Université de Montréal

Mesure de la fraction d'événements à quatre quarks dans les désintégrations multihadroniques du Z⁰ au LEP

par

Eric Lefebvre Département de physique Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures en vue de l'obtention du grade de Philosophiæ Doctor (Ph.D.) en physique

Août, 1998

©Eric Lefebvre, 1998

QC 3 U54 1999 V.005

Traivenité de Montréal

Meane de la fraction d'événements à quatre quiries dans les désintégrations multificilieurs du 2⁶ au LEP

> thar Brie Lefeburn Département de physique Baulté des arts et dus sciences

Phèse présentée 5 la Faculté des études supérieurs: co rue de l'obtention du grade de , l'hikuophise Doctor (Ph.D.) en physique

BRUI , HIGA

Contraction Latinovices 1993

Université de Montréal Faculté des études supérieures

Cette thèse intitulée:

Mesure de la fraction d'événements à quatre quarks dans les désintégrations multihadroniques du Z⁰ au LEP

présentée par:

Eric Lefebvre

a été évaluée par un jury composé des personnes suivantes:

Louis Lessard,président-rapporteurHannes Jérémie,directeur de rechercheViktor Zacek,membre du juryHoumani El Mamouni,examinateur externe

Sommaire

Cette thèse propose de tester la Chromodynamique Quantique (QCD) en effectuant une mesure précise d'une des trois constantes fondamentales du groupe de symétrie SU(3) utilisé pour décrire la physique des interactions fortes. Cette constante fondamentale, appelée T_F , est reliée à certains états finaux spécifiques des désintégrations du Z⁰. Ces états apparaissent sous forme de perturbations du deuxième ordre en α , et sont illustrés par des diagrammes de Feynman. À cet ordre, la chromodynamique prévoit deux types de diagrammes de Feynman distincts; le premier contient, un quark, un antiquark et deux gluons, et le second, deux quarks et deux antiquarks. La constante T_F est directement proportionnelle à la fraction d'événements à deux quarks et deux antiquarks qui est l'objet de notre mesure.

Notre mesure est fondée sur l'étude des événements à quatre partons dans l'état final. Ces quatre partons, en s'hadronisant, produisent quatre jets de particules qui peuvent être détectés expérimentalement et identifiés à l'aide d'algorithmes de reconstruction des jets. Des observables angulaires nous permettent de faire une discrimination parmi les états finaux de la désintégration du Z⁰, et ainsi déterminer la valeur de la fraction d'événements à deux quarks et deux antiquarks f_q . Cette fraction peut s'exprimer par le rapport de la fraction observée expérimentalement f_q^{ex} sur la fraction théorique f_q^{th} ,

$$R_{4q}=rac{f_q^{ex}}{f_q^{th}}$$
 .

Afin d'améliorer la mesure de cette fraction et de diminuer le bruit causé par une contamination des événements d'ordres supérieurs, nous avons développé une méthode d'extrapolation. Cette méthode s'appuie sur la caractérisation de l'espace de phase des événements, exprimée par les paramètres y^{ij} . Les mesures de R_{4q} que nous obtenons sont:

$$\boxed{R_{4q}=2,27 \ \substack{+0,29\\-0,56}}$$

à l'aide d'une méthode conventionnelle avec la condition de sélection $y^{34} > 0,020 > y^{45}$, et

$$R_{4q} = 1,22 \ ^{+0,56}_{-0,71}$$

à l'aide de notre méthode d'extrapolation avec la condition de sélection $y^{34} > 0,020$.

Nous en concluons que notre méthode d'extrapolation est efficace pour la réduction du bruit de fond causé par les événements d'ordre supérieur, et qu'un bon accord est obtenu entre la mesure expérimentale et la prédiction théorique. La mesure dite conventionnelle permet d'apprécier la réduction de la contamination, sans laquelle, un écart de plus de deux sigma apparaît entre la mesure et la prédiction.

L'ensemble de l'analyse, des graphiques, des tableaux, et des reésultats des chapitres 3, 4, et 5 ainsi que des deux appendices, représente la contribution personnelle, à cette étude, de l'auteur de cette thèse.

Mots-clefs Physique des particules, QCD, quatre quarks, mesure.

Table des matières

Sommaire	· • · · ·		•••		•••		•••	• •	iii
Table des matières		• • • •	••••		•••	•••	• •	• 18	v
Liste des tableaux	• • • • •				•••				ix
Liste des figures			• • • •	•••		• •	• •		xi
Remerciements			••••					а.	xiv
Introduction	x e	• • • •		1.0				•	1
0.1 Le Modèle Standard	• • • • •			cs s	· ·			•••	1
0.2 Au delà du Modèle Standard		• • • •	ē	•••	• •			• •	5
0.3 Le sujet de la thèse			<u>.</u>					•••	8
I Cadres théorique et expérimental					۰.		. 6	r ti	xvii
Chapitre 1: Des partons aux particu	les		•••	•••	•••		8. .		11
1.1 Éléments de base de la QCD			50 x		• •		• 1 •		11
1.2 Le comportement de α_s		·	• • •		• •	• •	204	÷ •	13
1.3 Sections efficaces des configur	rations à	quatre	partor	ıs.				2.2	15
1.4 Description d'une désintégrat	ion mult	ihadror	nique					ä	18
1.5 Phase perturbative									20

 \hat{A}

vi

æ

	1.5.1	Les gerbes de partons	21
	1.5.2	Calcul des éléments de matrice	22
1.6	Phase	non-perturbative	23
	1.6.1	Hadronisation indépendante	23
	1.6.2	Hadronisation d'amas	24
	1.6.3	Hadronisation de cordes	25
Chapitr	e 2: I	De l'observation à l'observable	27
2.1	Le dét	tecteur OPAL	27
	2.1.1	Le détecteur central	29
	2.1.2	Le calorimètre électromagnétique	32
	2.1.3	Le calorimètre hadronique et le détecteur de muons	33
2.2	La rec	construction des événements	34
2.3	Choix	de configurations	35
	2.3.1	Configuration CHEM	35
	2.3.2	Configuration MT	36
2.4	Sélect	ion des événements	38
2.5	Algori	ithmes d'identification des jets	40
2.6	Une v	ariable angulaire	44
	2.6.1	L'angle Bengtsson-Zerwas	45

II Où l'on présente l'analyse	
Chapitre 3: Caractérisation des événements par des variables de jets 49	
3.1 Signification et visualisation de la variable y^{34}	
3.1.1 Vue linéaire	
3.1.2 Vue spatiale	
3.1.3 Variation entre les niveaux	
3.2 Distributions de variables caractéristiques	
3.2.1 La variable $M_3 + M_4$	
3.2.2 La variable M_{34}	
3.2.3 La variable y^{34}	
Chapitre 4: Une mesure de f_q	
4.1 Distributions χ_{BZ}	
4.2 Échange de jets et résolution de l'angle χ_{BZ}	
4.3 Ajustement de forme	
4.4 Erreurs systématiques	
Chapitre 5: Mesures extrapolées de f_q	
5.1 Méthode d'extrapolation	
5.2 Erreurs systématiques et statistiques	
5.3 Résultats	

vii

5.4 Dis	scus	sion	• •	·	• •	•	2			•	1	2	 •	e.	32	•	•		•			•	•				•	•	•		99
Conclusion				•	• •		•	•			•	•	 •	e		•	•	•	e		•	•	•	•	×	•	•	•	•	. 1	102
Références	•		• •	. •	•12		•	• •	• •	•	•		 •	•	2	•	•	•	•3	•	•	•		•	•	•	·	•	•	. 1	105
Appendice	A:	Algo	orit	hm	.e d	de	m	ini	mi	sa	tio	n		-		•	•		•	•	•	•		•	•	8	1.		·	•	xix
Appendice	B:	Tabl	eau	IX (de	m	es	ure	es											4						•		•		. x	cxii

,

19

Liste des tableaux

0-I	Les particules fondamentales 2
0-II	Les forces et leurs médiateurs
2-I	Propriétés du détecteur central d'OPAL
2-II	Propriétés du calorimètre électromagnétique 33
2-III	Algorithmes d'identification des jets
4-I	Nombre d'événements sélectionnés
4-II	Valeurs de f_q
4-III	Erreurs sur la mesure de R_{4q}
5-I	Erreurs sur la mesure de R_{4q} extrapolée
5-II	Valeurs des R_{4q} pour les gammes de M_3+M_4
5-III	Valeurs des R_{4q} pour les gammes de M_{34}
5-IV	Valeurs des R_{4q} pour les gammes de y^{34}
B-I	Distributions χ_{BZ} pour $y_{max}^{45}=0,004$
B-II	Distributions χ_{BZ} pour $y_{max}^{45}=0,006$
B-III	Distributions χ_{BZ} pour $y_{max}^{45}=0,008.$

B-IV	Distributions χ_{BZ} pour $y_{max}^{45} = 0,010$
B-V	Distributions χ_{BZ} pour $y_{max}^{45} = 0,012$
B-VI	Distributions χ_{BZ} pour $y_{max}^{45} = 0,014$
B-VII	Distributions χ_{BZ} pour $y_{max}^{45} = 0,016$
B-VIII	Distributions χ_{BZ} pour $y_{max}^{45} = 0,018$
B-IX	Distributions χ_{BZ} pour $y_{max}^{45} = 0,020$
B-X	Distributions χ_{BZ} pour $y_{max}^{45} = 0,022$
B-XI	Distributions χ_{BZ} pour $y_{max}^{45} = 0,024$
B-XII	Distributions χ_{BZ} pour $y_{max}^{45} = 0,026$
B-XIII	Distributions χ_{BZ} pour $y_{max}^{45} = 0,028$
B-XIV	Distributions χ_{BZ} pour $y_{max}^{45} = 0,030$
B-XV	Valeurs des fq et des nombres en fonction de y_{max}^{45} pour M_3+M_4 . xxxvii
B-XVI	Valeurs des fq et des nombres en fonction de y_{max}^{45} pour M_{34} xxxviii
B-XVII	Valeurs des fq et des nombres en fonction de y_{max}^{45} pour y^{34} xxxix

Liste des figures

0-1	Évolution de l'inverse des constantes de couplages	8
1-1	Évolution de α_s	.4
1-2	Couplages de base en QCD	.5
1-3	Diagrammes de Feynman pour les événements à quatre partons 1	.6
1-4	Événement multihadronique \ldots	9
1-5	Hadronisation indépendante	24
1-6	Effet de corde	25
2-1	Le détecteur OPAL	28
2-2	Correction d'énergie calorimétrique	37
2-3	Distributions de l'énergie visible pour CHEM et MT	38
2-4	Taux de production relatif des événements à n jets \ldots \ldots	12
2-5	Angle Bengtsson-Zerwas	16
2-6	Visualisation d'événement	1 8
3-1	Vue linéaire des variables y^{ij}	50
3-2	Vue spatiale des variables y^{ij}	53

3-3	Variation du y^{34} entre les niveaux $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	56
3-4	Distributions de M_3+M_4	58
3-5	Distributions de M_{34}	60
3-6	Rapport données/simulations ERT en fonction de y^{34}	61
3-7	Distributions de y^{34}	62
4-1	Distributions de χ_{BZ}	65
4-2	Résolution de l'angle χ_{BZ}	66
4-3	Variation de l'ordre des jets	67
4-4	Distribution du χ^2 en fonction de f_q	69
4-5	Rapports des distributions de χ_{BZ}	71
4-6	Proportion des événements à 2 et 3 partons	75
5-1	Diminution du nombre d'événements en fonction de y_{max}^{45}	84
5-2	Extrapolation de la mesure de f_q avec χ_{BZ}	88
5-3	Extrapolation de f_{nb} pour les gammes de M_3+M_4	90
5-4	Produits des f_{nb} et f_q pour des gammes de M_3+M_4	91
5-5	Extrapolation de f_{nb} pour les gammes de M_{34}	93
5-6	Produits des f_{nb} et f_q pour des gammes de M_{34}	94
5-7	Extrapolation de f_{nb} pour les gammes de y^{34}	96
5-8	Produits des f_{nb} et f_q pour des gammes de y^{34}	97

A-1 Organigramme de l'algorhitme de minimisation xxi

34

- 19

Remerciements

Les remerciements constituent, pour les thésards, une section fort appréciée, d'une part parce qu'ils sont généralement écrits en dernier, marquant ainsi la complétion d'un dur labeur, et d'autre part, parce qu'ils sont d'ordre purement personnel et n'imposent aucune contrainte. On ne doit cependant pas en oublier l'objectif premier: faire acte d'humilité et rendre honneur aux gens qui nous ont permis d'atteindre notre but. C'est dans cet esprit que je les ai écrits, et leur sobriété n'est que le signe du respect et de la reconnaissance que j'ai pour les personnes à qui ils s'adressent.

En tout premier lieu, je vous remercie, Monsieur Hannes Jérémie. Votre expérience, votre intelligence, votre assiduité au travail, votre rigueur, furent pour moi une source inépuisable d'enseignement. N'ayant pu vous égaler dans ces qualités, je vous remercie pour votre patience et votre compréhension. Je vous dois ma plus grande reconnaissance pour m'avoir invité à poursuivre mes études doctorales.

Je vous remercie également, Messieurs André Joly et Claude Théoret. D'abord collègues, vous êtes vite devenus de grands amis sur qui j'ai pu compter. Je n'oublierai jamais tous ces bons moments passés en votre compagnie. A bientôt.

Je vous remercie, Madame Hélène Lamothe et Monsieur Alain Lévesque. Votre support administratif et informatique, ainsi que votre professionnalisme furent très appréciés durant toutes ces années.

Je vous remercie chers parents, Solange et Normand. Je récolte aujourd'hui les fruits de vos encouragements à poursuivre mes études. Je te remercie aussi, cher père, d'avoir corrigé si soigneusement les premières épreuves de cette thèse. Je te remercie chère Françoise. Ta présence me fut et m'est toujours, d'un grand secours et d'une grande joie.

Enfin, je remercie tous ceux qui ont travaillé au sein de la collaboration OPAL et de l'Organisation Européenne pour la Recherche Nucléaire (CERN), sans qui notre analyse n'aurait pu être menée à bien. De même que le Conseil National de la Recherche en Sciences Naturelles et en Génie du Canada (CRSNG), et les Fonds Québécois pour la Formation des Chercheurs et l'Aide à la Recherche (FCAR), pour leur appui financier. Tout ainsi qu'en toute pasture il y a le plaisir souvent seul; et tout ce que nous prenons, qui est plaisant, n'est pas toujours nutritif ou sain. Pareillement, ce que nostre esprit tire de la science, ne laisse pas d'estre voluptueux, encore qu'il ne soit ny alimentant, ny salutaire.

Montaigne, Essais, II, xii

1

63

Introduction

À une quinzaine de kilomètres du centre de Genève, sur la frontière franco-suisse, se situe le CERN, haut lieu de la physique des hautes énergies. Une des vocations du CERN est d'étudier la physique associée à la désintégration du Z⁰ produit lors de l'annihilation électron-positron. C'est dans le cadre de ces études que la recherche qui fait l'objet de cette thèse a été réalisée.

Nous comprenons la physique des hautes énergies par l'entremise du Modèle Standard. Dans le but d'introduire notre sujet, nous présenterons très brièvement ce modèle, ses avantages et ses faiblesses. Nous serons, par la suite, plus à même de situer notre recherche dans son cadre, et plus particulièrement, dans celui d'un de ses aspects, la Chromodynamique Quantique (QCD). Notre recherche a, en effet, pour but de mesurer la fraction d'événements à quatre quarks dans les désintégrations multihadroniques de la particule Z⁰. Cette mesure, qui sera effectuée à l'aide d'une méthode originale d'extrapolation, est reliée à une des constantes fondamentales de la QCD.

0.1 Le Modèle Standard

Apparu dans les années soixante pour tenter d'expliquer et d'ordonner la grande quantité de particules subatomiques découvertes jusqu'alors, le Modèle Standard est devenu, dans les années soixante-dix, l'ensemble fondamental des théories s'appliquant à la physique subatomique. Selon ce modèle [48, 49], la matière serait formée d'un nombre restreint de particules nommées *leptons* et *quarks*. Il y aurait six quarks et six leptons, répartis en trois familles. Ces douze éléments fondamentaux interagiraient entre eux grâce aux cinq types de quanta d'interactions, les bosons intermédiaires ou médiateurs de forces.

Les leptons sont des particules de spin 1/2 qui comprennent l'électron (e), le muon (μ) , le tau (τ) et les neutrinos électronique, muonique et tauonique $(\nu_e, \nu_{\mu}, \nu_{\tau})$. Les neutrinos sont électriquement neutres, tandis que les e, μ et τ ont une charge électrique que l'on a fixée à -1. Les quarks, quant à eux, ont six saveurs: up, down, strange, charm, bottom et top (u, d, s, c, b, t), un spin 1/2 et une charge électrique de +2/3 (u, c, t) ou -1/3 (d, s, b). Toutes ces particules ont leur anti-particule associée qui possède la même masse et le même spin, mais a sa charge électrique inversée. En s'associant, les quarks et antiquarks forment les hadrons comprenant les mésons et les baryons. Les mésons, composés d'un quark et d'un antiquark tel que le π^- (dū: le quark d et l'antiquark \bar{u}), sont des particules éphémères de spin entier, dont les produits finaux de désintégrations sont des leptons ou des photons. Les baryons, par contre, sont formés de trois quarks et ont un spin demi-entier. Le neutron (udd) est stable lorsqu'il se retrouve dans le noyau atomique en compagnie du proton (uud). Ainsi la matière que l'on peut contempler par le seul usage de nos sens est composée de neutrons, de protons et d'électrons, tous issus de la famille I.

	Charge	F	amil	le
	électrique	Ι	II	III
1	2/3	u	с	t
quarks	-1/3	d	s	b
1	-1	e	μ	au
leptons	0	ν_e	$ u_{\mu}$	$ u_{ au}$

Tableau 0-I. Les particules fondamentales de la matière.

L'ensemble des interactions de la matière se résume à quatre forces: la force électromagnétique, la force faible, la force forte et la force gravitationnelle. Cette dernière n'est pas considérée dans le Modèle Standard et nous ferons de même ici. Chacune des forces est médiée par des quanta de champ. Les photons (γ) sont les quanta du champ électromagnétique, les W⁻, W⁺ et Z⁰ sont les quanta du champ faible et les gluons (g) les quanta du champ fort. Chaque interaction a sa théorie qui la décrit. L'électrodynamique quantique (QED), décrivant les interactions électromagnétiques, s'applique aux quarks et aux leptons chargés. La chromodynamique quantique (QCD), associée aux interactions fortes, s'applique aux quarks et aux gluons. On regroupe sous le nom de *partons* les quarks et les gluons. La force faible s'applique à toutes les particules élémentaires.

F	orces	Médiateurs	Particules affectées
	Forte	gluon (g)	quarks
	Électromagnétique	photon (γ)	quarks et
Electrofaible {	Faible	W^-, W^+, Z^0	leptons

Tableau 0-II. Les forces et leurs médiateurs.

La force faible et la force électromagnétique ont pu être unifiées en une seule et même force appelée force électrofaible, moyennant quelques paramètres ad hoc. Alors que le photon est de masse nulle, les bosons W^{\pm} et Z⁰ ont de grandes masses (\approx 80 GeV/c² pour les W^{\pm} et \approx 91 GeV/c² pour le Z⁰). À cause de leur grande masse, ces derniers n'apparaissent directement que très difficilement au cours d'interactions entre particules, ce qui justifie la dénomination d'interactions faibles, par opposition aux interactions électromagnétiques ou fortes. Malgré leurs similitudes, les forces faible et électromagnétique sont différentes dans leurs manifestations physiques (charge électrique transportée par les W^{\pm} , portée courte et longue des particules...). Aussi ne peuvent-elle être reliées par une symétrie que si celle-ci est brisée, de manière à prendre en compte ces différences. On dit qu'il se produit une brisure spontanée de symétrie, lorsque les équations régissant un phénomène présentent une symétrie, sans que celle-ci reste apparente au niveau du phénomène observé proprement dit. Un des mécanisme proposé pour cette brisure de symétrie appliquée à la force électrofaible, est le mécanisme de Higgs [50], et permet d'engendrer de grandes masses pour les bosons W^{\pm} et Z⁰ tout en gardant le photon de masse nulle. On obtient ainsi une différenciation des interactions faibles et électromagnétiques, la symétrie électrofaible de la théorie restant présente, de manière sous-jacente. L'utilisation d'un tel mécanisme a des conséquences importantes. En effet, il en découle des champs de Higgs qui décrivent de nouvelles particules, appelées bosons de Higgs. La découverte d'une telle particule n'a pas encore eu lieu à l'heure actuelle et justifie en grande partie les expériences à venir en physique des particules.

Les quarks, de par leur spin demi-entier, sont des fermions et obéissent au principe d'exclusion de Pauli. Par conséquent, il doit être impossible à plus d'un quark de se retrouver dans le même état quantique. Or on observe de telles situations. Pour former le Δ^{++} ou l' Ω^{-} , trois quarks u dans le premier cas et trois quarks s dans le second, se sont réunis avec des spins alignés et sans excitation orbitale ou radiale. Les trois quarks sont alors dans le même état quantique, ce qui constitue une double violation du principe d'exclusion de Pauli. Pour remédier à cette incongruité, un nouveau nombre quantique pouvant prendre trois valeurs distinctes a été attribué aux quarks. Ce nombre s'appelle la couleur, et ses valeurs possibles sont: bleu, vert, rouge et leur anti-couleur associée. Malgré les fausses conceptions que le mot "couleur" peut causer, celui-ci a l'avantage de pouvoir exprimer l'idée de neutralité. En effet, aucune charge de couleur n'a jamais été observée. La superposition du bleu, du vert et du rouge donnerait donc le blanc (neutre), mais là s'arrête toute comparaison avec la perception de la longueur d'onde de la lumière. Les particules observables étant sans couleur, les quarks ne peuvent se retrouver qu'en combinaisons de trois quarks ou de quark-antiquark (l'antiquark portant l'anti-couleur, il n'y a pas de couleur résultante), d'où les deux types d'hadrons vus précédemment.

Donc, jusqu'à présent, les quarks n'ont pu être observés individuellement et la plus petite charge électrique observée demeure celle des leptons chargés¹. On nomme *confinement*, cette impossibilité d'isoler les quarks, qui joue un rôle majeur dans la production de particules dans les expériences de physique des hautes énergies.

0.2 Au delà du Modèle Standard

Depuis les débuts de son développement, le Modèle Standard a su démontrer ses qualités de modèle simple, pouvant décrire précisément un grand nombre de phénomènes physiques. Un de ses pères résume ainsi ses vertus [51]:

- Le Modèle Standard est un ensemble établi de théories qui ont un grand pouvoir descriptif. Puisqu'il existe des évidences notoires pour chacun de ses ingrédients fondamentaux, et puisqu'il fournit un ensemble restreint de ces ingrédients, le Modèle Standard sera utilisé encore longtemps pour décrire les phénomènes faisant partie de son champ d'applications.
- Le Modèle Standard est un modèle de principes, c'est-à-dire que ses prédictions sont précises et nonéquivoques. Généralement, celles-ci ne peuvent subir de modification, même légère, sauf dans certains cas très limités.
- Le Modèle Standard peut être extrapolé. On peut extrapoler, à partir du Modèle Standard, du domaine de l'observation expérimentale à des domaines de plus grandes énergies et de distances plus courtes.

Malgré tout, plusieurs points demeurent insatisfaisants et d'aucuns s'intéressent beaucoup à des modèles plus généraux dont l'unité serait plus grande. Parmi les principales lacunes du Modèle Standard, mentionnons que:

¹Il faut souligner que cette charge a été fixée arbitrairement à l'unité, le confinement des quarks ne dépend donc pas d'une impossibilité de fractionner la charge électrique.

- Le Modèle Standard est un ensemble de théories non-unifiées. Chaque force a son propre groupe de symétrie, et malgré l'unification des interactions faible et électromagnétique, le Modèle Standard ne peut être considéré comme une théorie complète ou finale.
- Le Modèle Standard n'explique pas la présence des différentes familles. Pourquoi trois familles? Pourquoi y a-t-il autant de familles de leptons et de quarks?
- Le Modèle Standard n'inclut pas la gravité.
- Le Modèle Standard permet la violation PT par l'interaction forte sans toutefois en préciser la grandeur. Dans le développement du lagrangien de la QCD, apparaît un terme en θ. Jusqu'à présent, la mesure de ce paramètre a montré une limite très faible θ ≲10⁻⁸. Dans le cas où θ serait non-nul, la violation PT serait permise par l'interaction forte, or une telle violation n'a jamais été observée.

C'est dans le but de régler ces différents points, que des modèles plus généraux ont été développés. Parmi eux, la Supersymétrie [53] est une théorie qui permet d'unifier les différentes forces et d'établir un lien entre les bosons de spin entier et les fermions de spin demi-entier. Cette théorie conduit à prédire l'existence, pour chaque particule, d'une ou plusieurs particules soeurs appelées partenaires supersymétriques, telles que les photinos, gluinos et sélectrons, partenaires supersymétriques des photons, gluons et électrons respectivement.

C'est uniquement dans le cadre de la supersymétrie que les multiplets peuvent contenir des particules de différents spin, telles le gluons et le gluino. Les transformations supersymétriques sont générées par les opérateurs Q, lesquels changent les états fermioniques en états bosoniques et vice versa.

$$egin{array}{rcl} Q|fermion
angle &=&|boson
angle \ Q|boson
angle &=&|fermion
angle \end{array}$$

Si l'on applique ces transformations à un boson intermédiaire de spin 1, comme le W^{\pm} ou le Z⁰, on obtient une particule de spin 1/2, c'est-à-dire un wino ou un zino. Mais une deuxième application de la transformation supersymétrique permet, soit de revenir au boson de spin 1 initial, soit d'arriver à une particule de spin 0. Cette dernière, chargée ou neutre suivant le cas, est précisément l'un des bosons de Higgs associés à la brisure spontanée de la symétrie électrofaible. La supersymétrie permet donc d'établir un lien entre bosons intermédiaires, responsables de l'existence des interactions, et bosons de Higgs, associés à la brisure de la symétrie entre interactions, et donc de préciser quelque peu les propriété de ces derniers. La supersymétrie nous conduit ainsi à une sorte d'unification entre bosons intermédiaires, de spin 1, et bosons de Higgs, de spin 0.

Les théories relatives aux forces fondamentales, de même que les mesures expérimentales, sont assez précises pour nous permettre d'extrapoler les valeurs des constantes d'interactions à grande énergie d'interaction. Ces constantes expriment en quelque sorte la grandeur des interactions. Idéalement, on souhaiterait trouver une valeur d'énergie à laquelle les forces s'unifient. La figure 0-1 présente l'extrapolation de la valeur inverse des constantes des interactions faible (α_1^{-1}) , électromagnétique (α_2^{-1}) , et forte (α_3^{-1}) . Les extrapolations ont été faites dans le cadre du Modèle Standard et de la Supersymétrie. L'effet principal apporté par la supersymétrie est dû au superpartenaire du gluon, le gluino, qui diminue la variation de la constante de l'interaction forte en fonction de l'énergie. Une seconde modification qu'apporte la Supersymétrie, vient de l'inclusion des partenaires supersymétriques des particules de Higgs. L'influence est faible et se rapporte uniquement aux forces faible et électromagnétique. Ces effets sont faibles, mais lorsqu'extrapolés à 14 ordres de grandeurs, les résultats ne manquent pas d'être étonnants (figure 0-1).

Une autre conséquence bienvenue de la Supersymétrie, est de régler le problème connu sous le nom de *naturalness*. Dans le Modèle Standard, il n'existe qu'une seule particule de Higgs élémentaire, et sa masse est sujette à de grandes corrections

ł

Figure 0-1. Évolution de l'inverse des constantes de couplages dans le cadre du Modèle Standard et de la Supersymétrie.

quantiques de plusieurs ordres de grandeur supérieures à la valeur physique possible. Ce qui signifie que pour obtenir une masse de cette particule $M_H \leq 1$ TeV, les ajustements à la théorie doivent être hyperfins. Ceci est évité en Supersymétrie car les boucles de bosons de Higgs sont accompagnées de celles de leur superpartenaires fermioniques. Les boucles de fermions et de bosons ayant des contributions opposées, les divergences s'annuleront [52].

Malgré l'élégance de cette théorie, il n'existe aucune évidence expérimentale de l'existence de particules supersymétriques. Afin d'expliquer cette absence de particules supersymétriques dans les observations, on a fait l'hypothèse qu'à basse énergie, la Supersymétrie est brisée, les superpartenaires n'étant visibles qu'à plus haute énergie. Actuellement une partie des efforts en ce domaine [54, 55] se concentrent sur la recherche du gluino, superpartenaire du gluon. La faible masse de cette particule pourrait faciliter sa production et son observation.

