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Sommaire 

Afin de mieux comprendre les phénomènes de diffusion dans les solutions et 

gels de polymères, il est nécessaire de procéder à l'étude de la diffusion de petites 

molécules et macromolécules dans ces systèmes. Les mesures de diffusion peuvent 

être faites en utilisant la résonance magnétique nucléaire (RMN). La séquence RMN 

d'écho de spin à gradient de champ pulsé est très appropriée pour mesurer les, 

coefficients d'auto-diffusion de solutés dans les réseaux polymères. Les données ainsi 

obtenues permettent de caractériser la diffusion par le biais de modèles théoriques. 

Les plus pertinents ont été testés. 

L'étude de la diffusion de deux séries de solutés, ou diffusants, dans les 

solutions et gels d'alcool polyvinylique (PVA) par spectroscopie RMN a été menée. 

Une série de diffusants de taille croissante, variant de l'éthylène glycol au 

poly(éthylène glycol) (PEG) de masse molaire 10 000, a servi à analyser l'influence de 

la taille du soluté sur la diffusion. La diffusion diminue lorsque la taille du soluté 

augmente. Il en est de même avec la concentration en polymère. Les données 

expérimentales ont été testées avec le modèle décrit par Petit et al. Une bonne 

corrélation entre les données et la théorie a été observée. Une énergie d'activation de 

21.1, 30.0, 36.5 et 39.0 kJ/mol a été obtenue pour le tert-butanol, l'éthylène glycol, le 

PEG-600 et le PEG-2000, respectivement. Les mêmes données expérimentales ont 

été utilisées pour vérifier la validité des modèles décrits par Mackie et Meares, Ogston 

et al., Yasuda et al., de Gennes, Phillies, et Amsden. Parmi ces modèles seuls ceux de 

Phillies et Amsden ont reproduit fidèlement les données expérimentales. Par ailleurs, 

une série de diffusants avec des groupes terminaux modifiés a été utilisée pour 

analyser l'importance de la géométrie du soluté sur la diffusion. En comparant deux 

diffusants dont les masses molaires sont voisines, nous avons constaté que le diffusant 

le plus volumineux restreignait plus la diffusion. L'utilisation de modèles théoriques 
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de diffusion a permis de montrer que les modèles de Phillies, Amsden et Petit et al. 

reproduisent fidèlement les données expérimentales. L'analyse des paramètres 

spécifiques de chacun des modèles a montré que seuls ceux définis par Petit et al. ont 

une signification physique. 

L'influence de la matrice polymère a également été examinée en mesurant la 

diffusion du solvant et d'un soluté dans plusieurs systèmes polymères, à savoir des 

PVA avec des masses molaires et des taux d'hydrolyse différents, des hydroxypropyl 

méthyl celluloses (HPMC), le poly(N,N-diéthyl acrylamide) et le poly(N-isopropyl 

acrylamide). L'utilisation des modèles de diffusion de Yasuda et al., Phillies et 

Amsden a permis de confirmer leurs limites. L'application du modèle de diffusion 

proposé par Petit et al. a montré que ce modèle est applicable pour de tels systèmes. 

Le PVA est un polymère ayant de nombreux groupements hydroxyles qui 

peuvent former des ponts hydrogène avec des molécules comme l'éthylène glycol. Les 

techniques RMN peuvent être utilisées pour prouver l'existence des ces interactions. 

Le pontage hydrogène induit un nouveau déplacement chimique pour la molécule 

d'éthylène glycol liée au polymère, laquelle possède un coefficient d'auto-diffusion 

différent de la molécule d'éthylène glycol libre. De plus, les molécules d'éthylène 

glycol libres et liées possèdent des temps de relaxation spin-réseau et spin-spin 

différents. Une constante d'équilibre de 1.7 x 103  M-1  a pu être mesurée pour cette 

association. 
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,odi 



3. Symboles et abréviations utilisés en résonance magnétique nucléaire 

A(5)  OU /(8)  Intensité du signal RMN en présence de gradient 

A(0)  ou /(0)  Intensité du signal RMN en abscence de gradient 

5 	Temps d'application du gradient magnétique (ms) 

A 	Temps entre deux gradients (ms) 

D 	Coefficient d'auto diffusion dans une solution polymère (m2/s) 

Do 	Coefficient d'auto diffusion dans le solvent pur (m2/s) 

Rapport gyromagnétique du proton (2.6752 x 108  rad.s-1.T1) 

G 	Intensité du gradient de champ magnétique (T/m) 

NMR 	Nuclear magnetic resonance (voir RMN) 

PGSE 	Pulsed-gradient spin-echo (écho de spin à gradient de champ pulsé) 

RMN 	Résonance magnétique nucléaire 

STE 	Stimulated echo (écho stimulé) 

T1 	Temps de relaxation spin-réseau 

T2 	Temps de relaxation spin-spin 

90i 	Impulsion de 90° selon l'axe i 

180i 	Impulsion de 180° selon l'axe i 



Remerciements 

Ce travail a été réalisé au département de chimie de l'Université de Montréal 

sous la direction du Professeur Julian X.X. Zhu que je tiens à remercier vivement pour 

m'avoir donné l'opportunité de réaliser ce projet de doctorat, pour son appui constant, 

son soutien sans faille, et pour son optimisme permanent durant toutes ces années. 

Je souhaite remercier le Docteur Minh Tan Phan Viet, Directeur du 

Laboratoire Régional de RMN, pour son aide ainsi que Sylvie et Robert pour leur 

gentillesse et leur grande disponibilité. 

Je tiens également à remercier le Professeur P.M. Macdonald de l'Université 

de Toronto, ainsi que ses étudiants, pour avoir mis à notre disposition leur équipement 

RMN nécessaire à la réalisation d'une partie de ce projet ainsi que pour leur aide et 

leur accueil. De même que Paul-André Lavoie, et les étudiants du groupe de 

recherche du Professeur P. Carreau de l'École Polytechnique de Montréal, pour leur 

aide précieuse et leurs conseils judicieux dans les études rhéologiques. 

Mes remerciements s'adressent aussi à mes collègues de laboratoire (Aline, 

Amina, Damien, David, Eider, Huiyou, Karima, Marcela, Mohand, Mu, Sebastien, 

Sumitra, Wilms, Yuehua et Zhengzi) avec qui il ffit un plaisir de travailler, de même 

qu'aux étudiantes du groupe du Prof Michel Lafleur avec qui j'ai partagé le temps 

d'utilisation de l'appareil RMN. Enfin j'aimerai remercier à titre personnel Jean-

Michel Petit et le Professeur F. Brisse. 

La réalisation de ce projet a été rendue possible grâce a l'appui financier des 

fonds de recherche du CRSNG et du FCAR. Les déplacements à Mississauga ont été 

financés par un fonds de coopération Québec-Ontario provenant du Ministère de 

l'éducation du Québec. 

xxiv 



Partie I 

Introduction 

générale 



Partie I 	 Introduction 

Les études de diffusion dans les solutions et gels de polymères sont très 

importantes car elles génèrent de nombreuses applications dans plusieurs domaines. 

Par exemple, les études de diffusion peuvent être utiles pour analyser la miscibilité de 

deux polymères [1]. Il est également possible de mesurer la diffusion d'un plastifiant 

dans un polymère [2], la diffusion d'ions dans des polyélectrolytes [3] ou la diffusion 

d'un gaz dans une membrane polymère [4]. Les propriétés de diffusion des matériaux 

sont également importantes dans le domaine de l'agriculture [5], dans le domaine 

biomédical [6], et dans le domaine de l'alimentation [7]. Au cours de la dernière 

décennie, l'application la plus importante concernant les mesures de diffusion a été la 

libération contrôlée de médicaments. Il existe aussi un intérêt théorique dans les 

études de diffusion. Plusieurs modèles théoriques de diffusion ont été proposés [8-

21], mais l'utilisation de ces modèles est souvent limitée [22-25]. Ces modèles 

méritent donc d'être testés afin de mieux cerner leur domaine d'application. 

1. Diffusion et libération contrôlée 

Un des grands défis de la chimie moderne est de concevoir des matériaux 

biocompatibles qui puissent libérer des substances actives sur une période de temps 

préétablie pour des applications pharmaceutiques. En effet, la libération contrôlée de 

médicaments est le sujet d'intenses recherches qui nécessitent une grande connaissance 

des matériaux polymères. Parmi ces matériaux, les hydrogels sont des matériaux très 

prometteurs car ils absorbent de grandes quantités d'eau, ce qui les rendent 

généralement biocompatibles. De plus, les hydrogels sont des matériaux qui peuvent 

être réticulés chimiquement ou physiquement, dont les propriétés physico-chimiques se 

situent entre celles d'un solide et d'un liquide. Cette caractéristique les rend encore 

plus intéressants. Cependant, pour relever ce défi, il est primordial de comprendre le 

mécanisme de diffusion dans ces matériaux polymères. 

Pour véhiculer les molécules lors de la libération contrôlée de médicaments, les 

matériaux polymères peuvent être utilisés selon deux concepts distincts (Figure 1A). 

Premièrement, les matériaux polymères sont mélangés avec la substance active à l'état 
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sec. Au contact du liquide biologique, le polymère gonfle, ses chaînes forment un 

réseau tridimensionnel dans lequel les solutés peuvent diffuser. Donc, la perméabilité 

du réseau va influencer leur déplacement, de même que la taille des diffusants. 

L'existence éventuelle d'interactions entre le soluté et le polymère influencerait 

également le procédé de diffusion. Une variante de ce système est l'utilisation de 

polymères biodégradables. En plus du gonflement du polymère et de la diffusion, il y a 

érosion du réseau polymère. Le deuxième concept est l'utilisation d'un polymère sous 

forme de membrane pour former un réservoir à partir duquel le médicament diffuse. 

L'utilisation de tels matériaux permet d'améliorer l'efficacité de certains médicaments 

dont l'action est reliée principalement à la concentration dans l'organisme. En effet, 

l'action spécifique de certains médicaments est évaluée par leur concentration, que 

l'on nomme zone efficace tel qu'illustré sur la Figure 1B. Au dessus de cette zone, le 

médicament devient toxique. En dessous, le médicament perd de son efficacité. Dans 

les traitements conventionnels, pour garder le médicament en concentration efficace 

dans l'organisme, il doit être appliqué périodiquement. Cette procédure est fastidieuse 

pour le patient et multiplie le risque de surdose. 

2. Les objectifs de cette étude 

Au cours des dernières décennies, la spectroscopie RMN a connu un 

développement technique et un essor fulgurant qui en fait aujourd'hui une méthode 

d'analyse de pointe pour la mesure des coefficients d'auto-diffusion dans les solutions 

et gels de polymères. La technique d'écho de spin à gradient de champ pulsé (PGSE) 

et l'imagerie RMN en sont les exemples les plus probants. 

Le but de ce travail est d'étudier la diffusion de solutés dans les solutions et 

gels de polymères, par RMN PGSE, afin de mieux comprendre les procédés de 

diffusion dans les systèmes polymères. Ce phénomène est fortement associé aux 

propriétés physico-chimiques ainsi qu'à la dynamique de la molécule diffusante et celle 

du système polymère. 
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Figure 1: (A) Représentation de différents systèmes polymères utilisées pour la 
libération contrôlée de médicaments, (B) profil de la concentration en médicament en 
fonction du temps. Les pointillés représentent des injections successives d'un 
médicament traditionnel et le trait plain l'injection d'un médicament à libération 
contrôlée. 
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Beaucoup de modèles théoriques de diffusion ont été proposés dans la 
littérature. 	Ces modèles sont généralement divisés en trois catégories qui 
correspondent à trois concepts physiques de diffusion: l'effet d'obstruction [8-11], les 
interactions hydrodynamiques [12-16] et la théorie du volume libre [17-21]. Les 
modèles les plus importants de chacune de ces catégories sont décrits dans le premier 
chapitre. L'accent a été mis sur la caractérisation du domaine d'application de chaque 
modèle en se basant sur les nombreux exemples trouvés dans la littérature. En plus de 
ces modèles, nous avons également analysé deux nouveaux modèles physiques de 
diffusion qui ont été définis récemment par Petit et al. [26] et Amsden [22]. L'objectif 
de cette thèse est d'appliquer les modèles de diffusion les plus pertinents au plus grand 
nombre possible de systèmes soluté-polymère afin de mieux les caractériser et mieux 
comprendre les procédés de diffusion dans les polymères. Les mesures des 
coefficients d'auto-diffusion ont été réalisées par RMN PGSE, dont les détails sont 
décrits dans le deuxième chapitre. 

3. Présentation des travaux 

Dans un premier temps, nous avons étudié comment la taille du soluté 

influence la diffusion. Des solutés, aussi dénommées diffusants, linéaires et de taille 

croissante, basées sur l'éthylène glycol ont été utilisées. La diffusion de ces solutés 

dans les solutions et gels d'alcool polyvinylique (PVA) a été mesurée. Le choix du 

PVA est justifié par le fait que ce polymère est beaucoup utilisé pour des applications 

pharmaceutiques et biomédicales. Les données expérimentales ont été traitées avec le 

modèle de diffusion décrit par Petit et al. [26] (chapitre 3), ainsi qu'avec les modèles 

de diffusion de Mackie et Meares [9], Ogston et al. [10], Yasuda et al. [18], de 

Gennes [14], Phillies [16] et Amsden [22] (chapitre 4). Le choix des modèles de 

diffusions se fait selon deux critères: (i) les propriétés physico-chimiques des solutés 

étudiés; et (ii) le domaine d'application des modèles. 

L'effet de la géométrie du soluté sur la diffusion a également été examiné. Des 

solutés basées sur l'éthylène glycol mais ayant des groupes terminaux différents ont 

été utilisées. Les groupements terminaux incluent des groupements linéaires (méthyle, 

éthyle, hexyle, etc.) et des groupements sphériques rigides (tert-butyle, pyridinium, 

groupement cyclique, etc.). Les modèles de diffusion de Mackie-Meares [9], Ogston 

et al. [10], Yasuda et al. [18], Phillies [16], Petit et al. [26] et Amsden [22] ont été 
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testés avec les données expérimentales (chapitre 5). Les paramètres employés dans 

ces modèles ont été corrélés avec les rayons hydrodynamiques des solutés ainsi 

qu'avec leurs masses molaires. 

Nous avons aussi analysé l'impact du réseau polymère sur la diffusion. 

Plusieurs polymères ont été utilisés, notamment des PVA avec des masses molaires et 

des taux d'hydrolyse différents, des hydroxypropyl méthyl celluloses, le poly(N,N-

diéthylacrylamide) et le poly(N-isopropyl acrylamide). La diffusion du solvant (l'eau) 

et d'un soluté (PEG-600) dans les différents systèmes a été mesurée. Les modèles de 

diffusion de Yasuda et al. [18], Phillies [16], Amsden [22] ainsi que le modèle de Petit 

et al. [26] ont été utilisés (chapitre 6). 

Nous avons démontré qu'il existe des interactions sous forme de liaisons 

hydrogène entre certains diffusants et le polymère (chapitre 7). Cette association a été 

caractérisée par diverses techniques RMN, comme l'étude du déplacement chimique, 

l'étude du coefficient d'auto-diffusion, et par l'étude des temps de relaxation spin-

réseau et spin-spin. L'existence de liaisons diffusant-polymère influence beaucoup les 

procédés de diffusion dans les solutions et gels de polymères. 
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1.1. Abstract 
Diffusion in polymer solutions and gels has been studied by various techniques 

such as gravimetry, membrane permeation, fluorescence and radioactive labeling. 

These studies have led to a better knowledge on polymer morphology, transport 

phenomena, polymer melt and controlled release of drugs from polymer carriers. 

Various theoretical descriptions of the diffusion processes have been proposed. The 

theoretical models are based on different physical concepts such as obstruction 

effects, free volume effects and hydrodynamic interactions. With the availability of 

pulsed field gradient NMR techniques and others modern experimental methods, the 

study of diffusion has become much easier and data on diffusion in polymers have 

become more available. This review article summarizes the different physical models 

and theories of diffusion and their uses in describing the diffusion in polymer 

solutions, gels and even solids. Comparisons of the models and theories are made in 

an attempt to illustrate the applicability of the physical concepts. Examples in the 

literature are used to illustrate the application and applicability of the models in the 

treatment of diffusion data in various systems. 
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1.2. Introduction 
Diffusion is the process responsible for the movement of matter from one part 

of a system to another,1  and it is mainly due to random molecular motions. In gases, 

diffusion processes are fast (10 cm/min) whereas they are much slower in liquids (0.05 

cm/min) and solids (0.00001 cm/min).2  According to Cussler,2  diffusion in both gases 

and liquids can be successfully predicted by theories. Diffusion is known to depend 

on temperature, pressure, solute size and viscosity. Diffusion has a much larger range 

of values in solids, where diffusion coefficients can differ by more than a factor of 

1010. Therefore, diffusion in solids is difficult to estimate with theoretical models.2  

Diffusion in polymers is complex and the diffusion rates should lie between those in 

liquids and in solids. It depends strongly on the concentration and degree of swelling 

of polymers. Consequently, it remains a challenge to understand, predict and control 

the diffusion of small and large molecules in polymer systems. The theories and 

physical models of diffusion may help to realize these goals. 

The first mathematical treatment of diffusion was established by Fick3  who 

developed a law for convection in one dimension: 

az 

where Jis the flux, j the flux per unit area, A the area across which diffusion occurs, 

D the diffusion coefficient, c the concentration, z the distance and Oc/az the gradient 

of the concentration along the z axis. This equation is also known as Fick's first law. 

In the case of diffusion without convection and a unitary area, Eq 1.1 can be written 

as 

ac 
J = —D—az 

(1.2) 

Eq 1.2 is the starting point of numerous models of diffusion in polymer systems. 

In the study of solvent diffusion in polymers, different behaviors have been 

observed. It is known that the diffusion of the solvent is linked to the physical 

properties of the polymer network and the interactions between the polymer and the 

solvent itself. Alfirey et al.4  proposed a classification according to the solvent 
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diffusion rate and the polymer relaxation rate: Fickian (Case I) and non-Fickian (Case 

11 and anomalous) diffusions. The amount of solvent absorbed per unit area of 

polymer at time t, Mt, is represented by 

M = kt" 	 (1.3) 

where k is a constant and n a parameter related to the diffusion mechanism, the value 

of which lies between 1/2  and 1. Eq 1.3 can be used to describe solvent diffusional 

behaviors for any polymer-penetrant system whatever the temperature and the 

penetrant activity. 

1.2.1. Fickian diffusion 

Fickian diffusion (Case I) is often observed in polymer networks when the 

temperature is well above the glass transition temperature of the polymer (Tg). When 

the polymer is in the rubbery state, the polymer chains have a higher mobility that 

allows an easier penetration of the solvent.5  Therefore, Fickian diffusion is 

characterized by a solvent diffusion rate, Rdig, slower than the polymer relaxation rate, 

Rrelax (Rdiff 	Rrelax)• A large gradient of solvent penetration is observed in the 

system. The solvent concentration profile shows an exponential decrease from the 

completely swollen region to the core of the polymer. The solvent penetration front is 

proportional to the square-root of time6  
A/ = k t2 	 (1.4) 

Few examples of Fickian diffusion in polymer systems are reported in the 

literature, since solvent absorption studies have been often carried out at ambient 

temperature which is often below Tg. Nevertheless, Fickian diffusion can be observed 

in polymer systems below Tg  with the addition of a plasticizer. Grinsted et al.' studied 

the diffusion of methanol in poly(methyl methacrylate) (PMMA) as a function of 

water concentration by NMR imaging. They found that the diffusion rate of methanol 

increased with increasing water concentration. In addition, the diffusion of methanol 

changed from Case II (see Section 1.2.2) to Fickian when the water content was 

increased. This change in methanol diffusional behavior was explained by the 

presence of water that acted as a plasticizer. Ercken et al.' also reported studies of 
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methanol diffusion in PMMA. They showed that methanol diffusion followed Case II 

behavior at ambient temperature, whereas Fickian behavior was observed at higher 

temperatures. 

1.2.2. Non-Fickian diffusion 

Non-Fickian diffusion processes are mainly observed in glassy polymers, i.e., 

when the temperature of study is below Tg. At a specific temperature below Tg, the 

polymer chains are not sufficiently mobile to permit immediate penetration of the 

solvent in the polymer core.5  Two lcinds of non-Fickian diffusion were defined: Case 

H diffusion and anomalous diffusion. The main difference between these two 

diffusion categories concerns the solvent diffusion rate. In Case II diffusion, the 

solvent diffusion rate is faster than the polymer relaxation process (Rdiff  >> Rrelax, 1 , 

whereas in anomalous diffusion the solvent diffusion rate and the polymer relaxation 

are about the same order of magnitude (Rade — Rrei..).4  

In general, Case II diffusion is observed when solvents have high penetrative 

activities.8  The characteristics of Case II diffusion are the following: (1) a rapid 

increase in the solvent concentration in the swollen region which leads to a sharp 

solvent penetration front between the swollen region and the inner polymer core; (2) 

the solvent concentration is quite constant in the swollen region behind the solvent 

penetration front; (3) the solvent penetration front is sharp and advances at a constant 

rate, thus the diffusion distance is directly proportional to time 

M t  =kt 	 (1.5) 

(4) There is an induction time of Fickian concentration profile which precedes the 

solvent penetration front into the glassy polymer core.9 13  

Fickian and Case II diffusions are considered as limiting types of transport 

processes. Anomalous diffusion lies in between and is characterized by the following 

equation: 

M , = k t" and 'A < n < 1 	 (1.6) 

Examples of Case II diffusion with polymer/solvent systems are abundant in 

the literature. For example, Weisenberger and Koenig14  showed that methanol 
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diffusion in PMMA obeys Eq 1.5 (Case II). Dioxane in polystyrene (PS),15  acetone in 

poly(vinyl chloride)16  and in polycarbonate6  have the same diffusional behavior. 

1.2.3. Self-diffusion and mutual diffusion coefficients 

According to Fick's first law (Eq 1.1), the diffusion coefficient is defined as 

the rate of transfer of the diffusant across the diffusion section divided by the space 

gradient concentration at this specific section. If we consider the mixing of two pure 

species, A and B, without volume variation, then an equal quantity of each component 

will be transferred in the opposite direction. From a diffusion point of view, we 

obtain one diffiision coefficient related to both species, referred to as the mutual 

diffusion coefficient.1'17  However, it is important to note that the mutual-diffusion 

coefficient, Dm, can be expressed as the sum of two intrinsic diffusion coefficients 

related to each individual component: 17  

=VA C 	-DA ) + DA 	 (1.7) 

where CA is the amount of component A contained in the system, VA the constant 

volume of component A and Di  the intrinsic diffusion coefficient of component i. 

In already equilibrated systems such as polymer solutions and gels, there is no 

volume variation and no mass transfer. Nevertheless, the molecules are in motion and 

diffusion occurs without the presence of a concentration gradient. In this case the 

diffusion is defined by the self-diffusion coefficient. This diffusion coefficient can be 

related to the intrinsic diffusion coefficient (thus indirectly related to the mutual 

diffusion coefficient) by17  

	

D, = DC , 151-1A  =RTD  ainaA 	 (1.8) 
- 	- aCA 	aln C A 

where D is the self-diffusion coefficient of component A, µA  the chemical potential 

and aA  the thermodynamic activity of component A. 

Generally speaking, self-diffusion occurs in systems composed of chemical 

species in the same phase such as polymer solutions. When the concentration of the 

studied species is very small, the self-diffusion of the species is also called tracer 

diffusion. Tracer diffusion also includes the diffusion of chemical species in different 
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physical states, for example, the diffusion of water vapor in a polymer thin film, which 

involves the diffusion of a gas in a solid.2  

Most diffusion studies have been carried out by measuring the self-diffusion 

coefficient as it is more convenient to study the already equilibrated systems. In this 

review article, the applicability of the diffusion models in tracer and self-diffusion will 

be discussed as described in the literature. 

1.2.4. Diffusion in polymers 
Diffusion in polymer solutions and gels have been studied for decades by the 

use of various techniques such as gravimetry,18  membrane permeation,19  

fluorescence and dynamic light scattering.21  The studies have resulted in a better 

knowledge on polymer morphology and structure,22  transport phenomena23  and, more 

recently, the controlled release of drugs from polymer carriers.24  In addition, these 

studies have led to theoretical descriptions of the diffusion of solvents and/or solutes 

in polymer solutions, gels and even so1ids.25-27  These physical models are based on 

different physical concepts (the obstruction effects, the hydrodynamic interactions and 

the free volume theory) and their applicability varies.28  With the development of 

modern techniques such as the pulsed-gradient nuclear magnetic resonance (N1v1R) 

spectroscopy,29  the study of diffusion has become much easier than with the other 

techniques mentioned above." With the availability of the diffusion data, several new 

models of diffusion, concepts, as well as modifications or improvements of the 

existing theories have appeared in the literature in the last decade.28'3143  Limitations in 

the use of many of these models have been observed in the literature.28'31'34-59  Review 

articles have been published by Murh and Blanshard,6°  von Meerwal161'62  and Tirre11.63  

It is the intention of this article to review the various theoretical models, the recent 

development and the use of the models in the interpretation of the experimental 

results of diffusion in polymers. 
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1.3. Theories and physical models of diffusion 

We intend to use homogeneous notations in the text, but the physical 

significance of the symbols may still differ, which will be indicated. 

1.3.1. Diffusion models based on obstruction effects 

In the diffusion models based on obstruction effects, polymer chains are 

regarded as motionless relative to the diffusing molecules, i.e., solvents and/or 

solutes. This approximation is based on the assumption that the polymer self-

diffusion coefficient is much smaller than that of the diffusant. Thus the polymer is 

represented as fixed and impenetrable segments immersed in a solution. The presence 

of the motionless polymer chains leads to an increase in the mean path length of the 

diffusing molecules between two points in the system. 

1.3.1.1. The Maxwell-Fricke model 

The obstruction concept was first introduced by Fricke25  in 1924 who studied 

electric conductivity and capacity of spheroids dispersed in dog blood medium. In 

this study, the author considered different geometries of spheroids (oblates and 

prolates) and the best results were obtained with spheres. The following equation was 

given36  

D(1—  (p) _ 1— (p' (1.9) 
Do 	1-1-97x 

where D is the diffusion coefficient, Do  is the diffusion coefficient in pure solvent, cp is 

the volume fraction of the polymer, (p is the volume fraction of the polymer plus non-

diffilsing solvent bound to the polymer, and x is a factor depending on the solvent 

shape (ranging from L5 for rods to 2.0 for spheres). This model was called the 

Maxwell mode164'65  or the Maxwell-Fricke mode1.3637  

Langdon and Thomas66  studied mutual diffusion coefficient of small diffusants 

such as anions (36c1, 131r) and a cation (22Na+) in agar gels of composition ranging 

from 0.67 to 4 wt %, by radioactive labeling (soft p emitters). They found a linear 

dependence of the self-diffusion coefficient on the gel composition, when the 
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electrolyte concentration was below 0.1 M. Their analysis in regard to the Maxwell-

Fricke model suggested that the hindrance to diffusion was due to the hydration of the 

agar molecules. According to Cheever et al.," diffusion of water in a suspension of 

latex of low concentrations was predicted correctly by the Maxwell-Fricke model. 

Griffith et al.37  reported that the diffusion of water in a suspension of impenetrable 

spherical particles which showed no hydration effect was closely predicted by this 

model. Therefore, the Maxwell-Fricke model seems to provide good results for small 

diffusing particles in dilute polymer solutions. Waggoner et al." showed that this 

model overestimates the diffusion coefficient at higher polymer concentrations. They 

studied the self-diffusion of solvents (toluene, ethylbenzene, cumene, tert-butyl 

acetate, chloroform and methyl ethyl ketone) in PS and PMMA systems. The 

polymer concentration ranged from 0 up to 50 wt %. From their data, it is clear that 

the Maxwell-Fricke model did not fit well the experimental data even for low polymer 

concentrations, as shown in Figure 1.1. The same results were observed by Mustafa 

et al.," who studied the self-diffusion coefficient of fiuorescein dye in dilute and 

concentrated aqueous hydroxypropyl cellulose gels (9Hpc ranging for 0 to 0.65), as 

illustrated in Figure 1.2. 

The Maxwell-Fricke equation gives a dependence of the self-diffusion 

coefficient on the polymer volume fraction and on the solvent shape, p and x, 

respectively. However, the diffusion is closely linked to the size of the diffusant. For 

example, variation of the self-diffusion coefficient between a small molecule such as 

water (D= 2.77 x 10-9  m2/s) and a macromolecule such as poly(ethylene glycol) with 

a molecular weight of 2000 (D = 1.73 x 10-10  m2/s) in the same poly(vinyl alcohol) 

(PVA) system ([PVA] = 0.03 g/mL, T = 43 °C) is more than one order of magnitude 

and far from being identical.67  

Therefore, this model can be used in the study of small-sized molecules such 

as solvents36  in dilute polymer solutions" and/or gas diffusion in highly swollen 

membranes, for which the difference of self-diffusion coefficients is insignificant for 

the different diffusants. 
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Figure 1.1. Semilogarithmic plot of solvent self-diffusion coefficient as a function of 

the polymer concentration: closed diamonds, toluene-PS; closed triangles, tert-butyl 

acetate-PS; closed circles, ethylbenzene-PS; open circles, cumene-PS; closed squares, 

chloroform-PS; open triangles, methyl-methacrylate-PMMA; and open squares, 

methyl ethyl ketone. The prediction of the Maxwell-Fricke model (Eq 1.9) and the 

model of Mackie and Meares (Eq 1.10) are represented by solid lines. Reproduced 

with permission from ACS Publications (Waggoner, A. R. et al., Macrotnolecules 

1993, 26, 6841).36  
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Figure 1.2. Normalized self-diffusion coefficient of fluorescein dye as a function of 

the polymer volume fraction. Reproduced with permission from ACS Publications 

(Mustafa, M. B. et al., Macrornolecules 1993, 26, 37O). 

Remarque: dans le carré au dessus du graphe, il faut lire Phillips-Janssons et non 

Philhps-Jansons. 
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1.3.1.2. The model of Mackie and Meares 

In 1955, Mackie and Meares68  employed the physical concept proposed by 

Fick to describe the diffusion of electrolytes in a resin membrane, assuming that the 

polymer mobility is less important than the mobility of ions or water, so that sites 

occupied by the polymer are permanently unavailable to ions or water. Thus, the 

motion1ess polymer chains impose a tortuosity or an increase in the path length for the 

molecules in motion. The diffusion coefficient of a small molecule, equal in size to the 

monomer segment in the polymer, is given by the following equation: 

D _ - 
1-

2 
1.10) 

Do  — 1+p]  

where D, Do  and cp are the same as defined for Eq 1.9. 

This model provided satisfactory results over a wide range of concentrations 

(up to 60 wt % of cellulose) as shown by Brown and coworkers.69-71  Their work was 

based upon a series of diffiisants with increasing size: water, tert-butanol, dioxane,69  

ethylene glycol, poly(ethylene glycol), oligosaccharides and poly(hydric alcohol).7°  In 

each case, they analyzed the data in regard to the model of Mackie and Meares. 

These studies led to the conclusion that the diffusion of small-sized diffusants can be 

described by this obstruction model, while for oligomers and polymers they observed 

a weaker correlation between the experimental data and the theory. The authors 

attributed this divergence to the interactions between the larger diffusants and the 

polymer chains. In a later work, Brown et al .71  studied the diffusion of diffusants with 

increasing size such as ethylene glycol and 15-crown-5 ether in cellulose gels. The 

results were analyzed with the model of Mackie and Meares and another similar 

model defined by Wang:72  

D , (1.11) 
Do  

where a is a parameter depending on the diffusant geometry (1.5 for prolate and 3 for 

oblate ellipsoids). This model is also based on the obstruction effect and is generally 

used to describe diffusion in microemulsion systems.35'73  Despite the introduction of a 

diffusant shape parameter, comparison between these two models led to the 
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conclusion that Wang's model was valid only for small diffusants in the dilute regime, 

whereas the model of Mackie and Meares was valid for regimes slightly more 

concentrated.71  However, their results showed that neither model is in good 

agreement with the data in the concentrated regions. The divergence is smaller with 

the model of Mackie and Meares in semi-dilute regime but keeps on increasing with 

higher polymer concentration.n  

The model of Mackie and Meares has provided satisfactory results for the 

diffusion of molecules of various sizes in cellulose networks with polymer 

concentration up to 60 wt % as well as for the diffusion of organic solvents in PS and 

PMIVIA, as shown in Figure 1.1. However, this model showed significant deviations 

from the experimental data with large diffusants in polymer solutions as demonstrated 

by several researchers.34-36'65  An example is provided in Figure 1.2. In addition, Eq 

1.10 does not provide diffusant size or shape dependence either, as in the case of Eq 

1.9 discussed in Section 2.1.1. 

1.3.1.3. The model of Ogston et al. 

In order to provide a theoretical explanation for the empirical equation of 

Laurent and coworkers,74'75  which relates the sedimentation of proteins in hyaluronic 

acid solutions, Ogston et al.76  developed an approach for the diffusion of larger 

diffusants. The authors considered the polymer as barriers formed by a random 

distribution of long molecular fibers. Consequently, the self-diffusion coefficient for a 

given diffusant molecule depends both on the size of the obstacle present in the 

solution and on the size of the diffusant, as shown in the following equation 

—D 
= ex [ Rh ± P  1/2] 

(P 	 (1.12) 
Do 	P 

where cp represents the volume fraction of the polymer, Rh  the hydrodynanic radius of 

the diffusing molecule and p defines the effective cylindrical radius of the fiber. 

Diffusing molecules are considered as non-perturbing for the network. Therefore, this 

model should be applicable to polymer solutions and gels. Nevertheless, their data 

showed different results depending on the polymers employed (dextran and hyaluronic 
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acid).77  They attributed these differences to the morphology of the polymers, i.e., the 

rigidity and/or thicicness of the polymer chains. 

According to Johansson et al.,77  the differences observed by Ogston and 

coworkers were due to differences in the flexibility of the polymer chains. In a 

companion paper, they showed that the phenomenological approach of Ogston et al.76  

did not give consistent explanation in regard to their experimental results.31  They 

demonstrated that the model of Ogston et al. remained valid for dilute or semi-dilute 

polymer solutions. This conclusion is in agreement with several other studies.26'38'78  

For example, Petit78  showed that the model of Ogston et al. did not provide 

satisfactory results for large molecules despite the introduction of parameters related 

to the sizes of both the solute and the polymer. The deviation is more pronounced for 

concentrated polymer solutions. 

1.3.1.4. The hard sphere theory 

In order to expand the approach of Ogston et al.76  to flexible polymers, 

Johansson and coworkers31'79  elaborated a new diffusion model for spherical solutes in 

polymer solutions and gels. This model was based upon three main assumptions: (1) 

steric hindrance is the cause of the reduction of solute diffusion, and hydrodynamic 

interactions are negligible in the polymer solutions and gels; (2) the steric hindrance is 

caused by the static network, not by the interaction with diffusing species; (3) the 

structure of the network is decomposed into a set of cylindrical cells and the 

contribution from each cell to the diffusion coefficient is determined by the 

distribution of spaces in the network.31  

In this model, the hindrance due to the polymer chains is considered to depend 

not only on the size of the diffusant and the amount of polymer but also on the 

properties of the polymer chains, i.e., their thickness and stiffness.31  Basically, they 

regarded the diffusion quotient, D/Do, as the result of local flows in microscopic 

subsystems. Consequently, in order to quantify the hindrance of the polymer chains, 

the authors evaluated by the use of computational methods the closest distance (R) 
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between a point in the network and the fiber, which is represented as a cylindrical cell. 

According to the computational modeling, the diffusion coefficient is given by 

—D =e' +a,2  eOE El  (2a) 	 (1.13) 
Do  

where a is a parameter related to the physical properties of both the polymer and the 

diffusant: 

a. =(p 
(Rh  + 	 (1.14) 

where p is the volume fraction of the network, p is the polymer radius and Rh the 

hydrodynatnic radius of the diffusant. In Eq 1.13, E1  is an exponential integral: 

e' (1.15) 
x u 

Application of this model provided good results for the diffusion of albumin, 

M 	69 000 dalton," in hyaluronic acid and dextran solutions and gels, cp = 0.004 and 

0.006, respectively.31  Several simulations81-83  of the hard sphere theory were made 

and limitations of the model were shown. For example, the theory failed when the 

authors attempted to simulate the self-diffusion coefficients of diffusants with 

increasing radius (5-30 Å) for a fixed polymer radius of 5 Å and a given persistence 

length of 200 A...81  In fact, Eq 1.13 does not fit Brownian dynamic simulations of 

spheres when the diffusant radius was above 20 Å (Figure 1.3). Moreover, the 

authors were unable to provide an interpretation concerning the parameter ci. (Eq 

1.14), which depends on the volume fraction and radius of the polymer as well as the 

hydrodynamic radius of the diffusant. The correlation between the theory and the 

simulation is good for low a, but discrepancy appears especially for higher values of a 

which correspond to large-sized diffusants.81  The model also failed for nonionic 

micelles systems in ionic polymers.83  

Zhang and Lindman84  reported the application of the obstruction model of 

Johansson and coworkers3179  for the diffusion of micelles in cellulose solutions (9 < 2 

wt %). The obstruction due to the polymer was predicted correctly by the model. 

This diffusion study was carried out only in very dilute polymer concentrations. Bu 
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and Russo39  tried to interpret their diffusion data of dextran in 1 wt % hydroxypropyl 

cellulose solutions with the hard sphere theory. They found that the model of 

Johansson et a1.3179  underestimated the diffusion coefficient at larger Rh. They 

concluded that the diffusants were structurally too complex to agree with Eq 1.13. 

Other discrepancies with the hard sphere theory were also found in the literature.28'85  

1.3.1.5. Summary 
It appears that all the obstruction effect models can fit self-diffusion coefficient 

data of small molecules in dilute or semi-dilute polymer solutions. We would like to 

point out that other theories, such as the models of Laurent et al.," Jônsson et al.,87  

Hanai " and Phillips and Janssons" (see Figure 1.2 for example) were also proposed. 

Their applicability is similar to those described in this section.37'64'99  The uses and 

constraints for the models described in this section are summarized in Table 1.1. 

