Université de Montréal

Implication of EphA4 in circadian and sleep physiology studied using transcriptional and pharmacological approaches

By

Département de neurosciences, Faculté de médecine

Thesis presented for obtaining the degree Philosophiae Doctor (Ph. D.)

in Neurosciences

August 2022

© Maria Neus Ballester Roig, 2022

Université de Montréal

Département de neurosciences, Faculté de médecine

Implication of EphA4 in circadian and sleep physiology studied using transcriptional and pharmacological approaches

Presented by

Maria Neus Ballester Roig

Evaluated by a jury composed of

Bénédicte Amilhon Jury president

Valérie Mongrain Research supervisor

Adriana Di Polo Jury member

Kai-Florian Storch External jury member

Sébastien Talbot Dean representative

Le sommeil est un comportement qui occupe un tiers de notre vie. L'horaire, la durée, et la qualité du sommeil sont contrôlés par deux processus principaux : la régulation homéostatique du sommeil et l'horloge qui synchronise les rythmes circadiens internes. EPHA4 est une molécule d'adhésion cellulaire qui régule la neurotransmission et qui est exprimée dans des régions cérébrales impliquées dans la régulation circadienne et du sommeil. De manière intéressante, le gène EphA4 contient des éléments régulateurs des facteurs de transcription circadiens et les souris Clock mutantes voient leur expression d'EphA4 modifiée. De plus, les souris EphA4 knockout (KO) ont des rythmes circadiens d'activité locomotrice anormaux, moins de sommeil paradoxal dans la période de lumière, et une distribution des oscillations cérébrales du sommeil modifiée sur un cycle de 24 heures. Par conséquent, et étant donné que EPHA4 est crucial pour le neurodéveloppement, il convient d'explorer si les phénotypes du sommeil/circadiens observés chez les souris EphA4 KO proviennent d'effets sur le développement ou des rôles d'EPHA4 dans la fonction neuronale adulte. Par ailleurs, les mécanismes de régulation transcriptionnelle d'EphA4 sont encore méconnus. Dans cette thèse, nous avons émis les hypothèses que i) l'expression du gène EphA4 ou de leurs ligands Éphrines (Efns) est régulée de manière circadienne ; et ii) que le modulateur de l'activité d'EPHA4 rhynchophylline (RHY) modifie le sommeil chez les souris adultes d'une manière qui ressemble au phénotype EphA4 KO. L'étude I montre que les facteurs de transcription de l'horloge (CLOCK/NPAS2 et BMAL1) activent la transcription via les éléments de réponse à l'ADN «boîtes E» trouvées dans les promoteurs putatifs d'EphA4, EfnB2 et EfnA3 in vitro. Cependant, les protéines EPHA4 et EFNB2 n'ont pas montré une oscillation circadienne dans le cortex préfrontal et les noyaux suprachiasmatiques (horloge principale) de souris. Dans le projet II, l'effet de RHY sur le sommeil a été étudié chez des souris mâles et femelles avec des enregistrements electroencéphalographiques. Nos données ont démontré que RHY prolonge le sommeil à onde lente, mais les effets sur le sommeil paradoxal dépendent de l'heure d'injection. RHY modifie aussi les oscillations cérébrales pendant l'éveil et le sommeil. Tous ces effets sont notablement plus marqués chez les femelles, ce qui souligne l'importance d'étudier les deux sexes lors des essais pharmacologiques. La transcriptomique spatiale cérébrale révèle que RHY modifie des transcrits liés à des réponses d'inflammation dans tout le cerveau, mais qu'elle affecte

l'expression génique des neuropeptides associés à la régulation du sommeil et hypophysaires particulièrement dans l'hypothalamus. En outre, RHY affecte l'expression des gènes de la transcription/traduction de manière diffèrent selon l'heure d'injection. La première publication met en évidence que la régulation transcriptionnelle d'*EphA4* et des *Efns* pourraient expliquer quelquesuns des phénotypes observés chez les souris KO. La deuxième publication démontre que RHY induit le sommeil chez la souris et souligne l'importance de caractériser des mécanismes inexplorés sous-jacents aux composés naturels. Décrire la régulation moléculaire du sommeil peut apporter des éclairages utiles pour la chronopharmacologie.

Mots-clés : Rythme circadien, sommeil à onde lente, sommeil paradoxal, Éphrines, médecine traditionnelle, rhynchophylline, transcriptomique spatiale, facteurs de transcription de l'horloge, transcription

Sleep is a behavior which occupies a third of our lifetime. The schedule, the duration and the quality of sleep are controlled by two main processes: the homeostatic sleep regulation and the clock that synchronizes the internal circadian rhythm. EPHA4 is a cell adhesion molecule regulating neurotransmission and is expressed in brain centers regulating sleep and circadian rhythms. Interestingly, the EphA4 gene contains regulatory elements for circadian transcription factors, and Clock mutant mice have altered EphA4 expression. Moreover, EphA4 knockout mice (KO) have abnormal circadian rhythms of locomotor activity, less paradoxical sleep in the light period and altered sleep brain oscillations across the 24 hours. Given that EPHA4 is crucial for development, it should be investigated whether the sleep/circadian phenotypes observed in EphA4 KO originate from developmental effects or from roles of EPHA4 in adult neuronal function. Moreover, very little is known about the transcriptional regulation of EPHA4. Thus, the hypotheses of this thesis were that i) the gene expression of EphA4 or that of its ligands Ephrins (Efns) is regulated in a circadian manner; and ii) that the modulator of EPHA4 activity rhynchophylline (RHY) modifies sleep in adult mice in manners that resemble the EphA4 KO phenotype. Project I demonstrates that the clock transcription factors (CLOCK/NPAS2 et BMAL1) activate transcription via the DNA regulatory elements "E-boxes" found in the putative promoters of EphA4, EfnB2 and EfnA3 in vitro. Nevertheless, EPHA4 and EFNB2 proteins did not show a circadian oscillation in the mouse prefrontal cortex and suprachiasmatic nuclei (master clock). In project II, the effect of RHY on sleep was studied in male and female mice with electroencephalographic recordings. RHY extends slow wave sleep and effects on paradoxical sleep depended on the time-of-injection. RHY also modified the brain oscillations during wakefulness and sleep. Importantly, all these effects were larger in females, which highlights the need to consider both sexes in pharmacological studies. Brain spatial transcriptomics reveals that RHY modifies transcripts linked to inflammatory responses throughout the brain, while it affects transcripts linked to sleep regulation and pituitary responses particularly in the hypothalamus. Moreover, RHY affected the expression of genes for transcription/translation differently depending on the time of injection. The first publication underscores that the transcriptional regulation of EphA4 and Efns may underly some of the phenotypes observed in the KO mice. The second publication demonstrates that RHY induces sleep in mice, that it modifies brain activity associated to cognitive processes and highlights the importance of characterizing unexplored mechanisms of natural compounds. Describing the molecular regulation of sleep may provide useful insights for chronopharmacology.

Keywords: Circadian rhythm, slow wave sleep, paradoxical sleep, Ephrins, traditional medicine, rhynchophylline, spatial transcriptomics, clock transcription factors, transcription

Résumé5
Abstract7
Table of content9
List of Tables14
List of Figures15
List of abbreviations17
Acknowledgments
Chapter 1 Introduction22
1.1 Sleep
1.1.1 The sleep states25
1.1.2 Some sleep variables are influenced by sex
1.2 Brain systems controlling sleep
1.2.1. Brain circuits
1.2.2 Molecular systems within circuits
1.2.2.1 Channels, receptors and adhesion molecules
1.2.2.2 Intracellular pathways
1.3 The two-process model of sleep regulation
1.3.1 Circadian regulation (process C)
1.3.1.1 The circadian TTFL and clock-controlled genes
1.3.1.2 SCN outputs
1.3.1.3 Some circadian variables are influenced by sex40
1.3.1.4 Circadian control at the synapse40
1.3.1.4.1 Circadian regulation of the transcriptome40
1.3.1.4.2 Phosphorylation as accumulative (and time) sensors41
1.3.2 Homeostatic regulation (process S)
1.3.2.1 Potential mechanisms underlying sleep homeostasis

1.3.2.1.1 Sleep regulatory substances	44
1.3.2.1.2 Gene expression reflects sleep-wake history	45
1.3.2.1.3 The phosphorylation hypothesis of sleep	47
1.3.2.2 Sleep for the brain and the synaptic homeostasis hypothesis (SHY)	47
1.3.2.2.1 Potential mechanisms underlying sleep-dependent plasticity	49
1.3.3 Integrations of processes C and S	50
1.3.3.1 Molecular integration of C and S	50
1.4 Ephrins and Eph receptors	52
1.4.1 EphA4	53
1.4.1.1 EPHA4 activation and signaling	54
1.4.1.2 Functions of EPHA4	55
1.4.1.2.1 CNS development	55
1.4.1.2.2 Adult neurotransmission	56
1.4.1.2.3 Vascular system	57
1.4.1.2.4 Immune system and cancer	57
1.4.1.3 EphA4 implications in diseases	58
1.4.1.4 EphA4 gene and transcriptional regulation	58
1.4.2 EphA4 and Ephrins in sleep and circadian physiology	60
1.5 Rhynchophylline may uncover EphA4 roles in sleep regulation	63
1.5.1 Rhynchophylline reduces EphA4 phosphorylation	63
Chapter 2 Cellular effects of Rhynchophylline and relevance to sleep regulation	64
Abstract	66
1. Introduction	67
1.1. Rhynchophylline pharmacology	67
1.2 Sleep and its regulation	68
1.3 Rhynchophylline and sleep	69
2. RHY targets and links to sleep regulation	70
2.1 Ion channels	70

2.2 NMDA receptors	75
2.3 EphA4 and downstream pathways	80
2.4 BDNF/TRKB signaling	81
2.5 ERK/MAPK pathway	82
2.6 PI3K/AKT signaling network	83
2.7 NF-κB and neuroinflammation	86
2.8 Neurotransmitters signaling	87
3. Conclusions	89
Acknowledgements	91
References	91
Chapter 3 Hypotheses and Objectives	114
3.1 Overall rationale and general hypotheses	115
3.2 Specific aims	116
3.2.1 Determine if EphA4 and its ephrin ligands EfnB2 and EfnA3 are und regulation	er circadian 116
3.2.2 Define the effects of Rhynchophylline on sleep and the molecular underlying its effects	mechanisms 117
3.3 Specific contributions of the candidate	119
3.3.1 In determining if EphA4 and its Ephrin ligands EfnB2 and EfnA3 are und regulation	er circadian 119
3.3.2 In defining the effects of Rhynchophylline on sleep and the molecular underlying its effects	mechanisms 119
Chapter 4 Transcriptional regulation of EphA4, Ephrin-B2 and Ephrin-A3 by th	e circadian
clock machinery	120
Abstract	122
Introduction	123
Methods	125
Promoter analysis	125
Cloning	129
Design of <i>EphA4_D</i> with mutated E-boxes	130
Cell culture and transfection	131
Luciferase assays	132

Brain tissue punches and protein extraction	133
Immunoblotting and protein quantification	134
Spatial gene expression quantification	135
Statistical analysis	135
Results	136
Discussion	141
References	146
Chapter 5 Probing pathways by which Rhynchophylline modifies sleep using spat	ial
transcriptomics	156
Graphical abstract	158
Highlights	158
eTOC blurb	158
Summary	159
Introduction	160
Results	162
RHY increases SWS and state fragmentation	162
RHY impacts the ECoG in a state-dependent manner	164
Specific RHY targets correlate with sleep variables	166
RHY shapes the brain transcriptome in injection-time- and sex-dependent ways	168
Gene ontology analysis of RHY time- and sex-dependent effects	171
Core RHY-controlled genes are downstream of inflammation/immune pathways .	172
Brain region-specific effects of RHY on the transcriptome	173
RHY regulates sleep-related genes	175
Discussion	177
Author contributions	181
Acknowledgements	181
Star★Methods	
KEY RESOURCES TABLE	182
RESOURCE AVAILABILITY	
EXPERIMENTAL MODEL AND SUBJECT DETAILS	
METHOD DETAILS	184

QUANTIFICATIONS AND STATISTICAL ANALYSES
ADDITIONAL RESOURCES191
References
Supplemental information
Chapter 6 Discussion210
6.1 EphA4 in sleep and circadian regulation213
6.1.1 The molecular circadian clock regulates <i>EphA4</i> , <i>EfnB2</i> and <i>EfnA3</i> 213
6.1.1.1 Regulation by clock transcription factors may be restricted in time and space214
6.1.1.2 Transcriptional modulation by GSK3215
6.1.1.3 Clock transcriptional regulation for C and S hubs
6.1.1.4 Implication of clock regulation in disease and ageing
6.1.2 Potential roles of EhA4/Ephrins in circadian and sleep behavior
6.2 RHY induces sleep and affects transcripts linked to sleep control
6.2.1 RHY enhances sleep time and modifies sleep oscillations in rodents
6.2.1.1. RHY modifies brain oscillations in different vigilance states
6.2.2 RHY may modulate sleep via effects on the LH
6.2.3 RHY reduces expression of HPA axis elements
6.2.4 RHY modifies genes linked to inflammatory responses
6.2.5 RHY did not modify EPHA4 phosphorylation226
6.2.6 RHY modifies immediate early genes linked to the response to sleep deprivation228
6.2.7 Future identification of RHY targets for sleep regulation
6.3 RHY as a natural component for sleep modulation
6.4 Benefits and limitations of spatial transcriptomics
6.5 Other notions to better describe molecular mechanisms in sleep and circadian rhythms232
Chapter 7 Conclusions
References
Annexes

Chapter 2 – Cellular effects of Rhynchophylline and relevance to sleep regulation

- Table 1. Compilation of datasets showing molecular and cellular (and some electrophysiological and behavioral) effects of rhynchophylline (RHY) organized as a function of treatment type and duration, and by measurement timing.
- Table 2. List of literature showing effects of RHY on sleep-related pathways under physiological (baseline) and/or pathological (disease-modeled) conditions.

Chapter 4 – Transcriptional regulation of EphA4 and its ligands ephrin-B2 and ephrin-A3 by the circadian clock machinery

- Table 1. Regulatory elements found in the -3kb upstream of *EphA4*, *EfnB2* and *EfnA3*transcription start sites.
- Table 2. Forward and reverse primers used for cloning.

Table 3. Mutated E-boxes used in previous research.

Tabe S1. Differentially expressed genes (DEGs) between ZT4 and ZT14 (see Annex)

Chapter 5 – Probing pathways by which Rhynchophylline modifies sleep using spatial

transcriptomics

- Table S1. Protein quantification of total and synaptoneurosomal protein fractions of thalamus/hypothalamus, cerebral cortex and hippocampus (see Annex)
- Tabe S2. Differentially expressed genes (DEGs) modified by RHY at ZT4 and ZT14 in female and male brains (*see Annex*)
- Table S3. Gene Ontology analysis performed for the DEG sets for bulk, white matter tracts, cerebral cortex, hippocampus, thalamus and hypothalamus (*see Annex*)

Annex

Table A1. Cellular functions attributed to genes modified according to wake/sleep.

Chapter 1 – Introduction

Figure 1.1. Sleep states in humans and mice

Figure 1.2. The two-process model of seep regulation

Figure 1.3. The circadian TTFL and its many levels of regulation

Figure 1.4. EPHA4 can trigger multiple intracellular signaling.

Chapter 2 – Cellular effects of Rhynchophylline and relevance to sleep regulation

Figure 1. Representation of the chemical structure of rhynchophylline (RHY) and isorhynchophylline.

Figure 2. Schematic representation of cellular pathways targeted by RHY and relevant to sleep regulation.

Chapter 4 – Transcriptional regulation of EphA4 and its ligands ephrin-B2 and ephrin-A3 by the circadian clock machinery

Figure 1. *EphA4*, *EfnB2* and *EfnA3* putative promoter regions contain sleep and circadian-related regulatory elements.

- Figure 2. Circadian clock transcription factors activate transcription via *EphA4* putative promoter sequences.
- Figure 3. Circadian clock transcription factors activate transcription via *EfnB2* and *EfnA3* putative promoter sequences.
- Figure 4. EPHA4 and EFNB2 protein levels in the mouse PFC and SCN do not show circadian oscillations.
- Figure 5. *EphA4*, *EfnB2* and *EfnA3* spatial gene expression in mouse brain at ZT4 and ZT14.

Chapter 5 – Probing pathways by which Rhynchophylline modifies sleep using spatial transcriptomics

Graphical abstract

Figure 1. RHY increases SWS time, reduces PS time, and promotes wake and SWS fragmentation

Figure 2. RHY modifies ECoG activity in a vigilance-state dependent manner.

Figure 3. Protein levels are not modified by RHY but correlated with sleep variables.

Figure 4. RHY modifies the mouse brain transcriptome.

Figure 5. RHY modifies the brain transcriptome in a brain region-dependent manner.

Figure 6. RHY modifies the expression of sleep-related genes.

- Figure S1. Groups were similar in baseline, RHY increases SWS more prominently in females, and it modifies 24-h dynamics of ECoG oscillations in a vigilance-state dependent manner .
- Figure S2. CDK5 and GLT1 levels were unchanged by RHY and pGLUR1 correlates with decreased wake alpha activity
- Figure S3. CDK5 and GLT1 levels were unchanged by RHY and pGLUR1 correlates with decreased wake alpha activity.
- Figure S4. Analysis of enrichment in canonical pathways and for potential upstream regulators using Ingenuity pathway analysis, and of functional gene ontology terms.
- Figure S5. Spatial gene expression maps of selected DEGs found to be common between ZT4F, ZT4M, ZT14F and ZT14M.
- Figure S6. Transcription factors found to be enriched in ZT4F, ZT4M, ZT14F and ZT14M DEGs, and UMAP clustering of female and male spots of brain regions.

Chapter 6 – Discussion and perspectives

- Figure 6.1. The core clock machinery may control EphA4 roles in sleep and circadian behavior and Rhynchophylline induces sleep
- Figure 6.2. RHY induces SWS and modifies ECoG activity in *EphA4* KO mice similarly to how it does in *EphA4* WT mice.
- Figure A1. Spatial gene expression of immediate early genes downregulated by RHY

5-HT: serotonin or 5-hydroxytryptamine AD: Alzheimer's disease ADX: adrenalectomized AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ATP: adenosine triphosphate BDNF: brain-derived neurotrophic factor BF: basal forebrain BMAL: brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein CNS: central nervous system CA1: cornu ammonis area 1 CA3: cornu ammonis area 3 CAMKII: calcium/calmodulin-dependent protein kinase II CLOCK: circadian locomotor output cycles kaput CRE: cAMP-response element CREB: cAMP response element (CRE)-binding protein **CRY:** Cryptochrome CT: circadian time DD: dark-dark DEG: differentially expressed gene DNA: deoxyribonucleic acid DR: dorsal raphe DSIP: delta sleep-inducing peptide ECoG: electrocorticogram

EEG: electroencephalogram and electroencephalographic Efn: ephrin EGR: early growth response EMG: electromyogram EphA4: Eph receptor A4 ERK: extracellular signal-regulated kinases FKHR: forkhead box O1 (or FOXO1a) FOS: FBJ osteosarcoma oncogene FRE: FOXO response elements GABA: gamma-aminobutyric acid GH: growth hormone GHRH: growth hormone releasing hormone GLAST: glutamate/aspartate transporter (also named EAAT1) GLT1: glutamate transporter subtype 1 (also named EAAT2) GLUA1: glutamate receptor AMPA1 (alpha 1) subunit (also named GluR1) GSK3 β : glycogen synthase kinase 3 β Hcrt: hypocretin (orexin) HPA: hypothalamic-pituitary-adrenal IEG: immediate early gene IL: interleukin KO: knockout LC: locus coeruleus LD: light-dark LDT: laterodorsal tegmentum

LH: lateral hypothalamus LL: light-light LTP: long-term potentiation L-VGCC: L-type VGCC MAPK: mitogen-activated protein kinase MEF: myocyte enhancer factor 2D MEIS: meis homeobox 1 MESP2: mesoderm posterior 2 MCH: melanin concentrating hormone MS/DBB: medial septum and diagonal band of Broca mGLUR: metabotropic glutamate receptor mPFC: medial prefrontal cortex mRNA: messenger RNA miRNA: microRNA NF- κ B: nuclear factor kappa B NGF: nerve growth factor Nlgn: neuroligin NMDA: N-methyl-D-aspartate NMDAR: NMDA receptor NPAS2: neuronal PAS domain protein 2 NR4A1: nuclear receptor subfamily 4, group A, member 1 NREM: non-rapid-eye-movement TNF: tumor necrosis factor TSS: transcription start site TTFL: transcriptional-translational feedback loop PACAP: pituitary adenylate cyclase activating

polypeptide

PAX3: paired box 3 PER: Period PFC: prefrontal cortex POA: preoptic area PPAR: peroxisome proliferator-activated receptor PPT: pedunculopontine tegmentum PPRE: PPAR response element PS: paradoxical sleep **REM:** rapid-eye-movement RNA: ribonucleic acid RNAseq: RNA sequencing RHY: rhynchophylline ROR: retinoic acid-related orphan receptor **RORE: ROR-response elements** scRNAseq: single-cell RNA sequencing SD: sleep deprivation SCN: suprachiasmatic nuclei SGK1: serum/glucocorticoid regulated kinase 1 Sp1: Stimulating protein 1 SRS: sleep regulatory substances SWA: slow wave activity SWS: slow wave sleep TLR: Toll-like receptor TMN: tuberomammillary nuclei VGCC: voltage-gated calcium channel VLPO: ventrolateral preoptic area YKS: Yokukansan ZT: Zeitgeber time

"There are a hundred times more cells in our body than there are stars in our galaxy" Martin Rees

World knowledge builds on years of efforts and passion, and not a single book would be written without human exchange for the forging of new ideas. Above all, I thank my mentor, Valérie Mongrain, for opening the doors to the molecular sleep world to me, and for your generosity on scientific curiosity, rigor, self-discipline and adaptation. I also thank you for your courage and marvelous ideas. It is a treasure to build research and life career with you. This work would also not had been done without Julien. Thanks for your patience, calm answers and advice, for coming at dark circadian hours and for bringing chords and rockets to the bench. I want to deeply thank Tanya as well, for her severity in science and unique inspiring strength. This research would neither had been possible without Yousra's clarity and transparency in teamwork. Thanks also to Lydia, for your blue-pink meticulousness, great help and for sharing my first lab experience so tastefully. To Emma, for her honest advice in the form of cups of wine, and to Erika and Pierre-Gabriel, for their fantastic work and contribution to my learning. I thank Benoit (you should have arrived earlier), Rama, Romina, Thomas, Audrey, Morgane, Nicolas, Christina, Bong-Soo, and Simon, for being fantastic science peers. I express deep gratitude to Jannic and Numa, for their availability and valuable feedback all these years, and to my jury members for accepting to evaluate and enrich this work. I thank Nicolas Cermakian as well, for offering his lab and advice, and for teaching me so much about devotion for the scientific community, and I thank all the members of the student associations, scientific societies and meeting organizers with who I had the truly inspiring privilege to work with.

This work would also not be possible without the scientific:human discussions with Eve, Claudia Piccard, Cassandra, Matt, Sana, Maryam and Samir. Thanks for your scientific drive, arty motivation, values and friendship. I also have a gigantic debt to my previous professors. I thank Cristina Nicolau and Rubén Rial, for accepting me in their project in 2013 and for transmitting to me their beautiful passion for sleep and rhythms so early in my career, but I also thank A. Gamundí, P. Montoya, M. Ribas-Carbo, A. Miralles, S. Esteban, J. García, R. Alemany, S. Aparicio, J. Flexas, G.M. Vicens, and many, many other professors at UIB. Pursuing my biology degree at UIB made my real happiness appear. I also thank high school professors, especially Isabel Roca, for presenting to me Darwin and a molecular pathway for the first time (without books), and to Antònia Sitjar, who taught me that people can be sponges of knowledge... and I have never stopped since then. It is very fun.

I also want to thank my father for suggesting to me very early to choose wisely how I want to spend my waking hours, and to my mother, who showed me how to build life flexibility and strength. You both insisted on defining one's priorities without following conventions. I am also immensely grateful to Coloma, for your endless support (since my efforts in understanding derivatives), and for your serenity and amusement when hearing my "curolles". Cheers to the ones who dream (and get frustrated, sometimes). Thanks also to my brother, my unending source of goodness, and to my grandparents Joana, Onofre, Susana and Tomeu, for nurturing perseverance and values. I deeply thank my friends Laetitia, Camil, Alberto Osa, Joan, Duncan, François, Maria Binimelis, Rosa, Maria Marin, Toni, Nati, Miquel Angel, Victòria Burguera, Clàudia, Elvira, Catina, Aina, Josep, Rafel Cantallops, Angie, Michel, Alberto Herrero and Salva. You all make the world a better place. And I thank Sam Harris, whose work keeps me rooted to humanity's fundaments. Thanks also to Malcolm Gladwell for entertaining my sleep scorings, to Petra, Susy Daigle, Arcade Fire, and all the researchers who pose questions and discuss out loud openly in congresses. I thank the Vanier Canada Graduate Scholarships program, the online sport trainers, the creators of zoom, and all the researchers of the many (successful and unsuccessful) COVID vaccines.

Chapter 1

Introduction

Life has adapted its biological functioning to the Earth's rotation and orbit around the Sun. Some of the most robust adjustments are the ones developed according to the biphasic distribution of sunlight and heat every 24 hours. Unicellular organisms like cyanobacteria developed internal rhythms to schedule functions at the appropriate moment: for instance, they conduct nitrogen fixation with an approximate 24-hour period in order to protect the nitrogenase enzyme from heightened oxygen levels during photosynthesis taking place during the daytime (*Huang et al., 1990*). These are considered circadian rhythms of the cell because they occur even under constant lightning conditions. Other ancient organisms show endogenous circadian rhythms in activity patterns such as the swimming velocity of paramecium or the grow of mycelia in fungi (*Nakajima and Nakaoka, 1989; Baker et al., 2012*). Sponges also show daily rhythms of contractility (*Nickel, 2004*). Interestingly, 24-hour rhythms of activity-rest behavior have been found from jellyfish, nematodes, molluscs, arthropods to all vertebrates, and they are also regulated by endogenous circadian rhythms (well reviewed in *Jaggard et al., 2021; Pennisi, 2021*). This highlights that biological functions require a resting phase adequately timed since early stages of evolution.

Humans do not escape from this rule. Sleep is a circadian rhythm, occupies a third of our lifetime, and sleep deprivation strongly impairs metabolic, immune, cardiovascular and cognitive functions, as well as augments mortality risks (Grandner, 2017). Enough time and quality of sleep is fundamental to sustain attention, for memory consolidation and mood regulation (Van Dongen et al., 2003; Banks and Dinges, 2007). Unfortunately, insomnia symptoms affect one in every three individuals over a year, and inadequate sleep is calculated to cost more than \$600 billion per year worldwide (Ferrie et al., 2011; Hafner et al., 2017; Hillman et al., 2018). Moreover, sleep disturbances are the most prevalent comorbidity of neuropsychiatric disorders such as depression, Alzheimer's or Parkinson's disease, and suppose an aggravating factor for patients' symptomatology (Gan-Or et al., 2018; Irwin and Vitiello, 2019; Riemann et al., 2020). In addition, sleep is necessary for brain development (Wintler et al., 2020; Mason et al., 2021), and sleep disturbances in ageing are associated with cognitive impairments (Yaffe et al., 2014; Scullin and Bliwise, 2015). Meanwhile, chronodisruption (a misalignment of the environmental time with the phase of body functions), which often appear with night shifts, time-zone travel or sleep disturbances, has been associated with higher risk of obesity, diabetes, cardiovascular diseases, and cancer (Reiter et al., 2007; Reiter et al., 2012; Chellappa et al., 2019). Thus, understanding how

sleep and circadian machineries work and interact in cells and the brain is essential for today's society to maximize health.

Latest technologies in animal mutagenesis, microscopy and omics studies are allowing an increasing understanding of sleep and circadian regulation at the molecular level (Bruning et al., 2019; Hor et al., 2019; Li et al., 2022a; Smyllie et al., 2022). Research points that both circadian oscillations and sleep need modifies gene expression, molecule location and protein levels and activation. However, the interactions between circadian and sleep regulation, as well as potential interplay with other neuronal processes and inflammatory/metabolic factors, still needs to be united. EPHA4 is a cell adhesion molecule tyrosine kinase involved in cell growth, neuronal development, and neurotransmission (Flanagan and Vanderhaeghen, 1998; Murai and Pasquale, 2011). Its roles in synapses and peripheral tissues (e.g., epithelial cells) have linked it to multiple diseases, including multiple cancers and Alzheimer's disease (Chen et al., 2012; Kou and Kandpal, 2018; Chen et al., 2021). Interestingly, our group has shown that mice lacking the EphA4 gene show altered sleep and circadian behaviors (Freyburger et al., 2016; Freyburger et al., 2017; Kiessling et al., 2018). Therefore, this thesis aims at testing EphA4 roles in both sleep and circadian physiology. On the one hand, it will be assessed if the transcription of the EphA4 gene and the genes of its ligands is regulated by the clock machinery. On the second hand, we will investigate if a repressor of EPHA4 activity modulates sleep in normally developed adult mice. We expect with this to reveal potential mechanisms underlying roles of EphA4 in sleep and rhythms, as well as to expand the description of molecular components regulating sleep and circadian behavior.

Chapter 1 describes mechanisms governing sleep and circadian rhythms, with a focus on mammalian physiology. It includes neuronal circuitry underlying the different arousal states, how sleep is regulated by both homeostatic and circadian processes, and the contribution of multitudinous molecular elements. Research shows that targeting single molecules can largely modify sleep and rhythms. The chapter will also concentrate on describing the Eph/Ephrin cell adhesion system, its functions and potential implications for sleep and circadian physiology. It will finally present the modulator of EPHA4 activity rhynchophylline (RHY), and the potential relevance for sleep modulation. The significance of RHY highlighted at the end of Chapter 1, will be more extensively presented in a review article which composes Chapter 2.

1.1 Sleep

Sleep is a process of lowered behavioral activity fundamental for organisms not only to recover from activity but also to consolidate experience. It is defined as a process of decreased locomotor activity in which organisms increase the sensory threshold for arousal. These characteristics have been found in cnidaria, nematodes, arthropods, molluscs, and vertebrates (*Nath et al., 2017; Kanaya et al., 2020; Pennisi, 2021*). Sleep benefits the recovery of processes which have been accumulated or depleted during wakefulness, such as oxidative stress or energy levels (*Frank and Heller, 2019; Kempf et al., 2019*). For example, it fosters processes of DNA repair, waste clearance, protein synthesis, and pathogen fight (*Imeri and Opp, 2009; Seibt et al., 2012; Xie et al., 2013; Bellesi et al., 2016*). Thus, sleep is not only necessary for survival in mammals, but it also allows proper immune, metabolic and cognitive functions such as memory consolidation and mood (*Imeri and Opp, 2009; Frank and Heller, 2019; Frank and Heller, 2019*).

It has been suggested that repeated and synchronized neuronal silencing is another common feature of sleep present in *C. elegans*, drosophila, fishes, and the rest of vertebrates *(Nath et al., 2017; Leung et al., 2019; Niethard et al., 2021; Tainton-Heap et al., 2021)*. Thus, in birds, reptiles and mammals, it is characterized by an increased neuronal synchronization detected by slower frequencies in the electroencephalogram (EEG) *(Abel et al., 2013; Rattenborg et al., 2016; Shein-Idelson et al., 2016)*.

1.1.1 The sleep states

In reptiles, birds and mammals, sleep is composed of two main states defined as non-rapideye-movement (NREM) sleep (similar to slow wave sleep [SWS] in rodents and other non-primate species), and rapid-eye-movement (REM) sleep (correspondent to paradoxical sleep (PS) in nonprimates) (*Abel et al., 2013; Rattenborg et al., 2016; Shein-Idelson et al., 2016*) (**Figure 1.1**). Interestingly, quiet sleep (comparable to SWS) and active sleep (potentially comparable to PS) have also been described in flies, fishes and cuttlefishes (*Frank et al., 2012; Leung et al., 2019; Tainton-Heap et al., 2021*). Human NREM sleep is subdivided in three states (NREM N1-N3) according to their EEG frequencies and sleep depth, and which occur in a sequential order: N1 and N2 are light sleep, and N3 is deep sleep *(Carskadon and Dement, 2005)*.

Figure 1.1. Sleep states in humans and mice. Sleep in humans is monophasic, occur during the night and is organized in 5-6 cycles. Sleep in nocturnal mice is more scattered throughout the 24 hours but concentrated in the light period (they are nocturnal animals). Sleep in humans is divided in wake, NREM sleep (N1-N3) and REM sleep, while in rodents it is divided into wake, SWS and PS. Figure adapted from Carskadon and Dement (2005).

Wakefulness is characterized by irregular high frequency activity determined by the cognitive processing occurring at each moment (*Montgomery et al., 2008; Headley and Pare, 2017*). The EEG during wakefulness is predominated by alpha (generally 8-13Hz in human), beta (13-30Hz) and gamma activity (>30Hz). During active (physically or cognitively engaged) wake, theta (4-9Hz), beta and gamma activity can become more prominent, while slower frequencies are enriched in quiet wake (*Gronli et al., 2016; Del Percio et al., 2017; Vassalli and Franken, 2017*). SWS is characterized by low muscle activity and high neuronal synchronization, which is reflected with low amplitude electromyogram (EMG) and high EEG power in the slow wave activity range (SWA; 0.5-4.5 Hz; also more prominent in human N3) (*Amzica and Steriade, 1998; Timofeev et al., 2012; Hubbard et al., 2020*). SWA, which comprises slow oscillations (<1Hz) and delta activity (1-4Hz), is a product of a synchronized pattern of neuronal firing (up state or burst firing) alternating with neuronal silencing (down state or hyperpolarization) of cortical and thalamocortical neurons (*Steriade et al., 2001*). Thalamocortical sleep spindles (10-15 Hz; distinctive of human N2) and hippocampal sharp-wave ripples are also characteristic of SWS, and

are both linked to cognitive processing (Axmacher et al., 2008; Girardeau et al., 2009; Bandarabadi et al., 2020; Fernandez and Luthi, 2020). PS is predominated by muscle atonia and theta activity (originating from the connections between the medial septum and diagonal band of Broca complex [MS/DBB] of the BF and the hippocampus) (Mitchell et al., 1982; Lee et al., 1994; Montgomery et al., 2008; Boyce et al., 2016; Peever and Fuller, 2017; Bandarabadi et al., 2019). Although the quality of the three vigilance states is defined by the brain activity quantified within these multiple EEG frequency ranges, the transition between states and the time spent in each state is determined by the activation and inhibition of different brain centers and circuits (covered in section 1.2.1). In addition, all sleep defining features (e.g., position of sleep during the day or sleep schedule, the duration of the sleep episode, and the quality of the EEG activity in different frequencies during sleep) are regulated by two main processes: the circadian system and the homeostatic regulation of sleep (see section 1.3).

1.1.2 Some sleep variables are influenced by sex

Studies in both humans and mice suggest that some sleep phenotypes differ between males and females, and reviews on the topic suggest that most of these differences depend on gonadal hormones (Mong et al., 2011; Gervais et al., 2017; Dib et al., 2021). For instance, even though women tend to have worst subjective perception of their sleep and higher risk for insomnia than men, quantitative measures suggest that women have a longer sleep duration and higher EEG power in delta, theta and high sigma (14-15Hz) frequencies during sleep (Dijk et al., 1989; Carrier et al., 2001; Redline et al., 2004; Mongrain et al., 2005; Zhang and Wing, 2006; Bixler et al., 2009; Suh et al., 2018). In contrast, most studies suggest that female mice have less total sleep and SWS (Franken et al., 2006; Koehl et al., 2006; Paul et al., 2006; Ehlen et al., 2013; Sare et al., 2020), which highly depends on gonadal hormones and the time of the day (Paul et al., 2006; Ehlen et al., 2013; Cusmano et al., 2014; Swift et al., 2020). Interestingly, the aforementioned sex differences in human sleep EEG oscillations seem to better correspond to sex differences found in rodents, as female mice show higher delta and sigma activity during sleep (Franken et al., 2006; Koehl et al., 2006), an effect which seems also modulated by gonadal hormones and time-of-day in rats (Schwierin et al., 1998; Swift et al., 2020; Smith et al., 2022). This suggests that even though some of the gonadal effects may differ between species, studies in rodents may help identifying sex differences in sleep or sleep variables that depend on gonadal hormones with relevance to human.

Moreover, it is important to highlight that some sex differences in sleep might be influenced by other factors such as age, genotype or disease. For example, sex differences in slow wave activity can be modulated by age in humans and rats (*Hume et al., 1998; Robillard et al., 2010; Luca et al., 2015; Kostin et al., 2020; Rosinvil et al., 2021*). Furthermore, the effects of some mutations differ between sexes: female mice knockout (KO) for *Npas2* (a circadian gene which will be discussed in section 1.3) have more SWS delta power than wildtype females, while KO males have less (*Franken et al., 2006*). Elevated levels of prenatal kynurenin (which is found elevated in schizophrenia and bipolar disorder), reduces REM sleep in the rat male offspring, but induced hyperarousal in females (*Rentschler et al., 2021*). An hypocretin receptor antagonist (receptor involved in the activation of wake-regulatory cells) was more efficient in induing SWS in males than females of a mouse model of Alzheimer's disease (*Keenan et al., 2022*). These examples highlight that the treatment for some sleep disorders or other disease might depend on the sex, and that it is necessary to study drug efficacity in both sexes. Thus, females and males will be considered throughout the research presented in this thesis.

1.2 Brain systems controlling sleep

1.2.1. Brain circuits

The changes in EEG activity and sensory arousal thresholds that occur across vigilance states are achieved by activation/inhibition of a collective of brain nuclei, which also determines the transition between the three vigilance states (*Saper et al., 2005a; Jones, 2020*). The idea that different brain areas could have distinct control of arousal was raised by early studies showing that lesions in the hypothalamus and brainstem, but not thalamic lesions impaired wakefulness maintenance (*Von Economo, 1930*). Nevertheless, the development of optogenetics, chemogenetic and *in vivo* single cell imaging tools have revealed that these brain regions are often heterogenous and that particular cell types inside these regions dictate SWS, PS or wakefulness (*Jones, 2020*). As will be extended below, during wakefulness, wake promoting neurons induce/sustain wakefulness and/or inhibit sleep promoting centers. Sleep promoting neurons are active during sleep and can inhibit wake-promoting centers as well.

Wakefulness is maintained by the ascending arousal circuits (Saper and Fuller, 2017; Jones, 2020). In the dorsal arousal circuit, neurons from the reticular formation (mainly laterodorsal tegmentum (LDT), pedunculopontine tegmentum (PPT)) project to thalamic nuclei, which in turn send broad connections to the cortex and allow cortical activation (Steriade et al., 1993; Cisse et al., 2018; Gent et al., 2018). The ascending ventral pathway consist of neurons from the basal forebrain (BF), lateral hypothalamus (LH), and tuberomammillary nuclei (TMN), which not only induce cortical activation but also control state occurrence (Adamantidis et al., 2007; Han et al., 2014; Anaclet et al., 2015; Fujita et al., 2017). BF, LH, and TMN receive modulatory input from the reticular activating neurons (e.g., the locus coeruleus; LC) (Samuels and Szabadi, 2008; Carter et al., 2012). Principal sleep promoting neurons are GABAergic neurons in the hypothalamus, including the ventrolateral preoptic area (VLPO), the medial preoptic area (mPO), but also in the parafacial zone and GABAergic neurons of the basal forebrain, and they can contribute to inhibit wake-promoting centers (Szymusiak et al., 1998; Suntsova et al., 2002; Modirrousta et al., 2004; Takahashi et al., 2009; Sakai, 2011; Anaclet et al., 2014). Main PS-inducing neurons are neurons in the LDT and PPT, which allow cortical activation while behavioral sleep is maintained (Shouse and Siegel, 1992; Van Dort et al., 2015). Thus, the behavioral wake or sleep states result from the sum of the activity of multiple cell populations.

One of the most well characterized sleep/wake regulating center is the LH, which contains multiple neuronal populations involved in sleep regulation. LH hypocretin (Hcrt, or orexin) cells are crucial for wakefulness, given that their light-evoked activation induce arousal, and their inhibition induces cortical synchronization and SWS (Adamantidis et al., 2007; Tsunematsu et al., 2011). Furthermore, the firing rate of LH Hcrt⁺ cells is higher during active wake, lower during quiet wake, becomes almost null during SWS and PS (with particular sporadic discharges in PS) (Lee et al., 2005; Mileykovskiy et al., 2005). They fire particularly high at the sleep to wake transition (Lee et al., 2005). Hert cells also received scientific attention given that their number is reduced in the brain of narcoleptic patients and Hcrt expression is reduced in the CSF in both narcolepsy and hypersomnia (Thannickal et al., 2000; Ebrahim et al., 2003; Thannickal et al., 2009). Moreover, Hert modulating drugs have been approved for insomnia and are under study for narcolepsy (Michelson et al., 2014; Barateau and Dauvilliers, 2019). Interestingly, Hcrt⁺ cells in the LH are intermingled with another cell type having contrasting roles in sleep regulation: the melanin concentrating hormone (MCH) cells. MCH cells are almost silent during wake and have their maximum firing during PS (Hassani et al., 2009). Light-induced activation of MCH cells in the general hypothalamic region was shown to induce both SWS and PS, or solely PS, which likely depended on the duration of the stimulation, the MCH subpopulation targeted in the hypothalamus and/or the moment of stimulation (dark vs light period, or stimulation during wakefulness vs SWS) (Jego et al., 2013; Konadhode et al., 2013; Tsunematsu et al., 2014; Blanco-Centurion et al., 2016; Varin et al., 2018). In fact, the silencing of hypothalamic MCH neurons lowered the frequency and amplitude of hippocampal theta rhythm (Jego et al., 2013), and the inhibition MCH inputs into the ventrolateral periaqueductal gray (vlPAG) and the LPT reduced the number of transitions to PS (Kroeger et al., 2019). Moreover, Hcrt⁺ and MCH cell types seem to respond to the time spent in wakefulness. While sleep deprivation (SD) increases the number of c-FOS⁺ Hert cells, MCH c-FOS⁺ cells increased with sleep recovery (Modirrousta et al., 2005). Moreover, SD reduces the apposition of glutamate transporter subtype 1 (GLT1 or EAAT2) on Hcrt⁺ cells, but increases its apposition on MCH cells (Briggs et al., 2018). Interestingly, inhibition of MCH neurons exclusively during PS did not alter sleep architecture but impaired hippocampal-dependent memory (Izawa et al., 2019). In sum, research supports that Hcrt⁺ cells are sufficient and necessary to induce wakefulness. In contrast, MCH cells are sufficient but unnecessary to modulate sleep, and they are required for adequate sleep.

Although the activation of wake/sleep-activating centers usually results in a change in the global vigilance state, more local and/or transitory sleep features have also been found in mammals (*Vyazovskiy et al., 2004; Vyazovskiy et al., 2011; Bersagliere et al., 2018; Thomas et al., 2020*). For example, transitions between wake and SWS or between SWS and PS show gradual changes of cortical activity reminiscent of the prior and/or emerging state (*Ferrara and De Gennaro, 2011; Bjorness et al., 2018*). Moreover, birds, dolphins and other aquatic mammals, have frequent unihemispheric sleep, especially during migrations (*Mukhametov, 1987; Rattenborg et al., 2016*). Interestingly, local increases in SWA in specific areas of the cortex have been found in rodents and humans (*Huber et al., 2004; Vyazovskiy et al., 2006*). Although these local regulations seem to follow the level of prior use (*Vyazovskiy et al., 2004; Vyazovskiy et al., 2014; Vyazovskiy et al., 2014; Vyazovskiy et al., 2004; Vyazovskiy et al., 2004; Vyazovskiy et al., 2014; Vyazovskiy et al., 2014; Vyazovskiy et al., 2014; Vyazovskiy et al., 2004; Vyazovskiy et al., 2011; Bersagliere et al., 2018; Thomas et al., 2020*), this suggests that sleep characteristics can be regulated locally, but that the sleep state requires an integrated change in brain state.

1.2.2 Molecular systems within circuits

Previous sections cover how the transition between vigilant states and brain oscillations relies on coordinated neurotransmission. Accordingly, identifying which molecules and intracellular pathways drive cell responses in sleep-regulatory neuronal populations is crucial to understand the sleep behavior. This section presents animal research which, by modulating specific cellular elements with genetic or chemical approaches, proves that single proteins at the cell membrane and proteins of intracellular cascades can dictate sleep phenotypes.

1.2.2.1 Channels, receptors and adhesion molecules

It is reviewed by us and others that components of cellular membranes including ion channels, receptors, adhesion molecules and components of the extracellular matrix may modulate sleep (O'Callaghan et al., 2017; Ode et al., 2017a; Cooper et al., 2018). Given the importance of neuronal communication and synchronization for sleep, it is unsurprising that ion channels which modulate the membrane potential are contributing to shape EEG activity during sleep and control alternations between sleep states. Ion channels involved in neuronal depolarization and hyperpolarization states may be especially relevant, because mice KO for voltage-gated Ca²⁺ channels (*Cacna1g*, *Cacna1h*) and Ca²⁺-dependent K⁺ channels (*Kcnn2*, *Kcnn3*) show a shorter sleep duration (*Tatsuki et al., 2016; Ode et al., 2017a*). Voltage-gated Ca²⁺ channels (VGCC) are important for cortical and hippocampal oscillations and mouse KO for *Cacna1c* (subunit of L-type

VGCC) show reduced gamma activity (20–64 Hz) during wakefulness and PS, as well as decreased PS after SD *(Hansen et al., 2014; Kumar et al., 2015; Plumbly et al., 2019). CACNA1C* polymorphisms have also been linked to sleep latency in infants *(Kantojarvi et al., 2017).* Nevertheless, it remains to be defined whether the role of these channels in regulating the sleep latency or states duration relies exclusively on their function in specific cell types or neuronal populations. For example, recent research shows that the loss of voltage-gated K⁺ channels KCNQ2/3 in LH Hcrt neurons induce sleep fragmentation *(Li et al., 2022a).*

Similarly, neurotransmitter receptors highly influence sleep characteristics. Gamma aminobutyric acid type A (GABA_A) receptors have been extensively studied in sleep, and agonists, such as benzodiazepines, are important sedatives (Lancel, 1999; Winsky-Sommerer, 2009; Jones, 2020). Targeting these type A receptors have been suggested to target more thalamic and cortical neurons (Winsky-Sommerer, 2009). However, it should be investigated whether GABAA receptors agonist also modulate the effects of other GABAergic populations involved in sleep regulation, such as PS-modulating neurons in the PPT or wake-inducing GABAergic cells in the LH (Venner et al., 2016; Kroeger et al., 2017), or GABAergic neurons in the MS/DBB, which regulate theta activity and PS-dependent memory consolidation (Boyce et al., 2016). Glutamatergic receptors are also involved in sleep regulation in a cell population-dependent manner. Glutamate or N-methyl-D-aspartate (NMDA) injections in the BF or TMN increases wake time, but injections in pontine regions induce cortical desynchronization and PS (see section 2.2 in Chapter 2 for details, Ballester et al., 2021; Datta and Siwek, 1997; Manfridi et al., 1999; Datta et al., 2001; Yin et al., 2019). Likewise, in line with the implication of dorsal and ventral arousal circuits, Hcrt, acetylcholine (ACh), serotonin and dopamine receptors modify sleep variables (see section 2.8 in Chapter 2; Jones, 2020). Receptor subtypes must not be neglected in the context of wake/sleep regulation. KO mouse models suggest that Hert receptor (HCRTR) 2 might be more involved in reducing SWS than HCRTR1, which is likely caused by the receptor distribution in sleep regulatory neurons (Mieda et al., 2011). While single KO of Chrm1 or Chrm3 (genes for the cholinergic muscarinic receptors) reduced SWS time and induced PS fragmentation, Chrm1/Chrm3 double-KOs had a complete abolishment of PS sleep (Niwa et al., 2018). Similarly, noradrenaline in the BF excites ACh cells through A α 1Rs, but inhibits GABAergic neurons through A α 2Rs (Manns et al., 2003); and serotonin (5-HT) receptor subtypes can have contrasting roles in sleep regulation (see section *2.8 in Chapter 2*). Therefore, understanding the location and regulation of receptors should be as relevant as identifying ligand levels to fully comprehend the regulation of sleep behavior.

Cell adhesion molecules (CAMs) include immunoglobulin super family, integrins, cadherins, neurexins/neuroligins and Ephrins/Eph receptors, and their role in modulating synaptic strength and stability makes them relevant for sleep (O'Callaghan et al., 2017). Previous research from our group showed that the different mouse models KO for Neuroligin-1 (Nlgn1), Neuroligin-2 (Nlgn2) or the Eph receptor A4 (EphA4) have altered sleep architecture and EEG activity (*El Helou et al., 2013; Massart et al., 2014; Freyburger et al., 2016; Freyburger et al., 2017; Seok et al., 2018)*. For instance, mice KO for *Nlgn1* (involved in NMDA receptor [NMDAR] recruitment) are sleepier than wildtype mice, and mice lacking *Nlgn2* (with roles in GABAergic neurotransmission) had more wakefulness than wildtypes (*El Helou et al., 2013; Seok et al., 2018*). Potential implications of EphA4 in sleep regulation will be discussed in section 1.4. In addition, as suggested by Cooper et al., the extracellular matrix also provides a structural environment for cell-cell interactions which may be relevant for sleep regulation, and this link remains mainly unexplored (*Cooper et al., 2018*). Moreover, it will be pertinent to investigate whether CAMs and other membrane molecules are implicated in sleep regulation via roles in particular sleep circuits or nuclei.

In conclusion, membrane components modulating synaptic strength and structure, neuronal responses and firing can determine sleep transitions, oscillations, as well as proper responses to sustained wakefulness. Even though the literature showcases the relevance of receptor subtypes for sleep physiology, there is scarce information on the relevance of different subtypes of adhesion molecules (e.g., different isoforms of Neuroligin 1) (*El Helou et al., 2013*). Furthermore, CAMs such as Nlgn1 or EphA4 have been linked to cognitive disorders such as major depressive disorder (MDD) or Alzheimer's disease (*Simon et al., 2009; Williams et al., 2009; Zhang et al., 2017; Dufort-Gervais et al., 2020; Li et al., 2022b*), and the sleep phenotypes described above may explain sleep disturbances or sleep comorbidities in these pathologies. Thus, understanding the relevance of cell components in sleep brain regulatory centers will contribute to identify not only new sleep mechanisms but also novel therapeutic avenues.

1.2.2.2 Intracellular pathways

Comparable to findings on membrane molecules, the levels and activation of intracellular components also appear to control sleep. As will be discussed in section 1.3.2.2, recent theories suggest that kinases and the phosphorylation levels of some proteins may be linked to sleep need and onset (Honda et al., 2018; Wang et al., 2018b; Bruning et al., 2019; Ode and Ueda, 2020). Related to some of the studies pointing at the relevance of ion channels and receptors for sleep regulation (see previous section), it is suggested that kinases that respond to intracellular Ca²⁺ levels may determine sleep duration given that mouse models KO for Camk2a and Camk2b (calcium/calmodulin-dependent protein kinase II alpha and beta) show a shorter time spent asleep (Tatsuki et al., 2016; Ode et al., 2017a). Moreover, the phosphorylation state of CaMKIIB determines sleep duration in mice (Tone et al., 2022). The loss or mutation of a phosphorylation site for PKA in the salt-inducible kinase 3 (SIK3; as well as SIK2 and SIK3) increases SWS (Funato et al., 2016; Honda et al., 2018; Park et al., 2020). Attention has also been given to extracellular signal-regulated kinases (ERK)1/2. Overexpression of activated ERK in drosophila increases SWS, but ERK1 or ERK2 KO mice have reduced SWS (Vanderheyden et al., 2013; Mikhail et al., 2017). Intracellular membrane adaptor proteins, which link membrane and intracellular responses, can also drive sleep control. Mice mutant for SHANK3 (SH3 and multiple ankyrin repeat domains 3) have less sleep time and SWA than wildtypes (Ingiosi et al., 2019). Therefore, the implication of membrane molecules in sleep regulation cannot be fully understood without identifying the triggered downstream pathways. All these studies mentioned have focused on knocking out these intracellular components in the full brain, and studies targeting specific brain regions and cell populations will be required.

1.3 The two-process model of sleep regulation

Sleep is a state controlled to maintain the equilibrium in diverse physiological functions, and which responds to the demands of previous body activity. Prolonged time in wakefulness or more energetically demanding waking-experiences will increase sleepiness and enhance sleep intensity in the next sleep phase (Franken et al., 1991b; Deboer et al., 1994; Vassalli and Franken, 2017) (see section 1.3.2). Nevertheless, the need for recovery is not the only factor dictating when to enter in a sleep state, as the internal circadian rhythm aligns the body functions (including sleep) to the 24-hour rhythm of the environment (see below). Borbély and Daan defined this interplay as the "two-process model of sleep regulation", to illustrate how sleep is under a balanced regulation by both homeostatic and circadian processes (Borbely, 1982; Daan et al., 1984) (Figure 1.2). They modelled the contribution of both processes, where sleep homeostasis (process S) increases according to time-spent awake and dissipates once the organism enters sleep, and where the circadian regulation (process C) oscillates reaching a peak of wake drive near the late active period. Today, even though current research suggests that other processes might contribute to regulate sleep (e.g., motivation) (Sotelo et al., 2022), the strong implication of processes C and S has continued to be confirmed by the community (Curie et al., 2013; Muto et al., 2016; Vassalli and Franken, 2017; Wang et al., 2018b).

Figure 1.2. The two-process model of sleep regulation. Borbély and Daan proposed in 1982 that sleep need, sleep timing and sleep intensity are functions of two cooperative processes: sleep homeostasis (process S) and the circadian regulation (process C). Other processes, also regulated by processes S and C, also contribute to sleep regulation (e.g., temperature, corticosterone). Figure adapted from Borbely *et al.* (2016), Krauchi and Wirz-Justice (2001) and Oster *et al.*, (2017).

1.3.1 Circadian regulation (process C)

To adapt their biological functions to the environmental daily changes, organisms have developed internal circadian rhythms that oscillate with a close to 24-hour period. This circadian regulation is detected at the cellular level and is achieved by molecular feedback loops whose elements activate and repress in cycles (**Figure 1.3**). In mammals, circadian rhythms are regulated by a transcriptional translational feedback loop (TTFL) in which the proteins CLOCK (circadian locomotor output cycles kaput 1) and BMAL1 (brain and muscle Arnt [arylhydrocarbon receptor nuclear translocator]-like protein) bind in dimer to regulatory elements called E-boxes (e.g., CACGTG) to activate the transcription of the *Period (Per)* and *Cryptochrome (Cry)* genes (*Gekakis et al., 1998; Takahashi, 2017*). Then, PER and CRY proteins form a complex with casein kinase (CK)1δ and CK1ε, translocate to the nucleus, and inhibit CLOCK and BMAL activity reducing, in consequence, their own transcription and allowing the loop to restart (*Takahashi, 2017*).

Figure 1.3. The circadian TTFL and its many levels of regulation. Circadian rhythms in mammals are maintained thanks to a self-sustained transcriptional translational feedback loop (TTFL). The clock transcription factors CLOCK (or its homologue NPAS2, light blue factors) dimerize with BMAL1 (or its homologue BMAL2) and activate transcription via regulatory elements called E-boxes (CACGTG or CANNTG). This induces the expression of other clock elements such as Periods (*Per*) and Cryptochromes (*Cry*). PER and CRY translocate to the nucleus and inhibit the transcriptional activation induced by CLOCK and BMAL1. Additional loops (e.g., REV-ERB α/β and ROR $\alpha/\beta/\gamma$ proteins [encoded by the *Nr1d1/2* and *Rora/b/c* genes] which act on RORE elements) and posttranslational modifications (e.g., phosphorylation by the glycogen synthase kinase 3 β [GSK3 β]) adjust the period and amplitude of the rhythms. Figure adapted from Takahashi (2017).
This TTFL is expressed in most (if not all) cells of the body, and it cycles in the brain and peripheral tissues including the liver, lung, and skeletal muscle (Yamazaki et al., 2000; Welsh et al., 2004; Brancaccio et al., 2017). In addition, mammals evolved a natural internal pacemaker that synchronizes the different tissues (and clocks) of the body to the light/dark changes of the environment, which is located in the suprachiasmatic nucleus (SCN) of the hypothalamus (Hastings et al., 2018). These bilateral nuclei (each side composed of approximately 10,000 cells) are located above the optic chiasm and maintain a self-sustained rhythm of cell firing, Ca²⁺ activity and gene expression (Noguchi et al., 2017). These rhythms are "endogenous" because they persist even when isolating the SCN from external time cues or in vitro, which provides it with these unique pacemaker properties. Interestingly, endogenous circadian rhythms vary between species, strains and individuals (Pittendrigh and Daan, 1976; Schwartz and Zimmerman, 1990). The SCN rhythm runs in average a bit longer than 24 hours in human (~24.2 h) and a bit faster in Mus *musculus* strains (~23.5 h), but the nuclei receive multiple synchronizer signals (called *zeitgebers*) that aligns the SCN phase to the exact 24 hours of the environment (Schwartz and Zimmerman, 1990; Duffy and Wright, 2005). The most influencing zeitgeber (synchronizer) is the light/dark cycle of the environment, but other zeitgebers include temperature, food consumption and social interaction (Sharma and Chandrashekaran, 2005). In fact, the SCN is particularly wired to respond to light: light stimulates retinal ganglion cells, which directly stimulates the SCN through glutamatergic and PACAP (pituitary adenylate cyclase activating polypeptide) release from the retinohypothalamic tract (Hannibal, 2002). This induces the raise of intracellular calcium in SCN neurons, and the activation of cAMP response element (CRE)-binding protein (CREB), which induces Per and Cry transcription (Gau et al., 2002; Travnickova-Bendova et al., 2002; Tischkau et al., 2003). This triggers SCN neurons to have higher firing rates during the light period, and lower ones during the dark period, both in nocturnal and diurnal animals (Meijer et al., 1997; Schwartz et al., 2004; Vansteensel et al., 2008), and provides to this retinohypothalamic-CREB signaling a fundamental role on resetting the circadian pacemaker (Meijer and Schwartz, 2003).

1.3.1.1 The circadian TTFL and clock-controlled genes

Although CLOCK, BMAL1, PER and CRY proteins compose the center of the circadian TTFL, this molecular engine has evolved additional loops which strengthen rhythmicity and/or provide additional regulation (**Figure 1.3**). Interestingly, CLOCK, BMAL1 and their respective homologues NPAS2 and BMAL2, vary in expression level across tissues and development (*Zhou*)

et al., 1997; DeBruyne et al., 2007; Shi et al., 2010; Wyse and Coogan, 2010; Ikeda and Ikeda, 2014; Landgraf et al., 2016). Although the dimer CLOCK:BMAL1 (or homologues) have higher affinity for canonical E-boxes (i.e., CACGTG), they also recognize non-canonical E-boxes (CANNTG) and E'-box (CACGTT) (Gekakis et al., 1998; Ueda et al., 2005; Wang et al., 2013). These elements are present, for instance, in promoters of components of these secondary loops, including the genes Nr1d1 and Nr1d2 (which encode the proteins REV-ERBa and REV-ERBB) and *Dbp* (D site albumin promoter binding protein) (Preitner et al., 2002; Ripperger and Schibler, 2006; Yang et al., 2013). REV-ERBs inhibit transcription via retinoic acid-related orphan receptor (ROR)-response elements (ROREs) and repress the expression of clock genes such as Bmall or Nfil3 (Mitsui et al., 2001; Preitner et al., 2002; Guillaumond et al., 2005; Duez et al., 2008; *Dierickx et al.*, 2022). In contrast, ROR α , ROR β and ROR γ compete for ROREs to (generally) induce transcription (Preitner et al., 2002; Sato et al., 2004). NFIL3 represses the activity of DBP via binding to D-boxes, which are found in Nr1d, Ror or Per genes (Mitsui et al., 2001; Ueda et al., 2005). In addition to this loop complexity, clock factors can be regulated by phosphorylation, acetylation, sumoylation and ubiquitylation; for example, by kinases like the glycogen synthase kinase 3β (GSK3β) (Bellet and Sassone-Corsi, 2010). GSK3β, which is phosphorylated in a daily manner (Iwahana et al., 2004; Besing et al., 2015; Besing et al., 2017; Bruning et al., 2019), phosphorylates BMAL1, CRY2 and REV-ERBa and regulate their degradation (Harada et al., 2005; Yin et al., 2006; Sahar et al., 2010).

Importantly, E-boxes, ROREs and D-boxes are found not exclusively in core clock transcription factors. Thus, clock factors also regulate the transcription of genes which are not necessarily involved in the TTFL (named "clock-controlled genes"), and that regulate the rhythmicity of physiological processes in mammals (*Bozek et al., 2009*). For instance, the circadian clock may induce rhythmic levels of molecules involved in immune responses (e.g., cytokines) or synaptic transmission (e.g., receptors, CAMs) (*Bozek et al., 2009; Curtis et al., 2014; Hannou et al., 2020*). We notably reviewed that the clock machinery controls the expression of synaptic components (see *Hannou et al., 2020*). In particular, we and others have shown that neuroligins, the Eph/ephrin system, and the polysialylated form of neural cell adhesion molecule (PSA-NCAM), which are all involved in neurotransmission and neuroplasticity, are expressed in a time-dependent manner and regulate circadian or sleep behaviour (*Glass et al., 2000; Glass et al., 2003; Prosser et al., 2003; El Helou et al., 2013; Massart et al., 2014; Freyburger et al., 2016;*

Freyburger et al., 2017; Kiessling et al., 2018; Seok et al., 2018). Research from our lab suggests that some of these effects may be linked to the presence of E-boxes in CAM genes like neuroligins *(El Helou et al., 2013; Freyburger et al., 2016; Hannou et al., 2018; Kiessling et al., 2018).* The potential control of *EphA4* transcription by the core clock factors was suggested by the finding of E-boxes in the *EphA4* putative promoter *(Freyburger et al., 2016).* This may indicate a potential rhythmic expression of *EphA4*, which will be further discussed in section 1.4 and is addressed throughout experiments in Chapter 4.

1.3.1.2 SCN outputs

The SCN sends outputs to multiple brain and peripheral regions. Among these outputs, the lowered SCN activity during the night allows the nocturnal secretion of melatonin (Reiter, 1991). In addition, the SCN activity also influences the rhythms of glucocorticoids release, heart rate, vasodilation and the decrease in temperature that facilitate the induction of sleep in a circadian manner (Moore and Eichler, 1972; Krauchi and Wirz-Justice, 2001; Arraj and Lemmer, 2006; Harding et al., 2018). Both melatonin and glucocorticoids are suggested to modulate arousal/sleep rhythms (Elder et al., 2014; Gandhi et al., 2015). Glucocorticoids secretion follows a circadian rhythm dictated both by an adrenal-clock and the SCN (Kiessling et al., 2014; Chung et al., 2017). Glucocorticoids start to raise during sleep and peak just before the beginning of the active period (Curie et al., 2013; Oster et al., 2017). Melatonin regulates temperature and vasoconstriction reinforcing circadian regulation, and has important effects as antioxidant, on immune functions and metabolism (Viswanathan et al., 1990; Krauchi et al., 1997; Pandi-Perumal et al., 2008; Cipolla-Neto et al., 2014). Importantly, in contrast to other circadian modulators, melatonin raises during the dark period in both diurnal and nocturnal animals and has therefore acquired diverging roles (Challet, 2007). While melatonin is a sleep facilitator in humans, it is not in rodents (Dollins et al., 1994; Huber et al., 1998), which hinders melatonin translational research and its interpretation. Nevertheless, melatonin may regulate sleep via melatonin receptors present in sleep regulatory centers such as the VLPO, the LH and the TRN (Ochoa-Sanchez et al., 2011; Sharma et al., 2018; Gobbi and Comai, 2019). Moreover, the circadian system regulates sleep by sending direct SCN outputs to the subparaventricular zone, and preoptic areas (or to the LH indirectly) (Abrahamson and Moore, 2001; Saper et al., 2005b).

1.3.1.3 Some circadian variables are influenced by sex

Circadian behavior might also be modulated by sex in humans and rodents (Santhi et al., 2016; Dib et al., 2021). The most frequent sex difference might concern the robustness of the circadian rhythm of locomotor activity (which is measured with lower interdaily variability). For instance, female mice have more variability in their activity onset (Kuljis et al., 2013). In addition, the daily rhythm of Perl and Per2 in rat limbic or prefrontal cortex (PFC) regions was only significant for males, and time effect on *Bmall* in the central and medial amygdala was different between sexes (Chun et al., 2015). Even though many of these differences seem to be explained by gonadal hormones, differences in brain structure may also regulate differently circadian or sleep behaviors (Cahill, 2006; Brockman et al., 2011; Mong et al., 2011; Dib et al., 2021). For example, the male SCN is bigger and contains more androgen receptors (Kuljis et al., 2013; Kuljis et al., 2016). Moreover, males have higher firing rate in the dorsal SCN during the light period (Kuljis et al., 2013). All these differences in SCN size and neuronal signaling may account for sex differences in circadian neuronal synchrony within the SCN and with other brain regions. Therefore, it is crucial to describe if the SCN functioning is similar in both sexes. The relevance of understanding whether protein components are distinct in female and male SCN will be considered in this thesis (Chapter 4).

1.3.1.4 Circadian control at the synapse

Circadian rhythms of transcripts and proteins have been extensively documented. This section summarizes that cycling transcripts seem particularly relevant at the synapse, but that rhythmic protein activity should not be neglected (*Bruning et al., 2019; Noya et al., 2019*). Both mechanisms might contribute to provide oscillatory levels of molecules involved in neurotransmission and furnish circadian components of sleep regulation.

1.3.1.4.1 Circadian regulation of the transcriptome

Transcription is a way to control the presence of molecules in the synapse. On the one hand, core clock factors can regulate the expression of molecules involved in sleep regulation by directly acting on their E-boxes (*Hannou et al., 2020*). On the other hand, other cycling elements or CCGs might also induce rhythms in gene expression. Indeed, studies in the mouse liver show that 26% of the DNA binding of transcription factors (or DNA-binding proteins) follows a diurnal rhythms of different phases according to the molecular functions they trigger, and that RNA polymerase II is

recruited to promoters in a circadian manner (Koike et al., 2012; Wang et al., 2018a). The research community shows that 6-15% of genes oscillate according to circadian time in a given tissue and that 80% of protein coding genes show a 24-hour rhythm of expression in at least one tissue (Panda et al., 2002; Storch et al., 2002; Maret et al., 2007; Menet et al., 2012; Zhang et al., 2014; Mure et al., 2018). Thus, the circadian system seems a strong regulator of transcription. However, recent studies in the mouse forebrain revealed that while only 6% of transcripts from the full homogenate had a 24-hour rhythm of expression, 67% of transcripts from purified synapses were cycling (Noya et al., 2019). As suggested by the authors, this compartmentation must imply cyclic transportation and/or transcript stability. Interestingly, synaptic mRNA peaking before the dark/active periods were linked to synapse organization and transmission, while mRNA peaking before the resting period were linked to translation, lipid catabolism and cell morphology, proliferation or development. This time-segregation of functions goes in line with the compartmentation suggested for the cycling synaptic proteome and phosphoproteome (see following section). The Brown lab also showed that 30% of the oscillating transcripts in synapses remained cyclic after SD (Nova et al., 2019), proving that this mRNA does not oscillate because of typical wake/sleep distribution across the 24 hours. In sum, research reinforces the many transcripts cycle particularly at synapses, even if the circadian transcription might still be crucial to regulate the expression of some molecules in other cell compartments of particular brain regions. This division between the synapses and other cell compartments highlights the importance of identifying cyclic posttranscriptional modifications, which has already been suggested with 24-hour regulation of polyadenylation tail length or 3' untranslated regions (3UTR) (Robinson et al., 1988; Kojima et al., 2003).

1.3.1.4.2 Phosphorylation as accumulative (and time) sensors

Phosphorylation is also central in circadian regulation. To begin with, it is one of the main posttranscriptional modifications regulating the mammal core clock proteins (*Bellet and Sassone-Corsi, 2010*). In fact, the circadian clock in cyanobacteria does not rely on transcriptional loops but on the cyclic phosphorylation of its components (*Tomita et al., 2005*). Furthermore, it is suggested that the serial phosphorylation of multiple residues of CRY may function as an accumulative timer and determine the period length in mice (*Ode et al., 2017b*). Recent studies with mathematical models also support that additive phosphorylation might help increase the robustness of biological oscillations (*Tyler et al., 2022*). Interestingly, the diurnal binding of transcription factors to DNA

seems to depend more on its phosphorylation state than on its nuclear protein levels (Wang et al., 2018a). In fact, 24-hour rhythm is found in 11.7% of the proteome, 30% of phosphopeptides and 50% of phosphoproteins in mouse forebrain synapses (Bruning et al., 2019; Noya et al., 2019). The active state of proteins peaks just before the light or dark periods transitions, suggesting that they prepare the molecular environment for the activity or rest. For example, kinases involved in excitatory synaptic activity and LTP (CAMKIIa, CAMKIIy and PKC-linked kinases) peaked at the sleep-to-wake transition, whereas DCLK1 and ABL2 kinases (more linked to inhibitory synaptic activity) peaked at the wake-to-sleep transition (Bruning et al., 2019). Nevertheless, the Brown lab also demonstrated that, in contrast to the mouse brain synaptic transcriptome (whose majority remained cyclic after SD), the cycling of its synaptic phosphoproteome is 98% abolished after SD (Bruning et al., 2019; Noya et al., 2019). This indicates that the synaptic phosphorylation is mainly sleep/wake driven and less circadian-driven. Whether this rule applies to all brain regions, or if the cycling of the non-synaptic phosphoproteome is less alterable by sleep/wake (e.g., by SD protocols), still has to be defined. This demonstrates that some cellular processes are under both circadian and sleep regulations, but that the contribution of each factor can vary. The complexity of these sleep-circadian interactions will be discussed in section 1.3.3.

In conclusion, analysing both the circadian transcription and protein regulation provides a set of mechanisms for time-dependent neuronal functions. Furthering its description may provide mechanisms underlying some circadian regulation of sleep and may be relevant for chronotherapy. In this thesis, circadian transcriptional regulation of synaptic components will be investigated in Chapter 4, and pathways underlying sleep regulation at different times of the day will be inquired in Chapter 5.

1.3.2 Homeostatic regulation (process S)

Sleep is defined to be under homeostatic regulation because prolonged time in wakefulness or more demanding waking-experiences increase the need for sleep (sleep pressure) and sleep intensity in the subsequent sleep period, while the quality of sleep determines performance in the next wake episode (*Franken et al., 1991b; Deboer et al., 1994; Nishida et al., 2009; Holz et al., 2012; Binder et al., 2013; Boyce et al., 2016; Vassalli and Franken, 2017; Peyrache and Seibt, 2020; Milinski et al., 2021*). The most explicit evidence of the homeostatic sleep regulation is detected at the level of sleep oscillations in the EEG, and it is most evident in the SWS slow wave

activity (SWA) (Deboer, 2015). Sleep pressure (and SWA) builds-up with the time spent awake (or with sleep deprivation) and according to cognitive demands of the waking experience (Dijk et al., 1987a; Dijk et al., 1987b; Franken et al., 1991b; Huber et al., 2004; Vassalli and Franken, 2017). Thus, SWA is higher at the beginning of the sleep period and dissipates along the course of sleep (Dijk et al., 1990; Hubbard et al., 2020). Moreover, napping during the active period reduces SWA in subsequent sleep (Werth et al., 1996; Cajochen et al., 2001). In fact, the increase in neuronal synchronization in slower frequencies after sleep deprivation has been shown in fish, drosophila and birds (detected by changes in calcium activity, voltage activity and EEG, respectively; Martinez-Gonzalez et al., 2008; Leung et al., 2019; Raccuglia et al., 2019), supporting that this homeostatic increase in synchronized slow activity is an intrinsic property of sleep. Moreover, the more SWA, the more difficult it is to awaken a subject (Blake and Gerard, 1937). Importantly, faster delta activity, called delta-2 (2.75-4Hz), has been recently more closely associated to the homeostatic response to sleep deprivation than the slower delta-1 (\leq 2Hz), which seems to be more reflecting the circadian regulation (Borbely et al., 1981; Hubbard et al., 2020). In fact, sleep need or sleep propensity (likelihood of falling asleep) is more reliably correlated with an increase in sleep intensity (defined by enhanced SWA in SWS) than sleep time (Borbely, 1982; Franken et al., 1991b; Franken et al., 1991a). Accordingly, SWA is considered the most reliable marker of homeostatic sleep pressure.

1.3.2.1 Potential mechanisms underlying sleep homeostasis

As described in section 1.3.1, the brain center (SCN) and molecular basis (the clock TTFL) underlying the circadian regulation of sleep are quite well described. Intriguingly, a main mechanism driving the homeostatic regulation of sleep has not been identified. This section describes that multiple mechanisms may respond to sustained wakefulness (such as accumulated (or depleted) molecules footprint), which may all contribute in redundant manners to activate/inhibit sleep/wake-inducing neuronal populations. Some sleep regulatory substances (SRS; secreted molecules that modulate sleep) have been proposed (*Krueger et al., 2008*). On the other hand, genetic and protein markers known to accumulate during specific sleep or wake states can help identify processes underlying the regulation of arousal or sleep-distinctive processes (O'Callaghan et al., 2019).

1.3.2.1.1 Sleep regulatory substances

Given that wakefulness is characterized by increased behavioral activity, the time spent awake is often correlated with increased cellular activity and energy consumption (e.g., oxidative levels, brain glucose consumption) in both the brain and peripheral tissues (Maquet et al., 1990; Periasamy et al., 2015; Kempf et al., 2019). Accordingly, wake-linked cellular activity in different tissues such as brain and muscle, leads to the accumulation of molecules resulting from metabolism or neurotransmission, which include adenosine, nitric oxide (NO), prostaglandin D_s, interleukin-1 β (IL1 β), tumor necrosis factor α (TNF α), growth hormone releasing hormone (GHRH), and neurotrophins such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) (Obal and Krueger, 2003; Krueger et al., 2019). For instance, different natures of behavioral activity (e.g., object exploration, physical activity), external stimuli and/or neuronal activity increase adenosine secretion and protein levels of BDNF in the cortex and hippocampus, or the number of NGF⁺ and IL1 β ⁺ cells in the rat somatosensory cortex (Latini and Pedata, 2001; Huber et al., 2007; Hallett et al., 2010; Hsiao et al., 2014). Similarly, SD in rats rises the protein levels of IL1β, IL6, TNFa in the hippocampus, BDNF and NO levels in BF neurons, and adenosine release in the cat BF, PO, cortical and thalamic regions (Porkka-Heiskanen et al., 2000; Kalinchuk et al., 2010; Wadhwa et al., 2017; Ma et al., 2020). SD also increases the number of NGF⁺ cells in rat somatosensory cortex, and decreases GHRH release in the rat hypothalamus (Gardi et al., 1999; Brandt et al., 2001). ATP is co-released with neurotransmitters and will activate purine type 2 receptor 7 (P2X7R) in glia, while some is converted into adenosine (Hide et al., 2000; Latini and *Pedata*, 2001). P2X7R activation induces IL1β and TNFα release, which in turn activates nuclear factor kappa B (NF-KB) (inducing NO, adenosine and the transcription of neurotransmitter receptors) (Hide et al., 2000; Suzuki et al., 2004; Krueger et al., 2008). These molecules are considered SRS not only because they increase with sleep need but also because they induce sleep. For example, adenosine perfused by microdialysis into BF or LDT induces sleep (Strecker et al., 2000), and GHRH or TNF injected into the PO induces sleep (Zhang et al., 1999; Kubota et al., 2002). IL1β injected intracerebroventricularly, or directly into the LC or DR induces sleep as well (De Sarro et al., 1997; Manfridi et al., 2003; Baker et al., 2005). Drugs modulating NO (which, together with adenosine, TNF and IL1, is a vasodilator) also modify sleep (Kapas et al., 1994; Kapas and Krueger, 1996). In addition, IL1β, TNFa, GHRH or BDNF injected in rat somatosensory cortex also enhance delta activity during SWS (Yoshida et al., 2004; Yasuda et al.,

2005; Szentirmai et al., 2007; Faraguna et al., 2008). Caffeine (an adenosine-receptor antagonist and NO-synthase inhibitor) importantly decreases SWA (Landolt et al., 1995). Thus, sleep regulatory neurons may integrate information about the levels of behavioral and neuronal activity. Pathways involved in the cellular response to SRS need to be investigated in sleep regulatory centers. For example, different receptors for SRS might provide additional levels of sleep regulation, like the adenosine receptors, the famous target of caffeine (Hong et al., 2005; Huang et al., 2005; Lazarus et al., 2011).

1.3.2.1.2 Gene expression reflects sleep-wake history

Sleep-dependent changes in gene expression have provided an important window to processes linked to sleep homeostasis (see section 1.3.2.3). The first study that reported transcriptional differences between sleep or wake states showed that nuclear mRNA in rabbit cerebral cortex is two-fold increased during sleep, while its proportion reduces in the cytoplasm (Giuditta et al., 1980). Ensuing microarray studies suggested that the sleep state determines the expression of 4.9% of the genes in the cerebral cortex (Cirelli et al., 2004). Accumulated research with microarray and transcriptomics in the rat and mouse brain demonstrate that, relative to sleep, wakefulness or SD induces expression of genes linked to neuronal activity such as immediate early genes (IEGs)/transcription factors (e.g., Fos, Arc, Homerla, Chop, Ier5, Egr1 [NGFI-A], Nr4a1 [Nur77, NGFI-B], Egr2 (Krox-20), N-ras, Stat3); stress responses such as the unfolded protein response or apoptosis (Bip, Erp72, Grp75, Hsp60, Hsp70); neurotransmission (genes for synaptotagmins, neurotransmitters, receptors); positive regulation of transcription (Fos, Nr4a1, Creb, Crem), metabolism (Slc2a1, Vgf), growth factors (Bdnf, Trkb), intracellular kinases (Jnk, Sgk1) and circadian proteins (Per1, Per3, Dbp, Cry, Cirbp, Nr4a1, Nr4a3) (Cirelli and Tononi, 2000; Cirelli et al., 2004; Terao et al., 2006; Mackiewicz et al., 2007; Mongrain et al., 2010; Vecsey et al., 2012; Bellesi et al., 2013; Massart et al., 2014; Husse et al., 2017; Narwade et al., 2017; Guo et al., 2019; Hor et al., 2019; Gaine et al., 2021) (see Annex Table A1). Genes that have been the most consistently associated with wakefulness in multiple studies include *Homer1a*, Arc, c-fos, jun-b, Egr1-3, Glut1, Bdnf, Nr4a1, Bip (GRP78), Hsp27. On the other hand, sleep has been shown to also increase transcription of genes linked to a negative regulation of transcription (Nf1, Id2); a positive regulation of translation (*Eif2b, Eif4e2*), to synaptic hyperpolarization (calcineurin, Camk, Kcnk1, Kcnk2); but also to GABAergic signaling (dlg3, gephyrin); lipid metabolism; and membrane trafficking (*Cirelli et al., 2004; Mackiewicz et al., 2007; Vecsey et al., 2012; Narwade et al., 2017*).

Transcriptomics research is also revealing SD effects on different cell types such as oligodendrocytes (*Bellesi et al., 2013*) or specific tissues or brain regions, such as the hippocampus (*Husse et al., 2017; Oyola et al., 2019; Wei, 2020; Gaine et al., 2021*). Specific PS-deprivation also modifies the brain and pituitary transcriptome, which particularly affected IEGs and genes linked to the stress responses (*Narwade et al., 2017; Oyola et al., 2019*). Therefore, even though previous sections described that transcripts oscillate in a time-dependent manner, this section stresses that sleep:wake history have a robust impact on gene expression, and that transcriptomics is an advantageous tool to screen for molecular pathways underlying sleep pressure or sleep functions. In fact, studies comparing the effect of SD on mouse gene expression reveal physiological aspects of sleep which could be relevant for ageing, Alzheimer's disease or other conditions (*Guo et al., 2019; Wei, 2020; Li et al., 2022a*). Nevertheless, other techniques also provide insights into how sleep and wake modify transcription. For instance, changes in chromatin accessibility in the murine cortex showed genes and gene functions affected by SD in agreement with transcriptomic studies (*Hor et al., 2019*).

It is important to note that SD effects may be difficult to separate from the stress induced by keeping animals awake in some SD protocols, which have been shown to raise glucocorticoid levels in a mouse-strain dependent manner (*Tartar et al., 2009*). This was addressed by Mongrain *et al.*, which contrasted the effects of SD in adrenalectomized (ADX) mice (*Mongrain et al., 2010*). In that experiment, 68% of transcriptional changes induced by SD were glucocorticoid-dependent (e.g., clock genes or genes linked to cell metabolism and stress responses), while markers related to synaptic plasticity (e.g., *Fos, Arc, Egr1, Nr4a1, Homer1a*) were similarly affected by SD in ADX mice (*Mongrain et al., 2010*). In addition, the technique used to sleep deprive the animals may also impact the wake-induced transcriptome. In fact, the expression of some genes (e.g., *c-fos*, BIP/GRP78) was more increased by SD induced by cage change than SD induced by gentle handling (*Suzuki et al., 2013*). Therefore, experiments comparing the transcriptome after enhancing sleep with techniques other than SD, like we show in Chapter 5, can provide important complementary findings regarding which changes in gene expression are consistently modified with sleep need or sleep duration.

1.3.2.1.3 The phosphorylation hypothesis of sleep

The times spent in sleep or wakefulness affects molecular pathways involved in neurotransmission (Abel et al., 2013; Puentes-Mestril and Aton, 2017). Recent studies revealed that the time spent in wakefulness is reflected at the protein phosphorylation level in the brain, suggesting that the accumulated level of phosphorylation or dephosphorylation could be involved in enhancing subsequent sleep. This has been presented as the "Phosphorylation hypothesis of Sleep"(Wang et al., 2018b; Bruning et al., 2019; Ode and Ueda, 2020). SD modifies the global phosphorylation levels in the mouse brain, increasing or decreasing it according to the phosphosites and function of the kinase (Wang et al., 2018b; Bruning et al., 2019). Most strikingly (and as mentioned in section 1.3.1.4.2), only 1% of proteins, 2.3% of the phosphopeptides and 4.8% of the phosphoproteins found to be cycling under baseline, also cycled after SD, demonstrating that the phosphorylation state of the synapse is more dependent on wake/sleep than the circadian system per see (Bruning et al., 2019; Noya et al., 2019). Interestingly, as discussed in section 1.2.2, mouse mutants for specific phosphorylation sites of CaMKII or SIK have altered sleep duration, reinforcing the potential relevance of phosphorylation states to sleep control. This can be relevant for the regulation of membrane molecules such as EphA4, whose downstream pathways depend on its phosphorylation (discussed in section 1.4).

In conclusion, transcriptomic, proteomic and phosphoproteomic studies suggest that wakefulness is linked to molecules and processes related to synaptic functioning, cell metabolism and stress responses, while functions related to inhibitory signaling and protein synthesis become more activated during the sleep phase. The cycling of these cellular pathways seems strongly controlled by wake/sleep.

1.3.2.2 Sleep for the brain and the synaptic homeostasis hypothesis (SHY)

If sleep would not account for process that cannot occur in quiet wake (rest), it might not have overcome the evolutionary cost of reducing arousal thresholds *(Cirelli and Tononi, 2008)*. The field suggests that the environmental disconnection characteristic of sleep allows cognitive processes impossible to meet by the awake brain, which receives more (and more stochastic) stimulation. In 2003, Cirelli and Tononi proposed that, while wakefulness tends to an overall strengthening of synapses, sleep (particularly SWS) is accompanied with a homeostatic overall decrease in synaptic strength *(Tononi and Cirelli, 2003, 2006, 2012)*. This overall downscaling

would benefit the nervous system in energetic (to decrease strength in less necessary synapses) and space (to leave room for more relevant synapses) terms. The authors defined it as SHY or the synaptic homeostasis hypothesis of sleep. Although multiple nuances due to supplementary discoveries now decorate this hypothesis, SHY continues being a main line of thought in sleep research claiming that sleep allows homeostatic synaptic regulation for adequate behavioral adaptations, including memory consolidation (*Poe et al., 2000; Wang et al., 2018b; Frank and Heller, 2019; Niethard and Born, 2019; Havekes and Aton, 2020; Thomas et al., 2020; Cirelli and Tononi, 2022*).

SHY is based on the observation that wakefulness increases and sleep decreases i) the size of synaptic apposition in rat CA1 and sensory and motor cortex (de Vivo et al., 2017; Spano et al., 2019), ii) the amplitude of miniature excitatory postsynaptic current (mEPSCs) in mouse and rat frontal cortex (Liu et al., 2010; Bjorness et al., 2020; Khlghatvan et al., 2020), and iii) GLUA1containing AMPAR (a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors) in the synaptic membrane in rat cortex and hippocampus (Vyazovskiy et al., 2008; Diering et al., 2017). Hebbian plasticity (selective potentiation of used synapses over less required ones) and non-Hebbian plasticity (overall regulation of synapses as a function of general input) might both contribute to the overall postulate of SHY, but the mechanisms are not fully understood (Cirelli and Tononi, 2022). It has been suggested that the SWA up and down states or SWS sharp-wave ripples may facilitate the synaptic renormalization (de Vivo et al., 2017; Gulati et al., 2017; Norimoto et al., 2018). However, synapse removal can also occur during PS (Li et al., 2017). Additionally, research supports that sleep potentiates or downscales synapses depending on their use and brain region. For example, place cells reactivate during PS and the locking of their firing to the theta phase is indicative of synaptic strengthening (Poe et al., 2000), and the neuronal firing in the visual cortex induced by monocular deprivation was enhanced during PS in cats and mice (Dumoulin Bridi et al., 2015; Clawson et al., 2018). Indeed, in the mouse motor cortex and rat frontal cortex, sleep induces synaptic strengthening only at selected synapses according to previous wake activity, without entailing a global change in all the spines of a cell (Yang et al., 2014; Watson et al., 2016). In sum, sleep allows synaptic remodeling in a usage and brain-region dependent manner. Understanding this synaptic regulation is fundamental given that changes in synaptic plasticity occurring during sleep have been correlated with learning (Miyamoto et al., 2021).

1.3.2.2.1 Potential mechanisms underlying sleep-dependent plasticity

Sleep-induced synaptic downscaling has been linked to the removal of AMPAR, which are key regulators of synaptic strength. Synaptic surface GLUA1 and its Ser845 phosphorylation (which are known to be promoted by synaptic activity and induce potentiation) is lower in sleep than wake and SD in rat cortex and hippocampus (Hinard et al., 2012; Diering et al., 2017). One of the suggested mechanisms underlying these observations is the myocyte enhancer factor 2 (MEF2) transcription factor, which is known to trigger Arc and Homerla, two transcripts very consistently upregulated by SD (see section 1.3.2.1.2) (Bjorness et al., 2020). MEF2 transcriptional activity increases during glutamate release and wake, and it gets dephosphorylated (indicative of enhanced activation) during SD (Flavell et al., 2006; Bjorness et al., 2020). Homer1a is increased by neuronal stimulation (e.g., by glutamate or bicuculine), and it interacts in post-synaptic scaffolds regulating mGluRs activity (Tu et al., 1998; Ango et al., 2001; Inoue et al., 2007; Hu et al., 2010). Arc expression is also increased in synapses with neuronal stimulation (e.g., by electrical stimulation, mGluR activation, novel experience), and it is thought to mark less used synapses: it remains untranslated until mGluRs are activated (Steward et al., 1998; Jakkamsetti et al., 2013). ARC regulates the homeostatic GLUA1 levels at the synapse (Shepherd et al., 2006). It has been suggested that these mechanisms might be involved in sleep-dependent memory consolidation, and mGluRs and AMPAR have been involved in sleep-dependent cognitive processes (Diering et al., 2017; Miyamoto et al., 2021). On the other hand, processes of sleep-dependent synaptic potentiation have been linked to LTP, NMDAR, PKA and ERK signaling (Aton et al., 2009; Dumoulin et al., 2015). Therefore, transcription and intracellular kinases play key roles not only in modulating sleep regulation but also in regulating sleep-dependent processes. Moreover, other synaptic components discussed in previous sections and shown to modulate sleep, are also involved in synaptic plasticity and may control sleep-dependent processes (e.g. CaMKII, CAMs). For instance, GSK3^β activation (which depends on the sleep:wake history in the hippocampus) regulates sleep-dependent plasticity (Vyazovskiy et al., 2008; Benedetti et al., 2012; Xue et al., 2019). Therefore, it will be relevant to further describe roles of EphA4 in sleep, given that this CAM can regulate AMPAR and can be cleaved from the membrane by activity dependent mechanisms (Inoue et al., 2009; Fu et al., 2011). The synaptic molecular milieu is thus relevant not only for promoting a direct regulation of sleep characteristics (sleep time, EEG frequencies) but also to optimize sleep functions.

1.3.3 Integrations of processes C and S

The beginning of section 1.3 describes how sleep quality and quantity are a function of the combined regulation by C and S. Even though brain regions and molecular underpinning for both processes have been presented in a segregated manner, their contribution is rarely limited to only one of the two. Research suggests that the integration of processes C and S is done at the circuit-molecular interface. Previous Section 1.3.1 had summarized how SCN outputs regulate sleep-regulatory circuits, whereas section 1.3.2 described some SRS which can modulate SCN responses as well *(Jagannath et al., 2021)*. In this section, research suggesting that some molecules may be under both circadian and wake/sleep regulation will be covered. These could represent important hubs of both processes.

1.3.3.1 Molecular integration of C and S

Some of the most striking examples of converged C and S interplay is the implication of core clock factors on sleep regulation. As compiled in section 1.3.2., the gene expression of clock factors is consistently affected by SD (Cirelli et al., 2004; Maret et al., 2007; Mongrain et al., 2010; Curie et al., 2013; Massart et al., 2014; Husse et al., 2017; Guo et al., 2019; Oyola et al., 2019; Gaine et al., 2021). In fact, the effect of SD on Clock and Npas2 gene expression was modelled to be stronger than the circadian component in the mouse cerebral cortex (Hor et al., 2019). Interestingly, clock factors like BMAL1 and DEC2 (a transcription factors repressing E-box-induced transcriptional activation) modify sleep and the response to sleep deprivation (Franken and Dijk, 2009; Yu et al., 2014; Hirano et al., 2018). Clock transcription factors may directly affect the expression of peptides highly linked to sleep regulation. For instance, BMAL1 regulates the rhythmic levels of histamine in tuberomammillary neurons, which are wake promoting cells (Yu et al., 2014). Similarly, DEC2 represses the transcription of pre-Hcrt mRNA in the LH and regulates sleep (*Hirano et al., 2018*). Therefore, as suggested by omics studies and Jan *et al.*, clock factors outside the SCN might integrate signaling both from sleep pressure and from the cell endogenous rhythm (Curie et al., 2013; Curie et al., 2015; Jan et al., 2020) (Figure 1.3). In fact, the effect of SD on Per2 and Dbp highly depended on the time-of the day (Curie et al., 2013). Our review on how synaptic components might be under direct regulation by the core clock machinery (Hannou et al., 2020), would suggest that the clock machinery may provide an integrated S and C control on the synaptic landscape. Similarly, Ode and Ueda discuss that sleep-dependent kinases seen in section 1.3.2.1.2 may be implicated in the robustness of SCN oscillations by phosphorylating CLOCK and PER2 (Kon et al., 2014; Hayasaka et al., 2017; Ode and Ueda, 2020). In fact, as highlighted in previous sections, GSK3 β modulates sleep and circadian rhythms, show daily oscillations and is linked to SD responses (Benedetti et al., 2004; Iwahana et al., 2004; Iitaka et al., 2005; Bellet and Sassone-Corsi, 2010; Lavoie et al., 2013; Bruning et al., 2019). Thus, GSK3 β might be an important integrator which has been reported to have more than 100 substrates (Beurel et al., 2015). Similarly, the effects of some SRS may depend not only on sleep pressure but also on the time of the day. For example, IL1 induces sleep in rats during the dark period, but promotes wakefulness in the light period (Opp et al., 1991).

In sum, sections 1.2 and 1.3 expose that the balance of molecular components involved in neurotransmission can modulate sleep characteristics such as duration, state transitions, sleep EEG and sleep-dependent plasticity. Levels of mRNA, synaptic protein and/or protein phosphorylation might be an accumulative method to mark sleep need (or surplus) and/or time. Nevertheless, it remains to be identified which processes integrate S and C regulations and whether these processes are common throughout the brain (and potentially other tissues). In addition, some circadian and sleep processes might be more relevant at the synapse than other cell compartments or in a cell-type dependent manner (e.g., glia vs excitatory vs inhibitory neurons). Identifying synaptic components which may be regulated by both circadian and homeostatic components (e.g., clock factors) might help reveal new ways by which C and S are integrated. Here, we propose that the Eph/Ephrin system is a candidate that may be under both circadian and sleep regulation, and which might control both sleep and circadian rhythms. The following section will describe this family of CAMs and its potential implication in circadian and sleep behavior.

1.4 Ephrins and Eph receptors

The erythropoietin-producing hepatocellular (Eph) receptors and their ligands Ephrins (Efn) form a system of transmembrane CAMs, and the largest family of receptor tyrosine kinase (RTK) (Yeung et al., 2021). A particularity of this system, in contrast to other RTK, is that both ligands and receptors are anchored to the membrane, which provides them with dynamic properties for cell-to-cell communication and roles in multicellular organisms. Duplications of *Eph/Efns* genes in evolution allowed a myriad of different affinities and complex regulations of these receptors and ligands (*Arcas et al., 2020*). In mice and human, there are 9 EphA (EphA1-8, EphA10), 5 EphB (EphB1-4, EphB6), 5 Ephrins-A (EfnA1-5) and 3 Ephrins-B (EfnB1-3) (*Drescher, 2002; Arcas et al., 2020*). They are classified in these four groups based on the conservation of their sequences and ligand affinities. While most EphA receptors have affinity for Ephrins-A, and EphBs have more affinity for Ephrins-B, EPHA4 has affinity for both (except for EFNB1) (*Flanagan and Vanderhaeghen, 1998; Bowden et al., 2009; Qin et al., 2010*). Indeed, EfnA and EfnB ligands can induce the phosphorylation of EPHA4 (*Flanagan and Vanderhaeghen, 1998; Murai et al., 2003; Qin et al., 2010*).

Eph receptors are composed of an extracellular ligand-binding domain, a transmembrane and an intracellular domain (*Liang et al., 2019*). The extracellular domain includes an N-terminal ligand-binding domain, a cysteine-rich domain and two fibronectin type III repeats. The intracellular domain includes the tyrosine kinase domain, a C-terminal sterile alpha-motif (SAM), and a PDZ-binding domain (*Arcas et al., 2020*). In contrast, Ephrins are smaller. Both Ephrins-A and B have an extracellular N-terminal receptor-binding domain. Ephrins-A attach to the cellular membrane by a glycosylphosphatidylinositol (GPI)-anchor domain (*Arcas et al., 2020*). Ephrins-B contain a transmembrane domain and an intracellular PDZ-binding domain (*Lin et al., 1999*). The binding of Ephrin to receptors induces a conformational change that transduces intracellular forward (through Eph domains) and/or reverse signaling (via Ephrin domains) (*Pasquale, 2010; Murai and Pasquale, 2011*). On the forward signaling, the binding can induce receptor oligomerization and/or regulate the levels of intracellular Eph phosphorylation and protein interactions (*Pasquale, 2005*). EfnB ligands can also interact through their PDF domain and be regulated by Src phosphorylation (Torres et al., 1998; Bruckner et al., 1999; Cowan and Henkemeyer, 2001; Palmer et al., 2002).

Eph receptors are expressed in multiple tissues, including epithelial and blood cells, myocytes, neurons, and glia (Gale et al., 2001; Murai and Pasquale, 2003; Stark et al., 2011; Matsuo and Otaki, 2012; Huang et al., 2016). Importantly, Eph and Ephrins have different pattern of expression in development and are involved in the patterning and segmentation of the developing central nervous system (CNS) (Flanagan and Vanderhaeghen, 1998). Their adhesion-repulsive properties seem to confer them important roles in delineating regions or cell populations, and even to allow the good cell polarization (Flanagan and Vanderhaeghen, 1998; Murai et al., 2003). Genetic KOs indicate that EPHB4, EFBB1, EFNB2 and EFNB3 are involved in vascular development (Adams et al., 1999; Gerety et al., 1999; Goldshmit et al., 2006; Royet et al., 2017). They have multiple functions in the CNS, including in spinal motor neurons, and the development of retino-tectal connections and maps (Mann et al., 2002; Kao et al., 2012; Fiore et al., 2019). Moreover, they have crucial roles in neurotransmission (see also section 1.4.1.2.2.). For example, EPHA4 and EPHB2 regulate LTP at CA3-CA1 synapses in a kinase-independent manner, EPHB2 (and EFNB2) regulate NMDAR and synapse formation (Dalva et al., 2000; Grunwald et al., 2001; Takasu et al., 2002; Grunwald et al., 2004), and the presence of EfnA3, EphA4 or soluble EPHA2 reduces the expression of the glial glutamate/aspartate transporter (GLAST or EAAT1) and glutamate transporter subtype 1 (GLT1 or EAAT2) involved in neurotransmitter reuptake (Carmona et al., 2009; Filosa et al., 2009).

1.4.1 EphA4

EphA4 (also known as Sek, Sek1, Cek8, Hek8, Tyro1) is expressed broadly in the body but is especially abundant in the brain (*Hafner et al., 2004*). It is expressed in epithelial, muscle, immune and glial cells, and both in pre- and postsynaptic neurons (*Martone et al., 1997; Murai et al., 2003; Goldshmit et al., 2006; Tremblay et al., 2007; Todd et al., 2017*). It is found in the hippocampus, cerebral cortex, striatum, brainstem, Purkinje cells, retinal ganglion cells and along axons of both sensory and motor neurons of the spinal cord (*Martone et al., 1997; Leighton et al., 2001; Liebl et al., 2003*). Interestingly, *EphA4* is also expressed in the mouse and rat SCN (*Freyburger et al., 2016*).

1.4.1.1 EPHA4 activation and signaling

EPHA4 triggers both kinase-dependent and independent signaling (Kullander et al., 2001). The binding of EPHA4 to its ligands induces autophosphorylation of its intracellular domain (Binns et al., 2000). This activation might require or benefit from clustered ligands and/or from the clustering of Eph receptors (Davis et al., 1994; Stein et al., 1998; Xu et al., 2013). Then, the intracellular tyrosine residues phosphorylate in a sequential order (Wybenga-Groot et al., 2001; Singla et al., 2011), and their phosphorylation is further modulated by intracellular kinases, such as Src, and phosphatases (Shintani et al., 2006; Warner et al., 2008). EPHA4 regulates the activation/interaction of intracellular effectors including adaptor proteins containing the SRC homology (SH) and phosphotyrosine binding (PTB) domains; SRC; spine-associated RapGAP (SPAR)/Rap1; ERK/mitogen-activated protein kinase (MAPK); AKT; phospholipase C, gamma 1 (PLCy1); c-abl oncogene 1 non-receptor tyrosine kinase (c-Abl)/Ephexin/RhoA; protein phosphatase 2B (PP2B)/slingshot protein phosphatase 1 (SSH1); integrins and the anaphasepromoting complex (APC) (Sahin et al., 2005; Bourgin et al., 2007; Richter et al., 2007; Shin et al., 2008; Fu et al., 2011; Zhou et al., 2012; Shu et al., 2016; Zhang et al., 2017; Arcas et al., 2020; Wagner et al., 2020) (Figure 1.4). Some of these pathways activated by EPHA4 (c-Abl/Ephexin/RhoA, PP2B/SSH1, PLCy1), modulate cofilin activation and spine retraction (Fu et al., 2007; Zhou et al., 2007; Zhou et al., 2012; Zhang et al., 2017). Moreover, EPHA4:EFNA3 activation modulates spine morphology through integrin regulation via Crk-associated substrate (Cas), the tyrosine kinase focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2), which likely converges on cofilin modulation as well (Bourgin et al., 2007). SPAR/Rap1 signaling modulates spine density and growth cone collapse (Richter et al., 2007). Furthermore, EPHA4ephrin interaction regulates MAPK/ERK and AKT phosphorylation, which moderates cell survival, migration and proliferation (Shin et al., 2008; Goldshmit and Bourne, 2010; de Marcondes et al., 2016; Shu et al., 2016). Furthermore, the SPAR/Rap1 signaling modulates spine density and cone collapse (Richter et al., 2007). The APC signaling induces the ubiquitin ligase and polyubiquitination of GLUA1, inducing AMPAR internalization and degradation (Fu et al., 2011). Besides, EPHA4 may induce reverse signaling through its ligands. For instance, Ephrins-B may trigger signaling via their PDZ domains or through SH-domain containing proteins (e.g. Grb4) (Cowan and Henkemeyer, 2001; Lu et al., 2001; Palmer et al., 2002), and Ephrins-A act through the Src family member FYN (Davy et al., 1999).

Figure 1.4. EPHA4 can trigger multiple intracellular signaling. EPHA4 can induce actin remodeling and regulate spine/axon retraction, it can regulate adhesion via integrin modulation as well, it can induce responses of cell survival/proliferation via MAPK/ERK and AKT, and it can induce AMPA receptor internalization and modulate synapse strength. Ephrins can also modulate kinase responses presynaptically and both Eph and Ephrins can act on astrocytes and regulate, for instance, the presence of glutamate transporters. Figure adapted from Arcas *et al.* (2020), Murai and Pasquale (2011) and Pasquale (2010).

Another level of regulation to consider is EPHA4 cleavage from the membrane, which may induce separate functions for intracellular and extracellular domains. For example, EPHA4 cleavage by γ -secretase (and potentially MMP9) is induced by synaptic activity and is involved in maintaining dendritic spines *(Inoue et al., 2009)*.

1.4.1.2 Functions of EPHA4

1.4.1.2.1 CNS development

The roles of EPHA4 in cell adhesion/repulsion and cytoskeleton remodeling have contributed to its important roles in development. In neurodevelopment, EPHA4 has been involved both in modulating axonal guidance and in the segmental development of the CNS, by its patterned expression in different rhombomeres (*Flanagan and Vanderhaeghen, 1998; Gatto et al., 2014; Tanasic et al., 2016; Fiore et al., 2019*). It is crucial for the development of the anterior commissure

(Dottori et al., 1998; Ho et al., 2009), of corticospinal tracts and for the regulation of midline crossing of excitatory and inhibitory neurons in the spinal cord (Dottori et al., 1998; Helmbacher et al., 2000; Leighton et al., 2001; Wegmeyer et al., 2007; Restrepo et al., 2011; Gatto et al., 2014). It has also been involved in the development of the neuromuscular junction (Yumoto et al., 2008).

EphA4 KO mice present altered whisker innervation and representation in the barrel cortex (*North et al., 2010*). It is also expressed in the retina and is involved in establishing adequate retinotectal projections during development (*Walkenhorst et al., 2000; Petros et al., 2006; Fiore et al., 2019; Zhu et al., 2021*). Interestingly, the expression of EPHA4 in the optic chiasm was higher at P6 than P17, but absent in adult rats (*Martone et al., 1997*). In a similar manner, EPHA4 has been also involved in the development of thalamocortical topographic maps and topographic specificities in the hippocampus (*Dufour et al., 2006; Galimberti et al., 2010*). *EphA4* KO mice also present a thinner cortex, a thinner proportion of layers II-IV of mouse somatosensory cortex (North et al., 2009; Gerstmann et al., 2015), and impaired neuronal migration during cortical development (*Hu et al., 2014; Steinecke et al., 2014*). Moreover, it seems also relevant in adult neurogenesis, because EPHA4-ephrin contacts in adult neuroblast-astrocyte allow adequate migration from the subventricular zone (*Todd et al., 2017*).

1.4.1.2.2 Adult neurotransmission

EPHA4 is involved in neurotransmission by regulating spine stability, myelination, neurotransmitter receptors or transporters at the membrane, and by activating intracellular pathways. EPHA4 reduces myelination in both zebrafish and rodents, and EphA4 inhibition prevents stressed-induced demyelination and reduced post-synaptic density thickness (including PSD-95 protein levels) (*Harboe et al., 2018; Chen et al., 2019; Li et al., 2022b*). Secondly, EPHA4 regulates synaptic strength by modulating spine retraction and AMPAR internalization (*Murai et al., 2003; Fu et al., 2011*). Moreover, EPHA4 has roles in neuroglia communication, which are fundamental for neurotransmission. The EPHA4 ligand EFNA3 is expressed by astrocytes but not neurites in the mouse stratum radiatum (*Murai et al., 2003*). When EPHA4 activates with EFNA3, it reduces the amount of GLAST and GLT1 (*Filosa et al., 2009*). In fact, *EfnA3^{-/-}* mice had higher glutamate transporter current in astrocytes (*Filosa et al., 2009*). Thus, it was concluded that the presence of EPHA4 at the postsynaptic CA1 neurons regulates LTP at the CA3-CA1 synapse by decreasing the extracellular glutamate available in a manner that depended on glutamate uptake,

likely through GLAST or GLT1 (*Grunwald et al., 2004; Filosa et al., 2009*). The fact that EFNA2 regulates glial glutamate transporter in the mouse cortex and that EPHA4 is expressed in cortical astrocytes in primates (*Goldshmit and Bourne, 2010; Yu et al., 2013*), suggests that EPHA4 might regulate plasticity through modulating neuroglia communication outside the hippocampus as well. Finally, activation of EPHA4 by EFNA3 induces spine retraction in the hippocampus, while EphA4 or EfnA3 downregulation promotes longer spines (*Murai et al., 2003*). In fact, stimulating with soluble forms of EFNA3 reduces spine length and density, and *EphA4* KO and *EfnA3* KO mice show longer spines in the hippocampus (*Murai et al., 2003; Carmona et al., 2009*), suggesting that this EphA4 function was not compensated by other components of the Eph/Ephrin system. Therefore, changes in EPHA4 may modulate neurotransmission either by modulating the presence of receptors/transporters, by modifying the spine morphology or by modifying the levels of myelination.

1.4.1.2.3 Vascular system

EPHA4 is expressed in spinal cord vessels during mouse embryonic development and lack of *EphA4* induces altered vasculature in the mouse CNS (*Goldshmit et al., 2006*). Moreover, EphA4 seems to be particularly involved in the vascular responses to insult. For example, *EphA4* is upregulated after spinal cord injury in astrocytes associated to vessels in the mouse spinal cord, but not detected in non-lesioned mice (*Goldshmit et al., 2006*). Moreover, EPHA4 has been involved in endothelial cell survival and vascularization in gliobastoma, where *EphA4* downregulation reduces apoptosis (*Royet et al., 2017*). In addition, EFNB2 (ligand of EphBs and EPHA4) is particularly expressed in arteries and necessary for mouse cardiac development (*Gerety et al., 1999*). Interestingly, EFNB2 has also been suggested to regulate lymphatic endothelial cell junctions (*Frye et al., 2020*), which highlights that the Eph/ephrin system is particularly important for adequate metabolite and cell circulation in the organisms.

1.4.1.2.4 Immune system and cancer

EPHA4 expressed in endothelial cells is linked to the monocyte-endothelial cell adhesion, and it is also involved in cell-cell interaction in the context of cell migration in cancer *(Jellinghaus et al., 2013; Lu et al., 2014; Jing et al., 2016)*. It was found expressed in cancer stem cells, and EphA4 inhibition was reported to reduce tumor proliferation and cytokine production, which was suggested to be via contact with Ephrin-containing monocytes *(Lu et al., 2014)*. Moreover,

infection with the oncogenic Epstein-Barr virus (EBV) was shown to downregulate EPHA4 protein and mRNA levels in human B cells (*Huang et al., 2016*).

1.4.1.3 EphA4 implications in diseases

The roles of EPHA4 in cell migration, vascular and neurodevelopment has linked it to injuries and diseases. For example, EPHA4 is upregulated after cortical injury and induces astrocyte proliferation at the lesion site (*Goldshmit and Bourne, 2010*), and mice downregulated for EphA4 show faster motor recovery after stroke (*Lemmens et al., 2013*). Moreover, like multiple other Eph receptors and Ephrins (*Hafner et al., 2004*), EPHA4 has been suggested to be implicated in tumor development, including colon cancer, breast cancer, cervical carcinoma and gliobastoma (*Saintigny et al., 2012; Huang et al., 2016; Royet et al., 2017; Lee et al., 2021*). Intriguingly, it has been suggested that EPHA4 can have both tumor suppressing and promoting functions (*Fukai et al., 2008; Saintigny et al., 2012; Huang et al., 2016*). In fact, methylation of most Eph/Ephrin genes (including *EphA4*, *EfnA3*, *EfnB2*) is increased in leukemia patients and cell lines (*Kuang et al., 2010*), and *EphA4* mRNA expression is increased in human samples of melanoma, where enriched *EphA4* mutations were found (*Light et al., 2021*).

