Université de Montréal

Étude des régulateurs potentiels de la fixation de l'azote chez la bactérie photosynthétique, *Rhodobacter capsulatus*.

par

Mélanie Morel

Département de microbiologie et immunologie

Faculté de médecine

Mémoire présenté à la Faculté des études supérieures en vue de l'obtention du grade de Maître ès sciences (M.Sc.) en microbiologie et immunologie

juillet, 2001

© Mélanie Morel, 2001

W N58 2001 N.113

Identification du jury

Université de Montréal Faculté des études supérieures

Ce mémoire intitulé :

Étude des régulateurs potentiels de la fixation de l'azote chez la bactérie photosynthétique, *Rhodobacter capsulatus*.

présenté par :

Mélanie Morel

a été évalué par un jury composé des personnes suivantes :

Président du jury : Dr. Elliot Drobetsky

Directeur de recherche : Dr. Patrick C. Hallenbeck

Membre du jury : Dr. Pierre Belhumeur

Mémoire accepté le :....

SOMMAIRE

Rhodobacter capsulatus est une bactérie photosynthétique pourpre nonsulfureuse qui a le pouvoir de fixer l'azote diatomique en conditions anaérobies ou microaérophiles lorsque le niveau intracellulaire d'azote fixé est limitant. Les bactéries capables de fixer l'azote contiennent au moins 17 gènes *nif* dont les gènes *nifHDK* qui codent pour la nitrogénase. La régulation des gènes *nif* qui est nécessaire à la fixation de l'azote semble plus complexe chez *Rhodobacter capsulatus* que chez les autres bactéries diazotrophes.

Le séquençage du génome de *Rhodobacter capsulatus* nous a permis d'identifier d'autres régulateurs potentiels qui sembleraient être impliqués dans le processus de la fixation de l'azote. Parmi les gènes d'intérêts que nous avons pu identifier par des recherches d'homologies sont des analogues de NtcA (29% d'identité, 39% de similarité) et NtrX (52% d'identité, 68% de similarité). Chez la cyanobactérie *Anabaena*, le régulateur NtcA est nécessaire pour une régulation globale de l'azote. Quant au régulateur NtrX, il est essentiel pour exprimer les gènes *nif* en l'absence d'azote fixé chez la bactérie symbiotique *Azorhizobium*.

Afin d'étudier la fonction de ces régulateurs potentiels chez *Rhodobacter* capsulatus, nous avons tout d'abord amplifié les gènes *ntcA* et *ntrX* par la technique du PCR. Par la suite, nous avons cloné ces gènes dans le vecteur plasmidique approprié. Après avoir inséré une cassette dans les gènes, nous avons cloné ces interposons dans le vecteur suicide pSUP202. Une souche *Rhodobacter* capsulatus mutante pour le gène *ntcA* a été créée par transconjugaison. Cependant, nous n'avons pas réussi à obtenir une souche mutante pour le gène *ntrX*. Cette mutation semble être létale pour la bactérie.

La mutation dans le gène ntcA semble affecter de façon minime la croissance totale de *R. capsulatus* lorsqu'elle est cultivée sous diverses conditions de source d'azote. Le gène ntcA semble être exprimé chez *R. capsulatus*. De plus, d'après nos résultats, nous pensons que NtcA pourrait être un régulateur. Chez *R. capsulatus*, NtcA ne semble pas réguler la synthèse de l'enzyme qui est

responsable de la fixation de l'azote; la nitrogénase. De plus, la régulation de l'activité de la glutamine synthétase, enzyme impliquée dans l'assimilation de l'azote ammoniacal, n'est pas sous le contrôle de ce régulateur. Cependant, NtcA semble contrôler l'expression de certaines protéines périplasmiques chez R. *capsulatus*.

Mots clés : Rhodobacter capsulatus, fixation de l'azote, gènes régulateurs.

TABLE DES MATIÈRES

SOMMAIRE	i
TABLE DES MATIÈRES	iii
LISTE DES TABLEAUX	vi
LISTE DES FIGURES	vii
LISTE DES ABRÉVIATIONS	ix
CHAPITRE I - REVUE DE LA LITTÉRATURE	1
1.1 LE CYCLE DE L'AZOTE	2
1.1.1 Le processus de nitrification	2
1.1.2 La dénitrification	2
1.2 L'AZOTE AMMONIACAL	3
1.2.1 La glutamate synthase	4
1.2.2 La glutamine synthétase	4
1.3 LA FIXATION DE L'AZOTE	5
1.3.1 Biochimie de la nitrogénase à molybdène	5
1.3.2 Systèmes alternatifs de la nitrogénase	7
1.4 L'ORGANISATION GÉNÉTIQUE DES GÈNES nif	7
1.5 LES VOIES DE RÉGULATION DES GÈNES <i>nif</i>	12
1.5.1 Le système Ntr	12
1.6 NOUVEAUX SYSTÈMES RÉGULATEURS DE L'AZOT	E 15
1.6.1 Contrôle de l'azote chez les cyanobactéries	15
1.6.2 Nouveau système à deux composantes	18
1.7 PROJET DE RECHERCHE	20
CHAPITRE II - MATÉRIEL ET MÉTHODES	21
2.1 MILIEUX DE CULTURE	22
2.2 SOLUTIONS	24
2.3 TAMPONS	26
2.4 SOUCHES BACTÉRIENNES ET PLASMIDES UTILISÉ	S 28

2.5 MÉTHODES DE MANIPULATION DE L'ADN	30
2.5.1 Extraction de l'ADN génomique	30
2.5.2 Extraction de l'ADN plasmidique	30
2.5.3 Amplification d'ADN par PCR	31
2.5.4 Digestion de l'ADN par les enzymes de restrictions	33
2.5.5 Traitement à la phosphatase alcaline	33
2.5.6 Traitement à la Klenow	34
2.5.7 Méthode "Gene Clean" de purification de l'ADN	34
2.5.8 Méthode de ligation	34
2.5.9 Transformation d'Escherichia coli	35
2.5.10 Gel d'agarose	36
2.6 PROCÉDURES DE CLONAGE	36
2.7 TRANSCONJUGAISON	37
2.7.1 Biparentale	37
2.7.2 Triparentale	38
2.8 CONDITIONS DE CULTURE	39
2.9 DOSAGES D'ACTIVITÉS ENZYMATIQUES	40
2.9.1 Dosage de l'activité de la β-galactosidase	40
2.9.2 Dosage de la glutamine synthétase	40
2.10 MÉTHODES D'ANALYSES DES PROTÉINES	41
2.10.1 Extraction des protéines	41
2.10.2 Dosage protéique selon Bradford	42
2.10.3 Électrophorèse en gel de polyacrylamide avec SDS	42
2.10.4 Électrophorèse en gel de polyacrylamide en 2-D	42
2.11 SÉQUENÇAGE	43
CHAPITRE III - RÉSULTATS	44
3.1 LES GÈNES ntcA ET ntrX CHEZ RHODOBACTER	
CAPSULATUS	45
3.2 CRIBLAGE ET VÉRIFICATION DES DOUBLES	
RECOMBINANTS	46

3.3 CROISSANCE DE LA SOUCHE MUTANTE RCMMA14 SO	US
DIVERSES CONDITIONS DE CULTURE	48
3.4 ÉTUDES SUR L'ACTIVITÉ DU PROMOTEUR <i>ntcA</i> DE	
RcMMA14	51
3.5 EXPRESSION DU GÈNE <i>nifH</i> CHEZ LE MUTANT	
RcMMA14	52
3.6 ÉTUDES SUR L'ACTIVITÉ DE L'ENZYME GLUTAMINE	
SYNTHÉTASE CHEZ RcMMA14	53
3.7 ANALYSES SUR LE PROFIL DES PROTÉINES	55
3.8 SÉQUENÇAGE DES PROTÉINES	59
CHAPITRE IV - DISCUSSION	60
CONCLUSION	66
BIBLIOGRAPHIE	67
ANNEXE I	xi
ANNEXE II	xiii
ANNEXE III	XV
REMERCIEMENTS	xvi

LISTE DES TABLEAUX

- Tableau I.
 Produits des gènes nif et leurs fonctions connues ou proposées.
- **Tableau II.**Concentration finale des antibiotiques ajoutés au milieu de culture
d'*Escherichia coli* ou de *Rhodobacter capsulatus*.
- Tableau III. Descriptions et provenances des souches bactériennes utilisées.
- Tableau IV. Descriptions et provenances des plasmides utilisés.
- Tableau V.
 Amorces utilisées lors de l'amplification de l'ADN par PCR.

LISTE DES FIGURES

- Figure 1. Le cycle de l'azote.
- Figure 2. Organisation et structure de la nitrogénase à molybdène.
- Figure 3. Comparaison de l'organisation des gènes nif de (A) K. pneumoniae,(B) A. vinelandii et (C) R. capsulatus.
- Figure 4. Organisation des gènes *nif* chez les cellules végétatives et les hétérocystes d'*Anabaena*.
- Figure 5.Régulation de la transcription des gènes nif chez Rhodobactercapsulatus contrôlée au niveau de l'azote et de l'oxygène.
- Figure 6. Alignement de séquences en acides aminés de NtcA et de protéines régulatrices semblables à NtcA.
- Figure 7. Étude comparative de séquences en acides aminés de NtrC et NtrX.
- Figure 8. Fragment d'ADN amplifié (*ntcA*) de 1.5 kb chez *R. capsulatus*.
- Figure 9. Fragment d'ADN amplifié (*ntrX*) de 2.2 kb chez *R. capsulatus*.
- Figure 10. Photo du gel du PCR sur l'ADN génomique de R. capsulatus.
- Figure 11. Croissance de *R. capsulatus* SB1003 et de la souche mutante RcMMA14 sous diverses conditions de source d'azote.

- Figure 13. Expression de l'activité β -galactosidase de la fusion *ntcA-lacZ* chez *R. capsulatus* sous différentes conditions de source d'azote.
- Figure 14. Expression de l'activité β -galactosidase de la fusion *nifH-lacZ* chez *R. capsulatus* sous diverses conditions de source d'azote.
- Figure 15. L'activité de la glutamine synthétase chez *R. capsulatus*.
- Figure 16. Analyse des protéines périplasmiques par électrophorèse en gel de polyacrylamide avec SDS obtenues sous condition anaérobie avec N₂O comme accepteur d'électrons.
- Figure 17. Profil des protéines périplasmiques par électrophorèse en gel de polyacrylamide avec SDS obtenues sous plusieurs conditions de culture.
- Figure 18. Profil des protéines totales par électrophorèse en gel de polyacrylamide avec SDS obtenues sous plusieurs conditions de culture.
- Figure 19. Séparation des protéines périplasmiques par électrophorèse en gel de polyacrylamide en deux dimensions obtenues en condition d'azote limité.
- Figure 20. Arbre phylogénétique représentant la famille des régulateurs FNR-CRP et leurs homologues.

LISTE DES ABRÉVIATIONS

ADN	acide désoxyribonucléique
ADP	adénosine diphosphate
AMP	adénosine 5'-monophosphate
Ap ^r	résistance à l'ampicilline
ARN	acide ribonucléique
ATP	adénosine triphosphate
BSA	bovine sérum albumine
°C	degré Celsius
Cm ^r	résistance au chloramphénicol
СТАВ	hexadécyltriméthylammonium bromide
DMSO	diméthylsulfoxyde
dNTP	mélange des quatre désoxyribonucléosides triphosphates
D.O.	densité optique
EDTA	acide éthylènediamine tétra acétique
g	gramme
Gm ^r	résistance à la gentamycine
kb	kilopaires de bases
kDa	kilodalton
Km ^r	résistance à la kanamycine
mg	milligramme
min	minute
ml	millilitre
MOPS	morpholinopropane sulfonique acide
ONPG	2-nitrophényl-β-D-galactopyranoside
pb	paire de bases
P.M.	poids moléculaire
PVDF	polyvinylidène difluoride
Rif ^r	résistance à la rifampicine

RNase	ribonucléase
RPM	révolution par minute
SDS	sodium dodécyl sulfate
SDS-PAGE	électrophorèse en gel de polyacrylamide avec sodium dodécyl
	sulfate
sec	seconde
TAE	tampon Tris-Acétate-EDTA
TCA	trichloroacétique acide
Tc ^r	résistance à la tétracycline
TE	tampon Tris-EDTA
μg	microgramme
μl	microlitre
UMP	uridine 5'-monophosphate
X-gal	5-bromo-4-chloro-3-indolyl-β-D-galactoside

х

CHAPITRE I

REVUE DE LA LITTÉRATURE

1.1 LE CYCLE DE L'AZOTE.

Dans la nature, l'azote est disponible à différents degrés d'oxydation, où il y a toujours une succession entre les formes les plus oxydées et les plus réduites. Ce processus est couramment appelé le cycle de l'azote. Il y a trois voies qui dominent le cycle : la nitrification, la dénitrification et la fixation de l'azote. Chacune d'elles commencent puis se terminent sous une forme d'azote inorganique (N₂, NH₃ et NO₃⁻) parce qu'elle est plus facilement accessible aux micro-organismes qui participent au cycle représenté à la figure 1.

1.1.1 Le processus de nitrification.

La nitrification s'effectue par l'action successive de deux réactions. La première implique l'oxydation de l'ion ammonium (NH_4^+) en nitrite (NO_2^-) et la deuxième permet l'oxydation du nitrite en nitrate (NO_3^-) . Les bactéries qui appartiennent à la première réaction sont surtout du genre *Nitrosomonas*, *Nitrosospira* et *Nitrosococcus* tandis que les *Nitrobacter* et *Nitrococcus* sont impliquées lors de la deuxième réaction. (Pelmont, 1993)

Le métabolisme qui transforme l'ammoniac en nitrite comporte deux étapes. Tout d'abord, il y a l'oxydation de l'ammoniac en hydroxylamine par l'enzyme ammoniac mono-oxygénase (AMO). Ensuite, l'hydroxylamine est oxydée en nitrite par l'hydroxylamine oxidoréductase (HAO). (Arp, 2000)

1.1.2 La dénitrification.

Le processus de la dénitrification implique habituellement de nombreuses espèces de bactéries comme *Pseudomonas*, *Bacillus*, *Corynebacterium*, etc. Elle permet la transformation du nitrate en azote diatomique et ses principaux produits sont le nitrite (NO_2^-) , l'oxyde nitreux (N_2O) puis l'azote diatomique (N_2) . La dénitrification est un mécanisme compliqué qui met en jeu au moins 30 à 40 gènes codant pour les enzymes, les systèmes de transport, etc. Plusieurs de ces gènes ont été identifiés chez certaines bactéries. Par exemple, les gènes *narGHI* codant pour la nitrate réductase ont été étudiés plus en détail chez *Paracoccus denitrificans* et *Escherichia coli*. (Pelmont, 1993)

Figure 1. Le cycle de l'azote. (Arp, 2000)

1.2 L'AZOTE AMMONIACAL.

Chez la plupart des bactéries, l'azote ammoniacal est la source d'azote préférée. Il existe deux systèmes qui facilitent l'incorporation de l'azote ammoniacal en glutamate et en glutamine. Ce sont deux enzymes qui agissent successivement, la glutamine synthétase (GS) et la glutamate synthase (GOGAT). La conversion du glutamate et de l'ammoniac en glutamine est catalysée par la glutamine synthétase. Ensuite, l'azote de l'amide de la glutamine est transféré à 2kétoglutarate pour former deux nouvelles molécules de glutamate. (Merrick & Edwards, 1995)

1.2.1 La glutamate synthase.

La glutamate synthase, aussi appelée GOGAT (glutamine amide-2oxoglutarate aminotransférase), est retrouvée seulement chez les procaryotes. Elle a été découverte en 1970 chez *Aerobacter aerogenes* par Tempest *et al*. Chez la bactérie *E. coli*, elle forme deux sous-unités non-identiques encodées par les gènes *gltBD* (Oliver *et al.*, 1987). Elle forme donc avec la glutamine synthétase la voie d'entrée de l'azote ammoniacal dans le métabolisme au cours de la réduction de N_2 par la nitrogénase et lorsque le milieu possède des composés azotés en quantité limitante.

1.2.2 La glutamine synthétase.

La forme la plus connue de l'enzyme glutamine synthétase (GSI) est composée de douze sous-unités identiques encodées par *glnA*. Le gène *glnA* a été identifié chez plusieurs procaryotes. Cependant, malgré le fait que GSI est la forme la plus prédominante chez les procaryotes, il existe d'autres bactéries qui synthétisent d'autres formes de glutamine synthétase. (Merrick & Edwards, 1995) Par exemple, la deuxième forme de l'enzyme (GSII) a été identifiée chez les souches *Rhizobium* (Darrow & Knotts, 1977). GSIII a été initialement identifiée chez *Bacteroides fragilis* (Hill *et al.*, 1989) et finalement la quatrième forme GlnT existe chez *Rhizobium leguminosarum* (Chiurazzi *et al.*, 1992).

La plupart des espèces bactériennes possèdent des mécanismes qui permettent de contrôler l'activité de la glutamine synthétase de même que sa synthèse. Celui de la bactérie *Escherichia coli* est évidemment le plus connu. Lorsque le milieu est riche en azote ammoniacal, il va se produire une adénylation au niveau de l'enzyme; c'est-à-dire la fixation d'un groupe AMP sur la chaîne polypeptidique. Cette adénylation va inactiver la glutamine synthétase. En milieu pauvre en azote ammoniacal, il va y avoir enlèvement des groupes adényles donc une activité accrue de l'enzyme. Finalement, la synthèse de la glutamine est dépendante d'un triple contrôle. Tout d'abord, elle dépend de la régulation allostérique de l'enzyme; c'est-à-dire une rétro-inhibition. Ensuite, elle dépend de l'induction ou de la répression de la synthèse de l'enzyme et des modifications covalentes; adénylation ou désadénylation. (Pelmont, 1993)

1.3 LA FIXATION DE L'AZOTE.

La réduction de l'azote atmosphérique en ammoniac s'appelle la fixation de l'azote. Cette propriété est réservée exclusivement à quelques procaryotes qui possèdent une nitrogénase. On y trouve des organismes photosynthétiques (bactéries pourpes, cyanobactéries), des non photosynthétiques (*Klebsiella pneumoniae*, *Azotobacter vinelandii*, *A. chroococcum*) et des bactéries qui vivent en symbiose avec des plantes (*Rhizobium*). La fixation biologique de l'azote est un processus essentiellement anaérobie parce que la nitrogénase est très sensible à l'oxygène. Malgré la diversité des micro-organismes qui fixent l'azote, toutes les nitrogénases connues sont élaborées sur le même modèle et elles ont des caractères en communs.