Several self-diffusion studies in polymer solutions and gels have led to similar 

conclusions concerning the model of Mackie and Meares and the Maxwell-Fricke 

mode1.35'36'" The phenomenological approach of Ogston et al.76  for larger molecules 

and the hard sphere theory failed at high polymer concentrations when hydrodynamic 

interactions became non-negligible.28  In a study of self-diffusion in aqueous solutions 

of PVA, Petit et atm  demonstrated that the diffusion behavior of very small molecules 

such as water and methanol can be described by the obstruction models. But the 

same study showed that the theoretical prediction by the model of Macicie and 

Meares" deviates progressively from the experimental data with increasing diffu.sant 

size. Even for small diffusants, problems arose when the polymer concentration was 

high. 
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Figure 1.3. Simulation of D/Do versus the polymer volume fraction for particles with 

5 Å (squares), 12 Å (circles), 20 Å (triangles) and 30 Å (diamonds). The solid lines 

are the predictions with the hard sphere theory (Eq 1.13). Reproduced with 

permission from Johansson, L. & Lôfroth, J.-E., "Diffusion and interaction in gels and 

solutions. 4. Hard sphere Brownian dynamics simulations", Journal of Chemical 

Physics 98(9) May 1, 1993, pp.7471-7479. Copyright 1993 American Institute of 

Physics.82  
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Table 1.1. Summary of the diffusion models based on obstruction effect (Section 

1.3.1) with their applicability and restraints. 

Author(s) Ref(s). 	Application(s) 
	 Limitation(s) 

Maxwell- 	25 	- Solvents and small-sized - Large diffusants 

Fricke 	 diffusants 	 - Semi-dilute and 

- Very dilute polymer 	concentrated polymer 

solutions 	 solutions 

Mackie 

and 

Meares 

Ogston et 

al. 

68 	- Solvents and small-sized 

diffusants 

- Semi-dilute polymer 

solutions 

76 	- Solvents and small-sized 

diffusants 

- Semi-dilute polymer 

solutions 

- Large diffusants 

- Concentrated polymer 

solutions 

- Large diffusants 

- Concentrated polymer 

solutions 

Hard 	31,79 - Solvents and small-sized - Diffusant with Rh > 20 Å 

sphere 
	 diffusants 	 - Concentrated polymer 

Theory 	 - Semi-dilute polymer 	solutions 

solutions 
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1.3.2. Hydrodynamic theories 
The hydrodynamic theories take into account the hydrodynamic interactions 

present in the whole system. These interactions include frictional interactions 

between the solute and the polymer, likely the most important ones, between the 

solute and the solvent, and also between the solvent and the polymer. Such 

considerations allow the description of the diffusion process in more concentrated 

regimes when the polymer chains start to overlap, which seemed difficult with the 

obstruction models. 

1.3.2.1. Cukier's model 

In 1984, Cukier26  developed an equation to describe the diffusion of Brownian 

spheres in semi-dilute polymer solutions based upon hydrodynamic interactions. In 

this theory, the semi-dilute solution was considered as a homogeneous monomer unit 

environment as the polymer coils overlap, in comparison to the dilute solutions where 

the polymer chains do not interact with each other (Figures 1.4A). In fact, the whole 

semi-dilute solution was viewed as a uniform solvent-polymer mixture. The dilute 

solution was considered as an inhomogeneous system composed of both polymer-

solvent and pure solvent domains.26  This semi-dilute solution of the polymer was 

approximated as motionless relative to the diffusing solvent, and represented by 

randomly distributed spheres immersed in an incompressible Navier-Stokes fluid. 

Thus, the diffusant was considered to undergo screening effects due to the 

overlapping of the polymer chains, and its diffusion coefficient follows 

D = Do  exp(— xRh  ) 	 (1.16) 

where x represents the screening hydrodynamic interactions between the polymer and 

the solute in a semi-dilute polymer solution, and Rh is the hydrodynamic radius of the 

diffusing sphere. The screening parameter relates the resistance of the polymer 

network to the diffusion of the remaining molecules, i.e., solvent(s) and diffusant 

particle(s). For dilute polymer solutions, assuming that screening remains dominated 

by hydrodynamic interactions, Eq 1.16 can be rewritten as 
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D =1— KRh 	 (1.17) 
Do  

Cukier compared screening effects between rod and coil polymer solutions for 

the diffusion of Brownian spheres of radius R, but basically no difference was found. 

In the case of rod-like polymer molecules, the screening parameter was found to have 

the following relationship 

2 	L.nL,  = (1.18) 
Tl 

where 	is the friction coefficient for one rod, ni, the number density of rod-like 

polymer molecules and r the solution viscosity. The rod friction coefficient depends 

on the length and diameter of the rod (L and b, respectively, with L>>b): 

6nr(L/ 2)  (1.19) 
ln (L/b) 

Similar to Eq 1.18, the dependence of the screening parameter for coil-like 

polymer molecules can be written as 

2 *  
K D  = 	a  = 61-cna  * a 	 (1.20) 

11 

where na * is the monomer number density and a the monomer radius. 

In semi-dilute solutions and with small-sized diffusants (Rh  smaller), a 

dependence was found with the polymer concentration: ic cv with v = 1/2, but not 

with the geometric factors of the polymer. 

This model was initially elaborated with theoretical considerations and 

calculations. It was employed often in the literature.40,91,92 Mel'nichenko et a/.91  

studied tracer self-diffusion of water in moderately concentrated hydrogels. The 

results were found to be in agreement with the theory. More recently, the same 

research group presented evidence that Cukier s model remained valid for water self-

diffusion in polyacrylamide (PA) and silica gels.92  These studies showed clearly the 

validity domain of Culder's model: diffusion of small diffusants in semi-dilute 

networks, i.e., semi-dilute polymer solutions and slightly cross-finked gels. 

Limitations were shown when the model was used for large-sized diffusants such as 
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polymers or proteins. For example, Park et al.4°  showed that Eq 1.16 is not 

applicable for protein diffusion in PA gels. This conclusion was corroborated by the 

work of Lodge and coworkers41'42  who studied the diffusion of linear and star-

branched polystyrene in poly(vinyl methyl ether) (PVME) gels and by Johansson and 

co-workers,31'79  who studied diffusion of albumin in hyaluronic acid and dextran gels. 

The screetiing parameter which was found to depend vvith the polymer 

concentration (e), have been shown to vary in different studies93'94  as noted by 

Culder.26  Freed and Edwards93  obtained an exponent equal to 1 for c for an ideal chain, 

defmed as a polymer chain in an undiluted polymer solution without entanglements. 

This result was re-examined by de Gennes,94  who described the stochastic motion of 

long flexible chains in good solvents and concluded that in such systems the diffusion 

coefficient should scale with C314. Other works listed in Table 1.2 reported values 

between 0.5 and 1. 

Table 1.2. List of the parameters found in the literature for the hydrodynamic 

equations in the form of D = Do  exp (—a eV). 

Author(s) Ref. a v 

Cukier 26 oc Rh' 0.5 

Laurent et al. 95 x Rhl 0.5 

Freed and Edwards 93 oc Rh' 1 

Brown and Stilbs 96 x Rhi  1 

De Gennes 94 oc Rhi 0.75 

Altenberger et al. 97 oc Rh°  0.5 

Ogston et al. 76 oc (Rh+p)lp 0.5 

Matsukawa and Ando 98 — 0.71 
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All the studies showed that the self-diffusion coefficient of a diffusant in a 

polymer solution is closely related to the polymer concentration. However, the 

exponent of the polymer concentration dependence is not a simple constant value and 

disagreement remains. 

1.3.2.2. The model of Altenberger et al. 

Altenberger et al.97  described the rigid body of the polymer as immobilized 

points randomly distributed in a solution. 	The solvent is considered as an 

incompressible Newtonian fluid, filling the space between these points. A small 

molecule present in the solvent will interact with these points which represent the 

network. Thus, the hydrodynamic interactions are represented by the friction with the 

stationary points. The mobility of a diffusant will depend on the concentration of the 

obstacle, i.e., the polymer. At low concentrations (dilute or semi-dilute regimes) the 

interactions are weak and the diffusion coefficient is given by 

D = Do  exp (—a c1/2 ) 	 (1.21) 

where a is a parameter depending on the diffusing particle, and c represents the 

number concentration of obstacle (the polymer). Eq 1.21 is a generalization of a 

previous prediction elaborated by the same research group also based on 

hydrodynamic interactions99  

D =1— Ac112  —Bc+ 	 (1.22) 
Do  

where A is proportional to the diffusant radius, and B defines a constant that relates to 

the interactions between the polymer network and the diffusant particle. 

These two equations (Eqs 1.21 and 1.22) bear resemblance to the equations 

defined by Cukier (Eqs 1.16 and 1.17). Kosar and Phillipsim  demonstrated that Eqs 

1.16 and 1.21 are mathematically equivalent, although derived differently. But the 

authors predicted a larger validity domain than that of Culder's (higher obstacle 

concentration and/or for particleswhich interact strongly with the solvent). Several 

studies showed that this model had similar limitations in its applications.40-42  Petit et 

al.34  also showed that these models were less satisfactory in the interpretation of 

30 



Partie I, Chapitre I 	 Références page 76 

diffusion data of large molecules such as PEG-4000 in PVA solutions. The motion of 

larger diffusants can happen on the same scale as the motion of the polymer 

networks.78  The applicability of these two models seems to be limited to small 

molecules as in the case of the obstruction models (Section 2.1) 

1.3.2.3. Phillies model 

A more phenomenological approach was used by Phillies52,101,102 to describe 

the self-diffusion behavior of macromolecules (polymer and protein) over a wide 

range of concentrations. The stretched exponential equation was proposed based 

upon numerous experimental data from his own research as well as those from the 

literature.52  According to his observations, the polymer self-diffusion coefficient 

obeys a scaling law 

D = 13„ exp acv) 	 (1.23) 

where a and v represent the scaling parameters which should depend on the molecular 

weight of the diffusant polymer. Experimentally, a was found to depend on the 

diffusant molecular weight (cc — M"±" ) for macromolecules, whereas c depends on the 

diffusant hydrodynamic radius (a — Rh ) for smaller molecules.102104,105 The scaling 

parameter v should scale between 1 for low molecular weight diffitsant and 0.5 for high 

molecular weight diffusant.101 Inside these litnits v —M-114  .1°1  Phillies considered the 

three regimes of concentrations (Figure 1.4) defined for reptation theories, i.e., dilute 

solution where polymer chains move independently, semi-dilute solutions where 

polymer chains start to overlap, and concentrated solutions where diffusion is 

dominated by polymer friction. These regimes can be regarded as close to the 

polymer solutions regimes examined by Culcier (Section 1.3.2.1), where forces in 

solution were defined as predominantly hydrodynamic for the last two regimes 

(Figures 1.4B and 1.4C). Nevertheless, an important difference between this model 

and the former ones is that the polymer chains are regarded here as mobile and are 

described as spheres joined by rods that can rotate as defined by Kirkwood and 

Riseman.1°3  
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In his following publications, Phillies developed theoretical arguments for Eq 

1.23.101,102 The stretched exponential equation is based on the following assumptions: 

(1) the self-sirnilar effect of infinitesimal concentration increment on D; (2) the 

functional form for hydrodynamic interactions between mobile polymer chains; (3) 

the dependence of chain extension on polymer concentration.lin  

The first assumption means that an infinitesimal increase of the concentration 

dc increases the drag coefficient of the diffusant from f to f+Kdc (K may be 

concentration dependent). This assumption is based on the fact that the polymer self-

diffusion coefficient is related to its drag coefficient,f, by the Einstein relation 

D = 4  T 	 (1.24) 

where kB  is the Boltzmann constant and T the temperature. The polymer should 

retard the diffusant and increase the drag. The drag coefficient of the solution that 

already exerts a retard on the diffusant particle should be more important. The 

second assumption considers that the polymer-polymer interactions are mainly in 

hydrodynamic modes rather than in entanglement modes. Nevertheless, Eq 1.23 does 

not provide a screening effect parameter because the polymer chains were regarded as 

mobile, thus no fixed sources of frictional interactions were present in the solution. In 

fact, polymer chains in solution will reduce both the flow rate and the molecular 

diffusion as the chains rotate. Moreover, the polymer chains will create an echo 

phenomenon responsible for fluctuation on the whole polymer system. The final 

approximation, based on Daoud lawl°6  for a large polymer in semi-dilute regimes, 

stipulates that the polymer chains contract under the overlap concentration: 

R 	M 	where x is a parameter. As results of these presumptions, v should range 

between 1/2  for large polymers to 1 for small polymers, and inside these limits, 

v M -1/4  for a given diffusant.1°1  Macromolecular self-diffusion coefficient can be 

described by the stretched exponential equation (Eq 1.23) with a — M and v as 

stipulated above.1°1  
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Figure 1.4. Representation of the dilute (A) semi-dilute (B) and concentrated (C) 

regimes of polymer solution as well as the correlation length in the concentrated 

regime (D). 
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Such an equation has already been employed to describe other physical 

transport phenomena such as sedimentation of large colloidal particles through a 

semi-dilute polymer solution,1°7  electrophoretic mobilitye  and viscosity.108  Thus, Eq 

1.23 can be considered as a "universal" equation, as named by Phillies, because it can 

be employed for different physical transport phenomena. This equation is very 

flexible in nature. Walderhaug et al." and Wheeler and Lodge45  pointed out that it 

should be regarded as an empirical equation. 

Phillies investigated the applications of the universal equation to numerous 

experimental data from the literature and found good agreements of the equation with 

the data for various polymer systems.101,109,110 Similarly, several publications showed 

excellent fits of the experimental data with Eq 1.23.40,4548,111,112 These articles 

reported the diffusion of large diffusants in dextran gels,46'47  PA gels,e  associative 

polymers,e'112  and the diffusion of linear and star branched PS in PVME gels45,111 

over large ranges of concentrations. In addition, this equation was also employed 

successfully to describe self-diffusion data of small diffusants in PA gelse  and in PVA 

solutions and gels.34  However, Won et al.49  reported deviations from the equation for 

PS sphere tracer diffusion in PVME solutions at higher polymer concentrations. 

It was argued, however, that the physical meaning of the parameters a and v in 

the various systems remains vague, and the lack of theoretical justifications was 

underlined in the literature.34'e'43-51  Phillies suggested that a varies with Rh/a0  for the 

polymer diffusant, where Rh is the hydrodynamic radius of the diffusant and ao  is 

defined as the distance of closest approach between the solute and the polymer 

bead.1" Other estimations of a led to slightly different results as shown in Table 1.3. 

Masaro et a/.116  used Eq 1.23 to analyze the diffusion data of PEG in PVA solutions 

and gels. Eq 1.23 provided good fits to the experimental data, but attempts to relate 

the scaling parameters with the physical properties of the system (such as diffiisant 

size) were not successful. These results are corroborated by several reports in the 

literature.34'e'43-51  In addition, analyses of variable temperature diffusion data showed 

that the scaling parameters are not temperature-dependent. An Arrhenius dependence 
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of Do  on the temperature was found. The results are different from the temperature 

dependence of the scaling parameters found by Phillies. 

Recently, Phillies et al.1n117  reported on the applicability of this hydrodynamic 

scaling model for high molecular weight polymers over small and large 

concentrations. From these studies, it seems clear that the stretched exponential form 

can fit easily diffusion data in solution-like systems whereas a power law is more 

appropriate to fit diffusion data in melt-like systems, which correspond to very 

concentrated polymer solutions. The boundary between solution-like to melt-like 

systems was estimated to be in the order ofM,-'.,' 106  g/mol in the case of polystyrene 

(Figure 1.5).117  

Table 1.3. Dependence of parameter a on the hydrodynamic radius of the diffusant 

obtained in the literature for Phillies diffusion model (Section 1.3.2.3) 

D =D0  exp (-- a cv) 

Author(s) Ref(s). a 8 

Phillies 52,101,102 Rh6  0 ± 0.2 

Phillies 104 Rh8 / ao  1 

Park et al. 40 3.03 X Rh8 0.59 

Gibbs and Johnsson 113 3.2 X Rh8 0.53 

Russo et al. 114 R: 0 

Yang et al. 115 Rh8  MOE76 0 

Furukawa et al. 46 m p  1/2 - 
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Figure 1.5. Logarithmic plots of self-diffusion coefficients of PS in dibutyl phthalate 

as a function of the molecular weight of PS at various polymer concentrations: 13 g 

% (open circles), 18 g % (filled circles) and 40.6 g % (half-filled circles). Curved 

lines represent fits to the stretched exponential equation (Eq 1.23) while straight lines 

correspond to power laws. Reproduced with permission from ACS Publications 

(Phillies, G. D. J., J Phys. Chem. 1992, 96, 10061).117  
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1.3.2.4. The reptation and reptation plus scaling models 

The reptation theory was first introduced by de Gennes1" who discussed the 

self-diffusion of a polymer chain of molecular weight M moving inside a three-

dimensional network of polymer chains of molecular weight P, which is considered as 

a gel. This theory was complementary to the works of Rousell9  and Zimm,12°  who 

had studied the stochastic motion of a single polymeric chain dissolved in a solvent of 

low molecular weight.118  

In the reptation theory, the diffusing polymer chain is regarded as constrained 

by fixed obstacles that represent the gel chains. As the polymer chain is surrounded, 

the leading motions of the polymer chain are feasible only at the extremities. Thus, 

the motion of the central part of the polymer chain takes place when the extremity 

enters inside a new tube. Consequently, the central part of the polymer chain remains 

confined between the same fixed obstacles for a longer time in comparison to the 

extremity of the polymer chain. Thus, this part of the polymer chain is said to remain 

in a tube formed by the neighboring polymer chains.121  Therefore, only "tubular" 

motion is conceivable and lateral motion is not considered, as long as the diffusant 

polymer is enveloped by the network. Brownian motion for high molecular weight 

polymers in the tube was predicted to depend on their molecular weight: 118  

D — M -2 	 (1.25) 

The diffusion of a high molecular weight polymer in an unentangled system, or 

a diluted solution, is described by the Rouse model: 119  

D — M -1 	 (1.26) 

Several years later, de Gennes122  reexamined the reptation theory in order to 

introduce the scaling concepts. He took into account of the effect of the matrix on 

the self-diffusion coefficient of the diffusant. This reexamination led to a new model, 

the reptation plus scaling concept, which is defined by the following equation122,123 

D 	 (1.27) 

where M is the molecular weight of the diffusant, c the polymer matrix concentration 

and v the Flory exponent for the excluded volume. 
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Eq 1.27 leads to two distinct equations for diffusion in the semi-dilute regime, 

one for good solvents (v = 3/5), 

D —M -2C-175 	 (1.28) 

and the second for 0 solvents (v = 1/2): 

D —M -2c-3 
	

(1.29) 

The 0 solvent regime corresponds to an exact cancellation between steric 

repulsion and van der Waals attraction between monomers.123  Thus, the polymer 

chains do not overlap in 0 solvents. This regime corresponds to c < c* (Figure 4B), 

where c* is defined as the critical overlap concentration. In the good solvent regime, 

the polymer chains tend to swell. Therefore, the polymer chains are densely packed 

and start to overlap, which corresponds to the concentrated regime, c > c* (Figure 

4C). 
Applications of de Gennes diffusion models are numerous in the literature. 

Léger et a/.121  showed that the dynamics of a linear chain could be described by 

simple reptation (Eq 1.25). The same correlation was reported by Gent et ai.,124125  

who studied diffusion of cis-1,4-polyisoprene into cis-polyisoprene networks, and by 

Antonietti and Sillescu,126  who studied PS self-diffusion in bulk PS network by 

holographic grating technique. Previously, Léger et al.127  had studied the self-

diffusion of labeled PS chains in unlabeled PS chains of the same molecular weight in 

benzene by forced Raleigh scattering and found reasonable agreement with Eq 1.28. 

Sitnilar results were obtained by Kim et al.13  who studied the diffusion of styrene-

acrylonitrile copolymers by recoil spectrometry, Pajavic et al.129  who studied the 

diffusion of linear polyelectrolyte in gels by dynamic light scattering and von Meerwall 

et a/.13°  who studied PS self-diffusion in tetrahydrofurane by NMR for a concentration 

above the entanglement concentration and aller correction for local frictions. 

Recently, this model was also employed to explain the disentanglement of polymeric 

chains during dissolution which led to the definition of a mathematical model for 

polymer dissolutions.131'132  The reptation theory was also used for the electrophoretic 

separation of DNA in gels.38'133-135 The theoretical treatments of the motion of DNA 

through gels are mainly based on the reptation model. The DNA is pictured as 
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moving through an impenetrable tube defined by the surrounding gel obstruction, with 

the motion mediated by a snake-like reptation of the polymer ends.133  

Phillies52  pointed out that the use of Eqs 1.25 and 1.26 to describe diffusion 

does not allow an exponential decrease of the diffusant self-diffusion coefficient with 

respect to the polymer concentration which was frequently observed.34'36'65'136  The 

reptation model led to two distinct regions as shown by Eqs 1.28 and 1.29, one for 

each concentration regime: c> c* and e <e* (Figures 1.4C and 1.4B). The original 

reptation model of de Gennes considers that the entanglement of the polymer chains 

occurs at the critical overlap concentration c*. 	However, Kavassalis and 

Noolandi137'138  have predicted that the entanglement concentration, ce, is about 10 

times higher than the overlap concentration. In the work of Cosgrove et al.,53'54  the 

reptative dependence M-2  (Eq 1.25) was not found even for high polymer concentrations 

but the spin-spin NMR relaxation time and viscosity measurements showed the presence 

of chain entanglements. Nemoto et al.55  reported studies of concentrated solutions of 

linear PS self-diffusion in dibutyl phthalate (My from 6 180 to 2 890 000). They 

interpreted their data by the use of the reptation model (Eqs 1.25 and 1.26) and found 

good agreement with the model of Rouse (/1//-1) for low concentrations whereas a 

power law of M-2-6  was found for concentrated solutions instead of M-2. In the study 

of linear PS (M, from 32 000 to 1 050 000) diffusion in PVME gels, Rotstein and 

Lodge41  reported a power law of M-18. Yu and coworkers56'57  studied diffusion of 

labeled PS chains (M„, from 32 000 to 360 000) in unlabeled PS-THE systems (with P 

= MI and diffusion of labeled PS chains (ig, from 10 000 to 1 800 000) in PS-toluene 

systems (with PIM 	3.5). In both cases, the authors did not observe any 

concentration scaling. The results from the use of de Gennes models are summarized 

in Table 1.4. In a recent work, Cheng et al.149  studied self-diffusion of poly(ethylene 

oxide) in the melt as a function of the temperature. They showed that the power 

dependence for high molecular weight diffusants varied between M-124  (353.7 K) and 

M-175  (413.7 K). These values are not in good agreement with the prediction of de 

Gennes (Eq 1.25) and indicate that de Gennes' reptation model cannot be used to 

describe the temperature dependence of the diffusion in polymer systems. In addition, 

39 



Partie I, Chapitre I 	 Références page 76 

Wheeler and Lodge studied linear and branched PS diffusion in PVME/o-

fluorotoluene solutions and observed a large variation of the scaling exponent varying 

from Mm.56  to M-23  with changes in the matrix concentration, which demonstrate that 

a simple power law equation is not sufficient to describe the diffusion process. In the 

same study, Wheeler and Lodge have studied the concentration effect. In 

concentrated polymer solutions they observed a power dependence of C-33, close to 

the predicted value of c-3, whereas in semi-dilute solutions the predicated C-1.75  scaling 

was not observed. Marmonier and Léger" noticed that the diffusion coefficient 

depends on P when the factor PIM is greater than 5. 

The limitations in the application of the reptation model were discussed in 

several publications by Phillies.52,101,102 The main conclusion was that reptation is 

probably not important for polymer self-diffusion in solution.'" However, de 

Gennes model succeeded in the interpretation of results of diffusion of linear and 

branched polymers in concentrated polymer matrix solutions,45' 1  DNA diffusion,38  

polymer dissolution,132  etc. Nevertheless, some important points should be addressed 

since no comprehensive illustration based on a molecular theory explains the 

entanglement phenomenon (the nature of an entanglement and the criteria for the 

onset of entanglement effects are not established), and no clear explanation 

concerning the reptation of a single linear chain in dilute solution has been provided 
yet.42,150 

1.3.2.5. The model of Gao and Fagerness 

This model is based on measurements of drug (adinazolam) and water 

diffusion in hydroxypropyl methyl cellulose (HPMC) gels studied by NMR 

spectroscopy.32  The authors did not elaborate on hydrodynamic arguments, but the 

form of the equation is very similar to the form of the equations based on 

hydrodynamic theories. 
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Table 1.4. Experimental values obtained for the dependence on the molecular weight 

(M) of the diffusant and polymer concentration (c) in de Gennes reptation models 

(Section 1.3.2.4) 

Author(s) 
	Ref(s). 	Description 	 Result 

Reptation model: D - M -2  and D - 

Klein 	139 	Polyethylene in bulk 

Bartels et al. 	140 	Polybutadiene in bulk 

Fleischer(a) 
	

141 	PS self-diffusion by NMR 

Kumagai et al. 	142 	 PS in bulk 

Smith et al. 	142 	poly(propylene oxides)by 
fluorescence photobleaching 

Antonietti et al. 	144 
	PS by forced Rayleigh scattering 

Wheeler and Lodge 	45 
	PS in PVME/o-fluorotoluene 

Yu et al. 	56,57 
	 PS in TIEF 

PS in toluene 
(no concentration scaling) 

Reptation plus scaling model: D -M -2  c-1' 75  and D -M -2  c-3  

D -M 2  
D - M-2  
D - M-2  
D -M 27  
D - M-17  
D  m-2.2 

D  m-0.56-2.3 

D - M-2  
D -M 3  

Léger et al. 	127 
Schaefer et al. 	145 

Wheeler and Lodge 	45 
von Meerwall et al. 	130 

Cosgrove et al. 	53 
Callaghan and Pinder 	146 
Manz and Callaghan 	147  

PS in benzene 
Marginal solvent 

PS in P'VME/o-fluorotoluene 
PS in THE 

Without correction for local 
friction 

PS in CC14  
PS in CC14  

PS in cyclohexane 

D -M 2  CL75  

D -M 2  C.2"5  

D - C-33  

D - M-15  c-1.75  

D  c-2.25 

D  Ad-1.4c-1.75 

D - c-2  
(a) also valid for molecular weight less than the critical molecular weight, 

observed in the melt viscosity. 
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Gao and Fagerness32  observed exponential decrease of both adinazolam and 

water diffusion with increasing HPMC concentration. Furthermore, using different 

HPMC gels with different viscosity grades (100, 4,000 and 15,000 cps), i.e, different 

molecular weights, they did not observe any effect on the diffusion process. Diffusion 

measurements in HPMC gels were also carried out in the presence of glucose, or 

lactose, or maltoheptaose (monomer, dimer and oligomer of the HPMC, respectively), 

which were defined as viscosity-inducing agent (VIA).32  A significant decrease in the 

adinazolam self-diffusion coefficient was reported with increasing the size of the VIA 

in the adinazolam-water-VIA ternary solutions. 

Thus, the self-diffusion coefficient of adinazolam was found to depend on the 

nature of the VIA present in solution as well as on its concentration as illustrated in 

Figure 1.6. This dependence can be described by an exponential function of the 'VIA 

concentration 

D -= Do  exp(— Ki  c,) 	 (1.30) 

where D is the self-diffusion coefficient of adinazolam, i represents the VIA, K, is a 

proportionality constant and ci  the concentration of VIA. K, values for adinazolam 

were obtained by a linear least square fit of the diffusion data from binary systems. 

For example, Kg  hicose (i = glucose) is obtain from the diffusion data of glucose-water 

binary solution. 

Gao and Fagernessn  examined also adinazolam diffiision in VIA mixtures. 

Their results indicated that the diffusivity of this drug in a multi-component system 

(HMPC and lactose) was influenced by all the components present in the system: 

VIA, polymer and even the drug concentration (Figure 1.7). This result led to a re-

examination of Eq 1.30 

D -= Do  exp (—KH  C H  —K L C L —K A C A ) 	 (1.31) 

where CH, CL, and cA  are the concentrations of HPMC, lactose and the drug 

(adinazolam), respectively. 
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VIA Concentration (94, wiw) 

Figure 1.6. Plot of the self-diffusion coefficients of adinazolam as a function of the 

VIA concentration (w/w, %). The adinazolam concentration is kept constant for each 

series. Squares, 0.5 % Adinazolam plus x % glucose; diamonds, 0.5 % Adinazolam 

plus x % lactose; triangles, 0.5 % Adinazolam plus x % malteose; and circles, 0.5 % 

Adinazolam plus x % HPMC (4,000 cps). Fits are obtained by the use of Eq 1.30. 

Reproduced with permission from Plenum Publication Corporation (Gao, P. and 

Fagerness, P. E., Pharmaceutical Research 1995, 12, 955).32  
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Figure 1.7. Plot of the self-diffiision coefficients of adinazolam as a function of 

HPMC (10,000 cps) concentration (w/w, %). Open symbols represent the data for 

0.5 % Adinazolam plus x % HPMC, and filled symbols represent the data for 0.5 % 

Adinazolam plus 10 % lactose and x % HPMC. Fits are obtained by the use of Eq 

1.31. Reproduced with permission from Plenum Publication Corporation (Gao, P. 

and Fagerness, P. E., Pharmaceutical Research 1995, 12, 955).32  
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Good agreement was found between the measured and the calculated self-

diffusion coefficients over a wide range of HPMC concentrations (0-30 wt %). The 

self-diffusion coefficient dependence on the VIA concentration was also determined 

successfully. These results lead to the final form of the mode132  

D = 	exp(— E K, c, ) 	 (1.32) 

Variable temperature experiments were done between 10 and 50 °C. The 

activation energy of drug diffusion, Ea, was determined in each of the solutions with a 

fixed concentration of VIA. The same Arrhenius behavior was observed in these 

cases, leading to a similar Ea. A comparable result was obtained with water diffusion 

over the same temperature range.32  

If we consider the specific case of a ternary solution of low concentration of 

the diffusant (cA«cH) plus solvent and HPMC, the self-diffusion coefficient of the 

drug will depend only on the polymer concentration, according to this model. Thus 

the self-diffusion coefficient of the drug can be written as 

D = 	exp(—K c if ) 	 (1.33) 

which is similar to the equation defined by Freed and Edwards93  for an ideal chain, 

with Kif  — Rh 

D 	Do  exp(— Rh  C) 	 (1.34) 

Moreover, Eq 1.33 represents also a particular circumstance of Phillies' 

stretched exponential equation with v ---- 1 (Section 1.3.2.4). 

This model provided good agreements for the diffusion of small molecules 

such as a drug and water in multi-component systems over a wide range of 

concentrations at different temperatures. However, the authors did not explain the 

magnitude of the proportionality constant, K„ neither its physical meaning nor its 

dependence on the polymer molecular weight and/or diffusant size. In addition, no 

relationship between the diffusion coefficient of the drug and the temperature was 

provided. 

In a companion paper, Gao et a/.151  tried to make predictions of drug release 

rates in polymer tablets. To reach this goal, they used the Higuchi equation152  in 

which they introduced their diffusion model (Eq 1.32) by assuming that the 
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formulations exhibit identical swelling kinetics (medium penetration rate, matrix 

swelling and erosion) and that the concentration of drug and VIA in the gel layer are 

proportional to their respective weight concentration in the dry tablet. However, no 

good agreement was found between the experimental results and the theoretical 

prediction, although the agreement was good in the previous self-diffusion study.32  

This work demonstrated that diffusion in swollen and equilibrated gel is quite different 

from the drug release from a dry tablet. The self-diffusion studies of already 

equilibrated systems may be quite different from real time situations such as the 

release of drugs. It is important to establish correlations between these two diffusion 

processes. 

1.3.2.6. Summary 

The major advantages and constraints for the models described in this section 

are summarized in Table 1.5. 

The models of Cukier26  and Altenberger et al.,77  where the polymer chains are 

regarded as motionless, can be used to describe the diffusion of small-sized diffusant 

in semi-dilute polymer solutions. These models cannot be employed to describe 

solute diffusion in concentrated polymer solutions. 

The universal equation proposed by Phillies is a useful equation (simple form, 

good correlation with experimental data) to fit diffusion data of both small-sized 

diffusants and macromolecules in all concentration regimes, excepted for melt-like 

region. This model has a simple equation which generally provides good fits to the 

experimental data. Further improvements were reported by Phillies and coworkers on 

the effect of temperature,153  glass transition temperature dependence,154  diffusion 

under 0 and good solvent conditions,'" a reanalysis of the stretched exponential 

equation156  and justifications.157-159  However, some applications of the model 

remained obscure. Temperature variation was not supported and the interpretations 

of the scaling parameters was sometimes contested, even though complementary 

justifications have been published recently.160 
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Table 1.5. Summary of the diffusion models based on hydrodynamic theories (Section 

1.3.2) with their applicability and restraints. 

Author(s) Ref(s). 

Cukier 26 

Altenberger 

et al. 

97 

Phillies 52 

101 

102 

de Gennes 122 

123 

Gao and 32 

Fagerness 

Application(s) 

- Solvents and small-sized 

diffusants 

- Semi-dilute polymer solutions 

and highly swollen gels 

- Solvents and small-sized 

diffusants 

- Semi-dilute polymer solutions 

- Solvents, small-sized 

diffusants and macromolecules 

- Diffusion in solution-like 

regimes 

- Diffusion of macromolecules 

in gels and concentrated 

polymer solutions 

- Diffusion of small-sized 

diffusants in multi-componant 

systems 

Limitation(s) 

- Large diffusants 

- Concentrated polymer 

solutions 

- Large diffusants 

- Concentrated polymer 

solutions 

- Significance of the scaling 

parameters 

- Diffusion in melt-like 

regime (M> 106) 

- Molecular significance of 

entanglements 

- Theoretical prediction not 

observed even for c > c* 

- Significance of the main 

parameters 
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The reptation model was first introduced to describe diffusion in gels but can 

also be used in some cases for polymer so1utions.125-128  It seems that its application is 

successful in cross-linked gels, concentrated polymer solutions and melts. It cannot 

be used in semi-dilute polymer solutions, especially when the entanglement 

concentration is not reached.116  The use of the reptation equations (Eqs 1.25, 1.26 

and eqs 1.27, 1.28) to describe diffusion with respect to the polymer concentration 

does not reproduce the exponential dependence observed experimentally. In addition, 

the model cannot describe the temperature dependence, and discrepancy was 

underlined concerning the power dependence of M and c and the theoretical 

predictions, as shown in Table 1.4. 

The main advantage of the model of Gao and Fagerness32  is that the diffusant 

concentration is also taken into account. The physical significance of the parameters 

in this model needs to be elucidated. No other application of the model was found in 

the literature due to novelty of the model. 

1.3.3. Diffusion models based on the free volume theory 

The free volume concept in polymer science is well known. The free volume 

was defined as the volume not occupied by the matter. More generally, the free 

volume can be specified as the volume of a given system at the temperature of study 

minus the volume of the same system at 0 K. Thus, rearrangement of the free volume 

creates holes through which diffusing particles are able to pass through. The free 

volume is contributed by all the species present in the system, solvent, solute(s) and 

polymer. The free volume theories are based on the assumption that the free volume 

is the major factor controlling the diffusion rate of molecules. 

1.3.3.1. Fujita's model 

The first diffusion model based on free volume theory was proposed by 

Fujita.27  The measurements were carried out in a ternary system including a solvent, a 

polymer and a penetrating molecule (a plasticizer). The concentration of the 

plasticizer was kept low, in comparison with the polymer concentration, thus the 
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system could be approximated as a pseudo-binary system. Therefore, the average free 

volume in such a system was contributed by the polymer and the solvent. In order to 

estimate the free volume, Fujita used the concept of Cohen and Turnbulli61  which 

defines the probability, P(v*), to find holes of size v* in a liquid of identical molecules 

P(v *) — A exp 
bv*\ (1.35) 
tv 

where A is constant, b a numerical factor of the order of unity and fv  is the average 

free volume per molecule. The product bv* is interpreted as the measure of the 

minimum hole size required for diffusant displacement, B. The diffusion model is 

based on several assumptions: (1) the diffusion process occurs because of the 

redistribution of the free volume within the matrix; (2) the redistribution of the free 

volume does not require energy change; (3) the diffusion process is enabled when the 

free volume exceeds holes of size v*; (4) the self-diffusion coefficient is directly 

proportional to the probability, P(v*), of finding a hole of volume v* or larger 

adjacent to the diffusant molecule. 161  

Fujita assumed that Eq 1.35 was valid also in the case of a binary system. 

Further, the probability that the molecule found in its surrounding a hole large enough 

to permit displacement is closely linked to the diffusant mobility, ma 

md  = A exp --  (1.36) 
\„. 	 fy ) 

where A is a proportionality factor and B depends only on the particle size but not on 

the temperature or on the polymer concentration. The definition of the mobility is 

given by 

D = RT 	 (1.37) 

where D is the self-diffusion coefficient of the molecule, Tis the temperature and R 

the gas constant. Finally, substituting Eq 1.36 into Eq 1.37, we have 
r 

D= ART exp --  (1.38) 
fv ) 

The application of Fujita's free volume theory showed successful correlations 

between the model and the data in the case of the diffusion of small molecules in semi- 
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crystalline polymers.162 Stern and coworkers163,164 used Eq 1.38 to fit their data of 

gas diffusion in polyethylene membranes and concluded that Fujita's model was 

applicable when the penetrant volume fraction was less than 0.20. Zhu et a/.165'166  

showed that self-diffusion of ketone and ester solvents of various sizes and shapes in 

PMMA solutions can be well described by Fujita's free volume model. Similar results 

of solvent or tracer diffusion in polymer solutions and gels have appeared in the 

literature.46,163,164,169 

According to Fujita27  and others authors,164'17°  the free volume theory 

provided a good agreement with polymer-organic solvent systems whereas polymer-

water systems failed because of the numerous interactions between the molecules. 

Recently, Matsukawa and Ando" studied PEG diffusion in poly(N,N-

diethylacrylamide)-water system. They showed that Fujita's equation fitted well 

water diffusion data, whereas for macromolecules such as PEG, the diffusion data was 

better described by de Gennes reptation theory. In addition, Xia and Wang167  

showed that Fujita's model is valid only for low polymer volume fractions. Thus, 

Fujita's free volume model seems to be adequate in the description of the diffusion of 

small-sized diffusants in dilute and semi-dilute polymer solutions and gels, mostly 

organic systems. 

1.3.3.2. The model of Yasuda et al. 

Yasuda et a/.171  examined the free volume theory of diffusion assurning that 

the free volume of a binary system, as proposed by Fujita,27  mostly depends on the 

volume fraction of the solvent. This assumption was based on the fact that: (1) the 

polymer is less mobile than the solvent; (2) the effective free volume was considered 

mainly as a contribution from the solvent; (3) in practice, the solvent diffusion 

decreases with increasing polymer concentration. Therefore, the total free volume 

may be written as 

(Ps fs 	p 	s fs 0 	P (1 .3 9) 
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wherefv is the total free volume, fs  the free volume contribution from the solvent, fp 

the free volume contribution from the polymer, cps  the volume fraction of the solvent 

and cpp the volume fraction of the polymer. 

