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Résumé 

 La 5-azacytidine (AZA) est un médicament approuvé pour le traitement des leucémies myéloïdes 

aiguës des patients qui ne sont pas éligibles à une greffe de cellules souches hématopoïétiques. 

Bien que l’AZA est augmenté significativement le pronostic des patients, le mécanisme d’action 

précis de l’AZA demeure nébuleux. En plus de son activité d’hypométhylation, il a été montré que 

l’AZA a aussi des effets immunologiques. Des études précédentes suggèrent que ces réponses 

immunitaires sont causées par des modifications du répertoire de peptides présentés par le CMH-I 

(MAPs), dont l’expression de MAPs dérivés de rétroéléments endogènes (EREs) et des cancer-

testis antigens (CTAs). Ces gènes sont généralement réprimés par la méthylation de l’ADN. Dans 

cette thèse, nous avons testé cette hypothèse à l’aide de séquençage à haut débit et de spectrométrie 

de masse appliqués à quatre lignées cellulaires d’AML différentes. Notre approche 

protéogénomique d’avant-garde a révélé que l’AZA induit la présentation de MAPs dérivés de 

CTAs, mais pas d’EREs, malgré le fait que ces deux groupes de séquences soient surexprimés au 

niveau transcriptomique. Ces résultats indiquent que les réponses des lymphocytes T observées 

chez les patients suite au traitement à l’AZA dépendent probablement des MAPs dérivés des CTAs, 

et non pas des EREs. Les EREs stimulés par l’AZA ont tout de même un impact sur la réponse 

immunitaire en formant des ARN double-brins menant à une activation de l’immunité innée. 

L’incorporation de l’AZA et l’inhibition subséquente de la DNMT2 mène cependant à des agrégats 

protéiques et à l’autophagie, qui dégrade les transcrits EREs et limite leur surexpression. Nous 

avons démontré que les effets immunologiques de l’AZA peuvent être amplifiés par un traitement 

combiné de l’AZA et d’inhibiteurs de l’autophagie. De plus, le travail contenu dans cette thèse a 

montré que bien qu’elles soient un modèle expérimental pratique, les lignées cellulaires ont des 

limitations et doivent être utilisés avec prudence. Des différences majeures ont été observées entre 

des lignées cellulaires supposément identiques provenant de fournisseurs établis. Nos analyses ont 

permis de démontrer quelle lignée cellulaire était la plus similaire à la lignée parentale. Ainsi, ce 

travail fourni des recommandations pour améliorer les lignes directrices d’utilisation des lignées 

cellulaires en recherche. 
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Mots-clés: Leucémie myéloïde aiguë, agents hypométhylants, immunothérapie, 

protéogénomiques, spectrométrie de masse, séquençage à haut débit, lignées cellulaires, 

reproductibilité de la recherche. 
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Abstract 

5-azacytidine (AZA) is approved for the treatment of acute myeloid leukemia (AML) patients 

ineligible for hematopoietic cell transplantation. Although AZA treatment has substantially 

improved patient outcomes, there remains a lack of clear understanding of the mechanisms driving 

these responses. In addition to its hypomethylating activity, AZA has been shown to have 

immunological effects. Previous reports suggest that these immune responses occur due to 

alterations in the repertoire of MHC-I-associated peptides (MAPs), including the expression of 

MAPs deriving from endogenous retroelements (EREs) and cancer-testis antigens (CTAs). These 

genes are typically silenced by methylation. With this thesis, we aimed to test this hypothesis using 

high-coverage RNA sequencing and mass spectrometry in four different AML cell lines. Our state-

of-the-art proteogenomic approach uncovered that AZA treatment induced MAPs deriving from 

CTAs, but not EREs, despite both being upregulated at the RNA level. This indicates that T-cell 

responses post-AZA treatment are more likely to be dependent on CTA- than ERE-derived MAP 

presentation. AZA-induced EREs produced at the RNA level still contributed to immune responses 

by forming double-stranded RNA leading to a state of viral mimicry. However, AZA incorporation 

into RNA and subsequent DNMT2-inhibition led to protein aggregation and autophagy responses. 

These responses were responsible for degrading EREs, which limited their upregulation. We 

further demonstrate that the immune effects of AZA can be enhanced by the combination of AZA 

with autophagy inhibitors. Additionally, the work in this thesis has shown that although a practical 

model, cell lines have their caveats and must be used with caution. This work has highlighted the 

grave discrepancies between supposedly identical cell lines supplied by established repositories. 

Moreover, our analyses determine which of the two is closer to the parental cell line. Finally, this 

work provides recommendations for improving the current guidelines for cell line-based research. 

Keywords: Acute myeloid leukemia, hypomethylating agents, immunotherapy, proteogenomics, 

mass spectrometry, next generation sequencing, cell lines-based research, reproducibility of 

research  
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1 Chapter 1: Introduction 

1.1 Acute myeloid leukemia  

1.1.1 Overview 

Acute myeloid leukemia (AML) is the second most common type of leukemia with overall 

survival of 32% [1]. It is typically a disease of older adults, with an incidence rate that increases 

with age. The median age of diagnosis of patients is approximately 68 years. AML is the most 

fatal type of leukemia. Compared with all subtypes of leukemias, AML has the lowest 5-year 

survival rate and accounts for the highest percentage (62%) of deaths [2]. 

AML is characterized by the rapid proliferation of immature blood cells leading to their 

accumulation in the blood and the bone marrow. The etiology of AML is rather heterogeneous and 

not well understood. AML can arise in patients previously exposed to treatments with DNA-

damaging agents such as radiation, alkylating agents, and topoisomerase II inhibitors (also known 

as therapy-related AML). Patients with pre-existing hematological or genetic disorders also have 

an increased risk of developing AML. However, these cases, referred to as secondary AML, 

account only for a fraction of cases (10-30%) [3] and the majority of patients develop AML de 

novo without a history of hematological malignancies or known exposure to leukemogenic agents 

[4].  

AML arises from a series of malignant transformations in hematopoietic stem cells (HSCs) 

or relatively early myeloid progenitor cells [5]. HSCs are multi-potent and self-renewing primitive 

cells that regenerate all possible blood cells via progenitors and precursors and maintain life-long 

hematopoiesis. In 2002, Gilliland proposed the two-hit model that stated that leukemias occur as 
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a consequence of cooperative mutations in HSCs or progenitors that confer proliferative advantage 

and mutations that impair hematopoietic differentiation [6]. This process leads to the formation of 

leukemic stem cells (LSCs) that are considered to be the cell of origin for this disease (Figure 1.1). 

These transformations include both cytogenetic and mutational events affecting normal 

hematopoietic growth and differentiation. Immature AML blasts thus formed, proliferate rapidly 

without differentiating, and affect normal functions of the blood. Additionally, epigenetic 

modifications alter gene expression contributing to the pathogenesis of AML. Thus, AML is a 

complex disease associated with phenotypic, genetic, and epigenetic heterogeneity. 

 

Figure 1.1. Comparison between normal and leukemic hematopoietic systems. 
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HSC, hematopoietic stem cell; MPP, multipotent progenitors; LMPP, lymphoid-primed MPPs; 

CMP, common myeloid progenitors; CLP, common lymphoid progenitor; GMP, granulocyte-

macrophage progenitors; MEP, megakaryocyte-erythrocyte progenitor; B, LSC, leukemic stem 

cell, TRCs, (chemo)therapy-resistant cells; LRC, leukemia regenerating cell. Figure from Long et 

al., 2022 [7] 

1.1.2 Classification of AML 

Currently, two principal systems have been established and are commonly used for the 

classification of AML: The French, American, and British (FAB) system and the World Health 

Organization (WHO) system. The FAB system classifies AML based on morphology, 

cytochemistry, and degree of maturity of AML blasts [8]. Based on this, AML is divided into 8 

sub-categories ranging from M0 to M7 (Table 1). However, this system does not account for the 

genetic and clinical heterogeneity of AML. In 1999, The WHO system of classification was 

introduced to include recent molecular biomarkers, genetic alterations, and immunophenotypic 

and clinical features of AML [9]. The WHO system includes 4 sub-groups of AML: AML with 

recurrent genetic abnormalities, AML with multilineage dysplasia, therapy-related AML and 

myelodysplastic syndromes (MDS), and those that do not categorize into any of these sub-groups 

(Table 2). 

Table 1.1 FAB classification of AML 

FAB subtype Morphological classification 

AML-M0 Undifferentiated acute myeloblastic leukemia 

AML-M1 Acute myeloblastic leukemia with minimal maturation 

AML-M2 Acute myeloblastic leukemia with maturation 

AML-M3 Acute promyelocytic leukemia 

AML-M4 Acute myelomonocytic leukemia 

AML-M4 eos Acute myelomonocytic leukemia with eosinophilia 
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AML-M5 Acute monocytic leukemia 

AML-M6 Acute erythroid leukemia 

AML-M7 Acute megakaryoblastic leukemia 

Table adapted from Kumar et al., 2011 [8] 

 
 

Table 1.2 WHO Classification of AML 

AML and related neoplasms 

AML with recurrent genetic abnormalities 

AML with t(8;21)(q22q22.1); RUNX1-RUNX1T1 

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 

APL with PML-RARA 

AML with t(9;11)(p21.3;q23.3); KMT2A-MLLT3 

AML with t(6;9)(p23;q34.1); DEK-NUP214 

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 

AML (megakaryoblastic) with t(1;22)(p13.3;q13.1); RBM15-MKL1 

Provisional entity: AML with BCR-ABL1 

AML with mutated NPM1 

AML with biallelic mutation of CEBPA 

Provisional entity: AML with mutated RUNX1 

AML with myelodysplasia-related changes 

Therapy-related myeloid neoplasms 

AML, not otherwise specified (NOS) 

AML with minimal differentiation 

AML without maturation 

AML with maturation 
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Acute myelomonocytic leukemia 

Acute monoblastic and monocytic leukemia 

Pure erythroid leukemia 

Acute megakaryoblastic leukemia 

Acute basophilic leukemia 

Acute panmyelosis with myelofibrosis 

Myeloid sarcoma 

Myeloid proliferations associated with Down syndrome 

Transient abnormal myelopoiesis (TAM) associated with Down syndrome 

Myeloid leukemia associated with Down syndrome 

Table adapted from Hwang et al., 2020 [8] 

 

1.1.3 Mutational landscape of AML 

The advent of next-generation sequencing (NGS) has enabled a more comprehensive and 

precise analysis of the molecular landscape of AML. Moreover, NGS has emerged as a powerful 

tool in the diagnosis and prognosis of AML, especially in cases with normal karyotypes. Patients 

with normal karyotype represented approximately 50% of AML cases [8] and as the name suggests 

have no alterations in chromosomal number or structure. Therefore, cytogenetics alone cannot 

provide any information to predict prognosis or clinical relevance, and patients in this subgroup 

are associated with heterogeneous outcomes. NGS has enabled the identification of new markers 

for improving the risk stratification of AML patients to predict prognosis and overall patient 

survival (Table  1.3). These large-scale analyses have also uncovered that more than 90% of AML 

cases are associated with at least one mutation [10-12], with an average of 13 genes with mutations 

per AML sample [12].  These mutations were initially classified into two broadly defined groups 
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based on the two-hit model (Figure 1.2) [6]. The first class (class I) comprises mutations in genes 

involved in signaling pathways that offer a proliferative and/or survival advantage to 

hematopoietic progenitor cells [8]. Common class I mutations include mutations in FLT3, RAS, 

cKIT, and CBL [13]. The second class (class II) comprises mutations affecting transcription factors 

and components of the cell cycle that alter the differentiation of myeloid precursors [14]. Class II  

Table 1.3 Risk Classification of AML Based on Genetics 

Risk category  Genetic abnormality 

Favorable  t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 

 inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB::MYH11 

 Mutated NPM1without FLT3-ITD  

 bZIP in-frame mutated CEBPA 

Intermediate  Mutated NPM1with FLT3-ITD  

 Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions)  

 t(9;11)(p21.3;q23.3)/MLLT3::KMT2A 

 

Cytogenetic and/or molecular abnormalities not classified as favorable or 

adverse  

Adverse  t(6;9)(p23.3;q34.1)/DEK::NUP214  

 t(v;11q23.3)/KMT2A-rearranged  

 t(9;22)(q34.1;q11.2)/BCR::ABL1  

 t(8;16)(p11.2;p13.3)/KAT6A::CREBBP  

 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/ GATA2, MECOM(EVI1)  

 t(3q26.2;v)/MECOM(EVI1)-rearranged  

 −5 or del(5q); −7; −17/abn(17p)  

 Complex karyotype, monosomal karyotype  

 

Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, 

and/or ZRSR2 

 Mutated TP53 

Table from Dӧhner et al., 2022 [15] 

mutations include mutations in RUNX, MLL, CEBPα, and genetic re-arrangements such as PML-

RARa, CBFb-MYH11, and RUNX1-RUNX1. Class I and class II mutations frequently co-occur, 
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supporting the two-hit model. However, ~40% of mutations in AML cannot be classified based on 

these two categories and several of these mutations have been associated with epigenetic 

alterations such as DNA methylation and histone modifications [13, 16, 17]. Examples of these 

include mutations in genes such as DNMT3, TET2, IDH1, IDH2, ASXL1, and WT1. Further, 

genetic alterations such as PML-RAR are tightly linked to epigenetic modifications contributing 

to leukemogenesis [18]. It is becoming increasingly clear that in addition to mutations, epigenetic 

dysregulation plays a major role in the development of AML. Furthermore, mutations in key 

epigenetic regulators, such as DNMT3a, TET2, and ASXL1, have been linked to a poor prognosis, 

highlighting the critical importance of maintaining the integrity of the epigenetic landscape in 

normal blood cells.  

 

Figure 1.2. The two-hit model of leukemogenesis 
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The two-hit model proposes the collaboration of Class I mutations (in yellow) affecting signaling 

pathways providing a proliferative advantage and Class II mutations (in red) affecting transcription 

factors that hinder normal hematopoietic differentiation. The combinations of mutations are 

depicted as blue rings. Figure obtained from Takahashi et al., 2011[16] 

1.1.4 Conventional therapy  

Despite the advances in understanding the mutational and cytogenetic heterogeneity of 

AML, the current mainstay for patients remains almost unchanged for the last four decades. The 

objective of anti-AML treatment is to control and if possible, eliminate the disease. This is 

accomplished by initiating anti-AML therapy to achieve complete remission, followed by post-

remission therapy to achieve long-term disease control and prevent relapse. Standard therapy 

consists of intensive induction therapy, which is a combination of 7 days of cytarabine, with 3 days 

of initial anthracycline treatment (“7 + 3” regimen). Patients are initially assessed for their 

eligibility (age and medical fitness) for intensive chemotherapy. These typically include patients 

belonging to favorable and intermediate-risk subgroups. Patients unfit for standard therapy receive 

alternative chemotherapy options such as Gilteritinib, Ivosidenib, and Enasidenib [15, 19]. Post-

remission therapy involves additional chemotherapy (intermediate or high dose cytarabine) or 

allogeneic hematopoietic cell transplantation (HCT) [15].  

1.2 Role of DNA methylation in AML 

1.2.1 DNA methylation and associated enzymes 

In mammalian cells, DNA methylation is an important epigenetic mechanism in which a 

methyl group is transferred onto the C5 position of cytosine residues leading to the formation of 

5-methylcytosine residues [20]. DNA methylation suppresses gene expression both directly by 

inhibiting the binding of transcription factors and indirectly, by recruiting proteins involved in 

gene repression. These frequently occur at genomic regions rich in CpG dinucleotides called CpG 
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islands, predominantly found in the promoters of genes but can also be found in gene bodies and 

introns [21]. Interestingly, while DNA methylation in the vicinity of transcription start sites is 

associated with the silencing of gene expression, methylation in gene bodies is associated with 

enhanced gene expression and impacts gene splicing [22]. 

Methylation is carried out by a family of DNA methyltransferase enzymes (DNMTs) that 

comprise five members including canonical DNMT1, DNMT3A, and DNMT3B as well as non-

canonical members, DNMT2 and DNMT3L. All members use a similar catalytic mechanism and 

cofactor S‑adenosylmethionine as a methyl donor to carry out methylation [23]. DNMT3A and 

DNMT3B, are known as de novo DNMTs, as they can bind to unmethylated DNA and establish 

new methylation patterns to previously unmethylated DNA. DNMT1, on the other hand, requires 

the presence of hemimethylated DNA sequences for its binding and methylation of DNA. Thus, 

DNMT1 is also known as maintenance DNMT. DNMT3L lacks a catalytic motif present in other 

DNMTs and thus shows no methylation activity of its own. Instead, it acts as a cofactor and 

associates with DNMT3A and DNMT3B enhancing their methyltransferase activity. Finally, 

DNMT2 – initially thought to have DNA methyltransferase activity due to similarities in the 

sequence and structure to DNMT family members – was found to methylate tRNA [24]. Targets 

of DNMT2-mediated methylation are mainly transfer RNAs (tRNAs) coding for aspartic acid 

(tRNAasp), glutamic acid (tRNAglu), and valine (tRNAval) [25]. While methylation of tRNAs 

protects them from misfolding and degradation (impacting protein synthesis rate and fidelity) [25, 

26], DNA methylation has been shown to play an important role in genomic stability [27]. 

Alterations in DNA methylation have been shown to cooperate with genetic events leading to 

tumor initiation and progression [28]. 
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1.2.2 Aberrant DNA methylation - A hallmark of AML 

Recent research has established that in addition to transcription factors and signaling 

pathways, the regulation of DNA methylation is a critical factor in hematopoiesis. Several genes 

initially methylated in HSCs and early progenitors are selectively demethylated in a lineage-

specific manner [29]. The resulting methylation patterns are critical in maintaining the HSC self-

renewal capacity, as well as dictating hematopoietic differentiation and commitments to myeloid 

versus lymphoid cell fates [30, 31]. Given the importance of genomic methylation in maintaining 

normal hematopoiesis, it isn’t surprising that aberrant DNA methylation is characteristic of several 

hematological malignancies [32]. Of note, several commonly reoccurring mutations in AML are 

associated with functional outcomes that disrupt genomic methylation. For instance, mutations in 

DNMT3A are observed in ~20% of AML patients; with an even higher prevalence in NK AML 

(~30-35%) [33, 34]. The most frequent mutation in DNMT3A occurs within the catalytic domain 

of the enzyme (R882H). This leads to the formation of dominant negative isoforms and the 

disruption of DNMT3A’s methylating activity leading to gene hypomethylation [34]. Other 

important examples are mutations in TET2, IDH1, IDH2, and WT1. TET2 is a DNA demethylase 

enzyme that converts 5-methylcytosine to 5-hydroxymethylcytosine through its dioxygenase 

activity. Loss-of-function mutations in TET2 occur in ~6-27% AML [35] and are also associated 

with hypermethylation of DNA [36]. Further, AML patients with wild-type TET2 can still be 

subjected to enzymatic inactivation by mutated IDH enzymes. IDH is an important enzyme in the 

Krebs cycle and mutations in this gene occurs in ~20% of AML [37]. Mutant IDH enzymes 

produce 2-hydroxyglutarate, an oncometabolite that inhibits TET2 activity. Lastly, WT1 is a zinc-

finger transcription factor involved in hematopoiesis and tumor suppression and directly interacts 

with and recruits TET2 to target genes to induce expression. Mutational profiling and in-depth 
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downstream functional investigation have uncovered that although these mutations occur as 

mutually exclusive events in AML patients, they share similar DNA hypermethylation patterns 

[38, 39]. This suggests that the shared downstream effects of aberrant hypermethylation 

significantly contribute to AML pathogenesis. Interestingly, DNA methylation profiling 

experiments have revealed that the majority of AML subgroups are associated with 

hypermethylated gene signatures compared to normal bone marrow cells [40]. Taken together, 

despite genetic and mutational heterogeneity across subgroups, aberrant methylation appears to be 

a common feature of AML. 

1.3 Hypomethylating agents as a therapeutic option for AML 

Given the significance of abnormal methylation in hematological malignancies, 

hypomethylating agents (HMAs) constitute a promising tool for the treatment of AML. HMAs are 

DNMT inhibitors that result in the hypomethylation of the DNA. The first generation of HMAs 

were pyrimidine nucleoside analogs and was originally developed as classical cytostatic agents 

[41]. At high concentrations, their DNA incorporation leads to the induction of DNA damage 

response and cytotoxic effects. Such doses when administered were found to be too toxic to 

patients without substantial antitumor benefits. However, when administered at low 

concentrations, these nucleoside analogs bind DNMT enzymes irreversibly and ultimately lead to 

their proteasomal degradation. Thus, by acting as suicide substrates for DNMTs, HMAs inhibit 

the function of DNMTs and consequently lead to DNA hypomethylation in subsequent replication 

cycles.  
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1.3.1 Cellular uptake and intracellular metabolism of HMAs 

5-Azacitidine (AZA) and 5-aza-2'-deoxycytidine (DAC), are two widely used HMAs used 

in the treatment of myeloid malignancies (Figure 1.3). Both cytidine analogs enter cells by human 

equilibrative and concentrative nucleoside transporters (hENT/SLC29A and hCNT/SLC28A, 

respectively) and the SLC15 and SLC22 transporter families [42, 43]. Upon cellular uptake, AZA 

and DAC undergo different metabolic reactions to become their active form (Figure 1.4). This 

includes a series of ATP-dependent phosphorylation reactions, first by uridine kinase (UCK) or  

Figure 1.3. Chemical structures of cytidine and its analogs 

The chemical structures of cytidine nucleoside (a) and 5-azacytidine (b) and decitabine (c) are 

shown, with the sugar moieties indicated in grey. Chemical modifications between cytidine 

nucleosides and azanucleosides are highlighted in red. Figure obtained from Diesch et al., 2016 

[44]. 

 

deoxycytidine kinase (DCK) for AZA and DAC respectively, leading to their monophosphate 

forms of the analogs. This is followed by subsequent phosphorylation by nucleoside 

monophosphate kinase (NMPK) and nucleoside diphosphate kinase (NDPK) enzymes leading to 
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the formation of triphosphate forms of the nucleosides (Figure 1.4). While this enables DAC to 

incorporate directly into replicating DNA, only a small fraction (10-20%) of the triphosphate form 

of AZA enters DNA after multistep conversion reactions by ribonucleotide. The remainder (80-

90%) of the AZA triphosphate forms enters RNA, leading to disruption of rRNA processing, tRNA 

demethylation, and ultimately inhibiting mRNA and protein synthesis [45-48]. 

 

 

Figure 1.4. Cellular uptake and metabolism of AZA and DAC 

CDP, cytidine diphosphate; CMP, cytidine monophosphate; hCNT, human concentrative 

nucleoside transporter; hENT, human equilibrative nucleoside transporter; NDPK, nucleoside 

diphosphate kinase; NMPK, nucleoside monophosphate kinase; RNR ribonucleotide reductase. 

Figure obtained from Stomper et al., 2021 [49].  
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1.3.2 Clinical administration of HMAs in patients  

AZA and DAC have been tested in phase III clinical trials for the treatment of AML and 

have been shown to have similar response rates in AML [50]. Further meta-analysis uncovered 

that only AZA significantly improves the overall survival of patients compared to conventional 

care regimens [51, 52]. Therefore, AZA is currently FDA-approved as a first-line treatment in 

AML patients unfit for HCT transplantation [53]. Standard AZA treatment consists of repetitive 

cycles of 75 mg/m2 injected daily subcutaneously for 7 consecutive days every 28 days [54]. 