0.3 Le sujet de la thèse

Cette thèse porte sur la mesure de la fraction d'événements à quatre quarks dans les événements à quatre jets, produits lors de la désintégration multihadronique du Z⁰. Cette fraction est reliée à T_F , une des constantes fondamentales de la QCD (cf. équations 1.6). Une mesure précise de cette fraction nous renseignera donc sur la validité du modèle théorique. Un second intérêt de cette mesure est lié à l'existence possible d'une particule supersymétrique de faible masse. Cette particule, le gluino, serait de spin 1/2 et pourrait être produite en paire par un gluon, tout comme le sont les quarks. Cette production de gluinos s'ajouterait à celle des quarks et hausserait la valeur de la fraction apparente des événements à quatre quarks.

Outre le fait que la fraction d'événements à quatre quarks est petite, la difficulté de cette mesure est augmentée par l'impossibilité de reproduire complètement le modèle théorique. Nous devons en effet, dans ce type d'analyse, comparer les données expérimentales au modèle, et pour ce faire, nous produisons des simulations d'événements physiques basées sur ce dernier. Vu la complexité des calculs sousjacents au dit modèle, certaines approximations sont faites. Par conséquent, les simulations souffriront d'incomplétude. La comparaison entre les données et les simulations sera néanmoins valable, dans la mesure où les conditions d'observation réduiront la variété des données de telle sorte que les simulations puissent les reproduire entièrement. Autrement dit, il s'agira d'imposer des coupures sur les échantillons observés afin que les simulations, malgré leurs manques, soient une reproduction fidèle des données.

Les simulations dont nous disposons pour l'étude des événements à quatre jets, ne sont produites qu'à partir d'états initiaux à quatre partons. Or les données expérimentales possèdent tout un continuum dans le nombre de leurs partons. Nous définirons des critères de résolution nous permettant d'effectuer des coupures judicieuses, et nous introduirons une méthode originale pour diminuer le bruit de fond causé par la contribution d'événements non reproduits par les simulations. Finalement, nous procéderons aux mesures et nous en tirerons les conclusions.

La thèse est constituée de deux parties. La première présente les cadres théorique et expérimental de l'analyse. Dans le premier chapitre, un survol de la nature des constantes de la QCD sera fait, puis nous présenterons les méthodes utilisées pour générer les simulations des événements. Le second chapitre traitera du dispositif expérimental et de la sélection des événements. Nous y verrons aussi quels outils sont utilisés pour reconstruire et analyser le niveau fondamental des événements observés.

La seconde partie porte sur l'analyse en soi. D'abord, dans le troisième chapitre de la thèse, nous analyserons les critères de résolution employés. Puis, une première mesure sera faite dans le quatrième chapitre, afin de présenter la technique utilisée. Enfin, dans le cinquième chapitre, nous referons une série de mesures en introduisant notre méthode pour éliminer le bruit de fond.

En appendices, nous présentons l'algorithme de minimisation utilisé pour la mesure et nous listons ensuite les valeurs numériques se rapportant à certaines distributions.

Partie I

30

3

Ξį.

14

Où l'on présente les cadres théorique et expérimental

Chapitre 1

Des partons aux particules

La plupart des tests expérimentaux de la QCD reposent sur l'évaluation de certains de ses paramètres, la mesure la plus répandue étant sans aucun doute celle de la constante de couplage α_s . Néanmoins, d'autres paramètres de la théorie peuvent aussi être mesurés expérimentalement. La cohérence des différentes mesures de ces paramètres servira à évaluer la validité de la QCD. La principale difficulté, dans ce type d'étude, est l'impossibilité de calculer analytiquement le comportement des partons à faible énergie d'interaction. On doit donc recourir à des modèles numériques qui feront *évoluer* les configurations partoniques de hautes énergies, vers des configurations de particules de plus faibles énergies, que l'on pourra alors comparer aux observations expérimentales. Dans ce chapitre, nous ferons un bref survol de la QCD et de ses principaux paramètres. Nous présenterons ensuite la modélisation de l'évolution d'un événement multihadronique tel que produit au LEP, et nous détaillerons enfin les différentes méthodes de calcul qui servent à reproduire les événements observés expérimentalement.

1.1 Éléments de base de la QCD

La Chromodynamique Quantique (QCD) est la théorie régissant les interactions fortes; elle s'applique aux quarks et aux gluons. C'est une théorie de jauge nonabélienne de la couleur de symétrie SU(3). Les champs des quarks sont représentés par le spineur $\psi_j^{(\alpha)}$, où $\alpha = u, d, s, c, t, b$ est la saveur et j = 1, 2, 3 l'indice de la

12

couleur. Le lagrangien a la forme [1]:

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu}_{a} F^{a}_{\mu\nu} \sum_{\alpha} \bar{\psi}^{(\alpha)}_{j} \left(i \gamma_{\mu} D^{\mu}_{jk} - m^{(\alpha)} \delta_{jk} \right) \psi^{(\alpha)}_{k}$$
(1.1)

avec

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - g_3 f^{abc} A^b_\mu A^c_\nu \tag{1.2}$$

le tenseur de champ, et la dérivée covariante:

$$D_{\mu}\psi = \left(\partial_{\mu} + ig_{3}A_{\mu}^{a}\frac{\lambda_{a}}{2}\right)\psi.$$
(1.3)

 g_3 est la constante de couplage de l'interaction forte, mieux connue des expérimentateurs sous la forme $\alpha_s = g_3^2/4\pi$. f^{abc} est un tenseur antisymétrique dont les éléments sont appelés constantes de structure de SU(3). Les λ_a sont les matrices de Gell-Mann [2]. Ces matrices forment les générateurs de transformations du groupe SU(3), $T_a = \lambda_a/2$ qui obéissent à la relation de commutation:

$$[T^{a}, T^{b}] = i f^{abc} T^{c} \qquad (a, b, c = 1, .., 8).$$
(1.4)

À partir de ces générateurs, il est utile de définir les invariants quadratiques de Casimir:

$$\sum_{a} (T^{a}T^{a})_{ij} = \delta_{ij}C_{F}$$

$$\sum_{ab} (f^{abc}f^{abd}) = \delta^{cd}C_{A}$$

$$Tr[T^{a}T^{b}] = \delta^{ab}T_{F}.$$
(1.5)

Pour une représentation SU(N), on obtient:

$$C_A = N, \quad C_F = (C_A^2 - 1)/(2C_A), \quad T_F = 1/2.$$
 (1.6)

Ces trois constantes représentent la structure fondamentale de la QCD, et leurs mesures, avec celles de α_s , sont les principaux résultats qui permettent de valider (ou d'invalider) cette théorie. Comme il sera présenté à la section 1.3, la fraction d'événements à quatre quarks f_q est directement proportionnelle à la constante T_F .

1.2 Le comportement de α_s

Les équations du mouvement pour les partons:

$$\left(i\gamma_{\mu}D^{\mu} - m^{(\alpha)}\right)\psi^{(\alpha)} = 0$$
$$D^{\mu}F^{a}_{\mu\nu} = \sqrt{(4\pi\alpha_{s})}\sum_{\alpha}\bar{\psi}^{(\alpha)}\frac{\lambda_{a}}{2}\gamma_{\nu}\psi^{(\alpha)}$$
(1.7)

ne peuvent être résolues directement. On procède plutôt par une méthode perturbative. Le comportement de particules non-interactives pouvant se résoudre exactement, les interactions sont introduites comme de petites perturbations. Dans la théorie des perturbations, la pseudo-constante α_s , qui caractérise la force de couplage, satisfait, au premier ordre, une équation de la forme [4]:

$$\mu^2 \frac{\partial \alpha_s}{\partial \mu^2} = -b_0 \alpha_s^2$$

$$b_0 = \frac{33 - 2n_f}{12\pi}$$
(1.8)

où μ est une variable d'échelle apparentée à l'énergie et n_f le nombre de saveurs de quarks ayant une énergie inférieure à μ . La solution de cette équation est:

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)b_0 \ln(Q^2/\mu^2)}$$
(1.9)

Une détermination expérimentale de α_s à une énergie d'interaction Q fixe μ . Une fois μ connu, α_s pourra être calculée pour toute valeur Q' selon l'équation (1.9), en autant que le nombre de saveurs n_f soit le même aux deux énergie Q et Q'. Il est à noter que μ ne correspond pas nécessairement à l'énergie de l'interaction physique. Dans les cas les plus simples, μ peut différer par un facteur x_{μ} de l'énergie d'interaction physique (ici l'énergie du centre de masse E_{cm}):

$$x_{\mu} = \frac{\mu}{Q} = \frac{\mu}{E_{cm}}.$$
(1.10)

On utilise un x_{μ} différent de 1 pour ajuster aux données les calculs effectués jusqu'à un certain ordre, ce qui permet un meilleur accord avec les résultats expérimentaux lorsqu'on néglige les termes des ordres supérieurs. Plus l'énergie μ est grande, plus α_s diminue. Lorsque α_s devient assez faible on dit que l'interaction est asymptotiquement libre. Expérimentalement, on ne peut avoir directement accès à ce niveau partonique où la liberté asymptotique est atteinte et le calcul perturbatif possible. C'est uniquement à plus faible énergie, lorsque les quarks sont confinés à l'intérieur des hadrons, qu'il est possible de faire des observations.

Figure 1-1. Évolution de la constante de l'interaction forte α_s en fonction de l'énergie [3]. La ligne pleine représente la fonction (1.9).

Un développement en série de l'équation (1.9) donne:

$$\begin{aligned} \alpha_s(Q^2) &\approx & \alpha_s(\mu^2) \left[1 - \alpha_s(\mu^2) b_0 \ln(x_\mu^2) \right] \\ &\approx & \alpha_s(\mu^2) - \alpha_s^2(\mu^2) b_0 \ln(x_\mu^2) \end{aligned} \tag{1.11}$$

Ainsi la section efficace différentielle pour une variable X s'exprimant en série de

15

puissance de α_s ,

$$X = A(X)\alpha_s(Q^2) + B(X)\alpha_s^2(Q^2) + \dots$$
(1.12)

peut s'écrire sous la forme:

$$\frac{1}{\sigma_0} \frac{d\sigma}{dX} = A(X) \alpha_s(\mu) + \alpha_s(\mu)^2 [A(X)b_0 \ln(x_{\mu}^2) + B(X)]$$
(1.13)

où σ_0 est l'ordre dominant de la section efficace pour l'annihilation e^+e^- en hadron, b_0 et x_μ sont les mêmes quantités que celles définies à l'équation 1.2, et A(X), B(X)deux fonctions qui ne dépendent que de la structure perturbative de la théorie [4]. Pour la comparaison avec les mesures, σ_0 est remplacée par la section efficace totale $\sigma_{tot} = \sigma_0(1 + \alpha_s/\pi + 1, 41(\alpha_s/\pi)^2)$, où les termes d'ordres supérieurs à $\mathcal{O}(\alpha_s^2)$ sont négligés.

1.3 Sections efficaces des configurations à quatre partons

Chaque interaction entre les partons fait intervenir la valeur de α_s . La figure 1-2 montre les diagrammes de Feynman pour trois couplages de base en QCD. Chacun de ces couplages fait aussi intervenir un facteur de Casimir qui lui est propre, soit C_F pour $q \to qg$, T_F pour $g \to q\bar{q}$, et C_A pour $g \to gg$. Ces facteurs déterminent la force relative des différents couplages.

Figure 1-2. Couplages de base en QCD. (a) Un quark émet un gluon (bremsstrahlung), (b) un gluon produit une paire quark-antiquark, (c) un gluon produit deux gluons.

Une puissance de α_s étant ajoutée pour chaque couplage produit, la section efficace des configurations partoniques peut être reliée à une série de puissances de α_s :

$$\frac{1}{\sigma_0}d\sigma \sim \mathcal{A}_1\alpha_s + \mathcal{A}_2\alpha_s^2 + \mathcal{A}_3\alpha_s^3 + \dots$$
(1.14)

où les \mathcal{A}_1 sont des fonctions cinétiques. À l'ordre $\mathcal{O}(\alpha_s^2)$, il y a deux couplages de partons, par conséquent le nombre maximal de partons dans l'état final est quatre. Les diagrammes de Feynman correspondant à cette production de quatre partons, lors de la désintégration hadronique du Z⁰ au LEP, sont présentés à la figure 1-3. On y remarque deux classes d'événements: celle formée des événements produisant

Figure 1-3. Diagrammes de Feynman pour les événements à quatre partons. (a)-(c) Événements $e^+e^- \rightarrow q\bar{q}gg$, (d) événement $e^+e^- \rightarrow q\bar{q}q\bar{q}q\bar{q}$.

deux quarks et deux gluons dans l'état final, et celle produisant quatre quarks. Les sections efficaces associées à la production de ces deux types d'événements dépendront différemment des facteurs de Casimir [5]. En ne considérant que l'ordre $\mathcal{O}(\alpha_s^2)$, la section efficace différentielle des événements à quatre partons peut s'écrire:

$$d\sigma_{4p} = d\sigma_{q\bar{q}gg} + d\sigma_{q\bar{q}q\bar{q}} \tag{1.15}$$

avec

$$\frac{1}{\sigma_0} d\sigma_q \bar{q}gg = \left(\frac{\alpha_s C_F}{\pi}\right)^2 \left[A + \left(1 - \frac{C_A}{2C_F}\right)B + \frac{C_A}{C_F}C\right]$$
(1.16)

 \mathbf{et}

$$\frac{1}{\sigma_0} d\sigma_q \bar{q} q \bar{q} = \left(\frac{\alpha_s C_F}{\pi}\right)^2 \left[n_f \frac{T_F}{C_F} D + \left(1 - \frac{C_A}{2C_F}\right) E \right]$$
(1.17)

où A, B, C, D, E sont toujours des fonctions cinétiques, et n_f le nombre de saveurs. Ainsi, en comparant les sections efficaces $\sigma_{q\bar{q}gg}$ et $\sigma_{q\bar{q}q\bar{q}}$, il sera possible d'évaluer les grandeurs relatives des facteurs de Casimir et par là même, de vérifier en partie la validité de la QCD.

Comme il a été mentionné, le facteur T_F est relié aux événements à quatre quarks. Le résultat d'une mesure de la fraction du nombre d'événements $q\bar{q}q\bar{q}$ parmi les événements à quatre partons, dépendra par conséquent de la valeur du facteur T_F . On peut déduire cette dépendance des équations 1.15, 1.17, et 1.16. En combinant ces équations et en négligeant le termes en $(1 - C_A/2C_F)$ de l'équation (1.17) qui ne contribuent que pour 0,2% de la section efficace $\sigma_{q\bar{q}q\bar{q}}$, on trouve:

$$d\sigma_{4p} \propto C_F \left(C_F A + C_A C + n_f T_F D \right) . \tag{1.18}$$

Les deux premiers termes du membre de droite sont associés aux événements $q\bar{q}gg$. On peut donc combiner les fonctions A et C en une fonction F, et écrire:

$$\frac{1}{\sigma_0} d\sigma_{4p} = (1 - f_q) F / F_0 + f_q D / D_0$$
(1.19)

où f_q représente la fraction d'événements $q\bar{q}q\bar{q}$ et $\sigma_0 = F_0 + n_f T_F D_0$, la section efficace totale, somme des fonctions intégrées D_0 et F_0 . On peut réécrire l'équation 1.18 de la même façon:

$$\frac{1}{\sigma_0} d\sigma_{4p} = \frac{1}{1 + n_f T_F \frac{D}{F_0}} F/F_0 + \frac{1}{\frac{F_0}{n_f T_F D_0} + 1} D/D_0$$
(1.20)

et en déduire que

$$f_q = \frac{1}{\frac{F_0}{n_f T_F D_0} + 1} \tag{1.21}$$

 \mathbf{et}

$$T_F = \frac{f_q}{n_f (1 - f_q)} \frac{F_0}{D_0} \tag{1.22}$$

En comparant la mesures expérimentale de T_F et la valeur théorique on obtient:

$$\frac{T_F^{exp}}{T_F^{theo}} = \frac{f_q^{exp}(1 - f_q^{theo})}{f_q^{theo}(1 - f_q^{exp})} = R_{4q} \frac{1 - f_q^{theo}}{1 - f_q^{exp}} \approx R_{4q} .$$
(1.23)

La dernière approximation étant vraie pour $f_q \ll 1$.

1.4 Description d'une désintégration multihadronique

Après cette introduction aux paramètres de la QCD, nous passons à la description des différentes étapes de la production d'un événement multihadronique. Le but étant de voir de quelles façons les paramètres issus du régime perturbatif peuvent se transmettre jusqu'à l'état des particules détectables.

La structure typique [6] d'un événement multihadronique créé par l'annihilation électron-positron, telle que produite au LEP, est représentée à la figure 1-4. Dans la première phase, une paire électron-positron s'annihile en produisant un γ^* ou un Z^0 , qui lui-même se désintègre en une paire quark-antiquark. Cette première phase où n'apparaissent que des interactions électrofaibles, est décrite par une théorie perturbative électrofaible.

Dans la seconde phase, le quark et l'antiquark pourront émettre un ou plusieurs gluons. Ces gluons pourront à leur tour émettre une paire quark-antiquark ou une paire de gluons. Cette phase est décrite par une théorie perturbative de l'interaction forte. Il existe deux façons de décrire ce niveau partonique, soit par formation de gerbes de partons¹, soit par un calcul par éléments de matrice. Nous discuterons

¹Le développement de gerbes de partons n'est pas à proprement parler un calcul perturbatif. Néanmoins, on dit communément qu'il décrit la phase perturbative.

Figure 1-4. Événement multihadronique créé par l'anihilation électron-positron.

de ces méthodes aux sections 1.5.1 et 1.5.2. La limite du régime perturbatif dépend du calcul employé. Un calcul par éléments de matrice au deuxième ordre produira au maximum 4 partons, alors qu'un développement par gerbes de partons, pour un événement de 100 GeV dans le repère du centre de masse, en produira en moyenne 10. Cette différence signifie que le calcul par éléments de matrice au deuxième ordre est insuffisant à 100 GeV, et que les ordres supérieurs ont une contribution importante. Toutefois, les modèles d'hadronisation utilisés dans la phase suivante, lorsqu'utilisés avec les calculs par éléments de matrice, pourront inclure non seulement les effets non-perturbatifs, mais aussi des ajustements pour compenser ce manque des ordres supérieurs.

La troisième phase, toujours régie par les interactions fortes, ne peut plus être calculée par une théorie perturbative ou par gerbes de partons. C'est dans cette phase que les partons s'hadronisent pour former des hadrons. Il est à noter que le nombre final de partons de la phase perturbative étant différent selon que le calcul se fasse par éléments de matrice ou par gerbes de partons, l'hadronisation devra être ajustée de telle sorte que le nombre final de particules après cette phase ne dépende pas du calcul de la phase perturbative. L'hadronisation ou fragmentation, sera traitée plus en détail à la section 1.6.

Enfin, dans la quatrième phase, les hadrons instables du niveau hadronique se désintègrent en particules que l'on peut observer expérimentalement. Les théories sous-jacentes ici sont toujours QCD et QED, mais à cette phase les modélisations se réduisent principalement à l'usage des rapports d'embranchements déterminés expérimentalement.

On doit aussi inclure les interactions des particules avec les matériaux du détecteur qui peuvent modifier sensiblement la configuration des événements. Cette modélisation introduit une cinquième phase à la fin de laquelle les données expérimentales peuvent être comparées aux simulations.

Dans la suite de cette thèse, nous ferons référence à ces différentes étapes en nommant niveau partonique, niveau hadronique et niveau détecteur, les états finaux des phases (ii), (iv) et (v) respectivement. Il est cependant clair que cette segmentation de l'évolution des événements n'est que le résultat de notre modélisation, et qu'en réalité, la désintégration du Z⁰ en particules détectables représente un continuum.

1.5 Phase perturbative

Nous présentons ici les deux méthodes généralement utilisées pour le calcul perturbatif. Aucune de ces deux méthodes ne décrit parfaitement le niveau partonique. Si le calcul par éléments de matrice n'inclut pas les ordres supérieurs, le calcul par gerbes de partons ne tient pas compte des corrections dues aux boucles de partons, et on doit y faire des approximations. Le calcul par gerbes de partons est incomplet pour chaque ordre $\mathcal{O}(\alpha_s^n)$, mais décrit mieux les événements dans leur globalité. Cependant, lorsqu'on veut étudier une configuration spécifique de partons (i.e. les événements à quatre partons), il est préférable d'utiliser le calcul par éléments de matrice, celui-ci décrivant mieux les configurations partoniques.

1.5.1 Les gerbes de partons

Le calcul à l'aide des gerbes de partons utilise la méthode d'approximation des logarithmes dominants (LLA). Celle-ci consiste à ne sommer que les termes principaux dans l'expansion en série des ordres en α_s . Les corrections pour chaque ordre sont donc négligées, sauf dans certains cas où les premières corrections sont incluses (NLLA) [7]. La majorité des algorithmes de gerbes de partons sont basés sur une méthode itérative des embranchements de base. L'événement est considéré comme une succession de désintégrations de partons où la probabilité de chaque désintégration est calculée. La probabilité qu'un certain embranchement survienne est donnée par les équations d'Altarelli-Parisi-Gribov-Lipatov [8, 9]:

$$P_{q \to qg}(z) = C_F \frac{1+z^2}{1-z}$$

$$P_{g \to gg}(z) = C_A \frac{(1-z(1-z))^2}{z(1-z)}$$

$$P_{g \to q\bar{q}}(z) = n_f T_F(z^2 + (1-z)^2)$$
(1.24)

où l'on retrouve les facteurs de Casimir C_F , C_A , T_F , et le nombre de saveurs n_f . La variable z représente la fraction de l'impulsion partagée par les partons fils bet c dans la désintégration $a \to bc$, z étant la fraction d'impulsion du parton b, et (1-z) celle du parton c. La probabilité qu'un embranchement quelconque se produise durant un intervalle dt s'écrit comme la somme:

$$\frac{d\mathcal{P}_{a\to bc}}{dt} = \int dz \frac{\alpha_s(\mu^2)}{2\pi} P_{a\to bc}(z).$$
(1.25)

Afin d'éviter qu'un grand nombre de gluons de faible énergie soit produit, il faut, dans ce modèle, imposer une énergie minimale au gluon. Ce seuil en énergie est aussi nommé virtualité minimale. Il correspond à l'arrêt de la gerbe et au commencement de l'hadronisation. Le calcul par gerbes de partons demeure une approximation. À chaque étape du calcul, une erreur est introduite et les programmes utilisant cette méthode doivent inclure les corrections des effets de polarisation et d'interférences.

1.5.2 Calcul des éléments de matrice

Le concept de base de ce calcul a déja été mentionné à la section 1.3, lorsqu'on a présenté la section efficace différentielle pour un ordre déterminé de puissance de α_s . Il s'agit en effet de calculer tous les diagrammes de Feynman pour chaque puissance de α_s . Ce calcul, contrairement aux gerbes de partons, serait donc exact si tous les ordres y étaient présents. Malheureusement, plus les puissances de α_s augmentent, plus il est difficile d'en calculer les configurations. Ceci vient du fait que non seulement l'ordre $\mathcal{O}(\alpha_s^n)$ contient-il toutes les configurations de n partons dans l'état final, mais il contient aussi les corrections des configurations ayant moins de n partons. Ces corrections prennent la forme de boucles de gluons virtuels. Elles font donc intervenir des puissances supérieures de α_s , par l'ajout de couplages partoniques, sans toutefois augmenter le nombre final de partons.

Une particularité du calcul par éléments de matrice est l'emploi d'une coupure sur l'émission des gluons par les quarks. En effet, dans le calcul, il apparaît des termes de la forme $(1 - x_q)^{-1}$, où x_q est la fraction d'énergie conservée par le quark lors de l'émission d'un gluon. Les valeurs possibles de x_q sont $0 \le x_q \le 1$. Lorsque $x_q \to 1$, on doit appliquer une coupure pour éviter les divergences dues à l'émission des gluons de trop faible énergie (divergence infrarouge) ou d'angle d'émission trop faible (divergence colinéaire). Cette coupure se ramène à fixer un critère de résolution minimal entre le quark émetteur et le gluon émis. Nous traiterons plus en détail de ce critère de résolution dans les chapitres suivants. Cependant, si le calcul était complet, les divergences apparaissant à un ordre seraient annulées par les corrections des ordres supérieurs. Ce qui s'accorde avec le fait que plus le nombre d'ordres inclus dans le calcul sera grand, plus ce dernier reproduira bien les données et moins il sera nécessaire d'effectuer des coupures. Encore récemment, les calculs étaient effectués jusqu'à l'ordre $\mathcal{O}(\alpha_s^2)$ [5], ce qui inclut les configurations à 2, 3 et 4 partons dans l'état final plus les premières corrections (une boucle) des configurations à 2 et 3 partons. Depuis peu, sont apparus les calculs à l'ordre $\mathcal{O}(\alpha_s^3)$ qui incluent les premières corrections des configurations à quatre partons [10, 11]. Notons aussi qu'il existe un calcul à l'ordre $\mathcal{O}(\alpha_s^3)$, sans correction, où seules les configurations à 5 partons sont présentes [12, 13].

1.6 Phase non-perturbative

Comme nous l'avons mentionné plus haut, l'hadronisation, bien que déterminée par la théorie QCD, n'est pas entièrement entendue par elle, et à ce stade-ci demeure méconnue. Donc aucun des modèles d'hadronisation existants n'a été construit uniquement à partir des principes premiers de la théorie QCD, et ils nécessitent des paramètres ad hoc additionnels. Les modèles d'hadronisation fonctionnent tous à partir de probabilités et d'itérations. Trois catégories de modèles sont utilisées: l'hadronisation indépendante, l'hadronisation d'amas et l'hadronisation de cordes.

1.6.1 Hadronisation indépendante

Le modèle d'hadronisation indépendante suppose que l'hadronisation de tout système de partons peut être décrite comme la somme des hadronisations de chaque parton pris séparément. La direction de chaque jet est donnée par celle de son parton initial. L'hadronisation s'effectue en *puisant* des quarks de la *mer*, une paire $q_2\bar{q}_2$. Le quark q_1 provenant de l'événement, se couple alors à l'antiquark \bar{q}_2 , pour former un méson, laissant le quark q_2 disponible pour une seconde hadronisation. L'énergie de chacune de ces parties est donnée par une distribution de probabilités f(z), z étant la fraction d'énergie prise par l'hadron. Le jet de quark \bar{q}_2 restant a (1 - z)fois l'énergie du jet initial, et est susceptible de produire un hadron tout comme le jet initial. La fonction de fragmentation f(z) demeure la même pour tous les jets de quark produits, indépendamment de l'énergie des jets. Plusieurs fonctions f(z)ont été proposées [6], entre autres la fonction

$$f(z) = 1 - a + 3a(1 - z)^2$$
(1.26)

dite de Field-Feynman. Le paramètre a est généralement mis à 0,77.

Figure 1-5. Hadronisation indépendante. a) production de mésons uniquement. b) production de méson et de baryons. La formation de diquarks (paires $qq \overline{qq}$) est défavorisée par la masse élevée de ceux-ci, ce qui explique le plus grand nombre de mésons produits lors de l'hadronisation.

Dans ce modèle, l'hadronisation du gluon est traitée soit comme celle d'un quark, la saveur initiale étant choisie aléatoirement, soit comme une paire parallèle q et \bar{q} qui se partagent l'énergie et l'impulsion du gluon selon les équations d'Altarelli-Parisi. Vu l'indépendance de chacune des hadronisations, il est nécessaire de faire un réajustement des valeurs finales pour conserver l'énergie et l'impulsion totales.

1.6.2 Hadronisation d'amas

Dans le modèle d'hadronisation d'amas, l'hadronisation se fait par agglomérations de quarks en amas. Les amas sont idéalement déterminés uniquement par leur masse et les saveurs qui y sont contenues, seuls les objets incolores étant permis. Les amas sont en quelque sorte les unités de base qui produiront les hadrons. Les gluons sont ici forcés de produire une paire $q\bar{q}$. Chaque amas est supposé se désintégrer en au moins deux particules. La désintégration s'effectue suivant la densité d'états accessibles (d). Dans le cas de deux particules:

$$d = \frac{2P}{m}(2s_1 + 1)(2s_2 + 1) \tag{1.27}$$

où s_1 et s_2 sont les spins des hadrons produits, P et m sont l'impulsion et la masse invariante du système formé par les deux hadrons dans le repère défini par l'amas [14].

1.6.3 Hadronisation de cordes

Le champ chromodynamique entre deux quarks n'est pas uniforme mais concentré en un tube reliant les deux particules. Dans le modèle d'hadronisation de cordes, on utilise ce concept de tube reliant tous les partons. Ce tube peut être vu comme une corde qui se tend à mesure que les partons s'éloignent les uns des autres. Lorsque la tension atteint un seuil ($\approx 1 \text{ GeV/fm}$), la corde se casse par création d'une paire $q\bar{q}$. La corde subira ainsi plusieurs cassures pour finalement former une série d'hadrons. L'émission d'un gluon déforme la corde qui se divise en deux parties (figure 1-6).

