
Respecting Improvement

in Markets with Indivisible Goods∗

Lars Ehlers†

September 17, 2023

Abstract

We study markets with indivisible goods where monetary compensations are fixed (or are

not possible). Each individual is endowed with an object and a preference relation over all ob-

jects. Respect for improvement means that when the ranking of an agent’s endowment improves

in some other agent’s preference (while keeping other preferences unchanged), then this agent

weakly benefits from it. As a main result we show that on the strict domain individual ratio-

nality, strategy-proofness, and non-bossiness imply respecting improvement. As a consequence

we obtain that top trading with fixed-tie breaking and random tie-breaking, respectively, satisfy

respecting improvement on the weak domain. We further show that trading cycles rules with

fixed tie-breaking satisfy respecting improvement. Finally, we put our results in the contexts of

generalized matching problems, roommate problems and school choice.
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1 Introduction

We consider exchange markets where any agent owns one indivisible good and monetary transfers

are fixed (or absent, i.e. they are set equal to zero). Such markets arise in numerous applications

ranging from entry-level medical markets to school choice, on-campus housing and kidney exchange.

In all these markets any agent possesses a preference relation over the possible allotments to receive.

Preferences are private information and need to be elicited, and a centralized clearinghouse (a

mechanism) assigns the indivisible goods among the agents for any reported profile.
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As a basic property we study respecting improvement: this means that for a given profile, if

the endowment of a fixed agent improves in the ranking of some agent while keeping preferences

over other indivisible goods and other agents’ preferences unchanged, then the fixed agent shall be

weakly better off as the result of the improvement. This requirement is natural as endowments are

goods and any agent weakly benefits when his endowment is ranked more desirable. It prevents

agents from trying to lower the ranking of their endowment in other agents’ preferences.

The most important applications described above are matching markets which are either two-

sided or one-sided. For two-sided markets, like for example for school choice, there are two sides,

students and schools, who are matched to each other. For two-sided markets with strict preferences,

respecting improvement is well understood for the deferred-acceptance (DA-)algorithm. On the

one hand, Balinski and Sönmez (1999) show that the student-proposing DA-mechanism respects

improvements for students, and Kominers and Sönmez (2016) generalize this finding to matching

with slot-specific priorities.1 Recently, Hirata, Kasuya and Okumura (2023) show the equivalence of

respecting improvement and strategy-proofness for stable mechanisms under a weak independence

condition. On the other hand, Hatfield, Kojima and Narita (2016) show that for schools with several

seats there exist no stable mechanisms which respect improvements for schools, and the same is

true for mechanisms which are efficient for students. Note that for two-sided markets respecting

improvement is not at all studied on the weak domain.

For one-sided markets such as on-campus housing or kidney exchange (e.g. Roth, Sönmez and

Ünver (2004)), any agent owns one house (or a donor with a kidney) and desires at most one house.

When preferences are strict, the top-trading-cycles (TTC-)mechanism is the most important one

for applications. The study of respecting improvement is pioneered for those markets by Biro et

al. (2023). We provide an in-depth study of deterministic mechanisms for one-sided markets on

both the strict and the weak domain. Our first main result shows an implication of respecting

improvement via three basic properties on the domain of strict preferences. Namely, individual

rationality, strategy-proofness and non-bossiness imply respecting improvement. There is a large

class of rules satisfying individual rationality, strategy-proofness and non-bossiness on the strict

domain. As the TTC-mechanism satisfies these three properties, we immediately obtain that the

TTC-mechanism satisfies respecting improvement (which is also shown by Biro et al. (2023)).

Now one might wonder whether replacing strategy-proofness with respecting improvement in Ma

(1994)’s characterization of the TTC-mechanism (by individual rationality, strategy-proofness and

efficiency) continues to be true. We show that this is not the case even when we add non-bossiness,

i.e. there are rules other than the TTC-mechanism satisfying individual rationality, efficiency,

respecting improvement and non-bossiness on the strict domain. Hence, in contrast to two-sided

markets and stable mechanisms, strategy-proofness and respecting improvement are not equivalent

under individual rationality, efficiency and non-bossiness.

1Kominers (2020) applied this result to obtain alternative direct proofs comparative statics of the student-proposing
DA-mechanism (like for instance, Crawford (1991)).
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For one-sided markets with weak preferences, one needs to obtain strict preferences via tie-

breaking in order to apply the TTC-mechanism (as it is defined only for strict preferences). One

way is to break ties in a fixed manner, i.e. to use the same tie-breaker for any reported preference

profile. Now from our first main result it follows directly that the TTC-mechanism with fixed tie-

breaking satisfies respecting improvement. This is the first deterministic mechanism (i.e. selecting

always a unique assignment) satisfying respecting improvement on the weak domain which is in

contrast to the multi-valued solutions studied in Biro et al. (2023). Instead of breaking ties in a

fixed manner, in applications ties might be broken randomly and random mechanisms emerge. Our

second main result considers three versions of tie-breaking: (i) uniformly (or multiple-tie-breaking

(MTB)), (ii) identically (or single-tie-breaking (STB)) or (iii) locally (or local tie-breaking (LTB)).

We show that on the weak domain the TTC-mechanism with any of these versions of tie-breaking

satisfies respecting improvement (where (iii) was shown by Biro et al. (2023)).

Finally, for the weak domain we consider mechanisms satisfying individual rationality, efficiency

and strategy-proofness. Again by Ma (1994) these properties characterize the TTC-mechanism on

the strict domain (and they imply respecting improvement). On the weak domain, we show that

this is no longer the case: on the one hand individual rationality, efficiency and strategy-proofness

do not imply respecting improvement; and on the other hand there exist rules satisfying these four

properties. For these results we show most importantly top cycles rules with fixed tie-breaking

from Jaramillo and Manjunath (2012) to satisfy respecting improvement.

The paper is organized as follows. Section 2 introduces housing markets, basic properties and

the TTC-mechanism. Section 3 defines respecting improvement, states our first main result (where

respecting improvement is implied by three properties) and shows that Ma (1994)’s characteri-

zation does not hold when we replace strategy-proofness with respecting improvement and add

non-bossiness. Section 4 applies our first main result to top-trading with fixed tie-breaking and

random tie-breaking on the weak domain. Section 5 considers rules satisfying the properties in

Ma’s characterization and respecting improvement on the weak domain. Section 6 discusses our

results in the contexts of generalized matching problems, roommate problems and school choice.

2 Housing markets

Let N = {1, . . . , n} denote the finite set of potential agents. Agent i’s object (or endowment or

house) is denoted by i. Given i ∈ N , agent i is equipped with a (weak) preference relation Ri

on N . Any such relation is reflexive, complete and transitive (but not necessarily strict). Let Pi

denote the strict relation associated with Ri and Ii the indifference relation associated with Ri. We

assume that agent i is never indifferent between his endowment i and any other object, i.e. for all

j ∈ N\{i}, we have jPii or iPij.
2 This means agent i is able to distinguish his endowment from

2Indifferences with the endowment are often ruled out, see for example Sönmez (1999) and Klaus, Klijn and Walzl
(2010).
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any other object. Under this restriction any agent strictly prefers to keep his own object to any

object with the same characteristics (because i likes to avoid moving). In Section 6 we describe

how to adjust our main results when indifferences with the endowment are allowed.

Let RNi denote the set of all such preference relations of agent i on N . We use the convention

to write Ri : jk . . . if jPikPil for all l ∈ N\{j, k} and Ri : [jk] . . . if jIikPil for all l ∈ N\{j, k}.
Given S ⊆ N , let Ri|S denote the restriction of Ri to S. A relation Ri ∈ RNi is strict when for

all j, k ∈ N such that j 6= k, we have either jPik or kPij. Let PNi denote the set of all strict

preference relations of agent i on N . Given Ri ∈ PNi , let top(Ri) denote the most preferred object

under Ri. Let RN = ×i∈NRNi denote the set of all weak preference profiles, respectively, the weak

domain, and let PN = ×i∈NPNi denote the set of all strict preference profiles, respectively, the

strict domain. Given R ∈ RN and i ∈ N , let R−i = (Rj)j∈N\{i} denote the profile R without i’s

preference Ri.

Since agent i’s endowment is denoted by i, an economy is for short a profile R ∈ RN . An

allocation for N is a mapping µ : N → N such that for all i, j ∈ N with i 6= j, µ(i) 6= µ(j). Under

any allocation each agent is receiving some object and no two agents receive the same object. Here

µ(i) denotes the object received by agent i. Let AN denote the set of all allocations for N . A(n

allocation) rule (or mechanism) is a mapping

ϕ : RN −→ AN .