1.3.1 Biochimie de la nitrogénase à molybdène.

La réduction de l'azote diatomique (N_2) en $2NH_3$ demande une énorme dépense d'ATP et elle consomme au moins huit électrons. Cette réaction est également productrice de H₂; réaction qui est analogue à celle qui est catalysée par une hydrogénase. (Simpson & Burris, 1984)

La nitrogénase à molybdène, représentée à la figure 2, est un système complexe formé de deux composants protéiques majeurs : la dinitrogénase qui est le produit des gènes *nifD* et *nifK* (Roberts *et al.*, 1978) et la dinitrogénase réductase produite par le gène *nifH* (St. John *et al.*, 1975). La dinitrogénase, appelée aussi protéine MoFe, est un tétramère de structure $\alpha_2\beta_2$ qui renferme deux

cofacteurs spéciaux FeMo renfermant chacun du fer, du soufre et du molybdène (Shah & Brill, 1977) et deux centres fer-soufre (Fe₈S₈) appelés centres P (Dean et al., 1993). La dinitrogénase réductase, appelée aussi protéine Fe, est un dimère α_2 (St. John et al., 1975) contenant un unique centre Fe₄S₄ (Hausinger & Howard, 1983). Cette protéine joue plusieurs rôles dans le processus de la fixation de l'azote, incluant le transfert spécifique des électrons à la dinitrogénase (Ljones & Burris, 1972). La dinitrogénase réductase reçoit des électrons un à un d'une ferrédoxine ou d'une flavodoxine et elle peut maintenant lier deux ATP à des ions magnésiums (2Mg-ATP). Elle peut alors se lier à la dinitrogénase puis elle lui cède seulement un électron en hydrolysant tout son ATP en ADP et phosphate (Thorneley & Lowe, 1985). C'est ainsi que les deux protéines s'unissent et se séparent alternativement à chaque transfert d'électrons. Chez K. pneumoniae, le donneur physiologique d'électrons à la dinitrogénase réductase est le produit du gène nifJ, la pyruvate-flavodoxine-oxidoréductase et le produit du gène nifF, la flavodoxine (Nieva-Gomez et al., 1980; Shah et al., 1983). Plus récemment, une flavodoxine spécifique à nif a été identifiée chez Rhodobacter capsulatus et elle démontre une capacité à transférer les électrons à la dinitrogénase réductase (Yakunin et al., 1993).

Figure 2. Organisation et structure de la nitrogénase à molybdène. (Dean *et al.*, 1993)

1.3.2 Systèmes alternatifs de la nitrogénase.

Jusqu'à récemment, on croyait que toutes les nitrogénases contenaient du molybdène. Cependant, la première évidence d'un système indépendant de la molybdène a été présenté par Bishop *et al.* en 1980. Ils ont trouvé que ce deuxième système actif comme nitrogénase est présent chez les mutants Nif d'*A. vinelandii*. Ces mutants sont capables de fixer l'azote en l'absence de Mo. La nitrogénase à vanadium a été tout d'abord isolée chez les mutants *nifHDK* d'*A. chroococcum* (Eady *et al.*, 1987) et d'*A. vinelandii* (Hales *et al.*, 1986). Une troisième nitrogénase dite "alternative nitrogenase" peut être synthétisée quand le molybdène et le vanadium sont absents. Elle a été isolée chez *A. vinelandii* (Chisnell *et al.*, 1988).

Les trois systèmes sont déterminés par des groupes de gènes différents appelés respectivement *nifHDK*, *vnfHDGK* ("vanadium-dependent nitrogen fixation") et *anfHDGK* ("alternative nitrogen fixation") (Bishop & Joerger, 1990). Apparemment, les gènes *vnfG* et *anfG* encodent une nouvelle chaîne de type δ (13 kDa) qui est présente chez la composante dinitrogénase.

La troisième nitrogénase a également été purifiée chez la bactérie photosynthétique *R. capsulatus* (Schneider *et al.*, 1991). De même que chez *A. vinelandii*, la protéine dinitrogénase de *R. capsulatus* possède une troisième chaîne appelée δ (20 kDa) produite par le gène *anfG* (Schneider *et al.*, 1991).

1.4 L'ORGANISATION GÉNÉTIQUE DES GÈNES nif.

Les premières composantes de la nitrogénase sont incapables de catalyser la fixation de l'azote. Donc, les produits de d'autres gènes *nif* sont nécessaires pour la maturation structurale et l'activation de l'enzyme.

Chez K. pneumoniae, une vingtaine de gènes sont impliqués dans la fixation de l'azote. Ces gènes sont divisés en plusieurs groupes. Premièrement, il y

a les composantes structurales de la nitrogénase (NifH, NifD, NifK). Ensuite, il y a les protéines qui sont essentielles à l'activation et à la stabilité catalytique de l'enzyme (NifU, NifS, NifM, NifW, NifZ), le produit des gènes nécessaire pour la synthèse et l'insertion du cofacteur FeMo (NifH, NifQ, NifB, NifV, NifE, NifN), les protéines impliquées dans le transport des électrons à la nitrogénase (NifF, NifJ) et finalement le produit des gènes qui est responsable de la régulation transcriptionnelle de tous les gènes *nif* (NifA, NifL). (Dean & Jacobson, 1992)

Chez Azotobacter vinelandii, 19 des gènes nif sont homologues et arrangés séquentiellement comme ceux retrouvés chez K. pneumoniae (Jacobson et al., 1989). La seule différence qui existe entre A. vinelandii et K. pneumoniae est le manque d'homologie chez le gène nifJ.

Chez *R. capsulatus*, les gènes *nif* sont distribués dans trois régions. La région A contient 26 cadres de lecture ouverts organisés en quatre unités transcriptionnelles (*nifENX*-ORF4-*fdxB-nifQ*, ORF6-*nifU*₁*SVW*, *nifA*₁, *nifB*₁-ORF1*nifZ*) (Klipp *et al.*, 1988; Fonstein *et al.*, 1992). La région B contient quatre opérons *nif* (*nifHDK*, *nifU*_{II}-*nifR4*, *nifA*_{II}, *nifB*_{II}) (Jones & Haselkorn, 1989). La région C possède les gènes régulateurs *nifR2* et *nifR1* homologues à *ntrBC* (Klipp, 1990). Il existe également deux gènes qui encodent pour des ferrédoxines (*fdxC* et *fdxN*) qui ont été identifiés dans la région A (Schatt *et al.*, 1989). De même, immédiatement adjacent à la région A, il y a les gènes *rnfA*, *rnfB*, *rnfC*, *rnfD*, *rnfE* et *rnfF* (*R*hodobacter *n*itrogen *f*ixation) qui sont essentiels à la fixation de l'azote (Schmehl *et al.*, 1993). Il y a aussi un groupe de six cadres de lecture ouverts immédiatement adjacents à la région B, désignés *modABCD* et *mopAB*, qui sont impliqués dans le transport et les autres aspects du développement du molybdène (Wang *et al.*, 1993). La figure 3 permet de comparer l'organisation des gènes *nif* des trois bactéries qui a été décrite précédemment.

Figure 3. Comparaison de l'organisation des gènes nif de (A) K. pneumoniae, (B)
A. vinelandii et (C) R. capsulatus. Les flèches indiquent la position et la direction des sites d'initiation de la transcription. (Dean & Jacobson, 1992)

Chez les cyanobactéries, l'organisation des gènes *nif* diffère des autres organismes diazotrophes. Chez *Anabaena* sp. PCC 7120, on retrouve dans les hétérocystes un groupe de gènes impliqué dans la fixation de l'azote. Ces gènes ont la structure suivante : *nifB-fdxN-nifS-nifU-nifH-nifD-nifK-nifE-nifN-nifX*-ORF3-*nifW*-ORF1-ORF2-*fdxH* (Haselkorn & Buikema, 1992). Les hétérocystes sont des cellules spécialisées dont l'activité principale consiste à réduire l'azote diatomique parce qu'elles contiennent la nitrogénase. Les gènes *nif* existent dans toutes les cellules mais ne s'expriment pas dans les cellules végétatives. Les hétérocystes ne se développent que chez certaines cyanobactéries comme par exemples *Anabaena*, *Nodularia* et *Nostoc*. Chez les cellules végétatives, le gène *nifD* est interrompu par un élément de 11 kb qui est excisé durant la différenciation des hétérocystes (Golden *et al.*, 1985). Le gène *fdxN* est interrompu par un élément

de 55 kb qui est également excisé durant la différenciation (Golden *et al.*, 1988). Le gène *fdxH* encode une ferrédoxine qui agit comme donneur d'électrons à la nitrogénase tandis que *fdxN* encode également une ferrédoxine dont la fonction est encore inconnue (Flores *et al.*, 1999). L'arrangement final des gènes *nif* chez *Anabaena* 7120 est montré à la figure 4. Le tableau I présente la description des gènes *nif* chez *K. pneumoniae*, *A. vinelandii*, *R. capsulatus* et *Anabaena* sp. PCC 7120.

Figure 4. Organisation des gènes *nif* chez les cellules végétatives et les hétérocystes d'*Anabaena*. (Haselkorn & Buikema, 1992)

Tableau I. Produits des gènes nif et leurs fonctions connues ou proposées.

(Dean & Jacobson, 1992)

Gènes	Produits et fonctions connues ou proposées.
nifH	Sous-unité de la protéine Fe, fixe deux molécules MgATP
	et réduit la protéine MoFe avec un seul électron.
nifD	Sous-unité α de la protéine MoFe, forme un tétramère
	$\alpha_2\beta_2$ avec la sous-unité β , le cofacteur FeMo est le site
	de la réduction des substrats.
nifK	Sous-unité β de la protéine MoFe.
nifF	Flavodoxine, réducteur de la protéine Fe.
nifJ	Pyruvate-flavodoxine-oxidoréductase, couple l'oxydation du pyruvate à la réduction de la flavodoxine.
nifM	Essentiel pour l'activation de la protéine Fe.
nifU	Fonction inconnue, semble être impliqué dans la
-	stabilisation de la protéine Fe.
nifS	Fonction inconnue, semble également être impliqué dans la stabilisation de la protéine Fe.
nifV	Encode probablement une homocitrate synthase,
0	l'homocitrate est un composant organique du cofacteur FeMo
nifE	Requis pour la biosynthèse du cofacteur FeMo forme un
тŋш	tétramère $\alpha_0 \beta_0$ avec le produit du gène <i>nifN</i>
nifN	Requis pour la biosynthèse du cofacteur FeMo, forme un
mjiv	tétramère ceße avec le produit du gène <i>nifE</i>
nifR	Requis pour la biosynthèse du cofacteur FeMo
nijD nif()	Impliqué aussi dans la biosynthèse du cofacteur FeMo
mjQ	mais probablement plus tôt que les autres gènes.
nifW	Fonction inconnue, semble être requis pour l'activité
	totale de la protéine MoFe.
nifZ	Fonction inconnue, semble être requis pour l'activité
	totale de la protéine MoFe, a possiblement une
	fonction reliée à la formation ou l'insertion du cofacteur
	FeMo
nifA	Régulateur positif.
nifL	Régulateur négatif.
nifX	Fonction spécifique inconnue, probablement un
	régulateur négatif.
nifT	Fonction inconnue, non requis pour la croissance des
-	diazotrophes.
nifY	Fonction inconnue, non requis pour la croissance des diazotrophes.

1.5 LES VOIES DE RÉGULATION DES GÈNES nif.

Le contrôle de l'expression des gènes *nif* a été analysé en premier lieu chez *K. pneumoniae* qui sert encore d'espèce de référence (Gussin *et al.*, 1986). Une organisation génétique assez comparable existe chez *R. capsulatus*. En ce qui nous concerne, nous tenterons d'approfondir davantage les mécanismes de contrôle du métabolisme de l'azote chez cette bactérie.

L'ammonium est inévitablement la source azotée préférée des bactéries parce qu'elle est la moins coûteuse à utiliser. Si jamais l'azote ammoniacal tend à devenir rare, les bactéries augmentent le taux d'expression de certains opérons dont le but est d'utiliser en plus faible quantité l'ammonium ou bien de mobiliser de nouvelles sources azotées. Donc, la raréfaction de l'ammonium permet de mettre en place le système Ntr ("nitrogen-regulated"). L'expression des gènes *nif* est alors une conséquence du système Ntr.

Les micro-organismes ont également développé des mécanismes qui permettent de protéger la nitrogénase contre l'oxygène. Les cyanobactéries possèdent une barrière protectrice, les hétérocystes, qui est imperméable à l'oxygène (Haselkorn *et al.*, 1986). Quant à l'espèce *Azotobacter*, elle protège la nitrogénase contre l'oxygène par une activité oxydase (Maier & Moshiri, 1993) tandis que *R. capsulatus* réprime l'expression des gènes *nif* lorsque le niveau de l'oxygène est trop élevé (Kranz & Foster-Hartnett, 1990).

1.5.1 Le système Ntr.

Les gènes *nif* de *Rhodobacter capsulatus* sont contrôlés à deux niveaux. Tout d'abord, il y a les protéines qui réagissent en fonction du taux d'azote organique, c'est-à-dire en fonction du rapport glutamine/2-oxoglutarate (rapport G/Oxo). Lorsque les cellules disposent d'une source d'azote abondante, ce rapport va être élevé parce que la glutamine est le point d'entrée principal de l'azote ammoniacal. Celui-ci est activement récupéré par la glutamine synthétase, ce qui tend à faire monter le taux de glutamine intracellulaire. Le deuxième niveau de contrôle implique un mécanisme de répression dû à la présence de l'oxygène. La figure 5 donne un aperçu général du système de régulation qui va être résumé lors du prochain paragraphe.

Figure 5. Régulation de la transcription des gènes *nif* chez *Rhodobacter capsulatus* contrôlée au niveau de l'azote et de l'oxygène.

(Kranz & Bowman, 1999)

Le mécanisme qui contrôle les gènes *nif* utilise quatre protéines : UTase, GlnB, NtrB et NtrC. L'uridylyltransférase (UTase) a été seulement analysée chez Escherichia coli et les autres bactéries entériques (Son & Rhee, 1987). L'UTase semble être présente chez R. capsulatus parce que son substrat, la protéine GlnB, est hautement conservé entre E. coli et R. capsulatus (Kranz et al., 1990). En rapport G/Oxo faible (carence d'azote), l'UTase va fixer le nucléotide UMP sur la protéine GlnB. En G/Oxo fort, elle lui retire cet UMP. Donc, dans le cas G/Oxo faible, la protéine GlnB-UMP pertube le fonctionnement de NtrB qui se met à fonctionner comme protéine kinase sur un substrat qui est la protéine NtrC. Cette dernière protéine possède trois domaines (Kranz & Cullen, 1995). Le domaine Nterminal contient des résidus aspartates qui sont phosphorylés par NtrB. Le domaine C-terminal possède un motif constitué de deux hélices alpha articulées par un virage de la chaîne, c'est la partie qui peut se lier à l'ADN. Le domaine central, appelé "Walker motif" (Walker et al., 1982), est responsable de l'activation. Lorsque cette protéine est phosphorylée en NtrC-P, elle va activer la transcription des gènes nifA1 et nifA2. La protéine NifA possède une activité ATPase et elle permet l'activation de la transcription des gènes nif. Les gènes nifA1 et nifA2 de R. capsulatus ont été découverts lors des travaux de Klipp et al. en 1988. Le cadre de lecture de ces gènes est identique, cependant il y a une différence de la séquence au niveau de l'amont du site d'initiation de la transcription. L'inactivation de l'une des deux copies donne un phénotype Nif⁺. Toutefois, l'inactivation des deux copies produit une souche R. capsulatus Nif qui est incapable de synthétiser les polypeptides de la nitrogénase (Masepohl et al., 1988). La protéine NifA fait partie de la classe des protéines NtrC. Comme chez NtrC, le domaine central de NifA est responsable de l'activation et le domaine Cterminal permet de lier l'ADN (Morett et al., 1988). La protéine NifA possède également des résidus cystéines qui sont conservés chez les micro-organismes Bradyrhizobium et Rhizobium (Masepohl et al., 1988). Ces résidus cystéines rendraient la protéine NifA sensible à l'oxygène (Fischer et al., 1988). Donc, le contrôle de la régulation au niveau de l'oxygène dépendrait de l'activité de la protéine NifA.

14

Chez *R. capsulatus*, la protéine NifA se fixe en amont des promoteurs *nif* afin de pouvoir activer le complexe facteur sigma RpoN/ARN polymérase. Le gène *rpoN*, anciennement appelé *nifR4*, a été tout d'abord isolé par Avtges *et al.* en 1985. Un fait intéressant a été observé chez *K. pneumoniae*. Il s'agit de la présence d'une protéine appelée IHF ("Integration Host Factor"). Elle peut se lier à la région d'ADN riche en adénine et en thymine se situant entre le site de fixation de la protéine NifA et le promoteur reconnu par le facteur sigma NtrA. Cette protéine semblerait faciliter l'interaction entre l'activateur de transcription NifA et le complexe sigma/polymérase en formant une boucle dans l'ADN (Santero *et al.*, 1989). Jusqu'à aujourd'hui, peu d'études ont été réalisées sur la protéine IHF de *R. capsulatus*. Santero *et al.* (1990) avancent l'hypothèse que la protéine IHF pourrait s'attacher en amont de la région du gène *nifH* chez *R. capsulatus* et *R. rubrum*.

1.6 NOUVEAUX SYSTÈMES RÉGULATEURS DE L'AZOTE.

1.6.1 Contrôle de l'azote chez les cyanobactéries.

La majorité des cyanobactéries sont capables d'utiliser le nitrate ou l'ammoniac comme source d'azote et certaines d'entre-elles peuvent fixer l'azote (Rippka *et al.*, 1979). Chez quelques cyanobactéries filamenteuses, la fixation de l'azote s'effectue à l'intérieur de cellules spécialisées; les hétérocystes (Haselkorn, 1978).

Malgré de nombreux efforts, aucune séquence d'ADN homologue aux gènes ntrB/ntrC n'a été trouvée chez les cyanobactéries. Donc, il existerait un autre mécanisme qui permettrait à ces micro-organismes de contrôler la régulation de l'azote. Vega-Palas *et al.* (1990) ont isolé une souche mutante *Synechococcus* sp. PCC 7942 incapable d'utiliser de l'azote inorganique sous aucune autre forme que l'ammoniac. Ils ont également démontré que cette souche mutante possède une mutation dans le gène ntcA. Le produit de ce gène est la protéine NtcA. Elle est composée de 222 acides aminés et elle est homologue au facteur de

transcription Crp ("cAMP-receptor protein") d'Escherichia coli (Vega-Palas et al., 1992). La comparaison de séquences de certaines protéines régulatrices de la famille FNR-CRP est présentée à la figure 6. Chez *E. coli*, le régulateur transcriptionnel Fnr est impliqué dans le contrôle de l'activation des gènes en réponse à l'anaérobiose. Quant à la protéine Crp, elle permet de réguler les fonctions cataboliques chez *E. coli*. La protéine FixK est présente chez *Rhizobium meliloti*. Chez cette bactérie, FixK est impliqué au niveau de la fixation de l'azote. (Fischer, 1994) Chez *Synechococcus* spp., NtcA est un activateur positif des gènes glnA, nirA (premier gène de l'opéron nirA, nrtABCD, narB impliqué dans l'assimilation du nitrate) (Suzuki et al., 1993) et ntcA.

