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ABSTRACT

Time-dependent density-functional theory (DFT) has been extended by
the present work for open-shell applications and coded in the program deMon-
DynaRho (densité de Montréal-Dynamic Response of Rho, Rho here stands
for the charge density) based on version 2p0 of the previous deMon-DynaRho.
This version 2p0 could previously only treat closed—shell systems. The present
modification and implementation of time—ciependent DFT provide a unique prac-
tical molecular DFT code capable of treating excited state properties for either
open-shell or closed—shell systems. As a case study, six small well-studied open-
shell molecules, three neutral molecules (BeH, BeF, CN) and three positive ions
(CO*, Ni, C HyO%), are chosen to evaluate the quality of time-dependent DFT
for the calculation of excitation energies and the prediction of absorption spectra
of open-shell molecules. Further applications to predicting and interpreting of
absorption spectra of alkali metal clusters (lithium clusters and sodium clusters)
from the dimer though the hexamer are presented. With the exception of the
lowest two excitation energies (without oscillator strengths) of a few open—shell
molecules which recently appeared in the literature [1], the present all-electron
calculations of absorption spectra of the six open—shell molecules and alkali metal
clusters (the lithium and the sodium clusters) are the first time-dependent DFT
study reported in the literature. The quality of the model core potential (MCP)
in the applications to excited state properties is assessed against the present all-
electron calculations. This MCP provides an efficient tool for the study of larger

systems in the future.

The accuracy of DF'T calculations depends on the choice of electron exchange-
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correlation functional, orbital and auxiliary basis sets, and grids. To ensure the
quality of the time-dependent DFT calculations, two exchange-correlation func-
tionals, the local spin density approximation (LSDxc) and the functional proposed
by van Leeuwen and Baerends in 1994 (LB94xc), are used respectively at the SCF
step, combined with the time-dependent local spin density approximation (TDLS-
Dxc) in the post-SCF step. These functionals used at the SCF step and at the
post-SCF step are referred to as LSDxc/TDLSDxc and LB94xc/TDLSDxc func-
tionals. The comparison of excitation energies and oscillator strengths calculated
by the two functionals shows that the LSDxc/TDLSDxc functional yields excited
state properties in better agreement with available experimental results and high
quality conventional ab initio methods (e.g. CI). However, the quality deterio-
rates for higher excitations in the free radical calculations due to the incorrect
asymptotic behavior of the LSDxc functional, which leads to a too low ioniza-
tion threshold compared to measurements. In contrast, the LB94xc/TDLSDxc
functional which has the correct asymptotic behavior does give better results for
higher excitations in the free radical calculations, but this functional does not give
any improvement for the sodium clusters, it yields too larger excitation energies
for both low and high excitations in the sodium clusters calculations. The choices
of both orbital and auxiliary basis sets have been examined in the present calcu-
lations. Excitation energies are sensitive to the orbital basis; it requires a certain
number of diffuse and polarization functions to be flexible enough to describe
excited state properties. In contrast, excitation energies are less demanding on
the auxiliary basis set. The normal auxiliary bases used in ground state property
calculations are good enough for the excitation energy calculations. To avoid
symmetry breaking, grids need to be carefully chosen in the calculation of excita-
tion energies. The lithium pentamer is found to be a case where a higher quality
of grid is needed, requiring a user-defined grid (24832 grid points per atom) for
better assignments, whereas other calculations are with the EXTRA-FINE grid

(6208 grid points per atom).



Absorption spectra of the open—shell molecules and the alkali metal clus-
ters (lithium and sodium clusters) predicted by the present LSDxc/TDLSDxc
calculations coincide nicely with the recorded spectroscopic pattern and are com-
petitive with the ab initio CI method. The time-dependent DFT results are better
than CIS (single configuration interactions) calculations and give significant im-
provement from those carried out by traditional DFT “multiplets” and Fritsche
approaches, especially for the oscillator strengths. The LB94xc/TDLSDxc func-
tional yields larger excitation energies and with larger errors from the experiments
in comparison with the LSDxc/TDLSDxc functional. The deviations of the exci-
tation energies calculated by the LSDxc/TDLSDxc and LB94xc/TDLSDxc func-
tionals can be as large as 1.5 eV or more. Excitation energy collapse compared
with available experiments or ab initio CI calculations, when excitation energies
are larger than the ionization threshold, is observed for the free radicals, but
it is not observed for the sodium clusters. On the other hand, excitation ener-
gies of the sodium clusters are overestimated, while those of the free radicals are
underestimated. This is in contrast to the polarizability calculations which yield
underestimations for sodium clusters and overestimations for the small molecules.
This observation agrees with the theoretical relationship of excitation energy and

polarizability.

The MCP yields similar excitation energies to the all-electron calculations
and reasonably reproduces the spectroscopic pattern predicted by the all-electron
calculations. However, additional diffuse basis functions are needed for more

accurate results and higher excitations.

Key Words: Time-dependent density-functional theory, absorption spectra,

open-shell molecules, alkali metal clusters, model core potential.



RESUME

La théorie de la fonctionnelle de la densité (DFT) dépendante du temps a
été étendue aux applications pour les couches ouvertes et implantée dans le pro-
gramme deMon-DynaRho (densité de Montréal-Dynamic Response Rho, Rho
pour la densité de charge) & partir de la version précédente de deMon-DynaRho
2p0. Cette version précédente ne pouvait traiter que les systemes a couche fermée.
La présente modification et implantation de la DFT dépendante du temps, four-
nit un code DFT moléculaire unique capable de traiter les propriétés dans les
états excités pour les molécules a couche fermée et a couche ouverte. Comme
cas d’étude, six petites molécules & couche ouverte, trois molécules neutres (BeH,
BeF, CN) et trois ions positifs (CO*, NI, CH,0%), sont choisis pour évaluer la
qualité de la DFT dépendante du temps pour le calcul d’énergies d’excitation et la
prédiction de spectres d’absorption pour les molécules a couche ouverte. Davan-
tage d’applications dans le but de prédire et d’interpréter les spectres d’absorption
d’agregats de métaux alcalins (agrégats de lithium et de sodium), a partir de
dimeres jusqu’aux hexameéres sont présentés. Les calculs tous-électrons des spec-
tres d’absorption des six molécules & couche ouverte et des agrégats métalliques
alcalins (agrégats de lithium et de sodium) rapportés dans ce travail, représentent
la premiére étude DFT dépendante du temps rapportée dans la littérature; bien
que les deux énergies d’excitation les plus basses (sans forces oscillatoires) de
quelques molécules a couche ouverte soient apparues récemment. La qualité des
potentiels modeles de cceur (MCP) dans les calculs de propriétés des états ex-
cités est évaluée relativement aux calculs tous-électrons de ce travail. Ces MCP

fournissent un outil efficace pour ’étude de plus gros systemes dans le futur.
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La précision des calculs DFT dépend du choix de la fonctionnelle d’échange-
corrélation électronique, des bases orbitalaires et auxiliaires, et des grilles. Pour
s’assurer de la qualité des calculs de la DFT dépendante du temps, deux fonction-
nelles d’échange-corrélation, ’approximation de la densité de spin locale (LSDxc)
et la fonctionnelle proposée par van Leeuwen et Baerends en 1994 (LB94xc),
sont utilisées respectivement aux itérations SCF, combiné avec ’approximation
de densité de spin locale dépendante du temps (TDLSDxc) a ’étape post-SCF.
Ces fonctionnelles utilisées a 1’étape SCF et a 1’étape post-SCF sont représentées
par les fonctionnelles LSDxc/TDLSDxc et LB94xc/TDLSDxc. La comparaison
des énergies d’excitation et des forces oscillatoires calculées par les deux fonc-
tionnelles montre que la fonctionnelle LSDxc/TDLSDxc donne des propriétés de
I’état excité qui correspondent mieux avec les résultats expérimentaux disponibles
et les méthodes ab initio conventionnelles de haute qualité (e.g. CI). Néanmoins,
la qualité se détériore pour des excitations plus élevées dans les calculs de rad-
icaux libres étant donné le comportement asymptotique incorrect de la fonc-
tionnelle LSDxc, qui conduit & un seuil d’ionisation trop faible comparé aux
mesures expérimentales. Par contre, la fonctionnelle LB94xc/TDLSDxc, avec le
bon comportement asymptotique, apporte une amélioration pour les excitations
plus élevées dans le cas des radicaux libres, mais donne des énergies d’excitation
trop élevées a la fois pour les basses et hautes excitations dans le cas des agrégats
de sodium. Le choix des bases orbitalaires et auxiliaires a été examiné dans
les calculs de ce travail. Les énergies d’excitation sont sensibles & la base or-
bitalaire; elles requierent un certain nombre de fonctions de polarisation et de
diffusion pour étre suffisamment flexibles pour décrire les propriétés des états
excités. Par contre, les énergies d’excitation sont moins exigeantes sur la base
auxiliaire. Les bases auxiliaires normales pour les calculs de propriétés de 1’état
fondamental sont de qualité suffisante pour le calcul d’énergies d’excitation. Pour
éviter une brisure de symétrie, les grilles doivent étre choisies avec soin dans les

calculs d’énergies d’excitation. Le pentamere de lithium s’est montré étre un
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cas ol une grille de plus grande qualité est nécessaire, demandant une grille
définie par 1'usager (24832 points de grille par atome) pour des meilleures assig-
nations, tout comme les autres calculs sont faits avec une grille EXTRA-FINE
(6208 points de grille par atome). Les spectres d’absorption des molécules a
couche ouverte et des agrégats métalliques alcalins (agrégats de lithium et de
sodium) prédit par les présent calculs LSDxc/TDLSDxc coincident bien avec les
patrons spectroscopiques mesurés et sont compétitifs avec la méthode ab initio
CI. Les résultats des calculs avec la DFT dépendante du temps sont meilleurs que
ceux obtenus CIS (single configuration interactions) et amenent une amélioration
significative relativement aux approches de la DFT “multiplet” et “Fritsche”
traditionnelles, particulierement pour les forces oscillatoires. La fonctionnelle
LB94xc/TDLSDxc donne des énergies d’excitation plus élevées et avec de plus
grandes erreurs relativement a ’expérience en comparaison avec la fonctionnelle
LSDxc/TDLSDxc. Les déviations des énergies d’excitation calculées avec les
fonctionnelles LSDxc/TDLSDxc et LB94xc/TDLSDxc peuvent étre aussi grandes
que 1.5 eV ou plus. Les énergies d’excitation calculées different de I’expérience et
des calculs ab initio CI, quand les énergies d’excitation sont supérieures au seuil
d’ionisation et cela est observé pour les radicaux libres, mais pas pour les agrégats
de sodium. D’autre part, les énergies d’excitation des agrégats de sodium sont
surestimées, tandis que celles des radicaux libres sont sous-estimées. Ceci est
en contraste au fait que les calculs de polarisabilité sont des sous-estimations
pour les agrégats sodium et des surestimations pour les petites molécules. Cette
observation correpond a la relation théorique de ’énergie d’excitation et de la

polarisabilité.

Les MCP donnent des énergies d’excitation similaires aux calculs tous-électrons.
Néanmoins, des fonctions de base diffuses additionnelles sont nécessaires pour des

résultats plus précis et des excitations plus élevées.

Mots clefs : théorie de la fonctionnelle de la densité dépendante du temps,
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spectre d’absorption, molécules a couche ouverte, agrégats de métaux alcalins,

potentiel modele de ceeur.
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CHAPTER 1

INTRODUCTION

Electronic excitation energies and oscillator strengths of metal clusters have
been an interesting subject of many experimental and theoretical studies in re-
cent years [17, 18, 19, 20, 21, 22, 23, 24]. Electronic excitation spectra are in-
teresting in their own right and also play a significant role in the description of
physical observables in many areas of chemistry, including photochemistry and
materials applications. In particular, the oscillator strengths (together with the
excitation energies) can be used to calculate the second-order optical properties
(e.g. dynamic polarizability). Calculations of the electronic excitation energies
and oscillator strengths of metal clusters (with proper assignments) may pro-
vide useful information both for characterizing the electronic and nuclear struc-
ture of the clusters. They also can be used to understand and design cluster
materials with novel optical properties [25]. The problem with existing meth-
ods is that they are too costly for large systems and if the level of correlation
needed is high. Density-functional theory (DFT), with its simplicity and effective
treatment of electron correlation, has been the method of choice for the theoret-
ical treatment of many ground state problems [26, 27, 28]. A real molecular
time-dependent DFT formulation has also been developed lately and applied to
closed-shell molecules [22, 29, 30, 31, 32, 33, 34, 35, 36, 37], but almost nothing
is known about how time-dependent DFT behaves for the open-shell molecules
in which electron correlation effects are particularly strong. The extension of
the time-dependent DFT to treat open-shell excitation spectra is clearly desir-

able. A recent time-dependent DFT calculation of the lowest two excitation



energies (without oscillator strengths) of a few free radicals by Hirata and Head-
Gordon [1] appeared in the literature. The present work gives a unique modi-
fication and implementation of the time-dependent DFT for open-shell systems
in the program deMon-DynaRho, version 2pX. This implementation provides a
new computational tool for the study of excited state properties of open—shell
molecules or clusters. As case studies, this new code was applied to calculate
excitation spectra of open-shell molecules and alkali metal clusters (lithium and
sodium clusters). The use of excitation spectra to help determine equilibrium

geometries is also discussed in the present work.

Experimental techniques initially used for obtaining electronic and geomet-
ric structure information for metal clusters were ionization potentials [38, 39],
molecular beam abundance [40, 41, 42, 43, 44], chemical reactivity [45], and po-
larizabilities [46]. These techniques only give indirect information. More direct
means of structure determination, namely optical absorption spectroscopy, has
also been carried out on small metal clusters in the gas phase, particularly metal
trimers (lithium, sodium, copper, silver, and nickel, etc.) by laser-induced fluores-
cence [47, 48, 49, 50] and by multiphoton ionization [51, 52, 53, 54, 55, 56, 57, 58].
Nevertheless, these two experimental techniques failed for large clusters. It is be-
lieved the problem comes from insufficient resolution due to short excited state
lifetimes [23]. However, the problem is alleviated by the two complementary ex-
perimental techniques of electron photodetachment [59, 60, 61, 62, 63] and pho-
todissociation [16, 64, 65, 66, 67, 68, 69] spectroscopies which yield information
about negative ions and for cation/neutral clusters, respectively. Photodisso-
ciation spectroscopy was first performed for the sodium tetramer [67] and the
lithium tetramer [68] by photodepletion. The spectra of large sodium clusters up
to forty atoms have been obtained as well by the same technique at visible wave-
lengths [16, 64, 65, 70, 71]. High resolution spectra covering a large spectral region
were also measured for large lithium clusters, up to eight atoms [12, 69] and large

sodium clusters, up to twenty atoms [23, 72]. These experimental measurements



offer a good opportunity for theoretical assessments and interpretations.

Theoretical calculations of optical spectra of alkali metal clusters have been
carried out with different models. The classical model treats the metal clusters
as spheroidal conductors with no atomic structure (droplets), and using surface
plasma oscillations to describe the absorption [64, 65, 70, 73]. Quantum effects
have been taken into account in the jellium potential model which usually assumes
the clusters have spherical topologies [74, 75, 76]. Quantum molecular models con-
sidering the molecular nature of the clusters have been performed with effective

core potential (ECP) [14, 15, 77] and with all-electron methods [14, 78, 79].

Quantum mechanical ab initio methods have been extensively used for stud-
ies of optical spectra of atoms [80, 81, 82, 83], molecules [84, 85, 86, 87, 88|,
clusters [89, 90], and nuclei [91, 92]. The simplest level of quantum mechani-
cal theory for studying electronic spectra is the Tamm-Dancoff approximation
(TDA)—single excitation configuration interaction method (CIS) [93, 94, 95].
The TDA is the least computationally demanding of the presently and widely
used methods for excited states. The computational cost of the TDA method
scales formally as N® (for full diagonalization), where /N is the number of basis
functions used in the calculation. Nevertheless, the TDA fails to describe the
states which have significant contributions from double or higher substitutions
and the accuracy of the excitation energy calculations in the TDA approach is
not satisfactory for most cases (with a few exceptions) [96]. The time-dependent
Hartree-Fock (HF) method [97, 98, 99, 100] is another simple theory for treat-
ing excited states. Time-dependent HF has more or less the same computa-
tional efficiency as the TDA, and the sum of the oscillator strengths satisfies the
Thomas-Reiche-Kuhn (TRK) sum rule [101, 102] in the limit of a complete basis
set. Both the TDA and the time-dependent HF usually overestimate excitation
energies [103, 104]. This may be caused by missing electron correlation effects.

Moreover, previous experience [33] has shown that the reliable quantum mechan-



ical treatment of electronic excitations in atoms, molecules, and clusters requires,
in general, proper inclusion of static [105, 106] and dynamic [107] electron corre-
lation. Hence a suitable method for obtaining accurate excitation energies should
include electron correlation. Methods including such electron correlation are the
configuration interaction (CI) method [108, 109, 110] (e.g. the multiple-reference
configuration interaction method (MRCI) [111], complete active space plus sec-
ond order perturbation (CAS-PT2) [112]), and density-functional theory. But
the computational cost of the CI (e.g. MRCI) method increases rapidly (formally
scaled as N'? for double CI with full diagonalization) and the accuracy of cal-
culations decreases as the number of electrons increases [4]. Hence the CI (e.g.

MRCI) method is limited to small molecules and small clusters.

Kohn-Sham DFT [26, 113, 114] is structurally similar to the Hartree-Fock
method, but it contains the electron correlation effects which Hartree-Fock misses.
The computational simplicity of Kohn-Sham DFT with its effective potential
based on the charge density which is a function of only three spatial coordi-
nates and spin provides a comparable or even lower computational cost (gener-
ally scaling as N3) compared to the conventional ab initio methods (e.g. HF,
MRCI, etc). Furthermore, Kohn-Sham DFT has become a powerful and success-
ful state-of-the-art computational tool in the quantitative treatments of time-
independent problems (ground state properties) of many-electron systems, such
as atoms, molecules, metal clusters, complex systems, solid state, and nuclear
physics [26, 27, 115, 116, 117, 118, 119, 120, 121, 122], even very large sys-
tems [123, 124]. The ground state properties calculated from DFT with the
currently best functionals are usually in very close agreement with configuration
interaction calculations [125, 126] although there are some exceptions. These ad-
vantages of Kohn-Sham DFT and its successful, impressive, and accurate treat-
ments of stationary systems provide a stimulus for further applications to the

interesting area of time-dependent problems.



There are a variety of traditional approaches in time-independent DFT
for the calculation of excitation energies and oscillator strengths. The A self-
consistent field (ASCF) procedure [10, 26, 127, 128, 129, 130, 131, 132, 133, 134]
is traditionally used for the calculation of excitation energies. This procedure
takes the energy difference of ground state electron configuration DFT SCF en-
ergy and the excited state electron configuration DFT SCF energy as the excita-
tion energy. It was simplified by Slater [135, 136] who proposed a transition state
approximation for calculating ASCF energies. Gunnarsson and Lundqvist [137]
have shown how ground-state DFT can be rigorously extended to treat the lowest
excited states of each symmetry. However, using time-independent Kohn-Sham
DFT to tackle excited state properties is notoriously difficult [138, 139]. The
second Hohenberg-Kohn theorem is only applicable for the ground state and for
lowest states of a given symmetry, hence, the DFT ASCF method lacks a solid
formal justification. Moreover, excited state DFT SCF calculations can some-
times run into difficulties, such as convergence problems, symmetry breaking,

and the multiplets may have the same charge density, but different energies, etc.

Theophilou [140] has given a rigorous extension of DFT for excited states
by the subspace theory. Gross, Oliveira, and Kohn [141, 142, 143] gave a more
general treatment by ensembles, and they have used an ensemble exchange-
correlation potential to calculate the excitation energies. This approach has also
been studied by Géspér [144] and by Nagy [145, 146, 147]. A fundamental diffi-
culty with the extensions of ground state DFT for the excited states based on the
Rayleigh-Ritz principle for the lowest eigenstate of each symmetry class [128, 129,
137] or based on a variational principle for ensembles [141, 142, 143, 148, 149, 150],
is that the exchange-correlation energy functionals may depend on the symmetry
labels of the excited state or on the particular ensemble. The explicit form of the
excited state exchange-correlation functionals remains unknown. Furthermore, it
has been found that the excitation energies calculated by the ensemble technique

vary depending on the value of the weighting factors used [28, 151, 152]. As a



result, subspace theory is not yet a viable candidate for practical calculations.

Time-dependent DFT provides a rigorous alternative for calculating excita-
tion spectra. The generalization of Kohn-Sham DFT to time-dependent DFT has
been exploited by many authors [29, 30, 138, 153, 154, 155, 156, 157]. The origi-
nal model of time-dependent DFT dates back to the time-dependent Thomas-
Fermi model proposed by Bloch [158] as early as in 1933. The first signifi-
cant steps towards a time-dependent DFT were taken by Peuchert [159] and
by Zangwill and Soven [160]. They were based on the analogies with the time-
dependent HF approach and used the linear response of the density to a time-
dependent external potential as the response of the non-interacting electrons to an
effective time-dependent potential, and obtained the first time-dependent Kohn-
Sham equations. The adiabatic local density approximation was also first ap-
plied in the time-dependent DFT by Zangwill and Soven [160]. Important steps
toward a rigorous foundation of time-dependent DFT were taken by Deb and
Ghosh [155, 161, 162, 163] and by Bartolotti [154, 164, 165, 166]. They success-
fully proved the fundamental theorems for the time-dependent DEF'T using a set of
restricted external potentials. Deb and Ghosh used a periodic potential (in time)
as a time-dependent potential to formulate and to explore Hohenberg—Kohn,
and Kohn-Sham type theorems for the time-dependent DFT, while Bartolotti
used an adiabatic process. A theoretical breakthrough, giving more general and
rather successful proofs of the fundamental theorems (the Hohenberg-Kohn, and
Kohn—Sham theorems) for time-dependent DFT was accomplished by Runge and
Gross [156]. They used a time-dependent potential which can be expressed in a
Taylor’s series at initial time to show that the external potential is determined
by the charge density up to a time-dependent spatial constant. This provides
the theoretical justification for time-dependent DFT and places time-dependent
DFT in a parallel footing to time-independent DFT. This also paves the way
for time-dependent DFT to tackle many domains which involve time-dependent

fields, such as dynamic response properties (dynamic or frequency-dependent po-



larizabilities and hyperpolarizabilities, etc.), electronic excitation energies and
oscillator strengths, photoionization cross sections, and the treatment of excited

states. Detailed reviews of time-dependent DFT can be found in the litera-

ture [138, 139, 167, 168, 169].

