Université de Montréal

Functional Group Transformations of Imidoyl E Iminium Triflates and Designing an Enantioselective Diels-Alder Catalyst.

 par
Peter Chua

Département de chimie Faculté des arts et des sciences

Thèse présentée à la Falculté des études supérieures en vue de l'obtention du grade de Philosophiæ Doctor (Ph.D.) en chimie

Avril 1998
© Peter Chua, 1998

Functional Group Transformations of Imidoyl E Iminium Triflates and Designing an Enantioselective Diels-Alder Catalyst.

par

Peter Chua

Département de chimie
Faculté des arts et des sciences

Thèse présentée à la Falculté des études supérieures en vue de l'obtention du grade de

Philosophix Doctor (Ph.D.) en chimie

Avril 1998
© Peter Chua, 1998

IDENTIFICATION DU JURY

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitluée:
Functional Group Transformations of Imidoyl \mathcal{E} Iminium Triflates and Designing an Enantioselective Diels-Alder Catalyst.

Présentée par:
Peter Chua
a été évaluée par le jury composé des personnes suivantes:

Président-rapporteur: Herman Dugas
Directeur de recherche: André B. Charette
Membre du jury: Stephen Hanessian
Examinateur externe: John Boukouvalas (Université Laval)
Représentant du doyen: Normand Brisson (Département de Biochimie)

Thèse acceptée le: /1.08. 1998

Summary

The first part of this thesis deals with a new methodology that allows the conversion of secondary and tertiary amides to various functional groups in a two step one-pot reaction. Typically, amides are very poor electrophiles. They are the most stable of carboxylic acid derivatives and are often avoided in synthetic chemistry for this reason. Harsh and forceful conditions are usually required to make these functional groups undergo reactions with anything but the most reactive of nucleophiles. However, by taking advantage of the mild nucleophilic character of amides, they can be activated towards nucleophilic attack by using trifluoromethanesulphonic anhydride to convert secondary and tertiary amides to the corresponding imidoyl or iminium triflates. These highly electrophilic intermediates react readily with nucleophiles in a pyridine buffered acidic medium resulting the conversion of the starting amide to the new functional group. Since the generation of the triflate intermediate occurs at low temperature and treatment with the nucleophile occurs at room temperature or below, these reaction conditions are mild enough to tolerate the presence of numerous functional groups as well as to keep racemization to a minimum. This methodology allows access to esters, ortho esters, thiazolines, thioamides, ${ }^{18}$ O-labelled amides, and imidates starting with secondary or tertiary amides.

The second part of this thesis deals with efforts in the design and synthesis of biarylglycines and their application as ligands for chiral Lewis acids. We have synthesized N-tosylated biarylglycines which possess a polarizable naphthyl group. These substituents are known to maximize induced dipole-enhanced dipole effects which can be important factors in achieving high enantioselectivities. These ligands can be used to form
oxazaborolidine catalysts for use in the Diels-Alder reaction. At low catalyst loadings, good selectivities can be observed in the cycloaddition reaction between 2-bromoacrolein and cyclopentadiene. A comparison of catalysts show that the presence of a second naphthyl group is required for the desired dipole interaction between the complexed dienophile and the polarizable naphthyl group.

Keywords:

- Amides
- Triflates
- Esters
- Thiazolines
- Lewis Acid Catalyst
- Diels Alder

Résumé

La première partie de cette thèse traite d'une nouvelle méthodologie qui permet la conversion d'amides secondaires et tertiaires en une variété de groupements fonctionnels en une seule opération. Typiquement, les amides sont des électrophiles très pauvres, à cause de la délocalisation du doublet libre de l'azote dans le système π du carbonyle. Ceci fait que la réactivité des amides ressemble plus à celle des acides carboxyliques que des esters. Par conséquent, ils sont les dérivés des acides carboxyliques les plus stables, ce qui fait qu'ils sont souvent évités en synthèse organique. Des conditions très drastiques sont habituellement nécessaires pour les faire réagir, et ce, avec des nucléophiles très agressifs. Il existe plusieurs méthodes pour rendre les amides plus réactifs. La diminution de la délocalisation du doublet libre de l'azote est efficace pour rendre l'amide plus réactif vis-à-vis les nucléophiles. Cette approche présentée ici, consiste à convertir les amides en imidoyle et iminium trifluorométhanesulfonates. La délocalisation électronique dans ces intermédiaires est réduite significativement. De plus, la nature électroattrative du groupement trifluorométhanesulfonyle rend aussi ces intermédiaires plus électrophiles. Ces propriétés électroniques rendent les imidoyle et iminium triflates très réactifs vis-à-vis les nucléophiles. Ces intermédiaires peuvent être formés en tirant avantage du léger caractère nucléophile des amides. Lorsque les amides secondaires et tertiaires sont traités avec des agents de trifluorométhylation très forts, comme l'anhydride trifluorométhanesulfonique, ils sont transformés en imidoyl ou iminium triflates correspondants. Ces intermédiaires hautement électrophiles réagissent immédiatement avec des nucléophiles, ceci dans un milieu tamponné par la pyridine. Il en résulte la conversion des amides de départ en nouveaux groupements fonctionnels. Les nombreux avantages de cette méthode sont les suivants: la génération de
l'intermédiaire triflate se produit à basse température, l'ajout des nucléophiles se fait à la température ambiante ou à des températures inférieures et la formation des imidoyle et iminium triflates peut se produire en présence de pyridine. Ces facteurs contribuent grandement à la douceur de la méthode. Les conditions de réaction douces sont responsables du fait que de nombreux groupements fonctionnels sont tolérés et que la racémisation est conservée à son niveau le plus bas.

Le traitement des imidoyle et iminium triflates avec des nucléophiles contenant un oxygène donne des imidates ou des iminium esters. Ces intermédiaires sont aussi susceptibles de subir une autre attaque nucléophile. Une attaque subséquente avec un nucléophile oxygéné donne des orthoamides qui se transforment en ions oxonium en présence d'un catalyseur doux comme l'hydrotriflate de pyridinium. L'ion oxonium peut être piégé avec un autre nucléophile oxygéné, ce qui résulte en la formation d'un orthoester. Les orthoesters acycliques sont labiles et leur traitement en milieu aqueux donne des esters. Donc, les imidoyle et iminium triflates permettent la formation d'imidates, d'orthoesters et d'esters.

Lorsque les imidoyle et iminium triflates sont traités avec des aminothiols, des thiazolines sont obtenues. Cette méthodologie s'applique bien à ce groupement fonctionnel puisque les thiazolines ne sont pas les hétérocycles les plus robustes. L'imidoyle ou l'iminium triflate réagit avec l'aminothiol à basse température et la réaction est généralement complète en une heure. Nous avons aussi démontré que les thiazolines peuvent aussi être présentes pendant la formation d'imidoyle triflates, Ainsi, nous avons été capables de synthétiser une polythiazoline via une approche séquentielle. Cette découverte est très intéressante considérant que
quelques produits naturels biologiquement actifs récemment identifiés contiennent des unités polythiazolines.

Ces dérivés électrophiles d'amides peuvent également réagir avec des nucléophiles hétéroatomiques, capables de former des doubles liaisons. Le sulfure d'hydrogène et l'eau marquée isotopiquement réagissent immédiatement avec les imidoyle et iminium triflates. Il en résulte une substitution instantanée du groupement triflate. Ceci permet de substituer l'oxygène de l'amide par un autre atome d'oxygène, de soufre ou même d'azote. Ces réactions vont à complexion très rapidement. Les imidoyle et iminium triflates permettent donc une transformation efficace des amides en thioamides et en amides marqués isotopiquement.

Même si plusieurs transformations d'amides ont été démontrées ici, l'accès à ces divers groupements fonctionnels montre que la réaction des imidoyle et iminium triflates avec des nucléophiles faibles est général. Ces dérivés d'amides électrophiles permettront sûrement d'accéder à plusieurs autres groupements fonctionnels. Nous n'avons que débuté l'exploration des nombreuses possibilités du traitement des imidoyle et iminium triflates avec des nucléophiles faibles en présence de catalyseurs acides très faibles.

La seconde partie de cette thèse traite de nos efforts dans le domaine de la catalyse asymétrique. Avec une demande grandissante pour des molécules chirales non-racémiques, les chimistes ont développé plusieurs méthodes pour leurs synthèses. La synthèse asymétrique a évolué à travers les années. Au début, les synthèses débutaient avec des molécules chirales. Ensuite, les méthodologies utilisant les auxiliaires chiraux ont pris de l'importance lorsque les chimistes ont compris comment contrôler l'induction chirale. Finalement, les méthodes catalytiques ont vu le jour
lorsque des chimistes ont réussi à utiliser moins qu'une quantité stochiométrique de promoteur chiral. L'étape suivante semble être l'application de catalyseurs chiraux sur un support solide afin de faciliter la récupération de ceux-ci. Les catalyseurs acide de Lewis sont une des classes de catalyseurs les plus populaires. Ils sont également le sujets de nos recherches.

Le design de catalyseurs, peu importe qu'il soit pour la chimie en phase solide ou pour la chimie en solution, débute par la chimie en solution. Nous avons développé un catalyseur qui a démontré sa capacité à induire la chiralité dans la réaction de Diels-Alder entre le cyclopentadiène et la 2-bromoacroléine. Cette réaction est reconnue pour être sensible aux acides de Lewis et est souvent utilisée pour tester les catalyseurs acide de Lewis développés par les grands chimistes dans ce domaine de recherche.

Nous avons développé une synthèse asymétrique d'une biarylglycine N -tosylée qui possède un groupement naphthyle polarisable. Ces substituants sont reconnus pour maximiser les dipôles induits, car les effets de dipôles sont des facteurs importants pour l'obtention de hautes énantiosélectivités. Lorsque testé dans la réaction de Diels-Alder, le catalyseur a donné de bonnes énantiosélectivités pour la cycloaddition entre la 2-bromoacroléine et le cyclopentadiène. À la suite de ces résultats, une série de ligands ont été synthétisés afin de vérifier notre hypothèse qu'un deuxième groupement naphthyle est requis pour augmenter l'interaction désirée. Le second groupement naphthyle a eu une grande influence sur la réaction, car les sélectivités ont été complètement inversées. Le ligand sans groupement naphthyle a donné des résultats similaires à celui comportant un seul groupement naphthyle, ce qui
indique l'absence d'interaction entre le diénophile complexé et le groupement naphthyle polarisable.

Ces résultats dans la génération de catalyseurs démontre la complexité de leur design. Le catalyseur biarylglycine requiert un second naphthyle pour qu'il affecte l'issue de la réaction.
-Amides
-Triflates
-Esters
-Thiazolines
-Catalyseurs acide de Lewis
-Diels-Alder

Table of Contents

Page
Summary I
Résumé III
Table of Contents VIII
List of Figures XIV
List of Tables XV
List of Schemes. XVII
List of Abbreviations XXIV
Acknowledgements XXVIII
Part 1: \quad Functional Group Transformations of Amides via
Imidoyl and Iminium Triflates 1
Chapter 1: Introduction: Electrophilic Activation of Amides 2
1.1 Amides as Electrophiles. 3
1.2 Covalently Bonded Electrophiles: Imidates and Alkyl
Iminium Esters. 5
1.21 Reactions of Imidates and Alkyl Iminium Esters 7
1.3 Acyl Imidates and Iminium Salts. 10
1.31 Reactions of Acyl Imidates and Iminium Salts 11
1.4 Imidoyl and Iminium Chlorides 14
1.41 Reactions of Imidoyl and Iminium Chlorides 15
1.42 Limitations of Imidoyl and Iminium Chlorides 17
1.5 Imidoyl and Iminium Triflates 19
1.51 Reactions of Imidoyl and Iminium Triflates 20
1.6 Recent Advances in Imidoyl and Iminium Triflate Chemistry 21
Chapter 2: Synthesis of Imidoyl and Iminium Triflates 22
2.1 Synthesis of Imidoyl and Iminium Triflates from Secondary and Tertiary Amides 23
2.2 Effect of Structure on Rates of Formation 23
2.21 Steric Factors Governed by Amide Structure 23
2.22 Electronic Factors Governed by Amide Structure 24
2.3 Effect of Temperature on Rates of Formation 28
2.31 Beneficial Effects of Pyridine During the Generation of Imidoyl and Iminium Triflates 29
2.32 Triflyl Pyridinium Triflate 31
2.4 Effect of Solvent on Rates of Formation 32
2.5 Structural Limitations of Primary and Methylbenzyl
Amides 33
2.6 Conclusion 35
Chapter 3: Conversion of Secondary and Tertiary Amides to Esters 36
3.1 Introduction 37
3.11 Primary Amides. 38
3.12 Milder Methods for Cleaving Secondary Amides 38
3.13 Mild Methods for Cleaving Tertiary Amides 41
3.2 Towards a Mild Method for the Cleavage of Secondary and Tertiary Amides via Imidoyl and Iminium Triflates 42
3.21 Mechanistic Aspects of the Conversion of Secondary and Tertiary Amides to Esters 43
3.22 Number of Equivalents of Base and Triflic
Anhydride 45
3.23 Nature of Base 47
3.24 Effect of Solvent 49
3.25 Equivalents of Primary Alcohol 49
3.26 Nature of Alcohol 50
3.3 Conversion of Amides to Esters. 51
3.31 Conversion of Tertiary Amides to Esters 51
3.32 Conversion of Secondary Amides to Ester 53
3.4 Scope and Limitations 54
3.41 Amide Cleavage in Presence of Functional Groups 55
3.42 Extent of Racemization. 57
3.43 Solution to the Retro-Ritter Reaction 58
3.44 Cleavage of Amide Bonds in Hydantoins 61
3.45 Amine Protecting Groups 63
3.5 Conclusion 65
Chapter 4: Conversion of Secondary and Tertiary Amides to Ortho
Esters 66
4.1 Introduction 67
4.2 Ortho Esters from Amides via Imidoyl and Iminium Triflates 73
4.21 Mechanistic Aspects of Converting Secondary Amides to Cyclic Ortho Esters. 73
4.3 Effect of Stoichiometry and Additives. 77
4.4 Conversion of Secondary and Tertiary Amides to Cyclic Ortho Esters 79
4.5 Conclusion. 81
Chapter 5: Conversion of Secondary Amides to \mathbf{N}-Substituted
Imidates 83
5.1 Introduction 84
5.2 Imidates from Secondary Amides via Imidoyl Triflates 86
5.3 Conclusion. 87
Chapter 6: Synthesis of Δ^{2}-Thiazolines via Imidoyl and Iminium
Triflates 89
6.1 Introduction 90
6.2 Mechanistic Aspects of the Synthesis of Thiazolines from Secondary and Tertiary Amides 95
6.3 Synthesis of Thiazolines from Tertiary Amides 98
6.4 The Imidoyl Triflate Approach to Polythiazolines 102
6.5 Comments on the Presence of α-Methyl Cysteine in Polythiazoline Containing Natural Products 106
6.6 Conclusion 108
Chapter 7: Synthesis of Thioamides and ${ }^{18} \mathrm{O}$-Labelled amides via
Imidoyl and Iminium Triflates 109
7.1 Introduction 110
7.11 De Novo Syntheses of Thioamides 110
7.12 Synthesis of Thioamides from Amide Precursors 112
7.2 Mechanism of the Conversion of Amides to Thioamides via Imidoyl and Iminium Triflates 114
7.3 Conversion of Secondary and Tertiary Amides to Thioamides. 116
7.4 $\quad{ }^{18}$ O-Labeled Amides. 118
7.5 Synthesis of ${ }^{18} \mathrm{O}$-labeled Amides via Imidoyl and
Iminium Triflates 120
7.6 Conclusion 121
Part 2: Design of an Enantioselective Diels-Alder Catalyst. 122
Chapter 8: Enantioselective Synthesis of Biarylphenylglycines and
Their Use as Chiral Ligands in the Lewis Acid Catalyzed
Diels-Alder Reaction 123
7.1 Introduction 124
7.2 Synthesis of Ligands 127
7.3 Results in the Diels Alder Reaction. 131
7.4 Conclusion 133
Experimental Section 135
Notes and References 260
Appendix 1 XXX
Appendix 2 XXXVII
Appendix 3 XLVI
Appendix 4 LIII
Appendix 5 LIX
Appendix 6 LXIX

List of Figures

Page

Figure 1. Delocalization of the nitrogen lone pair in amides.......................... 3
Figure 2. Loss of delocalization in distorted amides .. 4
Figure 3. Effect of dimerization on tautomerization of secondary
\qquad
Figure 4. ORTEP representation of N -acyl amidine 5030

Figure 5. ORTEP representation of compound 131 .. 63
Figure 6. Relative stabilities of ortho esters... 67
Figure 7. Thiazoline containing natural products of interest...................... 90
Figure 8. ORTEP representation of N-triflamide 182..................................... 104
Figure 9. ORTEP representation of thiazole-thiazoline 189 106
Figure 10. Mirabazoles versus didehydromirabazole 107
Figure 11. 2-Naphthalene as a polarizable and electron rich blocking
\qquad
Figure 12. ORTEP representation of (-)-N-tosyl-2,6-bis(B-naphthyl) phenylglycine 203d ... 131

Figure 13. Proposed transition states for the Diels-Alder reaction........... 133

List of Tables

Page
Table 1. Reactions of alkyl imidates and iminium esters 8
Table 2. Reactions of amides with oxalyl chloride 14
Table 3. Reactions of iminium chlorides 17
Table 4. Acidities of the conjugate acids of amides 26
Table 5. Rates of formation of imidoyl triflate and iminium triflates 28
Table 6. Formation of iminium triflates and conversion to esters. 33
Table 7. Effect of stoichiometry of pyridine 46
Table 8. Various bases in the conversion of esters to amides 47
Table 9. Affect of base when added after iminium triflate formation 48
Table 10. Effect of quantity of ethanol on the conversion to ortho
ester 49
Table 12. Conversion of tertiary amides to esters. 51
Table 13. Conversion of α-substituted, aromatic and conjugated
tertiary amides to esters 52
Table 14. Conversion of secondary amides to esters. 54
Table 15. Conversion of amides to esters in presence of other
functional groups 56
Table 16. Extent of racemization in chiral amides 57

Table 17. Effect of stoichiometry of 1,1,1-tris-hydroxymethylene
\qquad
Table 18. Conversion of secondary and tertiary amides to ortho
\qquad
Table 19. Effects of additional base and non-aqueous work-up99

Table 20. Synthesis of Δ^{2}-thiazolines from tertiary amides 99
Table 21. Synthesis of Δ^{2}-thiazolines from secondary amides.................. 100
Table 22. Synthesis of more highly functionalized Δ^{2}-thiazolines............. 101
Table 23. Synthesis of thioamides from secondary and tertiary amides via imidoyl and iminium triflates.. 117

Table 24. Diels-Alder reaction promoted by catalysts 204(a-d)................ 132

List of Schemes

Page
Scheme 1. Activation of amides by complexation with acids 4
Scheme 2. Canonical forms of alkyl imidates and alkyl iminium esters 5
Scheme 3. Alkylation of amides 6
Scheme 4. Reductions of imidates and iminium esters 9
Scheme 5. Problematic side reactions of imidates at elevated
temperatures 9
Scheme 6. O-acyl imidates and iminium esters from amides 10
Scheme 7. Nitriles from primary amides 11
Scheme 8. O to N acyl transfer of O -acyl imidates 12
Scheme 9. Evidence of O-acylation of tertiary amides 12
Scheme 10. Evidence of O-acylation by indirect synthesis of O-acyl complex 13
Scheme 11. Generation of imidoyl and iminium chlorides 15
Scheme 12. Reactions of imidoyl chlorides 16
Scheme 13. Side reactions at elevated temperatures 18
Scheme 14. Formation of imidoyl 32 and iminium triflates 33 19
Scheme 15. Reactions if imidoyl and iminium triflates 20
Scheme 16. Iminols versus iminium alkoxides 24
Scheme 17. Stabilities in acidic medium if equilibrium were possible 26
Scheme 18. Iminols and iminium alkoxides in basic medium if equilibrium were possible 27
Scheme 19. Formation of triflyl pyridinium triflate 46 29
Scheme 20. Formation of N -acyl amidines 48 in acidic medium 29
Scheme 21. Attenuated reactivity of triflyl pyridinium triflate 31
Scheme 22. Selective aryl triflate formation by triflyl pyridiniumtriflate ... 32Scheme 23. Dehydration of primary amides by triflic anhydride.34
Scheme 24. "Retro Ritter" fragmentation of methylbenzyl imidoyl
triflates 34
Scheme 25. Mild amide hydrolysis via imidates 38
Scheme 26. N-Nitrosylation and thermal rearrangement ofsecondary amides.. 39Scheme 27. Mild selective cleavage of the $\mathrm{C}_{1} N$-methyl amide in
Evan's synthesis of Vancomycin 40
Scheme 28. Activation towards hydrolysis viacarboxylation/acylation... 40Scheme 29. Fragmentation of gem-dihydroxyl amine dianion41
Scheme 30. Alkyl iminium esters formed via intramolecularalkylation in Woodward's synthesis of Cobyric acid 71
(Vitamin B_{12}) 42
Scheme 31. Mechanism for the conversion of secondary amides to esters 43
Scheme 32. Mechanism for the conversion of tertiary amides to esters 44
Scheme 33. Attempts to preserve acyclic ortho esters 45
Scheme 34. Need for pyridine in triflate substitution 47
Scheme 35. Synthesis of protected N-benzyl-4-hydroxy butanamide 97 from succinimide 55
Scheme 36. N-acyl hemi-acetal formation in the presence of methanol 55
Scheme 37. An approach towards preventing the retro-Ritter reaction in α-benzyl amides 59
Scheme 38. Prevention of the "retro-Ritter" reaction via conversion to tertiary amides 59
Scheme 39. Cleavage of α-methyl benzamides via nitrilium cations. 60
Scheme 40. Evidence that the nitrilium cation was not formed 61
Scheme 41. Synthesis of 131 from 5-phenylhydantoin 62
Scheme 42. Synthesis of N-phthalimido phenylalanine 64
Scheme 43. Amide to ester conversion in presence of a phthalimide 64
Scheme 44. Ortho esters as protecting groups 67
Scheme 45. Synthesis of ortho esters. 68
Scheme 46. Ortho esters via the addition of alcohols to esters 69
Scheme 47. Ortho esters via alcoholysis of 1,1,1-gem-trihalides 70
Scheme 48. Synthesis of ortho esters via imidates 70
Scheme 49. Ortho esters from imidoyl halides 71
Scheme 50. Nucleophilic attack by halides causing C-O bond fission in ortho esters 71
Scheme 51. Corey's rearrangement of oxetane esters 72
Scheme 52. Wipf's rearrangement of epoxide esters 72
Scheme 53. Mechanism of the conversion of secondary amides to cyclic ortho esters 75
Scheme 54. Mechanism of the conversion of tertiary amides to cyclic ortho esters 76
Scheme 55. Cationic ring opening of phenylcyclopropanes 81
Scheme 56. Rearrangement of allylic imidates 84
Scheme 57. Synthesis of imidates from secondary allylic alcohols via
Mitsunobu protocol 85
Scheme 58. Synthesis of imidates from ortho-esters 85
Scheme 59. Synthesis of imidates from other imidates 85
Scheme 60. Formation of imidates from imidoyl triflates 86
Scheme 61. Synthesis of imidates via imidoyl triflates 87
Scheme 62. Synthesis of thiazolines from secondary and tertiary amides via imidoyl and iminium triflates. 91
Scheme 63. Thiazolines from nitriles and imidates 92
Scheme 64. Acid-mediated cyclizations of amido-thiols 92
Scheme 65. Thiazoline ring formation via activation of the carbonyl oxygen 93
Scheme 66. Thiazolines from hydroxy-thioamides via Mitsunobu- like conditions 94
Scheme 67. Thiazolines from secondary amides via imidoyl triflates 95
Scheme 68. Thiazolines from tertiary amides via iminium triflates 97
Scheme 69. Faster rates of formation due to absence of slow oxonium ion formation step 97
Scheme 70. Imidoyl triflate approach to sequential polythiazoline synthesis 102
Scheme 71. Attempted formation of bis-thiazolines 103
Scheme 72. Synthesis of thiazoline amide 185 104
Scheme 73. Synthesis of bis-heterocyclic compounds via imidoyl triflates 105
Scheme 74. Retro-synthetic analysis of thiangazole 107
Scheme 75. Thioamides from nitriles 110
Scheme 76. Thioamides from isothiocyanates and thioaldehydes 111
Scheme 77. Thioamides via thioacylation 111
Scheme 78. Thioamides from the Willgerodt-Kindler reaction 112
Scheme 79. Thioamides by sulfuration of amides 112
Scheme 80. Hydroxy thioamides from hydrogen sulfide ring
opening of Δ^{2}-oxazolines 113
Scheme 81. Thioamides from thiolysis of imidoyl and iminium
chlorides 113
Scheme 82. Mechanism of converting secondary amides to thecorresponding thioamides... 114Scheme 83. Mechanism of converting tertiary amides to thecorresponding thioamides115
Scheme 84. Addition of excess hydrogen sulfide to thioamides toproduce a meta-stable compound... 116Scheme 85. Incorporation of isotopic oxygen by equilibration with
$\mathrm{H}_{2}{ }^{18} \mathrm{O}$ 118
Scheme 86. Incorporation of isotopically labeled oxygen by thehydrolysis of imidoyl and iminium triflates .. 119

Scheme 87. Incorporation of ${ }^{18} \mathrm{O}$ atoms into secondary and tertiaryamides via imidoyl and iminium triflates120

Scheme 88. Lowest energy reaction pathway for the Diels-Alder reaction between acrolein and butadiene... 125

Scheme 89. Enhanced dipole-induced dipole effects 125
Scheme 90. Diels Alder reaction between 2-bromoacrolein and cyclopentadiene.. 126

Scheme 91. Synthesis of N-tosyl-2-(2-naphthyl)-phenylglycine 203a...... 127
Scheme 92. Synthesis of N-tosyl-2,6-bis(ß-naphthyl)phenylglycinol....... 129
Scheme 93. Synthesis of N-tosyl-2,6-bis(ß-naphthyl)phenylglycine
\qquad

List of Abbreviations

$[\alpha] D$	optical rotation (with the D line of sodium)
A	Angstrom
Ac	acetyl
LA	Lewis acid
AIBN	azobisisobutyronitrile
anal.	elemental analysis
anh.	anhydrous
aq	aqueous
Ar	aryl
atm .	atmosphere
Bn	benzyl
b.p.	boiling point
br	large (broad)
Bz	benzoyl
c	concentration in g / 100 mL
${ }^{\circ} \mathrm{C}$	degree Celsius
CI	chemical ionization
TLC	thin layer chromatography
c-Hex	cyclohexyl
cycloprop.	cyclopropane
δ	chemical displacement
d	doublet
DCC	dicyclohexylcarbodiimide
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
dd	doublet of doublets
de	diastereomeric excess
DEAD	diethyl azodicarboxylate
DIAD	diisopropyl azodicarboxylate

dq	doublet of quadruplet
dt	doublet of triplet
DIBAL-H	diisobutylaluminum hydride
diglyme	1-methoxy-2-(2-methoxyethoxy)ethane
DMAP	dimethylaminopyridine
DME	1,2-dimethoxyethane
DMF	N, N-dimethylformamide
DMSO	dimethylsulfoxide
EDC	1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
ee	enantiomeric excess
EI	electron impact
eq	equivalent
Et	ethyl
FAB	"Fast Atom Bombardment"
g	gram
HIV	human immunodeficiency virus
h	hour
HMPA	hexamethylphosphoramide
HOBt	1-hydroxybenzotriazole hydrate
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
$i-\mathrm{Pr}$	isopropyl
IR	infrared
J	coupling constant
k	rate constant
KHMDS	potassium hexamethyldisilylamide
K-selectride	potassium tri-sec-butylborohydride
LDA	lithium diisopropyl amide
lit.	literature

m	multiplet
M	molar
MCPBA	m-chloroperbenzoic aicd.
Me	methyl
mg	milligram
MHz	megahertz
mL	millilitre
min	minute
mmHg	millimetres of mercury
mmol	millimole
$\mu \mathrm{L}$	microlitre
m.p.	melting point
Ms	methanesulfonyl
$n-\mathrm{Bu}$	normal butyl
$n-\operatorname{Pr}$	normal propyl
NBS	N -bromosuccinimide
NMR	nuclear magnetic resonance
ORTEP	Oak Ridge Thermal Ellipsoid Plot
PDC	pyridinium dichromate
PG	protecting group
Ph	phenyl
Piv	pivaloyl
PMB	p-methoxy benzyl
ppm	parts per million
$p-\mathrm{TsOH}$	p-toluenesulfonic acid
q	quadruplet
qn	quintuplet
R_{f}	relative mobility
r.t.	room temperature
sat.	saturated

t	triplet
t-Bu	tertiary butyl
TBDMS	tert-butyldimethylsilyl
TBDPS	tert-butyldiphenylsilyl
temp.	temperature
Tf	trifluoromethanesulphonyl
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
THF	tetrahydrofuran
TMS	trimethylsilyl
T_{r}	retention time
Trisyl	triisopropylbenzenesulphonyl
Ts	toluenesulphonyl

Acknowledgements

I would like to thank my research director, Professor André B. Charette. If I could only use one word to describe him, it would be "professional". His bountiful success and brilliant career is a testimony to this. Through his dedication and hard work, he easily leads by example. He is never short of examples of others who have applied their formula for success. In "Groupe Charette" not only are we trained to be good chemists, but also to be professional so that we will find success more easily. In short, thanks André.

I would also like to thank the past and present members of the group for contributing to its success and making the group a great place to learn chemistry: Christophe Mellon, André Giroux, Greg Bydlinski, Rossimirian de Pereira de Freitas Gil, Christian Brochu, Bernard Côté, Jean-Francois Marcoux, Elise Isabel, Denis Deschenes and Helen Juteau. It was enjoyable to be a part of "Lab B", a group within a group which had its own unique positive spirit.

I would like to thank Dr. Petpiboon Prasit and Patrick Roy of Merck Frosst Canada for giving me guidance, instruction, and the initial opportunity to work in this field of chemistry. This has resulted not only in a career choice, but also a career path.

I would like to acknowledge the contribution of the professors of the Université de Montréal who helped make this journey across this country worthwhile: Professors Denis Gravel, Richard Giasson, Stephen Hanessian, William Lubel, Davit Zargarian, Jeff Keillor, and James Wuest. Their teachings have been valuable and their contributions to the university have made it what it is today.

I would also like to thank the Université de Montréal and moreover, the Département de Chimie. I am also grateful towards the support staff and services at the Université de Montréal which has been noted as among the finest anywhere: Dr. Mike Evans, Dr. Tan Phan-Viet, Robert Mayer, Sylvie Bilodeau, Francine Bélanger-Gariépy, Denis Bilodeau, Isabel Dubuc, Benoit Larouche, the librarians, the guys in the workshop, the glass blowers, the secretaries, and the "magasin de chimie".

I would especially like to thank my financial supporters BioMéga/Boerhinger Ingelheim and the Fonds F.C.A.R. for predoctoral fellowhips. I am greatly indebted for your support.

Thanks to Elise Isabel and André Beauchemin for help with the French in this manuscript.

Finally, I would like to thank my God, my family and my wife, Ling, for the invaluable support, comfort, understanding and for eating dinner alone. Thank-you.

Part 1: Functional

Group

Transformations of
Amides via Imidoyl
and Iminium Triflates.

Chapter 1: Introduction:

Electrophilic Activation of
Amides

CHAPTER 1

Introduction: Electrophilic Activation of Amides

1.1 Amides as Electrophiles

In the carboxamide (herein, referred to as amides) functional group, the delocalization of the nitrogen lone pair into the π^{*} antibonding orbital of the carbonyl group results in several effects. ${ }^{1}$ Geometrically, the principle atoms of the amide $\left(\mathrm{C}^{\prime}, \mathrm{C}, \mathrm{O}, \mathrm{N}\right)$ lie in a coplanar arrangement (Figure 1). Electronically, the amide nitrogen is rendered less nucleophilic and the amide carbon is rendered less electrophilic. However, the nucleophilicity and basicity of the amide oxygen is enhanced.

Figure 1. Delocalization of the nitrogen lone pair in amides
In fact, the reactivity of the carbonyl group of amides resembles more the parent acid than esters due to the π-electron delocalization. ${ }^{2}$ Thus, nucleophilic additions onto amides are typically very difficult without additional polarization of the carbon-oxygen or carbon-nitrogen bond to make the amide react more like an ester. ${ }^{3}$

Polarization of the amide group can arise in several fashions. The first method is to distort the coplanar nature of the amide group resulting in a decrease of electron delocalization. The carbonyl group of distorted amides have been shown to react much more like esters towards
nucleophiles and the amine portion of the distorted amide has reactivity more like an amine (Figure 2). ${ }^{4}$ Furthermore, the oxygen is no longer more nucleophilic and more basic than the nitrogen. Hence, in the typical undistorted amide $\mathbf{1}$, the site of protonation is the oxygen, ${ }^{5}$ but in the distorted amide $\mathbf{2}$, the site of protonation is the nitrogen. ${ }^{6}$

Figure 2. Loss of delocalization in distorted amides
The second method of polarizing the electronic structure of the amide is to complex it to an electrophile prior to reacting with nucleophiles. Actually to some extent, all nucleophilic additions onto amides begin with a complexation of either the amide oxygen or to a lesser extent, the nitrogen, onto an electrophilic species. In these cases where the electrophiles are Brønsted acids ${ }^{7}$ or Lewis acids, ${ }^{8,9}$ a non-covalently bonded complex is formed prior to the attack by the nucleophile on the amide (Scheme 1).

Scheme 1. Activation of amides by complexation with acids

Logically, the extent of polarization depends on the strength of the electrophile. Greater polarization makes the amide-acid complex 3 a or $\mathbf{3 b}$ more electrophilic, hence more reactive towards nucleophilic attack.

1.2 Covalently Bonded Electrophiles: Imidates and Alkyl Iminium

Esters

Another method of activating amides is to pre-treat them with electrophiles prior to nucleophilic attack. One uses electrophiles that form covalent bonds with the amide nitrogen or amide oxygen. Treatment of amides with electrophilic alkylating groups generally results in the formation of imidates $\mathbf{4 a}$ and alkyl iminium esters 5a. ${ }^{10}$ These intermediates are more reactive than the starting amide since the delocalization of the oxygen lone pair within the amide does not contribute to the greater stability of the molecule. Hence, the canonical form of the imidate $\mathbf{4 b}$ is relatively higher in energy than the corresponding canonical forms of the amide since a positive charge resides on the oxygen which is a more electronegative atom than nitrogen (Scheme 2). The canonical form of alkyl iminium esters $\mathbf{5 b}$ can lead to stabilization of the substrate, but both these species $\mathbf{5 a}$ and $\mathbf{5 b}$ are cationic so they are very good electrophiles.

Scheme 2. Canonical forms of alkyl imidates and alkyl iminium esters

Amides are ambident nucleophiles. This creates an issue of chemoselectivity since both the oxygen or the nitrogen can act as
nucleophiles. The amide oxygen is a much better nucleophile than the nitrogen in a typical amide such that imidate and iminium ester formation is generally favored. However, some factors can cause variations in the distribution between O -substituted and N -substituted products. Hard/soft acid/base (HSAB) theory seems quite accurate at predicting product distributions, especially in the case of alkylations. ${ }^{11}$ Lower temperatures are also associated with greater selectivity for O alkylations. ${ }^{12}$ The enhanced s-character of the amide carbonyl double bond also favors O-substitution as the electrons are more localized on the oxygen making it a stronger nucleophile. ${ }^{13}$ Geometrical requirements of the resulting product are also important determinants as six and sevenmembered lactams are O-alkylated to give products with endocyclic double bonds whereas five-membered lactams undergo N -alkylation to avoid the formation of a strained endocyclic double bond. ${ }^{14}$ Ethyl chloroformate ${ }^{15}$ and trialkyl oxonium fluoroborates (Meerwein's reagent) ${ }^{16}$ are also useful reagents for converting secondary amides into imidates.

Scheme 3. Alkylation of amides

Selective alkylation of primary amides is more difficult to achieve. Only the harder alkylating agents such as Meerwein's reagent, alkyl fluorosuphates (i.e. Magic Methyl®), ${ }^{17}$ dialkyl sulphates ${ }^{18}$ and
diazomethane ${ }^{19}$ are more selective for the oxygen. Primary imidates ${ }^{20}$ are more readily accessed by acid catalyzed (Pinner synthesis) ${ }^{21}$ or base catalyzed ${ }^{22}$ addition of alcohols onto nitriles.

1.21 Reactions of Imidates and Alkyl Iminium Esters

Although the O-alkyl group of imidates and iminium esters is not considered electron withdrawing, these compounds are still more reactive than their amide counterparts because there is reduced delocalization of the electron lone pairs throughout the π-system. Alkyl imidates are much better electrophiles when protonated in acidic medium and iminium esters are positively charged, which makes them even more reactive towards nucleophiles. Various transformations of alkyl imidates and iminium esters are shown in Table 1.

Both alkyl imidates and iminium esters usually give rise to the same products when treated with the same nucleophile. Imidates and iminium esters can react with alcohols or water at medium to low pH to give esters ${ }^{23,332}$ or ortho esters. ${ }^{24}$ Treatment with hydrogen sulfide gives thionoesters, but often thioamides are present as side products. ${ }^{25}$ Treatment with amines and substituted hydrazines produces amidines ${ }^{26}$ and amidrazones, ${ }^{27}$ respectively. Numerous heterocyclic systems can also be accessed by treating the imidate or iminium ester with various nucleophiles. ${ }^{28}$ These nucleophiles include amino acids, ${ }^{29}$ amino aldehydes and ketones, ${ }^{30}$ diamines, ${ }^{31}$ amino alcohols, ${ }^{32}$ and azides. ${ }^{33}$

Table 1. Reactions of alkyl imidates and iminium esters

	 conditions	products
Conditions	Products	
$\frac{\text { 1) } \mathrm{R}^{\prime \prime} \mathrm{OH}, \mathrm{H}^{+}}{\text {2) } \mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}}$		(ref. 23)
\qquad		(ref. 24)
$\xrightarrow{\mathrm{H}_{2} \mathrm{~S}}$		(ref. 25)
$\xrightarrow{\mathrm{H}_{2} \mathrm{NH}\left(\mathrm{R}^{\prime \prime}\right)}$		(ref. 26)
$\xrightarrow{\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}\left(\mathrm{R}_{2}{ }^{\prime \prime}\right)}$		(ref. 27)
amino acids		(ref. 29)
amino aldehydes \qquad		(ref. 30)
$\xrightarrow{\text { amino alcohols }}$		(ref. 32)
azides		(ref. 33)

Alkyl imidates and iminium esters are also much more reactive towards mild reduction than their amide counterparts (Scheme 4). Treatment with zinc or sodium amalgam in acidic solution produces
aldehydes. ${ }^{34}$ One of the more general reactions is to reduce alkyl imidates or iminium esters to amines using sodium borohydride. ${ }^{35}$

Scheme 4. Reductions of imidates and iminium esters

One potential drawback of imidates is that the initial attack of a nucleophile is still relatively slow and often heating is required. Problems can arise at elevated temperatures (Scheme 5). In the presence of counter ions such as halides, imidates and iminium esters can undergo dealkylation to give amides and alkyl halides. ${ }^{36}$ Furthermore, heating these compounds in the absence of these weak nucleophiles often results in the Chapman rearrangement (O to N migration of aryl and alkyl groups). ${ }^{37}$

Scheme 5. Problematic side reactions of imidates at elevated temperatures

Although Meerwein's reagent is a convenient and popular method for making imidates, it is not reactive enough to O-alkylate tertiary amides. Typically, intramolecular alkylation is required to access O-alkyl iminium
esters from tertiary amides. Meerwein's reagent allows direct access to methyl or ethyl imidates. Access to other imidates requires equilibration with other alcohols.

1.3 Acyl Imidates and Iminium Salts

Another approach to making amides more reactive is to treat them with acylating reagents to give rise to acyl imidates 6 and acyl iminium salts 7. These species are more electrophilic due to the greater electron withdrawing capacity of the acyl group compared to that of the alkyl group (Scheme 6). Hence, these electrophilic species would be able to react more readily with nucleophiles than their alkyl imidate or iminium ester counterparts. Carboxylic acid anhydrides react with amides in a similar fashion as the acid chloride, but more sluggishly. Catalysts such as hydrogen chloride, an acyl chloride or sulfuric acid are usually required. ${ }^{38}$

Scheme 6. O-acyl imidates and iminium esters from amides

1.31 Reactions of Acyl Imidates and Iminium Salts

Although amides do react with carboxylic acid halides and these reactions do provide synthetically useful transformations, the products are not our desired electrophilically activated amide derivatives. Primary amides are readily dehydrated to the corresponding nitriles 9,39 although imidic compounds can also be formed (Scheme 7). The initial adduct between a primary amide and an acyl chloride is the O-acylated mixed anhydride 8.40 These generally dehydrate immediately, but if proton transfer is fast enough, imides $\mathbf{1 1}$ can be produced. ${ }^{41}$

Scheme 7. Nitriles from primary amides

Secondary amides also react initially to give the O-acylated compounds 12.42 These intermediates do not decarboxylate readily since this would form a nitrilium cation. A second acylation on the nitrogen gives the bis-acyl compound 13 and cleavage of the O-acyl bond upon aqueous work-up gives the corresponding N-acylated product 14 (Scheme 8). The additional electron-withdrawing group on an imide makes them about as electrophilic as an ester which is more electrophilic than the starting secondary amide.

Scheme 8. O to N acyl transfer of O -acyl imidates

Tertiary amides react with acyl halides to produce salt-like 1:1 addition complexes, which can be isolated at low temperatures. Again, these products are a result of O-acylation (Scheme 9). ${ }^{43}$ The salt formed between N, N-dimethylformamide and benzoyl chloride is hydrolyzed to give benzoic acid 16, but not formic acid 19. This is consistent with the O acylated intermediate 15 and not the N -acylated intermediate 17.

Scheme 9. Evidence of O-acylation of tertiary amides

An indirect synthesis of the O-acyl iminium compound 20 also gives evidence towards the preferential acylation of the oxygen versus the nitrogen. Thus, adding acetate ion to the iminium chloride of $N, N-$ dimethylformamide 21 gives the same product as the reaction between N, N-dimethylformamide and acetyl chloride (Scheme 10).44

Scheme 10. Evidence of O-acylation by indirect synthesis of O-acyl complex

Unfortunately, treating amides with carboxylic acid halides is not a viable means for generating electrophilic species from amides. Primary and secondary amides form nitriles and imides, respectively. Tertiary amides do generate an electrophilic O-acyl iminium salt, but this methodology is not very general and is limited to the most reactive of tertiary amides. These reactive amides, such as N, N-dimethylformamide, can react further with a halide counter ion to give rise to iminium halides which is the topic of the next section. Another exception is the reaction between amides and oxalyl chloride (Table 2). ${ }^{45}$ Various products can be produced depending on the nature of the amide.

Table 2. Reactions of amides with oxalyl chloride

Amide		Product
	($\mathrm{R}=\mathrm{t}$-alkyl, Ph, H)	RCONCO
	($\mathrm{R}=$ = t-alkyl, Ph, H)	RCONR'COCOCl
	($\mathrm{R}=$ t-alkyl, Ph, H)	 Cl^{-}

1.4 Imidoyl and Iminium Chlorides

Imidoyl ${ }^{46}$ and iminium chlorides ${ }^{47}$ are like their alkyl imidate or iminium ester counterparts as their structures reduce the delocalization of electrons throughout the amide functional group. Unlike their acyl equivalents, they suffer from fewer side reactions such as O to N migration of the electrophile. They induce a strong polarization of the amide functionality due to the electronegativity of the chlorine atom. These species are highly electrophilic and are very useful as intermediates for the nucleophilic additions onto amides. Problems associated with the corresponding fluorides, bromides and iodides are that they are not as reactive or are more difficult to prepare since they are unstable and readily decompose. ${ }^{48}$

Secondary and tertiary amides react selectively at the amide oxygen with chlorinating reagents (Scheme 11). This O-adduct 22 between the
amide and the inorganic acid halide strongly polarizes the amide $\mathrm{C}-\mathrm{O}$ bond. Subsequent $S_{N} i$ attack of a chloride ion and elimination of a neutral fragment $\left(\mathrm{CO}_{2}, \mathrm{POCl}_{3}\right.$, or $\left.\mathrm{SO}_{2}\right)$ generates the imidoyl or iminium chlorides 24.49 Phosgene is the preferred reagent. ${ }^{50}$ Other reagents ${ }^{51}$ such as phosphorus pentachloride, ${ }^{52} \mathrm{PCl}_{3} / \mathrm{Cl}_{2}{ }^{53} \mathrm{PBr}_{3} / \mathrm{Br}_{2}{ }^{5}{ }^{54} \mathrm{PhPCl}_{4}{ }^{55}$ and thionyl chloride ${ }^{56}$ can also be used, but generally, elevated temperatures are required. Primary amides invariably give nitriles under these conditions. ${ }^{57}$

Scheme 11. Generation of imidoyl and iminium chlorides

$A G=$ Activating Group $\left(\mathrm{PCl}_{3}, \mathrm{~S}=\mathrm{O}, \mathrm{C}=\mathrm{O}\right)$

1.41 Reactions of Imidoyl and Iminium Chlorides

Relative to the alkyl imidates and alkyl iminium esters, the corresponding chlorides are much more electrophilic due to the inductive nature of the electronegative chlorine. This feature makes these intermediates very useful synthetic intermediates. ${ }^{58}$

Imidoyl chlorides are versatile synthetic intermediates (Scheme 12). ${ }^{59}$ They are precursors to ketenimines ${ }^{60}$ and 1,3-dipolar systems. ${ }^{61}$ They can undergo reduction to give aldehydes, ${ }^{62}$ hydrolysis, ${ }^{63}$ and
alcoholysis. ${ }^{64}$ Amidines result after aminolysis with amines, ${ }^{65}$ urethanes, ${ }^{66}$ amidines, ${ }^{67}$ hydroxylamines, ${ }^{68}$ and hydrazines. ${ }^{69}$ Other transformations are possible upon treatment with azides, ${ }^{70}$ cyanides, ${ }^{71}$ carboxylic acids, ${ }^{72}$ thiols, ${ }^{73}$ thioacids, ${ }^{74}$ phosphites, ${ }^{75}$ and activated carbanions. ${ }^{76}$

Scheme 12. Reactions of imidoyl chlorides

(ref. 60)
$\overbrace{N^{-2}}^{\mathrm{CrCl}_{2}, \mathrm{SnCl}_{2}}$

(ref. 62)

$$
\begin{equation*}
\frac{\mathrm{Nuc}=}{\mathrm{CN}, \mathrm{~N}_{3}^{-}, \mathrm{RCO}_{2}^{-}} \tag{ref.63-75}
\end{equation*}
$$

The chemistry of iminium chlorides is also diverse. They are useful for acylations and formylations in electrophilic aromatic substitutions (Vilsmeier-Haack reaction) ${ }^{77}$ and precursors for keteniminium species. ${ }^{78}$ They also allow for functional group transformations of amides to thioamides, ${ }^{79}$ amidines, ${ }^{80}$ esters, ${ }^{81}$ thionoesters, ${ }^{82}$ thioesters, ${ }^{83}$ dithioesters, ${ }^{84}$ ortho amides and ortho esters. 85 Numerous heterocyclic compounds can also be accessed such as 1,3,4-oxadiazoles, ${ }^{86}$ imidazoles, ${ }^{87}$ and oxazoles. ${ }^{88}$

Table 3. Reactions of iminium chlorides

1.42 Limitations of Imidoyl and Iminium Chlorides

Although imidoyl and iminium chlorides are useful synthetic intermediates, there are numerous limitations associated with their use. Elevated temperatures are required whenever using chlorinating agents less reactive than phosgene, which results in the possibility of side reactions such as the von Braun reaction (26 to 27). The ionic conditions coupled with elevated temperatures can result in N -alkyl bond fission (Scheme 13). This reaction was originally discovered by von Pechmann, ${ }^{89}$ but subsequently, von Braun studied the reaction in depth ${ }^{90}$ and now the reaction bears his name. This reaction is very prominent when higher
temperatures are used in conjunction with weaker chlorinating agents. In the case of secondary formamides 28 , elimination to the isonitrile 29 occurs readily. ${ }^{91}$ Another problem associated with elevated temperatures is the formation of aliphatic α-chloro compounds $31 .{ }^{92}$

Scheme 13. Side reactions at elevated temperatures

Reactions can be carried out at $0^{\circ} \mathrm{C}$ for secondary amides and at room temperature for tertiary amides when using an excess of highly reactive phosgene. ${ }^{93}$ However, with a boiling point of $0^{\circ} \mathrm{C}$ and extreme toxicity, working with this war gas can be hazardous. ${ }^{94}$

Another limitation arises due to the relative low reactivity of the commonly employed chlorinating agents. An excess of the chlorinating agent is normally required for the formation of the activated amide. This requires removal of the excess reagent before treatment with various nucleophiles. ${ }^{95}$

Finally, these chlorinating agents generate acid whenever they come into contact with water. So adventitious water or undistilled reagents can render the reaction quite acidic resulting in decomposition of sensitive substrates. Buffering the reaction with bases is not known to be compatible with the reaction conditions used for the conversion of amides
to imidoyl and iminium chlorides since in conjunction with elevated temperatures, the formation of ketenimine or keteniminium compounds can be competitive.

1.5 Imidoyl and Iminium Triflates

In the early 1980's, Ghosez and coworkers ${ }^{96}$ reported the first reaction between a tertiary amide and trifluoromethanesulphonic (triflic) anhydride. ${ }^{97}$ Due to the extremely good leaving group ability of the triflate anion,, 98 triflic anhydride is so much more reactive than phosgene or any other popular chlorinating agent that the various problems associated with the generation of imidoyl and iminium chlorides can be avoided. Triflic anhydride reacts with both secondary and tertiary amides at temperatures much below $0^{\circ} \mathrm{C}$ (Scheme 14). These low temperatures severely reduce the possibilities of side reactions. The high reactivity of triflic anhydride also allows the reaction with amides to go to completion while using only a stoichiometric amount of the anhydride.

Scheme 14. Formation of imidoyl 32 and iminium triflates 33

Most interesting is the compatibility of bases towards the formation of imidoyl and iminium triflates. Trialkyl amine bases can be used in these reactions at low temperatures. This eliminates the possibility of
decomposition as a result of strong acids being present in the reaction media.

Like the other imidoyl and iminium derivatives, electron delocalization is reduced, but much more so in the case of in imidoyl and iminium triflates. Furthermore, since leaving group ability of the triflate anion is so much greater than that of the chloride, imidoyl and iminium triflates are even more electrophilic than the corresponding chlorides. ${ }^{99}$

1.51 Reactions of Imidoyl and Iminium Triflates

In his pioneering efforts, Ghosez demonstrated that iminium triflates readily eliminate triflic acid upon warming in the presence of a trialkyl amine base (Scheme 15). This is an efficient method for generating keteniminium cations 33 which readily undergo [$2+2$] cycloadditions. ${ }^{100}$

Scheme 15. Reactions if imidoyl and iminium triflates

(ref. 101, 102)

Grierson and Fowler converted secondary amides to the corresponding imidoyl triflates which are electrophilic enough to react with lithium cyanide in 12-crown-4 to give rise to 2-cyano-1-aza-1,3butadienes 34. ${ }^{101}$ These electron-poor dienes can be used in intramolecular Diels-Alder reactions. ${ }^{102}$

Imidoyl triflates also react with sodium azide. ${ }^{103}$ This produces a highly reactive imidoyl azide which spontaneously cyclizes to give tetrazoles 35 .

1.6 Recent Advances in Imidoyl and Iminium Triflate Chemistry

In the following chapters, an account of imidoyl and iminium triflate chemistry will be given. These triflates are generated in the presence of pyridine, but unlike the predecessors in this field, we have found that the application of this mildly acidic pyridine conjugate acid acts as a very efficient catalyst in the reaction of these triflates with various weak nucleophiles. This conditions are acidic enough not only to render the amine residue of the amide a good leaving group, deprotonation of various reaction intermediates is efficient in the same media. This allows mild and efficient access to esters, ortho esters, thiazolines and thioamides starting with secondary and tertiary amides. These reactions are milder than previously available methods since the generation of the triflate is milder than the chloride and the triflate is more reactive than alkyl imidates allowing subsequent substitution by nucleophiles to occur under milder conditions. The various functional group transformations presented in the following chapters should provide evidence that all the previously available chemistry of alkyl imidates, alkyl iminium esters, imidoyl and iminium chlorides can also be extended to imidoyl and iminium triflates.

Chapter 2: Synthesis of Imidoyl and

Iminium Triflates

CHAPTER 2

Synthesis of Imidoyl and Iminium Triflates

2.1 Synthesis of Imidoyl and Iminium Triflates from Secondary and Tertiary Amides

In any chemical transformation, many factors can affect the outcome of the reaction. We found that the formation of imidoyl and iminium triflates from amides is dependent on structure, temperature, and solvent. Matters can be complicated by the presence of other reagents such as pyridine. Finally, there are inherent structural aspects of primary and methylbenzyl amides which prevent the formation of triflate adducts. These factors are important and must be taken into consideration when converting amides into their corresponding triflates.

2.2 Effect of Structure on Rates of Formation

In general, the reaction between amides and triflic anhydride is fastest for primary amides, slower for secondary amides and the reaction is slowest for tertiary amides. The reasoning for this lies in the nucleophilic nature of the amide which is a function of steric and electronic factors conferred by the structure of the molecule.

2.21 Steric Factors Governed by Amide Structure

Steric hindrance reduces reactivity of both nucleophiles and electrophiles. ${ }^{104}$ In light of this, the nucleophilic oxygen of primary amides is the least hindered relative to secondary and tertiary amides because of
its unsubstituted amine residue. Hence, primary amides react fastest with triflic anhydride. Secondary amides react with triflic anhydride at a faster rate than tertiary amides. Again, the argument for this is a steric one as the amine residue of the secondary amide is less substituted. We have observed that the relative rates of reaction between amides and triflic anhydride is: primary > secondary > tertiary (vide infra). Subsequent nucleophilic attack on the electrophilic intermediate is also governed by steric factors. Secondary and less hindered tertiary amides react faster than large and bulky tertiary amides.

2.22 Electronic Factors Governed by Amide Structure

The rate of formation of imidoyl and iminium triflates can also be influenced by electronic factors. If it is not the amides, but rather the iminol 36 or alkoxyl iminium species 38 which reacts with triflic anhydride, then it is the concentration of these intermediates which would determine the rates of reaction with triflic anhydride (Scheme 16).

Scheme 16. Iminols versus iminium alkoxides

(more stable)

(less stable)
where: $k_{\text {eq1 }}>$ k $_{\text {eq2 }}$

The iminol of secondary amides is neutral, whereas the alkoxy iminium of tertiary amides is charged. Hence, the canonical form of
secondary amides is more stable and its greater relative abundance should result in the faster formation of imidoyl triflate 37 versus iminium triflate 39.

Furthermore, secondary amides have the capability of tautomerizing via a dimeric transition state (Figure 3). Although there are slightly higher entropic costs involved with this pathway which would be reflected in slightly higher activation energies, there is a significant additional stabilization of the iminol form. ${ }^{105}$ This mode of stabilization is not possible for tertiary amides as no intramolecular hydrogen bonding can be formed.

Figure 3. Effect of dimerization on tautomerization of secondary amides
Since the formation of the S-O bond in a triflate is enthalpically favorable $(\sim 112 \mathrm{kcal} / \mathrm{mol}),{ }^{106}$ formation of the imidoyl or iminium triflate can be presumed to be irreversible. However, there are precedents for nucleophilic attack on aryl triflates resulting in alcoholysis or hydrolysis of the S-O bond. ${ }^{107}$ In conjunction with an imidoyl or iminium-activating group, S-O bond cleavage may be enhanced. Therefore, it is arguable that the formation of imidoyl and/or iminium triflates can be reversible, thus, an equilibrium could exist between the starting amide and the triflate.

In media which is sufficiently acidic to protonate the triflate intermediates, the iminium triflate would be more stable than the protonated imidoyl triflate cation because of the extra electron donating substituents on the nitrogen, which makes tertiary amides more basic than secondary amides (Table 4). ${ }^{108}$

Table 4. Acidities of the conjugate acids of amides
Amide

If these reactions were reversible as previously discussed, then the reaction would be under thermodynamic control with the formation of the iminium triflate 41 being favored over that of the imidoyl triflate 40 (Scheme 17). Under these conditions, the yield of iminium triflates would be greater than the yield of imidoyl triflates as the reaction would be under thermodynamic control.

Scheme 17. Stabilities in acidic medium if equilibrium were possible

In reaction conditions which are not strongly acidic, the imidoyl triflate 42 would not be protonated and would not be charged (Scheme 18). Hence, imidoyl triflates would be more stable in a non-acidic medium. Therefore, if the formation of imidoyl and iminium triflates were under thermodynamic control in a non-acidic medium, imidoyl triflates would be formed preferentially.

Scheme 18. Iminols and iminium alkoxides in basic medium if equilibrium were possible

$$
k_{\text {eq } 4}<k_{\text {eq3 }}
$$

Preliminary kinetic studies at low temperatures show that the secondary amides react faster with triflic anhydride than tertiary amides (Table 5). ${ }^{109}$ The relative rate of formation of imidoyl triflates 45 is approximately 3 times as fast as the formation of iminium triflate 44 at temperatures of $-20,-10$, and $0^{\circ} \mathrm{C}$.

Table 5. Rates of formation of imidoyl triflate and iminium triflates

$\oint \begin{aligned} & \text { pyridine }, \\ & \mathrm{Tf}_{2} \mathrm{O}\end{aligned}$

44

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\%$ conv. $(10 \mathrm{~min})$
-50	0
-40	1
-30	1
-20	3
-10	7.5
0	10

- ${ }^{\text {pyridine }} \mathrm{T}_{2} \mathrm{O}$,

45

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	\% conv. (10 min)
-50	0.5
-40	1.3
-30	6
-20	6
-10	20
0	36

2.3 Effect of Temperature on Rates of Formation

Another aspect shown by Table 5 is that the absolute rates of formation are proportional to temperature. With a lower limit near $-60^{\circ} \mathrm{C}$ where very little or no triflate is formed, the rate increases with increasing temperature. Presumably, the rate could continue increasing without limits. In practice, however, an upper temperature limit does exist. There are several reasons for this. Firstly, triflates having a α-proton begin to eliminate triflic acid near room temperature in presence of a base. This parasitic side reaction results in the formation of ketenimines and keteniminium compounds. ${ }^{110}$ Secondly, at temperatures above $5^{\circ} \mathrm{C}$, triflic anhydride begins to react with pyridine to form triflyl pyridinium triflate which severely deactivates the triflating agent and prevents the formation of the desired imidoyl or iminium triflate (Scheme 19). So in practice, the upper temperature limit for triflate formation is about $0^{\circ} \mathrm{C}$ when pyridine is present.