Given R ∈ RN , let ϕ(R) denote the allocation chosen by ϕ for profile R and ϕi(R) denote the

object assigned to i by ϕ for R. We will be interested in the following properties.

Individual rationality means that each individual should always weakly prefer the assigned

object to his endowment. If a rule is not individually rational, then agents are not necessarily

willing to reallocate their endowments.

Individual Rationality: For all R ∈ RN , we have ϕi(R)Rii for all i ∈ N .

Strategy-proofness means that no individual can manipulate the rule to his advantage by

misreporting his preference. This incentive-compatibility condition ensures that agents report

truthfully and the allocation chosen by the rule is based on true preferences.

Strategy-Proofness: For all R ∈ RN , all i ∈ N , and all R′i ∈ RNi , we have ϕi(R)Riϕi(R
′
i, R−i).

Weak efficiency means that it is impossible to make all agents strictly better off through some

other allocation. Note that this requirement is very weak.

Weak Efficiency: For all R ∈ RN , there exists no µ ∈ AN such that µ(i)Piϕi(R) for all i ∈ N .
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(Strong) Efficiency means that it is impossible to make some agent strictly better off while all

agents are weakly better off through some other allocation.

Efficiency: For all R ∈ RN , there exists no µ ∈ AN such that µ(j)Pjϕj(R) for some j ∈ N and

µ(i)Riϕi(R) for all i ∈ N .

Non-bossiness means that no individual can change the allocation without changing his

assigned object. This property prevents collusion among agents because if a rule violates this

condition, then an agent may be bribed by others in order to change the allocation without

changing his assigned object.

Non-Bossiness: For all R ∈ RN , all i ∈ N , and all R′i ∈ RNi , if ϕi(R) = ϕi(R
′
i, R−i), then

ϕ(R) = ϕ(R′i, R−i).
3

Even though all properties above are described for the weak domain, sometimes we only

consider them for rules defined on the strict domain. Below we define Gale’s top-trading-cycles

algorithm for this domain. Informally, the algorithm works as follows: any profile, each agent

points to his most preferred object (or agent). Because N is finite, there must be at least one (top)

cycle and for each top cycle agents trade their endowments (as specified by the cycle). The objects

of these trading cycles are deleted from the preferences of the remaining agents and we apply the

same procedure to the remaining agents and their preferences restricted to the remaining objects

(or agents), and so on.

Top-trading-cycles (TTC-)rule

Let R ∈ PN and set N0 = N .

Step 1. Each i ∈ N points to his most preferred object top(Ri) in N0. Then there exists at least

one cycle i1− i2−· · ·− it (where top(Ril) = il+1 for l ∈ {1, . . . , t−1} and top(Rit) = i1) and for any

such cycle we set fil(R) = top(Ril) for all l ∈ {1, . . . , t}. Let C1 denote the set of agents assigned

in Step 1 and N1 = N0\C1.

Step k+1. Each i ∈ Nk points to his most preferred object top(Ri|Nk) in Nk. Then there exists at

least one cycle i1− i2−· · ·− it (where top(Ril |Nk) = il+1 for l ∈ {1, . . . , t−1} and top(Rit |Nk) = i1)

3Note that under this condition, if an agent changes his report from Ri to R′i and is assigned the same object,
then independently of his true preference relation agent i is indifferent between the two reports Ri and R′i (given
R−i) and all other agents are indifferent independently of their true preferences if the same allocation is chosen under
R and (R′i, R−i).
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and for any such cycle we set fil(R) = top(Ril |Nk) for all l ∈ {1, . . . , t}. Let Ck+1 denote the set of

agents assigned in Step k + 1 and Nk+1 = Nk\Ck+1.

Stop. Nk = ∅.

For any strict R, let f(R) denote the outcome of Gale’s top trading cycles algorithm,4 and f

denotes the top-trading-cycles (TTC-)rule. Roth (1982) showed strategy-proofness and from Bird

(1984) and Pápai (2000) follows non-bossiness of the TTC-rule.

Ma (1994) showed that on the strict domain the TTC-rule is the unique one satisfying individual

rationality, efficiency and strategy-proofness.5

3 Respecting improvement on the strict domain

The main property requires that for any profile, for a fixed agent, if the endowment of the fixed

agent improves in the ranking of some other agent (while keeping unchanged the preference over

other goods and other agents’ preferences), then the fixed agent is weakly better off after the

improvement of his endowment. This prevents agents from trying to lower their endowment in

other agents’ preferences.

Definition 1. Let i ∈ N and Ri, R
′
i ∈ RNi . Then

(I) R′i is a (local) k-improvement of Ri if (i) k ∈ N\{i}, (ii) Ri|N\{k} = R′i|N\{k}, and (iii) for

some j ∈ N\{k} we have either ([jPik and kR′ij] or [kIij and kP ′i j]) and for all l ∈ N\{j, k},
[lPik implies lR′ik] and [lPij implies lP ′ik]; and

(II) R′i is a global k-improvement of Ri if (i) k ∈ N\{i}, (ii) Ri|N\{k} = R′i|N\{k}, and (iii) for

some j ∈ N\{k} we have either ([jPik and kR′ij] or [kIij and kP ′i j]).

In the first part of Definition 1 we consider minimal improvements of an object k in an agent’s

ranking. For instance, if Ri : 6[12]k . . ., then R′i : 6[12k] . . . is the only (local) k-improvement

of Ri whereas R′′i : 6k[12] . . . is a global k-improvement of Ri but not a (local) k-improvement

of Ri. Furthermore, it still allows for pairwise reversals of adjacent alternatives in strict preferences.

Respecting Improvement: For all i, k ∈ N , all R ∈ RN and all k-improvements R′i of Ri, we

have ϕk(R
′
i, R−i)Rkϕk(R).

4Note that the outcome is independent of the choice of cycles.
5Svensson (1999) provides an elegant and short proof of Ma (1994)’s characterization. Ekici (2023) replaces

efficiency by pair-efficiency (whereby no two agents should benefit by swapping their assigned object) in this char-
acterization whereas Lemma 1 in Ehlers (2014) replaces efficiency with weak efficiency and consistency. Miyagawa
(2002) showed that individual rationality, strategy-proofness, non-bossiness and anonymity characterize the TTC-rule
and the no-trade rule whereby all agents always keep their endowments.
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Ri Rk
...

...
a c

k
...

... d

→

Ri R′k
...

...
a c
k k
...

...

↓ ↓
R′i Rk
...

...
k c

a
...

... d

→

R′i R′k
...

...
k c
a k
...

...

Table 1: Proof of Theorem 1: underlined houses are allocated to those agents at the corresponding
profiles (where R−i,k remains fixed throughout).

Global Respecting Improvement: For all i, k ∈ N , all R ∈ RN and all global k-improvements

R′i of Ri, we have ϕk(R
′
i, R−i)Rkϕk(R).

It is clear that the global version of respecting improvement is obtained from successive appli-

cation of the above local version. Furthermore, we may require respecting improvement just on the

strict domain.

Our first theorem shows that on the strict domain respecting improvement is implied by three

basic properties.

Theorem 1. On the strict domain, if a rule satisfies individual rationality, strategy-proofness and

non-bossiness, then it satisfies respecting improvement.

Proof. Let ϕ : PN → AN be a rule satisfying individual rationality, strategy-proofness and non-

bossiness. Suppose ϕ violates respecting improvement. Then there exist i, k ∈ N , R ∈ PN and a

k-improvement R′i of Ri such that c = ϕk(R)Pkϕk(R
′
i, R−i) = d. Obviously, c 6= d.

If ϕi(R) 6= k 6= ϕi(R
′
i, R−i), then by Ri|N\{k} = R′i|N\{k} and strategy-proofness, ϕi(R) =

ϕi(R
′
i, R−i) which together with c 6= d yields a contradiction to non-bossiness. The same argument

yields a contradiction if ϕi(R) = k = ϕi(R
′
i, R−i). If ϕi(R) = k 6= ϕi(R

′
i, R−i), then by strategy-

proofness and Ri being strict, kPiϕi(R
′
i, R−i), which is then a contradiction to strategy-proofness

as R′i is a k-improvement of Ri and thus, ϕi(R) = kP ′iϕi(R
′
i, R−i). Hence, ϕi(R) = a 6= k =

ϕi(R
′
i, R−i) and by strategy-proofness we have R′i = Ra↔ki ,6 i.e. R′i is obtained by the pairwise

switch of a and k (and a plays the role of j in (iii) of Definition 1).

