(l)o(x-vt)-Uo(x-vt)Sij, is presented by bold lines on this Figure. Here, 2Qo is the
amplitude of the coherent phonon state Uo(x - vt), and $0 is the amplitude of the
macroscopic wave function of excitons. Longitudinal exciton-phonon excitations

(k||0a;) of the condensate are schematically depicted. Under transformation
No -^ No - ON, the condensate wave function is changed as it is presented by

dashed lines.

u
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In the simplest (Bogoliubov) approximation [26], [27], ^ FS £0+^2 and, hence,
the bilinear form ^2 defines the equations of motion for the fluctuating parts of
the field operators. As a result, these equations are linear and can be written as
follows:

ih9tSip('x,t) =
h2 . „,„.„.. „,,.... .\ .<•

= ^ -^A + |/,| + {vo + vo(v)} ^{x) + {2^ + v,(v~)} ^(x) J 5i/;(x, ï) +
+ {^l(x) + 2^{x) ) ^f(x,t) + ao^(ï)V5û(x,^), (46)

and

{QÏ - c?A - v(9t9^ + 9^) + v29^ 5â,(x, t) =

= p-lao9,(^(^)(^(x,A)+<5^(x,t))y j-=2,3(=±), (47)
(^2 - c?A - ^(^9, + Q^Qt) + y29^) ^,(x, t-) -

-C?2/Î3 (9.Ço(^)) 9^Û.(X,Î) - C?2/<3 (9^o(^)) 9^û,(x,t) =

=p-lao^(^(^(^(x,ï)+^î(x,é))), j=l(=x). (48)
The same approximation can be performed within the Hamiltonian approach.

Indeed, decomposition of the field operators near their nontrivial classical parts
leads to the decomposition of the Hamiltonian (1) itself, and - as it was done with
the Lagrangian - only the classical part of H, Ho, and the bilinear form in the
fluctuating fields, H-^, are left for examination:

Èw H^,^, 7To,uo)+H^8^, ô^, STT,SÛ). (49)

In the co-moving frame, Tfj == pQfûj — pvQ^uj, i.e.

7Toj(3;) = —pv 9j:qo(x) 8ij ^ 0 and ôvj = pQfôûj — pv 9xSûj,

and the standard commutation relation, [5uj(x,t), ^(x',^)], has the form

[SûjÇ-x.t), p9tôûs{x',t')-pv9^û^-x',t)]=ihS(x-x')Sj,. (50)

u
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However, the Hamiltonian (49) can be diagonalized and rewritten in the form:

H = H^e-^^x), q^x) ) +^o + ^ ^i,s à^â^ + ^ ^2,. à^â^. (51)
l,s 2,s

Here, 5Eo is the quantum correction to the energy of the condensate and the
indexes 1, s and 2, s label the elementary excitations of the system. We assume
the operators âj,, à.^s are the Bose ones. These operators describe two different
branches of the excitations, j = 1, 2, and they can be represented by the following
linear combinations of the "delta- operators" :

à,,, = ^dx ( [/,,,(x) 5^(x) + V,,,(x) 5^t(x) + ^,(x) ^(x) + Z^(x) ^(x) ) ,
(52)

4.= /dx ( ^,.(x) ^t(x) + ^.(x) ^(x) + YLW ^(x) + <.(x) ^(x) ) •
(53)

Note that by analogy with the exciton-polariton modes in semiconductors [28], [29]
the excitations of the condensate (37) can be considered as a mixture of exciton-
and phonon-type modes. However, in this model, the phonons are fluctuations
of the (iTo(x,t), uo{x,t))-pa.Tt of the condensate. The commutation relations
between cc-operators are Bose ones, so that

[ài,s, o'î^] =ôss'

lead to the following orthogonality condition

^x([/i,,^,(x)-yi,,y^(x))+(^) ^ /dx(y^z[;,(x)-^y,r:,(x)) =^,.
r=l,2,3'

Since the cc-operators (see Eq. (51) ) evolve in time as simply as

â^t) = e-i^t à,,,, â^(t) = ei^t â^

these operators (and the frequencies {(^j,s}) are the eigenvectors (and, correspond-
ingly, the eigenvalues) of the equations of motion (46), (47) obtained within the

u
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Lagrangian method. Then, the time dependent "5-operators" in (46), (47) can be
represented by the following linear combinations of the cr-operators:

ô^t) = ^ui,,(x)âi,,e-îul.5< + vî^(x)aî,,eîul^+
l,s

+ ^U2,,(x)â2,,e—.-t + v^,(x)â^ei^t, (54)
2,s

5û,(x, t)=J^ ^(x) â^e—^ + q;,(x) àî,,e-^t +
1,5

(55)+ ^ C7^(x) â2,,e-2.st + <7^(x) â^e-.^,

For OTTr{~x.,t), one has to change C'Js(x) to Dr^y = p{—iuj^s — vQ^C^^-yi) m
(35). Note that this ansatz is, in fact, a generalization of the u-v Bogoliubov
transformation.

Then we can rewrite Eqs. (52),(53) as follows (j = 1,2)

à:3,-'

Y^x (u^(x) 5^(x) - v^(x) ^t(x) - (z/^)^r;(x) ^(x) + (z/^)q:(x) 57T,(x) ) ,
(56)

â[s =

^dx (u,,,(x) ^t(x) - v,,,(x) 5V>(x) + (z/K)Dr^ ^(x) - (z/H)q,(x) ^(x) ) ,
(57)

and one of the orthogonality relations has the form (s = s')

ydx(|u^(x)|2-K,(x)|2)+
+ (z/H) ^ / rix {C^ p{-i^ - ^.)C7î,,(x) + p(-i^,s + ^.)C7^ C7[,,(x) ) = l.

r=l,2,3-J
(58)

The question we want to clarify is whether coupling between excitonic exci-
tations and phonon excitations is important for understanding the condensate
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excitations. Substituting ansatz (54)-(55) into Eqs. (46),(47), we obtain the fol-

lowing coupled eigenvalue equations [11]:

(L(A) - ^,,,) u,,,(x) + (^^(^) + 2^1^(2;)) v,,,(x) +<7o^o(^)^q.(x) = 0, (59)

{vo^(x) + 2^(x)) u,,,(x)+(L(A)+^,,,) v,,,(x)+ao^o(^)9rq.(x) = 0, (60)

-P-1CTO 9r [ ^o(x) Uj,,(x) ) - p~lao 9r ( ^(x) Vj,s(x) ) +

+ [(-^,,, - v9^2 - c^A] q,(x) =0, r =2,3, (61)

-p~lao Qj: [ (po(x) Uj,s(x) ) - p~lao 9x { ^o(-ï) Vj,s(x) ) +

[(-i^ - v9^ - c?(l + \^\F,(x)) ^ - c^i - C^3|(9^3^)) ^] q,(x) = 0.
(62)

Here we used the following notations

Z(A) = (-H2/2m)A + |/i| +{^o + ^o (^ }^(^) + {2^1 + ^i ^)}^(rc),

F,[x}=2^(a,/Mc])a^{x}.
To simplify investigation of the characteristic properties of the different so-

lutions of Eqs. (59)-(61), we subdivide the excitations (54)-(55) into two major

parts, the msîrfe-excitations and the outside-ones. The ms^e-excitations are lo-

calized merely inside the packet area, i.e. |x| < 2Lo and ^(a;) f» $^, whereas

the outside-excitsitioiis propagate merely in the outside area, i.e. |x| > 2Lo and

4^{x} ^ 4^ exp(-2|3;|/Lo) -> 0.

4.1 Outside-Excitations

For the outside collective excitations, the asymptotics of the low-lying energy

spectrum can be found easily. Indeed, if we assume that (f)2,{x) w 0 and Qj:qo{x) ?y 0

in the outside packet area, the equations (46) and (47) are (formally) uncoupled.

(J
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Then, Eq. (46) describes the excitonic branch of the outside-excitations with the

following dispertion low in the co-moving frame:

7ia;ex(k) w \jï\ + (H'il2m)k\ (uk(x) w UkelKX, Vk(x) ?y 0), (63)

and a;ph(k') = c;|k/| in the laboratory frame of reference.

Then the exciton field operator, which describes the exciton condensate with

one long-wavelength outside-excitation, has the following form:

^(x, t) ^ exp(-z(£'g + mv /2 - \p.\')t ) exp(î(y? + mvx) ) ç!>o(a; - vt) +

+ e~ap{—i(Ëg + mv /2 — \p,\)t ) exp(?(y + mua;) ) x

x {exp(—i([/^| + ^k2/2m+ Â;a;'u)^) Ukexp(îkx) } .

It is easy to see that such a collective excitation,

(64)

na;ex(k) = |A| + nzkz/2m + hkj:v,

can be interpreted as a free exciton with the energy and the (quasi) momentum

e-^(k) = Eg + ^2k2/2m and hkj = hkj + mv 8^.

Note that the condition ^a;ex > 0 can be violated at the velocities close to Vo;

whereas e-x is always positive. Then the question is whether ^ex < 0 really

means the condensate instability in relation to the creation of outside excitations.

For example, being unstable, the condensate could continuously emit outside-

excitations, which form a sort of 'tail' behind the localized packet.

Recall that the particle number N is not conserved in quantum states with a

condensate, and {ON2} ^ No. However, for No ^ 1010 and T < Tc, the following
estimate is valid

/{SN2}/N ^ l/v/^Vo ^ 10-5.

Therefore, we can compare the condensate energy Eo(No, -u) and the energy of

the condensate that emits excitons, or, equivalently, the condensate with outside
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n excitations, {u^) ~ \/SN. For simplicity's sake, we consider SN different wave

vectors, {kj}, to be close to each other, so that the values of {k} and {k^j are
well-defined. (This is a model of how the instability tail could be formed.) We

obtain (see Eqs. (38)-(41))

Eo(7Vo - SN, v) + E^{k}, ON) + ^((Â;'), ^JV) ^

^ E,(N^ v)+3(\fl\ +VO-^^SN-3M{CÏ^V) ^(N,, v) ON +
h2{k}2

+
mv2

\SN+hci\{k'}\ÔN. (65)
2m 2

For the momentum of the moving condensate with the outside excitations, we

have

Po,(7Vo - ON, v) + h{k,)ôN + h{k'^8N w

w Po^(A^o, v) + {h{k^) - mv} SN + (h{k'^} - 3 Mv ^(N^ v)) SN. (66)

Note that the energy and the momentum of the phonon part of the condensate

change after exciton emission. We hypothesize that the transformation No —>

No — ON (with the emission of outside excitons, see Figs. 1,2) corresponds to the

case in which the outside exciton and the outside acoustic phonon appear together.

Indeed, in the k —> 0 limit (i.e. A = 27T/k ^> I/o), we approximately considered

the condensate collective excitations as being uncoupled. However, the phonon

Hk' can be emitted with the energy compensating the changement of SEph =

—(3/2) M'Çcf+v2) 'i9(A^o, v) in the phonon part of the condensate energy. Moreover,

the order of value of \SEph\ is typical for the low-energy acoustic phonons, ^

ImeV. If hk' > 0, the emitted phonon can compensate the changement of

SPphx = -3 Mv ^(v) as well.

The most interesting case is the backward emission of excitons, i.e. Hkj =

hk S-ij < 0 in the co-moving frame. Then we can rewrite (65) as follows

E,(N, - ON, v) + {hcj^(k)} ON + {h^p^k')} ON ^

u
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n ^ E^N^, v) + (2|/2| + ^o ^)^ + {|/i| + 7^- - H\{k}\v}5N. (67)
The moving condensate can be considered as a stable one in relation to emission

of the outside excitations (ON > -/(5N2}) if such an emission gains energy,

E^N, - ON, v) + ^exc(^), ON) + ^((fc'), ^) > £1o(A^o, ^).

This means that the following inequality has to be valid

n2{kYW+-^--h\W\^+W\+^^)>o. (68)

This condition can be rewritten in the dimensionless form as follows:

(3^^^^^2)-^^/(4mWMC?/2>0. (69)
i^o (^) l ' v^)y ^ ^} ci y i^K^o,'")

We argue that, even for velocities close to Vo (where |i;o(r)| can be ~ 0.1 z^o,

and the instability could appear as |/i|(Aro, v) + h2k^/2m - h\k^\v < 0), in-
equality (68) seems to be always true in the long-wavelength approximation,

k = (27T/2;) LQ ^ 10-ll/o . On Fig. 2, the stable ballistic condensate is shown
with its long-wavelength outside-excitations.

Note that the stability against large-A; modes cannot be properly described

within approximation (63), (64). However, we can discuss this case within the
inside-approximation.