However, the dynamics of AZA response are slow, and demethylation occurs gradually. Moreover, 

the reversibility of methylation necessitates several cycles of AZA or prolonged exposure to 

promote maximal hypomethylation [55]. Hence, AZA treatment is recommended to be continued 

for at least 4-6 cycles. Apart from improving overall survival, AZA administration has been 

associated with noteworthy improvements in other clinically relevant outcomes such as reductions 

in the need for transfusions, hospitalization, and intravenous antimicrobial use, and improvements 

in quality of life [55]. 

1.3.3 Predictive Molecular Biomarkers of Response to HMAs 

Although AZA treatment has proved to be an essential tool in the treatment of AML 

patients, only ~50% of patients successfully respond [56]. Moreover, the response appears 

transient, with most responders ultimately becoming resistant within 2 years. Regrettably, even 

after numerous attempts to comprehend it, the precise biological mechanism of action remains 

obscure. Several studies have tried to identify the relationship between genomic methylation in 

patients and HMA treatment response. However, no significant differences in baseline methylation 

were observed among patients achieving complete or partial response compared to non-responders 

[57-59]. Moreover, given the association of mutations in genes coding for epigenetic modifiers 
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with aberrant genomic methylation in AML, several groups have tried to identify predictive 

clinical biomarkers, but no unambiguous evidence has emerged. While some studies suggested 

that mutations in TET2 could be used as a predictive marker for AZA response [60, 61], this was 

not reproducible in other studies and remains questionable [62-64]. Retrospective reports on 

DNMT3A mutations have shown that they can be predictive of better clinical response in 

previously untreated AML patients receiving HMAs [65, 66], but not in cohorts including relapsed 

and refractory patients [65]. However, these data could not be validated by other groups, while 

some groups found an opposite trend with DNMT3A mutants associated with a poorer prognosis 

and shorter overall survival [62, 64, 67, 68].  

Chromatin reorganization has also been studied in response to HMA treatment. 

Experiments using Hi-C and whole-genome sequencing have uncovered that aberrant genomic 

methylation in AML is associated with alterations in the 3D chromatin structure, compared to 

healthy donors [69]. Interestingly, such aberrant 3D chromatin structure in AML can be reverted, 

at least partially to a more normal-like chromatin structure upon treatment with HMAs [69]. In 

another study, chromatin reorganization was shown to influence HMA treatment responses in 

AML [70]. RNA 5-methylcytosine transferases were found to interact with different molecular 

partners in AZA-sensitive and resistant AML cells leading to the formation of AZA-sensitive’ or 

‘AZA-resistant’ chromatin structures, respectively. Other studies have demonstrated that 

resistance is associated with cell cycle quiescence since increased quiescent leukemic progenitor 

cells were observed in non-responders than responders [71, 72]. A few studies have also 

demonstrated that induction of the autophagy pathway was found to be protective against AZA-

mediated effects and an increase in basal autophagy was observed in AZA-resistant leukemic cells 

[73-75]. Finally, pharmacogenomic studies have reported that mutations or RNA expression in 
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genes coding for transporters and enzymes required for cellular uptake and metabolism of 

azanucleosides are associated with HMA resistance [76]. Reduced hENT1 and DCK expression 

were observed in non-responders and relapsed patients respectively [77]. Contrarily, the use of a 

novel mass spectrometry (MS) method has shown that non-responders do not have any defects in 

uptake and metabolism and both responders and non-responders have comparable levels of 

intracellular azanucleosides [78]. However, in comparison to responders, non-responders had 

higher levels of AZA incorporated into RNA than DNA, leading to a decreased demethylation of 

the genome. Thus, HMA resistance is heterogenous, and multiple factors are involved in the 

generation of HMA resistance. 

1.3.4 New Avenues to Improve HMA treatment response  

Several strategies have been employed to improve treatment responses towards HMAs, 

including the generation of new and improved HMAs as well as combination therapies to 

circumvent HMA resistance. Guadecitabine (SGI-110), a second-generation HMA whose active 

form has a longer half-life than intravenous decitabine and is resistant to degradation by cytidine 

deaminase (enzyme known to degrade decitabine and promotes resistance) was generated for the 

treatment of patients with myeloid malignancies. However, the Phase III ASTRAL-1 trial with 

SGI-110  showed that it was not superior to the treatment of choice (AZA/DAC/low-dose 

cytarabine) for complete remission rate and overall survival of previously untreated AML patients 

unfit for intensive chemotherapy [79]. CC-486 is another generation of HMA which is an oral 

form of AZA, generated to simplify the drug administration and dose adaptation. Phase III 

QUAZAR AML-001 trial showed that the new oral formulation significantly improved both 

median overall survival and relapse-free survival compared to placebo in older AML patients in 

remission after chemotherapy [80]. 
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Other strategies involve combination therapies with drugs inhibiting histone deacetylase 

(HDAC) with the biological rationale to sensitize myeloid malignancies by completely releasing 

epigenetic silencing mediated by both DNMTs and HDACs. HDAC inhibitors such as entinostat, 

valproic acid, or vorinostat have been tested in multiple phase II clinical trials, however, no benefit 

was observed compared to HMAs alone in AML/MDS patients [81-84]. On the other hand, 

combination therapy with BCL-2 inhibitor Venetoclax has proved to be a promising therapeutic 

option. Phase III clinical trials with AZA combined with Venetoclax in previously untreated AML 

patients unfit for intensive chemotherapy demonstrated improved median overall survival. 

Moreover, patients receiving combination therapy had more rapid and durable responses as well 

as an increase in platelet transfusion independence [85]. The combination is now approved for the 

treatment of newly diagnosed AML patients unfit for intensive chemotherapy. 

1.4 Immunological effects of HMAs 

In recent years, there is a growing body of evidence suggesting that in addition to their 

demethylating activity, HMAs possess immunomodulatory activity. Consequently, these effects 

could potentially contribute at least in part to HMA’s antitumor activity. In non-myeloid cancers 

such as non-small cell lung cancer (NSCLC), data from clinical trials [86] showed that a fraction 

of patients showed augmented and durable responses after receiving immune checkpoint treatment 

post-AZA therapy [87]. Preclinical studies using ovarian and melanoma mouse models have 

further focused on the synergy between checkpoint inhibitors and HMAs, showing that the 

combination increases overall survival compared to the use of checkpoint inhibitors alone [88, 89]. 

These data suggest that AZA improves the outcome of patients by sensitizing tumor cells for 

immune recognition, possibly by inducing immune activation pathways reversing immune 

evasion, or both. Accordingly, studies in breast and colorectal cancer mouse models show that 
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HMA treatment is associated with T-cell infiltration into the tumor microenvironment [90, 91]. 

Further, the anti-tumor benefit of HMAs in colorectal cancer was lost when CD8+ T cells were 

depleted [91]. This suggests that the anti-tumor effects of AZA are dependent on T-cells, possibly 

via cytotoxic T-cell mediated recognition and elimination of tumors. Following this direction, 

some studies have shown that T-cell recognition is driven by HMA’s ability to increase tumor 

immunogenicity by increasing the expression of genes coding for tumor antigens (TAs) [92-94]. 

Additionally, several studies have demonstrated that HMA’s immunomodulatory responses could 

be explained by the expression of immune-related genes [87, 95-97]. Induction of gene expression 

could occur due to the release of epigenetic silencing mediated by DNA methylation [98]. In a 

study by Li et al., gene expression analysis in a panel of 63 cancer cell lines (breast, colorectal and 

ovarian cancer) demonstrated that AZA induced a common subset of genes involved in immune 

responses called ‘AZA-induced IMmune’ (AIMs) gene set [97]. Following this study, two parallel 

studies in 2015 by Chiappinelli et al. and Roulois et al., investigated the mechanism of AZA-

induced immune responses in ovarian and colorectal cancer models. Both studies highlight that 

AZA induces the delayed expression of host-derived double-stranded RNA (dsRNA) and 

induction of innate immune response pathways [88, 99]. Moreover, host endogenous retroelements 

(EREs) are silenced by methylation and are known to form dsRNA due to their repetitive nature 

[100, 101]. Taken together, the literature suggests that AZA has several pleiotropic effects together 

contributing to its immunomodulatory activity. These concepts have been further described in 

detail in the following two sub-sections. 

1.5 Endogenous retroelements (EREs) 

Transposable elements (TEs) are highly repetitive sequences, first identified in maize by 

Barbara McClintock for their ability to mobilize and replicate “selfishly” within the host genome 
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[102]. TEs can be divided into two classes based on their mechanism of transposition (Figure 1.5). 

Class I or retrotransposons are TEs that use a “copy-and-paste” mechanism using an RNA 

intermediate [103], while class II TEs that use a DNA intermediate to mobilize using a “cut-and-

paste” mechanism or “peel-and-paste” mechanism (in the case of the Helitrons, a TE family that 

uses a rolling-circle model for transposition) [104, 105]. Currently, all DNA transposons are 

inactivated in mammals and have lost the ability to mobilize (except for the Piggybac family in 

bats) [106]. These represent a minor fraction of the human genome (~3%). On the contrary, 

retrotransposons – often referred to as EREs – are the most abundant TEs in humans, occupying 

nearly half of the genome. EREs are thought to have originated millions of years ago from 

integration events in the host genome by foreign parasitic elements, predominantly deriving from 

retroviruses [107]. EREs rely on reverse transcriptase (RT) enzymes to reverse transcribe RNA 

intermediates to DNA and then insert them into target DNA sites.  

 

Figure 1.5. Classification and Organization of TEs in humans 

Repetitive elements in the human genome can be broadly categorized based on their mechanism 

of transposition and presence or absence of specific domains such as long terminal repeats (LTRs). 
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Percentage of the genome represented by each of the ERE classes are indicated below. LINEs, 

Long interspersed nuclear elements; SINEs, Short interspersed nuclear elements 

 

Although these repeat elements were often dismissed as “junk” or “non-coding” DNA, 

these elements are currently receiving an increasing amount of appreciation for their contributions 

to vital cellular processes. In some cases, EREs have become domesticated – a process known as 

exaptation. Exaptation refers to the ability to gain entirely new traits or perform new functions 

during evolution. Thus, although these sequences were once known to be detrimental due to their 

“selfish” purposes of replication, some of these have co-evolved with the human genome to 

provide new functions. Examples of this phenomenon include CENP-B, a protein involved in 

centromere assembly during cell division, and several endogenous retroviral (ERV) encoded Env 

proteins such as syncytins and ERV3, present in the placenta and important for embryonic 

development [108, 109]. 

1.5.1 Classification of EREs 

EREs can be further classified based on the presence of flanking long terminal repeats 

(LTRs) (Figure 1.5). In humans, the majority of EREs lack LTRs, together referred to as non-LTR 

elements. Non-LTR elements occupy 36% of the host genome and consist of long interspersed 

nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) [110]. While no ERE 

can be genuinely autonomous since they depend on host machineries such as RNA polymerases, 

ribosomes and tRNAs (for LTRs [111]) to be replicated, EREs that encode their own enzymes for 

transposition are referred to as autonomous. LINEs and LTRs are considered autonomous EREs. 

LTRs are structurally related to retroviral genomic sequences and contain open reading frames 

(ORFs) that code for an RT enzyme (pol) and RNA binding proteins (gag). The pol gene encodes 
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for a multifunctional polypeptide chain with RT, protease, RNase H, as well as integrase activities. 

The gag gene encodes for a structural capsid-like protein, inside which the reverse transcription 

reaction takes place. Some LTRs families, often referred to as ERVs, contain an additional ORF 

coding for an envelope protein (Env). In the majority of cases, the ORFs between the LTRs bear 

several frameshift mutations or premature stop codons, rendering them non-functional. In some 

cases, these elements exist only as solo-LTRs, a product of unequal homologous recombination 

between LTRs leading to the excision of the ORFs [112].  These LTRs are thus non-autonomous 

and dependent on autonomous EREs for their transposition. While LTRs use their flanking 

terminal repeats for transcription initiation and termination, non-LTRs use promoters and 

enhancers in 5’-untranslated regions (UTRs) of their own gene or of nearby host genes to initiate 

their transcription. In general, LINEs contain an internal promoter for RNA polymerase II, 

followed by one or two ORFs and a short 3’ UTR that terminates in a polyadenylation signal and 

poly-A rich tail. LINE-1, the most studied LINE family, consists of ORFs coding for an RNA-

binding protein (coded by ORF1) and a bifunctional polypeptide with RT and endonuclease 

activities (coded by ORF2). SINEs have a much simpler sequence compared to LINEs and lack 

any coding potential. They only contain an internal promoter for RNA polymerase III (RNA pol 

III) followed by a poly-A rich sequence instead of a polyadenylation signal. Thus, SINEs are non-

autonomous and depend on LINEs for their replication and transposition. SINEs are the only EREs 

that use RNA pol III for their transcription and are ancestrally related to tRNA, 5S rRNA, and 7SL 

RNAs [113]. Some SINEs can combine to form complex structures such as dimers or sometimes 

even trimers [114]. These include the Alu family, which represents the majority of SINE families 

in humans [115].   
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Finally, EREs are not randomly distributed within the genome. Contrarily, since ERE 

transposition is target-specific, they have a preference for certain genomic features or 

compartments. For instance, L1 is enriched at AT-rich genomic regions, while Alu elements have 

been identified to be located in GC-rich regions [116]. Moreover, for the successful persistence of 

these parasitic elements, there must be a fine balance between disrupting essential host gene 

functions and thriving in the genome. While only some can form replication-competent viruses or 

transpose within the genome, the majority of these elements are inactivated or suppressed by the 

host.  

1.5.2 Host defenses to control EREs 

In response to their expansion and detrimental effects, the host has evolved to develop 

several defense strategies involving both transcriptional and post-transcriptional mechanisms. 

These have been detailed below: 

Transcriptional repression of EREs: As described earlier, DNA methylation is an 

epigenetic mechanism for silencing gene expression. However, nearly three decades ago, DNA 

methylation was posited by Bestor to be evolved as the primary mechanism for the control of 

transposons [117, 118]. This was supported by observations in prokaryotes that used DNA 

methylation as a defense mechanism to prevent the integration of exogenous DNA in the host 

genome [118]. More recent research by Peter Jones’ group has further explored this hypothesis 

and validated the existence of a tight interplay between DNA methylation, ERE levels, and genome 

expansion across organisms [119]. Invertebrates with fairly smaller genome sizes, low levels of 

ERE, and higher proportions of coding sequences had lower CpG representation than expected. 

This was contrary to organisms such as fish and amphibians with intermediate-sized genome sizes 

and relatively more ERE levels with higher levels of CpG dinucleotides. Accordingly, a striking 
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negative correlation was observed between genome size and CpG representation, and a positive 

correlation between ERE and genome size. This data suggests that ERE insertion into host DNA 

leads to an increase in genome size and along with it, an increase in CpG sites available for 

methylation for its repression. Further, cytosine methylation is known to be inherently mutagenic 

[120]. Early experiments in bacteria have well established this phenomenon, showing that 

methylated DNA can accumulate up to 21-fold higher levels of spontaneous mutations compared 

to unmethylated DNA [121]. This can be attributed to the fact that methylated cytosines are prone 

to undergo deamination [122]. This leads to the formation of erroneous thymine bases, followed 

by DNA mismatch repair pathways leading to C-to-T and G-to-A transition mutations. For 

vertebrate genomes, the estimated time predicted for such CG > AT transitions to take place is 450 

million years [123]. In the case of EREs, the accumulation of mutations over time could eventually 

negatively impact their mobility and render them non-functional. This suggests that, 

evolutionarily, the long-term consequence of methylation is to reduce genome expansion by 

reducing CpG content and possibly unfavor ERE transposition. This is supported by data 

demonstrating that the mechanisms of ERE repression differ based on the age of genomic 

integration of ERE elements [124]. Evolutionarily younger LTRs have higher CpG densities and 

are predominantly suppressed by DNA methylation. These EREs are sensitive to HMA treatment 

and are upregulated upon treatment. Intermediate-age LTRs, on the other hand, had lower CpG 

densities and were less sensitive to HMA treatment. This is in line with previous bodies of research 

demonstrating cytosine loss in ERE sequences over evolutionary time. Interestingly, several 

studies have proposed an arms race between EREs and components of the host defense system. 

These involve fast-evolving transcription factors, mainly krab-zinc fingers (KZFPs) – the majority 

of which act as transcriptional repressors [125, 126]. KZFPs have been shown to rapidly co-evolve 
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with EREs to maintain their suppression. KZFPs have zinc finger domains that allow DNA binding 

and can recruit co-factor KAP1 (TRIM28) through their KRAB domains. KAP1 is responsible for 

the recruitment of downstream epigenetic remodeling factors including histone methyltransferase 

enzymes. Supporting the arms race theory, published data demonstrates that intermediate-age 

LTRs are regulated by histone modifications, mainly by H3K9 methylation instead of DNA 

methylation. Analyses of the chromatin state of EREs across cell types in human cells further 

reveal that the majority of KZFP ERE targets are associated with heterochromatin-associated 

H3K9 methylation marks [127]. In summary, transcriptional control involves suppression of ERE 

expression primarily by DNA methylation that eventually leads to mutational inactivation and co-

evolution of transcriptional factors to maintain repression.   

Post-transcriptional control of EREs: EREs that escape this first line of transcriptional 

suppression are further controlled by post-transcriptional mechanisms. Dysregulation of cellular 

and epigenetic pathways in cancer and autoimmune disorders frequently leads to the re-expression 

of ERE transcripts. ERE-derived transcripts can assemble into dsRNA that resemble retroviral 

nucleic acids. In humans, host sensors recognize these ERE transcripts as ‘foreign’ nucleic acids 

and trigger interferon signaling and anti-viral signaling pathways, a phenomenon commonly 

known as viral mimicry [88, 99]. Further, autophagy is additionally responsible for regulating 

EREs, by degrading ERE sequences and thus controlling their transposition [128].  

Key players involved in the anti-viral defense response and autophagy are described in 

detail in the following sub-sections. 
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1.5.3 dsRNA and innate immune system 

The recognition of pathogens and foreign nucleic acids is a key mechanism as the first line 

of defense. This system includes the detection of evolutionarily conserved sequences on pathogens 

called pathogen-associated molecular patterns (PAMPs). PAMPs are detected by host germline-

encoded pathogen recognition receptors (PRRs). Once recognized, this triggers a cascade of 

signaling pathways leading to inflammatory responses, and the release of cytokines and 

chemokines that are subsequently responsible for the elimination of the pathogens. In the case of 

an infection with viruses, viral dsRNA often accumulates intracellularly during viral replication. 

The host system has evolved to build sensors that recognize dsRNA as PAMPs. These include 

RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), protein kinase R (PKR), and 

oligoadenylate synthases (OASes) (Figure 1.6).  

RLRs and TLR3: RLRs are RNA helicases that act as cytosolic dsRNA sensors. They 

include RIG-I, MDA-5, and LGP2. Upon activation, both RIG-I and MDA-5 form filaments across 

the length of the dsRNA and share downstream signaling pathways by the recruitment and 

activation of the adaptor protein, mitochondrial antiviral-signaling protein (MAVS). LGP2 does 

not directly regulate the antiviral signaling cascade but is thought to regulate the activity of the 

former two RLRs. RIG-I and MDA-5 play non-redundant functions as they detect distinct types 

of dsRNA based on their differential binding preferences of dsRNA length and end structure. 

MDA-5 detects larger dsRNAs (~500–1,000 base pairs (bps)), while RIG-I detects smaller 

dsRNAs (~22–500 bp) and dsRNAs with a 5’-triphosphate group (5’-ppp) or 5’-diphosphate (5’-

pp). In host cells, during the normal processing of mRNA, nascent transcripts undergo processing 

in the nucleus to cleave the 5’-ppp. Many viruses replicate in the nucleus and hence retain the 

5’ppp, allowing dsRNA sensors such as RIG-I to distinguish between host and viral RNA species. 
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TLR3 is an endosomal dsRNA sensor and requires an acidic environment for its activation. 

TLR3 is present on the endosomal membrane of cells and prefers binding dsRNAs with lengths of 

40-50 bps. Upon activation form dimers on a single dsRNA molecule leading to the recruitment 

of adaptor molecule Toll/IL-1R domain-containing adaptor inducing IFN (TRIF). Both RLR and 

TLR3 activation culminates in the activation of type I interferon signaling via activation of 

transcription factors interferon-regulatory factor 3 (IRF3) and nuclear factor kappa-light-chain-

enhancer of activated B cells (NF- κB). TLR3 detects dsRNA released from viruses-infected cells 

or dying cells via endocytosis. Thus, TLR3 is considered a cell-extrinsic sensor, contrary to RLRs 

that detect dsRNAs originating within the same cell (cell intrinsic sensor).  

 

Figure 1.6 Cellular host responses against anti-viral dsRNA 

Cellular hosts recognize dsRNA using cytoplasmic retinoic acid-inducible gene I (RIG-I)-like 

receptors (RLRs) or endosomal toll-like receptor 3 (TLR3). RLRs include RIG-I, MDA5, and 

LGP2 receptors. Activated TLR3 or RLRs culminate in similar downstream pathways leading to 

interferon (IFN) production. Secreted IFN results in the expression of IFN-stimulated genes 
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(ISGs). Expression of ISGs such as oligoadenylate synthetase (OAS) and protein kinase R (PKR) 

activates signaling pathways that ultimately lead to RNA degradation or translational repression, 

respectively. Figure obtained from Takahashi et al., 2020 [129]. 

 

PKR and OASes: PKR is an IFN-inducible dsRNA-dependent protein kinase.  The 

binding of dsRNA to PKR leads to a change in its conformation, dimerization, and 

autophosphorylation of PKR resulting in the formation of an active kinase. The main substrate of 

PKR is EIF2α, a negative regulator of protein synthesis. Phosphorylation of EIF2α results in the 

global shutdown of translation and cell growth inhibition. PKR has also been shown to be involved 

in pro-inflammatory signaling pathways by acting as an upstream kinase in the activation of NF- 

κB [130]. A minimum dsRNA length of ~33 bp is required for PKR binding and activation.  

Similar to PKRs, OASes are IFN inducible and are involved in the inhibition of translation. 

There are 4 human isoforms of OASes. These include OAS1, OAS2, OAS3, and OASL, the latter 

being an inactive form of OASes. Upon binding to dsRNA, OASes undergo conformation changes 

leading to the synthesis of 2′-5′-linked oligomers of adenosines (dimers up to 30-mers) which are 

ATP molecules bound by a 2’-5’ phosphodiester linkage (2–5An). 2–5An are secondary 

messengers that activate an endonuclease, ribonuclease L (RNase L). Activated RNase L cleaves 

RNA, both cellular and viral leading to global translation shutdown, inhibition of cell growth, and 

viral replication.  

Thus, depending on the type of dsRNA sensor detected, different pathways are activated 

with the common goal to inhibit viral replication. Activation of RLRs and TLR3 receptors leads 

to antiviral signaling and inflammation responses, while PKR and OASes activation leads to 

inhibition of protein synthesis and cell growth. The induction of ERE by AZA involves similar 
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signaling cascades, where key players such as OAS, TLR3, MDA5, and RIG-I have been shown 

to play a major role [88, 99, 131]. 