Time-dependent DFT provides a practical and useful method for calculat-
ing electronic spectra while still maintaining the electron correlation and compu-
tational simplicity of time-independent DFT. Indeed, the applications of time-
dependent DFT in the calculations of the dynamic response properties have been
reported in the literature for atoms [170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 21, 20, 139], molecules [182, 173, 183, 33, 22, 184, 34, 36, 37], clus-
ters [75, 185, 186], metallic surfaces [187, 188, 189], bulk metals [190, 191, 192],
bulk semiconductors [176], and solids [177]. The use of time-dependent DFT to
calculate excitation spectra is a relatively new feature in quantum chemistry pro-
grams. The first excitation energy calculations with time-dependent DFT were
done numerically for some atoms using poles of the Kohn-Sham response func-
tion by Petersilka, Grossmann, and Gross [21]. Petersilka and Gross [193, 20]
calculated excitation energies of atoms with spin multiplets. The atomic applica-
tions of time-dependent DFT made use of the spherical symmetry of the system
to simplify the calculations. This prevents the algorithm from being applied
to molecular systems. Many authors have tried to take advantage of atomic-
like algorithms for an extension to the molecular calculations by using a jel-
lium model [194, 195, 196, 197, 198], sphericalized potentials [186, 199, 200], and
single-center expansions [182, 173]. Levine and Soven [182, 173], using a single-
center formulation, calculated photoemission spectra of some small closed-shell
molecules, but this single-center expansion is not suitable for the general treat-
ment of multicenter molecules. Dynamic molecular properties were also explored
with time-dependent DFT. Van Gisbergen, Snijders, and Baerends [31, 201, 202]
have calculated the frequency-dependent polarizabilities, frequency-dependent

hyperpolarizabilities, and van der Waals coeflicients. The dynamic hyperpo-



larizabilities were also calculated by Zangwill [203] and by Senatore and Sub-
baswamy [204]. However, the first real molecular time-dependent DFT algorithm
was only recently proposed by several authors [29, 30, 31, 32, 33, 22, 34, 35, 36, 37].
This molecular algorithm has been programmed in a time-dependent DFT pro-
gram, deMon-DynaRho (densité de Montréal-Dynamic Response of Rho, Rho
here stands for the charge density) which has been recently developed in the
Salahub group [29, 30]. The deMon-DynaRho program uses a real molecular
time-dependent algorithm. It is based on the idea of using the poles and the
residues of the dynamic polarizability to calculate excitation energies and oscilla-
tor strengths. Multicenter Gaussian expansions and auxiliary basis functions are
used in the program. But it was only available for treating closed-shell molecules

prior to the present work.

Bauernschmitt and Ahlrichs [33] have studied excitation energies of closed-
shell molecules with several exchange—correlation functionals (local, gradient-
corrected and hybrid functionals), they found that the three parameter Lee-Yang-
Parr (B3LYP) functional proposed by Becke [205] gives the best excitation en-
ergies, and the time-dependent local density approximation gives better results
than the traditional ab initio methods (TDA and time-dependent HF'), but the
excitation energies calculated by time-dependent DFT (e.g. local density approx-
imation) are systematically underestimated, with errors of about 0.4 eV. They
suggested that the problem caused may come from the use of the adiabatic ap-
proximation [33, 22]. Casida et al. [183] have shown that the problem actually
arises from the incorrect behavior of the exchange-correlation potential, leading
to an lonization continuum lying at too low energy. Large molecules have been
treated in time-dependent DFT. Yabana and Bertsch [36] have studied excita-
tion energies of Cgo using a basis—set—free grid method. Stratmann, Scuseria,
and Frisch [37] have treated excitation energies of the large closed-shell molecule
C7o using a minimum basis set. Auxiliary functions offer the possibility of treat-

ing larger systems with much more reasonable basis sets than minimum basis



set. This auxiliary basis set expansion technique [206] has been used with time-
dependent DFT to calculate the excitation energies of some small closed-shell
molecules by Casida et al. [29, 207] and by Bauernschmitt, Haser, Treutler, and
Ahlrichs [22]. The use of auxiliary basis set expansions reduces the computational
costs considerably and makes it possible to calculate relatively large molecules.
Bauernschmitt, Haser, Treutler, and Ahlrichs [22] have calculated excitation en-
ergies for large molecules such as Crg and CdigSes(SeH )12(P Hs)q. Nevertheless,
all of the above molecular calculations are limited to closed-shell molecules. The
time-dependent DFT study of excitation energies of open-shell molecules has only
recently been reported in the literature [1], but only for the lowest two excitation
energies and without oscillator strengths. The time-dependent DFT calculations
of excitation spectra (please note that not only excitation energies are considered
here, but intensities are also considered here) of open—shell molecules have not
been found in the literature. Since open-shell molecules are very important in
chemistry and astrophysics, it is the time for time-dependent DFT to be further

developed for open-shell molecules.

This project extends time-dependent DFT to treat open—shell systems for
excited state properties. The time-dependent DFT for open-shell systems is
coded in the version 2pX of the program deMon-DynaRho [208]. The present
modification and implementation of the time-dependent DFT provides a unique
practical molecular time-dependent DFT code capable of treating excited state
properties for open—shell molecules or clusters. As applications, this new code,
version 2pX of the deMon-DynaRho, is employed to calculate excitation energies
and oscillator strengths of open-shell molecules and alkali metal clusters (lithium
and sodium clusters) from the dimer up through the hexamer. With the exception
of the lowest two excitation energies (without oscillator strengths) of a few open-
shell small molecules which recently appeared in the literature [1], the present
all-electron calculations of excitation spectra (excitation energies and oscillator

strengths) of open—shell small molecules and alkali metal clusters (the lithium
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and the sodium clusters) are the first time-dependent DFT studies reported in
the literature. The present work also uses the model core potential (MCP) to
perform the time-dependent DFT calculations of electronic excitation spectra for
the sodium clusters from the dimer up to the hexamer. The quality of the MCP
used in the present study is first assessed for ground state properties against
the all-electron calculations of sodium cluster geometric structures, vibrational
frequencies, binding energies, and ionization potentials with the LSDxc approx-
imation and gradient-corrected functionals, namely, the 1988 gradient-corrected
exchange functional of Becke [209] plus the 1986 gradient-corrected correlation
functional of Perdew [210] (B88x+P86c), and the 1986 gradient-corrected ex-
change functional of Perdew and Wang [211] plus the 1986 gradient-corrected
correlation functional of Perdew [210] (PW86x+P86c); and second assessed for
excited state properties against the all-electron calculations of excitation spec-
tra of sodium clusters with the local spin density approximation (LSDxc) and
the van Leeuwen and Baerends [212] exchange-correlation functional (LB94xc).
The accuracy of the calculations of time-dependent DFT is determined by four
factors, namely it depends on the choice of the orbital basis sets, auxiliary basis
sets, grids, and exchange-correlation functionals. To ensure the accuracy of the
present studies, several orbital and auxiliary basis sets have been examined. It
is found by the present work that excitation energy calculations require a cer-
tain number of diffuse and polarization basis functions in order to be flexible
enough to describe excited state properties; in contrast, excitation energies are
less demanding on the auxiliary basis set. The normal auxiliary bases employed
in ground state property calculations are good enough for the excitation energy
calculations. The choice of the grids for the excitation energy calculations is also
tested. It seems that carefully choosing a grid can avoid symmetry breaking in the
assignments. The exchange-correlation functional plays a significant role in the
excitation energy calculations. The present calculations employ the LSDxc func-

tional and the LB94xc functional, respectively, at the SCF-step, combined with
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the time-dependent local spin density approximation (TDLSDxc) at the post-
SCF step (these functionals used at the SCF step and at the post-SCF step are
referred to as LSDxc/TDLSDxc and LB94xc/TDLSDxc functionals). It can be
seen from this work that low excitation calculations with the LSDxc/TDLSDxc
functional give better results than the LB94xc/TDLSDxc functional does due to
the deficiency in the short range behavior of the LB94xc functional. But for the
high excitation energy calculations the LB94xc/TDLSDxc functional gives better
results, since the LB94xc functional possesses the corrected long range behavior.
The present work shows that electron exchange and correlation are important
considerations for accurate calculations of excitation spectra. The exchange ef-
fects on the excitation energies of sodium trimer can be as large as 1.0 eV, while
the correlation effects on the excitation energies can be as much as 0.5 eV in the
sodium trimer calculations. This indicates that an appropriate treatment of the
exchange and correlation effects plays an essential role for calculations of elec-
tronic spectra. This study also shows that the time-dependent DFT calculations
of excitation spectra are much closer to the experiments than those of RCIS and
UCIS. The accuracy of time-dependent DFT results are very competitive to the
CI results.



CHAPTER 2

THEORETICAL BACKGROUND AND
METHODOLOGY

2.1 TIME-DEPENDENT PERTURBATION THEORY

In electronic optical spectroscopy, a time-dependent electromagnetic field
is applied to a molecule which is initially in its ground stationary state. This
perturbation leads to a dynamic response of the charge density in the molecule
which is typically described by response properties, such as the dynamic polar-
izability. Higher frequency perturbations can also lead to electronic excitations
which involve electronic transitions to different excited electronic energy states.
In order to understand these transitions, the different electronic energy states
and their changes with time have to be studied by solving the time-dependent
Schrédinger equation. This is harder to solve than the time-independent equa-
tion. Omne commonly used approach to solve the time-dependent Schrodinger
equation is time-dependent perturbation theory which is also the basis for time-
dependent response theory. The objective of this section is to review this basis in
the form used in this thesis. Of course, a more detailed description would include
nuclear motion, such as vibrations and rotations, but this is beyond the scope of

the present work.
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2.1.1 TIME-DEPENDENT PERTURBATION THEORY

A molecule in its ground stationary state satisfies the time-independent
Schrodinger equation,

HOYO = g9 (2.1)

Introducing a time-dependent applied electromagnetic field, NH '(t), leads to a
time-dependent Schrédinger equation (atomic units are used throughout this the-

sis, unless otherwise mentioned),

o)
i = HU@). (2.2)

where H = HO 4+ \H '(t), and ) is an order parameter used as a measure of the

strength of the perturbation. If the molecule is in a stationary state, then
U,(t) = UOexp(—iE,t). (2.3)

where U®) is a time-independent unperturbed wave function and exp(—iE,t) is an
oscillatory phase factor. If A = 1, the time-dependent perturbation is completely

turned on.

The time-dependent perturbed function ¥(¢) may be found by expanding it
in time-dependent unperturbed wave functions (time-independent unperturbed
wave functions times their corresponding oscillatory phase factors) which form a
complete set,

Ut) = > al(t)Tu(t)

k

= . ck(t)ea:p(—z'Ekt)\I!;co) . (2.4)

The expansion coefficients cx(t) depend upon the form of the perturbation /' (t)
(note that they depend on time) and upon the initial state ¥{?). These expansion
coefficients can be obtained by substituting the above equation (Eq. (2.4)) into
the time-dependent Schrédinger equation (Eq. (2.2)). It is straightforward to
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obtain

> acht(tzea:p(—iEkt)\Il(o) =Y ex(t)exp(—i Ext) H (1)U (2.5)

By using the orthonormality relation (OO PO = §,., and following some math-

ematics, the above equation becomes

acgt(t) =@ ex(t)exp(iwnit) (LD H TT) (2.6)
where
] )

are the excitation frequencies of the system. They are real and positive for exci-

tations to bound states.

It is Eq. (2.6) which will be solved perturbatively. Expanding the ¢, (t) as

a power series in A,
en(t) = O) + DA+ B (BN - -+ . (2.8)

Substituting this power series into Eq. (2.6), and separating the different orders
of A, leads to the following relations:

to zeroth order (A?),

OO (¢
Bt( ) _, (2.9)
to first order (A!),
c(¢ . ! '
98 0) _ (i) 3 OO (WD eaplist). (210

k

The zero-order equation [Eq. (2.9)] implies that the zero-order coefficients ¢(%)(t)
are independent of time. Physically the system remains in its initial stationary

state (n) in the absence of a perturbation. Hence,
dO) = b . (2.11)

This can be used in the first-order equation [Eq. (2.10)] with the understanding

that the perturbation is only turned on at time ¢ = 0, to obtain the first-order
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coefficients,

"
cg,lb)(t) = (i)"’1 /(Qfg)|I:I’(tl)|‘P%O))emp(iwmnt/)dtl. (2.12)
0

Hence through first-order,

Ut) = vO@)+ v

= TOerp(—iEnt)

t

O / (U [TV ezp(iwpnt)|dt exp(—iExt) U . (2.13)
k 0

where the zero-order wave function is
vO@) = 3 cg))(t)\lfgo)emp(—iEkt)
= £g°)exp(—iEnt) (2.14)
and the first-order wave function is

v() = 3 ) U eap(~iExt)

k
t=ty
= @) f (O 7' | TO) exp(iwpnt)|dt exp(—i Eit )T . (2.15)
k =0

The probability of finding the system at time t in the m'™ stationary state
of the initially unperturbed system is, through first order,

(U = | [ WOV ()9 Deaplivnt ), (216)

for m # n. This, of course, is just the probability of observing the excitation

n —m.

2.1.2 APPLICATION TO PHOTOABSORPTION

When a molecule is exposed to electromagnetic radiation, the perturbation is

the interaction of electrons of the system with an electric field £(¢) and magnetic
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field B(t). In particular, light is a transverse electromagnetic wave. For light
traveling in the z direction and polarized in the (x,y)-plane, the electric field £(¢)
and the magnetic field B(t) are given by

Et) = 1&(1)

== ng cos(2mvt — 271':2\—) (2.17)
B(t) = IBy(t)
= ng cos(2mvt — 27&';) (2.18)

where £) and B) are the amplitude of the electric field £ and the magnetic field
B, respectively. fandjare unit vectors. A is the wavelength which is the distance
between two successive crests of £. v is the frequency which is the number of
crests of £ that pass a fixed point in space each second. The relation of the

frequency v and the wavelength A is
G
A=— 2.19
: (2.19)
where c is the speed of light (¢ = 2.9979 x 10'%cm/sec).

The contribution of the electric field £€ and the magnetic field B to the
interaction (time-dependent perturbation) can be estimated from the force F

acting on a particle with charge g and velocity v,
F=¢(+vxB). (2.20)

Since the magnitudes of the electric field and the magnetic field of the electro-
magnetic radiation are related by the speed of light [213],

& =<B", (2.21)

the ratio of the magnetic force to the electric force is v/ec. For the system of
concern (electrons in atoms or molecules), the ratio v/c is a small number, (e.g.

for the electron in the ground state of the hydrogen atom, < v? >2 /¢ =1/ 137).
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This is also the order of magnitude for valence electrons of other atoms. Therefore
the magnetic field contributions to the perturbation can be ignored, and one can

focus on the electric field contributions. i.e.,

F=qE. (2.22)

When the electric field points in the x direction, the force is
¥, =& . (2.23)

The interaction potential which corresponds to this force can be derived from the

following relation,

av

b
oz

= —g&,. (2.24)
By integration of the above equation, the interaction potential V' is obtained as

V = —qg&z

o]

= g, (2.25)

Extension to a system with several particles (each particle with the charge ¢) in an
electric field pointing in the x direction gives the perturbation term (interaction

potential)

f{l = Z szzg:z:

277'2,'

)\)'

= —& gwicos(2rvt — (2.26)

For a transition between electronic states in an atom and a molecule, the wave-
lengths A lie in the ultraviolet region (A ~ 10°A) which is usually much larger
than the size of the system (about 1A). As far as the electrons confined to move
within the molecule are concerned, the spatial variation of the radiation’s electric
field is negligible,

Z;
— a0 .
;) | (2.27)
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and the perturbation becomes

K}

H = -& costhqiwi
= —&%, coswt, (2.28)

where w = 27v is used, and ds = >_; ¢i%; is the x component of the system dipole

moment. Substituting the identity
1
coswt = §[emp(iwt) + exp(—iwt)] (2.29)
into Eq. (2.28), the perturbation becomes
= —Sgcim%[ewp(iwt) rerp(—i0t)] (2.30)
Substituting this expression for the perturbation into Eq. (2.12), the coefficients
c(t) become
SO h , -
e (t) = — (U | [ ¥ ) / expli(Wmn +w)t | + expli(wmn —w)t]dt . (2.31)
i

o]

Integration gives

g0 s exp[t(Wmn + w)t] — 1
W) = _Zz (gl0) (0)
exp[t(Wmn, — w)t] — 1 .
T (2.32)

From Eq. (2.32), the probability of a transition from state n to state m is maxi-
mized when

W, = W+ (2.33)

The transition probability is not infinite here because the second fraction in
Eq. (2.32) is finite in the limit (wp, —w ~ 0)

. B B (o — )= 1
lim e:z:p[z'(wmn w)t] —1 — im 1+ z'(w w)t
w—wmn H{wmn — w) W—Wmn H(Wmn — w)

= ¢. (2.34)

This indicates that the probability of a transition from state n to state m is

directly proportional to the exposure time ¢. Since the second term in Eq. (2.32)
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dominates at wp, — w ~ 0, the first fraction can be neglected in absorption
spectra. Moreover, the first term is rapidly oscillating and so it will average to
zero over any significant time interval. The probability of the transition from
state n to state m depends also on the dipole moment integrals in electric-dipole

transitions,

A = (T |d, | WO}, (2.35)

If the dipole moment integrals d,,, vanish, the transition between state n and state
m is forbidden. The conditions which lead to nonzero dipole moment integrals

are called selection rules, these rules specify the allowed transitions. More details

are given in Ref. 214, 215.

2.2 DENSITY-FUNCTIONAL THEORY

Density-functional theory (in its original time-independent form) has become
an accepted computational tool for the description of the ground state properties
of atoms, molecules, and solids [26, 27, 28]. The computational simplicity of
the Kohn-Sham formalism and the availability of reliable exchange-correlation
functionals allow accurate calculations even for large systems [123, 124]. A brief

review of the density-functional theory is given here, detailed reviews can be

found in the literature[26, 27, 216, 118, 120, 217, 218, 28].

2.2.1 HOHENBERG-KOHN THEOREMS

Traditional density—fﬁnctional theory (DFT) is based on two theorems of
Hohenberg and Kohn [113] which indicate that the N—electron wave function, W,
may be replaced by the charge density, n, as the foundamental quantity of an
electronic structure theory. These theorems and their proofs are reviewed in this

section.
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The key to the Hohenberg-Kohn theorems is the recognition that the total
energy can be divided into two parts, one containing the external potential and the
charge density and another independent of the external potential. In particular,
Hohenberg and Kohn considered a non-relativistic N-electron system where the
electrons are moving under the influence of a local external potential, Vez;. The

Hamiltonian of this system can be written as,
H=T+Vmu+U, (2.36)
where T is the kinetic energy operator,
- 1 q
J

V.. is an external potential operator, normally just the interaction between the

nuclei with charges Z, and the electrons,

~

Veor = ) v(rj)
J
Z,
7
this external potential may also include an additional applied electric field. U is

the electron-electron repulsion operator,

The total energy of the system is the expectation value of the system Hamiltonian,

Eln] = (UH]T)

= /drldaldrzdag covdrpdo,¥(ry, 01,102,090, ,Tpn,0r)

xﬂ(rl, 01,Y2,0%2, "+ ,Tp, O'n)\If(I'l, 01,192,092, ,Fp, O'n) . (240)
Since the expression for the electronic kinetic energy and electron-electron re-
pulsion energy are identical for any N-electron system, these two energies may

be combined as a new functional, the so—called “universal functional”, F[n], of



21

Hohenberg and Kohn. The remaining electron external potential energy can also
be written as a functional of the electron density. Thus the total energy can be

rewritten as

El] = (9T + U8) + (U|Veat | ¥)
— Fln]+ / drn(r)o(r), (2.41)

where n(r) is charge density which is defined by the following equation
n(ry) = / - -/drzdrg codrgU*(rq,re, -, ) U(ry,ra, - ,Tn) . (2.42)

Hohenberg and Kohn [113] pointed out in their theorem (the first Hohenberg-
Kohn theorem) that the external potential, Vi, is determined by the knowl-
edge of the electron density, n(r), up to a trivial additive constant. This first
Hohenberg-Kohn theorem can be proven by a reductio ad absurdum procedure
(seeking a contradiction). Suppose that there exists another external potential,

v'(r), which is different from the original external potential, v(r),
v(r) # v'(r) + const. (2.43)

and it gives the same charge density, n(r), as the original external potential.
In other words, there are two different external potentials, v(r) and v'(r), lead-
ing to two different Hamiltonians, H and H' and consequently to two different
ground state wave functions, ¥ and ', corresponding to the two different ground
state energies, E[n] and E'[n]. According to the Rayleigh-Ritz variational prin-
ciple [219], the total energy of the system,E[n], obeys the equation,

E[n] = (¥|H|V)
< (V]HV)
= (V|H V) +(V'|H - H'|T)
= B+ [ den(r)[o) - v'(v)]. (2.44)
Similarly, the total energy, E' [n], can be written as,

E'ln] = (VA
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< (U|H'|®)
= (U|H|Y) + (V| - H|T)
= E[n]+ / den(r)[v'(r) — v(r)]. (2.45)
Summing over Eq.(2.44) and Eq.(2.45), the result is an obvious contradiction,
E[n] + E'[n] < E[n] + E'[n], (2.46)

therefore, the conclusion can be drawn that the charge density of the system
determines the external potential up to an additive constant. This means that
if the electron density is fixed, then the external potential and, consequently,
the system Hamiltonian, are uniquely determined. Therefore, all the observable
quantities are also determined. Wilson [220] also pointed out that in a system
without external perturbations, the cusps of the charge density give the positions
of the nuclei, the nuclear charges can be gotten from the gradient of the charge
density at the cusps, and the integration of the charge density determines the
total number of electrons in the system. Hence, the density does determine the
external potential in this instance. However, Wilson’s argument is not obvious

for a system with a general external potential.