Substituting Eq 1.39 into Eq 1.38, and assuming that there is no interaction 

between the polymer and the diffusing molecule, we can obtain 
_ 

(1.40) 

where fv* is the solvent free volume in the polymer solution. 

Yasuda et al.171  used the free volume theory to treat electrolyte (NaC1) 

diffusion in polymer systems. They used several swellable polymers derived from 

methacrylate, such as methyl, hydroxypropyl and hydroxyethyl methacrylate as well as 

cellulose in different solvents (dioxane, acetone, ethylene glycol, and water mixed 

with formic acid). The dependence of the diffusion coefficient on the volume fraction 

of water can be described by this mode1.171  Matsukawa and Ando172  studied water 

diffusion and used this model with success. Other sources of agreement were found 

in the work by Chen and Lostrittom  who studied drug diffusion (benzocaine, with 

size smaller than the gel mesh size) in highly swollen poly(ethylene-co-vinyl acetate) 

membranes. Gilbert et al.174  studied protein diffusion (lysozyme, ovalbumin, bovine 

serum albumin and carbonic anhydrase) in collagen membranes with glass diffusion 

cells and obtained results in good agreement with the model of Yasuda et al. 

Petit et al.3478  who studied diffusion of various diffusants in PVA-water 

systems demonstrated that this model works well for small diffusants but gradually 

deteriorates with increasing molecular size of the diffusants (from oligomers to 

polymers) especially at high polymer concentrations (Figure 1.8). Similar results were 

reported by Amsden.28  Hennink and coworkers" studied protein diffusion in 

derivatized dextran hydrogels (chemically cross-linked). Their results showed 

disagreement between the data and the theory when the diffusant size is close to the 

hydrogel mesh size. In this case, screening effects started to occur which are not 

taken into account by the free volume concept. Therefore, the model of Yasuda et 

—Do  = exp 	 1 [ B  ( 
fv * 1_9PJ 

D 	 1  

- 
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a/.171  can be used to analyze the diffusion data of relatively small-sized diffusants in 

dilute and semi-dilute polymer systems. 

1.3.3.3 The model of Vrentas and Duda 

A major contribution to the development of free volume theory was made by 

Vrentas and Duda.175-178  and coworkers179-181  who re-examined and improved the free 

volume model over the years. They extended the free volume theory to a wide range 

of temperatures and polymer concentrations.182  The free volume contributions from 

both the solvent and the polymer are taken into account. Therefore, Fujita's free 

volume mode127  appeared as a special case of the newer model of Vrentas and 

Duda.182  With these numerous improvements, this free volume theory takes into 

account several physical parameters such as the temperature, the activation energy, 

the polymer concentration, the solvent size, and the molecular weight of the diffusant. 

In the case of a binary system (solvent diffusion in a polymer network) the model of 

Vrentas and Duda is expressed by the follovving equation 

—RT 	[ 1(110)1(K2i  —T +T)ly,+K12 co 2 (K„—Tg2 +T)Iy2  
* 	u>.‘ * D = D.1 exp [ 	exp 	
±.  1 	2 2  

(1.41) 

where Dol is the solvent self-diffusion coefficient in the absence of polymer or a 

constant pre-exponential factor, E is the activation energy for a solvent jump, (Di is the 

weight fraction of component i, ij *is the specific volume needed for one jumping 

unit of component i,4 is the ratio of the volume of solvent jumping unit to that of the 

polymer jumping unit, y; represents the overlap factor for the free volume for pure 

component i, Tg, is the glass transition temperature of component i, K11  and K21 are 

free volume parameters for the solvent and K21 and K22 are free volume parameters for 

the polymer. The free volume parameters Ku  and K21 were defined as follow 

K11 = e,°  Tg,[ct, 	f:,)a cl ] 
	

(1.42) 

y•
H1
G  

J  
K21= Ct

l — 	f:1)a  cl 
(1.43) 
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Figure 1.8. Semilogarithmic plot of the normalized self-diffusion coefficient of 

various diffusants as a function of 1/(1-(pp), (pp being the polymer volume fraction. 

The dotted lines are fits to Yasuda's free volume model (Eq 1.40). Reproduced with 

permission from ACS Publications (Petit, J.-M. et al., Macromolecules 1996, 29, 
70).34 
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where ai  is the thermal expansion coefficient of the solvent, aci is the thermal 

expansion coefficient for the sum of the specific occupied volume and the specific 

interstitial free volume, el°  is the free volume occupied by the solvent at 0 K, and g 
is the average fractional hole free volume. 

The approach of Vrentas and Duda is based on the following assumptions: (1) 

the mixing of the polymer and solvent partial specific volumes does not lead to 

volume change; (2) the polymer thermal expansion coefficients az and ac2  are 

approximated to the average values over the temperature interval of interest; (3) the 

total hole free volume of the system is computed by using the free volume parameters 

Kii/yi  and K21/72, which are determined from pure component data for solvent and 

polymer; (4) the activation energy for the solvent jump, E, depends on the polymer 

concentration since the energy per mole needed by the solvent molecule to overcome 

attractive forces depends on its neighbors. The transition from the energy in the 

concentrated region to the region near the pure solvent limit is assumed to be smooth 

as coi  approaches unity.183  

Eq 1.41 can be simplified in the special case of pure solvent or very low 

polymer concentrations: 

 

D 

   

log 

  

(1.44) 
Do  

 

2.303K1I (K21  — Tgi  + T)/y 

   

The parameters Ku, y and Tgi are available in the literature for many common organic 

solvents and polymers.20,179,184,185 

Eqs 1.41 and 1.44, though complicated in their forms, were used successfully 

to fit experimental data of diffusion. For example, Lodge et al." used the forced 

Raleigh scattering technique to measure tracer diffusion in poly(vinyl acetate)-toluene 

system. Agreement between the model of Vrentas and Duda, or Fujita's model, and 

the experimental data was good over the entire range of polymer concentrations (0-96 

wt %). Similar results were published by Zielinski et ai l" who studied diffusion in 

PS solutions by static field gradient NMR, and Wisnudel and Torkelson2°  who studied 

small molecule diffusion in PS by the Taylor dispersion technique. Other studies have 

also demonstrated good agreement with this model.136,188,189 However, several papers 
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reported problems that occurred below the glass transition temperature.65,168,184,187 

Correlation with the data was achieved only with negative values for the polymer free 

volume parameter, which is physically impossible.65' 84'1" 	This problem was 

overcome recently by Vrentas and Vrentas who introduced a specific hole free 

volume, V2°,, of the glassy polymer at any temperature below Tm  (glass transition 

temperature of the polymer-solvent mixture) of a particular temperature.176'184  

Despite the re-examination of the model by Vrentas and Vrentas183i9°  in order 

to provide a better agreement with diffusion data over a large temperature range and 

below the glass transition temperature, certain failures have been demonstrated. For 

example, Waggoner et a/.36  showed that this model cannot fit the data in the low 

polymer concentration region. Similar conclusions were also made by Hong et a/.191  

Wisnudel and Torkelson2°  pointed out that the diffusion model of Vrentas and Duda 

did not take into account the flexibility of the diffusant, as they noticed poorer 

agreement with flexible diffusants than with rigid ones. Zielinski and Duda" 

expected that the model of Vrentas and Duda will deviate from experimental 

observations at high temperatures (150 °C above Tg ) because the diffusion will be no 

longer limited by the free volume. Energy effects will become dominant. 

Some papers compared the free volume models of Vrentas and Duda with the 

original free volume theory of Fujita. According to Landry et a/.292  the application of 

both models had no difference. The same conclusion was drawn by Lodge et al.,186  

but they also concluded that the model of Vrentas and Duda is successful as a 

predictive theory over the complete range of polymer concentrations, and over a 

substantial range of temperatures (above the glass transition temperature), whereas 

Fujita's model cannot be used to predict or examine the temperature dependence. 

Zielinski and Duda" used the free volume model of Vrentas and Duda to 

estimate the diffusion of organic solvents in polymer systems. Their work seemed to 

be among the first attempts in diffusion prediction reported in the literature. First, 

they reviewed the literature to evaluate the independent parameters necessary to apply 

the model. Then, they estimated the diffusion of solvents (toluene, ethylbenzene, 

chloroform, methyl acetate, and tetrahydrofuran) in polymer systems (PS, PVAc, 
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PMA, and PMMA). They obtained fairly good correlations with the experimental 

data (Figure 1.9). Guo et al." tried to predict the diffusion coefficients of benzene, o-
xylene, ethylbenzene, and chloroform in natural rubber membranes using the approach 

of Zielinski and Duda.185  They did not find good agreements and suggested that the 

parameters proposed by Zielinski and Dudaim  did not yield acceptable predictions of 

the diffusion coefficients. 

An important point to be underlined is that the model of Vrentas and Duda 

needs numerous parameters. For example, Duda and coworkersi93  mentioned that 14 

independent parameters are necessary to apply this model. Among these 14 

parameters 10 need to be evaluated in order to predict the self-diffusion coefficient. 

Furthermore, these parameters are not usually available in the literature for many 

polymers, especially new ones. 

1.3.3.4. The model of Peppas and Reinhart 

For the treatment of transport mechanism in cross-linked polymer networks, 

Peppas and Lustig194  considered three different kinds of structures: (1) macroporous 

hydrogels defined by pore size greater than 0.1 itm where the mechanism of transport 

is mainly due to convection; (2) microporous hydrogels characterized by pore size in 

the range of 20-500 A (diffusants and pores have similar dimensions) where the 

mechanism of transport is due to both diffusion and convection; (3) nonporous 

hydrogels for which space between the macromolecular chains is limited and where 

the mechanism of transport is due to diffusion only.194  

In pharmaceutical applications such as drug releases, nonporous hydrogels 

seem to be more often used than macroporous or microporous gels.194  The discussion 

here is focused on nonporous hydrogels. More information on convection and 

diffusion in macro- and microporous gels can be found in the paper by Peppas and 

Lustig.194  
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GO 1 

Figure 1.9. Semilogarithmic plot of the self-diffusion coefficient of ethylbenzene in 

polystyrene as a function of the mass fraction of the solvent, at different temperatures. 

The solid fines are the theoretical predictions of the solvent diffusion using the free 

volume theory of Vrentas and Duda (Section 2.3.3.). Reproduced with permission 

from American Institute of Chemical Engineers (Zielinski, J.M. and Duda, J.L., 

AIChE J. 1992, 38, 405.).185  
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The model of Peppas and Reinhartl" was also based on the free volume 

concept.27'171  Diffusion is said to occur through the gel space not occupied by 

polymer chains. Thus, the self-diffusion coefficient of a diffusant is considered to be 

proportional to the probability of moving through the gel with mesh size 	but 

also proportional to the probability of finding the required free volume in the gel and 

solution, P(; / po+ , which is given by the following equation 

(1.45) 
Do 	Po+ 

where D is the solute diffusion coefficient in the hydrogel, Do  is the solute diffusion 

coefficient in water. 

The probability, P /po+  of finding the required free volume was analyzed by 

Peppas and Reinhart.1" They also assumed that the free volume available for the 

solute diffusion was mainly due to water, and little from the polymer. The following 

expression was then obtainedi95  

D 	 Y —= P exp 
Do  

  

 

(1.46) 

 

  

where Y = 1c2 Rh2, and Y is a structural parameter near unity and proportional to Rh2, 12 

a parameter of the polymer-water system, Rh the solute hydrodynamic radius, and Q 

the volume degree of swelling for the gel. 

The probability, .1D, of moving through the mesh size was studied later by 

Reinhart and Peppas,196 who demonstrated that this quantity is related to a critical 

mesh size, Mc*, below which the diffusion of a solute of size Rh could not occur: 

MM* 
D 	c 	c 	 (1.47) 

M„ —Mc  * 

where M is the number average molecular weight between cross-links and 34 the 

number average molecular weight of the uncross-linked polymer. In fact, Mc* 

represents the minimal distance in monomer unit between two cross-link points for 

which diffusion is possible. 

Combining Eqs 1.46 and 1.47, the difftision coefficient in highly swollen 

membranes can be expressed by 
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D 	M 	* ( k 2  Rh  2  
—=k 	" exp  	 (1.48) 
Do 	n  1  M — Mc  * 	 Q-1 ) 

where k1  is a structural parameter of the polymer-water system. 

To describe solute transport in moderately swollen networks,197  they 

considered that the free volume was not equal to the total free volume of the solvent, 

and that diffusion jump leng-th of the solute in solution was not equal to that of the 

solute in water. A new equation was derived: 

/ 

Do  X20  

where 12  and X.20  are the diffusion jump lengths of the solute in the hydrogel and 

water, respectively, B(v*) is a term representing the characteristic size of the space 

available for diffusion in the membrane, vs  is the size of the diffusing solute, and 

where V and Vo  are the free volumes in the swollen membrane and water, 

respectively.198  

Peppas and coworkers have published several papers with diffusants of 

various sizes in various hydrogels which showed agreement with the mode1.198-202  

Recently, they have also pointed out the limitations of this model. For example, 

Peppas and coworkers202'203  studied the diffusion of ionized diffusants in charged 

hydrogels and found that they were much more hindered than larger proteins because 

of their interactions with ionized carboxylic acid groups.203  Thus, a parameter relating 

the interactions between ionized diffusants and the network should be introduced. In 

addition, problems may also occur when the diffusant size is close to or larger than 

the mesh size in the network due to screening effects. 

1.3.3.5. Summary 

The free volume models have found various success in the description of 

diffusion in polymer systems. The advantages and constraints for each model 

described in this section are summarized in Table 1.6. The model of Vrentas and 

Duda175'176  seems to be the most useful as it is applicable over a large range of 

polymer concentrations and temperatures. However, obtaining the numerous 

=- —.Bv*)exp —vs 	 (1.49) r  1 	1 — 
\ 

V V' 0 
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parameters required represent quite a task since these parameters are not always 

available in the literature. When these parameters are known, it is possible to predict 

solvent diffusion in certain binary systems. 

The model of Peppas and Reinhart195  describes specifically diffusion in cross-

linked gels. Problems may arise when the size of the diffusant is close to or larger 

than the network mesh size, and when the diffusant is bound to the polymer network 

by ionic interactions. It does not seem to properly describe diffusion in polymer 

solutions where there is no cross-linking. 

Manz and Callaghan,147  and Xia and Wang167  also suggested the use of 

William-Landel-Ferry204 (WLF) equation and Vogel-Fulcher-Tammann167  (VFT) 

equation for the interpretation of diffusion data, but they cannot be used below 
7, .147,167 

1.3.4. Other physical models of diffusion 

Many of the diffusion models did not offer temperature dependence since most 

experiments were carried out at room temperature. Variable temperature diffusion 

data can be analyzed with physical models that can be considered as thermodynamic 

models. We also include here other models that do not fit to the descriptions in the 

previous categories. 

1.3.4.1. Arrhenius theory 

Arrhenius equation describes the temperature dependence of a chemical 

reaction rate as illustrated by205  

k = A exp 
( Eaj

— 
RT 

(1.50) 

where k represents the ldnetic rate of a chemical reaction, A a pre-exponential factor 

and Ea  the activation energy. Eq 1.50 can be written in a logarithmic form 

log k = log A 
E

T 	
(1.51) 

R 

which is useful to estimate Ea  from a plot of logarithmic k versus 1/T. 
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Table 1.6. Summary of the diffusion models based on the free volume theories 

(Section 1.3.3). 

Author(s) Ref(s). 	Application(s) 
	

Limitation(s) 

Fujita 

Yasuda et 

al. 

Vrentas 

and Duda 

Peppas and 

Reinhart 

27 	- Solvents and small-sized 

diffusants 

- Semi-dilute polymer solutions 

171 	- Solvents and small-sized 

diffusants 

- Setni-dilute polymer solutions 

175— - Various solutes and solvents 

178 	- Both semi-dilute and 

concentrated polymer solutions 

195 	- Various solutes and solvents 

- Chemically cross-linked gels 

and hydrogels 

- Large diffusants 

- Concentrated polymer 

solutions 

- Large diffusants 

- Concentrated polymer 

solutions 

- Determination of the 

numerous parameters 

- Dilute polymer solutions 

- Diffusants with size closer 

to or greater than the mesh 

size of the network 

- Diffusion in non cross-

linked polymers 
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Some recent works reported diffusion experiments at different temperatures 

which led to the evaluation of the activation energy of diffusant in polymers systems 

with the Arrhenius equation:32'5 16569  

D = A exi:(— —RETI 	 (1.52) 

Examples of Ea  values found in the literature are given in Table 1.7. From the 

activation energy of a diffusant in a given system, we can obtain information of the 

network in which the diffusion takes place. In order to obtain complementary 

information, it is necessary to compare the Ea  values in different systems for the same 

diffusant. However, the Arrhenius equation does not provide any correlation to the 

diffusant size or to the polymer networks. 

The modified Enskog theory was recognized to provide a suitable description 

of gas and liquid diffusion in membranes.206  As shown by Waggonner et al.,36  this 

model can also be employed to describe the diffusion of a diffusant in polymer 

networks. The diffusant particle was represented as a rigid sphere flowing through 

the polymer solution. The diffusion coefficient of such a tracer particle is given by 

where DŒ represents the self-diffusion coefficient of the tracer, a, p and M represent 

the tracer, the solvent and the polymer, respectively, Dii represents de mutual 

diffusion of component i with respect to component j and .YOE  is the molar fraction of 

the tracer. Consequently, Dam  is the mutual diffusion coefficient of the tracer with 

respect to the polymer, De the mutual diffusion coefficient of the tracer with respect 

to the solvent, Dpìé the mutual diffusion coefficient of the solvent with respect to the 

polymer. 
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Table 1.7. Example of activation energy (Ea) studies based on Arrhenius equation 

found in the literature (Section 1.3.4.1). o-MR and p-IVIR. stand for ortho- and para-

methyl red, respectively. 

System 	 E a  (kJ/mol) 

Sung and Chang51  

Temperature: 15-55 °C 

Polymer concentration (PS 

and PVAc) 10 % weight 

Gao and Fagerness32  

Temperature: 10-50 °C 

Nystrôm et al.69  

Temperature: 14-44 °C 

Concentration: cpp  = 0.093 

Pickup and B1um65  

Temperature:25-115 °C 

Concentration: (pp  = 0.04-0.90 

o-MR in toluene 

p-MR in toluene 

o-MR in toluene/PS 

p-MR in toluene/PS 

o-MR in toluene/PVAc 

p-MR in toluene/PVAc 

H20 + 0.5% adinazolam 

+ 2% glucose, or lactose, or HPMC 

- Water diffusion 

- Adinazolam diffusion 

Cellulose/H20 

Cellulose/H20/ D20 

Cellulose/H20/ D20/Dioxane 

Cellulose/H20/ D20/t-Butanol 

Toluene in PS 

11.9 

12.6 

13 .6 

15.1 

17.2 

21.7 

4.3-4.6 

5.0-5.3 

23.3 

17.0 

15.0 

24.1 

11-68 
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In addition, Arrhenius model seems valid only in dilute and semi-dilute systems 

because the diffusion rate is limited by the energy required for the diffusing species 

to escape its present surroundings and move into an adjacent environment. 

However, in moderate to high polymer concentration solutions, the diffusion process 

is limited by the polymer molecular motions.36  

1.3.4.2. The modified Enskog theory 

Further, if the tracer molecule is present in a small quantity and if both tracer 

and solvent have approximately the same mutual diffusion coefficient with respect to 

the polymer, Eq 1.53 can be rewritten as 

1 	1 	1 —= 	 (1.54) 
D e, Dam  Dap 

This equation offers a simple dependence on the tracer diffusion coefficient in 

a dilute solution. The respective mutual diffusion coefficient, Dco, can be expressed 

as206 

 

1 

gŒp (0.  43) 

 

 

D = 	 
ŒR 	 2 

	

8n Gap 	27cm„ mr3  
(1.55) 

  

where n the number of molecules per unit volume or the number density (mol/cm3), 

0.4  the hard sphere collision diameter of components a and 13, mi  the molecular mass 

of component i, and gc,p(cre,R) is the rigid sphere contact radial distribution function. 

This function was obtained from the scaled particle theory and depends on the 

molecular radius of the component and on the molecular friction coefficient.206  

The modified Enskog theory was mainly employed for gas diffusion through 

membranes and not often used for polymer solutions. However, Waggoner et al.36  

used this model to draw up comparisons between the modified Enskog theory, the 

model of Vrentas and Duda and the model of Mackie and Meares in various polymer 

systems (PS and PMMA). They concluded that Enskog's model provided satisfactory 

correlation with the experimental data at lower polymer concentrations exclusively. 

At higher polymer concentrations the authors observed little correlation between 

theoretical predictions and experimental results (Figure 1.10). This conclusion is 
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consistent with the work of Pickup and Blum.65  It should be noted that the modified 

Enskog theory does not provide a polymer concentration dependence. 

1.3.4.3. The model of Petit et al. 

Petit et al.33  proposed a new physical model for the diffusion of solvents and 

solute molecules in polymer solutions and gels. This model considered the medium as 

a transient statistical network of an average mesh size , as defined by de Gennes,123  

in which the diffusing molecules have to overcome energy barriers of equal magnitude 

(Figure 1.11). The transient network is considered to exist over the whole range of 

polymer concentrations including the dilute regime. A diffusing molecule is 

considered as residing temporarily in a cavity and diffusion occurs only when the 

particle has enough energy to jump over an energy barrier to move forward to the 

next cavity. Thus, diffusion is considered as a succession of jumps over energy 

barriers. Petit et al.33  considered one-dimensional diffusion assuming that the energy 

potentials are equal in amplitude, AE, and spaced by equal intervals , which 

corresponds to the correlation length. Introducing k as the solute jump frequency, 

Fick's first law of diffusion can be written as follow, according to Andreoli et al.207  

(1.56) 

where k, the jump frequency, is expected to depend on both temperature and size of 

the diffusant. The jump frequency can be written in an Arrhenius form, according to 

Kramer208  who studied the jump of Brownian particles over one potential barrier, 

(1.57) 
\ k B T / 

where Fp is a frequency pre-factor, AE the height of the potential barrier, kB  is the 

Boltzmann constant and T the temperature. Furthermore, dependence of on the 

concentration was given by de Gennes relation122  

,---1Z — = (3 e-v g 

,c *f  
(1.58) 

C ) 

k = F p  exp 
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Figure 1.10. The self-diffusion coefficients of methyl red plotted as a function of 

PVAc concentration in toluene. Data displaying the hydrogen-bonding effect 

(diamonds) and data with the hydrogen-bonding effet removed (squares) are fitted 

with the free volume model of Vrentas and Duda (solid lines), Eq 1.41, and the 

modified Enskog theory (dotted lines), Eq 1.53. Reproduced with permission from 

ACS Publications (Waggoner, A. R. et al.,Macromolecules 1993, 26, 6841).36  
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Figure 1.11. Representation of the polymer solution of a network of mesh size , and 

potential E for the diffusion process of a diffiisant in a polymer network. Reproduced 

with permission from ACS Publications (Petit, J.-M. et al.,Macromolecules 1996, 29, 

6031).33  
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where Rg  is the radius of gyration of the polymer, c* the overlap concentration 

between the dilute and semi-dilute regimes, c the polymer concentration and v is a 

parameter. In de Gennes theory, was said to depend on the polymer concentration 

but not on the molecular weight of the polymer when c> c*.123 

into Eq 1.56 leads to the following equation 

D = k f32v 

Substituting Eq 1.58 

(1.59) 

This equation is suitable to describe the diffusion of a diffusant when the 

polymer concentration is greater than zero, but inappropriate at zero polymer 

concentration. Therefore Petit et al.33  considered the friction coefficients of the 

diffusing molecules to formulate a better expression. It is generally assumed that the 

total friction coefficient, f, experienced by a diffusing molecules in a polymer solution 

results from an additive contribution of the background solvent, fo , and the polymer 

network,,fp 209,210 

f=f0+fp (1.60) 

By the use of Stokes-Einstein relation, D = kBT/f, and by the use of Eq 1.59, 

Eq 1.60 can be rewritten as 

1 	1 	1 
D —  Do +  kJ32 

C
-2v 

(1.61) 

where Do  is the diffusion coefficient of the diffusant in absence of the polymer. Eq 

1.61 can be rewritten as 

D 	1  (1.62) 
Do  1+ac2" 

where a = Dolkf32  and v is a characteristic parameter of the system that can be 

regarded as a constant. The value of k is not constant because Fp and AE (Eq 1.57) 

should both depend on the polymer concentration. Nevertheless, k can be 

approximated as a constant within a certain range of concentrations, although k may 

have a certain dependence on the mesh size of the network. The parameter p is 

expected to be constant for a given system so that k132  depends only on the solute size 

and on the temperature. 
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The model of Petit et al.33  was employed to analyze the diffusion data of both 

solute molecules in ternary aqueous polymer (PVA) systems and solvents (esters and 

ketones) in binary polymer (PMMA) organic solutions over a wide range of 

concentrations.211,212 It has successfully described the effect of polymer concentration 

and the temperature dependence. Recently(Chapitre 3), this model was used to treat 

the diffusion data of both small and large diffusants varying from ethylene glycol (M = 

62 Wmol) up to poly(ethylene glycol) with a molecular weight of 4000.211  This 

diffusion model provided good agreements with the experimental data. In addition, it 

was used to analyze variable temperature diffusion of solutes of various sizes. The 

activation energy calculated was found to increase with increasing size of the 

diffusant. Furthermore, an empirical relationship was found between the parameter 

432  and the hydrodynamic radius of the linear PEG diffusants 

log 432  —0.0356Rh  —10.45 	 (1.63) 

In order to further test the validity of this model, diffusion data can be 

gathered from the literature. For example, Wheeler and Lodge45  studied the self-

diffusion of linear PS (M = 6.5 x 104, 1.79 x 105, 4.22 x 105, and 1.05 x 106) in o-

fluorotoluene solutions of PVME (M = 1.4 x 105, 6.3 x 105, and 1.3 x 106) with 

concentrations increasing from 0 to 0.30 g/mL. In a companion paper, Lodge et a/. 111  

studied the self-diffusion of 3-arm (M= 6.5 x 104, 1.79 x 105, 4.22 x 105, and 1.05 x 

106) and 12-arm (M = 6.5 x 104, 1.79 x 105, 4.22 x 105, and 1.05 x 106) star 

polystyrenes in the same system. These diffusion data were analyzed with the model 

of Petit et al.,33  and the results are shown in Figure 1.12 for the linear and 12-arm star 

PS diffusants, respectively. It seems that the model of Petit et al.33  is not accurate to 

describe diffusion of linear and star diffusant with molecular weight similar to the 

background polymer, in this organic solvent, despite its success with macromolecular 

diffusants in polymer ge
1 
s.211,212 
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Figure 1.12. The logarithmic plots of the self-diffusion coefficients of a linear PS (A) 

and a 12-arm star PS (B) in PVME/o-fluorotoluene as a function of the PVME 

concentration, at 30 °C (data from the work of Lodge and coworkers 45111). Dashed 

lines are fits to Eq 1.62. 
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1.3.4.4. Amsden inodel 

Recently, Amsden28  published a brief review of several diffusion models 

including the models proposed by Yasuda et al.,171  Ogston et al.,76  Johansson et a/.,31  

Altenberger et al.,97  Culcier,26  and Phillips.213 The combined obstruction and 

hydrodynamic theories proposed by Brady214  was also discussed in the review. In the 

author's opinion, the obstruction and hydrodynamic models cannot adequately 

describe the diffusion behavior of macromolecules within stiff-chained hydrogels, 

while the combined obstruction and hydrodynamic theories can provide a better 

approximation of the diffusion data but do not predict the effect of solute radius on its 

reduced diffusivity. Therefore, Atnsden28  proposed a new diffusion model which is 

based on the equation of Lustig and Peppas.199  According to Amsden,28  the transport 

of a molecule through a hydrogel is proportional to the probability of finding a 

succession of holes larger than the diffusant diameter. Therefore, the effective 

diffusivity of the diffusant, Fe , is expressed as 

CO 

De  = Dm  fg(r)dr 	 (1.64) 
r* 

where En, is the average mutual-diffusion coefficient of the solute, g(r) the 

distribution of spherical holes within the hydrogel, and r* the critical hole radius 

required for solute diffusion. 

In the case of straight polymer fibers randomly dispersed in the hydrogel 

network, the distribution g(r) can be expressed as 

2  
g(r)= 	ex[_ — — — 

2R 	4 
'gr 

 2 	
71- (1.65) 

whereR is the mean radius of the distribution. 

Substituting Eq 1.65 into Eq 1.64 and carrying out the integration, one can 

obtain 

De 	n r*)2 

Dm 	exP  4 R j 

 

 

(1.66) 

   

- 
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To account for the specific polymer thickness, Amsden rewrote Eq 1.66 to 

include the average radius of space between the polymer chains, i, and the radius of 

the polymer chain, rf. 

4 
- 

( 	\2 
 rs +rf  

- 

(1.67) . 	= exp 25  
t' +r \ 	 f i  

F can be approximated as the average end-to-end distance between the 

polymer chains, 	Further, from scaling concepts E, was found dependent on the 

polymer volume fraction 
=jc(i)-112 =kirf(p-1/2 (1.68) 

where k is a constant for a given polymer-solvent system, dependent on the length of 

the monomer unit and the stiffness or flexibility of the polymer chain. k can be 

expressed as a function of the polymer chain radius, k=k1 r.f. Substitution of Eq 1.68 

into Eq 1.67 leads to the final form of Amsden's diffusion modeln  

Thus, this model takes into account the polymer structural properties such as 

the pôlymer chain stiffness, the polymer chain radius, the polymer volume fraction as 

well as the size of the diffusant. According to Amsden, the model predicts a decrease 

of the solute diffusion when the polymer volume fraction increases, when the diffusant 

size increases, and when the radius of the polymer chain decreases." 

Eq 1.69 was tested by studying protein (pepsin, ovalbutnin, BSA and 

lactoglobulin) release from calcium alginate matrices. Amsden found that Eq 1.68 

provided a good correlation with the experimental data over the entire range of the 

polymer volume fractions investigated (cp = 0-0.05).28  The dependence of the 

diffusion on the hydrodynamic radius of the solute was also predicted properly. 

Amsdenn  also reported the simulation data published by Johansson et al .3177  showing 

that the model was capable of describing the effect of polymer chain radius and 

flexibility on the diffusion of solutes. 
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1.3.4.5. Summary 

The theories presented in Sections 1.3.4.1 and 1.3.4.2 were not intended to 

describe diffusion in polymer solutions and gels, but they are useful in the description 

of the diffusion behavior, particularly the temperature effect. Other thermodynamic 

models such as Eyring mode1215  were not discussed here because of the limitations in 

their applicability. 

The model of Petit et al?' describes the dependence of diffusion on the 

molecular size of the diffusant, polymer concentration, as well as temperature. This 

model was used successfully to link the diffusion of small and macromolecules in 

binary and ternary polymer systems. Nevertheless, the examination of certain 

diffusion data from the literature showed its limitations for diffusants of high 

molecular weights in concentrated polymer networks. 

The new diffusion model proposed by Amsden22  which combines the 

obstruction effect and the hydrodynamic interactions, seems to be an interesting 

approach. Further tests with more concentrated polymer networks need to be done to 

verify its usefulness. 

1.4. Concluding remarks 

Diffusion in polymer systems is a complicated process. It depends on the 

properties of the diffusants, the polymer network, and the solvents. The obstruction 

by the polymer network, the hydrodynamic interactions in the system, and the 

thermodynamic agitation should be all considered to understand the diffusion in 

polymer solutions, gels and even solids. Various models and theories have succeeded 

in describing the diffusion process under different circumstances. They all contribute 

to the understanding of diffusion phenomena. Enormous progress has been made in 

the field but controversies are not uncommon. It seems also fair to say that 

limitations exist for the application of each of these physical models and care should 

be taken in their use for the interpretation of the results obtained. It remains difficult, 

if not impossible, to estimate and predict the diffusion coefficient of a given diffusant 

in a given system under specific conditions. It is also important to establish a 
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correlation between the self-diffusion behavior in an equilibrated state and the 

diffusion in a real time non-equilibrated dynamic situations, where the swelling and the 

dissolution of the polymer matrix, the compatibility of the solvent, solute and polymer 

should all be considered. 

The rapid development of various techniques such as NMR. allows the study 

of more complicated systems to obtain further information on the properties of the 

diffusants and polymeric networks. For example, it is now possible to track the 

release of solutes such as drugs from a polymer matrix in real-time situations by NMR 
imaging.216 Studies of this kind should generate more results, leading to a better 

understanding of the diffusion process in polymer systems. 

1.5. Symbols and abbreviations 

Parameter dependent on the diffusant size in Phillies modei,52,10102and 
independent of the diffusant size in the model of Altenberger et al.97  
Constant dependent on the solute size and on the temperature in the model of 
Petit et al.33  
Concentration (g/mL) 

c* 	Critical overlap concentration, or overlap concentration, at which the 
entanglement of polymer chains starts according to references 122 and 123. 

Ce 	Entanglement concentration, c8  c* according to references 137 and 138. 
AF 	Energy barrier, kJ/mol 
D 	Diffusion coefficient, m2/s (self- or tracer diffusion coefficient) 
Do 	Diffusion coefficient in the absence of the polymer network, m2/s 
E, 	Activation energy, kJ/mol 

(Pp 	Volume fraction of polymer 
Volume fraction of solvent 

HPC 	Hydroxypropyl cellulose 
HPMC Hydroxypropyl methyl cellulose 

Screeriing parameter in Cukier' s mode126  
Jump frequency in the model of Petit et al.,33  which depends on temperature 
and diffusant size 

kB 	Boltzmann' s constant (1.380658x10-23 J1C1) 
Polymer molecular weight 
Number-average molecular weight between cross-links 
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Mc* 	Theoretical molecular weight between cross-links below which diffusion of a 
solute of size rs  could not occur, in the model of Peppas and Reinhart.195  
Number-average molecular weight of uncross-linked polymer 
Scaling parameter characteristic of the system in Phillies mode1,52,inio2 and  

Parameter dependent on the system in the model of Petit et a/.33  
NMR Nuclear magnetic resonance 

Matrix polymer molecular weight in the model of de Gennes123  
PA Polyacrylamide 
PEG 	Poly(ethylene glycol) 
PGSE Pulsed-gradient spin-echo 
PMA Poly(methyl acrylate) 
PMMAPoly(methyl methacrylate) 
PS 	Polystyrene 
PVA Poly(vinyl alcohol) 
PVAc Poly(vinyl acetate) 
PVME Poly(vinyl methyl ether) 

Radius of the polymer or fiber 
Rh 	Hydrodynamic radius of the diffusing molecule (Å) 
Rg 	Radius of gyration (Å) 
T 	Temperature (K) 
Tg 	Glass transition temperature 
THF Tetrahydrofurane 

Correlation length or network mesh size as defined by de Gennes,123  and 
End-to end distance of a polymer chain in the model of Amsden28  
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2.1. Abstract 

The pulsed field gradient NIVIR spectroscopy has become an important 

analytical technique to measure the self-diffusion coefficients in polymer solutions, 

gels, and melts. In the pulsed-gradient spin-echo (PGSE) technique, the displacement 

of the spins is related to the attenuation of the NMiR echo height as a function of the 

gradient strength and duration used. The echo height attenuation versus the gradient 

strength is usually described by a mono-exponential function for classical Brownian 

diffusion. In complex systems this dependence is not mono-exponential. Important 

information about the diffusant, network or both can be obtained from the non-mono-

exponential dependence. This article reviews primarily the PGSE experiment used in 

the study of diffusion in various systems, particularly polymer solutions and gels. The 

principle and the experimental procedures including the pulse sequence, gradient and 

temperature calibration, etc., are presented. The limitations of the techniques in its 

applications and the information which can be extracted from complex systems are 

also discussed. 

2.2. Introduction 
The number of diffusion studies of polymer solutions, gels, and melts has 

considerably increased during the last decades. Diffusion measurements in polymer 

systems help in the understanding of polymer network structures [1], transport 

phenomena [2], and the controlled release of drugs [3]. The study of diffusion is 

important in the research on polymers, chemistry, and chemical engineering, as well as 

biochemical and pharmaceutical science. 

Various analytical techniques are available to study the diffusion in polymer 

solutions and gels. These techniques include nuclear magnetic resonance (NMR) 

spectroscopy [4], fluorescence [5], gravimetry [6], diaphragm cell [7], dynamic light 

scattering [8], and holographic relaxation spectroscopy [9]. 	The capacities, 

limitations, and specific requirements of these analytical techniques were reviewed 

recently by Westrin et al. [10]. They concluded that the Diaphragm cell and the 

PGSE-NMR methods were very accurate and precise. Although the diaphragm cell 
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allows the characterization of an effective diffusion coefficient that implies the need of 

a gradient concentration in the system, no information can be obtained for the 

diffusion into the polymer membranes or networks. The pulsed-gradient spin-echo 

(PGSE) technique is often employed to measure a self-diffusion coefficient. The main 

advantages of the PGSE NMR technique reside in the fact that this technique is non-

destructive, less time-consuming and capable of measuring self-diffusion coefficients 

in multi-components systems. Furthermore, this technique can provide information on 

both the diffusant and the diffusant-polymer matrix behavior in addition to the 

measured self-diffusion coefficient. For example, unusual echo attenuation behavior 

due to the network structure or due to the diffusant physical characteristics were 

observed in restricted systems [11] and complex systems [12]. 

This article reviews the PGSE NMR technique, including the calibration of the 

gradient strength and temperature, the applications and the limitations, and the use of 

the technique to obtain important information on the network structure and on the 

diffusant behavior. 

2.3. The PGSE NMR Technique 

A magnetic field with a temporary or steady field gradient is needed in the 

measurement of self-diffusion coefficient by NMR. As shown in Figure 2.1., if we 

introduce two NMR tubes with the same compound in a uniform magnetic field, the 

same nuclear spins present in each of the tubes will resonate at the same frequency. 

Thus, only one NMR signal is obtained (Figure 2.1A). If we place the same NIV1R 

tubes into a non-uniform magnetic field or a magnetic field with gradients, the same 

spins in each tube will resonate at different frequencies (Figure 2.1B). Consequently, 

two NMR signals will be observed on the spectrum. Each signal is proportional to 

the quantity of component present within the tube. Such a magnet design allows to 

localize the spins in the magnet geometry. When the spins are displaced, it will be 

possible to measure their self-diffusion coefficient by monitoring the change of the 

intensity of NMR. signals as a function of time. At the present time, magnet with a 

steady gradient is still limited by technical difficulties. Nevertheless, a uniform 
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magnetic field with pulsed gradient can be easily obtained. The gradient pulses create 

a temporary inhomogeneity in the magnetic field. 