(25) ISQLCIPFTL NEHELDQLDN IIERKKPIQK GQTLFKAGDE LKSLYAIRSG Fnr Fixk (14) VEHLG. PAPM SGPRLVA... TYKP GREIYAQCDL NDKCYQVSTC (1) MVLGKPOTDP TLEWFLSHC. ... HIHKYPS KSTLIHOGEK AETLYYIVKG Crp (1) .MLANENSLL TMFRELGSGK LPLQIEQFER GKTIFFPGDP AERVYLLVKG NtcA (1) MIVTQDKALA NVFRQMATGA FPPVVETFER NKTIFFPGDP AERVYFLLKG BifA m.ll..pall ..frlla.g. ...iet.er gktiff.Gdp aer.Y..vkG pileup (75) TIKSYTITEO GDEOITGFHL AGDLVG...F DAIGSGHHPS FAQALETSMV Fnr Fixk (54) AVRIYRLLSD GRROVVSFHL PGEMFG...F EA..GSNHSF FAEAITETTL (47) SVAVLIKDEE GKEMILSYLN QGDFIGELGL FEEGQ.ERSA WVRAKTACEV Crp (50) AVKLSRVYES GEEITVALLR ENSVFGVLSL LTGQRSDRFY HAVAFTPVQL NtcA BITA (51) AVKLSRVYEA GEEITVALLR ENSVFOVLSL LTGNKSDRFY HAVAFTPVEL pileup avkl.rvye. Gee..v..1. eg.vfG.1.1 l.gg.sdr.y .avAftpvel Fnr (122) CEIPFETLDD LSGKMPNLRQ QMMRLMSGEI KGDQDMILLL SKKNAEERLA Fixk (99) AIFGRRNMQE RS.....R ELLALALTGM ARAQQHLLVI GRQCAVERIA (96) AEISYKKFRQ LIQVNPDILM RLSAQMARRL QVTSEKVGNL AFLDVTGRIA Crp NtcA (100) FSVPIEFMQK ALIERPELAN VMLQGLSSRI LQTEMMIETL AHRDMGSRLV Bifa (101)LSAPIEQVEQ ALKENPELSM LMLRGLSSRI LQTEMMIETL AHRDMGSRLV a.ipie.mgg ...enpel.m .ml...ssri lqt.mmi.tl ahrd.g.Rla pileup For (172) AFIYNLSRRF AQ. RGFSPRE FRLTMTRGDI GNYLGLTVET ISRLLGRFQK Fixk (143) AFLVDLC... . E. ROGGGRQ LRLPMSRQDI ADYLOLTIET VSRVVIKLKE Crp (146) QTLLNLAKQP DAMTHPDG., MQIKITRQEI GQIVGCSRET VGRILKMLED Ntca (150) SFLLILCRDF .GIPSPDGIT IDLKLSHQAI AEAIDSTRVT VTRLLCDLRE BIFA (151) SFLLILCROF GVPCADGIT IDLKLSHQAI AEAIDSTRVT VTRLLCDLRE .fll.Lordf .g...pdg.t i.lk.srq.I as.. G.treT v.Rllgdlre pileup Fnr (221) SGMLAVK.GK YITIENNDAL AQLAGHTRNV A FixK (188) RSLIALRDAR TIDIMKPEAL RSLCN..... Crp (194)QNLISAH.GK TIVVYGTR.. NtcA (199) SKLIAIH.KK RITVFNPVAL SQQFS..... . BifA (200) KKMISIH.KK KITVHKPVTL SRQFT.....

Figure 6. Alignement de séquences en acides aminés de NtcA et de protéines régulatrices semblables à NtcA. Alignement selon le programme PILEUP.

skliaih..k tItv..pval sq.f.....

pileup

La dernière ligne correspond à la séquence déterminée avec PILEUP. Les résidus conservés des cinq protéines sont indiqués en caractère gras et en lettre majuscule sur la ligne pileup. Les résidus glycines conservés, associés à la structure β de CRP, sont indiqués par les astérisques. Le motif hélice-tour-hélice est encadré. (Wei *et al.*, 1993)

Le gène ntcA est aussi présent chez onze autres espèces de cyanobactéries. Il a été cloné et séquencé chez Synechocystis sp. PCC 6803 (Frias et al., 1993) et Anabaena sp. PCC 7120 (Frias et al., 1993; Wei et al., 1993). En ce qui concerne Anabaena spp., NtcA a tout d'abord été désignée comme facteur VF1, appelé plus tard BifA, étant capable de se fixer en amont du gène xisA (Chastain et al., 1990; Wei et al., 1993). Lors de la formation des hétérocystes, plusieurs arrangements se produisent dans le chromosome. L'un de ces résultats est l'excision d'un fragment de 11 kb présent à l'intérieur du gène nifD. L'excision de ce fragment permet de former complètement la région codante du gène nifD ce qui permet d'activer la transcription de l'opéron *nifHDK*. Le gène xisA est présent dans la région excisée de 11 kb et il code apparemment pour une enzyme appelée excisase; c'est-à-dire qui permet l'excision du fragment. Cependant, le rôle précis que pourrait jouer la protéine NtcA dans l'expression de xisA n'est pas encore connu (Lammers et al., 1986). D'autres études ont également démontré que le site de fixation de NtcA existe en amont des gènes glnA et nir (Frias et al., 1994; Tumer et al., 1983). Il existe un mutant ntcA qui est incapable de déclencher la synthèse de la nitrogénase, cependant des expériences in vitro ont démontré que la protéine NtcA pouvait se fixer faiblement en amont du gène nifH (Chastain et al., 1990; Ramasubramanian et al., 1994). Chez Anabaena spp., l'expression de la nitrogénase requiert le développement des hétérocystes. La différenciation de ces cellules spécialisées dépend du gène hetR (Buikema & Haselkorn, 1991). L'induction du gène hetR de même que l'induction du développement des hétérocystes sont absentes chez le mutant ntcA (Frias et al., 1994).

NtcA, comme d'autres régulateurs de transcriptions appartenant à la famille Crp, est capable d'agir comme un répresseur. NtcA fonctionne de cette

façon au niveau du promoteur de l'opéron *rbcLS*; *rbcL* encode une sous-unité de l'enzyme 1,5-Ribulose-bisphosphate carboxylase (Ramasubramanian *et al.*, 1994).

1.6.2 Nouveau système à deux composantes.

Typiquement, le taux d'azote organique chez *K. pneumoniae* est détecté par l'uridylyltransférase (GlnD). Elle transmet alors l'information à la kinase NtrB via la protéine GlnB. Sous conditions d'azote limitées, NtrB phosphoryle NtrC et cette modification permet de renforcer l'action de NtrA contribuant ainsi à la transcription des gènes *nif*. (Merrick & Edwards, 1995) Des gènes homologues à *ntrBC* ont été identifiés chez *Azorhizobium caulinodans* (Pawlowski *et al.*, 1987).

Azorhizobium caulinodans est responsable de la formation des nodules sur la tige de la légumineuse africaine Sesbania rostrata. Cette bactérie symbiotique a également la capacité de fixer l'azote lorsqu'elle est à l'état libre. (de Bruijn, 1989) Des études ont mis en évidence, chez A. caulinodans, la présence d'un second système régulateur à deux composantes, NtrYX, fortement homologue à NtrBC (Pawlowski et al., 1991). NtrX, produit du gène ntrX, est homologue à NtrC tandis que le produit du gène ntrY est homologue à NtrB. La figure 7 démontre que NtrX possède un degré élevé d'homologie avec les protéines NtrC de différents micro-organismes. Contrairement à NtrB, qui est localisée dans le cytoplasme, NtrY est constituée de deux domaines transmembranaires situés à la partie N-terminale de la protéine. Ce fait suggère que NtrY pourrait détecter des variations au niveau de la concentration de l'azote extracellulaire. Pawlowski et al. (1991) ont également démontré qu'il y a une altération de la croissance chez les mutants A. caulinodans ntrX ou ntrC en présence du nitrate. Il y a aussi, chez ces mutants, une réduction de l'expression de nifA. Finalement, NtrY représente le senseur transmembranaire tandis que NtrX constitue probablement l'élément régulateur du système.

Rm	NtrC	1 MTGATILVADDDAAIRTVLNQALSRAGYDVRITSNAATLWRWIAAGD
BD	NtrC	1 MPAGSILVADDDTAIRTVLNOALSRAGYEVRLTGNAATLWRWVSOGE
КD	NtrC	1 MORGIAWIVDDDSSIRW.VLERALTGAGLSCTTFESGNEVLDALTTKT
AC	NtrX	1 MAHDITIVDDEPDISGLVAGILEDEGYSARTARDADGALAEIAARR
Dm	NTTC	CDAWTDWWPDENA FDWPRIKKARPDUPVLVMSAONTFMTAIKAS
D _n	NEC	COLUTTOWMEDENA EDLLERIKKMRPNLPVIVMSACNTFMTAIRPS
sp v-	NEIC	COLVITOVVNI DEVA I BUCH KOTKORHPMI PVTI MTAHSDLDAAVSAY
кр	NETC	MUVILISHIRWAG MUCLAHERUTIONAL ULANA SHONI EVAVAAI
AC	NTIX	PNLIFLDIWLQGSR. LINGDENND IN REAL AND
_		
Rm	NtrC	EKGAYDYD FREEDUTELIGIIGK ADABER
Вp	NtrC	SRGAYEVLPKPFDLKSLITIVGRALAEPKENVSSFRDOODLBOIL
Кp	NtrC	OCGAFDYLISKISSIDEAVALVDRAISHYOBOUOPRNAFINSFIADI
AÇ	NtrX	KRGAVDFIEKPENADRUVVITERALETURLEREVRELKOUTOFHIM
Rm	NtrC	VGRSAAMQEIYRVLARLMQTDLTLMITGESGTGKELVARALHDYGRRRNG
BD	NtrC	VGRSPAMQEIYRVLARLMOTDLTVMISGESGTGKELVARALHDYGRRRNG
ΧD	NtrC	IGERPAMODVFRIIGRLSRSSISVLINGESGTGKELVAHALHRHSPRAKA
AC	NtrX	VGRSSV100LRATVDRVGPINSRILIVGPSGSGKELTARMIHAASARAOG
۶m	NtrC	PFVAINMAAIPRDLIESELFGHEKGAFTGACTRS1GRFEQAEGGTLFLDE
20	N++C	PEVAWNMAATPRDLTESELFGHERGAFTGANTRASGRFEQAEGGTLFLDE
20	NEEC	OF TAT NMAAT PROLIESELECHEKGAFTGANTVROGREEOADGGTLFLDE
хp	NLLU	DEVULNIAA TODDELEVELEOWEEG EGRERHRGAMEEAHGGTUELDE
AC	NCLY	PTVVIIIAAAAITPEKEETENTEVEEO, BEKERING, BEE
-		TERMENDARDEL PVLOOCEVETVECEPTPT RSDVR IVAATNKDIKOSINO
ĸш	NTIC	IGDMPNDAQIADBAADQOCLATIVOORTIIABBAADAASNKDLEITIIOO
Вp	NtrC	I GDMPMEAUTRLERVLUUGENTTVGGRIPIRTBVRIVAASKROSKISIOO
Кр	NtrC	IGDMPLDVQTRLLRVLADGOFYRVGGYAPVKVDVKTTAATHONBEDKVOS
AC	NtrX	IADMPRETONRVLRVLVEQTFSR1GSSEKVRVDVRI15SIGRAIIEEEIAA
Rm	NtrC	GLFREDLYYRLNVVPLRLPPLRDRAEDIPDLVRHPVOOAEKE. GLDVKKF
Зp	NtrC	GLFREDLFFRLNVVPLRVPPLRERIEDLPDLIRHFFSLAEK.DGLPPKKL
Κp	NtrC	GKFREDLFHRLNVIRVHLPPLRERREDIPRLARHFLOIAARELGVEAKOL
AC	NtrX	GRFREDLYHRLSVVPIRVPPLAERREDIPDLVDFFIDLISOTTGLORRKV
Rm	NtrC	DOEALELMKAHPWPGNVRELENLVRRLTA.LYPODVITREIIENELRS
Bn	NTTC	DAOALERUKOHRWPGNVRELENLARRLAALYPODVIT
20	N++C	HEFTEMALTRIAUPONUROLENTORWIT, VMA
τp	NEWY	GED MANUTOS ED VERNWERLEN, TLAGGDEDAEV TASMLPPDVGA
AC	NULA	
-	114-0	TIDOSTITYAAAPSCSIISIISOOVEFNMEDERSFODALP
ĸт	NTIC	EINDSTERAAARSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUS
Вp	NtrC	ASVIDGELAPPAVTSGSTATVGVDNIGGAVERTIJSSHTSOTT
Кp	NtrC	. QEVLTODLPSEMFETATPDNPTOMLPDSWATELGOWADAADASGAGAD
AC	NtrX	LVPTLPNGNGGEHUMGUPLREAREVFEREYLA
Rm	NtrC	PSGLYDRVLAEMEYPLILAALTAWRGNQLKAADLLGLNRNYLR
Вp	NtrC	NGVPPPGIYHRILKEIEIPLLTAALAATRGNOIRAADLLGINRNTIJR
Kp	NtrC	LSEAOPEMERTILITALRHTOCHKOEAARLLGWCRNTLT
AC	NtrX	AQINRFGGNISRTAEFVGMERSALH
-		
Rm	NtrC	KAIRELGUSVYRSLA 482
Rn	NtrC	KAIRDIDIOWARSGG 480
Kn	NtrC	RULKINGME 470
30	N++Y	PERKALENG 436
20	11 64 5	

Figure 7. Étude comparative de séquences en acides aminés de NtrC et NtrX. Rm = R. meliloti, Bp = B. parasponiae, Kp = K. pneumoniae, Ac = A. caulinodans.

Les résidus d'acides aminés conservés sont soulignés en noir.

(Pawlowski et al., 1991)

1.7 PROJET DE RECHERCHE.

Notre travail visait à étudier les régulateurs potentiels impliqués dans la fixation de l'azote chez la bactérie *Rhodobacter capsulatus*. Dans une première étape, nous avons amplifié les gènes d'intérêts, *ntrX* et *ntcA*, par la technique du PCR puis nous avons cloné ces gènes dans le vecteur plasmidique approprié. Par la suite, nous avons utilisé une cassette qui a été insérée dans les gènes *ntrX* et *ntcA* afin de les rendre non fonctionnels. Ces interposons ont été clonés dans le vecteur suicide pSUP202. Une souche *R. capsulatus* mutante pour le gène *ntcA* a été ainsi créée par transconjugaison. Par la suite, nous avons criblé les doubles recombinants et nous avons fait une vérification par un autre PCR. Dans une deuxième étape, on a étudié la souche mutante dans diverses conditions de source d'azote variable. Nous avons également étudié l'effet de la mutation sur l'expression du gène rapporteur *nifH-lacZ* et observé l'activité du promoteur *ntcA* de même que l'activité de l'enzyme glutamine synthétase. Nous avons terminé ce projet avec le séquençage N-terminal de deux protéines qui ne semblaient pas être exprimées chez la souche mutante.

CHAPITRE II

MATÉRIEL ET MÉTHODES

2.1 MILIEUX DE CULTURE

2.1.1 Milieu Luria-Bertani (LB)

Bactotryptone : 5 g; extrait de levure : 2.5 g; NaCl : 2.5 g; eau distillée à 500 ml. Pour un milieu solide, agar : 7.5 g.

2.1.2 Milieu ΨB

Bactotryptone : 20 g; extrait de levure : 5 g; MgSO₄ : 5 g; eau distillée à 1 litre. Ajuster le pH à 7,6 avec KOH.

2.1.3 Milieu YPS

Bactopeptone : 1.5 g; extrait de levure : 1.5 g; eau distillée à 500 ml. Pour un milieu solide, agar : 7.5 g.

Après stérilisation, ajouter 1 ml d'une solution stock de MgSO₄ 1M et 1 ml d'une solution stock de CaCl₂ 1M.

2.1.4 Milieu RCV de base (aucune source d'azote).

Acide lactique 10% : 20 ml; super salts : 25 ml; eau distillée à 450 ml. Tampon KPO₄ 0.64M : 15ml; eau distillée à 50 ml.

Après stérilisation, il faut mélanger les deux solutions une fois refroidies.

2.1.4.1 Milieu RCV NH4⁺ 4mM

Avant stérilisation, ajouter 1 ml d'une solution stock de $(NH_4^+)_2SO_4$ 1M au milieu RCV de base.

2.1.4.2 Milieu RCV NH4⁺ 30mM

Avant stérilisation, ajouter 7.5 ml d'une solution stock de $(NH_4^+)_2SO_4$ 1M au milieu RCV de base.

2.1.4.3 Milieu RCV glutamate 10mM

Après stérilisation, ajouter 5 ml d'une solution stock de Lglutamique acide sodium salt 1M au milieu RCV de base.

2.1.4.4 Milieu RCV arginine 10mM

Après stérilisation, ajouter 5 ml d'une solution stock de L-arginine 1M au milieu RCV de base.

2.1.4.5 Milieu RCV proline 10mM

Après stérilisation, ajouter 5 ml d'une solution stock de L-proline 1M au milieu RCV de base.

2.1.5 Milieu indicateur X-gal

Après stérilisation, ajouter la solution X-gal au milieu de culture liquide une fois refroidi (40 µg/ml). Bien mélanger.

2.1.6 Bouillon SOC

Bactotryptone : 2 g; extrait de levure : 0.5 g; NaCl 2M : 0.5 ml; KCl 1M : 0.25 ml; eau distillée à 100 ml.

Après stérilisation, ajouter 10 ml d'une solution stock de MgCl₂ 0.1M; 2 ml d'une solution stock de MgSO₄ 1M et 2 ml d'une solution stock de glucose 1M.
2.1.7 Antibiotiques

Les antibiotiques doivent être ajoutés au milieu de culture, après la stérilisation, aux concentrations finales (µg/ml) suivantes :

Tableau II. Concentration finale des antibiotiques ajoutés au milieu de cultured'Escherichia coli ou de Rhodobacter capsulatus.

Antibiotiques	Milieu pour <i>E. coli</i> (µg/ml)	Milieu pour <i>R. capsulatus</i> (µg/ml)
Ampicilline	100	
Kanamycine	50	25
Tétracycline	25	0.5
Gentamycine	10	5
Rifampicine		10

2.2 SOLUTIONS

2.2.1 Solution X-gal (20 mg/ml)

Dissoudre la poudre dans le diméthylformamide.

2.2.2 Solution de TEG-lysozyme

Tris-HCl (pH :8,0) : 50mM; EDTA : 10mM; glucose : 50mM; lysozyme : 5 mg/ml.

2.2.3 Solution de NaOH 0.2M-SDS 1%

NaOH 10M : 0.2 ml; SDS 10% : 1 ml; eau distillée : 8.8 ml.

2.2.4 Acétate de potassium 3M (pH :4,8)

Acétate de potassium : 29.4 g; CH₃COOH glacial : 11,5 ml; eau distillée à 100 ml.