6If Ri : 1 . . . n, then Rm↔m+q
i : 1 . . .m− 1m+ qm+ 1 . . .m+ q − 1mm+ q + 1 . . . n.
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We illustrate in Table 1 the remainder of the proof. Let R′k ∈ PNk be such that

R′k|N\{k} = Rk|N\{k} and {l ∈ N : lP ′kk} = {l ∈ N : lRkc}. Now by cPkd, strategy-proofness

and individual rationality we have ϕk(R
′
k, R−k) = c and ϕk(R

′
i, R
′
k, R−i,k) = k. Furthermore, by

non-bossiness and ϕk(R) = c we have ϕ(R) = ϕ(R′k, R−k) and ϕi(R) = ϕi(R
′
k, R−k) = a 6= k.

But then from ϕk(R
′
i, R
′
k, R−i,k) = k we have ϕi(R

′
i, R
′
k, R−i,k) 6= k. As Ri|N\{k} = R′i|N\{k} and

ϕi(R
′
k, R−k) 6= k 6= ϕi(R

′
i, R
′
k, R−i,k), strategy-proofness implies ϕi(R

′
k, R−k) = ϕi(R

′
i, R
′
k, R−i,k).

Now this is a contradiction to non-bossiness as ϕk(R
′
k, R−k) = c 6= k = ϕk(R

′
i, R
′
k, R−i,k). �

There is a rich class of rules satisfying individual rationality, strategy-proofness, and non-

bossiness on the strict domain. For instance, fix an allocation µ ∈ AN and for all R ∈ PN , (i) µ is

individually rational under R, then ϕµ(R) = µ, and (ii) otherwise ϕµi (R) = i for all i ∈ N . Then ϕµ

satisfies individual rationality, strategy-proofness, and non-bossiness (and respecting improvement

by Theorem 1).

Another type of rule is the following, denoted by φ1 where agent 1 trades in a pairwise exchange

his house for his most preferred house subject to individual rationality. Formally, for all R ∈ PN , let

N1(R) = {i ∈ N : 1Pii}, and (i) if N1(R) 6= ∅, then set φ11(R) = k for k ∈ N1(R) such that kR1h for

all h ∈ N1(R), φ1k(R) = 1, and φ1i (R) = i for all i ∈ N\{1, k}, and (ii) otherwise N1(R) = ∅ and set

φ1i (R) = i for all i ∈ N . Then φ1 satisfies individual rationality, strategy-proofness, non-bossiness

and weak efficiency (and respecting improvement by Theorem 1).

Of course, by Ma (1994)’s characterization, on the strict domain there is only one rule which

satisfies individual rationality, strategy-proofness, non-bossiness and efficiency, namely the TTC-

rule. Note that the TTC-rule does not Pareto dominate φ1, i.e. the TTC-rule does not Pareto

dominate any rule satisfying individual rationality, strategy-proofness and non-bossiness.

Below we provide a rule satisfying individual rationality, efficiency, non-bossiness and respecting

improvement on the strict domain. This implies that we cannot replace strategy-proofness with

respecting improvement in Ma (1994)’s characterization of the TTC-rule on the strict domain.7

Example 1. Let N = {1, 2, 3}. We define g : PN → AN as follows. For all R ∈ PN , (i) if

R1 : 231, R2 : 1 . . . and R3 : 2 . . ., then g(R) = (3, 1, 2) and (ii) otherwise g(R) = f(R) (where f

denotes the TTC-rule). Note that in (i) we have g(R) = (3, 1, 2) 6= (2, 1, 3) = f(R), i.e. g is not

the TTC-rule. It is immediate that g satisfies individual rationality and efficiency.

We show that g satisfies non-bossiness. Let i ∈ N , R,R′ ∈ PN be such that R′ = (R′i, R−i)

(where R′i 6= Ri) and gi(R) = gi(R
′). If either R and R′ belong to (i) or R and R′ belong to (ii),

then non-bossiness is obvious. Thus, let R belong to (i) and R′ belong to (ii). We consider three

cases.

If i = 1, then g1(R) = 3 = g1(R
′), 3P ′11 and by R′1 6= R1, we must have R′1 : 3 . . .. Thus,

f(R′) = (3, 1, 2) = g(R′) = g(R), the desired conclusion.

7I thank Florian Brandl for early input on this.
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If i = 2, then g2(R) = 1 = g2(R
′), 1P ′22 and as R′ is not in (i), we must have R′2 : 3 . . .. But

then f(R′) = (1, 3, 2) = g(R′) implying g2(R) 6= g2(R
′), a contradiction.

If i = 3, then g3(R) = 2 = g3(R
′), 2P ′33 and as R′ is not in (i), we must have R′3 : 1 . . .. But

then f(R′) = (2, 1, 3) = g(R′) implying g3(R) 6= g3(R
′), a contradiction.

We show that g satisfies respecting improvement. Let i, k ∈ N (with i 6= k) and R,R′ ∈ PN

be such that R′ = (R′i, R−i) where R′i is a k-improvement of Ri. If either R and R′ belong to (i)

or R and R′ belong to (ii), then respecting improvement is obvious. Thus, let R belong to (i) and

R′ belong to (ii) (and by the same arguments this also establishes respecting improvement when R′

belong to (i) and R belongs to (ii)). We consider three cases.

If i = 1, then g1(R) = 3 and as R′1 is a k-improvement of R1, we must have k = 3 and R′1 : 3 . . ..

Thus, f(R′) = (3, 1, 2) = g(R′) = g(R), the desired conclusion.

If i = 2, then g2(R) = 1 and as R′2 is a k-improvement of R′2 and R′ is in (ii), we must have

k = 3 and R′2 : 3 . . .. But then f(R′) = (1, 3, 2) = g(R′) implying g3(R
′)R3g3(R

′), the desired

conclusion.

If i = 3, then g3(R) = 2 and as R′3 is a k-improvement of R3 and R′ is in (ii), we must have

k = 1 and R′3 : 1 . . .. But then f(R′) = (2, 1, 3) = g(R′) implying g1(R
′) 6= g1(R), the desired

conclusion.

Now by Example 1, under individual rationality and efficiency, strategy-proofness and respect-

ing improvement are not equivalent as the above rule violates strategy-proofness but satisfies re-

specting improvement. This is in contrast to two-sided markets as Hirata, Kasuya and Okumara

(2023) have shown this equivalence for stable rules in two-sided markets, and stability implies

individual rationality and efficiency.8

Even though Theorem 1 holds only for the strict domain, it has numerous implications for the

weak domain which we examine in detail next.

4 Top trading with fixed tie-breaking

For the strict domain, the most important rule is Gale’s top trading cycles algorithm. For the weak

domain, this rule is extended by breaking ties in a fixed way and then applying Gale’s top trading

cycles algorithm to the obtained strict profile, as done below.

Given Ri, R
′
i ∈ RNi , we say R′i is a strict transformation of Ri if (i) R′i is strict and (ii) for all

j, k ∈ N , we have jPik ⇒ jP ′ik. Given R,R′ ∈ RN , we say R′ is a strict transformation of R if for

all i ∈ N , R′i is a strict transformation of Ri. Let ST (R) denote the set of all strict transformations

of R. Of course, for strict R we have ST (R) = {R}.
8They also need a weak independence condition which can be ignored when agents are assigned exactly one object

(with fixed contractual terms).
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Note that in ST (R) ties are broken arbitrarily. We will be interested in the case where ties are

broken in a fixed manner. Let �i∈ PNi denote a fixed tie-breaker. The choice of the tie-breaker

is arbitrary but it will be used independently of the preference profile to break ties in any weak

preference relation of i in order to obtain a strict preference relation. Given Ri ∈ RNi , let �i (Ri)

denote the strict transformation R′i ∈ PNi of Ri such that for all j, k ∈ N with j 6= k, if jIik and

j �i k, then jP ′ik.

Let � = (�i)i∈N . For any R ∈ RN , let � (R) = (�i (Ri))i∈N . Obviously, � (R) ∈ ST (R) and

if R ∈ PN , then �(R) = R.

Given a profile of fixed tie-breakers � and all R ∈ RN , let f�(R) denote Gale’s top trading

cycles algorithm with fixed tie-breaking �:

f�(R) = f(�(R)).

In other words, in any weak preference profile ties are broken according to � and then Gale’s top

trading cycles algorithm is applied to the resulting strict profile. Top trading (rule) with fixed

tie-breaking f� satisfies weak efficiency but violates efficiency (see for instance, Ehlers (2014)).

The following is an immediate consequence of Theorem 1 (where (i) is Theorem 1 of Biro et al.

(2023)).

Corollary 1. (i) On the strict domain, the TTC-rule satisfies respecting improvement.

(ii) On the weak domain, top-trading with fixed tie-breaking satisfies respecting improvement.

Proof. Since on the strict domain the TTC-rule satisfies individual rationality, strategy-proofness

and non-bossiness, we obtain (i) from Theorem 1.