The PGSE sequence developed by Stejskal and Tanner [13] consists of a spin-

echo sequence in which two gradients are added on both sides of the 180° r.f. pulse. 

The spin echo sequence is made up by a 90° r.f pulse and a 1800  r.f pulse separated 

by time -c. An echo is formed at time 2T (Figure 2.2A). A 180° r.f pulse inverts the 

magnetization precession so that spins precessing in the x0y plane will focus toward y. 

The first gradient located between the 900  and the 180° r.f. pulses (Figure 2.2A) 

labels or encodes the spins by producing a rapid precessional phase shift. The second 

gradient can be considered as a phase compensation gradient (or refocussing) due to 

the 180° r.f. pulse. Thus, if diffusion occurs during the interval A, i.e., if the spins 

change their environment, the spin contribution to the echo will be reduced. In other 

words, the echo intensity, I, is proportional to the molecular motion in solution. In 

absence of any molecular diffusion, the 180° r.f. pulse and the refocussing gradient, 

will focus the magnetization as shown in Figure 2.2B. When diffusion occurs, the 

attenuation on the N1V1R signal depends on the self-diffusion coefficient D and is given 

by the following equation 

 

( 	\ — 2T 

 

- ( 8\1 
—728 2G2D A -- 

3) 

 

.1(5)  = /(0)  exp exp 
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T \ 2 i 

 

  

- 

 

where y is the magnetogyric ratio of the nucleus under observation, G the gradient 

strength, 8 the length of the gradient pulse, A the time interval between two gradients, 

T the interval between r.f. pulses (90°-180°) and between the 180°  pulse and the echo, 

/(0)  the intensity of the NMR signal without applied gradient pulses and /.() defines the 

NMR signal with applied gradient. Basically, the PGSE sequence and the others 

pulsed field gradient (PFG) sequences are used to measure Brovmian displacement 

which occurs between the period A, or time between the two gradient pulses. 

Detailed theoretical approaches of the PGSE technique can be found in the articles of 

Stilbs [14], Callaghan [11] and Price [15]. 
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Figure 2.1. Illustrations of a uniform magnetic field (A), and of a magnetic field with 

gradient (B). Two NMR tubes containing the same spins provide one NMR signal in 

a uniform magnetic field but two NMR signals in a magnetic field with gradient. 

Displacements of the spins can be monitored by the change in the NMR signal 

integrations as a function of time. 
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Figure 2.2. 	Pulsed-gradient spin-echo (PGSE) NMR sequence (A) and 
representation of the motion of the spins with respect to the r.f pulses and gradient 
pulses (B). The self-diffusion coefficient is obtained by monitoring the intensity of the 
NMR signal(s) as a function of the strength and duration of the gradient pulse, as 
described in equation 2.1. 
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In PGSE experiments the parameters à and t are kept constant in order to 

eliminate the dependence on the transverse relaxation time (T2). A constant gradient 

strength can be used while the duration of the gradient pulse can be varied. Hence, 

the semi-logarithmic plot of I(5)  versus 52(A-5/3) will be a straight line and from the 

slope the self-diffusion coefficient can be calculated once the gradient strength is 

known. 

Figure 2.3. provides an example of poly(ethylene glycol) (PEG), diffusion 

determination in poly(vinyl alcohol)-water network. The plot represents a typical 

PGSE NMIR experiment with varying 5 and constant G. The highest signal on the 

first spectrum (5 =1 ms) is attributed to the PEG whereas the signal upfield is due to 

the CH2  group of the polymer main chain, i.e., poly(vinyl alcohol) (PVA) and the 

signal downfield corresponds to the water resonance. The PVA signal intensity 

changes very little since the self-diffusion coefficient of the polymer is lower 

compared to the PEG signal. The water signal disappears rapidly since its self-

diffusion coefficient is much higher. 

2.4. Calibration of the gradient strength 

Before running experiments the temperature and the gradient strength need to 

be calibrated. Samples with known self-diffusion coefficients such as water or 

glycerol can be used as standards to calibrate the gradient field strength. The self-

diffusion coefficients of selected molecules at various temperature are listed in Table 

2.1. 

The most common standard is water in deuterated water [16,17], which is 

used to calibrate relatively low gradient strength. To study slow diffusion, stronger 

gradient strengths should be used, which are calibrated with more viscous standards 

such as dried glycerol [18] or polymer solutions [19]. A second standard is usually 

needed for the verification of possible evolution of the gradient strength with time. 

The calibration of the gradient should be verified daily by the use of a sample with a 

known self-diffusion coefficient. Moreover, since the gradient strength varies slightly 

with the temperature, calibration should be done as a function of the temperature. 
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PEG 

A 

PVA 

8 =11 	10 9 	8 	7 	6 	5 	4 	3 	2.5 1 

0 0 	5.0x10-6 	1.0x10-5  1.5x10-5 	2.0x10-5  

82(A-8/3) (s3) 

Figure 2.3. (A) Example of 1H PGSE NMR spectra of PEG-600 in a PVA-water binary 
mixture at 43 °C, showing proton signal attenuation with increasing gradient pulse durations 
(8). [PVA] = 0.03 g/mL, G = 0.491 T/m, interval between gradient pulses A = 140 ms, and 
the recycle delay was 14 s, (B) The corresponding semi-logarithmic plot of the signal 

intensities as a function of 82(A-8/3) for PVA, PEG-600 and water protons signals. The self-
diffusion coefficients are calculated from the slope of the lines: DpvA = 3.64 x 10 11  m2/s, 

DpEG-600 = 4.14 x 104°  tn2/s, and D ger = 4..68 x 10-9  m2iS. 

H20 
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Table 2.1. List of standards with known self-diffusion coefficients that can be used 

for the gradient strength calibration. 

Standard Temperature Self-diffusion coefficient Reference 

(°C) (10-9  m2/s) 

pure H20 5 1.313 16 

25 2.299 16 

25 2.35 17 

45 3.575 16 

pure D20 5 1.015 16 

25 1.872 16 

45 2.979 16 

trace of H20 in D20 5 1.034 16 

25 1.902 16 

45 3.027 16 

50 % DMSO-50 % H20 25 Dwater = 0.83 17 

Dpmso = 0.50 17 

Pure glycerine 25 0.0173 18 

31 0.0323 18 

40 0,0614 18 

10 g/L PEO in HDO 23 0.023 19 

94 



Partie I, Chapitre 2 	 Références page 106 

N1V1R instruments equipped with imaging probes usually allow the application 

of gradient pulses in the three directions (x, y, z). Calibrations can be achieved more 

easily by the use of one dimensional image along each direction [20]. This technique 

requires a sample with a predefined geometry immersed in a spin-rich liquid such as 

water doped with 1 wt% CuSO4. The calibration is achieved by acquiring an image of 

the sample. An image profile is obtained and the width of the image can be correlated 

with the width of the sample. While performing the calibration, the image profile is 

measured in Hz thus voxel approximations from the reconstructed image are avoided. 

2.5. Temperature calibration 

Since the self-diffusion coefficient is strongly dependent on the temperature, 

temperature calibration inside the NMR probe is also very important. The 

temperature calibration can be achieved by using pure methanol or ethylene glycol and 

measuring the chemical shift difference in ppm, or in Hz, between the NMR signals of 

the solvent versus temperature changes [21]. Table 2.2 lists the values in ppm and Hz 

for the chemical shift difference between the CH3  and 011 groups for methanol and 

CH2  and OH groups for ethylene glycol. This method is easy and rapid but can be 

erroneous. A small variation in the chemical shift due to an incorrect shimming 

procedure can induce a large error in the temperature calibration. Care should be 

taken when preparing the sample and when measuring the chemical shift difference. 

This method allows the measurement of the average temperature of the sample, but it 

is not easy to be used to detect any temperature gradient along the NMR tube. 

The temperature calibration can be achieved also with a thermocouple which is 

not sensitive to the magnetic field. A thermocouple with a constantan copper-nickel 

extension (T) meets this requirement. The linearity of the thermocouple from 0 to 100 °C 

can be verified easily and rapidly by measuring the temperature of a water-ice mixture and 

the temperature of boiling water. Possible temperature gradient inside the NMR probe 

can be detected by moving the thermocouple inside the NIV1R probe. 

Another way to calibrate the temperature in the NMR probe is to reproduce the 

self-diffusion coefficient values of standards measured at various temperatures by other 
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methods. The self-diffusion coefficients of several standards are listed in Table 2.1. with 

corresponding temperatures. This method can only be used to measure an average 

temperature, and the gradient strength has to be calibrated first. 

Table 2.2. Example of chemical shift difference, for proton resonating at 300.13 

MHz, between the CH2  and OH groups for ethylene glycol and the CH3  and OH 

groups for methanol at 29, 30 and 31 °C. 

Temperature 	Ethylene Glycol 	 Methanol 

(C) 	 PPm 	 Hz 	PPm 	 Hz 

29 1.6113 483.6 1.528 458.6 

30 1.6015 480.6 1.5183 455.7 

31 1.5917 477.7 1.5082 452.8 

2.6. The study of diffusion in polymers systems 

The PGSE NMiR technique can be easily used to study diffusion behavior of 

small molecules and large diffusants with NMR relaxation times long enough for the 

spin echo experiment. This applies to systems such as polymer solutions [22], gels 

[23] and melts [24]. The PGSE NIVIR technique can also be used to study the 

diffusion in a variety of chemical and even biochemical systems. For example, 

Lônnqvist et al. [25] determined the diffusion behavior of the different components in 

a water-oil-water double emulsion system. Schonhoff and Soderman [26] studied the 

equilibrium adsorption dynamics of surfactants at the solid/liquid interface. Stanisz et 

al. [27] measured water diffusion in bovine optic nerve. Li et al. [28] studied the 

diffusion of drug-solubilizing bile salt/phosphatidylcholine aggregates in mucin 

mucous layer. Clericuzio et al. [29] studied mass transfer in the amorphous phase, 

i.e., ionic motion of 7Li, 23Na, and 19F in polymer electrolytes. In addition, motion of 
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plastizers was also studied [29]. Callaghan and coworkers [30] studied the flow and 

diffusion in porous media and the convection in capillary [31]. 

We have used the PGSE technique to measure self-diffusion coefficients of 

diffusants in binary and ternary polymer-solvent systems [32-35]. These studies cover 

the diffusion of solvent, small and macromolecular diffusants, having different 

chemical function groups, various sizes and various geometries in both aqueous and 

organic solutions containing polymers such as poly(vinyl alcohol) and poly(methyl 

methacrylate). Recently, we have proposed a new physical model of diffusion for the 

interpretation of the data [36]. An example of an NMR experiment is shown in Figure 

2.3. The gradient calibration was carried out with a sample of a known self-diffusion 

coefficient (1 wt% HDO in D20, D = 1.9x10-10  m2/s) as described in the previous 

section. 

2.7. J-modulation effect 

The study of homonuclear or heteronuclear diffusant can be perturbed by an 

artefact due to first and second order spin-spin coupling. This perturbation is 

commonly named J-modulation effect [14, 37]. The origin of this effect resides in the 

fact that spins precession frequencies have different rates, thus spins vectors will not 

refocus on the y axis at the same time [38]. As a result, distortion of the NMR 

spectrum appears. Distortions are characterized by negative signal and/or loss of 

some NNIR signals in the spectrum. The J-modulation depends strongly on the 

gradient pulse time interval A. A first order J-modulation effect is present and 

persistent for a A. period duration inferior to 1/J, whereas this effect is less consistent 

for a A period duration superior to 1/J. Another way to remove the phase distortion 

is to use a magnitude mode spectrum [39]. However, this method enlarges the NMR 

signal, especially at the base. 

2.8. Spin-Spin relaxation time and eddy currents problems 

The largest limitations of the PGSE technique concern the spin-spin relaxation 

time (T2) and the eddy currents problems, particularly for polymer systems. 
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In the PGSE sequence, T2 has to be long enough (namely, T2 >> t) for the 

application of the gradient pulses (Figure 2.2A.). Macromolecules are characterized 

by low self-diffusion coefficients and short T2 values. One possible solution to 

overcome T2 problems and/or slow diffusion is to shorten the gradient pulses while 

increasing the gradient strength. However, a strong gradient pulse can induce eddy 

currents in the probe that can persist for a considerable period of time aller the 

gradient pulse is turned off. In severe cases the eddy currents can perturb the second 

pulse and lead to distortion or even complete loss of the NMR signal. Various 

methods can be used to compensate or correct the eddy currents effect in the PGSE 

NMR experiments. Hardware modifications such as the use of actively shielded 

gradient coils [40], compensation for the gradient coil [41] and application of a decay 

current to the Zo  shim coil [42] can be useful in solving the eddy currents problems. 

Software methods were also reported. For example, a correction can be added to the 

second gradient pulse in order to compensate for any mismatch of the effective field 

gradient of the experiment [43], as shown in Figure 2.4. This empirical compensation 

function has been used successfully in the self-diffusion measurements of various 

solvents in different polymer systems [44,45]. Recent NMR spectrometers allow the 

detection and compensation of eddy currents by pulse preemphasis adjustments [20]. 

When the spin-lattice relaxation time (Ti) is much longer than the spin-spin 

relaxation time (T2), the T2 limitation can be avoided by the use of the stimulated echo 

(STE) sequence [46,47]. This sequence consists of a succession of three 90° pulses 

that lead to a stimulated echo after the third r.f pulse, as illustrated in Figure 2.5A. In 

this sequence the spin attenuation depends mainly on T1  instead of T2. The signal 

attenuation dependence on T1  provides numerous advantages. For example, STE can 

be used to study diffusion over a larger A interval thereby reducing eddy current effect. 

In addition, STE was used for samples with T2 « T1, and samples with small self-

diffusion coefficients for which no significant attenuation can be observed with PGSE 

sequence. 
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Figure 2.4. The compensation of the eddy current effect caused by the first gradient pulse (8) 
by the addition of a correction (s) to the second gradient pulse as measured with a sample 
consisting of 50 wt % of a PEG solution in D20 (r = 140 ms). (A) normal spin-echo FID and 
the corresponding spectrum. (B) PGSE FID in the presence of eddy currents (no 
compensation) and the distorted spectrum. (C) FID of the same PGSE experiment with eddy 
current compensation and the restored spectrum. 
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Eddy current problems can also be solved by the use of the longitudinal eddy-

current delay (LED) sequence [48]. This sequence was created to overcome large 

eddy current fields. Tt consists of four 90° train pulses as illustrated in Figure 2.5B. 

Atter each gradient pulse a 900  r.f. pulse inverts the magnetization in the longitudinal 

plane where relaxation is mainly due to TI. The advantage of this sequence is obvious. 

The delay between the second gradient pulse and the acquisition is larger than in the 

stimulated echo sequence. Thus, if eddy-currents are induced by gradient pulses, their 

impact at the acquisition time will be much more attenuated in the LED expeiiment 

than in the STE and PGSE sequences as demonstrated by Gibbs et al. [48]. 

2.9. Signal overlapping 

When two distinct NMR signals are overlapped it induces complications in the 

spectrum and therefore its analysis. As a result, equation 2.1 remains no longer valid 

and a bi-exponential fit to the data using a sum of two exponential functions should be 

employed [25]. Lônnqvist et al. [25] have performed a bi-exponential fitting to their 

data of water and oil diffusion in water-oil-water emulsion. According to the authors, 

the appropriate weight factor of each sample is key to successful determination of 

each independent self-diffusion coefficient. We have also encountered signal 

overlapping problems in our study of tert-butanol diffusion in poly(N,N-diethyl 

acrylamide)-water system. The signal of the methyl groups of the tert-butanol 

overlaps with that of the methyl groups of the polymer. Therefore, the overlapped 

NMR signais for the diffusant and the polymer were analyzed with a bi-exponential 

function. However, accurate results cannot be obtained when the proportion of each 

compound is unknown, as numerous mathematical solutions can result from a bi-

exponential equation. 

If a slow diffusion component overlaps with a fast diffusion one, it is easy to 

suppress the fast diffusing component by applying a gradient with sufficient strength. 

In fact, this is also one way to suppress NMR signais of solvents in high resolution 

NMR. 
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Figure 2.5. (A) The stimulated echo (STE) NIVIR sequence, and (B) the longitudinal 

eddy-current delay (LED) N1VIR sequence used to overcome T2 and eddy-current 

problems in diffusion measurements. 
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2.10. Non-homogenous or anomalous diffusion 

Non-homogenous or anomalous diffusion is characterized by a non-mono-

exponential dependence of the echo height attenuation versus the experimental 

parameters, (7G5)2(3.-513). A non-mono-exponential dependence can be also 

attributed to restricted diffusion. Non-homogenous or anomalous diffitsion 

corresponds to anisotropic Brownian motion while restricted diffusion is caused by 

the physical boundaries of the polymer matrix. This distinction is very important, and 

implies that for non-homogenous or anomalous diffusion the echo height attenuation 

is mainly due to the behavior of the diffusant. Examples of non-homogenous or 

anomalous diffusion are numerous in the literature. Walderhaug et al. [49] reported 

the study of the diffusion of associative polymers in water. The self-diffusion 

coefficients of the polymers showed an increasing distribution with increasing 

concentration. This increasing distribution of the self-diffusion coefficients resulted in 

a curvature in the semi-logarithtnic plot of the NMR signal intensity as a function of 

the experimental parameters. Walderhaug et al. [49] demonstrated that the non-

homogenous diffusion was due to the polymer polydispersity. The authors used a 

stretched exponential equation to extract their data, 

/(5)  = /(0)  exp[— (XDsE  ) ] 	 (2.2) 

where /(5)  and /(0)  have been defined previously, [3 (0 < p 1) is a parameter describing 

the width of the distribution of the self-diffusion coefficients (13  = 1 for monodisperse 

self-diffusion coefficient), X = (yGS)2  (à — Ô /3)and DSE is used to calculate the mean 

self-diffusion coefficient, D, by 

1 	c. 	f ijrnss  y 1 dx ._____r r  t 1j(  1 \ —D  .= fo  exp [ 	 (2.3) 
P J 	e \D sE ) 

where F denotes the gamma function. 

Equation 2.2 has been used successfully in the literature, especially in the 

studies of associative polymers based on poly(ethylene oxide) [50], hydrophobic 

ethoxylated urethane [12] and hydrophobically modified poly(N,N-

dimethylacrylatnide) [19]. 
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Recently, Walderhaug and Nystrôm [51] reported on anomalous diffusion. 

They studied triblock copolymer [poly(ethylene oxide)-poly(propylene oxide)-

poly(ethylene oxide)] diffusion in aqueous systems during gelation as a function of 

temperature. When the temperature of gelation was reached, the decay of the spin 

echo attenuation exhibits an increasing non-exponentially behavior. The authors 

suggested that this polydispersity effect was due to the formation of intermolecular 

association between the polymer chains. Watanabe et al. [52] studied water diffusion 

in dextran gels. They found two types of water with different diffusion coefficients. 

The faster diffusion coefficient was assigned to bulk water, whereas the slower 

diffiision coefficient was assigned to trapped water. 

We have studied the self-diffusion coefficient for a series of oligo- and 

poly(ethylene glycol) samples in poly(vinyl alcohop-water systems [32]. The 

diffusants were monodispersed as demonstrated by size exclusion chromatography, 

and poly(vinyl alcohol) (PVA) used in these experiments was completely hydrolyzed. 

Ethylene glycol and some of its oligomers used in this study showed signs of 

anomalous diffusion. Echo attenuation of the ethylene glycol NIV1R signal is shown in 

Figure 2.6. Since it is a small molecule, there is no polydispersity problems as in the 

case of polymers. Moreover, this behavior cannot be attributed to the self-association 

of ethylene glycol since this compound is present in small quantity in the system (1 

wt% in D20). We have also noticed that this behavior increases when the polymer 

concentration is increased. Thus, we believe that this behavior can only be explained 

by the presence of two different ethylene glycols in the system. Free ethylene glycol 

molecules with echo attenuation corresponding to the first part of the plot in Figure 

2.6. (D = 4.75x10-1°  m2/s), and bound ethylene glycol molecules with echo 

attenuation corresponding to the second part of the plot (D= 1.77x10-1°  m2/s). 
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Figure 2.6. Plot of the echo attenuation versus X = (y8G)2(A-8/3) for ethylene glycol 

in poly(vinyl alcohol)-water system. Experimental conditions: [PVA] = 0.12 g/mL, G 

= 10 to 100 G/cm, gradient duration 8 = 2.25 ms, interval between gradient pulses A = 

30 ms, the recycle delay 16 s, and T = 23 °C. The curvature is due to the presence of 

two different types of ethylene glycol, one free (D = 4.75 x 10-1°  m2/s) and one bound 

to PVA (D =1.77 x 10 1°  m2/s). 
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2.11. Restricted diffusion 

The diffusion of diffusants is considered restricted when the Brownian motion 

of the studied molecule is hindered by physical boundaries. The physical boundaries 

can be due to macromolecules (polymer and proteins) or micelles. The physical 

boundaries exist in liquid crystals, lipid bilayers and porous materials. As specified 

above, the PFG NMR technique provides information on the diffusant mean square 

displacement, <z2>, that occurs during the time A, or time between the two gradient 

pulses: 

<z2> = 2DA (2.4) 

To be detected by PFG NMR, the length of the restricted geometry has to be 

smaller than the displacement of the diffusant. Thus, restricted diffusion is evidenced 

by a dependence of the self-diffusion coefficient on the time of diffusion A. Restricted 

diffusion is detected especially for long A, i.e., when the particle can travel far enough 

to feel the effect of the restricted geometry. When the displacement of a diffusant is 

restricted during the analysis time, A, the echo attenuation does not have a mono-

exponential dependence on the experimental parameters X Examples of restricted 

diffusion are numerous in the literature. For example, Callaghan and Pinder [53] have 

demonstrated that diffusion in entangled polystyrene solution of sufficiently high 

molecular weight is restricted. Similar results were obtained by Callaghan and 

Soderman [54] for AOT/water solutions. 

Pavesi and coworkers [55,56] have used the STE sequence with increasing A 

to study water diffusion in chemically crosslinked gels. In their case, the restricted 

diffusion is due to the network microstructure. These experiments allowed the 

characterization of the diffusion in a polymer network (Fickian or non-Fickian 

diffusion) as well as the characterization of the polymer pore radius [55,56]. Such 

studies can be done also with the PGSE sequence as demonstrated by von Meerwall 

and Fergusson [57] when the diffusant has a long enough T2. 
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2.12. Concluding Remarks 

With the recent development of the PGSE technique, many technical 

difficulties have been overcome. The PGSE NMR technique has been shown to be a 

very powerful technique in the study of polymer and other complex systems as it can 

provide information usually difficult to obtain. The determination of self-diffusion 

coefficient by PGSE NMR is a study of the motion of nuclear spins, which provides 

interesting and important information not only on anisotropic diffusion in chemical 

systems, but also on isotropic diffusion in ordered systems such as liquid crystals and 

lipid bilayers, non-homogenous diffusion due to the diffusant polydispersity, 

anomalous diffusion resulted from various interactions in the polymer-diffusant 

system, and restricted diffusion due to physical boundaries. The interpretation of the 

echo height attenuation in the latter cases remains more complicated than for the 

classical Brownian diffusion, but of the same time provides an interesting challenge to 

NMR spectroscopists to obtain information that is otherwise unavailable to 

researchers. 
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3.1. Abstract 

We have measured the self-diffusion coefficients of a series of solute probes, 

including ethylene glycol and its oligomers and polymers (PEG) in aqueous solutions 

and gels of poly(vinyl alcohol) (PVA) using pulsed-gradient spin-echo NMR. techniques. 

In an effort to link the diffusion properties of small and large molecules in polymer systems, 

we have selected this group of diffusant probes with various molecular weights, ranging 

from 62 to 4000 g/mol. The self-diffusion coefficients of the solute probes decrease 

with increasing PVA concentrations (from 0 to 0.38 g/m1) and with increasing 

molecular size of the probes. The temperature dependence of the self-diffusion 

coefficients has also been studied for ethylene glycol and poly(ethylene glycol)s of 

molecular weights 600 and 2000 g/mol. Energy barriers of 30.0, 36.5 and 39.0 kJ/mol 

have been calculated respectively for the probes, in the temperature range of 23-53 

°C. The experimenta1 data are used to fit a new physical model of diffusion (Petit et cil., 

Macromolecules, 1996, 29, 6031), which is shown to be successful in describing the 

effects of polymer concentration, temperature and molecular size of the diffusants on the 

self-diffusion coefficients of small and large molecular probes in polymer systems. 

3.2. Introduction 

The study of diffusion of solute molecules in polymers is important to the 

application of the materials. The addition of plasticizers in polymers, the permeability 

through polymer membranes, the miscibility of polymers and the release of drugs and other 

molecules from polymers are all related to the diffusion in polymer matrices [1-3]. With 

the development of pulsed field-gradient NMR spectroscopic methods [4,5], self-diffusion 

of various diffusants in polymer systems can be much more easily detertnined. The 

diffusion of solute molecules in polymer gels is influenced by many factors: polymer 

concentration, size and shape of the diffusant, temperature and any specific interactions in 

the polymer networks. Physical models describing the self-diffitsion of a solute in polymer 

systems are needed to understand the diffusion phenomena in polymers and to describe and 

estimate the mobility and diffusion rates of a component in a given polymer mixture. A 

number of physical models of diffusion for polymer systems have already been proposed, 
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including those based on the concepts of free-volume theory [6-9], obstruction effects 

[10,11] and hydrodynamic interactions [12-14]. The free-volume model introduced by 

Fujita [6] and its modified version for aqueous systems by Yasuda et al. [7] showed 

signfficant deviation when used to describe diffusion of large probes, such as poly(ethylene 

glycol)s [15]. The model of Vrentas and Duda [8,9] seems more adequate to describe the 

diffusion of solvents or polymers in polymer systems [16,17]. The use of this model, 

however, requires the lcnowledge of many free-volume parameters [17,18]. Some of these 

parameters have been reported in the literature for some solvents as well as polymers such 

as polystyrene [17] and poly(methyl methacrylate) [19], but some of these parameters are 

not readily available for many other polymers, solvents and solutes and would need to be 

determined by various physico-chemical experiments. The application of the models based 

on obstruction effect by Mackie and Meares [10] and Ogston et al. [11] is limited to very 

small diffusants or dilute systems [15,16]. Won and Lodge [20] reported similar problems 

with the models of Culcier [12] and Altenberger and Tirrell [13] based on hydrodynamic 

interactions. The "universal equation" proposed by Phillies intends to describe the 

diffusion of macromolecular probes over a wide range of polymer concentrations and 

demonstrated good agreement between the experimental data and the model [14]. We have 

used this model to fit the self-diffusion data of selected solute probes in poly(vinyl alcohol) 

(PVA) aqueous systems [15], but questions were raised as to the applicability of the model 

for small diffusants and the interpretation of the fitting parameters. We have shown 

previously the limitations encountered in the application of selected models in the treatment 

of the diffusion data obtained in aqueous solutions of PVA [15,21]. It seems fair to say 

that the physica1 models of diffusion are useful in many circumstances but are lirnited in 

others. It was our wish to find a physical model that can be used to describe the self-

diffusion data of both small or large diffusants, including small molecules and polymers, in 

dilute and concentrated polymer systems. 

We have proposed a new physical model for the interpretation of the diffiision of 

some solvent and solute molecules in selected polymer solutions and gels [21]. In this 

model, the polymer matrix is represented by a transient statistical network with a certain 

mesh size. The diffusing molecule is considered as a particle residing temporarily in a 
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cavity and the diffusion occurs when the particle has enough energy to overcome a certain 

potential barrier. The self-diffusion coefficient, D, is related to the concentration of the 

polymer, c, and temperature, T, by the following equation: 

D 	1 — = 	 (3.1) 
Do  1+ac2" 

where Do  is the self-diffusion coefficient of the solute probe in the absence of the polymer 

matrix, a = Do  I 432, p and v can be regarded as constants which are characteristic of the 

system, and k represents the jump frequency over the energy barriers and is given by 
( AE 

k8 T 

where Fp  can be considered as a constant, Ab: is the energy barrier of diffusion, and kB  is 

the Boltzmann constant. 

This model has been used successfully [21] to reproduce the polymer concentration 

dependence of the self-diffusion of various solvents and solute molecules in binary and 

ternary polymer solutions [15,21-23]. The diffusant probes used previously were generally 

small molecules. In order to make a link between the diffusion of small molecules and that 

of larger diffusants such as oligomers and polymers, we selected a series of solute probes 

including ethylene glycol and its oligomers and polymers and measured their self-diffusion 

coefficients in aqueous solutions and gels of poly(vinyl alcohol) using the pulsed-gradient 

spin-echo (PGSE) NMR techniques. Poly(ethylene glycol)s were selected since (1) they 

are soluble in water and miscible with aqueous PVA gels; (2) they have distinct NMR 

signals which do not overlap with the PVA and water signals, and their NMR relaxation 

times (mainly T2) are long enough so that their diffusion is easily studied by the PGSE 

NMR method; and (3) PEG samples are readily available with a variety of molecular 

weights and with narrow molecular weight distributions (nearly monodisperse). By 

examining the effects of polymer concentration, probe size and temperature on the self-

diffusion of these probe molecules, we can test the validity of the new model of diffusion 

for the case of larger diffusant molecules such as oligomers and polymers. 

k = Fp  exp (3 .2) 
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3.3. Experimental 

Ethylene glycol (EG) and its oligomers (OEG) and polymers (PEG) as well as the 

poly(vinyl alcohol) (PVA) sample used (M = 50,000 g/mol, 99% hydrolyzed) were all 

purchased from Aldrich (Milwaukee, WI) and used as received. Size exclusion 

chromatography (SEC) of the oligo- and poly(ethylene glycops were carried out to 

determine their molecular weights (M) on a Waters SEC system, equipped with three 

Ultrastyragel columns of nominal porosities of 1000, 500 and 100 Â, respectively. The 

molecular weights (M„ and /4) of each of the OEG and PEG samples are quite narrowly 

distributed, as shown in Table 3.1 (Mw/Mi, < 1.1). The OEG and PEG samples include tri-, 

tetra-, penta- and hexa(ethylene glycol)s as well as PEG-200, PEG-400, PEG-600, PEG-

1000, PEG-2000 and PEG-4000. The molecular weight of PEG is represented by the 

number following PEG. 

The preparation of the samples for NMR experitnents have been described 

previously [15]. PVA was dissolved in D20 containing 1 wt% solute probe. The 

concentration of PVA ranged from 0.03 to 0.38 g/ml. D20 (99.9%) was purchased from 

C.I.L. (Andover, MA). The NIVIR. tubes containing the samples were sealed to avoid 

evaporation of the solvent and then heated at 100-110 °C. The heating of the samples 

is necessary to help in the mixing of the sample and also to prevent gelation effects. 

The NMR measurements were made within the three following days. 

The self-diffusion coefficients were measured by the use of the pulsed-gradient 

spin-echo (PGSE) NIVIR technique developed by Stejskal and Tanner (90°,.,— — 180%, — 

— echo, with gradient pulses during the half echo time c) [24] on a Chemagnetics CMX-

300 NMR spectrometer operating at 300 MHz for protons. A magnetic resonance 

imaging probe with actively-shielded gradients coils (Doty Scientific, Columbia, SC) and a 

Techron gradient amplifier were used. Gradient was applied only in the z direction. The 

gradient strengths used in this study were between 0.3 and 0.6 T/m, calibrated with a 

sample of known self-diffusion coefficient, i.e., 1 vol% HDO in D20 with Aux) = 1.9 

x 10-9  m2/s [25]. Variable temperature NMR experiments were performed at 23, 33, 43 

and 53 °C. These temperatures were calibrated while the gradient pulses were applied with 

a thermocouple having a constantan copper-nickel extension (T), which is not sensitive to 
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Table 3.1. Number- and weight-average molecular weights (Mi, and Mw) of OEG and 

PEG samples used in the diffusion studies as determined by SEC. 

Sample Theoretical 

Mv„ (g/mol) 

Average M,„ (g/mol) 

EG 62 — — 

(EG)3  150 182 182 1.00 

(EG)4 194 196 197 1.00 

(EG)5  238 198 199 1.00 

(EG)6 282 221 222 1.00 

PEG-200 200 205 209 1.02 

PEG-400 400 341 368 1.08 

PEG-600 600 538 578 1.07 

PEG-1000 1000 976 1038 1.06 

PEG-1500 1500 1461 1532 1.04 

PEG-2000 2000 2148 2246 1.04 

PEG-4000 4000 4439 4626 1.04 

the magnetic field. Given the slight fluctuation of the temperature (± 0.5 °C), no 

temperature gradient was detected dong the sample position in the coil. The self-diffusion 

coefficient D can be extracted from the attenuation of the NIVIR. signals due to the 

application of the gradient pulse of various durations [4] as given in the follovving 

expression: 

A „ = A; exp (y G 8)2  
/ 

 A — —
8) 

\ 	3) 
D

- 

_ 
(3.3) 

where A2T  is the echo amplitude, y is the magnetogyric ratio of 1H, G is the pulsed gradient 

strength, 8 the duration of the gradient pulse and A the interva1between the gradient pulses. 

The effect of T2 (spin-spin relaxation time) is constant when c is kept constant and is 
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contained in A*2„ the amplitude of the echo in the absence of gradient pulses. The self-

diffusion coefficient can be obtained from the relationship between the amplitude of the 

NMR signal and the other NMR parameters as shown in eq 3.3. The error of the 

measured self-diffusion coefficients was estimated as less than 5%. In the NMR 

experiments, the gradient pulse duration ö varied from 0.1 ms to 60 ms, the other 

parameters were kept constant and their values are those noted in the parentheses: half 

spin echo time r (120-140 ms); gradient pulse interval A (the same as -c), recycle delay 

(8-60 s), number of acquisitions (4-8), 90° pulse length (22-35 p,$), spectral width (10 

kHz), and line broadening (5-10 Hz). 

A nonlinear least-square fitting method was used to fit the experimental data to 

the diffusion model (eq 3.1) and the errors listed in Table 3.2. are expressed as the 

root-mean-square (RMS) fractional errors. 

3.4. Results and Discussion 

Figure 3.1A represents a series of typical 1H NMR spectra of a PVA-water-

PEG system from a PGSE experiment with varying gradient pulse duration 8 and 

constant gradient strength. The NMR signals of all components in the system are very 

well resolved. Even though D20 was used as the solvent, the peak of the residual 

water (resulting from exchange with the protons of the hydroxyl groups in the system) 

was observable only when shorter gradient pulses were used. This signal rapidly 

disappears as the duration of the gradient pulses increases, indicating a faster self-

diffusion of the molecule. Only one proton signal was observed for PVA under the 

experimental conditions used. This signal is attributed to the CH2  group on the main 

chain of PVA. It is little affected by the duration of the gradient pulses, indicating a 

much slower diffusion rate. The most intense signal in this case belongs to PEG-2000. 

It is of note that the signal intensities here are not indications of the abundance of the 

protons, but rather the effects of the spin-spin relaxation times and diffusion rates of 

the individual molecules. Figure 3.1B shows the logarithms of the NMR signal 

intensities plotted as a function of the NMR parameter 82(A — 8/3). According to eq 

3.3, this relationship is linear and the slope of the line equals —y2G2D. 
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Figure 3.1. (A) 1H PGSE-NMR spectra of the PVA-water-PEG-2000 system at 43 °C, 
showing proton signal attenuation with increasing gradient pulse durations (5). [PVA] = 0.03 g/ml, 
G = 0.491 T/m, interval between gradient pulses A = 120 ms, and recycle delay was 12 s. (B) 
Semilogarithmic plot of the signal intensities as a function of 52(A-5/3) (eq 3.3) for PVA, PEG-
2000 and water proton signais. From the slope of these lines, the self-diffusion coefficients can be 

calculated. In tins particular case, DPVA = 3.18 x 10-11  m2/s, DpEG,2000 = 1.73 x 1049  m2/s, and Dwater  

= 2.77 x 10-9  m2/s. 
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When G is already known from calibration, D can be easily calculated from the 

slopes. For the diffusants investigated in this study, in general, monoexponential decays 

were observed, indicating that the samples were homogeneous and that the self-diffusion 

coefficients are monodisperse. We have also noticed some curvature of the line, 

particularly in the case of ethylene glycol, where the linear part with shorter gradient pulses 

were used for the calculation of the self-diffusion coefficients. The curvature might be due 

to the fact that ethylene glycol, being a small molecule with two hydroxyl groups, can form 

hydrogen bonds much more easily than the larger OEG and PEG molecules. However, 

further experimental evidence is needed to confirm such a hypothesis. 

3.4.1. Effect of Polymer Concentration 

The measured self-diffusion coefficients of EG, OEG and PEG as a function of 

PVA concentration are shown in Figure 3.2. It is evident that there is a decrease of the 

values ofD with increasing PVA concentration for each of the solute probes. The PVA 

concentration ranged from 0 to 0.38 g/ml, close to which the solutions became viscous 

gels. The difference of the self-diffusion coefficients of the solute probes at lower PVA 

concentrations are greater and it appears that all of the measured D values approach a 

common low value at high PVA concentrations. 

In a recent work, Matsukuwa and Ando studied the diffusion of PEG in water 

and poly(N,N-dimethylacrylamide) gels by 1H PGSE NMII spectroscopy [26]. The D 

value for PEG-4250 (ca. 1.2 x 1040  m2/s, for 1 wt% aqueous solution at 303 K) is 

comparable with the Do  value determined for PEG-4000 (0.95 x 10-10  m2/s) at 23 °C 

in this report. Their experimental temperature is about 7 °C higher, and their PEG 

samples seemed more polydisperse (M/Mn  < 1.19) than the sample used in this study. 

They have also observed decreases in D values as the degree of swelling of the gels 

decreased, which corresponds to a higher concentration of the polymer matrix [26]. 
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3.4.2. Effect of Molecular Size of the Diffusant 

In Figure 3.2, we can observe the dependence of the measured D values of the 

solute probes on their molecular sizes. In general, the D values decrease as the molecular 

size of the diffilsant increases for the entire PVA concentration range studied. The self-

diffusion coefficients of EG measured at different concentrations of PVA are signfficantly 

higher than the oligomers and polymers (Figure 3.2A). As the molecular weight (My) or 

the molecular size of the diffusant increases, the measured D value decreases. The 

difference in D values of PEGs with different M„, becomes less signfficant as the M of 

PEG increases, especially at higher PVA concentrations (Figure 3.2B). The hydrodynamic 

radii of the diffusants, Rh, can be calculated from the Do  value by the use of the Stokes-

Einstein equation (Table 3.2) and give an indication of the relative size of the diffusants. 