2.2.5 Solution stop de digestion

TAE 50X : 0.5 ml; glycérol : 2.5 ml; EDTA 0.5M : 0.5 ml; bleu de bromophénol : 0.01 g; xylène cyanol : 0.01 g; eau distillée à 5 ml.

2.2.6 Solution NaI

NaI : 90.8 g; Na₂SO₃ : 0.5 g; eau distillée à 100 ml.

2.2.7 Solution TNE

Tris-HCl (pH :7,5) : 10mM; NaCl : 100mM; EDTA : 1mM; 50% éthanol.

2.2.8 Solution TfB I

KOAc : 1.47 g; KCl : 3.925 g; CaCl₂ : 0.146 g; MnCl₂ : 0.99 g; glycérol : 75 ml; eau distillée à 500 ml. Ajuster le pH à 5,8 avec de l'acide acétique. Stériliser par filtration.

2.2.9 Solution TfB II

PIPES : 0.6 g; CaCl₂ : 2.21 g; KCl : 0.15 g; glycérol : 30 ml; eau distillée à 200 ml. Ajuster le pH à 6,5 avec KOH. Stériliser par filtration.

2.2.10 Bromure d'éthidium

Solution stock de 10 mg/ml par l'addition de 1 g de bromure d'éthidium dans 100 ml d'eau.

2.2.11 Solution de lyse (β -galactosidase)

 β -mercaptoéthanol : 2.5 ml; toluène : 0.5 ml; MnSO₄ 0.02M : 0.5 ml; SDS 10% : 0.5 ml.

2.2.12 Solution d'ONPG

ONPG : 0.02 g; tampon NaPO₄ 0,1M (pH :7,0) : 5 ml.

2.2.13 Solution de réaction (pH :7,15) (glutamine synthétase)

Tampon MOPS 1M: 2.25 ml; $MnCl_2$ 0.1M: 0.045 ml; arsenate de potassium 1M: 0.5 ml; ADP-Na₃ 40mM: 0.15 ml; CTAB 10 mg/ml: 0.15 ml; hydroxylamine-HCl 0.8M: 0.37 ml préablement neutralisé avec NaOH 2M: 0.15 ml; eau distillée à 13.3 ml.

2.2.14 Solution stop (glutamine synthétase)

FeCl₃·6H₂O : 5.5 g; TCA : 2.0 g; HCl concentré : 2.1 ml; eau distillée à 100 ml. Centrifuger 15 minutes.

2.2.15 Réactif de Bradford

Bleu de Coomassie G-250 : 50 mg; éthanol 100% : 25 ml; acide phosphorique 85% : 50 ml; eau distillée à 500 ml. Filtrer la solution avant de l'utiliser.

2.2.16 Solution de coloration

Bleu de Coomassie R-250 : 0.1%; méthanol : 50%.

2.2.17 Solution de décoloration

Méthanol : 50%; acide acétique : 10%.

2.2.18 Solution de thioglycolique acide (sodium salt)

Thioglycolique acide (sodium salt) : 11.4 mg; eau distillée : 1 ml.

2.3 TAMPONS

2.3.1 Tampon KPO₄ 0.64M

KH₂PO₄ : 40 g; K₂HPO₄ : 60g; eau distillée à 1 litre.

2.3.2 Tampon SET (extraction d'ADN génomique)

NaCl: 75mM; EDTA: 25mM; Tris-HCl (pH:7,4): 50mM.

2.3.3 Tampon TE

Tris-HCl (pH :8,0) : 10mM; EDTA : 1mM.

2.3.4 Tampon pour la RNase

La RNase pancréatique A (Boehringer Mannheim) est préparée à 10 mg/ml dans du Tris-HCl (pH :7,5) : 10mM. Les DNases sont éliminées par chauffage à 100°C pour 15 minutes puis la solution est lentement ramenée à la température de la pièce.

2.3.5 TAE 50X (pH :8,5)

Tris base : 242 g; CH₃COOH glacial : 57.1 ml; Na₂EDTA·2H₂O : 37.2 g; eau distillée à 1 litre.

2.3.6 TAE 1X

TAE 50X : 20 ml; eau distillée à 1 litre.

2.3.7 Tampon NaPO₄ 0,1M (pH :7,0)

 $Na_2HPO_4 \cdot 7H_2O : 4.03 \text{ g}; NaH_2PO_4 \cdot 2H_2O : 1.38 \text{ g};$ eau distillée à 250 ml.

2.3.8 Tampon SET (extraction des protéines périplasmiques)

Sucrose : 0.5M; EDTA : 1.3mM; Tris-HCl (pH :8,0) : 50mM.

2.3.9 Tampon de transfert (pH :11,0)

3-[cyclohexylamino]-1-propanesulfonic acid : 10mM; méthanol : 10%.

2.4 SOUCHES BACTÉRIENNES ET PLASMIDES UTILISÉS.

Tableau III. Descriptions et provenances des souches bactériennes utilisées.

Descriptions	Sources
φ80dlacZΔM15Δ(lacZYA-argF) recA endA hsdR supE	GIBCO-BRL
RP4-2 (Tc : :Mu) (Km : :Tn7) intégré dans le chromosome	Simon <i>et al.</i> , 1983.
Rif ^r ; souche sauvage	Yen & Marrs, 1976.
SB1003 portant pPHU266	cette étude
SB1003 portant pMMA235	cette étude
SB1003 <i>ntcA</i> : :Km ^{r}	cette étude
RcMMA14 portant pPHU266	cette étude
RcMMA14 portant pMMA235	cette étude
	Descriptionsφ80dlacZΔM15Δ(lacZYA-argF) recA endA hsdR supERP4-2 (Tc : :Mu) (Km : :Tn7) intégré dans le chromosomeRif ^r ; souche sauvageSB1003 portant pPHU266SB1003 portant pMMA235SB1003 ntcA : :Km ^r RcMMA14 portant pPHU266RcMMA14 portant pMMA235

Plasmides	Descriptions	Sources
p1B8	Km ^r ; régulateur de la fixation de l'azote	Fonstein et al., 1992.
pBluescript II KS [–]	Ap ^r ; <i>lacPOZ</i> , site multi-clonage (MCS) (2.96 kb)	Stratagene
pUC18	Ap ^r ; site multi-clonage dans <i>lacZ'</i> (2.69 kb)	Yanisch-Perron et al., 1985.
pUCGM	Ap ^r , Gm ^r ; fragment <i>Hin</i> dIII portant la cassette Gm ^r (3.6 kb)	Schweizer, 1993.
pBSL86	Ap ^r , Km ^r ; fragment <i>Eco</i> RI portant la cassette Km ^r (3.6 kb)	Alexeyev, 1995.
pSUP202	Ap ^r , Tc ^r , Cm ^r ; <i>mob</i> , vecteur suicide (8 kb)	Simon <i>et al.</i> , 1983.
pPHU266	Tc ^r ; fusion <i>nifH-lacZ</i>	Hübner et al., 1991.
pPHU235	Tc ^r ; broad-host-range <i>lacZ</i> fusion vector	Hübner et al., 1991.
pRK2013	Km ^r ; vecteur "helper"	Ditta et al., 1980.
pMMA10	Ap ^r ; pBluescript II KS ⁻ portant le gène <i>ntcA</i> de <i>R. capsulatus</i> cloné au site <i>Eco</i> RV- <i>Bam</i> HI (4.5 kb)	cette étude
pMMA20	Ap ^r , Km ^r ; pMMA10 portant la cassette Km ^r insérée au site <i>Pst</i> I du gène <i>ntcA</i> (5.7 kb)	cette étude
pMMA30	Ap ^r , Tc ^r , Km ^r ; pSUP202 portant le gène muté $ntcA$: :Km ^r cloné au site Eco RI (10.7 kb)	cette étude
pMMX15	Ap ^r ; pUC18 portant le gène <i>ntrX</i> de <i>R</i> . <i>capsulatus</i> cloné au site <i>Sma</i> I- <i>Pst</i> I (4.9 kb)	cette étude
pMMX25	Ap ^r , Gm ^r ; pMMX15 portant la cassette Gm ^r insérée au site <i>Bam</i> HI du gène <i>ntrX</i> (5.75 kb)	cette étude
pMMX35	Ap ^r , Tc ^r , Gm ^r ; pSUP202 portant le gène muté $ntrX$: :Gm ^r cloné au site <i>Eco</i> RI (11.05 kb)	cette étude
pMMA235	Tc ^r ; pPHU235 portant le promoteur du gène <i>ntcA</i> cloné au site <i>Bam</i> HI- <i>Pst</i> I	cette étude

Tableau IV. Descriptions et provenances des plasmides utilisés.

2.5 MÉTHODES DE MANIPULATION DE L'ADN.

2.5.1 Extraction de l'ADN génomique.

Selon le protocole modifié de Neumann *et al.*, 1992. Cette technique rapide d'extraction d'ADN génomique se fait à partir d'une culture bactérienne de 18 ml.

Afin de récolter les bactéries, on a centrifugé à 4°C la culture de nuit pendant 15 minutes. Une fois le surnageant enlevé, on a resuspendu le culot avec 2.5 ml de tampon SET. Après un mélange au vortex de quelques secondes, on a ajouté du lysozyme (~1 mg/ml). On a laissé incuber à 37°C pendant 30 minutes et de temps en temps on a mélangé par inversion. Ensuite, on a ajouté 250 µl de SDS 10% et on a mélangé doucement. Le tout a été incubé à 60°C pendant 2 heures. Par la suite, on a ajouté 1.1 ml de NaCl 5M et on a mélangé doucement. Après avoir ajouté 4 ml de chloroforme, on a laissé incuber à la température de la pièce sous agitation pendant 1 heure. On a par la suite centrifugé (4°C) pendant 1 heure et transféré le surnageant dans un nouveau tube. On a ajouté 8 ml d'éthanol 100% et mélangé doucement. On a centrifugé pendant 10 minutes et lavé le culot avec 2 ml d'éthanol 70%. On a fait sécher le culot au Speed-Vac puis on l'a resuspendu avec 100 µl de tampon TE.

2.5.2 Extraction de l'ADN plasmidique.

Selon le protocole de Birnboim & Doly, 1979.

Cette technique rapide d'extraction d'ADN plasmidique permet d'obtenir $\sim 5 \ \mu g$ d'ADN à partir d'une culture bactérienne de 5 ml.

On a centrifugé à la température de la pièce la culture de nuit pendant 15 minutes. Une fois le surnageant enlevé, on a resuspendu le culot dans 200 µl de solution de TEG-lysozyme puis on a incubé les tubes sur glace pendant 15 minutes. Ensuite, on a ajouté 400 µl d'une solution de NaOH 0.2M-SDS 1% puis

on a agité doucement par inversion. Le tout a été incubé 5 minutes sur la glace. On a ensuite neutralisé avec 300 µl d'une solution d'acétate de potassium 3M pH :4,8. Le tube a été mélangé par inversion puis incubé à -20°C pendant 10 minutes. On a par la suite centrifugé (4°C) pendant 15 minutes. On a prélevé le surnageant et on l'a transféré dans un tube Eppendorf de 1.5 ml. On a rempli le tube le plus possible avec de l'isopropanol froid -20°C et on a mélangé par plusieurs inversions successives. On a laissé incuber à -20°C pendant 15 minutes. Ensuite, on a centrifugé (4°C) pendant 15 minutes puis rincé le culot avec 200 µl d'éthanol 70% -20°C. On a fait sécher le culot au Speed-Vac pendant 8 minutes puis on l'a resuspendu dans 200 µl de tampon TE. On a ajouté 1/2V de NH₄OAc 7.5M et on a incubé les tubes à -20°C pendant 5 minutes. On a centrifugé (4°C) pendant 5 minutes et transféré le surnageant dans un nouveau tube Eppendorf de 1.5 ml. Par la suite, on a ajouté 2V d'éthanol 100% -20°C puis précipité à -20°C pendant 15 minutes; après avoir bien mélangé par inversion. On a recentrifugé (4°C) pendant 15 minutes puis rincé le culot avec 100 µl d'éthanol 70% -20°C. On a finalement fait sécher le culot au Speed-Vac pendant 8 minutes et resuspendu dans 50 µl de TE + RNase (40 μ g/ml).

2.5.3 Amplification d'ADN par PCR.

La réaction de polymérisation en chaîne, aussi appelée PCR, permet de détecter et d'amplifier une région d'ADN. Les différentes conditions ont été mises au point par essai-erreur. Le tableau V présente la séquence des amorces qui ont été utilisées lors du PCR.

L'ADN est ajouté à un tube Eppendorf stérile avec 5 μ l de chacune des amorces 10 μ M, 10 μ l de dNTP 2mM (dATP, dGTP, dCTP et dTTP), 10 μ l de tampon PCR 10X, 0.5 μ l de MgSO₄ 100mM et 1 μ l de DMSO. Le volume final est ajusté à 100 μ l avec de l'eau distillée stérile. Le mélange est recouvert avec 40 μ l d'huile minérale et la réaction de PCR est amorcée dans l'appareil (DNA Thermal Cycler, Perkin Elmer Cetus). Deux programmes ont été utilisés selon les amorces employées.

Programme 1: Amorces NTCNBAM et NTCACECOV.

Dénaturation thermique:	95°C pendant 5 min. (1 fois)			
Dénaturation thermique:	94°C pendant 1 min. 30 sec.)		
Hybridation des amorces:	56°C pendant 1 min.	(25 fois)		
Extension des brins: 72°C pendant 3 min.				
Terminer l'extension: 72°C pendant 5 min. (1 fois)				
Conservation à 4°C				

Programme 2: Amorces NTRX3 et NTRX2.

Dénaturation thermique:	95°C pendant 5 min. (1 fois)			
Dénaturation thermique:	94°C pendant 1 min. 30 sec.)		
Hybridation des amorces:	60°C pendant 1 min.	(25 fois)		
Extension des brins: 72°C pendant 3 min.				
Terminer l'extension: 72°C pendant 5 min. (1 fois)				
Conservation à 4°C				

Tableau V. Amorces utilisées lors de l'amplification de l'ADN par PCR.

Amorces	Séquence de l'oligonucléotide	Sources
NTCNBAM	5' CGGGATCCTCAGTCAGGACGTGTTC 3'	Alpha DNA
NTCACECOV	5' GCAGATATCTGACCGTGGAGGAT 3'	Alpha DNA
NTRX3	5' GGCGCTGCAGATCATCACCTTT 3'	Alpha DNA
NTRX2	5' GGCTCACTATCCTTGATGGC 3'	Alpha DNA

Les deux oligonucléotides NTCNBAM et NTCACECOV, fabriqués par la compagnie Alpha DNA, ont été élaborés à partir des séquences connues du gène *ntcA* de la cyanobactérie *Anabaena*. L'amplification de l'ADN entre les amorces NTCNBAM et NTCACECOV devrait donner un fragment d'environ 1.5 kb. Ces deux amorces ont été utilisées sur l'ADN génomique de *Rhodobacter capsulatus* SB1003 afin d'y détecter le gène homologue inconnu.

Les deux oligonucléotides NTRX3 et NTRX2, également fabriqués par la compagnie Alpha DNA, ont été élaborés à partir des séquences connues du gène *ntrX* de la bactérie symbiotique *Azorhizobium*. L'amplification de l'ADN entre les amorces NTRX3 et NTRX2 devrait donner un fragment d'environ 2.2 kb. Ces deux amorces ont été utilisées sur le plasmide p1B8 afin d'y détecter le gène homologue inconnu.

2.5.4 Digestion de l'ADN par les enzymes de restrictions.

Les digestions enzymatiques de l'ADN ont été effectuées en suivant les recommandations du manufacturier. Les tampons de digestions et les enzymes de restrictions proviennent des compagnies suivantes : Boehringer Mannheim, Bethesda Research Laboratory (BRL) et New England Biolabs (NEB). On peut arrêter la réaction avec l'ajout de la solution stop de digestion.

2.5.5 Traitement à la phosphatase alcaline.

Le traitement de l'ADN avec la phosphatase alcaline a pour objectif d'enlever les groupements phosphates 5' des fragments linéaires d'ADN afin qu'ils ne se religuent pas sur eux-mêmes.

Après la digestion enzymatique de l'ADN, on a inactivé l'enzyme par la chaleur. Ensuite, on a ajouté 2 μ l de tampon AP 10X et 2 μ l de phosphatase alcaline. On a incubé à 37°C pendant 1 heure. Finalement, on a éliminé l'enzyme par la méthode "Gene Clean" de purification de l'ADN.

2.5.6 Traitement à la Klenow.

Le fragment Klenow de la polymérase ADN I d'*Escherichia coli* permet d'incorporer des dNTP à l'extrémité 3' des fragments d'ADN cohésifs, créant ainsi un ou des fragments d'ADN à bouts francs.

À 5 μ g d'ADN digéré, on a ajouté 1 μ l de dNTP 2mM, 2 μ l de tampon EcoPol 10X et 1 unité de l'enzyme Klenow. Par la suite, on a incubé 15 minutes à 30°C puis inactivé l'enzyme à 75°C pendant 10 minutes. On a utilisé la méthode "Gene Clean" de purification de l'ADN afin d'éliminer la Klenow.

2.5.7 Méthode "Gene Clean" de purification de l'ADN.

Pour commencer, on a extrait les bandes d'ADN du gel d'agarose. On a ajouté 3 fois le volume du gel de la solution de NaI puis 10 µl de "glass milk". On a mélangé à l'aide du vortex puis on a incubé à 55°C pendant 15 minutes. Par la suite, on a centrifugé pendant 3 minutes. On a lavé le culot avec 500 µl de la solution de NaI puis centrifugé pendant 3 minutes. On a refait le lavage 3 fois avec 1 ml de la solution de TNE puis on a centrifugé entre chaque lavage pendant 4 minutes. On a fait sécher le culot à 37°C pendant 5 minutes. On a élué le culot avec 10 µl de Tris-HCl 10mM pH :8,5 et on a incubé les tubes à 55°C pendant 5 minutes. On a centrifugé pendant 4 minutes. On a centrifugé pendant 4 minutes puis répété l'élution.

2.5.8 Méthode de ligation.

Il faut mettre le vecteur de clonage digéré en présence du fragment d'ADN à cloner afin de permettre la réaction de ligation. À un rapport molaire 3:1 (insert:vecteur), on a ajouté 4 μ l de tampon de ligation 5X et 1 μ l d'ADN T4 ligase (0.1 unité). On a ajusté le volume final à 20 μ l avec de l'eau distillée. Ensuite, on a mélangé doucement et centrifugé brièvement afin de concentrer les produits au fond du tube. Le tout a été incubé à 16°C pendant 16 heures. On a finalement inactivé l'enzyme avec 1 μ l d'EDTA 0.5M. L'ADN peut être ensuite transformé dans les cellules bactériennes DH5 α .

2.5.9 Transformation d'Escherichia coli.

2.5.9.1 Préparation de cellules chimiocompétentes congelées.

Selon le protocole du Dr. Belhumeur, Université de Montréal.

