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Résumé

Le langage de programmation Scheme est reconnu pour son puissant système de
macro-transformations. La représentation du code source d’un programme, sous
forme de données manipulables par le langage, permet aux programmeurs de modi-
fier directement l’arbre de syntaxe abstraite sous-jacent. Les macro-transformations
utilisent une syntaxe similaire aux procédures régulières mais, elles définissent plutôt
des procédures à exécuter lors de la phase de compilation. Ces procédures retournent
une représentation sous forme d’arbre de syntaxe abstraite qui devra être substitué
à l’emplacement de l’appel du transformateur. Les procédures exécutées durant la
phase de compilation profitent de la même puissance que celles exécutées durant de
la phase d’évaluation. Avec ce genre de système de macro-transformations, un pro-
grammeur peut créer des règles de syntaxe spécialisées sans aucun coût additionnel
en performance: ces extensions syntactiques permettent l’abstraction de code sans
les coûts d’exécution habituels reliés à la création d’une fermeture sur le tas.

Cette représentation pour le code source de Scheme provient directement du
langage de programmation Lisp. Le code source est représenté sous forme de listes
manipulables de symboles, ou bien de listes contenants d’autres listes: une struc-
ture appelée S-expression. Cependant, avec cette approche simpliste, des conflits
de noms peuvent apparaître. En effet, l’association référée par un certain identifi-
ant est déterminée exclusivement par le contexte lexical de celui-ci. En déplaçant
un identifiant dans l’arbre de syntaxe abstraite, il est possible que cet identifiant
se retrouve dans un contexte lexical contenant une certaine association pour un
identifiant du même nom. Dans de tels cas, l’identifiant déplacé pourrait ne plus
référer à l’association attendue, puisque cette seconde association pourrait avoir pré-
valence sur la première. L’assurance de transparence référentielle est alors perdue.
En conséquence, le choix de nom pour les identifiants vient maintenant influencer
directement le comportement du programme, générant des erreurs difficiles à com-
prendre. Les conflits de noms peuvent être corrigés manuellement dans le code en
utilisant, par exemple, des noms d’identifiants uniques. La préservation automatique
de la transparence référentielle se nomme hygiène, une notion qui a été beaucoup
étudiée dans le contexte des langages de la famille Lisp.

La dernière version du Scheme revised report, utilisée comme spécification pour
le langage, étend ce dernier avec un support pour les macro-transformations hy-
giéniques. Jusqu’à maintenant, l’implémentation Gambit de Scheme ne fournissait
pas de tel système à sa base. Comme contribution, nous avons ré-implémenter le
système de macro de Gambit pour supporter les macro-transformations hygiéniques
au plus bas niveau de l’implémentation. L’algorithme choisi se base sur l’algorithme
set of scopes implémenté dans le langage Racket et créé par Matthew Flatt. Le lan-
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gage Racket s’est grandement inspiré du langage Scheme mais, diverge sur plusieurs
fonctionnalités importantes. L’une de ces différences est le puissant système de
macro-transformation sur lequel Racket base la majorité de ses primitives. Dans ce
contexte, l’algorithme a donc été testé de façon robuste.

Dans cette thèse, nous donnerons un aperçu du langage Scheme et de sa syntaxe.
Nous énoncerons le problème d’hygiène et décrirons différentes stratégies utilisées
pour le résoudre. Nous justifierons par la suite notre choix d’algorithme et fourniront
une définition formelle. Finalement, nous présenterons une analyse de la validité et
de la performance du compilateur en comparant la version originale de Gambit avec
notre version supportant l’hygiène.

Mots clefs: Compilation, Langage, Méta-programmation, Macro, Hygiène, Scheme,
Syntaxe
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Abstract

The Scheme programming language is known for its powerful macro system. With
Scheme source code represented as actual Scheme data, macro transformations al-
low the programmer, using that data, to act directly on the underlying abstract
syntax tree. Macro transformations use a similar syntax to regular procedures but,
they define procedures meant to be executed at compile time. Those procedures
return an abstract syntax tree representation to be substituted at the transformer’s
call location. Procedures executed at compile-time use the same language power as
run-time procedures. With the macro system, the programmer can create special-
ized syntax rules without additional performance costs. This also allows for code
abstractions without the expected run-time cost of closure creations.

Scheme’s representation of source code using values inherits that virtue from the
Lisp programming language. Source code is represented as a list of symbols, or lists
of other lists: a structure coined S-expressions. However, with this simplistic ap-
proach, accidental name clashes can occur. The binding to which an identifier refers
to is determined by the lexical context of that identifier. By moving an identifier
around in the abstract syntax tree, it can be caught within the lexical context of
another binding definition with the same name. This can cause unexpected behav-
ior for programmers as the choice of names can create substantial changes in the
program. Accidental name clashes can be manually fixed in the code, using name
obfuscation, for instance. However, the programmer becomes responsible for the
program’s safety. The automatic preservation of referential transparency is called
hygiene and was thoroughly studied in the context of lambda calculus and Lisp-like
languages.

The latest Scheme revised report, used as a specification for the language, extend
the language with hygienic macro transformations. Up to this point, the Gambit
Scheme implementation wasn’t providing a built-in hygienic macro system. As a
contribution, we re-implemented Gambit’s macro system to support hygienic trans-
formations at its core. The algorithm we chose is based on the set of scopes algo-
rithm, implemented in the Racket language by Matthew Flatt [Fla16]. The Racket
language is heavily based on Scheme but, diverges on some core features. One key
aspect of the Racket language is its extensive hygienic syntactic macro system, on
which most core features are built on: the algorithm was robustly tested in that
context.

In this thesis, we will give an overview of the Scheme language and its syntax. We
will state the hygiene problem and describe different strategies used to enforce hy-
giene automatically. Our algorithmic choice is then justified and formalized. Finally,
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we present the original Gambit macro system and explain the changes required. We
also provide a validity and performance analysis, comparing the original Gambit
implementation to our new system.

Keywords: Compilation, Language, Metaprogramming, Macro, Hygiene, Scheme,
Syntax
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Chapter 1

Introduction

Gambit is an implementation of the Scheme programming language whose develop-
ment spans over three decades. The system has been used for programming language
research, education, and industrial needs. Scheme is often associated with advanced
language constructs such as higher-order functions, continuations, and macros. Our
work focuses on the macro facility provided by Gambit. Macro transformations al-
low the language users to implement their own syntactic extensions. This can be
used, for instance, to create a domain-specific language on top of the language’s core
syntax. Historically, Gambit provides define-macro as the main form used to create
macro transformers. The form is directly inspired by the defmacro form in Lisp and
gives great power to the programmer.

However, this form must be used carefully as it can lead to a variety of issues
related to naming. For this reason, the define-macro form is called unhygienic.
The two latest specification report for the Scheme language requires a hygienic
macro system that avoids these issues [FM+07] [SCG13]. The work reported in this
thesis has implemented a new macro system that conforms to the new standard.
To introduce the problem, we begin with a brief explanation of general compilation
steps, before looking into some of the Gambit specificity.

Compilation and Evaluation Pipeline
The compilation of a program is a translation process. Programmers write their
code in a particular source language, the compiler transforms its textual representa-
tion into a specific target language, with the same semantics. The compiler is said
to be an implementation of the source language that is to be translated. Compilers
are written using some host language and, most of the time, offer features useful
for debugging and optimization. As compilers simply transform the source code, we
can use multiple compilers in sequence in what is called a compilation pipeline. To
be able to run the initial program, the target language of the last compiler used in
the sequence should target the final machine’s particular processor.

Generally speaking, the compilation of a program uses the same sequence of
steps. At first, the compiler must read the source code, building a manipulable
representation within the host language. This step, named parsing, starts with the
creation of a concrete syntax tree containing the different textual tokens appearing
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in the source code. The program’s syntax is verified, according to some context-free
grammar, without any information about the language’s semantics. Afterwards, the
program’s concrete syntax tree is transformed into an abstract syntax tree. This
abstract representation encodes the program’s structure in a way that is well suited
for analysis, grouping and keeping the important information only.

(lambda (x y) (+ x y))

yx+yx

lambda

Figure 1.1: A simple Scheme program and it’s AST

Once the final syntax tree is constructed, the subsequent compilation phase
transforms this syntactic description into the target language, while preserving se-
mantics. To do so, most high-level programming languages first convert the tree
to an intermediate language representation (IR). Those intermediate languages are
designed to abstract the machine to a level closer to the source language. Usually, an
intermediate language targets some virtual machine that is simpler than a physical
machine, and designed to allow for low-level optimizations. Some virtual machines
are developed to be used with a variety of source languages, such as LLVM, and
are designed to act as a high-level assembly language. Others were designed with a
particular source language in mind. For instance, Java programs are converted to
an intermediate representation to be run on the JVM, a Java-specific virtual ma-
chine. The use of an intermediate language allows the compiler to target different
languages without the need to change the first few stages of the compilation pipeline
depending on each target. Virtual machines can also abstract differences between
compilation and interpretation.

A good number of compilers use a preprocessor program in their pipeline to
transform the program’s structure before further analysis. Such an expander imple-
ments syntactic extensions to the language. Those extensions can be simple textual
substitutions that can be implemented within the parsing phase, or more complex
transformations, such as acting on the abstract syntax tree representation. In the C
programming language, programmers can define macro transformations as textual
substitutions, which are performed by a preprocessor prior to the usual parsing of
the program. The following C program defines and uses a macro ABS to print the
absolute value of a number.

Antoine Doucet Chapter 1 9
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#define ABS(n) (negative(n) ? -(n) : (n))

int negative(int n) { return (n < 0); }

void some_procedure(int a) {
printf("%d",

ABS(a));
}

int negative(int n) { return (n < 0); }

void some_procedure(int a) {
printf("%d",

(negative(a) ? -(a) : (a)));
}

Figure 1.2: A simple C macro and the expanded code

On the other hand, the Lisp programming language allows transformations on
the program’s abstract syntax tree directly and this is known as a syntactic prepro-
cessor.

(defmacro abs (n)
(list 'if (list 'negative n)

(list '- n)
n))

(defun negative (n) (< n 0))

(defun some-procedure (a)
(print (abs a)))

(defun negative (n) (< n 0))

(defun some-procedure (a)
(print (if (negative a)

(- a)
a)))

Figure 1.3: A simple Lisp macro and the expanded code

Those language extensions, when provided by the programmer, are referred to
as macro transformers or macros for short and their use in code is called meta
programming. Macro systems were mainly popularized by the Lisp programming
language as it was the first broadly used high-level language to include syntactic pre
processing. With a Lisp system, programmers have access to the whole language to
perform syntactic transformations: extensions can be expressed directly within the
source language itself, with the same syntax. The use of macros differs from normal
code execution and this semantic break often leads to problems when used casually
as will be explained later.

The Scheme Pipeline
We briefly describe the different stages usually involved in the compilation and
evaluation of a program, for the Scheme programming language. As is the case for
most languages, differences between interpretation and compilation pipelines lie in
the final stage only, as the parsing and expansion phase are common to both.
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Parsing As a first step, the parser takes a source code representation as plain text
and constructs a data structure, representing the program’s abstract syntax tree
called S-expression. Scheme provides support for textual substitutions during the
parsing phase, known as reader-macros, but do not allow the programmers to create
their own transformers. The Scheme programming language uses an LL(1) grammar
which can be handled using a simple recursive descent parser without backtracking:
the parsing of such a grammar requires a single look-ahead character to construct
the S-expression, thus proceeding in linear time. The operation is equivalent to
the Scheme built-in procedure read. If we abstract the file reading steps, we can
think of the read procedure as having the type String → Sexp, where Sexp is the
S-expression type. The "typing" notation used for the pipeline’s description is used
to give a simple intuition for the interpretation of each phase’s output’s.

Expansion The expansion phase, transforms the S-expression that is constructed
by the parsing phase. The expansion is done recursively: after each transformer ap-
plication step, the compiler will recursively expand the resulting S-expression, until
no expansion is possible in the final expression. The syntactic preprocessor allows
transformers to use any core construct of the language, giving the full language’s
power to the programmer at compile-time. We denote this operation with the pro-
cedure expand : Sexp → Sexp. Note that this procedure is not generally exposed
to the programmer.

Intermediate Representation (IR) In the case of a program’s compilation,
once the S-expression is fully expanded, it is transformed into an intermediate rep-
resentation which can, in turn, be transformed again depending on the target ma-
chine, that can be a real or virtual one.

Interpretation It is also possible to use an interpreter that executes the program
directly from the fully expanded S-expression. The execution is the run-time phase.
The predefined eval procedure embodies the interpretation of S-expressions. It can
be used on its own at both run-time or compile-time, as it is modelled in the host
and target languages. We can think of the procedure as having type Sexp → Data,
where the Data type stands for any Scheme value (the result of the program).

Gambit Scheme Interpretation and Compilation
The Gambit system includes the Gambit Scheme Interpreter (GSI) program for in-
terpretation, as well as the Gambit Scheme Compiler (GSC) for compilation. As
Gambit allows different target languages (C, JavaScript, Python) a unique inter-
mediate representation is used between the S-expression representation of expanded
code and the full compilation. This intermediate representation targets Gambit’s
specific virtual machine, the Gambit Virtual Machine (GVM). We now show a sim-
plified view of the compilation and interpretation steps in Gambit.

Antoine Doucet Chapter 1 11



Adding Hygiene to Gambit Scheme

read : String → Sexp

expand : Sexp → Sexp

eval : Sexp → Data compile : Sexp → GVM

generateC : GVM → String generateJS : GVM → String

generatePy : GVM → String

s : String

sexpi : Sexp

sexp : Sexp sexp : Sexp

repr : GVM

Parsing

Expansion

Interpretation

Compilation

Figure 1.4: Gambit’s Compilation Pipeline

Gambit’s macro expansion uses the same syntactic pre processing technique as
with the Lisp language by performing substitutions on the abstract syntax tree. Our
work is focused on improving the expansion stage.

The Hygiene Problem
As macro transformers perform substitutions, in the textual code or its AST, name
clashes can occur. Recall our simple C macro definition given earlier. Identifiers
inserted by substitution will always take the lexical context of their final position
in the code. Using the same ABS macro in two places that are in lexical scope of
different definitions of negative would cause the macro’s code to behave differently
than intended.
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#define ABS(n) (negative(n) ? -(n) : (n))

int negative(int n) { return (n < 0); }

void some_procedure(int a) {
int positive = ABS(a);
int negative = -positive;

printf("%d %d %d",
positive,
negative,
ABS(a));

}

int negative(int n) { return (n < 0); }

void some_procedure(int a) {
int positive = (negative(a) ? (-a) : (a)));
int negative = -positive;

printf("%d %d %d",
positive,
negative,
(negative(a) ? (-a) : (a)));

}

Figure 1.5: A simple case of name clash with a C macro

The hygiene problem is widely documented in the context of the lambda cal-
culus, Scheme and other Lisp flavours. A hygienic macro system makes sure that
no accidental name clashes can occur. The define-macro form is unhygienic as no
safety net is provided to protect the programmer against accidental name clashes.
As a temporary measure, Gambit does include forms meant to be used within a
hygienic macro system such as define-syntax and syntax-case, without providing
the hygiene guarantees.

This thesis discusses the implementation of a hygienic macro system for the
Gambit system. We will begin with a formal definition of Scheme’s syntax in order
to explain the hygiene problem thoroughly. We then present some algorithms the-
orised and provide justifications for our choice. We then focus on the algorithm by
presenting its formalization. Subsequently, we describe Gambit’s original system,
and its particular features, before an explanation of the modifications required to
implement hygiene. Finally, we provide some validity and performance analysis of
the new system.
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Chapter 2

Scheme and Macro Transformers

This chapter summarizes the syntax of the Scheme programming language, as well
as its powerful syntactic extension abilities. The language’s initial macro system, as
most of its features, was heavily inspired by work on the Lisp programming language
and its dialects.