In showing (ii), let � be a profile of tie-breakers. Note that f� satisfies individual rationality,

strategy-proofness and non-bossiness (see for instance, Theorem 1 in Ehlers (2014)). Suppose that

f� violates respecting improvement. Then there exist i, k ∈ N , R ∈ RN and a k-improvement R′i
of Ri such that f�k (R)Pkf

�
k (R′i, R−i). As tie-breaking respects strict preferences we obtain

f�k (R) = fk(�(R)) �k(Rk)fk(�(R′i, R−i)) = f�k (R′i, R−i),

where the preference is strict. Note that �(R′i) is obtained from �(Ri) by (possibly a sequence

of) k-improvements of Ri. But then the TTC-rule f violates the global version of respecting

improvement, which is a contradiction to (i) as the local version of respecting improvement implies

the global version of respecting improvement. �

Part (ii) of Corollary 1 establishes the first full class of (deterministic) rules satisfying respecting

improvement on the weak domain.
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Instead of fixed tie-breaking, we consider three versions of random tie-breaking (which then

induce random assignments and random assignment rules). One is the global version of multiple

tie-breaking (MTB) by attaching equal probability to each profile of tie-breakers �: for any profile

R ∈ RN we set

MTB(R) =
1

(n!)n

∑
�∈PN

f�(R).

Note that here we implicitly add probabilities for any allocation which is the output of several

tie-breakers. Another one is the global version of single tie-breaking (STB) by attaching equal

probability to each profile of tie-breakers � where ties are broken identically across agents: for any

profile R ∈ RN we set

STB(R) =
1

n!

∑
�∈PN :�1=···=�n

f�(R).

Another one is the local version of single tie-breaking (STB) by attaching equal probability to each

profile of tie-breakers � where ties are broken randomly across agents: for any profile R ∈ RN , for

Ri, let Ri : [H1][H2] · · · [Hm] denote the indifference classes of Ri. Then there are

Πm
l=1

1

|Hl|!
≡ |Ri|

ways to break the ties in Ri. We also write Pi ⊆�i if for all j, l ∈ N , jPil implies j �i l. For profile

R, let |R| = Πn
i=1|Ri|. We also write P ⊆� if Pi ⊆�i for all i ∈ N . Then

LTB(R) =
1

|R|
∑

�∈PN :P⊆�

f�(R).

We show that all three versions of tie-breaking satisfy respecting improvement (where the local

one is shown in Theorem 2 of Biro et al. (2023)). Here we use Rsdi to denote first-order stochastic

dominance among random assignments.9

Theorem 2. Let R,R′ ∈ RN be such that R′ is a k-improvement of R.

(i) MTBk(R
′)Rsdk MTBk(R).

(ii) STBk(R
′)Rsdk STBk(R).

(iii) LTBk(R
′)Rsdk LTBk(R).

Proof. Note that (i) and (ii) follow immediately as for any profile of tie-breakers �∈ PN from (ii)

of Corollary 1 we have f�k (R′)Rkf
�
k (R).

9A random assignment µ̃ is a probability distribution over AN . Then Pr{µ̃ = µ} denotes the probability of µ
under µ̃. Given Ri ∈ RNi and two random assignments µ̃ and ν̃, we have µ̃(i)Rsdi ν̃(i) if for all k ∈ N we have∑
µ∈AN :µ(i)Rik

Pr{µ̃ = µ} ≥
∑
µ∈AN :µ(i)Rik

Pr{ν̃ = µ}.

11



In showing (iii), it suffices to consider minimal k-improvement R′i of Ri and R′ = (R′i, R−i).

In the first case, suppose jIik for some j 6= k. Let Hj = {l ∈ N : lIij}. Then k ∈ Hj ,

H ′j = Hj\{k} and for all l ∈ N\Hj , lP
′
ik or kP ′i l. Suppose that R−i is strict and Ri|N\Hj is strict,

i.e. Ri only contains the non-singleton indifference class Hj . Now for any tie-breaking � we have

f�k (R′)Rkf
�
k (R). Note that any tie-breaking of Hj in Ri corresponds to |Hj | times breaking the

ties of Hj\{k} in R′i identically (and vice versa, i.e. any tie-breaking of Hj\{k} corresponds to

|Hj | breaking the ties in Hj). This observation implies LTBk(R
′)Rsdk LTBk(R). Now a similar

observation implies the desired conclusion when Ri contains more ties or/and R−i contains ties.

In the second case, suppose that for all l 6= k, lPik or kPil, and jI ′ik for some j 6= k. Let

H ′j = {l ∈ N : lI ′ij}. Then k ∈ H ′j and Hj = H ′j\{k}. Suppose that R−i is strict and Ri|N\Hj is

strict, i.e. Ri only contains the non-singleton indifference class Hj . Then the same arguments as

above yield the desired conclusion. �

We relate Theorem 1 to the core and to the set of competitive allocations in a housing market.

Given R ∈ RN , T ⊆ N , and µ ∈ AN , if for some µ̄ ∈ AN , (i) µ̄(T ) = T , (ii) for all i ∈ T , µ̄(i)Riµ(i),

and (iii) for some j ∈ T , µ̄(j)Pjµ(j), then we say that coalition T blocks µ under R. The (strong)

core of R, denoted by C(R), consists of all allocations which are not blocked by any coalition.

Given a preference profile R ∈ RN , an allocation is called competitive when there exist prices

for all i ∈ N such that each agent maximizes his preference on the set of affordable objects and

the price of his assignment at µ equals the price of his initial endowment. We consider the solution

that chooses for each preference profile its set of competitive allocations, called the competitive

solution. Formally, given R ∈ RN , µ ∈ AN is a competitive allocation if there exists a price vector

(p(i))i∈N ∈ RN such that for all i ∈ N , (i) p(µ(i)) = p(i); and (ii) for all j ∈ N , if p(j) ≤ p(i), then

µ(i)Rij. Now a rule is competitive if it chooses for any profile a competitive allocation.

When preferences are strict, the core contains exactly one allocation, which is the unique com-

petitive allocation (Roth and Postlewaite, 1977). When preferences are weak, the core is always a

subset of the competitive solution (Wako, 1984). Moreover, for each profile, the set of competitive

allocations is obtained by computing the cores of all its strict transformations (Shapley and Scarf,

1974).10

Hence, top trading with fixed tie-breaking chooses for each profile a competitive allocation.

This supports the market-based approach even when preferences are weak, also because compet-

itive allocations always exist whereas the core may be empty. Let comp(R) denote the set of all

competitive allocations for profile R. It is known that

comp(R) = ∪�∈PN {f�(R)}.
10Ehlers (2004) shows that the minimal monotonic extension of the core is the correspondence choosing for each

profile its set of competitive allocations. Klaus, Klijn and Walzl (2010) established on the domain RN that the set of
competitive allocations is the unique von Neumann-Morgenstern farsightedly stable set based on weak dominance.
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We obtain Corollary 1 in Biro et al. (2023) as an immediate consequence from (ii) of Corollary 1

as we explain below.

Corollary 2 (Biro et al. (2023, Corollary 1)). On the weak domain we have for all i, k ∈ N , all

R ∈ RN and all k-improvements R′i of Ri,

(i) There exists µ′ ∈ comp(R′i, R−i) such that µ′(k)Rkµ(k) for all µ ∈ comp(R).

(ii) There exists µ ∈ comp(R) such that µ′(k)Rkµ(k) for all µ′ ∈ comp(R′i, R−i).

Proof. In showing (i), let µ̄ ∈ comp(R) be such that µ̄(k)Rkµ(k) for all µ ∈ comp(R). Then there

exists a profile � of tie-breakers such that f�(R) = µ̄. As f� satisfies respecting improvement, we

have f�k (R′i, R−i)Rkf
�
k (R). By setting µ′ = f�(R′i, R−i) we obtain the desired conclusion.

In showing (ii), let µ̄′ ∈ comp(R′i, R−i) be such that µ′(k)Rkµ̄
′(k) for all µ′ ∈ comp(R′i, R−i).

Then there exists a profile � of tie-breakers such that f�(R′i, R−i) = µ̄′. As f� satisfies respect-

ing improvement, we have f�k (R′i, R−i)Rkf
�
k (R). By setting µ = f�(R) we obtain the desired

conclusion. �

5 Respecting improvement and efficiency on the weak domain

On the one hand, on the strict domain the TTC-rule is characterized by individual rationality,

efficiency, strategy-proofness, non-bossiness and respecting improvement, and on the other hand,

on the weak domain top-trading with fixed tie-breaking satisfies individual rationality, weak effi-

ciency, strategy-proofness, non-bossiness11 and respecting improvement but violates efficiency. In

achieving efficiency, we need to search for rules other than top-trading with fixed tie-breaking. It

is known that on the weak domain individual rationality, efficiency, strategy-proofness and non-

bossiness are incompatible (Jaramillo and Manjunath, 2012, Proposition 2). Hence, in achieving

individual rationality, efficiency and strategy-proofness, we need to drop non-bossiness.