On a tout d'abord strié la souche bactérienne DH5 α sur milieu LB-agar et on a incubé les pétris toute la nuit à 37°C. Le lendemain, on a repiqué une quinzaine de colonies dans 20 ml de Ψ B et on a fait agiter à 37°C jusqu'à l'obtention d'une D.O. 550 = 0.28. Ensuite, on a ensemencé 200 ml de milieu Ψ B avec 10 ml de la culture. On a fait agiter à 37°C jusqu'à l'obtention d'une D.O. 550 = 0.28. On a laissé refroidir les bactéries dans l'erlenmeyer sur la glace. Ensuite, on a centrifugé (4°C) la culture dans 4 tubes de 50 ml à 2 000 RPM pendant 10 minutes. On a jeté le surnageant et asséché les parois du tube avec du papier Kimwipe. On a resuspendu chacun des culots dans 20 ml de TfB I et on a gardé les tubes sur glace pendant 5 minutes. On a recentrifugé (4°C) à 2 000 RPM pendant 10 minutes. On a jeté le surnageant, asséché les parois et resuspendu chacun des culots dans 2 ml de TfB II. On a gardé sur glace 15 minutes. On a aliquoté les cellules compétentes dans des tubes à congélation en fractions de 100 µl. Finalement, on a immédiatement congelé les cellules dans de l'azote liquide.

2.5.9.2 Transformation chimique.

On a décongelé une ampoule de cellules compétentes sur glace et on a ajouté l'ADN jusqu'à un volume maximal de 10 μ l. Par la suite, on a gardé sur glace 30 minutes puis on a fait le choc thermique à 42°C pendant 90 secondes. On

a gardé sur glace pendant 2 minutes. On a ajouté 400 μ l de milieu Ψ B et on a mis sous agitation à 37°C pendant 60 minutes. On a étalé sur milieu LB-agar + antibiotique approprié et incubé le tout toute la nuit à 37°C.

2.5.9.3 Transformation par électroporation.

Selon le protocole de Zabarovsky & Winberg, 1990.

L'électroporation à haut voltage est une méthode qui permet d'introduire du matériel génétique chez les bactéries lorsque la transformation chimique ne s'y prête pas.

2.5.10 Gel d'agarose.

C'est un gel qui contient 1% d'agarose dans du TAE 1X. La poudre d'agarose est additionnée dans le tampon TAE 1X et le tout est porté à ébullition durant quelques minutes. Le bromure d'éthidium est additionné au gel afin de faciliter la visualisation des fragments d'ADN.

2.6 PROCÉDURES DE CLONAGE.

Le plasmide suicide pMMA30 a été réalisé en trois étapes. Tout d'abord, le fragment du gène *ntcA* obtenu par PCR a été inséré dans le vecteur pBluescript II KS⁻ au site *Eco*RV-*Bam*HI donnant ainsi pMMA10. Ensuite, le fragment *Pst*I du plasmide pBSL86 qui porte la cassette Km^{-r} a été inséré dans le gène *ntcA* entre le $42^{ième}$ et le $45^{ième}$ codons afin de produire pMMA20. Finalement, le gène *ntcA* : :Km^{-r} a été cloné dans le vecteur suicide pSUP202 au site *Eco*RI afin de donner pMMA30. Pour réaliser la dernière étape, il a fallu traiter à la Klenow les extrémités *Eco*RI du vecteur pSUP202 et l'extrémité *Bam*HI du gène *ntcA* : :Km^{-r}.

Le plasmide suicide pMMX35 a également été réalisé en trois étapes. En premier lieu, le fragment du gène *ntrX* obtenu par PCR a été incorporé dans le vecteur pUC18 au site *Sma*I-*Pst*I créant le plasmide pMMX15. Par la suite, le fragment *Bam*HI du plasmide pUCGM qui porte la cassette Gm^r a été cloné dans le gène *ntrX* entre le 244^{ième} et le 247^{ième} codons pour donner pMMX25. Finalement, le gène *ntrX* : :Gm^r a été incorporé dans le vecteur suicide pSUP202 au site *Eco*RI donnant ainsi pMMX35. Pour réaliser la dernière étape, il a fallu traiter à la Klenow les extrémités *Eco*RI du vecteur pSUP202 et l'extrémité *Pst*I du gène *ntrX* : :Gm^r.

Le plasmide pMMA235 a été construit en seulement une étape. Un fragment du gène *ntcA* de 700 pb qui contient le promoteur a été cloné dans le vecteur pPHU235 au site *Bam*HI-*Pst*I donnant ainsi pMMA235.

2.7 TRANSCONJUGAISON.

2.7.1 Biparentale.

La méthode de la transconjugaison biparentale utilise deux bactéries. La souche donneuse *Escherichia coli* S17.1 qui contient le plasmide et la souche réceptrice *R. capsulatus*.

Le plasmide pMMA30 a été transféré dans la souche *R. capsulatus* SB1003 par cette méthode de transconjugaison donnant ainsi la souche mutante RcMMA14.

Le protocole s'étend sur deux jours. Lors de la première journée, on a fait une sous-culture de la souche S17.1 (inoculer 100 μ l dans 2 ml de bouillon LB sans antibiotique) à partir de la culture de nuit. On a incubé cette sous-culture à 37°C pendant 3 à 4 heures. Ensuite, on a transféré 500 μ l de la sous-culture dans un tube Eppendorf. On a centrifugé 2 minutes puis jeté le surnageant. On a resuspendu le culot avec 500 μ l de LB puis ajouté 500 μ l d'une culture de nuit de *Rhodobacter capsulatus*; il faut mélanger par plusieurs inversions. On a recentrifugé 4 minutes puis jeté le surnageant. On a resuspendu le culot avec 300 μ l de YPS et déposé les cellules sur un filtre de nitrocellulose (ce filtre est placé sur un pétri YPS). On a incubé le pétri toute la nuit à 30°C.

Lors de la deuxième journée, on a récolté les cellules qui sont sur le filtre avec 300 μ l de milieu YPS. Ensuite, on a préparé une série de dilutions 1:100, 1:1 000 et 1:10 000. On a finalement étalé 200 μ l de ces dilutions sur pétris YPS avec l'antibiotique rifampicine afin de sélectionner *R. capsulatus* de même qu'avec l'antibiotique approprié du plasmide. On a incubé le tout à 30°C.

2.7.2 Triparentale

Cette méthode utilise trois bactéries. La souche donneuse E. coli qui contient le plasmide, la souche E. coli pRK2013 et la souche réceptrice R. capsulatus.

Les plasmides pPHU266 et pMMA235 ont été transférés dans la souche sauvage *R. capsulatus* SB1003 et dans la souche mutante RcMMA14 à l'aide de cette méthode de transconjugaison.

Tout d'abord, on a fait une sous-culture de la souche donneuse *E. coli* qui contient le plasmide et de la souche *E. coli* pRK2013 (inoculer 100 μ l dans 2 ml de bouillon LB) à partir de la culture de nuit. On a incubé ces sous-cultures à 37°C pendant 3 à 4 heures. Ensuite, on a transféré 500 μ l de la souche donneuse *E. coli* qui contient le plasmide et 500 μ l de la souche *E. coli* pRK2013 dans un tube Eppendorf. On a centrifugé 2 minutes puis jeté le surnageant et resuspendu le culot avec 500 μ l de LB. On a centrifugé de nouveau et resuspendu avec 300 μ l de LB. Par la suite, on a ajouté 500 μ l d'une culture de nuit de *R. capsulatus* et mélangé par plusieurs inversions. Le protocole se poursuit exactement comme celui de la transconjugaison biparentale.

2.8 CONDITIONS DE CULTURE.

La souche *R. capsulatus* peut croître sur pétri YPS. Premièrement, on doit incuber les pétris à 30°C pendant 2 à 4 jours. Ensuite, on a repiqué quelques colonies sur de nouveaux pétris YPS afin de pouvoir les isoler. Après avoir obtenu des colonies isolées, on a strié ces colonies sur de nouveaux pétris YPS en faisant de nombreuses striations rapprochées. Par la suite, on peut inoculer les bactéries dans des tubes vissés contenant 17 ml de milieu YPS. Il faut incuber ces tubes à 30° C en présence de lumière sans agitation pendant toute la nuit. Le lendemain, on a pris 1 ml de la culture de nuit et on l'a inoculée dans 17 ml de milieu YPS. Il faut recommencer la dernière étape 2 à 3 fois afin de pouvoir optimiser la croissance des bactéries. Maintenant, on peut prendre 1 ml de la culture de nuit et l'inoculer dans 17 ml de milieu RCV (milieu RCV NH₄⁺ 4mM, RCV NH₄⁺ 30mM, RCV proline 10mM, RCV arginine 10mM ou RCV glutamate 10mM).

R. capsulatus peut également croître sous anaérobiose, en l'absence de lumière avec lactate comme source de carbone et en présence de N₂O comme accepteur d'électrons. Afin de reproduire ces conditions de culture, on a tout d'abord pris 1.5 ml de la culture bactérienne et on l'a inoculée dans 25 ml de milieu lactate 30mM-NH_4^+ 30mM. Ensuite, on a fermé hermétiquement les tubes avec des bouchons en caoutchouc afin de ne pas laisser passer l'oxygène. On a aussi recouvert les tubes avec du papier d'aluminium pour les protéger contre la lumière. On a exposé le milieu au gaz N₂O pendant 5 minutes, en insérant une aiguille dans le bouchon, avant d'incuber les tubes à 30°C avec agitation.

2.9 DOSAGES D'ACTIVITÉS ENZYMATIQUES.

2.9.1 Dosage de l'activité de la β-galactosidase.

Selon le protocole modifié de Miller, 1972.

La première étape consiste à prendre la D.O. $_{660}$ de la culture de nuit. Ensuite, à 2 ml de la culture de nuit, on a ajouté 100 µl de solution de lyse. Il faut vortexer 30 secondes puis incuber à 28°C pendant 10 minutes. On a mis 150 µl de cellules lysées et 650 µl de tampon NaPO₄ 0,1M (pH :7,0) dans un nouveau tube. On a déclenché la réaction en ajoutant 200 µl de solution d'ONPG et incubé les tubes à 28°C jusqu'à l'obtention d'une coloration jaune. Il faut arrêter la réaction avec 500 µl de Na₂CO₃ 1M et on note le temps de la réaction depuis l'ajout de l'ONPG. Le tube témoin contient 2 ml de milieu RCV, 100 µl de solution de lyse et 200 µl de solution d'ONPG. Il faut prendre la D.O. ₄₂₀ et D.O. ₅₅₀. Les unités Miller de l'activité β-galactosidase sont calculées selon cette formule :

Unité Miller = 1 000 X
$$(D.O._{420} - (1.75 X D.O._{550}))$$

T X V X D.O.₆₆₀

T = temps en minute

V = volume de cellules lysées en ml

2.9.2 Dosage de la glutamine synthétase.

Selon le protocole modifié de Bender et al., 1977.

Il faut premièrement transférer 1 ml de la culture de nuit de *R. capsulatus* dans un tube Eppendorf. Par la suite, il faut ajouter 10 μ l de CTAB (10 mg/ml), mixer avec le vortex et incuber 5 minutes sur glace. On a transféré 10 à 50 μ l de la culture de *R. capsulatus* dans un nouveau tube Eppendorf (± Mg²⁺ 30-60mM).

Ensuite, on a ajouté 400 μ l de la solution de réaction et incubé 5 minutes à 30°C. Il faut débuter la réaction avec 50 μ l de glutamine 0.2M et incuber 30 minutes à 30°C. On a arrêté la réaction en ajoutant 1 ml de la solution stop. Il faut centrifuger 5 minutes puis garder le surnageant. Il faut prendre la D.O. 540.

2.10 MÉTHODES D'ANALYSES DES PROTÉINES.

2.10.1 Extraction des protéines.

2.10.1.1 Protéines périplasmiques.

Selon le protocole modifié de McEwan et al., 1984.

On a centrifugé à 4°C la culture de nuit pendant 15 minutes afin de récolter les bactéries. Ensuite, on a lavé le culot avec 500 μ l de Tris-HCl 50mM pH :8,0. On a recentrifugé à 4°C pendant 10 minutes. Il faut refaire le même lavage et centrifuger à 4°C pendant 10 minutes. Ensuite, on a resuspendu le culot avec 500 μ l de tampon SET. On a ajouté du lysozyme (~600 μ g/ml) et incubé à 30°C pendant 1 heure. Finalement, on a centrifugé (4°C) pendant 30 minutes. Le surnageant contient les protéines périplasmiques; on doit les garder sur glace.

2.10.1.2 Protéines totales.

On a centrifugé à 4°C la culture de nuit pendant 20 minutes et resuspendu le culot avec 1 ml de Tris-HCl 0.1M pH :7,6. Il faut mettre la suspension dans un tube Eppendorf et on a fait la sonication pendant 2 minutes. On a centrifugé (4°C) le tout pendant 15 minutes. Le surnageant contient les protéines totales; on doit les garder sur glace.

2.10.2 Dosage protéique selon Bradford.

Selon le protocole modifié de Ausubel et al., 1989.

La méthode de Bradford permet de déterminer la concentration des protéines. Premièrement, on a utilisé le témoin BSA (1 mg/ml) afin de faire cinq échantillons : 10 μ l, 20 μ l, 30 μ l, 40 μ l et 50 μ l. On a additionné de l'eau afin d'avoir un volume final de 50 μ l. Ensuite, il faut prendre un échantillon de 10 μ l de protéines et il faut compléter le volume final à 50 μ l avec de l'eau. On a ajouté 2 ml de réactif de Bradford et on a attendu de 5 minutes à 1 heure. Le blanc est seulement le réactif de Bradford. Il faut prendre la D.O. 595.

2.10.3 Électrophorèse en gel de polyacrylamide avec SDS (SDS-PAGE).

Ce type d'électrophorèse est le plus répandu et il permet d'analyser rapidement les protéines. Lors de l'électrophorèse, les protéines sont séparées selon le poids moléculaire. Le protocole utilisé est celui du Laboratoire Bio-Rad. Le marqueur utilisé est le Low Molecular Weight (LMW) Electrophoresis Calibration Kit (Pharmacia Biotech.). Standard protéiques : phosphorylase b (94 000 [94 kDa]), albumin (67 000 [67 kDa]), ovalbumin (43 000 [43 kDa]), carbonic anhydrase (30 000 [30 kDa]), trypsin inhibitor (20 100 [20.1 kDa]) et α lactalbumin (14 400 [14.4 kDa]).

2.10.4 Électrophorèse en gel de polyacrylamide en 2-D.

Lors de l'électrophorèse, la première dimension permet de séparer les protéines selon la charge et la deuxième dimension selon le poids moléculaire. Le protocole utilisé est celui du Laboratoire Bio-Rad. Le marqueur utilisé est le Low Molecular Weight (LMW) Electrophoresis Calibration Kit (Pharmacia Biotech.).

2.10.4.1 Transfert des protéines sur une membrane de PVDF.

Selon le protocole de Mme France Dumas, Institut de recherche en biotechnologie.

Après l'électrophorèse, on a trempé le gel dans le tampon de transfert pendant 5 minutes afin de réduire la quantité de Tris et de glycine. Pendant ce temps, on a rinsé la membrane de PVDF avec du méthanol 100% et ensuite on l'a mise dans le tampon de transfert. On a inséré le gel entre la membrane de PVDF et du papier buvard et on a assemblé le tout dans l'appareil Mini Protein II de Bio-Rad. L'électroélution s'est effectuée à 0.250 ampère pendant 15 minutes à la température de la pièce. Par la suite, on a lavé la membrane de PVDF dans de l'eau déionisée pendant 5 minutes. On a mis la membrane dans la solution de coloration pendant 5 minutes et dans la solution de décoloration pendant 5 minutes et dans la solution de l'eau déionisée pendant 5 minutes et al solution de l'eau déionisée pendant 5 minutes la membrane avec de l'eau déionisée pendant 5 minutes la membrane avec de l'eau déionisée pendant 5 minutes la membrane avec de l'eau déionisée pendant 5 minutes et dans la solution de décoloration pendant 5 minutes et dans la solution de décoloration pendant 5 minutes et dans la solution de l'eau déionisée pendant 5 minutes la membrane avec de l'eau déionisée pendant 5 minutes et dans la solution de décoloration pendant 1 minutes. Finalement, on a rinsé la membrane avec de l'eau déionisée pendant 5 minutes et on l'a laissée sécher à l'air libre. On a gardé la membrane à -20°C. Lors de l'électrophorèse en gel de polyacrylamide en 2-D, il est préférable d'ajouter 1 µl d'une solution stock de thioglycolique acide (sous la forme sel de sodium) par millilitre de tampon, afin de prévenir le bloquage N-terminal de la protéine dans le gel.

2.11 SÉQUENÇAGE.

Le séquençage de la partie N-terminale des protéines a été effectué par le service de séquençage des protéines et des peptides de l'Institut de recherche en biotechnologie.

CHAPITRE III

RÉSULTATS

3.1 LES GÈNES ntcA ET ntrX CHEZ RHODOBACTER CAPSULATUS.

Par la technique du PCR, nous avons réussi à démontrer qu'il existe des gènes analogues à *ntcA* et à *ntrX* chez *R. capsulatus*. Les résultats de ces PCR sont présentés à la figure 8 et 9. Se référer à la section 2.5.3 pour connaître les conditions de réaction de l'amplification de l'ADN. L'amorce NTCNBAM a été créée à partir de la séquence située à 558 pb en amont du gène *ntcA* tandis que l'amorce NTCACECOV a été créée à partir de la séquence située à 238 pb en aval du gène *ntcA* (voir annexe I). Les amorces NTRX3 et NTRX2 ont été créées respectivement à partir de la séquence située à 428 pb en amont et à 385 pb en aval du gène *ntrX* (voir annexe II). Nous avons également incorporé des sites de clivage à l'intérieur de certaines de ces amorces. Le site *Bam*HI a été introduit dans l'amorce NTCNBAM, le site *Eco*RV dans l'amorce NTCACECOV et le site *Pst*I dans l'amorce NTRX3.

Comme on peut le constater à la figure 8, on obtient un fragment d'ADN amplifié d'environ 1.5 kb. Ce fragment correspond à l'amplification du gène ntcA. À la figure 9, on obtient un fragment d'ADN d'environ 2.2 kb. Ce fragment correspond à l'amplification du gène ntrX.

Puit 2 = ADN amplifié de *R. capsulatus* (PCR avec amorces NTCNBAM et NTCACECOV).

Figure 9. Fragment d'ADN amplifié (*ntrX*) de 2.2 kb chez *R. capsulatus*. Puit 1 = Marqueur de poids moléculaire Mix.

Puit 2 = ADN amplifié de *R. capsulatus* (PCR avec amorces NTRX3 et NTRX2).