Scheme Syntax
The Scheme programming language’s syntax is extremely simple, using parentheses
as the main delimiter. The program’s structure can be easily described using a tree-
like data structure coined S-expressions that exhibits a direct isomorphism with the
program’s abstract syntax tree (AST) [KFFD86]. A parenthesized group of tokens
represents branching in the tree while any individual token is a leaf.

Language Construct’s Overview
Scheme is a general purpose programming language supporting the functional pro-
gramming paradigm. The language is dynamically typed and includes several built-
in types. It implements numerical values with the integer1, float and complex types,
as well as the values #f and #t for the booleans true and false. Scheme also sup-
ports different containers, such as strings, vectors, lists, etc. We list below some of
Scheme’s values and their corresponding built-in types.

Scheme’s values built-in type(s)

0, 1.2, ... fixnum, bignum, float, ...
#t, #f boolean
"a-string" string
'a-symbol symbol
'(0 1 2), '("a" #t 2) list
+, (lambda (x) x) procedure
... ...

1Scheme’s integer types includes different variant

14



Adding Hygiene to Gambit Scheme

The programmer can create new procedural abstractions using the lambda form,
which is inspired by the lambda calculus. For instance, (lambda (x) x) defines
the identity procedure: a procedure of one argument x returning its value. We
can apply a procedure to some arguments using the prefix notation. For instance
(+ 1 2) calls the + procedure with 1 and 2 as actual parameters. To declare new
local bindings, we use the let special form: the form (let ((x 0) (y 1)) (+ x
y)) binds two new variables, x and y to their respective value, 0 and 1, within the
subexpression (+ x y). The simplest use of let can be seen as an applied procedure.
Indeed, the previous let form is equivalent to the following applied procedure of two
arguments: ((lambda (x y) (+ x y)) 0 1). To define a top-level variable binding,
the define form can be used as such: (define x 42). The branching form if allows
for conditional branching. After evaluating the first expression, any value which is
not #f is interpreted as true. The (if #t expr1 expr2) form evaluates expr1 while
(if #f expr1 expr2) evaluate expr2. As Scheme requires tail-call optimization, the
language makes heavy use of recursion, and does not provide the looping construct
usually available in more mainstream languages such as for, do, or while. The
language allows mutation of variables using the set! built-in. As a final note, the
type notation we will use for this thesis doesn’t match the built-in types of the
language but is used for the static analysis of the code.

S-expressions
S-expressions were initially designed as a representation of Lisp code. The recursive
structure in itself is simple but powerful: it can express any binary tree and, by
extension, any tree-like structure. Their uses have been extended to other problems
as well. In Scheme, parenthesized groups of S-expressions represent S-expressions
themselves. We note that all Scheme programs are valid S-expression but not all
S-expressions represent valid Scheme programs.

Definition 1 (S-expression). An S-expression s : Sexp a is a grouping of atomic
tokens, that could be formalized by the following inductively defined union type:

∀a. Sexp a ::= List (Sexp a)

| a

In most Lisp-like languages, a list of n elements is represented as a parenthesized
group of tokens or other lists, denoted (e1 ... en).

We consider Scheme’s S-expression to be a more precise type, namely Sexp Atom,
where the Atom type contains every non-parenthesized terminal of the Scheme syn-
tax. We shall shorten the Scheme S-expression type Sexp Atom by Sexp when
obvious from the context.

Scheme uses a prefix notation for applications. An S-expression containing a
parenthesized group of expressions can represent a function application, macro trans-
former application, or core form use, as determined by the first sub-expression of
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the S-expression. For instance, (cons 0 1) is a functional application of the proce-
dure cons with the expressions 0 and 1 as actual parameters. On the other hand,
the S-expression (if #t 0 1) is a core form use, simply because the keyword if is
recognized as such. In the same way, if cons was bound to a macro transformer
instead, (cons 0 1) would represent a macro application.

Textual Substitution
In addition to the application’s notation described above, the language supports
textual substitutions, with the use of reader-macros. Those macros act on the
textual representation of the code, during the parsing phase.

Definition 2 (Reader-macro). Reader macros are textual substitutions applied sys-
tematically during the reading phase. The Scheme programming language does not
allow users to interact directly with this compilation phase’s expansion. For instance,
the reader macro ', used as 'x is expanded at read-time into (quote x), while ,x is
expanded into (unquote x).

However, the programmer cannot extend the set of transformations offered.

Dynamic Construction of S-expressions
One, if not the most, notable feature of the Scheme language is its ability to con-
struct some source code, programmatically, within the language itself: S-expressions
can be constructed using Lists and Symbols, two primitive data types of Scheme.

For completeness, we include a formal definition of the pair data structure, on
which lists are based on.

Definition 3 (Scheme’s Pair Datatype). The Pair primitive data type is a
heterogeneous pair. The data type has the following constructor with two fields:

cons : ∀ta, tb. (ta → tb → Pair ta tb)

Let a : A and b : B, we can create a pair (cons a b) : Pair A B represented as
(a . b), or (a x ...) if b is the pair (x ...), or (a) if b is the empty list.

Introducing the special object (), (pronounced null), used as the end-of-list object,
singly linked lists can be implemented directly with pairs. Each pair then contains
an element in its first field and a reference to the next pair (or null) in its second.

Definition 4 (Scheme’s List Datatype). A Scheme list is a singly linked list of
pairs of heterogeneous types.
Let a1 : A1, ..., an : An be Scheme values, then we can construct a list (list a1 ... an) :
Pair A1 (Pair ...), represented by (a1 . ... (an . ())) or shortly (a1 ... an).
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We denote homogeneous lists of type a with the type List a, such that () : ∀a. List a.
A list lst is constructed as follows:

lst, lstrst : List a
e : a

lst ::= (cons e lstrst)

| '()

Definition 5 (Scheme’s symbol primitive type). The Symbol primitive type
holds the source-code representation of an atomic token as a chain of characters
memory. In this thesis, symbols are represented with the character ' prepended
to any non-parenthesized source-code token’s textual representation to clearly des-
tinguish symbols from variables. The special form quote is used to create a new
symbolic representation.

Specials forms, such as quote, are a special case of macro-transformer : they ma-
nipulate the AST directly. Let’s consider the code (quote s) where s : Sexp. If s is
a non-parenthesized piece of data, (quote s) is the symbolic representation of that
token: the sequence of characters as appearing in the code’s textual format. For
instance, (quote a-variable) encode the character chain "a-variable" in a structure
similar to the primitive Scheme’s type String. Otherwise, if s is a parenthesized
group of expressions, quoting s results in a linked list containing the source-code
representation of each element of the group. It follows that the quote special form
can be used to create lists as well. The following lists an approximation for the
special form’s rules, where expa ↭ expb means that expa and expb are equal?,
but not necessarily eq? 2. The following figure shows the equivialence between the
quote reader-macro and its read-macro’s expansion, from the language user’s point
of view. From the compiler point of view however, they are exactly the same.

(quote (E1 ... En)) ↭ (list (quote E1) ... (quote En))

(quote 0) ↭ '0

(quote sym) ↭ 'sym

Figure 2.1: quote special form rules

The language includes a reader-macro ' as syntactic sugar for the special form quote.
For instance (quote a-variable) is equivalent to the form 'a-variable. Note that
the previous list simply shows correspondances between language expressions and
their values as shown by the interpreter to the language’s user: We always con-
sider (quote 0) to be the same as '0, as they are only a reader-macro appart from

2The eq? procedure compares two Scheme objects according to their location in memory. As
symbols are interned in a symbol table, two symbols are eq? if the characters in their represen-
tations are the same. On the other hand, the list constructor creates a new object dynamically.
However, the equal? procedure compares two objects based on their structure at run-time.
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eachother. We represent Scheme data holding S-expressions by prepending the '
character to its source-code representation. For instance, '3, 'var, '() and '(1 .
2) all represent S-expressions. The character ' is then used both as syntactic sugar
for the quote special form as well as a character prepending textual token in order
to represent symbol and pair data types.
In addition, the special form quasiquote can be used to ease S-expression construc-
tion. The form is similar to the quote special form but, allows the use of the unquote
special form. Unquoting a token simply cancel out the effect of a quasiquote op-
erator. As with quote and its reader-macro ' the reader-macros ` and , are used,
respectively, for the quasiquote and unquote special forms.

(quasiquote sym) ↭ 'sym

(quasiquote 0) ↭ '0

(quasiquote (unquote E)) ↭ E

(quasiquote (E1 ... En)) ↭ (list (quasiquote E1) ... (quasiquote En))

Figure 2.2: quasiquotequote and unquote special form rules

Finally, the reader macro ,@, said unquote-splice, splices a list of S-expression,
inside a quasiquote use. For instance, if arg1 is a variable containing the list '(a1
... an), then `(proc ,@arg1) yield the S-expression '(proc a1 ... an).

Summarizing the different reader-macros and special forms used:

'sym ↭ (quote sym)

↭ 'sym

`sym ↭ (quasiquote sym)

↭ 'sym

`,sym ↭ (quasiquote (unquote sym))

↭ sym

'(sym1 sym2) ↭ (list 'sym1 'sym2)

↭ '(sym1 sym2)

`(sym1 sym2) ↭ (list `sym1 `sym2)

↭ '(sym1 sym2)

`(sym ,@a-list) ↭ '(sym a-list1 a-list2 ... a-listn)

Figure 2.3: reader-macro and special form for S-expression creation
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Abstract Syntax Trees

In most programming languages, the parsing of a program creates a concrete rep-
resentation of the program’s tokens (concrete syntax tree or parse tree). The parse
tree conforms to the context-free grammar of the language. For instance, the parse
tree of a C program would include an individual token for each bracket encoun-
tered. Such information can be compacted, with further analysis, in an abstract
representation of the code: a minimal representation of the code’s meaning. With
Scheme’s syntax, a single pass on the source code is needed to create the abstract
representation of the code. Indeed, as the S-expression grammar is LL(1), a single
look-ahead character is needed to parse parenthesized groups of tokens. As groups
of atoms are already in their minimal representation as an S-expression, the AST
can be constructed directly.

Let’s consider the following S-expression and its corresponding parse tree:

(* (+ a b) 3) 3

ba+

*

Figure 2.4: S-expression source-code representation and its AST representation

As a more complex example, we consider the following piece of code and its AST:

(let ((a 0))
(let ((b 1))
(+ a b)))

ba+

1b

let

0a

let

Figure 2.5: A Scheme’s S-expression and its AST representation

The parsing phase of a Scheme program is a simple transformation from a textual
representation of the S-expression to a valid and manipulable representation of that
S-expression using primitive Scheme data types. The compilation phase then re-
ceives raw Scheme data to work with.

The following code constructs the previous S-expression as raw Scheme data:
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(list 'let
(list (list 'a '0))
(list 'let

(list (list 'b '1))
(list '+ 'a 'b)))

'(let ((a 0))
(let ((b 1))

(+ a b)))

Figure 2.6: Manually constructed S-expression representation and its representation
as given by the interpreter

The procedural representation of S-expressions using raw Scheme value is another
way to visualize the same AST. This feature is directly linked to the macro sys-
tem: transformations used during the expansion phase are nothing more than usual
Scheme procedure manipulating S-expressions. Similarly, the core forms of the lan-
guage work directly on the AST.

Core forms
A core form is a parenthesized group of S-expressions starting with some special
keyword. They represent the built-in constructs of the language and have their own
unique semantics when recognized by the compiler. When compiling a core form,
the compiler uses the AST representation of that core form use to generate the
compiled code.
We briefly introduce some important core forms of the language, and explain their
run-time semantics.

begin Core Form

The begin core form is used as a sequencing operator.

begin :: (begin expr1 expr2 ...)

expr1, expr2, ... : Sexp

Figure 2.7: begin core form

Each expression is sequentially evaluated, and the last value obtained is returned.

if Core Form

The if core form is the primitive branching operator.
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if :: (if exprcond exprtrue exprfalse)

exprcond, exprtrue, exprfalse : Sexp

Figure 2.8: if core form

After an evaluation of the first expression exprcond, if the result does not eval-
uate to #f (read false), then the exprtrue expression is evaluated. Otherwise, the
expression exprfalse is evaluated.

lambda Core Form

The lambda core form is used to create new procedures, stored as closures in memory.

lambda :: (lambda (id1 ...) body1 body2 ...)

| (lambda (id1 ... . rest) body1 body2 ...)

| (lambda rest body1 body2 ...)

id1, ..., rest : Symbol
body1, body2, ... : Sexp

Figure 2.9: lambda core form

The form (lambda () body1 body2 ...) creates a procedure without parameters.

The form (lambda (id1 ... idn) body1 body2 ...) creates a procedure of n ≥ 1
arguments.

The form (lambda (id1 ... idn . rest) body1 body2 ...) creates a procedure of
at least n arguments. The extra parameters are then bound as a list to the rest
symbol.

Finally, the form (lambda rest body1 body2 ...) creates a procedure with a vari-
able number of arguments, which are bound as a list to the rest symbol.

As Scheme supports higher-order procedures, closures can be used as actual data
by themselves and therefore, can be used as an argument to other procedures.

Procedure Application Core Form

We can consider procedure application as a core form itself, even if no special key-
word is reserved. Any S-expression starting with an S-expression that is neither

Antoine Doucet Chapter 2 21



Adding Hygiene to Gambit Scheme

a reserved keyword nor an identifier bound to a macro transformer is a procedure
application.

application :: (expr1 expr2 ...)

expr1, expr2, ... : Sexp

Figure 2.10: application core form

let Core Form

The let core form allows for local binding definitions.

let :: (let ((id1 value1) ...) body1 body2 ...)

id1 : Symbol
value1 : Sexp

body1, body2, ... : Sexp

Figure 2.11: let core form

Every symbol idi is bound to the value given by the evaluation of valuei, in the
lexical context used for the body’s evaluation. Multiple variants of the form ex-
ist, such as let* which binds the identifiers sequentially, and the letrec form that
allows for recursive binding definitions and mutually recursive procedure definitions.

Some Scheme implementations implement the let special form in terms of lambda
and application. Indeed, the form’s semantics is equivalent to an applied lambda
expression.

(let ((id1 value1) ...) body1 body2 ...)

⇐⇒
((lambda (id1 ...) body1 body2 ...) value1 ...)

Figure 2.12: let form and lambda equivalence

define Core Form

The define core form is used for global binding definition.
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define :: (define id0 expr)

| (define (id0 id1 ...) body1 body2 ...)

| (define (id0 id1 ... . rest) body1 body2 ...)

id0, id1, ..., rest : Symbol
body1, body2, ... : Sexp

Figure 2.13: define core form

The form (define id expr) evaluate expr and binds the identifier id to that
value. The S-expression (define (f x y) (+ x y)) can be used as a syntactic sugar
for (define f (lambda (x y) (+ x y))), thus creating a new named procedure.

(define (id0 id1 ... . rest) body1 body2 ...)

=⇒ (define id0 (lambda (id1 ... . rest) body1 body2 ...))

(define (id0 id1 ...) body1 body2 ...)

=⇒ (define id0 (lambda (id1 ...) body1 body2 ...))