The effect of the molecular size of the diffusant on self-diffusion observed here is similar to 

those observed in other types of gels and solutions by the radioactive tracer method [27] 

and the results of another study in cellulose gels and membranes [28]. It is to be noted that 

the D values measured by PGSE NMR methods here and in the study of Matsukuwa and 

Ando [26] are in the same order of magnitude with results obtained by other methods 

[27,28], but they seem to be consistently lower in values. As shown in Table 3.2, Rh of 

the probes increases in a non-linear fashion as a function of the molecular weight of the 

PEG samples. The use of Rh as an indication of the molecular size is justffied in this case 

since all the probes used are linear oligo- and poly(ethylene glycol)s. However, the Rh value 

does not take into account the effect of molecular shape. The study by Won and Lodge 

showed that the diffusion behavior of linear and star-shaped polystyrene probes in 

poly(vinyl methyl ether)-toluene systems are different since the freedom of motion of the 

linear polymer is much higher than that of the star-shaped molecules [20]. The same is true 

for the diffusion of polystyrene latex spheres [29]. Therefore, precautions should be taken 

when Rh is used to indicate the molecular size of the diffusant probes having various 

molecular shapes. The Stokes-Einstein equation may even fail at higher concentrations of 

polymers [30]. The hydrodynamic radius of the diffusants may also change as a function of 

polymer concentration silice the diffusion coefficient and viscosity are independent 
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parameters [29,30]. Rh  values in Table 3.2 are calculated from Do and are regarded as a 

molecular size parameter in our discussion. 

Table 3.2. Hydrodynamic radii, self-diffusion coefficients and fitting parameters kf32  

and v obtained for the diffusants (EG, OEG and PEG) in aqueous PVA systems, at T 

= 23 °C. 

Sample Rh Do  (10-10 m2  /s) Kp2 v RMS 

(Å) Measured calculated (10-10  m2/s) Error 

EG 2.43 9.37 9.56 0.28 0.76 0.13 

(EG)3  3.91 5.95 5.95 0.23 0.60 0.08 

(EG)4 4.32 5.38 5.42 0.24 0.59 0.05 

(EG)5 5.08 4.58 4.85 0.25 0.60 0.04 

(EG)6 5.70 4.08 4.08 0.21 0.63 0.06 

PEG-200 4.81 4.84 4.85 0.24 0.60 0.08 

PEG-400 7.00 3.31 3.34 0.23 0.56 0.04 

PEG-600 12.48 1.86 1.87 0.12 0.58 0.002 

PEG-1000 13.99 1.66 1.66 0.12 0.49 0.02 

PEG-1500 20.59 1.13 1.13 0.068 0.54 0.02 

PEG-2000 22.69 1.07 1.02 0.053 0.53 0.001 

PEG-4000 24.35 0.958 0.96 0.047 0.50 0.01 
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Figure 3.2. Self-diffusion coefficients of the solute probes, (A) EG and OEG and (B) 

OEG and PEG, plotted as a function of PVA concentration at 23 °C. Dashed fines are fits 

to eq 3.1. 
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Figure 3.3. Self-diffusion coefficients of PEG-600 plotted as a function of PVA 

concentration at four different temperatures. Dashed lines are fits to eq 3.1. 
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3.4.3. Effect of Temperature 

We have studied the variable temperature effect on the self-diffusion coefficients of 

selected solute probes such as EG, PEG-600 and PEG-2000. As one may expect, the D 

values increase for a given diffusant as the temperature rises. An example of the plots ofD 

values as a function of PVA concentration at different temperatures (PEG-600) is shown in 

Figure 3.3. The experimental data can be fitted very well to eq 3.1 for each of the 

temperatures studied and for all the probes used, including EG and PEG-2000. 

3.4.4. Correspondence with the New Diffusion Model 

As shown in Figures 3.2 and 3.3, the experimental data can be fitted very well with 

the new model of diffusion as expressed in eq 3.1. In order to use the model to estimate 

and eventually to predict the diffusion behavior in polymer systems, it is necessary to obtain 

values of the fitting parameters in eqs 3.1 and 3.2. The quantity of k132  is related to the 

jump frequency k of the diffusant while 13  is a characteristic constant. Clearly, the jump 

frequency should be related inversely to the molecular size of the diffusant. Vales of 1432  

can be obtained from fit the experimental data to eq 3.1, but a separate value for k cannot 

be ex-tracted since the value of the constant 13 is not known. They can be related to the 

hydrodynamic radii of the diffusants, Rh. The logarithm of the parameter k132  as a function 

of.Rh  has more or less a linear relationship (Figure 3.4A), which confinns that an increase 

in the molecular size of the diffusant leads to a lower jump frequency, k. The following 

empirical expression can be obtained for this series of probe molecules: 

log 432  = —0.0356R„ —10.45 	 (3.4) 

which provides a rough estimate of the k132  value of 23 °C for a given OEG or PEG 

diffusant with a known Rh, which can be calculated from the Do  value as shown above. 

The second fitting parameter, v, should remain more or less a constant for a given 

polymer system. Figure 3.4B shows that indeed v can be regarded to be characteristic of 

the PVA-water system since the variation of v is small for the series of OEG and PEG 

studied. The average value of v obtained in this study (ca. 0.58) is similar to that obtained 

previously for the sa.me system [21]. A certain deviation was observed for the very small 

molecules such as ethylene glycol itself (v = 0.76), probably as a result of the curvature in 
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the measurement of the diffusion coefficient as discussed previously. In addition, we can 

also notice a slight decrease in v as a function of the hydrodynamic size of the diffusants in 

this series. This decreasing trend, however, is very small and may be regarded as negligible 

when the RMS errors of the fits (Table 3.2) are taken into account. 

As shown in eq 3.2, the jump frequency k for a given diffusant is expected to be 

dependent on the temperature. The 1432  values can be obtained from fits to eq 3.1 at each 

temperature. Since we assume that f3 is a constant within the temperature range studied 

here, the relationships between 432  and T shown in Figure 3.5 can be regarded as the 

relationship between k and T. The Arrhenius plots (log kp2  vs 1/T, as in eq 3.2) in Figure 

3.5 show excellent linear relationships. The energy barrier AF can be calculated from the 

slopes of the linear plots. We have obtained AT; values of 30, 36.5 and 39 kJ/mol, 

respectively, for selected diffusants EG, PEG-600 and PEG-2000. Previously, we have 

calculated the energy barrier for tert-butanol (tBuOH) to be 21 kJ/mol in the same system 

over the same temperature range [21]. The data points are also plotted in Figure 3.5. The 

molecular weight of tBuOH is higher than that of EG, but the energy barrier for the 

diffusion of tBuOH is lower. The higher facility of EG in fonning hydrogen bonds with the 

polymer matrix and with the aqueous environment is probably the reason for its higher 

energy barrier of diffusion than that of tBuOH. The effect of hydrogen bonds on diffusion 

of small molecules was also evidenced when trimethylamine was compared with 

tetramethylammonium cation [15]. Since PEG is a flexible linear polymer, the increase in 

molecular weight of PEG does not seem to increase the energy barrier of diffusion to a 

great extent. There is a clear trend that the energy barrier of diffusion increases with 

increasing molecular size of the diffusant, which leads to smaller self-diffusion coefficients. 
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Figure 3.4. (A) Semilogarithmic plot of 432  and (B) plot of the parameter v, as a function 

of the hydrodynamic radius, Rh, of this series of diffusants in PVA-water systems at 23 °C. 
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for selected diffusants. The potential energy barriers can be ca1culated from the slopes of 

these fines. 
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3.5. Concluding Remarks 

We have measured the self-diffusion coefficients of a series of diffusant probes 

based on ethylene glycol in PVA aqueous solutions and gels. These diffusants ranged from 

the monomer EG, to ofigomers and to polymers with a molecular weight up to 4000 

g/mol, which enabled us to link the diffusion behavior of small to large molecules in the 

polymer system. The newly proposed physica1 model of diffusion is used successfully in 

the treatment of the self-diffusion data of these molecules. The effects of polymer 

concentration, molecular size of the diffusants and temperature can be described by the 

model. The jump firequency k, a physical parameter defined in the model, is shovvn to 

depend on the size of the diffusant as well as on temperature, while the parameter v in the 

model remains more or less a constant of the given system. In this study, the 

hydrodynamic radii of the diffusants have been used to account for the changes of 

molecular size of the diffusants. The energy barriers of diffusion have been obtained from 

the variable temperature studies for selected diffusants of different sizes. Further studies 

are under way in an effort to elucidate the effect of molecular shape of the diffusant as well 

as the effects of hydrogen-bonding and other interactions in the diffusion of solutes in 

polymer systems. 
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4.1. Abstract 

We have measured the self-diffusion coefficients of a series of oligo- and 

poly(ethylene glycol)s with molecular weights ranging from 150 to 10000, in aqueous 

solutions and gels of poly(vinyl alcohol) (PVA), using the pulsed-gradient spin-echo NMR 

technique. The PVA concentrations varied from 0 to 0.38 g/mL which ranged from 

dilute solutions to polymer gels. Effects of the diffusant size and polymer 

concentration on the self-diffusion coefficients have been investigated. 	The 

temperature dependence of the self-diffusion coefficients has also been studied for 

poly(ethylene glycol)s with molecular weights of 600 and 2000. Several theoretical 

models based on different physical concepts are used to fit the experimental data. The 

suitability of these models in the interpretation of the self-diffusion data is discussed. 

4.2. Introduction 

Diffusion of various solutes and solvents in polymer solutions and gels has drawn 

much research attention in recent years because of the growing theoretical and practical 

interests in the subject. The diffusion of plasticizers [1], the miscibility of polymers [2], the 

permeability through membranes [3], and the controlled release of drugs [4] are all related 

to the diffusion process in polymer systems. The study of diffusion can provide important 

information regarding the applications of the materials. 

With the availability of more experimental data, physical models of diffusion are 

needed for the interpretation of the results. Various physical models of diffusion have been 

proposed over the years [5-18]. These models are generally divided into three categories 

based on considerations of the obstruction effect [5-8], the free volume effect [14-18] and 

the hydrodynamic interactions [9-13] in polymer systems. In addition, new models of 

diffusion have been proposed recently which combine the different physical concepts 

[19,20]. The usefulness and limitations of many of the existing models have been 

documented [20-23]. Therefore, it is important to test the existing diffusion models with 

data obtained for a better understanding of the diffusion process and to verify the 

applicability of the models. 
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We have studied the self-diffusion coefficients of a series of linear 

poly(ethylene glycol)s in poly(vinyl alcohol) aqueous solutions and gels by 1F1 pulsed-

gradient spin-echo NMR spectroscopy. The selected diffusants include oligo- and 

poly(ethylene glycol)s in an effort to make a link between the diffusion of small and 

large diffusants. The polymer concentrations in this study cover the dilute, semidilute, 

and concentrated regimes as defined by de Gennes [12]. Effects of the diffusant size, 

polymer concentration and temperature have been studied. We have used the 

diffusion model of Petit et al. [24] for the treatment of the data in a previous paper 

[25]. The model of Petit et al. seems adequate in the description and interpretation of 

the self-diffusion of diffusants of various sizes over a large range of polymer 

concentrations [23]. The interpretation of the effects of diffusant size, polymer 

concentration, and temperature was also successful. However, it seems that interest 

has mounted and it was requested to use some of the other models for the 

interpretation of the data. Questions were raised concerning the applicability of the 

other models in the literature, particularly the suitability for ternary systems. We 

report here the analysis of the data with several pertinent diffusion models. 

Agreements between the diffusion data and the theoretical lits are verified and the 

physical meanings of the parameters in the models are discussed. 

4.3. Theoretical models of diffusion 

4.3.1. Models based on obstruction effects. 

The polymer chains of the network are considered here as motionless and 

impenetrable. Consequently, the diffusion of a solute in the system is hindered due to the 

obstruction by the polymer chains. The root-mean-square displacement of the solute is 

increased when the polymer matrix concentration is increased, which leads to a decrease of 

the diffusion coefficient of the diffusing molecule. 

Mackie and Meares [6] developed an expression for the diffusion inside a gel. 

They considered the gel as a solvent-polymer lattice model that blocks a fraction of the 

sites. The diffusion inside the lattice is possible for a solute of a size equal to or smaller 
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than that of the monomer units of the polymer, The diffusion is predicted to decrease with 

the volume fraction of the polymer, cp, following the equation 

(4.1) 
Do  — 1+q))  

where D and Do are the self-diffusion coefficients of the diffusant in the presence and in the 

absence of the polymer matrix. 

A more phenomenological approach was proposed by Ogston et al. [7] based on a 

lattice model for the solvent-polymer gel system. They considered the polymer as 

randomly oriented fibers, whereas the solute was considered as a hard sphere. The 

diffusion behavior was assumed to correspond to the average displacement of a sphere in a 

solution oflong fibers of negligible width 

D 
— = exp 
Do  

_ 
rs  +r f  1/2  
	9 r f  _ 

(4.2) 

  

where r, is the hydrodynamic radius of the solute, and rf  the hydrodynamic radius of the 

fiber, i.e., polymer network. [L'équation 4.2 est identique à l'équation 1.12, page 20, et 

les paramètres utilisés dans les deux équations ont la même signification physique malgré 

la notation différente]. 

4.3.2. Free volume models 

In these models the diffusion process is considered as a succession of jumps into 

voids created by the thermal motion of all the molecules present in the system. The voids 

are also due to the redistribution of the free volume within the liquid [26]. The 

contribution to the free volume is assumed to be mainly from the solvent. Therefore, 

solute or solvent diffusion decreases with increasing polymer concentration. The 

diffusion of a solute is a function of the probability to find a void large enough to 

allow the diffusion of the solute. The free volume models of Fujita cannot be used to 

describe diffusion in aqueous systems because of the numerous interactions between 

the solvent molecules [14]. The model of Vrentas-Duda [16,17] and Vrentas-Vrentas 

[18] can be used for the diffusion in binary polymer-solvent systems. Because of the 

numerous physical parameters needed, it is difficult to apply this model to ternary 
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systems. Yasuda et al. [15] proposed a free volume model that can be used for 

ternary aqueous systems when the solute probe is present in low concentrations, i.e., 

the total free volume is mainly contributed by the solvent. It was assumed that there 

are no interactions between the solute and the polymer. Yasuda et al. [15] 

successfully analyzed electrolyte diffusion in organic and aqueous systems by using the 

following equation 

Bs ( 	1 

1 	1-  (r) , _ 

where Bs  is the minimum hole size required for diffusant displacement and f: is the 

free volume of the solvent in the system. 

4.3.3. Hydrodynamic models 

In these models, the hydrodynatnic interactions between the diffusants (solvent or 

solute) and the polymer are taken into account and the polymer chains are considered to be 

mobile. Phillies proposed a model to describe the self-diffusion of one macromolecule 

(polymers and proteins) in another over a wide range of polymer concentrations [13]. The 

polymer chains are considered to be mobile and can be described by spheres joined by rods 

that can rotate as defined by Kirkwood and Riseman [27]. The universal equation 

proposed by Phillies takes the form 

D = Do  exp(--occ v ) 	 (4.4) 

where c is the polymer concentration, a and v are scaling parameters. According to 

Phillies, a depends strongly on the molecular weight ( cx, M 0-9±.0.1 ) for macromolecular 

diffusants, whereas it depends on the hydrodynamic radius (a — Rh ) for smaller diffusants 

[28-31]. The scaling parameter v should range between 1 for low molecular weight 

diffusants and 0.5 for high molecular weight diffusants [30]. Between these limits, it scales 

according to v —.NF" Eq 4.4 provides good fits to the experimental data in many 

polymer systems [13]. However, the dependence of the parameters cc and v remains a 

source of disageement [32,33]. Severa1 authors argued that the scaling parameters lack 

D =Do  exp (4.3) 

135 



Partie II, Chapitre 4 	 Références page 150 

physical significance and that the good fits obtained with eq 4.4 reflect more the fledbility 

of the equation than its physical significance [34-36]. 

The reptation theory was introduced by de Gennes [11], who studied the self- 

diffusion coefficient of a polymer chain 	trapped inside a three-dimensional network P, 

with P and M of similar molecular weights. The diffusing polymer chain is considered to 

be surrounded by fixed obstacles represented by the gel. Therefore, the leading 

displacement of the polymer chain corresponds to a "tubulaf or reptationa1 behavior. The 

self-diffusion coefficient of a large polymer is predicted to scak with its molecular weight 

according to: D —M -2  . The diffusion of the same polymer chain in an unentangled 

system, i.e., dilute system, is described by the Rouse model [37]: D — M -1  . The original 

reptation model was later extended by de Gennes to the diffusion of a polymer in a polymer 

network with a higher molecular weight than the diffusant, P>M [12]. This new reptation 

plus scaling concept takes into account the dependence on the matrix concentration, c. 

The scaling arguments led to the following predictions: D —M'c'under O-solvent 

condition, and D — M -2c-1.25  in a good solvent. 

4.3.4. Combined theory 

Recently, Amsden [20] proposed a new diffusion model by combining the free 

volume theory with the obstruction and scaling concepts. This model takes into account 

factors concerning the chain stiffness, the chain radius and the volume fraction of the 

polymer as well as the size of the diffusant [20]. The transport of a molecule through a 

hydrogel matrix depends on the probability of finding holes larger than the diffusant 

diameter (free volume concept). The distribution of the holes, or the openings between the 

polymer fibers, is described by the expression given by Ogston et al. (eq 4.2). Amsden 

evalated the distance between polymer chains, or the openings, with the help of scaling 

concepts and the following expression is obtained 
\ 2 + r f  

(4.5) = exp 
Do  f (k, +21l2)2 
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where r is the hydrodynamic radius of the solute, rf  the radius of the polymer chain, and k1 

a constant for a given polymer-solvent system [l'équation 4.5 est identique à l'équation 

1.68 page 69 malgré la notation différente: D/Do  au lieu de De I D.]. This model was 

used successfully in the treatment of the diffusion of proteins (pepsin, ovalbumin, bovine 

serum albumin and fl-lactoglobulin) in sodium alginate gels for diluted regirnes = 0.005-

0.05) [20]. 

4.4. Experimental 

The characteristics of the polymers, i.e., oligo- and poly(ethylene glycol)s (OEG 

and PEG) as well as poly(vinyl alcohol) (PVA), used in this study have been reported 

previously [25]. PVA was dissolved in D20 containing 1 wt % of an OEG or PEG solute. 

The PVA concentration ranged from 0 to 0.38 g/tnL. The experimental details on the 

NMR instrumentation used for the diffusion studies, the pulsed-gradient spin-echo NMR 

sequence used, as well as the calibration of the gradient pulses have been described 

previously [23,25]. In the present study, PEG with a higher molecular weight (PEG-

10000), purchased from Aldrich (Milwaukee, WI), was also used as a solute probe. lis 

molecular weight was determined by size exclusion chromatography (SEC) as described 

previously [25]. The number and weight average molecular weights (34 and M) of PEG-

10000 were found to be 10 158 and 11 445, respectively, with a polydispersity of 1.12. 

To measure the molecular weight of the PVA used, the solutions were prepared 

with sodium thiocyanate in a salt/polymer weight ratio of 1.5 to 1 to prevent the 

aggregation of PVA [38]. SEC experiments were also performed on a Waters 600 

controller system, equipped with a Waters 410 differential refractometer and two 

Ultrahydrogel colurnns of nominal porosity of 10 and 6 1.1,m (Ultrahydrogel 500 and 120), 

respectively, with water as the eluent. The My, of PVA was found equal to 52 800 with a 

polydispersity of 2.09. Static light scattering measurements were performed on a Dawn-B 

instrument (Wyatt Technology Corp., Santa Barbara, CA) in combination with a helium-

neon laser operating at 632.8 nm at room temperature. An incremental refractive index of 

0.159 mL/g was used. PVA molecular weight was found to be (52 ± 4) x 103  g/mol. The 

My values determined by the two techniques are quite similar. 
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4.5. Results and discussion 

The diffusion data of the series of oligo- and poly(ethylene glycol)s in PVA are 

examined to demonstrate the effect of the concentration (e) or volume fraction ((p) of the 

polymer matrix (PVA), the temperature (T) and the size (Rh ) or molecular weight (A4) of 

the diffusant. The effect of the molecular weight of the polymer matrix (P) was not 

examined in this study. Note that D should be independent of P when the molecular 

weight of the diffusant is lower than P [35]. 

4.5.1. The obstruction models 

Figure 4.1 shows the normalind self-diffusion coefficient of selected diffusants as a 

function of the volume fraction of the polymer matrix. The selected diffusants include an 

ofigomer, PEG-200 whose major components are tetra(ethylene glycol) and penta(ethylene 

glycol) according to SEC analysis, and a polymer, PEG-2000. The self-diffusion 

coefficient decreases when the volume fraction of the polymer is increased and the self-

diffusion coefficient decreases also with increasing size of the diffusant. The dashed line 

represents the prediction with the model of Mackie-Meares [6]. The correlation between 

the model and the data is quite poor since the model of Mackie-Meares does not take into 

account the properties (size, molecular weight, etc.) of the diffusant. Waggoner et al. [22] 

have shown that eq 4.1 can be used relatively successfully to describe organic solvent 

diffusion in polymer systems. But the model of Mackie-Meares cannot be used to describe 

the diffusion of larger diffusants. 

The dotted fines in Figure 4.1 are fits with the model of Ogston et al. [7] for PEG-

200 and PEG-2000, respectively. Eq 4.2 appears to provide improved correlation to the 

data as the physical properties of the diffusant are taken into consideration, but the fits still 

deviate significantly from the data. Fits to the experimental data with rs  and rf  as free 

parameters provided a larger hydrodynamic radius (rs) for PEG-200 (10.4 A) than for 

PEG-2000 (9.27 Å), while different values for rf  were obtained (5.58 and 3.37 ik) for the 

two systems. This does not seem reasonable. When, the r, values were fixed to the Rh 

values calculated from the Stokes-Einstein equation (Table 4.1), different values of rf  (2.57 

and 8.25 Å) were obtained for PEG-200 and PEG-2000, respectively. But these fits did 
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not show any perceivable changes when compared to the fits obtained with free 

parameters. Previously, Amsden [20] reported studies of protein diffusion in alginate gels 

and found that the model of Ogston et al. failed to describe the results. Johanson et al. 

[39] also reported a failure of this model for the diffusion of albumin in solutions of 

hyaluronic acid and dextran. 

Table 4.1. Hydrodynamic radii calculated from the Stokes-Einstein equation, 

measured self-diffusion coefficients (Do) and fitting parameters Do, a and v obtained 

for the diffusants (0EGs and PEGs) in aqueous PVA systems according to eq 4.4. 

Sample Rh (Å) Do (1040  m2/s) 

Experimental 	Fitted 

(EG)3  3.91 5.95 5.96 4.72 0.70 

(EG)4  4.32 5.38 5.42 4.78 0.74 

(EG)5  5.08 4.58 4.62 4.47 0.79 

(EG)6  5.70 4.08 4.08 4.45 0.80 

PEG-200 4.81 4.84 4.85 4.81 0.80 

PEG-400 7.00 3.31 3.34 4.32 0.79 

PEG-600 12.48 1.86 1.87 4.16 0.78 

PEG-1000 13.99 1.66 1.66 3.64 0.64 

PEG-1500 20.59 1.13 1.13 4.10 0.70 

PEG-2000 22.69 1.07 1.02 4.33 0.66 

PEG-4000 24.35 0.96 0.96 4.42 0.61 

PEG-10000 50.62 0.45 0.45 10.95 0.84 
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9 

Figure 4.1. Plot of the normalized self-diffusion coefficient of selected diffusants as a 

function of the volume fraction of the PVA. Dashed line is fit to eq 4.1. The two dotted 

lines are fits to eq 4.2 for PEG-200 and PEG-2000. 
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4.5.2. The free volume model 
A semi-logarithmic plot of the normalized self-diffusion coefficient as a function of 

1/(1-w) is shown in Figure 4.2. The dashed lines are fits to eq 4.3 and should be straight 

lines. Linear fits are only observed for low volume fractions of the polymer. In addition, a 

gradual deterioration of the fits to the data is observed as the size of the diffusant is 

increased. This free volume model provides good agreement with the data for low 

polymer concentrations and for smaller diffusants, but fails for high polymer concentration 

where the hydrodynamic interactions are not negligible. Hennink et al. [40], Petit et al. 

[23] and Amsden [20] pointed out the limitations of this model. It seems that it is not 

suitable to describe probe diffusion when the diffusant size is close to the hydrogel 

mesh size where screening effects started to occur [23,40]. 

4.5.3. The hydrodynamic models 

Phillies universal equation was used for the treatment of the diffusion data. The 

self-diffusion coefficients of PEGs are plotted as a function of PVA concentration in Figure 

4.3A. Dashed lines are fits to eq 4.4 with floating parameters, including a, v and Do. 

Fixing Do  to the measured value does not induce significant variations of the results. The 

fitting parameters for OEGs and PEGs are listed in Table 4.1. The measured values of Do  

and those obtained from fits to eq 4 are very close. Lodge and co-workers [34-36] studied 

the self-diffusion of linear and star polystyrenes in poly(vinyl methyl ether)/o-fluorotoluene 

systems by dynamic light scattering. They reported systematic difference between the 

measured and calculated Do  values by as much as a factor of 2, and the difference was 

attributed to the polymer coil contraction with increasing matrix concentration [35]. In our 

case, such a deviation is not observed for OEG and PEG, as shown in Table 4.1 and Figure 

4.3, even at high PVA concentrations that correspond to hig,hly viscous gels. 
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fits to eq 4.3. 
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Phillies related the parameters a and v to the molecular weight of the diffusants 

(M) [31]. Figure 4.4 shows the variation of Rh calculated with the Stokes-Einstein 

equation as a function of M of the diffusants (PEGs). As expected, Rh increases as a 

function of M. The a values obtained by fitting the diffusion data in Figure 4.3A are 

reported in Table 4.1. With the exception of PEG-10000 (a = 10.95), the parameter a 

seems to remain quite constant. A linear dependence between a and Rh was suggested by 

Russo et al. [41], but Park et al. [42] and Gibbs and Johnson [43] reported a being equal 

to 3.03 Rh°39  and 3.2 Rh°33, respectively, which is not observed in this study. The 

parameter v is found a1so to be more or less constant with an average value of 0.74 for the 

present diffusants (Table 4.1). According to Phillies, v should be equal to 1 for sma11-sized 

diffusants and 0.5 for macromolecules [30]. To further evaluate the parameters, we have 

fixed v to the average value of 0.74 to fit the data again, leaving a and Do as free 

parameters. The fitting curves are reasonably good except for the high polymer 

concentration end, where the best fits deviate somewhat from the experimental data 

(results not shown). The values of Do  were very close to the experimental values and the 

parameter a was found to vary between 3.91 and 5.83 (with the exception of PEG-10000 

for which a = 8.31). 

We have studied the temperature effect on the self-diffusion coefficients of selected 

solute probes: tBuOH, PEG-600, and PEG-2000, an example of which is shown in Figure 

4.3B (PEG-600). It is clear that the diffusion data can be fitted quite well to eq 4.4 over 

the whole concentration range at all temperatures. Phillies indicated that a decreases while 

v increases with increasing temperature [31]. Within the temperature range between 23 

and 53 °C for each diffusant studied here, no significant change is observed for the scaling 

parameters a and v with varying temperatures. However, the variation with temperature is 

evidenced by the Arrhenius behavior of Do, as shown in Figure 4.5. The activation 

energies of the selected diffusants can be estimated from the slopes of the lines. Values of 

18.4±2.0, 31.0-13.9, and 27.1±7.0 kJ/mol are obtained for tBuOH, PEG-600, and PEG-

2000, respectively. The lower activation energy for PEG-2000 as compared to PEG-600 

may reflect the errors of the estimates. The activation energy obtained with the model of 
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Petit et al, provided increasing activation energies with increasing size of the diffusant 

(30.0, 36.5 and 39.0 kJ/mol, respectively), based on the same experirnental data [25]. 

De Gennes reptation model [11] can also be used to describe the diffusion of one 

polymer in another. Tests have shown that de Gennes' model is not suitable to describe 

the diffusion of these molecules. Although the PEG diffusant used in this study have 

molecular weights as high as 10000, it is considered that they are too small for reptation to 

take place. 

4.5.4. Amsden's model 

Figure 4.6 shows the normalized self-diffusion coefficient of selected probes as a 

function of the volume fraction of the polymer. In general, eq 4.5 with floating parameters 

(r„ rf  and k1) provided good fits to the experimental data as shown by the examples in 

Figure 4.6. PEG-10000 was not studied over the same polymer concentration range due 

to solubility problems of this PEG at higher PVA concentrations. However, the fitting 

parameters of rs  and rf  obtained are far from any reasonable values (even negative values 

were obtained). Therefore, we have tried to fix r to the Rh values listed in Table 4.1 

during the fittings, but negative values of rf  were obtained in each case while k1  was not 

found to be a constant either. The fitting curves, however, overlap nicely with the data 

points. Therefore, the physical meaning of the parameters needs to be clarify with further 

studies. 

144 



o 	 • 
• V•  ià • 	• • • _ 

• 23°C 
• 33°C 
• 43°C 
• 53°C 

Partie IL Chapitre 4 	 Références page 150 

5 

s s  
- 

2- 
..-,

o 	S5 

a, 

• 's,'"k•-- 
1 	

------ -•- ----------  ------- 

7 

PEG-200 
PEG-400 
PEG-600 
PEG-1000 
PEG-1500 
PEG-2000 
PEG-4000 

• PEG-10000 

-,r_ 	---- 
0 

_ 

---- --- 	--- - --- 	------ 
0 
00 	0,1 	0,2 0,3 	04 

[PVA} (g/mL) 

Figure 4.3. (A) Self-diffusion coefficients of selected PEGs plotted as a function of PVA 

concentration at 23 °C. (B) Self-diffusion coefficients of PEG-600 plotted as a function of 

the PVA concentration at four temperatures: 23, 33, 43, and 53 °C. Dashed lines are fits 

to eq 4.4. 
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Figure 4.4. Plot of the hydrodynamic radius, Rh, as a function of molecular weight M of 

the PEG diffusants. Dashed lines are drawn to indicate the general trend of the variation. 
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Figure 4.5. Semilogarithmic plot of the self-diffusion coefficients Do  as a function of the 
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4.6. Conduding remarks 

Complementary to the analysis of the diffusion data [25] with the model of Petit et 

al. [24], we have used various pertinent physical models of diffusion in the treatment of the 

diffusion data obtained for poly(ethylene glycol)s in PVA ternary aqueous solutions and 

gels in an effort to verify the applicability of these models in the interpretation of the 

diffusion data in such systems. It is obvious that the models based on the obstruction effect 

are not suitable for such a purpose. The free volume model of Yasuda et al. can be used 

for the description of the diffusion in the dilute samples of the series, but cannot be used for 

the concentrated samples. Because of the low molecular weights of the diffusants used, 

the scaling relationships in the reptation models of de Germes were not found with these 

diffusants. 

The universal equation proposed by Phillies provided good fits to the diffusion data 

over the whole range of polymer concentrations for the diffusants and temperatures 

studied. The scaling parameter v seems to be a constant for the system, while the variation 

of cc cannot be correlated to the property of the diffusants. But the flexibility of this 

equation (eq 4.4) is clearly confirmed. The variable temperature effect was shown mainly 

by the Arrhenius behavior of the self-diffusion coefficient of the solutes in the absence of 

polymer, Do, from which the activation energy of diffusion can be estimated. It should be 

noted that the molecular weights of the PEG diffusants used here are still much lower than 

that of the matrix polymer. 

The idea of combining different concepts to describe the diffusion in polymer 

systems is interesting. The new model proposed by Amsden is a good example in this 

effort. This model was shown to be quite flexible and provided good fits to the 

experimental data, but the physical significance of the parameters used in the model cannot 

be confirmed by the results. 
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5.1. Abstract 

We have studied the self-diffusion of a series of end-capped ethylene glycol 

and oligo(ethylene glycol)s in poly(vinyl alcohol) aqueous solutions and gels by 

pulsed-gradient spin-echo NMR spectroscopy. The end groups of the diffusants 

include small flexible groups (methyl, ethyl, hexyl) and bulky rigid groups (tert-butyl 

and aromatic groups). The effect of the size and geometry of the end groups on the 

self-diffusion coefficients of the derivatives of ethylene glycol and of oligo(ethylene 

glycol)s is investigated. The diffusion data are analyzed with several physical models 

of diffusion based on different physical concepts to test their applicabilities. The 

variation of the parameters used in these diffusion models with the size and geometry 

of the diffusants is also discussed. 

5.2. Introduction 

The diffusion of small molecules in polymer solutions and gels has been a 

subject of increasing research interest in the last decade [1-10]. The understanding of 

the diffusion of small molecules in polymers is useful and important for the processes 

involving the devolatilization of monomer and solvent from polymer products [11], 

controlled release of drugs [12], membrane permeation [13], transport in porous 

medium [14,15], electrophoresis and gel filtration [16,17], etc. With the development 

of more convenient experimental techniques such as pulsed field gradient NIV1R 

spectroscopy [18,19], more diffusion data have become available [1,2,4,12]. The 

interpretation of the results has not been always easy [4,20-22] even with the 

availability of numerous physical models of diffusion in the literature [23-34]. In fact 

there remains disagreement regarding the applicability of the models for various 

polymer systems. Due to the origin of the physical concepts considered, including the 

obstruction effect [23,24], the free volume effect [28-32], or hydrodynamic 

interactions [25-27], limitations of the models to the different circumstances are 

bound to occur. It would be useful to verify the applicability of some pertinent 

diffusion models in the analysis of the diffusion results of relatively small molecules in 

polymer systems. 
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The diffusion in polymers may be influenced by various factors such as the 

concentration or the cross-linking of the polymer matrix, the temperature, and the size 

of the diffusants [19-21,35,36]. We have studied the effect of the size of the diffusant 

on its self-diffusion in poly(vinyl alcohol) (PVA) aqueous solutions and gels by using 

a series of linear diffusants based on ethylene glycol with increasing molecular weights 

[36]. It was found that at a given concentration of the polymer the size of the 

diffusant has the most significant effect on its diffusion [36]. However, the hydroxyl 

groups of ethylene glycol (EG) in these diffusants were found to interact strongly with 

the polymer system by the formation of hydrogen bonds. This was clearly shown in 

another report where the interaction of EG with PVA was studied by monitoring the 

changes in chemical shifts, self-diffusion coefficients and relaxation times [37]. 

Therefore, we would like to examine the effect of molecular size and geometry of the 

diffusant by the use of end-capped ethylene glycol and derivatives. To do this, we 

have studied the self-diffusion coefficients of a series of ethylene glycol derivatives as 

well as a crown ether in PVA-aqueous systems by pulsed-gradient spin-echo (PGSE) 

NMR. spectroscopy. Several pertinent models of diffusion are used in the analysis of 

the diffusion data and the physical significance of the parameters used in these models 

is evaluated as well. The results are also compared with those obtained with oligo-

and poly(ethylene glycol) diffusants in the same system. 

5.3. Experimental 

5.3.1. Nlaterials 

The diffusants used in this study are shown in Table 5.1 and Figure 5.1. These 

diffusants include ethylene glycol, oligo(ethylene glycol)s and their end-capped 

derivatives, a crown ether (18-crown-6) and 243-(6-Methy1-2-pyridy1)-propoxy] 

ethanol (MPPE). These compounds and poly(vinyl alcohol) (Mw  = 52 000, /14/Mr, = 

2.09, degree of hydrolysis 99 %) were all purchased from Aldrich (Milwaukee, WI) 

and used as received. D20 (99.9 %) was purchased from C.I.L. (Andover, MA). 
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Table 5.1. The structure and molecular weight (M) of the end-capped oligo(ethylene 

glycol)s used in this study. 

RIO —E" CH2—  CH2 0 I  R2  

Diffusant Abbreviation n R2 M (g/mol) 

Ethylene glycol EG 1 -H -H 62 

Ethylene glycol methyl ether EG-Me 1 -H -CH3  76 

(2-Methoxyethanol) 

Ethylene glycol dimethyl ether EG-Me2  1 -CH3 -CH3  90 

Ethylene glycol tert-butyl methyl ether EG-tBuMe 1 -CH3  132 

(1-tert-Butoxy-2-methoxyethane) C(CH3)3  

Di(ethylene glycol) methyl ether DEG-Me 2 -H -CH3  120 

Di(ethylene glycol) ethyl ether DEG-Et 2 -H -C2H5  134 

Di(ethylene glycol) hexyl ether DEG-He 2 -H -C6H13  190 

Diethylene glycol tert-butyl methyl 

ether 

DEG-tBuMe 2 -CH3  

C(CH3)3  

176 

Tri(ethylene glycol) methyl ether TEG-Me 3 -H -CH3 164 

Tri(ethylene glycol) dimethyl ether TEG-Me2  3 -CH3  -CH3  178 

Remarque: Le triéthylène glycol (TEG) ne figure pas dans cette étude car son profil 

de diffusion en fonction de la concentration en PVA comparé au TEG-Me et TEG-

Me2  montre l'existence de certains problèmes d'association. Une étude exhaustive est 

en préparation (cf: annexe). 
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18-crown-6 

H3C 	N 	CH2-CH2-CH2-0—C1-12-CF-12-0H 

243-(6-Methy1-2-pyridy1)-propoxyliethanol (MPPE) 

Figure 5.1. Chemical structure of the diffusants 18-crown-6 and 243-(6-Methy1-2-
pyridy1)-propoxyl]ethanol (MPPE) used in this study. 
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5.3.2. NMR measurements. 

The samples were prepared as described previously [22,36]. 	The 

measurements of the self-diffusion coefficients were carried out on a Bruker Avance 

AMX-300 NMR spectrometer operating of 300.13 MHz for protons. The 

temperature was set at 25 °C. The PGSE pulse sequence developed by Stejskal and 

Tanner [38] was used. A Bruker magnetic resonance imaging probe, Micro 2.5 

Probe, was used in conjunction with a gradient amplifier (BAFPA-40). Gradient 

pulses were applied only in the z direction. The calibration of the gradient strength 

and the temperature was described elsewhere [18,19,39]. The gradient strengths, G, 
used in this study ranged between 0.1 and 1 T/m. The other parameters were kept 

constant and their values are those noted in the parentheses depending on the 

experiments: gradient pulse duration (1-4 ms), gradient pulse interval (30-80 ms), 

recycle delay (10-25 s), number of acquisitions (1-8), 90° pulse (23-29 us), spectral 

width (3-8 kHz), line broadening (5-10 Hz). 