3.2 CRIBLAGE ET VÉRIFICATION DES DOUBLES RECOMBINANTS.

À la suite du transfert du plasmide pMMA30 dans la souche *Rhodobacter capsulatus* SB1003 par la méthode de transconjugaison biparentale, nous avons fait un criblage afin de trouver les doubles recombinants. Dans une première étape, nous avons repiqué plus d'une centaine de colonies sur pétris YPS contenant les antibiotiques rifampicine et kanamycine. Par la suite, nous avons repiqué les colonies ayant poussé sur les pétris YPS (rifampicine et kanamycine) sur de nouveaux milieux YPS contenant à la fois la rifampicine, la kanamycine et la tétracycline. Le double recombinant RcMMA14 a été identifié par le phénotype Rif^r, Km^r et Tc^s (la résistance à la tétracycline est encodée par une portion du vecteur suicide pSUP202). Le taux de recombinaison du gène *ntcA* est d'environ 8%.

Nous avons également criblé plus de quatre cents colonies sans trouver aucun double recombinant pour le gène *ntrX*. Le taux de recombinaison du gène *ntrX* est alors nul. Selon ces résultats, nous pensons que la mutation est létale pour la bactérie.

Nous avons utilisé la technique du PCR afin de s'assurer que RcMMA14 est un double recombinant. Nous avons voulu démontrer que le gène de type sauvage n'est plus dans le chromosome. La figure 10 présente les résultats de ce PCR. Nous pouvons observer chez la souche sauvage une bande de 1.5 kb; elle correspond à l'amplification du gène *ntcA*. Tandis que chez la souche mutante il y a une bande de 2.7 kb. Elle correspond à l'amplification du gène *ntcA* en plus de la cassette kanamycine (1.2 kb) qui est incorporée dans le gène. D'après ces résultats, nous pouvons donc affirmer que le gène de type sauvage est absent chez la souche mutante RcMMA14.

Figure 10. Photo du gel du PCR sur l'ADN génomique de R. capsulatus.

M = Puit contenant le marqueur de poids moléculaire Mix.

- S = Puit contenant l'ADN amplifié de la souche sauvage *R. capsulatus*SB1003 (PCR avec amorces NTCNBAM et NTCACECOV).
- D = Puit contenant l'ADN amplifié de la souche mutante RcMMA14 (PCR avec amorces NTCNBAM et NTCACECOV).

3.3 CROISSANCE DE LA SOUCHE MUTANTE RCMMA14 SOUS DIVERSES CONDITIONS DE CULTURE.

Nous avons voulu observer la croissance de la souche mutante RcMMA14 dans divers milieux de culture contenant une source d'azote variable; se référer à la section 2.8 pour les conditions de culture. La figure 11 représente les résultats de la croissance de la souche sauvage *R. capsulatus* SB1003 et de la souche mutante RcMMA14. Après avoir inoculé les bactéries dans les milieux RCV, nous avons pris la densité optique (A_{660nm}) à toutes les deux heures jusqu'au cap des dix heures puis par la suite à toutes les heures. En général, nous pouvons observer que la mutation semble affecter la densité optique finale. Par exemple, en condition d'excès d'azote (milieu RCV NH₄⁺ 30mM), la densité optique observée à 22 heures est de 5.3 pour la souche sauvage tandis qu'elle est de 3.7 pour la souche mutante. En azote limité (milieu RCV NH₄⁺ 4mM), la densité optique à 22 heures est de 3.3 pour la souche sauvage et de 2.7 pour la souche mutante. Donc, la croissance totale de la souche mutante RcMMA14 est légèrement inférieure à la souche SB1003 et ce dans toutes les conditions de source d'azote.

Figure 11. Croissance de *R. capsulatus* SB1003 (A) et de la souche mutante RcMMA14 (B) sous diverses conditions de source d'azote. Les conditions en excès d'azote correspondent au milieu RCV NH_4^+ 30mM (\blacklozenge). En azote limité, elles correspondent aux milieux RCV NH_4^+ 4mM (\blacksquare), RCV arginine 10mM (\bigtriangleup), RCV proline 10mM (\Box) et RCV glutamate 10mM (\blacklozenge).

La figure 12 présente les résultats de la croissance de la souche sauvage R. capsulatus SB1003 et de la souche mutante RcMMA14 sous anaérobiose avec N₂O comme accepteur d'électrons. L'ensemble de ces conditions de culture permet de reproduire le processus de dénitrification. Nous avons utilisé le protoxyde d'azote (N₂O) parce que ce gaz est hautement soluble dans l'eau ce qui lui permet d'être un accepteur d'électrons rapidement disponible pour les bactéries (McEwan *et al.*, 1985). D'après les résultats de la figure suivante, aucune différence significative n'est observée au niveau de la croissance entre les deux souches.

Figure 12. Croissance de *R. capsulatus* SB1003 (\bullet) et de la souche mutante RcMMA14 (\blacktriangle) sous anaérobiose avec N₂O comme accepteur d'électrons. Les conditions de culture sont en anaérobiose, en l'absence de lumière avec lactate comme source de carbone et en présence de N₂O comme accepteur d'électrons. Nous avons exposé le milieu au gaz N₂O (protoxyde d'azote) pendant 5 minutes aux temps 0, 21, 45 et 70 heures.

3.4 ÉTUDES SUR L'ACTIVITÉ DU PROMOTEUR ntcA DE RcMMA14.

L'objectif de cette étude était de savoir si le gène *ntcA* était exprimé chez *R. capsulatus*. Afin de pouvoir la réaliser, nous avons procédé au clonage d'une région de 700 pb, située en amont du gène *ntcA*, dans le vecteur plasmidique pPHU235. Cette région contient le promoteur du gène. Ensuite, le plasmide pMMA235 a été transféré dans la souche sauvage *R. capsulatus* SB1003 et dans la souche mutante RcMMA14 par la méthode de transconjugaison triparentale.

D'après les résultats de la figure 13, l'activité β -galactosidase est environ 4 fois plus élevée lorsque les souches ont été incubées dans les conditions en excès d'azote. De plus, nous n'observons aucune différence significative au niveau de l'activité β -galactosidase de la fusion *ntcA-lacZ* entre la souche sauvage puis la souche mutante en tenant compte évidemment de l'écart-type. Ce résultat s'applique à toutes les conditions de culture que ce soit en excès d'azote ou en azote limité. Donc, si NtcA affecte sa propre expression elle est minime. L'ensemble des résultats nous laisse croire que le gène *ntcA* est bel et bien exprimé chez *R. capsulatus*.

Figure 13. Expression de l'activité β -galactosidase de la fusion *ntcA-lacZ* chez *R*. *capsulatus* sous différentes conditions de source d'azote. La souche sauvage SB1003 (RcMM235) (bandes hachurées) et la souche mutante RcMMA14 (RcMMA235) (bandes pointillées) contiennent le plasmide pMMA235 (fusion *ntcA-lacZ*). Les conditions en excès d'azote correspondent au milieu RCV NH₄⁺ 30mM (A). En azote limité, elles correspondent aux milieux RCV NH₄⁺ 4mM (B) et RCV glutamate 10mM (C). Les valeurs représentent la moyenne de quatre expériences indépendantes réalisées en duplicata. Les barres indiquent l'écart-type.

3.5 EXPRESSION DU GÈNE nifH CHEZ LE MUTANT RcMMA14.

Le but de cette expérience était d'étudier l'expression du gène *nifH* chez le mutant RcMMA14. En effet, il existe chez la cyanobactérie *Anabaena* sp. PCC 7120 un mutant *ntcA* incapable de déclencher la synthèse de la nitrogénase (Frias *et al.*, 1994). Nous avons tout d'abord transféré le plasmide pPHU266 (fusion *nifH-lacZ*) dans la souche sauvage *R. capsulatus* SB1003 et dans la souche mutante RcMMA14 par la méthode de transconjugaison triparentale.

Selon les résultats de la figure 14, aucune activité β -galactosidase n'est présente dans les conditions en excès d'azote (milieu RCV NH₄⁺ 30mM). Cependant, en conditions d'azote limité, elle est observable. De plus, cette activité est environ 4 fois plus élevée dans le milieu RCV NH₄⁺ 4mM que dans les autres milieux limités en azote. L'activité β -galactosidase, en conditions d'azote limité, entre la souche sauvage et la souche mutante, donne des résultats assez comparables. Donc, NtcA n'est pas nécessaire pour l'expression du gène *nifH* chez *R. capsulatus*.

Figure 14. Expression de l'activité β -galactosidase de la fusion *nifH-lacZ* chez *R. capsulatus* sous différentes conditions de source d'azote. La souche sauvage SB1003 (RcMM266) (bandes hachurées) et la souche mutante RcMMA14 (RcMMA266) (bandes pointillées) contiennent le plasmide pPHU266 (fusion *nifH-lacZ*). Les conditions en excès d'azote correspondent au milieu RCV NH₄⁺ 30mM (A). En azote limité, elles correspondent aux milieux RCV NH₄⁺ 4mM (B), RCV proline 10mM (C) et RCV glutamate 10mM (D). Les valeurs représentent la moyenne de quatre expériences indépendantes réalisées en duplicata. Les barres indiquent l'écart-type.

3.6 ÉTUDES SUR L'ACTIVITÉ DE L'ENZYME GLUTAMINE SYNTHÉTASE CHEZ RcMMA14.

Nous avons aussi étudié l'activité de l'enzyme glutamine synthétase chez la souche mutante parce que chez certaines cyanobactéries NtcA régule de façon positive le gène *glnA* (Fanyi *et al.*, 2000).

Selon la figure 15, l'activité totale de la glutamine synthétase entre la souche sauvage *R. capsulatus* SB1003 et la souche mutante RcMMA14 est

considérablement la même en tenant compte évidemment de l'écart-type. L'activité totale correspond au dosage en l'absence de Mg^{2+} . La présence de Mg^{2+} inhibe l'enzyme adénylylée. Quant à l'état d'adénylylation, cela correspond au nombre de groupement AMP ajouté par l'holoenzyme. Le pourcentage de l'enzyme adénylylée peut être déterminé selon cette formule:

% =
$$(1 - (activité +Mg^{2+}) / (activité -Mg^{2+})) \times 100$$

89.9% = $(1 - (152) / (505)) \times 100$

Chez la souche sauvage SB1003, la glutamine synthétase est adénylylée à 89.9% tandis que chez la souche mutante RcMMA14 est elle adénylylée à 83.4%.

Nous avons également déterminé l'état d'adénylylation en faisant le calcul du rapport de l'activité transférase ($+Mg^{2+}/-Mg^{2+}$) de la souche sauvage (0.30) puis de la souche mutante (0.36). Ces rapports peuvent être utilisés comme mesure indirecte du degré d'adénylylation de la glutamine synthétase.

Figure 15. L'activité de la glutamine synthétase chez *R. capsulatus*. La souche sauvage *R. capsulatus* SB1003 (bandes hachurées) et la souche mutante RcMMA14 (bandes pointillées) ont poussé en condition d'excès d'azote dans le milieu RCV NH_4^+ 30mM. L'activité de l'enzyme a été mesurée en utilisant le dosage de la γ -glutamyltransférase; en présence et en absence de MgCl₂ 60mM. Les valeurs représentent la moyenne de cinq expériences indépendantes réalisées en duplicata. Les barres indiquent l'écart-type.

3.7 ANALYSES SUR LE PROFIL DES PROTÉINES.

Le but de cette première analyse était de savoir si NtcA pouvait jouer un rôle dans le processus de la dénitrification. Nous avons analysé les protéines périplasmiques parce que chez *R. capsulatus* la N₂O réductase; enzyme impliquée lors de la dénitrification, est localisée dans le périplasme. Les premiers résultats de l'analyse du profil des protéines sont donnés à la figure 16. Tout d'abord, ils représentent les protéines périplasmiques de la souche sauvage puis de la souche mutante obtenues par électrophorèse en gel de polyacrylamide avec SDS. Nous avons noté la disparition d'une protéine d'environ 34 kDa chez la souche mutante RcMMA14 (indiquée par la flèche).

Figure 16. Analyse des protéines périplasmiques par électrophorèse en gel de polyacrylamide avec SDS obtenues sous condition anaérobie avec N₂O comme accepteur d'électrons. Protéines périplasmiques de la souche sauvage *R. capsulatus* SB1003 (puit S) et de la souche mutante RcMMA14 (puit M). Les conditions de culture sont en anaérobiose, en l'absence de lumière avec lactate comme source de carbone et en présence de N₂O comme accepteur d'électrons. Le marqueur utilisé est le Low Molecular Weight (puit LMW; il contient 50 µg de protéines). Les autres puits contiennent 10 µg de protéines périplasmiques. La flèche indique la position d'une protéine qui semble être synthétisée seulement chez la souche sauvage.

L'objectif de cette deuxième analyse était de savoir si la mutation pouvait affecter l'expression des protéines périplasmiques lorsque les bactéries sont cultivées en conditions d'excès d'azote ou en azote limité. Nous avons donc poursuivi les analyses sur le profil des protéines périplasmiques parce qu'on a noté précédemment une différence dans le profil. Lors de l'analyse du profil des protéines périplasmiques de la figure 17, nous avons constaté une diminution de l'expression de deux protéines, chez la souche mutante, lorsque les bactéries ont été cultivées dans le milieu RCV glutamate 10mM. L'une des protéines est d'environ 34 kDa et l'autre environ 60 kDa (indiquées par les flèches). Pour les autres conditions de culture, aucune différence n'est détectable entre le profil des protéines de la souche sauvage puis celui de la souche mutante.

Figure 17. Profil des protéines périplasmiques par électrophorèse en gel de polyacrylamide avec SDS obtenues sous plusieurs conditions de culture. Protéines périplasmiques de la souche sauvage *R. capsulatus* SB1003 (puits S) et de la souche mutante RcMMA14 (puits M). Les bactéries ont été cultivées dans les milieux RCV proline 10mM (A), RCV NH_4^+ 4mM (B), RCV NH_4^+ 30mM (C), RCV arginine 10mM (D) et RCV glutamate 10mM (E). Le marqueur utilisé est le Low Molecular Weight (puits LMW; ils contiennent 50 µg de protéines). Les autres puits contiennent 10 µg de protéines périplasmiques. Les flèches indiquent la position de protéines qui semblent être plus faiblement synthétisées chez la souche mutante.

Nous avons effectué une troisième analyse afin de savoir si la mutation pouvait affecter l'expression des protéines totales lorsque les bactéries sont cultivées en conditions d'excès d'azote ou en azote limité. L'ensemble des résultats, représenté à la figure 18, nous indique aucune différence détectable entre le profil des protéines de la souche sauvage et mutante et ce dans toutes les conditions de culture.

Figure 18. Profil des protéines totales par électrophorèse en gel de polyacrylamide avec SDS obtenues sous plusieurs conditions de culture. Protéines totales de la souche sauvage *R. capsulatus* SB1003 (puits S) et de la souche mutante RcMMA14 (puits M). Les bactéries ont été cultivées dans les milieux RCV NH_4^+ 30mM (A), RCV NH_4^+ 4mM (B), RCV proline 10mM (C), RCV arginine 10mM (D) et RCV glutamate 10mM (E). Le marqueur utilisé est le Low Molecular Weight (puits LMW; ils contiennent 50 µg de protéines). Les autres puits contiennent 18 µg de protéines totales.

À la suite des résultats obtenus précédemment, nous avons décidé de faire une analyse plus poussée sur le profil des protéines périplasmiques lorsque les bactéries sont cultivées dans le milieu RCV glutamate 10mM. Rappelons que dans ces conditions deux protéines semblaient être plus faiblement synthétisées chez la souche mutante RcMMA14. Afin de réaliser cette analyse, nous avons employé l'électrophorèse en gel de polyacrylamide en deux dimensions. Cette technique permet de mieux séparer les protéines. La première dimension permet de séparer les protéines selon la charge et la deuxième dimension selon le poids moléculaire. La figure 19 représente les résultats du profil des protéines périplasmiques obtenus par cette technique. Nous pouvons également constater la disparition de deux protéines chez la souche mutante (indiquées par les flèches). L'une des protéines est d'environ 27 kDa et l'autre environ 60 kDa. Cependant, la protéine de faible poids moléculaire (27 kDa) n'est pas la même que celle identifiée à la figure 17, malgré que l'échantillon provienne de la même extraction protéique. Pour le moment, nous n'avons aucune explication pouvant expliquer ce phénomène.

Figure 19. Séparation des protéines périplasmiques par électrophorèse en gel de polyacrylamide en deux dimensions obtenues en condition d'azote limité. Protéines périplasmiques de la souche sauvage *R. capsulatus* SB1003 (A) et de la souche mutante RcMMA14 (B). Les bactéries ont été cultivées dans le milieu RCV glutamate 10mM. Le marqueur utilisé est le Low Molecular Weight (puits

LMW; ils contiennent 50 µg de protéines). La quantité de protéines périplasmiques est de 4 µg. Les flèches indiquent la position de protéines qui sont apparemment synthétisées seulement chez la souche sauvage.

3.8 SÉQUENÇAGE DES PROTÉINES.

Par la suite, nous avons décidé de faire séquencer la partie N-terminale des deux protéines d'intérêt de la figure 19. Pour ce faire, nous avons commencé par transférer les protéines sur une membrane de PVDF. Ensuite, nous avons envoyé les échantillons à l'Institut de recherche en biotechnologie pour le séquençage. Les résultats de ce séquençage sont présentés à l'annexe III.

Certaines séquences de la protéine à faible P.M. n'ont pu être déterminées à cause d'un bruit de fond trop élevé. Les résultats indiquent également que le signal de cet échantillon est très faible (50 femtomoles).

Le signal obtenu pour l'échantillon de la protéine à haut P.M. n'est pas un signal unique. Les acides aminés en caractères gras pourraient être un signal majeur.
CHAPITRE IV

DISCUSSION

La connaissance complète d'un organisme sur le plan génétique est évidemment nécessaire afin de pouvoir mieux comprendre les phénomènes biologiques les plus complexes. De nos jours, de nombreux projets de recherche dont le but est d'analyser des génomes entiers sont en cours de réalisation. Nous savons également que de nombreux gènes sont découverts par le séquençage génomique et que la fonction de certain de ces gènes est encore inconnue.

Dans ce contexte, notre participation a été d'étudier les régulateurs potentiels de la fixation de l'azote chez la bactérie photosynthétique *Rhodobacter capsulatus*. Nous avons exploité les relations d'homologie entre les gènes afin de pouvoir cloner de nouveaux gènes et formuler des hypothèses sur leur fonction probable.

Selon nos recherches d'homologies, *R. capsulatus* posséderait des analogues de NtcA et NtrX. Nous avons pu détecter les gènes d'intérêts par la technique du PCR. En effet, le PCR utilisant les amorces NTCNBAM et NTCACECOV démontre l'amplification d'une région d'environ 1.5 kb. Tandis que les résultats du PCR utilisant les amorces NTRX3 et NTRX2 montrent l'amplification d'une région d'environ 2.2 kb.

Par la suite, afin de pouvoir étudier la fonction de ces régulateurs potentiels nous avons créé une souche R. *capsulatus* mutante pour le gène *ntcA*. Cependant, les tentatives pour créer une souche R. *capsulatus* mutante pour le gène *ntrX* se sont avérées infructueuses. Les problèmes sont survenus lors du criblage où il nous a été impossible de trouver des doubles recombinants. Ceci nous laisse croire que la mutation est létale pour la bactérie. Le gène *ntrX* serait donc essentiel à la croissance de R. *capsulatus*.