1.5.4 Autophagy  

Autophagy is a highly conserved catabolic pathway and is important for cellular 

homeostasis and survival. The term autophagy literally translates to “self” and “eating” in Latin 

and involves the degradation of long-lived proteins as well as unwanted or harmful materials such 

as damaged organelles and protein aggregates. One of the most typical roles of autophagy is to 

provide nutrients to cells upon cellular stress. Thus, nutrient deprivation (ex. amino acids, glucose) 

or growth factor starvation (ex. insulin, IL-3) triggers autophagy leading to the degradation and 

recycling of cellular components [132]. This facilitates the provision of building blocks to 

synthesize new materials and provide energy in the cell. Additionally, autophagy may act as a 

protective mechanism in various pathologies such as cancer, aging, and neurodegenerative 

disorders such as Alzheimer’s and Parkinson’s as well as against pathogenic organisms including 

bacteria and viruses as well as EREs as a defense mechanism [128, 133]. In mammalian cells, 

there are primarily three types of autophagy detailed below. 

Macroautophagy: The most well-researched type of autophagy is macroautophagy which 

is often referred to as the classical form of autophagy. Macroautophagy is largely non-selective 

and performs bulk degradation of cellular components. This process begins with an initiation phase 

wherein an induction complex comprising of proteins coded by autophagy-related genes (ATGs) 

is recruited to a subcellular location called a phagophore assembly site (PAS). The initiation 

complex is also known as the ULK complex and consists of ULK1, ULK2, ATG13, FIP200, and 

ATG101 (figure 1.7). This step is highly regulated by the mechanistic target of rapamycin complex 

1 (MTORC1). During nutrient sufficiency, mTORC1 directly blocks the autophagy via a 
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phosphorylation-dependent inhibition of ULK1 and ATG13. Under conditions of nutrient 

starvation, mTORC1 is inactivated and disassociates from the induction complex. This causes the 

dephosphorylation of ULK1 and ATG13, and macroautophagy is induced. The induction complex 

is followed by the nucleation of the membrane to form a cup-like structure known as a phagophore. 

Nucleation is facilitated by the ULK-dependent phosphorylation of a class III 

phosphatidylinositol-3 kinase (PI3K) complex (consisting of a class III PI3K, Beclin-1, VPS34, 

VPS15, and ATG14). This step is regulated by a ubiquitination complex controlled by 

deubiquitinating peptidases USP10 and USP13. USP10 and USP13 negatively regulate the activity 

of the PI3K complex by regulating the degradation of Beclin-1. After successful nucleation, the 

phagophore is gradually elongated until it ultimately expands and becomes spherical 

encompassing a portion of the cytosol along with the cytoplasmic constituents. This leads to the 

formation of a double-membraned vesicle called the autophagosome. Finally, the autophagosome 

fuses with the lysosome and with it the lysosomal enzymes that facilitate the degradation of cellular 

components and release into the cytosol for further reuse.  

Macroautophagy involves the formation of cytosolic double-membrane vesicles at the phagophore 

assembly site (PAS) and involves the ULK complex (ULK1, ULK2, ATG13, FIP200, and 

Figure 1.7 Overview of the three types of autophagy in mammalian cells 
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ATG101). This is followed by a nucleation step facilitated by a class III phosphatidylinositol-3 

kinase (PI3K) complex (PI3K, Beclin-1, VPS34, VPS1,5, and ATG14). This then expands to form 

autophagosomes. Substrates are sequestered within and transported to the lysosome during the 

fusion of the autophagosomes and lysosomes (autolysosomes) where they are degraded by 

hydrolases. In microautophagy, cytoplasmic cargos are taken up directly via the invagination of 

the lysosomal membrane. Finally, Chaperone-mediated autophagy involves the translocation of 

specific proteins with pentapeptide motif KFERQ with the chaperone, HSC70 and proteins directly 

enter the lysosome via the LAMP2A receptor. Figure adapted with permission from Kaur et al., 

2015 [134].  

 

Microautophagy: Microautophagy is a process in which portions of the cytosol and its 

constituents are taken up directly by lysosomes, vacuoles, or late endosomes (figure 1.7). This 

direct engulfment occurs via the invagination or deformation of the organelles’ membrane. Like 

macroautophagy, microautophagy can be induced by nutrient starvation and rapamycin and has 

been demonstrated to uptake cytosolic components such as protein aggregates and organelles 

including mitochondria, peroxisomes, and nuclear fragments [135]. However, with the limited 

tools to study microautophagy, there is relatively little known about this process since its 

discovery, and the field is still growing. 

Chaperone-mediated autophagy (CMA): Unlike macroautophagy and microautophagy, 

CMA is a highly selective form of autophagy. Only proteins with a pentapeptide C-terminal 

sequence, Lys-Phe-Glu-Arg-Gln (KFERQ) are targeted to undergo CMA (figure 1.7) [136]. Upon 

induction, cytosolic chaperones are recruited to peptide sequences containing the KFERQ 

consensus motif. Target proteins are then translocated onto the lysosomal membrane, where they 

are unfolded and transported into the lysosomal lumen, followed by their degradation. CMA has 

been shown to account for the degradation of ~30% of cytosolic proteins during nutrient starvation 

[137]. Interestingly, the majority of aminoacyl‑tRNA synthases contain these motifs suggesting 
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that these enzymes are a substrate for degradation by CMA [138]. This suggests that under the 

context of nutrient starvation in cells, CMA degradation of aminoacyl‑tRNA synthases could be 

physiologically relevant in slowing down the rate of protein synthesis. Other substrates targeted 

for CMA include transcription factors, proteasome subunits, and vesicular trafficking proteins, 

among others [139]. 

 

1.6 Antigen processing and presentation in the MHC-I pathway 

As discussed in the above few sections, the innate immune system acts as the first line of 

defense with very broad specificity to foreign pathogen invasion. We now discuss the MHC-I 

pathway, a part of the adaptive immune system which has a more targeted recognition of foreign 

pathogens and other “non-self”-derived antigens. 

1.6.1 The MHC-I immunopeptidome  

CD8+ T-cells have access to cellular information by surveilling peptides deriving from 

intracellular proteins presented by MHC-I molecules on the surface of cells. These peptides are 

collectively known as the immunopeptidome [140]. During the life span of a cell, MHC-I-

associated peptides (MAPs) are normally generated from the host own’s proteins involved in 

housekeeping functions [141]. However, during viral infections or in the case of cancerous cells, 

peptides deriving from viral or tumor-specific proteins are presented to T-cells. Thus, the MHC-I 

pathway is crucial in triggering T-cells to quickly eliminate infected or malignant cells. Three 

important concepts are discussed below giving a brief overview of the MHC-I pathway. 

MHC-I complexes: MHC-I molecules are heterodimers consisting of a heavy chain and a 

constant Beta-2 microglobulin (B2m) chain and bind to 8-11 amino acid long peptides. In humans, 
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the MHC-I is also known as the human leukocyte antigen (HLA) system. The heavy chain, 

encoded by highly polymorphic HLA genes (HLA-A, HLA-B, or HLA-C), is present on the short 

arm of chromosome 6 (chr 6p21). After synthesis, nascent MHC-I polypeptides are folded and 

assembled in the lumen of the endoplasmic reticulum (ER). Peptides are translocated from the 

cytosol to the ER via a transporter associated with antigen processing (TAP) proteins, where they 

are trimmed and loaded onto MHC-I molecules. This is performed by the peptide loading complex, 

a multi-subunit machinery present in the ER enabling the final assembly of MHC-I complexes 

with the B2M and the peptide. MHC-I-peptide complexes are then trafficked to the Golgi apparatus 

and are finally transported to the plasma membrane where they are ready to interact with 

circulating CD8+ T-cells (Figure 1.8).  

 

Figure 1.8 Antigen processing and presentation by MHC-I molecules 

Intracellular proteins are degraded by the proteasome into peptides. The peptides are then 

translocated via the transporter for antigen processing (TAP) into the lumen of the endoplasmic 

reticulum (ER) where they bind to MHC class I molecules. Peptide binding is supported by 

chaperones and is essential for the correct folding of MHC class I molecules. Finally, MHC-

peptide complexes are released from the ER and transported to the plasma membrane, where the 
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peptide can interact with T-cells via T-cell receptors (TCRs). Figure adapted from Yewdell et al., 

2003 [142] with permission. 

Peptide sources: Peptides generating MAPs arise from the degradation of two main 

categories of source proteins – older proteins undergoing normal turnover (retirees) and defective 

ribosomal products (DRiPs). DRiPs are nascent polypeptides that do not reach their mature 

conformational states or are misfolded as a result of translational infidelity, tRNA insufficiency, 

or errors in post-translational processes. This leads to their rapid degradation either right after or 

during translation (Figure 1.9). DRiPs are, therefore, not represented at the level of the proteome, 

but are observed at the immunopeptidomic levels. DRiPs represent ~30% of total proteins that 

undergo proteasomal degradation with half-lives of several minutes, whereas retirees are more 

stable proteins with half-lives of ~46h. Interestingly, DRiPs but not retirees are a major source of 

MAPs [143-145]. Thus, predominantly, newly synthesized peptides are represented at the level of 

the immunopeptidome allowing T-cells to surveil the latest “current events” of the cell, including 

the presence of a replicating virus.  

Peptide generation: Peptides are generated by ubiquitylation and degradation of 

intracellular proteins by proteasomes. Constitutive proteasomes (CPs) are the main type of 

proteosomes expressed by all eukaryotes pivotal for several cellular processes, including cell 

cycle, stress response, apoptosis, differentiation, and other regulatory processes. CPs contain a 19S 

regulatory particle, required for binding polyubiquitylated substrates, and a core 20S proteolytic 

particle mediating peptide hydrolysis. The proteolytic activity of the 20S core particle is catalyzed 

by 3 subunits – PSMB5 (cleaves after hydrophobic residues; chymotrypsin-like activity), PSMB6 

(cleaves after acidic residues; caspase-like activity), and PSMB7 (cleaves after basic residues; 

trypsin-like activity) [147]. In addition to CPs, exposure to IFN-γ or TNFα leads to the generation 

of a special form of the proteasome, known as immunoproteasomes (IPs). While the 19S particle 
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Figure 1.9 MAP generation during protein synthesis and turnover 

The process of protein biosynthesis (left) and turnover is highly regulated both ribosome-

associated quality control (RQC) and protein quality control are responsible for MAPs. During the 

translation of nascent polypeptides, errors or lack of amino acids leads to ribosome stalling and 

defective ribosomal products (DRiPs) generation and degradation in a folding-independent manner 

(Grey top panel). During protein maturation, the absence of proper assembly of subunits or protein 

misfolding can further trigger protein degradation (Grey lower panel). Figure adapted from 

Trentini et al., 2020 [146] with permission.  
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is shared between the two proteasomes, the 20S catalytic subunits in IPs are replaced by PSMB8, 

PSMB9, and PSMB10. PSMB8 and PSMB10 have similar proteolytic activities to their CP 

homologs PSMB5 and PSMB7, respectively), while PSMB9 has chymotryptic-like activity rather 

than caspase-like activity as observed in PSMB6 [147]. Due to these modifications, IPs and CPs 

are endowed with differences in catalytic properties and cleavage specificities (Figure 1.10). 

Accordingly, IPs preferentially cleave peptides more after C-terminal hydrophobic residues and 

basic residues, and less after acidic residues [148]. Finally, IPs appear to have increased 

chymotryptic than tryptic activity [149]. As a result of these differences, IPs and CPs generate 

different sets of MAP repertoires [150]. Moreover, IPs are especially important in influencing both 

the quantity and quality of the peptide repertoire. Not only does the absence of IPs shows a 

decreased abundance and diversity of MAPs, but also drastically affects T-cells responses in viral 

infections  [151, 152]. IP deficiency is considered a feature of non-small cell lung cancer and is 

frequently associated with poor outcomes [153]. Further, IP upregulation in breast cancer was 

associated with better overall survival and increases in CD8+ T-cell infiltration [154]. Thus, MAPs 

derived from immunoproteasomes are important for protection from viruses, and tumors.  
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Constitutive proteasomes (left) and Immunoproteasomes (right) differ in 20S catalytic subunits. 

The proteolytic subunits of the CPs are PSMB5 (also known as β5), PSMB6 (also known as β1), 

and PSMB7 (also known as β2), and of IP are PSMB8 (also known as β5i), PSMB9 (also known 

as β1i) and PSMB10 (also known as β2i). These differences endow IPs with an increase in 

preference for cleavage after hydrophobic and basic residues, and increased chymotrypsin-like 

activity compared to CPs. Figure adapted from Zanker et al., 2014 [155] with permission.  

  

Figure 1.10 Schematic representation of differences between Constitutive Proteasomes and 

Immunoproteasomes 
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1.6.2 Leveraging TAs to improve cancer therapy 

Immunotherapy has transformed the landscape of cancer therapy. In comparison to 

previous standards of care, immunotherapy has brought a significant improvement in overall 

survival and quality of life for cancer patients. The concept of harnessing the immune system to 

eliminate cancer cells is not a recent or novel one. In the nineteenth century, William Coley – often 

referred to as the “Father of cancer immunotherapy” – demonstrated that the injection of extracts 

from heat-inactivated bacteria achieved favorable responses in cancer patients [156]. However, the 

absence of valid scientific explanations for Coley’s results, and with the development  of 

radiotherapy, this treatment regimen did not gain traction and was not pursued further [157]. It was 

only in the early twentieth century that this concept was revisited and the relevance of T-cells in 

anti-tumor immune responses was recognized [158, 159]. Compelling evidence demonstrated that 

infiltration of T-cells in tumors can lead to tumor regression in melanoma and some other cancers 

[160-163]. However, not all tumor types are associated with T-cell infiltration and tumor 

regression. This brings attention to the nature of MAPs presented by tumor cells and investigation 

of the tumor MAP repertoire is important for two reasons. First, the global immunopeptidome is a 

representation of the internal processes occurring in tumor cells and accounts for what is displayed 

to CD8+ T-cells. Secondly, tumor cells are considered poor “antigen presenters” as they lack the 

necessary co-stimulation markers to efficiently prime T-cells [164]. Identifying MAPs that can 

serve as TAs is of critical importance as they can be leveraged as cancer vaccines and improve 

anti-tumor-specific T-cell responses. 

Where to look for TAs candidates? Until recently, the focus on identifying TAs was 

solely on MAPs deriving from annotated protein-coding exon regions. These included regions that 

are over-expressed in tumors compared to normal tissues (tumor-associated antigens; TAAs) or 
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that are mutated or aberrantly expressed in tumor cells (Tumor-specific antigens; TSAs). Research 

from our lab was pioneering in establishing that allegedly non-coding genomic regions serve as an 

important source of TAs [165]. Some of the non-canonical sources generating TAs include UTRs, 

intergenic and intronic regions, and EREs. These have been identified and validated by 

ribosequencing and MS in several cancers including, leukemia, melanoma, ovarian, and colorectal 

cancers by our and other research groups [166-170]. Of note, pre-clinical mice studies show that 

TSAs deriving from EREs are highly immunogenic [165], probably due to the high sequence 

similarity of EREs with viruses. Naïve mice had similar CD8+ T cell frequencies specific to ERE-

derived TSAs as viral peptides and immunization with these EREs showed long-term tumor 

protection. Most importantly, these are shared across patients and/or tumor types making them 

attractive vaccine candidates that could be used to target a sizeable fraction of patients [167, 170-

172].  

Another class of TAs worth mentioning is the cancer-testis antigens (CTAs). Although 

deriving from annotated protein-coding exons, these have been identified in several cancers and 

serve as an attractive source of TAs candidates. Depending on their expression in tumor and normal 

tissues, CTAs can be classified as TAAs or TSAs.  Generally, CTA gene expression is silenced in 

normal cells, except for germline cells such as the testis and placenta. Germline cells are 

considered immune privileged as they lack MHC-I expression. Frequently due to epigenetic 

dysregulation, CTAs are aberrantly overexpressed in cancers such as melanoma, bladder cancer, 

and others, including AML [173, 174]. Thus, although CTA genes are expressed by germline cells, 

CTA-derived MAPs cannot be presented by MHC-I molecules to the CD8+ T-cells. This makes 

MAPs deriving from CTAs attractive targets for immunotherapy [175]. There are over 70 CTA 

gene families with over 240 genes and considerable efforts have been made to identify tumor-
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specific CTA candidates for cancer vaccines [176]. Several clinical trials targeting CTA-derived 

TAs as anti-tumor therapy that have been FDA-approved are currently ongoing or have been 

completed. Although these trials are early phase I/II trials, some showed promising results with 

considerable safety, longer median free survival, or good clinical responses associated with CTA-

specific immunological responses [177, 178].  

How do we identify TAs candidates? Some research groups rely on reverse immunology 

using exome or transcriptomic data and MHC-I predicting algorithms to identify TAs; however, 

the majority of these predictions are false positives and cannot be further validated [179, 180]. MS, 

on the other hand, remains the best method for the identification and validation of MAPs and their 

amino acid sequences. Briefly, MAPs are immunoprecipitated using an MHC-I specific antibody, 

followed by dissociation from the MHC-I subunits and separation on liquid chromatography (LC) 

columns before being introduced into the mass spectrometer. Before entering the mass 

spectrometer, peptides are electrically charged (ionized) and transferred into the gas phase in a 

process called electrospray ionization. It’s important to note that the efficiency of ionization can 

vary by several orders of magnitudes between peptides [181]. Therefore, while the abundance of 

a single peptide can be compared across samples, the abundance of two different peptides cannot 

be compared accurately. Once in the gas phase, peptides can be detected and sorted based on their 

mass-to-charge (m/z) ratio. The separated peptides are then measured, and their m/z and relative 

abundance are stored by a data system. The spectrum of peptides – the m/z ratio plotted against 

the relative abundance of the peptide – eluted at this point is called an MS1 spectrum. These 

peptides can then be further fragmented by colliding them with inert gases such as nitrogen or 

argon. Peptides are fragmented at the peptide bond between the amino acids and the resulting 

spectrum is called MS2 or MS/MS spectrum. Thus, the MS1 spectra reveal the mass of the intact 
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peptide and the MS2 spectra determine the mass of the amino acid fragment ions. Since the masses 

of amino acids are already known and well established, a theoretical MS2 spectra database can be 

built based on the MS1 information. Unlike RNA sequencing wherein de novo sequencing is used 

to construct the transcript sequences, MS uses theoretical databases to identify peptide sequences. 

Databases searches typically query for the best peptide in the theoretical databases that can explain 

the observed MS2 spectra. This feature of the MS comes with an important caveat – only those 

peptide sequences within the database can be identified. Therefore, the databases used for 

identification must be complete, without being not too large and unmanageable. This is especially 

important for the search for MAPs deriving from non-canonical genomic regions. Protein 

databases typically used for MS searches such as Uniprot lack non-coding sequences, and therefore 

cannot be used to identify such MAPs. One possible solution is to build databases using a 

proteogenomic approach and create MAP sequences corresponding to RNA transcripts expressed 

by the samples. This approach allows for building an ideally sized, but relevant database for 

assigning MS2 spectra to peptides as accurately as possible. Although MS-based methods remain 

the best methods to identify MAPs, this technique is limited by the requirement of large quantities 

of samples for analyses. Further, they may be inaccessible to many research groups due to the high 

cost of MS instruments as well as a need for experts and technicians specialized in the field. This 

could be circumvented by collaboration with research groups with MS expertise. Further, the use 

of cell lines as a model system instead of primary tumor samples can overcome the restriction of 

the sample size required for MS analyses. 
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1.7 Cell lines as an experimental model in biological research 

Cell lines are a valuable tool that have been used for decades in biological research and 

have enabled progress in several scientific fields, including biotechnology and pharmacology. Cell 

lines are typically generated by immortalizing cells derived from primary tissues or tumors. Thus, 

cell lines can proliferate indefinitely in vitro, provided they have a suitable nutrient medium and 

sufficient space to grow. Cell lines serve as an appropriate model for researchers to perform 

experiments in a controlled manner without having the restriction of sample sizes observed for 

primary samples. They have been used to study physiological, and pathophysiological conditions, 

and differentiation processes, as well as elucidate mechanisms underlying tumor cells. Moreover, 

cell lines make an ideal model for performing large-scale drug screening assays, identification of 

drug targets, drug metabolism, and its effects. Finally, cell lines have played an important role 

generation in vaccines and gene therapies. Despite their practicality and ease of culture in vitro, 

cell lines come with their fair share of limitations. First, cell lines are an oversimplistic 

experimental model and may lack physiological relevance and not be representative of pathways 

occurring in actual tissues and tumors. Secondly, cell lines are prone to genetic instability leading 

to genetic drift and phenotypical differences. This is known to be especially true for cell lines with 

microsatellite instability (MSI+) as they have dysfunctional damage repair mechanisms, leading 

to the accumulation of genomic mutations [182]. Finally, handling cell lines without adequate 

caution can inadvertently lead to cell line cross-contamination, misidentification, or mycoplasma 

contamination. In fact, studies have reported that 15% of cell lines from labs across North America, 

Europe, and Asia were misidentified or contaminated [183]. Further, a recent study with HeLa cell 

lines procured from across 13 labs worldwide demonstrated significant variances and divergence 

after several passages leading to inconsistent scientific results [184]. Several agencies are 
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addressing this issue by setting up guidelines to ensure reliability and reproducibility. For instance, 

the National Institute of Health (NIH) issued guidelines that require the authentication of cell lines 

for researchers applying for grants [185]. Similarly, several scientific journals have added a strict 

mandate for cell line authentication for the submission of research articles [186]. The International 

Journal of Cancer has been in the lead in this matter and published several articles on the 

misrepresentation of cell lines as a caution to the scientific community and provided resources to 

improve the situation [187-190]. Currently, cell lines are primarily authenticated using genotype-

based methods, with short tandem repeats (STR) profiling as the gold standard. STR profiling is a 

convenient and inexpensive method wherein 8-10 highly polymorphic loci are amplified with 

commercially available primers. The sizes of amplified loci differ across individuals and thus the 

resulting profile produced is unique and characteristic of any particular individual. Thus, STR 

profiles can be used to compare with references in databases to validate cell lines’ identity and 

detect cross-contamination or misidentification. 

In summary, the use of cell lines in research is critical but requires careful consideration 

when used. By ensuring and adhering to strict guidelines and good laboratory practices, researchers 

can ensure the responsible and effective use of cell lines to advance scientific research. Finally, to 

ensure the physiological relevance and increase confidence when data using cell lines are 

generated, validation in other models including patient or primary samples is important. 
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2.2 Novelty and Impact 

THP-1 cells are widely used, mainly for studying myeloid leukemias. We performed multi-

omic analyses on THP-1 cells obtained from two major repositories. The two THP-1 cell lines 

presented numerous genomic, transcriptomic and proteomic discrepancies that have pervasive 

effects, namely on genes instrumental in leukemogenesis. This indicates that the two THP-1 cell 

lines are not the same entity and have undergone biologically important genetic drift which can be 

underestimated by analyses of a limited number of STR.  

