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ABSTRACT 

Time-dependent density—functional theory (DFT) has been extended by 

the present work for open-shell applications and coded in the program deMon-

DynaRho (densité de Montréal—Dynamic Response of Rho, Rho here stands 

for the charge density) based on version 2p0 of the previous deMon-DynaRho. 

This version 2p0 could previously only treat closed—shell systems. The present 

modification and implementation of time-dependent DFT provide a unique prac-

tical molecular DFT code capable of treating excited state properties for either 

open—shell or closed—shell systems. As a case study, six small well—studied open-

shell molecules, three neutral molecules 	BeF, CN) and three positive ions 

(CO, N , CH 20+), are chosen to evaluate the quality of time-dependent DFT 

for the calculation of excitation energies and the prediction of absorption spectra 

of open-shell molecules. Further applications to predicting and interpreting of 

absorption spectra of alkali metal clusters (lithium clusters and sodium clusters) 

from the dimer though the hexamer are presented. With the exception of the 

lowest two excitation energies (without oscillator strengths) of a few open—shell 

molecules which recently appeared in the literature [1], the present all-electron 

calculations of absorption spectra of the six open—shell molecules and alkali metal 

clusters (the lithium and the sodium clusters) are the first time-dependent DFT 

study reported in the literature. The quality of the model core potential (MCP) 

in the applications to excited state properties is assessed against the present all-

electron calculations. This MCP provides an efficient tool for the study of larger 

systems in the future. 

The accuracy of DFT calculations depends on the choice of electron exchange- 
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correlation functional, orbital and auxiliary basis sets, and grids. To ensure the 

quality of the time-dependent DFT calculations, two exchange-correlation func-

tionals, the local spin density approximation (LSDxc) and the functional proposed 

by van Leeuwen and Baerends in 1994 (LB94xc), are used respectively at the SCF 

step, combined with the time-dependent local spin density approximation (TDLS-

Dxc) in the post-SCF step. These functionals used at the SCF step and at the 

post-SCF step are referred to as LSDxc/TDLSDxc and LB94xc/TDLSDxc func-

tionals. The comparison of excitation energies and oscillator strengths calculated 

by the two functionals shows that the LSDxc/TDLSDxc functional yields excited 

state properties in better agreement with available experimental results and high 

quality conventional ab initio methods (e.g. CI). However, the quality deterio-

rates for higher excitations in the free radical calculations due to the incorrect 

asymptotic behavior of the LSDxc functional, which leads to a too low ioniza-

tion threshold compared to measurements. In contrast, the LB94xc/TDLSDxc 

functional which lias the correct asymptotic behavior does give better results for 

higher excitations in the free radical calculations, but this functional does not give 

any improvement for the sodium clusters, it yields too larger excitation energies 

for both low and high excitations in the sodium clusters calculations. The choices 

of both orbital and auxiliary basis sets have been examined in the present calcu-

lations. Excitation energies are sensitive to the orbital basis; it requires a certain 

number of diffuse and polarization functions to be flexible enough to describe 

excited state properties. In contrast, excitation energies are less demanding on 

the auxiliary basis set. The normal auxiliary bases used in ground state property 

calculations are good enough for the excitation energy calculations. To avoid 

symmetry breaking, grids need to be carefully chosen in the calculation of excita-

tion energies. The lithium pentamer is found to be a case where a higher quality 

of grid is needed, requiring a user-defined grid (24832 grid points per atom) for 

better assignments, whereas other calculations are with the EXTRA-FINE grid 

(6208 grid points per atom). 
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Absorption spectra of the open—shell molecules and the alkali metal clus-

ters (lithium and sodium clusters) predicted by the present LSDxc/TDLSDxc 

calculations coincide nicely with the recorded spectroscopic pattern and are com-

petitive with the ab initio CI method. The time-dependent DFT results are better 

than CIS (single configuration interactions) calculations and give significant im-

provement from those carried out by traditional DFT "multiplets" and Fritsche 

approaches, especially for the oscillator strengths. The LB94xc/TDLSDxc func-

tional yields larger excitation energies and with larger errors from the experiments 

in comparison with the LSDxc/TDLSDxc functional. The deviations of the exci-

tation energies calculated by the LSDxc/TDLSDxc and LB94xc/TDLSDxc func-

tionals can be as large as 1.5 eV or more. Excitation energy collapse compared 

with available experiments or ab initio CI calculations, when excitation energies 

are larger than the ionization threshold, is observed for the free radicals, but 

it is not observed for the sodium clusters. On the other hand, excitation ener-

gies of the sodium clusters are overestimated, while those of the free radicals are 

underestimated. This is in contrast to the polarizability calculations which yield 

underestimations for sodium clusters and overestimations for the small molecules. 

This observation agrees with the theoretical relationship of excitation energy and 

polarizability. 

The MCP yields similar excitation energies to the all-electron calculations 

and reasonably reproduces the spectroscopie pattern predicted by the all-electron 

calculations. However, additional diffuse basis functions are needed for more 

accurate results and higher excitations. 

Key Words: Time-dependent density-functional theory, absorption spectra, 

open-shell molecules, alkali metal clusters, model core potential. 



RÉSUMÉ 

La théorie de la fonctionnelle de la densité (DFT) dépendante du temps a 

été étendue aux applications pour les couches ouvertes et implantée dans le pro-

gramme deMon-DynaRho (densité de Montréal-Dynamic Response Rho, Rho 

pour la densité de charge) à partir de la version précédente de deMon-DynaRho 

2p0. Cette version précédente ne pouvait traiter que les systèmes à couche fermée. 

La présente modification et implantation de la DFT dépendante du temps, four-

nit un code DFT moléculaire unique capable de traiter les propriétés dans les 

états excités pour les molécules a couche fermée et à couche ouverte. Comme 

cas d'étude, six petites molécules à couche ouverte, trois molécules neutres (BeH, 

BeF, CN) et trois ions positifs (CO, 1\1-, CH20+), sont choisis pour évaluer la 

qualité de la DFT dépendante du temps pour le calcul d'énergies d'excitation et la 

prédiction de spectres d'absorption pour les molécules à couche ouverte. Davan-

tage d'applications dans le but de prédire et d'interpréter les spectres d'absorption 

d'agregats de métaux alcalins (agrégats de lithium et de sodium), à partir de 

dimères jusqu'aux hexamères sont présentés. Les calculs tous-électrons des spec-

tres d'absorption des six molécules à couche ouverte et des agrégats métalliques 

alcalins (agrégats de lithium et de sodium) rapportés dans ce travail, représentent 

la premiére étude DFT dépendante du temps rapportée dans la littérature; bien 

que les deux énergies d'excitation les plus basses (sans forces oscillatoires) de 

quelques molécules à couche ouverte soient apparues récemment. La qualité des 

potentiels modèles de cœur (MCP) dans les calculs de propriétés des états ex-

cités est évaluée relativement aux calculs tous-électrons de ce travail. Ces MCP 

fournissent un outil efficace pour l'étude de plus gros systèmes dans le futur. 
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La précision des calculs DFT dépend du choix de la fonctionnelle d'échange-

corrélation électronique, des bases orbitalaires et auxiliaires, et des grilles. Pour 

s'assurer de la qualité des calculs de la DFT dépendante du temps, deux fonction-

nelles d'échange-corrélation, l'approximation de la densité de spin locale (LSDxc) 

et la fonctionnelle proposée par van Leeuwen et Baerends en 1994 (LB94xc), 

sont utilisées respectivement aux itérations SCF, combiné avec l'approximation 

de densité de spin locale dépendante du temps (TDLSDxc) à l'étape post-SCF. 

Ces fonctionnelles utilisées à l'étape SCF et à l'étape post-SCF sont représentées 

par les fonctionnelles LSDxc/TDLSDxc et LB94xc/TDLSDxc. La comparaison 

des énergies d'excitation et des forces oscillatoires calculées par les deux fonc-

tionnelles montre que la fonctionnelle LSDxc/TDLSDxc donne des propriétés de 

l'état excité qui correspondent mieux avec les résultats expérimentaux disponibles 

et les méthodes ab initia conventionnelles de haute qualité (e.g. CI). Néanmoins, 

la qualité se détériore pour des excitations plus élevées dans les calculs de rad-

icaux libres étant donné le comportement asymptotique incorrect de la fonc-

tionnelle LSDxc, qui conduit à un seuil d'ionisation trop faible comparé aux 

mesures expérimentales. Par contre, la fonctionnelle LB94xc/TDLSDxc, avec le 

bon comportement asymptotique, apporte une amélioration pour les excitations 

plus élevées dans le cas des radicaux libres, mais donne des énergies d'excitation 

trop élevées à la fois pour les basses et hautes excitations dans le cas des agrégats 

de sodium. Le choix des bases orbitalaires et auxiliaires a été examiné dans 

les calculs de ce travail. Les énergies d'excitation sont sensibles à la base or-

bitalaire; elles requièrent un certain nombre de fonctions de polarisation et de 

diffusion pour être suffisamment flexibles pour décrire les propriétés des états 

excités. Par contre, les énergies d'excitation sont moins exigeantes sur la base 

auxiliaire. Les bases auxiliaires normales pour les calculs de propriétés de l'état 

fondamental sont de qualité suffisante pour le calcul d'énergies d'excitation. Pour 

éviter une brisure de symétrie, les grilles doivent être choisies avec soin dans les 

calculs d'énergies d'excitation. Le pentamère de lithium s'est montré être un 
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cas où une grille de plus grande qualité est nécessaire, demandant une grille 

définie par l'usager (24832 points de grille par atome) pour des meilleures assig-

nations, tout comme les autres calculs sont faits avec une grille EXTRA-FINE 

(6208 points de grille par atome). Les spectres d'absorption des molécules à 

couche ouverte et des agrégats métalliques alcalins (agrégats de lithium et de 

sodium) prédit par les présent calculs LSDxc/TDLSDxc coïncident bien avec les 

patrons spectroscopiques mesurés et sont compétitifs avec la méthode ab initio 

CI. Les résultats des calculs avec la DFT dépendante du temps sont meilleurs que 

ceux obtenus CIS (single configuration interactions) et amènent une amélioration 

significative relativement aux approches de la DFT "multiplet" et "Fritsche" 

traditionnelles, particulièrement pour les forces oscillatoires. La fonctionnelle 

LB94xc/TDLSDxc donne des énergies d'excitation plus élevées et avec de plus 

grandes erreurs relativement à l'expérience en comparaison avec la fonctionnelle 

LSDxc/TDLSDxc. Les déviations des énergies d'excitation calculées avec les 

fonctionnelles LSDxc/TDLSDxc et LB94xc/TDLSDxc peuvent être aussi grandes 

que 1.5 eV ou plus. Les énergies d'excitation calculées diffèrent de l'expérience et 

des calculs ab initio CI, quand les énergies d'excitation sont supérieures au seuil 

d'ionisation et cela est observé pour les radicaux libres, mais pas pour les agrégats 

de sodium. D'autre part, les énergies d'excitation des agrégats de sodium sont 

surestimées, tandis que celles des radicaux libres sont sous-estimées. Ceci est 

en contraste au fait que les calculs de polarisabilité sont des sous-estimations 

pour les agrégats sodium et des surestimations pour les petites molécules. Cette 

observation correpond à la relation théorique de l'énergie d'excitation et de la 

polarisabilité. 

Les MCP donnent des énergies d'excitation similaires aux calculs tous-électrons. 

Néanmoins, des fonctions de base diffuses additionnelles sont nécessaires pour des 

résultats plus précis et des excitations plus élevées. 

Mots clefs : théorie de la fonctionnelle de la densité dépendante du temps, 
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spectre d'absorption, molécules à couche ouverte, agrégats de métaux alcalins, 

potentiel modèle de cœur. 
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CHAPTER 1 

INTRODUCTION 

Electronic excitation energies and oscillator strengths of metal clusters have 

been an interesting subject of many experimental and theoretical studies in re-

cent years [17, 18, 19, 20, 21, 22, 23, 24]. Electronic excitation spectra are in-

teresting in their own right and also play a significant role in the description of 

physical observables in many areas of chemistry, including ph.otochemistry and 

materials applications. In particular, the oscillator strengths (together with the 

excitation energies) can be used to calculate the second—order optical properties 

(e.g. dynamic polarizability). Calculations of the electronic excitation energies 

and oscillator strengths of metal clusters (with proper assignments) may pro-

vide useful information both for characterizing the electronic and nuclear struc-

ture of the clusters. They also can be used to understand and design cluster 

materials with novel optical properties [25]. The problem with existing meth-

ods is that they are too costly for large systems and if the level of correlation 

needed is high. Density-functional theory (DFT), with_ its simplicity and effective 

treatment of electron correlation, has been the method of choice for the theoret-

ical treatment of many ground state problems [26, 27, 28]. A real molecular 

time-dependent DFT formulation has also been developed lately and applied to 

closed-shell molecules [22, 29, 30, 31, 32, 33, 34, 35, 36, 37], but almost nothing 

is known about how time-dependent DFT behaves for the open-shell molecules 

in which electron correlation effects are particularly strong. The extension of 

the time-dependent DFT to treat open-shell excitation spectra is clearly desir-

able. A recent time—dependent DFT calculation of the lowest two excitation 
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energies (without oscillator strengths) of a few free radicals by Hirata and Head-

Gordon [1] appeared in the literature. The present work gives a unique modi-

fication and implementation of the time-dependent DFT for open-shell systems 

in the program deMon-DynaRho, version 2pX. This implementation provides a 

new computational tool for the study of excited state properties of open-shell 

molecules or clusters. As case studies, this new code was applied to calculate 

excitation spectra of open-shell molecules and alkali metal clusters (lithium and 

sodium clusters). The use of excitation spectra to help determine equilibrium 

geometries is also discussed in the present work. 

Experimental techniques initially used for obtaining electronic and geomet-

ric structure information for metal clusters were ionization potentials [38, 39], 

molecular beam abundance [40, 41, 42, 43, 44], chemical reactivity [45], and po-

larizabilities [46]. These techniques only give indirect information. More direct 

means of structure determination, namely optical absorption spectroscopy, has 

also been carried out on small metal clusters in the gas phase, particularly metal 

trimers (lithium, sodium, copper, silver, and nickel, etc.) by laser-induced fluores-

cence [47, 48, 49, 50] and by multiphoton ionization [51, 52, 53, 54, 55, 56, 57, 58]. 

Nevertheless, these two experimental techniques failed for large clusters. It is be-

lieved the problem comes from insufficient resolution due to short excited state 

lifetimes [23]. However, the problem is alleviated by the two complementary ex-

perimental techniques of electron photodetachment [59, 60, 61, 62, 63] and pho-

todissociation [16, 64, 65, 66, 67, 68, 69] spectroscopies which yield information 

about negative ions and for cation/neutral clusters, respectively. Photodisso-

ciation spectroscopy was first performed for the sodium tetramer [67] and the 

lithium tetramer [68] by photodepletion. The spectra of large sodium clusters up 

to forty atoms have been obtained as well by the same technique at visible wave-

lengths [16, 64, 65, 70, 71]. High resolution spectra covering a large spectral region 

were also measured for large lithium clusters, up to eight atoms [12, 69] and large 

sodium clusters, up to twenty atoms [23, 72]. These experimental measurements 
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offer a good opportunity for theoretical assessments and interpretations. 

Theoretical calculations of optical spectra of alkali metal clusters have been 

carried out with different models. The classical model treats the metal clusters 

as spheroidal conductors with no atomic structure (droplets), and using surface 

plasma oscillations to describe the absorption [64, 65, 70, 73]. Quantum effects 

have been taken into account in the jellium potential model which usually assumes 

the clusters have spherical topologies [74, 75, 76]. Quantum molecular models con-

sidering the molecular nature of the clusters have been performed with effective 

core potential (ECP) [14, 15, 77] and with all—electron methods [14, 78, 79]. 

Quantum mechanical ab initio methods have been extensively used for stud-

ies of optical spectra of atoms [80, 81, 82, 83], molecules [84, 85, 86, 87, 88], 

clusters [89, 90], and nuclei [91, 92]. The simplest level of quantum mechani-

cal theory for studying electronic spectra is the Tamm-Dancoff approximation 

(TDA)—single excitation configuration interaction method (CIS) [93, 94, 95]. 

The TDA is the least computationally demanding of the presently and widely 

used methods for excited states. The computational cost of the TDA method 

scales formally as .10 (for full diagonalization), where N is the number of basis 

functions used in the calculation. Nevertheless, the TDA fails to describe the 

states which have significant contributions from double or higher substitutions 

and the accuracy of the excitation energy calculations in the TDA approach is 

not satisfactory for most cases (with a few exceptions) [96]. The time-dependent 

Hartree-Fock (HF) method [97, 98, 99, 100] is anoth.er  simple theory for treat-

ing excited states. Time-dependent HF lias more or less the same computa-

tional efficiency as the TDA, and the sum of the oscillator strengths satisfies the 

Thomas-Reiche-Kuhn (TRK) sum rule [101, 102] in the limit of a complete basis 

set. Both the TDA and the time-dependent HF usually overestimate excitation 

energies [103, 104]. This may be caused by missing electron correlation effects. 

Moreover, previous experience [33] has shown that the reliable quantum mechan- 
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ical treatment of electronic excitations in atoms, molecules, and clusters requires, 

in general, proper inclusion of static [105, 106] and dynamic [107] electron corre-

lation. Hence a suitable method for obtaining accurate excitation energies should 

include electron correlation. Methods including such electron correlation are the 

configuration interaction (CI) method [108, 109, 110] (e.g. the multiple-reference 

configuration interaction method (MRCI) [111], complete active space plus sec-

ond order perturbation (CAS-PT2) [112]), and density-function.al  theory. But 

the computational cost of the CI (e.g. MRCI) method increases rapidly (formally 

scaled as N' for double CI with full diagonalization) and the accuracy of cal-

culations decreases as the number of electrons increases [4]. Hence the CI (e.g. 

MRCI) method is limited to small molecules and small clusters. 

Kohn-Sham DFT [26, 113, 114] is structurally similar to the Hartree-Fock 

method, but it contains the electron correlation effects which Hartree-Fock misses. 

The computational simplicity of Kohn-Sham DFT with its effective potential 

based on the charge density which is a function of only three spatial coordi-

nates and spin provides a comparable or even lower computational cost (gener-

ally scaling as N 3 ) compared to the conventional ab initio methods (e.g. HF, 

MRCI, etc). Furthermore, Kohn-Sham DFT lias become a powerful and success-

ful state-of-the-art computational tool in the quantitative treatments of time-

independent problems (ground state properties) of many-electron systems, such 

as atoms, molecules, metal clusters, complex systems, solid state, and nuclear 

physics [26, 27, 115, 116, 117, 118, 119, 120, 121, 122], even very large sys-

tems [123, 124]. The ground state properties calculated from DFT with the 

currently best functionals are usually in very close agreement with configuration 

interaction calculations [125, 126] although there are some exceptions. These ad-

vantages of Kohn-Sham DFT and its successful, impressive, and accurate treat-

ments of stationary systems provide a stimulus for further applications to the 

interesting area of time-dependent problems. 
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There are a variety of traditional approaches in time-independent DFT 

for the calculation of excitation energies and oscillator strengths. The A self-

consistent field (ASCF) procedure [10, 26, 127, 128, 129, 130, 131, 132, 133, 134] 

is traditionally used for the calculation of excitation energies. This procedure 

takes the energy difference of ground state electron configuration DFT SCF en-

ergy and the excited state electron configuration DFT SCF energy as the excita-

tion energy. It was simplified by Slater [135, 136] who proposed a transition state 

approximation for calculating ASCF energies. Gunnarsson and Lundqyist [137] 

have shown how ground-state DFT can be rigorously extended to treat the lowest 

excited states of each symmetry. However, using time-independent Kohn-Sham 

DFT to tackle excited state properties is notoriously difficult [138, 139]. The 

second Hohenberg-Kohn theorem is only applicable for the ground state and for 

lowest states of a given symmetry, hence, the DFT ASCF method lacks a solid 

formal justification. Moreover, excited state DFT SCF calculations can some,  

times run into difficulties, such as convergence problems, symmetry breaking, 

and the multiplets may have the same charge density, but different energies, etc. 

Theophilou [140] has given a rigorous extension of DFT for excited states 

by the subspace theory. Gross, Oliveira, and Kohn [141, 142, 143] gave a more 

general treatment by ensembles, and they have used an ensemble exchange-

correlation potential to calculate the excitation energies. This approach has also 

been studied by Gàspàr [144] and by Nagy [145, 146, 147]. A fundamental diffi-

culty with the extensions of ground state DFT for the excited states based on the 

Rayleigh-Ritz principle for the lowest eigenstate of each symmetry class [128, 129, 

137] or based on a variational principle for ensembles [141, 142, 143, 148, 149, 150], 

is that the exchange-correlation energy functionals may depend on the symmetry 

labels of the excited state or on the particular ensemble. The explicit form of the 

excited state exchange-correlation functionals remains unknown. Furthermore, it 

has been found that the excitation energies calculated by the ensemble technique 

vary depending on the value of the weighting factors used [28, 151, 152]. As a 
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result, subspace theory is not yet a viable candidate for practical calculations. 

Time-dependent DFT provides a rigorous alternative for calculating excita-

tion spectra. The generalization of Kohn-Sham DFT to time-dependent DFT has 

been exploited by many authors [29, 30, 138, 153, 154, 155, 156, 157]. The origi-

nal model of time-dependent DFT dates back to the time-dependent Thomas-

Fermi model proposed by Bloch [158] as early as in 1933. The first signifi-

cant steps towards a time-dependent DFT were taken by Peuchert [159] and 

by Zangwill and Soven [160]. They were based on the analogies with the time-

dependent HF approach and used the linear response of the density to a time-

dependent external potential as the response of the non-interacting electrons to an 

effective time-dependent potential, and obtained the first time-dependent Kohn-

Sham equations. The adiabatic local density approximation was also first ap-

plied in the time-dependent DFT by Zangwill and Soven [160]. Important steps 

toward a rigorous foundation of time-dependent DFT were taken by Deb and 

Ghosh [155, 161, 162, 163] and by Bartolotti [154, 164, 165, 166]. They success-

fully proved the fundamental theorems for the time-dependent DFT using a set of 

restricted external potentials. Deb and Ghosh used a periodic potential (in time) 

as a time-dependent potential to formulate and to explore Hohenberg-Kohn, 

and Kohn-Sham type theorems for the time-dependent DFT, while Bartolotti 

used an adiabatic process. A theoretical breakthrough, giving more general and 

rather successful proofs of the fundarnental theorems (the Hohenberg-Kohn, and 

Kohn-Sham theorems) for time-dependent DFT was accomplished by Runge and 

Gross [156]. They used a time-dependent potential which can be expressed in a 

Taylor's series at initial time to show that the external potential is determined 

by the charge density up to a time-dependent spatial constant. This provides 

the theoretical justification for time-dependent DFT and places time-dependent 

DFT in a parallel footing to time-independent DFT. This also paves the way 

for time-dependent DFT to tackle many domains which involve time-dependent 

fields, such as dynamic response properties (dynamic or frequency-dependent po- 
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larizabilities and hyperpolarizabilities, etc.), electronic excitation energies and 

oscillator strengths, photoionization cross sections, and the treatment of excited 

states. Detailed reviews of time-dependent DFT can be found in the litera-

ture [138, 139, 167, 168, 169]. 

Time-dependent DFT provides a practical and useful method for calculat-

ing electronic spectra while still maintaining the electron correlation and compu-

tational simplicity of time-independent DFT. Indeed, the applications of time-

dependent DFT in the calculations of the dynamic response properties have been 

reported in the literature for atoms [170, 171, 172, 173, 174, 175, 176, 177, 178, 

179, 180, 181, 21, 20, 139], molecules [182, 173, 183, 33, 22, 184, 34, 36, 37], clus- 

ters [75, 185, 186], metallic surfaces [187, 188, 189], bulk metals [190, 191, 192], 

bulk semiconductors [176], and solids [177]. The use of time-dependent DFT to 

calculate excitation spectra is a relatively new feature in quantum chemistry pro-

grams. The first excitation energy calculations with time-dependent DFT were 

done numerically for some atoms using poles of the Kohn-Sham response func-

tion by Petersilka, Grossmann, and Gross [21]. Petersilka and Gross [193, 20] 

calculated excitation energies of atoms with spin multiplets. The atomic applica-

tions of time-dependent DFT made use of the spherical symmetry of the system 

to simplify the calculations. This prevents the algorithm from being applied 

to molecular systems. Many authors have tried to take advantage of atomic-

like algorithms for an extension to the molecular calculations by using a jel-

lium model [194, 195, 196, 197, 198], sphericalized potentials [186, 199, 200], and 

single-center expansions [182, 173]. Levine and Soven [182, 173], using a single-

center formulation, calculated photoemission spectra of some small closed-shell 

molecules, but this single-center expansion is not suitable for the general treat-

ment of multicenter molecules. Dynamic molecular properties were also explored 

with time-dependent DFT. Van Gisbergen, Snijders, and Baerends [31, 201, 202] 

have calculated the frequency-dependent polarizabilities, frequency-dependent 

hyperpolarizabilities, and van der Waals coefficients. The dynamic hyperpo- 
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larizabilities were also calculated by Zangwill [203] and by Senatore and Sub-

baswamy [204]. However, the first real molecular time-dependent DFT algorithm 

was only recently proposed by several authors [29, 30, 31, 32, 33, 22, 34, 35, 36, 37]. 

This molecular algorithm has been programmed in a time-dependent DFT pro-

gram, deMon-DynaRho (densité de Montréal—Dynamic Response of Rho, Rho 

here stands for the charge density) which has been recently developed in the 

Salahub group [29, 30]. The deMon-DynaRho program uses a real molecular 

time-dependent algorithm. It is based on the idea of using the poles and the 

residues of the dynamic polarizability to calculate excitation energies and oscilla-

tor strengths. Multicenter Gaussian expansions and auxiliary basis functions are 

used in the program. But it was only available for treating closed-shell molecules 

prior to the present work. 

Bauernschmitt and Ahlrichs [33] have studied excitation energies of closed-

shell molecules with several exchange—correlation functionals (local, gradient—

corrected and hybrid functionals), they found that the three parameter Lee-Yang-

Parr (B3LYP) functional proposed by Becke [205] gives the best excitation en-

ergies, and the time-dependent local density approximation gives better results 

than the traditional ab initio methods (TDA and time-dependent HF), but the 

excitation energies calculated by time-dependent DFT (e.g. local density approx-

imation) are systematically underestimated, with errors of about 0.4 eV. They 

suggested that the problem caused may corne from the use of the adiabatic ap-

proximation [33, 22]. Casida et al. [183] have shown that the problem actually 

arises from the incorrect behavior of the exchange-correlation potential, leading 

to an ionization continuum lying at too low energy. Large molecules have been 

treated in time—dependent DFT. Yabana and Bertsch [36] have studied excita-

tion energies of C60 using a basis—set—free grid method. Stratmann, Scuseria, 

and Frisch [37] have treated excitation energies of the large closed-shell molecule 

C70 using a minimum basis set. Auxiliary functions offer the possibility of treat-

ing larger systems with much more reasonable basis sets than minimum basis 
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set. This auxiliary basis set expansion technique [206] has been used with time-

dependent DFT to calculate the excitation energies of some small closed-shell 

molecules by Casida et al. [29, 207] and by Bauernschmitt, Hâser, Treutler, and 

Ahlrichs [22]. The use of auxiliary basis set expansions reduces the computational 

costs considerably and makes it possible to calculate relatively large molecules. 

Bauernschmitt, Hâser, Treutler, and Ahlrichs [22] have calculated excitation en-

ergies for large molecules such as C78 and CdioSe4(Se H )12(PH3)4. Nevertheless, 

all of the above molecular calculations are limited to closed-shell molecules. The 

time-dependent DFT study of excitation energies of open-shell molecules has only 

recently been reported in the literature [1], but only for the lowest two excitation 

energies and without oscillator strengths. The time-dependent DFT calculations 

of excitation spectra (please note that not only excitation energies are considered 

here, but intensities are also considered here) of open-shell molecules have not 

been found in the literature. Since open-shell molecules are very important in 

chemistry and astrophysics, it is the time for time-dependent DFT to be further 

developed for open-shell molecules. 

This project extends time-dependent DFT to treat open-shell systems for 

excited state properties. The time-dependent DFT for open-shell systems is 

coded in the version 2pX of the program deMon-DynaRho [208]. The present 

modification and implementation of the time-dependent DFT provides a unique 

practical molecular time-dependent DFT code capable of treating excited state 

properties for open-shell molecules or clusters. As applications, this new code, 

version 2pX of the deMon-DynaRho, is employed to calculate excitation energies 

and oscillator strengths of open-shell molecules and alkali metal clusters (lithium 

and sodium clusters) from the dimer up through the hexamer. With the exception 

of the lowest two excitation energies (without oscillator strengths) of a few open-

shell small molecules which recently appeared in the literature [1], the present 

all-electron calculations of excitation spectra (excitation energies and oscillator 

strengths) of open-shell small molecules and alkali metal clusters (the lithium 
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and the sodium clusters) are the first time-dependent DFT studies reported in 

the literature. The present work also uses the model core potential (MCP) to 

perform the time-dependent DFT calculations of electronic excitation spectra for 

the sodium clusters from the dimer up to the hexamer. The quality of the MCP 

used in the present study is first assessed for ground state properties against 

the all-electron calculations of sodium cluster geometric structures, vibrational 

frequencies, binding energies, and ionization potentials with the LSDxc approx-

imation and gradient-corrected functionals, namely, the 1988 gradient-corrected 

exchange functional of Becke [209] plus the 1986 gradient-corrected correlation 

functional of Perdew [210] (B88x+P86c), and the 1986 gradient-corrected ex-

change functional of Perdew and Wang [211] plus the 1986 gradient-corrected 

correlation functional of Perdew [210] (PW86x+P86c); and second assessed for 

excited state properties against the all-electron calculations of excitation spec-

tra of sodium clusters with the local spin density approximation (LSDxc) and 

the van Leeuwen and Baerends [212] exchange-correlation functional (LB94xc). 

The accuracy of the calculations of time-dependent DFT is determined by four 

factors, namely it depends on the choice of the orbital basis sets, auxiliary basis 

sets, grids, and exchange-correlation functionals. To ensure the accuracy of the 

present studies, several orbital and auxiliary basis sets have been examined. It 

is found by the present work that excitation energy calculations require a cer-

tain number of diffuse and polarization basis functions in order to be flexible 

enough to describe excited state properties; in contrast, excitation energies are 

less demanding on the auxiliary basis set. The normal auxiliary bases employed 

in ground state property calculations are good enough for the excitation energy 

calculations. The choice of the grids for the excitation energy calculations is also 

tested. It seems that carefully choosing a grid can avoid symmetry breaking in the 

assignments. The exchange-correlation functional plays a significant role in the 

excitation energy calculations. The present calculations employ the LSDxc func-

tional and the LB94xc functional, respectively, at the SCF-step, combined with 
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the time-dependent local spin density approximation (TDLSDxc) at the post-

SCF step (these functionals used at the SCF step and at the post-SCF step are 

referred to as LSDxc/TDLSDxc and LB94xc/TDLSDxc functionals). It can be 

seen from this work that low excitation calculations with the LSDxc/TDLSDxc 

functional give better results than the LB94xc/TDLSDxc functional does due to 

the deficiency in the short range behavior of the LB94xc functional. But for the 

high excitation energy calculations the LB94xc/TDLSDxc functional gives better 

results, since the LB94xc functional possesses the corrected long range behavior. 

The present work shows that electron exchange and correlation are important 

considerations for accurate calculations of excitation spectra. The exchange ef-

fects on the excitation energies of sodium trimer can be as large as 1.0 eV, while 

the correlation effects on the excitation energies can be as much as 0.5 eV in the 

sodium trimer calculations. This indicates that an appropriate treatment of the 

exchange and correlation effects plays an essential role for calculations of elec-

tronic spectra. This study also shows that the time-dependent DFT calculations 

of excitation spectra are much closer to the experiments than those of RCIS and 

UCIS. The accuracy of time-dependent DFT results are very competitive to the 

CI results. 



CHAPTER 2 

THEORETICAL BACKGROUND AND 

METHODOLOGY 

2.1 TIME—DEPENDENT PERTURBATION THEORY 

In electronic optical spectroscopy, a time-dependent electromagnetic field 

is applied to a molecule which is initially in its ground stationary state. This 

perturbation leads to a dynamic response of the charge density in the molecule 

which is typically described by response properties, such as the dynamic polar-

izability. Higher frequency perturbations can also lead to electronic excitations 

which involve electronic transitions to different excited electronic energy states. 

In order to understand these transitions, the different electronic energy states 

and their changes with time have to be studied by solving the time-dependent 

Schrödinger equation. This is harder to solve than the time-independent equa-

tion. One commonly used approach to solve the time-dependent Schrödinger 

equation is time-dependent perturbation theory which is also the basis for time-

dependent response theory. The objective of this section is to review this basis in 

the form used in this thesis. Of course, a more detailed description would include 

nuclear motion, such as vibrations and rotations, but this is beyond the scope of 

the present work. 
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2.1.1 TIME—DEPENDENT PERTURBATION THEORY 

A molecule in its ground stationary state satisfies the time-independent 

Schrödinger equation, 

fe)e) = 	. 	 (2.1) 

Introducing a time-dependent applied electromagnetic field, Aft(t), leads to a 

time-dependent Schrödinger equation (atomic units are used through.out this the-

sis, unless otherwise mentioned), 

iallf(t) =fi(t). 
Ôt 

where fi = f/(0 ) )fi(t), and A is an order parameter used as a measure of the 

strength of the perturbation. If the molecule is in a stationary state, then 

111 7,(t) = lleexp(—iEnt). 	 (2.3) 

where le) is a time-independent unperturbed wave function and exp(—i.Ent) is an 

oscillatory phase factor. If A = 1, the time-dependent perturbation is completely 

turned on. 

The time-dependent perturbed function 	may be found by expanding it 

in time-dependent unperturbed wave functions (time-independent unperturbed 

wave functions times their corresponding oscillatory phase factors) which form a 

complete set, 

E ck(t)exp(—iEkt)W5° )  . 	 (2.4) 

The expansion coefficients ck(t) depend upon the form of the perturbation fi (t)

(note that they depend on time) and upon the initial state le). These expansion 

coefficients can be obtained by substituting the above equation (Eq. (2.4)) into 

the time-dependent Schrödinger equation (Eq. (2.2)). It is straightforward to 

(2.2) 
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obtain 

z. E ack(t)  
at 	

exp(—iEkt)W,°)  = E ck(t)exp(—iEkte (t)I.F,°) 	(2.5) 

By using the orthonormality relation (11/ 7°)111J(k°) ) = Smk  and following some math-

ematics, the above equation becomes 

acon'.  t(t)  = (i)-1  E ck(t)exp(iwmkt)( ie VI'  le) , 
	(2.6) 

where 

Wmk = (Em - Ek) 	 (2.7) 

are the excitation frequencies of the system. They are real and positive for exci-

tations to bound states. 

It is Eq. (2.6) which will be solved perturbatively. Expanding the Cm(t) as 

a power series in A, 

cm (t) = 	(t) + cg )  (t)A + c(t)2 +.... 	 (2.8) 

Substituting this power series into Eq. (2.6), and separating the different orders 

of A, leads to the following relations: 

to zeroth order (A°), 

  

n  (2.9) 

  

to first order (A1), 

ac(1)(t)1 	(0) 	0 	(o) 	. 
mat 	= (z)- 	ck (t)(1n.)1H 	>exp(zw,,,i) . (2.10) 

The zero-order equation [Eq. (2.9)] implies that the zero-order coefficients c!))(t) 

are independent of time. Physically the system remains in its initial stationary 

state (n) in the absence of a perturbation. Hence, 

(t) = 45 n m • 	 (2.11) 

This can be used in the first-order equation [Eq. (2.10)] with the understanding 

that the perturbation is only turned on at time t = 0, to obtain the first-order 
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coefficients, 

c2 )(t) = (i)-1  f (11elfli  (t1 )1111,,°) )exp(iw,„ti )dti 	(2.12) 
0 

Hence through first-order, 

kif(t) = ecI)(t) el)(t) 

= 	.,°)exp(—iEnt) 

+E(i)-1  f [(iP(k°) 	Iljt0))exP(iwkrit)1dts exp(—iEkt)e)  . (2.13) 
0 

where the zero-order wave function is 

w(0)(t) 	Edk())(t)Ip(0)exp( -iEkt) 

	

= 	in° )exp(-iEnt) 	 (2.14) 

and the first-order wave function is 

lif(1)(1) = Eci,i)(t)ke,°)exp( œiEkt) 

t=t, 

= E(i) 1  j [(4f;°)IftilenexP(iwknt)ldtexp(—iEkt)W1:3). (2.15) 
t=0 

The probability of finding the system at time t in the Mth  stationary state 

of the initially unperturbed system is, through first order, 

1( lie Mt)) 12  -= 1 / dii(e:,)11/"(ti)le)))exP(iw.riti)12 	(2.16) 

for m 	n. This, of course, is just the probability of observing the excitation 

n —› m. 

2.1.2 APPLICATION TO PHOTOABSORPTION 

When a molecule is exposed to electromagnetic radiation, the perturbation is 

the interaction of electrons of the system with an electric field E(t) and magnetic 
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field B(t). In particular, light is a transverse electromagnetic wave. For light 

traveling in the z direction and polarized in the (x,y)—plane, the electric field E(t) 

and the magnetic field B(t) are given by 

E(t) = iEs(t) 

= iEx°  cos(27vt — 271) 
À 

(2.17) 

B(t) IBy(i) 

= j›.13y°  cos(27vt — 271) 
A 

(2.18) 

where Es° and 	are the amplitude of the electric field E and the magnetic field 

B, respectively. i and j are unit vectors. A is the wavelength which is the distance 

between two successive crests of E. v is the frequency which is the number of 

crests of E that pass a fixed point in space each second. The relation of the 

frequency v and the wavelength A is 

(2.19) 

where c is the speed of light (c = 2.9979 x lecml sec). 

The contribution of the electric field E and the magnetic field B to the 

interaction (time-dependent perturbation) can be estimated from the force F 

acting on a particle with charge q and velocity v, 

F = q(E v x B) . 	 (2.20) 

Since the magnitudes of the electric field and the magnetic field of the electro-

magnetic radiation are related by the speed of light [213], 

= cBe) , 	 (2.21) 

the ratio of the magnetic force to the electric force is v /c. For the system of 

concern (electrons in atoms or molecules), the ratio v/c is a small number, (e.g. 

for the electron in the ground state of the hydrogen atom, G v2  > /c = 1/137). 
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This is also the order of magnitude for valence electrons of other atoms. Therefore 

the magnetic field contributions to the perturbation can be ignored, and one can 

focus on the electric field contributions. i.e., 

F = qe 	 (2.22) 

When the electric field points in the x direction, the force is 

= qe, . 	 (2.23) 

The interaction potential which corresponds to Ulis force can be derived from the 

following relation, 

(2.24) 

By integration of the above equation, the interaction potential V is obtained as 

V = —qEs x 

(2.25) 

Extension to a system with several particles (each particle with the charge q) in an 

electric field pointing in the x direction gives the perturbation term (interaction 

potential) 

—es° E qixi cos(27rvt 
2R- 	) . 	 (2.26) 

For a transition between electronic states in an atom and a molecule, the wave- 

lengths A lie in the ultraviolet region (A 	103.21) which is usually much larger 

than the size of the system (about 1.21.). As far as the electrons confined to move 

within the molecule are concerned, the spatial variation of the radiations electric 

field is negligible, 
zi  
—
A 

0 (2.27) 
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and the perturbation becomes 

= 	—Ex°  cos wt 	qi xi  

= 	—eix  cos wt , 	 (2.28) 

where w = 27rii is used, and itx  = Ei  qi xi  is the x component of the system dipole 

moment. Substituting the identity 

1 
cos coi = —

2 
[exp(iwt) exp(— iwt)] 	 (2.29) 

into Eq. (2.28), the perturbation becomes 

Ñ  = —E° ei4 [exp(iwt) + exp(—iwt)] , 	 (2.30) 

Substituting this expression for the perturbation into Eq. (2.12), the coefficients 

c2)(t) become 

c(t) = —jE 	 + w)ti ] + exp[i(wmn  — w)ti  khi  . (2.31) 

Integration gives 

c )(t) 	() slt°)  { 
exp[i(w„,,, w)t]  — 1 

2 = t?)  i(wmn  + w) 
exp[i(w„ — w)t]  —  1 

} • 	(2.32) 
i(wmn  — w) 

From Eq. (2.32), the probability of a transition from state n to state m is maxi-

mized when 

Wmn = W • 
	 (2.33) 

The transition probability is not infinite here because the second fraction in 

Eq. (2.32) is finite in the limit 	— c4.)R-2, 0) 

exp[i(wmn, — w)t]  — 1 	 1 + i(cemn, — cv)t — 1 lim 	 lim 	  
Cal--+Wmn 	i(Wmn 	C4.1) 	 Ltl-Laernn, 	

i(WrIZ72. 

	

= t. 	 (2.34) 

This indicates that the probability of a transition from state n to state m is 

directly proportional to the exposure time t. Since the second term in Eq. (2.32) 
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dominates at wm„ — w Re, 0, the first fraction can be neglected in absorption 

spectra. Moreover, the first term is rapidly oscillating and so it will average to 

zero over any significant time interval. The probability of the transition from 

state n to state m depends also on the dipole moment integrals in electric-dipole 

transitions, 

d,,, = (III.,?,)  1 eis  1 e) . 	 (2.35) 

If the dipole moment integrals dm, vanish, the transition between state n and state 

m is forbidden. The conditions which lead to nonzero dipole moment integrals 

are called selection rules, these rules specify the allowed transitions. More details 

are given in Ref. 214, 215. 

2.2 DENSITY-FUNCTIONAL THEORY 

Density-functional theory (in its original time-independent form) has become 

an accepted computational tool for the description of the ground state properties 

of atoms, molecules, and solids [26, 27, 28]. The computational simplicity of 

the Kohn-Sham formalism and the availability of reliable exchange-correlation 

functionals allow accurate calculations even for large systems [123, 124]. A brief 

review of the density-functional theory is given here, detailed reviews can be 

found in the literature[26, 27, 216, 118, 120, 217, 218, 28]. 

2.2.1 HOHENBERG—KOHN THEOREMS 

Traditional density-functional theory (DFT) is based on two theorems of 

Hohenberg and Kohn [113] which indicate that the N—electron wave function, W, 

may be replaced by the charge density, n, as the foundamental quantity of an 

electronic structure theory. These theorems and their proofs are reviewed in this 

section. 
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The key to the Hohenberg—Kohn theorems is the recognition that the total 

energy can be divided into two parts, one containing the external potential and the 

charge density and another independent of the external potential. In particular, 

Hohenberg and Kohn considered a non-relativistic N-electron system where the 

electrons are moving under the influence of a local external potential, -1.7. The 

Hamiltonian of this system can be written as, 

(2.36) 

where ji  is the kinetic energy operator, 

= — 
1 

V 2  3 (2.37) 

iat is an external potential operator, normally just the interaction between the 

nuclei with charges Za  and the electrons, 

-Çlext — v(r.i ) 

za  
—EE 

j a Ra  — ri  
(2.38) 

this external potential may also include an additional applied electric field. Û is 

the electron-electron repulsion operator, 

•• 	1 	1 
(2.39) 

ij  ris  

The total energy of the system is the expectation value of the system Hamiltonian, 

E[n] 

= 	dr]. 	dr2do-2  • • • drndcrn  W (ri , 	, r2, a2, • • • ,rn, en) 

x 1/(ri , 	r2, u2, • • • , rn, crn)W(ri, 	r2, 0-2, • • , 	un) . (2.40) 

Since the expression for the electronic kinetic energy and electron-electron re-

pulsion energy are identical for any N-electron system, these two energies may 

be combined as a new functional, the so—called "universal functional", F[n], of 
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Hohenberg and Kohn. The remaining electron external potential energy can also 

be written as a functional of the electron density. Thus the total energy can be 

rewritten as 

E[n] = (W11 + MT) + ( TAx.t iiP) 

= F[n]+ f drn(r)v(r) , 	 (2.41) 

where n(r) is charge density which is defined by the following equation 

n(ri) = f • • • f dr2dr3 • - • drne(ri, r2 )  • • • 5 rn)T(r1,r2, • • • , ru) • 	(2.42) 

Hohenberg and Kohn [113] pointed out in their theorem (the first Hohenberg-

Kohn theorem) that the external potential, Vest, is determined by the knowl-

edge of the electron density, n(r), up to a trivial additive constant. This first 

Hohenberg-Kohn theorem can be proven by a reductio ad absurdum procedure 

(seeking a contradiction). Suppose that there exists another external potential, 

v(r), which is different from the original external potential, v(r), 

v(r) 	v(r) + const. 	 (2.43) 

and it gives the same charge density, n(r), as the original external potential. 

In other words, there are two different external potentials, v(r) and v(r), lead-

ing to two different Hamiltonians, fi and fii  and consequently to two different 

ground state wave functions, IF and illi , corresponding to the two different ground 

state energies, E[n] and en]. According to the Rayleigh-Ritz variational prin-

ciple [219], the total energy of the system,E[n], obeys the equation, 

(iI11 11) 

(1/  Vile) 

(Wi lifil/) + Will -If le) = 

E[n] + I drn(r)[v(r) - v(r)]. 	(2.44) 

Similarly, the total energy, E[n], can be written as, 

E l [n] = (IP` Ifi l  Hi) 
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< (1111]111W) 

= 011q1 ) ( WIff 

= E[n] 	drn(r)W(r) — v(r)] 
	

(2.45) 

Summing over Eq.(2.44) and Eq.(2.45), the result is an obvious contradiction, 

E[n] 	[n] < E[n] E[n], 	 (2.46) 

th.erefore, the conclusion can be drawn that the charge density of the system 

determines the external potential up to an additive constant. This means that 

if the electron density is fixed, then the external potential and, consequently, 

the system Hamiltonian, are uniquely determined. Therefore, all the observable 

quantities are also determined. Wilson [220] also pointed out that in a system 

without external perturbations, the cusps of the charge density give the positions 

of the nuclei, the nuclear charges can be gotten from the gradient of the charge 

density at the cusps, and the integration of the charge density determines the 

total number of electrons in the system. Hence, the density does determine the 

external potential in this instance. However, Wilson's argument is not obvious 

for a system with a general external potential. 

Hohenberg and Kohn pointed out that the exact charge density of the sys-

tem minimizes the total energy of the system which is a functional of the charge 

density. This is the second Hohenberg—Kohn theorem. It is also proven based on 

the variational principle. Suppose there is any trial charge density, ñ, which de-

termines the trial external potential, and consequently the trial system Hamil- 

tonian, ft, and the trial wave function, 	According to the variational principle, 

E[n] = (WV-11111) < (M-11 -4f) 

= F[n] 	drv(r)n(r) 5_ F[n] 	drv(r)h(r). 	(2.47) 

This is true only for the ground state. In practice, the charge density, n(r), at a 

known external potential, v(r), is obtained by minimizing the total energy of the 

system, but using approximate exchange—correlation functionals. 
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2.2.2 KOHN-SHAM THEORY 

The Kohn-Sham equation is the corner stone of practical density-functional 

theory. Kohn and Sham map the real system of interacting electrons to a fictitious 

system of noninteracting particles, with an effective potential. This fictitious 

system of noninteracting particles has the same charge density as that of the real 

system. 

Kohn and Sham rewrote the total energy of the real interacting particle 

system as 

E [n] = T8 [n] 	[n] Vest[n] T c [n] 

= 	T [n] U [n] T c[n] f drn(r)v(r) 	(2.48) 

where T5[ri] is the kinetic energy for the fictitious system of noninteracting parti-

cles, 

T[n] = 	- -21v2108.i), 	 (2.49) 

T c [n] is the kinetic energy difference between the exact kinetic energy of the real 

interacting system, T [n] , and the kinetic energy of the noninteracting system, 

s [n] , 

T c [n] = T [n] — T s [n] . 	 (2.50) 

The electron-electron repulsion energy, U [n] , and the difference of the kinetic 

energy, n[n], are rewritten as 

1 	n(r)n(i)  E [n]  
— r U [n] T c[n] = 	jj drdr 	i i 

[n] 	E s c[n] (2.51) 

which defines the electron exchange-correlation energy .E1 ,[n]. Note that this 

exchange-correlation energy includes the residual of the electron-electron repul-

sion energy minus the electron-electron Coulomb interaction energy and the dif-

ference of the true kinetic energy of the real system and the kinetic energy of the 
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noninteracting particle system. The total energy can then be rewritten as 

E[n] = T[n] + J[n] + Exc [n] + drn(r)v(r) . 	(2.52) 

According to the variational principle, the variation of the above total energy 

with respect to the charge density gives the Euler equation, 

E[n] 
-=- 

8n(r) 
bis[n] SJ[n]8E[n]  

+ v(r) 
6n(r) Sn(r) Sn(r) 
(51-1,[n] 
Sn(r) 

+ vj(r) v(r) v(r) 

ST  s [n] 
+ Vef f  (r) , 	 (2.53) 

6n(r) 

where the t is the electron chemical potential, veff (r) is the Kohn-Sham effective 

potential (also called Kohn-Sham potential), 

V e f f (r) = vj(r) 	v(r) 	v(r) , 

in which the vj(r) is the electron Coulomb potential, 

8J[n] 

	

vj(r) = 	 
Sn(r) 

	

— 	d
r 

n(ri)  

and v(r) is the electron exchange-correlation potential, 

6E[n]  
v(r) = Sn(r) 

and v(r) is the external potential. 

(2.54) 

(2.55) 

(2.56) 

The total energy of the system can also be written as a function of one 

electron orbitals, 

ett 

1 N e  

iE( 11)  i( r )F 210 i(r)) f drk,  ext( r )n( r )] 

1  f f drdr'n( r )n( r i)  + E [n] 
2 	Ir — r`l 

E[n] = 

(2.57) 
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Minimization of the total energy subject to the constraint of orbital orthonor-

mality leads to the famous Kohn-Sham equation, 

(-172  + veff )h 	€0,bi , 	 (2.58) 
2 

where the kinetic energy operator and the effective potential make up the Kohn-

Sham operator, 
pi(s = _ 172 _F veff.  