La première étude que nous avons réalisée sur la souche mutante RcMMA14 a été d'observer sa croissance sous des conditions en excès d'azote et en azote limité. D'après ces résultats, nous pouvons supposer que la mutation affecte de façon minime la croissance totale de la bactérie dans ces conditions.

Par la suite, nous avons étudié l'activité du promoteur *ntcA* chez la souche mutante RcMMA14. L'objectif de cette étude était avant tout de savoir si le

promoteur *mtcA* générait une activité chez *Rhodobacter capsulatus*. Selon nos résultats, le gène *ntcA* semble être exprimé chez cette bactérie. Nous avons également constaté que l'activité du promoteur est sensiblement la même entre la souche sauvage puis la souche mutante. Donc, il existerait peut-être un autre élément qui viendrait interagir avec le promoteur *ntcA*. Nous avons aussi remarqué que l'activité β -galactosidase est assez faible. En général, elle se situe en dessous de 70 unités Miller. D'après cette constatation, nous pouvons avancer l'hypothèse que NtcA est un régulateur et non une enzyme.

Dans la littérature, il est écrit que chez la cyanobactérie Anabaena sp. PCC 7120, le régulateur transcriptionnel NtcA est essentiel pour une régulation globale de l'azote (Merrick & Edwards, 1995). Il existe également une souche Anabaena sp. PCC 7120 mutante pour le gène ntcA qui est incapable d'induire la nitrogénase (Frias et al., 1994). Donc, nous avons voulu savoir si ce phénomène allait se produire chez notre souche mutante RcMMA14. Tout d'abord, nos résultats indiquent aucune expression de la nitrogénase lorsque les bactéries sont en conditions d'excès d'azote. Ceci s'explique par le fait que la conversion de N₂ en NH3 demande beaucoup d'énergie. Donc, il est logique que les bactéries ne puissent continuer à faire de l'ammoniac lorsqu'il y en a déjà dans le milieu. C'est pourquoi la nitrogénase est soumise à une répression par NH₃ ou les sels ammonium. En azote limité, l'expression de la nitrogénase est moins élevée dans les milieux RCV contenant les acides aminés proline et glutamate que dans le milieu RCV NH4⁺ 4mM. Ce résultat s'explique par le fait que les bactéries ont plus d'accessibilité aux acides aminés grâce à l'existence de plusieurs systèmes de transport. Finalement, la souche mutante RcMMA14 est capable d'induire la nitrogénase. Donc, chez R. capsulatus, le régulateur NtcA ne semble pas être essentiel à la synthèse de l'enzyme.

Il est clair que l'enzyme glutamine synthétase occupe une position stratégique dans l'assimilation de l'azote ammoniacal. La plupart des espèces bactériennes possèdent des mécanismes qui contrôlent la synthèse et l'activité de la glutamine synthétase. Chez certaines cyanobactéries, des études récentes ont démontré que NtcA régule de façon positive le gène *glnA* (Fanyi *et al.*, 2000).

Nous avons donc voulu savoir si le régulateur NtcA joue un rôle au niveau de l'activité de cette enzyme chez *R. capsulatus*. D'après nos résultats, l'activité totale de la glutamine synthétase chez la souche mutante RcMMA14 est semblable à celle de la souche sauvage. Donc, le gène *ntcA* ne semble avoir aucun effet sur la synthèse de *glnA*. De plus, pour confirmer ces résultats, nous avons calculé le rapport de l'activité transférase. Le rapport de la souche mutante (0.36) est très près de celui de la souche sauvage (0.30). Ainsi, chez *R. capsulatus*, NtcA ne semble pas être impliqué dans la régulation de l'activité de la glutamine synthétase.

La figure 20 représente la famille des régulateurs FNR-CRP et leurs homologues. Cet arbre est divisé en trois groupes comprenant les protéines FNR, CRP et NtcA. Le groupe FNR est lui-même divisé en trois sous-groupes comprenant les protéines AadR, FixK et DNR. Le régulateur NtcA d'Anabaena sp. fait parti de cet arbre. Il est également intéressant d'apprendre que ces régulateurs contrôlent des métabolismes très différents. Par exemples, le régulateur AadR est impliqué dans le métabolisme de l'hydroxybenzoate tandis que FixK est impliqué au niveau de la fixation de l'azote et de la réduction du nitrate en anaérobiose. Chez la bactérie *Pseudomonas stutzeri*, des études ont démontré que DnrD est un régulateur clé dans le processus de la dénitrification (Vollack et al., 1999). Alors, nous avons voulu savoir si NtcA jouait un rôle semblable chez R. capsulatus. Afin de réaliser cette étude, nous avons fait croître la souche sauvage et mutante sous des conditions d'anaérobiose, en l'absence de lumière avec lactate comme source de carbone et en présence du gaz N₂O (protoxyde d'azote) comme accepteur d'électrons. Selon nos résultats, la croissance de la souche mutante RcMMA14 ne semble pas être affectée dans ces conditions. Il existe chez R. capsulatus une protéine périplasmique impliquée dans la réduction de N2O en N2; c'est la N2O réductase. Le poids moléculaire de cette protéine est d'environ 76 kDa. Alors, nous avons décidé d'analyser le profil des protéines périplasmiques chez les deux souches. D'après nos résultats, la synthèse de l'ensemble des protéines périplasmiques semble diminuer chez la souche mutante. Cependant, la mutation

n'affecte pas de façon majeure la synthèse de la N_2O réductase mais plutôt la synthèse d'une autre protéine d'environ 34 kDa.

Figure 20. Arbre phylogénétique représentant la famille des régulateurs FNR-CRP et leurs homologues. (Egland & Harwood, 2000)

Le régulateur NtcA semble contrôler l'expression de certaines protéines périplasmiques chez *R. capsulatus*. Est-ce qu'il en est de même lorsque *R. capsulatus* croît sous diverses conditions de source d'azote? Selon d'autres analyses du profil des protéines périplasmiques, la mutation semble affecter l'expression de deux protéines lorsque les bactéries sont cultivées dans le milieu RCV glutamate 10mM. D'après l'analyse de l'ensemble des protéines, nous avons constaté que NtcA pourrait agir principalement au niveau des protéines périplasmiques.

Suite à ces analyses positives, nous avons décidé d'approfondir davantage nos recherches en utilisant l'électrophorèse en gel de polyacrylamide en deux dimensions. Nous avons commencé par analyser les protéines périplasmiques lorsque les bactéries sont cultivées dans le milieu RCV glutamate 10mM parce que cette condition de culture est plus facilement reproductible. Ici aussi, la mutation semble affecter l'expression de deux protéines.

Nous avons pris la décision de faire séquencer la partie N-terminale de ces deux protéines afin de pouvoir connaître leur identité. Les résultats du séquençage ne sont pas tellement concluants. Tout d'abord, certaines séquences d'acides aminés de la protéine à faible P.M. (27 kDa) n'ont pu être déterminées à cause d'un bruit de fond trop élevé. Afin de remédier à ce problème, on devrait augmenter la concentration de la protéine. L'autre solution serait d'augmenter le temps d'électroélution afin de permettre à toutes les protéines de transférer sur la membrane de PVDF. Les résultats pour la protéine à haut P.M. (60 kDa) ne donnent pas un signal unique. Il devient donc très difficile de trouver des similarités avec les séquences de protéines déjà connues. Afin de résoudre le problème, on devrait mieux séparer les protéines en utilisant peut-être un plus grand gel. Une autre alternative serait d'améliorer le focus des protéines lors de la première dimension.

Lors d'expériences futures, il serait intéressant de recommencer le séquençage de la partie N-terminale de ces deux protéines en apportant évidemment les corrections que nous avons suggérées. Une autre option serait de poursuivre les analyses du profil des protéines périplasmiques obtenues sous conditions anaérobioses et en présence du protoxyde d'azote. Ensuite, si les résultats s'avèrent positifs, il serait intéressant de faire séquencer les protéines d'intérêt.

CONCLUSION

Les premiers résultats que nous avons obtenus montrent que la bactérie *Rhodobacter capsulatus* possède des gènes analogues à ntcA et à ntrX. Afin de pouvoir étudier ces régulateurs potentiels, nous avons créé une souche R. *capsulatus* mutante pour le gène ntcA. Cependant, nous étions incapables de créer une souche mutante pour le gène ntrX. Ce gène pourrait donc être essentiel à la survie de la bactérie.

Le gène *ntcA* semble être exprimé chez *R. capsulatus*. De plus, s'il y a un effet de NtcA sur sa propre expression elle est minime. Nous pensons également que NtcA pourrait être un régulateur. Chez *R. capsulatus*, ce régulateur ne semble pas être impliqué dans la synthèse de la nitrogénase de même que dans la régulation de l'activité de la glutamine synthétase. Les analyses du profil des protéines périplasmiques montrent que la mutation semble affecter l'expression de certaines protéines. Donc, il serait important d'améliorer les résultats du séquençage afin de poursuivre les études et pouvoir y apporter des conclusions valables. Finalement, plusieurs recherches s'avèrent encore nécessaires afin de pouvoir déterminer le rôle précis que pourrait avoir NtcA chez la bactérie *R. capsulatus*.

BIBLIOGRAPHIE

Alexeyev, M. F. 1995. Three kanamycin resistance gene cassettes with differents polylinkers. BioTechniques 18: 52-56.

Arp, D. J. 2000. *The nitrogen cycle*. p.1-14. In E. W. Triplett (ed.), Prokaryotic Nitrogen Fixation : A Model System for Analysis of a Biological Process, Horizon Scientific Press, Wymondham, UK.

Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith and K. Struhl. 1989. *Short protocols in molecular biology*, p.283. Greene Publishing Associates and Wiley-Interscience.

Avtges, P., R. G. Kranz and R. Haselkorn. 1985. Isolation and organization of gene for nitrogen fixation in Rhodopseudomonas capsulata. Mol. Gen. Genet.
201: 353-369.

Bender, R. A., K. A. Janssen, A. D. Resnick, M. Blumenberg, F. Foor and B. Magasanik. 1977. Biochemical Parameters of Glutamine Synthetase from Klebsiella aerogenes. J. Bacteriol. 129: 1001-1009.

Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research. 7: 1513-1523.

Bishop, P. E., D. M. L. Jarlenski and D. R. Hetherington. 1980. Evidence for an alternative nitrogenase fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA 77: 7342-7346.

Bishop, P. E. and R. D. Joerger. 1990. Genetics and molecular biology of alternative fixation systems. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 109-125.

de Bruijn, F. J. 1989. The unusual symbiosis between the diazotrophic stemnodulating bacterium Azorhizobium caulinodans ORS571 and its host, the tropical legume Sesbania rostrata. p.457-493. In E. Nester, T. Kosuge (eds.), Plantmicrobe interactions vol. 3, McGraw-Hill, New York.

Buikema, W. J. and R. Haselkorn. 1991. Characterisation of a gene controlling heterocyst differenciation in the cyanobacterium Anabaena 7120. Genes Dev. 5: 321-330.

Chastain, C., J. Brusca, T. Ramasubramanian, T. F. Wei and J. Golden. 1990. A sequence-specific DNA-binding factor (VF1) from Anabaena sp. strain PCC 7120 vegetative cells binds to three adjacent sites in the xisA upstream region. J. Bacteriol. 172: 5044-5051.

Chisnell, J. R., R. Premakumar and P. E. Bishop. 1988. Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J. Bacteriol. 170: 27-33.

Chiurazzi, M., R. Meza, M. Lara, A. Lahm, R. Defez, M. Iaccarino and G. Espin. 1992. The Rhizobium leguminosarum biovar phaseoli glnT gene, encoding glutamine synthetase III. Gene 119: 1-8.

Darrow, R. A. and R. R. Knotts. 1977. Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochem. Biophys. Res. Commun. 78: 554-559.

Dean, D. R. and M. R. Jacobson. 1992. *Biochemical genetics of nitrogenase.* p.763-834. In G. Stacey, R. H. Burris, H. J. Evans (eds.), Biological Nitrogen Fixation, Chapman and Hall, New York.

Dean, D. R., J. T. Bolin and L. Zheng. 1993. Nitrogenase metalloclusters : Structures, organization, and synthesis. J. Bacteriol. 175: 6737-6744.

Ditta, G., S. Stanfield, D. Corbin and D. R. Helinski. 1980. Broad host range DNA cloning system for gram-negative bacteria : construction of a gene bank of *Rhizobium meliloti*. Proc. Natl. Acad. Sci. USA 77 : 7347-7351.

Eady, R. R., R. L. Robson, T. H. Richardson, R. W. Miller and M. Hawkins. 1987. The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein. Biochem. J. 244: 197-207.

Egland, P. G. and C. S. Harwood. 2000. *HbaR*, a 4-hydroxybenzoate sensor and *FNR-CRP* superfamily member, regulates anaerobic 4-hydroxybenzoate degradation by Rhodopseudomonas palutris. J. Bacteriol. **182**: 100-106.

Fanyi, J., S. Wisén, M. Widersten, B. Bergman and B. Mannervik. 2000. *Examination of the Transcription Factor NtcA-binding Motif by in vitro Selection of DNA Sequences from a Random Library*. J. Mol. Biol. **301 :**783-793.

Fischer, H. M., T. Bruderer and H. Hennecke. 1988. Essential and nonessential domains in the Bradyrhizobium japonicum NifA protein : Identification of indispensable cysteine residues potentially involved in redox activity and/or metal binding. Nucleic Acids Res. 16: 2207-2224.

Fischer, H. M. 1994. Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev. 58: 352-386.

Flores, E., A. M. Muro-Pastor and A. Herrero. 1999. Cyanobacterial nitrogen assimilation genes and NtcA-dependent control of gene expression. p.463-477. In G. A. Peschek, W. Löffelhardt, G. Schmetterer (eds.), The phototrophic prokaryotes, Kluwer Academic/Plenum Publishers, New York.

Fonstein, M., S. Zheng and R. Haselkorn. 1992. Physical map of the genome of Rhodobacter capsulatus SB1003. J. Bacteriol. 174: 4070-4077.

Frias, J. E., A. Merida, A. Herrero, J. Martin-Nieto and E. Flores. 1993. General distribution of the nitrogen control gene ntcA in cyanobacteria. J. Bacteriol. 175: 5710-5713.

Frias, J. E., E. Flores and A. Herrero. 1994. Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 14: 823-832.

Golden, J. W., S. J. Robinson and R. Haselkorn. 1985. Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature **314**: 419-423.

Golden, J. W., C. D. Carrasco, M. E. Mulligan, G. J. Schneider and R. Haselkorn. 1988. Deletion of a 55-kilobase-pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120. J. Bacteriol. 170: 5034-5041.

Gussin, G. N., C. W. Ronson and F. M. Ausubel. 1986. Regulation of nitrogen fixation genes. Annu. Rev. Genet. 20: 567-591.

Hales, B. J., E. E. Case, J. E. Morningstar, M. F. Dzeda and L. A. Mauterer. 1986. Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry 25: 7251-7255.

Haselkorn, R. 1978. Heterocysts. Annu. Rev. Plant Physiol. 29: 319-344.

Haselkorn, R., J. Golden, P. Lammers and M. Mulligan. 1986. Developmental rearrangement of cyanobacterial nitrogen-fixation genes. Trends in Genetics 2: 255-259.

Haselkorn, R. and W. J. Buikema. 1992. Nitrogen fixation in cyanobacteria. p.166-190. In G. Stacey, R. H. Burris, H. J. Evans (eds.), Biological Nitrogen Fixation, Chapman and Hall, New York.

Hausinger, R. P. and J. Howard. 1983. Thiol reactivity of the nitrogenase Feprotein from Azotobacter vinelandii. J. Biol. Chem. 258: 13486-13492.

Hill, R., J. Parker, H. Goodman, D. Jones and D. Woods. 1989. Molecular analysis of a novel glutamine synthetase of the anaerobe Bacteroides fragilis. J. Gen. Microbiol. 135: 3271-3279.

Hübner, P., J. C. Willison, P. M. Vignais and T. A. Bickle. 1991. Expression of regulatory nif genes in Rhodobacter capsulatus. J. Bacteriol. **173** : 2993-2999.

Jacobson, M. R., K. E. Brigle, L. T. Bennett, R. A. Setterquist, M. S. Wilson, V. L. Cash, J. Beynon, W. E. Newton and D. R. Dean. 1989. *Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii*. J. Bacteriol. 171: 1017-1027.

Jones, R. and R. Haselkorn. 1989. The DNA sequence of the Rhodobacter capsulatus ntrA, ntrB and ntrC gene analogues required for nitrogen fixation. Mol. Gen. Genet. 215: 507-516.

Klipp, W., B. Masepohl and A. Pühler. 1988. Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus : duplication of a nifA-nifB region. J. Bacteriol. 170: 693-699.

Klipp, W. 1990. Organization and regulation of nitrogen fixation genes in *Rhodobacter capsulatus.* p.467-474. In P. M. Gresshoff, L. E. Roth, G. Stacey, W. E. Newton (eds.), Nitrogen fixation: Achievements and objectives, Chapman and Hall, New York, London.

Kranz, R. G. and D. Foster-Hartnett. 1990. Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: Oxygen and nitrogen-responsive factors. Mol. Microbiol. 4: 1793-1800.

Kranz, R. G., V. M. Pace and I. M. Caldicott. 1990. Inactivation, sequence and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capsulatus. J. Bacteriol. 172: 53-62.

Kranz, R. G. and P. J. Cullen. 1995. Regulation of nitrogen fixation genes. p.1191-1208. In R. E. Blankenship, M. T. Madigan, C. E. Bauer (eds.), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Netherlands.

Kranz, R. G. and W. C. Bowman. 1999. Molecular biology and evolution of the Ntr system. Comparisons of phototrophs to other prokaryotes. p.501-508. In G. A. Peschek, W. Löffelhardt, G. Schmetterer (eds.), The phototrophic prokaryotes, Kluwer Academic/Plenum Publishers, New York.

Laboratoire Bio-Rad. *Mini-Protean[®] II Dual Slab Cell Instruction Manual.* p.1-28. Richmond.

Laboratoire Bio-Rad. Mini-Protean[®] II 2-D Cell, Mini-Protean II Tube Cell, and Mini-Protean II Tube Module Instruction Manual. p.1-15. Richmond.

Lammers, P. J., J. W. Golden and R. Haselkorn. 1986. Identification and sequence of a gene required for a developmentally regulated DNA excision in Anabaena. Cell 44: 905-911.

Ljones, T. and R. H. Burris. 1972. ATP hydrolysis and electron transfert in the nitrogenase reaction with different combinations of the iron protein and the molybdenum-iron protein. Biochim. Biophys. Acta 275: 93-101.

Maier, R. J. and F. Moshiri. 1993. Molecular analysis of components responsible for protection of Azotobacter nitrogenase from oxygen damage. p.383. In R. Palacios, J. Mora, W. E. Newton (eds.), New Horizons in Nitrogen Fixation, Kluwer Academic Publishers, Boston.