 

2.3 Abstract  

The THP-1 cell line is broadly used as a model for acute myeloid leukemia (AML) with 

MLL fusion and to study monocyte differentiation and function. We studied THP-1 cells obtained 

from two major biorepositories. The two cell lines were closely related with a percentage match 

of short tandem repeat (STR) profiles ranging from 93.75% to 100%, depending on the algorithm 

used. Nevertheless, we found that the two cell lines presented discordant HLA type, cytogenetic 

aberrations and AML-related gene expression (including critical targets of MLL fusion). These 

discrepancies resulted mainly from loss of heterozygosity (LOH) involving five chromosomal 

regions. In view of their aberrant expression of key “leukemia” genes (e.g., LIN28B, MEIS1 and 

SPARC), we argue that one of the THP-1 cell lines may not be a reliable model for studying 

leukemia. Their defective expression of HLA molecules and abnormal adhesion properties is also 

a caveat for studies of antigen presentation. In a more general perspective, our findings show that 

seemingly minor discrepancies in STR profiles among cell lines may be the sign of major genetic 

drift, of sufficient magnitude to affect the reliability of cell line-based research.  
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2.4 Introduction 

AML is a malignant hematological disorder characterized by the proliferation of non-

functional hematopoietic cells. More than 70% of infant AML cases bear a chromosomal 

translocation involving the MLL gene[1], whose fusion product is instrumental in 

leukemogenesis[2]. Established in 1980 from the blood of a child with AML, THP-1 is one of the 

most widely used cell lines to study the biology of AML with MLL fusion as well as monocyte 

function[3]. Highly appreciated for its versatility, this cell line has been used in over 10,000 

publications.  

The scientific community is currently going through a well documented 'crisis' of 

reproducibility as more than 70% of researchers fail to reproduce another scientist's experiments, 

and more than half failed to reproduce their own[4]. It is well recognized that cross-contamination 

and phenotypic drift of cells in culture can generate irreproducible or misleading data[5-9]. Cell 

lines with microsatellite instability (MSI+), in particular have been shown to develop alterations 

in microsatellite loci and drift with passages, due to their defective mismatch repair genes[10]. 

This biological diversity clearly contributes to the reproducibility crisis and is disquieting 

considering that human cancer cell lines are the workhorse of cancer research. The substantial 

biological diversity among genetically unstable cancer cell lines within and between labs has been 

extensively reported[11, 12]. However, little is known about the possible diversity of cell lines 

between reference biorepositories. Here, we compared THP-1 cells, a cell line considered as 

relatively stable[13], obtained from two different major biorepositories. We found that they were 

not the same entity and have undergone genetic drift with major and pervasive functional effects.   
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2.5 Material and methods 

Cell lines 

THP-1 cell lines (RRID: CVCL_0006) were freshly purchased from the American Type 

Culture Collection (ATCC) (TIB-202, ATCC, Manassas, US-VA) and the Deutsche Sammlung 

von Mikroorganismen und Zellkulturen (DSMZ) (ACC16, DSMZ, Braunschweig, Germany) for 

the purpose of the present study. Cells were maintained in RPMI 1640 (Gibco, NY-US, 11875-

093) containing L-glutamine and supplemented with 20% heat inactivated fetal bovine serum 

(FBS, Gibco 12483) and 1% penicillin-streptomycin (10,000 U/mL, Gibco 15140-122). All 

cultures were free of mycoplasma contamination, as verified by absence of RNA-Seq reads (see 

in next sections) mapping to four different mycoplasma genomes (analysis made as reported 

previously[14]). Cell line authentication was performed by STR profiling. DNA was extracted 

from both cell lines and submitted for STR profiling to ATCC’s cell authentication service (July 

2019). STR profiling was performed based on 13 Combined DNA Index System (CODIS: 

D18S51, D21S11, TH01, D3S1358, FGA, TPOX, D8S1179, vWA, CSF1PO, D16S539, D7S820, 

D13S317, D5S818) loci plus amelogenin (for gender determination), Penta E, Penta D, D2S1338 

and D19S433 (results reported in supplemental data and other data can be made available upon 

reasonable request).  

HLA genotyping of THP-1 cell lines 

Cells were genotyped at 6 HLA genes: HLA-A, HLA-B, HLA-C and HLA-DRB1, HLA-

DQB1, HLA-DPB1. Typing was performed by next generation sequencing using NGSgo® 

commercial kit (GenDx, Netherlands) on the MiSeq platform (Illumina, USA). Paired-end 
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sequences were analyzed using NGSengine® software v2.12.0 (GenDx) and the IPD-IMGT/HLA 

database release 3.34.0.  

RNA sequencing 

After thawing, THP-1 cells (ATCC and DSMZ) were expanded for one week to recover 

from cryopreservation. Three replicate expansions were performed for sample collection with the 

following sequences: seeding at 0.2 million/mL, 48h of expansion, dilution 1:2 with fresh medium, 

24h of expansion and collection while in the log phase (final cell density = 0.5 million /ml). 

Replicates 1 and 3 were collected one week after thawing and replicate 2 was collected two weeks 

after thawing. 

Total RNA was extracted using TRIzol® (Life Technologies, Carlsbad, Canada) according 

to the manufacturer’s recommendations. RNA samples were purified using QIAGEN Mini 

RNeasy kit following manufacturer’s instructions. Presence of contaminants were assessed with 

nanodrop using 260/280 and 260/230 ratios. RNA quantification was performed using QuBit 

(ABI) and 1µg of total RNA was used for library preparation. Sample quality was assessed with 

Bioanalyzer Nano (Agilent Technologies) and all samples had RNA Integrity Numbers above 8.8. 

Transcriptomic libraries were prepared with the KAPA mRNA HyperPrep Kit (KAPA, Cat no. 

KR1352). Libraries were quantified with the QuBit and BioAnalyzer (average size ~380 base-

pairs). All libraries were diluted to 10 nM and normalized by quantitative PCR using the KAPA 

library quantification kit (KAPA; Cat no. KK4973). Libraries were pooled to equimolar 

concentrations and sequencing was performed with the Illumina Nextseq500 on half a flow cell of 

the Nextseq High Output v2 (75 cycles) kit using 4 nM of the pooled libraries. Around 40 M single-

end reads passing filter were generated per sample. Library preparation and sequencing were 

performed at the genomics platform of Institute for Research in Immunology and Cancer. 
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Transcriptomic analysis 

Adapters were trimmed using trimmomatic 0.35 and transcript quantification was 

performed using Kallisto v0.43.0 with the --single -l 300 -s 50 --rf-stranded (GRCh38.88). 

Analysis of differentially expressed genes (DEGs) was done in R3.5.1. Raw read counts have been 

converted to counts per million (cpm), normalized relative to the library size and lowly expressed 

genes were filtered out by keeping genes with cpm >1 in at least 2 samples using edgeR and limma. 

This was followed by voom transformations and linear modelling using limma’s lmfit. Finally, 

moderated t-statistics were computed with eBayes. Genes with p-values <  0.05, fold change (FC) 

> 2 and false discovery rate  < 0.01 were considered significantly differentially expressed. Gene 

ontology and biological pathways annotations were made with DAVIDv6.8 

(https://david.ncifcrf.gov). Functional annotations with p-value < 0.05 were considered significant. 

Gene set enrichment analysis (GSEA) was performed with fgsea package in R[15]. A pre-ranked 

gene list was generated by ranking expressed genes obtained from limma-voom on the moderated 

t-statistics. Hallmark and MLL-fusion target gene sets were obtained from MSigDB database and 

gene sets for chromosomal positions were generated based on genes expressed in hotspots of 

transcriptomic changes (HTCs, see next paragraph). Heatmap of AML-related genes was 

generated by using aheatmap function in R to depict median z-scores of kallisto transcript per 

million values of genes among the top 300 in AML-related GeneCard list (see supplemental data) 

or having FC > 8.  

Integrative chromosome plots 

Start sites of each gene were retrieved from BioMart (https://useast.ensembl.org/biomart) 

and were used to plot the log2(FC) of DEGs, obtained from limma-voom analyses, along each 

chromosome. The normalized average log2(FC) was computed based on log2(FC) from the entire 
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list of expressed genes generated by limma-voom analysis. These genes were sorted according to 

their genomic position and each chromosome was sliced into 25 equal regions. For each region, 

the average log2(FC) has been computed. Each average has then been multiplied by the number 

of upregulated genes (if average > 0) or downregulated genes (if average < 0) and finally divided 

by the total number of genes of the region. Normalized average log2(FC) were plotted at the center 

position of each of the 25 regions. Based on the empirical observation that the normalized average 

log2(FC) was higher than 0.45 at the LOH position in p arm of chromosome 6, HTC regions were 

established when more than two (sub 25) contiguous regions had normalized average log2(FC) 

above 0.45 or below -0.45. The positions of LOH and allelic ratio aberrations were retrieved from 

the Deletions and table2 outputs of eSNP-karyotyping. Plots were built with Graphpad v7.00.  

eSNP-karyotyping 

Detection of chromosomal aberrations using RNA-seq data was performed using eSNP 

karyotyping as previously described[16].  

MHC-I expression analysis 

Quantification of MHC class I, HLA-A, B, C surface expression was performed using the 

QIFIKIT bead-based flow cytometric assay (Dako, Agilent Technologies, Santa-Clara, US-CA, 

K0078) according to the manufacturer’s recommendations. Briefly, triplicates of THP-1 ATCC 

and DSMZ samples were incubated first with an Fc-receptor blocking reagent (anti-CD32; Becton 

Dickinson (BD), Bedford, US-MA, 552930) for 10 minutes at room temperature, followed by 

incubation with either with HLA-ABC-FITC (Invitrogen, Carlsbad, Canada, 14-9983-82) or 

Mouse IgG2a κ Isotype Control (BD 553454) for 30 min at 4°C. Secondary staining was performed 

using FITC-conjugated antibody provided in the kit. Analysis was made by flow cytometry (BD 
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FACS Canto II) and number of HLA molecules was determined by interpolation on the standard 

curve of the bead populations. 

For quantification of HLA-A surface expression, triplicates of THP-1 ATCC and DSMZ 

samples were incubated with anti-CD32 and then either with anti-HLA-A2-PE (BD 558570) or 

isotype IgG2b,k-PE (BD 559529) for 20 min at 4°C. MFI of samples were analyzed using flow 

cytometry and data were analyzed with FlowJo software v10.5.3 (Tree Star Inc., Ashland, US-

OR). Analyses were made with Graphpad v7.00. 

Morphological assessment of ATCC and DSMZ cells 

Cells were seeded at 0.2 million cells per ml in 6 well plates and imaged 48 hours after 

seeding using Leica DMIRB microscope and QCapture software. 

Data availability 

Raw RNA-Seq data are openly available through Gene Expression Omnibus (GEO 

GSE130985). The datasets supporting the conclusions of this article are included within this article 

and its additional files. 

 

2.6 Results and discussion 

THP-1 cells, freshly purchased from ATCC or DSMZ, were submitted for STR profiling 

to the ATCC cell line authentication service. STR profiling, considered gold standard for cell line 

authentication testing, is based on examining the varying number of polymorphic repeats and 

comparing them with size standards [17]. The percentage match between two cell lines can be 

influenced by the algorithm used [8]. In the present case, percentage match was calculated based 
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on 8 core STR loci plus amelogenin (Table S2.1). ATCC authentication service used the Masters 

algorithm (= number of shared alleles between query sample and ATCC database profile / total 

number of alleles in the ATCC database profile) which yielded a 100% match [ (15 / 15) × 100 = 

100% ]. However, the Tanabe algorithm [ = (2 × number of shared alleles) / (number of alleles in 

sample#1 and number of alleles in sample#2) ] yielded a 93.75% match: [ (2 × 15) / (15 + 17)] ×  

100 = 93.75%. The discrepancy highlighted by the Tanabe algorithm is due to the fact that the 

THP-1 cell line from ATCC shows loss of two STR alleles (D13S317 and vWA loci). In 

accordance with this, the ATCC and DSMZ reference STR profiles of the THP-1 cell line found 

in the Cellosaurus database [18] show slight differences. Hence, THP-1 cells from ATCC and 

DSMZ are two different cell lines, one of them presenting at least a minor genetic drift. 

Additionally, based on STR profiling data from Cellosaurus database, we found that of 12 THP-1 

sources reported, 6 had exact STR match with the ATCC profile observed here while 2 had an 

exact match with the DSMZ profile (Table S2.2). In total, we identified at least 4 variants of the 

THP-1 cell line based on the profiling data (Table S2.2). In our case, since THP-1 cells are 

microsatellite stable, we observed that modified STR profile was exclusively due to loss of STR 

alleles; in contrast to MSI+ cell lines in which alterations in STR profiles are due to both 

occurrence and loss of new and existing alleles, respectively [19]. We next sought to investigate 

the extent of the divergence between the two ATCC and DSMZ cell lines as well as its possible 

biological consequences. To address this, we first examined the HLA type of each cell line using 

both next-generation DNA sequencing and PCR-SSP. While the HLA type of ATCC cells was 

identical to the one found in a previous report (HLA-A*02:01/02:01 and HLA-B*15:11/15:11) 

[20], DSMZ cells were heterozygous for both HLA-A and -B alleles (HLA-A*02:01/24:02 and 

HLA-B*15:11/35:01) (Table S2.3 and Figure S2.1). To confirm this observation, we performed 
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RNA-sequencing of both cell lines and determined their HLA type with the Optitype software 

[21]. We also performed this analysis on publicly available RNA-Seq data on DSMZ THP-1 cells 

[22]. Concordant results were obtained with all methods: at both HLA-A and HLA-B loci THP-1 

cells from ATCC had a single allele whereas DSMZ THP-1 cells had two. We concluded that 

ATCC cells have undergone LOH before integration or during maintenance in this repository. 

Interestingly, in the original study describing the establishment of THP-1, the HLA type was based 

on serological typing and reported as HLA-A2, A9, B5 (nomenclature of now-obsolete HLA 

typing system) [3]. The apparent discrepancy between this HLA serotyping and the HLA genotype 

of DSMZ THP-1 can be explained by the lower resolution of serological typing and HLA antisera 

cross-reactivity [23]. Indeed, HLA-B5 antisera has been shown to be cross-reactive to HLA-B35 

and HLA-B15 (HLA-B alleles identified in DSMZ THP-1)[20, 24]. Moreover, based on DNA 

sequencing and HLA-A9 antisera reactivity, A*24:02 is now classified under HLA-A9 antigen 

family (along with HLA A*23:01 and A*24:03) [25]. Finally, A*24:02 being the most common 

HLA-A allele in Japan, its presence in DSMZ cells is consistent with the reported ethnic origin of 

THP-1 cells [3]. Altogether, these observations suggest that DSMZ THP-1 cells are more similar 

to the original cells described in 1980 than ATCC’s.  

Using eSNP-karyotyping [16], we confirmed LOH of the p arm of chromosome 6 (location 

of the HLA complex) of ATCC cells (Figure 2.1A, top panel), consistent with a reported 

karyotypic analysis of ATCC THP-1 [26]. Unexpectedly, our eSNP-karyotyping further provided 

evidence of LOH specific to ATCC cells in chromosomes 10p, 12p, 13q and 20p. Analysis of 

allelic ratios (major/minor SNPs), which highlights uneven chromosome copy numbers (Figure 

S2.2), showed similar patterns in cell lines for most chromosomes, with major differences present 

in chromosomes 2p, 6p, 9p and 11 (Figure 2.1A, bottom panel). We next performed a differential 
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gene expression analysis to evaluate the potential impact of these genomic discrepancies. This 

revealed that the two cell lines had dramatically different transcriptomes as evidenced by principal 

component analysis (PCA) and volcano plot (2627 differentially expressed genes (DEGs)) (Figure 

S2.3A and Table S2.4). These alterations likely have pervasive impact on numerous biological 

processes, as evidenced by gene ontology (GO) term analysis (Figure 2.1B and Table S2.5-2.6). 

They also modify cell phenotype since DSMZ cells expressed 3-4 fold more MHC-I molecules 

(either total HLA or HLA-A*02, an allele shared by both cell lines) whereas ATCC cells formed 

more numerous aggregates, in agreement with their overexpression of genes linked to cell adhesion 

GO terms (Figure 2.1C and S2.3B).  

To establish the causative relationship between the cytogenetic and transcriptomic 

alterations, we combined our eSNP and DEG data for each chromosome (Figure 2.2A (top panel), 

Figure S2.4 and Tables S2.7-8). This revealed that in specific chromosomes (8, 9, 10, 12 and X), 

more than 20% of expressed genes were DEGs (respectively 40.2%, 24.7%, 50.1%, 23.1% and 

37.3%). To evaluate the connection between genomic location and gene expression, we computed 

a normalized average log2(Fold Change (FC)) (see supplementary methods) along each 

chromosome. This allowed us to identify several HTCs between both cell lines. Strikingly, the 

positions of these HTCs correlated well with those of LOH or allelic ratio aberrations and their 

normalized average log2(FC) was either in agreement with eSNP analysis (e.g. the specific LOH 

in chr6p and chr12p of ATCC cells resulted in overexpression of these regions by DSMZ cells) or 

provided further insights into it (e.g. copy number of chromosomes 8 and 10 could be higher in 

ATCC and DSMZ cells, respectively). Finally, we collected the list of genes located in the HTCs 

(chr1:q24.3-q42.13, chr6:p25.3-p22.1, chr8, chr9:q12-q21.31, chr10, chr12:p13.33-p12.1, 

chr20:p13-p11.21 and chrX) and compared their expression using the GSEA tool (Figure 2.2A 
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(bottom panel), Figure S2.5 and Table S2.9). As controls, we examined various biological 

processes with the HALLMARK genes sets, which were constructed independently of gene 

chromosomal location [27] in contrast to our HTCs (Figure 2. 2B). This showed that every HTC 

gene set was significantly differentially expressed, in contrast with controls. Altogether, these 

results show that transcriptomic and phenotypic differences are closely linked to differential 

chromosomal aberrations between both cell lines. 

Finally, we tested whether inter-cell line divergences could impact the study of genes 

typically associated with AML. We extracted the full list of AML-related genes from the 

GeneCards database and queried each one of them in our list of DEGs. This showed that 378/2646 

AML-related genes were among the DEGs, 84 being either differentially expressed more than 8-

fold or among the top 300 genes of the list (Figure 2. 2C and Table S2.10). Among the four DEGs 

with the highest log2(FC) (>7) were LIN28B, MEIS1 and SPARC, whose leukemic function has 

been documented in THP-1 cells [28-30]. Importantly, MEIS1 is systematically overexpressed in 

AMLs harboring MLL fusions, where its expression is promoted by the fusion proteins and is 

implicated in leukemogenesis [31]. We therefore examined the expression of MLL fusion junction 

in both cell lines and found no difference of expression (Figure 2. 2D). GSEA of MLL fusion 

targets [32] were also not significant (Figure 2. 2E (top two panels)). However, a gene set of MLL 

fusion targets established based on THP-1 cells [28] was significantly overexpressed in ATCC 

cells, showing that results obtained by studies of MLL fusion in THP-1 could differ based on their 

biorepository of origin (Figure 2. 2E (bottom panel) and Table S2.11).  

In summary, we demonstrate that THP-1 cells obtained from two different well-established 

biorepositories are in fact THP-1 variants that have undergone genetic drift and present important 

molecular and phenotypic differences. We demonstrate that these alterations can have deleterious 
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effects on the reproducibility and conclusions of studies using this cell line as model. The genetic 

heterogeneity and the unstable nature of tumor samples and cell lines, and their influence on tumor 

evolution and phenotypic variability, have been well reported in the genetically unstable HeLa and 

MCF-7 cells [11, 12]. Specifically, MCF-7 cells from the same repository cultured simultaneously 

by two different labs quickly showed genetic differences and phenotypic variability [33]. In the 

present study, although THP-1 cells are considered as genetically stable, we found that freshly 

acquired cells from two different well-established cell banks (which are commonly assumed to 

provide rigorously identical cell lines across the world) are not the same entity due to genetic drift. 

This emphasizes the crucial necessity of clearly naming the source of each cell line used in research 

articles. Finally, our data also demonstrate that seemingly minor discrepancies in standard STR 

profiles (8 loci and amelogenin) should alert to the need of more in-depth evaluation because they 

may be the sign of extensive genetic drift with dramatic functional consequences. The primary 

purpose of STR testing in research was to evaluate cell line cross-contaminations. For this purpose, 

testing 8-16 STR loci is sufficient. However, this is much less effective for detection of the genetic 

drift in a given cell line. Increasing the number of STR loci tested (from 8-16 to 80-160 loci [34, 

35]) can substantially improve the accuracy of genetic drift (and LOH in particular) detection [8]. 

Evaluation of the functional importance of genetic drift may then be achieved by functional assays 

and RNA-sequencing.  
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2.9 Figures 

 

Figure 2.1 ATCC and DSMZ THP-1 cells show different cytogenetic aberrations and 

transcriptomic profiles 
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a. Top panel: LOH analysis by eSNP-karyotyping. Blue=homozygous and red=heterozygous 

SNPs. Bottom panel: Allelic ratio analysis (differences between ATCC and DSMZ cells are 

highlighted in light yellow). b. DAVID annotation of upregulated DEGs in DSMZ and ATCC 

cells. c. Top panel: Light microscopy images after 48h of seeding at identical cell densities. Bottom 

panel: MHC-I expression at RNA level from limma-voom analysis (left) and protein level by flow 

cytometry (right: total HLA-ABC molecule number assessed by bead-based assay). Statistical 

significance was determined using unpaired t-test. 
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Figure 2.2 Divergence in cytogenetic aberrations leads to major transcriptomic differences 

between ATCC and DSMZ cells 

a. Top panel: Integrative chromosome plots depicting log2(FC) of significant DEGs (light blue 

bars) at their gene start position (y-axis) and normalized average log2(FC) in RNA expression 

(black lines). HTCs are indicated in orange. Green bars represent LOH regions in indicated cells, 

while horizontal red and blue bars represent aneuploidy regions (eSNP-karyotyping data). Bottom 

panel: GSEA of genes located in the indicated HTCs. b. Normalized enrichment scores for 

hallmark gene sets evaluating enrichment of biological processes. c. Heatmap of AML-related 

genes among the DEGs. Genes are sorted by their log2FC. d. MLL-AF9 fusion junction expression 

in ATCC and DSMZ cells (count of fusion reads, normalized to the total number of reads); Rphm, 
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reads per hundred million. Statistical significance was determined using unpaired t-test; ns, non-

significant e. GSEA of gene sets associated with MLL fusion AML, established from studies using 

patient specimens (top two panels) or THP-1 cells (bottom panel); NES, normalized enrichment 

score; padj, false discovery rate adjusted p-value. 
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2.10 Supplementary Figures and Tables 

 

Figure S 2.1 Visualization of HLA-A locus following next generation sequencing 

 THP-1 DMSZ cells show heterozygous positions in almost all exons. On the contrary, loss of 

heterozygosity (LOH) of ATCC THP-1 cell line can be observed in almost all exons. 
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Figure S 2.2 Illustrative eSNP-karyotyping analysis of two normal healthy RNA-Seq samples 

available in our lab (medullary thymic epithelial cells, mTECs) obtained either from a male 

or female donor 

a. Allelic ratio plots show that a single copy of chromosome X results in the significant (p<0.01, 

black vertical bars) detection of chromosomal aberrations. b. the absence of heterozygous SNPs 

(red horizontal bars along chromosomes) confirms the presence of a single copy of chromosome 

X in male donor. 
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Figure S 2.3  

a. PCA (top panel) and volcano plots (bottom panel) depiction of transcriptomic 

data. Colored dots in volcano plot represent DEGs with fold change higher than 2 or lower than 

-2 and adjusted p-value < 0.01; PC, principal component. b. Mean fluorescence intensity (MFI) 

of HLA-A02 surface expression. Statistical significance was determined using unpaired t-test. 
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Figure S 2.4 Integrative plots of chromosomes not showed in figure 2 
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Figure S 2.5 GSEA of HTCs (from figure S4) not showed in figure 2 
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Table S 2.1 Short Tandem repeats (STR) profiling of ATCC and DSMZ cell lines, performed 

by ATCC 

 

 

Table S 2.2 THP-1 variants based on STR profiling data available from Cellosaurus database 

  

Locus Database profile: THP-1 Query profile: ATCC 
Query profile: 

DSMZ 

TH01 8 9.3 8 9.3 8 9.3 

D5S818 11 12 11 12 11 12 

D13S317 13   13   8 13 
D7S820 10   10   10   

D16S539 11 12 11 12 11 12 

CSF1PO 11 13 11 13 11 13 
Amelogenin X Y X Y X Y 

vWA 16   16   16 17 

TPOX 8 11 8 11 8 11 

Shared alleles between query and 
database:  15 15 

Total alleles in the database 
profile:  15 15 

Percent match:   100 100 

Cell line sources ATCC/DSMZ Additional details 

AddexBio ATCC   

CLS ATCC   

Cosmic-CLP ATCC   

ECACC ATCC   

KCLB ATCC   

PubMed=25877200 ATCC   

RCB DSMZ   

TKG DSMZ   

CCRID  unknown homozygous vWA 

JCRB unknown varied TH01 loci 

ICLC ATCC? no information of D13S317 loci 

PubMed=11416159 ATCC? no information of D13S317 loci 
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Table S 2.3 HLA typing of ATCC and DSMZ THP1 cells 

 

 

 

 

 

 

 

 

 

Due to size constraints, the following three tables are not presented in the document. The files are 

available as an Excel file online at https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.32967 

Table S 2.4  Differentially expressed genes between DSMZ and ATCC, related to figure 1 

Table S 2.5 GO term and KEGG pathway enrichment analysis of DEG, related to figure 1  

Table S 2.6 GO term and KEGG pathway enrichment analysis of DEG, related to figure 1 

Table S 2.7 Chromosomal positions of differential loss of heterozygozity (LOH).  