Given EPHA4 functions in neurotransmission and spine morphology, EPHA4 has been linked to cognitive disorders in both rodents and human. EPHA4 was found upregulated in the prefrontal cortex and hippocampus of a models of depression and in post-mortem brain tissue of MDD patients (*Zhang et al., 2017; Li et al., 2022b*). EphA4 shRNA reversed depression-like behavior in mice (*Zhang et al., 2017; Li et al., 2022b*). Moreover, postmortem samples from AD patients show upregulated *EphA4* mRNA expression in PFC but reduced EPHA4 protein in the hippocampus (*Simon et al., 2009; Williams et al., 2009*). Mouse models for AD also showed reduced EPHA4 levels but increased activation in the hippocampus, and EPHA4 inhibition by rhynchophylline was correlated with improved AD-like symptoms (*Simon et al., 2009; Fu et al., 2014*).

1.4.1.4 EphA4 gene and transcriptional regulation

The *EphA4* gene contains 18 exons in the mouse and 19 in human, and is found on Chromosome 1 and Chromosome 2, respectively. The introns/exon boundaries are highly conserved in the Eph/Ephrin family, underscoring the redundancy among members of the family (*Drescher*, 2002). Three transcript variants of *EphA4* have been described in the mouse and human,

but only two are translated into protein *in vivo* and require the same transcription start site (TSS) (Zhao et al., 2017). Notwithstanding the high implication of EphA4 in human disease, little is known about EphA4 transcriptional regulation. Three studies describe that transcription factors involved in development regulate *EphA4* transcription through DNA elements upstream the TSS: Krox20 (or EGR2), mesoderm posterior 2 (MESP2) and paired box 3 (PAX3)/ forkhead box O1 (FKHR, FOXO1a) (Theil et al., 1998; Begum et al., 2005; Nakajima et al., 2006). Theil and collaborators described a 470bp enhancer region containing Krox20 binding sites, showed that Krox20 could activate the transcriptional activation of inserts containing the Krox20 enhancer, and confirmed that the mutation of Krox20 sites reduced transcriptional activity (Theil et al., 1998). Interestingly, Krox20 (known to be involved in myelination) and *EphA4* follow the same pattern of expression during remyelination after nerve injury (Chen et al., 2019). MESP2, involved in segmental development, can bind to an enhancer region of the EphA4 promoter and induce its transcription (Nakajima et al., 2006). The third study shows that PAX3, a transcription factor involved in neural tube development, can bind to the EphA4 promoter either alone or fused with the protein FKHR (FOXO1a), to activate transcription (Begum et al., 2005). On the other hand, stimulating protein 1 (Sp1) binds to EphA4 promoter and decreases both EphA4 mRNA and protein levels, a regulation which was suggested to be downstream of the ERK pathway and involved in cell proliferation (Huang et al., 2016). Previous work by Mongrain et al., revealed the presence of E-boxes upstream of the EphA4 TSS (Freyburger et al., 2016), which suggests that the core clock machinery may regulate the transcription of these membrane molecules. Accordingly, we will investigate the functionality of E-boxes in the putative promoters of EphA4 and Ephrins in Chapter 4.

The 3' untranslated region (3'UTR) of transcripts may also determine mRNA location, stability and translation. The 3'UTR of *EphA4* mRNA is shown to be regulated by both microRNAs (miRNAs) and the human antigen R (HuR) (*Winter et al., 2008; Yan et al., 2013; Cai et al., 2019*). First, it is suggested that *EphA4* is downregulated by acute ischemia via the binding of miR-145 to *EphA4* 3'UTR, which decreases *EphA4* mRNA and protein levels (*Cai et al., 2019*). Secondly, miR-10a was also shown to downregulate *EphA4* transcription through its 3'UTR, which induced carcinoma cell migration, likely by reducing the cell adhering properties of EPHA4 (*Yan et al., 2013*). Moreover, HuR, which is overexpressed in some tumors, binds to the 3'UTR of *EphA4*, *EphA3*, *EfnA2* and *EfnB2*, and, for *EphA4*, induces mRNA instability (*Winter et al., 2008*).

Interestingly, binding motifs CPEs (cytoplasmic polyadenylation elements) and HuR in *EphA4* (and *EfnB2*) 3'UTR are highly conserved between human and mice (*Winter et al., 2008*).

Few additional studies explored the transcriptional regulation of EPHA4 ligands. A 180bp region upstream of EfnB2 TSS which is conserved in mice and humans, is bound by Meis homeobox 1 (MEIS1), Myc-associated zinc finger protein (MAZ) and nuclear factor-Y (NF-Y) (Sohl et al., 2009). Moreover, SP1 binds to EfnB2 promoter and induces its transcription (Obi et al., 2009; Sohl et al., 2010). It is important to note that the binding of transcription factors may require particular conditions. For example, SP1 binding to EfnB2 could only be observed after shear stress and hypoxia conditions, but not in undisturbed conditions (Obi et al., 2009). Thus, the final effect of transcription factors may depend on other regulatory mechanisms. Gene methylation can also regulate EfnB2 transcription as well (Kuang et al., 2010). On the other hand, EfnA3 expression has been suggested to be reduced by miR-210 binding to its 3'UTR, which has been linked to tumor progression (Fasanaro et al., 2008; Zhang et al., 2012). Besides, hypoxia-inducible factor (HIF) has been shown to bind *EfnA3* promoter and induce transcription (Husain et al., 2022), and to induce the transcription of long non-coding RNAs (lnRNAs) at the Ephrin locus, which increase EfnA3 translation by competing with 3'UTR regulating miRNAs (Gomez-Maldonado et al., 2015). Promoter acetylation was suggested as another regulatory mechanism of EfnA3 transcription (Zeng et al., 2018).

1.4.2 EphA4 and Ephrins in sleep and circadian physiology

Previous research from my supervisor has revealed that synaptic adhesion molecules may modulate sleep characteristics (*El Helou et al., 2013; Massart et al., 2014; Freyburger et al., 2016; Freyburger et al., 2017; O'Callaghan et al., 2017; Seok et al., 2018)* and circadian physiology (*Hannou et al., 2018; Kiessling et al., 2018*). Mice KO for *Nlgn1 (Nlgn1* KO) spend more time in SWS and have lower theta/alpha activity during wakefulness (*El Helou et al., 2013; Massart et al., 2013; Massart et al., 2014)*. This was a first indication that anchor molecules with synapse-attaching properties involved in spine stability and neurotransmission could be relevant for sleep regulation. Subsequent studies in KO mice for the cell adhesion molecule EphA4 (*EphA4* KO) also showed altered sleep phenotypes, but different from previous *Nlgn1* KO phenotypes. *EphA4* KO mice have reduced PS and longer SWS bouts (*Freyburger et al., 2016*). Moreover, they show blunted 24-hour distribution of SWS low sigma activity (10-12Hz), and shorter duration of slow waves during SWS

(Freyburger et al., 2016; Freyburger et al., 2017). Interestingly, while Nlgn1 KO mice had altered responses to SD, EphA4 KOs did not show alterations in their response to SD. Further suggesting different roles of Nlgn1 and EphA4 in sleep regulation, SD modified the gene expression of these CAMs in different manners. On the one hand, SD decreased the levels of the Nlgn1 transcript variant that includes an insert B, but the effect on other transcript variants depended on the mouse strain. On the other hand, SD increased EphA4 expression in thalamus/hypothalamic regions (which was only tested in C57BL/6J mice) (Freyburger et al., 2016).

EphA4 KO mice present altered circadian phenotypes as well. Firstly, *EphA4* KO mice have in the SCN a decreased PER1⁺ cell number and a decreased light-induced c-FOS⁺ cells. Moreover, these mice had a longer period of the running wheel activity rhythm in dark-dark (DD: constant darkness) and a shorter period in light-light (LL; constant light), suggesting that the presence of EphA4 is required for normal endogenous circadian rhythm. Freyburger and collaborators described that the putative promoter region of the *EphA4* gene contained E-boxes, which, as presented in section 1.3.1, are regulatory elements that can be bound and activated by the circadian transcription factors CLOCK and BMAL1 (see section 1.1.3.1). Moreover, mice with the *Clock*⁴¹⁹ mutation (dominant-negative function) show altered expression of *EphA4* in the mouse forebrain (*Freyburger et al., 2016*). In addition, the mentioned altered SWS low sigma activity in the *EphA4* KO mice, is a frequency range shown to be under circadian regulation in rats (Yasenkov and Deboer, 2011; Freyburger et al., 2016).

Therefore, research from our group suggests that EphA4 could have relevant functions in regulating sleep and endogenous rhythms. Although some studies suggest that EPHA4 could be involved in the development of sleep regulatory brain centers such as the POA or thalamocortical projections (*Takemoto et al., 2002; Zimmer et al., 2011*), EPHA4 may also control sleep by regulating neurotransmission in the fully developed adult brain. Interestingly, neuronal activity modulates EPHA4 (*Inoue et al., 2009*), and EGR2 (Krox20), which is a transcription factor upregulated by wakefulness or SD (*Cirelli et al., 2004; Mongrain et al., 2010; Bellesi et al., 2013; Diessler et al., 2018; Guo et al., 2019; Hor et al., 2019*), activates *EphA4* transcription (*Theil et al., 1998*). This suggests that increased behavioral or neuronal activity typical of wakefulness experience may regulate sleep through EphA4. Finally, astrocytes have also been shown to strongly regulate sleep and circadian rhythms (*Barca-Mayo et al., 2017; Brancaccio et al., 2017; Ingiosi et*

al., 2020). For instance, astrocytes activity in the SCN or knocking-out components of the molecular clock uniquely in astrocytes can abolish circadian rhythms in mice (*Barca-Mayo et al., 2017; Brancaccio et al., 2017; Clasadonte et al., 2017).* Modulating intracellular Ca²⁺ or connexins uniquely in astrocytes also modulates sleep or the response to sleep loss (*Clasadonte et al., 2017; Ingiosi et al., 2020*). Therefore, the presence of EPHA4 in astrocytes or reverse signaling regulating astroglia glutamate uptake through EFNA3 (*Filosa et al., 2009; Todd et al., 2017*), might have important repercussions for sleep and circadian behaviors as well. We hypothesize that one of the mechanisms that could link the Eph/Ephrin system to circadian functions could be at the level of their transcription. Chapter 4 in this thesis will aim at describing whether putative promoter regions of *EphA4, EfnB2* and *EfnA3* (including the already described E-boxes) are activated by the clock machinery *in vitro*, which will provide a potential level of implication of the system for rhythmic behaviors.

We suggest that EPHA4 implications in neurotransmission and plasticity have an impact in sleep and circadian physiology. However, the important effects of EPHA4 in neurodevelopment (see section 1.3.1.1.3) highlight the importance of investigating the effects of EPHA4 in fully developed adult mice. Moreover, redundant effects between different Eph molecules or compensatory mechanisms developed exclusively in *EphA4* KO mice, may have accounted for the observed sleep and circadian alterations, and needs to be further investigated.

1.5 Rhynchophylline may uncover EphA4 roles in sleep regulation

Rhynchophylline (RHY) is one of the main active components of *Uncaria* plants, which have been extensively used in Chinese and Japanese medicines. Interestingly RHY reduces EPHA4 phosphorylation in mice (*Fu et al., 2014; Zhang et al., 2017*). Furthermore, systemic administrations of RHY increased sleep time in the mouse and rat (*Yoo et al., 2016*), and drugs containing Uncaria plants were shown to increase sleep time and quality in humans (*Aizawa et al., 2002; Shinno et al., 2008b; Shinno et al., 2008a; Ozone et al., 2012; Pan et al., 2013; Sun and Liu, 2013; Ohtomo et al., 2014; Matsui et al., 2019; Ozone et al., 2020). Therefore, given that <i>EphA4* KO mice show altered sleep variables (described in detail above), we propose to use RHY to downregulate EphA4 in adult mice and investigate its implication in adult sleep.

1.5.1 Rhynchophylline reduces EphA4 phosphorylation

Two studies have suggested that RHY prevent EPHA4 activation and the activation of downstream pathways (Fu et al., 2014; Zhang et al., 2017). This research further suggested that RHY allowed the recovery of spine morphology, LTP and cognitive performance through EPHA4 inhibition in mouse models of AD and depression (Fu et al., 2014; Zhang et al., 2017). In vitro and in vivo assays suggest that RHY reduces the EPHA4 activation induced by Ephrin ligands, which was shown both with reduced levels of EPHA4 phosphorylation and by decreased activation of downstream effectors (e.g., Ephexin) (Fu et al., 2014; Zhang et al., 2017). Moreover, one of the studies show that RHY was able to bind to EPHA4 by using pull-down assays (Fu et al., 2014). Nonetheless, as will be reviewed in Chapter 2, RHY modifies the levels or activation of numerous molecules which have been shown elsewhere to modulate sleep. Thus, we think that RHY might modify sleep via the EPHA4 receptor but that other pathways should be considered as well. For this reason, we have conducted a literature review compiling that RHY targets different cellular pathways, which have been linked to sleep regulation. This publication entitled Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation (Ballester Roig et al., 2021) is included in the following Chapter 2, and will be followed by hypotheses and aims of the thesis presented under Chapter 3.

Chapter 2

Cellular effects of Rhynchophylline

and relevance to sleep regulation

Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Ballester Roig MN, Leduc T, Areal CC, Mongrain V. Clocks Sleep. 2021 Jun 9;3(2):312-341. doi: 10.3390/clockssleep3020020.

Published version: https://www.mdpi.com/2624-5175/3/2/20

Cellular effects of Rhynchophylline and relevance to sleep regulation

Maria Neus BALLESTER ROIG^{1,2}, Tanya LEDUC^{1,2}, Cassandra C. AREAL^{1,3}, Valérie MONGRAIN^{1,2}

¹Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montreal, QC, Canada
 ²Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
 ³Department of Medicine, Université de Montréal, Montreal, QC, Canada

Manuscript submitted for publication to: Clocks & Sleep

Corresponding author:

Valérie Mongrain Recherche CIUSSS-NIM (site Hôpital du Sacré-Coeur de Montréal) 5400 Gouin West blvd. Montreal, QC, H4J 1C5, Canada valerie.mongrain@umontreal.ca 1-514-338-2222/3323

Abstract

Uncaria rhynchophylla is a plant highly used in the traditional Chinese and Japanese medicines. It has numerous health benefits, which are often attributed to its alkaloid components. Recent studies in humans show that drugs containing Uncaria ameliorate sleep quality and increase sleep time, both in physiological and pathological conditions. Rhynchophylline (Rhy) is one of the principal alkaloids in Uncaria species. Although treatment with Rhy alone has not been tested in humans, observations in rodents show that Rhy increases sleep time. However, the mechanisms by which Rhy could modulate sleep have not been comprehensively described. In this review, we are highlighting cellular pathways that are shown to be targeted by Rhy and which are also known for their implications in the regulation of wakefulness and sleep. We conclude that Rhy can impact sleep through mechanisms involving ion channels, N-methyl-D-aspartate (NMDA) receptors, tyrosine kinase receptors, extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT) and nuclear factor-kappa B (NF- κ B) pathways. In modulating multiple cellular responses, Rhy impacts neuronal communication in a way that could have substantial effects on sleep phenotypes. Thus, understanding the mechanisms of action of Rhy will have implications for sleep pharmacology.

Keywords: *Uncaria rhynchophylla*, intracellular signaling pathways, neurotransmitter receptors, non-rapid eye movement sleep, rapid eye movement sleep, electroencephalographic activity

1. Introduction

Plant compounds have been substantially explored to treat human illnesses, especially in the traditional Chinese medicine. This includes their utilization to ameliorate sleep or induce sedation [1,2]. However, given that the use of such compounds began early in the human history, the knowledge of their beneficial effects on health is rarely accompanied by studies providing the details of the underlying mechanisms.

Uncaria rhynchophylla has been used in Asia as a component of numerous Chinese and Japanese treatments such as Gou-teng (or Chotoko; name given to Uncaria medicinal herbs), and Yi-gan-san (a blend of seven herbs also known as Yokukansan [YKS]). It has been reported to alleviate hypertension, arrhythmia, convulsions, dizziness, pain, sleep disturbances, and cognitive impairments [3-8]. Alkaloids account for 0.2% of the composition of U. rhynchophylla (in hook, stem, and leaves), and were proposed to underlie the majority of health benefits resulting from the use of Uncaria [4,9]. Rhynchophylline (Rhy) is one of the most abundant of these alkaloids, and seems to associate with nearly the same benefits as those obtained with U. rhynchophylla in nonhuman mammals [3,4,10].

1.1. Rhynchophylline pharmacology

Rhy is a tetracyclic oxindole alkaloid that represents about 10-30% of Uncaria alkaloids [9,11,12]. Rhy is interconvertible with its isomer isorhynchophylline (Isorhy), which accounts for another 30-50% of the alkaloid fraction [9,11,12] (**Figure 1**). Their rate of interconversion depends on pH and temperature [13,14]. Both forms are absorbed quickly by the intestine but, when provided intravenously or orally, Rhy seems more available than Isorhy in the plasma, likely because the latter is more unstable and metabolized faster by the liver and intestine [13]. Rhy easily crosses the blood-brain barrier, as it is highly detectable in the rat brain from 15 min to 6 h after oral administration [15]. Another study has shown that an in vitro blood-brain barrier model was more permeable to Isorhy than Rhy [16]. Therefore, even if Rhy could be more prevalent than Isorhy in the body, the administration of Rhy may trigger the presence of Isorhy, which effect should be considered.

Figure 1. Representation of the chemical structure of Rhynchophylline (Rhy) and Isorhychophylline (Isorhy). The position of the oxindole structure (N-C=O in the second ring) of the alkaloids Rhy and Isorhy is different. Both molecules are diastereoisomers, interconvertible with each other depending on pH and temperature. Temperature is suggested to induce a break and reclosure of the third ring that results in a twisted conformation (Wu et al., 2015).

Rhy (like Isorhy) has been proposed to mainly act on the cardiovascular system and central nervous system (CNS) [3,10]. Although there is no clinical trial investigating the effects of Rhy alone, animal research suggests that Rhy has beneficial properties such as anti-inflammatory, antihypertensive, anti-arrhythmic, anticonvulsant and neuroprotective effects [3,10]. Moreover, it seems to reduce memory impairments, mood deregulation, and addictive behaviors in rodents [17-21]. Interestingly, one study [22] and recent un-published data from our group point to an effect of Rhy on sleep in rodents, which is in line with the beneficial effects of Chotoko and YKS on human sleep time and quality (see details in section 1.3).

1.2 Sleep and its regulation

In mammals and other species, sleep is an essential behavior during which the organism isolates from environmental stimuli. Although the precise roles of sleep remain elusive, it could serve recovery from sustained activity (and associated oxidative stress) occurring during wakefulness in mammals and insects [23,24]. Moreover, sleep is beneficial for immune function, memory consolidation, and mood [25-28]. Mammalian sleep studies usually identify three main vigilance states: wakefulness, non-rapid eye movement (NREM) sleep (analogous to slow wave sleep in rodents), and rapid eye movement (REM) sleep (or paradoxical sleep) [29]. Wakefulness is characterized by a predominance of high frequency electroencephalographic (EEG) activity, NREM sleep by predominant low-frequency and high-amplitude EEG activity, and REM sleep by theta (4-9 Hz) EEG activity [29-33]. Delta activity (1-4 Hz) and slow oscillations (<1 Hz) during NREM sleep originate from synchronized up and down states of neuronal firing in cortical and

thalamocortical networks [34,35]. Delta activity (or slow wave activity: 0.5-4.5 Hz) was proposed to reflect a sleep homeostatic/recovery process [31,32,36-38], which relationship was recently shown to differ between slower and faster delta [32].

The transitions between vigilance states are operated by the activation/inhibition of specific brain circuits [39,40]. During wakefulness, wake-promoting brain regions contribute to sustained neuronal activity and/or inhibit sleep promoting centers. Amongst the major wake-promoting centers are Hypocretin/Orexin neurons in the lateral hypothalamus, neurons in the basal forebrain (BF), and neurons in several nuclei of the reticular formation (laterodorsal tegmentum [LDT], pedunculopontine tegmentum [PPT], raphe nucleus [RN], locus cœruleus [LC]) [39,41-46]. Sleep promoting neurons are found in the hypothalamus, with the ventrolateral preoptic area having a particular relevance [47]. During REM sleep, neurons from several nuclei of the reticular formation, including the LDT and PPT, allow cortical activation while behavioral sleep is maintained [48,49]. The knowledge of sleep neurobiology is important to refine pharmacological approaches for sleep disturbances.

1.3 Rhynchophylline and sleep

Drugs containing Uncaria appear to ameliorate sleep in different ways. For instance, YKS was shown to improve sleep disturbances (sleep time, quality, and sleep-related limb movements) in adults suffering from REM sleep behavior disorder or dementia [6,50-52]. It was also reported to improve sleep quality in patients with insomnia [7], and children with nocturnal enuresis [53]. Other drugs containing Uncaria (although in smaller proportion) were also shown to increase total sleep time in healthy subjects and sleep quality in patients with Parkinson's disease or perimenopausal sleep disorder [54-56]. Fundamental research also suggests that Uncaria benefits sleep in rodents. Indeed, the administration of both YKS and a drug containing YKS was found to increase sleep time in socially isolated mice while having no impact in group-housed mice [57,58]. YKS was also shown to increase NREM sleep (and to decrease wake time) in a rat model of dementia [59], and Chotoko was reported to enhance the hypnotic-induced sleep time in mice [60]. Interestingly, Yoo and collaborators showed that Rhy increases sleep time in wild-type rats and mice [22]. This is in line with our recent observation of a longer time spent asleep after Rhy administration in mice, especially during the active (dark) period (Ballester Roig et al., in

preparation). Moreover, Rhy, Isorhy or Uncaria were all shown to reduce spontaneous locomotor activity in mice [61-63].

Very few of these studies have investigated the cellular pathways underlying modifications of sleep. Three of them suggested that the increased sleep time in mice is linked to gammaaminobutyric acid (GABA) neurotransmission because these effects were blocked by GABA receptor antagonists and since increased levels of GABAA receptor subunits were found in hypothalamic neurons following Rhy-containing drug administration (see also section 2.9) [22,57,58]. Another study in rats with cerebral ischemia has linked the effects of YKS on sleep to a change in the mRNA level of prostaglandin receptors in the prefrontal cortex (PFC) and hypothalamus [59]. However, it appears that multiple cellular pathways impacted by Rhy may drive modifications in sleep. Therefore, this review is assembling findings on potential targets and cellular pathways affected by Rhy that are likely to impact the regulation of sleep. The literature demonstrates that Rhy could affect the activity of ion channels, N-methyl-D-aspartate (NMDA) receptors, receptor tyro-sine kinases (RTK), extracellular signal-regulated kinases (ERK)/mitogenactivated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K)/RAC serine/threonineprotein kinase (AKT), and nuclear factor-kappa B (NF-kB). A detailed overview of the effects of Rhy, including different types and durations of administration, is presented in Table 1. In addition, **Table 2** lists the literature reporting effects of Rhy on specific sleep-relevant targets/pathways, and Figure 2 depicts a global scheme of the sleep-relevant pathways affected by Rhy and their interrelationships.

2. RHY targets and links to sleep regulation

2.1 Ion channels

2.1.1. Voltage-gated Ca2+ channels

Rhy was first described as a calcium channel blocker in arteries, heart and neuronal cultures from the rat, rabbit, guinea pig, and human [10]. Some studies suggest an inhibitory effect specifically on L-type voltage-gated calcium channels (L-VGCCs; Cav1 family of calcium channels), which are high-voltage activated channels present notably in neurons, retinal photoreceptors, vascular smooth muscle cells, and cardiomyocytes [64]. For example, acute in vitro incubation of rat cortical neurons, rat ventricular myocytes, and rat and human arteries with Rhy

was shown to inhibit Ca2+ influx through L-VGCCs [65-68] (**Table 1**). In vessels, this Rhydependent inhibition of VGCCs and the inhibition of intracellular Ca²⁺ release were found to block the contractile response and induce vasodilation [67-69]. In cortical neurons, it was suggested that Rhy blocks L-VGCCs by decreasing the channel opening time and increasing its closing time under hypoxic conditions [65]. In neurons, L-VGCCs are mainly postsynaptic and contribute to Ca2+ influx, Ca2+ intracellular signaling, neuronal firing, and synaptic plasticity [70-73]. These roles affect neuronal responsiveness and synchronization, which is relevant to sleep regulation.

L-VGCCs were shown to modulate the synchronization of cortical and hippocampal neuronal oscillations, including in theta frequencies in vitro [74,75], and to affect the excitation/inhibition ratio in cortical slices [76]. In fact, Ca2+ signaling and ion channels including

Table 1. Compilation of datasets showing molecular and cellular (and some electrophysiological and behavioral) effects of rhynchophylline (Rhy) organized as a function of treatment type and duration, and by measurement timing.

Rhy	Timing of	Rhy effect	Model	Reference #				
	Immediate	Attenuates enilensy-induced 1 in NMDAR current in FC slices	Rat brain slices	[19]				
20 S	Immediate	Accelerates activation and inactivation of VGKC	N2A cells	[17]				
005	mineulute	Accelerates activation and inactivation of Kv1.2	HEK293	[~+]				
3-8 min	Immediate	↓ mAChR1- and 5-HT2-mediated currents (effect disappears after 1min)	Xenopus oocytes	[250]				
		Attenuates epilepsy-induced 🕴 of EC neuron discharge frequency	Rats	[19]				
		↓ open time and ↑ close time of L-VGCCs	Rat cortical neuron	s [65]				
		↓ Ca ²⁺ influx via L-VGCCs	Rat cardiomyocytes	5 [66]				
		Non-competitive inhibition of NMDAR current	Xenopus oocytes	[94]				
15-30 min	Immediate	↓ EfnA1-dependent EphA4 phosphorylation and EphA4 clusters	Rat cortical neuron	s [18]				
		Attenuates ischemia-induced \downarrow in population spike amplitude	Rat hipp. slices	[250]				
		↓ Ca ²⁺ intracellular increase via L-VGCC, promotes vasodilation	Human artery smooth muscle cells	[67]				
1 h	Immediate	Attenuates ischemia-induced ↑ in ROS, MDA, LDH, mPTP, AIF, Ca ²⁺ and caspase 3 and 9 mRNA and protein Attenuates ischemia-induced ↓ in mitochondrial membrane potential, SOD, GPx, Cytc	Rat cardiomyocytes	s [197]				
		† GAD65/67 and GABAAR subunits expression	Rat hypothalamic neurons	[22]				
30 min	2 h post Rhy	Attenuates A β -induced \dagger in EphA4 phosphorylation and LTP impairment	Rat hipp. slices	[18]				
2-6 h	Immediate	Attenuates LPS-induced † in Cox2, iNos, Ccl2 mRNAs	Rat microglia	[161]				
		† <i>Grin1</i> mRNA (no difference in <i>Grin2b</i>)	Rat hipp. neurons	[99]				
12 h	Immediate	Improves endothelial relaxation and † p-Src, p-AKT and NO (in hypertensive rat arteries) and † p-eNOS (in WT arteries)	Rat intrarenal arteries	[187]				
24 h	Immediate	Attenuates LPS-induced ↑ in p-ERK, p-38, p-IkBα, NFκBp65 Attenuates LPS-induced ↓ in IkB α Attenuates LPS-induced ↑ in culture medium MCP1, PGE2, NO, IL1β, TNFα	Rat microglia	[161]				

1 h	24h post Isorhy	*Attenuates MPP-induced † in p-GSK3β Tyr297, p-FYN and ROS * † nuclear NRF2 and ARE transcriptional activity	Human SH-SY5Y neuroblastoma cells	[205]			
2 h	24h post Rhy	Attenuates MPP-induced \downarrow in p-GSK3 β Ser9, p-AKT and MEF2D Attenuates MPP-induced \uparrow in Bax/Bcl-2 ratio	Rat granule neurons	[188]			
48 h	Immediate	↑ <i>Grin1</i> mRNA and GluN1, and ↓ <i>Grin2b</i> mRNA and GluN2B	Rat hipp. neurons	[99]			
		Attenuates LPS-induced \uparrow in NO, iNOS, TNF α , IL-1 β , p-p38, p-ERK Attenuates LPS-induced \downarrow in IkB α	N9 mouse microglia	[162]			
		↓ GluN1 and ↓ ketamine-induced ↑ in GluA2/3	PC12 cells	[296]			
72 h	Immediate	 ↑ proliferation, GluN1, GluN2B, GluN3A ↓ BDNF, OXTR and ATP Alters proliferation/differentiation related genes 	Bone mesenchymal human cells	[102]			
24h	48h post Rhy	Attenuates MPP-induced † ROS, LDH, Caspase-3 activity and apoptosis Attenuates MPP-induced ↓ Bcl2/Bax ratio and p-AKT	PC12 cells	[194]			
SINGLE ADMINISTRATIONS							
IC	100-600 s post Rhy	Attenuates A β -induced \dagger in the frequency of spontaneous discharge in CA1	Rats	[100]			
IV	30 min post Rhy	Attenuates ischemia-induced ↓ in 5HIAA and DOPAC in striatum and hipp. Attenuates ischemia-induced ↑ of NE in striatum and hipp.	Rats	[297]			
IP	50 min post Rhy	 ↓ DA in cortex, hypothalamus, and brainstem ↓ 5-HT in amygdala ↑ 5-HT in hypothalamus, and ↓ 5-HT release in hypothalamic slices ↑ 5-HT release in cortex, amygdala, and brainstem slices ↑ DA release in cortex, hypothalamus, amygdala, and brainstem slices 	Rats	[61]			
		↓ righting reflex and spontaneous locomotor activity					
Oral	0-6h post Rhy	↓ locomotor activity and sleep latency, ↑ total sleep time	Mice	[22]			
		↓ number of sleep/wake cycles, ↑ total sleep time and REM sleep	Rats				
IP	48 h post Rhy	Attenuates stress-induced ↑ p-EphA4, p-FYN, p-Cdk5, p-Ephexin in PFC, CA3, DG Attenuates stress-induced ↓ BDNF, p-TrkB, PSD95, spines in PFC, CA3, DG	Mice	[17]			
IP	52 h post Rhy	Attenuates NTG-induced \uparrow in EEG theta and delta activity, oxidative stress (GSH, blood CGRP), p-ERK1/2, p-JNK, p-p38, p-I κ B α , and nuclear NF- κ B p65 (all in trigeminal nucleus caudalis)	Rats	[116]			
Hipp. inj	2 w post Rhy	Attenuates A β -induced \uparrow cell death, GluN2B, and NMDA Ca ²⁺ influx in CA1	Rats	[97]			
MULTIPLE .	ADMINISTRA	ΓΙΟΝS					
SC for 3 days	1-3 h after last injection	Attenuates LPS-induced \downarrow in stroke volume and cardiac output Attenuates LPS-induced \uparrow in IL-1 β , TNF α and p-IkB α in heart, macrophages and serum	Mice	[223]			
IP for 3 days	3 h after last injection	* Attenuates KA-induced epileptic seizures **Alters levels of <i>Bdnf, Fos, Nfkbia, Map2k3, Il1b</i> in cerebral cortex and hipp.	Rats	[140]			
		Attenuates KA-induced epileptic seizures		[166]			
		Attenuates KA-induced epileptic seizures and KA- induced ↑ in hippocampal p-JNK **Attenuates KA-induced ↓ in cortical IL-6		[167]			
IP for 3 days	12 h after last	Attenuates meth-induced 🕴 in 5-HT, DA, TH, Glut, GluN2B, and locomotion	Zebrafishes	[101]			
	injection	Attenuates meth-induced † in GluA1 and CPP		[298]			
		Attenuates meth-induced \dagger in p-CREB and c-fos positive cells in CA1 and striatum	Rats	[172]			
		Attenuates amph-induced ↑ in CPP, glutamic acid, DA, and NE Attenuates amph-induced ↓ in GABA, endorphin, and ACh		[251]			
		Attenuates ketamine-induced † in CPP, <i>Nr4a</i> 2and <i>Bdnf</i> mRNAs, NURR1, BDNF, p-CREB (all hipp.)		[141],[21]			
		Attenuates amph-induced † in CPP and <i>Grin2b</i> mRNA, and GluN2B protein in mPFC and CA1		[20]			
		Attenuates meth-induced 🕴 in CPP and GluN2B in brain tissue	Mice	[98]			
-------------------------------------	------------------------------	---	-------------------	--------------			
IP for 3 days	24 h after last injection	Attenuates KA-induced \dagger in IL-1 β and BDNF positive cells in cortex and hipp.	Rats	[140]			
		Attenuates KA-induced † NO scavenging activity in blood		[166]			
IP for 5 days	24 h after last injection	 ↓ brain infarction and neurological deficits in a stroke model. In cerebral cortex: Accentuates ischemia-induced ↑ in p-AKT and p-mTOR Attenuates ischemia-induced ↑ in TLR2,4, MyD88, caspase 3, and nuclear NF-KB Attenuates stroke-induced ↓ in p-BAD, BDNF, <i>Bdnf</i> and claudin-5 		[114]			
ICV infusion for 9 days	33-34 h after ICV	Attenuates epilepsy-induced † EC discharge frequency, neuronal death and GluN2B and Nav1.6	Rats	[19]			
1 week gavage	1 week after last gavage	Attenuates cytotoxicity-induced \downarrow in TH-positive cells in substantia nigra	Mice	[194]			
2 weeks gavage	Immediate	**Attenuates KA-induced neuronal death and KA-induced † in spike amplitude	Rats hipp. slices	[299]			
3 weeks oral	Not specified	Attenuates DOI-induced ↑ TNF α, IL-6, and IL-1B (in serum and striatum) Attenuates DOI-induced ↑ p-NF-κB p65, p-IkBα, TLR2, caspase1, MyD88, DA, D2R (in striatum) Attenuates DOI-induced ↓ in p-TrkB, BDNF (in striatum), and cell viability	Rats	[143], [222]			
3 weeks gavage	24h after last gavage	*Attenuates Aβ-induced ↓ in p-AKT, p-GSK3β (in brain), Bcl2/Bax in hipp., and memory *Attenuates Aβ-induced ↑ in caspases 3 and 9 in hipp.	Rats	[189]			
3-4 weeks gavage	Immediate	Attenuates p-EphA4 and rescues LTP in hipp. slices in APP mice	Mice	[18]			
3 weeks gavage	5 days after las gavage	t*Attenuates chronic mild stress-induced \downarrow p-AKT, p-GSK3β, BDNF, NGF in cortex and hipp., and sucrose preference *Attenuates chronic mild stress-induced \uparrow in TNF α , IL-6, nuclear NF-κB in cortex and hipp. and locomotion	Mice	[142]			
1 day gavage/week for 4 weeks	24 h after last gavage	Attenuates asthma-induced \uparrow in eosinophil recruitment, IL-13, IL-4, IL-5 in serum Attenuates asthma-induced \uparrow TGF β , Smad4, p-Smad2, p-Smad3, p-ERK1/2 and p-38 in lung tissue	Mice	[164]			
6 weeks in food	Immediate	*Attenuates cardiac hypertrophy-induced \uparrow in TGF β 1, cTGF, Collagen _{1,3} , p- ERK, p-38, p-JNK, and attenuates the induced \downarrow in SOD2 * \uparrow NEP2 and accontinuates the induced \downarrow in SOD3	Mice	[165]			

*Studies with Isorhynchophylline; **Studies with *Uncaria rhynchophylla*; Upward arrows are indicating an increase and downward arrows a decrease; 5-HT: 5-hydroxytryptamine or serotonin; 5HIAA: 5-hydroxyindoleacetic acid; 5-HT₂R: serotonin receptor 2; $A\beta$: amyloid β ; AIF: apoptosis-inducing factor; ACh: acetylcholine; AKT: RAC serine/threonine-protein kinase; amph: amphetamine; APP: amyloid precursor protein; ARE: antioxidant response element; ATP: adenosine triphosphate; BAD: Bcl-2-associated death protein; BDNF: brain-derived neurotrophic factor; CA1: hippocampal cornu ammonis-1; CA3: hippocampal cornu ammonis-3; Cdk5: cyclin dependent kinase 5; CGRP: calcitonin gene-related peptide; Ccl2: monocyte chemoattractant protein 1 gene; Cox2: cyclooxygenase 2; CPP: conditioned place preference; CREB: cAMP response element-binding protein; cTGF: connective tissue growth factor; Cytc: cytochrome c; D2R: dopamine D2 receptor; DA: Dopamine; DG: dentate gyrus; DOI: 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane; DOPAC: 3,4-Dihydroxyphenylacetic acid; EC: entorhinal cortex; EEG: electroencephalographic; eNOS: endothelial nitric oxide synthase; EfnA1: ephrin A1; EphA4: Eph receptor A4; ERK: extracellular signal-regulated kinases; FYN: tyrosine-protein kinase Fyn; GABA_AR: gamma-aminobutyric acid type A receptor; GAD: glutamic acid decarboxylase; GluA: α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit; GluN: NMDAR subunit; GPx: glutathione peroxidase; Grin2b: glutamate ionotropic receptor NMDA type subunit 2B; GSH: glutathione; GSK3β: glycogen synthase kinase-3 β; Hipp.: hippocampus; IC: intracerebral; ICV: intracerebroventricular; I κ B α : NF-kappa-B inhibitor alpha; iNOS: inducible nitric oxide synthase; IL: interleukin; IP: intraperitoneal; IV: intravenous; JNK: c-Jun N-terminal kinase; KA: kainic acid; Kv: VGKCs subunit; LPS: lipopolysaccharide; LTP: long term potentiation; L-VGCC: L-type voltage-gated calcium channel; MCP1: monocyte chemoattractant protein 1; MDA: malondialdehyde; MEF2D: myocyte enhancer factor 2D; meth: methamphetamine; mPFC: medial prefrontal cortex; MPP: 1-methyl-4-phenylpyridinium; mPTP: mitochondrial permeability transition pore; mTOR: mechanistic target of rapamycin; MyD88: myeloid differentiation primary response protein; NAc: nucleus accumbens; Nav1.6: voltage-gated sodium channel 1.6; NE: norepinephrine; NF-κB: nuclear factor-kappa B; Nfkbia: I κ B α gene; NGF: nerve growth factor; NMDAR: N-methyl-D-aspartate receptor; NO: nitric oxide; Nr4a2: nuclear receptor subfamily 4 group A member 2 gene; NRF2: nuclear factor E2 related factor 2; NTG: nitroglycerin; Nurr1: nuclear receptor related-1 protein or nuclear receptor subfamily 4 group A member 2; OXTR: oxytocin receptor; PC12: cell derived from phaeochromocytoma of rat adrenal medulla; PSD95: postsynaptic density protein 95; REM: rapid eve movement; SC: subcutaneous; Smad: homolog of Drosophila mothers against decapentaplegic; SOD: superoxide dismutase; Src: proto-oncogene tyrosine-protein kinase Src; TGF_β: transforming growth factor beta; TH: tyrosine hydroxylase; TLR: toll-like receptor; TNFα: tumor necrosis factor α; TrkB: tropomyosin or tyrosine receptor kinase B; VGKC: voltage-gated potassium channel.

VGCCs are also proposed to be involved in the generation of the up and down states composing the slow oscillations characteristic of the NREM sleep EEG [77,78]. Cav1.2 channels represent more than 80% of L-VGCCs in the mouse brain [79]. Mice heterozygous for Cacna1c (gene encoding a Cav1.2 subunit) have less REM sleep during recovery after sleep deprivation (SD), as well as decreased beta and gamma activity (20-64 Hz) during wakefulness and REM sleep [80]. Moreover, Cacna1c genetic variants, which have also been linked to psychiatric disorders, are associated with longer sleep latency in infants [81]. Therefore, although the effect of Rhy on neuronal L-VGCCs seems to have only been studied in vitro, Rhy may impact sleep stages and EEG activity through the blockage of L-VGCC-mediated currents. Also, Cav1.2 mRNA is expressed rhythmically in the mouse suprachiasmatic nucleus (SCN), and Cav1.2 KO mice have altered circadian adjustments to light [82]. This suggests that the effect of Rhy on VGCCs may also impact the circadian regulation of wakefulness and sleep.

2.1.2. Potassium channels

Other ion channels targeted by Rhy which have important roles in CNS functions are voltage-gated potassium channels (VGKC). VGKC, by allowing K+ efflux, regulate neuronal

repolarization and the timing of neuronal excitability [83]. Rhy was shown to speed up the inactivation of VGKC in N2A neuroblastoma cells [84] (**Table 1**). This study has also reported a specific effect on VGKC containing the Kv1.2 subunit expressed in HEK293 cells, in which Rhy accelerated Kv1.2 channels activation and inactivation times [84]. Noteworthy, the Kv1.2 subunit is highly expressed in the thalamocortical system [85,86], and potassium channels Kv1.2, Kv3.1 and Kv3.2 have been shown to regulate sleep [87-90]. In particular, Kv1.2 knockout (KO) mice spend less time in NREM sleep and more time in wakefulness [88], and Kv1.2 inhibition was reported to decrease NREM sleep and alter the NREM sleep EEG [90]. In Drosophila, mutation of VGKC subunits that are close to the mammalian Kv1.2 channels was also shown to induce a decrease in sleep time [24,91]. These findings suggest that the effect of Rhy on VGKCs may contribute to alterations in sleep features as well. Of note, Rhy also affects calcium-activated potassium channels in the vascular system [10]. This has not been investigated in the CNS, but might be of relevance considering that these channels can impact sleep duration [92]. Interestingly, both VGKCs and calcium-activated potassium channels are also suggested to be involved in the generation of up and down states of NREM sleep oscillations [77,78].

2.2 NMDA receptors

Among the most studied targets of Rhy are glutamate NMDA receptors (NMDARs), which are crucial for neurotransmission and brain plasticity [93]. Rhy was described as a non-competitive NMDAR antagonist due to its blocking effect on NMDAR current in xenopus oocytes [94]. In entorhinal cortex slices of epileptic rats, Rhy was found to cause an immediate attenuation of the potentiated NMDAR-mediated currents, which associated to a decrease of seizures in vivo [19]. Moreover, Rhy was often shown to decrease the expression of the NMDAR subunit GluN2B, which is predominant in extrasynaptic NMDARs, responds to high spreads of glutamate such as in excitotoxic conditions, and activates apoptotic pathways [95,96]. In rodents, conditions such as pilocarpine-induced status epilepticus, injections of amyloid-beta (A β), and administration of amphetamine (amph) or methamphetamine (meth), are increasing GluN2B protein levels, effects that were diminished by Rhy in the medial PFC, entorhinal cortex, and hippocampal CA1 region [19,20,97,98] (**Tables 1** and **2**). This modulation of GluN2B by Rhy could depend on an effect at

 Table 2. List of literature showing effects of Rhynchophylline (Rhy) on sleep-related pathways under physiological (baseline) and/or pathological (disease-modeled) conditions.

	Effects under baseline and/or pathological conditions	Sex(es) studied	Reference #
VGCC	Baseline conditions	Males	[66], [68]
	Baseline conditions	Males and females	[69]
	Baseline conditions	Not indicated	[67]
	Pathological conditions	Not indicated	[65]
VGKC	Baseline conditions	Male and female cell lines	[84]
NMDAR	Baseline conditions	Not indicated	[94], [99], [102]
	Pathological conditions	Males	[19], [101]
	Pathological conditions; no effect under baseline	Males	[20],[97]
	Pathological conditions	Not indicated	[98]
EPHA4	Pathological conditions; no effect under baseline	Males and females	[18]
	Pathological conditions; no effect under baseline	Males	[17]
BDNF/TRKB	Baseline conditions	Not indicated	[102]
	Pathological conditions	Males	[140], [141], [114]
	Pathological conditions; no effect under baseline	Males	[17], [142]*
	Pathological conditions	Not indicated	[21]
ERK/MAPK	Pathological conditions	Male cell line	[162]
	Pathological conditions	Not indicated	[161]
	Pathological conditions	Female	[164]
	Pathological conditions	Males	[116], [166], [167]
	Pathological conditions; no effect under baseline	Males	[165]*
CREB	Pathological conditions	Males	[141]
	Pathological conditions	Not indicated	[21] [172]
PI3K/AKT	Pathological conditions	Males	[187]
	Pathological conditions	Male cell line	[194]
	Pathological conditions	Not indicated	[197]
	Pathological conditions; no effect under baseline	Not indicated	[188]
	Pathological conditions; only one effect under baseline	Males	[165]*
	Pathological conditions	Males	[114]
	Pathological conditions; no effect under baseline	Males	[142]*, [189]*
NF-ĸB	Pathological conditions	Male cell line	[162]
	Pathological conditions	Not indicated	[161]
	Pathological conditions	Males	[114], [116], [166], [140], [222]
	Pathological conditions; no effect under baseline	Males	[223]
Other NTs	Baseline conditions	Not indicated	[250]
	Baseline conditions	Males and females	[61]
	Pathological conditions	Males	[101], [143]
	Pathological conditions; no effect under baseline	Not indicated	[251]
GABAAR	Baseline conditions	Male neurons	[22]

*Studies with Isorhynchophylline. Lines with grey background denote *in vitro* measurements only. Studies showing Rhy effects under baseline conditions and/or including both sexes are in bold. Studies have not tested the effect of Rhy under baseline conditions if it is not indicated. AKT: RAC serine/threonine-protein kinase; BDNF: brain-derived neurotrophic factor; CREB: cAMP response element-binding protein; EphA4: Eph receptor A4; ERK: extracellular signal-regulated kinases; GABA_AR: gamma-aminobutyric acid type A receptor; VGCC: voltage-gated calcium channels; NF-κB: nuclear factor-kappa B; NMDAR: N-methyl-D-aspartate receptor; NTs: neurotransmitters; PI3K: phosphoinositide 3-kinase; TrkB: tropomyosin or tyrosine receptor kinase B; VGKC: voltage-gated potassium channels. the gene expression level because Rhy was shown to reduce Grin2b mRNA levels in rat hippocampal neurons and also after an amph-induced increase in PFC and CA1 [20,99]. Additionally, the effects of Rhy on NMDAR and GluN2B have been linked to a decrease in the frequency of discharge or population spike amplitude in brain regions including the entorhinal cortex and dentate gyrus (DG) [19,97,100]. Moreover, the Rhy-driven decreases in GluN2B are often observed in parallel with improvements in cognitive functions in rodents, such as spatial memory or drug-conditioned place preference (CPP) [20,97,98]. Similar findings were made in the zebrafish, in which Rhy was found to reduce the meth-induced increase in GluN2B protein level and CPP [101]. In contrast to the aforementioned studies, Rhy was shown to increase GluN2B protein in human mesenchymal cells [102]. Despite the fact that these last findings were from relatively long bath incubations of Rhy (72 h), they are difficult to reconcile with most of the effects reported in vivo in rodents. Also, it is important to keep in mind that only one study has reported an effect of Rhy on NMDARs in baseline conditions and this was in vitro, which may raise the question whether Rhy can modulate NMDARs under baseline conditions in vivo. Nonetheless, the literature adds up in favor of an effect of Rhy on NMDAR function.

With regard to sleep, glutamatergic signaling and NMDARs have been implicated both in arousal- and sleep-promoting pathways, with very distinct implications depending on the brain region [39]. On the one hand, NMDA or glutamate injected in the rat BF or tuberomammillary nucleus was shown to increase time spent awake [103,104], and injection of glutamate in the PPT induces neocortical desynchronization, wakefulness and REM sleep in the rat and cat [105,106]. Similarly, intraperitoneal (i.p.) injection of the MK-801 NMDAR antagonist was found to cause a delayed increase in NREM sleep time in rats [107,108]. Also, Alzheimer's disease patients treated with a non-competitive antagonist of NMDARs showed an increase in total sleep time (mainly NREM sleep) and reduced sleep fragmentation [109]. On the other hand, glutamate injection in the rat medial preoptic area (mPOA) or medial septum was shown to promote NREM sleep [110,111], and MK-801 was reported to decrease both NREM and REM sleep in mice [92]. Other data in rats have shown that peripheral administration of NMDAR antagonists induces cortical gamma activity (30-50Hz) in all vigilance states, while a specific blockade of GluN2B increases it solely in REM sleep [112]. The discrepancies between some of these studies could be explained by differences in

Figure 2. Schematic representation of cellular pathways targeted by Rhy and relevant to sleep regulation. Red flat-head lines: Rhy inhibition; Green arrows: Rhy induction; Red round-head lines: Rhy-dependent decrease in expression level; Green round-head lines: Rhy-dependent increase in expression level. Additional interactions between these cellular pathways are not represented but could also be relevant to sleep molecular physiology. For instance, L-VGCC can activate ERK/MAPK (Dolmetsch et al., 2001), and are suggested to induce CaMKII, NR2B phosphorylation and CREB activation (Wheeler et al., 2012; Kumar et al., 2019). NMDARs may also activate the PI3K/AKT pathway (Yoshii and Constantine-Paton, 2007). In addition, NF-DB and ERK/MAPK pathways were shown to interact with each other (Wang et al., 2014; Lai et al., 2019). 5-HT: 5-hydroxytryptamine or serotonin; 5-HT2R: serotonin receptor 2; Aβ: amyloid β; Amph: amphetamine; AKT: RAC serine/threonine-protein kinase; ARE: antioxidant response element; BAX: Bcl-2 associated X protein; BDNF: brain-derived neurotrophic factor; CamKII: Ca2+/calmodulin-dependent protein kinase; Casp 3: caspase 3; Casp 9: caspase 9; CC: cerebral cortex; CDK5: cyclin dependent kinase 5; CRE: cAMP response element; CREB: cAMP response element-binding protein; D2R: dopamine D2 receptor; DA: dopamine; eNOS: endothelial nitric oxide synthase; EphA4: Eph receptor A4; ERK1/2: extracellular signal-regulated kinases 1 and 2; FYN: tyrosine-protein kinase Fyn; GABAAR: gammaaminobutyric acid type A receptor; GKAP: guanylate kinase-associated protein; GluN2B: NMDAR subunit 2B; Grin2b: glutamate ionotropic receptor NMDA type subunit 2B gene; GSK3β: glycogen synthase kinase-3 β; IkBa: NFkappa-B inhibitor alpha; IKK: IkB kinase; IL: interleukin; iNOS: inducible nitric oxide synthase; KA: kainic acid; Ket: ketamine; m1AchR: m1-type muscarinic acetylcholine receptor; MEF2D: myocyte enhancer factor 2D; MEK: mitogen-activated protein kinase kinase; Meth: methamphetamine; mTOR: mechanistic target of rapamycin; mTORC1: mTOR complex 1; mTORC2: mTOR complex 2; MyD88: myeloid differentiation primary response protein; NF-κB: nuclear factor-kappa B; NMDAR: N-methyl-D-aspartate receptor; NO: nitric oxide; NRF2: nuclear factor E2 related factor 2; PDK1: phosphoinositide-dependent protein kinase-1; PI3K: phosphoinositide 3-kinase; PSD95: postsynaptic density protein 95; RE: response element; Rheb: GTP-binding protein Rheb; Rhy: rhynchophylline; SE: status epilepticus; Shank: SH3 and multiple ankyrin repeat domains protein; TLR: toll-like receptors; TNFa: tumor necrosis factor a; TrkB: tropomyosin or tyrosine receptor kinase B; TSC1/2: tuberous sclerosis complex 1/2; VGCC: voltage-gated calcium channels; VGKC: voltage-gated potassium channels.

the time of administration, time of recording and/or species. Nonetheless, all support a role for NMDAR-mediated neurotransmission in sleep regulation. Therefore, the 'generally antagonistic' effect of Rhy on NMDARs should modulate cortical activity and show vigilance state-specific effects on wake/sleep architecture and EEG activity. Moreover, downstream effectors of NMDARs, including components of the ERK/MAPK and PI3K/AKT pathways, also seem to be altered by Rhy and involved in sleep regulation [113-118] (**Figure 2**, and sections 2.5 and 2.6). These interrelationships may reinforce the association between Rhy and NMDARs but could also imply that Rhy affects these pathways in a NMDAR-independent manner.

2.3 EphA4 and downstream pathways

Ephrins and their Eph RTKs are cell adhesion molecules widely expressed in neurons, glia, lymphocytes, epithelial cells, fibroblasts, myocytes, and bone cells [119-122]. In the CNS, they are crucial for axon guidance and plasticity [123]. In particular, Eph receptor A4 (EphA4) has roles in the regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, glial glutamate transport, and spine morphology [123-125]. In 2014, Fu and collaborators proposed that Rhy inhibits EphA4 activation by direct high-affinity interaction with its extracellular domain [18]. In this study, it was shown that Rhy inhibited both the EphrinA1-induced and Aβ-induced phosphorylation of EphA4 in rat hippocampal neurons, and that oral administration of Rhy inhibited the elevated phosphorylation of EphA4 in the hippocampus of mice mutant for the amyloid precursor protein (APP) and presenilin 1 (PS1) [18]. These observations were associated with a restorative effect of Rhy on long-term potentiation and spine number. A sub-sequent study also showed that one Rhy i.p. injection reduces p-EphA4 in mice susceptible to stress, specifically in the PFC, hippocampal CA3, and DG, which correlated with an improvement of depressive-like behaviors and spine number [17]. In these same stress-susceptible mice, the phosphorylation of the tyrosine-protein kinase Fyn, cyclin de-pendent kinase 5 (Cdk5) and ephexin1 was increased, and Rhy attenuated these increments [17]. This could originate from an effect of Rhy directly on EphA4 because the Cdk5/ephexin1 pathway is downstream of EphA4 phosphorylation and linked to actin remodeling and spine destabilization [126] (Figure 2).

Research from our group supports a role for EphA4 in the regulation of sleep [127,128]. Indeed, we found that *EphA4* KO mice spend less time in REM sleep and have longer bouts of wakefulness and NREM sleep during the light phase in comparison to wild-type littermates [127]. Also, *EphA4* KO mice manifested a blunted 24-h rhythm of NREM sleep sigma (10-13 Hz) activity [127]. In addition, *EphA4* KO mice showed a short-er duration of slow waves (0.5-4 Hz) during NREM sleep [128]. These observations suggest that Rhy might modulate sleep through EphA4-dependent pathways, which may alter sleep variables such as REM sleep amount or EEG properties in the sigma or delta frequency ranges. In parallel, EphA4 was shown to be expressed in the mouse and rat SCN, and *EphA4* KO mice to have altered circadian responses to light [127,129]. This suggests an implication of EphA4 in the circadian timing system, and as a consequence, a potential effect of Rhy on circadian physiology.

2.4 BDNF/TRKB signaling

Brain-derived neurotrophic factor (BDNF) is upregulated by neuronal activity and involved in cell survival and neuroplasticity [130-134]. It generally acts on p75 neurotrophin receptor (p75NTR) and tropomyosin or tyrosine receptor kinase B (TrkB) [135], and TrkB can activate other signaling pathways including PI3K and ERK/MAPK [133,136-139]. In a rat model of epilepsy, kainic acid was found to increase BDNF protein in the cerebral cortex and hippocampus, which was attenuated by Rhy or Uncaria [140]. Similarly, ketamine-addicted rats were shown to have an increased expression of BDNF in the hippocampus, which was diminished by Rhy [21,141]. Rhy was also observed to reduce the levels of extracellular and intracellular BDNF in human bone marrow mesenchymal cells [102]. In contrast, Rhy appears to restore BDNF level when it is decreased in pathological conditions instead of increased, such as in the cortex or hippocampus of a rat stroke model [114] or of chronic/social-defeat stressed mice [17,142]. TrkB phosphorylation was also found to be increased by Rhy in the PFC, hippocampal CA3 and DG regions of stressed mice, and in the striatum of a rat model of Tourette syndrome [17,143]. Therefore, Rhy may downregulate the BDNF pathway under some conditions of neuronal activation such as epilepsy or after ketamine administration, while it may upregulate it in specific pathological conditions such as stroke, stress or Tourette syndrome (Table 1). This could also suggest that Rhy effects on BDNF depend on distinct upstream pathways.

Both BDNF and TrkB signaling have been linked to sleep regulation [144-146]. Firstly, BDNF has long been considered a sleep-promoting substance. For example, intracerebroventricular injection of BDNF was found to induce NREM sleep in rats and NREM and REM sleep in rabbits [147]. Studies in humans also report that lower levels of BDNF associate with shorter sleep duration or with decreased amount of deep NREM and REM sleep [148,149]. Interestingly, TrkB KO mice have more REM sleep, reduced REM sleep latency, and shorter bouts of wake and NREM sleep [150]. Secondly, the BDNF/TrkB pathway was found to impact the sleep EEG. Indeed, intracerebroventricular injection of BDNF was shown to reduce NREM sleep slow wave activity (SWA) in rabbits [147], whereas BDNF injection in the rat cortex during wakefulness was shown to increase SWA in the following NREM sleep period, and cortical injection of a BDNF antibody or a TrkB inhibitor to reduce NREM sleep SWA [151]. Moreover, the Val66Met BDNF polymorphism in humans has been linked to decreased NREM sleep delta and theta activity, and REM sleep theta, sigma and alpha activity [152,153]. Carriers of this polymorphism also lost the positive correlation between sleep consolidation and declarative memory [154]. Thirdly, the phosphorylation of BDNF and TrkB responds to SD. Acute SD was shown to enhance BDNF levels and p-TrkB in the rat BF [155], and REM sleep deprivation (RSD) to increase BDNF in the PPT and subcœruleus nucleus, as well as in the ventromedial medulla of the spinal cord in a rat pain model [156-158]. SD was also found to increase BDNF levels in patients with major depressive disorder [159], and severe insomnia has been associated to lower BDNF [160]. Lastly, different inhibitors of TrkB were found to decrease REM sleep rebound after RSD [157]. Therefore, the literature suggests that the effects of Rhy on the BDNF/TrkB pathway could impact wakefulness and sleep phenotypes in numerous ways. However, the diverse roles of BDNF also suggest that the modulation by Rhy is likely con-text-dependent.

2.5 ERK/MAPK pathway

Rhy was shown to influence the phosphorylation (indicative of the activation) of ERK/MAPK. For instance, i.p. injection of Rhy diminished the elevated ERK phosphorylation (p-ERK) in trigeminal nucleus caudalis of rats stimulated with nitroglycerin (a rat migraine model) [116]. P-ERK level was also reported to be decreased by Rhy in rat and mouse microglia [161,162], and by U. rhynchophylla in murine macrophages [163]. In murine peripheral tissues, after several weeks of oral administration, Rhy was found to decrease the level of p-ERK in the lungs [164], and Isorhy to decrease it in the heart [165]. In contrast, others have reported that p-ERK levels were unaltered in the cortex or hippocampus after i.p. Rhy injections [166,167], which might be explained by a smaller dosage (i.e., 0.25 vs. 10-30 mg/kg). ERK and MAPK belong to a signaling cascade downstream of several membrane receptors, including NMDAR, TrkB and toll-like receptors (TLRs), and can modulate multiple cellular responses via cAMP response element-binding protein (CREB) and activity-regulated genes such as *Arc*, *Dbp*, *Homer1a* and *Bdnf* [136-139,168-171] (**Figure 2**). Therefore, the impact of Rhy on the ERK pathway may be linked to effects on both upstream and downstream elements.

CREB is a downstream effector of ERK/MAPK particularly relevant to understand the effects of Rhy. CREB is activated by neuronal activity and acts downstream of numerous other pathways including NMDAR and PI3K/AKT [137,139,170,171] (**Figure 2**). Rhy was shown to reduce p-CREB positive cells in the striatum and hippocampus in rats with meth and ketamine-

dependent p-CREB increase [21,141,172]. Rhy was also found to rescue the meth-induced decrease in the number of c-fos positive cells in the striatum and CA1, which was suggested to depend on CREB [172].

With regard to the neurophysiology of sleep, the ERK pathway was shown to associate with both wake/sleep history and regulation. Indeed, ERK phosphorylation has been reported to increase after 15 min of wakefulness and to decrease after 15 min of NREM sleep in the mouse cerebral cortex [169]. Moreover, RSD was found to decrease p-ERK level in the rat hippocampus [173]. In parallel, the deletion of Erk1 or Erk2 genes, as well as the inhibition of ERK phosphorylation, was found to increase the time spent awake in mice, generally at the expense of NREM sleep [169]. The level of p-ERK was also reported to correlate with sleep time in Drosophila [174]. Interestingly, the inhibition of ERK phosphorylation was shown to increase NREM sleep delta power in mice [169]. In the cat visual cortex, ERK1 phosphorylation was observed to associate with REM sleep beta-gamma activity (20-40 Hz), and has been linked to REM sleep-dependent plasticity [175]. Several datasets are also supporting that sleep is regulated by CREB in both rodents and insects. For instance, mice mutant for CREB α and Δ isoforms show an increase in NREM sleep duration and a decrease in theta activity during wake and REM sleep [176]. Likewise, a specific mutation of CREB in forebrain excitatory neurons was found to reduce time spent awake and increase NREM sleep time and bout number in rats [177]. Moreover, SD was found to increase p-CREB in the rat cerebral cortex [178,179], but RSD decreases it in the rat hippocampus [173]. In flies, SD was found to enhance CREB transcriptional activity, while the inhibition of CREB activity was found to increase rest [180]. In sum, effects of Rhy on both ERK and CREB could impact wake/sleep duration and modulate EEG activity including NREM sleep delta power.

2.6 PI3K/AKT signaling network

The signaling by PI3K/AKT represents a major pathway regulating cell survival and growth [181]. Various receptors such as RTK and cytokine receptors directly stimulate PI3K upon ligand binding, which enables site-specific phosphorylation (and activation) of AKT by 3-Phosphoinositide-dependent protein kinase-1 (PDK1) and mechanistic target of rapamycin complex 2 (mTORC2) [182,183]. AKT controls numerous cellular processes such as apoptosis, anabolic metabolism, and angiogenesis notably via the phosphorylation of glycogen synthase kinase-3 (GSK3) and mTORC1 [184-186].

Both Rhy and Isorhy seem to activate the PI3K/AKT pathway [114,142,187-189] (Table 1). This pathway likely mediates neuroprotective effects of Rhy given that AKT has antiapoptotic and pro-survival effects [190-193]. In a Parkinson's disease model in which cerebellar neurons are exposed to 1-Methyl-4-phenylpyridinium (MPP+, a potent neurotoxin), pre-treatment with Rhy was shown to decrease neuronal death [188]. This effect was abolished by the addition of a specific PI3K inhibitor, indicating that the effect of Rhy on cell survival is PI3K/AKT-dependent [188]. Also, Rhy and Isorhy were shown to prevent the shift towards apoptosis as measured with the Bax to Bcl-2 ratio [188,189,194]. In similar experimental conditions, U. Rhyncophylla has been shown to favor anti-apoptotic protein over pro-apoptotic protein in vitro [195]. Also, Rhy, Isorhy and U. Rhyncophylla were all shown to prevent the increase of caspase-3 cleavage in various models of neurotoxicity [114,189,194-197]. The cleavage of caspase-3, known as an 'executor of apoptosis', is often considered the ultimate step in the apoptotic cascade [198].

GSK3, a major downstream effector of AKT [184], is a serine/threonine protein kinase particularly abundant in the CNS [199,200]. In mammals, GSK3 has two paralogs (i.e., homologous proteins derived from different genes), GSK3a and GSK3ß [201]. Unlike most enzymes, GSK3 is constitutively active and pathways converging on it tend to decrease its activity by phosphorylation. GSK3 has repeatedly been linked to mood disorders [202,203]. The literature shows that Rhy inhibits GSK3 β under pathological conditions, which mainly depends on the activation of PI3K/AKT. Indeed, Rhy was shown to reverse the decrease in GSK3β phosphorylation induced by MPP+ in cerebellar granule neurons, which was found to be PI3Kdependent [188]. Similarly, daily administration of Isorhy to chronically stressed mice or to Aβtreated rats was reported to revert the decrease in GSK3β and AKT phosphorylation in the hippocampus and/or cerebral cortex [142,189]. Of interest is also that GSK3 is part of a pathway controlling NRF2 (nuclear factor E2 related factor 2) [204], which levels and translocation to the nucleus are enhanced by Rhy in hippocampal neurons of rats subjected to subarachnoid hemorrhage [196]. Isorhy had the same effect on NRF2 [165,205], and was also shown to induce transcription of ARE (antioxidant response element)-dependent genes [205]. The transcription of those genes is activated by NRF2 under oxidative stress conditions [206,207].

Few data are directly linking PI3K/AKT to sleep regulation. AKT was shown to respond to chronic sleep restriction, which decreases its phosphorylation in the hippocampus [208], thereby

inhibiting the pathway. On the other hand, downstream targets of PI3K/AKT have been associated to sleep regulation, with in particular GSK3ß activity that seems to impact sleep and the response to sleep loss. Firstly, mutant mice with constitutively active GSK3 β were shown to have indications of an increased fragmentation of wakefulness and sleep states [209], and GSK3ß knockdown in the cerebral cortex modifies the wakefulness and sleep EEG under baseline conditions and after SD in mice (Leduc et al., in preparation). Of note is that a genetic polymorphism decreasing GSK3 β activity was found to ameliorate the clinical response to total SD in depressed patients [210,211]. Secondly, sleep-wake history appears to modify GSK3 β activity. Chronic sleep restriction over a week was indeed shown to increase GSK3^β phosphorylation in the hippocampus [208], and spontaneous wakefulness during the dark period to increase it in the hippocampus [212]. In a recent study, GSK3^β activation was shown to occur at the transition to and during sleep and was proposed to act as major regulator of sleep-dependent plasticity [213]. In fact, GSK3 β downregulation was found to abolish the SD-driven increase in mEPSCs (miniature excitatory post-synaptic currents) amplitude in the mouse PFC [214], supporting a role in wake/sleep-dependent plasticity. Thirdly, lithium, which is a direct inhibitor of GSK3 (α and β) [203], and the first-line treatment for bipolar disorders [215], was shown to affect sleep quality. For instance, lithium was reported to improve sleep efficiency in bipolar type I patients [216], to increase NREM sleep and decrease REM sleep in healthy volunteers [217], and to reduce REM sleep in mice [218]. The literature thus strongly supports a bidirectional relationship between GSK3 and sleep, which likely represents a key pathway by which Rhy could impact sleep architecture and EEG activity during sleep due to its inhibitory activity on GSK3β.

mTORC1, another serine/threonine kinase downstream of AKT [185,219], is an additional possible target of Rhy potentially underlying a role in wake/sleep regulation. In-deed, Rhy was shown to increase the phosphorylation of mTOR in a rat stroke model [114]. In parallel, sleep-wake history modifies mTORC1 activity, with sleep loss decreasing mTORC1 phosphorylation and thus attenuating mTORC1-dependent protein synthesis in the mouse hippocampus [220]. In addition, we have observed that mice heterozygous for mTOR are showing more SWA during wakefulness and REM sleep, and less the-ta activity during NREM sleep in comparison to wild-type mice (Areal et al., un-published). Globally, considering that main downstream effectors of PI3K/AKT shown to be modulated by Rhy have been linked to sleep, these represent pathways by which Rhy could impact wake/sleep phenotypes.

2.7 NF-κB and neuroinflammation

The NF-kB is a transcription factor with implications in multiple cellular processes including neuroinflammation [221]. It can be activated by cytokine receptors and TLRs, which drive its nuclear translocation via the phosphorylation/degradation of NF-κB inhibitors (IkBs) [221]. The administration of Rhy has repeatedly been shown to diminish NF-KB activation in pathological contexts both in vitro [143,161,162,222] and in vivo [114,116,143,166,222] (**Table** 1). For example, in a rat nitroglycerin-induced migraine model, pre-treatment with Rhy almost completely prevented nuclear translocation of NF- κ B in the trigeminal nucleus caudalis [116]. Moreover, it was shown that Rhy could decrease abnormal degradation of IkBa in pathological conditions such as treatments with lipopolysaccharide (LPS), nitroglycerin or 2,5-dimethoxy-4iodoamphetamine [116,143,162,222,223]. In addition, there is growing literature supporting that Rhy reduces some effects associated with NF-kB activation: (i) the upregulation of proinflammatory cytokines such as interleukin-1 β (IL-1 β) and tumor necrosis factor α (TNF α) [140,143,161,162,222,223], and (ii) the increase in oxidative stress caused, in part, by nitric oxide (NO) [116,161,162,166]. Indeed, the incubation of rat microglial cells with LPS in the presence of Rhy for 24h diminished the increase in NO, IL-1 β and TNF α , and the increase in inducible NO synthase (iNOS) expression [161]. In contrast to its effect on iN-OS-dependent NO synthesis, Rhy was shown to enhance endothelial NOS (eNOS)-dependent NO production in renal arteries of constitutively hypertensive rats via PI3K/AKT activation [187]. Thus, Rhy has different effects on NO synthesis depending on the context (here neuroinflammation/oxidative stress vs. vascular tone control). In pathological models such as ischemic brain injury and Tourette syndrome, Rhy was also shown to attenuate the upregulation of TLRs and MyD88 [114,222], the latter being an adaptor protein linking TLR activation to NF-kB nuclear translocation [224]. This led to the suggestion that the anti-inflammatory effects of Rhy in pathological contexts could result from an inhibition/downregulation of the TLR pathway [114,222]. However, a causative link remains to be defined.

The effect of Rhy on NF- κ B and related pathways could impact sleep, at least in pathological contexts. Indeed, Rhy reduces the pathological upregulation of IL-1 β , TNF α and NO, which are proposed to act as somnogenic substances [225,226]. More precisely, the administration of IL-1 β , TNF α and NO (or of their precursors) was shown to increase NREM sleep duration in different mammalian species [227-232]. Moreover, the inhibition of these molecules and/or their

transcription factor NF- κ B, was shown to decrease NREM sleep duration, again in multiple mammals [227-229,231,233-243]. In addition, SD was shown to upregulate IL-1 β , TNF α , NO, and even NF- κ B [244-247], and the inhibition of IL-1 β , TNF α and NO can also reduce/block the NREM sleep rebound that is normally caused by sleep loss [234,235,238,240,248]. Finally, the administration of both IL-1 β and TNF α was shown to increase slow wave amplitude during NREM sleep [230,231,249], and the inhibition of IL-1 β , TNF α and NOS (non-selective NOS inhibition) was shown to reduce NREM sleep SWA [235,239,241]. The reduced NREM sleep SWA was also observed after SD for the inhibition of IL-1 β and TNF α [238,240]. Accordingly, Rhy administration could, by inhibiting/downregulating NF- κ B and IL-1 β , TNF α and NO, reduce NREM sleep amount and SWA in pathological contexts. However, given that Rhy was shown not to impact IL-1 β , TNF α , and p-IkB α levels in peripheral tissues (e.g., cardiomyocytes and macrophages) of healthy mice [223] (**Table 2**), support for a modulatory role of Rhy on sleep via this pathway under normal physiological conditions remains to be collected.

2.8 Neurotransmitters signaling

Rhy has also been suggested to affect neurotransmitter signaling. For instance, a 3-min incubation with Rhy was shown to inhibit muscarinic acetylcholine receptor 1 (mAChR1) and serotonin receptor 2 (5-HT2)-mediated currents in xenopus oocytes [250]. Also, i.p. injection of Rhy in rats was found to decrease the release of 5-HT in the hypothalamus, and to increase it in the amygdala, cerebral cortex, and brainstem [61]. In this last study, dopamine (DA) release was increased in all brain regions after Rhy administration [61]. Furthermore, Rhy was reported to rescue the amph-induced decrease of ACh, and the amph- and meth-induced increase in DA [101,251]. Rhy was also shown to attenuate the elevated DA and D2 receptor levels in the striatum of a rat Tourette syn-drome model [143]. This provides support for a direct impact of Rhy on neurotransmitters in a manner that depends on the (patho)physiological condition and brain region (**Table 1**). Importantly, mAChRs and DA receptors are metabotropic receptors, which activity has respectively been linked to Kv1.2 channels and L-VGCCs [252,253] (**Figure 2**), emphasizing that Rhy could act at multiple levels of neurotransmitter function (see section 2.1).

Interestingly, ACh, 5-HT and DA are important wake/sleep modulators, and components of the ascending arousal system [39]. Cholinergic activation in pontine regions increases cortical activation and REM sleep, and suppresses NREM sleep and SWA [44,254]. In fact, mAChR1 and

mAChR3 seem important for REM sleep regulation in both rodent and healthy subjects [255,256]. Furthermore, mAChR1 and other mAChRs modulate thalamocortical and hippocampal oscillations [257-263]. This suggests that the inhibitory effect of Rhy on mAChR1 (or its modulation of ACh release) may decrease REM sleep and cortical activation, and modify EEG activity.

5-HT, mainly originating from the RN, is another contributor to arousal [264], but its effects on wake/sleep regulation and EEG activity are more controversial. Indeed, optogenetic activation of dorsal RN 5-HT neurons was found to induce cortical activation and wakefulness [45,265], whereas the administration of 5-HT or drugs enhancing 5-HT transmission was shown to enhance EEG synchronization and sleep [264]. These opposite roles likely originate from the variety of 5-HT projections, such as to the BF [266], tegmental regions [267], and hypothalamic sleep regulatory neurons [268,269]. Moreover, different 5-HT receptors may be differently involved [270], given that the activation of 5-HT1A receptors can induce REM and theta activity [271-274], while that of 5-HT1B, 5-HT2A, 5-HT2A/2C or 5-HT7 is suggested to reduce REM sleep [275-279]. Dopaminergic signaling was also found to be involved in wake/sleep regulation. Briefly, DA cells in the ventral tegmental area (VTA) discharge with different firing patterns during NREM and REM sleep [280], and DA stimulation in the VTA induces behavioral arousal [281]. Overall, more research is required to determine the mechanisms by which Rhy impacts 5-HT and DA neurotransmissions in order to eventually predict the 5-HT- and DA-dependent effects on sleep of Rhy.

Finally, the only literature directly linking Rhy and sleep (see also introduction) suggests that Rhy and Rhy-containing drugs are inducing sleep in rodents via GABAA receptors. In fact, the sleep-promoting effects of the two Uncaria-containing drugs were found to be suppressed by the GABAA receptor inhibitor bicuculline [57,58]. The only study using Rhy has linked the increased sleep time to increased level of GABAA receptor subunits and increased glutamic acid decarboxylase (GAD)65/67 ratio (indicative of increased GABA synthesis at the synapse) in hypothalamic neurons [22]. Many GABAergic neurons regulate the activity of arousal and sleep circuits [39]. The majority of sedatives/hypnotics, such as benzodiazepines, are GABAA receptor agonists and promote 'light' (as opposed to 'deep') NREM sleep [282,283]. In addition, GABAergic signaling is implicated in cell synchronization during sleep in brain circuits such as

the thalamocortical network [30,34]. Therefore, GABAergic signaling is likely a pathway by which Rhy could increase sleep time, and should be further investigated in vivo.

3. Conclusions

This review describes how Rhy affects diverse cellular pathways showing a particular relevance to sleep regulation, including VGCC, VGKC, NMDAR, RTK, ERK/MAPK, PI3K/AKT, NF- κ B, and neurotransmitter signaling. The literature reveals both acute and delayed/chronic effects of Rhy on these different pathways. This suggests that Rhy may exert rapid effects on wakefulness/sleep quantity and quality, as well as effects that could last for some weeks after exposure. It is worth noting that the effects of Rhy on ion channels have only been characterized under acute conditions. This underlines the need to investigate the delayed and long-term effects of Rhy on ion channels in particular.

Interestingly, almost all studies describing effects of Rhy in vivo have reported effects solely under pathological/disturbed conditions (e.g., stress, treatments with psychostimulants, inflammation, animal models of diseases including stroke, epilepsy, and Alzheimer's disease), and not in control animals. In fact, apart from effects of Rhy under normal/undisturbed conditions reported in vitro for ion channels, neurotransmitter receptors, NMDAR and BDNF, only two in vivo studies demonstrate effects of Rhy under normal conditions. In the first, Rhy altered DA and 5-HT levels in the rat hippocampus [61], whereas the second showed that Rhy increases total sleep time and REM sleep in rats [22]. Therefore, the literature suggests that Rhy impacts molecular/cellular pathways predominantly under disturbed/diseased conditions. This suggests that Rhy could be particularly beneficial for some pathological conditions involving sleep disturbances. Nevertheless, the physiological effects (assessed under normal conditions) of Rhy on molecular/cellular targets such as ERK/MAPK, NF- κ B (and TLR) or D2 receptors should be characterized in the CNS, given that effects have only been described in the context of neurotoxicity, inflammation or epilepsy.

Sex-dependent effects of Rhy also represent an area of need for future research. Indeed, among all studies reviewed in this article, only three have studied females. Two of these used both sexes to show effects of Rhy on EphA4 phosphorylation or neurotransmitter levels [18,61], and did not report sex-dependent effects. The last study used only females, and reported that Rhy reduces inflammatory responses and impacts the MAPK/ERK pathway in an asthma model [164], effects

that are comparable to those in males reported in other studies [116,165]. Therefore, there is a clear need to investigate whether Rhy has sex-dependent effects. This is particularly relevant with regard to Rhy targets that have been shown to be differentially involved in sleep in the two sexes. For example, genetic variants in CACNA1C were associated with increased sleep latency in male infants but not in females [81].

Another neglected sleep-related research area concerns the potential for effects of Rhy on circadian functions. Many of the pathways presented in this review have been linked to the circadian timing system [284]. For instance, NMDARs (including the GluN2B subunit), TrkB receptors, and D2Rs show circadian rhythms of mRNA or protein levels in specific brain regions [285-290]. This strongly suggests that the effects of Rhy on these specific targets will depend on time-of-day and/or internal circadian time. Thus, it appears crucial to consider the effects of Rhy separately, for instance, for the light and dark periods, at least for targets with known circadian regulation. Such investigation would notably help to determine the relevance of Rhy in chronotherapy.

This review has compiled the effects of Rhy with a particular focus on the CNS. However, Rhy impacts, among others, the cardiovascular and immune systems [3,10,223,291] (see also sections 2.1 and 2.6). Rhy was indeed shown to have antihypertensive roles via anti-sympathetic and vasodilatory effects that are mainly linked to ion channels [10]. Heart rate and heart rate variability differ between sleep stages [292,293], while systemic inflammation impacts sleep [28]. Thus, future research on Rhy should also consider the interplay between peripheral tissues and sleep.

As indicated in the introduction, Rhy is one of the most abundant alkaloids in Uncaria, which has been highly used in Chinese and Japanese traditional medicine [3,4,10]. The composition of Uncaria and, as a consequence, the components present in traditional treatments such as Chotoko could vary depending on the geographic region and plant growing conditions [294]. This may explain variations in the therapeutic effects of Uncaria, which might be overcome by the use of purified Rhy. Therefore, describing the specific mechanisms of action of Rhy will help defining the medical applications of this chemical. Nevertheless, multiple compounds in Uncaria may have synergistic actions in contributing to health benefits associated with the plant (e.g., chemicals helping the absorption of others; [295]). Thus, studies comparing the benefits of Rhy to those of

blends of Uncaria will help to identify the best treatment strategies for sleep disturbances and associated pathological conditions.

To conclude, Rhy may impact sleep architecture and oscillations by targeting a diversity of cellular pathways. These effects may specifically underlie the impacts of Chotoko, YKS and other Uncaria treatments on sleep. Further studies are required to precisely determine the effects of Rhy on sleep as well as on other CNS functions (e.g., memory) under undisturbed/normal conditions. A better understanding of the cellular mechanisms of action of Rhy that are relevant to sleep physiology may eventually help to determine whether this alkaloid could be used in sleep medicine.

Acknowledgements

This work was supported by a Vanier Canada Graduate Scholarship (MNBR), a J.A. De Sève fellowship from the Research CIUSSS-NIM (TL), and the Canada Research Chair in Sleep Molecular Physiology (VM).

References

- Sarris, J.; Panossian, A.; Schweitzer, I.; Stough, C.; Scholey, A. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol 2011, 21, 841-860, doi:10.1016/j.euroneuro.2011.04.002.
- Singh, A.; Zhao, K. Treatment of insomnia with traditional chinese herbal medicine. Int Rev Neurobiol 2017, 135, 97-115, doi:10.1016/bs.irn.2017.02.006.
- Yang, W.; Ip, S.P.; Liu, L.; Xian, Y.F.; Lin, Z.X. Uncaria rhynchophylla and its major constituents on central nervous system: a review on their pharmacological actions. Curr Vasc Pharmacol 2019, doi:10.2174/1570161117666190704092841.
- Ndagijimana, A.; Wang, X.; Pan, G.; Zhang, F.; Feng, H.; Olaleye, O. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies. Fitoterapia 2013, 86, 35-47, doi:10.1016/j.fitote.2013.01.018.
- Shi, J.S.; Yu, J.X.; Chen, X.P.; Xu, R.X. Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline. Acta Pharmacol Sin 2003, 24, 97-101.
- Shinno, H.; Inami, Y.; Inagaki, T.; Nakamura, Y.; Horiguchi, J. Effect of Yi-Gan San on psychiatric symptoms and sleep structure at patients with behavioral and psychological symptoms of dementia. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32, 881-885, doi:10.1016/j.pnpbp.2007.12.027.

- Ozone, M.; Yagi, T.; Chiba, S.; Aoki, K.; Kuroda, A.; Mitsui, K.; Itoh, H.; Sasaki, M. Effect of yokukansan on psychophysiological insomnia evaluated using cyclic alternating pattern as an objective marker of sleep instability. Sleep and Biological Rhythms 2012, 10, 157-160.
- Nakamura, Y.; Tajima, K.; Kawagoe, I.; Kanai, M.; Mitsuhata, H. Efficacy of traditional herbal medicine, Yokukansan on patients with neuropathic pain. Masui 2009, 58, 1248-1255.
- Yamanaka, E.; Kimizuka, Y.; Aimi, N.; Sakai, S.; Haginiwa, J. Studies of plants containing indole alkaloids. IX. Quantitative analysis of tertiary alkaloids in various parts of Uncaria rhynchophylla MIQ. Yakugaku Zasshi 1983, 103, 1028-1033, doi:10.1248/yakushi1947.103.10_1028.
- Zhou, J.; Zhou, S. Antihypertensive and neuroprotective activities of rhynchophylline: the role of rhynchophylline in neurotransmission and ion channel activity. J Ethnopharmacol 2010, 132, 15-27, doi:10.1016/j.jep.2010.08.041.
- Laus, G.; Teppner, H. The alkaloids of an Uncaria rhynchophylla (Rubiaceae-Coptosapelteae). Phyton (Horn, Austria) 1996, 36, 185-196.
- Laus, G.; Brössner, D.; Keplinger, K. Alkaloids of peruvian Uncaria tomentosa. Phytochemistry 1997, 45, 855-860.
- Wang, X.; Zheng, M.; Liu, J.; Huang, Z.; Bai, Y.; Ren, Z.; Wang, Z.; Tian, Y.; Qiao, Z.; Liu, W.; et al. Differences of first-pass effect in the liver and intestine contribute to the stereoselective pharmacokinetics of rhynchophylline and isorhynchophylline epimers in rats. J Ethnopharmacol 2017, 209, 175-183, doi:10.1016/j.jep.2017.07.039.
- Wu, Z.F.; Wang, Y.Q.; Wan, N.; Ke, G.; Yue, P.F.; Chen, H.; Zhan, J.J.; Yang, M. Structural stabilities and transformation mechanism of Rhynchophylline and Isorhynchophylline by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Molecules 2015, 20, 14849-14859, doi:10.3390/molecules200814849.
- Lee, C.J.; Hsueh, T.Y.; Lin, L.C.; Tsai, T.H. Determination of protein-unbound rhynchophylline brain distribution by microdialysis and ultra-performance liquid chromatography with tandem mass spectrometry. Biomed Chromatogr 2014, 28, 901-906, doi:10.1002/bmc.3206.
- Zhang, Y.N.; Yang, Y.F.; Xu, W.; Yang, X.W. The blood-brain barrier permeability of six indole alkaloids from Uncariae Ramulus cum Uncis in the MDCK-pHaMDR cell monolayer model. Molecules 2017, 22, doi:10.3390/molecules22111944.
- Zhang, J.C.; Yao, W.; Qu, Y.; Nakamura, M.; Dong, C.; Yang, C.; Ren, Q.; Ma, M.; Han, M.; Shirayama, Y.; et al. Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci Rep 2017, 7, 7133, doi:10.1038/s41598-017-07325-2.
- Fu, A.K.; Hung, K.W.; Huang, H.; Gu, S.; Shen, Y.; Cheng, E.Y.; Ip, F.C.; Huang, X.; Fu, W.Y.; Ip, N.Y. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A 2014, 111, 9959-9964, doi:10.1073/pnas.1405803111.
- Shao, H.; Yang, Y.; Mi, Z.; Zhu, G.X.; Qi, A.P.; Ji, W.G.; Zhu, Z.R. Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience 2016, 337, 355-369, doi:10.1016/j.neuroscience.2016.09.029.

- Zhou, J.Y.; Mo, Z.X.; Zhou, S.W. Rhynchophylline down-regulates NR2B expression in cortex and hippocampal CA1 area of amphetamine-induced conditioned place preference rat. Arch Pharm Res 2010, 33, 557-565, doi:10.1007/s12272-010-0410-3.
- 21. Guo, Y.; Luo, C.; Tu, G.; Li, C.; Liu, Y.; Liu, W.; Lam Yung, K.K.; Mo, Z. Rhynchophylline downregulates phosphorylated cAMP response element binding protein, nuclear receptor-related-1, and brain-derived neurotrophic factor expression in the hippocampus of ketamine-induced conditioned place preference rats. Pharmacogn Mag 2018, 14, 81-86, doi:10.4103/pm.pm 90 17.
- Yoo, J.H.; Ha, T.W.; Hong, J.T.; Oh, K.W. Rhynchophylline, one of major constituents of Uncariae Ramulus et Uncus enhances pentobarbital-induced sleep behaviors and Rapid Eye Movement Sleep in rodents. Natural Product Sciences 2016, 22, 263-269.
- 23. Frank, M.G.; Heller, H.C. The function(s) of sleep. Handb Exp Pharmacol 2019, 253, 3-34, doi:10.1007/164 2018 140.
- 24. Kempf, A.; Song, S.M.; Talbot, C.B.; Miesenbock, G. A potassium channel beta-subunit couples mitochondrial electron transport to sleep. Nature 2019, 568, 230-234, doi:10.1038/s41586-019-1034-5.
- Vyazovskiy, V.V.; Walton, M.E.; Peirson, S.N.; Bannerman, D.M. Sleep homeostasis, habits and habituation. Curr Opin Neurobiol 2017, 44, 202-211, doi:10.1016/j.conb.2017.05.002.
- Boyce, R.; Williams, S.; Adamantidis, A. REM sleep and memory. Curr Opin Neurobiol 2017, 44, 167-177, doi:10.1016/j.conb.2017.05.001.
- Timofeev, I.; Chauvette, S. Sleep slow oscillation and plasticity. Curr Opin Neurobiol 2017, 44, 116-126, doi:10.1016/j.conb.2017.03.019.
- Irwin, M.R. Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol 2019, 19, 702-715, doi:10.1038/s41577-019-0190-z.
- Abel, T.; Havekes, R.; Saletin, J.M.; Walker, M.P. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 2013, 23, R774-788, doi:10.1016/j.cub.2013.07.025.
- Headley, D.B.; Pare, D. Common oscillatory mechanisms across multiple memory systems. NPJ Sci Learn 2017, 2, doi:10.1038/s41539-016-0001-2.
- Franken, P.; Dijk, D.J.; Tobler, I.; Borbely, A.A. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol 1991, 261, R198-208, doi:10.1152/ajpregu.1991.261.1.R198.
- 32. Hubbard, J.; Gent, T.C.; Hoekstra, M.M.B.; Emmenegger, Y.; Mongrain, V.; Landolt, H.P.; Adamantidis, A.R.; Franken, P. Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nat Commun 2020, 11, 3130, doi:10.1038/s41467-020-16915-0.
- Montgomery, S.M.; Sirota, A.; Buzsaki, G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 2008, 28, 6731-6741, doi:10.1523/JNEUROSCI.1227-08.2008.
- Steriade, M.; McCormick, D.A.; Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993, 262, 679-685, doi:10.1126/science.8235588.

- Steriade, M.; Timofeev, I.; Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 2001, 85, 1969-1985, doi:10.1152/jn.2001.85.5.1969.
- 36. Borbely, A.A. A two process model of sleep regulation. Hum Neurobiol 1982, 1, 195-204.
- 37. Daan, S.; Beersma, D.G.; Borbely, A.A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 1984, 246, R161-183, doi:10.1152/ajpregu.1984.246.2.R161.
- Dijk, D.J.; Czeisler, C.A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 1995, 15, 3526-3538.
- Jones, B.E. Arousal and sleep circuits. Neuropsychopharmacology 2020, 45, 6-20, doi:10.1038/s41386-019-0444-2.
- 40. Saper, C.B.; Scammell, T.E.; Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005, 437, 1257-1263, doi:10.1038/nature04284.
- 41. Adamantidis, A.R.; Zhang, F.; Aravanis, A.M.; Deisseroth, K.; de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007, 450, 420-424, doi:10.1038/nature06310.
- Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 2010, 13, 1526-1533, doi:10.1038/nn.2682.
- Han, Y.; Shi, Y.F.; Xi, W.; Zhou, R.; Tan, Z.B.; Wang, H.; Li, X.M.; Chen, Z.; Feng, G.; Luo, M.; et al. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol 2014, 24, 693-698, doi:10.1016/j.cub.2014.02.011.
- Kroeger, D.; Ferrari, L.L.; Petit, G.; Mahoney, C.E.; Fuller, P.M.; Arrigoni, E.; Scammell, T.E. Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci 2017, 37, 1352-1366, doi:10.1523/JNEUROSCI.1405-16.2016.
- Smith, H.R.; Leibold, N.K.; Rappoport, D.A.; Ginapp, C.M.; Purnell, B.S.; Bode, N.M.; Alberico, S.L.; Kim, Y.C.; Audero, E.; Gross, C.T.; et al. Dorsal raphe serotonin neurons mediate CO2-induced arousal from sleep. J Neurosci 2018, 38, 1915-1925, doi:10.1523/JNEUROSCI.2182-17.2018.
- 46. Boucetta, S.; Cisse, Y.; Mainville, L.; Morales, M.; Jones, B.E. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014, 34, 4708-4727, doi:10.1523/JNEUROSCI.2617-13.2014.
- Chung, S.; Weber, F.; Zhong, P.; Tan, C.L.; Nguyen, T.N.; Beier, K.T.; Hormann, N.; Chang, W.C.; Zhang, Z.; Do, J.P.; et al. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 2017, 545, 477-481, doi:10.1038/nature22350.
- Van Dort, C.J.; Zachs, D.P.; Kenny, J.D.; Zheng, S.; Goldblum, R.R.; Gelwan, N.A.; Ramos, D.M.; Nolan, M.A.; Wang, K.; Weng, F.J.; et al. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A 2015, 112, 584-589, doi:10.1073/pnas.1423136112.
- Luppi, P.H.; Billwiller, F.; Fort, P. Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: evidence and function. Curr Opin Neurobiol 2017, 44, 59-64, doi:10.1016/j.conb.2017.03.002.

- Shinno, H.; Kamei, M.; Nakamura, Y.; Inami, Y.; Horiguchi, J. Successful treatment with Yi-Gan San for rapid eye movement sleep behavior disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32, 1749-1751, doi:10.1016/j.pnpbp.2008.06.015.
- 51. Matsui, K.; Sasai-Sakuma, T.; Ishigooka, J.; Nishimura, K.; Inoue, Y. Effect of Yokukansan for the treatment of idiopathic rapid eye movement sleep behavior disorder: a retrospective analysis of consecutive patients. Journal of Clinical Sleep Medicine 2019, 15, 1173-1178.
- Ozone, M.; Shimazaki, H.; Ichikawa, H.; Shigeta, M. Efficacy of yokukansan compared with clonazepam for rapid eye movement sleep behaviour disorder: a preliminary retrospective study. Psychogeriatrics 2020, doi:10.1111/psyg.12563.
- 53. Ohtomo, Y.; Umino, D.; Nijama, S.; Fujinaga, S.; Shimizu, T. Yokukansan: a treatment option for nocturnal enuresis in children by improving sleep quality. Juntendo Medical Journal 2014, 60, 536-542.
- Aizawa, R.; Kanbayashi, T.; Saito, Y.; Ogawa, Y.; Sugiyama, T.; Kitajima, T.; Kaneko, Y.; Abe, M.; Shimizu, T. Effects of Yoku-kan-san-ka-chimpi-hange on the sleep of normal healthy adult subjects. Psychiatry Clin Neurosci 2002, 56, 303-304, doi:10.1046/j.1440-1819.2002.01006.x.
- 55. Pan, W.; Kwak, S.; Li, G.; Chen, Y.; Cai, D. Therapeutic effect of Yang-Xue-Qing-Nao granules on sleep dysfunction in Parkinson's disease. Chin Med 2013, 8, 14, doi:10.1186/1749-8546-8-14.
- 56. Sun, Y.Z.; Liu, R. Therapeutic evaluation on needling method of regulating the conception vessel and calming the mind for perimenopausal sleep disorder. Journal of Acupuncture and Tuina Science 2013, 11, 142-146.
- 57. Egashira, N.; Nogami, A.; Iwasaki, K.; Ishibashi, A.; Uchida, N.; Takasaki, K.; Mishima, K.; Nishimura, R.; Oishi, R.; Fujiwara, M. Yokukansan enhances pentobarbital-induced sleep in socially isolated mice: possible involvement of GABA(A)-benzodiazepine receptor complex. J Pharmacol Sci 2011, 116, 316-320.
- Murata, K.; Li, F.; Shinguchi, K.; Ogata, M.; Fujita, N.; Takahashi, R. Yokukansankachimpihange improves the social isolation-induced sleep disruption and allopregnanolone reduction in mice. Front Nutr 2020, 7, 8, doi:10.3389/fnut.2020.00008.
- Nagao, M.; Takasaki, K.; Nogami, A.; Hirai, Y.; Moriyama, H.; Uchida, N.; Kubota, K.; Katsurabayashi, S.; Mishima, K.; Nishimura, R.; et al. Effect of Yokukansan on sleep disturbance in a rat model of cerebrovascular dementia. Traditional & Kampo Medicine 2014, 1, 19-26.
- 60. Jeenapongsa, R.; Tohda, M. Effects of Choto-san and Chotoko on thiopental-induced sleeping time. 和漢医薬 学雑誌= Journal of traditional medicines 2003, 20, 165-167.
- 61. Shi, J.S.; Huang, B.; Wu, Q.; Ren, R.X.; Xie, X.L. Effects of rhynchophylline on motor activity of mice and serotonin and dopamine in rat brain. Zhongguo Yao Li Xue Bao 1993, 14, 114-117.
- Sakakibara, I.; Terabayashi, S.; Kubo, M.; Higuchi, M.; Komatsu, Y.; Okada, M.; Taki, K.; Kamei, J. Effect on locomotion of indole alkaloids from the hooks of uncaria plants. Phytomedicine 1999, 6, 163-168, doi:10.1016/S0944-7113(99)80004-X.
- 63. Quílez, A.; Saenz, M.T.; García, M.D. Uncaria tomentosa (Willd. ex. Roem. & Schult.) DC. and Eucalyptus globulus Labill. interactions when administered with diazepam. Phytotherapy research 2012, 26, 458-461.

- Lipscombe, D.; Helton, T.D.; Xu, W. L-type calcium channels: the low down. J Neurophysiol 2004, 92, 2633-2641, doi:10.1152/jn.00486.2004.
- 65. Kai, L.W., Z.F.; Xue, C.H. Effects of Rhynchophylline on L-type calcium channels in isolated rat cortical neurons during acute hypoxia. Journal of Chinese Pharmaceutical Sciences 1998, 7, 205-208.
- 66. Wang, X.L.; Zhang, L.M.; Hua, Z. Blocking effect of rhynchophylline on calcium channels in isolated rat ventricular myocytes. Zhongguo Yao Li Xue Bao 1994, 15, 115-118.
- Li, P.Y.; Zeng, X.R.; Cheng, J.; Wen, J.; Inoue, I.; Yang, Y. Rhynchophylline-induced vasodilation in human mesenteric artery is mainly due to blockage of L-type calcium channels in vascular smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2013, 386, 973-982, doi:10.1007/s00210-013-0888-6.
- Zhang, W.B.; Chen, C.X.; Sim, S.M.; Kwan, C.Y. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel). Naunyn Schmiedebergs Arch Pharmacol 2004, 369, 232-238, doi:10.1007/s00210-003-0854-9.
- 69. Zhang, W.; Liu, G.X.; Huang, X.N. Effect of rhynchophylline on the contraction of rabbit aorta. Zhongguo Yao Li Xue Bao 1987, 8, 425-429.
- Wiera, G.; Nowak, D.; van Hove, I.; Dziegiel, P.; Moons, L.; Mozrzymas, J.W. Mechanisms of NMDA receptor- and voltage-gated L-Type calcium channel-dependent hippocampal LTP critically rely on proteolysis that is mediated by distinct metalloproteinases. J Neurosci 2017, 37, 1240-1256, doi:10.1523/JNEUROSCI.2170-16.2016.
- Kumar, M.; John, M.; Madhavan, M.; James, J.; Omkumar, R.V. Alteration in the phosphorylation status of NMDA receptor GluN2B subunit by activation of both NMDA receptor and L-type voltage gated calcium channel. Neurosci Lett 2019, 709, 134343, doi:10.1016/j.neulet.2019.134343.
- Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 2016, 15, 19-34, doi:10.1038/nrd.2015.5.
- 73. Lacinova, L.; Moosmang, S.; Langwieser, N.; Hofmann, F.; Kleppisch, T. Cav1.2 calcium channels modulate the spiking pattern of hippocampal pyramidal cells. Life Sci 2008, 82, 41-49, doi:10.1016/j.lfs.2007.10.009.
- 74. Hansen, A.K.; Nedergaard, S.; Andreasen, M. Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro. J Neurophysiol 2014, 112, 631-643, doi:10.1152/jn.00753.2013.
- 75. Plumbly, W.; Brandon, N.; Deeb, T.Z.; Hall, J.; Harwood, A.J. L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci Rep 2019, 9, 13810, doi:10.1038/s41598-019-50226-9.
- 76. Kabir, Z.D.; Che, A.; Fischer, D.K.; Rice, R.C.; Rizzo, B.K.; Byrne, M.; Glass, M.J.; De Marco Garcia, N.V.; Rajadhyaksha, A.M. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2alpha. Mol Psychiatry 2017, 22, 1096-1109, doi:10.1038/mp.2017.124.
- Ode, K.L.; Katsumata, T.; Tone, D.; Ueda, H.R. Fast and slow Ca(2+)-dependent hyperpolarization mechanisms connect membrane potential and sleep homeostasis. Curr Opin Neurobiol 2017, 44, 212-221, doi:10.1016/j.conb.2017.05.007.
- 78. Bazhenov, M.; Timofeev, I.; Steriade, M.; Sejnowski, T.J. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. J Neurosci 2002, 22, 8691-8704.

- Sinnegger-Brauns, M.J.; Huber, I.G.; Koschak, A.; Wild, C.; Obermair, G.J.; Einzinger, U.; Hoda, J.C.; Sartori, S.B.; Striessnig, J. Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol Pharmacol 2009, 75, 407-414, doi:10.1124/mol.108.049981.
- Kumar, D.; Dedic, N.; Flachskamm, C.; Voule, S.; Deussing, J.M.; Kimura, M. Cacna1c (Cav1.2) modulates electroencephalographic rhythm and rapid eye movement sleep recovery. Sleep 2015, 38, 1371-1380, doi:10.5665/sleep.4972.
- Kantojarvi, K.; Liuhanen, J.; Saarenpaa-Heikkila, O.; Satomaa, A.L.; Kylliainen, A.; Polkki, P.; Jaatela, J.; Toivola, A.; Milani, L.; Himanen, S.L.; et al. Variants in calcium voltage-gated channel subunit Alpha1 C-gene (CACNA1C) are associated with sleep latency in infants. PLoS One 2017, 12, e0180652, doi:10.1371/journal.pone.0180652.
- Schmutz, I.; Chavan, R.; Ripperger, J.A.; Maywood, E.S.; Langwieser, N.; Jurik, A.; Stauffer, A.; Delorme, J.E.; Moosmang, S.; Hastings, M.H.; et al. A specific role for the REV-ERBalpha-controlled L-Type Voltage-Gated Calcium Channel CaV1.2 in resetting the circadian clock in the late night. J Biol Rhythms 2014, 29, 288-298, doi:10.1177/0748730414540453.
- Manis, P.B. Delayed rectifier and A-Type potassium channels. In Encyclopedia of computational neuroscience. Springer Publishing Company, Incorporated, Jaeger, D., Jung, R., Eds.; Springer Publishing Company: New York, NY, 2015; pp. 971-985.
- Chou, C.H.; Gong, C.L.; Chao, C.C.; Lin, C.H.; Kwan, C.Y.; Hsieh, C.L.; Leung, Y.M. Rhynchophylline from Uncaria rhynchophylla functionally turns delayed rectifiers into A-Type K+ channels. J Nat Prod 2009, 72, 830-834, doi:10.1021/np800729q.
- 85. Sheng, M.; Tsaur, M.L.; Jan, Y.N.; Jan, L.Y. Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J Neurosci 1994, 14, 2408-2417.
- Tsaur, M.L.; Sheng, M.; Lowenstein, D.H.; Jan, Y.N.; Jan, L.Y. Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron 1992, 8, 1055-1067, doi:10.1016/0896-6273(92)90127-y.
- 87. Espinosa, F.; Marks, G.; Heintz, N.; Joho, R.H. Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav 2004, 3, 90-100, doi:10.1046/j.1601-183x.2003.00054.x.
- Douglas, C.L.; Vyazovskiy, V.; Southard, T.; Chiu, S.Y.; Messing, A.; Tononi, G.; Cirelli, C. Sleep in Kcna2 knockout mice. BMC Biol 2007, 5, 42, doi:10.1186/1741-7007-5-42.
- Vyazovskiy, V.V.; Deboer, T.; Rudy, B.; Lau, D.; Borbely, A.A.; Tobler, I. Sleep EEG in mice that are deficient in the potassium channel subunit K.v.3.2. Brain Res 2002, 947, 204-211, doi:10.1016/s0006-8993(02)02925-6.
- 90. Douglas, C.L.; Vyazovskiy, V.; Southard, T.; Faraguna, U.; Cirelli, C.; Tononi, G. Voltage-dependent potassium channel Kv1.2: Effects on sleep and EEG power spectrum of intracortical injections of an anti-Kv1.2 antibody. In Proceedings of the 20th Annual Meeting of the Associated-Professional-Sleep-Societies, Salt Lake City, Utah, 2006.
- 91. Bushey, D.; Huber, R.; Tononi, G.; Cirelli, C. Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci 2007, 27, 5384-5393, doi:10.1523/JNEUROSCI.0108-07.2007.

- Tatsuki, F.; Sunagawa, G.A.; Shi, S.; Susaki, E.A.; Yukinaga, H.; Perrin, D.; Sumiyama, K.; Ukai-Tadenuma, M.; Fujishima, H.; Ohno, R.; et al. Involvement of Ca(2+)-dependent hyperpolarization in sleep duration in mammals. Neuron 2016, 90, 70-85, doi:10.1016/j.neuron.2016.02.032.
- Malinow, R.; Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002, 25, 103-126, doi:10.1146/annurev.neuro.25.112701.142758.
- 94. Kang, T.H.; Murakami, Y.; Matsumoto, K.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Rhynchophylline and isorhynchophylline inhibit NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 2002, 455, 27-34, doi:10.1016/s0014-2999(02)02581-5.
- 95. Liu, Y.; Wong, T.P.; Aarts, M.; Rooyakkers, A.; Liu, L.; Lai, T.W.; Wu, D.C.; Lu, J.; Tymianski, M.; Craig, A.M.; et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 2007, 27, 2846-2857, doi:10.1523/JNEUROSCI.0116-07.2007.
- 96. Xu, J.; Kurup, P.; Zhang, Y.; Goebel-Goody, S.M.; Wu, P.H.; Hawasli, A.H.; Baum, M.L.; Bibb, J.A.; Lombroso, P.J. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci 2009, 29, 9330-9343, doi:10.1523/JNEUROSCI.2212-09.2009.
- Yang, Y.; Ji, W.G.; Zhu, Z.R.; Wu, Y.L.; Zhang, Z.Y.; Qu, S.C. Rhynchophylline suppresses soluble Abeta1 42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B containing NMDA receptors. Neuropharmacology 2018, 135, 100-112,
 doi:10.1016/j.neuropharm.2018.03.007.
- Li, J.; Liu, W.; Peng, Q.; Jiang, M.; Luo, C.; Guo, Y.; Liu, Y.; Fang, M.; Mo, Z. Effect of rhynchophylline on conditioned place preference on expression of NR2B in methamphetamine-dependent mice. Biochem Biophys Res Commun 2014, 452, 695-700, doi:10.1016/j.bbrc.2014.08.127.
- He, Y.; Zeng, S.Y.; Zhou, S.W.; Qian, G.S.; Peng, K.; Mo, Z.X.; Zhou, J.Y. Effects of rhynchophylline on GluN1 and GluN2B expressions in primary cultured hippocampal neurons. Fitoterapia 2014, 98, 166-173, doi:10.1016/j.fitote.2014.08.002.
- 100. Shao, H.; Mi, Z.; Ji, W.G.; Zhang, C.H.; Zhang, T.; Ren, S.C.; Zhu, Z.R. Rhynchophylline protects against the amyloid beta-induced increase of spontaneous discharges in the hippocampal CA1 region of rats. Neurochem Res 2015, 40, 2365-2373, doi:10.1007/s11064-015-1730-y.
- 101. Jiang, M.; Chen, Y.; Li, C.; Peng, Q.; Fang, M.; Liu, W.; Kang, Q.; Lin, Y.; Yung, K.K.; Mo, Z. Inhibiting effects of rhynchophylline on zebrafish methamphetamine dependence are associated with amelioration of neurotransmitters content and down-regulation of TH and NR2B expression. Prog Neuropsychopharmacol Biol Psychiatry 2016, 68, 31-43, doi:10.1016/j.pnpbp.2016.03.004.
- Kaneko, Y.; Coats, A.B.; Tuazon, J.P.; Jo, M.; Borlongan, C.V. Rhynchophylline promotes stem cell autonomous metabolic homeostasis. Cytotherapy 2020, 22, 106-113, doi:10.1016/j.jcyt.2019.12.008.
- Yin, D.; Dong, H.; Wang, T.X.; Hu, Z.Z.; Cheng, N.N.; Qu, W.M.; Huang, Z.L. Glutamate activates the histaminergic tuberomammillary nucleus and increases wakefulness in rats. Neuroscience 2019, 413, 86-98, doi:10.1016/j.neuroscience.2019.05.032.
- Manfridi, A.; Brambilla, D.; Mancia, M. Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. Am J Physiol 1999, 277, R1488-1492, doi:10.1152/ajpregu.1999.277.5.R1488.

- 105. Datta, S.; Siwek, D.F. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J Neurophysiol 1997, 77, 2975-2988, doi:10.1152/jn.1997.77.6.2975.
- Datta, S.; Spoley, E.E.; Patterson, E.H. Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol 2001, 280, R752-759, doi:10.1152/ajpregu.2001.280.3.R752.
- Campbell, I.G.; Feinberg, I. NREM delta stimulation following MK-801 is a response of sleep systems. J Neurophysiol 1996, 76, 3714-3720, doi:10.1152/jn.1996.76.6.3714.
- Campbell, I.G.; Feinberg, I. Comparison of MK-801 and sleep deprivation effects on NREM, REM, and waking spectra in the rat. Sleep 1999, 22, 423-432, doi:10.1093/sleep/22.4.423.
- 109. Ishikawa, I.; Shinno, H.; Ando, N.; Mori, T.; Nakamura, Y. The effect of memantine on sleep architecture and psychiatric symptoms in patients with Alzheimer's disease. Acta Neuropsychiatr 2016, 28, 157-164, doi:10.1017/neu.2015.61.
- Kaushik, M.K.; Kumar, V.M.; Mallick, H.N. Glutamate microinjection at the medial preoptic area enhances slow wave sleep in rats. Behav Brain Res 2011, 217, 240-243, doi:10.1016/j.bbr.2010.11.007.
- 111. Mukherjee, D.; Kaushik, M.K.; Jaryal, A.K.; Kumar, V.M.; Mallick, H.N. Glutamate microinjection in the medial septum of rats decreases paradoxical sleep and increases slow wave sleep. Neuroreport 2012, 23, 451-456, doi:10.1097/WNR.0b013e3283533692.
- Kocsis, B. State-dependent increase of cortical gamma activity during REM sleep after selective blockade of NR2B subunit containing NMDA receptors. Sleep 2012, 35, 1011-1016, doi:10.5665/sleep.1972.
- 113. El Gaamouch, F.; Buisson, A.; Moustie, O.; Lemieux, M.; Labrecque, S.; Bontempi, B.; De Koninck, P.; Nicole,
 O. Interaction between alphaCaMKII and GluN2B controls ERK-dependent plasticity. J Neurosci 2012, 32, 10767-10779, doi:10.1523/JNEUROSCI.5622-11.2012.
- Huang, H.; Zhong, R.; Xia, Z.; Song, J.; Feng, L. Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways. Molecules 2014, 19, 11196-11210, doi:10.3390/molecules190811196.
- 115. Krapivinsky, G.; Krapivinsky, L.; Manasian, Y.; Ivanov, A.; Tyzio, R.; Pellegrino, C.; Ben-Ari, Y.; Clapham, D.E.; Medina, I. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 2003, 40, 775-784, doi:10.1016/s0896-6273(03)00645-7.
- Lai, T.; Chen, L.; Chen, X.; He, J.; Lv, P.; Ge, H. Rhynchophylline attenuates migraine in trigeminal nucleus caudalis in nitroglycerin-induced rat model by inhibiting MAPK/NF-kB signaling. Mol Cell Biochem 2019, 461, 205-212, doi:10.1007/s11010-019-03603-x.
- 117. Wang, Y.; Wang, W.; Li, D.; Li, M.; Wang, P.; Wen, J.; Liang, M.; Su, B.; Yin, Y. IGF-1 alleviates NMDAinduced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J Cell Physiol 2014, 229, 1618-1629, doi:10.1002/jcp.24607.
- 118. Yoshii, A.; Constantine-Paton, M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci 2007, 10, 702-711, doi:10.1038/nn1903.