4.2 Inside-Excitations

To simplify the calculation of msîde-excitation spectrum (see Eqs. (59)-(61) ) we
will use the semiclassical approximation [27]. In this approximation, the exci-
tations can be labeled by the wave vector k in the co-moving frame, and the

following representation holds:

u,,,(x)=u,,,(x)e^(x), v,,,(x)=v,,,(x)e^(x), q,(x) = q,(x) e^(x), (70)

where the phase y?k(x) w ipo + kx, and Uk(x), Vk(x), and C'k(x) are assumed
to be smooth functions of x in the inside condensate area. Notice that the k-

(J



0

99

Uo(x-vtp

,2,
yx-vt^)

2,
(|)g(X-Vt2)

STABILITY (?)

uo(x-vt2>
vv
^^

k ^x ^xx k
x

1-outside-exc tl<t2 Vg<V

Figure 2: Stability regime.

The ballistic condensate, ^{x — vt) •Uo(x— vt)S^, is stable in relation to emission

of the outside exciton-phonon excitations. (We consider the backward emission

in the long-wavelength limit.) The outside-excitations presented on this figure

are labeled by the wave vectors, k^, A;^ < 0 in the co-moving frame. In the first

approximation, the outside-excitations can be described in terms of free excitons

and free (acoustic) phonons emitted from the condensate coherently.

(J
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and x-representations are mixed here. This means that the operator nature of

the fluctuating fields is actually dismissed within the semiclassical approximation.

Howevever, the orthogonality relations among u^s, Vj,s', and Cj^s, C',* s'; and,

hence, among Uj^, v^k', and Cj^k, C^y come from the Bose commutation relations

i °1.. l
as follows:

between the operators aj s and a\ , [26], [27]. For example, Eq. (54) is modified

^(x,ï)^ /7^Uk(x)e'Wk(x)g-tUk(x)t Vk(x)e-lVk(x)o»Uk(x)t

(27T)3

and the mszrfe-excitation part of the elementary excitation term in Eq. (51),

E,,, • • • ^ E,,,,out + E,,,,surf + E,,.,in • • -. can be written as

(71)

2—/

^ îw^â[,â^ ^ J ^^ ^i,k(x) ni,k(x). (72)

Note that the semiclassical energy hiVj^Cx) of the inside-excitation mode j,k is

supposed to be a smooth function of re as well, (at least, as smooth as 4>z,(x'), which

is taken constant in the inside-approximation).

Although the low-lying excitations cannot be properly described within the

semiclassical approximation, we apply it here to calculate the low-energy asymp-

totics of the spectrum. In fact, within the approximation H fv Ho-\- H-^, all the

important properties of such excitations can be understood by use of the semi-

classical approach.

There are two different types of the inside-excitations, the longitudinal excita-

tions and the transverse ones. The later have the wave vectors k perpendicular to

the x (i>)-direction. For the sake of simplicity, we choose k || Oy. Then the vector

C'J^ has one nonzeroth component for such transverse excitations, Cj^ -^ 0.
Substituting ansatz (70) with kr = k^ S^r and CJ^ = C'J^ 52,r into Eqs. (59)-

(61), we transform these differential equations into the algebraic ones (within the

inside-approximation I'(A) —>• Jr/(—k2) ):

(L(-Â;i) - ^,,fc) Ufc(x) + (^o^(^) + 2^1^(2;)) Vj,fe(x) + ao^{x) ik^C^W = 0,
(73)

u
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(^o^(^) + 2^i^(a;)) u,,fc(x) + (L(-Â;D + ^;,,fc) v,,fc(x) + CTO^(^) î^C7^(x) = 0
(74)

p-lo-o<^>o(^) ik_i Uj,fc(x) + p-l(7o</>o(a;) î^ Vj,fc(x) + [a;^ - cfk^] C'J^(x) = 0. (75)

After some straightforward algebra, we can write out the equation that defines the

spectrum of transverse exciton-phonon excitations in the inside-approximation:

(^-^2)x

[(^,,,)2 - (L(-Ài) - ^^(^) - 2^(x) ) (L(-Â;i) + ^(x) + 2^(x) )]
2

= (L(-A;i) - ^{x) - 2^W ) ^ ^(^) (c^l).
Taking into account the momentum cut-off ky, which is defined as

(76)

{h2/2m) k2o w \fl\ = (h2/2m) L^2, k > ko,

we can rewrite Eq. (76) as follows

(^ - c?A;i)x

[ (^-fc)2 - {^n[ki ~ k20] + F{x) + e+) (£[fci - fco2] + F(a:) + 2VO€W + É/+)]
- ( ^[kl - k2,} + F(x) + e^ 2-^ {a^) ^ (c^l), \x\ < L,. (77)

Here F{x) = \VQ (r)|(S>^ — ^{x) ) > 0, i.e. F(x) ^ 0 inside the condensate, and

É+ ^ V^ ^{x), €'^ w 5^i ^(x), k^ > ko.

Although Eq. (77) can be solved exactly for the transverse excitation spectrum

[30], taking into account the coupling term in the r.h.s. of (77) changes the values
of excitation energies slightly, and the excitations can be approximately considered

as of the pure excitonic (h^i,k = ^;ex,fcj_) or the pure phonon (^a;2,fc = ^ph,fcj_)
types.

u
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0 It is also useful to investigate asymptotics of the transverse inside excitations.

For definiteness sake, we investigate the left side asymptotics of these excitations

here,

u^,,(x) = exp(4a;/^o) el/s±y ^,fc, v,,,(x) = exp(4a;/^o) eîfc±!/ ^,fc, x < 0, (78)

q,(x)=exp(4^o)eîfc±2/q^ q,(x) = exp(4rc/Lo) e^ q,, ^ < 0. (79)
Here Uj^, vj^, C^^, and Cj^ are smooth functions of x at |a;| > Lo. Note that we
introduced two components of C^g ~ eik-Ly to make Eqs. (59)-(62) self-consistent.
Let the equalities

4=^=1 and 1+4=4=2 (80)

be valid. Then the system of differential equations (59)-(62) can be reduced to a

system of algebraic ones, which are analogous to Eqs. (73)-(75). Consequently,

we can write out the equation for u}j^{x) valid at \x\ > Ly,

([^-z^(2/Lo)]2-cHfci-(2/Lo)2])x

[(^,.)2 - (^fë - ^2] + ^^)) (^[^i - ^2] + FW + 2^o(2$o exp(3;/Lo))2)]
= (£[/cl-fco2]+F(a;)) 2^(^3)(2$oexp(^/Lo))2cHfei-(2/Lo)2], (81)

where Â;o = V^/^/o ^ ko, k_L> ko, and

F(rc)=|;7o(u)|(^-(2$oexp(a;/Lo))2) ^2|/i|-e at |a;| > Lo.

(We neglected the terms, such as 1/1 ^(a;) Uj,(x) and ^i^(rc)v^s(x) ~ exp( (4 +
iu)x/LQ ) in Eqs. (59)-(60), and the terms oc /t3 in Eq. (62) as well.)

Obviously, the structure of Eqs. (77) and (81) is the same. As the coupling

between exciton and phonon branches is weak for the transverse inside-excitations

(see the r.h. sides of Eqs. (77) and (81) ) and the effect of the finite width LQ can
be taken into account as the spatial dependence of the important parameters in

^a;ex; we use the following formula to estimate the low-energy excitation spectrum:

(^ex,.J2 - (^(^1 - Ao2) + F(X) + 6^ ^(fcl - k2,) + F(X) + 2^(X) + 6^
u
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0 H,2

r^j

2m
(k'i - k'^) 2vo^ + 2vo^ e+ at k^ -> ko. (82)

Here we take the inside-condensate-asymptotics oîF(x), ^(a;), and 64. w ^i(v) ^(2;)

to estimate hiVex- Note that, for the inside-condensate excitations, the the low-

energy limit means

(^2/2m)(Àl-Â;o2)c.(l-10)|/.|.

Then, in the co-moving frame, the low-energy excitation spectrum ^exA;j_ may

develop a gap of the order of \p.\, (see Eq. (64) for comparison). Thus, inside

the condensate, we obtain a strong deviation of the collective excitation spectrum

from both the simple excitonic one, |/2| + {h2/2m~)k2_, and the Bogoliubov-Landau

spectrum oc \k_s_\.

4.3 Longitudinal inside-excitations

The case of the longitudinal excitations, kr = k^S-^^i C'J,k = ^,k^ï,ri ls more
difficult to analyze because the mode interaction is non-negligible in the low-

energy limit. (On Fig. l., a longitudinal inside-excitation is shown with the two

possible directions of the wave vector k || Ox.} Recall that the "bare" phonon

modes, which can be written in the laboratory frame as

Ux(x, t) ~. qo(x — vt) + C^{x — vt) e~K.p{iks:x — ii^pht) + e. e.

with Uph = c; |^| and C^(x) ~ ^(a;), will be considered in the co-moving frame,

x — vt —>• x. Then, within the inside-condensate approximation, the following

equation stands for the excitation spectrum:

( {^,k + vk^î - c;2^ ) x

[(^,.)2 - (^[^ - feo2] + F{x} + ^) ^[^ - kl} + F^) + Î^Ï{x} + e^]
= ( ^[kl - k2,] + F(x) + ^ 2^ (aoa?) ^ (c^^), |^| < L,. (83)

(J
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n It is important to note that, unlike the case of transverse excitations, the values

u

of

(^)^)^^2(c;-.)2((3~7)À;o)2
and

(^£)^)2 ^ (^(10 ~ 40)^2 + e^ (^(10 ~ 40)feo2 + 2 ^o ^(^ + e'^
are of the same order of value at fca; î^ (3 ~ 8) ko, and the inequality (^'^x,^)2 >
(^ù;ph,^)2 ls va^d in the low-energy limit. Moreover, the two cases, ^ > 0 (+-
case) and kx < 0 (—-case), are different as it can be seen from the l.h.s. of Eq.
(83). In the low-energy limit, we can write the approximate solution of (83) as
follows

 -)2"(£^-fco2]+w+e+)x
[^n[kl ~ k20} + F{x) + ^0 ^(:r) ± 2 ç±7(u) ^ (aoa?) ^(2:) + É/+) '2m'

where g+ ~ 1 and 0 <g- < l. Note that fu^^k > Hi-ij^'^ , whereas, for the
phonùn-type branch, i^^ kx < (c; — '") ^x- ^OT ^x < ^' we ^ave t^le following
inequality for the excitonic branch,

(^-^]+^)+6^X
x (^n[kl ~ kï] + F{x) + 2 i70w (f)l(x) + É/+) < (^^)2 < (^S^)2' (84)

where 2 fo(v) (f)^(x) ^ —4 |/A| within the inside-approximation, and, for the phonon-
type branch, we obtain <^^^ > {ci + v) \kx\-

To derive the formulas for the amplitudes Ufc(a;), Vh(x), and C^Cx) of the
excitonic branch, we use the following approximations

L.(-^) = i(-^^^kï^ " ^(-^) ±..7(.) ^ (.,.?) ^(.),
and B = VQ4>î{x) + '2v\^{x) is modified as

B± ^ ^o^(a;) + 2^^(rc) ± q^{v} -^ {a^~) <pl{x).
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0 Then we can rewrite the formulas for the excitonic excitation spectrum as follows

(^£l)2 ^ ^i(-^) - ^ = (^(-^) - B) (^(-^) + B^) .
Recall that the orthogonality relation (58) can be used to normalize the ampli-

tudes. Within the inside-approximation, Eq. (58) can be rewritten as follows

(8^ =î^ôkk=~i)

ydx(|u,(^)|2 - |vfc(^)|2) + (l/h)J'd^2p(^^+vk^\Cxk(x)\2 = l, (85)
and we have for the excitonic amplitudes

u?'(.)
(±)2..^±^L±(-^)+^S

î"^ l T——
fc.

VeffY 2^±).. 7

/±)vrj(.) 2 „ fr±\ L^-kl)-^^
^ l Ty l —~~—7^ —-—)^.^ 2^?».

ui±)-vr'(.) " - f^) B
(86)

±

i^;2^;
Here the effective condensate volume Vçs ^ 12SLo is used to normalize the u- and

v-wave functions of the inside excitations, and fdr (\iik\ — |vfc|2) = T± < 1.
Subsiquently, we get for

çx^ ^ _P~1VQ ^o(^) i^ (Uk(x) +^k(x) )
(.^ex,k+vk^2-cfk2

the following approximate formulas

Cx,w(x) ^ T ^ 7(.) ^ \/"? ^W ^ \/û? (ui±)(^) + v?)(:r) )•
To estimate the characteristic value of C^{ '(x), we use Ufe(rr) ^ Vk{x) ~ v^T±/Kff
and obtain

^x(±)i _. / ^ (70 l i. .f.-) /'ï'±a;Z/o a;IQ<±)l^fc-yW^^i'^±±;3'° (3:7) <«»-.
The parameters T± characterize the relative weight of excitonic degrees of

freedom in the considered branch of excitations. As the parameter hvkx/hu}^^ <

u
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u

l at fca: ^ (4 ~ 8) A;o, the parameter T+(A;a;) can be estimated as 0.5 ~ 0.7. For

kx < 0, we obtain the following equation from (85),

T-fl+(a^.2-y2Mf-^rfl-M^'IL(:^)-B^l.v+~m^q^{v)^) ll-^<tJ nîkÏ/2m )'1'
Within the stability area (see the next subsection for an extended discussion),

we estimate the ratio hv\kj;\/hi^^^ ^ 1/2 ~ 1/3 at \kj;\ ^ (4 ~ S) ko. Then,
ï_(^) >0 and T_^ 0.6-0.8.