Figure 1-6. Représentation de l'effet de l'émission d'un gluon par le modèle des cordes.

Il n'y a pas d'asymétrie entre les deux extrémités de la corde, c'est-à-dire qu'une corde partant de q pour se terminer à \bar{q} aura la même fonction de fragmentation qu'une corde allant de \bar{q} à q. La fonction de fragmentation proposée par le groupe LUND [15] tient compte de cette symétrie droite-gauche:

$$f(z) \propto z^{-1} (1-z)^a e^{-b(m^2 + p_t^2)/z}$$
 (1.28)

où a et b sont deux paramètres libres, et $(m^2 + p_t^2)$ est la masse transverse de l'hadron créé par rapport à la direction du quark original. Ceci implique que les probabilités de fragmentation sont différentes pour des masses différentes.

Les calculs portant sur la Chromodynamique Quantique ne peuvent être effectués qu'à une échelle inacessible à l'expérience. Il faut donc utiliser des modèles phénoménologiques permettant de faire le pont entre les conditions d'observation et le niveau des prédictions de la QCD. Les limites de l'application de la méthode perturbative et le mécanisme d'hadronisation sont, on le devine, des sources importantes d'incertitudes lors de l'analyse de la QCD. Il demeure toutefois possible de faire des mesures et de vérifier expérimentalement certaines prédictions théoriques.

Chapitre 2

De l'observation à l'observable

Les analyses expérimentales de la structure partonique reposent sur le fait que les particules observables conservent certaines propriétés de leur parton d'origine. Il faut donc parvenir à détecter ces particules et retrouver au niveau détecteur la structure du niveau partonique. Nous ferons en premier lieu dans ce chapitre, un survol du détecteur OPAL et principalement de ses parties utilisées dans le cadre de notre analyse. Ensuite nous verrons la reconstruction et la sélection des événements. Nous terminerons enfin avec les moyens d'analyser les propriétés de la QCD, soit la reconstruction des jets, et l'utilisation d'une variable angulaire sensible aux configurations partoniques.

2.1 Le détecteur OPAL

Le détecteur OPAL (Omni Purpose Apparatus for Lep) est, comme son nom l'indique, un des quatre détecteurs du collisionneur circulaire LEP au CERN. Il a été construit pour détecter tous les types d'interactions résultant de la collision électronpositron. C'est un détecteur cylindrique composé de plusieurs sous-détecteurs répartis en couches [16, 17] (figure 2-1). Son système de coordonnées est choisi de telle sorte que l'axe z est parallèle à la direction des électrons du faisceau. L'axe x pointe vers le centre du LEP et l'axe y est à la verticale. L'angle polaire θ est mesuré à partir de l'axe z et l'angle ϕ à partir de l'axe x dans le plan xy.

Figure 2-1. Vue en éclaté du détecteur OPAL. On reconnaît en partant du centre: le détecteur vertex, la chambre à jet, les chambres Z, le calorimètre électromagnétique, le calorimètre hadronique et le détecteur de muons.

2.1.1 Le détecteur central

Au centre, ceinturant le tuyau du LEP, se trouve l'unité centrale de détection des traces. Celle-ci est constituée d'un détecteur microvertex au silicium et de trois chambres à dérive: un détecteur vertex, une chambre à jet et les chambres Z. Les trois chambres à dérive sont dans une enceinte pressurisée contenant un gaz à 4 atmosphères. En passant dans ce gaz, les particules chargées l'ionisent et c'est par la détection de ces ions que l'on reconstruit les traces des particules chargées. Lorsque par la suite nous considérerons les traces, ce seront les traces détectées dans cet ensemble de détecteurs. Le détecteur central est entouré d'un solénoïde produisant un champ magnétique axial uniforme de 0,435 T. Les particules chargées sont déviées sous l'action du champ magnétique. La courbure des traces qu'elles produisent permet de déterminer le signe de leur charge et leur impulsion.

Le détecteur microvertex

Le détecteur microvertex au silicium est constitué de deux barils concentriques de 18 cm de long. Le baril intérieur a 11 faces et un rayon moyen de 61 mm. Le baril extérieur, quant à lui, a un rayon moyen de 75 mm et 14 faces. Chaque face est composée de trois détecteurs à micropistes au silicium mis bout à bout.

Le détecteur vertex

Le détecteur vertex est une chambre à dérive cylindrique. La chambre mesure 100 cm de long et a un rayon total de 235 mm. Elle est constituée de deux étages ayant chacun 36 sections. Le premier étage contient les sections axiales, chacune étant composée de 12 fils d'anode superposés, tendus parallèlement à la direction du faisceau et situés à un rayon variant entre 103 mm et 162 mm. L'étage supérieur contient les sections stéréoscopiques. Celles-ci sont composées de six fils superposés et décalés d'environ 4° par rapport à l'axe du faisceau. Cette inclinaison angulaire permet une mesure de la coordonnée z, puisque le temps de dérive des ions du point d'ionisation aux fils, varie selon la position en z de ces ions. Du premier étage on obtient l'information sur la position dans le plan $r\phi$, et du second étage on peut obtenir en plus l'information sur la différence de temps de dérive. À leurs points d'attache, les fils de l'étage supérieur sont situés à un rayon variant entre 188 mm et 213 mm.

La chambre à jet

La chambre à jet est, elle aussi, une chambre à dérive cylindrique. Elle mesure 400 cm de long et a un rayon qui varie entre 25 cm et 185 cm. Elle est constituée de 24 sections, chacune contenant 159 fils d'anode superposés, tendus parallèlement à la direction du faisceau. Les coordonnées du lieu d'interaction entre une particule chargée et le gaz, sont mesurées dans le plan $r\phi$ par le temps de dérive des ions du gaz jusqu'aux fils d'anode. La coordonnée z est calculée par division de charge. Cette technique consiste à mesurer la différence de temps que met le signal pour se rendre aux deux extrémités du fil d'anode.

Les chambres Z

Les chambres Z permettent une mesure de la position en z des traces plus précise qu'avec la chambre à jet. Elles forment un baril de 24 panneaux de 400 cm de long, ceinturant la chambre à jet. Chaque panneau est constitué de 8 chambres Z de 50 cm×50 cm qui elles-mêmes contiennent 6 fils d'anode superposés dans le plan $r\phi$. Les fils d'anode étant tendus perpendiculairement à l'axe z, cette coordonnée est mesurée directement et non plus par division de charge. La mesure est donc plus précise. Le rayon extérieur se situe à 195 cm et la région couverte dans le plan rzest $|\cos \theta| < 0,72$.

	Microvertex	Det. vertex	Chambre à Jet	Chambre Z
	630 pistes/	36 sections axiales	24 sections	24 panneaux
Détection	plaquette	12 fils/section	159 fils/section	8 chambres/pan.
	(axes z et $\mathbf{r}\phi$)	36 sections stéréo.		
		6 fils/section		
Espacement	50 µ	5,3 mm et 5,0 mm	10,0 mm	4,0 mm
Droite/Gauche	*	$\pm41~\mu{ m m}$	$\pm 100~\mu{ m m}$	$\pm 250~\mu{ m m}$
Dérive	$300 \ \mu m$	1,4 cm	25 cm	25 cm
maximale				
Matériaux	Silicium	Argon (88,2%), Méthane (9,8%), Isobutane (2,0%)		
Pression	*	4 bars		
Couverture	$31^\circ \le heta_1 \le 149^\circ$	$23^\circ \le heta \le 157^\circ$	$43^\circ \le heta \le 137^\circ$	$44^\circ \le heta \le 136^\circ$
angulaire	$37^\circ \le heta_2 \le 143^\circ$	$(92\% \text{ de } 4\pi)$	$(73\% ext{ de } 4\pi)$	$(94\% \text{ en } \phi)$
Mesure de ϕ	lissage pistes	temps de dérive	temps de dérive	divi. charge
Mesure de z	lissage pistes	stéréoscopie	divi. charge	temps de dérive
$\sigma_{r\phi}$	$7 \ \mu m$	$55 \ \mu m$	$135 \ \mu m$	15 mm
σ_z	$12~\mu{ m m}$	$700~\mu{ m m}$	6 cm	$100\text{-}350~\mu\mathrm{m}$
Rayons	\propto 61-75 mm	103-213 mm	25-185 cm	189-195 cm

Tableau 2-I. Propriétés du détecteur central. *Droite/Gauche*, indique le décalage des axes des fils par rapport au plan d'anode afin de résoudre les ambiguïtés droite/gauche. *Lissage pistes*, signifie que la position de la trace est trouvée par lissage des quantités de charges collectées sur les pistes (sorte de centroïde). *Divi. charge*, signifie que la distance est calculée à partir de la division de la charge collectée le long du fil.

÷

2.1.2 Le calorimètre électromagnétique

Le calorimètre électromagnétique sert à identifier les électrons et les photons. Il est constitué de blocs de verre au plomb, distribués en un baril ceinturant l'aimant, et de deux bouchons. Vu la présence de l'aimant et de l'enceinte pressurisée, entre le détecteur central et le calorimètre électromagnétique, les gerbes électromagnétiques se développent avant d'atteindre le calorimètre. C'est pourquoi un prééchantillonneur est installé avant les blocs de verre au plomb, pour mesurer la position des gerbes et l'énergie perdue par elles. Lorsque nous mentionnerons les particules électromagnétiques, nous ferons allusion aux particules détectées dans ce détecteur.

Le prééchantillonneur électromagnétique

Le prééchantillonneur est fait de 16 chambres disposées en baril, et de 32 chambres de 16 sections, situées dans les bouchons. Le baril a un rayon de 239 cm et une longueur de 662 cm. Dans les chambres se trouvent deux étages de tubes de dérive opérant en mode étincelle¹. Le prééchantillonneur étant placé juste après la bobine de l'aimant, il permet d'évaluer la quantité d'énergie perdue par les photons qui ont initialisé une gerbe dans le métal de cette bobine.

Le calorimètre à verre au plomb

Le calorimètre à verre au plomb est constitué d'un baril de 9440 blocs de verre au plomb, orientés dans la direction du vertex de l'interaction électron-positron. Le baril a un rayon de 246 cm, et les blocs font 10 cm \times 10 cm \times 37 cm de profondeur. De plus, 1 132 blocs se trouvent dans chacun des bouchons.

¹Mode étincelle signifie que seul le passage de la particule est détecté et que l'énergie déposée dans le détecteur n'est pas proportionnelle à l'énergie de la particule.

Prééchantillonneur				
Couverture angulaire	Cos(heta) < 0,81			
Gaz	N-pentane(32%), CO ₂ (68%)			
Détecteur	chambres à étincelles			
Distance inter-fils	9,6 mm			
Champ de dérive	4,1 kV			
Résolution spatiale	$\sim 2 \; \mathrm{mm}$			

Calorimètre électromagnétique				
Couverture angulaire	Cos(heta) < 0,82			
Matériau	Verre au plomb $(X_o=1,5cm)$			
Dimension des blocs	10 cm imes 10 cm imes 37 cm			
Résolution énergie	$\simeq 0,1\%+6,3\%/\sqrt{E}$			
Résolution spatiale	$\sim 11 \text{ mm}$			

Tableau 2-II. Propriétés du prééchantillonneur et du calorimètre électromagnétique.

2.1.3 Le calorimètre hadronique et le détecteur de muons

Vient après le calorimètre électromagnétique, le calorimètre hadronique. Ce dernier est construit en trois sections: un baril, deux bouchons et deux minibouchons. Le baril est constitué de 24 sections divisées en 48 tours qui elles-mêmes sont constituées de 9 chambres à fils opérant en mode étincelle. Ces chambres sont entrecoupées de plaques de fer, permettant ainsi un développement de gerbes de particules issues des hadrons. En principe, tous les hadrons sont absorbés dans le calorimètre hadronique, seuls les muons et les neutrinos passent au travers. Les muons sont ensuite détectés dans le détecteur de muons.

Le détecteur de muons est constitué d'un baril et de deux bouchons. Le baril

comporte 110 chambres à dérive situées entre 6 m et 10,4 m. Les bouchons sont formés de plusieurs étages de tubes à dérive, fonctionnant en mode étincelle. Les anodes des tubes à dérive sont perpendiculaires au faisceau, disposées horizontalement et verticalement. Le détecteur de muons est le sous-détecteur le plus extérieur du détecteur OPAL.

2.2 La reconstruction des événements

Un système de déclenchement [18] est utilisé pour sélectionner les événements jugés pertinents. Ce déclencheur impose un certain nombre de conditions pour qu'un événement soit accepté (ex. énergie minimale déposée dans le calorimètre électromagnétique, et nombre minimal de traces détectées dans le détecteur central). Lorsqu'un événement est accepté par ce déclencheur, tous les sous-détecteurs sont lus par leur propre système d'acquisition de données. L'information obtenue est assemblée, filtrée puis enregistrée.

C'est le programme ROPE [19] qui reconstruit les événements à partir des informations brutes. C'est avec ces informations que l'on produit les données DST (Data Summary Tape). L'analyse physique peut ensuite être effectuée par les sous-processeurs OD [20], qui extraient les quantités physiques importantes pour l'analyse, telles l'énergie et l'impulsion des particules. La partie graphique, quant à elle, est effectuée avec GROPE [21]. La figure 2-6 donne un exemple de la représentation d'un événement par GROPE. ROPE permet aussi de traiter l'information produite par le programme de simulation GOPAL [22] qui simule la phase détecteur des simulations Monte-Carlo.

2.3 Choix de configurations

Le détecteur OPAL étant composé de sous-détecteurs, il y a plusieurs possibilités de mesurer l'énergie et la direction des particules. Dans notre analyse, nous avons choisi deux configurations différentes pour obtenir l'ensemble des quadrivecteurs des particules. La première inclut les traces chargées et les dépôts d'énergie du calorimètre éléctromagnétique. La seconde, inclut en plus les dépôts d'énergie du calorimètre hadronique. La seconde configuration est plus raffinée, par son utilisation du calorimètre hadronique, et surtout par son introduction d'un algorithme de correction d'énergie. Pour ces raisons, nous adopterons cette dernière, appelée MT. Et puisque l'utilisation de la première, appelée CHEM, est aussi justifiée nous l'utiliserons pour évaluer l'incertitude sur les mesures due au choix de configuration.

2.3.1 Configuration CHEM

Les traces reconstruites dans le détecteur central permettent de mesurer l'impulsion des particules. Pour calculer leur énergie, il faudrait connaître leur masse au repos et donc les identifier. Comme l'identification ne peut se faire pour chaque trace, on utilise la masse du $\pi^{\pm}(139,6 \text{ MeV})$ pour ce calcul d'énergie. Il est raisonnable de procéder ainsi parce que, d'une part, la majorité des particules émises, lors de la désintégration hadronique du Z⁰, sont des pions, et que, d'autre part, la masse au repos des particules est faible par rapport à leur énergie cinétique.

Pour former les quadrivecteurs des particules ayant laissé un dépôt d'énergie dans le calorimètre électromagnétique, on utilise la position des blocs du calorimètre et l'énergie déposée. Le dépôt d'énergie se fait généralement dans plusieurs blocs contigus. La direction est donnée par le centre de ce dépôt. Les particules ayant fait des dépôts d'énergie sont considérées de masse nulle; la grandeur de leur impulsion est donc égale à leur énergie. Il est fort probable que plus d'une particule ait fait un dépôt dans le même amas de blocs. Dans ce cas l'énergie est sommée, comme s'il n'y avait qu'une seule particule.

La configuration CHEM (contraction de CHargées et ÉlectroMagnétiques) consiste à considérer comme formant un événement, tous les quadrivecteurs obtenus par la reconstruction des traces du détecteur central, et ceux obtenus par les dépôts d'énergie dans les amas de blocs du détecteur électromagnétique. Une particule ayant laissé une trace et fait un dépôt d'énergie, verra son énergie comptée deux fois. Ce double comptage de l'énergie fera en sorte que l'énergie totale mesurée des événements sera plus grande que l'énergie d'interaction. Dans la mesure où le double comptage est isotrope, cela n'affectera pas nos mesures. En effet, comme nous le verrons plus loin, nous sommes intéressés à la direction et l'énergie relative des particules, et non par une mesure exacte de l'énergie totale.

2.3.2 Configuration MT

Dans les désintégrations hadroniques du Z^0 , les particules chargées détiennent environ les 2/3 de l'énergie totale. L'impulsion de ces particules est mesurée, dans la plupart des cas, avec une meilleure résolution par le détecteur central que par les calorimètres. Il est donc naturel, pour qui veut éliminer le double comptage de l'énergie, de conserver toute l'information des traces et de soustraire des calorimètres, l'énergie qui leur est associée. C'est ce que propose la configuration MT (MaTching, en anglais, association trace-amas) [23] qui utilise l'information des traces, du calorimètre électromagnétique et du calorimètre hadronique.

La figure 2-2 schématise l'algorithme qui est utilisé pour soustraire des amas de blocs calorimétriques, l'énergie associée aux particules chargées. La correction est d'abord faite avec les amas électromagnétiques, puis avec les amas hadroniques. Trois cas se présentent:

(a) L'amas n'a pas de trace associée. L'énergie de cet amas est entièrement conservée.

- (b) L'énergie de l'amas est plus petite que l'énergie de réponse attendue (évaluée avec la mesure de l'impulsion de la trace), plus une certaine tolérance. L'amas n'est pas conservé. L'énergie de réponse attendue et la tolérance, sont inhérentes aux calorimètres d'OPAL, et dépendent de l'impulsion de la trace.
- (c) L'énergie de l'amas est plus grande que l'énergie de réponse attendue plus une certaine tolérance. On soustrait de l'énergie de l'amas, la valeur de l'énergie de réponse attendue.

Figure 2-2. Vue schématique de la correction d'énergie calorimétrique par l'algorithme MT. (a) Si un amas n'est pas associé à une trace, l'énergie \vec{E} de cet amas est incluse entièrement. (b) Si un amas est associé à une trace d'impulsion \vec{P} et que l'énergie Ede cet amas est en deçà de la réponse $f(\vec{P})$ prévue plus une tolérance $\Delta E(\vec{P})$, l'énergie de l'amas n'est pas incluse. (c) Si un amas est associé à une trace d'impulsion \vec{P} et que l'énergie E de cet amas est plus grande que la réponse $f(\vec{P})$ prévue plus une tolérance $\Delta E(\vec{P})$, l'énergie de l'amas est réduite d'une quantité correspondant à la réponse prévue $(E - f(\vec{P}))$.

L'événement ainsi obtenu est constitué de quadrivecteurs de particules chargées (traces) et de quadrivecteurs de particules neutres (amas). En principe cette technique permet de séparer les particules neutres des particules chargées et d'éliminer le double comptage en énergie. Cependant, comme nous l'avons mentionné au paragraphe précédent, le double comptage en énergie a peu d'incidence sur les mesures que nous effectuerons. Par conséquent les configurations CHEM et MT devraient donner des résultats similaires.

Figure 2-3. Distributions de l'énergie visible pour les configurations CHEM et MT. La correction apportée par la configuration MT améliore la résolution de l'énergie totale visible des événements. Les deux distributions sont normalisées.

2.4 Sélection des événements

Selon le type de configuration que nous avons adopté, nous avons appliqué un ensemble de coupures pour la sélection des événements. Ces coupures sont la norme dans les analyses d'événements, issus de désintégrations multihadroniques, observés avec OPAL [24, 23]. Nous les listons ici pour les deux configurations choisies.

Pour CHEM:

• Chaque trace doit avoir:

1. au moins 40 points mesurés dans la chambre à jet,

- 2. une distance minimale d'approche de l'origine dans le plan $r\phi$, plus petite que 5 cm, r et ϕ se référant aux coordonnées cylindriques du détecteur OPAL,
- 3. une distance minimale d'approche du point d'interaction selon l'axe z, plus petite que 25 cm,
- 4. une impulsion transverse dans le plan $r\phi$, d'au moins 0,15 GeV/c.
- 5. une impulsion totale, inférieure à 60 GeV/c.
- Chaque amas électromagnétique doit avoir une énergie supérieure à 0,25 GeV, l'énergie des amas ayant été préalablement corrigée pour les pertes dues aux matériaux situés en face des blocs. Cette correction d'énergie a une simple dépendance angulaire.
- Pour MT:
 - Chaque trace doit avoir:
 - 1. au moins 20 points mesurés dans la chambre à jet,
 - 2. un nombre de points mesurés supérieur à la moitié du nombre de points possibles pour cette trace,
 - 3. une distance minimale d'approche de l'origine dans le plan $r\phi$, plus petite que 2,5 cm,
 - 4. une distance minimale d'approche du point d'interaction selon l'axe z, plus petite que 30 cm,
 - 5. une impulsion transverse dans le plan $r\phi$, d'au moins 0,05 GeV/c,
 - 6. une impulsion totale, inférieure à 65,1 GeV/c.
 - Chaque amas électromagnétique doit avoir une énergie supérieure à 0,10 GeV, s'il se trouve dans le baril, et 0,25 GeV avec un minimum de deux blocs, s'il se trouve dans un bouchon. L'énergie des amas ayant été préalablement corrigée pour les pertes dues aux matériaux situés en face des blocs.

• Chaque amas hadronique doit avoir une énergie d'au moins 0,6 GeV, s'il se trouve dans le baril ou un bouchon, et 2 GeV, s'il se trouve dans un minibouchon.

Une fois les traces et les amas acceptés, dans les deux cas les coupures suivantes s'appliquent à la sélection des événements:

- Chaque événement doit avoir au moins cinq traces ou amas acceptés.
- La valeur absolue du cosinus de l'angle entre l'axe du thrust² et l'axe du faisceau, doit être plus petite que 0,9.
- Le rapport de l'impulsion totale manquante sur l'énergie totale détectée (ou visible), $\frac{|\sum \vec{p_i}|}{E_{vis}}$ où *i* est l'indice de tous les amas et traces acceptés, doit être plus petit que 0,4.

Pour nos mesures, nous avons utilisé les données complètes produites à OPAL lors de l'expérience LEPI. Ces données s'échelonnent de 1990 à 1995. Des quelques $4, 4 \times 10^6$ événements multihadroniques enregistrés, il en reste environ $3, 3 \times 10^6$ après sélection dans les deux cas (CHEM, MT).

2.5 Algorithmes d'identification des jets

Les événements multihadroniques produits à LEPI, comptent en moyenne une vingtaine de particules. Pour étudier la structure partonique de ces événements, il faudrait inverser le processus d'hadronisation. Heureusement, les particules ne

$$T = max \left(\frac{\sum_{i} |\vec{p}_{i} \cdot \hat{n}_{T}|}{\sum_{i} |\vec{p}_{i}|} \right)$$
(2.1)

²Le thrust que l'on pourrait traduire par la poussée est défini comme:

où *i* est l'indice de tous les amas et traces acceptés et l'axe \hat{n}_T , appelé axe du thrust, est choisi de façon à maximiser la valeur de T. C'est la mesure de l'allongement relatif de l'événement.

sont pas distribuées uniformément. Les partons, en s'hadronisant, produisent des jets de particules qui tendent à conserver l'impulsion de leur parton d'origine [25]. Des algorithmes ont été développés afin de regrouper en jets, les particules d'un événement. Il y en a deux catégories: ceux qui recombinent les particules en amas et ceux qui construisent des cônes d'énergie. Les algorithmes de la première catégorie sont les plus largement utilisés dans les collisions e^+e^- , et puisque ce sont les seuls que nous avons utilisés dans notre analyse, nous nous en tiendrons à la présentation de ceux-ci.

Les algorithmes à base d'amas procèdent par combinaisons successives de particules. Au départ, on appelle jet le quadrivecteur P^{μ} de chacune des particules. Un paramètre de résolution y_{ij} est ensuite calculé pour chaque combinaison de deux jets/particules i et j. Le paramètre de résolution y_{ij} , qui est sans dimension, peut prendre plusieurs formes. Une des plus courantes est celle développée par le groupe JADE [26, 27]:

$$y_{ij} = \frac{2E_i E_j (1 - \cos \theta_{ij})}{E_{vis}^2}$$
(2.2)

où E_i et E_j sont les énergies des jets i et j, et E_{vis} l'énergie visible totale. Les jets de la paire i, j ayant le plus faible y_{ij} sont d'abord combinés. Le schème de la combinaison varie selon l'algorithme utilisé. Pour JADE, la combinaison se fait en additionnant les quadrivecteurs énergie-impulsion:

$$P^{\mu} = P^{\mu}_{i} + P^{\mu}_{j} \tag{2.3}$$

Chaque jet est combiné successivement jusqu'à ce que le y_{ij} minimum atteigne un certain seuil y_{cut} . Le nombre de jets identifiés dépend donc de la valeur du y_{cut} . Le taux d'événements identifiés à n jets, R_n , augmente avec le y_{cut} pour n = 2, mais diminue pour n > 2. Si pour une valeur de n donnée, un y_{cut} plus élevé indique une plus grande séparation des jets et augmente la probabilité que le nombre de jets identifiés corresponde au nombre de jets réels, un y_{cut} trop élevé, par contre, risque de faire unifier deux jets qui sont réellement distincts.

Figure 2-4. Taux de production relatif des événements à n jets en fonction du paramètre y_{ij} . Les jets sont identifiés avec l'algorithme Durham. Les données, corrigées pour les effets du détecteur (niveau hadronique) mais pas pour ceux de l'hadronisation, sont comparées aux simulations de JETSET [24].

Une alternative plus intéressante, lorsqu'on veut étudier une classe d'événements à n jets, consiste à associer les y_{ij} minimum de chaque itération à une valeur de transition du nombre de jets. Chaque événement aura ainsi un ensemble de valeurs de paramètres appelés $y^{n-1,n}$, qui délimite les régions où l'événement passe de n-1à n jets. Il est facile de voir que n varie de n = 2, jusqu'au nombre maximum de particules de l'événement n = N. Pour sélectionner des événements à n jets, on demande habituellement que les y^{ij} respectent la condition:

$$y^{n-1,n} > y^{cut} > y^{n,n+1} \tag{2.4}$$

où y^{cut} est un critère de résolution arbitraire. Il faut préciser que les deux écritures y_{ij} et y^{ij} n'ont pas la même signification, la première indique la valeur y_{ij} entre les jets i et j, et la seconde, la valeur y^{ij} de transition d'une configuration à i jets à une configuration à j jets.

Nous présentons ici les quatre algorithmes les plus utilisés. Soit JADE, E0, P0

et Durham. E0 et P0 ont un paramètre de résolution pour des particules sans masse équivalent à celui de JADE, mais avec des schèmes de recombinaison différents. E0 combine les jets en additionnant leur énergie. L'énergie totale est conservée mais pas l'impulsion si les particules ont une masse:

$$E_{k} = E_{i} + E_{j}$$

$$\vec{p}_{k} = \frac{E_{k}}{|\vec{p}_{i} + \vec{p}_{j}|} (\vec{p}_{i} + \vec{p}_{j}).$$
(2.5)

À l'inverse P0 combine les jets en additionnant les vecteurs impulsions, et l'énergie est recalculée à chaque combinaison:

$$ec{p}_k = ec{p}_i + ec{p}_j$$
 $E_k = ec{p}_k ert.$ (2.6)

La raison de cette diversité des schèmes de recombinaison est essentiellement de nature théorique. Les calculs de la QCD aux ordres élevés ont été faits avec des partons sans masse uniquement. Cependant, quand les quadrivecteurs de deux jets (ou de deux partons) sont additionnés, le jet résultant acquiert, en général, une masse invariante non nulle. Plusieurs algorithmes de recombinaison existent donc afin, soit de rendre les jets sans masse, soit de négliger la masse acquise par les jets lors des recombinaisons. Pour un calcul au deuxième ordre, les algorithmes E0 et JADE sont équivalents [28].

L'algorithme Durham, quant à lui, a été proposé afin d'éviter un problème dû aux gluons de faible énergie [29]. En effet, deux particules i, j de faible énergie $E_i \ll \sqrt{E_{vis}}$ et $E_j \ll \sqrt{E_{vis}}$, auront un y_{ij} faible selon l'équation (2.2), même si l'angle θ_{ij} qui les sépare est grand. L'algorithme Durham a comme paramètre de résolution:

$$y_{ij} = \frac{2min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{E_{nis}^2}$$
(2.7)

et son schème de combinaison est le même que celui de JADE. Ainsi deux particules de faible énergie se combineront ensemble seulement si l'angle qui les sépare est plus faible que l'angle qui sépare une de ces deux particules d'un jet plus énergétique. Il s'est avéré que cet algorithme possède, en effet, une meilleure résolution en angle et en masse des jets. Notre analyse sera sensible à l'ordre en énergie des jets, et par le fait même, aux particules mal assignées. Nous utiliserons donc l'algorithme Durham pour la reconstruction des jets.