- 119. Gale, N.W.; Baluk, P.; Pan, L.; Kwan, M.; Holash, J.; DeChiara, T.M.; McDonald, D.M.; Yancopoulos, G.D. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 2001, 230, 151-160, doi:10.1006/dbio.2000.0112.
- Matsuo, K.; Otaki, N. Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases. Cell Adh Migr 2012, 6, 148-156, doi:10.4161/cam.20888.
- 121. Stark, D.A.; Karvas, R.M.; Siegel, A.L.; Cornelison, D.D. Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 2011, 138, 5279-5289, doi:10.1242/dev.068411.
- 122. Murai, K.K.; Pasquale, E.B. 'Eph'ective signaling: forward, reverse and crosstalk. J Cell Sci 2003, 116, 2823-2832, doi:10.1242/jcs.00625.
- Murai, K.K.; Pasquale, E.B. Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 2011, 59, 1567-1578, doi:10.1002/glia.21226.
- 124. Carmona, M.A.; Murai, K.K.; Wang, L.; Roberts, A.J.; Pasquale, E.B. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A 2009, 106, 12524-12529, doi:10.1073/pnas.0903328106.
- 125. Fu, A.K.; Hung, K.W.; Fu, W.Y.; Shen, C.; Chen, Y.; Xia, J.; Lai, K.O.; Ip, N.Y. APC(Cdh1) mediates EphA4dependent downregulation of AMPA receptors in homeostatic plasticity. Nat Neurosci 2011, 14, 181-189, doi:10.1038/nn.2715.
- 126. Fu, W.Y.; Chen, Y.; Sahin, M.; Zhao, X.S.; Shi, L.; Bikoff, J.B.; Lai, K.O.; Yung, W.H.; Fu, A.K.; Greenberg, M.E.; et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 2007, 10, 67-76, doi:10.1038/nn1811.
- Freyburger, M.; Pierre, A.; Paquette, G.; Belanger-Nelson, E.; Bedont, J.; Gaudreault, P.O.; Drolet, G.; Laforest, S.; Blackshaw, S.; Cermakian, N.; et al. EphA4 is involved in sleep regulation but not in the electrophysiological response to sleep deprivation. Sleep 2016, 39, 613-624, doi:10.5665/sleep.5538.
- 128. Freyburger, M.; Poirier, G.; Carrier, J.; Mongrain, V. Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice. J Sleep Res 2017, 26, 539-546, doi:10.1111/jsr.12532.
- 129. Kiessling, S.; O'Callaghan, E.K.; Freyburger, M.; Cermakian, N.; Mongrain, V. The cell adhesion molecule EphA4 is involved in circadian clock functions. Genes Brain Behav 2018, 17, 82-92, doi:10.1111/gbb.12387.
- Korte, M.; Carroll, P.; Wolf, E.; Brem, G.; Thoenen, H.; Bonhoeffer, T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 1995, 92, 8856-8860, doi:10.1073/pnas.92.19.8856.
- Kang, H.; Schuman, E.M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995, 267, 1658-1662, doi:10.1126/science.7886457.
- 132. Lu, B. BDNF and activity-dependent synaptic modulation. Learn Mem 2003, 10, 86-98, doi:10.1101/lm.54603.
- Vigers, A.J.; Amin, D.S.; Talley-Farnham, T.; Gorski, J.A.; Xu, B.; Jones, K.R. Sustained expression of brainderived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 2012, 212, 1-18, doi:10.1016/j.neuroscience.2012.03.031.
- 134. Ghosh, A.; Carnahan, J.; Greenberg, M.E. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 1994, 263, 1618-1623, doi:10.1126/science.7907431.

- Kowianski, P.; Lietzau, G.; Czuba, E.; Waskow, M.; Steliga, A.; Morys, J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 2018, 38, 579-593, doi:10.1007/s10571-017-0510-4.
- Li, W.; Keifer, J. BDNF-induced synaptic delivery of AMPAR subunits is differentially dependent on NMDA receptors and requires ERK. Neurobiol Learn Mem 2009, 91, 243-249, doi:10.1016/j.nlm.2008.10.002.
- 137. Ying, S.W.; Futter, M.; Rosenblum, K.; Webber, M.J.; Hunt, S.P.; Bliss, T.V.; Bramham, C.R. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 2002, 22, 1532-1540.
- 138. Yasuda, M.; Fukuchi, M.; Tabuchi, A.; Kawahara, M.; Tsuneki, H.; Azuma, Y.; Chiba, Y.; Tsuda, M. Robust stimulation of TrkB induces delayed increases in BDNF and Arc mRNA expressions in cultured rat cortical neurons via distinct mechanisms. J Neurochem 2007, 103, 626-636, doi:10.1111/j.1471-4159.2007.04851.x.
- Blum, R.; Konnerth, A. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 2005, 20, 70-78, doi:10.1152/physiol.00042.2004.
- Ho, T.Y.; Tang, N.Y.; Hsiang, C.Y.; Hsieh, C.L. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1beta and brain-derived neurotrophic factor. Phytomedicine 2014, 21, 893-900, doi:10.1016/j.phymed.2014.01.011.
- 141. Li, C.; Tu, G.; Luo, C.; Guo, Y.; Fang, M.; Zhu, C.; Li, H.; Ou, J.; Zhou, Y.; Liu, W.; et al. Effects of rhynchophylline on the hippocampal miRNA expression profile in ketamine-addicted rats. Prog Neuropsychopharmacol Biol Psychiatry 2018, 86, 379-389, doi:10.1016/j.pnpbp.2018.02.009.
- 142. Xian, Y.F.; Ip, S.P.; Li, H.Q.; Qu, C.; Su, Z.R.; Chen, J.N.; Lin, Z.X. Isorhynchophylline exerts antidepressantlike effects in mice via modulating neuroinflammation and neurotrophins: involvement of the PI3K/Akt/GSK-3beta signaling pathway. FASEB J 2019, 33, 10393-10408, doi:10.1096/fj.201802743RR.
- Long, H.; Ruan, J.; Zhang, M.; Wang, C.; Huang, Y. Rhynchophylline attenuates Tourette Syndrome via BDNF/NF-kappaB pathway in vivo and in vitro. Neurotox Res 2019, 36, 756-763, doi:10.1007/s12640-019-00079-x.
- 144. Rahmani, M.; Rahmani, F.; Rezaei, N. The brain-derived neurotrophic factor: missing link between sleep deprivation, insomnia, and depression. Neurochem Res 2020, 45, 221-231, doi:10.1007/s11064-019-02914-1.
- 145. Monteiro, B.C.; Monteiro, S.; Candida, M.; Adler, N.; Paes, F.; Rocha, N.; Nardi, A.E.; Murillo-Rodriguez, E.; Machado, S. Relationship between brain-derived neurotrofic factor (Bdnf) and sleep on depression: a critical review. Clin Pract Epidemiol Ment Health 2017, 13, 213-219, doi:10.2174/1745017901713010213.
- Schmitt, K.; Holsboer-Trachsler, E.; Eckert, A. BDNF in sleep, insomnia, and sleep deprivation. Ann Med 2016, 48, 42-51, doi:10.3109/07853890.2015.1131327.
- Kushikata, T.; Fang, J.; Krueger, J.M. Brain-derived neurotrophic factor enhances spontaneous sleep in rats and rabbits. Am J Physiol 1999, 276, R1334-1338, doi:10.1152/ajpregu.1999.276.5.R1334.
- 148. Deuschle, M.; Schredl, M.; Wisch, C.; Schilling, C.; Gilles, M.; Geisel, O.; Hellweg, R. Serum brain-derived neurotrophic factor (BDNF) in sleep-disordered patients: relation to sleep stage N3 and rapid eye movement (REM) sleep across diagnostic entities. J Sleep Res 2018, 27, 73-77, doi:10.1111/jsr.12577.

- 149. Fan, T.T.; Chen, W.H.; Shi, L.; Lin, X.; Tabarak, S.; Chen, S.J.; Que, J.Y.; Bao, Y.P.; Tang, X.D.; Shi, J.; et al. Objective sleep duration is associated with cognitive deficits in primary insomnia: BDNF may play a role. Sleep 2019, 42, doi:10.1093/sleep/zsy192.
- Watson, A.J.; Henson, K.; Dorsey, S.G.; Frank, M.G. The truncated TrkB receptor influences mammalian sleep. Am J Physiol Regul Integr Comp Physiol 2015, 308, R199-207, doi:10.1152/ajpregu.00422.2014.
- 151. Faraguna, U.; Vyazovskiy, V.V.; Nelson, A.B.; Tononi, G.; Cirelli, C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 2008, 28, 4088-4095, doi:10.1523/JNEUROSCI.5510-07.2008.
- Bachmann, V.; Klein, C.; Bodenmann, S.; Schafer, N.; Berger, W.; Brugger, P.; Landolt, H.P. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 2012, 35, 335-344, doi:10.5665/sleep.1690.
- 153. Guindalini, C.; Mazzotti, D.R.; Castro, L.S.; D'Aurea, C.V.; Andersen, M.L.; Poyares, D.; Bittencourt, L.R.; Tufik, S. Brain-derived neurotrophic factor gene polymorphism predicts interindividual variation in the sleep electroencephalogram. J Neurosci Res 2014, 92, 1018-1023, doi:10.1002/jnr.23380.
- 154. Gosselin, N.; De Beaumont, L.; Gagnon, K.; Baril, A.A.; Mongrain, V.; Blais, H.; Montplaisir, J.; Gagnon, J.F.; Pelleieux, S.; Poirier, J.; et al. BDNF Val66Met polymorphism interacts with sleep consolidation to predict ability to create new declarative memories. J Neurosci 2016, 36, 8390-8398, doi:10.1523/JNEUROSCI.4432-15.2016.
- 155. Ma, T.; Zhang, H.; Xu, Z.P.; Lu, Y.; Fu, Q.; Wang, W.; Li, G.H.; Wang, Y.Y.; Yang, Y.T.; Mi, W.D. Activation of brain-derived neurotrophic factor signaling in the basal forebrain reverses acute sleep deprivation-induced fear memory impairments. Brain Behav 2020, 10, e01592, doi:10.1002/brb3.1592.
- 156. Xue, J.; Li, H.; Xu, Z.; Ma, D.; Guo, R.; Yang, K.; Wang, Y. Paradoxical sleep deprivation aggravates and prolongs incision-induced pain hypersensitivity via BDNF signaling-mediated descending facilitation in rats. Neurochem Res 2018, 43, 2353-2361, doi:10.1007/s11064-018-2660-2.
- 157. Barnes, A.K.; Koul-Tiwari, R.; Garner, J.M.; Geist, P.A.; Datta, S. Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: a novel mechanism for the homeostatic regulation of rapid eye movement sleep. J Neurochem 2017, 141, 111-123, doi:10.1111/jnc.13938.
- Datta, S.; Knapp, C.M.; Koul-Tiwari, R.; Barnes, A. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem. Behav Brain Res 2015, 292, 381-392, doi:10.1016/j.bbr.2015.06.038.
- 159. Giese, M.; Beck, J.; Brand, S.; Muheim, F.; Hemmeter, U.; Hatzinger, M.; Holsboer-Trachsler, E.; Eckert, A. Fast BDNF serum level increase and diurnal BDNF oscillations are associated with therapeutic response after partial sleep deprivation. J Psychiatr Res 2014, 59, 1-7, doi:10.1016/j.jpsychires.2014.09.005.
- 160. Giese, M.; Unternahrer, E.; Huttig, H.; Beck, J.; Brand, S.; Calabrese, P.; Holsboer-Trachsler, E.; Eckert, A. BDNF: an indicator of insomnia? Mol Psychiatry 2014, 19, 151-152, doi:10.1038/mp.2013.10.

- Song, Y.; Qu, R.; Zhu, S.; Zhang, R.; Ma, S. Rhynchophylline attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-kappaB signaling pathways in primary microglia. Phytother Res 2012, 26, 1528-1533, doi:10.1002/ptr.4614.
- 162. Yuan, D.; Ma, B.; Yang, J.Y.; Xie, Y.Y.; Wang, L.; Zhang, L.J.; Kano, Y.; Wu, C.F. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int Immunopharmacol 2009, 9, 1549-1554, doi:10.1016/j.intimp.2009.09.010.
- 163. Kim, J.H.; Bae, C.H.; Park, S.Y.; Lee, S.J.; Kim, Y. Uncaria rhynchophylla inhibits the production of nitric oxide and interleukin-1beta through blocking nuclear factor kappaB, Akt, and mitogen-activated protein kinase activation in macrophages. J Med Food 2010, 13, 1133-1140, doi:10.1089/jmf.2010.1128.
- 164. Wang, M.; Li, H.; Zhao, Y.; Lv, C.; Zhou, G. Rhynchophylline attenuates allergic bronchial asthma by inhibiting transforming growth factor-beta1-mediated Smad and mitogen-activated protein kinase signaling transductions in vivo and in vitro. Exp Ther Med 2019, 17, 251-259, doi:10.3892/etm.2018.6909.
- 165. Zhang, Y.; Cui, Y.; Dai, S.; Deng, W.; Wang, H.; Qin, W.; Yang, H.; Liu, H.; Yue, J.; Wu, D.; et al. Isorhynchophylline enhances Nrf2 and inhibits MAPK pathway in cardiac hypertrophy. Naunyn Schmiedebergs Arch Pharmacol 2020, 393, 203-212, doi:10.1007/s00210-019-01716-0.
- 166. Hsieh, C.L.; Ho, T.Y.; Su, S.Y.; Lo, W.Y.; Liu, C.H.; Tang, N.Y. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats. Am J Chin Med 2009, 37, 351-360, doi:10.1142/S0192415X09006898.
- 167. Hsu, H.C.; Tang, N.Y.; Liu, C.H.; Hsieh, C.L. Antiepileptic effect of Uncaria rhynchophylla and Rhynchophylline involved in the initiation of c-Jun N-terminal kinase phosphorylation of MAPK signal pathways in acute seizures of kainic acid-treated rats. Evid Based Complement Alternat Med 2013, 2013, 961289, doi:10.1155/2013/961289.
- 168. Cao, H.; Ren, W.H.; Zhu, M.Y.; Zhao, Z.Q.; Zhang, Y.Q. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: implications for affective pain. Neurosci Bull 2012, 28, 77-87, doi:10.1007/s12264-012-1060-x.
- 169. Mikhail, C.; Vaucher, A.; Jimenez, S.; Tafti, M. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness. Sci Signal 2017, 10, doi:10.1126/scisignal.aai9219.
- 170. Tian, X.; Gotoh, T.; Tsuji, K.; Lo, E.H.; Huang, S.; Feig, L.A. Developmentally regulated role for Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB. EMBO J 2004, 23, 1567-1575, doi:10.1038/sj.emboj.7600151.
- 171. Hu, X.; Paik, P.K.; Chen, J.; Yarilina, A.; Kockeritz, L.; Lu, T.T.; Woodgett, J.R.; Ivashkiv, L.B. IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 2006, 24, 563-574, doi:10.1016/j.immuni.2006.02.014.
- 172. Liu, W.; Peng, Q.X.; Lin, X.L.; Luo, C.H.; Jiang, M.J.; Mo, Z.X.; Yung, K.K. Effect of rhynchophylline on the expression of p-CREB and sc-Fos in striatum and hippocampal CA1 area of methamphetamine-induced conditioned place preference rats. Fitoterapia 2014, 92, 16-22, doi:10.1016/j.fitote.2013.10.002.

- 173. Su, X.; Wang, C.; Wang, X.; Han, F.; Lv, C.; Zhang, X. Sweet dream liquid chinese medicine ameliorates learning and memory deficit in a rat model of paradoxical sleep deprivation through the ERK/CREB signaling pathway. J Med Food 2016, 19, 472-480, doi:10.1089/jmf.2015.3530.
- 174. Foltenyi, K.; Greenspan, R.J.; Newport, J.W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 2007, 10, 1160-1167, doi:10.1038/nn1957.
- 175. Dumoulin Bridi, M.C.; Aton, S.J.; Seibt, J.; Renouard, L.; Coleman, T.; Frank, M.G. Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci Adv 2015, 1, e1500105, doi:10.1126/sciadv.1500105.
- 176. Graves, L.A.; Hellman, K.; Veasey, S.; Blendy, J.A.; Pack, A.I.; Abel, T. Genetic evidence for a role of CREB in sustained cortical arousal. J Neurophysiol 2003, 90, 1152-1159, doi:10.1152/jn.00882.2002.
- 177. Wimmer, M.; Cui, R.; Blackwell, J.; Abel, T. CREB is required in excitatory neurons in the forebrain to sustain wakefulness. BioRxiv 2020.
- 178. Cirelli, C.; Tononi, G. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 2000, 20, 9187-9194.
- 179. Cirelli, C.; Pompeiano, M.; Tononi, G. Neuronal gene expression in the waking state: a role for the locus coeruleus. Science 1996, 274, 1211-1215, doi:10.1126/science.274.5290.1211.
- Hendricks, J.C.; Williams, J.A.; Panckeri, K.; Kirk, D.; Tello, M.; Yin, J.C.; Sehgal, A. A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat Neurosci 2001, 4, 1108-1115, doi:10.1038/nn743.
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell 2017, 170, 605-635, doi:10.1016/j.cell.2017.07.029.
- 182. Alessi, D.R.; James, S.R.; Downes, C.P.; Holmes, A.B.; Gaffney, P.R.; Reese, C.B.; Cohen, P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997, 7, 261-269, doi:10.1016/s0960-9822(06)00122-9.
- Sarbassov, D.D.; Guertin, D.A.; Ali, S.M.; Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307, 1098-1101, doi:10.1126/science.1106148.
- Cross, D.A.; Alessi, D.R.; Cohen, P.; Andjelkovich, M.; Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378, 785-789, doi:10.1038/378785a0.
- Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002, 4, 648-657, doi:10.1038/ncb839.
- Manning, B.D.; Toker, A. AKT/PKB signaling: navigating the network. Cell 2017, 169, 381-405, doi:10.1016/j.cell.2017.04.001.
- 187. Hao, H.F.; Liu, L.M.; Pan, C.S.; Wang, C.S.; Gao, Y.S.; Fan, J.Y.; Han, J.Y. Rhynchophylline ameliorates endothelial dysfunction via Src-PI3K/Akt-eNOS cascade in the cultured intrarenal arteries of spontaneous hypertensive rats. Front Physiol 2017, 8, 928, doi:10.3389/fphys.2017.00928.
- 188. Hu, S.; Mak, S.; Zuo, X.; Li, H.; Wang, Y.; Han, Y. Neuroprotection against MPP(+)-induced cytotoxicity through the activation of PI3-K/Akt/GSK3beta/MEF2D signaling pathway by Rhynchophylline, the major

tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla. Front Pharmacol 2018, 9, 768, doi:10.3389/fphar.2018.00768.

- 189. Xian, Y.F.; Mao, Q.Q.; Wu, J.C.; Su, Z.R.; Chen, J.N.; Lai, X.P.; Ip, S.P.; Lin, Z.X. Isorhynchophylline treatment improves the amyloid-beta-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation. J Alzheimers Dis 2014, 39, 331-346, doi:10.3233/JAD-131457.
- 190. Brunet, A.; Bonni, A.; Zigmond, M.J.; Lin, M.Z.; Juo, P.; Hu, L.S.; Anderson, M.J.; Arden, K.C.; Blenis, J.; Greenberg, M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999, 96, 857-868, doi:10.1016/s0092-8674(00)80595-4.
- 191. Coloff, J.L.; Mason, E.F.; Altman, B.J.; Gerriets, V.A.; Liu, T.; Nichols, A.N.; Zhao, Y.; Wofford, J.A.; Jacobs, S.R.; Ilkayeva, O.; et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J Biol Chem 2011, 286, 5921-5933, doi:10.1074/jbc.M110.179101.
- 192. del Peso, L.; Gonzalez-Garcia, M.; Page, C.; Herrera, R.; Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997, 278, 687-689, doi:10.1126/science.278.5338.687.
- 193. Pugazhenthi, S.; Nesterova, A.; Sable, C.; Heidenreich, K.A.; Boxer, L.M.; Heasley, L.E.; Reusch, J.E. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000, 275, 10761-10766, doi:10.1074/jbc.275.15.10761.
- 194. Zheng, M.; Chen, M.; Wang, W.; Zhou, M.; Liu, C.; Fan, Y.; Shi, D. Protection by rhynchophylline against MPTP/MPP(+)-induced neurotoxicity via regulating PI3K/Akt pathway. J Ethnopharmacol 2021, 268, 113568, doi:10.1016/j.jep.2020.113568.
- 195. Lan, Y.L.; Zhou, J.J.; Liu, J.; Huo, X.K.; Wang, Y.L.; Liang, J.H.; Zhao, J.C.; Sun, C.P.; Yu, Z.L.; Fang, L.L.; et al. Uncaria rhynchophylla ameliorates Parkinson's Disease by inhibiting HSP90 expression: insights from quantitative proteomics. Cell Physiol Biochem 2018, 47, 1453-1464, doi:10.1159/000490837.
- 196. Zhang, Y.; Sun, J.; Zhu, S.; Xu, T.; Lu, J.; Han, H.; Zhou, C.; Yan, J. The role of rhynchophylline in alleviating early brain injury following subarachnoid hemorrhage in rats. Brain Res 2016, 1631, 92-100, doi:10.1016/j.brainres.2015.11.035.
- 197. Qin, Q.J.; Cui, L.Q.; Li, P.; Wang, Y.B.; Zhang, X.Z.; Guo, M.L. Rhynchophylline ameliorates myocardial ischemia/reperfusion injury through the modulation of mitochondrial mechanisms to mediate myocardial apoptosis. Mol Med Rep 2019, 19, 2581-2590, doi:10.3892/mmr.2019.9908.
- 198. Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ 2017, 24, 1380-1389, doi:10.1038/cdd.2017.44.
- Beurel, E.; Mines, M.A.; Song, L.; Jope, R.S. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development. Bipolar Disord 2012, 14, 822-830, doi:10.1111/bdi.12023.
- Leroy, K.; Brion, J.P. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat 1999, 16, 279-293, doi:10.1016/s0891-0618(99)00012-5.
- Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 1990, 9, 2431-2438.

- Beaulieu, J.M.; Gainetdinov, R.R.; Caron, M.G. Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 2009, 49, 327-347, doi:10.1146/annurev.pharmtox.011008.145634.
- 203. Beaulieu, J.M.; Sotnikova, T.D.; Yao, W.D.; Kockeritz, L.; Woodgett, J.R.; Gainetdinov, R.R.; Caron, M.G. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 2004, 101, 5099-5104, doi:10.1073/pnas.0307921101.
- 204. Jain, A.K.; Jaiswal, A.K. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 2007, 282, 16502-16510, doi:10.1074/jbc.M611336200.
- 205. Li, Q.; Niu, C.; Zhang, X.; Dong, M. Gastrodin and Isorhynchophylline synergistically inhibit MPP(+)-induced oxidative stress in SH-SY5Y cells by targeting ERK1/2 and GSK-3beta pathways: involvement of Nrf2 nuclear translocation. ACS Chem Neurosci 2018, 9, 482-493, doi:10.1021/acschemneuro.7b00247.
- 206. Wild, A.C.; Moinova, H.R.; Mulcahy, R.T. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 1999, 274, 33627-33636, doi:10.1074/jbc.274.47.33627.
- 207. Nguyen, T.; Huang, H.C.; Pickett, C.B. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem 2000, 275, 15466-15473, doi:10.1074/jbc.M000361200.
- Xue, R.; Wan, Y.; Sun, X.; Zhang, X.; Gao, W.; Wu, W. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front Immunol 2019, 10, 2546, doi:10.3389/fimmu.2019.02546.
- 209. Ahnaou, A.; Drinkenburg, W.H. Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice. Behav Brain Res 2011, 221, 246-252, doi:10.1016/j.bbr.2011.03.004.
- Benedetti, F.; Dallaspezia, S.; Lorenzi, C.; Pirovano, A.; Radaelli, D.; Locatelli, C.; Poletti, S.; Colombo, C.; Smeraldi, E. Gene-gene interaction of glycogen synthase kinase 3-beta and serotonin transporter on human antidepressant response to sleep deprivation. J Affect Disord 2012, 136, 514-519, doi:10.1016/j.jad.2011.10.039.
- 211. Benedetti, F.; Serretti, A.; Colombo, C.; Lorenzi, C.; Tubazio, V.; Smeraldi, E. A glycogen synthase kinase 3beta promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci Lett 2004, 368, 123-126, doi:10.1016/j.neulet.2004.06.050.
- Vyazovskiy, V.V.; Cirelli, C.; Pfister-Genskow, M.; Faraguna, U.; Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 2008, 11, 200-208, doi:10.1038/nn2035.
- Bruning, F.; Noya, S.B.; Bange, T.; Koutsouli, S.; Rudolph, J.D.; Tyagarajan, S.K.; Cox, J.; Mann, M.; Brown, S.A.; Robles, M.S. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 2019, 366, doi:10.1126/science.aav3617.
- Khlghatyan, J.; Evstratova, A.; Bozoyan, L.; Chamberland, S.; Chatterjee, D.; Marakhovskaia, A.; Soares Silva, T.; Toth, K.; Mongrain, V.; Beaulieu, J.M. Fxr1 regulates sleep and synaptic homeostasis. EMBO J 2020, 39, e103864, doi:10.15252/embj.2019103864.

- 215. Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord 2018, 20, 97-170, doi:10.1111/bdi.12609.
- 216. Geoffroy, P.A.; Samalin, L.; Llorca, P.M.; Curis, E.; Bellivier, F. Influence of lithium on sleep and chronotypes in remitted patients with bipolar disorder. J Affect Disord 2016, 204, 32-39, doi:10.1016/j.jad.2016.06.015.
- 217. Friston, K.J.; Sharpley, A.L.; Solomon, R.A.; Cowen, P.J. Lithium increases slow wave sleep: possible mediation by brain 5-HT2 receptors? Psychopharmacology (Berl) 1989, 98, 139-140, doi:10.1007/BF00442020.
- 218. Jones, C.A.; Perez, E.; Amici, R.; Luppi, M.; Baracchi, F.; Cerri, M.; Dentico, D.; Zamboni, G. Lithium affects REM sleep occurrence, autonomic activity and brain second messengers in the rat. Behav Brain Res 2008, 187, 254-261, doi:10.1016/j.bbr.2007.09.017.
- 219. Rubinsztein, D.C.; Gestwicki, J.E.; Murphy, L.O.; Klionsky, D.J. Potential therapeutic applications of autophagy. Nature Reviews Drug Discovery 2007, 6, 304-312.
- 220. Tudor, J.C.; Davis, E.J.; Peixoto, L.; Wimmer, M.E.; van Tilborg, E.; Park, A.J.; Poplawski, S.G.; Chung, C.W.; Havekes, R.; Huang, J.; et al. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis. Sci Signal 2016, 9, ra41.
- 221. Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: a general review. Int J Neurosci 2017, 127, 624-633, doi:10.1080/00207454.2016.1212854.
- Long, H.; Zhang, M.; Wang, C.; Hang, Y. Rhynchophylline attenuates neurotoxicity in Tourette Syndrome rats. Neurotox Res 2019, 36, 679-687, doi:10.1007/s12640-019-00059-1.
- 223. Cao, W.; Wang, Y.; Lv, X.; Yu, X.; Li, X.; Li, H.; Wang, Y.; Lu, D.; Qi, R.; Wang, H. Rhynchophylline prevents cardiac dysfunction and improves survival in lipopolysaccharide-challenged mice via suppressing macrophage I-kappaBalpha phosphorylation. Int Immunopharmacol 2012, 14, 243-251, doi:10.1016/j.intimp.2012.07.010.
- 224. Kielian, T. Overview of toll-like receptors in the CNS. Curr Top Microbiol Immunol 2009, 336, 1-14, doi:10.1007/978-3-642-00549-7_1.
- 225. Cespuglio, R.; Amrouni, D.; Meiller, A.; Buguet, A.; Gautier-Sauvigne, S. Nitric oxide in the regulation of the sleep-wake states. Sleep Med Rev 2012, 16, 265-279, doi:10.1016/j.smrv.2012.01.006.
- 226. Jewett, K.A.; Krueger, J.M. Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam Horm 2012, 89, 241-257, doi:10.1016/B978-0-12-394623-2.00013-5.
- 227. Hars, B. Endogenous nitric oxide in the rat pons promotes sleep. Brain Res 1999, 816, 209-219, doi:10.1016/s0006-8993(98)01183-4.
- 228. Fang, J.; Wang, Y.; Krueger, J.M. Effects of interleukin-1 beta on sleep are mediated by the type I receptor. Am J Physiol 1998, 274, R655-660, doi:10.1152/ajpregu.1998.274.3.R655.
- Datta, S.; Patterson, E.H.; Siwek, D.F. Endogenous and exogenous nitric oxide in the pedunculopontine tegmentum induces sleep. Synapse 1997, 27, 69-78, doi:10.1002/(SICI)1098-2396(199709)27:1<69::AID-SYN7>3.0.CO;2-B.

- Opp, M.R.; Obal, F., Jr.; Krueger, J.M. Interleukin 1 alters rat sleep: temporal and dose-related effects. Am J Physiol 1991, 260, R52-58, doi:10.1152/ajpregu.1991.260.1.R52.
- Opp, M.R.; Krueger, J.M. Interleukin 1-receptor antagonist blocks interleukin 1-induced sleep and fever. Am J Physiol 1991, 260, R453-457, doi:10.1152/ajpregu.1991.260.2.R453.
- Dickstein, J.B.; Moldofsky, H.; Lue, F.A.; Hay, J.B. Intracerebroventricular injection of TNF-alpha promotes sleep and is recovered in cervical lymph. Am J Physiol 1999, 276, R1018-1022, doi:10.1152/ajpregu.1999.276.4.R1018.
- Kapas, L.; Shibata, M.; Kimura, M.; Krueger, J.M. Inhibition of nitric oxide synthesis suppresses sleep in rabbits. Am J Physiol 1994, 266, R151-157, doi:10.1152/ajpregu.1994.266.1.R151.
- 234. Opp, M.R.; Krueger, J.M. Interleukin-1 is involved in responses to sleep deprivation in the rabbit. Brain Res 1994, 639, 57-65, doi:10.1016/0006-8993(94)91764-7.
- Opp, M.R.; Krueger, J.M. Anti-interleukin-1 beta reduces sleep and sleep rebound after sleep deprivation in rats. Am J Physiol 1994, 266, R688-695, doi:10.1152/ajpregu.1994.266.3.R688.
- Kapas, L.; Fang, J.; Krueger, J.M. Inhibition of nitric oxide synthesis inhibits rat sleep. Brain Res 1994, 664, 189-196, doi:10.1016/0006-8993(94)91969-0.
- Dzoljic, M.R.; de Vries, R.; van Leeuwen, R. Sleep and nitric oxide: effects of 7-nitro indazole, inhibitor of brain nitric oxide synthase. Brain Res 1996, 718, 145-150, doi:10.1016/0006-8993(96)00102-3.
- Takahashi, S.; Kapas, L.; Seyer, J.M.; Wang, Y.; Krueger, J.M. Inhibition of tumor necrosis factor attenuates physiological sleep in rabbits. Neuroreport 1996, 7, 642-646, doi:10.1097/00001756-199601310-00063.
- Takahashi, S.; Tooley, D.D.; Kapas, L.; Fang, J.; Seyer, J.M.; Krueger, J.M. Inhibition of tumor necrosis factor in the brain suppresses rabbit sleep. Pflugers Arch 1995, 431, 155-160, doi:10.1007/BF00410186.
- Takahashi, S.; Fang, J.; Kapas, L.; Wang, Y.; Krueger, J.M. Inhibition of brain interleukin-1 attenuates sleep rebound after sleep deprivation in rabbits. Am J Physiol 1997, 273, R677-682, doi:10.1152/ajpregu.1997.273.2.R677.
- Ribeiro, A.C.; Kapas, L. Day- and nighttime injection of a nitric oxide synthase inhibitor elicits opposite sleep responses in rats. Am J Physiol Regul Integr Comp Physiol 2005, 289, R521-R531, doi:10.1152/ajpregu.00605.2004.
- Monti, J.M.; Jantos, H. Microinjection of the nitric oxide synthase inhibitor L-NAME into the lateral basal forebrain alters the sleep/wake cycle of the rat. Prog Neuropsychopharmacol Biol Psychiatry 2004, 28, 239-247, doi:10.1016/j.pnpbp.2003.10.001.
- Kubota, T.; Kushikata, T.; Fang, J.; Krueger, J.M. Nuclear factor-kappaB inhibitor peptide inhibits spontaneous and interleukin-1beta-induced sleep. Am J Physiol Regul Integr Comp Physiol 2000, 279, R404-413, doi:10.1152/ajpregu.2000.279.2.R404.
- 244. Zielinski, M.R.; Kim, Y.; Karpova, S.A.; McCarley, R.W.; Strecker, R.E.; Gerashchenko, D. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett 2014, 580, 27-31, doi:10.1016/j.neulet.2014.07.043.
- Kalinchuk, A.V.; McCarley, R.W.; Porkka-Heiskanen, T.; Basheer, R. Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake-active basal forebrain neurons. J Neurosci 2010, 30, 13254-13264, doi:10.1523/JNEUROSCI.0014-10.2010.
- Mackiewicz, M.; Sollars, P.J.; Ogilvie, M.D.; Pack, A.I. Modulation of IL-1 beta gene expression in the rat CNS during sleep deprivation. Neuroreport 1996, 7, 529-533, doi:10.1097/00001756-199601310-00037.
- Chen, Z.; Gardi, J.; Kushikata, T.; Fang, J.; Krueger, J.M. Nuclear factor-kappaB-like activity increases in murine cerebral cortex after sleep deprivation. Am J Physiol 1999, 276, R1812-1818, doi:10.1152/ajpregu.1999.276.6.R1812.
- Ribeiro, A.C.; Gilligan, J.G.; Kapas, L. Systemic injection of a nitric oxide synthase inhibitor suppresses sleep responses to sleep deprivation in rats. Am J Physiol Regul Integr Comp Physiol 2000, 278, R1048-1056, doi:10.1152/ajpregu.2000.278.4.R1048.
- Shoham, S.; Davenne, D.; Cady, A.B.; Dinarello, C.A.; Krueger, J.M. Recombinant tumor necrosis factor and interleukin 1 enhance slow-wave sleep. Am J Physiol 1987, 253, R142-149, doi:10.1152/ajpregu.1987.253.1.R142.
- 250. Kang, T.H.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H.; Matsumoto, K. Protective effect of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus: putative neurotransmitter receptors involved in their action. Life Sci 2004, 76, 331-343, doi:10.1016/j.lfs.2004.08.012.
- 251. Zhou, J.Y.; Mo, Z.X.; Zhou, S.W. Effect of rhynchophylline on central neurotransmitter levels in amphetamineinduced conditioned place preference rat brain. Fitoterapia 2010, 81, 844-848, doi:10.1016/j.fitote.2010.05.007.
- 252. Surmeier, D.J.; Bargas, J.; Hemmings, H.C., Jr.; Nairn, A.C.; Greengard, P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995, 14, 385-397, doi:10.1016/0896-6273(95)90294-5.
- 253. Huang, X.Y.; Morielli, A.D.; Peralta, E.G. Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor. Cell 1993, 75, 1145-1156, doi:10.1016/0092-8674(93)90324-j.
- Baghdoyan, H.A.; Rodrigo-Angulo, M.L.; McCarley, R.W.; Hobson, J.A. Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res 1984, 306, 39-52, doi:10.1016/0006-8993(84)90354-8.
- 255. Niwa, Y.; Kanda, G.N.; Yamada, R.G.; Shi, S.; Sunagawa, G.A.; Ukai-Tadenuma, M.; Fujishima, H.; Matsumoto, N.; Masumoto, K.H.; Nagano, M.; et al. Muscarinic acetylcholine receptors Chrm1 and Chrm3 are essential for REM sleep. Cell Rep 2018, 24, 2231-2247 e2237, doi:10.1016/j.celrep.2018.07.082.
- 256. Gillin, J.C.; Sutton, L.; Ruiz, C.; Golshan, S.; Hirsch, S.; Warmann, C.; Shiromani, P. Dose dependent inhibition of REM sleep in normal volunteers by biperiden, a muscarinic antagonist. Biol Psychiatry 1991, 30, 151-156, doi:10.1016/0006-3223(91)90169-m.
- Kurimoto, E.; Nakashima, M.; Kimura, H.; Suzuki, M. TAK-071, a muscarinic M1 receptor positive allosteric modulator, attenuates scopolamine-induced quantitative electroencephalogram power spectral changes in cynomolgus monkeys. PLoS One 2019, 14, e0207969, doi:10.1371/journal.pone.0207969.

- Ma, X.; Zhang, Y.; Wang, L.; Li, N.; Barkai, E.; Zhang, X.; Lin, L.; Xu, J. The firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscillations via muscarinic receptors. J Neurosci 2020, 40, 3591-3603, doi:10.1523/JNEUROSCI.1568-19.2020.
- 259. Shirey, J.K.; Brady, A.E.; Jones, P.J.; Davis, A.A.; Bridges, T.M.; Kennedy, J.P.; Jadhav, S.B.; Menon, U.N.; Xiang, Z.; Watson, M.L.; et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 2009, 29, 14271-14286, doi:10.1523/JNEUROSCI.3930-09.2009.
- Williams, J.H.; Kauer, J.A. Properties of carbachol-induced oscillatory activity in rat hippocampus. J Neurophysiol 1997, 78, 2631-2640, doi:10.1152/jn.1997.78.5.2631.
- Cea-del Rio, C.A.; Lawrence, J.J.; Tricoire, L.; Erdelyi, F.; Szabo, G.; McBain, C.J. M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J Neurosci 2010, 30, 6011-6024, doi:10.1523/JNEUROSCI.5040-09.2010.
- Fisahn, A.; Yamada, M.; Duttaroy, A.; Gan, J.W.; Deng, C.X.; McBain, C.J.; Wess, J. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 2002, 33, 615-624, doi:10.1016/s0896-6273(02)00587-1.
- 263. Langmead, C.J.; Austin, N.E.; Branch, C.L.; Brown, J.T.; Buchanan, K.A.; Davies, C.H.; Forbes, I.T.; Fry, V.A.; Hagan, J.J.; Herdon, H.J.; et al. Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 2008, 154, 1104-1115, doi:10.1038/bjp.2008.152.
- 264. Ursin, R. Serotonin and sleep. Sleep Med Rev 2002, 6, 55-69, doi:10.1053/smrv.2001.0174.
- 265. Ito, H.; Yanase, M.; Yamashita, A.; Kitabatake, C.; Hamada, A.; Suhara, Y.; Narita, M.; Ikegami, D.; Sakai, H.; Yamazaki, M.; et al. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 2013, 6, 59, doi:10.1186/1756-6606-6-59.
- 266. Cape, E.G.; Jones, B.E. Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J Neurosci 1998, 18, 2653-2666.
- 267. Horner, R.L.; Sanford, L.D.; Annis, D.; Pack, A.I.; Morrison, A.R. Serotonin at the laterodorsal tegmental nucleus suppresses rapid-eye-movement sleep in freely behaving rats. J Neurosci 1997, 17, 7541-7552.
- Chowdhury, S.; Yamanaka, A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci Rep 2016, 6, 36039, doi:10.1038/srep36039.
- Saito, Y.C.; Maejima, T.; Nishitani, M.; Hasegawa, E.; Yanagawa, Y.; Mieda, M.; Sakurai, T. Monoamines inhibit GABAergic neurons in ventrolateral preoptic area that make direct synaptic connections to hypothalamic arousal neurons. J Neurosci 2018, 38, 6366-6378, doi:10.1523/JNEUROSCI.2835-17.2018.
- Linley, S.B.; Vertes, R.P. Serotonergic systems in sleep and waking. In Handbook of Behavioral Neuroscience; Elsevier: 2019; Volume 30, pp. 101-123.
- 271. Bjorvatn, B.; Fagerland, S.; Eid, T.; Ursin, R. Sleep/waking effects of a selective 5-HT1A receptor agonist given systemically as well as perfused in the dorsal raphe nucleus in rats. Brain Res 1997, 770, 81-88, doi:10.1016/s0006-8993(97)00758-0.

- 272. Monti, J.M.; Jantos, H.; Monti, D. Increased REM sleep after intra-dorsal raphe nucleus injection of flesinoxan or 8-OHDPAT: prevention with WAY 100635. Eur Neuropsychopharmacol 2002, 12, 47-55, doi:10.1016/s0924-977x(01)00133-x.
- 273. Portas, C.M.; Thakkar, M.; Rainnie, D.; McCarley, R.W. Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci 1996, 16, 2820-2828.
- 274. Vertes, R.P.; Kinney, G.G.; Kocsis, B.; Fortin, W.J. Pharmacological suppression of the median raphe nucleus with serotonin1A agonists, 8-OH-DPAT and buspirone, produces hippocampal theta rhythm in the rat. Neuroscience 1994, 60, 441-451, doi:10.1016/0306-4522(94)90255-0.
- Monti, J.M.; Jantos, H. Effects of activation and blockade of 5-HT2A/2C receptors in the dorsal raphe nucleus on sleep and waking in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2006, 30, 1189-1195, doi:10.1016/j.pnpbp.2006.02.013.
- 276. Monti, J.M.; Leopoldo, M.; Jantos, H. The serotonin 5-HT7 receptor agonist LP-44 microinjected into the dorsal raphe nucleus suppresses REM sleep in the rat. Behav Brain Res 2008, 191, 184-189, doi:10.1016/j.bbr.2008.03.025.
- 277. Monti, J.M.; Jantos, H.; Lagos, P. Activation of serotonin 5-HT(1B) receptor in the dorsal raphe nucleus affects REM sleep in the rat. Behav Brain Res 2010, 206, 8-16, doi:10.1016/j.bbr.2009.08.037.
- 278. Monti, J.M.; Jantos, H. Effects of the serotonin 5-HT2A/2C receptor agonist DOI and of the selective 5-HT2A or 5-HT2C receptor antagonists EMD 281014 and SB-243213, respectively, on sleep and waking in the rat. Eur J Pharmacol 2006, 553, 163-170, doi:10.1016/j.ejphar.2006.09.027.
- 279. Popa, D.; Lena, C.; Fabre, V.; Prenat, C.; Gingrich, J.; Escourrou, P.; Hamon, M.; Adrien, J. Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 2005, 25, 11231-11238, doi:10.1523/JNEUROSCI.1724-05.2005.
- Dahan, L.; Astier, B.; Vautrelle, N.; Urbain, N.; Kocsis, B.; Chouvet, G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 2007, 32, 1232-1241, doi:10.1038/sj.npp.1301251.
- Eban-Rothschild, A.; Rothschild, G.; Giardino, W.J.; Jones, J.R.; de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 2016, 19, 1356-1366, doi:10.1038/nn.4377.
- Lancel, M. Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 1999, 22, 33-42, doi:10.1093/sleep/22.1.33.
- Winsky-Sommerer, R. Role of GABAA receptors in the physiology and pharmacology of sleep. Eur J Neurosci 2009, 29, 1779-1794, doi:10.1111/j.1460-9568.2009.06716.x.
- Hannou, L.; Roy, P.G.; Ballester Roig, M.N.; Mongrain, V. Transcriptional control of synaptic components by the clock machinery. Eur J Neurosci 2020, 51, 241-267, doi:10.1111/ejn.14294.
- Biello, S.M.; Bonsall, D.R.; Atkinson, L.A.; Molyneux, P.C.; Harrington, M.E.; Lall, G.S. Alterations in glutamatergic signaling contribute to the decline of circadian photoentrainment in aged mice. Neurobiol Aging 2018, 66, 75-84, doi:10.1016/j.neurobiolaging.2018.02.013.

- 286. Wang, L.M.; Schroeder, A.; Loh, D.; Smith, D.; Lin, K.; Han, J.H.; Michel, S.; Hummer, D.L.; Ehlen, J.C.; Albers, H.E.; et al. Role for the NR2B subunit of the N-methyl-D-aspartate receptor in mediating light input to the circadian system. Eur J Neurosci 2008, 27, 1771-1779, doi:10.1111/j.1460-9568.2008.06144.x.
- 287. Bendova, Z.; Sladek, M.; Svobodova, I. The expression of NR2B subunit of NMDA receptor in the suprachiasmatic nucleus of Wistar rats and its role in glutamate-induced CREB and ERK1/2 phosphorylation. Neurochem Int 2012, 61, 43-47, doi:10.1016/j.neuint.2012.04.016.
- Bendova, Z.; Sumova, A.; Mikkelsen, J.D. Circadian and developmental regulation of N-methyl-d-aspartatereceptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus. Neuroscience 2009, 159, 599-609, doi:10.1016/j.neuroscience.2009.01.016.
- Coria-Lucero, C.D.; Golini, R.S.; Ponce, I.T.; Deyurka, N.; Anzulovich, A.C.; Delgado, S.M.; Navigatore-Fonzo, L.S. Rhythmic Bdnf and TrkB expression patterns in the prefrontal cortex are lost in aged rats. Brain Res 2016, 1653, 51-58, doi:10.1016/j.brainres.2016.10.019.
- 290. Cai, Y.; Ding, H.; Li, N.; Chai, Y.; Zhang, Y.; Chan, P. Oscillation development for neurotransmitter-related genes in the mouse striatum. Neuroreport 2010, 21, 79-83, doi:10.1097/WNR.0b013e32832ff30e.
- 291. Li, H.; Bi, Q.; Cui, H.; Lv, C.; Wang, M. Suppression of autophagy through JAK2/STAT3 contributes to the therapeutic action of rhynchophylline on asthma. BMC Complementary Medicine and Therapies 2021, 21, 1-12.
- Boudreau, P.; Yeh, W.H.; Dumont, G.A.; Boivin, D.B. Circadian variation of heart rate variability across sleep stages. Sleep 2013, 36, 1919-1928, doi:10.5665/sleep.3230.
- Trinder, J.; Waloszek, J.; Woods, M.J.; Jordan, A.S. Sleep and cardiovascular regulation. Pflugers Arch 2012, 463, 161-168, doi:10.1007/s00424-011-1041-3.
- 294. Song, M.F.; Guan, Y.H.; Li, H.T.; Wei, S.G.; Zhang, L.X.; Zhang, Z.L.; Ma, X.J. The effects of genetic variation and environmental factors on rhynchophylline and isorhynchophylline in Uncaria macrophylla Wall. from different populations in China. PLoS One 2018, 13, e0199259, doi:10.1371/journal.pone.0199259.
- 295. Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 401-409, doi:10.1078/0944-7113-00060.
- 296. Zhou, J.Y.; Chen, J.; Zhou, S.W.; Mo, Z.X. Individual and combined effects of rhynchophylline and ketamine on proliferation, NMDAR1 and GluA2/3 protein expression in PC12 cells. Fitoterapia 2013, 85, 125-129, doi:10.1016/j.fitote.2013.01.012.
- 297. Lu, Y.F.; Xie, X.L.; Wu, Q.; Wen, G.R.; Yang, S.F.; Shi, J.S. Effects of rhynchophylline on monoamine transmitter contents of striatum and hippocampus in cerebral ischemic rats. Chin J Pharmacol Toxicol 2004, 18, 253-258.
- 298. Chen, Z.; Wei, L.; Jing, L.; Zhi-jie, C.; Chan, L.; Yu-ting, Z.; Zhi-xian, M. Rhynchophylline reverses methamphetamine-induced CPP by regulating GluR1 expression in zebrafish. Chinese Pharmacological Bulletin 2019, 35, 620-623.
- Lin, Y.W.; Hsieh, C.L. Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats. J Ethnopharmacol 2011, 135, 313-320, doi:10.1016/j.jep.2011.03.018.

- 300. Dolmetsch, R.E.; Pajvani, U.; Fife, K.; Spotts, J.M.; Greenberg, M.E. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 2001, 294, 333-339, doi:10.1126/science.1063395.
- 301. Wheeler, D.G.; Groth, R.D.; Ma, H.; Barrett, C.F.; Owen, S.F.; Safa, P.; Tsien, R.W. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 2012, 149, 1112-1124, doi:10.1016/j.cell.2012.03.041.

Chapter 3

Hypotheses and Objectives

3.1 Overall rationale and general hypotheses

The EPHA4 receptor is crucial for regulating cell-to-cell communication in the brain, vascular and immune systems. As detailed along Chapter 1, research has shown that i) EphA4 is required for proper neurotransmission, ii) is expressed in the SCN in rodents, iii) the *EphA4* gene contain E-boxes in its putative promoter that are conserved in rodents and humans, iv) *EphA4* KO mice have altered circadian responses to light conditions and v) *EphA4* KO mice show altered sleep parameters (e.g., decreased duration of PS in the light period, and shorter duration of slow waves in SWS) (*Murai and Pasquale, 2011; Freyburger et al., 2016; Freyburger et al., 2017; Kiessling et al., 2018)*. The presence of E-boxes upstream of *EphA4* and the fact that *Clock* mutant mice showed reduced expression of *EphA4 (Freyburger et al., 2016)*, suggests that this gene could be regulated by the clock transcription factors. Moreover, given that EphA4 is required for adequate CNS development, it is necessary to define whether the sleep/circadian phenotypes observed in *EphA4* KO mice originate from neurodevelopmental effects or from a role of EphA4, *EfnB2* and *EfnA3* genes is under circadian regulation, and at defining if the EPHA4 modulator RHY modifies sleep in adult mice. We precisely hypothesize that:

- 1- The gene transcription of *EphA4* and its Ephrin ligands *EfnB2* and *EfnA3* is regulated by core clock transcription factors.
- 2- The protein levels of EPHA4 and EFNs oscillate with circadian rhythmicity.
- 3- The EPHA4 modulator RHY modifies sleep in adult mice in manners that resemble the sleep phenotypes of *EphA4* KO mice.
- 4- RHY will have similar effects in male and female mice, given that one of the few studies providing RHY in both male and female mice did not report sex differences (*Shi et al., 1993; Fu et al., 2014*).
- 5- RHY modifies EPHA4 activation and downstream effectors 13h after two different doses of RHY provided via intraperitoneal injection.
- 6- RHY modifies the spatial brain transcriptome in brain regions controlling sleep.

To test these hypotheses, we have conducted two different research projects that are described in two research manuscripts presented in this thesis: i) we investigate *in vitro* if the transcription of the *EphA4* gene and its Ephrin ligands *EfnB2* and *EfnA3* is regulated by the core

clock transcription factors, and evaluate if their protein levels oscillate with circadian rhythmicity in the mouse brain (hypotheses 1 and 2, first manuscript); and ii) the effect of systemic administration of RHY on sleep will be studied in mice (hypotheses 3-6, second manuscript). Injections of RHY will be performed at two different times of the day and brains will be sampled to investigate which RHY targets and cellular pathways are associated with the effects of RHY on sleep.

3.2 Specific aims

3.2.1 Determine if EphA4 and its ephrin ligands EfnB2 and EfnA3 are under circadian regulation

Two studies suggested the implication of EphA4 receptor in circadian physiology and the potential control of EphA4 gene by the core clock molecular loop (Freyburger et al., 2016; Kiessling et al., 2018). Firstly, Freyburger and collaborators found that the putative promoter region of the EphA4 gene contained E-boxes, which are regulatory elements for circadian transcription factors. Moreover, the same study showed that EphA4 is expressed in the mouse and rat SCN, and that the 24-hour expression of *EphA4*, *EfnB2* and *EfnA3* is modified in *Clock*⁴¹⁹ mice. Moreover, SWS low sigma activity (10-12Hz) shows a blunted 24-hour rhythmicity in EphA4 KO mice (Freyburger et al., 2016). Interestingly, this frequency range has been closely associated to circadian regulation in rats, in contrast to higher sigma (12-13Hz) and SWA (Yasenkov and Deboer, 2011). In Kiessling et al., 2018, it was revealed that EphA4 KO mice have decreased PER1 expression and decreased light-induced c-FOS⁺ cells in the SCN. Moreover, these mutants had longer periods in DD and shorter periods in LL, further supporting that the presence of EPHA4 is required for adequate endogenous circadian rhythm of locomotor activity. Therefore, the two studies suggested that one potential mechanism by which EPHA4 may be required for proper circadian responses to light may be through circadian gene expression, which may be controlled by the E-boxes found in the *EphA4* putative promoter. Interestingly, the transcriptional regulation of EphA4 has not been extensively studied.

First, we analyzed the putative promoter regions of multiple components of Eph/Ephrin system to describe the presence of E-boxes or other regulatory elements involved in circadian/sleep physiology. To narrow down the study and given that *EphA4*, *EfnB2* and *EfnA3* expression was

modified in *Clock*^{Δ19} mice, our first aim was to assess *in vitro* if molecular clock core components activate transcription via putative promoter regions of EphA4, EfnB2 and EfnA3 which contain Eboxes. To further investigate a circadian regulation of EphA4 and ligands, the second aim of this study was to describe if EPHA4 and EFNB2 protein levels show circadian rhythmicity in the mouse cerebral cortex and SCN. To avoid confounding effects of light and unmask endogenous circadian rhythms, mice were kept for two days in constant darkness and their brains were sampled at different times of the day. Both sexes were studied because research suggest that male and female mice present some differences in circadian physiology (see section 1.3.1.2 in Chapter 1) (Kuljis et al., 2013; Chun et al., 2015; Kuljis et al., 2016). Thus, a sub-aim was to determine if the levels of EPHA4 and EFNB2 and their potential circadian rhythmicity is modulated by sex. On the other hand, as discussed in sections 1.2 and 1.3 of Chapter 1, brain regions can be implicated in the regulation of circadian rhythms and sleep in very different manners. Therefore, we compared spatial transcriptomic data from male and female mice sampled either at the beginning of the light/resting period (ZT4) or at the beginning of the dark/active period (ZT14) (under LD conditions) to assess potential time effects on gene expression in vivo and analyze potential effects in different brain regions. Thus, a final aim was to use spatial transcriptomic to measure whether *EphA4*, *EfnB2* and *EfnA3* gene expression was different between ZT4 and ZT14.

3.2.2 Define the effects of Rhynchophylline on sleep and the molecular mechanisms underlying its effects

Two studies have provided data suggesting that EphA4 may be implicated in the control of different sleep variables (*Freyburger et al., 2016; Freyburger et al., 2017*). *EphA4* KO mice have reduced PS time and increased SWS bout duration in the light period, blunted 24-hour rhythm of sigma activity and shorter duration of the positive and negative peaks of SWS slow waves (0.5-4 Hz) (*Freyburger et al., 2016; Freyburger et al., 2017*). Moreover, sleep deprivation increased *EphA4* expression in thalamus/hypothalamus tissue in mice (*Freyburger et al., 2016*), further suggesting an implication in sleep regulation. Thus, the general aim of the second study of the thesis was to inhibit EPHA4 in adult mice to investigate whether it would replicate the sleep phenotypes observed in *EphA4* KO mice. RHY is the main active component of Uncaria plants, which has been used in traditional medicines for its anxiolytic and anti-inflammatory properties. Two studies suggest that that RHY was able to recover spine morphology, LTP and cognitive

performance through EPHA4 inactivation in mouse models of Alzheimer's disease and depression (*Fu et al., 2014; Zhang et al., 2017*). Pull-down assays, and experiments *in vivo* and *ex-vivo* suggest that RHY binds to the extracellular domain of the EPHA4 receptor, avoiding the contact between EPHA4 and its extracellular ligands, and reducing EPHA4 phosphorylation (*Fu et al., 2014; Zhang et al., 2017*). Interestingly, RHY was shown to increase sleep time and decrease sleep latency in adult mice (*Yoo et al., 2016*), and plants containing Uncaria are generally increasing sleep time and quality in human (*Ballester Roig et al., 2021*). Therefore, the first specific aim of this study was to characterize the effect of RHY on sleep in mice. Mice were implanted with ECoG/EMG electrodes to compare their sleep under baseline recordings and after systemic RHY injections performed at two different times of the day. Given that sex differences had been found for sleep duration, fragmentation, and EEG in both human and rodents (*Carrier et al., 2001; Mongrain et al., 2005; Koehl et al., 2006; Bixler et al., 2009; Cusmano et al., 2014; Swift et al., 2020, see section 1.1.2 in Chapter 1*), RHY was provided to both male and female mice to determine if the effects of RHY on sleep.

The next goal was to investigate what are the molecular mechanisms underlying the effects of RHY on sleep and determine if these could be linked to EPHA4 inhibition. Several studies show that RHY modifies the levels or activation of molecular components involved in neurotransmission (e.g., NR2B, EPHA4) in the rodent brain sampled 12 to 48 hours after systemic RHY administration (*Zhou et al., 2010; Lee et al., 2014; Zhang et al., 2017*). Thus, microdissections of the cerebral cortex, hippocampus and thalamus/hypothalamus were sampled at the end of the recordings (12 hours after the last RHY injection) to assess if RHY modifies the levels/activation of EPHA4, NR2B and GLUA1 in total and synaptoneurosomal protein fractions. Given that the effects of RHY on sleep reach its maximum in the first 2-5 hours after injection, we decided to investigate for molecular mediators of RHY effects at this moment with a technique with broader range of detection on cellular pathways and which, in addition, could provide information on multiple brain regions. Therefore, the last aim of this study was to measure the effects of RHY on the spatial transcriptome 3 to 4 hours after systemic RHY injection targeting key sleep regulatory regions of the hypothalamus.

3.3 Specific contributions of the candidate

3.3.1 In determining if EphA4 and its Ephrin ligands EfnB2 and EfnA3 are under circadian regulation

For the first publication, I did the analysis of regulatory elements in *EphA4*, *EfnB2* and *EfnA3* putative promoters, and supervised the analysis of the inter-species comparison of putative promoters performed by PGR. I did part of the plasmid designs and cloning, and part of the luciferase assays. I supervised TASG on performing the luciferase assays of mutated constructs. I planned and conducted the *in vivo* experiments, brain punches, protein extractions and quantification. I performed the data analysis and wrote the manuscript.

3.3.2 In defining the effects of Rhynchophylline on sleep and the molecular mechanisms underlying its effects

I defined the adequate dose of RHY and conditions for drug dilution preparation, by comparing previous literature. I did the surgeries for ECoG implantation in all mice, and the animal follow-up, and did the totality of animal injections and brain samplings. I did most of the sleep scoring and analyzed the totality of the sleep data. I did the protein extraction (total and synaptoneurosomal fractions) and quantification of all male samples, and supervised YM who was in charge of female samples. Together with JDG, we prepared the brain tissue for Visium slides, did slide treatment and library preparation. I did the sequencing alignment to genome and conducted the full analysis of spatial transcriptomics data. I wrote the manuscript.

Chapter 4

Transcriptional regulation of EphA4, Ephrin-B2 and Ephrin-A3 by the circadian clock machinery

Transcriptional regulation of EphA4, Ephrin-B2 and Ephrin-A3 by the circadian clock machinery

Maria Neus Ballester Roig,^{1,2} Pierre-Gabriel Roy,^{1,3} Lydia Hannou,² Thomas-Andrew Sully-Guerrier,² Erika Bélanger-Nelson,^{2,4} Valérie Mongrain,^{1,2,*}

¹Department of Neuroscience, Université de Montréal, Montréal, QC, H3T 1J4, Canada; ²Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada; ³Department of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada;

⁴Pfizer, Canada;

*Corresponding author

Valérie Mongrain Department of Neuroscience Université de Montréal Pavillon Paul-G.-Desmarais 2960, chemin de la Tour, local 111 Montreal, QC, H3T 1J4 Canada valerie.mongrain@umontreal.ca 1-514-338-2222/3323

Manuscript to submitted for publication

Content: 8128 words (excluding summary and references), 5 figures, 3 tables, 1 supplemental table

Abstract

Circadian rhythms in mammals are generated by a molecular transcriptional translational feedback loop. The transcription factors CLOCK and BMAL1 act on gene regulatory elements called E-boxes (CANNTG) to shape biological functions in a rhythmic manner. The EPHA4 receptor and its ligands Ephrins (EFN) compose a system of cell adhesion molecules expressed in the brain and regulating neurotransmission and dendritic spine morphology. Previous studies showed the presence of E-boxes in the genes of EphA4 and specific Ephrins, and that EphA4 knockout mice have an altered circadian rhythm of locomotor activity. We thus hypothesized that the core clock machinery regulates the gene expression of EphA4, EfnB2 and EfnA3. CLOCK and BMAL1 or NPAS2 and BMAL1 were found to have transcriptional activity on distal and proximal regions of EphA4, EfnB2 and EfnA3 putative promoters. A constitutively active form of glycogen synthase kinase 3ß (GSK3ß; a negative regulator of CLOCK and BMAL1) blocked the transcriptional induction. Mutations of the E-boxes of EphA4 distal promoter sequence also inhibited transcriptional induction. EPHA4 and EFNB2 protein levels did not show circadian variations in the mouse suprachiasmatic nucleus or the prefrontal cortex. The study uncovers core circadian clock factors as regulator of the expression of elements of the Eph/Ephrin system, which might contribute to circadian rhythms in biological processes in the brain or peripheral tissues.

Introduction

Organisms have developed endogenous circadian rhythms to adapt their biological functions to the diurnal changes of the environment. The internal rhythmicity lasts approximately 24 hours, and is orchestrated by a molecular clock. In mammals, this molecular clock comprises a transcriptional-translational feedback loop (TTFL), in which the core proteins CLOCK and BMAL1 (circadian locomotor output cycles kaput 1 and brain and muscle ARNT [arylhydrocarbon receptor nuclear translocator]-like protein 1) heterodimerize to activate the transcription of the clock genes *Period (Per)* and *Cryptochrome (Cry) (Gekakis et al., 1998; Takahashi, 2017)*. PER and CRY proteins translocate to the nucleus, and inhibit the activity of CLOCK and BMAL1, therefore repressing their own transcription, and allowing the loop to restart *(Kume et al., 1999; Dardente et al., 2007; Takahashi, 2017)*. CLOCK and BMAL1 (or their homologs NPAS2 [neuronal PAS domain protein 2] and BMAL2) activate transcription by binding to regulatory elements in the DNA called E-boxes (CANNTG) *(Gekakis et al., 1998; Maemura et al., 2000; Reick et al., 2001; Leclerc and Boockfor, 2005; Kiyohara et al., 2008)*.

The CLOCK:BMAL1 heterodimer also activates the expression of other components of the clock such as *Nr1d1/2* (coding for REV-ERB α/β), which generate an additional negative feedback by binding to retinoic acid-related orphan receptor response element (RORE) found in *Clock* and *Bmal1* genes (*Preitner et al., 2002; Guillaumond et al., 2005; Liu et al., 2008; Crumbley and Burris, 2011*). In addition, rhythmic posttranslational modifications regulate the activity, transport, and degradation of core clock elements (*Bellet and Sassone-Corsi, 2010; Hirano et al., 2016*). For example, Glycogen synthase kinase 3 β (GSK3 β) phosphorylates BMAL1, CRY2, and REV-ERB α , and controls, notably, their degradation or nuclear location (*Harada et al., 2005; Yin et al., 2006; Sahar et al., 2010*). Importantly, core clock components also control the expression of a variety of 'clock-controlled genes' in a rhythmic manner (via binding to E-boxes or RORE) to adapt physiological functions such as lipid/glucose metabolism or neuronal activity (*Doi et al., 2010; Pan et al., 2010; Ikeda and Ikeda, 2014*).

Most (if not all) mammalian cells have a functional molecular clock (TTFL) (Yamazaki et al., 2000; Zhang et al., 2014; Mure et al., 2018). In the brain, the suprachiasmatic nuclei of the hypothalamus (SCN) act as a main circadian oscillator by synchronizing the internal time to the environmental day-night time via receiving direct excitatory input from retinal ganglion cells

(Yamazaki et al., 2000; Abrahamson and Moore, 2001; Brancaccio et al., 2017; Hastings et al., 2018). SCN output signals are, among others, driven by clock-controlled genes contributing to 24h changes in neuronal activity/firing (Hastings et al., 2018). Elsewhere in the brain, the molecular clock (and clock-controlled genes) also contributes to daily variations in behavior and neuroplasticity. Indeed, studies in mice have shown that the transcriptional control of tyrosine hydroxylase or monoamine oxidase by the molecular clock could underly time-dependent neuronal firing in the striatum and mood alterations (Hampp et al., 2008; Chung et al., 2014). Genes coding for cell/synaptic adhesion molecules are also candidates in bridging the molecular clock to rhythmic neuronal function given their E-box content and the roles in neurotransmission and neuroplasticity of their protein products (Giroldi et al., 1997; El Helou et al., 2013; Meighan et al., 2015; Freyburger et al., 2016; Li et al., 2016; Hannou et al., 2018). For instance, the Neuroligin-*I* gene, which codes for a postsynaptic adhesion protein involved in glutamatergic signalling, was shown to be bound and transcribed by CLOCK and BMAL1, and to be expressed in a rhythmic manner in the mouse forebrain (El Helou et al., 2013; Hannou et al., 2018). Nevertheless, the potential for other cell/synaptic adhesion proteins to act as an output signal of the molecular circadian clock largely remains to be defined (Hannou et al., 2020).

Ephrins (Efns) and their Eph receptors represent a large family of cell adhesion molecules highly expressed in brain cells (e.g., neurons, glia) (Goldshmit et al., 2006; Murai and Pasquale, 2011; Chen et al., 2012). The interaction between EPHA4 and its ligand EphrinA3 (EFNA3) regulates glutamate uptake (via astrocytic glutamate transporters), dendritic spine plasticity (via ACTIN remodelling), cell proliferation, and cortical development (Murai et al., 2003; Filosa et al., 2009; Steinecke et al., 2014; Tanasic et al., 2016; Zhu et al., 2021). Ephrin-B2 (EFNB2), another ligand of EPHA4, has roles in vascular and cortical development, and in the regulation of neuronal plasticity and N-methyl-D-aspartate (NMDA) receptors (Bouzioukh et al., 2007; Essmann et al., 2008; Slack et al., 2008; Hu et al., 2014; Ghori et al., 2017; Xing et al., 2019). We have previously reported the presence of E-boxes in the EphA4 gene, together with a decreased mRNA expression of EphA4, EfnA3 and EfnB2 in Clock⁴¹⁹ mice (Freyburger et al., 2016). Moreover, we found relatively high expression of EphA4 in the SCN of both mice and rats (Freyburger et al., 2018). These phenotypes notably included a longer endogenous period of wheel-running activity under constant darkness, and reduced phase-shift and number of c-FOS⁺ cells in the SCN after a delaying

light pulse (*Kiessling et al., 2018*). Despite these observations suggesting a role for *EphA4* in circadian clock functions and the likelihood of it representing a clock-controlled gene, little is known concerning its transcriptional regulation and that of its protein partners.

The aim of this research was to determine whether *EphA4*, *EfnB2* and *EfnA3* are regulated by the circadian clock machinery. Firstly, *in vitro* assays investigating direct transcriptional activation by CLOCK and BMAL1 (or their respective homologs NPAS2 and BMAL2) of gene sequences upstream of *EphA4*, *EfnB2* and *EfnA3* transcription start sites (TSS) were conducted. Secondly, the effect of E-box mutations in *EphA4*, and the impact of GSK3 β were assessed using similar transcriptional assays. Thirdly, protein levels were measured at six different times of the day in the SCN and prefrontal cortex (PFC), and gene expression at two times of the day in multiple brain regions to verify daily changes in the targeted Eph/Ephrin. CLOCK:BMAL1 and/or NPAS2:BMAL1 were found to induce transcriptional activation via putative promoter regions of *EphA4*, *EfnB2* and *EfnA3*, which was not linked to significant rhythms in protein level in the SCN or PFC. These finding provide support to a transcriptional regulation of elements of the Eph/Ephrin system by the circadian clock molecular machinery.

Methods

Promoter analysis

Gene sequences for *EphA4*, *EfnB2* and *EfnA3* and upstream sequences were obtained from mm9 in the UCSC genome browser (University of California Santa Cruz). Sequences were aligned and compared with the gene ID 13838 (*EphA4*, chr. 1, 77343819-77491763, complement), gene ID 13642 (*EfnB2*, chr. 8, 8667235-8711242, complement) and gene ID 106644 (*EfnA3*, chr. 3, 89221200-89231359, complement) in NCBI (National Centre of Biotechnology Information), and with sequences ENSMUSG00000026235 (*EphA4*), ENSMUSG0000001300 (*EfnB2*) and ENSMUST0000028039 (*EfnA3*) in the Ensemble genome browser. The number and location of exons, introns and TSS were extracted and compared with genomes mm10 and mm39. The A plasmid Editor (ApE) (by Wayne Davis) was used to screen the putative promoter regions, identified from 3000bp upstream of the TSS to the TSS, for cis-regulatory elements related to the

molecular clock: canonical E-boxes (CACGTG), non-canonical E-boxes (CANNTG, CACGNG), RORE, cAMP-response element (CRE), glucocorticoid response element (GRE), etc. The identified regulatory elements are listed in **Table 1**.

Table 1. Regulatory elements found in the -3kb upstream of *EphA4*, *EfnB2* and *EfnA3* transcription start sites. Columns show the number of regulatory elements found in the cloned regions distal (D) or proximal (P). D (A, G or T), H (A, C or T), K (G or T), R (A or G), S (G or C), M (A or C), W (A or T), Y (C or T), N (any nucleotide). * indicates T enrichment instead of AT enrichment in position "W". AP-1 site: Activator protein 1 (Fos/Jun), ARE: antioxidant response element; CRE: cAMP response element; C/EBP: CCAAT/enhancer-binding protein sites; D-box: albumin D-site-binding protein response element; EGR2: early growth response (Krox20) site; FRE: FOXO (forkhead box proteins)-recognized element; GRE: glucocorticoids response element; NBRE: NGFI-B response element; PPRE: proliferator-activated receptor response element; NF- κ B: nuclear factor kappa-light-chain-enhancer of activated B cells; RORE: retinoic acid-related orphan receptor response element; SRE: serum response element.

DNA element	EphA4 _P	EphA4 _D	EfnB2 _P	EfnB2 _D	EfnA3 _D	Consensus site	Reference
E-box	6	5	5	9	6	CANNTG	
E-box (canonical)	-	-	-	-	-	CACGTG	Gekakis et al., 1998
E'-box	-	-	-	-	1	CACGTT	Ueda et al., 2005; Doi et al., 2019
D-Box	-	-	-	-	-	TTAYRTAA	Falvey et al., 1996; Ueda et al., 2005
RORE	-	1*	-	-	-	W(A/W)WN(T/N)RGGTCA	Harding and Lazar, 1993; Giguere et al., 1994; Ueda et al., 2005; Matsuoka et al., 2020
NBRE	-	-	-	-	-	AAAGGTC(A/R)	Wilson et al., 1991; Robert et al., 2006
SF-1(Nr5a1) sites	-	-	-	-	-	YCAAGGTCA	Robert et al., 2006
PPRE	-	-	-	-	-	AGGTCANAGGTCA	Hamza et al., 2009
PPRE half site	-	-	-	-	-	AGGTCA	Hamza et al., 2009
Egr1/Egr3 site	-	-	-	-	-	GCGKGGGCG	Sun et al., 2019
Ear2 (Kroy20) site	-	-	-	-	-	TGCGKRGGHGK	Swirnoff and Milbrandt, 1995
Lgiz (KIOX20) Site	2	-	2	-	-	HGTGGGHD	Pham et al., 2012; Mendes et al., 2021
CRE	-	-	-	-	-	TGACGTCA	Montminy et al., 1986
Half CREB	-	-	2	-	-	TGACG or CGTCA	Yamamoto et al., 1988
	-	-	-	-	-	TKWWGCAAT	Mendes et al., 2021
C/LDF	-	-	-	-	1	TGGAGAAAG	Albergaria et al., 2013
GRE	-	-	-	-	-	AGAACANNNTGTTCT	Krug et al., 2014
SRE	-	-	-	-	-	CCWWWWWGG	Taylor et al., 1989; Wang et al., 2001; Buffet et al., 2015
NF-ĸB site	1	-	-	-	-	5'-GGGRNWYYCC-3'	Leonard et al., 1989; Mulero et al., 2019
CACC (or GC) boxes	-	-	-	-	-	CC(A/W)CACCC	Hartzog and Myers, 1993; Feng et al., 1994
	-	-	-	-	-	TGACTCA	Gustems et al., 2014
AP-1 site (Jun/Fos)	-	-	-	-	-	TGA(C/G)TCA	Chinenov and Kerppola, 2001; Mendes et al., 2021
	-	-	-	-	-	TGTTTCA	Chinenov and Kerppola, 2001
ARE	1	-	-	1	-	RGTGACnnnGC	Rushmore et al., 1991; Wasserman and Fahl, 1997
	-	-	-	-	-	GCTGAGTCAC	Wang et al., 2016
	-	-	-	-	-	(T)TGTTTAC	Eijkelenboom and Burgering, 2013; Audesse et al., 2019
FRE	1	-	-	1	2	(G/R)(T/W)AAA(C/Y)A(A)	Hale et al., 2020; Sablon et al., 2022
	-	1	-	-	-	MMAAAYAA	Hale et al., 2020

The *EphA4* gene (also known as *rb*, *Sek*, *Cek8*, *Hek8*, *Sek1*, *Tyro1*, *A1385584*, *2900005C20Rik*) contains 18 exons in rodents (19 in human), and one general TSS (beginning of exon 1). Another TSS after exon 11 has also been suggested (*Zhao et al.*, *2017*). The 3kb upstream of the initial TSS includes 13 non-canonical E-boxes (11 CANNTG and two CACGNG; **Fig. 1**). For the *EfnB2* and *EfnA3* genes, the upstream 3kb show 16 and 18 non-canonical E-boxes CANNTG, respectively (**Fig. 1**). In addition, the *EfnA3* upstream region contains an E-box like element (E'-box: CACGTT), and one CACGNG sequence is found very close to the TSSs of both EfnB2 and EfnA3 (similar to the CACGNGs in *EphA4*). RORE were observed in *EphA4* and *EfnA3* putative promoters, and a half PPRE (peroxisome proliferator-activated receptors [PPAR] response element) in *EphA4* and *EfnB2* upstream regions (**Fig. 1A**). The regions were also screened for binding sites not related to the molecular clock, in particular sites linked to transcription factors that have been proposed to regulate *EphA4*, *EfnA3* or *EfnB2* transcription (such as EGR2 and Sp1 binding GC-boxes (**Table 1** and **Fig. 1**).

The number and position of E-boxes was also mapped for the putative promoter regions upstream of rat and human gene sequences for the three targets (ENST00000281821.7, ENST00000646441.1, ENST00000368408.4 for human; NM_001162411.1, NM_001107328, XM_039103763.1 for rat). This was done to identify potential regions of higher relevance for transcriptional assay in the mouse genome. E-box position and number in the 3kb upstream of the TSS was relatively well conserved between species (**Fig. 1B**). Interestingly, for *EphA4*, there was an apparent clustering of E-boxes around a more distal and a more proximal region of the putative promoter, which seemed particularly conserved in the mouse, rat and human genomes (**Fig. 1B**). Accordingly, primers were designed to clone both of these regions, identified as *EphA4*_D and *EphA4*_P, respectively.

Figure 1. *EphA4*, *EfnB2* and *EfnA3* putative promoter regions contain sleep and circadian-related regulatory elements. Black box indicates exon 1. (A) Screening of the 3kb upstream of *EphA4*, *EfnB2* and *EfnA3* transcription start sites (TSS). Arrows indicate the transcription start sites (TSS) considered in different genome assemblies: grey in mm9, black in both mm10 and mm39; red in the NCBI tool. Colour bars indicate the regulatory elements found in these regions. AP-1 site: activator protein 1 (Fos/Jun), ARE: antioxidant response element; CRE: cAMP response element; C/EBP: CCAAT/enhancer-binding protein sites; EGR2: early growth response (Krox20) site; FRE: FOXO-recognized element; NF- κ B: nuclear factor kappa-light-chain-enhancer of activated B cells; PPRE: proliferator-activated receptor response element; RORE: retinoic acid-related orphan receptor response element. (B) Alignment

and comparison of E-boxes in the 3kb upstream of the TSS for *EphA4*, *EfnB2* and *EfnA3* in the mouse, rat and human. Arrows indicate the TSS. Salmon E-boxes indicate CANNTG sequences, dark-grey E-boxes indicate CACGTG sequences (canonical E-boxes), light grey E-boxes indicate CACGTT sequences, white boxes indicate CACGNG; light green bars indicate Tata Boxes. Horizontal black bars indicate the position of forward and reverse primers used for cloning.

Cloning

Primer design

Five different regions of the putative promoter of EphA4, EfnB2 and EfnA3 were selected to generate reporter constructs: a 989bp proximal sequence of EphA4 ($EphA4_P$) at location -1603 to -615bp from TSS; a distal 998bp region at location -2981 to -1984 ($EphA4_D$); a 1092bp proximal sequence of EfnB2 ($EfnB2_P$) at location -1392 to -301; a distal 1039bp region at location -2973 to -1935 ($EfnB2_D$); and a 1081bp proximal sequence of EfnA3 at location -2961 to -1881 ($EfnA3_D$). Specific restriction enzymes were chosen to avoid cutting in the cloned sequence using NEBcutterv2.0 (New England Biolabs Inc.), and forward and reverse primers were designed for $EphA4_P$, $EphA4_D$, $EfnB2_P$, $EfnB2_D$ and $EfnA3_D$ using the Oligo Analysis Tool (Eurofins Genomics). The sequence of used primers is provided in **Table 2**.

nnealing Temperature	
67°C	
07 8	
67°C	
50 C	
53.5°C	
01.5 C	

Table 2. Forward (fw) and reverse (rv) primers used for cloning with annealing temperature used for each pair. Restriction sites are indicated in hold

DNA extraction and PCR

DNA was purified from C57BL/6J mouse ear pieces with the DNeasy Blood & Tissue Kit according to manufacturer's instructions (Qiagen, Germany). For PCR amplification, 25μ L of Master Mix (2.5μ L PCR Buffer 10X, 1μ L of dNTP 10Mm, 1.25μ L forward primer 20μ M, 1.25μ L reverse primer 20μ M, 0.25μ L Taq HotStart [$5U/\mu$ L] (Qiagen), 16.08μ L dH₂O) were mixed with

50ng of DNA, and amplification was done using the following program: 5 minutes at 95°C (hot start); 30 cycles of 30 seconds at 94°C, 30 seconds at 53-67°C (see **Table 2**), and 1 minute at 72°C; 4 minutes at 72°C. Two and a half μ L of PCR products (with 0.5 μ L of loading buffer) were run on an agarose gel 1% at 120V during 40 minutes for size verification, and PCR products were purified with QIAquick PCR Purification Kit according to manufacturer's protocol (Qiagen, Germany).

Digestion and ligation

Purified amplicons and plasmid pGL3-basic (Promega, US) were digested with the restriction enzymes XhoI and HindIII (Thermo Fisher Scientific, US). Digestion mixes for plasmid (6µg of plasmid DNA, 3µL of each enzyme, 6µL 10X Fast Digest Green Buffer and water up to 60 µL) were incubated for 10 minutes at 37°C. Digestion mixes for insert DNA (0.4µg DNA, 1µL of each enzyme, 4µL 10X Fast Digest Green Buffer, and water up to 60 µL) were incubated for 20 minutes at 37°C. Then, 30µL of digested samples were run on a 1% agarose gel at 120V for 45 minutes, and DNA was purified using the QIAquick Gel Extraction Kit (Qiagen, Germany). Purified samples were ligated by mixing 50ng of digested plasmid with digested insert (ratio plasmid:insert 1:1 or 1:4), 4µL of ligase buffer 5X, 1µL of T4 DNA ligase and up to 20µL of dH₂O, and incubated overnight (4°C). The final cloned plasmids are all 5.8 to 5.9kb and were all verified using Sanger sequencing (Genome Quebec, Montreal, Canada). *EphA4*P plasmid contained two point mutations in two cytosines (C \rightarrow T at positions 198 and 837 of the insert) and *EfnA3*D contained a mutated base-pair in the fifth E-box (C<u>A</u>GTTG to C<u>G</u>GTTG), but the other plasmids did not contain any mutation.

Design of EphA4_D with mutated E-boxes

The gene sequence of $EphA4_D$ was then designed *in silico* with mutated E-boxes and ordered, already cloned in pGL3-basic, from Biomatik (Canada). From a literature review on E-box mutations impacting transcriptional activation and binding by CLOCK and BMAL1 (see **Table 3**), four E-boxes (CANNTG) were mutated to GCTAGT. The same restriction sites used for $EphA4_D$ are flanking the mutated insert ($EphA4_Dmut$). The sequence of this commercial construct was also verified using Sanger sequencing (Genome Quebec, Montreal, Canada).

Table 3. Mutated E-boxes used in previous research. Bold indicates the mutated sequences in reference to the original E-box. Arrows indicate a decrease in comparison to wild-type sequences (\downarrow : 10-30% reduction; $\downarrow\downarrow$: 30-60% reduction; $\downarrow\downarrow\downarrow$:

Mutated sequence	Effect regarding the original E-box	References
GCTAGT	$\psi \psi \psi$ 80% transcriptional activation and binding by CLOCK/BMAL1	Yoo et al., 2005; Doi et al., 2019
GCTAG G	$\psi \psi \psi$ transcriptional rhythm and binding CLOCK/BMAL1	Nakahata et al., 2008
TT TAGT	$\psi \psi \psi$ 100% transcriptional activation by CLOCK/BMAL1	Klemz et al., 2017
ACCTGG	$\downarrow \downarrow$ 60% transcriptional activation and binding by CLOCK/BMAL1	Rey et al., 2011; Hannou et al., 2018
TGCGCA	$\psi\psi\psi$ 70% transcriptional activation by CLOCK/BMAL1	Onoue et al., 2019
GGACGT	$\psi\psi\psi$ 60% transcriptional activation by CLOCK/BMAL1	Onoue et al., 2019
TGGAAT	\downarrow 30% transcriptional activation by CLOCK/BMAL1	Rey et al., 2011
CA TT TG*	\downarrow 25-50% transcriptional activation by CLOCK/BMAL1	Onoue et al., 2019
CTCGAG*	\downarrow 15% transcriptional activation by CLOCK/BMAL1	Mongrain et al., 2008
GTCGCC	$\psi \psi \psi$ binding of CLOCK/BMAL1	Matsumura and Akashi, 2017
CA GC TG*	$\downarrow \downarrow$ BMAL1 binding	Chiou et al., 2016
C TGAGC	Decrease binding of CLOCK/BMAL1	Tamayo et al., 2015

60-100% reduction). * Indicates that these sequences are considered non-canonical E-boxes or E-box like sequences in other studies.

Cell culture and transfection

Cell culture, transfection and luciferase assay were conducted similar to described previously (Travnickova-Bendova et al., 2002; Dardente et al., 2007; Mongrain et al., 2008). COS-7 cells were cultured in a humidified atmosphere at 37°C with 5% CO₂ in COS-7 media (HyClone Dulbecco's Modified Eagle Medium [DMEM]/High Modified; GE Healthcare Life Sciences, US Thermo Fisher Scientific] with 10% fetal bovine serum [FBS; Life Technologies] and 1% glutamine [Life Technologies]). For luciferase assays (see below), cells were plated on 24-well plates at 10⁶ cells/well with 0.5mL of COS-7 media. After overnight incubation (37°C, 5% CO₂; to reach 80-90% confluence), cells in each well were transfected with plasmid mixes containing: 50ng of reported constructs for selected targets (EphA4P, EphA4D, EfnB2P, EfnB2D, EfnA3D or EphA4_Dmut) or 25ng of positive control pGL3-mPer1 (a 1.8-kb promoter region of mPer1; Travnickova-Bendova et al., 2002), 25ng of transfection normalizer pCR3-LacZ, 200ng of pSG5mCLOCK or pSG5-empty, 200ng of pCS2-MTK-mBMAL1 or pCS2-MTK-empty, and completed to a total of 700ng of plasmids using pBluescript (Stratagene). In some experiments, pSG5-NPAS2 and pCS2-MTK-BMAL2 were used to replace CLOCK and BMAL1 expressing vectors, respectively. CLOCK, NPAS2, BMAL1 and BMAL2 expressing vectors were the same as those previously described (Travnickova-Bendova et al., 2002; Dardente et al., 2007; Hannou et al., 2018). For transfection, each well was treated with 0.7µL of Plus Reagent (ThermoFisher Scientific) diluted in 50µL of OPTI-MEM (Gibco, Life Technologies), and incubated 5 minutes at room temperature. Cells were then immediately transfected using 2μ L of Lipofectamine LTX (diluted in 50µL OPTI-MEM), and incubated for 30 minutes at room temperature. After 5 hours of incubation at 37°C, 0.5mL of COS-7 media was added per well, and plates were incubated overnight (37°C, 5% CO₂) before luciferase assay. Transfection conditions were always conducted in triplicates (i.e., 3 wells per condition per plate).

The implication of the circadian clock machinery in the transcriptional control of *EphA4* and *EfnB2* was further investigated using luciferase assays conducted with the addition of the negative regulator of the clock machinery GSK3β. Assays were performed with a wild-type form of GSK3β (GSK3β-WT) or with a constitutively active form to prevent inactivation by intracellular mechanisms (GSK3β-S9A, which inactivation via serine-9 phosphorylation is rendered impossible by a substitution to alanine; *(Stambolic and Woodgett, 1994; Beaulieu, 2012)*. Transfection conditions and plasmid mixes were similar as described above but included 50ng of pcDNA3-HA-GSK3β-WT (Addgene, Cambridge, MA; Jim Woodgett, 1994) or pcDNA3.1(+)-empty (#V790-20, Invitrogen).

Luciferase assays

Media was removed, and cells were rinsed with PBS 1X. One hundred fifty μ L of lysis buffer (25mM Tris, 2mM EDTA, 1mM dithiothreitol [DTT], 10% (v/v) glycerol, and 1% Triton X-100) was added to each well, and plates were incubated at room temperature in a Rocking Shaker (model 55, Reliable Scientific) at half its maximum speed for 10 minutes. Cells lysates were scratched and centrifuged at 13000rpm for 2 minutes to precipitate debris. For each well, 12µL of supernatant was transferred into a white 96-well plate. An EnSpire Multimodel Plate Reader (PerkinElmer) was used to inject 50µL of luciferase buffer (20mM Tris/Phosphate pH 7.8, 1mM MgCl₂, 2.7mM MgSO₄, 0.1mM EDTA, 33.3mM DTT, 530µM ATP, 270µM Co-enzyme A, 470µM D-Luciferin) per well, immediately followed by reading of luminescence counts at 560nm.

Luminescence counts were normalized to the total amount of protein and the transfection efficiency using, respectively, a DC (Lowry) protein assay (Bio-Rad) and a β -galactosidase assay. The DC protein assay was performed according to manufacturer's instructions (Bio-Rad Laboratories, US), and absorbance reads were done at 750nm using the EnSpire Multimodel Plate Reader. For the β -galactosidase assay, 30µl of the lysate supernatant was mixed with 750µL of β -

Mercaptoethanol in buffer Z (60mM Na₂HPO₄.7H₂O, 40mM NaH₂PO₄.H₂O, 10mM KCl, 1mM MgSO₄.7H₂O), and incubated 5 minutes at 37°C. Then, 150µL of buffer Z containing 4mg/mL onitrophenyl α -D-galactopyranoside (ONPG; Sigma Aldrich) was added to each condition, and incubated at 37°C until a yellow coloration appeared. A volume of 375-µL of 1M NaCO₃ was added to stop the reaction, and absorbance was measured at 420nm using the EnSpire Multimodel Plate Reader. Luminescence (luciferase) counts normalized with DC protein and β -galactosidase assay absorbances were finally expressed as relative values over the respective negative control condition (i.e., empty plasmids).

Brain tissue punches and protein extraction

Males and females were studied for *in vivo* experiments given the reported sex differences in circadian rhythms (*Dib et al., 2021*), including in gene expression rhythms in the rodent brain (*Kuljis et al., 2013; Chun et al., 2015; Kuljis et al., 2016*). Thirty-six male and 36 female C57BL/6J mice were habituated to individual housing, a 12:12 hours light:dark cycle, and food/water available *ad libitum* for two weeks. Then, to unmask endogenous circadian rhythmicity, animals were exposed to constant darkness (DD) for two complete days followed which they were sacrificed under dim red-light at six different times: CT0, CT4, CT8, CT12, CT16 and CT20 (six mice per sex per time-point), with CT12 representing the start of the active period (usually occurring at dark onset). Full brains were immediately frozen and kept at -80°C. This experiment was performed in accordance with guidelines of the Canadian Council on Animal Care, and approved by the *Comité d'éthique de l'expérimentation animale* of the *Hôpital du Sacré-Coeur de Montréal* (CIUSSS-NIM).

Protein levels were measured for the SCN and PFC. The SCN was targeted given its roles in the circadian system, and because *EphA4* is expressed in this area (*Freyburger et al., 2016*), and the PFC given the reported rhythmic levels of BMAL1 and PER1 (*Angeles-Castellanos et al., 2007; Coria-Lucero et al., 2016*). PFC and SCN regions were sampled using tissue punches prepared using a cryostat (HM525 NX, Thermo Scientific, lame S35 - Feather®) with magnifying glasses. A 20G needle, cutted to obtain a flat end with a diameter <0.9µm, was kept in the cryostat (-12 to -13°C), and used to collect SCN and PFC punches. Brains were first sectioned in 500µm coronal slices at -12 to -13°C (starting +2mm (anterior) from the Bregma for PFC and -0.3mm (posterior) from Bregma for SCN). For PFC, five punches from the same brain section were sampled per animal, while for the SCN, five punches each from a different mouse were pooled per time point. Each punch was immediately released in 40μ L of ice-cold modified RIPA buffer (100mM HEPES, 0.25M EDTA, 10% SDS, 10% IGEPAL, 10% sodium deoxycholate, protease and phosphatase inhibitors [Sigma-Aldrich]). After the addition of five punches to the 40ul cold RIPA buffer, tissues were mechanically homogenized on ice with a Pellet Pestle (Sigma Aldrich) until translucid (one 30-second and one 20-second interval). Samples were immediately centrifuged at 8000rpm for 40 min (4°C), and the supernatants were kept at -80°C for subsequent analysis.

Immunoblotting and protein quantification

Twenty µg of protein were loaded on 8% acrylamide gels, and separated by SDS-PAGE using a 65min migration at 100V. Proteins were then transferred to a PVDF membrane (Bio-Rad) for 60min at 100V. Membranes were blocked with blocking buffer (5% dry milk diluted in Trisbuffered saline [TBS: 15mM Tris-HCl, 5mM Tris base, 150mM NaCl]) for 1h at room temperature, and then incubated overnight at 4°C with primary antibodies against EPHA4 (1:1000; Invitrogen #37-1600) and EFNB2 (1:1000; R&D Systems Inc. #AF496) diluted in 5% dry milk in TBS-T (TBS with 0.1% Tween 20). After TBS-T washes, membranes were incubated for 1.5h at room temperature with secondary antibodies (1:15000 IRDye® 680RD goat anti-mouse IgG (H+L) #926-68070, IRDye® 800CW donkey anti-goat IgG (H+L) #926-32214; LI-COR) diluted in 5% dry milk TBS-T. Membranes were revealed using an Odyssey CLx imaging system (LI-COR). After image acquisition, membranes were stripped with 10% NaOH for 30min, washed in TBS-T, and blocked again with 5% dry milk TBS-T for 1h at room temperature. Membranes were then incubated overnight at 4°C with a second set of primary antibodies, namely targeting PER1 (1:1000; Abcam #2201) or PER2 (1:1000; Novus Biologicals #100-125) together with ACTIN (1:8000; Sigma Aldrich #A5441), diluted in 5% dry milk TBS-T. After TBS-T washes, membranes were incubated for 1.5h at room temperature with secondary antibodies (1:15000 IRDye® 680RD goat anti-mouse IgG (H+L) #926-68070, IRDye® 800CW goat anti-rabbit IgG (H+L), #926-32211; LI-COR) diluted in 5% dry milk TBS-T. Membranes were again revealed using an Odyssey CLx imaging system. Bands were quantified using ImageJ (NIH) (Schneider et al., 2012). Values were normalized to ACTIN, then to a control sample included on each different membrane, and finally to the mean CT0 level for each tissue.

Spatial gene expression quantification

The gene expression of EphA4, EfnB2 and EfnA3 was compared between the early rest period (Zeitgeber time 4: ZT4; with ZT0 representing light onset, and ZT12 light offset) and the early active period (ZT14) for different brain regions using the 10x Genomics Visium Spatial Gene Expression kit (10x Genomics). Coronal 10µm brain slices (1.5mm posterior to Bregma) were prepared from C57BL/6J mice injected with saline 3-4 hours before sacrifice (control samples from Ballester Roig et al., in preparation), and processed for spatial transcriptomics according to manufacturer's instructions. Briefly, slices were fixed, stained with hematoxylin-eosin and permeabilized, following which cDNA libraries were prepared using the Visium Spatial Gene Expression kit. Libraries were sequenced using a NovaSeq6000 platform (Illumina) at Genome Québec. Sequencing reads in the FASTQ format were aligned to the mouse genome and compared between ZT4 and ZT14 using Space Ranger and Loupe Browser 5.0 (10x Genomics). Differentially expressed genes were defined as having a false discovery rate (FDR) < 0.05 (Benjamini and Hochberg, 1995). The dataset included one male and one female brain sampled at ZT4 and one male and one female brain sampled at ZT14, and only the gene expression of EphA4, EfnB2 and EfnA3 is reported here together with that of the circadian control gene Per2, Rev-Erba, and Dbp. Data will be publicly available at GEO (#GSE218537 and #GSE217058) upon publication. This experiment was also performed in accordance with guidelines of the Canadian Council on Animal Care, and approved by the Comité d'éthique de l'expérimentation animale of the Hôpital du Sacré-Coeur de Montréal (CIUSSS-NIM).

Statistical analysis

Except for the spatial transcriptomic dataset, Prism 7 (GraphPad Software Inc., USA) was used to conduct statistical analyses and prepare figures. One-way analyses of variance (ANOVA) were used for comparisons of luciferase data between conditions, and of protein levels between time points. Post-Hoc Tukey's Multiple Comparison tests were used to decompose significant effects found in ANOVAs. Data are presented as means \pm SEM, and the threshold for statistical significance was set to 0.05. For graphical representation, curves were fitted with cosine analysis using Graphpad (constraint to a 24-hour period) and the significance of the fit was calculated with Circwavebatch v3.3 (both with initial values of tau = 24 and with tau minimum = 21 to tau maximum = 27).

Results

Transcriptional activation of EphA4 by clock transcription factors

The activation of proximal (*EphA4*_P) and distal (*EphA4*_D) regions of the putative promoter of *EphA4* by CLOCK, BMAL1 and homologs NPAS2 and BMAL2 was investigated using luciferase assays conducted with COS-7 cells similar to previously performed for other target genes (*Dardente et al., 2007; Mongrain et al., 2008; Hannou et al., 2018).* When transfected alone, none of the core clock transcription factors induced a transcriptional activation, which applies to both the proximal and distal regions (**Fig. 2A**). In contrast, co-transfection of CLOCK and BMAL1 and/or of NPAS2 and BMAL1 induced a significant transcriptional activation via *EphA4*_P and *EphA4*_D (*EphA4*_P F_{8,158} = 13.24, p < 0.0001 for CLOCK and BMAL1; *EphA4*_D F_{8,202} = 28.9, p < 0.0001 for CLOCK and BMAL1 and F_{8,202} = 28.9, p < 0.0001 for NPAS2 and BMAL1). More precisely, CLOCK and BMAL1 induced a 2-fold transcriptional activation via *EphA4*_P and 3.2fold activation via *EphA4*_D. Moreover, NPAS2 and BMAL1 also induced a 2-fold transcriptional activation via *EphA4*_D. No significant transcriptional activation was found for NPAS2 and BMAL1 for *EphA4*_P, or for any combination with the BMAL1 homolog BMAL2.

The implication of the core circadian clock molecular loop in the control of *EphA4* gene expression was assessed with luciferase assays in the presence of GSK3 β , a negative regulator of the CLOCK:BMAL1 heterodimer. These assays using, an additional plasmid, showed significant transcriptional activation by CLOCK and BMAL1 and by NPAS2 and BMAL1 via both *EphA4*_P and *EphA4*_D (F_{6,65} = 28.7, p < 0.0001 and F_{6,54} = 14.6, p < 0.0001, respectively; **Fig. 2B**). These activations were completely abolished by the constitutively active form of the kinase GSK3 β (i.e., GSK3 β -S9A), whereas GSK3 β -WT was not impacting CLOCK:BMAL1- and NPAS2:BMAL1- driven transcriptional activation (**Fig. 2B**).

To verify the implication of specific E-boxes of $EphA4_D$ in the CLOCK:BMAL1-driven transcriptional activation, luciferase assays were conducted with a reporter constructs containing four mutated E-boxes in the $EphA4_D$ sequence ($EphA4_D$ mut; Fig. 2C). CLOCK:BMAL1 transcriptional activation via $EphA4_D$ mut showed a 1.7-fold induction, which was significantly different from CLOCK:BMAL1 transcriptional activation via $EphA4_D$ (F_{3,42} = 17.5, p < 0.001; Fig. 2D). In fact, in comparison to the wild-type $EphA4_D$ sequence (3.4-fold induction), transcriptional activation via $EphA4_D$ mut showed a 50% reduction. This suggests an implication of at least one of the four mutated E-boxes in the transcriptional activation of *EphA4* by core clock transcription factors.

Figure 2. Circadian clock transcription factors activate transcription via *EphA4* putative promoter sequences. (A) Transcriptional activation by different combinations of CLOCK, BMAL1, NPAS2 and BMAL2 via *EphA4_P* (left) and *EphA4_D* (right). Upper schematics represent the inserts cloned inside PGL3 plasmids and used for assays. (B) Transcriptional activation by different combinations of CLOCK, BMAL1, NPAS2, GSK3β-S9A and GSK3β-WT via *EphA4_P* (left) and *EphA4_D* (right). (C) Left schematic illustrates mutated E-boxes of EphA4_D in grey in comparison to the native sequence in salmon. Right graph shows transcriptional activation by CLOCK and BMAL1 via *EphA4_D* and mutated *EphA4_D* (*EphA4_Dmut*). + indicate transfection of plasmids containing circadian clock transcription factor or luciferase reporter (absence of + indicates transfection with corresponding empty plasmids). The numbers on bars indicate the numbers of replicates. Transcriptional activation is expressed relative to the negative control (shown in white).* indicate p < 0.05 and ** p < 0.01 between indicated bars (post hoc comparisons).

Transcriptional activation of *EfnB2* and *EfnA3* by clock transcription factors

To assess whether the circadian clock molecular machinery also activates the gene expression of EPHA4 ligands, luciferase assays were conducted using proximal and distal sequences of *EfnB2* (*EfnB2*_P, *EfnB2*_D), and a distal sequence of *EfnA3* (*EfnA3*_D). Significant transcriptional activations were found for all three gene sequences (*EfnB2*_P $F_{4,28} = 49.7$, p < 0.0001; *EfnB2*_D $F_{4,56} = 46.3$, p < 0.01; *EfnA3*_D $F_{4,53} = 5.2$, p < 0.005; **Fig. 3A**). Simultaneous transfection of CLOCK and BMAL1 induced a 4.3-fold transcriptional activation via *EfnB2*_P, whereas NPAS2:BMAL1 and NPAS2:BMAL2 co-transfections induced 4.8-fold and 2.6-fold transcriptional activation via the same sequence. Transcriptional activations via *EfnB2*_D were more modest, although significant, reaching 1.4-fold for CLOCK:BMAL1 and 1.8-fold for NPAS2:BMAL1. Finally, transcriptional activation via *EfnA3*_D was only induced by NPAS2:BMAL1 (2.8-fold; **Fig. 3A**).

Assays with *EfnB2* promoter sequences were then conducted in the presence of GSK3β-S9A and GSK3β-WT. The constitutively active GSK3β-S9A (but not GSK3β-WT) blocked the effect of CLOCK:BMAL1 and NPAS2:BMAL1 on *EfnB2*_D (F_{6,38} = 16.3, p < 0.01; **Fig. 3B**). Intriguingly, GSK3β-WT induced 7.0-fold transcriptional activation via *EfnB2*_P when co-transfected with CLOCK:BMAL1 (5.0-fold more than co-transfecting CLOCK:BMAL1 without GSK3β), and the transcriptional activation of NPAS2:BMAL1 via *EfnB2*_P was potentiated by GSK3β-WT (8.3-fold with GSK3β-WT compared to 3.8-fold without). In sum, concerning *EfnB2*_D, the transcriptional activation by CLOCK:BMAL1 and NPAS2:BMAL1 were both abolished by the constitutively active GSK3β-S9A, but not by GSK3β-WT, which is reminiscent of observations made for *EphA4* promoter sequences. In sum, these results support that core clock transcription

factors can activate the transcription via putative promoter sequences of *EfnB2* and *EfnA3*, which is under modulations by GSK3 β .

Figure 3. Circadian clock transcription factors activate transcription via *EfnB2* and *EfnA3* putative promoter sequences. (A) Transcriptional activation by different combinations of CLOCK, BMAL1, NPAS2 and BMAL2 via *EfnB2_P* (left), and *EfnB2_D* (middle) and EfnA3_D (right). Upper schematics represent the inserts cloned inside PGL3 plasmids and used for assays. (B) Transcriptional activation by different combinations of CLOCK, BMAL1, NPAS2, GSK3β-S9A and GSK3β-WT via *EfnB2_P* (left) and *EfnB2_D* (right). + indicate transfection of plasmids containing circadian clock transcription factor or luciferase reporter (absence of + indicates transfection with corresponding empty plasmids). The numbers on bars indicate the numbers of replicates. Transcriptional activation is expressed relative to the negative control (shown in white).* indicate p < 0.05 and ** p < 0.01 between indicated bars (post hoc comparisons).

Absence of EPHA4 and EFNB2 circadian rhythm in the PFC and SCN

To assess whether the implication of the core clock transcription factors in the transcriptional regulation of *EphA4* an *EfnB2* results in a circadian rhythm of their respective protein product, EPHA4 and EFNB2 protein level was measured at six different circadian times in the SCN and PFC in male and female mice. For both males and females, no significant circadian oscillation on the level of EPHA4 and EFNB2 was found in the PFC ($R^2 < 0.13$, p > 0.24; **Fig. 4A and B**). Similar observations were made when pooling PFC punches of five different animals per time (**Fig. 4A and B**). PER1 and PER2 were also measured in the PFC, but no significant circadian curve fit was found for PER1 ($R^2 < 0.08$, p > 0.42) and merged samples for PER1 do not allow statistical comparison (**Fig.4A, B**). In the SCN, circadian time does not seem to change the expression of EPHA4 and PER2 levels (without statistical comparison; **Fig. 4A** bottom and **C**). A potential circadian variation in PER2 was observed in the female SCN (without statistical comparison;). The level of EFNB2 in the SCN was too low to allow a reliable quantification. These results suggest that, although core clock transcription factors act on *EphA4* and *EfnB2* putative promoter regions, EPHA4 and EFNB2 proteins are not showing robust variations at a circadian scale in the PFC and SCN when mice are kept in constant darkness.

Figure 4. EPHA4 and EFNB2 protein levels in the mouse PFC and SCN do not show circadian oscillations. (A) Representative blots of PFC samples of individual mice (top), of PFC samples of pooled female mice (middle), and of SCN samples of pooled female mice (bottom). (B) The top two rows show quantifications of EPHA4, EFNB2 and PER1 in PFC punches from individual mice (dots of the same colour are from the same blot). The third row shows EPHA4, EFNB2, and PER2 band quantifications of PFC pooled samples. Non-significant cosine waves fitted to the data are also shown (same in panel C). P-values were calculated fitting data to a 24-h cosine curve. (C) Protein quantification of EPHA4 and PER2 for SCN punches (each point represents a pool of SCN from 5 different mice).

EphA4 and EfnB2 expression pattern in different brain regions

We previously reported that the diurnal variations in the gene expression of components of the Ephrin/Eph system is dependent on brain region (Freyburger et al., 2016). We here investigated whether the mRNA expression of *EphA4*, *EfnB2* and *EfnA3* differed between the early light (ZT4) and the early dark (ZT14) period using a spatial transcriptomic strategy applied on a mouse coronal slice comprising the cerebral cortex, hippocampus, thalamus, hypothalamus, amygdala, and striatum (Fig. 5A and 5B). The expression of *EphA4* and *EfnA3* was found to be particularly high in the pyramidal layer of hippocampal CA1-CA3 regions and granular layer of the dentate gyrus. EphA4 expression was also generally elevated in the thalamic region, and that of EfnA3 in cortical regions. In contrast, the expression of EfnB2 was lower, especially in the hippocampus, thalamus and hypothalamus. Globally, these expression patterns matched with those reported by the Allen Brain Atlas and previous literature (Allen Mouse Brain Atlas; Liebl et al., 2003). EphA4, EfnB2 and *EfnA3* were not comprised in the list of differentially expressed genes (DEGs, FDR < 0.05) between ZT4 and ZT14 when considering the complete brain slice or the specific regions of interest targeted (Fig. 5A and 5B), although there could be a trend for a higher *EphA4* expression at ZT14 in layers I-IV of the auditory and entorhinal cortices. For comparison, the known cycling transcripts *Per2*, *Rev-Erba* and *Dbp* are shown in **Fig. 5C** (see also full DEG list in **Table S1**).

Discussion

The present study provides support to a role for the circadian clock molecular machinery in the regulation of the gene expression of elements of the Eph/Ephrin system. More precisely, CLOCK and BMAL1 or NPAS2 and BMAL1 were found to induce transcription via sequences upstream of the TSS of *EphA4*, *EfnB2* and *EfnA3* using *in vitro* assays. This transcriptional

Figure 5. *EphA4, EfnB2* and *EfnA3* gene expression in the mouse brain at **ZT4** and **ZT14**. (A) Spatial pattern of gene expression in the mouse brain for a selected coronal slice sampled at ZT4 (left) or ZT14 (right). Upper panels are from female mice, and lower panels from male mice (also in C). Black to red colors indicate spots with minimum to

maximum gene expression, respectively (also in C). (B) Violin plots of *EphA4*, *EfnB2* and *EfnA3* gene expression in spots grouped for specific regions of interest: layers I-IV or layers V-VI of auditory and entorhinal cortices (A-EC), piriform cortex and amygdala (PC-Amy), hippocampus (Hipp), pyramidal and granular layers of the hippocampus (Hipp P/G), thalamus and hypothalamus. Orange denotes expression at ZT4, and grey at ZT14. (C) Spatial pattern of *Per2*, *Rev-Erba* and *Dbp* gene expression in the mouse brain for the selected coronal slice sampled at ZT4 or ZT14.

activation was found to be repressed by the circadian clock regulator GSK3β, when a constitutively active form of this kinase was used. For *EphA4* in particular, mutating E-boxes in the promoter sequence reduced CLOCK:BMAL1-driven transcriptional activation. Although robust rhythms in protein level or gene expression were not detected in different brain regions, current *in vitro* findings combined to our previous observations of modified Eph/Ephrin gene expression in *Clock* mutant mice and altered circadian phenotypes in *EphA4* KO mice (*Freyburger et al., 2016; Kiessling et al., 2018*) are supporting a relationship between the molecular circadian clock and components of the Eph/Ephrin system.