To go beyond the inside-approximation, the eff'ect of inhomogeneous behavior

of the longitudinal excitations can be considered. We use the following ansa.tz for

the left side asymptotics (see Fig. 2)

u^,,(x) = exp(4^/^o) et^a: Ufc, Vj,,(x) = exp(4a;/^o) etA:ïa: ^, (88)

q,(x) = exp(4a;/I.o) e^a; C'^ x<0. (89)

where ^u =^c = 1 and ^c = 2. Then, like the case of transversal excitations (see

Eq. (81)), we can write the equation for <^j,k^{x) valid at \x\ > LQ,

((a;,,^+v^)2 - cfk2^ x

[(^,^)2-(^-^2]+^))x
x ^fê-À;o2]+F(a;)+2^o(2$oexp(a:/Lo))^j =
h2.. CTO \2,2L2 (90)^[kl - k2,} + F(x) J 2^ (aoa?) (2$o exp(^/Lo) )' c?^,

where Aa; —>• A;^ == k^—i{2/Lo) in the phonon parts of this equation and kj; -^ kj; =

kx~i(ï/Lo) in the exciton parts of it {x < 0). It is easy to see that Eqs. (83) and

(90) are in the continuity correspondence, i.e. they describe the same object. For

example, the (left side) asymptotic behavior of HUJ^^ {x} can be obtained from
the inside-condensate formulas by the substitute

k.
'X ^, F{x)-^F(x)^2\ft\,
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u

and

^(x) -^ (2$oexp(a;/Lo) )2 -^ 0.

As a result, we obtain hwex,kx ^ \P'\ + n2k^/2m that corresponds to the outside-

excitation spectrum, Eq. (63).

The excitonic input into (5^rt5îr(x))'T=o; the quantum depletion of the moving

condensate, can be calculated by ^^ |vi^(a;)|2 [20]. To estimate this value, one
can approximate |vfe(2;)|2 as follows

v
.(±)
fc/ (x)

2
^

(r±\ ^
,v^) ^[-kir

However, the summation ^^ implies ^dkj;d2k^/{'2.'K') within the semiclassical
approximation. Assuming that such an integration makes the difference among

vkj 1 VÂ;I an^ vfc± not essentially important, we use the following estimate for
|Vk(3;)|2,

Vk(x)
2
lJ_'l B2

\v^j ^ç-k^y
Then, the integration J'dA;3;d2A;j_/(27r)3 can be reduced to f^kzdk/27r2^ and the
main input (/^ ^(a^)) can be estimated from the following formula

{Ô^Ô^W}T=O ^ ^ ^o€{x')
+

e w.w2 l ^o^cosh-2(rc/Lo)
87T2^ 2|/i| '87T2^ 2[/2|2 - 87T2Lg |î7o|^

Using this density, we speculate that the localized depletion of condensate - i.e.

the number of particles that are out of the condensate but move with it coherently

- seems to be a small value. We obtain the following estimate (t/o = £0 a'g and

\voW\ = \£o(v)\à3B):

SN°=!dx^ ^-^î^w\ïN"
where the factor before No can be estimated as

£o à% eo\ëo{v)\ l— ^ (10-1 -10-2)n^1.
\fi\{N,,v)L3,{N,,v)~2x(Rr)2n^

(Here we used Eqs. (35),(36) within the approximation no ~^> 10.) Note that

there is no small k input to the estimate of ^^ because, first, such excitations
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belong to the outside-excitation branch in our model, and, second, we use the

approximation V]<(a;) w 0 for them.

4.4 Stability of the Moving Condensate

To investigate the stability of the moving condensate in relation to the creation of

inside-excitations, we calculate the energy of the condensate with the one inside

excitation, (cr^o'i^) = 1, described by the following set: /s, LiJk, and Ufe, Vfc, C'A:.
In this study, we analyze the stability inside the excitonic sector of our model.

Although the excitations were defined in the co-moving frame, calculations

should be done in the laboratory frame. Returning to the lab frame, we represent

the exciton and phonon field functions as follows:

4>o{x-vt, t} -^ (po(x-vt, t)+exp(-i{Ëg+mv2/2-\p.\)t)exp(i{ip+mvx))ô}î'(x,t),
(91)

where

5^(x, t) = Uk{x - vt) eî^o+kx) e-i{UJk+kxv)t + Vfc(a; - ^) e-î(vo+kx) eî^+A:zl;)t,

and

Uo(x—vt) —f Uo(x-vt}-\-Ck{x—vt} exp(î(<^o+kx)) exp(-î(a;fc4-/i;2:v) ^)+c.c., (92)

see Eq. (64) for comparison. In this analysis, the inside excitations are not

considered as fluctuations, and the (average) number of particles in the condensate

and its energy are changed as No - j'dv.o^Sif} and Eo(No) — (ÔAr-E'o) fd'x.ô^ôtp,
respectively. However, these changes are not important if the number of excitation

in a system is less than ^/SN2 c± \/No. They could be important in the case of

instability of the moving condensate.

The zeroth component of the energy-momentum tensor can be represented in

the form

V = 7^(^o, ^o) + 7Ï)(2)(5^t, ^, ^, ^u | ^o, "o),

0



109

n where the first part corresponds to the condensate energy Eo and the second part

gives the energy of inside-excitations, E^. After substitution of (91), (92) into

-E'in = j'd'x.To , we have for the total energy

E, + £',n_ex ^ ^o(A^o) + ^o(A/-o) +

+ [dxH(^k(x)+k^ {\vik\2-\Vh\2+{2/H)p^k(x)+vk^\Ck\2} =
= ^o(^o) + ^o(A^o) + ^ (^fc + k,v}, (93)

where

^o(^Vo)=(2|A|+^) fd^S^ô^ - M(c? +v ) 3^(^, v} fdxS^Ô^, (94)
^^^)^|u,|2+K|2,

see Eqs. (65), (67) for comparison.

In this study, we discuss qualitatively the stability of the condensate in relation

to the backward emission of inside-excitations, (i.e. fc^ < 0 in the co-moving

frame). To begin with, we consider the standard criterion,

h^)k - |^|v) > 0 at \k^\^zLo1, (95)

where 2;^ 3 ~ 10 corresponds to the low-lying excitations. The value of LLI{^ ^(x)

is taken within the inside-approximation, see Eq. (84), so that tw^'i. ^ f{z) \p'\

and zf j{z} ^ 0.1 ~ 0.3. Then, it is easy to conclude that the following inequality

h\k^\v _ z v /(4m/M)Mc^/2
ÏS~^W)^' mN^v} < (96)

is valid in the low-energy limit if the effective chemical potential (36) is large

enough, see Eq. (69) for comparison.

More precisely, the ballistic velocity v and the number of particles in the

condensate, No, have to be large enough, f.ex., ]£:o('")| ^ (10- ~ 1) R-y* and

no r^ 10, in order to the inequality

(4m/M) Mc?/2 _ (4m/M) Mc?/2
lAK^Vo^) - k~o(^)|2/4n^Ryt

< 10 ~ 20 (97)

u
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n can be satisfied. Thus, for

|/i|(7Vo, v) > ^ ^ 10-1 (4m/M) Mc^/2, (98)

where /^cr ^ 10- eV, one can expect conditions (96),(97) to be valid.

Despite the condensate can be formed near 7(1?) w 70 in theory, f.ex., with

t'o(u) ^ 0.1 VQ and 77,0 ~^> 10, such a ballistic state seems to be unstable against

the creation ofinside-excitations. Note that the critical (Landau) velocity, Vc.r, can

be found as a solution of Eq. (98) and Vo < v^{No) < ci. In fact, the parameter

^ /^cr controls the stability/instability of the condensate, see Eqs. (69),(96).

Analyzing (95), we did not take into account Eq. (94). However, if the in-

stability regime takes place, more than ^/No inside-excitations can appear. As

the changes in Uo(x — vt) because of No -^- Ny — ON are nonlocal (in spite of

creation of the localized excitations, see Figs. 1 and 3), a free acoustic phonon

can appear in the system lattice + excitons together with a appearance of the

localized excitation Hw^ ^{x}. Like the case of outside-excitations, we assume

that (3/2) M(c? +-u2) î?(A^o, v) ~ Hcikp^, see Eq. (94). Then, only the term

oc 2|/i| + t/o^>^ is important. In fact, this term leads to some renormalization of

the values of the critical parameters, /^cr and Vcr-

u

5 Interference Between Two Moving Packets

In this section, we address the problem of interaction between two moving conden-

sates. This problem is essentially nonstationary, especially if the initial ballistic

velocities of packets are different. Within the quasi-lD conserving model, the

following equations govern the dynamics of the two input packets (we choose the

reference frame moving with the slow packet):

+(z^+m^')-)^(^<)=(-^-^2+^|^|2+^|^|4)^(^^+
+ao9^uo(x,t')'tpo(x,t), (99)
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Figure 3: Instability regime.

The ballistic condensate, (/)o{x — vt) • Uo{x - vt)oij, can be unstable in relation to

emission of the inside-excitations if the efïective chemical potential \p.\(No, v) <

p,cr- In terms of Landau critical velocity, this means Vo < v < Vcr(No). If such

an instability takes place, the emission of inside-excitations can be accompanied

by the emission of outside-excitations of the condensate. The longitudinal inside-

excitations are labeled by the wave vector fc^ < 0 on this figure, whereas the

outside-excitation is labeled by the wave vector k'^ < 0.
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((9t - v'9^)2 - c^9^uo(x,t) - cf2K39^uo(x,t)9^uo{x,t) = p-lao9^o\2(x,t).
(100)

Then, the initial conditions can be written in the explicit ID form by using the

exact solution of the model (10),(11). Note that the amplitudes of the stationary

ballistic state, <po{x — vt) • 9xUo(x — vt), were defined from the normalization

condition and depend on the values of v and No. Hence, the amplitudes of the

"input" condensâtes for Eqs. (99), (100) may not have the same values.

In this study, we approach the problem of strong interaction between the

condensâtes. Therefore, we choose the nonsymmetric initial conditions, i.e. the

amplitude and the velocity of the "input" packets are different, for example, v > v'

and v||v/, see Fig. 4. Here, we reply on the experimental observation [5] that, at

v > VQ, the ballistic velocity of the condensate depends on the power of a laser

beam irradiating the crystal. If the exciton concentration in the first packet, rioii

is close to the value of the Bose condensation threshold, the exciton concentration

in the second packet, n,o2 > ^oi; the velocity difference between condensâtes can

reach (0.1 ~ 0.3)c;. Then, in the reference frame moving with the first (slow)

packet, the initial conditions can be taken as the following:

^Q(x,t= 0) -uo{x,t=0) == 0o(a;;^Voi) -qo(x;Noi)+

+exp(i{ô(p+môvx)) (j)o(x +2:0;-^02) • Ço(^ +2;o;-?Vo2), (101)

where 8ip = y—tp', ôv = v —V\XQ= V'T, and r is the (initial) time delay. As

the second packet moves in this frame of reference, the regime of strong nonlinear

interaction between the condensâtes is (theoretically) unavoidable. Note that,

even before collision, a time-dependent interference term in \i/Jo{x,t~)\2 begins to

influence the packet dynamics, see Fig. 4. For example, the r.h.s. of (100) contains

/^J

where

9x{2cos(mSvx - out + ô(p) (/)o(x-,Noi) <j)o{x - Svt + XQ; No^ }, (102)

hSuj = môv{v+v')/2 - ( \fl\{N^,v) - \p,\(N^,v') )

u
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n

2.
(|)J(x-vtp

u^(x - vtp v>v
.1 ~2-

^x-vltl)

^ "o(x-vltl)
v
^

x

interference area

Figure 4: Interaction of packets as an overtaking collision.

Two ballistic condensâtes move with different velocities, v — v' ^. (0.1 ~ 0.3) c;,

and t = t^ before the "collision" , or, the strong interaction process. If one can

prescribe the coherent phase to each of the participating condensâtes, e.g., (/?c(x) ^

(p+(rnv/h) x, the interference area appears between them. (The interference area
is marked by bold dashed lines on this figure.) As v -^ v', the fringes are non-
stationary, and the outside-excitations can actually be excited in this area.

<J
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n and \p,\ oc (No/N^)2 |£ro('u)|2. The ratio |/22[/|/^i| can be of the order of 101, and

the characteristic scale of fringes (102) is

TrÇh/môv)
^ (10 ~ 30).

|^|(^01,V) ^ 5 ~ 10,
LO -^"'uu'V(m/M)MC?/2

that is they are of the long-wavelength nature.