Figure 2.14: define core form’s syntactic sugar

When the form is used in a local context, it acts as a local binding definition.

define-macro Core Form

The define-macro core form is used to implement syntactic extensions to the lan-
guage. They are discussed in the next section.

define-macro :: (define-macro (id0 id1 ...) body1 body2 ...)

| (define-macro (id0 id1 ... . rest) body1 body2 ...)

id0, id1, ..., rest : Symbol
body1, body2, ... : Sexp

Figure 2.15: define-macro core form

Macro Application Core Form

We can consider macro applications as a core form, even if no special keyword is
reserved. Any parenthesized expression starting with an identifier bound to a macro
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transformer has the same semantics.

macro-application :: (id expr1 ...)

id : Symbol
expr1, expr2, ... : Sexp

Figure 2.16: macro application core form

The application of a macro transformer to some expressions executes the trans-
former at compile time, substituting the core form use by the transformation’s result.

Syntactic extensions will be discussed in detail, in the following section.

Macro Transformers
Macro transformers are Scheme procedures taking S-expressions as arguments and
returning a new one. As the main distinctive feature, those transformations are
executed at compile-time.

Definition 6 (Macro Transformers). A macro transformer τ : Sexp → Sexp is
a procedure, executed at compile-time, which transforms the program’s AST into a
new one. A macro transformer defines a syntactic extension to the core language.

Recall that code executed at compile-time is handled by the preprocessor during
the expansion phase of the compilation or evaluation pipelines. Run time, on the
other hand, is the execution of the expanded program.

Defining Macro Transformer
To define new macro transformers, different forms have been introduced to the
language’s syntax. The define-macro form was directly inspired by the defmacro
special form, available in Lisp dialects. The form was included in some Scheme
implementation such as MIT Scheme and Gambit Scheme. As a simple example, we
consider the following transformer’s definition:

(define-macro (a-new-macro arg1 arg2)
`(let ((a ,arg1))

(let ((b ,arg2))
(+ a b))))

Figure 2.17: macro definition using the define-macro core form
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The previous definition bounds the identifier a-new-macro to the following procedure,
of type Sexp → Sexp → Sexp.

(lambda (arg1 arg2)
`(let ((a ,arg1))

(let ((b ,arg2))
(+ a b))))

Figure 2.18: The bound transformer from the previous definition

As a way to introduce hygiene to the language specification, the define-syntax form,
alongside the syntax-rules special form for which it was conceived, was added
to the fifth Scheme revised report (R5RS) [ADH+98]. The form is available in
the Gambit ecosystem but, without support for hygiene. That alternative form-
defining transformer takes the whole S-expression as a single parameter of type
Sexp. The following definition is equivalent to the previous one, if it was called
with two arguments 3.

(define-syntax a-new-macro-syntax
(lambda (sexp)
(let ((id (list-ref sexp 0))

(arg0 (list-ref sexp 1))
(arg1 (list-ref sexp 2)))

`(let ((a ,arg0))
(let ((b ,arg1))
(+ a b))))))

Figure 2.19: Almost equivalent macro definition using Gambit unhygienic
define-syntax core form

Macro application semantics differs from regular procedure application by the com-
piler’s handling of actual parameters. The following subsection summarizes the two
different calling mechanisms.

Handling Formal Parameters
Procedure Application

For usual procedure applications, Scheme uses the call-by-value mechanism: when
applying a procedure to some expressions expr1, expr2, ... exprn, each of the actual
parameter expri, must be firstly evaluated. The computed values are then stored
in memory, typically on the stack, before proceeding with the procedure’s body’s
evaluation. For instance, in the procedure application (f (+ 1 2) a) the subexpres-
sions (+ 1 2) and a must be evaluated before proceeding with the procedure call
of f. Within the procedure’s body, any mutation to one of the formal parameters
takes effect on the cells of those formal parameters.

3As the forms are unhygienic, name capture can occur in different ways for both forms. This
will be discussed later on.
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Macro Transformer Expansion

Macro transformers, on the other hand, use a mechanism reminescent of call-by-
name. As macro transformer procedures are executed at compile time, they cannot
have access to the final value the variable will hold at execution time, as it would,
obviously, require a complete evaluation of some code that was designed to be run in
the final compiled program. Instead, the symbolic representation of each argument
is used as arguments to the procedure.

Consider the following program and its AST:

(let ()
(define-macro (m a b)
(list ('+ b a)))

(let ((var 1))
(m var 2)))

2varm

1var

let

ab’+listba

lambdabam

define-macro

let

Figure 2.20: A program and its AST representation

The final AST, after macro expansion, will look as such:

(let ()
(let ((var 1))
(list 2 var)))

var2list

1var

let

let

Figure 2.21: expanded AST

From the point of view of the programmer, the semantics of application changes for
macro-transformers. In contrast to the call-by-value convention, the formal parame-
ters’ value is not computed: the system simply moves the source-code pieces around
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freely. As a result, macro calls are S-expression substitutions in the abstract syntax
tree.

In this chapter, we presented the specific syntax of to the Scheme Language.
After a summary of the language’s common constructs and features, we formal-
ized the source code representation and source code transformations, by introducing
the concepts of S-expressions and macro transformations. We focused on the rela-
tion between Scheme’s source code representation and its abstract syntax trees and
discussed the calling convention used for procedures and macro transformers. The
next section summarizes the hygiene problem, which is the focus of our contribution.
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Hygiene

Allowing direct transformations of the AST gives a lot of power to the programmer.
However, when a variable occurs freely in the transformer’s procedure, or actual
parameters, name shadowing can occur in the fully expanded code, as the identifier
takes the lexical context of its final position in the abstract syntax tree. Errors re-
sulting from accidental name capture cannot be caught, as the compiler is oblivious
to the lexical context and, cannot discern deliberate name capture use cases. Errors
are either hidden or obfuscated: the programmer must then take care of the whole
program’s safety with each and every macro transformer definition and use. They
must build their own safety net.

Hygienic macro systems ensure that no accidental name capture can occur. In
many cases, however, deliberate name capture can be a powerful tool: most systems
then allow explicit name capture as a manual process. It has been shown that, in
practice, most transformers do not use deliberate name capture [KFFD86]. Macro
systems enforcing hygiene change the default behaviour of the compiler, making
name capture an explicit process instead of an implicit one.

The Lisp programming language was one of the first popular languages with
heavy emphasis on its macro system, and hygiene has been studied thoroughly in
that context [KFFD86] [BR88] [Dyb92].

Hygienic macro systems exist in multiple language implementations, such as
Rust, Racket, and some Lisp implementations. The Scheme programming language’s
specification includes support for hygienic macros since it’s fourth revised report.
Most Scheme implementation, in practice, do not implement the full specification’s
language, as they often specialize in specific applications. The Gambit implementa-
tion did not offer such a feature, as an efficient hygienic system would have required
a rework of the compiler’s core.

Macro-expansion and silent errors
The section begins by showing some common problems arising during the process
of macro transformer creation, bringing insight on the name capture problem and
its prevalence.
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Multiple Evaluation
As a common use of syntactic extensions, it is possible to save the creation cost of
a new closure on the heap, by the use of macro transformers instead of procedures.
As transformations occur at compile-time, the S-expressions given as parameters
aren’t evaluated: only their representation is available. Then, to copy the same
S-expression at different places in the AST could cause this specific piece of code to
be executed multiple times during the run-time phase. As canonical solution, one
can create a new local variable, binding the S-expression’s value at execution time.
The new identifier can then be used as a placeholder for the S-expression.

Let’s consider the following piece of code.

(pretty-print
(double (ackermann 4 1)))

If double is defined as a usual procedure, it could have been defined by the following
top-level definition:

(define (double arg1)
(+ arg1 arg1))

To create a macro transformer which does the same job, one might try the naive
following definition:

(define-macro (double arg1)
`(+ ,arg1 ,arg1))

However, this definition for double causes some unexpected behaviour: the call to
(ackermann 4 1) is evaluated twice in the final program. Indeed, at compile time,
the procedure (lambda (arg1) `(+ ,arg1 ,arg1)) is called with the S-expression
'(ackermann 4 1) as an argument, which yields the S-expression '(+ (ackermann 4
1) (ackermann 4 1)) as a result. We can inspect the resulting AST for some addi-
tional insight on the problem.

(pretty-print
(double (ackermann 4 1)))

14ackermann

double

pretty-print

Figure 3.1: Original S-expression and AST
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(pretty-print
(+ (ackermann 4 1)

(ackermann 4 1)))

14ackermann14ackermann

+

pretty-print

Figure 3.2: expanded S-expression and AST

We then notice the problem easily: The S-expression passed as a parameter appears
twice in the expanded code. To create a macro which evaluates (ackernann 4 1)
exactly once, we can introduce a new identifier to bind its evaluation’s result.

(define-macro (double arg1)
`(let ((result ,arg1))

(+ result result)))

At execution time, the result of (ackermann 4 1) is stored in the local variable
result. The value can then be used for the addition without the need to compute
it again. After expansion, the resulting AST is as such:

(pretty-print
(let ((result (ackermann 4 1)))
(+ result result)))

The introduction of new identifiers during macro expansion is a common technique
to avoid multiple executions of a piece of code. Binding introduction by macro
substitution can be useful for many other features as well. As a second example, we
consider the anaphoric if form, which binds the condition’s value to a new identifier
it, available in both branches.

(define-macro (aif condition true false)
`(let ((it ,condition))

(if it
,true
,false)))

Figure 3.3: anaphoric if form

The special form allows for each branch to refer to the condition’s value using the
identifier it. As an example, we can consider the following use:
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(define (is-even? n)
(if (= (modulo n 2) 0)

n ;; will be treated as True by if
#f))

(aif (is-even? (ackermann 4 1))
(+ it 1)
it)

In this case, the variable it, occurring freely in (+ it 1), is meant to be used
as a placeholder for the identifier defined within the let form of the S-expression
returned by the transformer.

As a last example, we consider a define-structure form which expands to multiple
new declarations:

(define-macro (define-structure name . fields)

(define (append-symbol . syms)
(string->symbol (apply string-append

(map symbol->string syms))))

(define (create-constructor name fields)
`(define (,(append-symbol 'make- name) ,@fields)

(vector ,@fields)))

(define (create-getters name fields)

(define (create-getter name field i)
`(define (,(append-symbol name '- field) obj)

(vector-ref obj ,i)))

(map (lambda (field i) (create-getter name field i))
fields
(iota (length fields))))

`(begin
,(create-constructor name fields)
,@(create-getters name fields)))

Figure 3.4: define-structure example macro
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(define-structure position x y)
(define (distance-origin pos)
(sqrt
(+ (expt (position-x pos) 2)

(expt (position-y pos) 2))))

(begin
(define (make-position x y)
(vector x y))

(define (position-x obj)
(vector-ref obj 0))

(define (position-y obj)
(vector-ref obj 1)))

(define (distance-origin pos)
(sqrt
(+ (expt (position-x pos) 2)

(expt (position-y pos) 2))))

Figure 3.5: A simple program using define-structure and its expansion

We now show how the insertion of new identifiers, by substitution in the AST, can
result in a problem known as accidental name capture.

Name Capture
Upon the substitution of an identifier in the abstract syntax tree, it may get cap-
tured by the local lexical context of its final position, thus, changing the variable
it refers to. It follows that we cannot infer, at first glance, the lexical context of
an S-expression used as an argument for a transformer without further analysis.
The problem is equivalent to the substitution problem in lambda calculus and was
thoroughly studied in that context [KFFD86].

We firstly formalize the problem before a brief summary of different solutions theo-
rized.

Definition 7 (name capture). Name capture occurs when a binding is inserted in
an S-expression where the same name is used for another binding, thus shadowing
its original definition.

Let’s consider a procedure inc-proc, which increments its argument by one, as well
as a macro-transformer inc-macro with the same purpose.

Antoine Doucet Chapter 3 32



Adding Hygiene to Gambit Scheme

(define (inc-proc arg1)
(let ((const 1))

(+ const arg1)))

(define-macro (inc-macro arg1)
`(let ((const 1))

(+ const ,arg1)))

Figure 3.6: Two seemingly equivalent ways to represent the same computation

However, even if those two approaches seem equivalent, the following fragment of
code evaluates to false (#f), disproving the equivalence.

(let ((const 42))
(= (inc-proc const)

(macro-proc const)))

constinc-macroconstinc-proc

=

42const

let

Figure 3.7: Test for computation equivalence

Inspecting the code’s expansion, the problem becomes clearer:
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(let ((const 42))
(= (inc-proc const)

(let ((const 1))
(+ const const))))

constconst+

1const

letconstinc-proc

=

42const

let

Figure 3.8: Test for computation equivalence (expanded)

We notice that the transformation inserted the const symbol in the original AST.
However, the identifier is now bound to the value 1, as it appears in the lexical
context of the inner local let form introduced by the transformation: the inserted
identifier has been, effectively, shadowed by the introduced identifier.

This problematic instance can be manually fixed with the use of a unique sym-
bol as name for the introduced identifier. Scheme offers the gensym : Symbol →
Symbol procedure for this purpose. This procedure allows for the dynamic creation
of uninterned symbols, which, in opposition with interned symbols, are guaranteed
to be unique 1.

Definition 8 (uninterned symbol). Uninterned symbols are created dynamically
to guarantee their uniqueness throughout the program. The procedure gensym :
Symbol → Symbol creates a fresh symbol, named using, as a hint, the symbol
passed as an argument. Uninterned symbols are noted "#:foo42": the symbol given
as a hint, followed by a unique integer and prefixed by "#:".

We can then redefine our previous transformer to make use of this functionality.

(define-macro (inc-macro arg1)
(let ((const-id (gensym 'const)))
`(let ((,const-id 1))

(+ ,const-id ,arg1))))

1Two interned symbols with the same structure (name) refer to the same location in memory,
they are eq?, as well of equal?. However, two uninterned symbols never share the same location
nor the same structure. They cannot be eq? nor equal?, thus always differentiable.
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With the guarantee that the newly introduced identifier uses a different symbol than
every other defined identifier, no accidental shadowing can occur.

(let ((const 42))
(= (inc-proc const)

(let ((#:const529 1))
(+ #:const529 const))))

const#:const529+

1#:const529

letconstinc-proc

=

42const

let

Figure 3.9: Test for computation equivalence using gensym (expanded)

However, name capture can happen even if no binding definition appears in the
transformer itself. For instance, a macro-transformer might expect the if identifier
to be bound to the conditional core form but, the identifier might have been rede-
fined depending on the location of the macro-procedure call in the AST.

For instance, the following macro might cause problems:

(define-macro (a-macro a b)
`(+ ,a ,b))

In the following code, even if both macro calls execute the same expansion, with
the same S-expressions as parameters, we can expect different results, as the lexical
context of the second call is different.

(begin
(pretty-print (a-macro 0 1)) ; -> print 0
(let ((+ (lambda (a b) "plus")))

(pretty-print (a-macro 0 1)))) ; -> print "plus"
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Using a procedure instead would have captured the initial + definition within the
created closure, yielding the exact same result both times. We can conclude that
any identifier appearing freely in either the transformer body, or inside any actual
parameter can cause accidental name capture.

Breaking Hygiene
Referential transparency disallows any kind of binding introduction. However, name
capture can be a useful tool. Considering the mentioned anaphoric if form as an
example, we want every occurrence of the it identifier, occurring within the last two
forms argument, to refer to the binding introduced by the expansion. When hygiene
was firstly theorised, some critisism was made about its necessity. For instance,
Doug Hoyte, well known in the community for his work on Common Lisp, qualified
the safety measure to be a "beginner’s safety guard-rail that serve only to reduce
what one can do with [macros]." [Hoy] [Hoy08].