Scheme 19. Formation of triflyl pyridinium triflate $\mathbf{4 6}$

2.31 Beneficial Effects of Pyridine During the Generation of Imidoyl

 and Iminium TriflatesDuring the formation of imidoyl and iminium triflates, it is advantageous to have pyridine in the reaction flask before the addition of triflic anhydride. This is because pyridine buffers the reaction against any endogenous or adventitious triflic acid which could cause deleterious side reactions and decomposition due to its extremely strong Brønsted acidity. ${ }^{111}$ One possible side reaction during the formation of imidoyl triflates is the cross coupling between the product imidoyl triflate 48 and the starting amide 49 (Scheme 20).

Scheme 20. Formation of N -acyl amidines 48 in acidic medium
With Pyridine:

Without Pyridine:

(6n)

When N-phenyl benzamide is converted to the imidoyl triflate 48 , there is one equivalent of triflic acid which is generated. Without base in the reaction, the imidoyl halide would be protonated and this intermediate 48 is so highly electrophilic, that it can react with a secondary amide 49 to form the N-acyl amidine 50 whose x-ray crystal structure is given in Figure 4. ${ }^{112}$ When there is base in the reaction, the imidoyl triflate is not protonated and the dimerization does not occur. The formation of N -acyl amidines is problematic only for more acidic amides like N-phenyl benzamide since most other amides used in these studies usually do not undergo dimerization in the absence of a base. Nevertheless, to avoid either decomposition in highly acidic medium or dimerization, a base is necessary during the formation of imidoyl and iminium triflates.

Figure 4. ORTEP representation of N-acyl amidine 50
Since pyridinium hydrotriflate is usually required in subsequent stages of various transformations of these electrophiles (vide infra), it is logical to have the pyridine present in the reaction at this point. So
pyridine is present during the formation of triflates and the chance of forming pyridinium hydrotriflate is unavoidable in most cases. Hence, understanding this reagent is important towards developing methodology involving pyridine and triflic anhydride.

2.32 Triflyl Pyridinium Triflate

Triflyl pyridinium triflate is a salt-like adduct between pyridine and triflic anhydride. ${ }^{113}$ It is formed when triflic anhydride is intentionally added to pyridine at temperatures above $0^{\circ} \mathrm{C}$, or by accident if the addition of triflic anhydride to the reaction mixture occurs too quickly resulting in an exotherm that causes the temperature of the reaction to rise significantly. The formation of this ionic compound is disadvantageous for the formation of iminium triflates because triflyl pyridinium triflate is not electrophilic enough to react with tertiary amides (Scheme 21). In our experience, an efficient way to prevent the formation of triflyl pyridinium triflate on small scale is to add the neat triflic anhydride down the side of the cooled flask so it can cool before it mixes with the reaction. On large scale, triflic anhydride should be added as pre-cooled solution in the appropriate solvent.

Scheme 21. Attenuated reactivity of triflyl pyridinium triflate

Triflyl pyridinium triflate can be formed by the addition of triflic anhydride to pyridine in dichloromethane at $0^{\circ} \mathrm{C}$ and then allowed to stir while warming up to room temperature over 15 minutes. Triflyl pyridinium triflate forms as a white precipitate in this dichloromethane solution. One useful property of this compound is that it is electrophilic
enough to react with nucleophiles such as phenols, but not electrophilic enough to react with tertiary amides. We applied this useful property to the synthesis of functionalized β-aminotetralins 54 (Scheme 22). ${ }^{114}$ Using triflic anhydride for triflate formation gave mixtures of products 52 and 53 . Using triflyl pyridinium triflate allowed the selective transformation of phenol 51 to the aryl triflate in 92% yield.

Scheme 22. Selective aryl triflate formation by triflyl pyridinium triflate

2.4 Effect of Solvent on Rates of Formation

Solvent effects ${ }^{115}$ are an important factor in "wet chemistry" due to the importance of solvation of the nucleophile. In a preliminary survey, the formation of iminium triflates was carried out in various solvents and the triflate was treated with an excess of ethanol to assay its formation (Table 6). ${ }^{116}$ One assumption was that the large amount of ethanol that was added would overcome any solvent effects during the second step of the conversion of the iminium triflate to the ortho ester (vide infra). ${ }^{117}$ It turns out that the solubility of the reactants in various solvents at low temperatures turned out to be crucial for the triflate formation. As the formation of the iminium triflate approached $0^{\circ} \mathrm{C}$, normally the solution
would become homogeneous and slightly yellowish in color. In solvents such as hexane, the amide is poorly solubilized resulting in a poor reaction. It turns out that the triflate formation was the fastest in dichloromethane; the same solvent originally used by Ghosez, Fowler, and Thomas in their studies with imidoyl and iminium triflates. ${ }^{118}$

Table 6. Formation of iminium triflates and conversion to esters

2.5 Structural Limitations of Primary and Methylbenzyl Amides

Primary amides and methylbenzyl amides do not form stable adducts with triflic anhydride as other secondary and tertiary amides do. This can be attributed to the ability of the proton (primary amides) and the α-methyl benzyl moiety to sustain a positive charge. ${ }^{119}$ The reaction of primary amides 55 with triflic anhydride, results in the immediate formation of the O-triflate adduct 55a which can be attributed to the unhindered nature of the primary amide. Compound 55a then immediately fragments to form triflic acid and nitrile 56 (Scheme 23). The yields are excellent and the reaction can be done at low temperature. Although these conditions have never been reported, ${ }^{120}$ this outcome could have been predicted based on existing methodologies. ${ }^{121}$

Scheme 23. Dehydration of primary amides by triflic anhydride

Methylbenzyl amides also form the initial O-triflate adduct 57a. These compounds readily undergo a von Braun type reaction and produce the nitrile 58 (Scheme 24). ${ }^{122}$ However, triflates are such poor nucleophiles that it is unlikely that this process occurs via an SN_{2} pathway as called for in the von Braun reaction. Furthermore, because this process does not occur in the benzyl amides, this difference in reactivities is not explained well by an SN_{2} mechanism. It is likely that the reaction proceeds via an SN_{1} mechanism. An SN_{1} mechanism can account for the poor nucleophilicity of the triflate anion as well as the reactivity of α-methyl benzylamides and lack of reactivity of benzyl amides. This reaction is more reminiscent of a "retro-Ritter" reaction or an SN_{1} variant of the von Braun reaction. ${ }^{123}$

Scheme 24. "Retro Ritter" fragmentation of methylbenzyl imidoyl triflates

Apart from primary and α-methyl benzyl amides, other amides generally form imidoyl and iminium triflates without major side reactions.

2.6 Conclusion

Several factors affect the reaction between amides and triflic anhydride. Secondary amides react faster than tertiary amides. This can be attributed to steric as well as electronic factors. This reaction seems to be fastest in dichloromethane. Pyridine is required to protect the substrate against the damaging effects of triflic acid. However, when pyridine is present, addition of triflic anhydride to the reaction should be done at $0^{\circ} \mathrm{C}$ or lower to prevent the formation of triflyl pyridinium triflate. Secondary amides of α-methyl benzyl amine can be converted to the imidoyl triflate, but these compounds readily undergo a "retro-Ritter" type fragmentation to produce the nitrile. Finally, primary amides react with triflic anhydride selectively at the oxygen, but these intermediates are unstable as they immediately eliminate triflic acid to generate the nitrile.

Chapter 3: Conversion of Secondary

and Tertiary Amides to Esters

CHAPTER 3

Conversion of Secondary and Tertiary Amides to

Esters. ${ }^{124}$

3.1 Introduction

Amides are one of the most robust carboxylic acid derivatives. Their use as protecting groups in the synthesis of highly functionalized molecules is limited since removal of the amide group is usually very difficult to achieve under mild conditions. ${ }^{125}$ Nevertheless, they are used whenever possible with robust molecules which can withstand more forceful conditions. A cursory exam of existing methods will show that mild methods are few and far in between, especially for tertiary amides. We have developed a method based on the activation of secondary and tertiary amides with triflic anhydride. Successive treatment with a primary alcohol results in the formation of the acyclic ortho ester. The ortho ester is readily hydrolyzed in an aqueous work-up to yield the ester. This method is more general than the analogous methodology using imidoyl and iminium chlorides since the formation of the corresponding triflates occurs under milder conditions. Furthermore, the novel application of a very weakly acidic pyridine buffered reaction media allows for the efficient conversion of the triflate to the ortho ester at room temperature. Racemization is minimal and numerous functional groups tolerate these conditions. This method should prove itself to be very useful in the repertoire of organic chemists.

3.11 Primary Amides

Primary amides are the most readily cleaved amides. ${ }^{126}$ Since they are dehydrated by the method being presented here, a discussion of existing methods for the cleavage of primary amides will not be presented here.

3.12 Milder Methods for Cleaving Secondary Amides

Secondary amides can be cleaved under traditional methods, but these tend to require strong acid or base coupled with elevated temperatures. ${ }^{127}$ In peptides ${ }^{128}$ and other bioorganic ${ }^{129}$ systems, some interesting mild conditions exist, but are somewhat limited in scope. Milder conditions are available when hydrolyzing alkyl imidates ${ }^{130}$ formed by the action of Meerwein's reagent on secondary amides. ${ }^{131}$ This popular method is exemplified by Hanessian's ${ }^{132}$ cleavage of a secondary amide on the glycoside 61 and Schöllkopf's ${ }^{133}$ hydrolysis of bis-lactims 62 (Scheme 25).

Scheme 25. Mild amide hydrolysis via imidates

62

Hanessian found that hydrolysis of the imidate can occur at essentially neutral pH which was novel at the time since the studies of Schmir and coworkers indicated that acidic conditions were necessary. ${ }^{134}$ More recently, others have made the same observation with alkyl iminium esters. ${ }^{135}$

Some mild methods are also available by activation of secondary amides by N-nitrosylation followed by a thermal rearrangement of the N nitroso amide 63 to furnish the corresponding ester $65{ }^{136}$ (Scheme 26).

Scheme 26. N-Nitrosylation and thermal rearrangement of secondary amides

Although the thermal rearrangement of N-nitroso amides is somewhat harsh, N-nitroso amides can react under milder conditions with nucleophiles such lithium hydroperoxide to give the acids, ${ }^{137}$ or thioesters. ${ }^{138}$ An impressive application of this approach appears in Evan's synthesis of Vancomycin 66 where the $\mathrm{C}_{1} \mathrm{~N}$-methyl amide was selectively nitrosylated and hydrolyzed using lithium hydroperoxide to give the acid 67 (Scheme 27). ${ }^{139}$

Scheme 27. Mild selective cleavage of the $\mathrm{C}_{1} \mathrm{~N}$-methyl amide in Evans' synthesis of Vancomycin

66

1. $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{NaOAC}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ 2. $\mathrm{LiOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, 10 min 3. $\mathrm{Na}_{2} \mathrm{SO}_{3}, 5 \mathrm{~min}, \mathrm{O}^{\circ} \mathrm{C}$

(ref. 139)

$$
67 \quad(78 \%)
$$

Activation can also be achieved by carboxylation on the nitrogen prior to hydrolysis (Scheme 28). ${ }^{140}$ A related approach relies on acylation with acetoxypivaloyl chloride ${ }^{141}$ which activates the amide towards hydrolysis and provides an intramolecular hydroxyl group for neighboring groupassisted hydrolysis. ${ }^{142}$

Scheme 28. Activation towards hydrolysis via carboxylation/acylation

Some of these methods, however, require irreversible derivatization of the amine nitrogen which results in a transformed amine at the outcome of the reaction. These methods are more useful for obtaining the carboxylic acid portion of the molecule.

3.13 Mild Methods for Cleaving Tertiary Amides

For tertiary amides, very few mild methods exist and even fewer of these are general. Hydrolysis of tertiary amides without prior activation usually requires extremely harsh conditions. An interesting method uses the fact that the amine residue is a better leaving group than an oxygen dianion (Scheme 29). ${ }^{143}$ In this approach, the tetrahedral intermediate 68 resulting from the nucleophilic addition of hydroxide onto the amide is deprotonated to give the highly unstable dianion 69. This intermediate fragments to expulse the amide residue instead of an extremely unstable O^{2-} dianion, thus, cleaving the amide bond.

Scheme 29. Formation and fragmentation of dianion 69

Activation of tertiary amides by acylation or chlorination is too harsh except for the most reactive tertiary amides such as dimethylformamide. Alkylation is milder, but the reagents are not reactive enough to form these intermediates quickly. Nevertheless, the application of Meerwein's reagent on oxazolines or alkylation by an intramolecular alkyl halide can form alkyl iminium esters which can be hydrolyzed under mild conditions. ${ }^{144}$ A very elegant example of this approach was used by

Woodward in his formal synthesis of Vitamin $\mathrm{B}_{12}{ }^{145}$ The B-ring N,Ndimethylamide is alkylated by an intramolecular iodonium cation to form the cyclic iminium ester which gives the lactone upon aqueous work-up (Scheme 30).

Scheme 30. Alkyl iminium esters formed via intramolecular alkylation in Woodward's synthesis of Cobyric acid 71 (Vitamin B_{12})

71
(ref. 145)

70

3.2 Towards a Mild Method for the Cleavage of Secondary and

Tertiary Amides via Imidoyl and Iminium Triflates

The approach that will be presented in this thesis is based on the conversion of secondary and tertiary amides to the corresponding triflates. Without isolating these highly electrophilic intermediates, subsequent treatment with alcohol produces ortho esters which yield esters upon hydrolytic work-up. The formation of the imidoyl and iminium triflates occurs under mild conditions since the reaction takes place at low temperatures and in a pyridine buffered medium. Furthermore, the conversion of the triflate to the ortho ester also occurs in a pyridine buffered solution at room temperature. Hence, the low temperatures and very mildly acidic nature of both these steps make this one pot procedure very mild and simple to execute.

3.21 Mechanistic Aspects of the Conversion of Secondary and Tertiary

Amides to Esters

For secondary amides, the reaction starts with the low temperature formation of the imidoyl triflate 72 in the presence of pyridine. This reaction forms one equivalent of triflic acid which is immediately neutralized to give pyridinium hydrotriflate. After about 4 hours at $0^{\circ} \mathrm{C}$, the reaction is generally complete for secondary amides and the alcohol can then be added resulting in the formation of the imidate 73 and another equivalent of pyridinium hydrotriflate. The pyridinium hydrotriflate in the reaction media is a weak acid and can catalyze the addition of another alcohol onto the imidate to form the ortho amide 75. Again, pyridinium hydrotriflate acts as a general acid catalyst to protonate the amine residue 76 and convert the ortho amide to the ortho ester 78 via the oxonium intermediate 77. The reaction yields the acyclic ortho ester, but these types of ortho esters are very sensitive substrates and are readily converted to the simple ester by an aqueous work-up.

Scheme 31. Mechanism for the conversion of secondary amides to esters

The mechanism is a composite of the formation of imidoyl triflates and the conversion of imidates to ortho esters. The novel components are the conversion of imidoyl triflates to imidates and the use of pyridinium hydrotriflate as an efficient acid catalyst for this process at temperatures between $0^{\circ} \mathrm{C}$ and room temperature.

A similar mechanism can be invoked for tertiary amides (Scheme 32). The reaction begins with the conversion of tertiary amides to the iminium triflate 79 which generally occurs over 6 hours at $0^{\circ} \mathrm{C}$. Like imidoyl triflates, the triflate intermediate is highly electrophilic and the triflate is substituted readily to give rise to the alkyl iminium ester 80. One major difference between this mechanism and the one invoked for secondary amides is that the alkyl iminium ester is a positively charged species and nucleophiles such as alcohols should add to them without catalysis by pyridinium hydrotriflate. For secondary amides, catalysis from pyridinium hydrotriflate is required for the addition of an alcohol to an alkyl imidate.

Scheme 32. Mechanism for the conversion of tertiary amides to esters

Once the ortho amide 81 is formed, the mechanisms should be similar. Pyridinium hydrotriflate protonates the amine 82 and catalyzes the formation of the ortho ester 84 via the oxonium ion intermediate 83 . Again, aqueous work-up provides the simple ester.

The formation of the ester from the ortho ester seems to be a very facile step as the normal work-up with $10 \% \mathrm{HCl}$ readily forms the ester. Keeping the work-up neutral by only washing with saturated NaHCO_{3} was not effective in preserving the ortho ester functionality (Scheme 33). Pyridinium hydrotriflate appears to be very efficient at hydrolyzing ortho esters and saturated NaHCO_{3} is not effective enough to quickly neutralize this acid catalyst in a two-phase system. Perhaps prior to extraction, the reaction must be made alkaline in a very careful manner by the addition of triethylamine or saturated NaOH . It is also possible that the acyclic ortho ester is not formed and actually the oxonium ion is the final product formed prior to aqueous work up. Further studies, probably using NMR will be required.

Scheme 33. Attempts to preserve acyclic ortho esters

3.22 Number of Equivalents of Base and Triflic Anhydride

Quantitative formation of imidoyl triflates requires a stoichiometric amount of triflic anhydride. Amides are generally very hygroscopic due to their propensity to form hydrogen bonds. Furthermore, and adventitious water in the solvent or pyridine can also hydrolyze triflic anhydride. We found that 1.3 equivalents of triflic anhydride was effective at providing consistent and reproducible conversions of amides to imidoyl or iminium
triflates. Presumably, one equivalent is sufficient, but extreme care would be required to exclude water from the system. Therefore, triflic anhydride must be very pure and the amide, solvent, pyridine and nucleophile must be compietely anhydrous or else lower conversions are likely to occur.

The amount of base required for efficient conversion of amides to esters seems to be dependent on the amount of triflic acid present which in turn depends on the amount of triflic anhydride that is used in the reaction (Table 7).

Table 7. Effect of stoichiometry of pyridine

Entry	$X(e q)$	Conversion (\%)
1	0	2
2	0.5	3
3	1.0	9
4	1.3	$10-75$
5	2.0	$81-96$
6	3.5	95

From these results, the ratio of pyridine to triflic anhydride must be greater than $2: 1$ (hence, ratio of pyridine to triflic acid is greater than $1: 1$) or else the results are not very reproducible. When the ratio of pyridine to acid is greater than $1: 1$, there is an excess of weak base and a proper buffer system is created. One possible explanation is that if the system is too acidic due to an excess of triflic acid relative to pyridine, the normal breakdown of the O-ethyl-O-triflyl ortho amide 85 to alkyl iminium esters 87 may be prevented in favor of the elimination to the ketene aminal 86 (Scheme 34). Therefore, for reproducible results, the amount of base should be 2 times greater than the amount of triflic anhydride to ensure that there is an excess of base relative to triflic acid.
greater than the amount of triflic anhydride to ensure that there is an excess of base relative to triflic acid.

Scheme 34. Need for pyridine in triflate substitution

3.23 Nature of Base

In the previous section, it was demonstrated that enough base was needed to prevent the reaction from becoming strongly acidic. A brief survey of different types of bases showed that non-nucleophilic weak bases were required for this reaction (Table 8). ${ }^{146}$

Table 8. Various bases in the conversion of esters to amides

One possible explanation for this is that the stronger bases such as triethylamine (Entry 3) and DMAP (Entry 4) are probably too strong and create a buffer which is too weak to protonate the alkyl amine residue of the ortho amide. Weaker bases such as pyridine form buffers that contain conjugate acids, which are strong enough as general acid catalysts to catalyze the conversion of various intermediates to the ortho ester product. Presumably, bases even weaker than pyridine, such as carboxylates or phosphines could be used when a stronger acid catalyst may be needed.

It is also possible that strongly nucleophilic bases react more readily with triflic anhydride to form products such as triflyl pyridinium triflate which deactivate the suphonylating reagent. To investigate this, the same survey of bases was carried out, but with an inverse addition of the base (Table 9). Hence, the base was added after the formation of the iminium triflate to allow ample time for triflic anhydride to react with the amide without competitive reactions from bases.

Table 9. Affect of base when added after iminium triflate formation

Entry	Base	Conversion (\%)
1	pyridine	93
2	pyridine +0.1 eq DMAP	96
3	DMAP	20
4	Triethylamine	-0
5	2,6 -Iutidine	94

Inverse addition of base resulted in slight increases in conversion for the reactions which used DMAP as a base. A dramatic effect was observed for 2,6-lutidine (Table 8, Entry 5) which gave 2% conversion, but 94% conversion (Table 9, Entry 5) when it was added after the formation of the
that this aromatic heterocycle could undergo an electrophilic aromatic substitution with triflic anhydride.

3.24 Effect of Solvent

As previously mentioned in section 2.4 , the reaction was found to proceed fastest in dichloromethane. This observation is consistent with those of Ghosez, Thomas, Fowler \& Grierson. ${ }^{147}$

3.25 Equivalents of Primary Alcohol

With ethanol and methanol, one can easily use 33 equivalents, but sometimes a large excess of alcohol is no feasible. If only 1 equivalent of alcohol was used, presumably one would obtain only the imidate in the case of secondary amides. Stoichiometry dictates that 3 equivalents are required for complete conversion of the amides to the ortho esters. Experimentally, we found that >10 equivalents are required for reproducible and optimal yields of the esters (Table 10).

Table 10. Effect of quantity of ethanol on the conversion to ortho ester

Entry	$\times($ eq EtOH $)$	Conversion (\%)
1	>33	96
2	10	95
3	5	84
4	1.3	42
5	1.3^{a}	3

${ }^{\text {a }}$ Basic work-up only.

This indicates that an entropic barrier must be overcome in order to form the ortho ester or that the additional alcohol serves to increase the polarity

This indicates that an entropic barrier must be overcome in order to form the ortho ester or that the additional alcohol serves to increase the polarity of the solvent to make the formation of various charged intermediates more favorable.

In the case where 1.3 equivalents of ethanol were used, a conversion of 42% was achieved. This would indicate that the reaction of ethanol with the triflate is faster than with subsequent intermediates as would be expected. In this example, conversion to the ester occurred via hydrolysis of the ethyl iminium ester under acidic conditions. When using a basic work-up, only a 3% conversion to the ester was found.

3.26 Nature of Alcohol

There is a large entropic cost in forming a quaternary substituted carbon center, especially in an acyclic ortho ester. This aspect is evident in the investigation of the effect of different alcohols (Table 11). Primary alcohols such as methanol and ethanol were effective at transforming the triflate to the ester. Secondary alcohols such as iso-propanol (Table 11, Entry 3) were not effective. Presumably, secondary alcohols cannot form orth esters due to the steric bulk of the isopropyl groups.

Table 11. Effect of the nature of the alcohol

Entry	ROM	Conversion (\%)
1	$\mathrm{R}=\mathrm{Me}$	85
2	$\mathrm{R}=\mathrm{Et}$	96
3	$\mathrm{R}=i \mathrm{Pr}$	12

3.3 Conversion of Amides to Esters

For the remainder of this chapter, the general conditions consist of the slow careful addition of 1.3 equivalents of triflic anhydride to the secondary or tertiary amide in dichloromethane containing 3 equivalents of pyridine at temperatures at or below $-40^{\circ} \mathrm{C}$. The reaction was allowed to warm up slowly to $0^{\circ} \mathrm{C}$ where it is stirred for 10 hours, but shorter times are enough for certain substrates. Then, 33 equivalents of ethanol or methanol are added and the reaction is allowed to warm up to room temperature and stirred for another 12 hours. The reaction is then diluted with diethyl ether and washed twice with $10 \% \mathrm{HCl}$ and once with saturated aqueous sodium bicarbonate. For almost all of the examples shown in the following sections, the conversion is nearly identical to the yield, such that any deficit in yield can be accounted for by recovered starting material.

3.31 Conversion of Tertiary Amides to Esters

The results of this methodology with various α-unsubstituted tertiary amides are shown in Table 12.

Table 12. Conversion of tertiary amides to esters

Entry

In general tertiary amides were converted to esters in good to excellent yields. N,N-diethyl hydrocinnamide (Entry a) and pyrolidinyl hydrocinnamide (Entry b) were converted to the ester in 94% and 85%, respectively. N, N-diisopropyl hydrocinnamide (Entry c) with its large isopropyl groups is quite sterically hindered about the acid carbon, but gratifyingly, it too is converted to the ester in high yield. More readily enolizable substrates such as N, N-diethyl phenylacetamide (Entry e) was also converted to the ester in high yield.

Table 13 shows the results with amides bearing substitution at the α-carbon. For the aromatic amide, N,N-diethyl-2-naphthamide (Entry a), the lower yield reflects possible steric hindrance which impedes substitution at the acid carbon or aromatic conjugation of the acid which makes intermediates less susceptible towards nucleophilic attack.

Table 13. Conversion of α-substituted, aromatic and conjugated tertiary amides to esters
Entry
N, N-diethyl cinnamide (Entry b) was also converted to the ester in slightly lower yield. Once again, this may be due to conjugation of the acid which deactivates it towards substitution. Increased steric bulk near the acid carbon in $N_{r} N$-diethyl- α-methyl cinnamide (Enity c) and N, N -diethyl- α-methyl hydrocinnamide (Entry d) seems to have a large negative impact on the yield. The worse case observed is for the conversion of $\mathrm{N}, \mathrm{N}-$ diethyl-p-nitrobenzamide (Entry e). In this case, the low yield may be attributed to the substituted nature of the amide, but more prominent would be the electron-poor nature of this aromatic amide which is unfavorable for the formation of positively charged intermediates such as oxonium ions.

For the conversion of tertiary amides to esters, the yield is affected by substitution in the α-position, aromaticity, conjugation and electronic properties of the amide. One solution for the steric problem is to lower the steric bulk around the acid carbon by reducing the size of the substituents on the nitrogen. Thus, in going from N, N-diethyl- α-methyl hydrocinnamide (Entry d) to the pyrollidinyl amide (Entry f) or even smaller N, N-dimethyl- α-hydrocinnamide (Entry g), the yield is increased from 25% to 69%.

3.32 Conversion of Secondary Amides to Esters

Various secondary amides are converted to esters in Table 14. From these results, one can make the generalization that secondary amides are more readily converted to ortho esters than their tertiary counterparts. This may be primarily attributed to the fact that secondary amides are less sterically hindered around the acid carbon as the amine residue has a proton in place of a carbon substituent. This reduced steric hindrance allows nucleophilic attack at the acid carbon to occur more readily, hence, the conversion of these amides to the corresponding esters is more facile. This is quite evident when comparing 90 c or 90 d with 92 f and 92 g . The
yields have increased from 35% and 25% to 85% and 94%. The electron poor aromatic N-benzyl- p-nitrobenzamide 92 g is still converted to the ester in a low yield of 28%. This is an indication that the oxonium intermediate may be involved in these mechanisms.

Table 14. Conversion of secondary amides to esters

Entry

3.4 Scope and Limitations

This method can cleave amide bonds at low temperature in a near neutral media. However, it is possible that in the presence of pyridine at low temperature, the conversion of amides to triflates is a harsh enough process that more functionalized molecules would not resist to these conditions. Another longstanding problem associated with cleavage of the amide bond is racemization. The "retro-Ritter" reaction discussed in section 2.5 also prevents the methodology from cleaving secondary amides when there is a substituent on the nitrogen which can readily support a positive charge. These questions and problems will be addressed in the following sections.

3.41 Amide Cleavage in Presence of Functional Groups

N-benzyl-4-hydroxy butanamide was synthesized from succinimide and protected with various protecting groups to generate the bi-functional compounds containing an amide (Scheme 35).

Scheme 35. Synthesis of protected N-benzyl-4-hydroxy butanamide 97 from succinimide

The reduction of succinimide 95 to hydroxy amide 96 required a fair amount of optimization (Scheme 36).

Scheme 36. N-acyl hemi-acetal formation in the presence of methanol

It was found that water and iso-propanol were required for efficient reduction of imide (95). The use of water as a co-solvent led to increased yields probably by increasing the solubility of LiCl and $\mathrm{NaBH}_{4}\left(\mathrm{LiBH}_{4}\right)$ in the composite solvent. Although methanol was initially used as a cosolvent to help dissolve the substrate, O-methyl aminal 98 was found whenever methanol was used. Replacing methanol with iso-propanol resulted in improved yields presumably by impeding the formation of the O-alkyl aminal through the use of a solvent which was a poor nucleophile.

These substrates were designed such that the amides were positioned nearby the protected primary hydroxyl group. This would allow the imidoyl triflate to interact with the functional group in an intramolecular fashion if the triflic anhydride did not react with the protected hydroxyl group first. These amides were then converted to the esters with the standard conditions to demonstrate the tolerability of various functional groups towards the conditions of triflate generation and subsequent alcoholysis. The results are summarized in Table 15.

Table 15. Conversion of amides to esters in presence of other functional groups

Entry	Amide	Yield of 102	Entry	Amide	Yield of 102
a		93\%	d		81\%
b		88\%	e		77\%
c		85\%	f		66\%

As can be seen from Table 15, various primary hydroxy-protecting groups such as silyl ethers, benzoates, benzyl ethers, electron rich benzyl ethers and primary acetates are inert under the reaction conditions. Carbonyl protecting groups such as the acetonide in 101 f are also stable towards these conditions. Having shown that various functional groups can be present in the molecule, this method should prove itself useful in latter stages of a synthesis when molecules are often highly functionalized. Being able to readily cleave an amide bond at such a point in a synthesis should allow new strategies and approaches to emerge where presently, the use of amides is often avoided.

3.42 Extent of Racemization

Racemization is a problem often associated with amide cleavage due to the somewhat rigorous conditions often used to effect this transformation. To evaluate the extent of racemization in this present methodology, amides bearing chiral centres on the α-carbon were converted to the corresponding esters (Table 16).

Table 16. Extent of racemization in chiral amides
Entry

Naproxen ${ }^{\circledR}$ ((S)-6-methoxy- α-methyl-2-naphthaleneacetic acid) is notorious for racemization. ${ }^{148}$ Its N-benzyl amide 103a was converted to the ethyl ester in 82% yield along with a small amount of racemization. N benzyl O-methoxy phenylacetamide $103 b$ was converted to the ester with essentially no racemization, however the yield in this case was much lower. For $N, N, N^{\prime}, N^{\prime}$-tetramethyl tartaramide 103c, this tertiary amide was converted to the corresponding mono-ethyl ester with essentially no racemization, but again in low yield. The lower yields in these two examples may be attributed to the electron withdrawing inductive effects of the alkoxyl groups in the α-position. Their presence may make the formation of the oxonium ion more difficult to achieve under these mild conditions. Stronger acid or slightly higher temperatures may be required in order to obtain greater yields with these types of substrates.

3.43 Solution to the Retro-Ritter Reaction

As mentioned in section $2.5, \alpha$-methyl benzyl amides undergo a "retro-Ritter" or an $\mathrm{S}_{\mathrm{N}} 1$-like von Braun reaction. Because α-methyl benzyl amides are often used as diastereomeric derivatives for resolutions of chiral compounds, it was desirable to be able to cleave the amide bond in these types of compounds. As previously mentioned, the fragmentation of α-methyl benzamides was believed to be SN_{1} in nature since the α-benzyl amides underwent this fragmentation reaction, but a normal benzyl amide did not. It was believed that the stability of the secondary benzylic carbocation was responsible for allowing this process to occur. By introducing a very high-energy step into the reaction pathway prior to the fragmentation step, it would be possible to circumvent this problem. An approach towards solving this problem is outlined in Scheme 37.

Scheme 37. An approach towards preventing the retro-Ritter reaction in α-benzyl amides

Our solution to the retro-Ritter reaction was to convert the α-methyl benzamide 105 to a tertiary amide 108 via alkylation. The tertiary amide would form a very unstable nitrilium cation 110 if the "retro-Ritter" reaction were to proceed. However, the formation of the nitrilium cation at room temperature in these near neutral reaction conditions is unlikely. The results of this approach are shown in Scheme 38.

Scheme 38. Prevention of the "retro-Ritter" reaction via conversion to tertiary amides

α-Methyl benzyl hydrocinnamide 111 was alkylated with methyl iodide or benzyl bromide to give the corresponding tertiary amides 112a and 112 b in 93% and 95%, respectively. These methylated and benzylated amides were then subjected to the amide cleavage conditions and much to our satisfaction, the substrates were converted to the esters in 94% and 60% yields, respectively. The lower yield associated with the benzyl compound maybe associated to the greater steric hindrance around the carbonyl carbon caused by the benzyl substituent.

Although we achieved our goal of cleaving this class of amides, certain mechanistic details were still unclear. It could be possible that the cleavage of amide 114 could occur via the nitrilium cation. Conversion of the amide to the nitrilium cation 115 would be followed by nucleophilic attack of ethanol to form the imidate 116. This would then be converted to the ester 117 in the usual manner (Scheme 39).

Scheme 39. Cleavage of α-methyl benzamides via nitrilium cations

However, experimental evidence indicates that at the nitrilium cation was never formed. Isolation of alkylated α-methyl benzyl amine from the acidic aqueous extractions demonstrated that the triflate had not fragmented to the nitrilium cation. Furthermore, quenching the reaction with water instead of ethanol resulted in the recovery of the starting amide 118; not the dealkylated amide 121 which indicated that fragmentation of triflate 109 had not occurred (Scheme 40).

Scheme 40. Evidence that the nitrilium cation was not formed

3.44 Cleavage of Amide Bonds in Hydantoins and Carbamates

Hydantoins are very useful heterocyclic compounds. ${ }^{149}$ They are a very convenient approach to the synthesis of amino acids since the formation of natural and quaternary amino acids can be readily achieved via hydantoins. The analogous approach via the Strecker reaction is not as reliable as often carbonyl compounds may react sluggishly under these conditions. ${ }^{150}$ The difference in these two avenues is that the hydantoin synthesizes the amino acid in a very stable 5-membered heterocyclic ring whereas the Strecker operates via an unstable cyanohydrin or α-amino nitrile. However, the drawback to the hydantoin approach comes when one must open up the 5 -membered ring to liberate the amino acid.

The application of the present methodology to hydantoins would be interesting since existing methods for hydantoin hydrolysis are very harsh. ${ }^{151}$ Unfortunately, preliminary studies indicate that this methodology is not effective at cleaving the amide bonds in 5-phenyl hydantoins to yield amino acid derivatives. However, an interesting
rearrangement took place to give rise to compounds whose structure has not been previously characterized by x-ray crystallography (Scheme 41). ${ }^{152}$

Scheme 41. Synthesis of 131 from 5-phenylhydantoin

In this reaction, 5 -phenylhydantoin 122 reacts with 3 equivalents of triflic anhydride to give the tris-triflate 123. Migration of the benzylic proton gives neutral compound 124. Addition of an excess of ethanol results in the substitution of the most labile triflate (imidoyl triflate versus enol triflate versus triflamide) to give the ortho carbamate 125. Ring opening of 125 between the triflamide and the ortho carbamate can now occur. Under mild acid catalysis, addition of ethanol to intermediate 127 gives triflate 128 which can undergo 3-exo-tet cyclization to form the aziridine 129.

Under mild acid catalysis, the aziridine would open up to give the benzylic oxonium ion 130, which is trapped again by ethanol to give the final product 131. The x-ray crystal structure of 131 is given in Figure 5.

Figure 5. ORTEP representation of compound 131
This methodology may have also proved useful for cleaving amide bonds in carbamates. However, initial attempts to cleave amide bonds in simple alkyl carbamates such as the ethoxycarbonyl group were unsuccessful.

3.45 Amine Protecting Groups

In this last section dealing with the conversion of amides to esters, we have a cursory inspection of nitrogen protecting groups which can be suitable for use in these reaction conditions. Our initial studies focussed on the possibility of using phthalimides as protecting groups for amines (Scheme 42).

Scheme 42. Synthesis of N -phthalimido phenylalanine

Phenylalanine 132 was heated with phthalic anhydride at $150^{\circ} \mathrm{C}$ for 15 minutes resulting in quantitative conversion to the phthalimide protected amino acid $133 .{ }^{153}$ Coupling of the acid using DCC failed to provide any of the desired N-benzyl amide. Using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) gave only a 13% yield of the desired amide 134 , but it was sufficient for our purposes. ${ }^{154}$ The amino acid derivative 134 was found to be only $96 \% \mathrm{ee}$. This racemization can be attributed to the use of N -carboxyl protecting groups. ${ }^{155}$ The benzamide was then converted to the ethyl ester 135 in 77 \% yield using the standard conditions. Ester 135 was found to have an enantiomeric excess of 85% indicating that some racemization had occurred (Scheme 43).

Scheme 43. Amide to ester conversion in presence of a phthalimide

Racemization may be a limitation of phthalimides when applied to α-amino acids, but for non-racemizable amines, they should prove
themselves quite useful. Other potential protecting groups may be the 9phenylfluorenyl protecting group which is known to be so large that it significantly reduces the nucleophilicity of the nitrogen. ${ }^{156}$

3.5 Conclusion

Secondary and tertiary amides can be readily converted to imidoyl and iminium triflates. These species can be converted to alkyl imidates and iminium esters upon treatment with alcohols. Pyridinium hydrotriflate is an efficient mild acid catalyst which can promote the conversion of alkyl imidates and iminium esters to ortho-esters which yield simple esters upon aqueous work-up. This method has proven itself mild for converting secondary and tertiary amides to esters as various functional groups can be present and racemization is minimal. Functional groups such as tert-butyldiphenylsilyloxy, benzoate, benzyloxy, pmethoxybenzyl, acetoxy, acetonide, methoxy and phthalimide groups are tolerated under these conditions. Initial attempts to cleave amide bonds in hydantoins and carbamates have been unsuccessful, but further work in this area may prove otherwise.

Chapter 4: Conversion of Secondary and Tertiary Amides to Ortho

Esters

CHAPTER 4

Conversion of Secondary and Tertiary Amides to Ortho Esters. ${ }^{157}$

4.1 Introduction

Ortho esters are a very useful carboxylic acid derivative because they are very resistant towards strong bases and nucleophiles while they can be readily converted to an ester using very mild aqueous acid (Scheme 44). ${ }^{158,159}$

Scheme 44. Ortho esters as protecting groups

Acyclic ortho esters are common for smaller acids, but cyclic versions are used more often with larger molecules as they are easier to form and are more robust. The relative stabilities of representative ortho esters in acid are shown in Figure 6. ${ }^{160}$

Figure 6. Relative stabilities of ortho esters

Ortho esters can be made through ortho ester exchange (i.e. alcoholysis of ortho esters), but this is an interconversion from one ortho ester to another, hence, it requires that the ortho ester is already available (Scheme 45). ${ }^{161}$ In this exchange reaction, there is an equilibrium between alcohols in this reaction so to drive the reaction to the completion, a less volatile alcohol or a poly-hydroxy compound must be used. This allows one to favor the product side of the equilibrium by removal of the more volatile alcohol from the starting ortho ester or formation of a more stable cyclic ortho ester. ${ }^{162}$ Another method of synthesizing ortho esters takes advantage of the fact that anodic oxidation occurs readily α to a heteroatom. When done in alcoholic solvents, ortho esters can be produced in moderate yields. ${ }^{163}$

Scheme 45. Synthesis of ortho esters

Ortho-ester exchange:

 (ref. 161, 162)

From anodic oxidation:

Simple esters and acids are normally not reactive enough to form ortho esters when treated with alcohols (Scheme 46). ${ }^{164}$ However, this approach can be used with more reactive esters. There are some examples of ortho ester formed by the addition of alcohols to formates since formates are less hindered and more electrophilic. ${ }^{165}$ The addition of diols to lactones can also produce ortho esters. ${ }^{166}$ Intramolecular alkylation of esters to form 5 or 6-memebered dioxycarbonium cations followed by subsequent trapping with an alcohol can be an efficient approach to ortho esters. ${ }^{167}$ Of course, these dioxycarbonium cations can also be accessed by other methods. ${ }^{168}$

Scheme 46. Ortho esters via the addition of alcohols to esters

Although not a commonly used method, ortho esters can be produced by treating 1,1,1-gem-trihalides with alkoxides (Scheme 47). ${ }^{169}$ This method was used to generate the first ortho ester in 1854 when Williamson made triethyl orthoformate by treating chloroform with sodium ethoxide. ${ }^{170}$ Presumably, this reaction proceeds via the nucleophilic substitution of all three halides from the substrate by the alkoxides. Yields are generally moderate and 1,1,1- gem-trihalides are not widely available except for chloroform and trichloromethylbenzene. A similar situation arises whenever 1,1,1- gem-trihalides are used in conjunction with alcohols and a base. The formation of ortho esters can be a competitive side reaction in the Reimer-Tiemann synthesis of phenolic aldehydes. ${ }^{171}$ Chloroform is deprotonated with a base to act as the source of carbene in this reaction. However, in cases where the phenol is electronpoor such that the attack of the carbene on the aromatic ring is hindered, attack of the phenoxide on chloroform becomes more prominent resulting in the increased formation of the ortho ester.

Scheme 47. Ortho esters via alcoholysis of 1,1,1-gem-trihalides
 Ortho-esters in the Reimer-Tiemann reaction:

Traditional methods for making ortho esters such as the Pinner synthesis typically required treating nitriles with strong acids in presence of an alcohol. In cases of electron poor nitriles, strong bases can be used to catalyze the addition of the alkoxide. This approach converts nitriles to ortho esters with imidates being a key intermediate in this transformation (Scheme 48). ${ }^{172}$

Scheme 48. Synthesis of ortho esters via imidates
R = alkyl, aryl

via Imidates and Meerwein's reagent

Since imidates are usually isolated and then treated with an alcohol in acidic medium, imidates made by other methods can also be used for the synthesis of ortho esters. ${ }^{173}$ Better yields are often obtained when using larger amounts of alcohol or a bi-phasic system of alcohol and hydrocarbon. ${ }^{174}$ Several disadvantages of this reaction are that strong
acids are usually required to catalyze the initial addition of an alcohol on a nitrile and that yields are often very sensitive towards steric hindrance. ${ }^{175}$ A milder alternative is to make the imidate from a secondary amide using Meerwein's reagent followed by alcoholysis of the imidate.

Amides can be converted to ortho esters via imidoyl halides since imidates are formed readily upon treating imidoyl halides with an alcohol (Scheme 49). ${ }^{176}$ But as previously discussed for the synthesis of imidoyl halides in section 1.42, this method has its limitations since the formation of imidoyl triflates is often accompanied by harsh conditions and side reactions. Furthermore, an excess of the chlorinating agent is often required which necessitates purification of the imidoyl triflate prior to treatment with the alcohol.

Scheme 49. Ortho esters from imidoyl halides

Water is detrimental to these reactions, but less obvious is the effect of excess halide salts from the acid or electrophilic agents used to generate these more reactive intermediates. Yields are reduced when halide ions attack the ortho ester and cause C-O bond fission to form an ester, alcohol/alkoxide, and an alkyl halide (Scheme 50). ${ }^{177}$

Scheme 50. Nucleophilic attack by halides causing C-O bond fission in ortho esters

More modern methods of forming cyclic ortho esters rely on the release of small ring strain to drive these kinds of reactions. Lewis acids are used to catalyze to opening of epoxides, whose carbocation is
subsequently trapped by an ester. ${ }^{178}$ Yields are generally mediocre to moderate. One method, which has proven itself to be quite efficient, is Corey's method of using $\mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$ to catalyze the opening of oxetane esters. ${ }^{179}$ The cation is trapped in an intramolecular fashion by the ester to generate the oxonium ion. The newly generated alkoxyl group adds to the oxonium ion to complete the formation of the ortho ester (Scheme 51).

Scheme 51. Corey's rearrangement of oxetane esters

Wipf's method is similar in the sense that a Lewis acid catalyzed ring opening is used to drive the reaction forward. ${ }^{180}$ The epoxide is opened up with the zirconium reagent to generate the carbocation. Addition to the ester forms the oxonium ion. Attack of the newly created alkoxyl group forms the ortho ester (Scheme 52).

Scheme 52. Wipf's rearrangement of epoxide esters

(96\%)

One drawback that these methods share is that the oxetane or epoxide ester is formed from an oxetane or epoxide alcohol. This prerequisite fragment may not be accessible for all kinds of substrates so not all kinds of ortho ester derivatives may be obtained via these methodologies. A more direct and convergent method would use an activated acid portion and combine it with the triol portion. Thus, the triol does not have to be pre-derivatized in the form of an epoxide or oxetane. This is the advantage of using methodologies like imidates and imidoyl
chlorides. However, the initial attack of a triol onto an imidate does not happen very readily unless catalyzed with a strong acid. Triols do react readily with imidoyl halides and subsequent intramolecular additions of alkoxide groups onto the imidate occur readily. However, the formation and purification of imidoyl halides can be problematic due to the harsh reaction conditions and the excess reagents that are often required.

4.2 Ortho Esters from Amides via Imidoyl and Iminium Triflates

The methodology being presented is based on the previously described methodology developed for the conversion of secondary and tertiary amides to esters. In the conversion of amides to esters, the intermediacy of an acyclic ortho ester is proposed. Initial attempts to isolate the acyclic ortho ester were unsuccessful, presumably do to the instability of the compounds. Using a triol in place of ethanol or methanol resulted in the efficient formation of cyclic ortho esters which are much more stable and can be handled much more readily. With some other changes to reaction conditions (vide infra), one can use a stoichiometric amount of triflic anhydride to activate secondary and tertiary amides and treat this with a near stoichiometric amount of a tris-hydroxymethylene ethane at room temperature to obtain good to excellent yields of cyclic ortho esters.

4.21 Mechanistic Aspects of Converting Secondary Amides to Cyclic

Ortho Esters

Our approach to ortho esters ultimately relies on the electrophilic activation of amides via imidoyl or iminium triflates. The reaction is intimately related to the conversion of amides to esters that was presented in the previous sections. The acyclic ortho ester was proposed as an intermediate in this transformation, however, as mentioned in Section 3.21,
attempts to isolate this species were not successful. The intrinsic instability of acyclic ortho esters prompted us to focus our attention towards their more stable cyclic counterparts. We then proceeded to investigate the possibility of using the imidoyl and iminium triflates as highly reactive intermediates in the conversion of secondary and tertiary amides to cyclic carboxylic ortho esters.

The ability to combine a triol with an amide allows for a very efficient and convergent approach to ortho esters. Furthermore, the advantage of using imidoyl and iminium triflates over other methods such as the addition of alcohols onto esters and imidates is that the initial attack of the poly-hydroxylated compound is very facile. The electrophilic nature of the triflate ensures a readily formed C-O bond which links the acid derivative to the alcohol. With the initial bond formed between the two substrates, the remaining hydroxy groups can add in an intramolecular fashion which helps to make this process much faster and easier to accomplish. With imidates, strong acids and heat are often required to have the initial transetherification of the imidate.

Imidoyl and iminium chlorides react in a similar fashion as the triflates. However, the conditions used for triflate formation are much milder than for chloride formation. Furthermore, the formation of imidoyl chlorides usually requires excess chlorinating reagents which necessitate the purification of the imidoyl chloride before treatment with the alcohol. This should result in a method which tolerates a greater number of functional groups, thus providing better yields in general.

Much like the methodology for esters, the methodology for converting secondary and tertiary amides to ortho esters is a two step-one pot process (Scheme 53). The formation of imidoyl triflates from secondary amides is readily achieved with the method described in Chapter 3. Once the triflate 136 is formed, there is no need to purify this intermediate because only a slight excess of triflic anhydride is used. The
triflate can then be immediately treated with a triol. The initial product resulting from the substitution of the triflate is the imidate 137 . Because a triol is used, the remaining hydroxyl groups are poised for intramolecular attack on the imidate. 1,1,1-tris-hydroxymethylene ethane was the triol used in these studies and it was chosen because it is very inexpensive and it is ideally suited for ortho ester formation. ${ }^{181}$ The imidate that trishydroxymethylene ethane forms with an imidoyl triflate has the two remaining hydroxyl groups positioned for relatively fast cyclization to form 6-membered rings. ${ }^{182}$ Furthermore, according to Baldwin, the intramolecular addition of the hydroxyl group to the imidate is not disfavored (6-exo-trig), neither is the cyclization of the final hydroxyl group on the oxonium ion (6-endo-trig). ${ }^{183}$

Scheme 53. Mechanism of the conversion of secondary amides to cyclic ortho esters

With this in mind, the cyclization of a hydroxyl group onto the imidate to form the ortho amide $\mathbf{1 3 9}$ occurs very readily, especially in the presence of pyridinium hydrotriflate that acts as a catalyst to protonate the nitrogen and makes the imidate 138 more electrophilic. Pyridinium hydrotriflate is also responsible for protonating the amine of the ortho amide $\mathbf{1 4 0}$ to make it a much better leaving group, thus, facilitating the formation of the oxonium ion 141. Final ring closure forms the ortho amide.

In the case of tertiary amides, the process begins with the formation of the iminium triflate 142 (Scheme 54).

Scheme 54. Mechanism of the conversion of tertiary amides to cyclic ortho esters

146
The triflate is then treated with 1,1,1-tris-hydroxymethylene ethane in the second step of the process. Iminium triflates are charged so substitution of the triflate by the triol occurs even more readily compared
to neutral imidoyl triflates. This forms the alkyl iminium ester 143 which is also a charged species. Cyclization of one of the hydroxy groups onto the alkyl iminium ester should occur very readily due to increased electrophilicity. This results in the formation of an ortho amide 144 which when protonated by pyridinium hydrotriflate, the ammonium residue is now a much better leaving group. The ammonium compound 145 fragments to the oxonium ion 146 which gives rise to the ortho ester upon cyclization of the final hydroxyl group.

4.3 Effect of Stoichiometry and Additives

In the conversion of amides to esters, it was believed that the use of a large excess of a primary alcohol was necessary to overcome the entropic barrier present in forming the supposed acyclic ortho ester. In the case of cyclic ortho esters, the hydroxy groups add in an intramolecular fashion, so a large portion of the entropic cost is eliminated. Thus, a large excess of hydroxyl groups is presumably not required. Experimentally, however, the yield decreased when the amount of 1,1,1-tris-hydroxymethylene ethane was reduced to near stoichiometric amounts (Table 17).

When 7 equivalents of the triol (21 hydroxyl group equivalents) was used (Entry 1), the ortho ester was obtained in 86% yield. Using 3.5 equivalents of triol (10.5 hydroxyl group equivalents) resulted in a yield of 83% (Entry 2), which is essentially the same as using 7 equivalents of triol. When only 1.5 equivalents of triol was used (Entry 3), the isolated yield of the ortho ester dropped to 58%. This indicated that the excess 1,1,1-trishydroxymethylene ethane had an impact on the outcome of the reaction. It was likely that the excess 1,1,1-tris-hydroxymethylene ethane was responsible for solvent effects. The excess hydroxylic reagent could have been making the reaction medium more polar or participating in the reaction as a nucleophile.

Table 17. Effect of stoichiometry of 1,1,1-tris-hydroxymethylene ethane and additives ${ }^{184}$

We wanted to find a solution which avoided using large amounts of the triol because if large amounts of this hydroxylic substrate are needed, then this methodology would not be useful for making ortho esters of triols which are not readily available. The course of action taken was to find a substitute for the excess triol. We chose to use acetonitrile as a nonnucleophilic solvent which could augment the polarity of the reaction. This approach brought yield back up to 85% (Entry 4). Another approach was to use ethanol which could increase the polarity of the medium as well as participate as a nucleophile in the reaction. When using ethanol as an additive and only 1.5 equivalents of 1,1,1-tris-hydroxymethylene ethane, the yield was 88% (Entry 5).

In the case of the added ethanol, more in depth studies would be necessary to sort out which factor is more important: increasing the polarity of reaction media or nucleophilic participation by the added ethanol. One preliminary observation is that reaction rates do not seem to differ much between using 7 equivalents of 1,1,1-tris-hydroxymethylene ethane and adding acetonitrile or ethanol. This would indicate that any
potential effect from the participation of ethanol in the mechanism is negligible in terms of overall reaction rates. It is possible that the ratelimiting step is still the formation of the oxonium ion.

4.4 Conversion of Secondary and Tertiary Amides to Cyclic Ortho

Esters

Although cyclic ortho esters are more stable than their acyclic counterparts, handling these carboxylic acid derivatives still requires more care than with other compounds as precautions should be taken to ensure the exclusion of acids and water. The results with converting various secondary and tertiary amides to cyclic ortho esters are summarized in Table 18.

Table 18. Conversion of secondary and tertiary amides to ortho esters
(2)

Secondary and tertiary amides were converted to imidoyl or iminium triflates by slowly adding triflic anhydride to a solution of the amide in dichloromethane containing pyridine at low temperature. The reaction was allowed to warm up to $0^{\circ} \mathrm{C}$ while stirring and then kept at that temperature for several hours to allow for the complete formation of the triflate. 1,1,1-tris-Hydroxymethylene ethane was then added followed by ethanol or acetonitrile. After 6 to 12 hours at room temperature, $\mathrm{Et}_{3} \mathrm{~N}$ was added to make the solution more basic. The reaction was filtered through silica gel which was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$ and then concentrated. Most of the ortho esters crystallized readily. If further purification was desired, the ortho ester could be purified by flash chromatography on $E t_{3} \mathrm{~N}$ neutralized silica gel with $E t_{3} \mathrm{~N}$ in the eluant.

In general, the reaction works well for secondary and tertiary amides (Entries a-d). Tertiary amides which are substituted in the α position (Entry e) are also converted to the ortho ester quite readily demonstrating that some of the steric hindrance in these tertiary amides can be compensated by the lower entropic requirements of an intramolecular reaction.

An interesting result was found with cyclopropyl amides derived from cinnamic acid. The tertiary amide (Entry h) failed to form the ortho ester, as the product was isolated in very poor yields. Furthermore, there was very little starting material left, unlike other reactions which generally returned the starting material if the product was not formed. With this substrate, there was extensive decomposition even before the addition of 1,1,1-tris-hydroxymethylene ethane. One explanation for this is that 3phenyl cyclopropane can undergo cationic ring opening to generate intermediate 150 which has a stabilized secondary benzylic carbocation. From this intermediate, numerous unidentified products could be produced (Scheme 55).

Scheme 55. Cationic ring opening of phenylcyclopropanes

149

150

When the tertiary amide is converted to the iminium triflate 149 , this intermediate is positively charged, therefore, the proposed decomposition can occur. On the other hand, the corresponding secondary amide (Entry i) forms an imidoyl triflate which is not a charged intermediate although there is a possibility of forming cationic species via protonation. Using the typical reaction conditions, the corresponding N methyl amide 147 i was converted to the ortho ester with a yield of 67%.

4.5 Conclusion

Imidoyl and iminium triflates can be used as intermediates in the conversion of secondary and tertiary amides to ortho esters. Generally, most secondary and tertiary amides are converted to the ortho ester in good yields. Substrates which are very sensitive to cationic rearrangements should not be converted to the ortho esters via the tertiary amide, but rather from the secondary amide since the corresponding iminium triflate decomposes readily. The advantages of this method are that the reaction conditions are mild (low temperature and very mild acidity), only stoichiometric amounts of triol are needed, and rapid construction of the ortho ester happens in a one-pot, two step process. The use of co-solvents such as ethanol or acetonitrile were effective at substituting the excess triol required in the reaction for optimal yields. By
using these readily available solvents, the amount of triol could be reduced to a near stoichiometric amount. This should make this method more attractive when the triol is not one which is readily available.

Chapter 5: Conversion of Secondary

Amides to N-Substituted

Imidates

CHAPTER 5

Conversion of Secondary Amides to NSubstituted Imidates. ${ }^{185}$

5.1 Introduction

In the previous chapters, the addition of alcohols to imidoyl and iminium triflates proved to be efficient approaches to the synthesis of esters and ortho-esters. Another useful functional group involved in these transformations is alkyl imidates. ${ }^{186}$ Among the previously mentioned uses for imidates, they can also be used in the formation of allylic amines via allylic rearrangement ${ }^{187}$ or for the efficient glycosylation of carbohydrates (Scheme 56). ${ }^{188}$

Scheme 56. Rearrangement of allylic imidates

Primary imidates can be made by the acid catalyzed addition of alcohols onto nitriles. ${ }^{189}$ For electron poor substrates, the same reaction can be achieved using base. ${ }^{190}$

Secondary amides can be O-alkylated to produce imidates using Meerwein's reagent or dialkyl sulphates. ${ }^{191}$ However, this is limited to the
formation of O-methyl and O-ethyl imidates. Imidates can also be formed by the O-alkylation of amides with hindered secondary allylic alcohols using a Mitsunobu protocol (Scheme 57). ${ }^{192}$ This procedure fails for some substrates where side products resulting from $\mathrm{S}_{\mathrm{s}} 2^{\prime}$ attack and N -alkylation can reduce the yield of the desired compound.

Scheme 57. Synthesis of imidates from secondary allylic alcohols via Mitsunobu protocol

Imidates are initially formed when ortho esters are treated with amines in the presence of an acid catalyst, but they often react further to give amidines. ${ }^{193}$ Amidine formation can be suppressed by the use of hindered amines ${ }^{194}$ or cyclic ortho esters (Scheme 58). ${ }^{195}$

Scheme 58. Synthesis of imidates from ortho-esters

Treatment of activated amides can allow access to imidates. The alkoxide-catalyzed addition of alcohols to imidates can generate other imidates through the exchange of alcohols groups (Scheme 59). ${ }^{196}$ Because this transformation is an equilibrium, higher yields can be obtained by using imidates derived from alcohols which are lower boiling or hindered to help favor the products in this exchange reaction. ${ }^{197}$

Scheme 59. Synthesis of imidates from other imidates

Imidoyl chlorides can be treated with alcohols to form imidates. ${ }^{198}$ Mechanistically, this procedure is analogous to the method we wish to present here which is the formation of imidates from imidoyl triflates. The advantage of using triflates is that secondary amides can be converted to triflates under milder conditions than those used for the formation of the corresponding halides. This advantage is important when more functionalized imidates are required.

5.2 Imidates from Secondary Amides via Imidoyl Triflates

When imidoyl triflates 151 are treated with alcohol, the triflate is readily substituted to form an imidate 153 (Scheme 60).

Scheme 60. Formation of imidates from imidoyl triflates

The reaction between an imidoyl triflate and an alcohol generates an imidate and one equivalent of acid. The imidate nitrogen lone pair is basic and would be protonated unless there is a stronger base in the reaction. ${ }^{199}$ The protonated imidate is electrophilic and nucleophiles can react with these intermediates. Normally, pyridine is used and it is not strong enough to completely prevent protonation of the imidate. 200

However, by using a stronger base that essentially prevents the protonation of the imidate, further transformation of the imidate can be
suppressed. This approach allows the isolation of imidates in modest to good yields. Thus, by treating the imidoyl triflate with a stoichiometric amount of the alcohol followed by an excess of triethylamine, imidates 155 and 157 could be isolated after a non-aqueous work-up (Scheme 61).

Scheme 61. Synthesis of imidates via imidoyl triflates

Note that pyridine is still used in the first step when the imidoyl triflate is generated. It is present to prevent the formation of N -acyl amidines as mentioned in section 2.31. This side reaction is problematic for N-phenyl benzamide, but less for other amides. It is possible to use triethylamine during the generation of imidoyl triflates in the first step. However, since triethylamine is a much stronger base than pyridine, it has a greater propensity to deprotonate imidoyl triflates resulting in the formation of ketenimines which is indicated by the reaction becoming dark red as the temperature nears $0^{\circ} \mathrm{C}$.