To answer the question which model (conserving (99), (100) or kinetic [19],[32]

one) is more adequate to describe the packet collision, we have to compare the

estimate of interaction time,

T* ^ Lch2/^ - 103 05/0.2 C; ^ 10-9 ~ 10-los,

and characteristic time scales of the processes

}N^t),v}-\N^t),v') -^ \N^t)±SN,v}-\N^t~)TSN,v'} (103)

driven by phonons or by x—x interaction. Note that some thermal phonons have

to be excited in the system to assist such transitions, and the value of r* is of the

order of scattering time of the exciton-LA-phonon interaction (although without

any macroscopical occupancy) 17 .

If processes (103) are driven by the lattice phonons, two phonons are necessary

to satisfy the laws of conservation. For instance, we choose ON = +1 in (103) and

obtain (see Eqs. (65), (66))

hh,^ = môv + 3Mv ^{N^, v) - 3Mv' i9(^oi, '"') + ^2,^,

hci\k^\ = mSv {v+v')/2-3 ( \ji\(N^, v) - \fl\{N^, v') + ^o ^2/3 - î/o ^i/3) +

+3/2M{c]+v2)^N^v)-3/2M(cf+v'2)^N^,v')+hci\k^\.

Although the second packet moves faster, mov > 0, this state can be considered

as a more stable (and, thus, more preferable) one for the excitons of the slow

packet. Indeed, the following inequality for the efïective difference between the

generalized chemical potentials seems to be valid

m^(î;+y/)/2-3 (1/21(^02, v) - \fi\(N^ ^) +^o^2/3-^o^i/3) < 0, (104)

(J
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and the absolute value of the l.h.s. of (104) is ~ \p,\(No'iv). Thus, within the

quantum kinetic model, the relevant transition probabilities have to be calculated

at least in the second order of perturbation theory, f. ex.,

\N^v}-\N^v'} ph^ \N^v}-\N^^^,,v'} ph2> \N^+2,v}-\N^-2,v'}.

As a result, the system of two quantum Boltzmann equations will describe the

interaction process.

Unlike the Boltzmann equations, Eqs. (99,100) contain information about

the quantum coherence between two condensâtes explicitly and, moreover, can

describe the case of strong interaction. Unlike the ID NLS equation that supports

many-soliton solutions, Eqs. (99), (100) are, in fact, quasi-lD ones, and ^o > 0 m

(99). Therefore, it is an open question what happens with two (excitonic) solitons

after they collide in the crystal.

In this work, we assume that the dominant process (es) of condensate interac-

tions is that one(s) leading to QtNo'i > 0. Then, at the time scales ^> T*, one

solitonic packet can appear as a result of these processes. Such a resultant ballistic

packet can be approximately described by the steady-state one-soliton solution of

Eqs. (8),(9) with No w A^2 + -^oi and the low of energy conservation,

E(N^,v')+E(N^,v) ^ E{N, = N^+N^v). (105)

If No < N^, all the approximate solutions having been found in this study are

valid to describe the resultant packet.

As we prescribed the value of No, we have to estimate the value of v from Eq.

(105), (generally, v ^v}. Moreover, we have to assume that the total momentum

of the condensâtes, Px(No-^,v') + Px(No'2,v), may not be conserved because of

lattice participation in such a condensate "merger". However, the challenging

question of the results of coherent packet collision needs further theoretical and

experimental efforts.
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6 Conclusion

In this study, we considered a model within which the inhomogeneous excitonic

condensate with a nonzero momentum can be investigated. The important physics

we include in our model is the exciton-phonon interaction and the appearance

of a coherent part of the crystal displacement field, which renormalizes the x-x

interaction vertices. Then, the condensate wave function and its energy can be

calculated exactly in the simplest quasi-lD model, and the solution is a sort of

Davydov's soliton 23 . We believe that the transport and other unusual properties

of the coherent para-exciton packets in CuaO can be described in the framework

of the proposed model properly generalized to meet more realistic conditions.

We showed that there are two critical velocities in the theory, namely, Vo and

Ver- The first one, Vy, comes from the renormalization of two particle exciton-

exciton interaction due to phonons, and the bright soliton state can be formed if

v > VQ. Then, the important parameter, which controls the shape and the char-

acteristic width of the condensate wave function, is \p.\/^*, see Eqs. (29),(36).

The second velocity, Ucr, comes from use of Landau arguments [26 for investi-

gation of the dynamic stability / instability of the moving condensate. In fact,

the important parameter, which controls the emission of excitations, is /i ///„,

see Eq. (98). Then, within the semiclassical approximation for the condensate

excitations, we found more close v is to c; (/^cr < \p.\(No, v~) < /^*) more stable the

coherent packet is. It is interesting to discuss the possibility of observation of an

instability when the condensate can be formed in the inhomogeneous state with

v 74 0, but with VQ < v < Vcr(No), or, better, \fl\{No, v) < //cr- Such a coherent

packet has to disappear during its move through a single pure crystal used for

experiments. As the shape of the moving packet depends on time, the form of the

registered signal may depend on the crystal length changing from the solitonic to

the standard diffusion density profile.

We found that the excited states of the moving exciton-phonon condensate

can be described by use of the language of elementary excitations. Although

(J
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the possibility of their direct observation is an unclear question itself (and, thus,

the question about the gap in the excitation spectrum is still an open one), the

stability conditions of the moving condensate can be derived from the low-energy

asymptotics of the excitation spectra at T <; Tc. However, the stability problem

is not without difficulties [30], [33]. One can easily imagine the situation when

the condensate moves in a very high quality crystal, but with some impurity

region prepared, f.ex., in the middle of the sample. In this case, the excitonic

superfluidity can be examined by impurity scattering of the ballistic condensate.

Indeed, such impurities could bound the noncondensed excitons, which always

accompany the condensate, and could mediate, for instance, the emission of the

outside excitations. The last process may lead to depletion of the condensate and,

perhaps, some other observable effects, such as damping, bound exciton PL, etc..

On the other hand, the inside excitations could manifest themselves at T/ 0 by

the effective enlargement of the packet length, LQ —>• Z/eff, T 74 0, or by interaction

with external acoustic waves.
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Chapter 3

How to switch off the phonon wind

In this chapter, we included a paper in which we discuss the nature of the

exciton-phonon "cornet" moving in a monocrystal of CusO. We raise a question

whether it is possible to separate the coherent part of the comet and the non-

coherent part of it. As a first step, we propose to switch off a phonon wind, i.e.,

the remaining non-coherent phonons of the packet.

Actually, it is an open question to which extent the coma and the tail of

the exciton-phonon comet are non-coherent. Within the standard approach of

interacting basons ai T < T^ we have the Bose-condensate in equilibrium and its

depletion. The depletion is considered as a collection of the elementary excitations

of the condensate (T 7^ 0), and these excitations do not have the same phase in

contrast with the Bose-condensate. If we apply this approach to the moving

exciton-phonon condensate, the tail is a collection of the (non-coherent) outside-

excitations of the condensate. However, those excitons and phonons that did not

take part in the formation of the coherent core from the beginning can be also

found in the tail. It would be an interesting task to think how to remove this part

from the moving packet.
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inside moving exciton-phonon droplets
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Abstract

We explore a nonlinear field model to describe the interplay between

the ability of excitons to be Base condensed and their interaction with

other modes of a crystal. We apply our consideration to the long-living

paraexcitons in CuzO. Taking into account the exciton-phonon interaction

and introducing a coherent phonon part of the moving condensate, we solve

the quasi-stationary equations for the exciton-phonon condensate. These

equations support localized solutions, and we discuss the conditions for the

inhomogeneous condensate to appear in the crystal. Allowable values of

the characteristic width of ballistic condensâtes are estimated in the limit

T-4-0. The stability conditions of the moving condensate are analyzed

by use of Landau arguments, and Landau critical parameters appear in

the theory. It follows that, under certain conditions, the condensate can

move through the crystal as a stable droplet. To separate the coherent and

non-coherent parts of the exciton-phonon packet, we suggest to turn oif

the phonon wind by the changes in design of the 3D crystal and boundary

conditions for the moving droplet.
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0
PACS: 71.35.+Z, 71.35.Lk

Keywords: Bose Einstein condensation; Excitons; Cuprous oxide;

Exciton-Phonon condensate; Phonon Wind; Stability
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l Introduction

Nowadays, there is a lot of experimental evidence that paraexcitons in CugO

crystals can form a strongly correlated state, which can be assigned to the excitonic

Bose Einstein condensate (BEC) [l], [2], [3].

Surprisingly enough, a cloud of excitons that seems to contain the condensate

can be prepared in a moving state, and such a packet moves ballistically through

the crystal at T < Te. At T > Tc, however, the excitonic packet exhibits the

standard diffusive behavior. Thus, in the three dimensional CusO crystals, the

excitonic Bose Einstein condensate is found to be in a spatially inhomogeneous

state with the well defined characteristic width Z/ch in the direction of motion

[1]. The registered ballistic velocities of the coherent exciton packets turn out

to be always less, but approximately equal to the longitudinal sound speed of

the crystal, v < Cs. Note that paraexcitons in the pure CuzO crystals have

the extremely large lifetime, T ^ 13/us, and, at the conditions we discuss in

this work, they are optically inactive 4]. Although transferring of the moving

coherent excitonic field into a coherent photon field is not a hopeless task [5], [6],

no convincing experimental results are obtained yet, [2], [7].

To understand the physics of anomalous excitonic transport, we accept [4,8,9

that the macroscopic wave function ^o ~ <?I>o el</?c can be associated with the coher-

ent part of the excitonic packet. (Here (y9c is the coherent phase of the condensate.)

In other words, the experimental results 1 suggest the following decomposition

of the density of excitons in the packet,

n(x, *) = ricoh (x, t) + An(x, f), (l)

where ricoh(x, t) w ncoh{x — vt) is the ballistic (superfluid) part of the packet,

n^{x-vt)^\^o\2{x-vt), (2)

and An(x, t) is the diffusive (non-condensed) part of it,

An(x,t) ^ (^t^(x,^). (3)
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Therefore, the problem is how to describe a spatially inhomogeneous state of the

excitonic BEC in terms of ^o(x, t) and ô't^(x, t), where 5'0 is the "fluctuating" part

of the exciton Bose field. Indeed, if a coherent excitonic packet moves in a crystal

(or another semiconductor structure), it interacts with phonons, non-condensed

excitons, impurities and other imperfections of the lattice, etc., (see Réf. 10).

All this makes the problem of superfluidity of the Bose-condensed excitons a

rather complicated and challenging one.

In this Letter, we start from the simplest possible approximation: we describe

the moving condensate only and show that a sort of Gross Pitaevskii equation

[Il],[12] does make sense at T <$; Tc. In this case, the finite characteristic length

of the condensate (but not of the total exciton-phonon packet) appears naturally

in the framework of the effective ID nonlinear Schrodinger equation, by which we

model the real 3D conditions.

2 Exciton-Phonon Condensate

To obtain the necessary density of excitons in the excitonic cloud and, thus, meet

the BEC conditions, the Cu20 crystals were irradiated by laser pulses with HI^L ^>

I?gap atTc^ 2 ~ 5K. Note that the cross-section area of an excitation spot on a

surface of the crystal, S, can be made large enough, so that S ^ Ssuif- Then, the

classical "phonon wind", or the flow of nonequilibrium phonons from the surface

into the bulk [4], can transfer the nonzero momentum to the excitonic cloud,

Pexc ^ N, {hko} ^ 0 and Pexc ± S^î.

As a result, the packet of moving excitons and nonequilibrium phonons of the

phonon wind (TVph ^ A^x) is actually the system that undergoes the transition

toward the Bose Einstein condensation. Then, one can estimate the energy of the

packet without any condensate as follows

E ^ ^{(^/2m,)(k^) + 2^^x} + N^ (^),

where h{kox} = rn^{v) ^ m-xCs and VQ > 0 is the exciton-exciton interaction

(J
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strength, and nx is the average density of excitons in the packet.

At T < Tc(^x)) or, equivalently, n^ > nc(T) 22 , the condensate can be formed

inside the excitonic droplet and the following representation of the exciton Bose-

field holds, '0 = ^o + 5'0. (As the kinetics of condensate formation is not a

subject of this paper, we assume Tcioud ^ T and T -^ 0.) Moreover, for the

displacement field of the crystal, u, we can introduce a nontrivial coherent part

too, i.e. û = UQ +5û and UQ / 0. Then, a moving coherent packet can contain

the exciton-phonon condensate, which is the self-consistent exciton-phonon field,

^o(x^) • uo(x,^).

The macroscopic wave function of excitons, ^o(x,<) ^ ^fo(x,t), is normalized

as follows

^o\2(x, t) dx = 5^(2:) dx = TVo, (4)
where No is the (macroscopic) number of condensed excitons, and, generally, No ^

A^x. To model the ballistic motion of ncohCx,t), we use the following ansatz,

^o(x,t)=e-i(E"+mxv2^-^tei(<f'+kox)^(x-vt), (5)

UQj(x, t) =Uo{x - Vt) 5-ij, (6)

where Eg = -E'gap — -E'x; -Sx is the exciton Rydberg, y? = const, ^fco = mx^,
and p, is the effective chemical potential of the condensate. Note that there is

no difference between the ballistic velocity of the exciton-phonon packet and the

superfluid velocity of the condensate if we start from ansatz (5).