Algorithmes	Résolution y_{ij}	Combinaison
JADE	$y_{ij} = rac{2E_iE_j(1-cos heta_{ij})}{E_{vis}^2}$	$P^{\mu}=P^{\mu}_i+P^{\mu}_j$
E0	$y_{ij} = rac{2E_iE_j(1-cos heta_{ij})}{E_{vis}^2}$	$E_k = E_i + E_j$ $ec{p_k} = rac{E_k}{ec{p_i}+ec{p_j}ec{}}(ec{p_i}+ec{p_j})$
P0	$y_{ij} = rac{2E_iE_j(1-cos heta_{ij})}{E_{vis}^2}$	$ec{p_k} = ec{p_i} + ec{p_j}$ $E_{m k} = ec{p_k} $
Durham	$y_{ij} = rac{2min(E_{i}^{2},E_{j}^{2})(1-cos heta_{ij})}{E_{vis}^{2}}$	$P^{\mu}=P^{\mu}_i+P^{\mu}_j$

Tableau 2-III. Définition du paramètre de résolution y_{ij} et du schème de combinaison de différents algorithmes d'identification des jets.

2.6 Une variable angulaire

Une fois les événements sélectionnés et les jets reconstruits, il reste à trouver des observables qui permettent d'extraire de l'information sur le niveau partonique. Nous mesurerons le taux d'événements à quatre quarks dans l'état final partonique. Nous avons donc besoin d'établir une différence de formes entre les distributions des deux sections efficaces données aux équations (1.15). Nous présentons dans cette section une variable, parmi d'autres, utilisée à cette fin, soit l'angle BengtssonZerwas. Il est important de souligner dès maintenant, que cette variable ne permet pas d'identifier la nature des partons événement par événement. Il s'agit toujours de mesures globales sur un ensemble d'événements. Autrement dit, la mesure se fera par comparaison de distributions de variables, ces distributions étant produites à partir d'un grand nombre d'événements.

Les jets sont préalablement ordonnés selon leur énergie telle que $E_1 \ge E_2 \ge E_3 \ge E_4$. On suppose que les jets 1 et 2, plus énergétiques, sont produits par l'hadronisation des partons de première génération, soit les quarks issus de la désintégration du γ^*/Z^0 . Les jets 3 et 4 moins énergétiques, quant à eux, proviendraient de l'hadronisation des partons fils, produits, soit par la désintégration d'un gluon rayonné par un des quarks de première génération, soit par le rayonnement de deux gluons par les quarks de première génération. Cette supposition n'est pas valable pour tous les événements. Dans certains cas, les gluons rayonnés sont plus énergétiques que les quarks. Toutefois, le nombre de ces événements est faible et est inclus dans les modèles de distributions des variables angulaires. C'est surtout la perte d'énergie entre les niveaux partonique et détecteur qui peut modifier l'ordre des jets, comme nous le verrons à la section 4.2.

2.6.1 L'angle Bengtsson-Zerwas

Cet angle a été proposé [30] en s'appuyant sur le fait que dans les événements $e^+e^- \rightarrow q\bar{q}g$, les gluons émis par les quarks ou les antiquarks sont fortement polarisés dans le plan de l'état final $q\bar{q}g$. La probabilité de fragmentation de ces gluons en partons, dépend de l'angle χ entre le plan de l'état final et le vecteur de polarisation, et de z, la fraction d'énergie d'un des partons par rapport à l'énergie du gluon initial:

$$D_{g \to gg}(z,\chi) = \frac{6}{2\pi} \left[\frac{(1-z+z^2)^2}{z(1-z)} + z(1-z)\cos 2\chi \right]$$
(2.8)

$$D_{g \to q\bar{q}}(z,\chi) = \frac{n_f}{2\pi} \left[\frac{1}{2} (z^2 + (1-z)^2) - z(1-z)\cos 2\chi \right]$$
(2.9)

où n_f est le nombre de saveurs de quarks. La désintégration du gluon en paire quark-antiquark est, de préférence, perpendiculaire à la polarisation, alors que la désintégration en deux gluons est plus isotrope. La distribution de l'angle χ_{BZ} , défini comme l'angle entre les plans formés par les jets 1,2 et 3,4, est donc sensible à la proportion d'événements $q\bar{q}q\bar{q}$:

$$\cos \chi_{BZ} = \left| \frac{\vec{p_1} \times \vec{p_2} \cdot \vec{p_3} \times \vec{p_4}}{|\vec{p_1} \times \vec{p_2}| |\vec{p_3} \times \vec{p_4}|} \right| .$$
(2.10)

Une distribution de l'angle χ_{BZ} , présentant un plus grand nombre d'événements pour $\chi_{BZ} \rightarrow 90^{\circ}$, sera une indication d'un fort taux d'événements $q\bar{q}q\bar{q}$. À l'inverse, une distribution plus uniforme indiquera la présence d'événements $q\bar{q}gg$. Il sera donc possible d'ajuster, à la distribution χ_{BZ} des données, des distributions témoins. Ce qui nous permettra de mesurer la proportion d'événements $q\bar{q}q\bar{q}$.

Figure 2-5. Schéma de l'angle χ_{BZ} défini par les plans formés des jets 1,2 et 3,4.On n'accepte que les événements dont l'angle entre les vecteurs formant un même plan est inférieur à 160°, afin que les plans soient bien définis.

Dans ce second chapitre, nous avons présenté les aspects expérimentaux se rapportant à notre analyse de la QCD. D'abord le détecteur OPAL et la reconstruction des événements, ensuite l'identification des jets, et pour finir l'introduction d'une variable angulaire sensible aux sections efficaces des événements $q\bar{q}q\bar{q}$ et $q\bar{q}gg$. L'utilisation de cette variable angulaire suppose que les jets de particules conservent l'impulsion de leur parton d'origine. Cependant, le mécanisme d'hadronisation et la détection modifient ces impulsions. Il faudra donc nous en remettre à nos modélisations pour tenter de faire un lien entre les niveaux détecteur et partonique.

Ceci conclut cette première partie sur les cadres théorique et expérimental de notre analyse. Dans la partie suivante, nous reviendrons sur certains points vus ici afin de mieux les analyser et de voir le rôle qu'ils joueront dans notre mesure.

Figure 2-6. Exemple de visualisation avec GROPE, d'un événement à quatre partons produit par simulation Monte-Carlo. On peut y voir: les traces associées aux particules chargées et les dépots d'énergie dans le prééchantillonneur (premier étage de rectangles gris à partir du centre), le calorimètre électromagnétique (seconde série de rectangle gris) et le calorimètre hadronique (rectangles gris extérieurs).

48

Partie II

22

÷.

-3.3

53

Où l'on présente l'analyse

Chapitre 3

Caractérisation des événements par des variables de jets

Nous débutons notre analyse par la caractérisation des événements à l'aide de variables se rapportant aux jets de particules. Ces variables nous seront utiles dans la mesure où leur distribution est différente selon la nature du niveau partonique des événements. Nous aurons donc une information supplémentaire relativement à notre mesure, en étudiant différentes régions du spectre de ces variables. Les trois variables que nous présentons sont directement reliées aux jets de particules. Deux d'entre elles sont des combinaisons de masses des jets, alors que la troisième est le paramètre de résolution y^{34} tel que nous l'avons défini à la section 2.5. Nous débuterons d'ailleurs par l'étude de la signification de cette variable de grande importance dans notre analyse.

3.1 Signification et visualisation de la variable y^{34}

Selon la définition de la section 2.5, y^{34} est la valeur minimum du paramètre y_{ij} lorsque l'événement a une configuration à quatre jets. Cette variable représente donc le seuil entre une configuration à trois jets et une configuration à quatre jets. Notre mesure portant sur les événements à quatre jets, notre principal critère de sélection s'appliquera à la variable y^{34} . Afin de comprendre les raisons de cette sélection, nous traiterons de la signification de la variable y^{34} à travers sa visualisation.

Le critère de sélection des événements, basé sur certaines des variables y^{ij} , peut prendre une forme simple telle que donnée à l'équation (2.4). On peut aussi profiter de l'information donnée par ces variables, pour raffiner notre sélection et épurer l'échantillon d'événements acceptés. Nous proposons deux visualisations des variables y^{ij} , qui permettent une sélection efficace des événements, une linéaire et l'autre spatiale.

3.1.1 Vue linéaire

Il est facile de voir que les différents y^{ij} répondent à l'inégalité.

$$y^{12} \ge y^{23} \ge y^{34} \ge y^{45} \ge \dots \ge y^{N-1,N}$$
 (3.1)

où N est le nombre total de particules de l'événement. Dès lors, on peut reporter sur une droite la valeur de chacun des y^{ij} . Le segment de droite entre les deux points $y^{n-1,n}$ et $y^{n,n+1}$, représentera alors la région où l'événement peut être considéré comme étant dans une configuration à n jets.

Figure 3-1. Vue linéaire des variables y^{ij} . L'intervalle entre les points $y^{n-1,n}$ et $y^{n,n+1}$ représente la région où l'événement est dans une configuration à n jets.

On pourrait se demander quelles sont les valeurs couvertes par l'intevalle $[y^{45}, y^{34}]$, lorsque les événements ont quatre partons au niveau partonique. En réalité, cette question est dénuée de sens. On sait en effet que les partons se fragmentent continuellement jusqu'à un état hadronique et qu'il n'existe pas de niveau partonique où le nombre de partons finaux est clairement défini. Ce niveau partonique, que nous avons présenté au chapitre 1, n'est que le résultat des différentes phases de notre modélisation. On peut toutefois connaître, en proportion, le nombre d'événements avec n partons assez énergétiques pour former n jets ayant une certaine résolution.

Lorsqu'on veut comparer le taux de production des événements à quatre jets entre les données et les simulations faites avec un calcul à l'ordre $\mathcal{O}(\alpha_s^2)$, on doit choisir des coupures qui feront en sorte que l'échantillon de données sélectionnées puisse être reproduit uniquement avec un calcul à l'ordre $\mathcal{O}(\alpha_s^2)$. Autrement dit, si nous disposions d'un calcul incluant tous les ordres $\mathcal{O}(\alpha_s^n)$ avec $n \in [0, \infty]$, nos coupures devraient éliminer tous les ordres sauf l'ordre $\mathcal{O}(\alpha_s^2)$. Selon la QCD, la représentation des données avant détection étant parfaitement calculée avec cette série infinie, l'application des mêmes coupures aux données et aux simulations, produirait deux échantillons similaires. De façon plus concise, nous pouvons écrire:

Puisque l'ensemble des donnée D est fonction d'une série de puissance de α_s :

$$D = f\left(\lim_{N \to \infty} \sum_{n=0}^{N} \mathcal{A}_n \alpha_s^n\right)$$
(3.2)

l'opérateur de sélection S satisfaisant l'équation

$$\mathbf{S} f\left(\lim_{N \to \infty} \sum_{n=0}^{N} \mathcal{A}_n \alpha_s^n\right) = g\left(\mathcal{A}_2 \alpha_s^2\right), \qquad (3.3)$$

permettra la comparaison entre un échantillon de données et des simulations faites avec un calcul à l'ordre $\mathcal{O}(\alpha_s^2)$ uniquement:

$$\mathbf{S}D \sim g\left(\mathcal{A}_2 \alpha_s^2\right).$$
 (3.4)

En pratique, il est impossible de découpler ainsi les différents ordres $\mathcal{O}(\alpha_s^n)$ avec un ensemble de coupures sur les données, ne serait-ce qu'à cause des boucles de gluons virtuels. Néanmoins en choisissant une valeur de seuil y_{cut} assez élevée, on pourra réduire considérablement l'apport des ordres inférieurs à $\mathcal{O}(\alpha_s^2)$ avec la seule condition Un y_{cut} assez élevé imposera une bonne séparation des jets, et seuls les événements d'au moins quatre partons énergétiques pourront produire quatre jets avec ce critère de résolution.

Pour ce qui est de couper dans la contribution des ordres supérieurs, la tâche est plus ardue. En effet, le fait de choisir une valeur de y_{cut} élevée augmente la proportion de ces contributions des ordres supérieurs, dans l'échantillon sélectionné. Cette coupure éliminant les événements à deux et trois partons, la concentration d'événements à plus de quatre partons s'en trouve par le fait même augmentée. D'un autre côté, si l'intervalle $[y^{45}, y^{34}]$ est grand, la configuration à quatre jets des événements sera mieux définie. En imposant une seconde coupure:

$$y^{34} > xy^{45}$$
 (3.6)

où x > 1 est un facteur d'échelle, on peut fixer un critère sur cette définition des configurations à quatre jets, et réduire la contribution des ordres supérieurs. Il faut quand même mentionner que les corrections, sous forme de boucle de gluons virtuels, des ordres supérieurs aux configurations à quatre jets, ne seront pas supprimées pour autant. Mais à grande énergie (ou grande résolution), ces corrections se sont avérées négligeables [29].

3.1.2 Vue spatiale

Cette façon de traiter les y^{ij} provient de la référence [31]. Il s'agit de représenter les événements dans un espace ayant comme repère un système de coordonnées de y^{ij} . Ainsi chaque événement est un point dans cet espace de coordonnées $(y^{23}, y^{34}, y^{45}, \ldots)$.

La variable $y^{n,n+1}$ est considérée comme un paramètre qui indique la capacité de résoudre les n + 1 jets d'un événement. Elle indique le degré de séparation des jets dans les configurations à n + 1 jets. Pour éliminer les événements à n + 1 jets bien résolus, on requiert donc que la valeur de $y^{n,n+1}$ soit inférieure à un certain

Figure 3-2. Vue spatiale des variables y^{ij} . L'espace est ici projeté sur le plan $y^{45}y^{34}$. Les points noirs représentent les événements simulés avec un calcul à l'ordre $\mathcal{O}(\alpha_s^2)$, et les points clairs ceux simulés avec un calcul aux ordres supérieurs. Les deux simulations incluent la fragmentation. Les hachures représentent la région sélectionnée par la condition (3.8) avec $\delta^{jet} = 0,004$. Les lignes pointillées délimitent la région sélectionnée par les conditions (3.5) et (3.6) avec $y^{cut} = 0,020$ et x = 4.

critère δ_{max}^{jet} . À l'inverse, pour sélectionner des événements à n jets bien définis, on demande que la valeur du paramètre indiquant la résolution des configurations à njets, $y^{n-1,n}$, soit plus grande que le critère de résolution δ_{min}^{jet} . Les valeurs de δ_{max}^{jet} et δ_{min}^{jet} , sont déterminées en fonction des simulations Monte-Carlo utilisées pour la comparaison avec les données, et représentent l'étalement des particules formant un jet produit par la fragmentation d'un parton. En combinant ces deux coupures, on peut mieux sélectionner des événements dans une configuration à n jets:

$$Si \quad y^{n-1,n} > \delta_{\min}^{jet} \quad et \quad y^{n,n+1} < \delta_{\max}^{jet} \tag{3.7}$$
avec $\delta_{max}^{jet} \leq \delta_{min}^{jet}$, alors l'événement a n jets.

Dans le cas ou $\delta_{min}^{jet} = \delta_{max}^{jet}$, on retrouve la même forme de condition qu'en (2.4), ici appliquée pour une configuration à quatre jets:

$$y^{34} > \delta^{jet} > y^{45}. \tag{3.8}$$

Il faut toutefois noter que δ^{jet} n'est plus un critère arbitraire mais est défini par la résolution des jets provenant du calcul à l'ordre étudié. Cette résolution intrinsèque des jets fixe donc une limite à l'information qu'on peut tirer de ceux-ci avec les méthodes conventionnelles (par opposition à la nouvelle méthode d'extrapolation que nous présenterons au chapitre 5).

La figure 3-2 montre la différence entre la coupure (3.8) et l'ensemble de coupures donné par les équations (3.5) et (3.6). Alors que la première coupure sélectionne une région rectangulaire de l'espace $y^{45}y^{34}$, la deuxième paire de coupures sélectionne une région trapézoïdale, la coupure (3.6) dessinant une pente dans le plan $y^{45}y^{34}$. La coupure (3.8) permet de sélectionner des événements de plus bas y^{34} tout en excluant ceux de haut y^{45} .

3.1.3 Variation entre les niveaux

Il nous apparaît important d'inclure ici ce que nous avions déja présenté en [32]. Il s'agit, en effet, de signaler la variation, quelquefois importante, de la valeur y^{34} entre les niveaux hadronique et détecteur.

En passant dans le détecteur, l'énergie et l'impulsion des particules sont modifiées, ce qui a pour effet de modifier les y^{ij} des événements entre les niveaux hadronique et détecteur. Nous avons comparé la valeur y^{34} de ces deux niveaux pour les simulations ERT¹. La figure 3-3 présente la variation des y^{34} entre les deux niveaux,

¹À l'avenir nous entendrons par simulation ERT, les simulations Monte-Carlo basées sur un

et se lit de la façon suivante: la bande hachurée horizontale couvre la région où les événements sont rejetés par la condition $y^{34} > 0,020$ au niveau détecteur, alors qu'ils seraient acceptés si la condition s'appliquait au niveau hadronique. À l'inverse, la bande hachurée verticale couvre la région correspondant aux événements acceptés au niveau détecteur par cette même condition, alors qu'ils seraient rejetés au niveau hadronique. L'étalement des points signifie que les événements changent de topologie entre ces deux niveaux. Ce changement est assez important, dans bien des cas, pour fausser la sélection. La taille des points est proportionnelle au nombre d'événements des canaux des distributions.

Ce phénomène de migration de gamme de y^{34} n'est pas aussi néfaste qu'il le laisse supposer. Il y existe d'une part un certain équilibre entre les événements qui migrent à l'extérieur et ceux qui migrent à l'intérieur. C'est-à-dire que le nombre d'événements inclus dans la bande verticale est approximativement égal à celui des événements inclus dans la bande horizontale. D'autre part, les déformations dues au détecteur agissant à la fois sur les données et les simulations, le biais que pourrait introduire ces migrations s'annulera par la comparaison des données avec les simulations. Notons enfin que cette mauvaise résolution des y^{34} empêche l'analyse événement par événement, mais qu'avec un grand échantillon, ses effets sont amoindris, voire annulés, pour les raisons mentionnées ci-dessus.

3.2 Distributions de variables caractéristiques

Nous présentons maintenant les distributions de certaines variables caractéristiques des événements. Nous effectuerons par la suite des mesures selon les spectres de ces distributions afin d'accroître l'information sur nos mesures.

calcul par éléments de matrice à l'ordre $\mathcal{O}(\alpha_s^2)$ [5] avec fragmentation de corde selon le modèle de Lund [15], auxquelles s'ajoute la simulation du détecteur OPAL [19]. De même les simulations à cinq partons que nous mentionnerons, sont les simulations effectuées au troisième ordre générées par [13] avec fragmentation de Lund et simulation du détecteur.

Figure 3-3. Variation de la valeur y^{34} des événements entre les niveaux hadronique et détecteur, avec configurations MT. L'abscisse représente le niveau hadronique et l'ordonnée, le niveau détecteur. Les hachures couvrent les régions où les y^{34} changent de gammes avec la condition $y^{34} > 0,020$. La grosseur des points est proportionnelle au nombre d'événements.

3.2.1 La variable M₃+M₄

Nous avons introduit cette variable en [33] afin d'identifier des effets possibles qui pourraient survenir par la présence de gluinos dans certains événements. Puisque cette variable dépend de la masse des jets 3 et 4, la présence dans les données d'une particule massive, ou ayant une fragmentation donnant lieu à des jets larges, changera la forme du spectre. Il est apparu par la suite que cette variable était aussi sensible aux contributions des événements des ordres supérieurs [34]. La variable M_3+M_4 est définie comme suit:

$$M_3 + M_4 = \frac{(M_3 + M_4)}{E_{vis}} \tag{3.9}$$

où E_{vis} est l'énergie totale visible de l'événement. Les masses M_3 et M_4 sont obtenues à partir des quadrivecteurs de jets:

$$M_n = \sqrt{E_n^2 - \vec{p}_n^2} \tag{3.10}$$

avec E_n et \vec{p}_n , l'énergie et l'impulsion du jet *n* telles que données par le schème de recombinaison de l'algorithme d'identification des jets (cf. tableaux 2-III). Les masses des jets ainsi déterminées sont fonctions aussi bien de la masse de leur parton d'origine que du mécanisme de fragmentation. En moyenne, la masse des jets provenant des quarks est plus faible que celle des jets provenant des gluons, la fragmentation produisant des jets plus larges dans le cas de ces derniers [35]. Ceci peut être vu à la figure 3-4 représentant les distributions M_3+M_4 pour les événements des simulations ERT. On y voit clairement que les événements ayant quatre quarks au niveau partonique sont contenus dans une région de plus faibles valeurs de M_3+M_4 que l'ensemble des événements (qui inclut les événements $q\bar{q}gg$).

La figure présente aussi la distribution des simulations à cinq partons. Comme nous l'avons déjà mentionné, ces événements ont cinq partons dans leur état partonique et n'incluent pas les corrections de boucles. Au niveau détecteur, ils sont reconstruits en configuration à quatre jets, les particules provenant de deux de leurs cinq partons étant combinées en un seul jet. On peut donc s'attendre à ce que la valeur maximale de M_3+M_4 atteinte par eux, soit plus élevée que celle des simulations ERT si leur jet constitué de deux partons est le jet 3 ou 4. Par contre, la valeur minimale de M_3+M_4 qu'ils atteignent, ne devrait pas être plus élevée que celle des simulations ERT. En effet, si les deux partons reconstruits en un seul jet correspondent aux jets 1 ou 2, les distributions M_3+M_4 seront similaires pour les deux simulations. On observe ce phénomène sur la figure 3-4. Alors que la

Figure 3-4. Distributions de M_3+M_4 pour les données, les simulations à cinq partons, les simulations ERT et leur proportion d'événements à quatre quarks. La condition $y^{45} < 0,020 < y^{34}$ est appliquée à toutes les distributions.

partie gauche des distributions des événements à quatre partons et à cinq partons est identique, un renflement apparaît sur la partie droite de la distribution des événements à cinq partons. La contribution des événements d'ordre supérieur à l'ordre $\mathcal{O}(\alpha_s^2)$ se traduira donc par une distribution M_3+M_4 de valeur maximale plus élevée pour les données, sans toutefois que la distribution des données soit égale à celle des simulations à cinq partons.

Des événements simulés, on observe que la largeur des distributions de M_3+M_4 demeure inchangée entre les niveaux hadronique et détecteur. Cependant un décalage apparaît, dû à la perte d'énergie des particules dans le détecteur. Les distributions ayant la même forme, on peut déduire que la normalisation par E_{vis} provoque le décalage, et que par conséquent, la proportion d'énergie perdue par les jets 3 et 4 est plus grande que celle des jets 1 et 2. Ce décalage est apparemment plus grand pour les données que pour les simulations. La masse étant une combinaison de l'énergie et de l'impulsion des particules, il peut y avoir des pertes de particules au niveau détecteur de même que M_3+M_4 peut fortement dépendre du modèle d'hadronisation. On peut ajouter aussi que les simulations ERT n'ont jamais été ajustées à cette variable. Nous avons donc corrigé la distribution des données en la décalant d'une valeur de +0,01 sur l'échelle M_3+M_4 . Cette correction a été obtenue en minimisant le χ^2 en fonction du déplacement entre les distributions des données et des simulations ERT. La figure 3-4 présente la distribution corrigée des données. On y voit un très bon accord avec les simulations ERT et à cinq partons, pour les faibles valeurs de M_3+M_4 , tandis que pour les valeurs plus élevées, l'accord est meilleur avec les simulations à cinq partons, quoiqu'il subsiste toujours une différence. Ceci nous permet d'envisager une contribution significative aux données, d'événements d'ordre supérieur. Toutes les distributions de la figure 3-4 ont été obtenues avec la coupure $y^{45} < 0,020 < y^{34}$.

3.2.2 La variable M_{34}

La variable M_{34} correspond à la masse invariante au carré des jets 3 et 4, divisée par l'énergie totale visible:

$$M_{34} = (P_3^{\mu} + P_4^{\mu})^2 / E_{vis}^2$$

= $(M_3^2 + M_4^2 + 2(E_3 E_4 - |\vec{p}_3| |\vec{p}_4| \cos \theta_{34})) / E_{vis}^2$ (3.11)

où M_n , E_n et $\vec{p_n}$ sont la masse, l'énergie et l'impulsion du jet n, telles que définies par son quadrivecteur d'énergie-impulsion P_n^{μ} .

L'utilité d'une distribution basée sur la masse invariante est d'isoler les événements qui auraient produit une particule massive (gluinos, quark b...), qui n'est pas incluse dans les simulations. Cette affirmation est valable aussi pour la variable M_3+M_4 , mais dans le cas de la variable M_{34} , on observerait alors une augmentation dans sa distribution à une certaine valeur. Ce seuil correspondrait à la masse invariante minimale nécessaire pour produire une telle particule, en supposant que les jets 3 et 4 soient les produits de sa désintégration. Cependant, comme on peut le

Figure 3-5. Distributions de M_{34} pour les données, les simulations à cinq partons, les simulations ERT et leur proportion d'événements à quatre quarks. La condition $y^{45} < 0,020 < y^{34}$ est appliquée à toutes les distributions.

voir à la figure 3-5, elle ne permet aucune distinction entre les simulations ERT et à cinq partons, les données étant toutefois bien représentées par ces deux simulations. La distribution des événements à quatre quarks, ne diffère pas non plus de façon significative de l'ensemble des événements à quatre partons.

3.2.3 La variable y^{34}

On peut s'assurer en partie de la bonne simulation des données, en comparant les distributions des y^{34} des données et des simulations. La figure 3-6 présente le rapport données/simulation ERT du taux de production d'événements en fonction du y^{34} . Le nombre d'événements total ayant été normalisé pour les données et les simulations.

La variable y^{ij} étant une indication de la topologie des événements, ce rapport constant indique que la proportion d'événements dans une configuration à quatre

Figure 3-6. Rapport du taux de production des événements données/simulations ERT en fonction du y^{34} .

jets est bien reproduite par les simulations ERT, et ce, pour toutes les valeurs de y^{34} supérieures à 0,020. Les différences apparaissant pour les grandes valeurs de y^{34} sont dues à une statistique trop faible. Cependant, on remarque une proportion de données légèrement plus faible pour les valeurs de $y^{34} \gtrsim 0,031$.

La figure 3-7 présente les distributions de y^{34} pour les données, les simulations à cinq partons, les simulations à quatre partons ERT, et les simulations à quatre quarks tirées de ERT. On constate que les distributions des simulations reproduisent bien la distribution des données. On remarque aussi que la proportion d'événements à quatre quarks dans les événements à quatre partons, demeure la même pour toutes les valeurs de y^{ij} . Ceci indique qu'il est difficile, voire impossible, d'éliminer la contribution de l'ordre supérieur (cinq partons) avec une simple coupure sur y^{34} , et qu'il est aussi impossible d'isoler une région du spectre où la contribution des quatre quarks serait plus importante.

Figure 3-7. Distributions de y^{34} pour les données, les simulations à cinq partons, les simulations ERT et leur proportion d'événements à quatre quarks.

* * *

Nous avons sélectionné trois variables dont les spectres nous permettront de détailler nos mesures de la fraction d'événements à quatre quarks. La variable y^{34} nous sert, en plus, de principal critère de sélection. Nous utiliserons les deux méthodes de sélection s'y rattachant, pour le calcul des erreurs systématiques. Les deux autres variables se rapportent aux jets 3 et 4 uniquement. De ces trois variables, seule M_3+M_4 permet de différencier les distributions produites par des événements à quatre quarks, à quatre partons, et à cinq partons. Son utilisation nous sera précieuse pour déterminer, s'il y a lieu, l'origine d'une déviation de nos mesures par rapport aux prédictions du modèle théorique utilisé.

Les variables M_{34} et y^{34} présentent certaines similitudes, M_{34} étant la masse invariante des jets 3 et 4, et y^{34} , une variation du calcul de la plus petite masse invariante de deux jets parmi les quatre jets. Cependant, si M_{34} est toujours reliée aux jets 3 et 4, y^{34} par contre, peut provenir de n'importe quelle combinaison de deux jets. Ainsi pour une petite valeur de y^{34} , soit qu'effectivement la valeur de M_{34} est petite, si la valeur de y^{34} est calculée à partir des jets 3 et 4, soit qu'une des masses invariantes M_{12} , M_{13} , M_{14} , M_{23} ou M_{24} est petite. Il existe donc un certain degré de corrélation entre les deux variables M_{34} et y^{34} , mais les distributions demeurent différentes dans leur essence.

Dans le prochain chapitre, nous effectuerons une mesure sans tenir compte du spectre de ces variables. Cet exercice nous permettra de mieux présenter la méthode de mesure. Ce n'est qu'au dernier chapitre de cette thèse que seront présentées les mesures en fonction des différentes gammes des spectres de ces variables.