5.3 Conclusion

Initial studies have demonstrated that imidates can be isolated from the reaction between imidoyl triflates and alcohols. Addition of a stronger
base such as triethylamine prevents the protonation of the imidate and prevents it from undergoing any further reactions. By preventing this protonation, the imidate is much less susceptible towards nucleophilic attack and hydrolysis during manipulation or work-up. Hence, higher yields of imidate can be obtained. This methodology may prove itself useful in the formation of highly functionalized imidates since the generation of imidoyl triflates occurs under much milder conditions that those used for the formation of imidoyl halides.

Chapter 6: Synthesis of $\Delta^{2}-$

Thiazolines via Imidoyl and

Iminium Triflates

CHAPTER 6

Synthesis of Δ^{2}-Thiazolines via Imidoyl and Iminium Triflates. ${ }^{201}$

6.1 Introduction

Thiazolines ${ }^{202}$ are a class of heterocycles which have received much attention recently due to their presence in numerous interesting biologically active natural products such as curacin $A,{ }^{203}$ thiangazole, ${ }^{204}$ tantazole B^{205} and mirabazole B^{206} (Figure 7).

Curacin A

Figure 7. Thiazoline containing natural products of interest
The interest in these heterocycles also extends into our laboratories with synthetic targets which contain these interesting heterocycles.

Therefore, it only seemed fitting to develop the use of imidoyl and iminium triflates as precursors to thiazolines so we could have our own methodology to use in the synthesis of these heterocycles. Furthermore, we could demonstrate the possibility of using imidoyl and iminium triflates as precursors to heterocycles in general, and not just simpler carboxylic acid derivatives (Scheme 62).

Scheme 62. Synthesis of thiazolines from secondary and tertiary amides via imidoyl and iminium triflates

With the recent interest in these heterocycles, efforts have been made to find milder methodologies which can form thiazolines. In the context of total synthesis of natural products, a requirement of these methodologies is that it should be an efficient and mild process, suitable for use with highly functionalized and sensitive substrates. Historically, the traditional methods for the synthesis of thiazolines were quite harsh since there was no need to make these compounds in a highly complex molecule. The first thiazolines were made by Pinner type reactions using amino thiols with nitriles or imidates. ${ }^{207}$ The advantage of this method is that the heterocycle is formed in a one step synthesis. However, one of the drawbacks of this approach is that harsh conditions are usually required since imidates and nitriles are poor electrophiles (Scheme 63). ${ }^{208}$

Scheme 63. Thiazolines from nitriles and imidates

More success has been found in intramolecular variants of this reaction. By using a fair excess of TiCl_{4}, Heathcock can cyclo-dehydrate amido-thiols to give thiazolines (Scheme 64). ${ }^{209}$

Scheme 64. Acid-mediated cyclizations of amido-thiols

In an analogous fashion, amino thiono-esters can also be cyclodehydrated under similar acidic conditions (Scheme 65). ${ }^{210}$ Mitsunobu conditions can also be used to mediate this type of ring formation where the carbonyl oxygen is activated towards displacement by either sulfur or nitrogen. One can use triphenylphosphine $/ \mathrm{CCl}_{4}$ to form an amide bond
between a carboxylic acid and an amino thiol as well as subsequently activate the carbonyl oxygen of the resulting product towards cyclocondensation. 211 This method, however, also forms some oxazoline due to a phosphonium salt's affinity for oxygen.

Scheme 65. Thiazoline ring formation via activation of the carbonyl oxygen

(ref. 208a)
(73\%)

Mitsunobu-like conditions are more efficient at achieving ring closure through more traditional SN_{2} displacements of an activated hydroxyl group (Scheme 66). Thus, a hydroxy-thioamide can be activated at the oxygen and nucleophilic displacement by the sulfur of the thioamide affects the ring closure. ${ }^{212}$ Another very efficient example of this strategy is Wipf's conversion of oxazolines to thiazolines using $\mathrm{H}_{2} \mathrm{~S}$ to form the hydroxy-thioamide followed by the Burgess reagent to form the heterocycle. ${ }^{213}$ Of course, hydroxy-thioamides can be made in other ways and used for the synthesis of thiazolines. ${ }^{214}$

Scheme 66. Thiazolines from hydroxy-thioamides via Mitsunobu-like conditions

(ref. 210b)

In a similar displacement reaction, the hydroxyl group of hydroxy thioamides can be converted to a chloride for cyclization to the thiazoline. ${ }^{215}$ This is a procedure which works well for the synthesis of oxazolines, but is not one of the preferred methods for the synthesis of thiazolines as typical conditions require refluxing with thionyl chloride.

Even though numerous methodologies are available, high yields for the formation of the thiazoline is sometimes not obtained especially with acid-sensitive or racemization prone substrates. ${ }^{216}$ Furthermore, the most efficient thiazoline syntheses from sensitive precursors usually require multi-step sequences. In the following sections, we wish to present our approach to thiazolines using imidoyl and iminium triflates. At low temperatures in a medium buffered with excess pyridine, iminium and imidoyl triflates can be generated and reacted with amino thiols to allow
access to thiazolines in a one-pot/two step process. We observed that there was essentially no racemization and the reaction is also compatible with a wide-range of protecting groups.

6.2 Mechanistic Aspects of the Synthesis of Thiazolines from

Secondary and Tertiary Amides

Presumably, the use of imidoyl and iminium triflates for the synthesis of thiazolines would be analogous to the use of imidoyl or iminium halides. To the best of our knowledge, the halide electrophiles have not been used as precursors to these heterocycles. The reaction would proceed like the synthesis of thiazolines from imidates, however, the initial attack of the amino thiol on the triflate would occur in a very facile manner whereas in imidates, this reaction can be a slow and difficult process, even with strong acid catalysis. The initial addition of an amino thiol to these highly electrophilic species should result in the formation an alkyl thioimidate 159 (Scheme 67).

Scheme 67. Thiazolines from secondary amides via imidoyl triflates

In these reactions, there are several equivalents of acid present or generate. This requires a lot of base to ensure that an excess of base is maintained. Using pyridine as a base, the conjugate acid of pyridine is strong enough to protonate the alkyl thioimidate, presumably at the most basic site which is the primary amine 159. The protonated thioimidate is a mono-cation which could readily transfer the proton between the amine to the imine, in an intramolecular fashion. ${ }^{217}$ This would result in the formation of an iminium species 160 which would catalyze the cyclization of the amine group onto the itself in a highly favorable 5-exo-trig fashion. The resulting compound 161 could be protonated by the pyridine buffered medium at two sites. Protonation of the endocyclic nitrogen and elimination would give the previous intermediate as the reaction goes back-wards one step. However, protonation at the exocyclic nitrogen in compound 162 and elimination of this amine residue would lead to the irreversible formation of the thiazoline. The large gain in entropy at the last step should drive the formation of the product.

Formation of thiazolines from tertiary amides should proceed by a similar mechanism except that an iminium species predominates in the mechanism instead of an imine (Scheme 68). This should result in several differences such as acid catalysts not being required to protonate and activate the imine. After the formation of the ammonium alkyl thioiminium ester 164 , this di-cationic species should be readily deprotonated by pyridine. The electrophilic nature of the iminium groups should allow for a very facile addition of the amine group in a 5-exo-trig fashion. Again, this cyclized intermediate 166 has two sites of protonation. One is endocyclic nitrogen which is secondary, the other site is the exocyclic nitrogen which is tertiary. The tertiary amine is slightly more basic and should be protonated more readily. Irreversible elimination of the ammonium residue from the ammonium compound 167 would immediately provide the final product.

Scheme 68. Thiazolines from tertiary amides via iminium triflates

Unlike the methodologies presented in the previous sections, the formation of thiazolines is generally complete within an hour or two (Scheme 69).

Scheme 69. Faster rates of formation due to absence of slow oxonium ion

The conversion of amides to esters took at least several hours to go to completion. This indicates that the rate-limiting step in the formation of
thiazolines is faster than the rate-limiting step in the conversion of amides to esters. The formation of an oxonium ion is not present in the formation of thiazolines, but it is supposedly present in the formation of ortho esters. This difference in reaction rates may lend further evidence to the existence of the oxonium ion 169 as the rate-limiting step in the conversion of amides to esters and ortho esters.

6.3 Synthesis of Thiazolines from Tertiary Amides

Tertiary amides can be converted to thiazolines in a two-step/one pot procedure. As usual, the first step requires conversion of the amide to the iminium triflate. Once formation of the triflate is complete, the amino thiol can be added. The amino thiols are often available as the hydrochloride salt which introduces additional acid to the reaction. Care must also be taken as these very hygroscopic salts can absorb a lot of moisture which could result in the hydrolysis of the imidoyl or iminium triflates. Hence, it was found that additional base was required to ensure that there was always an excess of base (Table 19). The pyridine-acid buffer system had to be maintained otherwise the pH of the reaction media would decrease drastically which resulted in lower yields and more unidentifiable secondary products. Therefore, conversion of the amide to the triflate was done using 3 equivalents of pyridine with 1.3 equivalents of triflic anhydride. After the triflate is formed, 1.5 equivalents of the amino thiol hydrochloride was added, which was followed by another 3 equivalents of pyridine. ${ }^{218}$

Care must be taken during the work-up of the reaction (Table 17). Aqueous acid work-ups were avoided altogether since these conditions readily hydrolyze oxazoline and thiazolines. Non-acidic aqueous workups seemed to give poor yields of the thiazoline also. The same work-up used for ortho esters was adopted for this methodology. By adding $E t_{3} \mathrm{~N}$ at the end of the reaction and filtering the reaction through $\mathrm{Et}_{3} \mathrm{~N}$ treated silica
using an eluant containing $\mathrm{Et}_{3} \mathrm{~N}$, good yields of the thiazolines were obtained.

Table 19. Effects of additional base and non-aqueous work-up

3) work-up

Base	Work-up	Yield
none	NaHCO_{3} (sat), $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (sat)	$<10 \%$
2 eq pyridine	NaHCO_{3} (sat), $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (sat)	$20-25 \%$
none	same work-up as for ortho esters	41%
3 eq Et N_{3}	same work-up as for ortho esters	91%
2 eq pyridine	same work-up as for ortho esters	87%

These general conditions were applied to various tertiary amides. The results are summarized in Table 20.

Table 20. Synthesis of Δ^{2}-thiazolines from tertiary amides

$1713 \begin{array}{llll}\text { amino thiol } A & \mathrm{R}_{4}=\mathrm{H} \\ \text { amino thiol } B & \mathrm{R}_{4}=\mathrm{CO}_{2} \mathrm{Et} & 172\end{array}$
Entry

Two commercially available amino thiol hydrochlorides were used; amino ethanethiol and the cysteine ethyl ester hydrochloride. Aliphatic
and aromatic tertiary amides are converted to thiazolines in generally good yields.

The results with secondary amides are shown in Table 21.
Table 21. Synthesis of Δ^{2}-thiazolines from secondary amides

Some of the variations in yield may be attributed to slight differences in pKa 's between the various amino groups present in the reaction as well as the difference between iminium and imine intermediates when using tertiary or secondary amides. Cyclizations onto the iminium ion do not required acid catalysis whereas the cyclizations onto the imine do in the case of secondary amides. The reaction should be more straightforward for tertiary amides. For secondary amides, there are two basic groups involved in the reaction as shown by the imine and amine groups in alkyl thioimidate 159. For the reaction to progress, the imine should be protonated and the amine should be free as shown by intermediate 160 . However, the amine is more basic than the imine. Nevertheless, the driving force for the reaction is the gain in entropy upon liberating the amine residue in the final step so the reaction should drive itself to completion. Furthermore, in alkyl thioimidate 159, the ammonium
residue acts as an intramolecular acid and protonation of the imine residue and liberation of the amine residue should occur more readily than in an intermolecular case. Thiazolines should also be formed more readily from the ethyl ester of cysteine than amino ethanethiol since the carboxylic acid group would make the amine less basic through inductive effects. This would make the ammonium residue in intermediate $\mathbf{1 5 9}$ more acidic.

Table 22 shows some results with more functionalized substrates. (Entry a) is the conversion of a cyclopropyl amide to the corresponding thiazoline. This compound was found to be higher than 99% de indicating that very little epimerization had occurred at the α-carbon. The corresponding tertiary N, N-dimethyl amide failed to give products as it readily decomposed during the formation of the triflate. This may be attributed to the propensity of the cinnamyl cyclopropane moiety to undergo carbocationic ring opening.

Table 22. Synthesis of more highly functionalized Δ^{2}-thiazolines

Entry b shows that in the formation of the thiazoline with ethyl cysteine, the product was found to have a diastereomeric excess of 98%. This indicates that these conditions were mild enough not to cause extensive epimerization at the α-carbon of the amino acid. The final three examples demonstrate that various functional are stable to these reaction conditions. These groups include benzoate esters (Entry c), silyl ethers (Entry d), acetonides and benzyl ethers (Entry e). The mildness of these conditions can be attributed to the low temperatures and the very weakly acidic medium required for the thiazoline formation to take place. Hence, this methodology could be useful in the synthesis of highly functionalized thiazolines.

6.4 The Imidoyl Triflate Approach to Polythiazolines

A large number of compounds containing contiguous polythiazoline units have recently caught the interest of scientists due to their promising biological activity as well as their unique structure. ${ }^{219}$ The synthesis of these polythiazoline sub-units presented itself as an interesting challenge for this methodology. One could envision the use of imidoyl triflates as intermediates in the construction of polythiazolines where the amide of cysteine could be used to build the thiazoline in a modular fashion (Scheme 70).

Scheme 70. Imidoyl triflate approach to sequential polythiazoline synthesis

Each newly formed thiazoline such as intermediate 177 would have an amide ready for installation of another thiazoline unit via the imidoyl triflate methodology.

Our initial attempts to form bis-thiazolines involved converting phenethyl amide 179 to the thiazoline ester 180 (Scheme 71). The ester was quantitatively aminolyzed with methylamine in methanol to provide the amide 181 in preparation for the installation of the second thiazoline group.

Scheme 71. Attempted formation of bis-thiazolines

Unfortunately, attempts to for the bis-thiazoline using standard conditions failed to give the bis-heterocyclic compound. Instead, the thiazoline was acylated at the nitrogen to give the triflamide 182 whose structure was determined by x-ray crystallography (Figure 8).220 Thiazolines have been reported to have this type of reactivity. ${ }^{221}$

Figure 8. ORTEP representation of N -triflamide 182
Substrates not bearing an α-proton would not undergo this type of enamine formation as the endocyclic nitrogen of the thiazoline would be less nucleophilic. Naphthylamide 183 was converted to thiazoline ester 184 (Scheme 72). Treatment with excess methylamine in methanol resulted in the quantitative conversion to N-methyl amide $\mathbf{1 8 5}$ in preparation for the installation of the next thiazoline ring.

Scheme 72. Synthesis of thiazoline amide 185

Amide 185 was then submitted to the standard conditions used for thiazoline formation, but this did not produce the desired bis-thiazoline 189 as the final product (Scheme 73). Instead, two other bis-heterocyclic compounds were isolated.

Scheme 73. Synthesis of bis-heterocyclic compounds via imidoyl triflates

The first compound isolated was the bis-heterocycle 188. This compound probably resulted from the tautomerization and subsequent oxidation of the desired bis-thiazoline 186. The oxidation could be caused by the handling and purification of these compounds in the presence of oxygen. ${ }^{222}$ Small quantities of this unstable ester 188 were isolated as a mixture of diastereoisomers and it eventually dehydrated to a less polar compound upon chromatography. This less polar compound turned out to be the thiazole 189 whose structure was confirmed by x-ray crystallography (Figure 9). ${ }^{223}$ Presumably, it is the product of the aromatization of ester 188 upon the loss of a molecule of water. Although this un-optimized reaction failed to give the desired bis-thiazoline 186 as
the final product, its existence as an intermediate in this reaction could be deduced from the products which were isolated. Furthermore, the final bis-heterocyclic compound 189 could be produced in 57% yield, thus demonstrating that this methodology is capable of forming contiguous thiazolines.

Figure 9. ORTEP representation of thiazole-thiazoline 189

6.5 Comments on the Presence of α-Methyl Cysteine in Polythiazoline Containing Natural Products

Whereas the mono-thiazoline compounds are relatively stable, bisthiazoline compounds made from α-amino acids with α-protons readily tautomerize to give compounds which seem to be more sensitive towards oxidation or decomposition. In comparing mirabazole and didehydromirabazole (Figure 10), ${ }^{224}$ it seems that nature has used α methyl cysteine to counteract this problem.

Mirabazole $\mathrm{A}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{\mathbf{2}}=\mathrm{CH}_{3}$
Mirabazole $\mathbf{B}, \mathbf{R}_{\mathbf{1}}=\mathbf{R}_{2}=\mathrm{CH}_{3}$
Mirabazole $\mathbf{C}, \mathbf{R}_{\mathbf{1}}=\mathrm{CH}_{3}, \mathrm{R}_{\mathbf{2}}=\mathrm{H}$

Figure 10. Mirabazoles versus didehydromirabazole

The presence of the α-methyl group prevents the tautomerization and the cascade of events which ultimately result in the oxidation of the thiazoline to the thiazole. So in light of this, our methodology has potential application towards the expedient formation of contiguous polythiazoline heterocycles made from α-methyl cysteine as the methyl groups would ensure the preservation of the thiazoline moiety (Scheme 74). This process can be further improved by the use of the N-methyl amide of cysteine as the aminothiol so that the additional conversion of the ester to the amide can be avoided.

Scheme 74. Retro-synthetic analysis of thiangazole

6.6 Conclusion

In summary, it has been demonstrated that iminium and imidoyl triflates are very good electrophiles as they react readily with amino thiols in a weekly acidic medium to give rise to thiazolines. Yields are good to excellent and the reaction conditions are mild enough to tolerate various hydroxy and carbonyl protecting groups. Potential applications of this method towards the synthesis of curacin A and thiangazole should reiterate the synthetic utility of this method.

Chapter 7: Synthesis of Thioamides

$$
\text { and }{ }^{18} \mathrm{O} \text {-Labelled amides via }
$$

Imidoyl and Iminium Triflates

CHAPTER 7

Synthesis of Thioamides and ${ }^{18} \mathrm{O}$-Labelled amides via Imidoyl and Iminium Triflates. ${ }^{225}$

7.1 Introduction ${ }^{226}$

Imidoyl and iminium triflates can also be useful intermediates for the substitution of the oxygen atom in amides with other heteroatoms. These types of reactions could produce thioamides, oxygen-labeled amides and amidines. The first two types of compounds will be studies in this chapter.

7.11 De Novo Syntheses of Thioamides

Thioamides are approaching their second century of existence as Guy-Lussac obtained the first thioamide in 1815 by reacting hydrogen sulfide with cyanogen (Scheme 75). ${ }^{227}$ This approach from nitriles has been used in many variations as the reaction can be catalyzed by acid or base. ${ }^{228}$ In the case of acids, the source of sulfur is usually a thioacid such as thioacetic acid. ${ }^{229}$

Scheme 75. Thioamides from nitriles

De novo syntheses of thioamides include reacting carbon nucleophiles with isothiocyanates (Scheme 76). Reactive nucleophiles such
as Grignards are usually used. ${ }^{230}$ Aromatic rings can act as nucleophiles in electrophilic aromatic substitutions with isothiocyanates, ${ }^{231}$ but better yields are generally obtained when this reaction is done in an intramolecular fashion. ${ }^{232}$ Amino de-hydrogenation of thioaldehydes can also be a useful route to thioamides. ${ }^{233}$

Scheme 76. Thioamides from isothiocyanates and thioaldehydes

(ref. 228)

(ref. 230)
(ref. 231)

Thioamides are rarely made by thioacylating amines with thioacyl halides and thioacid anhydrides since these reagents are very difficult to prepare. However, other reagents with sufficient thioacylating activity have been used (Scheme 77). These reagents include thionoesters, ${ }^{234}$ dithiocarboxylic acids, ${ }^{235}$ and dithiocarboxylate esters. ${ }^{236}$

Scheme 77. Thioamides via thioacylation

$\mathrm{R}^{\prime} \mathrm{NH}_{2}$

Where LG =-SR, OR, SH
Another interesting approach is represented by the WillgerodtKindler reaction (Scheme 78). ${ }^{237}$ The mechanism of this reaction is still not
clear even to this day. ${ }^{238}$ However, certain intermediates such as imines and enamines have been implicated. ${ }^{239}$

Scheme 78. Thioamides from the Willgerodt-Kindler reaction

7.12 Synthesis of Thioamides from Amide Precursors

The most popular strategy for the synthesis of thioamides is probably the surfuration of the corresponding amides (Scheme 79). Traditionally, thioamides have been made by extensively heating the amide with $P_{2} \mathrm{~S}_{5}{ }^{240}$ Tin reagents can also used to achieve this transformation. ${ }^{241}$ More recently, Lawesson's reagent (2,4-bis-(4-methoxyphenyl)-1,2,3,4-dithiaphosphetane-2,4-disulfide) has become the reagent of choice for the synthesis of thioamides. ${ }^{242}$ However, secondary and tertiary amides must be heated in toluene or benzene with Lawesson's reagent to affect this transformation. These conditions may be problematic for substrates bearing thermally labile functionality. ${ }^{243}$

Scheme 79. Thioamides by sulfuration of amides

Heterocycles can also be precursors to thioamides as Wipf has recently reported that the sulfhydrolysis of Δ^{2}-oxazolines with basic hydrogen sulfide generates 2-hydroxyethyl (Scheme 80). ${ }^{244}$ However, secondary and tertiary amides, which have acyclic or exocyclic $\mathrm{C}-\mathrm{N}$ bonds, undergo irreversible sulfhydrolysis of the $\mathrm{C}-\mathrm{N}$ bond to yield thionoesters. ${ }^{245}$

Scheme 80. Hydroxy thioamides from hydrogen sulfide ring opening of Δ^{2}-oxazolines

Activated amides have also been used as precursors to thioamides. Imidoyl chlorides ${ }^{246}$ and iminium chlorides ${ }^{247}$ can be treated with hydrogen sulfide to give thioamides (Scheme 81). However, the methods used to generate these intermediates are quite harsh and examples are limited to small and simple molecules which may attest to the lack of generality of these methods.

Scheme 81. Thioamides from thiolysis of imidoyl and iminium chlorides

Our approach takes advantage of the leaving group ability of the triflate anion such that sulfhydrolysis of the C-N bond does not occur. ${ }^{248}$ Another advantage is that imidoyl and iminium triflates are strong electrophiles which react instantaneously with stoichiometric amounts of hydrogen sulfide at low temperatures to immediately produce the
thioamide. This reduces the amount of toxic hydrogen sulfide needed. Furthermore, the low reaction temperatures and pyridine buffered reaction media makes this reaction milder than other methods which require heating in the presence of an acid or base. The yields range from good to excellent and this method should prove itself to be a low temperature alternative to Lawesson's reagent.

7.2 Mechanism of the Conversion of Amides to Thioamides via Imidoyl and Iminium Triflates

In the conversion of secondary amides to the corresponding thioamide, they are first converted to the imidoyl triflate 190 at low temperature using triflic anhydride in the presence of pyridine (Scheme 82).

Scheme 82. Mechanism of converting secondary amides to the corresponding thioamides

Once this electrophilic intermediate is formed, treatment with hydrogen sulfide results in substitution of the triflate to immediately give the thioamide.

For tertiary amides, the reaction is just as straightforward (Scheme 83). Treatment of the amide with triflic anhydride gives rise to the iminium triflate 192. This species is even more electrophilic than the imidoyl triflate and reaction with hydrogen sulfide is just as instantaneous. The triflate is immediately substituted with sulfide and the resulting
iminium thiol is readily deprotonated in the pyridine buffered medium to provide the thioamide.

Scheme 83. Mechanism of converting tertiary amides to the corresponding thioamides

192
193
In theory, only one equivalent of hydrogen sulfide is required for this reaction. In practice, this turns out to be valid as the reaction between hydrogen sulfide and the triflates is instantaneous even at low temperatures. When hydrogen sulfide is added as a gas, it is often difficult to introduce just the right amount of reagent to the reaction. A predetermined solution of hydrogen sulfide in acetonitrile can be used, however, extreme care must be taken to ensure that this mixture is kept anhydrous. ${ }^{249}$ The addition of hydrogen sulfide from a lecture bottle is quite convenient and anhydrous, however, the amount of hydrogen sulfide must be kept to a minimum.

If an excess of hydrogen sulfide is added, this can result in the formation of a meta-stable compound which is most likely the geminal bisthiol 195 resulting from the addition of a molecule of hydrogen sulfide to the thioamide 194 (Scheme 84). ${ }^{250,251}$ Thiocarbonyls are more reactive towards nucleophiles as the π-stabilization is reduced due to poorer orbital overlap created by the large size of the sulfur atom. The greater carbonyl reactivity and the good nucleophilicity of the sulfide anion are probably the reasons why this process can occur so readily. ${ }^{252}$

Scheme 84. Addition of excess hydrogen sulfide to thioamides to produce a meta-stable compound

194

195

The meta-stable compound is visible on thin layer chromatography using short-wave ultra violet light just like the thioamides, but they are generally less polar. The instability of this compound has made its isolation and characterization very difficult. However, this instability also allows it to be readily converted back to the thioamide since the addition of the sulfide anion is reversible. By opening up the flask to the atmosphere in a well-ventilated fume hood and allowing the reaction to stir, one can facilitate the elimination of a molecule of hydrogen sulfide to give back to the desired thioamide. Making the reaction medium more basic by the addition of triethylamine or pyridine also seems to help this process by deprotonating the intermediate, thus further facilitating the elimination of hydrogen sulfide. Of course, the simplest way to avoid this problem is to be frugal with the addition of hydrogen sulfide.

7.3 Conversion of Secondary and Tertiary Amides to Thioamides

Various secondary and tertiary amides were converted to the corresponding thioamides and these results are summarized in Table 23. The imidoyl or iminium triflate is generated in the usual fashion. A minimum amount of hydrogen sulfide is then bubbled slowly into the reaction in a bolus fashion while the reaction is monitored by thin layer chromatography until judged complete. If too much hydrogen sulfide is added and some of the geminal dithiol product starts to appear, an excess of pyridine is added and the reaction is allowed to stir for at least several
hours in a well-ventilated fume hood until the thioamide is regenerated. Work-up is achieved by filtration through silica get followed by purification by flash chromatography.

Table 23. Synthesis of thioamides from secondary and tertiary amides via imidoyl and iminium triflates

196
197
Entry

The method works well with secondary and tertiary amides of both aliphatic as well as aromatic acids (Entry a-d). $\quad N$-Methyl-3phenylcyclopropane carboxamide was readily converted to its thioamide (Entry e). Functional groups such as esters (Entry f), silyl ethers (Entry g),
acetonides and benzyl ethers (Entry h) are stable to these conditions as the amide can be converted to the thioamide in their presence. These reactions generally give good to excellent yields which are comparable with the best examples using Lawesson's reagent. Although Lawesson's reagent is well established as the method of choice, using triflates has the advantage that heating is not required.

7.4 $\quad{ }^{18} \mathrm{O}$-Labeled Amides

In an analogous fashion to the previously described method for the conversion of amides to thioamides by replacing the amide oxygen with a sulfur atom, the oxygen can also be replaced with an isotopically labeled oxygen atom. Incorporation of oxygen-17 and oxygen-18 atoms into amides is useful for analytical methods such as ${ }^{17} \mathrm{O}-\mathrm{NMR}$ and mass spectroscopy. Existing methods for the synthesis of labeled amides require equilibrating the oxygen atoms of the parent acid with ${ }^{18} \mathrm{O}$ atoms (Scheme 85). ${ }^{253}$

Scheme 85. Incorporation of isotopic oxygen by equilibration with $\mathrm{H}_{2}^{18} \mathrm{O}$

This equilibration is accomplished by dissolving the acid 198 in an excess of isotopically enriched $\mathrm{H}_{2}{ }^{18} \mathrm{O}$. The labeled acid 199 is then isolated and coupled to the amine to form the ${ }^{18} \mathrm{O}$-labeled amide 200. Isotopic reagents such as $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ and $\mathrm{H}_{2}{ }^{17} \mathrm{O}$ are extremely expensive and their price increases exponentially as a function of isotopic purity. ${ }^{254}$ One inconvenience of this method is that a large excess of the water must be used to drive the equilibrium to ensure the maximum incorporation of isotopic oxygen. Furthermore, it is general practice is to recover the water
because its cost. After equilibration, however, the isotopic purity of the recovered water will have been diminished somewhat.

To the best of our knowledge, imino and iminium chlorides have not been hydrolyzed with isotopically labeled water to produce isotopically labeled amides. This may be due in part to the more rigorous conditions required to generate these compounds and that the excess chlorinating agent would have to be somehow removed or else it would also react with the water, thus increasing the amount of isotopically labeled water that is required.

Since the reactivity of $\mathrm{H}_{2} \mathrm{O}$ is very similar to that of $\mathrm{H}_{2} \mathrm{~S}$, we envisioned that by treating imidoyl and iminium triflates with $\mathrm{H}_{2}{ }^{18} \mathrm{O}$, we could transform the amide to the ${ }^{18}$ O-labeled amide (Scheme 86). Advantages of this method are that only a stoichiometric amount of water is required and that the transformation can be achieved in a single step from the unlabeled amide. These two factors allow for ready access to large quantities of these isotopically labeled compounds.

Scheme 86. Incorporation of isotopically labeled oxygen by the hydrolysis of imidoyl and iminium triflates

Mechanistically, this process is identical to the substitution of the triflate by hydrogen sulfide. Presumably, other nucleophilic heteroatoms capable of forming double bonds could also undergo these types of reactions with imidoyl and iminium triflates. One example would be the
synthesis of amidines by treating imidoyl and iminium triflates with primary amines.

7.5 Synthesis of ${ }^{18} \mathrm{O}$-labeled Amides via Imidoyl and Iminium

Triflates

As expected, treatment of iminium and imidoyl triflates with near stoichiometric amounts of ${ }^{18} \mathrm{O}$-enriched water resulted in the quantitative recovery of an amide (Scheme 87). A slight excess of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ relative to triflic anhydride was used to ensure enough of the nucleophile was available. This reaction is very fast and indicates that the undesired hydrolysis of imidoyl and iminium triflates is a problem which warrants serious attention.

Using voltage regulated high resolution mass spectrometry, the isotopic purity of the amide was determined to be 10% which corresponds to the isotopic purity of the $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ used in the reaction. Furthermore, only a slight excess of the expensive and commercially available $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ was required. Therefore, in a one-pot, two step reaction, isotopic oxygen atoms can be statistically incorporated in to secondary and tertiary amides using stoichiometric amounts of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$.

Scheme 87. Incorporation of ${ }^{18} \mathrm{O}$ atoms into secondary and tertiary amides via imidoyl and iminium triflates

7.6 Conclusion

Imidoyl and iminium triflates react efficiently with $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ to give thioamides and ${ }^{18} \mathrm{O}$-labeled amides, respectively. Both secondary and tertiary amides undergo this reaction and various functional groups can tolerate the reaction conditions. This method provides a low temperature alternative to Lawesson's reagent for thioamide synthesis. Finally, because this method uses only stoichiometric amounts of isotopic water, this one pot synthesis of ${ }^{18} \mathrm{O}$-labeled amides is more efficient than traditional methods. These examples with sulfur and oxygen should indicate that reactions with amines should readily give amidines and that other heteroatoms capable of forming double bonds will also react with these electrophilic intermediates in a similar fashion.

Part 2: Design of an

Enantioselective

Diels-Alder Catalyst.

Chapter 8: Enantioselective

Synthesis of Biarylphenylglycines
and Their Use as Chiral Ligands
in the Lewis Acid Catalyzed
Diels-Alder Reaction

CHAPTER 8

Enantioselective Synthesis of
 Biarylphenylglycines and Their Use as Chiral Ligands in the Lewis Acid Catalyzed Diels-Alder
 Reaction. ${ }^{255}$

7.1 Introduction

The acceleration of some reactions by the addition of chiral Lewis acids is one of the most popular strategies used for the stereoselective synthesis of organic compounds. For example, numerous chiral Lewis acids are quite efficient at controlling the enantioselectivity of several transformations such as in the Diels-Alder, the hetero-Diels-Alder, the aldol, the ene, and conjugate addition reactions. ${ }^{256}$ Among these, the DielsAlder reaction has been extensively studied due to its powerful ability to form C-C bonds with very high levels of diastereoselectivity. ${ }^{257}$ Furthermore, the Diels-Alder reaction is also one of the most popular testing grounds for chiral Lewis acids and is one of the most active fields in organic synthesis today. ${ }^{258}$

Traditionally, enantioselective processes with chiral catalysts are controlled through steric effects. ${ }^{259}$ However, to improve upon selectivities, we felt additional elements, which are electronic in nature, could be added to the catalyst which would make the enantioselective reaction pathway even more favorable. According to Houk, ${ }^{260}$ the lowest energy transition structure for the Lewis acid catalyzed Diels-Alder reactions is asynchronous (Scheme 88). In an asynchronous Diels-Alder
reaction, the key intermediates are the electron-deprived Lewis acid complexed dienophile and the transient, charge-separated, zwitterionic dienophile. Therefore, stabilization of these intermediates may have a catalytic effect by decreasing the energy requirements for the dienophile to be complexed to the Lewis acid.

Scheme 88. Lowest energy reaction pathway for the Diels-Alder reaction between acrolein and butadiene

Stabilization can occur via charge transfer as Corey has recently demonstrated by the design of several catalysts which operate through both charge transfer. ${ }^{261}$ Furthermore, Hawkins ${ }^{262}$ has recently demonstrated that the presence of polarizable groups increased enantioselectivities through a closer interaction of polarized groups between the catalyst and the dienophile (Scheme 89).

Scheme 89. Enhanced dipole-induced dipole effects

Presumably, enantioselectivities could increase due to a closer association of the steric blocking group and the reactive dienophile caused by the combined stabilization gained through charge transfer and enhanced dipole-induced dipole effects. We hoped that this could be
achieved by synthesizing ligands 203(a-d) which incorporate a polarizable electron rich blocking group such as a naphthyl moiety (Figure 11). These ligands would then be used for the formation of catalysts 204(a-d) which orient the naphthyl group in the vicinity of the Lewis acid-dienophile complex of an oxazaborolidine system.

Figure 11. 2-Naphthalene as a polarizable and electron rich blocking group

Herein, we report our initial results on the design and synthesis of these chiral ligands based on the 2 -arylphenylglycine framework and we disclose our preliminary results of their use as ligands for oxazaborolidine catalysts in the Diels-Alder reaction between cyclopentadiene and 2bromoacrolein (Scheme 90).

Scheme 90. Diels Alder reaction between 2-bromoacrolein and cyclopentadiene

7.2 Synthesis of Ligands

The synthesis of N-tosyl-2-(2-naphthyl)-phenylglycine 203a started from a Kumada type coupling ${ }^{263}$ between 2-chlorotoluene 205 and 2bromonaphthalene 206^{264} (Scheme 91).

Scheme 91. Synthesis of N-tosyl-2-(2-naphthyl)-phenylglycine 203a

213

203a

Radical bromination at the benzylic position of aromatic compound 207 gave the mono-bromide 208 along with a trace amount of di-brominated product. ${ }^{265}$ The bromide 208 was displaced by cyanide in DMSO to produce the requisite nitrile 209. ${ }^{266}$ Hydrolysis of the nitrile to the acid 210 and installation of the Evan's auxiliary ${ }^{267}$ produced the biaryl imide 211. The subsequent electrophilic amination ${ }^{268}$ proceeded with a diastereoselectivity of $>49: 1$ (212a:212b) ($96 \% \mathrm{ee}$). The diastereomeric azides were separated by flash chromatography and azide 212a was reduced with tin (II) chloride to give the amine. Hydrolysis of the imide at this point resulted in the formation of numerous side products. Instead, the amine was protected as its BOC derivative 213 and then LiOOH^{269} hydrolysis of the imide afforded the desired free acid. The BOC group was then removed with trifluoroacetic acid at room temperature and the crude amino acid was tosylated under Schotten-Baumann conditions to give the desired tosylated amino acid 203a with an optical purity of 98% ee as determined by HPLC of the N-methyl benzamides (214a and 214b). ${ }^{270}$
N-Tosyl amino acid 203b was made in a similar manner to 203a. Compound 203c was prepared by the tosylation of phenylglycine under Schotten-Baumann conditions and then recrystallized from ether/hexanes.

The synthesis of non-racemic N-tosyl-2,6-bis(B naphthyl)phenylglycine 203d could have begun with a double biaryl coupling of a 2,6-dihalo aromatic compound, but we found that such a coupling did not go to completion. To make matters worse, the incomplete reaction resulted in the contamination of the desired bis(naphthyl) derivative with mono-and unsubstituted starting materials. Since transition metal catalyzed couplings have been known to be difficult in the presence of ortho substituents, ${ }^{271}$ the Woods approach was adopted to provide a clean synthesis of the triaryl moiety (Scheme 92). ${ }^{272}$ 2Naphthylmagnesium bromide 216^{273} was added to the monoethyl enol ether ${ }^{274}$ 215a of the commercially available 2-methyl-1,3-cyclohexanedione
215^{275} to furnish the α, β-unsaturated ketone 217 . The subsequent addition of 2-naphthylmagnesium bromide gave the tertiary alcohol which could be eliminated ${ }^{276}$ to give the bis(naphthyl) cyclohexadiene. Transfer dehydrogenation with cyclohexene as a hydrogen acceptor gave 2,6-bis(2naphthyl)toluene 218. Purification by flash chromatography gave a compound which was free of any mono-naphthyl benzene products.

Scheme 92. Synthesis of N-tosyl-2,6-bis(ß-naphthyl)phenylglycinol

Functionalization of the hydrocarbon 218 proceeded by bromination using N-bromosuccinimide with benzoyl peroxide as a radical initiator. This gave the benzylic mono-bromide 219. The bromide was converted to the nitrile 220 and then to the methyl ester 221 using methanol and sulfuric acid. Attempts to install the chiral auxiliary at this point failed presumably due to the steric constraints imposed by the pocket motif of the triaryl moiety. The synthesis was continued with racemic material by using potassium hexamethyldisilylamide to generate the enolate which was trapped with 2,4,6-triisopropylbenzenesulfonyl azide to furnish the racemic azide 222. The azide was then reduced and tosylated to give 223. Resolution of the racemic mixture was affected on the alcohol 224. Reduction of the ester and coupling of the racemic alcohol 224 with (S)-2methoxyphenylacetic acid gave a 1:1 mixture of diastereoisomers which were separated by flash chromatography (Scheme 93) and identified by xray crystallography. ${ }^{277}$

Scheme 93. Synthesis of N-tosyl-2,6-bis(ß-naphthyl)phenylglycine 203d

(S)-Methoxyphenylacetic acid, DCC $(42 \%) \downarrow(42 \%)$

(higher R)
225a

(lower $\mathrm{R}_{\text {d }}$)

225b

The diastereomerically pure ester $\mathbf{2 2 5}$ a or $\mathbf{2 2 5 b}$ was saponified and the alcohol was oxidized in a two-step procedure using PDC^{278} and followed by Masamune's buffered KMnO_{4} protocol. ${ }^{279}$ The optical purity of 203d was determined to be 94% ee indicating that partial racemization had occurred during the oxidation. An X-ray crystal structure of (-)-203d was obtained and it clearly shows the positioning of the two naphthyl groups (Figure 12). ${ }^{280}$

Figure 12. ORTEP representation of (-)-N-tosyl-2,6-bis(B-naphthyl) phenylglycine 203d

7.3 Results in the Diels Alder Reaction

The N-tosylated amino acids 203(a-d) could be converted to the corresponding oxazaborolidine catalysts $\mathbf{2 0 4 (a - d)}$ by treatment with $\mathrm{BH}_{3} \bullet$ DMS in dichloromethane at room temperature for 2 hours. The
catalyst was then cooled to $-78^{\circ} \mathrm{C}$ and treated with 100 equivalents of freshly cracked cyclopentadiene and 20 equivalents of 2-bromoacrolein as called for in Corey's reports. ${ }^{5}$ The Diels-Alder adduct was reduced to the alcohol 226 using sodium borohydride in methanol and analyzed by chiral GC. The results are summarized in Table 24.

Catalyst 204a formed the Diels-Alder adduct with a selectivity of 88% ee favoring the S isomer. The Diels-Alder reactions catalyzed by 204b and 204c gave adducts with 77% ee and 83% ee and with the same sense of induction. This clearly indicated that the naphthyl group was not a necessary element for the selectivities observed with catalyst 204a.

Table 24. Diels-Alder reaction promoted by catalysts 204(a-d)

A plausible transition state model could be derived based on those proposed by Helmchen and Yamamoto ${ }^{4}$ and it requires the dienophile to be complexed to the Lewis acid in a s-cis conformation when the cycloaddition occurs (Figure 13).

Figure 13. Proposed transition states for the Diels-Alder reaction
This prompted the design and synthesis of catalyst ligand 203d. Catalyst 204d has two naphthyl groups so one group will always project into the proximity of the Lewis acid/dienophile complex regardless of rotation around the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond. Catalyst 204d promoted the formation of the Diels-Alder adduct in $50 \% e e$, but with the opposite sense of induction. This reversal of selectivity is a clear indication that the naphthyl group plays a large role in determining the sense of chiral induction. Although the synthesis is somewhat lengthy and the selectivities are lower that those reported with some other catalysts, these results have demonstrated that the 2,6-bis(2-naphthyl)phenyl motif projects a naphthyl group into the desired vicinity of space causing a strong effect on the transition state.

7.4 Conclusion

In conclusion, we have synthesized compounds 203(a-d). These compounds can be used for the formation of oxazaborolidine catalysts which can catalyze the Diels-Alder reaction. Compounds 203(a-c) have essentially the same selectivities and the same sense of chiral induction which is an indication that the single naphthyl group of 203a is not involved in the transition state. Catalyst 204d has an additional naphthyl group and this catalyst produces the opposite enantiomer in the Diels-

Alder reaction. This catalyst has the naphthyl oriented within the proximity of the Lewis acid and this large aromatic moiety is involved in the transition state. Studies involving the design of second generation chiral Lewis acid catalysts possessing the 2,6-bis(2-naphthyl)benzene motif are under way and will be reported in due course.

Experimental Section

General Notes

Reaction, especially those involving triflic anhydride are very susceptible to moisture. All glassware was dried for several hours in a oven or flamed under argon and cooled under inert gas prior to use. Reagents were handled with a syringe. Generally, solvents and reagents were purified prior to use ${ }^{281}$. Some of the more often used are:

benzene	distilled over sodium under nitrogen			
$\mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$	distilled under argon			
2,2-bishydroxy-				
methylene propanol	dried by Dean-Stark: stored over $\mathrm{P}_{2} \mathrm{O}_{5}$			
dichloromethane	distilled over CaH_{2} under N_{2}			
DME	distilled over sodium under N_{2}			
DMF	dried over molecular sieves			
diethyl ether	distilled over sodium under N_{2}			
ethanol	stored under N_{2}			
hexane	distilled over CaH_{2} under N_{2}			
Hunig's base	dried over KOH			
2,6-lutidine	dried over KOH			
methanol	stored under N_{2}			
pyridine	distilled over $\mathrm{CaH}_{2}:$ stored over KOH			
tetrahydrofuran	distilled over sodium under N_{2}			
toluene	distilled over sodium under N_{2}		triethylamine	distilled over $\mathrm{CaH}_{2}:$ stored over KOH
:---	:---			
triflic anhydride	distilled over $\mathrm{P}_{2} \mathrm{O}_{5}:$ refrigerated under N_{2}			

Other reagents or solvents of reagent grade or better could be used as received, but judgement must be used as to the quality and consequences of using slightly impure chemicals. Reported yields refer to
products isolated after purification by flash chromatography, distillation or crystallization and placed under high vacuum until there is no more loss on evaporation.

Thin layer chromatography (TLC) was done with commercially available glass fluorescence indicator impregnated silica gel plates (E. Merck Science $5715 \mathrm{~F}_{254}$) which were stored over Drierite© prior to use. After elution, the TLC plates were subject to revelators such as aqueous KmnO_{4}, aqueous ceric ammonium sulfate, aqueous 2,4-dintrophenyl hydrazine, phosphomolybdic acid in EtOH, p-anisaldehyde in EtOH , or iodine on silica gel. The relative mobility factor $\left(R_{f}\right)$ is indicated. Flash chromatography was done using E. Merck Science 9385 or Silicycle 230-240 mesh $(40-63 \mu \mathrm{~m})$ silica gel ${ }^{282}$. Preparative thin layer chromatography was done with commercially available glass fluorescence indicator impregnated silica gel plates (E. Merck Science 13792 PSC Fertigplatten Kieselgel $60 \mathrm{~F}_{254}$).

Melting points were measured on a Buchi Schmelzpunktbestimmungsapparat and are uncorrected. Infrared spectra were taken on a Perkin Elmer 781 spectrophotometer, Harmann \& Braun Biomem 100 FTIR, or ATI Mattson Genesis Series FTIR between two NaCl plates for oils and in the form of a KBr pellet for solid compounds. The major absorption bands are expressed in cm^{-1}. Optical rotations were measured on a Perkin-Elmer 341 polarimeter at the 589 nm (Sodium D line) wavelength unless otherwise specified. All measurements were taken at ambient temperature and the specific rotation (${ }^{\circ} \mathrm{ml} / \mathrm{g} \cdot \mathrm{dm}$) is given followed by the concentration in $\mathrm{g} / 100 \mathrm{ml}$ in the specified solvent. Elemental analyses were done at the Laboratoire d'Analyse Élémentaire de l'Université de Montréal on samples which were re-purified, recrystallized or fractionally redistilled and submitted to high vacuum ($<0.2 \mathrm{mmHg}$) for at least 24 hours prior to analysis. Low and high-resolution mass spectroscopy was done at the Centre Régional de Spectrométrie de Masse
at l'Université de Montréal. Low-resolution mass spectra were taken on a Autospec Vg. The high-resolution mass spectra were determined on a MS50 Kratos subsequently to chemical ionization (CI), electron ionization (EI), or "Fast Atom Bombardment" (FAB). Single crystal x-ray diffraction analyses were taken by the Laboratoire de Diffraction des Rayons X de 1'Université de Montréal using a Enraf-Nonius CAD-3 or CAD-4 instrument. Further details are given in the appropriate appendix for the crystal in question.

The nuclear magnetic resonance spectra for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$, and ${ }^{11} \mathrm{~B}$ were taken on a Bruker AMX-300 (300 MHz and 75 MHz) or a Bruker ARX-400 (400 MHz and 100 MHz). All the chemical shifts are expressed in parts per million (ppm) with reference to an internal standard provided by tetramethylsilane (TMS), residual non-deuterated solvent. The analysis of the NMR spectra are presented in a format specified by the chemical shift followed by parentheses enclosing the multiplicity of the system, coupling constants, integration and the assignment of the system. All the systems are analyzed to the first approximation as first order systems. As needed, the complete assignments are accomplished by COSY and HQMC experiments. All ratios evaluated by NMR methods were determined using quantitative accumulation and a standard Fourrier transform without Gaussian or Exponential enhancement.

Analyses by gas chromatography were accomplished by using a Hewlett Packard 5890 Series II capillary gas chromatograph equipped with a flame ionization detector. The injector temperatures were $250^{\circ} \mathrm{C}$; the column head pressure was 25 psi and the total flow of carrier gas (helium) was adjusted to $2 \mathrm{ml} / \mathrm{min}$. The samples were injected into the chromatograph in "split" mode. The column and temperature parameters are specified along with the retention times. High performance liquid chromatography was accomplished using a Waters Millipore 600E HPLC system using a Waters 486 UV detector at the specified wavelength.

Solvents used were HPLC grade and were filtered on a Supleco 0.45 micron membrane prior to use.

Experimental Section: Chapter 2

N-Phenyl benzamide (48).

According to the method of Bosnich ${ }^{283}$, a suspension of aniline $(16.3 \mathrm{~g}, 175$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ and pyridine ($15.7 \mathrm{ml}, 193 \mathrm{mmol}$) was cooled to $78^{\circ} \mathrm{C}$. Benzoyl chloride ($20.3 \mathrm{ml}, 175 \mathrm{mmol}$) was then added slowly giving a white suspension. The reaction was stirred while warming up to room temperature slowly. EtOAc (500 ml) was added and the reaction was washed with $10 \% \mathrm{HCl}(2 \times 100 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The crude product was crystallized from MeOH , filtered, and then placed under high vacuum until a constant mass was observed. The mother liquor was concentrated under reduced pressure and the crude product was crystallized from MeOH to give a second batch. The two batches were then combined to give 32.91 g (95.4%) of amide 48 as white crystals; $R_{f} 0.39$ (1:3 EtOAc/hexane); mp $162-164^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (br, 1 H , NH), 7.85 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ph}$), 7.65-7.62 (m, 2H, Ph), 7.53-7.51 (m, 1H, Ph), 7.48-7.44 $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ph}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,137.9,134.9,131.7,129.0,128.7,127.0,124.5,120.2 ;$ IR $(\mathrm{KBr}) ~ \vee 3340,1660,1600,1580,1530,1450,1440,1320,1260,750,720,690 \mathrm{~cm}$ ${ }^{1} ;$ HRMS (FAB+) calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]\right]^{+}: 198.09189$, found: 198.09280.

N-Benzoyl- N-phenyl- N^{\prime}-phenyl benzamidine (50).

A suspension of N-phenyl benzamide $48(225 \mathrm{mg}, 1,14 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was cooled to $-30^{\circ} \mathrm{C}$. Triflic anhydride ($192 \mu \mathrm{l}, 1.14 \mathrm{mmol}$) was then slowly added and the reaction was allowed to warm up slowly to $0^{\circ} \mathrm{C}$ over the course of 3 hours or until which time the reaction was judged complete by TLC. The reaction was diluted with ether, washed with 10% $\mathrm{HCl}(2 \times 25 \mathrm{ml})$, once with saturated $\mathrm{NaHCO}_{3}(25 \mathrm{ml})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before being concentrated under reduced pressure. The crude residue was purified by flash chromatography (1:5 EtOAc/hexanes) to give $141 \mathrm{mg}(66 \%)$ of amidine 50 as a white solid. Crystallization of amidine 50 from ether/hexanes gave crystals which were suitable for x-ray analysis ${ }^{284} ; \mathrm{R}_{f} 0.52(1: 3 \mathrm{EtOAc} /$ hexane $) ; \mathrm{mp} 180-182^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{br}, 2 \mathrm{H}, \mathrm{Ph}), 7.46-7.30(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 7.20-6.72(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,140.9,135.7,131.3,131.2,131.0,129.8$, $129.7,129.2,128.7,128.6,128.1,127.9,127.3,127.0,126.7,125.8,125.7,124.9$, $124.3,123.2,120.4,120.0$; $\operatorname{IR}(\mathrm{KBr}) \vee 1650,1620,1590,1580,1450,1310,1140$, $1080 \mathrm{~cm}^{-1}$; LRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 377.16539$, found: 377.1. For x-ray crystal data, see Appendix 1.

3-Phenylpropanamide (55).

55

To a solution of 3-phenyl propanoic acid ($5 \mathrm{~g}, 33.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ ml) was added thionyl chloride ($3.2 \mathrm{ml}, 43.3 \mathrm{mmol}$) and DMF (4drops). The reaction was fitted with an exit bubbler and was refluxed until the evolution of gas ceased. The solution was allowed to cool to room temperature and then transferred to a dropping funnel. The acid chloride was slowly added to concentrated ammonium hydroxide (5 ml) at $0^{\circ} \mathrm{C}$. After 15 minutes, a TLC analysis indicated that the reaction was complete. The reaction was diluted with a mixture of EtOAc/ether (150 ml), washed with water (50 ml), $10 \% \mathrm{HCl}(2 \times 50 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The crude product was crystallized from EtOAc/hexanes to give 4.91 g (98\%) of amide 55 white solid; $\mathrm{R}_{f} 0.21$ (2:1 EtOAc/hexane); mp $98-100^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.17(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.42(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 5.99(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{NH}), 2.94\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.50\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,140.5,128.3,128.0,126.0,37.2,31.1 ; \mathrm{IR}$ $(\mathrm{KBr}) \vee 3390,3190,1640,1570,1410 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 150.09189$, found: 150.09280 .

3-Phenyl propanitrile (56).

A solution of amide $55(128 \mathrm{mg}, 0.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and pyridine ($180 \mu \mathrm{l}, 2.15 \mathrm{mmol}$) was cooled to $-30^{\circ} \mathrm{C}$. Triflic anhydride ($190 \mu \mathrm{l}, 1.11$ mmol) was then added very slowly and the reaction was allowed to warm up to $0^{\circ} \mathrm{C}$ while stirring and then kept at $0^{\circ} \mathrm{C}$ for 4 hours. The reaction was diluted with ether (75 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced
pressure. Purification of the crude product by flash chromatography (1:10 EtOAc/hexanes) yielded 110 mg (98%) of nitrile 56 as a colourless oil; R_{f} 0.24 (1:10 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.21(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}), 2.93\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.59\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,128.7,128.1,127.0,119.0,31.4,19.1$; IR (neat) v 3020, 2940, 2240, 1500, 1440, 1420, $1080 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}[\mathrm{M}]^{+} 131.07350$, found 131.07327.
(\pm)- N -(1-phenylethyl)-3-phenylpropanamide (57).

57

To a solution of 3-phenyl propanoic acid ($3.68 \mathrm{~g}, 24.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ ml) was added oxalyl chloride ($2.6 \mathrm{ml}, 29.4 \mathrm{mmol}$) and DMF (4 drops). The reaction was fitted with a exit bubbler and was refluxed until no more gas evolved. The crude reaction was concentrated under reduced pressure and then diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ and then racemic 1-phenyl ethylamine ($4.1 \mathrm{ml}, 31.9 \mathrm{mmol}$) was added slowly followed by triethylamine ($5.1 \mathrm{ml}, 36.7 \mathrm{mmol}$). The solution was allowed to warm up to room temperature over the course of several hours. The reaction was diluted with ether $(200 \mathrm{ml})$ and washed with $10 \% \mathrm{HCl}(2 \times 50$ $\mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. Purification of the crude product by flash chromatography yielded 5.96 g (96\%) of amide 57 as a colourless oil; R_{f} 0.35 (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.14(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{Ph}), 5.85(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.08(\mathrm{dt}, J=6 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NHCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 2.95,\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.46(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.39\left(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHPh}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 171.0,143.0,140.7,128.4,128.4,128.3,127.1,126.1,126.0,48.4,38.4,31.6$, 21.5; IR (neat) v 3300, $3040,1640,1540,1450 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 254.15450$, found: 251.15590 .

3-Phenyl propanitrile (58).

A solution of amide $57(205 \mathrm{mg}, 0.81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and pyridine $170 \mu \mathrm{l}, 2.03 \mathrm{mmol}$) was cooled to $-30^{\circ} \mathrm{C}$. Triflic anhydride ($180 \mu \mathrm{l}, 1.050$ mmol) was slowly added and the reaction was allowed to stir while warming up to $0^{\circ} \mathrm{C}$ after which, stirring was continued for 4 hours at $0^{\circ} \mathrm{C}$. The reaction was diluted with ether $(75 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \times 20$ $\mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. Purification of the crude product by flash chromatography yielded 104 mg (98%) of nitrile 58 as a colourless oil; refer to nitrile $\mathbf{5 6}$ for characterization data.

Experimental Section: Chapter 3

N, N-Diethyl-3-phenylpropanamide (88a).

88a

To a solution of hydrocinnamic acid ($2.45 \mathrm{~g}, 16 \mathrm{mmol}$) in dichloromethane (50 ml) was added thionyl chloride ($1.5 \mathrm{ml}, 21 \mathrm{mmol}$). The reaction was connected to an exit bubbler and refluxed gently until the no more gas evolved ($\sim 45 \mathrm{~min}$). The reaction was allowed to cool to room temperature and then concentrated under reduced pressure to remove any excess thionyl chloride. The crude chloride could be used without purification. The chloride was dissolved in dichloromethane (100 ml) and cooled to $78^{\circ} \mathrm{C}$ in an acetone/dry ice bath. N,N-diethyl amine ($2.2 \mathrm{ml}, 21 \mathrm{mmol}$) was added slowly to the solution followed by pyridine or triethylamine (3.4 ml , 24.5 mmol) which resulted in a heterogeneous solution. The solution was allowed to warm up to room temperature with stirring. After several hours at room temperature, the reaction was diluted with diethyl ether $(150 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \times 20 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:3 ethyl acetate/hexanes) yielded 3.18 g (95%) of amide 88 a as a colourless oil; $\mathrm{R}_{f} 0.39$ (1:3 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.16$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), $3.38\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.21\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.96(\mathrm{t}, J=$ $\left.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.59\left(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.31(\mathrm{t}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,141.4,128.3,128.2,125.9,41.7,40.0,34.9,31.5,14.1,12.9$; IR
(neat) $\vee 2970,1640,1450,1430 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 206.14670$, found 206.15450 .

N-Pyrrolidinyl-3-phenylpropanamide (88b).

88b

Hydrocinnamic acid ($3.09 \mathrm{~g}, 22.7 \mathrm{mmol}$) was converted to N -pyrrolidinyl-3-phenylpropanamide $\mathbf{8 8 b}$ following the same procedure as that used for the synthesis of N, N-Diethyl-3-phenylpropanamide 88a. Purification of the crude product by flash chromatography (1:1 ethyl acetate/hexanes) yielded $4.01 \mathrm{~g}(96 \%)$ of amide $\mathbf{8 8 b}$ as a colourless oil ; $R_{f} 0.28$ (1:1 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.15$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), $3.46\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.28\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.99(\mathrm{t}, J=$ $\left.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.55\left(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.92-1.76(\mathrm{~m}, 4 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDC}_{13}\right) \delta 170.4,141.3,128.2,128.1$, $125.8,46.3,45.4,36.5,31.0,25.8,24.1$; IR (neat) v 3500 (br), 2970, 2880, 1640, $1440,1340 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$204.13920, found 204.13884.
\mathbf{N}, N-Diisopropyl-3-phenylpropanamide (88c).

88c

To a solution of hydrocinnamic acid (501 mg, 2.0 mmol) in dichloromethane (20 ml) was added oxalyl chloride ($190 \mu \mathrm{l}, 2.2 \mathrm{mmol}$) and 2 drops of DMF. The flask was connected to an exit bubbler and refluxed gently until the no more gas evolved ($\sim 45 \mathrm{~min}$). The reaction was allowed to cool to room temperature and then concentrated under reduced pressure to remove any excess oxalyl chloride. The crude chloride could be used without purification. The chloride was dissolved in dichloromethane (20 ml) and cooled to $-78^{\circ} \mathrm{C}$ in an acetone/dry ice bath under an argon atmosphere. N, N-diisopropyl amine ($360 \mu \mathrm{l}, 2.4 \mathrm{mmol}$) was added slowly to the solution followed by triethylamine ($360 \mu \mathrm{l}, 2.6$ mmol) which resulted in a heterogeneous solution. The solution was allowed to warm up to room temperature with stirring. After several hours at room temperature, the reaction was diluted with diethyl ether $(150 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \times 20 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:3 ethyl acetate/hexanes) yielded $715 \mathrm{mg}(92 \%)$ of amide 88 c as a colourless oil; $\mathrm{Rf}_{f} 0.43$ (1:3 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.16$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 3.92 (br, 1H, NCHMe $), 3.49$ (br, 1H, NCHMe $), 2.96(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{PHCH}_{2} \mathrm{CH}_{2}\right), 2.56\left(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.38(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12\left(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,141.6,128.4,128.3,125.9,48.1,45.5,37.0,31.6,20.8,20.6$; IR (neat) $v 2980,1640,1440,1370,1320,1210,1130,1040 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+234.18579$, found 234.18630.