For the envelope function (f)o(x) and the phonon direct current Uo{x), we obtain

the following stationary equations [8], [9]

-\1^\ ^(x) = (-Çh2/2m^ + ^ ^(^ + ^1 ^(^ ) ^(^), (7)

9^Uo{x) ;% consti ^(2;) + const2 ^{x). (8)

Here, the "bare" exciton vertices, both the two-particle vo > 0 and the three-

particle ^i > 0, can be strongly renormalized because of exciton-phonon interac-

tion. We choose it in the simplest form of Deformation Potential,

Èg^^p -^ [Eg + aoQjûj)^^, CTO > 0. (9)
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u

Yet the first (cubic) anharmonicity ^3 / 0 is taken into account to model the

lattice. Note that we consider the case v ^ Cg, and, at first glance, the (adiabatic)

assumption of coherent propagation of the crystal deformation field and the ex-

citonic condensate might not be valid. However, the nonlinear lattices support

some localized excitations that can consist of two parts, namely, the direct current

and alternating one,

û c^. Uo(x — vt) + Sû(x — vt, t).

Such excitations can move with the (group) velocity v ^ Cs [14]. Therefore, Eq.

(8) can be used to describe the exciton-phonon condensate with y ^ Cg.

If the following conditions

VQ = Î>Q{VQ, O-o, V/Cs ) < 0 and i>i = ^1(^1, o-o, '"/Cs, /<3 ) > 0 (10)

can be valid, the localized (solitonic) solution of Eq. (7) exists. It can be written

in the following form:

^{x) = $0 /(/3(^o)^, const($o) ), /3(^o) = v/(2m,/H2) |/.|($o) , (11)

where $o is the amplitude of the soliton and l//3($o) = Ly is its width. Then,

the characteristic length of the condensate can be estimated as

Lch^(2~4)^o<x]^|-l/2,

and the effective chemical potential of the condensate, \fi\(No, v), defines the value

of Z/ch in this model.

We can use the simplest approximation,

H($o)^ 1^1^/2 and ^\{N,, v) ^ N^, (12)

which turns out to be valid at no > 5- 10. Here no = N^/No, and N^ = 2S/a:

is a macroscopically large parameter (a^ is the exciton Bohr radius),

2
'X

N^ ^ 1013 - 1014.



128

Indeed, one can estimate |/^| more accurately,

1/^1 ($o) = 1^1^/2 - ^i^/3 and |^|(^o, î;) (X ( 2^xE,a^ + 4f>i(v/c,)
-l

(13)
Here, x = /^x/^x and the last estimate is valid for No < N^.

We choose approximation (12), and the characteristic length of the condensate
can be estimated as follows ( f/o = eo{v/Cs) a^ and i/o = £o ^ ):

L^(N^,v)^4 ^ ^-2(7Vo, ^) ^ 4 ,,^^, no a. ex ^-1. (14)
'm^\xo ^•°'^ - '|6o(^cs)|'

At v = VQ, or, equivalently, at 7(1;) = 70, where

7(r) = c^/(cj - y2) and v < Cg,

we have ëo{vo/Cs) = 0 and 70 ^ 3~ 5 [1]. Therefore, solitonic solution (11)
and estimate (14) are valid at Vo <v < Cg, or 7(1;) > 70. For example, at
7(r) ?» 270 ^ 6~ 10, (7(1» = 0.95cs) ?» 10), we obtain ^o < 0 and estimate

£Q{v/Cs) W -CQ.

Thus, at 7(1;) > 7o and rio > 10 (for estimates we take |£'o(f/Cs)| ^ (10- ~
10-l)Ex and no ^ 101 ~ 102, i.e. No ^ 1011 ~ 1012), we obtain a large factor
multiplied by Ox as an estimate of Lch [9], e.g.,

Z/ch = .?~ax » Qcr-

Here Ocr ^ 4 A is the lattice constant and a^ 2; (3 ~ 4) a^ for the paraexcitons in
CuzO.

Within the quasi-stationary approximation (5)-(7) at T = 0, this is a reason-
able result, F ^. 102 ~ 10 , and the duration of the condensate can be estimated

as <ch ^ 2 • (10- l — 10- ) s. Although these results are in a qualitative agreement
with the average 3D densities of the Bose-condensed excitons in moving packets

at r/0, no =ï 1017 ~ 1018cm-3 [l], the characteristic duration of such localized
packets is Atc^ (4~ 8) • 10~7 s experimentally.
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0 3 Stability against Outside Excitations

Analyzing experimental results [1], one can notice that a long-lasting "tail" of

excitons is followed by the coherent (localized) excitonic packet. This tail might

be explained by instability of the exciton-phonon condensate moving in the lattice.

Indeed, such an instability can lead to continuous emission of the excitons out from

the condensate. As QfNo < 0, we have ^Lch(t) > 0 and, as a result, nonstationary

transport of the ballistic condensate. Alternatively, the condensate is stable, and

diffusive propagation of the non-condensed excitons, AN ^ N-x—No, is responsible

for the tail in n(x,t). We argue that the second scenario seems to be true.

For outside collective excitations (see Fig. 1), the asymptotics of the low-lying

energy spectrum can be found easily. Indeed, if we assume that 4>z,{x) ^ 0 and

OxUoÇx) ?y 0 in the outside packet area, the excitonic and phonon branches are

(formally) uncoupled. Then, for the excitonic branch, we obtain in the co-moving

frame

^ex(k) ?y 1^1 + (hz/2m)k'z, Uk(x) ^ •UkelKX, Vk(x) ?» 0, \x\ » Lo, (15)

where Uk and Vk are Bogoliubov-deGennes amplitudes, and a;ph(k) = Cs|k| in the

laboratory frame of reference. Note that the condition ^a;ex(k) + HkxV > 0 can

be violated if the velocities get close to Vy. This is the hint that the instability

regime can occur [8].

We assume that the exciton and phonon can be emitted from the condensate

coherently. Then the emission of SN excitons out of the coherent packet can

be described as an appearance of SN outside collective excitations in the system

condensate plus medium, see Fig. 1. Therefore, one can use Landau arguments to

analyze the stability of the condensate. It turns out that the moving condensate

is stable against the direct emission of outside excitations. However, this is not

the case for the inside excitations. In the laboratory frame, these excitations can

be represented in the form

j^(x, t) ~ Ufc(rc - vt) eî^°+kx) e-t^+fc^)t + Vfc(a; - vt) e-t(v30+kx) eî(^+fca:l')t,
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and

8u(jx.,t') ^ Ck(x — vt} exp(t((^o + kx)) exp(—î(a;fe + À;,;?;) ^) + e.e., (16)

and the following asymptotic behavior is valid for the Bogoliubov-deGennes am-

plitudes (4)o(x/Lo) ~ exp(-|3;|/Z/o) ):

Ufc(a;) ~ Vk(x) ^ ^o(x/Lo), Ck{x) ~ (^{x/Lo) at [a;| > LQ.

We can start from the standard criterion,

h^)k - \k^\v) >° at 1^1 ^ ZL01' (17)

where the superscript (—) means kj: < 0 and z^ 3 ~ 10 corresponds to the

low-lying inside excitations, and find under which conditions inequality (17) is
valid.

It turns out the analog of Landau criterion for Eq. (17) is rather simple [9]

\{l\(No,v)> ^cr ^ const (2mxC^), (18)

where mx ^ 2.7me, Cg ^ 4.5 • 105 cm/s. For 2:^3 ~ 10, we estimate const(2;) in

Eq. (18) as of the order of 10-1, and we obtain the following result

^cr ^ 10-5 - 10-4 eV ^ (10-4 - 10-3) E^. (19)

Qualitatively, inequality (18) is valid for the relatively high velocities and numbers

of the condensed particles. In theory, one can fix the number no = N^/No and

obtain an analog of Landau critical velocity, but Va < v < Cs is the stability

criterion in this case.

However, within approximation (12),(14) and with |e;o('y/Cg)| ^ 10~l E^ and
n,o ^ 101, we have \/j,\ ^ ^ and I/ch ^ 4 • 102 Ox ^ (2-3) • 103 A. We speculate
that such a ballistic condensate can be considered as a stable one in the limit of

T -^ 0, see Fig. 1. For comparison, the condensâtes with |£o| ^ 10-2£'x and
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no ^ 50 — 100 seems to be unstable against the inside excitations. If this is the

case, the continuous generation of the low-lying inside excitation takes place,

N,-^ N,- ôN{t), 9t SN-^-^t) > 0, ^n-ex(é) > VN,.

This process can be accompanied by the emission of outside excitations as well.

To conclude, more accurate investigation of the stability problem is necessary.

Indeed, the characteristic width of the quasi-stationary solution near the threshold

of stability is of (1-3)- 103 A, whereas the typical length of the crystal used for
experiments is of (2-4)- 10- cm. We speculate that the ballistic (superfluid)

propagation of the condensate is more than changing x —>• x— vt and adding

expÇikox) to the solution of Eqs. (7) and (8). For example, the localized solitonic

solution (5), (6) can be used as a reasonable initial condition for modeling of how

the coherent part of exciton-phonon packet actually moves in the presence of

thermal phonons and/or point scattering centers, etc..

4 Discussion

Recall that the self-consistent exciton-phonon condensate seems to be only a part

of the real moving packet. The noncoherent part of it, the noncondensed excitons

An(x,t) and the unidirectional phonon wind Au{x,t), effects the propagation of

the condensate. Here we address the question on whether it is possible to diminish

(ideally, to turn off) the phonon wind after the moving exciton-phonon condensate

has been formed. As a result, the diffusive noncondensed excitons can be delayed,

and the coherent signal and the noncoherent one are separated in time.

We consider a system consisting of a crystal (semiconductor) and two ideal

conductors (metals). The geometry of such a system is shown on Fig. 2. Let

l = db = ac be the distance between two conducting planes surrounding part

A'B of the crystal. Let A be a wavelength of the light emitted during the exciton

recombination. (Usually, A lies in the visible wavelength area, ^ 500 nm.)
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uo(x-vt2)
v v

^x Rxkx k'
x

1-outside-exc tl<t2 ovo
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Figure 1: Stability against creation of excitations

The ballistic condensate, çf>o(^ — vt) • Uo{x — vt)S-ij, is stable in relation to the

direct emission of outside exciton-phonon excitations. (We consider the backward
emission in the long-wavelength limit, \kj:\ ^ z LQ and z <^. 1.) The outside

excitations presented on this figure are labeled by the wave vectors, kj:, k'^ < 0

in the co-moving frame. To a first approximation, the outside excitations can be

described in terms of free excitons and free (acoustic) phonons emitted from the

condensate coherently.
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If the relation / < A<C -D can be realized by appropriate changes in the

growing technique, an interesting physics of penetration into a channel appears.

Here D ^1 — 2 mm is the diameter of an excitation spot on the surface A of the

crystal, D ^ ^S.

Note that due to boundary conditions on the conducting walls, it is impossible

to emit light with the wave vector less than i^/l and the quantum energy less than

hcTT/l. If the last value is larger than the energy of the electron-hole recombina-
tion, the latter is suppressed in the region abed. Then the lifetime of excitons

(both free and bound ones) can be increased by several orders of magnitude.

We are interested in evolution of the exciton-phonon system when the cloud

reaches x = B (see Fig. 2), and the excitons begin to move in channel abed.

Roughly speaking, we have such a connection problem, in which the boundary

conditions and the characteristic length scales {Ly in our case) can be quite dif-
ferent for the 3D crystal and the channel, respectively. As boundaries ab and cd

of the channel are metallized, the boundary conditions of the displacement field

u{x, y, t) w (ux, 0, 0) can be taken zero along them.
We consider transition of the phonon wind from part AB of the crystal to

the channel by posing the time-dependent boundary condition at the connection

B|bd (see Fig. 2):

F00 da;9.u(x = B,y,t) = f (y,t) - [ ^e-iutf(^,
—00

(20)

where f(w) is localized inside \u\ < u*. For the displacement field inside the

channel, we can write the following representation,

00 _ „_ „. f 00

u(x,y,t)=^un{x,t)cos7^, \y\<l/2, Un(x,t)=j"^Àn{^etk^x-wt.
n=odd

(21)
Obviously, all the modes in Eq. (21) with frequencies less than cjo ^ Cs^/l are

dumped inside the channel. Let the following inequality be valid

^ _ 27T _ 27TCs , , _, ^ _ TTCg
(J* ^ — ^ :L^ < (<) CJQ ^ -^.A l
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Figure 2: Packet enters the channel of a special geometry.
In order to separate the coherent and noncoherent components of the total exciton-
phonon packet at T < Tc, it is crucial to turn off a phonon wind. (The phonon
wind, or a sequence of nonequilibrium acoustic phonons, "blows" unidirectionally
from surface A of the crystal.) This can happen when the packet n(x,t) enters
the channel abed of the width l in the y direction. The characteristic lengths of
the total packet and the condensate, A and Lo, respectively, satisfy the inequality
LQ <l < A. Then, the condensate could move ballistically through the channel
with the velocity v, whereas the non-condensed excitons will diffuse (almost) freely
inside the channel because the phonon wind cannot penetrate into it. As a result,
the (total) excitonic current n(x,t') ^ n^x - vf) + /\n{x,t') from the output of
the channel {x = ac) can be converted into the electric current near the surface
B'; IA'B'I < |AB|.
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Figure 3: Survival of the coherent part of the packet.