Chapitre 4

Une mesure de f_q

Nous présentons dans ce chapitre, une mesure de la fraction apparente des événements à quatre quarks dans les événements à quatre jets, les événements à quatre jets étant définis selon les critères établis au chapitre précédent. Nous appelons fraction apparente l'objet de cette mesure car il ne s'agit pas nécessairement de la fraction réelle, mais de la fraction d'événements dans les données, qui se comporte comme des événements à quatre quarks lorsque les données sont comparées aux simulations. Une simulation incomplète ou basée sur une théorie inexacte, pourra faire varier cette fraction apparente. Cette mesure se fera à l'aide de l'angle χ_{BZ} présenté au chapitre 1. Nous verrons donc comment cet angle discrimine les événements $q\bar{q}q\bar{q}$ et $q\bar{q}gg$, et de quelle façon on peut ajuster la valeur f_q à partir de ses distributions. Enfin nous évaluerons les erreurs systématiques liées à cette mesure.

4.1 Distributions χ_{BZ}

Les distributions de l'angle χ_{BZ} sont différentes pour les événements $q\bar{q}q\bar{q}$ et $q\bar{q}gg$, comme on peut le constater à la figure 4-1. Cette figure inclut également les distributions des événements à cinq partons et des données. Toutes ces distributions sont normalisées.

Cette figure nous renseigne qualitativement sur la proportion des événements à quatre quarks dans les données. On voit en effet, que la distribution des données est légèrement plus pentue que celle des événements $q\bar{q}gg$. La proportion d'événements $q\bar{q}q\bar{q}$, dont la distribution a une forte pente, que l'on doit combiner à la distribution des événements $q\bar{q}gg$ sera, par conséquent, faible. On voit aussi que la pente de la distribution des événements à cinq partons est plus forte que celles des données et des événements $q\bar{q}gg$. Une contribution des événements d'ordre supérieur simulera donc une fraction apparente d'événements $q\bar{q}q\bar{q}$ plus élevée.

Figure 4-1. Distributions de la variable χ_{BZ} pour les données, les simulations à cinq partons, et les simulations ERT des événement $q\bar{q}q\bar{q}$ et $q\bar{q}gg$. Les événements sont sélectionnés avec la condition $y^{34} > 0,020 > y^{45}$.

4.2 Échange de jets et résolution de l'angle χ_{BZ}

L'angle χ_{BZ} étant un angle entre des plans formés par des jets, il sera sensible à un mauvais ordre des jets. Au chapitre précédent, nous avons montré que la valeur y^{34} variait entre les niveaux hadroniques et détecteur, à cause des pertes d'énergie dans le détecteur. Pour les mêmes raisons, l'ordre des jets peut être modifié entre ces deux niveaux. Un changement d'ordre entre les jets 1 et 2 ou 3 et 4, n'affectera pas l'angle χ_{BZ} , l'angle étant donné par la valeur absolue du cosinus de l'angle entre les plans (équation 2.10). Cependant, l'angle χ_{BZ} sera sensible à tout autre chagement d'ordre des jets (1 et 3, 1 et 4, 2 et 3, ou 2 et 4). La figure 4-3 montre la probabilité que chacun des jets a de changer entre les niveaux détecteur et hadronique. L'association des jets a été faite en minimisant l'angle entre les jets des deux niveaux. Autrement dit, le jet du niveau détecteur qui était le plus près en angle du jet *n* hadronique, lui a été associé.

Figure 4-2. Variation de l'angle χ_{BZ} entre les niveaux partonique et hadronique, et entre les niveaux hadronique et détecteur. Les événements sélectionnés respectaient la condition $y^{34} > 0,020 > y^{45}$ pour les deux niveaux concernés.

Ce changement d'ordre des jets sera en partie responsable d'une dégradation dans la résolution de l'angle χ_{BZ} . Nous entendons ici par résolution, la variation de l'angle χ_{BZ} entre les différents niveaux, telle que présentée à la figure 4-2. On y constate qu'il n'y a pas de déviation systématique apparente avec la largeur des canaux utilisés, et que les variations sont symétriques autour de la valeur moyenne, comme il a déjà été mentionné en [36].

Figure 4-3. Changement d'ordre des jets entre les niveaux hadronique et détecteur. La probabilité de devenir le jet n au niveau détecteur est présentée pour chacun des jets du niveau hadronique. Ces probabilités ont été obtenues avec les événements des simulations ERT qui respectaient la condition $y^{34} > 0,020 > y^{45}$ pour les deux niveaux.

4.3 Ajustement de forme

Afin de mesurer la fraction apparente d'événements à quatre quarks dans les événements à quatre jets, nous effectuons un ajustement de la forme des distributions χ_{BZ} . Pour ce faire, nous varions la fraction f_q de l'équation

$$\frac{d\sigma_{4p}(\chi_{BZ})}{d\chi_{BZ}}\Big|_{f_q} = f_q D_q \bar{q} q \bar{q} (\chi_{BZ}) + (1 - f_q) D_{qqgg}(\chi_{BZ})$$
(4.1)

où σ_{4p} est la section efficace normalisée des événements à quatre partons, et les $D(\chi_{BZ})$ les distributions théoriques normalisées de l'angle χ_{BZ} pour les événements $q\bar{q}q\bar{q}$ et $q\bar{q}gg$. La fraction f_q est calculée de façon à ce que la valeur du χ^2 entre les distributions des données et des simulations ERT soit minimale:

$$\chi^{2} = \sum \frac{\left(A(\chi_{BZ}, f_{q}) - B(\chi_{BZ})\right)^{2}}{\left(\delta A(\chi_{BZ}, f_{q})\right)^{2} + \left(\delta B(\chi_{BZ})\right)^{2}}$$
(4.2)
avec,

$$A(\chi_{BZ}, f_{q}) = \frac{d\sigma_{4p}(\chi_{BZ})}{d\chi_{BZ}}\Big|_{f_{q}}$$
et,

$$B(\chi_{BZ}) = \frac{d\sigma_{Données}(\chi_{BZ})}{d\chi_{BZ}}$$

les distributions de l'angle χ_{BZ} pour les simulations ERT et les données.

Pour cette mesure nous avons utilisé l'ensemble des données recueillies au détecteur OPAL entre 1990 et 1995, soit environ $4, 4 \times 10^6$ événements multihadroniques. Les événements ont été sélectionnés pour les configurations MT. Les coupures d'angles entre les jets pour le calcul de l'angle χ_{BZ} ($\theta_{12} < 160^\circ$ et $\theta_{34} < 160^\circ$) et la condition $y^{34} > 0,020 > y^{45}$, ont également été appliquées. Comme modèle théorique, nous avons utilisé les simulations ERT sélectionnées avec les mêmes conditions que les données. Le tableau 4-I contient les nombres d'événements utilisés dans cette analyse.

Données		ERT	
avant coupures	après coupures	après coupures	
$pprox 4 \ 400 \ 000$	49 507	71 298	

Tableau 4-I. Nombre d'événements sélectionnés pour la mesure de f_q . La coupure qui élimine le plus d'événements est $y^{34} > 0,020 > y^{45}$ qui sélectionne les événements à quatre jets.

Figure 4-4. Distribution du χ^2 en fonction de f_q entre les distributions χ_{BZ} des données et des simulations ERT. Les points indiquent la valeur théorique donnée par les simulations ERT et la valeur minimale de la distribution.

La figure 4-4 montre la variation du χ^2 en fonction de f_q entre les distributions des données et des simulations ERT. Nous y avons aussi indiqué les points correspondant à la valeur théorique de f_q , et au minimum du χ^2 , qui est la valeur ajustée de f_q . Le tableau 4-II contient ces valeurs numériques des f_q , des χ^2 , et du rapport

$$R_{4q} = \frac{f_q^{min}}{f_q^{th}}.\tag{4.3}$$

f_q^{th}	$\chi^2 th/dgl$	f_q^{min}	$\chi^2 min/dgl$	R _{4q}
$0,086 \pm 0,001$	6,0	$0,\!194\ \pm0,\!018$	0,7	$2,\!27\pm\!0,\!20$

Tableau 4-II. Valeurs de f_q avant et après la minimisation du χ^2 . Les erreurs sont statistiques uniquement. Les χ^2 ont été calculés avec les erreurs statistiques seulement et sont ici divisés par le nombre de leur degrés de liberté (dgl = 8).

Comme ont peut clairement le voir, la valeur f_q^{min} correspondant au $\chi^2 min$ est nettement supérieure à la valeur f_q^{th} prédite par le modèle. Ceci est quantitativement évalué par le rapport R_{4q} qui est deux fois plus élevé que la valeur attendue. On peut voir qualitativement ce résultat avec le rapport des distributions χ_{BZ} entre les données et les simulations ERT (figure 4-5). On constate en effet, une pente positive pour ce rapport, simulant une fraction d'événements $q\bar{q}q\bar{q}$ plus élevée dans les données. Le rapport des distributions χ_{BZ} entre les simulations à cinq partons et ERT est également présenté, pour indiquer qu'un apport des événements de l'ordre supérieur dans les données, affecterait la mesure en faveur d'un surplus apparent de la fraction f_q .

Figure 4-5. Rapports des distribution χ_{BZ} Données/Simulation ERT et simulations 5p/simulations ERT. Les pentes positives simulent une fraction plus élevée d'événements $q\bar{q}q\bar{q}$. Les événements sont sélectionnés avec la condition $y^{34} > 0,020 > y^{45}$.

4.4 Erreurs systématiques

Avant de porter un jugement sur notre mesure, nous devons evidemment en évaluer l'erreur systématique totale. Le choix des erreurs est un peu arbitraire en ce sens que nous ne pouvons évaluer toutes les déviations de la mesure. Nous avons sélectionné un ensemble de paramètres qui influençaient significativement la mesure et nous les avons fait varier, dans la mesure du possible, d'une quantité équivalente à leur résolution. Nous avons choisi 12 causes principales de déviation. Leurs valeurs de R_{4q} ainsi que leurs écarts aux valeurs centrales, sont reportées au tableau 4-III :

a) Énergies recalculées

Partant de l'hypothèse que la résolution angulaire du détecteur OPAL est meilleure que sa résolution en énergie, un recalcul de l'énergie des jets par les angles qu'ils font entre eux, a été proposé [37]. Ce recalcul se fait en posant que la somme des énergies des jets est égale à l'énergie totale visible, que la somme des impulsions est nulle, et que la masse des jets est négligeable:

$$\sum_{n=1}^{4} E_n = E_{visible} \tag{4.4}$$

$$\sum_{n=1}^{4} \vec{P}_n = 0 \tag{4.5}$$

$$E_n \approx |\vec{P}_n|$$
 (4.6)

Ce qui donne le système d'équations suivant:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \cos \theta_{12} & \cos \theta_{13} & \cos \theta_{14} \\ 0 & \sin \theta_{12} & \sin \theta_{13} \cos \varphi_{23} & \sin \theta_{14} \cos \varphi_{24} \\ 0 & 0 & \sin \theta_{13} \sin \varphi_{23} & -\sin \theta_{14} \sin \varphi_{24} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{pmatrix} = \begin{pmatrix} E_{visible} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(4.7)

Où les θ_{1i} sont les angles entre les jets 1 et i, et les φ_{2j} les projections des angles entre les jets 2 et j sur le plan perpendiculaire au jet 1. Les E_n sont les énergies recalculées que l'on réordonne par la suite de sorte que $E_1 \ge E_2 \ge E_3 \ge E_4$.

Ce calcul suppose des masses nulles pour les partons. Cependant nous serons intéressés plus loin aux gammes de masses M_3+M_4 et M_{34} qui peuvent être sensibles à la masse des partons. La déviation due au recalcul des énergies a donc été évaluée en éliminant les événements dont les jets changent d'ordre en énergie après leur recalcul plutot qu'en redéfinissant le vecteur des jets par cette méthode.

b) Distribution χ_{BZ} à cinq canaux

Nous avons utilisé des distributions de l'angle χ_{BZ} à dix canaux. Ce choix était fonction de la résolution de cet angle. Afin d'évaluer l'incertitude causée par une migration systématique d'événements entre les canaux des différents niveaux partonique, hadronique, et détecteur, nous avons augmenté la largeur des canaux et diminué leur nombre à cinq.

c) Symétrie de la distribution χ_{BZ}

Afin de vérifier la symétrie de l'angle χ_{BZ} ou sa sensibilité à l'échange des jets 1 et 2 ou 3 et 4, nous avons pris la valeur signée de l'expression du cosinus dans l'équation 2.10. Dans ce cas, les distributions de l'angle χ_{BZ} comportaient toujours dix canaux, mais variaient entre 0° et 180°.

Distribution θ_{NR}^*

Notre mesure est uniquement basée sur les distributions de la variable χ_{BZ} . Cependant plusieurs autres variables angulaires existent pour ce type de mesure. Une de ces variables, qui est largement répandue, est l'angle Nachtmann-Reiter [38]. À l'origine, cet angle s'applique aux événements constitués de deux paires de jets dos à dos. Ces événements sont caractérisés de la façon suivante:

$$\vec{p_1} + \vec{p_2} = 0$$

 $\vec{p_3} + \vec{p_4} = 0$ (4.8)
 $E_1 = E_2 \gg E_3 = E_4$

L'angle θ_{NR} est défini comme étant l'angle entre les jets 1 et 3. Les distributions prévues par la théorie sont:

$$\frac{d\sigma}{d\cos\theta_{NR}} \propto 1 - \cos^2\theta_{NR} \tag{4.9}$$

pour l'état final $q\bar{q}q\bar{q}$ et:

$$\frac{d\sigma}{d\cos\theta_{NR}} \propto \cos^2\theta_{NR} \tag{4.10}$$

pour l'état final $q\bar{q}gg$.

Néanmoins, selon la définition de l'angle θ_{NR} , seuls les événements dont les jets sont dos à dos doivent être sélectionnés. Une généralisation de cet angle permet d'inclure les événements dont les paires de jets 1,2 et 3,4 ne sont pas colinéaires. L'angle Nachtmann-Reiter généralisé [39] est alors défini par:

$$\cos\theta_{NR}^* = \left|\frac{(\vec{p}_1 - \vec{p}_2) \cdot (\vec{p}_3 - \vec{p}_4)}{|\vec{p}_1 - \vec{p}_2| | |\vec{p}_3 - \vec{p}_4|}\right|$$
(4.11)

Une certaine réserve s'applique toutefois à cet angle. La soustraction de vecteurs étant à la base de son calcul, cela le rendra très sensible aux variations d'amplitude de ceux-ci. Les valeurs obtenues sont:

f_q^{th}	$\chi^2 th/{ m dgl}$	f_q^{min}	$\chi^2 min/{ m dgl}$	R_{4q}
$0,083 \pm 0,001$	1,3	$0,120 \pm 0,018$	0,75	$1,44 \pm 0,20$

Les erreurs présentées et utilisées pour le calcul des χ^2 sont uniquement statistiques. Malgré le bon accord apparent entre les f_q théorique et expérimentale, on considère que cette mesure sous-estime la valeur de f_q^{exp} , car elle ne permet pas une proportion assez grande des événements à cinq jets et plus. Cette sous-estimation sera plus visible dans la mesure effectuée au prochain chapitre. Étant donné que cette mesure ne permet pas d'inclure une contribution importante des événements d'ordre supérieur, contribution qui au demeurant est connue, nous ne l'avons pas inclue dans le calcul de l'erreur systématique.

Bruit de fond des ordres inférieurs

Nos simulations ERT ne contiennent que les événements à 4 partons dans l'état final partonique. Pour tester la contribution possible d'événements à 2 et 3 partons, nous avons utilisé une simulation contenant les événements à 2, 3 et 4 partons, calculés par éléments de matrice. La figure 4-6 montre le taux d'événements à 2 et 3 partons en fonction du y^{34} . On constate que pour une coupure $y^{34} > 0,020$, la proportion de ces événements est de (3 ± 1) %. Cependant, ces simulations sont effectuées avec le paramètre $x_{\mu}^2 = 1$ (cf. equation 1.10). Or il est reconnu que la proportion des événements à quatre jets est sous-estimée à cette valeur de x_{μ}^2 , dans ces simulations. Une fois les proportions ajustées (pour $x_{\mu}^2 = 0,45$), le bruit est de $(1,5\pm0,5)$ %. Nous avons négligé la contribution de ces événements dans le calcul des erreurs après avoir vérifié que leur inclusion produit des effets négligeables, leur forme étant similaire à celles des événements $q\bar{q}gg$.

Figure 4-6. Proportion des événements à 2 et 3 partons en fonction de y^{84} .

d) Bruit de fond des ordres supérieurs

Comme nous l'avons mentionné à la section 3.1.1, on peut éliminer une plus grande partie des contributions des ordres supérieurs en utilisant une coupure telle que donnée à l'équation (3.6). Nous avons inclus en partie cette influence des ordres supérieurs dans l'erreur systématique en appliquant la condition:

$$y^{34}/y^{45} > 4,0$$
 . (4.12)

e) Nombre de particules par jets ≥ 8

Cette coupure cherche à éliminer des jets qui ne contiendraient que quelques particules. En augmentant le nombre de particules (nombre de traces et d'amas), on augmente en quelque sorte la définition des jets.

f) Échange des jets 2 et 3

La variable χ_{BZ} étant sensible à l'échange des jets 2 et 3, nous avons limité cet échange en imposant la coupure:

$$E_2 > E_3 + k \sqrt{E_3}$$
 (4.13)

En choisissant $k = 1, 0\sqrt{GeV}$, la différence d'énergie entre les jets 2 et 3 est de l'ordre de la résolution en énergie de ces jets [32].

g) Jets contenus dans le détecteur

Nous avons appliqué la coupure:

$$|\cos\theta_n| \le 0,9\tag{4.14}$$

où θ_n est l'angle entre chacun des jets et l'axe du faisceau. Cette coupure a pour but de s'assurer que les jets soient bien contenus dans le détecteur et que les pertes d'énergie soient limitées.

h) Variation du y^{34}

La figure 3-7 montre la décroissance exponentielle du nombre d'événements avec y^{34} . Nous avons fait varier de 10% cette variable pour en évaluer l'incertitude sur sa variation. Nous avons utilisé pour l'erreur, le maximum des variations (+10% ou -10%), et l'avons considéré symétrique.

i) Incertitude sur le paramètre de résolution des jets

Pour analyser l'incertitude due au type d'algorithme d'identification des jets, la même analyse a été répétée avec le schème JADE (équation 2.2). Pour que la comparaison soit significative, la mesure a été faite sur le même échantillon de données. Ainsi les événements ont d'abord été sélectionnés avec le paramètre de résolution y^{34} du schème Durham, puis les jets ont été reconstruits avec le schème JADE. Il s'agissait donc des mêmes événements dans les deux cas, mais la reconstruction des jets était différente. Cette mesure de l'incertitude sur la reconstruction reflète l'incertitude sur l'association des particules à l'intérieur d'un même jet.

j) Omission du premier canal des distributions

Lorsque $\chi_{BZ}=0$, les quatre jets se retrouvent dans un même plan. L'incertitude sur la définition des jets est par conséquent plus grande. Nous avons refait la mesure en omettant le premier canal et en n'effectuant l'ajustement de f_q que sur les neuf canaux restants.

k) Variation de l'impulsion transverse

Les paramètres des simulations ERT que nous utilisons ont été fixés selon les ajustements présentés en [40]. Ces ajustements induisent une incertitude sur les paramètres. Nous avons varié le paramètre σ_{pt} de 15%. Ce paramètre contrôle la quantité d'impulsion transverse des hadrons lors de la fragmentation. Ce paramètre influence donc la largeur des jets après hadronisation. Son incertitude est estimée à environ 10% en [41]. Tout comme pour la variation du y^{34} , nous avons considéré cette déviation symétrique.

1) Configuration du détecteur

Finalement, nous avons évalué l'incertitude due à la configuration du détecteur, en comparant les résultats des configurations CHEM et MT. Nous avons pris la différence entre les deux valeurs obtenues. Nous avons inclus au tableau, les résultats de l'analyse effectuée avec la configuration CHEM. Les résultats avec MT et CHEM sont compatibles, et pour la valeur centrale, et pour l'amplitude des erreurs. Nous reviendrons sur cette comparaison au chapitre suivant.

Après cette évaluation des erreurs, nous en arrivons à un résultat sur la mesure de f_q , dont l'écart avec la valeur attendue est supérieur à deux fois l'erreur totale sur la mesure. Plusieurs questions se posent: Les erreurs sont-elles sous estimées? Les distributions χ_{BZ} font-elles un bon partage entre les événements $q\bar{q}q\bar{q}$ et $q\bar{q}gg$? Les simulations ERT sont-elles représentatives des données? Ou encore, le bruit de fond a-t-il été complètement éliminé?... Nous avons choisi d'explorer la question du bruit de fond. Sans conclure à un véritable excès, nous supposons valide notre méthode de mesure. Nous chercherons donc à raffiner notre méthode de sélection pour éliminer le bruit de fond. Le bruit de fond des événement à 2 et 3 partons étant négligeable, c'est du coté des ordres supérieurs que se portera notre réflexion. Ce dernier point est appuyé par le comportement des simulations à cinq partons dans les figures 4-1 et 4-5. Nous concluons, pour l'instant, que notre mesure de la fraction apparente des événements à quatre quarks est supérieure à la fraction réelle et que, par conséquent, elle est surévaluée.

Nous venons de présenter notre méthode de mesure de la fraction apparente d'événements à quatre quarks f_q , dans les événements à quatre jets. Avec une sélection d'événements que l'on qualifierait de "classique", notre mesure surévalue cette fraction. Comme nous comparons les distributions des données à des distributions de simulations n'incluant qu'un seul ordre en α_s , nous estimons que notre sélection des événements était impropre. Afin d'obtenir une mesure plus fiable, nous devons réussir à définir des critères de sélection sur nos échantillons d'événements qui nous permettront, soit la comparaison directe entre les données et les simulations, soit l'élimination du bruit de fond après la mesure directe. Dans le chapitre suivant, nous présenterons la méthode que nous avons utilisée pour réduire le bruit de fond des ordres supérieurs, et nous détaillerons notre mesure en considérant plusieurs gammes des distributions de variables présentées au chapitre précédent.

Ŧ.

R_{4q}	MT	CHEM
Valeurs centrales	2,27	2,12
Erreurs statistiques	$\pm 0,20$	$\pm 0,20$
Erreurs systématiques:		
a) Énergies recalculées	-0,31	+0,32
b) χ_{BZ} à 5 canaux	+0,01	-0,04
c) χ_{BZ} de 0° à 180°	+0,01	-0,03
d) $y^{34}/y^{45} > 4,0$	-0,14	-0,12
e) Nb de particules ≥ 8	+0,01	-0,05
f) $E_2 > E_3 + \sqrt{E_3}$	$-0,\!17$	-0,27
$ \cos(\theta) \le 0,9$	-0,22	-0,04
h) $y^{34} \pm 10\%$	±0,07	$\pm 0,10$
i) y^{34} de JADE	+0,19	+0,31
j) Sans le premier canal	-0,21	-0,08
k) $\sigma_{pt} \pm 15\%$	$\pm 0,02$	$\pm 0,02$
1) Configuration CHEM (MT)	$-0,\!15$	$+0,\!15$
	+0,20	+0,48
Erreurs systematiques totales	-0,51	-0,39
	+0,29	+0,52
Erreurs totales	-0,56	-0,44

Tableau 4-III. Erreurs sur la mesure de R_{4q} . Les erreurs sont additionnées en quadrature selon leur signe.

٠

.

.

Chapitre 5

Mesures extrapolées de f_q

La difficulté dans l'évaluation de la contribution des événements d'ordres supérieurs, vient en bonne partie du fait qu'il n'existe pas de simulation complète jusqu'à l'ordre $\mathcal{O}(\alpha_s^3)$, aux niveaux hadronique ou détecteur. Les calculs au troisième ordre devenus disponibles récemment [10, 11], ne le sont qu'au niveau partonique, et sont trop récents pour avoir été simulés aux niveaux plus élevés. Cependant, nous avons développé une méthode d'extrapolation qui nous permet de diminuer la contribution des ordres supérieurs, sans devoir imposer un système de coupures fixes qui nous obligerait à bien connaître la proportion de ces événements au niveau détecteur. Nous débuterons ce chapitre par la présentation de cette méthode d'extrapolation et les erreurs systématiques et statistiques supplémentaires qui s'y rattachent. Nous poursuivrons avec les mesures de f_q et R_{4q} . Ces mesures seront effectuées pour différentes gammes dans les distributions des variables M_3+M_4 , M_{34} et y^{34} .

5.1 Méthode d'extrapolation

L'idée à la base de cette méthode, est d'utiliser nos connaissances sur le taux d'acceptation des événements en fonction de δ_{max}^{jet} , tel que défini à la section 3.1.2. Nous en avons tiré un critère pour sélectionner des événements à n jets, ici n = 4:

$$\begin{array}{ll} Si \quad y^{34} > \delta_{min}^{jet} & et \quad y^{45} < \delta_{max}^{jet} \\ avec \quad \delta_{max}^{jet} \le \delta_{min}^{jet}, & alors \ l'événement \ a \ 4 \ jets. \end{array}$$
(5.1)

.

Nous avons vu que δ_{max}^{jet} représentait un seuil de résolution des jets. Plus δ_{max}^{jet} est grand, plus l'étalement des jets est grand, et plus la possibilité est grande que deux jets faiblement résolus, soient unis pour n'en former qu'un seul. À l'inverse, plus δ_{max}^{jet} est petit, plus les jets sont étroits, et plus la possibilité que deux jets soit faussement reconstruits en un seul est faible.

Au niveau partonique, il serait facile de départager les événements à quatre et cinq partons. En les comptant, bien sûr, mais aussi par la sélection $(y^{34} > 0 \cap y^{45} =$ 0). On aurait alors $\delta_{min}^{jet} = \delta_{max}^{jet} = 0$ selon l'équation (5.1). Il est évidemment impossible d'utiliser cette coupure avec les données, d'une part parce qu'il n'y a pas de niveau partonique défini, la fragmentation des partons étant continue, et d'autre part, parce que même en ayant un niveau partonique clairement défini (c'est le cas des simulations), la fragmentation produit un étalement des jets, et il devient impossible de distinguer un événement à quatre partons d'un événement à cinq partons.

De là naît le principe de l'extrapolation. Afin de réduire la possibilité que deux jets n'en forment qu'un seul (cas des cinq jets reconstruits en quatre jets), ce principe consiste à réduire progressivement la valeur de δ_{max}^{jet} pour la mesure de f_q , puis d'extrapoler cette dernière pour $\delta_{max}^{jet} = 0$. Les mesures sont faites pour des valeurs de δ_{max}^{jet} , où les événements à quatre partons sont faiblement affectés, alors que les événements à cinq partons sont réduits de façon significative. La figure 5-1 présente le pourcentage d'événements acceptés en fonction de y_{max}^{45} , ainsi que le nombre normalisé d'événements. Les symboles noirs indiquent la région sur laquelle nous ferons les mesures qui serviront à l'extrapolation. Sur cette région, les simulations ERT sont diminuées d'environ 10%, alors que les simulations à cinq partons perdent 40% de leurs événements.

¹À partir de maintenant, pour plus de clarté, nous noterons y_{max}^{45} la valeur δ_{max}^{jet} appliquée au configurations à quatre jets, telle que présentée à l'équation 5.1. Cette valeur est le maximum permis pour y^{45} .

Nous évaluerons f_q pour dix valeurs de y_{max}^{45} entre 0,006 et 0,024. Ces dix valeurs nous permettront d'ajuster une courbe du second degré, et de prendre la valeur extrapolée de f_q à $y_{max}^{45} = 0$. Cette opération sera faite pour les simulations ERT et pour les données. Le choix d'une courbe du second degré pour l'ajustement est arbitraire. Parmi l'ensemble de courbes testées, c'est le seul type de courbe qui épousait convenablement les points de mesures, bien que d'autres choix soient certainement possible. Le rapport R_{4q} sera calculé en divisant les f_q extrapolés des données et des simulations.

À noter que la fraction $f_q(y_{max}^{45})$ dépend non seulement du nombre des événements à cinq jets restant après coupures, mais aussi de leur degré d'éloignement d'une configuration à quatre jets. Le résultats d'une mesure de la fraction des événements à quatre quarks est donc une convolution de ces deux effets.

Figure 5-1. a) Proportion du nombre d'événements en fonction de y_{max}^{45} pour les simulations ERT et cinq partons. b) Nombre d'événements en fonction de y^{45} pour les simulations ERT et cinq partons, les distributions sont normalisées à 100. Dans les deux cas, la coupure $y^{84} > 0,020$ est appliquée. Les symboles noirs couvrent la région des mesures qui serviront à l'extrapolation.

5.2 Erreurs systématiques et statistiques

Nous avons utilisé les mêmes erreurs systématiques que celles présentées à la section 4.4. Nous avons donc effectué la série de mesures des f_q dans l'intervalle $0,006 < y_{max}^{45} < 0,024$, avec extrapolation pour chacune des erreurs. Le rapport R_{4q} des f_q extrapolées a ensuite été fait pour calculer les déviations systématiques. Nous avons ajouté une erreur systématique reliée à l'extrapolation. Celle-ci a été évaluée en modifiant l'intervalle des mesures en $0,008 < y_{max}^{45} < 0,026$, puis en considérant la déviation obtenue, symétrique par rapport à la valeur centrale.