2 
(2.59) 

The Kohn-Sham equation indicates that the motion of the interacting electrons 

can be treated exactly the same way as for the noninteracting particle system. 

The electrons can be considered as if they move in the effective local potential, 

and the Kohn-Sham equation is exact if the effective potential is known exactly. 

The Kohn-Sham equation also includes all the effects of the correlations among 

the electrons of the system. These are some of the advantages of the density-

functional theory. Since the effective potential also depends on the charge density, 

the Kohn-Sham equation must be solved self-consistently. 

If the electron spin is considered, the spin-dependent total energy is 

1 slx )—,in  

2_,(071v2107) +J vezenme 
i=1 
n(f1)n(e2 )  de1de2 Ex.,[ni,  1 f 

J 2 J 	r12 

— 

(2.60) 

and the spin-polarized Kohn-Sham equation can be written as [221, 28] 

[--21V2  v'e-ff (r)1 	(r) = 6/b7(r), 	 (2.61) 

where the spin-polarized Kohn-Sham operator is 

PuKS  = --1  \ + V cer f  f  (r) , 	 (2.62) 
2 

and here a stands for spin up (a spin) and spin down (0 spin). The total charge 

density becomes the sum of the spin-up and spin-down electron densities, 

n(r) = nt(r) 	n1(r) 	 (2.63) 
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and the spin-polarized effective potential, v ff  (r), can be written as 

f  (r) = 	(r) 	/ dr
,  n (r! ) 	vx„ (r) , 	 (2.64) 

— r 

in which the spin dependent exchange-correlation potential, v ccr(r), is 

v(r) =8n(r) 	
(2.65) 

and the spin-polarized external potential, v,(r), may have two different parts of 

spin-up and spin-down external potentials dependent on the additional applied 

field (e.g. inclusion of certain types of magnetic field effects). Spin-polarized 

density-functional theory provides a better description of many systems, espe-

cially for open-shell systems, such as open-shell atoms, open-shell molecules, and 

open-shell clusters, etc. The spin-dependent density-functional theory is also ca-

pable of describing certain properties of a system in the presence of a magnetic 

field [221]. It also provides the possibility for electrons with different spin to have 

different spatial orbitals. 

The effective potential includes the Coulomb electron-electron interaction 

potential (the Hartree potential), the external potential (nuclear-electron attrac-

tion potential and possibly an applied perturbation), and the exchange-correlation 

potential. The latter is a functional of the charge density, but the exact practical 

form is unknown. The accuracy of density-functional theory calculations mainly 

depends on the quality of the approximation made for the exchange-correlation 

functional. 

2.2.3 EXCHANGE-CORRELATION FUNCTIONALS 

Density-functional theory is in principle exact. Unfortunately the exact 

formulation of the electron exchange-correlation functional is so far unknown. 

In practice, density-functional theory calculations have to be done with ap-

proximate exchange-correlation functionals. Various approximations character-

ize different schemes of density-functional theory and are of different accuracy. 
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Numerous proposed exchange-correlation functionals have been reported in the 

literature [222, 223, 224, 225, 226, 227, 228, 229, 230, 231], such as the lo-

cal density approximation [97, 223, 232, 233], gradient—corrected approxima-

tions (also called non-local approximations or generalized gradient approxima-

tions) [234, 235, 236, 210, 237, 211, 238, 239, 209, 240, 27] and weighted density 

approximations (WDA) [241, 242]. The simplest and the most commonly used 

exchange-correlation approximation [243] is the local spin density approximation 

(LSDxc). 

2.2.3.1 LOCAL SPIN DENSITY APPROXIMATION 

The LSDxc approximation was the first approximation used for the exchange-

correlation functional in density-functional theory. This approximation is based 

on the theory of the homogeneous electron gas in that it is supposed that an 

inhomogeneous system can be described locally as a homogeneous electron gas 

with density equal to the local density at that point in the inhomogeneous sys-

tem. The exchange-correlation effects in the homogeneous electron gas are well 

understood by now [243], and the exchange energy is known exactly. The specific 

forms of the exchange energy and correlation energy depend on the treatment of 

exchange and correlation used in the calculations of the homogeneous electron 

gas [115]. 

In the LSDxc approximation, the exchange-correlation energy may be writ-

ten as 

ELsp"[n I , nl] = j dr [n(r) esc(nI (r), n(  r))] 	 (2.66) 

where E„(ni'(r),77,1(r)) is the exchange-correlation energy density of a homoge-

neous electron gas with spin densities nT and nl. The exchange-correlation ener-

gies of the homogeneous electron gas have been accurately determined by Monte 

Carlo simulations [244] and various convenient parametrizations have been re-

ported in the literature [232, 226, 231]. The exchange-correlation energy can be 
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divided into the exchange (Ex ) and the correlation energy (E,), 

	

Ex , = Ex  + Ec • 	 (2.67) 

Since the exchange energy is the dominant component of the exchange-

correlation energy, it should be treated with more accuracy. For a homogeneous 

electron gas, the exchange energy can be written as 

Ex[nt, ni] = f dr[n(r)ex(721. , ni)]. 	 (2.68) 

The exchange energy density, ex(nT, ni), was first obtained by Dirac [97], 

es(nt, ni) = --
3(-3 )1i' E n- (01/3 	 (2.69) 
4 7r 	a  

The exchange energy density was also derived by Slater [245, 135], Gàspà.r [246], 

and Kohn and Sham [114]. Since they obtained the exchange energy density in dif-

ferent ways (e.g. Slater exchange was derived from the one-electron Hartree-Fock 

equations by averaging the Fermi hole and introducing the LSDxc approximation, 

Gàspàs made these approximations in the Hartree-Fock total energy expression 

and then appied the variation principle, yielding the exchange potential), their 

expressions differ by a constant factor [115]. This constant factor is used as a 

semiempirical parameter in the X,,, method [136]. 

The correlation energy functional 

Ec[nt, ni] = Exc[nT, ni] — Ex  [nl‘, ni] 	 (2.70) 

is more difficult to obtain. The exact analytical form is unknown even for the 

homogeneous electron gas. Approximations have to be used for the correlation en-

ergy (density). The most widely used correlation energy density is from the work 

of Vosko, Wilk, and Nusair (VWN) [232]. It is a Padé approximate parametriza-

tion of Ceperley and Alder's accurate Greens function Monte Carlo calculations 

for the homogeneous electron gas [244]. The VWN correlation energy density is 

given as the following formula, 

f ( . )  ec(rs , e) , E(r) + a(7.,)[
f

„
(0)

][i + e(r 8)0 , (2.71) 
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where 

and 

in which 

and 

where 

and 

f() 

r, = ()113 , 

- 2] , 

(2.72) 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

47rn 
nt — ni 	ni.  —721  

n 
1 

+ (1 - 4) 4/3  ---- 2(2V3 - 1) [(1 + 4) 4/3  

f" (0) 	1, /3(7-3 ) = [E(rs ) — e(2(rs)] a(r
5 ) 

a(r5 ) = A, ln r s  + Cc, , 

1 
= — 	, A, 37r 2 

ln(167r/a) — 3 + (ln R)„, cc, = 	 , 372 

(ln li)„ = 0.531504, 

a = (4/97)1/3 . 

The para- and ferro-magnetic state correlation energy densities, e°,(x) and cic(x), 

are given by 

coc,i(x)  _ 

(2.81) 

where x =- r.1,I2, X(x) is expressed as 

X(x) = x 2  + bx + c, 	 (2.82) 

and Q = (4c — b2 )112 , xo  is the root of the expression, (1 + bi x + b2x2  + b3x3 ), 

A, xo ,b, and c are parameters either equal to A = 0.0621814, xo  = —0.10498, b = 

3.72744, and c =-- 12.9352 in the case of spin unpolarized [(x)] or equal to 

x 2 	 bX0(x X0)2  
A {ln 

X(x) 
+ 

2b 
Q 

tan-1  Q 	 -- 
2x+ b X(x0) 

[ln 
 X(x) 

+ 	
2(b H- 2xo)  tan-i  Q  

2x + bil , Q 



30 

A = 0.0310907, xo  = —0.325000, b = 7.06042, and c = 18.0578 in the case of spin 

polarized [0,- (x)] by fitting to the results of Ceperley and Aider. This functional 

is believed to represent closely the limit of the LSDxc approximation. 

It is well—known that the correlation energy in the LSDxc approximation is 

normally overestimated by a factor of 2 [210] and the sign of the error in exchange 

energy is opposite to that of the correlation energy, which is underestimated by 

about 10% [209]. Until now there is no rigorous way to correct these inherent er-

rors. Nevertheless, these two errors are believed, in practice, to cancel each other 

in the applications of the LSDxc approximation. Reasonable accuracy should be 

obtained for systems with the density varying slowly (such as some metals), but 

not for the systems with the density varying rapidly (such as molecules) [26, 27]. 

However, although it underbinds the core electrons in an atom and overbinds the 

atoms in a molecule or solid, the satisfying results for many properties of different 

systems (even for molecules) have been obtained by the LSDxc approximation and 

some successful applications of the LSDxc approximation to electronic properties 

of the complex systems and solid state systems have been reported [115, 226], 

including geometric structures and vibrational frequencies, but the LSDxc ap-

proximation poorly describes binding energies, dissociation energies, hydrogen 

bonds, negative ions, and properties which are sensitively dependent on the be-

havior of the exchange-correlation potential [247, 248, 216, 249, 250, 212, 28]. 

The reasons behind these poor descriptions may come from the deficiencies of 

the LSDxc approximation, in particular, it may come from the imperfect cancel-

lation of self-interaction effects, which leads to the incorrect asymptotic decay of 

the local density exchange—correlation potential [251, 212]. 

There are some other local approximations also, such as the Gombàs—Lie—

Clementi approximation [252, 253], and the local Wigner correlation functional 

parametrized by Wilson and Levy [254], that of Lee and Parr [255], and that of 

Siile and Nagy [256]. 
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2.2.3.2 BEYOND THE LOCAL SPIN DENSITY APPROXIMATION 

To improve the LSDxc approximation, the inherent errors of the LSDxc 

approximation have to be corrected. There are several alternative approaches 

already proposed to improve the LSDxc approximation in the literature [257, 235, 

258, 236, 211, 210, 237, 259, 209]. The generalized gradient approximation (GGA) 

is the most commonly recognized approach to improve the LSDxc approximation. 

The GGA is based on the theory of the inhomogeneous electron gas and on the 

analysis of the exchange-correlation hole and takes into account the gradient of 

the density. 

The exchange-correlation energy at the GGA can be written as 

KcGA  [nt, nl] = f dr f[nI(r),n1(r), Vnt(r), Vnl(r)] . 	(2.83) 

The GGA was originally constructed by Langreth and coworkers [257, 235] using 

a cutoff of the spurious small wave vector contribution to the Fourier transform 

of the second-order density gradient expansion for the exchange-correlation hole 

around an electron [260]. The exchange energy construction is believed to be 

a major source of the errors in the LSDxc approximation. In the GGA it is 

constructed with the ansatz, 

eGA ,_ )113 f drn4/3(r)FGGA [s(r)] , 
4 ir 

where the scaled density gradient, .s, is 

IVn(r)1  
s(r) = 

2kF(r)n(r) . 

The local Fermi wave vector, kF , is 

(2.84) 

(2.85) 

kF(r)  (37277,(0)1/3. 	 (2.86) 

Perdew and Wang [211] have based their exchange functional on the gradient 

expansion of the exchange hole with a real space cutoff of the spurious long-

range contributions to guarantee that the exchange hole be negative everywhere 
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and represents a deficit of one electron. They proposed the explicit form for the 

( 8 ), 

Fer, -e6s(s) = (1 + 1.29632  + 1434  + 0.236 )1/15 . 	(2.87) 

Becke [209] emphasized reproducing the correct asymptotic behavior of the ex-

change energy density and proposed a one parameter exchange energy functional, 

EGGA = ELSDsc 
B88x 	x 	— 13 E f drn4/3(r) 	  

1 + 6o(r)sinh-lx,(r) 	
(2.88) 

where x, is the dimensionless ratio, 

IV4n3,(r) xu(r)  = 	1 (2.89) 
nu/  (r) 

and 13 is a constant parameter which is known from fitting the exact Hartree-Fock 

exchange energies of six noble gas atoms, helium through radon, with a value of 

= 0.0042a.u. 

The correlation error of the LSDxc approximation in molecules is believed 

to come primarily from the part of the correlation between electrons of the same 

spin [261, 216], since the correlation between electrons of the same spin in finite 

systems is much smaller than that in the homogeneous electron gas. A few ways 

have been proposed [261, 262, 210, 237] to overcome the drawback of the LS-

Dxc approximation. Stoll and coworkers [261] have proposed a correlation func-

tional which has eliminated the correlation between electrons of the same spin. 

Perdew [210] also proposed a correlation energy functional based on the work of 

Langreth and coworkers [257, 235, 258, 263], which includes inhomogeneity effects 

beyond the random-phase approximation, 

Ec[nT, 	= 	drn(r)eLsDxc(nI(r),n1(r)) 

f dr el  e-4> (r)C[n(b f r)]1Vn(r)12/n4/3(r) , 	(2.90) 

where 

d = 2113  E l  + 9/3 + [1-2 	]5/3}1/2  2 
(2.91) 

FGGA function, 
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defines the spin polarization with e = (nT - n1)/n, and n = nt + ni. Here .1) is 

given as 

(2.92) 

and the cutoff parameter,:f = 0.11, is obtained by fitting the exact correlation 

energy of the neon atom. The correlation energy gradient coefficient, C(n), is 

0.002568 -I- ars  + 0rs2  
C(n) = 0.001667 +  	(2.93) 

1 + yrs  4- 87-,-F 1040r 

in which n = (47rrs3/3)-1  and a =- 0.023266,0 =- 7.389 x 10-6,7 = 8.723, and 

8 .= 0.472. When Perdew's correlation functional is combined with Becke's [209] 

exchange functional, it is normally called the Becke-Perdew exchange-correlation 

functional (B88x-FP86c). When Perdew's correlation functional is combined with 

Perdew and Wang's [211] exchange functional, it is usually called the Perdew-

Perdew exchange-correlation functional (PW86x+P86c). 

The other commonly used correlation functional is from the work of Lee, 

Yang, and Parr [240]. Lee, Yang, and Parr based their work on that of Colle and 

Salvetti [264, 265, 266, 267, 268]. They converted the correlation energy formula 

of Colle and Salvetti (in which the correlation energy density is expressed in terms 

of the electron and a Laplacian of the second-order Hartree-Fock density matrix) 

into a density-functional formula for closed and open shells, respectively, 

E,= 	- a I dr 
1 + d

1
n-'13(r) 

In (r) bn-2/3(r)[CFn5l3(r) - 2tw  (r) 

(-
1
tw(r) —

1
1
8

V2n(r))]e-'1/3(11} , 	 (2.94) 
9 

and 
-y 

E,= 	- a dr 	
(r)  

1+ dn-113(r) 
In(r) 2bn-5/3(r)[22/3CFnl-8/3(r) 

22/3CFn18/3(r) - n(r)tw(r) 	(nI(r)tl,v(r) 	n1(r)t-1147(r)) 

1 
T.-8-(ni(r)V2n1. (r) 	n1(r)V2n1(r))]e' 113(1)1, 

where y(r) is expressed as, 

(2.95) 

n12(r) n12(r), 
-y(r) = 2[1 n2(r) 	 J, 	 (2.96) 

IVn12  
= 1.7451[C(œ)IC(n)] n7i6  , 
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and the constant parameters, a = 0.04918, b = 0.132, c = 0.2533, and d = 0.349, 

are obtained by a fitting procedure using only the Hartree-Fock orbital for the 

helium atom. CF = it,(37r 2 )213 , and the local "Weizsäcker" kinetic energy density 

is given as 
1 1V(r) 1 2 	1 

tw(r) = 	 (2.97) 
8 n(r) 	8 

When Lee, Yang and Parr's correlation functional (LYP) is combined with Becke's 

exchange functional [209], the resultant functional is commonly called the Becke-

Lee-Yang-Parr exchange-correlation functional (BLYP). The BLYP exchange-

correlation functional has been widely used in the calculations of electronic prop-

erties of atoms and molecules [269, 270, 271, 35, 28]. 

There is another combination of the exchange and correlation functional 

(hybrid functional) which is also commonly used, namely the B3LYP exchange-

correlation functional [272, 273]. The B3LYP exchange-correlation functional 

is based on Becke's half and half idea [274] and the original mixed exchange-

correlation approximation proposed by Becke [205], it was first programmed in 

Gaussian92/DFT [272] and takes the form, 

ETc 	(1  _ ao)Exispsc a0Erict  asAEsB88  acEcLYP  + (1 — ac )EcVWN  (2.98) 

where the ao  = 0.20, as  = 0.72, and a, = 0.81 are semiempirical coefficients 

obtained by a linear least-squares fit to the experimental data of some properties 

of a variety of atoms [275], .ns-D" is the exchange energy of the LSDxc approx-

imation, Exex' is the exact exchange energy, AEr is Becke's 1988 gradient 

correction to the exchange functional, EcLYP  is Lee, Yang, and Parr's correlation 

functional which has replaced the original Perdew-Wang gradient correction to 

the correlation functional [276, 277] proposed by Becke [205], and .ErvN  is the 

VWN correlation functional expression at the LSDxc approximation. 

Recently van Leeuwen and Baerends [212] analyzed the asymptotic behavior 

of the exchange-correlation potential instead of exchange-correlation energy or 

exchange-correlation h.ole potential and by comparing to the exact Kohn-Sham 



1 + 3[3x,sinh-1(x,) ' 

2 
u 

V(r) = -ßn 3(r) x 
 (2.99) 
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potential proposed an exchange-correlation potential (LB94xc) which corrects 

the LSDxc potential. The exchange-correlation potential of van Leeuwen and 

Baerends has the form, 

	

in which the dimensionless parameter, 	is 

iVn,1 

	

= 	4/3 no 
(2.100) 

The parameter ,(3 = 0.05 is obtained by fitting to the exact potential for the 

beryllium atom. The van Leeuwen and Baerends potential represents the in-

tershell peak fairly well and the asymptotic behavior essentially correctly. The 

application of the van Leeuwen and Baerends potential shows that it considerably 

improves the LSDxc eigenvalues and yields bound state solutions for the negative 

ions [212]. 

2.3 LINEAR COMBINATION OF GAUSSIAN TYPE ORBITALS 

AND THE PROGRAM deMon-KS 

deMon-KS (density of Montreal-Kohn-Sham) has been developed as a 

linear combination of Gaussian-type orbital-model core potential-Kohn-Sham 

density-functional program [278, 279, 280]. The linear combination of Gaussian-

type orbitals, auxiliary basis sets, grid, and model core potential techniques im-

plemented in the deMon-KS program will be reviewed in this section. 

2.3.1 LINEAR COMBINATION OF GAUSSIAN TYPE 

ORBITALS 

The Kohn-Sham equation (Eq. 2.58) can be efficiently solved by expanding the 

molecular orbitals in an orbital basis set. Several different types of orbital 
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basis sets have been used in different DFT programs, including numerical ba-

sis sets (DMol [281], NUMOL [282, 283, 284]), plane waves basis sets (Car-

Parrinello [285], CORNING [286]), Slater-type orbital (STO) [287] basis sets 

(AMol or ADF [288, 289, 290]), and Gaussian-type orbital (GTO) [291, 292, 

293, 294, 295] basis sets (deMon—KS [278, 279, 280], DGauss [296, 297], GAUS-

SIAN [298], CADPAC [299], TurboMol [300, 301, 302]). Each choice has its own 

set of advantages and disadvantages. GTO basis sets tend to be the more popular 

choice. Although larger orbital basis sets are needed when Gaussians are used, 

there is a net gain in computational efficiency because the necessary integrals can 

be evaluated analytically. The GTOs also make it possible to accurately calcu-

late analytic energy gradients (for geometry optimizations) and density gradients 

(for corrections of the exchange-correlation functional beyond the LSDxc approx-

imation). A more detailed review of the advantages of using GTOs in the DFT 

can be found in the literature [303, 120]. For these reasons, the GTOs are most 

widely used in the contemporary computational chemistry and physics. 

The expansion of Kohn-Sham molecular orbitals, 0,7(r), into the GTOs, 

07(r) = E c;(r) 	 (2.101) 

leads to the Kohn-Sham secular equations, 

E(M/  — Ski)Cfì  = 0, 	 (2.102) 

where the Ci; are expansion coefficients for the i orbital, 

= dr(r)ho-,Ksxi(r), 	 (2.103) 

and 

Ski = f drX7c(r)Xi(r) . 	 (2.104) 

Here iicri Ks  is the Kohn-Sham operator, and the xi (r) are contracted Gaussian-

type basis functions. The basis sets are normally described in "deMon-KS termi-

nology" (Huzinaga notation) in the form [304, 280], 
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(xls, )d, 	 242, 	x/X1d/ X2d/ • • • /
Kd 

which indicates that there are Ks contracted s type Gaussian functions comprised 

respectively by x , x ls/ 2s/ • • • / XIs‘es Gaussian primitives in the basis set, Kp contracted 
pl xp2 , 	pK- p type Gaussian functions constituted respectively by x, 	x  Gaussian 

primitives, and K d contracted d type Gaussian functions constructed respectively 

by X!/, X2d, • • • , Xicid  Gaussian primitives. 

2.3.2 AUXILIARY FUNCTION METHOD 

Calculations involving coulomb and exchange-correlation integrals are sim- 

plified in deMon—KS by the use of auxiliary basis functions. Following the work 

of Samble and Felton [305] and that of Dunlap, Connolly, and Sabin [306, 307], 

the charge density, n(r), is expanded as a linear combination of auxiliary basis 

functions, 

n(r) 	E 	(r) , 	 (2.105) 

consisting of atom-centered GTO primitives. The exchange-correlation potential 

is expanded in another auxiliary basis set of GTO functions (also consisting of 

atom-centered GTO primitives), gi , and 

î5L(r) = E lfigi(r) . 	 (2.106) 

where ai  and bc,ri  are fitting coefficients. The tilde used here emphasizes that these 

fitted quantities may differ from the corresponding exact quantities due to use 

of an incomplete set of Gaussian functions. The auxiliary basis sets used in the 

program deMon—KS are abbreviated by (ns, nspd ; vs, vs,d ), where n, and vs  are the 

number of s-type Gaussian primitives used, and nspd  and the vspd  are the number 

of sets of s-, p-, and d-type Gaussian primitives with shared exponents used for 

fitting the charge density and the exchange-correlation potential, respectively. 
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The charge density fitting coefficients, ai, are obtained by a least squares 

fitting procedure to minimize the Coulomb repulsion energy difference between 

the fitted density and original density [306, 307], 

(n 

subject to the normalization constraint, 

drh(r) = N, 	 (2.107) 

where N is the total number of electrons. This constrained minimization leads 

to 

ak  = 	Ir  1  	In) + A dr fi 	 (2.108) 

where the charge density overlap matrix is defined as 

Ski = (fk I 	Ifz) • - I 
(2.109) 

The Lagrange multiplier, A, obtained by the normalization constraint (Eq. 2.107) 

is 

= 
N - 	ii(f drfi(r)5 (fi(r)11 ,,.-iln(r)) (2.110) 

 

Eii(f dr f i (r)S 37i1(f dr fi  (r) 

The Coulomb part of the total energy is calculated as 

'hi  l iifi\,  
\ 	Ir -r I / 	2\ Ir -r I / 

which differs from the true value 

by half the fitting error, 

1 	1 	 11 	1 	1 	1 
2  (n1 	= 2 (n fil r 	r, 	7i) . (2.111) 
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The exchange-correlation fitting coefficients, b7, are difficult to obtain an-

alytically (see however Ref. [308]). Instead they are obtained numerically in 

deMon-KS by minimizing the numerical integral, 

Ei[v:c(i) —  

where the summation weighted by W(/) is over the grid points, and W(/) is 

proportional to the volume of space of the related grid point. Minimizing 

a 1v- (1)— E Yi r gi(I)12W(I)} = 0 
abri,  — 

leads to 

sacc,7,1 Eg (I)v(I)W(I) 

where the exchange-correlation fitting overlap matrix is 

(2.112) 

(2.113) 

sxc, =  j g (I)g3(I)W(I). 	 (2.114) 
1 

It is obvious that the auxiliary-function method (the linear combination of 

GTOs for the expansion of the charge density and exchange-correlation potential) 

reduces four-center two-electron integrals to three-center two-electron integrals, 

simplifying the necessary calculations and gaining computational efficiency. The 

Coulomb integrals become 

f f drdrix(r)xi(r)fi(r')az Ir-ri 

and the exchange-correlation integrals become 

Ei f 
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2.3.3 GRID 

A grid is commonly used in the numerical integrations in density-functional 

theory programs, such as deMon-KS [278, 279, 280], Amol (ADF) [288, 289, 290], 

DMol [281], NUMOL [282, 283, 284], CADPAC [299], DGauss [296, 297], GAUS-

SIAN/DFT [298], and Q-CHEM [309]. As normally practiced, multicenter molec-

ular integrals are partitioned into a sum of atomic-like single center integrals using 

a nuclear weight function algorithm [310, 311, 281, 312] or the molecular space 

is separated into atomic spheres [313, 314, 315, 316]. In deMon-KS, the nu-

clear weight function approach has been used, but the original Gauss-Chebyshev 

quadrature [317] has been replaced by Gauss-Legendre quadrature [318]. In ad-

dition to this radial grid, a suitable angular grid also needs to be chosen for the 

quadrature of each unit sphere. A few kinds of angular grids have been pro-

posed in the literature [319, 320, 321, 322, 323, 324, 325, 326]. Version 1.2 of 

deMon-KS employs the Lebedev angular grid with 6, 12, 26, 50, 110, 194 angular 

grid points [321, 322, 323, 324, 325, 311]. All grid options in this version use 32 

radial grid points. If proportional angular grid points are used it is the FINE 

grid (in deMon-KS, the radial grid, GR is partitioned into five regions, the first 

region, 0.0-0.4GR , with 50 angular grid points, the second region, 0.4GR-0.5GR, 

with 110 angular grid points, the third region, 0.5GR-0.7GR , with 194 angular 

grid points, the fourth region, 0.7GR-0.8GR , with 110 angular grid points, and 

the fifth region, 0.8GR-1.0GR, with 50 angular grid points). If 194 angular grid 

points are used in each unit shell it is called EXTRA-FINE grid. Later it was 

improved to include a user defined grid [327] which allows the user to choose as 

many radial grid points as needed and to vary the angular grid points. 

2.3.4 MODEL CORE POTENTIAL 

Model core potentials (MCPs) are a technique used to reduce computational 

cost. In this technique, the inert core electrons are not treated explicitly but 
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rather are replaced with an analytical core potential. Only the valence electrons 

which move in the core potential are considered. The use of MCPs can reduce 

basis set superposition error and include some relativistic effects by building rel-

ativistic effects into the MCPs [279]. MCPs also make it possible to treat larger 

molecules and clusters than would otherwise be possible. 

An MCP for atom A with nuclear charge Z and /\/", core electrons is intro-

duced by replacing the all-electron nuclear attraction term as follows: 

r — rA 
	—Vmcp(r — rA) +15;1  . 	 (2.115) 

Here 
exp(—air2 ) ai 3 2  

	

VMCp(r) = 	 r 	 ( 7r   

is the actual core potential whose exponents, ai, coefficients, Ai, are adjusted to 

minimize the least square error between the MCP valence and exact numerical 

valence atomic orbitals. The coefficients are normalized so that 

E Ai 	T . 	 (2.117) 

In order to avoid variational collapse of the valence electrons into the core, a 

pro j ector 

	

Pa  = 	2eac 
	 (2.118) 

C,Cr 

is introduced to lift the core orbital energies up above the valence orbital energies. 

The €`'. and 0°c" are respectively the core orbital energies and orbitals for atom A. 

More details will be given in chapter 4. 

2.4 TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY 

Traditionally Kohn—Sham density-functional theory is restricted to time-

independent ground-state problems. It has difficulty to treat excited state prop-

erties and time-dependent problems, hence a time-dependent theory is needed. 



42 

A number of authors [159, 153, 160, 154, 155, 156, 166, 157, 138] have tried 

to develop time-dependent density-functional theory. Initial work towards time-

dependent DFT was achieved by Peuckert [159] and by Zangwill and Soven [160]. 

Zangwill and Soven [160] were the first to use the adiabatic approximation with 

the local density approximation (LDAxc) to treat the time-dependent exchange-

correlation potential in their calculations of photoabsorption of noble gases. An 

important step toward a rigorous foundation of time-dependent DFT was taken 

by Deb and Ghosh [155, 161, 162, 163] and by Bartolotti [154, 164, 165]. They 

formulated time-dependent DFT with a set of external potentials. A solid theoret-

ical framework for the time—dependent DFT was given by Runge and Gross [156] 

who proved fundamental theorems of the time-dependent DFT for a more general 

external potential. A brief review of time-dependent density-functional theory is 

given in this section. Detailed reviews can be found in the literature [167, 138, 

168, 139, 169, 328, 329]. 

2.4.1 ANALOGUES OF THE HOHENBERG—KOHN THEOREMS 

A fundamental challenge in time-dependent density-functional theory has 

been to find a suitable analogue of the Hohenberg-Kohn theorems [113]. In the 

time-independent case, the existence of an exact mapping between the charge den-

sity and single particle external potential are proved based upon the Rayleigh-Ritz 

minimum principle for the energy. Straightforward extension of this approach to 

the time-dependent situation is not possible owing to the lack of a suitable min-

imum principle. Nevertheless, Runge and Gross [156] have been able to show 

that the time-dependent charge density determines the time-dependent external 

potential for the case of external potentials which can be expressed as a Taylor 

series about some initial time to, 

1 8v(to) v(t) 	E . 	ati 	(t to) 
z1 
	 . 

i=0 • 
(2.119) 
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Note that the external potential v(t) is assumed to be a constant at t < to  and 

the initial time to  is assumed to be finite, since at to  = —oo there is an essential 

singularity in the Taylor expansion. In the formal proof of Runge and Gross, the 

current density is used, which is beyond the scope of this thesis. Hence only the 

basic idea of the Runge-Gross proof is given here. 

In the time-dependent domain, a system is described by the time-dependent 

Schrödinger equation (atomic units are used), 

i ale(t)  = fIT(t) 	 (2.120) at 

where the Hamiltonian in the above equation is 

iÌ = --1 E + E 	+ Ev(ri,t) 
2 	i 	 ra I 

= 	Û 	 ext(t) , 

note that the external potential 

is/est(t) = E v(ri,t) 

(2.121) 

(2.122) 

may include a time-dependent perturbation (e.g. a time-dependent electrical 

field). 

In order to prove the analogue of the time-independent first Hohenberg—

Kohn theorem, the solutions of the time-dependent Schrödinger equation are only 

considered for t > to, subject to the initial condition that ill(to) = o.In the 

Runge and Gross proof [156], they suppose that there are two external potentials 

which differ by more than a time-dependent constant function, 

v(t) - v(t) 	C(t) , 	 (2.123) 

and that both of the potentials can also be expanded in a Taylor series around 

initial time to  
" ai v(t) = E 	— 
i=0 z. 

(2.124) 
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and 
— 1 ai , (vt(t)=E,--v txt — to )i . 	 (2.125) 

i=0  z! 
Suppose also that these two external potentials lead to the same time-dependent 

charge density, n(t). Runge and Gross [156] found the contradiction by first prov-

ing that the current densities corresponding to the above two external potentials 

are different. They then showed that the two time-dependent charge densities 

corresponding to the above two external potentials are also different by using 

the continuity boundary conditions between time-dependent charge density and 

current density. This contradicts the original assumption that the two exter-

nal potentials lead to the same time-dependent charge density, hence proving the 

Runge—Gross Theorem (an analogue of the time-independent first Hohenberg—

Kohn theorem in the time-dependent case). Under the conditions discussed above, 

the time-dependent charge density determines the external potential uniquely up 

to an additive time-dependent constant. 

According to the Runge—Gross theorem, it can be concluded that expecta-

tion values of any quantum mechnical operators and the time-dependent wave 

function are also functionals of the time-dependent charge density. Since, if the 

two applied external potentials differ by only an additive time-dependent constant 

C(t), 

v(t) = v(t) 	C(t), 	 (2.126) 

by solving the time-dependent Schrödinger equation (Eq. 2.120), one can show 

that the corresponding time-dependent wave functions differ by only a time-

dependent phase factor exp[—ia(t)] (where ce(t) = f dtC (t)). 

T i(t) = W(t)exp[—ice(t)] . 	 (2.127) 

Hence, the time-dependent external potential determines the time-dependent 

wave functions uniquely up to a time-dependent phase factor. This phase factor 

cancels out in the charge density 

n(r,t) = N f 	1 c/7-2  • 	di-N 1111(t)12  , 	 (2.128) 
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and the expectation values of any quantum mechanical operator Â(t), 

(T(t)1Â(t)1W(t)) = A(t) , 	 (2.129) 

if the operator Â(t) contains no time derivatives or time intergals. Therefore, they 

lead to the same charge density and the same expectation values. Note that the 

Runge—Gross theorem indicates that the time-dependent charge density uniquely 

determines the external potential up to an additive time-dependent constant, and 

the external potential uniquely determines the time-dependent wave function up 

to a phase factor, then the time-dependent wave function must also be a functional 

of the time-dependent charge density, even though the explicit dependence of the 

wave function on the charge density is unknown yet. 

(t) = [n](t)exp[—ia(t)] . 	 (2.130) 

Consequently the expectation value is also a functional of the charge density. 

A(t) = (T(t)V1(t)1T(t)) 

= (T[n](t)LÀ(t)IT[n](t)) 

= A(n,t). 	 (2.131) 

This indicates that any observable quantities are functionals of the time-dependent 

charge density. It does, however, have an implicit dependence on the initial state 

To. This dependence can be an immaterial when the initial state is just the 

ground stationary state of a system (with a static external potential). Specif-

ically, observables depend only on the charge density when the initial state is 

specified in terms of the charge density. Since according to the first Hohenberg 

and Kohn theorem [113], if the initial state is a non-degenerate ground state, it 

is an unique functional of the ground state charge density. So the expectation 

value can be considered as a unique functional of the charge density. 

In the time-independent case, the second Hohenberg—Kohn theorem stated 

that the true charge density minimized the total energy. In the time-dependent 
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case, there is no explicit energy in the time-dependent Schrödinger equation, so 

the energy minimum principle is not applicable in time-dependent DFT. Hence 

the action has to be used. 

	

A = f dt(T 	
. 	— H (t)1111(t)) 
	

(2.132) 
to 

Since there is a mapping between the time-dependent wave fun ction and the 

time-dependent charge density, the above action integral is also a functional of 

time-dependent charge density. 

,A(n) = 	dt f[n](t)4 — fi (t)1111[n](t)) , 	 (2.133) 
tc, 

which has a stationary point at the true time-dependent charge density. This 

true time-dependent charge density of the system can be obtained by making the 

action A stationary, namely the Euler equation, 

(51P(ti ) 	a 6A  
= 	dtS 	, H (t )1W (t)) 

to  6n(r,t) 	 6n(r,t) at 

+ 	((t) i 	 ft (t")1 (5.n(r ,  t)6(t  ))] 

= 0 	 (2.134) 

The phase factor in the wave function makes no contribution in the action defined 

in Eq ( 2.132) despite the presence of the time derivative operator, since the phase 

factor only gives an additive constant. The above discussions give the important 

stationary action principle. When the action [Eq. (2.132)] is expressed as 

a functional of the time-dependent charge density [Eq. (2.133)1, it must have a 

stationary point at the true time-dependent charge density which can be obtained 

by solving the Euler equation [Eq. (2.134)]. This is the time-dependent analogue 

of the second Hohenberg-Kohn theorem in time-independent DFT. It is notable 

that most quantum chemical treatments of the time-dependent problem are based 

on some stationary action principle (usually the Frenkel principle [330]). In time-

dependent DFT, this action principle is not without subtleties, a recent example 
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of which is van Leeuwen's redefinition of the action in time-dependent DFT to 

resolve a paradox regarding causality and symmetry in the response kernel [331]. 

Nevertheless, van Leeuwen's redefinition of the action is not considered in this 

thesis, the traditional definition of the action will be used throughout this thesis 

to avoid introducing tedious and confusing (though technically important) details. 

2.4.2 TIME-DEPENDENT KOHN—SHAM EQUATION 

Since the energy minimum principle is not applicable in the time-dependent 

case, the stationary action principle has to be used to derive the time-dependent 

Kohn-Sham equation. The action is a unique functional of the time-dependent 

charge density n(r, t), 

ti  
A[n] = f dt (11,  [n](t)14 —  

to  
(2.135) 

Analogously to time-independent density-functional theory, the action can also be 

written as the sum of a universal functional B[n], and an external action Aext[n]. 

The universal functional B[n] is given by 

ti 

	

B[n] = f dt (T [n](t)li, Tt(9  — t — MT[n](t)) , 	(2.136) 
to  

which is independent of the external potential and plays the role of the Hohenberg—

Kohn universal functional F[n] in the time-independent DFT theory [26]. The 

external action Aest[n] is defined as, 

ti 

Aee[n] = — f dt f dr[v (r , t)n(r,  , t)] . 	 (2.137) 
to 

Hence, the action can be rewritten as 

A[n] = B[n] + Aext[n]  
ti  

(2.138) = 

	

	B[n] — 1 dt f dr[v(r, t)n(r, t)] . 
to 



,n(r t)n(ri  t) 
1 	dt f dr f dr 	  
2 to 

ti 

(2.140) 
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Introducing a non-interacting system universal functional B,, 

B8 [n] = f dt(lIf s [n](t)li-Z —  
to  

allows the action A to be rewritten as 
ti 

A[n] = Bs [n]— I dt dr[v(r,t)n(r,t)] 
to  

(2.139) 

where A[n]  is the exchange-correlation action. By comparing Eq. (2.138) and 

Eq. (2.140), Axe[]  is 

1 ti 
dt dr f dr, n(r,t)n(ri  , t) 	B[n]. Ax,[n] Bs [n]— —2 / 	 (2.141) 

— to  

If the external potential of a non-interacting system can be found, it must be 

unique due to the Runge—Kohn theorem, this potential also makes the non-

interacting system charge density identical with the interacting system charge 

density (i.e. the charge density is "v—representable"), the charge density may be 

written in terms of a set of orbitals, 

n(r,t)= E ni  lzki(r, t)12  
i=1 

(2.142) 

where the ni are the occupation numbers. Applying the stationary action princi-

ple [Eq (2.134)] with the constraint [Eq (2.142)], the time-dependent Kohn-Sham 

equation can be obtained as 

i 
00i(r, t) 	1 = [--2 V2  + veff (r, t)]0i(r, t) 	 (2.143) 

at 

where the effective potential (also called time-dependent Kohn—Sham potential) 

ls 

x, veff (r,t) = v,t(r,t)+ Jdr n(r
Ir — '

r21
+ t) 	6Á[n]  

8n(r,t)' 

= 	vext (r, t) vscF(r,t) (2.144) 
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evidently the self-consistent field potential is 

f n(r i ,t) 8A[m]  vscF(r,t) = 	dr 	+ 
— 	872(r,t) 

f dr
, n(ri , t ) 	v„(r, t) 	 (2.145) 

jr — r 

where v„(r, t) is the time-dependent exchange-correlation potential and given by 

„ 
v„(r, t) = 6A[m] 	 (2.146) 

Sn(r,t) 

2.4.3 THE ADIABATIC APPROXIMATION 

The time-dependent exchange-correlation action A[n] is the time-dependent 

analogue of the time-independent exchange-correlation energy E[n], but .4„[n] 

is a functional of the time-dependent charge density n(r, t), whereas E[n] de-

pends only on the stationary charge density n(r). Several approximations are 

known for the time-independent exchange-correlation energy. However, no time-

dependent exchange-correlation action form A[n] is known yet. Hence ap-

proximations are needed. Peuckert [159] suggested an iterative scheme for the 

calculation of the exchange-correlation potential. Zangwill and Soven [160] ap-

plied the adiabatic approximation which used a static exchange-correlation po-

tential in the local density approximation to calculate the photoabsorption of 

the rare gases. This adiabatic approximation is the most well known and the 

most commonly used in the calculation of the exchange-correlation potential in 

time-dependent DFT. Simply speaking this approximation uses the static DFT 

exchange-correlation functional expression (e.g. LSDxc) with a time-dependent 

charge density. 

..A.„[n](r, t) = f 	E[n], 	 (2.147) 

where 

nt(r) = n(r,t). 	 (2.148) 



8Ã[n] = 

Idilf 
bE [n i] 

= 	dr ' t  n , (r)} 
Snt, 	t  to  

t 

f di bExc[nt'] 
to  

t 

, 	SExc[.] , 	I 
= f dt f dr

n
' n(r,t). 

Snt,  to  

t 
(2.150) 
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This equation indicates that the charge density is evaluated at a certain time t 

[e.g. the initial charge density no(r) = n(r, to )]. The exchange-correlation action 

changes when the charge density changes 
t 

Asc(n + Sn) — A[n] = f dt i  {E„[nt ,  + ânt ,] — Exc [nt , ]} , 	(2.149) 
to  

hence, 

So, in the adiabatic approximation, 

8A[n] _ 8E(nt ) 
8n(r,t) 	ânt  (r) . 

According to Eq. (2.146), the time-dependent exchange-correlation potential is 

i.e. 

v„(r,t) = 

= 

SAT ,[n]  
8n(r,t) 
8E [nt ] 
Sn(r) ' 

(2.152) 

vx,[n](r, t) => v c[nt ] (r) . 	 (2.153) 

This adiabatic approximation equates the time-dependent exchange-correlation 

potential to that of the time-independent theory, but with the charge density 

evaluated at a certain time t. 

2.5 TIME-DEPENDENT RESPONSE THEORY 

The general wave function time-dependent response theory has been well 

developed. It is a useful tool in the development of time-dependent density—

functional response theory. A brief review is given in this section. 

(2.151) 
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The expectation value of an operator Â can be written in the second quan-

tization [332, 26] form, 

A(t) = (111(t)14)11P(t)) 

= 	E ANo-KIP(t)1 /3-aEA,14f(t)) 
No- 

E Apq„pqr, 
No- 
tr(AP) (2.154) 

where Â(t) = Epq, Apqcfe cr  is the second quantization expression for the opera-

tor Â, the fe are fermion creation operators, and the are fermion annihilation 

operators, A represents the matrix of the operator Â, and P represents the den-

sity matrix with the elements P qpc y The Roman letters p and q refer to space 

indices and the Greek letter u indicates the spin index. Trace (tr) means to sum 

over all of the diagonal elements of the matrix. If the system wave function is cut 

off at first order [Eq. (2.13)], the expectation value of the operator Â (Eq. (2.154)) 

becomes 

A(t) = tr(A'P) 

= 	E AP cr (1  (°) 	+ e (1)  ( t ) IF° le)  (t ) W (1)  ( t )) 
pqu 

= 	EAlnu[Pe(t) P  q22 ( t ) + Pecr (t )] 
P40- 

tr (AP M ) tr (AP (1) ) + tr (.,47' (2) ) 

+ A(1)  + A(2)  (2.155) 

where the zeroth order part of the expectation value A °  = tr(A'P(°)) with the 

zeroth order density matrix, 

4p°?,( t) 
	

(2.156) 

the first order part of the expectation value (the linear response of the expectation 

value A) is A(1) = tr(A'P(1)) with the first order density matrix 

Pet ) = ( le(1) (t)113- 111f(°) (t)) 	( 41(°) @)1131, A,P (1) (t)) ; 
	

(2.157) 
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and part of the second order of the expectation value A(2) = tr(,41)(2)) where the 

part of the second order density matrix is 

/12,2),(t) = (41(1)(t)leMW(1)(t)) • 
	 (2.158) 

Substituting the first order wave function [Eq. (2.15)] into the linear response of 

the density matrix, Pj p1),.(t), one gets 

P(t) = (E(i)-1  f dte(k())1 11-1e) 
— c o 

x ex p(iw knt)] exp(—iEkt)elfitr iîu lW(0)(t)) 

-F(W(')(t)1/3-,E, 	E(i)-1f dt[(ek°)IiiM,P))exp(iwknt)] 
-00 

x exp(—iEkt)ek°)). 	 (2.159) 

The time integrals in the above equation [Eq. (2.159)] do not converge at time 

n  equal to minus infinity, due to the oscillating term ex p(iw knt) = cos(wk t) —  

i sin(wt). To assure the convergence of the above time integrals, the perturba-

tion operator H is set to 

ii(t) = exp[—(t — t i )]fi'(t) 

fr(t) ; att = t 
(2.160) 

0 	; att = —00 

where is a positive infinitesimal. Substituting Eq. (2.160) and the zeroth order 

wave function IF(°)(t) = exp(—iEnt)le into Eq. (2.159), the linear response of 

the density matrix becomes 

Pet) = 	f dts  E{(11°)1/5HG-Aalek°))(e)  Vidie)) 
-00 

x exp[—i(E k  — E — i)(t — )1 —  

x exp[—i(En  — E k — i 4) (t — )ll . 	 (2.161) 

Using the second quantization notation for the perturbation operator ft', 

-fr(t) = EH's„eî., 	 (2.162) 
STT 



0 	; t < 

This allows the above Eq. (2.163) to be rewritten as 

{ 1 	; t > t' 
0(t — — (2.164) 
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substituting this equation [Eq. (2.162)] into Eq. (2.161), then 

t 
P jpi ),(t) = E dt i fiE[(11,20) 1.75t.4,a ilifn(lielei.11e) 

srr _00  

x exp[—i(Ek — En — ie)(t — ti)] —  

xexp[—i(En  — Ek ie)(t — ti)I]His„(t`)} 	 (2.163) 

In order to change the integration limit from t to oo, the Heaviside function 0 is 

introduced, 

.0 
P j7U ( t) = E f 	œti)E[1Grle))(wi(v°) IA-T4',HFC) 

STT 00  

x exp[—i(Ek — E — 7:)(t — t)]  -  

x ex p[—i(E 7 , — Eh  — i)(t — )1111,„(t` )} . 	 (2.165) 

This time-dependent linear response of the density matrix can be written as 

frequency-dependent by using the Fourier transform, 

CO 

Wg),(w) = f dt exp (iwt)Qg (t) . 
—00 

It follows that 

1 
1312(w) = EE {(e )  15jor- &-P( ,0) ) (ene j',-1 11 ? ) ) 

SrT 

co 	 co 

(2.166) 

x 	dti  H:„(ti  )exp(icot' ) 	d(t — )0 (t — 
ÇQ 	 00 

x exp[i(w — 	i4)(t — )] — 	 0)Ief'Tlek0))(e)1/3-Mke) 
co 	 co 

x 	dti  11":„(ti  )exp(iwt' ) 	d(t — )0 (t — 

x e:p[i(co — w,k  ie)(t — te)] 
	

(2.167) 
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using properties of the Heaviside function e(t — ti ), which can be eliminated by 

changing the integration limit. 

P(1)
- \  

X 	° f dt111;„(t i )exp(iwt i ) °1 d(t — t i ) 

	

-00 	 0 

xexp[i(w-wkn+i)(t-t")]-(t,°)PitfHie) )(1P1(°)115',-40.1e) 

	

00 	 00 

x f dt i  Iis„(i)exp(iwt') f d(t — t') 

	

-00 	 0 
xexp[i(te — 	ie)(t — t i )] 	 (2.168) 

Integrating over (t — t i ) and doing the Fourier transform, 

/11/(0)1,;+77, 1 111(,.0 )\ ( 0) 	(0) ) 
pjpijor(w) 	Hisr,(41\  n 	k /\ 	 I n 

STT  k 	 Lt)  Wkn 

(IP)P;Ff.Tliif (1° ) )((0)115r,11Pc)}.  
w—wnk +ie 

(2.169) 

It is convenient to introduce the generalized susceptibility x defined by, 

(w) = E xqp,,s,-(w)118"„(w) • 
	 (2.170) 

STT 

By comparing Eq. (2.169) and Eq. (2.170), the frequency-dependent generalized 

susceptibility x is seen to be 

Xqpu,sri-(W) = 
(w(0)1Y-i,lek°) ) (I k0) n cr  

Wkn 

( le le 71 41,j) )( W(0) i/54,,Acri‘PC)1.  
• 

w 	i4 
(2.171) 

The frequency dependence of the linear response of the expectation value A(1)(w) 

can also be obtained with the Fourier transform [Eq. (2.166)] 

A(w) 
	

dt[exp(iwt)A(1)(t)] 

dt[exp(iwt)tr(AP(1)(t))] 



1 

	

my(t) = p(0)  — 	dw[avz(w)Ez(w)exp(—iwt)] + • • 
Y 	27r 

CO 

(2.178) 
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= 	E APq0"  P(1)  (w) qper 
pqo- 

- 	E E APP.X1nu,sr -r( w )11  si  ri-  ( w ) 
pqa sr 

(2.172) 

where the time (or frequency) independence of the Apg, is assumed and Eq. (2.170) 

is used in the above equation. Since the operator for the y component of the dipole 

moment is 

r = (2.173) iy 	= —y 

If the perturbation is considered as an electric field S turned on in the z direction, 

„(w) = z„,Ez(w), then according to the Eq. (2.172), the linear response of the 

dipole moment (induced dipole moment) y-component can be expressed as 

(1) /L4) 
	

(1) 
itt Y 	= 

(2.174) 

or 

	

EE pqaXqper,sri-  (W)ZSTTEZ(W) 
	

(2.175) 
pqa STT 

Conventionally, the dipole moment p(t) can be expanded in the series 

[ty (t) = ,u ()) 	f 	a„(t — t i )Ez(t i ) + • • • . 	(2.176) 

By Fourier transform 

F (t) = 	dce[exp(—iwt)F(w)] , 
27r _Do  

the dipole moment expansion [Eq. (2.176)] can be written as 

(2.177) 

Therefore the linear response of the dipole moment (induced dipole moment) is 

given as 

= P(t) ty 

1 0° = Fr  f dw[ay z(w)Ez(w)exp(—iwt)] . (2.179) 



1 
[41)  (i) = —27r 	dwg1) (w)exp(—icot)] . 