Modern hygienic macro systems, in most cases, offer some mechanism to break
the hygiene condition manually, for such a purpose. The system thus simply changes
the default behaviour of the compiler regarding name capture: it must be made ex-
plicit in the code while providing automatic safety for macros that do not require
it. We consider that a good solution for the hygiene problem would allow deliberate
name capture in a consistent and practical manner.

The previous chapter formalized the hygiene problem, mainly in the context of
the Scheme language. After some examples highlighting problems that can occur
while using macro, we focus on the problem known as accidental name capture. We
then present a popular solution used to manually avoid accidental name capture,
based on name obfuscation with the use of uninterned symbols. We finally expressed
the need for a way to break hygiene manually, in some contexts. The following chap-
ter summarizes some of the approaches theorised to preserve hygiene, specifically
for the Lisp and Scheme languages.
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Automatic Hygiene

The process of macro transformer writing requires the programmer to build their
own safety net, or else, to be particularly careful of each use. As a consequence,
the code can become easily obfuscated. Solutions to the hygiene problem provide
automatic mechanisms to ensure that no accidental capture can occur. As a result,
the default paradigm of the compiler regarding name capture is inverted: it must
now be made explicit in the code.

This chapter describes some of the procedural approaches that have been suggested
ensuring hygiene, for Lisps and Scheme dialects.

KFFD Algorithm
The KFFD [KFFD86] algorithm was one of the first automatic and hygienic macro
systems theorized for the Lisp programming language. We summarize the algorithm
and some terminology used by the authors.

Considering a macro-transformer m, the form (m expr1 ... exprn) represents a
syntactic extension to the language as the special form m is not part of the core
language’s syntax.

Definition 9. syntactic extension
Let m be a macro transformer. The form
(m expr1 ... exprn)
is a syntactic extension. The S-expressions expr1, ..., exprn are called the syntactic
scope of the extension.

Definition 10. occurrence
An S-expression s is said to occur in a syntax tree if it is a tree that is not nested
within the syntactic scope of a syntactic extension. Let m1 and m2, two macro
transformers, then the syntactic extension (m1 0 1) occurs within the S-expression
(lambda (x) (m1 0 1)), but, it does not occur within (m2 0 (lambda (x) (m1 0
1))).

37



Adding Hygiene to Gambit Scheme

The notion of occurrence emphasizes the dual nature of every expression: they may
be considered as elements of the core language or as a syntactic extension, depending
on the context. As macro-transformers move AST nodes around, we can only be
sure of the interpretation of a particular expression if it does not appear in any
syntactic extension. In the above example, m2 may extract parts of its arguments
to construct the expansion arbitrarily.

Definition 11. transcription
A transcription is the result of applying a macro transformer to an occurrence of a
syntactic extension.

They then define the hygiene condition for macro-transformers, verbatim as :

Definition 12 (Hygiene Condition for Macro Expansion). Generated identifiers that
become binding instances in the fully expanded program must only bind variables that
are generated at the same transcription step (HC/ME).

The choice of identifier’s name for a procedure doesn’t matter in the program.
This concept is known as α-equivalence. We call α-conversion, the process of sub-
stituting a binding’s name, as well as every identifier that refers to it. However,
one cannot simply use α-conversion at every transformation step. Indeed, it has
been shown to be impossible: it is not immediately obvious which identifiers are to
be free or bound after a specific transcription step. In any case, name capture can
be desirable in some contexts and an identifier used as such must not be renamed
independently.

The solution proposed is then to keep track of each identifier’s origin. To attach
some lexical information to identifiers, time-stamps are used to reason about their
transcription phases. Time-stamps are implemented using simple non-negative inte-
gers. As downsides to the algorithm, bindings that the programmer wants to expose
as public must be manually noted as such.

Syntactic Closure
Syntactic closures were introduced by A.Bawden and J.Rees in 1988 as a mechanism
to control hygiene condition in a more idiomatic manner [BR88].

Recall that the compiler is oblivious to the lexical context of identifiers at com-
pile time. The strategy proposed uses an analog to the usual closures returned by
lambda abstraction: a binding environment coupled with an expression to work
with. As closures are a solution to the scoping problem at run-time, syntactic clo-
sures aim to solve the same problem at compile time.

The new construct is meant to be used wherever S-expressions can be used.
Instead of providing meaning to an expanded expression, depending on its final po-
sition, syntactic closures carry their own context.
In the following example, obj-exp and list-var are bound to syntactic closures
which expand, respectively, to (cadr exp) and (caddr exp), within the syntactic
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context provided as parameters to the expander (syntactic-env). The whole trans-
former returns a new syntactic closure using the global environment scheme-syntactic
-environment, where only the core forms are defined.

(lambda (syntactic-env exp)
(let ((obj-exp (make-syntactic-closure

syntactic-env
'()
(cadr exp))))

(let ((list-var (make-syntactic-closure
syntactic-env
'()
(caddr exp))))

(make-syntactic-closure
scheme-syntactic-environment
'()
`(set! ,list-var (cons ,obj-exp ,list-var))))))

Figure 4.1: An expander for a push macro using syntactic closures

In whichever context the expander is used, the programmer does not need to worry
about accidental name capture for the set! identifier, for instance, as the ex-
pression `(set! ,list-var (cons ,obj-exp ,list-var)) is always expanded in the
context for which set! is bound to the built-in set! (the global expansion context
scheme-syntactic-environment).

Using syntactic closures, deliberate name capture is direct: a simple list holds
the name of every variable to be captured. We consider the following expander,
where any occurrence of the variable name throw within body-exp is meant to be
captured by the procedure used by the call-with-current-continuation call.

(lambda (syntactic-env exp)
(let ((body-exp (make-syntactic-closure

syntactic-env
'(throw)
(cadr exp))))

(make-syntactic-closure
scheme-syntactic-environment
'()
`(call-with-current-continuation

(lambda (throw) ,body-exp)))))

Figure 4.2: A transformer for a catch macro using syntactic closure and deliberate
name capture
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Pattern matching based hygiene
The syntax-rules form was incorporated to the language’s specification as a high-
level pattern matching utility, ensuring hygiene automatically. The form allows for
the deconstruction and reconstruction of source code. Hygiene is ensured by the use
of pattern variables, using a specific environment for pattern substitutions.

We can consider the following use of syntax-rules as an example:

(define-syntax let*
(syntax-rules ()

((_ () expr1 expr2 ...)
(let () expr1 expr2 ...))
((_ ((id1 value1) (id2 value2) ...) expr1 expr2 ...)
(let ((id1 value1))

(let* ((id2 value2) ...) expr1 expr2 ...)))))

(define-syntax simple-cond
(syntax-rules (else)

((_ (else expr1 expr2 ...) rst1 rst2 ...)
(error "simple-cond: else keyword can only

be used in the last clause"))
((_ (condition expr1 expr2 ...) rst1 rst2 ...)
(if condition

(begin
expr1
expr2 ...)

(simple-cond rst1 rst2 ...)))
((_ (else expr1 expr2)
(begin expr1 expr2)))
((_ (condition expr1 expr2))
(simple-cond (condition expr1 expr2) (else (void))))))

Later on, the syntax-case special form was introduced, alongside more primitive
functionalities to manipulate and create syntax [Dyb92]. The pattern-matching
language is the same as the syntax-rules specification. The notion of syntax and
syntax-object are at the core of the chosen macro system and will be formalized
thoroughly. In modern Scheme compilers, the syntax and syntax-case forms can
be implemented on top of a lower-level system. Some other systems implement an
hygienic layer on top of their system’s core or, implement hygiene directly within the
syntax-case’s form, with some possible implementation of pattern variables [CT10].

Our algorithmic choice manipulates syntax directly and constitutes the low-level
core of the macro systems. More complex constructs such as those pattern matching
utilities are then built on top of it.
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This chapter briefly described different strategies theorized to ensure hygiene,
notably the KFFD algorithm and syntactic closures. We followed with a descrip-
tion of some pattern-matching-based hygiene strategy. Those high-level constructs
can be implemented themselves using a lower-level macro system, such as the two
we presented, or provide hygiene directly with a more complex implementation of
pattern-variables. Most of the modern Scheme systems with support for hygiene
implements the syntax and syntax-case special forms but, their underlying details
differ. The following chapter explains in detail the algorithm we chose. The macro
system we implemented uses lower-level primitives to manipulate syntax. Higher-
level constructs, including syntax-case and syntax-rules, were built on top of it.
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Chapter 5

Set of Scopes

The Set of Scopes algorithm was introduced in Racket in 2016 [Fla16] to provide
primitive forms for creation and manipulation of syntax. The algorithm achieves ref-
erential transparency by tracking the lexical context of every identifier occuring in
the code. To do so, a set of scopes is attached to every identifier, giving information
about which binding the identifier refers to. This extended symbolic representation
is named syntax objects and will be formalized later on. Upon the introduction of
a new binding, a new scope object is created to represent the binding site. When
resolving a particular identifier, it’s set of scopes is compared, using simple set com-
parisons, to determine to which binding it refers. With syntax, the compiler has total
knowledge of each identifier’s original lexical context, even when moved around by
expansions. Furthermore, breaking hygiene is possible by manual mutations of the
identifier’s scope set.

This chapter explains in detail the algorithm’s core, as implemented and theo-
rized for the Racket system. We begin with an introduction to the scoping mecha-
nism and a formalization of the data type used.

An Introduction
The use of plain S-expressions as the representation for source code exhibit a two-
dimensional nature. An expression can be characterized by its position within an-
other form, combined with that subexpression depth in the tree [HW08]. However,
when moved around by macro expansions, only the final position of an S-expression
remains after the transformation. To memorize the lexical context of every expres-
sion, we then introduce the notion of scopes. For every binding definition, a new
scope is created, and propagated through the subexpressions that are in lexical scope
of our new definition. To get a visual insight, we can assign a color for each scope
object in our code representation. For the following example, we use a color notation
which is greatly inspired by Matthew Flatt’s multiple conferences.

(let ((x 0))
(let ((y 1))
(+ x y))

To ensure hygiene in the system, only the lexical information regarding identifiers
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is relevant. By stacking the colors on top of each other, we can represent visually
each identifier with its set of scopes. Here, the color red is the scope of the outer
let and the color blue is the scope of the inner let. By default, every identifier are
in the core scope : here, identifiers that are not colored are in the core scope only.

(let ((x 0))
(let ((y 1))

(+ x y)))

With each let form, we introduce a fresh scope and extend the set of scopes of
every identifier appearing in the form’s body with it.

In addition, when expanding macro application calls, we also create a fresh scope.
As with binding definition, the scope is propagated to every identifier occurring in
the expansion’s result. Let’s consider a macro transformer (inc x) which expands
into (let ((y 1)) (+ y x)). The following code, using the color notation, shows
the set of scopes created by the set-of-scopes algorithm after the processing of the
two first let forms’s binding creation:

(let ((x 0))
(let ((y 1))

(+ x (inc y))))

In the next expansion step, we expand the inner let form’s body and expand
the inc macro use. For the expansion of the macro transformer, after application
of the transformer, we extend every identifier introduced with a unique scope. Here
we use the color green as the scope of the identifiers in the inc macro transformer’s
expansion. Note that the macro call’s argument y is simply moved around.

(let ((x 0))
(let ((y 1))

(+ x (let ((y 1))
(+ y y)))))

Finally, after expansion of the macro application, we expand its result, expanding
our inserted let form. We use the yellow color for the newly introduced let.

(let ((x 0))
(let ((y 1))
(+ x (let ((y 1))

(+ y y)))))
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Identifiers are compared for equality using their name and set of scopes. We can
find the binding of a given identifier by comparing its set of scopes with every other
identifier’s set within the whole program. During expansion, the algorithm must
match each identifier used as reference to the correct binding definition. Consider-
ing each identifier appearing in B that have the same name as an identifier id, the
candidate identifier with the biggest set of scopes that is subset of id’s set of scopes
is the corresponding binding for the reference id. The following exemple is used to
explain the algorithm’s correctness.

Considering the a identifier in the following code, which is the result of the
expansion process:

(let ((a 0))
(let ((a (+ a 1)))
(+ a (let ((a 1))

(+ a a)))))

To resolve the identifier a to its correct binding, we perform set of scopes com-
parisons with every identifier recorded with the same name. The correct binding for
the reference will be the identifier recorded with the biggest set of scopes that is a
subset of a ’s set. In our example, the environment contains three bindings with the
same name a.

First of all, we know that a is not the referenced binding as its set of scopes
is not a subset of . Indeed, as a ’s set of scope include the green binding, we

know that any reference to that identifier must have been introduced by the macro
expansion associated to that scope as well.

On the other hand, both a and a are candidate binding for the reference a . To
find the correct one, we must pick the candidate with the biggest set of scopes. Let’s
ignore macro transformer for a moment and consider the two bindings a and a . We
can conclude that a appears in a let form introducing the red color, while a appears
in a let form introducing the blue color, as well as the let form introducing the red
color. As a result, the let form introducing the blue color must be inside the other
let form, as it cannot be the inverse. As the two bindings share the same name, a
is meant to shadow a . In our exemple, we can thus conclude that a is the binding
referenced by a .

The algorithm will be stated in detail after an introduction of the required data
types.

Source Code Representation and Syntax Objects
We now formalize the notion of scope, set of scopes, as well as syntax objects.

Definition 13 (scope). A scope σi : Scope is a unique comparable object, used to
keep track of binding origin. The special scope s : Scope is the core scope.
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Definition 14 (set-of-scopes). A set of scope Σ : Set Scope is an unordered col-
lection of scopes defined as

σi : Scope
Σ : Set Scope
Σ ::= {}

| {σi} ∪ Σ

The symbolic notation’s extension, which adds scope information on an identifier,
is named syntax-object and is defined as such :

Definition 15 (syntax-object). a syntax object xΣ : Syntax-object associate a
symbol x : Symbol with a set of scope Σ : Set Scope with Syntax-object as a
shorthand for the Symbol × Set Scope type.

To simplify type definition, we consider every Scheme object a : Atom as syntax
objects, where scoping information is irrelevant. We then represent the program’s
source code using the syntax data type.

Definition 16 (syntax). A syntax s : Syntax is defined by the following inductively
defined union type :

Syntax ::= List Syntax
| Syntax-object

We notice the correspondence with our S-expression definition: Syntax is equiv-
alent to the Sexp Syntax-object type. Then, we can represent extended source
code as expressions of type Sexp Syntax-object, referred to as syntax, or syntax-
objects (when obvious from the context).

Syntax’s Representation Conversion
The procedure datum->syntax : Sexp → Syntax is used to create syntax from an
S-expression, by extending every object identifier with an empty set-of-scopes. It’s
functional inverse, syntax->datum : Syntax → Sexp, remove scope information
from every symbol, yielding a usual S-expression back.

To discern core forms from the user’s definitions, we include the special scope
s : Scope, representing the core scope. The implementation then includes the
datum->core-syntax : Sexp → Syntax procedure, extending every identifier in a
given S-expression with a set of scope containing s.
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The Algorithm
The algorithm works in three phases, where each of those requires a single pass on
the tree. The first phase transforms plain S-expressions into their extended syntac-
tic representation, using the datum->syntax procedure. The second phase register
encountered binding definitions while propagating the scopes created to the inner
expressions. This phase takes care of macro-expansions while ensuring referential
transparency. In the third and final phase, the compiler resolves identifiers by pro-
viding unique names depending on the lexical context inferred. In this final pass,
lexical information is dropped to allow the conventional pipeline to resume.