Lorsque les mesures ont été faites selon différentes gammes de M_3+M_4 , nous avons calculé une erreur systématique supplémentaire concernant la correction des distributions due à l'incertitude du déplacement entre les distributions des données et des simulations. La déviation à été calculée en effectuant les mesures sans la correction des distributions des données.

Tout comme à la mesure présentée au chapitre précédent, nous n'avons pas inclus les mesures effectuées avec la variable θ_{NR}^* dans le calcul des erreurs systématiques. Les valeurs de f_q^{exp} obtenues sont faibles et mènent à une valeur de $R_{4q} = 0,72$.

La propagation des erreurs statistiques dues à l'extrapolation est difficile à calculer. Les points de mesure servant à l'extrapolation ne sont pas indépendants les uns des autres. À la base, il s'agit d'un seul ensemble d'événements. Plus y_{max}^{45} augmente, plus l'ensemble des événements s'accroît, d'une fraction seulement, d'événements nouveaux. Les erreurs statistiques des mesures sont donc fortement corrélées. Bien qu'on les considère indépendantes pour l'ajustement de la parabole, il faut tenir compte de leur corrélation dans la propagation de l'erreur statistique. Pour éviter les complications d'un calcul de propagation d'erreurs, nous avons donc utilisé cinq échantillons indépendants pour la même mesure, les variations ne pouvant être, à ce moment, que statistiques. Les cinq échantillons ont le même nombre d'événements, et l'erreur totale est calculée en prenant la somme des déviations au

carré de R_{4q} par rapport à la moyenne, divisée par le nombre de degrés de liberté de cette opération:

$$\Delta_{stat} R_{4q} = \sum_{n=1}^{5} \frac{\left(R_{4q}^n - \overline{R_{4q}^n}\right)^2}{dl}$$
(5.2)

où $\overline{R_{4q}^n}$ est la moyenne des cinq rapports indépendants R_{4q}^n , et dl = 4 le nombre de degrés de liberté de l'opération (cinq échantillons indépendants moins un degré fixé par le calcul de la moyenne).

5.3 Résultats

Nous présentons dans cette section les résultats des mesures extrapolées de f_q . Apparaissent en premier, le graphique de l'extrapolation des f_q avec la fonction ajustée, et le tableau des valeurs de R_{4q} pour les différentes erreurs systématiques. Nous avons inclus dans ce tableau, une colonne pour les valeurs de R_{4q} obtenues par une analyse avec la configuration CHEM. Cette comparaison entre les configurations CHEM et MT a ceci d'intéressant, qu'elle nous permet de juger de la constance des mesures effectuées avec la configuration MT. L'erreur totale étant plus grande dans le cas de l'analyse MT, ceci indique que la variation des mesures de f_q en fonction de y_{max}^{45} , est plus grande entre les différentes erreurs calculées avec la configuration MT, que celle des différentes erreurs calculées avec la configuration

Viennent ensuite les mesures effectuées pour différentes gammes des variables M_3+M_4 , M_{34} , et y^{34} . À chaque variable se rattache une série de deux graphiques et un tableau. Le premier graphique représente l'extrapolation de la fraction f_{nb} , du nombre d'événements dans chacune des gammes sur le nombre total d'événements dans le spectre. Les nombres extrapolés ont été réajustés, de sorte que leur somme vaut toujours 1,0 après extrapolation. Ces fractions extrapolées nous servent à construire le deuxième graphique où apparaissent les produits des fractions des nombres d'événements par gammes et d'événements à quatre quarks, $f_{nb} \times f_q$. Ces produits nous donnent les nombres normalisés d'événements $q\bar{q}q\bar{q}$ pour les

simulations ERT, et trois points de mesures des données: valeurs extrapolées, $y_{max}^{45} = 0,006$, et $y_{max}^{45} = 0,020$. Finalement, le tableau contient les valeurs de R_{4q} pour chacune des gammes et des trois points de mesures, ainsi que leurs erreurs statistiques et systématiques. Les erreurs apparaissant sur les graphiques des produits de fractions et celles figurant dans les tableaux sont reliées par l'équation suivante:

$$\Delta_{\pm}(f_{nb} \times f_q) = (f_{nb} \times f_q) \sqrt{((\Delta_{sys\pm} R_{4q})^2 + (\Delta_{sta} R_{4q})^2)/R_{4q}}$$
(5.3)

Figure 5-2. Extrapolation de la mesure de f_q avec l'angle χ_{BZ} . Les symboles noirs identifient les points de mesures qui ont servi à l'ajustement de la courbe du second degré. Les traits pointillés indiquent les points de mesures de f_q pour une coupure standard $y^{34} > 0,020 > y^{45}$. Les erreurs sont uniquement statistiques.

R_{4q}	MT	CHEM
Valeurs centrales	1,22	1,20
Erreurs statistiques	$\pm 0,47$	$\pm 0,31$
Erreurs systématiques:		
a) Énergies recalculées	-0,33	+0,14
b) χ_{BZ} à 5 canaux	-0,01	-0,06
c) χ_{BZ} de 0° à 180°	0,00	-0,06
d) $y^{34}/y^{45} > 4,0$	+0,03	-0,01
e) Nb de particules ≥ 8	-0,11	-0,13
f) $E_2 > E_3 + \sqrt{E_3}$	+0,26	+0,04
$\mathrm{g}) \; \cos(\theta) \leq 0,9$	-0,22	$-0,\!15$
h) $y^{34} \pm 10\%$	$\pm 0,\!13$	$\pm 0,16$
i) y ³⁴ de JADE	-0,18	+0,16
j) Sans le premier canal	-0,25	+0,21
k) $\sigma_{pt} \pm 15\%$	\pm 0,11	$\pm 0,11$
l) Configuration CHEM (MT)	-0,02	+0,02
m) Ajustement pour $0,008 < y_{max}^{45} < 0,026$	+0,02	-0,03
	+0,31	+0,36
Erreurs systèmatiques totales	$-0,\!54$	-0,29
	+0,56	+0,47
Erreurs totales	-0,71	-0,42

Tableau 5-I. Erreurs sur la mesure de R_{4q} obtenue après extrapolation des f_q . Les erreurs sont additionnées en quadrature selon leur signe.

Figure 5-3. Extrapolation de la fraction du nombre d'événements f_{nb} , pour chacune des gammes de M_3+M_4 . Les symboles noirs identifient les points de mesures qui ont servi à l'ajustement des courbes du second degré.

Figure 5-4. Produits des fractions des nombres d'événements totaux et à quatre quarks, pour différentes gammes de M_3+M_4 , et pour différents points de mesures: valeurs extrapolées, $y_{max}^{45}=0,006$, et $y_{max}^{45}=0,020$.

	R_{4q} N	ЛТ	
Gammes de $M_3 \!+\! M_4$	Extrapolés	$y_{max}^{45} = 0,006$	$y_{max}^{45} = 0,020$
0,06-0,10	$0,\!70 \hspace{0.1cm} \pm \hspace{-0.1cm} 0,\!60 \\ -0,\!61 \\$	$0,\!82 \hspace{0.2cm} \pm \hspace{-0.2cm} 0,\!28 \hspace{-0.2cm} + \hspace{-0.2cm} 0,\!74 \hspace{-0.2cm} \\ \hspace{-0.2cm} - \hspace{-0.2cm} 0,\!59 \hspace{-0.2cm}$	$1,\!04 \hspace{0.1in} \pm \hspace{-0.1in} 0,\!30 \\ -0,\!57 \\$
0,10-0,14	$1{,}13{\pm}0{,}61{0{,}340{$	$\begin{array}{r}+0,\!28\\1,\!35 \hspace{0.1cm}\pm 0,\!25 \\ -0,\!71\end{array}$	$1,\!65 \hspace{0.1in} \pm \hspace{-0.1in} 0,\!27 \hspace{-0.1in} + \hspace{-0.1in} 0,\!38 \\ - \hspace{-0.1in} 0,\!76 \hspace{-0.1in}$
0,14-0,18	$3,\!48 \ \pm 2,\!15 \\ -2,\!48$	${4,85\pm1,09}^{+1,67}_{-3,59}$	${}^{6,47}_{-4,63} {}^{+1,62}_{-4,63}$
0,18-0,22	$\begin{array}{r} +18,00 \\ -2,54 \pm 9,99 \\ -15,61 \end{array}$	$6,\!37 \hspace{2mm} \pm \hspace{-1.5mm} 3,\hspace{-0.5mm} 94 \hspace{-0.5mm} + \hspace{-0.5mm} 7,\hspace{-0.5mm} 85 \hspace{-0.5mm} \\ - \hspace{-0.5mm} 3.93 \hspace{-0.5mm}$	$16,\!15 \hspace{0.1cm} \pm 7,\!07 \!$
0,00-0,14	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{smallmatrix} +0,31 \\ 1,18 & \pm 0,19 \\ -0,50 \end{smallmatrix}$	$1{,}46\pm0{,}20{+0{,}47}{-0{,}53}$
0,14-0,30	$3,\!11 \hspace{.1in} \pm 1,\!51 \\ -2,\!97$	$5,\!34 \hspace{2mm} \pm 1,\!14 +1,\!30 \\ -3,\!91$	$8,\!03 \hspace{0.1in} \pm 1,\!34 \\ -5,\!08$
0,00-0,30	$\begin{smallmatrix} 1,22 & \pm 0,47 \\ -0,54 \end{smallmatrix} + 0,31 \\ -0,54$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{smallmatrix} 2,27 & \pm 0,20 \\ & -0,51 \end{smallmatrix} + 0,20$

Tableau 5-II. Valeurs des R_{4q} pour les gammes de M_3+M_4 , et pour trois points de mesures des f_q : valeurs extrapolées, $y_{max}^{45} = 0,006$ et $y_{max}^{45} = 0,020$. Les erreurs symétriques sont statistiques et les asymétriques sont systématiques.

Figure 5-5. Extrapolation de la fraction du nombre d'événements f_{nb} , pour chacune des gammes de M_{34} . Les symboles noirs identifient les points de mesures qui ont servi à l'ajustement des courbes du second degré.

Figure 5-6. Produits des fractions des nombres d'événements totaux et à quatre quarks, pour différentes gammes de M_{34} , et pour différents points de mesures: valeurs extrapolées, $y_{max}^{45} = 0,006$, et $y_{max}^{45} = 0,020$.

	R_{4q}	MT	
Gammes de M_{34}	Extrapolés	$y_{max}^{45} = 0,006$	$y_{max}^{45} = 0,020$
0,02-0,05	$\begin{array}{c}+1,\!03\\1,\!36\ \pm0,\!54\\-0,\!41\end{array}$	$^{+0,89}_{-0,32}$	$1,\!76 \pm \! 0,\!32 + \! 1,\!03 \\ - \! 0,\!43$
0,05-0,08	$2,\!21\pm\!0,\!44 +\!0,\!51 \\-1,\!02$	$2,\!42\pm\!0,\!34 +0,\!18 \\-1,\!04$	$2,\!63\pm\!0,\!34 +0,\!15 \\ -1,\!03$
0,08-0,12	$0,\!84\pm\!1,\!12 \\ +1,\!12 \\ -1,\!24$	$\begin{array}{r}+0,\!95\\1,\!41\pm\!0,\!46\\-1,\!05\end{array}$	$2,\!34\pm\!0,\!43 +\!$
0,12-0,20	$\begin{array}{c} +1,\!69 \pm \!$	$\begin{array}{r} +1,57 \\ -0,14 \ \pm 0,75 \\ -3,52 \end{array}$	$2,\!05\pm\!0,\!67 \\ +1,\!29 \\ -1,\!94$
0,00-0,08	$\begin{array}{ c c c c c }\hline &+0,43\\ 1,93 \ \pm 0,36 \\ -0,68\end{array}$	$2,\!14\pm\!0,\!25 +0,\!11 \\ -0,\!69$	$2,\!32\pm\!0,\!25 +0,\!17 \\ -0,\!68$
0,08-0,30	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0,\!83\pm\!0,\!39 +\!\!0,\!85 \\-0,\!98$	$2{,}15\ {\pm 0{,}35} + 0{,}68 \\ - 0{,}85$
0,00-0,30	$\begin{array}{ c c c c c }\hline &+0,31\\ &+0,54\\ &-0,54\end{array}$	$\begin{array}{r}+0,\!12\\1,\!67\pm\!0,\!21\\-0,\!50\end{array}$	$2,\!27\pm\!0,\!20 + 0,\!20 \\ -051$

Tableau 5-III. Valeurs des R_{4q} pour les gammes de M_{34} , et pour trois points de mesures des f_q : valeurs extrapolées, $y_{max}^{45} = 0,006$ et $y_{max}^{45} = 0,020$. Les erreurs symétriques sont statistiques et les asymétriques sont systématiques.

Figure 5-7. Extrapolation de la fraction du nombre d'événements f_{nb} , pour chacune des gammes de y^{34} . Les symboles noirs identifient les points de mesures qui ont servi à l'ajustement des courbes du second degré.

Figure 5-8. Produits des fractions des nombres d'événements totaux et à quatre quarks, pour différentes gammes de y^{34} , et pour différents points de mesures: valeurs extrapolées, $y_{max}^{45}=0,006$, et $y_{max}^{45}=0,020$.

	R_{4q}	МТ	
Gammes de y^{34}	Extrapolés	$y_{max}^{45} = 0,006$	$y_{max}^{45} = 0,020$
0,02-0,03	$\begin{array}{r} +0,\!47 \\ 1,\!53 \pm\!0,\!25 \\ -0,\!48 \end{array}$	$\begin{array}{r}+0,\!14\\1,\!97\pm\!0,\!28\\-0,\!43\end{array}$	$2{,}50\ {\pm}0{,}27\\+0{,}35\\-0{,}66$
0,03-0,04	$\begin{array}{r}+0,\!36\\1,\!93\pm\!1,\!14\\-0,\!86\end{array}$	$2,\!19\pm\!0,\!47 + 0,\!32 \\ -0,\!95$	$2,\!61\pm\!0,\!45 +0,\!33 \\-1,\!36$
0,04-0,06	$\begin{array}{r}+1,\!09\\1,\!27\pm\!1,\!42\\-0,\!55\end{array}$	$\begin{array}{r}+0,\!86\\1,\!91\pm\!0,\!65\\-0,\!54\end{array}$	$2{,}51 \pm {0{,}61} + {1{,}06} \\ - {0{,}59}$
0,06-0,10	$3,\!19 \pm \!$	$3,\!26\pm\!1,\!10 \\ +1,\!26 \\ -2,\!14$	$3,\!36\pm\!1,\!10 \\ +0,\!61 \\ -1,\!86$
0,02-0,06	$\begin{array}{ c c c c c }\hline &+0,36\\ 1,55 \ \pm 0,42 \\ -0,55\end{array}$	$\begin{array}{ }+0,\!13\\1,\!93\pm\!0,\!24\\-0,\!48\end{array}$	$2,\!43\pm\!0,\!23 \\ +0,\!26 \\ -0,\!64$
0,06-0,10	$\begin{array}{c}+1,\!01\\1,\!23\pm\!1,\!17\\-1,\!03\end{array}$	$\begin{array}{r}+0,\!69\\1,\!83\pm\!0,\!61\\-0,\!66\end{array}$	$2,\!47\pm\!0,\!58 +0,\!71 \\ -0,\!55$
0,02-0,10	$\begin{array}{ c c c c }\hline +0,31 \\ 1,22 \pm 0,47 \\ -0,54 \end{array}$	$\begin{array}{ }+0,\!12\\1,\!67\pm\!0,\!21\\-0,\!50\end{array}$	$2,\!27\pm\!0,\!20\frac{+0,\!20}{-0,\!51}$

Tableau 5-IV. Valeurs des R_{4q} pour les gammes de y^{34} , et pour trois points de mesures des f_q : valeurs extrapolées, $y_{max}^{45} = 0,006$ et $y_{max}^{45} = 0,020$. Les erreurs symétriques sont statistiques et les asymétriques sont systématiques.

La figure 5-2 parle d'elle-même quant à la réduction de la fraction f_q , due à l'extrapolation. Le rapport R_{4q} , obtenu avec une coupure standard $y^{34} > 0,020 > y^{45}$, passe de la valeur:

$$2,27 \ _{-0,56}^{+0,29}$$

qui surévalue à plus de 2σ la fraction apparente des événements $q\bar{q}q\bar{q}$, à la valeur obtenue avec extrapolation:

$$1,22 \ _{-0,71}^{+0,56}$$

qui est en parfait accord avec les simulations ERT. À première vue, la méthode d'extrapolation semble un bon moyen pour éliminer le bruit de fond qui ne pouvait l'être avec de simples coupures sur y^{34} ou y^{45} . Cependant, un bémol apparaît dans le tableau 5-I, où l'on observe une différence d'amplitude entre les erreurs totales des configurations CHEM et MT. La configuration MT est plus sensible aux variations systématiques. Cela signifie qu'en variant certains paramètres dans la sélection des événements, les courbes des mesures en fonction de y_{max}^{45} auxquelles on ajuste la parabole, changent plus pour la configurations MT que pour la configuration CHEM. L'ajustement est d'ailleurs particulièrement sensible aux derniers points, à faible y_{max}^{45} , là où les coupures dans le nombre d'événements sont plus importantes.

L'analyse selon les gammes de M_3+M_4 est intéressante pour le renseignement qu'elle apporte sur l'endroit où s'effectue la réduction des f_q . On se souvient que la distribution M_3+M_4 (figures 3-4) départageait les simulations ERT et les simulations à cinq partons pour les hautes valeurs de M_3+M_4 . On se souvient également que la distribution des données pour la condition de sélection $y^{34} > 0,020 > y^{45}$, accusait un meilleur accord avec la distribution des simulations à cinq partons. La figure 5-4 montre effectivement une fraction apparente d'événements $q\bar{q}q\bar{q}$ plus grande avec cette sélection pour les valeurs élevées de M_3+M_4 . La différence entre les fractions obtenues par extrapolation et celles mesurées directement s'accroît aussi avec les valeurs de M_3+M_4 . Les valeurs centrales des extrapolations étant plus près des valeurs théoriques (simulations ERT), ceci laisse croire que les coupures apportées par l'extrapolation s'appliquent bien aux événements générés par les ordres supérieurs.

La figure 5-6 montre que, tout comme dans le cas des gammes en M_3+M_4 , l'extrapolation réduit la fraction apparente pour les valeurs élevées de M_{34} . Toutefois, pour des valeurs de M_{34} autour de 0,06 une augmentation de la fraction f_q des données par rapport aux simulations ERT ne peut pas être exclue. Cependant, contrairement aux distributions de M_3+M_4 , les distribution de M_{34} ne montraient pas de différence significative entre les simulations à quatre partons et à cinq partons. Un excès d'événements d'ordre supérieur dans les données, serait donc réparti de façon plus uniforme sur le spectre. Les mesures directes de la fraction apparente sont surévaluées pour les deux gammes centrales, alors que l'extrapolation ne réduit que les deux gammes supérieures.

* * *

Ce chapitre conclut notre analyse sur la mesure de la fraction apparente des événements à quatre quarks. Nous y avons présenté une méthode d'extrapolation qui a pour but d'éliminer le bruit de fond dû à la contribution d'événements générés par les ordres supérieurs à l'ordre $\mathcal{O}(\alpha_s^2)$. Cette méthode permet de réduire le résultat de la mesure de la fraction apparente. Lorsqu'analysée selon des gammes de M_3+M_4 , on en déduit que cette réduction est bel et bien obtenue par coupure sur la contribution des ordres supérieurs. Toutefois, si la mesure globale concorde bien maintenant, considérant les erreurs, avec les prévisions ERT, dans certaines gammes des paramètres M_3+M_4 , M_{34} et y^{34} , on peut observer encore, une légère tendance des données à surévaluer le rapport R_{4q} , même après extrapolation. Cependant, vu les erreurs systématiques, ces tendances ne peuvent être appelées significatives. Nous concluons néanmoins à l'efficacité certaine de cette méthode, en ce qu'elle nous permet d'obtenir maintenant un accord entre la fraction apparente globale et la fraction théorique du nombre d'événements $q\bar{q}q\bar{q}$. Cette méthode, et par le fait même les résultats qu'elle nous donne, étant basée sur des considérations physiques reliées au comportement de variables classifiant les événements, nous attribuons son efficacité à l'élimination effective des événements avec un nombre de jets plus grand que quatre.

14

Ē,

Conclusion

Nous avons présenté, dans cette thèse, une mesure de la fraction f_q , d'événements à quatre quarks dans les événements à quatre jets. Cette mesure à été faite par un ajustement de la forme des distributions de l'angle χ_{BZ} . Nous avons, en plus, utilisé une méthode originale pour réduire le bruit de fond dû à la contribution d'événements non-reproduits par les simulations utilisées pour la comparaison avec les données.

Cette mesure est motivée par la vérification expérimentale de la valeur d'une des constantes fondamentales de la QCD. Cette constante, T_F , est reliée à la production du couplage $g \rightarrow q\bar{q}$, qui apparaît dans les événements à quatre quarks. Un accord dans le taux de production de ces événements, entre les données et les simulations produites à l'aide des principes théoriques, confirmera la validité de la théorie. À l'inverse, une fraction plus élevée dans les données pourrait être le signe d'une théorie inexacte, mais plus probablement, indiquerait la présence d'éléments nouveaux. À ce titre, le gluino serait un candidat envisageable. Toutefois, les recherches actuelles du gluino tendent à exclure sa présence dans les données de LEPI [55].

Nos premières mesures de f_q [42, 43] présentaient un surplus significatif d'événements $q\bar{q}q\bar{q}$ dans les données. Avec la condition de sélection $y^{34} > 0,020 > y^{45}$, et pour une configuration MT au niveau détecteur, nous obtenons une valeur de:

$$R_{4q}=2,27 \ ^{+0,29}_{-0,56}$$

où R_{4q} est égal au rapport des fractions expérimentales et théorique, f_q^{exp}/f_q^{th} . Ce rapport est ramené à une valeur compatible avec la théorie, lorsque nous utilisons notre méthode d'extrapolation des f_q afin d'éliminer le bruit de fond des événements à cinq partons:

$$R_{4q} = 1,22 \ ^{+0,56}_{-0,71}$$

Notre méthode d'extrapolation est basée sur la différence entre les distributions, en fonction du paramètre y^{45} , des événements à quatre jets et à cinq jets, le nombre de jets des événements étant lui-même défini en fonction des critères de résolution y^{34} et y^{45} . Cette méthode s'avère donc efficace pour réduire le bruit de fond.

Nous avons aussi mesuré cette fraction f_q , en fonction de gammes de la distribution de la variable M_3+M_4 . L'excès que nous observions sans extrapolation, était concentré dans les hautes valeurs de M_3+M_4 , ce qui permettait la présence d'une particule massive, non-reproduite par les simulations utilisées. Avec extrapolation, cependant, cet excès disparaît, et l'accord est obtenu pour toute les gammes de M_3+M_4 . Nous en concluons que cet excès n'était produit que par la présence d'événements à cinq jets dans notre échantillon de données. Toutefois, pour des valeurs autour de 0,06 de la distribution selon la variable M_{34} , une augmentation de la fraction f_q des données par rapport aux simulations ERT ne peut être exclue.

Des analyses ont été faites à ALPEH [44], DELPHI [45], et OPAL [47], pour mesurer le rapport des constantes T_F/C_F . Ces mesures ont été faites avec des ajustements à plusieurs dimensions, incluant la variable θ_{NR}^* . De plus, la sélection des événements était faite avec différents algorithmes d'identification des jets et différents critères de résolution. Toutes ces mesures se sont avérées en accord avec les prédictions de la QCD. Le fait d'utiliser plusieurs variables pour l'ajustement, et des critères de résolution plus larges, a sans doute grandement modifié le bruit de fond des ordres supérieurs. Quoi qu'il en soit, aucune de ces analyses n'a tenu compte de la présence possible de ce bruit de fond.

Nous terminons cette conclusion, en soulignant l'efficacité de notre méthode d'extrapolation pour réduire le bruit de fond sur la mesure de f_q . Méthode sans

4

19

.

1

laquelle nous n'aurions pu obtenir un accord entre les observations expérimentales et les simulations basées sur les calculs théoriques. Malgré les erreurs supplémentaires qu'elle apporte, cette méthode s'avère prometteuse dans l'attente d'une analyse effectuée avec un calcul complet à l'ordre $\mathcal{O}(\alpha_s^3)$.

Références

- John F. Donoghue, Eugene Golowich, Barry R. Holstein. Dynamics of the Standard Model. Cambridge University Press, 1992.
- [2] M. Gell-Man. . Phys. Rev., 125:1067, 1962.
- [3] S. Kluth. Measurement of the Strong Coupling Constant α, at 161 GeV. OPAL Physics Note 249, 1996.
- [4] G. Altarelli et al., éditeurs, Z Physics at LEP 1 Volume 1: Events generator and software. CERN Report, septembre 1989. CERN-89-08.
- [5] R.K. Ellis, D.A. Ross, A.E. Terrano. The perturbative calculation of jet structure in e⁺e⁻ annihilation. Nuclear Phys. B, 178:421-456, 1981.
- [6] G. Altarelli et al., éditeurs, Z Physics at LEP 1 Volume 3: Events generator and software. CERN Report, septembre 1989. CERN-89-08.
- B.R. Webber. Monte Carlo simulation of hard hadronic processes. Annu. Rev. Nucl. Part. Sci., 36:253-286, 1986.
- [8] G. Altarelli and G. Parisi. Asymptotic freedom parton language. Nuclear Phys. B, 126:298-318, 1977.
- [9] V. N. Gribov, L. N. Lipatov. Sov. J. Nuc. Phys., 15:428, 1972.
- [10] Adrian Signer, Lance Dixon. Electron-Positron Annihilation into Four Jets at Next-to-Leading Order in α_s. Slac-Pub-7309, 1996; Complete O(α³_s) Results for e⁺e⁻ → (γ, Z) → Four Jets. Slac-pub-7528, 1997.
 Zvi Bern, Lance Dixon, David A. Kosower, Adrian Signer. Multi-parton loop amplitude and next-to-leading order jet cross-sections. hep-ph/9802264, 1998.

- [11] Zoltán Nagy, Zoltán Trócsányi. Next-to-Leading Order Calculation of Four-Jet Shape Variables. hep-ph/9707309, 1997; Four-jet production in e⁺e⁻ annihilation at next-to-leading order. hep-ph/9708344, 1997; Four-jet angular distributions and color charge measurements: leading order versus next-toleading order. hep-ph/9712385, 1997.
- [12] K. Hagiwara, D.Zeppenfeld. Amplitudes for multi-parton processes involving a current at e⁺e⁻, e[±]p, and hadron colliders. Nuclear Phys. B, 313:560-594, 1989.
- [13] D. Michelsen, H. Müller, F. Wäckerle. Studies of 5-parton events in electron positron annihilation. IEKP-KA/94-11, Karlsruhe, 1994.
 F. Wäckerle. Studie von Fünf-Parton-Zuständen in der Elektron-Positron-Annihilation e⁺e⁻ → Z⁰, γ → 5 Partonen. IEKP-KA/93-19, Karlsruhe, 1993.
- [14] André Joly. Production du baryon Σ^+ dans les collisions e^+e^- au LEP. Thèse de doctorat, Univesité de Montréal, 1997.
- [15] B. Anderson, G. Gustafson, B. Söderberg. A General Model for Jet Fragmentation. Z. Phys C, 20:317-329, 1983.
- [16] Collaboration OPAL. OPAL Technical Proposal. CERN/LEPC/83-4, 1983.
- [17] S.L. Lloyd. The OPAL Primer. Document interne OPAL, 1992.
- [18] M. Arignon et al. The trigger system of the OPAL experiment at LEP. Nucl. Instr. and Meth., A313:103-125, 1992.
- [19] S. Weisz, D. Lellouch, C. Hawkes et O. Schaile. ROPE users' guide. Document interne OPAL, 1992.
- [20] A. Buijs. The OPAL DST (OD) processor ROPE. Document interne OPAL, 1992.
- [21] David Ward et John Banks. A GRope Primer. Document interne OPAL, 1994.