N,N-Dimethyl-3-phenylpropanamide (88d).

88d

Hydrocinnamic acid ($500 \mathrm{mg}, 2.0 \mathrm{mmol}$) was converted to N, N-dimethyl-3phenylpropanamide $\mathbf{8 8 d}$ following the same procedure as that used for the synthesis of N, N-diisopropyl-3-phenylpropanamide 88c. Purification of the crude product by flash chromatography (1:1 ethyl acetate/hexanes) yielded $570 \mathrm{mg}(97 \%)$ of amide $\mathbf{8 8 d}$ as a colourless oil; $\mathrm{R}_{f} 0.10$ (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 2.94(\mathrm{t}$, $\left.J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.60(\mathrm{t}, J=$ $\left.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,141.4,128.4$, $128.3,126.0,37.0,35.3,35.1,31.3$; IR (neat) v $2940,1650,1500,1450,1400$, $1140,750 \mathrm{~cm}^{-1} ;$ HRMS (THIO) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 178.12318$, found 178.12240 .
N, N-Diethyl phenylacetamide (88e).

88e

Phenylacetic acid ($4.0 \mathrm{~g}, 29 \mathrm{mmol}$) was converted to N, N-diethylphenylacetamide 88 e following the same procedure as that used for the synthesis of N, N-Diethyl-3-phenylpropanamide 88a. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded $5.2 \mathrm{~g}(93 \%)$ of amide 88 e as a colourless oil; $\mathrm{R}_{f} 0.30$ (1:2

EtOAc/hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.21$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), $3.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CO}\right), 3.39\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.29(\mathrm{q}, J=7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.12\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.08(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,135.3,128.4,128.3,126.4$, $42.1,40.7,39.9,14.0,12.7$; IR (neat) v 2970, 1640, 1460, 1370, $1130 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$192.13884, found 192.13850.

N,N-Diethyl-2-naphthamide (90a).

To a solution of naphthoyl chloride ($2.1 \mathrm{~g}, 11 \mathrm{mmol}$) in dichloromethane (50 ml) under an argon atmosphere was slowly added triethylamine (2 ml , 14.3 mmol) and N, N-diethyl amine ($1.37 \mathrm{ml}, 13.2 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The heterogeneous solution was allowed to warm up to room temperature and was stirred for an additional hour. The reaction was diluted with diethyl ether (250 ml) washed with $10 \% \mathrm{HCl}(2 \times 50 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(50$ ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded $2.49 \mathrm{~g}(97 \%)$ of amide 90 a as a colourless oil; R_{f} 0.34 (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.80(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.60-7.40\left(\mathrm{~m}, 3 \mathrm{H}\right.$, aromatic), $3.60\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.30(\mathrm{br}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$), $1.25\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2$, $134.6,133.3,132.7,128.2,128.1,127.7,126.7,126.5,125.7,123.9,43.3,39.3$, 14.1, 12.9; IR (neat) $v 2980,1630,1480,1420,1290,1080,810,750 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$228.13884, found 228.13990 .

N,N-Diethyl cinnamide (90b).

Cinnamic acid ($3.88 \mathrm{~g}, 26.2 \mathrm{mmol}$) was converted to N, N-diethyl-3cinnamide 90b following the same procedure as that used for the synthesis of N, N-diisopropyl-3-phenylpropanamide 88c. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded 5.0 g (94\%) of amide 90b as a colourless oil; $\mathrm{R}_{f} 0.36$ (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCHCO}), 6.83(\mathrm{~d}, J=$ $15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}), 7.54-7.33(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $3.49(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$), $3.47\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.26(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.19\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.5,142.1,135.3,129.3,129.1,128.7,128.6,128.4,127.6,117.6,42.1,40.9$, $14.9,13.0$; IR (neat) v $3500,2990,1650,1600,1450,1430,1240,1140 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$204.13920, found 204.13884.

N,N-Diethyl-2-methylcinnamide (90c).

2-Methylcinnamic acid ($1.78 \mathrm{~g}, 10.9 \mathrm{mmol}$) was converted N,N-diethyl-2methylcinnamide 90 c following the same procedure as that used for the synthesis of N, N-diisopropyl-3-phenylpropanamide 88c. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded $2.33 \mathrm{~g}(98 \%)$ of amide 90 c as a colourless oil; $\mathrm{R}_{f} 0.39$ (1:2

EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.25$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), $6.50\left(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCCH}_{3}\right), 3.43\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.10(\mathrm{~d}$, $J=1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PhCHCCH} 3), 1.19\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,136.1,133.9,128.9,128.2,128.0,127.1,42.7,38.7,16.1$, 12.7; IR (neat) v $2990,1630,1425,1380,1280,1100 \mathrm{~cm}^{-1}$.

N, N-Diethyl-2-methyl-3-phenylpropanamide (90d).

To a solution of N, N-Diethyl-2-methylcinnamide $90 \mathrm{c}(78 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{ml})$ was added sodium borohydride ($32 \mathrm{mg}, 0.84 \mathrm{mmol}$) followed by $\mathrm{NiCl}_{2} \bullet \mathrm{H}_{2} \mathrm{O}(16 \mathrm{mg}, 0.07 \mathrm{mmol})$ according to the method of Satoh et al..285 The flask was connected to an exit bubbler and the reaction was allowed to stir at room temperature for 24 hours or until HNMR analysis of an aliquot indicated that the reaction was complete. The reaction was quenched carefully with $10 \% \mathrm{HCl}(2 \mathrm{ml})$ and diluted with diethyl ether $(50 \mathrm{ml})$. The organic phase was washed dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered over celite to remove any fine black particles which were formed in the reaction. Purification of the crude product by flash chromatography (1:3 ethyl acetate / hexanes) yielded 78 mg (99%) of amide 90 d as a colourless oil; R_{f} 0.29 (1:3 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.20-7.16(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $3.42(\mathrm{dq}, J=14 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.20\left(\mathrm{dq}, J=14 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.12-2.99(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{PhCH}_{2} \mathrm{CH}$), $2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}\right), 2.64$ (dd, $J=13$ $\left.\mathrm{Hz}, 6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 1.17\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.03(\mathrm{t}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 0.98\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.0,140.2,129.0,128.1,126.0,41.5,40.7,40.3,38.0,18.2,14.5$,
12.9; IR (neat) $v 3450,2960,1640,1450,1370,1250,1210,1130,1070 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 220.17014$, found 220.16870.

\mathbf{N}, \mathbf{N}-Diethyl-4-nitrobenzamide (90e).

To a solution of 4 -nitrobenzoyl chloride ($1.4 \mathrm{~g}, 7.5 \mathrm{mmol}$) in dichloromethane (10 ml) under an argon atmosphere was slowly added triethylamine ($1.4 \mathrm{ml}, 9.8 \mathrm{mmol}$) and N, N-diethyl amine ($940 \mu \mathrm{l}, 13.2$ mmol) at $-78^{\circ} \mathrm{C}$. The heterogeneous solution was allowed to warm up to room temperature and was stirred for an additional hour. The reaction was diluted with diethyl ether (100 ml) washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:3 ethyl acetate/hexanes) yielded 1.65 g (98%) of amide 90e as a yellowish oil which gave a very low melting solid on standing; R_{f} 0.17 (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=8 \mathrm{~Hz}$, 2 H , aromatic), $7.55(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $3.57(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.21\left(\mathrm{q}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.27(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.13\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.8,148.0,143.3,127.2,123.7,43.2,39.4,14.1,12.7$; IR (neat) v 2970, 1630, 1600, 1515, 1350, $1290 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 223.10826, found. 223.10860 .

N,N-Dimethyl-2-methyl-3-phenylpropanamide (90f).

90f

To a solution of 2-methyl-3-phenyl propanoic acid ($1.03 \mathrm{~g}, 6.3 \mathrm{mmol}$) in dichloromethane (20 ml) was added oxalyl chloride ($640 \mu \mathrm{l}, 7.3 \mathrm{mmol}$) and three drops of DMF. The flask was connected to an exit bubbler and refluxed gently until the no more gas evolved ($\sim 45 \mathrm{~min}$). The reaction was allowed to cool to room temperature and then concentrated under reduced pressure to remove any excess oxalyl chloride. The crude chloride could be used without purification. The chloride was dissolved in dichloromethane (20 ml) and cooled to $-78^{\circ} \mathrm{C}$ in an acetone/dry ice bath under an argon atmosphere. Pyrollidine ($680 \mu \mathrm{l}, 8.2 \mathrm{mmol}$) was added followed by pyridine ($670 \mu \mathrm{l}, 8.2 \mathrm{mmol}$) which resulted in a heterogeneous solution. The solution was allowed to warm up to room temperature with stirring. After stirring overnight at room temperature, the reaction was diluted with diethyl ether (150 ml), washed with $10 \% \mathrm{HCl}(2 \times 20 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography ($1: 1$ ethyl acetate/hexanes) yielded 1.21 g (89%) of amide $90 f$ as a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.16$ (1:1 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.28-7.14\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic), 3.44-3.34 (m, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.31-3.24 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.01-2.90 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 2.84-2.72 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.67-2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 1.84-1.62(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.16\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 174.2,140.1,128.8,128.1,126.0,46.1,45.4,10.5,40.3,25.8,24.1$, 17.2; IR (neat) $v 3500,2960,2880,1640,1430,1340,720,690 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}]^{+}$217.14667, found. 217.14609.

N,N-Dimethyl-2-methyl-3-phenylpropanamide (90 g).

90 g

To a solution of 2-methyl-3-phenyl propanoic acid ($2.09 \mathrm{~g}, 12.7 \mathrm{mmol}$) in dichloromethane (20 ml) was added oxalyl chloride ($1.33 \mathrm{ml}, 15.3 \mathrm{mmol}$) and several drops of DMF. The flask was connected to an exit bubbler and refluxed gently until the no more gas evolved ($\sim 45 \mathrm{~min}$). The reaction was allowed to cool to room temperature and then concentrated under reduced pressure to remove any excess oxalyl chloride. The crude chloride could be used without purification. The chloride was dissolved in dichloromethane (20 ml) and cooled to $-78^{\circ} \mathrm{C}$ in an acetone/dry ice bath under an argon atmosphere. Excess N, N-dimethyl amine was added which resulted in a heterogeneous solution. The solution was allowed to warm up to room temperature with stirring. After stirring overnight at room temperature, the reaction was diluted with diethyl ether (150 ml), washed with $10 \% \mathrm{HCl}(2 \times 20 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:1 ethyl acetate/hexanes) yielded $1.194 \mathrm{~g}(79 \%)$ of amide 90 g as a colourless oil; $\mathrm{Rf}_{f} 0.29$ (1:1 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.15(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $2.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.63(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHCO}\right), 1.13\left(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHCO}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 175.6,140.0,128.7,128.0,125.9,40.3,37.6,36.7,35.3,17.3$; IR (neat) v 2940, 2980, 1640, 1490, 1450, 1390, 1140, 1100, $1070 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$192.13884, found. 192.13950.

Ethyl 3-phenylpropanoate (89a).

88a
89a

General procedure for the conversion of tertiary amides to ethyl or methyl esters. To a solution of the amide ($205 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry dichloromethane (5 ml) was added 2.5 equivalents of dry pyridine ($205 \mu \mathrm{l}$, $2.5 \mathrm{mmol})$. The solution was cooled to $-30^{\circ} \mathrm{C}$ using an acetone-dry ice bath and then 1.3 equivalents of neat triflic anhydride ($220 \mu \mathrm{l}, 1.3 \mathrm{mmol}$) was added slowly down the side of the flask (alternatively, triflic anhydride can be added via cannula as a pre-cooled solution in dichloromethane). The solution can become somewhat heterogeneous, but as the solution is stirred and allowed to warm up slowly to $0^{\circ} \mathrm{C}$, the solution becomes homogeneous. The temperature is maintained at 0° for 6 to 12 hours. Absolute ethanol ($2 \mathrm{ml},>33 \mathrm{mmol}$) was then added to the solution at $0^{\circ} \mathrm{C}$ and then the reaction was stirred for and additional 4 hours at room temperature. Diethyl ether $(80 \mathrm{ml})$ was then added and then the solution was washed $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. HNMR analysis of the crude product indicated $>96 \%$ conversion and purification by flash chromatography ($1: 20$ ethyl acetate/hexanes) yielded 168 mg (94%) of ethyl ester 89a as a colourless oil; $\mathrm{R}_{f} 0.55$ ($1: 20 \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.19(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $4.12(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.95\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.61(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.23\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.8,140.5,128.4,128.2,126.1,60.3,35.8,30.9,14.1$; IR (neat) v 2950, 1740, 1500, 1450, 1370, 1150, $1030 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 179.10721, found 179.10690.

Ethyl 3-phenylpropanoate (89b).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide $\mathbf{8 8 b}$ to ester $\mathbf{8 9 b}$. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded (85%) of ethyl ester 89 b as a colourless oil; refer to compound 89 a for characterization data.

Ethyl 3-phenylpropanoate (89c).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide 88 c to ester 89 c. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded (84%) of ethyl ester 89 c as a colourless oil; refer to compound 89 a for characterization data.

Ethyl 3-phenylpropanoate (89d).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide 88d to ester 89d. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded (90\%) of ethyl ester 89d as a colourless oil; refer to compound 89a for characterization data.

Ethyl 3-phenylacetate (89e).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide $88 \mathrm{e}(260 \mathrm{mg}, 1.36 \mathrm{mmol})$ to ester 89 e. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded 196 mg (88%) of ethyl ester 89 e as a colourless oil; $\mathrm{R}_{f} 0.50$ (1:10 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.27$ (m, 5 H , aromatic), $4.14\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CO}\right), 1.24$ $\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,134.1,129.1$, $128.4,126.9,60.7,41.4,14.1$; IR (neat) v 2990, $1740,1370,1300,1250,1150$, $1020 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 165.09155$, found 165.09130.

Ethyl-2-naphthoate (91a).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide 90a ($175 \mathrm{mg}, 0.77 \mathrm{mmol}$) to ester 91a. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded 87 mg (56%) of ethyl ester 91a as a colourless oil; $R_{f} 0.38$ (1:20 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}$, aromatic), 8.04 (d, $J=9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.88(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.81-7.78 (m, 2H, aromatic), 7.51-7.46 (m, 2 H , aromatic), $4.40(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40,\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,135.4,132.4,130.9,129.3,128.1,128.0,127.7,126.5,125.2$, 61.0, 14.4; IR (neat) v 2990, 2880, 1740, 1410, 1390, 1225, 1190, 1150, 1130, $1070 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.09156, found 201.09130.

Ethyl cinnamate (91b).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide $90 \mathrm{~b}(147 \mathrm{mg}, 0.72 \mathrm{mmol})$ to ester 91 b . Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded $108 \mathrm{mg}(68 \%)$ of ethyl ester 91 b as a colourless oil; $\mathrm{R}_{f} 0.43$ (1:10 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, \mathrm{~J}=$ $16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCHCO}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.39-7.36 (m, 3H, aromatic), $6.43(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}), 4.26(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.9,144.4,134.3,130.1,128.7,128.5,128.1,127.9,118.2,60.4,14.2$; IR (neat) $v 2990,1720,1640,1310,1180,1040,980,760 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 177.09155$, found 177.09210 .

Ethyl 2-methylcinnamate (91c).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide 90 c ($172 \mathrm{mg}, 0.79 \mathrm{mmol}$) to ester 91c. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded 53 mg (35%) of ethyl ester 91 c as a colourless oil; $\mathrm{R}_{f} 0.48$ (1:20 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCHCCH}_{3}\right), 7.40-7.38(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $4.27(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.11\left(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}\right), 1.35\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,138.5,135.9,129.5,128.5,128.2,128.1$, $60.8,14.2,13.9$; IR (neat) v $3000,1720,1250,1110,770 \mathrm{~cm}^{-1} ;$ HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+} 190.09938$, found 190.10022 .

Ethyl 2-methyl-3-phenylpropanoate (91d).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide $90 \mathrm{~d}(126 \mathrm{mg}, 0.54 \mathrm{mmol})$ to ester 91d. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded 26 mg (25%) of ethyl ester 91d as a colourless oil; $\mathrm{R}_{f} 0.30$ (1:15 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.14$ (m, 5 H , aromatic), $4.08\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.01(\mathrm{dd}, J=13 \mathrm{~Hz}, 6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}$), $2.70\left(\mathrm{ddq}, J=8 \mathrm{~Hz}, 7 \mathrm{~Hz}, 6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}\right), 2.67$
(dd, $\left.J=13 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 1.18\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.14$ $\left(\mathrm{d}, 7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,139.3,128.9$, $128.2,126.2,60.1,41.4,39.7,16.7,14.1$; IR (neat) v 3020, 2980, 2940, 1740, 1450, 1380, 1200, $1170 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 193.12285, found 193.12360 .

Ethyl 4-nitrobenzoate (91e).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide $90 \mathrm{e}(186 \mathrm{mg}, 0.84 \mathrm{mmol})$ to ester 91e. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded $16 \mathrm{mg}(10 \%)$ of ethyl ester 91 e as a yellowish solid; $\mathrm{R}_{f} 0.40$ ($1: 10$ EtOAc/hexane); mp $57-59^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $8.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $4.44\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.44\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,150.4,135.7,130.5,123.4,61.8,14.1 \mathrm{IR}$ (neat) v $3120,2960,1710,1530,1350,1320,1290,1100,870 \mathrm{~cm}^{-1}$; HRMS () calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$196.06099, found 196.06210.

Ethyl 2-methyl-3-phenylpropanoate (91f).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide $90 f(237 \mathrm{mg}, 1.09 \mathrm{mmol})$ to ester 91f. Purification of the crude product by flash chromatography (1:10 ethyl acetate/hexanes) yielded 103 mg (49%) of ethyl ester 91 f as a colourless oil; refer to compound 91 d for characterization data.

Ethyl 2-methyl-3-phenylpropanoate (91g).

The general procedure for the conversion of tertiary amides to esters was used for the conversion of amide 90 g ($237 \mathrm{mg}, 1.24 \mathrm{mmol}$) to ester 91 g . Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded 165 mg (69\%) of ethyl ester 91 g as a colourless oil; refer to compound 91d for characterization data.

N-Benzyl-3-phenylpropanamide (92a).

92a

To a solution of hydrocinnamic acid $(2.0 \mathrm{~g}, 13.3 \mathrm{mmol})$ in dichloromethane $(50 \mathrm{ml})$ was added thionyl chloride $(1.16 \mathrm{ml}, \mathrm{mmol})$. The reaction was connected to an exit bubbler and refluxed gently until the no more gas evolved ($\sim 45 \mathrm{~min}$). The reaction was allowed to cool to room temperature and then concentrated under reduced pressure to remove any excess
thionyl chloride. The crude chloride could be used without purification. The chloride was dissolved in dichloromethane (100 ml) and slowly added via cannula to a solution of benzylamine ($1.75 \mathrm{ml}, 16.0 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. Triethylamine ($2.78 \mathrm{ml}, 19.9 \mathrm{mmol}$) was then added which resulted in a heterogeneous solution. The solution was allowed to warm up to room temperature with stirring. After several hours at room temperature, the reaction was diluted with diethyl ether $(250 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \times 20 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by crystallization in ethyl acetate/hexanes yielded $2.93 \mathrm{~g}(92 \%)$ of amide 92a as a white solid; $\mathrm{R}_{f} 0.31$ (1:2 EtOAc/hexane); mp $86-88^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.11(\mathrm{~m}, J=5 \mathrm{H}$, aromatic), 5.70 (br, $1 \mathrm{H}, \mathrm{NH}), 4.38\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{Ph}\right), 2.99(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.51\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.8,140.7,138.1,128.6,128.5,128.3,127.6,127.4,126.2,43.5,38.4,31.6$; IR $(\mathrm{KBr}) ~ \vee 3300,1640,1540,1450,740 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 240.13884$, found 240.13770 .

N-Butyl-3-phenylpropanamide (92b).

92b

Hydrocinnamic acid ($2.47 \mathrm{~g}, 16.4 \mathrm{mmol}$) was converted to N - n-butyl-3phenylpropanamide 92 b following the same procedure as that used for the synthesis of N-benzyl-3-phenylpropanamide 92a. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded 3.28 $\mathrm{g}(97 \%)$ of amide $\mathbf{9 2 b}$ as a colourless oil; $\mathrm{R}_{f} 0.21$ (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.17(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.53(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$,
$3.19\left(\mathrm{dt}, J=6 \mathrm{~Hz}, 7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 2.95\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right)$, $2.45\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.99-1.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.88$ $\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,140.8$, $128.4,128.2,126.1,39.1,38.4,31.7,31.5,19.8,13.6$; IR (neat) v 3300, 2960, $2920,2860,1640,1550,1450 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 206.15450, found 206.15350 .

N-Benzyl phenylacetamide (92c).

92c

To a solution of phenylacetyl chloride ($2.0 \mathrm{ml}, 15.1 \mathrm{mmol}$) in dichloromethane (50 ml) under an argon atmosphere was slowly added benzylamine ($2.1 \mathrm{ml}, 19.7 \mathrm{mmol}$) and pyridine ($1.85 \mathrm{ml}, 22.7 \mathrm{mmol}$) at $78^{\circ} \mathrm{C}$. The heterogeneous solution was allowed to warm up to room temperature and was stirred for an additional hour. The reaction was diluted with diethyl ether (250 ml) washed with $10 \% \mathrm{HCl}(2 \times 50 \mathrm{ml}$), saturated $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography ($1: 2$ ethyl acetate/hexanes) yielded 3.13 g (92\%) of amide 92c as a white solid; $R_{f} 0.24$ (1:2 EtOAc/hexane); mp $120-122^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.13(\mathrm{~m}, 10 \mathrm{H}$, aromatic), $6.00(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.36(\mathrm{~d}$, $\left.J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,138.1,134.8,129.2,128.8,128.5,127.3,127.2,127.1,43.6,43.4 ;$ IR (KBr) v $3300,3090,1650,1550,1450,1020 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 226.12318$, found 226.12280.
N-Benzyl-2-naphthamide (92d).

92d

To a solution of naphthoyl chloride $(2.09 \mathrm{~g}, 10.9 \mathrm{mmol})$ in dichloromethane (50 ml) under an argon atmosphere was slowly added benzylamine (1.55 $\mathrm{ml}, 14.2 \mathrm{mmol}$) and pyridine ($1.34 \mathrm{ml}, 16.4 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The heterogeneous solution was allowed to warm up to room temperature and was stirred for an additional hour. The reaction was diluted with diethyl ether (250 ml) washed with $10 \% \mathrm{HCl}(2 \times 50 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(50$ ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded $2.67 \mathrm{~g}(93 \%)$ of amide 92 d as a white solid; $\mathrm{R}_{f} 0.24$ (1:2 EtOAc/hexane); mp $140-143^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29$ (s, 1 H , aromatic), $7.85-7.82(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.57-7.47(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.37-7.24(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $6.79(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.66(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}$, PhCH ${ }_{2} \mathrm{NH}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,138.2,134.6,132.5,131.5$, $128.8,128.7,128.3,127.8,127.6,127.5,127.4,127.3,126.6,123.5,44.1$; IR (KBr) v 3300, 1640, 1550, 1410, 1320, $710 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$262.12320, found 262.12310.

N-Benzyl cinnamide (92e).

92e

To a solution of cinnamic acid $(2.03 \mathrm{~g}, 13.7 \mathrm{mmol})$ in dichloromethane (20 $\mathrm{ml})$ was added oxalyl chloride ($1.46 \mathrm{ml}, 16.4 \mathrm{mmol}$) and several drops of DMF. The flask was connected to an exit bubbler and refluxed gently until the no more gas evolved ($\sim 45 \mathrm{~min}$). The reaction was allowed to cool to room temperature and then concentrated under reduced pressure to remove any excess oxalyl chloride. The crude chloride could be used without purification. The chloride was dissolved in dichloromethane 100 ml) and cooled to $-78^{\circ} \mathrm{C}$ in an acetone/dry ice bath under an argon atmosphere. Benzylamine ($1.95 \mathrm{ml}, 17.8 \mathrm{mmol}$) was then added followed by triethylamine ($2.86 \mathrm{ml}, 20.6 \mathrm{mmol}$) which resulted in a heterogeneous solution. The solution was allowed to warm up to room temperature with stirring. After stirring overnight at room temperature, the reaction was diluted with diethyl ether $(250 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \times 20 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by crystallization from diethyl ether/hexanes) yielded 3.08 g (95\%) of amide 92e as a white crystals; $\mathrm{R}_{f} 0.22$ (1:2 EtOAc/hexane); mp $113-115^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCHCO}), 7.44-7.41(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.31-7.25 (m, 7H, aromatic), $6.60(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.49(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCHCH}), 4.49\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right){ }^{13}{ }^{3} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.9,141.0,138.1,134.6,129.5,129.6,128.6,128.5,127.8,127.7,127.3,127.2$, 120.5, 43.6; IR (KBr) v 3420, 3280, 3000, 1650, 1610, 1510, $1210,750 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$238.12318, found 238.12420.

N-Benzyl-2-methyl cinnamide (92f).

$92 f$

2-Methylcinnamic acid ($2.0 \mathrm{~g}, 12.3 \mathrm{mmol}$) was converted to N -benzyl-2methylcinnamide 92 f following the same procedure as that used for the synthesis of N-benzyl-3-phenylpropanamide 92a. Purification of the crude product by crystallization from dichloromethane/hexanes yielded 2.75 g (89%) of amide 92 f as a white crystals; $\mathrm{R}_{f} 0.50$ (1:2 EtOAc/hexane); mp 123$125^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.23$ (m, 11H, aromatic and $\left.\mathrm{PhCHCCH}_{3}\right), 6.60(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.49\left(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 2.06(\mathrm{~d}, J$ $=1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PhCHCCH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,138.3,135.9$, $133.8,131.7,129.1,128.4,128.1,127.6,127.2,43.7,14.1 ;$ IR (KBr) v 3340, 1650, 1610, 1530, 1450, 1420, 1280, $1010 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 252.13884$, found 252.13990 .
N-Benzyl-2-methyl-3-phenylpropanamide (92g).

92f

92g
N-benzyl cinnamide $92 f(514 \mathrm{mg}, 2.05 \mathrm{mmol}$) was converted to N-benzyl-2-methyl-3-phenylpropanamide 92 g following the same procedure as that used for the synthesis of N-benzyl-3-phenylpropanamide 90d. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded 511 mg (99%) of amide 92 g as a white solid; $\mathrm{R}_{f} 0.42$ (1:2 EtOAc/hexane); mp $90-92^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.17$ (m , 6 H , aromatic), $7.15-7.11$ ($\mathrm{m}, 2 \mathrm{H}$, aromatic), $7.00-6.97$ ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 6.00 (br, 1H, NH), $4.35\left(\mathrm{dd}, J=15 \mathrm{~Hz}, 6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.20(\mathrm{dd}, J=15 \mathrm{~Hz}$, $\left.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 2.94(\mathrm{dd}, \mathrm{J}=13 \mathrm{~Hz}, 9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} \mathrm{CH}), 2.65(\mathrm{dd}, J$ $\left.=13 \mathrm{~Hz}, 9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.51(\mathrm{ddq}, J=9 \mathrm{~Hz}, 7 \mathrm{~Hz}, 6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}\right), 1.18\left(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.3,139.7,138.1,128.8,128.3,128.2,127.3,127.0,126.0,43.5,43.0$,
40.3; IR (neat) v $3300,3020,2980,2920,1650,1550,1450,1240 \mathrm{~cm}^{-1} ;$ HRMS (THIO) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$254.15450, found 254.15510 .

N-Benzyl-4-nitrobenzamide (92h).

92h

To a solution of 4-nitrobenzoyl chloride ($2.8 \mathrm{~g}, 15.1 \mathrm{mmol}$) in dichloromethane (100 ml) under an argon atmosphere was slowly added benzylamine ($1.98 \mathrm{ml}, 18.1 \mathrm{mmol}$) and triethylamine ($2.73 \mathrm{ml}, 19.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The heterogeneous solution was allowed to warm up to room temperature and was stirred for an additional hour. The reaction was diluted with diethyl ether (250 ml) washed with $10 \% \mathrm{HCl}(2 \times 50 \mathrm{ml}$), saturated $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by crystallization from ethyl acetate/hexanes yielded 3.70 g (96%) of amide 92 d as a yellowish crystals; $\mathrm{R}_{f} 0.44$ (1:2 EtOAc/hexane); mp $142-144^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $7.94,(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $7.37-7.26(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $6.58(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.65(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,149.6,139.8,137.4,128.9$, 128.1, 127.9, 127.8, 123.8, 44.4; IR (KBr) v 3280, 1600, 1630, 1540, 1520, 1350, $1200 \mathrm{~cm}^{-1}$; Elemental analysis: calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}, 65.60 \% \mathrm{C}, 4.72 \% \mathrm{H}$, $10.93 \% \mathrm{~N}$, found $65.53 \% \mathrm{C}, 4.74 \% \mathrm{H}, 10.87 \% \mathrm{~N}$.

Ethyl-3-phenylpropanoate (93a).

General procedure for the conversion of secondary amides to ethyl or methyl esters. To a solution of the amide ($156 \mathrm{mg}, 0.65 \mathrm{mmol}$) in dry dichloromethane (5 ml) was added 2.5 equivalents of dry pyridine ($133 \mu \mathrm{l}$, 1.63 mmol). The solution was cooled to $-30^{\circ} \mathrm{C}$ using an acetone-dry ice bath and then 1.3 equivalents of neat triflic anhydride ($143 \mu \mathrm{l}, 0.85 \mathrm{mmol}$) was added slowly down the side of the flask (alternatively, triflic anhydride can be added via cannula as a pre-cooled solution in dichloromethane). The solution can become somewhat heterogeneous, but as the solution is stirred and allowed to warm up slowly to $0^{\circ} \mathrm{C}$, the solution becomes homogeneous. The temperature is maintained at 0° for 4 to 8 hours which is shorter in comparison to tertiary amides. Absolute ethanol $(2 \mathrm{ml},>33 \mathrm{mmol})$ was then added to the solution at $0^{\circ} \mathrm{C}$ and then the reaction was stirred for and additional 4 hours at room temperature. Diethyl ether (80 ml) was then added and then the solution was washed $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. HNMR analysis of the crude product indicated 90% conversion and purification by flash chromatography (1:20 ethyl acetate/hexanes) yielded 102 mg (88%) of ethyl ester 93a as a colourless oil; refer to compound 89 a for characterization data.

Ethyl-3-phenylpropanoate (93b).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide $\mathbf{9 2 b}(299 \mathrm{mg}, 1.45 \mathrm{mmol})$ to ester 93 b . Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded 200 mg (77\%) of ethyl ester 93b as a colourless oil; refer to compound 89a for characterization data.

Ethyl phenylacetate (93c).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 92 c ($151 \mathrm{mg}, 0.67 \mathrm{mmol}$) to ester 93c. Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded 105 mg (95%) of ethyl ester 93 c as a colourless oil; refer to compound $\mathbf{8 9 e}$ for characterization data.

Ethyl-2-naphthoate (93d).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide $92 \mathrm{~d}(147 \mathrm{mg}, 0.56 \mathrm{mmol})$ to ester 93 d . Purification of the crude product by flash chromatography (1:10 ethyl acetate/hexanes) yielded 96 mg (85%) of ethyl ester 93 d as a colourless oil; refer to compound 91a for characterization data.

Ethyl cinnamate (93e).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide $92 \mathrm{e}(136 \mathrm{mg}, 0.57 \mathrm{mmol})$ to ester 93 e . Purification of the crude product by flash chromatography (1:15 ethyl acetate/hexanes) yielded 95 mg (94%) of ethyl ester 93 e as a colourless oil; refer to compound $91 \mathbf{b}$ for characterization data.

Ethyl-2-methyl cinnamate (93f).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide $92 \mathrm{f}(155 \mathrm{mg}, 0.61 \mathrm{mmol})$ to ester 93 f . Purification of the crude product by flash chromatography (1:20 ethyl acetate/hexanes) yielded 110 mg (94%) of ethyl ester 93 f as a colourless oil; refer to compound 91c for characterization data.

Ethyl-2-methyl-3-phenylpropanoate (93g).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 92 g ($160 \mathrm{mg}, 0.63 \mathrm{mmol}$) to ester 93 g . Purification of the crude product by flash chromatography (1:10 ethyl acetate/hexanes) yielded 108 mg (89%) of ethyl ester 93 g as a colourless oil; refer to compound 91d for characterization data.

Ethyl-4-nitrobenzoate (93h).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide $\mathbf{9 2 h}(252 \mathrm{mg}, 1.0 \mathrm{mmol})$ to ester $\mathbf{9 3 h}$. Purification of the crude product by flash chromatography (1:10 ethyl acetate/hexanes) yielded $53 \mathrm{mg}(28 \%)$ of ethyl ester 93 h as a colourless oil; refer to compound 91 e for characterization data.

N-Benzyl succinimide (95).

To a solution of succinimide ($2.04 \mathrm{~g}, 20.6 \mathrm{mmol}$) in methanol (50 ml) was added sodium hydroxide pellets ($1.0 \mathrm{~g}, 24.7 \mathrm{mmol}$) and benzyl chloride ($2.84 \mathrm{ml}, 24.7 \mathrm{mmol}$). The mixture is refluxed for 12 hours or until TLC analysis indicates that the reaction is complete. The volatiles are removed under reduced pressure and the syrup is diluted with water (50 ml) and extracted with dichloromethane ($3 \times 75 \mathrm{ml}$). The organic phases are dried over MgSO_{4} and concentrated under reduced pressure. The crude product can be purified by crystallization from ethyl acetate/hexanes. A second batch of product can be obtained by crystallizing the mother liquors. The fractions are combined yielded 2.793 g (81%) of imide 95 as white crystals; $\mathrm{R}_{f} 0.16$ (1:2 EtOAc/hexane); mp $102-104^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.40-7.29 (m,5H, aromatic), $4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.70\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CON}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8,125.7,128.8,128.5,127.8,42.3,28.1$; IR (KBr) v $1700,1430,1400,1340,1300,1160 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{*}: 190.08681$, found: 190.08730 .

N-Benzyl-4-hydroxybutanamide (96).

To a solution of imide $95(4.003 \mathrm{~g}, 24.3 \mathrm{mmol})$ in iso-propanol $(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ is added water (20 ml), sodium borohydride ($1.84 \mathrm{~g}, 48.5 \mathrm{mmol}$) and lithium chloride ($1.02 \mathrm{~g}, 24.3 \mathrm{mmol}$). The mixture is allowed to warm up slowly to room temperature and stirring is continued for another 12 hours or until the reaction is judged complete by TLC analysis. The volatiles are removed under reduced pressure. Dilute aqueous sodium hydroxide (0.25 $\mathrm{M})$ is added to the resulting paste and followed by extraction with ethyl acetate ($3 \times 75 \mathrm{ml}$). The organic phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by crystallization from ethyl acetate/hexanes yielded 3.949 g (97\%) of hydroxy-amide 96 as white crystals; $\mathrm{R}_{f} 0.51$ (10:1 EtOAc/MeOH); mp 76$78^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.22(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $6.68(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{NH}), 4.34\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.95(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.60(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.31\left(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 1.81(\mathrm{tt}, J=7 \mathrm{~Hz}, 6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6,138.0,128.4,127.4,127.2$, $61.6,43.3,33.3,28.0$; IR (KBr) v 3300, 1640, 1550, 1450, 1420, $1010,720 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$194.11810, found: 194.11840; Elemental analysis: calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}, 68.36 \% \mathrm{C}, 7.82 \% \mathrm{H}, 7.25 \% \mathrm{~N}$, found $68.72 \% \mathrm{C}, 8.09 \% \mathrm{H}, 7.28 \% \mathrm{~N}$.

N-Benzyl-4-methoxybutyrolactam (98).

To a solution of imide $95(1.749 \mathrm{~g}, 10.6 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ is added sodium borohydride ($806 \mathrm{mg}, 21.2 \mathrm{mmol}$) and lithium chloride (450 $\mathrm{mg}, 10.6 \mathrm{mmol}$). The mixture is allowed to warm up slowly to room
temperature and stirring is continued for another 12 hours. The volatiles are removed under reduced pressure. The resulting pasted is diluted with $10 \% \mathrm{HCl}(25 \mathrm{ml})$ and washed with dichloromethane ($3 \times 50 \mathrm{ml}$). The organic phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by crystallization from ethyl acetate/hexanes yielded 705 mg (32%) of hydroxy-amide 96 as a colourless oil; $R_{f} 0.27$ (2:1 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.23$ (m, 5 H , aromatic), $4.94\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.73(\mathrm{dd}, J=6.2 \mathrm{~Hz}, 1.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOCH}_{3}\right), 4.02\left(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.21(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 2.69-2.51 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), 2.41-2.31 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), 2.14$1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.6,136.3,128.5$, $128.2,127.4,88.8,52.7,43.6,28.8,23.5$; IR (neat) v 2920, 2820, 1700, 1440, 1410, 1360, 1280, 1240, 1160, 1070, $700 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 206.11810$, found: 206.11750 .

N-Benzyl-4-t-butyldiphenylsilyloxybutanamide (101a).

To a solution of hydroxy amide $96(501 \mathrm{mg}, 5.2 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{ml})$ under argon atmosphere is added triethylamine ($480 \mathrm{ml}, 6.8 \mathrm{mmol}$), DMAP ($\sim 4 \mathrm{mg}$) and t-butyldiphenylsilyl chloride ($800 \mu \mathrm{l}, 6.3 \mathrm{mmol}$). The reaction is stirred at room temperature for 30 minutes or until the reaction is judged complete by TLC analysis. The reaction is diluted with diethyl ether (100 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15$ ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:3 ethyl
acetate/hexanes) yielded 839 mg (75%) of the silyl protected alcohol 101a as a colourless oil; $\mathrm{R}_{f} 0.48$ (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.65-7.61(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.44-7.21(\mathrm{~m}, 11 \mathrm{H}$, aromatic), 5.87 (br, 1 H , $\mathrm{NH}), 4.38\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.71(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, TBDPSOCH $\mathrm{H}_{2} \mathrm{CH}_{2}$), $2.34\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.90(\mathrm{tt}, J=7.3 \mathrm{~Hz}, 5.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.03\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.6,138.3,135.4,133.6,129.6,128.6,127.7,127.6,127.3,62.9,43.5,33.1$, 28.3, 26.8, 19.1; IR (neat) \vee 3300, 2920, 1650, 1550, 1420, $1100 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 432.23587$, found: 432.23460 .

N-Benzyl-4-(4-methyl benzoyloxy)butanamide (101b).

To a solution of hydroxy amide 96 ($650 \mathrm{mg}, 3.37 \mathrm{mmol}$) in dichloromethane (20 ml) under argon atmosphere at $0^{\circ} \mathrm{C}$ is added triethylamine ($610 \mu \mathrm{l}, 4.38 \mathrm{mmol}$), DMAP ($\sim 4 \mathrm{mg}$) and 4-methylbenozyl chloride ($534 \mu \mathrm{l}, 4.04 \mathrm{mmol}$). The reaction is stirred at room temperature for 18 hours or until the reaction is judged complete by TLC analysis. The reaction is diluted with diethyl ether $(100 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \mathrm{x}$ 15 ml), saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by crystallization from ethyl acetate/hexanes yielded 866 mg (83%) of the benzoyl protected alcohol $\mathbf{1 0 1 b}$ as white crystals; $R_{f} 0.35$ (1:1 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, aromatic), $7.34-7.20(\mathrm{~m}, 7 \mathrm{H}$, aromatic), 5.96 (br, $1 \mathrm{H}, \mathrm{NH}), 4.41(\mathrm{~d}, J=5.7 \mathrm{H}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.34\left(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 2.35(\mathrm{t}, \mathrm{J}$
$\left.=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.13\left(\mathrm{tt}, J=7.1 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,166.6,143.6,138.1,129.5,129.0,128.6$, $127.7,127.4,127.3,63.9,43.6,33.0,24.8,21.6$; IR (neat) $\vee 3460,3380,1720$, 1640, 1540, 1260, 1160, 1100, $1090 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 312.15997$, found: 312.16130.

N-Benzyl-4-benzyloxybutanamide (101c).

To a suspension of sodium hydride ($250 \mathrm{mg}, 6.2 \mathrm{mmol}$) in tetrahydrofuran $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ is added hydroxy amide $96(692 \mathrm{mg}, 3.58 \mathrm{mmol})$ followed by DMF (2 ml). After 1 hour, benzyl bromide ($454 \mathrm{ml}, 3.9 \mathrm{mmol}$) is added slowly and the reaction is allowed to stir overnight while warming up to room temperature slowly. The reaction is diluted with diethyl ether (100 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded $435 \mathrm{mg}(43 \%)$ of the benzyl protected alcohol 101c as a colourless oil; $\mathrm{R}_{f} 0.23$ (1:1 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.20$ (m 10 H , aromatic), $6.18(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.35(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.49\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OBn}\right), 2.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.94\left(\mathrm{tt}, J=7.2 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,138.3,138.1,128.5,128.2,128.0,127.8,127.6,127.5$ (2), $127.2,72.8,69.3,43.3,33.3,25.5$; IR (neat) v 3380, 3120, 2920, 2840, 1640, 1540, 1450, 1350, 1260, 1090, 1020, $740,680 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 284.16504$, found: 284.16450 .

N-Benzyl-4-(4-methoxybenzyloxy)butanamide (101d).

To a suspension of sodium hydride ($147 \mathrm{mg}, 3.7 \mathrm{mmol}$) in tetrahydrofuran $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ is added hydroxy amide $96(592 \mathrm{mg}, 3.1 \mathrm{mmol})$ followed by DMF (2 ml). After 1 hour, 4-methoxybenzyl bromide ($470 \mathrm{ml}, 3.4 \mathrm{mmol}$) is added slowly and the reaction is allowed to stir overnight while warming up to room temperature slowly. The reaction is diluted with diethyl ether $(100 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded 301 mg (31%) of the benzyl protected alcohol 101d as a colourless oil; $\mathrm{R}_{f} 0.45$ (2:1 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.17$ (m 7 H , aromatic), 6.86-6.81 (m, 2H, aromatic), $6.16(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.37(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{PhOMe}\right), 4.36\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhOCH}_{3}\right)$, $3.49\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OPMB}\right), 2.31\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$, $1.94\left(\mathrm{tt}, J=7.2 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.5,159.1,138.3,130.2,129.2,128.5,127.6,127.3,113.7,72.4,69.0,55.1$, $43.4,33.4,25.6$; IR (neat) $\vee 3300,3050,2920,2840,1640,1540,1450,1350$, $1300,1240,1160,1090,1020,800 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 314.17563$, found: 314.17730 .

N-Benzyl-4-acetoxybutanamide (101e).

To a solution of hydroxy amide 96 ($767 \mathrm{mg}, 3.97 \mathrm{mmol}$) in dichloromethane $(10 \mathrm{ml})$ under argon atmosphere at $0^{\circ} \mathrm{C}$ is added pyridine ($471 \mu \mathrm{l}, 5.96 \mathrm{mmol}$), DMAP ($\sim 4 \mathrm{mg}$) and acetic anhydride ($562 \mu \mathrm{l}, 5.96$ mmol). The reaction is stirred at room temperature for 24 hours or until the reaction is judged complete by TLC analysis. The reaction is diluted with diethyl ether (100 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography ($1: 1$ ethyl acetate/hexanes) yielded 777 mg (83%) of the acetyl protected alcohol 101e as a colourless oil; $\mathrm{R}_{f} 0.17$ (1:1 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.21(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $6.45(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.36(\mathrm{~d}, J=6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.04\left(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{AcOCH}_{2} \mathrm{CH}_{2}\right), 2.24(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.96\left(\mathrm{tt}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,170.9,138.1,128.4,127.5,127.2,63.5$, $43.3,32.5,24.5,20.7$; IR (neat) $v \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 236.12866$, found 236.12830 .
(4S, 5S)-4-(2-N-benzyl acetamidyl)-oxymethyl-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane (101f).

$101 f$

To a solution of 4-benzyloxymethyl-5-hydroxylmethyl-2,2-dimethyl-1,3dioxolane ${ }^{286}$ ($987 \mathrm{mg}, 3.92 \mathrm{mmol}$) in tetrahydrofuran (20 ml) is slowly added potassium hydride ($1.57 \mathrm{~g}, 13.7 \mathrm{mmol}$) followed by DMF (5 ml) and bromoacetic acid ($820 \mathrm{mg}, 5.88 \mathrm{mmol}$). The reaction is stirred while warming up to room temperature over the course of an hour. TLC analysis of the reaction at this point indicates that the reaction is complete The reaction is diluted with $10 \% \mathrm{HCl}(50 \mathrm{ml})$, extracted with dichloromethane/ethyl acetate ($3: 1,3 \times 50 \mathrm{ml}$). The organic phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography ($2: 1$ ethyl acetate/hexanes with 1% acetic acid) yielded $1.19 \mathrm{~g}(97 \%)$ of acid as colorless oil. The acid is co-evaporated with toluene to remove traces of acetic acid and diluted in dichloromethane. To a solution of this acid ($1.19 \mathrm{~g}, 3.8 \mathrm{mmol}$) in dichloromethane (50 ml) at $0^{\circ} \mathrm{C}$ under an argon atmosphere is added trimethylacetyl chloride (pivoalyl chloride) ($610 \mu \mathrm{l}, 4.96 \mathrm{mmol}$) and pyridine ($933 \mu \mathrm{l}, 11.4 \mathrm{mmol}$). The reaction is stirred while warming to room temperature. After 1 hour at room temperature, the reaction is recooled to $0^{\circ} \mathrm{C}$ and then benzylamine ($625 \mu \mathrm{l}, 5.72 \mathrm{mmol}$) is added slowly to the mixed anhydride. The reaction is allowed to warm up to room temperature and is then stirred for 4 hours or until the reaction judged to be complete by TLC analysis. The reaction is diluted with diethyl ether (150 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification
of the crude product by flash chromatography (1:1 ethyl acetate/hexanes) yielded $1.293 \mathrm{~g}(85 \%, 825$ overall for the 2 steps $)$ of amide 101 f as a colourless oil; $\mathrm{R}_{f} 0.28$ ($1: 1 \mathrm{EtOAc} /$ hexane); $[\alpha]^{21}{ }_{\mathrm{D}}{ }^{-12.18{ }^{\circ}}$ (c 1.17, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.24(\mathrm{~m}, 11 \mathrm{H}$, aromatic and NH$), 4.54(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.47\left(\mathrm{dd}, J=5.9 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.11(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}\right), 4.06\left(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}\right), 4.00(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{BnOCH}_{2} \mathrm{CHCHCH}_{2} \mathrm{O}$), $3.70\left(\mathrm{dd}, J=10.6 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}\right.$), $3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}\right.$ and $\left.\mathrm{BnOCH}_{2}\right), 3.53(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 4.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{BnOCH}_{2}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.5,137.8,137.6,128.6,128.4,127.8,127.7,127.4,109.6,77.9,75.8$, $73.5,71.6,70.6,70.2,42.8,26.8,26.6$; IR (neat) v 3350, 3000, 2930, 2870, 1670, $1530,1450,1370,1250,1210,1080 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 400.21240$, found: 400.21330 .

Ethyl-4-t-butyldiphenylsilyloxybutanoate (102a).

$101 a$

102a

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 101a ($388 \mathrm{mg}, 0.90 \mathrm{mmol}$) to ester 102a. Purification of the crude product by flash chromatography (1:15 ethyl acetate/hexanes) yielded 310 mg (93\%) of ethyl ester 102a as a colourless oil; $\mathrm{R}_{f} 0.25$ (1:15 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.68-7.64(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.44-7.24(\mathrm{~m}, 6 \mathrm{H}$, aromatic), $4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.69\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{TBDPSOCH}_{2} \mathrm{CH}_{2}\right), 2.45(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $1.88\left(\mathrm{tt}, \mathrm{J}=7.4 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.24(\mathrm{t}, J=7.1$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$174.0,135.5,133.7,129.5,127.6,62.8,60.2,30.85,27.7,26.8,19.1,14.1$; IR (neat) v $2960,2920,1740,1420,1100,1170 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 371.20425$, found: 371.20300 .

Ethyl-4-(4-methyl benzoyloxy)butanoaote (102b).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 101 b ($271 \mathrm{mg}, 0.87 \mathrm{mmol}$) to ester 102b. Purification of the crude product by flash chromatography ($1: 15$ ethyl acetate/hexanes) yielded $192 \mathrm{mg}(88 \%$) of ethyl ester $\mathbf{1 0 2 b}$ as a colourless oil; $\mathrm{R}_{f} 0.22$ (1:10 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.91(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $4.34(\mathrm{t}, \mathrm{J}$ $\left.=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.12\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.48(\mathrm{t}, J=7.4$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 2.10(\mathrm{tt}, J=7.4 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.24\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.7,166.3,143.4,129.4,128.9,127.3,63.6,30.3,30.8,24.0,21.4,14.0$; IR (neat) v 2980, 1740, 1720, 1610, 1440, 1370, 1270, 1160, 1100, 1010, 830, 740 cm^{-1}; HRMS (NBA) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 251.12834$, found: 251.12940 .

Ethyl-4-benzyloxybutanoate (102c).

101 c

102c

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 101 c ($213 \mathrm{mg}, 0.75 \mathrm{mmol}$) to ester 102c. Purification of the crude product by flash chromatography ($1: 8$ ethyl acetate/hexanes) yielded $142 \mathrm{mg}(85 \%)$ of ethyl ester 102c as a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.20$ (1:5 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.31$ (m , 5 H , aromatic), $4.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.11\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.50$ $\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OBn}\right), 2.42\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.94(\mathrm{tt}$, $\left.J=7.3 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) 1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,138.4,128.2,127.5,127.4,72.8,69.1,60.2$, $31.0,25.0,14.1$; IR (neat) v 2980, 2920, 2850, 1730, 1450, 1360, 1240, 1170, 1100, 1020, $730,690 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 223.13342, found: 233.13290 .

Ethyl-4-(4-methoxybenzyloxy)butanoate (102d).

101d

102d

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 101 d ($153 \mathrm{mg}, 0.49 \mathrm{mmol}$) to ester 102d. Purification of the crude product by flash chromatography ($1: 7$ ethyl acetate/hexanes) yielded 99 mg (81%) of ethyl ester 102d as a colourless oil; $R_{f} 0.30$ ($1: 7 \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25$ ($\mathrm{d}, \mathrm{J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}$, aromatic), $6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic $), 4.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $4.11\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OPh}\right), 3.47(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.40\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.92(\mathrm{tt}, J=7.3 \mathrm{~Hz}, 6.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.24\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,159.1,130.4,129.1,113.7,72.4,68.8,61.1,55.2,31.0$,
25.0, 14.1; IR (neat) v 2940, 2850, 1730, 1610, 1510, 1450, 1360, 1290, 1240, 1170, 1090, 1020, $810 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 253.14398, found: 253.14320 .

Ethyl-4-acetoxybutanoate (102e).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 101 e ($383 \mathrm{mg}, 1.6 \mathrm{mmol}$) to ester 102e. Purification of the crude product by flash chromatography (1:7 ethyl acetate/hexanes) yielded 218 mg (77%) of ethyl ester 102e as a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.12$ ($1: 10 \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.14(\mathrm{q}, J=7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.11\left(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{AcOCH}_{2} \mathrm{CH}_{2}\right), 2.39(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.97\left(\mathrm{tt}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.27\left(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,170.8$, $63.3,60.3,30.7,23.9,20.7,14.1$; IR (neat) v 2980, 1740, 1360, 1230, 1170, 1030 cm^{-1}; HRMS (NBA) calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$175.19703, found 175.09650 .
(4S, 5S)-4-(Ethyl-2-acetoxy)oxymethyl-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane (102f).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 101 f ($349 \mathrm{mg}, 0.87 \mathrm{mmol}$) to ester 102f. Purification of the crude product by flash chromatography ($1: 5$ ethyl acetate/hexanes) yielded 195 mg (66%) of ethyl ester 102 f as a colourless oil; $\mathrm{R}_{f} 0.24$ (1:5 EtOAc/hexane); $[\alpha]_{\mathrm{D}}^{21}-7.13^{\circ}\left(\mathrm{c} 0.954, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.25\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic), $4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.20(\mathrm{q}, J$ $\left.=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.15-4.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}\right.$ and $\mathrm{BnOCH}_{2} \mathrm{CHCHCH}_{2} \mathrm{O}$), 3.74 (dd, $J=10.3 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}$), 3.71-3.59 (m, 3H, $\mathrm{OCCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}$ and $\left.\mathrm{BnOCH}_{2} \mathrm{CH}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$, $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.27\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.1,137.8,128.3,127.6,127.5,109.7,77.4,76.9,73.4(2), 71.8,70.4$, $68.7,60.7,26.9,14.1$; IR (neat) $v 2990,2930,2870,1740,1450,1380,1220$, 1100, 870, $720 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}]^{+}: 338.17294$, found: 338.17250 .
(2S)-N-benzyl-2-methyl-2-(6-methoxynaphthyl)acetamide (103a).

To a solution of (S)-Naproxen® ${ }^{\circledR}(465 \mathrm{mg}, 2.02 \mathrm{mmol})$ and DCC (541 mg , 2.62 mmol) in dichloromethane (20 ml) under an argon atmosphere at $0^{\circ} \mathrm{C}$ is added benzylamine ($310 \mu \mathrm{l}, 2.83 \mathrm{mmol}$) and DMAP ($\sim 4 \mathrm{mg}$). The reaction is stirred while warming to room temperature slowly. After 6 hours, TLC analysis indicates that no more starting material is present. The reaction is diluted with pentane/diethyl ether ($1: 1,100 \mathrm{ml}$) and filtered through celite. Purification of the crude product by flash chromatography yielded $138 \mathrm{mg}(21 \%)$ of benzamide 103a as a white solid. The optical purity was determined to be 99 \%ee by HPLC analysis (Chiracel OD, flow
rate $=1.0 \mathrm{ml} / \mathrm{min}$ of $20: 80 \mathrm{i}-\mathrm{PrOH} /$ hexane, T_{r} (major) $10.45 \mathrm{~min}, T_{\mathrm{r}}$ (minor) $12.97 \mathrm{~min}) ; \mathrm{R}_{f} 0.42$ (1:2 EtOAc/hexane); mp $134-136^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{21}-10.30^{\circ}$ (c $\left.0.602, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.64$ ($\mathrm{m}, 3 \mathrm{H}$, aromatic), 7.39-7.36 (m, 1H, aromatic), 7.25-7.09 (m, 7 H , aromatic), 5.83 (br, $1 \mathrm{H}, \mathrm{NH}$), $4.33\left(\mathrm{dd}, J=14.9 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 4.38(\mathrm{dd}, J=14.9 \mathrm{~Hz}, 5.8 \mathrm{~Hz}$, $\left.\mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.60(\mathrm{~d}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1,157.6,138.3,136.3,133.6$, $129.1,128.9,128.4,127.4$ (2), 127.2, 126.2, 126.0, 119.0, 105.6, 55.2, 46.9, 43.4, 18.4; IR (neat) v 3300, 2960, 2920, 1650, 1610, 1560, 1500, 1450, 1260, 1220, 1200, $1020 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 320.165054$, found: 320.163700 .
(2S)-N-Benzyl-2-methoxy phenylacetamide (103b).

103b

To a solution of (R)-O-methoxy phenylacetic acid ($419 \mathrm{mg}, 2.52 \mathrm{mmol}$), benzylamine ($413 \mu \mathrm{l}, 3.79 \mathrm{mmol}$) and DMAP ($\sim 4 \mathrm{mg}$) in dichloromethane $(20 \mathrm{ml})$ under an argon atmosphere at $0^{\circ} \mathrm{C}$ is added DCC ($676 \mathrm{mg}, 3.28$ mmol). The reaction is stirred while warming to room temperature slowly. After 6 hours, TLC analysis indicates that no more starting material is present. The reaction is diluted with pentane/diethyl ether ($1: 1,100 \mathrm{ml}$) and filtered through celite. Purification of the crude product by flash chromatography yielded 192 mg (30%) of benzamide 103 b as a white solid. The optical purity was determined to be 99 \%ee by HPLC analysis (Chiracel OD, flow rate $=1.0 \mathrm{ml} / \mathrm{min}$ of $5: 95 i-\mathrm{PrOH} /$ hexane, T_{r} (major, R) $23.8 \mathrm{~min}, T_{\mathrm{r}}$ (minor, S$) 26.4 \mathrm{~min}$). Colourless solid; $\mathrm{R}_{f} 0.24$ (1:2

EtOAc/hexane); $\operatorname{mp} 82-85^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{21}-117.5^{\circ}\left(\mathrm{c} 0.394, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.24(\mathrm{~m}, 10 \mathrm{H}$, aromatic), $7.07(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.67(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CHOCH}_{3}\right), 4.49\left(\mathrm{dd}, J=14.7 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 4.42(\mathrm{dd}, J=14.7$ $\left.\mathrm{Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 170.3,138.1,137.0,128.6,128.4,128.3,127.6,127.4,126.9,83.8,57.1,42.9$, 25.4 ; IR (neat) v 3350, 3000, 2920, 1660, 1530, 1450, 1320, 1190, 1090, 1010, 970, $740,690 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 256.13376$, found: 256.13450 .

(4R,5R)-N, $N, N^{\prime}, N^{\prime}$-tetramethyl-2,2-dimethyl-1,3-dioxolane-4,5-

 dicarboxamide (103c).

103c

To a solution of $(+)-(R, R)-N, N, N^{\prime}, N^{\prime}$-tetramethyltartramide $(2.15 \mathrm{~g}, 10.5$ mmol) in acetone (10 ml), prepared according to the method of Seebach, ${ }^{287}$ was added dimethoxypropane (10 ml) and p-toluene sulphonic acid (20 mg). The flask is connected to an exit bubbler and stirred at room temperature for 24 hours or until TLC analysis indicates that the reaction is complete. The volatiles were removed under reduced pressure and purification of the crude product by crystallization from dichloromethane/hexanes yielded 2.42 g (94%) of acetonide 103c as white crystals; $R_{f} 0.48$ (2:1 EtOAc/hexane); mp $87-89^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{21}-1.73^{\circ}$ (c 1.846, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCHCO}), 3.18(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 2.97\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.8,111.6,75.1,36.7,35.4,26.0 ; \operatorname{IR}(\mathrm{KBr}) \vee 3000,2940,1750,1380,1260$,

1200, 1150, 1100, 1050, $860 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 245.15013, found: 245.14900 .