We assume that the transition from the 3D crystal AB to the channel abed can

be done smoothly enough in order not to create turbulence in the condensate

penetrating the channel. Then, one can expect the solitonic shape of the coherent

part of the droplet at the end of the channel. (The noncoherent part at, t = t' is

not shown on this figure.)
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Here, T and A can be estimated from the duration and the characteristic width of

the (total) exciton-phonon packet driven by the phonon wind, TS; (l ~ 5)- 10-7s
and A ^ 10- cm. Then, only the "tails" of /(<^) are actually transfered into

the amplitudes An(a;) of the moving packet Un(x,t). Hence, the phonon drag

force (oc 9j:u(x, y, t)) can be essentially suppressed inside the channel, and the
non-condensed excitons can diffuse almost freely there.

We speculate that the exciton-phonon condensate being formed in AB part of

the 3D crystal can, first, penetrate into and, second, pass through the channel

(see Fig. 3). This problem seems to be not a quasi-stationary one. Indeed,

within approximation ^o = '4}o(x,y,t) and UQ = (uoa;(^,?/,^), 0, 0), we have the

following system to describe the dynamics at a; > B:

2

ih9ttpo(x, y,t) =^- —-^y+vo\^\2{x, y, t')+Vi\ïpo\ (x, y, t) J^o{x, y, t) + (22)
'X

+ o-o 9xUox(x, y, t) ^{x, y, t),

{Q^ - cj^,y)uo^(x, y, *) - c^ ^ 2/t3 ôj-uoa: 9jUo^(x, y, t) = p-lo-o ^(|^o|2(a;, î/, <)),
3=x,y

u

^{x,-l/2,t~)=^{x,l/2,f}=Q, u^{x,-l/2,t)=u^{x,l/2,t)=0. (24)

Boundary conditions (24) model the metallized surfaces of the channel.

Here, we model a kind of smooth penetration, for example, no vortexes are

generated near the SD-channel intersection. Recall that the width of the con-

densate in our quasi-lD model is LQ ^ (102 — 103) Ox < A, and TO ^ LQ/CS ^

10-1° — 10-9s< T. As I/o <^ <A and a;* < a;o < T-oT1? we assume that the

localized nonlinear condensate can penetrate into the beginning of the channel

without the loss of its coherence. Then, instead of solving Eq. (22)-(24) with

"pumping", (i.e., time dependent) boundary conditions at re = B, one can trans-

form the quasi-stationary solution (5) and (6) into the initial condition inside the



0

137

channel and choose t = 0. For example, one can use the following trial functions:

^(x,y,0)-Uo{x,y,0)Sij =

= exp{zm^vx)^oCOsï}.~l(Lolx)(p(y) • (Qo - Qo tanh(Lo-lrc) ) Q(y), (25)

where (f)(y) and Q(y) have to satisfy the boundary conditions (24) and be self-
consistent as well. We assume that near the boundaries they have the same

coherence length Loy. It can be estimated as [15]

L^ ^ ^o |<^o(^)|2 m,/^ -^ V'(2m,/H2) ^ ^/2 cosh-l(Z/o-la; ). (26)

Near the soliton maximum (x = 0), we obtain Loy ^ LQ (see Eq. (14) and

VQ ^ |^o l is valid in the stability area).

We estimate that as many as ^ No (II D} of the Ny original Bose condensed

excitons can penetrate from the crystal into the channel if only 1/2 > Loy(x) for

\x\ < (2 ~ 4)Lo. Then, the BEG conditions can be saved for the droplet inside

the channel at T 7^ 0, and the exciton-phonon condensate can move through the

channel ballistically (Fig. 3). However, the question of stability of such a motion

remains open [16]. Experimentally, the task is to register the signal from the

output of the channel, x = ac. For example, a small 3D part could be attached

to the channel in order to convert the excitonic mass current into a measurable

electric signal, see Figs. 2 and 3.

5 Conclusion

In conclusion, we note that the phonons play a crucial role in almost all the

current models aimed to explain or predict coherent behavior of excitons in semi-

conductors, see, f. ex., [10], [17], [18]. Although our model of the exciton-phonon

condensate fails to predict the width of the exciton-phonon packet correctly, the

theory yields a qualitative description of the experiments and a reasonable value
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for the critical velocity. However, one has to take into account the thermal exci-

tons (e.g., the weak tail that is always observed behind the soliton 1 ) and the

thermal phonons of the crystal to make the model with condensate more realistic.
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Chapter 4

Critical velocity in the theory of superfluidity

In this chapter, we discuss a new model of the dissipation of a superflow. We

were motivated by the ballistic movement of the exciton-phonon condensate dis-

cussed in the previous chapters. In general, it is hard to believe that vortexes

could be responsible for dissipation in the anomalous transport in crystal struc-

tures interpreted in terms of the superfluidity of excitons [43].
Recall that the superfluidity as a frictionless flow ceases to exist if the velocity

of the moving liquid exceeds some critical value. The creation of vortexes is

believed to be the main mechanism of dissipation in the case if the superfluid

liquid moves relatively fast [44].

Instead of the Bose-liquid, we consider a Bose-gas with the two-particle inter-

action [/(x, x/) = t/o ^(x — x') in this chapter. It can also move without friction in
a channel as it was shown by N. N. Bogoliubov long time ago [21]. However, the
coupling between long-wavelength elementary excitations of the coherent bosons

of the Bose-gas (restricted by the channel walls within which it moves) and the

surface phonons of these walls, e.g., -Hx-ph ~ f dxdx'UÇ-x., x') •^t'0(x) Vu(x'),
can lead to the existence of a new branch of excitations. This branch is explored

in the article included into this chapter.
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Abstract

The existence of superfluidity in a 3D Bose-gas can depend on boundary

interactions with channel walls. We study a simple model where the dilute

moving Bose-gas interacts with the walls via hard-core repulsion. Special

boundary excitations are introduced, and their excitation spectrum is cal-

culated within a semiclassical approximation. It turns out that the state

of the moving Bose-gas is unstable with respect to the creation of these

boundary excitations in the system gas + walls, i.e. the critical velocity

vanishes in the semiclassical (Bogoliubov) approximation. We discuss how

a condensate wave function, the boundary excitation spectrum and, hence,

the value of the critical velocity can change in more realistic models, in

which "smooth" attractive interaction between the gas and walls is taken

into account. Such a surface mode could exist in "soft matter" containers

with flexible walls.
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l Introduction

Recent experiments on Bose-Einstein Condensation (BEG) in magnetically trapped

gases [1], [2], and excitons in semiconductor crystals and nanostructures [3], [4], [5]
have made the subject of BEG more vital, more interdisciplinary. Many new ques-

tions appeared naturally as the understanding of the process of BEG progressed

[6]. However, some "old" problems - such as the kinetics of BEG, the nature of

superfluidity, the critical velocity problem, etc. - still remain the subject under

consideration [7], (especially for new physical objects where the state of BEG was

recently demonstrated [6]). Although the critical velocities are one of the first

difficulties to be encountered in the study of superfluidity, they are still the least

understood aspect in the theory [8], [9], [10].

This article is motivated mainly by the problem of critical velocity (-ies) in

exciton superfluidity. It has been found experimentally [4], [11], [12] that a cloud of

condensed excitons moves through a crystal with some constant velocity and some

characteristic shape of the density profile. Several theoretical explanations of this

anomalous transport have been put forward [13],[14], [15]. In spite of the fact that

these explanations are based on different assumptions, there are several common

ideas in the background of all these theories. For instance, it is the notion that

interaction with a lattice is very important (if not to say crucial) in the BEG of

excitons [15], [16], [17].

However, there are many outstanding questions that remain the subject of

discussion [18]. One of such questions, for example, is the superfluid nature of

exciton anomalous transport. In fact, it is not clear how the exciton condensate

"feels" the boundary of the crystal (via interaction with surface phonons, e.g.,) or

the impurities and other lattice imperfections that can bound an exciton. Gener-

ally speaking, clarification of the role of these friction sources may be essential for

the understanding of the exciton superfluidity and the nature of critical velocities.

We approach the critical velocity problem by working out a simple model in

which dilute 3D Bose-gas moves in a channel and interacts with the walls of this
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channel. The walls are modeled as two 3D solid bodies with well-defined bound-

aries. Although we take into account repulsive interaction between the particles

of the gas, the proposed model cannot describe, for example, the superfluid He,

which is a Bose liquid with strong interparticle interaction. Yet this is not the aim
of this article. The main goal of this study is to explore the space of manœuvre

appearing in the framework of the well known simple models, such as the weakly
nonideal Bose-gas, if we switch on the gas-wall boundary interaction.

We show that the existence of the repulsive interactions between the Bose-gas
and the channel walls leads to the essential reduction of the critical velocity of

the superflow. The finiteness of the Landau critical velocity for the bulk (i.e.
Bose-gas) excitations turns out not to be a sufficient condition of superfluidity.
Note that in the present work we investigate the boundary excitations. Although
the breakdown of the superfluidity is assumed to be accompanied by vortex emis-

sion, we leave for future studies the questions of the vortex formation and their
dynamics in the case when interaction with walls is taken into account.

<J

2 Critical Velocity Problem

A closed system cannot undergo an inner macroscopic motion in thermodynamic

equilibrium. Once such a motion is present, the system must evolve toward an

equilibrium state. However, unless this transition is kinematically prohibited, (i.e.
incompatible with conservation laws), the macroscopic motion is sustained. Such
is the case with a small object moving without any viscous drag in stationary

superfluid [19],[20]. This object is assumed to have no inner degrees of freedom,
so that its momentum and energy depend only on the velocity v of the center of

mass.

If the conservation laws for the creation of an excitation with the energy Cgas(^)
and the momentum k in a fluid (gas) lead to [19]-[21]

Égas(^) > 0, in the object reference frame, (l)
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the particle will continue to move without any experience of drag forces. Condition
(1) is known as the Landau criterion of superfluidity. In fact, Eq. (1) holds that

[19]-[21]
y<^L=(Égas(fc)ALin. (2)

Here V-L is the Landau critical velocity.

Formula (2) is in agreement with experiments performed with the semimicro-
scopic objects moving in the liquid helium [21].

Formula (1), (taken in the channel reference frame), is employed as a criterion
of Bose-gas superfluid flow in channels. In that case, the channel walls are regarded
as a massive macroscopic body in the above consideration (i.e. the walls act as
some source of perturbations on the gas flow), and the final result is formulated
in the form (2).

On experiments with liquid helium flow, however, the registered values of the

critical velocities turn out to be much smaller than V-L. Moreover, the critical

velocity depends on the channel dimensions [22]. The fact that the liquid super-
fluid helium could not be treated as a dilute Bose-gas is believed to be the main
reason for this discrepancy. It is generally assumed that the critical velocities are

related to the appearance of quantized vortex lines in the superfluid. The Landau

criterion (1) applied to the vortex excitations [23] can explain the critical effects
in circular geometries. However, it cannot account for the drastically different

critical velocities for rotation and linear flows [24].
A superflow of a dilute Base gas, described by nonlinear Schrodinger equation

[25], has been studied recently in different geometries with the use of direct nu-
merical methods [26]-[27]. It has been observed that the distinct critical velocity
is linked to the emission of vortices. This velocity turns out to be equal to the

Bogoliubov [28] velocity of sound propagation in the gas. It is in good agree-
ment with the criterion (1) since the Dirichlet boundary conditions (for Bose-gas
wave function) are imposed on the channel walls [27]. This means that the walls,
being considered as rigid immovable bodies, have no degrees of freedom. As a

u
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consequence, the arguments leading to formulas (1),(2) can be used.

In reality, the channel walls have a large number of degrees of freedom. In-

deed, short- and long-range forces between a particle and a surface, boundary and

interface phonons are well known subjects in the surface physics [29], [30]. This

means that the (superfluid) Bose-gas is coupled with the channel, in which the

gas moves. Then special boundary excitations can exist in the system of Bose-gas

+ channel walls because of the coupling between, say, the surface phonons of the

walls and the Bogoliubov phonons of the Bose-gas. Therefore, the Landau crite-

rion in the form (1) cannot be applied; it has to be modified. To get an analog of

it we use the laws of conservation, taking the (inner) walls' degrees of freedom into

consideration. The superfiow can exist, provided the following condition holds:

eÇk) > 0, in the channel (laboratory) reference frame, (3)

where e{k) is the energy of any elementary excitation of the whole (gas + walls)

system.

Condition (3) means that the state of the system can not be changed, since

the occurrence of any number of elementary excitations leads to the increase of a

total energy, but the latter is prohibited by the low of conservation. The excess

of the momentum is "absorbed" by the motion of the center of mass of the walls.