00 

(2.180) 

fk 

56 

According to the Fourier transform [Eq. (2.177)] the linear response of the dipole 

moment (induced dipole moment) can also be rewritten as 

—co 

By comparing the two equations [Eq. (2.179) and Eq. (2.180)], the frequency-

dependent linear response dipole moment is 

it(j)(w) = 
	 (2.181) 

Therefore the frequency-dependent polarizability is given by 

ayz(w) = 	Y 	• E2(w) 	
(2.182) 

Substituting Eq. (2.174) (i.e. the linear response of the dipole moment) into the 

above equation [Eq. (2.182)], the dynamic polarizability (y, z)—component can be 

rewritten as 
YPqoPgpi)cr (w )  

	

a 2  (w) = — E 	 (2.183) 

	

pgcr 	Ez(w) 

or inserting Eq. (2.175) into Eq. (2.182), the dynamic polarizability (y, z)-component 

is 

Epqcr Esr7 P90- Xqpc r,sri-(42.  errez ( W )  

ez G()) 

2Wkn(e))1Pe))( 11ePil(0)) 
,2 	

(2.184) 

where the generalized susceptibility xpq,,s„ is replaced by Eq. (2.171), the in-

finitesimal e has been set to zero, and the expression 

(w.1"Iwk)(wk 	= ((Fr, Ilwk)(wk191111.) 
	

(2.185) 

has been used in the above derivation (i.e. the matrix elements are assumed to 

be real). The mean polarizability à is given by 

à(w) = 
1 

+ 	(W ) azz (w)]  

(2.186) 
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where the poles are excitation energies, 

wkn, = Ek - 

and the residues are the oscillator strengths, 

2 
fk = —3wkn[l(nPillk)12  +1(Wniek)12 	l(W.P1Wk)12 ] • 

(2.187) 

(2.188) 

Eq. (2.186) is the famous sum-over-states (SOS) theorem of optics which is the 

basis for extracting excitation spectra from time-dependent DFT. 

2.6 TIME-DEPENDENT DENSITY-FUNCTIONAL 

RESPONSE THEORY 

Time-dependent density—functional response theory (DFRT) is an important 

tool for calculating excitation spectra [29, 207, 328, 329]. A detailed description 

of how to calculate excitation energies and oscillator strengths for open—shell 

molecules by the time—dependent DFRT are given in this section. 

In the time-dependent response theory section, the linear response of the 

density matrix was obtained as 

pq(7,10_) (w) =E x q p,,Bri-(w)Hsiri•()) • 
	 (2.189) 

where the generalized susceptibility is 

Ece5hâ,Ilife)  

(2.190) 

Since the Kohn-Sham equation has a quasi—independent particle nature, it is 

convenient to begin with a discussion of the linear response of the density matrix 

for an independent particle system. 



58 

For such a single particle system, the initial ground state wave function 

We = 0i, and corresponding energy E = Eiv  satisfy the Schrödinger equation 

heiv = Eiv?,biv • 
	 (2.191) 

In this special case, the generalized susceptibility is just 

liVo: M Oka-1 )(Oka) le  
Xuu,srr( (-12) = 

k,o-1 	 LL) 	wkut ,iv T ie 
(0i,ieî'TiOka`) 	ko-'113+o; 'i5, 1 1Piv)  

I • 
kui  ,iv 	ie 

After some mathematics, the single particle generalized susceptibility simplifies 

to 

X4130" pgrr( w ) — 	ev8 el- q s8Pr 	 e ( 6 	sqz) 
— Wqo- ,per 

wh.ere w„,p, = E q0- — E po  - • 

(2.193) 

This single particle generalized susceptibility can be generalized to a system 

of many independent particles. Since the occupation number ni,, of each orbital 

indicates the portion of the contribution to the generalized susceptibility from 

each orbital, the xp„,„,(w) of the system with many independent particles is the 

sum of each orbital's contribution to the generalized susceptibility, 

6o-u450-r8  s8 r  
g 1' 	(5pi — Xqp er,srr 	= E ni, , 	W 	Wqa,per_

1
_ Zs, 

bar 6  qs 6pr  
(Ti per  — n„) 

w  
(2.194) 

The nature of the quasi-independent particles of the Kohn-Sham equation 

permits one to use the linear response of the density matrix of the independent 

particle system (or the generalized susceptibility of the independent particle sys-

tem). However there is now an effective perturbation freff which contains both 

the applied perturbation H and the linear response of the self-consistent field 

v(1)scF  induced by the response of the charge density. The linear response of the 

(2.192) 
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Kohn-Sham density matrix is 

p(1) (w) 
q/Dcr \ Exqp,,arr(w)Hs'er",:f(w) 

STT 

Z-I 	

8cri-8  qs8pr 
=  	 t (72 p0- — 

W 	W  qa,Pcr 	i‘ 

 

 

n — n po- go-   wief f 
qper 

(.4.1 — Le.)40-,Pu 
(2.195) 

where the generalized susceptibility of the many independent—particle system has 

been used, the infinitesimal e  has been set to zero and the effective perturbation 

is 

fieff(r, t) = ii i (r, t) 	v(1)scF(r, t) . 	 (2.196) 

Although Eq. (2.195) does not give the correct response of the true density matrix, 

it does give the correct response of the charge density which is enough to be able 

to treat many properties. 

The first order of the self-consistent field v(1)s' is related to the linear 

response of the density matrix /34 p1 ),(w) by the coupling matrix Kgpo,„,(w), 

v(1)S (w)  = 	K 429cr 	(w)Psri-(1)(w) • 41x7 	 ,srr  
ST7 

Therefore the coupling matrix is given by 

a  V  qS  pCo.F  (c.  ) 

Ps„()) 

q 

pC,F  (I)  
f d(t — t l )exp[iw(t — t)] a p s  (il ) • 

K = 

(2.197) 

(2.198) 

The self-consistent potential is a functional of the charge density. According to 

the chain rule, the above equation can be rewritten as 

u  
K qp,r,„,(w) = 	d(t — t i )exp[iw(t — t i )]{E dr 	

&vs (t) an.y(r, t)
` dt  	 

8n1„(r , t ) a P„,(t ) 
(2.199) 

From the time-dependent density-functional theory section, the self-consistent 

potential consists of the Coulomb potential and the exchange-correlation potential 



8A5 [n]
v50(r, t) = 

Sn(r,t) 
6E50[n] (2.204) 
ânt(r) 

[Eq. (2.145)], 
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Sv gSpCo.F(t) (ri , t) 
smy(r, ,t„ ) (1 dr ' '2  ; 	+ '1),(r,t)) 

872,(r', t") 

(
8(tu  — t)8,1, 	bv,(r,t) 

— 	+ (5n.,(rf  , t") 
(2.200) 

The relation between the charge density and the density matrix 

t') = E E P„,(r , t' )4, (r)0„ (r1 ) , 	(2.201) 
S 

is used to obtain the derivative of the charge density with respect to the density 

an- y(12  t") = 8(t _ )81,4 ;:,_(r i 	(r i  ) • 
Ps„(t i  

Substituting Eq. (2.200) and Eq. (2.202) into Eq. (2.199), the coupling matrix 

becomes 
00 

Kqp,,,,„(w) =d(t — t')exp[iw(t — t i )]{i dr f 	  
— 

i) f dr f dr'0* ( r )0* r ( 6  vc ; (r t) , 
8n.,-(r„ t').Wp er(rbbs,(r )1 , 	(2.203) qcr 	r 

where the time-dependent exchange-correlation potential in the adiabatic approx-

imation is 

matrix, 

(2.202) 

Hence, the derivative of the time-dependent exchange-correlation potential with 

respect to the charge density can be evaluated as 

	

t) 	62E5 [n0-(r,t)] 

	

87-4(r', t') 	t)8i2„-(r`, t') 
62E5c[n0-(r)]  et  

(2.205) 
6n0-(r)8nT(r') 

This makes the coupling matrix in the adiabatic approximation independent of 

omega. It is obvions that the coupling matrix has the following symmetry prop-

erties, 

K pq,,„,(w) = K pg,„.„(w) = Kqp,,,„(w), 	(2.206) 



— Wqcr ,per 
	po.) (w) _ E Kqp,,5„(w)p2(w) = H(w) 
n 	— n 	srT Pu 	go" 

	

W 	W SCF,TCf 
E 	[ 8  urf 5  qsupr n„ — n„ 
SrT 

n.5r flrr <0 

+ 	E 	[ (5'  cri- Sqs 6 pr 
STT 	 nr, — n„ 

W 	W• scr ,rcr  
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and 

Kqpu,srr(W) = 	 srr,qpcf ( -41*  • 
	 (2.207) 

Note that the minus omega comes from the Fourier transform. 

If one inserts the coupling matrix [Eq. (2.197)] with Eq. (2.196) into the 

density matrix [Eq. (2.195)], one gets 

Ca.) — Wqo- ,por  p(1) (w) 	H qi  ( 	(1)SC F
W) 	V qpc, 

po- — nqu qi)cr  

=": 	po- (W) E K 	(W) 	(w) • 
	(2.208) 

ST T 

By reordering the above equation, the density matrix can be rewritten as 

E [6 „Sqs6 prW 
WgelPa 	

K gpo- ,sry (W)]P11,1(W) =. H4Pu' (w) . (2.209) 
n — n Sr T 	 Pe 	qe 

This density matrix (or the applied perturbation matrix) includes both the particle-

hole (nq, > np,) and the hole-particle (nq, < np,) elements if the orbitals are 

ordered like q < p (n2 , > np„). This equation, however, can be separated into 

two parts, the particle-hole and hole-particle equations of the applied pertur-

bation matrix. For the particle-hole part of the applied perturbation Hqipa(w) 

(ng,„ > np,), the equation is 

H I  (w) =- qP0-  K  4Pcrisrr( w )]ni2r( w ) 

K gPor ,srr( w )]Ci)- ( w ) 

n8 , — rt r , >0 
W 	  E 	[ (5  cri-8  qs 8  pr 	W se 'r  ns, Kqp,,s„(w)]Pr srr 	 i (w) 

— W• scr,ru 	
K qpci,r sr (W)]1(C 4)) 

srT 

+ E [ 6 ,71-8qr 6 ps n„ — n„ 
77.37--nr,>0 

W wso- ,ru =_ 	E 	[6o-roqsopr 	
• 
qpcy 

srr 	 nrc, 	n• so- 
nsr —nr ,>0 

K qpo- ,rsi- (W)P(W) • (2.210) 
srr 



and 
(50-r8q.s6 pr 

Cgpo-,srr = • n, - n„ 
(2.215) 
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In the last step of the derivation of the above equation, 5qr  0 and Sps  = 0 are 

used. Since ng, > np, and n„ > n„, the q orbital and the s orbital are occupied 

and the p orbital and the r orbital are unoccupied. Therefore, the q and the r will 

not be the same, so Sqr  = 0 and 8p, = 0. For the hole-particle part, the equation 

is 
n„—n,>0 

Hp'„(w) 
ç ç  W Wrcr,so- - E 	[8  o-ru qsupr 	 Kpqu ,r er(W)]esi)r (W) 

ST T 	
nru 

Thsr —nr , <0 
g W WT0',S0' E 	[6o-ru

g 
 qsupr 	 K  ",r ( w )] 13  ( w ) 

ST T 	 71sci 	nrcr 

nsr —nr,>0 W Wro-,so- 
K pq,,,,,( w )] -13,31),( w ) 

Kpq0.,87-7-(C4],11,:?_(LJ) 

E 	[8  crru qsupr 	
WT(T,S0- 

KNer,r ( w )]137Ç81), (W ) 

ST T 	 12 sa- 	rira- 

nsr —nr,>0 

- E 

E [6  cri-6  qs8pr 
srr 	 Ti so- — nro- 

• W Wscr,ro- + E 	[8  urS qr ups 
STT 	 n ro. — 

risr —nri->o 

(2.211) 
STT 

Combining the particle-hole [Eq. (2.210)] and the hole-particle [Eq. (2.211)] of 

the two equations, one gets a single matrix equation, 

.A8(w A  ( w 	5(w)

))

( 	w (C(w) 	0 	) 	P(1)(w) 

0 -C(w) P*(1)(w) 

 

f  Hi (w) 

H*'(w) 
(2.212) 

where 
ST,TT 

Aqper,sri- 	6cri-6g.s0 pr 	 Kqper ,srr(W) 
nST œ  nri- 

B qpu,sr7 = Kqper,rer(W) 

(2.213) 

(2.214) 

The linear response of the density matrix contains real and imaginary parts; 

the real part is used to calculate response properties (i.e. polarizabilities, excita-

tion energies). In order to separate the real and the imaginary parts of the linear 
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response of the density matrix, it is necessary to do a unitary transformation of 

the matrix equation [Eq. (2.212)] yielding the form, 

0 	 — 8) 
— w 

\ —C 0 	_p(1) p(1)* 	—111 + 114  
(2.216) 

If the linear response of the density matrix P(1) is written in terms of the real 

(Rel) and imaginary (Irng) parts, and similarly for the applied perturbation HI , 

then the above equation can be rewritten as 

(A 	we 	RelP(1) 	RelH' 

Separating the above matrix equation [Eq. (2.217)] into two equations gives 

(A + 8) RelP(1)  — iwCImgP(1)  = Relit 	 (2.218) 

and 

wCRelP(1)  — i(.4 — B)ImgP(1)  = 	. 	 (2.219) 

with some algebra, one can separate the equations for the real and imaginary 

parts of the linear response of the density matrix (P(1)). The real part of P(1) is 

[(A 	8) — w2C(A — 8)-1C] RelP(1)  = Relif 	B)-1Imga 	(2.220) 

and the imaginary part of P(1) is 

	

[(A — 8) — 2C(A 8)-1C1ImgP(1)  = ImgH i  — iwC(A B)-1Rela 	(2.221) 

If the applied perturbation is real (e.g. an electric field), the imaginary part of 

the applied perturbation is zero (ImgH' = 0). Then the real part of the linear 

response of the density matrix can be obtained as 

RelP(1)  = [(A + B) — w2C(A — 13)-1CrReIH , 	(2.222) 

This real part of the linear response of the density matrix can be rewritten as 

Reip(i) 	[(A B)  wsri Re1H1 

{ 	

A

1 7 A +B 0 ( 0 	 p(1) p(1)* ( H' + Hi* ) 

we 	A — B 	—ilmgP(1) 	—ilmgH1  
(2.217) 



= [(A+ B) + S112w 2 S1/2 ] 1 Re11-11  
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[si/2s-1/2 (A  + B)s -112$112 	s1/2w2s1/2]-1 

= S-1/2(w2  — 51)-15-1/2 Re1H1 , (2.223) 

with 

S = 	— 13)C, (2.224) 

and 

= —S-112(A +B)S-1/2 , (2.225) 

The real part of the linear response of the density matrix is used in the response 

property calculations, such as dynamic polarizabilities. In the dynamic polariz-

ability expression [Eq. (2.183) and Eq. (2.184)], since the coordinates (ypq,, z„,), 

electric field (E), and the generalized susceptibility 	see Eq. (2.193)] 

are real, then, the linear response of the density matrix (4p1?).(w)) in Eq. (2.183) 

must also be real [compare Eq. (2.183) and Eq. (2.184)]. Thus dynamic polariz-

ability is only related to the real part of the linear response of the density matrix 

[RelP(1)(w)] and Eq. (2.183) can be rewritten as 

ypeRelnpl ), (w) 
= — 	 (2.226) 

	

ceyz(w) 	E 	  
pqo- g Z (w) 

Inserting the Re1/11),(w) [Eq. (2.223)] into the above equation [Eq. (2.226)] 

= 	_ E ypgusiplo./2(,2 _ 	c-1/2Rellliqpo 

Pqo 	 ) gPer E5(w) 

_2  E ypq,sipio./2p2 _ 	 RelH 	
(2.227) 

	

p>q,a- 	 gPe  E5 (w) 

In Eq. (2.184), knowing that the pole of the polarizability ay,(w) is the excitation 

energy, and comparing Eq. (2.227) with Eq. (2.184), it is seen that the excitation 

energies may be calculated from the equation, 

S-2(w)FK  = wl-FK 	 (2.228) 
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where wK  is an excitation energy, and n is defined in Eq. (2.225). Its explicit 

expression in time-dependent density-functional theory is given by 

qper,q p q P 	 srT ,srr 
ttlo,,, c._1/2 

Qq per,STTP) 	 E s-1/2„ , (A + B) 

2  (5.gs6v7450-7-wr-1-,s1- 

  

    

+2 \/(n y,,, — npu 	 (w) (ns., — 	(2.229) 

and the S is given by 

Sqpo- ,srr = 
15c1T 8qs 6 pr (2.230) 

 

( n ST — n TT )WrT,ST 

In the adiabatic approximation, K and S2 are Lc.,-independent. By diagonaliz-

ing the matrix, the excitation energies are obtained. The eigenvectors Fk in 

Eq. (2.228) can be normalized by multiplying Fit, and taking the summation on 

both sides of the equation, 

2  F t  -F K 	K • (2.231) 

Since EK  FKFtK = 1, d'en 

  

= E 4,-FKFti,- • 	 (2.232) 

Subtracting both sides of the equation from w2, gives 

co2  — S2(w) = E(w2 — 4,.)FR-FtK 	 (2.233) 

If the vector FK is not normalized, the normalization factor RK is introduced 

into the above equation, 

F r-Ft, w2 	Ç2(w ) = E(w2—w<) A A

•  
(2.234) 

RK 

It follows that 
{w2 	1-2(41-1 = E(w2 w2K)-1RKFKFtK 	

(2.235) 

Rearranging the above equation, the normalization factor RK is given by 

= FtK 	2 	2 F  K • 	 (2.236) 
— 

q/ pl u/ ,s / r/
T

l 
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In the limit (ce = wA-), the Eq. (2.236) can be rewritten as 

-RK-1  lim Ft 	F _ K R 2 2 ce—neK 	WK 

Fk- 194  [ 2  a—w?(W))  i co=„FK 

aS-2(W)  
Fk- 	[ 	l uj K—w  }F - 	A  • (2.237) 

Inserting Eq. (2.235) and setting Rel.Figipu(w) = zqp,S,(w) in Eq. (2.227), the 

polarizability can be rewritten as 

c-1/2 / 2 	w2 —1RKFKFI.Siplui2zuo- . (w) = 	 qp, 	— ) yz 
Pqa 

(2.238) 

By comparing this equation with the sum over states polarizability expression 

Eq. (2.184), the following equation holds, 

	

0-1/2 D112-E, 	.1/2 ( o) 	,T,(0) 

	

Ypqa°gper 11-K -12 	wkn 	n 	I k I • 
pqo- 

(2.239) 

Substituting Eq. (2.239) into the oscillator strength expression Eq. (2.188) and 

similarly for the x and the z components, the oscillator strength is given by 

2 
fK = 

pq,  
s\  2 (>_2xIncruciplo/2FK) 	ypgusq—p1 o./2F02 (E 

Zpqo S-1/2Fk )2  . (2.240) q pa- 
pqcr 	 Pge 



CHAPTER 3 

NEW CONTRIBUTIONS TO THE PROGRAM 

deMon—DynaRho 

deMon-DynaRho (densité de Montréal—Dynamic Response of Rho, Rho 

here stands for the charge density) has been developed as a post-deMon—KS 

program [29, 183]. The deMon-DynaRho program performs molecular time-

dependent density-functional response theory (DFRT) calculations using multi-

center Gaussian expansions and auxiliary basis functions. The program is based 

on the idea of extracting the poles and the residues of the dynamic polarizability, 

using a one-particle density matrix—based algorithm to calculate the excitation en-

ergies and oscillator strengths. It is also able to calculate dynamic polarizabilities. 

But all of these calculations were only available for closed-shell molecules prior 

to the present work. Since there are many interesting open-shell systems, such 

as simple metal clusters (lithium clusters and sodium clusters) with an odd num-

ber of atoms, free radicals, etc., calculations of excitation spectra and dynamic 

response properties are desired not only for closed-shell systems, but also for 

open-shell systems. For this reason, the time-dependent unrestricted DFRT has 

been modified for the open-shell case and implemented in the program, deMon-

DynaRho, version 2pX, in the present study. 

Applying time-dependent unrestricted DFRT to an open-shell system, spin 

a and spin ß have to be treated explicitly. Hence deMon—DynaRho needs to be 

modified from the original program (version 2p0) for only the closed-shell systems 

to handle both a and ß spins. This makes the construction of the Q matrix (see 



	 1 	 1, 

Figure 1. Two electron closed—shell configuration. 

Chapter 2 of this thesis for details) more complicated than for the closed-shell 

case. For a two—electron closed-shell system (Fig. 1), the SZ matrix is a simple 

two by two matrix, 

( 	) nia  Q1,2 

..../2,1 	Ç22,2 

where 

	

= 5pe5rse-082 ,q 	2,\/Wr,pKprtqsi'Vws,g 7 

Ç21,2 = 2\i/Wr,pKpri,qs,[..\/Les,q 5 

Q2,1 = 2,./Wr,pKprl,q,-NA,4,7s,q 

	

Q2,2 = 6 pq8rsW s2 ,q 	2v1Wr,pKpr,i,qs,k/Ws,q 

in which 	= ei  —si. The S-2 matrix is much more complicated for an open—shell 

system than for the closed—shell case. For example, for a simple three—electron 

system (Fig. 2), the St matrix becomes 
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Figure 2. Th.ree electron open—shell configuration. 

f  s21,1 Q1,2 sli,3 

rt2,2 f2,2,3 Q2,4 

Ç23,1. n3,2 S'23,3 F13,4 

n4,2 

(3.3) 

where 

• = 45sr8uvWs2tvi 2•1Wrtul-KurT,vsiN/Wstvi 

• = 2\d/WrtuTKurtqvI-VWv1,,q1 

Ç21,3 = 2N/WrImiKurtqsiN/Wstql-

Ç21,4 — 2N/Wri,u/Kurtqs1V(wsl,q.1. 

s-22,1 = 2•VWul,p1Kpulvs-NA-L,si,vT 

• = 8pq8uvWv21,qi 2-0-Jul,p1Kpul,qvWwvi,q11 

Ç22,3 = 2N/Wul,p,I.Kputqsh/wstqi ) 

n2,4 — 2.\./Wutpl-Kpul,qsiv/wsl,qt, 

Q3,1 = 2  \/Wrtp/KprtveVwstvi 

e3,2 	2N/Wri,p/Kpri,qvIN/wvtql 

n3,3  = (5P46rsws2tql. 21/wrI,PIKPrtqsWwsT,41.  



Figure 3. The open—shell system electron configuration with N electrons and one 

op en-shell case. 

n3,4  = 2,\A-OrtpiKpri,q,,WW,i,q1 

s-24, = 2  \/Wri,p1Kpri,VST N/WST,V1.  5 

r14,2 = 2N/WTI,P1KprI,QV.WWV17q1 

Ç24,3 = 2,\A•Orl,p1Kprl,qe\A-4)ste 

sz4,4 = Spq6rsw32tql 	2N/Wri,p1-Kpri,q.51-VWsl.,q1 
	 (3.4) 

where Wi ,jT = Eicr  j.r . This n matrix can be generalized for an N electron open-
shell system with one open-shell having the configuration shown in Fig. 3. The 

matrix for this N electron one open-shell system can be written out explicitly 
as 

.nrte trvt nrv tsvj nrvt,vp1 flrv ,vq 	nrvi,rpi 	nrvt,rpl, nrytspi nrnspj.nrv,rq 	nry tuf, 	nrtcrsql" nrvt,sql. 

nsvi,3vi 	nsvT,vp.1, 	nsvt,vq,I. 	net, ,rpt 	neutrin 	navtspt 	nsvi,spl nsvi,re 	navtrql 	nsirj,sqi 	nsvi,sql 

nvpl,rv t 	nvpj.,evt 	nvpj,vp1 	nvpl,vqj 	nvp.I.,rpt 	nvpl,rpj 	nvp.I.,spt 	1-41,.3p1 	nvp.I.,rcanvp,rqj 	aupl,see 	nvpi.,sq], 

nvq.L,rvi 1-1 vq.1.,svt avq.1,,vp1nvqj,vqJ nvq.j.,rpinvqj,rpj nvq,sp nvql,spl nvql,re nve,rqj nvql,sql nvq.1.,sql 

nrptrvi Çerptsvi nrptvp.I. nrptvqj nrpt,rpt nrpt,rpj nrptspt nrpt,sp1 arpt,re nrptre nrptsqi 1-1rptsql. 

nrpt,rvt nrpl,ev/ 	 nrp,vqjnrpl,rpt 	 nrpl,spi nrp.I.,3/31 	 fIrpj.,sq/ 

nspi,rvT pÎ,svt Sisptypt nspt,vgl naptrpi nsptrp1 nsptspi nsptspj neptrql nspi,rqj nspl,sql neptsq.l. 

41,rvl n$P1,3vt nsPI)vP1 nsPI,vq1 nsPI,rPI ns1)1,rP1 n51)1,8P1 '3P1,821 n3P1,7-qt n5P.I.,r41 1spj,sq n8/4.3q.1. 

nrqt,rv/ Ûrqî ,avt nrqtvp.I. nre,vq1 nrqtrpt nrqtrp.1 nre „spi nrqt,spl nrqtre nre 	nrqt,sql nrqt,sql 

nrq.1.,rvI nrq.l.,sv/ nrqbvp1 nrql,vq1 nrql.,rp/ nrqtrp.I. nrql,spl nrql,espj nrereenrq j,rq j nrqjoirt nren,sql. 

nsqtryt nsql,svt naqtypi nsqt,vqj nsqt,rpt nsqtrin naqtspl-  nse,spl nsqtre elsqtrql, neqtaqt Isqt,sql 

) nsql,rvi nsql,svf nsql,vp1 nsql,ve nsql,rpl n5q,rp nsql,spt nsespl nserqt nserql n$4.1.,sq n3,11,s71i 
(3.5) 
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All of the elements of the SZ matrix [Eq. (3.5)] can be written out according 

to Eq. (2.229), here, only the first column elements are written out as an example, 

other elements can be written out similarly, 

nrytrvi = 2v/Wri,vtKrviruWWri,vi Wr2pir 

= 2N/W5i,vi-Ksvtrvi NA.Ortvl 

ç2vp.1,,rvi = 2N/Wv1,piKvpl,r0 NA•Ortvl« 

evervi 2N/Wv1,q1Kvqtryt \AOrtvi 

nrptrvi = 2N/Wris,p1-KrptrviN/ 2rI,v/ 

nrpl,rvI = 2N/WrI,p1-Krpl,rviNAOrtift 

f2'spi,rvt = 2.VWstp-rKsptrvi-VWrî,vî 

= 2N/Wsl,p1Kspl,rvI-VWrtvi 

Ç2reitrvi = 2N/WrieKrqtrvINAOrtvi 

nre,rvj = 2v/ih)r .1,,q1Krql,rvWWri,vi 

S-2servî = 21/Wstql K servi V /WrI,vi 

— 2,0,L151,q1K 	V /Wri ,v1 
	 (3.6) 

The above íì matrix [Eq. (3.5)] is for a single open-shell systems. It is not difficult 

to generalize the above S.2 matrix to two open-shell systems (e.g. 02) or more open-

shell cases by adding the extra singly occupied electron transitions to the virtual 

orbitals and doubly occupied electron transitions to the extra singly occupied 

orbitals. 

The difference between the closed-shell systems and open-shell systems in 

constructing the íì matrix can be seen by comparing the two—electron closed—shell 

íì matrix elements [Eq. (3.2)] and the three—electron open-shell íì matrix elements 

[Eq. (3.4)]. It can be seen that in closed-shell cases (deMon — DynaRho, prior to 

the present study), only considered a orbital energies in the construction of the 

íì matrix, and only constructed the ace block and the ae block of the coupling 

K matrix (see Chapter 2 of this thesis for details), since the aa block and the 
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00 block of the K matrix are the same in the closed-shell case, as well as the ce0 

block and the 0a block. But for an open—shell system, the ace block and the P0 

block of the coupling K matrix are no longer the same. Hence, the present study 

extends deMon-DynaRho to open—shell systems by constructing the new ee and 

Pa blocks. It is known that the K matrix includes two parts (see Chapter 2 of this 

thesis), one is the Coulomb potential contribution [the first term in Eq. (2.203)], 

another part is exchange-correlation potential contribution [the second part in 

Eq. (2.203)]. The key step to construct the K matrix is to evaluate the derivative 

of the exchange-correlation potential with respect to charge density under the 

adiabatic approximation. In open-shell case, constructing the 	and the 0a 

blocks of the K matrix need the derivatives of e electron exchange-correlation 

potential with respect to ß  electron charge density and with respect to a electron 

charge density, these derivatives were not evaluated in closed-shell case. The e  
electron exchange-correlation potential is 

8{1 drex.,[nT(r),n1-(r))n(r)} 
Ski 

n(r)
Sex,[nT(r),n1(r)] 	ex,[n

i
(r), n

T
(r)] . 	(3.7) 

Sni 

The exchange and correlation energy densities are known which are given in 

Eq. (2.69) and Eq. (2.71). It can be seen from these equations [Eq. (2.69) and 

Eq. (2.71)) that the derivative of the exchange potential with respect to the charge 

density is easy to evaluate, but the derivative of the correlation potential with 

respect to the charge density needs to be evaluated as 

Sv 	Se, 	Se, 	82  E c  
c  = - - n 	

S 	
(3.8) 

Sne bn'T 	nT 

Constructing the ee and the Pa blocks need to evaluate eç-,11  and 6S- which can 

be obtained from 

V C 

(3.9) 

This is much more complicated than in closed-shell case, since in the closed-shell 

case, the spin-polarization parameter, e, is zero. Moreover, the present work also 
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Table I. Descriptions of exchange-correlation functionals used in deMon-KS and 

in deMon—DynaRho with_ different electron-electron interaction terms. 

deMon-KS 

Interaction terms Core Hartree LSDx LSDxc 

Coulomb NO YES YES YES 

Exchange NO NO YES YES 

Correlation NO NO NO YES 

deMon-DynaRho 

Interaction terms IPA RPA TDLDAx TDLDAxc 

Coulomb NO YES YES YES 

Exchange NO NO YES YES 

Correlation NO NO NO YES 

considers both a and ,(3 orbital energies in the construction of the matrix in the 

deMon — DynaRho. This is also different from the closed-shell case which only 

considered a orbital energies. 

Oscillator strength calculations are also modified, since the contributions of 

a and ß  electrons to the oscillator strengths are no longer the same. Specifically, 

the S matrix has to be calculated explicitly for a and electron contributions. 

Since deMon—DynaRho is a post—SCF program, it is possible to use differ-

ent exchange—correlation functionals in the calculations during the SCF step and 

post-SCF (time-dependent DFRT) step. The exchange-correlation functionals 

used in the two steps are summarized in Table I. Together, the two exchange-

correlation functionals that was used in the SCF step, (FNLscF ), and that was 

used in the time-dependent DFRT step, (FNLTDDFRT),  are described by the no-

tation FNLscF/FNLTDDFRT • Certain internally consistent combinations corre-

sponding to the analytical derivative equivalent of finite field (FF) calculations are 



74 

Table II. Combinations of exchange-correlation functionals which should give the 

same static polarizability in the FF and TDDFRT.  

FF 	TDDFRT 

Core 	Core/IPA 

Hartree Hartree/RPA 

LSDx LSDx/TDLSDx 

LSDxc LSDxc/TDLSDxc 

given in Table II. These are useful for debugging purposes because the DFRT and 

the FF approaches should yield the same polarizabilities (see Table III). Other 

combinations are also useful because they either result in a justifiable overall 

improvement of the results (LB94xc/TDLSDxc,etc.) or are useful when compu-

tational efficiency is paramount and some tolerance in the quality of results is 

permissible (LSDxc/RPA). 

Time-dependent DFRT has been implemented in deMon-DynaRho at dif-

ferent levels of approximation, varying according to the level of approximation 

used for the treatment of the response of the SCF field. If only the response of 

the core Hamiltonian is considered, neglecting electron-electron interactions, the 

result is the independent particle approximation (IPA). If the response of both 

the core Hamiltonian and the electron-electron Coulomb interactions is consid-

ered, the result is the random phase approximation (RPA). If the response of the 

core Hamiltonian, the electron-electron Coulomb interactions, and the electron 

exchange potential with the local density approximation is considered, the result 

is the time-dependent exchange-only local density approximation (TDLDAx). If 

electron correlation effects are also included, the result is the time-dependent lo-

cal density approximation (TDLDAxc). These four levels of approximation are 

summarized in Table I. 
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The present study extends the time-dependent DFRT to open-shell sys-

tems and implements time-dependent unrestricted DFRT at these four levels 

of approximation. Each level of approximation programmed for open-shell sys-

tems was tested by the comparison of the calculated static mean polarizability 

for the sodium trimer with the same quantity calculated using the finite field 

method [333, 327]. The two methods should give the same results under appro-

priate circumstances (Table II). The testing was performed at both MCP and 

all-electron levels, using different quality of grids. The MCP calculations were 

done with the orbital basis set (311/2) and the all-electron calculations were car-

ried out with the Sadlej orbital basis set [334], (6311111/61111/22). Results are 

given in Table III which shows that the static mean polarizability of the sodium 

trimer is consistent with the two methods used. In the MCP calculations, the 

biggest error is 1.48% at the LSDxc/TDLSDxc level. In the all—electron Core/IPA 

calculation, the finite difference polarizability is almost 50% smaller than the cor-

responding time-dependent LSDxc value. This error was found to be due to the 

field strength used in the deMon—KS program which was fixed at 0.0005 a.u. Since 

the polarizability of the sodium trimer is very large at the IPA level, if the electric 

field used is too large, it will lead to a big error. This is found to be exactly the 

case. If the finite field calculation is redone with a smaller electric field 0.000008 

a.u. by the least squares fitting procedure [327], the mean polarizability of sodium 

trimer is exactly the same for the two procedures, the finite field method (least 

square fitting procedure) and the time-dependent DFRT calculation. 

There is a big difference in the calculation of the mean polarizability of the 

sodium trimer at the MCP level and all-electron level with the Core/IPA func-

tional. This is due to the core electron-electron interactions which is neglected in 

the all-electron calculation, since the MCP calculations even at the Core/IPA level 

still include the core electron-electron interactions in the sense that these interac-

tions are already built into the MCP. But for the all-electron calculations of the 

Core/IPA level, the core electron-electron interactions are completely neglected. 
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This is also true with the other functionals (Hartree/RPA, LSDx/TDLSDx). In 

fact, the difference between MCP and all-electron calculations of the mean polar-

izability of the sodium trimer is only 4% with the LSDxc/TDLSDxc functional. 

This deviation is believed to arise from the MCP, since the MCP may not be 

flexible enough to be well polarized. 

The implementation of the IPA functional was also tested by comparison of 

the vertical excitation energies (ET ) with the orbital energy differences (ci  — c a ). 

Since at the Core/IPA level, excitation energies are the same as the corresponding 

transition orbital energy difference. This can be used to debug the program. 

Tables IV shows that the excitation energy and the orbital energy differences of 

the sodium trimer are consistent both for the MCP and all-electron calculations. 

However, there is a 0.001 eV difference between the excitation energy and the 

orbital energy difference for the 22B2  symmetry in the MCP calculation and 0.01 

eV for the 22 A2  symmetry in all-electron calculation. This 0.001 eV (or 0.01 eV 

in the all-electron case) deviation is from round off error, since Dyna — SCF cuts 

off orbital energies at the fifth digit. If the sixth number is larger than 5, there 

will be 0.001 eV difference (if there is only one digit integer) or 0.01 eV difference 

(if there is two digit integer) between the excitation energy and the orbital energy 

difference (since excitation energies are cut off at the sixth decimal places). Please 

note that there are large differences between the excitation energies calculated 

by the MCP and by all-electron approach at the IPA level in Table IV, this is 

due to the core electron-electron interactions which are included in the MCP 

calculations, but they are not included in the all-electron calculations. It is the 

same as the explanation for the mean polarizabilities at the previous paragraph. 

The present implementation also gives the option to force the alpha and 

the beta coefficients to be the same in the calculations by using the keyword 

"RKSTDRT" (for restricted Kohn-Sham time-dependent response theory) in the 

SCF input file. 
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It is worth mentioning that time-dependent unrestricted DFT method is 

used in the present studies, hence, spin contamination arises for a Kohn-Sham 

orbital determinant. This spin contamination was discussed a few years ago by 

Pople, Gill, and Handy [335], they argued that this "contamination" is allowed 

due to the determinant is not the correct wave function for the system and found 

that the spin contamination in the unrestricted DFT is very small. However, the 

spin contamination in the time-dependent unrestricted DFT can be evaluated by 

the expectation value of the total spin-squared operator. Similar calculations were 

also done by the unrestricted single-excitation configuration interaction (UCIS) 

method [336]. Spin-squared operator is defined as 

:92 	= Š_ Š+ + Šz  (Šz  + I.) 

= 

where ‘1 _1. is the raising operator which is given by 

Š+ = Š.+iy, 

and ,..‘1 is the lowering operator which is given by 

_ 

(3.10) 

(3.11) 

(3.12) 

If the determinant, D, with n, columns of a spin and with no  columns of e  spin, 

the spin-squared operator become 

Š2 D = 
P 

1 = 	1E Pao + no  4- —
4 

[(n,,, — n ß )2  + 2(n, — no)1}D 
P 

1 = {EP,,,3  + -4 [(n, — 710 )2  + 2n, + 2no]}D . 
P 

(3.13) 

where Poe  is an operator which exchanges a and [3 spin functions in the origi-

nal determinant and the sum is over all possible interchanges of a and p. The 

expectation value of spin-squared operator is 

(,:2) = (wirs21414 
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(3.14) 
pf qs 

where orbitals with superior-bar are 0 electron orbitals, Aii  is the molecular 

orbital (a — e)  overlap, specifically, 

(rP), 	 (3.15) 

3̀ q7) 	(q1P) 
	

(3.16) 

and C o- is the expansion coefficients of the single excited configurations in the 

following equation, 
7117, -71q, > 0 

= 	E 	Cpi  q 0.11) , Cr, (3.17) 
pqo- 

  

in which 0 is the determinant of occupied Kohn-Sham orbitals, and 

 

    

c l — P40.  — 
— e P  p/ 

Me • W 
(3.18) 

Since the spin contamination in the unrestricted DFT is very small [335], the 

present studies assign the spin multiplicities consulting the restricted case and 

with help of the transition intensities. 

The time-dependent DFT method developed here can only treat single ex-

citations in this stage, hence, doublet excited states were obtained in the present 

studies. To get quartet excited states, double excitations need to be considered, 

but the DynaRho program can not handle double excitations yet. However, it 

can be a project for the perspective work. 

The bottleneck of the efficiency in the deMon—DynaRho calculations is di-

agonalization of the Q matrix. The dimension of the Q matrix depends on the 

number of occupied orbitals and virtual orbitals. If there are N electrons in the 



system concerned, the number of occupied orbitals 

n„, 	—
N 

oc N , 
2 
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(3.19) 

this is for the closed-shell system, but for open-shell case, it is not exactly , but 

it is also proportional to N, in any cases (closed-shell or open-shell), this will not 

affect the scale. The number of virtual orbitals depends on the basis set used, if 

a medium size basis (3N basis functions) is used, the number of virtual orbitals 

is 
N , 

— 3N — -- oc . 
2 

Hence, the dimension of the Q matrix is 

noc, x nunocc OC N 2  . 

(3.20) 

(3.21) 

It is known that doing a full diagonalization of N2  x N2  matrix (Q, matrix) needs 

(N2 )3  operations [318]. Hence, the scale of deMon-DynaRho is approximately 

N6. The CPU time used in the all-electron DynaRho calculations for sodium 

clusters is given in Table V. 
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Table III. Sodium trimer static mean polarizabilities (a.u.) calculated at the 

MCP and the all-electron (AE) levels. 

MCP mean polarizabilities (a.u.). 

METHOD Core/IPA 	Hartree/RPA LSDx/TDLSDx LSDxc/TDLSDxc 

FF(F,R)a 272.8 	329.2 381.1 376.2 

TDDFRT(F,R) 272.7 	329.2 379.4 376.6 

FF(XF,R) 272.8 	329.2 381.8 376.6 

TDDFRT(XF,R) 272.7 	329.2 379.4 376.7 

FF(XF,NR)b  272.8 	329.2 381.8 376.6 

TDDFRT(XF,NR) 272.7 	329.2 379.3 371.1 

AE mean polarizabilities 

METHOD Core/IPA 	Hartree/RPA LSDx/TDLSDx LSDxc/TDLSDxc 

FF(XF,NR)c 2336.7 	2816.6 446.0 392.9 

TDDFRT(XF,NR) 4928.6 	2731.2 445.7 392.8 

(F,R) indicates that FINE and Random grid is used. 

(XF,NR) indicates that EXTRA-FINE and NonRandom grid is used. 

c At IPA level least square fitting gives the mean polarizability as 4928.6 which 

indicates that the electric field used for the Finite-Field (FF) calculation is not 

appropriate (see text). 
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Table IV. Comparison of vertical excitation energies (eV) and orbital energy 

differences (eV) of the sodium trimer calculated with the MCP and with the all-

electron (AE) metbod  at Core/IPA level (The ground state symmetry is 12B2 ). 

Symmetry Transition ET 	Ci — Ca 

MCP results.  

12 A1 	—> aî.' 	0.812 0.812 

22A1 	4 — b 	2.719 2.719 

12/12 	—> q 	3.503 3.503 

22 A2 	di" —> bç.' 	4.227 4.227 

12B1 	—> bî' 	1.508 1.508 

22B1 	—> lq 	3.955 3.955 

22B2 	—> b 	2.893 2.894 
32B2 	—> cei" 	3.531 3.531 

A11-electron results.  

12A1 	bc — a 	0.058 0.058 

22A1 	b(21  — a 	1.655 1.655 

12 A2 	—> ct`' 	3.705 3.705 

22 A2 	b — a 	14.70 14.69 

12B1 	1)" —> bî.' 	2.877 2.877 

22B1 	bc2x —> bî.' 	14.71 14.71 

22B2 	—> b2̀'e 	1.421 1.421 

32B2 	aci" —> a'? 	12.32 12.32 
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Table V. The CPU time used (hour:minute:second) in the DynaRho all-electron 

calculations for the sodium clusters with the Sadlej basis, (6311111/61111/22) 

and by the LSDxc/TDLSDxc functional. 

Clusters CPU Time used 

Na2  21:45 

Na3  3:58:08 

Na4  26:39:29 

Na5  195:13:22 

Na5(C5,) 596:31:24 

Na6(D3h) 596:31:24 



CHAPTER 4 

SODIUM MODEL CORE POTENTIAL FOR 

DENSITY-FUNCTIONAL CALCULATIONS: 

COMPARISON OF CALCULATED SODIUM 

CLUSTER PROPERTIES WITH ALL-ELECTRON 

CALCULATIONS 

4.1 INTRODUCTION 

Metal clusters have been the subject of a number of recent books [337, 338] 

and reviews [339, 90]. Much of the interest focuses on how cluster properties 

vary with the number of atoms in the cluster. Alkali metal clusters, especially 

sodium clusters, have a privileged place in this domain for a number of reasons. 

On the one hand, alkali metal clusters are often thought of as the simplest type 

of metal clusters and so are a prototype for the understanding of more complex 

types of clusters. Calculations [340, 3, 341, 342, 343, 344] are facilitated by the 

presence of a single s-type valence electron. On the other hand, alkali metal 

clusters are now relatively easy to study experimentally [345, 346]. Even so, it 

is fair to say that the properties of large aggregates of alkali metal atoms are 

so far poorly understood. An important prerequisite to improved theoretical 

studies of larger sodium clusters is the implementation and characterization of 

efficient computational tools. It is the objective of the present ch apter to present 

one such tool, namely a model core potential (MCP) for sodium suitable for 

use in density-functional calculations. This MCP is assessed by evaluating the 
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properties of homonuclear sodium clusters up through the hexamer and for the 

tridecamer against our own all-electron calculations. 

An understanding of some of the factors governing the accurate calculation 

of sodium cluster properties can be obtained by considering previous theoreti-

cal studies reported in the literature. The simple shell model has successfully 

explained the mass spectra of molecular beams of sodium clusters [347, 346], 

and some other properties, but it cannot give detailed information about nuclear 

positions. The extended Hiickel method does give qualitatively correct geome-

tries [348, 349], but it is limited in property studies. Ab initio techniques, such 

as Hartree-Fock (HF), density-functional theory (DFT), and configuration inter-

action methods (CI), are both more accurate and more costly. They have also 

been used to study sodium cluster properties. In the HF studies, it has been 

shown that the sodium clusters are either weakly bound or even not bound with 

respect to atomization [3, 340]. The reason is that the binding and the correla-

tion energies of the aggregates are of the same order of magnitude [350], so that 

theoretical study of the electronic properties of the sodium clusters must include 

an accurate treatment of electron correlation. Two commonly used approaches 

which include electron correlation are CI and DFT methods. Systematic CI cal-

culations of sodium clusters have been carried out with effective core potentials 

(ECPs) [340, 3] and at the all-electron level [3, 351, 4] for up to nine atoms. On 

the other hand, the computational cost of the CI method increases rapidly and 

the attainable accuracy decreases as the number of electrons increases [4]. Hence 

the CI method is limited to smaller clusters. DFT calculations are much more 

efficient (nominal scaling of N3  with the size of the basis set) in comparison with 

the CI method (nominal scaling of N6  or worse), making DFT more suitable for 

the study of large clusters. Previous DFT studies of small sodium cluster prop-

erties used ECPs [341, 342, 343, 344]. A11-electron DFT studies of sodium cluster 

properties have not been found in the literature, except for the recent paper of 

Guan et al. [122]. 
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Although ECPs and MCPs are similar in philosophy, they differ in detail. 

Both ECPs [352, 353, 354] and MCPs [355, 356, 357, 358, 359] are based on the 

frozen core approximation. All the core electrons are replaced by a core potential 

and only valence electrons are treated explicitly. The ECPs and MCPs differ 

primarily in the character of the valence radial wave functions. In particular, in 

the MCP approach, the valence orbitals may retain approximately the same nodal 

structure as do the reference orbitals from all-electron calculations. In contrast, 

the valence orbitals in ECP calculations are nodeless in the core region, and hence 

provide a poorer description of the wave functions near the nuclei. The nodal 

structure of MCP orbitals requires more Gaussian primitives than are needed to 

describe the corresponding ECP orbitals, and tberefore more integrals have to 

be evaluated for MCP calculations than for ECP calculations [360, 361]. In both 

cases, the reliability and efficiency of the core potential methods must be assessed 

by comparison against all-electron calculations. 

The aim of the present work is to assess a new Huzinaga-type MCP [355] 

for sodium. To do so, we compare the properties for sodium clusters up to the 

hexamer calculated at the MCP level against those from our own all-electron 

DFT calculations. The comparison is also made with previous DFT ECP calcu-

lations [344, 362, 7, 8, 363], available experimental data, and with other theoret-

ical studies. The assessment will focus on the geometric structures, vibrational 

frequency analysis, binding energies, ionization potentials from both all-electron 

calculations and the MCP calculations using the local density approximation 

(LDAxc) and gradient-corrected functionals (GCFs), namely the 1988 gradient-

correction for exch ange of Becke (B88x) [209], the 1986 gradient-correction for 

exchange of Perdew and Wang (PW86x) [211], and the 1986 gradient-correction 

for the correlation of Perdew (P86c) [210]. Polarizabilities of sodium clusters 

have also been calculated at the MCP level for comparison with our previous 

all-electron calculations [327, 122]. We have also calculated the properties of the 

sodium tridecamer in both high and low spin states. Our all-electron calculations 
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are interesting in their own right, given the dearth of all-electron DFT studies of 

the properties of sodium clusters. 

4.2 METHODOLOGY 

The MCP method was originally proposed by Bonifâcie and Huzinaga [355] 

for Hartree-Fock calculations. More detailed theoretical justifications of the 

method were later given by 11.5jer and Chung [364], and by Sakai and Huzi-

naga [365]. The MCP method has been adapted for spin-polarized local-spin-

density calculations by Salahub and coworkers [358, 366]. Here, we give a brief 

description of the MCP used for DFT since this is the method used for the design 

and application of our sodium core potential. 

The MCP method assumes that the core orbitals are well localized and 

environment-independent frozen atomic orbitals. With this assumption, the core 

orbitals, eccr (r), can be separated from valence orbitals, Ove (r), and a core potential 

can be defined (in hartree atomic units) as 

Z2 	+ 
J 

n(r) 
 dr

, 
 + v[nic

.
, n](r) , 

Ir — Ril 	Ir — r'l 

where RI is the nuclear coordinate of atom I, with atomic number Z1  and 

core electrons Z2 (Z2 = 10 in the case of sodium), n'Y, = Ele2  is the spin 

a charge density of the core electrons, n, is the total core density, and the 

exchange-correlation potential, vc;., = SEsciânc, is the usual derivative of the 

DFT exchange-correlation energy with respect to the total spin o-  charge density. 

The valence energy is written as 
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corresponding to any applied electrical field whose effect on the core electrons is 

neglected. 

Minimizing the valence energy with respect to the valence orbitals leads to 

the orbital equation, 

Plje(r) = 60.7,(r), 	 (4.3) 

where the spin(u)—dependent Kohn-Sham (KS) operator 

= 	—
1

V2  — 	
Z1-7  E 	+ vappl(r) + vc̀r (r) . 	(4.4) 

2 I  — 

Since the core orbitals are also solutions of Eq. (4.3), they must be moved out of 

the way before we have a truly valence-only variational method. This is done by 

introducing the "projector", 

pU 
 
= 2E eclecr  >< ec- L 

	
(4.5) 

and this leads to 

(Êtc, - Pa)e(r) = ev'e(r) • 	 (4.6) 

The projector for sodium is given in Table VI in terms of the core orbital energies 

from an atomic numerical LDAxc calculation and the coefficients and exponents 

of a Gaussian-type orbital fit to the core orbitals from the same numerical calcu-

lation. 

The core potential, v , is taken as a linear combination of atomic potentials 

(i.e. the MCP), rather th.an  using Eq (4.1) directly, 

[Z, 	Ek  Ak  (M3/2  exp(—akr 2)] 
ak  

VMCP(r) 	 (4.7) 

and the exponents, Œk and Ak  are varied, subject to the charge conservation 

constraint 

E Ak — Zc 	 (4.8) 

until atomic MCP calculations using a finite orbital basis set give valence orbitals 

and orbital energies in good agreement with those from the reference numerical 
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atomic LDAxc calculation. The exponents and contraction coefficients for the 

Gaussian-type orbital basis set used to construct our sodium MCP are given in 

Table VII. The MCP itself is given in Table VIII. The auxiliary basis sets used 

to fit the charge density and exchange-correlation energy density and potential 

during the deMon-KS calculations are given in Table IX. 