Our findings emphasize the importance of non-canonical E-boxes in the transcriptional control by core clock transcription factors. Indeed, CLOCK:BMAL1- and NPAS2:BMAL1induced transcriptional activation occurred via sequences of the EphA4 and EfnB2 putative promoter with the only presence of CANNTG non-canonical E-boxes (i.e., without the presence of the canonical sequence CACGTG). CANNTG sequences are predicted to randomly appear every 256bp in the genome but have nevertheless been reported to be important for transcriptional regulation in previous studies (Leclerc and Boockfor, 2005; Kiyohara et al., 2008; Hannou et al., 2018). For instance, CATGTG could robustly activate the transcription of the Dbp gene (Kiyohara et al., 2008), whereas CATTTG appeared a key sequence in the transcriptional control of Prolactin by CLOCK and BMAL1 (Leclerc and Boockfor, 2005). One CATGTG was present amongst the six E-boxes of EphA4P, and four CATTTG amongst the nine E-boxes of EfnB2D. However, some of the E-boxes included in our studied gene sequences (e.g., CAGATG) were reported not to be bound by core clock transcription factors in another study (Oishi et al., 2005). It is also important to underline that the functionality of E-boxes can depend on the flanking DNA or other regulatory elements, as already evoked previously (Nakahata et al., 2008). In aiming at considering the cooperative nature of E-boxes, four were mutated in the distal region of EphA4, which led to a 50% decrease in transcriptional activation by CLOCK and BMAL1. This result supports a role for at least one of these elements or their overall combination in the observed effect. Mutating each E-

box separately will be required to pinpoint the exact DNA sequence(s) responsible for the transcriptional activation of *Eph/Ephrin* genes by clock transcription factors.

GSK3β was able to shape CLOCK:BMAL1- and NPAS2:BMAL1-mediated transcriptional activation of *EphA4* and *EfnB2*. Given the roles of GSK3β in the regulation of the molecular clock *(Sahar et al., 2010; Besing et al., 2015)*, this further supports an implication of core clock mechanisms in the gene regulation of Eph and Ephrins. Interestingly, *EphA4* KO mice and *GSK3β* haploinsufficient mice have both been shown to express a longer endogenous period of wheel-running activity under DD conditions *(Lavoie et al., 2013; Kiessling et al., 2018)*. Thus, the downregulation of GSK3β and EPHA4 could impact the circadian system similarly, at least at the level of output pathways affecting the locomotor activity rhythm. Besides roles in the circadian system, GSK3β is notably regulated by neurotransmission and insulin pathways *(Beurel et al., 2015; Patel and Woodgett, 2017)*, and has been associated to neurodegeneration and neurological conditions *(Inoki et al., 2006; Patel and Woodgett, 2017; Liu and Klein, 2018)*. Our findings therefore imply that the regulation of Eph/Ephrin gene expression by GSK3β could serve cellular responses in 'non-circadian' contexts.

A limitation of the present dataset could reside in luciferase assays conducted only using COS-7 cells. Previous research from our group has nevertheless supported the suitability of this model system for transcriptional studies related to the circadian clock (Mongrain et al., 2008; Hannou et al., 2018). Our results could be expanded with continuous bioluminescence recordings to investigate whether transcriptional activation by CLOCK and BMAL1 via EphA4/Ephrin promoter sequences shows circadian oscillations. Besides, the cloned sequences used here do not recapitulate the complexity of *in vivo* transcriptional regulation notably because reporter plasmids lack surrounding DNA as well as long distance regulatory elements, which contribute to DNA folding and can impact the binding by the circadian clock molecular machinery. In fact, gene sequence positioned 7 to 11kb upstream of EphA4 TSS were shown to have roles in its transcriptional regulation (Theil et al., 1998; Nakajima et al., 2006). In parallel, the promoter analysis highlighted potential sites of interactions with other transcription factors that have not been interrogated with the used experimental design. Only few studies have investigated the transcriptional regulation of Eph and Ephrin genes. On the one hand, the transcription factors with roles in development EGR2 (Krox20), MESP2, and PAX/FOXO1a (PAX/FKHD) were shown to
bind *EphA4* promoter regions and activate transcription (*Theil et al., 1998; Begum et al., 2005; Nakajima et al., 2006*), while stimulating protein 1 (SP1) binds *EphA4* promoter to reduce mRNA and protein expression in the context of cell proliferation regulation (*Huang et al., 2016*). On the other hand, the *EfnB2* promoter was shown to be bound by Meis homeobox 1 (MEIS1), Myc-associated zinc finger protein (MAZ), and nuclear factor-Y (NF-Y), and SP1 was found to activate *EfnB2* gene expression (*Obi et al., 2009; Sohl et al., 2009, 2010*). The cooperative regulation of *Eph/Ephrin* gene expression by different transcription factors should be consider in future research, even when focusing on the circadian clock machinery.

The level of EPHA4 and EFNB2 measured in the mouse SCN and PFC did not show 24h variations under constant darkness. It is possible that measurements performed under light-dark conditions could have resulted in rhythmic levels given the presence of CREs in gene sequences upstream of TSS, and the role of CRE in the entrainment of clock gene expression to light (*Tischkau et al., 2003; Ikegami et al., 2020*). Additionally, cell type-specific rhythms could be missed in the present study sampling total proteins in the tissue. A recent study interrogating cell type-specific gene expression in a microdissection of the mouse SCN region reported a significant circadian rhythm of *EphA4* expression in astrocytes and neuronal populations outside/surrounding the SCN the SCN (*Wen et al., 2020*). Astrocytes have crucial roles in the maintenance of circadian rhythms via crosstalk with SCN neurons (*Barca-Mayo et al., 2017; Brancaccio et al., 2017*), and the Eph/Ephrin system is well recognized for its involvement in astrocyte-neuron communication (*Murai and Pasquale, 2011*). Moreover, SCN cholecystokinin/complement C1q-like 3 (Cck⁺/C1ql3⁺) neurons were shown to rhythmically express *EfnB3*, and *EfnB1* and *EfnA2* were rhythmically expressed in neurons outside/surrounding the SCN (*Wen et al., 2020*), which provides further support to an implication of the Eph/Ephrin system in circadian physiology.

Our spatial transcriptomic approach did not identify *EphA4*, *EfnB2* and *EfnA3* as gene significantly changed between the early light and early dark period in areas covered by the targeted coronal slice. This finding is in line with our previous observations of rhythmic expression being significant only for *EfnA3* when considering the cerebral cortex, hippocampus and a region covering the thalamus and hypothalamus (*Freyburger et al., 2016*). Moreover, other transcriptomic studies targeting the mouse hippocampus or forebrain did not detect diurnal rhythms in the expression of *EphA4*, *EfnA3* and *EfnB2* (*Noya et al., 2019; Debski et al., 2020*), which also applies

to the post-mortem human dorsolateral PFC (*Seney et al., 2019*). This likely implies a lack of robust circadian oscillation for the expression of these genes in the multiple brain regions. Nevertheless, transcriptional regulation by clock transcription factors may drive rhythmic gene expression of these Eph/Ephrins in other brain regions or peripheral tissues, such as the cerebellum or cardiovascular tissues that show high levels of EphA4 protein and mRNA (*Martone et al., 1997; Liebl et al., 2003; Goldshmit and Bourne, 2010; Li et al., 2021*). In fact, rhythmic *EphA4* expression was reported in baboon muscle and cornea, and in human tibial artery and heart atrial tissue; and of *EfnB2* in baboon muscle and adipose tissue (*Mure et al., 2018; Ruben et al., 2018*). Tissue-specific (and cell type-specific) rhythmic expression of elements of the Eph/Ephrin system is reminiscent of reports that 6-10% of mRNA are expressed rhythmically in a given a tissue, whereas 80% are showing rhythms of expression in at least one tissue (*Panda et al., 2002; Storch et al., 2007; Menet et al., 2012; Zhang et al., 2014; Mure et al., 2018*). In sum, the transcriptional regulation of *EphA4* and *EfnB2* by core clock transcription factors does not appear to translate into strong gene expression rhythms for most brain regions.

In conclusion, we reported that putative promoter regions of *Epha4*, *EfnB2* and *EfnA3* can be activated by core transcription factors from the circadian system. The Eph/Ephrin system have important roles in cell-cell communication and cytoskeleton remodelling, which have implicated EphA4 (as well as EfnA3 and EfnB2) in multiple diseases/pathological conditions, including cancer, injury/stroke and Alzheimer's disease (*Goldshmit and Bourne, 2010; Chen et al., 2012; Lemmens et al., 2013; Fu et al., 2014; Huang et al., 2016; Chen et al., 2021)*. Therefore, understanding the transcriptional regulation of these transmembrane molecules by the circadian clock molecular machinery should help reveal the contribution of the circadian system to cell adhesion, intracellular signalling and plasticity, and could also contribute to understand mechanisms underlying diseases.

References

Abrahamson, E.E., Moore, R.Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res *916*, 172-191.

- Albergaria, A., Resende, C., Nobre, A.R., Ribeiro, A.S., Sousa, B., Machado, J.C., Seruca, R., Paredes, J., Schmitt, F. (2013). CCAAT/enhancer binding protein beta (C/EBPbeta) isoforms as transcriptional regulators of the proinvasive CDH3/P-cadherin gene in human breast cancer cells. PLoS One 8, e55749.
- Allen Mouse Brain Atlas. In. [381] http://mouse.brain-map.org/experiment/show/381; [79591635] http://mouse.brainmap.org/experiment/show/79591635; [72079959] http://mouse.brain-map.org/experiment/show/72079959.
- Angeles-Castellanos, M., Mendoza, J., Escobar, C. (2007). Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience 144, 344-355.
- Audesse, A.J., Dhakal, S., Hassell, L.A., Gardell, Z., Nemtsova, Y., Webb, A.E. (2019). FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells. PLoS Genet 15, e1008097.
- Barca-Mayo, O., Pons-Espinal, M., Follert, P., Armirotti, A., Berdondini, L., De Pietri Tonelli, D. (2017). Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 8, 14336.
- Beaulieu, J.M. (2012). A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 37, 7-16.
- Begum, S., Emami, N., Cheung, A., Wilkins, O., Der, S., Hamel, P.A. (2005). Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 24, 1860-1872.
- Bellet, M.M., Sassone-Corsi, P. (2010). Mammalian circadian clock and metabolism the epigenetic link. J Cell Sci *123*, 3837-3848.
- Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 57, 289-300.
- Besing, R.C., Paul, J.R., Hablitz, L.M., Rogers, C.O., Johnson, R.L., Young, M.E., Gamble, K.L. (2015). Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus. J Biol Rhythms 30, 155-160.
- Beurel, E., Grieco, S.F., Jope, R.S. (2015). Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148, 114-131.
- Bouzioukh, F., Wilkinson, G.A., Adelmann, G., Frotscher, M., Stein, V., Klein, R. (2007). Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation but not long-term depression. J Neurosci 27, 11279-11288.
- Brancaccio, M., Patton, A.P., Chesham, J.E., Maywood, E.S., Hastings, M.H. (2017). Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling. Neuron 93, 1420-1435 e1425.
- Buffet, C., Catelli, M.G., Hecale-Perlemoine, K., Bricaire, L., Garcia, C., Gallet-Dierick, A., Rodriguez, S., Cormier,
 F., Groussin, L. (2015). Dual Specificity Phosphatase 5, a Specific Negative Regulator of ERK Signaling, Is
 Induced by Serum Response Factor and Elk-1 Transcription Factor. PLoS One 10, e0145484.
- Chen, X., Zhang, L., Hua, F., Zhuang, Y., Liu, H., Wang, S. (2021). EphA4 Obstructs Spinal Cord Neuron Regeneration by Promoting Excessive Activation of Astrocytes. Cell Mol Neurobiol.
- Chen, Y., Fu, A.K., Ip, N.Y. (2012). Eph receptors at synapses: implications in neurodegenerative diseases. Cell Signal 24, 606-611.

- Chinenov, Y., Kerppola, T.K. (2001). Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20, 2438-2452.
- Chiou, Y.Y., Yang, Y., Rashid, N., Ye, R., Selby, C.P., Sancar, A. (2016). Mammalian Period represses and derepresses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner. Proc Natl Acad Sci U S A 113, E6072-E6079.
- Chun, L.E., Woodruff, E.R., Morton, S., Hinds, L.R., Spencer, R.L. (2015). Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats. J Biol Rhythms 30, 417-436.
- Chung, S., Lee, E.J., Yun, S., Choe, H.K., Park, S.B., Son, H.J., Kim, K.S., Dluzen, D.E., Lee, I., Hwang, O., Son, G.H., Kim, K. (2014). Impact of circadian nuclear receptor REV-ERBalpha on midbrain dopamine production and mood regulation. Cell 157, 858-868.
- Coria-Lucero, C.D., Golini, R.S., Ponce, I.T., Deyurka, N., Anzulovich, A.C., Delgado, S.M., Navigatore-Fonzo, L.S. (2016). Rhythmic Bdnf and TrkB expression patterns in the prefrontal cortex are lost in aged rats. Brain Res 1653, 51-58.
- Crumbley, C., Burris, T.P. (2011). Direct regulation of CLOCK expression by REV-ERB. PLoS One 6, e17290.
- Dardente, H., Fortier, E.E., Martineau, V., Cermakian, N. (2007). Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem J 402, 525-536.
- Debski, K.J., Ceglia, N., Ghestem, A., Ivanov, A.I., Brancati, G.E., Broer, S., Bot, A.M., Muller, J.A., Schoch, S., Becker, A., Loscher, W., Guye, M., Sassone-Corsi, P., Lukasiuk, K., Baldi, P., Bernard, C. (2020). The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy. Sci Adv 6.
- Dib, R., Gervais, N.J., Mongrain, V. (2021). A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents. Neurobiol Sleep Circadian Rhythms 11, 100068.
- Doi, M., Shimatani, H., Atobe, Y., Murai, I., Hayashi, H., Takahashi, Y., Fustin, J.M., Yamaguchi, Y., Kiyonari, H., Koike, N., Yagita, K., Lee, C., Abe, M., Sakimura, K., Okamura, H. (2019). Non-coding cis-element of Period2 is essential for maintaining organismal circadian behaviour and body temperature rhythmicity. Nat Commun 10, 2563.
- Doi, R., Oishi, K., Ishida, N. (2010). CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J Biol Chem 285, 22114-22121.
- Eijkelenboom, A., Burgering, B.M. (2013). FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol *14*, 83-97.
- El Helou, J., Belanger-Nelson, E., Freyburger, M., Dorsaz, S., Curie, T., La Spada, F., Gaudreault, P.O., Beaumont,
 E., Pouliot, P., Lesage, F., Frank, M.G., Franken, P., Mongrain, V. (2013). Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc Natl Acad Sci U S A *110*, 9974-9979.
- Essmann, C.L., Martinez, E., Geiger, J.C., Zimmer, M., Traut, M.H., Stein, V., Klein, R., Acker-Palmer, A. (2008). Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors. Nat Neurosci 11, 1035-1043.

- Falvey, E., Marcacci, L., Schibler, U. (1996). DNA-binding specificity of PAR and C/EBP leucine zipper proteins: a single amino acid substitution in the C/EBP DNA-binding domain confers PAR-like specificity to C/EBP. Biol Chem 377, 797-809.
- Feng, W.C., Southwood, C.M., Bieker, J.J. (1994). Analyses of beta-thalassemia mutant DNA interactions with erythroid Kruppel-like factor (EKLF), an erythroid cell-specific transcription factor. J Biol Chem 269, 1493-1500.
- Filosa, A., Paixao, S., Honsek, S.D., Carmona, M.A., Becker, L., Feddersen, B., Gaitanos, L., Rudhard, Y., Schoepfer, R., Klopstock, T., Kullander, K., Rose, C.R., Pasquale, E.B., Klein, R. (2009). Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12, 1285-1292.
- Freyburger, M., Pierre, A., Paquette, G., Belanger-Nelson, E., Bedont, J., Gaudreault, P.O., Drolet, G., Laforest, S., Blackshaw, S., Cermakian, N., Doucet, G., Mongrain, V. (2016). EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation. Sleep 39, 613-624.
- Fu, A.K.Y., Hung, K.W., Huang, H., Gu, S., Shen, Y., Cheng, E.Y., Ip, F.C., Huang, X., Fu, W.Y., Ip, N.Y. (2014). Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A 111, 9959-9964.
- Gekakis, N., Staknis, D., Nguyen, H.B., Davis, F.C., Wilsbacher, L.D., King, D.P., Takahashi, J.S., Weitz, C.J. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569.
- Ghori, A., Freimann, F.B., Nieminen-Kelha, M., Kremenetskaia, I., Gertz, K., Endres, M., Vajkoczy, P. (2017). EphrinB2 Activation Enhances Vascular Repair Mechanisms and Reduces Brain Swelling After Mild Cerebral Ischemia. Arterioscler Thromb Vasc Biol 37, 867-878.
- Giguere, V., Tini, M., Flock, G., Ong, E., Evans, R.M., Otulakowski, G. (1994). Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev 8, 538-553.
- Giroldi, L.A., Bringuier, P.P., de Weijert, M., Jansen, C., van Bokhoven, A., Schalken, J.A. (1997). Role of E boxes in the repression of E-cadherin expression. Biochem Biophys Res Commun *241*, 453-458.
- Goldshmit, Y., Bourne, J. (2010). Upregulation of EphA4 on astrocytes potentially mediates astrocytic gliosis after cortical lesion in the marmoset monkey. J Neurotrauma 27, 1321-1332.
- Goldshmit, Y., Galea, M.P., Bartlett, P.F., Turnley, A.M. (2006). EphA4 regulates central nervous system vascular formation. J Comp Neurol 497, 864-875.
- Guillaumond, F., Dardente, H., Giguere, V., Cermakian, N. (2005). Differential control of Bmall circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20, 391-403.
- Gustems, M., Woellmer, A., Rothbauer, U., Eck, S.H., Wieland, T., Lutter, D., Hammerschmidt, W. (2014). c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs. Nucleic Acids Res 42, 3059-3072.
- Hale, A.E., Collins-McMillen, D., Lenarcic, E.M., Igarashi, S., Kamil, J.P., Goodrum, F., Moorman, N.J. (2020). FOXO transcription factors activate alternative major immediate early promoters to induce human cytomegalovirus reactivation. Proc Natl Acad Sci U S A 117, 18764-18770.

- Hampp, G., Ripperger, J.A., Houben, T., Schmutz, I., Blex, C., Perreau-Lenz, S., Brunk, I., Spanagel, R., Ahnert-Hilger, G., Meijer, J.H., Albrecht, U. (2008). Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18, 678-683.
- Hamza, M.S., Pott, S., Vega, V.B., Thomsen, J.S., Kandhadayar, G.S., Ng, P.W., Chiu, K.P., Pettersson, S., Wei, C.L., Ruan, Y., Liu, E.T. (2009). De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS One 4, e4907.
- Hannou, L., Roy, P.G., Ballester Roig, M.N., Mongrain, V. (2020). Transcriptional control of synaptic components by the clock machinery. Eur J Neurosci *51*, 241-267.
- Hannou, L., Belanger-Nelson, E., O'Callaghan, E.K., Dufort-Gervais, J., Ballester Roig, M.N., Roy, P.G., Beaulieu, J.M., Cermakian, N., Mongrain, V. (2018). Regulation of the Neuroligin-1 Gene by Clock Transcription Factors. J Biol Rhythms 33, 166-178.
- Harada, Y., Sakai, M., Kurabayashi, N., Hirota, T., Fukada, Y. (2005). Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J Biol Chem *280*, 31714-31721.
- Harding, H.P., Lazar, M.A. (1993). The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol Cell Biol *13*, 3113-3121.
- Hartzog, G.A., Myers, R.M. (1993). Discrimination among potential activators of the beta-globin CACCC element by correlation of binding and transcriptional properties. Mol Cell Biol *13*, 44-56.
- Hastings, M.H., Maywood, E.S., Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci *19*, 453-469.
- Hirano, A., Fu, Y.H., Ptacek, L.J. (2016). The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 23, 1053-1060.
- Hu, Y., Li, S., Jiang, H., Li, M.T., Zhou, J.W. (2014). Ephrin-B2/EphA4 forward signaling is required for regulation of radial migration of cortical neurons in the mouse. Neurosci Bull *30*, 425-432.
- Huang, Y.C., Lin, S.J., Lin, K.M., Chou, Y.C., Lin, C.W., Yu, S.C., Chen, C.L., Shen, T.L., Chen, C.K., Lu, J., Chen, M.R., Tsai, C.H. (2016). Regulation of EBV LMP1-triggered EphA4 downregulation in EBV-associated B lymphoma and its impact on patients' survival. Blood *128*, 1578-1589.
- Ikeda, M., Ikeda, M. (2014). Bmal1 is an essential regulator for circadian cytosolic Ca(2)(+) rhythms in suprachiasmatic nucleus neurons. J Neurosci 34, 12029-12038.
- Ikegami, K., Nakajima, M., Minami, Y., Nagano, M., Masubuchi, S., Shigeyoshi, Y. (2020). cAMP response element induces Per1 in vivo. Biochem Biophys Res Commun *531*, 515-521.
- Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C.Y., He, X., MacDougald, O.A., You, M., Williams, B.O., Guan, K.L. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955-968.
- Kiessling, S., O'Callaghan, E.K., Freyburger, M., Cermakian, N., Mongrain, V. (2018). The cell adhesion molecule EphA4 is involved in circadian clock functions. Genes Brain Behav 17, 82-92.

- Kiyohara, Y.B., Nishii, K., Ukai-Tadenuma, M., Ueda, H.R., Uchiyama, Y., Yagita, K. (2008). Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy. Nucleic Acids Res 36, e23.
- Klemz, R., Reischl, S., Wallach, T., Witte, N., Jurchott, K., Klemz, S., Lang, V., Lorenzen, S., Knauer, M., Heidenreich, S., Xu, M., Ripperger, J.A., Schupp, M., Stanewsky, R., Kramer, A. (2017). Reciprocal regulation of carbon monoxide metabolism and the circadian clock. Nat Struct Mol Biol 24, 15-22.
- Krug, R.G., 2nd, Poshusta, T.L., Skuster, K.J., Berg, M.R., Gardner, S.L., Clark, K.J. (2014). A transgenic zebrafish model for monitoring glucocorticoid receptor activity. Genes Brain Behav 13, 478-487.
- Kuljis, D.A., Gad, L., Loh, D.H., MacDowell Kaswan, Z., Hitchcock, O.N., Ghiani, C.A., Colwell, C.S. (2016). Sex Differences in Circadian Dysfunction in the BACHD Mouse Model of Huntington's Disease. PLoS One 11, e0147583.
- Kuljis, D.A., Loh, D.H., Truong, D., Vosko, A.M., Ong, M.L., McClusky, R., Arnold, A.P., Colwell, C.S. (2013). Gonadal- and sex-chromosome-dependent sex differences in the circadian system. Endocrinology 154, 1501-1512.
- Kume, K., Zylka, M.J., Sriram, S., Shearman, L.P., Weaver, D.R., Jin, X., Maywood, E.S., Hastings, M.H., Reppert, S.M. (1999). mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205.
- Lavoie, J., Hebert, M., Beaulieu, J.M. (2013). Glycogen synthase kinase-3beta haploinsufficiency lengthens the circadian locomotor activity period in mice. Behav Brain Res 253, 262-265.
- Leclerc, G.M., Boockfor, F.R. (2005). Pulses of prolactin promoter activity depend on a noncanonical E-box that can bind the circadian proteins CLOCK and BMAL1. Endocrinology *146*, 2782-2790.
- Lemmens, R., Jaspers, T., Robberecht, W., Thijs, V.N. (2013). Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke. Hum Mol Genet *22*, 2214-2220.
- Leonard, J., Parrott, C., Buckler-White, A.J., Turner, W., Ross, E.K., Martin, M.A., Rabson, A.B. (1989). The NFkappa B binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity. J Virol 63, 4919-4924.
- Li, J., Dong, W., Gao, X., Chen, W., Sun, C., Li, J., Gao, S., Zhang, Y., He, J., Lu, D., Jiang, R., Ma, M., Wang, X., Zhang, L. (2021). EphA4 is highly expressed in the atria of heart and its deletion leads to atrial hypertrophy and electrocardiographic abnormalities in rats. Life Sci 278, 119595.
- Li, S., Qin, X., Chai, S., Qu, C., Wang, X., Zhang, H. (2016). Modulation of E-cadherin expression promotes migration ability of esophageal cancer cells. Sci Rep *6*, 21713.
- Liebl, D.J., Morris, C.J., Henkemeyer, M., Parada, L.F. (2003). mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res *71*, 7-22.
- Liu, A.C., Tran, H.G., Zhang, E.E., Priest, A.A., Welsh, D.K., Kay, S.A. (2008). Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4, e1000023.
- Liu, X., Klein, P.S. (2018). Glycogen synthase kinase-3 and alternative splicing. Wiley Interdiscip Rev RNA 9, e1501.

- Maemura, K., de la Monte, S.M., Chin, M.T., Layne, M.D., Hsieh, C.M., Yet, S.F., Perrella, M.A., Lee, M.E. (2000). CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem 275, 36847-36851.
- Maret, S., Dorsaz, S., Gurcel, L., Pradervand, S., Petit, B., Pfister, C., Hagenbuchle, O., O'Hara, B.F., Franken, P., Tafti, M. (2007). Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104, 20090-20095.
- Martone, M.E., Holash, J.A., Bayardo, A., Pasquale, E.B., Ellisman, M.H. (1997). Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res 771, 238-250.
- Matsumura, R., Akashi, M. (2017). Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene. J Biol Chem 292, 16081-16092.
- Matsuoka, H., Tokunaga, R., Katayama, M., Hosoda, Y., Miya, K., Sumi, K., Ohishi, A., Kamishikiryo, J., Shima, A., Michihara, A. (2020). Retinoic acid receptor-related orphan receptor alpha reduces lipid droplets by upregulating neutral cholesterol ester hydrolase 1 in macrophages. BMC Mol Cell Biol 21, 32.
- Meighan, C.M., Kann, A.P., Egress, E.R. (2015). Transcription factor hlh-2/E/Daughterless drives expression of alpha integrin ina-1 during DTC migration in C. elegans. Gene *568*, 220-226.
- Mendes, K., Schmidhofer, S., Minderjahn, J., Glatz, D., Kiesewetter, C., Raithel, J., Wimmer, J., Gebhard, C., Rehli,
 M. (2021). The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sites. Nat Commun *12*, 1556.
- Menet, J.S., Rodriguez, J., Abruzzi, K.C., Rosbash, M. (2012). Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife *1*, e00011.
- Mongrain, V., Ruan, X., Dardente, H., Fortier, E.E., Cermakian, N. (2008). Clock-dependent and independent transcriptional control of the two isoforms from the mouse Rorgamma gene. Genes Cells *13*, 1197-1210.
- Montminy, M.R., Sevarino, K.A., Wagner, J.A., Mandel, G., Goodman, R.H. (1986). Identification of a cyclic-AMPresponsive element within the rat somatostatin gene. Proc Natl Acad Sci U S A *83*, 6682-6686.
- Mulero, M.C., Wang, V.Y., Huxford, T., Ghosh, G. (2019). Genome reading by the NF-kappaB transcription factors. Nucleic Acids Res 47, 9967-9989.
- Murai, K.K., Pasquale, E.B. (2011). Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia *59*, 1567-1578.
- Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y., Pasquale, E.B. (2003). Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci *6*, 153-160.
- Mure, L.S., Le, H.D., Benegiamo, G., Chang, M.W., Rios, L., Jillani, N., Ngotho, M., Kariuki, T., Dkhissi-Benyahya, O., Cooper, H.M., Panda, S. (2018). Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359.
- Nakahata, Y., Yoshida, M., Takano, A., Soma, H., Yamamoto, T., Yasuda, A., Nakatsu, T., Takumi, T. (2008). A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes. BMC Mol Biol *9*, 1.
- Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H., Saga, Y. (2006). Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development *133*, 2517-2525.

- Noya, S.B., Colameo, D., Bruning, F., Spinnler, A., Mircsof, D., Opitz, L., Mann, M., Tyagarajan, S.K., Robles, M.S., Brown, S.A. (2019). The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366.
- Obi, S., Yamamoto, K., Shimizu, N., Kumagaya, S., Masumura, T., Sokabe, T., Asahara, T., Ando, J. (2009). Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol (1985) 106, 203-211.
- Oishi, K., Shirai, H., Ishida, N. (2005). CLOCK is involved in the circadian transactivation of peroxisome-proliferatoractivated receptor alpha (PPARalpha) in mice. Biochem J *386*, 575-581.
- Onoue, T., Nishi, G., Hikima, J.I., Sakai, M., Kono, T. (2019). Circadian oscillation of TNF-alpha gene expression regulated by clock gene, BMAL1 and CLOCK1, in the Japanese medaka (Oryzias latipes). Int Immunopharmacol 70, 362-371.
- Pan, X., Zhang, Y., Wang, L., Hussain, M.M. (2010). Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab 12, 174-186.
- Panda, S., Antoch, M.P., Miller, B.H., Su, A.I., Schook, A.B., Straume, M., Schultz, P.G., Kay, S.A., Takahashi, J.S., Hogenesch, J.B. (2002). Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307-320.
- Patel, P., Woodgett, J.R. (2017). Glycogen Synthase Kinase 3: A Kinase for All Pathways? Curr Top Dev Biol *123*, 277-302.
- Pham, T.H., Benner, C., Lichtinger, M., Schwarzfischer, L., Hu, Y., Andreesen, R., Chen, W., Rehli, M. (2012). Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood 119, e161-171.
- Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., Schibler, U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260.
- Reick, M., Garcia, J.A., Dudley, C., McKnight, S.L. (2001). NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506-509.
- Rey, G., Cesbron, F., Rougemont, J., Reinke, H., Brunner, M., Naef, F. (2011). Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9, e1000595.
- Robert, N.M., Martin, L.J., Tremblay, J.J. (2006). The orphan nuclear receptor NR4A1 regulates insulin-like 3 gene transcription in Leydig cells. Biol Reprod 74, 322-330.
- Ruben, M.D., Wu G., Smith D.F., Schmidt R.E., Francey L.J., Lee Y.Y., Anafi R.C., Hogenesch J.B. (2018). A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med 10, 458.
- Rushmore, T.H., Morton, M.R., Pickett, C.B. (1991). The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266, 11632-11639.
- Sablon, A., Bollaert, E., Pirson, C., Velghe, A.I., Demoulin, J.B. (2022). FOXO1 forkhead domain mutants in B-cell lymphoma lack transcriptional activity. Sci Rep *12*, 1309.

- Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One *5*, e8561.
- Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods *9*, 671-675.
- Seney, M.L., Cahill, K., Enwright, J.F., 3rd, Logan, R.W., Huo, Z., Zong, W., Tseng, G., McClung, C.A. (2019). Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia. Nat Commun *10*, 3355.
- Slack, S., Battaglia, A., Cibert-Goton, V., Gavazzi, I. (2008). EphrinB2 induces tyrosine phosphorylation of NR2B via Src-family kinases during inflammatory hyperalgesia. Neuroscience 156, 175-183.
- Sohl, M., Lanner, F., Farnebo, F. (2009). Characterization of the murine Ephrin-B2 promoter. Gene 437, 54-59.
- Sohl, M., Lanner, F., Farnebo, F. (2010). Sp1 mediate hypoxia induced ephrinB2 expression via a hypoxia-inducible factor independent mechanism. Biochem Biophys Res Commun *391*, 24-27.
- Stambolic, V., Woodgett, J.R. (1994). Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J *303 (Pt 3)*, 701-704.
- Steinecke, A., Gampe, C., Zimmer, G., Rudolph, J., Bolz, J. (2014). EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development *141*, 460-471.
- Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H., Weitz, C.J. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83.
- Sun, Z., Xu, X., He, J., Murray, A., Sun, M.A., Wei, X., Wang, X., McCoig, E., Xie, E., Jiang, X., Li, L., Zhu, J., Chen, J., Morozov, A., Pickrell, A.M., Theus, M.H., Xie, H. (2019). EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nat Commun 10, 3892.
- Swirnoff, A.H., Milbrandt, J. (1995). DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol Cell Biol 15, 2275-2287.
- Takahashi, J.S. (2017). Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18, 164-179.
- Tamayo, A.G., Duong, H.A., Robles, M.S., Mann, M., Weitz, C.J. (2015). Histone monoubiquitination by Clock-Bmall complex marks Per1 and Per2 genes for circadian feedback. Nat Struct Mol Biol 22, 759-766.
- Tanasic, S., Mattusch, C., Wagner, E.M., Eder, M., Rupprecht, R., Rammes, G., Di Benedetto, B. (2016). Desipramine targets astrocytes to attenuate synaptic plasticity via modulation of the ephrinA3/EphA4 signalling. Neuropharmacology 105, 154-163.
- Taylor, M., Treisman, R., Garrett, N., Mohun, T. (1989). Muscle-specific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts. Development 106, 67-78.
- Theil, T., Frain, M., Gilardi-Hebenstreit, P., Flenniken, A., Charnay, P., Wilkinson, D.G. (1998). Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 125, 443-452.
- Tischkau, S.A., Mitchell, J.W., Tyan, S.H., Buchanan, G.F., Gillette, M.U. (2003). Ca2+/cAMP response elementbinding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem 278, 718-723.

- Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., Sassone-Corsi, P. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A 99, 7728-7733.
- Ueda, H.R., Hayashi, S., Chen, W., Sano, M., Machida, M., Shigeyoshi, Y., Iino, M., Hashimoto, S. (2005). Systemlevel identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37, 187-192.
- Wang, D., Chang, P.S., Wang, Z., Sutherland, L., Richardson, J.A., Small, E., Krieg, P.A., Olson, E.N. (2001). Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105, 851-862.
- Wang, X., Campbell, M.R., Lacher, S.E., Cho, H.Y., Wan, M., Crowl, C.L., Chorley, B.N., Bond, G.L., Kleeberger, S.R., Slattery, M., Bell, D.A. (2016). A Polymorphic Antioxidant Response Element Links NRF2/sMAF Binding to Enhanced MAPT Expression and Reduced Risk of Parkinsonian Disorders. Cell Rep 15, 830-842.
- Wasserman, W.W., Fahl, W.E. (1997). Functional antioxidant responsive elements. Proc Natl Acad Sci U S A 94, 5361-5366.
- Wayne Davis, M. ApE A plasmid Editor. In. https://jorgensen.biology.utah.edu/wayned/ape/.
- Wen, S., Ma, D., Zhao, M., Xie, L., Wu, Q., Gou, L., Zhu, C., Fan, Y., Wang, H., Yan, J. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci 23, 456-467.
- Wilson, T.E., Fahrner, T.J., Johnston, M., Milbrandt, J. (1991). Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296-1300.
- Xing, S., Pan, N., Xu, W., Zhang, J., Li, J., Dang, C., Liu, G., Pei, Z., Zeng, J. (2019). EphrinB2 activation enhances angiogenesis, reduces amyloid-beta deposits and secondary damage in thalamus at the early stage after cortical infarction in hypertensive rats. J Cereb Blood Flow Metab 39, 1776-1789.
- Yamamoto, K.K., Gonzalez, G.A., Biggs, W.H., 3rd, Montminy, M.R. (1988). Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature *334*, 494-498.
- Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G.D., Sakaki, Y., Menaker, M., Tei,
 H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682-685.
- Yin, L., Wang, J., Klein, P.S., Lazar, M.A. (2006). Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311, 1002-1005.
- Yoo, S.H., Ko, C.H., Lowrey, P.L., Buhr, E.D., Song, E.J., Chang, S., Yoo, O.J., Yamazaki, S., Lee, C., Takahashi, J.S. (2005). A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc Natl Acad Sci U S A 102, 2608-2613.
- Zhang, R., Lahens, N.F., Ballance, H.I., Hughes, M.E., Hogenesch, J.B. (2014). A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A *111*, 16219-16224.
- Zhao, J., Boyd, A.W., Bartlett, P.F. (2017). The identification of a novel isoform of EphA4 and ITS expression in SOD1(G93A) mice. Neuroscience *347*, 11-21.
- Zhu, R.L., Fang, Y., Yu, H.H., Chen, D.F., Yang, L., Cho, K.S. (2021). Absence of ephrin-A2/A3 increases retinal regenerative potential for Muller cells in Rhodopsin knockout mice. Neural Regen Res 16, 1317-1322.

Chapter 5

Probing pathways by which Rhynchophylline modifies sleep using spatial transcriptomics

Probing pathways by which Rhynchophylline modifies sleep using spatial transcriptomics

Maria Neus Ballester Roig,^{1,2} Tanya Leduc,^{1,2} Julien Dufort-Gervais,¹ Yousra Maghmoul,^{2,3} Olivier Tastet,⁴ Valérie Mongrain,^{1,2,*}

¹Department of Neuroscience, Université de Montréal, Montréal, QC, H3T 1J4, Canada;
²Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J
¹C5, Canada;
³Department of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada;
⁴Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, H2X 0A9, Canada.

*Corresponding author Valérie Mongrain, Ph.D. Recherche CIUSSS-NIM (site Hôpital du Sacré-Coeur de Montréal) 5400 Gouin West blvd. Montreal, QC, H4J 1C5 Canada valerie.mongrain@umontreal.ca 1-514-338-2222/3323

Manuscript to submitted to: Current Biology Content: 6842 words (excluding Summary, Methods and List of References), 6 figures, 10 supplemental figures, 4 supplemental tables

Graphical abstract

Highlights

- The alkaloid RHY (component of Uncaria plants) induces slow wave sleep in mice
- RHY's effects on paradoxical sleep differ in morning or evening injections
- RHY alter brain oscillations linked to cognitive processes during sleep and wake
- RHY affects some transcripts brain-wise and sleep-related mRNAs in the hypothalamus

eTOC blurb

Research shows that the plant derivative RHY induces sleep and modifies brain oscillations in a vigilance state-dependent manner. Results highlight the importance of the time-of-injection and that treatments can have distinct impact in females vs males. The brain spatial transcriptome suggests that RHY impacts immune/apoptotic responses brain-wise but sleep-related transcript in the hypothalamus.

Summary

Rhynchophylline (RHY) is an alkaloid component of Uncaria, which are plants extensively used in traditional Asian medicines. Uncaria treatments increase sleep time and quality in humans, and RHY induces sleep in rodents. However, like many traditional natural treatments, the mechanisms of action of RHY and Uncaria remain evasive. Moreover, it is unknown whether RHY modifies key brain oscillations during sleep. We thus aimed at defining the effects of RHY on sleep architecture and oscillations throughout a 24-h cycle, as well as identifying the underlying molecular mechanisms. Mice received systemic RHY injections at two times of the day (beginning and end of the light period), and vigilance states were studied by electrocorticographic recordings. RHY enhanced slow wave sleep (SWS) after both injections, suppressed paradoxical sleep (PS) in the light but enhanced PS in the dark period. Furthermore, RHY modified brain oscillations during both wakefulness and SWS (including delta activity dynamics) in a time-dependent manner. Interestingly, most effects were larger in females. A brain spatial transcriptomic analysis showed that RHY modifies the expression of genes linked to cell movement, apoptosis/necrosis, and transcription/translation in a brain region-independent manner, and changes those linked to sleep regulation (e.g., Hcrt, Pmch) in a brain region-specific manner (e.g., in the hypothalamus). The findings provide support to the sleep-inducing effect of RHY, expose the relevance to shape wake/sleep oscillations, and highlight its effects on the transcriptome with a high spatial resolution. The exposed molecular mechanisms underlying the effect of a natural compound should benefit sleep- and brain-related medicine.

Introduction

Traditional Asian medicines have been used for centuries/millennia to alleviate disease symptoms and ameliorate essential behaviors and states such as sleep (Yu et al., 2006). Their natural origin is appealing for the general population, but the absence of solid empirical evidence and mechanisms of action has prevented their widespread use in the medical context (*Park et al., 2012*). Uncaria plants, in particular, were shown to have anticonvulsant, sedative and hypnotic effects, including positive impacts on sleep amount and quality in humans and mice (*Aizawa et al., 2002; Jeenapongsa and Tohda, 2003; Shinno et al., 2008b; Ozone et al., 2012*). Rhynchophylline (RHY) is an alkaloid component of Uncaria plants, and studies in rodents tend to support its hypnotic properties. For instance, RHY reduces locomotor activity, and was shown to increase sleep time when co-administered with pentobarbital in mice (*Shi et al., 1993; Yoo et al., 2016*). Determining how RHY precisely affect wake/sleep states and their characteristic brain oscillations, as well as identifying the underlying mechanisms of action has definite value to support the use of Uncaria plants or RHY for sleep disturbances or other brain ailments.

Some studies have reported that RHY impacts neuronal firing in the rodent hippocampus and cerebral cortex (*Kang et al., 2004; Hsieh et al., 2009; Fu et al., 2014; Shao et al., 2015; Shao et al., 2016*), which suggests an effect on synchronized neuronal activity of the cerebral cortex occurring during wakefulness and sleep. Neuronal synchronization is generally reflected in the activity measured in slower frequencies of the electrocorticogram (ECoG); slow wave activity (SWA; 0.5-4.5Hz) predominates during slow wave sleep (SWS), and theta activity (4-9 Hz) during paradoxical sleep (PS) (*Amzica and Steriade, 1998; Timofeev et al., 2012; Peever and Fuller, 2017; Hubbard et al., 2020*). Oscillatory activities not only represent defining features of wakefulness and sleep but also underly the role of sleep in brain function given, for instance, the established contributions of SWS SWA and PS theta activity to memory consolidation (*Poe et al., 2000; Boyce et al., 2016; Gulati et al., 2017*). Accordingly, it is crucial to determine the impact of sleep-inducing drugs on key oscillatory activities during sleep, and no such research exists for RHY.

RHY was shown to alter the cerebral cortex transcriptome in the APP/PS1 mouse model of Alzheimer's disease, targeting molecular pathways related to the ubiquitin system, microglial function, and angiogenesis (*Fu et al., 2021*). The effect of RHY on the genome-wide gene expression landscape of different brain regions in normal/healthy organisms remains to be established to adequately define the underlying mechanisms of its effect on the brain.

Transcriptomic studies have proven particularly useful in the context of sleep research revealing gene expression signatures of wakefulness and sleep with, for instance, the mRNA level of genes linked to protein translation being increased by sleep, whereas that of immediate early genes associated to neurotransmission (e.g., *Fos, Arc, Homer1a, Egr1*), and of genes involved in stress responses (e.g., chaperones, heat shock proteins) being increased by sleep deprivation/extended wakefulness *(Cirelli and Tononi, 2000; Cirelli et al., 2004; Mackiewicz et al., 2007; Maret et al., 2007; Mongrain et al., 2010; Vecsey et al., 2012; Bellesi et al., 2013; Noya et al., 2019; Guo et al., 2020*). Moreover, the wake/sleep-dependent gene expression signature depends on the brain region *(Terao et al., 2003; Conti et al., 2007; Guo et al., 2020; Jha et al., 2022*). Understanding effects of sleep-inducing compounds on the transcriptomic profile of brain regions controlling wake/sleep alternations and characteristic oscillations, such as the lateral hypothalamus *(LH; Adamantidis et al., 2007; Jones, 2020; Li et al., 2022)*, is required to understand the suitability of these compounds for sleep medicine.

We have here investigated how RHY modifies wake/sleep amount, alternation and ECoG oscillations, and interrogated underlying molecular mechanisms using a high spatial resolution transcriptomic approach. We uncovered that RHY increases the time spent in SWS at the expense of wakefulness, and changes the dynamics of key brain oscillations during SWS and wakefulness. The spatial transcriptome revealed that RHY alters the expression of genes related to inflammation, apoptosis and the response to glucocorticoids; with some transcripts modified throughout the brain, and others for which changes were restricted to specific brain regions (e.g., genes linked to sleep regulation in the hypothalamus). This study demonstrates the relevance of traditional medicine for sleep disturbances, and of spatial transcriptomics to identify brain region-specific and sleep-relevant mechanisms.

Results

RHY increases SWS and state fragmentation

Mice were submitted to ECoG recording before and after RHY treatment to investigate effects on vigilance states. Two doses of RHY were studied, 50 mg/kg (RHY50) and 100 mg/kg (RHY100), and compared to vehicle administration. Similar doses were previously reported to impact behavior, synaptic plasticity, and brain protein levels in mice (*Fu et al., 2014; Lee et al., 2014*). Given the short (3-4 h) half-life/availability of RHY reported for the mouse and rat brain tissue (*Wang et al., 2010; Lee et al., 2014; Fu et al., 2021*), animals received two i.p. injection during the 24-h cycle, the first at light onset (Zeitgeber time 0: ZT0) and the second one hour before light offset (ZT11; with ZT12 representing light offset). This strategy also allowed to investigate time of day-dependent effects of RHY. Importantly, experiments were conducted in both female and male mice, and the effects of RHY was assessed in each sex to take into consideration the well-known sex differences in wake/sleep amount, alternation, and ECoG activity (*Robillard et al., 2010; Swift et al., 2020;* reviewed by *Dib et al., 2021*). Sleep distribution and consolidation was equivalent between groups before RHY administration (**Figure 1A** left column, and **Figure S1**).

RHY was found to decrease time spent awake and increase time spent in SWS for 4 to 7 h after injection in both females and males (**Figure 1A**). These effects were more prominent during the dark period (i.e., active period) for the two sexes (**Figures 1A** and **S1B**), and larger in females than males (**Figure S1A**). Interestingly, a dose-dependent effect was found for females, with RHY100 showing larger wake-suppressing and SWS-inducing effects than RHY50, while both doses impacted wake and SWS mostly in a similar manner in males (**Figures 1A** and **S1A**). The effect of RHY on PS was highly dependent on time of day; with RHY reducing time spent in PS during the light period and increasing it during the dark period (**Figure 1A**; only significant for the dark period in males).

The mean duration and the number of individual bouts of wakefulness/sleep were interrogated to identify whether SWS was enhanced by prolonging individual bouts of SWS, by increasing the occurrence of SWS bouts or both. RHY was observed to significantly reduce the mean duration of wake and SWS bouts in both female and male mice (**Figure 1B**). In parallel, RHY increased the number of wake and SWS bouts for about 4-6 h after injection (**Figure 1C**), with a highly similar time course for wakefulness and SWS. This effect was more prominent for

Figure 1. RHY increases SWS time, reduces PS time, and promotes wake and SWS fragmentation.

(A) Time course of minutes spent in each vigilance state (wake, SWS and PS) per hour during the baseline (BL) and injection (INJ) 24-h recordings. Significant interactions between RHY treatment and hour were found for wake, SWS and PS for both females (rANOVA: $F_{46,644} > 2.0$, $p_{adj} < 0.01$) and males (rANOVA: $F_{46,598} > 1.9$, $p_{adj} < 0.01$). Red and pink datapoints indicate significant differences compared to the saline group for each hour for the RHY100 and RHY50 groups, respectively (post-hoc comparisons p < 0.05; same for panel C). Diamonds at the top of graphs indicate significant differences between RHY100 and RHY50 (post-hoc comparison p < 0.05; also in B). Grey backgrounds represent the dark period (also in C).

(B) Mean duration of individual vigilance state bouts during the INJ day. Significant treatment effects were found for wake and SWS (females: $F_{2,28} > 3$, 6, p < 0.05; males: $F_{2,26} > 4.6$, p < 0.02). Red and pink stars indicate significant differences compared to the saline group of the same sex for RHY100 and RHY50, respectively (post-hoc comparison p < 0.05; same for panel D). Diamonds at the top of graphs indicate significant differences between RHY100 and RHY50 (post-hoc comparison p < 0.05).

(C) Time course of the number of state bouts per hour for the INJ day. Significant interaction was found between RHY treatment and hour for all three states for females (rANOVA: $F_{46,644} > 2.2$, $p_{adj} < 0.001$) and males (rANOVA: $F_{46,598} > 1.8$, $p_{adj} < 0.01$). Diamonds at the top of graphs indicate significant differences between RHY100 and RHY50 for females (post-hoc comparison p < 0.05).

(D) Number of bouts of different duration for the INJ day. Significant treatment effects were found for specific duration during wake, SWS and PS (females: $F_{2,28} > 3.7$, p < 0.05; males: $F_{2,26} > 3.8$, p < 0.05).

shorter wake and SWS bouts ($\leq 60 \text{ sec}$) in comparison to longer SWS bouts (**Figures 1D** and **S1E**), and also showed a dose-dependent effect for females in particular (**Figures 1B - 1D**). Interestingly, RHY100 increased PS bout duration in females but decreased the number of short PS bouts in males (**Figures 1B** and **1D**). In sum, RHY shows wake-suppressing and SWS-inducing effects in mice, and impacts PS in a time of day-dependent manner. The SWS-inducing effect is driven by a higher occurrence of short individual bouts of SWS, resulting in an overall fragmentation of SWS. These effects are generally larger during the dark period, and in females.

RHY impacts the ECoG in a state-dependent manner

ECoG activity during wake, SWS or PS defines state quality and contributes to cognitive functioning, but has never been investigated after Uncaria or RHY treatments. Spectral analysis of the ECoG signal was here used to assess the impact of RHY on the 24-h power spectrum between 0 and 30 Hz of the three vigilance states. The ECoG spectral signature of wakefulness, SWS and PS was unaltered by saline in both females and males (**Figure 2A**, first column). However, RHY100 was found to significantly affect the spectral composition of the ECoG during wakefulness: the contribution of high theta/low alpha activity during wake was particularly decreased by RHY100 (i.e., 8.25-12 Hz in females and 8.25-10.5 Hz in males; **Figure 2A**, third column). RHY100 also reduced delta power (1-4 Hz) during SWS in females. In PS, the higher dose RHY100 in females and the lower RHY50 in males increased the power of frequencies in the theta/sigma (6-12Hz) and low beta (15-20Hz) ranges (**Figure 2A**). Thus, RHY globally impacted the wake ECoG in frequencies generally linked to active wakefulness, and linked to cognitive

processes occurring during sleep (Poe et al., 2000; Boyce et al., 2016; Gronli et al., 2016; Del Percio et al., 2017; Gulati et al., 2017; Vassalli and Franken, 2017).

Figure 2. RHY modifies ECoG activity in a vigilance state-dependent manner.

(A) Power spectra of the 24-h average for each vigilance state during baseline (BL) and injection (INJ) recordings. Wake and PS spectral powers are plotted on the left axis, and SWS spectra is plotter on the right axis; always in logarithmic scale. Significant interactions between the recording day (BL vs INJ) * frequency bin were found during wake for females RHY100 (rANOVA: $F_{116,928} > 6.1$, $p_{adj} < 0.003$), and males RHY100 (rANOVA: $F_{116,928} > 4.8$, $p_{adj} = 0.020$); and during SWS and PS for females RHY100 (rANOVA: $F_{116,928} > 6.0$, $p_{adj} < 0.004$) and during PS for males RHY50 (rANOVA: $F_{116,1044} > 2.7$, $p_{adj} = 0.030$). Parts of INJ curves in red indicate significant difference between BL and INJ (post-hoc comparisons p < 0.05).

(B) 24-h time course of SWS delta activity (1-4 Hz; first row), SWS sigma activity (10-13 Hz; second row), and wake alpha activity (8-12 Hz; third row). For SWS, significant treatment by interval interactions were found for both sexes (delta: females $F_{34,442} = 2.7$, $p_{adj} = 0.001$; males $F_{34,391} = 3.1$, $p_{adj} = 0.002$; sigma: females $F_{34,442} = 2.5$, $p_{adj} = 0.007$; males $F_{34,391} = 3.0$, $p_{adj} < 0.001$). For wake alpha activity, a significant treatment by interval interaction was only found for females (females $F_{34,442} = 1.6$, $p_{adj} = 0.03$; males main treatment effect $F_{2,21} = 1.9$, p = 0.2; males treatment by interval interaction $F_{34,357} = 1.2$, $p_{adj} = 0.3$). Red and pink datapoints indicate significant differences compared to the saline group for each interval for the RHY100 and RHY50 groups, respectively (post-hoc comparisons p < 0.05).

The 24-h dynamics of ECoG activity in different frequency bands were then analyzed after RHY treatment. RHY significantly modified the dynamics of delta (1-4 Hz), theta (6-9 Hz) and sigma (10-13 Hz) activity during SWS (**Figures 2B** and **S1F**). More precisely, SWS delta activity was decreased by RHY at a time matching with the strongest SWS-inducing effect (i.e., first half of the dark period). A dose-dependent effect was particularly prominent for females (and for faster delta; **Figures 2B** and **S1F**). RHY impacted SWS theta and sigma activity in a similar manner: decreasing activity in the early light and dark periods in females, and increasing their power in the mid-light period in males (**Figures 2B** and **S1F**). With regard to wakefulness, RHY modified the time course of alpha activity by generally decreasing it throughout the 24-h cycle (only significant in females). In sum, RHY alters ECoG activity during SWS and wakefulness in a manner that depends on time of day and sex.

Specific RHY targets correlate with sleep variables

To identify mechanisms underlying the widespread effects of RHY on wake/sleep quantity and quality, specific targets of RHY were investigated in the same mice submitted to ECoG recording, which were sacrificed 24 h after the first RHY injection. Total and synaptic protein levels were quantified for three brain regions selected for their contribution to the regulation of ECoG activity and/or sleep amount (i.e., cerebral cortex, hippocampus, and a region covering the thalamus and hypothalamus). Four targets recently proposed as contributor of sleep-related effects of RHY (*Ballester Roig et al., 2021*) were examined (i.e., EPHA4, NR2B, GLUR1, and CDK5) together with GLT1, an astrocytic glutamate transporter regulated by EPHA4 (*Carmona et al., 2009; Filosa et al., 2009*). RHY did not significantly impact the protein level of these targets neither the phosphorylated level of EPHA4 (**Figures 3A, S2A** and **S2B**, and **Tables S1**), but

(A) Protein levels in total and synaptoneurosomal (Syn) fractions were quantified for the cerebral cortex, hippocampus, and a thalamus/hypothalamus spanning region. No significant treatment effect was found (see **Figure S2A** for all results of one-way ANOVAs; n = 3-11 per group), except for pGLUR1/GLUR1 in the total fraction of male hippocampus (F_{2,11} = 4.73, p=0.03; diamond indicates significant differences between RHY100 and RHY50, post-hoc comparison p < 0.05).

(B) Correlations (including both female and male data) between protein levels and sleep variables showed significant correlations between cerebral cortex GLUR1 level (total fraction) and time spent in SWS or PS between ZT13 and ZT17; and between thalamic/hypothalamic GLUR1 (Syn fraction) and time in PS between ZT13 and ZT17.

increased the phosphorylation of GLUR1 (Ser845) in the hippocampus of male mice ($F_{2,11}$ = 4.73, p = 0.03).

To tackle the large variability in protein measurements and simultaneously investigate relationships with specific sleep features, protein levels were correlated with sleep variables selected for their considerable/highest alteration by RHY (e.g., time spent in SWS between ZT13 and ZT17). Total GLUR1 level in the cerebral cortex was significantly associated with more time spent in SWS or PS at the beginning of the dark period, whereas synaptic GLUR1 in the thalamus/hypothalamus was found to be significantly associated with less time spent in PS at the same time (**Figure 3B**). Total phosphorylated GLUR1 in the cerebral cortex was also negatively correlated with wake alpha activity measured in the dark period (**Figure S3C**). In brief, even if the effect of RHY may not be captured by the targeted proteins when measured more than 12 h after RHY administration, some of these targets could still contribute to alterations in specific sleep variables, including ECoG activity, under RHY treatment.

RHY shapes the brain transcriptome in injection-time- and sex-dependent ways

To precisely capture the mechanisms by which RHY impacts sleep and the timedependency of these effects, a spatial transcriptomic approach was applied on brain slices of mice sacrificed 3 to 4 h after RHY100 administration. This delay corresponds to the peak time of RHY effects (**Figures 1** and **2**), and led to brains being sampled at ZT4 and ZT14 in females (F) and males (M) administered with saline (S) or RHY (R) (i.e., ZT4FS, ZT4FR, ZT14FS, ZT14FR, ZT4MS, ZT4MR, ZT14MS, ZT14MR). Coronal sections covering the cerebral cortex, hippocampus, and sleep-regulatory regions of the hypothalamus (e.g., LH) were processed using the 10x Genomics Visium Spatial Gene Expression kit coupled to RNA sequencing (RNAseq). The total number of reads and the mean number of reads per spatial spot under tissue were in the same order of magnitude between the eight different conditions (188 to 258M, and 67 to 121K, respectively), as well as the percent reads confidently mapping to the genome (95 to 98 %).

Transcriptome-wide gene expression data were first compared between RHY and saline for the full slice (i.e., all spatial spots, hereafter identified as bulk) for each time point and sex, resulting in four different sets of comparisons (i.e., ZT4F, ZT14F, ZT4M, ZT14M). This generated four sets of significant (i.e., Benjamini-Hochberg False Discovery Rate [FDR] < 0.05) differentially expressed genes (DEGs). RHY administration in the early light period resulted in 575 DEGs in females (ZT4F: 247 increased by RHY100, 328 decreased) and 457 DEGs in males (ZT4M: 126 increased, 331 decreased), and RHY administration in the evening generated 117 DEGs in females (ZT14F: 77 increased by RHY, 44 decreased), and 641 in males (ZT14M: 464 increased, 177 decreased; Figures 4A and S3A, Table S2). A clustered heatmap compiling the fold change in expression of DEGs for ZT4F, ZT4M, ZT14F, and ZT14M identified seven distinct clusters (C1-C7; Figures 4B and S3B). C1 and C4 comprised genes generally increased by RHY in the four comparisons (Figures 4C and S3B); C3 featured six genes decreased by RHY in most comparisons (Tshb, Cga, Prl, Oxt, Gh, Avp; Figures 4D and S3B); C2 and C7 genes generally increased or decreased by RHY in only one comparison or changed in opposite directions between ZT4 and ZT14; and C5 and C6 genes modified by RHY in different directions between ZT4 and ZT14 mainly for males (Figure S3B). For instance, Sgk1 and Lcn2 belonging to cluster C1 were increased by RHY100 throughout the brain, with a particularly striking increase of Sgk1 expression in white matter tracts (Figure 4E). Tsc22d3, an example of C4 genes, was increased for ZT4F and ZT4M; while *Uba52* from C2 was decreased by RHY at ZT4 and increased at ZT14 (Figure 4E).

Of importance is that even if C1, C3 and C4 comprised genes for which RHY impacted the expression in a generally consistent manner across the four different comparisons, the impact of RHY was highly dependent on time and sex. Indeed, the majority of DEGs were found in one single comparison (i.e., 310 for ZT4F, 218 for ZT4M, 24 for ZT14F, and 432 for ZT14M; **Figure 4F**). An overlap of 90 DEGs was found between females and males at ZT4, whereas only 10 DEGs were common between sexes at ZT14 (**Figure 4F**). In addition, fold changes in expression after RHY administration were significantly correlated between ZT4F and ZT4M samples and between ZT14F and ZT14M samples, whereas the correlations between time points within sex reached significance for females, but not for males (**Figure S3C**). Interestingly, only 18 DEGs overlapped among the four comparisons, and the impact of RHY for seven of these was generally opposite at ZT4 in comparison to ZT14 (**Figures 4F-G**).

Figure 4. RHY modifies the mouse brain transcriptome.

(A) Volcano plots showing gene expression changes between RHY and saline conditions in female (F) and male (M) mice at ZT4 or ZT14. Green (female) and purple (males) datapoints indicate differentially expressed genes (DEGs; FDR < 0.05) between RHY100 and saline. Note that RHY changes gene expression in both directions. Black datapoints indicate transcripts with no significant change.

(B) Heatmap of the Log2 fold change in expression of the DEGs found for ZT4F, ZT4M, ZT14F, and ZT14M. The 1324 DEGs found in at least one of the four comparisons are shown. Automated hierarchical clustering showing seven DEG clusters (C1-C7) is also represented.

(C) Zoom of cluster C1 showing 22 DEGs generally increased by RHY for ZT4F, ZT4M, ZT14F, and ZT14M.

(D) Zoom of cluster C3 showing 6 DEGs generally decreased by RHY for ZT4F, ZT4M, ZT14F, and ZT14M.

(E) Spatial maps of Log2 gene expression under saline and RHY treatments for female mice shown for *Sgk1*, *Lcn2*, *Nfkbia*, *Tsc22d3*, and *Uba52*.

(F) Bar diagram illustrating the number of overlapping and non-overlapping DEGs among ZT4F, ZT4M, ZT14F, and ZT14M.

(G) Table showing the fold change and significance level of the 18 genes common in all four comparisons. Hot colors indicate increases by RHY, and cold colors decreases.

(H) Functional analysis of ZT4F, ZT4M, ZT14F and ZT14M DEGs showing enrichment of upstream receptors (top 11) and biological functions (bottom 16) extracted from Ingenuity pathway analysis (IPA). Hot colors indicate pathways predicted to be increased by RHY, and cold colors those decreased. Grey indicates no specific direction. The number of genes associated with each specific term is shown. Dotted grey lines indicate the significance threshold for enrichment (FDR < 0.05).

(I) Representation of the protein-protein interaction network of the enriched transcription factors made including the 18 DEGs common in the ZT4F, ZT4M, ZT14F and ZT14M comparisons.

Gene ontology analysis of RHY time- and sex-dependent effects

The biological functions analysis (Ingenuity Pathway Analysis: IPA) in ZT4F, ZT4M, ZT14F and ZT14M revealed that bulk DEGs were globally significantly enriched for genes linked to cell movement/migration, apoptosis, and necrosis (**Figure 4H**). There was no overlap between all four DEG sets in gene enrichment for IPA canonical pathways, but some canonical pathways were significant in two out of the four comparisons (i.e., EIF2 signalling, oxidative phosphorylation, sirtuin signaling pathway, IL-17 signaling in fibroblasts, mitochondrial dysfunction, and glucocorticoid receptor signaling; **Figure S4A**). Similarly, DAVID gene ontology analysis identified low overlap between comparisons, with ZT4F DEGs enriched in ribosome, mitochondrial and cell adhesion functions; ZT4M DEGs linked to transcription, extracellular region/cell adhesion, protein binding, hormone activity, apoptotic processes, cell development, and

immune responses; ZT14F DEGs enriched in elements of the extracellular region, secretory granules and hormone activity; and ZT14M DEGs in extracellular region, mitochondria and ribosome function (**Figure S4D** and **Table S3**). DEGs overlapping between ZT4F and ZT4M comparisons showed significant enrichment in transcriptional activation and PI3K/Akt signalling pathway, while overlapping DEGs between ZT14F and ZT14M were enriched in extracellular space and steroid metabolic process (**Figure S4E**). In summary, functional analysis supports that the impact of RHY on the genome-wide gene expression signature of the targeted brain slice may vary with time of day and sex.

Core RHY-controlled genes are downstream of inflammation/immune

pathways

Focusing on the 18 DEGs overlapping between the four comparisons in the bulk transcriptome can reveal core effects of RHY (i.e., independent of time of day, sex, and brain region). These 18 DEGs were related to glucocorticoid response (*Sgk1*, *Ddit4*, *Sult1a1*, *Ndufb1*, *PolR2L*), PI3K/Akt signaling (*Arld4*, *Ddit4*, *Gh*, *Sgk1*), lipid metabolism (*Cebpd*, *Ch25h*, *Lcn2*, *Plin4*), immune response (*Cebpd*, *Lcn2*, *Lrg1*), apoptosis (*Ddit4*, *Lcn2*, *Sgk1*), transcription (*PolR2L*, *Hist2h2aa1*, *Snhg6*), endosome processes (*Arrdc2*, *Bloc1s1*), oxidative phosphorylation (*Ndufb1-ps*), and ribosome assembly (*Uba52*) (**Figures 4G** and **S5**). Interestingly, *PolR2L*, *Hist2h2aa1*, *Snhg6*, *Ndufb1-ps*, *Bloc1s1* and *Uba52* (linked to transcription, ribosome assembly, or oxidative phosphorylation) were decreased by RHY at ZT4, but increased at ZT14 (**Figures 4E**, G and S5). A similar behavior was found for *Gh* in males.

A search for predicted upstream regulators of RHY-driven DEGs with IPA revealed that, globally, the four comparisons (i.e., ZT4F, ZT4M, ZT14F, and ZT14M) were enriched in genes downstream of specific transcription factors or their regulators (e.g., ESR1, NFKBIA, EGR1, SOX2, STAT1), immunoglobulin receptors, toll-like receptors (TLR) and cytokines (**Figures 4H**, **S4B**, and **S4C**). This is strongly suggestive of an implication, among others, of cellular mechanisms related to the immune system. A second transcription factor enrichment analysis was conducted using CheA3 (**Figure S6A**; *Keenan et al., 2019*). Only two transcription factors were predicted as upstream regulators of RHY-driven transcriptomic changes by both IPA and CheA3: EGR1 and JUN (linked to the immune system and estrogen receptor signaling, respectively, and both to

PI3K/Akt signaling). In fact, EGR1 and JUN are shown as central nodes in the protein-protein interaction networks (String analysis) build from the transcription factor enrichment analysis of the 18 common DEGs (**Figure 4I**). Overall, when considering the full mouse brain spatial landscape, RHY impacts the mRNA expression of genes downstream of inflammation/immune and estrogen receptor pathways.

Brain region-specific effects of RHY on the transcriptome

Importantly, the platform used for spatial transcriptomics allowed the identification of specific gene sets impacted by RHY in defined regions of the brain. The 10X Genomics automated clustering pipeline defined ensembles of spatial spots belonging to the same brain region, which was adequately represented by uniform manifold approximation and projection (UMAP) for dimension reduction (**Figure S6B**). Subsequently, regions of interest of equivalent sizes and comprising spots corresponding to specific brain regions were defined in a semi-automated manner for saline and RHY brains (**Figure 5A**). In the white matter capsules and tracts (WMT), 192 and 41 DEGs between RHY100 and saline were found at ZT4, and 59 and 108 at ZT14 (in females and males, respectively). In the cerebral cortex, 143 and 17 DEGs were found at ZT4, and 20 and 2 at ZT14 (females and males, respectively); in the basolateral amygdala (BLA), 115 and 3 at ZT4, and 1 and 4 at ZT14; in the hippocampus, 149 and 10 at ZT4, and 4 at ZT14; in the thalamus, 129 and 35 at ZT4, and 31 and 554 at ZT14; in the LH, 83 and 6 at ZT4, and 5 and 57 at ZT14; and finally in a region comprising dorsal, medial and ventromedial hypothalamus (DMVH), 138 and 24 at ZT4, and 13 at ZT14 (**Table S2**). This highlights that the impact of RHY is not restricted to a limited number of brain regions.

Some DEGs were common to most/many brain regions (e.g., *Sgk1*, *Cdkn1a*, *Tmem252*, *Nfkbia*, *Lcn2*, *Uba52*; **Figure 5A**), and these were comprised in clusters C1, C4 or C7 of the previous bulk analysis. In contrast, many DEGs showed brain region specificity (**Figure 5A**, **Table S2**). Indeed, some DEGs were found in only one region, such as *Myl4* in the hippocampus; *Pomc*, *Dlk1* and *Hdc* in DMVH; and many exclusive to WMT (*Aird5b*, *Nt5c3*, *Fam214a*, and *Gpd1*). The large number of DEGs in WMT may suggest an effect of RHY on axonal functioning. Assessing the effect of RHY in smaller regions (e.g., upper cortical layers, hippocampal pyramidal layers CA1, CA2, dentate gyrus granular layer, striatum, thalamic reticular nucleus) showed no DEG,

Figure 5. RHY modifies the brain transcriptome in a brain region-dependent manner.

(A) DEGs of regions of interest representing white matter tracts (WMT), cerebral cortex, basolateral amygdala (BLA), hippocampus, thalamus, lateral hypothalamus (LH) and dorsal, medial and ventromedial hypothalamus (DMVH). Bulk (full slice) data are also included for comparison. Only DEGs (FDR < 0.05) found in more than one comparison (including bulk), and in at least one brain region are shown. Circle size indicates the significance level, hot colors indicate increase, and cold colors decrease.

(B) Gene ontology enriched terms extracted from the DAVID annotation online tool for DEGs of the different brain regions. The number of DEGs enriched for the term category is indicated only for significant terms. The hypothalamus analysis includes LH and DMVH.

which could result from the fewer number of spatial spots contributing to the comparisons. Not surprisingly, some region-dependent effects of RHY were different at ZT4 versus ZT14. For instance, hippocampal Myl4 expression was decreased at ZT4 and increased at ZT14, and some thalamic DEGs were found only at ZT4 (e.g., Tiparp, Frmpd1, Net1, Fos).DEGs found for the cerebral cortex, hippocampus, thalamus and hypothalamus (LH+DMVH) were enriched in biological/cellular/molecular functions generally in line with bulk DEGs (Figure 5B, Table S3). These functions include cell adhesion, mitochondrial and ribosomal processes, as well as neurodegenerative diseases. Interestingly, enriched terms for the cerebral cortex and hippocampus were mainly linked to ZT4F DEGs, with most significantly enriched terms found in females at ZT4. DEGs found for the hypothalamus were also found to be enriched for hormone activity, behaviour and G-protein coupled receptor binding, functions less related to other brain regions in the present dataset. No significant enrichment for biological/cellular/molecular functions was found for the BLA. In sum, the transcriptomic analysis of different brain regions indicates that RHY alters gene expression with some level of region-specificity, and further supports an important impact of time of day and sex. In addition, these findings suggest that RHY can modify wake/sleep architecture and ECoG activity by affecting the functioning of the cerebral cortex, hippocampus, thalamus and hypothalamus, together with that of main white matter tracts.

RHY regulates sleep-related genes

Our genome- and brain-wide transcriptomic approach allowed for the identification of RHY-driven DEGs that are known regulators of wakefulness and sleep. First, RHY increased the expression of *Tsc22d3* in most brain regions at ZT4 (Figures 4E and 5A). *Tsc22d3* codes for a

protein responding to glucocorticoids, having anti-inflammatory roles, and also called delta sleepinducing peptide immunoreactor (DSIP) given its reported relationship with sleep amount *(Friedman et al., 1994; Seifritz et al., 1995).* In addition, RHY decreased the expression of *Hcrt* in the cerebral cortex and thalamus, and modified it with different directions depending on the injection time in the hypothalamus (LH and DMVH; **Figures 5A and 6**). RHY also generally decreased the expression of *Pmch* in several brain regions but increased it in the LH of female mice (**Figures 5A** and **6**). *Hcrt-* and *Pmch-*expressing neurons are well-recognized for their contributions

Figure 6. RHY modifies the expression of sleep-related genes.

Spatial map of Log2 gene expression under saline or RHY treatments conducted at two different times of the day in females (left four columns) and males (right four columns). Warm colors indicate higher gene expression and cold colors lower gene expression.

in determining wakefulness/sleep transitions and ECoG activity (*Adamantidis et al., 2007; Jego et al., 2013; Tsunematsu et al., 2014*). Of particular interest is that RHY appears to drive a spatial reorganization in the expression pattern of *Hcrt* and *Pmch* that was particularly marked in females in which RHY apparently restricts the spatial expression map to the LH at both ZT4 and ZT14 (**Figure 6**).

RHY was also observed to alter the expression of several genes coding for peptides involved in the hypothalamic-pituitary axis (HPA). For instance, RHY generally decreased *Avp* in several studied brain regions (**Figures 5A** and **6**). Similar observations were made for *Oxt, Gh, Prl*, and *Cga. Tshb* and *Pomc* gene expression was decreased by RHY specifically in the hypothalamus and at ZT4 (**Figure 5A**). *Pomc* codes for the precursor of several HPA peptides including corticotropin, melanocyte-stimulating hormone, and β -endorphin. Given the described bidirectional relationship between the HPA and sleep (*Hirotsu et al., 2015; van Dalfsen and Markus, 2018*), it is expected that these alterations participate in wake-suppressing and SWS-inducing effects of RHY. In addition, the HPA is under strong circadian control, and many of these HPA-related genes are expressed in a time of day-dependent manner (*e.g., Avp, Tshb, Pomc; Mure et al., 2018*). Therefore, the modulation of the circadian control of sleep by RHY is a likely route by which changes in wake/sleep amount and alternation can be generated.

Discussion

We here identified how a natural alkaloid component of Uncaria plants shapes wake/sleep amount, alternations, and ECoG activity, as well as multiple mechanisms contributing to these effects using a high spatial resolution transcriptomic strategy. Hypnotic effects of RHY reported for rats (*Yoo et al., 2016*), were first confirmed for mice in both females and males, and are in line with observations that drugs containing Uncaria increase sleep time in humans (*Aizawa et al., 2002; Shinno et al., 2008b; Shinno et al., 2008a; Ozone et al., 2012*). An impact of RHY on ECoG activity indicating specific changes during wakefulness, SWS or PS was reported for the first time. We then revealed that RHY changes the transcriptomic landscape of the brain, affecting multiple brain regions in a manner that highly depends on the time of injection and sex. Of importance is that RHY-driven modifications of the transcriptome comprised gene networks with key contributions to wake/sleep regulation in the hypothalamus, which represents a mechanism by which RHY can induce sleep.

The wake-suppressing and SWS-inducing effects of RHY, together with effects on ECoG activity, were found to depend on time of day or hour after injection. The larger effects found during the dark period in comparison to the light likely results from a ceiling effect related to the already high time spent in SWS during the light period in the healthy animals studied. In accordance with the well-described dynamics of homeostatic sleep pressure (Tobler and Borbely, 1986; Franken et al., 1991), more SWS in the early dark phase is consistent with less delta activity during SWS at this same time of the day. Alternatively, the larger effect of RHY on time spent awake/asleep during the dark could emerge from an accumulative effect of the two consecutive doses of RHY. Our observations of RHY-driven changes in PS going in opposite directions between the light and dark periods, together with the short half-life of RHY in rodents (Wang et al., 2010; Lee et al., 2014; Fu et al., 2021), do not support this alternative explanation. Indeed, RHY decreased PS in the early light period but increased it in the dark period. It is possible that the initial suppression of PS created a PS pressure (Ocampo-Garces et al., 2000; Shea et al., 2008; Arthaud et al., 2020), leading to subsequent PS rebound after the second injection. It is particularly interesting that RHY decreased wake ECoG activity in two frequency ranges previously associated with the drive for homeostatic sleep need: SWS delta and wake theta activity (Deboer, 2015; Vassalli and Franken, 2017). This overall suggests that RHY shapes wake/sleep quality in parallel to wake/sleep amount, which needs to be carefully considered in sleep medicine.

Mechanisms underlying the impact of RHY on wake/sleep were first investigated at the level of selected individual targets previously related to sleep (*Ballester Roig et al., 2021*). In brains sampled 13 h after the last RHY injection, no change in NR2B, GLUR1 or pEPHA4 was found. This contrasts with previous observations made using similar and longer delays between RHY administration and brain sampling (*Zhou et al., 2010; Li et al., 2014; Zhang et al., 2017a*). However, these previous studies reported effects in rodent disease models only (e.g., epilepsy, depression, addiction). It is thus possible that more subtle effects in healthy animals were not captured by the current study design, especially given findings of significant relationships between levels of GLUR1 and selected sleep variables measured about 10 h before. We thus aimed at better defining the mechanisms underlying RHY-driven wake/sleep alterations by precisely focusing on the time delays with highest effects and applying a comprehensive spatial interrogation.

RHY was found to have widespread effects on the brain transcriptome, affecting hundreds of transcripts throughout the brain, generally associated to apoptosis, necrosis, and cell movement/migration. In addition, the core 18 genes modified by RHY independent of time of injection and sex were linked to pathways and cellular functions previously described to be impacted by RHY (e.g., PI3K/Akt signaling, immune response/inflammation; Huang et al., 2014; Lai et al., 2019; Long et al., 2019; Ballester Roig et al., 2021; Fu et al., 2021). Interestingly, there is a considerable overlap between the present RHY-driven DEGs and genes reported to be modulated by the wake/sleep history (Cirelli and Tononi, 2000; Cirelli et al., 2004; Mongrain et al., 2010; Vecsey et al., 2012; Bellesi et al., 2013; Husse et al., 2017; Narwade et al., 2017; Diessler et al., 2018; Guo et al., 2019; Oyola et al., 2019; Guo et al., 2020; Wei, 2020; Gaine et al., 2021; Jha et al., 2022). For instance, total sleep deprivation (SD) was found to increase the expression of Sgk1, Gh, Nfkbia, and Cdkn1a in the cerebral cortex and hippocampus (Diessler et al., 2018; Wei, 2020), while PS restriction increased Lcn2, Pmch, Hcrt, Oxt, and Pomc (Narwade et al., 2017; Oyola et al., 2019). Tsc22d3 also represents a target commonly impacted by RHY and SD (Mongrain et al., 2010; Vecsey et al., 2012; Guo et al., 2020; Wei, 2020; Gaine et al., 2021; Jha et al., 2022), which has a particular relevance to sleep regulation as indicated before. As a consequence, RHY alters biological functions known to respond to sleep loss (e.g., stress responses, apoptotic processes, cytokine and TNF signaling, transcriptional processes, cell differentiation; (Cirelli and Tononi, 2000; Cirelli et al., 2004; Vecsey et al., 2012; Bellesi et al., 2013; Husse et al., 2017; Guo et al., 2019; Guo et al., 2020; Gaine et al., 2021)). This finding that RHY impacts gene networks responding to SD reveals a route by which it can promote sleep. We hypothesize that RHY is inducing a specific molecular program encompassing multiple brain regions and favoring sleep. Importantly, RHY-driven gene expression changes might depend on time of day, which is fully in line with the well-know effect of daytime/circadian time on the brain transcriptome (Mure et al., 2018; Noya et al., 2019). This suggests that the molecular reprograming induced by RHY differs between the early light and early dark periods as an adaptation to the specific internal transcriptional state of the brain.

A main discovery of the current study concerns the impact of RHY on hypothalamic regions. In the hypothalamus, RHY affected genes related to hormone activity and behaviour, which likely contributes to behavioral observations reported here and by other studies *(Shi et al., 1993; Zhou et al., 2010; Yoo et al., 2016; Zhang et al., 2017b; Yang et al., 2018)*. RHY was notably found to modify the expression of *Hcrt* and *Pmch* in the LH and DMVH. HCRT neurons project to cortical and thalamic areas, and activation of these cells was found to induce behavioral arousal

and neuronal arousal/desynchronization of the cortex (*Bayer et al., 2004; Kirouac et al., 2005; Adamantidis et al., 2007*). MCH neurons were shown to fire during sleep (*Hassani et al., 2009*), and the activation of these cells induces PS (*Jego et al., 2013; Tsunematsu et al., 2014*), or both SWS and PS in the dark phase (*Blanco-Centurion et al., 2016*). Thus, the impact of RHY on hypothalamic *Hcrt* and *Pmch* expression pattern could represent a key mechanism by which RHY modulates time spent in wakefulness/sleep. In females in particular, the spatial reorganization of hypothalamic *Pmch* expression and its increase in the LH might directly contribute to wakesuppression/SWS-induction.

Sex differences in sleep amount and synchronized cortical activity are well-known in humans and rodents (*Carrier et al., 2001; Mongrain et al., 2005; Koehl et al., 2006; Bixler et al., 2009; Cusmano et al., 2014; Swift et al., 2020).* Here, we have highlighted that many effects of RHY are different in female mice in comparison to males, which was particularly striking with regards to wake/sleep architecture, ECoG activity, and spatial transcriptome. It is interesting to note that dose-dependent effects on wake/sleep amount and ECoG were only found for females, and thus that males would not benefit from a higher dosage in the tested range. The generally larger effects of RHY on sleep variables in females was paralleled by a generally stronger impact on the transcriptome, particularly during the light period. Sex differences in sleep are often attributed to gonadal hormones (*Gervais et al., 2017; Dib et al., 2021*), but sex differences in absorption, metabolism, or downstream effectors of RHY (*Tajerian et al., 2015; Braun et al., 2018; Zhang et al., 2019; Jourova et al., 2020*) are also potential contributors to the generally higher effects seen in females. Our findings definitely support the need to systematically consider both females and males when investigating the potential of a drug for sleep disturbances.

In conclusion, this study depicts RHY as an alkaloid herb derivative with great promise for sleep medicine. This was done using a detailed identification of its effects on wakefulness and sleep states at the level of architecture and synchronized cortical activity, combined to an exhaustive examination of the brain transcriptome. We have exposed potential key sleep-relevant mechanisms of action of RHY in the brain, which include gene networks with roles in the immune system/inflammation and hormone signaling, and contributions of several brain regions comprising the hypothalamus. Given that the transcriptome does not always reflect changes occurring at protein and functional levels (*Liu et al., 2016; Gaine et al., 2021; Joglekar et al., 2021*), future research questioning the translatome, proteome, and phosphoproteome will be needed to further
increase the understanding of the way by which RHY induces sleep. Furthermore, the present study has investigated a single coronal brain slice selected to represent a variety of regions with relevance to sleep, but follow-up investigations should consider other important sleep-relevant regions such as the ventrolateral preoptic hypothalamus and the brainstem to fully decipher how RHY benefits sleep.

Author contributions

Conceptualization by M.N.B.R. and V.M.; mice experiments conducted by M.N.B.R., T.L. and J.D.-G.; ECoG analyzed by M.N.B.R. and T.L.; protein measurements by M.N.B.R. and Y.M.; library preparation and tissue staining by M.N.B.R. and J.D.-G.; RNAseq data analysis by M.N.B.R.; graphical representation by M.N.B.R., J.D.-G., and O.T.; manuscript written and revised by M.N.B.R., T.L. and V.M.; project administration and funding acquisition by M.N.B.R. and V.M. This work was supported by a Vanier Canada Graduate Scholarship (M.N.B.R.), a J.A. De Sève fellowship from the Recherche CIUSSS-NIM (T.L.), and the Canada Research Chair in Sleep Molecular Physiology (V.M.).

Acknowledgements

The authors are thankful to Chloé Provost for help with surgeries and peri-operative care; Neil Winegarden and Patrick Lacasse from 10x Genomics for technical support regarding spatial transcriptomics; Benoît Delignat-Lavaud and Romina López Urbina for comments on the manuscript; and Sebastien Saucier, Julien Beaudry and Jean-Marc Lina for assistance with hardware.

Star***Methods**

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies (and dilutions)		
Mouse anti-actin (1:8000)	Sigma Aldrich	Cat# A5441
Rabbit anti-NR2B (1:1000)	Sigma Aldrich	Cat# 06-600
Rabbit anti-Glutamate receptor 1 (1:1000)	Sigma Aldrich	Cat# AB1504
Rabbit anti-phospho-Glutamate Receptor 1 (Ser845) (1:1000)	Sigma Aldrich	Cat# AB5849
Guinea pig anti-Glutamate Transporter, Glial (1:5000)	Sigma Aldrich	Cat# AB1783
Mouse anti-Cdk5 (1:1000)	Sigma Aldrich	Cat# SAB4504276
Mouse anti-EphA4 (1:1000)	Invitrogen	Cat# 37-1600
Rabbit anti-phospho-EphA4 (Tyr602) (1:500)	ECMBiosciences	Cat# EP2731
IRDye® 680RD Anti-mouse IgG (H+L) (1:15000)	LI-COR	Cat# 926-68070
IRDye® 800CW Anti-rabbit IgG (H+L) (1:15000)	LI-COR	Cat# 926-32211
IRDye® 680RD Donkey anti-Guinea Pig IgG (H+L) (1:15000)	LI-COR	Cat# 926-68077
Chemicals, peptides, and recombinant proteins		
Rhynchophylline	Baoji Herbest Bio-Tech	Cat# 76-66-4
Commercial kits		
Visium Spatial Gene Expression Slide & Reagent Kit 4	10x Genomics	Cat# 1000187
Visium Accessory Kit	10x Genomics	Cat# 1000194
	10x Conomion	Cat# 1000215
Dual Index Kit TT Set A, 96 rxns	TOX GENOMICS	Cat# 1000215
Dual index Kit TT Set A, 96 rxns Deposited data	TOX Genomics	Cat# 1000215
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data	Gene Expression Omnibus - NCBI	GSE218537 and GSE217058
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI	GSE218537 and GSE217058 GSE218537
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI	GSE218537 and GSE217058 GSE218537
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR JAX:000664
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc.	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider et al 2012	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ Prism 7	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider et al 2012 GraphPad Software Inc.	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/ Version #6
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ Prism 7 Space Ranger	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider <i>et al</i> 2012 GraphPad Software Inc. 10x Genomics	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/ Version #6 Version #1.2.2
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ Prism 7 Space Ranger Loupe Browser 6.0	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider et al 2012 GraphPad Software Inc. 10x Genomics 10x Genomics	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/ Version #6 Version #1.2.2 Version #6
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ Prism 7 Space Ranger Loupe Browser 6.0 Others	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider et al 2012 GraphPad Software Inc. 10x Genomics 10x Genomics	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/ Version #6 Version #1.2.2 Version #6
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ Prism 7 Space Ranger Loupe Browser 6.0 Others Drill	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider et al 2012 GraphPad Software Inc. 10x Genomics 10x Genomics	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/ Version #6 Version #1.2.2 Version #6 Cat# 8050-N/18
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ Prism 7 Space Ranger Loupe Browser 6.0 Others Drill 0.7 mm drill bit	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider <i>et al</i> 2012 GraphPad Software Inc. 10x Genomics Dremel Dremel	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/ Version #6 Version #1.2.2 Version #6 Cat# 8050-N/18 Cat# 628
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ Prism 7 Space Ranger Loupe Browser 6.0 Others Drill 0.7 mm drill bit Flat fillister head self tapping screws	Fox Genomics Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider et al 2012 GraphPad Software Inc. 10x Genomics Dremel Dremel MORRIS	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/ Version #6 Version #1.2.2 Version #6 Cat# 8050-N/18 Cat# 628 Cat# FF00CE125
Dual Index Kit TT Set A, 96 rxns Deposited data Raw Visium Spatial cDNA-seq data Processed Visium Spatial cDNA-seq data Experimental models: Organisms/strains C57BL/6J mice Software and algorithms Stellate Harmonie Statistica 6.1 ImageJ Prism 7 Space Ranger Loupe Browser 6.0 Others Drill 0.7 mm drill bit Flat fillister head self tapping screws RelyX Unicem 2, Adhesive Resin Cement A2	Gene Expression Omnibus - NCBI Gene Expression Omnibus - NCBI The Jackson Laboratory Natus, San Carlos, CA StatSoft Inc. Schneider et al 2012 GraphPad Software Inc. 10x Genomics Dremel Dremel MORRIS 3M	GSE218537 and GSE217058 GSE218537 JAX: 000664; RRID: IMSR_JAX:000664 Version #6.2f Version #6 https://imagej.nih.gov/ij/ Version #6 Version #1.2.2 Version #6 Cat# 8050-N/18 Cat# 628 Cat# FF00CE125 Cat# 56849

Gold wire 0.2 mm diameter	Delta scientific	Cat #920-862-41
Soldering iron	Weller	WES51
36-Channel EEG Wearable Headbox	LaMONT Medical	Cat# 832-000350
Conductors Awg PVC Insulation	Calmont Wire & Cables	Cat# HC-0819075R0
6-channel connector	ENA AG	Cat# BPHF2-O6S-E-3.2
Swivel connector	Crist Instrument	Cat# 4-TBC-9-S
	Company Inc.	
Programmable Amplifier	LaMONT Medical	Cat# 815-000002-S2

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources, protocols, and reagents should be directed to and will be fulfilled by the lead contact, Valérie Mongrain (valerie.mongrain@umontreal.ca).

Materials Availability

This study did not generate new unique reagents.

Data and code Availability

Spatial transcriptomics raw and processed data have been deposited in the GEO database (https://www.ncbi.nlm.nih.gov/geo/), and are publicly available as of the date of publication. Accession numbers are #GSE218537 and #GSE217058. Original Western blot images and quantifications are available as supplemental material (Table S1). The code generated to create the heatmaps, box plots and Venn diagrams will be available upon request to the lead contact, Valérie Mongrain (valerie.mongrain@umontreal.ca).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Male and female C57BL/6J were bred on site. Animals were housed in a 12 h light / 12 h dark cycle, at $24 \pm 1^{\circ}$ C, with water and food available *ad libitum*. All protocols were conducted in

accordance with guidelines of the Canadian Council on Animal Care and approved by the *Comité d'éthique de l'expérimentation animale* of the *CIUSSS-NIM*.

METHOD DETAILS

ECoG and EMG electrode implantation

When mice reached 9-10 weeks-old, they were habituated to individual cages for two weeks. Subsequently, mice underwent implantation of electrodes for electrocorticography (ECoG) and electromyography (EMG) as detailed previously (*Mongrain et al., 2010; El Helou et al., 2013*). Female (n = 31 [n = 11 Saline, n = 9 RHY50, n = 11 RHY100], 12.7 ± 2.0 w old, 20.7 ± 1.7 g) and male (n = 29 [n = 9 Saline, n = 11 RHY50, n = 9 RHY100], 12.0 ± 3.2 w old, $26. \pm 1.7$ g) mice were implanted with electrodes under deep Ketamine/Xylazine anaesthesia (120/10 mg/kg, i.p. injection). Two gold-plated screws (diameter 1.1 mm) served as ECoG electrodes and were screwed through the skull over the right cerebral hemisphere (anterior 1.5 mm lateral to midline, 1.5 mm anterior to bregma; posterior 1.5 mm lateral to midline, 1 mm anterior to lambda). An additional screw placed on the right hemisphere (2.6 mm lateral to midline, 0.7 mm posterior to bregma) was used as a reference. Three other screws were implanted over the left hemisphere as anchors. Two gold wires were inserted in neck muscles to serve as EMG electrodes. The ECoG and EMG electrodes were soldered to a connector and, together with the anchor screws, cemented to the skull. Once awake after anesthesia, mice received a subcutaneous injection of buprenorphine (0.1 mg/kg), and were allowed to recover for 5 days.

RHY preparation

It has been shown that 25-80 mg/kg of RHY modifies brain protein levels after one or several intraperitoneal injections (*Lee et al., 2014; Zhang et al., 2017a*). Moreover, RHY has been detected in the mouse brain 10 min to 3 h after 50 mg/kg oral administration, and in the rat brain 15 min to 6 h after 10 mg/kg intravenous administration (*Lee et al., 2014*), reaching maximum plasmatic concentrations 1-4 h after 37-50 mg/kg oral administration (*Wang et al., 2010; Fu et al., 2021*). Therefore, two doses of RHY were tested and compared with vehicle (saline: NaCl 0.9%): RHY 50 mg/kg (RHY50) and RHY 100 mg/kg (RHY100). RHY (Baoji Herbest Bio-Tech Co.,

Ltd, # 76-66-4) was diluted in NaCl 0.9 %, and homogenized the day before administration. RHY50 and RHY100 dilutions were kept at 4°C until use.

Protocols for ECoG/EMG recording

Following recovery from implantation surgery, mice were habituated to cabling conditions for one week before experiments. Their ECoG/EMG signals were then recorded during 48 h comprising 24 h of undisturbed/baseline (BL) conditions and 24 h under injection (INJ) conditions. On the INJ day, all mice received two intraperitoneal injections, one at ZT0 (i.e., light onset) and one at ZT11 (i.e., 1 h before light offset) of saline, RHY50 or RHY100. ECoG and EMG signals were amplified (Lamont amplifier) and sampled at 256 Hz with the software Harmonie (Natus, San Carlos, CA). Mice were sacrificed at between ZT0 and ZT1 immediately after the INJ day (i.e., 24 h after the first and about 13 h after the second injection) by cervical dislocation, and brains were immediately dissected to sample the cerebral cortex, hippocampus and thalamus/hypothalamus. Brain tissues were quickly frozen on dry ice, and kept at -80°C until use.

Immunoblotting and protein quantification

Brain tissues were processed to extract total and synaptoneurosomal (SYN) proteins similar to previously performed (*Seibt et al., 2012; El Helou et al., 2013*). Ice-cold modified RIPA buffer [10 mM HEPES, 2 mM EDTA, 1 mM EDTA, 0.5 mM DTT, protease and phosphatase inhibitors (Sigma-Aldrich)] was added to samples, which was followed by mechanical homogenization on ice (Pellet Pestle, Sigma Aldrich) until translucid (3 to 4 30-seconds trains). For total protein, a fraction of the homogenate was further sonicated (2 sec pulses, 5 sec pauses, 5 times) on ice, centrifuged at 13,000 rpm for 2 min at 4°C to remove cellular debris, and the supernatant was kept at -80°C for subsequent analysis. For SYN extraction, RIPA buffer was added to the remaining homogenate, vortexed, and centrifuged to remove nuclear/cell debris at 2,000 g and 4°C for 2 min. The supernatant was then passed through a 5 μ m pore centrifugal filter (Ultrafree®-CL, Millipore), and centrifuged at 5,000 g and 4°C for 2 min. The filtrate was mixed and centrifuged at 5,000 g and 4°C for 15 min. The supernatants were then immediately resuspended in boiling RIPA buffer, and kept at -80°C until subsequent analysis.

For protein samples with concentration 0.6 μ g/ μ L and above, 50 μ g of protein were loaded on gels and separated by SDS-PAGE using an 8% acrylamide gel, and migration at 100 V for 65

min. Proteins were transferred to a PVDF membrane (Bio-Rad) with transfer conditions of 100 V and 60 min. Membranes were blocked with blocking buffer (5% dry milk diluted in TBS [Trisbuffered saline]) for 1 h at room temperature. Primary antibodies were diluted in TBS-T blocking buffer (5% dry milk diluted in TBS [Tris-buffered saline 0.1% Tween 20]; except anti-phospho-EphA4 diluted in 5% BSA [bovine serum albumin] diluted in TBS-T), and were incubated overnight at 4°C. After washes with TBS-T, membranes were incubated with anti-Actin antibody (diluted in TBS-T blocking buffer) for 1 h at room temperature. After washing again, membranes were incubated for 1.5 h with secondary antibodies diluted in TBS-T blocking buffer for 1 h at room temperature. Membranes were revealed using Odyssey CLx imaging system (LI-COR).

Protocols for spatial transcriptomics

To study changes in the spatial transcriptome, saline and RHY100 treatments were compared. Four females and four males were used (12-13 w old): two females and two males received saline (two of each sex at ZT0 and one of each sex also at ZT11), and two females and two males received RHY100 (two of each sex at ZT0 and one of each sex also at ZT11). Mice were sacrificed at ZT4 or ZT14, and brains were immediately sampled, frozen on dry ice together with embedding in OCT compound (VWR International), and stored at -80°C until processing.

Tissue preparation for spatial transcriptomics

Tissue preparation was conducted according to the 10x Genomics Visium Spatial Gene Expression protocol (CG000240 Rev C). Ten µm coronal slices were cut at -23°C with a cryostat (HM525 NX, Thermo Scientific for female brains, Leica CM3050 S Cryostat for male brains), and slices around 1.5 mm posterior to the bregma were mounted on chilled Visium Spatial Gene Expression slides (10x Genomics), and kept at -80°C for 2 to 4 days. Slides were then incubated in a thermocycler (using adaptor plate, 10x Genomics Accessory Kit, 1000194) for 1 min at 37°C, and immersed in Methanol for 30 min at -20°C. For Hematoxylin-Eosin staining (10X Genomics protocol CG000160 Rev A), slides were covered with isopropanol for 1 min at room temperature and, after air dry, covered with Hematoxylin for 7 min at room temperature. After washing, slides were covered with Bluing Buffer for 2 min at room temperature, washed, and covered with Eosin mix for 1 min at room temperature. Lastly, slides were dried using the thermocycler adaptor plate at 37°C for 5 min, and imaged using an Axio Imager M2 microscope (Zeiss, Canada).

Library preparation

Library were prepared according to 10x Genomics Visium Spatial Gene Expression protocol (CG000239 Rev D). Immediately after imaging, brain slices were covered with permeabilization enzyme and incubated on the thermocycler adaptor plate at 37°C for 6 min. After washing with 0.1X SSC, slices were covered with a reverse transcription master mix (including reverse transcription reagent, template switch oligonucleotides, reducing agent B and reverse transcription enzyme D), and incubated on the thermocycler adaptor plate at 53°C for 45 min. Then, the resulting cDNA (on slides) was incubated with 0.08M KOH for 5 min at room temperature, washed with EB buffer and incubated with second strand synthesis mix (including second strand reagent, primers and enzyme) for 15 min at 65°C. Slices are washed again with buffer EB, and denatured by incubation in 0.08M KOH for 10 min at room temperature. Solutions containing cDNA were transferred to a tube containing Tris 1 M pH 7.0 (1:8 final volume). Samples were mixed with cDNA amplification mix (containing amplification buffer and cDNA primers), and incubated in the thermal cycler (98°C for 3 min; 15 cycles of 15 sec at 98°C, 20 sec at 63°C and 1 min at 72°C; 1 min at 72°C). Then, cDNA was cleaned with SPRIselect beads (Beckman Coulter, Cat# B23318) 0.6X, washed with ethanol 80%, and resuspended with buffer EB. For cDNA fragmentation, end repair and A-tailing, samples were incubated in fragmentation mix (containing fragmentation buffer and enzyme) for 5 min at 32°C, and 30 min at 65°C. Samples were cleaned again with SPRIselect 0.6X and 0.8X, washed with ethanol 80%, and resuspended with buffer EB. Afterwards, samples were mixed with the adaptor ligation mix (containing ligation buffer, DNA ligase and adaptor oligos), and incubated at 20°C for 15 min. Post-ligation cleanup was done again with SPRIselect 0.8X, washed with ethanol 80%, and resuspended with buffer EB. Sample indexes i5 and i7, and amplification mix were added to the samples and incubated in the thermal cycler: 45 min at 98°C; 15 cycles of 98°C for 20 sec, 67°C for 30 sec, 72°C for 20 sec; and 72°C for 1 min. Then, cDNA was purified with SPRIselect 0.6X and 0.8X, washed with ethanol 80%, and resuspended with buffer EB. Libraries were stored at -20°C.

QUANTIFICATIONS AND STATISTICAL ANALYSES

Sleep scoring and analysis

ECoG and EMG signals were segmented into 4-s epochs, and the bipolar ECoG signal (signal difference between the anterior and posterior electrodes) and EMG were used to visually assign a vigilance state (wakefulness, SWS or PS) to each epoch by considering ECoG/EMG frequency and amplitude. Total time spent in each vigilance state, and the mean duration of individual bouts of vigilance states were averaged for the 12 h light and dark periods. The total number of bouts of 4, 8, 16, 32, 60, 120, 240, and 960 sec was calculated for the 24 h BL or INJ, for wake, SWS and PS separately. The proportion (percent) of time spent in each vigilance state and the mean duration of individual state bouts were also calculated for full 24 h. Hourly time-courses were calculated for mean time spent in each state and the total number of bouts.

For the ECoG activity analysis, four mice were discarded because of numerous artifacts in the ECoG signal (final analyzed sample: females n = 11 saline, 9 RHY50, 9 RHY100; males n = 8 saline, 10 RHY50, 9 RHY100). For analyzed mice, artifacts were excluded, and the bipolar ECoG signal was submitted to spectral analysis conducted using a Fast Fourier transform (FFT). ECoG activity during wake, SWS and PS was calculated for the full 24 h between 0.75 and 30 Hz with a 0.25 Hz resolution. Power spectra of the 24-h INJ recording were expressed as a percent of the mean power of all 0.25-Hz bins of all states during the 24-h BL for each mouse. The time course of SWS delta (1-4 Hz), delta 1 (0.75-2 Hz), delta 2 (2.5-4 Hz), theta (6-9 Hz), and sigma (10-13 Hz) activity, and of wake theta (6-9 Hz) and alpha (8-12 Hz) activity was calculated using averages per time interval as done previously *(Curie et al., 2013; Areal et al., 2020)*. In brief, to take into account the distribution of wakefulness and SWS sleep, SWS activity was average per interval for 12 equal intervals during light periods, and 6 equal intervals during dark periods; while wake activity was average for 6 equal intervals during light periods, and 12 equal intervals during dark periods. Then, relative activity was calculated for each interval as percent of the 24-h BL mean for each mouse.

Sleep variables statistical analyses

Statistica 6.1 (StatSoft Inc./Tibco Software Inc., Palo Alto, CA, USA) was used to perform all statistical analysis of sleep variables. Vigilance state variables calculated for the 12-h light and dark periods were compared between treatments separately for female and male mice using oneway ANOVAs. Vigilance state variables with significant treatment effects were further decomposed with post-hoc Tukey tests. The percentage of time spent in each vigilance state was compared between treatments and sex using two-way analyses of variance (ANOVAs). State percentages with significant treatment-by-sex interaction were further decomposed with planned comparisons. Vigilance state variables calculated per hour or time interval were analyzed using two-way repeated-measure ANOVAs (rANOVA), for which the significance level was adjusted by the Huynd-Feldt correction. Relative activity per frequency bin was also analyzed using twoway rANOVA, but the significance level was adjusted by the more strict Greenhouse–Geisser correction. Significant treatment-by-time, treatment-by-intervals or recording day (BL vs INJ)-byfrequency bin interactions were decomposed using planned comparisons. Data are reported as mean and standard error of the mean (SEM), and the threshold for statistical significance was set to 0.05.

Protein quantification statistical analysis

Bands from immunoblots were analyzed using ImageJ (NIH) (Schneider et al., 2012). Quantifications were normalized to actin, to a control sample (included on all membranes), and to the average of the total protein of the saline treatment. Values normalized to actin and the control sample for phosphorylated and non phosphorylated forms of EPHA4 and GLUR1 were used to calculate the ratios of phosphorylation and were afterwards normalized to the average of the ratio of the saline treatment. Prism 7 (GraphPad Software Inc., La Jolla, CA, USA) was used to perform statistical analyses, and to prepare figures. Protein levels were compared between treatments separately for female and male mice using one-way ANOVAs. Pearson correlations were analysed between EPHA4, pEPHA4, GLUR1, pGLUR1 and NR2B levels and vigilance-state variables at the time-interval of higher effect of RHY (between ZT13 and ZT17).

DNA sequencing

Paired-end dual indexed RNAseq was conducted using an Illumina NovaSeq6000 SP100 sequencer (Genome Quebec Innovation Centre, Montreal, Canada), at a sequencing depth of approximately 150M read pairs per sample (> 40 k reads per spot under tissue). RNAseq was performed according to instructions of 10x Genomics for the Visium Spatial Gene Expression kit: read 1, 28 cycles; i7 index read, 10 cycles; i5 index read, 10 cycles; read 2, 90 cycles.

RNAseq processing and gene expression analyses

Sequencing reads (demultiplexed FASTQ files) were aligned to the reference mouse genome (mm10) using the Space Ranger "spaceranger count" pipeline based on the splicing-aware aligner STAR. The pipeline initially trimmed the template switch oligo and poly-A sequences to improve the sensitivity of the alignment. The pipeline aligned reads to the genome, detected tissue spots by aligning the Hematoxylin-Eosin image using the fiducial frame of the capture area, and performed the barcode/unique molecular identifier counting. Reads mapped to the transcriptome with high confidence were used for analysis. Then, the pipeline "spaceranger aggr" was used to find genes differentially expressed between ZT4S and ZT4R samples, and between ZT14S and ZT14R samples for females and males. Gene-spot matrices were analysed using Loupe Browser, and DEGs were considered significant when FDR < 0.05 (Benjamini-Hochberg correction for multiple comparisons; Benjamini and Hochberg, 1995). Common DEGs between time point and sex were analyzed using VIB/UGent Bioinformatics & Evolutionary Genomics Venn diagram online calculator and R version 4.1.2. Clustered heatmap was created using the Ward.D2 clustering method. "Spaceranger aggr" was run again using ZT4S, ZT4R, ZT14S, and ZT14R from females, and afterwards from males, to obtain figures of spatial gene expression normalized per slide (thus, for males and females separately).

Functional gene ontology analyses

DEG lists were introduced in the DAVID annotation online tool, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation online tool, and the Ingenuity Pathway Analysis software (IPA, Qiagen) for functional analyses. Significant terms in the DAVID annotation online tool were considered when FDR < 0.05. In IPA, enrichment z-score was calculated considering transcripts Log2 fold change, and enriched terms for canonical pathway were considered when FDR ≤ 0.01 ; while enriched terms for predicted upstream elements were

considered when FDR ≤ 0.0001 , and z-score > 2; terms for predicted upstream transcription factors when FDR ≤ 0.01 , and z-score > 1.5; terms for predicted upstream receptors when FDR ≤ 0.01 , and z-score > 1.5; terms for predicted downstream functions when FDR ≤ 0.001 . Enriched terms for biological processes (FDR < 0.0001), molecular function (FDR < 0.001), and KEGG (FDR < 0.001) were also reported. Transcription factor enrichment analysis was performed with the online tool ChIP-X Enrichment Analysis Version 3 (ChEA3; *(Keenan et al., 2019)*, and subsequent analysis of functional protein association networks was done with the online database STRING *(Szklarczyk et al., 2021)*.

ADDITIONAL RESOURCES

Website 10x genomics: https://www.10xgenomics.com/products/spatial-gene-expression
Website GOA sites
Website VIB/UGent Bioinformatics & Evolutionary Genomics Venn diagram online calculator: https://bioinformatics.psb.ugent.be/webtools/Venn/
Website Ingenuity Pathway Analysis (IPA): https://digitalinsights.qiagen.com/productsoverview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
Website DAVID: https://david.ncifcrf.gov/
Website Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation online tool: https://www.genome.jp/kegg/
Website ChEA3: https://maayanlab.cloud/chea3/
Website STRING analysis: https://string-db.org/

References

- Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K., de Lecea, L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature *450*, 420-424.
- Aizawa, R., Kanbayashi, T., Saito, Y., Ogawa, Y., Sugiyama, T., Kitajima, T., Kaneko, Y., Abe, M., Shimizu, T. (2002). Effects of Yoku-kan-san-ka-chimpi-hange on the sleep of normal healthy adult subjects. Psychiatry Clin Neurosci 56, 303-304.

- Amzica, F., Steriade, M. (1998). Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107, 69-83.
- Areal, C.C., Cao, R., Sonenberg, N., Mongrain, V. (2020). Wakefulness/sleep architecture and electroencephalographic activity in mice lacking the translational repressor 4E-BP1 or 4E-BP2. Sleep 43.
- Arthaud, S., Libourel, P.A., Luppi, P.H., Peyron, C. (2020). Insights into paradoxical (REM) sleep homeostatic regulation in mice using an innovative automated sleep deprivation method. Sleep *43*, zsaa003.
- Ballester Roig, M.N., Leduc, T., Areal, C.C., Mongrain, V. (2021). Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 3, 312-341.
- Bayer, L., Serafin, M., Eggermann, E., Saint-Mleux, B., Machard, D., Jones, B.E., Muhlethaler, M. (2004). Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J Neurosci 24, 6760-6764.
- Bellesi, M., Pfister-Genskow, M., Maret, S., Keles, S., Tononi, G., Cirelli, C. (2013). Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 33, 14288-14300.
- Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) *57*, 289-300.
- Bixler, E.O., Papaliaga, M.N., Vgontzas, A.N., Lin, H.M., Pejovic, S., Karataraki, M., Vela-Bueno, A., Chrousos, G.P. (2009). Women sleep objectively better than men and the sleep of young women is more resilient to external stressors: effects of age and menopause. J Sleep Res 18, 221-228.
- Blanco-Centurion, C., Liu, M., Konadhode, R.P., Zhang, X., Pelluru, D., van den Pol, A.N., Shiromani, P.J. (2016). Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 44, 2846-2857.
- Boyce, R., Glasgow, S.D., Williams, S., Adamantidis, A. (2016). Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science *352*, 812-816.
- Braun, M.D., Kisko, T.M., Vecchia, D.D., Andreatini, R., Schwarting, R.K.W., Wohr, M. (2018). Sex-specific effects of Cacna1c haploinsufficiency on object recognition, spatial memory, and reversal learning capabilities in rats. Neurobiol Learn Mem 155, 543-555.
- Carmona, M.A., Murai, K.K., Wang, L., Roberts, A.J., Pasquale, E.B. (2009). Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A *106*, 12524-12529.
- Carrier, J., Land, S., Buysse, D.J., Kupfer, D.J., Monk, T.H. (2001). The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20-60 years old). Psychophysiology *38*, 232-242.
- Cirelli, C., Tononi, G. (2000). Gene expression in the brain across the sleep-waking cycle. Brain Res 885, 303-321.
- Cirelli, C., Gutierrez, C.M., Tononi, G. (2004). Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron *41*, 35-43.
- Conti, B., Maier, R., Barr, A.M., Morale, M.C., Lu, X., Sanna, P.P., Bilbe, G., Hoyer, D., Bartfai, T. (2007). Regionspecific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 12, 167-189.
- Curie, T., Mongrain, V., Dorsaz, S., Mang, G.M., Emmenegger, Y., Franken, P. (2013). Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36, 311-323.