(2S)-Ethyl-2-methyl-2-(6-methoxynaphthyl)acetate (104a).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 103 a ($128 \mathrm{mg}, 0.40 \mathrm{mmol}$) to ester 104a. Purification of the crude product by flash chromatography (1:15 ethyl acetate/hexanes) yielded 84 mg (82%) of ethyl ester 104a as a colourless oil. The optical purity was determined to be 92% bee by HPLC analysis (Chiracel OD, flow rate $=1.0 \mathrm{ml} / \mathrm{min}$ of $2: 98 i-\mathrm{PrOH} /$ hexane, $T_{\text {r }}$, (minor, R) $8.94 \mathrm{~min}, T_{r}$ (major, S) 10.24 min). Colourless oil; $\mathrm{R}_{f} 0.48$ (1:5 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+48.17^{\circ}\left(\mathrm{c} 5.834, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.71-7.66(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.42-7.39 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), 7.24-7.10 (m, 2 H , aromatic), $4.14\left(\mathrm{dq}, J=7.1 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.11(\mathrm{dq}, J=7.1 \mathrm{~Hz}, 3.6$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.56(\mathrm{~d}$, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.19\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 174.6,157.5,1353.8,133.6,129.2,128.9,127.0,126.1,125.8,118.8$, $105.5,60.6,55.2,45.4,18.5,14.0$; IR (neat) v 2980, 1730, 1600, 1450, 1390, 1370, 1320, 1260, 1230, 1180, $1150,1020,890,850,810 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 258.12558$, found: 258.12440 .
(2S)-Ethyl-2-methoxy phenylacetamide (104b).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 103 b ($71 \mathrm{mg}, 0.28 \mathrm{mmol}$) to ester 104b. Purification of the crude product by flash chromatography ($1: 10$ ethyl acetate/hexanes) yielded 15 mg (28%) of ethyl ester $\mathbf{1 0 4 b}$ as a colourless oil. The optical purity was determined to be 99% ee by HPLC analysis (Chiracel OJ, flow rate $=0.9 \mathrm{ml} / \mathrm{min}$ of $10: 90 i-\mathrm{PrOH} /$ hexane, T_{r} $\left.(R) 15.36 \mathrm{~min}, T_{r}(S) 17.49 \mathrm{~min}\right)$. Colourless oil; $\mathrm{R}_{f} 0.34$ (1:7 EtOAc/hexane); $[\alpha]_{\mathrm{D}}^{21}-124.1^{\circ}\left(\mathrm{c} 2.386, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.35(\mathrm{~m}$, 5 H , aromatic), $4.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Me}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CHOCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,136.0,128.6,128.5,127.0$, 82.3, 57.1, 52.1; IR (neat) v 3300, 2990, 1750, 1460, 1440, 1260, 1210, 1110, 1080, $1010 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 181.08647$, found: 181.08490.
(4R,5R)-Ethyl-N,N-dimethyl-2,2-dimethyl-1,3-dioxolane-4-carboxamide-5-carboxylate (104c).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide $103 \mathrm{c}(276 \mathrm{mg}, 1.13 \mathrm{mmol})$ to ester 104c. Purification of the crude product by flash chromatography (1:2 ethyl acetate / hexanes) yielded 93 mg (34%) of ethyl ester 104c as a colourless oil. $R_{f} 0.41$ (1:2 EtOAc/hexane); $[\alpha]_{\mathrm{D}}^{21}-22.4^{\circ}$ (c 1.142, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.28(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHO}), 4.90(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCHO}), 4.26\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.16\left(\mathrm{~s}, J=3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.01\left(\mathrm{~s}, J=3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.49(\mathrm{~s}, J=3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 1.43\left(\mathrm{~s}, \mathrm{~J}=3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.31\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,167.6,112.7,76.3,76.2,61.5,36.9,35.9,26.2,26.1$, 14.0 ; IR (neat) v $3000,2940,1760,1650,1380,1260,1200,1150,1100,1050$, 1020, $850 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 246.13416$, found: 246.13520 .

(\pm)-N-Methyl-N-(1-phenylethyl)-3-phenylpropanamide (112a).

To a solution of amide 57 ($853 \mathrm{mg}, 3.37 \mathrm{mmol}$) in tetrahydrofuran (10 ml) at $0^{\circ} \mathrm{C}$ under an argon atmosphere was added DMF (2 ml), $\mathrm{NaH}(202 \mathrm{mg})$, and methyl iodide ($420 \mu \mathrm{l}, 6.74 \mathrm{mmol}$). The reaction was allowed to warm to room temperature while stirring. After 1 hour at or until the reaction was judged complete by TLC analysis, water (1 ml) was carefully added to the solution. The reaction was diluted with diethyl ether (80 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude
product by flash chromatography (1:4 ethyl acetate/hexanes) yielded 836 $\mathrm{mg}(93 \%)$ of amide 112a as a colourless oil; $\mathrm{R}_{f} 0.20$ (1:3 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.12(\mathrm{~m}, 10 \mathrm{H}$, aromatic), $6.09(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.\left.0.7 \mathrm{H}, \mathrm{PhCHCH}_{3}\right), 5.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{PhCHCH})_{3}\right), 3.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.76\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.67\left(\mathrm{~s}, 0.9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right)$, 2.63, ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), $2.54\left(\mathrm{~s}, 2.1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 1.50(\mathrm{~d}, J=7.1$ $\left.\mathrm{Hz}, 0.9 \mathrm{H}, \mathrm{PhCHCH}_{3}\right), 1.44\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2.1 \mathrm{H}, \mathrm{PhCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,141.2,140.5,128.5,128.3,128.2,127.2,127.1,127.0$, $126.2,125.9,54.4,50.0,35.6,35.0,31.5,31.3,29.2,27.7,17.4,15.4$; IR (neat) v 3020, 2980, 2940, 1640, 1490, 1450, 1400, 1310, $1110 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$268.17014, found 268.17080.

(\pm)-N-Benzyl-N-(1-phenylethyl)-3-phenylpropanamide (112b).

57

112b

Secondary amide 57 ($1.126 \mathrm{~g}, 4.45 \mathrm{mmol}$) was converted to the tertiary amide 112b following the same procedure as that used for the synthesis of amide 112a. Purification of the crude product by flash chromatography (1:5 ethyl acetate/hexanes) yielded $1.45 \mathrm{~g}(95 \%)$ of amide $\mathbf{1 1 2 b}$ as a colourless oil; $\mathrm{R}_{f} 0.27$ (1:5 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.40-6.96(\mathrm{~m}, 5 \mathrm{H}$, aromatic $), 6.18,\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{NCHCH}_{3} \mathrm{Ph}\right), 5.16(\mathrm{q}, J$ $\left.=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{NCHCH}_{3} \mathrm{Ph}\right), 4.92\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 4.28(\mathrm{~d}, J$ $\left.=18.0 \mathrm{~Hz}, 0.7 \mathrm{H} \mathrm{PhCH}{ }_{2} \mathrm{~N}\right), 4.07\left(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.95(\mathrm{~d}, J=$ $\left.15.4 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.08-2.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.87-2.80(\mathrm{~m}, 0.3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.60-2.46\left(\mathrm{~m}, 0.7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{PhCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,141.0,140.9,138.2,128.5$, $128.4,128.3,128.2,128.0,127.3,127.1,126.8,126.4,125.9,51.4,46.9,35.6$,
$31.5,16.8$; IR (neat) $\vee 3020,1640,1490,1450,1400,1370,1200,1020,740,720$ cm^{-1}; HRMS (THIO) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+} 344.20145\right.$, found 344.20250 .

Ethyl-3-phenylpropanoate (113a).

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 112 a ($207 \mathrm{mg}, 0.78 \mathrm{mmol}$) to ester 113a. Purification of the crude product by flash chromatography (1:10 ethyl acetate/hexanes) yielded 130 mg (94%) of ethyl ester 113a as a colourless oil; refer to compound 89a for characterization data.

Ethyl-3-phenylpropanoate (113b).

112b

113b

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide $\mathbf{1 1 2 b}$ ($210 \mathrm{mg}, 0.61 \mathrm{mmol}$) to ester 113b. Purification of the crude product by flash chromatography (1:10 ethyl acetate/hexanes) yielded 65 mg (60%) of ethyl ester 113 b as a colourless oil; refer to compound 89a for characterization data.

(\pm)-5-phenylhydantoin (122).

Benzaldehyde ($5.0 \mathrm{ml}, 49.2 \mathrm{mmol}$), ethanol ($50 \%, 60 \mathrm{ml}$), KCN ($6.4 \mathrm{~g}, 98.4$ mmol $)$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(28 \mathrm{~g}, 295.1 \mathrm{mmol})$ were combined in a 200 ml round bottom flask. The flask was covered with a septum and wired shut. The reaction was then carefully heated to $60^{\circ} \mathrm{C}$. Pressure can be periodically relieved as a hypodermic needle is inserted into the septum to vent off some HCN if the pressure begins to look excessive. After 18 hours, the yellowish solution has become brown. The volume of the reaction is reduced to half under reduced pressure and $10 \% \mathrm{HCl}(50 \mathrm{ml})$ is then carefully added to acidify the reaction which results in the formation of crystals. The product was recrystallized from methanol/water which yielded $7.0 \mathrm{~g}(81 \%)$ of hydantoin 122 as beige crystals; $\mathrm{R}_{f} 0.10$ (EtOAc); mp $180-182^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.53(\mathrm{br}, 1 \mathrm{H}$, NH), 7.45-7.34 (m, 5H, aromatic), $5.22(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHNH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2,158.1,136.9,129.5,129.2,127.6,62.7$; IR (neat) v $3510,3310,3040,2760,1720,1460,1430,1420,1190,750 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 177.06640$, found: 177.06490 .

(\pm)-2-Phenyl-2,2-diethoxy-1-(N^{\prime}-ethoxycarbonyl)amino- N -

 trifloromethansufonyl ethylamine (131).

To a solution of hydantoin $122(176 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry dichloromethane (5 ml) was added pyridine ($570 \mu \mathrm{l}, 7.0 \mathrm{mmol}$). The solution was cooled to $30^{\circ} \mathrm{C}$ using an acetone-dry ice bath and then neat triflic anhydride ($570 \mu \mathrm{l}$, 3.0 mmol) was added slowly down the side of the flask. The reaction is allowed to warm up 0° at which temperature it is stirred for 12 hours. Absolute ethanol ($2 \mathrm{ml},>33 \mathrm{mmol}$) was then added to the solution at $0^{\circ} \mathrm{C}$ and then the reaction was stirred for and additional 12 hours at room temperature. Diethyl ether $(80 \mathrm{ml})$ was then added and then the solution was washed $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$ (which should have been avoided once the true identity of the product was discovered), saturated $\mathrm{NaHCO}_{3}(15$ ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:5 ethyl acetate/hexanes) yielded 233 mg of a product which was still impure. Crystallization from diethyl ether/hexanes yielded 203 mg (47%) of compound 131 as beige crystals which were suitable for x-ray analysis ${ }^{288}$; $R_{f} 0.50$ (1:5 EtOAc/hexane); mp $163-166^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.52-7.26 (m, 5H, aromatic), $5.65(\mathrm{br}, 1 \mathrm{H}, \mathrm{NHCHNH}), 5.25(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, $4.83(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.17-4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.66-3.61(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.59-3.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.60-1.19\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,135.1,129.4,129.0,128.7,127.3,124.0$, $120.8,117.6,101.1,65.0,61.6,58.2,27.9,14.9,14.8,14.3$; $\operatorname{IR}(\mathrm{KBr}) \vee 3400$, $3000,2940,1720,1520,1450,1420,1380,1340,12301190,1140,1050 \mathrm{~cm}^{-1}$. For x-ray crystal data, see Appendix 2.
(2S)-2-(N-phthalimido)amino-3-phenylpropanoic acid (133).

132

133

Prepared according to Billman and Harting. ${ }^{289}$ (S)-Phenylalanine 132 (1 g , 6.0 mmol) was combined with phthalic anhydride ($900 \mathrm{mg}, 6.0 \mathrm{mmol}$) in a Pyrex test tube. The mixture of solids is heated to $150^{\circ} \mathrm{C}$ for 15 minutes which melts the two compounds to form a homogeneous liquid. Some phthalic anhydride sublimes. The crude product is allowed to cool and is purified by crystallization from ethanol/hexanes which yields $1.60 \mathrm{~g}(90 \%)$ of acid 133 as white crystals; $\mathrm{R}_{f} 0.30$ (EtOAc); mp 171-173 ${ }^{\circ} \mathrm{C}$ (Lit. 174$175^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{21}-204.7^{\circ}\left(c 1.000, \mathrm{CHCl}_{3}\right){ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10$ (br, $1 \mathrm{H}, \mathrm{COOH}), 7.79-7.76(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.69-7.66 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 7.26$7.13\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic), $5.23\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,167.3,136.3,134.1,131.4$, $128.7,128.5,126.9,123.5,53.0,34.3$; IR (neat) v 3280, 1750, 1700, 1390, 1210, $1100,720 \mathrm{~cm}^{-1}$. The same procedure was used to make the enantiomer starting from (R)-phenylalanine.

(2S)-N-Benzyl-2-(N-phthalimido)amino-3-phenylpropanamide (134).

133

134

To a sample of acid 133 ($552 \mathrm{mg}, 1.87 \mathrm{mmol}$) was added benzylamine (310 $\mu \mathrm{l}, 2.80 \mathrm{mmol}$), hydroxybenzotriazole (HOBTa) ($255 \mathrm{mg}, 1.87 \mathrm{mmol}$), CuCl_{2} ($130 \mathrm{mg}, 0.94 \mathrm{mmol}$), DMF (5 ml) and EDC ($540 \mathrm{mg}, 2.8 \mathrm{mmol}$) at room temperature under an argon atmosphere. After 12 hours or until TLC analysis indicates near complete consumption of the starting material, the reaction was diluted with diethyl ether (100 ml), washed with $10 \% \mathrm{HCl}(2 \mathrm{x}$ 15 ml), filtered through celite, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography yielded 91 mg (13%) of amide 134 as a white solid. The optical purity was determined to be 96% ee by HPLC analysis (Chiracel OJ, flow rate $=1.0 \mathrm{ml} / \mathrm{min}$ of $20: 80 \mathrm{i}-\mathrm{PrOH} /$ hexane, T_{r} (major) $20.2 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 25.3 min$)$.White solid; $\mathrm{Rf}_{f} 0.18$ (1:3 EtOAc/hexane); mp $199-201^{\circ} \mathrm{C}$; $[\alpha]^{21}{ }_{\mathrm{D}}-108.8^{\circ}\left(\mathrm{c} 0.640, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.76(\mathrm{~m}$, 2 H , aromatic), 7.69-7.63 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 7.33-7.07 ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 6.50 (br, 1H, NH), $5.14\left(\mathrm{dd}, J=10.3 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.49$ (dd, $J=14.9$ $\left.\mathrm{Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 4.42$ (dd, $J=14.9 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}$), 3.60 (dd, $J=14.1 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}$), $3.54(\mathrm{dd}, J=14.1 \mathrm{~Hz}, 10.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,167.9,137.6,136.5,134.2$, $131.3,128.8,128.6,128.5,127.5,127.4,126.8,123.4,55.8,43.7,37.8 ;$ IR (KBr) v $3450,3300,2920,1720,1650,1540,1380,1100,710 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 385.15521$, found: 385.15400 .

(2S)-Ethyl-2-(N-phthalimido)amino-3-phenylpropanoate (135).

134

135

The general procedure for the conversion of secondary amides to esters was used for the conversion of amide 134 ($87 \mathrm{mg}, 0.23 \mathrm{mmol}$) to ester 135. Purification of the crude product by flash chromatography (1:5 ethyl acetate/hexanes) yielded 56 mg (77%) of ethyl ester 104c as a colourless oil. The optical purity was determined to be 85% ee by HPLC analysis (Chiracel OJ, flow rate $=1.0 \mathrm{ml} / \mathrm{min}$ of $15: 85 i-\mathrm{PrOH} /$ hexane, T_{r} (major) $10.7 \mathrm{~min}, T_{r}$ (minor) 13.1 min). Colourless oil; $\mathrm{R}_{f} 0.33$ (1:5 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}-127.5^{\circ}\left(\mathrm{c} 2.104, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.76(\mathrm{~m}$, 2 H , aromatic), $7.69-7.66(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.49-7.14$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 5.14 $\left(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.26\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.25\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.60(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2}\right), 3.53\left(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,167.3,136.7,133.9,131.4$, $128.7,128.4,126.7,123.3,61.9,53.3,34.5,14.0 ;$ IR (neat) v 2990, 1780, 1750, $1710,1470,1380,1240,1190,1100,1020,870,710 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 324.12360$, found: 324.12190 .

Experimental Section: Chapter 4

1-(2-phenylethyl)-4-methyl-2,6,7-trioxabicyclo [2.2.2] octane (148a).

General procedure for the conversion of tertiary and secondary amides to cyclic ortho esters. To a solution of amide 147 a ($297 \mathrm{mg}, 1.45 \mathrm{mmol}$) in dichloromethane (10 ml) under an argon atmosphere was added pyridine ($354 \mu \mathrm{l}, 3.0 \mathrm{mmol}$). The solution was cooled to $-40^{\circ} \mathrm{C}$ and neat triflic anhydride ($320 \mu \mathrm{l}, 1.3 \mathrm{mmol}$) was added slowly. The reaction was then allowed to slowly warm up to $0^{\circ} \mathrm{C}$. Stirring was continued for another 4 to 12 hours. The septum was then removed for an instant as 1,1,1-trishydroxymethylene ethane ($261 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added quickly. Then absolute ethanol (0.8 ml) or acetonitrile (2 ml) was added via syringe. The reaction was allowed to stir for 12 hours. The reaction was filtered through neutralized silica. The reaction medium was transferred using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ onto a short column of silica which was pretreated with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in a 1:2 $\mathrm{Et}_{2} \mathrm{O}$-pentane mixture which also serves as the eluant. After filtering, the solvent was removed in under reduced pressure to provide an almost analytically pure compound which could be further purified by crystallization from diethyl ether/hexanes or by chromatography on silica using $5-15 \%$ EtOAc in hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$. This procedure yielded 298 $\mathrm{mg}(88 \%)$ of ortho ester 148a as a white solid; $\mathrm{R}_{f} 0.37$ (1:7 EtOAc/hexane with $1 \% \mathrm{Et}_{3} \mathrm{~N}$); mp $119-121^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.16(\mathrm{~m}$, 5 H , aromatic), $3.92\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 2.76(\mathrm{dd}, J=12.7 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.76\left(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.98(\mathrm{dd}, J=12.7$
$\mathrm{Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $1.98\left(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $0.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.8,128.3,128.2,125.6$, $108.6,72.5,38.4,30.2,29.5,14.4$; IR (KBr) v 2960, 2890, 1490, 1470, 1450, 1390, 1370, 1350, 1300, 1250, 1180, 1040, $980,740,700 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 235.13342, found: 235.13410; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 71.76 ; \mathrm{H}, 7.76$. Found: C, $71.88 ; \mathrm{H}, 8.18$.

1-(2-phenylethyl)-4-methyl-2,6,7-trioxabicyclo [2.2.2] octane (148b).

Amide 147 b ($247 \mathrm{mg}, 1.03 \mathrm{mmol}$) was converted to ortho ester $\mathbf{1 4 8 b}$ following the general procedure that was used for the synthesis of ortho ester 148a. Purification of the crude product by crystallization from diethyl ether/hexanes yielded 183 mg (76%) of ortho ester $\mathbf{1 4 8 b}$ as a white solid; refer to compound 148a for characterization data.

1-phenylmethyl-4-methyl-2,6,7-trioxabicyclo [2.2.2] octane (148c).

Amide 147 c ($231 \mathrm{mg}, 1.03 \mathrm{mmol}$) was converted to ortho ester 148 c following the general procedure that was used for the synthesis of ortho ester 148a. Purification of the crude product by crystallization from diethyl ether/hexanes yielded $182 \mathrm{mg}(81 \%)$ of ortho ester 148 c as a white
solid; $\mathrm{Rf}_{f} 0.35\left(1: 7 \mathrm{EtOAc} /\right.$ hexane with $\left.1 \% \mathrm{Et}_{3} \mathrm{~N}\right) ; \mathrm{mp} 77-79^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.21\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic), $3.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.00(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 0.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.0,130.5$, $127.8,126.4,108.5,72.6,42.8,30.4,14.5$; $\mathrm{IR}(\mathrm{KBr}) \vee 2980,2940,2880,1490$, $1470,1450,1390,1350,1270,1050,1000,980,840,700 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 221.11777$, found: 221.11710.

1-phenylmethyl-4-methyl-2,6,7-trioxabicyclo [2.2.2] octane (148d).

Amide 147 d ($456 \mathrm{mg}, 2.39 \mathrm{mmol}$) was converted to ortho ester 148d following the general procedure that was used for the synthesis of ortho ester 148a. Purification of the crude product by crystallization from diethyl ether/hexanes yielded 379 mg (72%) of ortho ester 148 d as a white solid; refer to compound 148 c for characterization data.

1-(2-(1-phenylpropyl))-4-methyl-2,6,7-trioxabicyclo [2.2.2] octane (148e).

Amide 147 e ($341 \mathrm{mg}, 1.57 \mathrm{mmol}$) was converted to ortho ester 148 e following the general procedure that was used for the synthesis of ortho ester 148a. Purification of the crude product by crystallization from diethyl ether/hexanes yielded 230 mg (59\%) of ortho ester 148e as a white
solid; $\mathrm{R}_{f} 0.48$ (1:10 EtOAc/hexane with $2 \% \mathrm{Et}_{3} \mathrm{~N}$); $\mathrm{mp} 86-89^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.13\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic), $3.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.14(\mathrm{dd}, \mathrm{J}$ $\left.=13.4 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.25(\mathrm{dd}, J=13.4 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{CH}$), 2.00 (ddq, $\left.J=11.4 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CHCH}_{3}\right), 0.84$ $\left(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 141.2,129.2,128.0,125.5,110.2,72.6,41.7,36.9,30.2,14.4,12.9$; IR (KBr) v 2960, 2940, 2840, 1450, 1290, 1080, 1050, 990, 950, 920, $700 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 249.14906$, found: 249.15030 .

1-(2-naphthyl)~4-methyl-2,6,7-trioxabicyclo [2.2.2] octane (148f).

Amide 147 f ($247 \mathrm{mg}, 1.09 \mathrm{mmol}$) was converted to ortho ester 148 f following the general procedure that was used for the synthesis of ortho ester 148a. Purification of the crude product by crystallization from diethyl ether/hexanes yielded $245 \mathrm{mg}(69 \%)$ of ortho ester 148 f as a white solid; $\mathrm{R}_{f} 0.32\left(1: 7 \mathrm{EtOAc} /\right.$ hexane with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$; mp $110-112^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $7.87-7.79(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.72$7.70\left(\mathrm{~m}, 1 \mathrm{H}\right.$, aromatic), $7.47-7.23\left(\mathrm{~m}, 2 \mathrm{H}\right.$, aromatic), $4.13\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right)$, $0.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}^{1} \mathrm{CDCl}_{3}\right) \delta 134.7,133.6,132.7,128.6$, $127.8,127.5,126.4,125.9,125.1,123.3,107.5,73.3,30.5,14.4$; IR (KBr) v 2940, $2880,1470,1400,1350,1330,1190,1120,1080,990,970,900,860,820,740 \mathrm{~cm}$
${ }^{1}$; HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 257.11777$, found: 257.11670.

1-(2-naphthyl)-4-methyl-2,6,7-trioxabicyclo [2.2.2] octane (148g).

Amide 147 g ($253 \mathrm{mg}, 0.97 \mathrm{mmol}$) was converted to ortho ester $\mathbf{1 4 8 g}$ following the general procedure that was used for the synthesis of ortho ester 148a. Purification of the crude product by crystallization from diethyl ether/hexanes yielded 174 mg (70%) of ortho ester 148 g as a white solid; refer to compound $\mathbf{1 4 8 f}$ for characterization data.
(15* ${ }^{*} 2 S^{*}$)-N,N-Dimethyl-2-phenylcyclopropyl carboxamide (147h).

147h

To a solution of N, N-dimethylamine ($0.72 \mathrm{ml}, 12.4 \mathrm{mmol}$) in dichloromethane (15 ml) under an argon atmosphere at $0^{\circ} \mathrm{C}$ was added trimethylaluminium ($1.1 \mathrm{ml}, 11.6 \mathrm{mmol}$). After 15 minutes, this solution was added slowly via cannula to a solution of methyl trans-2-phenyl-1cyclopropyl carboxylate ($1.477 \mathrm{~g}, 8.3 \mathrm{mmol}$) in dichloromethane (15 ml) at $0^{\circ} \mathrm{C}$. After 18 hours at room temperature, water (1 ml) was carefully added to the solution. The solution was then diluted with diethyl ether (100 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography yielded 1.54 g (98%) of amide 147h as a white solid; $\mathrm{R}_{f} 0.17$ (2:3 EtOAc/hexane); mp $84-86^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.20-7.16 (m, 1H,
aromatic), 7.12-7.10 (m, 2H, aromatic), $3.05\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.47$ (ddd, $J=$ $9.0 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2}$), 1.99 (ddd, $J=8.3 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 4.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCO}$), 1.63 (ddd, $\left.J=9.0 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.25$ (ddd, $\left.J=8.3 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.7,140.9,128.2,126.0,125.9,36.5$ (br), 25.3, 22.9, 16.0; IR (film) v $3500,3020,2920,1640,1490,1410,1370,1180,1140,750,690 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 190.12318$, found: 190.12420; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 76.16 ; \mathrm{H}, 7.99$; $\mathrm{N}, 7.40$. Found: C, $76.44 ; \mathrm{H}, 8.27$; N, 7.48.

1-((1S* $\left.{ }^{*} 2 S^{*}\right)$-2-phenylcyclopropyl)-4-methyl-2,6,7-trioxabicyclo [2.2.2]

octane (148h).

147h

148h

Amide 147 h ($254 \mathrm{mg}, 1.45 \mathrm{mmol}$) was converted to ortho ester $\mathbf{1 4 8 h}$ following the general procedure that was used for the synthesis of ortho ester 148a. Purification of the crude product by crystallization from diethyl ether/hexanes yielded $240 \mathrm{mg}(67 \%)$ of ortho ester 148 h as a white solid; $R_{f} 0.44$ (1:10 EtOAc/hexane with $1 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.07\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic), $3.90\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right.$), 2.18 (ddd, $J=9.1$ $\mathrm{Hz}, 5.7 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}$) , 1.54 (ddd, $J=9.0 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 4.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCO}$), 1.23 (ddd, $J=9.1 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}$), 0.86 (ddd, $J=9.0 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}$), $0.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,128.1,126.1$ (2), 125.6, 107.9, 72.7, 30.4, 26.3, 19.1, 14.4, 11.7; IR (neat) v 2960, 2940, 2880, 1470, 1410, 1340, 1260, 1190, 1120, 1050, 1010, 980, 950, 750, $690 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 247.13342$, found: 247.13410 .
($1 S^{*}, 2 S^{*}$)-N-methyl-2-phenylcyclopropyl carboxamide (147i).

To a solution of N-methylamine ($0.650 \mathrm{ml}, 12.1 \mathrm{mmol}$) in dichloromethane (10 ml) under an argon atmosphere at $0^{\circ} \mathrm{C}$ was added trimethyl aluminum ($1.1 \mathrm{ml}, 11.3 \mathrm{mmol}$). After 15 minutes, this solution was added slowly via cannula to a solution of methyl trans-2-phenyl-1-cyclopropyl carboxylate $(1.544 \mathrm{~g}, 8.6 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After 18 hours at room temperature, water (1 ml) was carefully added to the solution. The solution was then diluted with diethyl ether (100 ml), washed with 10% $\mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography yielded 1.30 g (86%) of amide 147 i as a white solid; $\mathrm{R}_{f} 0.23$ (1:1 EtOAc/hexane); mp 96-98 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-$ $7.00(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.31(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 2.78\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.43$ (ddd, $J=9.1 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2}$), $1.64(\mathrm{ddd}, J=8.2 \mathrm{~Hz}, 5.2$ $\mathrm{Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCO}$), 1.56 (ddd, $J=9.1 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}$), 1.18 (ddd, $\left.J=8.2 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,140.7,128.2,126.0,125.8,26.3,26.2,24.7,15.5$; IR (film) v 3280, 3090, 1640, 1580, 1400, 1250, 1160, 1080, $930,910,840 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 176.107545$, found: 176.10810; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 75.40 ; \mathrm{H}, 7.48 ; \mathrm{N}, 7.99$. Found: $\mathrm{C}, 75.14 ; \mathrm{H}$, 7.68; N, 7.98.

1-((1S $\left.{ }^{*}, 2 S^{*}\right)$-2-phenylcyclopropyl)-4-methyl-2,6,7-

trioxabicyclo[2.2.2]octane (148i).

Amide 147 i ($456 \mathrm{mg}, 2.39 \mathrm{mmol}$) was converted to ortho ester $\mathbf{1 4 8 i}$ following the general procedure that was used for the synthesis of ortho ester 148a. Purification of the crude product by crystallization from diethyl ether/hexanes yielded $379 \mathrm{mg}(72 \%)$ of ortho ester 148 i as a white solid colourless oil; refer to compound $\mathbf{1 4 8 h}$ for characterization data.

Experimental Section: Chapter 5

N-Benzyl benzamide (154).

To a solution of benzoyl chloride ($10 \mathrm{ml}, 86 \mathrm{mmol}$) in dichloromethane (100 ml) under an argon atmosphere was slowly added pyridine ($10.5 \mathrm{ml}, 129$ mmol) and benzylamine ($9.4 \mathrm{ml}, 86 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The heterogeneous solution was allowed to warm up to room temperature and was stirred for an additional 18 hours. The reaction was diluted with diethyl ether (250 $\mathrm{ml})$ washed with $10 \% \mathrm{HCl}(2 \times 50 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by crystallization from ethyl acetate/hexanes yielded 14.6 g (80%) of amide 154 as white crystals; $R_{f} 0.42$ (1:2 EtOAc/hexane); mp 104$107^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.52-7.26 ($\mathrm{m}, 8 \mathrm{H}$, aromatic), $6.58($ br, $1 \mathrm{H}, \mathrm{NH}), 4.62\left(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,138.1,134.3,131.4,128.6,128.4,127.8$, $127.4,126.9,44.0$; $\mathrm{IR}(\mathrm{KBr})$ v $3290,3060,1640,1600,1550,1490,1410,1310$, 1250, $980,690 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 212.10754$, found: 212.10800.

N-Phenyl benzamide (156).

156

According to the method used for the synthesis of compound 48, a suspension of aniline ($16.3 \mathrm{~g}, 175 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ and pyridine $(15.7 \mathrm{ml}, 193 \mathrm{mmol})$ was cooled to $-78^{\circ} \mathrm{C}$. Benzoyl chloride ($20.3 \mathrm{ml}, 175$ mmol) was then added slowly giving a white suspension. The reaction was stirred while warming up to room temperature slowly. EtOAc (500 $\mathrm{ml})$ was added and the reaction was washed with $10 \% \mathrm{HCl}(2 \times 100 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The crude product was crystallized from MeOH , filtered, and then placed under high vacuum until a constant mass was observed. The mother liquor was concentrated under reduced pressure and the crude product was crystallized from MeOH to give a second batch. The two batches were then combined to give 32.91 g (95.4%) of amide 48 as white crystals; $\mathrm{R}_{f} 0.39$ ($1: 3 \mathrm{EtOAc} /$ hexane); mp $162-164^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$, 7.53-7.51 (m, 1H, Ph), 7.48-7.44 (m, 2H, Ph), 7.38-7.34 (m, 2H, Ph), 7.16-7.13 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,137.9,134.9,131.7,129.0$, $128.7,127.0,124.5,120.2$; $\operatorname{IR}(\mathrm{KBr}) \vee 3340,1660,1600,1580,1530,1450,1440$, 1320, 1260, 750, $720,690 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 198.09189, found: 198.09280 .
cis/trans-O-1-(trans-2-hexenyl)-N-benzyl benzimidate (155).

To a solution of amide $154(270 \mathrm{mg}, 1.37 \mathrm{mmol})$ in dichloromethane (10 ml) at $-30^{\circ} \mathrm{C}$ under an argon atmosphere was added pyridine ($335 \mu \mathrm{l}, 4.11$ mmol). Triflic anhydride ($230 \mu \mathrm{l}, 1.37 \mathrm{mmol}$) was then added very slowly and the reaction was allowed to stir while warming up to $0^{\circ} \mathrm{C}$ over the course of 2 hours. After an additional 140 minutes at $0^{\circ} \mathrm{C}$, the colourless solution was cooled to $-50^{\circ} \mathrm{C}$ and trans-2-hexen-1-ol ($161 \mu \mathrm{l}, 1.37 \mathrm{mmol}$) was added slowly followed by triethylamine ($573 \mu \mathrm{l}, 4.11 \mathrm{mmol}$). The solution was stirred while slowly warming up to room temperature over the course of 2 hours. The reaction was diluted with diethyl ether (50 ml) containing 2% triethylamine, filtered trough a short column of triethylamine neutralized silica gel and concentrated under reduced pressure. The crude product could be further purified by flash chromatography (1:15 ethyl acetate/hexanes with 1% triethylamine) to yield 312 mg (78%) of imidate 155 as a colourless oil; $R_{f} 0.54$ (1:15 EtOAc/hexane with $1 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.94$ (m, 2 H , aromatic), $7.50-7.24\left(\mathrm{~m}, 8 \mathrm{H}\right.$, aromatic), $5.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$, $5.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}\right), 4.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PHCH}_{2} \mathrm{~N}\right), 4.56(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 1.52\left(\mathrm{dt}, \mathrm{J}=7.0 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.40(\mathrm{dt}, \mathrm{J}$ $\left.=7.3 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, ; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 154.9,151.4,148.1,139.1,137.1,131.6,129.5$, $129.1,128.4,128.3,128.0,127.9,127.6,126.8,123.3,68.5,49.6,49.4,34.2,21.9$, 13.5; IR (neat) v 3060, 3030, 2960, 2930, 2870, 1740, 1710, 1530, 1490, 1450,

1390, 1360, $1260,1040,980,920,780,730,700 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 294.18579$, found: 294.18530 .

O-1-(trans-2-hexenyl)- N-phenyl benzimidate (157).

156
157

To a solution of amide $\mathbf{1 5 6}$ ($225 \mathrm{mg}, 1.14 \mathrm{mmol}$) in dichloromethane (10 ml) at $-30^{\circ} \mathrm{C}$ under an argon atmosphere was added pyridine ($280 \mathrm{\mu l}, 3.43$ mmol). Triflic anhydride ($192 \mu \mathrm{l}, 1.14 \mathrm{mmol}$) was then added very slowly and the reaction was allowed to stir while warming up to $0^{\circ} \mathrm{C}$ over the course of 2 hours. After an additional 6.5 hours at $0^{\circ} \mathrm{C}$, the colourless solution was cooled to $-50^{\circ} \mathrm{C}$ and trans-2-hexen-1-ol ($135 \mu \mathrm{l}, 1.14 \mathrm{mmol}$) was added slowly followed by triethylamine ($480 \mu \mathrm{l}, 3.43 \mathrm{mmol}$). The solution was stirred while slowly warming up to room temperature over the course of 2 hours. The reaction was diluted with diethyl ether (50 ml) containing 2% triethylamine, filtered trough a short column of triethylamine neutralized silica gel and concentrated under reduced pressure. Purification of the crude product by flash chromatography (1:10 ethyl acetate/hexanes) yielded $160 \mathrm{mg}(51 \%)$ of imidate 157 as a colourless oil; $\mathrm{R}_{f} 0.13$ ($3: 97 \mathrm{Et}_{2} \mathrm{O} /$ hexane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.13$ (m, 7 H , aromatic), 6.95-6.91 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), 6.71-6.69 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 5.87 ($\mathrm{dt}, J=15.4 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}$), $5.78(\mathrm{dt}, J=15.4 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}\right), 4.81(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH} 2 \mathrm{CH}=\mathrm{CH}), 2.08(\mathrm{dt}, J=7.8 \mathrm{~Hz}$, $\left.6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.44\left(\mathrm{tq}, \mathrm{J}=7.3 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.93\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,148.4$,
$135.5,131.4,129.7,129.2,128.7,124.8,122.4,121.6,67.3,34.4,22.1,13.6$; IR (neat) v 2960, 2930, 2870, 1640, 1600, 1490, 1450, 1310, 1290, 1260, 1110, 1080, 1030, $980,780,770,700,6700 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ $[\mathrm{M}]^{+}: 279.16232$, found: 279.16350.

Experimental Section: Chapter 6

2-(2-Phenylethyl)- Δ^{2}-thiazoline (172a).

General procedure for the conversion of secondary and tertiary amides to Δ^{2}-thiazolines. To a solution of the amide $171(226 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry dichloromethane (5 ml) was added 2.5 equivalents of dry pyridine ($270 \mu \mathrm{l}$, 3.3 mmol). The solution was cooled to $-40^{\circ} \mathrm{C}$ using an acetone-dry ice bath and then 1.3 equivalents of neat triflic anhydride ($240 \mu l, 1.43 \mathrm{mmol}$) was added slowly down the side of the flask. The solution was allowed to warm up to $0^{\circ} \mathrm{C}$ (approximately 2 hours) and was then stirred at $0^{\circ} \mathrm{C}$ for another 4 to 6 hours. The reaction was then cooled to $-30^{\circ} \mathrm{C}$. Amino ethanethiol hydrochloride ($190 \mathrm{mg}, 1.65 \mathrm{mmol}$) was quickly weighed, pulverized and then added to the reaction as a solid. This was followed by triethylamine or pyridine ($270 \mu \mathrm{l}, 3.3 \mathrm{mmol}$). It is essential to avoid moisture at this step since any water added to the reaction will diminish yields. The heterogeneous orange solution was allowed to stir while warming up to room temperature over 4 to 6 hours although the reaction does not seem to progress much after 1 hour. The reaction was treated with triethylamine and filtered through a short column of silica gel which was previously neutralized with triethylamine. Elution with diethyl ether/hexanes resulted in the removal of most of the coloured impurities while an optional treatment with activated charcoal would remove almost all the colouration. The volatiles were removed under reduced pressure. Purification of the crude product by flash chromatography (1:2 ethyl
acetate/hexanes) yielded 191 mg (91%) of thiazoline 172a as a colourless oil which could become slightly yellowish upon standing. Due to the sensitive nature of these molecules, the flash chromatography can be preformed with triethylamine if the thiazoline is especially sensitive to acid; $\mathrm{R}_{f} 0.49$ ($1: 1 \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.18$ (m, 5 H , aromatic), $4.22\left(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.29(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), $2.98\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 2.81\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,140.5,128.4,128.2,126.1,64.3,35.8$, $33.8,33.4$; IR (neat) v 3060, 3030, 2930, 2850, 2350, 1630, 1500, 1450, 1190, $970 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 192.08470$, found: 192.08530 .

(4R)-4-Carboxyethyl-2-(2-phenylethyl)- Δ^{2}-thiazoline (172b).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide $\mathbf{1 7 1 b}$ ($265 \mathrm{mg}, 1.29 \mathrm{mmol}$) to thiazoline 172b. Purification of the crude product by flash chromatography ($1: 3$ ethyl acetate/hexanes) yielded $305 \mathrm{mg}(84 \%)$ of thiazoline 172 b as a colourless oil; $\mathrm{R}_{f} 0.31$ (1:3 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+69.3^{\circ}\left({ }^{(} \mathbf{0} 0.724, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.17$, ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 5.04 (dd, $J=9.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 4.26,\left(\mathrm{q}, \mathrm{J}=7.1,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.25\left(\mathrm{q}, J=7.1,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.58 (dd, $\left.J=11.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 3.50(\mathrm{dd}, J=11.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{~S}\right), 3.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 1.31(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,170.6,140.2$, $128.4,128.2,126.2,77.9,76.6,61.6,35.9,35.5,33.5,14.1$; IR (neat) v 3010, 2980, 2960, 2910, 1740, 1630, 1500, 1450, 1370, 1340, 1260, 1150, 1100, 1050
cm^{-1}; HRMS (NBA) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}$ [M+H] ${ }^{+}: 264.10583$, found: 264.10500; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 63.85 ; \mathrm{H}, 6.51 ; \mathrm{N}, 5.32 ; \mathrm{S}, 12.17$. Found: C, 64.17; H, 6.87; N, 5.39; S, 12.40 .
(4R)-4-Carboxyethyl-2-((2R*)-2-(1-phenylpropyl))- Δ^{2}-thiazoline (172c).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 171 c ($325 \mathrm{mg}, .1 .7 \mathrm{mmol}$) to thiazoline 172c. Purification of the crude product by flash chromatography ($1: 3$ ethyl acetate/hexanes) yielded 260 mg (55%) of thiazoline 172c as a colourless oil; $R_{f} 0.41$ ($1: 3 \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 7.29-7.17$ (m , 5 H , aromatic), $5.03\left(\mathrm{dd}, J=9.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHN}\right), 4.24(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.54\left(\mathrm{dd}, J=11.2,8,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right.$), 3.46 (dd, $J=11.2,9.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 3.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 2.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 1.32$ $\left(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1.5 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.28\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1.5 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.19$, $(\mathrm{t}, J=$ $\left.\left.5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.1,170.7,139.1,139.1$, $129.0,129.0,128.2,126.1,77.6,61.5,41.4,40.9,34.9,34.8,18.6,18.4,14.0$; IR (neat) v 2980, 2940, 1740, 1640, 1450, 1370, 1330, 1270, 1230, 1180, 1030, 740 cm^{-1}; HRMS (NBA) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 278.12149$, found: 278.12080.
(4R)-4-Carboxyethyl-2-(2-naphthyl)- Δ^{2}-thiazoline (172d).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 171d ($191 \mathrm{mg}, 0.84 \mathrm{mmol}$) to thiazoline 172d. Purification of the crude product by flash chromatography ($1: 4$ ethyl acetate/hexanes) yielded 155 mg (55\%) of thiazoline 172d as a colourless oil; $\mathrm{R}_{f} 0.56$ (1:3 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+43.1^{\circ}\left(c \quad 0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $8.03(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.92-7.85(\mathrm{~m}$, 3 H , aromatic), $7.56-7.52(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $5.33(\mathrm{dd}, J=9.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 4.32\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.77(\mathrm{dd}, J=11.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{~S}\right), 3.70\left(\mathrm{dd}, J=11.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,170.7,134.9,132.6,129.9$, $129.7,126.6,124.8,78.3,61.8,35.4,14.1$; IR (neat) v 3160, 2990, 1740, 1610, $1590,1570,1370,1280,1220,1180,1120,1040,1020,920,850,820,750 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 286.09018$, found: 286.09080 .

2-(2-Phenylethyl)- Δ^{2}-thiazoline (174a).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 173a ($232 \mathrm{mg}, 1.08 \mathrm{mmol}$) to thiazoline 174a. Purification of the crude product by flash chromatography ($1: 3$ ethyl
acetate/hexanes) yielded 148 mg (72%) of thiazoline 174 a as a colourless oil; refer to compound 172a for characterization data.

(4R)-4-Carboxyethyl-2-(2-phenylethyl)- Δ^{2}-thiazoline (174b).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide $\mathbf{1 7 3 b}$ ($265 \mathrm{mg}, 1.29 \mathrm{mmol}$) to thiazoline 174b. Purification of the crude product by flash chromatography ($1: 3$ ethyl acetate/hexanes) yielded 292 mg (90%) of thiazoline 174 b as a yellowish oil; refer to compound $\mathbf{1 7 2 b}$ for characterization data.
(\pm) 2-(2-(1-Phenylpropyl))- Δ^{2}-thiazoline (174c).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 173 c ($251 \mathrm{mg}, 1.0 \mathrm{mmol}$) to thiazoline 174c. Purification of the crude product by flash chromatography ($1: 3$ ethyl acetate/hexanes) yielded 145 mg (71%) of thiazoline 174 c as a colourless oil; $\mathrm{R}_{f} 0.46$ (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.16(\mathrm{~m}$, 5 H , aromatic), $4.19\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 3.25(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.08\left(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 3.00(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 2.69\left(\mathrm{dd}, J=13.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}$,
$\left.\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.6,139.4,124.0,128.2,126.1,63.9$, $41.4,40.7,33.1,18.4 ;$ IR (neat) v $2980,2920,1630,1500,1450,1200,980 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 206.10034$, found: 206.09950 .

(4R)-4-Carboxyethyl-2-(2-naphthyl)- Δ^{2}-thiazoline (174d).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 173d ($255 \mathrm{mg}, 0.98 \mathrm{mmol}$) to thiazoline 174d. Purification of the crude product by flash chromatography ($1: 5$ ethyl acetate/hexanes) yielded $161 \mathrm{mg}(58 \%)$ of thiazoline 174 d as a colourless oil; refer to compound 172d for characterization data.
(1S,2S)-N-Methyl-2-phenylcyclopropyl carboxamide (175a and 175b).

175a, 175b

Optically pure trans-2-Phenylcyclopropyl methanol, a generous gift from Dr. H. Lebel, ${ }^{290}$ was converted to the carboxylic acid using PDC^{291} and $\mathrm{KMnO} 4 .{ }^{292}$ The acid was converted to the methyl ester using diazomethane. Conversion of the ester to the amide under Weinreb's ${ }^{293}$ procedure involved adding trimethyl aluminum ($1.1 \mathrm{ml}, 11.3 \mathrm{mmol}$) to a solution of N -methylamine ($0.650 \mathrm{ml}, 12.1 \mathrm{mmol}$) in dichloromethane (10 ml) under an argon atmosphere at 0°. After 15 minutes, this solution was
added slowly via cannula to a solution of methyl trans-2-phenyl-1cyclopropyl carboxylate ($1.544 \mathrm{~g}, 8.6 \mathrm{mmol}$) in dichloromethane (10 ml) at $0^{\circ} \mathrm{C}$. After 18 hours at room temperature, water (1 ml) was carefully added to the solution. The solution was then diluted with diethyl ether (100 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography yielded 1.30 g (86%) of amide 175a,b as a white solid; $\mathrm{R}_{f} 0.23$ (1:1 EtOAc/hexane); mp $96-98^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D}$ $+329.2^{\circ}\left(\mathrm{c} 0.390, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.00(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}), 6.31(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 2.78\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.43(\mathrm{ddd}, J=9.1 \mathrm{~Hz}$, $6.3 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2}$), 1.64 (ddd, $J=8.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHCO}$), 1.56 (ddd, $J=9.1 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}$), 1.18 (ddd, $\left.J=8.2 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.6,140.7,128.2,126.0,125.8,26.3,26.2,24.7,15.5$; IR (film) v 3280, 3090, 1640, 1580, 1400, 1250, 1160, 1080, $930,910,840 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}:$176.107545, found: 176.10810; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 75.40 ; \mathrm{H}, 7.48 ; \mathrm{N}, 7.99$. Found: C, $75.14 ; \mathrm{H}, 7.68 ; \mathrm{N}$, 7.98.

2-((1S* $\left.2 S^{*}\right)$-2-Phenylcyclopropyl)- Δ^{2}-thiazoline (176a).

175a

176a

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 175 a ($222 \mathrm{mg}, 1.27 \mathrm{mmol}$) to thiazoline 176a. Purification of the crude product by flash chromatography ($1: 2$ ethyl acetate/hexanes) yielded $185 \mathrm{mg}(72 \%)$ of thiazoline 176 a as a colourless oil; $\mathrm{R}_{f} 0.31$ (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.09(\mathrm{~m}$,

5 H , aromatic), $4.21\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.20(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.29\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.51(\mathrm{ddd}, J=9.2,6.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHPh}$), 2.14 (ddd, $J=8.2,5.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCN}$), 1.63 (ddd, J $\left.=9.2,5.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.40(\mathrm{ddd}, J=8.2,6.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,140.6,128.3,126.2,126.0$, $64.2,33.7,26.9,25.8,18.0$; IR (neat) v 3010, 2940, 2860, 1620, 1500, 1450, $1140,1400,1340,1200,1180,1100,1000,990 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 204.08470$, found: 204.08520.
(4R)-4-Carboxyethyl-2-((1S,2S)-2-phenylcyclopropyl)- Δ^{2}-thiazoline (176b).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide $\mathbf{1 7 5 b}$ ($265 \mathrm{mg}, 1.51 \mathrm{mmol}$) to thiazoline 176a. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded 320 mg (77%) of thiazoline 176 a as a colourless oil; $\mathrm{R}_{f} 0.50$ (1:2 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+362.8^{\circ}\left(\mathrm{c} 0.392, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.09(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.06(\mathrm{dd}, J=9.3,8.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHN}\right), 4.27\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.58(\mathrm{dd}, J=11.2,8.3 \mathrm{~Hz}$, $\mathrm{CHCH}_{2} \mathrm{~S}$), $3.51\left(\mathrm{dd}, J=11.2,9.3 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.54(\mathrm{ddd}, J=9.2,6.4,4.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHPh}$), 2.22 (ddd, $J=8.6,5.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCN}$), 1.69 (ddd, J $\left.=9.2,5.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 1.42(\mathrm{ddd}, J=8.6,6.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}\right), 1.32\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 170.8,140.2,128.3,126.3,126.0,77.6,61.6,35.4,27.4,25.9,18.3,14.1$; IR (neat) $\vee 3250,2990,1740,1610,1500,1460,1440,1380,1370,1330,1230$, 1180, 1150, 1100, $1040,950 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}$
$[\mathrm{M}+\mathrm{H}]^{+}: 276.10583$, found: 276.10530 The (4S)-diastereoisomer has distinguishing ${ }^{1} \mathrm{H}$ NMR signals at $\delta 1.31\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.57$ $\left(\mathrm{dd}, J=11.1,8.8 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}\right)$, and $3.50\left(\mathrm{dd}, J=11.1,9.4 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}\right)$.
(4R)-4-carboxyethyl-2-(3-(4-methylbenzoyloxy)propyl)- Δ^{2}-thiazoline (176c).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 175 c ($312 \mathrm{mg}, 1.0 \mathrm{mmol}$) to thiazoline 176c. Purification of the crude product by flash chromatography ($1: 2$ ethyl acetate/hexanes) yielded 255 mg (76%) of thiazoline 176 c as a colourless oil; $\mathrm{R}_{f} 0.29$ (1:2 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+45.7^{\circ}\left(c 1.452, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.24(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $5.07(\mathrm{dd}, J=$ $\left.9.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHN}\right), 4.37\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.27(\mathrm{q}, J=7.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.60\left(\mathrm{dd}, J=11.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 3.52(\mathrm{dd}, J=$ $\left.11.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right)$, $2.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.32\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.7,170.7,166.4,143.5,129.5,129.0,127.3,77.9,63.5,61.7$, $35.6,30.9,26.6,21.6,14.1$; IR (neat) v 2960, 1730, 1620, 1270, 1200, 1120, 1030, $740 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 336.12695, found: 336.12630 .
(4R)-4-carboxyethyl-2-(3-(tert-butyldiphenylsiloxy)propyl)- Δ^{2}-thiazoline (176d).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 175 d ($317 \mathrm{mg}, 0.74 \mathrm{mmol}$) to thiazoline 176d. Purification of the crude product by flash chromatography (1:3 ethyl acetate/hexanes) yielded 244 mg (73%) of thiazoline 176 d as a colourless oil; $\mathrm{R}_{f} 0.47$ (1:3 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+30.5^{\circ}\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.26(\mathrm{~m}, 10 \mathrm{H}$, aromatic), $5.02(\mathrm{dd}, J=9.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 4.26\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.70\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.56(\mathrm{dd}, J=11.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{~S}\right), 3.48\left(\mathrm{dd}, J=11.2,9.5 \mathrm{~Hz}_{2} 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.30\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $1.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.7,170.8,135.5$, $133.6,129.5,127.6,77.9,62.7,61.6,35.4,30.9,30.4,26.7,19.1,14.1$; IR (neat) v $3070,2940,2880,1740,1620,1450,1370,1200,1100,720 \mathrm{~cm}^{-1} ;$ HRMS (FAB+) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}: 456.20288$, found: 456.20510 .

(4S,5S)-5-benzyloxymethyl-2,2-dimethyl-4-(2-((4R)-4-carboxyethyl-2methyloxy $-\Delta^{2}$-thiazoline)) methyloxymethyl-1,3-dioxolane (176e).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 175 e ($328 \mathrm{mg}, 0.82 \mathrm{mmol}$) to thiazoline

176e. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded $278 \mathrm{mg}(80 \%)$ of thiazoline 176 e as a colourless oil; $\mathrm{R}_{f} 0.36$ (1:1 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+31.6^{\circ}\left(\mathrm{c} 2.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.07(\mathrm{dd}, J=9.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 4.62\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.58(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.48\left(\mathrm{dd}, J=14.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CN}\right), 4.41(\mathrm{dd}, J=14.4,1.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CN}\right), 4.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.09(\mathrm{dt}, J=8.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCHCH}_{2} \mathrm{O}\right), 4.02\left(\mathrm{ddd}_{,} J=8.3,5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BnOCH}_{2} \mathrm{CHCH}\right), 3.70(\mathrm{dd}$, $\left.J=10.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BnOCH}_{2} \mathrm{CH}\right), 3.65(\mathrm{dd}, J=10.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{BnOCH}_{2} \mathrm{CH}$), $3.63\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OCH}_{2} \mathrm{CN}\right.$), $3.53(\mathrm{dd}, J=11.3$, $\left.9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 3.46\left(\mathrm{dd}, J=11.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 1.43(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.32\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.4,170.4,137.8,128.3,127.6,127.5,109.7,77.9,77.2$, $76.9,73.4,71.5,70.7,70.4,61.8,34.1,26.9,26.0,14.1$; IR (neat) $\vee 2980,2930$, 2900, 2870, 1740, 1610, 1530, 1450, 1370, 1210, 1160, 1080, $850 \mathrm{~cm}^{-1}$; HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 424.17938$, found: 424.17830 .

(4R)-4-N-Methylcarboxamido-2-(2-phenylethyl)- Δ^{2}-thiazoline (181).

To a solution of ester $180(1.021 \mathrm{mg}, 3.88 \mathrm{mmol})$ in methanol (50 ml) was added N-methylamine ($5 \mathrm{ml}, 174 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The solution is allowed to warm up slowly with stirring. The reaction is stirred at room temperature for 20 minutes or until TLC analysis indicates that the reaction is complete. All the volatiles are removed under reduced pressure. Purification of the crude product by flash chromatography yielded 948 mg (98%) of amide 181 as a colorless oil; $R_{f} 0.21$ (1:1 EtOAc/hexane); $[\alpha]_{D}^{21}-6.67^{\circ}$ (c 0.420,
$\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $6.23(\mathrm{br}$, $1 \mathrm{H}, \mathrm{NH}), 4.95\left(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.61(\mathrm{dd}, J=11.3 \mathrm{~Hz}$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}$), $3.53\left(\mathrm{dd}, J=11.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}\right.$), $3.09-2.94$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{N}=\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 2.90-2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2,171.7,139.9,128.4,128.2,126.2$, $78.4,36.0,35.4,32.9,26.0$; IR (neat) v 3390, 3030, 2940, 1660, 1620, 1530, 1500, 1450, 1410, 1190, 1050, $750,700 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 249.10616$, found: 249.10480.

E/Z-(4R)-4- N -Methylcarboxamido-2-(2-phenylethylene)- N -trifluoromethanesuphonamidoyl-thiazolane (182).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 181 ($216 \mathrm{mg}, 0.87 \mathrm{mmol}$) to N-triflyl amide 182. Purification of the crude product by flash chromatography (1:2 ethyl acetate/hexanes) yielded 264 mg of a product which was still crude. Crystallization from ethyl acetate/hexanes yielded 194 mg (69%) of thiazoline 182 as slightly yellowish low melting crystals which were suitable for x-ray analysis ${ }^{294} ; \mathrm{R}_{f} 0.34$ (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $6.31(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.19(\mathrm{t}, J=7.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 5.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CHN}\right), 3.85(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{SCH}_{2} \mathrm{CH}\right), 3.41\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 3.37(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{SCH}_{2} \mathrm{CH}\right), 2.90\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.8,138.6,132.4,128.5,128.1,126.5,124.6,121.4,118.1,115.1,66.1,36.8$, 31.4, 26.9; IR (neat) $v 3440,3330,3050,1670,1540,1410,1210,1140,1060$, $900,720 \mathrm{~cm}^{-1}$; See Appendix 3 for X-ray crystal data.

(4R)-4-N-Methylcarboxamido-2-(2-naphthyl)- Δ^{2}-thiazoline (185).

To a solution of ester 184 ($902 \mathrm{mg}, 3.16 \mathrm{mmol}$) in methanol (20 ml) was added N-methylamine ($5 \mathrm{ml}, 174 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The solution is allowed to warm up slowly with stirring. The reaction is stirred at room temperature for 20 minutes or until TLC analysis indicates that the reaction is complete. All the volatiles are removed under reduced pressure. Purification of the crude product by flash chromatography yielded 835 mg (98%) of amide 185 as a colorless White solid; $\mathrm{R}_{f} 0.24$ ($1: 1$ EtOAc/hexane); mp $131-133^{\circ} \mathrm{C}$; $[\alpha]^{21}{ }^{D}-0.842^{\circ}\left(c \quad 0.594, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $8.02-8.00(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.93-7.86(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.59-7.26$ ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 6.93 (br, $1 \mathrm{H}, \mathrm{NH}$), 5.24 (dd, $J=9.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 3.80\left(\mathrm{dd}, J=11.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 3.70(\mathrm{dd}, J=11.3,9.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.90\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{HNCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 171.7,171.1,134.8,132.6,129.9,129.6,128.8,128.2,127.8,127.7$, 1265.8, 124.3, 79.2, 35.6, 26.1; IR (KBr) v 3340, 3050, 2930, 1660, 1600, 1530, 1410, 1270, $920,810 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 271.09052, found: 271.08920 .
(4R)-4-Carboxyethyl-2-(4-(2-naphthyl-S-oxido-thiazolyl)- Δ^{2}-thiazoline (188).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 185 ($395 \mathrm{mg}, 01.46 \mathrm{mmol}$) to thiazoline 188. Purification of the crude product by flash chromatography ($1: 2$ ethyl acetate/hexanes) yielded 135 mg (25%) of bis-thiazoline 188 as a yellowish oil. This compound is somewhat unstable and dehydrates to give bisthiazoline 189 upon standing; $\mathrm{R}_{f} 0.18$ (1:2 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $8.06-8.02(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.95-$ $7.84(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.61-7.52(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $5.19(\mathrm{dd}, J=18.8,9.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHN}\right), 4.70(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.27\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.26\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.08\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{C}=\mathrm{C}\right)$, $4.02(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{SCH} \mathrm{C}=\mathrm{C}), 3.77(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{SCH} 2 \mathrm{C}=\mathrm{C})$, $3.76\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{C}=\mathrm{C}\right), 3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH} \mathrm{CH}_{2}\right), 1.34(\mathrm{t}, J=7.1$ $\left.\mathrm{Hz}, 1.5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1.5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.5,177.4,170.1,135.2,135.1,132.5,132.4,130.0,129.9$, $129.1,129.0,128.3,128.0,127.9,127.7,126.7,124.8,106.1,77.4,61.9,42.7$, $42.6,36.5,36.1,14.1,14.0$; IR (neat) v $3260,3060,2980,1730,1660,1600$, 1370, 1270, 1190, 1120, 1040, 930, 860, 820, $740 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 387.08371$, found: 387.08460 .