4.3 COMPUTATIONAL DETAILS 

Both MCP and all-electron DFT calculations were carried out with the 

program deMon-KS (densité de Montréal— Kohn-Sham module) [367]. This 

program uses Gaussian-type orbitals (GT0s) as basis functions to expand the 

KS orbitals. GTO auxiliary basis sets are used to fit the charge density and 

exchange-correlation potentials and energy density. The fitting of the exchange-

correlation terms involves the use of a molecular grid. 

Geometries were optimized for sodium clusters containing six or fewer atoms. 

Singlet or doublet spin states were considered depending upon whether the num-

ber of atoms was even or odd. The tridecamer geometry was optimized with 

both doublet and sextuplet spin-multiplicity. Minima were confirmed by har-

monic frequency analysis which involves two-point numerical differentiation of 

analytic gradients. These clusters have very flat potential energy surfaces, in 

some directions, making high quality numerics indispensable. Even so, numerical 

constraints limit the accuracy of frequencies to about +50 cm'. The numer-

ical precision of the dimer bond length has been estimated at +0.035 bohr in 

all-electron calculations with the fine grid [327, 122]. 

All property calculations were carried out with the LDAxc and the gradient-

corrected functionals, B88x+P86c and PW86x-FP86c. To aid in assessing the 

MCP against the all-electron calculations, the same tight convergence criteria 

were used for both calculations. Specifically, an energy difference of less than 
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10-8  hartree and a change in charge density fitting coefficients of less than 10' 

a.u. between successive iterations was required. A FINE Random grid which 

is an angular grid ranging from 50 points to 194 points depending upon the 

radial distance (the final grid used for the total energy calculation consisted of 

32 radial grid points and 26 angular grid points for a total of 832 grid points per 

atom) was used for the present calculations, except in the case of the tetramer 

which lias a very soft in-plane lowest vibrational mode (vide infra). The final 

geometry of the tetramer was obtained with a user-defined grid [327] using 128 

radial grid points and 194 angular grid points for a total of 24,832 grid points per 

atom. Polarizability calculations were carried out using the finite field method in 

which the derivative of the induced dipole moment is obtained by a 3 point finite 

difference formula [333] and deMon-KS's default electric field strength of 0.0005 

a.u. 

A11-electron geometry and property calculations (except the all-electron po-

larizability calculations given in Refs. [327, 122]) employed the valence double-

zeta plus polarization function (DZVP) quality orbital basis set and the (5,4;5,4) 

auxiliary basis set in the deMon-KS basis set library. Th.ree orbital bases used 

in the MCP calculations are basis A, (311/2); basis B, (311/11); and basis C, 

(311/111) which differ in the choice of p functions. The fitting procedure used 

to obtain the exponents and coefficients of s functions does not generalize in the 

present case to find the exponents and coefficients of p functions, since sodium 

has no occupied valence p orbital to fit. Instead, p functions in basis B were 

simply borrowed from the outermost two p functions in the all-electron DZVP 

basis to replace the p function in the basis A, (311/2). This basis B is the choice 

for comparing with all-electron calculations. However, MCP polarizability cal-

culations used basis C, (311/111), which is supplemented with a field-induced 

polarization function borrowed from the all-electron basis set which was used in 

the all-electron polarizability calculations. Th.ese three orbital bases are given 

in Table VII(please note th.at  the Tables and Figs. are given at the end of the 
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chapter). Auxiliary basis set (5,1;5,1) and model core potential (5:6,4) are given 

in Table IX and Table VIII, respectively. 

4.4 RESULTS AND DISCUSSION 

The MCP calculations are much faster than the all-electron calculations 

which make the MCP an important tool for the study of still larger clusters. The 

quality of the MCP was evaluated against all-electron calculations for geometry 

optimizations and electronic property calculations of sodium clusters up through 

the hexamer. Then the MCP is applied to the tridecamer. Many of the all-

electron DFT calculations of sodium cluster properties reported here are the 

first in the literature. The total self-consistent field (SCF) cycles used for each 

calculation of the MCP and the all-electron (MCP/AE) are 47/47, 49/54, 64/62, 

54/56, 57/137, and 54/56 for the atom, dimer, trimer, tetramer, pentamer, and 

the hexamer, respectively. This comparison shows that the total cycles used 

for the MCP and the all-electron calculations are basically the same, except for 

the pentamer (the total cycles used in the all-electron calculation is about twice 

that for the MCP calculation). Therefore, the time used per cycle can indicate 

the efficiency of the MCP calculations. This is demonstrated in Fig. 4(please 

note that Figs. and Tables are given at the end of the chapter) in terms of the 

central processing unit (CPU) time used per SCF cycle in comparison with the 

all-electron results. 

4.4.1 OPTIMIZED GEOMETRIES 

Structural parameters may be regarded as the most basic cluster properties, 

prerequisite to the detailed understanding of other properties. The all-electron 

LDAxc optimized geometries are with shorter bond lengths and larger bond angles 

compared with available experiment. In contrast, Hartree-Fock (HF) optimized 
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geometries are with longer bond lengths and even larger bond angles in compar-

ison with the experiments. Tables X and XI show that the all-electron LDAxc 

dimer bond length is 0.1 bohr too short, while the HF bond length of Ref. [3] is 

0.28 bohr too long, in comparison with the experimental results. For the trimer, 

the isosceles sides of the triangle are too short in comparison with the experiment 

by 0.17 bohr at the LDAxc level and too long by 0.33 bohr in the HF calculations 

of Ref. [3]. The trimer bond angle between the two isosceles sides of the triangle 

is too large compared to the experiment by 5.78° in the LDAxc calculations and 

too large by 9.23° in the HF calculations of Ref. [3]. 

The DFT gradient-corrected P86x-FP86c and B88x+P96c functionals lead 

to longer bond lengths than those at the LDAxc level, while the CI leads fo 

shorter bond lengths than those at the HF level [368]. However, both leading 

to better agreement with the experiment. Judging from the trimer results, the 

B88x+P96c functional is better than the P86x+P86c functional for the optimized 

geometries of sodium clusters. 

The MCP optimized geometries, no matter whether the bond lengths are 

longer or shorter than the all-electron geometries, are in better agreement with the 

experiments. The comparison between the MCP (MCP/LDAxc, MCP/P86x+P86c 

and MCP/B88x+P86c) and the all-electron geometries is given in Tables X and 

XI. In the dimer case, the bond length obtained by the MCP/LDAxc and the 

MCP/PW86x+P86c functionals is longer than the all-electron geometry by 0.16 

bohr and 0.09 bohr, respectively. In contrast, the MCP/B88x+P86c functional 

gives a bond length shorter than that of the all-electron B88x-FP86c result by 

0.04 bohr. In the trimer case, the bond lengths of the isosceles sides of the tri-

angle are become shorter and the bond angle between the two isosceles sides 

of the triangle are decreased at all levels of the MCP/LDAxc (0.23 bohr, 1.2°), 

the MCP/B88x-FP86c (0.02 bohr, 3.9°), and the MCP/PW86x-FP86c (0.13 bohr, 

8.4°) calculations compared to the all-electron values. It is worth mentioning that 
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the MCP tetramer geometry optimized with basis A is a nonrhomboid parallelo-

gram, but basis B with the LDAxc functional yields a rhombus structure, which 

is the same as the all-electron result. The optimized geometry obtained with 

gradient-corrected functionals and basis B is closer to that optimized at the all-

electron level than that with basis A, although it is not a rhombus yet. However, 

the MCP/B88x-FP86c functional gives the best mimic to the all-electron opti-

mized geometries and both the all-electron and the MCP geometries calculated 

with this functional are in better agreement with the experiment. 

The all-electron and the MCP/LDAxc optimized geometries are also com-

pared with the results obtained with Bachelet, Hamann, and Schlüter (BHS) [369] 

ab initio ECP and Bardsley (BRD) [370] semiempirical ECP taken from the lit-

erature [362, 7, 8, 363]. Tables X and XI show that the BHS ECP bond lengths 

are too short, while the BRD ECP bond lengths are a little bit too long, in com-

parison with the present all-electron results, but the bond lengths with both BHS 

and BRD ECP are shorter than the MCP results. However, the MCP and the 

BRD ECP optimized geometries agree well with the experiments, the difference is 

that the MCP yields positive errors, in contrast, BRD ECP gives negative errors. 

The assessed MCP is applied to predict the tridecamer equilibrium geometry. 

The intent here is not to make a full exploration of the potential energy surface 

of Nan, but rather to illustrate how the MCP might be used in treating larger 

clusters than would normally be treated at the all-electron level. Th.us the present 

work focuses on the two likely structures, one for the doublet spin-multiplicity and 

the other for the sextuplet spin-multiplicity. According to the shell model [347, 

346], the lowest energy sextuplet structure should have a compact spherical shape 

with a five-fold degenerate HOMO (highest occupied molecular orbital). Indeed 

the lowest energy structure for Li13  is believed to be icosahedral with sextuplet 

spin multiplicity [371]. But this is not the lowest energy structure for Nan  from 

the calculations by R6thlisberger and Andreoni [345, 372] or Spiegelmann and 
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Poteau [349] as well as our own calculations. The icosahedral structure is excluded 

by the Jahn-Teller effect from being a minimum on the doublet potential energy 

surface. According to the shell model, the lowest energy doublet structure is 

an ellipsoid with principle axis length.s in the ratio [346] of 1.25:1.08:0.73. In 

fact, Spiegelmann and Poteau, in their distance-dependent tight binding model 

study of sodium cluster geometries [349], found the minimum energy doublet 

structure to be roughly ellipsoidal with principle axis lengths in the ratio of 

1.34:1.08:0.69. A qualitatively similar result was also found in the Car-Parrinello 

study by Reithlisberger and Andreoni [345, 372]. Although these are some of 

the most complete studies of the structure of the sodium tridecamer, very few 

properties were actually calculated for the structures found. 

The tridecamer geometry optimizations are presently carried out without 

any symmetry constraints for both the sextuplet and doublet spin multiplicities 

beginning in each case with both an icosahedral starting geometry and the min-

imum energy doublet geometry of Spiegelmann and Poteau. The result of the 

doublet geometry beginning with the Spiegelmann and Poteau structure led to a 

minimum geometry with energy of 0.245 eV below that of the minimized icosahe-

dral sextuplet structure (whose mean coordination number given in Table XX), 

confirming that the true minimum of the tridecamer is not the same as Lin  with 

an icosahedral structure, but an asymmetric structure with doublet multiplicity 

whose coordinates and nearest-neighbor distance are given in Table XVIII and 

XIX. The present MCP found the minimum geometry of the tridecamer to be the 

same as that found by Rahlisberger and Andreoni [345, 372] and by Spiegelmann 

and Poteau [349]. 

4.4.2 VIBRATIONAL FREQUENCIES 

Vibrational analysis is necessary in order to confirm that stationary points 

obtained during geometry optimizations are indeed minima. Vibrational frequen- 
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cies are also of spectroscopic interest and may be used to judge the shape of the 

potential energy surface. The sodium cluster vibrational frequencies reported 

here are harmonic frequencies calculated by finite difference of the analytic gra-

dients [280, 249]. These calculations have been made at the all-electron and the 

MCP levels using both local and gradient-corrected functionals for the clusters 

up through the hexamer and at the MCP level using the LDAxc functional for 

the tridecamer. The present calculated frequencies are compared with available 

experiment and other theoretical results in Table XII, and Table XIII. The sym-

metry of the normal modes have been assigned for the all-electron calculations (a 

few differences in the ordering of modes between the all-electron and the MCP 

calculations are observed for quasidegenerate modes). Neither experimental nor 

calculated frequencies are available to our knowledge beyond the trimer, with 

the exception of the spherically-averaged pseudopotential (SAPS) calculations of 

Aguilar et al. [2]. However, the SAPS model leads to overly symmetric optimized 

structures which make vibrational modes be too degenerate (see Tables XII, XIII 

and XX). Given this fact and the quality of our results for the dimer and trimer, 

the present results may be regarded as the first semiquantitative prediction of 

sodium cluster frequencies for the tetramer and above. 

Tables XII and XIII show that all the frequencies obtained at the all-

electron level are real, confirming that the optimized equilibrium geometries are 

minima on the potential energy surface. Table XII shows that the present calcu-

lated frequencies agree well with the experiment and other theories for the dimer 

and trimer. In the dimer case, the all-electron LDAxc vibrational frequency is 

in the best agreement with the experimental result, being larger by only 0.8%, 

while the PW86x-FP86c yields larger frequencies by 3.8% and the B88x+P86c 

gives smaller vibrational frequencies by 5.6% in comparison with experiment. 

In comparison, a multiconfigurational self-consistent field (MCSCF) calculated 

frequency of the dimer [373] is 1.9% too small compared with the experiment, 

and a full CI molecular dynamics calculation gives the anharmonic frequency of 
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the dimer differing from the experiment by 14% [374]. In the trimer case, the 

present all-electron calculations of the three frequencies (sym., asym., and bend-

ing) at the LDAxc level differ from the experiment by 1.8%, 28.3%, and 18.7%, 

respectively. The differences increase at the gradient-corrected functional level 

(PW86x-FP86c and B88x-FP86c). In comparison, full CI molecular dynamics cal-

culated anharmonic frequencies [374] differ from the experiment by 1.5%, 4.0%, 

and 27.3%, respectively. The differences between the present calculations and the 

experiment may not come from the comparison of theoretical harmonic frequen-

cies with experimental anharmonic frequencies. Since the effect of anharmonicity 

has been estimated by the present work for the dimer, the anharmonic correction 

is only about one percent of the harmonic frequency. 

The frequencies calculated by the MCP (Table XII) are in better agreement 

with the experiment. Although there are deviations between the MCP and the all-

electron calculations, at the LDAxc level, the deviations are no larger than 7% for 

the dimer and the trimer. But the gradient-corrected functionals (PW86x+P86c 

and B88x-FP86c) yield larger differences (9% and 33%). 

Table XII and Table XIII show that the MCP frequencies are all positive, 

which indicates that the MCP optimized geometries are indeed minima. With 

the exceptions of one mode in the trimer and two modes in the hexamer, the 

MCP vibrational frequencies are lower than the corresponding all-electron calcu-

lations at the LDAxc level, typically by 2 - 10 cm-1. Thus the MCP potential 

energy surface around the minima is slightly flatter than that of the all-electron 

calculations. 

In order to judge the nature of sodium tridecamer stationary points, a vibra-

tional analysis (with basis A) was carried out for the optimized geometries. The 

vibrational analysis revealed the asymmetric structure optimized starting from 

the Spiegelmann and Poteau structure with doublet spin multiplicity and the 

icosahedral geometry with sextuplet multiplicity to be the minimum structures 
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among our four optimized geometries. The vibrational frequencies for these two 

minima are given in Table XX. 

4.4.3 BINDING ENERGY PER ATOM 

Binding energy per atom (BEPA) is an important indicator of the relative 

thermodynamic stability of clusters. It should approach the bulk cohesive energy 

in the limit of a large enough cluster. However, the shell model [347, 346] predicts 

that an odd-even alternation should be superimposed upon this trend due to the 

relative instability of half-closed shells in comparison -vvith closed shells. These 

trends have been observed in the calculations at a variety of levels [5, 3]. Here we 

are interested in how the detailed features of calculated BEPAs depend on the 

choice of functional and the use of an MCP rather than all-electron calculations. 

The BEPA were calculated according to the following atomization reaction, 

Na n  --> nNa 	 (4.9) 

and the formula, 

Eb(n) = E(1)— E(n)/n, 	 (4.10) 

where E(n) is the energy of a cluster with n atoms. The BEPA measures the 

average binding energy in the cluster and becomes equal to the cohesive energy 

of the bulk crystal when n is sufficiently large. 

Since basis set borrowing may lead to a better description of the cluster than 

the atom, corrections for basis set superposition error (BSSE) are in principle 

necessary when calculating the BEPA. These were estimated for the dimer using 

the counterpoise method. The calculations show that the BSSE for the dimer is 

0.003 eV or less at both all-electron and MCP levels for the local (LDAxc) and 

the gradient-corrected functionals (PW86x-FP86c, B88x+P86c). It is therefore 

reasonable to neglect the BSSE correction to the BEPAs reported here. 
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The BEPAs of the sodium clusters were calculated with the LDAxc, the 

B88x+P86c, and the PW86x-FP86c functionals at both all-electron and MCP lev-

els. The comparison with available experiments and traditional ab initio CI [3, 4] 

and fourth.-order Moller-Plesset perturbation theory (MP4) [5] are given in Ta-

ble XIV. The present all-electron calculations show that the BEPAs are over-

estimated at the LDAxc level and at the PW86x-FP86c level. In contrast, the 

BEPAs are underestimated by the B88x-FP86c functional and by traditional ab 

initio methods (CI and MP4). For example, in the trimer case, the LDAxc and 

the PW86x-FP86c functionals yield BEPA larger than the experiment by 0.07 eV 

and 0.03 eV, respectively. In contrast, the B88x-FP86c functional, CI, and MP4 

give the BEPA lower than the experiment by 0.05 eV, 0.1 eV, and 0.17 eV, re-

spectively. However, the BEPAs calculated by the gradient-corrected functionals 

are in better agreement with the experiment. 

Fig. 7 shows that the distinct odd-even alternation is observed as the number 

of atoms in the clusters increases for the PW86x-FP86c functional, which is the 

same as previously observed at the MP4 level [5]. The LDAxc and the B88x+P86c 

results obey similar trends to the CI results [4, 3] in that the BEPAs increase with 

cluster size and the odd-even alternation behavior is less pronounced. 

The MCP BEPAs nicely reproduce the all-electron results. Table XIV shows 

that the differences between BEPAs calculated by the MCP and by the all-

electron approach increase when the cluster size increases at the LDAxc level, 

while this difference decreases as the cluster size increases at the level of the 

gradient-corrected functionals (PW86x-FP86c and B88x+P86c). However, the 

MCP/LDAxc and the MCP/PW86xl-P86c results are lower than the correspond-

ing all-electron calculations by less than 0.04 eV and 0.06 eV, respectively. In con-

trast, the gradient-corrected MCP/B88x-FP86c functional gives a BEPA about 

0.04 eV larger than the all-electron results. 

Fig. 8 shows that the present MCP BEPAs calculated with the LDAxc and 
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B88x+P86c functional obey similar trends to the all-electron results. But the 

PW86x+P86c BEPAs are different from the all-electron calculations, in which the 

distinct odd-even alternation behavior observed at the all-electron level becomes 

simply increasing with cluster size. Hence the three functionals at the MCP level 

yield very similar trends for the BEPAs. 

The sodium tridecamer BEPA is presented for the asymmetric structure 

with doublet spin multiplicity and for the icosahedral geometry with sextuplet 

multiplicity at the LDAxc level (with basis A) in Table XXI. The BEPAs of 

the asymmetric structure (0.74 eV) is larger than that of the icosahedral geome-

try (0.72 eV), this coincides with the geometry optimizations which asymmetric 

structure lias lower energy than the icosahedral geometry. However, the present 

calculated BEPAs with the two structures (asymmetric structure and icosahedral 

geometry) are smaller than other theoretical results. A Car-Parrinello calculation 

yielded 0.80 eV on a structure with five-fold symmetry and doublet spin multi-

plicity [345], and a self-consistent pseudopotential local spin density calculation 

gave 0.86 eV for the BEPA [344] with a different symmetry (i.e. a distorted 

cubo-octahedron). We believe this difference to be due to different structures 

being used in the different calculations. Although the BEPA of the tridecamer is 

still far away (by about 0.37 eV) from the bulk value, sodium cluster BEPAs do 

eventually converge smoothly to the bulk value (1.11) [375]. 

4.4.4 IONIZATION POTENTIALS 

Cluster ionization potentials (IPs) are one of the interesting cluster proper-

ties serving as an indicator of cluster reactivity. Sodium cluster IPs have been well 

studied both experimentally [6, 376] and theoretically [344, 3, 5]. The global trend 

in vertical IPs as a function of size has been described by multireference double 

configuration interaction (MRD-CI) [3], and fourth-order Moller-Plesset pertur-

bation theory (MP4) [5] and in adiabatic IPs by LDAxc ECP calculations [344] 
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and with the liquid droplet model [6]. The IPs for small clusters show oscillations 

which are described by the shell model [347, 346]. Particularly notable are the 

even-odd alternations as orbitals are successively filled and half-filled. The MCP 

vertical IPs reported here will be judged in part by their ability to reproduce both 

qualitatively and quantitatively the trend for IPs calculated at the all-electron 

level. 

The results of the MCP and the all-electron calculations of IPs are given 

in Table XV. The energies of the cationic sodium clusters are calculated at the 

same geometries as for the neutral clusters. Hence the IPs reported here are 

vertical. Note that the experimental IPs given in Table XV are probably best 

interpreted as adiabatic IPs. Nevertheless they still serve as useful points of 

reference, especially where structural relaxation effects are expected to be small. 

Fig. 10 shows that the MCP IPs carried out with the LDAxc, the PW86x+P86c, 

and the B88x+P86c functionals have a similar trend versus the cluster size to the 

experiment which has mild odd-even alternation. This is similar to the all-electron 

results (see Fig. 9). In contrast, traditional ab initio MRD-CI [3] and MP4 [5] 

produced distinct odd-even alternation. The MCP IPs calculated with the local 

and the gradient—corrected functionals differ very little from one another so that 

no particular functional appears to be better than any other for this property. 

The MCP in the application (with LDAxc and basis A) to calculate the 

vertical IP for the doublet asymmetric geometry and for the sextuplet icosahedral 

tridecamer structure is compared, in Table XXI, with IPs from other models and 

with experiment. The IP with the asymmetric structure agrees well with previous 

ECP DFT calculations with a distorted cubo-octahedral structure and both are 

larger than the experiment. At first glance, the spherical droplet model would 

seem to be ideally suited for estimating the IP of such a "spherical" structure 

as an icosahedron. However, the spherical droplet IP, which compares quite 

favorably against the experimental IP, overestimates the present calculated IP 



100 

(with icosahedral structure) by 0.44 eV. This, of course, is less surprising when it 

is taken into account that the spherical droplet model is parameterized using the 

work function of the essentially closed-shell bulk and that the open-shell sextuplet 

should be destabilized with respect to similar closed-shell structures. 

4.4.5 POLARIZABILITIES 

Polarizabilities of metal clusters are an interesting property which may pro-

vide helpful information on both cluster structure and cluster electronic struc-

ture [7, 362, 8, 363]. The simplest model for describing cluster polarizabilities 

is that of a classical metal sphere. This is the so-called "spill-out" model and 

predicts that the static polarizability is proportional to the volume of the cluster. 

However, real clusters are not spherical and accurate calculations are necessary 

to obtain quantitative agreement with experiment. MCPs offer a way to ex-

tend previous all-electron DFT calculations of polarizabilities [327, 122] to larger 

clusters. 

Calculations of the mean polarizabilities and polarizability anisotropies of 

the sodium clusters up through the hexamer have been carried out at the all-

electron and the MCP levels using both local (LDAxc) and gradient-corrected 

functionals (PW86x-FP86c and B88x+P86c). The all-electron results have been 

reported previously [327, 122]. Here the main focus is on the discussion of the 

MCP polarizabilities and comparing them with the previously published all-

electron results. The MCP was also applied to calculate polarizabilities of the 

tridecamer. 

The MCP mean polarizabilities and polarizability anisotropies as well as 

the all-electron results, previously reported effective core potential calculations 

of Moullet et al. [7, 362, 8, 363], and experimental results are presented in Ta-

ble XVI and Table XVII. Table XVI shows that the mean polarizabilities calcu- 
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lated at the MCP level are in reasonable agreement with the all-electron mean 

polarizabilities. The largest error between the all-electron and the MCP mean 

polarizabilities is always for the atom regardless of the functional used. However, 

the difference between the MCP mean polarizabilities and the all-electron mean 

polarizabilities decreases when the cluster size increases, regardless of whether 

a local or gradient—corrected functional is used. This trend can be clearly seen 

in Fig. 11. This phenomenon is believed to be due to basis set borrowing. The 

differences between the MCP and the all-electron mean polarizabilities calculated 

at the LDAxc level using geometries optimized at the same level are in the range 

of 16% except for the atom (50%) and dimer (25%). The MCP/B88x-FP86c mean 

polarizabilities are in best agreement with the all-electron results (it is 36% for 

the atom and 15% for the dimer larger than the all-electron results, for larger 

clusters it is about 8% larger than the all-electron result). This is obvious in 

Fig. 11 on which the ratio of the MCP mean polarizabilities and the all-electron 

mean polarizabilities with the B88x+P86c functional is closer to 1 than that with 

the LDAxc and the PW86x-FP86c functionals. In comparison with the experi-

ment, the MCP overestimates mean polarizabilities for atom (31%) and the dimer 

(9%), in contrast, it underestimates those for larger clusters (9% for the trimer, 

5% for the tetramer, 13% for the pentamer, and 19% for the hexamer). 

The ECP LDAxc mean polarizabilities reported previously using the ab ini-

tio BHS ECP given in Table XVI are in better agreement with the all-electron 

LDAxc mean polarizabilities than are the BRD ECP ones. The discrepancies 

between the ECP BHS mean polarizabilities and the all-electron mean polariz-

abilities are in the range from about 1% for the atom to 5% for the pentamer. 

However the semiempirical BRD ECP mean polarizabilities are in better agree-

ment with experiment. The MCP/LDAxc mean polarizabilities are similar to 

BRD ECP mean polarizabilities for the larger sodium clusters (e.g. the pentamer 

and the hexamer). 
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The MCP polarizability anisotropies (a sensitive property) agree roughly 

with the all-electron calculations. Similar to the mean polarizabilities, the largest 

deviation between the MCP and the all-electron calculations occurs for the dimer 

regardless of the functional used. The MCP/LDAxc and the MCP/PW86x-FP86c 

overestimate polarizability anisotropies by about 2% and 10%, respectively, in 

comparison with the all-electron results, except for the dimer (25% and 20%, re-

spectively). In contrast, the B88x+P86c functional underestimates polarizability 

anisotropies by about 3%, except for the dimer (27%). The percent difference be-

tween the all-electron LDAxc polarizability anisotropies and BHS polarizability 

anisotropies is also large, ranging from 5% to 16%, but there are no experimental 

results available to judge which one is better. 

The mean polarizability of the doublet asymmetric and the sextuplet icosa-

hedral tridecamer, as well as the experimental polarizability, is given in Ta-

ble XXI. The close agreement between the present MCP calculated polarizability 

and that given by the spill-out model is interesting since an icosahedron is nearly 

spherical, though we would have expected the polarizability of the sextuplet to 

be a bit larger than that of the spill-out model which is parametrized using the 

Wigner-Seitz radius of the bulk (closed shell) and the polarizability of the atom 

(doublet). It is interesting that the polarizability of the doublet asymmetric 

structure is larger than that of the sextuplet icosahedron and that of the spill-out 

model. Moreover, the available experimental polarizabilities for the trimer and 

larger clusters are consistently larger than the most rigorous DFT values [122]. 

Hence the roughly 15% difference between the experimental value and the present 

MCP value for the tridecamer is not surprising. 

4.5 CONCLUSION 

A model core potential for sodium has been presented in this chapter. 

Its efficiency and accuracy were assessed by performing geometry optimizations 
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and calculations of vibrational frequencies, binding energies, ionization poten-

tials, and polarizabilities against corresponding all-electron calculations for clus-

ters up through the hexamer using both local and gradient—corrected exchange—

correlation functionals. Such calculations are a useful calibration prior to use of 

the MCP in the application to the tridecamer property calculations and future 

studies. However, many of the all-electron density functional calculations pre-

sented here are the first all-electron results for those properties. In the particular 

case of vibrational frequencies, neither quantitative MCP nor all-electron results 

have been reported previously. 

The accuracy of the MCP was found to vary according to the property con-

sidered and the exchange-correlation functional used. In most cases, the MCP 

properties calculated from the B88x-FP86c functional are in the best agreement 

with those from the all-electron calculations, and are in better agreement with 

available experiment and correlated ab initia results. In particular, optimized 

geometry bond lengths differ by only about 1% from corresponding distances cal-

culated at the all-electron level, and polarizabilities differ by only 8%. The MCP 

structures optimized with the B88x-FP86c functional are also in significantly bet-

ter agreement with the all-electron calculations than are the structures obtained 

in the previous ECP LDAxc calculations [350]. For the binding energy per atom, 

there is a larger but still small discrepancy between the MCP and the all-electron 

calculations. For example, the discrepancy is about 12% (or 0.04 eV) for the 

binding energy per atom for the dimer and the trimer with the B88x-FP86c func-

tional. For the ionization potential and vibrational analysis, the MCP/LDAxc 

functional gives the best mimic to the all-electron calculations. Based on the all-

electron calculations, the best exchange-correlation functional to use depends to 

some extent on the property being calculated. The B88x-FP86c functional is the 

best for geometry optimizations and polarizability calculations, while the LDAxc 

functional gives the best agreement between the calculated harmonic frequencies 

and experimentally observed vibrational frequencies. 
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The geometry optimizations and electronic properties of Nan  were carried 

out without the use of symmetry as an illustrative application of the MCP to 

a system which would not normally be treated at the all-electron level. We are 

encouraged by the efficiency of this MCP which was used to calculate vibrational 

frequencies for a number of stationary points on the potential energy surface. The 

found minimum geometry agrees with that previously reported by Reithlisberger 

and Andreoni [345, 372] and by Spiegelmann and Poteau [349]. 



Table VI. Projector used in MCP calculations. 

Core orbitals in the projector  

Exponent Contraction coefficients Orbital energies (hartree) 

105 

ls 

0.0110207926 

-0.0201002043 

0.3847575486 

0.5465959907 

0.1737338752 

0.0556630157 

2s 

0.0110207926 

-0.0201002043 

0.3847575486 

0.5465959907 

0.1737338752 

0.0556630157 

2p 

0.5065137 

1.9797206 

7.7377839 

30.2433071 

0.0110207926 

-0.0201002043 

0.3847575486 

0.5465959907 

0.1737338752 

0.0556630157 

-0.6633609533 

-0.5141829252 

0.2081092298 

0.1834869534 

0.0456662029 

0.0141356653 

0.3667361438 

0.5607790351 

0.2682032287 

0.0574445985 

-37.7147636414 

-2.0584678650 

-1.0556892157 
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Table VII. Orbital basis sets used in MCP calculations. Note that basis sets A, 

B, and C differ by the p-functions added to the substrate basis  set. 

Orbital basis  

Exponent Contraction coefficients 

Substrate basis 

ls 

205.06946 -0.00554574 

29.673375 -0.03273471 

1.0632752 0.24903133 

2s 

0.0840500 1.00000000 

3s 

0.0323178 1.00000000 

p-functions for basis A 

1p 

	

0.067700500 
	

0.52450640 

	

0.030000000 
	

0.52450640 

p-functions for basis B 

1p 

	

0.4702690000 
	

1.00000000 

2p 

	

0.0647000000 
	

1.00000000 

p-functions for basis C 

1p 

	

0.4702690000 	 1.00000000 

2p 

	

0.0647000000 	 1.00000000 

3p 

	

0.0280000000 	 1.00000000 



Table VIII. Model core potential used in MCP calculations. 

Model core potential 

Exponent Contraction coefficients 

541.2974243 -1.6272639 

53.5501099 -2.8618634 

5.2941766 -3.3278172 

0.6764935 -2.0552888 

0.1380625 -0.1277668 

Table IX. Auxiliary basis set used for fitting charge density (CD) and exchange-

correlation (XC) potential in MCP calculations. 

Exponents used for fitting CD and XC 

GTO Charge density Exchange correlation 

s 410.1300000 136.7100000 

s 59.3470000 19.7823333 

s 2.1260000 0.70866670 

s 0.1681000 0.05603333 

s 0.0646000 0.02153333 

spd 0.1354010 0.0451337 

107 
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Table X. Comparison of all-electron (AE) and MCP DFT optimized geometries of 

sodium dimer, trimer, and tetramer with previous effective-core potential (ECP) 

DFT, Hartree-Fock (HF), and configuration interaction (CI) calculations, with 

previous AE HF calculations and with experiment. Geometrical variables are 

defined in Fig. 5. Bond lengths are in bohr, bond angles are in degrees. 
DFT Other 

LDAxc PW86x-I-P86c B88x-FP86c HF CI EXPT 

R ECP 

MCP (Basis A) 

MCP (Basis B) 

AE 

5.47a (5.78b) 

5.89 

5.87 

5.71 

Dimer 

5.85 

5.85 

5.76 

5.83 

5.82 

5.86 6.10' 5.815d  

5.818' 

Trimer 

ECP 5.68° (6.05b) 6.43J 6.43g 

MCP (Rosis A) 6.25 6.24 6.20 

MCP (Basis B) 6.19 6.16 6.14 

AE 5.96 6.03 6.12 6.46' 6.26h  

6.13i  

B ECP 78.01°  (83.031 87.21  84.9g 

MCP (Basis A) 88.98 88.14 91.47 

MCP (Basis B) 84.26 83.83 84.04 

AE 85.48 92.20 87.97 88.9c 73.2h  

79.70i  

Tetraraer 

ECP 6.18° (6.57b) 6.99f 6.88g 

MCP (Basis A) 8.02/6.20,  8.83/6.04i 8.21/6.12- 

MCP (Basis B) 6.73 7.57/6.24i 6.80/6.57 

AE 6.48 7.07' 

R ECP 5.42° (5.80b) 6.10f 6.24g 

MCP (Basis A) 6.29 6.44 6.32 

MCP (Basis B) 5.93 5.99 5.87 

AE 5.68 6.14' 

° Ab initio Bachelet, Hamann, and Schlüter ECP calculations taken from Ref. [8]. 

Serni-empirical Bardsley ECP calculations taken from Ref. [8]. 

All-electron Hartree-Fock calculations taken from Ref. [3]. 

d  All-electron multireference singles and doubles configuration interaction calculations taken from Ref. [351]. 

From Ref. [377]. 

Effective core potential Hartree-Fock calculations taken from Ref. [3]. 

g Effective core potential configuration interaction calculations taken from Ref. [3]. 

h  All-electron multireference singles and doubles configuration interaction calculations taken from Ref. [368]. 

i  From Ref. [378]. 

Only a nonrhomboid parallelogram structure was found, with side lengths given here. 
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Table XI. Comparison of all-electron (AE) and MCP DFT optimized geometries 

of soidum pentamer and hexamer with previous effective-core potential (ECP) 

DFT, Hartree-Fock (HF), and configuration interaction (CI) calculations, and 

with previous AE HF calculations. Geometrical variables are defined in Fig. 5. 

Bond lengths are in bohr, bond angles are in degrees. 
DFT Other 

LDAxc PW86x+P86c B88x-FP86c HF CI 

Pentamer 

ECP 6.36' (6.556) 6.92' 

MCP (assis A) 6.85 6.94 6.83 

MCP (Basis B) 6.74 6.79 6.71 

AE 6.49 6.97d  

R2 ECP 6.01 (6.42b) 7.09' 

MCP (Basis A) 6.94 6.84 6.88 

MCP (Basis B) 6.71 6.61 6.64 

AE 6.43 7.12d  

R3 ECP 6.04' (6.37b) 6.82' 

MCP (Basis A) 6.54 6.51 6.54 

MCP (Basis B) 6.49 6.48 6.45 

AE 6.23 6.94d 

R4 ECP 6.03' (6.306) 6.88' 

MCP (Basis A) 6.59 6.61 6.56 

MCP (Basis B) 6.50 6.53 6.48 

AE 6.20 6.95d  

Hexamer 

r ECP 6.27' (6.62b) 7.28c  7.26' 

MCP (Basis A) 6.82 6.89 6.81 

MCP (Basis B) 6.77 6.85 6.76 

AE 6.58 7.52d 

R ECP 5.89' (6.30b) 7.24' 6.67' 

MCP (Basis A) 6.63 6.54 6.56 

MCP (Basis B) 6.46 6.40 6.41 

AE 6.19 6.58d  

a Ab initio Bachelet, Hamann, and Schlüter ECP calculations taken from Ref. [8]. 

b Semi-empirical Bardsley ECP calculations taken from Ref. [8]. 

Effective core potential Hartree-Fock calculations taken from Ref. [3]. 

d  All-electron Hartree-Fock calculations taken from Ref. [3]. 

Effective core potential configuration interaction calculations taken from Ref. [3]. 
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Table XII. Sodium dimer and trimer harmonic vibrational frequencies calculated 

at the all-electron (AE) and MCP levels with various functionals. All calculations 

have been carried out at the optimized geometry for that level and functional. 

Frequencies from the spherically—averaged pseudopotential (SAPS) calculations 

of Ref. [2] are also listed. Note that the SAPS structures are too symmetric 

compared to the present calculations, leading to too few distinct frequencies. 
Na n  harmonie frequencies (cm-1) 

Assignrrient Density-functional theory Other 

LDAxc 	PW86xl-P86c B88x-FP86e 

Dimer (Ðh) 

E+ g MCP (Basis A) 150 151 154 

MCP (Basis B) 155 159 159 

AE 160 165 153 

MCSCFb  156 

EXPTe 159 

SAPS: 189 

Trimer (C2o) 

A1  MCP (Basis A) 37.1 39.6 33.4 

MCP (Basis B) 43.1 42.7 42.4 

AE 40.3 23.6 36.5 
01d 63. 

EXPTe 49. 

B2 MCP (Basis A) 98.6 93.9 108 

MCP (Basis B) 102 95.3 104 

AE 112 117 99.6 

CId  83.5 

EXPTe 87. 

A1  MCP (Basis A) 127 123 124 

MCP (Basis B) 136 135 138 

AE 142 134 128 

CId  141 

EXPTe 139 

SAPS: 137, 165 

Based on present AE/LDAxc calculations. 

b  Harmonie frequency from the multiconfiguration self-consistent field calculation of Ref. [373]. 

e From Ref. [379]. 

d  Frequency from the configuration-interaction molecular dynamics power spectrum calculated in Ref. [374]. 

Taken from Refs. [380, 57]. 
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Table XIII. Sodium tetramer, pentamer, and hexamer harmonic vibrational fre-

quencies calculated at the all-electron (AE) and MCP levels with various func-

tionals. All calculations have been carried out at the optimized geometry for that 

level and functional. Frequencies from the spherically-averaged pseudopotential 

(SAPS) calculations of Ref. [2] are also listed. Note that the SAPS structures are 

too symmetric compared to the present calculations, leading to too few distinct 

frequencies. With the exception of the results in parentheses, which were calcu-

lated with basis B, all MCP DFT calculations have been performed with basis 

A. 
Nan  harmonie frequencies (cm-1) 

MCP AE Assignrnenta 

LDAxc PW86x+P86c 	B88x-I-P86c LDAxc 

Tetramer (Ð2h ) 
29.5 (17.8) 25.7 (22.5) 	29.0 (24.8) 24.7 B29  

36.2 (40.1) 28.5 (37.4) 	37.9 (40.3) 42.4 Bzu 

46.1 (73.8) 31.9 (55.3) 	43.2 (73.4) 75.7 Bli, 

98.6 (96.1) 97.4 (106) 	103 (98.8) 99.4 Ag  

136 (136) 134 (141) 	137 (139) 140 B3tt 

138 (156) 140 (149) 	139 (159) 164 Ag  

SAPS: 113, 131, 151 

Pentam.er (C20 ) 

22.2 (26.1) 25.7 (28.9) 	24.4 (28.9) 26.1 B25  

23.5 (26.6) 28.8 (30.9) 	27.0 (29.3) 27.9 A2 

54.8 (58.5) 53.9 (58.8) 	56.7 (59.8) 61.0 A1  

58.9 (67.0) 60.8 (72.7) 	60.7 (69.6) 68.2 Bi 

77.5 (82.2) 75.5 (77.9) 	78.1 (82.3) 87.5 A1  

86.1 (93.3) 79.3 (89.0) 	86.4 (93.1) 101 B1  

103 (114) 96.6 (110) 	104 (117) 120 A1  

120 (126) 119 (126) 	119 (129) 134 Ar 

136 (146) 134 (144) 	136 (148) 155 B1  

SAPS: 58, 80, 133, 143, 149, 158 

Hexamer ( C5 v ) 

16.1 (22.3) 16.8 (23.5) 	18.7 (25.4) 33.0 E2 

60.6 (57.2) 53.4 (49.3) 	57.6 (54.6) 56.0 A1 

64.5 (71.7) 60.2 (68.4) 	63.9 (71.3) 72.9 E1  

79.9 (85.5) 82.7 (88.1) 	81.8 (87.6) 90.1 E2 

94.4 (98.4) 83.8 (90.1) 	91.3 (95.3) 98.1 E2 

120 (124) 117 (122) 	121 (126) 129 A1 

126 (137) 127 (140) 	127 (140) 145 E1  

SAPS: 81, 96, 139, 145, 152 

Based on present AE/LDAxc calculations. 

b Due to nurnerical imprecision, this mode is significantly mixed in our calculations with the quasidegenerate 

A2 mode. 
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Table XIV. Binding energy per atom (eV) of sodium clusters Na ri  (n = 2 - 6) 

calculated with local and gradient-corrected functionals. Note that BEPA cal-

culations at the all-electron level with the B88x+P86c and the PW86x+P86c 

functionals used the LDAxc optimized geometries. All other BEPAs were calcu-

lated for the geometries optimized at the same level. MCP results in parentheses 

were calculated using basis B.  

Binding energy per atom (eV)  

Methods 	Na2 	Na3 	Na4 	Na5 	Na6  

A]1-electron calculations 

LDAxc 	0.43 	0.43 	0.55 	0.60 	0.69 

B88x+P86c 	0.33 	0.31 	0.42 	0.45 	0.52 

PW86x+P86c 0.42 	0.39 	0.49 	0.42 	0.60 

Model core potential calculations 

LDAxc 	0.40 (0.42) 0.38 (0.40) 0.49 (0.52) 0.53 (0.56) 0.61 (0.65) 

B88xl-P86c 	0.36 (0.37) 0.33 (0.35) 0.40 (0.45) 0.45 (0.49) 0.51 (0.55) 

PW86x+P86c 0.35 (0.36) 0.33 (0.35) 0.41 (0.43) 0.44 (0.48) 0.50 (0.55) 

Experimental results 

EXPT.a 	0.37 	0.36 

A11-electron conventional ab initio calculations 

MP46 	0.27 	0.19 	0.35 	0.29 	0.45 

MRD-CF 	0.29 
	

0.26 	0.39 
	

0.44 	0.49 

Effective core potential calculations 

CId 
	

0.29 
	

0.25 	0.34 
	

0.36 	0.41 

LSDxce 
	

0.45 
	

0.43 	0.61 
	

0.64 	0.73 

Taken from Ref. [377, 381]. 

b  Fourth-order Moller-Plesset perturbation theory taken from Ref. [5]. 

C Multireference double configuration interaction calculations taken from Ref. [4, 3]. 

d Configuration interaction calculations taken from Ref. [4, 3]. 

e  Local spin density calculations taken from Ref. [344]. 
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Table XV. Sodium cluster ionization potentials calculated at the all-electron and 

MCP levels, compared with the experiment and other theoretical results. Note 

that the theoretical ionization potentials are vertical, while the experimental ion-

ization potentials are probably best described as being adiabatic. Both the all-

electron and MCP calculations were carried out at the geometries optimized with 

the same functional. MCP results in parentheses were calculated using basis B. 

Ionization potentials (eV) 

Functional Na Na2 	Na3 	Na4 Na5  Na6  

All-electron calculations 

LDAxc 5.37 5.29 	4.31 	4.41 4.34 4.64 

PW86x-FP86c 5.53 5.45 	4.54 

B88x-FP86c 5.34 5.16 	4.34 

Model core potential calculations 

LDAxc 5.12 (5.12) 5.22 (5.19) 	4.27 (4.22) 	4.41 (4.35) 4.26 (4.26) 4.60 (4.61) 

PW86x+P86c 5.37 (5.37) 5.35 (5.30) 	4.46 (4.40) 	4.53 (4.44) 4.38 (4.38) 4.76 (4.64) 

B88x-I-P86c 5.40 (5.40) 5.38 (5.34) 	4.50 (4.41) 	4.48 (4.42) 4.49 (4.41) 4.65 (4.65) 

Other theoretical calculations 

MRD-CP 4.6 	3.6 	4.2 3.8 4.0 

MP4b  4.6 	3.8 	5.6 3.2 4.5 

Experiment al remit se 

EXPTd 5.14 4.93 	3.97 	4.27 4.05 4.12 

EXPTe 5.14 4.91 	3.98 	4.28 3.95 3.97 

• Multireference double configuration calculation taken from Ref. [3]. 

b  Fourth-order Moller-Plesset perturbation theory calculation taken from Ref. [5]. 

• Best described as adiabatic. Note that adiabatic IPs are reduced in comparison with 

vertical IPs by the inclusion of the structural relaxation energy in the daughter ion. 

d  Taken from Ref. [6]. 

• Taken from Ref. [376]. 
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Table XVI. Sodium cluster mean polarizabilities calculated with different func-

tionals at the all-electron and MCP levels, experiment and previous ECP DFT 

results are also given for comparison. Note that the calculations at the all-electron 

level with the B88x-FP86c and the PW86x+P86c functionals were done using the 

LDAxc optimized geometries. All other calculations were done using structures 

optimized at the same level. 

Mean polarizability à (bohr3 ) 

Functional Na Na2 Na3 	Na4  Na5 

A11-electron calculationsa 

LDAxc 140.1 226.2 371.3 459.2 560.0 611.6 

PW86xl-P86c 135.4 221.4 360.8 447.8 548.3 603.4 

B88x-FP86c 153.8 242.3 394.5 481.5 584.5 639.5 

Model core potential calculations 

LDAxc 

Basis A 163.6 242.2 387.4 504.7 610.1 654.9 

Basis B 102.5 203.5 333.9 440.0 555.0 604.3 

Basis C 210.0 282.3 432.1 532.3 648.3 676.0 

PW86x-I-P86c 

Basis A 153.5 235.3 370.1 510.6 600.6 639.5 

Basis B 105.2 202.1 331.2 451.2 560.4 615.1 

Basis C 196.1 275.1 415.4 541.6 648.4 687.2 

B88x+P86c 

Basis A 168.2 237.9 391.1 489.5 617.0 651.0 

Basis B 105.2 200.5 334.3 434.3 550.2 598.1 

Basis C 208.9 277.7 427.2 521.6 634.9 664.4 

Effective core potentials DFT calculationsc 

BHS LDAxc 141.7 223.3 363.0 452.8 587.7 603.2 

BRD LDAxc 148.4 251.0 408.2 515.5 649.8 677.5 

Experimental results d  

EXPT 159.27±3.37 255.78±8.10 	471.06±16.20 545.97±20.25 726.16±29.02 823.89±30.36 

A11-electron results taken from our previous publications [327, 122]. 

b  Present work 

ECP results from Ref. [362]. 

d  Calculated from the measurements of relative polarizabilities of Knight et al. from Ref. [46] 

and the absolute measurement of the atomic polarizability by Molof al. from Ref. [382]. 
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Table XVII. Sodium cluster polarizability anisotropies calculated with different 

functionals at the all-electron and the MCP levels. Note that the calculations 

at the all-electron level with the B88x-FP86c and the PW86x+P86c functionals 

were done using the LDAxc optimized geometries. All other calculations were 

done using structures optimized at the same level.  

Polarizability anisotropy Ac (bohr3 ) 

Functional Na2  Na3  Na4  Na5  Na6 

All-electron calculationsa 

LDAxc 	135.8 284.6 446.4 430.9 377.6 

PW86x-FP86c 139.8 272.4 444.2 424.4 379.9 

B88x-FP86c 139.0 301.1 461.8 440.5 391.6 

Model core potential calculationsb  

LDAxc 

Basis A 	141.5 307.3 523.3 494.1 	420.8 

Basis B 	203.5 314.3 557.6 556.7 	460.2 

Basis C 	101.9 268.4 453.9 434.0 	379.9 

PW86x-FP86c 

Basis A 	158.2 287.8 565.1 512.0 	421.2 

Basis B 	196.5 318.2 594.4 575.1 	480.1 

Basis C 	111.3 278.2 513.3 469.6 	414.1 

B88x-FP86c 

Basis A 	129.8 324.3 510.5 508.7 	416.9 

Basis B 	195.8 322.4 552.9 551.6 	457.4 

Basis C 	101.4 276.9 455.8 428.6 	378.9 

Effective core potentials DFT calculationsc 

BHS LDAxc 	142.4 260.5 382.1 339.4 318.88 

a Taken from our previous publications [327, 122]. 

b  Present work 

c ECP results from Ref. [362]. 
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Table XVIII. MCP LDAxc optimized sodium tridecamer doublet asymmetric 

geometry coordinates. Atom numbers as in Fig. 6. 

Coordinates (bohr) for Doublet Nai3 

Center x y z 

1 -9.1351 -4.2501 1.8236 

2 -1.9162 -4.8605 2.2261 

3 -5.4179 1.0961 3.7946 

4 -6.4913 -9.7077 4.5260 

5 -5.5521 -0.8277 -2.7326 

6 0.4025 -4.3956 -4.1575 

7 -5.5389 -4.1008 8.2772 

8 0.4157 -0.5386 7.0148 

9 -5.1420 -8.0712 -2.7326 

10 -4.5146 -4.1065 -8.9386 

11 -10.3616 -5.1194 -5.5861 

12 0.5650 1.3436 0.0019 

13 -0.8920 1.6611 -7.1074 
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Table XIX. 	Interatomic distances for the sodium tridecamer doublet asym- 

metric structure. Atom numbers as in Fig. 6. 
Nearest-neighbor distances (bohr) 

Pair Ref. [349]a  Present workb  

(2, 1) 6.35 7.26 

(3, 1) 6.12 6.80 

(3, 2) 6.23 7.09 

(4, 1) 6.11 6.64 

(4, 2) 6.08 7.05 

(5, 1) 6.05 6.73 

(5, 2) 6.32 7.35 

(5, 3) 6.04 6.81 

(6, 2) 6.07 6.81 

(6, 5) 6.22 7.09 

(7, 1) 6.38 7.39 

(7, 2) 6.11 7.09 

(7, 3) 6.20 6.86 

(7, 4) 6.26 6.81 

(8, 2) 6.09 6.86 

(8, 3) 6.22 6.86 

(8, 7) 6.36 7.05 

(9, 1) 6.27 7.16 

(9, 2) 6.05 6.73 

(9, 4) 6.31 7.56 

(9, 5) 6.31 7.26 

(9, 6) 6.12 6.80 

(10, 5) 6.10 7.10 

(10, 6) 6.21 6.86 

(10, 9) 6.38 7.39 

(11, 1) 6.30 7.56 

(11, 5) 6.08 7.05 

(11, 9) 6.12 6.64 

(11, 10) 6.26 6.82 

(12, 2) 6.08 7.04 

(12, 3) 6.25 7.09 

(12, 5) 6.07 7.04 

(12, 6) 6.24 7.09 

(12, 8) 6.50 7.26 

(13, 5) 6.12 6.86 

(13, 6) 6.23 6.86 

(13, 10) 6.36 7.05 

(13, 12) 6.51 7.26 

Taken from Ref. [349]. 

b  MCP LDAxc calculations. See text. 
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Table XX. Nan  doublet asymmetric (asy) and sextuplet icosahedral (ico) mean 

nearest-neighbor distance and vibrational frequencies calculated at the MCP 

LDAxc level compared with other theoretical results. 