The energy is not actually changed by this motion (in the channel reference frame)

because of a large mass of the walls and their zero initial velocity.

0

3 Bose-Gas with Boundary Interactions

We study the model of the dilute Bose-gas in the channel of the width 21 (in y-

direction) and of infinite length (in x- and ^-directions). The channel walls occupy

the \y\ > l part of space (see Fig. 1). The general structure of the Hamiltonian is

the following:

H = H^, ^) + ^phifôl, TTl) + ^intl(çi, ^t^)+
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n +^ph2(î2, 7T2) + -^int2(ç2, ^t^), (4)

where '0 is the Bose-gas field operator, q is the displacement field operator of a

wall, TT is the momentum density operator conjugate to c, and the indexes 1,2

correspond to the upper and lower part of the channel respectively. In the model

being considered, the Bose-gas Hamiltonian has the following form:

H^ =y^(r) (-^A^) ^(r) dr + J'^ ôÇr - r/) ^ (r)^ Cr'Wr'Wr) dvdv\
where ^ > 0 is the interparticle interaction constant [20], and the wall Hamiltonian
can be written as follows

^Ph = / —^ + 9jqk(r)\jkin9iqn(r)dT,

where the tensor Xjkin describes the elastic properties of the channel walls.
We derive the excitation spectrum using the techniques of semiclassical ap-

proximation (cf. [28],[31],[32],[33]). Expanding the field operators near certain
classical solutions, i.e. ip = ipo + Si{j and q = qo + oq, we represent the Hamilto-

nian in the form

iî=Ho+hH^+..., (5)

where Hy stands for the classical part of H. Note that i/;o 74 0 indicates the

existence of a condensate in the moving Bose-gas, whereas go 7e 0 appears in this

model mainly to satisfy the boundary conditions (see below). The Hamiltonian

H^ in (5) is bilinear with respect to the field operators. As a consequence this

(semiclassical) Hamiltonian can be reduced to the normal form

H2=^ uibrbi + const' 6i' b} = 5U' ^' ^ = °• (6)

The quantum Heisenberg and the classical Poisson-Hamilton equations of motion

for the field operators (functions),

ih {dbi/dt) = [h,, H^ , Çdbi/dt) = {6,, H} , (7)

(J
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Figure 1: Bose-gas inside a channel.

The Bose gas moves with the velocity v in a channel of the width 21. The profile

of the stationary wave function (p(y) = \tpo(x, y, t)\ is shown in the center, where A

is the coherence length. The top and bottom curves depict the boundaries of the

walls interacting with the gas, while the horizontal bold dashed lines correspond to

the unperturbed boundaries, and QyCx, ±1, t) are deviations from this equilibrium.

have the same form, if we neglect the terms of power in h greater than one in Eq.

(5). These equations are linear with respect to the field variables.

It follows from (6), (7) that the excitation energies uji are equal to the char-

acteristic frequencies of these equations. Thus, to determine the semiclassical

energy spectrum of the system we need to find the characteristic frequencies

of the classical field equations for OT? and Sq linearized around a proper sta-

tionary solution if)o, co- (This means that 5-0 and ôq, originally of the opera-

tor nature, can be treated as a c-number and a real number function respec-

lively). Then the gas state can be characterized by the Bose wave function

^(r, t) = •0(a;, î/, t), while the state of the walls is determined by the displacement

field q(r,A) = (qj:{x,y,t), qy{x,y,t), 0). For simplicity, the system is asumed to

be homogeneous in the z-direction.

The interaction between the wall and gas atoms is given in our model by the

(J
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sum of hard-core repulsion and some "smooth" potential U = U(r, V'*'0, q). The

hard-core repulsion makes the walls impenetrable for the gas. It follows that

the wave function of the Bose-gas vanishes along the actual boundaries y± =

±1 + qy{x,±l,t) (see Fig. 1).

i^(x,±l+qy{x,±l,t'),t) =0.

The other boundary conditions, namely

h2.
CTyy{X, ±1, t) = -^Qylp* 9y-^ (X, î/ = ±1, t),

m

a^y(x,±l,t) = 0,

(8)

(9)
(10)

correspond to the equality of the forces between the solid and gas on the boundary.

In (9), (10) o-î, denotes the wall stress tensor and m is a mass of the gas atom.

The pressure of the gas (r.h.s. of (9)) is equal to the normal component of the

stress tensor (l.h.s. of (9)). Eq. (10) follows from the fact that the tangent stress

vanishes on the boundary.

The wave function i/j of the repulsive Bose-gas satisfies the nonlinear Schrodinger

equation [25]

iUQt + ^-A - ^^ } ^ = V(r, 9,g,) V., |T/| < ^, (11)
while the wall dynamics obeys the hyperbolic equation for the displacement field

q [34],
p92^ = ô,a,, - 9,lV(r, ^^), |yi > ^, (12)

(p denotes the wall mass density). The potential V and the potential density W

depend on the "smooth" part of the gas-wall interaction U\ they must vanish if

U =Q. To make our model as simple as possible, weset^Y == 0 a priori. Then, the

dynamics is described by equations (11), (12) with constant coefficients, whereas

the hard-core interactions fix the boundary conditions (8)-(10). Note that these

conditions imply that the walls have a finite compressibility, K = -V(9y p)s < oo-

Therefore, even though U =Q, the wall and Bose-gas excitations can be coupled

u
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because {9yi^) qy(x,±l) in (8) and cryy ~ K9yqy(x,±l) in (9) are finite and time
dependent.

We suppose that the walls are isotropic (this assumption does not affect the

results qualitatively, simplifying our calculations), so that [34]

a,, = pc? (ô,ç, + ^ç, + (/? - l)^-(Vq)), /? = (c?/c,2) - l, (13)

where c;, Cf are longitudinal and transversal sound velocities respectively. It is

convenient to rescale variables in such a way that the spatial coordinates are

expressed via the coherence length A units while the flow velocity is measured in

terms of the Bogoliubov sound velocity CB [28]:

A = n/^/Vpgas, CB = ^Vp^ajm.

Here, pgas stands for the bulk gas density. Then Eqs. (11), (12) become

(z9t + (1/2)A - ^^) ^{x, y, t) = 0, (14)

{c^ - A - /?V(V.)} q(3;, y, t) = 0, (15)

where the sound velocity, time and q are measured in the units of CB, A/CB and A

respectively.

In the stationary regime, the Bose gas moves uniformly in the rc-direction with

the velocity v. As the system is homogeneous in the x and z directions, \^o(T, t)\ =

(j){y) and qo(r,t) = qo(?/). The walls are deformed only in the y-direction, since

the tangent stress vanishes in the stationary regime qo(i/) = (0, qoy{y), 0). The
corresponding solution of (14), (15) is given by

^{x, y, t) = ^yyvx e-Ira, 4>W - 0, ^'(±0 ^ 0, (16)

go, = 0, co, = Q(y) = ±const(2/ ± Q, {y -^ ±1), Q(±l) = 0, Q'(±l) /(a7)

It follows from (16), (14) that 0=/i+^-, ju=l (this corresponds to the value
of a chemical potential /z = vpgaslm at T = 0), and ^i(y) satisfies the following
equation [35]:

-^"+^3=^ ^(y)=^(-z/). (18)l
—^"+4>3=<f>, M=^-y).



0

151

The parity of <f) in (18) and the boundary conditions in (16) are obtained from

(8)-(10) (see Fig. 1).
We follow the procedure (5)-(7) expanding the field variables around the sta-

tionary solution (16), (17)

^ = (w + ^ - vt, y, t)VVX e-t(^2/2)t,
qx =Çx{x- vt, y, t),qy= Q(y) + Çy(x - vt, y, t).

Substituting these expansions into (14),(15) we get the following linear differential

equations for the fluctuations c, C,

^9t + JA+ l - 2^y)2^ ^ - 0(y)2f = 0, |?/| < l,
{q-2(^ - v9^2 - A - /?V(V.)} C = 0, \y\ > l,

Ç=^(x,y,t\ C=CÇx,y,t),

(19)

(20)

written in the reference frame moving with the Bose-gas, x —>• x' = x —vt.

One of the advantages of setting U = 0 is the possibility of using the exact

solution of Eq. (18) with the boundary conditions (16),

(j){y} =sii(y+l, Q),

where sn(?/, g) is the elliptic sine [36], the parameter g is chosen to fit the boundary

conditions and the following condition holds sn(y, g) —> tanh(î/) ifl ^ oo. (Notice

that the dimensional condensate wave function can be written in the form 4>d(y) =

constv//3gas/msn( (y + l)/\, g) ).

Nontrivial excitations can not propagate over the wall region far from the

boundary. Indeed, the equation (20) has constant coefficients and, hence, the dis-

persion law for such excitations coincides with the phonon one (i.e., corresponding

asymptotical solutions describe propagation of the ordinary sound waves far from

the boundaries). Therefore, we have to look for the solution of (20) decreasing in

y —>• ±00 directions. We assume that the experimentally discovered dependence

of the critical velocity on the canal width [22], Vc ~ l~n, n c^ 2,is a, hint to

(J
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n search for the special type of excitations, in which two boundaries of the canal

can contribute coherently.

Such a solution of (19), (20) can be written in the form

^=Xi{y)sm(kx-ut)+i^(y)cos(kx-(jt), \y\ < l, (21)

(,x = ri(y) cos(A;3; - ujt), Cy = î~2(ï/) sm(Â;a; - ujt\ \y\ > l (22)

with

r,{y~} = A, exp(-/î|y|) + B, exp(-^|î/|). (23)

Two exponential terms in (23) correspond to the different polarizations of the

boundary excitations. The characteristic values

K = ^k2 — w2 fc^ and 77 = \/k2 — (-L>2/cf

are eigenvalues of the ordinary linear equations obtained by substitution of(22)

into (20). Note that the ansatz (21), (22) is equivalent to the Bogoliubov u-v

transformation generalized to a nonuniform case 28 ,32], 33] and coupling with

the surface phonons:

ei^tS^x, y, t) = Uk(y) ei{kx-^k)t) + v^y} ^-kx+^k^

ôq{x,y,t) == C^y)el(kx-^k^+c.c..

Then the operators b[, (6^) that create (annihilate) the boundary excitations
(21-23) in the diagonalized Hamiltonian (6) can be represented by the linear com-

binations of the Bose-gas field operators, 8i}j and 5'0t, and the displacement field

operators, 8q and ÔTÏ.

We linearize the boundary conditions (8)-(10) according to the method of the

semiclassical approximation (5), neglecting the terms of power greater than one

in ^,C. Together with the proper solution (21),(22) of Eqs. (19), (20), conditions

(8)-(10) determine values A = A(k,uJ), B = B{k,u}] in (23) and the boundary

conditions for ^1^2:

^ =^7(^), X2(±0=0, ^=^
Xi/,,=y=±l M)2'

(24)

u
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u

\2.^ ^ P^/Pgas4 J_ f4,/i—^__l2-^)2 ^ ^ ^1{Z) ^ '~^T^ [w ~ z ~ V'I-cfz/cf) >> L
The value e(k) in (24)

6(Â;) = uj(k) — kv

equals the boundary excitation energy in the channel reference system (3).

It follows from (21) and (19) that the variables Xi,2(y) and CL> satisfy the fol-

lowing system:

Li^(y) + 2a;^(y) =0, Li =9,2 - fc2 +2- 6W2,

^2X2 (y) + 2a;xi(?/) =0, L2 =9,2 - A;2 +2- ^{y}2. (25)

Note that in view of the parity of ^)(y) (see (18)) and the boundary conditions

(24), solutions of (25) can be either symmetric or antisymmetric with respect to

y-

According to the criterion (3), a breakdown of superfluidity occurs at such

a value v if there exists such a À; / 0 that e(A;) = 0. Then the argument z of

7 in (24) vanishes and the boundary conditions do not depend explicitly on u,

i.e. (x'i/X-i)\y=±i = T^7(0) = =Fconst. In principle, this fact makes it possible to

calculate Vc without finding any final expression oîuj(k}. Indeed, one has to solve

Eqs. (25) with (j = kvc and fixed boundary conditions.

In this simple model, however, it is possible to calculate the dispersion relation

a» (fc), at least in the k —>• 0 limit [37]. We look for the symmetric solution of (25),

expanding Xi,2(y) in powers of a;2:

Xl = Xw + a;2xil) + ..., X2= c.{xw + ^2^1) +...).

The functions •)(^'^ symmetric in y satisfy the following recurrence relations
^».1,A

^o)=o,xio)(±0=i,
^?)+X?~l)=0,x?)(±Q=0,z=l,2,...
L2X? + Xw = 0, x? (±0 = 0, î = 0,1,2,.... (26)
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The analytic study of (26) seems to be difficult. Instead we proceed numerically

[38]; we obtain the eigenvalues LL> = cj(fc) by solving (26) recursively and imposing

the boundary conditions (24) on ^.