Hohenberg and Kohn pointed out that the exact charge density of the sys-
tem minimizes the total energy of the system which is a functional of the charge
density. This is the second Hohenberg-Kohn theorem. It is also proven based on
the variational principle. Suppose there is any trial charge density, 72, which de-
termines the trial external potential, 9, and consequently the trial system Hamil-

tonian, ﬁI , and the trial wave function, U. According to the variational principle,
Eln] = (V|H|Y) < (I|H|T)

- mm+/mwﬂmﬂgFm+/mwﬂmm. (2.47)

This is true only for the ground state. In practice, the charge density, n(r), at a

known external potential, v(r), is obtained by minimizing the total energy of the

system, but using approximate exchange—correlation functionals.
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2.2.2 KOHN-SHAM THEORY

The Kohn-Sham equation is the corner stone of practical density-functional
theory. Kohn and Sham map the real system of interacting electrons to a fictitious
system of noninteracting particles, with an effective potential. This fictitious
system of noninteracting particles has the same charge density as that of the real

system.

Kohn and Sham rewrote the total energy of the real interacting particle

system as

Eln] = Tn]+ Uln] + Vear[n] + Te[n]
==ﬂM+UM+ﬂM+/MMMM) (2.48)

where T[n] is the kinetic energy for the fictitious system of noninteracting parti-

cles,

T,fn] = 3l = 5 V1) (249)

J

T.[n] is the kinetic energy difference between the exact kinetic energy of the real
interacting system, 7'[n], and the kinetic energy of the noninteracting system,
T[nl,

T.[n] = T[n] — Ts[n]. (2.50)

The electron-electron repulsion energy, Uln], and the difference of the kinetic
energy, T.[n], are rewritten as

Ulr] + Tuln] =§//mMﬁQ$%+am1

|r

= J[n] + Eseln] (2.51)

which defines the electron exchange-correlation energy FEg.[n]. Note that this
exchange-correlation energy includes the residual of the electron-electron repul-
sion energy minus the electron-electron Coulomb interaction energy and the dif-

ference of the true kinetic energy of the real system and the kinetic energy of the
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noninteracting particle system. The total energy can then be rewritten as
Bln] = Tyln] + J[n) + Bueln] + [ drn(r)o(r). (2.52)

According to the variational principle, the variation of the above total energy

with respect to the charge density gives the Euler equation,

_ bE[n]

F= ()
_ OTifn] | 8J[n]  6Eun]
= Tale) Tida() T ) O

= fsi([ )]+ vs(r) + vge(r) + v(r)
8T[n]
~ n(r) + et () o

where the y is the electron chemical potential, v.s¢(r) is the Kohn-Sham effective
potential (also called Kohn-Sham potential),

s () = 0s(r) + vae(r) + 0(r), (2.54)

in which the v;(r) is the electron Coulomb potential,

_ 6J[n]
vlr) = 5

and v,.(r) is the electron exchange-correlation potential,

6Ea:c [n]
dn(r) ’

Vge(r) = (2.56)

and v(r) is the external potential.

The total energy of the system can also be written as a function of one

electron orbitals, 1;,

MZ

SNV 0) + [ o))

1 n(r)n(r)

—
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Minimization of the total energy subject to the constraint of orbital orthonor-

mality leads to the famous Kohn-Sham equation,

I
(—§V2 + ves )i = €thi, (2.58)
where the kinetic energy operator and the effective potential make up the Kohn-
Sham operator,

AT 1
FRS:—-Q—VZ—I-’Ueff. (259)

The Kohn-Sham equation indicates that the motion of the interacting electrons
can be treated exactly the same way as for the noninteracting particle system.
The electrons can be considered as if they move in the effective local potential,
and the Kohn-Sham equation is exact if the effective potential is known exactly.
The Kohn-Sham equation also includes all the effects of the correlations among
the electrons of the system. These are some of the advantages of the density-
functional theory. Since the effective potential also depends on the charge density,

the Kohn-Sham equation must be solved self-consistently.

If the electron spin is considered, the spin-dependent total energy is

spin N°

]- — —
Elnlnt = = 53 LIV + [ veaFn(F) d
o =1
4 2 / / M) gz s,y 4 B, 0. (2.60)
2 712
and the spin-polarized Kohn-Sham equation can be written as [221, 28]
1 (2 a a g
[-5+ vtt0)] W) = €7, (261)
where the spin-polarized Kohn-Sham operator is

" 1 v
FES = _§v2 + v 4(x), (2.62)

and here ¢ stands for spin up (« spin) and spin down (8 spin). The total charge

density becomes the sum of the spin-up and spin-down electron densities,

n(r) = n'(r) + ni(r) (2.63)
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and the spin-polarized effective potential, v, ((r), can be written as
n(r')

v — |

0% (x) = vy(r) + / dr’ + Vseo (F), (2.64)

in which the spin dependent exchange-correlation potential, vse, (), is
SE . [n', n!
bu ()T [n',n*] 7
dn,(r)

and the spin-polarized external potential, vy(r), may have two different parts of

(2.65)

spin-up and spin-down external potentials dependent on the additional applied
field (e.g. inclusion of certain types of magnetic field effects). Spin-polarized
density-functional theory provides a better description of many systems, espe-
cially for open-shell systems, such as open-shell atoms, open-shell molecules, and
open-shell clusters, etc. The spin-dependent density-functional theory is also ca-
pable of describing certain properties of a system in the presence of a magnetic
field [221]. Tt also provides the possibility for electrons with different spin to have
different spatial orbitals.

The effective potential includes the Coulomb electron-electron interaction
potential (the Hartree potential), the external potential (nuclear-electron attrac-
tion potential and possibly an applied perturbation), and the exchange-correlation
potential. The latter is a functional of the charge density, but the exact practical
form is unknown. The accuracy of density-functional theory calculations mainly
depends on the quality of the approximation made for the exchange-correlation

functional.

2.2.3 EXCHANGE-CORRELATION FUNCTIONALS

Density-functional theory is in principle exact. Unfortunately the exact
formulation of the electron exchange-correlation functional is so far unknown.
In practice, density-functional theory calculations have to be done with ap-
proximate exchange-correlation functionals. Various approximations character-

ize different schemes of density-functional theory and are of different accuracy.
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Numerous proposed exchange-correlation functionals have been reported in the
literature [222, 223, 224, 225, 226, 227, 228, 229, 230, 231], such as the lo-
cal density approximation [97, 223, 232, 233|, gradient-corrected approxima-
tions (also called non-local approximations or generalized gradient approxima-
tions) [234, 235, 236, 210, 237, 211, 238, 239, 209, 240, 27] and weighted density
approximations (WDA) [241, 242]. The simplest and the most commonly used

exchange-correlation approximation [243] is the local spin density approximation

(LSDxc).

2.2.3.1 LOCAL SPIN DENSITY APPROXIMATION

The LSDxc approximation was the first approximation used for the exchange-
correlation functional in density-functional theory. This approximation is based
on the theory of the homogeneous electron gas in that it is supposed that an
inhomogeneous system can be described locally as a homogeneous electron gas
with density equal to the local density at that point in the inhomogeneous sys-
tem. The exchange-correlation effects in the homogeneous electron gas are well
understood by now [243], and the exchange energy is known exactly. The specific
forms of the exchange energy and correlation energy depend on the treatment of

exchange and correlation used in the calculations of the homogeneous electron

gas [115].

In the LSDxc approximation, the exchange-correlation energy may be writ-

ten as

BESP=*(n1, 1] = [ drfn(r)ece(n! (x), nt(r)) (2.66)
where e,.(n'(r),n*(r)) is the exchange-correlation energy density of a homoge-
neous electron gas with spin densities n! and n'. The exchange-correlation ener-
gies of the homogeneous electron gas have been accurately determined by Monte
Carlo simulations [244] and various convenient parametrizations have been re-

ported in the literature [232, 226, 231]. The exchange-correlation energy can be
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divided into the exchange (E,) and the correlation energy (E.),

Bpe=E, + B, . (2.67)

Since the exchange energy is the dominant component of the exchange-
correlation energy, it should be treated with more accuracy. For a homogeneous

electron gas, the exchange energy can be written as

10l = / dr[n(r)es(n', nb)]. (2.68)
The exchange energy density, ex(n',n'), was first obtained by Dirac [97],
3 : 1/3Zn“(r hig (2.69)

The exchange energy density was also derived by Slater [245, 135], Gaspar [246],
and Kohn and Sham [114]. Since they obtained the exchange energy density in dif-
ferent ways (e.g. Slater exchange was derived from the one-electron Hartree-Fock
equations by averaging the Fermi hole and introducing the LSDxc approximation,
Géspar made these approximations in the Hartree-Fock total energy expression
and then appied the variation principle, yielding the exchange potential), their
expressions differ by a constant factor [115]. This constant factor is used as a

semiempirical parameter in the X, method [136].

The correlation energy functional
E n",n'] = Eg[nT,nY] — E[n',n!] (2.70)

is more difficult to obtain. The exact analytical form is unknown even for the
homogeneous electron gas. Approximations have to be used for the correlation en-
ergy (density). The most widely used correlation energy density is from the work
of Vosko, Wilk, and Nusair (VWN) [232]. It is a Padé approximate parametriza-
tion of Ceperley and Alder’s accurate Green’s function Monte Carlo calculations
for the homogeneous electron gas [244]. The VWN correlation energy density is

given as the following formula,

o(rer€) = () + alra) L1111 + B(r)e), @11)
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where
o= (o), 2.72)
O . Y
£ = T == (273)
. "(0
Bra) = ek - €L 1, 2.75)
and
o(rs) = Aglnrs + Ba (2.76)
in which
1
Aa = —ﬁ 9 (277)
and
_ In(167/a) — 3+ (In R)a, _
Ga= 5.7 3 (2.78)
where
(In R)q, = 0.531504, (2.79)
and
o = (4/9m)1/3. (2.80)

The para- and ferro-magnetic state correlation energy densities, €2(z) and ¢}(x),

are given by

¢ 2b = Q bCEo (LE = .7)0)2
R SR iy == £9 1 _
= & oSSt o e g X o )
2(b + 211,‘0) -1 Q
+ 0 tan % - b]}, (2.81)
where z = r}/2, X (=) is expressed as
X(z)=2*+bz +c, (2.82)

and @ = (4c — b%)'/2, z4 is the root of the expression, (1 + bz + byz? + b3z?),
A, xo, b, and c are parameters either equal to A = 0.0621814, x5 = —0.10493,b =
3.72744, and ¢ = 12.9352 in the case of spin unpolarized [€2(z)] or equal to
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A = 0.0310907, zo = —0.325000,5 = 7.06042, and ¢ = 18.0578 in the case of spin
polarized [e!(z)] by fitting to the results of Ceperley and Alder. This functional

is believed to represent closely the limit of the LSDxc approximation.

It is well-known that the correlation energy in the LSDxc approximation is
normally overestimated by a factor of 2 [210] and the sign of the error in exchange
energy is opposite to that of the correlation energy, which is underestimated by
about 10% [209]. Until now there is no rigorous way to correct these inherent er-
rors. Nevertheless, these two errors are believed, in practice, to cancel each other
in the applications of the LSDxc approximation. Reasonable accuracy should be
obtained for systems with the density varying slowly (such as some metals), but
not for the systems with the density varying rapidly (such as molecules) [26, 27].
However, although it underbinds the core electrons in an atom and overbinds the
atoms in a molecule or solid, the satisfying results for many properties of different
systems (even for molecules) have been obtained by the LSDxc approximation and
some successful applications of the LSDxc approximation to electronic properties
of the complex systems and solid state systems have been reported [115, 226,
including geometric structures and vibrational frequencies, but the LSDxc ap-
proximation poorly describes binding energies, dissociation energies, hydrogen
bonds, negative ions, and properties which are sensitively dependent on the be-
havior of the exchange-correlation potential [247, 248, 216, 249, 250, 212, 28].
The reasons behind these poor descriptions may come from the deficiencies of
the LSDxc approximation, in particular, it may come from the imperfect cancel-
lation of self-interaction effects, which leads to the incorrect asymptotic decay of

the local density exchange-correlation potential [251, 212].

There are some other local approximations also, such as the Gombas—Lie—
Clementi approximation [252, 253], and the local Wigner correlation functional
parametrized by Wilson and Levy [254], that of Lee and Parr [255], and that of
Stle and Nagy [256].
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2.2.3.2 BEYOND THE LOCAL SPIN DENSITY APPROXIMATION

To improve the LSDxc approximation, the inherent errors of the LSDxc
approximation have to be corrected. There are several alternative approaches
already proposed to improve the LSDxc approximation in the literature [257, 235,
258, 236, 211, 210, 237, 259, 209]. The generalized gradient approximation (GGA)
is the most commonly recognized approach to improve the LSDxc approximation.
The GGA is based on the theory of the inhomogeneous electron gas and on the
analysis of the exchange-correlation hole and takes into account the gradient of

the density.

The exchange-correlation energy at the GGA can be written as
B9t nt] = [ drfln!(),n!(x), Vn! (x), Vn!(x)]. (2.83)

The GGA was originally constructed by Langreth and coworkers [257, 235] using
a cutoff of the spurious small wave vector contribution to the Fourier transform
of the second-order density gradient expansion for the exchange-correlation hole
around an electron [260]. The exchange energy construction is believed to be
a major source of the errors in the LSDxc approximation. In the GGA it is

constructed with the ansatz,
3
BG4 = S0 [ dentlo() PO s(r)], (2.84)
vy

where the scaled density gradient, s, is

[Vn(r)|
= 2
$(r) 2kp(r)n(r) i8]
The local Fermi wave vector, kg, is
kr(r) = (3n2n(r))*/3. (2.86)

Perdew and Wang [211] have based their exchange functional on the gradient
expansion of the exchange hole with a real space cutoff of the spurious long-

range contributions to guarantee that the exchange hole be negative everywhere
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and represents a deficit of one electron. They proposed the explicit form for the

function, F'994(s),
FGGA (s) = (1+1.296s2 4 145 4 0.255)1/15. (2.87)

Becke [209] emphasized reproducing the correct asymptotic behavior of the ex-

change energy density and proposed a one parameter exchange energy functional,

2
EGGA _ ELSD!DC _ /d 4/3 Xa'(r) 2.88
B88x x ﬂ; rn, (r)l 4 Gﬂxg(r)sinh‘lxa(r) ’ ( )

where x, is the dimensionless ratio,

_ Vno(r)]

Xo(r) = ) (2.89)

and [ is a constant parameter which is known from fitting the exact Hartree-Fock
exchange energies of six noble gas atoms, helium through radon, with a value of

B = 0.0042¢q.u.

The correlation error of the LSDxc approximation in molecules is believed
to come primarily from the part of the correlation between electrons of the same
spin [261, 216], since the correlation between electrons of the same spin in finite
systems is much smaller than that in the homogeneous electron gas. A few ways
have been proposed [261, 262, 210, 237] to overcome the drawback of the LS5-
Dxc approximation. Stoll and coworkers [261] have proposed a correlation func-
tional which has eliminated the correlation between electrons of the same spin.
Perdew [210] also proposed a correlation energy functional based on the work of
Langreth and coworkers [257, 235, 258, 263], which includes inhomogeneity effects

beyond the random-phase approximation,
E[nT,nY] = /drn(r)eLSD“(nT(r),nl(r))
+ / drd e~ (r)Cn(bfr)]|Vn(r) 23 (x),  (2.90)

where

= 21/3{[#]5/3 + [#]5/3}1/2 ’ (2.91)
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defines the spin polarization with £ = (n' — nl)/n, and n = n' + n!. Here ® is

given as

® = 1.745f[C(o0)/C(n)] (2.92)

776 °
and the cutoff parameter, f = 0.11, is obtained by fitting the exact correlation

energy of the neon atom. The correlation energy gradient coeflicient, C'(n), is
0.002568 + ar, + Br?
1+ 4rs + 6r2 4+ 104673
in which n = (47r3/3)™" and o = 0.023266,3 = 7.389 x 107°,v = 8.723, and

§ = 0.472. When Perdew’s correlation functional is combined with Becke’s [209]

C(n) = 0.001667 + (2.93)

exchange functional, it is normally called the Becke-Perdew exchange-correlation
functional (B88x+P86c). When Perdew’s correlation functional is combined with
Perdew and Wang’s [211] exchange functional, it is usually called the Perdew-
Perdew exchange-correlation functional (PW86x+P86c).

The other commonly used correlation functional is from the work of Lee,
Yang, and Parr [240]. Lee, Yang, and Parr based their work on that of Colle and
Salvetti [264, 265, 266, 267, 268]. They converted the correlation energy formula
of Colle and Salvetti (in which the correlation energy density is expressed in terms
of the electron and a Laplacian of the second-order Hartree-Fock density matrix)

into a density-functional formula for closed and open shells, respectively,

BE.= - {n(r) + bn~23(x)[Cpn®3(r) — 2tw(r)

i
“J9Ty dn=1/3(r)
l

+ (Gtwle) + gm0, (299

and
B= - af drl—%;j{n(r) 1 2503 (x)[22/Cpn ¥/ (r)

4 2PCE(r) — n(r)iw(r) + 50} (1) (1) + 0 ()t (1)

1

s

where (r) is expressed as,

+ = (nl(E) V2 (r) + nt(r) Vil (r))e T 0y (2.95)

n1?(r) + n'?(r)

7(r> = 2[1 - nQ(r)

" (2.96)
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and the constant parameters, a = 0.04918,b = 0.132,¢ = 0.2533, and d = 0.349,
are obtained by a fitting procedure using only the Hartree-Fock orbital for the
helium atom. Cr = 2(37%)%/3, and the local “Weizsécker” kinetic energy density
is given as

_ 1|Vn(r)|2 1

S V(). (2.97)

When Lee, Yang and Parr’s correlation functional (LYP) is combined with Becke’s

tw(r)

exchange functional [209], the resultant functional is commonly called the Becke-
Lee-Yang-Parr exchange-correlation functional (BLYP). The BLYP exchange-
correlation functional has been widely used in the calculations of electronic prop-

erties of atoms and molecules [269, 270, 271, 35, 28].

There is another combination of the exchange and correlation functional
(hybrid functional) which is also commonly used, namely the B3LYP exchange-
correlation functional [272, 273]. The B3LYP exchange-correlation functional
is based on Becke’s half and half idea [274] and the original mixed exchange-

correlation approximation proposed by Becke [205], it was first programmed in

Gaussian92/DFT [272] and takes the form,
Ego = (1 — ag) ELSP™ 4 qo Bt 4 a, AEP® + 0, EFYF + (1 — a ) EYY, (2.98)

where the ag = 0.20, a, = 0.72, and a. = 0.81 are semiempirical coefficients
obtained by a linear least-squares fit to the experimental data of some properties
of a variety of atoms [275], EL5P2¢ is the exchange energy of the LSDxc approx-
imation, E2** is the exact exchange energy, AED®® is Becke’s 1988 gradient
correction to the exchange functional, ELYF is Lee, Yang, and Parr’s correlation
functional which has replaced the original Perdew-Wang gradient correction to
the correlation functional [276, 277] proposed by Becke [205], and EYW? is the

VWN correlation functional expression at the LSDxc approximation.

Recently van Leeuwen and Baerends [212] analyzed the asymptotic behavior
of the exchange-correlation potential instead of exchange-correlation energy or

exchange-correlation hole potential and by comparing to the exact Kohn-Sham
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potential proposed an exchange-correlation potential (LB94xc) which corrects
the LSDxc potential. The exchange-correlation potential of van Leeuwen and
Baerends has the form,

2
o Xo
v2lr) = =P N ey i i) e

in which the dimensionless parameter, y,, 1s

= l—:;—;' , (2.100)
The parameter 3 = 0.05 is obtained by fitting to the exact potential for the
beryllium atom. The van Leeuwen and Baerends potential represents the in-
tershell peak fairly well and the asymptotic behavior essentially correctly. The
application of the van Leeuwen and Baerends potential shows that it considerably

improves the LSDxc eigenvalues and yields bound state solutions for the negative

ions [212].

2.3 LINEAR COMBINATION OF GAUSSIAN TYPE ORBITALS
AND THE PROGRAM deMon-KS

deMon-KS (density of Montreal-Kohn-Sham) has been developed as a
linear combination of Gaussian—type orbital-model core potential-Kohn-Sham
density—functional program [278, 279, 280]. The linear combination of Gaussian—
type orbitals, auxiliary basis sets, grid, and model core potential techniques im-

plemented in the deMon-KS program will be reviewed in this section.