For the weak domain, we show the following: on the one hand, the three basic properties in Ma’s

characterization do not imply respecting improvement (which is in contrast to the strict domain);

and on the other hand, there exists a full class of rules satisfying the three basic properties in

Ma’s characterization and respecting improvement. In showing the latter, we show that the class

of top cycles rules with fixed tie-breaking from Jaramillo and Manjunath (2012) satisfies respecting

improvement (and we refer to their paper for the detailed description of those rules). Of course,

by the discussion above these rules must violate non-bossiness.12

11Theorem 1 in Ehlers (2014) characterizes top-trading with fixed tie-breaking in terms of welfare with these
properties and consistency.

12Note that there other ways to define non-bossiness on the weak domain as discussed by Bogomolnaia, Deb
and Ehlers (2005). For instance, in the definition of non-bossiness one could require ϕi(R)Iiϕi(R

′
i, R−i) implies

ϕl(R)Ilϕl(R
′
i, R−i) for all l ∈ N . It is easily seen that this notion is incompatible with efficiency as for N =

{1, 2}, R1 : 12 and R2 : 12 either (1, 2) or (2, 1) is chosen, say ϕ(R) = (1, 2). Then for R′1 : [12] we have by
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Theorem 3. (i) On the strict domain, individual rationality, efficiency and strategy-proofness

imply respecting improvement.

(ii) On the weak domain, individual rationality, efficiency and strategy-proofness do not imply

respecting improvement.

(iii) On the weak domain, there exist rules satisfying individual rationality, efficiency, strategy-

proofness and respecting improvement. In particular, top cycles rules with fixed tie-breaking

from Jaramillo and Manjunath (2012) satisfy respecting improvement.

Proof. Note that by Ma (1994), the TTC-rule is characterized by individual rationality, efficiency

and strategy-proofness. Since the TTC-rule satisfies non-bossiness, Theorem 1 yields (i).

Below we use the same notation as in Jaramillo and Manjunath (2012) and denote by TC� the

top cycles rule with priority � (where we drop the endowment vector as any agent i owns object i).

By Propositions 2 and 5 in Jaramillo and Manjunath (2012), TC� satisfies individual rationality,

efficiency and strategy-proofness.

In showing (ii), let N = {1, 2, 3, 4}, �: 1234 and �′: 4321. Let g : RN → AN be defined as

follows (where we exclude indifferences with the endowment): for all R ∈ RN , if R1 : 12 . . ., then

g(R) = TC�
′
(R) and otherwise g(R) = TC�(R). As TC� and TC�

′
satisfy individual rationality

and efficiency, g satisfies individual rationality and efficiency. Furthermore, g satisfies strategy-

proofness as g1(R) = 1 if R1 : 1 . . . and g satisfies individual rationality for agent 1 (and TC� and

TC�
′

satisfy strategy-proofness).

However, g violates respecting improvement. Let R1 : 1234, R2 : 42 . . ., R3 : 43 . . . and R4 :

[23]41. Then g(R) = TC�
′
(R) = (1, 2, 4, 3) (as 3 �′ 2). For R′1 : 1324 we have g(R′1, R−1) =

TC�(R′1, R−1) = (1, 4, 3, 2) (as 2 � 3). Hence, g2(R
′
1, R−1)P2g2(R) and R1 is a 2-improvement

over R′1 yielding a violation to respecting improvement (and at the same time this is a violation of

non-bossiness).13

In showing (iii), without loss of generality, let 1 � 2 � · · · � n. Suppose that TC� violates

respecting improvement. Then as TC� satisfies individual rationality and strategy-proofness, then

there exist i, k ∈ N (with i 6= k) and R,R′ = (R′i, R−i) ∈ RN such that R′i is a k-improvement of

Ri, TC
�
k (R) 6= k = TC�k (R′) and Rk : TC�k (R)k . . ..14 Note that it suffices to consider minimal

efficiency, ϕ(R′1, R2) = (2, 1), which is now a contradiction to this notion of non-bossiness as ϕ1(R)I ′1ϕ1(R′1, R2) but
ϕ2(R′1, R2)P2ϕ2(R).

13Note that g can be easily modified when R1 : 1 . . . by allowing for more “complicated choices” of the priority. This
confirms that a characterization of the rules satisfying individual rationality, efficiency and strategy-proofness seems
to be out of reach (see also Saban and Sethuraman (2013)). One could also simply set the priority � equal to R1 in
those cases, it follows then from the same arguments below that this rule satisfies respecting improvement. Hence,
again a characterization of the rules satisfying individual rationality, efficiency, strategy-proofness and respecting
improvement seems to be out of reach.

14Let ϕ be a rule satisfying individual rationality and strategy-proofness. If ϕ violates respecting improvement,
then there exist i, k ∈ N , a profile R and k-improvement R′i of Ri such that ϕk(R)Pkϕk(R′i, R−i). By individual
rationality and strategy-proofness, we may suppose that Rk ∈ PNk , Rk : ϕk(R)k . . . and ϕk(R′i, R−i) = k.
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k-improvements of Ri where either k is ranked in R′i just above all houses indifferent with k under

Ri (and k is not indifferent with any other house under R′i) or k is not indifferent with any other

house under Ri and then indifferent under R′i with the houses ranked just above k under Ri.

By TC�k (R′) = k 6= TC�i (R′), we have the following six mutually exclusive cases.

1. If TC�i (R)P ′ik, then by strategy-proofness, both TC�i (R)IiTC
�
i (R′) and TC�i (R)I ′iTC

�
i (R′)

and in the execution of TC�(R) and TC�(R′) agent i does not point to k which implies

TC�(R) = TC�(R′) (and respecting improvement is satisfied).

2. If kPiTC
�
i (R), then by strategy-proofness, both TC�i (R)IiTC

�
i (R′) and TC�i (R)I ′iTC

�
i (R′)

and in the execution of TC�(R) and TC�(R′) agent k departs before agent i and the pointing

of the agents in N\{i} remains identical in TC�(R) and TC�(R′) until agent k departs. This

implies TC�k (R) = TC�k (R′) (and respecting improvement is satisfied).

3. If k = TC�i (R) and lIik for some l 6= k, then R′i is a local push-up of Ri at k and by

Lemma 2 (Invariance) of Jaramillo and Manjunath (2012) we obtain TC�i (R′) = k. Thus, by

Rk : TC�k (R)k . . . and individual rationality we obtain TC�k (R′) = TC�k (R) (and respecting

improvement is satisfied).

4. If k = TC�i (R) and for all l 6= k either lPik or kPil, then by individual rationality we have kPii

and forR′i we have lI ′ik for some l 6= k, i. But then by strategy-proofness we have TC�i (R′) = k

and by Rk : TC�k (R)k . . . and individual rationality we obtain TC�k (R′) = TC�k (R) (and

respecting improvement is satisfied).

5. If TC�i (R) 6= k 6= TC�i (R′) and kIiTC
�
i (R), then for R′i we have for all l 6= k ei-

ther lP ′ik of kP ′i l. Note that kP ′iTC
�
i (R′) as R′i is a k-improvement of Ri. By strategy-

proofness, TC�i (R′) 6= k and as R′i is a k-improvement of Ri, we have TC�i (R)IiTC
�
i (R′)

and TC�i (R)I ′iTC
�
i (R′). But then in the execution of TC�(R′) agent i cannot depart before

agent k (as agent k remains unsatisfied (by TC�k (R′) = k) and i continues to point to agent

k). Now when considering the execution of TC�(R), at some Stage t agent k must belong

to a trading cycle j1 − · · · − js. As agent k is unsatisfied, the pointing of all agents other

than i remains unchanged in this trading cycle under R′. If i does not belong to the trading

cycle, then this trading cycle is also executed under R′. If i belongs to the trading cycle, then

under R′ agent i points to agent k (as k is unsatisfied and for all l 6= k either lP ′ik or kP ′i l)

and a shorter trading cycle is executed. Thus, TC�k (R′) 6= k and TC�k (R′) = TC�k (R) (and

respecting improvement is satisfied).