The result reads

u(fc) = Q:v^7+5)fc3, as A; -^ 0, (27)

where cr > 0 and 5 > 0 are some bounded functions of ^, 7 = 7(0) ^ pc^/pgasCB-
The dependence of ïog{iv{k)) on log(A;) is shown on Fig. 2. Note that only the

solutions with finite 7 > 1 have the physical meaning. For "conventional" systems,

such as a dilute Base gas inside a solid container, the value of 7(0) is very large,

7(0) ^ 107~8 or even more. Moreover, the validity of the long-wavelength / low-

energy approximation implies A;7 < 1 and a; <: 1, and the relevant wavelengths

are unphysically huge. However, for the "soft matter" substances with flexible

walls, 7 can be of the order of 102~3 and the distance between the walls can be

21 > \. Then, beginning from the wavelengths of the order of (102-5~3)A, we are

within the lk -» 0' limit and u(k) < 10~3p,. (On Fig. 2, we present also the

curves with 7 < 1 because of similarity between our result and the dispersion

relation of capillary waves on the interface between liquid and gaseous He, the

so-called "ripplons" [39].) If the channel walls were rigid and incompressible, that

corresponds 107 = oo in (27), the inhomogeneous surface excitations introduced

in this study just do not exist as a well-defined object.

It is easy to conclude that the semiclassical critical velocity is zero in this model,

since for any v there exist A; / 0 such that e[k) = u}{k) — kv < 0. This means

that the model, in which all the gas-boundary interactions are reduced to the

hard-core repulsion, predicts (in the semiclassical (Bogoliubov) approximation)

an instability of the Bose-gas current state in relation to occurrence of boundary

excitations. However, whether the damping of superflow can happen via the

energy transfer from the 3D condensate to the boundary localized modes is an

open question, which cannot be answered in the framework of models with the

superfluid density ps = pgas, T = 0. More sophisticated models of superfluidity,
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Figure 2: Spectrum of boundary excitations.

The low-momentum spectrum uj{k) of boundary excitations. The canal width l is

measured in the coherence length units; 7 ^ pcf/pgasC^.

such as the two-fluid hydrodynamics [22], should be used to describe the kinetics

of damping.

4 Discussion

In our opinion, the obtained dispersion relation (see Fig. 2) in the framework of the

proposed oversimplified model gives a possibility to conclude that the boundary

interactions can play a key role in the superfluidity, namely, by reducing substan-

tially the critical velocity of the superflow. If that is the case, it is reasonable to

generalize our model to make it more realistic.

Recall that we have neglected the "smooth" part U of the gas-wall interactions.

The models with repulsive U seems to be qualitatively similar to the one under

consideration. We believe that they also lead to the zero semiclassical critical

0
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n velocity, since nothing can apparently prevent the energy transfer from the gas

flow to the walls (in this approximation). It is important to note that even if

the higher quantum corrections yield nonzero critical velocity, the latter will be

of much smaller value than the (semiclassical) Bogoliubov-Landau velocity found

by the numerical simulations based on the nonlinear Schrodinger equation [27].

The situation might be difïerent if the "smooth" part U of the interaction

between the gas and wall atoms were attractive. For example, we can take the

Hamiltonian of gas-wall interaction in the Deformation Potential form

^int = f ^(r, r/) Vq(r) ^t^(r') drdr', (28)

where r and r' change in the wall area (|y| > I) and in the channel area (\y'\ < I)

respectively, and the function cr(r, r') describes atom-lattice interaction. (At least

two new parameters, which control the "smooth" part of gas-wall interaction, have

to appear in the model with ^ / 0: one, some characteristic value of energy, and,

two, a length scale). Then the equations for the classical parts of •0 and c, namely

(f)(y) and qoy, (see Eqs. (16), (17) ), can be written as follows:

(^+ £^2 ~ ^2(?/)) ^(2/) = (/a(r''r)^Q^)dr/) ^^)' (29)
-c]92,Q{y)=p-19, l a^v')^{y')dr'.

J
(30)

After the exclusion of Q{y} from Eq. (29), it can be rewritten in the following

forin:

[~^n92y+ A U(T) + ^2(y) ~fueff^ r')^2(î//)dr/) ^(y) = ^^) (31)
where U^(r,r') == fa{T",T)a{T",T')dr"/pcf, UCr) = J>a(r', r)dr/, and A = const
is defined from the boundary condition (9).

It is easy to see from the structure of (31) that the atom-lattice interaction

a(r, r/) (when exceeding a certain magnitude) can induce an attraction between

the gas atoms in the boundary region. Indeed, there can exist such a scale of |r—r|

u
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that vS(T—T')—Ueff(r, r/) < 0. In that case, one would expect essential changes in

the spectrum of boundary excitations. The study ofexciton superfluidity [15],[40]

hints such a possibility.

This study reveals a mechanism of the exciton-exciton attraction induced by

the lattice effects. The exciton gas falls into the soliton-like state I/JQ, qo, when

the exciton-phonon coupling constant exceeds a certain value, or, equivalently,

the velocity v exceeds some critical value. The excitation spectrum in an exciton

branch has a gap, and the Landau critical velocity, calculated for this type of

excitations, is given by

Vc ^ h/mL, (32)

where L denotes the characteristic size of the soliton. We can adapt the similar

considerations in our model, replacing the exciton-phonon by the gas-wall inter-

actions. The critical velocity can be given by a formula similar to (32) with L ^. I,

provided I is the only macroscopical length in the theory.

In this article we did not consider the influence of the long-range van der

Waals forces between the walls and gas atoms on the stability of superfluid flow.

Although the attractive part of these forces originates from interaction between

the electron shells of the particles [4l], it can be included in our model in the form

of a static van der Waals potential appearing in the r.h.s. of Eq. (11). Such an

external potential being localized near the boundaries can be stronger than the

effective potential A[/(y) in (31) and therefore can change the properties of the

condensate wave function, the boundary excitations, etc..

5 Conclusions

In conclusion, our simple model manifests one of the possible microscopic mech-

anisms for dissipation processes in the quantum Hamiltonian system of coupled

Bose-gas and channel walls. We show that the dissipation can also be caused by

creation of boundary excitations in this system. Although, in the semiclassical ap-
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proximation, this process is not prohibited at any velocity of the moving repulsive

Bose-gas, the higher quantum corrections to the self-energy part of the boundary

excitations may be essential to obtain the nonzero value of Vc in the theory of

the dilute Bose-gas with gas-wall interaction. On the other hand, more rigorous

consideration in the framework of the semiclassical approximation should involve

solutions of (8)-(12) with Li ^ 0, where the attractive part of gas-wall interaction

is taken into account. Such solutions can be still represented in the form (21),

(22), though equations (18), (19), (20) would become integral. A direct numerical
study of the flow dynamics would be also useful.
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Conclusion

The main result of this thesis is the development of a microscopic approach

aimed to understand the anomalous transport of excitons observed in cuprous

oxide. As this effect is a critical behavior, the interpretation in terms of the

Bose-Einstein condensation of excitons is very appealing. However, it was not

clear what is exactly the Bose-condensate in the packet of moving excitons and

phonons and why the repulsive excitons form a soliton-like moving state appearing

in the models with the particle-particle attraction.

We propose a relatively simple theoretical model which describes the packet

of moving excitons and phonons as an exciton-phonon "comet" with the Bose-

Einstein core of the correlated excitons and phonons. The optically inactive exci-

tons can be described by the macroscopic wave function in the same manner as it

is done for atomic Bose-gases. However, the crystal vibrations are very important

in order to understand why a kind of the "bright" excitonic soliton can be formed.

Assuming that some of (non-thermal) phonons of the exciton-phonon packet form

a coherent state we showed that the efïective exciton-exciton interaction between

excitons in the Bose-condensate becomes attractive in the direction of motion. In

other words, the spatial properties of the exciton-phonon condensate are described

by a system of the coupled nonlinear Schrodinger and nonlinear wave equations

that supports the "bright" soliton solutions.

Within the mean field theory, we introduced the elementary excitations of the

exciton-phonon condensate: the well-known u-v Bogoliubov transform has to be

generalized to include the field operators of the displacement field of the crystal

and its conjugated momentum. Thus, we have two branches of the excitations to

take into account in estimating of the condensate depletion. To simplify calcula-

tions, each of these two branches can be divided into the excitations forming the

tail of the exciton-phonon condensate and the excitations forming the "coma" of
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it. For example, to a first approximation, the tail of the exciton-phonon conden-

sate consists of the uncoupled exciton- and phonon-like excitations emitted out of

the moving condensate.

To sum up, the subsonic anomalous propagation of exciton-phonon packets

can be described by soliton solutions of the Nonlinear Schrodinger equation if

we assume the exciton-phonon condensate was formed inside the moving packet.

Then, the theory predicts two critical velocities for propagation of the packet

as well as strong nonlinear interaction between the moving excitonic packets,

both containing the condensâtes. This is in a good qualitative agreement with

experimental data.

To finish this section, I would like to mention some questions which have not

been discussed in the thesis as well as some open problems.

It seems the language of many-particle physics is quite suitable in attempts to

interpret current experiments on the creation of highly correlated excited states

in semiconductors and semiconductor heterostructures. However, the well-known

critical phenomena, such as Bose-Einstein Condensation, Superfluidity, Kosterlitz-

Thouless transition in 2D, Dicke Superradiance, have to be revisited in order

to apply them correctly to excitons or exciton-polaritons in semiconductors and

semiconductor "sandwich" structures.

For instance, to develop a many-particle theory explaining nonlinear phenom-

ena in semiconductor microcavities, one has to consider a model of several inter-

acting fields, such as the excitonic field, photon field, and, probably, the phonon

one [45].

However, many of the interesting phenomena are beyond the reach of the stan-

dard perturbative methods of Quantum Field Theory and equilibrium Quantum

Statistical Mechanics. It is possible to apply advanced theoretical methods, such

as a proper combination of exactly solvable models and nonequilibrium quantum

physics, to address the key questions in such challenging situations.
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In this thesis, we studied the anomalous transport ofexciton packets (droplets)

in three dimensional crystals assuming the excitons are Bose-correlated. The

anomalous optical properties of the Bose- condensed excitons were not discussed.

From a theoretical point of view, the possibility to convert a coherent excitonic

field into a coherent photon field is one of the challenging and important topics

in the modern Physics of Semiconductors. From this perspective, the question on

whether the moving exciton-phonon packet contains a Bose-correlated core with a

rigid macroscopic phase at nonzero temperature could be answered both theoret-

ically and experimentally. (The process with kx,i +kx,z = kph,i +kph,2 ^ 0 can be

allowed. For the case of CuaO, however, one has to deal with the optically active

orthoexcitons, so that it is probably necessary to switch on the magnetic field to

suppress ortho-para conversion.) Therefore, we can speculate on the possibility

to convert the coherent exciton field into the coherent photon one by colliding

two moving exciton-phonon packets. Such an experiment could reveal how rigid

is the macroscopic phase of the Bose-core (if any). If one can prescribe a macro-

scopic phase ip c to each Bose-core of the moving packets, their head-on collision

could result in the many-photon production without loss of the "phase memory",

(Pc,i ~ (Pc,2- For example, the jets of photons originated from the condensate in-

teraction (the Bose-core collision) seem to be highly directional in space and with

a low noise level, see Fig. 1. The language of the coherent states can be applied

to describe them. This problem, however, needs careful analysis and is left for

future.

Another possibility is to develop a controllable pump of excitons into a con-

trollable trap obtained, for example, by applying an inhomogeneous strain to

a semiconductor [46], see Fig.2. Then, the photoluminescence signal from the

trapped excitons can show a critical behavior. In addition, study of the anoma-

lous exciton transport in strong magnetic field is interesting because, roughly, the

exciton-exciton interaction strength depends on the value of the magnetic field.

In crossed magnetic and electric fields, it is possible to find new observable effects.
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Figure 1: Head-on collision of packets.

After some amount of energy (SE^ît = <î-Eright) has been pumped into the medium

during a short time interval St and absorbed near the left and right boundaries,

two localized excited states are formed near the faces 'ad' and 'be . If there is a

mechanism of the momentum transfer to the excited state, the droplets begin to

move toward the opposite faces with the velocities {v} w {v'}. Such conditions

can favor the appearance of a coherent boson-phonon state (an analog of Davydov

soliton) inside both the left and right droplets. The collision of such exciton-

phonon droplets seems to be analogous to the heavy nucleus collisions that result

in the production of pion jets. In CuaO crystal, one can expect the production of

two photon jets at low temperature T < Tc. As a result, coherence of the phonons

in such jets can be checked experimentally.
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Figure 2: Trap for excitons inside a crystal.

Like the BEC of atomic gases, one can create a trap for excitons in a crystal.

However, an exciton in such a trap has a finite life time, so that one cannot

avoid strong fluctuations of any order parameter prescribed to the excitonic gas

even though the conditions for the equilibrium Bose-Einstein condensation are

met at the beginning. It is possible to suppress fluctuations of the phase of

the order parameter if the average number of excitons in the trap will be kept

constant. Then, we can expect the emitted photons to be coherent with the

energy hÇî = E(N,) - E(N^-l).
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