- Cusmano, D.M., Hadjimarkou, M.M., Mong, J.A. (2014). Gonadal steroid modulation of sleep and wakefulness in male and female rats is sexually differentiated and neonatally organized by steroid exposure. Endocrinology *155*, 204-214.
- Deboer, T. (2015). Behavioral and electrophysiological correlates of sleep and sleep homeostasis. Curr Top Behav Neurosci 25, 1-24.
- Del Percio, C., Drinkenburg, W., Lopez, S., Infarinato, F., Bastlund, J.F., Laursen, B., Pedersen, J.T., Christensen, D.Z., Forloni, G., Frasca, A., Noe, F.M., Bentivoglio, M., Fabene, P.F., Bertini, G., Colavito, V., Kelley, J., Dix, S., Richardson, J.C., Babiloni, C., PharmaCog, C. (2017). On-going electroencephalographic rhythms related to cortical arousal in wild-type mice: the effect of aging. Neurobiol Aging 49, 20-30.
- Dib, R., Gervais, N.J., Mongrain, V. (2021). A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents. Neurobiol Sleep Circadian Rhythms 11, 100068.
- Diessler, S., Jan, M., Emmenegger, Y., Guex, N., Middleton, B., Skene, D.J., Ibberson, M., Burdet, F., Gotz, L., Pagni, M., Sankar, M., Liechti, R., Hor, C.N., Xenarios, I., Franken, P. (2018). A systems genetics resource and analysis of sleep regulation in the mouse. PLoS Biol 16, e2005750.
- El Helou, J., Belanger-Nelson, E., Freyburger, M., Dorsaz, S., Curie, T., La Spada, F., Gaudreault, P.O., Beaumont,
 E., Pouliot, P., Lesage, F., Frank, M.G., Franken, P., Mongrain, V. (2013). Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc Natl Acad Sci U S A *110*, 9974-9979.
- Filosa, A., Paixao, S., Honsek, S.D., Carmona, M.A., Becker, L., Feddersen, B., Gaitanos, L., Rudhard, Y., Schoepfer, R., Klopstock, T., Kullander, K., Rose, C.R., Pasquale, E.B., Klein, R. (2009). Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12, 1285-1292.
- Franken, P., Tobler, I., Borbely, A.A. (1991). Sleep homeostasis in the rat: simulation of the time course of EEG slowwave activity. Neurosci Lett *130*, 141-144.
- Friedman, T.C., Garcia-Borreguero, D., Hardwick, D., Akuete, C.N., Stambuk, M.K., Dorn, L.D., Starkman, M.N., Loh, Y.P., Chrousos, G.P. (1994). Diurnal rhythm of plasma delta-sleep-inducing peptide in humans: evidence for positive correlation with body temperature and negative correlation with rapid eye movement and slow wave sleep. J Clin Endocrinol Metab 78, 1085-1089.
- Fu, A.K.Y., Hung, K.W., Huang, H., Gu, S., Shen, Y., Cheng, E.Y., Ip, F.C., Huang, X., Fu, W.Y., Ip, N.Y. (2014). Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A 111, 9959-9964.
- Fu, W.Y., Hung, K.W., Lau, S.F., Butt, B., Yuen, V.W., Fu, G., Chan, I.C., Ip, F.C.F., Fu, A.K.Y., Ip, N.Y. (2021). Rhynchophylline Administration Ameliorates Amyloid-beta Pathology and Inflammation in an Alzheimer's Disease Transgenic Mouse Model. ACS Chem Neurosci 12, 4249-4256.
- Gaine, M.E., Bahl, E., Chatterjee, S., Michaelson, J.J., Abel, T., Lyons, L.C. (2021). Altered hippocampal transcriptome dynamics following sleep deprivation. Mol Brain 14, 125.
- Gervais, N.J., Mong, J.A., Lacreuse, A. (2017). Ovarian hormones, sleep and cognition across the adult female lifespan: An integrated perspective. Front Neuroendocrinol 47, 134-153.
- Gronli, J., Rempe, M.J., Clegern, W.C., Schmidt, M., Wisor, J.P. (2016). Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness. J Sleep Res 25, 257-268.

- Gulati, T., Guo, L., Ramanathan, D.S., Bodepudi, A., Ganguly, K. (2017). Neural reactivations during sleep determine network credit assignment. Nat Neurosci 20, 1277-1284.
- Guo, X., Keenan, B.T., Sarantopoulou, D., Lim, D.C., Lian, J., Grant, G.R., Pack, A.I. (2019). Age attenuates the transcriptional changes that occur with sleep in the medial prefrontal cortex. Aging Cell *18*, e13021.
- Guo, X., Gao, X., Keenan, B.T., Zhu, J., Sarantopoulou, D., Lian, J., Galante, R.J., Grant, G.R., Pack, A.I. (2020). RNA-seq analysis of galaninergic neurons from ventrolateral preoptic nucleus identifies expression changes between sleep and wake. BMC Genomics 21, 633.
- Hassani, O.K., Lee, M.G., Jones, B.E. (2009). Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A *106*, 2418-2422.
- Hirotsu, C., Tufik, S., Andersen, M.L. (2015). Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci 8, 143-152.
- Hsieh, C.L., Ho, T.Y., Su, S.Y., Lo, W.Y., Liu, C.H., Tang, N.Y. (2009). Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats. Am J Chin Med 37, 351-360.
- Hubbard, J., Gent, T.C., Hoekstra, M.M.B., Emmenegger, Y., Mongrain, V., Landolt, H.P., Adamantidis, A.R., Franken, P. (2020). Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nat Commun 11, 3130.
- Husse, J., Kiehn, J.T., Barclay, J.L., Naujokat, N., Meyer-Kovac, J., Lehnert, H., Oster, H. (2017). Tissue-Specific Dissociation of Diurnal Transcriptome Rhythms During Sleep Restriction in Mice. Sleep 40.
- Jeenapongsa, R., Tohda, M. (2003). Effects of Choto-san and Chotoko on thiopental-induced sleeping time. Journal of traditional medicines 20, 165-167.
- Jego, S., Glasgow, S.D., Herrera, C.G., Ekstrand, M., Reed, S.J., Boyce, R., Friedman, J., Burdakov, D., Adamantidis, A.R. (2013). Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16, 1637-1643.
- Jha, P.K., Valekunja, U.K., Ray, S., Nollet, M., Reddy, A.B. (2022). Single-cell transcriptomics and cell-specific proteomics reveals molecular signatures of sleep. Commun Biol *5*, 846.
- Joglekar, A. et al. (2021). A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat Commun *12*, 463.
- Jones, B.E. (2020). Arousal and sleep circuits. Neuropsychopharmacology 45, 6-20.
- Jourova, L., Vavreckova, M., Zemanova, N., Anzenbacher, P., Langova, K., Hermanova, P., Hudcovic, T., Anzenbacherova, E. (2020). Gut Microbiome Alters the Activity of Liver Cytochromes P450 in Mice With Sex-Dependent Differences. Front Pharmacol 11, 01303.
- Kang, T.H., Murakami, Y., Takayama, H., Kitajima, M., Aimi, N., Watanabe, H., Matsumoto, K. (2004). Protective effect of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus: putative neurotransmitter receptors involved in their action. Life Sci 76, 331-343.
- Keenan, A.B., Torre, D., Lachmann, A., Leong, A.K., Wojciechowicz, M.L., Utti, V., Jagodnik, K.M., Kropiwnicki, E., Wang, Z., Ma'ayan, A. (2019). ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res 47, W212-W224.

- Kirouac, G.J., Parsons, M.P., Li, S. (2005). Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Res 1059, 179-188.
- Koehl, M., Battle, S., Meerlo, P. (2006). Sex differences in sleep: the response to sleep deprivation and restraint stress in mice. Sleep 29, 1224-1231.
- Lee, C.J., Hsueh, T.Y., Lin, L.C., Tsai, T.H. (2014). Determination of protein-unbound rhynchophylline brain distribution by microdialysis and ultra-performance liquid chromatography with tandem mass spectrometry. Biomed Chromatogr 28, 901-906.
- Li, J., Liu, W., Peng, Q., Jiang, M., Luo, C., Guo, Y., Liu, Y., Fang, M., Mo, Z. (2014). Effect of rhynchophylline on conditioned place preference on expression of NR2B in methamphetamine-dependent mice. Biochem Biophys Res Commun 452, 695-700.
- Li, S.B., Damonte, V.M., Chen, C., Wang, G.X., Kebschull, J.M., Yamaguchi, H., Bian, W.J., Purmann, C., Pattni, R., Urban, A.E., Mourrain, P., Kauer, J.A., Scherrer, G., de Lecea, L. (2022). Hyperexcitable arousal circuits drive sleep instability during aging. Science 375, eabh3021.
- Liu, Y., Beyer, A., Aebersold, R. (2016). On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell *165*, 535-550.
- Mackiewicz, M., Shockley, K.R., Romer, M.A., Galante, R.J., Zimmerman, J.E., Naidoo, N., Baldwin, D.A., Jensen, S.T., Churchill, G.A., Pack, A.I. (2007). Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31, 441-457.
- Maret, S., Dorsaz, S., Gurcel, L., Pradervand, S., Petit, B., Pfister, C., Hagenbuchle, O., O'Hara, B.F., Franken, P., Tafti, M. (2007). Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104, 20090-20095.
- Mongrain, V., Carrier, J., Dumont, M. (2005). Chronotype and sex effects on sleep architecture and quantitative sleep EEG in healthy young adults. Sleep 28, 819-827.
- Mongrain, V., Hernandez, S.A., Pradervand, S., Dorsaz, S., Curie, T., Hagiwara, G., Gip, P., Heller, H.C., Franken, P. (2010). Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep *33*, 1147-1157.
- Mure, L.S., Le, H.D., Benegiamo, G., Chang, M.W., Rios, L., Jillani, N., Ngotho, M., Kariuki, T., Dkhissi-Benyahya, O., Cooper, H.M., Panda, S. (2018). Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359.
- Narwade, S.C., Mallick, B.N., Deobagkar, D.D. (2017). Transcriptome Analysis Reveals Altered Expression of Memory and Neurotransmission Associated Genes in the REM Sleep Deprived Rat Brain. Front Mol Neurosci 10, 67.
- Noya, S.B., Colameo, D., Bruning, F., Spinnler, A., Mircsof, D., Opitz, L., Mann, M., Tyagarajan, S.K., Robles, M.S., Brown, S.A. (2019). The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366.
- Ocampo-Garces, A., Molina, E., Rodriguez, A., Vivaldi, E.A. (2000). Homeostasis of REM sleep after total and selective sleep deprivation in the rat. J Neurophysiol *84*, 2699-2702.

- Oyola, M.G., Shupe, E.A., Soltis, A.R., Sukumar, G., Paez-Pereda, M., Larco, D.O., Wilkerson, M.D., Rothwell, S., Dalgard, C.L., Wu, T.J. (2019). Sleep Deprivation Alters the Pituitary Stress Transcriptome in Male and Female Mice. Front Endocrinol (Lausanne) 10, 676.
- Ozone, M., Yagi, T., Chiba, S., Aoki, K., Kuroda, A., Mitsui, K., Itoh, H., Sasaki, M. (2012). Effect of yokukansan on psychophysiological insomnia evaluated using cyclic alternating pattern as an objective marker of sleep instability. Sleep and Biological Rhythms *10*, 157-160.
- Park, H.L., Lee, H.S., Shin, B.C., Liu, J.P., Shang, Q., Yamashita, H., Lim, B. (2012). Traditional medicine in china, Korea, and Japan: a brief introduction and comparison. Evid Based Complement Alternat Med 2012, 429103.
- Peever, J., Fuller, P.M. (2017). The Biology of REM Sleep. Curr Biol 27, R1237-R1248.
- Poe, G.R., Nitz, D.A., McNaughton, B.L., Barnes, C.A. (2000). Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res *855*, 176-180.
- Robillard, R., Massicotte-Marquez, J., Kawinska, A., Paquet, J., Frenette, S., Carrier, J. (2010). Topography of homeostatic sleep pressure dissipation across the night in young and middle-aged men and women. J Sleep Res 19, 455-465.
- Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods *9*, 671-675.
- Seifritz, E., Muller, M.J., Schonenberger, G.A., Trachsel, L., Hemmeter, U., Hatzinger, M., Ernst, A., Moore, P., Holsboer-Trachsler, E. (1995). Human plasma DSIP decreases at the initiation of sleep at different circadian times. Peptides 16, 1475-1481.
- Shao, H., Mi, Z., Ji, W.G., Zhang, C.H., Zhang, T., Ren, S.C., Zhu, Z.R. (2015). Rhynchophylline protects against the amyloid beta-induced increase of spontaneous discharges in the hippocampal CA1 region of rats. Neurochem Res 40, 2365-2373.
- Shao, H., Yang, Y., Mi, Z., Zhu, G.X., Qi, A.P., Ji, W.G., Zhu, Z.R. (2016). Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience 337, 355-369.
- Shea, J.L., Mochizuki, T., Sagvaag, V., Aspevik, T., Bjorkum, A.A., Datta, S. (2008). Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra. Brain Res 1213, 48-56.
- Shi, J.S., Huang, B., Wu, Q., Ren, R.X., Xie, X.L. (1993). Effects of rhynchophylline on motor activity of mice and serotonin and dopamine in rat brain. Zhongguo Yao Li Xue Bao *14*, 114-117.
- Shinno, H., Kamei, M., Nakamura, Y., Inami, Y., Horiguchi, J. (2008a). Successful treatment with Yi-Gan San for rapid eye movement sleep behavior disorder. Prog Neuropsychopharmacol Biol Psychiatry 32, 1749-1751.
- Shinno, H., Inami, Y., Inagaki, T., Nakamura, Y., Horiguchi, J. (2008b). Effect of Yi-Gan San on psychiatric symptoms and sleep structure at patients with behavioral and psychological symptoms of dementia. Prog Neuropsychopharmacol Biol Psychiatry 32, 881-885.
- Swift, K.M., Keus, K., Echeverria, C.G., Cabrera, Y., Jimenez, J., Holloway, J., Clawson, B.C., Poe, G.R. (2020). Sex differences within sleep in gonadally intact rats. Sleep 43.

- Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T., Legeay, M., Fang, T., Bork, P., Jensen, L.J., von Mering, C. (2021). The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49, D605-D612.
- Tajerian, M., Sahbaie, P., Sun, Y., Leu, D., Yang, H.Y., Li, W., Huang, T.T., Kingery, W., David Clark, J. (2015). Sex differences in a Murine Model of Complex Regional Pain Syndrome. Neurobiol Learn Mem 123, 100-109.
- Terao, A., Greco, M.A., Davis, R.W., Heller, H.C., Kilduff, T.S. (2003). Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience 120, 1115-1124.
- Timofeev, I., Bazhenov, M., Seigneur, J., Sejnowski, T. (2012). Neuronal Synchronization and Thalamocortical Rhythms in Sleep, Wake and Epilepsy. In: Jasper's Basic Mechanisms of the Epilepsies (th, Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds). Bethesda (MD).
- Tobler, I., Borbely, A.A. (1986). Sleep EEG in the rat as a function of prior waking. Electroencephalogr Clin Neurophysiol *64*, 74-76.
- Tsunematsu, T., Ueno, T., Tabuchi, S., Inutsuka, A., Tanaka, K.F., Hasuwa, H., Kilduff, T.S., Terao, A., Yamanaka, A. (2014). Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34, 6896-6909.
- van Dalfsen, J.H., Markus, C.R. (2018). The influence of sleep on human hypothalamic-pituitary-adrenal (HPA) axis reactivity: A systematic review. Sleep Med Rev 39, 187-194.
- Vassalli, A., Franken, P. (2017). Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A *114*, E5464-E5473.
- Vecsey, C.G., Peixoto, L., Choi, J.H., Wimmer, M., Jaganath, D., Hernandez, P.J., Blackwell, J., Meda, K., Park, A.J., Hannenhalli, S., Abel, T. (2012). Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol Genomics 44, 981-991.
- Wang, W., Ma, C.M., Hattori, M. (2010). Metabolism and pharmacokinetics of rhynchophylline in rats. Biol Pharm Bull *33*, 669-676.
- Wei, Y. (2020). Comparative transcriptome analysis of the hippocampus from sleep-deprived and Alzheimer's disease mice. Genet Mol Biol 43, e20190052.
- Yang, Y., Ji, W.G., Zhu, Z.R., Wu, Y.L., Zhang, Z.Y., Qu, S.C. (2018). Rhynchophylline suppresses soluble Abeta1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology 135, 100-112.
- Yoo, J.H., Ha, T.W., Hong, J.T., Oh, K.W. (2016). Rhynchophylline, one of major constituents of Uncariae Ramulus et Uncus enhances pentobarbital-induced sleep behaviors and Rapid Eye Movement Sleep in rodents. Natural Product Sciences 22, 263-269.
- Yu, F., Takahashi, T., Moriya, J., Kawaura, K., Yamakawa, J., Kusaka, K., Itoh, T., Morimoto, S., Yamaguchi, N., Kanda, T. (2006). Traditional Chinese medicine and Kampo: a review from the distant past for the future. J Int Med Res 34, 231-239.

- Zhang, J.C., Yao, W., Qu, Y., Nakamura, M., Dong, C., Yang, C., Ren, Q., Ma, M., Han, M., Shirayama, Y., Hayashi-Takagi, A., Hashimoto, K. (2017a). Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci Rep 7, 7133.
- Zhang, Y.N., Yang, Y.F., Xu, W., Yang, X.W. (2017b). The blood-brain barrier permeability of six indole alkaloids from Uncariae Ramulus cum Uncis in the MDCK-pHaMDR cell monolayer model. Molecules *22*.
- Zhang, Z., Tremblay, J., Raelson, J., Sofer, T., Du, L., Fang, Q., Argos, M., Marois-Blanchet, F.C., Wang, Y., Yan, L., Chalmers, J., Woodward, M., Harrap, S., Hamet, P., Luo, H., Wu, J. (2019). EPHA4 regulates vascular smooth muscle cell contractility and is a sex-specific hypertension risk gene in individuals with type 2 diabetes. J Hypertens 37, 775-789.
- Zhou, J.Y., Mo, Z.X., Zhou, S.W. (2010). Rhynchophylline down-regulates NR2B expression in cortex and hippocampal CA1 area of amphetamine-induced conditioned place preference rat. Arch Pharm Res 33, 557-565.

Supplemental information

Probing pathways by which Rhynchophylline modifies sleep using spatial transcriptomics

Maria Neus Ballester Roig,^{1,2} Tanya Leduc,^{1,2} Julien Dufort-Gervais,¹ Yousra Maghmoul,^{2,3} Olivier Tastet,⁴ Valérie Mongrain,^{1,2,*}

Figure S1. Groups were similar in baseline, RHY increases SWS more prominently in females, and it modifies 24-h dynamics of ECoG oscillations in a vigilance-state dependent manner.

(A) Percent time spent in each vigilance state for the 24-h baseline (left panel) or injection (INJ; middle panel) recordings. Significant treatment effect was found for the 24-h in the INJ day for wake and SWS ($F_{2,54} > 19.2$, p < 0.00). Black stars indicate significant differences from the vehicle group for RHY100 and RHY50 (post-hoc comparisons p < 0.05) always for both wake and SWS; black diamonds indicate significant differences between RHY100 and RHY50 (post-hoc comparison p < 0.05) always for both wake in the first hours after the evening injection (between ZT13 and ZT15 in the INJ day: $F_{2,54} > 3.2$, p < 0.05; right panel). Grey stars indicate significant post-hoc comparison for wake (* indicates p < 0.05; ** indicates p < 0.01) between the conditions linked through bars.

(B) Total time spent in wake, SWS and PS calculated separately for the light and dark periods during the 24-h INJ recording. For females, RHY significantly changed wake, SWS and PS for both the light and dark periods ($F_{2,28} > 4.7$, p < 0.01). For males, RHY significantly affected wake and SWS only for the dark period ($F_{2,26} > 4.4$, p < 0.05). Red and pink stars indicate significant differences from the vehicle group for RHY100 and RHY50, respectively (post-hoc comparisons p < 0.05). Green diamonds indicate significant differences between RHY100 and RHY50 (post-hoc comparison p < 0.05) in females. Grey backgrounds represent the dark period (also in E).

(C) Mean duration of individual bouts during the baseline day.

(D) Number of bouts of different duration during the baseline day.

(E) Number of longer bouts (2-4 min) of SWS for the INJ day. A significant interaction was found between RHY treatment and hour for males (rANOVA: $F_{46,598} = 1.8$, $p_{adj} = 0.004$) and females (rANOVA: $F_{46,644} = 1.5$, $p_{adj} = 0.03$. Red datapoint indicates significant differences between the saline and RHY100 group (post-hoc comparisons p < 0.05). (F) RHY modifies 24-h dynamics of SWS $\delta 1$, $\delta 2$, and θ activity.

First row: time-course of SWS δ 1 activity (delta 1: 0.75 - 2Hz). Treatment * interval interactions were found for both sexes (females: F_{34,442} = 2.5, p_{adj} < 0.001; males: F_{34,374} = 2.7, p_{adj} < 0.01). Second row: time-course of SWS δ 2 activity (delta 2: 2.5 - 4Hz). Treatment * time-interval interactions were found for both sexes (females F_{34,442} = 2.6, corrected p = 0.003; males F_{34,374} = 3.4, corrected p < 0.01). Third row: time-course of SWS θ activity (theta: 6 - 9Hz). Treatment * time-interval interactions were found only for females (females F_{34,442} = 3.0, corrected p < 0.001; males F_{34,374} = 2.8, corrected p = 0.002). Last row: time-course of wake θ activity. Treatment * time-interval interactions were not significant. Red and pink datapoints indicate significant differences compared to the saline group for each interval for the RHY100 and RHY50 groups, respectively (post-hoc comparisons p < 0.05).

Figure S2. CDK5 and GLT1 levels were unchanged by RHY and pGLUR1 correlates with decreased wake alpha activity

(A) Results one-way ANOVAs of the effect of treatment (Saline, RHY50 and RHY100) on protein levels, calculated separately for female and male mice.

(B) RHY did not change the level of CDK5 or GLT1 in the total nor synaptoneurosomal (Syn) protein fractions in the cerebral cortex, hippocampus and thalamus/hypothalamus region (one-way ANOVAs, p > 0.05).

(C) Correlations (including both female and male data) between protein levels and SWS delta activity and wake alpha activity. Phosphorylated GLUR1 in the cerebral cortex (total fraction) was negatively correlated with wake alpha activity during the dark period.

Figure S3. Analysis of differentially expressed genes (DEGs) and hierarchical DEG clusters.

(A) Spatial spots used to calculate differentially expressed genes (DEGs) between the different RHY and saline conditions. Common spots between slices were used to conduct comparisons. These common spots are shown in green for females and purple for males for the RHY100 conditions and in dark blue for the saline conditions. The number of DEGs obtained for each comparison is indicated in the top of each pair (FDR < 0.05).

(B) Box plots showing the behavior of genes belonging to seven clusters (C1-C7) obtained from automated clustering of Log2 fold change of DEGs from the four comparisons between RHY100 and saline conditions (ZT4F, ZT4M, ZT14F and ZT14M).

(C) Correlations of changes in gene expression between sexes or between time points. Positive correlations were found for the Log2fold change of DEGs modified by RHY at the same time of injection in different sexes, and for RHY effects on female samples taken at different time-points, but no correlation was found between ZT4M and ZT14M.

Figure S4. Enrichment in canonical pathways and potential upstream regulators using Ingenuity pathway analysis, and functional Gene Ontology terms

(A-C) Analysis of enrichment for canonical pathways and potential upstream regulators using Ingenuity pathway analysis (IPA). DEGs of each four comparisons (ZT4F, ZT4M, ZT14F, ZT14M) were used to assess their potential enrichment for specific canonical pathways (A), and for upstream regulators, including upstream elements (B) and transcription factors (C). The bar size indicates enrichment significance (Log10 FDR), and the bar color indicates if terms are predicted to be activated (hot colors), inhibited (cold colors), or enriched with no particular direction (grey). The number of genes found for each term is shown. Dotted lines indicate the threshold for statistical significance. (D-E) DAVID database gene ontology terms for functional annotation found enriched for the DEGs (FDR < 0.05) in each dataset (D) and in the list of DEGs common in the two ZT4 comparison datasets (ZT4 DEGs) or in the two ZT14

comparison datasets (ZT14 DEGs) (E). Enriched terms are colored by related functions and organized by FDR value. The number of DEGs related to each term is indicated.

Figure S5. Spatial gene expression maps of selected DEGs found to be common between ZT4F, ZT4M, ZT14F and ZT14M. Color of spatial spots indicate Log2 gene expression under saline and RHY treatments for female and male mice

Figure S6. Transcription factors found to be enriched in ZT4F, ZT4M, ZT14F and ZT14M DEGs, and UMAP clustering of female and male spots of brain regions.

(A) Interaction networks of the top 25 transcription factors found to be enriched using the CheA3 analysis and ZT4F, ZT4M, ZT14F and ZT14M DEGs. Pink lines denote experimentally determined; blue lines denote links reported from curated databases; black lines denote co-expression; yellow lines denote text-mining evidence; purple lines denote homology domains.

(B) Uniform manifold approximation and projection (UMAP) adequately represents the gene expression data of known brain regions. Top: UMAPs of the four female samples (ZT4S, ZT4R, ZT14S, ZT14R) identifying the samples (left) and brain regions (right). Bottom: same for the four male samples.

Chapter 6

Discussion

Previous studies suggested that the EphA4 receptor may play roles in the regulation of sleep and circadian behaviors. On the one hand, *EphA4* KO mice showed altered circadian rhythms of running wheel activity and reduced number of c-FOS⁺ cells in the SCN after a light-pulse (*Kiessling et al., 2018*). Moreover, the 24 h expression of *EphA4*, *EfnA3* and *EfnB2* mRNAs was altered in *Clock* mutant mice, and E-boxes were described in the putative promoter of *EphA4* (*Freyburger et al., 2016*). On the other hand, *EphA4* KO mice showed altered sleep variables, such as less PS time in the light period and altered sleep ECoG oscillations (*Freyburger et al., 2016*; *Freyburger et al., 2017*). Thus, this thesis investigated whether the genes of *EphA4*, *EfnB2* and *EfnA3* are regulated by the molecular circadian clock machinery, and whether the EPHA4 modulator RHY modifies sleep architecture and oscillations with the additional aim of inquiring potential molecular mechanisms underlying RHY's sleep-inducing effects.

The first study shows that clock transcription factors induce transcriptional activity via upstream regions of the *EphA4*, *EfnB2* and *EfnA3* TSSs *in vitro* (Chapter 4). It supports our hypothesis 1 and signifies that the mRNA expression of these Eph/Ephrin components may be rhythmic. To assess whether this clock regulation would induce rhythmic protein levels, EPHA4 and EFNB2 were measured at different times of the day in the SCN and PFC of mice which had been maintained in constant darkness. Against hypothesis 2, neither of these proteins showed time-dependent expression in these two brain tissues, suggesting that clock transcription factors may induce their rhythmic expression in other tissues, or that the effect of clock factors in these putative promoter regions does not translate into rhythmic protein.

The second project demonstrates that systemic injections of RHY induce sleep in mice (Chapter 5) and answers our hypothesis 3. RHY enhanced SWS time, and even though it also enhanced PS in the dark (active) period, it reduced it in the light (rest) period. Moreover, RHY reduced alpha activity during wakefulness and altered the 24h distribution of SWS delta and sigma activity. All these effects on sleep architecture and the ECoG were more significant in females, which responds to our hypothesis 4. Against hypothesis 5, RHY did not modify the levels of EPHA4 or its phosphorylation 13h after injection in samples of cerebral cortex, hippocampus or thalamus-hypothalamus. Analysis of the brain transcriptome revealed that RHY modifies the expression of transcripts linked to sleep and pituitary functions in the hypothalamus, but that it also

affected the mRNA levels of genes related to apoptotic and immune responses broadly throughout the brain (results which prove our hypothesis 6).

This thesis compiles different approaches to inquire into how cell adhesion molecules, and, particularly, the Eph/Ephrin system, can have roles in circadian and sleep behaviors (Figure 6.1). It demonstrates that the clock machinery can act on DNA regulatory elements for synaptic components fundamental to neurotransmission. This discussion will highlight how clock transcriptional regulation can have crucial implications not only for the regulation of neuronal activity and the regulation of circadian rhythms and sleep, but also for cognition and disease. In addition, it will suggest implications of the changes on gene expression induced by RHY, suggesting potential mechanisms and follow-up experiments. We expect with this to expose the relevance of our results for understanding how Uncaria drugs can affect seep and brain activity. Finally, the discussion also emphasizes advantp of using ages spatial transcriptomic approaches to narrow into drug mechanisms and to uncover brain region dependent processes.

Figure 6.1. The core clock machinery may control EphA4 roles in sleep and circadian behavior and the EphA4 modulator RHY induces sleep. CLOCK or its homologue NPAS2 (C and N) and BMAL1 (B) increase *EphA4*, *EfnB2* and *EfnA3* mRNA *in vitro*. The negative regulator of the clock transcription factors GSK3 β inhibits this induction. This regulation of the Eph/Ephrin system by the clock may explain previously observed circadian and sleep phenotypes in mice (*Freyburger et al., 2016; Freyburger et al., 2017; Kiessling et al., 2018*). RHY, an alkaloid that reduces EPHA4 activation in mice, increases sleep time and modified sleep architecture and brain oscillations that are

indicative of cognitive processes. RHY modified transcripts linked to inflammatory pathways throughout the brain and modified the gene expression of transcripts related to sleep and for peptides involved in the hypothalamic-pituitary axis (HPA).

6.1 EphA4 in sleep and circadian regulation

This first section of the discussion will present the relevance of a clock regulation of the Eph/Ephrin system and how the Eph/Ephrin can impact circadian and sleep behaviours.

6.1.1 The molecular circadian clock regulates EphA4, EfnB2 and EfnA3

As discussed in Chapter 1, the core clock transcription factors regulate the expression of synaptic elements, which may provide a time-dependent regulation of neurotransmission (Hannou et al., 2020). In fact, the expression of genes with functions linked to synaptic potentiation peaks at dusk, just before the mouse active period (Noya et al., 2019). Our results show that clock transcription factors may induce a rhythmic expression of EphA4, EfnA3 and EfnB2, which are involved in neurotransmission. This supports previous findings from our group showing that $Clock^{\Delta 19}$ mice (dominant negative mutants) show lower expression of EphA4, EfnB2 and EfnA3 (Freyburger et al., 2016). Accordingly, we propose that the core clock machinery may regulate, for instance, spine morphology and the presence of glutamate receptors and transporters at the synapse by controlling the levels of Eph/Ephrin components at different times of the day. Here we further described the functionality of the E-boxes by revealing that the mutation of four E-boxes (CANNTG to GCTAGT) on distal regions of the *EphA4* promoter, reduces the transcriptional activation induced by the clock transcription factors. Nevertheless, the E-box sequences were only mutated for this distal sequence $(EphA4_D)$, and the effect of the clock machinery on EfnB2 and *EfnA3* should be assessed as well with mutated inserts. We are currently performing these assays at the lab, together with additional experiments with a longer sequence of the EphA4 promoter which englobes both the distal and proximal sequences studied in this thesis. This will demonstrate whether the studied inserts have different contributions to transcription when taking a longer proportion of the DNA, more comparable to in vivo conditions.

The experiments assessing the effect of the clock transcription factors were performed exclusively in COS7 cells. Therefore, it is crucial to investigate if clock dimers induce transcription of Eph/Ephrin components in other cell types and whether this regulation is functional *in vivo*. Our measures of protein levels of EPHA4 and EFNB2 suggest that the clock regulation of their genes

would not translate into rhythmic protein levels in mouse SCN and PFC. This section will discuss how a clock transcriptional regulation of the Eph/Ephrin system may depend on the brain region, cell type or cell compartment. The section also presents potential implications of GSK3 β for the Eph/Ephrin regulation, how the clock machinery may also provide a homeostatic regulation of the Eph system, and the implication of the clock regulation for pathological conditions.

6.1.1.1 Regulation by clock transcription factors may be restricted in time and space

In mammals, the initiation of gene expression is regulated notably by chromatin modulation, by DNA sequences that determine the recruitment of the RNA polymerase II and cofactors, and by the availability of these factors and regulatory protein complexes. The promoter region is a DNA region upstream of the TSS composed of a core promoter (sufficient to trigger transcriptional initiation and, in general, immediately upstream of the TSS) plus the proximal promoter (immediately upstream of the core promoter) (Haberle and Stark, 2018). Enhancers (typically 100-1000bp in length) are distant regions that regulate the activity of promoters (Spitz and Furlong, 2012; Furlong and Levine, 2018). Eukaryote genes have alternative promoters and multiple enhancers, which provide accurate regulation across developmental stages and tissues (Furlong and Levine, 2018; Wang et al., 2022). Moreover, promoters of some genes can act as enhancers of others (Dao et al., 2017). Therefore, whether the proximal and distal promoter regions of EphA4, EfnB2 and EfnA3 have distinct functions in different tissues and developmental stages should be inquired. Differences in transcription across maturation might be particularly relevant for the EphA4/Ephrin system, which, as already discussed, is regulated by transcription factors linked to development. Our results suggest that the clock machinery may provide additional rhythmic regulation of transcription, which could likely be restricted at some stages of development and delimiting tissue boundaries. This can be further modulated by additional transcription factors and by the availability of CLOCK, BMAL1 and NPAS2. For instance, NPAS2 levels in mice, increment just before birth and peak in the first postnatal week (Zhou et al., 1997), which could suggest that EphA4 and EfnB2, but particularly EfnA3 are regulated by clock factors at this moment of development. Moreover, data by Wen and collaborators suggests that *EphA4* may follow a daily rhythm of expression in astrocytes and neuronal populations surrounding the SCN in the hypothalamus (Wen et al., 2020). Thus, clock transcription factors may induce rhythmic EphA4, EfnB2 and EfnA3 uniquely in some cell types or tissues. Astrocyte activity is in antiphase with that of neurons in the SCN, and astrocyte *Bmall* is crucial for the SCN functioning (Barca-Mayo et al.,

2017; Brancaccio et al., 2017). Therefore, future studies should examine whether the effects of EphA4 in circadian behavior are mediated by transcriptional regulation of *EphA4* (or ligands like *EfnB2* or *EfnA3*) in SCN astrocytes. In fact, if protein levels were only rhythmic in astrocytes or neurons, it might explain the lack of oscillation in our homogenized SCN punches (Chapter 4).

As mentioned in other sections, rhythms of mRNA do not necessarily imply oscillating protein levels. In mouse forebrain synapses, 70% of the rhythmic mRNA shows rhythms in protein expression (Nova et al., 2019). Moreover, even though 6-15% of transcripts are rhythmic in a given tissue, studies in mouse liver show that only 20% of this rhythmicity is provided by rhythmic transcription and only 40% of rhythmic transcription may correlate with rhythmic transcripts (Koike et al., 2012; Menet et al., 2012). Therefore, our results could be complemented with, firstly, in vitro continued luminometry (Izumo et al., 2003), which would answer whether the transcriptional activity of clock factors induces rhythmic gene expression. Moreover, cell-type specific rhythms in mRNA and protein levels should be investigated with flow cytometry and more sensitive techniques for protein quantification such as mass spectrometry. Moreover, these techniques would allow to discern whether potential rhythms in mRNA and protein levels in vivo are cell-type specific. Nevertheless, even though the transcriptional effect of clock factors would not translate into rhythmic EPHA4 or EFNB2, this cell adhesion system may still have relevant roles in circadian regulation. For example, global EFNB2 phosphorylation in mouse forebrain synapses was rhythmic (Bruning et al., 2019), and future studies could investigate whether the oscillatory activity of Eph/Ephrin components is restricted to some brain regions.

6.1.1.2 Transcriptional modulation by GSK3

GSK3β regulates circadian and sleep behaviour, and our results show that this kinase regulates *EphA4* and *EfnB2* expression *in vitro*. GSK3β, with over a hundred substrates, has diverse roles ranging from implications in glycogen synthesis to neuroplasticity in the central nervous system (*Beurel et al., 2015*). It is broadly expressed in the brain and modulates synaptic plasticity by regulating axonal growth, but also potentially modulating synaptic strength, what has linked the kinase to cognitive impairments (*Kim et al., 2006; Rui et al., 2013; Xing et al., 2016; Besing et al., 2017; Jaworski et al., 2019*).

As discussed earlier in thesis, GSK3 β can phosphorylate core clock components, including BMAL1, PER2, CRY2 and REV-ERB- α , and regulate their location or degradation *(Harada et al.,*

2005; Iitaka et al., 2005; Yin et al., 2006; Sahar et al., 2010). GSK3β phosphorylation at its serine-9 (so, GSK3β inhibition) follows daily variation in the mouse PFC, SCN, hippocampus and liver (litaka et al., 2005; Kinoshita et al., 2012), and circadian oscillation of pS9-GSK3β has been found in the mouse SCN and CA1 (Besing et al., 2015; Besing et al., 2017). The relevance of these regulations is confirmed by multiple studies showing that modulating GSK3^β has effects on rhythmicity. GSK3 $\beta^{+/-}$ mice have longer periods of running activity when housed under constant darkness (Lavoie et al., 2013). A GSK3β inhibitor enlarged the amplitude and shortened the PER2 period in SCN slices and in hippocampus slices and in the mouse DG (Besing et al., 2015; Besing et al., 2017; Liska et al., 2022), and modifies LTP in the dark (but not light) period (Besing et al., 2017). Likewise, the mood stabilizer lithium (inhibitor of GSK3β), induces Ser-9 phosphorylation, removes rhythmicity of pS9-GSK3β and p-PER2 in the mouse SCN, enlengthens the PER2 period and enlengthens running wheel circadian rhythms in mice (Iwahana et al., 2004; Iitaka et al., 2005; Kinoshita et al., 2012; Li et al., 2012). Therefore, given that EphA4 KO mice show longer periods in DD (*Kiessling et al., 2018*), some of the actions of GSK3β on maintaining circadian rhythmicity could be via its actions on EphA4/Ephrin components. This might be particularly relevant to study in some cell types in the hippocampus, given the high expression of EphA4 in this region. For instance, it could modulate EphA4 levels (in a rhythmic or non-rhythmic manner) and modulate spine retraction.

GSK3β has important functions in development and modulate axon growth and cell polarity (*Etienne-Manneville and Hall, 2003; Jiang et al., 2005; Kim et al., 2006; Rui et al., 2013*). As described earlier in this thesis, EphA4 is also crucial for development, axon growth and pathfinding. Thus, it would be interesting to determine whether some GSK3β functions in cell development, migration or adhesion require the regulation of *EphA4* at the transcriptional level. Furthermore, GSK3α/β modulate LTD and LTP, dendrite growth and maturation (*Peineau et al., 2007; Rui et al., 2013; Xing et al., 2016; Besing et al., 2017; Dudilot et al., 2020*), and higher levels of EPHA4 activation are linked to spine retraction and AMPA receptor internalization (*Murai et al., 2003; Fu et al., 2011*). In addition, the downregulating effect of GSK3β on *EfnB2* may induce additional mechanisms for plasticity, given that EFNB2 triggers NR2B phosphorylation and stabilizes AMPA receptors at the synapse (*Bouzioukh et al., 2007; Essmann et al., 2008; Slack et al., 2008*). Accordingly, we suggest that GSK3β may impact neuroplasticity by regulating the Eph/Ephrin system.
6.1.1.3 Clock transcriptional regulation for C and S hubs

As already discussed in the thesis, transcriptomic studies reveal that sleep deprivation (SD) modifies the expression of clock factors (including Npas2, Clock, Per1-3, Dbp) (Maret et al., 2007; Mongrain et al., 2010; Guo et al., 2019; Hor et al., 2019). SD also reduces the DNA binding of BMAL1 and CLOCK/NPAS2 to *Dbp* in the mouse cerebral cortex (Mongrain et al., 2011). In addition, CLOCK/NPAS2 dimerization with BMAL1 and their DNA-binding is modified by the redox state (which is also altered by SD and regulates CA1 membrane potential in a time-of-day dependent manner) (Rutter et al., 2001; Hsu et al., 2003; Harkness et al., 2019; Naseri Kouzehgarani et al., 2020; Vaccaro et al., 2020). Accordingly, the effect of clock factors on *EphA4*, *EfnB2*, and *EfnA3* transcription may converge information from both circadian (process C) and homeostatic (process S) regulation and may be involved in circadian and sleep phenotypes observed in EphA4 KO mice (Freyburger et al., 2016; Freyburger et al., 2017; Kiessling et al., 2018). It could, in addition, explain why EphA4 mRNA levels were higher in the thalamichypothalamic samples of sleep-deprived mice (Freyburger et al., 2016). In fact, functions linked to neurotransmission and plasticity are modulated both by sleep/wake (S) (Cirelli et al., 2004; Maret et al., 2007; Mongrain et al., 2010; Bruning et al., 2019) and by clock factors (C) (Klugmann et al., 2006; Parekh et al., 2019). Therefore, it would be provoking to investigate whether the clock control of the Eph/Ephrin system may contribute to a C and S synaptic regulation of neurotransmission. Interestingly, SD reduced the binding of NPAS2 (but not the one of CLOCK) on Per2 (Mongrain et al., 2011). This highlights that some dimers can be more affected by SD than others, which could affect differently, for example, $EfnA3_D$ (which was uniquely activated by NPAS2) than *EphA4* promoter regions. Similarly, GSK3β shows daily expression, its activity is modified by SD and downstream of dopamine and 5-HT signaling (Benedetti et al., 2004; Iwahana et al., 2004; Iitaka et al., 2005; Beaulieu et al., 2009; Bellet and Sassone-Corsi, 2010; Lavoie et al., 2013; Bruning et al., 2019). Therefore, it would be interesting to first assess using chromatin immunoprecipitation, if clock transcription factors bind to the EphA4, EfnB2, and EfnA3 promoters in vivo, and whether SD modifies their binding.

Interestingly, in our study in Chapter 5, the transcriptome was assessed under a situation of sleep surplus (after RHY-induced sleep), and the expression of clock genes was not modified. Even though it has been shown that the SD-dependent alteration of the clock transcription factors seems glucocorticoid-dependent *(Mongrain et al., 2010; Curie et al., 2013)*, the implication of other

homeostatic mechanisms remains unknown. Therefore, it will be important to further investigate which other homeostatic processes (e.g., metabolic, inflammatory) regulate the clock machinery and how this determines the clock control of synaptic components.

6.1.1.4 Implication of clock regulation in disease and ageing

Even though this thesis has focused on circadian and sleep regulation, circadian rhythms adjust the time for many other functions in the organisms, including blood pressure, feeding and immune responses (Takahashi et al., 2008; Cermakian et al., 2022). For example, BMAL1 polymorphisms are associated with susceptibility to hypertension and diabetes (Woon et al., 2007) and chronodisruption is considered a cancer risk (Pariollaud and Lamia, 2020). Therefore, considering the roles of EphA4 and Ephrins, their clock regulation may impact circadian functions in cardiovascular, immune functions and tumor growth. Moreover, circadian disruptions and clock gene polymorphisms (e.g., in NPAS2) have been highly linked to mental disorders including anxiety, MDD and bipolar disorder (McClung, 2007; Soria et al., 2010). Importantly, as mentioned in the introduction, EPHA4 protein levels (or its phosphorylation) are higher in the brain of mouse models of depression and post-mortem brain tissue of MDD patients (Zhang et al., 2017; Li et al., 2022b), suggesting that it would be relevant to investigate whether the clock regulation of Eph/Ephrin genes contributes to these pathologies. In addition, polymorphisms in some clock genes are associated to sleep/circadian disorders, such as PER2 and CRY2 (linked for the familial advanced sleep phase syndrome, FASPS) and DEC2 (associated to the human familial natural short sleep phenotype; (Shi et al., 2017). Therefore, alterations in the core clock machinery in these conditions may also induce altered transcription of EphA4, EfnB2 and EfnA3 in disease. Moreover, GSK3β activity has been implicated in depression, bipolar disorder, and Alzheimer's disease (Li and Jope, 2010; Beurel et al., 2015). For instance, chronic restraint stress increased GSK3ß phosphorylation and altered PER2 rhythms in the mouse SCN, PFC and hippocampus (Kinoshita et al., 2012). In addition, lithium (inhibitor of GSK3β and common treatment for bipolar disorder), could recover the stress-induced alterations in PER2 and GSK3 phosphorylation, and ameliorates cognitive symptoms in Alzheimer's disease and Fragile X syndrome patients (Kinoshita et al., 2012; Beurel et al., 2015). Therefore, the control of EphA4/Efns transcription by GSK3 β can also link this cell adhesion system to these diseases and their treatment. In sum, understanding whether the clock machinery controls the expression of EphA4 and Ephrins in particular brain regions or in response to specific conditions such as neuronal activation, may help identify why the Eph/Ephrin system is altered in some of these pathologies.

6.1.2 Potential roles of EhA4/Ephrins in circadian and sleep behavior

As suggested by the EPHA4 molecular functions, the clock-dependent regulation of this adhesion molecule may impact circadian rhythms and sleep in various manners. This section summarizes EphA4/Ephrin functions which could, according to our results, be under clock control. To begin with, EPHA4 induces spine retraction and AMPA receptor internalization; EFNB2 regulates AMPA and NMDA receptors; and the presence of EFNA3 reduces GLT1 at the synapse (Murai et al., 2003; Essmann et al., 2008; Slack et al., 2008; Filosa et al., 2009; Fu et al., 2011). Moreover, EPHA4 (and some ligands) can organize in lipid rafts, which determine the triggered downstream responses (Yumoto et al., 2008; Pan et al., 2010; Averaimo et al., 2016). A rhythm for these functions should impact neuronal synchronization, so important in circadian rhythms and sleep. Furthermore, EPHA4 receptors (like other Eph) can oligomerize in the membrane (Light et al., 2021), which may provide a time-escalating effect of these receptors. As discussed earlier in this thesis, recent hypotheses in circadian (and sleep) research evoke that accumulative phosphorylation in proteins may provide progressive forms of regulation (homeostatic or timedriven). Therefore, EPHA4 being a tyrosine kinase receptor with multiple phosphorylation sites (Singla et al., 2011), it would be relevant to investigate whether EPHA4 phosphorylation is timedependent in some brain regions and whether this determines circadian (or sleep) behaviors. Previous research shows that EPHA4 phosphorylation was low in adult mice compared to P10, but the study did not compare different sampling times (Murai et al., 2003). The same authors hypothesize that EPHA4 is not constitutively engaged with Ephrins in the hippocampus, but results could vary across the 24 hours. Other activity-dependent regulatory mechanisms may also provide positive (or negative) reinforcement to the rhythms of cell activity. For instance, neuronal activity induces the cleavage of EPHA4 by the γ -secretase (Inoue et al., 2009). Moreover, all EPHA4, EFNB2 and EFNA3 are found in astrocytes (Murai et al., 2003; Goldshmit et al., 2006; Ashton et al., 2012). As discussed above, clock regulation of these membrane molecules could provide circadian functions to this diffuse brain matrix and have important roles in synchronizing brain functions. In fact, astrocytes are fundamental for the SCN functioning and to track sleep need (Barca-Mayo et al., 2017; Brancaccio et al., 2017; Ingiosi et al., 2020). It is also important that EphA4/Ephrin signaling may modify downstream effectors like kinases (e.g., CDK5, ERK/MAPK) (Fu et al., 2007; Zhou et al., 2007; Shin et al., 2008; Goldshmit and Bourne, 2010; Zhou et al., 2012; de Marcondes et al., 2016; Shu et al., 2016; Zhang et al., 2017) but also transcription factors (e.g., MAT2B TEAD1) (Freyburger et al., 2016; Cayuso et al., 2019), which could disarrange the time for other cellular functions. Finally, it is important to remind the numerous implications of EphA4 (and many Eph/Ephrin family members including EfnB2) in development, functions which may require or benefit from being time-adjusted.

6.2 RHY induces sleep and affects transcripts linked to sleep control

6.2.1 RHY enhances sleep time and modifies sleep oscillations in rodents

RHY is a main oxindole alkaloid in Uncaria plants, which are plants highly used in traditional Chinese and Japanese medicines. Chapter 2 compiled that drugs containing Uncaria ameliorate sleep in humans, for instance, by enlarging sleep time and reducing latency in healthy individuals compared to a control treatment (Aizawa et al., 2002). Studies also showed that Yokukansan (YKS, a plant blend containing Uncaria) ameliorates sleep problems in diverse pathological conditions (although not placebo-controlled): it enhanced sleep quality in patients with insomnia and REM sleep behavior disorder; and increased sleep time and reduced sleep latency in dementia patients (Shinno et al., 2008b; Ozone et al., 2012; Matsui et al., 2019; Ozone et al., 2020). Similarly, some studies report that YKS also increases sleep time in mice and rats (Jeenapongsa and Tohda, 2003; Egashira et al., 2011; Nagao et al., 2014; Murata et al., 2020). Only one study had investigated the sleep-inducing effects of RHY and reported that RHY itself can increase sleep time in rats and enhance the sleep-inducing effect of pentobarbital in mice (Yoo et al., 2016). Our study in Chapter 5 is first showing that RHY itself induces sleep in mice, that it particularly enhances SWS and with magnified effects in the dark period, when animals are typically awake. Over the 24 hours, RHY induced a 41% increase (3.5 hours) in SWS in females and a 22% increase (2 hours) in males. These hypnotic effects go in agreement with previous research studying Uncaria effects. On the other hand, the effects of RHY on inducing particularly short bouts of SWS or its effects on reducing PS, should be further regarded in forthcoming investigations because human studies with Uncaria do not report neither reduced PS nor enhanced SWS fragmentation (Aizawa et al., 2002; Shinno et al., 2008b; Shinno et al., 2008a; Ozone et al., 2012). Given the scattered sleep of rodents (and most mammals) and the monophasic sleep of humans, it is likely that the effects on sleep fragmentation differ between mouse and human. For instance, RHY may differently modify the levels of sleep-inducing molecules (which may accumulate at different rates in monophasic and polyphasic species) or differently affect the activity of sleep/wake-inducing neurons (which could sense homeostatic needs at different rates in distinct species) (*Phillips et al., 2010*). In any case, the sleep-inducing effects of RHY may provide restorative benefits, which should be studied under some pathological conditions with sleep comorbidities.

Both doses of RHY reduced PS in the light period (particularly in females), but increased PS in the dark. At a first glance, the reduced PS in morning injections should be detrimental for animal's memory, given that PS has roles in procedural and emotional memory (*Nishida et al., 2009; Boyce et al., 2016; Hunter, 2018; Izawa et al., 2019*). It could be intriguing to explore if there are links between this decrease in PS and the benefits of RHY observed in stress-induced depression-like symptoms (*Zhang et al., 2017*). Depression, although generally being characterized by insomnia and reduced SWA, is associated with enhanced PS, and most antidepressants reduce PS (*Riemann et al., 2020*).

6.2.1.1. RHY modifies brain oscillations in different vigilance states

Studies preceding ours did not investigate how RHY (or Uncaria) modifies the distribution of sleep across the 24 hours, or whether this treatment modifies neuronal synchrony during sleep. Determining whether a drug enhances sleep is not sufficient to describe its advantages and the effects on brain activity should be always characterized. This is particularly true in sleep medicine. The activity in different frequencies of brain oscillations during wakefulness and sleep can reflect changes in neuronal plasticity which are correlated with cognitive processes and performance (Voloh et al., 2015; Gronli et al., 2016; Yu et al., 2018). SWA and spindle activity during SWS are associated with off-line plastic processes which benefit learning in both humans and mice (Heib et al., 2013; Kim et al., 2019; Muehlroth et al., 2019; Fernandez and Luthi, 2020). PS theta synchronization has roles for learning and emotional memory (Nishida et al., 2009; Boyce et al., 2016). Interestingly, in our study RHY decreased the power of SWS delta activity (in the dark period) and altered SWS sigma and theta activity after both morning and evening injections. Interestingly, RHY causes a delayed increase of SWS sigma and theta activity between ZT5 and ZT8, in contrast to a faster increase in sleep time. Thus, it would be interesting to investigate whether the effects on this frequency range originate from impacts of RHY in particular brain

structures. Furthermore, these effects on sleep oscillations could indicate that, even though RHY enhances sleep time, the treatment could impact sleep-dependent cognitive processes and, potentially, learning. Moreover, RHY reduced alpha activity during wakefulness throughout the 24 hours. The role of alpha activity during wake is associated to physiological processes and cognitive engagement in humans and rodents (*Bazanova and Vernon, 2014*). While alpha activity in humans has been largely attributed to be characteristic of closed-eyes wakefulness and higher during less-active wakefulness, studies in both humans, rats and mice also show that alpha activity is associated to sensory processing (*Broussard and Givens, 2010; Gronli et al., 2016; van Diepen et al., 2016; Del Percio et al., 2017*). Therefore, RHY may also modify the wake-associated sensory processing or engaging.

Besides, the brain oscillatory activities can be indicative not only of cognition but also of other physiological processes. Transition from SWS into PS are characterized by more prominent sigma activity (Franken et al., 1998; Astori et al., 2011; Wimmer et al., 2012; Carrera-Canas et al., 2019). Thus, the decrease in PS at the beginning of the light period may be associated to the disrupted SWS sigma and theta power. Furthermore, faster delta activity (delta-2; 2.5-4Hz) has been shown to be driven more by homeostatic sleep pressure (process S) than the slower delta (delta-1; 0.75-2Hz) (Hubbard et al., 2020). RHY reduced the power of both delta-1 and delta-2 similarly in males and females, with a decrease in the dark period which may be indicative of both changes in neuronal synchrony and reduced sleep pressure. Interestingly, RHY decreased delta-1 activity at ZT0 (immediately after the first injection) more pronouncedly in males. This may indicate that some of the RHY downstream effectors involved in delta-1 are more critical in male mice at this time-point. This contrasts with the rest of RHY effects on sleep, which were more pronounced in females than males (e.g., percentage of time spent in SWS, delta activity in the dark phase, wake alpha activity). Therefore, even though we could not identify genes (neither associated cellular pathways) which could underly effects in particular frequency ranges, it would be interesting to analyse whether some RHY targets might have different abundance/activation between sexes. For instance, CACNA1C (gene for the L-VGCC subunit Cav1.2) polymorphisms were linked to sleep latency only in infant males but not female (Kantojarvi et al., 2017), and L-VGCCs current is modified by RHY in rat cortical neurons (Kai, 1998). Our lab will soon inquire with the results collected in this thesis whether the effects of RHY on reducing delta activity are linked to a decrease in amplitude (indicative of the amount of synchronized cell firing), frequency (indicative of the duration of cortical up and down states and cell synchronization) or density (indicative of the number of slow waves per minute induced by the drug). This will be done by a semi-automated detection similarly to previous analyses performed by the group (*Freyburger et al., 2017*). Moreover, analysing how RHY modifies these parameters particularly for delta-1 may help pinpoint potential mechanisms underlying the different effects observed for this frequency range in the early light period. In any case, future research should analyse whether RHY modifies sleep oscillations in humans similarly to our findings in mice.

RHY increased SWS but did not promote higher SWA. One of the most faced difficulties in sleep pharmacology is that most sleep-inducing drugs are not able to enhance delta-rich restorative sleep (Winsky-Sommerer, 2009). Therefore, it is interesting to evaluate if other sleepinducing drugs act through distinct or novel mechanisms. For instance, the optogenetic activation of the GABAergic cells in the TRN induced SWS time and SWA (Lewis et al., 2015; Fernandez et al., 2018), and deletion of the α 3 subunit of GABA_A receptors in the TRN enhances thalamocortical delta power (Uygun et al., 2022). In agreement, activation of LH GABAergic connections into the TRN, induce arousal from SWS (but not from PS), and the inhibition of these connections enhances SWS time and SWA amplitude (Herrera et al., 2016). Interestingly, RHY increased the levels of GABA_A subunits (including α 3) in rat hypothalamic neurons (Yoo et al., 2016). Thus, in our study we included the TRN to see potential mechanisms in this brain region, but the region did not show particular effects. For instance, we did not detect DEGs enriched for functions linked to GABAergic signaling. As mentioned just above for its utility on discerning distinct effects on delta-1 and delta-2, our lab will soon complement the results of Chapter 5 with additional analyses of the effects of RHY on slow wave properties (e.g., density, amplitude, properties of the negative and positive peaks). This will expand the comprehension on how the drug modifies this sleep oscillations and could support the need to consider the alkaloid for sleep medicine and, further compare its mechanisms with that of other hypnotics.

6.2.2 RHY may modulate sleep via effects on the LH

Our results suggest that RHY modulates the mRNA levels of *Hcrt* and *Pmch*. As discussed, this could directly control sleep/wakefulness amount and continuity. However, Hcrt cells are suggested to converge inputs of diverse nature (*Jennings and de Lecea, 2019*). They have receptors for various neurotransmitters, and have been shown to respond to stress, fear and reward

(Yamanaka et al., 2003; Jennings and de Lecea, 2019). Therefore, even though Hert is considered one of the main sleep/wake regulators, the effects of RHY on *Hcrt* may be caused by other changes in the organism and not necessarily indicate that Hcrt cells are a first line responder to RHY. Therefore, a first future study to be pursued is to investigate whether the decrease in *Hcrt* mRNA (particularly observed in disperse spots throughout cortical and thalamic regions) translates into changes in hypocretin peptides and Hcrt cell activity, and to investigate whether the modulation of Hert cells dictates the effects of RHY on distinct sleep variable (e.g., sleep time, continuity, and/or SWS delta, sigma, or wake alpha). Some of the methods that would help determine the implication of Hert cells on triggering RHY effects would be to inject RHY directly in the LH. This could, in addition, be combined to optogenetic activation of Hcrt cells (or MCH cells), to determine whether RHY could diminish the awakening effects of Hert cells when delivered directly into this brain region. If RHY does not cause direct effects on the LH, it could also be considered that the effects seen on the LH mRNA might reflect indirect effects of RHY as well. For instance, GABAergic sleep-promoting neurons from the POA can inhibit the activity of LH Hert cells and potentially favour wake-to-sleep transitions (Suntsova et al., 2007). Therefore, the effects captured on the LH transcriptome might reflect effects of RHY on other neuronal populations. In sum, the localized effects of RHY on the hypothalamus raise the possibility of RHY inducing sleep through a bottomup mechanisms via modulating sleep-regulatory neuronal populations, and require future attention.

6.2.3 RHY reduces expression of HPA axis elements

In line with previous studies suggesting that RHY improves neuronal and behavioural parameters in animals subjected to stress (*Zhang et al., 2017*) and with anxiolytic effects of Uncaria in rats (*Jung et al., 2006*), our results from manuscript 2 (Chapter 5) show that RHY reduces the expression of multiple genes involved in the HPA axis (*Cga, Thb, Pomc, Oxt, Avp, Prl*). The effects of RHY on these transcripts was not significant in all RHY-saline comparisons, which may have been caused by differences between sexes and time-of-injection, but also by the pulsatile nature of glucocorticoids release. As already discussed in the introduction of this thesis, sleep restriction can trigger glucocorticoids and HPA stress-reactivity, which importantly depends on the SD protocol and other cognitive variables (*Meerlo et al., 2002; Roman et al., 2006; Tartar et al., 2009; Mongrain et al., 2010; McCarthy et al., 2017; Nollet et al., 2020*). Interestingly, PS deprivation highly modified the pituitary transcriptome: increasing *Pomc, Oxt, Avp, Trh* and decreasing *Cga* and *Prl (Narwade et al., 2017; Oyola et al., 2019*), which were all affected in our study. This

supports an association between the sleep/wake history and the expression of these hypothalamicpituitary mRNAs. Furthermore, HPA activation also modulates sleep in rats: ADX reduces sleep bout length, corticosterone replacement reduces SWS time, and intracerebro-ventricular injection of CRH reduces SWS time and neuronal cFOS⁺ expression in the POA (Bradbury et al., 1998; Gvilia et al., 2015) Accordingly, RHY may modify sleep variables throughout some of its effects on the HPA axis, it may induce sleep via mechanisms not linked to the axis, or even decrease the levels of pituitary mRNAs indirectly through its sleep-inducing effects. Therefore, RHY could be further considered for investigation for treating anxiety and sleep disorders in a synergistic manner. Moreover, the HPA axis could be linked to the altered expression of Tsc22d3, (also known as delta sleep-inducing peptide immunoreactor or DSIP), whose expression colocalizes with pituitary cells in multiple species (Kovalzon and Strekalova, 2006). Literature suggests that DSIP modifies sleep time and still debates its controversial sleep-inducing properties (Friedman et al., 1994; Seifritz et al., 1995; Kovalzon and Strekalova, 2006; Roy et al., 2018). In addition, DSIP is immunosuppressor and anti-inflammatory, and is induced by stress and glucocorticoids (Yang et al., 2019). Accordingly, it would be excellent to verify whether DSIP plays any role in RHY's sleep-inducing effects. For instance, it could be quantified if RHY enhances DSIP protein levels and whether some of RHY's effects are dampened with simultaneous administration of Tsc22d3 inhibitory oligonucleotides.

6.2.4 RHY modifies genes linked to inflammatory responses

In our experiment, RHY also modified the expression of genes linked to inflammatory and apoptosis/necrosis pathways. The differentially expressed genes (DEGs) were predicted to be downstream of terms such as immunoglobulin or toll-like receptors (TLR), cytokines or NF- κ B signaling. The anti-inflammatory effects of RHY on cytokines, TLR and NF- κ B pathways had already been described in rat cardiomyocytes, cerebral cortex and hippocampus, and authors linked these pathways to RHY's benefits on decreasing reactive oxygen species, improving cell viability, as well as on attenuating pathological EEG activity in rats (*Ho et al., 2014; Lai et al., 2019; Long et al., 2019; Qin et al., 2019)*. In fact, cytokines (e.g., IL1 β) and TLR are suggested to modulate neuronal activity (*Vezzani et al., 2013*). For instance, IL1 β injected in the somatosensory cortex enhanced SWS SWA only in the ipsilateral hemisphere (*Yasuda et al., 2005*). Therefore, if RHY reduced the levels of pro-inflammatory cytokine, one could predict the reduced SWS SWA activity that we observed after RHY injections, or some of the other alterations in ECoG signatures.

Interestingly, links between the immune system and sleep are well described. Infection or immune activation induce sleep, and sleep fosters healing, for instance, by increasing anti-viral responses and survival to infection (well reviewed in *Irwin, 2019*). Moreover, cytokines are considered SRSs. In fact, RHY modulated rodent macrophage and microglia activity (*Yuan et al., 2009; Kim et al., 2010; Cao et al., 2012; Song et al., 2012*), and the protein abundance of components of the TLR/NF-kB oscillated in a diurnal manner in Kupffer cells (liver macrophages) (*Wang et al., 2018a*). Besides, the effects on these inflammatory responses may be linked to the enrichment of DEGs linked to apoptosis/necrosis (*Yang et al., 2015*). In fact, RHY reduced apoptosis in rat granule neurons and cardiomyocytes (*Hu et al., 2018; Qin et al., 2019*), and decrease neuronal death in layer III of the medial entorhinal cortex (*Shao et al., 2016*). In sum, it will be important to disentangle if RHY induces its hypnotic effects via cytokine signaling or via separated mechanisms, and whether this pathway contributes to effects of RHY that are time dependent.

6.2.5 RHY did not modify EPHA4 phosphorylation

Fu and collaborators suggested RHY as a potential inhibitor of EPHA4 activity (Fu et al., 2014). The authors simulated docking between EPHA4 and compounds in online databases, identified RHY as a potential inhibitor and confirmed the RHY-EPHA4 binding with in vitro pulldown assays (Fu et al., 2014). As compiled in Table 1 of Chapter 2, rat hippocampal neurons treated with RHY reduced EFNA1-dependent EPHA4 phosphorylation and clusters in rat hippocampal neurons, and, in vivo, RHY reduced EPHA4 phosphorylation in PFC, CA3 and DG of stress-susceptible mice, and in hippocampal synaptosomal fractions of a mouse model of Alzheimer's disease (Fu et al., 2014; Zhang et al., 2017). In our study (Chapter 5), neither the levels of EPHA4 nor its phosphorylation was modified 13h after injection. Moreover, the transcriptome does not suggest effects of RHY downstream of EPHA4. For instance, if EPHA4 was a main driver of RHY effects, we could have expected DEGs predicted to be downstream of the transcription factors MAT2B or TEAD1, which have been suggested to be downstream of EphA4 activity (Freyburger et al., 2016; Cayuso et al., 2019) but which were not modified by RHY. Nevertheless, these two cited studies in vivo measured phosphorylation levels after 3-4 weeks of oral administration or 48h-post intraperitoneal injection, which could explain the different results. More importantly, an additional current analysis pooling male and female mice demonstrates that RHY has very similar effects on sleep architecture in EphA4 KO mice as the effects it has in WT mice (Figures 6.1, and compare with Figure 5.1): it induces SWS of shorter duration, it reduces PS in the light phase and enhances it in the dark phase, and increments the number of wake and SWS bouts in the 5 to 6 hours after injections. In addition, RHY modified ECoG activity similarly in *EphA4* WT and KO mice (Figure 6.2E), except for an enhanced wake alpha activity and SWS delta activity during the light period which was not affected in WTs. Even though these KO-exclusive effects may indicate that EPHA4 would be required to prevent modulations of RHY on these frequency bands, the effects may also be caused by molecular compensations (e.g., other upregulated Eph/ephrin components, *Freyburger et al., 2016*), or by neurodevelopmental changes in these mutants. Thus, the preserved effects of RHY in *EphA4* KOs, and the lack of molecular alterations linked to EPHA4 activation support that RHY does not modify sleep directly via EPHA4 interactions. Another or some others of RHY's multiple effectors (see Chaper 2, *Ballester Roig et al., 2021*) may be involved. In fact, the poor selectivity of RHY was

Figure 6.2. RHY induces SWS and modifies ECoG activity in *EphA4* KO mice similarly to how it does in *EphA4* WT mice. Male and female *EphA4^{KO}* mice injected with RHY 100mg/kg (same protocol and statistical analysis as in Chapter 5) showed a reduction of percent of time spent in wake and enhanced the time spent in both SWS and PS compared to saline injections in the total 24-h injection recording day or INJ (A; females saline n = 4, males saline n=5, females RHY100 n = 5, males RHY100 = 6; no sex-by-treatment interaction, $F_{1,16} > 0.19$, $p_{adj} < 0.67$; stars indicate main treatment effect $F_{1,16} > 15.5$, $p_{adj} < 0.01$). Pooling male and female mice (saline n = 9; RHY100 n = 11) shows that RHY induces SWS after both injections, but that it modulates PS differently after morning and evening injections (B; $F_{23,414} > 4.9$, $p_{adj} < 0.01$). Red dots indicate significant post-hoc comparisons (p < 0.05). RHY100 reduces the duration of wake and SWS bouts (C; t > 2.9, p < 0.01) and increases wake and SWS bout number for 5 to 6 hours after injections (D; $F_{23,414} > 4.9$, $p_{adj} < 0.01$). RHY also modifies ECoG activity in a vigilance state dependent manner in knockouts (E): RHY100 raised wake alpha activity (8-12 Hz) in the light period, but reduced its power during the dark phase (upper-left, $F_{17,272} > 4.3$, $p_{adj} < 0.01$); it enhanced SWS delta power (1-4 Hz) at the end of the light period and diminished it at the end of the dark period (lower-left, $F_{17,289} > 3.3$, $p_{adj} < 0.01$); and reduced both SWS sigma (10-13 Hz) and theta (6-9 Hz) activity in the first 1-3 h after injection, but enhanced these frequencies in the second half of the light period (right panels, $F_{2,289} > 4.2$, $p_{adj} < 0.01$).

already suggested by Dr. Tognolini, who mentioned that RHY did not block EPHA4-EFNA1 binding with ELISA-binding protocols or the Lanthanide Chelate Excite technology (*Tognolini et al., 2014*), and by Wu and collaborators, who report RHY inactivity with nuclear magnetic resonance and isothermal titration calorimetry (*Wu et al., 2017*). The latter authors suggest that the discrepancy may be due to false positives obtained with high-throughput screenings (*Baell, 2015*), like the one used by Fu *et al.* Nevertheless, RHY may still induce a decrease in EPHA4 phosphorylation via indirect mechanisms since this experimental finding has been replicated (*Zhang et al., 2017*). Alternatively, we have suggested in Ballester *et al.* (2021, Chapter 2), that RHY could impact EPHA4 only under disturbed/pathological conditions (e.g., disease models). In conclusion, our data supports that EPHA4 is not a main mediator the sleep-inducing properties of the alkaloid, but does not discard whether RHY modulates the activation of this adhesion molecule (and potentially impact sleep variables) under disturbed/pathological conditions.

6.2.6 RHY modifies immediate early genes linked to the response to sleep deprivation

IEGs are a group of genes upregulated quickly (between 10 minutes to two hours) by neuronal activation and the raise of intracellular calcium. This rapid transcriptional activation regulates neuronal responses, for instance, by regulating synaptic receptors (e.g., mGLURs,

AMPARs and GABARs) and plasticity (Chen et al., 2014; Mo et al., 2015; Kim et al., 2018; Miyashita et al., 2018). As discussed in Chapter 1 (section 1.3.2.1.3), Egr1, Nr1a4 and Fos are IEGs consistently upregulated by SD of different durations (3 to 12 hours), by different methods of SD (e.g., gentle handling, novel objects, water platforms for PS restriction), and in multiple brain regions (e.g., mPFC, hippocampus, VLPO, pituitary) (Cirelli and Tononi, 2000; Cirelli et al., 2004; Terao et al., 2006; Maret et al., 2007; Mongrain et al., 2010; Vecsey et al., 2012; Bellesi et al., 2013; Narwade et al., 2017; Diessler et al., 2018; Guo et al., 2019; Hor et al., 2019; Oyola et al., 2019; Guo et al., 2020; Wei, 2020; Gaine et al., 2021). In our study, RHY downregulates these IEGs (see Figure A1 in Annex). Thus, in contrast to another group of genes detected to be upregulated by both SD and RHY (e.g., Sgk1, Arl4d, Cdkn1a, Ddit4, Nfkbia, Plin4, Tsc22d3), RHY and sleep loss/restriction modulate Egr1, Nr1a4 and Fos in opposite directions. While these always-upregulated genes after sleep loss may reflect mechanism linked to sleep induction, our data supports that Egr1, Nr1a4 and Fos are reliable markers of sleep time not only when sleep is diminished but also when it is increased. Supporting the relevance of these genes, some RHYinduced DEGs (e.g., Sgk1, Cebpa, Gh, Prl, Nfkbia) are predicted to be modulated by these transcription factors in enrichments analysis (Chapter 5). Interestingly, the SD-dependent increase in Sgk1, Ddit4 Tsc22d3 and Nfkbia was abolished in ADX mice, whereas the IEGs Egr1, Nr4a1, Fos (as well as the non-IEGs Cdkn1a and Arl4a) were upregulated in both ADX and sham mice (Mongrain et al., 2010), which suggests that Nr4a1, Egr1 and Fos mark sleep time in a glucocorticoid independent manner. This intriguing segregation between glucocorticoids-induced and glucocorticoid-independent genes (in addition to the contradictory increase in glucocorticoidsdependent mRNAs, the downregulation HPA axis mRNAs, and the known anxiolytic effects of RHY) suggest that glucocorticoids are not the main driver of RHY effects. Nevertheless, this should be confirmed with future studies. In addition, it should be reminded that RHY induced SWS in the shape of short bouts in our study. Therefore, longer bouts of sleep might have altered these IEGs linked to sleep/wake history in different (or even more pronounced) manners, which could be further compared with effects of other sleep-inducing drugs on the transcriptome.

6.2.7 Future identification of RHY targets for sleep regulation

It can be compiled from this section 6.2 that RHY affected three main systems at the transcriptomics level in our study: hypothalamic, pituitary and immune responses. Accordingly, a next step will be to determine whether these systems are modified in terms of protein activity and

cell signaling. Approaches investigating targets already reported to be modulated by RHY may be good starting points: TLR2 and TLR4 have been shown to be reduced by RHY treatments, L-VGCCs are expressed in pituitary cells and modulate the secretion of GH, PRL and ACTH (Stojilkovic et al., 1988; Ho et al., 2014; Sosial and Nussinovitch, 2015; Long et al., 2019). It has also been suggested that RHY modified neuronal firing and synaptic potentiation via NMDA and EPHA4 (Kang et al., 2002; Fu et al., 2014; Shao et al., 2016), and was initially hypothesized that these molecules may drive effects of RHY on sleep because they have been involved in sleep and circadian phenotypes (Ballester Roig et al., 2021). Nevertheless, our protein measures in the mouse cerebral cortex, hippocampus and thalamus/hypothalamus, and transcriptomic approach do not suggest effects via these two membrane receptors. Thus, it would be necessary to investigate whether some of the changes observed in the ECoG are particularly linked to hypothalamic, pituitary or inflammatory targets via some of the reported RHY targets. For instance, it would be interesting to simultaneously inject RHY with agonists of (or overexpression of) NMDARs (or particularly NR2B-containing NMDARs), EPHA4, L-VGCCs or TLRs. Delivering those directly into the brain, or even into particular brain regions such as the LH, can help provide a more exhaustive explanation. In addition, studying again potential differences between male and female regarding the role of these targets, could potentially determine why the two doses used in our study had different repercussions between sexes.

6.3 RHY as a natural component for sleep modulation

It is estimated that over 30% of drugs originate from discoveries in medicinal plants (*Harvey et al., 2015*). In fact, it is the case for drugs commonly used in today's society (e.g., aspirin, morphine), and society often debates about whether natural compounds have sometimes advantages over synthetic compounds. While modern pharmacology aims at synthesizing highly specific compounds, natural products generally provide a blend of components with often unclear mechanisms of action. On the one hand, some of the benefits of herbal medicines could be linked to the synergistic mechanisms of action of their active components, such as other components facilitating absorption (*Williamson, 2001*). Moreover, herbs and other vegetal vary their composition according to the cultivating region and time of the year (*Song et al., 2018*). Given that Uncaria plants and drugs containing Uncaria (e.g., YKS) are used in Asia today, our work describes important impacts of RHY at the level of gene expression which should be considered in Uncaria

research or prescriptions. Future studies should describe whether the RHY effects discussed on inflammatory, apoptotic and hypothalamic-pituitary responses occur in humans in parallel to Uncaria's sleep-inducing effects.

6.4 Benefits and limitations of spatial transcriptomics

The broad coverage of our spatial transcriptomic approach reveals parallel consequences of RHY on different systems (e.g., sleep-regulatory transcripts and immune and hypothalamicpituitary responses). This might reflect that RHY, like many drugs, does not have a unique target. Therefore, further investigations of RHY mechanisms should include systems-biology avenues. Spatial transcriptomics, which was identified as the method of the year in 2020 (Marx, 2021), has allowed here the identification of RHY consequences that are distinct among the hypothalamus, hippocampus, cerebral cortex and white matter tracts (see Chapter 5). The platform used provides an accurate and reliable measure of gene expression in 5000 spots in a 2D-slice of tissue. The reliability of our experiment was confirmed by visualizing markers of delimited brain regions, which demonstrates that mRNA was captured in a spatially restricted manner (e.g., by confirming the previously reported distribution of *Eph/Ephrins*, or by visualizing the gene expression of markers of cortical layers such as Cux-1, Rbp4, Camk2a., Foxp1). On the other hand, it is important to highlight that one spot (55µm) is suggested to cover 1 to 10 cells in mouse brain slices. Therefore, changes in gene expression in each spot are an average of the cell types below. There are currently ways to improve cell type resolution but keep spatial information. A first option is to align spatial RNAseq data with a complementary single cell RNA sequencing (scRNAseq) experiment (Joglekar et al., 2021; Cable et al., 2022). Another option is to microdissect brain regions with laser capture microdissection and perform scRNAseq of each well-defined sample (Wen et al., 2020). Finally, 10x Genomics is currently developing a variation of their Visium Spatial Transcriptomics product, with smaller spots covering a smaller number of cells, which the community eagerly awaits.

On the other hand, it should not be neglected that transcriptomic techniques are less reliable for less abundant transcripts. Therefore, targeted spatial transcriptomics (sequencing of a pre-set list of genes) may be beneficial to study cellular pathways of interest. Another final limitation to discuss, is that the read length of our sequencing approach could not detect isoforms (*Joglekar et al., 2021*), an analysis which can provide terrific information on the cell types or functions modified

with a set of DEGs. For instance, *Sgk1* is produced in two isoforms and, in the mouse visual cortex, one was expressed in pyramidal neurons but not in cells expressing parvalbumin or glial fibrillary acidic protein (*Arteaga et al., 2008; Martin-Batista et al., 2021*), which could have provided a hint on whether RHY targets particular cell types.

6.5 Other notions to better describe molecular mechanisms in sleep and circadian rhythms

It has been highly discussed in this thesis that transcription is not the only mechanism allowing rhythmicity of synaptic components. This final section summarizes that multiple levels of regulation, redundancy in molecular processes, as well as the variability among animal models may hinder the identification of molecular mechanisms underlying sleep and circadian regulation.

Research suggests that redundant regulatory processes contribute to ensure proper rhythmicity of cellular processes. For example, changes in chromatin structure, transcription factor binding, transcripts, translation and the phosphoproteome peak at similar phases to organize the same functions (Zhang et al., 2014; Atger et al., 2015; Mure et al., 2018; Wang et al., 2018a; Bruning et al., 2019; Hor et al., 2019; Noya et al., 2019; Lyons et al., 2020). Similarly, it was found in the mouse liver that ubiquitination was higher in proteins coded in transcripts regulated by cycling transcription factors, suggesting redundant regulations (Wang et al., 2018a). Accordingly, it is difficult to identify if a molecular process is crucial to regulate a particular behavior or if it is part of a balanced assembly of convergent regulations. Thus, experiments could compare the effect of different levels of rhythmic regulation for the same function and the impact on sleep and rhythms (e.g., modify transcriptional activity and RNA stability, or RNA stability and protein activity). Potential redundant mechanisms were obtained as well when analyzing the transcriptome after RHY injections, but the diversity of functional pathways affected could also indicate consequences which are not all linked to the enhanced sleep. Therefore, when using techniques to modulate circadian rhythms, sleep amounts, depth or oscillations, diverse techniques should be compared. This has been already discussed regarding distinct methods used for sleep restriction (gentle handling, novel objects, running wheels) (Havekes and Aton, 2020), but it should be similarly applied in pharmacological studies which induce similar behaviors throughout different molecular mechanisms. For instance, it would have been helpful in our study to compare the effect of other sleep-inducing compounds such as benzodiazepines, to compare which pathways overlap and the relevance of the hypothalamic effects. Likewise, organism responses and chemicals studied may be contingent upon the state of the organism (healthy, stressed, aged). For instance, recent unpublished data suggest that silencing sleep regulatory neurons in flies is more effective when flies are on a sugar diet than when they are under a protein diet (*Dissel, 2022*). Therefore, pharmacological approaches should be tested simultaneously in distinct animal models of conditions (e.g., under inflamed or sleep deprived conditions). Finally, it should not be forgotten that organism responses (e.g., responses to SD) do not only differ between different organism states, but also between mouse strains and across generations (*El Helou et al., 2013; Diessler et al., 2018*). Performing studies in mixed backgrounds, comparing strains and multiple mammal species, as well as systems genetics approaches, will help improve reproducibility and find the most relevant mechanism to extrapolate and study human health.

Chapter 7

Conclusions

The cell adhesion molecule EPHA4 and its ligands Ephrins are crucial for cell communication in multiple tissues and regulate spine morphology and neurotransmission in the central nervous system. Interestingly, EphA4 KO mice have abnormal circadian rhythms of locomotor activity and altered sleep variables (e.g., PS time and SWS delta and sigma activity). This thesis identifies that the circadian transcription factors CLOCK and BMAL1 (as well as NPAS2 and BMAL1) activate transcription via putative promoter regions of the EphA4, EfnB2 and *EfnA3* genes *in vitro*. The effect of these clock factors was blocked by GSK3 β , a kinase that negatively regulates the clock machinery which has also important roles in neurite morphology and synaptic plasticity. This clock regulation of EphA4 supports the previously observed circadian phenotypes in *EphA4* KO mice. Although protein measurements at different times of the day show no oscillation of EPHA4 and EFNB2 in PFC or SCN of mice kept in constant darkness, the regulation by clock factors might be cell type- or tissue-specific. Furthermore, although clock transcription factors are basis of circadian rhythms in mammals, they are also under strong sleep regulation, which suggests that both circadian and homeostatic processes could regulate EphA4/EfnB2/EfnA3 interactions. Future studies should determine whether the clock machinery regulates the transcription of Eph/Ephrin components in vivo and whether this regulation underlies responses to both homeostatic and rhythmic processes.

In the second research project, we investigated molecular mechanisms of an alkaloid (RHY) purified from plants used in traditional Asian medicines for their sedative properties. RHY, which had been shown to modulate EPHA4 activity and synaptic transmission, induces SWS in mice. Its effects on PS time, wake alpha activity, and SWS delta and sigma activity were different after morning or evening injections, suggesting that some RHY mechanisms of action may depend on (internal or external) time. Importantly, RHY effects were more pronounced and dose dependent in females, which stresses the need to explore several pharmacological doses in both sexes. The spatial transcriptome demonstrates that RHY affects the expression of some genes in a general manner throughout the brain (e.g., genes involved in apoptosis and inflammatory responses) and modifies the expression of other transcripts involved in sleep and pituitary functions particularly in the hypothalamus. Future investigations assessing which RHY targets (e.g., NMDA receptors, TLR) trigger each effect on sleep (e.g., sleep time, brain oscillations), may help understand molecular mechanisms regulating sleep, and potentially contribute to enrich possibilities for sleep medicine.

In conclusion, this thesis describes a transcriptional regulation for elements of the cell adhesion system Eph/Ephrin, and places this mechanism in the context of circadian rhythms and sleep. Moreover, we demonstrate that an alkaloid which had been suggested to affect the activity of the Eph/Ephrin system, has significant sleep-inducing properties and profound impacts on brain gene expression. This work also supports that spatial transcriptomic (and other omic) techniques are advantageous tools to describe pharmacological effects. Finally, we highlight the importance of considering cell adhesion mechanisms to better understand the neurophysiology of behaviors.

- Abel, T., Havekes, R., Saletin, J.M., Walker, M.P. (2013). Sleep, plasticity and memory from molecules to wholebrain networks. Curr Biol 23, R774-788.
- Abrahamson, E.E., Moore, R.Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res *916*, 172-191.
- Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K., de Lecea, L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature *450*, 420-424.
- Adams, R.H., Wilkinson, G.A., Weiss, C., Diella, F., Gale, N.W., Deutsch, U., Risau, W., Klein, R. (1999). Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13, 295-306.
- Aizawa, R., Kanbayashi, T., Saito, Y., Ogawa, Y., Sugiyama, T., Kitajima, T., Kaneko, Y., Abe, M., Shimizu, T. (2002). Effects of Yoku-kan-san-ka-chimpi-hange on the sleep of normal healthy adult subjects. Psychiatry Clin Neurosci 56, 303-304.
- Amzica, F., Steriade, M. (1998). Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107, 69-83.
- Anaclet, C., Ferrari, L., Arrigoni, E., Bass, C.E., Saper, C.B., Lu, J., Fuller, P.M. (2014). The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 17, 1217-1224.
- Anaclet, C., Pedersen, N.P., Ferrari, L.L., Venner, A., Bass, C.E., Arrigoni, E., Fuller, P.M. (2015). Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6, 8744.
- Ango, F., Prezeau, L., Muller, T., Tu, J.C., Xiao, B., Worley, P.F., Pin, J.P., Bockaert, J., Fagni, L. (2001). Agonistindependent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411, 962-965.
- Arcas, A., Wilkinson, D.G., Nieto, M.A. (2020). The Evolutionary History of Ephs and Ephrins: Toward Multicellular Organisms. Mol Biol Evol 37, 379-394.
- Arraj, M., Lemmer, B. (2006). Circadian rhythms in heart rate, motility, and body temperature of wild-type C57 and eNOS knock-out mice under light-dark, free-run, and after time zone transition. Chronobiol Int *23*, 795-812.
- Arteaga, M.F., Coric, T., Straub, C., Canessa, C.M. (2008). A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons. Proc Natl Acad Sci U S A *105*, 4459-4464.
- Ashton, R.S., Conway, A., Pangarkar, C., Bergen, J., Lim, K.I., Shah, P., Bissell, M., Schaffer, D.V. (2012). Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat Neurosci 15, 1399-1406.
- Astori, S., Wimmer, R.D., Prosser, H.M., Corti, C., Corsi, M., Liaudet, N., Volterra, A., Franken, P., Adelman, J.P., Luthi, A. (2011). The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A 108, 13823-13828.
- Atger, F., Gobet, C., Marquis, J., Martin, E., Wang, J., Weger, B., Lefebvre, G., Descombes, P., Naef, F., Gachon, F. (2015). Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc Natl Acad Sci U S A 112, E6579-6588.

- Aton, S.J., Seibt, J., Dumoulin, M., Jha, S.K., Steinmetz, N., Coleman, T., Naidoo, N., Frank, M.G. (2009). Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61, 454-466.
- Averaimo, S., Assali, A., Ros, O., Couvet, S., Zagar, Y., Genescu, I., Rebsam, A., Nicol, X. (2016). A plasma membrane microdomain compartmentalizes ephrin-generated cAMP signals to prune developing retinal axon arbors. Nat Commun 7, 12896.
- Axmacher, N., Elger, C.E., Fell, J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 131, 1806-1817.
- Baell, J.B. (2015). Screening-based translation of public research encounters painful problems. ACS Med Chem Lett 6, 229-234.
- Baker, C.L., Loros, J.J., Dunlap, J.C. (2012). The circadian clock of Neurospora crassa. FEMS Microbiol Rev 36, 95-110.
- Baker, F.C., Shah, S., Stewart, D., Angara, C., Gong, H., Szymusiak, R., Opp, M.R., McGinty, D. (2005). Interleukin 1beta enhances non-rapid eye movement sleep and increases c-Fos protein expression in the median preoptic nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 288, R998-R1005.
- Ballester Roig, M.N., Leduc, T., Areal, C.C., Mongrain, V. (2021). Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 3, 312-341.
- Bandarabadi, M., Herrera, C.G., Gent, T.C., Bassetti, C., Schindler, K., Adamantidis, A.R. (2020). A role for spindles in the onset of rapid eye movement sleep. Nat Commun *11*, 5247.
- Bandarabadi, M., Boyce, R., Gutierrez Herrera, C., Bassetti, C.L., Williams, S., Schindler, K., Adamantidis, A. (2019). Dynamic modulation of theta-gamma coupling during rapid eye movement sleep. Sleep *42*.
- Banks, S., Dinges, D.F. (2007). Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med 3, 519-528.
- Barateau, L., Dauvilliers, Y. (2019). Recent advances in treatment for narcolepsy. Ther Adv Neurol Disord 12, 1756286419875622.
- Barca-Mayo, O., Pons-Espinal, M., Follert, P., Armirotti, A., Berdondini, L., De Pietri Tonelli, D. (2017). Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 8, 14336.
- Bazanova, O.M., Vernon, D. (2014). Interpreting EEG alpha activity. Neurosci Biobehav Rev 44, 94-110.
- Beaulieu, J.M., Gainetdinov, R.R., Caron, M.G. (2009). Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol *49*, 327-347.
- Begum, S., Emami, N., Cheung, A., Wilkins, O., Der, S., Hamel, P.A. (2005). Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 24, 1860-1872.
- Bellesi, M., Bushey, D., Chini, M., Tononi, G., Cirelli, C. (2016). Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice. Sci Rep 6, 36804.
- Bellesi, M., Pfister-Genskow, M., Maret, S., Keles, S., Tononi, G., Cirelli, C. (2013). Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 33, 14288-14300.
- Bellet, M.M., Sassone-Corsi, P. (2010). Mammalian circadian clock and metabolism the epigenetic link. J Cell Sci *123*, 3837-3848.

- Benedetti, F., Serretti, A., Colombo, C., Lorenzi, C., Tubazio, V., Smeraldi, E. (2004). A glycogen synthase kinase 3beta promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci Lett 368, 123-126.
- Benedetti, F., Dallaspezia, S., Lorenzi, C., Pirovano, A., Radaelli, D., Locatelli, C., Poletti, S., Colombo, C., Smeraldi,
 E. (2012). Gene-gene interaction of glycogen synthase kinase 3-beta and serotonin transporter on human antidepressant response to sleep deprivation. J Affect Disord *136*, 514-519.
- Bersagliere, A., Pascual-Marqui, R.D., Tarokh, L., Achermann, P. (2018). Mapping Slow Waves by EEG Topography and Source Localization: Effects of Sleep Deprivation. Brain Topogr *31*, 257-269.
- Besing, R.C., Paul, J.R., Hablitz, L.M., Rogers, C.O., Johnson, R.L., Young, M.E., Gamble, K.L. (2015). Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus. J Biol Rhythms 30, 155-160.
- Besing, R.C., Rogers, C.O., Paul, J.R., Hablitz, L.M., Johnson, R.L., McMahon, L.L., Gamble, K.L. (2017). GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus 27, 890-898.
- Beurel, E., Grieco, S.F., Jope, R.S. (2015). Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148, 114-131.
- Binder, S., Rawohl, J., Born, J., Marshall, L. (2013). Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci 7, 220.
- Binns, K.L., Taylor, P.P., Sicheri, F., Pawson, T., Holland, S.J. (2000). Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol Cell Biol 20, 4791-4805.
- Bixler, E.O., Papaliaga, M.N., Vgontzas, A.N., Lin, H.M., Pejovic, S., Karataraki, M., Vela-Bueno, A., Chrousos, G.P. (2009). Women sleep objectively better than men and the sleep of young women is more resilient to external stressors: effects of age and menopause. J Sleep Res 18, 221-228.
- Bjorness, T.E., Booth, V., Poe, G.R. (2018). Hippocampal theta power pressure builds over non-REM sleep and dissipates within REM sleep episodes. Arch Ital Biol *156*, 112-126.
- Bjorness, T.E., Kulkarni, A., Rybalchenko, V., Suzuki, A., Bridges, C., Harrington, A.J., Cowan, C.W., Takahashi, J.S., Konopka, G., Greene, R.W. (2020). An essential role for MEF2C in the cortical response to loss of sleep in mice. Elife 9.
- Blake, H., Gerard, R.W. (1937). Brain potentials during sleep. American Journal of Physiology-Legacy Content 119, 692-703.
- Blanco-Centurion, C., Liu, M., Konadhode, R.P., Zhang, X., Pelluru, D., van den Pol, A.N., Shiromani, P.J. (2016). Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 44, 2846-2857.
- Borbely, A.A. (1982). A two process model of sleep regulation. Hum Neurobiol 1, 195-204.
- Borbely, A.A., Daan, S., Wirz-Justice, A., Deboer, T. (2016). The two-process model of sleep regulation: a reappraisal. J Sleep Res 25, 131-143.

- Borbely, A.A., Baumann, F., Brandeis, D., Strauch, I., Lehmann, D. (1981). Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol *51*, 483-495.
- Bourgin, C., Murai, K.K., Richter, M., Pasquale, E.B. (2007). The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol *178*, 1295-1307.
- Bouzioukh, F., Wilkinson, G.A., Adelmann, G., Frotscher, M., Stein, V., Klein, R. (2007). Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation but not long-term depression. J Neurosci 27, 11279-11288.
- Bowden, T.A., Aricescu, A.R., Nettleship, J.E., Siebold, C., Rahman-Huq, N., Owens, R.J., Stuart, D.I., Jones, E.Y. (2009). Structural Plasticity of Eph-Receptor A4 Facilitates Cross-Class Ephrin Signaling. Structure *17*, 1679.
- Boyce, R., Glasgow, S.D., Williams, S., Adamantidis, A. (2016). Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science *352*, 812-816.
- Bozek, K., Relogio, A., Kielbasa, S.M., Heine, M., Dame, C., Kramer, A., Herzel, H. (2009). Regulation of clockcontrolled genes in mammals. PLoS One 4, e4882.
- Bradbury, M.J., Dement, W.C., Edgar, D.M. (1998). Effects of adrenalectomy and subsequent corticosterone replacement on rat sleep state and EEG power spectra. Am J Physiol 275, R555-565.
- Brancaccio, M., Patton, A.P., Chesham, J.E., Maywood, E.S., Hastings, M.H. (2017). Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling. Neuron 93, 1420-1435 e1425.
- Brandt, J.A., Churchill, L., Guan, Z., Fang, J., Chen, L., Krueger, J.M. (2001). Sleep deprivation but not a whisker trim increases nerve growth factor within barrel cortical neurons. Brain Res *898*, 105-112.
- Briggs, C., Hirasawa, M., Semba, K. (2018). Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 38, 2505-2518.
- Brockman, R., Bunick, D., Mahoney, M.M. (2011). Estradiol deficiency during development modulates the expression of circadian and daily rhythms in male and female aromatase knockout mice. Horm Behav *60*, 439-447.
- Broussard, J.I., Givens, B. (2010). Low frequency oscillations in rat posterior parietal cortex are differentially activated by cues and distractors. Neurobiol Learn Mem *94*, 191-198.
- Bruckner, K., Pablo Labrador, J., Scheiffele, P., Herb, A., Seeburg, P.H., Klein, R. (1999). EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511-524.
- Bruning, F., Noya, S.B., Bange, T., Koutsouli, S., Rudolph, J.D., Tyagarajan, S.K., Cox, J., Mann, M., Brown, S.A., Robles, M.S. (2019). Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366.
- Cable, D.M., Murray, E., Zou, L.S., Goeva, A., Macosko, E.Z., Chen, F., Irizarry, R.A. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol *40*, 517-526.
- Cahill, L. (2006). Why sex matters for neuroscience. Nat Rev Neurosci 7, 477-484.
- Cai, Wei, D., Chen, S., Chen, X., Li, S., Chen, W., He, W. (2019). MiR-145 protected the cell viability of human cerebral cortical neurons after oxygen-glucose deprivation by downregulating EPHA4. Life Sci *231*, 116517.
- Cajochen, C., Knoblauch, V., Krauchi, K., Renz, C., Wirz-Justice, A. (2001). Dynamics of frontal EEG activity, sleepiness and body temperature under high and low sleep pressure. Neuroreport *12*, 2277-2281.

- Cao, W., Wang, Y., Lv, X., Yu, X., Li, X., Li, H., Wang, Y., Lu, D., Qi, R., Wang, H. (2012). Rhynchophylline prevents cardiac dysfunction and improves survival in lipopolysaccharide-challenged mice via suppressing macrophage I-kappaBalpha phosphorylation. Int Immunopharmacol 14, 243-251.
- Carmona, M.A., Murai, K.K., Wang, L., Roberts, A.J., Pasquale, E.B. (2009). Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A *106*, 12524-12529.
- Carrera-Canas, C., Garzon, M., de Andres, I. (2019). The Transition Between Slow-Wave Sleep and REM Sleep Constitutes an Independent Sleep Stage Organized by Cholinergic Mechanisms in the Rostrodorsal Pontine Tegmentum. Front Neurosci 13, 748.
- Carrier, J., Land, S., Buysse, D.J., Kupfer, D.J., Monk, T.H. (2001). The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20-60 years old). Psychophysiology *38*, 232-242.
- Carskadon, M.A., Dement, W.C. (2005). Normal human sleep: an overview. Principles and practice of sleep medicine.
- Carter, M.E., Brill, J., Bonnavion, P., Huguenard, J.R., Huerta, R., de Lecea, L. (2012). Mechanism for Hypocretinmediated sleep-to-wake transitions. Proc Natl Acad Sci U S A *109*, E2635-2644.
- Cayuso, J., Xu, Q., Addison, M., Wilkinson, D.G. (2019). Actomyosin regulation by Eph receptor signaling couples boundary cell formation to border sharpness. Elife 8.
- Cermakian, N., Stegeman, S.K., Tekade, K., Labrecque, N. (2022). Circadian rhythms in adaptive immunity and vaccination. Semin Immunopathol 44, 193-207.
- Challet, E. (2007). Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology *148*, 5648-5655.
- Chellappa, S.L., Vujovic, N., Williams, J.S., Scheer, F. (2019). Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol Metab *30*, 767-779.
- Chen, R., Yang, X., Zhang, B., Wang, S., Bao, S., Gu, Y., Li, S. (2019). EphA4 Negatively Regulates Myelination by Inhibiting Schwann Cell Differentiation in the Peripheral Nervous System. Front Neurosci *13*, 1191.
- Chen, X., Zhang, L., Hua, F., Zhuang, Y., Liu, H., Wang, S. (2021). EphA4 Obstructs Spinal Cord Neuron Regeneration by Promoting Excessive Activation of Astrocytes. Cell Mol Neurobiol.
- Chen, Y., Fu, A.K., Ip, N.Y. (2012). Eph receptors at synapses: implications in neurodegenerative diseases. Cell Signal 24, 606-611.
- Chen, Y., Wang, Y., Erturk, A., Kallop, D., Jiang, Z., Weimer, R.M., Kaminker, J., Sheng, M. (2014). Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron 83, 431-443.
- Chun, L.E., Woodruff, E.R., Morton, S., Hinds, L.R., Spencer, R.L. (2015). Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats. J Biol Rhythms 30, 417-436.
- Chung, S., Lee, E.J., Cha, H.K., Kim, J., Kim, D., Son, G.H., Kim, K. (2017). Cooperative roles of the suprachiasmatic nucleus central clock and the adrenal clock in controlling circadian glucocorticoid rhythm. Sci Rep *7*, 46404.
- Cipolla-Neto, J., Amaral, F.G., Afeche, S.C., Tan, D.X., Reiter, R.J. (2014). Melatonin, energy metabolism, and obesity: a review. J Pineal Res *56*, 371-381.
- Cirelli, C., Tononi, G. (2000). Gene expression in the brain across the sleep-waking cycle. Brain Res 885, 303-321.

Cirelli, C., Tononi, G. (2008). Is sleep essential? PLoS Biol 6, e216.

- Cirelli, C., Tononi, G. (2022). The why and how of sleep-dependent synaptic down-selection. Semin Cell Dev Biol 125, 91-100.
- Cirelli, C., Gutierrez, C.M., Tononi, G. (2004). Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron *41*, 35-43.
- Cisse, Y., Toossi, H., Ishibashi, M., Mainville, L., Leonard, C.S., Adamantidis, A., Jones, B.E. (2018). Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice. eNeuro 5.
- Clasadonte, J., Scemes, E., Wang, Z., Boison, D., Haydon, P.G. (2017). Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle. Neuron *95*, 1365-1380 e1365.
- Clawson, B.C., Durkin, J., Suresh, A.K., Pickup, E.J., Broussard, C.G., Aton, S.J. (2018). Sleep Promotes, and Sleep Loss Inhibits, Selective Changes in Firing Rate, Response Properties and Functional Connectivity of Primary Visual Cortex Neurons. Front Syst Neurosci 12, 40.
- Cooper, J.M., Halter, K.A., Prosser, R.A. (2018). Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 5, 15-36.
- Cowan, C.A., Henkemeyer, M. (2001). The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174-179.
- Curie, T., Maret, S., Emmenegger, Y., Franken, P. (2015). In Vivo Imaging of the Central and Peripheral Effects of Sleep Deprivation and Suprachiasmatic Nuclei Lesion on PERIOD-2 Protein in Mice. Sleep *38*, 1381-1394.
- Curie, T., Mongrain, V., Dorsaz, S., Mang, G.M., Emmenegger, Y., Franken, P. (2013). Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36, 311-323.
- Curtis, A.M., Bellet, M.M., Sassone-Corsi, P., O'Neill, L.A. (2014). Circadian clock proteins and immunity. Immunity 40, 178-186.
- Cusmano, D.M., Hadjimarkou, M.M., Mong, J.A. (2014). Gonadal steroid modulation of sleep and wakefulness in male and female rats is sexually differentiated and neonatally organized by steroid exposure. Endocrinology *155*, 204-214.
- Daan, S., Beersma, D.G., Borbely, A.A. (1984). Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246, R161-183.
- Dalva, M.B., Takasu, M.A., Lin, M.Z., Shamah, S.M., Hu, L., Gale, N.W., Greenberg, M.E. (2000). EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell *103*, 945-956.
- Dao, L.T.M., Galindo-Albarran, A.O., Castro-Mondragon, J.A., Andrieu-Soler, C., Medina-Rivera, A., Souaid, C., Charbonnier, G., Griffon, A., Vanhille, L., Stephen, T., Alomairi, J., Martin, D., Torres, M., Fernandez, N., Soler, E., van Helden, J., Puthier, D., Spicuglia, S. (2017). Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat Genet 49, 1073-1081.
- Datta, S., Siwek, D.F. (1997). Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J Neurophysiol 77, 2975-2988.
- Datta, S., Spoley, E.E., Patterson, E.H. (2001). Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol 280, R752-759.

- Davis, S., Gale, N.W., Aldrich, T.H., Maisonpierre, P.C., Lhotak, V., Pawson, T., Goldfarb, M., Yancopoulos, G.D. (1994). Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816-819.
- Davy, A., Gale, N.W., Murray, E.W., Klinghoffer, R.A., Soriano, P., Feuerstein, C., Robbins, S.M. (1999). Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev 13, 3125-3135.
- de Marcondes, P.G., Bastos, L.G., de-Freitas-Junior, J.C., Rocha, M.R., Morgado-Diaz, J.A. (2016). EphA4-mediated signaling regulates the aggressive phenotype of irradiation survivor colorectal cancer cells. Tumour Biol *37*, 12411-12422.
- De Sarro, G., Gareri, P., Sinopoli, V.A., David, E., Rotiroti, D. (1997). Comparative, behavioural and electrocortical effects of tumor necrosis factor-alpha and interleukin-1 microinjected into the locus coeruleus of rat. Life Sci 60, 555-564.
- de Vivo, L., Bellesi, M., Marshall, W., Bushong, E.A., Ellisman, M.H., Tononi, G., Cirelli, C. (2017). Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science *355*, 507-510.
- Deboer, T. (2015). Behavioral and electrophysiological correlates of sleep and sleep homeostasis. Curr Top Behav Neurosci 25, 1-24.
- Deboer, T., Franken, P., Tobler, I. (1994). Sleep and cortical temperature in the Djungarian hamster under baseline conditions and after sleep deprivation. J Comp Physiol A *174*, 145-155.
- DeBruyne, J.P., Weaver, D.R., Reppert, S.M. (2007). CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10, 543-545.
- Del Percio, C., Drinkenburg, W., Lopez, S., Infarinato, F., Bastlund, J.F., Laursen, B., Pedersen, J.T., Christensen, D.Z., Forloni, G., Frasca, A., Noe, F.M., Bentivoglio, M., Fabene, P.F., Bertini, G., Colavito, V., Kelley, J., Dix, S., Richardson, J.C., Babiloni, C., PharmaCog, C. (2017). On-going electroencephalographic rhythms related to cortical arousal in wild-type mice: the effect of aging. Neurobiol Aging 49, 20-30.
- Dib, R., Gervais, N.J., Mongrain, V. (2021). A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents. Neurobiol Sleep Circadian Rhythms 11, 100068.
- Dierickx, P. et al. (2022). Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD(+) biosynthesis and sustain cardiac function. Nat Cardiovasc Res 1, 45-58.
- Diering, G.H., Nirujogi, R.S., Roth, R.H., Worley, P.F., Pandey, A., Huganir, R.L. (2017). Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science *355*, 511-515.
- Diessler, S., Jan, M., Emmenegger, Y., Guex, N., Middleton, B., Skene, D.J., Ibberson, M., Burdet, F., Gotz, L., Pagni, M., Sankar, M., Liechti, R., Hor, C.N., Xenarios, I., Franken, P. (2018). A systems genetics resource and analysis of sleep regulation in the mouse. PLoS Biol 16, e2005750.
- Dijk, D.J., Beersma, D.G., Daan, S. (1987a). EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms 2, 207-219.
- Dijk, D.J., Beersma, D.G., Bloem, G.M. (1989). Sex differences in the sleep EEG of young adults: visual scoring and spectral analysis. Sleep *12*, 500-507.

- Dijk, D.J., Brunner, D.P., Borbely, A.A. (1990). Time course of EEG power density during long sleep in humans. Am J Physiol 258, R650-661.
- Dijk, D.J., Beersma, D.G., Daan, S., Bloem, G.M., Van den Hoofdakker, R.H. (1987b). Quantitative analysis of the effects of slow wave sleep deprivation during the first 3 h of sleep on subsequent EEG power density. Eur Arch Psychiatry Neurol Sci 236, 323-328.
- Dissel, S. (2022). New Insights into Sleep Regulation in Flies. In: Sleep Regulation and Function, Gordon Research Conference. Barga, Italy.
- Dollins, A.B., Zhdanova, I.V., Wurtman, R.J., Lynch, H.J., Deng, M.H. (1994). Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci U S A 91, 1824-1828.
- Dottori, M., Hartley, L., Galea, M., Paxinos, G., Polizzotto, M., Kilpatrick, T., Bartlett, P.F., Murphy, M., Kontgen, F., Boyd, A.W. (1998). EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci U S A 95, 13248-13253.
- Drescher, U. (2002). Eph family functions from an evolutionary perspective. Curr Opin Genet Dev 12, 397-402.
- Dudilot, A., Trillaud-Doppia, E., Boehm, J. (2020). RCAN1 Regulates Bidirectional Synaptic Plasticity. Curr Biol *30*, 1167-1176 e1162.
- Duez, H., van der Veen, J.N., Duhem, C., Pourcet, B., Touvier, T., Fontaine, C., Derudas, B., Bauge, E., Havinga, R., Bloks, V.W., Wolters, H., van der Sluijs, F.H., Vennstrom, B., Kuipers, F., Staels, B. (2008). Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology 135, 689-698.
- Duffy, J.F., Wright, K.P., Jr. (2005). Entrainment of the human circadian system by light. J Biol Rhythms 20, 326-338.
- Dufort-Gervais, J., Provost, C., Charbonneau, L., Norris, C.M., Calon, F., Mongrain, V., Brouillette, J. (2020). Neuroligin-1 is altered in the hippocampus of Alzheimer's disease patients and mouse models, and modulates the toxicity of amyloid-beta oligomers. Sci Rep *10*, 6956.
- Dufour, A., Egea, J., Kullander, K., Klein, R., Vanderhaeghen, P. (2006). Genetic analysis of EphA-dependent signaling mechanisms controlling topographic mapping in vivo. Development *133*, 4415-4420.
- Dumoulin Bridi, M.C., Aton, S.J., Seibt, J., Renouard, L., Coleman, T., Frank, M.G. (2015). Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci Adv *1*, e1500105.
- Dumoulin, M.C., Aton, S.J., Watson, A.J., Renouard, L., Coleman, T., Frank, M.G. (2015). Extracellular signalregulated kinase (ERK) activity during sleep consolidates cortical plasticity in vivo. Cereb Cortex 25, 507-515.
- Ebrahim, I.O., Sharief, M.K., de Lacy, S., Semra, Y.K., Howard, R.S., Kopelman, M.D., Williams, A.J. (2003). Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia. J Neurol Neurosurg Psychiatry 74, 127-130.
- Egashira, N., Nogami, A., Iwasaki, K., Ishibashi, A., Uchida, N., Takasaki, K., Mishima, K., Nishimura, R., Oishi, R., Fujiwara, M. (2011). Yokukansan enhances pentobarbital-induced sleep in socially isolated mice: possible involvement of GABA(A)-benzodiazepine receptor complex. J Pharmacol Sci *116*, 316-320.

- Ehlen, J.C., Hesse, S., Pinckney, L., Paul, K.N. (2013). Sex chromosomes regulate nighttime sleep propensity during recovery from sleep loss in mice. PLoS One *8*, e62205.
- El Helou, J., Belanger-Nelson, E., Freyburger, M., Dorsaz, S., Curie, T., La Spada, F., Gaudreault, P.O., Beaumont,
 E., Pouliot, P., Lesage, F., Frank, M.G., Franken, P., Mongrain, V. (2013). Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc Natl Acad Sci U S A *110*, 9974-9979.
- Elder, G.J., Wetherell, M.A., Barclay, N.L., Ellis, J.G. (2014). The cortisol awakening response--applications and implications for sleep medicine. Sleep Med Rev 18, 215-224.
- Essmann, C.L., Martinez, E., Geiger, J.C., Zimmer, M., Traut, M.H., Stein, V., Klein, R., Acker-Palmer, A. (2008). Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors. Nat Neurosci 11, 1035-1043.
- Etienne-Manneville, S., Hall, A. (2003). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature *421*, 753-756.
- Faraguna, U., Vyazovskiy, V.V., Nelson, A.B., Tononi, G., Cirelli, C. (2008). A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28, 4088-4095.
- Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., Capogrossi, M.C., Martelli, F. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283, 15878-15883.
- Fernandez, L.M., Vantomme, G., Osorio-Forero, A., Cardis, R., Beard, E., Luthi, A. (2018). Thalamic reticular control of local sleep in mouse sensory cortex. Elife 7.
- Fernandez, L.M.J., Luthi, A. (2020). Sleep Spindles: Mechanisms and Functions. Physiol Rev 100, 805-868.
- Ferrara, M., De Gennaro, L. (2011). Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle. Curr Top Med Chem 11, 2423-2437.
- Ferrie, J.E., Kumari, M., Salo, P., Singh-Manoux, A., Kivimaki, M. (2011). Sleep epidemiology--a rapidly growing field. Int J Epidemiol 40, 1431-1437.
- Filosa, A., Paixao, S., Honsek, S.D., Carmona, M.A., Becker, L., Feddersen, B., Gaitanos, L., Rudhard, Y., Schoepfer, R., Klopstock, T., Kullander, K., Rose, C.R., Pasquale, E.B., Klein, R. (2009). Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12, 1285-1292.
- Fiore, L., Medori, M., Spelzini, G., Carreno, C.O., Carri, N.G., Sanchez, V., Scicolone, G. (2019). Regulation of axonal EphA4 forward signaling is involved in the effect of EphA3 on chicken retinal ganglion cell axon growth during retinotectal mapping. Exp Eye Res 178, 46-60.
- Flanagan, J.G., Vanderhaeghen, P. (1998). The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21, 309-345.
- Flavell, S.W., Cowan, C.W., Kim, T.K., Greer, P.L., Lin, Y., Paradis, S., Griffith, E.C., Hu, L.S., Chen, C., Greenberg, M.E. (2006). Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008-1012.
- Frank, M.G., Heller, H.C. (2019). The Function(s) of Sleep. Handb Exp Pharmacol 253, 3-34.
- Frank, M.G., Waldrop, R.H., Dumoulin, M., Aton, S., Boal, J.G. (2012). A preliminary analysis of sleep-like states in the cuttlefish Sepia officinalis. PLoS One 7, e38125.