These regions were chosen either when heterozygous positions were absent while present in the 

other cell line or when the ratio of the number of heterozygous positions was higher than 10 

between both cell lines (indicated in notes column). 

  

ATCC THP-1 
 

DSMZ THP-1 

  Allele 1 Allele 2    Allele 1 Allele 2 

HLA- A 02:01:01G    HLA- A 02:01:01G 24:02:01G 

HLA-B 15:11:01G    HLA-B 15:11:01G 35:01:01G 

HLA-C 03:03:01G    HLA-C 03:03:01G 03:03:01G 

DRB1 01:01:01G 15:01:01G  DRB1 01:01:01G 15:01:01G 

DQB1 05:01:01G 06:02:01G  DQB1 05:01:01G 06:02:01G 

DPB1 02:01:02G 04:02:01G  DPB1 02:01:02G 04:02:01G 

Chromosome 
Region 

Cell line with LOH notes 
start end 

6 0 29829643 ATCC   

10 0 39800000 ATCC   

12 0 21516950 ATCC 4 hetero in ATCC and 78 in DSMZ 

13 22600000 114364328 ATCC   

20 0 23364952 ATCC 3 hetero in ATCC and 63 in DSMZ 
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Table S 2.8 Regions with aberrant allelic ratio (p<0.01 in table2 output of eSNP-

Karyotyping) 

Chromosome 
ATCC DSMZ 

start end start end 

1 0 212285673 0 222479373 

2     25233798 86022839 

3     195952600 195984145 

6 31888435 166326158 11579297 26878743 

6     31781043 160040705 

7 73096012 77024584     

7 100118557 101092793     

8 11849072 18056608 23566245 91068347 

8 23260791 145055585 97727075 145055987 

9 0 137611586 38549464 137582088 

10 0 133797422 0 133797422 

11 0 216290 0 18484005 

11 120217578 134247121 43853198 76926636 

11     105025886 134152192 

12 0 1955534 102337750 131938173 

15 28717938 35939697 28820037 31377308 

16 15131600 19702997 16379153 21979439 

17     45507108 46555327 

18 74510926 78139949     

19 0 620392 58417419 58549990 

20     5497596 6000572 

X 2906947 79362608 2488411 77682737 

 

Due to size constraints, the following three tables are not presented in the document. The files are 

available as an Excel file online at https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.32967 

Table S 2.9 . Positional gene sets used for GSEA analysis, related to figure 2 

Table S 2.10 List of AML-related genes retrieved from GeneCards database 

(https://www.genecards.org) 

Table S 2.11 MLL-AF9 target genes described in THP-1 cells by Prange KHM et al. 

Oncogene 2017. 8;36(23):3346-3356 [Table S4] 
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3.2 Abstract 

The hypomethylating agent 5-azacytidine (AZA) is the first-line induction therapy for 

acute myeloid leukemia (AML) patients unsuitable for intensive chemotherapy. Evidence suggests 

that the anti-tumor effect of AZA results partly from T-cell cytotoxic responses against MHC-I-

associated peptides (MAPs) whose expression is induced by hypomethylation. We analyzed the 

impact of AZA on the transcriptome and MAP repertoire of four AML cell lines and validated 

salient findings in the transcriptome of 437 primary AML samples. We demonstrate that AZA 

caused pleiotropic changes in AML cells via perturbation of transcription, translation, and protein 

degradation. Overall, 1,364 MAPs were upregulated in AZA-treated cells, including several 

cancer-testis antigens. Increased MAP abundance was due to the upregulation of corresponding 

transcripts in a minority of cases and post-translational events in most cases. Furthermore, AZA-

induced hypomethylation increased the abundance of numerous transcripts, of which 38% were 

endogenous retroelements (EREs). Upregulated ERE transcripts triggered innate immune 

responses but were degraded by autophagy and not processed into MAPs. Autophagy resulted from 

the formation of protein aggregates caused by AZA-dependent inhibition of DNMT2, a tRNA-

methyl transferase enzyme. We found that autophagy inhibition had a synergistic effect with AZA 

on AML cell proliferation and survival, increased ERE levels and triggered pro-inflammatory 

responses. Finally, autophagy gene signatures were associated with a lower abundance of CD8+ 

T-cell markers in AML patients expressing high levels of EREs. Altogether, this work 

demonstrates that the impact of AZA is regulated at several levels and provides a rationale for 

assessing the synergy between AZA and autophagy inhibitors in AML treatment. 
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3.3 Introduction 

 Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with an 

overall 5-year survival below 30%. Standard therapy involves intensive chemotherapy with a ‘7+3’ 

regimen of cytarabine and anthracycline. Although AML is a  heterogeneous disease, aberrant 

genomic methylation (hypermethylation in particular [1, 2]) is a hallmark of AML blasts. 

Therefore, hypomethylating agents (HMAs) such as 5-azacytidine (azacitidine, AZA) and 5-aza-

2′-deoxycytidine (decitabine, DAC) are used as first-line induction therapy for AML patients 

unsuitable for intensive chemotherapy [3]. AZA is also used in maintenance therapy for fit patients 

without an FLT3 mutation [3]. However, only 18–47% of patients respond to these therapies, 

stressing the need to improve therapy efficacy, possibly by combining them with other 

pharmacologic agents [4, 5].  

AZA and DAC are cytidine nucleoside analogs that incorporate into genomic DNA during 

replication in the prophase of mitosis [6]. High concentrations of AZA and DAC exert cytotoxic 

effects by inducing DNA double-strand breaks. However, at low concentrations, they act as suicide 

substrates for DNA methyltransferases (DNMTs) 1 and 3, leading to their degradation and the 

DNA demethylation of daughter cells. AZA differs from DAC by its ability to incorporate into 

RNA and DNA, thus inhibiting DNMT2, a transfer RNA (tRNA) methyltransferase [7]. While 

both HMAs have similar response rates in AML [8], only AZA significantly improves overall 

survival compared with conventional care regimens in phase III randomized trials [9, 10]. 

Therefore, AZA is currently FDA-approved as a first-line treatment in AML [11].  

In addition to their cytotoxic and demethylating effects, HMAs may mediate anti-leukemic 

activities by promoting effector immune cells to recognize malignant blasts. Specifically, HMAs 

enhance the expression of transcripts coding for cancer-testis antigens (CTAs) [12, 13]. CTA genes 
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are normally silenced by genomic methylation and code for antigens deemed immunogenic 

because they are not expressed in normal MHC-positive somatic cells [14]. Accordingly, some 

studies have shown that HMAs promote cytotoxic T-cell (CTL) activity [15], while others 

demonstrate a specific cytotoxic activity against CTAs [13, 16, 17]. These studies suggest that 

HMA-induced CTAs can promote anti-leukemic CD8 T-cell reactions by generating immunogenic 

MHC-I-associated peptides (MAPs).  

Along with CTAs, HMAs promote the expression of endogenous retroelements (EREs) 

[18, 19]. EREs are highly repetitive sequences that are remnants of transposable elements 

incorporated into the human genome millions of years ago [20]. EREs represent ~45% of the 

human genome and can be separated into LINEs and SINEs (long and short interspersed elements, 

respectively) and LTRs (long terminal repeats), the latter of which includes endogenous 

retroviruses (ERVs). EREs are epigenetically silenced mainly by genomic methylation in normal 

somatic cells [21] and dysregulated ERE expression is associated with several pathologic 

conditions, including autoimmunity, inflammatory disorders, aging, and cancer [22]. HMA-

induced ERE overexpression in solid cancers leads to viral mimicry and concomitant innate 

immune response [23, 24]. Moreover, we and others have demonstrated that in addition to being 

expressed, EREs are capable of being presented by MHC-I molecules and serve as immunogenic 

tumor antigens, notably in AML [25-28]. While EREs are perfect candidates for generating 

immunogenic MAPs following HMA treatment, there is a lack of robust evidence to support that 

HMAs enhance their MAP presentation (and subsequent CTL responses) in AML.  

T cells recognize MAPs, not transcripts. Hence, available transcriptomic studies do not 

allow inferences on the MAP repertoire of AZA-treated cells. Herein, we sought to directly 

evaluate AZA’s capacity to enhance the presentation of CTAs and ERE-derived MAPs in AML. 
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We discovered that AZA promotes the expression of multiple CTA-derived, but not ERE-derived 

MAPs. Mechanistically, we propose that the lack of ERE-derived MAPs is due to AZA-induced 

autophagy of ERE transcripts.   

3.4 Materials and methods 

Cell culture 

THP-1, OCI-AML-3, MOLM-13, and SKM-1 cell lines were freshly purchased from the Deutsche 

Sammlung von Mikroorganismen und Zellkulturen (DSMZ) for the current study. THP-1, 

MOLM-13, and SKM-1 cells were maintained in RPMI 1640 (Gibco, NY-US, 11875-093) 

containing L-glutamine and supplemented with 10% heat-inactivated fetal bovine serum (FBS, 

Gibco 12483) and 1% penicillin-streptomycin (10,000 U/mL, Gibco 15140-122). OCI-AML-3 

cells were maintained in MEM alpha (Gibco, NY-US, 12571063) containing L-glutamine and 

nucleotides supplemented with 10% heat-inactivated fetal bovine serum (FBS, Gibco 12483) and 

1% penicillin-streptomycin (10,000 U/mL, Gibco 15140-122). 

Cell line treatments 

For AZA treatments, cell lines were treated daily with 0.25 μM or 0.5 μM of AZA (Sigma Aldrich 

A2385) for 72h, followed by removal of the drug (replacement of the medium) at time points as 

indicated in the results section. For spautin-1 dose responses, cell lines were treated with spautin-

1 (Millipore Sigma SML0440) or 0.1% DMSO control for four days, and spautin-1 or DMSO was 

replenished when fresh media was added. For co-treatment experiments with AZA and spautin-1 

or rapamycin (kind gift from Guy Sauvageau’s lab), cell lines were treated for four days with either 

spautin-1 (5 μM), rapamycin (0.5 μM), or 0.1% DMSO in presence of 0.5 μM of AZA. AZA was 

added daily for 72h, followed by discontinuation for 24h. Levels of genomic 5-methylcytosine 
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after AZA treatment were measured by ELISA with the MethylFlash Global DNA Methylation 

Kit (Epigentex, P-1030). 

Flow cytometry 

Cells (~1×105 cells/sample) were collected and washed 1X with PBS (Sigma P3813) before 

fixation/permeabilization with either the FOXP3/Transcription Factor Staining Buffer Set 

(eBioscience) and staining with anti-DNMT1-PE (EPR3522, Abcam) or the Fix Buffer I (Becton 

Dickinson, BD) followed by Phosflow Perm Buffer III (BD) and staining with anti-H2γX-AF647 

(pS139, BD). All staining steps were performed at 4ºC for 30 min in the dark, and cells were pre-

incubated with Fc receptor blocking antibody (BD Pharmingen 552930) for 10 min before 

incubation with antibodies of interest. Data were acquired on a FACS Canto II (BD). 

For protein aggregate detection, 1×105 cells/sample were washed 3X with PBS and then 

fixed/permeabilized with the Cytofix/Cytoperm kit (BD) according to the manufacturer’s 

instructions. Cells were then washed 3X with PBS and resuspended in 250 μL of assay buffer 

(ENZO #51035) supplemented with Proteostat Aggresome detection dye (ENZO #51035) diluted 

1:10,000. Cells were analyzed with a FACS Canto II (BD) after 30 min of staining without 

additional washes.  

 Autophagy activity was measured using an autophagy assay kit (Abcam, ab139484) 

according to the manufacturer’s protocol. In brief, cells (~2×105/sample) were cultured for 24h in 

various concentrations of AZA, DAC, or rapamycin in the presence of 120 μM of chloroquine (to 

accumulate autophagic granules and enable their detection). Cells were collected by centrifugation 

and washed with assay buffer before being resuspended in 250 μL of culture medium containing 

5% FBS and mixed with 250 μL of diluted green staining solution. Cells were incubated for 30 
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min at 37ºC in the dark and washed with assay buffer. Relative autophagy activities were measured 

using a Cytoflex flow cytometer (Beckman Coulter). 

Immunoproteasome activity 

Immunoproteasome activity was assessed on THP-1 or OCI-AML-3 cells (~5×105 cells/sample) 

lysed in 1 mL of lysis buffer (50 mM Tris-HCl, 2 mM DTT, 5 mM MgCl2, 10% (v/v) glycerol, 2 

mM ATP, and 0.05% (v/v) digitonin). The assay was performed immediately after lysis with the 

Immunoproteasome Activity Fluorometric Assay Kit I (Ubiquitin-Proteasome Biotechnologies, 

TX-US, J4160) according to the manufacturer’s instructions. Fluorescence was detected using the 

TriStar² LB 942 microplate reader (Berthold Technologies GmbH & Co.KG).  

Real-time PCR 

Quantitative real-time PCR was performed for candidate ERE and dsRNA-induced interferon 

genes using validated Universal ProbeLibrary assays (Roche) on the Viia7 Real-time PCR system 

(Applied Biosystems). Relative target mRNA levels were normalized to GAPDH and ACTIN and 

analyzed using Expression Suite software v1.1 (ThermoFisher). 

Immunofluorescence experiments 

THP-1 cells were attached on chambered slides (iBidi 80826) with poly-L-lysine and fixed using 

ice-cold methanol for 15 min at ‐20ºC, washed three times with PBS, and incubated with saturation 

buffer (5% BSA-PBS) for 1h. Primary antibody was added (1:200, anti-dsRNA, clone J2, 

SCICONS) and incubated overnight at 4ºC. Cells were washed three times for 15 minutes with 

PBS on a shaker, followed by incubation with secondary antibodies (1:2000 goat anti‐mouse IgG 

AlexaFluor 594 Invitrogen A-11020) at room temperature for 1h and washed three times for 10 

minutes with PBS. Next, cells were incubated with DAPI containing PBS, and slides were stored 
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at 4ºC in the dark for at least three days before confocal analyses. Confocal analyses were 

performed with a Zeiss LSM700 confocal microscope, and images were quantified using EBImage 

package on R. Transfected cell lines with Poly(I:C) were used as positive controls. No unspecific 

staining was observed with secondary antibodies alone. 

Library preparation and RNA sequencing 

Total RNA was isolated using TRIzol (Thermo Scientific) followed by RNeasy purification 

(Qiagen). RNA was quantified using Qubit (Thermo Scientific), and quality was assessed with the 

2100 Bioanalyzer (Agilent Technologies). Transcriptome libraries were generated using the 

KAPA RNA HyperPrep (Roche) using a poly-A selection (Thermo Scientific). Sequencing was 

performed on the Illumina NextSeq500, obtaining around 120M paired-end reads per sample (60M 

clusters) for AZA vs. control in AML cell lines and 30M single-end reads per sample for spautin-

1+AZA validation RNA-seq experiment. 

Gene expression analyses 

All transcript expression (canonical genes and EREs) quantifications were performed with kallisto 

v0.43.0 [29] with default parameters. Kallisto’s transcript-level count estimates were converted 

into gene-level counts using the R package tximport. EdgeR was used to normalize counts using 

the TMM algorithm and output count-per-million (cpm) values. Differential gene expression 

analyses were conducted in R3.6.1, as reported previously [30]. In brief, raw read counts were 

converted to cpm, normalized relative to library size, and lowly expressed genes were filtered by 

keeping genes with cpm >1 in at least two samples using edgeR 3.26.8 [31] and limma 3.40.6 [32]. 

Subsequently, voom transformations and linear modeling using limma’s lmfit were performed. 

Moderated t-statistics were then computed with eBayes. Genes with false-discovery rates ≤0.05 
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and -1≥log2(FC)≥1 were considered significantly differentially expressed. For differential gene 

expression analyses performed on AZA-treated cell lines, a unique paired analysis comparing 

AZA-treated vs. control cells was performed.  

Gene ontology and biological pathway annotations were performed with DAVID v6.8 

(https://david.ncifcrf.gov). Functional annotations with a p-value <0.05 were considered 

significant. Gene set enrichment analysis (GSEA) was performed with the fgsea package in R [33]. 

A pre-ranked gene list was generated by ranking expressed genes obtained from limma-voom on 

moderated t-statistics. Gene sets were obtained either from the HALLMARK or REACTOME 

matrix, downloaded from the MSigDB database. The enrichment analysis for REACTOME gene 

sets among genes significantly upregulated in the AZA+Spautin-1 vs. AZA-only cells was 

performed with the Reactome FI module in Cytoscape v3.7.2 [34].  

Database generation for mass spectrometry identifications 

To build databases to analyse MAPs originating from any region of the genome (annotated protein-

coding exons, introns, EREs, ncRNAs, intergenic regions, etc.) and including MAPs deriving from 

mutations present in the genome of the analyzed cell line, we adopted an alignment-free 

proteogenomic approach. We built two personalized, non-overlapping proteomes, canonical and 

non-canonical, and concatenated them to perform MS identifications. All scripts and usage 

instructions for the pipeline can be found on Zenodo (doi 10.5281/zenodo.7096388). 

Personalized canonical proteomes 

RNA-Seq reads were trimmed using Trimmomatic v0.35 and aligned to GRCh38.88 using STAR 

v2.5.1b [35] running with default parameters except for --alignSJoverhangMin, --

alignMatesGapMax, --alignIntronMax, --quantMode and --alignSJstitchMismatchNmax 
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parameters for which default values were replaced by 10, 200,000, 200,000, TranscriptomeSAM 

and “5 -1 5 5”, respectively, to generate bam files. Single-base mutations with a minimum alternate 

count setting of 5 were identified using freeBayes 1.0.2-16-gd466dde [36]. Transcript expression 

was quantified in transcripts per million (tpm) with kallisto v0.43.0 with default parameters. 

Finally, we used pyGeno [37] to insert high-quality sample-specific single-base mutations 

(freeBayes quality >20) into the reference exome and export sample-specific sequences of known 

proteins generated by expressed transcripts (tpm >0) to generate fasta files of personalized 

canonical proteomes.  

Personalized non-canonical proteomes 

Step 1. We built consensus genomes and transcriptomes (including only genomic regions covered 

by RNA-seq reads and single-nucleotide polymorphisms as ambiguous nucleotides) from STAR-

generated bam files of each sample (per replicate per cell line). This was performed with the 

reference genome and transcriptome as input of the samtools [38] and bcftools suites [39]: 

'samtools mpileup -C50 -uf reference.fasta sample.bam | bcftools call -c | vcfutils.pl vcf2fq | gzip 

>> consensus.fastq.gz'. The consensus genomes and transcriptomes were then chopped into k-mers 

(of 24, 27, 30, or 33 nucleotide lengths, corresponding to the length of MAPs: 8–11 amino acids) 

with a homemade python script, and k-mers containing consensus nucleotides 

(R|Y|M|K|W|S|B|D|H|V|N) were disambiguated (A|T|C|G) using a homemade python script. These 

k-mers were then reverse-complemented, and all k-mers (non-ambiguous and disambiguated, 

originals and reverse-complemented) were assembled in a single database generated with Jellyfish 

v2.2.3 [40].  

Step 2. The fastq files of each sample (per replicate per cell line) were used to generate k-

mer libraries of either 24, 27, 30, or 33 nucleotides in length containing k-mers present at least 
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twice per sample. This was performed with Jellyfish: 'jellyfish count -L 2 -m <length>  -F 2 -s 1G 

-o sample.jf' on trimmed forward and reverse-complemented (with the fastx_reverse_complement 

function of the FASTX-Toolkit v0.0.14) reverse fastq files. Next, the k-mer databases were 

combined into single databases per cell line (four databases were obtained eventually, one per 

MAP length) by keeping only those k-mers with three occurrences in three different samples (out 

of six samples: three controls and three AZA-treated). This was performed with a script 

('joinCounts') obtained from the DE-kupl pipeline [41]: 'joinCounts -r 3 -a 3 <fastq files>'. This 

allowed us to retain k-mers that most likely generate MAPs (since high RNA expression is a robust 

predictor of MAP generation [28, 42]).  

Step 3. The k-mers generated in step 2 were queried in the k-mer databases generated in 

step 1. This allowed us to discard consensus artifacts such as exon-intron junctions, wrong SNP 

calling, false intron coverage and to filter k-mers on their minimum occurrence and inter-sample 

sharing. The query was performed with the 'jellyfish query -i' command.  

Step 4. The personalized canonical proteomes were chopped into peptide k-mers (8, 9, 10, 

or 11 amino acids) using a homemade python script.  

Step 5. The resulting k-mers from step 3 were translated into their peptide sequence with a 

homemade python script. Peptide k-mers containing stops were removed (with awk), and peptide 

k-mers generated in step 4 were removed from this list to prevent overlaps between the canonical 

and non-canonical proteome.  