The fitting procedure of the experimental diffusion data to the physical models 

of diffusion was the chi-square (x2) minimization procedure available with Microcal 

Origin 3.5 (Northampton, MA) and the x2  values are listed in the tables. 

5.3.3. Rheological measurements 

Rheological experiments were carried out in order to characterize the PVA 

solutions and gels. A Bohlin VOR rheometer equipped with a couette for dilute 

solutions and with a cone for more concentrated solutions was used. Calibration of 

the rheometer was achieved with poly(dimethyl siloxane) standards. 	PVA 

concentrations were similar to those of the samples used for NMR measurements 

([PVA] = 0-0.38 g/mL) but without the diffusant. 

5.4. Results and discussion 

The rheological experiments of the PVA samples have shown that the PVA-

water systems are Newtonian solutions for a PVA concentration between 0 and 0.12 

g/mL. But for samples with PVA concentrations above 0.26 g/mL, the elastic 
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modulus (G) was higher than the viscous modulus (GH), which is characteristic of a 

gel. The samples of intermediate PVA concentrations lie in between these two cases. 

The measured self-diffusion coefficients of the solutes molecules in the PVA 

systems have been analyzed with several physical models with varying degree of 

success. The self-diffusion coefficient values, D, are those of the free diffusant 

(especially in the case of EG). 

5.4.1. The model of Petit et al. [35] 

In this model, the polymer network is considered as a transient statistical 

network characterized by a mesh size, . The diffusant is considered to reside 

temporarily inside a cavity until it has enough energy to diffuse to the next one. 

Therefore, the diffusion process is a succession of jumps over equal potential barrier 

[35]. The self-diffusion coefficient D is given as 

D=  D0 
1+ a e 2" 

where D is the self-diffusion coefficient, Do the self-diffusion coefficient without the 

matrix polymer, a and v are the parameters of the model. The parameter v depends 

on the solvent quality and should be a constant for a given system. In a previous 

study [36], v was found to be equal to 0.58 in PVA aqueous systems. The parameter 

a is given by 

Do  
a = 	 432  

where k is the jump frequency of the diffusant and f3 can be regarded as a constant for 

a given system. The parameter 432  depends on the size of the diffusant, such as the 

hydrodynamic radius (Rh ), and on the temperature [36]. Rh can be calculated with the 

Stokes-Einstein equation from the Do  values listed in Table 5.2: 

R  _ 	k9  T 
h 	67C 10  Do  

where kB  is Boltzmann constant, T the temperature, rio  is approximated as the 

viscosity of the solvent without the polymer. The Stokes-Einstein equation is 

(5.1) 

(5.2) 

(5.3) 
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applicable to spherical diffusants. Rh is used as an indication of the relative size of the 

diffusants, but the Rh value calculated from eq 5.3 does not necessarily take into 

account the effect of the molecular shape. Therefore, precautions should be taken 

when Rh is used to indicate the molecular size of the diffusants, as discussed previously 

[36]. 

Figure 5.2 shows the self-diffusion coefficients of EG and its end-capped 

derivatives as a function of PVA concentration with fits to eq 5.1. The modification 

of the hydroxyl groups of EG by the addition of one or two methyl group(s) does not 

change to any significant extent the self-diffusion coefficients at a given PVA 

concentration (Figure 5.2A). The most important difference is that for the end-

capped EG derivatives mono-exponential decrease of the spin-echo attenuation was 

observed, unlike in the case of EG, where both free and bond molecules were clearly 

evidenced [37]. This indicates that the methyl groups reduced or prevented the 

binding of EG to PVA. A bulky tert-butyl end group, however, affects much more 

the diffusion behavior of EG over the entire range of polymer concentrations. For the 

end-capped di(ethylene glycol) derivatives, the data are shown in Figure 5.2B. At a 

given PVA concentration D decreases with increasing size of the end alkyl group 

(Dmethyl > Dethyl > Dhexyl). A large linear hydrophobic end group such as a hexyl group 

seems to have a greater effect than a more spherical end group such as a tert-butyl. 

For the derivatives of tri(ethylene glycol), D values for TEG-Me and TEG-Me2  are 

quite the same over the entire range of PVA concentrations, which is similar to the 

results observed for EG, EG-Me, and EG-Me2  in concentrated PVA solutions. If the 

self-diffusion coefficients of EG-tBuMe (M = 132 g/mol) and DEG-Et (M = 134 

g/mol) are compared, we notice that the diffusant with a bulkier end group (tert-butyl) 

diffuses less rapidly than the diffusant with a linear end group (ethyl) over the entire 

range of polymer concentrations. Similar differences can also be observed between 

DEG-tBuMe and TEG-Me2. Obviously, the geometry of the diffusant seems to be 

quite important in the diffusion process. Similarly, the self-diffusion coefficient of 

TEG-Me2  is always higher than that of MPPE (Figure 5.2C). The difference can be 

explained by the fact that MPPE has a bulky aromatic end group. The cyclic molecule 
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18-crown-6 behaves similarly as MPPE in the concentration range studied (Figure 

5.2C). 

Good fits are obtained for all the diffusants in Figure 5.2 over the entire range 

of polymer concentrations. The fitting parameters are listed in Table 5.2. When the 

data are fitted with free parameters of Do, 432  and v, the average value obtained for v 

is equal to 0.59 (Table 5.2) which is almost identical to the average value of 0.58 

reported previously for the same polymer-water system [36]. This confirms that the 

parameter v is an indication of the quality of the solvent [35]. Table 5.2 also lists the 

values obtained for the parameters Do  and 432  when v is fixed to 0.58. Do  is found in 

good agreement with the experimental values. The 432  values are similar to those 

obtained with free v values. 

In Figure 5.3A, the logarithm of the parameter 1412  (obtained with floating is 

plotted as a function of Rh of the diffusants. The data are combined with the data 

obtained previously with a series of linear poly(ethylene glycol)s [36]. For both series, 

the jump frequency k decreases when the size of the diffusant is increased. Some of 

the linear PEG diffusants, especially the oligomers, were found to interact strongly 

with PVA via hydrogen bonding as mentioned previously. In the presence of 

hydrogen bonds in the PEG series, the jump frequency k is lower because of the 

hindrance caused by the interaction, and the decrease of the jump frequency with Rh is 

also more graduat as shown by the slope of the line (432  Ri°.°36). With end-capped 

EG derivatives, even when the molecular size are similar to the PEGs, the jump 

frequency is still higher since the interactions are not as strong because of the capped 

ends that screen the interaction with PVA. The decrease of the jump frequency with 

Rh is also more abrupt as shown by the steeper slope (432  — Rh-4119). When the PEG 

chain is sufficiently long, the effect of the end-group are no longer as significant and 

may even be negligible. In Figure 5.3B, the parameter kJ32  is plotted as a function of 

the molecular weight (1U) of the diffusants. The general trend of the data is similar, 

i.e., the jump frequency decreases when the size of the diffusant is increased. Too 

distinct regions can be identify also corresponding to low molecular weight diffusant 

and high molecular weight diffusant, with an inflexion point approximately around M= 
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500. The first part of the line seems quite linear the decrease becomes much less 

abrupt in the second part. 

Table 5.2. Measured Do values and the Do, 432  and v values obtained as free 

parameters from fits to eq 5.1 and the Do  and 432  values obtained from fits to eq 5.1 

with v fixed to 0.58, at T = 25 °C. 

Diffusant 	Rh 	Do X 10-  D o X 10- 	kf32 	v  (13) 	x2 (b) 	Do X 10- 	kf32 	x2  (c) 

(Å) 

10 

(n12/S) (a)  

10 

(11121S) (b)  X 1 010  
(b) 

10 

(M2/S) (c) X 1 010  

(c) 

EG 2.79 8.59 8.48 0.93 0,65 0.020 8.68 1.16 0.033 

EG-Me 3.07 7.88 7.83 1.16 0.60 0.004 7.89 1.24 0.005 

EG-Me2  3.24 7.56 7.55 1.27 0.55 0.008 7.49 1.18 0.009 

EG-tBuMe 4.38 5.58 5.52 0.65 0.59 0.009 5.54 0.67 0.008 

DEG-Me 3.83 6.46 6.32 0.87 0.59 0.025 6.33 0.89 0.022 

DEG-Et 4.18 5.77 5.72 0.66 0.62 0.010 5.80 0.76 0.011 

DEG-He 5.45 4.43 4.42 0.38 0.60 0.003 4.45 0.41 0.003 

DEG-tBuMe 5.05 4.80 4.74 0.48 0.62 0.009 4.80 0.55 0.013 

TEG-Me 4.65 5.23 5.21 0.65 0.58 0,003 5.21 0.65 0.002 

TEG-Me2  4.75 5.15 5.10 0.64 0.58 0.004 5.10 0.63 0.005 

18-crown-6 5.54 4.37 4.37 0.36 0.58 0.005 4.37 0.35 0.004 

MPPE 5.55 4.39 4.40 0.40 0.56 0.005 4.38 0.38 0.004 

(a) Measured experimentally. 

(b) Obtained from fits to eq 5.1 with free parameters 

(c) Obtained from fits to eq 5.1 with v = 0.58 
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Figure 5.2. Plot of the self-diffusion coefficient of (A) ethylene glycol and its end-

capped derivatives, (B) end-capped di(ethylene glycol)s, and (C) other end-capped 

oligo(ethylene glycol)s as a function of the PVA concentration at 25 °C. Dashed lines 

are fit to eq 5.1. 
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Figure 5.3. Semi-logarithmic plot of the parameter kf32  as a function of (A) the 

hydrodynamic radius and (B) the molecular weight of the diffusants. 
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Remarque: la valeur de Do  pour EG donnée au chapitre 3 est légèrement différente 

de celle indiquée dans le tableau 5.2. Cette différence s'explique par le fait qu'il 

existe une certaine erreur expérimentale lors des mesures de diffusion, et que les 

mesures n'aient pas été faites aux mêmes températures. De plus, ces mesures ont été 

réalisées avec deux appareils derents (Varian à Toronto et Bruker à Montréal) et 

deux méthodes différentes (variation de 5 et de G, respectivement) dont les fiabilités 

ne sont pas comparables. Les mesures faites à Montréal sont considérées plus 

précises et plus fiables. 

5.4.2. The model of Phillies [27] 

Phillies proposed a universal equation to describe the self-diffusion of one 

macromolecule in another over a wide range of concentrations [27]. In this model, the 

hydrodynamic interactions between the diffusants (solvent or solute) and the polymer are 

taken into account and the polymer chains are considered to be mobile. This approach 

provided good fits to the experimental data in many polymer systems [40-42]. It also 

provided good results in the treatment of the diffusion data of small molecules [22,43,44]. 

The equation is given as 

D =D0  exp(—occv) 	 (5.4) 

where a and v are scaling parameters. The scaling parameter a is predicted to depend 

strongly on the hydrodynamic radius (a — Rh) for small diffusants [45], as proposed by 

Mustafa et al. [46]. 

Eq 5.4 was used to fit the diffusion data of EG and its end-capped derivatives 

as a function of PVA concentration in Figure 5.4. The fitting parameters are listed in 

Table 5.3. A very good correlation is observed between the fits and the experimental 

data for all the diffusants over the entire range of polymer concentrations. 

Park et al. [47] and Gibbs and Johnson [48] reported a = 3.03 Re" and a = 3.2 

R11033, respectively, for small probes (water, tetrametylammonium iodide, 

tetramethylethylenediamine, tetrahexylatnmonium, benzospiropyran and bovine serum 

albumin) in polyacrylamide gels. In the present study, the estimates obtained from these 
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empirica1 relationships tend to be higher than the a values obtained from the fits. 

However, the parameter a listed in Table 5.3 seems to depend somewhat on the 

hydrodynamic radius of the diffusant as shown in Figure 5.5A. A more or less linear 

relationship is observed (a - 0.28 Rh ). 

Table 5.3. Measured Do values, calculated hydrodynamic radius (Rh ) and Do, a and v 

obtained as free parameters from fits to eq 5.4. 

Diffusant Do x  1010 (m2/s) 

Experimental 	Fitted 

V x2 

EG 8.59 8.60 3.40 0.95 0.010 

EG-Me 7.88 7.92 2.83 0.90 0.006 

EG-Me2  7.56 7.61 2.60 0.83 0.009 

EG-tBuMe 5.58 5.52 3.32 0.88 0.013 

DEG-Me 6.46 6.40 2.94 0.86 0.010 

DEG-Et 5.77 5.80 3.22 0.90 0.010 

DEG-He 4.43 4.81 3.53 0.89 0.006 

DEG-tBuMe 4.80 4.47 3.67 0.83 0.005 

TEG-Me 5.23 5.27 3.06 0.84 0.004 

TEG-Me2  5.15 5.16 3.06 0.84 0.003 

18-crown-6 4.37 4.41 3.84 0.80 0.088 

MPPE 4.39 4.42 3.69 0.80 0.007 
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Figure 5.4. Plot of the self-diffusion coefficient of (A) ethylene glycol and its end-

capped derivatives, (B) end-capped di(ethylene glycol), and (C) other end-capped 

oligo(ethylene glycol)s as a function of the PVA concentration at 25 °C. Dashed lines 

are fits to eq 5.4. 
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Figure 5.5. (A) Plot of the parameter a as a function of the hydrodynamic radius of 

the diffusants, and (B) plot of v as a function of the molecular weight of the 
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According to Phillies, v should scale between 1 for low molecular weight 

diffusants and 0.5 for high molecular weight diffu.sants [40-42]. Inside these limits the 

scafing follows v M -114 . The v values listed in Table 5.3 are found to be more or less a 

constant and always less than 1. These values are plotted as a function of the 

hydrodynamic radius of the diffusants (Figure 5.5B). An average value of 0.86 is found. 

Gibbs and Johnson [48] reported values for the parameter v between 0.89 and 1.13, 

slightly higher than the values obtained here. 

5.3.3. The model of Yasuda et al. [29] 

The free volume models consider the diffusion process as a succession of 

jumps into voids created by the thermal motion of the molecules. The diffusion of a 

solute is a function of the probability to find a void large enough to allow the diffusion 

of the solute. The free volume model of Fujita [28] is not suitable to describe 

diffusion in aqueous systems. The model of Vrentas-Duda [30,31] can be used for 

the diffusion in binary polymer-solvent systems. Because of the numerous physical 

parameters needed, it is difficult to use it in the more complicated ternary systems. 

Yasuda et al. [29] assumed that the contribution to the free volume is mainly 

contributed by the solvent in binary and temary systems when the solute probe is 

present in low concentration (pseudo binary system). The following expression was 

obtained 

ln D = ln D I 3 f 	 
1—  (Pi 

where B, is the minimum hole size required for the diffusant displacement,f, is the free 

volume of water in the polymer-water system. 

The semi-logarithmic of the normalized self-diffusion coefficient of selected 

solutes as a function of q/(1-p) is shown in Figure 5.6A. The dashed lines are fits to 

eq 5.5, which seems to be linear for EG-Me and DEG-tBuMe at lower PVA 

concentrations, but deviations are observed at higher PVA concentrations, where the 

free volume contribution by the polymer may no longer be negligible. The deviation 

of the diffusion data of a larger diffusant such as MPPE from linearity is much more 

(5.5) 
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significant, which clearly shows that the use of the model is limited to relatively small 

diffusants in relatively dilute solutions. This is consistent with the previous studies 

with similar systems [22,34,49]. We tried to use Do  and Bslf,, as free parameters in 

the fitting to eq 5.5. The Do  values obtained for the diffusants from the fits are similar 

to the measured Do. If the parameter .4, is a constant as assumed by Yasuda et al. 
[30], Bslf,, should reflect the variation of the minimum hole size (es) required for 

diffusant displacement to take place. The values obtained for B.,1f,, from the fits of the 

linear part of the curves are plotted as a function of the hydrodynamic radii of the 

diffusants in Figure 5.6B. Bslf, is found to be quite constant for the smaller diffusants 

and increases for the large ones in this series. The minimum hole size required for 

diffusant displacement should increase with increasing size of the diffusant. 

5.4.4. The model of Mackie and Meares [23] 

In this model, the polymer chains are regarded as motionless relative to the 

diffusing molecules. Therefore, they impose a tortuosity or an increase in the path 

length for the molecules in motion. The self-diffusion coefficient of the diffusants is 

related to the volume fraction of the polymer according to the following equation 

D _ 1—cp 
Do  1+(pi - 	_ 

where cp the volume fraction of the matrix polymer. 

Figure 5.7 shows the normalized self-diffusion coefficient of selected 

diffusants (EG-Me, EG-Me2, EG-tBuMe and 18-crown-6) as a function of the volume 

faction of the polymer matrix. The self-diffusion coefficient decreases with increasing 

volume fraction of the polymer and with increasing size of the diffusant. This is 

consistent with the results reported in previous studies [22,36]. The dotted line in 

Figure 5.7 represents the fit to eq 5.6. The fit can be regarded as acceptable for the 

diffusion data of EG-Me and EG-Me2  especially at low PVA concentrations, but the 

deviation becomes obvious for higher polymer concentrations. The deviation between 

eq 5.6 and the data is more pronounced for the larger diffusants such as EG-tBuMe 

and 18-crown-6. Petit et al. [22] studied the self-diffusion of solvents and solute 

- 2 

 

 

(5.6) 
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probes in PVA-water systems and found that this model can only be used for the 

description of the diffusion data of water and methanol, whereas the fits for larger 

diffusants significantly deviate from the experimental data. Waggoner et al. [4] also 

studied the self-diffiision coefficients of different solvents (toluene, ethylbenzene, 

cumene, tert-butyl acetate, chloroform, and methyl ethyl ketone) in polystyrene (PS) 

and in poly(methyl methacrylate). They found that the model of Mackie-Meares 

described fairly well the data, but they noticed that the subtle differences between the 

various systems were not taken into account by the model. 

5.4.5. The model of Ogston et al. [24] 

In this model the diffusing particle is considered as a hard sphere and the 

polymer as randomly oriented fibers. The diffusion process is assumed to correspond 

to the average displacement of a hard sphere in a lattice of long fibers of negligible 

width according to 

D 	rs -Er f  1/2  
7.-D-0  := eXp 	9 	 (5.7) 

r f _ 	 _ 

where r.„ is the hydrodynamic radius of the diffusant and rf  the hydrodynamic radius of 

the fiber. 

Dashed lines in Figure 5.7 are fits to eq 5.7. The model of Ogston et al. [24] 

takes into account the volume fraction of the polymer matrix, the hydrodynamic 

radius of the polymer fiber as well as the hydrodynamic radius of the diffusant. 

Therefore, the model provides different fits for each diffusant, which seems to be an 

improvement compared with the model of Mackie and Meares [24]. However, the 

fits to eq 5.7 still deviate significantly from the experimental data, indicating the 

limitation of this model in handling the diffusion data in such a system. 
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Figure 5.6. (A) Plot of the logarithmic self-diffusion coefficient of selected diffusants 

as a function of (p/(1-(p) at 25 °C, (B) plot of the parameter Bslf, as a function of the 

hydrodynamic radius of the diffusants. Dashed lines are fits to eq 5.5. 
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Figure 5.7. Plot of the normalized self-diffusion coefficient of selected diffusants as a 

function of the volume fraction of PVA at 25 °C. Dotted line and dashed fines are fits to 

eq 5.6 and eq 5.7, respectively. 
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5.4.6. The model of Amsden [34] 

This diffusion model combines the free volume theory with the obstruction and 

scaling concepts. It takes into account several structural properties of the polymer such as 

the polymer chain stiffiless, the chain radius, the volume fraction as well as the size of the 

diffusant [34]. The motion of a molecule through a hydrogel matrix depends on the 

probability of finding holes larger than the diffusant diameter. The distribution of the holes 

is described by the expression given by Ogston et al. [24]. Amsden evaluated the distance 

between polymer chains with the help of scaling concepts, and the following equation was 

given 

  

\ 2  rs  rf  

r f  

  

D 
70,7 =exP  

— lt  9  
(1i-1 +29112 )2  

(5.8) 

  

     

where rs  and ri- are the same as in eq 5.7, and kt  a constant for a given polymer-solvent 

system. 

The normalized self-diffusion coefficient D/Do  of selected diffusants is plotted 

as a function of the volume fraction of the PVA in Figure 5.8. Dashed lines are fits to 

eq 5.8 with floating parameters, including rs, ri-and ici. Eq 5.8 provides relatively good 

fits to the data. Similar results are observed with the other diffusants. The fits 

provided values of r3  of 3.99, 5.42, 3.02, 284.0 and values of rf  of 0.033, 0.050, 0.031, 

2.29 for EG-Me2, EG-tBuMe, and 18-crown-6, respectively, which does not seem to be 

coherent. Therefore, we have fixed r, to the Rh values listed in Table 5.2 during the 

fittings, but systematically lower values of rf  were obtained for each diffusant, while k1  was 

found negative as shown in Table 5.4. The various rf  values obtained can be hardly related 

to the hydrodynamic radius of the polymer chain. The physical significance of kl  remains 

unclear. 
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Figure 5.8. Plot of the normalized self-diffusion coefficient of selected diffusants as a 

function of the volume fraction of PVA at 25 °C. Dashed lines are fits to eq 5.8. 
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Table 5.4. The parameters Do , r f  and k1  obtained by fitting the diffusion data to eq 5.8 

while fixing rs  to the Rh values reported in Table 5.2. 

Diffusant Do  x10-1°  (m2/s) r f  (À) k1  x2 

EG 8.56 0.404 —7.14 0.015 

EG-Me 7.93 0.051 —51.68 0.013 

EG-Me2  7.53 0.019 —137.95 0.013 

EG-tBuMe 5.46 0.264 —14.35 0.007 

DEG-Me 6.32 0.160 —21.00 0.009 

DEG-Et 5.77 0.225 —16.26 0.006 

DEG-He 4.39 0.017 —217.67 0.008 

DEG-tBuMe 4.77 0.269 —15.73 0.007 

TEG-Me 5.20 0.020 —178.82 0.004 

TEG-Me2  5.09 0.026 —144.53 0.007 

MPPE 4.30 0.010 —196.17 0.004 

18-crown-6 4.31 0.019 —367.43 0.005 

5.5 Conclusion 

This study confirms that the self-diffusion coefficient depends on the size and 

geometry of the diffusant, evidenced by the effect of bulky end groups. Diffusants 

with a bulkier end group diffuse less rapidly than those with a smaller linear end group 

even though the molecular weights of the molecules are comparable. A hydrophobie 

hexyl group also restrains the diffusion more than the shorter alkyl groups. 

The diffusion model of Mackie-Meares is strictly limited to very small 

diffusants since it does not take into account the differences of the diffusants. The 

diffusion model of Ogston et al. improved in this regard, but still deviates significantly 

from the experimental data. The model of Amsden solved this problem by combining 
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this obstruction model with other concepts such as the free volume concept, but the 

numerical values of the parameters are inconsistant with their original physical 

significance. The free volume model of Yasuda et al. is limited to the diffusion of 

small-sized diffusants and in dilute polymer solutions. The experimental data for this 

group of relatively small diffusants all fitted very well to the diffusion model of 

Phillies. The parameter a was found to increase as a function of the hydrodynamic 

radius of the diffusants, while a slight decrease is observed for the parameter v. 

The model of Petit et al. was used successfully in the fitting of the 

experimental data of all the diffusants over the entire range of polymer concentrations. 

As predicted, the parameter v was found related to the solvent quality and remained a 

constant for the PVA-water system. The parameter kj32  reflects the jump frequency of 

the diffusants and was found to decrease with increasing size of the diffusing 

molecules. By comparing these parameters with those obtained for oligo- and 

poly(ethylene glycol) diffusants, we are able to confirm the usefulness of this model in 

the analysis of both small and large diffusants in the PVA-water systems. 
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6.1. Abstract 

To test the effect of the matrix polymer on diffusion, we have measured the self-

diffusion coefficients of water and poly(ethylene glycol) of a molecular weight of 600 

(PEG-600) in aqueous systems of selected polymers using the pulsed-gradient spin-echo 

NMR technique. The polymers used in this study include poly(vinyl a1cohol) (PVA), 

hydroxypropyl methyl cellulose (HPMC), poly(N,N-diethylacrylarnide) (PNNDEA), and 

poly(N-isopropylacrylarnide) (PNIPA). The polymer concentrations varied from 0 to 

0.38 g/mL. The effect of the polymer network on the self-diffusion coefficients of the 

solvent (water) and a solute (PEG-600) was investigated by analyzing the diffusion 

data with the use of the free volume model of Yasuda et al. [Yasuda, H.; Lamaze, 

C.E.; Ikenberry, L.D. Makromol. Chem. 1968, 118, 19], the diffusion model proposed 

by Phillies [Phillies, G.D.J. Macromolecules 1986, 19, 2367], and the model of Petit et 

al. [Petit, J.-M.; Roux, B.; Zhu, X.X.; Macdonald, P.M. Macromolecules 1996, 29, 

6031]. The results obtained with PVA, HPMC, PNNDEA, and PNIPA are used to 

evaluate the applicability of these models in polymer-water-solute ternary systems. The 

physical significance of the parameters used in the models is discussed. 

6.2. Introduction 

The study of the diffusion of solvents and solutes in polymer solutions and gels has 

attracted much research interest because of its importance related to the use of polymer 

materials. For example, diffusion studies can be used to obtain information on the mixing 

of polymers [1], the diffusion of a plasticizer in a polyelectrolyte [2], the characterization of 

polymer microstructures [3,4], intermolecular interactions [5], and more recently the 

controlled release of drugs in biomedical and pharmaceutical applications of polymers [6], 

The polymer carriers used for the controlled release of drugs are usually hydrophilic and 

can swell in water. They include poly(vinyl alcohol) (PVA) and hydroxypropyl methyl 

cellulose (HPMC) [7]. PVA is also used in many other applications [8], and the degree of 

hydrolysis of the acetic groups of poly(vinyl acetate) determines the solubility of PVA in 

water [9]. Recently, the use of thermosensitive polymers in biomedical fields has also been 

studied [10]. 
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We have already studied the self-diffusion of diffusants of various sizes in PVA 

aqueous solutions and gels [11-13]. In the study of self-diffusion of solutes probes vvith 

different functional groups (alcohol, amine, ammonium salt, amide, acid) in PVA solutions 

and gels, we found that the diffusion behavior is primarily influenced by the size of the 

diffusant and secondarily by the chemica1 functions [11]. The self-diffusion of a series of 

linear oligo- and poly(ethylene glycol)s in PVA solutions and gels was also studied [13]. It 

was found that the molecular size of the diffusant plays the most important part in the 

diffusion process [11, 13]. In the present study, we would like to examine the effect of 

diffèrent polymer matrices on the diffusion of the solvent, water, and a solute, 

poly(ethylene glycol) (PEG), in different temary polymer-water-PEG systems, The 

polymers used include PVA, HPMC, poly(N,N-diethyl acrylarnide) (PNNDEA), and 

poly(N-isopropyl acrylamide) (PN1PA). PVAs with various molecular weights and 

degrees of hydrolysis were selected in order to investigate the effect of the chain length and 

structure of the matrix polymer on the self-diffusion of the solvent and the solute. For a 

better understanding of the diffusion in polymers, we have used the pertinent physical 

models of diffusion in the analysis of the experimental data obtained. 

6.3. Theoretical background 

A number of physica1 models of diffusion have been proposed [14-26]. They are 

based on different physical concepts, such as the obstruction effect, the hydrodynamic 

interactions and the free volume concept in polymers. Recently, Amsden [27] reviewed 

some of these models and indicated their usefulness and limitations (voir également le 
Chapitre I). 

In the diffusion models based on the obstruction effect, the polymer chains are 

considered as motionless and impenetrable objects that increase the root-mean-square 

displacement of the diffusants. These models usually work well in the treatment of 

self-diffusion data of small diffusants, but not for those of large diffusants 

[11,17,19,27-29] 

The free volume theory considers the diffusion process as a succession of 

jumps in voids created by the thermal motion of the species present in solution [22]. 

183 



Partie IV, Chapitre 6 	 Références page 204 

In a binary system (solvent-polymer), or in a ternary system (solvent-polymer-solute) 

where the solute is present in low concentration, the contribution to the free volume is 

mainly from the solvent. The diffusion of all the species in the system would slow 

down with increasing polymer concentration. The free volume model of Fujita [22] 

does not apply to aqueous systems and the model of Vrentas-Duda [25,26] is difficult 

to be used in ternary systems because of the numerous physical parameters needed. 

The model of Yasuda et al. [23], however, can be used to describe diffusion in 

aqueous systems 

Bs ( 	1 \- D = Do  exp 	
1 	

(6.1) 
1— ) 

where D is the self-diffusion coefficient of the solute, Do  the self-diffusion coefficient of the 

solute in the same solvent but in the absence of the polymer, Bs  is the minimum hole size 

required for diffusant displacement,f, is the free volume of the solvent in the polymer-

water system, and cp the volume fraction of the matrix polymer. 

The hydrodynamic models take into account the interactions between the solvent 

and the polymer [17]. Among them, the model proposed by Phillies [30] is oiten used 

since it provides generally good fits to the experimental data. This model was proposed to 

describe the self-diffusion of one macromolecule (polymers and proteins) in another over a 

wide range of concentrations [30]. The polymer chains are considered mobile and can be 

described by spheres joined by rods that can rotate as defined by Kirkwood [31]. The 

stretched exponential equation proposed by Phillies is written as 

D =Do  exp(— occv) 	 (6.2) 

where c is the polymer concentration, a and v are the scaling parameters. Phillies also 

developed theoretical arguments for eq 6.2 [32,33] and provided physical interpretations of 

the parameters a and v. According to Phillies, a depends strongly on the molecular weight 

(oc —114 0.9±0.1 ) for macromolecular diffusants, whereas it depends on the hydrodynamic 

radius (a — Rh/a0, where ao  is defined as the distance of closest approach) for smaller 

diffusants [32-35]. Park et al. [36] and Gibbs and Johnsson [37] reported empirical 

relationships of oc = 3.03 x R i°, 59  and cc = 3.2 x Rh°  53 , respectively. The parameter v 
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should scale between 1 for low molecular weight diffusants and 0.5 for high molecular 

weight diffusants and inside these limits it scales according to v --M-1/4  [34]. Eq 6.2 can 

provide good fits to the experitnental data in many polymer systems [30,32-34]. However, 

disagreements still remain on the dependence and physica1 meaning of the parameters 

[38,39]. 

The diffusion model of Petit et al. [12] was elaborated in the treatment of the 

diffusion data of molecules with various sizes and functional groups in ternary PVA-

aqueous-solute systems and binary poly(methyl methacrylate)-organic solvent systems 

[12,13,40]. The diffusion is considered to be a succession of jumps of the diffusant from 

one cavity to another in the polymer matrix. The following equation was given to describe 

the self-diffusion coefficient 

D=  D0 
1+ a c 2v 

(6.3) 

where a — Do/1cf32  , and 42  and v are the parameters of the model. The parameter v 

depends on the quality of the solvent and should be a constant for a given system. p should 

be a constant and independent of the concentration or molecular weight of the matrix [12]. 

k is the jump frequency, which varies with the molecular weight or size of the diffusant, 

temperature as well as the concentration of the matrix polymer. However, k is considered 

as a constant within a certain polymer concentration range, even though the polymer 

concentration influences the size of the cavity [12]. In the treatment of the diffusion data 

of both small and macromolecular probes, the parameters of the model were detemined 

[13]. The parameter v, which depends on the solvent quality, was found to be a constant 

equal to 0.58 for the PVA-water system. 43 2  was found to depend on the hydrodynamic 

radius (Rh) of the diffusant [13]. 

6.4. Experimental section 

6.4.1. Materials 

PEG with a molecular weight of 600 (PEG-600), PVA and HPMC (see Table 6.1 

for more details) as well as N-isopropylacrylamide, 2,2'-azobis(isobutyronitrile) (AIBN) 
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and sodium thiocyanate (NaSCN) used in this study were purchased from Aldrich 

(Milwaukee, WI). D20 was purchased from C.I.L. (Andover, MA). PNNDEA and 

PNIPA were synthesized in this laboratory. 

6.4.2. Synthesis of polymers [41]. 

The monomer N,N-diethylacrylamide was synthesized by reacting acryloyl 

chloride with diethylamine in dichloromethane in an ice bath under a flow of dry 

nitrogen. Alter the removal of diethylammonium chloride salt and the evaporation of 

the solvent, the product was purified by vacuum distillation (b.p. 30-35 °C at 0.01 

mm of Hg). N,N-diethylacrylamide was then polymerized in toluene with AIBN as 

the initiator. The starting temperature at 40 °C was gradually raised to 70 °C during 

one hour and maintained for ca. 3 hours. Alter removing toluene on a rotary 

evaporator, poly(N,N-diethylacrylatnide) was re-dissolved in acetone, precipitated by 

adding hexane and dried. Poly(N-isopropylacrylamide) was synthesized similarly [41]. 

6.4.3. Molecular weight determination. 

Size exclusion chromatography (SEC) was carried out on a Waters 600 

controller system equipped with a Waters 410 differential refractometer and two 

Ultrahydrogel columns of nominal porosity of 10 and 6 lam (Ultrahydrogel 500 and 

120), respectively. Poly(ethylene glycol)s and poly(ethylene oxide) (PEO) standards 

(Polymer Standards Service-USA, Inc., MD) were used for the calibration. The 

polymers were solubilized in deionized water (Milli-Q), and sodium thiocyanate was 

added in a salt/polymer mass ratio of 1.5 to 1 to avoid the aggregation of the 

polymers [8]. The polymer solutions (5 mg/mL) were filtered through 0.45—µm filters 

(Sarstedt, NJ) before injection. The flow rate of the eluent was at 0.6 mL/min. The 

columns and detector were equilibrated at 32 °C and 35 °C, respectively. 

For light scattering measurements, sets of five concentrations (0.3-3 wt %) 

were obtained by dilution of the stock solutions (3 wt 	containing 0.5 M of NaSCN. 

The dilute solutions were filtered five times through 0.2—µm Anotop 25 filters 

(Whatman, NJ) directly in scintillation vials, which were previously treated with 
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sulfochromic acid and washed thoroughly with distilled water and methanol to prevent 

spurious scatterers in the solutions. Static light scattering measurement were 

performed on Dawn-B instrument (Wyatt Technology Corp., Santa Barbara, CA) [42] 

with an helium-neon laser operating of 632.8 nm at room temperature. An incremental 

refractive index of 0.159 mL/g was used. The weight-average molecular weights of 

our samples were derived by the Zimm double extrapolation method using the Aurora 

routine [43,44]. 

6.4.4. Pulsed-gradient spin-echo (PGSE) NMR measurements 

The samples were prepared as described previously [11-13]. 	The 

measurements of the self-diffusion coefficients were carried out on a Bruker Avance 

AMX-300 NMR spectrometer operating at 300,13 MHz for protons. The 

temperature was set at 25 °C. The PGSE pulse sequence developed by Stejskal and 

Tanner [45] was used. A Bruker magnetic resonance imaging probe (Micro 2.5 

Probe) coupled with a gradient amplifier (BAFPA-40) was used. Gradient pulses 

were applied only in the z-direction. The gradient strength was calibrated by doing 

one-dimensional imaging experiment along the axis, using a solution of doped water 

(with CuSO4) in a 10-mm NMR tube in which a well-defined object was contained. 

The NMR. image profile was compared to the dimension of the object. The daily 

calibration was accomplished with a sample of known self-diffusion coefficient such 

as 1 vol % HDO in D20 (D'ID° = 1.9 x 10-9  m2/s) [46]. The gradient strengths, G, 

used in this study ranged between 0.1 and 1 T/m. The other parameters were kept 

constant and their values are those noted in the parentheses depending on the 

experiments: 8 (1-5 ms), A (40-150 ms), recycle delay (15-60 s), number of 

acquisitions (1-16), 90° pulse (23-29 us), spectral width (3-8 kHz), line broadening 

(5-10 Hz). 

6.5. Results and discussion 

6.5.1. Characterization of the polymers 
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The polyrners (PVA, HPMC, PNNDEA, and PNIPA) used as the matrix were 

analyzed by SEC and light scattering experiments to determine their molecular weights and 

polydispersity and the results are listed in Table 6.1. 

The first SEC experiments were carried out three days atter sample preparation, 

which corresponds to the same delay for the PGSE NMR measurements. SEC 

measurements of PVA and HPMC can be significantly affected by the formation of 

aggregates in water. The aggregation of PVA in solutions and gels is due to inter- and 

intramolecular hydrogen-bonding [9]. In fact, the PVA aggregates appear as separated 

peaks corresponding to higher molar masses on the chromatograms (Figure 6.1). In the 

case of PVA-1, no such aggregation was observed for the freshly prepared solution. The 

same solutions were injected four days later, the peaks of the aggregated PVAs became 

more intense (Figure 6.1), and the aggregation for PVA-1 also became apparent. 

Therefore, the aggregation of PVA is time dependent and is affected by the degree of 

hydrolysis of PVA. PVA-1 has the lowest molecular weight and lowest degree of 

hydrolysis among a11 the PVA samples. Stephans and Foster [9] showed by 

magnetization-transfer NMR technique that completely hydrolyzed PVA chains form a 

gel more rapidly than PVA with a lower degree of hydrolysis, which seems to confirm 

the difference between PVA-1 and other PVAs observed in this study. To overcome 

this problem, we have prepared polymer solutions with NaSCN [8]. Addition of the sait 

prevented the aggregation as shown in Figure 6.1A. The molecular weights reported in 

Table 6.1 are obtained from SEC measurements with added NaSCN. Very broad peaks 

were observed with HPMCs as a result of aggregation, but the addition of sodium 

thiocyanate did not change the appearance of the peaks. 

The aggregation of PVAs and IIPMCs in water caused saturation of the 

detectors in the light scattering experiments. The weight-average molecular weights 

of PVAs were determined with PVA solutions in water in the presence of NaSCN, 

and the results are reported in Table 6.1. These values are mostly comparable with 

those determined by SEC. Due to the presence of aggregates, light scattering 

measurements of HPMC solutions were not possible even atter the addition of 

NaSCN. 
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Figure 6.1. Size exclusion chromatograms obtained for PVA-4 (A) dissolved in an 

aqueous solution of NaSCN (salt/polymer weight ratio = 1.5:1), (B) dissolved in water and 

injected three days alter preparation, and (C) the same water solution as B but injected 

alter seven days. Chromatogram A shows that the salt NaSCN can prevent the 

aggregation of PVA. Comparison of chromatograms B and C indicates that the 

aggregation of PVA is time dependent. 
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Table 6.1. The physical characteristics of the polymers used. 