Franken, P., Dijk, D.J. (2009). Circadian clock genes and sleep homeostasis. Eur J Neurosci 29, 1820-1829.

- Franken, P., Tobler, I., Borbely, A.A. (1991a). Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci Lett *130*, 141-144.
- Franken, P., Malafosse, A., Tafti, M. (1998). Genetic variation in EEG activity during sleep in inbred mice. Am J Physiol 275, R1127-1137.
- Franken, P., Dijk, D.J., Tobler, I., Borbely, A.A. (1991b). Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol *261*, R198-208.
- Franken, P., Dudley, C.A., Estill, S.J., Barakat, M., Thomason, R., O'Hara, B.F., McKnight, S.L. (2006). NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci U S A 103, 7118-7123.
- Freyburger, M., Poirier, G., Carrier, J., Mongrain, V. (2017). Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice. J Sleep Res *26*, 539-546.
- Freyburger, M., Pierre, A., Paquette, G., Belanger-Nelson, E., Bedont, J., Gaudreault, P.O., Drolet, G., Laforest, S., Blackshaw, S., Cermakian, N., Doucet, G., Mongrain, V. (2016). EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation. Sleep 39, 613-624.
- Friedman, T.C., Garcia-Borreguero, D., Hardwick, D., Akuete, C.N., Stambuk, M.K., Dorn, L.D., Starkman, M.N., Loh, Y.P., Chrousos, G.P. (1994). Diurnal rhythm of plasma delta-sleep-inducing peptide in humans: evidence for positive correlation with body temperature and negative correlation with rapid eye movement and slow wave sleep. J Clin Endocrinol Metab 78, 1085-1089.
- Frye, M., Stritt, S., Ortsater, H., Hernandez Vasquez, M., Kaakinen, M., Vicente, A., Wiseman, J., Eklund, L., Martinez-Torrecuadrada, J.L., Vestweber, D., Makinen, T. (2020). EphrinB2-EphB4 signalling provides Rhomediated homeostatic control of lymphatic endothelial cell junction integrity. Elife 9.
- Fu, A.K.Y., Hung, K.W., Fu, W.Y., Shen, C., Chen, Y., Xia, J., Lai, K.O., Ip, N.Y. (2011). APC(Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat Neurosci 14, 181-189.
- Fu, A.K.Y., Hung, K.W., Huang, H., Gu, S., Shen, Y., Cheng, E.Y., Ip, F.C., Huang, X., Fu, W.Y., Ip, N.Y. (2014). Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A 111, 9959-9964.
- Fu, W.Y., Chen, Y., Sahin, M., Zhao, X.S., Shi, L., Bikoff, J.B., Lai, K.O., Yung, W.H., Fu, A.K., Greenberg, M.E., Ip, N.Y. (2007). Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10, 67-76.
- Fujita, A., Bonnavion, P., Wilson, M.H., Mickelsen, L.E., Bloit, J., de Lecea, L., Jackson, A.C. (2017). Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. J Neurosci 37, 9574-9592.
- Fukai, J., Yokote, H., Yamanaka, R., Arao, T., Nishio, K., Itakura, T. (2008). EphA4 promotes cell proliferation and migration through a novel EphA4-FGFR1 signaling pathway in the human glioma U251 cell line. Mol Cancer Ther 7, 2768-2778.
- Funato, H. et al. (2016). Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 539, 378-383.

Furlong, E.E.M., Levine, M. (2018). Developmental enhancers and chromosome topology. Science 361, 1341-1345.

- Gaine, M.E., Bahl, E., Chatterjee, S., Michaelson, J.J., Abel, T., Lyons, L.C. (2021). Altered hippocampal transcriptome dynamics following sleep deprivation. Mol Brain 14, 125.
- Gale, N.W., Baluk, P., Pan, L., Kwan, M., Holash, J., DeChiara, T.M., McDonald, D.M., Yancopoulos, G.D. (2001). Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230, 151-160.
- Galimberti, I., Bednarek, E., Donato, F., Caroni, P. (2010). EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus. Neuron *65*, 627-642.
- Gan-Or, Z., Alcalay, R.N., Rouleau, G.A., Postuma, R.B. (2018). Sleep disorders and Parkinson disease; lessons from genetics. Sleep Med Rev *41*, 101-112.
- Gandhi, A.V., Mosser, E.A., Oikonomou, G., Prober, D.A. (2015). Melatonin is required for the circadian regulation of sleep. Neuron *85*, 1193-1199.
- Gardi, J., Obal, F., Jr., Fang, J., Zhang, J., Krueger, J.M. (1999). Diurnal variations and sleep deprivation-induced changes in rat hypothalamic GHRH and somatostatin contents. Am J Physiol 277, R1339-1344.
- Gatto, G., Morales, D., Kania, A., Klein, R. (2014). EphA4 receptor shedding regulates spinal motor axon guidance. Curr Biol 24, 2355-2365.
- Gau, D., Lemberger, T., von Gall, C., Kretz, O., Le Minh, N., Gass, P., Schmid, W., Schibler, U., Korf, H.W., Schutz, G. (2002). Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245-253.
- Gekakis, N., Staknis, D., Nguyen, H.B., Davis, F.C., Wilsbacher, L.D., King, D.P., Takahashi, J.S., Weitz, C.J. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569.
- Gent, T.C., Bandarabadi, M., Herrera, C.G., Adamantidis, A.R. (2018). Thalamic dual control of sleep and wakefulness. Nat Neurosci 21, 974-984.
- Gerety, S.S., Wang, H.U., Chen, Z.F., Anderson, D.J. (1999). Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell *4*, 403-414.
- Gerstmann, K., Pensold, D., Symmank, J., Khundadze, M., Hubner, C.A., Bolz, J., Zimmer, G. (2015). Thalamic afferents influence cortical progenitors via ephrin A5-EphA4 interactions. Development *142*, 140-150.
- Gervais, N.J., Mong, J.A., Lacreuse, A. (2017). Ovarian hormones, sleep and cognition across the adult female lifespan: An integrated perspective. Front Neuroendocrinol 47, 134-153.
- Girardeau, G., Benchenane, K., Wiener, S.I., Buzsaki, G., Zugaro, M.B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci *12*, 1222-1223.
- Giuditta, A., Rutigliano, B., Vitale-Neugebauer, A. (1980). Influence of synchronized sleep on the biosynthesis of RNA in neuronal and mixed fractions isolated from rabbit cerebral cortex. J Neurochem *35*, 1267-1272.
- Glass, J.D., Shen, H., Fedorkova, L., Chen, L., Tomasiewicz, H., Watanabe, M. (2000). Polysialylated neural cell adhesion molecule modulates photic signaling in the mouse suprachiasmatic nucleus. Neurosci Lett 280, 207-210.
- Glass, J.D., Watanabe, M., Fedorkova, L., Shen, H., Ungers, G., Rutishauser, U. (2003). Dynamic regulation of polysialylated neural cell adhesion molecule in the suprachiasmatic nucleus. Neuroscience *117*, 203-211.

- Gobbi, G., Comai, S. (2019). Differential Function of Melatonin MT1 and MT2 Receptors in REM and NREM Sleep. Front Endocrinol (Lausanne) 10, 87.
- Goldshmit, Y., Bourne, J. (2010). Upregulation of EphA4 on astrocytes potentially mediates astrocytic gliosis after cortical lesion in the marmoset monkey. J Neurotrauma 27, 1321-1332.
- Goldshmit, Y., Galea, M.P., Bartlett, P.F., Turnley, A.M. (2006). EphA4 regulates central nervous system vascular formation. J Comp Neurol 497, 864-875.
- Gomez-Maldonado, L., Tiana, M., Roche, O., Prado-Cabrero, A., Jensen, L., Fernandez-Barral, A., Guijarro-Munoz, I., Favaro, E., Moreno-Bueno, G., Sanz, L., Aragones, J., Harris, A., Volpert, O., Jimenez, B., del Peso, L. (2015). EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 34, 2609-2620.
- Grandner, M.A. (2017). Sleep, Health, and Society. Sleep Med Clin 12, 1-22.
- Gronli, J., Rempe, M.J., Clegern, W.C., Schmidt, M., Wisor, J.P. (2016). Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness. J Sleep Res 25, 257-268.
- Grunwald, I.C., Korte, M., Wolfer, D., Wilkinson, G.A., Unsicker, K., Lipp, H.P., Bonhoeffer, T., Klein, R. (2001). Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027-1040.
- Grunwald, I.C., Korte, M., Adelmann, G., Plueck, A., Kullander, K., Adams, R.H., Frotscher, M., Bonhoeffer, T., Klein, R. (2004). Hippocampal plasticity requires postsynaptic ephrinBs. Nat Neurosci 7, 33-40.
- Guillaumond, F., Dardente, H., Giguere, V., Cermakian, N. (2005). Differential control of Bmall circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20, 391-403.
- Gulati, T., Guo, L., Ramanathan, D.S., Bodepudi, A., Ganguly, K. (2017). Neural reactivations during sleep determine network credit assignment. Nat Neurosci 20, 1277-1284.
- Guo, X., Keenan, B.T., Sarantopoulou, D., Lim, D.C., Lian, J., Grant, G.R., Pack, A.I. (2019). Age attenuates the transcriptional changes that occur with sleep in the medial prefrontal cortex. Aging Cell *18*, e13021.
- Guo, X., Gao, X., Keenan, B.T., Zhu, J., Sarantopoulou, D., Lian, J., Galante, R.J., Grant, G.R., Pack, A.I. (2020). RNA-seq analysis of galaninergic neurons from ventrolateral preoptic nucleus identifies expression changes between sleep and wake. BMC Genomics 21, 633.
- Gvilia, I., Suntsova, N., Kumar, S., McGinty, D., Szymusiak, R. (2015). Suppression of preoptic sleep-regulatory neuronal activity during corticotropin-releasing factor-induced sleep disturbance. Am J Physiol Regul Integr Comp Physiol 309, R1092-1100.
- Haberle, V., Stark, A. (2018). Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 19, 621-637.
- Hafner, C., Schmitz, G., Meyer, S., Bataille, F., Hau, P., Langmann, T., Dietmaier, W., Landthaler, M., Vogt, T. (2004). Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50, 490-499.
- Hafner, M., Stepanek, M., Taylor, J., Troxel, W.M., van Stolk, C. (2017). Why Sleep Matters-The Economic Costs of Insufficient Sleep: A Cross-Country Comparative Analysis. Rand Health Q 6, 11.

- Hallett, H., Churchill, L., Taishi, P., De, A., Krueger, J.M. (2010). Whisker stimulation increases expression of nerve growth factor- and interleukin-1beta-immunoreactivity in the rat somatosensory cortex. Brain Res 1333, 48-56.
- Han, Y., Shi, Y.F., Xi, W., Zhou, R., Tan, Z.B., Wang, H., Li, X.M., Chen, Z., Feng, G., Luo, M., Huang, Z.L., Duan, S., Yu, Y.Q. (2014). Selective activation of cholinergic basal forebrain neurons induces immediate sleepwake transitions. Curr Biol 24, 693-698.
- Hannibal, J. (2002). Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 309, 73-88.
- Hannou, L., Roy, P.G., Ballester Roig, M.N., Mongrain, V. (2020). Transcriptional control of synaptic components by the clock machinery. Eur J Neurosci 51, 241-267.
- Hannou, L., Belanger-Nelson, E., O'Callaghan, E.K., Dufort-Gervais, J., Ballester Roig, M.N., Roy, P.G., Beaulieu, J.M., Cermakian, N., Mongrain, V. (2018). Regulation of the Neuroligin-1 Gene by Clock Transcription Factors. J Biol Rhythms 33, 166-178.
- Hansen, A.K., Nedergaard, S., Andreasen, M. (2014). Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro. J Neurophysiol *112*, 631-643.
- Harada, Y., Sakai, M., Kurabayashi, N., Hirota, T., Fukada, Y. (2005). Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J Biol Chem *280*, 31714-31721.
- Harboe, M., Torvund-Jensen, J., Kjaer-Sorensen, K., Laursen, L.S. (2018). Ephrin-A1-EphA4 signaling negatively regulates myelination in the central nervous system. Glia *66*, 934-950.
- Harding, E.C., Yu, X., Miao, A., Andrews, N., Ma, Y., Ye, Z., Lignos, L., Miracca, G., Ba, W., Yustos, R., Vyssotski, A.L., Wisden, W., Franks, N.P. (2018). A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus. Curr Biol 28, 2263-2273 e2264.
- Harkness, J.H., Bushana, P.N., Todd, R.P., Clegern, W.C., Sorg, B.A., Wisor, J.P. (2019). Sleep disruption elevates oxidative stress in parvalbumin-positive cells of the rat cerebral cortex. Sleep *42*.
- Harvey, A.L., Edrada-Ebel, R., Quinn, R.J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14, 111-129.
- Hassani, O.K., Lee, M.G., Jones, B.E. (2009). Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A *106*, 2418-2422.
- Hastings, M.H., Maywood, E.S., Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci *19*, 453-469.
- Havekes, R., Aton, S.J. (2020). Impacts of Sleep Loss versus Waking Experience on Brain Plasticity: Parallel or Orthogonal? Trends Neurosci 43, 385-393.
- Hayasaka, N., Hirano, A., Miyoshi, Y., Tokuda, I.T., Yoshitane, H., Matsuda, J., Fukada, Y. (2017). Salt-inducible kinase 3 regulates the mammalian circadian clock by destabilizing PER2 protein. Elife *6*.
- Headley, D.B., Pare, D. (2017). Common oscillatory mechanisms across multiple memory systems. NPJ Sci Learn 2.
- Heib, D.P., Hoedlmoser, K., Anderer, P., Zeitlhofer, J., Gruber, G., Klimesch, W., Schabus, M. (2013). Slow oscillation amplitudes and up-state lengths relate to memory improvement. PLoS One 8, e82049.
- Helmbacher, F., Schneider-Maunoury, S., Topilko, P., Tiret, L., Charnay, P. (2000). Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development *127*, 3313-3324.

- Herrera, C.G., Cadavieco, M.C., Jego, S., Ponomarenko, A., Korotkova, T., Adamantidis, A. (2016). Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19, 290-298.
- Hide, I., Tanaka, M., Inoue, A., Nakajima, K., Kohsaka, S., Inoue, K., Nakata, Y. (2000). Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75, 965-972.
- Hillman, D., Mitchell, S., Streatfeild, J., Burns, C., Bruck, D., Pezzullo, L. (2018). The economic cost of inadequate sleep. Sleep 41.
- Hinard, V., Mikhail, C., Pradervand, S., Curie, T., Houtkooper, R.H., Auwerx, J., Franken, P., Tafti, M. (2012). Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci 32, 12506-12517.
- Hirano, A., Hsu, P.K., Zhang, L., Xing, L., McMahon, T., Yamazaki, M., Ptacek, L.J., Fu, Y.H. (2018). DEC2 modulates orexin expression and regulates sleep. Proc Natl Acad Sci U S A 115, 3434-3439.
- Ho, S.K., Kovacevic, N., Henkelman, R.M., Boyd, A., Pawson, T., Henderson, J.T. (2009). EphB2 and EphA4 receptors regulate formation of the principal inter-hemispheric tracts of the mammalian forebrain. Neuroscience 160, 784-795.
- Ho, T.Y., Tang, N.Y., Hsiang, C.Y., Hsieh, C.L. (2014). Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1beta and brain-derived neurotrophic factor. Phytomedicine 21, 893-900.
- Holz, J., Piosczyk, H., Feige, B., Spiegelhalder, K., Baglioni, C., Riemann, D., Nissen, C. (2012). EEG Sigma and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation. J Sleep Res 21, 612-619.
- Honda, T., Fujiyama, T., Miyoshi, C., Ikkyu, A., Hotta-Hirashima, N., Kanno, S., Mizuno, S., Sugiyama, F., Takahashi,
 S., Funato, H., Yanagisawa, M. (2018). A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. Proc Natl Acad Sci U S A *115*, 10458-10463.
- Hong, Z.Y., Huang, Z.L., Qu, W.M., Eguchi, N., Urade, Y., Hayaishi, O. (2005). An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J Neurochem 92, 1542-1549.
- Hor, C.N., Yeung, J., Jan, M., Emmenegger, Y., Hubbard, J., Xenarios, I., Naef, F., Franken, P. (2019). Sleep-wakedriven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc Natl Acad Sci U S A 116, 25773-25783.
- Hsiao, Y.H., Hung, H.C., Chen, S.H., Gean, P.W. (2014). Social interaction rescues memory deficit in an animal model of Alzheimer's disease by increasing BDNF-dependent hippocampal neurogenesis. J Neurosci 34, 16207-16219.
- Hsu, J.C., Lee, Y.S., Chang, C.N., Chuang, H.L., Ling, E.A., Lan, C.T. (2003). Sleep deprivation inhibits expression of NADPH-d and NOS while activating microglia and astroglia in the rat hippocampus. Cells Tissues Organs 173, 242-254.

- Hu, J.H., Park, J.M., Park, S., Xiao, B., Dehoff, M.H., Kim, S., Hayashi, T., Schwarz, M.K., Huganir, R.L., Seeburg, P.H., Linden, D.J., Worley, P.F. (2010). Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron 68, 1128-1142.
- Hu, S., Mak, S., Zuo, X., Li, H., Wang, Y., Han, Y. (2018). Neuroprotection against MPP(+)-induced cytotoxicity through the activation of PI3-K/Akt/GSK3beta/MEF2D signaling pathway by Rhynchophylline, the major tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla. Front Pharmacol 9, 768.
- Hu, Y., Li, S., Jiang, H., Li, M.T., Zhou, J.W. (2014). Ephrin-B2/EphA4 forward signaling is required for regulation of radial migration of cortical neurons in the mouse. Neurosci Bull *30*, 425-432.
- Huang, T.C., Tu, J., Chow, T.J., Chen, T.H. (1990). Circadian Rhythm of the Prokaryote Synechococcus sp. RF-1. Plant Physiol *92*, 531-533.
- Huang, Y.C., Lin, S.J., Lin, K.M., Chou, Y.C., Lin, C.W., Yu, S.C., Chen, C.L., Shen, T.L., Chen, C.K., Lu, J., Chen, M.R., Tsai, C.H. (2016). Regulation of EBV LMP1-triggered EphA4 downregulation in EBV-associated B lymphoma and its impact on patients' survival. Blood *128*, 1578-1589.
- Huang, Z.L., Qu, W.M., Eguchi, N., Chen, J.F., Schwarzschild, M.A., Fredholm, B.B., Urade, Y., Hayaishi, O. (2005). Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8, 858-859.
- Hubbard, J., Gent, T.C., Hoekstra, M.M.B., Emmenegger, Y., Mongrain, V., Landolt, H.P., Adamantidis, A.R., Franken, P. (2020). Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nat Commun 11, 3130.
- Huber, R., Tononi, G., Cirelli, C. (2007). Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep *30*, 129-139.
- Huber, R., Deboer, T., Schwierin, B., Tobler, I. (1998). Effect of melatonin on sleep and brain temperature in the Djungarian hamster and the rat. Physiol Behav 65, 77-82.
- Huber, R., Ghilardi, M.F., Massimini, M., Tononi, G. (2004). Local sleep and learning. Nature 430, 78-81.
- Hume, K.I., Van, F., Watson, A. (1998). A field study of age and gender differences in habitual adult sleep. J Sleep Res 7, 85-94.
- Hunter, A.S. (2018). REM deprivation but not sleep fragmentation produces a sex-specific impairment in extinction. Physiol Behav 196, 84-94.
- Husain, A., Chiu, Y.T., Sze, K.M., Ho, D.W., Tsui, Y.M., Suarez, E.M.S., Zhang, V.X., Chan, L.K., Lee, E., Lee, J.M., Cheung, T.T., Wong, C.C., Chung, C.Y., Ng, I.O. (2022). Ephrin-A3/EphA2 axis regulates cellular metabolic plasticity to enhance cancer stemness in hypoxic hepatocellular carcinoma. J Hepatol.
- Husse, J., Kiehn, J.T., Barclay, J.L., Naujokat, N., Meyer-Kovac, J., Lehnert, H., Oster, H. (2017). Tissue-Specific Dissociation of Diurnal Transcriptome Rhythms During Sleep Restriction in Mice. Sleep 40.
- Iitaka, C., Miyazaki, K., Akaike, T., Ishida, N. (2005). A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem 280, 29397-29402.
- Ikeda, M., Ikeda, M. (2014). Bmal1 is an essential regulator for circadian cytosolic Ca(2)(+) rhythms in suprachiasmatic nucleus neurons. J Neurosci 34, 12029-12038.
- Imeri, L., Opp, M.R. (2009). How (and why) the immune system makes us sleep. Nat Rev Neurosci 10, 199-210.

- Ingiosi, A.M., Hayworth, C.R., Harvey, D.O., Singletary, K.G., Rempe, M.J., Wisor, J.P., Frank, M.G. (2020). A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. Curr Biol *30*, 4373-4383 e4377.
- Ingiosi, A.M., Schoch, H., Wintler, T., Singletary, K.G., Righelli, D., Roser, L.G., Medina, E., Risso, D., Frank, M.G., Peixoto, L. (2019). Shank3 modulates sleep and expression of circadian transcription factors. Elife 8.
- Inoue, E., Deguchi-Tawarada, M., Togawa, A., Matsui, C., Arita, K., Katahira-Tayama, S., Sato, T., Yamauchi, E., Oda, Y., Takai, Y. (2009). Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. J Cell Biol 185, 551-564.
- Inoue, Y., Udo, H., Inokuchi, K., Sugiyama, H. (2007). Homer1a regulates the activity-induced remodeling of synaptic structures in cultured hippocampal neurons. Neuroscience *150*, 841-852.
- Irwin, M.R. (2019). Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol 19, 702-715.
- Irwin, M.R., Vitiello, M.V. (2019). Implications of sleep disturbance and inflammation for Alzheimer's disease dementia. Lancet Neurol 18, 296-306.
- Iwahana, E., Akiyama, M., Miyakawa, K., Uchida, A., Kasahara, J., Fukunaga, K., Hamada, T., Shibata, S. (2004). Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei. Eur J Neurosci 19, 2281-2287.
- Izawa, S., Chowdhury, S., Miyazaki, T., Mukai, Y., Ono, D., Inoue, R., Ohmura, Y., Mizoguchi, H., Kimura, K., Yoshioka, M., Terao, A., Kilduff, T.S., Yamanaka, A. (2019). REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 365, 1308-1313.
- Izumo, M., Johnson, C.H., Yamazaki, S. (2003). Circadian gene expression in mammalian fibroblasts revealed by realtime luminescence reporting: temperature compensation and damping. Proc Natl Acad Sci U S A 100, 16089-16094.
- Jagannath, A. et al. (2021). Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat Commun *12*, 2113.
- Jaggard, J.B., Wang, G.X., Mourrain, P. (2021). Non-REM and REM/paradoxical sleep dynamics across phylogeny. Curr Opin Neurobiol 71, 44-51.
- Jakkamsetti, V., Tsai, N.P., Gross, C., Molinaro, G., Collins, K.A., Nicoletti, F., Wang, K.H., Osten, P., Bassell, G.J., Gibson, J.R., Huber, K.M. (2013). Experience-induced Arc/Arg3.1 primes CA1 pyramidal neurons for metabotropic glutamate receptor-dependent long-term synaptic depression. Neuron 80, 72-79.
- Jan, M., O'Hara, B.F., Franken, P. (2020). Recent advances in understanding the genetics of sleep. F1000Res 9.
- Jaworski, T., Banach-Kasper, E., Gralec, K. (2019). GSK-3beta at the Intersection of Neuronal Plasticity and Neurodegeneration. Neural Plast 2019, 4209475.
- Jeenapongsa, R., Tohda, M. (2003). Effects of Choto-san and Chotoko on thiopental-induced sleeping time. Journal of traditional medicines 20, 165-167.
- Jego, S., Glasgow, S.D., Herrera, C.G., Ekstrand, M., Reed, S.J., Boyce, R., Friedman, J., Burdakov, D., Adamantidis, A.R. (2013). Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16, 1637-1643.
- Jellinghaus, S., Poitz, D.M., Ende, G., Augstein, A., Weinert, S., Stutz, B., Braun-Dullaeus, R.C., Pasquale, E.B., Strasser, R.H. (2013). Ephrin-A1/EphA4-mediated adhesion of monocytes to endothelial cells. Biochim Biophys Acta 1833, 2201-2211.
- Jennings, K.J., de Lecea, L. (2019). Chapter 1 Hypocretins (Orexins): Twenty years of dissecting arousal circuits. In: The Orexin/Hypocretin System (J.A. B, J.R. F, eds), pp 1-29. Cambridge: Academic Press.
- Jiang, H., Guo, W., Liang, X., Rao, Y. (2005). Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120, 123-135.
- Jing, X., Sonoki, T., Miyajima, M., Sawada, T., Terada, N., Takemura, S., Sakaguchi, K. (2016). EphA4-deleted microenvironment regulates cancer development and leukemoid reaction of the isografted 4T1 murine breast cancer via reduction of an IGF1 signal. Cancer Med 5, 1214-1227.
- Joglekar, A. et al. (2021). A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat Commun *12*, 463.
- Jones, B.E. (2020). Arousal and sleep circuits. Neuropsychopharmacology 45, 6-20.
- Jung, J.W., Ahn, N.Y., Oh, H.R., Lee, B.K., Lee, K.J., Kim, S.Y., Cheong, J.H., Ryu, J.H. (2006). Anxiolytic effects of the aqueous extract of Uncaria rhynchophylla. J Ethnopharmacol 108, 193-197.
- Kai, L.W., Z.F.; Xue, C.H. (1998). Effects of Rhynchophylline on L-type calcium channels in isolated rat cortical neurons during acute hypoxia. Journal of Chinese Pharmaceutical Sciences 7, 205-208.
- Kalinchuk, A.V., McCarley, R.W., Porkka-Heiskanen, T., Basheer, R. (2010). Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake-active basal forebrain neurons. J Neurosci 30, 13254-13264.
- Kanaya, H.J., Park, S., Kim, J.H., Kusumi, J., Krenenou, S., Sawatari, E., Sato, A., Lee, J., Bang, H., Kobayakawa, Y., Lim, C., Itoh, T.Q. (2020). A sleep-like state in Hydra unravels conserved sleep mechanisms during the evolutionary development of the central nervous system. Sci Adv 6.
- Kang, T.H., Murakami, Y., Matsumoto, K., Takayama, H., Kitajima, M., Aimi, N., Watanabe, H. (2002). Rhynchophylline and isorhynchophylline inhibit NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 455, 27-34.
- Kantojarvi, K., Liuhanen, J., Saarenpaa-Heikkila, O., Satomaa, A.L., Kylliainen, A., Polkki, P., Jaatela, J., Toivola, A., Milani, L., Himanen, S.L., Porkka-Heiskanen, T., Paavonen, J., Paunio, T. (2017). Variants in calcium voltage-gated channel subunit Alpha1 C-gene (CACNA1C) are associated with sleep latency in infants. PLoS One 12, e0180652.
- Kao, T.J., Law, C., Kania, A. (2012). Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 23, 83-91.
- Kapas, L., Krueger, J.M. (1996). Nitric oxide donors SIN-1 and SNAP promote nonrapid-eye-movement sleep in rats. Brain Res Bull *41*, 293-298.
- Kapas, L., Shibata, M., Kimura, M., Krueger, J.M. (1994). Inhibition of nitric oxide synthesis suppresses sleep in rabbits. Am J Physiol 266, R151-157.

- Keenan, R.J., Daykin, H., Chu, J., Cornthwaite-Duncan, L., Allocca, G., Hoyer, D., Jacobson, L.H. (2022). Differential sleep/wake response and sex differences following acute suvorexant, MK-1064 and zolpidem administration in the rTg4510 mouse model of tauopathy. Br J Pharmacol.
- Kempf, A., Song, S.M., Talbot, C.B., Miesenbock, G. (2019). A potassium channel beta-subunit couples mitochondrial electron transport to sleep. Nature 568, 230-234.
- Khlghatyan, J., Evstratova, A., Bozoyan, L., Chamberland, S., Chatterjee, D., Marakhovskaia, A., Soares Silva, T., Toth, K., Mongrain, V., Beaulieu, J.M. (2020). Fxr1 regulates sleep and synaptic homeostasis. EMBO J 39, e103864.
- Kiessling, S., Sollars, P.J., Pickard, G.E. (2014). Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PLoS One *9*, e92959.
- Kiessling, S., O'Callaghan, E.K., Freyburger, M., Cermakian, N., Mongrain, V. (2018). The cell adhesion molecule EphA4 is involved in circadian clock functions. Genes Brain Behav 17, 82-92.
- Kim, J., Gulati, T., Ganguly, K. (2019). Competing Roles of Slow Oscillations and Delta Waves in Memory Consolidation versus Forgetting. Cell 179, 514-526 e513.
- Kim, J.H., Bae, C.H., Park, S.Y., Lee, S.J., Kim, Y. (2010). Uncaria rhynchophylla inhibits the production of nitric oxide and interleukin-1beta through blocking nuclear factor kappaB, Akt, and mitogen-activated protein kinase activation in macrophages. J Med Food 13, 1133-1140.
- Kim, S., Kim, H., Um, J.W. (2018). Synapse development organized by neuronal activity-regulated immediate-early genes. Exp Mol Med 50, 1-7.
- Kim, W.Y., Zhou, F.Q., Zhou, J., Yokota, Y., Wang, Y.M., Yoshimura, T., Kaibuchi, K., Woodgett, J.R., Anton, E.S., Snider, W.D. (2006). Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 52, 981-996.
- Kinoshita, C., Miyazaki, K., Ishida, N. (2012). Chronic stress affects PERIOD2 expression through glycogen synthase kinase-3beta phosphorylation in the central clock. Neuroreport *23*, 98-102.
- Klugmann, M., Leichtlein, C.B., Symes, C.W., Klaussner, B.C., Brooks, A.I., Young, D., During, M.J. (2006). A novel role of circadian transcription factor DBP in hippocampal plasticity. Mol Cell Neurosci *31*, 303-314.
- Koehl, M., Battle, S., Meerlo, P. (2006). Sex differences in sleep: the response to sleep deprivation and restraint stress in mice. Sleep 29, 1224-1231.
- Koike, N., Yoo, S.H., Huang, H.C., Kumar, V., Lee, C., Kim, T.K., Takahashi, J.S. (2012). Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science *338*, 349-354.
- Kojima, S., Hirose, M., Tokunaga, K., Sakaki, Y., Tei, H. (2003). Structural and functional analysis of 3' untranslated region of mouse Period1 mRNA. Biochem Biophys Res Commun 301, 1-7.
- Kon, N., Yoshikawa, T., Honma, S., Yamagata, Y., Yoshitane, H., Shimizu, K., Sugiyama, Y., Hara, C., Kameshita, I., Honma, K., Fukada, Y. (2014). CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms. Genes Dev 28, 1101-1110.
- Konadhode, R.R., Pelluru, D., Blanco-Centurion, C., Zayachkivsky, A., Liu, M., Uhde, T., Glen, W.B., Jr., van den Pol, A.N., Mulholland, P.J., Shiromani, P.J. (2013). Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33, 10257-10263.

- Kostin, A., Alam, M.A., Siegel, J.M., McGinty, D., Alam, M.N. (2020). Sex- and Age-dependent Differences in Sleepwake Characteristics of Fisher-344 Rats. Neuroscience *427*, 29-42.
- Kou, C.J., Kandpal, R.P. (2018). Differential Expression Patterns of Eph Receptors and Ephrin Ligands in Human Cancers. Biomed Res Int 2018, 7390104.
- Kovalzon, V.M., Strekalova, T.V. (2006). Delta sleep-inducing peptide (DSIP): a still unresolved riddle. J Neurochem *97*, 303-309.
- Krauchi, K., Wirz-Justice, A. (2001). Circadian clues to sleep onset mechanisms. Neuropsychopharmacology 25, S92-96.
- Krauchi, K., Cajochen, C., Wirz-Justice, A. (1997). A relationship between heat loss and sleepiness: effects of postural change and melatonin administration. J Appl Physiol (1985) *83*, 134-139.
- Kroeger, D., Bandaru, S.S., Madara, J.C., Vetrivelan, R. (2019). Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience *406*, 314-324.
- Kroeger, D., Ferrari, L.L., Petit, G., Mahoney, C.E., Fuller, P.M., Arrigoni, E., Scammell, T.E. (2017). Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 37, 1352-1366.
- Krueger, J.M., Nguyen, J.T., Dykstra-Aiello, C.J., Taishi, P. (2019). Local sleep. Sleep Med Rev 43, 14-21.
- Krueger, J.M., Rector, D.M., Roy, S., Van Dongen, H.P., Belenky, G., Panksepp, J. (2008). Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci *9*, 910-919.
- Kuang, S.Q., Bai, H., Fang, Z.H., Lopez, G., Yang, H., Tong, W., Wang, Z.Z., Garcia-Manero, G. (2010). Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia. Blood 115, 2412-2419.
- Kubota, T., Li, N., Guan, Z., Brown, R.A., Krueger, J.M. (2002). Intrapreoptic microinjection of TNF-alpha enhances non-REM sleep in rats. Brain Res 932, 37-44.
- Kuljis, D.A., Gad, L., Loh, D.H., MacDowell Kaswan, Z., Hitchcock, O.N., Ghiani, C.A., Colwell, C.S. (2016). Sex Differences in Circadian Dysfunction in the BACHD Mouse Model of Huntington's Disease. PLoS One 11, e0147583.
- Kuljis, D.A., Loh, D.H., Truong, D., Vosko, A.M., Ong, M.L., McClusky, R., Arnold, A.P., Colwell, C.S. (2013). Gonadal- and sex-chromosome-dependent sex differences in the circadian system. Endocrinology 154, 1501-1512.
- Kullander, K., Mather, N.K., Diella, F., Dottori, M., Boyd, A.W., Klein, R. (2001). Kinase-dependent and kinaseindependent functions of EphA4 receptors in major axon tract formation in vivo. Neuron *29*, 73-84.
- Kumar, D., Dedic, N., Flachskamm, C., Voule, S., Deussing, J.M., Kimura, M. (2015). Cacna1c (Cav1.2) modulates electroencephalographic rhythm and rapid eye movement sleep recovery. Sleep *38*, 1371-1380.
- Lai, T., Chen, L., Chen, X., He, J., Lv, P., Ge, H. (2019). Rhynchophylline attenuates migraine in trigeminal nucleus caudalis in nitroglycerin-induced rat model by inhibiting MAPK/NF-kB signaling. Mol Cell Biochem 461, 205-212.
- Lancel, M. (1999). Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 22, 33-42.

- Landgraf, D., Wang, L.L., Diemer, T., Welsh, D.K. (2016). NPAS2 Compensates for Loss of CLOCK in Peripheral Circadian Oscillators. PLoS Genet 12, e1005882.
- Landolt, H.P., Dijk, D.J., Gaus, S.E., Borbely, A.A. (1995). Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology *12*, 229-238.
- Latini, S., Pedata, F. (2001). Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79, 463-484.
- Lavoie, J., Hebert, M., Beaulieu, J.M. (2013). Glycogen synthase kinase-3beta haploinsufficiency lengthens the circadian locomotor activity period in mice. Behav Brain Res *253*, 262-265.
- Lazarus, M., Shen, H.Y., Cherasse, Y., Qu, W.M., Huang, Z.L., Bass, C.E., Winsky-Sommerer, R., Semba, K., Fredholm, B.B., Boison, D., Hayaishi, O., Urade, Y., Chen, J.F. (2011). Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31, 10067-10075.
- Lee, C.J., Hsueh, T.Y., Lin, L.C., Tsai, T.H. (2014). Determination of protein-unbound rhynchophylline brain distribution by microdialysis and ultra-performance liquid chromatography with tandem mass spectrometry. Biomed Chromatogr 28, 901-906.
- Lee, H.H. et al. (2021). Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun *12*, 2788.
- Lee, M.G., Hassani, O.K., Jones, B.E. (2005). Discharge of identified orexin/hypocretin neurons across the sleepwaking cycle. J Neurosci 25, 6716-6720.
- Lee, M.G., Chrobak, J.J., Sik, A., Wiley, R.G., Buzsaki, G. (1994). Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience *62*, 1033-1047.
- Leighton, P.A., Mitchell, K.J., Goodrich, L.V., Lu, X., Pinson, K., Scherz, P., Skarnes, W.C., Tessier-Lavigne, M. (2001). Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature *410*, 174-179.
- Lemmens, R., Jaspers, T., Robberecht, W., Thijs, V.N. (2013). Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke. Hum Mol Genet *22*, 2214-2220.
- Leung, L.C., Wang, G.X., Madelaine, R., Skariah, G., Kawakami, K., Deisseroth, K., Urban, A.E., Mourrain, P. (2019). Neural signatures of sleep in zebrafish. Nature *571*, 198-204.
- Lewis, L.D., Voigts, J., Flores, F.J., Schmitt, L.I., Wilson, M.A., Halassa, M.M., Brown, E.N. (2015). Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife *4*, e08760.
- Li, J., Lu, W.Q., Beesley, S., Loudon, A.S., Meng, Q.J. (2012). Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLoS One 7, e33292.
- Li, S.B., Damonte, V.M., Chen, C., Wang, G.X., Kebschull, J.M., Yamaguchi, H., Bian, W.J., Purmann, C., Pattni, R., Urban, A.E., Mourrain, P., Kauer, J.A., Scherrer, G., de Lecea, L. (2022a). Hyperexcitable arousal circuits drive sleep instability during aging. Science 375, eabh3021.
- Li, W., Ma, L., Yang, G., Gan, W.B. (2017). REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci 20, 427-437.
- Li, X., Jope, R.S. (2010). Is glycogen synthase kinase-3 a central modulator in mood regulation? Neuropsychopharmacology 35, 2143-2154.

- Li, Y., Su, P., Chen, Y., Nie, J., Yuan, T.F., Wong, A.H., Liu, F. (2022b). The Eph receptor A4 plays a role in demyelination and depression-related behavior. J Clin Invest.
- Liang, L.Y., Patel, O., Janes, P.W., Murphy, J.M., Lucet, I.S. (2019). Eph receptor signalling: from catalytic to noncatalytic functions. Oncogene 38, 6567-6584.
- Liebl, D.J., Morris, C.J., Henkemeyer, M., Parada, L.F. (2003). mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res *71*, 7-22.
- Light, T.P., Gomez-Soler, M., Wang, Z., Karl, K., Zapata-Mercado, E., Gehring, M.P., Lechtenberg, B.C., Pogorelov, T.V., Hristova, K., Pasquale, E.B. (2021). A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. J Biol Chem 297, 100876.
- Lin, D., Gish, G.D., Songyang, Z., Pawson, T. (1999). The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J Biol Chem 274, 3726-3733.
- Liska, K., Sladek, M., Houdek, P., Shrestha, N., Luzna, V., Ralph, M.R., Sumova, A. (2022). High Sensitivity of the Circadian Clock in the Hippocampal Dentate Gyrus to Glucocorticoid- and GSK3-Beta-Dependent Signals. Neuroendocrinology 112, 384-398.
- Liu, Z.W., Faraguna, U., Cirelli, C., Tononi, G., Gao, X.B. (2010). Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J Neurosci *30*, 8671-8675.
- Long, H., Zhang, M., Wang, C., Hang, Y. (2019). Rhynchophylline attenuates neurotoxicity in Tourette Syndrome rats. Neurotox Res 36, 679-687.
- Lu, H., Clauser, K.R., Tam, W.L., Frose, J., Ye, X., Eaton, E.N., Reinhardt, F., Donnenberg, V.S., Bhargava, R., Carr, S.A., Weinberg, R.A. (2014). A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16, 1105-1117.
- Lu, Q., Sun, E.E., Klein, R.S., Flanagan, J.G. (2001). Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell *105*, 69-79.
- Luca, G., Haba Rubio, J., Andries, D., Tobback, N., Vollenweider, P., Waeber, G., Marques Vidal, P., Preisig, M., Heinzer, R., Tafti, M. (2015). Age and gender variations of sleep in subjects without sleep disorders. Ann Med 47, 482-491.
- Lyons, L.C., Chatterjee, S., Vanrobaeys, Y., Gaine, M.E., Abel, T. (2020). Translational changes induced by acute sleep deprivation uncovered by TRAP-Seq. Mol Brain *13*, 165.
- Ma, T., Zhang, H., Xu, Z.P., Lu, Y., Fu, Q., Wang, W., Li, G.H., Wang, Y.Y., Yang, Y.T., Mi, W.D. (2020). Activation of brain-derived neurotrophic factor signaling in the basal forebrain reverses acute sleep deprivation-induced fear memory impairments. Brain Behav 10, e01592.
- Mackiewicz, M., Shockley, K.R., Romer, M.A., Galante, R.J., Zimmerman, J.E., Naidoo, N., Baldwin, D.A., Jensen, S.T., Churchill, G.A., Pack, A.I. (2007). Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31, 441-457.
- Manfridi, A., Brambilla, D., Mancia, M. (1999). Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. Am J Physiol 277, R1488-1492.

- Manfridi, A., Brambilla, D., Bianchi, S., Mariotti, M., Opp, M.R., Imeri, L. (2003). Interleukin-1beta enhances nonrapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur J Neurosci 18, 1041-1049.
- Mann, F., Ray, S., Harris, W., Holt, C. (2002). Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron *35*, 461-473.
- Manns, I.D., Lee, M.G., Modirrousta, M., Hou, Y.P., Jones, B.E. (2003). Alpha 2 adrenergic receptors on GABAergic, putative sleep-promoting basal forebrain neurons. Eur J Neurosci 18, 723-727.
- Maquet, P., Dive, D., Salmon, E., Sadzot, B., Franco, G., Poirrier, R., von Frenckell, R., Franck, G. (1990). Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2fluoro-2-deoxy-D-glucose method. Brain Res 513, 136-143.
- Maret, S., Dorsaz, S., Gurcel, L., Pradervand, S., Petit, B., Pfister, C., Hagenbuchle, O., O'Hara, B.F., Franken, P., Tafti, M. (2007). Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104, 20090-20095.
- Martin-Batista, E., Maglio, L.E., Armas-Capote, N., Hernandez, G., Alvarez de la Rosa, D., Giraldez, T. (2021). SGK1.1 limits brain damage after status epilepticus through M current-dependent and independent mechanisms. Neurobiol Dis 153, 105317.
- Martinez-Gonzalez, D., Lesku, J.A., Rattenborg, N.C. (2008). Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis. J Sleep Res 17, 140-153.
- Martone, M.E., Holash, J.A., Bayardo, A., Pasquale, E.B., Ellisman, M.H. (1997). Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res 771, 238-250.
- Marx, V. (2021). Method of the Year: spatially resolved transcriptomics. Nat Methods 18, 9-14.
- Mason, G.M., Lokhandwala, S., Riggins, T., Spencer, R.M.C. (2021). Sleep and human cognitive development. Sleep Med Rev 57, 101472.
- Massart, R., Freyburger, M., Suderman, M., Paquet, J., El Helou, J., Belanger-Nelson, E., Rachalski, A., Koumar, O.C., Carrier, J., Szyf, M., Mongrain, V. (2014). The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Transl Psychiatry 4, e347.
- Matsui, K., Sasai-Sakuma, T., Ishigooka, J., Nishimura, K., Inoue, Y. (2019). Effect of Yokukansan for the treatment of idiopathic rapid eye movement sleep behavior disorder: a retrospective analysis of consecutive patients. Journal of Clinical Sleep Medicine 15, 1173-1178.
- Matsuo, K., Otaki, N. (2012). Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases. Cell Adh Migr *6*, 148-156.
- McCarthy, A., Loomis, S., Eastwood, B., Wafford, K.A., Winsky-Sommerer, R., Gilmour, G. (2017). Modelling maintenance of wakefulness in rats: comparing potential non-invasive sleep-restriction methods and their effects on sleep and attentional performance. J Sleep Res 26, 179-187.
- McClung, C.A. (2007). Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114, 222-232.

- Meerlo, P., Koehl, M., van der Borght, K., Turek, F.W. (2002). Sleep restriction alters the hypothalamic-pituitaryadrenal response to stress. J Neuroendocrinol *14*, 397-402.
- Meijer, J.H., Schwartz, W.J. (2003). In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 18, 235-249.
- Meijer, J.H., Schaap, J., Watanabe, K., Albus, H. (1997). Multiunit activity recordings in the suprachiasmatic nuclei: in vivo versus in vitro models. Brain Res *753*, 322-327.
- Menet, J.S., Rodriguez, J., Abruzzi, K.C., Rosbash, M. (2012). Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife *1*, e00011.
- Michelson, D., Snyder, E., Paradis, E., Chengan-Liu, M., Snavely, D.B., Hutzelmann, J., Walsh, J.K., Krystal, A.D., Benca, R.M., Cohn, M., Lines, C., Roth, T., Herring, W.J. (2014). Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol *13*, 461-471.
- Mieda, M., Hasegawa, E., Kisanuki, Y.Y., Sinton, C.M., Yanagisawa, M., Sakurai, T. (2011). Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci *31*, 6518-6526.
- Mikhail, C., Vaucher, A., Jimenez, S., Tafti, M. (2017). ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness. Sci Signal *10*.
- Mileykovskiy, B.Y., Kiyashchenko, L.I., Siegel, J.M. (2005). Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron *46*, 787-798.
- Milinski, L., Fisher, S.P., Cui, N., McKillop, L.E., Blanco-Duque, C., Ang, G., Yamagata, T., Bannerman, D.M., Vyazovskiy, V.V. (2021). Waking experience modulates sleep need in mice. BMC Biol *19*, 65.
- Mitchell, S.J., Rawlins, J.N., Steward, O., Olton, D.S. (1982). Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci *2*, 292-302.
- Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y., Okamura, H. (2001). Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15, 995-1006.
- Miyamoto, D., Marshall, W., Tononi, G., Cirelli, C. (2021). Net decrease in spine-surface GluA1-containing AMPA receptors after post-learning sleep in the adult mouse cortex. Nat Commun *12*, 2881.
- Miyashita, T., Kikuchi, E., Horiuchi, J., Saitoe, M. (2018). Long-Term Memory Engram Cells Are Established by c-Fos/CREB Transcriptional Cycling. Cell Rep 25, 2716-2728 e2713.
- Mo, J., Kim, C.H., Lee, D., Sun, W., Lee, H.W., Kim, H. (2015). Early growth response 1 (Egr-1) directly regulates GABAA receptor alpha2, alpha4, and theta subunits in the hippocampus. J Neurochem *133*, 489-500.
- Modirrousta, M., Mainville, L., Jones, B.E. (2004). Gabaergic neurons with alpha2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience *129*, 803-810.
- Modirrousta, M., Mainville, L., Jones, B.E. (2005). Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci *21*, 2807-2816.
- Mong, J.A., Baker, F.C., Mahoney, M.M., Paul, K.N., Schwartz, M.D., Semba, K., Silver, R. (2011). Sleep, rhythms, and the endocrine brain: influence of sex and gonadal hormones. J Neurosci *31*, 16107-16116.

- Mongrain, V., Carrier, J., Dumont, M. (2005). Chronotype and sex effects on sleep architecture and quantitative sleep EEG in healthy young adults. Sleep 28, 819-827.
- Mongrain, V., La Spada, F., Curie, T., Franken, P. (2011). Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS One *6*, e26622.
- Mongrain, V., Hernandez, S.A., Pradervand, S., Dorsaz, S., Curie, T., Hagiwara, G., Gip, P., Heller, H.C., Franken, P. (2010). Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep *33*, 1147-1157.
- Montgomery, S.M., Sirota, A., Buzsaki, G. (2008). Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 28, 6731-6741.
- Moore, R.Y., Eichler, V.B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res *42*, 201-206.
- Muehlroth, B.E., Sander, M.C., Fandakova, Y., Grandy, T.H., Rasch, B., Shing, Y.L., Werkle-Bergner, M. (2019). Precise Slow Oscillation-Spindle Coupling Promotes Memory Consolidation in Younger and Older Adults. Sci Rep 9, 1940.
- Mukhametov, L.M. (1987). Unihemispheric slow-wave sleep in the Amazonian dolphin, Inia geoffrensis. Neurosci Lett 79, 128-132.
- Murai, K.K., Pasquale, E.B. (2003). 'Eph'ective signaling: forward, reverse and crosstalk. J Cell Sci 116, 2823-2832.
- Murai, K.K., Pasquale, E.B. (2011). Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia *59*, 1567-1578.
- Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y., Pasquale, E.B. (2003). Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci *6*, 153-160.
- Murata, K., Li, F., Shinguchi, K., Ogata, M., Fujita, N., Takahashi, R. (2020). Yokukansankachimpihange improves the social isolation-induced sleep disruption and allopregnanolone reduction in mice. Front Nutr 7, 8.
- Mure, L.S., Le, H.D., Benegiamo, G., Chang, M.W., Rios, L., Jillani, N., Ngotho, M., Kariuki, T., Dkhissi-Benyahya, O., Cooper, H.M., Panda, S. (2018). Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359.
- Muto, V., Jaspar, M., Meyer, C., Kusse, C., Chellappa, S.L., Degueldre, C., Balteau, E., Shaffii-Le Bourdiec, A., Luxen, A., Middleton, B., Archer, S.N., Phillips, C., Collette, F., Vandewalle, G., Dijk, D.J., Maquet, P. (2016). Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science 353, 687-690.
- Nagao, M., Takasaki, K., Nogami, A., Hirai, Y., Moriyama, H., Uchida, N., Kubota, K., Katsurabayashi, S., Mishima, K., Nishimura, R., Iwasaki, K. (2014). Effect of Yokukansan on sleep disturbance in a rat model of cerebrovascular dementia. Traditional & Kampo Medicine 1, 19-26.
- Nakajima, K., Nakaoka, Y. (1989). Circadian change of photosensitivity in Paramecium bursaria. Journal of experimental biology 144, 43-51.
- Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H., Saga, Y. (2006). Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development *133*, 2517-2525.

- Narwade, S.C., Mallick, B.N., Deobagkar, D.D. (2017). Transcriptome Analysis Reveals Altered Expression of Memory and Neurotransmission Associated Genes in the REM Sleep Deprived Rat Brain. Front Mol Neurosci 10, 67.
- Naseri Kouzehgarani, G., Bothwell, M.Y., Gillette, M.U. (2020). Circadian rhythm of redox state regulates membrane excitability in hippocampal CA1 neurons. Eur J Neurosci *51*, 34-46.
- Nath, R.D., Bedbrook, C.N., Abrams, M.J., Basinger, T., Bois, J.S., Prober, D.A., Sternberg, P.W., Gradinaru, V., Goentoro, L. (2017). The Jellyfish Cassiopea Exhibits a Sleep-like State. Curr Biol 27, 2984-2990 e2983.
- Nickel, M. (2004). Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). J Exp Biol 207, 4515-4524.
- Niethard, N., Born, J. (2019). Back to baseline: sleep recalibrates synapses. Nat Neurosci 22, 149-151.
- Niethard, N., Brodt, S., Born, J. (2021). Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep. J Neurosci *41*, 4212-4222.
- Nishida, M., Pearsall, J., Buckner, R.L., Walker, M.P. (2009). REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex *19*, 1158-1166.
- Niwa, Y., Kanda, G.N., Yamada, R.G., Shi, S., Sunagawa, G.A., Ukai-Tadenuma, M., Fujishima, H., Matsumoto, N.,
 Masumoto, K.H., Nagano, M., Kasukawa, T., Galloway, J., Perrin, D., Shigeyoshi, Y., Ukai, H., Kiyonari,
 H., Sumiyama, K., Ueda, H.R. (2018). Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential
 for REM Sleep. Cell Rep 24, 2231-2247 e2237.
- Noguchi, T., Leise, T.L., Kingsbury, N.J., Diemer, T., Wang, L.L., Henson, M.A., Welsh, D.K. (2017). Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. eNeuro 4.
- Nollet, M., Wisden, W., Franks, N.P. (2020). Sleep deprivation and stress: a reciprocal relationship. Interface Focus 10, 20190092.
- Norimoto, H., Makino, K., Gao, M., Shikano, Y., Okamoto, K., Ishikawa, T., Sasaki, T., Hioki, H., Fujisawa, S., Ikegaya, Y. (2018). Hippocampal ripples down-regulate synapses. Science *359*, 1524-1527.
- North, H.A., Karim, A., Jacquin, M.F., Donoghue, M.J. (2010). EphA4 is necessary for spatially selective peripheral somatosensory topography. Dev Dyn 239, 630-638.
- North, H.A., Zhao, X., Kolk, S.M., Clifford, M.A., Ziskind, D.M., Donoghue, M.J. (2009). Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling. Development *136*, 2467-2476.
- Noya, S.B., Colameo, D., Bruning, F., Spinnler, A., Mircsof, D., Opitz, L., Mann, M., Tyagarajan, S.K., Robles, M.S., Brown, S.A. (2019). The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366.
- O'Callaghan, E.K., Ballester Roig, M.N., Mongrain, V. (2017). Cell adhesion molecules and sleep. Neurosci Res 116, 29-38.
- O'Callaghan, E.K., Green, E.W., Franken, P., Mongrain, V. (2019). Omics Approaches in Sleep-Wake Regulation. Handb Exp Pharmacol 253, 59-81.
- Obal, F., Jr., Krueger, J.M. (2003). Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci 8, d520-550.

- Obi, S., Yamamoto, K., Shimizu, N., Kumagaya, S., Masumura, T., Sokabe, T., Asahara, T., Ando, J. (2009). Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol (1985) 106, 203-211.
- Ochoa-Sanchez, R., Comai, S., Lacoste, B., Bambico, F.R., Dominguez-Lopez, S., Spadoni, G., Rivara, S., Bedini, A., Angeloni, D., Fraschini, F., Mor, M., Tarzia, G., Descarries, L., Gobbi, G. (2011). Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 31, 18439-18452.
- Ode, K.L., Ueda, H.R. (2020). Phosphorylation Hypothesis of Sleep. Front Psychol 11, 575328.
- Ode, K.L., Katsumata, T., Tone, D., Ueda, H.R. (2017a). Fast and slow Ca(2+)-dependent hyperpolarization mechanisms connect membrane potential and sleep homeostasis. Curr Opin Neurobiol 44, 212-221.
- Ode, K.L., Ukai, H., Susaki, E.A., Narumi, R., Matsumoto, K., Hara, J., Koide, N., Abe, T., Kanemaki, M.T., Kiyonari, H., Ueda, H.R. (2017b). Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1. Mol Cell 65, 176-190.
- Ohtomo, Y., Umino, D., Nijama, S., Fujinaga, S., Shimizu, T. (2014). Yokukansan: a treatment option for nocturnal enuresis in children by improving sleep quality. Juntendo Medical Journal *60*, 536-542.
- Opp, M.R., Obal, F., Jr., Krueger, J.M. (1991). Interleukin 1 alters rat sleep: temporal and dose-related effects. Am J Physiol 260, R52-58.
- Oster, H., Challet, E., Ott, V., Arvat, E., de Kloet, E.R., Dijk, D.J., Lightman, S., Vgontzas, A., Van Cauter, E. (2017). The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr Rev 38, 3-45.
- Oyola, M.G., Shupe, E.A., Soltis, A.R., Sukumar, G., Paez-Pereda, M., Larco, D.O., Wilkerson, M.D., Rothwell, S., Dalgard, C.L., Wu, T.J. (2019). Sleep Deprivation Alters the Pituitary Stress Transcriptome in Male and Female Mice. Front Endocrinol (Lausanne) 10, 676.
- Ozone, M., Shimazaki, H., Ichikawa, H., Shigeta, M. (2020). Efficacy of yokukansan compared with clonazepam for rapid eye movement sleep behaviour disorder: a preliminary retrospective study. Psychogeriatrics.
- Ozone, M., Yagi, T., Chiba, S., Aoki, K., Kuroda, A., Mitsui, K., Itoh, H., Sasaki, M. (2012). Effect of yokukansan on psychophysiological insomnia evaluated using cyclic alternating pattern as an objective marker of sleep instability. Sleep and Biological Rhythms *10*, 157-160.
- Palmer, A., Zimmer, M., Erdmann, K.S., Eulenburg, V., Porthin, A., Heumann, R., Deutsch, U., Klein, R. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell 9, 725-737.
- Pan, W., Kwak, S., Li, G., Chen, Y., Cai, D. (2013). Therapeutic effect of Yang-Xue-Qing-Nao granules on sleep dysfunction in Parkinson's disease. Chin Med 8, 14.
- Pan, X., Zhang, Y., Wang, L., Hussain, M.M. (2010). Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab 12, 174-186.
- Panda, S., Antoch, M.P., Miller, B.H., Su, A.I., Schook, A.B., Straume, M., Schultz, P.G., Kay, S.A., Takahashi, J.S., Hogenesch, J.B. (2002). Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307-320.

- Pandi-Perumal, S.R., Trakht, I., Srinivasan, V., Spence, D.W., Maestroni, G.J., Zisapel, N., Cardinali, D.P. (2008). Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 85, 335-353.
- Parekh, P.K., Logan, R.W., Ketchesin, K.D., Becker-Krail, D., Shelton, M.A., Hildebrand, M.A., Barko, K., Huang, Y.H., McClung, C.A. (2019). Cell-Type-Specific Regulation of Nucleus Accumbens Synaptic Plasticity and Cocaine Reward Sensitivity by the Circadian Protein, NPAS2. J Neurosci 39, 4657-4667.
- Pariollaud, M., Lamia, K.A. (2020). Cancer in the Fourth Dimension: What Is the Impact of Circadian Disruption? Cancer Discov 10, 1455-1464.
- Park, M., Miyoshi, C., Fujiyama, T., Kakizaki, M., Ikkyu, A., Honda, T., Choi, J., Asano, F., Mizuno, S., Takahashi, S., Yanagisawa, M., Funato, H. (2020). Loss of the conserved PKA sites of SIK1 and SIK2 increases sleep need. Sci Rep 10, 8676.
- Pasquale, E.B. (2005). Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6, 462-475.
- Pasquale, E.B. (2010). Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10, 165-180.
- Paul, K.N., Dugovic, C., Turek, F.W., Laposky, A.D. (2006). Diurnal sex differences in the sleep-wake cycle of mice are dependent on gonadal function. Sleep 29, 1211-1223.
- Peever, J., Fuller, P.M. (2017). The Biology of REM Sleep. Curr Biol 27, R1237-R1248.
- Peineau, S., Taghibiglou, C., Bradley, C., Wong, T.P., Liu, L., Lu, J., Lo, E., Wu, D., Saule, E., Bouschet, T., Matthews, P., Isaac, J.T., Bortolotto, Z.A., Wang, Y.T., Collingridge, G.L. (2007). LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53, 703-717.
- Pennisi, E. (2021). The simplest of slumbers. Science 374, 526-529.
- Periasamy, S., Hsu, D.Z., Fu, Y.H., Liu, M.Y. (2015). Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation. EXCLI J *14*, 672-683.
- Petros, T.J., Williams, S.E., Mason, C.A. (2006). Temporal regulation of EphA4 in astroglia during murine retinal and optic nerve development. Mol Cell Neurosci *32*, 49-66.
- Peyrache, A., Seibt, J. (2020). A mechanism for learning with sleep spindles. Philos Trans R Soc Lond B Biol Sci 375, 20190230.
- Phillips, A.J., Robinson, P.A., Kedziora, D.J., Abeysuriya, R.G. (2010). Mammalian sleep dynamics: how diverse features arise from a common physiological framework. PLoS Comput Biol 6, e1000826.
- Pittendrigh, C.S., Daan, S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. Journal of comparative physiology. I. The Stability and Lability of Spontaneous Frequency.
- . Journal of comparative physiology 106, 223-252.
- Plumbly, W., Brandon, N., Deeb, T.Z., Hall, J., Harwood, A.J. (2019). L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci Rep 9, 13810.
- Poe, G.R., Nitz, D.A., McNaughton, B.L., Barnes, C.A. (2000). Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res 855, 176-180.

- Porkka-Heiskanen, T., Strecker, R.E., McCarley, R.W. (2000). Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99, 507-517.
- Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., Schibler, U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260.
- Prosser, R.A., Rutishauser, U., Ungers, G., Fedorkova, L., Glass, J.D. (2003). Intrinsic role of polysialylated neural cell adhesion molecule in photic phase resetting of the Mammalian circadian clock. J Neurosci 23, 652-658.
- Puentes-Mestril, C., Aton, S.J. (2017). Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data. Front Neural Circuits 11, 61.
- Qin, H., Noberini, R., Huan, X., Shi, J., Pasquale, E.B., Song, J. (2010). Structural characterization of the EphA4-Ephrin-B2 complex reveals new features enabling Eph-ephrin binding promiscuity. J Biol Chem 285, 644-654.
- Qin, Q.J., Cui, L.Q., Li, P., Wang, Y.B., Zhang, X.Z., Guo, M.L. (2019). Rhynchophylline ameliorates myocardial ischemia/reperfusion injury through the modulation of mitochondrial mechanisms to mediate myocardial apoptosis. Mol Med Rep 19, 2581-2590.
- Raccuglia, D., Huang, S., Ender, A., Heim, M.M., Laber, D., Suarez-Grimalt, R., Liotta, A., Sigrist, S.J., Geiger, J.R.P., Owald, D. (2019). Network-Specific Synchronization of Electrical Slow-Wave Oscillations Regulates Sleep Drive in Drosophila. Curr Biol 29, 3611-3621 e3613.
- Rattenborg, N.C., Voirin, B., Cruz, S.M., Tisdale, R., Dell'Omo, G., Lipp, H.P., Wikelski, M., Vyssotski, A.L. (2016). Evidence that birds sleep in mid-flight. Nat Commun 7, 12468.
- Redline, S., Kirchner, H.L., Quan, S.F., Gottlieb, D.J., Kapur, V., Newman, A. (2004). The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med *164*, 406-418.
- Reiter, R.J. (1991). Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12, 151-180.
- Reiter, R.J., Tan, D.X., Korkmaz, A., Ma, S. (2012). Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann Med *44*, 564-577.
- Reiter, R.J., Tan, D.X., Korkmaz, A., Erren, T.C., Piekarski, C., Tamura, H., Manchester, L.C. (2007). Light at night, chronodisruption, melatonin suppression, and cancer risk: a review. Crit Rev Oncog *13*, 303-328.
- Rentschler, K.M., Baratta, A.M., Ditty, A.L., Wagner, N.T.J., Wright, C.J., Milosavljevic, S., Mong, J.A., Pocivavsek,
 A. (2021). Prenatal Kynurenine Elevation Elicits Sex-Dependent Changes in Sleep and Arousal During
 Adulthood: Implications for Psychotic Disorders. Schizophr Bull 47, 1320-1330.
- Restrepo, C.E., Margaryan, G., Borgius, L., Lundfald, L., Sargsyan, D., Kiehn, O. (2011). Change in the balance of excitatory and inhibitory midline fiber crossing as an explanation for the hopping phenotype in EphA4 knockout mice. Eur J Neurosci 34, 1102-1112.
- Richter, M., Murai, K.K., Bourgin, C., Pak, D.T., Pasquale, E.B. (2007). The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases. J Neurosci 27, 14205-14215.

- Riemann, D., Krone, L.B., Wulff, K., Nissen, C. (2020). Sleep, insomnia, and depression. Neuropsychopharmacology 45, 74-89.
- Ripperger, J.A., Schibler, U. (2006). Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet *38*, 369-374.
- Robillard, R., Massicotte-Marquez, J., Kawinska, A., Paquet, J., Frenette, S., Carrier, J. (2010). Topography of homeostatic sleep pressure dissipation across the night in young and middle-aged men and women. J Sleep Res 19, 455-465.
- Robinson, B.G., Frim, D.M., Schwartz, W.J., Majzoub, J.A. (1988). Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length. Science *241*, 342-344.
- Roman, V., Hagewoud, R., Luiten, P.G., Meerlo, P. (2006). Differential effects of chronic partial sleep deprivation and stress on serotonin-1A and muscarinic acetylcholine receptor sensitivity. J Sleep Res 15, 386-394.
- Rosinvil, T., Bouvier, J., Dube, J., Lafreniere, A., Bouchard, M., Cyr-Cronier, J., Gosselin, N., Carrier, J., Lina, J.M. (2021). Are age and sex effects on sleep slow waves only a matter of electroencephalogram amplitude? Sleep 44.
- Roy, K., Chauhan, G., Kumari, P., Wadhwa, M., Alam, S., Ray, K., Panjwani, U., Kishore, K. (2018). Phosphorylated delta sleep inducing peptide restores spatial memory and p-CREB expression by improving sleep architecture at high altitude. Life Sci 209, 282-290.
- Royet, A., Broutier, L., Coissieux, M.M., Malleval, C., Gadot, N., Maillet, D., Gratadou-Hupon, L., Bernet, A., Nony,
 P., Treilleux, I., Honnorat, J., Liebl, D., Pelletier, L., Berger, F., Meyronet, D., Castets, M., Mehlen, P. (2017).
 Ephrin-B3 supports glioblastoma growth by inhibiting apoptosis induced by the dependence receptor EphA4.
 Oncotarget *8*, 23750-23759.
- Rui, Y., Myers, K.R., Yu, K., Wise, A., De Blas, A.L., Hartzell, H.C., Zheng, J.Q. (2013). Activity-dependent regulation of dendritic growth and maintenance by glycogen synthase kinase 3beta. Nat Commun *4*, 2628.
- Rutter, J., Reick, M., Wu, L.C., McKnight, S.L. (2001). Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science *293*, 510-514.
- Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One *5*, e8561.
- Sahin, M., Greer, P.L., Lin, M.Z., Poucher, H., Eberhart, J., Schmidt, S., Wright, T.M., Shamah, S.M., O'Connell, S., Cowan, C.W., Hu, L., Goldberg, J.L., Debant, A., Corfas, G., Krull, C.E., Greenberg, M.E. (2005). Ephdependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46, 191-204.
- Saintigny, P., Peng, S., Zhang, L., Sen, B., Wistuba, II, Lippman, S.M., Girard, L., Minna, J.D., Heymach, J.V., Johnson, F.M. (2012). Global evaluation of Eph receptors and ephrins in lung adenocarcinomas identifies EphA4 as an inhibitor of cell migration and invasion. Mol Cancer Ther 11, 2021-2032.
- Sakai, K. (2011). Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. Neuroscience *182*, 144-161.
- Samuels, E.R., Szabadi, E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol 6, 254-285.

- Santhi, N., Lazar, A.S., McCabe, P.J., Lo, J.C., Groeger, J.A., Dijk, D.J. (2016). Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc Natl Acad Sci U S A *113*, E2730-2739.
- Saper, C.B., Fuller, P.M. (2017). Wake-sleep circuitry: an overview. Curr Opin Neurobiol 44, 186-192.
- Saper, C.B., Scammell, T.E., Lu, J. (2005a). Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257-1263.
- Saper, C.B., Lu, J., Chou, T.C., Gooley, J. (2005b). The hypothalamic integrator for circadian rhythms. Trends Neurosci 28, 152-157.
- Sare, R.M., Lemons, A., Song, A., Smith, C.B. (2020). Sleep Duration in Mouse Models of Neurodevelopmental Disorders. Brain Sci 11.
- Sato, T.K., Panda, S., Miraglia, L.J., Reyes, T.M., Rudic, R.D., McNamara, P., Naik, K.A., FitzGerald, G.A., Kay, S.A., Hogenesch, J.B. (2004). A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527-537.
- Schwartz, M.D., Nunez, A.A., Smale, L. (2004). Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127, 13-23.
- Schwartz, W.J., Zimmerman, P. (1990). Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci 10, 3685-3694.
- Schwierin, B., Borbely, A.A., Tobler, I. (1998). Sleep homeostasis in the female rat during the estrous cycle. Brain Res *811*, 96-104.
- Scullin, M.K., Bliwise, D.L. (2015). Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research. Perspect Psychol Sci 10, 97-137.
- Seibt, J., Dumoulin, M.C., Aton, S.J., Coleman, T., Watson, A., Naidoo, N., Frank, M.G. (2012). Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22, 676-682.
- Seifritz, E., Muller, M.J., Schonenberger, G.A., Trachsel, L., Hemmeter, U., Hatzinger, M., Ernst, A., Moore, P., Holsboer-Trachsler, E. (1995). Human plasma DSIP decreases at the initiation of sleep at different circadian times. Peptides 16, 1475-1481.
- Seok, B.S., Cao, F., Belanger-Nelson, E., Provost, C., Gibbs, S., Jia, Z., Mongrain, V. (2018). The effect of Neuroligin-2 absence on sleep architecture and electroencephalographic activity in mice. Mol Brain *11*, 52.
- Shao, H., Yang, Y., Mi, Z., Zhu, G.X., Qi, A.P., Ji, W.G., Zhu, Z.R. (2016). Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience 337, 355-369.
- Sharma, R., Sahota, P., Thakkar, M.M. (2018). Melatonin promotes sleep in mice by inhibiting orexin neurons in the perifornical lateral hypothalamus. J Pineal Res 65, e12498.
- Sharma, V.K., Chandrashekaran, M.K. (2005). Zeitgebers (time cues) for biological clocks. Current Science 1136-1146.
- Shein-Idelson, M., Ondracek, J.M., Liaw, H.P., Reiter, S., Laurent, G. (2016). Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science *352*, 590-595.
- Shepherd, J.D., Rumbaugh, G., Wu, J., Chowdhury, S., Plath, N., Kuhl, D., Huganir, R.L., Worley, P.F. (2006). Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron *52*, 475-484.

Shi, G., Wu, D., Ptacek, L.J., Fu, Y.H. (2017). Human genetics and sleep behavior. Curr Opin Neurobiol 44, 43-49.

- Shi, J.S., Huang, B., Wu, Q., Ren, R.X., Xie, X.L. (1993). Effects of rhynchophylline on motor activity of mice and serotonin and dopamine in rat brain. Zhongguo Yao Li Xue Bao *14*, 114-117.
- Shi, S., Hida, A., McGuinness, O.P., Wasserman, D.H., Yamazaki, S., Johnson, C.H. (2010). Circadian clock gene Bmall is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20, 316-321.
- Shin, J., Gu, C., Kim, J., Park, S. (2008). Transient activation of the MAP kinase signaling pathway by the forward signaling of EphA4 in PC12 cells. BMB Rep *41*, 479-484.
- Shinno, H., Kamei, M., Nakamura, Y., Inami, Y., Horiguchi, J. (2008a). Successful treatment with Yi-Gan San for rapid eye movement sleep behavior disorder. Prog Neuropsychopharmacol Biol Psychiatry 32, 1749-1751.
- Shinno, H., Inami, Y., Inagaki, T., Nakamura, Y., Horiguchi, J. (2008b). Effect of Yi-Gan San on psychiatric symptoms and sleep structure at patients with behavioral and psychological symptoms of dementia. Prog Neuropsychopharmacol Biol Psychiatry 32, 881-885.
- Shintani, T., Ihara, M., Sakuta, H., Takahashi, H., Watakabe, I., Noda, M. (2006). Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nat Neurosci 9, 761-769.
- Shouse, M.N., Siegel, J.M. (1992). Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res 571, 50-63.
- Shu, Y., Xiao, B., Wu, Q., Liu, T., Du, Y., Tang, H., Chen, S., Feng, L., Long, L., Li, Y. (2016). The Ephrin-A5/EphA4 Interaction Modulates Neurogenesis and Angiogenesis by the p-Akt and p-ERK Pathways in a Mouse Model of TLE. Mol Neurobiol 53, 561-576.
- Simon, A.M., de Maturana, R.L., Ricobaraza, A., Escribano, L., Schiapparelli, L., Cuadrado-Tejedor, M., Perez-Mediavilla, A., Avila, J., Del Rio, J., Frechilla, D. (2009). Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer's disease. J Alzheimers Dis 17, 773-786.
- Singla, N., Erdjument-Bromage, H., Himanen, J.P., Muir, T.W., Nikolov, D.B. (2011). A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation. Chem Biol *18*, 361-371.
- Slack, S., Battaglia, A., Cibert-Goton, V., Gavazzi, I. (2008). EphrinB2 induces tyrosine phosphorylation of NR2B via Src-family kinases during inflammatory hyperalgesia. Neuroscience *156*, 175-183.
- Smith, P.C., Phillips, D.J., Pocivavsek, A., Byrd, C.A., Viechweg, S.S., Hampton, B., Mong, J.A. (2022). Estradiol influences adenosinergic signaling and nonrapid eye movement sleep need in adult female rats. Sleep 45.
- Smyllie, N.J., Bagnall, J., Koch, A.A., Niranjan, D., Polidarova, L., Chesham, J.E., Chin, J.W., Partch, C.L., Loudon, A.S.I., Hastings, M.H. (2022). Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons. Proc Natl Acad Sci U S A 119.
- Sohl, M., Lanner, F., Farnebo, F. (2009). Characterization of the murine Ephrin-B2 promoter. Gene 437, 54-59.
- Sohl, M., Lanner, F., Farnebo, F. (2010). Sp1 mediate hypoxia induced ephrinB2 expression via a hypoxia-inducible factor independent mechanism. Biochem Biophys Res Commun *391*, 24-27.
- Song, M.F., Guan, Y.H., Li, H.T., Wei, S.G., Zhang, L.X., Zhang, Z.L., Ma, X.J. (2018). The effects of genetic variation and environmental factors on rhynchophylline and isorhynchophylline in Uncaria macrophylla Wall. from different populations in China. PLoS One 13, e0199259.

- Song, Y., Qu, R., Zhu, S., Zhang, R., Ma, S. (2012). Rhynchophylline attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-kappaB signaling pathways in primary microglia. Phytother Res 26, 1528-1533.
- Soria, V., Martinez-Amoros, E., Escaramis, G., Valero, J., Perez-Egea, R., Garcia, C., Gutierrez-Zotes, A., Puigdemont, D., Bayes, M., Crespo, J.M., Martorell, L., Vilella, E., Labad, A., Vallejo, J., Perez, V., Menchon, J.M., Estivill, X., Gratacos, M., Urretavizcaya, M. (2010). Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35, 1279-1289.
- Sosial, E., Nussinovitch, I. (2015). Multiple Ca2+ channel-dependent components in growth hormone secretion from rat anterior pituitary somatotrophs. J Neuroendocrinol 27, 166-176.
- Sotelo, M.I., Tyan, J., Markunas, C., Sulaman, B.A., Horwitz, L., Lee, H., Morrow, J.G., Rothschild, G., Duan, B., Eban-Rothschild, A. (2022). Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr Biol 32, 806-822 e807.
- Spano, G.M., Banningh, S.W., Marshall, W., de Vivo, L., Bellesi, M., Loschky, S.S., Tononi, G., Cirelli, C. (2019). Sleep Deprivation by Exposure to Novel Objects Increases Synapse Density and Axon-Spine Interface in the Hippocampal CA1 Region of Adolescent Mice. J Neurosci 39, 6613-6625.
- Spitz, F., Furlong, E.E. (2012). Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13, 613-626.
- Stark, D.A., Karvas, R.M., Siegel, A.L., Cornelison, D.D. (2011). Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 138, 5279-5289.
- Stein, E., Lane, A.A., Cerretti, D.P., Schoecklmann, H.O., Schroff, A.D., Van Etten, R.L., Daniel, T.O. (1998). Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev 12, 667-678.
- Steinecke, A., Gampe, C., Zimmer, G., Rudolph, J., Bolz, J. (2014). EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development *141*, 460-471.
- Steriade, M., McCormick, D.A., Sejnowski, T.J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679-685.
- Steriade, M., Timofeev, I., Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85, 1969-1985.
- Steward, O., Wallace, C.S., Lyford, G.L., Worley, P.F. (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron *21*, 741-751.
- Stojilkovic, S.S., Izumi, S., Catt, K.J. (1988). Participation of voltage-sensitive calcium channels in pituitary hormone release. J Biol Chem 263, 13054-13061.
- Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H., Weitz, C.J. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83.
- Strecker, R.E., Morairty, S., Thakkar, M.M., Porkka-Heiskanen, T., Basheer, R., Dauphin, L.J., Rainnie, D.G., Portas, C.M., Greene, R.W., McCarley, R.W. (2000). Adenosinergic modulation of basal forebrain and

preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115, 183-204.

- Suh, S., Cho, N., Zhang, J. (2018). Sex Differences in Insomnia: from Epidemiology and Etiology to Intervention. Curr Psychiatry Rep 20, 69.
- Sun, Y.Z., Liu, R. (2013). Therapeutic evaluation on needling method of regulating the conception vessel and calming the mind for perimenopausal sleep disorder. Journal of Acupuncture and Tuina Science 11, 142-146.
- Suntsova, N., Szymusiak, R., Alam, M.N., Guzman-Marin, R., McGinty, D. (2002). Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol *543*, 665-677.
- Suntsova, N., Guzman-Marin, R., Kumar, S., Alam, M.N., Szymusiak, R., McGinty, D. (2007). The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 27, 1616-1630.
- Suzuki, A., Sinton, C.M., Greene, R.W., Yanagisawa, M. (2013). Behavioral and biochemical dissociation of arousal and homeostatic sleep need influenced by prior wakeful experience in mice. Proc Natl Acad Sci U S A 110, 10288-10293.
- Suzuki, T., Hide, I., Ido, K., Kohsaka, S., Inoue, K., Nakata, Y. (2004). Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24, 1-7.
- Swift, K.M., Keus, K., Echeverria, C.G., Cabrera, Y., Jimenez, J., Holloway, J., Clawson, B.C., Poe, G.R. (2020). Sex differences within sleep in gonadally intact rats. Sleep 43.
- Szentirmai, E., Yasuda, T., Taishi, P., Wang, M., Churchill, L., Bohnet, S., Magrath, P., Kacsoh, B., Jimenez, L., Krueger, J.M. (2007). Growth hormone-releasing hormone: cerebral cortical sleep-related EEG actions and expression. Am J Physiol Regul Integr Comp Physiol 293, R922-930.
- Szymusiak, R., Alam, N., Steininger, T.L., McGinty, D. (1998). Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res *803*, 178-188.
- Tainton-Heap, L.A.L., Kirszenblat, L.C., Notaras, E.T., Grabowska, M.J., Jeans, R., Feng, K., Shaw, P.J., van Swinderen, B. (2021). A Paradoxical Kind of Sleep in Drosophila melanogaster. Curr Biol 31, 578-590 e576.
- Takahashi, J.S. (2017). Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18, 164-179.
- Takahashi, J.S., Hong, H.K., Ko, C.H., McDearmon, E.L. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet *9*, 764-775.
- Takahashi, K., Lin, J.S., Sakai, K. (2009). Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience *161*, 269-292.
- Takasu, M.A., Dalva, M.B., Zigmond, R.E., Greenberg, M.E. (2002). Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491-495.
- Takemoto, M., Fukuda, T., Sonoda, R., Murakami, F., Tanaka, H., Yamamoto, N. (2002). Ephrin-B3-EphA4 interactions regulate the growth of specific thalamocortical axon populations in vitro. Eur J Neurosci 16, 1168-1172.
- Tanasic, S., Mattusch, C., Wagner, E.M., Eder, M., Rupprecht, R., Rammes, G., Di Benedetto, B. (2016). Desipramine targets astrocytes to attenuate synaptic plasticity via modulation of the ephrinA3/EphA4 signalling. Neuropharmacology 105, 154-163.

- Tartar, J.L., Ward, C.P., Cordeira, J.W., Legare, S.L., Blanchette, A.J., McCarley, R.W., Strecker, R.E. (2009). Experimental sleep fragmentation and sleep deprivation in rats increases exploration in an open field test of anxiety while increasing plasma corticosterone levels. Behav Brain Res 197, 450-453.
- Tatsuki, F., Sunagawa, G.A., Shi, S., Susaki, E.A., Yukinaga, H., Perrin, D., Sumiyama, K., Ukai-Tadenuma, M., Fujishima, H., Ohno, R., Tone, D., Ode, K.L., Matsumoto, K., Ueda, H.R. (2016). Involvement of Ca(2+)-Dependent Hyperpolarization in Sleep Duration in Mammals. Neuron 90, 70-85.
- Terao, A., Wisor, J.P., Peyron, C., Apte-Deshpande, A., Wurts, S.W., Edgar, D.M., Kilduff, T.S. (2006). Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study. Neuroscience 137, 593-605.
- Thannickal, T.C., Nienhuis, R., Siegel, J.M. (2009). Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep *32*, 993-998.
- Thannickal, T.C., Moore, R.Y., Nienhuis, R., Ramanathan, L., Gulyani, S., Aldrich, M., Cornford, M., Siegel, J.M. (2000). Reduced number of hypocretin neurons in human narcolepsy. Neuron *27*, 469-474.
- Theil, T., Frain, M., Gilardi-Hebenstreit, P., Flenniken, A., Charnay, P., Wilkinson, D.G. (1998). Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 125, 443-452.
- Thomas, C.W., Guillaumin, M.C., McKillop, L.E., Achermann, P., Vyazovskiy, V.V. (2020). Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. Elife *9*.
- Timofeev, I., Bazhenov, M., Seigneur, J., Sejnowski, T. (2012). Neuronal Synchronization and Thalamocortical Rhythms in Sleep, Wake and Epilepsy. In: Jasper's Basic Mechanisms of the Epilepsies (th, Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds). Bethesda (MD).
- Tischkau, S.A., Mitchell, J.W., Tyan, S.H., Buchanan, G.F., Gillette, M.U. (2003). Ca2+/cAMP response elementbinding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem 278, 718-723.
- Todd, K.L., Baker, K.L., Eastman, M.B., Kolling, F.W., Trausch, A.G., Nelson, C.E., Conover, J.C. (2017). EphA4 Regulates Neuroblast and Astrocyte Organization in a Neurogenic Niche. J Neurosci *37*, 3331-3341.
- Tognolini, M., Incerti, M., Lodola, A. (2014). Are we using the right pharmacological tools to target EphA4? ACS Chem Neurosci 5, 1146-1147.
- Tomita, J., Nakajima, M., Kondo, T., Iwasaki, H. (2005). No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science *307*, 251-254.
- Tone, D. et al. (2022). Distinct phosphorylation states of mammalian CaMKIIbeta control the induction and maintenance of sleep. PLoS Biol 20, e3001813.
- Tononi, G., Cirelli, C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62, 143-150.
- Tononi, G., Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Med Rev 10, 49-62.
- Tononi, G., Cirelli, C. (2012). Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast 2012, 415250.

- Torres, R., Firestein, B.L., Dong, H., Staudinger, J., Olson, E.N., Huganir, R.L., Bredt, D.S., Gale, N.W., Yancopoulos, G.D. (1998). PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453-1463.
- Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., Sassone-Corsi, P. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A 99, 7728-7733.
- Tremblay, M.E., Riad, M., Bouvier, D., Murai, K.K., Pasquale, E.B., Descarries, L., Doucet, G. (2007). Localization of EphA4 in axon terminals and dendritic spines of adult rat hippocampus. J Comp Neurol *501*, 691-702.
- Tsunematsu, T., Kilduff, T.S., Boyden, E.S., Takahashi, S., Tominaga, M., Yamanaka, A. (2011). Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci *31*, 10529-10539.
- Tsunematsu, T., Ueno, T., Tabuchi, S., Inutsuka, A., Tanaka, K.F., Hasuwa, H., Kilduff, T.S., Terao, A., Yamanaka, A. (2014). Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34, 6896-6909.
- Tu, J.C., Xiao, B., Yuan, J.P., Lanahan, A.A., Leoffert, K., Li, M., Linden, D.J., Worley, P.F. (1998). Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717-726.
- Tyler, J., Lu, Y., Dunlap, J., Forger, D.B. (2022). Evolution of the repression mechanisms in circadian clocks. Genome Biol 23, 17.
- Ueda, H.R., Hayashi, S., Chen, W., Sano, M., Machida, M., Shigeyoshi, Y., Iino, M., Hashimoto, S. (2005). Systemlevel identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37, 187-192.
- Uygun, D.S., Yang, C., Tilli, E.R., Katsuki, F., Hodges, E.L., McKenna, J.T., McNally, J.M., Brown, R.E., Basheer, R. (2022). Knockdown of GABAA alpha3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nat Commun 13, 2246.
- Vaccaro, A., Kaplan Dor, Y., Nambara, K., Pollina, E.A., Lin, C., Greenberg, M.E., Rogulja, D. (2020). Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell *181*, 1307-1328 e1315.
- van Diepen, R.M., Miller, L.M., Mazaheri, A., Geng, J.J. (2016). The Role of Alpha Activity in Spatial and Feature-Based Attention. eNeuro *3*.
- Van Dongen, H.P., Maislin, G., Mullington, J.M., Dinges, D.F. (2003). The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117-126.
- Van Dort, C.J., Zachs, D.P., Kenny, J.D., Zheng, S., Goldblum, R.R., Gelwan, N.A., Ramos, D.M., Nolan, M.A., Wang, K., Weng, F.J., Lin, Y., Wilson, M.A., Brown, E.N. (2015). Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A *112*, 584-589.
- Vanderheyden, W.M., Gerstner, J.R., Tanenhaus, A., Yin, J.C., Shaw, P.J. (2013). ERK phosphorylation regulates sleep and plasticity in Drosophila. PLoS One *8*, e81554.
- Vansteensel, M.J., Michel, S., Meijer, J.H. (2008). Organization of cell and tissue circadian pacemakers: a comparison among species. Brain Res Rev 58, 18-47.

- Varin, C., Luppi, P.H., Fort, P. (2018). Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep 41.
- Vassalli, A., Franken, P. (2017). Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A *114*, E5464-E5473.
- Vecsey, C.G., Peixoto, L., Choi, J.H., Wimmer, M., Jaganath, D., Hernandez, P.J., Blackwell, J., Meda, K., Park, A.J., Hannenhalli, S., Abel, T. (2012). Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol Genomics 44, 981-991.
- Venner, A., Anaclet, C., Broadhurst, R.Y., Saper, C.B., Fuller, P.M. (2016). A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr Biol *26*, 2137-2143.
- Vezzani, A., Friedman, A., Dingledine, R.J. (2013). The role of inflammation in epileptogenesis. Neuropharmacology *69*, 16-24.
- Viswanathan, M., Laitinen, J.T., Saavedra, J.M. (1990). Expression of melatonin receptors in arteries involved in thermoregulation. Proc Natl Acad Sci U S A *87*, 6200-6203.
- Voloh, B., Valiante, T.A., Everling, S., Womelsdorf, T. (2015). Theta-gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts. Proc Natl Acad Sci U S A *112*, 8457-8462.
- Von Economo, C. (1930). Sleep as a problem of localization. J Nerv Ment Dis 71, 249-259.
- Vyazovskiy, V.V., Welker, E., Fritschy, J.M., Tobler, I. (2004). Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur J Neurosci 20, 1363-1370.
- Vyazovskiy, V.V., Ruijgrok, G., Deboer, T., Tobler, I. (2006). Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb Cortex *16*, 328-336.
- Vyazovskiy, V.V., Cirelli, C., Pfister-Genskow, M., Faraguna, U., Tononi, G. (2008). Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11, 200-208.
- Vyazovskiy, V.V., Olcese, U., Hanlon, E.C., Nir, Y., Cirelli, C., Tononi, G. (2011). Local sleep in awake rats. Nature 472, 443-447.
- Wadhwa, M., Prabhakar, A., Ray, K., Roy, K., Kumari, P., Jha, P.K., Kishore, K., Kumar, S., Panjwani, U. (2017). Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J Neuroinflammation 14, 222.
- Wagner, M.J., Hsiung, M.S., Gish, G.D., Bagshaw, R.D., Doodnauth, S.A., Soliman, M.A., Jorgensen, C., Tucholska, M., Rottapel, R. (2020). The Shb scaffold binds the Nck adaptor protein, p120 RasGAP, and Chimaerins and thereby facilitates heterotypic cell segregation by the receptor EphB2. J Biol Chem 295, 3932-3944.
- Walkenhorst, J., Dutting, D., Handwerker, C., Huai, J., Tanaka, H., Drescher, U. (2000). The EphA4 receptor tyrosine kinase is necessary for the guidance of nasal retinal ganglion cell axons in vitro. Mol Cell Neurosci 16, 365-375.
- Wang, J., Zhang, S., Lu, H., Xu, H. (2022). Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction. Nat Commun 13, 2714.

- Wang, Y., Song, L., Liu, M., Ge, R., Zhou, Q., Liu, W., Li, R., Qie, J., Zhen, B., Wang, Y., He, F., Qin, J., Ding, C. (2018a). A proteomics landscape of circadian clock in mouse liver. Nat Commun 9, 1553.
- Wang, Z., Wu, Y., Li, L., Su, X.D. (2013). Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res 23, 213-224.
- Wang, Z. et al. (2018b). Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558, 435-439.
- Warner, N., Wybenga-Groot, L.E., Pawson, T. (2008). Analysis of EphA4 receptor tyrosine kinase substrate specificity using peptide-based arrays. FEBS J 275, 2561-2573.
- Watson, B.O., Levenstein, D., Greene, J.P., Gelinas, J.N., Buzsaki, G. (2016). Network Homeostasis and State Dynamics of Neocortical Sleep. Neuron 90, 839-852.
- Wegmeyer, H., Egea, J., Rabe, N., Gezelius, H., Filosa, A., Enjin, A., Varoqueaux, F., Deininger, K., Schnutgen, F., Brose, N., Klein, R., Kullander, K., Betz, A. (2007). EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin. Neuron 55, 756-767.
- Wei, Y. (2020). Comparative transcriptome analysis of the hippocampus from sleep-deprived and Alzheimer's disease mice. Genet Mol Biol 43, e20190052.
- Welsh, D.K., Yoo, S.H., Liu, A.C., Takahashi, J.S., Kay, S.A. (2004). Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14, 2289-2295.
- Wen, S., Ma, D., Zhao, M., Xie, L., Wu, Q., Gou, L., Zhu, C., Fan, Y., Wang, H., Yan, J. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci 23, 456-467.
- Werth, E., Dijk, D.J., Achermann, P., Borbely, A.A. (1996). Dynamics of the sleep EEG after an early evening nap: experimental data and simulations. Am J Physiol *271*, R501-510.
- Williams, C., Mehrian Shai, R., Wu, Y., Hsu, Y.H., Sitzer, T., Spann, B., McCleary, C., Mo, Y., Miller, C.A. (2009). Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer's disease. PLoS One 4, e4936.
- Williamson, E.M. (2001). Synergy and other interactions in phytomedicines. Phytomedicine 8, 401-409.
- Wimmer, R.D., Astori, S., Bond, C.T., Rovo, Z., Chatton, J.Y., Adelman, J.P., Franken, P., Luthi, A. (2012). Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J Neurosci 32, 13917-13928.
- Winsky-Sommerer, R. (2009). Role of GABAA receptors in the physiology and pharmacology of sleep. Eur J Neurosci 29, 1779-1794.
- Winter, J., Roepcke, S., Krause, S., Muller, E.C., Otto, A., Vingron, M., Schweiger, S. (2008). Comparative 3'UTR analysis allows identification of regulatory clusters that drive Eph/ephrin expression in cancer cell lines. PLoS One 3, e2780.
- Wintler, T., Schoch, H., Frank, M.G., Peixoto, L. (2020). Sleep, brain development, and autism spectrum disorders: Insights from animal models. J Neurosci Res 98, 1137-1149.

- Woon, P.Y., Kaisaki, P.J., Braganca, J., Bihoreau, M.T., Levy, J.C., Farrall, M., Gauguier, D. (2007). Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A 104, 14412-14417.
- Wu, B., De, S.K., Kulinich, A., Salem, A.F., Koeppen, J., Wang, R., Barile, E., Wang, S., Zhang, D., Ethell, I., Pellecchia, M. (2017). Potent and Selective EphA4 Agonists for the Treatment of ALS. Cell Chem Biol 24, 293-305.
- Wybenga-Groot, L.E., Baskin, B., Ong, S.H., Tong, J., Pawson, T., Sicheri, F. (2001). Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106, 745-757.
- Wyse, C.A., Coogan, A.N. (2010). Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res *1337*, 21-31.
- Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O'Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., Nedergaard, M. (2013). Sleep drives metabolite clearance from the adult brain. Science 342, 373-377.
- Xing, B., Li, Y.C., Gao, W.J. (2016). GSK3beta Hyperactivity during an Early Critical Period Impairs Prefrontal Synaptic Plasticity and Induces Lasting Deficits in Spine Morphology and Working Memory. Neuropsychopharmacology 41, 3003-3015.
- Xu, K., Tzvetkova-Robev, D., Xu, Y., Goldgur, Y., Chan, Y.P., Himanen, J.P., Nikolov, D.B. (2013). Insights into Eph receptor tyrosine kinase activation from crystal structures of the EphA4 ectodomain and its complex with ephrin-A5. Proc Natl Acad Sci U S A 110, 14634-14639.
- Xue, R., Wan, Y., Sun, X., Zhang, X., Gao, W., Wu, W. (2019). Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front Immunol 10, 2546.
- Yaffe, K., Falvey, C.M., Hoang, T. (2014). Connections between sleep and cognition in older adults. Lancet Neurol 13, 1017-1028.
- Yamanaka, A., Beuckmann, C.T., Willie, J.T., Hara, J., Tsujino, N., Mieda, M., Tominaga, M., Yagami, K., Sugiyama, F., Goto, K., Yanagisawa, M., Sakurai, T. (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701-713.
- Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G.D., Sakaki, Y., Menaker, M., Tei, H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682-685.
- Yan, Y., Luo, Y.C., Wan, H.Y., Wang, J., Zhang, P.P., Liu, M., Li, X., Li, S., Tang, H. (2013). MicroRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelialmesenchymal transition and adhesion in hepatoma cells. Hepatology 57, 667-677.
- Yang, F., Inoue, I., Kumagai, M., Takahashi, S., Nakajima, Y., Ikeda, M. (2013). Real-time analysis of the circadian oscillation of the Rev-Erb beta promoter. J Atheroscler Thromb 20, 267-276.
- Yang, G., Lai, C.S., Cichon, J., Ma, L., Li, W., Gan, W.B. (2014). Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173-1178.
- Yang, H. et al. (2019). Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med 25, 1428-1441.

- Yang, Y., Jiang, G., Zhang, P., Fan, J. (2015). Programmed cell death and its role in inflammation. Mil Med Res 2, 12.
- Yasenkov, R., Deboer, T. (2011). Interrelations and circadian changes of electroencephalogram frequencies under baseline conditions and constant sleep pressure in the rat. Neuroscience *180*, 212-221.
- Yasuda, T., Yoshida, H., Garcia-Garcia, F., Kay, D., Krueger, J.M. (2005). Interleukin-1beta has a role in cerebral cortical state-dependent electroencephalographic slow-wave activity. Sleep 28, 177-184.
- Yeung, W., Kwon, A., Taujale, R., Bunn, C., Venkat, A., Kannan, N. (2021). Evolution of Functional Diversity in the Holozoan Tyrosine Kinome. Mol Biol Evol 38, 5625-5639.
- Yin, D., Dong, H., Wang, T.X., Hu, Z.Z., Cheng, N.N., Qu, W.M., Huang, Z.L. (2019). Glutamate activates the histaminergic tuberomammillary nucleus and increases wakefulness in rats. Neuroscience 413, 86-98.
- Yin, L., Wang, J., Klein, P.S., Lazar, M.A. (2006). Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311, 1002-1005.
- Yoo, J.H., Ha, T.W., Hong, J.T., Oh, K.W. (2016). Rhynchophylline, one of major constituents of Uncariae Ramulus et Uncus enhances pentobarbital-induced sleep behaviors and Rapid Eye Movement Sleep in rodents. Natural Product Sciences 22, 263-269.
- Yoshida, H., Peterfi, Z., Garcia-Garcia, F., Kirkpatrick, R., Yasuda, T., Krueger, J.M. (2004). State-specific asymmetries in EEG slow wave activity induced by local application of TNFalpha. Brain Res 1009, 129-136.
- Yu, C., Li, Y., Stitt, I.M., Zhou, Z.C., Sellers, K.K., Frohlich, F. (2018). Theta Oscillations Organize Spiking Activity in Higher-Order Visual Thalamus during Sustained Attention. eNeuro 5.
- Yu, X., Wang, G., Gilmore, A., Yee, A.X., Li, X., Xu, T., Smith, S.J., Chen, L., Zuo, Y. (2013). Accelerated experience-dependent pruning of cortical synapses in ephrin-A2 knockout mice. Neuron *80*, 64-71.
- Yu, X., Zecharia, A., Zhang, Z., Yang, Q., Yustos, R., Jager, P., Vyssotski, A.L., Maywood, E.S., Chesham, J.E., Ma,
 Y., Brickley, S.G., Hastings, M.H., Franks, N.P., Wisden, W. (2014). Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol 24, 2838-2844.
- Yuan, D., Ma, B., Yang, J.Y., Xie, Y.Y., Wang, L., Zhang, L.J., Kano, Y., Wu, C.F. (2009). Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int Immunopharmacol 9, 1549-1554.
- Yumoto, N., Wakatsuki, S., Kurisaki, T., Hara, Y., Osumi, N., Frisen, J., Sehara-Fujisawa, A. (2008). Meltrin beta/ADAM19 interacting with EphA4 in developing neural cells participates in formation of the neuromuscular junction. PLoS One 3, e3322.
- Zeng, L., Zhang, D., McLoughlin, H.S., Zalon, A.J., Aravind, L., Paulson, H.L. (2018). Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways. PLoS One 13, e0204438.
- Zhang, B., Wing, Y.K. (2006). Sex differences in insomnia: a meta-analysis. Sleep 29, 85-93.
- Zhang, J., Obal, F., Jr., Zheng, T., Fang, J., Taishi, P., Krueger, J.M. (1999). Intrapreoptic microinjection of GHRH or its antagonist alters sleep in rats. J Neurosci *19*, 2187-2194.

- Zhang, J.C., Yao, W., Qu, Y., Nakamura, M., Dong, C., Yang, C., Ren, Q., Ma, M., Han, M., Shirayama, Y., Hayashi-Takagi, A., Hashimoto, K. (2017). Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci Rep 7, 7133.
- Zhang, R., Lahens, N.F., Ballance, H.I., Hughes, M.E., Hogenesch, J.B. (2014). A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A *111*, 16219-16224.
- Zhang, Y., Fei, M., Xue, G., Zhou, Q., Jia, Y., Li, L., Xin, H., Sun, S. (2012). Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med 16, 249-259.
- Zhao, J., Boyd, A.W., Bartlett, P.F. (2017). The identification of a novel isoform of EphA4 and ITS expression in SOD1(G93A) mice. Neuroscience *347*, 11-21.
- Zhou, J.Y., Mo, Z.X., Zhou, S.W. (2010). Rhynchophylline down-regulates NR2B expression in cortex and hippocampal CA1 area of amphetamine-induced conditioned place preference rat. Arch Pharm Res 33, 557-565.
- Zhou, L., Jones, E.V., Murai, K.K. (2012). EphA signaling promotes actin-based dendritic spine remodeling through slingshot phosphatase. J Biol Chem 287, 9346-9359.
- Zhou, L., Martinez, S.J., Haber, M., Jones, E.V., Bouvier, D., Doucet, G., Corera, A.T., Fon, E.A., Zisch, A.H., Murai, K.K. (2007). EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association, and dendritic spine morphology. J Neurosci 27, 5127-5138.
- Zhou, Y.D., Barnard, M., Tian, H., Li, X., Ring, H.Z., Francke, U., Shelton, J., Richardson, J., Russell, D.W., McKnight, S.L. (1997). Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system. Proc Natl Acad Sci U S A 94, 713-718.
- Zhu, R.L., Fang, Y., Yu, H.H., Chen, D.F., Yang, L., Cho, K.S. (2021). Absence of ephrin-A2/A3 increases retinal regenerative potential for Muller cells in Rhodopsin knockout mice. Neural Regen Res 16, 1317-1322.
- Zimmer, G., Rudolph, J., Landmann, J., Gerstmann, K., Steinecke, A., Gampe, C., Bolz, J. (2011). Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic areaderived interneurons in the deep and superficial migratory stream. J Neurosci 31, 18364-18380.

Table A1. Cellular functions attributed to genes modified according to wake/sleep reported by literature. Studies compare gene expression associated to wake time (studied by sleep deprivation [SD] most of the time) and gene expression associated to sleep conditions. * indicates studies that used paradoxical sleep deprivation (PSD).

			-															
	Cortex	Cortex	Cortex	Cortex/Hypothalamus	Brain	Forebrain	Hippocampus	Oligodendrocytes	Cortex	Brain *	Hypothalamus	Cortex	Pituitary *	Cortex	mPFC	VLPO galanin neurons	Hippocampus	Hippocampus
WAKE/SD UP	Cirelli and Tononi, 2000	Cirelli et al., 2004	Terao et al., 2006	Mackiewicz et al., 2007	Maret et al., 2007	Mongrain et al., 2010	Vecsey et al., 2012	Bellesi et al., 2013	Massart et al., 2014	Narwade et al., 2017	Husse et al., 2017	Diessler et al., 2018	Oyola et al., 2019	Hor et al., 2019	Guo et al., 2019	Guo et al., 2020	Wei, 2020	Gaine et al., 2021
Immediate early genes/TFs (neurotransmission/potentiation)	<	>	<		<	>	<	<		<		<	<	<	<	<	\checkmark	\checkmark
Circadian genes						>			\checkmark				\checkmark		\checkmark			\checkmark
Energy metabolism	\checkmark	>				>												
Positive regulation of transcription		\checkmark					\checkmark		\checkmark		\checkmark					\checkmark		\checkmark
Negative regulation of translation		\checkmark																
Growth factors /adhesion molecules	\checkmark		\checkmark					\checkmark				\checkmark			\checkmark		\checkmark	
Stress responses (unfolded protein response, apoptosis)	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		
Vesicle and synapse related genes	\checkmark																	
Neurotransmitter/hormone receptors	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				\checkmark	\checkmark	\checkmark			
Neurotransmitter/hormone transporters	\checkmark																	
Depolarization sensitive		\checkmark																
Lipid, cholesterol						\checkmark		\checkmark									\checkmark	\checkmark
Enzymes	\checkmark					\checkmark									\checkmark			\checkmark
UPREGULATED IN SLEEP																		
Synaptic plasticity (consolidation/depression)		\checkmark					\checkmark			\checkmark								
Membrane trafficking and maintenance		\checkmark						\checkmark										
Metabolism				✓ ✓														
Antioxidant enzymes				✓ ✓														
Cholesterol biosynthesis		✓ ✓		√ √				✓										✓
Negative regulation of transcription		✓ ✓		√			✓ ✓			\checkmark						√		
Positive regulation of translation		✓		\checkmark			\checkmark									\checkmark		
Hyperpolarization promoting (leakage)		\checkmark																
Maintenance of vesicle pools				√														
Kesponse to temperature				\checkmark														
Neuronypophysis										\checkmark								
GABAergic neurotransmission		\checkmark																

Figure A1. Spatial gene expression of immediate early genes downregulated by RHY but upregulated by SD

Annex Chapter 4

Table S1 - Differentially expressed genes (DEGs) between ZT4 brains and ZT14 brains for male and female brains.

Values express the average number of counts per spot in the ZT4 condition, the log2 fold change in gene expression (in the ZT4 condition in reference to the ZT14 condition), and the adjusted p-value (FDR) = adjusted B-H p-value. Clock genes are marked in bold.