Step 6. The non-canonical peptides were tested for their capacity to bind HLA alleles of 

their respective cell line (determined with Optitype [43]) with either MHC flurry 1.4.0 [44] or 

netMHCpan 4.0 [45] for alleles not supported by MHC flurry. Predictions were made with the 
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epitopepredict module [46] to handle MHC flurry and NetMHCpan. Peptides with a percentile 

rank ≤2% were kept for further processing. 

Step 7. Since leucine and isoleucine variants are not distinguishable by standard MS 

approaches, we inspected the list of non-canonical peptides and discarded those for which an 

existing variant (MHC binder as well) was flagged as canonical. Next, short peptides with 

sequences completely included in the sequence of longer peptides were discarded (awk) from the 

list, and peptide sequences were used to generate a fasta file, eventually concatenated with the 

personalized canonical proteome to generate the final MS databases.  

MHC-I peptide isolation by immunoprecipitation 

W6/32 antibodies (BioXcell) were incubated in PBS for 60 min at room temperature with 

PureProteome protein A magnetic beads (Millipore) at a ratio of 1 mg of antibody per 1 mL of 

slurry. Antibodies were covalently cross-linked to magnetic beads using dimethylpimelidate as 

described [47]. The beads were stored at 4ºC in PBS (pH 7.2) and 0.02% NaN3. Frozen cell pellets 

(118–135×106 cells/pellet) were thawed and resuspended in 0.4 mL PBS (pH 7.2) and solubilized 

with 1 mL of detergent buffer containing PBS (pH 7.2) and 1% (w/v) CHAPS (Sigma) 

supplemented with a protease inhibitor cocktail (Sigma). Cell pellets were incubated for 60 min 

with tumbling at 4ºC and then spun at 16,600g for 20 min at 4ºC. Supernatants were transferred 

into new tubes containing 1 mg of W6/32 antibody covalently-cross-linked protein A magnetic 

beads per sample and incubated with tumbling for 20h at 4ºC. Samples were placed on a magnet 

to recover bound MHC-I complexes to magnetic beads. Magnetic beads were first washed with 8× 

1 mL PBS, then with 1× 1 mL of 0.1X PBS, and finally with 1× 1 mL of H2O. MHC-I complexes 

were eluted from the magnetic beads by acidic treatment using 0.2% formic acid (FA). To remove 

residual magnetic beads, eluates were transferred into 2.0 mL Costar mL Spin-X centrifuge tube 
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filters (0.45 mm, Corning) and spun for 5 minutes at 855g. Filtrates containing peptides were 

separated from MHC-I subunits (HLA molecules and -2 macroglobulin) using homemade stage 

tips packed with two 1 mm diameter octadecyl (C-18) solid phase extraction disks (EMPORE). 

Stage tips were pre-washed with methanol, then with 80% acetonitrile (ACN) in 0.1% 

trifluoroacetic acid (TFA), followed by 0.1% TFA, and finally with 1% TFA. Samples were loaded 

onto stage tips and washed with 1% TFA, followed by 0.1% TFA. Peptides were eluted with 30% 

ACN in 0.1% TFA, dried using vacuum centrifugation, and then stored at -20ºC until MS analysis.  

TMT labeling 

MHC-I peptide extracts were reconstituted in 200 μL of 200 mM HEPES buffer (pH 8.2). TMT0-

126 reagents or TMT6-plex (Thermo Fisher Scientific) were dissolved in 40 μL of anhydrous ACN 

(Sigma-Aldrich), and 5 μL of 0.02 mg/ μL was added to the peptides. The solutions were gently 

mixed and incubated for 90 min without agitation at room temperature before the reactions were 

quenched by hydroxylamine (Thermo Fisher Scientific). Samples were desalted on homemade 

C18 stage tips and dried down.  

Mass spectrometry analyses 

Dried peptide extracts were resuspended in 4% FA (EMD Millipore) and loaded on a custom C18 

analytical column (20 cm × 150 mm i.d. packed with C18 Jupiter Phenomenex) with a 106-min 

gradient from 0% to 30% ACN (0.2% FA) and a 600 nL/min flow rate on an EasynLC II system. 

Samples were analyzed with an Exploris mass spectrometer (Thermo Fisher Scientific) in positive 

ion mode with the source at 2.8 kV. Each full MS spectrum, acquired with 240,000 resolution, was 

followed by MS/MS spectra, where the most abundant multiply charged ions were selected for 
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MS/MS sequencing with a resolution of 30,000, 100% normalized automatic gain control, 

injection time of 700 ms, and collisional energy of 36%. 

Identification of MAPs and differential MAP analyses 

Liquid chromatography (LC)-MS/MS (LC-MS/MS) data were searched against respective cell 

line-specific databases using PeaksXPro. For peptide identification, no enzyme was selected, and 

tolerance was set at 10 ppm and 0.01 Da for precursor and fragment ions, respectively. The 

occurrences of oxidation (M) and deamidation (NQ) were set as variable modifications. Following 

peptide identification, we used a modified target decoy approach built-in PEAKS and applied a 

sample-specific threshold on the PEAKS score to ensure a false discovery rate of 5%, calculated 

as the ratio between the number of decoy hits and the number of target hits above the score 

threshold. Binding affinities to the sample’s HLA alleles were predicted with NetMHCpan 4.1b 

[48], and only 8 to 11-amino-acid-long peptides with a rank eluted ligand threshold ≤ 2% were 

used for further annotation; these filtering steps were performed with MAPDP software [49]. 

Intensities of all modifications for a single peptide were summed, and peptides containing too 

many missing values were eliminated by keeping peptides quantified in two out of three replicates 

of at least one condition. Next, VSN normalization was performed, which was the best available 

normalization method based on analyses with NormalyzerDE [50]. Imputation for missing values 

was performed by Perseus with width of 0.3 and downshift of 1, and MAPs with p-values <0.05 

and fold-changes (FC)>2 were considered significantly differentially expressed using limma 

analysis. MAPs exclusively detected in one condition were defined by having valid values from 

all three biological replicates in one condition while no values in the other condition. 
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Biotype attribution to identified MAPs 

BamQuery [51] was used to annotate if MAPs derived from protein-coding, EREs, or other non-

coding regions. CTAs were annotated using [52]. 

Bioinformatic analyses performed on MAPs 

Amino acid compositions, aromaticity, and GRAVY indexes were assessed with the ProtParam 

module of Biopython. The RNA expression of each MAP was obtained using BamQuery [51]. 

Quantification and statistical analysis 

Unless indicated otherwise, all statistical tests comparing two conditions were performed using the 

Mann–Whitney U test. All correlations were assessed with the Pearson correlation coefficient. 

Unless mentioned otherwise, all boxes in boxplots represent the median, 25th, and 75th percentiles, 

and whiskers extend to the 10th and 90th percentiles. Unless mentioned otherwise, all bar plots 

represent the average with standard deviation (SD). Plots and statistical tests were mainly 

performed with GraphPad Prism v9.1.1. For all statistical tests, **** refers to p< 0.0001, *** refers 

to p< 0.001, ** refers to p< 0.01, and * refers to p< 0.05. 

  



 117 

3.5 Results 

3.5.1 Low-dose AZA leads to delayed, transient ERE expression in AML cell lines.  

  To investigate the effects of AZA on the immunopeptidome of AML, we selected four 

AML cell lines (THP-1, MOLM-13, SKM-1, and OCI-AML-3) belonging to aggressive FAB types 

(M4/M5) and together covering different but frequent mutational statuses (MLL-AF9, FLT3-ITD, 

TET2 (L1418fs), and NPM1c+DNMT3A (R882C), respectively). As we wished for our 

immunopeptidomic analyses to reveal the effects of AZA independently of cytotoxic activity, we 

established a protocol that allowed DNMT1 degradation and genomic DNA demethylation without 

affecting viability or inducing DNA damage responses. The most desirable AZA doses were 0.25 

μM (for MOLM-13 and SKM-1) and 0.5 μM (for THP-1 and OCI-AML-3) as they sufficiently 

reduced cell growth, genome methylation, and DNMT1 expression without inducing cytotoxic 

effects (Figure 3.1A, Figure S3.1).  

Since previous studies in ovarian and colorectal cancer demonstrated that AZA leads to 

delayed ERE expression [23, 24], we sought to identify the time point post-AZA discontinuation 

with the highest ERE expression. Using THP-1 as a model, we performed RNA sequencing (RNA-

seq) every 48h from day 3 to 11 post-AZA discontinuation. We then quantified the expression of 

multiple ERE transcripts upregulated by AZA [24]. We also assessed the expression of genes 

involved in dsRNA-induced interferon signaling in response to AZA-induced ERE expression [23] 

and observed that, together with ERE transcripts, they reached maximum expression around day 

5 (72h after the last AZA treatment; Figure 3.1B). qPCR analyses further validated that the effect 

of AZA on ERE and dsRNA-induced immune response genes was maximal on day 4 (48h after 

the last AZA treatment; Figure S3.2). Thus, we treated the four AML cell lines with these optimal 
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AZA doses, administered three times at 24h intervals (0h, 24h, and 48h), and harvested the cells 

on day 4 to perform RNA-seq and mass spectrometry (MS) analyses.  

3.5.2 Proteogenomic characterization of the immunopeptidome 

 We have previously demonstrated that a significant fraction of the AML 

immunopeptidome derives from non-exonic genomic regions such as introns, EREs, or intergenic 

regions [28]. Typically, MS search engines rely on reference protein databases (such as Uniprot) 

to match individual acquired MS/MS spectra to a peptide sequence. However, these databases do 

not contain non-exonic sequences, and building a personalized database containing all genomic 

sequences would generate an unmanageable database for search engines. We, therefore, used a 

proteogenomic approach to create MS databases containing only MAP sequences corresponding 

to the RNA transcripts expressed by our cell lines. These customized cell-line-specific MS 

databases had manageable sizes for the PEAKS search engine (Figure 3.2A and Figure S3.3).  

Precisely, the RNA-seq reads were first chopped into shorter sequences (k-mers, of 24–33 

nucleotides) corresponding to the different possible MAP lengths (8–11 residues). These k-mers 

were then filtered based on inter-sample sharing and abundance since abundant transcripts have 

higher chances of generating MAPs [28, 42] . K-mers possibly deriving from sequencing artifacts 

or lowly abundant polymorphisms were removed. The resulting k-mers were then in silico 

translated into peptide sequences, and those present in the canonical proteome were discarded. 

Finally, peptides were evaluated for their predicted capacity to bind MHC-I allotypes of their 

respective cell line, and binders were concatenated with the canonical proteome to generate MS 

databases ranging between 250 and 350 Mb (sizes tolerated by MS search engines [28]).  
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In parallel to MS, we performed a differential expression analysis of annotated protein-

coding genes and ~4.2×106 ERE regions reported in the Repeatmasker annotations [53]. 

Differential abundance analyses were also performed on MS data to correlate transcript expression 

and MAP presentation. These analyses revealed that the number of elements differentially 

expressed by AZA-treated cells varied across cell lines, with THP-1 being the most sensitive 

(Figure 3.2B, Table S3.1). Overall, the proportion of differentially expressed MAPs (DEMs) was 

five times greater than that of differentially expressed transcripts (DEGs): 6–23% vs. 1.9–4.69%, 

respectively. Notably, the number of DEMs per cell line correlated almost perfectly with the 

number of DEGs rather than the total number of MAPs per cell line, suggesting that transcriptomic 

alterations were reflected in the immunopeptidome (Figure 3.2C). However, the directionality of 

differential expression differed for MAPs and transcripts. While most DEGs (>70%) were 

upregulated by AZA, this was not the case for DEMs (Figures 3.2D-E, Table S3.2). This means 

that as with other drugs [54], changes in the immunopeptidome post-AZA treatment result from 

differential mRNA expression and post-translational events.  

3.5.3 AZA-induced EREs do not generate MAPs but trigger innate immune 

responses  

 Next, we focused on variations in CTA and ERE expressions at the mRNA and MAP 

levels. As expected, we observed a striking upregulation of ERE transcripts, representing ~38% of 

upregulated DEGs (Figure 3.2 F-G, Table S3.3). In contrast, EREs represented only 0.22% of 

upregulated DEMs, meaning that AZA-induced ERE transcripts were not processed adequately 

for MHC-I presentation. Due to the delay between AZA treatment and ERE induction (Figure 

3.1B), we repeated our immunopeptidomic analyses at a later time point (day 7) on THP-1 (the 

cell line with the highest AZA-induced EREs) and did not observe higher ERE MAP presentation 
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(Figure S3.4). In contrast with EREs, we observed lower discrepancies in proportions of CTA-

derived elements among upregulated DEGs and DEMs, and they were still observed on day 7. 

Among the upregulated DEMs, 152 (~10%) were AZA-specific (i.e., presented by all three AZA-

treated replicates but undetected in control cells; Figure S3.5A). MAPs induced de novo by AZA 

contained CTAs but not ERE MAPs (Figure S3.5B). We conclude that at the immunopeptidomic 

level, AZA upregulates the expression of CTA MAPs (some of which are AZA-specific) but not 

ERE MAPs. The latter point was striking, considering the dramatic upregulation of ERE DEGs 

(38% of all DEGs) following AZA treatment.  

 Because EREs are remnants of ancient viruses, they can induce innate immune responses 

triggered by double-stranded RNA (dsRNA). Accordingly, we investigated whether AZA-induced 

EREs would trigger such responses. Gene ontology (GO) analysis performed on upregulated DEGs 

revealed that multiple innate immune responses and inflammatory responses were triggered in 

AZA-treated cells (Figure 3.2H). Specifically, we observed that OAS1, OAS2, OAS3, GBP1, and 

RIG-I – five genes instrumental in anti-dsRNA responses – were expressed at higher levels in 

AZA-treated cells than in controls (Figure 3.2I). Accordingly, using microscopy, we observed 

greater amounts of dsRNA in AZA-treated cells than in controls (Figure 3.2J). These data suggest 

that the dramatic upregulation of ERE transcripts induced by AZA leads to dsRNA formation, 

thereby triggering innate anti-viral immune responses.  

3.5.4 AZA-induced EREs correlate with innate immune responses in primary AML  

In cancer cells, innate immune responses benefit the host because they can initiate cancer 

cell apoptosis and increase their adjuvanticity [55]. We, therefore, asked two questions: i) what is 

the profile of EREs induced by AZA, and ii) can this profile be detected in primary AML samples? 

We first noted that ERE induction by AZA in AML cell lines was not random. Using ERE 
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distribution in the genome as a reference, we observed that AZA selectively upregulated two 

classes of EREs: LINEs and LTRs (Figure 3.3A). The fact that repression of SINEs depends 

mainly on histone methylation rather than DNA methylation [56] can explain why AZA did not 

induce SINE expression.  

Using the previously published RNA-seq data of the Leucegene cohort (primary AML 

samples from 437 patients), we quantified the expression of the 506 ERE transcripts significantly 

upregulated by AZA in our AML cell lines. Patients were segregated based on their cumulative 

expression of these EREs, and patients expressing above-median levels were compared with those 

expressing below-median levels. DEGs and GO analyses revealed that high levels of AZA-induced 

EREs were associated with upregulated defense responses against viruses (Figure 3.3B). 

Furthermore, ERE expression levels significantly correlated with the expression of two critical 

dsRNA response regulators: RIG-I and MDA5 (Figure 3.3C), supporting the notion that AZA-

induced EREs trigger innate immune responses in vitro and in vivo.  

To complement our previous analysis, we performed GO analyses on genes downregulated 

by AML patients expressing high levels of AZA-induced EREs. This showed that multiple 

pathways controlling proliferation were downregulated, suggesting that high ERE expression (and 

anti-dsRNA response) could impact the growth of AML blasts (Figure 3.3D). Unexpectedly, we 

also observed that many GO terms related to protein degradation/catabolism and autophagy were 

significantly downregulated in these patients. Since ERE RNAs can trigger autophagy [57] and be 

degraded by the autophagic process [58], we hypothesized that enhanced autophagy in low-ERE 

expressing blasts could protect them from the deleterious effects that EREs have on their 

proliferation. This idea was explored in-depth in our next series of experiments. 
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3.5.5 AZA molds the immunopeptidome and induces protein aggregation through 

DNMT2 inhibition 

We next sought to explore AZA-induced changes in the immunopeptidome for two 

reasons: First, because of the disconnect between the number of ERE DEGs and ERE DEMs 

(Figure 3.2F) and second, because our initial MAPs of interest (CTAs and EREs) represented only 

a fraction of AZA-induced MAPs (Figure 3.2F). To this end, we assessed the global impact of 

transcriptomic variations on the immunopeptidome using BamQuery, a computational tool that 

quantifies the RNA expression of any MAP of interest, including those derived from non-

annotated genomic regions [51]. Most AZA-altered DEMs displayed no change at the RNA level 

(Figure 3.4A). Nevertheless, among DEMs coded by DEGs, RNA upregulation strongly associated 

with convergent upregulation of the corresponding DEMs (Figure 3.4A). This was not the case for 

downregulated transcripts. Moreover, fold changes in RNAs generating upregulated DEMs were 

significantly higher than those in downregulated DEMs (Figure 3.4B). We conclude that transcript 

upregulation has a modest but genuine impact on the abundance of corresponding DEMs.  

We next focused on DEMs whose source RNA fold-change did not explain their 

immunopeptidomic fold-change (DEMs of Interest, DOIs). To gain insights into co- or post-

translational events conducing to immunopeptidomic alterations in AZA-treated cells, we started 

by analyzing the residue composition of DOIs. We found that upregulated DOIs contained more 

polar residues than downregulated DOIs (Figure 3.4C). Accordingly, these MAPs presented a 

lower overall hydrophobicity (Figure 3.4D). Hydrophobic residues are the preferential cleavage 

sites of proteasomes, particularly immunoproteasomes [59]. MAP generation by constitutive 

proteasomes depends mainly on their tryptic and chymotryptic-like activities, and chymotryptic-

like activity is further amplified in immunoproteasomes [60, 61]. Hence, we assessed how protease 
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activity contributes to the immunopeptidome by examining the C-terminal residue of each DOI 

and observed that upregulated DOIs derived more frequently from tryptic cleavage than 

downregulated DOIs (Figure 3.4E). Accordingly, AZA treatment significantly reduced 

immunoproteasome activity (Figure 3.4F, Figure S3.6A). 

Typically, alterations in proteasomal activity are associated with disrupted protein 

homeostasis [62, 63]. To investigate whether alterations in protein homeostasis were responsible 

for perturbed proteasomal activity in AZA-treated cells, we examined the residue composition of 

proteins that generated DOIs. Assuming that proteins generating multiple DOIs were degraded 

more actively than those generating a single DOI, we correlated the number of generated DOIs for 

each protein with the frequency of each residue in the considered protein. This analysis showed 

that aspartic acid (Asp) and glycine (Gly) had the strongest positive correlation with the number 

of upregulated DOIs (Table S3.4). Interestingly, the tRNAs of Asp and Gly are stabilized by 

DNMT2, a tRNA-methyl transferase enzyme inhibited by AZA [64, 65]. A targeted analysis 

comparing the frequency of Asp, Gly, and valine (Val, the third amino acid whose tRNA is 

methylated by DNMT2) revealed that proteins generating more than three upregulated DOIs 

presented significantly higher cumulative frequencies of Asp, Gly, and Val than those generating 

less than three upregulated DOIs (Figure 3.4G). Demethylated tRNAs are susceptible to 

ribonuclease cleavage and fragmentation [66]. We, therefore, hypothesized that AZA-mediated 

DNMT2 inhibition results in an insufficiency of Asp, Gly, and Val tRNAs and leads to a decrease 

in protein synthesis, ribosomal stalling, and consequent protein aggregate generation during 

translation of proteins rich in the aforementioned residues. Accordingly, AZA-specific peptides 

(technically the most upregulated DOIs) were generated from proteins with a significantly lower 

proportion of aromatic residues, a feature often associated with less efficient protein folding 
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(Figure 3.4H) [67]. Finally, we experimentally quantified protein aggregates in AZA-treated cells 

and discovered that AZA induced protein aggregate accumulation in a dose-dependent manner 

(Figure 3.4I, Figure S3.6B). Importantly, DAC, a hypomethylating drug that does not inhibit 

DNMT2, did not induce the formation of protein aggregates.  

3.5.6 Autophagy degrades AZA-induced EREs 

Given the inverse correlation between autophagy-related GO terms and EREs in AML 

patients (Figure 3.3B) and the generation of protein aggregates by AZA (Figure 3.4I), we evaluated 

whether AZA induced autophagy. Twenty-four hours of treatment with AZA resulted in a dose-

dependent induction of autophagy (Figure 3.5A). Interestingly, this was not observed with DAC, 

suggesting that autophagy induction is dependent on protein aggregates generation resulting from 

DNMT2 inhibition. As EREs were previously suggested to trigger autophagy [57], we evaluated 

whether DAC induced the same EREs as AZA. Using data reported by Pappalardi et al. [68], we 

observed that DAC expressed AZA-induced EREs in a dose-dependent manner (Figure 3.5B). This 

suggests that the autophagy induced in AZA-treated (but not in DAC-treated) cells results from 

DNMT2 inhibition rather than ERE induction. Nevertheless, we observed an inverse correlation 

between EREs and two well-established autophagy markers, ATG3 and SQSTM1, which was 

already observed in AML patients at diagnosis (Figure 3.5C). The latter finding suggests that 

autophagy does not need to be induced by AZA to degrade EREs.  

 Next, we sought to verify this autophagy-dependent degradation of EREs. We treated THP-

1 cells for 72h with AZA alone or AZA combined with an autophagy inducer (rapamycin) or 

inhibitor (spautin-1). Ninety-six hours after the initiation of the treatment, the levels of dsRNAs 

were examined by fluorescence microscopy. As shown in Figure 3.5D, autophagy inhibition 

significantly increased the levels of dsRNAs compared to AZA alone, while autophagy activation 
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decreased them. Altogether, these results demonstrate that autophagy contributes to the 

degradation of EREs.  

3.5.7 Autophagy inhibition synergizes with AZA and could increase AML 

immunogenicity 

Finally, we examined whether inhibiting autophagy would augment the anti-AML effect 

of AZA. THP-1 and OCI-AML-3 cells were treated for 72h with AZA and/or spautin-1 (which 

inhibits autophagy and suppresses the unfolded protein response [69]), and their survival and cell 

counts were evaluated 24h after discontinuing treatment. A synergistic effect between AZA and 

spautin-1 was observed for proliferation and cell death (Figure 3.6A, Figure S3.7A). While 

spautin-1 alone reduced proliferation, it did not kill the cells (Figure S3.7B, C), suggesting that 

autophagy acts as a survival mechanism upon AZA treatment. 

Next, we investigated the molecular effects of autophagy inhibition combined with AZA. 