(4R)-4-carboxyethyl-2-(4-(2-naphthylthiazolyl)- Δ^{2}-thiazoline (189).

The general procedure for the conversion of amides to thiazolines was used for the conversion of amide 185 ($395 \mathrm{mg}, 01.46 \mathrm{mmol}$) to thiazoline 189. Purification of the crude product by flash chromatography ($1: 2$ ethyl acetate/hexanes) yielded $172 \mathrm{mg}(32 \%)$ of thiazoline 189 as a white solid. Compound 188 is dehydrated to give bis-thiazoline 189 upon standing
resulting in a total yield of 57% for bis-thiazoline 189. The bis-thiazoline could be crystallized from ethyl acetate/hexanes to give crystals which were suitable for x-ray analysis ${ }^{295}$; $\mathrm{R}_{f} 0.50$ (1:2 EtOAc/hexane); $[\alpha]^{21} \mathrm{D}$ $+60.9^{\circ}\left(\mathrm{c} 0.412, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 146-148^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46$ ($\mathrm{m}, 1 \mathrm{H}$, aromatic), $8.11(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 8.09-8.07 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), 7.97$7.84(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.56-7.51(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $5.33(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHN}$), $4.32\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}\right), 1.36$ ($\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,1668.4$, $148.7,134.3,133.1,130.0,128.8,128.6,127.8,127.3,126.9,126.4,123.9,122.4$, $77.8,77.2,62.0,34.9,31.4,22.6,14.1$; $\mathrm{IR}(\mathrm{KBr}) \vee 3060,2980,2930,1740,1600$, 1180, $1040 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 61.93; H, 7.48; $\mathrm{N}, 7.99 ; \mathrm{S}, 17.40$. Found: C, 61.95; H, 4.41; N, 7.65; S, 17.32. For x-ray crystal data, see Appendix 4.

Experimental Section: Chapter 7

$N_{r} N$-Diethyl-3-phenylpropane thioamide (197a).

General procedure for the conversion of tertiary and secondary amides to cyclic thioamides. To a solution of amide $196 \mathbf{a}$ ($242 \mathrm{mg}, 1.18 \mathrm{mmol}$) in dichloromethane (10 ml) under an argon atmosphere was added pyridine ($290 \mu \mathrm{l}, 3.54 \mathrm{mmol}$). The solution was cooled to $-40^{\circ} \mathrm{C}$ and neat triflic anhydride ($260 \mu \mathrm{l}, 1.53 \mathrm{mmol}$) was added slowly. The reaction was then allowed to slowly warm up to $0^{\circ} \mathrm{C}$. Stirring was continued for another 4 to 12 hours. $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ was then bubbled very slowly into the reaction and stopped after 10 seconds. Pyridine ($290 \mu 1,3.54 \mathrm{mmol}$) is again added to neutralize the reaction. Alternatively, an anhydrous solution of NaSH in acetonitrile or acetone could be used in place of gaseous $\mathrm{H}_{2} \mathrm{~S}$. Only a stoichiometric amount is required so the reaction is monitored carefully by TLC analysis to determine if enough $\mathrm{H}_{2} \mathrm{~S}$ has been used. If too much $\mathrm{H}_{2} \mathrm{~S}$ has been added, the meta-stable geminal bis-thiol can be formed. In this case, the septum is removed and the solution is stirred in the fume hood until the thioamide is regenerated. The reaction was filtered through neutralized silica using diethyl ether as an eluant. After filtering, the solvent was removed in under reduced pressure. Further purification of the crude product by flash chromatography (1:8 ethyl acetate/hexanes) yielded 240 mg (92%) of the thioamide 197a as a yellowish oil; $R_{f} 0.48$ (1:7 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.21$ (m, 5H, aromatic), $3.99\left(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.38\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.15$
($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $3.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CS}\right), 1.67(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.57\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $201.7,140.6,128.4$ (2), 126.3, 48.0, 45.7, 44.1, 36.3, 13.4, 11.0; IR (neat) v 2980, 2940, 1500, 1470, 1450, 1420, 1300, 1270, 1230, 1090, 1060, $720 \mathrm{~cm}^{-1}$; HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 222.13165$, found: 22.13120 .
N-Benzyl-3-phenylpropane thioamide (197b).

196b

197b

The general procedure for the conversion of amides to thioamides was used for the conversion of amide 196 b ($266 \mathrm{mg}, 1.24 \mathrm{mmol}$) to thioamide 197b. Purification of the crude product by flash chromatography ($1: 7$ ethyl acetate/hexanes) yielded 268 mg (94%) of thioamide 197 b as a yellowish solid; $\mathrm{R}_{f} 0.21$ (1:7 EtOAc/hexane); $\mathrm{mp} 78-80^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.01(\mathrm{~m}, 11 \mathrm{H}$, aromatic and NH$), 4.67\left(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right)$, $3.11\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.92\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CS}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9,140.0,135.8,128.7,128.5,128.4,128.0$, $127.9,126.3,50.1,48.7,35.3$; $\mathrm{IR}(\mathrm{KBr}) \vee 3220,3060,1540,1450,1430,1400$, 1350, 1130, 950, $720,690 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NS}[\mathrm{M}+\mathrm{H}]$: 256.11600, found: 256.11640; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NS}: \mathrm{C}, 75.24 ; \mathrm{H}, 6.72 ; \mathrm{N}$, $5.48 ; \mathrm{S}, 12.55$. Found: C, $75.40 ; \mathrm{H}, 6.83 ; \mathrm{N}, 5.48 ;$ S, 12.49 .

N,N-Diethyl-2-naphthyl thioamide (197c).

196c

\longrightarrow

$197 c$

The general procedure for the conversion of amides to thioamides was used for the conversion of amide $\mathbf{1 9 6 c}(240 \mathrm{mg}, 1.06 \mathrm{mmol})$ to thioamide 197c. Purification of the crude product by flash chromatography ($1: 7$ ethyl acetate/hexanes) yielded 247 mg (96%) of thioamide 197 c as a yellowish solid; $\mathrm{R}_{\mathrm{f}} 0.36$ (1:7 EtOAc/hexane); mp $102-104^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.85-7.81(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.70(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $7.52-7.49(\mathrm{~m}$, 2 H , aromatic), $7.40-7.37(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $3.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.63\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 0.89\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $199.9,140.9,132.5$ (2), 128.0 (2), 127.5, 126.4, 123.3, 47.7, 45.9, 13.7, 11.1; IR $(\mathrm{KBr}) \vee 3450,3060,2980,2940,1500,1450,1430,1380,1360,1310,1270,1250$, $1230,1140,1120,1060,990,920,850,810,740 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{15} \mathrm{H}_{18}$ NS $[\mathrm{M}+\mathrm{H}]: 244.11600$, found: 244.11670; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NS}: \mathrm{C}$, 74.02 ; H, 7.05 ; N, 5.75 ; S, 13.17. Found: C, 73.82 ; H, 7.09 ; N, 5.75; S, 13.44.

N-Benzyl-2-naphthyl thioamide (197d).

The general procedure for the conversion of amides to thioamides was used for the conversion of amide 196 d ($273 \mathrm{mg}, 1.05 \mathrm{mmol}$) to thioamide 197d. Purification of the crude product by flash chromatography ($1: 6$ ethyl acetate/hexanes) yielded 275 mg (95%) of thioamide 197 d as a yellowish solid; $\mathrm{R}_{f} 0.29$ (1:5 EtOAc/hexane); mp $139-140^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $7.92(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.86-7.74(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.53-7.45(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.41-7.31(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.01(\mathrm{~d}, J$ $\left.=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,136.1,134.4$, $132.3,128.9,128.8,128.3,128.2,127.6,126.8,125.9,124.3,50.9 ;$ IR (neat) v

3310, 2930, 1520, 1390, 1300, 820, 740, $700 \mathrm{~cm}^{-1}$; HRMS (NBA) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 278.10034$, found: 278.09910; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NS}: \mathrm{C}$, $77.93 ;$ H, 5.46 ; N, 5.05 ; S, 11.56. Found: C, $77.84 ;$ H, $5.26 ;$ N, $5.00 ;$ S, 11.58 ..
(1S* $2 S^{*}$)-N-methyl-2-phenylcyclopropyl carboxythioamide (197e).

196e

197e

The general procedure for the conversion of amides to thioamides was used for the conversion of amide 196 e ($185 \mathrm{mg}, 1.06 \mathrm{mmol}$) to thioamide 197e. Purification of the crude product by flash chromatography (1:3 ethyl acetate/hexanes) yielded 184 mg (91%) of thioamide 197e as a yellowish solid; $R_{f} 0.32$ (1:3 EtOAc/hexane); mp $113-115^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.29-7.18(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.10-7.07(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $3.17\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NHCH}_{3}\right), 2.72(\mathrm{ddd}, J=8.5 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 4.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCHCH} 2), 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cycloprop }}\right), 1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cycloprop }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.4,140.4,128.4,126.4,126.1,36.0,33.0,29.8,19.7$; IR $(\mathrm{KBr}) \vee 3360,3250,3060,1650,1540,1460,1360,1220,1050 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 192.08470$, found: 192.08490 .

N-Benzyl-4-(4-methyl benzoyloxy)butane thioamide (197f).

The general procedure for the conversion of amides to thioamides was used for the conversion of amide $196 f(315 \mathrm{mg}, 1.01 \mathrm{mmol})$ to thioamide

197f. Purification of the crude product by flash chromatography (1:4 ethyl acetate/hexanes) yielded 272 mg (82%) of thioamide 197 f as a yellowish oil; $\mathrm{R}_{f} 0.18$ (1:5 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87$ (dd, $J=$ $8.3 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), 7.71 (br, $1 \mathrm{H}, \mathrm{NH}$), 7.37-7.30 (m, 5 H , aromatic), $7.22-7.20\left(\mathrm{~m}, 2 \mathrm{H}\right.$, aromatic), $4.82\left(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right)$, $4.35\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.78\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CS}\right), 2.40(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 2.31\left(\mathrm{tt}, \mathrm{J}=7.2 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0,166.8,143.8,136.0,129.5,129.0,128.8,128.3,128.0$, $127.1,63.4,50.3,43.0,28.6,21.6$; IR (neat) v 3310, 3030, 2960, 1710, 1610, 1530, 1450, 1410, 1270, 1180, 1100, 1010, $960,750 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 328.13712$, found: 328.13640 .

N-Benzyl-4-t-butyldiphenylsilyloxybutane thioamide (197g).

196g

-

1979

The general procedure for the conversion of amides to thioamides was used for the conversion of amide 196 g ($452 \mathrm{mg}, 1.05 \mathrm{mmol}$) to thioamide 197 g . Purification of the crude product by flash chromatography (1:8 ethyl acetate/hexanes) yielded 403 mg (86%) of thioamide 197 g as a yellowish oil; $R_{f} 0.43$ (1:7 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.69(\mathrm{~m}$, 1 H , aromatic), $7.60-7.57$ ($\mathrm{m}, 4 \mathrm{H}$, aromatic), $7.43-7.23$ ($\mathrm{m}, 10 \mathrm{H}$, aromatic), $5.52(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.77\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 3.70(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.84\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CS}\right), 1.98(\mathrm{tt}, J=7.2 \mathrm{~Hz}, 5.9 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.0$, $136.0,135.3,134.7,133.3,129.7,129.5,128.9,128.8,128.5,128.2,128.0,127.8$, 127.6 (2), $62.3,50.2,43.1,31.4,26.8,19.1$; IR (neat) $\vee 3360,3070,2960,2930$,
$2850,1520,1420,1370,1230,1190,1140,1100,810,740,700 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NOSSi}[\mathrm{M}+\mathrm{H}]^{+}: 448.21304$, found: 448.21400 .
(4S, 5S)-4-(2-N-benzyl thioacetamidyl)oxymethyl-5-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane (197h).

The general procedure for the conversion of amides to thioamides was used for the conversion of amide $196 \mathrm{~h}(295 \mathrm{mg}, 0.74 \mathrm{mmol})$ to thioamide 197h. Purification of the crude product by flash chromatography (1:6 ethyl acetate/hexanes) yielded $214 \mathrm{mg}(70 \%)$ of thioamide 197 h as a yellowish oil; $\mathrm{R}_{f} 0.39$ ($1: 5 \mathrm{EtOAc} / \mathrm{hexane}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.95$ (br, 1 H , $\mathrm{NH}), 7.37-7.25(\mathrm{~m}, 10 \mathrm{H}$, aromatic), $4.91(\mathrm{dd}, J=15.0 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{NH}$), 4.84 (dd, $\left.J=15.0 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.52$ (s, 2 H , $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.49\left(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CS}\right), 3.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.68$ ($\mathrm{dd}, J=3.6 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}$), $3.62-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCHCH}_{2}\right)$, $3.50\left(\mathrm{dd}, J=4.9 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.17(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.1,137.4,135.7,128.7,128.3,128.2$, $127.7,127.5,109.5,77.7,76.6,75.5,73.4,71.0,70.0,48.6,26.6,26.4 ; \operatorname{IR}$ (neat) v $3290,3030,2990,2910,1530,1500,1450,1410,1380,1370,1310,1250,1220$, 1170, $1090,740,700 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 416.18954, found: 416.19010 .
${ }^{18} \mathrm{O}$-N-Benzyl-3-phenylpropanamide (201).

General procedure for the conversion of tertiary and secondary amides to ${ }^{18} \mathrm{O}$-labelled amides. To a solution of amide $92 \mathbf{a}$ ($246 \mathrm{mg}, 1.03 \mathrm{mmol}$) in dichloromethane (10 ml) under an argon atmosphere was added pyridine ($252 \mu \mathrm{l}, 3.09 \mathrm{mmol}$). The solution was cooled to $-40^{\circ} \mathrm{C}$ and neat triflic anhydride ($255 \mu \mathrm{l}, 1.34 \mathrm{mmol}$) was added slowly. The reaction was then allowed to slowly warm up to $0^{\circ} \mathrm{C}$. Stirring was continued for another 4 to 12 hours. $\mathrm{H}_{2}^{18} \mathrm{O}(<1$ drop $\sim 40 \mathrm{mg}, 1.5 \mathrm{mmol})$ was then added to the reaction and stirring was continued for another 5 minutes. The reaction was diluted with diethyl ether (100 ml), washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by filtering through a short column of silica (diethyl ether as an eluant) yielded a quantitative amount of ${ }^{18} \mathrm{O}$-labelled amide 201 as a white solid; $\mathrm{R}_{f} 0.31$ (1:2 EtOAc/hexane); $\mathrm{mp} 86-88^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.11$ ($\mathrm{m}, \mathrm{J}=$ 5 H , aromatic), $5.70(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.38\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{Ph}\right), 2.99(\mathrm{t}, J$ $\left.=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.51\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,140.7,138.1,128.6,128.5,128.3,127.6,127.4,126.2$, $43.5,38.4,31.6 ; \mathrm{IR}(\mathrm{KBr}) \vee 3300,1640,1540,1450,740 \mathrm{~cm}^{-1}$; Voltage regulated HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 240.13884$, found $240.13790\left(100 \%\right.$ relative intensity); calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}^{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 242.37438$ found 242.3835 (12.20% relative intensity, uncorrected for other isotopes).

${ }^{18} \mathrm{O}-\mathrm{N}, \mathrm{N}$-Diethyl-3-phenylpropanamide (202).

The general procedure for the conversion of amides to ${ }^{18} \mathrm{O}$-labelled amides was used for the conversion of amide 88 a ($277 \mathrm{mg}, 1.35 \mathrm{mmol}$) to thioamide 202. Purification of the crude product by filtering through a short column of silica gel (diethyl ether as an eluant) yielded a quantitative amount of ${ }^{18} \mathrm{O}$-labelled amide 202 as a colourless oil; $\mathrm{R}_{f} 0.39$ (1:3 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.16$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), $3.38\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.21\left(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.96(\mathrm{t}, \mathrm{J}=$ $\left.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.59\left(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.31(\mathrm{t}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,141.4,128.3,128.2,125.9,41.7,40.0,34.9,31.5,14.1,12.9$; IR (neat) v 2970, 1640, 1450, $1430 \mathrm{~cm}^{-1}$; Voltage regulated HRMS (FAB+) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$206.154489, found 206.155500 (100% relative intensity); calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}^{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$208.158734, found $157.800(11.78 \%$ relative intensity, uncorrected for other isotopes).

Experimental Section: Chapter 8

2-(2-naphthyl)-toluene (207).

Magnesium turnings ($845 \mathrm{mg}, 34.8 \mathrm{mmol}$) were dried with a flame under vacuum. The flask was then charged with dry THF (15 ml) followed by 2 chlorotoluene ($2.26 \mathrm{ml}, 19.3 \mathrm{mmol}$) under an argon atmosphere. The solution was refluxed for 18 h and then allowed to cool to ambient temperature. The Grignard was then added via cannula to a slurry containing 2-bromonaphthalene ($2.00 \mathrm{~g}, 9.7 \mathrm{mmol}$) and NiCl_{2} ($69.5 \mathrm{mg}, 0.09$ mmol) in dry THF (5 ml). The resulting black solution was heated to $50-$ $55^{\circ} \mathrm{C}$ for 3 h or until TLC analysis showed that the reaction was complete. The reaction was quenched by the careful addition of several drops of water. The volatiles were removed under reduced pressure and the residue was purified by flash chromatography (100% hexane) to produce the hydrocarbon ($1.43 \mathrm{~g}, 68 \%$) as a colorless oil; $\mathrm{R}_{f} 0.35$ (100% hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.84$ ($\mathrm{m}, 3 \mathrm{H}$, aromatic), 7.77 ($\mathrm{s}, 1 \mathrm{H}$, aromatic), 7.51-7.45 ($\mathrm{m}, 3 \mathrm{H}$, aromatic), $7.32-7.23(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 2.31 (s, $3 \mathrm{H}, \mathrm{PhCH} 3) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.8,139.5,135.5,133.3,132.2$, $130.3,129.9,127.9,127.7,127.6$ (2), 127.4, 127.3, 126.1, 125.8, 20.5; IR (neat) v 3150, 1610, 1490, 1450, 1470, 850, 810, 750, $710 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{15}[\mathrm{M}+\mathrm{H}]^{+}: 219.11737$, found: 219.11700 .

2-(2-naphthyl)-benzyl bromide (208).

To a solution of the methylaryl compound ($224 \mathrm{mg}, 1.026 \mathrm{mmol}$) in CCl_{4} (5 ml) was added N -bromosuccinimide ($219 \mathrm{mg}, 1.21 \mathrm{mmol}$) and benzoyl peroxide ($15 \mathrm{mg}, 0.6 \mathrm{mmol}$). The yellowish solution was connected to an exit bubbler and brought to reflux for 3 h . After cooling the near colorless solution to ambient temperature, the solution was diluted with ether (50 $\mathrm{ml})$ and then washed with $10 \% \mathrm{HCl}(15 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{ml})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography (starting with 100% hexane and finishing with 1:50 $\mathrm{Et}_{2} \mathrm{O} /$ hexane) to yield the bromide ($242 \mathrm{mg}, 80 \%$) as a colorless oil; $\mathrm{R}_{f} 0.22$ (100% hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.89$ ($\mathrm{m}, 4 \mathrm{H}$, aromatic), 7.59-7.51 (m, 4H, aromatic), 7.41-7.25 (m, 3H, aromatic), $4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,137.6,135.4,133.1,132.5,131.0,130.6$, $128.5,128.1,128.0,127.8,127.7,127.2,126.4,126.1,32.2$; IR (neat) v 3200, 1590, 1480, 1440, 1210, 850, 810, $750 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13}^{79} \mathrm{Br}$ $[\mathrm{M}+\mathrm{H}]^{+}: 296.02005$, found: 296.02082 .

2'-(2-naphthyl)-phenyl acetonitrile (209).

To a solution of the bromide ($110 \mathrm{mg}, 0.37 \mathrm{mmol}$) in DMSO (2 ml) was added $\mathrm{NaCN}(22 \mathrm{mg}, 0.45 \mathrm{mmol})$. The mixture was connected to an exit bubbler in a well-ventilated hood and heated to $70^{\circ} \mathrm{C}$ for 1 h or until TLC showed the reaction was complete. The solution was diluted with ether $(50 \mathrm{ml})$ and washed with $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography (1:20 EtOAc/hexane) to yield the nitrile ($86 \mathrm{mg}, 95 \%$) as a colorless oil; $\mathrm{R}_{f} 0.26$ ($1: 20 \mathrm{EtOAc} /$ hexane); 'H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.86(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.76 ($\mathrm{s}, 1 \mathrm{H}$, aromatic), $7.61-$ 7.53 ($\mathrm{m}, 3 \mathrm{H}$, aromatic), $7.47-7.25\left(\mathrm{~m}, 4 \mathrm{H}\right.$, aromatic), $3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7,137.2,133.1,132.5,130.6,128.9,128.3,128.2$ (2), 128.0, 127.9, 127.8, 127.7, 126.8, 126.6, 126.4, 22.0; IR (neat) v 3300, 2200, $1600,1490,1410,1120,850,810,750 \mathrm{~cm}^{-1} ;$ HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}[M]^{+}$: 243.10480, found: 243.10398.

2'-(2-naphthyl)phenyl acetic acid (210).

To a solution of the nitrile ($24.6 \mathrm{~g}, 101 \mathrm{mmol}$) in EtOH (5 ml) was added a solution of $\mathrm{NaOH}(40.49 \mathrm{~g}, 1012 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$. The mixture was refluxed for 5 h or until TLC analysis showed that the reaction was complete. After cooling to ambient temperature, the solution was acidified by the careful addition of aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(20 \%, 270 \mathrm{ml})$ while cooling in an ice bath. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O} / E t \mathrm{OAc}(1: 1,3 \times 200 \mathrm{ml})$ and the organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was crystallized using $\mathrm{Et}_{2} \mathrm{O}$ /hexane to give the acid as a white solid ($14.89 \mathrm{~g}, 56 \%$) and a mother liquor which could be further purified by flash chromatography (1:1 EtOAc/hexane with 2% acetic acid) to yield another crop of acid ($8.50 \mathrm{~g}, 32 \%$); $\mathrm{Rf}_{f} 0.31$ (1:1 $\mathrm{EtOAc} /$ hexane with 2% acetic acid); mp $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.20(\mathrm{br}, 1 \mathrm{H}, \mathrm{COOH}), 7.88-7.80(\mathrm{~m}, 3 \mathrm{H}$, aromatic $), 7.78(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $7.51-7.22\left(\mathrm{~m}, 7 \mathrm{H}\right.$, aromatic), $3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{COOH}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.1,142.5,138.3,133.1,132.4,131.2,130.4$ (2), 128.0, $127.8,127.6,127.4,126.3,126.0,38.5$; IR (neat) v 3050, 1710, 1600, 1490, 1410, 1290, 1230, 1190, 1160, 940, 900, 580, 810, $750 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}: 262.09937$, found: 262.09932 .

(2S)-3-(2'-(2-naphthyl)phenyl-1-oxoethyl)-4-(phenylmethyl)-2-

 oxazolidinone (211).

To a solution of the acid ($598 \mathrm{mg}, 2.28 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{ml})$ at ambient temperature was added triethylamine ($335 \mu \mathrm{l}, 2.39 \mathrm{mmol}$). The solution was cooled to $-78^{\circ} \mathrm{C}$ and trimethylacetyl chloride ($300 \mu \mathrm{l}, 2.44 \mathrm{mmol}$) was then added slowly. The resulting slurry was warmed to $0^{\circ} \mathrm{C}$ for 1 h and then recooled to $-78^{\circ} \mathrm{C}$. In a separate flask, dry THF (5 ml) was added to (4S)-4-(phenylmethyl)-2-oxazolidinone ($445 \mathrm{mg}, 2.51 \mathrm{mmol}$). This solution was cooled to $-78^{\circ} \mathrm{C}$ and n-butyllithium ($1.05 \mathrm{ml}, 2.5 \mathrm{M}$ in hexanes) was added slowly. After stirring for 15 min , the cold solution of the lithium anion was transferred via cannula into the mixed anhydride. After 15 min at $-78^{\circ} \mathrm{C}$, the solution was allowed to warm up to $0^{\circ} \mathrm{C}$ and stirred for an additional 1 h . The solution was poured onto saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(15 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The organic extracts were combined and washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before being concentrated under reduced pressure. The residue was then purified by flash chromatography (1:5 EtOAc/hexane) to yield the acyl oxazolidinone (795 $\mathrm{mg}, 81 \%$) as a colorless viscous oil; $\mathrm{R}_{f} 0.20$ (1:5 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+75.8^{\circ}$ (c $0.178, \mathrm{CHCl}_{3}$) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.78(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.50-7.18(\mathrm{~m}, 10 \mathrm{H}$, aromatic), $7.03-6.99(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $4.38(\mathrm{~d}, J=17.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CO}\right), 4.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{BnCHN}), 4.30(\mathrm{~d}, \mathrm{~J}=17.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CO}\right), 3.92\left(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.74(\mathrm{dd}, J=8.8,8.1 \mathrm{~Hz}$,
$\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.02\left(\mathrm{dd}, J=13.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.39(\mathrm{dd}, J=13.4$, $\left.9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,153.0,142.3$, $138.7,135.0,133.0,132.2,132.0,130.7,130.2,129.1,128.7,127.9,127.6,127.5$ (2), 127.4, 127.3, 127.0, 126.2, 125.9, 65.7, 54.9, 40.2, 37.3; IR (neat) v 3010, $1780,1700,1600,1490,1450,1380,1360,1240,1210,1190,1100,980,900,850$, 810, $750,720,690 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 421.16779$, found: 421.16581 .

(2S)-3-((2S)-azido-2-(2'-(2-naphthyl)phenyl)-1-oxoethyl)-4-

 (phenylmethyl)-2-oxazolidinone (212a).

To a solution of potassium hexamethyldisilylamide $(3.91 \mathrm{ml}, 0.5 \mathrm{M}$ in toluene) in dry THF (6 ml) was added via cannula, the acyl oxazolidinone ($744 \mathrm{mg}, 1.77 \mathrm{mmol}$) in dry THF $(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. After stirring the yellow solution for 30 min , it was added to a solution of tri-isopropylbenzenesulfonyl azide ($675 \mathrm{mg}, 2.17 \mathrm{mmol}$) in dry THF (6 ml) at $78^{\circ} \mathrm{C}$. After 3 min , glacial acetic acid ($505 \mu \mathrm{l}, 0.88 \mathrm{mmol}$) and potassium acetate ($867 \mathrm{mg}, 0.88 \mathrm{mmol}$) were added to the solution which was then allowed to stir for 12 h while warming up to ambient temperature slowly. Brine (30 ml) was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X}$ 30 ml). The combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The diastereoselectivity was determined to be $98: 2$ by
${ }^{1} \mathrm{H}$ NMR analysis of the crude residue as well as by HPLC (Novapak $6 \mu \mathrm{~m}$ silica gel, $8 \mathrm{~mm} \times 100 \mathrm{~mm}$, flow rate $=1.5 \mathrm{ml} / \mathrm{min}$ of 10:90 EtOAc $/$ hexane, T_{r} (minor) $10.47 \mathrm{~min}, T_{\mathrm{r}}$ (major) 13.35 min). The residue was purified by flash chromatography (1:4 EtOAc/hexanes) to yield the diastereomerically pure azide ($743 \mathrm{mg}, 84 \%$) as a colorless viscous oil; $R_{f} 0.48$ (1:3 EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+126.8^{\circ}\left(c 0.164, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.93-7.86(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.59-7.13(\mathrm{~m}, 12 \mathrm{H}$, aromatic), $6.05(\mathrm{~s}, 1 \mathrm{H}$, ArCHN_{3}), 4.44 (dddd, $J=9.8,7.9,3.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BnCHN}$), 3.98 (dd, $J=$ $\left.8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.70\left(\mathrm{dd}, J=8.9,7.9,1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.27(\mathrm{dd}, J=$ $\left.13.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.66(\mathrm{dd}, J=13.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} 2 \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.5,151.8,143.0,137.3,134.7,132.8,132.5$, $131.4,131.1,129.2,129.1,128.9,128.3,128.2,127.7,127.6,127.3,136.2$ (2), $66.1,62.0,55.5,37.5$; IR (neat) v 3020, 2100, 1710, 1600, 1490, 1450, 1380, 1200, 1100, 1050, 990, 850, 810, 750, 720, 690, $660 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}-\mathrm{N}_{2}\right]^{+}: 434.16306$, found: 434.16361.
(2S)-3-((2R)-azido-2-(2'-(2-naphthyl)phenyl)-1-oxoethyl)-4-(phenylmethyl)-2-oxazolidinone (212b).

The minor diastereoisomer generated in the above reaction was contaminated with traces of the major diastereoisomer. Further purification by semi-preparative HPLC (Novapak $6 \mu \mathrm{~m}$ silica gel, 25×100 mm , flow rate $=15.0 \mathrm{ml} / \mathrm{min}$ of $10: 90 \mathrm{EtOAc} /$ hexane, $T_{\mathrm{r}} 10.47 \mathrm{~min}$)
produced the diastereomerically pure minor isomer ($10 \mathrm{mg}, 1 \%$) as a colorless oil; $\mathrm{R}_{f} 0.50$ (1:3 EtOAc/hexane); $[\alpha]_{\mathrm{D}}^{21}-74.3^{\circ}$ (c $0.334, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.85(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 7.62-7.11 (m, 12 H , aromatic), $5.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCHN}_{3}\right), 4.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{BnCHN}), 4.02(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\right), 3.36\left(\mathrm{dd}, J=13.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.46(\mathrm{dd}, J=13.3,10.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.6,151.9,143.8$, $137.4,134.7,132.9,132.6,131.8,130.5,129.3,129.0,128.4,128.3,127.8,127.7$, 127.6 (2), 127.4, 126.5, 126.2, 126.1, 66.4, 61.9, 55.2, 37.3; IR (neat) v 3050, $2090,1790,1700,1490,1390,1370,1210,1100,900,820,750,720 \mathrm{~cm}^{-1} ;$ HRMS (FAB+) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}]^{+}: 463.17700$, found: 463.17450 .
(2S)-3-((2S)-N-tert-butoxycarbamido-2-(2'-(2-naphthyl)phenyl)-1-oxoethyl)-4-(phenylmethyl)-2-oxazolidinone (213).

To a solution of water (4 ml) at ambient temperature under argon was added SnCl_{2} ($826 \mathrm{mg}, 4.36 \mathrm{mmol}$) followed by a solution of the azide (671 $\mathrm{mg}, 1.45 \mathrm{mmol}$) in dioxane (12 ml). After $24 \mathrm{~h}, \mathrm{NaHCO}_{3}(610 \mathrm{mg}, 7.26$ $\mathrm{mmol})$ and $\mathrm{BOC}_{2} \mathrm{O}(1.5 \mathrm{~g}, 7.26 \mathrm{mmol})$ were added and the solution was stirred for another 24 h . Dimethyl aminopropylamine (2 ml) was added the solution was stirred for another 2 h . The solution was diluted with ether (100 ml), filtered through celite, washed with $10 \% \mathrm{HCl}(2 \times 25 \mathrm{ml}$) and saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by flash
chromatography (1:3.5 EtOAc/hexane) gave the BOC derivative as a colorless viscous oil; Rf 0.45 (1:2 EtOAc/hexane); $[\alpha]_{\mathrm{D}}^{21}+169.6^{\circ}$ (c 0.316, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.82(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 7.62-7.59 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), $7.49-7.15(\mathrm{~m}, 11 \mathrm{H}$, aromatic $), 6.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NH}), 5.14(\mathrm{~m}, 0.8 \mathrm{H}, \mathrm{ArCHNHBOC}), 4.82(\mathrm{~m}, 0.2 \mathrm{H}, \mathrm{ArCHNHBOC}), 4.52(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{BnCHCH}_{2} \mathrm{O}\right), 4.00\left(\mathrm{dd}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.95(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{O}\right), 3.29\left(\mathrm{dd}, \mathrm{J}=13.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 2.69(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{Ph}\right), 1.35\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9$, $1554.3,121.8,143.5,137.6,135.2,133.3,133.0,132.5,131.5,129.4,128.9,128.6$, $128.1,127.6,127.2,126.2,126.0,125.9,79.9,66.1,55.8,55.6,37.6,28.1$; IR (neat) $v 3400,2990,1790,1700,1490,1390,1360,1250,1210,1160,1100$, $1050,900,820,750,720 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 537.23895, found: 537.23500.

(2S)- N -tosyl-2-amino-2'-(2-naphthyl)phenyl acetic acid (203a).

To a solution of the imide $(3.10 \mathrm{~g}, 5.78 \mathrm{mmol})$ in THF $(60 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(20$ $\mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(2.62 \mathrm{ml}, 30 \%)$ and then $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($485 \mathrm{mg}, 11.6 \mathrm{mmol}$). After 30 min, TLC analysis showed that the reaction was complete. $10 \% \mathrm{HCl}(20 \mathrm{ml})$ was carefully added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by flash chromatography, first eluting with 1:1 EtOAc containing $5 \% \mathrm{Et}_{3} \mathrm{~N}$ to give the recovered (4S)-4-(phenylmethyl)-2-oxazolidinone and
then with 1:1 EtOAc/hexanes containing 5\% acetic acid to give the BOC derivative. After concentration under reduced pressure, the BOC derivative was diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and treated carefully with trifluoroacetic acid (10 ml). After 1 h , TLC analysis showed that the reaction was complete and the volatiles were removed under reduced pressure at ambient temperature. The residue was taken up in THF (25 $\mathrm{ml})$ and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{ml})$ and p toluenesulfonyl chloride $(2.20 \mathrm{~g}, 11.6 \mathrm{mmol})$ at ambient temperature for 12 h. The volatiles were removed under reduced pressure and the residue was diluted $10 \% \mathrm{HCl}(30 \mathrm{ml})$ and extracted with $\mathrm{EtOAC} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 3,3 \times 50$ $\mathrm{ml})$). The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by flash chromatography (2:1 EtOAc/hexane with 1% acetic acid) gave the N-tosyl free acid as a viscous oil which produced a foam under reduced pressure. The enantiomeric purity was determined to be $98: 2$ by the formation of the diastereomeric amides with phenethyl amine and subsequent analysis by HPLC (vide infra). The compound was diluted in benzene and lyophilized to give the desired compound as an amorphous white solid ($1.87 \mathrm{~g}, 75 \%$); $\mathrm{R}_{f} 0.33$ (2:1 $\mathrm{EtOAc} /$ hexane with $1 \% \mathrm{HOAc}$); mp $180^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}^{21}+210.8^{\circ}$ (c $0.120, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone-d ${ }_{6}$) δ 7.94-7.91 (m, 4H, aromatic), $7.60-7.57(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.38-7.30(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $7.10(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic $), 5.27(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{HNCHCO}_{2} \mathrm{H}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, acetone-d $\left.\mathrm{d}_{6}\right) \delta 172.1$, $143.6,142.7,138.6,135.7,134.2,133.5,131.3,130.0,129.5,129.1,129.0,128.8$, 128.6 (2), 128.3, $127.6,127.2,127.1,56.3,21.3$; IR (neat) v $3250,1730,1600$, 1330, 1150, 1080, 8550, 800, 750, $650 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 432.12695$, found: 432.12870 .

N-((1R)-phenylethyl)-(2S)-N-tosyl-2-amino-2'-(2-naphthyl)phenyl

 acetamide (214a).

To a solution of the acid ($39.5 \mathrm{mg}, 0.092 \mathrm{mmol}$) in dry DMF (2 ml) at $0^{\circ} \mathrm{C}$ under argon was added CuCl_{2} ($12 \mathrm{mg}, 0.92 \mathrm{mmol}$), hydroxybenzotriazole ($25 \mathrm{mg}, 0.183 \mathrm{mmol}$), and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide ($33 \mathrm{mg}, 0.11 \mathrm{mmol}$). After $15 \mathrm{~min},(R)$-phenethylamine ($18 \mu \mathrm{l}, 0.14 \mathrm{mmol}$) was added to the orange solution which turns black immediately. After 30 min, the ice bath is removed and the solution is allowed to warm up to ambient temperature and is stirred for 12 h . The solution is diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue is purified by flash chromatography (1:3 EtOAc/hexane) to give the amide ($48 \mathrm{mg}, 97 \%$) as a colorless oil; $\mathrm{R}_{f} 0.40$ (1:2 EtOAc/hexane); $T_{\mathrm{r}} 18.45 \mathrm{~min}$ (Novapak $4 \mu \mathrm{~m}$ silica gel, $8 \times 200 \mathrm{~mm}, 25: 75 \mathrm{EtOAc} /$ hexane, $1.0 \mathrm{ml} / \mathrm{min}$); $[\alpha]_{\mathrm{D}}^{21}+122.3^{\circ}(\mathrm{c} 0.318$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.77(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 7.59-7.50 ($\mathrm{m}, 3 \mathrm{H}$, aromatic), $7.40-7.27(\mathrm{~m}, 6 \mathrm{H}$, aromatic), $7.25-7.14(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 6.93-9.89 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), $6.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $5.77(\mathrm{~m}, 2 \mathrm{H}$, NH and NH -tosyl), $5.13,\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCHCO}_{2} \mathrm{H}\right), 4.84(\mathrm{dq}, J=7.5$, $\left.6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HNCHCH})_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CHNH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,143.3,142.2,140.9,137.2$, $135.8,134.8,133.2,132.5,130.6,129.3,128.5$ (3), 128.4, 120.0, 127.7, 127.4, $127.2,126.9,126.7,126.5,125.7,56.5,49.3,21.5,21.3$; IR (neat) v 3400, 3280, $3160,2980,1670,1600,1510,1490,1440,1330,1160,1090,900,850,800,720$,

690, $650 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 535.20557, found: 535.20410.

N -((1S)-phenylethyl)-(2S)-N-tosyl-2-amino-2'-(2-naphthyl)phenyl acetamide (214b).

The amide was produced using the method mentioned above. Flash chromatography gave the desired amide ($48 \mathrm{mg}, 98 \%$) as a colorless oil; R_{f} 0.38 (1:2 EtOAc/hexane); $T_{\mathrm{r}} 20.23 \mathrm{~min}$ (Novapak $4 \mu \mathrm{~m}$ silica gel, 8×200 $\mathrm{mm}, 25: 75 \mathrm{EtOAc} /$ hexane, $1.0 \mathrm{ml} / \mathrm{min}$); $[\alpha]_{\mathrm{D}}^{21}+132.7^{\circ}\left(c 0.404, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.20(\mathrm{~m}, 16 \mathrm{H}$, aromatic), $6.96(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $6.90-6.85(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $5.95(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{TsNH}), 5.57$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCHNH}), 5.15\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCHCO}_{2} \mathrm{H}\right), 4.77$ $\left(\mathrm{dq}, J=7.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HNCHCH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 1.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{NHCHCH} 3$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,143.3,142.1,140.6$, $137.3,136.3,134.9,133.2,132.5,130.6,129.3,128.5,128.4,128.3,128.0,127.7$, $127.3,127.1,127.0,126.7,126.5,125.5,56.1,49.2,21.5,21.4$; IR (neat) v 3400, $3360,3040,2940,1670,1600,1510,1490,1450,1340,1160,1090,900,850,800$, $750,690,650 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 535.20557$, found: 535.20290.

2-methyl-3-ethoxy-2-cyclohexenone (215a).

To a solution of 2-methyl-1,3-cyclohexanedione ($1.30 \mathrm{~g}, 10 \mathrm{mmol}$) in benzene $(20 \mathrm{ml})$ is added p-toluenesulfonic acid hydrate ($49 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ and absolute ethanol $(6 \mathrm{ml})$. The mixture is heated to reflux and the ethanol/benzene/water azeotrope is continually removed by a Dean-Stark trap and dry ethanol/benzene (1:3) added every half hour. After 4 h TLC analysis showed that the reaction was complete. The volatiles are removed under reduced pressure and the residue is purified by flash chromatography ($1: 1 \mathrm{EtOAc} /$ hexane) to yield the mono-ketone (1.54 g , 97%) as a colorless oil; $\mathrm{R}_{\mathrm{f}} 0.35$ (1:1 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.08\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.33\left(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.98(\mathrm{tt}, J=7.6,6.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.35\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.4,171.3,114.5,63.2,36.0,25.0,20.7,15.0$, 7.0; IR (neat) $\vee 2940,1640,1620,1380,1350,1310,1240,1200,1120,930,910$, $810 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 155.10723$, found: 155.10483.

2-methyl-3-(2-naphthyl)-2-cyclohexenone (217).

215a

217

A three neck flask is charged with magnesium turnings ($320 \mathrm{mg}, 13.2$ mmol) and a stir bar. The flask is then equipped with a dropping funnel, condenser and a stopper. The turnings are dried by flaming the flask under aspirator vacuum with efficient stirring and allowed to cool under argon. The flask is then charged with dry THF (7 ml) while the dropping funnel is charged with 2-bromonaphthalene ($1.80 \mathrm{~g}, 8.8 \mathrm{mmol}$) and dry THF (20 ml). The bromide is added to the magnesium at ambient temperature and the mixture is then refluxed for 1 h and then allowed to cool to ambient temperature. The Grignard is then added slowly via cannula to the ketone ($922 \mathrm{mg}, 5.98 \mathrm{mmol}$) in dry THF (20 ml) at $-78^{\circ} \mathrm{C}$ under argon. The dry ice bath is removed and the reaction is allowed to stir while warming up to ambient temperature slowly. After 1 h , EtOAc (2 $\mathrm{ml})$ is carefully added followed by $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$. The organic phase is washed with $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{ml})$, dried over MgSO_{4} and concentrated under reduced pressure. The residue is purified by flash chromatography (1:8 EtOAc/hexane) to give the desired ketone as a slightly yellow oil; R_{f} 0.45 (1:5 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.23(\mathrm{~m}, 7 \mathrm{H}$, aromatic), $2.68\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.10\left(\mathrm{tt}, J=7.1,5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right)$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.0,156.5,154.4,138.5,134.6,132.8,132.5$, $132.0,129.4,128.4,127.9,127.5,126.3$ (2), 126.2, 126.0 (2), 125.1, 122.9, 118.1, $109.3,37.6,32.8,22.7,12.9$; IR (neat) v $3300,3040,2940,2860,1660,1370$, $1350,1320,1300,1210,1190,1100,1030,850,810,740 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 236.12012$, found: 236.11954 .

2,6-bis(2-naphthyl)-toluene (218).

217

218

A three neck flask is charged with magnesium turnings ($2.61 \mathrm{~g}, 107.5$ mmol) and a stir bar. The flask is then equipped with a dropping funnel, condenser and a stopper. The turnings are dried by flaming the flask under aspirator vacuum with efficient stirring and allowed to cool under argon. The flask is then charged with dry THF (27 ml) while the dropping funnel is charged with 2-bromonaphthalene ($13.1 \mathrm{~g}, 63.0 \mathrm{mmol}$) and dry THF (100 ml). The bromide is added to the magnesium at ambient temperature and the mixture is then refluxed for 1 h and then allowed to cool to ambient temperature. The Grignard is then added slowly via cannula to the ketone ($8.054 \mathrm{~g}, 34.1 \mathrm{mmol}$) in dry THF (50 ml) at $-78^{\circ} \mathrm{C}$ under argon. The dry ice bath is removed and the reaction is allowed to stir while warming up to ambient temperature slowly. After $1 \mathrm{~h}, \mathrm{EtOAc}$ $(10 \mathrm{ml})$ is carefully added followed by $\mathrm{Et}_{2} \mathrm{O}(350 \mathrm{ml})$. The organic phase is washed with $\mathrm{NaHCO}_{3}(3 \times 40 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude alcohol is dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}(5.05 \mathrm{ml}, 40.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ is added slowly resulting in a black solution which discharges it color slowly. After $3 h$, the reaction was found to be complete by TLC analysis. Saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{ml})$ is carefully added and the mixture is washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{ml})$. The organic phase is dried over MgSO_{4} and concentrated under reduced pressure. The residue is purified
through a small silica gel column using $\mathrm{Et}_{2} \mathrm{O}$ as an eluant to give the diene as a crude yellow solid (12.1 g). To a solution of the diene in EtOAc (300 $\mathrm{ml})$ is added 5% palladium on carbon $(1.20 \mathrm{~g})$ followed by cyclohexene (10 $\mathrm{ml})$. The mixture is refluxed and the progress of the reaction is monitored by ${ }^{1} \mathrm{H}$ NMR of aliquots which are removed, filtered and evaporated to dryness under reduced pressure prior to analysis. After 5 days, cyclohexene $(10 \mathrm{ml})$ is again added and after another 5 days, the reaction is complete and the solution is cooled to room temperature, filtered through celite and concentrated under reduced pressure. The residue is purified by flash chromatography ($1: 40 \mathrm{Et}_{2} \mathrm{O} /$ hexane) to give the desired hydrocarbon $(6.692 \mathrm{~g}, 57 \%)$ as a low melting white solid; $\mathrm{R}_{f} 0.45$ (1:20 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.84(\mathrm{~m}, 8 \mathrm{H}$, aromatic), $7.55-7.47(\mathrm{~m}, 6 \mathrm{H}$, aromatic), $7.37-7.35\left(\mathrm{~m}, 3 \mathrm{H}\right.$, aromatic), $2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,139.9,133.3$ (2), 132.2, 129.3, 127.9 (3), 127.6, 127.5, $126.1,125.8,125.4,18.8$; IR (neat) v 3020, 1600, 1500, 1440, 1260, 1120, 1010, $940,880,850,810,780,730,710 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20}[\mathrm{M}]$: 344.15649, found: 344.15851 .

2,6-bis(2-naphthyl)-phenylacetonitrile (220).

218

220

To a solution of the methyl aryl hydrocarbon ($1.20 \mathrm{~g}, 3.5 \mathrm{mmol}$) in CCl_{4} (40 ml) was added N -bromosuccinimide ($745 \mathrm{mg}, 4.2 \mathrm{mmol}$) and benzoyl
peroxide ($170 \mathrm{mg}, 0.7 \mathrm{mmol}$). The yellowish solution was connected to an exit bubbler and brought to reflux for 2 h . After cooling the near colorless solution to ambient temperature, the solution was diluted with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}(1: 1,100 \mathrm{ml})$ and then washed with $10 \% \mathrm{HCl}(2 \times 25 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was combined with $\mathrm{EtOH}(8 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml}), \mathrm{CHCl}_{3}(9 \mathrm{ml})$ and $\mathrm{KCN}(340 \mathrm{mg}$, 5.2 mmol). The mixture was warmed to $60^{\circ} \mathrm{C}$ for 2.5 h or until TLC analysis showed that the reaction was complete. After cooling to ambient temperature, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$ and washed with $10 \% \mathrm{HCl}(2 \times 25 \mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{ml})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by flash chromatography (1:15 $\mathrm{EtOAc} /$ hexane) to give the nitrile ($1.155 \mathrm{~g}, 90 \%$) as a colorless oil; $\mathrm{R}_{f} 0.11$ (1:10 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.94(\mathrm{~m}, 8 \mathrm{H}$, aromatic), 7.65-7.46 ($\mathrm{m}, 9 \mathrm{H}$, aromatic), $3.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CN}\right.$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4,137.7,133.1,132.6,130.0,128.3,128.1,128.0$, $127.7,127.0,126.6,126.5,126.4,118.9,20.5$; IR (neat) v 3030, 2220, 1600 , 1580, 1500, 1410, 1260, 1190, 1120, 900, $850,810,790,720 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 370.15958$, found: 370.16100 .

Methyl 2,6-bis(2-naphthyl)-phenylacetate (221).

220

221

To a solution of the nitrile $(2.64 \mathrm{~g}, 7.15 \mathrm{mmol})$ in $\mathrm{EtOH}(60 \mathrm{ml})$ was added $\mathrm{NaOH}(1.4 \mathrm{~g}, 35 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{ml})$. The mixture was refluxed for 24 h or until TLC analysis showed that the reaction was complete. The volatiles were then removed under reduced pressure and the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \times 25 \mathrm{ml})$, and saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was dissolved in dry $\mathrm{MeOH}(80 \mathrm{ml})$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(4.0 \mathrm{ml})$ was added carefully. The mixture was then refluxed for 72 h or until TLC analysis showed that the reaction was complete. The volatiles were removed under reduced pressure and saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$ was carefully added to the residues. The mixture was then extracted with $E t_{2} \mathrm{O} / E t O A c(1: 1,3 \times 50$ ml). The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography (1:10 $\mathrm{EtOAc} /$ hexane $)$ to give the methyl ester $(2.38 \mathrm{~g}, 83 \%)$ as a yellowish oil; R_{f} 0.35 (1:10 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.83(\mathrm{~m}, 8 \mathrm{H}$, aromatic), 7.52-7.39 ($\mathrm{m}, 9 \mathrm{H}$, aromatic), 3.57 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 3.33 (s , $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,143.4,139.0,133.1,132.4$, $130.4,129.5,127.9$ (2), 127.7, 127.6, 127.4, 127.0, 126.8, 126.2, 126.0, 51.4, 36.9; IR (neat) v 3020, 2940, 1740, 1600, 1580, 1500, 1430, 1340, 1200, 1150, 1000, $900,850,810,790,740,720 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 403.16980, found: 403.17110 .

(\pm) Methyl-2-N-tosylamino-2' $\mathbf{6}^{\prime}$-bis(2-naphthyl)-phenylacetate (223).

221

223

To a solution of potassium hexamethyldisilylamide $(9.6 \mathrm{ml}, 0.5 \mathrm{M}$ in toluene) in dry THF (20 ml) was added via cannula, the methyl ester (1.393 $\mathrm{mg}, 4.38 \mathrm{mmol})$ in dry THF (20 ml) at $-78^{\circ} \mathrm{C}$. After stirring the yellow solution for 30 min , the anion was added to a solution of tri-isopropylbenzenesulphonyl azide ($1.62 \mathrm{~g}, 5.25 \mathrm{mmol}$) in dry THF (10 ml) at $78^{\circ} \mathrm{C}$. After 3 min , acetic acid ($1.31 \mathrm{ml}, 21.9 \mathrm{mmol}$) and potassium acetate $(2.15 \mathrm{~g}, 21.9 \mathrm{mmol})$ was added to the solution which was then allowed to stir for 12 h while warming up to ambient temperature slowly. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$ washed with $10 \% \mathrm{HCl}(2 \mathrm{X} 15 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{ml})$. The aqueous washings were extracted with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}(100 \mathrm{ml})$ and washed with $10 \% \mathrm{HCl}(2 \mathrm{X} 15 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{ml})$. The organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was then dissolved in dry $\mathrm{MeOH}(20 \mathrm{ml})$ and SnCl_{2} $(1.25 \mathrm{~g}, 6.57 \mathrm{mmol})$ was added and the resulting slurry was stirred at ambient temperature for 24 h at which time more $\mathrm{SnCl}_{2}(1.25 \mathrm{~g}, 6.57 \mathrm{mmol})$ was added. After another $24 \mathrm{~h}, \mathrm{TLC}$ analysis showed the reaction was complete. The volatiles were removed under reduced pressure. The resulting residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ and aqueous $\mathrm{NaOH}(50$ $\mathrm{ml}, 2.5 \mathrm{M}$) was added. The resulting slurry was filtered through celite and separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(3 \times 30$
ml) and resulting organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give a crude gum. The gum was then immediately dissolved in $\mathrm{CH}_{2} \mathrm{CH}_{2}(10 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.34 \mathrm{ml}, 9.60 \mathrm{mmol})$, DMAP (10 mg) and p-toluenesulfonyl chloride ($1.66 \mathrm{~g}, 8.76 \mathrm{mmol}$) were added at room temperature. After 12 h , TLC analysis showed that the reaction was complete. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$, washed with $10 \% \mathrm{HCl}(2 \times 25 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography (1:3 EtOAc/hexane) to give the desired ester ($1.64 \mathrm{~g}, 73 \%$) as a colorless gum; $\mathrm{R}_{\mathrm{f}} 0.43$ (1:3 EtOAc/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.77(\mathrm{~m}, 8 \mathrm{H}$, aromatic), $7.54-7.32(\mathrm{~m}, 9 \mathrm{H}$, aromatic), $6.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $6.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $5.20(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.95(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$, ArCHNH), $3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right) ;{ }^{13} \mathrm{CNMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,142.9,142.8,138.1,135.2,133.4,132.8,132.5,132.3,130.4$, $129.3,129.0,128.8,128.2,128.0,127.8,127.7$ (2), 127.1, 126.9, 126.5, 126.3, $55.3,53.1,21.3$; IR (neat) v 3410, 3010, 1750, 1350, 1220, 1160, 1090, 750, 660 cm^{-1}; HRMS (FAB+) calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 572.18958$, found: 572.18680.

(土) 2-N-tosylamino-2', 6^{\prime}-bis(2-naphthyl)-phenyl ethyl alcohol (224).

223

224

To a solution of the ester $(1.653 \mathrm{~g}, 2.89 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under argon was added $\mathrm{LiAlH}_{4}(200 \mathrm{mg}, 5.21 \mathrm{mmol})$. The mixture was stirred for 4 h or until TLC analysis showed that the reaction was complete. $\mathrm{H}_{2} \mathrm{O}$ (10 drops) was added dropwise at $0^{\circ} \mathrm{C}$ until the mixture became white and no more gas evolved. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added and the mixture was filtered through celite. The volatiles were then removed under reduced pressure. The residue was purified by flash chromatography (1:3 EtOAc/hexane) to give the alcohol ($1.52 \mathrm{~g}, 90 \%$) as a colorless oil; $\mathrm{R}_{f} 0.34$ (1:3 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.85(\mathrm{~m}, 6 \mathrm{H}$, aromatic), 7.75 ($\mathrm{s}, 2 \mathrm{H}$, aromatic), $7.57-7.52(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 7.46-7.44 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 7.37-7.33 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), $7.25-7.23(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.19-7.17 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 6.82-6.81 (m, 2H, aromatic), 4.63 (br, 1H, NH), 4.43 (br, $1 \mathrm{H}, \mathrm{ArCHNH}), 3.61$ (dd, $J=11.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}$), $3.53(\mathrm{dd}, J=11.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{OH}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 1.46(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.0,142.2,138.6,136.4,133.5,132.8,132.4,130.9,0129.1,128.5$, $128.0,127.8,127.7,126.9,126.8,126.6,126.3,66.3,57.2,21.3$; IR (neat) v 3520 , $3440,3050,2930,1600,1310,1160,1060,950,910,860,810,750,670 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 544.19464$, found: 544.19310.
((2S)-2-N-tosylamino-2', 6^{\prime}-bis(2-naphthyl)-phenethyl)-(2S)-Omethoxymandelate (225a).

224

225a

To a solution of the alcohol ($798 \mathrm{mg}, 1.47 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{ml})$ at ambient temperature under nitrogen was added (R)-O-methoxymandelic acid ($293 \mathrm{mg}, 1.76 \mathrm{mmol}$), dicyclohexylcarbodiimide ($363 \mathrm{mg}, 1.76 \mathrm{mmol}$) and DMAP (10 mg). After 2 h, TLC analysis showed that the reaction was complete. The reaction was diluted with $E t_{2} \mathrm{O} /$ hexane ($1: 1,50 \mathrm{ml}$) and filtered through celite. The residue was purified by a flash chromatography (1:3 EtOAc/hexane) to remove contaminants (mainly dicyclohexylurea) from the product. A second flash chromatography (1:2 $E t_{2} \mathrm{O} /$ hexane) was used to separate the diastereoisomers which produced the more chromatographically mobile ester ($423 \mathrm{mg}, 42 \%$) in pure form. Its absolute stereochemistry was determined by x-ray ${ }^{296}$ crystallography; R_{f} 0.23 (1:3 EtOAc/hexane); $T_{r} 24.06 \mathrm{~min}$ (Novapak $6 \mu \mathrm{~m}$ silica gel, 8×100 $\mathrm{mm}, 10 / 90 \mathrm{EtOAc} /$ hexane, $1.0 \mathrm{ml} / \mathrm{min}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-$ $7.04(\mathrm{~m}, 24 \mathrm{H}$, aromatic), $6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), 4.88 (br, 1 H , $\mathrm{NH}), 4.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCHCH}_{2}\right), 4.21(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{PhCHOCH}_{3}$), $3.64\left(\mathrm{dd}, J=11.4,9.1 \mathrm{~Hz}_{2} 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7,142.8,135.6,132.4$, $129.0,128.7,128.5,128.2,128.0,127.8,127.7,127.1,127.0,126.6$ (2), 126.3, 82.1, 66.4, 57.0, 53.7, 21.3; IR (neat) v 3380, 3060, $2910,1750,1600,1490$, 1450, 1330, 1150, 1090, 1010, 950, 850, 770, $740,650 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 692.24707 , found: 692.24930. For x-ray crystal data, see Appendix 5.
((2R)-2-N-tosylamino-2', 6^{\prime}-bis(2-naphthyl)-phenethyl)-(2S)-Omethoxymandelate (225b).

This ester ($402 \mathrm{mg}, 40 \%$) was produced in the above reaction and is the less chromatographically mobile of the two. It was found to be only 87.5% de by HPLC analysis. Repurification provided an analytically pure sample; R_{f} 0.20 (1:3 EtOAc/hexane); $T_{\mathrm{r}} 28.51 \mathrm{~min}$ (Novapak $6 \mu \mathrm{~m}$ silica gel, 8×100 $\mathrm{mm}, 10 / 90 \mathrm{EtOAc} /$ hexane, $1.0 \mathrm{ml} / \mathrm{min}) ;[\alpha]_{\mathrm{D}}^{21}+37.9^{\circ}\left(\mathrm{c} 0.552, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-6.99(\mathrm{~m}, 24 \mathrm{H}$, aromatic), 6.81-6.79 (m, 2H, aromatic), 4.88 (br, $1 \mathrm{H}, \mathrm{NH}), 4.34\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{HNCHCH}_{2}\right), 4.27$ (s, 1H, $\left.\mathrm{PhCHOCH}_{3}\right), 3.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.24(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{PhCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,142.8,142.3,138.4,136.8,135.6$, $133.1,132.4,131.1,129.0,128.5,128.4,128.1,127.8,127.7,127.0,126.9,126.6$ (2), 126.3, 81.7, 66.7, 57.1, 53.2, 30.8, 21.3; IR (neat) v 3380, 3300, 3060, 1750, $1600,1580,1500,1450,1430,1330,1150,1110,1090,900,850,810,720,650$ cm^{-1}; HRMS (THIO) calcd for $\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 692.24707$, found: 692.24930 .
(2S)-2-N-tosylamino-2', 6^{\prime}-bis(2-naphthyl)-phenyl ethyl alcohol (224a).