This section formalizes the algorithm’s second phase, starting with a definition
of most of the helper function in use and the structure required. We put focus on the
algorithm’s core including some details on the Racket’s implementation specifics. In
the next chapter, we follow with our own implementation, explaining changes made
to the Gambit system.

Scope Propagation Θ+

Recall that an identifier x
Σxi
i : Syntax-object associates a symbol xi to the set of

scopes Σxi
. For every new binding site, we create a unique σi : Scope and extend

the set of scopes of every identifier which are in lexical scope of that binding. The
scope propagation procedure recursively extends the set of scopes of every identifier
appearing in an expression and its subexpressions.

Considering the following expression :

(let ((a 0))
(let ((b 1))
(+ a b)))

A new scope σa : Scope is created for the binding site of a and a new scope
σb : Scope for b. Then, every identifier appearing in the first let-form’s body
(including let, +, a and b) must be extended with σa, while every identifier within
the second one, must also be extended with σb. We also extend each newly defined
identifier with the scope representing their own binding site.

(letΣleta ((aΣa1∪{σa} 0))

(letΣletb
∪{σa} ((bΣb1

∪{σa,σb} 1))

(+Σ+∪{σa,σb} aΣa2∪{σa,σb} bΣb2
∪{σa,σb})))

We define add-scope : Syntax → Scope → Syntax, represented by Θ+JEKσ, as
the transformation that extends every set of scopes of every identifier occurring in
the expression E with the scope σ. We define the similar procedure flip-scope :
Syntax → Scope → Syntax, represented by Θ⊕JEKσ. which extends the set of
scope of every identifier in E which isn’t already scoped by σ and remove the scope
otherwise. For every new transformer, a new scope is created. When the transformer
is applied, the bindings created within the transformer must keep the extra binding,
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while identifiers introduced from other transformer, or passed as arguments doesn’t.

Θ+JxΣKσ
Θ+JxΣKσ = xΣ ∪ {σ}

Θ+J(E1 E2 ...)Kσ = (Θ+JE1Kσ Θ+JE2Kσ ...)

Θ⊕JxΣKσ
σ ̸∈ Σ

Θ⊕JxΣKσ = xΣ ∪ {σ}
σ ∈ Σ

Θ⊕JxΣKσ = xΣ\{σ}

Θ⊕J(E1 E2 ...)Kσ = (Θ⊕JE1Kσ Θ⊕JE2Kσ ...)

Figure 5.1: Scope propagation

Expansion environment
The expansion environment uses two separate tables to keep track of every identifier
defined, as well as the lexical context at each expansion step. The global binding
table registers associations between new identifier definitions and their initial bind-
ing sites. In addition, the compile time environment is propagated throughout the
expansion, keeping track of variable and macro-transformer definitions according to
the current lexical context.

Combining the scoping mechanism with this environment representation is sufficient
to ensure referential transparency throughout the expansion phase.

Global Bindings Table

Upon expansion of a new variable or macro definition, a representation for the new
binding site is created. The table B : (Set Binding) (using B as a shorthand for
the B table’s type) record every binding β = binding(xΣ, x), with β : Binding,
which associate the symbol x : Symbol and the set of scopes Σ : Set Scope to the
unique symbol representing the binding site x : Symbol. As the table is global, all
the information is kept at all times throughout the last two phases of the algorithm:
this allows for precise information from the compiler even if some macro application
results in invalid code.

Definition 17 (binding). A binding β : Binding associates an identifier xΣ :
Syntax-object to a unique representation of the binding location (binding key) x :
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Symbol. If the binding site is at top level, then x = x, otherwise, x is an uninterned
fresh symbol, as given by the gensym procedure.

Definition 18 (Global Binding Table). The global binding table B is the set of
every binding β created during the expansion phase.

βi ::= binding(xΣxi
i , xi)

B ::= {}
| B ∪ {βi}

We say that the expression opJE1K yields D1, noted opJE1K =⇒ D1, if the
computation of opJE1K return the data D1 as a result.

We define the β+ procedure, which records a binding in the global binding table, as
follows:

β+JEKB

x = gensym()
β = binding(xΣ, x),

B′ = B ∪ β

β+JxΣKB =⇒ (B′, x)

Figure 5.2: binding recording in global binding table

To find the original binding site of an identifier occurrence, its set of scopes is com-
pared to every other identifier for which there exists an association in B.

Let’s consider the identifier xΣx .
We define Θ as the set of every set of scopes Σi associated to an identifier yΣi

i , with
x = yi, appearing in a binding of B :

ΘJxKB = {Σi | ∃Σi, yi, binding(xΣi , y
i
) ∈ B}

We then define Θ⊂ as the set of every element of Θ that are subsets to Σx:

Θ⊂JxΣxKB = {Σi | Σi ⊂ Σx ∧ Σi ∈ ΘJxKB}

If |Θ⊂| = 0 then we cannot resolve.
Otherwise, let Σ⊂ ∈ Θ⊂, be the greatest set of scope with

∀Σj ∈ Θ⊂, |Σ⊂| < |Σj|

We then consider x⊂ with binding(xΣ⊂ , x⊂) ∈ B. If ∃Σi ∈ Θ⊂ with σ⊂ ̸⊂ σi then
the use of xΣ

x is ambiguous: we cannot resolve. The ambiguity can be caused by
broken macros.
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Definition 19 (resolve). The procedure resolve : B → Syntax-object → Maybe Symbol
takes an identifier in argument and compares its set of scopes with the set of every
identifier appearing in an entry of B.

∀Σi ∈ Θ⊂JxΣxKB, |Σ⊂| ≥ |Σi|
∀Σi ∈ ΘJxKB,Σ⊂ ⊂ Σi

binding(xΣ⊂ , x⊂) ∈ B
resolveJxΣxKB =⇒ x⊂

Figure 5.3: binding resolve

Compile Time Environment

When expanding an identifier, the system must ensure that its use is correct, accord-
ing to the lexical context of its surrounding expression (or top-level). The compile-
time environment represents the lexical context and is propagated according to the
usual language’s scheme.

Definition 20 (compile-time binding). A compile-time binding β : CTE-Binding
represents an occurrence of an identifier in the lexical context. The binding records
the occurrence of a binding site x as a variable or macro transformer. If the compile-
time binding represents a macro transformer, the evaluated procedure τ is then as-
sociated as a plain Scheme procedure.

γi ::= {cte-binding(xi, var)}
| {cte-binding(xi, macro(τxi

)))}

Definition 21 (compile time environment). The compile time environment Γ :
(Set CTE-Binding) keep tracks of the lexical context, throughout the expansion
phase.

Γ ::= {}
| Γ ∪ {γi}

As previously with the B table, we use Γ as shorthand for the Γ table’s type. We
also define γ+, the procedure that record a binding site, as either representing a
variable or transformer definition, in the compile-time environment.
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γ+JxKΓ
γ = cte-binding(x, var), Γ′ = Γ ∪ γ

γ+JxKΓvar =⇒ Γ′

γ = cte-binding(x, macro(τ)), Γ′ = Γ ∪ γ

γ+JxKΓmacro(τ) =⇒ Γ′

Figure 5.4: binding recording in compile-time environment

Full Environment

With the combination of those two environments, we can define the operations to
record and lookup an identifier’s occurrence. We firstly define the γ+ transformation
which records a variable or macro-transformer identifier in the full environment
(B, Γ).

recordJxΣK(B, Γ)

β+JxΣKB =⇒ (B′, x),
γ+JxKΓvar =⇒ Γ′

recordJxΣK(B, Γ)
var =⇒ (B′, Γ′)

β+JxΣKB =⇒ (B′, x),
γ+JxKΓmacro(τ) =⇒ Γ′

recordJxΣK(B, Γ)
macro(τ) =⇒ (B′, Γ′)

Figure 5.5: full binding recording

Finally, we define the lookup procedure, which determines if an identifier should
represent a variable or macro-transformer, according to the lexical context we tracked.
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resolveJxΣxKB =⇒ x
binding(x, b) ∈ Γ

lookupJxΣxK(B, Γ) =⇒ b

Figure 5.6: identifier lookup

Expansion ϕ

Once the S-expression has been converted to its syntax representation, the expan-
sion procedure expand : B → Γ → Syntax → Pair B Syntax, represented as
ϕJEK(B Γ), transforms some syntax while recording bindings along the way. The
procedure takes the full environment as a parameter and yields both the updated
B environment and the final expanded syntax.

Every core form of the algorithm is recognized according to the leading identifier
of some parenthesized group of syntax. For special form uses, the leading identifier
must resolve to the top-level definition’s binding.

Sequencing

Every Scheme program is wrapped in an implicit begin core form. The form
is used for operation sequencing. For our formalization, we propagate the B table
through each expression’s expansion in a sequence, to express that changes to the
B table persist through each individual expansion steps, both in a local context or
at top-level.

ϕJE1K(B, Γ) =⇒ (B1, E ′
1)

ϕJE2K(B1, Γ) =⇒ (B2 E ′
2)

...
ϕJEnK(Bn−1, Γ) =⇒ (Bn, E ′

n)

ϕJ(begin E1 E2 ... En)K(B, Γ) =⇒ (Bn, (begin E ′
1 E ′

2 ... E ′
n))

Figure 5.7: Sequencing

Lambda Abstraction

The lambda special form creates a new closure while introducing formal param-
eters as local bindings in the local context of the body expression. As for every new
variable definition, a new scope σ : Scope is created to represent the lexical scope
of the new definition. The scope is propagated, using the Θ+ transformation, to
both the specific identifier and the form’s body.
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resolveJlambdaΣlambdaK(B, Γ) = lambda
E = (begin{s} E1 ... En)

σ = genscope()

recordJΘ+JxΣx1 KσK(B, Γ)
var = (B1, Γ1)

(...) = (...)

recordJΘ+JxΣxn KσK(Bn−2, Γn−2)
var = (Bn, Γn)

ϕJΘ+JEKσK(Bn, Γn) =⇒ (B′, E ′)

ϕJ(lambdaΣlambda (xΣ1 ... xΣn) E1 E2 ... En)K(B, Γ)

=⇒
(B′, (lambdaΣlambda (Θ+JxΣ1Kσ ... Θ+JxΣnKσ) E ′))

Figure 5.8: lambda abstraction

Procedure Application

A list of expressions which does not start with a variable associated to any macro
transformer or core form present in the current environment, represents a usual
procedural application. The expander goes through each subexpression of the list,
propagating the resulting B environment at each step, similarly to the the begin
special form.

∀τ . lookupJE1K(B, Γ) ̸= macro(τ)
ϕJE1K(B, Γ) =⇒ (B1, E ′

1)
ϕJE2K(B1, Γ) =⇒ (B2, E ′

2)
... =⇒ ...

ϕJEnK(Bn−2, Γ) =⇒ (Bn, E ′
n)

ϕJ(E1, E2, ..., En)K(B, Γ) =⇒ (Bn, (E ′
1, E ′

2, ..., E ′
n))

Figure 5.9: Application Form

Local definition

The let special form records a new binding in the environment used for the form’s
body expansion. It is semantically equivalent to an applied abstraction.

((lambda (x) E) Ex) ⇐⇒ (let ((x Ex)) E)
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(letΣlet ((xΣ1
1 E1) ... (xΣn

n En)) E1 ... En)
=⇒

(letΣlet ((xΣ1
1 E1) ... (xΣn

n En)) (begin{s} E1 ...En))

resolveJletΣletKB =⇒ let
σ = genscope()

ϕJExK(B, Γ) =⇒ (B′, E ′
x)

recordJΘ+JxΣxKσK(B′, Γ)
var =⇒ (B′′, Γ′)

ϕJΘ+JEKσK(B′′, Γ′) =⇒ (B′′′, E ′)

ϕJ(letΣlet ((xΣx Ex)) E)K(B, Γ) =⇒ (B′′′, (letΣlet ((Θ+JxΣxKσ E ′
x)) E ′))

Figure 5.10: local definition

Local Macro Definition

Local macro definitions are similar to the let special form, as the right-hand side
of each definition represent transformation that can be used during the expansion, it
must be fully evaluated. The evaluation of the right-hand side of a local macro def-
inition goes through the last three algorithm phases, before evaluating the resulting
expression. We name this process eval*.
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ϕJB, Γ, (let-syntaxΣlet-syntax ((x
Σx1
1 Ex1) ... (xΣxn

n Exn)) E1 E2 ...)K(B, Γ)

=⇒
ϕJ(let-syntaxΣlet-syntax((x

Σx1
1 Ex1))

(let-syntaxΣlet-syntax((x
Σx2
2 Ex2))

...

(let-syntaxΣlet-syntax ((xΣxn
n Exn))

(begin{s} E1 E2 ...))...))K(B, Γ)

resolveJlet-syntaxΣlet-syntaxKB =⇒ let-syntax
σ = genscope()

ϕJExK(B, Γ) =⇒ (B′, E ′
x)

eval*JE ′
xK(B, Γ) = (B′, τ)

recordJΘ+JxΣxKσK(B′, Γ)
macro(τ) =⇒ (B′′, Γ′)

ϕJΘ+JEKσK(B′′, Γ′) =⇒ (B′′′, E ′)

ϕJ(let-syntaxΣlet-syntax ((xΣx Ex)) E)K(B, Γ) =⇒ (B′′′, E ′)

Figure 5.11: local macro definition

Macro Application

A macro application form is a list starting with any identifier associated to
a macro-transformer. To distinguish between expression resulting from a macro-
application and those who were originally present in the AST, we create a new
scope.

lookupJMK(B, Γ) = macro(τ)
σ = genscope()

eval*J(τ (M E1 ... En))K(B, Γ) = M ′

ϕJ(M, E1, ..., En)K(B, Γ) =⇒ ϕJΘ⊕JM ′KσK(B, Γ)

Figure 5.12: Macro Expansion

The define and define-syntax are analogous to their local counterpart, again
with small modification to the way bindings are recorded. Those forms are omitted
from the semantics description.
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Quote and Quote-syntax
The quote-syntax special form acts as the quote special form, but for syntax

objects instead of plain symbols. Both quote and quote-syntax are implemented the
same way during this phase : the form does not change. However, during the last
expansion phase, quote-syntax keeps the syntax object unchanged.

(quote E) =⇒ (quote E)

(quote-syntax E) =⇒ (quote-syntax E)

Figure 5.13: quote and quote-syntax special form

Other Special Forms
Scheme’s implementations often include some variant special forms for local def-

inition. The special forms let*, letrec and letrec* differ in the order of evaluation
and lexical scope of their binding definitions. The let* special form evaluates each
binding sequentially while propagating the new environment at each step. The
letrec special form binding allow recursive definition for the defined bindings, as
well as mutually recursive bindings. At last, the letrec* combine the two previous
variants.

ϕJB, Γ, (let*Σlet* ((x
Σx1
1 Ex1) ... (xΣxn

n Exn)) E1 E2 ...)K(B, Γ)

=⇒
ϕJ(letΣlet*((x

Σx1
1 Ex1))

(letΣlet*((x
Σx2
2 Ex2))

...