2.3.1 LINEAR COMBINATION OF GAUSSIAN TYPE
ORBITALS

The Kohn-Sham equation (Eq. 2.58) can be efficiently solved by expanding the

molecular orbitals in an orbital basis set. Several different types of orbital
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basis sets have been used in different DFT programs, including numerical ba-
sis sets (DMol [281], NUMOL [282, 283, 284]), plane waves basis sets (Car-
Parrinello [285], CORNING [286]), Slater-type orbital (STO) [287] basis sets
(AMol or ADF [288, 289, 290]), and Gaussian-type orbital (GTO) [291, 292,
293, 294, 295] basis sets (deMon—KS [278, 279, 280], DGauss [296, 297], GAUS-
SIAN [298], CADPAC [299], TurboMol [300, 301, 302]). Each choice has its own
set of advantages and disadvantages. GTO basis sets tend to be the more popular
choice. Although larger orbital basis sets are needed when Gaussians are used,
there is a net gain in computational efliciency because the necessary integrals can
be evaluated analytically. The GTOs also make it possible to accurately calcu-
late analytic energy gradients (for geometry optimizations) and density gradients
(for corrections of the exchange-correlation functional beyond the LSDxc approx-
imation). A more detailed review of the advantages of using GTOs in the DFT
can be found in the literature [303, 120]. For these reasons, the GTOs are most

widely used in the contemporary computational chemistry and physics.
The expansion of Kohn-Sham molecular orbitals, ¥J(r), into the GTOs,
vo(r) = ¥ O5(r). (2.101)
j
leads to the Kohn-Sham secular equations,

S (Hy — €/5u)CF =0, (2.102)
{

where the CJ, are expansion coefficients for the ¢ orbital,

He, = / drxi(p)hoES i (r), (2.103)

and
S = / drxi(m)x(r). (2.104)
Here 755 is the Kohn-Sham operator, and the y;(r) are contracted Gaussian-

type basis functions. The basis sets are normally described in “deMon-KS termi-

nology” (Huzinaga notation) in the form [304, 280],
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Ks Kp

(X17X§7'”7Xs /X;lpaxza"'axz; Kd)

/X}d:X?ﬁ"WXd

which indicates that there are K's contracted s type Gaussian functions comprised
respectively by x1, x?,- -+, x&* Gaussian primitives in the basis set, Kp contracted
p type Gaussian functions constituted respectively by lej, xg, e X{f” Gaussian
primitives, and Kd contracted d type Gaussian functions constructed respectively

by x4 X%, -+, x5? Gaussian primitives.

2.3.2 AUXILIARY FUNCTION METHOD

Calculations involving coulomb and exchange-correlation integrals are sim-
plified in deMon-KS by the use of auxiliary basis functions. Following the work
of Samble and Felton [305] and that of Dunlap, Connolly, and Sabin [306, 307],
the charge density, n(r), is expanded as a linear combination of auxiliary basis

functions, f;,

a(r) =Y aifi(r), (2.105)

2

consisting of atom-centered GTO primitives. The exchange-correlation potential
is expanded in another auxiliary basis set of GTO functions (also consisting of

atom-centered GTO primitives), ¢;, and

Oge(r) =3 b gi(r). (2.106)

where a; and b7 are fitting coefficients. The tilde used here emphasizes that these
fitted quantities may differ from the corresponding exact quantities due to use
of an incomplete set of Gaussian functions. The auxiliary basis sets used in the
program deMon—KS are abbreviated by (ns, nspd; vs, Vspd), Where n,; and v, are the
number of s-type Gaussian primitives used, and ng,y and the v,,; are the number
of sets of s-, p-, and d-type Gaussian primitives with shared exponents used for

fitting the charge density and the exchange-correlation potential, respectively.
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The charge density fitting coefficients, a;, are obtained by a least squares

fitting procedure to minimize the Coulomb repulsion energy difference between

the fitted density and original density [306, 307],

(n — ﬁ’llr—l—r’]m — )

subject to the normalization constraint,

/drﬁ(r) =N, (2.107)

where N is the total number of electrons. This constrained minimization leads

to
ap = Zs,ﬂ f’ll —I—)\/drfz (2.108)

where the charge density overlap matrix 1s deﬁned as

= (fel—== ESary |fi) - (2.109)

The Lagrange multiplier, A, obtained by the normalization constraint (Eq. 2.107)
is
N = S de ()0 (r))
i ([ dr fi(r) S5 (f dr fi(r) ’
The Coulomb part of the total energy is calculated as

(2.110)

(nl 2 i) = 3Rl 27 17)

which differs from the true value

by half the fitting error,

1 1 i i 1 1 1

S 0l =l — {{nl—— i) = 5 (Al |} = (=il —In—7). (2.111)
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The exchange-correlation fitting coeflicients, b7, are difficult to obtain an-
alytically (see however Ref. [308]). Instead they are obtained numerically in

deMon-KS by minimizing the numerical integral,

Srlvge(I) = 3 (DPW(I)

where the summation weighted by W (I) is over the grid points, and W () is

proportional to the volume of space of the related grid point. Minimizing

02D = SRR DIW (D)} =0 (2112
leads to
b = Zch{leI:gj(I)vgc(I)W(I) (2.113)

where the exchange-correlation fitting overlap matrix is

S:ltcij = Zgi(I)gj(I)W(I). (2.114)

It is obvious that the auxiliary—function method (the linear combination of
GTOs for the expansion of the charge density and exchange-correlation potential)
reduces four—center two—electron integrals to three-center two—electron integrals,
simplifying the necessary calculations and gaining computational efficiency. The

Coulomb integrals become

Y, [ [ dredr'% (r)ﬁ(_r])tff(r Jai ,

and the exchange-correlation integrals become

i f dexi(r)x(r) fi(e)d]
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2.3.3 GRID

A grid is commonly used in the numerical integrations in density-functional
theory programs, such as deMon-KS [278, 279, 280], Amol (ADF) [288, 289, 290,
DMol [281], NUMOL (282, 283, 284], CADPAC [299], DGauss [296, 297], GAUS-
SIAN/DFT [298], and Q-CHEM [309]. As normally practiced, multicenter molec-
ular integrals are partitioned into a sum of atomic-like single center integrals using
a nuclear weight function algorithm [310, 311, 281, 312] or the molecular space
is separated into atomic spheres [313, 314, 315, 316]. In deMon-KS, the nu-
clear weight function approach has been used, but the original Gauss-Chebyshev
quadrature [317] has been replaced by Gauss-Legendre quadrature [318]. In ad-
dition to this radial grid, a suitable angular grid also needs to be chosen for the
quadrature of each unit sphere. A few kinds of angular grids have been pro-
posed in the literature [319, 320, 321, 322, 323, 324, 325, 326]. Version 1.2 of
deMon—KS employs the Lebedev angular grid with 6, 12, 26, 50, 110, 194 angular
grid points [321, 322, 323, 324, 325, 311]. All grid options in this version use 32
radial grid points. If proportional angular grid points are used it is the FINE
grid (in deMon—-KS, the radial grid, Gg is partitioned into five regions, the first
region, 0.0-0.4Gg, with 50 angular grid points, the second region, 0.4Gr-0.5Gg,
with 110 angular grid points, the third region, 0.5Gr-0.7Gr, with 194 angular
grid points, the fourth region, 0.7Gr—0.8Gr, with 110 angular grid points, and
the fifth region, 0.8Gr-1.0GR, with 50 angular grid points). If 194 angular grid
points are used in each unit shell it is called EXTRA-FINE grid. Later it was
improved to include a user defined grid [327] which allows the user to choose as

many radial grid points as needed and to vary the angular grid points.

2.3.4 MODEL CORE POTENTIAL

Model core potentials (MCPs) are a technique used to reduce computational

cost. In this technique, the inert core electrons are not treated explicitly but
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rather are replaced with an analytical core potential. Only the valence electrons
which move in the core potential are considered. The use of MCPs can reduce
basis set superposition error and include some relativistic effects by building rel-
ativistic effects into the MCPs [279]. MCPs also make it possible to treat larger

molecules and clusters than would otherwise be possible.

An MCP for atom A with nuclear charge 7 and N, core electrons is intro-

duced by replacing the all-electron nuclear attraction term as follows:

VA
iI‘ = I'AI

— —Virop(r —r4) + P (2.115)

Here
(—air?)

Vior(r) = 3 4,52 - (%)3/2, (2.116)

is the actual core potential whose exponents, «;, coefficients, A;, are adjusted to
minimize the least square error between the MCP valence and exact numerical

valence atomic orbitals. The coefficients are normalized so that
Y A =N.. (2.117)

In order to avoid variational collapse of the valence electrons into the core, a

projector
P =3 2e0 |97 >< 9], (2.118)

is introduced to lift the core orbital energies up above the valence orbital energies.
The ¢ and ¢ are respectively the core orbital energies and orbitals for atom A.

More details will be given in chapter 4.

2.4 TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

Traditionally Kohn—Sham density-functional theory is restricted to time-
independent ground-state problems. It has difficulty to treat excited state prop-

erties and time-dependent problems, hence a time-dependent theory is needed.
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A number of authors [159, 153, 160, 154, 155, 156, 166, 157, 138] have tried
to develop time-dependent density-functional theory. Initial work towards time-
dependent DFT was achieved by Peuckert [159] and by Zangwill and Soven [160].
Zangwill and Soven [160] were the first to use the adiabatic approximation with
the local density approximation (LDAxc) to treat the time-dependent exchange-
correlation potential in their calculations of photoabsorption of noble gases. An
important step toward a rigorous foundation of time-dependent DFT was taken
by Deb and Ghosh [155, 161, 162, 163] and by Bartolotti [154, 164, 165]. They
formulated time-dependent DFT with a set of external potentials. A solid theoret-
ical framework for the time-dependent DFT was given by Runge and Gross [156]
who proved fundamental theorems of the time-dependent DFT for a more general
external potential. A brief review of time-dependent density-functional theory is
given in this section. Detailed reviews can be found in the literature [167, 138,

168, 139, 169, 328, 329).

2.4.1 ANALOGUES OF THE HOHENBERG-KOHN THEOREMS

A fundamental challenge in time-dependent density-functional theory has
been to find a suitable analogue of the Hohenberg-Kohn theorems [113]. In the
time-independent case, the existence of an exact mapping between the charge den-
sity and single particle external potential are proved based upon the Rayleigh-Ritz
minimum principle for the energy. Straightforward extension of this approach to
the time-dependent situation is not possible owing to the lack of a suitable min-
imum principle. Nevertheless, Runge and Gross [156] have been able to show
that the time-dependent charge density determines the time-dependent external
potential for the case of external potentials which can be expressed as a Taylor

series about some initial time to,

s l 8’0%7&0)

v(t) =2

i

(t —to)*. (2.119)
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Note that the external potential v(t) is assumed to be a constant at ¢ < ¢y and
the initial time ¢y is assumed to be finite, since at {5 = —oo there is an essential
singularity in the Taylor expansion. In the formal proof of Runge and Gross, the
current density is used, which is beyond the scope of this thesis. Hence only the

basic idea of the Runge-Gross proof is given here.

In the time-dependent domain, a system is described by the time-dependent
Schrodinger equation (atomic units are used),

0¥

P HU(t) (2.120)

where the Hamiltonian in the above equation is

~

A= 3RV T

| s Zv(ﬂ',t>

i
= T+ U4+ Vult), (2.121)
note that the external potential
X N
Veot(t) = > v(rj,t) (2.122)
J

may include a time-dependent perturbation (e.g. a time-dependent electrical

field).

In order to prove the analogue of the time-independent first Hohenberg-
Kohn theorem, the solutions of the time-dependent Schrodinger equation are only
considered for t > tp, subject to the initial condition that W(tg) = W¥o. In the
Runge and Gross proof [156], they suppose that there are two external potentials

which differ by more than a time-dependent constant function,

o' (t) — v(t) £ C(t), (2.123)

and that both of the potentials can also be expanded in a Taylor series around

initial time g
10
a0 (®) (t — to) (2.124)

-3
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and

I

© ] g 2.
I Ed £)(t — to)' . (2.125)

=2
Suppose also that these two external potentials lead to the same time-dependent
charge density, n(¢). Runge and Gross [156] found the contradiction by first prov-
ing that the current densities corresponding to the above two external potentials
are different. They then showed that the two time-dependent charge densities
corresponding to the above two external potentials are also different by using
the continuity boundary conditions between time-dependent charge density and
current density. This contradicts the original assumption that the two exter-
nal potentials lead to the same time-dependent charge density, hence proving the
Runge—Gross Theorem (an analogue of the time-independent first Hohenberg—-
Kohn theorem in the time-dependent case). Under the conditions discussed above,
the time-dependent charge density determines the external potential uniquely up

to an additive time-dependent constant.

According to the Runge-Gross theorem, it can be concluded that expecta-
tion values of any quantum mechnical operators and the time-dependent wave
function are also functionals of the time-dependent charge density. Since, if the
two applied external potentials differ by only an additive time-dependent constant
C(t),

v'(t) = v(t) + C(1), (2.126)
by solving the time-dependent Schrodinger equation (Eq. 2.120), one can show
that the corresponding time-dependent wave functions differ by only a time-

dependent phase factor exp[—ic(t)] (where a(t) = [dtC(t)).
U'(t) = U(t)exp[—ia(t)] . (2.127)

Hence, the time-dependent external potential determines the time-dependent
wave functions uniquely up to a time-dependent phase factor. This phase factor

cancels out in the charge density

< N/dsl / oy --/dmw(t)ﬁ, (2.128)
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and the expectation values of any quantum mechanical operator A(t),
(T(HIA@)| (D) = A®), (2.129)

if the operator A(t) contains no time derivatives or time intergals. Therefore, they
lead to the same charge density and the same expectation values. Note that the
Runge—Gross theorem indicates that the time-dependent charge density uniquely
determines the external potential up to an additive time-dependent constant, and
the external potential uniquely determines the time-dependent wave function up
to a phase factor, then the time-dependent wave function must also be a functional
of the time-dependent charge density, even though the explicit dependence of the

wave function on the charge density is unknown yet.
U(t) = ¥[n](t)exp[—ia(t)]. (2.130)
Consequently the expectation value is also a functional of the charge density.

Alt) = (TIAD)())

= (I()A®) ()
= A(n,t). (2.131)

This indicates that any observable quantities are functionals of the time-dependent
charge density. It does, however, have an implicit dependence on the initial state
Wy. This dependence can be an immaterial when the initial state is just the
ground stationary state of a system (with a static external potential). Specif-
ically, observables depend only on the charge density when the initial state is
specified in terms of the charge density. Since according to the first Hohenberg
and Kohn theorem [113], if the initial state is a non-degenerate ground state, it
is an unique functional of the ground state charge density. So the expectation

value can be considered as a unique functional of the charge density.

In the time-independent case, the second Hohenberg—Kohn theorem stated

that the true charge density minimized the total energy. In the time-dependent
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case, there is no explicit energy in the time-dependent Schrodinger equation, so
the energy minimum principle is not applicable in time—dependent DFT. Hence

the action has to be used.

A= / dt(\IJ(t)lz’% — H@®)w(@) (2.132)

ta
Since there is a mapping between the time-dependent wave function and the
time-dependent charge density, the above action integral is also a functional of

time-dependent charge density.

Aln) = [ awinl(0li — AoNR), (2.133)
ot

which has a stationary point at the true time-dependent charge density. This
true time-dependent charge density of the system can be obtained by making the
action A4 stationary, namely the Euler equation,

t1

T - fat steplig = HOW)
+ Ul - A5 )
=0 (2.134)

The phase factor in the wave function makes no contribution in the action defined
in Eq ( 2.132) despite the presence of the time derivative operator, since the phase
factor only gives an additive constant. The above discussions give the important
stationary action principle. When the action [Eq. (2.132)] is expressed as
a functional of the time-dependent charge density [Fq. (2.133)], it must have a
stationary point at the true time-dependent charge density which can be obtained
by solving the Euler equation [Eq. (2.134)]. This is the time-dependent analogue
of the second Hohenberg-Kohn theorem in time-independent DFT. It is notable
that most quantum chemical treatments of the time-dependent problem are based
on some stationary action principle (usually the Frenkel principle [330]). In time-

dependent DFT), this action principle is not without subtleties, a recent example
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of which is van Leeuwen’s redefinition of the action in time-dependent DFT to
resolve a paradox regarding causality and symmetry in the response kernel [331].
Nevertheless, van Leeuwen’s redefinition of the action is not considered in this
thesis, the traditional definition of the action will be used throughout this thesis

to avoid introducing tedious and confusing (though technically important) details.

2.4.2 TIME-DEPENDENT KOHN-SHAM EQUATION

Since the energy minimum principle is not applicable in the time-dependent
case, the stationary action principle has to be used to derive the time-dependent
Kohn-Sham equation. The action is a unique functional of the time-dependent

charge density n(r,?),

An] = [ dui@)iL = B@)RE) . (2.135)
] at

Analogously to time-independent density-functional theory, the action can also be
written as the sum of a universal functional B[n], and an external action A.q[n].
The universal functional B[n] is given by

MM:/&@MWW%—T—MQM@L (2.136)

tg
which is independent of the external potential and plays the role of the Hohenberg-
Kohn universal functional F[n] in the time-independent DFT theory [26]. The

external action A.;[n] is defined as,

&AM:—/&/M@@QMLM. (2.137)

ta

Hence, the action can be rewritten as
A[n] = B[n] i Aewt [’I’L]

= mﬂ—/ﬁ/a@mﬂmnm. (2.138)

tg
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Introducing a non-interacting system universal functional B,,
t1 8
Buln) = [ dt(W[n)(0)li; — TIW[n)(1)) (2.139)
to

allows the action A to be rewritten as

Aln] = Byn|— fdt/dr[v(r,t)n(r,t)]

=% / a far [ ™MDy

|r—r|

where A,.[n] is the exchange-correlation action. By comparing Eq. (2.138) and
Eq. (2.140), Ag[n] is

Agoln] = N —/dt]dr/dr r_r| n(r, t)n(r’, 1) — Bln]. (2.141)

If the external potential of a non-interacting system can be found, it must be
unique due to the Runge-Kohn theorem, this potential also makes the non-
interacting system charge density identical with the interacting system charge
density (i.e. the charge density is “v-representable”), the charge density may be

written in terms of a set of orbitals,

N
=2 ml(r, 1) (2.142)

where the n; are the occupation numbers. Applying the stationary action princi-
ple [Eq (2.134)] with the constraint [Eq (2.142)], the time-dependent Kohn-Sham

equation can be obtained as

a AT 2
PP 1297 vy (e, )t 1) (2.143)

where the effective potential (also called time-dependent Kohn-Sham potential)

1s

n(r 1) 6Axc[n]
+./d |r —r] 6n(r,t)’
= vemt(r, t) 4+ 'USCF( ,t) (2144)

veff(rv t) = ert
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evidently the self-consistent field potential is

B n(r 1) 5Axc[n]
USCF(r7 t) e /d |r —r ‘ 577,(1', t) E)

/n r ,t)
/ e g e ) (2.145)

where vz(r, 1) is the time-dependent exchange-correlation potential and given by

5.Azr:c[n]
én(r,t)

VgelT, 1) = (2.146)

2.4.3 THE ADIABATIC APPROXIMATION

The time-dependent exchange-correlation action Ag.[n] is the time-dependent
analogue of the time-independent exchange-correlation energy Eg.[n], but A.[n]
is a functional of the time-dependent charge density n(r,t), whereas E.[n] de-
pends only on the stationary charge density n(r). Several approximations are
known for the time-independent exchange-correlation energy. However, no time-
dependent exchange-correlation action form Ag.[n] is known yet. Hence ap-
proximations are needed. Peuckert [159] suggested an iterative scheme for the
calculation of the exchange-correlation potential. Zangwill and Soven [160] ap-
plied the adiabatic approximation which used a static exchange-correlation po-
tential in the local density approximation to calculate the photoabsorption of
the rare gases. This adiabatic approximation is the most well known and the
most commonly used in the calculation of the exchange-correlation potential in
time-dependent DFT. Simply speaking this approximation uses the static DFT
exchange-correlation functional expression (e.g. LSDxc) with a time-dependent

charge density.

Apo[nl(r, t) = / dt' Bolny], (2.147)

where

ny(r) = n(r,t). (2.148)
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This equation indicates that the charge density is evaluated at a certain time t
[e.g. the initial charge density ng(r) = n(r,t)]. The exchange-correlation action
changes when the charge density changes
¢
Ape(n + 1) — Ageln] = f dt' { Evelny + 8ny] — Enclny]}, (2.149)

tg

hence,

t
§Asln] = f dt'§ Eyolny]
to

i
' 6Ezc L
= /dt {/ dr#nt/(r)}
1o t
i

_ /dt’/drMn(r,t’). (2.150)

So, in the adiabatic approximation,

6Aze[n]  6Egc(ny)
én(r,t)  éng(r)

According to Eq. (2.146), the time-dependent exchange-correlation potential is

(2.151)

8 Aze[n]
Vae(T, 1) én(r,1)
0B [ny

= e (2.152)

Vze[R] (2, 1) = vgo[nd(r) . (2.153)

This adiabatic approximation equates the time-dependent exchange-correlation
potential to that of the time-independent theory, but with the charge density

evaluated at a certain time ¢.