- [22] David Ward. A GOPAL Primer. Document interne OPAL, 1991.
- [23] T. Omori, S. Asai, I. Nakamura. A Matching Algorithm: MT package. OPAL Technical Note, TN-381, 1996.
- [24] Collaboration OPAL. A global determination of $\alpha_s(M_{Z^0})$ at LEP. Zeit. f. Phys C, 55:1-24, 1992.
- [25] S. Lupia, W. Ochs. Low and High Energy Limits of Particle Spectra in QCD Jets. hep-ph/9704319, 1997.
- [26] Collaboration JADE. Experimental studies on multijet production in $e^+e^$ annihilation at PETRA energies. Z. Phys. C, 33:23-31, 1986.
- [27] Collaboration JADE. Experimental investigation of the energy dependence of the strong coupling strength. Phys. Lett. B, 213:235-224, 1988.
- [28] S. Bethke. Jets in Z⁰ decays. QCD 20 years later, P.M Zerwas et H.A. Kastrup éditeurs, World Scientific, 1992.
- [29] S. Bethke, Z. Kunszt, D.E. Soper et W.J. Stirling. New jet cluster algorithms: next-to-leading order QCD and hadronization corrections. Nuclear Phys. B, 370:310-334, 1988.
- [30] M. Bengtsson et P.M. Zerwas. Four-jet events in e⁺e⁻ annihilation: testing the three-gluon vertex. Phys. Lett. B, 208:306-308, 1988.
- [31] H. Jérémie, E. Lefebvre, C. Théoret. Remarks on the resolvability of high-energy particle jets. Nucl. Instr. and Meth. A, 405:126-132, 1998.
- [32] Eric Lefebvre. Étude des algorithmes de reconstruction des événements à quatre jets dans les désintégrations hadroniques du Z⁰. Mémoire de maîtrise, Université de Montréal, 1994.

- [33] H. Jérémie, P. Leblanc, E. Lefebvre, C. Théoret. Improved method for detecting the effect of gluinos in four-jet events at LEP. Nucl. Instr. and Meth. A, 373:97– 101, 1996
- [34] H. Jérémie, E. Lefebvre, S. Bentvelsen. Comparison of Four- and Fivejet Observable from Z⁰ Decays at LEP with Leading Order Matrix-Element Calculations. Lake Louise proceeding, 1998.
- [35] Collaboration OPAL. A Model Independent Measurement of Quark and Gluon Jet Properties and Differences. Zeit. fur Physik, C68:179-202, 1995; A comparison of b and uds quark jets to gluon jets. Zeit. fur Physik, C69:543-560, 1996; A Direct Observation of Quark-Gluon Jet Differences at LEP. Phys. Lett., B265:462-474, 1991.
- [36] Philippe Leblanc. Étude des événements à 4-jets produits lors des désintégrations hadroniques du Z⁰ avec le détecteur OPAL au LEP. Thèse de doctorat, Université de Montréal, 1994.
- [37] Collaboration OPAL. A measurement of the QCD colour factor ratios C_a/C_f and T_f/C_f from angular correlations in four-jet events. Zeit. fur Physik, C65:367-377 ,1995.
- [38] O. Nachtmann et A. Reiter. A test for the gluon selfcoupling in the reaction $e^+e^- \rightarrow 4$ jets and $Z^0 \rightarrow 4$ jets. Z. Phys. C, 16:45–54, 1982.
- [39] Collaboration DELPHI. Measurment of the triple-gluon vertex from 4-jet events at lep. Z. Phys. C, 59:357-378, 1993.
- [40] Collaboration OPAL. A Global Determination of α_s (M Z⁰) at LEP. Zeit. fur Physik, C55:1-24, 1992
- [41] Collaboration OPAL. A Study of the Recombination Scheme Dependence of Jet Production Rates and of alpha-s (M-Z0) in Hadronic Z0 Decays. Zeit. fur Physik, C49:375-384, 1991.

- [42] H. Jérémie, P. Leblanc E. Lefebvre, M. Boutemeur, B. Lorazo. Comparison of Angular Correlations in Four Jet Events from Z⁰ Decays with $\mathcal{O}(\alpha_s^2)$ Calculations. OPAL Physics Note 176, 1995.
- [43] H. Jérémie, E. Lefebvre, P. Leblanc. Study of Four-Jet Events from Z⁰ Decays at LEP Using the Bengtsson-Zerwas Correlation and Jet Masses. OPAL Physics Note, PN 321, 1997.
- [44] Collaboration ALEPH. Evidence for the Triple-Gluon Vertex from Measurements of the QCD Colour Factors in Z Decay into 4 Jets. Phys. Lett.
 B, 284:151-162, 1992; A Measurement of the QCD Colour Factors and a Limit on the Light Gluinos. CERN-PPE/97-002, 1997.
- [45] Collaboration DELPHI. Experimental study of triple-gluon vertex. Phys. Lett.
 B, 255:466-476, 1991: Measurement of the Triple-Gluon Vertex from 4-Jet Events at LEP. Zeit. f. Phys. C, 59:357, 1993.
- [46] Collaboration L3. Measurement of QCD color factors with four jet events.
 eps0119, HEP95 EPS Conférence de Brussels, 1995.
- [47] Collaboration OPAL. A Study of QCD Structure Constants and a Measurement of $alpha_s(M_Z^0)$ at LEP Using Event Shape Observables. Zeit. fur Physik. C68:519-530, 1995; A Measurement of the QCD Colour Factor Ratios C_A/C_F and T_F/C_F from Angular Correlations in Four-jet Events. Zeit. fur Physik, C65:367-377, 1995.
- [48] S. Weinberg. Phys. Rev. Lett., 19 1264, 1967.
 A. Salam. Elementary Particle Physics. N. Svartholm éditeur p. 367, Stockholm, 1968.
 S.Glashow, J. Iliopoulos, L. Maiani. Phys. Rev. D2 1285, 1970.
- [49] D. Gross, F. Wilczek. Phys. Rev. D, 8 3633, 1973.
 S. Weinberg. Phys. Rev. Lett., 31 494, 1973.
 H. Fritzsch, M. Gell-Mann, H. Leutwyler. Phys. Lett. B, 47 365, 1973.

- [50] P.W. Higgs . Phys. Rev. Lett., 13 508, 1964.
 F. ENglert, R. Brout. . Phys. Rev. Lett., 13 321, 1964.
- [51] F. Wilczek. The Future of Particle Physics as a Natural Science. IASSNS-HEP 97/11, 1997.
- [52] N. Seiberg. The superworld. hep-th/9802144, 1998.
- [53] Martin F. Sohnius. Introducing Supersymmetry. Physics Reports, Rev. Sec. Phys. Lett., 128 Nos. 2 & 3:39-204, 1985.
- [54] G. R. Farrar. Status of Light Gaugino Scenarios. hep-ph/9710277, 1997; Are Light Gluinos Dead?. hep-ph/9707467, 1997.
- [55] Zoltán Nagy, Zoltán Trócsányi. Excluding light gluinos using four-jet LEP events: a next-to-leading order result. hep-ph/9708343, 1997.
 Stefano Moretti, Ramon Muñoz-Tapia, Kosuke Odagiri. Gluino signals in 4jet events and vertex tagging at LEP I. hep-ph/9709295, 1997.

Appendice A

Algorithme de minimisation

Pour ajuster les valeurs de f_q , nous avons développé un algorithme de minimisation. Nous en exposons ici le principe.

Notre algorithme est basé sur le fait qu'au minimum d'une fonction, les différentielles gauche et droite sont égales:

$$\lim_{\Delta x \to 0} f(x + \Delta x) = \lim_{\Delta x \to 0} f(x - \Delta x)$$
(A.1)

$$dy_+ = dy_- \tag{A.2}$$

Nous procédons numériquement, par itérations, pour trouver le point x, pour lequel la différence des différentielles est inférieure à une certaine tolérance Δdy_{min} .

La figure A-1 présente l'organigramme de l'algorithme. On fixe premièrement la valeur seuil Δdy_{min} . Dans notre minimisation du χ^2 , nous avons utilisé $\Delta dy_{min} =$ 0,001. Cette valeur demeure constante contrairement au pas Δx , et bien sûr, à la valeur x de même que sa fonction à minimiser f(x). Toujours pour notre minimisation du χ^2 , nous avons pris $\Delta x = 0,05$ comme pas de départ, la valeur initiale $x = x_{init}$, quant à elle, a été déterminée par un échantillonnage sur son domaine pour trouver la région du minimum.

L'algorithme débute par le calcul des différentielles et de leur différence, dy_-, dy_+ et Δdy . Si $\Delta dy = 0$, la minimisation est terminée, sinon, on calcule le pas d'incrémentation $\Delta x'$, à partir des valeurs des différentielles et de celle du pas Δx . Cette astuce permet de varier le pas d'incrémentation à chaque itération, en fonction de la variation de la pente de la courbe. Dans le cas des courbes de χ^2 , plus on approche du minimum, plus le rapport $\Delta dy/dy_{\mp}$ est petit, le signe de dy_{\mp} étant déterminé par la direction d'approche du minimum. En pondérant le pas Δx par ce facteur, le pas d'incrémentation sera plus faible si on est proche du minimum. Cette diminution du pas d'incrémentation permettra la convergence vers le minimum de la fonction. S'il y a dépassement du point minimum de la fonction après une itération, on reprend cette dernière itération en diminuant de moitié le pas initial. Cette boucle d'itération vers le minimum de la fonction, se poursuit jusqu'à ce que $\Delta dy < \Delta dy_{min}$.

Si le seuil de convergence $\Delta dy < \Delta dy_{min}$ est atteint, on vérifie que la fonction se trouve bien à un minimum par la condition

$$f(x-\Delta x')>f(x) \cap f(x+\Delta x')>f(x)$$
 (A.3)

Dans le cas contraire, on augmente le pas $(\Delta x = \frac{4}{3}\Delta x)$. Ceci évite que le pas initiale Δx_{init} soit trop petit pour la tolérance Δdy choisie et que le seuil de convergence soit atteint sans que la fonction soit au minimum. La résolution¹ du minimum est donnée par la largeur du pas d'incrémentation de la dernière itération.

¹À ne pas confondre avec l'erreur statistique associée au minimum du χ^2 .

Figure A-1. Organigramme de l'algorhitme de minimisation

 $\mathbf{x}\mathbf{x}\mathbf{i}$

÷.

Appendice B

Tableaux de mesures

Nous présentons ici les tableaux des mesures qui sont à l'origine des figures 5-2, et 5-3 à 5-8. La première série de tableaux contient les distributions de l'angle χ_{BZ} exprimées en nombres d'événements par canal. Il existe un tableau pour chaque valeur de y_{max}^{45} apparaissant à la figure 5-2. Les tableaux listent les distributions de l'angle χ_{BZ} pour la valeur centrale et certaines des déviations systématiques, telles qu'affichées au tableau 5-I et détaillées à la section 4.4. Enfin, pour chaque cas, les distributions des données et des simulations ERT sont présentes. Ces dernières sont divisées en événements $q\bar{q}q\bar{q}$ et $q\bar{q}gg$. Chaque cellule de tableau se décompose donc en nombre d'événements $q\bar{q}q\bar{q}$ et $q\bar{q}gg$ provenant des simulations ERT, et en nombre d'événements provenant des données selon le schéma suivant:

$q\bar{q}q\bar{q}$	$q\bar{q}gg$
Don	nées

La seconde série de tableaux contient les fractions d'événements à quatre quarks des événements à quatre jets pour les données (ex) et les simulations ERT (th), ainsi que le nombre d'événements en fonction de y_{max}^{45} et de différentes gammes des variables M_3+M_4 , M_{34} , et y^{34} . Il y a donc trois tableaux pour les trois variables et chaque cellule de tableau inclut quatre éléments selon le schéma suivant:

f_q^{ex}	nb ^{ex}
f_q^{th}	nb^{th}

	- ₀ 0	- 90	- °6	180	18° -	- 270	270 -	- 36°	36° -	- 45°	45° –	54°	54° –	63°	63° –	72°	72° –	81°	81° –	90°
	153	3250	210	3782	234	3937	311	4349	433	4881	556	5119	735	5277	880	5255	966	5515	666	5396
Valeurs centrales	17.	23	21	30	22	93	25	19	28	72	30(8	335	6	341	9	345	33	356	0
	18	811	52	1011	50	1177	91	1557	166	1906	245	2356	372	2729	518	3032	678	3453	676	3477
a) Energies recalculees	39	6t	20	72	12	30	ð	1 0	12.	18	14(30	179	4	206	9	222	30	24]	9
11 24 / 45 · · ·	153	3250	210	3782	234	3937	311	4349	433	4881	556	5119	735	5277	880	5255	966	5515	666	5396
d) $y^{-1}/y^{-2} > 4, 0$	17.	23	21	30	22	93	25	19	28	72	30(38	335	6	341	9	345	33	356	00
	144	3050	180	3537	203	3648	263	4060	385	4562	492	4772	649	4885	774	4876	888	5147	874	5055
c) ND de particules $\geq \delta$	13	44	16	82	17	52	19	14	21	69	22(32	254	4	263	33	256	91	268	36
1 1 1	78	1528	97	1816	101	1867	157	2126	230	2382	281	2711	399	2846	486	2911	627	3154	625	3099
$1) E_1 > E_2 + \sqrt{E_3}$	88	57	11	21	12	15	13	55	15	76	17;	34	19,	9	197	72	205	52	215	94
	126	2927	167	3303	201	3395	247	3682	359	4067	441	4215	578	4330	710	4325	804	4571	815	4472
g) $ \cos(\theta) \leq 0, 9$	14	47	17	92	18	88	20	19	22	59	23(32	26(14	264	12	26	12	27	51
10 - 11 - 1	185	4020	250	4779	282	4892	378	5498	526	2009	648	6216	855	6257	992	6176	1142	6405	1150	6209
h) y ²⁻ - 10%	22	00	27	65	29	22	32	40	35	72	37	34	395	15	405	36	395	85	40	94
	29	1217	62	1465	93	1611	139	1638	170	1885	213	1946	280	2047	313	1885	371	2001	347	2022
1) y ²⁻ de JADE	17	82	22	35	22	26	25	41	28	53	30	37	328	28	335	1	328	84	34.	15
	62	1238	76	1477	110	1596	138	1650	177	1835	191	1930	283	2015	296	1992	360	2064	346	2016
1) Configuration CHEIM	16	54	21	36	22	:05	23	85	26	24	30	58	32(0	31,	12	32!	50	32	54
		3				a			10								97			5

Tableau B-I. Distributions χ_{BZ} pour $y_{max}^{45} = 0,004$.

xxiii

- 90°	7041	66	4385	45	6269	13	6546	31	4002	86	5686	61	8053	49	2618	25	2583	10
81° -	1093	46	725	31	1001	46	939	35	678	28	873	35	1255	53	377	45	375	42
81°	7093	3	4317	12	7013	п	6573	0	4042)4	5772	32	8192	2	2624	65	2560	13
72° –	1079	451	718	292	1077	446	951	342	678	270	857	349	1236	521	413	435	391	424
72°	6893	9	3793	2	6842	80	6339	55	3769	35	5521	9	8036	65	2474	33	2521	52
63° –	958	449	555	267	956	443	843	346	526	258	766	342	1084	526	342	443	327	416
- 63°	1773	64	3382	85	6704	16	6208	23	3614	40	5426	47	7977	52	2585	15	2485	26
54° -	805	43	401	22	197	43	702	33	436	25	626	33	942	51	302	43	310	41
- 54°	6538	03	2895	61	6463	58	6030	85	3388	37	5254	76	7889	50	2425	54	2415	56
45°	614	40	262	18	611	39	537	29	314	22	477	30	715	48	235	39	207	39
- 45°	6148	75	2327	27	6076	26	5697	93	2981	22	5011	78	7559	56	2382	11	2257	65
36°-	470	36	177	15	469	36	408	27	247	20	383	28	570	45	184	36	189	33
- 36°	5526	56	1896	66	5459	808	5114	75	2640	23	4571	98	6941	39	2053	65	2034	141
270 -	331	32	95	11	328	32	282	24	164	17	257	25	402	41	144	32	147	30
- 270	4974	174	1438	01	4924	35	4570	95	2322	92	4209	33	6168	46	2013	54	1941	'92
18° -	254	29	51	6	252	29	215	22	109	15	216	24	311	37	104	26	121	27
- 18°	4749	31	1231	10	4703	187	4398	61	2258	22	4059	82	5980	19	1859	340	1823	715
- ₀ 6	228	27	55	2	225	36	193	21	107	14	180	22	277	36	85	38	84	22
- 9°	3961	30	954	89	3921	197	3694	65	1830	89	3523	11.	4904	14	1499	98	1505	50
- ₀ 0	170	21	22	4	169	30	159	16	06	10	140	17	205	27	72	21	87	30
		Valeurs centrales	· · ·	a) Energies recalculees		d) $y^{3^2}/y^{3^0} > 4,0$		e) Nb de particules ≥ 8		f) $E_1 > E_2 + \sqrt{E_3}$		g) $ cos(\theta) \leq 0,9$		и) у**- 10%		i) y ^{or} de JADE		I) Configuration CHEM

Tableau B-II. Distributions χ_{BZ} pour $y_{max}^{45} = 0,006$.

xxiv

 \tilde{a}

11

23

 ~ 2

	0 ⁰ – 9 ⁰	°6	- 18°	18°	- 270	270	- 36°	36° -	- 45°	45° -	- 540	54° -	- 63°	63° -	72°	72° -	- 81°	81° –	°06
-	172 4203	2 237	5046	260	5304	334	5911	474	6635	630	7100	820	7350	985	7474	1099	7685	1119	7682
valeurs centrales	2372		3033	3	293	36	311	41	54	45	15	49	44	50	1	51,	41	533	31
	22 100	5 56	1291	54	1524	95	2003	177	2462	267	3074	406	3607	570	4056	726	4614	738	4703
a) Energies recalculees	543		775	5,	18(12	623	16	96	20	02	25	56	29(87	33	17	351	11
11 34 / 45	171 4054	4 232	4861	255	5102	330	5653	471	6338	620	6780	803	7042	968	7208	1089	7414	1106	7402
d) $y^{-1}/y^{-2} > 4, 0$	2213		2845	3	660	35	389	38	58	42	44	46	51	478	80	48	53	50	55
	160 389	7 200	4643	220	4848	285	5458	411	6121	552	6512	712	6698	865	6847	965	7085	956	7097
e) Nb de particules ≥ 8	1857		2406	8	543	2,	740	31	62	33	87	37	74	39(12	39.	21	40	50
t t	90 1943	3 109	2387	112	2467	165	2819	247	3190	321	3650	444	3905	538	4102	691	4363	696	4367
1) $E_1 > E_2 + \sqrt{E_3}$	1222		1575	I	754	16	321	22	82:	25	15	28	36	29(00	30	73	32	73
	141 3716	3 186	4272	219	4444	260	4845	387	5331	490	5644	635	5820	782	5932	866	6171	892	6110
g) $ cos(\theta) \leq 0, 9$	1957		2517	8	683	36	385	32	40	34	55	37	69	38	1 6	39	63	40	19
20- 18 ()	208 520	5 286	6346	319	6576	408	7410	575	8130	732	8549	958	8653	1113	8703	1260	8879	1284	8783
м) <i>у</i> ти%	2998		3920	4	144	46	929	51	60	54	65	58	34	263	5	59	23	606	66
	73 1586	88	1961	107	2157	144	2209	189	2539	237	2617	310	2779	349	2704	422	2843	389	2853
i) y ²⁵ de JADE	2426		3153	m	290	36	327	40	154	44	58	48	84	50.	1	49.	53	51	74
Mano	88 158'	7 85	1919	123	2054	149	2172	192	2399	210	2571	313	2642	330	2711	393	2726	385	2799
1) Configuration CHEM	2290		3057	~	136	3:	372	37	.73	44	60	46	55	46	11	48	40	48'	74

Tableau B-III. Distributions χ_{BZ} pour $y_{max}^{45} = 0,008$.

xxv

24

.

	00	o6 -	°6	- 18°	18°	- 270	270 -	- 36°	36° -	- 45°	45° -	- 54°	54° -	. 63°	63° -	72°	72° -	- 81°	810 -	°06
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	174	4301	241	5184	264	5427	335	6078	475	6821	631	7314	826	7596	066	7739	1113	7946	1123	7952
valeurs centrales	2	523	69	255	ŝ	501	38	315	44	15	48	34	53	10	540	0	55	43	574	12
بن ب	22	1021	56	1319	56	1550	96	2052	177	2518	267	3142	407	3698	570	4164	729	4729	740	4841
a) Energies recalculees	5	.78	w	(21	ī	035	13	341	17	96	21	90	27.	38	315	9	35	49	38(11
34 / 45 / 4 v	172	4087	233	4908	256	5133	330	5702	471	6385	621	6835	804	7122	969	7313	1097	7515	1109	7515
a) y -/y -> 4,0	2	256	3	897	3	146	34	142	39	28	43	41	47	36	485	3	50	10	524	14
	160	3985	202	4761	222	4951	286	5595	411	6278	553	6689	715	6900	870	7067	279	7306	959	7324
e) ND de particules 2 o	1	978	3	572	3	111	29	111	33	20	36.	31	40.	53	416	9	42	50	438	69
រ រ រ រ	06	1994	111	2444	115	2522	166	2897	247	3295	321	3752	446	4029	541	4246	695	4515	697	4534
1) $E_1 > E_2 + \sqrt{E_3}$	1.	304	1	704	1	855	20	124	24	25	26	86	30	54	312	E	33	03	35()4
	141	3791	187	4359	221	4527	261	4956	387	5450	491	5777	637	5968	782	6609	874	6333	895	6291
g) $ cos(\theta) \leq 0, 9$	3	085	Ñ	696	3	858	30	39	34	44	36	77	40	49	410	90	42	57	43(57
1-1 34 100	210	5320	291	6515	323	6728	409	7610	577	8350	733	8816	996	8928	1120	9004	1275	9169	1289	9083
%01 <i>h</i> (u	3	180	4	191	4	386	48	330	54	23	58	36	62	30	631	22	63	79	65(32
1417 - 1417 - 14	73	1618	90	1999	107	2221	144	2270	192	2625	238	2687	312	2873	351	2814	424	2913	392	2934
1) y - de JADE	2	571	3	364	3	508	38	317	43	33	47	75	52	22	535	22	53	19	56(0
	88	1614	86	1950	123	2093	149	2231	192	2451	213	2624	313	2710	335	2775	395	2802	386	2877
1) Connguration Untrivi	2	407	3	229	3.	295	35	165	40	19	47	05	49	66	505	2	52	8	521	69
			2				a			,				4				4		

xxvi

12.

Tableau B-IV. Distributions χ_{BZ} pour $y_{max}^{45} = 0,010$.

	00	°6 –	- "6	- 18°	18° -	- 270	270 -	- 36°	36° -	- 45°	45° -	- 54°	54° -	. 63°	63° –	720	720 -	81°	81° –	90°
	174	4333	241	5231	265	5492	336	6150	475	6891	634	7404	828	7698	966	7843	1116	8066	1125	8064
Valeurs centrales	2	603	35	156	36	46	39	46	45	83	50	39	551	30	564	61	583	13	600	4
	22	1024	56	1324	56	1572	96	2071	177	2534	268	3177	407	3730	571	4203	729	4766	740	4896
a) Energies recaiculees	5	98	ò	45	10	78	13	87	18	56	22	68	281	52	335	32	37	31	395	υ.
· 14 / 45 · · ·	172	4098	233	4915	256	5144	331	5716	471	6398	621	6846	804	7137	971	7327	1099	7546	1109	7541
d) $y^{-1}/y^{-2} > 4, 0$	2	265	26	60	31	60	34	61	39	47	43(63	481	38	495	33	506	35	532	2
	160	4009	202	4801	223	5002	287	5651	411	6339	554	6763	717	6978	875	7149	978	7404	959	7411
e) Nb de particules $\geq \delta$	24	049	26	151	28	20	30	11	34	96	37	96	42	52	43'	73	44	54	456	80
1 1 1	60	2008	111	2467	116	2557	167	2923	247	3327	321	3802	447	4087	541	4303	698	4572	697	4600
$f) E_1 > E_2 + \sqrt{E_3}$	1.	349	17	68	19	44	20	06	25	25	28(60	32	00	325	65	34	73	364	6
	141	3806	187	4386	222	4565	262	5001	387	5492	493	5823	637	6020	785	6144	874	6403	896	6358
g) $ cos(\theta) \leq 0,9$	2	153	27	02.	29	72	31	40	35	11	38	36	42	35	43(01	44	18	457	0
2	210	5355	291	6572	324	6801	410	7705	577	8443	737	8925	968	9046	1126	9127	1278	9305	1291	9213
h) y ²⁼ - 10%	3	278	45	120	45	48	49	94	56	21	60	82	65.	54	[99]	[]	.99	62	686	3
	73	1626	90	2018	108	2237	144	2288	194	2654	238	2724	313	2906	353	2848	425	2951	395	2979
i) y ^{or} de JADE	Ř	641	34	171	36	40	39	38	44	82	49	83	54	46	561	11	55	16	583	F
	88	1624	86	1965	123	2102	149	2248	192	2470	213	2644	313	2738	335	2799	395	2830	389	2917
1) Connguration Unitim	2.	485	35	140	34	26	37	35	41	94	49	13	52	23	52	25	54	22	55.	2
										8										

xxvii

 G_{k}

24

- 88

Tableau B-V. Distributions χ_{BZ} pour $y_{max}^{45} = 0,012.$

	°0	- 9°	- ₀ 6	- 18°	18° -	- 270	270 -	- 36°	36° -	- 45°	45° -	- 54°	54° -	- 63°	63° -	72°	720 -	- 81°	81° -	°06
47 1	175	4349	241	5251	265	5517	337	6174	476	6927	635	7440	832	7759	666	7895	1122	8129	1126	8124
valeurs centrales	2	655	3	441	37	724	40	143	46	94	51	66	57	02	582	2	599	96	62(4
, њ	23	1027	56	1329	56	1578	96	2075	177	2538	269	3185	408	3748	571	4225	729	4786	740	4919
a) Energies recalculees		510	80	67	11	00	14	125	18	97	23	52	29	26	342	8	38	51	407	2
	172	4102	233	4916	256	5147	332	5717	471	6398	621	6849	805	7145	972	7333	1100	7553	1109	7547
d) $y^{-}/y^{-} > 4, 0$	2	270	2!	917	31	67	34	63	39	58	43	74	48	23	49	0	503	93	536	2
	160	4023	202	4818	223	5023	288	5672	412	6366	555	6289	718	7021	875	7193	980	7450	959	7457
e) ND de particules $\geq \delta$	2	060	2	722	28	185	30	86	35	81	39	03	43	68	45(11	45	66	472	0
3 - - -	90	2012	111	2479	116	2569	167	2935	247	3340	322	3824	449	4121	542	4331	701	4603	697	4630
1) $E_1 > E_2 + \sqrt{E_3}$	1	377	11	309	19	680	21	36	25	90	28	85	32	73	33(33	35,	27	376	2
	141	3815	187	4396	222	4577	263	5013	387	5510	493	5839	639	6048	787	6169	876	6428	896	6399
g) $ \cos(\vartheta) \leq 0, 9$	2	193	21	340	30	135	32	:16	36	61	39	26	43	44	442	93	45:	93	471	מ
1 1 1 100	211	5372	291	6593	324	6831	411	7739	578	8488	738	8964	973	9116	1129	9186	1284	9375	1294	9282
м) у ^ч 10%	3	341	4.	415	46	145	51	08	52	61	62	31	67	20	68(90	68	89	202	7
	73	1633	06	2027	108	2250	144	2294	195	2670	239	2736	315	2930	353	2867	426	2975	397	2999
1) y ² de JADE	3	702	ŝ	538	37	60,	40	150	45	96	51	25	55	67	571	2	579	84	606	0
Mallo II o Cit	88	1626	86	1972	123	2108	149	2259	192	2478	213	2649	313	2747	335	2811	395	2845	389	2933
I) Connguration Cripin	2	536	ŝ	123	34	193	35	34	42	86	50	28	53	60	53(3	56:	32	57(8

Tableau B-VI. Distributions χ_{BZ} pour $y_{max}^{45} = 0,014$.

xxviii

xxix

 $\overline{\mathbf{r}}$

- 35

ų,

57

	00 - 90	6	- 18°	18°	- 270	27°.	- 36°	36° -	- 45°	45° -	- 54°	54° -	63°	63° -	72°	72° -	- 81°	81° -	°06
	175 4357	242	5258	265	5523	337	6187	476	6947	636	7456	833	7782	666	7928	1123	8158	1127	8154
valeurs centrales	2696	ŝ	493	3,	.97	41	08	47	66	52	65	57	95	269	3	61	12	63,	16
ب ب ر ۱۱۲	23 1027	56	1329	56	1580	96	2079	177	2548	270	3190	408	3755	571	4236	729	4795	740	4932
a) Energies recalculees	618	8	176	E	16	14	45	19	32	23	92	29	75	35(2	39	35	41	88
a) 347.46 - 4 0	172 4102	233	4916	256	5147	332	5719	471	6398	621	6849	805	7146	972	7337	1101	7558	1109	7549
$a_{1}y^{-}/y^{-} > 4, 0$	2272	10	919	31	70	34	64	39	59	43	79	48	63	49,	.9	51	04	53'	2.2
	160 4031	202	4823	223	5028	288	5684	412	6382	556	6801	718	7039	875	7219	981	7472	959	7480
e) ND de particilles 2 o	2129	7	762	25	37	31	38	36	38	39	81	44	42	46(5	46	94	48	32
یا با با	90 2013	112	2480	116	2570	167	2944	247	3351	323	3832	449	4132	542	4352	701	4617	698	4648
1) $E_1 > E_2 + \sqrt{E_3}$	1402	Ĩ	838	30	26	21	27	26	29	29	33	33	80	34	es es	36	49	38	17
	141 3821	187	4399	222	4580	263	5019	387	5520	493	5848	639	6060	787	6187	877	6448	896	6415
g) $ \cos(v) \leq u, y$	2228	3	886	30	91	32	57	37	20	39	94	44	16	452	6	46	83	48	88
11 34 100	211 5381	292	6602	324	6842	411	7753	579	8517	739	8987	974	9143	1129	9222	1285	9406	1296	9313
0/лт - <u>л</u> (п	3385	4	482	47	35	51	85	58	46	63	49	68	28	69	5	70	22	72:	34
	73 1636	66	2035	108	2253	145	2300	195	2676	239	2739	315	2939	353	2876	427	2988	397	3006
1) y - ac JALA	2739	õ	602	37	89	41	20	46	55	52	07	57	33	58,	4	59	10	62:	20
	88 1631	86	1975	123	2113	149	2260	192	2483	213	2651	314	2754	335	2815	396	2853	389	2938
I) Comiguration Chilin	2570	3	471	36	49	36	689	43	57	50	66	54	34	552	6	57	61	58	30
													192						

Tableau B-VII. Distributions χ_{BZ} pour $y_{max}^{45} = 0,016$.