Tridecamer properties 

Mean coordination number 

ico 	 6.46 

asy 	 5.85 

bulk 	 12.00 

Mean nearest-neighbor distance 

Present work: ico 	7.11 

Present work: asy 7.03 

TBa: cpb 	5.85 

CPb: cpb 	6.66 
Bulkc : bec 	7.01 

Vibrational frequencies (cm-1) 

Present work: icod 50.7(H), 54.0(//), 69.2(T), 75.2(G), 82.2(T), 91.5(G), 

107.(A), 112.(H), 135.(T) 

Present work: asy 	30.55, 35.42, 35.45, 43.58, 44.82, 49.10, 53.64, 55.66, 56.04, 

58.14, 62.24, 63.09, 67.22, 67.31, 68.29, 69.53, 72.92, 73.84, 

78.09, 82.26, 85.33, 89.28, 89.40, 98.76, 109.40, 110.70, 

111.85, 115.79, 118.31, 125.76, 126.76, 134.04, 135.72 

SAPS modele 	58.4, 70.6, 89.7, 103., 114., 155., 162., 197. 

a  Distance-dependent tight-binding method from Ref.[349]. 

b  LDAxc Car-Parrinello taken from Ref. [345, 372]. 

Ref.[ 375] page 29. The bulk crystal structure is body-centered cubic (bec). 

d  Letters in parentheses indicate the degeneracy of the mode. 

e  Spherically averaged pseudopotential results taken from Ref. [2]. 
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Table XXI. Nam  doublet asymmetric and sextuplet icosahedral binding energy 

per atom, ionization potential, mean polarizability, and polarizability anisotropy 

obtained at the MCP LDAxc level compared with experiments and other theo-

retical results. 

Tridecamer properties 

Binding energy per atom (eV) 

Present work: ico 	 0.72 

Present work: asy 	 0.74 

CP': cpb 	 0.80 

ECP LDAxcb  : cubo 	 0.86 

Bulk cohesive energyc : bcc 	1.11 

Ionization potential (eV)  

Present work (vertical IP) : ico 3.16 

Present work (vertical IP) : asy 3.86 

ECP LDAxcb: cubo 	 3.89 

Experiment d 	 3.6 

Spherical droplet modele 	3.6 

Bulk work functionf 	 2.3 

Mean polarizability (bohr3 ) 

Present work: ico 	 1192.7 

Present work: asy 	 1309.1 

Experimentg 	 1523.5 

Spill-out modelh 	 1263.8 

Polarizability anisotropy (bohr3 ) 

Present work: ico  

Present work: asy 	 708. 

• LDAxc Car-Parrinello taken from Ref. [345, 372]. 

b  ECP LDAxc calculation for a doublet distorted cuboctahedron taken from Ref. [344]. 

• Taken from Ref. [375]. 

d From Ref. [6]. 

• See Ref. [6] for a further discussion of the spherical droplet model. 

f From Ref. [383] page E-81. 

g Beam deflection measurement from Ref. [46]. 

h As parameterized in Ref. [122]. A brief review of this model may also be found in this refer-

ence. 

By symmetry. 
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Figure 5. Structure parameters of the sodium clusters are defined here. The 

specific geometrical parameters are given in Table X and XI . 



Figure 6. Optimized sodium tridecamer doublet geometry obtained at the MCP 

LDAxc level in the present work. Lines connect nearest neighbors. The geometric 

coordinates and nearest-neighbor distances are given in Table XVII and XVIII. 
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CHAPTER 5 

TIME-DEPENDENT DENSITY-FUNCTIONAL 

THEORY INVESTIGATION OF EXCITATION 

SPECTRA OF OPEN-SHELL 

MOLECULES 

5.1 INTRODUCTION 

Time-dependent density-functional response theory (DFRT) is a prototype 

of the successful implementation of time-dependent density-functional theory 

(DFT) [138, 139, 156, 167, 168, 169]. It plays an important role in the study 

of dynamic response properties, such as electronic excitation spectra, dynamic 

polarizabilities and hyperpolarizabilities, and van der Waals coefficients. The 

applications of time-dependent DFRT have been impressive for atoms [20, 21, 

139, 160, 173, 174, 384, 385], the solid state [176, 386], metal clusters with a 

jellium sphere model [194, 195, 196, 197, 198] and the spherical average pseu-

dopotential model [186, 199, 200], as well as closed-shell molecules [22, 33, 34, 

36, 37, 173, 182, 183, 184]. The calculation of photoabsorption cross-sections for 

rare gas atoms was first performed by Zangwill and Soven [160]. Nuroh, Stott, 

and Zaremba [384] calculated photoabsorption spectra for barium and its ions. 

The C6 van der Waals coefficients between all pairs of fourteen diffèrent ions 

have been studied with time-dependent DFRT by Mahan [385]. Time-dependent 

DFRT calculations of frequency-dependent dielectric constants of the solid state 

were made by Baroni, Giannozzi, and Testa [386], and by Levin and Allan [176]. 
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These atomic calculations and solid state studies are well established, but the 

algorithm is difficult to extend to molecules because spherical symmetry is lost in 

molecules. However, Levine and Soven [173, 182] have tried to keep the advan-

tages of the atomic-like algorithm and used single-center expansions to calculate 

time-dependent response properties for small molecules. This single-center ex-

pansion algorithm is unsuitable for general molecular applications. An algorithm 

suitable for general molecules has been recently proposed in a few groups, in the 

Salahub group [29, 30, 183, 387], the Baerends group [31, 184, 201, 202, 388], 

the Ahlrichs group [22, 33], and the Handy group [32, 35], etc. This algorithm 

has been used to study time-dependent molecular properties, such as frequency-

dependent polarizabilities and hyperpolarizabilities [31, 184, 201, 202, 389], van 

der Waals dispersion coefficients [31, 390], Raman scattering [388], and exci-

tation energies [22, 29, 33, 36, 37, 183, 387]. All these molecular calculations 

have been for closed-shell molecules. The time-dependent DFRT treatment of 

open-shell molecular excitations has been an open question. Recently Hirata and 

Head—Gordon [1] reported calculations of the lowest two excitation energies for 

open-shell molecules, such as diatomic radicals, CN, CO+, BeH and BeF, as well 

as some organic radicals by time-dependent DFT. But only for the first two ex-

citation energies, no higher excitations and no oscillator strengths were given. 

The present study provides a unique time-dependent DFRT study of excitation 

energies and oscillator strengths of such open-shell molecules. 

Open-shell molecules play an important role in chemistry and astrophysics. 

The CN radical is an essential intermediate in flame chemistry as well as being of 

considerable astrophysical significance [391]. The spectral properties of the CN 

radical can provide information about the photochemical history of molecules in 

comets, it can also be used as an indication of the atomic nitrogen abundance in 

red giant stars [392]. CO+ is a prominent component of the spectra of comets. on 

the other hand, the first-row diatomic hydrides are also the simplest heteronuclear 

diatomic molecules, since they only have a few electrons (e.g. BeH). 
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The excitation spectra of these free radicals have been studied by tra-

ditional ab initia methods. For the simplest heteronuclear molecule, BeH, a 

few low-lying transitions were calculated by the configuration interaction (CI) 

method [393, 394, 395], the adiabatic and quasiadiabatic first five 2E+ states 

of BeH were studied by Petsalakis, et al. [396]. There are few theoretical cal-

culations of transition energies of BeF; however, some spectroscopic constants 

and potential energy curves have been studied at the post-Hartree-Fock level by 

many authors [397, 398, 399, 400, 401, 402, 403, 404, 405, 406]. The CN radi-

cal has been extensively studied. Washida, Kley, Becker, and Groth [407] have 

observed potential energy curves for X2E, A2H, B2E, D2II and for J23, states. 

The quartet states have been studied by Coxon, Ramsay, and Setser [408] and 

by Miller, Freund, and Field [391]. The theoretical studies of low-lying doublet 

states have been computed by the multiconfiguration self-consistent field (MC-

SCF) approach [409], by the singles and doubles excitations configuration inter-

action (SDCI) method [410], by a full valence configuration interaction (FVCI) 

procedure [411, 412] and by the singles and doubles coupled cluster method [413]. 

The quartet states have also been undertaken by the configuration interaction 

(CI) method [414], by the MCSCF method [415], and by the multireference (sin-

gle) and double-excitation configuration interaction (MRD-CI) approach [416]. A 

detailed review of the CN radical has appeared in the literature [417]. The elec-

tronic structure and excitation energies of CO+ have been the subject of renewed 

interest in recent years [418, 419, 420, 421, 422, 423, 424, 425, 426, 1]. Four states, 

12 (X2 ), 12[1(A2[1), 22E-E(B2E+),  and the 12A(C2A) state, were unambigu-

ously identified by emission spectroscopy [379]. The other two states, 22 II(D2II) 

and 32E+(G2E+) states, were determined by photoelectron spectroscopy [427]. 

Honjou and Sasaki [419] calculated excitation energies using SCF-full valence 

CI approach and with a minimal STO basis set agrees reasonably with experi-

ment. Lavendy et al [424] with MCSCF-CI method and with an extended GTO 

basis set underestimated excitation energies. Honjou and Miyoshi [426] have 
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recently reported that the lowest Rydberg states are 42 E+ and 52E+ states at 

about 18 eV above the ground state of CO. Ne [428, 429, 430, 431] lias also 

been the subject of experimental and theoretical investigations. Five valence 

states, 12 E-gE (x-2 E-), 12Hu(A2Hu), 12E-ui-(B2E-ul ), 121-4(D2ll)g,,  and 22E-uF(C2Et), 

were identified unambiguously [379]. The four lowest 2E.g+ states, the three low-

est 2Eil-  states, and the three lowest 21-1u  states of Ne have been studied by the 

CI approach [432, 433, 434, 431] and by the multiconfigurational electron prop-

agator (MCEP) method [435]. There are only a few studies [336, 436, 437] of 

all these radicals simultaneously. Unrestricted CI singles (UCIS) and restricted 

open-shell CIS (ROCIS) have been used to study these open-shell radicals [336] 

and overestimated the first two excitation energies by 2.5 eV — 5.5 eV. It is be-

lieved that this deviation may be caused by the lack of double excitations in the 

UCIS and ROCIS [336, 438, 437] methods. Since extended CIS (XCIS), which 

includes doubly excited configurations, improved the results, but it still over-

estimated the lowest two excitation energies by 1.0 eV — 2.5 eV, it seems that 

more highly excited configurations are needed. The simpler and more efficient 

time-dependent DFT calculations of these first two excitation energies have been 

reported recently by Hirata and Head-Gordon [1] and have given encouraging 

results. Nevertheless, they only gave the first two excitation energies. Moreover, 

there is no time-dependent DFT study of oscillator strengths of such open-shell 

molecules reported in the literature. This work provides the first simultaneous 

time-dependent DFRT study of excitation spectra (excitation energies and oscil-

lator strengths) of all these open-shell radicals. 

5.2 COMPUTATIONAL DETAILS 

The excitation energies and oscillator strengths are computed using version 

2pX of the time-dependent DFT program deMon—DynaRho [208]. The version 

2pX permits to calculate excited state properties for open—shell systems, this 
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differs from previous version 1 or version 2p0 which only treat the closed—shell 

systems. 

The experimental geometries [379] of the six chosen small molecules have 

been used in the present calculations. For CO+ and N-2E, both the cation geome-

tries and the neutral minimum geometries of CO and N2 are used. Whereas only 

neutral minimum geometry of H2C0 is used for the H2 C0+ calculations. Ta-

ble XXII(please note that Tables and Figs. are given at the end of the chapter) 

gives the geometrical parameters for these chosen molecules. 

All of the calculations used Gaussian-type orbital basis sets, specifically 

Sadlej and Urban orbital basis sets [439, 334] (referred to as Sadlej bases). In 

order to test the quality of the Sadlej bases for excitation energy calculations for 

the chosen molecules, more diffuse functions [387] have been added for H, C, N, 

and O. These new bases are referred to as the extended Sadlej bases (XB). The 

auxiliary basis sets are taken from the deMon—KS basis library, in particular, the 

auxiliary basis (4,2;4,2) is used for H, (4,3;4,3) for Be, and (4,4;4,4) for C, N, 0, 

and F. 

The grid used in the present calculations is EXTRA-FINE (with 32 radial 

grid points and 194 angular grid points at each radial sphere) with the Non-

Random option, since the Random grid may cause symmetry breaking in the 

post-SCF calculations. This was tested in the sodium trimer excitation calcula-

tions (see Chapter 7 of this thesis). The SCF calculations were performed using 

version 1.2 of the program deMon—KS [367]. The convergence criteria used for 

the SCF calculations correspond to a change in the total energy of less than 10' 

hartree and a change in the charge density fitting coefficients of less than 10' 

a.u., since the charge density convergence is much more difficult to achieve than 

the total energy. 

The exchange-correlation functionals used in the program deMon-DynaRho 
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can be different at the SCF step and at the post-SCF step, which is used to 

construct the coupling matrix. In the present calculations the local spin density 

approximation (LSDxc) is used at the SCF step and the time-dependent LSDxc 

(TDLSDxc) is used at the post-SCF step. This is denoted as LSDxc/TDLSDxc. 

Alternatively, van Leeuwen and Baerends proposed an exchange-correlation func-

tional in 1994 (LB94xc) [212] which is also used in the SCF step along with the 

time-dependent LSDxc used at the post-SCF step (LB94xc/TDLSDxc). 

5.3 RESULTS AND DISCUSSION 

Six small well studied open-sliell molecules, three neutral molecules (BeH, 

BeF, CN) and three positive ions (CO, Ne, CH20+), have been chosen to 

evaluate the quality of the time-dependent DFT for the calculation of excitation 

spectra of open-shell molecules. With the exception of the lowest two excitation 

energies (without oscillator strengths) of a few open—shell molecules (Bell, BeF, 

CN, and CO) calculated by the time-dependent DFT which recently appeared in 

the literature [1], the present calculations of excitation spectra (excitation ener-

gies and oscillator strengths) of open—shell molecules are the first time-dependent 

DFT study reported in the literature. However, these small molecules (BeF, 

CN, C0+, and Ne belong to the diatomic 13—electron sequence) have been well 

studied by conventional ab initio methods. The present calculations of excitation 

spectra for the six chosen small open-shell molecules with the LSDxc/TDLSDxc 

and the LB94xc/TDLSDxc functionals are shown in Fig. 12, 13 14, 15, 17, 18, 

20, 21, 23, 24, 26, and 27 (please note that Figs. and Tables are given at the 

end of the chapter). The present calculated excitation energies compared with 

conventional ab initio results and with available experiments are given in Ta-

bles XXIV, XXVI, XXVIII, XXX, XXXII, and XXXIV. Some occupied and 

virtual orbital energies for both a and io spins of each molecule with symmetry as-

signments are listed in Tables XXV, XXVII, XXIX, XXXI, XXXIII, and XXXV. 
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The potential energy curve for CH20+ is shown in Fig. 29. The ground state 

configurations of the six chosen molecules obtained from the present DFT SCF 

calculations with both LSDxc and LB94xc functionals are shown in Table XXIII. 

The LSDxc and the LB94xc functional give the same ground state configurations. 

The BeH, CN, CO+, and Ne configurations are the same as those known experi-

mentally [440], while the CO + configuration differs from that calculated from the 

full valence configuration interaction [419] (FVCI) method with a minimum STO 

basis set by changing the order of the 50-  and the 17r orbital. The BeF has the 4o-

orbital above the 17r orbital, leading to a configuration different from its sequence 

partners (CN and CO+), which are supposed to have the same configuration as 

CN and CO + by experiment [440]. 

Occupied orbital energies and bound virtual orbital energies of the six small 

molecules are well converged with the Sadlej basis set in comparison with those of 

the extended Sadlej basis. The deviations of the orbital energies for the Sadlej ba-

sis and the extended Sadlej basis are generally less than 0.05 eV. However, bigger 

differences occur for higher unbound virtual orbitals. This indicates that unbound 

virtual orbitals are sensitive to the diffuse basis functions, hence these unbound 

virtual orbitals are related to the long—range part of the potential. This has been 

illustrated for the CN molecule (see Table XXIX). Moreover, the orbital energies 

are much more sensitive to the exchange—correlation functional used. The orbital 

energy difference between the LSDxc and the LB94xc functionals can be as large 

as 28 eV for the lowest occupied orbitals. For the valence orbitals, this devia-

tion is about 5 eV. However, adjacent orbital energy differences are very similar 

(in most cases the deviation is less than 0.5 eV) for the LSDxc and the LB94xc 

functionals. Nevertheless, the HOMO (highest occupied molecular orbital) en- 

ergy from the LSDxc functional is too high (ionization energy, 	is too 

small) in comparison with the experimental ionization potential. This difference 

can be as large as 5 eV (see orbital energy tables for the chosen molecules). It 

is believed that this error is associated with the incorrect long—range behavior 
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of the LSDxc functional. In contrast, a functional with the correct asymptotic 

behavior, such as the LB94xc functional, does correct this error and leads to an 

approximately correct ionization potential. The —eftee differs from the experi-

mental ionization potential by about 0.5 eV (see Table XXV, XXIX, and XXXI), 

except for Ne for which it differs by 1.6 eV. It can be seen that the asymptotic 

behavior of exchange—correlation functionals also affects the number of bound 

virtual orbitals. The LSDxc functional, with an incorrect long—range behavior, 

gives only 2 to 3 bound virtual orbitals (orbital degeneracies are counted) for 

the chosen molecules (BeH, BeF, CN), while the LB94xc functional, with correct 

asymptotic behavior, produces many more bound virtual orbitals. It yields 11 

to 15 bound unoccupied molecular orbitals. For the positive ions (CO+, Ne, 

CH20+) the LSDxc functional supports 11 to 16 bound virtual orbitals, while 

the LB94xc functional gives 18 to 23. This indicates that the LSDxc potential is 

more shallow than that of LB94xc. 

The lowest eight vertical excitation energies for CN, CO, and Ne as well as 

the fifteen vertical excitation energies for CH20+ calculated with_ the Sadlej basis 

and with the extended Sadlej basis set show that the Sadlej basis set is flexible 

enough (within the limit of s-, p-, and d-type basis functions) to describe the low 

excitations of CN, CO+, Ne, and CH20+. The excitation energies calculated 

with the Sadlej basis and the extended Sadlej basis for all eight excited states 

(fifteen for CH20+) differs by 0.005 eV at most, except for the 42II state of CN 

(0.3 eV) and for the 42 A2  state of CH20+ (0.22 eV). However, it is necessary to 

use the more diffuse basis functions for the higher excitations, since the excitation 

energies can change by 0.8 eV for the 52E+ state of Ne when the diffuse basis 

functions are added. 

Fig. 19 and 20, Fig. 22 and 23, Fig. 26 and 25 show that the Sadlej basis 

and the extended Sadlej basis give the same pattern for the excitation spectra 

of the chosen positive ions (CO, Ne, and CH20). The difference for the 
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oscillator strength caused by the diffuse function in the extended Sadlej basis is 

less than 0.008. However, the diffuse basis functions in the extended Sadlej basis 

do have a large effect on the CN excitation spectra, as can be seen from Fig. 17 

and 18. The oscillator strengths differ by as much as 0.1 for the 52E+ state and 

the pattern of the spectra also changed dramatically. 

The vertical excitation energies for the first eight excited states of CO + and 

ME with the cation geometry and the corresponding neutral geometry of CO and 

N2 are shown in Table XXX and XXXII. The bond length difference between 

the neutral and the cation geometries is 0.013 A and 0.019 A for CO + and the 

Nj- , respectively. This bond length difference affects the excitation energies by 

no more than 0.3 eV in both calculations for CO+ and Ne, regardless of the 

functional used in the calculations. It is interesting to note that the excitation 

energies of CO+ with the cation geometry are larger than those with the neutral 

geometry by 0.16 eV. In contrast, the calculation with the MI-  cation geometry 

underestimates the excitation energies by 0.2 eV in comparison with the neutral 

geometry calculation. 

The LSDxc/TDLSDxc functional gives good excitation energies, when they 

are below the ionization threshold, —eV°. The average error between calcu-

lated excitation energies and experimental results is less than 0.8 eV for BeH, BeF, 

CN and CO+ molecules. However, some excitation energies are underestimated 

by about 1.3 eV if the transition arrives at 7r type virtual orbitals, for example, 

the 2211 (3a+ --> 27r) state for BeH, and 32 E+ (17r --> 271- ), 12 A (17r —> 27r), 

2211 (5u+ ---> 27r), and 22 A (17r —> 27r) states for CN. All these states arrive at 

7F type orbitals and all these transitions have errors larger than 1.0 eV. The dif-

ference between the experiment and calculations is not due to the comparison of 

the adiabatic (experiment) and the vertical (calculations) transitions, since the 

experimental adiabatic excitation energies are converted to vertical excitation 

energies here according to Morse potential. 
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There is an ordering change with the LSDxc/TDLSDxc functional after the 

fourth transition in most cases in comparison with those of the LB94xc/TDLSDxc 

functional. The 221-1 state has fallen below the 42E+ state, and 3211 state moves 

above 52 E+ state in BeH. The 42E+ state and 12,  321-1 and 52E+ states change 

order in BeF. This ordering change also occurred for CO+ and CH2 0+. (See 

Tables XXIV, XXVI, XXVIII, XXX, XXXII, and XXXIV). However, both 

the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals give the order of 

the 32 E; and the 22 	statesstates of Ne different from experiment [441] and ab 

initio CI [432, 433, 442, 431] and MECP [435] (Multiconfigurational electron 

propagator) results. 

The LB94xc/TDLSDxc functional gives better excitation energies for higher 

transitions. Especially when the excitation energies are larger than the LSDxc 

ionization potential threshold (—q0D370 ), the LB94xc/TDLSDxc functional leads 

to excitation energies in better agreement with available experiment. It can 

be seen for BeH (Tables XXIV) that for excitation energy under —dee° , the 

LB94xc/TDLSDxc functional gives a larger error (0.33 eV for 1211) than does the 

LSDxc/TDLSDxc functional (0.09 eV for 1211). In contrast, for excitation ener-

gies above „voie, the LB94xc/TDLSDxc functional leads to smaller errors (0.5 

eV for 2211, 1.0 eV for 421I) in comparison with the LSDxc/TDLSDxc functional 

(1.5 eV for 2211, 1.7 eV for 4211). 

Fig. 12, 13 14, 15, 17, 18, 20, 21, 23, 24, 26, and 27 show that oscillator 

strengths are sensitive to the exchange-correlation functional used for the neutral 

molecules (BeH, BeF, and CN). In contrast, the functional has little effect on the 

oscillator strengths for the positive ions (CO, N1- , and CH20+). For example, 

the 42 E+ state of BeH is a small peak in the LSDxc/TDLSDxc case, but it 

becomes a large peak if the LB94xc/TDLSDxc functional is used. The 4211 state 

of CN shows a similar change. 

Excitation energies of CO + with the neutral geometry of CO and the LS- 
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Dxc/TDLSDxc functional are underestimated by 0.27 eV for the 1211 state, 0.8 eV 

for the 22E+ state, and by 0.5 eV for the 12 A state. The LB94xc/TDLSDxc func-

tional gives excitation energies with errors that are twice as large for these excited 

states. However, if the cation geometry is used and with the LSDxc/TDLSDxc 

functional, the excitation energies differ from the experiment by 0.1 eV for the 

1211 state, and 0.2 eV for the 12 A state. However, the excitation energy seems to 

yield no improvement for the 22E+ state. This deviation or even larger errors can 

also be observed for traditional ab initio calculations. The UCIS (unrestricted 

configuration interaction singles) and ROCIS (restricted open—shell CIS) calcula-

tions [336] overestimated the first two excitation energies (1211 and 22 E+ states) 

by 2.5 eV — 5.5 eV. Even the XCIS (extended CIS) method [437] which considers 

doubly excited configurations still overestimated excitation energies by 1.0 eV — 

2.5 eV. Full CI [443] and symmetry-adapted-cluster CI (SACCI) [443] gave the 

first two excitation energies (1211 and 22 E+ states) close to experiment with the 

error being 0.1-0.2 eV. But for the 12A state, the error is about 2.0 eV. 

Excitation energies of Ne show the largest deviation from experiment. The 

LSDxc/TDLSDxc calculation with neutral geometry shows that the first three 

211, excitation energies differ from experiment by 0.2 — 3.5 eV (3.5 eV for the 

2211„ state) and the lowest arec 2 E,t transitions have errors of 0.1 — 1.7 eV (1.7 

eV for the 22 E1 state). The biggest error is 4.6 eV for the 22 E9+ state. The 

LB94xc/TDLSDxc functional gives very similar results as the LSDxc/TDLSDxc 

functional. These states seem also to be hard to calculate with conventional ab 

initio methods. CI [442] with Gaussian basis functions gave an error of 1.2 eV for 

the 2211„ state, 1.9 eV for the 22 E7,1 state, 1.3 eV for the 22 	state, state, and 3.1 eV 

for the 32 E;1,-  state (the LSDxc/TDLSDxc got this state right with the error being 

0.1 eV, while MCEP gave an error of 5.4 eV). However, CI [431] with. STO basis 

functions and f—type basis functions reduced the error to less than 1 eV. This 

seems to suggest that higher polarization functions are needed, such as f—type 

functions, for this calculation. 
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Table XXXIV shows that fifteen excitation energies of CH20+ calculated 

with the LSDxc/TDLSDxc functional are underestimated by about 1 eV (2.5 eV 

for 42B1  state) in comparison with available MRD-CI results [9]. This is not 

so surprising, since CI overestimates excitation energies for the other molecules 

(CO+, Ne, CN, BeF, and BeH) in comparison with experiments. However, 

the excited states arise from the same excitation between the present work and 

the MRD-CI calculations [9]. 2B2  states arise from the excitation b2  —> b2 

or b1  —> b1. 2B1  states are from the excitation b1  ---> b2  or b2 —> b1. 2 A1 

states are from transition al  —> b2 or b2 --> al. 2 A2  states arise from the 

excitation al  —> b1 or b1 --> al . The LB94xc/TDLSDxc calculations yields the 

lowest fifteen excitation energies smaller than those of the LSDxc/TDLSDxc, this 

observation is the same as for other molecules discussed above, since these fifteen 

excitation energies are below -dise°. 

Excitation spectra of CH20+ (Fig. 26, and 27) show that the LSDxc/TDLSDxc 

and the LB94xc/TDLSDxc functionals give similar spectroscopic patterns for 

CH20+. The first two medium peaks are assigned to 22B2  and 22 A1  states, the 

strongest peak is the 42B2  state and followed by the 52 B2  state with the LS-

Dxc/TDLSDxc functional. However, the 42B2  and 52B2  states derived from the 

LB94xc/LSDxc functional have similar height (similar oscillator strengths) and 

the 52B2  peak is a little larger than the 42B2  band. MRD-CI calculations by 

Bruna, Hachey, and Grein [9] yield a spectrum (Fig. 28) similar as the present 

calculations. They produced the 42B2  state as the largest peak; however, the 

52B2  state does not appear in the MRD-CI spectrum. 

The potential energy curve of CE/20+, Fig. 29, shows that there is an avoided 

crossing between the 22B2  and the 32B2  states of about the bond length of the 

minimum geometry (Rco = 1.2078,21). This observation is the same as that found 

by the MRD-CI method [9]. Moreover, the 22B2  state curve calculated by the 

present work does not have a flat tail in the given energy range, this behavior is 
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different from the MRD-CI calculations [9] which show a large flat tail for the 

22B2  state (see Fig. 30). The present work also found that the 22 _81  and the 12 A1 

states have a minimum around the equilibrium geometry, the 12B1 , the 32B2 , and 

the 12 A2  states have a minimum at about Rco = 1.3Å, while the 22B2  and the 

32B1  states have a minimum around Rco  = 1.421. 

5.4 CONCLUSION 

The present work has implemented time-dependent DFT for open-shell sys-

tems in the program deMon-DynaRho, version 2pX. This implementation pro-

vides a unique practical molecular time-dependent DFT code capable of treat-

ing excited state properties for open—shell molecules or clusters. As a case 

study, excitation spectra of the six small open—shell molecules (three neutral 

molecules, BeH, BeF, and CN and three positive ions, CO+, N, and CH20+) 

have been carried out by the present calculations with the new modified code. 

The results show that time-dependent DFT can treat open—shell systems fairly 

well. The excitation spectra calculated with both the LSDxc/TDLSDxc and the 

LB94xc/TDLSDxc functionals are comparable with traditional ab initia methods. 

The time-dependent DFT with the LSDxc/TDLSDxc and the LB94xc/TDLSDxc 

functionals underestimate excitation energies by about 1.0 eV compared to the 

available experimental results for the low lying transitions of the six chosen small 

open—shell molecules. In contrast, conventional ab initio calculations, such as 

MRCI [411, 432, 419, 433, 434, 421, 146, 431] and MCEP [435] overestimate the 

excitation energies by about 0.5 eV for the molecules studied here. While CIS 

calculations of excitation energies are much larger than experiment [336, 437], es-

pecially for CN and CO + radicals, the CIS results are about 3 — 5 eV larger than 

the measurements, even when double excitations are considered, the extended 

CIS (XCIS) [437], excitation energies are still overestimated by around 1.5 eV. 

The LSDxc/TDLSDxc functional does fairly well for the low lying excitation 
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energies, especially when the excitation energies are below —s- frisopitro. At above 

—ERDÉA, excitation energies collapse with the LSDxc/TDLSDxc functional, this 

arise from the incorrect long-range behavior of the LSDxc functional. In con-

trast, the LB94xc/TDLSDxc functional, with correct asymptotic behavior, does 

correct this problem and gives better results for the higher transitions. But the 

LB94xc/TDLSDxc functional yields too small excitation energies for the low ex-

citations. 

The medium size Sadlej basis is flexible enough to describe the low—lying 

excitation energies for the six chosen small molecules. However, for higher tran-

sitions, such as Rydberg state calculations, more diffuse basis functions must be 

included. 
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Table XXII. Experimental geometriesa of the six chosen small molecules used 

in present calculations. 

Molecules Symmetry bond lengthb  (Å) 	Bond angleb(degree) 

BeH 	Coo, 	Re  (BeH) = 1.3426 

BeF 	Coo, 	Re  (BeF) = 0.9697 

CN 	Co.02, 	Re  (CN) = 1.1718 

CO+ 	Coo, 	Re  (CO) = 1.1151 (1.1283) 

M- 	Dcoh 	Re  (NN) =• 1.1164 (1.0977) 

CI-12 0+ 	C 2v 	 Re  (CO) = (1.2078) 

Re  (CH) = (1.1161) 

L(HCH) = (116.57) 

a  Taken from Ref. [379]. 

b  The number in parentheses is the corresponding neutral geometry structure pa-

rameter. 

Table XXIII. Ground state configurations for the six chosen molecules from the 

present DFT SCF calculations. 

Molecule Lowest electron configuration 	 Ground state symmetry 

BeH 	(lo- )2(2o- )2(30- )1 	 X2 E+(12 E+) 

BeF 	( 1 o- )2(2o- )2(3u)2  (lar )4(4o-  )2(5(7)1 	 X2 	(12) 

CN ,C 0+ o ff ? pur (3,7)2 (4(7)2 (17)4 (50.)1 	 X 2 E+ (12 E+) 

Ne 	(10 - g ) 2  (1 u0 2(2cr g )2(2cru ) 2(br ii )4  (30) i 	X 2 	(1(12  Et ) 

cri-2o+ (lai )2(2a1)2(3a1)2(4a1)2(1b2 )2(5a1)2(lbi )2(2b2 )1  X2B2(12B2) 



143 

Table XXIV. 	BeH vertical excitation energies (eV) calculated with the LS- 

Dxc/TDLSDxc and the LB94xc/TDLSDxc functionals using the Sadlej basis seta. 

Vertical excitation energies (eV). 

State 12E+ 1211 22 E+ 32 E+ 2211 42 E+ 52E+ 3211 4211 

LSDxc/ 0.000 2.391 4.593 4.771 4.858 5.129 5.418 5.671 5.732 

TDLSDxc 

LB94xc/ 0.000 2.154 4.825 5.236 5.867 5.692 6.459 6.235 6.417 

TDLSDxc 

EXPTb  0.000 2.484 6.317 7.460' 

PTNd  0.000 2.56 5.51 5.61 6.31 6.12 6.71 6.74 7.27 

UCISe 0.000 2.752 6.525 

ROCISe 0.000 2.715 6.544 

XCISf 0.000 2.661 6.468 

TDDFTg 0.000 2.345 4.862 

a (411/22) for hydrogen taken from Ref. [444] and (52111/411/11) for beryllium 

taken from Ref. [334]. 

b  Converted from Ref [379]. 

' Converted from Ref. [445]. 

d  Taken from Ref. [396]. 

' Unrestricted (non-spin-adapted) CIS (UCIS) and restricted open-shell (spin- 

adapted) CIS (ROCIS) taken from Ref. [336]. 

f Extended CIS (XCIS) taken from Ref. [437]. 

g  Time-dependent density-functional theory (TDDFT) calculations taken from 

Ref. [1]. 
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Table XXV. BeH orbital energies (eV) calculated with the LSDxc and the LB94xc 

functionals using the  Sadlej basis.  

Orbital 	LSDxca 	LB94xc 

a unoccupied orbitals energies (eV). 

6u+ 0.86 -1.61 

27r 0.29 -1.56 

5u+ 0.21 -2.12 

4u+ 0.05 -2.61 

17r -2.32 -5.87 

a occupied orbitals energies (eV). 

3a+ -4.60(8.21) -7.91 

2u+ -8.37 -12.52 

1u+ -104.32 -120.33 

e  unoccupied orbitals energies (eV). 

6a+ 0.89 -1.53 

27r 0.33 -1.96 

50-+ 0.25 -1.84 

4o-+ 0.15 -2.85 

17r -1.59 -5.78 

3o-+ -2.90 -7.41 

ß  occupied orbitals energies (eV).  

2u+ 	-7.99 	-12.19 

1u+ 	-104.06 	-120.42 

a  Number in the parenthesis is ionization potential taken from Ref. [379]. 
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Table XXVI. BeF vertical excitation energies (eV) calculated with the LS-

Dxc/TDLSDxc and the LB94xc/TDLSDxc functionals using the Sadlej basis seta. 

Vertical excitation energies (eV). 

State 12E+ 1211  22 E+ 32 E+ 2211  42 E+ 123. 52 E+ 3211 

LSDxc/ 0.000 4.366 4.770 4.929 5.274 5.574 5.951 6.013 6.114 

TDLSDxc 

LB94xc/ 0.000 4.508 5.116 6.064 6.933 7.039 6.995 8.184 7.293 

TDLSDxc 

EXPT6  0.000 4.137 6.158 6.272 

UCISc 0.000 4.268 6.356 6.600 

ROCISc 0.000 4.260 6.349 6.600 

XCISd  0.000 4.249 6.345 6.587 

TDDFTe 0.000 4.030 5.321 5.346 

a (411/22) for hydrogen taken from Ref. [444]. And (52111/411/11) for beryllium, 

taken from Ref. [334]. 

5  Converted from Ref. [379]. 

unrestricted (non-spin-adapted) CIS (UCIS) and restricted open-shell (spin-

adapted) CIS (ROCIS) taken from Ref. [336]. 

d  Extended CIS (XCIS) from Ref. [437]. 

Time-dependent density-functional theory (TDDFT) calculation taken from 

Ref. [1]. 
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Table XXVII. 	BeF orbital energies (eV) calculated with the LSDxc and the 

LB94xc functionals using the Sadlej basis.  

Orbital LSDxc 	LB94xc 

a unoccupied orbitals energies (eV). 

8a+ 0.79 -1.01 

371-  0.42 -1.15 

7a+ 0.16 -2.08 

6u+ -0.04 -3.08 

271- -0.58 -3.91 

a occupied orbitals energies (eV). 

5u+ -4.81 -8.16 

4u+ -12.58 -18.93 

17r -13.18 -19.32 

3a+ -31.22 -37.49 

2o-+ -103.88 -119.12 

la+ -656.38 -689.37 

unoccupied orbitals energies (eV). 

8u+ 0.96 -0.89 

37r 0.62 -1.72 

7o-+ 0.24 -1.81 

6u+ 0.09 -3.58 

271-  -0.08 -4.36 

50-+ -3.12 -8.72 

occupied orbitals energies (eV). 

4u+ -12.55 -19.00 

17r -13.11 -19.38 

3a+ -31.21 -37.46 

2o- + -103.61 -119.06 

la+ -656.40 -689.37 
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Table XXVIII. 	CN vertical excitation energies (eV) calculated with the LS- 

Dxc/TDLSDxc and the LB94xc/TDLSDxc functionals using the Sadlej basis seta. 

Vertical excitation energies (eV). 

Methods 12 E+ 1211  22 E+ 32 E+ 123. 2211  223. 32II 421I 

LSDxc/ 0.000 1.340 3.227 6.629 7.434 8.061 8.626 9.240 9.786 

TDLSDxc 

LB94xc/ 0.000 1.296 3.379 6.400 7.271 7.743 8.554 9.152 11.500 

TDLSDxc 

LSDxc(XB)/b  0.000 1.343 3.225 6.632 7.438 8.062 8.628 9.232 9.471 

TDLSDxc 

EXPTa 0.000 1.316 3.218 8.274 8.626 9.159 9.685 

CId  0.000 2.187 3.769 8.761 9.554 9.479 9.988 10.036 13.456 

UCISe 0.000 4.070 6.546 

ROCISe 0.000 2.185 6.378 

XCISf 0.000 1.150 4.802 

TDDFT9  0.000 1.637 3.023 

a (52111/411/22) for carbon and nitrogen taken from Ref. [444]. 

Calculation is done with the extended Sadlej basis. 

• Converted from Ref. [379]. 

d  Converted from Ref. [411]. 

• Unrestricted (non-spin-adapted) CIS (UCIS) and restricted open-shell (spin-

adapted) CIS (ROCIS) taken from Ref. [336]. 

f Extended CIS (XCIS) from Ref. [437]. 

• Time-dependent density-functional theory (TDDFT) calculations from Ref. [1]. 
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Table XXIX. 	CN orbital energies (eV) calculated with the LSDxc and the 

LB94xc functionals using the Sadlej basis and the extended Sadlej basis (XB). 

Orbital 	LSDxca LB94xca LSDxc(XB)b  

a unoccupied orbitals energies (eV). 

8o-+ 2.61 -1.26 0.32 

37r 1.30 -2.09 0.43 

7a+ 1.06 -2.88 0.24 

6a+ 0.21 -3.42 -0.07 

27r -1.82 -7.12 -1.82 

a occupied orbitals energies (eV). 

50-+ -9.73(14.17) -14.70 -9.73 

17t-  -9.85 -15.09 -9.85 

4o-+ -12.09 -17.29 -12.09 

3a-+ -23.94 -28.66 -23.94 

2o-+ -270.19 -294.34 -270.21 

1cr+ -379.84 -407.05 -379.83 

0 unoccupied orbitals energies (eV).  

	

8a-+ 	2.72 	-1.03 	0.35 

	

37r 	1.36 	-2.08 	0.45 

	

7cr+ 	1.15 	-2.44 	0.25 

	

6a+ 	0.34 	-3.16 	-0.01 

	

27r 	-1.17 	-6.64 	-1.18 

	

50-+ 	-8.09 	-13.41 	-8.09 

p occupied orbitals energies (eV). 

-9.49 

-10.98 

-23.48 

-269.80 

-379.68 

17r -9.48 -14.77 

4o-+ -10.98 -16.41 

3a+ -23.47 -27.81 

2a+ -269.79 -294.57 

la+ -379.69 -407.21 

Calculations are with the Sadlej basis. Number in parentheses is the experimental 

ionization potential taken from Ref. [379]. 

6  Calculations are with extended Sadlej basis. 
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Table XXX. Carbon monoxide positive ion vertical excitation energies (eV) 

calculated with. the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals and 

with the cation and the neutral CO molecular geometries using Sadlej basis seta. 

Vertical excitation energies (eV).  

Methods 12E+ 12H 22E+ 32E+ 123, 2211 12E- 3211 4211 

LSDxc(+)/ 0.000 3.140 4.990 8.065 8.895 8.992 9.866 10.971 13.223 

TDLSDxcb 

LB94xc(+)/ 0.000 2.419 4.347 7.769 8.745 8.534 9.634 10.658 12.998 

TDLSDxc 

LSDxc/ 0.000 2.998 4.982 7.812 8.630 8.832 9.600 10.866 13.134 

TDLSDxc 

LB94xc/ 0.000 2.302 4.365 7.514 8.481 8.380 9.271 10.545 12.909 

TDLSDxc 

LSDxc(XB)/ 0.000 2.996 4.978 7.811 8.630 8.832 9.600 10.863 13.131 

TDLSDxc 

EXPTe 0.000 3.264 5.819 9.116 

FCId 0.000 3.137 5.965 10.952 11.091 10.902 

SACCId 0.000 3.099 5.940 11.013 11.105 10.982 

FOCIe 0.000 2.960 5.844 10.150 9.421 13.719 

MCSCFe 0.000 3.528 6.704 11.306 10.268 14.996 

VCIf 0.00 3.14 5.89 10.01 8.82 12.46 14.04 

UCISfi 0.000 7.504 11.315 

ROCIS9  0.000 5.656 10.403 

XCISh  0.000 4.267 8.192 

TDDFTi 0.000 3.620 5.025 

a (52111/411/22) for carbon and oxygen taken from Ref. [334]. 

b 	indicates the geometry used is molecular cation geometry. Without "+" indicates that the 

geometry used in the calculations is neutral molecular geometry. 

Converted from Ref. [379]. 

d Full-CI and symmetry-adapted-cluster CI (SACCI). Converted from Ref. [443]. 

• First-order CI. Converted from Ref. [421]. 

f Full valence CI taken from Ref. [419]. 

g Unrestricted (non-spin-adapted) CIS (UCIS) and restricted open-shell (spin-adapted) CIS 

(ROCIS) taken from Ref. [336]. 

h Taken from Ref. [437]. 

Taken from Ref. [1]. 
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Table XXXI. CO+ orbital energies (eV) calculated with the LSDxc and the 

LB94xc functionals using the Sadlej basis and the extended Sadlej basis  (XB). 
Orbital LSDxc(±)a LB94xc(±)a LSDxcb  LB94xcb  LSDxc(XB)c 

a unoccupied orbitals energies (eV). 

8u+ -2.14 -6.48 -2.15 -6.50 -2.36 

37r -3.52 -8.10 -3.51 -8.07 -3.56 
7u+ -3.93 -8.92 -3.96 -8.95 -3.97 

6u+ -5.12 -10.10 -5.14 -10.12 -5.15 

27r -13.10 -19.30 -13.23 -19.43 -13.23 

a occupied orbitals energies (eV). 

5u+ -21.79(26.8) -27.51 -21.77 -27.49 -21.77 

17r -22.52 -28.78 -22.38 -28.64 -22.38 

4u+ -24.48 -30.74 -24.53 -30.77 -24.53 

3o-+ -40.24 -45.92 -40.03 -45.70 -40.04 

2u+ -283.63 -308.33 -283.69 -308.42 -283.70 

lo-+ -521.28 -552.30 -521.31 -552.29 -521.29 

ß unoccupied orbitals energies (eV). 

8u+ -1.96 -6.34 -1.96 -6.35 -2.23 

37r -3.40 -7.84 -3.40 -7.82 -3.46 

7u+ -3.64 -7.76 -3.66 -7.78 -3.68 

6u+ -4.80 -9.84 -4.81 -9.85 -4.82 

27r -11.91 -18.83 -12.04 -18.94 -12.04 

5u+ -18.93 -26.05 -18.95 -26.02 -18.95 

0 occupied orbitals energies (eV). 

17r -22.22 -28.62 -22.09 -28.47 -22.09 

4u+ -23.86 -30.20 -23.88 -30.20 -23.88 

3u+ -40.03 -45.42 -39.82 -45.20 -39.82 

2u+ -282.99 -308.46 -283.06 -308.55 -283.06 

lo-+ -521.28 -552.39 -521.31 -552.39 -521.29 

a Calculations are with cation geometry and with the Sadlej basis. Number in the parentheses 

is experimental ionization potential taken from Ref. [379]. 

b  Calculations are with neutral CO geometry and Sadlej basis. 

c Calculations are with neutral CO geometry and with extended Sadlej basis. 
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Table XXXII. 	Ne vertical excitation energies (eV) calculated with the LS- 

Dxc/TDLSDxc and the LB94xc/TDLSDxc functionals and with the cation and 

the neutral N2 molecular geometries using Sadlej basis seta. 
Vertical excitation energies (eV). 

Methods 12E -g  1211e, 12Et 22Ef 221Iu  3211„ 32Ett 22Et 32 E, 
LSDxc(+)b/ 0.000 1.445 3.724 7.325 10.513 13.783 16.102 17.718 18.753 

TDLSDxc 

LB94xc(+)/ 0.000 1.201 3.784 6.776 10.250 13.517 15.942 17.534 18.858 

TDLSDxc 

LSDxc/ 0.000 1.598 3.632 7.729 10.620 13.888 16.441 17.775 19.009 

TDLSDxc 

LB94xc/ 0.000 1.351 3.702 7.158 10.344 13.610 16.309 17.826 18.926 

TDLSDxc 

LSDxc(XB)6/ 0.000 1.598 3.633 7.730 10.620 13.887 16.440 17.708 18.920 

TDLSDxc 

EXPT/XPSd  0.000 1.4 3.2 9.4 14.07 16.3 13.2 17.5 

EXPT/UPS6  0.000 1.346 3.171 9.934 14 13.2 

CIf 0.000 1.83 3.27 10.78 13.66 18.17 19.28 14.60 20.21 

CIg 0.000 1.83 3.27 9.94 13.50 18.11 18.55 13.92 19.76 

CIh 0.000 1.48 3.40 11.27 15.30 18.79 19.39 14.53 19.72 

CIi  0.000 3.27 9.82 17.24 13.47 17.95 

MCEPI 0.000 1.72 3.04 10.79 14.07 18.61 21.65 14.26 19.72 

Grk 0.000 1.15 3.26 9.43 12.93 19.87 19.64 13.50 21.73 

a  (52111/411/22) for nitrogen taken from Ref. [444]. 

b  + in the parenthesis indicates that the cation geometry used in the calculations. Without 

indicates that the calculations are done with neutral geometry. 

Calculations are with extended Sadlej basis set, see text for details. 

d X-ray photoelectron spectroscopy taken from Ref. [441]. 

• Ultraviolet photoelectron spectroscopy taken from Ref. [446]. 

f CI with double-zeta basis and polarization functions taken from Ref. [432]. 

9  CI with extended basis taken from Ref. [433]. 

h CI with extended basis containing diffuse functions taken from Ref. [442]. 

Multireference CI with extended basis including diffuse functions taken from Ref. [431]. 

Multiconfigurational electron propagator with extended basis taken from Ref. [435]. 

• Extended two-particle-hole Tamm-Dancoff approximation with extended basis taken from 

Ref. [447]. 
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Table XXXIII. 	Ne orbital energies (eV) calculated with the cation geom- 

etry and the neutral rnolecular geometry and with the LSDxc and the LB94xc 

functionals using the Sadlej basis and the extended Sadlej basis (XB).  

Orbital LSDxc(+)a LB94xc(-1-)a LSDxcb  LB94xcb  LSDxc(XB)c 

oz unoccupied orbitals energies (eV). 

5o -2.14-2.14 -6.96 -2.14 -7.00 -2.42 

27r.0  -3.39 -8.16 -3.51 -8.18 -3.66 

3o-f -3.55 -8.29 -3.53 -8.25 -3.61 

4o-+ g -5.01 -9.96 -5.01 -9.96 -5.07 

179  -13.65 -20.17 -13.45 -20.00 -13.45 

a occupied orbitals energies (eV). 

3o -22.70(27.1)-22.70(27.1) -28.72 -22.74 -28.77 -22.74 

17rti  -22.91 -29.00 -23.11 -29.20 -23.11 

2o-,-  -25.59 -31.71 -25.50 -31.63 -25.50 

2cr+ g -39.95 -45.48 -40.28 -45.85 -40.28 

10-,t -393.99 -422.16 -393.94 -422.13 -393.97 

lo-+ g -394.01 -422.19 -393.97 -422.16 -394.01 

j3 unoccupied orbitals energies (eV). 

5a--gE -2.02 -6.43 -2.02 -6.48 -2.35 

3crtt -3.42 -7.87 -3.39 -7.82 -3.49 

27r„ -3.43 -8.01 -3.45 -8.02 -3.62 

4o -4.84-4.84 -9.76 -4.83 -9.75 -4.91 

17r9  -12.95 -19.65 -12.74 -19.47 -12.74 

3.9-t, -20.94 -27.35 -20.99 -27.40 -20.99 

/3 occupied orbitals energies (eV). 

bru  -22.44 -28.60 -22.63 -28.81 -22.63 

2o -24.15-24.15 -30.68 -24.05 -30.59 -24.05 

2o-+ g -39.38 -44.47 -39.72 -44.83 -39.72 

lo-j-  -393.65 -422.35 -393.60 -422.32 -393.63 

10-t -393.67 -422.38 -393.63 -422.35 -393.66 

+ in the parenthesis indicates that the calculation is done with cation geometry. Number in 

parentheses is experimental ionization potential taken from Ref. [379]. 

b  Calculations are done with neutral N2 molecular geometry. 

c  XB in parentheses indicates that the calculation is done with the extended Sadlej basis. 
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Table XXXIV. 	CH20+ vertical excitation energies (eV) calculated with the 

LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals using the Sadlej basis 

seta and the extended Sadlej basis (XB)b. 