225a

224a

To a solution of the ester ($563 \mathrm{mg}, 0.8 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{ml})$ at room temperature was added $\mathrm{K}_{2} \mathrm{CO}_{3}(800 \mathrm{mg}, 5.7 \mathrm{mmol})$. The solution was stirred for 30 min or until TLC analysis showed that the reaction was complete. The volatiles were removed under reduced pressure. The residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ and washed with $10 \% \mathrm{HCl}(2 \times 15 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash chromatography ($1: 3 \mathrm{EtOAc} /$ hexane) to give the alcohol ($434 \mathrm{mg}, 98 \%$) as a colorless oil; $\mathrm{R}_{f} 0.34$ (1:3 EtOAc/hexane); $[\alpha]_{\mathrm{D}}^{21}$ $+108.8^{\circ}\left(\mathrm{c} 1.134, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.85(\mathrm{~m}, 6 \mathrm{H}$, aromatic), 7.75 ($\mathrm{s}, 2 \mathrm{H}$, aromatic), $7.57-7.52(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 7.46-7.44 (m, 2 H , aromatic), 7.37-7.33 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), 7.25-7.23 (m, 2 H , aromatic), 7.19-7.17 (m, 2H, aromatic), 6.82-6.81 (m, 2H, aromatic), 4.63 (br, $1 \mathrm{H}, \mathrm{NH}$), 4.43 (br, $1 \mathrm{H}, \mathrm{ArCHNH}), 3.61\left(\mathrm{dd}, J=11.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 3.53(\mathrm{dd}$, $\left.J=11.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 1.46(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,142.2,138.6,136.4,133.5,132.8,132.4$, $130.9,0129.1,128.5,128.0,127.8,127.7,126.9,126.8,126.6,126.3,66.3,57.2$, 21.3; IR (neat) v 3520, $3440,3050,2930,1600,1310,1160,1060,950,910,860$, $810,750,670 \mathrm{~cm}^{-1}$; HRMS (THIO) calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 544.19464$, found: 544.19310.
(2S)-2-N-tosylamino-2', 6^{\prime}-bis(2-naphthyl)-phenyl acetic acid ((+)-203d).

To a solution of the alcohol ($337 \mathrm{mg}, 0.62 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added molecular sieves ($4 \AA, 350 \mathrm{mg}$) and pyridinium dichromate (350 $\mathrm{mg}, 0.93 \mathrm{mmol}$). The solution was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then the ice bath was removed and the solution stirred for another 2 h at which time TLC analysis showed that the reaction was complete. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ and filtered through silica. The volatiles were then removed under reduced pressure. The residue was immediately taken up in $t-\mathrm{BuOH}(4 \mathrm{ml})$. To this mixture at $0^{\circ} \mathrm{C}$ was added an aqueous solution of $5 \% \mathrm{NaH}_{2} \mathrm{PO}_{4}(3 \mathrm{ml})$ and an aqueous solution of $\mathrm{KMnO}_{4}(4 \mathrm{ml})$. The reaction was monitored carefully by TLC and after 3 minutes the reaction was complete. Saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(3 \mathrm{ml})$ was added followed by $10 \% \mathrm{HCl}(5 \mathrm{ml})$ which discharged the color of the solution. The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}(3 \times 20 \mathrm{ml})$. The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The enantiomeric purity of the crude acid was determined to be 94% ee by chiral HPLC analysis (Chiracel OJ, 10:90 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, $\left.T_{\mathrm{r}}(S) 17.15 \mathrm{~min}, T_{\mathrm{r}}(R) 20.87 \mathrm{~min}\right)$ of the corresponding methyl ester $\left(\mathrm{Et}_{2} \mathrm{O}\right.$, diazomethane). The residue was purified by flash chromatography to give a colorless gum which was dissolved in benzene (10 ml) and lyophilized to give the acid ($251 \mathrm{mg}, 73 \%$) as a white amorphous powder; $\mathrm{R}_{f} 0.23$ (1:2 EtOAc/hexane with 1% acetic acid); $[\alpha]_{D}^{21}+194.2^{\circ}\left(c \quad 0.278, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$

NMR $\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta 8.02-7.90(\mathrm{~m}, 8 \mathrm{H}$, aromatic), 7.62-7.51 (m, 7 H , aromatic), $7.39-7.37(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $5.16(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 5.07(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCHNH}), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,143.9$, $143.8,139.3,136.7,134.7,133.9,133.6,131.2,129.8,129.2,129.0,128.6,128.4$, $127.8,127.2,127.1,56.0,21.2$; IR (neat) v 3350, 3060, 1730, 1600, 1400, 1340, 1160, 1090, 910, 890, 860, 820, b800, 750, $650 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 558.17371$, found: 558.17096. For x-ray crystal data on (-)-203d, see Appendix 6.
(R)-1-bromo-1-hydroxymethyl [2.2.1] bicyclohept-4-ene (226).

To a solution of acid ($24.7 \mathrm{mg}, 0.046 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at ambient temperature under argon was added $\mathrm{BH}_{3} \bullet$ DMS ($46 \mu \mathrm{l}, 0.046 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). The solution was stirred for 3 h . The catalyst solution was then cooled to $-78^{\circ} \mathrm{C}$. Freshly cracked cyclopentadiene ($380 \mu \mathrm{l}, 4.56 \mathrm{mmol}$) was added followed by the slow dropwise addition of 2-bromoacrolein ($75 \mu \mathrm{l}$, $0.91 \mathrm{mmol})$. The solution was kept at $-24^{\circ} \mathrm{C}$ for 12 h and then treated with $\mathrm{MeOH}(5 \mathrm{ml})$ and $\mathrm{NaBH}_{4}(38 \mathrm{mg}, 1.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and washed with $10 \% \mathrm{HCl}(2 \times 20 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$. The organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The Diels-Alder adduct was determined to be 50% ee (R) by chiral gas chromatography analysis (30 m Cyclodex- $\mathrm{B}, 115^{\circ} \mathrm{C}$ isothermal, 25 psi column head pressure, $\left.T_{\mathrm{r}}(R): 14.79 \mathrm{~min}, T_{\mathrm{r}}(\mathrm{S}): 15.01 \mathrm{~min}\right)$ of the trifluoroacetate derivative $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, pyridine, trifluoroacetic anhydride). The residue was purified by flash chromatography to give the alcohol as a colorless oil; $R_{f} 0.40$ (1:4

EtOAc/hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+23.15^{\circ}\left(\mathrm{c} 0.378, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHCBr}), 6.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}), 3.85(\mathrm{~d}, J=12.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{BrCCH}_{2} \mathrm{OH}\right), 3.72\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCCH}_{2} \mathrm{OH}\right), 3.23(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{HCCHCBr}), 2.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCCHCH}_{2}\right), 2.33(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.92(\mathrm{dd}, J=13.5$, $\left.2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CBr}\right), 1.72\left(\mathrm{dd}, J=13.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCH} \mathrm{H}_{2} \mathrm{CBr}\right), 1.50(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,136.8,79.3,72.4,50.6$, $46.5,42.1,40.4 ;$ IR (neat) v 3320, 2980, 1440, 1360, 1330, 1270, 1250, 1230, $1190,1080,1040,1010,700 \mathrm{~cm}^{-1}$; HRMS (FAB+) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$: 203.00716 , found: 203.00790 .

Notes and References
(a) Pauling, L. Nature of the Chemical Bond, $3^{\text {rd }}$ Ed.; Cornell University Press: Ithaca, 1960, p 281. (b) Robin, M. B.; Bovey, F. A.; Basch, H. in the Chemistry of Amides; J. Zabicky, Editor; Interscience Publishers: New York, 1970, pp. 1-72.

Homer, R. B.; Johnson, C. D. in the Chemistry of Amides; J. Zabicky, Editor; Interscience Publishers: New York, 1970, pp. 187-244.

Challis, B. C.; Challis, J. in the Chemistry of Amides; J. Zabicky, Editor; Interscience Publishers: New York, 1970, pp. 731-858.
(a) Somayaji, V.; Brown, R. S. J. Org. Chem. 1986, 51, 2676-2686. (b) Wang, Q.-P.; Bennet, A. J.; Brown, R. S.; Santarsiero, B. D. J. Am. Chem. Soc. 1991, 113, 5757-5765. (c) Greenberg, A.; Moore, D. T. J. Mol. Struct. 1997, 413-414, 477-485.
(a) Gillespie, R. J.; Birchall, T. Can. J. Chem. 1963, 41, 148, 2642-2650.
(b) Fersht, A. R. J. Am. Chem. Soc. 1971, 93, 3504-3515. (c) Martin, R.
B. J. Chem. Soc., Chem. Commun. 1972, 793-794. (d) Kresge, A. J.;

Fitzgerald, P. H.; Chiang, Y. J. Am. Chem. Soc. 1974, 96, 4698-4199. (e) Ilczyszyn, M. J. Phys. Chem. 1991, 95, 7617-7621. (f) Ilczyszyn, M. J. Phys. Chem. 1991, 95, 7621-7624.

Pracejus, H. Chem. Chem. Ber. 1959, 92, 988-998.
(a) Lacey, R. N. J. Chem. Soc. 1960, 1633-1639. (b) Cohen, T.; Lipowitz, J. J. Am. Chem. Soc. 1964, 86, 5611-5616. (c) Taylor, T. W. J. J. Chem. Soc. 1930, 2741-2750. (d) Krieble, V. K.; Holst, K. A. J.

Am. Chem. Soc. 1938, 60, 2976-2980. (e) Edward, J. T.; Meacock, S. C. R. J. Chem. Soc. 1957, 2000-2007.

For selected examples, see: (a) Gaylord, N. G. in Reduction with Complex Metal Hydrides, John Wiley and Sons, New York, 1956, pp. 322-373. (b) Brown, H. C.; Heim, P. J. Am. Chem. Soc. 1964, 86, 3566-3568. (c) Papanastassiou, Z. B.; Bruni, R. J. J. Org. Chem. 1964, 29, 2870-2872. (d) Castro, B. Bull. Soc. Chim. France 1967, 1540-1547. (e) Evans, E. A. J. Chem. Soc. 1956, 4691. (f) Comins, D. L.; Dernell, W. Tetrahedron Lett. 1981, 22, 1085-1088. (g) Olah, G. A.; Prakash, G. K. S.; Arvanaghi, M. Synthesis 1984, 228-230.

For examples of the complexation of divalent metal cations to amides, see: (a) Kroll, H. J. Am. Chem. Soc. 1952, 74, 2036-2039. (b) Li, N. C.; Manning, R. A. J. Am. Chem. Soc. 1955, 77, 5225-5228. (c) Bender, M. L.; Turnquest, B. W. J. Am. Chem. Soc. 1955, 77, 42714275. (d) Sutton, P. A.; Buckingham, D. A. Acc. Chem. Res. 1987, 20 , 357-364. (e) Suh, J. Acc. Chem. Res. 1992, 25, 273-279. (f) Mortellaro, M. A.; Bleisch, T. J.; Duerr, B. F.; Kang, M. S.; Huang, H.; Czarnik, A. W. J. Org. Chem. 1995, 60, 7238-7246.
(a) Pinner, A. Die Imidoäther und ihre Derivate; Oppenheim: Berlin, 1982. (b) Roger, R.; Neilson. D. G. Chem. Revs. 1961, 61, 179-211. (c) Neilson, D. G. in the Chemistry of Amidines and Imidates; S. Patai, Editor; Interscience Publishers: New York, 1975, pp. 385-489.
(a) Bredereck, H.; Effenberger, F.; Simchen, G.; Angew. Chem. 1961, 73, 493. (b) Bredereck, H.; Effenberger, F.; Bayerlin, H. P. Chem. Ber. 1964, 97, 3076-3087. (c) Bredereck, H.; Effenberger, F.;

Hanseleit, E.; Chem. Ber. 1965, 98, 2754-2761. (d) Benson, R. E.; Cairns, T. L. J. Am. Chem. Soc. 1948, 70, 2115-2118. (e) Bredereck, H. Gompper, R.; Rempfer, H.; Klemm, K.; Keck, H. Chem. Ber. 1959, 92, 329-337. (f) Bühner, A.; Ann. Chem. 1904, 333, 289. (g) Arnarp, J.; Lonngren, J. Acta Chem. Scand. 1978, B 32, 465-467. (h) Beak, P.; Lee, J.-K.; McKinnie, B. G. J. Org. Chem. 1978, 43, 1367-1372.
(a) Bredereck, H.; Gompper, R.; Theilig, G. Chem. Ber. 1954, 87, 537546. (b) Gompper, R.; Christmann, O. Chem. Ber. 1959, 92, 19351943. (c) See reference 10b.
(a) Gompper, R. Chem. Ber. 1960, 93, 187-197. (b) Gompper, R. Chem. Ber. 1960, 93, 198-209.

Ralls, J. W.J. Org. Chem. 1961, 26, 66-68.

Hechelhammer, W. Ger. Pat. 948,973 (1956); Chem. Abstr. 1959, 53, 6088 d.
(a) Meerwein, H.; Florian, W.; Schön, N.; Stopp, G. Ann. Chem. 1961, 641, 1-39. (b) Meerwein, H.; Borner, P.; Fuchs, O.; Sasse, J.; Schrodt, H.; Spille, J. Chem. Ber. 1956, 89, 2060-2079. (c) Borch, R. F. Tetrahedron Lett. 1968, 6, 61-65. (d) Glushkov, R. G.; Granik, V. G. Adv. Heterocyclic Chem. 1970, 12, 185-212. (e) Weintraub, L.; Oles, S. R.; Kalish, N. J. Org. Chem. 1968, 33, 1679-1683. (f) Reid, W.; Schmidt, E. Ann. Chem. 1966, 695, 217-225. (g) Reid, W.; Piechaczek, D.; Vollberg, E. Ann. Chem. 1970, 734, 13-22. (h) Fraser, R. R.; Swingle, R. B. Can. J. Chem. 1970, 48, 2065-2074.

Julia, S.; Ryan, R. J. Compt. Rend. 1972, 274, 1207-1210.
(a) Bredereck, H.; Effcnherger, F.; Henseleit, E. Chem. Ber. 1965, 98, 2754-2761. (b) Bredereck, H.; Effenberger, F.; Henseleit, E. Angew. Chem. 1963, 75, 790-791; Angew. Chem., Int. Ed. Engl. 1963, 2, 684685. (c) Yates, J.; Haddock, E. Brit. Pat. 1,039,459 (1966); Chem. Abstr. 1966, 65, 14353. (d) Reynaud, P.; Moreau, R. C.; Thu, N. H. Compt. Rend. 1961, 253, 1968-1970. (e) Bredereck, H.; Simchen, G.; Kantlehner, W. Chem. Ber. 1971, 104, 924-931. (f) Bredereck, H.; Effenberger, F.; Simchen, G. Chem. Ber. 1963, 96, 1350-1355.
(a) Orazi, O. O.; Corral, R. A.; Schuttenberg, H. Tetrahedron Lett. 1969, 7, 2639-2642. (b) Blaser, R.; Imfeld, P.; Schindler, O. Helv. Chim. Acta. 1969, 52, 569-576.

Borch, R. F. J. Org. Chem. 1969, 34, 627-629.
(a) See reference 10a. (b) See reference 10b. (c) Sandler, S. R.; Karo, W. in Organic Functional Group Preparation, Vol. 3; Academic Press: New York, 1972, Chap. 8. (d) Roger, R.; Neilson. D. G. J. Chem. Soc. 1959, 688-693. (e) Roger, R.; Neilson. D. G. J. Chem. Soc. 1961, 31813185. (f) Flisik, A. C.; Handy, R. W. U.S. Pat. 3,121,751 (1964); Chem. Abstr. 1964, 60, 11902d. (g) Hagemeyer, Jr., H. J.; Gammans, W. J. U.S. Pat. 3,538,139 (1970); Chem. Abstr. 1971, 74, 53090p. (h) Mull, R. P. U.S. Pat. 3,189,601 (1965); Chem. Abstr. 1965, 63, 11522d. (i) Schaefer, in the Chemistry of the Cyarto Group; Z. Rappoport, Editor; Interscience Publishers: New York, 1970, pp. 239-305. (j) Tillmanns, E. J.; Ritter, J. J. J. Org. Chem. 1957, 22, 839-840. (k) Pearl, I. A.; Beyer, D. L. J. Am. Chem. Soc. 1952, 74, 3188-3190. (1)

Yaru, Y. Chem. Pharm. Bull. 1962, 10, 1094-1099. (m) Cramer, F.; Baldauf, H. J. Chem. Ber. 1959, 92, 370-378. (n) Stevens, C. L.; Morrow, D.; Lawson, J. J. Am. Chem. Soc. 1955, 77, 2341-2342 (o) McElvain, S. M.; Fajardo-Pinzon, B. J. Am. Chem. Soc. 1945, 67, 690691. (p) Neilson, D. G.; Peters, D. A. V. J. Chem. Soc. 1963, 44554460. (q) Neilson, D. G.; Peters, D. A. V.; Roach, L. H. J. Chem. Soc. 1962, 2272-2275.
(a) See reference 10b. (b) Schaefer, F. C.; Peters, G. A. J. Org. Chem. 1961, 26, 412-418. (c) Cramer, F.; Pawelzik, K.; Baldauf, H. J. Chem. Ber, 1958, 91, 1049-1054. (d) Dorfman, E.; Bean, C. T.; U.S. Pat. 3,523, 132 (1970); Chem. Abstr. 1970, 73, 110334b. (e) Chiang, M.-C.; Tai, T.-C. Hua Hsueh Hsueh Pao, 1964, 30, 312-315; Chem. Abstr. 1964, 61, 13169d. (f) Brown, H. C.; Pater, R. J. Org. Chem. 1962, 27, 2858-2863. (g) Brown, H. C.; Wetzel, C. R. J. Org. Chem. 1965, 30, 3724-3728. (h) Vigo, T.; Welch, C. M. Carbohyd. Res. 1971, 17, 145153. (i) Baklouti, A. Tetrahedron Lett. 1973, 14, 241-243. (j) Haggerty, W. J.; Rost, W. J. J. Pharm. Soc. 1969, 58, 50-55. (k) Stevens, T. O. J. Org. Chem. 1968, 33, 2660-2663. (1) LaCount, R. B.; Griffin, C. E. J. Chem. Soc. (C) 1966, 2071-2072. (m) Cordes, H.; Kranz, J.; Neubauer, D.; Weidinger, H. Ger. Pat. 1,443,432 (1971); Chem. Abstr. 1971, 74, 87386. (n) Watanabe, H.; Kikugawa, Y.; Yamada, S. Chem. Pharm. Bull. 1973, 21, 465-472. (o) Nef, J. U. Ann. Chem. 1895, 287, 274.
(a) Schmir, G. L.; Cunningham, B. A. J. Am. Chem. Soc. 1965, 87 , 5692-5701. (b) Cunningham, B. A.; Schmir, G. L. J. Am. Chem. Soc. 1966, 88, 551-558. (c) Okuyama, T.; Sahn, D. J.; Schmir, G. L. J. Am. Chem. Soc. 1973, 95, 1253-1265. (d) Kandel, M.; Cordes, E. H. J. Org.

Chem. 1967, 32, 3061-3066. (e) Hand, E. S.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 3505-3514. (f) Chaturvedi, R. K.; Schmir, G. L. J. Am. Chem. Soc. 1968, 90, 4413-4415. (g) See reference 132. (h) Schroeder, J. P.; Schroeder, D. C.; Marshall, J. K. J. Org. Chem. 1969, 34, 3332-3335. (i) Chittenden, R. A.; Cooper, G. H. J. Chem. Soc. (C) 1970, 49-54. (j) Okuyama, T.; Sahn, D. J.; Schmir, G. L. J. Am. Chem. Soc. 1973, 95, 2345-2352.
(a) DeWolfe, R. H. Carboxylic Ortho Acid Derivatives; Academic Press: New York, 1970. (b) McElvain, S. M.; Tate, B. E. J. Am. Chem. Soc. 1951, 73, 2233-2238. (c) Post, H. W. the Chemistry of Aliphatic Ortho Esters; Reinhold Publishing Co.: New York, 1963. (d) Pinner, A. Ber. 1883, 16, 1643. (e) Sah, P. P. T. J. Am. Chem. Soc. 1928, 50, 516-518. (e) Sah, P. P. T.; Ma, S. Y.; Kao, C. H. J. Chem. Soc. 1931, 305-307. (f) McElvain, S. M.; Nelson, J. W. J. Am. Chem. Soc. 1942, 64, 1825-1827. (g) McElvain, S. M.; Aldridge, C. L. J. Am. Chem. Soc. 1953, 75, 3987-3993. (h) McElvain, S. M.; Starn, Jr., R. E., J. Am. Chem. Soc. 1955, 77, 4571-4577. (i) McElvain, S. M.; Clemens, D. H. J. Am. Chem. Soc. 1958, 80, 3915-3923. (j) McElvain, S. M.; Aldridge, C. L. J. Am. Chem. Soc. 1953, 75, 3993-3996. (k) Zaugg, H. E.; Papendick, V.; Michaels, R. J. J. Am. Chem. Soc. 1964, 86, 1399-1402. (l) Eilingsfield, H.; Seefelder, M.; Weidinger, H. Angew. Chem. 1960, 72, 836-845. (m) Moulin, F. Swiss Pat. 420,100 (1967); Chem. Abstr. 1967, 67, 53707a. For an excellent discussion of these transformations, see Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon Press: Oxford, 1983; Chapters 2-3.
(a) Scheithauer, S.; Mayer, R. Chem. Ber. 1967, 100, 1413-1427. (b) Reynaud, Brit. Pat. 1,080,879 (1967); Chem. Abstr. 1968, 68, 95566e.
(d) Barnikow, G.; Strickmann, G. Chem. Ber. 1967, 100, 1428-1435.
(e) Hurd, R. N.; DeLaMater, G. Chem. Revs. 1961, 61, 45-86.
(a) Weintraub, L.; Oles, S. R.; Kalish, N. J. Org. Chem. 1968, 33, 1679-1681. (b) Shriner, R. L.; Neumann, F. W. Chem. Revs. 1944, 35, 351-425. (c) Szilagyi, G.; Kasztreiner, E.; Vargha, L.; Borsy, J. Acta Chim. (Budapest), 1970, 65, 325-332; Chem. Abstr. 1971, 74, 22523c. (d) Reynaud, P.; Moreau, R. C.; Thu, N. H. Compt. Rend. 1961, 253, 2540-2541. (e) Taylor, E. C.; Loeffler, P. K. J. Am. Chem. Soc. 1960, 82, 3147-3151. (f) Garmaise, D. L.; Kay, R. W.; Gaudry, R.; Baker, H. A.; Mckay, A. F. Can. J. Chem. 1961, 39, 1493-1501. (g) Callander, S. E.; Yates, J. Brit. Pat. 1,018,308 (1966); Chem. Abstr. 1966, 64, 17499f. (h) Neunhoeffer, H.; Hennig, Chem. Ber. 1968, 101, 39473951. (i) Peak, D. A.; Stansfield, F. J. Chem. Soc. 1952, 4067-4075.
(a) Watson, K. M.; Neilson, D. G. in the Chemistry of Amidines and Imidates; S. Patai, Editor; Interscience Publishers: New York, 1975, Chapter 10.

Due to the extensive scope of this topic, refer to Neilson, D. G. in the Chemistry of Amidines and Imidates; S. Patai, Editor; Interscience Publishers: New York, 1975, Chapter 9.
(a) Ried, W.; Stephan, W.; von der Emden, W.; Chem. Ber. 1962, 92, 728-732. (b) Ried, W.; Piechaczed, D. Ann. Chem. 1966, 696, 97-100.
(c) Ried, W.; Stephan, W. Chem. Ber, 1962, 95, 3042-3047.
(a) Lawson, A. J. Chem. Soc. 1957, 4225-4228. (b) Grimmet, M. R. Advances in Heterocyclic Chem. 1970, 12, 119-183. (c) Cornforth, J. W.; Huang, T. H. J. Chem. Soc. 1948, 1960-1964.
(a) Bristow, N. W. J. Chem. Soc. 1957, 513-515. (b) Freiter, E. R.; Begin, L. E.; Abdallah, A. H. J. Heterocyclic Chem. 1973, 10, 391-397. (c) Sen, A. B.; Shanker, K. J. Prakt. Chem. 1965, 29, 309-311. (d) King, F. E.; Acheson, R. M. J. Chem. Soc. 1949, 1396-1400. (e) Thomas, R. P.; Tyler, G. J. J. Chem. Soc. 1957, 2197-2201. (f) Hunger, A.; Kebrle, J.; Rossi, A.; Hoffmann, K. Helv. Chim. Acta. 1960, 43, 1727-1730. (g) Ganelllin, C. R.; Ridley, H. F.; Spickett, R. G. W. J. Heterocyclic Chem. 1966, 3, 278-281.
(a) Frump, J. A. Chem. Revs. 1971, 71, 483-505. (b) Wislicenus, W.; Körber, H. Ber. 1902, 35, 164. (c) Brown, H. C.; Wetzel, C. R. J. Org. Chem. 1965, 30, 3724-3729. (d) Inaba, S.; Ishizumi, K.; Okamoto, T.; Yamamoto, H. Chem. Pharm. Bull. 1972 20, 1628-1636. (e) Taguchi, T.; Kojima, M. Chem. Pharm. Bull. 1955, 3, 4-7. (f) Bruns, K. J. Prakt. Chem. 1964, 24, 74-77. (g) McCasland, G. E.; Horswill, E. C. J. Am. Chem. Soc. 1951, 73, 3744-3746. (h) Elliot, D. F. J. Chem. Soc. 1949, 589-594. (i) Stevens, C. L.; Gillis, B. T.; Haskell, T. H. J. Am. Chem. Soc. 1959, 81, 1435-1437.
(a) Shul'man, M. L.; Shvekhgeimer, G. A.; Miftakhova, R. A. Zh. Org. Chim. 1967, 3, 874-878. (b) Ainsworth, C. J. Am. Chem. Soc. 1953, 75, 5728-5729. (c) Hagedorn, I.; Lichtel, K. E.; Winkelmann, H. D. Angew. Chem., Int. Ed. Eng. 1965, 4, 702-703. (d) Benson, F. R. Heterocyclic Compounds, Vol. 8; R. C. Elderfield, Editor; John Wiley and Sons: New York, 1967, pp. 1-104.
(a) Henle, F. Chem. Ber. 1905, 38, 1362-1370. (b) de Ruggieri, P.; Gandolfi, C.; Chiaramonti, D Gazz. Chim. Ital., 1961, 91, 665-671. (c) de Ruggieri, P.; Gandolfi, C.; Chiaramonti, D. U..S. Pat. 3,137,710 (1964); Chem. Abstr. 1964, 61, 7075c.
(a) See reference 15 c and reference 19. (b) See reference 17. (c) Borch, R. F.; Durst, H. D. J. Am. Chem. Soc. 1969, 91, 3996-3997.
(a) Cramer, F.; Pawelzik, K.; Lichtenthaler, F. W. Chem. Ber 1958, 91, 1555-1562. (b) Felkin, H. Compt. Rend., 1955, 240, 2322-2324. (c) See reference 24b.
(a) Chapman, A. W. J. Chem. Soc. 1929, 569-572. (b) Mumm, O.; Hesse, H.; Volquartz, H. Ber. 1915, 48, 379-391. (c) Schulenberg, J. W.; Archer, S. Org. Reactions 1965, 14, 1-51. (d) Wheeler, O. H.; Roman, F.; Santiago, M. V.; Quiles, F. Can. J. Chem. 1969, 47, 503504. (e) Beckwith, A. L. J. in the Chemistry of Amides; J. Zabicky, Editor; Interscience Publishers: New York, 1970, pp. 73-185. (f) Chapman, A. W. J. Chem. Soc. 1925, 127, 1992-1998. (g) Wiberg, K. B.; Rowland, B. I. J. Am. Chem. Soc. 1955, 77, 2205-2209. (h) Wheeler, O. H.; Roman, F.; Rosado, O. J. Org. Chem. 1969, 34, $966-$ 968.
(a) Davidson, D.; Skovronek, H. J. Am. Chem. Soc. 1958, 80, 376-379.
(b) Polya, J. B.; Tardrew, P. L. J. Chem. Soc. 1948, 1081-1083. (c)

Polya, J. B.; Tardrew, P. L. Rec. Trav. Chim. 1948, 67, 927-933. (d)
Polya, J. B.; Tardrew, P. L. Rec. Trav. Chim. 1952, 71, 676-678.
(a) Bieron, J. F.; Dinan, F. J. in the Chemistry of Amides; J. Zabicky, Editor; Interscience Publishers: New York, 1970, pp. 245-288. (b) Saednya, A. Synthesis, 1985, 184-185. (c) Mowry, D. T. Chem. Rev. 1948, 42, 189-283. (d) Wagner, R.; Zook, H. Synthetic Organic Chemistry, John Wiley and Sons, New York, 1953, pp. 596-598.

Thompson, Q. E. J. Am. Chem. Soc. 1951, 73, 5841-5846.

Titherly, A. W.; Holden, T. H. J. Chem. Soc. 1912, 101, 1871-1881.

Tull, R.; O'Neill, R. C.; McCarthy, E. P.; Pappas, J. J.; Chemerda, J. M. J. Org. Chem. 1964, 29, 2425-2428.

Hall, H. K. J. Am. Chem. Soc. 1956, 78, 2717-2719.

Horning, D. E.; Muchowski, J. M. Can. J. Chem. 1967, 45, 1247-1251.
(a) Speziale, A. J.; Smith, L. R. J. Org. Chem. 1962, 27, 3742-3744. (b) Speziale, A. J.; Smith, L. R. J. Org. Chem. 1963, 28, 1805-1811. (c) Speziale, A. J.; Smith, L. R.; Fedder, J. E. J. Org. Chem. 1965, 30, 4306-4307. (d) Speziale, A. J.; Smith, L. R. J. Org. Chem. 1962, 27, 4361-4365. (e) Speziale, A. J.; Smith, L. R., Fedder, J. E. J. Org. Chem. 1965, 30, 4303-4305.
(a) Bonnet, R. in the Chemistry of the Carbon-Nitrogen Double Bond; S. Patai, Editor; Interscience Publishers: New York, 1970, pp. 597-662. (b) Eilingsfeld, H.; Seefelder, M.; Weidinger, H. Angew. Chem. 1960, 72, 836-845.
(a) Eilingsfeld, H.; Seefelder, M.; Weidinger, H. Chem. Ber. 1963, 96, 2671-2690. (b) Bredereck, H.; Bredereck, K. Chem. Ber. 1961, 94, 2278-2295. (c) Minkin, V. I.; Dorofeenko, G. N. Russ. Chem. Rev. 1960, 29, 599-618.
(a) von Braun, J.; Müller, C. Ber. 1906, 39, 2018. (b) Fawcett, F. A; Tullock, C. W.; Coffman, D. D. J. Am. Chem. Soc. 1962, 84, 42754285.
(a) Arnold, Z.; Holy, Collect. Czech. Chem. Commun. 1962, 27, 28862899. (b) Arnold, Z. Collect. Czech. Chem. Commun. 1963, 28, 20472051. (c) Martin, G.; Martin, M. Bull. Chem. Soc. Fr. 1963, 1637-1646. (d) Fritz, H.; Oehl, R. Liebigs Ann. Chem. 1971, 749, 159-167.
(a) Ugi, I.; Beck, F.; Fetzer, U. Ber. 1962, 95, 126-135. (b) Buyle, R.; Viehe, H. G. Tetrahedron 1968, 24, 4217-4221.

For comparative studies with benzanilide and dimethylformamide and various chlorinating agents, see: Bosshard, H. H.; Mory, R.; Schmid, M.; Sollinger, H. Helv. Chim. Acta 1959, 42, 1653-1658.
(a) Gerhardt, C. Ann. Chem. 1858, 108, 214. (b) Hill, A. J.; Cox, M. V. J. Am. Chem. Soc. 1926, 48, 3214-3219. (c) Bauer, R. Ber. 1907, 40, 2650-2662. (d) Rao, H. K. S.; Wheeler, T. S. J. Chem. Soc. 1937, 16431645. (e) von Braun, J.; Heymons, A. Ber. 1930, 63, 502-509.

Baumann, F.; Bienert, B.; Rösch, G.; Vollmann, H.; Wolf, W. Angew. Chem. 1956, 68, 133-150.

Arvin, J. A.; Adams, R. J. Am. Chem. Soc. 1928, 50, 1983-1985.

Ulrich, H.; Kober, E.; Schroeder, H.: Rätz, R.; Grundmann, C. J. Org. Chem. 1962, 32, 2585-2589.
(a) Stephen, H. J. Chem. Soc., 1920, 1529-1534. (b) Shah, R. C. J. Indian Inst. Sci. 1924, 7, 205-223. (c) Vaughan, W. R.; Carlson, R. D. J. Am. Chem. Soc. 1962, 84, 769-774.

See reference 39c.

See reference 45 b and 46 a.

See reference 45 a.

Stevens, C. L.; French, J. C. J. Am. Chem. Soc. 1954, 76, 4398-4402.
(a) Huisgen, R.; Raab, R. Tetrahedron Lett. 1966, 7, 649-654. (b) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565-632.
(a) Sonn, A.; Müller, E. Ber. 1919, 52, 1927-1934. (b) Mosettig, E. Org. Reactions 1954, 8, 218-257. (c) von Braun, J.; Rudolph, W. Ber. 1934, 67, 1735-1739. (d) Kuhn, R.; Morris, C. J. O. R. Ber. 1937, 70, 853-858.

See reference 49a.
(a) Lander, G. D. J. Chem. Soc. 1902, 591-598. (b) Smith, W. R. J. Am. Chem. Soc. 1894, 16, 372-374. (c) See reference 46b. (d) See reference 46a.
(a) von Pechmann, H. Ber. 1895, 28, 2362. (b) Wallach, O. Ber. 1876, 8, 1214. (c) von Pechmann, H. Heinze, B. Ber. 1897, 30, 1783. (d) Heine, H. W.; Bender, H. S. J. Org. Chem. 1960, 25, 461-463. (e) Ponzio, G.; Charrier, G. Gazz. Chim. Ital. 1907, 37, 65. (f) Lossen, W. Ann. Chem. 1891, 265, 129. (g) See reference 51b.
(a) Shah, R. C.; Ichaporia, M. B. J. Chem. Soc. 1936, 431-432. (b) Ghadiali, H. P.; Shah, R. C. J. Indian Chem. Soc. 1949, 26, 117-120.
(a) Ley, H.; Müller, F.; Ber. 1907, 40, 2950-2957. (b) Cooper, F. C.; Partridge, M. W.; Short, W. F. J. Chem. Soc. 1951, 391-404. (c) Fusco, R.; Musante, C. Gazz. Chim. Ital. 1938, 68, 147-156.
(a) Ley, H. Ber. 1898, 31, 240, 2126. (b) See reference 46a. (c) Ley, H.; Holzweissig, E. Ber. 1903, 36, 18.
(a) Behringer, H.; Fischer, H. J. Chem. Ber. 1962, 95, 2546-2556. (b) Busch, M.; Ruppenthal, R. Ber. 1910, 43, 3001-3011.
(a) Schroeter, G. Ber. 1909, 42, 3356-3362. (b) Forster, M. O. J. Chem. Soc. 1909, 184-191. (c) See reference 68a. (d) von Braun, J.; Rudolph, W. Ber. 1941, 74, 264-272. (e) Smith, P. A. S.; J. Am. Chem. Soc., 1954, 76, 436-441. (f) Smith, P. A. S.; Leon, E. J. Am. Chem. Soc. 1958, 80, 4647-4654.
(a) Mumm, O. Ber. 1910, 43, 886-893. (b) Mumm, O.; Volquartz, H.; Hesse, H. Ber. 1914, 47, 751-758. (c) Lamberton, A. H.; Standage, A. E. J. Chem. Soc. 1960, 2957-2966 (d) Mumm, O.; Hesse, H.; Volquartz, H. Ber. 1914, 47, 751-758. (e) Davis, P.; McEwen, W. E. J. Org. Chem. 1961, 26, 815-818.
(a) See reference 71c. (b) See reference 71d. (c) Curtin, D. Y.; Miller, L. L. Tetrahedron Lett. 1965, 6, 1869-1876. (d) Cramer, F.; Baer, K. Chem. Ber. 1960, 93, 1231-1236. (e) Dimethylformamide can be used as a catalyst for forming acid chlorides from carboxylic acids. See reference 51.
(a) See reference 46a. (b) Leo, H. Ber. 1877, 10, 2133.

Jamieson, G. S. J. Am. Chem. Soc. 1904, 26, 177-183. (b) Rivier, H.; Schalch, J. Helv. Chim. Acta, 1923, 6, 605-617.
(a) Zieloff, K.; Paul, H.; Hilgetag, G. Chem. Ber. 1966, 99, 357-361.
(b) Kreutzkamp, N.; Cordes, G. Ann. Chem. 1959, 623, 103-108.
(a) Heeramaneck, V. R.; Shah, R. C. J. Chem. Soc. 1937, 867. (b) Kulkarni, K, D.; Shah, R. C. J. Ind. Chem. Soc. 1949, 26, 171-174. (c) Rao, H. K. S., Wheeler, T. S. J. Chem. Soc. 1938, 476-478. (d) Justoni, R., Fusco, R. Gazz. Chim. Ital. 1938, 68, 59. (e) Just, F. Ber. 1885, 18, 2632. (f) Seka, R.; Feuchs, W. Monatsh. Chem. 1931, 57, 63-70. (g) Shah, R. C.; Heeramaneck, V. R. J. Chem. Soc. 1936, 428-430. (h) Singh, G.; Nair, G. V. J. Am. Chem. Soc. 1956, 78, 6105-6109.
(a) Fischer, O.; Müller, A.; Vilsmeier, A. J. Prakt. Chem. 1924, 109, 69-87. (b) Vilsmeier, A.; Haack, A. Ber. 1927, 60, 119-122. (c) Jutz, C. Adv. Org. Chem. 1976, 9, pt. 1, pp. 225-342. (d) Kantlehner, W. Adv. Org. Chem. 1979, 9, pt. 2, pp. 5-172. (e) Jugie, G.; Smith, J. A. S.; Martin, G. J. J. Chem. Soc., Perkin Trans. 2 1975, 925-927.
(a) See reference 49b. (b) Marchand-Brynaert, J.; Moya-Portuguez, Manuel, Huber, I.; Ghosez, L. J. Chem. Soc., Chem. Commun. 1983, 818-819.
(a) Kindler, K. Ann. Chem. 1923, 431, 187-230. (b) Baganz, H.; Kessler, H. Chem. Ber. 1955, 88, 1995-1997.

Bosshard, H. H.; Zollinger, H. Helv. Chim. Acta 1959, 42, 1659-1671.
(a) List, K.; Limpricht, H. Liebigs Ann. Chem. 1854, 90, 193. (b) Wilbrand, J.; Beilstein, F. Liebigs Ann. Chem. 1863, 128, 262. (c) Linnemann, E. Liebigs Ann. Chem. 1871, 160, 195.

Marvel, C. S.; de Radzitzky, P.; Brader, J. J. J. Am. Chem. Soc. 1955, 77, 5997-5999.

Jansen, K. A.; Pedersen, C. Acta Chem. Scand. 1961, 15, 1087-1096.

Peak, D. A.; Stansfield, F. J. Chem. Soc. 1952, 4067-4075.

Meerwein, H.; Mitarbeitern, U. Chem. Ber. 1956, 89, 2060-2079.

Stolle, R. J. Prakt. Chem. 1904, 69, 157.
(a) Fischer, O.; Müller, A.; Vilsmeier, A. J. Prakt. Chem. 1924, 109, 69-87. (b) Vilsmeier, A.; Haack, A. Ber. 1927, 60, 119-122. (c) Jutz, C. Adv. Org. Chem. 1976, 9, pt. 1, pp. 225-342. (d) Kantlehner, W. Adv. Org. Chem. 1979, 9, pt. 2, pp. 5-172. (e) Jugie, G.; Smith, J. A. S.; Martin, G. J. J. Chem. Soc., Perkin Trans. 2 1975, 925-927.
(a) See Ghosez, reference 49b. Marchand-Brynaert, J.; MoyaPortuguez, Manuel, Huber, I.; Ghosez, L. J. Chem. Soc., Chem. Commun. 1983, 818-819.
(a) Kindler, K. Ann. Chem. 1923, 431, 187-230. (b) Baganz, H.; Kessler, H. Chem. Ber. 1955, 88, 1995-1997.

Bosshard, H. H.; Zollinger, H. Helv. Chim. Acta 1959, 42, 1659-1671.
(a) List, K.; Limpricht, H. Liebigs Ann. Chem. 1854, 90, 193. (b) Wilbrand, J.; Beilstein, F. Liebigs Ann. Chem. 1863, 128, 262. (c) Linnemann, E. Liebigs Ann. Chem. 1871, 160, 195.

Marvel, C. S.; de Radzitzky, P.; Brader, J. J. J. Am. Chem. Soc. 1955, 77, 5997-5999.

Jansen, K. A.; Pedersen, C. Acta Chem. Scand. 1961, 15, 1087-1096.

Peak, D. A.; Stansfield, F. J. Chem. Soc. 1952, 4067-4075.

Meerwein, H.; Mitarbeitern, U. Chem. Ber. 1956, 89, 2060-2079.

Stolle, R. J. Prakt. Chem. 1904, 69, 157.

Japp, F. R.; Meldrum, A. N. J. Chem. Soc. 1899, 1043.

Ransom, J. H.; Ber. 1898, 31, 1063.
von Pechmann, H. Ber. 1900, 33, 611.
(a) von Braun, J.; Jostes, F.; Heymons, A. Ber. 1927, 60, 92-102. (b) Heymons, A.; Rohland, W. I. Ber. 1932, 65, 320-329.
(a) Ugi, I.; Meyr, R. Chem. Ber, 1960, 93, 239-248. (b) Ugi, I.; Meyr, M.; Lupinski, M.; Bodesheim, F.; Rosendahl, F. Org. Syn. 1961, 41, 13-15. (c) Hertler, W. R.; Corey, E. J. J. Org. Chem. 1958, 23, 12211222. (d) Casanova, J.; Schuster, R. E.; Werner, N. D. J. Chem. Soc. 1963, 4280-4281.
(a) von Braun, J.; Jostes, F.; Münch, W. Ann. Chem. 1927, 453, 113147. (b) Holtschmidt, H.; Degener, E.; Schmelzer, H. G. Ann. Chem. 1967, 701, 107-116.
(a) Haveaux, B.; Dekoker, A.; Rens, M.; Sidani, A. R.; Toye, J.; Ghosez, L. Org. Synth., 1980, 59, 26-34. (b) De Poortere, M.; Marchand-Brynaert, J.; Ghosez, Angew. Chem., Int. Ed. Engl. 1974, 13, 267-268. (c) Marchand-Brynaert, J.; Moya-Portuguez, M.; Lesuisse, D.; Ghosez, L. J. Chem. Soc., Chem. Commun.1980, 173-174.

Triphosgene, bis(trichloromethyl) carbonate, is a less volative trimer of phosgene (m.p. $81-83^{\circ} \mathrm{C}$) It's use should be presumably less hazardous. (a) Cotarca, L.; Delogu, P.; Nardelli, A.; Sunjic, V.

Synthesis 1996, 553-576. (b) Eckert, H.; Forster, B. Angew. Chem. 1987, 99, 922; Angew. Chem., Int. Ed. Engl. 1987, 26, 894-895.

Williams, J. W.; Witten, C. H.; Krynitsky, J. A. Org. Syn. Coll. Vol. 3, 1955, 818-820.

Falmagne, J. B.; Escudero, J.; Taleb-Saharaoui, S.; Ghosez, 1. Angew. Chem., Int. Ed. Engl. 1981, 20, 879-880.

For reviews on triflic anhydride, see: (a) Stang, P. J.; Hanack, M.; Subramanian, L. R. Synthesis 1982, 85-126. (b) Stang, P. J.; White, M. R. Aldrichim. Acta 1983, 16, 15-22. (c) Ritter, K. Synthesis 1993, 735-762. (d) Martínez, A. G.; Subramanian, L. R.; Hanack, M. in Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed., John Wiley and Sons, Chichester, England, 1995, Vol. 7, 5146-5152.

1-Phenylethyl triflate is solvolysed 1.4×10^{8} times faster than the corresponding 1-phenylethyl chloride. Noyce, D. S.; Virgilio, J. A. J. Org. Chem. 1972, 37, 2643-2647.

For an analogy in electrophilic aromatic substitutions, see: (a) Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.; Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W. J. Chem. Soc., Chem. Commun. 1995, 2551-2553. (b) Garcia-Martinez, A.; MartinezAlvarez, Barcina-Osio, J.; de la Moya-Cerero, S.; R.; Teso-Vilar, E.; Garcia-Fraile, A.; Hanack, M.; Subramanian, L. R. J. Chem. Soc., Chem. Commun. 1990, 1571-1572.
(a) Schmit, C.; Falmagne, J. B.; Escudero, J.; Vanlierde, H.; Ghosez, L. Org. Synth. 1990, 69, 199-211. (b) Genicot, C.; Gobeaux, B.; Ghosez, L. Tetrahedron Lett. 1991, 32, 3827-3830. (c) Snider, B. B. Chem. Rev. 1988, 88, 793-811. (d) Gobeaux, B.; Ghosez, L. Heterocycles, 1989, 28, 29-32. (e) Chen, L.-Y.; Ghosez, L. Tetrahedron Lett. 1990, 31, 4467-4470. (f) Chen, L.-Y.; Ghosez, L. Tetrahedron Asymmetry 1991, 2, 1181-1184. (g) Ghosez, L.; Marchand-Brynaert, J. in Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, L. A. Paquette, Editors, Pergamon Press: Oxford, 1991, Vol. 5, pp. 85-122. (h) Barbaro, G.; Battaglia, A.; Bruno, C.; Giorgianni, P.; Guerrini, A. J. Org. Chem. 1996, 61, 8480-8488.
(a) Sisti, N. J.; Zeller, E.; Grierson, D. S.; Fowler, F. W. J. Org. Chem. 1997, 62, 2093-2097. (b) Sisti, N. J.; Motorina, I. A.; Tran Huu Dau, M.-E.; Riche, C.; Fowler, F. W.; Grierson, D. S. J. Org. Chem. 1996, 61,3715-3728.

For some selected reviews, see: (a) Roush, W. R. in Comprehensive Organic Synthesis, L. A. Paquette, Editor, Pergammon Press, Oxford, 1991, Oxford, 1991, Vol. 5, p. 513-564. (b) Craig, D. J. Chem. Soc. Rev. 1987, 16, 187-238. (c) Fallis, A. G. Can. J. Chem. 1984, 62 183. (d) Ciganek, E. Org. React. 1984, 32, 1-374.

Thomas, E. W. Synthesis, 1993, 767-768.

For selected discussions on this topic, see: (a) Hughes, E. D. Q. Rev., Chem. Soc. 1948, 2, 107-131. (b) Fry, J. L.; Lancelot, C. J.; Lam, L. K. M.; Harris, J. M.; Bingham, R. C.; Raber, D. J.; Hall, R. E.; Schleyer, P. von R. J. Am. Chem. Soc. 1970, 92, 2539-2540.

Barone, V.; Adamo, C.; Minichino, C. J. of Mol. Struct. (Theochem) 1995, 330, 325-333.
(a) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. in Inorganic Chemistry: Principles of Structure and Reactivity, $4^{\text {th }}$ Ed.; Harper Collins College Publishers: New York, 1993, A-32. (b) Cottrell, T. L. in the Strength of Chemical Bonds, $2^{\text {nd }}$ Ed.; Butterworths: London, 1958.
(a) Subramanian, L. R.; Hanack, M.; Chang, , L. W. K.; Imhoff, M. A.; Schleyer, P. von R.; Effenberger, F.; Kurtz, W.; Stang, P. J.; Dueber, T. E. J. Org. Chem. 1976, 41, 4099-4103. (b) Streitwieser, Jr., A.; Dafforn, A. Tetrahedron Lett. 1976, 18, 1435-1438. (c) Malenfant, E. M. Sc. Thesis, Université Laval, 1992.
(a) Edward, J. T.; Chang, H. S.; Yates, K. Can. J. Chem. 1960, 38, 1518-1525. (b) Homer, R. B.; Moodie, R. B. J. Chem. Soc. 1963, 43774381. (c) Cox, R. A.; Druet, L. M.; Klausner, A. E.; Modro, T. A.; Wan, P.; Yates, K. Can. J. Chem. 1981, 59, 1568-1573. (d) Grant, H. M.; McTigue, P. T.; Ward, D. G. Aust. J. Chem. 1983, 36, 2211-2218.
N, N-diethylphenylacetamide ($51 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{ml})$ containing pyridine $-\mathrm{d}_{5}(60 \mu \mathrm{l}, 0.75 \mathrm{mmol})$. The solution was cooled to $-50^{\circ} \mathrm{C}$ and $\mathrm{Tf}_{2} \mathrm{O}(55 \mu \mathrm{l}, 0.32 \mathrm{mmol})$ was added. The reaction was monitored by low temperature ${ }^{1} \mathrm{HNMR}$. An identical procedure was used for N -benzylphenylacetamide (44 mg , 0.20 mmol) with $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{ml})$, pyridine $-\mathrm{d}_{5}(50 \mu \mathrm{l}, 0.61$ $\mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(45 \mu \mathrm{l}, 0.27 \mathrm{mmol})$.

See reference 96 and $100(\mathrm{a}-\mathrm{g})$.

Triflic acid is the strongest known monobasic acid. Its pk_{a} in water is estimated at-14. (a) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456463. (b) Gramstad, T. Tidsskr. Kjemi, Bergvesen Met. 1959, 19, 62-66. (c) Subramanian, L. R.; Martínez, A. G.; Hanack, M. in Encyclopedia of Reagents for Organic Synthesis; L. A. Paquette, Editor; John Wiley and Sons: Chichester, England, 1995, Vol. 7, p. 5143-5146.

See Appendix 1.

This compound has been previously observed and used, but never characterized due to its inherent instability. Binkley, R. W.; Ambrose, M. G.; Hehemann, D. G. J. Org. Chem. 1980, 45, 43874391.

Charette, A. B.; Chua*, P.; de Freitas, R. P.; Cadet, L.; Giroux, A. "Enantioselective Approach Towards Highly Substituted Baminotetralins"; Ontario-Québec Minisymposium; University of Waterloo, Waterloo, Canada; Oct. 25-27, 1996.

For selected papers on this topic, see: (a) Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, $2^{\text {nd }}$ Ed.; VCH; New York, 1988. (b) Reichardt, C. Angew. Chem., Int. Ed. Engl. 1979, 18, 98-110. (c) Parker, J. J. Chem. Soc. 1961, 1328. (d) Hutchinson, J. D.; Weaver, W. M. J. Am. Chem. Soc. 1964, 86, 261-265. (e) Rodewald; Mahendran, K.; Bear, A.; Fuchs, R. J. Am. Chem. Soc. 1968, 90, 66986700. (f) Fuchs, R.; Mahendran, K. J. Org. Chem. 1971, 36, 730-731. (g) Bentley, T. W.; Schleyer, P. von R. Adv. Phys. Org. Chem. 1977, 14, 1-67. (h) Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P. von R. J. Am. Chem. Soc. 1981, 103, 5466-5475.

Charette, A. B.; Chua, P.; Rabier, O. unpublished results.

Approximately 2 ml of ethann was added to the reaction which contained 5 ml of the solvent in question.

See references 96, 101, and 103.

The hydride affinity of a methylbenzyl carbocation in gas phase is $226 \mathrm{kcal} / \mathrm{mol}$. This is significantly lower than methyl (314 $\mathrm{kcal} / \mathrm{mol}$) or ethyl ($274 \mathrm{kcal} / \mathrm{mol}$) carbocations, but not much lower than benzyl ($233 \mathrm{kcal} / \mathrm{mol}$). The lack of fragmentation in benzyl amides implies that some other factors are being omitted in gas phase studies. Data taken from: (a) Aue, D. H.; Bowers, M. T.; Gas Phase Ion Chemistry, M. T. Bowers, Editor; Academic Press: New York, 1979. (b) Houle, F. A.; Beauchamp, I. L. J. Am. Chem. Soc. 1979, 101, 4067-4074.

Triflic anhydride with triethylamine has been reported to dehydrate aldoximes: Hendrickson, J. B.; Bair, K. W.; Keehn, P. M. Tetrahedron Lett., 1976, 27, 603-604.
(a) For a novel, but somewhat harsh method for dehydrating primary amides, see: Heck, M.-P.; Wagner, A.; Mioskowski, C. J. Org. Chem. 1996, 61, 6486-6487. (b) Nakajima, N.; Ubukata, M. Tetrahedron Lett. 1997, 38, 2099-2102 and references therein. (c) Campagna, F.; Carotti, A.; Casini, G. Tetrahedron Lett. 1977, 21, 1813-1816 and references therein.

See reference 90.

For selected papers on the Ritter reaction, see: (a) Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. 1948, 70, 4045-4048. (b) Krimen, L. I.; Cota, D. J. Org. React. 1969, 17, 213-325. (c) Beckwith in the Chemistry of Amides; J. Zabicky, Editor; Interscience Publishers: New York, 1970, pp. 125-130. (d) Johnson; Madroñero Adv. Heterocycl. Chem. 1966, 6, 95-146. (e) Martinez, A. G.; Alvarez, G. R. M.; Vilar, E. T.; Fraile, A. G.; Hanack, M.; Subramanian, L. R. Tetrahedron Lett. 1989, 30, 581-582.

Charette, A. B.; Chua, P. Synlett 1998, 163-165.
(a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, $2^{\text {nd }}$ Ed.; Wiley: New York, 1991, 270. (b) Kung, H.; Waldmann, H. in Comprehensive Organic Synthesis; B. M. Trost, Editor; Pergamon Press: Oxford, 1991, Vol. 6, p. 631. (c) Singh, L.; Ram, R. N. J. Org. Chem. 1994, 59, 710-711 and references cited therein.
(a) Greenlee, W. J.; Thorsett, E. D. J. Org. Chem. 1981, 46, 5351-5353. (b) Lee, S. D.; Brook, M. A.; Chan, T. H. Tetrahedron Lett. 1983, 24 , 1569-1572. (c) Anelli, P. L.; Brochetta, M.; Palano, D.; Visigalli, M. Tetrahedron Lett. 1997, 38, 2367-2368. (d) Webster, F. X.; Millar, J. G.; Silverstein, R. M. Tetrahedron Lett. 1986, 27, 4941-4944. (e) Eschenmoser, A.; Wintner, C. E. Science, 1977, 196, 1410-1420.
(a) Hamilton, D. J.; Price, M. J. J. Chem. Soc., Chem. Commun. 1969, 414. (b) Tanner, D. D.; Osman, S. A. A. J. Org. Chem. 1987, 52, 46894693. (c) Sheehan, J. C.; Yang, D.-D. H. J. Am. Chem. Soc. 1958, 80,

1154-1158. (d) Djuric, S. W. J. Org. Chern. 1984, 49, 1311-1312. (e) Obayashi, M.; Schlosser, M. Chem. Lett. 1985, 1715-1718.

For an interesting application of transition metals towards the mild hydrolysis of peptides, see: (a) Parac, T. N.; Kostic, N. M. J. Am. Chem. Soc. 1996, 118, 51-58. (b) Sutton, P. A.; Buckingham, D. A. Acc. Chem. Res. 1987, 20, 357-364. (c) See reference 9e. (d) Chin, J. Acc. Chem. Res. 1991, 24, 145-152. (e) Fife, T. H. Acc. Chem. Res. 1993, 26, 325-331. (f) Dixon, N. E.; Sargeson, A. M. in Zinc Enzymes; T. G. Spiro, Editor; John Wiley and Sons: New York, 1983, Chapter 7.

Roberts, V. A.; Stewart, J. D.; Benkovic, S. J.; Getzoff, E. D. J. Mol. Biology 1994, 235, 1098-1116.

See reference 23 and 24.

See reference 16 .

Hanessian, S. Tetrahedron Lett. 1967, 5, 1549-1552.
(a) Schöllkopf, U. in Topics in Current Chemistry; F. L. Boschke, Editor; Springer: Berlin, 1983, Vol. 109, 65-85. (b) Williams, R. M. Synthesis of Optically Active α-Amino Acids, Vol. 7 of Organic Chemistry Series; J. E. Baldwin, P. D.Magnus, Editors; Pergamon Press: Oxford, 1989, pp. 1-33. (c) Groth, U.; Schmeck, C.; Schöllkopf, U. Liebigs Ann. Chem. 1993, 321-323. (d) Beulshausen, T.; Groth, U.; Schöllkopf, U. Liebigs Ann. Chem. 1991, 1207-1209.

See footnote 25 in reference 135a.
(a) Deslongchamps, P. Tetrahedron 1975, 31, 2463-2490. (b) Sforza, S.; Dossena, A.; Corradini, R.; Virgili, E.; Marchelli, R. Tetrahedron Lett. 1998, 39, 711-714.
(a) White, E. H. J. Am. Chem. Soc. 1954, 76, 4497-4498. (b) White, E. H. J. Am. Chem. Soc. 1955, 77, 6008-6010. (c) White, E. H. J. Am. Chem. Soc. 1955, 77, 6011-6014. (d) White, E. H. J. Am. Chem. Soc. 1955, 77, 6014-6018.

Evans, D. A.; Carter, P. H.; Dinsmore, C. J.; Barrow, J. C.; Katz, J.L.; Kung, D. W. Tetrahedron Lett., 1997, 38, 4535-4538.

Berenguer, R.; Garcia, J.; Vilarrasa, J. Synthesis 1989, 305-306.

Evans, D. A.; Barrow, J. C.; Watson, P. S.; Ratz, A. M.; Dinsmore, C. J.; Evrard, D. A.; DeVries, K. M.; Ellman, J. A.; Rychnovsky, S. D.; Lacour, J. J. Am. Chem. Soc. 1997, 119, 3419-3420.

Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org. Chem. 1983, 48, 24242426.

Tsunoda, T.; Sasaki, O.; Itô, S. Tetrahedron Lett. 1990, 31, 731-734.
(a) Cain, B. F. J. Org. Chem. 1976, 41, 2029-2031. (b) Lai, C. K.; Buckanin, R. S.; Chen, S. J.; Zimmerman, D. F.; Sher, F. T.; Berchtold, G. A. J. Org. Chem. 1982, 47, 2364-2369. (c) Koft, E. R., Dorff, P.; Kullnig, R. J. Org. Chem. 1989, 54, 2936-2940.

143 Gassman, P. G.; Hodgson, P. K. G.; Balchunis, R. J. J. Am. Chem. Soc. 1976, 98, 1275-1276.
(a) Deslongchamps, P.; Lebreux, C.; Taillefer, R. Can. J. Chem. 1973, 51, 1665-1669. (b) Smith, M. B.; Shroff, H. N. J. Org. Chem. 1984, 49, 2900-2906.