6. If TC�i (R) 6= k 6= TC�i (R′) and kI ′iTC
�
i (R′), then as R′i is a k-improvement of Ri we obtain

TC�i (R′)Pik. By strategy-proofness, TC�i (R) 6= k and as R′i is a k-improvement of Ri, we

have TC�i (R)IiTC
�
i (R′) and TC�i (R)I ′iTC

�
i (R′). Now when considering the execution of

TC�(R), at some Stage t agent k must belong to a trading cycle j1 − · · · − js. As agent k is
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unsatisfied, the pointing of all agents other than i remains unchanged in this trading cycle

under R′. If i does not belong to the trading cycle, then this trading cycle is also executed

under R′. If i belongs to the trading cycle, then under R′ either i points to the same agent,

say jl (and both jl is unsatisfied and jl � k) or i points to agent k (if jl is satisfied or both

jl is unsatisfied and k � jl) and a shorter trading cycle is executed. In both case we have

TC�k (R′) 6= k and TC�k (R′) = TC�k (R) (and respecting improvement is satisfied). �

Next we discuss replacing respecting improvement with non-bossiness in Theorem 3: now (i)

continues to hold, i.e. on the strict domain, individual rationality, efficiency and strategy-proofness

imply non-bossiness (as the TTC-rule is characterized by these three properties and satisfies non-

bossiness); furthermore, the incompatibilty of individual rationality, efficiency, strategy-proofness

and non-bossiness on the weak domain implies that (ii) continues to hold but not (iii) when re-

specting improvement is replaced with non-bossiness. Now one might wonder whether on the weak

domain there exist rules satisfying individual rationality, efficiency, respecting improvement and

non-bossiness, Of course, once we replace efficiency with weak efficiency we obtain a compatibility

as top trading with fixed tie-breaking satisfies all properties (and is even characterized by Ehlers

(2014, Theorem 1) when consistency is added).

We show the following in the Appendix.

Proposition 1. For three agents and the weak domain,

(i) on the one hand individual rationality, efficiency, non-bossiness and strategy-proofness are

incompatible whereas

(ii) on the other hand individual rationality, efficiency, non-bossiness and respecting improvement

are compatible.

Here for the last part we construct explicitly a three agent rule. We also show that any such

rule cannot coincide with the TTC-rule on the strict domain, i.e. it is not possible to extend the

TTC-rule from the strict domain to the weak domain while maintaining the properties in (ii) of

Proposition 1. This again establishes for the weak domain the non-equivalence of strategy-proofness

and respecting improvement under individual rationality, efficiency and non-bossiness.

Finally we show that Theorem 3 implies that for any profile and any local k-improvement, if

the cores are non-empty under both profiles, then the core satisfies respecting improvement which

is an extension of (i) of Corollary 1 from the strict domain to the weak domain (and this was shown

in Theorem 3 by Biro et al. (2023)).

Given R ∈ RN and µ, ν ∈ AN , µ strongly blocks ν if there exists ∅ 6= S ⊆ N such that µ(S) = S

and µ(i)Piν(i) for all i ∈ S. Then the weak core of R, denoted by WC(R), consists of all allocations

which are not strongly blocked.
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Corollary 3 (Biro et al. (2023, Theorem 3)). Let R,R′ ∈ RN be such that R′ is a k-improvement

over R. If C(R) 6= ∅ 6= C(R′), then µ′(k)Rkµ(k) for all µ ∈ C(R) and all µ′ ∈ C(R′).

Proof. First, we show that TC�(R) ∈ C(R) whenever C(R) 6= ∅. Suppose not. Then there is

a weak blocking coalition S and µ ∈ AN such that µ(S) = S, µ(i)RiTC
�
i (R) for all i ∈ S and

µ(j)PjTC
�
j (R) for some j ∈ S. Without loss of generality, we may suppose that S consists of one

trading cycle j1−· · ·− js. By Jaramillo and Manjunath (2012, Proposition 4), TC�(R) ∈WC(R).

Thus, there exists l ∈ {1, . . . , s} such that TC�jl (R)Ijljl+1 and jl+2Pjl+1
TC�jl+1

(R). Then jl cannot

depart before jl+1 as jl+1 is unsatisfied. Similarly all agents before jl+1 in the cycle cannot depart

before. Furthermore, jl+1 does not depart before jl+2, and so on. This implies that no agent in S

departs before any other agent in S, which is a contradiction.15

Second, by (iii) of Theorem 3 we obtain TC�k (R′)RkTC
�
k (R). By the above and C(R) 6=

∅ 6= C(R′), we have TC�(R) ∈ C(R) and TC�(R′) ∈ C(R′). Now by Wako (1991) we have

µ′(k)I ′kTC
�
k (R′) for all µ′ ∈ SC(R′) and µ(k)IkTC

�
k (R) for all µ ∈ C(R), which yields the desired

conclusion. �

6 Discussion

6.1 Generalized matching problems

First, it is easily seen that our first main result remains true for generalized matching problems

introduced by Sönmez (1996).

Recall that N denotes the (finite) set of agents. Given i ∈ N , let Si ⊆ N denote agent i’s set of

possible assignments. This set includes his endowment, i.e., i ∈ Si. The preference relation of each

i ∈ N is a reflexive, complete, and transitive binary relation Ri over Si. For convention, we use the

notation R̄i to denote all such preference relations, and the weak domain by R̄N (and similar for

the strict domain P̄i and P̄N ).

Now a matching is a bijection µ : N → N such that each agent’s assignment belongs to his

set of possible assignments, i.e. for all i ∈ N , µ(i) ∈ Si. Let M denote the set of all matchings.

Let µI denote the initial matching such that for all i ∈ N , µI(i) = i. We specify a subset Mf

of M as the set of feasible matchings. We always require that µI ∈ Mf and for all i ∈ N ,

Si = {µ(i) : µ ∈ Mf}. Since N , (Si)i∈N , and Mf remain fixed, a generalized matching problem is

simply a preference profile R ∈ R̄N .

All the definitions from housing markets extend in a straightforward way to generalized matching

problems. Furthermore, the proof of our first main result continues to remain true.

15Alcalde-Unzu and Molis (2011, Theorem 4) have shown this for their class of rules satisfying individual rationality,
efficiency and strategy-proofness. Alcalde-Unzu and Molis (2011, Theorem 1), Jaramillo and Manjunath (2012,
Proposition 4) and Saban and Sethuraman (2013, Theorem 2) have shown that their rules always select weak core
allocations. Ma (1994, Theorem 2) has shown this for the core and any correspondence where any selection from it
satisfies individual rationality, efficiency and strategy-proofness.
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Theorem 4 (Generalized matching problems). On the strict domain, if a rule ϕ : P̄N → Mf

satisfies individual rationality, strategy-proofness and non-bossiness, then ϕ satisfies respecting

improvement.

This means for generalized matching problems we obtain the same conclusions as above, i.e. on

the strict domain any rule satisfying individual rationality, strategy-proofness and non-bossiness

satisfies respecting improvement, and any such rule can be extended to the weak domain via

fixed tie-breaking (while maintaining all these properties). Furthermore, if indifferences with the

endowment are allowed, then we may break ties always in favor of the endowment, i.e. for any

fixed tie-breaker �i we have i �i j for all j 6= i, and Corollary 1 and Theorem 2 carry over. When

considering efficiency, we already know from Theorem 1 in Sönmez (1999) that except for housing

markets the class of rules satisfying individual rationality, efficiency and strategy-proofness is often

empty.

The elegance of generalized matching problems is that they cover the three most important

matching problems for applications: (i) housing markets (Shapley and Scarf, 1974) by setting

Si = N for all i ∈ N and Mf = AN ; (ii) roommate markets (Gale and Shapley, 1962) by setting

Si = N for all i ∈ N and µ ∈Mf ⇔ [µ ∈ AN and µ(µ(i)) = i for all i ∈ N ]; (iii) marriage markets

(Gale and Shapley, 1962) by setting N = M ∪W with M ∩W = ∅, Sm = W ∪ {m} for all m ∈M ,

Sw = M ∪ {w} for all w ∈W , and µ ∈Mf ⇔ [µ ∈ AN , µ(µ(i)) = i for all i ∈ N , µ(m) ∈W ∪ {m}
for all m ∈M , and µ(w) ∈M ∪ {w} for all w ∈W .

Housing markets were discussed in detail above. The other two applications are considered

below.

6.2 Roommate problems

For roommate problems, any two agents need to be put into one (dormitory) room. Below we will

not provide a detailed analysis of roommate problems as this is beyond the scope of the paper

but highlight some important differences for three agents. More precisely, we show that individual

rationality, efficiency and strategy-proofness are incompatible16 but there exist rules satisfying

individual rationality, efficiency, non-bossiness and respecting improvement.

Example 2. Let N = {1, 2, 3} and consider the strict domain P̄N and Mf as described above.