Sample Degree of 

Hydrolysis (a)  (%) 

(b) M 

(103  g/mol) 

mwfm.  (b) (c) 

(103  g/mol) 

PVA-1 80 8.4 1.42 18.±1 

PVA-2 88 15.4 1.76 21 ± 1 

PVA-3 99 20.3 1,63 17 ± 2 

PVA-4 99 52.8 2.09 52 ± 4 

PVA-5 88 124.7 2.46 130 ± 9 

PVA-6 99 131.5 2.26 136 ± 9 

HPMC-1 — 10.7 4.14 — 

HPMC-2 — 231.0 2.98 

PMPA 105.0 2.95 

PNNDEA 69.8 3.13 

(a) given by the supplier (Aldrich) 

(b) determined by SEC 

(c) determined by static light scattering 

6.5.2. Analysis of the diffusion data with the model of Yasuda et al. 
Eq 6.1 can be rewritten as 

ln D = ln Do  — 
B f  ( 

Therefore, the free volume parameters can be obtained by linear regression of the data. 

The logarithms of the self-diffusion coefficients of water and PEG-600 are plotted as a 

function of qp/(1-w) as shovvn in Figure 6.2 for PVA-2. The dashed lines are fits to the 

linear parts of the data to eq 6.4. The fitting parameters are listed in Table 6.2. For small 

molecules, such as water, a very good fit can be obtained. For larger molecules such 

(6.4) 
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as PEG-600 the linearity over the entire range is rather poor. Petit et al. [11] observed 

a gradual deterioration of the fits with increasing diffusant size. The same observation 

can be made here which illustrates the limitation of the model. Similar results and 

limitations were obtained for the diffusion of water and PEG-600 in the other hydrophilic 

polymers (PVA, HPMC, PNNDEA and PN1PA). The deviations at higher polymer 

volume fractions are due to the approximation that the total free volume of the system 

is only contributed by the solvent (water), i.e.,ftotai =f4, [23]. This approximation is no 

longer valid in concentrated polymer systems where the free volume contribution from 

the polymer is no longer negligible. We have attempted to fit the diffusion data of 

PEG-600 only for the low polymer concentrations as shown in Figure 6.2. 

The measured Do  values for PEG-600 and water are 2.56 x 10-1°  and 1.73 x 

10-9  m2/s, respectively. We tried to use Do  and Bslf„ all as free parameters in the 

fitting to eq 6.4. The Do  values obtained for PEG-600 and water from the fittings are 

systematically lower than the measured Do  values in all the polymer matrices studied 

here (Table 6.2). The parameter .8,1f,, obtained for PEG-600 is more or less a constant 

for a given polymer system. Average values of 6.59, 7.87 and 5.64 were found for 

PVA, HPMC and PNNDEA-PNIPA, respectively. When the diffusant (only 1 wt % 

solution in water) does not affect the properties of the solvent, fi, should remain 

constant. Consequently, the variation of the parameter Bslf,, should reflect the 

variation of the minimum hole size required for diffusant displacement, B,. The 

average value obtained for Bslf, increases from PNNDEA-PNEPA to PVA and HPMC. 

This suggests that the minimum hole size required for diffusant displacement increases 

with the ease of formation of hydrogen bonds in the polymer matrix. The values of 

Bs/f, obtained for water are similar for all polymer systems, which indicates that the 

minimum hole size required for solvent displacement remains a constant. This is 

logical and agrees with the results of Gao and Fagerness [6] who studied water self- 

diffusion in HPMC solutions and gels. 	They reported that the degree of 

polymerization of the polymer matrix does not affect the diffusion of the solvent [6]. 

We have also fitted the experimental data after fixing Do  to the experimental value. In 

this case, the B,Ifi, values are generally higher. 

191 



Partie IV, Chapitre 6 	 Références page 204 

Table 6.2. Do  and 13,1f, as free parameters obtained from fits to eq 6.4 with the 

experimental diffusion data obtained for PVA, HPMC, PNNDEA and PNIPA aqueous 

systems. 

Parameters for 

Do  x 10" (m21s) 

water 

13s1f, 
Polymer PEG-600 

.13,1f„, 

Parameters for 

Do  x 109  (m2/s) 

PVA-1 2.49 6.81 1.69 2.66 

PVA-2 2.46 6.48 1.64 2.50 

PVA-3 2.48 6.48 1.63 2.88 

PVA-4 2.40 6.76 1.65 2.42 

PVA-5 2.43 6.49 1.66 2.59 

PVA-6 2.42 6.55 1.64 2.52 

HPMC-1 2.42 7.53 1.63 2.29 

HPMC-2 2.43 8.21 1.62 3.02 

PNNDEA 2.50 5.21 1.70 2.31 

PN1PA 2.52 6.08 1.64 2.78 

6.5.3. Analysis of the diffusion data with the model of Phillies. 

Figure 6.3 shows the self-diffusion coefficient of water and PEG-600 plotted as a 

function of PVA concentration for PVA-water-PEG ternary systems. Good agreement is 

observed between the fits to eq 6.2 and the experimental data for both water and PEG-600 

over the entire range of polymer concentrations. Very good agreements are also obtained 

for the other hydrophilic polymers (HPMC, PNNDEA and PNIPA). The fitting 

parameters are listed in Table 6.3. Even when Do  is allowed to vary freely in a11 the 

fittings, it remained a constant for a given diffusant in ail the polymer systems. 

192 



-24 

-25 

-20 

-21 

-22 

A 
-5  -23 

0,1 0,0 0,3 0,4 

Partie IV; Chapitre 6 
	

Références page 204 

Figure 6.2. Semi-logarithmic plot of the self-diffusion coefficient of water and PEG-600 

in PVA-2 as a function of p/(1-q). Dashed lines are the best fits to eq 6.4. For PEG-600, 

the deviation from the linearity at high polymer concentrations is shown. 
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Figure 6.3. Plot of the self-diffusion coefficient of water (A) and PEG-600 (B) as a 

function of the PVA concentration for various PVA matrices at 25 °C. Dashed fines are 

fits to eq 6.2. 
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Table 6.3. Do, a and v as free parameters obtained from fits to eq 6.2 with the 

experimental diffusion data obtained for PVA, BPMC, PNNDEA and PNIPA aqueous 

systems. 

Polymer Parameters for PEG-600 
Do x 1010 (m2/s) 	a,  

Parameters for water 

Do x 109  (m2/s) 

PVA-1 2.57 3.51 0.76 1.73 2.10 0.91 

PVA-2 2.57 3.92 0.77 1.72 2.08 0.83 

PVA-3 2.57 4.13 0.79 1.73 1.82 0.78 

PVA-4 2.57 3.91 0.76 1.72 2.00 0,83 

PVA-5 2.57 3.80 0.76 1.73 2.00 0.85 

PVA-6 2.57 185 0.76 1.72 2.04 0.79 

1-1PMC-1 2.56 3.75 0.71 1.71 1.71 0.78 

HPMC-2 2.56 3.96 0.71 1.72 1.93 0.72 

PNNDEA 2.57 3.83 0.88 1.73 1.95 0.91 

PNIPA 2.56 4.48 0.89 1.73 2.06 0.79 

According to Phillies, the scaling parameter v should scale between 0.5 for high 

molecular weight diffusant and 1 for low molecular weight diffusants [34]. All the v 

values obtained (Table 6.3) lie between these limits. In this study, the diffusant is kept 

constant and the matrix is changed. The v values obtained for PEG-600 are found to be 

unique for a given polymer-water system. Average values of 0.77, 0.71 and 0.89 are 

found for the diffusion of PEG-600 in PVA, HMPC and PNNDEA-PNIPA, respectively. 

Therefore, the results tend to indicate that the scaling parameter v is a constant for a given 

polymer system, independent of the molecular weight of the polymer matrix. Distinct 

average v values are also observed for water, ca. 0.83, 0.75 and 0.85 for PVA, IIPMC 

and PNNDEA-PNIPA, respectively. Therefore, the scaling parameter v may reflect the 
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quality of the solvent for a given polymer. No significant dependence on the molecular 

weight of the matrix polymer was observed. 

The scaling parameter a is found to be more or less a constant for water and PEG-

600 as shown in Table 6.3. Average a values of 3.85 and 3.86 are found for PEG-600 

diffusion in PVA and HPMC, respectively. But the a values in PNNDEA and PN1PA are 

quite diffèrent. Average a values of 2.00, 1.82 and 2.00 are found for water diffusion in 

PVA, HPMC, and PNNDEA-PN1PA, respectively. The hydrodynamic radii of water and 

PEG-600 can be calculated from the self-diffusion coefficients with the Stokes-Einstein 

equation, corresponding to 13.95 Å and 1.30 Å for PEG-600 and water, respectively. 

With these values, the relationship of Park et al. [36] would give a values of 14.4 and 3.54 

for PEG-600 and water, respectively, and the relationship of Gibbs and Johnson [37] 

would provide ct values of 13.0 and 3.68 for PEG-600 and water, respectively. These a 

values are higher than the values obtained from the fits (Table 6,3). In a previous work 

[13], we have studied the self-diffusion of a series of oligo- and poly(ethylene glycol)s in 

PVA solutions and gels by PGSE NIV1R spectroscopy. The dependence of the parameter 

a and the molecular weight of the diffusants did not show any simple mathematical 

dependence. The parameter a seems to depend on the size of the diffusant but no 

significant dependence is observed in these hydrophilic systems. 

6.5.4. Analysis of the diffusion data with the model of Petit et al. 

Diffusion data of water and PEG-600 in PVA solutions and gels and the fits to eq 

6.3 are shown in Figure 6.4. The fits for both water and PEG-600 are very good in all the 

PVA systems over the entire range of polymer concentrations. The fitting parameters are 

listed in Table 6.4. Do, as a free fitting parameter, remained a constant for both diffusants, 

close to the experimental value. The v values obtained for PEG-600 are found to be close 

to the value of 0.58 as reported previously [13]. This result confirms that v depends on 

the solvent quality, which should be similar for the PVA-water systems. 1432  remains also 

more or less a constant for a diffusant in the PVA systems as shown in Table 6.4. This 

implies that the jump frequency of a given diffusant is similar for all the PVA systems used 

here. The v values obtained for the solvent water as diffusant are also quite constant 
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(0.53) and slightly lower than the v value for the solute (ea. 0.58). kl32  remains also quite 

constant, but the values are much higher than those determined for PEG-600. This is 

reasonable since the jump frequency of water should be higher than that of PEG-600. This 

result is in good agreement with the prediction of the model of Petit et al. that considers k 

dependent on the molecular weight or the size of the diffusant [12,13,40]. 

For the PVA systems, the measured self-diffusion coefficients for a given diffusant, 

either water or PEG-600, are quite similar over the entire range of polymer concentrations. 

The diffusion data are almost superposed as shown in Figure 6.4, which indicate that the 

microstructures (porosity and mesh size) of the PVAs are rather similar. At a given PVA 

concentration, the diffusion of PEG-600 does not seem to vary to any significara extent 

-with the molecular weight or degree of hydrolysis of PVA. However, the self-diffusion 

coefficients of PEG-600 are sfightly but systematically higher in PVA-1 than in the other 

PVA solutions, indicating less obstruction in this polymer network. The PVA 

microstructure in water depends mainly on the intra- and intermolecular associations via 

hydrogen bonds, which should be related to the degree of hydrolysis of the polymer [9]. 

Therefore, PVA-1 may differ as a result of its lower degree of hydrolysis. This is also 

seen in the 1452  values for PEG-600 which are quite constant for the PVAs, with the 

exception of PVA-1. A small difference is also observed for the self-diffusion coefficients 

of water in PVA-1 and in the other PVAs (Figure 6.4A). PVA-1 may be less hydrated 

than the other PVAs due to its lower degree of hydrolysis. Therefore, the solvent 

molecules on average are freer to diffuse in PVA-1 than in the other PVAs. The existence 

of several states of water in PVA solutions and gels due to interactions was often noted in 

the literature [47-49]. The intermolecular interactions between PVA and solvent may also 

depend on the microtacticity of PVA. The PVAs used in this study, however, are atactic 

polymers as shown in the NMR characterization of the polymer in water. The results of an 

example of PVAs (PVA-4) has been reported earlier [50]. 

Matsukawa and Ando [5] showed that PEG-425 0 can form complexes with 

poly(acrylic acid) (PAA) through intermolecular hydrogen bonds. The self-diffusion 

coefficient of PEG-4250 was found to be lower in PAA gels than in PNNDEA gels. 

Furthermore, the authors have also studied the self-diffusion coefficient of PEG-4250 
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in PAA-PNNDEA copolymers. The self-diffusion coefficient of PEG-4250 in a 

copolymer with a PAA molar fraction higher than 0.9 is much smaller than that in a 

copolymer with a PAA molar fraction lower than 0.5. We have found that PVA-4 can 

also form complexes with diffusants such as ethylene glycol and even poly(ethylene 

glycol)s by hydrogen bonding. In this study, PVA-1 has a lower degree of hydrolysis 

(ca. 80 %) thus fewer hydroxyl groups. Therefore, we can assume that this polymer 

will form fewer intra- or intermolecular hydrogen bonds than the other PVAs used, 

which may explain the higher D values observed. 

Table 6.4. Do, 432  and v as free parameters obtained from fits to eq 6.3 with the 

experimental diffusion data obtained for PVA, HPMC, PNNDEA and PNIPA aqueous 

systems. 

Polymer Parameters for PEG-600 

Do x 1010  (m2/s) kf32  x 101° 	v 

Parameters for water 

Do  x 109  (m2/s) 	kl32  x 1010  

PVA-1 2.54 0.228 0.56 1.72 4.30 0.58 

PVA-2 2.54 0.181 0.58 1.70 4.18 0.53 

PVA-3 2.54 0.166 0.60 1.72 5.07 0.50 

PVA-4 2.55 0.184 0.57 1.71 4.57 0.52 

PVA-5 2.54 0.194 0.56 1.72 4.55 0.53 

PVA-6 2.54 0.190 0.57 1.71 4.28 0.51 

BPMC-1 2.54 0.192 0.53 1.71 5.64 0.48 

HPMC-2 2.55 0.197 0.51 1.72 5.04 0.44 

PNNDEA 2.53 0.211 0.63 1.73 4.83 0.56 

PNIPA 2.54 0.170 0.64 1.73 4.47 0.50 
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Figure 6.5 shows the diffusion data for water and PEG-600 in HPMC solutions 

and gels and the fits to eq 6.3. The fitting parameters are listed in Table 6.4. The v values 

determined from the fits of PEG-600 are similar for both HPMCs with an average value of 

0.52. This value is somewhat lower than the average value determined for PVAs systems, 

indicating that it is characteristic of the system. The 432  values determined from the fittings 

are similar to those determined for PVAs, which indicates that the diffusant PEG-600 in 

HPMC solutions and gels may have similar jump frequencies as in PVAs. The v values 

determined from the fittings for water seem to be lower than those obtained for PVAs, 

whereas the 432  values are higher. As shown in Figure 6.5B, the D values of PEG-600 

decrease with increasing polymer concentration and the data are almost superimposed for 

both polymers. As in the case of PVA, the molecular weight of HPMC does not have any 

significant effect on the diffusion of PEG-600. Recently, Gao and Fagemess studied the 

self-diffusion of adinazolam in HPMC gels by PGSE NMR spectroscopy [6]. They used 

HPMCs with different viscosity grades (i.e., different molecular weights) and also found 

similar D values for adinazolam in all the HPMC used. 

As shown in Figure 6.5A, the self-diffusion coefficient of water decreases when the 

molecular weight of the matrix is increased. This indicates that the root-mean-square 

displacements of water molecules in the two HPMC systems are not quite the sarne. 

Water molecules experienced a larger obstruction effect in HPMC-2. The existence of 

different states of water in HPMC is well known [51-53] and it depends on the 

methoxy/hydroxypropoxy substitution ratio [54,55]. HPMCs used in this study have the 

same percentage of methoxy and hydroxypropoxy groups but different molecular weights. 

Gao et al. have studied the effects of HPMC/lactose ratio and of HPMC molecular weight 

on solute release and swelling of HPMC matrix tablets [56]. They found that drug release 

rates observed with low viscosity grade HPMC are greater than those observed with high 

viscosity grade HPMC due to inhomogeneous gel swelling. The difference in D values of 

water may also be due to inhomogeneous gel swelling. 

199 



Partie IV, Chapitre 6 
	 Références page 204 

2 

"E I 

0 

o PVA-01 
O PVA-02 
• PVA-03 
• PVA-04 
O PVA-05 
• PVA-06 

- 

00 	0,1 	0,2 	0,3 
	

04 

[PVA] (g/mL) 

3 

2 

Figure 6.4. Plot of the self-diffusion coefficient of water (A) and PEG-600 (B) as a 

function of the PVA concentration for various PVA matrices at 25 °C, Dashed lines are 

fits to eq 6.3. 
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Figure 6.5. Plot of the self-diffusion coefficient of water (A) and PEG-600 (B) as a 

function of the HPMC concentration for the two HPMC matrices at 25 °C. Dashed lines 

are fits to eq 6.3. 
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Figure 6.6 shows the self-diffusion data of water and PEG-600 in PNNDEA and 

PNIPA systems. The fits of the experimental data to eq 6.3 are very good for water and 

PEG-600 in both polymers. Although the measures D values are different in PNIPA and 

PNNDEA for both water and PEG-600, the v values obtained from the fittings of PEG-

600 are very close. The average value, 0.64, is higher than the values obtained in PVAs 

and HPMCs. In PNIPA and PNNDEA, the formation of hydrogen bonds is not as easy as 

in PVAs and HPMCs. Therefore, the variations in the diff-usion data should be attributed 

to the quality of the solvent. The kf32  value obtained for PEG-600 in PNNDEA is higher 

than the 42  value obtained in PNIPA_ This means that the jump frequency of PEG-600 is 

higher in PNNDEA than in PNIPA, which is in concordance with the relative D values. 

The difference observed for the self-diffusion of PEG-600 between the two polymers may 

be attributed to the hydration of the polymer chains. PNEPA should be more hydrated 

since its amide group is both a proton donor and acceptor in the formation of hydrogen 

bonds. The difference of the k132  values for water can be explained similarly. The diffusion 

of both water and PEG-600 in PNNDEA is faster than that in PNIPA. 

6.6. Concluding remarks 

We have studied the self-diffusion of water and PEG-600 in different hydrophilic 

polymer systems, including different polymers as well the same polymer with different 

molecular weight or different degree of hydrolysis. The diffusion of both water and PEG-

600 in the same class of polymers is rather similar and does not vary sieficantly with the 

molecular weight or small variations in the degree of hydrolysis of the polymer matrix used. 

It seems that diffusion in these hydrophilic polymers is mostly affected by the facility in the 

formation of hydrogen bonds as exemplified by the differences observed for PNNDEA and 

PNIPA. 
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Figure 6.6. Plot of the self-diffusion coefficient of water (A) and PEG-600 (B) as a 

function of the polymer (PNNDEA and PNIPA) concentration for at 25 °C. Dashed fines 

are fits to eq 6.3. 
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The diffusion data have been also analyzed with several pertinent physical models 

in the literature. The free volume model of Yasuda et al. can be used in the description of 

the diffusion of small molecules, such as the solvent water in this case. Significant 

deviations from the model were observed for the diffusion data of larger diff-usants in 

polymer solutions and gels. The universal equation proposed by Phillies provided good fits 

to the diffusion data over the whole range of polymer concentrations, for all the diffusants 

and matrix polymers. The parameter v was found to be a constant for a given class of 

polymers and for a given diffusant. In general, the parameter a was also found to increase 

somewhat with increasing size of the diffusant (from water to PEG-600). The diffusion 

data of both water and PEG-600 in dl these polymer systems a11 fitted very well to the 

diffusion model of Petit et al. The parameter v was found to be constant for a given 

polymer system and depends on the quality of the solvent. The parameter 1432  was found 

to be a measure of the jump frequency of the diffusant which depends mostly on the size of 

the diffusant. To a less extent, it also depends on the interaction of the diffusant with the 

matrix polymer as shovvn by the differences for PVA-1 and between PNNDEA and 

PNIPA. 
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7.1. Abstract 
The interaction of a diffusant with the polymer matrix may cause difficulties in 

the determination of its self-diffusion coefficient by the pulsed field gradient NMR. 

technique. We report here the study of the interaction of ethylene glycol with 

poly(vinyl alcohol) (PVA) in aqueous solutions and gels by NMR spectroscopy and 

the elucidation of the diffusion coefficients of the free and bound ethylene glycol 

molecules which co-exist in PVA-water system. The fraction of bound ethylene 

glycol increases as a function of PVA concentration and a binding constant of ca. 

1.7x 103  INf1  was estimated. Various 1}INMR parameters such as the chemical shifts, 

the self-diffusion coefficients as well as the spin-lattice and the spin-spin relaxation 

times have been determined to study the interactions. The free and bound ethylene 

glycol molecules have different chemical shifts, NMR. relaxation times and self-

diffusion coefficients at various polymer concentrations. 

7.2. Introduction 

The diffusion and interaction of solutes and solvents in polymers is of great 

research interest because of the importance in the application of the materials. For 

example, the retardation of the diffusion of small molecules in polymer solutions and 

gels has direct applications in analytical methods such as gel electrophoresis and gel 

filtration [1,2]. In the controlled release of drugs, Coulombic interactions or 

hydrogen bonding can retard the transport of drugs in polymer systems, which results 

in the deviation of the release profile from theoretical models [3,4]. The diffusion of 

solute probes in polymer solutions and gels is usually related to the concentration of 

the polymer matrix and the size of the diffusant [1,2,5-7]. However, the elucidation 

of the effect of molecular interactions on the diffusion process is not always 

straightforward since comparisons between different solutes in different polymer 

systems are often needed. Lee and Lodge [8] used the forced Rayleigh scattering 

technique to determine the retardation of the diffusion of methyl red in poly(vinyl 

acetate)-toluene solutions by comparing with the diffusion of the same diffusant in 

polystyrene-toluene at the same polymer concentrations. Further comparison with the 
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diffusion data of isomers and derivatives of methyl red showed that the retardation 

was due to hydrogen-bonding between the carboxylic acid group of methyl red and 

poly(vinyl acetate) [2]. 

The pulsed-gradient spin-echo (PGSE) NMR spectroscopy [9-12] has become 

one of the most commonly used technique in the study of self-diffusion in polymer 

systems, such as solvent and solute probe diffusion in polymer solutions and gels [13-

15]. The self-diffusion coefficient is related to the signal intensity (A) in the presence 

of gradient pulses according to [9] 
^ 

A21  = A'„ exp —6, G 8)2 A-- D 
3) 

(7 .1) 

where A„ is the echo amplitude, A;,, is the amplitude of the echo in the absence of 

gradient pulses, y is the gyromagnetic ratio of 1H, G is the pulsed gradient strength, .5 

is the duration of the gradient pulses, A is the interval between the gradient pulses, 

and D the self-diffusion coefficient. Usually, a mono-exponential decrease of A„ 

should be observed as a function of (yG8)2(A-513). However, non-mono-exponential 

dependence can be often observed in polymer systems and this may render the 

determination of the diffusion coefficient difficult. The non-mono-exponential 

behavior can be due to the heterogeneity of the system, the specific interactions with 

the polymers, the polydispersity of macromolecular diffusants, or anomalous diffusion 

caused by intra- and intermolecular interactions in the systems [10-12,14,16]. PGSE 

NMR was also used to study the anomalous diffusion of a triblock copolymer during 

the temperature-induced sol-gel transition [17]. It was employed recently to 

investigate the binding between a probe polymer and the matrix polymer in a gel [18]. 

Watanabe et al. [19] studied water and polymer diffusion in dextran gels. They found 

two distinct self-diffusion coefficients for water. The faster diffusion corresponds to 

the bulk water (D = 7.55 x 10-6  cm2/s) and the slower diffusion corresponds to the 

trapped water (D = 6.7 x 10-8  cm2/s). By the use of PGSE NMR spectroscopy, 

Hansen et al. [20] found that both methine and methylene groups of poly(vinyl 

alcohol) (PVA) showed anomalous diffusion after gelation of PVA with 

glutaraldehyde in water. 
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In a previous work [7], we have studied the self-diffusion coefficients of a 

series of oligo- and poly(ethylene glycol)s in PVA solutions and gels by PGSE N1MR 

and observed deviations from the mono-exponential variation of the NMR echo height 

attenuation as shown in eq 7.1. The deviation was quite significant with ethylene 

glycol (EG), but became less and less obvious with increasing molecular size of the 

diffusants, i.e., oligo(ethylene glycol)s. In the case of larger diffusants such as 

poly(ethylene glycol)s, the deviation was not obvious at all. The deviations may cause 

errors in the determination of the self-diffusion coefficient and the interpretation of the 

diffusion data obtained by the NMR technique. Because of the numerous applications 

of PVA [21,22] and its facility in the formation of inter- and intramolecular hydrogen 

bonds [21,23], it can serve as an ideal system to characterize the interactions and their 

effects on the diffusion measurements. We have studied the molecular interactions 

between EG and the PVA by monitoring the chemical shift, spin-lattice (Ti) and spin-

spin (T2) relaxation times and the self-diffusion coefficient of EG. The results all 

indicate the co-existence of free and bound EG molecules in the system. The validity 

of the determination of the diffusion coefficients of both free and bound EG by the 

PGSE NMR technique is also discussed. 

7.3. Experimental section 

Ethylene glycol (EG) and the poly(vinyl alcohol) (M„, = 52 800,114/M„ = 2.09, 

degree of hydrolysis 99 %) used in this study were purchased from Aldrich 

(Milwaukee, WI) and used as received. D20 (99.9%) was purchased from C.I.L. 

(Andover, MA). 

The preparation of the NMR samples was described previously [5,7]. A 

certain amount of PVA was weighed directly inside the NMR tube. D20 containing 1 

wt % EG was then added into the tube to obtain the desired PVA concentration 

(0.03-0.38 g/mL). The NMR tubes were then sealed to avoid evaporation of the 

solvent and heated to help the mixing of the sample. During heating, the NMR tubes 

were periodically agitated to obtain homogeneous polymer solutions. 
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The self-diffusion coefficient was measured on a Bruker Avance AMX-300 

N1VIR spectrometer operating at 300.13 MHz for protons. The PGSE N1V1R 

technique developed by Stejskal and Tanner [9] was used. A Bruker magnetic 

resonance imaging probe, Micro 2.5 Probe, was coupled with a gradient amplifier 

BAFPA-40. Gradient pulses were applied only in the z direction. The calibration of 

the gradient strength along each axis was achieved by one-dimensional imaging of an 

object contained in a 10 mm NMR tube filled with a solution of doped water (with 

CuSO4). The dimension of the NMR profile was correlated to the real dimension of 

the object. The gradient strength, G, used in this study varied between 0.1 and 1 T/m. 

The gradient strength was also verified daily with a sample of known self-diffusion 

coefficient such as 1 vol % EDO in D20 (DHDO = 1.9 x le m2/s) [24]. The other 

parameters were kept constant and their values are those noted in the parentheses: 

(1-3 ms), 3, (25-200 ms), recycle delay (15-60 s), number of acquisitions (1-16), 90° 

pulse length (23-29 p,$), spectral width (3-8 kHz), line broadening (5-10 Hz). 

The T1  and T2 relaxation times measurements were made on the same NMR 

instrument. The inversion recovery [25] and the Carr-Purcell [26] methods were used 

for T1  and T2 measurements, respectively. The chemical shift study was carried out on 

a Bruker ARX-400, resonating at 400 MHz for protons, equipped with a high 

resolution probe. 

7.4. Results and discussion 

7.4.1. Chemical shifts (Ô) 

Figure 7.1 shows 'H NMR spectra of EG in PVA-D20 solutions at different 

PVA concentrations. The NMR spectrum of EG without PVA (Figure 7.1A) 

contains only two signals, residual solvent water (8 = 4.8 ppm) and EG (8 = 3.7 ppm). 

When PVA is present at a concentration of 0.03 g/mL, three groups of additional 

NMR signals appear on the spectrum (Figure 7.1B). Two of them are attributed to 

PVA (8c11  = 4-4.2 ppm and 5012 = 1.6-1.8 ppm). The additional NMR signal at 3.8 

ppm is assumed to correspond to EG bound to PVA. This signal was not observed in 
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the EG sample in the absence of PVA, nor in the PVA sample in the absence of EG. 

Therefore, it must be due to the EG bound to the polymer. In addition, the signal 

intensity of this peak increases and becomes more distinct with increasing PVA 

concentration (Figure 7.1C—D), while at the same time the other EG signal decreases 

in its intensity. This confirms that the new NMR signal belongs to the protons of EG 

bound to PVA. From the NMR spectrum, the proton signals were integrated to 

calculate the fractions of free and bound EG. The variation of the relative intensities 

of the free and bound EG signals as a fimction of PVA concentration is shown in 

Figure 7.2. For a higher PVA concentration of 0.38 g/mL, approximately half of EG 

in the system is found to be bound to the polymer. With the data in Figure 7.2, we 

are able to calculate the binding constant [27] for the interaction between PVA and 

EG and a value of ca. 1.7 x 103  IV1-1  was obtained. This value corresponds to a 

binding free energy change of ca. —18.5 kJimol at 25 °C. 

The NMR samples need to be heated for the homogeneous mixing of the 

polymer solutions as described previously [5,7]. The 1H NMR signal of bound EG 

was not observed immediately after the heating of the NMR samples. This signal only 

appeared after a certain period of time, which indicates that the binding is time-

dependent. The spectra in Figure 7.1 were acquired 15 days after heating. This is in 

agreement with the work of Stephans and Foster [23] who studied by magnetization-

transfer NMR technique the gelation process of PVA as a function of time and the 

degree of hydrolysis. They found that the intra- and intermolecular interactions of 

PVA depend mainly on time and also on the degree of hydrolysis of PVA. 

Completely hydrolyzed PVA chains can form a gel more rapidly than PVA with a 

lower degree of hydrolysis. The PVA used in our study has a degree of hydrolysis of 

99 %. Therefore, the presence of a large number of hydroxyl groups on the polymer 

chain favors the formation of hydrogen bonds. 

Matsukawa and Ando [18] reported studies of poly(ethylene glycol) (PEG) 

diffusion in poly(acrylic acid) (PAA) and in poly(N,N-dimethylacrylamide) (PDMAA) 

gels by 1H PGSE NMR spectroscopy. They found that PEG was bound to the acid 

groups of PAA by forming hydrogen bonds, whereas no such interactions were 
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Figure 7.1. 111 NNIR spectra of EG in PVA-D20 solution at different PVA 

concentrations. T = 23 °C and [PVA] = 0 (A), 0.03 (B), 0.09 (C), 0.16 (D), and 0.38 

g/mL (E). 
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From the data shown here, a binding constant for PVA-EG is estimated to be equal to 

1.7x103  M-1. 

216 



Partie V, Chapitre 7 	 Références page 225 

detectable with the less hydrophilic PDMAA. They did not observe any change in the 

chemical shift of PEG when it is bound to PAA gels, probably due to the fact that the 

NMR signal of PEG is much broader thon that of EG. 

7.4.2. PGSE NMR measurements. 

Figure 7.3 shows that the self-diffusion coefficients of both free and bound EG 

molecules can be determined by the PGSE NMR experiment. For a given sample, all 

the experimental parameters (see eq 7.1) in the PGSE NMR pulse sequence were kept 

constant with the exception of G. Therefore, only G is varied in the spectra shown in 

Figure 7.3A and the plot shown in Figure 7.3B is in fact a plot of ln A as a function of 

G2. The water (HDO) signal of 4.8 ppm disappears rapidly as the gradient strength 

increases, which indicates a high self-diffusion coefficient. NMR signals of PVA did 

not attenuate very much since the diffusion of the polymer is slow (D in the order of 
10-11 rnzis [7— ]) Both free and bound EG NMR signals decrease when the gradient 

strength is increased, but the signal intensity of bound EG decreases much less rapidly 

(Figure 7.3). Therefore, the free and bound fractions of EG have two distinct self-

diffusion coefficients (6.20x10-1°  and 1.54x10-1°  m2/s, respectively, at a PVA 

concentration of 0.09 g/mL). The same behavior has been observed with other PVA 

concentrations as shown in Figure 7.4. 

The self-diffusion coefficient of the bound EG (1.54x10-1°  m2/s) at a PVA 

concentration of 0.09 g/mL is at least an order of magnitude greater than that of PVA 

(DpvA  10-11  m2/s) [7]. This is an indication that the binding between EG and PVA is 

in a thermodynamic equilibrium. Since the hydrogen bonds are relatively weak (the 

strength of the bond is about 20 kJ/mol [28]), exchanges between the bound and free 

EG still exit and can be considered to be rapid on the NMR timescale. Therefore, the 

measured self-diffusion coefficient of the "bound" EG represents a weighted average 

of the diffusion coefficients of the free and bound EG molecules in this exchange 

process. But this value is significantly lower than the self-diffusion coefficient of 

PVA, which should correspond to the self-diffusion coefficient of the truly bound EG 

molecules. 
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2.50x109 	5.00x109 	7.50x109 	1.00x1010  

(27( y G5)2  (A - 5 /3) (s/m2) 

Figure 7.3. (A) 1H PGSE NMR spectra of EG in PVA-D20 solution at 23 °C with 

[PVA] = 0.09 g/mL. Gradient pulse strengths used are 0.10, 0.16, 0.22, 0.28, 0.34, 

0.40, 0.46, and 0.52 T/m, respectively, for each spectrum from top to bottom. (B) 

The plot of the NMR signal intensity according to eq 7.1. The D values are 

calculated from the slopes of the lines and are equal to 1.54 x 10-1°, 6.20 x 10-1°, and 

1.35 x 10-9  m2/s for bound EG, free EG and HDO, respectively, 
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Figure 7.4. Plot of the self-diffusion coefficient for free and bound EG as a function 

of PVA concentration at 23 °C. Fits are obtained with the model of Petit et al. (eq 

7.2) [15]. 
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The binding between the polymer and the diffusant evolves with time. For the 

freshly prepared samples (within 3 days), only one EG signal was observed in the 

NMR spectra. When the diffusion coefficient is measured for the fresh samples, non-

mono-exponential behavior of the NMR signal intensities (as discussed in the 

introduction) is clearly observed, as shown in Figure 7.5. Obviously, this can cause 

difficulties in the determination of the correct self-diffusion coefficient. After a certain 

period of time (e.g., 10 days), two distinct signals can be observed, as shown in 

Figures 7.1 and 7.3. The PGSE NMR echo attenuations of EG as a function of 

(yG5)2  (A-5/3) for the samples prepared within 3 days and after 10 days are all shown 

in Figure 7.5. Ten days after the sample preparation, free and bound EG showed up 

as two signals and both decayed mono-exponentially according to eq 7.1. The 

curvature observed at the very end of the data (with high G) for free EG is due to the 

influence of bound EG NMR signal which tends to overlap (Figure 7.1) and give error 

to the measured intensity of the free EG. The NMR signal of the bound EG 

attenuates more slowly than that of the free EG in the presence of strong gradient 

pulses. Similarly, the curvature observed for the data of bound EG corresponding to 

low G is due to the presence of the nearby free EG MUR signal which is much higher 

in intensity at low G (Figure 7.3). Mutual influence of the NMR signal intensities is 

due to the fact that the NMR signals for free and bound EG are very close (8 = 3.7 

and 3.8 ppm, respectively). In addition, the phase correction was carried out in 

magnitude mode, which helps to prevent the J—modulation effects but causes 

enlargement of the NMR signais at their bases [29]. The behavior of EG within 3 days 

of preparation seems to be a combination of the free and bound EG, for which no 

separate signals can be observed. The initial part of the curve, corresponding to low 

gradient strengths, is mainly due to the signal of free EG whereas the latter part of the 

curve was mainly due to the signal of the bound EG. In fact, as shown in Figure 7.5, 

the initial part of this curve within 3 days overlaps nicely with the data for free EG 

after 10 days, indicating very similar self-diffusion coefficients (4.57 x 10-1°  and 4.95 

x 1040  m2/s, respectively). As seen in the same figure, the data corresponding to the 

bound EG within 3 days does not have exactly the same slope as the bound EG after 
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Figure 7.5. Semilogarithmic plot of the MW& signal intensity as a function of (yG3)2  

(A-8/3) (eq 7.1) for ethylene glycol in PVA-water system. Data were acquired within 

3 days (closed symbols) and aller 10 days (open symbols) upon the heating of the 

samples. The self-diffusion coefficients calculated are 4.57 x 10-10, 1.71 x 10-1°  m2/s 

	

for free and bound EG within 3 days and 4.95 x 	1.12 x 10-10  m2/s for free and 

bound EG alter 10 days, respectively. T = 23 °C, [PVA] = 0.16 ghnL. 
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10 days, leading to a somewhat different D values (1.71 x 10-1°  m2/s in comparison to 

1.12 x 10-1°  m2/s of the bound EG after 10 days). The difference is due to the fact 

that the middle portion of the curve for the sample within 3 days was still much 

influenced by the overlapping free EG NMR. signal. Therefore, the data obtained 

within 3 days tend to over-estimate the D value for the bound EG as a result of the 

overlapping. The kinetic aspect of the binding may have also contributed to the larger 

D value (1.71 x 10-1°  m2/s) at this stage, indicating the binding is still in progress. 

Matsukawa and Ando [18] studied the diffusion of PEG in PAA, PDMAA, 

and copolymers of DMAA and AA. By comparison of the self-diffusion coefficient 

and T2 of PEG in different polymer systems, they identified hydrogen bonding 

between PEG and the acrylic acid groups. They found that D and T2 values of PEG 

were lower in a network where the fraction of acrylic acid was higher than 0.9. 

However, no different self-diffusion coefficients of free and bound PEG were reported 

for the system. 

The data in the Figure 7.4 are fitted to the diffusion model of Petit et al. [6] 

D — 	 
Do  

1+ ac 2v  
(7.2) 

where Do  the self-diffusion coefficient of the diffusant in the absence of the polymer 

network, c the polymer concentration, a and v are fitting parameters. The parameter 

v depends on the quality of the solvent and should be a constant for a given system, while 

a is another parameter related to Do  and the jump frequency of the diffusant [6]. This 

model was used to describe the diffusion of small molecules and macromolecules in 

polymer matrices, such as temary PVA-aqueous systems, and the diffusion of small 

molecules in binary organic solutions of poly(methyl methacrylate) [6,7,30]. In general, 

the self-diffusion coefficients of both free and bound EG decreases with increasing 

concentration of PVA. However, this decrease is much more pronounced for the 

fraction of free EG. Table 7.1 shows the chetnical shifts and all the other physical 

parameters related to eq 7.2. From Figure 7.4, we have found a value of 0.65 and 

0.64 for the parameter v of the free and bound EG, respectively. These values are 

almost identical and they are close to the average value of 0.58 obtained for the PVA 
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aqueous systems in a previous study [7]. As for the parameter a, a value of 9.08 and 

17.44 was found for the free and bound EG, respectively. The hydrodynamic radius 

(Rh ) for the free EG (2.71 Å) and bound EG (8.19 Å) (Table 7.1) were calculated 

-with the Stokes-Einstein equation. 