(letΣlet* ((xΣxn
n Exn))

(begin{s} E1 E2 ...))...))K(B, Γ)

Figure 5.14: let* form definition
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(letrecΣletrec ((xΣ1
1 E1) ... (xΣn

n En)) E1 ...En)
=⇒

(letrecΣletrec ((xΣ1
1 E1) ... (xΣn

n En)) (begin{s} E1 ...En))

resolveJletrecΣletrecKB =⇒ letrec
σ = genscope()

recordJΘ+JxΣxKσK(B, Γ)
var =⇒ (B1, Γ1)

∀i ∈ [2, n], recordJΘ+JxΣxKσK(Bi−2, Γi−2)
var =⇒ (Bi, Γi)

ϕJE1K(Bn, Γn) =⇒ (B′
1, E ′

x)

∀i ∈ [2, n], ϕJEiK(B′
i−2, Γn) =⇒ (B′

i, E ′
i)

ϕJΘ+JEKσK(B′
n, Γn) =⇒ (B′′, E ′)

ϕJ(letrecΣletrec ((xΣ1 E1) ... (xΣn En)) E)K(B, Γ)

=⇒
(B′′, (letrecΣletrec ((Θ+JxΣxKσ E ′

x) ... (Θ+JxΣxKσ E ′
x)) E ′))

Figure 5.15: letrec form definition
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(letrec*Σletrec* ((xΣ1
1 E1) ... (xΣn

n En)) E1 ...En)
=⇒

(letrec*Σletrec* ((xΣ1
1 E1) ... (xΣn

n En)) (begin{s} E1 ...En))

resolveJletrec*Σletrec*KB =⇒ letrec*
σ = genscope()

recordJΘ+JxΣxKσK(B, Γ)
var =⇒ (B1, Γ1)

ϕJE1K(B1, Γ1) =⇒ (B′
1, E ′

x)

∀i ∈ [2, n], recordJΘ+JxΣxKσK(B′
i−2, Γi−2)

var =⇒ (Bi, Γi)
∀i ∈ [2, n], ϕJEiK(Bi, Γi) =⇒ (B′

i, E ′
i)

ϕJΘ+JEKσK(B′
n, Γn) =⇒ (B′′, E ′)

ϕJ(letrec*Σletrec* ((xΣ1 E1) ... (xΣn En)) E)K(B, Γ)

=⇒
(B′′, (letrec*Σletrec* ((Θ+JxΣxKσ E ′

x) ... (Θ+JxΣxKσ E ′
x)) E ′))

Figure 5.16: letrec* form definition
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(letrec*-syntaxΣletrec*-syntax ((xΣ1
1 E1) ... (xΣn

n En)) E1 ...En)
=⇒

(letrec*-syntaxΣletrec*-syntax ((xΣ1
1 E1) ... (xΣn

n En)) (begin{s} E1 ...En))

resolveJletrec*-syntaxΣletrec*-syntaxKB =⇒ letrec*-syntax
σ = genscope()

recordJΘ+JxΣxKσK(B, Γ)
macro(unbound) =⇒ (B1, Γ1)

evalJE1KB1, Γ1 =⇒ τ 1
recordJΘ+JxΣxKσK(B1, Γ1)

macro(τ1)
=⇒ (B′

1, Γ′
1)

∀i ∈ [2, n], recordJΘ+JxΣxKσK(B′
i−2, Γ′

i−2)

macro(unbound) =⇒ (Bi, Γi)

evalJEiKBi, Γi =⇒ τ i
recordJΘ+JxΣxKσK(Bi, Γi)

macro(τ) =⇒ (B′
i, Γ′

i)

ϕJΘ+JEKσK(B′
n, Γ′

n) =⇒ (B′′, E ′)

ϕJ(letrec*-syntaxΣletrec*-syntax ((xΣ1 E1) ... (xΣn En)) E)K(B, Γ)

=⇒
(B′′, (letrec*-syntaxΣletrec*-syntax ((Θ+JxΣxKσ E ′

x) ... (Θ+JxΣxKσ E ′
x)) E ′))

Figure 5.17: letrec*-syntax form definition

Top Level Definition

Most Scheme implementations includes the define and the define-syntax special
forms which are analogous to their local counterpart. The use of a define or
define-syntax form in a local context is equivalent to the uses of the let or the
let-syntax form respectively.
Those forms won’t be formalized as it complexifies the notation used.

Expansion’s Last Phase
The last phase of the expansion consists of a single pass on the program’s expres-
sion, where each identifier xΣxi

i encountered is resolved to its corresponding binding
key xi. The binding key is then used in the expanded code, to refers to the correct
binding, avoiding name clashes. Within this phase, unbound identifiers are made
obvious to the compiler and they can be treated accordingly.

In this chapter, we formalized most of the set of scopes algorithm, following the
Racket’s specification. We focused on the algorithm’s core without Racket’s speci-
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ficities such as its module system. In the following, we begin with an overview of
the original Gambit’s macro system. We then formalize the data structures used
and present the algorithm’s implementation we conceived.
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Chapter 6

Gambit’s set of Scopes

Gambit’s implementation of the Scheme language conforms to the R5RS revised
report, with supports for some of the functionalities appearing in the following re-
ports. Since its sixth revised report, the language’s specification includes differents
popular hygienic transformations, namely the define-syntax, syntax-rules and
syntax-case forms. These forms were made available in the Gambit system, with-
out offering hygiene.

To implement the set of scope algorithm on top of Gambit’s original system, the
language’s compilation pipeline was changed, as well as both the compilation and
expansion environment. Our choice of a hygienic macro system implementation was
motivated by the debugging utility and extensibility that the set of scopes algorithm
offers. As the system records every binding, the compiler can give complete error
messages, even in case of undefined variables or broken macros. The modularity of
the environment representation also allows for particularly good visualization of the
lexical context, and combines well with Gambit’s original environments.

This chapter explains the modifications required to the Gambit Scheme imple-
mentation to implement hygiene. We then summarize the process of rewriting some
of the Gambit special form, such as syntax-case, with our new macro system. We
begin with a definition of the Gambit source code representation, which extends the
simple S-expression representation with extra information useful for debugging.

Source Code Representation
The Gambit implementation of the Scheme language extends every object’s usual
S-expression representation with the source file’s name and textual position (char-
acter/line). We represent this location information by the Location type.

Definition 22 (Source Object). Gambit’s source-objects extend the S-expression
representation to include source file’s location information :

Source ::= (List Source)× Location
| Atom × Location
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We extended the source-object datatype with an extra field containing a, poten-
tentially uninitialized, reference to a set of scope object. We then define Gambit’s
syntax-objects as any source object with an initialized set of scope object. This make
the conversion between the two structures more efficient. To transform a source-
object into a syntax-object (as with datum->syntax), we simply add the reference to
a new (or existing) set of scopes to the source-object’s last field by mutation.

Definition 23 (Gambit’s Syntax-object). Gambit’s syntax-objects extend the rep-
resentation of symbol containing source objects with an additional field containing a
set of scope reference.

Syntax-objectG ::= Symbol × Location × Set Scpope

Definition 24 (Gambit’s Syntax). Gambit’s syntax extends the general source object
representation to include a set of scopes on source containg a symbol as atom.

SyntaxG = (List SyntaxG)× Location
| Syntax-objectG
| Source

We shall omit the G subscripts for the remaining of the chapter.

As the algorithm must know the constructs exposed to the programmer before
the implementation of syntax objects in our code, we can include source objects
directly as syntax object by implementing the following strategy. By extending the
Gambit syntax object definition to include an optional reference to a set-of-scope
for every atomic source object, source objects can be replaced altogether with our
new syntax representation of code. 1. The extra field on every source-object gives a
slight memory overhead for users who wish to disable the hygiene system altogether.

Set of Scopes Implementation
Gambit use two compile-time environments. The interaction-cte environment is
used for the eval procedure, during the interpretation of code with GSI. The second
environment is used for the compilation of the code with GSC. The two environ-
ments interact, during compilation, to share common macro transformers, as the
interaction-cte is defined earlier in the pipeline and as the interpreter allows calls
to the compile-file procedure2.

1As simple optimisation, we can sometimes mutate a syntax-object in place, instead of perform-
ing a full copy as required with datum->syntax.

2The compile-file procedure takes a file path as argument and invokes the compilation pipeline
on that file. To do so, a compilation compile-time environment representation must be created
which includes the interaction-cte’s local definitions.
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To implement our macro system on top of the Gambit’s current implementation,
we changed both environments to match, more closely, the structure needed for the
set of scopes algorithm, while preserving a consistent representation for both envi-
ronments.

The following section explains changes made to the interaction-cte.

The Interaction Compile Time Environment
The original environment was based on a circular linked list of elements representing
the different types of bindings and was closely tuned to the REPL feature of the
language.

cte : CTE
cte ::= top-cte(previous-cte)

| cte-frame(previous-cte, names, up, over)
| cte-macro(previous-cte, name, transformer)
| cte-namespace(previous-cte, name, aliases)
| cte-decl(previous-cte, name, value)

top-cte : CTE → CTE
cte-frame : CTE → (List Symbol) → Fixnum → Fixnum → CTE
cte-macro : CTE → Symbol → (Syntax → Syntax) → CTE

cte-namespace : CTE → Symbol → List (Pair Symbol Symbol) → CTE
cte-decl : CTE → Symbol → Symbol → CTE

Figure 6.1: Gambit’s Original interaction-cte

With this environment representation, for every new binding, macro binding, dec-
larations or namespace defined, the expander inserts a new element in front of the
linked list. We briefly describe the original binding’s representation.

The cte-frame(names, up, over, next-cte) represents variables defined in the
same let or lambda form. The up and over fields are integers related to the Debru-
jin encoding of variables, which allows variable lookup by their definition’s order,
instead of symbol comparison.

The cte-macro(name, transformer, next-cte) object contains the evaluated macro
transformer associated to the macro’s name.

The cte-namespace(name, aliases, next-cte) associates the namespace’s name
with a list of name substitutions for that namespace.

The cte-decl(name, value, next-cte) gives a value to the named declaration.
Declarations are, in most cases, used to enable/disable optional extensions of the
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compiler.

As the structure is cyclic, the top-cte node has the role of a sentinel node, rep-
resenting the start and end of the list: if the current cte is the top-cte object, it
indicates that we are at top-level.

The structure has many advantages such as a small memory cost and efficient
(constant time) single-stepping and backtracing. While looking up an identifier in
the environment, the compiler processes by linear search in the list, in O(n) relative
to the number of bindings, macro transformers, namespaces and declarations. When
a namespace binding is encountered during the linear lookup, the compiler compares
the variable’s name to namespace bindings’ aliases. As a result, namespaces name
substitution can be inferred without additional cost.

To ensure hygiene, we recall that the compiler must record every variable that
can be used, including primitives and core forms. In the original environment, dur-
ing the compiler’s compilation, primitives and core form exposed to the programmer
are pre-inserted into the interaction-cte environment as default content.

The New Representation
To replace the expansion phase of the original Gambit implementation completely,
we modified both the interaction and compilation environments. We focus our at-
tention, once again, on the interaction cte as the compilation environment is a
simplified version of it. As a first implementation step, we kept the Gambit’s orig-
inal expansion phase in the pipeline: after our new expansion phase, the original
expansion resume. This allows for incremental integration of the debugging utility,
before we can remove the original expansion phase altogether. This also ensured
that no feature support was lost, at every implementation step.

We begin with a description of our modification, followed by an overview of some
of the Gambit’s features and their integration in our new system.

Algorithm’s Data Structures
We briefly describe our implementation choice for the data structures required by
the set of scopes algorithm, and explain the changes made to the environments.

Global Binding Table B

The global binding table implementation requires a structure supporting fast ex-
tension by mutation. For the use of the resolve procedure, it also requires direct
access to each association, as well as a way to loop through every association, one
by one, without specific order. For an efficient implementation, we expect the mu-
tations of the table to run in constant time, and call to the resolve procedure to
run in linear time (O(n), with n, the number of associations recorded in B). We
thus implement the B table by hashing, using the table hash-table implementation
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present in the Gambit system. As Gambit’s hash tables store data in a continuous
chunk of memory, we can easily access every association linearly. Gambit proposes
the table->list to efficiently convert hash tables into linked lists.

Compile Time Environment Γ

To implement the compile time environment Γ, the structure used must support
not only constant time access but also constant time non-mutable extensions. The
Gambit implementation allows, specifically with its REPL utility, to define or rede-
fine top-level transformers, from any local environment. It follows that the structure
must support constant time mutation as well.

We modified the Gambit implementation of the table object to support non-
mutable operations on the same data structure. To do so, the underlying structure
was changed toward a hashed array mapped trie (HAMT). This data structures giv-
ing amortized performance in the same order as conventional hash tables. However,
the structure is persistent, 3 allowing efficient data sharing.

For the table’s implementation, we use our new table structure. When extend-
ing the top-level environment, we can mutate the top-cte’s cte directly. On the
other hand, we can add local bindings by non-mutable extension, sharing most of
the table’s data with its parent cte, before propagating the context into the local
definition expression’s inner body.

Integration of the B and Γ Tables

To incorporate the algorithm’s environment, the local Γ table and the global B table
must be kept accessible from every cte objects. However, the Γ and B tables are
not sufficient to conserve efficient access to the last inserted cte-frame element, as
HAMT are unordered collections. For an efficient implementation of the REPL’s
backtracing feature, we must keep, a reference to the parent cte object. Similarly, to
conserve the original namespace and declaration implementations, reference to the
parent cte is required. It follows that we had to conserve the original cte’s linked
list structure but, also allow access to both tables at all times.

The local Γ table must be updated with every cte-frame or cte-macro cre-
ation. We can extend every cte objects with a field containing the current Γ table
but, as only cte-frame and cte-macro object can update the table, we extended
those specific objects only. The cte-macro object can be simplified but, we ensured
retro-compatibility with the original debugging features. As the HAMT structure is
persistent, every extension of the Γ table shares most of its data with the previous
cte.

We store the B table’s reference in the top-cte object. To allow fast access to
the table from any cte object, we added a reference to some of them. Note that
we store a reference to the cte-top object, instead of a reference to the B table, as

3Persistent data structures always keep a copy of their current state when modified. In our
particular case, the structure is conserved during insertion.
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access to the cte-top object is required by some of the operations of the original
implementation. Furthermore, this allows us to mutate the cte-top’s Γ table from
any cte object.

Instead of extending every object with the two references, we extend the cte-top,
cte-frame and cte-macro only. If the current cte is a cte-namespace or cte-declaration,
we can access the Γ and B table by going through the linked list until a cte-frame,
cte-macro or cte-top object is encountered.

Interaction Compile Time Environment
We then define the new interaction-cte:

cte : CTE
cte ::= top-cte(previous-cte, B, Γ)

| cte-frame(previous-cte, Γ, cte-top, names, up, over)
| cte-macro(previous-cte, Γ, cte-top, name, transformer)
| cte-core-macro(previous-cte, Γ, cte-top, name, transformer)
| cte-namespace(previous-cte, name, aliases)
| cte-decl(previous-cte, name, value)

top-cte : CTE → Γ → B → CTE
cte-frame : CTE → Γ → CTE → (List Symbol) → Fixnum → Fixnum → CTE
cte-macro : CTE → Γ → CTE → Symbol → (Syntax → Syntax) → CTE

cte-core-macro : CTE → Γ → CTE → Symbol → (Syntax → Syntax) → CTE
cte-namespace : CTE → Symbol → List (Pair Symbol Symbol) → CTE

cte-decl : CTE → Symbol → Symbol → CTE

Figure 6.2: Gambit’s New interaction-cte

Beside the incorporation of the two tables, we also added a new cte node: the
cte-core-macro object is used to store core forms transformers, with the same struc-
ture as regular user defined transformers. Recall that macro application’s semantic
expands the transformer application’s result after the evaluation of the transformer
call. Core forms, on the other hand, have specific semantics that must be pro-
cessed differently. The core forms of our expansion correspond to the core form
formalised in the previous chapter, in addition to some other forms that require
special processing, such as quasiquote, that can be optimized with direct access to
the environment.