2.5 TIME-DEPENDENT RESPONSE THEORY

The general wave function time-dependent response theory has been well
developed. It is a useful tool in the development of time-dependent density—

functional response theory. A brief review is given in this section.
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The expectation value of an operator A can be written in the second quan-

tization [332, 26] form,

At) = (W()A@)E())
= Y A (W) 558, (2))

paqo

= Z Apga Pypo

pgo

= tr(AP) (2.154)

where A(t) = Y peo ApgoP §o is the second quantization expression for the opera-
tor A, the pt are fermion creation operators, and the ¢, are fermion annihilation
operators, A represents the matrix of the operator A, and P represents the den-
sity matrix with the elements Pp,,. The Roman letters p and ¢ refer to space
indices and the Greek letter o indicates the spin index. Trace (tr) means to sum
over all of the diagonal elements of the matrix. If the system wave function is cut
off at first order [Eq. (2.13)], the expectation value of the operator A (Eq. (2.154))

becomes

At) = tr(AP)

= D AoV + OO [F G TO () + T (2))
pgo

= Zqua[qu?g ( )+Pq(73<)7( )l
rqo

= tr(APO) + tr(APW) + tr(AP®)

where the zeroth order part of the expectation value A = tr(APO) with the

zeroth order density matrix,
PE)(#) = (WO)|51 412 ()) 5 (2.156)

the first order part of the expectation value (the linear response of the expectation

value A) is AW = tr(APW) with the first order density matrix

PU () = (WO (8)[pF 4,1 PO (2)) + (PO @) [57 41 TP (1)) 5 (2.157)



52

and part of the second order of the expectation value A® = tr(AP@) where the

part of the second order density matrix is

Pi(t) = (()

gpo

P, [ TW(2)). (2.158)

Substituting the first order wave function [Eq. (2.15)] into the linear response of
the density matrix, P(})(#), one gets

qpo

PR@) = (S [ aeA )

apo :
x exp(iwpnt)] exp(—i Ext) U 57 g, |9 (2))
+(BO(¢ ﬁ+qg|z ] (VO H O exp(iwpnt )]
x exp(—iEgt) U ’) . (2.159)

The time integrals in the above equation [Eq. (2.159)] do not converge at time
equal to minus infinity, due to the oscillating term exp(iwgnt) = cos(wrnt) —
i sin(wgnt). To assure the convergence of the above time integrals, the perturba-
tion operator H' is set to

A

H (t)

! )

exp[—¢(t — ¢ )]H (¢)
{ H'(t) ;att' =t

[l

(2.160)

where ¢ is a positive infinitesimal. Substituting Eq. (2.160) and the zeroth order
wave function U (¢) = exp(—iE,t)¥? into Eq. (2.159), the linear response of

the density matrix becomes

PR() / a5t WO 00

xexp|—i( By — B —i€)(t — )] — (OLH [0 ONTD |57, |0
xexp[—i(Fn — Ex —i€)(t —t)]}. (2.161)

Using the second quantization notation for the perturbation operator H e

=Y H,, 3¢, (2.162)
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substituting this equation [Eq. (2.162)] into Eq. (2.161), then

PR = ¥ / ' { SO e ) (W)

xeap[—i(Ex — En — i€)(t —t)] — (L0370 (0 |57 4,0
xeap—i(Bn — Ex —i€)(t — ¢ || Hor ()} (2.163)

In order to change the integration limit from ¢ to oo, the Heaviside function © is

introduced,

; l 5 &> t

Bt— 1] = , (2.164)
0 ; t<t

This allows the above Eq. (2.163) to be rewritten as

'JPU Z/dt{ Gt—t Z[\II(O ‘pG’QO'

STT _

Oy (et p, | TO)

xexp|—i( By — B —i€)(t — 1)) — (WO]3F 2, 0OV (00 |53 4, T)

xexp|—i( Bn — By — i€)(t — ¢ )] Hyrr(t)} - (2.165)

This time-dependent linear response of the density matrix can be written as

frequency-dependent by using the Fourier transform,

v (w) = / dt exp(iwt)UD) (1). (2.166)
It follows that

PONw) = Y3~ { V|5,

sTT &

/ dt' H, _(texp(iwt') 7) d(t —t)e(t —1t)

TV (WO |5+, | O)

xeaplifus — wkn+zg><t—t'>1 (TO3+7 TP (@5 4, | 0)
/ dt H., (t)exp(iwt) / d(t —1Y0(t — 1)

xexpli(w — wng +16)(t — )] (2.167)
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using properties of the Heaviside function ©(¢ — t'), which can be eliminated by

changing the integration limit.

PQw) = 2> < L (O, WO (T O |557, |0 O)

srT k

x/dt'H;M Yexp(iwt) /dt—t
—00 0

Xe:vp[Z(w Wi, + 1) (t — t')] (TO 357, (WO (WO 5, |0
x / &' H._(t)ezp(iwt) / dt —1)
eopli(w — was + i€}t — £ (2.168)
Integrating over (t —¢') and doing the Fourier transform,
PG = LN, (oI 5 )
<wg°>| i \w@ 1A a9 (2169)

— Wnk + Z‘f
It is convenient to introduce the generalized susceptibility x defined by,

Pq(;g' Z Xqpo, STT s*r'r(w) : (2170)

SrT

By comparing Eq. (2.169) and Eq. (2.170), the frequency-dependent generalized
susceptibility x is seen to be
(U053 | 1) (W

qua,srf(‘*’) = §{ W — Wey + €

(WO 57, Y (051§, | 0 (O)

o)

}. (2.171)

The frequency dependence of the linear response of the expectation value AN (W)

can also be obtained with the Fourier transform [Eq. (2.166)]

AW(W) = 7dt[e:cp(iwt)A(1)(t)]

oo

= / dt[ewp(iwt)tT(AP(l)(t))]
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= Z quchq(;c)r (w)

pqo

= ZZ quUqua'vs'rT(w)H;TT(w) (2.172)

pgo sTT

where the time (or frequency) independence of the Ap,, is assumed and Eq. (2.170)
is used in the above equation. Since the operator for the y component of the dipole
moment is

foy = —ey = —y (2.173)
If the perturbation is considered as an electric field £ turned on in the z direction,

H

srT

¢

(w) = ZgrE-(w), then according to the Eq. (2.172), the linear response of the

dipole moment (induced dipole moment) y-component can be expressed as

(W) = =3 ypee P (w) (2.174)
reo
or
#1(/1) (w) el Z Z Ypgo Xqpo,srr (w)zsrq-gz (w) (2175)
pgo STT

Clonventionally, the dipole moment x(¢) can be expanded in the series
iy (1) = p® + / & ay,(t —t)EE) + - . (2.176)

By Fourier transform

F(t) = 51; [ duleap(=iwt) P, (2.177)

the dipole moment expansion [Eq. (2.176)] can be written as

(e}

i) = 0+ o [ delegu(w)E@)enp(~iwt)] + - (2.178)

Therefore the linear response of the dipole moment (induced dipole moment) is

given as

@) = py(t) — pl?

= — / dwlory: (W)€, (w)exp(—iwt)] . (2.179)
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According to the Fourier transform [Eq. (2.177)] the linear response of the dipole

moment (induced dipole moment) can also be rewritten as
17 .
qul)(t) =5 / dw[#?()l)(w)e:z:p(—zwt)]. (2.180)

By comparing the two equations [Eq. (2.179) and Eq. (2.180)], the frequency-

dependent linear response dipole moment is
WD) = oy (w)Ex(e) (2.181)

Therefore the frequency-dependent polarizability is given by

()
) = BT (2.182)

Substituting Eq. (2.174) (i.e. the linear response of the dipole moment) into the
above equation [Eq. (2.182)], the dynamic polarizability (y, z)-component can be

rewritten as

(1) (0
(o) = - 3 L) (2183)

or inserting Eq. (2.175) into Eq. (2.182), the dynamic polarizability (y, z)-component
is
— Do bom Ypgo Xapo,srr (W) Zerr Es (w)
&:(w)
Yo, (TO 5TV (2@ ()

2 2
B w,m—w

ay.(w) =

where the generalized susceptibility Xpgo,sr- is replaced by Eq. (2.171), the in-

finitesimal ¢ has been set to zero, and the expression
(Tl OR) (U2 Wn) = (W] 2[W5) (Wi |G| W) (2.185)

has been used in the above derivation (i.e. the matrix elements are assumed to

be real). The mean polarizability & is given by
aw) = glome(w) + oy (w) + ez (w)]
fr
= D (2.186)
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where the poles are excitation energies,

and the residues are the oscillator strengths,

2

fr= guum[l<‘I’n|»’?fl‘11k)|2 + (Walg[ ) + (W 21T (2.188)

Eq. (2.186) is the famous sum-over-states (SOS) theorem of optics which is the

basis for extracting excitation spectra from time-dependent DFT.

2.6 TIME-DEPENDENT DENSITY-FUNCTIONAL
RESPONSE THEORY

Time-dependent density—functional response theory (DFRT) is an important
tool for calculating excitation spectra [29, 207, 328, 329]. A detailed description
of how to calculate excitation energies and oscillator strengths for open—shell

molecules by the time-dependent DFRT are given in this section.

In the time-dependent response theory section, the linear response of the
density matrix was obtained as
Pq(;r)f (w) . Z qu0'137'7(w)HS1"7' (w) : (2189)
SrT

where the generalized susceptibility is

) = Z{<W£°’|ﬁ:da|\D£°)><w;°)|§¢f7|\1;;o>>
quU,ST'T - T + Zé’

(WO s ) (U 155 6. [0 E)
w4+ Wkn + Zf

}. (2.190)

Since the Kohn-Sham equation has a quasi-independent particle nature, it is
convenient to begin with a discussion of the linear response of the density matrix

for an independent particle system.
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For such a single particle system, the initial ground state wave function

W) = ), and corresponding energy E, = €;, satisfy the Schrodinger equation
iLl/)iy = E,‘,/(bi,, . (2.191)

In this special case, the generalized susceptibility is just

_ <¢zu |ﬁjqu¢k0"><¢ka” |§j—FT|¢zu>
qua,srT(w) B ]%.:'{ W= wka',izx 1 Zé.
(iv |37+ [P0 ) (Yao 1B G [iv)
w + wka",iu iy 26

}. (2.192)

After some mathematics, the single particle generalized susceptibility simplifies

to
50'1/ 60‘7 5qs6p'r

W — Wyopo + €

(65 — 643 (2.193)

Xgpo,srr (w) &

where Wggpr = g0 — Epo-

This single particle generalized susceptibility can be generalized to a system
of many independent particles. Since the occupation number n;, of each orbital
indicates the portion of the contribution to the generalized susceptibility from
each orbital, the Xpgs srr(w) of the system with many independent particles is the

sum of each orbital’s contribution to the generalized susceptibility,

— 6UU6076q56pT
5076 55 T
= L (npr — Ngo) (2.194)

W — Wyopo 1 1€

The nature of the quasi-independent particles of the Kohn-Sham equation
permits one to use the linear response of the density matrix of the independent
particle system (or the generalized susceptibility of the independent particle sys-
tem). However there is now an effective perturbation H'**1 which contains both
the applied perturbation H' and the linear response of the self-consistent field

vWSCF {nduced by the response of the charge density. The linear response of the
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Kohn-Sham density matrix is

Pq(;c)r (W) = > Xqpoorr (W) H el (w)

STT

870500 '
= el L1 — nge JH.S (w
; wqua+7:§( q ) STT ( )
_ Ppo — Mo yrlefs
N L ¢ .
P (w) (2.195)

where the generalized susceptibility of the many independent—particle system has
been used, the infinitesimal £ has been set to zero and the effective perturbation
18

1

Bt (r,t) = H' (r,1) + vW5F (2.1). (2.196)

Although Eq. (2.195) does not give the correct response of the true density matrix,
it does give the correct response of the charge density which is enough to be able

to treat many properties.

The first order of the self-consistent field vW5CF is related to the linear

response of the density matrix Pq(;(),( w) by the coupling matrix Kps,ser(w),

vDSOF (W) = 3 Kopp,arr(w) PEL(w) - (2.197)

srT

Therefore the coupling matrix is given by

OvSCF
7 o P (1)
= _[o d(t —t expliw(t —t )]m . (2.198)

The self-consistent potential is a functional of the charge density. According to

the chain rule, the above equation can be rewritten as

Koposrr(w) = / d(t —t)expliw(t — ¥ {Z / dr / d",sn,jpg “)) B;Jls(i(t))}

— 00

(2.199)

From the time-dependent density-functional theory section, the self-consistent

potential consists of the Coulomb potential and the exchange-correlation potential
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[Eq. (2.145)],

5vSCF(t) 5 n (r' )
OYpo AV (T, i
5n7(r',t”) En’y(r:,t/,) (/ dr II' — I'I| - ’ch(r,t))

(" —1)b,y | b7 (r,1)

= O Tanen ) (2,200

The relation between the charge density and the density matrix

=;;%#WMMWAQ, (2.201)
is used to obtain the derivative of the charge density with respect to the density
matrix, »

%% = 8(t" — )8yt (2 )pur (). (2.202)
Substituting Eq. (2.200) and Eq. (2.202) into Eq. (2.199), the coupling matrix
becomes

Koposrr(w) = 7d(t — t,)ea:p w(t — t/ {f df/ dr’ ;"(r) o (E or () o (1)

=1

b [ [ @ v ) SR R e ()], (220)

where the time-dependent exchange-correlation potential in the adiabatic approx-

imation is

8 Azc|n]
dn(r,t)
6Ewc [nt]

oK (2.204)

Hence, the derivative of the time-dependent exchange-correlation potential with

vge(E, 1)

respect to the charge density can be evaluated as

g (r,t) 8 Baelno(r,?)]
on,(r',1") 6ng(r,1)én,(r', 1)
B Baclno ()] o)
e L (2.205)

This makes the coupling matrix in the adiabatic approximation independent of
omega. It is obvious that the coupling matrix has the following symmetry prop-

erties,

Kopo,orr (@) = Kpgo,srr (@) = Kpgorsr(w) = Kopopsr(w) (2.206)
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and

‘K'QPU,S'I‘T(L’J) - [I(srT,qpa(—w)]* . (2207)

Note that the minus omega comes from the Fourier transform.

If one inserts the coupling matrix [Eq. (2.197)] with Eq. (2.196) into the
density matrix [Eq. (2.195)], one gets

MP(I)( ) H;p,,( )+qu)SOF

qpo o
gei— Miggr

= Hoo(@)+ Y Kposrr(w)PH(w).  (2.208)

STT

By reordering the above equation, the density matrix can be rewritten as

Pq(;;a Z I& qpa, STT s(:'r)'( ) = IIz;pa' ((.d)

STT

W — Wyo,po
npa —n qo

Npo—Tge 70

w — W o,pa i
Z [50'76q56PTT‘;{,rZ—p ) QPC’ ST"'( )]Psgﬂ)'( ) = qua(w) ‘ (2209)

57T po — Ngo
This density matrix (or the applied perturbation matrix) includes both the particle-
hole (ngs > nps) and the hole-particle (ng, < nps) elements if the orbitals are

ordered like ¢ < p (ngr > nye). This equation, however, can be separated into

two parts, the particle-hole and hole-particle equations of the applied pertur-

bation matrix. For the particle-hole part of the applied perturbation H;pa(w)

(ngo > Npo), the equation is

Tsr =Ty >0

Hoow) = 3 [60r6y6——

ST 7‘(7 nsa

W — wscr To

— Kypo,srr (w)]P(l) (w)

STTN

Nsr—npr<0

+ Z [5076q55pr(z_ﬂ - Kypo,srr (w)]Ps(rlq)— ((.u)

STT re ™ Nso

e — 0
Ry W — Wso,ro

= Z [5075qs 6137' n

STT

. qua,srf( )]Ps('rlT(w)

ro ™ Nso

s —Tier >0

+ Z [607' 6qr 5ps

STT

W — wso‘ ro

. qua,rﬂ( )]Pr(slr)( )

— Nge

TLgr—Nrr >0

w—wsa,ra -
= 2 [6afaqs6prn————fxqpa,m( )| P(w)

87T ra nSO'

Ner—nrr >0

= Z Koporor(w )PTsT(w)‘ (2.210)

sTT
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In the last step of the derivation of the above equation, &, = 0 and 4,; = 0 are
used. Since ng, > Ny, and ng > nyr, the q orbital and the s orbital are occupied
and the p orbital and the r orbital are unoccupied. Therefore, the q and the r will
not be the same, so d,, = 0 and ,, = 0. For the hole-particle part, the equation

is
, Nsr—nNrr >0 w — wro‘,sa : (1)
Hpqa‘ (w) = Z [5076QS6P7‘_—— - IXZDQU,TST (w)]P'I‘S’T(w)
ST Nso — Nro

=] 0
Ngr —Nrr< = wra,sa‘

o Z [607‘6q56p7' e

STT so — Noyo

— Kpgorsr (w)]P(l) ("-’)

nsr—nrr >0

W — wra,sa’
S st T K per (@) PRw)
ngr —nrr >0 W — Wspro
T Z [5076qr6psn—_n,— - quo,sr?(w)]Ps(rrIT)(w)
ner—npr >0

. Z [éar(sqsépr

STT

W — w'ra,so‘
DI Kpgorar ()] PEw)

Ngg — Nyo

nsr—nprr >0
- X Kopgo,arr (W) PE(w) - (2.211)

Combining the particle-hole [Eq. (2.210)] and the hole—particle [Eq. (2.211)] of

the two equations, one gets a single matrix equation,

{(.A(w Bw) | _ (e o )} P(l)(w))
B(w) A(w) 0 —Clw) P*M(w)

= ( HI,(”) ) : (2.212)
H™ (w)

where
Auposrr = Sarbysbpr—T— — Ky ore () (2.213)
Ngr — Npr
qucr,S'rT = _I{qpa,'rm‘(w) ) (2214)
and
6076 55 T
qucr,srT = ﬁ (2215)

The linear response of the density matrix contains real and imaginary parts;
the real part is used to calculate response properties (i.e. polarizabilities, excita-

tion energies). In order to separate the real and the imaginary parts of the linear
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response of the density matrix, it is necessary to do a unitary transformation of

the matrix equation [Eq. (2.212)] yielding the form,

A+ B 0 0 —C PO 4 p)- H +H"*
— W = 5
0 A—B —-C 0 —P@) PO ~H +H"*
(2.216)

If the linear response of the density matrix P® is written in terms of the real
(Rel) and imaginary (Img) parts, and similarly for the applied perturbation H',

then the above equation can be rewritten as
A+B  wC RelP™) RelH'
= . (2.217)
wC A-B —ilmgP®) —ilmgH
Separating the above matrix equation [Eq. (2.217)] into two equations gives

(A + B)RelPW) — iwClmgP® = RelH' (2.218)

and

wCRelPM — §(A — B)ImgP®) = —iimgH . (2.219)

with some algebra, one can separate the equations for the real and imaginary

parts of the linear response of the density matrix (PM). The real part of PM is

[(A+ B) — w*C(A—B)"'CIRelP!) = RelH' +iwC(A+ B)'ImgH'  (2.220)
and the imaginary part of P is

[(A—B) = w*C(A+ B)~'CllmgP®) = ImgH' — iwC(A+ B)'RelH . (2.221)

If the applied perturbation is real (e.g. an electric field), the imaginary part of
the applied perturbation is zero (ImgH' = 0). Then the real part of the linear

response of the density matrix can be obtained as
RelPW) = [(A + B) — w?C(A— B)™'C] 'RelH, (2.222)
This real part of the linear response of the density matrix can be rewritten as

RelP) = [(A+B)+wS| 'RelH’
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= [(A+ B)+8Y% SV RelH’
= [SY2STIA(A+ B)STIASI? 4 858 P RelH

= §2(w? —Q)"1S~V?RelH, (2.223)

with
§=-CA-B)"'C, (2.224)

and
Q=-8YA+B)ST?, (2.225)

The real part of the linear response of the density matrix is used in the response
property calculations, such as dynamic polarizabilities. In the dynamic polariz-
ability expression [Eq. (2.183) and Eq. (2.184)], since the coordinates (¥pgo; Zsrr),
electric field (£), and the generalized susceptibility [Xgposer(w), see Eq. (2.193)]
are real, then, the linear response of the density matrix (P{})(w)) in Eq. (2.183)
must also be real [compare Eq. (2.183) and Eq. (2.184)]. Thus dynamic polariz-

ability is only related to the real part of the linear response of the density matrix

[RelP)(w)] and Eq. (2.183) can be rewritten as

aaw) = -3 y”"ii]ﬁfg( @) (2.226)

pgo

Inserting the RelP() (w) [Eq. (2.223)] into the above equation [Eq. (2.226)]

apo

RelH'

O‘yZ(w) - _Zyma qp}r/z qucr)_lsq_pyz 5({53’6
pqo z
. RelH
= -2 ; UosoSipel (607 = Qopo) Sl — (3 . (2:227)
p>q.0 Z

In Eq. (2.184), knowing that the pole of the polarizability . (w) is the excitation
energy, and comparing Eq. (2.227) with Eq. (2.184), it is seen that the excitation

energies may be calculated from the equation,

Q(w)Fx = wiFk, (2.228)
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where wyx is an excitation energy, and ) is defined in Eq. (2.225). Its explicit

expression in time-dependent density-functional theory is given by

o —-1/2 -1/2
qua,sr?(w) - = Z quU,qIPIUI(A =T B)QIPIO'/»SITIT/SS'TIT/,STT
q/plal7sl’rl7_l
— 2
- 6436PT607er,s7'

+2\/(an - npa)wpa,qa-[{qpa,sm-(w)\/(nm- e an)w'rﬂ',sr (2229)

and the S is given by
5076q56p7'

(nsT - n'r'r)wrﬂ',s'r .

(2.230)

qua,srr =

In the adiabatic approximation, K and ! are w-independent. By diagonaliz-
ing the Q matrix, the excitation energies are obtained. The eigenvectors Fj in
Eq. (2.228) can be normalized by multiplying F; ,I and taking the summation on
both sides of the equation,
Qw) Y FrFl = ST Wl FFl. (2.231)
K K
Since Y FxFl = 1, then
Qw) =Y Wi FrFL. (2.232)
K
Subtracting both sides of the equation from w?, gives
w? — Qw) = S (W - wk)FxF. (2.233)
K
If the vector Fx is not normalized, the normalization factor Ry is introduced

into the above equation,

Fl
w? — Qw) = > (w? - w%{)FR P . (2.234)
K Rk
It follows that
[w? — Q)] = 3 (w? —wk) " ReFxF . (2.235)

K

Rearranging the above equation, the normalization factor Ry is given by
2

-1 _ptY¥Y — Qw)

Ry =Fx—— =

F . .
) K (2.236)
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In the limit (w = wg ), the Eq. (2.236) can be rewritten as

B o= Q(w)
Ry = Jim Pl Fr
O(w? — Q(w))
8w2 ]w:wKFK

Fi{l - [%ﬁ;—)]uw}ﬂf. (2.237)

= FR[

Inserting Eq. (2.235) and setting RelH,,,(w) = 2gpeE:(w) in Eq. (2.227), the
polarizability can be rewritten as
ozyz Zyma qp%,ﬂ qpa — ) RB FI{F qu},/zqua ‘ (2238)
Pqo
By comparing this equation with the sum over states polarizability expression
Eq. (2.184), the following equation holds,
> Upae ST R F i = wil (T[T . (2.239)

pgo

Substituting Eq. (2.239) into the oscillator strength expression Eq. (2.188) and

similarly for the x and the z components, the oscillator strength is given by

2
fre = §RR(Z "quosqpla Fx)’ Zypqasqplr Fr)'+(2 2oo qr-irmF’g (2.240)

pgo pgo pgo



CHAPTER 3

NEW CONTRIBUTIONS TO THE PROGRAM
deMon—DynaRho

deMon-DynaRho (densité de Montréal-Dynamic Response of Rho, Rho
here stands for the charge density) has been developed as a post-deMon—KS
program [29, 183]. The deMon-DynaRho program performs molecular time-
dependent density-functional response theory (DFRT) calculations using multi-
center Gaussian expansions and auxiliary basis functions. The program is based
on the idea of extracting the poles and the residues of the dynamic polarizability,
using a one-particle density matrix-based algorithm to calculate the excitation en-
ergies and oscillator strengths. It is also able to calculate dynamic polarizabilities.
But all of these calculations were only available for closed-shell molecules prior
to the present work. Since there are many interesting open-shell systems, such
as simple metal clusters (lithium clusters and sodium clusters) with an odd num-
ber of atoms, free radicals, etc., calculations of excitation spectra and dynamic
response properties are desired not only for closed-shell systems, but also for
open-shell systems. For this reason, the time-dependent unrestricted DFRT has
been modified for the open-shell case and implemented in the program, deMon-

DynaRho, version 2pX, in the present study.