ZT4 - Males					ZT4 - Female				
FeatureID	FeatureName	ZT4M Average	ZT4M Log2FoldChange Z	T4M P-Value	FeatureID	FeatureName	ZT4 Average	ZT4 Log2FoldChange	ZT4 P-Value
ENSMUSG0000096768	Gm47283	1.795796468	1.962662116	3.14232E-25	ENSMUSG00000103034	Gm8797	0.023289157	-3.744720728	4.04505E-49
ENSMUSG0000095366	Gm21860	0.092455996	2.750594369	2.12328E-18	ENSMUSG0000028298	Cga	3.674252719	8.187237686	7.18958E-30
ENSMUSG0000098234	Snhg6	0.261026929	1.506668787	1.096E-10	ENSMUSG0000021342	Prl	34.45824901	6.540995001	2.05304E-28
ENSMUSG0000044988	Ucn3	0.002150139	-4.419330632	1.6155E-08	ENSMUSG0000020713	Gh	19.39676282	5.918313807	3.19598E-26
ENSMUSG0000021948	Prkcd	2.123907748	1.263499687	1.80693E-08	ENSMUSG0000095366	Gm21860	0.024841768	6.088376734	2.5453E-14
ENSMUSG0000027483	Bpifa1	0.020211311	4.750594369	3.19607E-08	ENSMUSG0000056054	S100a8	0.050071688	5.503414233	1.0331E-12
ENSMUSG0000024985	Tcf7l2	1.403181005	1.170058675	1.89837E-07	ENSMUSG00000100916	Lhb	0.04890723	7.054693607	2.67334E-12
ENSMUSG0000064179	Tnnt1	0.747388473	1.264338169	2.13447E-07	ENSMUSG00000105703	Gm43305	0.033381125	-1.921500135	2.94816E-12
ENSMUSG0000060671	Atp8b2	0.091165913	1.578413394	2.40504E-07	ENSMUSG0000002831	Plin4	0.019019478	-2.116683377	1.27072E-10
ENSMUSG0000022376	Adcy8	0.1264282	1.358975758	1.4696E-06	ENSMUSG0000020660	Pomc	0.703720704	1.819505299	4.42698E-09
ENSMUSG0000025217	Btrc	0.143629315	-1.169158377	1.4696E-06	ENSMUSG0000058626	Capn11	0.025618073	3.324743189	4.42698E-09
ENSMUSG0000050315	Synpo2	0.376274404	1.178867696	2.1332E-06	ENSMUSG0000027857	Tshb	0.458408247	7.465668319	1.05427E-08
ENSMUSG0000026475	Rgs16	0.365953734	1.169022458	2.72339E-06	ENSMUSG0000021506	Pitx1	0.015137952	5.387937015	1.41055E-08
ENSMUSG0000019874	Fabp7	0.789101178	1.050880171	3.4452E-06	ENSMUSG0000045394	Epcam	0.044637552	2.923989916	2.05886E-08
ENSMUSG0000024610	Cd74	0.141479176	1,902597463	5.83901E-06	ENSMUSG0000040170	Fmo2	0.003493374	-2.969614989	3.69093E-08
ENSMUSG0000092274	Neat1	0.448519089	1.100780724	5.88812E-06	ENSMUSG0000098234	Snhg6	0.723516487	1.123613914	1.22908E-06
ENSMUSG0000027833	Shox2	0.282958352	1,16344431	6.87692E-06	ENSMUSG0000020954	Strn3	0.057058435	-1.32072747	3.17573E-06
ENSMUSG0000025504	Ens8l2	0 165560738	1 298657287	9 74848F-06	ENSMUSG0000033585	Ndn	2 42789465	-1 051949652	4 9337F-06
ENSMUSG0000031962	Cdb15	0.021071367	-1 582829364	9 74848F-06	ENSMUSG0000091705	H2-02	0 111787955	1 472750278	4 9337E-06
ENSMUSG0000013076	Amoti1	0 544845337	1.051906133	9 74848E-06	ENSMUSG0000095845	Gm5741	0 172339764	2 819276327	7 28388E-06
ENSMUSG0000039155	Cdb26	0.018491199	2 817708565	3.01932E-05	ENSMUSG0000019874	Fabn7	1 314284778	1 03691369	1 31011E-05
ENSMUSG0000031167	Rhm3	1 119792625	-0 933349881	3 55809E-05	ENSMUSG0000034390	Cmin	0.073748998	-1 205185192	1 35383E-05
ENSMUSC0000010828	Grm1	0.244022212	1 042105076	2 75025 05	ENSMUSC0000034350	sive	0.073740330	2 12400261	1 252925 05
ENSING 300000013828	Umacc3	0.344022312	1.043103370	4 202705 05	ENSMUSC0000022035	JIXU Akr1c14	0.03642711	2.12490201	1.555656-05
	Hingesz Loft	0.004713494	1.457450464	4.39379E-03		AKIICI4	0.034955750	2.525670047	1.53505E-05
	Cm12544	0.217104084	1.113202442	4.39379E-03		Ciant	1.010555605	-1.003043012	1.03404E-03
	01113344	0.012040781	4.023012804	5.110622-05		List1h4h	0.091004019	-1.124/32014	4.275082-05
ENSINUSG0000036594	TIZ-Ad	0.002354044	1.997904423	5.54911E-05		HISLIN4N	0.1000000000	1.124400715	9.01043E-05
ENSINUSG0000021957	IKL Dah2a	0.055001054	0.938029525	0.906635-03		DU1 402240CD17Dik	0.012001401	-0.95500965	0.00010582
ENSINUSG00000021700	RdDSC	1.30/918/18	0.902748002	8.15491E-05		4955400B17KIK	0.012052751	4.000008921	0.00010582
ENSINOSG0000071497	Nutiz-psi	0.038272482	1.750594509	8.15491E-05		DIKI	0.51060605	1.130/20918	0.000134213
ENSMUSG0000062456	Rpi9-ps6	0.129008367	1.12312/14	0.00011/163	ENSMUSG0000092035	Peg10	0.097426308	1.223109882	0.000147914
ENSMUSG0000032368	ZICI	0.731477441	0.941545149	0.000125541	ENSMUSG0000090101	Snng9	0.27985804	0.995809909	0.000244587
ENSMUSG0000048349	Pou4f1	0.061493988	1.750594369	0.000169694	ENSMUSG0000066687	ZDTD16	0.005822289	-2.021453921	0.000295133
ENSMUSG00000033721	Vav3	0.263607097	1.005661948	0.00017395	ENSMUSG0000048015	Neurod4	0.015914257	2.6509/1421	0.000295133
ENSMUSG0000060429	Shtbl	0.084285466	1.248524877	0.000176134	ENSMUSG0000060143	Gm10076	21.413992	0.8/958/8/2	0.000295133
ENSMUSG0000024659	Anxal	0.038272482	2.013628775	0.000177319	ENSMUSG0000096956	Snng18	0.183208038	1.0/518834/	0.000382415
ENSMUSG0000062542	Syt9	0.28123824	0.97023618	0.000352154	ENSMUSG0000052974	Cyp2f2	0.0147498	2.766448639	0.000484342
ENSMUSG0000075224	Lrrc55	0.21/164084	1.148625443	0.000356222	ENSMUSG0000096215	Smim22	0.050847993	1.586841084	0.00049361
ENSMUSG00000111013	Gm32468	0.007740502	-2.244652101	0.000356222	ENSMUSG0000056071	S100a9	0.044637552	2.602061821	0.000577571
ENSMUSG0000027360	Hdc	0.049453207	1.631295441	0.000474817	ENSMUSG0000042607	Asb4	0.051624299	1.404177656	0.00105257
ENSMUSG0000090101	Snhg9	0.207273443	0.962570175	0.000498855	ENSMUSG0000025810	Nrp1	0.019795784	-1.331583444	0.001414845
ENSMUSG0000020099	Unc5b	0.125998172	1.089179808	0.000543096	ENSMUSG0000000031	H19	0.00892751	3.650971421	0.002136788
ENSMUSG0000024907	Gal	0.577957484	1.374146983	0.000579905	ENSMUSG0000041431	Ccnb1	0.069479319	1.165544594	0.002335468
ENSMUSG0000050621	Rps27rt	0.129008367	1.032929331	0.000585874	ENSMUSG0000070369	Itgad	0.019795784	-1.373102714	0.002371168
ENSMUSG0000041046	Ramp3	0.916819461	0.864550559	0.000585874	ENSMUSG00000117674	Gm31087	0.001164458	-2.88818739	0.002371168
ENSMUSG0000073125	Xlr3b	0.023651534	1.972986791	0.000585874	ENSMUSG0000031167	Rbm3	1.74979202	-0.80575255	0.002371168
ENSMUSG0000030111	A2m	0.079985188	1.220673232	0.000609129	ENSMUSG0000038357	Camp	0.010868273	3.339027415	0.002745394
ENSMUSG0000092627	D130058E05Rik	0.056333654	1.482105534	0.000638955	ENSMUSG0000090137	Uba52	8.549449651	0.785311652	0.003011324
ENSMUSG0000020954	Strn3	0.046443012	-1.116032356	0.000652409	ENSMUSG0000027120	Fshb	0.020572089	4.820896423	0.003157694
ENSMUSG0000034486	Gbx2	0.172441184	1.102438042	0.000660133	ENSMUSG0000008601	Rab25	0.017078715	2.235933922	0.003326515
ENSMUSG0000019230	Lhx9	0.149219678	1.053986513	0.000676951	ENSMUSG0000064360	mt-Nd3	38.10222583	0.779008276	0.003326515
ENSMUSG0000043164	Tmem212	0.17932163	1.542074123	0.000882316	ENSMUSG0000091255	Speer4e	0.006598595	4.235933922	0.003358215
ENSMUSG0000059857	Ntng1	0.819633158	0.848401876	0.000942868	ENSMUSG0000004654	Ghrhr	0.006598595	4.235933922	0.003358215

ENCN 41/5 C 000000 42 425	5	0.022252002	1 00000440	0.001027700	ENCN 4115 C 0000000 4 50 5	D7	0 462677025	0.01000010	0.0000000045
	Filipus	0.032232092	1.00020440	0.001027708			0.462677925	-0.812302848	0.003336215
ENSMUSG0000056054	S100a8	0.033542175	2.884450116	0.001233996	ENSMIUSG0000006362	Cbfa2t3	0.091992171	-0.918/56566	0.00385151
ENSMUSG0000059824	Dbp	0.714706353	-0.797464053	0.001269075	ENSMUSG0000054514	Atad3aos	0.059387351	1.16287046	0.004815583
ENSMUSG0000030500	Slc17a6	1.08625045	0.812416954	0.001278844	ENSMUSG0000059991	Nptx2	0.65287271	0.808413792	0.005497462
ENSMUSG0000028023	Pitx2	0.019781283	2.260789102	0.001350082	ENSMUSG0000085691	Gm14216	0.006986747	4.313936434	0.005550849
ENSMUSG0000039485	Tspyl4	1.969097708	0.768821465	0.001503497	ENSMUSG0000056973	Ces1d	0.013585342	2.650971421	0.005550849
ENSMUSG0000038264	Sema7a	0.294999132	0.861877703	0.001533598	ENSMUSG0000049382	Krt8	0.017855021	1.920158054	0.005550849
ENSMUSG0000038803	Ost4	0 619240162	0 795849131	0 001658344	ENSMUSG0000092341	Malat1	1 604234786	-0 774367826	0.00576313
ENSMUSG00000105703	Gm/3305	0.094606136	1 046643833	0.001658344	ENSMUSC0000068263	Efec1	0.004269679	-1 063738423	0.005884632
	Lund2	0.017201116	2.252250072	0.001030344		Licci Franka	0.004205075	1 226244602	0.005884632
	Lypuz	0.017201118	2.353256672	0.001/406/6	EINSIMUSG00000042425	Frinpus	0.039591567	1.520244095	0.005884052
ENSMUSG0000045613	Chrm2	0.046012984	1.305809527	0.002183882	ENSMIUSG0000093565	Rab260s	0.15099137	0.90515491	0.005949455
ENSMUSG0000073421	H2-Ab1	0.055903626	1.444167368	0.003188759	ENSMUSG0000022861	Dgkg	0.009703816	-1.51895358	0.006688588
ENSMUSG0000032548	Slco2a1	0.030101952	1.560491486	0.003212326	ENSMUSG0000022194	Pabpn1	0.43084941	-0.77345002	0.0076576
ENSMUSG0000032595	Cdhr4	0.064934211	1.506668787	0.003212326	ENSMUSG0000001496	Nkx2-1	0.041920483	1.342340149	0.008270204
ENSMUSG0000046242	Nme9	0.039562566	1.534865678	0.003278643	ENSMUSG0000038489	Polr2l	2.305238422	0.726506785	0.011595135
ENSMUSG0000029056	Pank4	0.130298451	0.945953832	0.003311311	ENSMUSG0000036523	Greb1	0.035321889	1.419645875	0.011789205
ENSMUSG0000006143	Unk3hl	0.009890641	3 165631869	0.003311311	ENSMUSG0000055866	Per2	0.072196388	-0.870912397	0.016770136
ENSMUSG0000021506	Dity1	0.019351255	3 680103825	0.003311311	ENSMUSC0000030711	Sult1a1	0.098202613	-0.837090096	0.017722274
ENSINGSG0000021500	FILAI ConFo	0.019551255	1.054403046	0.003311311		Costa	0.0054242015	2.072800516	0.017722274
	SCIIDa	0.03870231	-1.054495946	0.003/55//9	ENSINUSG0000029255	Gillin	0.003434137	5.972899510	0.018422005
ENSMUSG0000038764	Ptpn3	0.710836102	0.777890604	0.003951446	ENSMUSG0000066720	Clang	0.014361647	1.992008339	0.020876328
ENSMUSG0000031492	Chrnb3	0.033112148	1.451034088	0.003951446	ENSMUSG0000037727	Avp	1.728055473	-2.07897098	0.026679374
ENSMUSG0000021848	Otx2	0.076974992	1.149690325	0.003951446	ENSMUSG0000048001	Hes5	0.495670898	-0.715638113	0.026679374
ENSMUSG0000027907	S100a11	0.115677502	0.938666718	0.004012309	ENSMUSG0000007877	Тсар	0.044249399	-0.989367837	0.02670132
ENSMUSG0000049892	Rasd1	0.306609886	0.860777287	0.004012309	ENSMUSG0000086298	Gm11716	0.009703816	2.444520544	0.02670132
ENSMUSG0000029819	Nov	1.148174466	-0.833287461	0.004199891	ENSMUSG0000026934	Lhx3	0.013197189	2.025366936	0.027510228
ENSMUSG0000068566	Myadm	0 128578339	0 910634782	0.004275133	ENSMUSG0000020469	Myl7	0.002717068	-2 360255834	0.027510228
ENSMUSC00000E1267	Civ1	0.010330660	2 200422050	0.004275133	ENSMUSC00000112002	Ndufb1 pc	12 52604628	0.676210177	0.027510220
ENSIN0300000031307	JIX1	0.010320003	2.809488039	0.004273133	ENSNI03600000113502	Nutibi-ps	13.33004038	0.070219177	0.027310228
ENSI/USG0000041930	Fam222a	0.122987977	0.955499364	0.004309847	ENSIVIUSG0000029697	Fezri	0.057446588	1.176652984	0.028361454
ENSMUSG0000030048	Gkn3	0.02451159	-1.468240232	0.004309847	ENSMUSG0000097511	Gm16677	0.013973494	1.953534191	0.028361454
ENSMUSG0000086742	Gm16201	0.036122343	1.365569439	0.004345126	ENSMUSG0000025491	lfitm1	0.105965666	-0.849979467	0.029413254
ENSMUSG0000034390	Cmip	0.076114937	-0.901666521	0.004345126	ENSMUSG00000112498	Gm47691	0.005045984	3.873363843	0.030886358
ENSMUSG0000032135	Mcam	0.131158506	0.931166615	0.004345126	ENSMUSG0000060550	H2-Q7	0.033381125	1.379669399	0.032324929
ENSMUSG0000064360	mt-Nd3	19.85567776	0.705183734	0.004345126	ENSMUSG0000025316	Banp	0.317896997	-0.707781614	0.032939105
ENSMUSG0000044317	Gpr4	0.142769259	0.886798753	0.004349724	ENSMUSG00000118107	Gm34455	0.017078715	1.650971421	0.036755871
ENSMUSG00000118506	1700094D03Rik	0 181041742	1 028750062	0.004551288	ENSMUSG0000038803	Ost4	1 539025146	0.667986473	0.038044916
ENSMUSCOODOOOOO	Cocpo1g	0.221121475	0.707550105	0.004331200	ENSMUSC00000108668	Gm22916	0.034841768	1 207027015	0.030044910
	Cacilla 1g	0.331121473	0.787332123	0.003412895	ENSNI0360000108008	01132810	0.024841708	1.36/93/013	0.038044910
ENSIMUSGUUUUUU2U922	LSM12	0.098046359	-0.843787284	0.00613905	ENSIVIUSG0000044988	UCH3	0.023289157	-1./3/963362	0.038044916
ENSMUSG0000032231	Anxa2	0.164270654	0.888851456	0.006188376	ENSMUSG0000033730	Egr3	0.772035565	0.697008992	0.038044916
ENSMUSG0000054146	Krt15	0.009890641	2.750594369	0.006548702	ENSMUSG0000024565	Sall3	0.024453615	-1.042515536	0.038044916
ENSMUSG0000043020	Wdr63	0.019351255	1.988754107	0.006992337	ENSMUSG0000032303	Chrna3	0.047742772	1.560773612	0.039174629
ENSMUSG0000029563	Foxp2	0.24253573	0.799944286	0.007655851	ENSMUSG0000020893	Per1	0.27985804	-0.706093137	0.041988323
ENSMUSG0000031075	Ano1	0.065364239	1.04798028	0.00804708	ENSMUSG0000089736	Tgfbr3l	0.091604019	0.888662979	0.042536703
ENSMUSG0000038872	Zfhx3	0.215443973	0.806258545	0.008539085	ENSMUSG0000017737	Mmp9	0.018631326	1.680718765	0.044452038
ENSMUSG0000050335	l gals3	0.042572761	1 285926102	0 008849426	ENSMUSG0000109006	B230209F15Bik	0.057446588	-0 838943871	0.046889304
ENSMUSG0000061104	San18h	0.017201116	-1 221703620	0.000263006	ENSMUSC0000015981	Stk32c	0.843455647	-0 665637076	0.047506522
	LlesE	0.310510723	0.720927549	0.0005205000		Bete	0.02007072	1.004032307	0.049031019
	neso	0.319510722	-0.729657546	0.010204574	EINSINIOSG0000012705	Retri	0.03997972	1.094023297	0.046051016
ENSMUSG0000038393	Txnip	0.202973164	0.837009121	0.01023928					
ENSMUSG0000066438	Plekhd1	0.054183514	1.088227365	0.010675963					
ENSMUSG0000071341	Egr4	0.122127921	-0.788074479	0.01119676					
ENSMUSG0000021879	Dnah12	0.007310474	3.335556870	0.011874627					
ENSMUSG0000090121	Abhd12b	0.082135327	1.078169027	0.012340659					
ENSMUSG0000019966	Kitl	0.439918531	0.731003641	0.012617162					
ENSMUSG0000035578	lacg	0.044722901	1.151956932	0.012628988					
ENSMUSG0000095845	Gm5741	0 481201209	1 326248092	0 012717171					
ENEMUSC0000021104	Chao	3 136370557	0.702140092	0.012717171					
	Chipa	2.1303/033/	0.762146390	0.012/1/1/1					
		0.22/054/26	0.701544669	0.012/42538					
ENSMUSG0000045333	ztp423	0.216304029	0.794183638	0.012779736					
ENSMUSG0000047228	A2ml1	0.217594112	-0.728109444	0.012905451					
ENSMUSG0000026301	Iqca	0.023221506	1.554674159	0.012984590					
ENSMUSG0000032854	Ugt8a	0.572367122	0.721642996	0.012984590					
ENSMUSG0000056071	S100a9	0.036982399	2.801220443	0.014393597					
ENSMUSG0000078640	Gm11627	0.053753486	-0.901482327	0.014393597					
ENSMUSG0000030125	Lrrc23	0.035692315	1.272547073	0.014947088					

ENSMUSG0000020732	Rab37	0.173301240	0.823843351	0.015441439
ENSMUSG0000075514	Gm13375	0.018061171	-1.228282339	0.015479572
ENSMUSG0000095687	Rnaset2a	0.072244686	0.951801461	0.016745758
ENSMUSG0000028656	Cap1	0.461849954	-0.678632319	0.016768931
ENSMUSG0000020216	Jsrp1	0.076974992	-0.818248466	0.016956597
ENSMUSG0000089661	Mia	0.261886985	1.056353527	0.017347879
ENSMUSG0000027860	Vangl1	0.069234490	0.981919916	0.018351649
ENSMUSG0000070306	Ccdc153	0 188782244	1 198798733	0.018351649
ENSMUSG0000022353	Mtss1	0 289838798	0 712626519	0.018891292
ENSMUSG0000011154	Cfan161	0.037842454	1 181933681	0.019216739
ENSMUSG0000045005	Erd5	0.037042434	1 150524976	0.019240527
ENSMUSG0000039943	Pich4	0.910369043	0.673990704	0.019240527
ENSMUSG0000027716	Troc3	0.110077781	0.819181455	0.019240527
	Arbenn 24	0.000075000	0.010101400	0.010240527
	Arrigap24	0.069675629	1 2005 (2257	0.019240527
	ZIP140	0.012900657	-1.269502757	0.019240527
ENSMUSG0000021108	Prkch	0.208993555	0.758019476	0.019240527
ENSINUSG0000066687	201016	0.007310474	-1.854267689	0.019299967
ENSMUSG0000054256	MSI1	0.089875829	0.914093102	0.019382526
ENSMUSG0000038059	Smim3	0.090735885	-0.813806809	0.020628708
ENSMUSG0000029697	Fezf1	0.030531980	-1.140176561	0.020957802
ENSMUSG0000034227	Foxj1	0.119977781	0.937362881	0.020957802
ENSMUSG0000089682	Bcl2l2	0.289838798	0.706394566	0.021178337
ENSMUSG0000062760	Shisal1	0.477330958	0.696435182	0.021464251
ENSMUSG0000028298	Cga	0.279948156	3.104969087	0.021546318
ENSMUSG0000029516	Cit	0.675573815	0.674186717	0.021546318
ENSMUSG0000072847	A530017D24Rik	0.032682120	1.222965044	0.021546318
ENSMUSG0000020799	Tekt1	0.053323458	1.087022034	0.021546318
ENSMUSG0000039004	Bmp6	0.086435606	0.916952756	0.021546318
ENSMUSG0000045394	Epcam	0.026661729	2.557949292	0.021546318
ENSMUSG0000056973	Ces1d	0.076974992	2.750594369	0.022076181
ENSMUSG0000019982	Myb	0.012470809	2.072522464	0.022076181
ENSMUSG0000036962	Cfap221	0.041712705	1.136485523	0.022687762
ENSMUSG0000021647	Cartpt	1.030776852	-0.990996310	0.022773065
ENSMUSG0000039270	Megf9	0.588708181	0.654854709	0.025423807
ENSMUSG0000076609	Igkc	0.038272482	1.299932960	0.025614612
ENSMUSG0000021913	Ogdhl	0.246405981	0.704829952	0.025614612
ENSMUSG0000024897	Apba1	0.485501488	0.658482749	0.026333714
ENSMUSG0000097162	2310010J17Rik	0.136318841	0.771155692	0.026340188
ENSMUSG0000000303	Cdh1	0.007740502	2.828596881	0.026945868
ENSMUSG0000018569	Cldn7	0.007740502	2.828596881	0.026945868
ENSMUSG0000027134	Lpcat4	0.193082523	0.722025217	0.027030853
ENSMUSG0000070866	Zfp804a	0.141049148	0.766024410	0.027830979
ENSMUSG0000074754	Smim26	0.758999226	0.636751934	0.028126755
ENSMUSG0000032238	Rora	0.904778680	0.653528125	0.028126755
ENSMUSG0000023952	Gtpbp2	0.223614503	0.702931397	0.028410137
ENSMUSG0000023266	Frs3	0.098046359	0 824926567	0.028559214
ENSMUSG0000025316	Bann	0 237375395	-0 668676297	0.020353211
ENSMUSG0000072663	Snef2	0.024511590	1 379756674	0.029331677
ENSMUSG0000046470	Sov18	0.024511550	1 502666856	0.029677311
ENSMUSG0000086915	Gm16364	0.014190920	1 793663091	0.020077311
ENSMUSG0000035517	Tdrd7	0.205123303	0.708046672	0.030708565
ENSMUSG0000097604	Gm17322	0.203123303	-1 220021824	0.030708305
ENSMUSG000005994	Tyrn1	0.012300037	1 537600646	0.031556009
ENSMUSC000003354	Thhe4	0.010491199	1 122106602	0.031550005
	Chrnad	0.03/193/09	1 126272420	0.031384390
	Mif1	0.1242/0000	1.1203/2436	0.0310/30/9
	Nagi2	0.0753544964	0.90294/119	0.033378606
	iviagi3	0.075254881	0.8/01/5985	0.033378606
	Unano	0.034402231	1.14/92986/	0.033378606
	GINES Compared to the second s	0.230945367	0.809014862	0.033378606
	GM38534	0.034402231	1.14/92986/	0.033378606
	Collai	0.042142733	1.12256314/	0.033378606
ENSMUSG0000020723	Cacng4	0.272207654	0.673070999	0.034156833
ENSMUSG0000056586	Zar1l	0.017201116	1.616293278	0.034805932

ENSMUSG0000020262	Adarb1	1.517998451	0.622818047	0.034877722
ENSMUSG0000009210	Prr29	0.019781283	1.472293207	0.035448991
ENSMUSG0000043448	Gjc2	0.224904586	0.743727650	0.035505279
ENSMUSG0000002831	Plin4	0.050313263	-0.888363021	0.037077546
ENSMUSG0000072473	1700024G13Rik	0.038272482	1.372082746	0.037247818
ENSMUSG0000010825	Grid2ip	0.032682120	1.147016191	0.038073646
ENSMUSG0000055116	Arntl	0.202113108	0.692068293	0.038073646
ENSMUSG0000039720	Got1l1	0.023651534	1.329130601	0.038073646
ENSMUSG0000043102	Qrfp	0.001290084	-2.692349126	0.038088520
ENSMUSG0000035681	Kcnc2	0.986914007	0.622317065	0.038088520
ENSMUSG0000037254	Itih2	0.030531980	1.248094029	0.039178203
ENSMUSG0000072647	Adam1a	0.030962008	1.185531426	0.039178203
ENSMUSG0000039391	Ccdc81	0.021071367	1.417170636	0.039178203
ENSMUSG0000040624	Plekhg1	0.406806384	0.675641954	0.039178203
ENSMUSG0000061544	Zfp229	0.021071367	1.417170636	0.039178203
ENSMUSG0000066196	Spag8	0.038272482	1.072522464	0.039520335
ENSMUSG0000015312	Gadd45b	0.110517168	-0.705783925	0.039996040
ENSMUSG0000048583	lgf2	0.327681252	0.789886401	0.040542870
ENSMUSG0000045690	Wdr89	0.097186303	0.792508011	0.041007052
ENSMUSG0000070529	Wfdc10	0.006020390	3.072522464	0.041202915
ENSMUSG0000032637	Atxn2l	0.246836009	0.664165030	0.043307561
ENSMUSG0000025491	lfitm1	0.070524574	-0.816774071	0.043307561
ENSMUSG0000063550	Nup98	0.071814658	0.857509573	0.044210103
ENSMUSG0000015305	Sash1	0.392185436	0.638159145	0.044214564
ENSMUSG0000046711	Hmga1	0.218024140	-0.644965066	0.044244736
ENSMUSG0000052974	Cyp2f2	0.033972203	3.317634962	0.045067397
ENSMUSG0000037946	Fgd3	0.036552371	1.068334667	0.045067397
ENSMUSG0000079666	1700015F17Rik	0.001720112	-2.212879755	0.045208708
ENSMUSG0000066113	Adamtsl1	0.039992594	1.076364531	0.045961216
ENSMUSG0000037206	Islr	0.055473598	1.038252562	0.045961216
ENSMUSG0000035383	Pmch	9.937084481	-1.002814865	0.045961216
ENSMUSG0000071753	Cdr1os	0.394335575	-0.646653816	0.045961216
ENSMUSG0000075703	Selenoi	0.160400403	0.735246405	0.047574068
ENSMUSG0000022194	Pabpn1	0.284248435	-0.626072053	0.047625599
ENSMUSG0000056888	Glipr1	0.015911032	-1.110002574	0.049158967
ENSMUSG0000042743	Sgtb	0.022791478	-0.986371225	0.049388605
ENSMUSG0000044748	Defb1	0.040852650	1.258741273	0.049652643

Annex Chapter 5

Table S1. Protein quantification of total and synaptoneurosomal protein fractions of thalamus/hypothalamus, cerebral cortex and hippocampus.

Mice had been injected intraperitoneally with saline, rhynchophylline 50mg/kg or RHY100 mg/kg at ZT0 and ZT11, and brains had been sampled at ZT0 the following day.

White triangles indicate the target protein; Red triangles indicate actin. Samples are listed in the order they appear on the gels (from left to right). Discarded samples are indicated in red. Outliers are indicated with a yellow background. Repeated samples were averaged and are marked in blue. Bands were quantified from photos obtained with only one channel (green or red).

Samples are normalized to actin, to the normalized control sample protein, and to the average of normalized protein in the saline condition.

*This table in excel format will allow to zoom the western-blot images in the published version online.

TOTAL EPHA4 I	4 PROTEIN (males)											SYNAPTONE	UROSOM	AL EPHA4	PROTEIN (m	ales)						
Thalam/Hypotha	Male	Total prot	ein EphA4					Ave	rage Thala	mus		Thalam/Hypot	Male	SYNAPTO	NEUROSOMAI	protein Eph	A4			Average Th	nalamus - i	norm to sa
2020-08-21	Sample	Actin	EphA4	EphA4/Actir	Norm EphA4	Norm to To	otalSaline		Male			2020-08-21	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to To	talSaline		Male	
	⊿ 5 3 5	7837.125	4170.083	0.53209347	0.65934754	1.196638		Saline	50	100	_		535	7259.569	5817.619	0.80137251	0.88745571	1.6106274		Saline	50	100
	497	8557.175	3535.669	0.4131818	0.51199728	0.929215		0.659					497	5885.983	5532.154	0.93988617	1.040848468	1.8890172		1.610627	1.889017	1.669369
	557	7311.761	2927.376	0.40036538	0.49611572	0.900392		0.497					557	6179.619	5132.79	0.83059975	0.919822537	1.6693694		1.717504	1.962418	2.230579
	CTRL	8872.589	7161.083	0.80710185	1.00012621	1.815111		0.527					CTRL	8213.347	7415.033	0.90280284	0.999781661	1.8144858		2.105507	1.426957	0.719421
	553	6664.397	2670.477	0.40070797	0.49654024	0.901162		0.750					553	6558.569	5604.619	0.85454906	0.946344478	1.7175036		1.739757	1.808414	1.230981
	552	7078.104	2937.891	0.41506751	0.51433396	0.933455		0.754					552	5933.983	5793.983	0.97640708	1.081292445	1.9624182		1.686819	1.468419	1.416769
	679	5947.518	2938.79	0.4941204	0.61229294	1.111239		0.507					679	5565.74	6177.033	1.1098314	1.229049166	2.2305792		1.575136	1.32884	1.589255
	556	8090.518	3439.326	0.42510578	0.52677297	0.956031		0.567					556	5706.912	5978.569	1.0476014	1.160134441	2.1055072		1.902471	1.628386	1.544014
2020-08-22	Sample	Actin	EphA4	EphA4/Actir	Norm EphA4	Norm to To	otalSaline	0.405342				2020-08-22	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to To	talSaline	0.9157	0.982739	1.117563
	766	7698.104	3726.861	0.48412713	0.5999097	1.088765		0.290243			_		766	4183.548	2858.426	0.68325402	0.786253191	1.4269568				1.749664
	768	8163.368	2314.083	0.2834716	0.35126592	0.637506		0.551					⊲ ₇₆₈	4261.77	1468.062	0.34447237	0.396400883	0.7194208				2.74
	647	7136.589	4318.983	0.6051887	0.74992404	1.361024							647	4599.598	3831.598	0.83302889	0.958606314	1.7397574				
	767	8503.004	3467.569	0.40780517	0.50533478	0.917123							767	4360.305	3383.719	0.77602805	0.893012719	1.6207127				
	779	8450.125	4701.397	0.55637011	0.68943013	1.251234							779	4895.184	2885.305	0.58941707	0.678270504	1.230981				
	CTRL	9747.832	9361.66	0.96038381	1.19006667	2.159831		Average T	halamus -	norm to sa			CTRL	6290.719	5466.669	0.86900543	1.000006254	1.8148934				
	720	7461.468	4538.69	0.60828379	0.75375934	1.367984		, , , , , , , , , , , , , , , , , , ,	Male				720	4722.841	3814.548	0.8076808	0.929437055	1.6868186				
	861	8545.468	4097.033	0.47943928	0.59410072	1.078223		Saline	50	100			861	3296.305	2236.134	0.67837594	0.780639746	1.416769				
2020-08-25	Sample	Actin	EphA4	EphA4/Actir	Norm EphA4	Norm to To	otalSaline	1.196638	0.929215	0.900392		2020-08-25	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to To	talSaline			
	763	5770.669	3486.376	0.60415456	0.50684108	0.919857		0.901162	0.933455	1.111239			. 801	5365.083	4935.447	0.91991997	0.996436316	1.8084144				
	801	6973.376	3209.548	0.46025741	0.38612199	0.700766		0.956031	1.088765	0.637506			954	5559.497	4494.497	0.80843591	0.875679322	1.5892547				
	954	4890.548	3302.962	0.67537667	0.56659116	1.028296		1.361024	0.917123	1.251234			CTRL	7744.114	7149.447	0.92321049	1.00000535	1.814883				
	CTRL	6494.669	7742.861	1.19218716	1.00015701	1.815167		1.367984	0.700766	1.078223			851	5909.376	4734.912	0.80125414	0.867900199	1.5751365				
	851	5209.719	3522.376	0.67611631	0.56721167	1.029422		0.919857	0.303907	1.028296			858	7495.447	5598.861	0.74696826	0.809098969	1.4684192				
	858	2736.234	546.163	0.19960391	0.16745294	0.303907		1.029422	1.157663	0.625706			71	7526.083	5911.154	0.78542238	0.850751592	1.5440138				
	71	6565.083	2786.962	0.42451284	0.35613493	0.646343 r	repeated	0.735649	0.903918	0.555061			74	5234.548	3538.376	0.67596591	0.732190845	1.32884				
	71	6096.669	2422.841	0.39740406	0.33339267	0.605068 r	repeated	0.526757		0.979502		2020-09-02	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to To	talSaline			
2020-09-02	Sample	Actin	EphA4	EphA4/Actir	Norm EphA4	Norm to To	otalSaline			0.911451			72	4463.426	2743.255	0.61460748	0.615777456	1.1175634				
	72	4376.184	1564.598	0.35752564	0.30583887	0.555061							< 860	4661.962	4877.669	1.04626957	1.048261271	1.9024705				
E	360	4155.648	1969.134	0.47384523	0.40534237	0.735649							129	5516.669	4940.376	0.89553606	0.897240814	1.6283862				
	129	4735.891	3531.426	0.74567299	0.63787253	1.157663							137	4999.305	4810.497	0.96223315	0.964064874	1.749664				
	137	4118.77	2598.598	0.63091603	0.53970575	0.979502							CTRL	7032.548	7019.205	0.99810268	1.000002684	1.8148869				
	CTRL	6330.719	7397.912	1.16857374	0.99963537	1.81422							891	5332.305	2685.305	0.50359179	0.504550432	0.9156995				
	891	4615.648	1566.062	0.33929407	0.290243	0.526757							138	5564.64	5533.083	0.99432901	0.996221835	1.8080251	discontin	ued actin ar	nd EphA4 b	band
	138	4302.648	2505.134	0.58223076	0.49805882	0.903918							570	3665.77	5533.083	1.50939175	1.512265055	2.7445827				
	100	3906.477	2293.426	0.64127704	0.50220953	0.911451																

	TOTAL EPHA	4 PROTEI	N (female	s)				-				SYNAPTONEU	ROSOMA	L EPHA4	PROTEIN (females)						
	Thalam/Hypo	Female	Total prot	ein EphA4				Ave	rage Thala	mus		Thalam/Hypoth	Female	SYNAPTO	NEUROSON	/AL proteir	n EphA4			Average T	halamus - r	norm to sa
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to TotalSaline		Females				Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to T	otalSaline		Females	
	- 100 CM 210 MI - 840	130	4237.234	3316.497	0.782703	0.821305	1.440885 repeated	Saline	50	100			130	2820.355	3654.355	1.295707	1.154819	2.025999		Saline	50	100
-		133	4758.012	1798.598	0.378015	0.396658	0.69589 repeated	0.394019					√ 133	2933.527	3131.891	1.06762	0.951533	1.669356		1.669356	2.025999	1.16221
		134	4275.577	2063.255	0.482568	0.506367	0.888363	0.368845					134	2767.941	2057.355	0.74328	0.66246	1.16221		1.153287	1.583964	1.958046
		277	4887.941	2199.134	0.44991	0.472099	0.828243	0.429666					277	3449.062	4319.083	1.252249	1.116086	1.958046		1.717055	1.007484	1.665038
		CTRL	6856.669	6535.205	0.953117	1.000122	1.754601	0.357205					CTRL	5261.184	5901.79	1.121761	0.999787	1.754012		1.772811	1.292395	2.156076
and the second		61	5231.962	2207.134	0.421856	0.442661	0.776598 repeated	0.934204					61	3939.234	3990.477	1.013008	0.90286	1.583964		1.758213	2.738674	2.188788
		66	4975.598	1711.184	0.343915	0.360876	0.633117	0.662968					66	3842.648	2834.234	0.737573	0.657374	1.153287		2.182076	1.380892	1.675955
		104	4950.941	2612.669	0.527712	0.553737	0.971469	0.836848					104	3857.184	4107.355	1.064858	0.949072	1.665038				
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to TotalSaline						Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to T	otalSaline			
92N (23H)	757 =771 602 =449 =715 (716	526	3045.82	1724.577	0.566211	0.563955	0.989395	0.569			*36	0 wH x3 00 wC x4 y40	36	5 3962.477	4520.82	1.140908	1.187209	2.082822	spot on Ep	hA4		
		538	2227.335	961.163	0.431531	0.429811	0.754055						1 3	2937.941	2763.284	0.940551	0.978721	1.717055				
		757	2112.163	757.749	0.358755	0.357326	0.626887						34	3754.648	2813.042	0.749216	0.779621	1.367756	spot on Ep	hA4		
		771	2836.284	2055.406	0.724683	0.721796	1.266308						78	3423.719	2287.406	0.668106	0.695219	1.219683	damaged	actin, repe	ated later	
	-	CTRL	4489.991	4509.477	1.00434	1.000339	1.75498	Average T	halamus -	norm to sa		374	CTRL	5265.477	5058.355	0.960664	0.999651	1.753773				
		649	2450.577	1278.87	0.521865	0.519786	0.911905	0.691261	1.359783	0.888363			42	3777.355	4461.184	1.181034	1.228963	2.156076				
		715	2251.87	769.335	0.341643	0.340282	0.596985	0.633117	0.989395	0.828243			44	4015.891	5070.548	1.262621	1.313862	2.30502	damaged	EphA4 ban	d	
		716	2753.82	1206.284	0.43804	0.436295	0.76543 spots on a	0.754055	0.596985	0.971469			400	2401.355	1325.234	0.551869	0.574266	1.007484				
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to TotalSaline	0.626887	1.152005	1.266308			Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to T	otalSaline			
		36	5991.426	3646.77	0.608665	0.809395	1.419991 repeated	1.638708	0.46429	0.911905			526	2880.355	2431.648	0.844218	0.736665	1.292395				
-		1 3	5002.305	3513.698	0.702416	0.934064	1.638708	1.162927	0.838005	1.150828			538	3034.355	3513.891	1.158036	1.010502	1.772811				
		34	-	-	-	-	- actin dam	1.46782	0.964646	0.501122			771	l 3198.941	4573.719	1.42976	1.247609	2.188788				
1		78	-	-	-	-	- actin com	pressed an	1.169688	0.389055			757	3244.305	3726.083	1.1485	1.002181	1.758213				
	54.754	CTRL	5999.134	4510.669	0.751887	0.999849	1.754122			0.930915			CTRL	4378.77	5016.74	1.145696	0.999735	1.753921				
		42	4521.77	2230.548	0.493291	0.655972	1.150828					54	649	3289.941	3601.719	1.094767	0.955294	1.675955				
		44	4718.841	2352.234	0.498477	0.662868	1.162927						715	2748.113	4916.255	1.788957	1.561044	2.738674				
		400	5034.79	1001.991	0.199013	0.264646	0.46429						716	3053.82	4352.841	1.425376	1.243783	2.182076				
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to TotalSaline						78	995.991	2321.719	2.331064	2.034087	3.568575	damaged	oands, was	repeated I	later
X1 24g 1		397	2467.062	2452.134	0.993949	0.836657	1.46782						Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to T	otalSaline			
2		399	3141.648	1782.77	0.567463	0.477663	0.838005					CTR. 778 78.50 399.50	CTRL	5948.062	4995.598	0.83987	0.999845	1.754114				
		34	2436.527	1108.234	0.454842	0.382863	0.67169 repeated	later, so av	erage was	done			1 78	3 2688.82	1777.77	0.661171	0.787108	1.380892				
		61	2764.77	2158.062	0.780558	0.657035	1.152693 repeated	earlier, so	average w	as done			N 399	3516.841	3340.669	0.949906	1.130841	1.983931	damaged	bands		
		CTRL	5089.305	6044.719	1.18773	0.999773	1.753987						4									
		78	2629.234	2082.527	0.792066	0.666722	1.169688						•									
		76	3187.477	839.749	0.263453	0.221761	0.389055															
		36	3309.941	1981.406	0.598623	0.503891	0.88402 repeated	earlier, so	average w	as done												
		133	1699.163	790.042	0.46496	0.39138	0.686632 repeated	earlier, so	average w	as done												
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to TotalSaline															
	51 73 100 34 100 00001	130	2332.749	1433.284	0.614418	0.728847	1.27868 repeated	earlier, so	average w	as done												
		725	4071.648	1821.305	0.447314	0.530622	0.930915															
		34	4044.82	642.456	0.158834	0.188415	0.330553 repeated	earlier, so	average w	as done												
		CTRL	5922.062	4990.77	0.842742	0.999694	1.753849															

Cortex	Male	Total prot	ein EphA4				Av	erage Cort	ex	с	ortex	Male	SYNAPTO	NEUROSOMAL	protein Eph	4			verage Co	rtex - norn	n to TOTSa
2020-10-21	Sample	Actin	EphA4	EphA4/Actir	Norm EphA4	Norm to saline		Male		202	0-10-21	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to Tota	alSaline		Male	
	556	5412.355	4140.426	0.76499527	0.96468509	0.94577	Saline	50	100			556	5903.426	6193.426	1.04912402	1.843803194	1.8076502		Saline	50	100
	552	6111.841	4373.012	0.71549833	0.90226775	0.884576	0.964685					552	6239.305	4645.305	0.74452283	1.308475971	1.2828196		1.80765	1.28282	1.744392
	557	5449.184	5825.426	1.06904557	1.34810286	1.321669	1.272489					557	5210.062	5274.719	1.01241003	1.779279482	1.7443916		1.726231	2.068703	1.766672
	CTRL	6691.376	5305.962	0.79295529	0.99994362	0.980337	0.898109					CTRL	5414.012	3080.77	0.56903642	1.000064005	0.9804549		2.069977	2.46924	1.9607
	647	5751.305	5803.548	1.00908368	1.27248887	1.247538	1.317331					647	5386.062	5396.134	1.00187001	1.760755733	1.7262311		2.374818	1.429531	0.955093
	646	5392.426	5364.962	0.99490693	1.25461151	1.230011	0.576285					646	5513.134	6619.255	1.2006338	2.110076969	2.0687029		1.027417	1.026166	1.64172
	679	4904.77	5625.548	1.1469545	1.44634867	1.417989	1.286551					679	5227.305	5359.77	1.02534097	1.802005227	1.7666718		1.840186	1.807158	2.043597
2020-10-22	Sample	Actin	Actin 2	Cdk5/Actin	Norm EphA4	Norm to saline	0.792336			202	0-10-22	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to sali	ne	1.468239	2.056263	1.253239
	535	4959.234	4817.083	0.9713361	0.8981088	0.880499	0.983946					535	4448.113	5036.719	1.13232712	2.111376742	2.0699772		1.609392	1.726553	1.748204
	59	4876.82	4917.598	1.0083616	0.93234301	0.914062	1.050837					59	2801.577	3784.184	1.35073353	2.518624968	2.4692402		1.913271	1.810299	
	71	4668.355	2932.477	0.62816067	0.58080475	0.569416						71	3733.991	4004.891	1.07254972	1.999913704	1.9606997			1.230685	
	CTRL	4534.307	4904.012	1.08153516	1.00000015	0.980392	1.016			1		CTRL	4448.906	2385.941	0.53629842	1.00000787	0.9803929				
	860	2917.941	4157.305	1.42473923	1.31733067	1.291501						860	2803.698	3642.234	1.29908214	2.422313976	2.3748176				
	74	4094.062	2642.648	0.64548314	0.59682132	0.585119	Average Co	ortex - norr	m to saline			74	3615.82	2827.527	0.78198776	1.458121725	1.4295311				
	72	4797.062	3397.648	0.70827686	0.65488113	0.64204		Male				72	4245.991	2218.355	0.52245871	0.974194785	0.9550929				
	891	4803.891	2994.134	0.62327268	0.57628526	0.564986	Saline	50	100			891	4566.941	2566.719	0.56202149	1.047964925	1.0274166				
2020-10-26	Sample	Actin	EphA4	EphA4/Actir	Norm EphA4	Norm to saline	0.94577	0.884576	1.321669												
	215	3034.648	639.627	0.21077469	0.2837188	0.278156	1.247538	1.230011	1.417989	202	0-10-26	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to sali	ne			
	100	3607.284	3000.456	0.83177704	1.11963526	1.097682	0.880499	0.914062	0.569416			215	4143.284	2123.698	0.51256395	1.046689702	1.0261664				
	954	3085.92	2949.456	0.9557785	1.28655068	1.261324	1.291501	0.585119	0.64204			100	4839.284	3968.355	0.82002937	1.67455456	1.6417202				
	129	2900.87	3602.577	1.24189536	1.67168578	1.638908	0.564986	0.278156	1.097682			954	4610.527	4237.82	0.91916174	1.876989454	1.8401857				
	137	3298.87	3146.87	0.95392362	1.28405386	1.258876	1.261324	1.638908	1.258876	-		129	4931.406	4451.406	0.90266468	1.84330136	1.8071582				
	CTRL	4404.025	3271.87	0.74292721	1.00003662	0.980428	0.7768	1.114926	0.510186			137	4161.698	4248.113	1.02076436	2.084468779	2.0435968				
	958	3207.042	1887.749	0.58862622	0.79233573	0.7768	0.964653	0.753962	0.953642			CTRL	4386.698	2148.284	0.4897269	1.000054926	0.980446				
	138	3722.426	3144.87	0.8448442	1.13722465	1.114926	1.030232	0.977099				958	4116.163	3018.698	0.73337669	1.497604025	1.4682392				
2020-10-28	Sample	Actin	EphA4	EphA4/Actir	Norm EphA4	Norm to saline		1.173891				138	3812.82	3916.113	1.02709097	2.09738814	2.0562629				
	801	5069.234	3108.77	0.61326228	0.76904118	0.753962				202	0-10-28	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to sali	ne			
	720	3477.82	2728.82	0.7846352	0.9839457	0.964653						801	4985.941	4372.77	0.87702	1.761084347	1.7265533				
	766	4925.577	3914.648	0.79475927	0.99664146	0.977099				3		720	4757.941	3889.648	0.81750656	1.641579446	1.6093916				
1	768	5294.82	2197.234	0.41497804	0.52038942	0.510186						766	4312.234	3965.355	0.91955933	1.846504675	1.8102987				
	CTRL	4870.527	3883.941	0.79743753	1.0000003	0.980392						768	4009.577	2552.477	0.63659508	1.278303378	1.2532386				
	763	5446.527	4564.062	0.83797657	1.05083667	1.030232						CTRL	4699.82	2339.82	0.49785311	0.999705039	0.980103				
	767	3956.062	3777.355	0.95482705	1.19736913	1.173891						763	4930.062	4791.355	0.97186506	1.951536264	1.9132708				
	779	4607.841	3574.205	0.77567889	0.97271434	0.953642						767	4107.406	2567.698	0.62513859	1.255298376	1.2306847				
												779	4359.82	3871.598	0.88801785	1.783168381	1.7482043				

	Cortex	Female	Total prot	ein EphA4					Av	erage Cort	ex		Cortex	Female	SYNAPTO	NEUROSON	/AL proteir	n EphA4			verage Co	rtex - norm	n to TOTSa
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to To	otalSaline		Females				Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to T	otalSaline		Females	
58.5 E41 20	N 95 (N 94 94 94 96	526	4688.598	3517.79	0.750286	1.311689	0.846251		Saline	50	100	544 544	(8-0 4-0 (M) (M-0 44-0 (C))	526	3869.891	4531.255	1.1709	2.679405	1.728648		Saline	50	100
		538	4917.891	3858.891	0.784664	1.37179	0.885026		1.37243					538	4411.719	5189.548	1.17631	2.691784	1.736635		1.736635	1.728648	1.541142
		539	5351.012	4362.205	0.815211	1.425194	0.91948		1.739934					539	4584.891	4786.134	1.043893	2.38877	1.541142		1.901409	1.524159	1.811126
		61	4757.477	3745.134	0.78721	1.376241	0.887898		1.627429					61	4536.376	4683.305	1.032389	2.362446	1.524159		1.20117	1.444767	1.140273
2		CTRL	5256.184	3005.134	0.571733	0.999533	0.64486		1.53017			-		CTRL	4592.062	2006.698	0.436993	0.999984	0.645151		1.346429	1.379743	1.41988
		66	3657.456	3638.355	0.994778	1.739122	1.122014		1.576872					66	3914.113	5041.062	1.287919	2.947184	1.901409		1.303164	1.715785	1.481051
		104	4156.406	3021.305	0.726903	1.27081	0.819877		1.612452					104	3714.991	4557.426	1.226766	2.807246	1.811126		1.252225	0.90072	1.138264
		649	4364.477	3354.012	0.76848	1.343496	0.866772		1.71947					649	4291.598	5248.841	1.22305	2.798743	1.80564	spot on ac	tin, band v	1.510005	0.728947
		650	3730.891	3471.426	0.930455	1.626669	1.049464		1.520495					650	-	-	-	-	-	damaged I	EphA4 band	d and actir	0.921545
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to To	otalSaline	1.252663					Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to T	otalSaline			
NO 31 10		803	-	-	-	-	-	damaged	1.550			85 N. 1	NO 120 CR. 12. 274 761 74	78	3624.527	4910.619	1.35483	2.239389	1.444767				
		78	-	-	-	-	- (damaged	actin			-		1 803	3448.648	3884.548	1.126397	1.861814	1.20117				
		76	3720.234	3144.406	0.845217	1.252174	0.807854		Average C	ortex - nor	m to TOTS			76	5277.134	5642.79	1.069291	1.767423	1.140273				
		133	3327.113	3438.163	1.033377	1.530929	0.987696			Females				130	4271.477	5526.669	1.293854	2.138602	1.379743				
	Tie Cart	CTRL	4560.941	3080.163	0.675335	1.000496	0.645481		Saline	50	100		CIRL	78, 76, 715	4754.77	2875.012	0.604658	0.999436	0.644797				
		130	3166.82	4339.355	1.370256	2.030009	1.309683		0.885026	0.846251	0.91948			133	4726.305	5967.497	1.262614	2.086965	1.346429				
		277	2895.698	5104.719	1.762863	2.611649	1.684935		1.122014	0.887898	0.819877			277	3620.941	4821.255	1.331492	2.200814	1.41988				
		715	2514.991	4558.669	1.812599	2.685331	1.732472		1.049464	1.309683	0.866772			715	3716.184	5979.255	1.608977	2.659466	1.715785				
		716	-	-	-	-	-	Part of act	0.987696	1.732472	0.807854			716	-	-	-	-	-	Part of act	in lost at th	ie end of th	he gel
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to To	otalSaline	1.017003	1.086453	1.684935			Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to T	otalSaline			
	341 H CR CD Co 284 254	3	3943.234	3791.719	0.961576	1.576354	1.017003		1.03995	0.55157	0.629434	31 610	100 AN 110 TO AN 110	3	3777.355	4440.598	1.175584	2.019904	1.303164				
		36	3792.527	3895.841	1.027241	1.684002	1.086453		1.109148	0.96416	1.1691	E		42	3535.698	4723.891	1.336056	2.295629	1.481051				
		34	3871.527	2304.062	0.59513	0.975623	0.629434		0.980798	0.639693	1.07841			400	3907.941	3175.355	0.812539	1.396115	0.90072				
		44	4056.648	3988.79	0.983272	1.611922	1.03995		0.808033		1.005964			36	3821.406	5205.426	1.362176	2.340508	1.510005				
	Te Car	CTRL	5444.548	3320.083	0.6098	0.999671	0.644949						St Carlo	CTRL	4086.82	2380.355	0.582447	1.000768	0.645657				
		400	-	-	-	-	-	spot on Ep	hA4					771	4304.698	4420.184	1.026828	1.764309	1.138264				
		42	4659.355	5150.376	1.105384	1.812105	1.1691							757	3507.284	3961.941	1.129632	1.940949	1.252225				
		399	4965.719	2589.669	0.521509	0.854933	0.55157							34	3632.284	2388.527	0.657583	1.129867	0.728947				
		771	4398.113	4484.477	1.019637	1.671535	1.07841							649	3305.698	2748.113	0.831326	1.428395	0.921545				
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to To	otalSaline															
Alls 18	no 265 into 1051 ince 105110 an a	803	2591.87	3863.255	1.490528	1.719179	1.109148																
		716	3483.456	4591.355	1.318046	1.520238	0.980798																
		776	4044.991	4392.355	1.085875	1.252451	0.808033																
		78	1618.627	2097.234	1.295687	1.494449	0.96416																
	The Contra	CTRL	3959.698	3432.477	0.866853	0.999831	0.645052																
		725	3467.991	4688.255	1.351865	1.559244	1.005964																
		400	3306.406	2842.355	0.859651	0.991524	0.639693																

	Hippocampus	Male	Total prot	ein EphA4				Av	erage Hipp	ocampus	1	Hippocampus	Male	SYNAPTO	NEUROSOMAL	. protein Eph	44		Average H	ipp - norma	alized to s
	2020-04-07	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to saline		Male			2020-04-07	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to TotalSaline		Male	
Ĩ		997	2847.012	6820.246	2.39558035	2.46038947	1.487539	Salin	e 50	100			59	4472.719	5222.497	1.1676336	2.126837163	1.2858749	Saline	50	100
		129	3888.012	6478.054	1.66616101	1.7112367	1.034605	2.460	889				d 997	4196.891	5472.983	1.3040565	2.375330606	1.4361128	1.436113	1.285875	1.453467
		137	4353.305	6126.569	1.40733741	1.44541098	0.873888	1.248	922				129	5268.184	8153.882	1.54775953	2.819234119	1.7044946	1.539949	1.704495	1.225085
		CTRL	5298.477	5158.912	0.97365941	1.00000042	0.604595	1.467	338				137	6394.134	8439.075	1.31981516	2.404034903	1.4534673	2.185683	0.867401	1.020545
		761	4142.355	5037.205	1.21602446	1.24892232	0.755092	0.64	733				CTRL	6035.598	3313.326	0.548964	0.99993442	0.6045553	0.603341	1.297907	0.596946
		766	4218.598	6325.497	1.49943109	1.53999613	0.931074	2.044	888				761	5404.719	7557.66	1.39834467	2.547075899	1.5399492	2.332461	2.73364	1.330887
		954	4157.598	4492.962	1.08066292	1.10989876	0.671039	1.78	787				766	3794.77	2988.912	0.78763983	1.43468093	0.8674008	1.966286	1.247942	2.828252
		767	4696.305	6279.134	1.3370371	1.37320879	0.830235 was re	pea 1.92	178				954	4967.891	5526.447	1.11243322	2.026290025	1.2250847	1.846046	1.347616	2.166337
	2020-04-21	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to TotalSal	ine 1.	554				767	4214.598	4967.154	1.17855938	2.146738395	1.2979071	2.154861	0.976938	2.758301
		720	2550.891	4903.355	1.92221267	1.46733792	0.887145					2020-04-21	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to TotalSaline			
		557	2795.234	974.456	0.34861339	0.26611709	0.160893						72	3527.113	2548.184	0.72245601	1.687981342	1.0205449			
			3615.184	4736.477	1.31016208	1.00012373	0.60467	Avera	e Hipp - no	rmalized to			720	4647.355	7190.719	1.5472713	3.615119854	2.1856831			
		891	3395.113	2879.062	0.84800182	0.64732963	0.391372		Male				646	3582.698	6933.154	1.93517679	4.521441088	2.7336403			
		74	3415.891	5050.841	1.47863061	1.12872566	0.682422	Salin	e 50	100			557	3560.577	1504.648	0.42258544	0.98734916	0.5969463			
		71	4965.426	4885.255	0.98385415	0.75103371	0.454071	1.487	39 1.0346	05 0.87388			CTRL	5013.113	2145.598	0.42799713	0.999993305	0.6045909			
		767	5331.477	4279.255	0.80263968	0.61270205	0.370437 was re	pea 0.755	0.9310	0.67103			891	3001.698	1282.062	0.42711225	0.997925828	0.6033409			
	2020-04-27	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to TotalSal	ine 0.887	L45 0.6003	36 0.160893			74	4812.941	4251.912	0.88343323	2.064096325	1.2479422			
	S	535	4691.598	2589.69	0.55198463	2.04438753	1.236026	0.391	372 0.6824	22 0.45407			71	3999.062	3767.719	0.94215068	2.201286646	1.3308867			
		⊲ 858	5418.841	1404.841	0.25925119	0.96018961	0.580526	1.236	0.5805	26 0.9155			556	3544.648	5852.841	1.65117693	3.857890022	2.3324607			
		861	6134.669	2508.205	0.40885743	1.51428678	0.91553	1.080	37 1.0420	49 1.23744		2020-04-27	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to TotalSaline			
		CTRL	5459.184	1482.719	0.27160085	1.00592906	0.639091	1.161	398 1.0632	92 1.00223			535	3709.648	3619.397	0.97567128	3.252237589	1.9662863			
													1 497	3786.648	2532.083	0.66868719	2.228957291	1.3476163			
	2020-07-06	Sample	Actin	EphA4	EphA4/Actin	Norm EphA4	Norm to TotalSal	ine					779	4172.012	5854.912	1.40337851	4.677928379	2.8282517			
		553	3655.648	4509.719	1.23363054	1.78787034	1.080937						CTRL	5778.941	1736.719	0.30052548	1.00175159	0.6056539			
		497	3609.012	4292.012	1.18924847	1.72354851	1.042049						860	3482.406	3189.912	0.91600807	3.053360234	1.8460461			
		570	3579.698	5055.426	1.4122493	2.04673812	1.237447						858	4297.527	2083.255	0.4847567	1.615855661	0.9769381			
		CTRL	3953.991	2727.062	0.68969859	0.99956317	0.635046						861	3827.234	4114.033	1.07493636	3.583121213	2.1663369			
		556	3673.698	4871.426	1.32602789	1.92177955	1.161898														
		552	4699.527	5702.841	1.21349255	1.75868485	1.063292						CTRL	5976.376	1482.719	0.24809667	1.000389809	0.6048306			
		679	4249.941	4861.134	1.14381211	1.65769872	1.002236						851	5276.497	4663.932	0.88390688	3.564140645	2.1548613			
													679	5049.012	5712.619	1.13143304	4.562230003	2.7583011			

	Hippocampus	Female	Total prot	ein EphA4				Avera	ige Hippoca	ampus		Hippocampus	Female	SYNAPTO	NEUROSON	/AL proteir	n EphA4			Average H	ipp - norm	alized to s
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to saline		Females				Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to sa	aline		Females	
		526	4728.134	6127.376	1.29594	1.626022	0.926508	Saline	50	100		10 UP 80 PT 5.8 18 18	526	6129.255	6044.083	0.986104	1.896354	1.080544		Saline	50	100
-		539	4241.305	5526.962	1.303128	1.635041	0.931647	2.053985			-		⊲ 539	5825.426	5551.376	0.952956	1.832608	1.044221		0.971211	1.080544	1.044221
		803	3651.184	5977.083	1.637026	2.053985	1.170362	1.114978			-		4 803	5165.426	4578.255	0.886327	1.704474	0.971211		1.222408	1.285368	1.255627
		CTRL	4610.941	3675.012	0.79702	1.000025	0.569815	1.879257					694	4756.477	5450.376	1.145885	2.203625	1.255627		0.747167	1.179364	0.576701
		694	3442.355	4806.962	1.396417	1.752091	0.998343	1.362443				СТ	RL 526 716	5282.062	2748.012	0.520254	1.000488	0.570079		0.686303	0.974807	0.780551
		715	3574.82	4473.962	1.251521	1.57029	0.894752	1.78671					715	5234.891	6140.669	1.173027	2.255821	1.285368		0.959074	0.384048	0.780045
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	A4	2.329892					716	5391.305	6014.376	1.11557	2.145326	1.222408		0.627218	0.673103	0.308643
there are a	-	78	4381.598	5662.79	1.292403	1.383729	0.78845	1.755					Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to To	otalSaline		0.289285	0.484099
		500	4185.355	6293.326	1.503654	1.609908	0.917326						78	4172.305	6675.447	1.599942	2.069783	1.179364				
-		757	4945.477	5152.376	1.041836	1.115456	0.635588	Average H	lipp - norm	alized to s		м ог " <u>ст.</u> т. о. н. г.	V 500	4511.426	5966.083	1.322438	1.710787	0.974807				
		CTRL	5079.648	4746.426	0.934401	1.000429	0.570045		Females		-		757	4968.426	5036.083	1.013617	1.311277	0.747167				
		771	4262.062	5268.669	1.236178	1.323531	0.754149	Saline	50	100			CTRL	5065.062	3916.79	0.773296	1.000382	0.570018				
		776	5166.376	3894.719	0.753859	0.80713	0.459903 Stripe on	1.170362	0.926508	0.931647			771	4725.012	3696.669	0.782362	1.012111	0.576701				
		134	5333.548	4057.74	0.760796	0.814556	0.464135	0.635588	0.894752	0.998343			776	4454.598	4147.447	0.931049	1.204461	0.686303				
		277	5177.305	6489.497	1.253451	1.342024	0.764686	1.068688	0.78845	0.754149			134	3166.941	3353.497	1.058907	1.369867	0.780551				
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	0.76285	0.774789	0.917326	0.464135			277	3592.184	3801.326	1.058221	1.36898	0.780045				
		76	4757.891	1475.82	0.310184	0.424909	0.242113	1.018	0.433829	0.764686			Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to To	otalSaline			
		61	4096.062	2268.648	0.553861	0.758713	0.433829	1.288918	0.637945	0.242113	N N	44 CTE 14 36 44 39	76	4133.77	1401.698	0.339085	0.541669	0.308643				
		66	3176.941	4272.305	1.344786	1.842172	1.068688		0.288274	0.465669			61	5277.74	2226.82	0.421927	0.674004	0.384048				
		CTRL	4671.527	3410.062	0.73	1	0.569801		0.896879	1.100239			66	3921.598	4132.062	1.053668	1.683176	0.959074				
		34	3553.184	2112.406	0.594511	0.814398	0.465669						L 76 44 399	5501.891	3442.062	0.625614	0.999384	0.56945				
		36	3556.648	2912.477	0.818883	1.121757	0.637945				(he manuel		34	4042.184	2149.82	0.531846	0.849594	0.484099				
		44	3923.184	3880.648	0.989158	1.355011	0.774789						36	3964.184	2931.477	0.739491	1.181295	0.673103				
		399	3763.355	1392.577	0.370036	0.506899	0.288274						44	5665.012	3903.648	0.68908	1.100767	0.627218				
		Sample	Actin	EphA4	EphA4/Ac	Norm Eph	0.288274						399	4375.406	1390.577	0.317817	0.507694	0.289285				
		538	3481.577	3351.648	0.962681	1.78605	1.017692															
		⊲ 650	2645.991	3226.113	1.219246	2.262051	1.288918															
-		429	3736.87	3170.355	0.848399	1.574023	0.896879															
-		956	3776.406	3930.355	1.040766	1.93092	1.100239															
		CTRL	4714.062	2539.941	0.538801	0.999631	0.56959															

TOTAL PHOSPH	O-EPHA4 P	ROTEIN (ma	les)								SYNAPTONE	UROSOMAI	. PHOSPH	O-EPHA4 I	PROTEIN (I	males)						
Thalamus/Hyp	Male	Totalprote	in phosph	o-EphA4							Thalam/Hypo	Male	SYNAPTO	NEUROSON	/AL protein	phospho-Eph/	4		Average Pea	ak 1+2 Thalar	mus Normal	
18/08/2021	Sample	Actin	peak 1+2	Norm	Rest	Norm TotSaline		Male			2021-07-28	Sample	Actin	Peak 1+2	Peak 1+2//	Peak 1+2 Norn	Norm TotS	aline		Male		
	535	4085.406	6599.974	1.6155	1.631818332	1.133207	Average	Peak 1 + 2 1	halamus		7	763	4237.527	2545.155	0.6006227	3.825622431	2.656682		Saline	50	100	
	497	3920.234	6096.024	1.555015	1.570722564	1.09078	Saline	50	100	2		801	4528.012	2443.79	0.5397048	3.437610457	2.387229		2.65668224	2.38722948	2.07599778	
· · · · · · · · · · · · · · ·	557	3645.648	5218.196	1.431349	1.445807453	1.004033	1.631818			-		954	4068.719	1909.619	0.4693416	2.989436809	2.075998		2.92579998	3.96214258	3.31682045	
	CTRL	5002.82	4951.903	0.989822	0.999820546	0.69432	1.373757					CTRL	4264.598	669.891	0.1570819	1.000521422	0.694807		2.66134376	2.46181825	3.09356969	
	553	3780.406	5259.075	1.39114	1.405192186	0.975828 shadow o	1.314492					851	3202.477	2118.326	0.6614649	4.213151974	2.9258		3.15477438	1.97372933	3.40844995	
	552	3434.113	4956.489	1.44331	1.457888702	1.012423	1.728112					858	5479.255	4908.104	0.8957612	5.705485311	3.962143				1.32775991	
	679	3317.991	5667.075	1.707984	1.725236199	1.198081						71	5135.719	3851.105	0.7498668	4.776221442	3.31682					
	556	3895.891	5298.489	1.36002	1.3737574	0.953998						74	4225.74	1934.376	0.4577603	2.915670685	2.024771	Part of bands l	ost at the end	l of the gel		
22/10/2021	Sample	Actin	peak 1+2	Norm	Rest	Norm TotSaline	1.440023				22/10/2021	Sample	Actin	Peak 1+2	Peak 1+2//	Peak 1+2 Norn	Norm Tots	aline				
	74	2664.87	3568.004	1.338904	1.312650575	0.911563						861	1758.456	4465.075	2.539202	4.454740359	3.09357					
	763	2586.335	3467.711	1.340782	1.314492	0.912842	Male Nor	malized to	TotSaline			535	1870.456	4085.882	2.184431	3.832335022	2.661344					
	801	2883.749	3629.468	1.258594	1.233915282	0.856886	Average	Peak 1 + 2 1	halamus	-		497	2123.335	4290.539	2.0206604	3.545018287	2.461818					
	954	2617.991	3850.175	1.47066	1.441823663	1.001266	Saline	50	100			557	1724.284	4823.953	2.7976557	4.908167934	3.40845					
	851	2221.627	3916.004	1.762674	1.728111698	1.200078	1.133207	1.09078	1.004033			CTRL	4134.113	2336.64	0.5652095	0.991595639	0.688608					
	CTRL	3955.406	4051.296	1.024243	1.004159579	0.697333	0.953998	1.012423	1.198081			553	2075.335	5373.953	2.5894388	4.542875111	3.154774					
	858	43112.19	758.841	0.017602	0.017256414	0.011984 aberrant	0.912842	0.911563	1.001266			552	2384.335	3862.711	1.620037	2.842170234	1.973729					
	71	2885.042	4191.468	1.452827	1.424340565	0.989125	1.200078	0.856886	0.989125			679	2790.627	3041.296	1.0898253	1.911974269	1.32776					
	768	2579.698	2337.69	0.906187	0.888419087	0.616958 incomple	te actin					556	2868.941	2335.569	0.8140875	1.42822368	0.991822	Part of actin lo	st at the end	of the gel		
TOTAL PHOSPHO	D-EPHA4 PR	OTEIN (fema	ales)									SYNAPTONE	UROSOM	AL PHOSP	HO-EPHA	4 PROTEIN	I (females	5)				
-------------------------------	--------------	--------------	------------	------------	------------	----------	-------------	--------------	--------------	-----------	----------------------------	-------------------------------	--------	----------	----------	-------------	------------	-----------	------------	------------	-------------	-----------
Thalamus/Hypo	Female	Totalprotein	phospho-Ep	hA4								Thalam/Hypo	Female	SYNAPTO	NEUROSON	/AL proteir	n phospho-	EphA4		Average Pe	eak 1+2 Tha	alamus No
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2 I	Norm Tot	Saline		Females				Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 I	Norm Tots	Saline		Females	
	526	2752.527	3973.912	1.4437323	1.62976	1.225383		Average	Peak 1 + 2 1	halamus	_	a fis or in our se	130	4493.891	2250.497	0.50079	0.856301	0.643835		Saline	50	100
	538	3014.234	3143.154	1.0427704	1.177133	0.885062		Saline	50	100			133	4188.648	4492.539	1.072551	1.833954	1.378912		1.378912	0.643835	1.080368
	4 757	3486.648	2392.841	0.6862869	0.774716	0.582493		1.177133					134	3742.062	3144.589	0.840336	1.436889	1.080368		1.443586	1.454439	1.433768
	771	4099.477	-	-	-	-	stripe on p	0.774716					277	4163.406	5814.368	-	-	-	spot on pE	1.515456	1.414136	1.030988
	CTRL	5968.548	5287.276	0.8858563	1	0.75188		1.478614					CTRL	5077.648	2969.539	0.584826	0.999993	0.751874		1.353343	2.365905	1.302683
	649	3606.648	3990.518	1.106434	1.249	0.939098		1.773615					66	3677.82	4129.66	1.122855	1.919969	1.443586		1.535678	1.620729	1.336457
	715	3091.82	2671.376	0.8640141	0.975344	0.733341		0.762833					104	4105.77	4578.832	1.115219	1.906911	1.433768		2.895563	1.319056	1.281767
	716	3411.648	4468.711	1.3098394	1.478614	1.11174		2.018962					61	-	5857.589	-	-	-	damaged a	actin		
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2 I	Norm Tot	Saline	1.331					Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 I	Norm Tots	Saline			
10 17 10 54 10 10 10 10 10 10	36	2775.184	2740.468	0.9874906	1.341699	1.008796					1910 - 1910 1910 - 1910	-32 =331 CR =66 x15 -36	526	2909.648	4263.539	1.465311	1.934404	1.454439				
	3	2087.577	2725.083	1.3053808	1.773615	1.333545		Average P	eak 1+2 Tha	alamus No			538	4052.82	6187.782	1.526784	2.015557	1.515456				
	34	2622.284	1973.669	0.7526526	1.022626	0.768892			Females				757	3249.698	4430.832	1.36346	1.799947	1.353343				
	78	2034.284	2125.255	1.0447189	1.419455	1.067259	spot on pl	Saline	50	100	to The		771	3576.891	3715.296	1.038694	1.371213	1.030988				
	CTRL	4305.284	3169.962	0.7362957	1.000402	0.752182		0.885062	1.225383	0.939098			CTRL	3852.87	2918.569	0.757505	1.000007	0.751885				
	42		-	-	-	-	stripe on p	0.582493	0.733341	0.768892			649	3586.991	4707.64	1.31242	1.732568	1.302683				
	44	2233.113	1253.77	0.5614449	0.762833	0.573558		1.11174	1.008796	0.92927			715	3546.406	5052.589	1.424707	1.880801	1.414136				
	400	3056.355	1490.648	0.4877208	0.662664	0.498244		1.333545	0.498244	1.394009			716	2799.284	4330.933	1.547157	2.042452	1.535678				
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2 I	Norm Tot	aline	0.573558	2.040355	0.884978			Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 I	Norm Tots	Saline			
	134	2524.719	-	-	-	-	stripe on p	1.514689	1.517899	0.901278	926 x3 xx34 x	78 CTL 10.40 54 5400 pt Th	36	3751.598	5253.217	1.400261	3.146654	2.365905				
	133	1964.305	-	-	-	-	spot on pE	phA4 band					/ 3	4630.012	7934.631	1.713739	3.851098	2.895563				
	61	3528.941	4787.64	1.356679	2.719886	2.045027							N 34	3625.598	2867.782	0.790982	1.777487	1.336457				
	277	2552.598	-	-	-	-	spot on pE	phA4 banc					78	2557.648	2453.368	0.959228	2.155569	1.620729				
	CTRL	6166.598	3076.184	0.4988462	1.000093	0.751949							CTRL	5878.134	2617.489	0.445293	1.000657	0.752374				
	104	2906.527	1802.012	0.619988	1.242959	0.934556	repeated,	average w	as done				42	3637.062	2759.125	0.758614	1.70475	1.281767				
	-	-	-	-	-	-	not a total	thalamus	sample				44	2921.355	-	-	-	-	spot on pE	phA band		
	771	3053.406	2183.669	0.7151584	1.433758	1.078013	repeated,	average w	as done				400	3941.891	3077.368	0.780683	1.754344	1.319056				
	130	2755.648	2568.761	0.9321804	1.868846	1.405147																
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2 I	Norm Tot	Saline															
	104	3029.406	1980.548	0.6537744	1.228899	0.923984	repeated	earlier, ave	rage was d	lone												
	277	3242.698	2030.497	0.6261752	1.17/021	0.884978																
	CIRL	4463.82	2374.568	0.5319587	0.999922	0.751821																
	134	2818.113	1/9/.134	0.6377083	1.1987	0.901278		and an a														
	//1	2387.991	2889.305	1.2099313	2.2/430/	1./10005	repeated	earlier, ave	rage was d	ione												
	133	2049.577	2201.255	1.0740045	2.018806	1.51/899																

	Cortex	Male	Total prot	ein phospł	10-EphA4				Average	e Cortex pe	eak 1+2		Cortex	Male	SYNAPTO	NEUROSON	/AL protein	phospho-EphA	4		Average P	eak 1+2 Cort	ex Normal
	2021-10-22	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Nor	Norm Tot	Saline	Saline	50	100		2020-10-30	Sample	Actin	Peak 1+2	Peak 1+2//	Peak 1+2 Norn	Norm TotS	aline		Male	
	-	215	2801.284	3241.409	1.157115	0.737016211	1.188736	i	0.626796					215	4662.527	3808.711	0.816877	3.713077206	5.988834		Saline	50	100
		100	3651.406	4480.581	1.227084	0.781582012	1.260616	i	0.611162			-		100	4226.527	1987.912	0.4703417	2.137916932	3.448253		5.24654046	5.9888342	3.44825312
		954	3993.82	3930.196	0.984069	0.626795788	1.010961		0.516634			2	~	954	4593.355	3287.134	0.7156281	3.252855088	5.24654		5.26703076	3.75302225	2.92379156
		129	4199.527	4178.51	0.994995	0.633755025	1.022186	i	0.731628					129	4476.406	2291.527	0.5119122	2.326873795	3.753022		2.08355349	5.16849217	2.55803148
		137	3226.042	4096.933	1.269956	0.808889489	1.30466	5	0.43985					137	3939.113	4483.841	1.138287	5.17403168	8.345212		4.1200492	3.99477737	2.46901826
		CTRL	4409.82	6931.995	1.571945	1.001238926	1.614901		0.877862					CTRL	4821.527	1067.82	0.2214693	1.006678439	1.623675		2.41918721	4.80017324	
		958	3167.577	3039.367	0.959524	0.611161954	0.985745	5	0.537029					958	4619.113	3318.477	0.718423	3.265559072	5.267031		3.129	3.21644829	
		138	4102.698	3800.125	0.92625	0.589968305	0.951562							138	3935.527	2774.477	0.7049823	3.204465143	5.168492		4.230	3.07438188	
	2021-10-22	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Nor	Norm Tot	Saline	0.620137				2020-11-04	Sample	Actin	Peak 1+2	Peak 1+2//	Peak 1+2 Norn	Norm TotS	aline		1.91594164	
		801	3529.527	2045.861	0.579642	0.356838727	0.575546	5						535	3703.577	1546.69	0.4176206	1.291803167	2.083553				
		720	2736.991	2296.912	0.839211	0.51663444	0.833281		Normalize	ed Peak 1 +	+2 Cortex	-		59	3127.456	2504.154	0.8007	2.476761971	3.994777				
		766	3163.749	2943.861	0.930498	0.572832494	0.923923	:	Saline	50	100			71	3528.698	2067.941	0.5860351	1.812750769	2.923792				
		768	3184.991	2976.397	0.934507	0.575300849	0.927905		1.010961	1.188736	1.260616			CTRL	3991.545	1290.406	0.3232848	0.999999474	1.612902				
		CTRL	3043.87	4944.397	1.624379	0.99999908	1.612902		0.985745	1.022186	1.30466			860	2862.87	2364.184	0.8258091	2.554430505	4.120049				
		763	3051.284	3626.276	1.188443	0.731628459	1.180046	;	0.833281	0.951562	0.927905			74	3211.456	3089.841	0.9621309	2.97610741	4.800173				
		767	2770.577	3086.326	1.113965	0.685778617	1.106095		1.180046	0.575546	0.908892			72	4194.991	2150.87	0.5127234	1.585979518	2.558031				
		779	2695.284	2467.154	0.91536	0.563513198	0.908892		0.709436	0.923923	1.274853			891	4552.598	2207.527	0.4848939	1.499896067	2.419187				
	2020-11-04	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Nor	Norm Tot	Saline	1.415907	1.106095	0.860697		2021-07-28	Sample	Actin	Peak 1+2	Peak 1+2//	Peak 1+2 Norn	Norm TotS	aline			
Ĩ	-	535	2816.213	1866.74	0.662855	0.439850492	0.709436	i	0.866176	1.220297				801	4395.841	4022.711	0.9151175	1.994	3.216				
		59	2474.385	2821.225	1.140172	0.756584077	1.220297	1		1.454707		-		720	4630.941	4122.074	0.8901159	1.940	3.129				
		71	2375.213	2829.225	1.191146	0.790408629	1.274853					-		766	4538.991	3970.246	0.8746979	1.906	3.074				
		CTRL	3161.749	4764.761	1.507002	1.000001103	1.612905	i l				-		768	3838.577	3549.64	0.9247281	2.015	3.250	Stripe on pEph	\4		
		860	2545.042	3366.933	1.322938	0.877862037	1.415907	1						763	4567.577	5496.853	1.2034505	2.623	4.230				
		74	2625.042	3567.933	1.359191	0.901918264	1.454707	r						767	4785.991	2608.882	0.545108	1.188	1.916				
		72	3414.406	2745.811	0.804184	0.533632445	0.860697							779	4009.163	2816.296	0.7024648	1.531	2.469				
		891	3960.991	3205.64	0.809303	0.537028879	0.866176	5						CTRL	4742.406	2176.225	0.4588863	1.000	1.61289				

ortex	Female	Totalproteir	n phospho- Ep	hA4				Av	erage Cort	ex		Cortex	Female	SYNAPTO	NEUROSON	/AL protei	n phospho	-EphA4		Average P	eak 1+2 Co	rtex Nor
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2	Norm Tots	aline		Female				Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2	Norm Tot	Saline		Female	
the three and the second	526	3229.426	3895.539	1.2062636	0.78365	0.462058		Saline	50	100		At he at 04 10 20 10	803	2709.941	2410.518	0.889509	2.328924	1.373187		Saline	50	100
	538	3467.841	5257.368	1.5160349	0.984893	0.580715		0.984893					1 78	2705.82	2071.033	0.765399	2.003978	1.181591		1.373187	1.181591	1.6239
	539	4211.083	5175.953	1.2291263	0.798503	0.470815		0.927221					76	4357.527	4583.761	1.051918	2.754145	1.623906		1.289189	1.503174	0.9532
	61	3751.062	4573.539	1.2192651	0.792096	0.467038		1.160017				BOR .	130	-	3388.154	-	-	-	spot on ac	1.439603	0.815322	1.0514
	CTRL	3398.941	5231.953	1.5392891	1	0.589623		1.29505					CTRL	3012.991	1150.791	0.381943	1.000008	0.589627		1.2759	0.495901	1.24274
	66	3539.527	5051.832	1.4272619	0.927222	0.546711		2.341858					133	3905.113	3261.154	0.835098	2.186465	1.289189		1.474604		1.18103
	104	3536.941	5459.61	1.5435966	1.002798	0.591273		2.698176					277	3482.163	2150.276	0.617512	1.616776	0.953288		0.785675		1.22233
	650	-	-	-	-	-	spot on ad	2.464515					716	3639.113	3393.59	0.932532	2.441567	1.439603		1.913455		2.153
	649	3708.184	5249.711	-	-	-	Part of act	1.696					Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2	Norm Tot	Saline	1.311869		
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2 I	Norm Tots	aline						J 3	3024.82	3877.417	1.281867	2.163927	1.2759				
	803	3198.941	4732.417	1.4793699	1.160108	0.684026		Average P	eak 1+2 Coi	rtex Norm	-		44	4026.062	5964.611	1.4815	2.500929	1.474604				
	5 78	2416.698	3511.518	1.4530231	1.139447	0.671844			Female				34	3189.113	3369.004	1.056408	1.783328	1.051491				
	76	4159.698	7329.439	1.7620123	1.381754	0.814713		Saline	50	100			399	4023.234	6075.904	1.510204	2.549384	1.503174				
	130	3897.527	5755.246	1.4766404	1.157968	0.682764		0.580715	0.462058	0.470815			CTRL	3312.527	1962.275	0.59238	1	0.589623				
	CTRL	3899.991	4973.661	1.2753006	1.000079	0.589669		0.546711	0.467038	0.591273			771	4561.648	5695.468	1.248555	2.107693	1.242743				
	133	3743.577	6012.146	1.6059897	1.259402	0.742572		0.684026	0.671844	0.814713			757	3503.234	2765.276	0.789349	1.332505	0.785675				
	277	3718.406	4484.782	1.2061034	0.945815	0.557674		0.742572	0.682764	0.557674			400	4828.184	3954.933	0.819135	1.382786	0.815322				
	716	-	-	-	-	-	Part of act	1.382371	1.131553	1.043724			42	4627.062	-	-	-	-	Part of act	in lost at th	end of t	he gel
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2	Norm Tots	aline	1.592701		0.760157			Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2	Norm Tot	Saline			
4 30 31 01 21 21 21 40	3	4266.991	3451.368	0.8088529	2.344501	1.382371		1.454774					538	2098.577	1953.275	0.930762	3.24522	1.913455				
	44	3470.698	3234.418	0.9319215	2.701222	1.592701							526	2918.749	704.063	0.241221	0.841047	0.495901				
	34	2739.749	1673.175	0.6107038	1.770156	1.043724					in term		539	2515.749	1445.276	0.574491	2.003038	1.181037				
	399	3831.527	2536.832	0.6620943	1.919114	1.131553							104	2989.799	1777.669	0.594578	2.073073	1.222331				
	CTRL	4354.719	1504.074	0.3453894	1.001129	0.590288							CTRL 104	2996.92	859.548	0.28681	1.000002	0.589624				
	771	4798.669	2134.368	0.4447833	1.289227	0.760157							61	2980.627	-	-	-	-	spot on pE	phA band		
	757	4148.548	3531.317	0.8512176	2.467297	1.454774							66	2844.749	1815.326	0.638132	2.22493	1.311869				
	400	3556.154	3537.781	0.9948335	2.883575	1.700221	spot on ad	tin					725	3693.406	3868.761	1.047478	3.652166	2.1534				
	42	2884.861	5403.853	1.8731762	5.429496	3.201354	Part of act	in lost at th	he end of th	ne gel			715	3853.062	-	-	-	-	damaged	pEphA4 bay	nd	

HIPPOCAMPUS	Male	Total prote	ein phosph	no-EphA4				Avera	ge Hippoca	mpus		HIPPOCAMPU	Male	SYNAPTO	NEUROSON	MAL proteir	phospho-Eph/	4		Average Hip	p - normaliz	ed to saline
2020-04-07	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Nor	Norm Tot	Saline		Male			2020-04-07	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Norn	Norm TotSa	aline		Male	
	997	4843.841	3739.296	0.771969	1.033842535	0.955492		Saline	50	100			59	3067.698	5646.953	1.8407787	1.45792702	1.347437		Saline	50	100
	129	3538.941	3995.124	1.128904	1.511859285	1.397282		1.033843					5997	2590.577	4826.418	1.8630668	1.475579597	1.363752		1.36375194	1.34743717	1.6578073
	137	5163.598	3759.711	0.728118	0.97511642	0.901217		1.345264					129	3791.284	10927.95	2.8823863	2.282897421	2.109887		1.98033447	2.10988671	1.88530431
	CTRL	6557.376	4896.388	0.746699	1.00000388	0.924215		0.795536					137	4393.113	9949.459	2.2647856	1.793747494	1.657807		1.74072066	1.81530037	0.59168727
	761	3431.719	3447.188	1.004508	1.345264495	1.243313		0.724795					CTRL	4071.698	5141.075	1.2626366	1.000029004	0.924241		1.36408416	1.39729388	1.4284725
	766	3008.062	11557.77	3.842266	5.145668538	4.755701	green spo	1.242157					761	4138.234	11195.58	2.7054007	2.142721892	1.980334		1.3524322	3.12972964	1.8090294
	954	3933.598	5029.137	1.278508	1.712213521	1.582452		1.347489					766	3556.406	8819.681	2.4799421	1.964155006	1.8153		2.41196504	1.79091105	3.56923964
	767	5855.426	3837.459	0.655368	0.877687033	0.811171	shadow o	n band					954	4203.234	10825.75	2.5755768	2.03989926	1.885304		1.40407453	1.87848659	1.54735897
2020-04-21	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Nor	Norm Tot	Saline	1.082					767	4041.82	7715.388	1.9088896	1.511871978	1.397294		1.60123509	1.39874688	1.71614759
	720	3999.184	6684.075	1.67136	1.002615301	0.926632	green spo	t on band				2020-04-21	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Norn	Norm TotSa	aline			
	557	3353.406	4037.74	1.204071	0.722298334	0.667559					-		72	3029.355	1532.134	0.5057624	0.64020563	0.591687				
	CTRL	4312.406	7188.903	1.667028	1.000016998	0.92423					-		720	3407.284	5069.811	1.4879332	1.883459752	1.740721				
	891	3037.163	4027.761	1.326159	0.795536283	0.735246							646	2589.749	6928.175	2.6752303	3.386367471	3.12973				
	74	3339.941	7585.903	2.271269	1.362488641	1.259232		Average Hi	pp - norma	lized to sa			557	2537.627	3098.518	1.2210297	1.545607248	1.428473				
	71	3122.82	7915.217	2.534638	1.520478466	1.405248			Male				CTRL	3585.627	2833.104	0.7901279	1.000161923	0.924364				
	767	3821.062	6924.368	1.812158	1.087077373	1.004693		Saline	50	100			891	2624.213	3059.811	1.1659919	1.475939065	1.364084				
	766	3238.527	5515.468	1.703079	1.021643196	0.944217		0.955492	1.397282	0.901217			74	3478.991	5325.761	1.5308349	1.937765755	1.790911				
2020-04-27	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Nor	Norm Tot	Saline	1.243313	1.259232	1.582452			71	3429.698	5303.418	1.5463222	1.957369816	1.809029				
	CTRL	4628.527	4884.631	1.055332	1.000314353	0.924505		0.735246	1.004693	0.667559			556	3190.82	3688.69	1.156032	1.463331635	1.352432				
	-	-	-	-	-	-	epty well	0.669866	0.944217	1.405248		2020-04-27	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Norn	Norm TotSa	aline			
the set of the set	535	4640.527	3548.418	0.764658	0.724794702	0.669866		1.148019	0.72153	0.74429			535	2703.527	3301.983	1.2213612	2.609746169	2.411965				
	858	4601.77	3790.175	0.823634	0.780695893	0.72153		1.245369	1.205244	1.226589			497	2526.698	2403.447	0.9512205	2.032522491	1.878487				
	861	4977.355	4228.832	0.849614	0.805321614	0.74429			1.025787	1.294605			779	3274.941	5919.054	1.8073773	3.861917293	3.56924				
2020-07-06	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Nor	Norm Tot	Saline						CTRL	4169.234	1951.79	0.4681412	1.000301603	0.924493				
	⊿ 553	3860.234	7576.125	1.962608	1.242156777	1.148019							860	3636.406	2585.447	0.7109896	1.519208637	1.404075				
-	497	3708.698	7641.539	2.060437	1.304074122	1.205244							858	3957.284	2802.912	0.7082918	1.513444121	1.398747				
-	570	4305.941	9029.246	2.096927	1.32716929	1.226589							861	3757.477	2944.154	0.7835454	1.674242411	1.547359				
	CTRL	4458.406	7060.953	1.583739	1.002366674	0.926402						2020-04-27	Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 Norn	Norm TotSa	aline			
	556	3741.527	7965.832	2.129032	1.347488825	1.245369							851	3966.74	7250.51	1.8278259	1.732536372	1.601235				
	552	4769.234	8363.539	1.753644	1.10990132	1.025787							679	4025.062	7885.095	1.9589996	1.856871695	1.716148				
	679	2995.284	6629.175	2.213204	1.400762125	1.294605							CTRL	4628.527	4884.631	1.0553316	1.000314353	0.924505				

Hippocampus	Female	Total protei	n phospho- E	phA4				Avera	ge Hippoca	impus	Hipp	ocampus	Female	SYNAPTO	NEUROSON	/AL protei	n phospho	EphA4		Average H	ipp - norm	alized to s
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2 I	Norm Tots	aline		Female				Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 I	Norm TotS	Saline		Female	
_ 3 x) 7 c. a á	. 78	4649.355	4972.125	1.0694225	0.728763	0.684285		Saline	50	100	1 10 10		78	3096.527	5607.64	1.810945	2.14689	2.01586		Saline	50	100
and the set that has no	500	4852.77	6344.154	1.3073263	0.890884	0.83651		0.679914			the The set 5		500	3934.527	-	-	-	-	damaged	2.281036	2.01586	1.974411
	` 757	3672.77	3664.468	0.9977396	0.679914	0.638417		0.585153					757	3511.113	7194.853	2.049166	2.429303	2.281036		1.35822	1.394342	1.743917
	CTRL	3667.234	5381.48	1.4674493	1	0.938967		1.071742			b fast		CTRL	4540.527	3830.024	0.84352	1	0.938967		1.826719	1.637005	2.489685
- toka	` 771	3449.991	4196.69	1.2164351	0.828945	0.778352		0.975154					771	3730.698	6617.175	1.77371	2.102748	1.974411		2.108526	1.611911	1.980346
	776	3991.062	3427.054	0.8586822	0.585153	0.549439		1.378763					776	3263.82	3982.368	1.220156	1.446505	1.35822		3.069545	2.879652	1.328986
	134	5388.598	3803.74	0.7058868	0.48103	0.451671		1.701547					134	2325.527	3643.276	1.566645	1.857271	1.743917		2.254583		1.782114
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2 I	Norm Tots	aline	1.065					277	2969.527	6641.66	2.236605	2.651514	2.489685				
13 H H 25 3 (8	• 76	3687.012	2111.355	0.5726466	0.88662	0.832507							Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2 I	Norm Tots	Saline			
	61	4405.598	3710.255	0.8421683	1.303916	1.224335		Average H	ipp - norma	alized to sa		1000	h 76	3956.941	3752.619	0.948364	2.109068	1.980346				
	N 66	4905.841	2712.426	0.5528973	0.856042	0.803796			Female				61	3749.941	2503.962	0.667734	1.484975	1.394342				
	CTRL	5002.184	3230.79	0.6458759	1	0.938967		Saline	50	100			66	4265.77	3731.669	0.874794	1.945456	1.826719				
	34	5222.598	2889.205	0.5532122	0.85653	0.804254		0.638417	0.684285	0.778352			CTRL	4419.527	1987.305	0.449665	1.00001	0.938977				
	36	6409.255	3196.79	0.4987772	0.772249	0.725117		0.549439	0.83651	0.451671			34	4138.234	2633.719	0.636435	1.41537	1.328986				
	44	5534.891	3486.033	0.6298287	0.975154	0.915638		0.803796	1.224335	0.832507			36	4161.941	3262.719	0.783942	1.74341	1.637005				
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2 I	Norm Tots	aline	0.915638	0.725117	0.804254			44	5084.062	5133.619	1.009748	2.24558	2.108526				
	538	2615.991	2671.326	1.0211526	1.378764	1.294614		1.294614	0.462627	1.148642			399	4273.527	3298.841	0.771925	1.716685	1.611911				
	650	1911.627	2409.062	1.2602155	1.701548	1.597697		1.597697		0.959499			Sample	Actin	Peak 1+2	Peak 1+2/	Peak 1+2	Norm Tots	Saline			
	429	3194.749	-	-	-	-	spot on pE	EphA4 band				а. ж. 34 ж	CTRL	4521.284	1781.669	0.394063	1.000159	0.939116				
	956	3927.284	3558.175	0.9060142	1.223304	1.148642							538	3924.163	5054.368	1.288012	3.269065	3.069545				
	CTRL	4559.284	3376.74	0.7406294	1.000001	0.938968							650	3544.284	3353.054	0.946046	2.401131	2.254583				
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2	Norm Tots	aline					150	429	3193.163	3858.397	1.208331	3.066829	2.879652				
	CTRL	4559.527	6735.288	1.4771901	1	0.938967							956	3694.335	2762.598	0.747793	1.897952	1.782114				
	_	-	-	-	-	-	not total h	nippocampa	al sample													
	- >	-	-	-	-	-	not total h	nippocampa	al sample													
	-	-	-	-	-	-	not total h	nippocampa	al sample													
	277	3919.012	5915.711	1.5094904	1.021866	0.959499																
	Sample	Actin	Peak 1+2	Peak 1+2/A	Peak 1+2	Norm Tots	Saline															
11 A A A A	CTRL	4435.234	3653.447	0.8237326	1	0.938967																
state and and they are	399	3875.234	1572.77	0.4058516	0.492698	0.462627																

TOTAL NR2B PRO	TEIN (males))									SYNAPTONEUROS	OMAL NR2	B PROTEIN	(males)							
Thalamus/Hypotha	al Male	TOTAL prote	in NR2B					Ave	erage Thalai	mus	Thalamus/Hypothal	Male	SYNAPTON	IEUROSOMAL	protein NR2B				Average T	nalamus No	rmTotSal
2020-08-2	1 Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to TotalS	aline		Male		2020-08-21	Sample	Actin	NR2B	NR2B/Actin	Norm NR2	Norm to Tota	alSaline		Male	
	535	3941.598	1451.163	0.36816616	0.58718686	1.260844987		Saline	50	100		53	5 4265.66	9 2604.355	0.610538464	1.16293	2.49711817		Saline	50	100
-	497	4026.255	1680.163	0.41730169	0.66555293	1.4291176		0.58718686				493	7 4022.13	4 2874.234	0.714604237	1.361151	2.92274989		2.49711817	2.92274989	1.97667789
	557	4097.234	1412.749	0.34480554	0.5499291	1.180842754		0.46769883				55	7 4989.18	4 2411.234	0.483292258	0.920557	1.97667789		1.74153716	1.66615084	2.17537108
	CTRL	7071.962	4436.648	0.62735744	1.00057009	2.148487758		0.45036937				CTR	L 6070.84	1 3188.113	0.525151787	1.000289	2.14788445		1.8533627	2.32481816	2.14057371
	553	4441.083	1302.335	0.29324717	0.46769883	1.004272685		0.56364106				553	3 5483.47	7 2334.87	0.425801002	0.81105	1.74153716		2.35160998	1.11575891	1.59871961
	552	4632.719	1429.698	0.30860883	0.49219909	1.056881216		0.3980669				552	2 4420.01	2 1800.577	0.407369256	0.775941	1.66615084		2.13570243	1.74839532	2.0644603
	679	4086.305	1730.577	0.42350657	0.67544907	1.450367224		0.382				679	5060.47	7 2691.527	0.531872193	1.01309	2.17537108		1.38185927	1.89767891	1.37375034
	556	3582.305	1011.577	0.2823816	0.45036937	0.967061771		0.411				55	6 4883.01	2 2212.698	0.453142036	0.863128	1.8533627		2.26886526	1.84709737	
2020-08-2	2 Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to TotalS	aline	0.465709			2020-08-22	Sample	Actin	NR2B	NR2B/Actin	Norm NR2	Norm to Tota	alSaline			
	766	3990.891	721.213	0.18071478	0.34487554	0.740538705						76	5 4209.01	2 2191.941	0.520773284	1.082689	2.32481816				
	768	3547.305	818.335	0.23069203	0.44025197	0.945337046						76	8 4074.18	4 1953.577	0.479501417	0.996884	2.14057371				
	647	3666.012	1082.749	0.29534791	0.56364106	1.210285949		Average Th	alamus - no	rm to saline		64	7 4842.89	1 2551.113	0.526774813	1.095166	2.35160998				
	767	3264.477	370.556	0.1135116	0.21662519	0.465151385			Male			76	7 4496.13	4 1123.749	0.249936723	0.519619	1.11575891				
	779	4422.841	767.213	0.1734661	0.33104218	0.710834844		Saline	50	100		779	9 4262.71	9 1526.577	0.358122832	0.744538	1.59871961				
	CTRL	6136.962	3212.991	0.52354748	0.99913642	2.145409291		1.26084499	1.4291176	5 1.18084275		CTR	L 6733.25	5 3239.113	0.481061983	1.000129	2.14754034				
	720	4015.719	837.627	0.20858706	0.3980669	0.854754576		1.00427269	1.05688122	1.45036722		720	4861.30	5 2325.698	0.478410221	0.994616	2.13570243				
	861	4733.598	763.213	0.16123317	0.30769688	0.660706331		0.96706177	0.7405387	0.94533705		86	1 3652.25	5 1688.991	0.462451554	0.961438	2.0644603				
2020-08-2	5 Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to TotalS	aline	1.21028595	0.46515139	0.71083484	2020-08-25	Sample	Actin	NR2B	NR2B/Actin	Norm NR2	Norm to Tota	alSaline			
	763	3677.891	667.385	0.18145861	0.38201813	0.820293644		0.85475458	0.73559961	0.66070633		76	3 7245.91	2 1583.577	0.218547645	0.643544	1.38185927				
2	801	3927.477	639.092	0.1627233	0.34257536	0.73559961		0.82029364	0.50039503	0.75641879		d 80:	1 6638.20	5 1835.577	0.276517071	0.814243	1.74839532				
	954	3851.012	644.385	0.16732874	0.35227104	0.756418792		0.88197545	0.82388843	8		954	4 7353.91	2 1597.749	0.217265178	0.639768	1.37375034				
2	CTRL	6087.548	2892.577	0.47516291	1.00034296	2.148000062						CTR	L 9441.27	6 3206.284	0.339602825	1.000008	2.1472815				
	851	4428.012	863.92	0.19510336	0.41074391	0.881975454						85:	6183.25	5 2218.749	0.358831877	1.056631	2.26886526				
	858	2358.698	261.092	0.11069327	0.23303847	0.500395028						858	9562.58	9 2869.991	0.300126984	0.883766	1.89767891				
	74	4347.426	792.335	0.18225382	0.38369225	0.823888425						7:	1 9277.00	4 3454.062	0.37232516	1.096364	2.3541822	Part of actin	lost at the er	d of the gel	
Synapton	eurosomal 74	-	2075.163																		
							1														
							1					CTR	L 6087.54	8 2892.577	0.475162906	0.965778	2.07378055				
							·				 >	74	4 5078.71	9 2075.163	0.408599688	0.86021	1.84709737				

TOTAL NR2B PROT	EIN (female	s)									SYNAPTONEUROSO	MAL NR2	B PROTEIN	(females)							
Thalamus/Hypothala	a Female	TOTAL prote	ein NR2B					Ave	erage Thalan	nus	Thalamus/Hypothal F	emale	SYNAPTONE	UROSOMAL	protein NR2	в		Ave	erage Thal	lamus - nori	m to saline
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Tot	alSaline		Females		S	ample	Actin	NR2B	Norm NR2B	Rest	Norm to saline	2		Females	
	130	4242.234	860.87	0.20292846	0.33849618	1.3539847	repeated la	Saline	50	100	1	130	2820.355	148.728	0.05273379	0.0643095	0.25723799	Si	aline	50	100
	133	4561.719	685.042	0.1501719	0.25049524	1.00198097	repeated la	0.34986292				133	2933.527	1605.385	0.54725421	0.66738318	2.66953273	2.66	6953273 (0.25723799	1.23337078
	134	4275.577	554.335	0.12965151	0.21626607	0.86506426		0.13056684				134	2767.941	699.849	0.25284101	0.3083427	1.23337078	0.51	1759023 :	1.94996187	2.01603912
	277	4850.527	517.627	0.10671562	0.17800771	0.71203083		0.18111524				277	3449.062	1425.456	0.41328802	0.50400978	2.01603912	2.20	0488063 3	3.01219414	2.00186483
	CTRL	6702.841	4018.598	0.59953652	1.00006093	4.0002437		0.07122584				CTRL	5261.184	4316.284	0.82040164	1.00048981	4.00195924	2.07	7322249	1.8653668	1.67570372
	61	4851.548	532.335	0.10972477	0.18302714	0.73210857	repeated la	0.13666806				61	3939.234	1574.678	0.39974218	0.48749047	1.94996187	3.46	6388123 🕻	2.76928311	1.6774356
	66	4904.77	383.92	0.07827482	0.13056684	0.52226737		0.37146733				66	3842.648	407.728	0.106106	0.12939756	0.51759023	1.09	9639812 🕻	2.42359756	1.01101958
	104	4932.527	801.456	0.16248385	0.27103228	1.08412914		0.16570436				104	3857.184	1582.92	0.41038229	0.50046621	2.00186483	2.53	3739667 🤅	2.65841261	1.27967634
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Tot	alSaline	0.58798475			S	ample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Totals	Saline			
And the sector 100 10141 1711	526	3045.82	552.456	0.1813817	0.26638522	1.06554088	stripe on N	R2B				36	3962.477	1814.234	0.45785351	0.75304854	3.01219414				
	538	2227.335	274.678	0.12332137	0.18111524	0.72446097		0.24932442				3	2937.941	984.627	0.33514186	0.55122016	2.20488063				
	757	2112.163	102.435	0.04849768	0.07122584	0.28490338						34	3754.648	956.335	0.25470697	0.41892593	1.67570372				
	771	2836.284	433,213	0.15273964	0.22432022	0.8972809		Average Tha	lamus - norr	m to saline		78	3423,719	653.627	0.1909114	0.31399902	1.25599608 da	amaged actin, y	was repea	ated later	
	CTRI	4489 991	3057 113	0 68087286	0 99996014	3 99984055			Females			CTRI	5265 477	3201 598	0 6080357	1 00005872	4 00023488				
	649	2450 577	280 678	0 11/1535/17	0 16821180	0.67284755		Saline	50	100		/2	3777 355	063 113	0.25/07021	0 /103580	1 6774356				
	715	2251.87	126 728	0.05627678	0.08265058	0.33060234		1 39945168	2 04941012	0.86506426		44	4015 891	1265 527	0 31512982	0 51830562	2 07322249				
	716	2753 82	256 263	0.09305728	0 13666806	0.54667223		0 52226737	1 35069019	0 71203083		400	2401 355	680.87	0 28353575	0 4663417	1 8653668				
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Tot	alSaline	0.72446097	0.33060234	1.08412914	5	ample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Total	Saline			
34 13 10 34 10 101 102 144 1440	36	5991 426	1016 284	0 16962306	0 31278454	1 25113817	damaged N	0 28490338	0.6701752	0.8972809		526	2880 355	1470 87	0 5106558	0.69232078	2 76928311				
		5002 305	1007 698	0 20144673	0 37146733	1 48586932	uunugeun	0 54667223	2 95442954	0.67284755		538	3034 355	1938 163	0.6387397	0.86597031	3 46388123				
	. 34	-	545.092	-	-	-	damaged a	1.48586932	1.96927181	0.5286646		771	3198.941	596.385	0.18643201	0.25275489	1.01101958				
	78	-	431.385	-	-	-	damaged a	0.66281742	1.92637993	2.22174286		757	3244.305	655.92	0.20217581	0.27409953	1.09639812				
	CTRL	5999.134	3253.234	0.54228394	0.99997038	3.99988151		2.351939	1.66172631	1.57213598	74.0	CTRL	4378.77	3229.941	0.7376366	1.00004962	4.00019846				
	42	4521.77	324.092	0.0716737	0.13216615	0.5286646				1.74381938		649	3289.941	776.335	0.23597232	0.31991908	1.27967634				
	44	4718.841	424.042	0.08986147	0.16570436	0.66281742						715	2748.113	1228.163	0.44691139	0.60589939	2.42359756				
	400	5034.79	457.456	0.090859	0.1675438	0.6701752						716	3053.82	1428.87	0.46789595	0.63434917	2.53739667				
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Tot	alSaline					78	995.991	532.385	0.53452792	0.72468536	2.89874144 Pa	art of actin lost	at the en	d of the gel	
- 3% 3% H: 0% 3% 5% 3# D.	397	2467.062	1060.82	0.42999325	0.58798475	2.351939					S	ample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Totals	Saline			
	399	3141.648	1696.941	0.54014358	0.73860739	2,95442954						CTRI	5948.062	3400.648	0.5717237	0.99951695	3.99806782				
	4 34	2436.527	1378.234	0.56565513	0.77349259	3.09397036	repeated la	ter, so avera	ze was done			78	2688.82	1022,163	0.380153	0.66460315	2,65841261				
	61	2764.77	995.406	0.36003212	0.49231795	1.96927181	repeated e	arlier, so aver	age was don	1e		399	3516.841	2836.527	0.80655537	1.41006184	5.64024735 Pa	art of actin lost	at the en	d of the gel	
	CTRI	5089.305	3721.719	0.73128237	0.99997589	3,99990355			-8												
	78	2629.234	925,991	0.35219041	0.48159498	1,92637993															
	76	3187.477	916.163	0.28742576	0.39303399	1.57213598															
	36	3309,941	1005.577	0.30380511	0.41543158	1.66172631															
	133	1699.163	558.213	0.32852234	0.4492306	1.7969224	repeated e	arlier, so aver	age was don	he											
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Tot	alSaline														
10.50 10.00 00.00 00.00	130	2332.749	907,627	0.38908044	0.68620888	2,74483553	repeated e	arlier, so aver	age was don	ne l											
	N 725	4071.648	1006.456	0.2471864	0.43595485	1.74381938	. speared e														
	123 34	4044.82	773,749	0.1912938	0.33737884	1.34951536	repeated e	arlier, so aver	age was don	1e											
	CTRI	5922.062	3357.941	0.56702226	1.00003927	4.00015706	. speared e			-											
	- CINC	3322.002	5557.541	2.30, 02220	2.000000002727																

Cortex		Male	TOTAL	protei	n NR2B				,	Average Cor	tex	c	ortex	Male	SYNAPTON	UROSOMAL	protein NR2B			Average C	ortex - norm	alized to salin
	2020-10-21	Sample	Actin	Ν	NR2B	Norm NR2E	8 Rest	Norm to saline		Male			2020-10-21	Sample	Actin	NR2B	Norm NR2B	Rest	Norm to TotalSal	line	Male	
		4 5	556 337	1.648	1779.749	0.5278573	8 0.95281101	0.783699539	Saline	50	100			556	4500.113	2977.406	0.661629164	1.912223	1.57282849	Saline	50	100
		۲ s	552 346	6.113	2179.87	0.6289091	1.13521498	0.933729196	0.9528110	1				552	4008.991	2909.456	0.725732734	2.097493	1.72521585	1.5728284	9 1.7252158	35 1.71606948
		1 5	557 244	2.284	2657.749	1.08822275	5 1.96430098	1.615663302	0.5691549	7				557	4398.698	3175.355	0.721885203	2.086373	1.71606948	1.807380	5 1.8346046	38 1.36606357
		C1	TRL 328	37.749	1822.92	0.55445838	3 1.00082741	0.82319366	1.1225914	5				CTRI	5137.941	1779.506	0.346346134	1.001	0.82333594	2.233925	2 2.15014	/4 2.08264558
		6	647 476	8.698	1503.627	0.31531185	0.56915497	0.46813742	1.3308940	9				647	4280.284	3254.284	0.760296279	2.197388	1.8073805	2.1959844	1 1.9878333	32 2.09010487
		e	546 33	03.87	1469.627	0.44481986	5 0.80292394	0.660415463	0.75787462	2				646	4996.527	3856.062	0.771748456	2.230487	1.83460468	2.0520682	7 0.921211	17 0.92637312
		6	579 308	88.406	1656.627	0.53640195	0.96823457	0.796385619	1.8803427	5				679	5073.648	2915.577	0.57465102	1.660841	1.36606357	1.0210417	8 1.1066452	26 0.93297454
	2020-10-22	Sample	Actin	Ν	NR2B	Norm NR2B	8 Rest	Norm toTotalS	aline 1.75889243	3			2020-10-22	Sample	Actin	NR2B	Norm NR2B	Rest	Norm toTotalSali	ine 0.5172117	3 1.077032	79 1.75508949
		5	535 30	07.87	2172.355	0.7222237	1.12259145	0.923346179	1.4761961	1				535	4941.648	3274.82	0.66269795	2.715975	2.2339252	1.8534951	6 2.008197	35 1.81373166
			59 250	2.749	2073.234	0.82838271	1.28759955	1.059067508	1.3932751	1				J 59	4282.698	2731.698	0.637845115	2.614119	2.1501474	2.1011760	6 1.843035	25
			71 254	9.042	2104.648	0.82566235	1.28337115	1.055589588	1.32881494	1				71	5510.82	3404.698	0.617820578	2.532052	2.08264558		1.980877	95
		C	TRI 3530	.9442	2271.648	0.64335426	0.99999994	0.822513056	0.8027990	9				CTRI	4477.698	1094,163	0.244358373	1.001469	0.82372117			
		5	860 198	8 042	1702 234	0.85623644	1 33089409	1 094677833				-		860	3809.991	2481 991	0.651442746	2 669847	2 19598441			
			74 231	4.042	1685.82	0.72851746	1.13237365	0.931392171	1,2157860	5				74	4428.406	2611.406	0.589694351	2.41678	1.98783332			
			72 300	9 042	2340 477	0 77781467	7 1 20899894	0 994417472						7	4330.87	2685 284	0.620033388	2 54112	2 09010487			
		5	72 300	4 577	1855 042	0.48758167	0 75787462	0.623361807						891	4891.698	2003.204	0.608749763	2.04112	2.05206827			
	2020-10-26	Sample	Actin	N	NR2R	Norm NR2P	Rest	Norm toTotalS	aline				2020-10-26	Sample	Actin	NR2B	Norm NR2B	Rest	Norm toTotalSali	ine		
	2020 10 20	Jampie	215 569	15 276	1744 87	0 30637146	5 1 57438941	1 294955922	Average Co	rtex - norma	alized to saline	_	2020 10 20	21	4648 113	2501 941	0 538270262	1 119996	0 9212117			
			100 866	1 033	2674 234	0.30865026	1 58614603	1 304625893	Werdge eo	Male				100	///00 163	2218 82	0.541286111	1 126272	0.92637312			
=				2 104	2074.234	0.30003320	1 99024275	1.504025055	Salino	50	100				2020 577	2210.02	0.541200111	1 241269	1 02104179			
			120 001	7 5 60	2001.400	0.40651076	2 000034273	1 719257904	0 7826005	1 0 022720	1 6156622			120	1220 406	2230.030	0.646620252	1 245444	1 10664526			
~			127 00	15 60	2003.82	0.40031370	1 70722005	1 404226400	0.7830353	0.555725	C 70629562			12	4223.400	2734.02	0.040020333	1 12/207	0.02207454			
			LS/ 03	4 175	2629.115	0.33222330	0.00775304	0.820664865	0.40013/4	2 0.0004154	1 1 055580502			15	4155.115	2204.042	0.545145500	1.154297	0.93297454			
		U	1KL 110	4.175	2154.042	0.19415973	1 75990343	1 446713077	1.0046778	0.0212021	7 0.00441747				4/56.400	1292.042	0.460621031	0.000044	0.6225491			
			120 201	2.054	1097.03	0.3422/515	1.75009243	1.446/120//	1.0940778	1 2040550	1 20462590			120	45/3.113	2022.042	0.502210552	1 200441	1.07702270			
2020	10.20	Consula	100 /0	.2.054	1967.92	0.25440625	1.50/00605	1.0/55/414	0.0233016	1.2949559	1.50462569		2020 40 20	150	4465.991	2023.113	0.02951758	1.509441	1.07703279			
2020	J-10-28	Sample	Actin	N	NR2B	Norm NR2E	8 Rest	Norm to lotals	aline 1.5466065	1 ./1825/8	9 1.40422641		2020-10-28	Sample	Actin	NR2B	Norm NR2B	Rest	Norm to lotalSali	ine		
	-		501 601	2.4//	3083.234	0.51280595	1.620/5206	1.333089813	1.446/120	3 1.0/55/41	4 1.52410826			0 80	. 5453.477	3301.477	0.605389369	2.441539	2.00819785			
		-	/20 439	0.941	2050.87	0.46706845	1.4/619611	1.214190644	1.21419064	1.3330898	1 1.10210065			720	5133.062	2868.113	0.558/52846	2.253454	1.85349516			
			/66 54	1.355	2806.698	0.51298042	2 1.62130348	1.333543363	1.14598704	4 1.3335433	6 1.31994362			/66	4/49.062	2638.577	0.555599611	2.240/3/	1.84303525			
			768 554	3.355	3249.991	0.58628592	1.85298964	1.524108263	1.092967	0.9909166	52			768	5141.234	2720.163	0.529087569	2.133813	1.75508949			
		CI	FRL 718	35.305	2273.456	0.31640355	5 1.00001122	0.82252233	0.6603127	7 1.4441871	.6			CTRI	. 6031.184	1495.456	0.247953967	1	0.822513			
		7	763 638	9.891	2816.87	0.44083225	1.39327511	1.145987039						763	5058.062	3203.87	0.633418491	2.554581	2.10117606			
		7	767 59	78.77	2278.991	0.38118058	3 1.20474266	0.990916625	<u> </u>					767	4618.648	2758.042	0.597153539	2.408324	1.98087795			
2020	0-07-06	Sample	Actin	Ν	NR2B	Norm NR2B	8 Norm EphA	Norm to TotalS	aline					779	4833.184	2642.577	0.546756962	2.20511	1.81373166			
		5	553 -	-		-	-	-	damaged NR2B band													
		4	497 425	8.527	2846.577	0.66844169	1.75582268	1.444187163														
-		5	570 401	7.698	2049.456	0.51010703	3 1.33991865	1.102100652														
		C	TRL 587	9.698	2238.627	0.38073843	3 1.00010095	0.822596139														
		9	959 492	3.598	2490.749	0.50587985	5 1.32881494	1.092967699														
		7	779 427	7.991	2613.577	0.6109356	5 1.60476911	1.319943624	-													
		9	997 442	8.477	1353.456	0.30562561	0.80279909	0.660312772														