Interface and Compilation Environment
As previously mentioned, the compilation environment is, roughly, a simplified ver-
sion of the interaction cte. We conceived an interface for the procedures needed for
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the hygienic expansion, thus abstracting the environment’s specific implementation
by using a different mapping for both interpretation and compilation.

Gambit’s Features
Our new structures are consistent and retro-compatible with the original expansion
phase of the compiler. We discuss briefly some of the Gambit’s features and explain
how we preserved them in our new macro system.

REPL Utility
The backtracing feature of the REPL was tightly linked to the interaction-cte’s
representation. By conserving the linear structure of the cte, the ordering of each
definition is kept intact and allows for the debugging feature to be integrated with-
out much change. When backtracing, we can access a previous Γ table by following
the parent cte reference of each node. As the B global binding table is implemented
with an hash table, we can remove the association in constant time. When using the
REPL, Gambit allows for top-level definition from any local context. To preserve
the feature, we can introduce bindings in the top-level Γ table of the cte-top object
by mutation. For identifiers lookup, we can search in both the local Γ table and the
cte-top’s Γ table.

The original expansion uses specific procedures to control single-stepping in the
code: the number of single step each core form uses must be specified within each
form. We integrated that feature in the last phase of the set of scopes algorithm.

Debugging Features
While debugging, using the REPL or with print-debugging, the compiler can present
a particular piece of source code in a familiar and comprehensive manner, using the
pretty-printer. For instance, programmers can print the code contained in some clo-
sures stored in memory, by using the pp procedure: (pp (lambda (x) x)). For this
case, instead of printing the closure’s address directly, Gambit gives a well-indented
representation of the code: (lambda (x) x). The representation corresponds to the
fully expanded code contained in the closure.

However, using the pretty-printer to show source code containing macro ex-
pansion do not produce any clues about which expansions were used. Consider-
ing a transformer a-macro defined with (define-macro (a-macro) '0), the call (pp
(lambda (x) (a-macro))) will output (lambda (x) 0). As a programmer can struc-
ture their code with macro calls, the pretty-printed code can become as unrecogniz-
able and obfuscated.

To avoid some of these issues, the Gambit’s pretty-printer can output core form
uses in their pre-expanded form. For known core transformers, such as cond and
quasiquote, the expansion is predictable and cannot be redefined. Usually those
core forms are widely used in code base and reduce the code size drastically. For
instance, we can consider the cond core form which expands into an if cascade.
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(cond
((test1?) body1)
((test2?) body2)
((test3?)

=> some-procedure)
(else
body-else))

(if test1?
body1
(if test2?

body2
(let ((result (test3?)))

(if result
(some-proc result)
body-else))))

Figure 6.3: simplified cond special form expansion

The predictability of those expansions helps Gambit determine if some expanded
code is the result of one of the core form’s transformation. The system proceed by
recognition of pattern in the expanded form, which is called decompilation. De-
compilation is an heuristic process as the different uses of the same core form can
produce the same expansion. For instance, a call to (pretty-print (lambda (x)
`(0 1 ,x))) output (lambda (x) `(,0 ,1 ,x)). Indeed, both (lambda (x) `(,0
,1 ,x)) and (lambda (x) `(0 1 ,x)) expand to the same code.

To support the feature in our new system, we had to modify the decompilation
process, as some of those form’s expansion changed. We also include those core
transformers to the core forms of our algorithm.

Module Integration
The Gambit module system is an implementation of the R7RS specification [FH20]
[SCG13]. Combining the namespace feature of the language with the special include
procedure, users can import named procedures and transformers in a single ab-
stracted special form import. The include special form reads a source-code file and
inserts its AST in place.

Modules can be compiled independently and be statically/dynamically linked
to other programs. The pre-compiled modules must be able to share their global
variables and global macro definitions with the compiler during the compilation of
a program that use that module.

With our hygienic system, we want to track every identifier appearing in mod-
ule’s initial code as well. Furthermore, the Γ table must get recovered to include
the macro definitions exposed by the module. We thus include a serialised version
of the cte-top’s Γ and B tables. When linking a module statically, the compiler
combines the serialised table, with the current expansion’s cte. Multiple use of the
same module can be optimised to skip that step.

Representing scope object as Gambit object is not sufficient for serialisation and
static linking: the object’s addresses used to differentiate scopes within a module
could clash with the adresses used by the compiler while compiling program using
that module. We then replace our scope object implementation with pairs contain-
ing an integer, and a unique module tag. The tag can be, for instance, the MD5
hash of the file. We extend our environment with a counter that can be used for
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every scope creation.

The current chapter summarised the set of scope algorithm implementation,
defining the core of our new macro system. We also presented some of the interest-
ing features of the Gambit language that we had to conserve within the new system.
The following chapter presents the tests made to validate our algorithm implemen-
tation and also includes a performance analysis.
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Chapter 7

Macro System’s Validity and
Performance Analysis

This chapter summarizes how we ensured the new system’s validity and conformity
to the R6RS specifications [FM+07] and include some performance analysis.

As a first step to prove the system’s validity, we valided the algorithm’s core
implementation as specified by Racket’s specification. As a second step, we validated
the macro system’s higher-level pattern matching forms with the R6RS specification
and some other conforming Scheme implementations.

Algorithm Validity
Our new system is based on Racket’s set of scopes implementation. To validate the
core of our new algorithm, we selected some of the tests that are used by Racket to
validate its own algorithm. The Racket language differs from other Scheme dialects,
notably, by its tower of evaluation and non-standard module implementation. We
then chose tests used to validate the primitive procedure used in the algorithm as
well as simple core forms. However, Gambit’s use of source-objects instead of regular
datum leads to some noticeable differences in the primitives’ behaviour. As we are
allowing for backward-compatibility with the original system, we tested for those
specific cases as well during the development. We finally extended those tests with
some of our own.

Macro System Validity
The low-level constructs defined by our algorithm constitute the core of our macro
system. Those primitives allow for more complex extensions, including pattern
matching tools such as syntax-case. Those pattern-matching forms, also including
with-syntax and syntax-rules, are included in the R6RS report. In practice, in
common code bases, most transformers use syntax-rules based pattern matching
utilities for most, or the entirety of their code.
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syntax-case Specification
The article presented earlier proposes, in addition to the complete form specification,
an exhaustive list of syntax-case form’s use-cases [Dyb92]. Those examples vali-
date the different mechanisms used to perform hygienic expansion, including ways
to break hygiene. As the specification was included, with little modifications, in the
R6RS revised report, we used those examples to ensure our own system conforms
to it.

The article includes, among others, the canonical hygiene example of a short-
circuiting or macro.

(define-syntax or
(lambda (x)

(syntax-case x ()
((_) (syntax #f))
((_ e) (syntax e))
((_ e1 e2 e3 ...)
(syntax (let ((t e1)) (if t t (or e2 e3 ...))))))))

(let ((t "okay"))
(or #f t))

Figure 7.1: or macro using syntax-case and a use case requiring hygiene

The authors also implement common alternative pattern matching tools in terms
of syntax-case. Our implementation of the form with-syntax follows the article’s
implementation, ignoring error checking.

(define-syntax with-syntax
(lambda (x)

(syntax-case x ()
((_ ((p e0) ...) e1 e2 ...)
(syntax (syntax-case (list e0 ...) ()

((p ...) (begin e1 e2 ...))))))))

Figure 7.2: with-syntax special form implementation in term of syntax-case

The syntax-rules implementation, is also defined.
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(define-syntax syntax-rules
(lambda (x)

(syntax-case x ()
((_ (k ...) ((keyword . pattern) template) ...)
(with-syntax (((dummy ...)

(generate-temporaries
(syntax (keyword ...)))))

(syntax
(lambda (x)
(syntax-case x (k ...)

((dummy . pattern) (syntax template))
...)))))))

Figure 7.3: syntax-rules special form implementation in term of syntax-case

In addition, the article proposes some other constructs used as low-level facilities
for macro expansion. For instance, the predicates free-identifier?, bound-identifier?
as well as the generate-temporaries procedure. Those procedures were added to
Gambit and match this specification. In the end, we were able to implement the
entirety of the examples listed in the paper, exploring different edge cases.

Other Scheme Implementations
To test those higher-level pattern-matching constructs, we can choose validity tests
from different Scheme implementations without worrying about their underlying im-
plementation details and low-level form. In addition to Racket’s test suite, used to
validate the algorithm’s core, we chose some of the R6RS compliant Scheme im-
plementations. The Chibi Scheme implementation [chi] conforms, for most of its
features, to the R7RS specification and includes the syntax-case and syntax-rules
special forms [SCG13]. It includes a test suite conforming to the R6RS specification.

In addition to the Scheme revised reports, the implementation of some popular
modules are selected, by a committee of developers, researchers, and users, under
the label of Scheme Request For Implementation (SRFI). As the syntax-case form
is now part of the language core specification, some of those SRFI are implemented
with it. This allows us to test our implementation as Gambit conforms to the R7RS
module system and includes many of such modules.

We begin the analysis with a quantitative comparison of performance between
the new Gambit macro system and its predecessor. This section gives an overview
of our results for time performance for both the Gambit interpreter (GSI) and the
Gambit compiler (GSC), during the expansion phase, at compile time.

As a first implementation step, the new system keeps the original macro system’s
expansion phase intact, to enable backward-compatibility. To produce more efficient
code, we can combine the last phase of the set of scopes algorithm with the original
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system’s expansion phase. To succeed in this step, the single-stepping features
offered in Gambit can be combined with the last set of scopes algorithm phase,
which resolve the identifiers of the expanded code. The optimization would save a
single pass over the code. For an S-expression s, a pass on the code p(s) has a time
complexity such as:

a : Atom, p(a) = O(1)

∀si : Sexp, p((s1 s2 ... sn)) =
n∑

i=1

p(si) +O(1)

Currently, some of the special transformers, such as define-macro, with-syntax
and syntax-rules are implemented using the syntax-case form to generate the ap-
propriate transformer. The Gambit implementation used to compile our new system
implements syntax-case non-hygienically, with different data structures. The full
bootstrap of the compiler must be done to generate the correct transformers at com-
pile time during the compiler’s compilation.

Choice of Tests and Methodology
As a first test phase, we computed the time required for both the compiler and in-
terpreter to execute the add-scope, expand and compile procedure of the algorithm,
mimicking a simple expansion, for programs containing from 500 to 4000 nested
local binding creations. We also tested the same program but using bindings for
local macro transformations instead and varied the program shape.

In the second test phase, we compared the new macro system with the original
Gambit implementation, computing the compilation/interpretation time for simple
programs. We tested the interpreter over a selection of core form uses. For each of
those core forms, we tested a succession of thirty calls, where each form uses the
last binding defined if it applies.

As a third test phase, we tested some of the core forms used for macro trans-
formations, as well as predefined macro transformations such as syntax-rules and
define-macro. We also compared the original unhygienic define-syntax form with
our new hygienic variant. As our new system provides an additional security feature
for transformer uses, we can expect those tests to run somewhat slower than it would
with the original system.

For both the second and third test phases, for each given test file, we compared
the original system with the new one for both compilation and interpretation. To
produce a good estimate, each test file was interpreted and compiled fifteen times
with each of the systems. We then obtained four test categories, for both test groups
and both interpretation and compilation. The results of each category were then
compiled to find the average and standard deviation of each test file over the group
of fifteen interpretations or compilations.
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Subsequently, we computed the average and standard deviation of the tests
within each category. To do so, we repeated the whole process to create a sam-
ple pool of fifteen results for each category. We then tallied the average of each test
file result’s average over that sample pool.

Tests Results
The following figures summarize our test results.

Firstly, we show in figure 7.4 the interpretation time for a simple program rel-
ative to the number of local bindings. We computed the interpretation time by
computing the real time required to execute the add-scope, expand and compile
procedure, by creating the syntax-object dynamically and then using the real-time
Gambit’s procedure.

The programs tested contains 500 to 4000 local bindings and consist of nested
let where each of the lets bind a variable to an atomic value.

Figure 7.4: interpretation time for programs depending on the number of bindings

We notice that the interpretation time seems linear for this program, as a func-
tion of the number of local bindings. Then, we varied the shape of the program to
change the ratio of bindings currently in scope for each of the variable references,
with similar performance results. For simple transformations, using local macro
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transformer bindings, the compiler performs approximately the same as using regu-
lar variable binding. This validates the asymptotic complexity of our algorithm for
cases which don’t involve complex macro transformations.

For the next figure, the interpretation and compilation time compute the time
taken to invoke a new process and go through the test file. For compilation, we
compute the time needed to compile the Scheme code to C source code only.

The first figure shows performance results for different primitive core forms for
interpretation with GSI.

Core forms Original System New System
average (ms) σ (ms) average (ms) σ (ms)

lambda 6.83 0.41 9.19 0.36
let 6.93 0.43 9.59 0.20

let* 6.64 0.22 9.84 0.44
letrec 6.69 0.19 10.03 0.57
letrec* 6.84 0.42 9.81 0.17
define 6.74 0.31 8.98 0.47

define-syntax 7.51 0.21 13.58 0.25

Figure 7.5: interpretation time for different primitive core forms

For these examples, the new system is between 1.2x and 1.9x slower than the
original system. We notice an overhead for the define-syntax core form. We notice
that the define-syntax core form has the biggest overhead compared to the original
system. This was expected as hygiene support changes the transformer’s evaluation
phase the most. The other core forms, involving no transformer, compare approxi-

Antoine Doucet Chapter 7 74



Adding Hygiene to Gambit Scheme

mately the same. This figure combines the results for the system core form as well
as the define-macro and define-syntax forms1.

The figure 7.6 shows the results of the core-form’s tests using the Gambit com-
piler GSC. Recall that the tests compute the time required to compile the Scheme
program into C source code.

Core forms Original System New System
average (ms) σ (ms) average (ms) σ (ms)

lambda 17.46 0.19 20.75 0.22
let 19.65 1.90 21.64 0.29

letrec 18.93 0.19 21.81 0.30
let* 19.24 0.27 21.50 0.12

letrec* 18.97 0.22 21.58 0.10
define 19.18 0.18 21.91 0.18

define-syntax 18.02 0.27 24.99 0.22

Figure 7.6: compilation time for different primitive core form

With the compiler, the comparison between the two systems is best reflected as
the execution time of each program isn’t included in the total time and as some of
the core forms are not fully optimized. We notice that the new system is between
1.1x and 1.4x slower than the original one.

1Recall that the define-macro form was a core form in the original Gambit system while the
define-syntax is a core form within the new system.
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We notice that the performance difference between the two systems is worst for
the define-syntax form. We then compared the compilation time for programs
made of 50 nested let-syntax forms. Each of those programs differs from the next
by an increase in the number of binding created and used in each of the program’s
created transformers.

Figure 7.7: compilation time as a function of the number of local bindings within a
single transformer

We can notice important performance issues for the new system. However, when
comparing the difference for the compilation time of the first two tests, including
respectively six and eleven local bindings within a single transformer, with the two
last tests, the difference for both the new and original Gambit increased by about
3 times. This leads us to believe that the asymptotic behavior for the two systems’
time complexity is very similar.

In conclusion, the new system adds a modest overhead for macro expansion that
we believe is acceptable for typical programmers. Firstly, as the new system allows
for backward-compatibility, the eval procedure uses the old macro expander before
completing the regular evaluation. Secondly, the new system in itself requires an
additional pass on the fully expanded abstract syntax tree during the compilation
phase of the set of scopes algorithm, which also includes multiple calls to the resolve
procedure.