Vertical excitation energies (eV).  

State LSDxca/ 

TDLSDxc 

LB94xca/ 

TDLSDxc 

LSDxc(XE)d/ 

TDLSDxc 

MRD-CIe MRCIf 

12B2  0.000 0.000 0.000 0.000 0.000 

12B1  4.062 3.908 4.061 3.86 3.84 

22B1  5.089 4.626 5.090 5.78 6.46 

12A1  5.266 4.926 5.263 5.30 5.46 

22B2  6.299 5.872 6.302 6.37 6.45 

32B2 6.768 6.475 6.770 8.07 8.69 

12A2  8.462 7.976 8.461 9.89 

32B1  9.318 8.764 9.324 10.18 10.79 

22A1  9.554 9.108 9.552 10.40 10.90 

22A2  9.603 9.037 9.601 10.97 

42B1  10.331 9.753 10.337 12.85 14.05 

32A1  11.074 11.187 11.070 11.97 14.65 

42B2  11.086 10.859 11.082 11.30 12.75 

42A1  12.053 12.541 12.041 13.88 15.17 

32A2  12.058 11.457 12.056 13.71 

42A2  13.788 13.742 14.011 15.27 

a (411/22) for hydrogen taken from Ref. [444] and (52111/411/22) for carbon and oxygen taken 

from Ref. [334]. 

b  Extended Sadlej basis is (41111/221) for hydrogen, (5211111/4111/221) for carbon and oxy- 

gen. See text. 

Calculations are done with Sadlej basis. 

d  Calculations are done with extended basis. 

Taken from Ref. [9]. 

f Taken from Ref. [448]. 
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Table XXXV. 	C H20+ orbital energies (eV) calculated with the LSDxc and 

the LB94xc functionals using the Sadlej basis and the extended Sadlej basis. 
Orbital LSDxca LB94xca LSDxc(XB)b  

a unoccupied orbitals energies (eV). 

8a1  -3.65 -8.23 -3.66 

3b2  -4.80 -10.37 -4.80 

7a1  -5.15 -10.32 -5.16 

6a1  -6.18 -11.78 -6.18 

2b1  -12.22 -18.37 -12.22 

a occupied orbitals energies (eV). 

2b2  -17.24 -22.91 -17.24 

1b1  -20.30 -26.12 -20.30 

5a1  -21.36 -26.91 -21.36 

1b2  -22.41 -27.97 -22.41 

4a1  -25.26 -30.84 -25.26 

3a1 -37.58 -42.71 -37.57 

2a1  -279.21 -304.22 -279.19 

lai  -519.76 -549.54 -519.74 

j3 unoccupied orbitals energies (eV). 

8a1  -3.51 -8.04 -3.52 

3b2 -4.55 -9.95 -4.56 

7a1  -4.96 -10.05 -4.97 

6a1  -5.91 -11.33 -5.92 

2b1  -11.96 -18.09 -11.95 

2b2  -15.64 -21.69 -15.64 

(3 occupied orbitals energies (eV). 

1b1  -19.80 -25.71 -19.80 

5a1  -20.72 -26.43 -20.71 

1b2  -21.47 -27.07 -21.48 

4a1  -24.73 -30.28 -24.73 

3a1  -36.73 -41.98 -36.73 

2a1  -279.22 -304.25 -279.20 

lai -519.19 -549.90 -519.17 

a Calculations are with neutral CH20 geometry and Sadlej basis. 

b  Calculations are with neutral CH20 geometry and with extended Sadlej basis. 
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CHAPTER 6 

PREDICTION AND INTERPRETATION OF 

ABSORPTION SPECTRA OF SMALL LITHIUM 

CLUSTERS BY TIME-DEPENDENT 

DENSITY-FUNCTIONAL THEORY 

6.1 INTRODUCTION 

Lithium clusters are the simplest metal clusters with only three s electrons 

for each atom, and this advantage has been used for observations of lithium cluster 

ground and excited state properties (e.g. electronic spectroscopy [449]). Exper-

imental observations and traditional ab initio calculations of electronic spectra 

of the lithium clusters have been reported in the literature. Time-dependent 

density—functional study of excitation spectra of the lithium clusters lag behind, 

only a few publications have appeared recently. Pacheco and Martius [450] cal-

culated photoabsorption spectra of Li8  and Li20  with time-dependent density-

functional theory (DFT) and with pseudopotentials. Rubio and co-workers [451] 

used the time-dependent local density approximation with the jellium model to 

describe the photoabsorption cross section for Li8. However, an all-electron time-

dependent DFT study of the electronic spectra of lithium clusters with quantum 

molecular models considering the molecular nature of the clusters has not yet 

appeared. The present work provides the first study of excitation energies and 

oscillator strengths of lithium clusters by time-dependent DFT at the all-electron 

level. 
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Excited states of the lithium dimer were experimentally investigated [452] 

and its absorption bands were measured [453] in the early thirties. Though the 

first spectra of metal cluster trimers (Na3) were already recorded with two-photon 

ionization in 1979 [454], the first observation of excited states of the lithium 

trimer in a gas-phase absorption experiment by laser-induced fluorescence was 

only performed in 1989 [58]. Due to the predissociation processes in the larger 

metal clusters, this technique has not been used in applications to metal clusters 

larger than the trimer. The photodissociation technique [64, 455, 67, 23, 66, 68] 

provides a useful tool for the study of larger clusters. This technique bas been 

used to observe the lithium tetramer spectroscopy [68] as well as the vibronic 

structure of several electronic transitions. The high—resolution spectra of the 

lithium clusters up to eight atoms were also reported in the literature [68, 456, 

12, 69]. These experimental recordings provide the opportunity for theoretical 

interpretations. 

Theoretical investigations of the excited states of the lithium clusters have 

made considerable progress. For the dimer, there was a burst of interest for the 

study of ground state properties [457] and those of excited states [458, 459] seven 

decades ago. Lithium trimer has been extensively studied for its ground state by 

semiempirical [460, 461] and ab initio methods [462, 463, 464, 465]. The study of 

ground states and excited state energy surfaces of the lithium trimer was carried 

out two decades ago [464]. But interpretations of absorption spectra of the trimer 

are surprisingly rare, only one traditional density—functional theory "multiplet" 

approach calculation of the electronic spectra of the lithium trimer is found in the 

literature [10] and one CI study of the first few excitation energies of the lithium 

trimer [466]. The first attempt at calculating excited states and interpreting the 

absorption spectra of the lithium tetramer was achieved by BonaCie--Kouteck3'r et 

al. [78] using the configuration interaction (CI) method. The interpretation of 

depletion spectra of the tetramer was also performed later using multiconfigura-

tional linear response (MCLR) theory [11]. Bonaêié—Kouteck3"7 and co-workers, 
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using this high precision CI technique, tried to interpret absorption spectra of the 

lithium hexamer [467, 12, 468, 69], heptamer [69], and octamer [69]. However, 

there are no theoretical calculations on the lithium pentamer in the literature. 

Recently, ab initio Hartree—Fock self—consistent—field study dynamics of Li8 , Li, 

Lilo, and Lii1-1  [469, 470] and ab initio gradient—corrected density—functional study 

dynamics of Li8  [471] have also been reported by Bonane—Koutec“r et a/.. Nev-

ertheless, the study of open-shell lithium clusters, especially clusters larger than 

the trimer, has lagged far behind. 

The present work calculates excitation spectra of the lithium clusters from 

the dimer to the hexamer by time-dependent DFT. This fills in the gap left by the 

absence of theoretical studies of the lithium pentamer electronic spectra. This also 

provides useful information on the time-dependent DFT treatment of alkali metal 

clusters including both closed-shell and open-shell cases. The present calculations 

were carried out by local spin density approximation and the exchange-correlation 

functional proposed by van Leeuwen and Baerends in 1994 [212] associated with 

the time-dependent local spin density approximation. A few orbital basis sets 

and several auxiliary basis sets were examined in the calculation of excitation 

energies. The grid used in fitting the exchange-correlation terms was treated 

properly to avoid symmetry breaking in the present calculations. 

6.2 COMPUTATIONAL DETAILS 

The excitation spectra of small lithium clusters (the symmetry of each clus-

ter and its ground state configuration shown in Table XXXVH(please note that 

Tables and Figs. are given at the end of the chapter), Li, (n = 2 — 6), were 

carried out with the time-dependent DFT program deMon—DynaRho, version 

2pX [208]. Exchange-correlation functionals used in the present calculations were 

the local spin density approximation (LSDxc) and the functional proposed by van 

Leeuwen and Baerends in 1994 (LB94xc), respectively, in the SCF step, and the 
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time-dependent local spin density approximation (TDLSDxc) was used in the 

post-SCF step. These functionals used at the SCF step and the post-SCF step 

are referred to as LSDxc/TDLSDxc and LB94xc/TDLSDxc functionals. The 

deMon-KS EXTRA-FINE and NonRandom grid which consists 6208 grid points 

per atom were used in the present calculations. However, a user-defined grid [327] 

which contains 24832 grid points for each atom was used for the pentamer calcu-

lations with the LB94xc/TDLSDxc functional due to symmetry breaking in the 

assignments with the EXTRA-FINE grid. This kind of symmetry breaking with 

EXTRA-FINE and Random grid also occurred in the sodium trimer calculations 

(see Chapter 7 of this thesis). The SCF calculations were performed with a tol-

erance in the total energy of less tb.an  10' bartree and a change in the charge 

density fitting coefficients of less than 10 a.u.. Geometries of the lithium clus-

ters used in the present calculations, optimized by deMon—KS with the LSDxc 

functional, were taken from the literature [465], except for the hexamer with C2v  

symmetry which used both the DFT optimized geometry taken from Ref. [465] 

and the CI optimized geometry taken from Ref. [472]. The orientation of the ge-

ometries in the present calculations follows the rules in Ref. [473]. Specifically, the 

dimer lies on the z-axis. The trimer, pentamer, and hexamer with D3h symmetry 

lie in the yz—plane, since the hexamer, with D3h symmetry, was also assigned 

under the C2v  subgroup. The tetramer lies in the xy—plane. The hexamer with 

C2v  symmetry has the two planes lying in the yz—plane and xz—plane. 

Both orbital and auxiliary basis sets are Gaussian-type functions. Several 

orbital basis sets were examined in the present calculations. Specifically, the 

orbital bases are the double zeta valence plus polarization (DZVP) (621/1*/1+) 

and the Huzinaga (51111/111) bases taken from the deMon-KS basis sets library, 

the Beckmann, KouteckSr, and Bonakie-Koutec“rbasis (3111111/111) taken from 

Ref. [351]. This basis was used in the lithium trimer and the tetramer excitation 

energy calculations with the MRD-CI method by Beckmann [466] and Beckmann, 

Kouteck3'7, and Bonakie-Kouteck3'r [351], respectively. This basis is referred to as 



172 

the BKK basis. Sadlej and Urban's orbital basis set (52111/411/22) is taken from 

the literature [334] (referred to as the Sadlej basis). The present calculations 

also used the fully decontracted Sadlej basis (1111111111/111111/1111) which is 

referred to as the Sadlej (FD). Since 6 cartesian d-type basis functions are used 

in deMon-KS, the total basis functions are 36, 42, 48, 78, 156 for the DZVP, 

the Huzinaga, the BKK, the Sadlej, and the Sadlej (FD) basis sets, respectively, 

in the trimer calculations. The auxiliary basis set (4,3;4,3) is taken from the 

deMon—KS basis library. In order to see the quality of the auxiliary basis in the 

calculation of the excitation energies, a few larger auxiliary basis sets are created 

by the present work based on the Sadlej orbital basis; typically, these auxiliary 

basis sets are (4,4;4,4), (5,3;5,3), (5,4;5,4) and (5,5;5,5). 

6.3 RESULTS AND DISCUSSION 

Excitation spectra of five small lithium clusters from the dimer up to the 

hexamer (three closed-shell clusters, Li2 , Li4, and Li6, two open-shell clusters, 

Li 3  and Li6 ) are calculated by time-dependent DFT with LSDxc/TDLSDxc and 

LB94xc/TDLSDxc functionals. The present calculated excitation energies are 

compared with available experimental results and traditional ab initio calculations 

in Tables XXXVIII, XXXIX, XL, XLI, XLIII. and XLII (ionization threshold 

calculated with thw two functionals are given in Table XXXVI) . Excitation 

spectra are shown in Figs. 31, 32, 34, 35, 37, 38, 39, 40, 42, 43, 45, 46, 47 

and 48 (please note that Tables and Fig s. are given at the end of the chapter). 

Excitation energy calculations require a certain number of diffuse functions 

and polarization functions in the orbital basis set. The eighteen lowest vertical 

excitation energies of the trimer calculated with five different orbital bases are 

given in Table XLV. It shows that the polarization and diffuse basis functions 

are very important in the calculation of excitation energies. The Huzinaga and 

the BKK bases have the same number of primitive Gaussian functions (9s,3p), 
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the first s basis function is contracted with five s-type primitive Gaussians in 

the Huzinaga basis, while it is contracted with three s-type primitive Gaussians 

in the BKK basis set. The other s and p basis functions in the BKK basis are 

more diffuse than those in the Huzinaga basis. These diffuse functions improve 

the excitation energies remarkably. The listed excitation energies of three 2 A2  

states and three 2B1  states calculated with the Huzinaga basis have errors larger 

than 3 eV in comparison with those calculated with the fully decontracted Sadlej 

basis (see Table XLV). These excitation energies of the 2A2  and the 2B1  states 

carried out with the BKK basis reduce the error to less than 1 eV, some of them 

even less than 0.02 eV. For example, the 12B1  state excitation energy has an 

error of 0.01 eV. The DZVP basis set has also nine s-type primitive Gaussians, 

but only one p-type and one polarization d-type Gaussian functions. The nine 

s-type primitive Gaussian functions were contracted to three s basis functions 

(621) with one p and one d functions comprising the DZVP basis. It lias 36 basis 

functions which is the smallest basis set used for the trimer calculations. The 

one polarization function seems to be very important for the excitation energy 

calculations, which leads the excitation energy to differ from those with the fully 

decontracted Sadlej basis by no more than 1 eV, except for the 62A1, the 72A1 , 

and the 32 B1  states, where the error is about 1.3 eV. The Sadlej basis has twenty 

primitive Gaussians functions (10s/6p/4d) which were contracted to five s, three 

p, and two d basis functions. It is larger than the above three basis sets, but it 

does give more accurate results, the deviations of excitation energies calculated 

with the Sadlej basis and with the fully decontracted Sadlej basis are no larger 

than 0.01 eV [except for the 62A1  state (0.04 eV), and the 72 A1  state (0.05 eV)]. 

Hence the Sadlej basis set is chosen in the larger lithium cluster calculations. 

Excitation energy calculations seem to be less demanding on the auxiliary 

basis set. Table XLIV lists the excitation energies of the lithium trimer which were 

carried out with five different auxiliary basis sets, namely, A(4,3;4,3), A(4,4;4,4), 

A(5,3;5,3), A(5,4;5,4), and A(5,5;5,5). Excitation energies calculated with the 
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smallest auxiliary basis, A(4,3,4,3), differ from those carried out with the largest 

auxiliary basis, A(5,5;5,5), by no more than 0.04 eV. The oth.er  three auxiliary 

bases yield no remarkable improvement in the calculation of the excitation ener-

gies. The smallest auxiliary basis, A(4,3;4,3), is therefore chosen in the present 

work. 

The LSDxc/TDLSDxc functional provides quite accurate excitation ener-

gies for small lithium clusters in comparison with experiment. The deviations 

between the calculated excitation energies and the experimental results for all 

the clusters are less than 0.3 eV (except for the 11E,L+ state in the dimer, for 

which the excitation energy differs by 0.8 eV). This error is larger than that of 

the CI calculations. In the dimer and the tetramer cases, excitation energies 

calculated by the CI method [474, 69] have errors no larger than 0.1 eV in com-

parison with available experimental results. But CIS [69, 475] and RPA [69] give 

similar deviations as the present LSDxc/TDLSDxc calculations for the dimer and 

the tetramer. However, in the hexamer case, the present LSDxc/TDLSDxc cal-

culations yield excitation energies with an absolute average error of 0.26 eV in 

comparison with the CI calculations [69] (0.16 eV if CI geometry was used) for 

the listed 26 excited states. But CIS [69] and RPA [69] give absolute average 

errors of 0.78 eV and 0.73 eV, respectively, in the excitation energies. 

The LSDxc/TDLSDxc functional also gives reasonable oscillator strengths 

for the small lithium clusters. The calculated excitation spectra (see Figs. 34, and 

37) show that the LSDxc/TDLSDxc functional yields the correct number of ab-

sorption bands in comparison with available experimental spectra. For example, 

the spectrum of the trimer performed by the LSDxc/TDLSDxc functional pro-

vides three strong peaks which are the same as the experimental spectrum cited 

in Ref. [10]. However, the present calculations give too large oscillator strengths 

for the two bands in the red—yellow region (52/32  and 42ili  states). It can also be 

seen clearly that the present calculated spectrum is much better than that cal- 
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culated by the traditional DFT method (multiplets approach) in Ref. [10], since 

the latter did not provide the correct number of peaks and the locations of the 

peaks are also not as good as the present calculations (see Figs. 33 and 34). In 

the tetramer spectrum, the LSDxc/TDLSDxc functional gives quite good absorp-

tion bands compared with experiment and conventional ab initio calculations. In 

the energy range from 0 to 3 eV, the present calculation gives one intense peak 

(11B3u ) in the near infrared region, two small peaks (21B3„ larger than 11B1„) in 

the red—yellow region, and two strong bands (21B2„ and 21B1„) in the blue and 

near UV (ultraviolet) region. This agrees well with the experimental spectrum 

in Refs [69, 10]. It can be seen from Figs. 36 and 37 that the present calcu-

lations give much improvement over the excitation spectra (excitation energies 

and oscillator strengths) calculated by the traditional DFT method ("multiplets" 

and Fritsche approaches) in Ref. [10]. The "multiplets" and Fritsche approaches 

provided almost all of the bands with the same value of oscillator strength (peaks 

with the same height). Moreover, the present calculated spectrum can also be 

compared with the CI calculations [69]. The present calculations in the energy 

region from 0 to 3 eV yields one more small peak (around 3 eV) than those of the 

CI calculations which show six bands (three strong bands and three small ones). 

Nevertheless, both the present calculations and the CI results agree well with the 

experiment and the time-dependent DFT assignments are the same as those of 

the traditional CI method. 

Excitation energies calculated with the LB94xc/TDLSDxc functional have 

larger errors than those carried out with the LSDxc/TDLSDxc functional in the 

energy range listed in Tables XXXVIII, XXXIX, XL, XLI, XLIII, and XLII. 

This presumedly comes from the difference in the short—r behavior of the LS-

Dxc and the LB94xc functionals. For example, in the dimer case, the calculated 

excitation energy of the 31E9+ state with the LB94xc/TDLSDxc functional dif-

fers from the experiment by 0.74 eV, whereas, that with the LSDxc/TDLSDxc 

functional has an error of 0.36 eV. The 211I„ state excitation energy performed 
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by the LB94xc/TDLSDxc functional gives an error of 0.6 eV in comparison with 

experiment, while the excitation energy of this state calculated with the LS-

Dxc/TDLSDxc functional differs from the experiment by 0.04 eV. However, the 

difference between the excitation energies calculated by the LSDxc/TDLSDxc 

and the LB94xc/TDLSDxc functionals can be as large as 1 eV. For example, in 

the tetramer case, the largest difference between the excitation energies calcu-

lated with the LSDxc/TDLSDxc and LB94xc/TDLSDxc functionals is 0.9 eV for 

the 51B2„ state. 

For low excitation energies, the LSDxc/TDLSDxc functional provides larger 

excitation energies than those carried out by the LB94xc/TDLSDxc functional. 

In contrast, for high excitations, the LSDxc/TDLSDxc functional gives excita-

tion energies lower than those calculated by the LB94xc/TDLSDxc functional. 

This is assumed to be due to the short—r and asymptotic behavior of the two 

functionals. It seems that the potential energy curve of the LB94xc/TDLSDxc 

functional is very shallow and more flat than that of the LSDxc/TDLSDxc 

functional in the short—r region. But at large—r, the energy potential curve of 

the LB94xc/TDLSDxc functional has a much longer tail than that of the LS-

Dxc/TDLSDxc functional. 

There is a change in the ordering between the excited states calculated 

with the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals in all clus-

ter calculations. In the dimer case, the 13E1g-  state with the LB94xc/TDLSDxc 

functional rises above the 1111„ and the 11E;1-  states. The 2311„ state with the 

LB94xc/TDLSDxc functional falls below the 11112  state. However, the state 

ordering of the l'IL state being above the 11E1-  state predicted by both the 

LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals is different from that 

of the experiment and the CCSD (coupled cluster single and double excitations) 

results [476], the CI calculation [474], and the CIS state ordering [475]. For the 

trimer, the 22B2  state with the LB94xc/TDLSDxc functional comes up to the 
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22A1  state, and the 32A2  state excitation energy with. the LB94xc/TDLSDxc 

functional is smaller than the 72A1  and the 32B1  states. This ordering change 

also occurred in the calculations of the tetramer and the pentamer. 

Excitation spectra of the lithium clusters calculated by the LSDxc/TDLSDxc 

and the LB94xc/TDLSDxc functionals are very similar. The calculations with 

both the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals give the same 

number of strong bands in the predicted excitation spectra. However, the oscil-

lator strengths calculated with the LSDxc/TDLSDxc and the LB94xc/TDLSDxc 

functionals may be different. For example, in the trimer case, the excitation spec-

tra predicted by both the LSDxc/TDLSDxc and the LB94xc/TDLSDxc function-

als show three strong peaks, and the two functionals give the same assignments, 

the first strong peak is assigned to the 42A1  state, the second band belongs to 

the 52 _82  state, and the third band is assigned to the 32A2  state. However, the 

LSDxc/TDLSDxc functional predicts the 52B2  state as the most intense peak, 

whereas, the LB94xc/TDLSDxc functional gives the 32 A2  state as the strongest 

band, in the trimer spectrum. In the tetramer case, there are also differences 

in the calculated oscillator strengths between the LSDxc/TDLSDxc and the 

LB94xc/TDLSDxc functionals. The LSDxc/TDLSDxc functional yields the first 

strong band as the 11B3„ state and a weaker peak with higher excitation energy is 

assigned to the 21B3„ state. In contrast, the LB94xc/TDLSDxc functional gives 

the first strong peak as the 21.83„ state, the weaker band with lower transition 

energy is assigned to the 11B3„ state. 

The calculations of larger lithium clusters (the pentamer and the hexamer) 

with the LB94xc/TDLSDxc functional have a problem — symmetry breaking. The 

molecular orbital symmetries of the pentamer carried out by the LB94xc/TDLSDxc 

functional are difficult to be assigned due to symmetry breaking with the EXTRA-

FINE grid (6208 grid points per atom), and the final results of the pentamer 

with the LB94xc/TDLSDxc functional had to be recalculated with the user- 
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defined grid (24832 grid points per atom). Unfortunately, there are no other 

ab initio calculations or experimental results ayailable for comparison with the 

present calculations of the pentamer. Hence the excitation energies of the pen-

tamer are only compared between the present LSDxc/TDLSDxc calculation and 

the LB94xc/TDLSDxc calculation which are given in Table XLI. The excita-

tion energies calculated with the LSDxc/TDLSDxc functional are larger than 

those carried out by the LB94xc/TDLSDxc functional for the lowest twenty-

seven excited states. Nevertheless, the difference is less than 0.2 eV. This may 

be due to the difference in the short—r behavior of the two functionals. How-

ever, the calculations with the two functionals provide very similar excitation 

spectra with two strong bands (the 62B2  and the 102 A1  states) and thirty-three 

small peaks (thirty-two with the LB94xc/TDLSDxc). Moreover, the present cal-

culations show that the excitation energies between two adjacent transitions are 

very close (e.g. the excitation energy difference between the 12 A2  and the 32 A1  

states is 0.001 eV). This indicates that electronic states of the pentamer are 

very closely distributed. This may also be the reason why the pentamer is dif-

ficult to measure. In the hexamer case, symmetry breaking occurred in excita-

tions performed with the D3h geometry and the LB94xc/TDLSDxc functional, 

no matter what quality of grid was used (EXTRA-FINE, or different quality 

of user-defined grid with Random or even NonRandom options). This symme-

try breaking also occurred in the calculations with the C2v  geometry (no matter 

whether the DFT optimized geometry in Ref [465] or the CI optimized geometry 

in Ref. [472] were used) by both the LSDxc/TDLSDxc and the LB94xc/TDLSDxc 

functionals. Moreover, the hexamer calculations yield imaginary excitation en-

ergies for a couple of the lowest excitations with both the LSDxc/TDLSDxc 

and the LB94xc/TDLSDxc functionals and the DFT C2v  geometry. This also 

occurred for the LB94xc/TDLSDxc functional calculation with the CI C2v  ge-

ometry. Nevertheless, the final calculations were done with the EXTRA—FINE 

and the NonRandom grid option and the excitation energies were assigned with 
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the largest transition coefficient which in general is one order of magnitude larger 

than the others. Tables XLIII and XLII show that excitation energies of the hex-

amer calculated with the LSDxc/TDLSDxc functional and the LB94xc/TDLSDxc 

functional are close to those calculated by the CI method [12] (note that the CI 

excitation energies are estimated from the CI calculated excitation spectrum). 

The deviations are no larger than 0.3 eV for the twenty-five optically allowed 

excitation energies, except for the 11/31  and the 31.B1  states which differ by 0.39 

eV and 0.46 eV, respectively for the LSDxc/TDLSDxc calculation, and by 0.5 

eV for both states from the LB94xc/TDLSDxc calculation. The spectrum pre-

dicted by both the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals is 

quite similar to that from the CI calculations with the D3h geometry [12]. Both 

of the present calculations and the CI calculation [12] give two intense peaks in 

the red-yellow region (the 31.B2  and the eA, states), and two weaker (medium) 

peaks around 3 eV (the 81/32  and the 101A1  states in the present calculations, 

the 101/32  and the 111A1  states in the CI calculation). However, this is differ-

ent from the experimental spectrum which just exchanges the locations of the 

intense peaks and the weaker (medium) peaks. This may suggest that the D3h 

geometry is not the equilibrium geometry. Excitation spectrum of the hexamer 

with the C2v  geometry predicted by the LSDxc/TDLSDxc functional and the 

LB94xc/TDLSDxc functional is different whether the calculation started with 

the DFT optimized geometry or the CI optimized geometry. The excitation 

spectrum predicted with the CI optimized C2v  geometry shows that both the 

LSDxc/TDLSDxc the LB94xc/TDLSDxc functionals yielding two strong bands 

around 2.4 eV and 3 eV, respectively, but the assignments are different between 

the two functionals. The LSDxc/TDLSDxc assigned two most intense bands to 

the 41B2  and the 51/31  states, the LB94xc/TDLSDxc functional assigned them to 

the 71,41  and the 61B1  states. However, the two functionals predicted a spectrum 

of the hexamer that is different from the experimental results due to the extra 

strong band at 3 eV. But the CI calculation with the same CI optimized C2v  ge- 
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ometry [12] did get very good agreement between the calculated spectrum and the 

experimental results (see Fig. 44). This may indicate that the CI minimum geom-

etry might not be the minimum on the DFT energy surface, since the excitation 

spectrum predicted with the DFT optimized geometry did give some improvement 

compared with those predicted with the CI optimized geometry. Both the exci-

tation spectrum predicted by the LSDxc/TDLSDxc and the LB94xc/TDLSDxc 

functionals shows two strong bands (the 71A1  and the 71B2  states) around 2.4 

eV and a large number of small bands in the energy interval up to 3 eV. This 

coincides with the recorded spectrum. But the LSDxc/TDLSDxc calculations 

yield one more strong peak at 3 eV which leads to a different spectrum from the 

experimental results, wh.ereas the spectrum predicted by the LB94xc/TDLSDxc 

functional agrees well with the experiment. This suggests that the equilibrium 

geometry has C2v  symmetry which is consistent with the DFT geometry optimiza-

tion in which DFT predicted C2v  geometry for the most stable isomer [465]. This 

is also the same as the prediction of the CI method [472, 12]. Moreover, geome-

try is an important ingredient in the calculation of excitation spectra, since the 

DFT C2v geometry and the CI C2v  geometry did yield quite a different excitation 

spectrum for the hexamer. The excitation spectrum with the CI C2„ geometry 

gives more peaks than that with the DFT C2v  geometry and the number of the 

strong bands are also different with the two geometries. It seems to suggest that 

the excitation spectra not only depend on the fun.ctional, but also depend on the 

geometry. 

The excitation spectra of the lithium clusters (Figs. 31 — 48) show that 

the open—shell clusters (the trimer and the pentamer) yield more bands than 

the closed—shell clusters (the dimer, the tetramer, and the hexamer) in the given 

energy interval. This can be understood from the case of HOMO electron tran-

sitions, in the closed—shell clusters, HOMO electron transitions occur to singlets 

and triplets, but only singlet transitions are optically allowed; while in the open—

shell clusters, HOMO electron transitions only occur to doublets which are opti- 
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cally allowed. Hence, in the certain energy range, open—shell clusters yield more 

bands. 

6.4 CONCLUSION 

Excitation spectra of small lithium clusters (from the dimer up to the hex-

amer) have been calculated by time-dependent DFT with the LSDxc/TDLSDxc 

and the LB94xc/TDLSDxc functionals. The present calculated excitation spectra 

agree well with the experimental results as well as with high quality CI calcula-

tions. But the simplicity and computational efficiency give the time-dependent 

DFT more advantages. The time-dependent DFT results get much more improve-

ment over those of the traditional DFT "multiplets" and Fritsche approaches, 

especially for the oscillator strengths. 

The present calculations show that the exchange-correlation functional is 

very important in the calculation of excitation energies. Different functionals can 

change excitation energies dramatically. The present calculations show that the 

difference of excitation energies calculated between the LSDxc/TDLSDxc and 

the LB94xc/TDLSDxc functionals can be as large as 1 eV. This suggests that 

a better functional may improve the excitation energies remarkably. The choice 

of the exchange-correlation functional effects the excitation energies differently 

in the different energy regions. For low excitations, the small—r behavior of the 

exchange-correlation functional plays an important role. For high excitations, 

the large—r behavior of the exchange-correlation functional is crucial. The LS-

Dxc/TDLSDxc functional gives quite good low excitation energies. To develop 

one functional that can provide accurate excitation energies for both low and high 

excitations will require further investigation. 

Geometry is a crucial ingredient in the calculation of excitation spectra. 

Different quality of geometry may lead to different spectra. 
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The excitation energy calculations of small lithium clusters are very sensitive 

to orbital basis set, but less sensitive to auxiliary basis set. Lithium cluster 

excitation energies are in general overestimated by the time-dependent DFT. 

This is in contrast with those of open-shell molecules at the right—hand side of 

the periodic table (e.g. CN, CO, and N) for which the time-dependent DFT 

underestimated excitation energies in most cases. 

The present calculations found that the main features of these excitation 

spectra of the small lithium clusters are the spectroscopic pattern with only two 

or three strong peaks located around 1.8 eV, 2.3 eV, and 2.8 eV regions. The 

present calculated excitation spectra also show that the open—shell clusters (the 

trimer and the pentamer) have many more bands than do the closed—shell clusters 

(the dimer, the tetramer, and the hexamer). 
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Table XXXVI. 	Ionization threshold (—sHomo ) of Li clusters from the 

dimer up to hexamer calculated with the Sadlej basis and by the LSDxc and the 

LB94xc functionals. 

4D1WO (eV) 
Clusters LSDxc LB94xc 

(AE) (AE) 

Li 2  3.76 6.13 

Li 3  2.58 4.78 

Li4  2.87 5.12 

Li 5  2.80 4.95 

Li6(D3h) 3.18 5.45 

Li6(C2,,C I g eom) 2.85 5.11 

Li6(C2 ,, D FT g eom) 3.00 5.28 

Table XXXVII. 	Ground state configurations and the ground state symmetry 

of lithium clusters calculated by the present DFT SCF calculations with LSDxc 

functional. 

Clusters (symmetry) Lowest electron configuration 	 Ground state 

symmetry 



184 

Table XXXVIII. 	Li2  vertical excitation energies (eV) calculated with the 

LSDxc/TDLSDxc and the LB94xc/TDLSDxc functional using the Sadlej basis 

compared with available experimental results and conventional ab initio calcula- 

tions. 	  

Vertical excitation energies (eV).  

State LSDxc/ 

TDLSDxc 

LB94xc/ 

TDLSDxc 

EXPTe CCSDb  AEVCP CISc 

i1  0.0000.000 0.000 0.000 0.000 0.000 0.000 

13IL, 0.384 1.398 1.375 1.400 0.888 

13E;iF 1.465 1.313 1.023 1.236 0.480 

11IL, 2.387 2.526 2.574 2.557 2.538 2.627 

11E;hE 2.638 2.608 1.846 1.750 1.843 2.093 

13E:gF 2.819 2.498 2.032 2.108 1.407 

21  3.5253.525 3.456 2.530 2.878 

23E-91-  3.846 4.052 3.480 

13119  3.848 4.105 2.741 
31,-j- 2_, 3.849 4.230 3.489 3.487 

23112, 3.871 4.353 

11119  3.896 4.294 2.726 2.977 3.291 

21112, 3.910 4.447 3.871d  

23Et 3.944 4.545 

21  Et 3.968 4.574 3.822 

33E-19-  4.188 4.696 3.940 

41E1g-  4.296 4.832 4.203 4.205 

a Converted from Ref. [474]. 

5  Coupled cluster calculations taken from Ref. [476]. 

c Calculated from Ref. [475]. 

d  Converted from Ref. [379]. 
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Table XXXIX. 	Li 3  vertical excitation energies (eV) calculated with the LS- 

Dxc/TDLSDxc and the LB94xc/TDLSDxc functional using the Sadlej basis com-

pared with traditional ab initio results. 

Vertical excitation energies (eV). 

State LSDxc/ 

TDLSDxc 

LB94xc/ 

TDLSDxc 

EXPT SCFa MRD-CP Full-CIa 

12B2  0.000 0.000 0.000 0.000 0.000 
12 A1  0.401 0.074 0.286 0.317 0.216 
12B1  0.784 0.568 0.679 0.787 0.711 
22 A1  1.146 1.053 1.206 1.136 
22B2  1.186 0.931 1.430 1.346 
32 B2  1.487 1.244 2.615 2.407 
32 A1  1.537 1.286 1.612 1.498 
12 A2  1.618 1.459 2.472 1.975 1.937 
22 A2  1.989 1.960 

42 A1  2.125 2.026 1.8 (A)b'' 

42B2  2.128 2.085  

22B1  2.352 2.359 2.320 2.245 
52/32  2.390 2.324 2.1' 

62B2  2.515 2.563  

52 A1  2.531 2.334 

62 A1  2.643 2.679 

72A1  2.689 2.898 

32B1  2.744 3.188 

32 A2  2.816 2.879 2.7 (C)cd 

Results taken from Ref. [466]. 

6  Result taken from Ref. [58]. 

Estimated from spectra graph in Ref .[10]. 

d  Number was cited in Ref. [10]. 
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Table XL. 	Li4  optically allowed vertical excitation energies (eV) calculated 

with the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functional using the Sadlej 

basis and compared with traditional ab initio results and available experiment. 

Vertical excitation energies (eV). 

State LSDxc/ 

TDLSDxc 

LB94xc/ 

TDLSDxc 

EXPTa MCLRb  CI RPAe CISe 

11Blii, 2.134 2.103 2.356(C) 2.56 2.36 2.77 2.84 

21B,,, 2.907 3.005 2.928(E) 3.12 3.01 3.26 3.42 

31B1„ 4.104 4.062 5.30 5.31 

41B1„ 4.295 4.311 5.99 6.09 

51B1n 4.887 6.77 6.79 

1 B2u  1.656 1.516 1.94 1.81 2.49 2.55 

21B2„ 2.621 2.664 2.651(D) 2.69 2.65 2.86 3.09 

3B2u  3.254 3.753 4.38 4.44 

4B2 u  3.391 3.969 5.17 5.22 

51B2 u  3.443 4.377 5.48 5.56 

11B3,2  1.661 1.627 1.801(A) 1.82 1.78 1.80 1.85 

2B3u  2.074 1.874 2.084(B) 2.29 2.09 2.32 2.33 

31B3u  2.992 3.061 3.55 3.55 

41B3u  3.069 3.231 4.18 4.20 

51B32, 3.166 3.533 4.22 4.29 

Experimental results taken from Ref. [449, 69]. 

b  Results taken from Ref. [11]. 

Results taken from Ref. [69]. 
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Table XLI. 	Li 5  vertical excitation energies (eV) calculated with the LS- 

Dxc/TDLSDxc and the LB94xc/TDLSDxc functionals using the Sadlej basis. 

Vertical excitation energies (eV).  

State LSDxc/ 

TDLSDxc 

LB94xc/ 

TDLSDxc 

State LSDxc/ 

TDLSDxc 

LB94xc/ 

TDLSDxc 

12 A1  0.000 0.000 32 A2  1.690 1.520 

22 A1  0.682 0.529 22B1  1.701 1.536 
1 2  B2 0.843 0.571 72 A1  1.781 1.694 

12B1  0.869 0.646 62B2  1.787 1.806 
22B2  0.878 0.706 82A1  1.898 1.805 

12242  1.182 1.006 92 A1  2.039 1.999 

32 A1  1.183 0.992 72B2  2.090 2.015 

32B2  1.189 0.958 32B1  2.095 1.946 

42B2  1.340 1.355 42 B1  2.191 2.069 

42 A1  1.372 1.257 82B2  2.224 2.107 

52 A1  1.492 1.411 52B1  2.236 2.137 
22 A2  1.553 1.386 92 B2  2.287 2.142 

52B2  1.619 1.608 102 A1  2.289 2.292 

62 A1  1.668 1.470 102B2  2.387 2.217 
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Table XLII. 	Li6  (D3h -› C2„) optically allowed vertical excitation energies 

(eV) calculated with the LSDxc/TDLSDxc and the 

LB94xc/TDLSDxc functionals using the Sadlej basis compared with traditional 

ab initio calculations. 
Vertical excitation energies (eV). 

State LSDxc/ 

TDLSDxc 

LB94xc/ 

TDLSDxc 

EXPTa CP 

21A1  1.273 1.228 1.58 

31A1  1.372 1.332 1.68 

41A1  1.939 1.999 1.82 2.18 

51A1  2.062 2.097 2.31 

61A1  2.095 2.149 2.35 

71A1  2.235 2.196 2.43 

81A1  2.499 2.450 2.59 

91A1 2.860 2.945 2.76 

101A, 2.896 2.978 2.58 2.89 

111A1  3.084 3.172 3.03 

11B1  1.455 1.331 1.84 

21B1  2.236 2.135 2.49 

31.81  2.278 2.233 2.74 

41B, 3.064 3.106 2.79 

51B1  3.165 3.164 3.15 

1 B2 1.258 1.215 1.52 

21B2  1.581 1.490 1.87 

31B2 1.941 1.998 1.82 2.13 

41B2  1.957 2.069 2.24 

51B2  2.069 2.146 2.34 

61B2  2.236 2.206 2.44 

71B2  2.490 2.441 2.52 

81B2  2.894 2.975 2.58 2.81 

91B2  3.083 3.172 3.01 

101B2  3.241 3.273 3.06 

Results taken from Ref. [69]. 

b  Estimated from spectra in Ref. [12]. 
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Table XLIII. Li6  (C2,) optically allowed vertical excitation energies (eV) cal-

culated with the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals using 

the Sadlej basis and compared with traditional ab initio calculations. 

Vertical excitation energies (eV). 

State LSDxc(DFT)/ 

TDLSDxc 

LB94xc(DFT)/ 

TDLSDxc 

LSDxc(CI)/ 

TDLSDxc 

LB94xc(CI)/ 

TDLSDxc 

CI' RPAa CISa 

21A1  1.394 1.305 1.113 1.049 1.42 1.51 1.54 

31A1  1.652 1.604 1.551 1.468 1.70 1.82 1.87 

41A1  2.132 1.815 1.953 1.645 1.84 2.36 2.42 

51211  2.185 2.057 2.038 1.941 2.11 2.49 2.55 

61A1 2.358 2.265 2.274 2.202 2.20 2.60 2.72 

71A1  2.433 2.469 2.347 2.377 2.37 2.96 3.10 

81A1  2.958 2.950 2.379 2.735 2.51 3.53 3.60 

91A1  3.013 3.120 2.775 2.939 2.59 3.63 3.66 

101A1  3.067 3.297 2.854 3.135 2.81 4.18 4.20 

111A1  3.140 3.409 2.912 3.284 2.88 4.20 4.23 

11B1  0.801 0.460 0.647 0.335 0.81 0.91 0.97 

21B1  1.821 1.685 1.796 1.684 1.80 2.22 2.23 

31B1  1.948 1.781 1.944 1.767 2.10 2.90 3.06 

41.8, 2.978 3.060 2.841 2.597 2.24 3.56 3.57b  

51B1  3.004 3.094 2.918 2.823 2.43 3.57 3.58 

61B1  3.102 3.224 3.045 2.967 2.62 3.76 3.77 

71B1 3.340 3.354 3.096 3.183 2.76 3.81 3.84 

81B1  3.387 3.641 3.223 3.330 2.93 4.47 4.52 

11B2  1.348 1.206 1.65 1.70 1.73 

21B2  1.403 1.311 1.640 1.600 1.73 1.77 1.81 

31B2  1.652 1.605 1.799 1.792 1.79 2.30 2.34 

41B2  2.079 1.827 2.128 1.977 2.10 2.42 2.53 

51.82  2.112 1.992 2.302 2.130 2.40 2.63 2.65 

61B2 2.194 2.108 2.444 2.367 2.47 2.69 2.79 

71B2  2.436 2.471 2.581 2.565 2.62 3.42 3.44 

81B2  3.014 2.801 2.950 2.869 2.74 3.83 3.87 

91B2  3.051 3.201 3.016 3.384 2.81 4.21 4.22 

Results taken from Ref. [69]. 

b  There is an error for 41B1  excitation energy being 3.75 eV in original Ref. [69], it should be 

3.57 eV. 
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Table XLIV. Comparison of Li3  vertical excitation energies (eV) calculated with 

different auxiliary basis sets using the LSDxc/TDLSDxc functional. 

Vertical excitation energies (eV). 

State A(4,3;4,3) A(4,4;4,4) A(5,3;5,3) A(5,4;5,4) A(5,5;5,5) 

12 ./32  0.000 0.000 0.000 0.000 0.000 

12 A1  0.401 0.403 0.404 0.402 0.408 

12B1  0.784 0.787 0.789 0.787 0.789 

22 A1  1.146 1.144 1.144 1.144 1.145 

22B2  1.186 1.190 1.190 1.190 1.192 

32B2  1.487 1.491 1.491 1.1491 1.496 

32 A1  1.537 1.536 1.538 1.536 1.535 

12 A2  1.618 1.623 1.625 1.623 1.623 

22 A2  1.989 1.978 1.983 1.978 1.979 

42 A1  2.125 2.123 2.123 2.123 2.123 

42B2  2.128 2.126 2.125 2.126 2.125 

22B1  2.352 2.336 2.339 2.336 2.334 

52B2  2.390 2.389 2.389 2.389 2.392 

62B2  2.515 2.489 2.501 2.489 2.488 

52A1  2.531 2.530 2.532 2.530 2.530 

62 A1  2.643 2.617 2.637 2.617 2.615 

72 A1  2.689 2.667 2.677 2.667 2.666 

32B1  2.744 2.710 2.737 2.710 2.708 
32 A2  2.816 2.789 2.816 2.789 2.788 
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Table XLV. Comparison of Li3  vertical excitation energies (eV) calculated with 

different orbital basis sets using the LSDxc/TDLSDxc functional. 

Vertical excitation energies (eV).  

State Huzinaga BKK DZVP Sadlej Sadlej (FD) 

12.82  0.000 0.000 0.000 0.000 0.000 

12 A1  0.444 0.399 0.433 0.401 0.401 

12B1  3.727 0.795 1.169 0.784 0.784 

22 A1  1.840 1.159 1.412 1.146 1.141 

22B2  1.541 1.220 1.392 1.186 1.184 

32B2  2.315 1.529 1.768 1.487 1.485 

32A1  2.123 1.557 1.816 1.537 1.536 

12 A2  4.781 2.106 2.057 1.618 1.621 

22 A2  5.071 3.087 2.649 1.989 1.991 

42 A1  4.215 2.208 2.577 2.125 2.122 

42B2  2.967 2.207 2.475 2.128 2.125 

22B1  5.687 1.703 3.299 2.352 2.361 

52B2  3.333 2.441 2.693 2.390 2.385 

62B2  4.241 2.608 3.392 2.515 2.510 

52 A1  4.336 2.582 3.013 2.531 2.525 

62 A1  4.527 2.698 3.719 2.643 2.607 

72 A1  4.781 2.738 4.033 2.689 2.641 

32B1  6.413 2.584 4.056 2.744 2.735 

32 A2  6.142 3.753 3.738 2.816 2.806 
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CHAPTER 7 

TIME—DEPENDENT DENSITY—FUNCTIONAL 

THEORY INTERPRETATION OF THE 

ABSORPTION SPECTRA OF SMALL SODIUM 

CLUSTERS WITH ALL-ELECTRON AND MODEL 

CORE POTENTIAL 

7.1 INTRODUCTION 

Theoretical study of excitation spectra of alkali metal clusters (sodium clus-

ters are another example here, except the lithium clusters discussed in the previ-

ous ch apter), which have been well measured for some time, plays an important 

role in understanding and interpreting characteristic features in the absorption 

spectra. It also provides useful information for determining equilibrium structure 

of the clusters by comparing with corresponding experimental spectra. 

Geometric structure plays a crucial role in determining electronic properties 

of the cluster materials. Unfortunately, direct experimental information about 

cluster geometries is very limited and sodium clusters are no exception in this 

regard. Hence, most geometries have to be obtained by theoretical geometry op-

timizations. But sometimes different methods may provide different optimized 

equilibrium geometries. Sodium clusters are one of the examples. DFT and CI 

methods yield different geometric structures for the sodium hexamer, although 

the geometries of the dimer through to the pentamer are similar (with the same 
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symmetry). Bonaéi&Kouteck3'7 and co-workers with the CI method [3, 15] pre-

dicted that the hexamer has a planar D3h structure as the most stable geometry 

which is built from four triangles. The isomer, very close in energy (higher in 

energy by 0.04 eV), is a pentagonal pyramid C5v  structure in which there is 

one atom on top of the center of the pentagonal plane. The CI method yielded 

some negative frequencies for the pentagonal pyramid structure and the pen-

tagonal pyramid geometry is not a local minimum on the Hartree—Fock energy 

surface [15]. In contrast, the DFT with pseudopotentials [344] or with molecu-

lar dynamics (Car-Parrinello method) [477] yielded the pentagonal pyramid C5v 

structure as the most stable geometry. The planar D3h isomer has higher energy 

by 0.04 eV (or 0.01 eViatom in Ref. [477]). This pentagonal pyramid structure 

was also noticed as being more compact than the planar structure [477]. Recently, 

all-electron DFT calculations [327, 122] also predicted that the pentagonal pyra-

mid C5v  structure is the most stable structure and that the planar D3h isomer is 

about 0.05 eV higher in energy [327]. However, all-electron DFT [327] predicted 

that both geometries of the pentagonal pyramid C5v  structure and the planar D3h 

structure are minima on the DFT energy surface, both geometries yielded all pos-

itive vibrational frequencies. This is different from the CI prediction. Moreover, 

the DFT with pseudopotentials [341] predicted that the sodium trimer lias two 

equilibrium geometries, namely the obtuse and the acute structures, the obtuse 

geometry with 0.02 eV in energy lower than that of the acute structure. But the 

recent all-electron DFT calculations [327, 122] yielded only the obtuse minimum 

structure and found the acute geometry to be a saddle point with one nega-

tive vibrational frequency. This obtuse structure predicted by the all-electron 

DFT [327, 122] is the same as that predicted by the CI method [368, 3] and 

the CI method [368] also predicted that the acute structure is a saddle point. 

However, it is interesting to see the difference in the absorption spectra of these 

geometries and which structure is supported to be an equilibrium geometry by 

the absorption spectra. 
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The ab initio CI method has successfully provided numerous predictions and 

interpretations of photoabsorption spectra of alkali metal clusters. Excitation en-

ergies and oscillator strengths of sodium dimer [478, 13], trimer [368, 479, 14, 480], 

tetramer [14, 481, 77, 482, 480], pentamer [15, 480], hexamer [15, 480], hep-

tamer [15, 480], and octamer [77, 14, 482, 480] were calculated by CI meth-

ods and reported in the literature. The calculated spectroscopic pattern of the 

tetramer with rhombic structure is in good agreement with the recorded spec-

tra [67, 23, 483]. The CI predicted spectrum of the pentamer supports the planar 

trapezoidal structure, since the planar trapezoidal structure yielded the locations 

of the strong bands coincide with the intense broad feature of the recorded spec-

trum. At the same time, the pentamer trigonal bipyramid geometry was excluded 

due to the disagreement between the calculated absorption spectrum and the ex-

periment. In the hexamer case, a comparison of the two absorption spectra of 

the planar D3h  structure and of the three-dimensional pentagonal pyramid C5v 

geometry with the experiment shows that the two absorption spectra with the 

planar D3h structure and with the pentagonal pyramid C5v  geometry are very 

similar, and both agreed with the experiment. However, the degeneracy of the 

two strong bands in the spectrum with the pentagonal pyramid structure is not 

as good as that in the spectrum with the planar D3h structure. Nevertheless, it is 

diffi cuit to rule out the contributions of the pentagonal pyramid C5v  geometry to 

the recorded spectrum. This near degeneracy in energy of the planar D3h and the 
C5v  geometries may also be the reason why the DFT and the CI predicted differ-

ent equilibrium geometries for the hexamer. In this regard, it is very desirable to 

see what spectrum the DFT predicts for the hexamer with the two competitive 

geometries. 