Applying time-dependent unrestricted DFRT to an open-shell system, spin
a and spin B have to be treated explicitly. Hence deMon—-DynaRho needs to be
modified from the original program (version 2p0) for only the closed-shell systems

to handle both o and 3 spins. This makes the construction of the ) matrix (see
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Figure 1. Two electron closed—shell configuration.

Chapter 2 of this thesis for details) more complicated than for the closed-shell
case. For a two-electron closed-shell system (Fig. 1), the £ matrix is a simple

two by two matrix,

Q'11 QlZ

’

’ (3.1)
Qz,l Q2,2

where

a3 = 6pq6'rsw§7q + 2,/0r p Kpr1,s1/Ws g »

Mo = 24/ o Kprigsiv/Wsa »

a1 = 2y/0rp Kprl gs1/Wssg »

Q22 = bpgbrawir ; + 24/rp Kpr 10510/ @sg » (3.2)

in which w; ; = €; —¢;. The 2 matrix is much more complicated for an open—shell
system than for the closed-shell case. For example, for a simple three-electron

system (Fig. 2), the ) matrix becomes



“where

L= 3 ‘1 ~
I

Figure 2. Three electron open-shell configuration.

Q'll Ql2 Q13 ‘Ql4

’

Q21 Q2,2 Q'23 Q'24

Q31 ‘QSZ QB,B Q'34
Q41 ‘Q42 Q4,3 Q44

M= 6sr6uvsz7vT + 20/t ut Kurt st v/Wst 0 5
M2 = 2:/Wrtut Kurt golv/Wulial 5
N3 = 24/wrt w1 Kurt,gs1/Wstat »
Q14 = 2\/0rtut Kurtgsly/Wslal »
Qa1 = 2¢/0u) p1 Kpul wst/Wst ot »
Qa2 = 5pq5uv“’31,q1 + QWKpul,qvl\/ma
Qa3 = 20/0ulp1 Kpulgst/Wstat
Q2,4 = 2,/Wulp1 Kpul,gs14/Wslal
Qa1 = 2¢/@r1 51 Kprtwst/Wstot 5
Q32 = 2¢/@r1p1 Kprt,guin/ vl al 5
Q33 = 5pq6rssz,qT + 2\/‘—"T—T,IJ_TKWT,QST\/"TM—7
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(3.3)
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Figure 3. The open—shell system electron configuration with N electrons and one

open-shell case.

3,4 = QWI{pTT,qSl\/mv

Qa1 = 2y/0r o1 Kprywst/Ost o1 »

Qg2 = 2\/m1{prl,qvl\/ma

Q4,3 B ZWI{PTLQST\/W’

Q4,4 == 5pq5rsw31,q1 + QWKm,qsL\/m,
where wi, jr = iy —&jr. This Q matrix can be generalized for an N electron open-

shell system with one open-shell having the configuration shown in Fig. 3. The

Q) matrix for this N electron one open-shell system can be written out explicitly
as

(3.4)

nru']‘,r'uf nrvT,suT QruT,vpl Qru‘l‘,vql nruT,rpT nr'uT,rpl Q1-11T,spT QrvT,sp,L anT,qu nrvT,rql
nsvT,r'uT nsvT,svT nsuT,vpl ‘quT,vql ‘stT,'rpT quT,rpl nsuT,spT Q‘s’uT,s_pl quT,qu nsvT,rqj,
Qplrut Quplevt  Quplepl  Qeplwgl  Qeplret Qeplrpl Quplept Qepliepl Suplirat Suplirgl
Qyglrot Peglsvt Qugliupl  Pwugliegl  Ceglirpt Quglrel Quql,spt Pwgliepl  Cwglrat Puglral
Qptrot  Crptisvt Drptepl  Ceptugl  Prptept Qrptrpl Qrptiept Prefepl Crptrat Srptirel
Qpplrot Drplsvt Prplepl  Prplogl Prplrpt Sreplirpl Qrplept Prplepl Srplret Srpliral
Qsptrot Peptysut Peptopl  Deptivgl  Deptrpt Psphiral Qspt,ept  eptiepl  Deptyrgt Lsptral
Qplrot Paplisut Qeplwpl  Peploal  Replrpt Dsplrpl Feplept Peplispl Taplirat Pspliral
Qgtrot Drgtievt  Sratepl Cratwal  Dratrpr Orgtrpl Peatept Urgtiepl Oretrat fratiral
Qrglrot Orgliswt  Orglopl Pralugl Dralrpt Pralrpl Prglept Pralepl Pralrgt Sralral
Qeqtrot  Dsqt,evt Deqtopl  Tagtugl Pagrrpt Csatirpl Peglispt Dagtopl  Psqtrat Psqtral
Qsgl,ror Daglsvt  Peglupl  Psqluwgl  Psglrpt Psglirpl Qsql,spt Psqlspl Psqlirgt Psal,ral

(3.5)

Qrut,sqt
Qsut,sq1
SCupl,sqt
Lyql,sqt
Lrpt,sqt
Qrpl,sqt
Lspt,sqt
Qspl,sqt
SLrgt,s5q1
Qrql,sqt
Ssqt,eq7
Dsql,sq1

Qrut,eql
nsvT,sql
2yp,sql
Suql,sql
Qrpt,sql
2rpl,sql
Qept,sql
Qepl,eql
Qrgt,sal
Qrql,sql
Psqt,sql
Qsql,sq)
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All of the elements of the Q matrix [Eq. (3.5)] can be written out according
to Eq. (2.229), here, only the first column elements are written out as an example,

other elements can be written out similarly,

Qratrot = 2y/@rt ot Krotrotv/@riat + 07101
Qovtrot = 24/Wst o1 Ksvt o1/ Wriwt

Quplror = 24/@0] ot Kouprut 1 /0rt 01
Quglror = 24/@u1 1 Kuglrot1/Wrt ot

Qrpt ot = 20/00r1 01 Kopt ot /@101

Qrpl ot = 24/0r 1 p1 Krpl rory/Wrt ot

Qoptrvr = 2¢/Ws1 p1 K opt rot/@rt ot

Qopl ot = 20/Wslp1 Kspy ro1/@r1ot

Qrgtyror = 24/@r1,g1 Krgt ro1y/rt ot

Qrglrot = 24/ g1 Krglirv1/Ort w1

Qogt,ror = 24/Wst g1 Ksqt,rot/rt01

Qoglror = 24/Wsq1 Kisqlrot v/ Wrt o - (3.6)

The above ) matrix [Eq. (3.5)] is for a single open-shell systems. It is not difficult
to generalize the above {} matrix to two open-shell systems (e.g. O3) or more open-
shell cases by adding the extra singly occupied electron transitions to the virtual
orbitals and doubly occupied electron transitions to the extra singly occupied

orbitals.

The difference between the closed-shell systems and open-shell systems in
constructing the {) matrix can be seen by comparing the two—electron closed-shell
Q) matrix elements [Eq. (3.2)] and the three-electron open-shell {) matrix elements
[Eq. (3.4)]. It can be seen that in closed-shell cases (deMon — DynaRho, prior to
the present study), only considered « orbital energies in the construction of the
Q matrix, and only constructed the aa block and the o block of the coupling
K matrix (see Chapter 2 of this thesis for details), since the aa block and the
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B3 block of the K matrix are the same in the closed-shell case, as well as the a3
block and the Ba block. But for an open-shell system, the aa block and the 33
block of the coupling K matrix are no longer the same. Hence, the present study
extends deMon-DynaRho to open-shell systems by constructing the new 3 and
Ba blocks. It is known that the K matrix includes two parts (see Chapter 2 of this
thesis), one is the Coulomb potential contribution [the first term in Eq. (2.203)],
another part is exchange-correlation potential contribution [the second part in
Eq. (2.203)]. The key step to construct the K matrix is to evaluate the derivative
of the exchange-correlation potential with respect to charge density under the
adiabatic approximation. In open-shell case, constructing the 85 and the SBo
blocks of the K matrix need the derivatives of /4 electron exchange-correlation
potential with respect to 3 electron charge density and with respect to « electron
charge density, these derivatives were not evaluated in closed-shell case. The

electron exchange-correlation potential is

vl = 8{J drege[n'(r),n'(r)]n(r)}
xTrc 6nT
€xc 7ZT r ,7ZJ’ r
= n(r)‘s [ én)T (r)] .{_eu[nT(r)’nl(r)]' (3.7)

The exchange and correlation energy densities are known which are given in
Eq. (2.69) and Eq. (2.71). It can be seen from these equations [Eq. (2.69) and
Eq. (2.71)] that the derivative of the exchange potential with respect to the charge
density is easy to evaluate, but the derivative of the correlation potential with

respect to the charge density needs to be evaluated as

§v? e, be, §%e,
=y

s e T et T “sneent

(3.8)

Constructing the 38 and the Sa blocks need to evaluate g%’j— and %ﬁ— which can

be obtained from
52ec §2%e,

§22  bu6E 39
stz 6E°

This is much more complicated than in closed-shell case, since in the closed-shell

case, the spin-polarization parameter, ¢, is zero. Moreover, the present work also
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Table 1. Descriptions of exchange-correlation functionals used in deMon-KS and

in deMon-DynaRho with different electron-electron interaction terms.

deMon-KS
Interaction terms Core Hartree LSDx LSDxc
Coulomb NO YES YES YES
Exchange NO NO YES YES
Correlation NO NO NO YES

deMon-DynaRho
Interaction terms IPA RPA TDLDAx TDLDAxc

Coulomb NO YES YES YES
Exchange NO NO YES YES
Correlation NO NO NO YES

considers both « and /3 orbital energies in the construction of the {2 matrix in the
deMon — DynaRho. This is also different from the closed-shell case which only

considered o orbital energies.

Oscillator strength calculations are also modified, since the contributions of
o and 3 electrons to the oscillator strengths are no longer the same. Specifically,

the S matrix has to be calculated explicitly for & and 3 electron contributions.

Since deMon—DynaRho is a post—-SCF program, it is possible to use differ-
ent exchange—correlation functionals in the calculations during the SCF step and
post-SCF (time-dependent DFRT) step. The exchange-correlation functionals
used in the two steps are summarized in Table I. Together, the two exchange-
correlation functionals that was used in the SCF step, (FNLscr), and that was
used in the time-dependent DFRT step, (FN Lrpprrr), are described by the no-
tation N Lscr/F N Lrpprrr. Certain internally consistent combinations corre-

sponding to the analytical derivative equivalent of finite field (FF) calculations are
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Table II. Combinations of exchange-correlation functionals which should give the
same static polarizability in the FF and TDDFRT.

FF TDDFRT

Core Core/IPA

Hartree Hartree/RPA

LSDx  LSDx/TDLSDx

LSDxc LSDxc/TDLSDxc

given in Table II. These are useful for debugging purposes because the DFRT and
the FF approaches should yield the same polarizabilities (see Table III). Other
combinations are also useful because they either result in a justifiable overall
improvement of the results (LB94xc/TDLSDxc,etc.) or are useful when compu-

tational efficiency is paramount and some tolerance in the quality of results is

permissible (LSDxc/RPA).

Time-dependent DFRT has been implemented in deMon-DynaRho at dif-
ferent levels of approximation, varying according to the level of approximation
used for the treatment of the response of the SCF field. If only the response of
the core Hamiltonian is considered, neglecting electron-electron interactions, the
result is the independent particle approximation (IPA). If the response of both
the core Hamiltonian and the electron-electron Coulomb interactions is consid-
ered, the result is the random phase approximation (RPA). If the response of the
core Hamiltonian, the electron-electron Coulomb interactions, and the electron
exchange potential with the local density approximation is considered, the result
is the time-dependent exchange-only local density approximation (TDLDAx). If
electron correlation effects are also included, the result is the time-dependent lo-
cal density approximation (TDLDAxc). These four levels of approximation are

summarized in Table I.
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The present study extends the time-dependent DIFRT to open-shell sys-
tems and implements time-dependent unrestricted DFRT at these four levels
of approximation. Each level of approximation programmed for open-shell sys-
tems was tested by the comparison of the calculated static mean polarizability
for the sodium trimer with the same quantity calculated using the finite field
method [333, 327]. The two methods should give the same results under appro-
priate circumstances (Table II). The testing was performed at both MCP and
all-electron levels, using different quality of grids. The MCP calculations were
done with the orbital basis set (311/2) and the all-electron calculations were car-
ried out with the Sadlej orbital basis set [334], (6311111/61111/22). Results are
given in Table III which shows that the static mean polarizability of the sodium
trimer is consistent with the two methods used. In the MCP calculations, the
biggest error is 1.48% at the LSDxc/TDLSDxc level. In the all-electron Core/IPA
calculation, the finite difference polarizability is almost 50% smaller than the cor-
responding time-dependent LSDxc value. This error was found to be due to the
field strength used in the deMon-KS program which was fixed at 0.0005 a.u. Since
the polarizability of the sodium trimer is very large at the IPA level, if the electric
field used is too large, it will lead to a big error. This is found to be exactly the
case. If the finite field calculation is redone with a smaller electric field 0.000008
a.u. by the least squares fitting procedure [327], the mean polarizability of sodium
trimer is exactly the same for the two procedures, the finite field method (least

square fitting procedure) and the time-dependent DFRT calculation.

There is a big difference in the calculation of the mean polarizability of the
sodium trimer at the MCP level and all-electron level with the Core/IPA func-
tional. This is due to the core electron-electron interactions which is neglected in
the all-electron calculation, since the MCP calculations even at the Core/IPA level
still include the core electron-electron interactions in the sense that these interac-
tions are already built into the MCP. But for the all-electron calculations at the

Core/IPA level, the core electron-electron interactions are completely neglected.
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This is also true with the other functionals (Hartree/RPA, LSDx/TDLSDx). In
fact, the difference between MCP and all-electron calculations of the mean polar-
izability of the sodium trimer is only 4% with the LSDxc/TDLSDxc functional.
This deviation is believed to arise from the MCP, since the MCP may not be

flexible enough to be well polarized.

The implementation of the IPA functional was also tested by comparison of
the vertical excitation energies (Er) with the orbital energy differences (¢; — €4).
Since at the Core/IPA level, excitation energies are the same as the corresponding
transition orbital energy difference. This can be used to debug the program.
Tables IV shows that the excitation energy and the orbital energy differences of
the sodium trimer are consistent both for the MCP and all-electron calculations.
However, there is a 0.001 eV difference between the excitation energy and the
orbital energy difference for the 22 By symmetry in the MCP calculation and 0.01
eV for the 224, symmetry in all-electron calculation. This 0.001 eV (or 0.01 eV
in the all-electron case) deviation is from round off error, since Dyna — SCF' cuts
off orbital energies at the fifth digit. If the sixth number is larger than 5, there
will be 0.001 eV difference (if there is only one digit integer) or 0.01 eV difference
(if there is two digit integer) between the excitation energy and the orbital energy
difference (since excitation energies are cut off at the sixth decimal places). Please
note that there are large differences between the excitation energies calculated
by the MCP and by all-electron approach at the IPA level in Table IV, this is
due to the core electron-electron interactions which are included in the MCP
calculations, but they are not included in the all-electron calculations. It is the

same as the explanation for the mean polarizabilities at the previous paragraph.

The present implementation also gives the option to force the alpha and
the beta coefficients to be the same in the calculations by using the keyword
"RKSTDRT” (for restricted Kohn-Sham time-dependent response theory) in the
SCF input file.
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It is worth mentioning that time-dependent unrestricted DFT method is
used in the present studies, hence, spin contamination arises for a Kohn-Sham
orbital determinant. This spin contamination was discussed a few years ago by
Pople, Gill, and Handy [335], they argued that this “contamination” is allowed
due to the determinant is not the correct wave function for the system and found
that the spin contamination in the unrestricted DFT is very small. However, the
spin contamination in the time-dependent unrestricted DFT can be evaluated by
the expectation value of the total spin-squared operator. Similar calculations were
also done by the unrestricted single-excitation configuration interaction (UCIS)
method [336]. Spin-squared operator is defined as

~

82 = 8.8, +5.(5.+1)
= 5.8, +824+8,, (3.10)
where S is the raising operator which is given by

Sy =8, 415, (3.11)

S =8, -1iS,. (3.12)

If the determinant, D, with n, columns of a spin and with ng columns of 3 spin,
the spin-squared operator become

A

D = D Pag+ns+5.(5. +1)D
P

= (S Pas+ ms t 7line —na)* + 20 =)}
- {;m+§[<na—nﬁ>2+2na+2nﬁ]}ﬂ. (3.13)

where P,z is an operator which exchanges o and 3 spin functions in the origi-
nal determinant and the sum is over all possible interchanges of o and 3. The

expectation value of spin-squared operator is

(8%) = (W|8%2)
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where orbitals with superior-bar are 3 electron orbitals, A;; is the molecular

orbital (o — f3) overlap, specifically,
Az = (r|3), (3.15)

Ag = (alp) (3.16)

and C;;, is the expansion coefficients of the single excited configurations in the
following equation,

Npe—ngo >0

U=y CL,®%¥ (3.17)

pqo *po )
pgo

in which @ is the determinant of occupied Kohn-Sham orbitals, and

¥ €q €po I
@y =) w—l”qua. (3.18)

Since the spin contamination in the unrestricted DFT is very small [335], the
present studies assign the spin multiplicities consulting the restricted case and

with help of the transition intensities.

The time-dependent DFT method developed here can only treat single ex-
citations in this stage, hence, doublet excited states were obtained in the present
studies. To get quartet excited states, double excitations need to be considered,
but the DynaRho program can not handle double excitations yet. However, it

can be a project for the perspective work.

The bottleneck of the efficiency in the deMon-DynaRho calculations is di-
agonalization of the { matrix. The dimension of the 2 matrix depends on the

number of occupied orbitals and virtual orbitals. If there are N electrons in the
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system concerned, the number of occupied orbitals

<N, (3.19)

Noce =

2

this is for the closed-shell system, but for open-shell case, it is not exactly %, but

it is also proportional to N, in any cases (closed-shell or open-shell), this will not
affect the scale. The number of virtual orbitals depends on the basis set used, if
a medium size basis (3N basis functions) is used, the number of virtual orbitals
is

N
Wpgigne = 3N — & N. (3.20)

F4

Hence, the dimension of the {} matrix is
nOCC x nUnOCC X N2 . (3.2].)

It is known that doing a full diagonalization of N? x N? matrix ({2 matrix) needs
(N?)® operations [318]. Hence, the scale of deMon-DynaRho is approximately
N6 The CPU time used in the all-electron DynaRho calculations for sodium

clusters is given in Table V.
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Table III. Sodium trimer static mean polarizabilities (a.u.) calculated at the

MCP and the all-electron (AE) levels.

MCP mean polarizabilities (a.u.).

METHOD Core/IPA Hartree/RPA LSDx/TDLSDx LSDxc/TDLSDxc
FF(F,R)* 272.8 329.2 381.1 376.2
TDDFRT(F,R) ET&. T 329.2 379.4 376.6
FF(XF,R) 272.8 329.2 381.8 376.6
TDDFRT(XF,R)  272.7 329.2 379.4 376.7
FF(XF,NR)® 272.8 329.2 381.8 376.6
TDDFRT(XF,NR) 272.7 329.2 379.3 371.1
AE mean polarizabilities (a.u.).
METHOD Core/IPA Hartree/RPA LSDx/TDLSDx LSDxc/TDLSDxc
FF(XF,NR)® 2336.7 2816.6 446.0 392.9
TDDFRT(XF,NR) 4928.6 2731.2 445.7 392.8

@ (F,R) indicates that FINE and Random grid is used.
b (XF,NR) indicates that EXTRA-FINE and NonRandom grid is used.

¢ At IPA level least square fitting gives the mean polarizability as 4928.6 which

indicates that the electric field used for the Finite-Field (FF) calculation is not

appropriate (see text).
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Table IV. Comparison of vertical excitation energies (eV) and orbital energy
differences (eV) of the sodium trimer calculated with the MCP and with the all-
electron (AE) method at Core/IPA level (The ground state symmetry is 12 By).

Symmetry Transition Er € — €q
MCP results.
124 bg —ay  0.812 0.812
22 A, a W 2719 2719
124, b5 — af 3.503 3.503
224, a — be 4227 4.227
1B, b — oY 1.508 1.508
22, by — b2 3.955 3.955
2B, by — b 2.893 2.894
32B, ai — af 3.531 3.331
All-electron results.
1%43 b — af 0.058 0.058
22A, b§ — a$ 1.655 1.655
124, b — af 3.705 3.705
9224, b —ag 1470 14.69
1B, by — b 2.877 2.877
2B, b b 1471 1471
22, by — by 1421 1.421

32 B, ay — af 12.32 12.32
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Table V. The CPU time used (hour:minute:second) in the DynaRho all-electron
calculations for the sodium clusters with the Sadlej basis, (6311111/61111/22)
and by the LSDxc/TDLSDxc functional.