THP-1 cells treated with low AZA doses and/or IC50 concentrations of spautin-1 were analyzed 

by RNA-seq, and as expected, we observed that spautin-1 alone tended to increase the levels of all 

three ERE families (Figure 3.6B). Furthermore, ERE levels tended to be higher (except for LINEs) 

when spautin-1 was combined with AZA. In contrast, AZA-induced EREs in these cells were at 

the same levels as in control cells (Figure S3.8B), possibly due to the drastic inhibition of 

proliferation (Figure S3.8A) mediated by the combined treatment (AZA’s DNA demethylating 

activity relies on active cell division for AZA to integrate into genomic DNA). Nevertheless, a 

pathway enrichment analysis on genes significantly upregulated in AZA+Spautin-1 vs. AZA-

treated cells revealed the enrichment of multiple pathways related to antigen presentation, antiviral 

mechanisms, and noncanonical NF-κB signaling (Figure S3.8C). Targeted gene set enrichment 
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analysis (GSEA) analyses further validated the enrichment of these three processes (Figure 3.6C), 

supporting the rationale of inhibiting autophagy to improve AZA immune effects. 

Given that autophagy degrades EREs, we wondered if autophagy could prevent AML 

blasts from being recognized by CTLs. Therefore, we segregated the 437 Leucegene AML patients 

based on two parameters. The first parameter was the expression of CD8A and CD8B transcripts, 

a reliable marker of CTL abundance in RNA-seq datasets [70]. Second, the count of highly 

expressed AZA-induced EREs (HE-EREs), i.e., the number of EREs whose expression is above 

their median RNA expression across all patients having a non-null expression of the given ERE (a 

metric aimed at reflecting the density and diversity of epitopes possibly presented by leukemic 

blasts [28]) (Figure 3.6D). A GSEA comparing CD8high vs. CD8low patients within EREhigh and 

ERElow groups revealed that the presence of CTLs was associated with the same processes in 

EREhigh and ERElow patients, except for two gene sets related to DNA repair/proliferation, three 

related to metabolism, and two related to unfolded protein response and mTORC1 signaling 

(Figure 3.6E). As mTORC1 regulates autophagy, we performed additional GSEAs with four gene 

sets related to autophagy from the REACTOME database. We found that all four were inversely 

associated with the presence of CD8 T cells in EREhigh patients (two significantly), while the 

opposite was found for ERElow patients (Figure 3.6F). Altogether, these results further support that 

autophagy prevents the generation of ERE-derived MAPs, thereby precluding AML blasts from 

being recognized by CD8+ T cells. 
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3.6 Discussion 

Due to their dual capacity to trigger innate immune responses and generate highly 

immunogenic MAPs [53], EREs represent attractive targets for developing new 

immunotherapeutic avenues [25, 71, 72]. Although AZA has been proposed to promote anti-tumor 

CTL responses through the induction of CTA MAPs, the contribution of ERE MAPs to such 

responses remains elusive. Aiming to unravel this contribution, we performed a thorough 

proteogenomic investigation to uncover changes in the MAP repertoire after AZA treatment. As 

expected, we identified CTAs upregulated at the transcriptomic and immunopeptidomic levels. In 

contrast, ERE MAP abundance remained unchanged after AZA treatment in the four cell lines 

examined, suggesting that T-cell-mediated responses post-AZA treatment are more likely due to 

the recognition of CTA-derived MAPs than EREs. A recent report analyzing the CD8+ T-cell 

subsets targeting ERE-derived MAPs revealed no increase in ERE reactive T cells post-AZA 

treatment in myeloid hematological malignancies, further supporting our observations [73].  

The virtual absence of ERE MAP induction by AZA was paradoxical. Indeed, AZA 

strongly induced ERE transcripts (Figure 3.2F), and the processing of numerous EREs should 

generate MAPs [53]. In AML patients, the basal ERE expression was positively associated with 

the expression of molecules involved in dsRNA detection and anti-viral immune responses. In a 

previous report, high ERE expression in primary AML cells was associated with a favorable 

prognosis [74]. In addition, Ohtani et al. demonstrated that clinical responses to AZA in 

myelodysplastic syndrome and AML were associated with the expression of a specific class of 

EREs inducing innate immune responses [75]. Therefore, elevated ERE expression certainly exerts 

a beneficial effect on patients’ outcomes by inducing anti-dsRNA immune responses, and 

maximizing these responses should be pursued. 
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Notably, we observed that ERE levels (and associated innate immune responses) were 

inversely correlated to the expression of autophagy molecules in AML patients, and enhanced 

autophagy was found in our AZA-treated cells. Upon examination of the immunopeptidomic 

changes, we could attribute this latter observation to AZA's inhibition of DNMT2 activity. Indeed, 

previous studies have shown that tRNA methylation by DNMT2 is involved in Asp-tRNA codon 

fidelity, and its loss leads to the production of misfolded proteins [76]. DNMT2 inhibition is a 

property of AZA but not DAC. Accordingly, protein aggregation and concomitant autophagy 

responses were observed in AZA- but not DAC-treated AML cells. Autophagy is increasingly 

implicated in resistance to anti-cancer therapies, including resistance to AZA [77]. We propose 

that autophagy mitigates tumor immunogenicity by preventing ERE MAP presentation. 

Interestingly, an article exploring the immunopeptidomic effects of DAC in glioblastoma cell lines 

evidenced an induction of ERE MAPs following similar treatment conditions to ours [78]. Since 

DAC also induces ERE transcripts but does not induce autophagy, in contrast to AZA, we 

hypothesize that the autophagic process triggered by DNMT2 inhibition is responsible for the 

absence of ERE MAP induction following AZA treatment.  

While little is known about the interplay between EREs (remnants of ancient viruses) and 

autophagy, it is well-reported that autophagy is a defense response against viruses. Following 

infection, autophagy is triggered by the signaling of pattern-recognition receptors (such as Toll-

like and RIG-like receptors) [79] to sustain the presentation of intracellular source proteins by 

MHC-II molecules [80]. Thereby, autophagy inhibition reduces the presentation of viral MAPs by 

infected cells to CD4+ T cells [81, 82]. In contrast, autophagy inhibition tends to increase MHC-I 

expression and the capacity to induce antiviral CD8+ T cell responses [83, 84]. Furthermore, 

autophagy can limit RIG-I-dependent IFN production by disrupting its signaling cascade [85, 86]. 
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While these studies point to a potential negative correlation between autophagy and MHC-I 

presentation, they do not provide a precise molecular mechanism explaining how AZA-induced 

autophagy could prevent the generation of ERE MAPs. While this question will need to be 

explored in future studies, we surmise that autophagy degrades ERE RNAs instead of degrading 

their translational product. Indeed, autophagy has been reported to target viral [87] and ERE [57] 

dsRNA to autophagosomes. Notably, this would explain why CTA MAPs (which do not result 

from dsRNA) were successfully presented at higher levels after AZA treatment.  

In conclusion, our results demonstrate that AZA-induced autophagy mitigates the ERE-

dependent immune effects of AZA. They suggest that autophagy inhibition could be a desirable 

therapeutic option to combine with AZA. Adding autophagy inhibitors to AZA could have three 

desirable consequences: (1) to increase the direct cytotoxicity of AZA by preventing AML 

adaptation to proteotoxic stress (in agreement with results from [88]), (2) to increase ERE 

transcripts abundance and the subsequent beneficial anti-dsRNA innate immune responses and (3) 

to improve ERE MAP presentation and thereby adaptive T-cell responses. Further investigations 

will nevertheless be needed to verify this last hypothesis.  
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3.8 Figures 

 

Figure 3.1- Low-dose AZA treatment leads to delayed, transient ERE and dsRNA-induced 

interferon gene expression in AML cell lines  

A, Low AZA doses were added to four AML cell lines daily for three days (0.25 μM: MOLM-13 

and SKM-1; 0.5 μM: THP-1 and OCI-AML-3) and DNMT1 inhibition (upper panel) and cell 

viability were monitored by flow cytometry using 7-AAD (lower panel). Dotted lines represent 

90% DNMT1 inhibition/viability in the upper and lower panel respectively. The left panels depict 

representative histograms of THP-1 cells, while the right panels depict bar plots summarizing the 

percentage of expression/staining (as indicated in figures) of all four AML cells. Percentages were 

calculated by comparing AZA-treated cells to the control cells. B, Low AZA doses (0.5 μM) were 

added to THP-1 cells daily for three days, after which AZA treatment was released by washing 

and expanding cells in the absence of AZA. Cells were collected for RNA-seq at the time points 

highlighted in grey. Heatmap comparing RNA expression levels of EREs induced by AZA (upper 

panel) and genes involved in dsRNA-induced viral response (lower panel) identified in previous 

studies [23, 24] of control (day 3) and AZA-released cells at the time points indicated. 
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Figure 3.2 Proteogenomic characterization of AZA-mediated changes shows upregulation of 

MAPs derived from CTA but not from EREs 

A, Schematic representation of the study design for RNA-seq and MS analyses. B, The total 

number of differentially expressed (D.E.) genes and MAPs (DEGs and DEMs, respectively) varies 

across cell lines. The numbers above the bars indicate the percentage of total genes or MAPs that 

were DEGs or DEMs, respectively. C, Pearson correlation between the number of DEMs and 

DEGs (left panel) or DEMs and MAPs (right panel). Each dot corresponds to a cell line. D, 

Percentage of D.E. elements up- or downregulated across cell lines. E, Representative volcano 

plots of DEGs and DEMs between AZA (violet) and untreated (gold) THP-1 cells. F, Pie charts 

depicting the percentage of biotypes of upregulated transcripts (left) and MAPs (right). The total 

number of upregulated D.E. elements is indicated below the pie charts. G, Pie charts depicting the 

number of up- and downregulated EREs (left) and CTAs (right) belonging to DEGs (upper panel) 

or DEMs (lower panel) fractions. H, Histogram depicting GO-term analysis of the most 

significantly enriched biological processes associated with upregulated DEGs across all cell lines 

after AZA treatment. I, Heatmap of genes involved in anti-dsRNA responses. J, Representative 

images (left) and quantification (right) of dsRNA signals in THP-1 cells from microscopy images 

(two independent experiments). THP-1 cells transfected with 10 μg/ml polyinosinic:polycytidylic 

acid using lipofectamine (PolyIC+lipofectamine) were used as a positive control and were 

compared with cells treated with lipofectamine alone (CT+lipofectamine); (unpaired t-test; **** 

p< 0.0001). 
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Figure 3.3 AZA-induced EREs trigger innate immune responses 

A, Stacked bar plots of ERE group distribution at the genomic and transcriptomic levels for up- 

and downregulated AZA-altered ERE sequences. B, Network analysis of GO-terms in AML 

patients (Leucegene cohort; n=437) expressing high levels of EREs induced by AZA in our four 

cell lines. C, Pearson correlation between genes involved in anti-dsRNA responses (MDA-5 and 

RIG-I) and AZA-induced EREs in AML patients. D, Network analysis of GO-terms enriched in 

patients expressing low levels of AZA-induced EREs. In B, and D, the line color reflects the 

similarity coefficient between connected nodes. Node color reflects the false discovery rate (FDR) 

of the enrichment. Node size is proportional to gene set size. 
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Figure 3.4 AZA molds the immunopeptidome through DNMT2 inhibition 

A, Bar plots depicting the number of up- and downregulated DEMs with no change in source RNA 

expression or being altered in the same or opposite direction as their source RNA. B, Fold changes 

in RPHM expression of source transcripts generating up- and downregulated DEMs. C, Amino-

acid composition of up- and downregulated DOIs. D, Hydrophobicity of up- and downregulated 

DOIs assessed by their GRAVY index. Scores >0 reflect higher hydrophobicity. E, Number of 

DOIs associated with chymotryptic or tryptic activities based on their C-termini amino acid 

composition (Fisher’s exact test). F, Immunoproteasome activity in OCI-AML-3 cells after AZA 

treatment. MG132, a proteasome inhibitor, was used as a negative control (unpaired t-test). G, 

Proportion of DNMT2-target amino acids (glycine, valine, and aspartic acid) in proteins having 

generated MAPs among the up- or downregulated DEM fractions. H, Aromaticity (frequency of 

Phe, Trp, and Tyr residues) of proteins having generated AZA-specific (identified only in AZA 

condition) MAPs or up- and downregulated DEMs. I, Quantification of protein aggregates induced 

with increasing concentrations of AZA and DAC in OCI-AML-3 cells. Bortezomib (BTZ) was 

used as a positive control (unpaired t-test; **** p< 0.0001, *** p< 0.001, ** p< 0.01, * p< 0.05). 
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Figure 3.5 Autophagy degrades AZA-induced EREs 

A, THP-1 and OCI-AML-3 cells undergoing autophagy were assessed with increasing doses of 

AZA and DAC by flow cytometry using specific autophagy detection fluorescent probes. B, EREs 

induced by AZA in our cell lines were quantified in published RNA-seq data of DAC-treated THP-

1 cells [89]. C, Bar plots of mean RNA expression (in cpm) of key autophagy genes (ATG3 and 

SQSTM1) in Leucegene AML patients segregated into quartiles based on AZA-induced ERE 

expression. Spearman correlations were computed without this segregation. D, Representative 

images (left) and quantification (right) of dsRNA signals measured from microscopy images. CT: 

0.1% DMSO treated with lipofectamine; AZA+SPA: AZA and spautin-1; AZA+RAP: AZA and 

rapamycin (unpaired t-test; * p< 0.05, **** p< 0.0001 
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Figure 3.6 Autophagy inhibition synergizes with AZA and could increase AML 

immunogenicity 

A, Cell growth inhibition and cell death (7-AAD) of THP-1 cells treated either with AZA (1 M), 

spautin-1 (5 M), or both. Control cells were treated with 0.1% DMSO; two independent 

experiments (unpaired t-test; **** p< 0.0001, *** p< 0.001, ** p< 0.01). B, Sum of ERE 

transcripts (in cpm) separated into LINE, SINE, and LTR families in THP-1 cells, treated as 

indicated. CT: 0.1% DMSO; SPA: spautin-1; AS: AZA and spautin-1. Horizontal bars represent 

median values for each condition C, GSEA comparison of indicated gene sets between THP-1 

cells treated with AZA or AZA + spautin-1. NES, normalized enrichment score. D, Scatterplots of 

Leucegene AML patients based on their RNA expression of CD8A+CD8B (cpm) vs. their count 

of highly expressed AZA-induced EREs (HE-EREs: # of AZA-induced EREs whose expression 

is above their median expression across all patients). E, Bar plots indicating normalized 

enrichment scores for hallmark gene sets between CD8high vs. CD8low Leucegene patients within 

EREhigh and ERElow groups (defined in D panel). F, GSEA of the indicated REACTOME gene sets 

in the indicated comparisons. NES, normalized enrichment score. 
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3.9 Supplementary Figures and Tables 

 

 

Figure S 3.1 Low AZA treatment reduces DNA methylation and cell growth without inducing 

major cytotoxic effects from DNA damage in AML cell lines 

A, Low AZA doses were added to four AML cell lines daily for three days (0.25 μM: MOLM-13 

and SKM-1; 0.5 μM: THP-1 and OCI-AML-3), and the formation of DNA double-strand breaks 

was monitored by flow cytometry by measuring histone H2AX phosphorylation. The left panels 

depict representative histograms of THP-1 cells, while the right panels depict bar plots 

summarizing the percentage of expression of all four AML cells. Percentages were calculated by 

comparing AZA-treated cells to control cells. A high AZA dose (5 μM) was used as a positive 

control for double-strand break formation.  

B, Cell growth of four AML cell lines was monitored after AZA treatment by counting 7-AAD 

negative cells via flow cytometry 
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C, 5-methylcytosine levels measured by ELISA with the MethylFlash Global DNA Methylation 

Kit after AZA treatment in AML cell lines. 

 

Figure S 3.2 Low AZA treatment leads to delayed, transient ERE and dsRNA-induced pro-

inflammatory gene expression in AML cell lines 

Relative quantification levels of ERE (upper panel) and dsRNA-induced interferon (lower panel) 

gene candidates in four AML cell lines monitored by qPCR after AZA treatment for three days, 

followed by AZA discontinuation. 
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Figure S 3.3 Detailed proteo-genomic pipeline used for database generation for MS analyses 
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Figure S 3.4 Immunopeptidomic analyses at a later time-point reveal no increase in ERE-

derived DEMs 

Comparison of MAP (upper panels) and DEM (lower panels) composition on days 4 and 7. 

OtherPCG: other protein coding genes, DE: differentially expressed.  
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Figure S 3.5 MAPs presented de novo after treatment derived from CTAs rather than EREs 

A, Pie charts indicating the proportion of new MAPs previously unidentified on untreated cells 

(AZA specific) or MAPs unidentified after AZA treatment (CT specific) and differentially 

expressed for up- (upper panel) and downregulated DEMs (lower panel). B, Bar plots indicating 

DEM composition according to biotypes for up- (upper panel) and downregulated DEMs (lower 

panel). OtherPCG: other protein coding genes, DE: differentially expressed.  
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Figure S 3.6 AZA molds the immunopeptidome through DNMT2 inhibition 

A, Immunoproteasome activity monitored in THP-1 cells after AZA treatment. MG132, a 

proteasome inhibitor, was used as a negative control (unpaired t-test; ** p< 0. 01) B, Quantification 

of protein aggregates induced with increasing AZA and DAC concentrations in THP-1 cells. 

Bortezomib (BTZ) was used as a positive control (unpaired t-test; *** p< 0.001, * p< 0.05). 
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Figure S 3.7 Autophagy inhibition synergizes with AZA, and spautin-1 treatment alone does 

not induce cell death 

A, Cell growth inhibition and cell death of OCI-AML-3 cells treated with either increasing 

concentrations of AZA, spautin-1, or both, monitored with 7-AAD via flow cytometry. Control 

cells were OCI-AML-3 cells treated with 0.1% DMSO (two independent experiments; unpaired t-

test; **** p< 0.0001, *** p< 0.001, ** p< 0.01). B, Viable cell counts after treatment with 

increasing concentrations of spautin-1 in THP-1 and OCI-AML-3 compared to DMSO-treated 
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control cells using 7-AAD via flow cytometry. C, Dose-response curves and IC50 values generated 

from B. 

 

Figure S 3.8 Autophagy inhibition synergizes with AZA and might increase AML 

immunogenicity 

A, Cell growth inhibition with either AZA, spautin-1, or both, monitored with 7-AAD via flow 

cytometry in THP-1 cells (unpaired t-test; ** p< 0.01, *p< 0.05) B, Heatmap of AZA-induced 

ERE expression (in cpm) in AZA, spautin-1, AZA+spautin-1, and DMSO-treated THP-1 cells. C, 

Pathway enrichment analysis using Cytoscape software to identify biological pathways 

significantly enriched in AZA- and spautin-1-treated cells compared to cells treated with AZA 

alone. Significant pathways are highlighted in yellow.  
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Due to size constraints, the following three tables are not presented in the document. The files 

are available as an Excel file online at 

https://www.biorxiv.org/content/10.1101/2022.12.02.518683v1.supplementary-material 

Table S 3.1 Differentially expressed genes identified by limma voom analysis performed per 

cell line 

Table S 3.2 Differentially expressed MAPs identified by limma analysis performed per cell 

line 

Table S 3.3 Differentially expressed genes identified by paired limma analysis identifying 

commonly altered genes by across cell lines 

  

https://www.biorxiv.org/content/10.1101/2022.12.02.518683v1.supplementary-material
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Table S 3.4 Correlation analysis of number of DOIs generated for each protein with the 

frequency of each amino acid residue in the considered protein 

  up down 

AA r p r p 
asp 0,13 **** 0,02 NS 
gly 0,08 **** -0,03 NS 

tyr 0,06 *** 0,01 NS 
glu 0,05 ** 0 NS 

asn 0,04 * 0,09 *** 

met 0,03 * 0,05 ** 
lys 0,02 NS -0,05 * 

phe 0,02 NS 0,04 * 
ala 0,01 NS -0,03 NS 

arg 0 NS -0,02 NS 

val 0 NS 0 NS 
gln 0 NS 0,04 NS 

ser -0,02 NS -0,04 NS 
iso -0,04 * 0,04 NS 

cys -0,06 *** -0,01 NS 

leu -0,06 *** -0,02 NS 
his -0,07 **** 0,09 *** 

pro -0,07 **** -0,03 NS 
trp -0,07 **** 0 NS 

thr -0,09 **** 0,06 ** 
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4 Chapter 4: Discussion 

4.1 Proceed with Caution: The Advantages and Pitfalls of Working with Cell 

lines  

Cell lines are an important model in biological sciences and have been instrumental in the 

advancement of research. They have short doubling times, are easy to culture and store long-term 

giving unlimited access to sample material. Further, there are several databases with extensive 

information on cell lines, including mutation profiles, karyotyping, drug sensitivity, RNA 

expression, gene dependency, and so on. Thus, researchers have access to in-depth knowledge of 

their study model beforehand. This not only benefits researchers to efficiently plan experiments 

but also generate new hypotheses based on current data. However, cell lines have been long 

associated with the irreproducibility of data based on how they have been handled or the source of 

the cell lines [1]. Cell lines, especially MSI+, can easily undergo genotypic and phenotypic drift 

leading to variability in the data. Finally, cell lines can be easily cross-contaminated with other 

cell lines when handled without caution. Researchers can opt to generate their own cell lines in-

house from primary tissues, or purchase them from cell repositories, or borrow them from labs that 

previously possess the cell lines. The latter is the most frequent means of acquiring cell lines due 

to its convenience and low cost. However, the reliability of the cell lines acquired by this method 

is highly questionable as there may be inadequate information or documentation on the duration 

of passage, culture media used, and so on.  

In this thesis, we studied THP1 cells – a microsatellite stable (MSS) cell line considered to 

be fairly stable – and found huge levels of genetic drift between source cell repositories, ATCC, 

and DSMZ. We found that THP1 cells obtained from ATCC were associated with LOHs on several 
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chromosomal arms leading to differences in physical appearance, HLA loss, and transcriptomic 

changes leading to variable conclusions depending on the cell line used. This is especially 

disquieting since both repositories are trusted to be vigorous and thus cell lines received from 

either are expected to be identical.  

4.1.1 Recommendations to current guidelines for cell line-based research 

Our study shows that the current STR profiling technique is not sufficient for the accurate 

authentication of cell lines. The current method uses amplification of only 8 polymorphic loci in 

STR profiling. Although this limited number of loci is sufficient to detect cross-contamination of 

cell lines, it is not extensive enough to accurately identify genetic drifts occurring within a 

particular cell line. We, therefore, recommend increasing the number of loci used for amplification 

to 80-160 loci. Further, we recommend the use Tanabe algorithm, instead of the Masters algorithm 

used by ATCC, to compute a score of the percentage of match between cell lines. As indicated in 

section 2.6, the Masters algorithm only takes the number of alleles of the reference cell line to 

compute the match score, while the Tanabe algorithm takes the total number of alleles of both cell 

lines into consideration. Thus, although the simplicity of the Masters algorithm allows for the 

detection of cross-contamination of cell lines, the latter is more powerful in detecting genetic drifts 

across cell lines that arise from the gain or loss of alleles. Finally, our study advocates for the 

importance of following strict laboratory practices to ensure that cell lines do not undergo genetic 

drift. This includes proper documentation of cell passages, and no over-passaging or over-diluting 

the cell lines. We also emphasize the importance of acquiring cell lines from valid sources and 

reporting the origin while publishing or submitting data to public data repositories. In the case of 

THP1 cells, we recommend the use of the DSMZ counterpart for leukemia and 

immunopeptidomic-related studies. 
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4.1.2 Cell lines as a model to investigate AZA-induced changes 

In this study, we opted to use cell lines as a model to investigate the effects of AZA on 

the immunopeptidome because their use permits access to large sample quantities required for MS 

analyses. Following recommendations based on our previous work, we used cell lines newly 

purchased from DSMZ and cultured them ensuring good laboratory practices. Cell lines were 

never cultured longer than 4-6 weeks and were diluted in a timely and controlled manner to prevent 

genetic drift and ensure reproducibility. Further, our studies were performed on multiple cell lines 

to provide a broader perspective of AZA-induced changes, rather than identify changes specific to 

a single cell line. Cell lines were selected to represent the mutational and cytogenetic heterogeneity 

observed in AML patients, allowing us to investigate their contributions to AZA effects on the 

transcriptome and immunopeptidome. Cell lines also differed in HLA types allowing us to identify 

a diverse range of MAPs induced by AZA. Finally, to ensure the physiological relevance of our 

findings, we validated key results in external datasets using transcriptomic data from AML patient 

specimens. 