DFT is well established for the study of ground state properties of molecules 

or clusters due to the good quality of the results for structural and energetic 

properties and its advantages (correlation effects, simplicity, and computational 

efficiency). Study of excited state properties provides a challenge for the tradi- 
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tional DFT. However, several recent works [138, 29, 30, 31, 388, 33, 22, 32, 35] 

and the present work (see chapter 3, chapter 5, and chapter 6 of this thesis) 

provide a new tool — time-dependent DFT for the study of excited state proper-

ties, such as excitation energies and oscillator strengths. Nevertheless, there are 

very few time-dependent DFT studies of absorption spectra of sodium clusters. 

Ekardt [75] employed the time-dependent local density approximation (TDL-

DAxc) with the spherical jellium model to discuss size—dependent photoabsorp-

tion of small closed—shell sodium particles. Madjet, Guet, and Johnson [484] used 

the TDLDAxc jellium model to calculate absorption spectra of Na8 , Nais, Nam , 

Na34, Na40  and some even larger closed—shell clusters. Pacheco and Martins [450] 

used TDLDAxc and pseudopotentials to predict photoabsorption spectra of Na8  

and Nam). Vasiliev, Ôgiit, and Chelikowsky [485] recently applied TDLDAxc 

to the photoabsorption spectra of the sodium dimer and tetramer also with a 

pseudopotential. However, time-dependent DFT all-electron excitation spectral 

calculations of the sodium clusters taking into account the molecular nature of the 

clusters have not been found in the literature, especially for open—shell sodium 

clusters. The present work provides the first all-electron time-dependent DFT 

calculations of photoabsorption spectra of the sodium clusters for both cases of 

closed-shell (the dimer, the tetramer and the hexamer) and open-shell (the trimer 

and the pentamer) clusters. 

In addition to the all-electron calculations, the present work also provides 

a model core potential (MCP) study of excitation spectra of the sodium clusters 

from the dimer up to the hexamer. In the MCP, core electron interactions are 

replaced by a core potential and only valence electrons are treated explicitly. 

Hence the MCP provides an efficient computational tool for the study of larger 

clusters. The quality of the MCP in the applications to ground state properties of 

the sodium clusters, such as geometric structures, vibrational frequencies, binding 

energies, ionization potentials, and static polarizabilities, was assessed against the 

all-electron DFT calculations with the local density approximation (LDAxc), and 
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two gradient-corrected functionals (GCFs), B88x + P86c and PW86x -FP86c (see 

Chapter 4 of this thesis). Here, the present calculations assess the quality of the 

MCP in the applications to excited state properties, such as excitation energies, 

oscillator strengths, by comparison of absorption spectra of the sodium clusters 

calculated by all-electron and by the MCP using the local spin density (LSDxc) 

approximation and the van Leeuwen and Baerends [212] exchange-correlation 

functional. 

7.2 COMPUTATIONAL DETAILS 

Absorption spectra of small sodium clusters from the dimer through the 

hexamer (ground state symmetry and configuration of sodium clusters sh.own in 

Table XLVI and XLVII (please note that Tables and Figs. are given at the 

end of the chapter) for all-electron and MCP calculations) were predicted by 

the time-dependent DFT program, deMon—DynaRho version 2pX [208]. Version 

2pX permits one to calculate excited state properties for open—shell systems; this 

differs from the previous version 1 in Ref. [29] or version 2 in Ref. [387] which 

only treat closed—shell systems. 

The program, deMon—DynaRho, divides calculations into an SCF step and a 

post—SCF step. This permits one to use different exchange—correlation function-

als in the calculations at the SCF step and at the time-dependent DFT step. The 

present calculations employed the local spin density approximation (LSDxc) and 

the van Leeuwen and Baerends [212] exchange-correlation functional proposed in 

1994 (LB94xc),respectively, in the SCF calculations and used the time—dependent 

local spin density approximation (TDLSDxc) in the time-dependent DFT calcu-

lations. These functionals used in the SCF step and the functional utilized in 

the post—SCF step are referred to as LSDxc/TDLSDxc and LB94xc/TDLSDxc 

functionals, respectively. The grid used in the present calculations is the EXTRA—

FINE grid and NonRandom option which is referred to as (XF,NR), However, 
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the FINE and the EXTRA-FINE grids associated with the Random option [the 

FINE and the Random grid option is labelled as (F,R) and the EXTRA-FINE and 

the Random grid option is referred to as (XF,R)] were also tested in the excita-

tion energy calculations of the sodium trimer. These grids resulted in symmetry 

breaking in the symmetry assignments for the transitions. Nevertheless, these 

transitions calculated with the the FINE and the EXTRA-FINE grids combined 

with the Random option were assigned based on the largest transition coefficient 

which is on the order of one magnitude larger than the other transition coeffi-

cients. The convergence criteria in the SCF calculations are 10' hartree in the 

total energy and 10 a.u. in the charge density fitting coefficients. However, the 

MCP calculations with the LB94xc functional and with the bases MCP, MCP1, 

and MCP2 for the dimer and the trimer are difficult to converge in the SCF step. 

The total energy could be only converged to 10' hartree, whereas the charge 

density fitting coefficients could be converged to 10-2  a.u.. However, the dimer 

calculation could finally be converged with the larger basis MCP+, but this larger 

basis MCP+ was no help for the convergence in the trimer calculation. 

Gaussian-type orbital basis sets are used in both the all-electron and the 

MCP calculations. Several orbital basis sets were examined in the all-electron 

calculations. The STO-3G basis (a Slater-type orbital replaced by three primi- 

tive Gaussian functions), (333/33) and the DZVP basis (double zeta valence plus 

polarization), (6321/411*/1+), seem to be too small in excitation energy calcula- 

tions. A medium-sized basis, (6311111/61111/22), developed by Sadlej and Ur- 

ban [334], (referred to as BASIS1) seems to be flexible enough to describe excita-

tions, at least for the low excitation energies. However, some larger basis sets were 

also tested, for example, based on the BASIS1, all s functions, or all p functions, or 

all d functions, are decontracted, respectively, to make larger bases, namely, BA-

SIS2, (11111111111111/61111/22), BASIS3, (6311111/1111111111/22), and BA-

SIS4, (6311111/61111/1111). The largest basis set used in the sodium trimer exci-

tation energy calculations is a full decontraction of the BASIS1 which is referred 
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to as BASIS5, (11111111111111/1111111111/1111). These decontracted larger 

basis sets yield no significant improvement in the excitation energies compared 

to the results calculated by the BASIS1. Hence, the medium—sized BASIS1 is cho-

sen in the present calculations. The auxiliary basis, (5,4;5,4), in the all-electron 

calculations, was taken from the deMon-KS basis set library. The MCP orbital 

bases used in the present calculations are the simplest basis, (311/2), referred to 

as MCP. The p function in the (311/2) basis replaced by the two outermost p 

functions in the all-electron DZVP basis produces basis MCP1, (311/11). This 

MCP1 basis seems to be reasonable for the description of ground state properties 

(see Chapter 4 of this thesis for details), but it seems not to be flexible enough 

to describe excited state properties, here. In the previous work (see Chapter 6 

of this thesis), it found that diffuse functions and polarization functions are very 

important in the calculation of excitation energies, therefore, the basis MCP1 was 

supplemented with the field-induced polarization function which was used in the 

all-electron polarizability calculations (see Chapter 4 of this thesis and Ref. [122]). 

This augmented basis, MCP2, did improve excitation energies remarkably and it 

seems to yield reasonable results in comparison with the all-electron calculations 

and experiments for the trimer. But it did not show convergence compared with 

the results carried out by the MCP and the MCP1 bases. On the other hand, this 

basis, MCP2, yields somehow large errors in the excitation energy calculations of 

the tetramer. Hence, an additional polarization function (d function), with the 

component of a = 0.09, taken from Ref. [368], was added to the basis MCP2. 

This supplemented basis, referred to as MCP+, did yield better excitation ener-

gies for both the trimer and the tetramer, and the convergence of the basis sets 

used in the excitation energy calculations was observed. Hence, the basis MCP+ 

is the choice for the present calculations. The auxiliary basis set used in the MCP 

calculations is (5,1;5,1), and the model core potential is (5:6,4), which were given 

in Chapter 4 of this thesis. 

All the geometries used in the present all-electron calculations were opti- 



210 

mized with deMon—KS at the all-electron level in the previous work [327, 122]. 

Except for the trimer calculations, the geometries optimized at both all-electron 

level and at the MCP level were used in order to examine the geometrical dis-

tortion effects on the excitation energies. The geometries used in the MCP cal-

culations were the MCP geometries optimized at the MCP level with the MCP1 

basis (see Chapter 4 of this thesis for details), except in the MCP calculations for 

the hexamer, the all-electron D3h geometry was used in the MCP calculations, in 

order to test the performance of the MCP at fixed geometry. These MCP excita-

tion energy calculations with the MCP optimized geometries are simply referred 

to as MCP and the MCP calculations with the all-electron optimized geometries 

are labelled as MCPAE. These all-electron calculations with the all-electron opti-

mized geometries are referred to as AEAE and the all-electron calculations with 

the MCP optimized geometries are labelled as AEMCP. The orientation of the 

geometries in the present calculations follows the rules in Ref. [473]. Specifically, 

the dimer lies on the z-axis. The trimer, the pentamer, and the hexamer with 

the D3h symmetry lie in the yz—plane, since the hexamer, with D3h symmetry, 

was assigned under the C2v  subgroup. The tetramer and the hexamer with C5v  

symmetry lie in the xy—plane. The hexamer, with C5v  symmetry, was assigned 

under the Cs subgroup in order to compare with the CI calculations. 

7.3 RESULTS AND DISCUSSION 

Absorption spectra of small sodium clusters (from the dimer up to the 

hexamer) are predicted by the time-dependent DFT with the LSDxc/TDLSDxc 

functional and the LB94xc/TDLSDxc functional at the all-electron level and are 

shown in Figs. 49, 50, 56, 57, 64, 65, 71, 72, 78, and 85 (please note 

that Figs. and Tables are given at the end of the chapter). In order to assess 

the quality of the model core potential (MCP) calculations in the absorption 

spectra of the sodium clusters and applying it to predict the excitation spec- 
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tra of larger clusters in the future, the present work calculates the absorption 

spectra of small sodium clusters using the MCP with the small basis (MCP ba-

sis) and with the larger basis sets (MCP+). The MCP predicted absorption 

spectra with the small basis are given in Figs. 51, 60, 66, 67, 73, 74, 81, 

and 82. The MCP calculations with the larger basis (MCP+) yields the exci-

tation spectra shown in Figs. 52, 53, 61, 68, 69, 75, 76, 83, 84, 79, and 

80. The absorption spectra are useful for determining the equilibrium geometry. 

The sensitivity of the absorption spectra to geometrical distortion is studied in 

the present work. The effect of small geometric distortions is tested using the 

all-electron optimized geometry and the MCP optimized geometry to calculate 

the absorption spectra at the all-electron level for the trimer. The absorption 

spectra calculated at the all-electron level with the MCP optimized geometry 

are given in Figs. 58 and 59, and with the all-electron optimized geometry are 

shown in Figs. 56 and 57. The large geometrical distortion effects on the absorp-

tion spectra are studied by calculating the absorption spectra of the obtuse and 

the acute structures for the trimer, as well as the planar D3h geometry and the 

pentagonal pyramid C5v  structure for the hexamer. This is also useful for deter-

mining equilibrium geometries which are uncertain or contradictary with those 

from theoretical geometry optimizations, such as the obtuse and the acute struc-

tures for the trimer, the planar D3h geometry and the pentagonal pyramid C5v  

structure for the hexamer. The absorption spectra with the obtuse and the acute 

structures are predicted using the LSDxc/TDLSDxc functional at the all-electron 

level and are shown in Figs. 56, 62. The absorption spectra of the hexamer with 

the planar and the pentagonal pyramid structures are performed using both the 

LSDxc/TDLSDxc functional and the LB94xc/TDLSDxc functional at the MCP 

level with the larger MCP basis (MCP+) and are given in Figs. 83, 83, 79, 

and 80. The present predicted absorption spectra are compared with available 

experimental results from Refs. [23, 67, 483, 16, 71] and traditional ab initio CI 

calculations [14, 481, 482, 15, 480, 13]. Hence, the equilibrium geometry of the 
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trimer and the hexamer are discussed in the present work. 

To ensure the quality of the present calculations, several basis sets were ex-

amined for the trimer at the all-electron level and the MCP level. (these MCP 

bases were also tested for the tetramer). These examinations show that diffuse 

basis functions and polarization functions are indispensable in calculations of ex-

citation energies. Table LII shows that the STO-3G basis is really too small for 

calculating excitation energies, it leads to errors of about 5 eV or more in com-

parison with the excitation energies calculated by the fully decontracted basis 

from the medium—size BASIS1 — BASIS5. The DZVP basis improves the excita-

tion energies remarkably and it yields errors in excitation energies less than 1 eV 

compared with those carried out by the BASIS5, except for the 62 A1  state which 

has an error of 1.1 eV and the 42212  state which has an error of 1.3 eV. This 

is certainly due to the diffuse functions (the outermost s and p functions) and 

polarization functions (d function) in the DZVP basis. The large errors indicate 

that more diffuse and polarization functions are needed in the orbital basis. The 

larger basis should reduce the errors in the excitation energies. The BASIS1, 

which has three s functions, two p functions, and one d function more compared 

to the DZVP basis, yields satisfactory excitation energies. The deviations of the 

excitation energies between the BASIS1 and the BASIS5 bases are no larger than 

0.01 eV. The partially decontracted basis sets (the BASIS2, the BASIS3, and the 

BASIS4) from the BASIS1 do not yield any significant improvements in compari-

son with the results calculated by the BASIS1. Hence the medium — size BASIS1 

is the choice in the calculations of absorption spectra of the sodium clusters in 

the present work. 

Diffuse basis functions and polarization functions play the same roles in 

the MCP excitation energy calculations as in the all-electron cases. The basis 

MCP and the MCP1 differ by the p functions, the MCP has one p function 

which is contracted from two primitive Gaussian functions, the MCP1 has two 
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p functions replacing the one p function in the MCP basis. The two p functions 

in the MCP1 are taken from the outermost two p functions in the all-electron 

DZVP basis, but they are not as diffuse as that in the MCP basis. Hence, the 

MCP1 yields larger errors in excitation energies. This is in contrast to the ground 

state property calculations, where the basis MCP1 seems to be better, especially 

in the geometric structure predictions, than those of the MCP basis (see Chapter 

4 of this thesis for details). Table LIII and LIV show that the MCP basis yields 

the largest deviations in excitation energies of 0.5 eV for the 62/32  state in the 

trimer, and 1.7 eV for the 51B3,, state in the tetramer compared with the largest 

basis MCP+ calculations. But the MCP1 yields even larger errors than those of 

the MCP basis, the 32A2  state in the trimer has an error of 0.8 eV, while the 

41B3„ state in the tetramer has a deviation of 2 eV and 1.9 eV for the 51B3,, 

state. However, using one additional diffuse function to supplement the MCP1 

basis, namely the MCP2 basis, helps to eliminate the deviations, it reduces the 

error to 0.01 eV for the 32142  state in the trimer and to 0.2 eV and 0.5 eV for the 

41B3„ and the 51B3z, states in the tetramer, respectively. Nevertheless, the final 

basis set used in the present MCP calculations is the larger basis, MCP+, which 

has one more polarization function (d function) than in the MCP2 basis. 

The grid effects on excitation energies are small between FINE and EXTRA-

FINE grids or between Random and NonRandom grids. Table L shows that in 

the exchange only case, the biggest difference between the excitation energies of 

the trimer calculated by the FINE and the EXTRA-FINE grids is 0.003 eV for the 

12 A2  state, while the deviation between the Random and the NonRandom grids 

seems to be larger than that between the EXTRA-FINE and the FINE grids, 

the largest deviation is 0.02 eV for the 22B2  state. In the exchange—correlation 

case, the deviations are larger than that for the exchange only case. The biggest 

difference between the FINE and the EXTRA-FINE grids is 0.006 eV for the 22A1  

state, the largest deviation between the Random and the NonRandom option is 

0.068 eV for the lowest excited state (12A1). However, the FINE and the EXTRA- 
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FINE with the Random grid option have symmetry breaking in the assignments 

of the excitations in the trimer calculations. 

Excitation energies are not sensitive to small geometric distortions. How-

ever, large geometric differences may not only lead to big deviations in excitation 

energies, but also change the ground state symmetry. For example, in the trimer 

case, the MCP and the all-electron optimized geometries (obtuse geometry) have 

small differences in the bond lengths and bond angles. The difference in bond 

length of the short side of the triangle between the MCP and the all-electron 

optimized geometries is 0.23 bohr, and in bond angle between the two short sides 

of the triangle is 1.2 degrees (see Chapter 4 of this thesis for details). The all-

electron optimized obtuse and acute geometries [327] differ quite significantly in 

the bond length of the isosceles sides of the triangle (0.5 bohr) and in the bond 

angle between the two isosceles sides of the triangle (23 degrees). Table LI shows 

that the all-electron calculated excitation energies with the all-electron optimized 

geometry and with the MCP optimized geometry differ by 0.06 eV or less for the 

given fifteen excited states of sodium trimer. However, excitation energies carried 

out with obtuse and acute geometries show large deviations (0.8 eV for the 22A2  

state), and the ground state symmetry of the two geometries is also different. The 

obtuse geometry has 2B2  symmetry and the acute geometry has 2A1  symmetry. 

Electron Coulomb, exchange, and correlation interactions have different con-

tributions to excitation energies. Table XLIX shows that electronic Coulomb in-

teractions provide the largest contribution to the excitation energies and its role 

is to push electronic states towards each other dramatically, hence it reduces the 

excitation energies remarkably from the Core level calculations. The Coulomb 

interactions can change excitation energies as much as 27 eV (e.g. 26.6 eV for 

the 42A2  state and 27.3 eV for the 52A2  states) in the given twenty states of 

the sodium trimer. Fortunately all theoretical methods treat the Coulomb inter-

actions in the same way. Therefore different methods yield excitation energies 
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only due to the treatments of electron exchange and correlation interactions. The 

contributions of the electron exchange is much smaller than that of the Coulomb 

interactions, but it is larger than the contributions of the electron correlation. 

Both contributions of the electron exchange and correlation are to separate the 

electronic states, hence the electron exchange and correlation interactions increase 

the excitation energies from the Coulomb calculations. The electron exchange ef-

fects on excitation energies can be as large as 1.8 eV (e.g. 1.8 eV for the 22 B1 

state and 1.6 eV for the 32B1  state). The electron correlation contributions may 

change excitation energies by 0.6 eV (e.g. 0.6 eV for the 12A2  state and 0.5 

eV for the 52 A2  state). This indicates that different theoretical methods which 

treat electron exchange and correlation differently may yield excitation energies 

differing by a maximum of 2.4 eV at least in the sodium trimer case and for low 

excitation energies. 

The electron-interaction effects on the excitation energies at the MCP level 

are different from that at the all-electron level. The contributions of the Coulomb 

interactions are much smaller than those of the all-electron case. This indicates 

that the Coulomb interactions of core electrons are important and have large con-

tributions. The electron exchange and correlation contributions to the excitation 

energies are slightly smaller than those in the all-electron case. This indicates 

that the exchange and the correlation of valence electrons are the most important 

contributions to excitation energies. Moreover, the directions of the excitation en-

ergy changes are also different between the MCP and the all-electron calculations. 

In the MCP case, the electron exchange and correlation contributions effects on 

excitation energies seem to be random (with positive or negative changes). But 

the Coulomb interactions still reduce excitation energies. This different behavior 

of the MCP results from the all-electron case is assumed to be due to the model 

core potential, since the interactions of the core electrons were already built into 

the core potential. Even though the calculations are carried out with the MCP 

at the Core/IPA level, core-electron Coulomb interactions, electron exchange and 



216 

correlation interactions are already included in the calculations. 

Excitation energies of the small sodium clusters calculated with the LS-

Dxc/TDLSDxc functional are in fairly good agreement with experimental results. 

The LSDxc/TDLSDxc functional slightly overestimates the excitation energies of 

the small sodium clusters. The differences between the calculated excitation ener-

gies and the available experimental ones are less than 0.2 eV, except for the 11Eu+ 

state having an error of 0.28 eV in the dimer; for the 32212  state with a difference 

of 0.29 eV in the trimer; and for the 31B3„ state having a deviation of 0.21 eV in 

the tetramer. These deviations between the calculated excitation energies and the 

measurements can be understood, since the experiments yield adiabatic excita-

tion energies which include excited state relaxations, but not the present vertical 

excitations. On the other hand, ab initio CI calculations [368] with the GTO 

basis, (521111/4111/1), yielded the largest errors in the excitation energies being 

0.3 eV for the trimer. In particular, 0.31 eV for the 22A2  state and 0.2 eV for both 

the 42B2  and the 32A1  states. However, CI calculations [14] with the larger basis, 

(5211111/4211/1), reduced the errors to no larger than 0.1 eV in the trimer exci-

tations. This seems to suggest that the diffuse s basis functions are important in 

the excitation energy calculations. The high quality ab initio CI calculations also 

agree well with the present time-dependent DFT calculations of the excitation 

energies. In the dimer case, the deviations between the present LSDxc/TDLSDxc 

calculations and the full CI excitation energies [13] are no larger than 0.2 eV. This 

difference is smaller than that between the CI calculations [13] and the MBPT 

(many body perturbation theory) results [486] which has a largest deviation of 

0.5 eV (e.g. 0.51 eV for the 11119  state). However, the largest deviation between 

the present calculations and the MRD-CI [14] occurred in the tetramer, where a 

0.7 eV (for the 31B2„ state) difference is observed. But the RPA (random phase 

approximation) [11] yields even larger deviations (1.1 eV for the 31B2„ state) 

in comparison with the MRD-CI [14] results. However, it is not obvious in the 

present calculations that the excitation energies of small sodium clusters collapse 
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when the excitation energies are larger than the ionization threshold, —esee, 

in comparison with available experiments or CI calculations, which was observed 

clearly in Ref. [387] and in free radical calculations (see Chapter 5 of this thesis). 

Excitation energies of the sodium clusters carried out with the LB94xc/TDLSDxc 

functional are higher than those calculated with the LSDxc/TDLSDxc functional 

for the closed—shell small sodium clusters (the dimer, the tetramer, and the hex-

amer). For the open—shell small sodium clusters (the trimer and the pentamer), 

the first few excitation energies calculated with the LB94xc/TDLSDxc functional 

are lower than those from the LSDxc/TDLSDxc calculations. When the exci-

tation energies are above _dm), the LB94xc/TDLSDxc excitation energies 

become even larger compared to the excitation energies calculated with the LS-

Dxc/TDLSDxc functional for both the closed—shell and the open—shell sodium 

clusters studied here. This is different from the situation for the small lithium 

clusters (see Chapter 6 of this thesis) and for the free radicals (see Chapter 5 of 

this thesis) for which the LB94xc/TDLSDxc functional gave lower excitation en-

ergies than those of the LSDxc/TDLSDxc functional. When the excitation ener-

gies are larger than (or close to) the ionization threshold of the LSDxc,  

the ordering starts to change, the LB94xc/TDLSDxc excitation energies begin 

to be higher than the LSDxc/TDLSDxc excitation energies. This different ob-

servation, between the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functional 

calculations for the small sodium clusters, for the small lithium clusters, and for 

the free radicals, may be due to the extremely flat potential energy surface of the 

small sodium clusters [368, 327, 122]. 

The LSDxc/TDLSDxc MCP excitation energies, no matter with the MCP 

optimized geometries (calculations for the dimer up to the pentamer and the 

hexamer with the the pentagonal pyramid C5v  structure) or with the all-electron 

optimized geometries (calculations for the hexamer with the planar D3h geome-

try), are slightly larger than those calculated with the all-electron approach.. The 
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differences in excitation energies between the MCP and the all-electron calcu-

lations are less than 0.1 eV from the dimer up to the hexamer [except for the 

51241  (0.20 eV), the 71A1  (0.25 eV), and the 81A1  (0.21 eV) states for the hex-

amer with planar geometryl. However, when the excitation energies are larger 

than the ionization threshold of the LSDxc, --EroDe) , (the MCP and the all-

electron calculations produce very similar ionization potentials and both are too 

low compared with the experiment, see Table LVIII), the all-electron excitation 

energies fall off much faster than do the MCP excitation energies. Hence, the 

differences between the MCP excitation energies and the all-electron results are 

suddenly increased. This increase can be as large as 3 eV (e.g. 3.4 eV for the 

41E, state and 3.1 eV for the 43 	state state in the dimer case). This different degree 

of excitation energy falling off between the MCP and all-electron results may be 

due to the small basis set used in the MCP calculations. In principle, above the 

ionization threshold, —efisoDA-co , the continuum is reached, with an infinitely large 

basis set, the excitation energies should fall off to the ionization threshold, since 

a finite basis set is used in the practice, and a small basis is certainly not flexible 

enough to describe the continuum, the degree of excitation energies falling off 

depend on the quality of the basis set used. In the all-electron calculations, the 

basis set used is much richer than that used in the MCP calulations, hence, the 

all-electron excitation energies fall off faster than those of the MCP calculations. 

On the other hand, higher excitations should be more sensitive to diffuse basis 

functions th an the low excitations. Table LIII shows that diffuse basis functions 

in the MCP calculations did make higher excitation energies fall off remarkably 

(see the differences between the results calculated with the basis MCP1 and with 

the basis MCP2). However, this falling off for the higher excitations is not obvi-

ous with additional polarization function in the MCP2 basis (namely, the basis 

MCP+). This may be due to the polarization function in the MCP+ basis being 

not as diffuse as the outermost diffuse p function in the basis MCP2. 

It is expected, because the MCP was made by fitting the all-electron LSDxc 
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functional calculations, that the deviations between the excitation energies cal-

culated by the MCP and by the all-electron approach with the LSDxc/TDLSDxc 

functional are smaller than those between the MCP and the all-electron results 

with the LB94/TDLSDxc functional for the low excitations. The deviations of 

the excitation energies between the MCP and the all-electron calculations with 

the LB94xc/TDLSDxc functional are as large as 0.5 eV (e.g. 0.56 eV for the 

13119  state in the dimer, 0.36 eV for the 31B3i, state in the tetramer, and 0.34 
eV for the 112B2  state in the pentamer). As it occurred in the LSDxc/TDLSDxc 

functional calculations, when the excitation energies are larger than the ioniza-

tion threshold of the LB94xc functional, —diBef,S, the MCP excitation energies 

have a sudden rise and lead to a large difference between the MCP and the all-

electron calculations. The largest deviation observed is 2.1 eV for both the 41E9+ 
state and the 41E1 state in the dimer. Since the LB94xc functional produces too 

high ionization potentials for the sodium clusters and, in contrast, the LSDxc 

functional yields too low ionization thresholds (see Table LVIII), the absolute 

average error between the LSDxc/TDLSDxc MCP and the all-electron excitation 

energies (1.32 eV for the dimer, 0.42 eV for the tetramer, and 0.07 eV for the 

pentamer) may be larger than those between the LB94xc/TDLSDxc MCP and 

the all-electron calculations (1.08 eV for the dimer, 0.12 eV for the tetramer, and 

0.09 eV for the pentamer) depending on how many high excitations are included. 

It is worth mentioning that, as it should be, there are some pairs of de-

generate states in the hexamer calculations (in both cases, C5v  —4 Cs and 
D3h —› C2,) which do appear in the LSDxc/TDLSDxc all-electron and the 

MCP (with the MCP+ basis) excitations. But the degeneracy is slightly bro-

ken in the LB94xc/TDLSDxc MCP calculations with both the MCP basis and 

the MCP+ basis, as well as in the LSDxc/TDLSDxc MCP calculations with the 

MCP basis. Ab initio CI [15] calculations also broke the degeneracy remarkably. 

Bonaêiê-Kouteck3-7 and co-workers [15] believe that the degeneracy breaking in the 

CI calculations is partly due to slight geometrical deviation from the C5v  group 
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and partly to the larger truncation of the CI expansions in the Cs point group. 

However, this shows the quality of the calculations. 

It is noticed that the MCP calculations with the LB94xc/TDLSDxc func-

tional have some convergence problems in the SCF step for small sodium clusters. 

The dimer and the trimer MCP calculations with the LB94xc/TDLSDxc func-

tional and with both the MCP basis and the MCP+ basis (except for the dimer 

calculation with the MCP+ basis) could not be converged to the criteria for both 

the total energy (10-8) and the change in density fitting coefficients (10-7). it 

was only converged to 10-3  for the total energy and to 10-2  for the density fitting 

coefficients. 

ECP (effective core potential) CI calculations [479, 11] of excitation energies 

yield quite large differences from all-electron CI calculations [368, 14]. The biggest 

deviation between the ECP CI excitation energies and the all-electron CI results 

is about 0.7 eV for the 52 A1  and the 62A1  states in the trimer. This deviation 

is larger than that between the present MCP calculations and the all-electron 

calculated excitation energies in the trimer case which has the biggest difference 

being 0.5 eV for the 6214.1  and the 42 /42  states. However, deviation between the 

ECP CI and the all-electron CI calculations for the tetramer (0.2 eV for the 

31B2„ state) is smaller than that between the present MCP calculations and the 

all-electron time-dependent DFT results which yields the largest deviation of 1.1 

eV for the 31131,,, state for the tetramer. 

The absorption spectra of the small sodium clusters predicted by the present 

LSDxc/TDLSDxc calculations agreed very nicely with the experimental results. 

The predicted energy interval of the intense bands is similar to the measured 

results. The numbers of predicted strong bands are the same as those recorded. 

The predicted positions of the bands are close to those of the measurements. 

The absorption spectrum of the dimer has a simple spectroscopic pattern, 
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only two strong bands are predicted by the present calculations with the LS-

Dxc/TDLSDxc functional, located at 2.1 eV and 2.7 eV and assigned to the 

11E-il-  and the 1111„ states, respectively (see Fig 49). The oscillator strength of 

the 11E;LF state (0.6172) is larger than that of the 111I„ state (0.5309). This is 

similar to that predicted by the ab initio CI method [13]. The oscillator strengths 

of the 11E-Z and the 111I„ states carried out by the CI method are 0.8813 and 

0.6621, respectively. The difference in the positions of the two bands between the 

present calculations and the CI results is 0.18 eV and 0.09 eV for the 11E and 

the 1111,, states, respectively (see Fig. 54 and 49). 

The trimer absorption spectrum is calculated with the two previous LS-

Dxc all-electron optimized geometries, namely, the obtuse and the acute struc-

tures. These predicted spectra are h.elpful in confirming previous optimized ge-

ometries [327, 341] by comparing with recorded results. The spectroscopic pattern 

predicted with the LSDxc/TDLSDxc functional and with the obtuse geometry is 

in fairly good agreement with the experiment. Fig. 56 shows that the predicted 

intense bands are in the energy interval of 1.8 eV — 3.1 eV which is similar to the 

recorded spectrum with the strong bands in the energy range of 1.67 eV — 3.00 

eV. There are six strong peaks observed by the present work and the positions of 

the six peaks differ from corresponding measured bands [23] by no more than 0.2 

eV. The present predicted bands of the A group located at 1.83 eV and 1.95 eV 

and assigned to 32A, and 12,42  states agree well with the recorded bands located 

at 1.67 eV and 1.84 eV and labelled as A' and A, respectively. The predicted 

three intense peaks around 2.19 eV, 2.41 eV, and 2.52 eV and assigned to 42A.1, 
42B2 , and 62B2  states are responsible for the measured B group bands which are 

located at 2.03 eV, 2.22 eV, and 2.40 eV and labelled as B, BI , and Bii , respec-

tively. The rest of the predicted strong peaks located at 2.88 eV and 3.09 eV and 

assigned to 32A2  and 42212  correspond to the measured C band and D band which 

is around 2.59 eV and 3.00 eV, respectively. The spectroscopic pattern predicted 

with the LSDxc/TDLSDxc functional and with the acute structure is different 
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from that with the obtuse geometry and also different from the experiment. The 

acute structure yields a spectrum with four intense bands at 2.11 eV, 2.41 eV, 

2.47 eV, and 3.05 eV and assigned to the 42A1, 42B2,  52B2, and 62B1  states, 

respectively. There are two other peaks with small oscillator strengths, but not 

negligible, located at 1.39 eV and 2.83 eV and assigned to the 22 A1  and 52 B1 

states, respectively. This spectroscopic pattern is different from that predicted 

with the obtuse structure or the experiment (see Figs. 56 and 62). Moreover, the 

acute geometry yielded strong bands within the energy range of 2.1 eV — 3.1 eV. 

This is too narrow compared to the spectrum predicted with the obtuse structure 

or the recorded spectrum. The above difference between the spectrum predicted 

with the acute structure and the experiment can exclude the contribution of the 

acute geometry in the recorded spectrum. On the other hand, it confirms that 

the obtuse structure is the equilibrium geometry and contributes to the recorded 

spectrum. 

It is expected that small geometric distortions will not change the absorp-

tion spectrum remarkably. Figs. 58 and 57 show that the spectroscopic pattern 

predicted with the previous MCP optimized obtuse structure (the MCP geometry 

is slightly different from that optimized by the all-electron approach, see Chapter 

4 of this thesis) is quite similar to the absorption spectrum predicted with the 

all-electron optimized geometry, but different in details. For example, the absorp-

tion spectrum predicted with the MCP optimized geometry has one more strong 

peak, in comparison with the spectrum predicted with the all-electron optimized 

geometry, located at 2.46 eV with an oscillator strength of 0.2168 and assigned to 

52B2  state. Moreover, the oscillator strengths calculated with the MCP optimized 

structure and with the all-electron optimized geometry are different. The oscilla-

tor strengths of the 62B2  state (0.2729) is smaller than that with the all-electron 

optimized geometry which is 0.5047. In contrast, the oscillator strength of the 

32'42  state (0.5003) is larger than that predicted with the all-electron structure 

(0.4315). However, the positions of the intense bands predicted with the MCP 



223 

geometry and the all-electron structure are very close, the difference is no larger 

than 0.05 eV. 

The ab initio CI method [14] predicted a nice absorption spectrum for the 

trimer compared with experiment and it has a similar spectroscopic pattern as 

the present predicted spectrum. The CI method predicted the band locations and 

oscillator strengths of the A group, the B group, and the C group bands which 

agree very well with the recorded peaks. However, the oscillator strength of the 

D band predicted with the CI method seems to be too small in comparison with 

the measured band (see Fig. 55). 

The absorption spectrum of the tetramer is predicted with the rhombic 

geometry. Fig. 64 shows that the rich spectroscopic pattern (two strong peaks, 

three medium bands, and some small peaks) predicted by the LSDxc/TDLSDxc 

functional is in the energy interval of 1.8 eV — 3.3 eV. This is very similar to that 

in the recorded spectrum which is in the energy region of 1.6 — 3.3 eV. The present 

predicted two intense peaks are located at 1.84 eV and 2.67 eV and assigned to 

11/33i, and 21/32„ states, respectively, which agree well with the two measured 

strong bands [67, 23] located at 1.80 eV and 2.51 eV and labelled as B and E 

bands, respectively. The predicted three medium peaks are located at 2.98 eV, 

3.13 eV, and 3.31 eV and assigned to 21B1„, 31/32u , and 31Bh, states, respectively, 

which are fairly close to the three experimental medium bands [67, 23] located 

of 2.78 eV, 2.85 eV, and 3.33 eV and labelled as F, Fi , and H, respectively. A 

few predicted small peaks located at 1.81 eV, 2.12 eV, 2.27 eV, 2.84 eV, and 3.08 

eV and assigned to 11B2„, 21B3,„ 11B1„, 31B3„, and 51B3,, states, respectively, 

correspond to the recorded bands [67, 23] located at 1.63 eV (A band), 1.98 eV (C 

band), 2.18 eV (D band), 2.63 eV (E' band), and 3.15 eV (G band), respectively. 

The predicted 4B3  peak located at 2.93 eV should correspond to the small 

recorded band [14, 67, 23] around 3.0 eV which was unlabelled. 

The spectroscopic pattern of the tetramer predicted by the conventional CI 
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method [14] seems not to be that close to the recorded spectrum. The CI method 

predicted the absorption spectrum with three strong peaks and a few small peaks, 

but there are no obvious medium peaks to correspond to the recorded spectrum, 

although the positions of the predicted bands agree very well with the recorded 

bands (see Fig. 63). The ECP CI results [11] are very similar to the all-electron 

CI calculations, except that the F band (21/31,, state) predicted by the ECP CI 

method is smaller than that predicted by the all-electron CI approach. MCLR 

calculations [11] shifted the positions of the predicted bands to slightly higher 

energies and the spectroscopic pattern predicted by the MCLR method is very 

similar to the CI results. However, the RPA performance [11] showed a completely 

different spectrum from that predicted by the CI and the MCLR methods. The 

big difference is that the RPA calculations yielded oscillator strengths different 

from the CI and the MCLR results. 

The absorption spectra of the sodium pentamer measured by Knight and 

co—workers [16] and by Wang et al. [71] seem to be different. Knight and co—

workers [16] measured the absorption spectrum with two strong bands located 

around 2.1 eV and 2.6 eV. In contrast, Wang et al. [71] recorded spectrum with 

one strong and very wide band which cover the energy range of 1.8 eV — 2.5 

eV, but in the energy interval of 2.25 eV — 2.7 eV, the measurement provides a 

lower limit cross section which is at worst within several percent of the actual 

value. This may be the reason why the second intense band did not appear in the 

spectrum recorded by Wang et a/. [71]. The present LSDxc/TDLSDxc predicted 

spectrum of the pentamer has a number of small peaks with negligible intensities 

in the energy interval of 0 eV — 2.0 eV and 2.4 eV — 3.0 eV. The bands with 

considerable oscillator strengths are located within the energy range of 2.0 eV — 

2.4 eV. The two intense peaks located at 2.0 eV and 2.4 eV and assigned to 62B2  

and 102 A states, respectively, agree fairly well with the spectrum measured by 

Knight and co—workers [16]. This also covers quite well the energy interval of the 

strong and broad band recorded by Wang et al. [71]. Lorentzian simulation [15] 
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based on the MRD-CI results also predicted two strong peaks for the pentamer 

and the positions of the two simulated bands are similar to the present results. 

In contrast, the traditional CI method [15] predicted that the absorption 

spectrum of the pentamer has three intense peaks and assigned to 42B2, 52B2 , 

and 92211  states, respectively. Moreover, the CI approach yielded three medium 

size bands and assigned to 62B2 , 82A1, and 82B2  states, respectively. All these 

peaks are within the energy interval of the recorded broad band by Wang et 

al. [71], but the 82 B2  state oscillator strength is too large (see Fig. 70). 

The absorption spectra of the hexamer are carried out with the two com-

petitive geometries, the planar D3h  geometry and the pentagonal pyramid C5,, 

structure. Figs. 78, 79, 80, 81, 82, and 85, show that the two structures have 

competitive contributions in the recorded absorption spectrum. The present pre-

dicted spectra with the two structures are very similar. The pentagonal pyramid 

C5z , structure (in order to compare with the CI results which were analysed un-

der Cs  subgroup [15, the present analysis and symmetry assignments are also 

under Cs subgroup, Csi, --+ Cs) yields one degenerate strong peak located at 

2.28 eV and assigned to 71A1  and 61A" states. This strong peak agrees well with 

the recorded intense band [71] located at 2.1 eV and labelled as II. The present 

predicted one degenerate medium peak, located at 2.85 eV and assigned to 121A' 

and 111A states, is in good agreement with the measured band [71] located at 

2.83 eV and labelled as IV. The transition to the 41A' and 31A" states around 

1.67 eV has a small oscillator strength and agrees nicely with the recorded band 

located at 1.78 eV and labelled as I. The present predicted small peaks located at 

2.61 eV and assigned to 101A` and 91A" states are responsible for the measured 

band III located at 2.44 eV. The absorption spectrum predicted with the pla-

nar D3h structure (analysis and symmetry assignments are under C22, subgroup, 

D3h --> C2, for comparing with the CI results which were assigned ubder C2v 

subgroup [15]) has a very similar spectroscopic pattern to that with the pen- 
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tagonal pyramid geometry. Fig. 78 shows that the planar structure yields two 

strong peaks, which should be degenerate in the D3h point group, located at 2.146 

eV (with oscillator strength of 1.316) and 2.153 eV (with oscillator strength of 

1.312) and assigned to 31B2  and 41A1  states, respectively. However, the degen-

eracy of the two intense bands with the planar structure is not as good as that 

with the pentagonal pyramid geometry, it is slightly broken (the two strong bands 

lie within 0.007 eV). Nevertheless, the two intense peaks coincide well with the 

recorded band II. Moreover, the degeneracy of the two intense bands with the 

LB94xc/TDLSDxc functional is broken in both cases with the planar structure 

(the two peaks lies within 0.014 eV) and with the pentagonal pyramid geometry 

(the two bands separated by 0.001 eV). 

It is noticed that the pentagonal pyramid C5v geometry and the planar D3h 

structure yield very similar spectroscopic patterns and both agree well with the 

experimental results. The absorption spectra of the hexamer predicted with the 

two geometries with comparison to the recorded spectrum support the DFT ge-

ometry optimizations. Since the two competitive geometries, obtained with the 

DFT geometry optimization, differ in energy only by 0.05 eV and both geome-

tries are minima on the DFT energy surface (both geometries with all positive 

frequencies), it is diffi cuit to rule out completely either of the two structures from 

the equilibrium geometry. Hence, both geometries probably have similar con-

tributions to the recorded spectrum. However, this similarity of the spectrum 

predicted with the pentagonal pyramid structure and with the planar geometry 

was also found by BonaCié—Kouteck3'T and co-workers with the CI calculations [15]. 

The two structures in the CI calculations also yielded two intense bands, but the 

degeneracy of the two bands is broken in both spectra predicted with the planar 

structure and with the pentagonal pyramid geometry. The two peaks are sepa-

rated by around 0.01 eV in the planar structure spectrum and by about 0.16 eV in 

the pentagonal pyramid geometry spectrum (see Fig. 77). This degeneracy break-

ing is much larger than that in the present calculations in which the pentagonal 
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pyramid geometry yields exact degenerate intense bands and the planar structure 

slightly breaks the degeneracy. Moreover, the pentagonal pyramid structure was 

not predicted as a minimum on the Hartree—Fock energy surface [15]. In contrast, 

MCLR [11] and RPA [11] methods did obtain the degeneracy for the predicted 

strong peaks (with D3h planar structure). However, the MCLR and the RPA ap-

proaches yielded one additional medium peak or intense peak for the RPA (31B1) 

and lead to the spectroscopic pattern to be different from the recorded spectrum. 

The LB94xc/TDLSDxc functional yields similar spectroscopic patterns for 

the sodium clusters as those predicted by the LSDxc/TDLSDxc functional in 

most cases, but they differ in details. The LB94xc/TDLSDxc functional pro-

duces fewer bands in the same energy interval as in the LSDxc/TDLSDxc func-

tional calculations and the positions of the peaks are slightly shifted fo higher 

energy. The oscillator strengths calculated by the LB94xc/TDLSDxc functional 

are larger than those carried out by the LSDxc/TDLSDxc functional. Some-

times, the heights of the peaks (pattern of the spectra) change order in com-

parison with those predicted by the LSDxc/TDLSDxc functional. For exam-

ple, the tetramer spectrum predicted by the LB94xc/TDLSDxc functional has 

a similar spectroscopic pattern as that predicted by the LSDxc/TDLSDxc func-

tional. Three strong peaks are observed and located at 2.02 eV, 2.98 eV, and 

3.45 eV and assigned to 11133„, 21B2„, and 21B1,, states, respectively. These 

bands are shifted to higher energy in comparison with those calculated by the 

LSDxc/TDLSDxc functional [of 1.84 eV (11B3„), 2.67 eV (21B2„), and 2.99 eV 

(21B1„)]. The oscillator strengths of these three intense bands calculated with the 

LB94xc/TDLSDxc functional [1.990 (Su), 1.1525 (21B2„), 0.9228 (21B1„)] are 

larger than those calculated with the LSDxc/TDLSDxc functional [1.008 (11B3„), 

0.8551 ((21B2„), 0.3959 (21B122 )]. Since the positions of the bands predicted by the 

LB94xc/TDLSDxc functional are shifted to higher energy, in the same energy in-

terval as in the LSDxc/TDLSDxc functional calculations, of course, fewer peaks 

are observed in the spectrum predicted by the LB94xc/TDLSDxc functional. 
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Moreover, some medium bands observed with the LSDxc/TDLSDxc functional 

do not appear in the spectrum predicted by the LB94xc/TDLSDxc functional 

(see Figs. 65 and 64). But the same symmetry assignments are obtained in the 

spectrum of the tetramer predicted by the LB94xc/TDLSDxc functional and by 

the LSDxc/TDLSDxc functional. However, the LB94xc/TDLSDxc functional 

may yield a quite different spectroscopic pattern from that predicted by the 

LSDxc/TDLSDxc functional. For example, in the spectrum of the trimer, in 

Figs. 56, 57, 58, and 59, there are four strong peaks [at 1.83 eV (32 A1), 2.19 
(42 A1), 2.52 eV (62B2 ), and 2.88 eV (32 A2 )] and two medium bands [of 2.41 

eV (42B2 ) and 3.09 eV (42 A2 )] predicted by the LSDxc/TDLSDxc functional. 

But the LB94xc/TDLSDxc functional yields only three intense peaks [at 2.11 eV 

(32 A1), 2.68 eV (42B2 ), and 3.31 eV (32 A2 )] and one medium peak [at 2.35 eV 

(42 A1)]. This difference is not caused by the lirnited energy interval, it is due to 

the fact that the oscillator strengths calculated by the two functionals are differ-

ent. The LSDxc/TDLSDxc functional yields the 42B2  state as a medium band 

with an oscillator strength of 0.1634, whereas the LB94/TDLSDxc functional pro-

duces the 42B2  state as a strong peak with an oscillator strength of 0.7742. The 

LSDxc/TDLSDxc functional gives the 62B2  state with large oscillator strength 

(0.5047), whereas the LB94xc/TDLSDxc functional yields the 62B2  state with 

small oscillator strength (0.0153). This is the source of the different for predicted 

spectroscopic pattern between the LSDxc/TDLSDxc and the LB94xc/TDLSDxc 

functionals and leads to different assignments. 

These differences between the performances of the LSDxc/TDLSDxc and 

the LB94xc/TDLSDxc functionals may be partly due to the different short—r 

behavior and large—r behavior of the two functionals, and partly due to using 

geometries optimized for one functional (LSDxc), which may not be exactly the 

minima on the energy surface of the other functional (LB94xc). For example, the 

calculations of the hexamer (C5, —> C, or D3h -› C2v  ) with the LSDxc/TDLSDxc 

functional yield much better degenerency than those with the LB94xc/TDLSDxc 
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functional, since the geometry (D3h  or C5.„) was optimized with LSDxc functional, 

it may not be exact minimum on the energy surface of the LB94xc functional. On 

the other hand, charge density with LSDxc functional is more distributed around 

the nuclei, it is more like a spherical, hence, the grid can discrbe it better. But 

the charge density with LB94xc functional has a long tail, the grid may not well 

discribe it. This may also be the reason which causes the degenerency breaking 

with the LB94xc/TDLSDxc functional. 

MCP calculations reasonably reproduce the dominant features of the ab-

sorption spectra predicted by the all-electron calculations. It is interesting to 

note that the differences between the MCP and the all-electron predicted spectra 

are similar to those between the LSDxc/TDLSDxc and the LB94xc/TDLSDxc 

functionals. The MCP predicted spectroscopic pattern moves the bands to higher 

energy and with larger oscillator strengths or changes the oscillator strengths re-

markably from those calculated by the all electron approach, especially with the 

small basis set (MCP basis). But the MCP calculations with the larger basis 

(MCP+) normally yield similar results to the all-electron calculations. For ex-

ample, in the predicted spectrum of the trimer, the MCP calculations with the 

small basis (MCP) predicted a different spectroscopie pattern from that predicted 

by the all-electron calculations, even though it gives the same dominant bands as 

the all-electron approach (comparing Fig. 56 and 60). The locations of the peaks 

predicted by the MCP with the small basis MCP are shifted to higher energy and 

the oscillator strengths of the intense bands are different from those calculated 

by the all-electron approach. The A' band (32A1  state) predicted by the MCP is 

located at 2.10 eV, which is about 0.27 eV higher than that in the all-electron pre-

diction. Its oscillator strength performed by the MCP (0.8402) is almost double 

to that of the all-electron calculation (0.4490). The MCP predicted B band (42A1  

state) located at 2.52 eV is about 0.3 eV higher than that in the all-electron cal-

culations. Its height predicted by the MCP (0.1661) is about twice smaller than 

the all-electron prediction (0.3424). The MCP yields the C band (32A2  state) 
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at 3.44 eV which may be compared with_ the value of all-electron at 2.88 eV. 

The MCP oscillator strength of this peak (1.1908) is almost the triple of that 

calculated by the all-electron approach (0.4315). It is expected that the larger 

basis should correct these deviations between the MCP (with the small basis) 

and all-electron calculations or at least eliminates the differences partly. This is 

indeed the case, the MCP calculations with larger basis (MCP+) do improve the 

results remarkably and lead to similar spectroscopic pattern to that predicted by 

the all-electron calculations. The MCP with the larger basis (MCP+) predicted 

states 32A1  (MCP: 1.95 eV; AE: 1.83 eV), 12 A2  (MCP: 2.03 eV; AE: 1.95 eV), 

42 A1  (MCP: 2.28 eV; AE: 2.19 eV), 42/32  (MCP: 2.45 eV; AE: 2.41 eV), 52B2  

(MCP: 2.55 eV; AE: 2.52 eV), 32A2  (MCP: 3.04 eV; AE: 2.88 eV), and 82.82  

(MCP: 3.20 eV; AE: 3.09 eV) (see Fig. 61) are much closer to the all-electron cal-

culations and are responsible for the recorded A', A, B, Bi , B", C, and D bands, 

respectively. The oscillator strengths calculated by the MCP with the larger ba-

sis (MCP+) are improved remarkably (0.6724 for the At  band, 0.2779 for the B 

band, and 0.8306 for the C band). However, the small MCP basis is unstable, 

sometimes it may lead to different assignments from the all-electron calculations. 