145 Woodward, R. B. Pure and Appl. Chem. 1973, 33, 145-177.

146 See reference 116.

147 See references 101, 102 and 103.

148 Brogden, R. N. Drugs, 1979, 18, 241-277.

149 For selected references, see: (a) Ware, E. Chem. Rev. 1950, 46, 403470. (b) Feldman, P. L.; Brackeen, M. F. J. Org. Chem. 1990, 55, 4207-4209. (c) Coquerel, G.; Petit, M.-N.; Bouaziz, R.; Depernet, D. Chirality, 1992, 4, 400-403. (d) Upham, S. D.; Dermer, O. C. J. Org. Chem. 1957, 22, 799-802.

Pirkle, W. H.; Heire, R.; Hyun, M. H. Chirality, 1992, 4, 302-307.
(a) Billman, J. H.; Harting, W. F. J. Am. Chem. Soc. 1948, 70, 14731474. (b) McArthur, C. R.; Worster, P. M. Syn. Commun. 1983, 13, 311-318.
(a) Miyazawa, T.; Otomatsu, T.; Yamada, T.; Kuwata, S. Tetrahedron Lett. 1984, 25, 771-772. (b) Miyazawa, T.; Otomatsu, T.; Fukui, Y.; Yamada, T.; Kuwata, S. J. Chem. Soc., Chem. Commun. 1988, 419-420. (c) Yamada, T.; Omote, Y.; Nakamura, Y.; Miyazawa, T.; Kuwata, S. Chem. Lett. 1993, 1583-1586.

Anderson, G. W.; Callahan, F. M. J. Am. Chem. Soc. 1958, 80, 29022903.

Christie, B. D.; Rapoport, H. J. Org. Chem. 1985, 50, 1239-1246.

Charette, A. B.; Chua, P. Tetrahedron Lett. 1997, 38, 8499-8502.
(a) See reference $24 a$, Chapter 1. (b) See reference 24c. (c) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, $2^{\text {nd }}$ Ed.; Wiley: New York, 1991, pp. 267-269. (d) Kocienski, P. J. Protecting Groups; Thieme Verlag: Stuttgart, 1994. (e) DeWolfe, R. H. Synthesis, 1974, 153-172. (f) Pindur, U.; Müller, J.; Flo, C.; Witzel, H. Chem. Soc. Rev. 1987, 16, 75-87.

For recent use of ortho esters in synthesis, see: (a) Haudrechy, A.; Picoul, W.; Langlois, Y. Tetrahedron: Asymmetry 1997, 8, 139-148. (b) Li, S. G.; Dory, Y. L.; Deslongchamps, P. Tetrahedron 1996, 52 , 14841-14854. (c) Nicolaou, K. C.; Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.;Bertinato, P.; Miller, R. A.; Tomaszewski, M. J. Eur.
J. Chem. 1996, 2, 847-868. (d) Ghosez, L. Pure Appl. Chem. 1996, 68, 15-22. (e) Dequeker, E.; Compernolle, F.; Toppet, S.; Hoornaert, G. Tetrahedron 1995, 51, 5877-5890. (f) Dubé, D.; Deschênes, D.; Tweddell, J.; Gagnon, H.; Carlini, R. Tetrahedron Lett. 1995, 36, 1827-1830.

162

Corey, E. J.; Beames, D. J. J. Am. Chem. Soc. 1973, 95, 5829-5831.
(a) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741-743. (b) Alexander, E. R.; Busch, H. M. J. Am. Chem. Soc. 1952, 74, 554-555. (c) Hunter, H. J. Chem. Soc. 1924, 1389-1395. (d) Roberts, R. M.; Higgins, T. D.; Noyes, P. R. J. Am. Chem. Soc. 1955, 77, 3801-3805. (e) Smith, B. Acta Chem. Scand. 1956, 10, 1006-1010.
(a) Kita, Y.; Yoshida, Y.; Mihara, S.; Fang, D.-F.; Higuchi, K.; Furukawa, A.; Fujioka, H. Tetrahedron Lett. 1997, 38, 8315-8318. (b) Bohlmann, F.; Sucrow, W. Chem. Ber. 1964, 97, 1839-1845. (c) Braun, R. A. J. Org. Chem. 1966, 31, 1147-1150. (d) Doering, W. von E.; Levy, L. K. J. Am. Chem. Soc. 1955, 77, 509-513. (e) Dolby, L. C.; Lieske, C. N.; Rosencrantz, D. R.; Schwartz, M. J. J. Am. Chem. Soc. 1963, 85, 47-52. (f) Kovacs, O. J.; Schneider, G.; Lang, L. K.; Apjok, A. Tetrahedron, 1967, 23, 4181-4196. (g) Oae, S.; Tagaki, W.; Ohno, A. Tetrahedron 1964, 20, 417-425. (h) Ohme, R.; Schmitz, E. Ann. Chem. 1968, 716, 207-208. (i) Osbond, J. M.; Philpott, P. G.; Wickens, J. C. J. Chem. Soc. 1961, 2779-2787. (j) Stetter, H.; Steinacker, K. H. Chem. Ber. 1953, 86, 790-793. (k) Stetter, H.; Steinacker, K. H. Chem. Ber. 1954, 87, 205-209.
(a) Shono, T.; Matsumura, Y.; Onomura, O.; Yamada, Y. Synthesis 1987, 1099-1100. (b) Moeller, K. D.; Tarazi, S.; Marzabadi, M. R. Tetrahedron Leti. 1989, 30, 1213-1216.

Voss, G.; Gerlach, H. Helv. Chim. Acta 1983, 66, 2294-2307.

March, J. Advanced Organic Chemistry, $4^{\text {th }}$ Ed.; Wiley Interscience: New York, 1992, p. 891.
(a) Wakamatsu, T.; Hara, H.; Ban, Y. J. Org. Chem. 1985, 50, 108-112.
(b) White, J. D.; Kuuo, S. C.; Vedananda, T. R. Tetrahedron Lett. 1987, 28, 3061-3064.
(a) Winstein, S.; Buckles, R. E. J. Am. Chem. Soc. 1943, 65, 613-618.
(b) Schneider, G.; Kovacs, K. J. Chem. Soc., Chem. Commun. 1965, 202-203. (c) Schneider, G.; Lang, L. K. J. Chem. Soc., Chem. Commun. 1967, 13-14. (d) Pacsu, E. Advan. Carbohdrate Chem. 1945, 1, 77-127.
(e) Kovacs, O. J.; Schneider, G. Lang, L. K.; Apjok, A. Tetrahedron, 1967, 23, 4181. (f) Holm, T. U. S. Patent 2,611,787 (1952); Chem. Abstr. 1953, 47, 9997.
(a) Meerwein, H.;Borner, P.; Fuchs, O.; Sasse, H. J.; Schrodt, H.; Spille, J.; Chem. Ber. 1956, 89, 2060-2079. (b) Meerwein, H.; Bodenbenner, K.; Borner, P.; Kunert, F.; Wunderlich, K. Ann. Chem. 1960, 632, 38-55. (c) Wilcox, C. F.; Nealy, D. L. J. Org. Chem. 1963, $28,3446-3450$.
(a) See reference 24 a pp. 12-18. (b) Sah, P. P. T.; Mah, T. S. J. Am. Chem. Soc. 1932, 54, 2964-2966. (c) Hine, J. J. Am. Chem. Soc. 1950,

72, 2438-2445. (d) Hine, J.; Pollitzer, E. L.; Wagner, H. J. Am. Chem. Soc. 1953, 75, 5607-5609.
(a) Williamson, A. W.; Kay, G. Ann. Chem. 1854, 92, 346. (b) Williamson, A. W.; Kay, G. Proc. Roy. Soc. 1854, 7, 135.
(a) Kirmse, W. in Carbene Chemistry, Academic Press: New York, 1964, Chapter 9. (b) Weddige, A. J. Prakt. Chem. 1882, 26, 444. (c) Tiemann, Chem. Ber. 1882, 15, 2685. (d) Auwers, Chem. Ber. 1885, 18, 2655. (e) Baines, H.; Driver, J. J. Chem. Soc. 1924, 125, 907-908.
(a) See reference 24a, pp. 12-18. (b) See reference 23. (c) Corey, E. J.; Shimoji. K.; J. Am. Chem. Soc. 1983, 105, 1662-1663.
(a) See reference 24. (b) See reference 10b.

See reference $24(\mathrm{f}-\mathrm{i})$.
(a) See reference 21(o). (b) McElvain, S. M.; Stevens, C. L. I. Am. Chem. Soc. 1947, 69, 2663-2666.

See reference 84 .

See reference 24 b .
(a) Bodenbenner, K. Ann. Chem. 1959, 623, 183-191.

Boderbenner, K.; Beyer, O., German Patent 1,084,733 (1960); Chem. Abstr. 1961, 55, 20963. (c) Kashiro, J.; Kanaoka, M.; Kosakada, A.

Japanese Patent 3496 (1967); Chem. Abstr. 1967, 67, 54117. (d) Meerwien, H. Angew. Chem. 1955, 67, 374-388.

Corey, E. J.; Raju, N. Tetrahedron Lett. 1983, 24, 5571-5574.
(a) Wipf, P.; Xu, W.; Kim, H.; Takahashi, H. Tetrahedron, 1997, 53, 16575-16596. (b) Wipf, P.; Xu, W. J. Org. Chem. 1993, 58, 825-826.
(c) Wipf, P.; Xu, W. J. Org. Chem. 1993, 58, 5880-5882. (d) Wipf, P.; Xu, W. Tetrahedron, 1995, 51, 4551-4562.

The 1996-1997 Aldrich Chemical Company price for 1,1,1- trishydroxymethylene ethane 99% [$\mathrm{T} 8,780-7$] is $\$ 56.80 \mathrm{Cdn}$ for 2 kg .
(a) Mandolini, L. J. Am. Chem. Soc. 1978, 100, 550-554. (b) Galli, L.; Illuminati, G.; Mandolini, L.; Tamborra, P. J. Am. Chem. Soc. 1977, 99, 2591-2597.
(a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734-736. (b) Baldwin, J. E.; Thomas, R. C.; Kruse, L. I.; Silberman, L. J. Org. Chem. 1977, 42, 3846-3852. (c) Baldwin, J. E.; Lusch, M. J. Tetrahedron 1982, 38, 2939-2947. (d) Anselme, J. P. Tetrahedron Lett. 1977, 18, 3615-3618. (e) Fountain, K. R.; Gerhardt, G. Tetrahedron Lett. 1978, 19, 3985-3986.

Experiments were done on $\sim 1 \mathrm{mmol}$ of amide using 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The quantities of additives used were 2 ml of $\mathrm{CH}_{3} \mathrm{CN}$ or 0.8 ml of EtOH.

Charette, A. B.; Chua, P. unpublished results.

For a general reference, see The Chemistry of Amidines and Imidates; S. Patai, Editor; Wiley Interscience: New York, 1975.

For representative examples, see: (a) Overman, L. E. J. Am. Chem. Soc. 1974, 93, 597-599. (b) Overman, L. E.; Acc. Chem. Res. 1980, 13, 218-224. (c) Calter, M.; Hollis, T. K.; Overman, L. E.; Ziller, J.; Zipp, G. G. J. Org. Chem. 1997, 62, 1449-1456. (d) Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org. Chem. 1998, 63, 188-192. (e) Casara, P. Tetrahedron Lett. 1994, 35, 3049-3050. (f) Chen, A.; Savage, I.; Thomas, E. J.; Wilson, P. D. Tetrahedron Lett. 1993, 34, 6769-6772. (g) Gonda, J.; Helland, A.-C.; Ernst, B.; Bellus, D. Synthesis, 1993, 729-733. (h) Doherty, A. M.; Kornberg, B. E.; Reily, M. D. J. Org. Chem. 1993, 58, 795-798. (i) Mehmandoust, M.; Petit, Y.; Larchevêque, M. Tetrahedron Lett. 1992, 33, 4313-4316. (j) Flynn, D. L.; Becker, D. P.; Nosal, R.; Zabrowski, D. L. Tetrahedron Lett. 1992, 33, 7283-7286. (k) Isobe, M.; Fukuda, Y.; Nishikawa, T.; Chabert, P.; Kawai, T.; Goto, T. Tetrahedron Lett. 1990, 31, 3327-3330.
(a) Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K.; Ogawa, Y. J. Am. Chem. Soc. 1987, 109, 2821-2822. (b) Charette, A. B.; Côté, B.; Turcotte, N. J. Carbohydr. Chem. 1994, 13, 421-432. (c) Liao, W. S., Lu, D. P.; Li, A. H. Kong, F. Z. J. Carbohydr. Chem. 1997, 16, 877-890. (d) Mayer, T. G.; Schmidt, R. R. Liebigs Ann. Chem. 1997, 859-863.

See reference 20.

See reference 21.

191 (a) See reference 15. (b) See reference 18(a-d). (c) See reference 35 c . (d) See reference $16(e-h)$.
(a) Titherley, A. W. J. Chem. Soc. 1904, 1673-1691. (b) Sammes, P. G.; Thetford, D. J. Chem. Soc., Perkin Trans. 1, 1988, 111-123.
(a) See reference 10b. (b) See reference 24a. (c) Roberts, R. M.; Bogt, P. J. Org. Syn. Coll. Vol. 4, 1963, 464-465. (d) Hamer, F. M.; Rathbone, R. J.; Winton, B. S. J. Chem. Soc. 1947, 954-959. (e) Roberts, R. M. J. Am. Chem. Soc. 1949, 71, 3848-3849. (f) Roberts, R. M. J. Am. Chem. Soc. 1950, 72, 3603-3608. (g) Roberts, R. M.; DeWolfe, R. H. J. Am. Chem. Soc. 1954, 76, 2411-2414. (h) Taylor, E. C.; Ehrhart, W. A. J. Org. Chem. 1963, 28, 1108-1112.
(a) DeWolfe, R. H. J. Org. Chem. 1962, 27, 490-493. (b) Chupp, J. P.; Olin, J. F.; Landwehr, H. K. J. Org. Chem. 1969, 34, 1192-1197.

Mukaiyama, T.; Sato, K. Bull. Chem. Soc. Japan 1963, 36, 99-102.
(a) Benko, P.; Pallos, L. J. Prakt. Chem. 1971, 313, 179-186. (b) Benko, P.; Pallos, L. J. Prakt. Chem. 1972, 314, 363-368. (c) Benko, P.; Pallos, L.; Ordogh, F.; Rosdy, B. Hung. Pat. 155, 431 (1968); Chem. Abstr. 1969, 71, 3284x.
(a) Overman, L. E.; Zipp, G. G. J. Org. Chem. 1997, 62, 2288-2291.
(b) Roberts, R. M.; Higgins, Jr., R. D.; Noyes, P. R. J. Am. Chem. Soc. 1955, 77, 3801-3805.
(a) See reference 63. (b) Schenck, T. G.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2058-2066.

The pKa of an imidate is 5.5-6.5: (a) Kandel, M.; Cordes, E. H. J. Org. Chem. 1967, 32, 3061-3066. (b) Hartigan, R. H.; Cloke, J. B. J. Am. Chem. Soc. 1945, 67, 709-711.

The pKa of pyridine is ~ 5.2 : the Merck Index, $11^{\text {th }} \mathrm{ed}$.; S. Budavari, Editor; Merck \& Co., Inc.: Rahway, 1989, 7983.

Charette, A. B.; Chua, P. J. Org. Chem. 1998, 63, 908-909.

For a general reference on thiazolines, see: Elderfield, R. C. Heterocyclic Compounds, Vol. 5, 679-685.
(a) Gerwick, W. H.; Proteau, P.J.; Nagle, D.G.; Hamel, E.; Blokin, A.; Slate, D.L. J. Org. Chem. 1994, 59, 1243-1245. (b) For a leading reference on Curacin A, see: White, J.D.; Kim, T.-S.; Nambu, M.; J. Am. Chem. Soc. 1997, 119, 103-111 and references therein.
(a) For a recent review on Thiangazole and related molecules, see: Wipf, P.; Venkatraman, S. Synlett 1997, 1-10. (b) Boyce, R.J.; Mulqueen, G.C.; Pattenden, G. Tetrahedron 1995, 35, 7321-7330. (c) Wipf, P.; Venkatraman, S. J. Org. Chem. 1995, 60, 7224-7229. (d) Boyce, R.J.; Mulqueen, G.C.; Pattenden, G. Tetrahedron Lett. 1994, 34, 5705-5708. (e) Ehrler, J.; Farooq, S. Synlett 1994, 702-704. (f) Parsons, R.L.; Heathcock, C.H. J. Org. Chem. 1994, 59, 4733-4734. (g) Jansen, R.; Kunze, B.; Reichenbach, H.; Jurkiewicz, E.; Hunsmann, G.; Höfle, G. Liebigs Ann. Chem. 1992, 357-359.
(a) Fukuyama, T.; Lianhong, X.; J. Am. Chem. Soc. 1993, 115, 84498450. (b) Parsons, Jr., R. L.; Heathcock, C. H.; Synlett, 1996, 11681170. (c) Carmeli, S.; Moore, R. E.; Patterson, G. M. L.; Corbett, T. H.; Valeriote, F. A. J. Am. Cherr. Soc. 1990, 112, 8195-8197.
(a) See reference 206c. (b) Carmeli, S.; Moore, R. E.; Patterson, G. M. L. Tetrahedron Lett. 1991, 32, 2593-2596. (c) Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1992, 57, 5566-5568. (d) Pattenden, G.; Thom, S. M. J. Chem. Soc., Perkin Trans. 1 1993, 1629-1636. (e) Akaji, K.; Kuriyama, N.; Kiso, Y. J. Org. Chem. 1996, 61, 3350-3357.
(a) See reference 10b. (b) Sosnovsky, G.; Schneider, P. Tetrahedron, 1963, 19, 1313-1318. (c) Cook, A. H.; Elvidge, J. A.; Graham, A. R.; Harris, G. J. Chem. Soc. 1949, 3220-3227. (d) Cook, A. H. Quarterly Revs. 1948, 2, 203-259.
(a) Ito, H.; Imai, N.; Takao, K.-I.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 1799-1800. (b) See reference 204b and 206d. (c) Kaneko, T; Shiba, T; Hirotsu, Y. Bull. Chem. Soc. Japan 1967, 40, 2945-2949. (d) Baganz, H; Domaschke, L. Chem. Ber. 1962, 95, 1842-1843. (e) See reference 204 e.

Walker, M.A.; Heathcock, C.H. J. Org. Chem. 1992, 57, 5566-5568.
(a) Busacca, C.A.; Dong, Y.; Spinelli, E.M. Tetrahedron Lett. 1996, 37, 2935-2938. (b) White, J.D.; Kim, T.-S.; Nambu, M. J. Am. Chem. Soc. 1995, 117, 5612-5613. (c) Fukuyama, T.; Xu, L.; J. Am. Chem. Soc. $1993,115,8449-8450$.

Vorbrüggen, H.; Krolikiewicz, K. Tetrahedron 1993, 49, 9353-9372.
(a) Aitken, R.A.; Armstrong, D.P.; Galt, R.H.B.; Mesher, S.T.E. J. Chem. Soc., Perkin Trans. 1 1997, 935-943. (b) Nishio, T. Tetrahedron Lett. 1995, 36, 6113-6116.
(a) Wipf, P.; Xu, W.J. J. Org. Chem. 1996, 60, 6556-6562. (b) Wipf, P.; Miller, C.P.; Venkatraman, S. Fritch, P.C. Tetrahedron Lett. 1995, 36, 6395-6398. (c) Wipf, P.; Venkatraman, S. J. Org. Chem. 1995, 60, 7224-7229. (d) Wipf, P.; Miller, C.P. Tetrahedron Lett. 1992, 33, 62676270. (e) Wipf, P.; Miller, C.P. Tetrahedron Lett. 1992, 33, 907-910. (f) Atkins, G.H.; Burgess, E.M. J. Am. Chem. Soc. 1968, 90, 47444745.
(a) Lai, J.Y.; Yu, J.; Mekonnen, B.; Falck, J.R. Tetrahedron Lett. 1996, 37, 7167-7170. (b) Galéotti, N.; Montagne, C.; Poncet, J.; Jouin, P. Tetrahedron Lett. 1992, 33, 2807-2810. (c) Barrett, G.C., Khokhar, A.R. J. Chem. Soc., C 1969, 1117-1119.
(a) Elliott, D. F. J. Chem. Soc. 1949, 589-594. (b) Elliott, D. F. J. Chem. Soc. 1950, 62-68.

Wipf, P; Fritch, P.C. Tetrahedron Lett. 1994, 35, 5397-5400.

The pKa of an N -substituted alkyl thioimidate should be slightly higher than that for a N -unsubstituted alkyl thioimidate which is ~ 6: Hartigan, R. H.; Cloke, J. B. J. Am. Chem. Soc. 1945, 67, 709-711.

In several preliminary experiments, it was found that the pyridine added in the second step could be replaced with triethylamine. Triethylamine was not suitable in the formation of oxonium ions presumably because its conjugate acid is too weak. However, with the more facile formation of the thiazolines, this base seems to be sufficient.

See references 205, 206 and 207.

See Appendix 3.

Isobaev, M. D.; Palatov, E. K. Russian Chem. Bull. 1996, 45, 28202822.

Such facile air oxidation has been observed during the purification of some tantazoles: Carmeli, S.; Moore, R. E.; Patterson, G. M. L.; Corbett, T. H.; Valeriote, F. J. J. Am. Chem. Soc. 1990, 112, 8195-8197.

See Appendix 4.
(a) Kuriyama, N.; Akaji, K.; Kiso, Y. Tetrahedron 1997, 53, 8323-8334.
(b) Parson, Jr., R.L.; Heathcock, C.H. Tetrahedron Lett. 1994, 35,

1383-1384. (c) Parson, Jr., R.L.; Heathcock, C.H. Tetrahedron Lett. 1994, 35, 1379-1382. (d) Pattenden, G.; Thom, S.M. Synlett, 1992, 533-534.

Charette, A. B.; Chua, P. Tetrahedron Lett. 1998, 39, 245-248.

226 Walter, W.; Voss, J. in the Chemistry' of Amides; J. Zabicky, Editor; Wiley Interscience: New York, 1970, Chapter 8.

Gay-Lussac, M. Ann. Chim. 1815, 95, 136
(a) Fairfull, A. E. S.; Lowe, J. L.; Peak, D. A. J. Chem. Soc. 1952, 742744. (b) Burakevich, J. V.; Djerassi, C. J. Am. Chem. Soc. 1965, 87, 5160.

Taylor, E. C.; Zoltewicz, J. A. J. Am. Chem. Soc. 1960, 82, 2656-2657.
(a) LeBel, N. A.; Cherluck, R. M.; Curtis E. A. Synthesis 1973, 678679. (b) Einhorn, J.; Luche, J. L. Tetrahedron Lett. 1986, 27, 501-504.
(a) Jagodziñski, T. Synthesis 1988, 717-720. (b) Viola, H.; Scheithauer, S.; Mayer, R. Chem. Ber. 1968, 101, 3517-3529.
(a) Smith, P. A. S.; Kan, R. O. J. Am. Chem. Soc. 1960, 82, 4753-4754.
(b) Smith, P. A. S.; Kan, R. O. J. Org. Chem. 1964, 29, 2261-2265.

Okuma, K.; Komiya, Y.; Ohta, H. Chem. Lett. 1988, 1145-1148.
(a) Reynaud, P.; Moreau, R. C.; Samama, J.-P. Bull. Soc. Chim. Fr., 1965, 3623-3628. (b) Reynaud, P.; Moreau, R. C.; Samama, J.-P. Bull. Soc. Chim. Fr., 1965, 3628-3632.

Alliger, G.; Smith, Jr., G. E. P.; Carr, E. L.; Stevens, H. P. I. Org. Chem. 1949, 14, 962-966.
(a) Mohsen, A.; Omar, M. E.; Yamada, S. Chem. Pharm. Bull. 1966, 14, 856-861. (b) Jensen, K. A.; Pedersen, C. Acta Chem. Scand. 1961, 125, 1087-1096.
(a) Kindler, K. Liebigs Ann. Chem. 1923, 431, 187-230. (b) Schroth, W.; Andersch, J. Synthesis 1989, 202-204. (c) Brown, E. V. Synthesis 1975, 358-375.
(a) Asinger, F.; Schäfer, W.; Halcour, K.; Saus, A.; Triem, H. Angew. Chem. 1963, 75, 1050-1057; Angew. Chem., Int. Ed. Engl. 1964, 3, 1928. (b) Wegler, R.; Kühle, E.; Schäfer, W. Angew. Chem. 1958, 70 , 351-367. (c) Mayer, R.; Wehl, J. Angew. Chem. 1964, 76, 861; Angew Chem. Int. Ed. Engl. 1964, 3, 705.
(a) Asinger, F.; Halcour, K. Monatsh. Chem. 1964, 95, 24-29. (b) Nakova, P.; Tolkachev, U.; Evstigneeva, I. J. Org. Chem. U.S.S.R. 1975, 11, 2660-2668. (c) Mayer, in Organosulfur Chemistry; Janssen, Ed.; Wiley: New York, 1967, pp. 229-232.

For reviews on this subject, see: (a) Hurd, R. N.; DeLaMater, G. Chem. Rev. 1961, 61, 45-86. (b) Cherkasov, R. A.; Kutyrev, G. A.; Pudovik, A. N. Tetrahedron 1985, 41, 2567-2624.

Steliou, K.; Mrani, M. J. Am. Chem. Soc. 1982, 104, 3104-3106.

For selected references on Lawesson's reagent, see: (a) Yde, B.; Yousif, N. M.; Pedersen, U.; Thomsen, I.; Lawesson, S. -O. Tetrahedron 1984, 40, 2047-2052. (b) Perregaard, J.; Thomsen, I.; Lawesson, S.-O. Bull. Soc. Chim. Belg. 1977, 86, 321. (c) Brain, C. T.;

Hallett, A.; Soo, Y. K. J. Org. Chem. 1997, 62, 3808-3809. (d) Cava, M. P.; Levinson, M. I., Tetrahedron 1985, 41, 5061-5087.

Hoemann, M. Z.; Agrios, K.A.; Aubé, J. Tetrahedron Lett. 1996, 37, 953-956.
(a) Goldberg, A. A.; Kelly, W. I. Chem. Soc. 1948, 1919-1926. (b) Wipf, P.; Miller, C. P.; Venkatraman, S.; Fritch, P. Tetrahedron Lett. 1995, 36, 6395-6398.
(a) Nader, R. B.; Kaloustian, M. K. Tetrahedron Lett. 1979, 17, 14771480. (b) Kaloustian, M. K.; Khouri, F. Tetrahedron Lett. 1981, 22, 413-416.

Speziale, A. J.; Smith, L. R. J. Org. Chem. 1963, 28, 3492-3496.

See reference 47 a .

For a review on triflic anhydride, see: (a) Ritter, K. Synthesis 1993, 735-762. (b) Stang, P. J.; Hanack, M.; Subramanian, L. R. Synthesis 1982, 85-126.

See reference 244.

Geminal dithiols can be formed from carbonyl compounds by the addition of hydrogen sulfide under pressure: Cairns, T. L.; Evans, G. L.; Larchar, A. W.; McKusick, B. C. J. Am. Chem. Soc. 1952, 74, 3982-3989.

Elemental sulfur is known to add readily to thioamides in a sulfur atom exchange reaction: Suarez Contreras, C. An. Quim. 1968, 64, 819-824; Chem. Abstr. 1969, 70, 56896.

Amines add readily to thioamides to form amidines. This analogous reaction with amides does not exist: (a) Chabrier, P.; Renard, S. H. Bull. Soc. Chim. Fr. 1949, D 272. (b) Hurd, R. N.; DeLaMater, G. Chem. Rev. 1961, 61, 45-86. (c) Mukaiyama, T.; Yamaguchi, T.; Nohira, H. Bull. Chem. Soc. Japan 1965, 38, 2107. (d) Mukaiyama, T.; Yamaguchi, T. Bull. Chem. Soc. Japan 1966, 39, 20052008.

Brown, R. S.; Bennet, A. J.; Slebocka-Tilk, H.; Jodhan, A. J. Am. Chem. Soc. 1992, 114, 3092-3098.

The 1996-1997 Aldrich Chemical Company price for 95 atom\% water $-{ }^{18} \mathrm{O}[32,987-8]$ is $635.00 \$ \mathrm{CDN} / \mathrm{gram}$ and the price for 10 atom $\%$ water $-{ }^{18} \mathrm{O}$ [33,208-9] is 37.80 \$CDN/gram. Note that in 1997, North America was on a back order for 95% atom water- ${ }^{18} \mathrm{O}$ with no estimate of when the shortage would be over.

Charette, A. B.; Chua, P. Molecules-On-Line 1998, 2, 63-75.

For selected examples, see: (a) Shambayati, S.; Schreiber, S. L. In "Comprehensive Organic Synthesis: Selectivity, Strategy \& Efficiency in Modern Organic Chemistry" B. M. Trost, I. Fleming and L. A. Paquette, Eds., Pergamon Press, New York, 1991, vol. 1, chapter 1.10, 283-324 (b) Tomioka, K. Synthesis, 1990, 541-549 (c) Crosby, J.

Tetrahedron 1991, 47, 4789-4846 (d) Corey, E. J. Pure Appl. Chem. 1990, 62, 1209-1216 (e) Lohray, B. B.; Bhushan, V. Angew. Chem., Int. Ed. Eng. 1992, 31, 729-730 (f) Furuta, K.; Gao, Q. Z.; Yamamoto, H. Org. Synth. 1995, 72, 86-94 (g) Duthaler, R. O.; Hafner, A. Chem Rev. 1992, 92, 807-832 (h) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833-856 (i) Sawamura, M.; Ito, Y. Chem. Rev. 1992, 92, 857-871 (j) Mikami, K.; Masaki, S. Chem. Rev. 1992, 92, 1021-1050.
(a) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007-1019

Narasaka, K. Synthesis 1991, 1-11 (c) Oh, T.; Reilly,M. J. Org. Prep. Proced. Int. 1994, 26, 129-158 (d) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741-761 (e) Deloux, L.; Srebnik, M. Chem. Rev. 1993, 93, 763-784 (f) Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1928, 460, 98- (g) Woodward, R. B.; Katz, T. J. Tetrahedron, 1959, 5, 70-89.

For some selected recent examples, see: (a) Corey, E. J.; Barnesseeman, D.; Lee, T. W. Tetrahedron Lett. 1997, 38, 1699-1702 (b) Jensen, K. B.; Gothelf, K. V.; Hazell, R. G.; Jorgensen, K. A. J. Org. Chem. 1997, 62, 2471-2477 (c) Matsukawa, S.; Mikami, K. Tetrahedron: Asymmetry 1997, 8, 815-816 (d) Evans, D. A.; Johnson, J. S. J. Org. Chem. 1997, 62, 786-787 (e) Graven, A; Johannsen, M.; Jorgensen, K. A. J. Chem. Soc., Chem. Commun. 1996, 2373-2374 (f) Kamahori, K.; Ito, K.; Itsuno, S. J. Org. Chem. 1996, 61, 8321-8324 (g) Hayashi, Y.; Rohde, J. J.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 5502-5503 (h) Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 3049-3050 (i) Gothelf, K. V.; Thomsen, I.; Jorgensen, K. A. J. Am. Chem. Soc. 1996, 118, 59-64 (j) Ishitani, H.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 7357-7360 (k) Loh, T.-P.;

Wang, R. B.; Sim, K. Y. Tetrahedron Lett. 1996, 37, 2989-2992 (1) Seebach, D.; Marti, R. E.; Hintermann, T. Helv. Chim. Acta 1996, 79, 1710-1740 (m) Enders, D.; Meyer, O. Liebigs Ann. 1996, 1023-1035.
(a) Takasu, M.; Yamamoto, H.; Synlett, 1990, 194-196 (b) Sartor, D.; Saffrich, J.; Helmchen, G. Synlett 1990, 197-198 (c) Sartor, D.; Saafrich, J.; Helmchen, G.; Richards, C. J.; Lambert, H. Tetrahedron: Asymmetry 1991, 2, 639-642 (d) Seerden, J.-P.; Scheeren, H. W. Tetrahedron Lett. 1993, 34, 2669-2672.
(a) Birney, D. M.; Houk, K. N. J. Am. Chem. Soc. 1990, 112, $4127-$ 4133 (b) Yamabe, S.; Dai, T.; Minato, T. J. Am. Chem. Soc. 1995, 117, 10994-10997.
(a) Corey, E. J.; Loh, T.-P. J. Am. Chem. Soc. 1991, 113, 8966-8967 (b) Corey, E. J.; Loh, T.-P.; Roper, T. D.; Azimioara, M. D.; Noe, M. C. J. Am. Chem. Soc. 1992, 114, 8290-8292.
(a) Hawkins, J. M.; Loren, S.; Nambu, M. J. Am. Chem. Soc. 1994, 116, 1657-1660 (b) Hawkins, J. M.; Loren, S.; J. Am. Chem. Soc. 1991, 113, 7794-7795.

Ikoma, Y.; Taya, F.; Ozaki, E.; Higuchi, S.; Naoi, Y.; Fuji-i, K. Synthesis 1990, 147-148.

Schaeffer, J. P.; Higgins, J.; Sheney, P. K. Org. Syn. Coll., Vol. V, 142145.

Oi, S.; Matsunga, K.; Hattori, T.; Miyano, S. Synthesis 1993, 895-898.

Friedman, L.; Shechter, H.; J. Org. Chem. 1960, 25, 877-879.

Gage, J. R., Evans, D. A. Org. Synth. 1989, 68, 77-82.
(a) Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am. Chem. Soc. 1990, 112, 4011-4030 (b) Evans, D. A.; Evrard, D. A.; Rychnovsky, S. D.; Früh, T.; Wittingham, W. G.; DeVries, K. M. Tetrahedron Lett. 1992, 33, 1189-1192.

Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28 , 6141-6144.

Miyazawa, T.; Otomatsu, T.; Fukui, Y.; Yamada, T.; Kuwata, S. J. Chem. Soc., Chem. Commun. 1988, 419-420.

Watanabe, T.; Miyaura, N.; Suzuki, A. Synlett 1992, 207-210.

Woods, G. F.; Tucker, I. W. J. Am. Chem. Soc. 1948, 70, 3340-3342.

Generated from commercially available 2-bromonaphthalene using THF or $\mathrm{Et}_{2} \mathrm{O}$ as a solvent.

Garmon, W. F.; House, H. O. Org. Synth., Coll. Vol. 5, 539-541.

Mikler, A. B.; Ramachandran, S.; Swaminathan, S.; Newman, M. S. Org. Syn., Coll. Vol. 5, 743-746.

Hua, D. H. J. Am. Chem. Soc. 1986, 108, 3835-3837.

See Appendix 5.

Corey, E. J.; Schmidt, Getrahedron Lett. 1979, 20, 399-402.

Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S. Tetrahedron Lett. 1986, 27, 4537-4540.

See Appendix 6.

Perrin, D. D.; Armarego, W. L. S. Purification of Laboratory Chemicals, $3^{\text {rd }}$ Ed.; Pergamon Press: New York, 1988.

Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

See Schenck, reference 198b.

See Appendix 1.

Satoh, T.; Nanba, K.; Suzuki, S. Chem. Pharm. Bull. 1971, 19, $817-$ 820.

A generous gift from Dr. Christophe Mellon. For a preparation, see Mellon, C. Ph. D. Thesis, Université de Montréal, 1998.

Seebach, D.; Kalinowsky, H.-O.; Langer, W.; Crass, G.; Wilka, E.-M. Org. Synth., Coll. Vol. VII 1990, 41-43.

See Appendix 2.

Billman, J. H.; Harting, W. F.; J. Am. Chem. Soc. 1948, 70, 1473-1474.

Lebel, H.; Ph. D. Thesis, Université de Montréal, 1997.

Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 20, 399-402.

Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S. Tetrahedron Lett. 1986, 27, 4537-4540.

Levin, J. I.; Turos, E.; Weinreb, S. Syn. Commun. 1982, 12, 989-993.

See Appendix 3.

See Appendix 4.

See Appendix 5.

Appendix 1

$\theta_{\text {max }}=69.80^{\circ}$
$h=-13 \rightarrow 13$
$k=-24 \rightarrow 24$
$l=-11 \rightarrow 11$
5 standard reflections
\quad frequency: 60 min
intensity decay: no decay. variation
$\quad 2.5 \%$
Crystal data
$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=376.440$
Monoclinic
$P 2_{1} / c$
$a=10.918(6) \AA$
$b=20.303(8) \AA$
$c=9.311(4) \AA$
$\beta=97.57(4)^{\circ}$
$V=2046.0(16) \AA^{3}$
$Z=4$
$D_{工}=1.2221 \mathrm{Mg} \mathrm{m}$
D_{m} not measured
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54056 \AA$
Data collection
Data collection
Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scan
Absorption correction:
by integration ABSORP in NRC-
VAX (Gabe et al. 1989)
$T_{\text {min }}=0.7081, T_{\max }=0$
29340 measured reflections
प7!M suo!qjayax 18
181 reflec
$2 \sigma(I)$
$>2 \sigma(\Lambda)$
$R_{1 \mathrm{n} 1}=0.024$
866I Ueโ 08
Acta Cryst. (1998). C54, 000-000

André Charette, Peter Chua and Francine Bélanger-Gariépy Département de Chimie. Université de Mantréal, C.P. 6128, Succ. Centre-ville. Montréal, Québec, Canada H9C 9J7. E-mail: charettaere.umontreal.ca

Experimental
Synthesis was carried out by reaction of ...
Table 1. Fractional atomic coordinates and equivalent isotropic displacement

${ }^{\circ}$

Data collection: CAD-4 software (Enraf-Nonius. 1989). Cell refinement: CAD 4 software (Enraf-Nonius. 1989). Data reduction: NRC-2. NRC-2A (Ahmed ef al. 1973). Program(s) used to solve structure: SHELXS96 (Sheldrick. 1990).
Program(s) used to refine structure: NRCVAX (Gabe et al. 1989) and SHELXL96 (Sheldrick, 1996). Molecular graphics: ORTEPII (Johnson (1976) in NRCVAX (Gabe et al.(1989)). Software used to prepare material for publication: NRCVAX (Gabe et al.(1989) and SHELXL96 (Sheldrick (1996)).
The financial supports of the Natural Sciences and Engineering Research

Supplementary data for this paper are available from the IUCr electronic archives
(Reference: PRINTCIF). Services for accessing these data are described at. the
back of the journal.
References
Ahmed. F. R... Hall. S. R., Pippy, M. E. \& Huber, C. P. (1973). NRC Crystallographic Computer Programs for the IBM/360. Accession Nos. 133-147 in J. Appl. Cryst. 6, 309-346.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39. 876-881.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J.
Appl. Cryst. 22, 384-387.
International Tables for Crystallography (1992). Vol. C. Tables 4.2.6.8 and 6.1.1. 4. Dordrecht: Kluwer Academic Publishers.
Johnson, C. K. (1976). ORTEPII - A Fortran Thermal Ellipsoid Plot Program. Technical Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA. Sheldrick, G. M. (1990). SHELXS96. Program for the Solution of Crystal Structures. Üniversity of Göttingen, Germany.
Sheldrick, G. M. (1996). SHELXL96. Program for the Refinement of Crystal
Structures. University of Göttingen, Germany.
Spek, A. L. (1995). PLATON Molecular Geometry Program. July 1995 version.
University of Utrecht, Utrecht, Holland.
Fig. 1 ORTEP (Johnson. 1976) drawing of the molecule. Ellipsoids correspond to 40% probability.

, wi. ionere on ropu

Appendix 2

$$
\begin{aligned}
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=20.00-22.00^{\circ} \\
& \mu=1.93 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block } \\
& 0.53 \times 0.11 \times 0.08 \mathrm{~mm} \\
& \text { Transparent } \\
& \text { Crystal source: synthesized by the } \\
& \text { authors, see text }
\end{aligned}
$$

Acta. Cryst. (1997). C53, 000-000
titre, habituellement le nom du compose
André Charette, Petef Chua and Francine Bélanger-Gariépy
Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville,
Montréal, Québec, Canada H9C $9 J 7$. E-mail: charctta@erc.umontreal.ca
Abstract
The crystal stucture of the title compound, recrystallized from $\& \& \& \& \&$, contains
one molecule in the asymmetric unit and is stabilized by intermolecular hydrogen
bonds.
Comment
comment
The title compound was prepared according to the method described by $\& \& \& \ldots$ and recrystallized in \&\&\&\&\&\&\&\&:
Table 1. Fractional atomic coordinates and equivalentit isotropic displacement

$w R\left(F^{2}\right)=0.0926$
$s=0.841$
3892 reflections
257 parameters riding (SHELXL defauts,
to $0.98, \mathrm{~N}-\mathrm{H} 0.86 \AA$)

where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Data coilection: CAD-4 software (Enraf-Nonius, 1989). Cell refinement: CAD4 software (Enraf-Nonius. 1989). Data reduction: NRC-2. NRC-2A (Ahmed et al. 1973). Program(s) used to solve structure: SHELXS86 (Sheldrick. 1985).
 graphics: ORTEPII (Johnson (1976) in NRCVAX94 (Gabe ct al.(1989)). Software used to prepare material for publication: SHELXL93 (Sheldrick, 1993).
The financial support from the Natural Sciences and Engineering Research Council of Canada and from the Fonds FCAR du Ministère de l'Éducation du Québec is gratefully acknowledged.
$-62.0(3)$
$17.0(2)$
$-161.5(2)$
$-121.5(2)$
$112.7(2)$
$11.3(4)$
$-167.6(2)$
$-7.4(4)$
$171.6(2)$
$179.9(3)$
$107.6(2)$
$-127.0(2)$
$-146.3(2)$
$-8.6(2)$
$103.2(2)$
$173.6(2)$
$44.9(3)$
$-71.5(2)$
$53.4(3)$
$-75.3(3)$
$168.3(2)$
$-65.7(3)$
$165.6(2)$
$49.2(3)$
 $\begin{array}{lrl}\mathrm{N} 15-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 9 & -47.8(2) & \mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 12-\mathrm{C} 13 \\ \mathrm{~N} 21-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 9 & -173.2(2) & \mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 12-\mathrm{C} 13 \\ \mathrm{~N} 15-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 12 & -167.8(2) & \mathrm{C} 2-\mathrm{O} 12-\mathrm{C} 13-\mathrm{C} 14 \\ \mathrm{~N} 21-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 12 & 66.8(2) & \mathrm{N} 21-\mathrm{C} 1-\mathrm{N} 15-\mathrm{C} 16 \\ \mathrm{~N} 15-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3 & 70.3(2) & \mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 15-\mathrm{C} 16 \\ \mathrm{~N} 21-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3 & -55.2(2) & \mathrm{C} 1-\mathrm{N} 15-\mathrm{C} 16-\mathrm{O} 17 \\ \mathrm{O} 9-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 & 29.3(3) & \mathrm{C} 1-\mathrm{N} 15-\mathrm{C} 16-\mathrm{O} 18 \\ \mathrm{O} 12-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 & 153.3(2) & \mathrm{O} 11-\mathrm{C} 16-\mathrm{O} 18-\mathrm{C} 19 \\ \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 & -90.9(3) & \mathrm{N} 15-\mathrm{C} 16-\mathrm{O} 18-\mathrm{C} 19 \\ \mathrm{O} 9-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8 & -154.0(2) & \mathrm{C} 16-\mathrm{O} 18-\mathrm{C} 19-\mathrm{C} 20 \\ \mathrm{O} 12-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8 & -30.0(3) & \mathrm{N} 15-\mathrm{C} 1-\mathrm{N} 21-\mathrm{S} \\ \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8 & 85.8(3) & \mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 21-\mathrm{S} \\ \mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5 & -0.9(4) & \mathrm{O} 23-\mathrm{S}-\mathrm{N} 21-\mathrm{C} 1 \\ \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5 & 175.9(2) & \mathrm{O} 22-\mathrm{S}-\mathrm{N} 21-\mathrm{C} 1 \\ \mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6 & 0.5(5) & \mathrm{C} 24-\mathrm{S}-\mathrm{N} 21-\mathrm{C} 1 \\ \mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7 & 0.7(5) & \mathrm{O} 23-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 25 \\ \mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8 & -1.4(5) & \mathrm{O} 22-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 25 \\ \mathrm{C} 6-\mathrm{C}-\mathrm{C} 8-\mathrm{C} 3 & 1.0(5) & \mathrm{N} 21-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 25 \\ \mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7 & 0.2(4) & \mathrm{O} 23-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 26 \\ \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7 & -176.6(2) & \mathrm{O} 22-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 26 \\ \mathrm{O} 12-\mathrm{C} 2-\mathrm{O} 9-\mathrm{C} 10 & 49.6(3) & \mathrm{N} 21-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 26 \\ \mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 9-\mathrm{C} 10 & 174.1(2) & \mathrm{O} 23-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 21 \\ \mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 9-\mathrm{C} 10 & -64.5(2) & \mathrm{O} 22-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 27 \\ \mathrm{C} 2-\mathrm{O} 9-\mathrm{C} 10-\mathrm{C} 11 & 157.9(2) & \mathrm{N} 21-\mathrm{S}-\mathrm{C} 24-\mathrm{F} 27 \\ \mathrm{O} 9-\mathrm{C} 2-\mathrm{O} 12-\mathrm{C} 13 & 58.6(3) & \\ & & \end{array}$

Lists of structure factors, anisotropic displacement parameters. H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: PRINTCIF). Copies may be obtained through The Managing Editor. International Union of Crystallography. 5 Abbey Square. Chester CH1 2HU. England. References lographic Computer Programs for the IBM/360. Accession Nos. 133-147 in J. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonjus. Delft. The Netherlands.
Gabe, E. J., Le Page. Y., Charland. J.-P.. Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
International Tables for Crystallography (1992). Vol. C. Tables 4.2.6.8 and 6.1.1.
Johnson. C. K. (1976). ORTEPII - A Fortran Thermal Ellipsoid Plot Program. Technical Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA Sheldrick. G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Unjversity of Göttingen. Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Fig. 1 ORTEP (Johnson, 1976) drawing of the molecule. Ellipsoids correspond to
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\dot{A}^{2}\right) U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{1 j} \mathrm{a}^{*} ; \mathrm{a}^{*}{ }_{j} \mathrm{a}_{i} \mathrm{a}_{j}$
Table 2. Selected geometric parameters (A.
Table 3. Bond distances and angles related to the hydrogen bonding

Appendix 3

Structure résolue au laboratoire de diffraction des rayons X de l'université de
Montréal par Francine Bélanger-Gariépy, septembre 1997 .

$$
\begin{aligned}
& \text { Theta range for data collection } \\
& \text { Index ranges } \\
& \text { Reflections collected } \\
& \text { Independent reflections } \\
& \text { Absorption correction } \\
& \text { Max. and min. transmission } \\
& \text { Refinement method } \\
& \text { Data / restraints / parameters } \\
& \text { Goodness-of-fit on F2 } \\
& \text { Final R indices [I>2sigma(I)] } \\
& \text { R indices (all data) } \\
& \text { Extinction coefficient } \\
& \text { Largest diff. peak and hole }
\end{aligned}
$$

$$
\begin{aligned}
& 1719.7(12) \mathrm{A}^{3} \\
& 4 \\
& 1.469 \mathrm{mg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
3.247 \mathrm{~mm}^{-1}
$$

$$
\begin{aligned}
& 784 \\
& 0.62 \times 0.11 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& -12<-h<-12,-22<-k<-22, \quad-12<-1<-12 \\
& 12585
\end{aligned}
$$

$$
3260[\mathrm{R}(\text { int })=0.025]
$$

$$
\begin{aligned}
& 0.8450 \text { and } 0.4958 \\
& \text { Full-matrix least-squares on } F^{2} \\
& 3260 / 0 / 219 \\
& 0.844 \\
& R 1=0.0372, \text { wR2 }=0.0807 \\
& R 1=0.0595, \text { wR2 }=0.0874 \\
& 0.00172(17) \\
& 0.231 \text { and }-0.208 \text { e. } A^{-3}
\end{aligned}
$$

$\stackrel{3}{2}$	
$\stackrel{m}{5}$	
$\stackrel{\text { ̃ }}{\square}$	
$\stackrel{m}{m}$	
N	
$\stackrel{7}{\square}$	

D-\%	d($\mathrm{D}^{\text {- }}$)	d(H..A)	$<$ dha	d(D..A)	. ${ }^{\text {A }}$
$\mathrm{N}(1)$ - $\mathrm{H}(1)$	0.86	2.07	150.3	2.848(3)	0(1)\#1

$\operatorname{shn} 35 /$ wete 1.001

REFERENCES

Ahmed, F.R., Hall, S.R., Pippy, M.E. and Huber, C.P. (197 NRC Crystallographic computer Programs for the IBM/360 Accession Nos. 133-147 in J. Appl. Cryst. 6, 309-346.
Enraf-Nonius (1989). CAD-4 Software Version 5.0. Enraf-Nonius, Delf Netherlands.
Gabe, E.J., Le Page, Y., Charland, J.-P., Lee, F.L. and White, P.S. (1 Appl. Cryst. 22, 384-387.
International Tables for Crystallography (1992). Vol. C. Tables 4.2.6.8 an 6.1.1.4, Dorarecht: Kluwer Academic Publishers.
Johnson, C.K. (1976), ORTEPII. Report ORNL-513B, Oak Ridge National Laborat Tenessee, USA.
Sheldrick, G.M. (1990). Shelxs96. Program for the Solution of Crystal Stru Univ, of Gottingen, Germany.
Sheldrick, G.M. (1996). SHELXL96. Program for the Refin Structures. Univ. of Gottingen, Germany
k, A.L. (1995). PLATON Molecular Geometry Program, July 1995 version versity of Dtrecht, Utrecht, Holland.

Appendix 4

$\stackrel{8}{6}$
8
\％
范
2
2
2
2
ป
H
－
咢

范
프증

$$
\begin{gathered}
\text {-2 } \\
\text { 気 } \\
\underline{n}
\end{gathered}
$$

ui
Table 5

uyuyuúvúuyú 	
	 － vuणOzuzuvezuuvuvuuve

LVIII

60. 37 moter 2001

Appendix 5

 が

 n
\times

- Wedmammmmmmm ing N~o
 ベmin No

	*	y	z	U(iso)	c
H (N)	2981 (3)	9056 (2)	4589 4939	94	1.00
H(12)	819 (4)	8944 (3)	4938 (3)	84	1.00
H(18)	879 (4)	9599 (3)	3843 (3)	84	2.00
H 22)	2638 (4)	8165 (3)	3231 (3)	76	2.00
H(5)	3803 (5)	4554 (4)	4145 (5)	106	1.00
H(6)	3594 (5)	4198 (5)	5838 (5)	116	1.00
H 17)	2837 (5)	5574 (5)	$6711(4)$	112	1.00
H(10)	$3520(11)$	$7852(10)$	${ }_{6} 6101(920)$	80 96	
$\left.{ }^{H} 1123\right)$	$3760(11)$	$9158(10)$ $1014123)$	$6920(10)$ $8136(21)$	127	0.50 0.50
H(13) $\mathrm{H}(14)$	- 2963 (22)	$10538(28)$	8970 (26)	130	0.50
H(15)	-451 (14)	$9853(16)$	8656 (16)	125	0.50
H(17)	-690(10)	8576 (8)	7769 (8)	100	0.50
H(18)	168 (10)	7417 (8)	6674 (8)	91	0.50
$\mathrm{H}(20)$ $\mathrm{H}(22)$		${ }_{75339312)}$	$2777(8)$ $1191(8)$	101	
H(22)	813(8)	$7533(7)$ $761818)$ 1818	1191(8)	159 186	- 0.75
$\mathrm{H}(23)$ $\mathrm{H}(24)$	$1232(11)$ $3302(14)$	7048 (12)	-1997(8)	185	0.75
H(25)	4970 (12)	6274 (12)	-623(9)	166	0.75
H(27)	5768 (10)	$5718(120)$	986 (9)	135	0.75
H(28)	5344 (12)	5651 (13)	2636 (9)	130	0.75
$\mathrm{H}(30)$	3706 (5)	$11051(4)$	2542 (4)	120	
$H(31)$ H (33)	$3061(5)$ $3406(5)$	$12145(4)$ 99595	$1130(5)$ $120(4)$	1120	1.00
$\mathrm{H}^{(33)}$	3406 (5)	9585 (6)	$120(4)$ $1533(4)$	114	1.00
$\mathrm{H}(34)$ $\mathrm{H}(35 \mathrm{~A})$	$4088(4)$ $3078(30)$	$8479(4)$ $12262(20)$	1533(4)	199 199	1.00
H (358)	1756 (7)	12076 (25)	-264 (8)	199	1.00
H(35C)	2876 (35)	11312 (7)	-940 (11)	199	1.00
H (50)	619 (11)	7914 (9)	6782 (8)	89	0.50
H (52)	-744(12)	9075 (11)	8060 (9)	103	0.50
H(53)	-973(12)	10187(17)	9035 (16)	137	0.50
H (54)	$676(21)$	10763 (29)	$8955(27)$	140	0.50
H(55)	$2619(15)$	10109 (22)	7938 (21)	112	0.50
H (57)	4035 (10)	8911 (8)	6650 (8)	100	0.5
H(58)	$4292(9)$	$7698(8)$	5734(8)	77	0.5
H(60)	5056 (27)	5779 (31)	2483 (17)	97	0.2
H (62)	$6383(16)$	$5688(16)$	718 (16)	107	0.25
H(63)	$6481(20)$	5883 (17)	-898(16)	139	0.25
H(64)	$4671(27)$	6866 (29)	-1555(15)	166	0.2
H(65)	2719 (25)	$7196(35)$	-488(16)	135	0.2
H 167]	$1379(21)$	7400 (32)	1267 (18)	114	0.2 0.2
${ }^{\mathrm{H}}(68)$		${ }_{8} 8552(4)$		${ }_{95}^{83}$	0.7
	- $\begin{aligned} & -2469(4) \\ & -3759\end{aligned}$	$8552(4)$ $8286(4)$	5735 (9)	109	0.7
$\mathrm{H}^{(5)}$)	-4232(10)	7176 (10)	7201 (9)	124	0.7
H(6)	-2675 (12)	5590 (10)	7680 (10)	149	0.7
H(79)	-71210)	$5110(12)$	$6618(11)$	166	0.7
H $\mathbf{1 8}^{8}$)	-261(8)	$6151(10)$	${ }_{3} 5127(10)$	131 175	1.0
H(9.A)	-1913(12)	6759(27)	${ }_{2577} \mathbf{3 6 2 1 8)}$	175	1.0
$\mathrm{H}_{(90 \mathrm{C}}{ }^{\text {c }}$	-2364(20)	7673 (6)	2939 (26)	175	1.0


```
0
```



```
\square
0
```


に———，

펔్̈

－ジジか （－－

ヘベツぁヅすべき

-

 A single crystal was mounted in air on an Enraf-Nonius CAD-4 diffxactometer at
oom temperature. 24 reflections found on a polaroid photoqraph were used by the
ndexing procedure to obtain a preliminary cell. The cell paramerers reported in table indexing procedure to obtain a preliminary cell. The cell paramerers reported in table etween 40.0 to 50.0 A ser of reflection sphere impted by
The orientation was checked every 400 measurements and intensity was checked every hour using five standard reflections. Variation of
observed during the collection of full data set
Corrections were introduced for the Lorentz, polarization effects. The structure
was solved by direct method usinc SHELX58́ (Sheldrick, 2985) and difmap synthesis using
SHELXL93 (Sheldrick, 1993).
 The occupancy factor of second model (C49 to C58) fixed also to C. 5. In other way, the The occupancy factor of the first mode 1 (C19 to c28) refined to 0.744 (7) and was fixed
in last cycles to 0.75 . The ocupancy factor of the second model 1059 to C68) fixed to 0.25 . Note that for the refinement of the occupancy factors, constraints were applied
to keep them normalized to unity. These molecules were refined anisotropically use SIMU
(Cl) One phenyl group is also disordered, The occupancy factor of the first model
to c8,) refined to 0.73 (4) and was fixed in last cycles to 75 . The occupancy facto:
of the second model fixed (C11, to cle') to 0.25 . Note tha: for the refinement of the occupancy factors, constraints were applied to keep them normalized to unity. These
 cycles.
Diethylether solvent located in the vicinity of an inversion center imposing a
disorder distribution over 2 positions. Solvent refined isotrooically using geometric disorder distribution over 2 positions. Solvent refined isotropically using geometric
constraints. Identity of the solvent was confirmed by using the soueEze technique from
the platon ispek, A. I. 1995) program. Vs $=196.4 A^{3} / c e l i$ and 52.4 electrons/ceiz (one sitel. The expected volume for diethylether are $173.06 A_{\text {. Firal refinement used the }}^{\text {disordered descriprion of the solvent and no SOUEEZE correction for the solvent }}$

 refinement indicators presented. Hydrogen atoms were calculated at idealized positions
using a riding model with different c-H distances for rype of hydrogen. The isotropic
displacement factors, U ${ }^{\text {is }}$, were adjusted to 50% higher value of the bonded carbor atom
(methyl, amine) and 20% higher (others). The final ΔF map was essentially featurless.
A general background below 20e/A. was observec.

SaวNGy

$$
\begin{aligned}
& \begin{array}{l}
\text { Enraf-Nonius } 11989 \text {). CAD-4 Software. version 5. O. Enraf-Nonius, Delft, The } \\
\text { Netherlands. }
\end{array}
\end{aligned}
$$

Appendix 6
Table 1．Crystal data and structure refinement for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{~S}$ ．

	（e7ep［te）saoṭput y
880．${ }^{\text {L }}$	$z^{\text {a }} 00$ 7！f－fo－ssaupoos
£LE／0／56Zg	sxə7amexed／s7utrexisex／87Rd
BLTL．0 pue s688．0	
иор7ех6атиI	
	suọ̧̧oəなるa 7uəpuadapuI
0ヶtot	ควาขatโ00 suorzootfoud
	sabuex xəput
．08．69 $0706^{\prime} 2$	पот̧フattoo eqep cof абurx e7ayiu
unu 60．0 \times ¢T＇0 \times ¢ 6 ． 0	a2ts Te7sイエ〕
DBS	（000）3
\＆	（pazetnoteo）Kitsuad
τ	z
¢ \％$^{\text {（8）}}$ ） 9 －86を	aunton
	suorsuautp tta 7 \％un
La	dnosf ajeds
	แอ7sKs［e7sKx
49S0ts ${ }^{\text {T }}$	प76uәtəлем
69 － 45	
5 bo N ＜zh ¢\＆J	
¢̧IRY\％	

Table 2. Atomic coordinates $\left(x 10^{4}\right)$ and equivalent isotropic
displacement parameters $\left(A^{2} \times 10^{3}\right)$ for $C_{35} \mathrm{H}_{2} \mathrm{NO}_{4} \mathrm{E}$.
U(eq) is defined as one third of the trace of the orthogonalized
vij tensor.
U (eq)

N

λ
*

Table 4. Anisotropic parameters ($A^{2} \times 10^{3}$) for $\mathrm{C}_{35} \mathrm{H}_{2}, \mathrm{NO}_{4} \mathrm{~S}$.
(

$$
\begin{aligned}
& \text { SaวN3yヨงay } \\
& \begin{array}{l}
\text { Spek, A.L. (1995), PLATON Molecular Geometry program, July } 1995 \text { version. University } \\
\text { of Utrecht, Utrecht, Holland. }
\end{array}
\end{aligned}
$$