Clusters  CPU Time used

Na, 21:45
Nag 3:58:08
Nay 26:39:29
Nas 195:13:22
Nag(Csy) 596:31:24

NaG(D3h) 596:31:24




CHAPTER 4

SODIUM MODEL CORE POTENTIAL FOR
DENSITY-FUNCTIONAL CALCULATIONS:
COMPARISON OF CALCULATED SODIUM
CLUSTER PROPERTIES WITH ALL-ELECTRON
CALCULATIONS

4.1 INTRODUCTION

Metal clusters have been the subject of a number of recent books [337, 338]
and reviews [339, 90]. Much of the interest focuses on how cluster properties
vary with the number of atoms in the cluster. Alkali metal clusters, especially
sodium clusters, have a privileged place in this domain for a number of reasons.
On the one hand, alkali metal clusters are often thought of as the simplest type
of metal clusters and so are a prototype for the understanding of more complex
types of clusters. Calculations [340, 3, 341, 342, 343, 344] are facilitated by the
presence of a single s-type valence electron. On the other hand, alkali metal
clusters are now relatively easy to study experimentally [345, 346]. Even so, it
is fair to say that the properties of large aggregates of alkali metal atoms are
so far poorly understood. An important prerequisite to improved theoretical
studies of larger sodium clusters is the implementation and characterization of
efficient computational tools. It is the objective of the present chapter to present
one such tool, namely a model core potential (MCP) for sodium suitable for

use in density-functional calculations. This MCP is assessed by evaluating the
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properties of homonuclear sodium clusters up through the hexamer and for the

tridecamer against our own all-electron calculations.

An understanding of some of the factors governing the accurate calculation
of sodium cluster properties can be obtained by considering previous theoreti-
cal studies reported in the literature. The simple shell model has successfully
explained the mass spectra of molecular beams of sodium clusters [347, 346],
and some other properties, but it cannot give detailed information about nuclear
positions. The extended Hiickel method does give qualitatively correct geome-
tries [348, 349], but it is limited in property studies. Ab initio techniques, such
as Hartree-Fock (HF), density-functional theory (DFT), and configuration inter-
action methods (CI), are both more accurate and more costly. They have also
been used to study sodium cluster properties. In the HF studies, it has been
shown that the sodium clusters are either weakly bound or even not bound with
respect to atomization [3, 340]. The reason is that the binding and the correla-
tion energies of the aggregates are of the same order of magnitude [350], so that
theoretical study of the electronic properties of the sodium clusters must include
an accurate treatment of electron correlation. Two commonly used approaches
which include electron correlation are CI and DFT methods. Systematic CI cal-
culations of sodium clusters have been carried out with effective core potentials
(ECPs) [340, 3] and at the all-electron level [3, 351, 4] for up to nine atoms. On
the other hand, the computational cost of the CI method increases rapidly and
the attainable accuracy decreases as the number of electrons increases [4]. Hence
the CI method is limited to smaller clusters. DFT calculations are much more
efficient (nominal scaling of N® with the size of the basis set) in comparison with
the CI method (nominal scaling of N° or worse), making DFT more suitable for
the study of large clusters. Previous DFT studies of small sodium cluster prop-
erties used ECPs [341, 342, 343, 344]. All-electron DFT studies of sodium cluster
properties have not been found in the literature, except for the recent paper of

Guan et al. [122].
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Although ECPs and MCPs are similar in philosophy, they differ in detail.
Both ECPs [352, 353, 354] and MCPs [355, 356, 357, 358, 359] are based on the
frozen core approximation. All the core electrons are replaced by a core potential
and only valence electrons are treated explicitly. The ECPs and MCPs differ
primarily in the character of the valence radial wave functions. In particular, in
the MCP approach, the valence orbitals may retain approximately the same nodal
structure as do the reference orbitals from all-electron calculations. In contrast,
the valence orbitals in ECP calculations are nodeless in the core region, and hence
provide a poorer description of the wave functions near the nuclei. The nodal
structure of MCP orbitals requires more Gaussian primitives than are needed to
describe the corresponding ECP orbitals, and therefore more integrals have to
be evaluated for MCP calculations than for ECP calculations [360, 361]. In both
cases, the reliability and efficiency of the core potential methods must be assessed

by comparison against all-electron calculations.

The aim of the present work is to assess a new Huzinaga-type MCP [355]
for sodium. To do so, we compare the properties for sodium clusters up to the
hexamer calculated at the MCP level against those from our own all-electron
DFT calculations. The comparison is also made with previous DFT ECP calcu-
lations [344, 362, 7, 8, 363], available experimental data, and with other theoret-
ical studies. The assessment will focus on the geometric structures, vibrational
frequency analysis, binding energies, ionization potentials from both all-electron
calculations and the MCP calculations using the local density approximation
(LDAxc) and gradient-corrected functionals (GCFs), namely the 1988 gradient-
correction for exchange of Becke (B88x) [209], the 1986 gradient-correction for
exchange of Perdew and Wang (PW86x) [211], and the 1986 gradient-correction
for the correlation of Perdew (P86¢) [210]. Polarizabilities of sodium clusters
have also been calculated at the MCP level for comparison with our previous
all-electron calculations [327, 122]. We have also calculated the properties of the

sodium tridecamer in both high and low spin states. Our all-electron calculations
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are interesting in their own right, given the dearth of all-electron DFT studies of

the properties of sodium clusters.

4.2 METHODOLOGY

The MCP method was originally proposed by Bonifaci¢ and Huzinaga [355]
for Hartree-Fock calculations. More detailed theoretical justifications of the
method were later given by Hojer and Chung [364], and by Sakai and Huzi-
naga [365]. The MCP method has been adapted for spin-polarized local-spin-
density calculations by Salahub and coworkers [358, 366]. Here, we give a brief
description of the MCP used for DFT since this is the method used for the design

and application of our sodium core potential.

The MCP method assumes that the core orbitals are well localized and
environment-independent frozen atomic orbitals. With this assumption, the core
orbitals, 17 (r), can be separated from valence orbitals, 17 (r), and a core potential

can be defined (in hartree atomic units) as

Z:|1f'—RII i )|dr + g [nl,nl](r), (4.1)

Ir —
where Ry is the nuclear coordinate of atom I, with atomic number Z; and
core electrons Z§ (Z§ = 10 in the case of sodium), ng = X [47|* is the spin
o charge density of the core electrons, n. is the total core density, and the
exchange-correlation potential, v3, = 6Ey./6n,, is the usual derivative of the
DFT exchange-correlation energy with respect to the total spin o charge density.

The valence energy is written as
a 2 Zv AN
Z<¢|__V Z| _R|+Uappl+v|¢

7, () (2! |
2// et KICLIACH FRIN N (4.2)

where Z} = Z; — 73,

e = = fl g, = nl + n;&, and vy, 1s the potential
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corresponding to any applied electrical field whose effect on the core electrons is

neglected.

Minimizing the valence energy with respect to the valence orbitals leads to

the orbital equation,
Fyyg(r) = 5(r), (43)

where the spin(a)—dependent Kohn-Sham (KS) operator

F 2 Z I — R | + Vapp(r) + 07 (r) . (4.4)

Since the core orbitals are also solutions of Eq. (4.3), they must be moved out of
the way before we have a truly valence-only variational method. This is done by

introducing the “projector”,

P =23 gl >< 7], (4.5)
and this leads to
(Fle — P7)y5(r) = egip(r). (4.6)

The projector for sodium is given in Table VI in terms of the core orbital energies
from an atomic numerical LDAxc calculation and the coefficients and exponents
of a Gaussian-type orbital fit to the core orbitals from the same numerical calcu-

lation.

The core potential, v, is taken as a linear combination of atomic potentials

(i.e. the MCP), rather than using Eq (4.1) directly,

[Ze + i A(Z)*/? exp(—ayr?)]

UMCP(I‘) — m . (47)

and the exponents, oy and Aj are varied, subject to the charge conservation

constraint
ZAk =—Z, (4.8)
k

until atomic MCP calculations using a finite orbital basis set give valence orbitals

and orbital energies in good agreement with those from the reference numerical
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atomic LDAxc calculation. The exponents and contraction coefficients for the
Gaussian-type orbital basis set used to construct our sodium MCP are given in
Table VII. The MCP itself is given in Table VIII. The auxiliary basis sets used
to fit the charge density and exchange-correlation energy density and potential

during the deMon-KS calculations are given in Table IX.

4.3 COMPUTATIONAL DETAILS

Both MCP and all-electron DFT calculations were carried out with the
program deMon-KS (densité de Montréal- Kohn-Sham module) [367]. This
program uses Gaussian-type orbitals (GTOs) as basis functions to expand the
KS orbitals. GTO auxiliary basis sets are used to fit the charge density and
exchange-correlation potentials and energy density. The fitting of the exchange-

correlation terms involves the use of a molecular grid.

Geometries were optimized for sodium clusters containing six or fewer atoms.
Singlet or doublet spin states were considered depending upon whether the num-
ber of atoms was even or odd. The tridecamer geometry was optimized with
both doublet and sextuplet spin-multiplicity. Minima were confirmed by har-
monic frequency analysis which involves two-point numerical differentiation of
analytic gradients. These clusters have very flat potential energy surfaces, in
some directions, making high quality numerics indispensable. Even so, numerical

constraints limit the accuracy of frequencies to about +50 cm™?.

The numer-
ical precision of the dimer bond length has been estimated at £0.035 bohr in

all-electron calculations with the fine grid [327, 122].

All property calculations were carried out with the LDAxc and the gradient-
corrected functionals, B88x+P86c and PW86x+P86¢c. To aid in assessing the
MCP against the all-electron calculations, the same tight convergence criteria

were used for both calculations. Specifically, an energy difference of less than
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10~% hartree and a change in charge density fitting coefficients of less than 1077
a.u. between successive iterations was required. A FINE Random grid which
is an angular grid ranging from 50 points to 194 points depending upon the
radial distance (the final grid used for the total energy calculation consisted of
32 radial grid points and 26 angular grid points for a total of 832 grid points per
atom) was used for the present calculations, except in the case of the tetramer
which has a very soft in-plane lowest vibrational mode (wvide infra). The final
geometry of the tetramer was obtained with a user-defined grid [327] using 128
radial grid points and 194 angular grid points for a total of 24,832 grid points per
atom. Polarizability calculations were carried out using the finite field method in
which the derivative of the induced dipole moment is obtained by a 3 point finite
difference formula [333] and deMon-KS’s default electric field strength of 0.0005

a.u.

All-electron geometry and property calculations (except the all-electron po-
larizability calculations given in Refs. [327, 122]) employed the valence double-
zeta plus polarization function (DZVP) quality orbital basis set and the (5,4;5,4)
auxiliary basis set in the deMon-KS basis set library. Three orbital bases used
in the MCP calculations are basis A, (311/2); basis B, (311/11); and basis C,
(311/111) which differ in the choice of p functions. The fitting procedure used
to obtain the exponents and coefficients of s functions does not generalize in the
present case to find the exponents and coeflicients of p functions, since sodium
has no occupied valence p orbital to fit. Instead, p functions in basis B were
simply borrowed from the outermost two p functions in the all-electron DZVP
basis to replace the p function in the basis A, (311/2). This basis B is the choice
for comparing with all-electron calculations. However, MCP polarizability cal-
culations used basis C, (311/111), which is supplemented with a field-induced
polarization function borrowed from the all-electron basis set which was used in
the all-electron polarizability calculations. These three orbital bases are given

in Table VII(please note that the Tables and Figs. are given at the end of the
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chapter). Auxiliary basis set (5,1;5,1) and model core potential (5:6,4) are given
in Table IX and Table VIII, respectively.

4.4 RESULTS AND DISCUSSION

The MCP calculations are much faster than the all-electron calculations
which make the MCP an important tool for the study of still larger clusters. The
quality of the MCP was evaluated against all-electron calculations for geometry
optimizations and electronic property calculations of sodium clusters up through
the hexamer. Then the MCP is applied to the tridecamer. Many of the all-
electron DFT calculations of sodium cluster properties reported here are the
first in the literature. The total self-consistent field (SCF) cycles used for each
calculation of the MCP and the all-electron (MCP/AE) are 47/47, 49/54, 64/62,
54/56, 57/137, and 54/56 for the atom, dimer, trimer, tetramer, pentamer, and
the hexamer, respectively. This comparison shows that the total cycles used
for the MCP and the all-electron calculations are basically the same, except for
the pentamer (the total cycles used in the all-electron calculation is about twice
that for the MCP calculation). Therefore, the time used per cycle can indicate
the efficiency of the MCP calculations. This is demonstrated in Fig. 4(please
note that Figs. and Tables are given at the end of the chapter) in terms of the
central processing unit (CPU) time used per SCF cycle in comparison with the

all-electron results.

4.4.1 OPTIMIZED GEOMETRIES

Structural parameters may be regarded as the most basic cluster properties,
prerequisite to the detailed understanding of other properties. The all-electron
LDAxc optimized geometries are with shorter bond lengths and larger bond angles

compared with available experiment. In contrast, Hartree-Fock (HF') optimized
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geometries are with longer bond lengths and even larger bond angles in compar-
ison with the experiments. Tables X and XI show that the all-electron LDAxc
dimer bond length is 0.1 bohr too short, while the HF bond length of Ref. [3] is
0.28 bohr too long, in comparison with the experimental results. For the trimer,
the isosceles sides of the triangle are too short in comparison with the experiment
by 0.17 bohr at the LDAxc level and too long by 0.33 bohr in the HF calculations
of Ref. [3]. The trimer bond angle between the two isosceles sides of the triangle
is too large compared to the experiment by 5.78° in the LDAxc calculations and

too large by 9.23° in the HF calculations of Ref. [3].

The DFT gradient-corrected P86x+P86c and B88x+P96c functionals lead
to longer bond lengths than those at the LDAxc level, while the CI leads to
shorter bond lengths than those at the HF level [368]. However, both leading
to better agreement with the experiment. Judging from the trimer results, the
B88x+P96¢ functional is better than the P86x+P86¢ functional for the optimized

geometries of sodium clusters.

The MCP optimized geometries, no matter whether the bond lengths are
longer or shorter than the all-electron geometries, are in better agreement with the
experiments. The comparison between the MCP (MCP/LDAxc, MCP /P86x+P86¢
and MCP/B88x+P86c) and the all-electron geometries is given in Tables X and
XI. In the dimer case, the bond length obtained by the MCP/LDAxc and the
MCP/PW86x+P86¢ functionals is longer than the all-electron geometry by 0.16
bohr and 0.09 bohr, respectively. In contrast, the MCP/B88x+P86¢ functional
gives a bond length shorter than that of the all-electron B88x+4P86¢ result by
0.04 bohr. In the trimer case, the bond lengths of the isosceles sides of the tri-
angle are become shorter and the bond angle between the two isosceles sides
of the triangle are decreased at all levels of the MCP/LDAxc (0.23 bohr, 1.2°),
the MCP /B88x+P86¢ (0.02 bohr, 3.9°), and the MCP /PW86x+P86¢ (0.13 bohr,

8.4°) calculations compared to the all-electron values. It is worth mentioning that
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the MCP tetramer geometry optimized with basis A is a nonrhomboid parallelo-
gram, but basis B with the LDAxc functional yields a rhombus structure, which
is the same as the all-electron result. The optimized geometry obtained with
gradient-corrected functionals and basis B is closer to that optimized at the all-
electron level than that with basis A, although it is not a rhombus yet. However,
the MCP/B88x+P86¢ functional gives the best mimic to the all-electron opti-
mized geometries and both the all-electron and the MCP geometries calculated

with this functional are in better agreement with the experiment.

The all-electron and the MCP/LDAxc optimized geometries are also com-
pared with the results obtained with Bachelet, Hamann, and Schliiter (BHS) [369]
ab initio ECP and Bardsley (BRD) [370] semiempirical ECP taken from the lit-
erature [362, 7, 8, 363]. Tables X and XI show that the BHS ECP bond lengths
are too short, while the BRD ECP bond lengths are a little bit too long, in com-
parison with the present all-electron results, but the bond lengths with both BHS
and BRD ECP are shorter than the MCP results. However, the MCP and the
BRD ECP optimized geometries agree well with the experiments, the difference is

that the MCP yields positive errors, in contrast, BRD ECP gives negative errors.

The assessed MCP is applied to predict the tridecamer equilibrium geometry.
The intent here is not to make a full exploration of the potential energy surface
of Nays, but rather to illustrate how the MCP might be used in treating larger
clusters than would normally be treated at the all-electron level. Thus the present
work focuses on the two likely structures, one for the doublet spin-multiplicity and
the other for the sextuplet spin-multiplicity. According to the shell model [347,
346, the lowest energy sextuplet structure should have a compact spherical shape
with a five-fold degenerate HOMO (highest occupied molecular orbital). Indeed
the lowest energy structure for Lij3 is believed to be icosahedral with sextuplet
spin multiplicity [371]. But this is not the lowest energy structure for Na;3 from

the calculations by Rothlisberger and Andreoni [345, 372] or Spiegelmann and
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Poteau [349] as well as our own calculations. The icosahedral structure is excluded
by the Jahn-Teller effect from being a minimum on the doublet potential energy
surface. According to the shell model, the lowest energy doublet structure is
an ellipsoid with principle axis lengths in the ratio [346] of 1.25:1.08:0.73. In
fact, Spiegelmann and Poteau, in their distance-dependent tight binding model
study of sodium cluster geometries [349], found the minimum energy doublet
structure to be roughly ellipsoidal with principle axis lengths in the ratio of
1.34:1.08:0.69. A qualitatively similar result was also found in the Car-Parrinello
study by Rothlisberger and Andreoni [345, 372]. Although these are some of
the most complete studies of the structure of the sodium tridecamer, very few

properties were actually calculated for the structures found.

The tridecamer geometry optimizations are presently carried out without
any symmetry constraints for both the sextuplet and doublet spin multiplicities
beginning in each case with both an icosahedral starting geometry and the min-
imum energy doublet geometry of Spiegelmann and Poteau. The result of the
doublet geometry beginning with the Spiegelmann and Poteau structure led to a
minimum geometry with energy of 0.245 eV below that of the minimized icosahe-
dral sextuplet structure (whose mean coordination number given in Table XX},
confirming that the true minimum of the tridecamer is not the same as Li;3 with
an icosahedral structure, but an asymmetric structure with doublet multiplicity
whose coordinates and nearest-neighbor distance are given in Table XVIII and
XIX. The present MCP found the minimum geometry of the tridecamer to be the
same as that found by Réthlisberger and Andreoni [345, 372] and by Spiegelmann
and Poteau [349].

4.4.2 VIBRATIONAL FREQUENCIES

Vibrational analysis is necessary in order to confirm that stationary points

obtained during geometry optimizations are indeed minima. Vibrational frequen-
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cies are also of spectroscopic interest and may be used to judge the shape of the
potential energy surface. The sodium cluster vibrational frequencies reported
here are harmonic frequencies calculated by finite difference of the analytic gra-
dients [280, 249]. These calculations have been made at the all-electron and the
MCP levels using both local and gradient-corrected functionals for the clusters
up through the hexamer and at the MCP level using the LDAxc functional for
the tridecamer. The present calculated frequencies are compared with available
experiment and other theoretical results in Table XII, and Table XIII. The sym-
metry of the normal modes have been assigned for the all-electron calculations (a
few differences in the ordering of modes between the all-electron and the MCP
calculations are observed for quasidegenerate modes). Neither experimental nor
calculated frequencies are available to our knowledge beyond the trimer, with
the exception of the spherically-averaged pseudopotential (SAPS) calculations of
Aguilar et al. [2]. However, the SAPS model leads to overly symmetric optimized
structures which make vibrational modes be too degenerate (see Tables XII, XIII
and XX). Given this fact and the quality of our results for the dimer and trimer,
the present results may be regarded as the first semiquantitative prediction of

sodium cluster frequencies for the tetramer and above.

Tables XII and XIII show that all the frequencies obtained at the all-
electron level are real, confirming that the optimized equilibrium geometries are
minima on the potential energy surface. Table XII shows that the present calcu-
lated frequencies agree well with the experiment and other theories for the dimer
and trimer. In the dimer case, the all-electron LDAxc vibrational frequency is
in the best agreement with the experimental result, being larger by only 0.8%,
while the PW86x+P86¢ yields larger frequencies by 3.8% and the B88x+P86¢c
gives smaller vibrational frequencies by 5.6% in comparison with experiment.
In comparison, a multiconfigurational self-consistent field (MCSCF) calculated
frequency of the dimer [373] is 1.9% too small compared with the experiment,

and a full CI molecular dynamics calculation gives the anharmonic frequency of
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the dimer differing from the experiment by 14% [374]. In the trimer case, the
present all-electron calculations of the three frequencies (sym., asym., and bend-
ing) at the LDAxc level differ from the experiment by 1.8%, 28.3%, and 18.7%,
respectively. The differences increase at the gradient-corrected functional level
(PW86x+P86¢ and B88x+P86¢). In comparison, full CI molecular dynamics cal-
culated anharmonic frequencies [374] differ from the experiment by 1.5%, 4.0%,
and 27.3%, respectively. The differences between the present calculations and the
experiment may not come from the comparison of theoretical harmonic frequen-
cies with experimental anharmonic frequencies. Since the effect of anharmonicity
has been estimated by the present work for the dimer, the anharmonic correction

is only about one percent of the harmonic {frequency.

The frequencies calculated by the MCP (Table XII) are in better agreement
with the experiment. Although there are deviations between the MCP and the all-
electron calculations, at the LDAxc level, the deviations are no larger than 7% for
the dimer and the trimer. But the gradient-corrected functionals (PW86x+P86c
and B88x+P86¢) yield larger differences (9% and 33%).

Table XII and Table XIII show that the MCP frequencies are all positive,
which indicates that the MCP optimized geometries are indeed minima. With
the exceptions of one mode in the trimer and two modes in the hexamer, the
MCP vibrational frequencies are lower than the corresponding all-electron calcu-
lations at the LDAxc level, typically by 2 — 10 cm™". Thus the MCP potential
energy surface around the minima is slightly flatter than that of the all-electron

calculations.