Table 7.1. Chemical shift, Do , a, v, and Rh (calculated from the Stokes-Einstein 

equation) for free and bound EG. 

.5 (ppm) 	Do x10-1°  (m2/s) 	a 	V 	Rh (.2k) 

Free EG 3.7 8.49 9.08 0.65 2.71 

Bound EG 3.8 2.81 17.44 0.64 8.19 

7.4.3. Measurements of NMR relaxation times (T1  and T2) 

The relaxation times, Ti  and T2, reflect the freedom of motion of a molecule 

whereas the self-diffusion coefficient reflects more the displacement of the molecule 

[18]. Both T1  and T2 of the NMR signals of the free and bound EG (at 3.7 and 3.8 

PPm, respectively), were measured for various PVA concentrations. T1  and T2 

measured for free EG decrease with increasing PVA concentration, as shown in 

Figure 7.6. This variation of the relaxation times can be attributed to changes in the 

environment of the diffusant, due to an increased restriction in the freedom of motion 

at higher PVA concentrations. T1  and T2 measured for bound EG, however, are 

found to be more or less constant with increasing PVA concentration. Comparison of 

T1  and T2 values for free and bound EG showed restricted motions of bound EG at 

various PVA concentrations (Figure 7.6). This result is another clear evidence of 

interactions between EG and PVA. 
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Figure 7.6. Plot of T1  (A) and T2 (B) relaxation times for free and bound EG as a 

function of PVA concentration. Large variations can be observed for free EG, but the 

variations for bound EG are much smaller. 
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7.5. Concluding remarks 
The binding of a small diffusant such as ethylene glycol with a polymer (in this 

case PVA) is °tien a kinetic and dynamic process. The free and bound species may 

not always appear as separate NIVIR signais. As shown in this study, the co-existence 

of both free and bound molecules may cause difficulties in the correct determination 

of the self-diffusion coefficient when the N1VIR signais are not well separated and 

when the echo attenuation shows non-mono-exponential behavior (eq 7.1) as in the 

case of freshly prepared PVA-EG-water samples. We were able to characterize the 

interaction of EG with PVA in the aqueous solutions by measuring the different NIVIR 

parameters (chemical shift, relaxation times, etc.). In many other cases, such as the 

PVA-PEG systems, the evidence of interaction may not be as apparent, but similar 

problems may arise in the study of diffusion by the PGSE NMR technique, as 

mentioned in a previous work [7]. The self-diffusion of oligo(ethylene glycol)s and 

their derivatives in PVA solutions and gels is currently studied. In this report, we 

have shown how the diffusion coefficients of the free and bound diffusant can be 

measured or estimated and how the PGSE NMR. technique can be used in the 

investigation of such interactions in a polymer system. 
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Nous avons étudié la diffusion dans les solutions et gels de polymères afin de 

mieux comprendre les procédés de diffusion dans ces systèmes. Les modèles 

théoriques de diffusion les plus pertinents ont été testés avec les données 

expérimentales, de manière à déterminer leur domaine d'application. La méthode 

RMN d'écho de spin à gradient de champ pulsé a été utilisée pour mesurer les 

coefficients d'auto-diffusion. Plusieurs systèmes ont été étudiés afin d'évaluer 

l'impact de certains paramètres physico-chimiques sur la diffusion. 

8.1. L'effet de la taille et la géométrie du soluté 

Deux séries de diffusants basées sur l'éthylène glycol ont été sélectionnées 

pour réaliser notre étude: une serie de solutés linéaires, dont la taille varie, et une série 

de solutés ayant des géométries différentes, i.e., les groupes terminaux changent. Les 

mesures de diffusion ont montré que le coefficient d'auto-diffusion diminue lorsqu'on 

augmente la concentration du polymère ou la taille du soluté. L'effet de la taille du 

soluté est majeur dans les solutions diluées et semi-diluées de polymère. Nous avons 

observé des variations du coefficient d'auto-diffusion plus importantes avec les 

diffusants de petite taille qu'avec les macromolécules. Cependant, dans les régimes 

concentrés de polymère, les coefficients d'auto-diffusion ont tendance à converger 

vers une valeur commune. La géométrie du soluté joue aussi un rôle prépondérant 

dans le procédé de diffusion. Par exemple, un groupe hexyle restreint plus la diffusion 

qu'un groupe méthyle car il est plus volumineux. De même, un soluté ayant une 

fonction tert-butyle ou un groupe cyclique diffuse plus lentement qu'un soluté linéaire. 

8.2. L'effet du réseau polymère 

Nous avons étudié la diffusion du solvant (l'eau) et d'un soluté (PEG-600) 

dans différents systèmes polymères. Les systèmes étudiés sont des PVA avec 

différentes masses molaires et taux d'hydrolyse, des HPMC, un PNNDEA et un 

PNIPA. La diffusion de ces solutés ne varie pas de façon significative pour une série 

de polymère donnée, quel que soit la masse molaire ou le taux d'hydrolyse de la 

matrice de polymère. Ces résultats montrent que la diffusion dans les systèmes 
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polymères est gouvernée par la microstructure du polymère. La caractérisation des 

polymères par des études de diffusion de la lumière et de chromatographie d'exclusion 

stérique ont permis de montrer que les PVA et les HPMC forment de nombreuses 

liaisons hydrogène intra- et intermoléculaires. Dans le cas de PNNDEA et PNIPA, il 

n'y a peu de formation de liaison hydrogène intra- et intermoléculaire, cependant le 

taux d'hydratation des chaînes du polymère influence les procédés de diffusion. 

8.3. L'effet de la température 
Les expériences à température variable montrent qu'une augmentation de la 

température augmente les coefficients d'auto-diffusion. Cependant, -l'effet de la taille 

du soluté et de la concentration en polymère persiste. La température est donc un 

paramètre important qui doit être pris en considération. Les énergies d'activation de 

tBuOH, EG, PEG-600 et PEG-2000 ont été calculées, des valeurs de 21.1, 30.0, 36.5 

et 39.0 k.T/mol ont été obtenues, respectivement. Ces résultats montrent que l'énergie 

d'activation dépend principalement de la taille de la sonde. 	Les données 

expérimentales utilisées pour EG correspondent aux données de diffusion anormale. 

La première partie des courbes de ln I vs 52(A-5/3) ffit utilisée pour calculer les 

coefficients d'auto-diffusion. Cette procédure n'induit pas trop d'erreur selon l'étude 

faite au chapitre 7. Cependant, on peut constater que la valeur de AF pour EG semble 

élevée par rapport à. la valeur de AF pour tBuOH, qui est aussi une petite molécule. 

On peut donc penser que cette valeur est moins fiable que les autres. 

8.4. Les interactions dans les systèmes aqueux 

L'interaction entre l'éthylène glycol et le PVA, observée lors de la première 

étude, chapitre 3, a été étudiée. Nous avons observé que l'éthylène glycol avait un 

profil de diffusion anormal dans un tel système. Cette diffusion anormale est due à la 

formation de ponts hydrogène entre le diffusant et le polymère. Un signal RMN, 

résultant de cette interaction, apparaît en fonction du temps. L'analyse de ce signal en 

RMN (coefficient d'auto-diffusion et temps de relaxation) montre qu'il s'agit bien 

d'une fraction d'éthylène glycol liée par pontage hydrogène (chapitre 7). Par 
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conséquent, l'atténuation progressive du phénomène de diffusion anormale avec 

l'augmentation de la taille du soluté, signalée dans le chapitre 3, peut être attribuée, en 

partie, au mode de préparation des échantillons. En effet, la concentration en soluté est 

toujours de 1% en poids. Ce qui implique que la proportion de fonction hydroxyle soit 

trois fois plus faible dans une solution de TEG comparée à une solution de EG, et 

approximativement dix fois plus faible pour une solution de PEG-600. Un tel phénomène 

(liens hydrogènes entre le PVA et les groupements hydroxyles du soluté) devrait également 

intervenir dans le cas des oligo(éthylènes glycol)s. 

Par ailleurs, les travaux de Matsukawa et Ando ont permis de mettre en évidence 

que le PEG-4250 forme des interactions avec les fonctions acides de l'acide polyacrylique, 

tel que mentionné au chapitre 7. Ces résultats, combinés à nos travaux permettent de 

penser que les PEG forment des associations avec le polymères ayant des fonctions 

hydroxyles. Pour conclure, nous pouvons affirmer que nos travaux montrent que les 

systèmes aqueux PEG-PVA sont très complexes. 

8.5. Les modèles physiques de diffusion 

Parmi tous les modèles examinés, ceux de Petit et al., Phillies et Amsden ont 

donné les meilleures corrélations avec les données expérimentales. 

Le modèle de diffusion proposé par Petit et al. permet de décrire la diffusion 

du solvant, de solutés moléculaires de taille et de géométrie différentes, incluant les 

macromolécules, dans divers solutions et gels de polymères. De plus, les paramètres 

utilisés dans ce modèle ont une signification physique, ce qui est essentiel pour 

comprendre les procédés de diffusion. Ainsi, nous avons confirmé que le paramètre 

Ic132  décrit la fréquence de saut de la molécule diffusante. Ce paramètre dépend 

principalement de la taille du soluté, i.e., de son rayon hydrodynamique, et de la 

température. Nous avons également constaté que ce paramètre est influencé par la 

capacité de la matrice polymère à former des liaisons hydrogène. Le paramètre v 

relate la qualité du solvant. C'est une constante pour un système solvant-polymère 

donné. Nous avons établie cette valeur pour un système PVA-eau et pour trois autres 

systèmes polymère-eau sur la base de données obtenues pour le IIPMC, PNNDEA et 
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PNIPA. L'application du modèle a été satisfaisante quelle que soit la taille et la 

géométrie du soluté étudiée dans les solutions et gels de polymères. Par conséquent, 

ce modèle permet de faire le lien entre la diffiision de molécules de petites tailles et de 

grandes tailles comme les macromolécules, ce que peu de modèles de diffusion 

permettent de faire. Ce modèle tient compte non seulement de la taille des molécules 

diffusantes, mais aussi de la concentration en polymère, de la température et des 

interactions soluté-polymère. Cependant, il semble que ce modèle ne puisse pas 

décrire correctement la diffusion de molécules de très haute masse molaire dans des 

solutions concentrées ou des gels de polymères d'après les données de diffusion tirées 

de la littérature. 

Les modèles de diffusion de Phillies et de Amsden reproduisent de façon 

satisfaisante les données expérimentales pour toutes les études que nous avons 

effectuées. Cependant, suite à l'analyse des résultats, nous n'avons pas été en mesure 

de confirmer la signification physique des paramètres utilisés dans ces modèles. 

Toutefois, dans le cas du modèle de Phillies nous avons montré que le paramètre v 

reflète la qualité du solvant. Des études complémentaires sont nécessaires pour 

identifier la signification de ces paramètres. 

Nous avons constaté que les modèles de diffusion décrits par Mackie-Meares, 

Ogston et al. et Yasuda et al. ne donnent pas de résultats satisfaisants. Le modèle de 

diffusion de Maclçie-Meares ne reproduit pas les données expérimentales car il ne tient 

pas compte des propriétés physiques du diffusant. Ceux de Ogston et al. et Yasuda et 

al. produisent de meilleurs résultats sans toutefois donner une bonne corrélation avec 

les données expérimentales car ils ont été établis à partir d'hypothèses qui limitent leur 

domaine d'application. 

8.6. Travaux futurs 

Il serait très intéressant de continuer ce travail en étudiant la diffusion de molécules 

sphériques et rigides tels que les dendrimères. En effet, de telles molécules doivent diffuser 

dans des solutions et gels de polymères selon des procédés différents des oligo- et 

poly(éthylènes glycol)s qui sont des molécules très flexibles. En sélectionnant des 
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dendrimères de différentes grandeurs, on pourrait étudier la diffusion de molécules dont la 

taille est similaire et supérieure à la longueur de corrélation du réseau. Cela permettrait de 

mieux comprendre l'influence des chaînes du réseau polymère sur la diffusion. Dans le 

même ordre d'idée, il serait intéressant d'étudier la diffusion de molécules linéaires de 

hautes masses molaires dans des réseaux de polymères de hautes masses molaires afin de 

mieux caractériser le modèle de Petit et al. 

Au niveau des polymères il pourrait être intéressant de faire des mesures de 

diffusion dans des gels réticulés chimiquement. La dynamique de tels systèmes est 

différente des solutions et gels de polymères reporté dans cette étude. Le coefficient 

d'auto-diffusion dans de tels systèmes ne peut pas être reliée à la concentration en 

polymère, mais est fonction du taux de gonflement du polymère. Par conséquent, une telle 

étude permettrait de savoir si le taux de gonflement est le principal paramètre qui permet 

de décrire la diffusion. De plus, un tel système peut être utilisé pour évaluer la pertinence 

du modèle de Petit et al. dans de telles circonstances. 

Finalement, il est serait intéressant de faire des études de diffusion à partir de 

matrices de polymère à l'état sec (sous forme de tablettes) et renfermant un soluté, par 

imagerie RMN, afin de se rapprocher des systèmes exploités en pharmacie. De telles 

conditions impliquent deux phénomènes, à savoir le gonflement de la matrice polymère et 

la diffusion du soluté. Dans le cas particulier des polymères biodégradables, le phénomène 

d'érosion s'ajoutera aux deux phénomènes déjà mentionnés. 
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Annexe A: 	Résultats expérimentaux 

Figure 1.& 

1/(1-y) 

tBuOH Me0H 

ln DID0  

S(CH3)4 PEG-400 PEG-4000 

1 0 0 0 0 0 

1.022 -0.061 -0.056 -0.055 -0.095 -0.200 

1.043 -0.108 - - - 

1.046 -0.100 -0103 -0.210 -0.349 

1.071 -0.169 -0.284 -0.458 

1.094 - -0.164 - - - 

1.097 -0.211 -0.194 -0.382 

1.123 -0.444 -0.644 

1.150 -0.319 - -0.481 - 

1.154 -0.221 -0.296 -0.678 

1.214 -0314 - -0.645 - 

1.215 -0.421 - - 

1.218 -0389 -0.837 

1.257 -0.510 - - - 

1.278 -0.391 - - 

1.290 -0.471 - 
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Figure 1.12A. 

[13VME] 

(g/n11-) (a) 

Dps X 10-7  (CM2/S) 

(b) 	 (c) (d) 

0.001 1.318 1.949 3.236 5.888 

0.0014 1.288 1.949 3.090 5.754 

0.002 1.230 1.819 3.020 5.495 

0.003 1.148 1.698 2.818 5.248 

0.004 1.071 1.584 2.454 5.011 

0.006 0.933 1.412 2.344 4.365 

0.008 0.831 1.259 2.138 4.265 

0.01 0.741 1.148 1.949 3.890 

0.014 0.588 0.933 1.621 3.388 

0.02 0.467 0.776 1.380 2.951 

0.03 0.331 0.537 1.000 2.344 

0.04 0.229 0.407 0.758 2.041 

0.06 0.126 0.234 0.478 1.412 

0.08 0.074 0.141 0.302 1.047 

0.1 0.045 0.085 0.204 0.794 

0.11 0.035 0.068 0.173 0.692 

0.13 0.022 0.045 0.117 0.537 

0.17 0.010 0.020 0.060 0.316 

0.20 0.006 0.013 0.038 0.224 

0.25 0.002 0.005 0.017 0.117 

0.30 0.001 0.002 0.095 0.072 

(a) Mps = 1.05 x 106  

(b) M=4.22 x 105  

(c) Mps= 1.79 x 105  

(d) Mps= 6.5 x 104  
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Figure 1.12B. 

[13VME] 

(gin11-) (a) 

Dps x 10-7  (cm2/s) 

(b) 	 (c) (d) 

0.001 1.148 1.412 2.344 6.761 

0.0014 1.096 1.380 2.238 6.025 

0.002 1.000 1.259 2.089 6.025 

0.003 0.851 1.096 1.819 5.623 

0.004 0.741 0.955 1.621 5.370 

0.006 0.562 0.724 1.318 5.012 

0.008 0.436 0.562 1.096 4.571 

0.01 0.346 0.467 0.933 4.365 

0.014 0.229 0.309 0.708 3.890 

0.02 0.138 0.199 0.501 3.388 

0.03 0.063 0.102 0.295 2.691 

0.04 0.032 0.057 0.190 2.238 

0.06 0.013 0.025 0.120 2.042 

0.08 0.005 0.011 0.066 1.659 

0.1 0.002 0.005 0.037 1.259 

(a) Mps = 1,69 x 106  

(b) M =  4.i1 x 106  

(c) Mps= 4.67 x 105  

(d) M 8=5.5 x 104  
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Figure 2.3R 

S2(3,-5/3) 

(10-5  s) H20 

ln A 

PEG-600 PVA 

0.014 0 0 0 
0.087 -0.81 -0.003 -0.02 
0.12 -2,44 -0.21 -0.02 
0.22 - - 0.43 - 0.04 
0.34 - -0.63 -0.06 
0.49 - -0.96 -0.12 
0.67 - -1.25 -0.14 
0.89 - - 1.60 -0.17 
1.11 - -1.98 -0.19 
1.36 - -2.44 -0.21 
1.65 -2.94 -0.26 

Figure 2.6. 

(y&S)2(3,-5/3) (109  s/m2) ln A 

0.11 0 
0.27 -0.10 
0.51 -0.22 
0.83 -0.37 
1.22 -0.57 
1.69 -0.78 
2.24 - 1.03 
2.86 - 1.29 
3.56 - 1.55 
4.34 - 1,78 
5.20 - 1.98 
6.12 -2.14 
7.12 -2.28 
8.20 -2.51 
9.36 -2.71 
10.59 -2.88 
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Figure 3.1R 

82(A-5/3) 

(10-5  s3) H20 

ln A 

PEG-2000 	PVA 

0.014 0 0 	0 
0.087 -0.87 -0.005 	-0.023 
0.22 -2.51 -0.16 	-0.046 
0.58 - -0.46 	-0.071 
0.88 - -0.71 	-0.095 
1.11 -0.87 	-0.15 
1.36 - -1.07 	-0.20 
1.65 -1.27 	-0.23 
1.95 -1.46 	-0.26 
2.30 - - 1.72 	- 0.32 
2.65 - 1.98 	-0.38 

Figure 3.2A. 

[PVA] D (10-1°  m2/s) 

(g/m1-) EG (EG)3  (EG)4 	PEG-200 	(EG)5  (EG)6  

0 9.37 5.96 5.39 4.84 4.58 4.08 
0.03 8.45 - 3.97 3.69 3.60 
0.06 6.47 3.11 2.98 2.98 2.84 2.54 
0.09 - - 2.46 2.39 2.37 
0.12 4.07 2.08 1.95 2.00 1.97 1.77 
0.16 - 1.67 1.53 1.54 1.58 1.47 
0.20 2.55 1.21 1.26 1.30 1.28 1.22 
0.26 - 1.05 1.01 0.97 
0.32 1.42 0.70 0.76 0.73 0.84 0.66 
0.38 - 0.61 0.58 0.58 0.64 0.51 
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Figure 3.2B. 

[PVA.] 

(g/mL) PEG-400 PEG-600 

D (10-10  m2/s) 

PEG-1000 	PEG-1500 PEG-2000 PEG-4000 

0 3.31 1.87 1.66 1.13 1.10 0.98 
0.0284 2.66 - - 0.60 

0.03 1.47 1.14 0.81 0.67 - 
0.0583 2.04 - - 0.43 
0.06 1.22 0.92 0.67 0.54 

0.0898 - - 
0.09 - 0.99 0.73 0.54 0.43 - 
0.12 - 0.79 0.65 0.42 0.34 - 
0.123 1.38 - - - 
0.1567 1.19 - - - 0.22 
0.16 0.69 0.50 0.35 0.28 - 

0.1908 1.09 - - 
0.1954 - - 0.20 
0.20 - 0.58 0.44 0.26 0.21 
0.26 - 0.45 0.35 0.25 0.17 

0.2716 0.75 - - - 
0.2767 - - - 0.14 
0.32 - 0.34 0.27 0.21 0.14 
0.38 - 0.30 0.25 0.16 0.12 - 

Figure 3.3. 

[PVA] D (10-1°  m2/s) 

(gh111-) 23 °C 33 °C 43 °C 53 °C 

a 1.87 3.41 4.60 6.09 
0.03 1.47 2.79 4.14 4.79 
0.06 1.22 2.22 2.92 3.81 
0.09 0.99 1.85 2.45 3 .26 
0.12 0.79 1.54 2.13 2.73 
0.16 0.69 1.26 2.26 
0.20 0.58 1.05 1.69 1.95 
0.26 0.45 0.85 1.17 1.56 
0.32 0.34 0.69 1.14 1.27 
0.38 0.30 0.63 - 1.08 
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Figure 3.4. 

RH (À) k132  Sample 

EG 2.43 0.28 0.76 
(EG)3 3.91 0.23 0.60 
(EG)4. 4.32 0.24 0.59 
(EG)5 5.08 0.25 0.60 
(EG)6 5.70 0.21 0.63 

PEG-200 4,81 0.24 0.60 
PEG-400 7.00 0.23 0.56 
PEG-600 12.48 0.12 0.58 
PEG-1000 13.99 0.12 0.49 
PEG-1500 20.59 0.068 0.54 
PEG-2000 22.69 0.053 0.53 
PEG-4000 24.35 0.047 0.50 

Figure 3.5. 

1/T 	 log ki32  

(10-3 K-1) tBuOH EG PEG-600 PEG-2000 

3.38 - 10.01 - 10.54 - 10.91 - 11.27 
3.27 -9.90 - 10.36 - 10.54 - 10.87 
3.16 -9.81 - 10.25 - 10.45 - 10.80 
3.07 -9.65 - 10.03 - 10.32 - 10.64 

Figure 4.1. 

f D/Do  

PEG-200 PEG-2000 PEG-10000 (a)  

O 1 1 1 

0.026 0.78 0.61 0.57 

0.051 0.62 0.49 0.34 

0.075 0.52 0.39 0.24 

0.097 0.43 0.31 0.16 
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0.126 0.34 0.25 0.11 

0.153 0.28 0.19 0.09 

0.190 0.21 0.15 - 

0.224 0.18 0.13 - 

0.255 0.14 0.11 - 

(a) données pour la Figure 4.8. 

Figure 4.2. 

q/(1-(p) 

PEG-400 

ln D/D0  

PEG-1000 	PEG-2000 PEG-10000 

1 0 0 0 0 

1.025 -0.218 - - - 

1.027 -0.375 -0.498 -0.561 

1.052 -0.484 - - 

1.054 -0.590 -0.716 -1.071 

1.081 -0.654 -0.821 -0.941 -1.426 

1.108 - -0.937 -1.176 -1.813 

1.111 -0.875 

1.141 -1.023 - - 

1.144 - -1.199 -1.370 -2.196 

1.172 -1.115 - - - 

1.180 - -1.328 -1.658 -2.373 

1.235 - -1.556 -1.869 - 

1.245 -1.480 - - 

1.289 - -1.812 -2.064 

1.343 - -1.893 -2.218 
-  
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Figure 4.3A. 

[PVA] D (10-1°  m2/s) pour PEG 

(g/mL) 200 400 600 1000 1500 2000 4000 10000 

0 4.59 3.31 1.87 1.66 1.13 1.10 0.96 0.45 

0.0284 2.66 - - 0.60 - 

0.03 3.60 1.44 1,14 0.81 0.67 - 0.26 

0.0583 2.04 - - 0.43 - 

0.06 2.84 - 1.22 0.92 0.67 0.54 0.16 

0.0898 1.72 - 0.33 - 

0.09 2.37 - 0.99 0.73 0.54 0.43 0.11 

0.12 1.97 0.79 0.65 0.42 0.34 - 0.07 

0.123 1,38 - - 

0.1567 1.19 - 0.22 - 

0.16 1.58 - 0.66 0.50 0.35 0.28 - 0.05 

0.1908 - 1.19 - - - 

0.1954 - - - - 0.20 

0.20 1.28 - 0.58 0.44 0.27 0.21 - 0.04 

0.26 0.97 - 0.45 0.35 0.25 0.17 - 

0.2716 0.75 - - - 

0.2767 - 0.14 - 

0.32 0.84 - 0.34 0.27 0.21 0.14 - - 

0.38 0.64 - 0.30 0.25 0.16 0.12 

Figure 4.3.B. (voir Figure 3.3.) 
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Figure 4.4. 

Mw  (g/ mol) Rh (Å) 

150 3.91 

194 4.32 

200 4.81 

238 5.08 

282 5.7 

400 7.00 

600 12.48 

1000 13.99 

1500 20.59 

2000 22.69 

4000 24.35 

10000 50.62 

Figure 4.5. 

Rh (À) Ot V 

3.91 4.72 0.70 

4.32 4.78 0.74 

4.81 4.81 0.80 

5.08 4.47 0.79 

5.7 4.45 0.80 

7.00 4.32 0.79 

12.48 4.16 0.78 

13.99 3.64 0.64 

20.59 4.10 0.70 

22.69 4.33 0.66 
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24.35 

50.62 

4.42 

10.95 

0.61 

0.84 

Figure 4.6(A, B et C). 

Tx 103  a (A) v (B) log Do  (C) 

(K-1) (a) (b) (c) (a) (b) (c) (a) (b) (c) 

3.38 3.02 4.17 4.33 0.86 0.79 0.66 -9.15 -9.73 -9.99 

3.27 3.17 4.07 4.81 0.92 0.79 0.70 -9.08 -9.47 -9.68 

3.16 3.20 3.94 4.13 0.91 0.79 0.68 -8.97 -9.34 -9.59 

3.07 3.09 3.72 4.21 0.93 0.74 0.68 -8.85 -9.21 -9.54 

(a) tBuOH 

(b) PEG-600 

(c) PEG-2000 

Figure 4.7(A et B). 

(g/mol) 

log D [PV.A.] 

(e/m1-) 

puissance 

de M 

400 -9.92 0 -0.62 

600 -10.18 0.03 -0.64 

1000 -10.30 0.06 -0.68 

1500 -10.46 0.09 -074 

2000 -10.55 0.12 -0.78 

4000 -10.66 0.16 -0.89 

10000 -11.30 0.20 -0.89 

0.26 -0.89 

- 0.32 -0.74 

- - 0.38 -0.71 

- - 0.38 -0.78 
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Figure 4.8. (voir Figure 4,1.) 

Figure 5.2. 

EG-Me 

D (104°  

EG-Me2  

m2/s) 

EG-tBuMe 18-crown-6 

0 7.88 7.56 5.58 4.37 

0.026 7.05 6.78 4.63 3.62 

0.052 6.37 5.88 4.12 2.99 

0.075 5.76 5.39 3.68 2.47 

0.098 5.11 4.82 3.35 2.05 

0.126 4.53 4.26 3.08 1.78 

0.153 4.06 3.80 2.37 1.60 

0.190 3.29 3.37 1.98 1.31 

0.224 2.93 2.86 1.56 0.97 

0.253 2.47 2.33 1.31 0.72 

Figure 5.3 (A et B) 

(p1(1-9) 

EG-Me 

D (1 0_10  m2  s) 

DEG-ffiuMe MPPE 

Rh 

(Å) 

Bslf, 

0 -9.10 -9.32 -9.36 2.79 1.80 

0.027 -9.15 -9.38 -9.43 3.07 1.60 

0.054 -9.19 -9.45 -9.54 3.24 1.73 

0.082 -9.24 -9.48 -9.60 4.38 2.00 

0.108 -9.29 -9.56 -9.65 3.83 1.71 

0.144 -9.34 -9.59 -9.71 4.18 1.95 

0.181 -9.39 -9.69 -9.79 5.45 2.81 

0.235 -9.48 -9.80 -9.89 5.05 2.01 

0.289 -9.53 -9.86 -9.99 4.65 1.94 
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0.343 	-9.61 	-9.95 	 4.75 
	1.92 

	

5.54 
	

3.04 

	

5.55 
	

3.03 

Figure 5.4A. 

[PVA] 	 D (10-10  m21s) 

(g/m1-) EG EG-Me EG-Me EG-tBaMe 

0 8.58 7.88 7.56 5.58 

0.03 7.70 7.05 6.78 4.63 

0.06 6.66 6.37 5.88 4.12 

0.09 6.08 5.76 5.39 3.68 

0.12 5.58 5.11 4.82 3.35 

0.16 4.80 4.53 4.26 3.08 

0.20 3.97 4.06 3.80 2.37 

0.26 3.30 3.29 3.37 1.98 

0.32 2.75 2.93 2.86 1.56 

0.38 2.25 2.47 2.33 1.31 

Figure 5.4B. 

DEG-He 

[PVA] 

(g/mi) DEG- Me 

D (10-1°  m2/s) 

DEG-Et 	DEG-tBu.Me 

0 6.46 5.77 4.80 4.43 

0.03 5.41 5.07 4.14 3.77 

0.06 4.90 4.48 3.57 3.12 

0.09 4.48 4.13 3.27 2.63 

0.12 4.13 3.59 2.76 2.37 

0.16 3.53 3.02 2.54 2.01 

0.20 2.96 2.54 2.02 1.62 
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0.26 2.61 2.33 1.59 1.36 

0.32 2.16 1.80 1.39 1.05 

0.38 1.71 1.57 1.11 0.94 

Figure 5.4C. 

[PVA] 

(g/m1-) 1E,G- Me 

D (10-1°  m2/s) 

1EG-Me2 	18-crovvn-6 MPPE 

0 5.23 5.14 4.37 4.39 

0.03 4.55 4.40 3.62 3.70 

0.06 4.01 3.94 2.99 2.91 

0.09 3.41 3.34 2.47 2.53 

0.12 3.12 3.08 2.05 2.21 

0.16 2.72 2.69 1.78 1.93 

0.20 2.31 2.26 1.60 1.61 

0.26 1.98 1.94 1.31 1.28 

0.32 1.64 1.61 0.97 1.02 

0.38 1.39 1.32 0.72 

Figure 5.5 (A et B). 

Rh  00 a (A) v (B) 

2.79 3.40 0.95 

3.07 2.83 0.90 

3.24 2.60 0.83 

4.38 3.32 0.88 

3.83 2.94 0.86 

4.18 3.22 0.90 
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5.45 3.53 0.89 

5.05 3.67 0.83 

4.65 3.06 0.84 

4.75 3.06 0.84 

5.54 3.84 0.80 

5.55 3.69 0.80 

Figure 5.6 (A, B et C). voir Figure 5.4 (A, B et C) 

Figure 5.7 (A et B). 

Rh (Å) Mw  (g/mol) log 432  

2.79 62 -9.93 

3.07 76 -9.91 

3.24 90 -9.93 

4.38 132 -10.17 

3.83 120 -10.05 

4.18 134 -10.12 

5.45 190 -10.39 

5.05 176 -10.26 

4.65 164 -10.19 

4.75 178 -10.20 

5.54 264 -10.45 

5.55 195 -10.42 

Figure 5.8. voir Figure 5.1. 
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Figure 6.2. 

(p/(1-y) ln D 

H20 PEG-600 

0 -20.17 -22.08 

0.027 -20.32 -22.33 

0.054 -20.38 -22.52 

0.081 -20.46 -22.68 

0.108 -20.53 -22.88 

0.144 -20.63 -23.08 

0.181 -20.73 -23.19 

0.235 - -23.50 

0.289 -20.90 -23.64 

0.343 -21.12 -23.89 

Figure 6.3A. 

[PVA] 

(gh111-) PVA-1 

Dmo  (1(Y9  m2/s) 

PVA-2 PVA-6 

0 1.73 1.73 1.73 

0.03 1.59 1.50 1.48 

0.06 1.47 1.41 139 

0.09 1.37 1.30 1.27 

0.12 1.29 1.21 1.19 

0.16 1.17 1.10 1.07 

0.20 1.05 0.99 0.96 

0.26 0.94 0.86 

0.32 0.81 0.76 - 

0.38 0.74 0.67 -0 
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Figure 6.3B. 

[PVA] 

(g/mL) PVA-1 PVA-2 

DpEG.600 (1 0 

PVA-3 

10  M.%) 

PVA-4 PVA-5 PVA-6 

0 2.56 2.56 2.56 2.56 2.56 2.56 

0.03 2.05 2.01 2.01 1.98 1.98 1.98 

0.06 1.72 1.65 1.63 1.65 1.65 

0.09 1.46 1.41 1.42 1.33 1.40 1.39 

0.12 1.26 1.15 1.15 1.17 1.17 

0.16 1.08 0,95 0.96 0.99 0.98 0.99 

0.20 0.87 0.84 0.79 0.80 0.81 0.79 

0.26 0.71 0.62 0.60 0.63 0.65 0.64 

0.32 0.61 0.54 0.51 0.50 0.53 0.53 

0.38 0.52 0.42 0.40 0.41 0.44 0.43 

Figure 6.4 (Aet B). voir Figure 6.3A. et 6.3B. 

Figure 6.5 (A et B). 

[HPMC] 

(g/mL) 

ArDo (1 0-9  m2/s) (A) 

HPMC-1 	HPMC-2 

DPEG-600 (1 0-10  M2/S) (B) 

HPMC-1 	HPMC-2 

0 1.73 1.73 2.56 2.56 

0.03 1.53 1.46 1.89 1.87 

0.06 1.41 1.33 1.53 1.50 

0.09 1.33 1.25 1.31 1.23 

0.12 1.24 1.13 1.11 1.04 

0.16 1.14 1.06 0.92 0.89 

0.20 1.07 0.93 0.77 0.74 
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0.60 0.56 0.26 0.95 0.82 

0.32 0.83 - 0.48 - 

0.38 0.77 _ 0.41 _ 

Figure 6.6 (A et B). 

[polymère] 

(g/mL) 

AjDo (10-9  M2/S) (A) 

PNNDEA 	PN1PA 

DPEG600 (Er"  M2/S) (B) 

PNNDEA 	PNIPA 

0 1.73 1.73 2.56 2.56 

0.03 1.61 1.54 2.17 2.12 

0.06 1.49 1.41 1.84 1.79 

0.09 1.40 1.26 1.63 1.51 

0.12 1.34 1.17 1.41 1.31 

0.16 1.19 1.06 1.18 1.05 

0.20 1.07 0.96 099 0.89 

0.26 0.96 0.86 0.79 0.67 

0.32 0.88 0.76 0.63 0.52 

0.38 0.79 - 032 

Figure 7.2. 

[PVA] Fraction d'éthylene glycol 

(g/m1) libre lié 

0 1 
0.03 0.91 0.09 
0.09 0.72 0.28 
0.16 0.66 0.33 
0.38 0.54 0.46 
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Figure 7.3B. 

(yG5)2(A-8/3) 

(109  s/m2) H20 

Ln A 

EG libre EG lié 

0.09 0 0 0 
0.24 -0.24 -0.10 -0.06 
0.46 -0.54 -0.24 -0.14 
0.75 -0.94 -0.42 -0.21 
1.10 -1.42 -0.60 -0.31 
1.52 -1.99 -0.92 -0.41 
2.02 -2.63 -1.23 -0.52 
2.58 -3.35 - 1.59 -0.64 
3.21 -1.98 -0.77 
3.91 -2.41 -0.88 
4.67 -2.85 -1.02 
5.51 -3.32 - 1.14 
6.41 -3,77 - 1.28 
7.39 - -4.18 -1.42 
8.42 - -4.54 -1.57 
9.54 -1.72 

Figure 7.4. 

[PVA] 

(g/mL) 

D (104°  m2/s) 

EG libre 	EG lié 

0 8.58 - 
0.03 7.70 2.37 
0.06 6.66 1.86 
0.09 6.08 1.54 
0.12 5.58 1.27 
0.16 4.80 1.14 
0.20 3.97 0.89 
0.26 3.30 0.70 
0.32 2.75 0.52 
0.38 2.25 0.41 
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Figure 7.5. 

(109  s/m2) 

Ln A 

EG 

(7G8)2(A-8/3) 

(109  s/m2) EG libre 

Ln A 

EG lié 

0.10 0 0.13 0 0 
0.27 -0.10 0.33 -0.12 -0.04 
0.51 -0.22 0.63 -0.26 -0.11 
0.82 -0.37 1.02 -0.45 -0.19 
1.21 -0.57 1.50 -0.68 -0.30 
1.67 -0.79 2.07 -0.97 -0.39 
2.21 - 1.03 2.74 - 1.33 -0.520 
2.83 -1.29 3.50 -1.69 -0.61 
152 - 1.55 4.36 -2.10 -0.72 
4.28 - 1.78 5.31 -2.56 -0.84 
5.12 - 1.98 6.35 -2.91 -0.95 
6.04 -2.14 7.48 -3.23 - 1.10 
7.03 -2.29 8.71 - - 1.24 
8.10 -2.51 10.03 - 1.37 
9.24 -2.71 11.44 - -1.51 
10.04 - 2.88 12.95 - -1.67 

Figure 7.6. 

[PVA] 

(g/n11-) 

0 

T1  (s) 

EG libre 

4.93 

EG lié 

- 

T2 (S) 

EG libre 

1.58 

EG lié 

0.03 4.86 0.19 1.76 0.34 
0.09 3.70 0.70 1.58 0.27 
0.16 2.65 0.66 0.97 0.28 
0.26 2.38 0.67 0.88 0.21 
0.38 2.11 0.44 0.50 0.19 
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Annexe B. 	Autres articles publiés ou en préparation 

Deux articles concernant ces travaux, mais non inclus dans la thèse, ont été publiés 

Self-diffusion of Molecular Probes in Polymer Gels: 

The Test of a New Physical Model of Diffusion 

Zhu, X.X.; Masaro, L.; Macdonald, P.M. 

Polymer Preprints 1997, 38 (2), 594-595. 

Self-diffusion of Solvents and Solute Probes in Polymer Solutions and Gels: 

The Use of a New Physica1Model of Diffusion 

Zhu, X.X.; Masaro, L.; Petit J.-M.; Roux B.; Macdonald, P.M. 

Materia1 for Controlled Release Applications 

McCulloch, I., Shalaby, S.W. Eds., ACS Publ.; Washington, D.C.; 1998, Chap. 18, p 

Deux articles sont en préparation, un sur la caractérisation des polymères (PVA, 

11PMC, PNNDEA et PN1PA): 

(titre non disponible) 

Ousalem, M.; Baille, W.E.; Masaro, L.; Zhu, X.X. 
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L'autre sur l'association entre les oligo(éthylène glycol)s et le PVA: 

(titre non disponible) 

Masaro, L.; Zhu, X.X. 
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