	00 - 90	6	⁰ – 18	0	18° –	270	270 -	- 36°	36°	- 45°	45°.	- 54°	54° .	- 63°	63° -	720	720 -	81°	81° –	°06
	175 435	59 24	4 52	69	665	5526	337	6192	476	6957	636	7463	833	7792	666	7943	1124	8171	1127	8168
valeurs centrales	2727		3539		384	6	41	51	48	\$26	55	816	55	80	60	45	62(7	64(0
μ,	23 102	88 57	7 13.	30	56	1582	96	2079	177	2548	270	3192	408	3757	571	4239	730	4799	740	4937
a) Energies recalculees	623		882		113	1	14	63	16	54	24	13	30	17	35(33	396	36	42:	9
1 34 / 45	172 410	02 23	3 49	16 2	556	5147	332	5719	471	6399	621	6850	805	7146	972	7337	1101	7560	1109	7549
d $y^{-}/y^{-} > 4, 0$	2273		2919		317	0	34	66	36	63	45	81	48	35	49	31	51(60	538	34
	160 403	33 20	4 48	31 2	23	5029	288	5686	412	6389	556	6806	718	7045	875	7228	981	7481	959	7490
e) ND de particules ≥ 8	2154		2800		297	~	31	20	36	84	40	122	45	13	46'	62	47	74	49.	55
1 1 1 1 1	90 201	14 11	4 24	85 1	116	2572	167	2945	247	3355	323	3836	449	4139	542	4360	101	4623	698	4656
1) $E_1 > E_2 + \sqrt{E_3}$	1420		1864		204	6	22	01	26	65	26	157	33	81	34	88	37()4	39.	2
	141 382	22 18	8 44	02 2	222	4583	263	5020	387	5523	493	5852	639	6062	787	6192	877	6454	896	6424
g) $ \cos(\theta) \leq 0, 9$	2252		2925		313	8	32	92	3	.70	40	37	44	80	45	94	471	55	49.	8
1 . 34	211 538	33 29	4 66	14 3	325	6847	411	7759	579	8533	739	8998	974	9157	1129	9241	1286	9422	1296	9332
и) у~ тим	3420		4534		479	5	52	34	50	15	6	113	66	25	104	32	213	32	73(0
	73 163	38 90	0 20	38	80	2254	145	2304	195	2677	239	2741	315	2948	353	2881	427	2990	397	3013
1) y ae JADE	2767		3631	_	382	4	41	80	47	08	52	68	10	88	59	69	60:	3	63.	54
Mallo	88 163	32 8(3 19	16	124	2114	149	2260	192	2483	213	2652	314	2756	335	2820	396	2857	389	2942
1) Configuration ChEW	2588		3515		358	6	39	32	4	19	5	68	5	33	56	24	582	61	294	91

Tableau B-VIII. Distributions χ_{BZ} pour $y_{max}^{45} = 0,018$.

11

- 37

34

	00 - 90	$9^{\circ} - 18^{\circ}$	$18^{\circ} - 27$	0 27	° – 36°	36°.	- 45°	45° -	540	54° -	63°	63° –	72°	720 -	- 81°	81° –	°06
	175 4361	244 5274	266 55:	336	1 6197	476	6960	636	7468	833	7802	666	7953	1124	8177	1127	8183
Valeurs centrales	2753	3573	3878		4190	46	369	53	57	595	2	610	8	62	82	65:	32
	23 1029	57 1331	56 15	32 96	2079	177	2548	270	3194	408	3757	571	4242	730	4801	740	4940
a) Energies recalculées	625	887	1141		1478	16	972	24	35	305	6	359	5	40	28	42	72
	172 4102	233 4916	256 51	17 332	61/2	471	6399	621	6850	805	7147	972	7338	1101	7560	1109	7549
d) $y^{-\pi}/y^{-2} > 4, 0$	2273	2919	3170		3466	36	965	43	81	485	80	496	32	51	11	53(88
	160 4034	204 4832	223 50:	30 286	5688	412	6391	556	6808	718	7051	875	7236	981	7484	959	7500
e) Nb de particules ≥ 8	2177	2828	3003		3204	3,	719	40	61	45'	L	473	14	48	30	498	35
	90 2015	114 2488	117 25	72 168	\$ 2947	247	3356	323	3839	449	4146	542	4365	701	4627	698	4664
f) $E_1 > E_2 + \sqrt{E_3}$	1437	1884	2065		2219	26	396	29	87	342	7	352	12	37.	49	39(31
	141 3822	188 4403	222 45	33 265	5023	387	5524	493	5854	639	6066	787	6199	877	6457	968	6429
g) $ cos(\theta) \leq 0,9$	2275	2951	3156		3320	36	301	40	26	45	6	464	12	48	08	49,	12
2	211 5385	294 6619	326 68.	50 412	3 7766	579	8538	739	9003	974	9169	1129	9253	1286	9430	1296	9347
h) у ^{~-} - 10%	3447	4573	4827		5277	55	960	64	68	104	14	713	33	72	60	74	34
	73 1640	90 2040	108 22	55 145	2306	195	2677	240	2745	315	2952	353	2883	427	2991	397	3018
1) y ^{2 -} de JAUE	2788	3664	3852		4210	4'	747	53	07	58	2	603	00	61	00	64	10
	88 1633	86 1976	124 21	15 150) 2261	192	2483	213	2653	315	2756	335	2820	396	2860	389	2942
I) Configuration CHEM	2607	3545	3617		3963	44	452	52	10	558	33	56	8	59	00	60	28
		(3			2							3					

Tableau B-IX. Distributions χ_{BZ} pour $y_{max}^{45} = 0,020$.

xxxi

	00	- 6 -	- °6	- 18°	18°	- 270	270 -	- 36°	36° -	- 45°	450 -	. 54°	54° -	- 63°	63° –	72°	72° –	81°	81° –	90°
	176	4361	244	5277	266	5527	338	6201	476	6963	636	7471	833	7806	666	7957	1124	8182	1127	8187
Valeurs centrales	2	772	3(610	36	104	42	15	49	03	53	26	69	87	615	22	633	35	65	مر
بخ ب	24	1029	23	1331	56	1582	96	2080	177	2549	270	3195	408	3759	571	4242	730	4803	740	4940
a) Energies recalculees		329	80	93	11	48	14	84	19	83	24	49	30	73	362	11	405	99	43(1
	172	4102	233	4916	256	5147	332	5719	471	6399	621	6850	805	7147	972	7338	1101	7560	1109	7549
d) $y^{3}/y^{3} > 4,0$	3	273	25	919	31	20	34	99	39	65	43	81	48	39	496	32	511	3	539	0
	161	4034	204	4834	223	5030	288	1693	412	6393	556	6809	718	7053	875	7238	981	7488	959	7502
c) ND de particules $\geq \delta$	2	190	28	862	30	119	32	26	37	47	40	86	45.	68	475	3	48'	74	503	33
	16	2015	114	2488	117	2572	168	2948	247	3357	323	3841	449	4149	542	4367	701	4629	869	4668
f) $E_1 > E_2 + \sqrt{E_3}$	1	446	1	900	30	22(22	31	27	15	30	02	34	46	355	0	37	6/	396	5
	141	3822	188	4404	222	4583	263	5024	387	5525	493	5855	639	6067	787	6201	877	6459	896	6429
g) $ cos(\theta) \leq 0, 9$	5	293	2	983	31	74	33	(39	38	28	41	02	45	60	46	72	48	51	50(6
2007 18	212	5385	294	6622	326	6850	412	0277	579	8541	739	9006	974	9173	1129	9257	1286	9435	1296	9351
h) y ²⁻ - 10%	ŝ	466	4	610	48	353	53	302	29	94	64	98	20	36	718	0	726	32	74	4
	74	1640	90	2041	108	2255	145	2307	195	2678	240	2747	315	2955	353	2885	427	2993	397	3020
1) y ^{or} de JADE	8	805	3	698	36	778	42	35	47	79	53	44	58	94	606	35	61	52	64	9
	88	1633	86	1977	124	2115	150	2262	192	2483	213	2655	315	2756	335	2821	396	2860	389	2942
1) Configuration CHEM	8	624	3	564	36	341	39	385	44	77	52	43	56	41	57:	12	593	37	60	9
												2								

xxxii

2.16

12.5

Tableau B-X. Distributions χ_{BZ} pour $y_{max}^{45} = 0,022$.

xxxiii

÷.

	0° – 9°	$9^{\circ} - 18^{\circ}$	$18^{\circ} - 27$	2	7° - 36°	36°	- 45°	45°	- 54°	54° -	63°	63° –	720	720 -	- 81°	81° –	°06
	176 4361	244 5277	266 55:	27 33	8 6201	476	6964	636	7476	833	7811	666	1961	1124	8185	1127	8188
Valeurs centrales	2781	3628	3920		4230	4	1913	54	30	60	4	618	32	63	63	661	0
	24 1029	57 1331	56 158	32 96	3 2080	177	2549	270	3196	408	3760	571	4242	730	4804	740	4940
a) Energies recalculees	629	895	1153		1485		986	24	63	30	32	364	11	40	74	432	5
	172 4102	233 4916	256 51	17 33	2 5719	9 471	6399	621	6850	805	7147	972	7338	1101	7560	1109	7549
d) $y^{3}/y^{3} > 4, 0$	2273	2919	3170		3466		3965	43	81	48	68	496	32	51	13	535	0
	161 4034	204 4834	223 50:	30 28	8 5691	412	6394	556	6810	718	7055	875	7242	981	7489	959	7502
e) Nb de particules ≥ 8	2198	2875	3034		3239		3754	41	10	46	1	479	94	48	94	505	3
	91 2015	114 2488	117 25'	72 16	8 2948	8 247	3358	323	3844	449	4151	542	4370	701	4630	698	4669
1) $E_1 > E_2 + \sqrt{E_3}$	1451	1911	2087		2240		2718	30	20	34	00	356	39	37	66	400	0
	141 3822	188 4404	222 45	33 26	3 5024	4 387	5526	493	5857	639	6909	787	6202	877	6459	896	6429
g) $ cos(\theta) \leq 0.9$	2300	2998	3188		3348		3837	41	23	45	62	469	92	48	75	202	12
200 11	212 5385	294 6622	326 68	50 41	2 777	0 579	8542	739	9011	974	9178	1129	9261	1286	9438	1296	9352
п) у~ 10%	3475	4628	4869		5317		3004	65	31	02	33	72(20	72	90	751	2
	74 1640	90 2041	108 22	56 14	5 230	3 195	2679	240	2748	315	2958	353	2886	427	2995	397	3020
1) y ²² de JADE	2810	3718	3890		4252		1797	53	:73	59	20	606	90	61	82	649	00
	88 1633	86 1977	124 21	15 15	0 226	2 192	2483	213	2655	315	2757	335	2821	396	2860	389	2942
1) Configuration CHEM	2629	3577	3655		4004	1	1504	52	68	56	38	22	60	59	74	61.	4
10												1				æ	

Tableau B-XI. Distributions χ_{BZ} pour $y_{max}^{45} = 0,024$.
xxxiv

19

	°0	°6 –	°6	- 18°	18°	- 270	270 -	- 36°	36° -	- 45°	45° -	- 54°	54° -	63°	63° –	720	720 -	- 81°	81° -	°06 -
	176	4361	244	5277	266	5527	338	6202	476	6966	636	7479	833	7812	666	1961	1124	8187	1127	8190
valeurs centrales	2	786	3(335	36	924	42	40	49	23	54	47	60	88	62(55	63	94	99	37
	24	1029	57	1331	56	1582	96	2080	177	2549	270	3197	408	3760	571	4242	730	4806	740	4940
a) Energies recalculees	e	30	8	96	11	54	14	86	19	89	24	67	30	20	365	54	40	91	43	37
11 34 / 46 · · ·	172	4102	233	4916	256	5147	332	6113	471	6399	621	6850	805	7147	972	7338	1101	7560	1109	7549
d) $y^{-}/y^{-} > 4, 0$	2	273	26	919	31	70	34	66	39	65	43	81	48	68	496	32	51	13	53	90
	161	4034	204	4834	223	5030	288	5692	412	6396	556	6812	718	7056	875	7242	981	7490	959	7504
e) ND de particules $\geq \delta$	2	202	28	881	30	38	32	48	37	62	41	21	46	32	481	13	49	19	50	74
]] ;	16	2015	114	2488	117	2572	168	2948	247	3358	323	3845	449	4151	542	4370	701	4632	698	4671
1) $E_1 > E_2 + \sqrt{E_3}$	1	454	16	913	30	88	22	43	27	23	30	29	34	77	358	32	38	18	40	14
	141	3822	188	4404	222	4583	263	5024	387	5526	493	5858	639	6070	787	6202	877	6459	896	6429
g) $ cos(\theta) \leq 0, 9$	3	305	3(005	31	.91	33	57	38	46	41	34	45	96	47(8	48	66	50	62
	212	5385	294	6622	326	6850	412	1277	579	8544	739	9014	974	9179	1129	9261	1286	9440	1296	9354
wот у (ч	ŝ	480	46	335	48	373	53	27	60	14	65	48	20	37	725	30	73.	21	75	39
	74	1640	90	2041	108	2256	145	2309	195	2681	240	2748	315	2959	353	2886	427	2996	397	3021
1) y ^{or} de JADE	3	811	ŝ	728	35	391	42	61	48	90	53	90	59	0	613	12	62	60	65	22
	88	1633	86	1977	124	2116	150	2262	192	2483	213	2655	315	2757	335	2821	396	2860	389	2942
I) Comguration Unitim	2	630	38	588	36	64	40	10	45	17	52	62	56	32	576	65	59	95	19	36
9								Ι.												

Tableau B-XII. Distributions χ_{BZ} pour $y_{max}^{45} = 0,026$.

	00	- 9°	- °6	- 18°	18° -	- 270	270 -	- 36°	36° -	- 45°	45° –	- 54°	54° -	63°	63° –	720	72° –	81°	81° –	90°
	176	4361	244	5277	266	5527	338	6202	476	6966	636	7480	833	7812	666	1961	1124	8187	1127	8191
Valeurs centrales	2	790	36	342	39	29	42	46	49	31	54	56	60	6	621	80	641	4	665	80
- - -	24	1029	57	1331	56	1582	96	2080	177	2549	270	3197	408	3760	173	4242	730	4806	740	4940
a) Energies recalculees	9	30	00	97	11	54	14	87	19	91	24	12	31	02	366	2	410	6	434	9
34 / 45	172	4102	233	4916	256	5147	332	5719	471	6399	621	6850	805	7147	972	7338	1101	7560	1109	7549
d) $y^{-1}/y^{-2} > 4, 0$	2:	273	26	19	31	70	34	66	39	65	43	81	48	68	498	12	513	3	539	0
	161	4034	204	4834	223	5030	288	5692	412	6396	556	6812	718	7056	875	7242	186	7490	959	7505
e) ND de particules 2 8	2.	206	28	186	30	40	32	50	37	68	41	29	46	<u>4</u> 2	482	5	493	57	503	0
1 1 1	91	2015	114	2488	117	2572	168	2948	247	3358	323	3845	449	4151	542	4370	701	4632	698	4672
$f) E_1 > E_2 + \sqrt{E_3}$	1,	455	15	16	20	91	22	46	27.	28	30	36	34	32	358	9	38:	84	402	80
	141	3822	188	4404	222	4583	263	5024	387	5526	493	5858	639	6070	787	6202	877	6459	896	6430
g) $ \cos(\theta) \leq 0, 9$	2:	309	30	11	31	94	33	62	38	53	41	43	46) 5	471	6	491	4	202	80
20 - 14 - 1.	212	5385	294	6622	326	6850	412	1771	579	8544	739	9015	974	6179	1129	9261	1286	9440	1296	9355
m) y 10%	3.	484	46	142	48	78	53	33	60	22	65	57	20	86	724	3	734	H	756	0
	74	1640	60	2041	108	2257	145	2309	195	2681	240	2748	315	2959	353	2886	427	2996	397	3021
1) y ²⁺ de JADE	3	812	37	733	38	66	42	68	48	16	53	95	59	51	613	0	623	00	653	9
	88	1633	86	1977	124	2116	150	2262	192	2483	213	2655	315	2757	335	2821	396	2860	389	2942
1) Connguration Crizim	2(635	35	192	36	12	40	17	45	23	52	96	56	92	578	0	603	3	615	2

Tableau B-XIII. Distributions χ_{BZ} pour $y_{max}^{45} = 0,028$.

XXXV

 \mathbf{x}

۰,

 ± 2

xxxvi

	00	°6 –	- °6	- 18°	18°	- 270	270 -	- 36°	36° -	- 45°	45° –	54°	54° -	63°	63° -	72°	72° -	- 81°	81° –	90°
	176	4361	244	5277	266	5528	338	6202	476	6966	636	7480	833	7812	666	1961	1124	8187	1127	8191
valeurs centrales	3	790	š	345	36	34	42	49	49	37	540	35	60	69	622	7	64	22	666	99
	24	1029	57	1331	56	1582	96	2080	177	2549	270	3197	408	3760	571	4242	730	4806	740	4940
a) Energies recalculees		330	80	98	Ħ	57	14	88	19	91	24	76	31(96	36(80	41	11	436	4
11 34 / 45 / 4	172	4102	233	4916	256	5147	332	5719	471	6399	621	6850	805	7147	972	7338	1101	7560	1109	7549
$a_{1}y^{-}/y^{-} > 4,0$	2	273	28	919	3]	70	34	66	39	65	438	18	48	39	498	32	51	13	536	0
	161	4034	204	4834	223	5031	288	5692	412	6396	556	6812	718	7056	875	7242	981	7490	959	7505
c) ND de particules $\geq \delta$	2	206	28	389	3(145	32	53	37	73	41:	36	46	50	48;	11	49	43	505	95
	91	2015	114	2488	117	2573	168	2948	247	3358	323	3845	449	4151	542	4370	104	4632	698	4672
$f) E_1 > E_2 + \sqrt{E_3}$	1	455	19	918	2(92	22	47	27	31	30	12	34	36	359	33	38	39	403	0
0000000	141	3822	188	4404	222	4584	263	5024	387	5526	493	5858	639	6070	787	6202	877	6459	896	6430
g) $ cos(\theta) \leq 0, 9$	5	309	3(014	31	98	33	64	38	58	41	51	46	12	47;	88	49	24	508	34
1 34 07	212	5385	294	6622	326	6851	412	1277	579	8544	739	9015	974	9179	1129	9261	1286	9440	1296	9355
%от <i>ћ</i> (ч	3	484	46	345	48	883	53	36	60	28	65(36	111	98	72(52	73	49	756	8
1 34 1 TADE	74	1640	90	2041	108	2258	145	2309	195	2681	240	2748	315	2959	353	2886	427	2996	397	3021
1) y - de JAUE	8	816	3,	734	36	10	42	570	48	22	54(4	59	60	613	38	62	41	654	18
	88	1633	86	1977	124	2116	150	2262	192	2483	213	2655	315	2757	335	2821	396	2860	389	2942
I) Configuration CHEM	3	636	38	265	36	375	40	121	45	30	53) 5	56	98	576	32	60	22	61(34
19	3							a				3								

Tableau B-XIV. Distributions χ_{BZ} pour $y_{max}^{45} = 0,030$.

xxxvii

				Gamme	es de la v	ariable	$M_{3}+M_{4}$		*
y_{max}^{45}		0,06 -	0,10	0,10 -	- 0,14	0,14 -	- 0, 18	0,18-	0,22
	ex	0,198	2955	0,142	14791	0,166	8340	0,062	2016
0,004	th	0,258	4989	0,119	28586	0,045	16180	0,024	3047
	ex	0,180	3706	0,144	18055	0,196	10980	0,131	3602
0,006	th	0,219	6227	0,107	33682	0,040	19937	0,021	4669
	ex	0,171	4173	0,145	19874	0,211	12273	0,218	4486
0,008	th	0,206	6683	0,103	35380	0,039	20929	0,020	5240
	ex	0,186	4474	0,142	21137	0,214	12983	0,250	4982
0,010	th	0,201	6893	0,102	36080	0,039	21241	0,020	5462
	ex	0,175	4695	0,149	21964	0,231	13456	0,285	5237
0,012	th	0,199	6994	0,101	36382	0,039	21350	0,019	5527
	ex	0,184	4830	0,156	22557	0,241	13755	0,288	5407
0,014	th	0,198	7036	0,101	36506	0,039	21398	0,019	5555
	ex	0,190	4930	0,159	22989	0,243	13968	0,299	5505
0,016	th	0,197	7055	0,101	36570	0,039	21424	0,019	5563
	ex	0,203	5016	0,162	23324	0,247	14145	0,308	5557
0,018	th	0,197	7069	0,100	36598	0,039	21439	0,019	5566
	ex	0,204	5072	0,166	23574	0,249	14283	0,310	5602
0,020	th	0,197	7077	0,100	36617	0,039	21444	0,019	5567
	ex	0,204	5112	0,164	23732	0,248	14386	0,312	5636
0,022	th	0,196	7081	0,100	36621	0,039	21449	0,019	5567
	ex	0,202	5142	0,165	23836	0,250	14453	0,313	5651
0,024	th	0,196	7082	0,100	36624	0,039	21450	0,019	5567
	ex	0,203	5154	0,168	23922	0,254	14497	0,312	5660
0,026	th	0,196	7082	0,100	36625	0,039	21450	0,019	5567
0.000	ex	0,204	5168	0,170	23971	0,255	14525	0,312	5669
0,028	th	0,196	7082	0,100	36625	0,039	21450	0,019	5567
0.000	ex	0,204	5174	0,170	23999	0,256	14546	0,311	5675
0,030	th	0,196	7082	0,100	36625	0,039	21450	0,019	5567

Tableau B-XV. Valeurs des f_q expérimentaux et théoriques ainsi que le nombre d'événements en fonction de y_{max}^{45} pour différentes gammes de la variable M_8+M_4 .

				Gam	mes de l	a variab	le M_{34}		14
y_{max}^{45}		0,02 -	0,05	0,05 -	- 0, 08	0,08 -	- 0, 12	0,12 -	- 0, 20
0.004	ex	0,233	4696	0,229	10916	0,122	8434	-0,05	4116
0,004	th	0,152	6946	0,109	20723	0,098	16667	0,073	8419
0.000	ex	0,221	5703	0,233	14099	0,120	11236	-0,01	5506
0,006	th	0,138	8116	0,097	24989	0,085	20773	0,063	10659
0.000	ex	0,220	6280	0,231	15696	0,138	12845	0,033	6329
0,008	th	0,134	8475	0,093	26241	0,081	22237	0,060	11366
0.010	ex	0,226	6660	0,231	16724	0,143	13841	0,047	6805
0,010	th	0,133	8605	0,091	26764	0,079	22790	0,059	11635
0.010	ex	0,227	6934	0,230	17375	0,160	14511	0,073	7057
0,012	th	0,132	8659	0,091	26987	0,078	23007	0,059	11736
0.014	ex	0,230	7115	0,235	17836	0,168	14921	0,090	7246
0,014	th	0,131	8696	0,091	27072	0,078	23100	0,059	11771
0.010	ex	0,232	7267	0,237	18182	0,169	15195	0,099	7355
0,016	th	0,131	8715	0,091	27115	0,078	23139	0,059	11790
0.010	ex	0,234	7397	0,238	18442	0,173	15386	0,113	7443
0,018	th	0,131	8728	0,091	27139	0,078	23161	0,059	11792
0.000	ex	0,229	7478	0,238	18624	0,182	15561	0,120	7511
0,020	th	0,131	8736	0,091	27149	0,078	23168	0,059	11800
0.000	ex	0,224	7533	0,235	18763	0,184	15671	0,121	7553
0,022	th	0,131	8738	0,090	27154	0,078	23173	0,059	11801
0.004	ex	0,223	7563	0,235	18861	0,187	15733	0,124	7582
0,024	th	0,131	8739	0,090	27154	0,078	23177	0,059	11802
0.000	ex	0,223	7576	0,236	18923	0,191	15790	0,129	7607
0,026	th	0,131	8739	0,090	27154	0,078	23178	0,059	11802
0.000	ex	0,223	7584	0,237	18966	0,194	15833	0,130	7616
0,028	th	0,131	8739	0,090	27154	0,078	23178	0,059	11802
0.000	ex	0,223	7587	0,238	18995	0,195	15857	0,130	7621
0,030	th	0,131	8739	0,090	27154	0,078	23178	0,059	11802

Tableau B-XVI. Valeurs des f_q expérimentaux et théoriques ainsi que le nombre d'événements en fonction de y_{max}^{45} pour différentes gammes de la variable M_{34} .

	•
*****	124 32
XX	XIX.
of the state	

				Gam	nes de la	variabl	e y ³⁴		
y_{max}^{45}		0,02 -	- 0, 03	0,03 -	- 0,04	0,04 -	- 0,06	0,06 -	0,10
0.004	ex	0,172	16632	0,198	6348	0,185	4123	0,356	1232
0,004	th	0,098	29607	0,105	12157	0,119	8554	0,127	2662
0.000	ex	0,173	21130	0,201	8370	0,193	5552	0,351	1704
0,006	\mathbf{th}	0,088	35549	0,092	15028	0,101	10791	0,108	3456
0.000	ex	0,179	23557	0,199	9379	0,191	6428	0,352	2016
0,008	\mathbf{th}	0,084	37415	0,088	15913	0,096	11570	0,102	3723
0.010	ex	0,182	25070	0,195	10064	0,214	6923	0,338	2210
0,010	\mathbf{th}	0,083	38164	0,087	16255	0,094	11837	0,099	3847
0.010	ex	0,189	26044	0,203	10515	0,220	7246	0,333	2319
0,012	th	0,082	38447	0,086	16406	0,094	11965	0,098	3882
0.014	ex	0,194	26686	0,211	10814	0,238	7464	0,325	2403
0,014	th	0,082	38579	0,086	16469	0,093	12003	0,098	3900
0.016	ex	0,200	27154	0,214	11026	0,231	7616	0,330	2453
0,010	th	0,082	38643	0,086	16490	0,093	12028	0,098	3909
0.019	ex	0,205	27495	0,218	11187	0,233	7731	0,328	2503
0,010	th	0,082	38672	0,086	16505	0,093	12039	0,098	3915
0.000	ex	0,205	27738	0,223	11306	0,234	7836	0,328	2541
0,020	th	0,082	38693	0,086	16510	0,093	12044	0,098	3917
0.000	ex	0,203	27910	0,224	11391	0,232	7903	0,320	2564
0,022	th	0,082	38700	0,086	16512	0,093	12048	0,098	3917
0.094	ex	0,203	28004	0,224	11449	0,234	7953	0,312	2581
0,024	th	0,082	38703	0,086	16515	0,093	12048	0,098	3917
0.096	ex	0,204	28042	0,227	11505	0,238	7999	0,310	2599
0,020	th	0,082	38703	0,086	16515	0,093	12049	0,098	3917
0.099	ex	0,205	28059	0,228	11549	0,241	8035	0,305	2606
0,028	th	0,082	38703	0,086	16515	0,093	12049	0,098	3917
0.020	ex	0,205	28065	0,229	11584	0,241	8053	0,309	2608
0,030	th	0,082	38703	0,086	16515	0,093	12049	0,098	3917

Tableau B-XVII. Valeurs des f_q expérimentaux et théoriques ainsi que le nombre d'événements en fonction de y_{max}^{45} pour différentes gammes de la variable y^{34} .