For example, in the spectrum of the pentamer predicted by the MCP (with the 

small basis), the first of the two strong peaks is assigned to the 42B2  state which 

is different from the all-electron symmetry assignment (62B2 ). It is obvious that 

the different assignments between the MCP and the all-electron approach are due 

to the inadequate MCP basis set used. The larger MCP basis (MCP+) yields 

the same assignment as in the all-electron LSDxc/TDLSDxc case. However, the 

MCP calculations (with the MCP+ basis) with the LB94xc/TDLSDxc functional 

yields an unexpected absorption spectrum for the pentamer, which has only one 

intense peak with an assignment of the 92 A1  and three medium peaks assigned 

to 42B2 , 52B2 , and 92 A1  states, respectively. 
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7.4 CONCLUSION 

Absorption spectra of small sodium clusters (from the dimer through to 

the hexamer) have been predicted and interpreted by time-dependent DFT using 

the LSDxc/TDLSDxc functional and the LB94xc/TDLSDxc functional at the 

all-electron level and the MCP level. The absorption spectra predicted by the 

present work agree fairly well with the recorded spectra and are competitive with 

the high quality ab initio CI predictions. 

It is not obvious in the present work that the excitation energies of the 

small sodium clusters collapse when they are larger than the ionization thresh-

old of the LSDxc functional, even though the negative of the HOMO (highest 

occupied molecular orbital) energies, -Efisa, of the sodium clusters calculated 

by the LSDxc functional are still too low in comparison with the experimental 

ionization potentials. But excitation energy collapses were observed for the com-

pounds (closed—shell) at the right—hand side of the periodic table in Ref. [387] 

and for the free radical (open—shell) calculations at the Chapter 5 of this thesis. 

This indicates that the LSDxc (or LSDxc/TDLSDxc) functional behaves differ-

ently in the applications to the compounds at the right—hand side of the periodic 

table and those at the left-hand side of the periodic table, regardless of whether 

the compounds are closed—shell molecules or open—shell radicals. However, the 

MCP excitation energies become much larger than the corresponding all-electron 

results when the excitation energies are larger than the ionization threshold cor-

responding to the functional used, —EfrisoD,17-î )  or -e-e09e. This different degree 

of falling off between the MCP excitation energies and the all-electron results 

is probably due to the orbital basis set used in the MCP calculations which is 

inadequate for the high excitations. 

The present time-dependent DFT calculations overestimate the excitation 

energies of the small sodium clusters in comparison with the experimental results. 



232 

This is similar to the calculations of the small lithium clusters, but it is different 

from the calculations for the free radicals and other small molecules (closed—shell) 

at the right—hand side of the periodical table in Ref. [387] which underestimated 

excitation energies. In contrast, the polarizabilities of the small sodium clusters 

calculated by DFT are underestimated in Refs. [327, 122], whereas the polar-

izabilities of small molecules at the right—hand side of the periodic table are 

overestimated by the DFT in Ref. [119]. This observation agrees with the th.eo-

retical relationship between excitation energy and polarizability (see Chapter 2 

of this thesis). 

The LB94xc/TDLSDxc functional produces too high excitation energies for 

the small sodium clusters in both cases of the low and the high transitions, this 

leads to larger errors from the available experiments and the high quality ab 

initio CI results in comparison with the calculations by the LSDxc/TDLSDxc 

functional. This is in contrast to the LB94xc/TDLSDxc functional calculations 

for the free radicals and the small lithium clusters which yielded too low excitation 

energies for the low transitions. 

The present work found that electron Coulomb, exchange, and correlation 

interactions have different contributions to the excitation energies. The Coulomb 

interactions seem to have the largest contributions to excitation energies for the 

molecules or clusters studied here and their role is to push electronic states to-

wards to each other. In contrast, the electron exchange and correlation interac-

tions push electronic states apart, hence the two interactions increase the excita-

tion energies from the Coulomb calculations. However, the exchange interactions 

contribute to the excitation energies more than do the correlation interactions, 

the differences on the excitation energies between the two interactions are about 

one order of magnitude. 

The present calculations show that the excitation energies are insensitive 

to small geometrical distortions, but the oscillator strengths are more sensitive. 
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Large geometrical distortions not only lead to large changes in the excitation 

energies and oscillator strengths, but also yield different ground state symmetry. 

The equilibrium geometry of the sodium hexamer is very competitive be-

tween the planar structure and the pentagonal pyramid structure from the ge-

ometry optimizations. The present predicted absorption spectra of the hexamer 

with the two structures show that both structures are also very competitive in 

the contributions to the recorded spectrum. Neither of the two geometries can 

be excluded completely from the recorded spectrum. This supports the DFT 

optimized geometries in the previous work [327, 122]. However, the equilibrium 

geometry of the sodium hexamer (the planer D3h or pentagonal pyramid C5v) 

is different from the equilibrium geometry of the lithium hexamer which has a 

three-dimensional C2v  structure. 

The MCP assessed here reasonably reproduces the spectroscopic pattern of 

the small sodium clusters as predicted by the all-electron calculations. However, 

small orbital basis which is flexible enough to describe ground state properties 

is not flexible enough to describe excited state properties. A larger basis set is 

needed for the excitation energy calculations. Especially, diffuse functions and 

polarization functions are essential. 
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Table XLVI. Ground state configurations and ground state symmetry of sodium 

clusters calculated by the present DFT SCF calculations at all-electron level with 

LSDxc functional. 

Clusters (symmetry) Ground state 	 Ground state 

electron configuration 	 symmetry 

Na2(Deoh) 	(1cr-g)2(1a)2(20)2(20_,1-)2(30.-91-)2 

(1ru )4(1rg)4porn2(40.-g)2 	 11E-gF 
Na3(C2,) 	 (lai)2(1b2)2(2a1)2(3a1 )2(2b2 )2(4a1)2  

(1b1)2(5,21)2(3b2)2(6a1)2(2b1)2(1a2 )2  

(4b2)2 (7a1)2 (5b2)2(8a1)2(6b2)1 	12B2  

Na4(D2h) 	 (1b2u)2(1%)2(1b3u )2(2%)2(3a9 )2(2b2u )2  

(2b3u)2(4%)2(5%)2(1b)2(1b39 )2(3b2u )2  

(3b3u)2(lbig )2(4b2,,)2(2big )2(lb29 )2(2biur 

(6%)2(4b3u )2(7ag )2(5b3u )2 	 11 A9  

Na5(C2v) 	 (lai)2(1b2)2(2b2)2(2a1)2(3a1)2(4a1)2  

(3b2)2(4b2)2(5a1)2(6a1)2(1b1)2(1a2 )2  

(5b2)2(2b1)2(7a1)2(2a2)2(8a1)2(6b2)2  
(9a1)2(7b2)2(10a1 )2(8b2 )2(3b1)2(11a1)2  

(9b2)2(12a1)2(10b2 )2(13a1)1 	 12A1  
Na6(D3h —› C2,) 	(1a1)2(1b2)2(2a1)2(3a1)2(2b2 )2(4a1)2  

(5a1)2(3b2)2(6a1)2(7a1)2(4b2)2(8a1)2  
(5b2)2(9a1)2(11h)2(1a2 )2 (6b2 )2(10a1)2  

(7b2)2(2b1)2(11a1)2(12a1)2(3b1)2(4b1)2  

(2a2)2(13a1)2(8b2 )2(9b2 )2(14a1)2  

(10b2 )2(15ai )2(11b2 )2(16a1)2 	 11A1  
Na6(C5, —› 	(1a1 )2(1a")2(2all )2(3a 1 )2(2a')2(3ai )2  

(4ai )2(4a")2(5an )2(5a`)2(6a1 )2(7a')2  

(812')2(6a")2(9a1 )2(10ai )2(11a1 )2(7a")2  

(8a11 )2(12a/ )2(9a")2(13a')2(14a1 )2  

(15a1 )2(10a")2(11an )2(16a')2(12a")2  

(17ai )2(13a")2(18a`)2(14a")2(19a')2 	1 14 
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Table XLVII. Ground state configurations and ground state symmetry of sodium 

clusters calculated by the present DFT SCF calculations at MCP level with LS-

Dxc functional.  

Clusters (symmetry) Ground state 	Ground state 

electron configuration symmetry 

Na2(D.h) 

Na3(C2v) 

Na4(D2h) 

Na6(C2v) 

Na6(D3h  —› C2v) 

Na6(C5v  —› Cs) 

(1cr-gE)2 	 1i- 

(lai )2(1b2 )1 	12B2  

(1ag )2(1b3,2 )2 	11Ag  

(lai)2(1b2)2(2a1)1 	12 A1  

(lai )2(1b2 )2(2a1)2 	11A1  

(1a1 )2(2a1 )2(la")2 	PA' 
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Table XLVIII. Sodium dimer vertical excitation energies (eV) calculated with 

the all-electron and the MCP and with different functionals in comparison with 

experiment and other theoretical results. 

Vertical excitation energies (eV) 

State LSDxc 

TDLSDxc 

(AE) 

LB94xc 

TDLSDxc 

(AE) 

LSDxc 

TDLSDxc 

(MCP+) 

LB94xc 

TDLSDxc 

(MCP+) 

LSDxc 

TDLSDxc 

(MCP) 

EXPTa F-C11  

(AE) 

CF MBPTà 

(AE) 

11E 1g-  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
13E;21-  0.966 0.703 0.929 1.120 1.007 1.046 0.707 0.619 
1314 1.822 2.216 1.851 2.704 1.978 1.692 1.669 1.711 1.568 
11Ett 2.103 2.298 2.140 2.611 2.191 1.820 1.928 1.823 1.627 
1E 2.3632.363 2.720 2.476 3.210 2.738 2.414 2.286 2.134 
1114 2.666 3.124 2.785 3.622 3.144 2.519 2.576 2.517 2.572 
21E-9  2.905 3.472 3.052 3.783 3.622 2.717 2.442 
1314 3.062 3.464 3.180 4.021 3.544 

1114 3.116 3.658 3.309 4.089 3.843 2.961 2.728 2.450 
23E 3.2683.268 3.997 4.178 5.089 5.527 3.221 

3E 3.2753.275 4.086 4.602 5.480 6.015 3.209 
23E 3.3253.325 4.326 4.004 4.606 5.442 3.397 
21Ett 3.367 4.487 4.153 4.923 5.639 3.509 
2314 3.452 4.665 5.281 5.839 3.583 
33E 3.5473.547 5.042 5.588 6.730 3.749 
211I„ 3.574 4.880 5.990 6.553 3.583 

41Eg-  3.647 5.251 6.079 7.313 3.558 
231Ig  3.715 5.299 6.464 6.799 3.608 
2114 3.753 5.381 6.699 6.950 3.831 
33Eit 3.940 5.032 5.797 6.685 6.719 3.571 
31Et 4.010 4.919 5.718 6.652 7.094 3.918 
41Et 4.098 5.872 7.545 8.015 4.129 
43E 4.206 4.206 5.805 7.348 7.766 4.029 

a  Experimental results were cited in Ref. [487]. 

Full CI calculations taken from Ref. [13]. 

Results are taken from Ref. [478]. 

d  Results are taken from Ref. [486]. 
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Table XLIX. Sodium trimer vertical excitation energies (eV) calculated with dif-

ferent levels of electronic interactions at the all-electron (AE) level with (XF,NR) 

grid. 

State Core/IPA Hartree/RPA 	LSDx/TDLSDx LSDxc/TDLSDxc 

Vertical excitation energies (eV) 

12 A1  0.058 0.093 0.677 0.618 

22 A1  1.655 0.327 1.235 1.317 

32 A1  3.852 0.430 1.691 1.803 

42 A1  12.265 0.515 2.045 2.151 

52 A1  13.687 0.713 2.247 2.626 

12 A2  3.705 0.483 1.382 1.944 

22 24.2  14.698 1.157 1.923 2.160 

32 A2 15.143 1.239 2.530 2.850 

42 A2 26.982 1.397 2.719 3.080 

52 A2  28.677 1.412 2.920 3.436 

12 B1  2.877 0.235 1.167 1.232 

22B1  14.716 0.438 2.255 2.456 

32 B1  15.970 0.809 2.382 2.794 

42 B1  16.412 1.412 2.751 3.104 

52B1  26.963 1.419 2.797 3.186 

22B2  1.421 0.485 0.864 1.355 

32B2  12.323 0.506 1.579 1.664 

42B2  13.790 0.635 1.994 2.358 

52B2  13.920 1.012 2.129 2.456 

62 B2 14.392 1.152 2.351 2.471 
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Table L. Sodium trimer vertical excitation energies (eV) calculated with_ different 

levels of electronic interactions at the MCP level with different qualities of grids. 

State 	Core/IPA 	Hartree/RPA 	LSDx/TDLSDx 	LSDxc/TDLSDxc 

Vertical excitation energies (eV) with (XF,NR) grid 

12 A1  0.812 0.319 0.839 0.684 

22 A1  2.719 1.408 1.370 1.404 

12 A2  3.503 2.421 1.659 2.162 

22 A2  4.227 3.673 2.450 2.512 

12B1  1.508 1.202 1.420 1.349 

22 B1  3.955 2.896 3.356 3.186 

22132  2.893 1.811 1.021 1.504 

32 B2  3.531 2.760 1.968 1.939 

Vertical excitation energies (eV) with (XF,R) grid 

12 A1  0.812 0.319 0.839 0.616 

22 A1  2.719 1.408 1.369 1.069 

12 A2  3.503 2.421 1.658 2.146 

22 A2  4.227 3.676 2.450 2.512 

12B1  1.508 1.202 1.420 1.350 

22B1  3.955 2.896 3.356 3.180 

22B2  2.893 1.811 1.020 1.485 

32B2  3.531 2.760 1.968 1.938 

Vertical excitation energies (eV) with (F,R) grid 

12 A1  0.812 0.319 0.841 0.615 

22 A1  2.719 1.408 1.367 1.063 

12 A2  3.503 2.421 1.655 2.143 

22 A2  4.227 3.676 2.448 2.512 

12B1  1.508 1.202 1.418 1.348 

22B1  3.955 2.896 3.354 3.181 

22B2  2.893 1.811 1.021 1.487 

32B2  3.531 2.760 1.970 1.939 
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Table LI. 	Comparison of excitation energies (eV) of the sodium trimer cal- 

culated by the all-electron and the MCP with available experiment and other 

theoretical calculations. 

Vertical excitation energies (eV) 

State LSDxc/ 

TDLSDxc 

(AEAE) 

LB94xc/ 

TDLSDxc 

(AEAE) 

LSDxc/ 

TDLSDxc 

(AEMCP) 

LB94xc/ 

TDLSDxc 

(AEMCP) 

LSDxc/ 

TDLSDxc 

(MCP-E) 

EXPTa MRDCP 

(AE) 

CF 

(AE) 

CId  

(ECP 

1 2B2  0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.000 

1 2A1  0.631 0.433 0.618 0.396 0.675 0.52 0.6 0.018 

2 2.A1  1.339 1.327 1.317 1.293 1.334 1.07 1.3 1.025 

2 2B2  1.419 1.239 1.355 1.136 1.412 1.33 1.5 1.194 

3 2 ß2 1.698 1.875 1.664 1.846 1.756 2.14 2.4 1.983 

3 2 A1  1.826 2.105 1.803 2.096 1.945 1.67 1.61 1.8 1.261 

1 2 A2 1.953 2.309 1.944 2.302 2.026 1.84 1.77 2.0 1.753 

2 2 i12  2.172 2.478 2.159 2.467 2.288 2.61 2.9 2.567 

4 2.A1  2.189 2.352 2.151 2.318 2.275 2.03 1.97 2.2 1.849 

4 2 B2 2.409 2.676 2.358 2.612 2.448 2.22 2.36 2.6 2.126 

5 2 B2  2.487 2.778 2.456 2.729 2.554 2.50 2.9 2.327 

6 2 B2  2.516 2.914 2.471 2.895 2.726 2.40 2.85 

5 2 A1  2.629 3.007 2.626 2.926 2.824 2.52 2.7 1.992 

6 2 A1  2.707 3.191 2.677 3.199 3.194 2.72 3.0 2.330 

3 2 A2  2.878 3.307 2.850 3.263 3.036 2.59 2.90 3.1 

4 2 A2  3.090 3.925 3.080 3.822 3.676 3.00 3.09 

Experimental results are taken from Ref. [23]. The assignments are based on all-electron 

calculations with all-electron geometry (AEAE). 

b  Results are taken from Ref. [14]. 

Results are taken from Ref. [368]. 

d  Results are taken from Ref. [479]. 



240 

Table LII. Sodium trimer vertical excitation energies (eV) calculated with dif-

ferent  functionals and various basis sets at the all-electron level.  
Vertical excitation energies (eV)  

State STO3G DZVP BASIS1 BASIS2 BASIS3 BASIS4 BASIS5 

Calculations with LSDxc/TDLSDxc 

12B2  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

12A1  1.178 0.633 0.618 0.620 0.619 0.618 0.620 
22A1  2.938 1.425 1.317 1.321 1.320 1.316 1.320 

22B2  1.848 1.374 1.355 1.355 1.358 1.350 1.354 
32B2  4.233 1.911 1.664 1.669 1.669 1.667 1.673 

32 A1  6.263 2.038 1.803 1.807 1.807 1.804 1.810 

12 A2  7.767 2.298 1.944 1.952 1.950 1.940 1.948 

42 A1  6.770 2.624 2.151 2.156 2.155 2.150 2.154 

2 2 A2  7.941 2.706 2.159 2.167 2.165 2.158 2.165 

42 B2 6.546 2.544 2.358 2.363 2.364 2.356 2.363 
52B2  6.724 2.680 2.456 2.461 2.462 2.454 2.461 

62B2  7.857 3.192 2.471 2.476 2.475 2.472 2.477 
52A1  7.602 2.995 2.626 2.636 2.630 2.631 2.636 
62A1  8.436 3.750 2.677 2.684 2.683 2.679 2.686 

32 A2  9.113 3.710 2.850 2.857 2.855 2.847 2.852 

42 A2  9.615 4.357 3.080 3.088 3.083 3.081 3.085 

Calculations with LB94xc/TDLSDxc 

12B2  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

12A1  0.617 0.401 0.396 0.367 0.394 0.383 0.379 

22A1  2.631 1.380 1.293 1.271 1.293 1.295 1.293 

22B2  1.449 1.161 1.136 1.100 1.137 1.135 1.134 
32112  3.978 2.047 1.846 1.838 1.847 1.859 1.861 

32A1 5.988 2.395 2.096 2.094 2.099 2.100 2.107 

12A2 7.412 1.787 2.302 2.261 2.307 2.312 2.320 

42A1 6.649 2.718 2.318 2.311 2.323 2.321 2.327 

22 A2 7.714 2.582 2.467 2.451 2.473 2.470 2.479 

42B2 6.322 2.879 2.612 2.592 2.615 2.614 2.617 

52 B2 6.553 3.034 2.729 2.729 2.734 2.757 2.765 

62 B2 7.578 3.386 2.895 2.890 2.907 2.913 2.922 

52 A1 7.377 3.221 2.926 2.919 2.931 2.953 2.958 
62A1  8.314 3.867 3.199 3.155 3.210 3.158 3.162 
32A2  8.778 2.929 3.263 3.247 3.267 3.263 3.268 

42A2  9.294 3.920 3.822 3.883 3.826 3.860 3.874 
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Table LIII. 	MCP vertical excitation energies (eV) of sodium trimer calculated 

with various MCP basis sets using the LSDxc/TDLSDxc functional. 

MCP vertical excitation energies (eV)  

State MCP MCP1 MCP2 MCP+ 

1 2B2  0.000 0.000 0.000 0.000 

1 2 A1  0.684 0.684 0.667 0.675 

1 2B1  1.349 1.684 1.219 1.299 

2 2 A1  1.404 1.457 1.335 1.334 

2 2B2  1.504 1.499 1.459 1.412 
3 2B2 1.939 2.046 1.760 1.756 
3  2A1  2.101 2.179 1.948 1.945 

1 2 A2  2.162 2.446 2.004 2.026 

2 2 A2  2.512 2.882 2.255 2.288 

4 2 A1  2.519 2.766 2.266 2.275 

4 2/32  2.637 2.699 2.479 2.448 

5 2 _82  2.747 2.833 2.584 2.554 
5  2A1  3.065 3.229 2.848 2.824 

2 2B1  3.186 3.660 2.670 2.691 

6 2/32  3.231 3.520 2.730 2.726 
3  2A2  3.437 3.884 3.043 3.036 
7  2B2  3.444 3.665 3.141 3.118 

6 2 A1  3.625 3.943 3.216 3.194 
3  2B1  3.681 4.050 3.351 3.357 
8 2B2 3.748 4.149 3.189 3.196 

4 2/31  3.999 4.423 3.544 3.558 

9 2B2  4.028 4.301 3.343 3.324 

4 2 A2  4.185 4.650 3.678 3.676 
5  2A2  4.445 4.906 3.874 3.880 
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Table LIV. Sodium tetramer vertical excitation energies (eV) calculated by the 

all-electron (AE) with. the Sadlej basis and by the MCP with various basis sets 

using the LSDxc/TDLSDxc and the LB94xc/TDLSDxc functionals. 

AE vertical excitation energies (eV)  

State LSDxc/ LB94xc/ EXPTa MRD-CIb  MRD-CIe MCLRe RPAc 

TDLSDxc TDLSDxc (AE) (ECP) (ECP) (ECP) 

11Ag  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

11B2„ 1.816 1.966 1.63 1.51 1.57 1.68 2.29 

11_83ti  1.842 2.025 1.80 1.71 1.77 1.81 1.76 

21B3, 2.123 2.229 1.98 1.87 1.96 2.07 2.12 

11Blu  2.267 2.623 2.18 2.07 2.20 2.31 2.51 

21B2u  2.670 2.981 2.51 2.45 2.57 2.68 2.76 

31B3u  2.836 3.384 2.63 3.03 3.02 2.91 

41B3u  2.933 3.721 

21Blu  2.989 3.450 2.78 2.76 2.90 3.03 3.29 

51B3u  3.088 4.119 3.15 

31B2u  3.135 4.089 2.85 2.46 2.63 2.77 3.52 

31Biru  3.307 3.33 3.00 3.55 4.00 

MCP vertical excitation energies (eV) 

State LSDxc/ LSDxc/ LSDxc/ LSDxc/ LB94xc/ LB94xc/ EXPTa 

TDLSDxc TDLSDxc TDLSDxc TDLSDxc TDLSDxc TDLSDxc 

(MCP+) (MCP2) (MCP1) (MCP) (MCP) (MCP+) 

11  Ag  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

11B2.0  1.806 1.826 2.045 1.960 1.997 1.957 1.63 

11B3u  1.918 1.909 1.986 1.990 2.084 2.067 1.80 

21B3u  2.181 2.223 2.585 2.445 2.439 2.337 1.98 

11Blu  2.333 2.301 2.979 2.591 2.879 2.627 2.18 

21B2„ 2.751 2.756 3.343 3.120 3.125 2.880 2.51 

3B3u  3.483 3.492 4.109 4.010 4.014 3.746 2.63 

41B3u  3.598 3.775 5.574 5.103 5.178 3.958 2.78 

21Blu  3.201 3.249 4.144 3.699 3.897 3.388 2.85 

51B3u  4.023 4.558 5.932 5.738 5.749 4.299 

31B2u  3.865 3.900 4.974 4.666 4.613 4.034 3.15 

31Blu  4.451 4.443 5.415 5.076 5.180 4.490 3.33 

a  Experimental Results are taken from Ref. [23]. 

b  Results are taken from Ref. [14]. Results are taken from Ref. [11]. 
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Table LV. Sodium pentamer vertical excitation energies (eV) calculated with the 

all-electron and the MCP and with different functionals in comparison with other 

theoretical results.  
Vertical excitation energies (eV) 

State LSDxc/ 

TDLSDxc 

(AE) 

LB94xc/ 

TDLSDxc 

(AE) 

LSDxc/ 

TDLSDxc 

(MCP+) 

LB94xc/ 

TDLSDxc 

(MCP+) 

LSDxc/ 

TDLSDxc 

(MCP) 

LB94xc/ 

TDLSDxc 

(MCP) 

CIa 

(ECP) 

12A1  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

12B2  0.760 0.495 0.729 0.704 0.740 0.757 0.72 
22A1 0.896 0.751 0.898 0.768 0.910 0.836 0.90 
22B2 1.061 0.937 1.033 1.006 1.087 1.054 1.20 

12B1  1.154 1.312 1.269 1.304 1.277 1.299 1.20 

32B2 1.167 1.064 1.137 1.086 1.162 1.168 1.32 
32A1 1.310 1.137 1.247 1.221 1.313 1.192 1.20 

42,41  1.523 1.392 1.525 1.478 1.615 1.447 1.72 
52A1 1.650 1.725 1.616 1.610 1.690 1.637 1.87 

42B2 1.914 2.146 1.942 1.966 2.067 1.864 1.92 

52B2 1.926 2.160 1.989 2.159 2.146 2.169 1.97 

62A1 1.958 1.949 1.928 1.904 2.058 1.984 1.94 
62B2  2.011 2.186 2.029 2.253 2.177 2.257 2.13 

22B1 2.022 2.291 2.051 2.183 2.191 2.352 2.06 
72211  2.168 2.282 2.202 2.200 2.364 2.290 2.21 
82A1 2.230 2.516 2.238 2.521 2.440 2.530 2.33 
32B1 2.247 2.492 2.337 2.356 2.559 2.593 2.28 

72B2 2.282 2.325 2.286 2.359 2.433 2.338 2.32 

82B2 2.377 2.518 2.341 2.432 2.501 2.477 2.35 

92A1  2.392 2.539 2.394 2.542 2.541 2.577 2.41 

42B1  2.402 2.661 2.462 2.655 2.636 2.717 2.55 

102A1 2.411 2.631 2.475 2.644 2.663 2.687 2.65 

92B2  2.450 2.619 2.434 2.701 2.644 2.496 2.52 

52B1 2.460 2.754 2.40 2.767 2.693 2.897 2.58 

102B2 2.564 2.756 2.585 2.855 2.798 2.652 2.68 

112B2 2.650 2.799 2.660 3.142 2.862 2.944 2.73 

112A1  2.712 2.995 2.735 2.782 2.972 2.807 2.81 

122A1 2.764 3.156 2.894 2.954 3.181 2.976 2.91 

132A1  2.800 3.248 2.989 3.076 3.278 3.224 2.93 

62B1  2.802 3.153 3.058 2.900 3.627 3.652 2.84 

72B1  3.081 3.530 3.309 3.427 3.822 3.905 2.90 

82/3i 3.100 3.741 3.544 3.531 3.961 4.016 3.02 

" Results are takert from Ref. [15]. 
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Table LVI. Sodium hexamer (C5v --> Cs) singlet vertical excitation energies (eV) 

calculated with the all-electron and the MCP and with different functionals in 

comparison with other theoretical results. 
Vertical excitation energies (eV)  

State LSDxc/ LSDxc/ LB94xc/ LSDxc/ LB94xc/ CI 

TDLSDxc TDLSDxc TDLSDxc TDLSDxc TDLSDxc 

(AE) (MCP+) (MCP+) (MCP) (MCP) (ECP) 

11A' 0.000 0.000 0.000 0.000 0.000 0.000 

21A1  1.232 1.236 1.253 1.269 1.216 1.45 

11A." 1.232 1.236 1.251 1.269 1.216 1.37 

21A" 1.489 1.469 1.484 1.501 1.441 1.52 

31 A1  1.489 1.469 1.484 1.501 1.441 1.50 

41A1  1.666 1.712 1.908 1.800 1.911 1.81 

31A" 1.666 1.712 1.906 1.800 1.911 1.82 

41A" 2.168 2.229 2.339 2.404 2.381 2.08 

51.41  2.192 2.246 2.340 2.410 2.366 1.96 

51A" 2.192 2.246 2.408 2.430 2.483 2.09 

61A/  2.245 2.268 2.352 2.430 2.381 2.10 

71A' 2.278 2.327 2.414 2.436 2.515 2.12 

61A" 2.278 2.327 2.415 2.436 2.515 2.21 

8121. 2.563 2.584 2.556 2.709 2.558 2.17 

71A" 2.563 2.584 2.555 2.709 2.558 2.29 

81A" 2.591 2.647 2.715 2.923 2.802 2.43 

91,4)  2.591 2.647 2.715 2.923 2.802 2.51 

101Al  2.608 2.730 2.754 3.048 3.028 2.53 

91A" 2.608 2.730 2.754 3.057 3.009 2.50 

101A 2.614 2.759 2.793 3.069 3.028 2.59 

111A 2.702 2.820 2.825 3.069 3.052 2.57 

121A 2.851 2.977 2.877 3.361 3.245 2.60 

111A 2.851 2.977 2.824 3.361 3.245 2.65 

131.A 3.043 3.115 3.122 3.389 3.251 2.78 

141Ai  3.061 3.219 3.264 3.750 3.712 2.85 

a CI results are estimated from Ref. [15]. 
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Table LVII. Sodium hexamer (D3h  -) C2,) singlet vertical excitation energies 

(eV) calculated with the all-electron and the MCP and with different functionals 

in comparison with other theoretical results. 
Vertical excitation energies (eV) 

State LSDxc/ 

TDLSDxc 

(AE) 

LSDxc/ 

TDLSDxc 

(MCP+AE) 

LB94xci 

TDLSDxc 

(MCP+AE) 

CIa 

(ECP) 

MCLRb  

(ECP) 

R.PAb  

(ECP) 

11 A1  0.000 0.000 0.000 0.00 0.00 0.00 
21 A1  1.326 1.384 1.384 1.59 1.63 1.80 

1 B2 1.437 1.500 1.516 1.50 1.63 1.69 
31 A1  1.561 1.608 1.707 1.66 1.82 2.12 
21.82  1.613 1.670 1.691 1.75 1.75 1.80 
11B1  1.618 1.689 1.708 1.85 2.04 1.92 
31B2 2.146 2.238 2.380 2.13 2.02 2.24 
41A1  2.153 2.250 2.394 2.17 2.05 2.24 
4 B2 2.501 2.503 2.755 2.25 2.13 2.85 

21B1  2.431 2.531 2.622 2.53 2.78 2.83 
51 A1  2.359 2.558 2.638 2.22 2.13 2.84 
61 A1  2.413 2.591 2.777 2.25 2.42 2.87 
51 .82  2.530 2.612 2.875 2.36 2.49 2.99 
31B1  2.495 2.617 2.660 2.58 2.81 2.85 
6132  2.741 2.666 3.040 2.41 2.71 3.15 
71A1  2.458 2.711 3.020 2.56 2.50 3.15 
81A1  2.588 2.801 3.098 2.58 2.72 3.22 
71B2  3.019 2.880 3.179 2.57 2.76 3.22 
81B2 3.169 3.206 3.453 2.78 2.79 3.38 
91A1  3.015 3.210 3.444 2.89 2.79 138 
101A1  3.019 3.246 3.466 2.97 2.93 3.48 
41 B1  3.095 3.427 3.524 2.98 3.26 3.36 

51B1  3.179 3.444 3.584 3.09 3.33 3.63 
61 B1 3.327 3.644 3.660 3.23 3.49 3.75 
71B1  3.413 3.718 3.742 3.35 3.66 3.84 

111A1  3.107 3.724 3.870 3.04 3.17 3.59 
91B2  3.272 3.756 3.953 2.99 3.16 3.48 
101B2  3.294 3.770 3.966 3.00 3.21 3.51 

121A1  3.175 3.804 4.012 3.10 
81B1  3.504 3.805 3.875 3.41 3.70 4.07 
111 B2 3.310 3.844 4.056 3.22 

121B2 3.396 3.888 4.076 3.33 

a  CI results are estimated from Ref. [15]. 

b  Results are taken from Ref. [11]. 
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Table LVIII. 	Comparison of experimental ionization potential and -EHomo  of 

sodium clusters from the dimer up to the hexamer calculated by the all-electron 

and the MCP with the LSDxc and the LB94xc functionals. 

Eckomo  (eV) 

Clusters LSDxc LSDxc LSDxc LB94xc LB94xc LB94xc EXPTa 

(MCP) (MCP+) (AE) (AE) (MCP+) (MCP) (I.P.) 

Na2  3.28 3.21 3.21 5.88 5.97 4.87 

Na3  2.65 2.60 2.60 5.09 3.97 

Na4  2.82 2.74 2.75 5.27 5.01 4.97 4.27 

Na5  2.84 2.77 2.77 5.21 4.79 4.59 4.05 

Na6(C5,) 3.18 3.08 3.08 5.18 5.01 4.12 

Na6(D3h) 3.13 3.11 5.55 4.12 

Experimental ionization potentials are taken from Ref. [6]. 
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Figure 49. Absorption spectrum of the sodium dimer carried out at the 

all-electron level with the all-electron optimized geometry using the LS-

Dxc/TDLSDxc functional and the BASIS1. 
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Figure 50. 	Absorption spectrum of the sodium dimer carried out at 

the all-electron level with the all-electron optimized geometry using the 

LB94xc/TDLSDxc functional and the BASIS1. 
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Figure 51. Absorption spectrum of the sodium dimer carried out at the MCP 

level with the MCP optimized geometry using the LSDxc/TDLSDxc function.al  

and the MCP basis. 

= 

 

1 in. 

 

   

i 	 1 	 i 

1 	2 	3 
EXCITATION ENERGY (eV) 

Figure 52. Absorption spectrum of the sodium dimer carried out at the MCP 

level with the MCP optimized geometry using the LSDxc/TDLSDxc functional 

and the MCP+ basis. 
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Figure 53. Absorption spectrum of the sodium dimer carried out at the MCP 

level with the MCP optimized geometry using the LB94xc/TDLSDxc functional 

and the MCP+ basis. 
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Figure 54. Absorption spectrum of the sodium dimer carried out with the CI 

method. Taken from Ref. [13]. 
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Figure 55. Comparison of absorption spectrum of the sodium trimer between the 

CI prediction and the experiment. The results are taken from Ref. [14]. 
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Figure 56. Absorption spectrum of the sodium trimer carried out at the all-

electron level with the all-electron optimized obtuse geometry using the LS-

Dxc/TDLSDxc functional and the BASIS1. 
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Figure 57. Absorption spectrum of the sodium trimer carried out at the 

all-electron level with the all-electron optimized obtuse geometry using the 

LB94xc/TDLSDxc functional and the BASIS1. 
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Figure 58. Absorption spectrum of the sodium trimer carried out at the 

all-electron level with the MCP optimized obtuse geometry using the LS-

Dxc/TDLSDxc functional and the BASIS1. 

Figure 59. 	Absorption spectrum of the sodium trimer carried out at 

the all-electron level with the MCP optimized obtuse geometry using the 

LB94xc/TDLSDxc functional and the BASIS1. 
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Figure 60. Absorption spectrum of the sodium trimer carried out at the MCP 

level with the MCP optimized obtuse geometry using the LSDxc/TDLSDxc func-

tional and the MCP basis. 

Figure 61. Absorption spectrum of the sodium trimer carried out at the MCP 

level with the MCP optimized obtuse geometry using the LSDxc/TDLSDxc func-

tional and the MCP+ basis. 
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Figure 62. Absorption spectrum of the sodium trimer carried out at the all-

electron level with the all-electron optimized acute geometry using the LS-

Dxc/TDLSDxc functional and the BASIS1. 



"E? 	_ 

o Ln 

-p-- 	rn 
—c co 

C) 
,q0370  co .595 œ œ 

c  

o Ln 

_ Ln 

4-- 

55 
CC) CO CO cc ,C,ZD CC) CO "E' 
CO 	 = • o LY1 

•.% 
^ 

N.D 

tri 

tg5ta 

b 	' b 

Figure 63. Comparison of absorption spectrum of thé sodium tetramer between 
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Figure 64. Absorption spectrum of the sodium tetramer performed at the 

all-electron level with the all-electron optimized geometry using the LS-

Dxc/TDLSDxc functional and the BASIS1. 
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Figure 65. 	Absorption spectrum of the sodium tetramer performed at 

the all-electron level with the all-electron optimized geometry using the 

LB94xc/TDLSDxc functional and the BASIS1. 
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Figure 66. Absorption spectrum of the sodium tetramer performed at the MCP 

level with the MCP optimized geometry using the LSDxc/TDLSDxc functional 

and the MCP basis. 
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Figure 67. Absorption spectrum of the sodium tetramer performed at the MCP 

levet with the MCP optimized geometry using the LB94xc/TDLSDxc functional 

and the MCP basis. 
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Figure 68. Absorption spectrum of the sodium tetramer performed at the MCP 

level with the MCP optimized geometry using the LSDxc/TDLSDxc functional 

and the MCP+ basis. 
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Figure 69. Absorption spectrum of the sodium tetramer performed at the MCP 

level with the MCP optimized geometry using the LB94xc/TDLSDxc functional 

and the MCP+ basis. 
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Figure 70. Comparison of absorption spectrum of the sodium pentamer between 

the recorded and predicted ECP CI results, taken from Ref. [15] (top two graphs) 

and other recorded spectrum taken from Ref.[16] (bottom graph) in which the 

circles are experimental results and the solid line is calculated with the ellipsoidal 

shell model. 
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Figure 71. 	Absorption spectrum of the sodium pentamer calculated at 

the all-electron level with the all-electron optimized geometry using the LS-

Dxc/TDLSDxc functional and the BASIS1. 
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Figure 72. 	Absorption spectrum of the sodium pentamer calculated at 

the all-electron level with the all-electron optimized geometry using the 

LB94xc/TDLSDxc functional and the BASIS1. 
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Figure 73. Absorption spectrum of the sodium pentamer calculated at the MCP 

level with the MCP optimized geometry using the LSDxc/TDLSDxc functional 

and the MCP basis. 
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Figure 74. Absorption spectrum of the sodium pentamer calculated at the MCP 

level with the MCP optimized geometry using the LB94xc/TDLSDxc functional 

and the MCP basis. 
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Figure 75. Absorption spectrum of the sodium pentamer calculated at the MCP 

level with the MCP optimized geometry using the LSDxc/TDLSDxc functional 

and the MCP+ basis. 
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Figure 76. Absorption spectrum of the sodium pentamer calculated at the MCP 

level with the MCP optimized geometry using the LB94xc/TDLSDxc functional 

and the MCP+ basis. 
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Figure 77. Comparison of the photodepletion spectrum and the ECP CI predicted 

spectrum for the two structures of the sodium hexamer, taken from Ref. [15] (right 

side graphs) and predicted by the ECP MCLR and the ECP RPA, taken from 

Ref. [11] (left side graphs). 
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Figure 78. Absorption spectrum of the sodium hexamer (D3h 	C2,) carried 

out at the all-electron level with the all-electron optimized geometry using the 

LSDxc/TDLSDxc functional and the BASIS1 basis. 
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Figure 79. Absorption spectrum of the sodium hexamer (D3h  --> C2,) carried 

out at the MCP level with the all-electron optimized geometry using the LS-

Dxc/TDLSDxc functional and the MCP+ basis. 
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Figure 80. Absorption spectrum of the sodium hexamer (D3h  --> C2,) car-

ried out at the MCP level with the all-electron optimized geometry using the 

LB94xc/TDLSDxc functional and the MCP+ basis. 
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Figure 81. Absorption spectrum of the sodium hexamer (C5, —> Cs) carried out 

at the MCP level with the MCP optimized geometry using the LSDxc/TDLSDxc 

functional and the MCP basis. 
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Figure 82. Absorption spectrum of the sodium hexamer (C5, —> Cs) carried out 

at the MCP level with the MCP optimized geometry using the LB94xc/TDLSDxc 

functional and the MCP basis. 
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Figure 83. Absorption spectrum of the sodium hexamer (C50  —> Cs) carried out 

at the MCP level with the MCP optimized geometry using the LSDxc/TDLSDxc 

functional and the MCP+ basis. 
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Figure 84. Absorption spectrum of the sodium hexamer (C50 	Cs) carried out 

at the MCP level with the MCP optimized geometry using the LB94xc/TDLSDxc 

functional and the MCP+ basis. 
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CHAPTER 8 

CONCLUSION AND PERSPECTIVE 

The objective of the present work is to provide a new computational tool 

for the study of excited state properties (excitation energies, oscillator strengths, 

dynamic polarizabilities, etc.) of open—shell systems (molecules or clusters). To 

do so, time-dependent DFT for open—shell systems has been coded by the present 

work in version 2pX of the program deMon-DynaRho. As a case study, six small 

well studied open-shell molecules, three neutral molecules (BeH, BeF, CN) and 

three positive ions (CO, Ne, CH20+), are chosen to evaluate the quality of 

the time-dependent DFT for calculating excitation energies and for predicting 

absorption spectra of open-shell systems (molecules or clusters). This new modi-

fication and implementation of the time-dependent DFT is also applied to predict 

and interpret the absorption spectra of alkali metal clusters (lithium clusters and 

sodium clusters) from the dimer though to the h.examer. With the exception of the 

lowest two excitation energies (without oscillator strengths) of a few open—shell 

molecules which recently appeared in the literature [1], the present all-electron 

calculations of absorption spectra of the six open—shell molecules and alkali metal 

clusters (the lithium and the sodium clusters) are the first time-dependent DFT 

study reported in the literature. These all-electron calculated excitation energies 

and absorption spectra nicely coincide with measured results and are competi-

tive with high quality ab initia CI methods. The time-dependent DFT results 

are much improved over those calculated by traditional DFT "multiplets" and 

Fritsche approaches [10], especially for the oscillator strengths. The present work 

found that the time-dependent DFT is able to provide fairly good treatments for 
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excited state properties of open—shell systems. These all-electron calculations of 

excitation energies and absorption spectra are also useful as benchmarks to assess 

the quality of the MCP in the applications to excited state properties. 

The exchange-correlation functional plays a significant role in the calcula-

tion of excitation energies. Both the short—r behavior and asymptotic behavior of 

the functional are crucial. Low excitations mainly depend on the short—r behav-

ior of the functional; in contrast, the large—r behavior of the functional may be 

important for high excitations. A better functional can be chosen depending on 

whether one is calculating low or high excitations. The LSDxc/TDLSDxc func-

tional seems to be the choice for low excitations, while the LB94xc/TDLSDxc 

functional is better for high excitations of the free radicals. Surprisingly the de-

viations of excitation energies between the two functionals can be as much as 1.5 

eV or more for the open—shell molecules and sodium clusters. The deviations for 

the lithium clusters are normally less than 1.0 eV. The LB94xc/TDLSDxc func-

tional, in the open-shell molecule calculations, yields smaller excitation energies 

than those of the LSDxc/TDLSDxc functional. This ordering is inverted when the 

excitation energies are larger than the LSDxc ionization threshold, —efedleo , the 

LB94xc/TDLSDxc functional starts to give larger excitation energies than those 

calculated with the LSDxc/TDLSDxc functional and the LB94xc/TDLSDxc ex-

citation energies are in better agreement with the experimental results. This 

LSDxc/TDLSDxc excitation energy collapse above 	is due to the well- 

known incorrect asymptotic behavior of the LSDxc functional which leads to 

too low ionization threshold compared with the true ionization potential. How-

ever, the ordering inversion is not observed in the sodium clusters calculations 

for which the LB94xc/TDLSDxc functional yields larger excitation energies than 

those calculated by the LSDxc/TDLSDxc functional for both low and high excita-

tions and give larger errors. Moreover, excitation energies of sodium clusters are 

overestimated by about 0.15 eV with the LSDxc/TDLSDxc functional. In con-

trast, those of free radicals are underestimated by about 1.0 eV. This is opposite 
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to the previous DFT polarizability calculations for which the polarizabilities of 

sodium clusters [122] were underestimated and those of the small molecules [119] 

at the right—hand side of the periodic table were overestimated. This observation 

agrees with the theoretical relationship between excitation energy and polarizabil-

ity (see Chapter 2 of this thesis for details), and also indicates that the LSDxc 

(or LSDxc/TDLSDxc) functional behaves differently in the applications to the 

compounds at the right—hand side of the periodic table and those at the left-hand 

side of the periodic table. 

Electron Coulomb, exchange, and correlation interactions have different ef-

fects on excitation energies. The Coulomb interactions have the largest effects 

on excitation energies, their contributions are to push electronic states towards 

each other significantly, hence it dramatically reduces the excitation energies (27 

eV) from the Core/IPA level calculations. The effects of the electron exchange 

are much smaller than those of the Coulomb interactions, but larger than the 

electron correlation. The contributions of both the electron exchange and the 

correlation are to make electronic states further apart, hence the two interactions 

increase the excitation energies. 1.8 eV change in excitation energies from the 

electron exchange interactions and 0.6 eV change in excitation energies from the 

correlation effects are observed for the sodium trimer. 

The present work, using the sodium trimer and hexamer as case studies, 

discussed the use of absorption spectra to help determine equilibrium geome-

tries and the sensitivity of excitation energies and oscillator strengths to small 

and large geometric distortions. Excitation energies are found to be insensitive 

to small geometrical distortions, but oscillator strengths are not. The sodium 

trimer geometry optimized by the all-electron and the MCP approaches differ by 

0.23 bohr in bond length of the short side of the triangle and by 1.2 degrees in 

the bond angle between the isosceles sides of the triangle, leading to a difference 

in excitation energies of 0.06 eV. Large geometrical distortions may lead to large 
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deviations in the excitation energies and oscillator strengths and yield different 

ground state symmetry depending on whether the two geometries are minima. 

The sodium trimer is an example for which the obtuse geometry is the minimum 

and the acute structure is a saddle point. The absorption spectra are different 

between predictions with the obtuse and with_ the acute structures and excita-

tion energies can vary by 0.8 eV in the calculations with the obtuse geometry 

and with the acute structure. The 2B2  and 2* symmetries for the ground state 

are obseryed, respectively, for the obtuse and the acute geometries. Due to the 

difference of the spectrum predicted with the acute structure from the recorded 

spectroscopic pattern, the acute geometry can be excluded. The obtuse structure 

is the equilibrium geometry for sodium trimer and is responsible for the recorded 

spectrum. The sodium hexamer is a case for which both the planar geometry and 

the pentagonal pyramid structures are minima. As in the geometry optimizations, 

the two structures are very competitive in the contributions to the recorded spec-

trum. The two structures yield very similar absorption spectra, neither of the 

two geometries can be excluded completely as the contributions to the recorded 

spectrum. However, the equilibrium geometry of the sodium hexamer (the planer 

D3h or pentagonal pyramid C5 ) is different from the lithium hexamer which has 

a three-dimensional C2v  equilibrium geometry. 

The present calculations found that the main features of these absorption 

spectra of the small lithium and the sodium clusters are the spectroscopic pattern 

with only two or three strong peaks (sodium trimer and tetramer with additional 

two or three medium bands) located around the 1.8 eV, 2.3 eV, and 2.8 eV regions. 

The present predicted absorption spectra also show that the open—shell clusters 

(the trimer and the pentamer) have many more bands than do the closed—shell 

clusters (the dimer, the tetramer, and the hexamer). The intense bands of free 

radicals are located at higher energies. 

The MCP calculations reasonably reproduce the all-electron results. The 
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differences in excitation energies between the MCP and the all-electron calcula-

tions are less than 0.1 eV for the sodium dimer up to the hexamer. However, 

when the excitation energies are larger than the ionization threshold, —sfac 0  Or 

—EfP09,144-73 , regardless of the exchange—correlation functional used, the MCP exci-

tation energies have a sudden rise. Hence, the deviations between the MCP and 

the all-electron results become larger, by as much as 3 eV. This may be due to 

the inadequate basis set used in the MCP calculations, since above the ionization 

threshold, the continuum is reached and a small basis is not flexible enough to 

describe it. Therefore, for high excitation calculations more diffuse functions and 

(or) polarization functions are needed in the MCP basis. 

In the future, there are some interesting subjects which can be pursued 

following the present work. First, it is interesting to implement restricted open-

shell time-dependent DFT in the program deMon-DynaRho for calculating ex-

cited state properties. A similar approach has been applied in the CIS method, 

restricted open—shell CIS (ROCIS) did give some improvement over unrestricted 

CIS (UCIS) in the calculation of excitation energies for some free radicals [336]. 

Whether restricted open—shell time-dependent DFT can improve the excitation 

energies from the unrestricted time-dependent DFT will require further investi-

gation. Moreover, UCIS [336] yields excited states which are highly spin contam-

inated, although the ground state has little spin contamination. In this regard, 

to investigate spin contamination in the unrestricted time-dependent DFT would 

also be interesting (details see Chapter 3 of this thesis). 

Further investigation of the exchange—correlation functional is another in-

teresting subject. The LSDxc/TDLSDxc functional is a better choice for low 

excitations, but it leads to excitation energies that collapse for the free radicals 

and some small molecules [387] when the excitation energies lie above 

due to the incorrect asymptotic behavior of the LSDxc functional. The LB94xc 

functional with the correct asymptotic behavior improves the high excitation en- 
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ergies, but it gives too small excitation energies for low excitations. To find one 

suitable functional which can yield better excitation energies for both low and 

high excitations definitely needs more work, although some work has been done 

attempting to find a better functional for both low and high excitations. Casida 

and Salahub [488] proposed an asymptotic correction approach which combines 

the LSDxc (for low excitations) and the LB94xc (for high excitations) functionals 

to avoid excitation energy collapse for high excitations. This approach may be 

a better choice for small molecules (at the right-hand side of the periodic table), 

but it may not be suitable for sodium clusters due to the LB94xc/TDLSDxc 

functional yielding too high excitation energies. 

The final subject is to further apply the time-dependent DFT to predict and 

interpret the absorption spectra for larger alkali metal clusters (with the MCP) 

and transition metal clusters (e.g. nickel and niobium metal clusters) which lag 

far behind the measurements; experimental absorption spectra of the larger al-

kali metal clusters [16] and transition metal clusters [489, 490, 491] have been 

available for a few years. Transition metal clusters are notoriously challenging 

for traditional ab initio methods, due to the strong correlation effects and com-

bined with the size of the systems. DFT has been successfully established for 

treating ground state properties, even for transition metal clusters. Salahub and 

co-workers [492, 493] investigated ground state properties for small nickel, cobalt, 

and iron clusters, the results obtained with the DFT are quite encouraging, es-

pecially with the generalized gradient approximation (the functional of Perdew 

and Wang (1986) for exchange and Perdew (1986) for correlation). The excited 

state properties of transition metal clusters may be an area where time-dependent 

DFT could make an important contribution. 
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