Masephol, B., W. Klipp and A. Pühler. 1988. Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus. Mol. Gen. Genet. 212: 27-37.

McEwan, A. G., J. B. Jackson and S. J. Ferguson. 1984. Rationalization of properties of nitrate reductases in Rhodopseudomonas capsulata. Arch. Microbiol. 137: 344-349.

McEwan, A. G., A. J. Greenfield, H. G. Wetzstein, J. B. Jackson and S. J. Ferguson. 1985. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J. Bacteriol. 164: 823-830.

Merrick, M. J. and R. A. Edwards. 1995. Nitrogen control in bacteria. Microbiol. Reviews 59: 604-622.

Miller, J. H. 1972. *Experiments in molecular genetics*, p.352-355. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

Morett, E., W. Cannon and M. Buck. 1988. The DNA-binding domain of the transcriptional activator protein NifA resides in its carboxy terminus, recognizes

the upstream activator sequences of nif promoters, and can be separated from the positive control function of NifA. Nucl. Acids Res. 16: 11469-11488.

Neumann, B., A. Pospiech and H. U. Schairer. 1992. Rapid isolation of genomic DNA from gram-negative bacteria. Trends Genet. 8: 332-333.

Nieva-Gomez, E., G. P. Roberts, S. Klevickis and W. J. Brill. 1980. Electron transport to nitrogenase in Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 77: 2555-2558.

Oliver, G., G. Gosset, R. Sanchez-Pescador, E. Lozoya, L. M. Ku, N. Flores, B. Becerril, F. Valle and F. Bolivar. 1987. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 60 : 1-11.

Pawlowski, K., P. Ratet, J. Schell and F. J. de Bruijn. 1987. Cloning and characterisation of nifA and ntrC genes of the stem nodulating bacterium ORS571, the nitrogen fixing symbiont of Sesbania rostrata : regulation of nitrogen fixation (nif) genes in the free-living versus symbioyic state. Mol. Gen. Genet. 206 : 207-219.

Pawlowski, K., U. Klosse and F. J. de Bruijn. 1991. *Characterisation of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism.* Mol. Gen. Genet. **231 :** 124-138.

Pelmont, J. 1993. *Bactéries et environnement : Adaptations physiologiques,* Chapitres 20-21-23. Collection Grenoble Sciences, Presses Universitaires de Grenoble. Ramasubramanian, T. S., T. F. Wei and J. W. Golden. 1994. Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes. J. Bacteriol. 176: 1214-1223.

Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman and R. Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.

Roberts, G. P., T. MacNeil, D. MacNeil and W. J. Brill. 1978. Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J. Bacteriol. 136: 267-279.

Santero, E., T. Hoover, J. Keener and S. Kustu. 1989. In vitro activity of the nitrogen fixation regulatory protein NifA. Proc. Natl. Acad. Sci. USA 86: 7346-7350.

Santero, E., T. Hoover and S. Kustu. 1990. Integration host factor binds to nif promoter-regulatory regions from a variety of purple bacteria. p.459-466. In P. M. Gresshoff, L. E. Roth, G. Stacey, W. E. Newton (eds.), Nitrogen fixation: Achievements and objectives, Chapman and Hall, New York, London.

Schatt, E., Y. Jouanneau and P. M. Vignais. 1989. Molecular cloning and sequence analysis of the structural gene of ferredoxin I from the photosynthetic bacterium Rhodobacter capsulatus. J. Bacteriol. 171: 6218-6226.

Schmehl, M., A. Jahn, A. Meyer zu Vilsendorf, S. Hennecke, B. Masepohl, M. Schuppler, M. Marxer, J. Oelze and W. Klipp. 1993. Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus : a putative membrane complex involved in electron transport to nitrogenase. Mol. Gen. Genet. 241: 602-615.

Schneider, K., A. Muller, U. Schramm and W. Klipp. 1991. Demonstration of a molybdenum and vanadium independant nitrogenase in a nifHDK-deletion mutant of Rhodobacter capsulatus. Eur. J. Biochem. 195: 653-661.

Schweizer, H. P. 1993. Small broad-host-range gentamycin resistance gene cassettes for site-specific-insertion and deletion mutagenesis. BioTechniques 15: 831-834.

Shah, V. K. and W. J. Brill. 1977. Isolation of an iron-molybdenum cofactor (FeMo-co) from nitrogenase. Proc. Natl. Acad. Sci. USA 74: 3249-3253.

Shah, V. K., G. Stacey and W. J. Brill. 1983. Electron transport to nitrogenase-Purification and characterization of pyruvate-flavodoxin oxidoreductase, the nifJ gene product. J. Biol. Chem. 258 : 12064-12068.

Simon, R., U. Priefer and A. Pühler. 1983. *A broad host range mobilization system for in vivo genetic engineering : Transposon mutagenesis in gram negative bacteria*. Biotechnology 1 : 784-791.

Simpson, F. B. and R. H. Burris. 1984. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224 : 1095-1097.

Son, H. S. and S. G. Rhee. 1987. Cascade control of Escherichia coli glutamine synthetase. Purification and properties of PII protein and nucleotide sequence of its structural gene. J. Biol. Chem. 262: 8690-8695.

St. John, R. T., H. M. Johnston, C. Seidman, D. Garfinkel, J. K. Gordon, V. K. Shah and W. J. Brill. 1975. Biochemistry and genetics of Klebsiella pneumoniae mutant strains unable to fix N_2 . J. Bacteriol. 121 : 759-765.

Tempest, D. W., J. L. Meers and C. M. Brown. 1970. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem. J. **117**: 405-407.

Thorneley, R. N. F. and D. J. Lowe. 1985. Molybdenum Enzymes. p.221-284. In T. G. Spiro (ed.), Wiley-Interscience, N.Y.

Tumer, N. E., S. J. Robinson and R. Haselkorn. 1983. Different promoters for the Anabaena glutamine synthetase gene during growth using molecular or fixed nitrogen. Nature **306**: 337-342.

Vega-Palas, M. A., F. Madueño, A. Herrero and E. Flores. 1990. Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. **172**: 643-647.

Vega-Palas, M., E. Flores and A. Herrero. 1992. NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol. Microbiol. 6: 1853-1859.

Vollack, K.-U., E. Härtig, H. Körner and W. G. Zumft. 1999. Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri : characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol. Microbiol. **31**: 1681-1694.

Walker, J. E., M. Saraste, M. J. Runswick and N. Gay. 1982. Distantly related sequences in the α - and β -subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO 1: 945-951.

Wang, G., S. Angermüller and W. Klipp. 1993. Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J. Bacteriol. 175: 3031-3042.

Wei, T. F., T. S. Ramasubramanian, F. Pu and J. W. Golden. 1993. Anabaena sp. strain PCC 7120 bifA gene encoding a sequence-specific DNA-binding protein cloned by in vivo transcriptional interference selection. J. Bacteriol. 175: 4025-4035.

Yakunin, A. F., G. Gennaro and P. C. Hallenbeck. 1993. Purification and properties of a nif-specific flavodoxin from the photosynthetic bacterium Rhodobacter capsulatus. J. Bacteriol. 175: 6775-6780.

Yanisch-Perron, C., J. Vieira and J. Messing. 1985. Improved M13 phage cloning vectors and host strains : nucleotide sequences of the M13mp18 and pUC19 vectors. Gene **33**: 103-119.

Yen, H. C. and B. Marrs. 1976. Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J. Bacteriol. 126: 619-629.

Zabarovsky, E. R. and G. Winberg. 1990. High efficiency electroporation of ligated DNA into bacteria. Nucleic Acids Res. 18: 5912.

ANNEXE I

NTCNBAM 60 GCCTGCCGCTTCATGCGATGACGCTTGAAAGCTTGCGCAACCAGATCGGGATCCTCAGTC AGGACGTGTTCCTGTTCGGCACCAGCTTGCGCGAAAACATCGCCTATGGGCCGGCTGGACG 120 CCACCGAGGCCGAGATTCGGGCCGCCGCCGAAAAGGCGCAGCTTTCCGCGCTGATCGCGG 180 240 300 AGAAACAGCGCGTCGCCATCGCCCGGGCCTTCCTGCGGAATCCGCCGATCCTGATCCTGG ACGAGGCGACCTCGGCGCTTGACAGCGAGACCGAACGCGAGATTCAGGCCGCGCTCGAGG 360 CGCTGTCGCGGGGCCGCACGACGCTGGTGATCGCGCATCGGCTGGGCACGATCCGGGCGG 420 CGGATCGCATCGTGGTGATGGAAGACGGCCGCGTGCAGGAGATCGGATCGCATGCGGCGC 480 TGCTGGCGCGGGGCGGGCTTTATGCGCGGCTGGCGGGGTGACGCAGAACGCCCCGCGGAC 540 600 CTGTCGCGGCGGCTTTCGCCGGCGCTGCGGTCATGCGATAACCCGGTGAAGGAGACCGCC Début ntcA 660 GCCGATGAAACCCGATGCCGACCGGATTGCCCGGAAATCCCTGCTGCGGGCCGTGCC 720 GAAACCGGCGCAGGATCTGATCCTGACCGGCGCGCATGAACGCAGCCTTGATCGCGGCGC 780 GACGATCTTCCTGCAGGGCGATCCCGCCACGGCGGTCTATATGGTGATCGACGGCTGGGT GAAGCTTTACCGCGTCGCGCCGAACGGCTCGGAGGCGGTGGTCAGCGTCTTTACCCGCGG 840 900 CGACAGTTTCGGCGAGGCGGTGGCCTTTACCGGCGGCGTCTATCCGGTCTCGGCCGAGGC 960 GGCGACCGATGTCGTGCTGGTGCGGGATCGAGACGGCGGAAATCCTGCGGCTGATCGAACG CCAGCCCGGGCTGGCGGTGTCGCTGCTGGCGGCGACCTTCGCGCATCTGCACCGGCTGGT 1020 1080 CGGGCAGATCGAGCAGCTGAAGGCGCGGGGGGGGGGGCGCAGCGCGGGAATTCCTGCT 1140 TGAACATGTGAGCGAGGAGCGCGGCCCCTGTGCGGTCGTGCCCTATGACAAGGTGCT GATCGCCGGGCGTCTGGGGATGAAGCCCGAAAGCCTGAGCCGCGCCTTTGCCCGGCTGCG 1200 CGAAAAGGGCGTGCAGGTGCGCCAGTCGGTGGCGGAAATCGAGGATGTGGCGCTGCTGCG 1260 CGACTATGTCGAGGAAGATCCGGGCCAGTCCTGGGCGCGTTAGGCGCCCCCCAGATGGCG 1320

TGGATTCGCACTGTGAATCCTCCACGGTCAGATATCTGCAACAATGCCTACGGGAGGCAG	1560
NTCACECOV	
CCGAGCACATCTGGCAGCACGGGGCTGTCACTGTCGCTGCCTGGCGTGAATTCCAGCGCA	1500
CGGCCCGAAACCGCGCTTTCGGTCGAGCGCGCGACATCAAGCAGGATCGCGACGCTCCGG	1440
CCAGATCTCGGGCAGGGCGGCGGCCGGTCAGATGGCCTGCATGGGGGGATCACCGCGAAACCGCC	1380

Séquence nucléotidique du gène *ntcA* de *Rhodobacter capsulatus*. Cette séquence nucléotidique est donnée en direction $5' \rightarrow 3'$. Le codon stop est identifié par trois astérix. Les amorces qui ont été utilisées lors de l'amplification de l'ADN par PCR sont également identifiées par NTCNBAM et NTCACECOV.

ANNEXE II

AAATCCACCTCACGGGATTCGCCGCGGGGGGAGAACCGGGGGGACCCGTCGTGTCCATGACG	60
AGGAGTGGCTCAGCTTGGGAGAAGCTGGCGCGGCTGCGGCGCCTGCGCCGGGTGCAAAGC	120
NTRX3	
GGCTTCGTCTTTGGCCTTGCGGTGCTGGGTCCGGCGCTGCAGATCATCACCTTTGTCGTG	180
CTCGGGCCTTTGGGGCAGGGCGCCGACAGCATCGCGCTGCGGCTGACGCTTCTGGGCGAC	240
TTCATCTATTTCCTCGTCCTGGCCGGGCTGATCCTTTTGCGCCTGACGCAGATGATGGCG	300
GCGCGGCGTGCGCGGGCGACGGGCTCGCGGCTGACATTGCGGCTGACCGGGGTCTTTGCC	360
GGAATCGCGCTGGTGCCCACCGTGCTGGTGGCGCTCTTTGCCGGGCTGACCGTCAACATC	420
GGGCTGGAGGGCTGGTTTTCCGACCGGGTGCGCTCGGTCGTCGGCACCTCGCTCTCGGCC	480
GCCGAAGCCTATCAGGAGGAACACCGCCACGATCTGGTCCAGGATGCCGGGGGCGCTGGCC	540
GGGTTTCTCAACCTGCGCCGTCAGGCGGCGACCTTTGCCGATGACGGCGATCTGCGCGAA	600
TGGCTGGTGGCGGGGCAGCAGGGCATTCAGCGCGGGCTCAAGGAAGCCTATGTGATCGAT	660
GGCGGCGCGGCGATCGTCGCCCGCGGCGATCGCTCTTATCTTTTCGACTATGAAACCCCCG	720
GCGCCGGAAAAGGTGGTCGCCGCGGCCAAGGGCGACACCGTCCTGATCGAGGATTGGTCG	780
AATTCGGAATTCCGGGCGCTGATCAAGCTTGATGCCTATGTCGACCGCTATCTCTATGTC	840
TCGCGCGCGGTCGATGGCCAGATCCTGTCACTGCTCGACAATACGCGCGAAACTGTCCAT	900
CTTTATCAACAGCTTGAGACTTCGCGCGGGGGGGGTTCTGTTCGAATTCGGGCTGATCTAT	960
GTCGCGTTCGCGCTGATCCTGATTCTGGCGGCGATCTGGGCCGGGCTCTGGTTTGCCGAG	1020
CGGCTCTCGCGCCCGATCGGGCGGCGGCGGCGGCGGGCGG	1080
CTCGATGCGCGGGTGATCGAGGAGGAGGGGGGGATGACGAAATCGCCACGCTGGGACAGGTC	1140
TTCAACCGGATGACCGGCCAGCTCAAGGGGCAGCGCGCGC	1200
GAGACCGACGAGCAGCGGCGGATGTTCGATTCCGTTCTGTCTTCGGTCACGTCGGGGGTG	1260
ATCGGGCTGGATGCCGAAGGGCGGATCGACTTTCTCAACCCTTCGGCGGTGCGGATCCTG	1320

xiii

AAGCTGACCGCCGCGCGCGCGACACCGATCGCCCGCTGGCCGAGGCCGTTCCGGAATTCGCC 1380 TCGCTTTTCCAGAAGTTGCAGGACGGTCTTCATGCGGTCGTGCAAGAAGAGGTGCGGGTC 1440 TCCCGCGAGGGGCGTCTGGAAAGCCTGCTGGTGCGGATGGCCGAACGACGCGCCTCGGGG 1500 CAGCGCGAGGGCTATGTGGTCGCCTTTGACGACGTGACCGAGCTGGTCTCGGCGCAAAGG 1560 ATGGCGGCCTGGGGCGACGTGGCGCGGCGGATCGCACATGAGATCAAGAACCCGCTGACG 1620 CCGATCCAGCTTTCGGCCGAGCGGATCAAGCGCAAGTTCACCCGTCAGGTTGCCCCCGAG 1680 GAGGCCGAGGCGCTGGAGCAACTGACCGGGGTGATCGTGCGCCAGACCGATGATCTGCGC 1740 CGGATCGTCGATGAATTCTCGCGCGTTTGCCCGGATGCCGGAACCGGACCGGCGCGACCAT 1800 GACATCGTGGCGCTGACCCGCGATGCGGTGCTGTTGCAGGAAGGTTCGCTGCACGGGGCG 1860 AAGCTGAGCGCCGATCTGCCCGAGGGGCCGGTGGTGGTCGAACTGGATGCGACGATGATT 1920 TCCCAGGCGCTGACCAATCTGATCAAGAACGCTGGCGAGGCGATCGAAAGCCTGATCGAA 1980 AAGGGCGCCCCGAAGGCTACGCGCCGCAGGTCCGCGTCCGCCTGACCGCCGAGCCCGAA 2040 TTTGAACCCTATGTGACGACCCGCGCCAAGGGCACCGGGCTTGGCCTGTCGATCGTCAAG 2160 AAGATCATCGAGGAACATGGCGGCATGCTGGTTCTGACCGATGCCCCCGCCTTTGGCCCG 2220 GGCGCCCGTCCCGGCGCCTGTGCCGAAATCAGACTGCCTCGCGCCCGTTCCGGGCTGCGC 2280 NTRX2

GCCATCAAGGATAGTGAGCC 2300

Séquence nucléotidique du gène *ntrX* de *Rhodobacter capsulatus*. Cette séquence nucléotidique est donnée en direction $5' \rightarrow 3'$. Le codon stop est identifié par trois astérix. Les amorces qui ont été utilisées lors de l'amplification de l'ADN par PCR sont également identifiées par NTRX3 et NTRX2.

xiv

ANNEXE III

A- Séquences de la partie N-terminale de la protéine à faible P.M. (~27 kDa).

	1	2	3	4	5	6	7	8	9	10
NH2-	S/G/D/A	(*)	(*)	(*)	(*)	L/G	Р	A/Q/L/I	C/A/Q	I/G

B- Séquences de la partie N-terminale de la protéine à haut P.M. (~60 kDa).

1	2	3	4	5	6	7	8	9	10	11
NH2- S/Q/G/X	G/L/E/A	V/R/Y/Q/E	L/Q/E/F/I	D/F	R	L	N/A	Α	R/Q/K	R

Légende : (*) = bruit de fond élevé

Les acides aminés en caractères gras pourraient être un signal majeur.

REMERCIEMENTS

Je tiens tout d'abord à remercier mon directeur de recherche, Dr. Patrick C. Hallenbeck, pour sa patience et les nombreux conseils qu'il m'a donnés tout au long de ma maîtrise.

Un grand merci à mes deux amies Martine Voyer et Nadine Héroux pour le soutien qu'elles m'ont apporté et aussi pour les nombreuses discussions que nous avons échangées lors des temps d'attentes.

Je voudrais également remercier mes compagnons de travail : Alexander Yakunin, Jean-François Viger, Bertine Sandra Akouamba et Ilhem Beladj pour m'avoir aidé à trouver des solutions à mes questions.

Je remercie aussi mes parents, Monique et Jean-Guy, mon conjoint Martin de même que mes deux frères, Jean-François et Yannick, pour leurs encouragements constants et pour toute la confiance qu'ils m'ont témoignée.

Finalement, je tiens à saluer amicalement Mme France Dumas de l'Institut de recherche en biotechnologie pour m'avoir fourni du matériel et pour avoir réalisé le séquençage.