On the one hand, let ϕ : P̄N → Mf satisfy individual rationality, efficiency and strategy-

proofness. Let R1 : 231, R2 : 312 and R3 : 123. By efficiency, ϕ(R) must pair two agents in

one room, say ϕ(R) = (2, 1, 3). Let R′3 : 231. By strategy-proofness and efficiency, ϕ(R′3, R−3) =

16We do not claim that we are the first ones to show this for three agents. For four or more agents this follows from
Theorem 1 and Corollary 5 in Sönmez (1999) but not for three agents as then the core is either empty or contains
exactly one allocation (as otherwise it contains two allocations where two agents are put into one room, and the agent
who is put into a room under both allocations has a strict prference over these two allocations, which means that one
allocation blocks the other one).
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(2, 1, 3). Let R′2 : 321. By individual rationality and efficiency, ϕ(R1, R
′
2, R

′
3) = (1, 3, 2), which is

a contradiction to strategy-proofness as ϕ2(R1, R
′
2, R

′
3) = 3P21 = ϕ(R′3, R−3) = (2, 1, 3).

Hence, individual rationality, efficiency and strategy-proofness are incompatible for roommate

problems with three agents.

On the other hand, we modify the rule φ1 defined after Theorem 1 for roommate problems to φ̄1

as follows: for all R ∈ P̄N , (i) if R2 : 321 and R3 : 231, then φ̄1(R) = (1, 3, 2) and (ii) otherwise

φ̄1(R) = φ1(R). Then it is straightforward that φ̄1 satisfies individual rationality, efficiency, non-

bossiness and respecting improvement.

Hence, individual rationality, efficiency, non-bossiness and respecting improvement are com-

patible for roommate problems with three agents.

For three agents, the above example shows on the strict domain an important difference between

housing markets and roommate problems: for housing markets individual rationality, efficiency,

strategy-proofness and respecting improvement characterize the TTC-rule whereas for roommate

problems the four properties are incompatible. Furthermore, for both housing markets and room-

mate problems there exist other rules than the TTC-rule satisfying individual rationality, efficiency

and respecting improvement. We summarize our findings of the above example below.

Proposition 2 (Roommate problems). For roommate problems with three agents, on the strict

domain

(i) individual rationality, efficiency and strategy-proofness are incompatible and

(ii) individual rationality, efficiency, non-bossiness and respecting improvement are compatible.

6.3 School choice

Even though our first main result covers only housing markets, it can be applied to the TTC-

mechanism in school choice. The main difference to a marriage market is that schools have non-unit

capacities and are treated as “passive” whereas students correspond to the “active” agents.

We briefly describe the model. Let N denote the set of agents (or students) and O denote the

set of finite set of objects (or schools). Each i ∈ N has strict preference relation Ri over O ∪ {i}
which we denote by P̂i and the set of profiles by P̂N . Each o ∈ O has a capacity qo ∈ N and a

priority order �o over N (and we set �= (�o)o∈O). An assignment is a function µ : N → O ∪N
such that for all i ∈ N , µ(i) ∈ O ∪ {i}, and for all o ∈ O, |µ−1(o)| ≤ qo. Let M̂ denote the set of

all assignments. An assignment µ is stable for profile R if µ is individually rational and there exist

no i ∈ N and o ∈ O such that oPiµ(i) and either |µ−1(o)| < qo or i �o j for some j ∈ µ−1(o). A

rule (or mechanism) is a function ϕ : P̂N → M̂.

Except for respecting improvement all properties are defined for rules in the same way as for

housing markets. Note that here for (weak) efficiency we only consider agents’ welfare and ignore

objects’ priorities. A rule is stable if it chooses a stable assignment for any profile.
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As a first observation, there is no hope to apply Theorem 4 to stable rules as Kojima (2010)

has shown the incompatibility of stability and non-bossiness.

Next for respecting improvement, there are two versions: one is with respect to improving

an agent’s ranking in object priorities and the other one is with respect to improving an object’s

ranking in agent preferences. For stable rules the first one has been studied in detail by Balinski and

Sönmez (1999), Kominers and Sönmez (2016) and most recently by Hirata, Kasuya and Okumura

(2023) while the second one leads to impossibilities as shown by Hatfield, Kojima and Narita (2016).

Even though here agents have no endowments, for any object implicitly the highest priority

agent has the claim (or right) to be assigned this object. As objects have non-unit capacities,

any agent who is among the qo highest priority agents, has the claim to o. Given profile R and

assignment µ, µ respects claims if there exist no i ∈ N and o ∈ O such that oPiµ(i) and i has a

claim to o, i.e. |{k ∈ N : k �o i}| ≤ qo − 1 (and similarly, respecting claims is defined for rules).

Definition 2. Let N be a set of agents, i ∈ N , o ∈ O and Ri, R
′
i ∈ P̂i. Then R′i is a (local)

o-improvement of Ri if (i) i does not have a claim for o, (ii) Ri|O\{o} = R′i|O\{o}, (iii) for some

o′ ∈ O\{o} we have o′Pio and oR′io
′, and (iv) for all o′′ ∈ O\{o, o′}, [o′′Pio

′ implies o′′P ′io
′] and

[o′P ′io
′′ implies o′Pio

′′].

In Definition 2 we consider minimal improvements of an object k in an agent’s ranking only on

the strict domain.

Weak Respecting Improvement: For all i, k ∈ N , all R ∈ P̂N and all o-improvements R′i ∈ P̂i
of Ri such that k has a claim for o we have ϕk(R

′
i, R−i)Rkϕk(R).

Note that weak respecting improvement is distinct from the notions described above for two-

sided matching markets. Our proposed notion is in between those as it considers students’ welfare

and at the same time improvement is only possible on the students’ side in terms of their preferences

(while keeping schools’ priorities fixed).

For the following we just replicate the proof of Theorem 1.

Theorem 5. For school choice, if a rule satisfies individual rationality, strategy-proofness, non-

bossiness and respecting claims, then it satisfies weak respecting improvement.

Abdulkadiroğlu and Sönmez (2003) have proposed the following mechanism for school choice.

Top-trading-cycles (TTC-)mechanism

Let R ∈ P̂N and set N0 = N , O0 = O, and q0 = (q0o)o∈O = (qo)o∈O.

Step 1. Each i ∈ N points to his most preferred object top(Ri) in O and each object o ∈ O points

to the highest priority agent top(�o) in N . Then there exists at least one cycle and fix one, say
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i1 − o1 − i2 − o2 − · · · − it − ot (where top(Ril) = ol and top(�ol) = il+1 for l ∈ {1, . . . , t − 1},
top(Rit) = ot and top(�ot) = i1). Then we set gil(R) = top(Ril) for all l ∈ {1, . . . , t}. Let

C1 = {i1, . . . , it} denote the set of agents assigned in the fixed cycle, N1 = N0\C1, q
1
o = q0o − 1 if

o ∈ {o1, . . . , ol} and otherwise q1o = q0o , E1 = {o ∈ O : q1o = 0} denote the set of objects which have

exhausted their capacity, and O1 = O\E1.

Step k+1. Each i ∈ Nk points to his most preferred object top(Ri|Ok) in Ok and each object o ∈ Ok
points to the highest priority agent top(�o |Nk) in Nk. Then there exists at least one cycle and

fix one, say i1 − o1 − i2 − o2 − · · · − it − ot (where top(Ril |Ok) = ol and top(�ol |Nk) = il+1 for

l ∈ {1, . . . , t − 1}, top(Rit |Ok) = ot and top(�ot |Ok) = i1). Then we set gil(R) = top(Ril) for all

l ∈ {1, . . . , t}. Let Ck+1 = {i1, . . . , it} denote the set of agents assigned in the fixed cycle, Nk+1 =

Nk\Ck+1, q
k+1
o = qko − 1 if o ∈ {o1, . . . , ot} and otherwise qk+1

o = qko , Ek+1 = {o ∈ O : qk+1
o = 0}

denote the set of which have exhausted their capacity, and Ok+1 = Ok\Ek+1.

Stop. Nk = ∅ or Ok = ∅.

Let g denote the TTC-mechanism. This mechanism belongs to the class of “hierarchical ex-

change rules” (Pápai, 2000) which satisfy strategy-proofness and non-bossiness. As the TTC-

mechanism satisfies individual rationality and respecting claims, the most important application

of Theorem 5 is the following.17

Corollary 4. For school choice, the TTC-mechanism satisfies weak respecting improvement.

Furthermore, one can verify that the above remains true on the subdomain of the strict domain

where all schools are preferred to being unmatched (which corresponds to µ(i)). Note that the

TTC-mechanism is efficient for students and satisfies weak respecting improvement whereas the

“student-proposing” deferred acceptance mechanism is inefficient for students (but satisfies weak

efficiency for students).

Appendix

Throughout, let N = {1, 2, 3}. Note that there are exactly two exchange cycles of length three,

namely ν = (3, 1, 2) and η = (2, 3, 1).