4.2 The Elusive Connection: Discrepancies Between Mutations, 

Transcriptome, and Immunopeptidome 

As described in section 1.3.3, there has been no coherent association between specific gene 

mutations and favorable patient outcomes with AZA treatment. Consistent with this, we didn’t 

observe any apparent association between mutations associated with either hyper- or 

hypomethylating function and levels of transcriptomic changes in cell lines. For instance, THP1 

has an MLL-AF9 translocation that is associated with hypomethylation patterns [2]. However, we 

observed that THP1 was the most “sensitive” in terms of AZA-induced transcriptomic changes – 

with almost two-fold higher D.E. elements compared to other cell lines (Figure 3.2B). This could 
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be explained by the near-tetraploid nature which was a feature only observed in THP1. Despite 

such differential transcriptomic sensitivities across cell lines, we observed a consistent 

upregulation of transcriptional events in all cell lines (Figure 3.2D, E). Importantly this congruent 

unidirectionality was lost at the level of the immunopeptidome (Figure 3.2D, E). Similar findings 

were observed in other studies, including glioblastoma cell lines treated with HMAs [3, 4]. In 

glioblastoma, the majority of alterations at the transcriptomic level were derived from their 

upregulation. However, this trend was completely lost at the protein level and was only observed 

at the immunopeptidome level when accompanied by an HMA-induced increase in the HLA 

molecules themselves. Taken together, these data are indicative of the contribution of post-

transcriptomic changes and other factors leading to the disconnect between the transcriptome and 

immunopeptidome. It is also worth mentioning that HMAs have been previously well-reported to 

increase HLA levels due to their demethylation activity. However, unlike most solid cancers that 

undergo the downregulation of MHC-I molecules as an immune escape mechanism [5, 6], this is 

rarely observed in AML [7-10]. Leukemic cells express similar levels of MHC-I molecules 

compared to their normal counterparts [8], and normal granulocytes themselves have very high 

basal levels of MHC-I surface expression compared to other normal cells [11]. This pre-existing 

high MHC-I surface level could explain why we do not observe any further increases after AZA 

treatment, unlike what was observed in solid cancers. 

4.3 From the Archives to the Clinic: Revisiting CTAs for AML Therapy   

Regardless of the absence of a global increase in MAPs after AZA treatment, there was a 

significant increase in the proportion of MAPs deriving from CTA gene products (Figure 3.2 G). 

This was expected as genes coding for CTAs are regulated by methylation and HMA treatment 

has previously been shown to induce MAPs deriving from CTAs, both in hematological and non-
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hematological cancers [4, 12, 13]. As described in detail in section 1.6.2, CTAs have been a well-

described source of TAs that are mostly expressed in cancers, but not in most normal tissues. 

Moreover, some phase I/II clinical trials targeting CTAs as TAs as cancer treatments show 

promising results. In fact, studies have shown that patients treated with HMAs had an increase in 

CTA-specific CD8+ T-cells [14, 15], suggesting that HMA-induced CTA-derived MAPs are 

responsible for the elimination of leukemic blasts by CD8+ T-cells. Based on these studies, 

research groups have tested the combination of HMAs with CTAs vaccines to enhance the efficacy 

of tumor killing by HMAs. Notably, two phase-I clinical trials were approved to investigate the 

efficiency of this combination. The first trial was designed to use dendritic cells pulsed with CTA 

peptides – MAGE-A1, MAGE-A3, and NY-ESO-1 – as the cancer vaccine (NCT01483274). 

Unfortunately, this trial did not begin as recruitment was withdrawn (due to a patient population 

barrier to the study). The second trial used a combination of NY-ESO-1, PRAME, MAGE-A3, 

and WT-1 as a multi-peptide (NPMW-peptide vaccine) and was administered subcutaneously with 

an adjuvant in 5 MDS/AML patients along with the AZA treatment (NCT02750995). NY-ESO-1, 

PRAME, and MAGE-A3 are CTAs that have been previously shown to be re-expressed at the 

RNA level upon HMA treatment [14, 16]. WT-1, a TAA that is overexpressed in several 

hematological malignancies, was additionally added to the peptide combination [17]. In this trial, 

although there were no serious adverse events, neither vaccine-specific immune response nor 

clinical benefit was observed [18]. Unfortunately, there is not much information available 

regarding why this trial failed. First, the lack of vaccine-specific immune response indicates that 

vaccination was not efficient, and the choice and design of the vaccine should be reviewed. Here, 

long peptides (25-29 amino acids) were used for vaccination. Long peptides contain multiple 

epitopes that can be processed in the antigen-presenting cells (APCs) to generate multiple MAPs 
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and therefore have a broader coverage of HLAs. It is possible that NPMW-peptides were not 

processed efficiently and failed to bind with MHC molecules. Other vaccination strategies, such 

as DC-loaded peptides would be worth pursuing.  Secondly, the design of the clinical trial could 

be an additional factor contributing to the failure of the trial. The peptide vaccination was 

administered after patients received six cycles of AZA treatment. However, previous studies 

investigating CTA re-expression demonstrated that increases are observed as early as 5-10 days 

post-HMA treatment. Therefore, it is crucial to determine the kinetics of CTA expression six 

months after AZA treatment or consider a treatment regimen administering the peptide vaccination 

early on during AZA treatment. Finally, another consideration could be to validate the CTA re-

expression upon AZA treatment and use it as a patient selection criterion for peptide vaccination. 

Nevertheless, AZA-induced CTA-derived MAPs in AML warrant the need for additional and 

improved trials to assess the benefit of peptide vaccination for AML patients.  

4.4 Busting the Myth: The Lack of EREs at the MAP Level 

One of the most interesting and unexpected findings in our study was the lack of EREs 

upregulated at the MAP level. There are several reasons supporting the postulation that ERE-

derived TAs would contribute to AZA-mediated immunological responses. Firstly, ERE-derived 

MAPs are an important source of TSA candidates; they are absent in normal cells and have been 

shown to be highly immunogenic. Secondly, as discussed in section 1.5.2, their genomic sequences 

are mainly regulated and silenced by DNA methylation. Upon treatment of DNA demethylating 

agents, their RNA expression has been demonstrated to be upregulated both in vitro and in vivo. 

Finally, translation products of EREs are known to be unstable, making them perfect candidates 

for DRiPs generation and therefore MAPs. Based on this evidence, we wished to validate if AZA 

indeed induces the expression of AZA-induced MAPs using transcriptomic and MS analysis. The 
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strength of using a proteogenomic approach lies in the direct identification of MAPs by MS rather 

than the use of prediction algorithms that are associated with very low accuracy and high false 

positive identifications. However, there are limitations associated with MS that are important to 

be considered (section 1.6.2). Another important consideration is that peptide sequences must be 

included in the reference databases for peptides to be identified. Therefore, to circumvent as many 

of these limitations and increase the confidence of our study, we performed experiments in 

triplicates using large quantities of samples (~100 million cells per replicate) to maximize the 

chances of identifying peptides by MS. Further, using deep-coverage RNA sequencing data and 

HLA binding prediction algorithms we created cell line-specific databases. These databases thus 

represented all possible peptide coding sequences that could be translated and processed to be 

presented at the MAP level. Finally, EREs are highly unstable and are expected to be presented at 

the immunopeptidome as soon as they are transcribed. Therefore, choosing the time point where 

we observed the highest expression of EREs would be crucial to enable their detection at the MAP 

level. In our study, we observed that AZA induced maximum ERE expression after 72 hours of 

treatment followed by drug release (Figure 3.1B, S3.2). Interestingly, the increase in ERE 

expression was delayed and transient as reported in other solid cancers, although with different 

kinetics in AML cells. This suggests that some mechanisms of ERE regulation by AZA are shared 

across cancer types. However, despite these large levels of ERE induction at the RNA level in 

AML cells, we did not identify any ERE-derived MAPs. We also verified the possibility of a 

delayed presentation of ERE-derived MAPs and did not identify any at a later time point (Figure 

S3.4). Taken together, our data suggest that it is unlikely that AZA-mediated immunological 

responses would be driven by T-cell recognition of ERE-derived MAPs. Concurrent with our 

findings, a study performed on patients with hematological cancers showed no significant 
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increases in T-cell populations targeting ERE-derived MAPs after AZA treatment [19]. 

Nevertheless, ERE expression at the RNA level had important biological implications. Due to their 

repetitive nature, EREs formed dsRNA that culminated in a state of viral mimicry. This was 

demonstrated by an upregulation of genes associated with biological functions and pathways 

involved in inflammatory and innate immune responses, which was accompanied by an 

accumulation of cellular dsRNA (Figure 3.2H-J). Both ERE expression and viral mimicry have 

been described to contribute to cellular stress and cell death [20-22]. A report by Sistigu et al has 

demonstrated that DNA-damaging drugs can elicit type I interferon signatures leading to tumor 

elimination in vivo and that such drug-induced viral mimicry is a hallmark of successful 

chemotherapy [23]. In the case of AML, high basal ERE expression in patients alone was able to 

predict better clinical responses. The AZA-induced EREs identified in our study were not only 

relevant in our cell lines but have physiological relevance as they were associated with genes 

involved in immune responses in AML patients’ specimens (Figure 3.3B-D). Thus, we believe that 

a subset of EREs, notably these AZA-induced EREs, are key in triggering immune responses. In 

line with this, Ohtani et al also found that specific ERE classes play a role in driving clinical 

responses in patients with hematologic malignancies post-AZA treatment. These ERE classes were 

evolutionarily “younger” in nature and are more potent in triggering immune responses. Based on 

these findings, we could speculate that AZA-induced EREs identified in this study would likely 

have an evolutionarily younger age and hence were capable of generating immune responses. 

Altogether our data show that although AZA-induced EREs did not generate MAPs, they play an 

important role at the RNA level culminating in anti-viral-like responses.  
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4.5 Unlocking the Potential: Leveraging AZA's Anti-viral Responses for AML 

Treatment 

Anti-viral-like responses are known to increase the immunogenicity of cancer cells. 

Interferon signaling as a result of viral mimicry can enhance the antigenicity of cells by increasing 

the expression of the genes coding for proteins involved in antigen processing and presentation 

and MHC-I molecules themselves [20, 24]. However, antigenicity alone is not sufficient to 

successfully trigger T-cell responses. T-cells require co-stimulatory responses provided by APCs, 

essentially dendritic cells (DCs). This facilitates T-cell priming and provides co-stimulatory 

cytokines to allow the expansion of T-cells, thus enhancing the adjuvanticity of tumor or infected 

cells. Adjuvanticity can be described as a secondary discriminatory mechanism employed by the 

immune system to provide further context to recognize ‘self’ from ‘non-self’ [25]. In the case of 

viral or bacterial infections, this is accomplished by signals from PAMPs such as LPS, and viral 

nucleic acids, such as dsRNA. These danger signals activate the innate immune system by allowing 

the maturation of DCs and T-cell stimulation. In the context of cancer cells, inflammatory 

signaling cascades triggered by viral mimicry contribute to an increase in adjuvanticity [26]. 

Interestingly, there was a significant expansion of viral-specific T-cells in hematological cancer 

patients post-AZA treatment [19]. Although the authors did not comment on this finding, we can 

speculate that AZA-induced viral mimicry could be responsible for such T-cell expansion. This 

finding could be further explored as a therapeutic tool to improve AZA therapies. A study in 

melanoma explored the cross-reactivity of T-cells against viral antigens and TAs and demonstrated 

that vaccination against TAs with sequences homologous to viral peptides provides tumor 

protection in mice [27]. Therefore, it may be worth investigating peptide homologies between 

AZA-induced peptides with viral epitopes and their ability to cross-react effectively. This could 
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be considered as a method to pre-screen peptides as we could expect these peptides to be more 

successful in vaccination. Further, as viral-specific T-cells are expanded after AZA treatment, 

patients can be selected on serotype status pre-treatment, and respective T-cells can be targeted to 

engineer high-affinity T-cell receptors (TCR) against specific TAs. TCR gene therapy has been 

successfully established for targeting WT1, a TAA in AML and MDS patients, and has shown 

encouraging results in phase I/II clinical trials [28].  

4.6 Bringing RNA Effects of AZA to the Forefront: A Fresh Perspective on an 

Overlooked Mechanism 

While AZA is primarily known for its effects on DNA demethylation, it is now well-

established that AZA plays a major role in RNA demethylation. As mentioned in section 1.3.1, 

owing to their chemical properties, AZA can incorporate into both RNA and DNA following 

cellular uptake. Importantly, the majority (80-90%) of AZA is incorporated RNA, whereas only a 

minor fraction (10-20%) becomes a part of DNA. AZA incorporation in RNA leads to DNMT2 

inhibition and consequently RNA demethylation. The main targets of AZA-mediated 

demethylation are mainly tRNAs and some other RNAs [29, 30]. In the case of tRNAs, DNMT2-

mediated methylation is crucial to maintain the stability of specific tRNAs, notably tRNAasp, 

tRNAglu, and tRNAval. As methylated tRNAs are essential to ensure protein fidelity and proper 

protein folding, AZA is implicated in disrupting these processes. Finally, AZA incorporation into 

RNA can directly impact mRNA stability itself [31]. Consequently, AZA’s RNA affects several 

processes, including a reduction in cellular metabolic rates and protein synthesis. These effects are 

AZA-specific and are observed much more robustly compared to DAC [32, 33]. AZA-mediated 

RNA effects can thus partly explain the disconnect observed between the transcriptomic and 

immunopeptidomic changes. Moreover, an in-depth analysis of our immunopeptidomic data was 
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indicative of AZA’s DNMT2 inhibition. We observed that proteins generating multiple DOIs after 

AZA treatment had significantly higher proportions of DNMT2-dependent amino acids (Figure 

3.4G). Based on this, we believe that during protein translation, tRNA insufficiency of these amino 

acids leads to ribosome stalling, and consequently DRiPs generation and MAP presentation. To 

further confirm this hypothesis, we can perform amino acid sequence analysis of source proteins 

generating multiple DOIs and that of the DOIs themselves to identify the locations of Asp, Glu, 

and Val (DNMT2-dependent amino acids). This will provide useful information about how and 

where in the amino acid sequence, ribosome stalling probably took place. This could be leveraged 

for designing RNA vaccine targets by generating tailormade TA-coding sequences that enhance 

DRiPs generation after AZA treatment and thus, promoting the presentation of such TAs.  

4.7 Amplifying the Anti-Leukemic Effects of AZA through Autophagy 

Inhibition 

Apart from leading to enhanced DRiPs generation, tRNAs lacking DNMT2-dependent 

methylation are prone to codon infidelity leading to inaccurate protein synthesis. In particular, loss 

of DNMT2-mediated methylation leads to codon misrecognition by tRNAasp and tRNAglu [34]. 

Consequently, tRNAglu erroneously decodes Asp as Glu leading to a significant increase in Asp > 

Glu amino acid substitutions. In line with this, our immunopeptidomic data show higher levels of 

Glu compared to Asp in the upregulated DOIs compared to downregulated (Figure 3.4C). Finally, 

codon infidelity can lead to protein misfolding causing protein aggregation. This triggers cellular 

processes, including unfolded protein response responses and autophagy that are responsible for 

the clearance of protein aggregates. In our study, we found that autophagy induction was AZA-

specific and not observed with DAC-treated cells. This indicates that autophagy is mediated by 

AZA’s RNA effects, rather than its DNA demethylating effects. Ironically, AZA-induced 
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autophagy can abrogate the extent to which EREs are expressed since autophagy is responsible for 

viral clearance as well as ERE degradation [35, 36]. This could explain the absence of ERE-derived 

MAPs after AZA treatment. To test this hypothesis, we determined the levels of EREs when cells 

were treated with AZA combined with an autophagy inhibitor, Spautin-1. Spautin-1 is a novel 

compound previously shown to be effective in leukemia and acts by preventing the formation of 

autophagy initiation complexes by inhibiting the deubiquitinating activity of USP10 and USP13 

[37, 38]. As expected, we observed that autophagy inhibition alone increases the levels of 

intracellular EREs (Figure 3.6B). The combination of Spautin-1 and AZA also followed a similar 

trend of higher ERE levels, except for LINEs (Figure 3.6B). However, there were no increases in 

AZA-induced EREs after the combination treatment (Figure S3.8B). We found that Spautin-1 and 

AZA had additive effects leading to a drastic drop in the proliferation rate of cells (Figure 3.6A, 

Figure S3.7, 8A). As the demethylation of the genome by AZA is dependent on actively 

proliferating cells, transcriptomic upregulation mediated by AZA was possibly inhibited. This 

could explain the absence of AZA-induced EREs when AZA was combined with Spautin-1. 

Therefore, for future directions, it is crucial to identify a treatment regimen for a combination 

treatment that involves autophagy inhibition while permitting cells to actively proliferate. This can 

be achieved by pre-treating cells with autophagy inhibitors to drop the basal levels of autophagy 

and then proceed with AZA treatment of cells. Transcriptomic and immunopeptidomic analysis 

on these treated cells will be crucial to understanding if we can identify AZA-induced EREs and 

ERE-derived MAPs. Alternatively, we could hypothesize that performing immunopeptidomic 

analysis on DAC-treated cells would indicate whether, in the absence of autophagy, ERE-derived 

MAPs are presented. In line with this, a study using DAC-treated glioblastoma cells has indeed 

shown that DAC induces the presentation of ERE-derived MAPs [39]. Taken together, AZA-
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mediated RNA effects induce autophagy responses that counteract the extent of ERE-mediated 

immune effects of AZA. 

4.8 AZA’s hidden talents: Inhibition of the immunoproteasome 

Another unexpected finding in our study was that AZA treatment decreases the IP activity 

of AML cells. As described in section 1.6.1, IPs are a specialized form of CPs that are expressed 

in the presence of IFN-γ or TNFα. IPs and CPs differ from each other in their composition of the 

core 20S proteolytic particle (Figure 1.10), endowing them with differential cleavage and catalytic 

properties. Notably, IPs have increased chymotryptic than tryptic activity and have cleavage 

preferences for peptides more specifically after C-terminal hydrophobic residues and basic 

residues, than acidic residues. Thus, IPs and CPs generate diverse MAPs thereby, shaping the 

immunopeptide differently. Our immunopeptidomic analyses revealed that AZA-induced DOIs 

derived frequently from tryptic peptides (Figure 3.4E), indicating a reduced contribution of IP to 

MAP changes. Consistent with this observation, we found a reduction in IP activity post-AZA 

treatment (Figure 3.4F, Figure S3.6A). Of note, IP activity has been previously shown to have a 

pro-survival effect in leukemia and IP inhibition leads to cell death in AML cells [40]. This 

suggests that the mechanism of cell death induced by AZA could be via its inhibition of IP activity. 

This can be validated if a synergic effect is obtained upon combining AZA with IP inhibitors. 

Alternatively, cells with higher expression of IP subunits might be more resistant to AZA. 

Preliminary analysis to test this hypothesis could be performed using transcriptomic data from 

primary AML patients post-AZA treatment, although this technique will not be able to determine 

the contributions of IP activity, itself.  
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4.9 Limitations of the study 

As with most research studies, the current study is subject to limitations. First, we used cell 

lines as a model system to investigate transcriptomic and immunopeptidomic changes. The use of 

patient specimens pre- and post-AZA treatment would have been of higher physiological 

relevance. However, patient specimens are limited in their sample quantities, especially for MS 

studies. One potential solution to overcome this could be the use of mouse models to expand these 

primary leukemic cells. However, the selective proliferation of some clones can alter the clonal 

architecture of AML and may not be truly representative of the patients [41]. Moreover, there are 

potential problems in accurately distinguishing human from mouse peptides with current HLA-

peptide binding prediction algorithms. Another possibility is the use of organoids for IP analysis. 

This is a field that is recently being explored and has been performed with successful results for 

colorectal cancer [42]. Secondly, our research is limited in focusing solely on the impact of AZA 

on AML cells. Given the importance of T-cells in the elimination of leukemic cells [43, 44], the 

role of hypomethylation of the genome in immune players is important to be considered as well. 

Finally, the combination of BCL-2 inhibitor, Ventoclax, and AZA has received successful results 

in the phase 3 VIALE-A study (NCT02993523) [45] and is now the newly FDA-approved 

treatment for patients with intensive chemotherapy-ineligible newly diagnosed AML. Therefore, 

studying the immunopeptidome of AZA in combination with Ventoclax is relevant and should be 

pursued.  

4.10 Conclusion 

The work presented in this thesis highlights the benefits and the challenges associated with 

using cell lines in scientific research. While cell lines offer a convenient model system for scientific 

investigations, their misidentification can lead to erroneous conclusions and hinder the progress of 



 171 

research. Through our study of THP-1 cell lines obtained from different repositories, we have 

demonstrated the existence of numerous differences, including variations in morphology, 

expression of key leukemia-related genes, and LOHs in several genomic regions that affected their 

HLA types. Based on this work, we recommend that THP1 cells from DSMZ are more suitable for 

AML-based research, antigen presentation, and immunopeptidomic studies. Our findings also 

highlight the need for greater scrutiny and validation of cell lines used in research. To address this 

issue, we recommend an increase in the number of loci currently used for STR profiling, which 

can provide a more robust and reliable method for confirming the identity of cell lines.  

Further, through this thesis, we applied a proteogenomic approach to characterize AZA-

mediated transcriptome and immunopeptidomic changes in AML cells. Our findings support 

previous studies that have reported an upregulation of CTA-derived MAPs following AZA 

treatment. However, we also discovered that AZA treatment failed to upregulate ERE-derived 

MAPs, despite observing an increase in their RNA levels. Nevertheless, EREs played an important 

role in inducing immune responses and viral mimicry, which may contribute to the adjuvanticity 

of leukemic cells. We also identified that AZA treatment led to an increase in protein aggregation, 

resulting in the induction of autophagy responses due to their RNA-mediated effects. Our data 

suggest that AZA-induced autophagy was responsible for limiting the extent of EREs upregulation, 

which could explain the lack of ERE-derived MAP presentation. Overall, our findings suggest that 

CTAs, rather than ERE-derived MAPs may be more useful as cancer vaccine targets in AZA-alone 

treatments. Furthermore, our results suggest that inhibiting autophagy may enhance the 

presentation of ERE-derived MAPs and the anti-leukemic effects of AZA. Our study highlights 

the importance of further investigating the potential for combination therapies of AZA with 

autophagy inhibitors to enhance the immunogenicity of AML cells.  
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