The figure 7.8 shows the results for other commonly used forms defining syntac-
tic extensions in Scheme. In the original Gambit’s macro system, the define-macro
form was a core form while define-syntax was built on top of it. In our new sys-
tem, it is the opposite as define-macro is defined in terms of syntax-case: The
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syntax-rules and define-macro forms are implemented as core form based on the
syntax-case form. These forms require the use of syntax-case during the macro-
expansion of the compiler compilation and thus, use the unhygienic syntax-case
included in the original Gambit system.

Figure 7.8: compilation time for different forms defining syntactic extensions

The syntax-case algorithm is particularly slower than its original counterpart.
Indeed, the algorithm implemented is sub-optimal, as only its validity is required
for bootstrapping the compiler, as a first step.

This chapter presented the validity tests used to validate our algorithm, as well
as performance tests used to compare our new implementation to the original Gam-
bit system. We conclude that our implementation is valid but, less efficient in some
key aspects. Regarding our core system, more optimizations are needed to rewrite
some of Gambit’s functionalities to work with the hygiene system. Following these
modifications, the original Gambit’s expansion phase can then be merged into our
system to achieve backward-compatibility at lower cost.
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Chapter 8

Conclusion

Our Contribution

Our contribution is focused on the choice and implementation of the set of scope
algorithm in the context of the Gambit system. The new macro system brings the
Gambit language closer to the R7RS specification. Many SRFI, and common mod-
ules, use macro heavily. When using code provided by another programmer, hygiene
guarantee become even more relevant as they might have written the code within
a hygienic system. The solution proposed for the hygiene problem helps Gambit
achieve both its research and production goals by allowing the safe use of a wider
range of existing utility and tools. Furthermore, the new system can be used to
introduce programmers to hygiene and macro transformers in general, achieving
Gambit’s third goal as an educational tool.

In this thesis, we began with a brief presentation of the Scheme language, fol-
lowed by an introduction to the hygiene problem. We then summarized some of the
solutions used in the past and for other Scheme and Lisp implementations. After
motivating our choice, we explained Racket’s set of scopes algorithm in detail. We
then focused on the Gambit system and explained the changes we made to support
the algorithm. We finished by supporting the validity of our implementation and
provided a short analysis of the performance changes in the system.

Similar Works

Not every Scheme implementation supports hygiene and the strategies used differ
widely. As a notable example, we can consider the Chibi compiler, a minimal imple-
mentation of Scheme conforming, in most parts, to the R7RS standard. This Scheme
implementation support hygiene using a selection of different algorithms, including
the syntactic closure algorithm and a variant of the set of scopes algorithm. Other
popular Scheme implementations such as the Chez Scheme and Chicken compilers
also support hygiene. Both the Chicken Scheme and MIT/GNU Scheme implemen-
tations support hygiene using the explicit renaming algorithm [chi21] [H+22].

Toward Future Contributions

Recently, Racket’s core was reimplemented using Chez Scheme, a popular implemen-
tation of the Scheme language. Both Gambit and Racket aimed toward the same
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goals, with a purpose in research, production, and education. The emplementation
of the Racket language on top of the Gambit system would allow Racket and its
specific tools, to share features and interact with Gambit. As an interesting feature,
the Gambit system supports compilation toward JavaScript.

A reimplementation of Racket with Gambit would allow support of the Racket
language by the online tool easily. As Racket’s macro system is at the core of the
language, a safe implementation of macro transformation is required for its imple-
mentation. Our contribution could be the first step toward this reimplementation.
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Appendix A

Appendix

A.1 Algorithm formalisation

σi : Scope
Σxi

: Set Scope
Σxi

::= {}
| {σi} ∪ Σxi

xi : Symbol
xi : Uninterned-Symbol
τi : Closure

x
Σxi
i : Identifier

Env ::= B × Γ

βi : Binding
βi ::= binding(xΣxi , xi)

B ::= {}
| {βi} ∪ B

γi : CTE-Binding
γi ::= cte-binding(xi, var)

| cte-binding(xi, macro(τi))

Γ ::= {}
| {γi} ∪ Γ
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Θ+JxΣKσ
Θ+JxΣ0Kσ = xΣ0 ∪ {σi}

Θ+J(E0 E1 ...)Kσ = (Θ+JE0Kσ Θ+JE1Kσ ...)

Θ⊕JxΣKσ
σ ̸∈ Σ

Θ⊕JxΣKσ = xΣ ∪ {σi}
σ ∈ Σ

Θ⊕JxΣKσ = xΣ\{σi}

Θ⊕J(E0 E1 ...)Kσ = (Θ⊕JE0Kσ Θ⊕JE1Kσ ...)

Figure A.1: Scope propagation

β+JEKB

x = gensym()
β = binding(xΣ, x),

B′ = B ∪ β

β+JxΣKB =⇒ (B′, x)

Figure A.2: binding recording in global binding table

γ+JxKΓ
γ = cte-binding(x, var), Γ′ = Γ ∪ γ

γ+JxKΓvar =⇒ Γ′

γ = cte-binding(x, macro(τ)), Γ′ = Γ ∪ γ

γ+JxKΓmacro(τ) =⇒ Γ′

Figure A.3: binding recording in compile-time environment
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recordJxΣK(B, Γ)

β+JxΣKB =⇒ (B′, x),
γ+JxKΓvar =⇒ Γ′

recordJxΣK(B, Γ)
var =⇒ (B′, Γ′)

β+JxΣKB =⇒ (B′, x),
γ+JxKΓmacro(τ) =⇒ Γ′

recordJxΣK(B, Γ)
macro(τ) =⇒ (B′, Γ′)

Figure A.4: full binding recording

∀Σi ∈ Θ⊂JxΣxKB, |Σ⊂| ≥ |Σi|
∀Σi ∈ ΘJxKB,Σ⊂ ⊂ Σi

binding(xΣ⊂ , x⊂) ∈ B
resolveJxΣxKB =⇒ x⊂

Figure A.5: binding resolve

resolveJxΣxKB =⇒ x
binding(x, b) ∈ Γ

lookupJxΣxK(B, Γ) =⇒ b

Figure A.6: identifier lookup

ϕJE1K(B, Γ) =⇒ (B1, E ′
1)

ϕJE2K(B1, Γ) =⇒ (B2 E ′
2)

...
ϕJEnK(Bn−1, Γ) =⇒ (Bn, E ′

n)

ϕJ(begin E1 E2 ... En)K(B, Γ) =⇒ (Bn, (begin E ′
1 E ′

2 ... E ′
n))

Figure A.7: Sequencing
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resolveJlambdaΣlK(B, Γ) = lambda
E = (begin{s} E0 ... En)

σ = genscope()

recordJΘ+JxΣx0 KσK(B, Γ)
var = (B0, Γ0)

(...) = (...)

recordJΘ+JxΣxn KσK(Bn−1, Γn−1)
var = (Bn, Γn)

ϕJΘ+JEKσK(Bn, Γn) =⇒ (B′, E ′)

ϕJ(lambdaΣl (xΣ0 ... xΣn) E0 E1 ... En)K(B, Γ)

=⇒
(B′, (lambdaΣl (Θ+JxΣ0Kσ ... Θ+JxΣnKσ) E ′))

Figure A.8: lambda abstraction

∀τ . lookupJE0K(B, Γ) ̸= macro(τ)
ϕJE0K(B, Γ) =⇒ (B0, E ′

0)
ϕJE1K(B0, Γ) =⇒ (B1, E ′

1)
... =⇒ ...

ϕJEnK(Bn−1, Γ) =⇒ (Bn, E ′
n)

ϕJ(E0, E1, ..., En)K(B, Γ) =⇒ (Bn, (E ′
0, E ′

1, ..., E ′
n))

Figure A.9: Application Form
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(letΣl ((xΣ0
0 E0) ... (xΣn

n En)) E0 ... En)
=⇒

(letΣl ((xΣ0
0 E0) ... (xΣn

n En)) (begin{s} E0 ...En))

resolveJletΣlKB =⇒ let
σ = genscope()

ϕJExK(B, Γ) =⇒ (B′, E ′
x)

recordJΘ+JxΣxKσK(B′, Γ)
var =⇒ (B′′, Γ′)

ϕJΘ+JEKσK(B′′, Γ′) =⇒ (B′′′, E ′)

ϕJ(letΣl ((xΣx Ex)) E)K(B, Γ) =⇒ (B′′′, (letΣl ((Θ+JxΣxKσ E ′
x)) E ′))

Figure A.10: local definition

ϕJB, Γ, (let-syntaxΣl ((x
Σx0
0 Ex0) ... (xΣxn

n Exn)) E0 E1 ...)K(B, Γ)

=⇒
ϕJ(let-syntaxΣl((x

Σx0
0 Ex0))

(let-syntaxΣl((x
Σx1
1 Ex1))
...

(let-syntaxΣl ((xΣxn
n Exn))

(begin{s} E0 E1 ...))...))K(B, Γ)

resolveJlet-syntaxΣlKB =⇒ let-syntax
σ = genscope()

ϕJExK(B, Γ) =⇒ (B′, E ′
x)

eval*JE ′
xK(B, Γ) = (B′, τ)

recordJΘ+JxΣxKσK(B′, Γ)
macro(τ) =⇒ (B′′, Γ′)

ϕJΘ+JEKσK(B′′, Γ′) =⇒ (B′′′, E ′)

ϕJ(let-syntaxΣl ((xΣx Ex)) E)K(B, Γ) =⇒ (B′′′, E ′)

Figure A.11: local macro definition
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lookupJMK(B, Γ) = macro(τ)
σ = genscope()

eval*J(τ (M E0 ... En))K(B, Γ) = M ′

ϕJ(M, E0, ..., En)K(B, Γ) =⇒ ϕJΘ⊕JM ′KσK(B, Γ)

Figure A.12: Macro Expansion

(quote E) =⇒ (quote E)

(quote-syntax E) =⇒ (quote-syntax E)

Figure A.13: quote and quote-syntax special form

ϕJB, Γ, (let∗Σl ((x
Σx0
0 Ex0) ... (xΣxn

n Exn)) E0 E1 ...)K(B, Γ)

=⇒
ϕJ(letΣl((x

Σx0
0 Ex0))

(letΣl((x
Σx1
1 Ex1))

...

(letΣl ((xΣxn
n Exn))

(begin{s} E0 E1 ...))...))K(B, Γ)

Figure A.14: let* form definition
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(letrecΣl ((xΣ0
0 E0) ... (xΣn

n En)) E0 ...En)
=⇒

(letrecΣl ((xΣ0
0 E0) ... (xΣn

n En)) (begin{s} E0 ...En))

resolveJletrecΣlKB =⇒ letrec
σ = genscope()

recordJΘ+JxΣxKσK(B, Γ)
var =⇒ (B0, Γ0)

∀i ∈ [1, n], recordJΘ+JxΣxKσK(Bi−1, Γi−1)
var =⇒ (Bi, Γi)

ϕJE0K(Bn, Γn) =⇒ (B′
0, E ′

x)

∀i ∈ [1, n], ϕJEiK(B′
i−1, Γn) =⇒ (B′

i, E ′
i)

ϕJΘ+JEKσK(B′
n, Γn) =⇒ (B′′, E ′)

ϕJ(letrecΣl ((xΣ0 E0) ... (xΣn En)) E)K(B, Γ)

=⇒
(B′′, (letrecΣl ((Θ+JxΣxKσ E ′

x) ... (Θ+JxΣxKσ E ′
x)) E ′))

Figure A.15: letrec form definition
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(letrec*Σl ((xΣ0
0 E0) ... (xΣn

n En)) E0 ...En)
=⇒

(letrec*Σl ((xΣ0
0 E0) ... (xΣn

n En)) (begin{s} E0 ...En))

resolveJletrec*ΣlKB =⇒ letrec*
σ = genscope()

recordJΘ+JxΣxKσK(B, Γ)
var =⇒ (B0, Γ0)

ϕJE0K(B0, Γ0) =⇒ (B′
0, E ′

x)

∀i ∈ [1, n], recordJΘ+JxΣxKσK(B′
i−1, Γi−1)

var =⇒ (Bi, Γi)
∀i ∈ [1, n], ϕJEiK(Bi, Γi) =⇒ (B′

i, E ′
i)

ϕJΘ+JEKσK(B′
n, Γn) =⇒ (B′′, E ′)

ϕJ(letrec*Σl ((xΣ0 E0) ... (xΣn En)) E)K(B, Γ)

=⇒
(B′′, (letrec*Σl ((Θ+JxΣxKσ E ′

x) ... (Θ+JxΣxKσ E ′
x)) E ′))

Figure A.16: letrec* form definition
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(letrec*-syntaxΣl ((xΣ0
0 E0) ... (xΣn

n En)) E0 ...En)
=⇒

(letrec*-syntaxΣl ((xΣ0
0 E0) ... (xΣn

n En)) (begin{s} E0 ...En))

resolveJletrec*-syntaxΣlKB =⇒ letrec*-syntax
σ = genscope()

recordJΘ+JxΣxKσK(B, Γ)
macro(unbound) =⇒ (B0, Γ0)

evalJE0KB0, Γ0 =⇒ τ 0
recordJΘ+JxΣxKσK(B0, Γ0)

macro(τ0)
=⇒ (B′

0, Γ′
0)

∀i ∈ [1, n], recordJΘ+JxΣxKσK(B′
i−1, Γ′

i−1)

macro(unbound) =⇒ (Bi, Γi)

evalJEiKBi, Γi =⇒ τ i
recordJΘ+JxΣxKσK(Bi, Γi)

macro(τ) =⇒ (B′
i, Γ′

i)

ϕJΘ+JEKσK(B′
n, Γ′

n) =⇒ (B′′, E ′)

ϕJ(letrec*-syntaxΣl ((xΣ0 E0) ... (xΣn En)) E)K(B, Γ)

=⇒
(B′′, (letrec*-syntaxΣl ((Θ+JxΣxKσ E ′

x) ... (Θ+JxΣxKσ E ′
x)) E ′))

Figure A.17: letrec*-syntax form definition
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A.2 Gambit’s original interaction-cte

cte : CTE
cte ::= top-cte(previous-cte)

| cte-frame(previous-cte, names, up, over)
| cte-macro(previous-cte, name, transformer)
| cte-namespace(previous-cte, name, aliases)
| cte-decl(previous-cte, name, value)

top-cte : CTE → CTE
cte-frame : CTE → (List Symbol) → Fixnum → Fixnum → CTE
cte-macro : CTE → Symbol → (Syntax → Syntax) → CTE

cte-namespace : CTE → Symbol → List (Pair Symbol Symbol) → CTE
cte-decl : CTE → Symbol → Symbol → CTE

Figure A.18: Gambit’s Original interaction-cte

A.3 Gambit’s new interaction-cte

cte : CTE
cte ::= top-cte(previous-cte, B, Γ)

| cte-frame(previous-cte, Γ, cte-top, names, up, over)
| cte-macro(previous-cte, Γ, cte-top, name, transformer)
| cte-core-macro(previous-cte, Γ, cte-top, name, transformer)
| cte-namespace(previous-cte, name, aliases)
| cte-decl(previous-cte, name, value)

top-cte : CTE → Γ → B → CTE
cte-frame : CTE → Γ → CTE → (List Symbol) → Fixnum → Fixnum → CTE
cte-macro : CTE → Γ → CTE → Symbol → (Syntax → Syntax) → CTE

cte-core-macro : CTE → Γ → CTE → Symbol → (Syntax → Syntax) → CTE
cte-namespace : CTE → Symbol → List (Pair Symbol Symbol) → CTE

cte-decl : CTE → Symbol → Symbol → CTE

Figure A.19: Gambit’s New interaction-cte
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