First, for completeness, we show the incompatibility of individual rationality, efficiency, non-

bossiness and strategy-proofness: let ϕ be a rule satisfying these properties and consider profile

R where R1 : [23]1, R2 : 132 and R3 : 123. Then by individual rationality and efficiency, ϕ(R) ∈
{ν, η}, say ϕ(R) = ν. Then for R′1 : 321 we obtain from strategy-proofness, ϕ1(R

′
1, R−1) = ϕ1(R),

17Without going into details, for house allocation with existing tenants the mechanism proposed by Abdulkadiroğlu
and Sönmez (1999) also belongs to this class and respects claims for existing tenants, meaning that weak respecting
improvements is again satisfied.

21



and from non-bossiness, ϕ(R′1, R−1) = ϕ(R). As (R′1, R−1) ∈ PN and f(R′1, R−1) = (3, 2, 1) 6= ν,

ϕ does not coincide with TTC-rule on the strict domain, which is a contradiction to Ma (1994)’s

characterization of the TTC-rule on the strict domain.

Second, we show that if ϕ satisfies individual rationality, efficiency, non-bossiness and respecting

improvement, then ϕ cannot coincide with the TTC-rule on the strict domain. Consider the same

profile R as above and suppose ϕ(R) = ν. We show again ϕ(R) = ϕ(R′1, R−1) = ν 6= f(R′1, R−1).

By efficiency, we have ϕ1(R
′
1, R−1) 6= 1. If ϕ1(R

′
1, R−1) = 3, then this follows from non-bossiness.

Thus, suppose ϕ1(R
′
1, R−1) = 2 which implies by efficiency, ϕ(R′1, R−1) = (2, 3, 1). Now for R′3 :

[12]3 we obtain from efficiency, ϕ(R′1, R2, R
′
3) = (3, 1, 2). But then ϕ1(R

′
1, R2, R

′
3)P

′
1ϕ1(R

′
1, R−1)

even though R3 is a 1-improvement over R′3, which is a contradiction to respecting improvement.

Hence, we must have ϕ(R′1, R−1) 6= f(R′1, R−1).

Third, we show the compatibility of individual rationality, efficiency, non-bossiness and respect-

ing improvement via the rule φ : RN → AN defined as follows.

Let R ∈ RN . We have the following cases:

(1) if Ri : i . . . for some i ∈ N , then there exists a unique individually rational and efficient

allocation which coincides with φ(R);

(2) if ¬(1) and there exists an efficient µ such that µ(i)Rij for all i, j ∈ N , then µ ∈ {ν, η} and

we set φ(R) = ν if ν is efficient and otherwise φ(R) = η;

(3) if ¬(2) and R /∈ PN , then for some i ∈ N we have Ri : [jk]i and either (3.1) Rj : k . . .,

Rk : j . . . and we set φi(R) = i, φj(R) = k and φk(R) = j or (3.2) Rj : i . . ., Rk : i . . . and we

set φ(R) = ν if ν is individually rational and otherwise we have lPlν(l) for some l ∈ N and

we set φl(R) = l (and this determines the choice of φ(R) by efficiency); or

(4) if ¬(3), then R ∈ PN and there exists i ∈ N such that Rj : i . . . and Rk : i . . ., and (4.1) we

set φ(R) = ν if ν(i) = top(Ri) and ν is individually rational and (4.2) otherwise in φ(R) we

make a pairwise exchange among i and top(Ri) and the other agent keeps his endowment.

The rule φ discriminates among ν and η as it selects η only in (2) when η is the unique efficient

allocation implying that all agents receive one of their most preferred objects under η. Furthermore,

note that in (4) always agent i receives his top object and at least one other agent receives his top

object.

It is obvious that φ satisfies individual rationality and efficiency. In order to verify non-bossiness,

note that for any profile R which contains indifferences, breaking ties in favor of the assigned

object keeps the chosen allocation unchanged. Hence, for non-bossiness, it suffices to consider the

restriction of φ to the strict domain.

For non-bossiness, without loss of generality, we consider agent 1, and let R ∈ PN and R′1 ∈ PN1
be such that φ1(R

′
1, R−1) = φ1(R). If φ1(R) = 1, then individual rationality and efficiency imply
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φ(R) = φ(R′1, R−1). If both φ(R) and φ(R′1, R−1) are exchange cycles of length three, then by

ν(i) 6= η(i) for all i ∈ N , we obtain φ(R) = φ(R′1, R−1) from φ1(R
′
1, R−1) = φ1(R).

Thus, φ(R) or φ(R′1, R−1) is an exchange cycle of length two. Without loss of generality, let

φ(R) = (2, 1, 3). If non-bossiness is violated, then φ(R′1, R−1) = (2, 3, 1). But then from individual

rationality we obtain 2P11, 2P ′11 and 1P33, and by efficiency of φ(R), R2 : 132. Note that under

R two agents rank the same object at the top as otherwise there is a unique efficient allocation

where each agent receives his most preferred object. If R3 : 1 . . ., then as φ(R) = (2, 1, 3), by (4.2)

we must have R1 : 2 . . . and R′1 : 321 (as for R′1 : 2 . . . again (4.2) would apply), but then this is

impossible as either R3 : 123 would imply by (4.1) φ(R′1, R−1) = (3, 1, 2) or R3 : 132 would imply

by (4.2) φ(R′1, R−1) = (3, 2, 1), a contradiction to φ1(R
′
1, R−1) = 2. Thus, we must have R3 : 213

and R1 : 2 . . ., which would imply by either by (4.1) φ(R) = (3, 1, 2) or by (4.2) φ(R) = (1, 3, 2), a

contradiction to φ1(R) = 2.

For respecting improvement, without loss of generality, we consider agent 1 and k 6= 1, and let

R ∈ PN and R′1 ∈ PN1 be a k-improvement of R1. If φ1(R
′
1, R−1) = φ1(R), then by non-bossiness,

φ(R′1, R−1) = φ(R) and respecting improvement is satisfied. Thus, let φ1(R
′
1, R−1) 6= φ1(R). We

consider the same cases as in the definition of φ.

First, suppose that R is in (1). Then Ri : i . . . for some i ∈ N . If i 6= 1, then respecting

improvement is obvious. Suppose that top(R2) 6= 2, top(R3) 6= 3, R1 : 1 . . . and R′1 : k1 . . .. If

(R′1, R−1) belongs to (2), again respecting improvement is obvious. Thus, (R′1, R−1) must belong

to (4) (as otherwise (2) applies). If top(R2) = k or top(R3) = k, then by (4.1) or (4.2) we

must have φk(R
′
1, R−1) = top(Rk)Rkφk(R) and respecting improvement is satisfied. Otherwise

top(R2) = top(R3) = 1, either by (4.2) agents 1 and k make a pairwise exchange or by (4.1) agent

k is weakly better off as φk(R
′
1, R−1) ∈ {1, φ1(R)}.

Second, suppose that R is in (2). But then φ1(R) 6= 1. If φ1(R) = k, then as R′1 is a

k-improvement over R1 we must have R1 : [23]1 and top(R′1) = k which then implies by non-

bossiness, φ(R) = φ(R′1, R−1) and respecting improvement is satisfied. If φ1(R) 6= k, then either

[R′1 : [23]1, (R′1, R−1) is in (2) and respecting improvement is satisfied] or [R1 : [23]1, top(R′1) = k

and as above respecting improvement is satisfied].

Third, suppose that R is in (3). Then Ri /∈ PNi for some i ∈ N . If i = 1, then either [R1 : [23]1,

R2 : 3 . . ., R3 : 2 . . ., and R′1 : k . . ., which implies by (4.1) and (4.2) that agent k is weakly better off

(and the other agent j is weakly worse off)] or [R1 : [23]1, R2 : 1 . . ., R3 : 1 . . . and R′1 : k . . ., which

implies by (4) φ1(R
′
1, R−1) = k and if respecting improvement is violated, φk(R

′
1, R−1) = j and

φj(R
′
1, R−1) = 1, which means φ(R′1, R−1) = ν = (3, 1, 2) and φ(R) = (2, 3, 1) = η, a contradiction

as in (4.1) ν must be then chosen for R (and the other agent j is weakly worse off)].

Fourth, suppose that R is in (4). Then R ∈ PN . If (R′1, R−1) /∈ PN , then we must have

R′1 : [23]1 and R1 is a j-improvement over R1, and the above for (3) established that then k is

weakly worse off. Thus, (R′1, R−1) ∈ PN and R′1 : top(R1)k1. If top(Rj) = top(Ri) it follows
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by (4) that φk(R) = φk(R
′
1, R−1) = top(Rk) and respecting improvement is satisfied. Otherwise

top(R2) = top(R3) = 1 and as for the last case for (3) respecting improvement follows.
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