In order to judge the nature of sodium tridecamer stationary points, a vibra-
tional analysis (with basis A) was carried out for the optimized geometries. The
vibrational analysis revealed the asymmetric structure optimized starting from
the Spiegelmann and Poteau structure with doublet spin multiplicity and the

icosahedral geometry with sextuplet multiplicity to be the minimum structures



96

among our four optimized geometries. The vibrational frequencies for these two

minima are given in Table XX.

4.4.3 BINDING ENERGY PER ATOM

Binding energy per atom (BEPA) is an important indicator of the relative
thermodynamic stability of clusters. It should approach the bulk cohesive energy
in the limit of a large enough cluster. However, the shell model [347, 346] predicts
that an odd-even alternation should be superimposed upon this trend due to the
relative instability of half-closed shells in comparison with closed shells. These
trends have been observed in the calculations at a variety of levels [5, 3]. Here we
are interested in how the detailed features of calculated BEPAs depend on the

choice of functional and the use of an MCP rather than all-electron calculations.
The BEPA were calculated according to the following atomization reaction,
Na, — nNa (4.9)

and the formula,

Ey(n) = E(1) — E(n)/n, (4.10)

where E(n) is the energy of a cluster with n atoms. The BEPA measures the
average binding energy in the cluster and becomes equal to the cohesive energy

of the bulk crystal when n is sufficiently large.

Since basis set borrowing may lead to a better description of the cluster than
the atom, corrections for basis set superposition error (BSSE) are in principle
necessary when calculating the BEPA. These were estimated for the dimer using
the counterpoise method. The calculations show that the BSSE for the dimer is
0.003 eV or less at both all-electron and MCP levels for the local (LDAxc) and
the gradient-corrected functionals (PW86x+P86¢c, B88x+P86¢c). It is therefore
reasonable to neglect the BSSE correction to the BEPAs reported here.
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The BEPAs of the sodium clusters were calculated with the LDAxc, the
B88x+P86¢c, and the PW86x+P86¢c functionals at both all-electron and MCP lev-
els. The comparison with available experiments and traditional ab initio CI [3, 4]
and fourth-order Mgller-Plesset perturbation theory (MP4) [5] are given in Ta-
ble XIV. The present all-electron calculations show that the BEPAs are over-
estimated at the LDAxc level and at the PW86x+P86¢ level. In contrast, the
BEPAs are underestimated by the B88x+P86¢ functional and by traditional ab
initio methods (CI and MP4). For example, in the trimer case, the LDAxc and
the PW86x+P86¢ functionals yield BEPA larger than the experiment by 0.07 eV
and 0.03 eV, respectively. In contrast, the B88x+P86¢ functional, CI, and MP4
give the BEPA lower than the experiment by 0.05 eV, 0.1 eV, and 0.17 eV, re-
spectively. However, the BEPAs calculated by the gradient-corrected functionals

are in better agreement with the experiment.

Fig. 7 shows that the distinct odd-even alternation is observed as the number
of atoms in the clusters increases for the PW86x+P86¢ functional, which is the
same as previously observed at the MP4 level [5]. The LDAxc and the B88x+P86c
results obey similar trends to the CI results [4, 3] in that the BEPAs increase with

cluster size and the odd-even alternation behavior is less pronounced.

The MCP BEPAs nicely reproduce the all-electron results. Table XIV shows
that the differences between BEPAs calculated by the MCP and by the all-
electron approach increase when the cluster size increases at the LDAxc level,
while this difference decreases as the cluster size increases at the level of the
gradient-corrected functionals (PW86x+P86c and B88x+P86¢c). However, the
MCP/LDAxc and the MCP /PW86x+P86c results are lower than the correspond-
ing all-electron calculations by less than 0.04 eV and 0.06 eV, respectively. In con-
trast, the gradient-corrected MCP/B88x+P86¢c functional gives a BEPA about
0.04 eV larger than the all-electron results.

Fig. 8 shows that the present MCP BEPAs calculated with the LDAxc and
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B88x+P86¢ functional obey similar trends to the all-electron results. But the
PW86x+P86c BEPAs are different from the all-electron calculations, in which the
distinct odd-even alternation behavior observed at the all-electron level becomes
simply increasing with cluster size. Hence the three functionals at the MCP level

yield very similar trends for the BEPAs.

The sodium tridecamer BEPA is presented for the asymmetric structure
with doublet spin multiplicity and for the icosahedral geometry with sextuplet
multiplicity at the LDAxc level (with basis A) in Table XXI. The BEPAs of
the asymmetric structure (0.74 eV) is larger than that of the icosahedral geome-
try (0.72 eV), this coincides with the geometry optimizations which asymmetric
structure has lower energy than the icosahedral geometry. However, the present
calculated BEPAs with the two structures (asymmetric structure and icosahedral
geometry) are smaller than other theoretical results. A Car-Parrinello calculation
yielded 0.80 eV on a structure with five-fold symmetry and doublet spin multi-
plicity [345], and a self-consistent pseudopotential local spin density calculation
gave 0.86 eV for the BEPA [344] with a different symmetry (i.e. a distorted
cubo-octahedron). We believe this difference to be due to different structures
being used in the different calculations. Although the BEPA of the tridecamer is
still far away (by about 0.37 eV) from the bulk value, sodium cluster BEPAs do
eventually converge smoothly to the bulk value (1.11) [375].

4.4.4 IONIZATION POTENTIALS

Cluster ionization potentials (IPs) are one of the interesting cluster proper-
ties serving as an indicator of cluster reactivity. Sodium cluster IPs have been well
studied both experimentally [6, 376] and theoretically [344, 3, 5]. The global trend
in vertical IPs as a function of size has been described by multireference double
configuration interaction (MRD-CI) [3], and fourth-order Mgller-Plesset pertur-
bation theory (MP4) [5] and in adiabatic IPs by LDAxc ECP calculations [344]
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and with the liquid droplet model [6]. The IPs for small clusters show oscillations
which are described by the shell model [347, 346]. Particularly notable are the
even-odd alternations as orbitals are successively filled and half-filled. The MCP
vertical IPs reported here will be judged in part by their ability to reproduce both
qualitatively and quantitatively the trend for IPs calculated at the all-electron

level.

The results of the MCP and the all-electron calculations of IPs are given
in Table XV. The energies of the cationic sodium clusters are calculated at the
same geometries as for the neutral clusters. Hence the IPs reported here are
vertical. Note that the experimental IPs given in Table XV are probably best
interpreted as adiabatic IPs. Nevertheless they still serve as useful points of

reference, especially where structural relaxation effects are expected to be small.

Fig. 10 shows that the MCP IPs carried out with the LDAxc, the PW86x+P86c,
and the B88x+P86¢c functionals have a similar trend versus the cluster size to the
experiment which has mild odd-even alternation. This is similar to the all-electron
results (see Fig. 9). In contrast, traditional ab initio MRD-CI [3] and MP4 [5]
produced distinct odd-even alternation. The MCP IPs calculated with the local
and the gradient—corrected functionals differ very little from one another so that

no particular functional appears to be better than any other for this property.

The MCP in the application (with LDAxc and basis A) to calculate the
vertical IP for the doublet asymmetric geometry and for the sextuplet icosahedral
tridecamer structure is compared, in Table XXI, with IPs from other models and
with experiment. The IP with the asymmetric structure agrees well with previous
ECP DFT calculations with a distorted cubo-octahedral structure and both are
larger than the experiment. At first glance, the spherical droplet model would
seem to be ideally suited for estimating the IP of such a “spherical” structure
as an icosahedron. However, the spherical droplet IP, which compares quite

favorably against the experimental IP, overestimates the present calculated IP
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(with icosahedral structure) by 0.44 eV. This, of course, is less surprising when it
is taken into account that the spherical droplet model is parameterized using the
work function of the essentially closed-shell bulk and that the open-shell sextuplet

should be destabilized with respect to similar closed-shell structures.

4.4.5 POLARIZABILITIES

Polarizabilities of metal clusters are an interesting property which may pro-
vide helpful information on both cluster structure and cluster electronic struc-
ture [7, 362, 8, 363]. The simplest model for describing cluster polarizabilities
is that of a classical metal sphere. This is the so-called “spill-out” model and
predicts that the static polarizability is proportional to the volume of the cluster.
However, real clusters are not spherical and accurate calculations are necessary
to obtain quantitative agreement with experiment. MCPs offer a way to ex-
tend previous all-electron DFT calculations of polarizabilities [327, 122] to larger

clusters.

Calculations of the mean polarizabilities and polarizability anisotropies of
the sodium clusters up through the hexamer have been carried out at the all-
electron and the MCP levels using both local (LDAxc) and gradient-corrected
functionals (PW86x+P86¢ and B88x+P86c). The all-electron results have been
reported previously [327, 122]. Here the main focus is on the discussion of the
MCP polarizabilities and comparing them with the previously published all-
electron results. The MCP was also applied to calculate polarizabilities of the

tridecamer.

The MCP mean polarizabilities and polarizability anisotropies as well as
the all-electron results, previously reported effective core potential calculations
of Moullet et al. [T, 362, 8, 363], and experimental results are presented in Ta-
ble XVI and Table XVII. Table XVI shows that the mean polarizabilities calcu-
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lated at the MCP level are in reasonable agreement with the all-electron mean
polarizabilities. The largest error between the all-electron and the MCP mean
polarizabilities is always for the atom regardless of the functional used. However,
the difference between the MCP mean polarizabilities and the all-electron mean
polarizabilities decreases when the cluster size increases, regardless of whether
a local or gradient—corrected functional is used. This trend can be clearly seen
in Fig. 11. This phenomenon is believed to be due to basis set borrowing. The
differences between the MCP and the all-electron mean polarizabilities calculated
at the LDAxc level using geometries optimized at the same level are in the range
of 16% except for the atom (50%) and dimer (25%). The MCP/B88x+P86c mean
polarizabilities are in best agreement with the all-electron results (it is 36% for
the atom and 15% for the dimer larger than the all-electron results, for larger
clusters it is about 8% larger than the all-electron result). This is obvious in
Fig. 11 on which the ratio of the MCP mean polarizabilities and the all-electron
mean polarizabilities with the B88x+P86¢ functional is closer to 1 than that with
the LDAxc and the PW86x+P86c functionals. In comparison with the experi-
ment, the MCP overestimates mean polarizabilities for atom (31%) and the dimer
(9%), in contrast, it underestimates those for larger clusters (9% for the trimer,

5% for the tetramer, 13% for the pentamer, and 19% for the hexamer).

The ECP LDAxc mean polarizabilities reported previously using the ab ini-
tio BHS ECP given in Table XVI are in better agreement with the all-electron
LDAxc mean polarizabilities than are the BRD ECP ones. The discrepancies
between the ECP BHS mean polarizabilities and the all-electron mean polariz-
abilities are in the range from about 1% for the atom to 5% for the pentamer.
However the semiempirical BRD ECP mean polarizabilities are in better agree-
ment with experiment. The MCP/LDAxc mean polarizabilities are similar to
BRD ECP mean polarizabilities for the larger sodium clusters (e.g. the pentamer

and the hexamer).
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The MCP polarizability anisotropies (a sensitive property) agree roughly
with the all-electron calculations. Similar to the mean polarizabilities, the largest
deviation between the MCP and the all-electron calculations occurs for the dimer
regardless of the functional used. The MCP/LDAxc and the MCP/PW86x+P86¢c
overestimate polarizability anisotropies by about 2% and 10%, respectively, in
comparison with the all-electron results, except for the dimer (25% and 20%, re-
spectively). In contrast, the B88x+P86¢ functional underestimates polarizability
anisotropies by about 3%, except for the dimer (27%). The percent difference be-
tween the all-electron LDAxc polarizability anisotropies and BHS polarizability
anisotropies is also large, ranging from 5% to 16%), but there are no experimental

results available to judge which one is better.

The mean polarizability of the doublet asymmetric and the sextuplet icosa-
hedral tridecamer, as well as the experimental polarizability, is given in Ta-
ble XXI. The close agreement between the present MCP calculated polarizability
and that given by the spill-out model is interesting since an icosahedron is nearly
spherical, though we would have expected the polarizability of the sextuplet to
be a bit larger than that of the spill-out model which is parametrized using the
Wigner-Seitz radius of the bulk (closed shell) and the polarizability of the atom
(doublet). It is interesting that the polarizability of the doublet asymmetric
structure is larger than that of the sextuplet icosahedron and that of the spill-out
model. Moreover, the available experimental polarizabilities for the trimer and
larger clusters are consistently larger than the most rigorous DFT values [122].
Hence the roughly 15% difference between the experimental value and the present

MCP value for the tridecamer is not surprising.

4.5 CONCLUSION

A model core potential for sodium has been presented in this chapter.

Its efficiency and accuracy were assessed by performing geometry optimizations
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and calculations of vibrational frequencies, binding energies, ionization poten-
tials, and polarizabilities against corresponding all-electron calculations for clus-
ters up through the hexamer using both local and gradient—corrected exchange-
correlation functionals. Such calculations are a useful calibration prior to use of
the MCP in the application to the tridecamer property calculations and future
studies. However, many of the all-electron density functional calculations pre-
sented here are the first all-electron results for those properties. In the particular
case of vibrational frequencies, neither quantitative MCP nor all-electron results

have been reported previously.

The accuracy of the MCP was found to vary according to the property con-
sidered and the exchange-correlation functional used. In most cases, the MCP
properties calculated from the B88x+P86¢ functional are in the best agreement
with those from the all-electron calculations, and are in better agreement with
available experiment and correlated ab initio results. In particular, optimized
geometry bond lengths differ by only about 1% from corresponding distances cal-
culated at the all-electron level, and polarizabilities differ by only 8%. The MCP
structures optimized with the B88x+P86¢ functional are also in significantly bet-
ter agreement with the all-electron calculations than are the structures obtained
in the previous ECP LDAxc calculations [350]. For the binding energy per atom,
there is a larger but still small discrepancy between the MCP and the all-electron
calculations. For example, the discrepancy is about 12% (or 0.04 €V) for the
binding energy per atom for the dimer and the trimer with the B88X—|—P860 func-
tional. For the ionization potential and vibrational analysis, the MCP/LDAxc
functional gives the best mimic to the all-electron calculations. Based on the all-
electron calculations, the best exchange-correlation functional to use depends to
some extent on the property being calculated. The B88x+P86¢ functional is the
best for geometry optimizations and polarizability calculations, while the LDAxc
functional gives the best agreement between the calculated harmonic frequencies

and experimentally observed vibrational frequencies.
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The geometry optimizations and electronic properties of Naj3 were carried
out without the use of symmetry as an illustrative application of the MCP to
a system which would not normally be treated at the all-electron level. We are
encouraged by the efficiency of this MCP which was used to calculate vibrational
frequencies for a number of stationary points on the potential energy surface. The
found minimum geometry agrees with that previously reported by Rothlisberger

and Andreoni [345, 372] and by Spiegelmann and Poteau [349].



Table VI. Projector used in MCP calculations.
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Exponent

Core orbitals in the projector

Contraction coefficients

Orbital energies (hartree)

1s
0.0110207926
-0.0201002043
0.3847575486
0.5465959907
0.1737338752
0.0556630157

2s
0.0110207926
-0.0201002043
0.3847575486
0.5465959907
0.1737338752
0.0556630157

2p
0.5065137
1.9797206
7.7377839
30.2433071

0.0110207926
-0.0201002043
0.3847575486
0.5465959907
0.1737338752
0.0556630157

-0.6633609533
-0.5141829252
0.2081092298
0.1834869534
0.0456662029
0.0141356653

0.3667361438
0.5607790351
0.2682032287
0.0574445985

-37.7147636414

-2.0584678650

-1.0556892157
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Table VII. Orbital basis sets used in MCP calculations. Note that basis sets A,
B, and C differ by the p-functions added to the substrate basis set.
Orbital basis

Exponent Contraction coefficients

Substrate basis

1s
205.06946 -0.00554574
29.673375 -0.03273471
1.0632752 0.24903133

2s
0.0840500 1.00000000

3s
0.0323178 1.00000000

p-functions for basis A

lp
0.067700500 0.52450640
0.030000000 0.52450640

p-functions for basis B

lp
0.4702690000 1.00000000
2p
0.0647000000 1.00000000

p-functions for basis C

lp
0.4702690000 1.00000000
2p
0.0647000000 1.00000000
3p
0.0280000000 1.00000000
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Table VIII. Model core potential used in MCP calculations.

Model core potential

Exponent Contraction coefficients

541.2974243 -1.6272639
53.5501099 -2.8618634
5.2941766 -3.3278172
0.6764935 -2.0552888
0.1380625 -0.1277668

Table IX. Auxiliary basis set used for fitting charge density (CD) and exchange-
correlation (XC) potential in MCP calculations.
Exponents used for fitting CD and XC

GTO Charge density Exchange correlation

s 410.1300000 136.7100000
8 59.3470000 19.7823333
s 2.1260000 0.70866670
s 0.1681000 0.05603333
s 0.0646000 0.02153333

spd 0.1354010 0.0451337
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Table X. Comparison of all-electron (AE) and MCP DFT optimized geometries of
sodium dimer, trimer, and tetramer with previous effective-core potential (ECP)
DFT, Hartree-Fock (HF), and configuration interaction (CI) calculations, with
previous AE HF calculations and with experiment. Geometrical variables are

defined in Fig. 5. Bond lengths are in bohr, bond angles are in degrees.

DFT Other
LDAxc PW86x+P86c B88x+P86c HF CI EXPT
Dimer
ECP 5.47% (5.78%)
MCP (Basis A)  5.89 5.85 5.83
MCP (Basis B)  5.87 5.85 5.82
AE 5.71 5.76 586 6.10° 5.815¢
5.818¢
Trimer
ECP 5.68% (6.05%) 6.43F  6.439
MCP (Basis A) 6.25 6.24 6.20
MCP (Basis B) 6.19 6.16 6.14
AE 5.96 6.03 6.12 6.46°  6.26"
6.13"
ECP 78.01° (83.03%) 8727 84.99
MCP (Basis A) 88.98 88.14 91.47
MCP (Basis B) 84.26 83.83 84.04
AE 85.48 92.20 87.97 88.9°  73.2"
79.70°
Tetramer
ECP 6.18% (6.57%) 6.99f  6.889
MCP (Basis A)  8.02/6.207 8.83/6.047  8.21/6.127
MCP (Basis B)  6.73 7.57/6.247  6.80/6.57
AE 6.48 7.07¢
ECP 5.42% (5.80%) 6.10f  6.249
MCP (Basis A) 6.29 6.44 6.32
MCP (Basis B) 5.93 5.99 5.87
AE 5.68 6.14¢

@ Ab initio Bachelet, Hamann, and Schliiter ECP calculations taken from Ref. [8].

b Semi-empirical Bardsley ECP calculations taken from Ref. [8].

¢ All-electron Hartree-Fock calculations taken from Ref. [3].

¢ All-electron multireference singles and doubles configuration interaction calculations taken from Ref. [351].
¢ From Ref. [377].

f Effective core potential Hartree-Fock calculations taken from Ref. [3].

9 Effective core potential configuration interaction calculations taken from Ref. [3].

k All-electron multireference singles and doubles configuration interaction calculations taken from Ref. [368].
* From Ref. [378].

J Only a nonrhomboid parallelogram structure was found, with side lengths given here.
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Table XI. Comparison of all-electron (AE) and MCP DFT optimized geometries
of soidum pentamer and hexamer with previous effective-core potential (ECP)
DFT, Hartree-Fock (HF), and configuration interaction (CI) calculations, and
with previous AE HF calculations. Geometrical variables are defined in Fig. 5.

Bond lengths are in bohr, bond angles are in degrees.

DFT Other
LDAxc PW86x+P86c B88x+P86¢ HF CI
Pentamer
R, ECP 6.36% (6.55") 6.92°
MCP (Basis A) 6.85 6.94 6.83
MCP (Basis B)  6.74 6.79 6.71
AE 6.49 6.974
R, ECP 6.01° (6.42%) 7.09¢
MCP (Basis A) 6.94 6.84 6.88
MCP (Basis B) 6.71 6.61 6.64
AR 6.43 7.12¢
R; ECP 6.04° (6.37°) 6.82¢
MCP (Basis A)  6.54 6.51 6.54
MCP (Basis B) 6.49 6.48 6.45
AE 6.23 6.94¢
R, ECP 6.03% (6.30%) 6.88°
MCP (Basis A) 6.59 6.61 6.56
MCP (Basis B) 6.50 6.53 6.48
AE 6.20 6.95¢
Hexamer
7 ECP 6.27° (6.62°) 7.28°  7.26°
MCP (Basis A) 6.82 6.89 6.81
MCP (Basis B) 6.77 6.85 6.76
AE 6.58 7.52¢
R  ECP 5.89% (6.30%) 7.24°  6.67°
MCP (Basis A) 6.63 6.54 6.56
MCP (Basis B) 6.46 6.40 6.41
AE 6.19 6.584

o Ab initio Bachelet, Hamann, and Schliiter ECP calculations taken from Ref. [8].
b Semi-empirical Bardsley ECP calculations taken from Ref. [8].

¢ Effective core potential Hartree-Fock calculations taken from Ref. [3].

@ All-electron Hartree-Fock calculations taken from Ref. [3].

¢ Effective core potential configuration interaction calculations taken from Ref. [3].
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Table XII. Sodium dimer and trimer harmonic vibrational frequencies calculated
at the all-electron (AE) and MCP levels with various functionals. All calculations
have been carried out at the optimized geometry for that level and functional.
Frequencies from the spherically—averaged pseudopotential (SAPS) calculations
of Ref. [2] are also listed. Note that the SAPS structures are too symmetric

compared to the present calculations, leading to too few distinct frequencies.

Nay, harmonic frequencies (cm™1)

Assignment® Density-functional theory Other
LDAxec PW86x+PR6c B88x+P86¢
Dimer (Dgop)
boys MCP (Basis A) 150 151 154
MCP (Basis B) 155 159 159
AE 160 165 153
MCSCF® 156
EXPT® 159
SAPS: 189
Trimer (Cay)
A MCP (Basis A) 37.1 39.6 33.4
MCP (Basis B) 43.1 42.7 424
AE 40.3 23.6 36.5
c14 63,
EXPTe® 49,
B> M<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>