Cortex	Female	TOTAL prot	ein NR2B					А	verage Corte	ex		Cortex	Female	SYNAPTONE	UROSOMAL	protein NR2	в			Average Co	rtex - normali	ized to salir
	Sample	Actin	NR2B	Norm NR2B	Rest	Norm to sali	ne		Females				Sample	Actin	NR2B	Norm NR2B	Rest	Norm to sal	ine		Females	
	526	4688.598	4016.255	0.85660042	1.22739707	0.92285494		Saline	50	100		Gen Gene als <mark>est in</mark> a gene date date	526	3869.891	-	-	-	-	stripe on NF	Saline	50	100
4	538	4917.891	-	-	-	-	damaged NI	1.34706134			Ξ-		538	4411.719	-	-	-	-	stripe on NF	1.16109203	2.97413408	1.19673476
	539	5351.012	3392.012	0.63390103	0.90829779	0.68293067		1.28318163					539	4584.891	2970.113	0.6478045	1.59165724	1.19673476	i i	1.11972868	1.49832503	1.11111311
	61	4757.477	-	-	-	-	damaged NI	0.88622375					61	4536.376	-	-	-	-	damaged ac	1.53696877	2.15780447	1.36263311
and a second	CTRL	5256.184	3668.548	0.69794893	1.00007011	0.75193241		2.05625533			-	15ee	CTRL	4592.062	1870.163	0.40725996	1.00063873	0.75235995		1.55375386	0.95900838	1.98641511
	66	3657.456	3438.426	0.94011411	1.34706134	1.01282808		1.85591623					66	3914.113	2460.062	0.62851073	1.5442524	1.16109203		1.87650087	3.32540632	1.5582217
	104	4156.406	3058.548	0.73586363	1.05439695	0.79277966		1.30039799					104	3714.991	2234.406	0.60145664	1.47778044	1.11111311		2.0487869	1.81600751	1.32905624
	649	4364.477	2993.255	0.68582215	0.98269401	0.73886768		1.02505942					649	4291.598	1785.991	0.4161599	1.0225059	0.76880143	two other te	2.41480037	2.80659606	3.77769248
	650	3730.891	3341.134	0.89553246	1.28318163	0.96479822		0.94379257					650	-	2867.527	-	-	-	all damaged			2.79592606
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Tot	alSaline	1.33723603					Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to To	talSaline			1.53832488
40. No 300 CL CK 100 250 700 36	803	-	-	-	-	-	damaged act	in					78	3590.527	2816.527	0.78443276	3.42547056	2.57554178	repeated lat	ter, so avera	ge was done	
	78	-	-	-	-	-	damaged act	in					803	3491.062	1190.577	0.34103577	1.48923915	1.11972868				
	76	3720.234	3079.305	0.8277181	1.00238704	0.75367447		Average Cor	tex - normal	ized to salin			76	5495.548	3324.82	0.60500245	2.64193209	1.98641511				
	133	3327.113	2434.77	0.73179661	0.88622375	0.66633365			Females		-	16.00	130	4316.891	1969.991	0.45634486	1.9927723	1.49832503				
	CTRL	4560.941	3766.184	0.82574714	1.00000017	0.75187983		Saline	50	100			CTRL	4754.77	1089.042	0.22904199	1.00018338	0.75201758				
	130	3166.82	1764.234	0.55709955	0.67466131	0.50726414		1.01282808	0.92285494	0.68293067			133	4635.598	2169.991	0.46811458	2.04416846	1.53696877				
	277	2895.698	2587.891	0.89370197	1.08229514	0.81375575		0.96479822	0.50726414	0.79277966			277	3607.941	1712.284	0.47458758	2.07243486	1.5582217				
	715	2514.991	1980.77	0.78758532	0.95378527	0.71713178		0.66633365	0.71713178	0.73886768			715	3699.184	2431.113	0.65720251	2.86987994	2.15780447				
	716	-	-	-	-	-	Part of actin	1.54605664	0.96925832	0.75367447			716	-	2754.527	-	-	-	Part of actin	lost at the e	end of the gel	
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to Tot	alSaline	1.39542574	1.13121281	0.81375575			Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to To	talSaline			
3 30 30 a ca ca ca co so so	3	3910.234	2524.698	0.64566417	2.05625533	1.54605664		0.97774285	1.23266552	1.43532285		Ma and No. Ob. No. Div Gas 20	650	2616.598	1324.577	0.50622105	2.06649264	1.55375386	6			
	N 36	3855.355	1560.577	0.40478166	1.28911357	0.96925832		0.77072137	0.96790072	1.21906676			61	2941.406	919.042	0.3124499	1.27548114	0.95900838				
	34	3837.234	2300.113	0.59941953	1.90897939	1.43532285		0.70961847		0.89691058			649	3293.577	1426.163	0.43301341	1.76764481	1.32905624	repeated lat	ter, so avera	ge was done	
the second se	44	4076.648	2375.698	0.5827577	1.85591623	1.39542574				1.06172886	-	3020	716	3122.941	1909.284	0.6113737	2.49574616	1.87650087				
	CTRL	5584.376	1754.113	0.31411083	1.00035297	0.75214509							CTRL	4441.598	1088.042	0.24496634	1.00000016	0.75187982				
	400	5575.205	3198.82	0.57375827	1.82725565	1.37387643	repeated lat	er, so avera	ge was done				78	2563.577	2816.991	1.09885172	4.48572608	3.37272638	repeated ea	rlier, so ave	rage was don	e
	42	4698.648	2392.113	0.50910666	1.6213588	1.21906676							725	2415.749	2973.284	1.23079178	5.024331	3.77769248				
	399	4924.598	2535.113	0.514/8578	1.63944514	1.23266552							526	2633.284	2852.991	1.0834346	4.422/904	3.32540632	domogod	*Lo.		
	//1	4212.698	1577.941	0.3/456//9	1.19289107	0.89691058	-10-11						/5/	-	-	-	-	-	damaged ac	tin		
	Sample	Actin	NK2B	NR2B/ACTIN	NORTH NR2B		alsaline				1	C	Sample	Actin	NK2B	NR2B/ACTIN		Norm to To	taisaiine			
	803	2591.8/	2455.719	0.94746997	1.30039799	0.97774285								3///.355	2630.82	0.6964/14/	2.72488658	2.0487869				
	/16	3483.456	2601.648	0.74685829	1.02505942	0.7/0/213/							42	3535.698	3360.527	0.95045646	3./185816/	2.79592606				
	//6	4044.991	2/81.52/	0.08764727	0.943/925/	0.70961847							400	3907.941	2412.527	0.01/3396/	2.41528999	1.81000/51				
States and shares											_		36	3821.406	3045.941	0.95408365	3./32//2/6	2.80059606				
bilita bilita	78	1618.62/	2005 112	0.33733238	1.20/30/90	0.30730072							CTDI	4006.00	1044 577	0.00000000	1 00000011	0 75107070				
	78 CTRL	3959.698	2885.113	0.72861946	1.0000267	0.75189978							CTRL	4086.82	1044.577	0.25559653	1.00000011	0.75187978				
	78 CTRL 725	1618.627 3959.698 3467.991	2885.113	0.72861946	1.0000267 1.41209938	0.75189978	repeated as	dias as suc	nan was dan				CTRL 771	4086.82 4304.698	1044.577 2251.113	0.25559653	1.00000011 2.04597209	0.75187978				
	78 CTRL 725 400	3959.698 3467.991 3306.406	2885.113 3568.062 2846.941	0.72861946 1.02885561 0.86103794	1.0000267 1.41209938 1.18177043	0.75189978 1.06172886 0.8885492	repeated ea	rlier, so avei	age was dor	ne			CTRL 771 757	4086.82 4304.698 3507.284	1044.577 2251.113 2879.113	0.25559653 0.52294331 0.82089531	1.00000011 2.04597209 3.21168449	0.75187978 1.53832488 2.41480037				

HIPPOCAMPUS	Male	TOTAL prot	ein NR2B				Aver	age Hippoc	ampus	HIPPOCAMPUS	Male	SYNAPTON	EUROSOMAL	protein NR2B				Average Hip	p - normalize	ed to sal
2020-04-07	Sample	Actin	NR2B	Norm NR2E	8 Rest	Norm to saline		Male		2020-04-07	Sample	Actin	NR2B	Norm NR2B	Rest	Norm to TotalS	Saline		Male	
	99	2847.012	3004.113	3 1.05518101	3.20277562	1.638248399	Saline	50	100		5	9 4472.719	2743.527	0.613391317	5.80863	2.97116619		Saline	50	100
	12	9 3888.012	2627.16	3 0.67570856	2.0509684	1.049088696	3.20277562				S 99	7 4196.891	1519.77	0.362118054	3.429148	1.75404002		1.75404002	2.97116619	3.4724
_	13	4353.305	3333.16	3 0.76566264	1 2.32400471	1.188749211	2.0146472				12	9 5268.184	3797.77	0.720887881	6.82659	3.49186178		3.98171372	3.49186178	2.9222
	CTR	RL 5298.477	1745.62	7 0.32945826	5 0.99999987	0.511508885	1.85692175				13	7 6394.134	4583.77	0.71687112	6.788552	3.47240525		2.85431604	0.99313183	3.0209
	76	4142.355	2749.45	6 0.66374224	2.0146472	1.030510079	0.83171641				CTR	L 6035.598	637.627	0.105644379	1.00042	0.51172391		2.03626769	3.77030757	0.5363
	76	6 4218.598	2455.456	6 0.58205499	1.76670306	0.903684429	1.61028467				76	1 5404.719	4442.77	0.822016834	7.78425	3.98171372		4.71929002	3.30421947	4.2273
	95	4 4157.598	3 1330.50	6 0.32001795	0.97134585	0.496852098	2.2732185				76	6 3794.77	778.042	0.205030081	1.941573	0.99313183		3.67000097	3.93994382	2.1369
	76	4696.305	3664.042	2 0.78019677	2.36811995	1.211314551 repeated t	h 1.89581984				95	4 4967.891	2997.113	0.603296852	5.713038	3 2.92227027		1.77008785	1.47655937	2.1289
2020-04-21	Sample	Actin	NR2B	Norm NR2E	8 Rest	Norm to TotalSaline	1.95505486				76	7 4214.598	3280.527	0.778372457	7.370951	3.77030757		0.33761812	2.65458782	0.398
	/ 72	2550.891	2819.8	2 1.10542552	1.85692175	0.949832096				2020-04-21	Sample	Actin	NR2B	Norm NR2B	Rest	Norm to TotalS	Saline			
	> 55	2795.234	384.09	2 0.13740961	0.23082413	0.118068609					7	2 3527.113	2120.577	0.601221736	5.905911	3.02092632				
	CTR	RL 3615.184	2152.284	4 0.59534563	3 1.00007665	0.51154816	Average Hi	pp - normali	ized to saline		72	0 4647.355	2639.991	0.568063124	5.580188	2.85431604				
-	89	3395.113	1680.99	1 0.49512078	8 0.83171641	0.425430391		Male			64	6 3582.698	2355.991	0.657602455	6.459749	3.30421947				
	7	4 3415.891	3279.40	6 0.9600441	1.61270637	0.824913742	Saline	50	100		55	7 3560.577	380.092	0.106750114	1.048626	0.53638152				
	7	1 4965.426	2672.69	8 0.53826157	0.9041854	0.462498928	1.6382484	1.049088	7 1.18874921		CTR	L 5013.113	510.506	0.10183413	1.000335	0.51168044				
	76	5331.477	1464.8	7 0.27475876	0.46154671	0.236085275 repeated t	h 1.03051008	0.9036844	3 0.4968522		89	1 3001.698	1216.456	0.405255958	3.980903	2.03626769				
2020-04-27	Sample	Actin	NR2B	Norm NR2	Norm EphA	Norm to TotalS was also in	t 0.9498321	0.7236999	1 0.11806863		7	4 4812.941	3773.941	0.784123678	7.70259	3.93994382				
	53	4691.598	906.57	7 0.19323416	5 1.61028467	0.823675023	0.42543039	0.8249137	4 0.46249893		7	1 3999.062	3364.527	0.841329042	8.264529	4.22738051				
	85	68 5418.841	1133.11	3 0.20910615	5 1.74255128	0.891330579	0.82367502	0.8913305	8 0.63081865		55	6 3544.648	3329.234	0.93922838	9.226212	4.71929002				
	86	6134.669	907.8	7 0.14799005	5 1.23325045	0.630818647	1.16277161	1.0231950	8 1.71935422	2020-04-27	Sample	Actin	NR2B	Norm NR2B	Norm Eph	Norm to TotalS	Saline			
	CTR	RL 5459.184	660.33	5 0.12095855	5 1.00798795	0.515594857	0.96972882	1.5820585	1 0.8326468		53	5 3709.648	3193.941	0.860982228	7.174852	3.67000097				
											49	7 3786.648	1311.698	0.346400827	2.886674	1.47655937				
2020-07-06	Sample	Actin	NR2B	Norm NR2E	Norm EphA	Norm to TotalSaline					77	9 4172.012	2091.527	0.501323342	4.177695	2.13692814				
	55	3 3655.648	1534.042	2 0.41963614	2.2732185	1.162771613					CTR	L 5778.941	694.042	0.120098475	1.000821	0.51192871				
	49	3609.012	1332.67	8 0.36926394	2.00034638	1.023195082					86	0 3482.406	1446.113	0.415262609	3.460522	1.77008785				
	57	0 3579.698	3 2221.21	3 0.6205029	3.3613375	1.719354221					85	8 4297.527	2676.355	0.622766303	5.189719	2.65458782				
-	CTR	RL 3953.991	730.26	3 0.1846901	L 1.00048809	0.511758615					86	1 3827.234	1911.527	0.499453914	4.162116	2.12895956				
	55	6 3673.698	1285.67	8 0.34996834	1.89581984	0.969728819														
	55	4699.527	2683.21	3 0.57095384	3.09292439	1.582058513														
	67	9 4249.941	1277.092	2 0.30049641	1.62782452	0.832646815						L 5976.376	3268.598	0.546919739	1.000036	0.51152741				
											85	1 5276.497	1904.698	0.360977747	0.660043	0.33761812				
											67	9 5049.012	2151.891	0.426200413	0.779302	0.39862009				

Hippocampus	Female	TOTAL prot	ein NR2B		· · · · ·		Avera	age Hippoca	mpus		Hippocampus	Female	SYNAPTON	UROSOMAL	protein NR2	В		Avera	ge Hipp	- normalize	d to saline
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to TotalSaline		Females				Sample	Actin	NR2B	Norm NR2B	Rest	Norm to saline			Females	
	78	4381.598	4306.719	0.98291057	1.60662981	1.11571515	Saline	50	100		56 55 56 96 100 100 00	526	6129.255	3495.891	0.57036149	2.68027015	1.86129871	Sal	ine	50	100
	500	4185.355	4278.012	1.02213838	1.67075016	1.16024317	1.21420263					539	5825.426	4106.891	0.70499411	3.31294223	2.30065433	1.717	90181 1	1.86129871	2.30065433
3 8 8 05 15 15 15 17	757	4945.477	3673.648	3 0.74282986	1.21420263	0.84319627	0.79856159					803	5165.426	2719.184	0.52642009	2.4737786	1.71790181	2.393	54803 1	1.98739869	1.47287472
	CTRL	5079.648	3107.648	3 0.61178412	1.0000004	0.69444447	0.72232103					694	4756.477	3500.548	0.73595394	3.45843018	2.40168763 bubbl	ee on 1.727	41537	1.549545	1.79779325
	771	4262.062	2465.841	0.57855587	0.94568635	0.65672663	2.28680143			-		CTRL	5282.062	1123.991	0.21279398	0.99997171	0.6944248	1.441	39788 1	1.49782684	2.07292363
	776	5166.376	5 1797.648	3 0.34795145	0.56874876	0.39496441 Stripe on ac	2.15323816					715	5234.891	3188.062	0.60900256	2.86185412	1.98739869	2.279	44707 1	1.73879661	2.47185483
	134	5333.548	3810.426	6 0.71442612	1.16777491	0.8109548	1.43502497					716	5391.305	3954.305	0.73345971	3.44670916	2.39354803	1.903	27075 1	1.55510563	2.75911999
	277	5177.305	1484.87	0.28680366	0.46879881	0.32555473						Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to TotalSalir	ne			
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to TotalSaline						78	4172.305	3062.941	0.73411244	2.2313448	1.549545				
	. 76	4757.891	2317.627	0.48711225	0.82561399	0.57334305	Average Hip	p - normaliz	ed to saline			500	4511.426	3201.355	0.70961044	2.15687065	1.49782684				
	۵ ₆₁	4096.062	2514.355	5 0.61384691	1.04041849	0.72251284		Females				, 757	4968.426	4066.062	0.81838031	2.48747814	1.72741537				
	66	3176.941	1496.82	0.47115134	0.79856159	0.55455666	Saline	50	100			CTRL	5065.062	1667.577	0.32923131	1.00070307	0.69493269				
	CTRL	4671.527	2759.527	0.59071199	1.00120676	0.69528247	0.84319627	1.11571515	0.65672663			771	4725.012	3297.062	0.69778913	2.1209396	1.47287472				
	34	3553.184	2928.305	5 0.82413548	1.3968398	0.97002764	0.55455666	1.16024317	0.8109548			776	4454.598	3041.941	0.68287666	2.07561295	1.44139788				
	36	3556.648	3 1671.941	L 0.47008897	0.79676097	0.55330623	0.50161183	0.72251284	0.32555473			134	3166.941	2697.355	0.85172253	2.58882228	1,79779325				
	44	3923.184	1671.941	0.42616941	0.72232103	0.50161183	1.58805655	0.55330623	0.57334305			277	3592.184	3527.77	0.98206829	2.98501	2.07292361				
	399	3763.355	3484.77	0.9259743	1.56944796	1.08989442	1.49530428	1.08989442	0.97002764			Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to TotalSalir	ne			
	Sample	Actin	NR2B	NR2B/Actin	Norm NR2B	Norm to TotalSaline						. 76	4133.77	3743.77	0.90565513	6.13172057	4.25813929				
111 x 12 x 25 46	538	3224.648	3881.719	1.20376519	2.28680143	1.58805655						61	5277.74	1951.82	0.36982117	2.50386712	1.73879661				
	650	3125.113	3542.184	1.13345789	2.15323816	1.49530428						66	3921.598	1901.234	0.48481104	3.28240378	2.27944707				
	CTRL	6039.941	3179.406	0.52639686	0.99999993	0.6944444						CTRL	5501.891	812.87	0.14774375	1.0002962	0.69465014				
	◀ `											34	4042.184	2125.113	0.52573386	3.55947096	2.47185483				
												36	3964.184	1311.163	0.33075231	2.23935211	1.55510563				
Too I Beach												44	5665.012	2293,213	0.40480285	2,74070988	1,90327075				
												399	4375.406	2567.627	0.58683171	3.97313279	2,75911999				

TOTAL O	IUR1 PRC)TEIN (r	nales)										SYNAPTONEL	JROSOMA	l glur1 f	ROTEIN (males)						
Thalamu	s/Hypot Ma	ale	Total prot	ein GluR1					Ave	rage Thala	mus			Male	SYNAPTO	NEUROSON	/AL protei	n GluR1			Average TI	halamus N	ormTotSa
202	0-08-29 Sa	mple	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm toT	otalSaline		Male			2020-08-29	Sample	Actin	GluR1	GluR1/Ac	Norm Glur	Norm toTo	otalSaline		Male	
		535	8423.933	706.355	0.083851	0.1621876	0.687235		Saline	50	100			535	7691.64	1204.991	0.156662	0.2514646	1.065528		Saline	50	100
		497	6770.64	727.284	0.1074173	0.2077704	0.880383		0.162188					497	6105.861	1540.87	0.252359	0.4050709	1.716402		1.065528	1.716402	1.60521
		557	6500.276	702.941	0.1081402	0.2091686	0.886308		0.223725					557	6085.154	1436.163	0.236011	0.3788298	1.605211		2.31619	1.456574	1.25053
		CTRL	9678.518	5004.083	0.5170299	1.0000578	4.237533		0.159728					CTRL	8385.104	5226.012	0.62325	1.0004005	4.238985		1.607755	3.064902	1.30470
		553	6271.569	725.406	0.1156658	0.2237249	0.947987		0.167932					553	7830.033	2666.477	0.340545	0.5466209	2.31619		2.098353	2.107566	1.72063
		552	6668.861	413.627	0.0620236	0.1199683	0.50834		0.375211					552	6314.447	1352.284	0.214157	0.3437515	1.456574		3.490787	2.961019	1.82443
		679	6682.983	857.648	0.1283331	0.2482265	1.051807	Green spo	0.185711					679	6365.912	1170.456	0.183863	0.2951253	1.250531		2.48835		2.17747
		556	7145.154	590.042	0.0825793	0.1597279	0.676813		0.37625					556	5349.861	1264.627	0.236385	0.3794302	1.607755				2.740153
202	0-09-01 Sa	mple	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm toT	otalSaline	0.235821				2020-09-01	Sample	Actin	GluR1	GluR1/Ac	Norm Glur	Norm toTo	otalSaline			2.3608
		766	3629.134	1066.64	0.2939103	0.455322	1.92933							766	3202.77	2209.941	0.690009	1.0781395	4.568388				
		768	3711.648	349.719	0.094222	0.1459675	0.618506		Average T	halamus N	lormTotSal	-		768	3352.113	660.577	0.197063	0.3079107	1.304706				
		647	4018.426	435.598	0.1084002	0.1679321	0.711577			Male				647	1979.577	217.678	0.109962	0.1718154	0.728031	Part of sa	mple lost o	utside the	gel
		767	4180.355	844.912	0.2021149	0.3131137	1.326753		Saline	50	100	7		767	2797.577	1295.062	0.462923	0.7233168	3.064902				
		779	5196.891	1107.569	0.2131215	0.3301649	1.399004		0.687235	0.880383	0.886308			779	2999.698	779.577	0.259885	0.4060706	1.720638				
		CTRL	5892.891	3803.912	0.6455086	1.0000134	4.237345		0.947987	0.50834	0.618506			CTRL	5342.184	3422.648	0.640683	1.0010676	4.241812				
		720	3777.234	914.841	0.2421987	0.3752109	1.589877		0.676813	1.92933	1.399004			720	3073.698	974.163	0.316935	0.4952112	2.098353				
		861	3397.406	745.841	0.2195325	0.3400968	1.441088		0.711577	1.326753	1.441088			861	2248.406	619.577	0.275563	0.4305668	1.824436				
202	0-09-02 Sa	mple	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm toT	otalSaline	1.589877	0.736891	1.234115		2020-09-02	Sample	Actin	GluR1	GluR1/Ac	Norm Glur	Norm toTo	otalSaline			
		, 72	3911.941	1230.506	0.3145513	0.2912512	1.234115		0.786912	1.205253	1.140441			72	3313.234	1293.991	0.390552	0.5138845	2.177477				
		860	3489.941	699.971	0.2005681	0.1857112	0.786912		1.594279		0.833521			< 860	3117.113	1951.648	0.626108	0.8238257	3.490787				
		129	4058.234	762.213	0.1878189	0.1739064	0.736891							129	3775.941	1427.355	0.378013	0.4973856	2.107566				
		137	3391.406	985.799	0.2906756	0.2691441	1.140441							137	3304.577	1624.113	0.491474	0.646676	2.740153				
		CTRL	5585.77	6045.234	1.0822562	1.002089	4.24614							CTRL	5063.941	3848.77	0.760035	1.0000454	4.237481				
		891	4290.355	1743.385	0.4063498	0.3762498	1.594279							891	2533.163	1130.577	0.44631	0.5872505	2.48835				
		138	3476.527	1067.971	0.3071948	0.2844396	1.205253							138	2075.749	1102.406	0.531088	0.6988004	2.961019				
		100	3386.406	719.435	0.2124479	0.1967111	0.833521							570	3291.698	1393.82	0.423435	0.5571513	2.36081				

OTAL GLUR1	PROTEIN	(temales)								SYNAPTONEUR	DSOMAL	SLUR1 PR	OTEIN (fei	nales)						
halamus/Hypo	Female	Total prot	ein GluR1				Ave	erage Thala	mus	Thalamus/Hypoth	Female	SYNAPTO	NEUROSON	/AL proteir	n GluR1			Average Tl	nalamus N	ormTo
	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to saline	e	Females			Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to sa	aline		Females	
10 10 Dec 10 De 10 No. 100	130	4242.234	509.163	0.120022	0.165329	0.486262 rep	eated Saline	50	100		130	2820.355	342.213	0.121337	0.175901	0.517357		Saline	50	100
	133	4561.719	611.213	0.133987	0.184566	0.542841 rep	eated 0.278142	2			133	2933.527	820.355	0.279648	0.405404	1.192366		1.192366	0.517357	0.63
,	134	4275.577	454.163	0.106223	0.14632	0.430354	0.319005	5			134	2767.941	414.991	0.149928	0.21735	0.639263		1.374485	1.057831	1.1
	277	4850.527	1008.062	0.207825	0.286276	0.84199	0.135128	3			277	3449.062	947.062	0.274585	0.398065	1.17078		1.762653	1.624319	0.71
	CTRL	6702.841	4866.012	0.725963	1	2.941176	0.188963	3			CTRL	5261.184	3629.255	0.689817	1.000025	2.94125		1.325664	0.779239	1.27
	61	4851.548	507.749	0.104657	0.144164	0.424011 rep	eated 0.687836	5			61	3939.234	977.305	0.248095	0.359662	1.057831		2.046578	3.148677	1.02
	66	4904.77	1135.87	0.231585	0.319005	0.93825	0.304479)			66	3842.648	1238.719	0.322361	0.467325	1.374485		1.810865	1.553125	1.88
	104	4932.527	555.991	0.112719	0.155269	0.456674	0.450964	1			104	3857.184	643.648	0.16687	0.241911	0.711502		2.023392	1.067769	1.16
	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to saline	e 0.337788	3			Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to sa	aline			
a : 57 e71 CR e94 v78 78	526	3045.82	2073.456	0.680755	0.800982	2.355829				CA 13 000 031 046 000 10 046	36	3962.477	1912.991	0.482777	0.552269	1.624319				
	538	2227.335	255.799	0.114845	0.135128	0.397435					√ <u>3</u>	2937.941	1539.163	0.523892	0.599302	1.762653				
	757	2112.163	339,213	0.1606	0.188963	0.555774	Average	Thalamus N	ormTotSal	and out that the bad has	34	3754 648	1424 527	0 379404	0 434016	1 276517				
	771	2836 284	556 749	0 196295	0 230963	0 679302	riverage	Females	onnrotodi		78	3423 710	450.092	0 131463	0 150386	0 442312	damaged	actin it wa	s reneater	late
	СТРІ	//80.001	3816.062	0.840004	1 000005	2 0/1101	Saline	50	100		CTRI	5265 477	4602 941	0.87/17/	1 000004	2 0/1120	aamagea		stepeater	
	640	2460 577	259 700	0.146414	0.172272	0 506692	0.91906	0.074707	0.420254		42	2777 255	1155 112	0.205700	0.240917	1 020072				
	715	2430.377	1/0 0/0	0.140414	0.172272	0.300083	0.02020	0.974797	0.430334		42	A01E 001	1592 205	0.303735	0.349017	1.020075				
	715	2231.87	410.049	0.0001	0.077774	0.228747	0.9362	2 2 2 5 6 2 0 0	0.84199		44	24013.051	EE6 162	0.334011	0.450720	0.770220				
	/10	2733.02	415.5Z		Norma Chu	- spo		0.000747	0.430074		400	2401.55	Clup1	0.231004	0.204941	0.779239	-11			
	Sample	Actin	GIUKI	GIURI/AC	Norm Glu	Norm to saline	0.555//4	0.228/4/	0.679302		Sample	Actin	GIUKI	GIURI/ACt	Norm Glu	Norm to sa	aine			
0 -02 -13 -02 -0 -00	36	5991.426	1939.184	0.32366	0.438825	1.290662 rep	eated 2.023046	0 1.21//34	0.506683			2880.355	3221.184	1.118329	1.07055	3.1486//				
	N 3	5002.305	2537.77	0.50732	0.687836	2.023046	0.895528	0.532582	0.691414		538	3034.355	2205.648	0.726892	0.695837	2.046578				
	34	-	1224.598	-	-	- dan	naged 1.326365	2.3/39	1.241558		1/1	3198.941	. 2144.527	0.6/038/	0.641745	1.88/48/				
	/8	-	598.77	-	-	- dan	naged actin	0.781458	0.754576		757	3244.305	2086.648	0.643173	0.615694	1.810865				
	CIRL	5999.134	4424.719	0.73756	0.9999999	2.941175			0.962722		CIRL	43/8.//	4574.184	1.044628	0.999998	2.94117				
	42	4521.77	/84.012	0.1/3386	0.235081	0.691414					649	3289.941	1355.648	0.412058	0.394454	1.160159				
	44	4718.841	1059.719	0.224572	0.304479	0.895528					715	2748.113	1515.941	0.55163	0.528062	1.553125				
	400	5034.79	672.426	0.133556	0.181078	0.532582					716	3053.82	2194.648	0.718657	0.687953	2.023392				
	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to saline	9				78	995.991	635.698	0.638257	0.610988	1.797025	Part of ba	nds lost at	the end of	the g
	397	2467.062	1036.113	0.419979	0.450964	1.326365					Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to sa	aline			
	V 399	3141.648	2361.477	0.751668	0.807126	2.3739					CTRL	5948.062	4601.184	0.77356	1	2.941177				
	4 34	2436.527	1266.234	0.519688	0.55803	1.641266 rep	eated later, so a	verage was	done		78	2688.82	755.113	0.280834	0.363041	1.067769				
	61	2764.77	1116.527	0.403841	0.433636	1.2754 rep	eated earlier, so	average w	as done		399	3516.841	4579.426	1.302142	1.683311	4.950914	Part of ba	nds lost at	the end of	the
	CTRL	5089.305	4739.598	0.931286	0.999996	2.941164														
	78	2629.234	650.577	0.24744	0.265696	0.781458														
	76	3187.477	761.577	0.238928	0.256556	0.754576														
	36	3309.941	1199.82	0.36249	0.389234	1.144806 rep	eated earlier, so	average w	as done											
	133	1699.163	588.213	0.346178	0.371719	1.093291 rep	eated earlier, so	average w	as done											
	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to saline	e													
	CTRL	5922.062	4723.355	0.797586	0.999995	2.941163														
	130	2332.749	925.698	0.396827	0.497533	1.463331 rep	eated earlier, so	average w	as done											
	725	4071.648	1062.991	0.261071	0.327325	0.962722														
	34	4044.82	923.406	0.228293	0.286229	0.84185 rep	eated earlier, so	average w	as done											

Cortex	Male	Total prot	ein GluR1				Av	erage Cort	tex		Cortex	Male	SYNAPTO	NEUROSON	/AL proteir	n GluR1			Average Co	rtex - norm	n to TOTSa
2020-10-30	Sample	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm to saline		Male			2020-10-30	Sample	Actin	GluR1	GluR1/Act	Norm Glur	Norm to To	otalSaline		Male	
	215	5228.376	2549.376	0.4876038	0.7354567	1.231921	Saline	50	100			215	5523.184	2860.113	0.517838	0.9738368	1.631217		Saline	50	100
	100	7622.205	3442.598	0.4516538	0.681233	1.141094	0.582716			-		100	3950.234	1476.113	0.373677	0.7027313	1.177104		2.137463	1.631217	1.177104
	954	8160.79	3152.82	0.3863376	0.5827161	0.976074	0.91104					954	4482.406	3041.527	0.678548	1.2760656	2.137463		2.416434	1.985969	2.372982
	129	9509.205	3714.497	0.3906212	0.589177	0.986896	0.577337					129	4715.355	2972.82	0.630455	1.1856233	1.985969		1.763064	1.778443	2.560528
	137	7923.548	3976.648	0.5018772	0.7569853	1.267982	0.457213					137	4604.355	3468.527	0.753314	1.4166703	2.372982		2.366937	3.141056	1.590221
	CTRL	9129.548	6052.841	0.6629946	1	1.675042	0.285228					CTRL	5069.715	2695.82	0.53175	0.9999996	1.675041		1.858456	1.743896	2.106364
	958	6143.426	3710.719	0.6040146	0.91104	1.52603	0.546557					958	5322.891	4083.234	0.767108	1.4426109	2.416434		2.084787	1.857239	3.085888
	138	7051.912	3395.548	0.4815074	0.7262615	1.216518	0.979726					138	4520.841	2552.355	0.564575	1.0617306	1.778443		3.006822	2.577297	
2020-11-04	Sample	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm to saline	0.437512				2020-11-04	Sample	Actin	GluR1	GluR1/Act	Norm Glur	Norm toTo	talSaline		2.108014	
	535	4923.355	1840.477	0.3738258	0.5773371	0.967064	0.597166					535	3872.991	2267.234	0.585396	1.0525489	1.763064				
	59	4611.477	2132.648	0.4624653	0.7142321	1.196369						59	3199.284	3336.648	1.042936	1.8752106	3.141056				
	71	5047.941	2042.355	0.4045917	0.624852	1.046653	Average Co	ortex - Nor	m to saline			71	3899.991	3315.698	0.850181	1.528635	2.560528				
	CTRL	5216.527	3377.719	0.6475034	1.0000053	1.675051		Male		<u>-</u>		CTRL	4416.456	2456.284	0.556166	0.9999934	1.675031				
	860	4017.234	1189.284	0.2960455	0.4572131	0.765851	Saline	50	100			860	3192.87	2509.284	0.785902	1.4130614	2.366937				
	74	4137.82	1221.456	0.2951931	0.4558967	0.763646	0.976074	1.231921	1.141094			74	3712.87	2149.87	0.579032	1.0411059	1.743896				
	72	4589.941	1831.991	0.3991317	0.6164196	1.032529	1.52603	0.986896	1.267982			72	3489.456	1842.456	0.528007	0.949362	1.590221				
	891	4921.184	908.87	0.1846852	0.2852282	0.477769	0.967064	1.216518	1.046653			891	3753.406	2316.113	0.61707	1.1094983	1.858456				
2020-07-06	Sample	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm to saline	0.765851	1.196369	1.032529		2021-07-11	Sample	Actin	GluR1	GluR1/Act	Norm Glur	Norm toTo	talSaline			
	⊿ 553	3782.991	1445.991	0.3822349	0.5465573	0.915506	0.477769	0.763646	1.558734			. 801	5144.891	2564.234	0.498404	1.1087717	1.857239				
	497	4141.406	1887.284	0.4557109	0.6516207	1.091492	0.915506	1.091492	1.232586			⊲ ₇₂₀	4356.648	2437.406	0.559468	1.2446179	2.084787				
	570	3490.042	2271.284	0.6507899	0.9305639	1.558734	1.641081					766	5127.305	3546,234	0.691637	1.5386466	2.577297				
	CTRL	5032.991	3519.82	0.6993496	0.9999994	1.675041	0.732851					768	5107.598	2887.113	0.565258	1.2574992	2.106364				
	959	3606.991	2471.406	0.6851711	0.9797256	1.641081						CTRL	6188.548	2781.82	0.449511	1.0000021	1.675045				
	779	4575.042	2354.406	0.5146195	0.7358541	1.232586						763	5819.134	4695.477	0.806903	1.7950725	3.006822				
	997	3692.698	1129.87	0.3059741	0.4375121	0.732851						767	5212.376	2948.648	0.565701	1.2584844	2.108014				
												779	4499.77	3726.355	0.828121	1.8422754	3.085888				

	Cortex	Females	Total prot	ein GluR1					Ave	erage Cort	ex		Cortex	Females	SYNAPTO	NEUROSON	1AL proteir	GluR1			Average C	ortex - nori	n to TOTSal
		Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to s	aline		Females				Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to To	talSaline		Fema	es
Co.0 - 597	964 415 CK 16 665 664 654	526	4688.598	4516.426	0.963279	1.208782	1.162291		Saline	50	100			526	3869.891	4687.255	1.211211	1.695187	1.629988	repeated	Saline	50	100
		538	4917.891	3178.941	0.646403	0.811147	0.779949		0.811147					538	4411.719	5470.255	1.239937	1.735392	1.668646		1.668646	2.370964	1.416473393
_		539	5351.012	3398.891	0.635187	0.797072	0.766415		1.121506					539	4584.891	4825.841	1.052553	1.473132	1.416473		1.687799	2.562922	1.507576694
3		61	4757.477	3487.184	0.73299	0.919802	0.884425		1.032458					61	4536.376	4308.255	0.949713	1.329199	1.278076	damaged	1.467259	3.133961	1.21837446
		CTRL	5256.184	4188.477	0.796867	0.999958	0.961498		1.03692					CTRL	4592.062	3281.134	0.714523	1.000032	0.961569		3.11076	3.592893	3.823685961
		66	3657.456	3268.77	0.893728	1.121506	1.078371		1.317233					66	3914.113	4908.962	1.25417	1.755311	1.687799		2.16071	1.959885	2.067017022
		104	4156.406	3405.648	0.819373	1.028201	0.988655		1.527724					104	3714.991	4161.719	1.12025	1.56788	1.507577		1.900526	1.616587	3.675156837
		649	4364.477	3274.77	0.750324	0.941553	0.905339		0.871173					649	4291.598	4580.255	1.067261	1.493717	1.436267	repeated	1.52763	2.080375	1.848198021
		650	3730.891	3069.648	0.822765	1.032458	0.992748		0.822684					650	-	4568.861	-	-	- 0	damaged	2.221518		1.521699159
		Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to s	aline	0.823377					Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to sa	line			1.797677789
6- X	5 360 125 CM, 120 274 150 36-	803	-	1888.113	-	-	-	damaged	1.040469			-	/	78	3590.527	1473.941	0.410508	2.568888	2.470084	repeated	ater, so av	erage was	done
		78	-	1328.82	-	-	-	damaged	actin			-		803	3491.062	851.284	0.243847	1.525949	1.467259				
1		76	3720.234	4238.134	1.139212	1.371718	1.318959		Average Co	ortex - nor	m to TOTS	al		76	5495.548	3492.234	0.635466	3.976633	3.823686				
		133	3327.113	2865.184	0.861162	1.03692	0.997039			Females				130	4316.891	2248.406	0.520839	3.259319	3.133961				
		CTRL	4560.941	3787.77	0.83048	0.999976	0.961515		Saline	50	100	3.9 10	164 (107 (100 (107 (107 (107 (107 (107 (107	CTRL	4813.184	769.163	0.159803	1.000021	0.961559				
		130	3166.82	2484.941	0.78468	0.944829	0.908489		0.779949	1.162291	0.766415			133	4635.598	2396.527	0.516983	3.23519	3.11076				
		277	2895.698	2214.355	0.764705	0.920777	0.885362		1.078371	0.884425	0.988655			277	3607.941	1239.406	0.343522	2.149698	2.067017				
		715	2514.991	1548.355	0.61565	0.741301	0.712789		0.992748	0.908489	0.905339			715	3699.184	2208.82	0.59711	3.736609	3.592893				
		716	-	-	-	-	-	Part of act	0.997039	0.712789	1.318959			716	-	943.941	-	-	- F	Part of act	in lost at th	e end of th	ie gel
		Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to s	aline	1.26657	1.258075	0.885362			Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to sa	line			
1.00	No 46 (0), 400 (0) (0) (0)	3	3910.234	3888.77	0.994511	1.317233	1.26657		1.468965	1.08811	1.321377		400 76 CR, 70 750 561 72	650	2616.598	3708.426	1.41727	2.247138	2.16071				
		d ³⁶	3855.355	3808.477	0.987841	1.308398	1.258075		0.837666	1.089474	1.230212			61	2941.406	3781.305	1.285543	2.03828	1.959885				
		34	3837.234	3981.305	1.037546	1.374232	1.321377		0.791043	0.830877	1.334244			649	3293.577	3734.276	1.133806	1.797694	1.728552 (damaged	band, repe	ated in oth	er westerns
		44	4076.648	4702.134	1.153431	1.527724	1.468965		0.791709		1.250616			716	3122.941	3893.083	1.246608	1.976547	1.900526				
		CTRL	5584.376	4217.083	0.755157	1.000209	0.961739							CTRL	4441.598	2801.305	0.630698	0.999996	0.961535				
		400	5575.205	4773.426	0.856188	1.134024	1.090408	repeated	later, so av	erage was	done			78	2563.577	4465.719	1.741987	2.761991	2.65576	repeated	earlier, so	average wa	s done
		42	4698.648	4538.719	0.965963	1.279421	1.230212							725	2415.749	5823.497	2.410638	3.822163	3.675157				
		399	4924.598	4212.77	0.855455	1.133052	1.089474							526	2633.284	5375.083	2.041209	3.236418	3.111941	repeated	earlier, so	average wa	s done
		771	4212.698	4413.426	1.047648	1.387614	1.334244							757	-	6062.79	-	-	- 0	damaged	GLUR1 ban	ł	
		Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to s	aline						Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to sa	line			
5.	194 DAL 312 CE31 CHD 408	803	2591.87	2115.941	0.816376	0.871173	0.837666						410 31 04 0 0. 10 010	3	3777.355	3969.205	1.05079	1.588735	1.52763				
_		716	3483.456	2685.527	0.770938	0.822684	0.791043						a seal had been been deal had been	< 42	3535.698	4494.912	1.271294	1.922126	1.848198				
_		· 776	4044.991	3121.062	0.771587	0.823377	0.791709							400	3907.941	4345.548	1.111979	1.68125	1.616587				
		78	1618.627	1310.698	0.809759	0.864112	0.830877							36	3821.406	5468.426	1.430998	2.16359	2.080375				
_		CTRL	3959.698	3710.648	0.937104	1.000004	0.961542							CTRL	4086.82	2702.941	0.66138	0.99997	0.961509				
		725	3467.991	4226.891	1.21883	1.30064	1.250616							771	4304.698	4505.77	1.04671	1.582567	1.521699				
		400	3306.406	3498.891	1.058216	1.129245	1.085813	repeated	earlier, so a	average wa	as done			/57	3507.284	5359.426	1.528084	2.310379	2.221518				
														34	3632.284	4491.477	1.236543	1.869585	1.797678				
														649	3305.698	2274.941	0.688188	1.040502	1.000482	repeated	earlier, so	average wa	s done

Hippoc	ampus	Male	Total prot	ein GluR1				Aver	age Hippoc	ampus		Hippocampus	Male	SYNAPTO	NEUROSON	/AL protei	n GluR1			Average H	ipp - Norm	to saline
2020	0-04-07	Sample	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm to saline		Male			2020-04-07	Sample	Actin	GluR1	GluR1/Act	Norm Glur	Norm to T	otalSaline		Male	
		997	2847.012	5295.619	1.8600621	4.7693899	1.096916	Saline	50	100			59	4472.719	5001.619	1.11825	6.5779425	1.512866		Saline	50	100
		1 129	3888.012	6039.083	1.5532573	3.982711	0.915987	4.7693	9				997	4196.891	2796.841	0.666408	3.920046	0.901575		0.901575	1.512866	1.489249
		137	4353.305	5714.719	1.3127311	3.3659773	0.774144	3.34219	4		-		N 129	5268.184	5967.205	1.132687	6.6628663	1.532398		1.786543	1.532398	1.397089
		CTRL	5298.477	2071.062	0.3908787	1.0022532	0.230509	2.31422	2				137	6394.134	7038.619	1.100793	6.4752539	1.489249		0.841706	0.731275	0.886339
		761	4142.355	5399.376	1.3034556	3.342194	0.768674	1.84185	9				CTRL	6035.598	1036.991	0.171812	1.0106616	0.232443		0.75613	1.122393	0.155324
		766	4218.598	5620.912	1.3324123	3.4164419	0.78575	1.83759	1				761	5404.719	7137.154	1.320541	7.7678893	1.786543		1.009041	0.841461	0.891416
		954	4157.598	4230.912	1.0176337	2.6093173	0.600119	6.30575	B				766	3794.77	2051.184	0.540529	3.1795835	0.731275		1.612826	0.892843	2.024606
		767	4696.305	3546.619	0.7551935	1.9363936	0.445353 repea	ted 10.0272	2				954	4967.891	5130.205	1.032673	6.0745448	1.397089		1.05242	0.757329	1.340621
2020	0-04-21	Sample	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm to TotalSa	line 4.34831	9				767	4214.598	3496.548	0.829628	4.880164	1.122393		1.892557	1.587444	1.40567
		720	2550.891	5636.497	2.2096189	2.3142217	0.53225					2020-04-21	Sample	Actin	GluR1	GluR1/Act	Norm Glur	Norm to T	otalSaline			
		557	2795.234	579.163	0.2071966	0.2170052	0.049909						72	3527.113	5871.912	1.664793	3.8538028	0.886339				
		CTRL	3615.184	3452.012	0.9548648	1.0000679	0.230006	Average	Hipp - Nori	m to saline			720	4647.355	7347.276	1.580959	3.6597366	0.841706				
		891	3395.113	5970.669	1.7586069	1.8418589	0.423611		Male				646	3582.698	5662.447	1.580498	3.6586703	0.841461				
		74	3415.891	6827.669	1.9987959	2.0934184	0.481467	Saline	50	100			557	3560.577	1038.77	0.291742	0.6753491	0.155324				
		71	4965.426	6567.376	1.3226209	1.3852334	0.318591	1.09691	6 0.915987	0.774144			CTRL	5013.113	2165.598	0.431987	0.9999992	0.229991				
		767	5331.477	3969.305	0.7445038	0.7797485	0.179335 repea	ted 0.76867	4 0.78575	0.600119			891	3001.698	4263.083	1.420224	3.2876541	0.75613				
2020	0-04-27	Sample	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm to TotalSa	line 0.5322	5 0.312344	0.049909			74	4812.941	8071.347	1.677009	3.8820829	0.892843				
		535	4691.598	1265.598	0.2697584	1.8375913	0.422629	0.42361	1 0.481467	0.318591			71	3999.062	6695.74	1.674328	3.875875	0.891416				
		858	5418.841	2563.912	0.4731477	3.2230768	0.741278	0.42262	9 0.741278	0.453222			556	3544.648	6718.033	1.895261	4.3873102	1.009041				
		861	6134.669	1774.669	0.2892852	1.9706077	0.453222	1.45026	6 1.581166	2.604713		2020-04-27	Sample	Actin	GluR1	GluR1/Act	Norm Glur	Norm to T	otalSaline			
		CTRL	5459.184	801.406	0.1467996	0.9999972	0.22999	2.30616	B 2.075015	1.038262			535	3709.648	3511.912	0.946697	7.0125691	1.612826				
2020	0-07-06	Sample	Actin	GluR1	GluR1/Actir	Norm Glur1	Norm to TotalSa	line					497	3786.648	1683.305	0.444537	3.2928664	0.757329				
		553	3655.648	2305.163	0.6305758	6.3057576	1.450266						779	4172.012	4958.033	1.188403	8.8029877	2.024606				
		497	3609.012	2481.163	0.6874909	6.8749093	1.581166						CTRL	5778.941	780.698	0.135094	1.0006934	0.23015				
		570	3579.698	4054.113	1.1325293	11.325293	2.604713						860	3482.406	2151.255	0.61775	4.5759231	1.05242				
		CTRL	3953.991	401.385	0.1015139	1.0151389	0.233473						858	4297.527	4004.426	0.931798	6.9022056	1.587444				
		556	3673.698	3683.698	1.0027221	10.027221	2.306168						861	3827.234	3011.719	0.786918	5.8290216	1.340621				
		552	4699.527	4239.991	0.9022165	9.0221654	2.075015					2020-04-27	Sample	Actin	GluR1	GluR1/Act	Norm Glur	Norm to T	otalSaline			
		679	4249.941	1918.577	0.4514361	4.5143615	1.038262						CTRL	5976.376	801.406	0.134096	1.0007138	0.230155				
													■N -	-	-	-	-	-	epty well	because ge	I was dama	aged
													851	5276.497	5818.205	1.102664	8.2288382	1.892557				
													679	5049.012	4135.083	0.818989	6.1118548	1.40567				

Hippocampus	Females	Total prot	ein GluR1				Avera	ge Hippoc	ampus		Hippocampus	Females	SYNAPTO	NEUROSON	/AL protei	n GluR1			Average H	lipp - Norn	n to saline
	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to saline		Females				Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to T	otalSaline		Females	
	526	4728.134	4946.426	1.046169	3.035629	0.985594	Saline	50	100		50 50 80 eV CK m 25	526	6129.255	5271.962	0.860131	3.285702	1.066786		Saline	50	100
	1 539	4241.305	5305.012	1.250797	3.629391	1.178374	4.178967					539	5825.426	5443.255	0.934396	3.569394	1.158894		1.08371	1.066786	1.158894
	803	3651.184	5258.426	1.440197	4.178967	1.356808	2.974938					803	5165.426	4513.426	0.873776	3.337826	1.08371		1.419905	1.383909	1.32033
	CTRL	4628.941	1595.284	0.344633	1.000008	0.324678	2.699789					694	4756.477	5063.548	1.064558	4.066615	1.32033		1.339557	1.288575	1.29248
	694	3442.355	5064.184	1.471139	4.26875	1.385958	2.75933			-		CTRL	5296.062	1386.406	0.261781	1.000002	0.324676		0.803119	1.380188	1.264529
	715	3574.82	4093.598	1.14512	3.322752	1.078816	3.007504					715	5234.891	5841.205	1.115822	4.262441	1.383909		1.608145	0.672117	1.527429
	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to saline	2.885043					716	5391.305	6172.205	1.144844	4.373307	1.419905		1.0129	0.643402	1.078355
	78	4381.598	4420.426	1.008862	3.41987	1.110347	3.084262					Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to s	aline		1.209843	
	500	4185.355	5782.669	1.381644	4.683538	1.520629						78	4172.305	4486.355	1.07527	3.968812	1.288575				
	757	4945.477	4340.184	0.877607	2.974938	0.965889	Average H	Hipp - Norr	m to saline		<u> </u>	500	4511.426	5195.891	1.151718	4.25098	1.380188				
	CTRL	5079.648	1498.82	0.295064	1.000216	0.324745		Females				57	4968.426	5553.77	1.117813	4.125836	1.339557				
	771	4262.062	4603.77	1.080174	3.661608	1.188834	Saline	50	100			771	4725.012	5096.062	1.078529	3.98084	1.29248				
	776	5166.376	2571.477	0.497733	1.687231	0.547802 Stripe	on; 1.356808	0.985594	1.178374			CTRL	5065.062	1372.284	0.270931	1.000005	0.324677				
	134	5333.548	3135.598	0.587901	1.992885	0.64704	0.965889	1.078816	1.385958			776	4454.598	2985.355	0.670174	2.473605	0.803119				
	277	5177.305	5486.841	1.059787	3.592499	1.166396	0.876555	1.110347	1.188834			134	3166.941	3341.77	1.055204	3.894749	1.264529				
	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to saline	0.895887	1.520629	0.64704			277	3592.184	4749.305	1.322122	4.879939	1.584396	spot on Gl	UR1 band		
	76	4757.891	4268.77	0.897198	2.049707	0.665489	0.976462	0.465382	1.166396			Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to s	aline			
	a 61	4096.062	2569.941	0.627418	1.433376	0.465382	0.936702	0.884076	0.665489			76	4133.77	5268.841	1.274585	4.704481	1.527429				
	66	3176.941	3754.355	1.181752	2.699789	0.876555		0.80275	0.884076			₫ 61	5277.74	2960.062	0.560858	2.070121	0.672117				
	CTRL	4671.527	2044.82	0.43772	1	0.324675						66	3921.598	5262.548	1.34194	4.953086	1.608145				
	34	3553.184	4235.012	1.191892	2.722956	0.884076						CTRL	4949.184	1331.406	0.269015	0.992933	0.322381				
	36	3556.648	2587.941	0.727635	1.662329	0.539717						34	4042.184	3637.355	0.899849	3.321334	1.078355				
	44	3923.184	4738.477	1.207814	2.75933	0.895887						36	3964.184	2128.355	0.536896	1.981678	0.643402				
	399	3763.355	4072.891	1.08225	2.472471	0.80275						44	5665.012	4788.234	0.845229	3.119733	1.0129				
	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm to saline						399	4375.406	4417.284	1.009571	3.726318	1.209843				
	538	3224.648	6054.841	1.877675	3.007504	0.976462															
	650	3125.113	5629.012	1.801219	2.885043	0.936702															
	CTRL	6039.941	3770.891	0.624326	0.999993	0.324673															

1	TOTAL phos	pho-GLUR	1 PROTEI	N (males)								SYNAPTONE	UROSOM	AL phosp	ho-GLUR1	PROTEIN	(males)					
٦	Thalamus	Male	Total prot	ein p-GluR	1			Ave	rage Thala	amus		Thalamus	Male	SYNAPTO	NEUROSON	/AL proteii	n p-GluR1			Ave	age Thalar	mus
	2020-08-22	Sample	Actin	p-GluR1	pGluR/Acti	Norm pGlu	Norm to saline		Male			2020-08-21	Sample	Actin	p-GluR1	pGluR/Act	Norm pGlur:	Norm to s	aline		Male	
		535	3941.598	444.577	0.1127911	0.2044798	0.7834895	Saline	50	100			535	4265.669	2539.205	0.595265	0.88845576	3.404228		Saline	50	100
		497	4026.255	662.87	0.1646369	0.2984715	1.1436302	0.20448			-		497	4022.134	2493.962	0.620059	0.92546179	3.546021		3.404228	3.546021	2.76121
		557	4097.234	571.163	0.1394021	0.2527232	0.9683399 spot on p	0.208305					557	4989.184	2408.912	0.482827	0.72063709	2.76121		3.299304	3.160387	1.978018
_		CTRL	7071.962	3900.912	0.5516025	1.0000046	3.8316406	0.39219					CTRL	6070.841	4064.64	0.669535	0.99930584	3.828963		1.913933	3.606112	2.063029
		553	4441.083	510.284	0.1149008	0.2083046	0.7981446	0.23897					553	5483.477	3163.518	0.576918	0.86107203	3.299304		3.071267	2.051184	2.708568
		552	4632.719	166.021	0.0358366	0.0649685	0.2489348 band not	0.260986					552	4420.012	2442.619	0.552627	0.82481677	3.160387		2.475218	2.744177	3.297269
		679	4086.305	289.678	0.07089	0.128517	0.4924286 band not	observed					679	5060.477	1750.305	0.345877	0.51623504	1.978018		1.061459	2.746001	1.365011
_		556	3582.305	136.778	0.0381816	0.0692197	0.2652236 band not	observed					556	4883.012	1634.205	0.334672	0.49950972	1.913933				
	2020-08-22	Sample	Actin	p-GluR1	pGluR/Acti	Norm pGlu	Norm to saline					2020-08-22	Sample	Actin	p-GluR1	pGluR/Act	Norm pGlur:	Norm to s	aline			
		766	3990.891	1772.719	0.4441913	0.5464597	2.0938276 spot on p	Average T	halamus -	Norm to S			766	4209.012	2297.548	0.545864	0.94114478	3.606112				
		768	3547.305	999.941	0.2818875	0.3467879	1.3287606		Male				768	4074.184	1272.305	0.312285	0.53842176	2.063029				
		647	3666.012	1168.698	0.3187927	0.39219	1.5027243	Saline	50	100	<u> </u>		647	4842.891	2251.477	0.464904	0.80155777	3.071267				
		767	3264.477	473.627	0.1450851	0.1784888	0.6839018	0.78349	1.14363	3 1.328761	1		767	4496.134	1396.012	0.310492	0.53533041	2.051184				
		779	4422.841	1572.134	0.355458	0.4372968	1.6755567	0.798145	0.683902	1.675557			779	4262.719	1747.719	0.410001	0.70689825	2.708568				
		CTRL	6136.962	4988.447	0.8128528	1.0000001	3.8316233	1.502724		0.37124			CTRL	. 6733.255	3903.719	0.579767	0.99959826	3.830084				
		720	4015.719	780.042	0.1942472	0.2389697	0.9156417	0.915642					720	4861.305	1821.426	0.374678	0.64599725	2.475218				
		861	4733.598	372.799	0.0787559	0.0968883	0.3712396						861	3652.255	1822.891	0.499114	0.8605411	3.297269				
												2020-08-25	Sample	Actin	p-GluR1	pGluR/Act	Norm pGlur:	Norm to s	aline			
													763	7245.912	3352.104	0.46262	1.05855439	4.055982	spot on pGI	LUR1 band		
													3 801	6638.205	2077.74	0.312997	0.71619171	2.744177				
													954	/353.912	1144.941	0.155691	0.35624882	1.365011				
													CTRL	9441.276	4126.134	0.437031	1.00000319	3.831635				
													851	6183.255	/48.598	0.121069	0.2/702582	1.061459				
													858	9562.589	2995.054	0.313205	0./1666784	2.746001				
													71	9584.66	5617.095	0.586051	1.34098465	5.138148	Part of actin	n lost at th	e end of t	he gel

TOTAL phospho	-GLUR1 PI	ROTEIN (f	emales)								SYNAPTONEURO	SOMAL	phospho-	GLUR1 PR	OTEIN (fem	ales)					
Thalamus/Hypoth	Female	Total prot	ein p-Glul	R1				Ave	age Thala	amus	Thalamus/Hypoth	Female	SYNAPTC	NEUROSOI	/AL protein	p-GluR1			Avera	age Thala	mus
	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to s	aline		Females			Sample	Actin	p-GluR1	pGluR/Act I	Norm pGl	Norm to sa	aline		Females	
	Saline 50						100									Saline	50	100			
not measured											not measured										

							_														
Cortex	Male	Total prot	ein p-GluR	1			Av	erage Cort	ex		Cortex	Male	SYNAPTO	NEUROSON	/AL protei	n p-GluR1			Average Co	ortex - Nor	rm to Sali
2020-10-21	Sample	Actin	p-GluR1	pGluR/Acti	Norm pGlu	Norm to saline		Male	-		2020-10-21	Sample	Actin	p-GluR1	pGluR/Act	Norm pGlur:	Norm to s	aline		Male	
	556	3371.648	1345.719	0.399128	0.658627	0.6769034	Saline	50	100			556	4500.113	3375.113	0.750006	3.62321873	3.72376	5	Saline	50	100
-	552	3466.113	1881.012	0.5426863	0.8955219	0.920372	0.658627					552	4008.991	1876.698	0.468122	2.26146028	2.324214	1	3.72376	2.324214	3.945199
	557	2442.284	3425.012	1.4023807	2.3141596	2.3783758	0.448449			-		557	4398.698	3495.234	0.794606	3.83867872	3.945199)	3.232949	4.18224	2.886754
	CTRL	3287.749	1992.527	0.606046	1.0000758	1.0278272	0.84879			-		CTRL	5137.941	1065.234	0.207327	1.00157981	1.029373	3	2.134136	2.386388	2.107636
	647	4768.698	1295.941	0.2717599	0.4484487	0.4608928	1.188436					647	4280.284	2787.113	0.651151	3.14565903	3.232949)	2.280532	1.758552	2.000704
	646	3303.87	1635.305	0.4949665	0.8167764	0.8394413	0.61061					646	4996.527	4208.82	0.842349	4.0693193	4.18224	1	1.71322	3.946689	2.755283
	679	3088.406	1658.426	0.5369845	0.886113	0.9107019	1.516585					679	5073.648	2949.941	0.581424	2.80881187	2.886754	1	3.812291	4.732184	4.182504
2020-10-22	Sample	Actin	p-GluR1	pGluR/Acti	Norm pGlu	Norm to saline	0.972971				2020-10-22	Sample	Actin	p-GluR1	pGluR/Act	Norm pGlur:	Norm to s	aline	3.912755	2.125222	2.024172
	535	3007.87	842.506	0.2801005	0.8487895	0.8723428	0.999361					535	4941.648	6254.326	1.265636	2.07651464	2.134136	5	2.008916	2.711657	2.180522
	₫ 59	2502.749	1063.092	0.4247697	1,287181	1.3228993	1.316259					1 59	4282.698	6061.012	1.415232	2.32195599	2,386388	3	3.825567	1.762718	
	71	2549 042	1070 092	0.4198016	1 2721262	1 3074267	1.058323					71	5510.82	6888 083	1 24992	2 05072977	2 107636	5		3 33928	
	CTRI	3530 944	1161 092	0 3288333	0 9964645	1 0241156	1 200838			N		CTRI	4477 698	2729 355	0 609544	1 00007258	1 027824	1		0.00020	
	960	1099 043	770 679	0.2021020	1 100/02	1 2214141	0.955490					960	2900.001	E1E2 941	1 252455	2 219059	2 200522	,			
	300	1300.042	773.078	0.3321033	1.100430	0.002212	0.833485						4420.400	4640.076	1.332433	2.210930	4 750552	<u>-</u>			
	74	2314.042	729.799	0.3153/85	0.9556923	0.982212	0.972895					74	4428.406	4618.376	1.042898	1.71107146	1.758552				
	/2	3009.042	1125.799	0.3/4138/	1.133/536	1.1652144						/2	4330.87	5138.598	1.186505	1.94668546	2.000/04	1			
2020 40 20	891	3804.577	766.627	0.2015012	0.6106098	0.6275538					2020 40 20	891	4891.698	4970.033	1.016014	1.66696287	1./1322				
2020-10-26	Sample	Actin	p-GIUKI	pGluk/Actil	Norm pGiu	Norm to sailine					2020-10-26	Sample	Actin	p-GIUKI	pGluk/Aci	Norm pGiur.	Norm to s	saline			
	215	5695.276	6076.874	1.06/0025	2.2/19245	2.3349687						215	4648.113	2621.891	0.564076	3.84012821	3.946689)			
	100	8664.033	4812.439	0.5554502	1.1826973	1.2155162	_					N 100	4099.163	1614.234	0.393796	2.68089047	2.755283	3			
	954	7082.104	5044.296	0.7122595	1.5165848	1.5586689	Average C	ortex - No	rm to Salir			954	3839.577	2092.062	0.544868	3.70935961	3.812291				
	129	9017.569	6612.953	0.733341	1.5614727	1.6048024 bubble	in	Male		5		129	4229.406	2860.527	0.676342	4.60441482	4.732184	1			
	137	8515.69	5512.61	0.6473474	1.3783702	1.4166189	Saline	50	100			137	4153.113	2482.648	0.59778	4.06957605	4.182504	1			
	CTRL	11094.18	5210.347	0.4696471	1.0000002	1.0277494	0.676903	0.920372	2.378			CTRL	4758.406	698.941	0.146886	0.99996959	1.027718	3			
	958	8187.225	3741.175	0.4569528	0.9729707	0.9999698	0.460893	0.839441	0.910702			958	4573.113	2557.406	0.559227	3.8071108	3.912755	5			
	138	7812.054	3185.861	0.4078135	0.8683405	0.8924362	0.872343	1.322899	1.307427			138	4485.991	1362.598	0.303745	2.06784089	2.125222	2			
2020-10-28	Sample	Actin	p-GluR1	pGluR/Acti	Norm pGlu	Norm to saline	1.221414	0.982212	1.165214		2020-10-28	Sample	Actin	p-GluR1	pGluR/Act	Norm pGlur:	Norm to s	saline			
	801	6012.477	4216.912	0.7013602	1.0840423	1.1141236	0.627554	2.334969	1.215516			. 801	5453.477	3201.77	0.587106	2.63844226	2.711657	7			
	⊲720	4390.941	2839.062	0.6465726	0.999361	1.0270925	1.558669	0.892436	1.416619			720	5133.062	2232.648	0.434954	1.95467562	2.008916	5			
	766	5471.355	3768.305	0.6887334	1.064526	1.0940658	0.99997	1.114124	1.133611			766	4749.062	1812.477	0.381649	1.71512435	1.762718	3			
	768	5543.355	3955.891	0.7136276	1.1030031	1.1336106	1.027092	1.094066	1.421426	-		768	5141.234	2253.184	0.438257	1.96951928	2.024172	2			
	CTRL	7185.305	4648.79	0.6469858	0.9999996	1.0277488	1.352785	1.432431	1.592535			CTRL	6031.184	1342.062	0.22252	1.00000219	1.027751	L			
	763	6389.891	5441.64	0.8516014	1.3162594	1.3527845	1.08769	2.568988				763	5058.062	4189.497	0.828281	3.72227696	3.825567	7			
	767	5978.77	5391.296	0.90174	1.393755	1.4324307	1.234161					767	4618.648	3339.255	0.722994	3.24911938	3.33928	3			
	779	7015.033	5676.74	0.809225	1.2507612	1.2854689 repeate	d, 0.879228					779	4833.184	2281.79	0.472109	2.1216478	2.180522	2			
2020-07-06	Sample	Actin	p-GluR1	pGluR/Acti	Norm pGlu	Norm to saline															
	. 553	3738.477	1814.062	0.4852409	1.0583226	1.0876902															
=	497	3655,234	4189,184	1.1460782	2.4996253	2.568988															
		3480.991	2473.113	0.7104623	1.5495362	1.5925346															
	CTRI	4922 698	2257 184	0.4585258	1 0000563	1 027807															
	959	4536.891	2497.941	0.5505843	1.2008382	1,2341605															
	779	3797.991	2638.77	0.6947805	1.5153336	1.557383 repeate	d, so average	e was done													
	907	3872 77	1519 062	0 3922417	0 855/99	0.8792282	, 50 areruge														
	551	3072.77	1010.002	J.JJLL-11/	3.033403	J.J. JLLOL															

CORTEX	Female	Total prot	ein p-GluR	1				Av	erage Cort	tex		CORTEX	Female	SYNAPTO	NEUROSON	IAL protei	n p-GluR1			Average C	ortex - Noi	m to Salin
	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to s	aline		Females		_		Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to s	aline		Females	
	⊿ 3	3033.477	2952.861	0.973425	0.99038	0.853776		Saline	50	100			⊲ 3	2605.648	2652.548	1.017999	2.252211	1.941561		Saline	50	100
	44	4070.184	5063.711	1.244099	1.265769	1.09118		0.990385					44	3864.82	5207.326	1.347366	2.980898	2.569739		1.941561	2.287353	1.51727
	34	4071.255	4420.004	1.085661	1.104572	0.952217		1.265775			-	21.4	34	3428.355	2727.376	0.795535	1.760033	1.51727		2.569739	2.066006	1.573165
	399	4298.598	4503.983	1.04778	1.06603	0.918991		1.196153					399	4380.941	5254.083	1.199305	2.653329	2.287353		2.054179	2.012757	2.028526
	CTRL	3408.648	3350.276	0.982875	0.999995	0.862065		1.409594					CTRL	3189.648	1441.891	0.452053	1.000118	0.862171		3.178761	2.125233	3.030187
	771	4038.77	3251.154	0.804986	0.819008	0.706041		1.656871					771	3760.234	3101.598	0.824842	1.824871	1.573165		2.698439	1.780374	3.401528
	757	3601.234	4233.861	1.17567	1.196148	1.031162		0.663014					757	2705.941	2914.426	1.077047	2.382848	2.054179		1.383659		3.458936
	400	3999.82	3845.548	0.96143	0.978177	0.843256		0.967602					400	3179.991	3444.719	1.083248	2.396566	2.066006		1.496448		1.490325
	42	2837.113	2885.991	1.017228	1.034946	0.892195							42	2881.648	3064.912	1.063597	2.353091	2.028526				
58 554 585 683 Di en ei 685 40	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to s	aline	1.164199					Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to s	aline			
	√ 538	3284.163	2383.749	0.725832	1.409601	1.215173						AS 263 970 960 DC 83 8 7510 85	∕ 538	2956.113	3226.477	1.091459	3.687362	3.178761				
	526	3210.284	3327.749	1.03659	2.013109	1.735439		Average C	ortex - No	rm to Salir			526	2633.82	1820.234	0.6911	2.334799	2.012757				
80	539	3596.234	3430.355	0.953874	1.852471	1.596958			Females				539	3032.698	3155.355	1.040445	3.515016	3.030187				
	104	2824.527	2802.113	0.992065	1.926638	1.660895		Saline	50	100		900	104	2982.456	3483.355	1.167948	3.945772	3.401528				
	CTRL	3146.991	1620.456	0.514922	1.000005	0.862073		0.847442	0.912174	0.945153			CTRL	3108.991	921.698	0.296462	1.001561	0.863415				
	61	2944.891	2325.577	0.789699	1.533634	1.322098		1.083085	0.837	0.700803			61	3749.87	2736.355	0.72972	2.46527	2.125233				
	66	3177.991	2711.335	0.85316	1.656879	1.428344		1.023512	1.722549	0.885576			66	3747.042	3471.77	0.926536	3.13019	2.698439				
	649	2758.477	3591.184	1.301872	2.5283	2.179569		1.206147	1.312278	1.585096			725	3942.113	4681.891	1.18766	4.012366	3.458936				
	650	-	1986.406	-	-	-	Too much	1.417734	0.884938	1.648558			650	-	-	-	-	-	Damaged	p-GLUR1 ba	and	
	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to s	aline	0.567328	0.419187	2.163379		The first tax can give me first same	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to s	aline			
80. NO 500 10. OK 2707 10. DO 100	√ 803	2419.577	1937.891	0.800921	0.663014	0.571564		0.854751		0.844891			⊲ 803	1679.87	2162.406	1.287246	1.605045	1.383659	1			
	4 78	1572.456	1964.477	1.249305	1.034193	0.891546				0.73489			4 78	2172.577	3598.477	1.656317	2.065234	1.780374				
	76	4497.355	5364.305	1.192769	0.987391	0.8512					-	No. 20	76	4323.698	5994.719	1.38648	1.728778	1.490325				
	133	3081.284	3601.598	1.168863	0.967602	0.834139							133	2845.406	3961.305	1.392176	1.73588	1.496448				
	CTRL	2935.577	3546.134	1.207985	0.999988	0.862059							CTRL	2685.991	2155.355	0.802443	1.000553	0.862545				
	-	-	-	-	-	-	Not cortex	sample					-	-	-	-	-	-	Not cortex	sample		
	716	4090.527	3733.841	-	-	-	spot on p-	GLUR1 ban	d				716	3193.406	-	-	-	-	Damaged	p-GLUR1 ba	and	
	725	4456.113	4478.184	1.004953	0.831915	0.717168							725	3727.284	-	-	-	-	Damaged	p-GLUR1 ba	and	
	130	3855.163	2281.426	0.591785	0.489888	0.422317							130	-	-	-	-	-	Part of bar	nds lost at I	the end of	gel

Hippocampus	Male	Total prot	ein p-GluR	1				Avera	ge Hippoca	ampus		Hippocampus	Male	Synapton	eurosomal	protein p-(GluR1			Average H	ipp - Norm	to Saline
2020-08-13	Sample	Actin	p-GluR1	pGluR/Acti	Norm pGlu	Norm to sa	line		Male			2020-08-13	Sample	Actin	p-GluR1	pGluR/Act	Norm pGlur1	Norm to sa	line		Male	
	997	3026.284	4785.891	1.5814415	3.1377807	1.2706066		Saline	50	100			59	3164.456	5324.012	1.682441	3.43671018	1.391654		Saline	50	100
	129	3103.335	3620.77	1.1667351	2.3149507	0.9374114		3.137781					3 997	2314.749	4683.134	2.023171	4.1327166	1.673494		1.673494	1.391654	1.238158
	137	3062.213	5127.184	1.6743394	3.3221021	1.3452453		2.868111					129	2421.335	4007.891	1.65524	3.38114633	1.369155		1.289511	1.369155	1.277389
	CTRL	3446.042	1737.406	0.5041744	1.0003459	0.4050781		2.186449					137	3555.698	5322.426	1.496872	3.05764956	1.238158		2.586805	1.25237	0.37214
	761	2444.335	3533.355	1.4455281	2.8681114	1.1614072		2.170862					CTRL	3189.749	1561.527	0.489545	0.99999064	0.404934		1.568009	1.556742	1.793634
	766	3048.163	2832.234	0.9291609	1.8435733	0.7465328		1.984369					761	3195.284	4981.305	1.558955	3.18446598	1.289511		2.128785	1.500993	1.854041
	954	2814.506	4910.891	1.7448501	3.4620041	1.4018969		2.469514					766	3030.284	4588.012	1.514053	3.09274531	1.25237		2.415178	1.926043	
	767	3228.163	1959.234	0.6069192	1.2042047	0.4876282							954	3558.87	5495.962	1.5443	3.15452913	1.277389		3.292262	1.937114	
2020-08-13	Sample	Actin	p-GluR1	pGluR/Acti	Norm pGlu	Norm to sa	line						767	3508.941	6603.912	1.882024	3.84439635	1.556742		1.932905	2.663611	
	720	2595.749	3445.012	1.3271745	2.186449	0.8853762						2020-08-13	Sample	Actin	p-GluR1	pGluR/Act	Norm pGlur1	Norm to sa	line			
	⊲ 557	2247.213	546.163	0.2430402	0.4003956	0.1621354					_		553	700.627	1700.77	2.427497	6.38815022	2.586805				
	CTRL	3792.698	2304.184	0.6075316	1.0008758	0.4052926		Average H	lipp - Norn	n to Saline			< 646	3053.284	4300.719	1.408555	3.70672416	1.500993				
	891	3119.456	4110.548	1.3177131	2.1708618	0.8790644			Male				557	1990.113	694.991	0.349222	0.91900494	0.37214				
	74	3994.941	5766.669	1.4434929	2.3780773	0.9629738		Saline	50	100			CTRL	3793.991	1444.77	0.380805	1.00211791	0.405796				
	71	3694,456	6066.497	1.6420542	2,7051964	1.0954367		1.270607	0.937411	1.345245			891	3064.991	4509.962	1.471444	3.87222052	1.568009				
	535	3182.698	3833.598	1.204512	1.9843691	0.8035464		1.161407	0.746533	1.401897			74	3259.698	5891.669	1.807428	4,75638912	1.926043				
	861	2969.234	3652.184	1.2300088	2.0263737	0.8205557		0.885376	0.487628	0.162135			71	3458.991	5822.083	1.683174	4,42940472	1.793634				
								0.879064	0.962974	1.095437			556	3137.234	6267.205	1.997685	5.25706554	2.128785				
								0.803546		0.820556		2021-08-19	Sample	Actin	n-GluR1	nGluR/Act	Norm nGlur1	Norm to sa	line			
													535	3430.406	3149,719	0.918177	5.96431674	2.415178				
													497	2416 749	1779 77	0 736431	4 78373096	1 937114				
													4 851	3384.335	4235.891	1.251617	8.13028637	3.292262				
											_		779	2963,163	5141,134	1,735016	11,2703601	4.563797				
													CTRL	4209,234	647,991	0.153945	1,00000073	0.404938				
													860	3065.698	2252.77	0.734831	4.77333479	1.932905				
													858	3560.941	3605.891	1.012623	6.57782369	2.663611				
													861	3629.577	2558.305	0.704849	4.57857906	1.854041				

	Hippocampus	Female	Total prot	ein p-GluR	1			Avera	ge Hippoca	ampus		Hippocampus	Female	Synaptone	urosomal	protein p-	GluR1		A	verage Hi	pp - Norm	to Saline
	2021-08-18	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to saline		Female			2021-08-19	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to sali	ine		Male	
		78	2896.456	3247.184	1.121089	0.918925	0.88614	Saline	50	100	-		526	4184.941	5008.962	1.196901	1.554775	1.499304		Saline	50	100
		500	3100.213	3158.477	1.018794	0.835077	0.805283	0.71377					⊲ 539	4309.113	4689.305	1.08823	1.41361	1.363176	1	.480361	1.499304	1.363176
		757	2540.799	2212.527	0.8708	0.71377	0.688304	1.001752				·	803	3989.406	4714.598	1.181779	1.535131	1.480361	1	.421287	1.481976	1.242238
		old CTRL	2382.506	1080.698	0.453597	0.371801	0.358536	1.37331					old CTRL	4226.113	1005.527	0.237932	0.309073	0.298046	1	.947791	0.982954	1.967128
		771	2194.506	2551.113	1.1625	0.952869	0.918872	1.059158					CTRL	3580.82	2756.598	0.769823	1	0.964322	0	.832554	1.057349	0.955168
ł	pecomes CTRL in H	776	2461.213	3007.941	1.222138	1.001752	0.966012	1.036998					694	2989.335	2964.477	0.991684	1.288198	1.242238	0	.901853	0.631133	0.92252
		134	2759.627	2626.062	0.9516	0.78	0.752171						715	3643.284	4310.255	1.183069	1.536806	1.481976			1.283529	
		277	3250.335	5458.305	1.679305	1.37648	1.32737						716	3525.527	4000.134	1.13462	1.473871	1.421287			0.624166	
	2021-08-18	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to saline	Average H	lipp - Norn	n to Saline		2021-08-19	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to sali	ine			
	÷	76	3460.113	4818.234	1.392508	1.822654	1.757625		Male				78	4269.355	1386.163	0.324677	1.019322	0.982954				
		⊲ 61	3039.749	2147.577	0.706498	0.924736	0.891743	Saline	50	100			500	4077.77	1424.163	0.34925	1.096469	1.057349				
		66	3018.456	3166.991	1.049209	1.37331	1.324313	0.688304	0.88614	0.918872			CTRL	4173.82	1329.456	0.318523	0.999999	0.964321				
		CTRL	2956.627	2259.577	0.764241	1.000316	0.964627	0.966012	0.805283	0.752171			757	4022.82	2588.163	0.64337	2.019855	1.947791				
		34	3554.991	2975.991	0.83713	1.09572	1.056627	1.324313	1.32737	1.757625			⊲ 771	3180.163	2066.335	0.649758	2.039908	1.967128				
		36	3401.749	1492.335	0.438696	0.57421	0.553723	1.021369	0.891743	1.056627			4 776	2782.163	765.092	0.274999	0.863357	0.832554				
		44	3037.456	2399.991	0.790132	1.059158	1.021369		0.553723				134	3916.577	1235.678	0.315499	0.990508	0.955168				
													277	4170.648	4666.577	1.118909	3.512805	3.387476				
												2021-08-19	Sample	Actin	p-GluR1	pGluR/Act	Norm pGl	Norm to sali	ine			
													61	3412.477	2058.305	0.60317	0.654483	0.631133				
											_		√ 399	3910.82	4797.255	1.226662	1.331017	1.283529				
											-		34	3255.749	2870.426	0.881648	0.956652	0.92252				
													CTRL	2381.799	2195.062	0.921598	1	0.964322				
													36	2933.335	1749.77	0.596512	0.647259	0.624166				
													44	2954.163	2546.184	0.861897	0.93522	0.901853				

TOTAL CDK5 PF	ROTEIN (ma	les)				· · ·						SYNAPTONEURO	SOMAL C	DK5 PROT	EIN (male	s)	8		··			
THALAMUS	Male	Total prot	ein Cdk5					Aver	rage Thala	mus		THALAMUS	Male	SYNAPTO	NEUROSON	1AL protein	Cdk5			Average T	nalam - no	rm to TOT
2020-08-2	1 Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to	TotalSali		Male			2020-10-21	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to	TotalSaline		Male	
	535	7837.125	7864.196	1.0034542	1.2133666	1.086		Saline	50	100		- Contract of the Contract of	535	7259.569	3028.426	0.4171633	0.56911778	0.509346	5	Saline	50	100
	497	8557.175	5910.933	0.6907575	0.835257	0.748		1.213367					497	5885.983	4750.619	0.8071072	1.10110117	0.985458	3	0.509346	0.985458	0.815375
	557	7311.761	6506.64	0.8898869	1.0760421	0.963		1.095768					557	6179.619	4126.79	0.6678065	0.9110594	0.815375	5	0.79286	0.960348	0.82172
	CTRL	8872.589	7336.518	0.8268745	0.9998483	0.895		0.854877			-		CTRI	8213.347	6019.397	0.7328799	0.99983616	0.894828	3	1.07343	0.466016	0.669851
	553	6664.397	6039.276	0.9061999	1.0957677	0.981		1.099507					553	6558.569	4258.912	0.649366	0.88590183	0.79286	5	0.649839	0.997905	0.537972
	552	7078.104	6618.64	0.9350866	1.1306972	1.012		1.47302					552	5933.983	4667.326	0.7865419	1.07304482	0.960348	3	0.677094	0.415805	0.492449
	679	5947.518	5541.397	0.9317159	1.1266214	1.008		0.773183					679	5565.74	3745.79	0.6730084	0.91815613	0.821727	7	0.581637	1.37861	0.671837
	556	8090.518	5719.861	0.7069833	0.854877	0.765		1.02999					556	5706.912	5017.276	0.8791578	1.19939668	1.07343	8	0.834179	0.769709	1.002676
2020-08-2	2 Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to	TotalSali	1.451863				2020-08-22	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to	TotalSaline	0.721223	0.701025	0.719647
	766	7698.104	5510.933	0.7158819	0.9984405	0.894		1.067728					766	4183.548	1350.598	0.3228355	0.52070249	0.466016	5			0.625881
	768	8163.368	6265.347	0.7674954	1.0704259	0.958		1.1177					768	4261.77	1977.648	0.4640438	0.74845776	0.669851	L			0.953302
	647	7136.589	5626.104	0.7883464	1.0995068	0.984							647	4599.598	2070.648	0.4501802	0.72609712	0.649839)			
	A 767	8503.004	6739.397	0.7925901	1.1054256	0.989		Average Th	halam - no	rm to TOT:	1		< 767	4360.305	3014.305	0.691306	1.11500967	0.997905	5			
	779	8450.125	7747.468	0.9168466	1.278726	1.144			Male				779	4895.184	1824.355	0.3726836	0.60110265	0.537972	2			
	CTRL	9747.832	6992.154	0.7173035	1.0004233	0.895		Saline	50	100			CTRI	6290.719	3898.426	0.6197107	0.99953342	0.894557	7			
	720	7461.468	7880.468	1.0561552	1.4730198	1.318		1.085932	0.747534	0.963031			720	4722.841	2215.305	0.4690619	0.75655153	0.677094				
	861	8545.468	7035.225	0.8232697	1.1482144	1.028		0.980684	1.011945	1.008298			861	3296.305	1124.527	0.3411477	0.55023829	0.492449	,			
2020-08-2	5 Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to	TotalSali	0.765093	0.893579	0.958004		2020-08-25	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to	TotalSaline			
	763	5770.669	5523.69	0.957201	0.7731833	0.692		0.984031	0.989328	1.144427	_		801	5365.083	1319.891	0.246015	0.46460005	0.415805	5			
	801	6973.376	7162.225	1.0270814	0.8296296	0.742		1.318315	0.742498	1.027623			954	5559.497	2209.891	0.3974984	0.75067678	0.671837	,			
	954	4890.548	6493.64	1.3277939	1.0725315	0.96		0.69198	0.446164	0.959889			CTRI	7744.114	4100.669	0.5295208	1.00000145	0.894976	5			
	CTRL	6494.669	8041.054	1.2381007	1.0000813	0.895		0.921815	0.995311	0.892173			851	5909.376	2033.598	0.3441308	0.64989188	0.581637	'			
	851	5209.719	6643.054	1.2751271	1.0299896	0.922		1.299381	1.22858	1.001772			858	7495.447	6113.79	0.8156672	1.54038972	1.37861	L			
	858	2736.234	1688.719	0.6171691	0.4985211	0.446		0.95559		1.175926			71	7526.083	4464.79	0.5932422	1.12033954	1.002676	5			
	71	6565.083	8102.125	1.2341238	0.996869	0.892				1.067191			74	5234.548	2383.841	0.4554053	0.86003422	0.769709)			
	71	6096.669	7158.125	1.1741043	0.9483879	0.849 r	repeated	by mistake	so we use	the previou	us band in	2020-09-02	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to	TotalSaline			
2020-09-0	2 Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to	TotalSali	ne					72	4463.426	4166.861	0.9335566	0.80409702	0.719647	7			
	72	4376.184	5633.154	1.2872297	1.1193302	1.002							860	4661.962	5044.861	1.0821326	0.93206941	0.834179)			
	860	4155.648	6938.447	1.6696426	1.4518631	1.299							▲ 129	5516.669	5016.861	0.9094004	0.78329061	0.701025	5			
	129	4735.891	6056.861	1.2789274	1.1121108	0.995							137	4999.305	4059.033	0.8119195	0.6993277	0.625881	L			
	137	4118.77	6223.497	1.5110086	1.3139205	1.176							CTRI	7032.548	8166.861	1.1612947	1.00025387	0.895202	2			
	CTRL	6330.719	7290.861	1.151664	1.0014469	0.896							891	5332.305	4988.912	0.9356014	0.80585822	0.721223	6			
	891	4615.648	5667.497	1.2278876	1.0677284	0.956							138	5564.64	3465.962	0.6228547	0.5364812	0.480137	Damaged	actin band		
	138	4302.648	6792.447	1.5786667	1.3727536	1.229							570	3665.77	4533.326	1.2366641	1.06517145	0.953302	2			
	100	3906.477	5356.912	1.3712898	1,1924259	1.067																

TOTAL CDK5 PROT	EIN (femal	es)										SYNAPTONEUROS	OMAL CD	K5 PROTE	IN (femal	es)						
Thalamus/Hypothala	Female	Total prot	ein Cdk5					Ave	rage Thala	mus		Thalamus/Hypothal	Female	SYNAPTO	NEUROSON	/AL proteir	n Cdk5			Average T	halam - no	orm to TC
	Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline		Females				Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline		Females	
	130	4242.234	2929.426	0.690539	1.153397	0.789998	damaged	Saline	50	100			130	2820.355	3532.79	1.252605	1.064235	0.728928		Saline	50	100
	133	4561.719	1254.92	0.275098	0.459492	0.314721	repeated	1.326925			-		133	2933.527	4307.74	1.468451	1.247622	0.854535		0.854535	0.728928	0.58814
	134	4275.577	1477.506	0.345569	0.577199	0.395342		1.597275					134	2767.941	2797.497	1.010678	0.85869	0.588144		0.734052	0.644623	0.79633
	277	4850.527	2870.284	0.591747	0.988386	0.676977		1.391757					⊲ ₂₇₇	3449.062	4719.811	1.368433	1.162645	0.796332		0.593267	0.530603	0.71747
TOT	CTRL	6702.841	4013.062	0.598711	1.000018	0.684944		1.011676					CTRL	5261.184	6194.205	1.17734	1.000289	0.68513		0.455419	0.78156	0.56432
	61	4851.548	4453.841	0.918025	1.533363	1.050249	repeated	1.594369					61	3939.234	4363.619	1.107733	0.941149	0.644623		0.709895	0.952878	0.75267
	66	4904.77	4690.376	0.956289	1.597275	1.094024		1.528978					66	3842.648	4847.154	1.26141	1.071716	0.734052		0.993758	0.787923	0.78411
	104	4932.527	6030.912	1.222682	2.042228	1.398786		1.802166					104	3857.184	4755.619	1.232925	1.047515	0.717476		0.898603		0.87077
	Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to 1	otalSaline	1.464735					Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to 1	otalSaline			
:757 =771 CTRL =: 649 = 715 : 736	526	3045.82	4212.719	1.383115	1.337635	0.916189						13 -3 -04 ±78 CR =€ 14 ±68	36	3962.477	2434.234	0.614321	0.77468	0.530603				
	538	2227.335	3205.305	1.439076	1.391757	0.953258		Average T	halam - no	orm to TOT:			3	2937.941	2017.991	0.686873	0.86617	0.593267				
	, 757	2112.163	2209.477	1.046073	1.011676	0.692929			Females				34	3754.648	2453.163	0.653367	0.823918	0.564327				
	771	2836.284	5003.175	1.763989	1.705986	1.168484		Saline	50	100			78	3423.719	-	-	-	-	damaged	actin, was	repeated I	later
	CTRL	4489.991	4642.719	1.034015	1.000015	0.684942		0.908853	1.198031	0.395342			CTRL	5265.477	4176.113	0.793112	1.000141	0.685028				
54 T	649	2450.577	2737.598	1.117124	1.080391	0.739994		1.094024	0.916189	0.676977			N 42	3777.355	3291.698	0.871429	1.098902	0.752673				
	715	2251.87	2360.698	1.048328	1.013857	0.694422		0.953258	0.694422	1.398786			44	4015.891	2117.477	0.527275	0.664911	0.455419				
	716	2753.82	2917.355	1.059385	1.02455	0.701747	spots on a	0.692929	0.968386	1.168484			400	2401.355	-	-	-	-	too much	backgroun	d	
	Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline	1.092034	1.214537	0.739994			Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline			
M 3/2 (18 3/2) // 3	36	5991 426	5108 74	0.852675	1 21637	0.83313	repeated	1 047245	1 50023	0 994137			526	2880 355	2870 941	0 996732	1 141078	0 78156				
	3	5002.305	5590.841	1.117653	1.594369	1.092034		1.23436	1.23988	1.56099		1 381 7710 RD CR. 4418 7818 741 781	538	3034.355	2747.113	0.905337	1.036447	0.709895				
	34	-	4914.983	-	-	-	actin dam	aged		1.300037			771	3198.941	3198.891	0.999984	1.144802	0.784111				
	78	-	5314.255	-	-	-	actin com	pressed			-		757	3244.305	4111.669	1.26735	1.450887	0.993758				
		5999.134	4206.184	0.701132	1.000188	0.68506							649	3289,941	3653,497	1.110505	1.271328	0.870773				
	42	4521.77	4600.719	1.01746	1.45144	0.994137						54 H	CTRL	4378.77	3824.82	0.873492	0.999991	0.684925				
	44	4718.841	5057.719	1.071814	1.528978	1.047245							715	2748.113	3339.548	1.215215	1.391202	0.952878				
	400	5034.79	6258.397	1.24303	1.773225	1.214537							716	3053.82	3499.669	1.145997	1.31196	0.898603				
	Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to 1	otalSaline						78	995.991	1409.941	1.415616	1.620625	1.110017	damaged	bands, was	repeated	later
No. No. 210 (20 10 5 5 10 10)	397	2467.062	3811.426	1.544925	1.802166	1.23436							Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to 1	otalSaline			
	399	3141.648	5899.033	1.877687	2,190336	1.50023							CTRL	5948.062	3811.134	0.640735	1.000055	0.684969				
	34	2436.527	4760.326	1.953734	2.279045	1.56099							78	2688.82	1981.77	0.737041	1,150368	0.787923				
	61	2764.77	4657.033	1.68442	1.964888	1.345814	repeated	earlier. so	average w	as done			399	3516.841	3664.811	1.042075	1.626463	1.114016	Part of ba	nds lost at	the end of	fgel
	CTRL	5089.305	4362.841	0.857257	0.999996	0.684929							1									
	78	2629,234	4080,134	1,551834	1.810225	1,23988						11865 N. 14 14 14 14 14										
	76	3187.477	5186.426	1.627126	1.898054	1.300037																
	36	3309.941	4572.083	1.381319	1.611318	1.103643	repeated	earlier, so	average w	as done												
	133	1699.163	3196.355	1.881135	2.194358	1.502985	repeated	earlier, so	average w	as done												

Cortex	Male	Total prot	ein Cdk5				Av	erage Cort	tex	Cortex	Male	SYNAPTO	NEUROSON	/AL proteir	n Cdk5			Average C	ortex - nor	rm to TO
2020-10	D-21 Sample	Actin	Cdk5	Cdk5/Acti	r Cdk Norm	Norm to TotalSa	ali	Male		2020-10-2	1 Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to T	otalSaline		Male	
	556	5412.355	4076.962	0.7532695	0.9744754	1.031	Saline	50	100		556	5903.426	6164.276	1.0441862	0.71033075	0.751315	;	Saline	50	100
	552	6111.841	4232.012	0.6924284	0.8957676	0.947	0.974475				552	6239.305	5446.569	0.8729448	0.59384002	0.628103		0.751315	0.628103	0.8420
	557	5449.184	3921.184	0.719591	0.9309069	0.985	0.877693				557	5210.062	6096.983	1.1702323	0.79607642	0.842008		0.586525	0.709183	0.6398
	CTRL	6691.376	5173.012	0.7730864	1.0001118	1.058	0.846123				CTRI	5414.012	7973.811	1.47281	1.00191156	1.059719		0.524283	1.07247	0.909
	647	5751.305	3902.012	0.6784568	0.8776931	0.928	1.229948			-	647	5386.062	4390.497	0.815159	0.55452994	0.586525		1.145816	0.782895	0.9153
	646	5392.426	3862.598	0.7163006	0.9266502	0.98	0.963222				646	5513.134	5433.912	0.9856303	0.67049681	0.709183		0.564496	0.547334	0.602
	679	4904.77	4266.74	0.8699164	1.125377	1.19	0.915627				679	5227.305	4648.74	0.8893187	0.6049787	0.639884		0.777256	0.683346	0.7716
2020-10	D-22 Sample	Actin	Cdk5	Cdk5/Acti	r Cdk Norm	Norm to TotalSa	li 1.064884			2020-10-22	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to T	otalSaline	0.918246	0.52009	0.7945
	535	4959.234	4024.083	0.8114324	0.8461234	0.895	0.967234				535	6 4448.113	2087.648	0.4693334	0.49568344	0.524283		0.586563	0.69525	0.5226
	59	4876.82	4340.548	0.8900365	0.9280882	0.982	0.669813				59	2801.577	2689.698	0.9600657	1.01396719	1.07247		0.886528	0.773692	
	71	4668.355	3344.012	0.7163148	0.7469394	0.79					71	3733.991	3039.991	0.8141399	0.85984857	0.90946	i		0.700669	
	CTRL	4534.307	4349.012	0.959135	5 1.0001407	1.058	0.945447				CTRI	4448.906	4212.406	0.946841	0.99999997	1.057697				
	860	2917.941	3441.77	1.1795201	1.2299479	1.301					860	2803.698	2875.82	1.0257239	1.08331165	1.145816	6			
	74	4094.062	2838.77	0.6933872	0.7230314	0.765					74	3615.82	2534.113	0.7008405	0.74018813	0.782895				
	72	4797.062	4562.012	0.9510013	0.9916593	1.049	Average Co	ortex - nori	m to TOTSa		72	4245.991	3479.406	0.8194568	0.86546395	0.915399)			
	891	4803.891	4437.497	0.9237297	0.9632218	1.019		Male			891	4566.941	2307.82	0.5053317	0.53370279	0.564496	<u>i</u>			
2020-10-26	Sample	Actin	Cdk5	Cdk5/Acti	r Cdk Norm	Norm to TotalSa	ali Saline	50	100	2020-10-26	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to T	otalSaline			
8	215	3034.648	1259.355	0.4149921	0.4626652	0.489	1.0307	0.947451	0.984618		215	4143.284	2210.305	0.5334669	0.5174769	0.547334	ļ			
	100	3607.284	3963.77	1.0988239	1.2250536	1.296	0.928334	0.980115	1.190308		100	4839.284	2840.527	0.5869726	0.56937877	0.60223				
	954	3085.92	2534.406	0.8212805	0.9156268	0.968	0.894943	0.981636	0.790036		954	4610.527	3492.77	0.7575642	0.73485707	0.777256	i			
	129	2900.87	3146.234	1.0845829	1.2091766	1.279	1.300913	0.764748	1.048875		129	4931.406	3284.477	0.6660326	0.64606903	0.683346	i			
	137	3298.87	3716.062	1.1264651	1.2558701	1.328	1.018797	0.48936	1.295736		137	4161.698	3130.184	0.7521411	0.72959654	0.771692				
	CTRL	4404.025	3950.234	0.8969599	1	1.058	0.968456	1.278943	1.328331		CTRI	4386.698	4522.305	1.0309132	1.00001283	1.057711				
	958	3207.042	3063.234	0.9551587	1.0648845	1.126	1.126326	1.046765	0.861869		958	8 4116.163	3683.891	0.8949818	0.86815579	0.918246	i			
	138	3722.426	3304.355	0.8876886	0.9896636	1.047	1.023041	0.706833	0.932018		138	3812.82	1932.77	0.5069135	0.49171939	0.52009				
2020-10-28	Sample	Actin	Cdk5	Cdk5/Acti	r Cdk Norm	Norm to TotalSa	li 0.708459	0.76383		2020-10-28	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm to T	otalSaline			
	801	5069.234	2716.891	0.5359569	0.6682755	0.707		1.038014			801	4985.941	3909.912	0.7841874	0.65732387	0.69525				
<u> </u>	- 720	3477.82	2697.82	0.7757216	0.9672339	1.023					720	4757.941	3147.841	0.6615973	0.55456607	0.586563				
5	766	4925.577	2852.77	0.5791748	0.7221631	0.764					766	5 4312.234	3763.134	0.8726646	0.73148752	0.773692				
2	768	5294.82	3460.234	0.6535131	0.8148542	0.862					N 768	4009.577	3593.134	0.8961379	0.75116339	0.794504				
	CTRL	4870.527	3907.234	0.80222	1.0002743	1.058					CTRI	4699.82	5607.548	1.193141	1.0001182	1.057822				
	763	5446.527	2925.82	0.53719	0.669813	0.708					763	4930.062	4929.74	0.9999347	0.83816822	0.886528				
	767	3956.062	3113.719	0.7870754	0.9813907	1.038					767	4107.406	3246.083	0.7903	0.66244762	0.700669				
	779	4607.841	3256.376	0.7067032	0.8811761	0.932					779	4359.82	2688.548	0.6166649	0.49412648	0.522636	;			

	Cortex	Females	Total prot	ein Cdk5					Av	erage Cort	ex	Cor	rtex F	emales	SYNAPTON	NEUROSON	1AL proteir	n Cdk5			Average Co	ortex - nor	m to TOTS
		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to To	otalSaline		Females			S	ample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline		Females	
-		526	4688.598	4447.619	0.948603	1.196221	1.068054		Saline	50	100	See. 54. 54. 54		526	3869.891	2841.326	0.734213	0.917767	0.819435	damaged Cdl	Saline	50	100
2		538	4917.891	4758.669	0.967624	1.220207	1.08947		1.220207					538	4411.719	2719.426	0.61641	0.770512	0.687957		0.687957	0.895043	0.763397
		539	5351.012	4371.719	0.816989	1.030251	0.919867		0.946733					539	4584.891	3136.083	0.684004	0.855005	0.763397		0.783028	1.01809	0.674294
2		61	4757.477	4243.184	0.891898	1.124714	1.004209		1.136931					61	4536.376	2695.234	0.594138	0.742673	0.663101	repeated late	0.701093	0.796183	0.905252
	6.00	CTRL	5256.184	4168.598	0.793084	1.000107	0.892952		1.033583					CTRL	4592.062	3676.477	0.800616	1.00077	0.893544		0.945255	1.353372	1.147953
		66	3657.456	2745.87	0.75076	0.946733	0.845298		1.237458					66	3914.113	2746.113	0.701593	0.876991	0.783028		0.656277	1.152387	1.465811
		104	4156.406	3607.062	0.867832	1.094366	0.977112		1.481303					104	3714.991	2244.477	0.604168	0.755209	0.674294		1.407958	1.106146	1.788611
		649	4364 477	4132 598	0 946871	1 194037	1 066104		0.852377					649	4291 598	4075 134	0 949561	1 186951	1 059778	repeated late	0 954182	1 452868	1 082021
		650	3730 891	3363 719	0 901586	1 136931	1 015117		1 20861					650	-	2658.062	-	-	-	damaged acti	1 112525	1 345395	1 179562
		Samplo	Actin	CdkE	CdkE (Acti	Cdk Norm	Norm to To	otalCalina	1.007060					amplo	Actin	Cdke	CdkE/Acti	Cdk Norm	Norm to T	atalSalino	0.626022	1.343333	0.964397
	Min The Test 100 (77) 100 (77) 700 (70)	Sample	AUIII	1/100 527	CUK5/ACLI	CUK NUTTI		actin dam	1 12/010				3	79	2500 527	1/50 /06	0.40646	0.768675	0.686217	repeated late	0.020952	ob acw or	0.004207
		305	-	1490.327	-	-	-	actin dam	1.124919				NO UN CR. UN 270 THE 76	70	3390.327	1439.400	0.40040	0.700075	0.000317	repeated late	i, su avera	se was uu	le
		/8	-	576.506	-	-	-	actin dam	ageo					803	3491.062	1449.527	0.415211	0.785224	0.701093				
		76	3720.234	3848.184	1.034393	1.858414	1.659298	repeated	Average C	ortex - nor	m to TOTS			76	5495.548	3736.184	0.679856	1.285708	1.147953				
	- Be Cart	133	3327.113	1914.062	0.575292	1.033583	0.922842			Females				130	4316.891	2035.527	0.471526	0.891725	0.796183				
		CTRL	4560.941	2538.79	0.556637	1.000067	0.892917		Saline	50	100		11 Series	CTRL	4754.77	2514.234	0.528781	1.000003	0.89286				
		130	3166.82	2329.234	0.735512	1.321437	1.179855	repeated	1.08947	1.068054	0.919867			133	4635.598	2595.062	0.559812	1.058685	0.945255				
		277	2895.698	1791.477	0.618668	1.111514	0.992423		0.845298	1.004209	0.977112			277	3607.941	3132.062	0.868102	1.641708	1.465811				
		715	2514.991	1261.527	0.501603	0.901191	0.804635		1.015117	1.000495	1.066104			715	3699.184	2964.941	0.801512	1.515776	1.353372				
		716	-	-	-	-	-	Part of act	0.922842	0.804635	1.333965			716	-	-	-	-	-	Part of actin l	ost at the e	nd of the	gel
		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to To	otalSaline	1,104873	1.466448	0.992423		s	ample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline			-
	See See an Office and the States States	3	3910,234	1887,113	0.482609	1,237458	1,104873		1 322592	1 37742	1 881505			650	2616.598	1023,184	0.391036	0.73503	0.656277				
		36	3855 355	2469 527	0.640545	1 642422	1 466448		0 761051	1 907/33	1 308988			61	2941 406	1975 163	0.671503	1 262224	1 126985	repeated ear	ier so ave	rage was d	one
		34	3837 234	3153 598	0.821841	2 107286	1 881505		1 079116	0.495114	1 637889			649	3293 577	2468 82	0.749586	1 408997	1 258033	spot on Cdk5	hand	uge was a	one
			4076 649	2255 112	0.577709	1 /191202	1 222502		0 800160	0.455114	1 2/6/62			716	2122 0/1	2610 801	0.929019	1 576012	1 /07059	spot on cars	bunu		
	for (ano	СТРІ	5584 276	2333.113	0.377708	0.000903	0.902691		0.855105		1.340403			CTPL	1111 509	2013.031	0.522124	1.000252	0.803083				
		400	5504.570	2542 649	0.303523	1.00700	1 455140	المعقممين			dana	-	\$4Cartes	70	2562 577	2003.027	0.004202	1.511047	1.240002	senseted eed			
		400	5575.205	3543.048	0.035009	1.029700	1.455148	repeated	later, so av	erage was	done			78	2503.5//	2001.891	0.804302	1.511847	1.349803	repeated earl	ier, so ave	age was o	one
		42	4698.648	2686.527	0.5/1/66	1.466067	1.308988							725	2415.749	25/4.52/	1.065726	2.003245	1.788611				
		399	4924.598	4103.012	0.83316/	2.136325	1.907433							526	2633.284	1808.113	0.686638	1.290673	1.152387				
		//1	4212.698	3013.891	0.71543	1.834436	1.63/889							757	-	1852.577	-	-	-	damaged acti	n		
		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to To	otalSaline					S	ample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline			
_		803	2591.87	1630.426	0.629054	0.852377	0.761051						341 46 CTR 4001 4011 2111 2111	3	2730.941	1968.698	0.720886	1.53881	1.373937	repeated late	r, so avera	ge was doi	ne
		716	3483.456	3107.083	0.891954	1.20861	1.079116						الما في بــــ	36	3759.941	2750.477	0.731521	1.561512	1.394207	repeated late	r, so avera	ge was doi	ne
_	Thi Coder	776	4044.991	3006.305	0.743217	1.007069	0.899169							34	3624.941	2637.406	0.727572	1.553082	1.38668	repeated late	r, so avera	ge was do	ne
		78	1618.627	414.92	0.256341	0.347345	0.31013	repeated	later, so av	erage was	done		· 	44	3016.305	1760.698	0.583727	1.246028	1.112525				
		CTRL	3959.698	2922.497	0.738061	1.000082	0.89293						9649	CTRL	5229.305	2449.77	0.46847	0.999999	0.892856				
		725	3467.991	3859.64	1.112933	1.508039	1.346463							400	3848.406	3624.941	0.941933	2.010658	1.795231	repeated late	r, so avera	ge was doi	ne
		400	3306.406	3551.983	1.074273	1.455655	1.299692	repeated	earlier, so	average wa	is done			42	2991.941	2431.406	0.812652	1.734693	1.548833	repeated late	r, so avera	ge was doi	ne
		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to To	otalSaline						399	4440.991	3134.941	0.70591	1.506842	1.345395				
	Nor 2000 cmc 2000 9350	78	2519.82	1863.134	0.739392	0.76171	0.680098	repeated	earlier, so	average wa	is done			771	-	2281.698	-	-	-	damaged acti	n		
	201	76	3752.941	4115.355	1.096568	1.129667	1.008631	repeated	earlier, so	average wa	is done		S	ample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline			
-		CTRL	4380.941	4252.719	0.970732	1.000033	0.892886					1	468 349 CH THE 274 H 8 H 8	3	3777.355	1537.456	0.407019	0.598558	0.534426	repeated ear	ier, so ave	rage was d	one
		130	3459.355	3088.255	0.892726	0.919672	0.821136	repeated	earlier. so	average wa	is done			42	3535.698	2181.941	0.617117	0.907526	0.810291	repeated ear	ier. so ave	rage was d	one
	The Cores													400	3907.941	3305.184	0.845761	1.243766	1.110505	repeated earl	ier, so ave	rage was d	one
														36	3821.406	2380.941	0.623054	0.916255	0.818085	repeated ear	ier, so ave	age was d	one
													2 in 1	CTRI	4086.82	2781.698	0.680651	1.000957	0.893712	Specifica curi	.,	. 82 1000	
														771	4304 698	2833 527	0.658241	0.968001	0.864287				
														757	3507.284	1674.627	0.477471	0.702163	0.626932				
														24	3632 284	2150 454	0 50204	0.870646	0 777262	reneated ear	ier so aver	200 1425 0	one
														54 6/0	2205 609	1900 042	0.55204	0.070040	0.750726	repeated car	ior, so ave	age was d	one
														o49	5305.098	1890.042	0.5/1/53	0.840813	0.750726	repeated ear	iei, so avei	age was 0	one

Hippocampus	Male	Total prot	ein Cdk5					Avera	ge Hippoca	ampus		Hippocampus	Male	SYNAPTO	NEUROSON	/AL protein	Cdk5			Average Hi	pp - norma	alized to s
2020-04-07	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm t	o TotalSali		Male			2020-04-07	Sample	Actin	Cdk5	Cdk5/Actin	Cdk Norm	Norm to T	otalSaline		Male	
	997	2847.012	2295.669	0.8063433	1.1065124	1.333		Saline	50	100			59	4472.719	2395.891	0.5356677	0.71939071	0.866736		Saline	50	100
	129	3888.012	2826.376	0.7269463	0.9975592	1.202		1.106512					997	4196.891	2506.062	0.5971234	0.80192455	0.966174		0.966174	0.866736	0.928642
	137	4353.305	2982.184	0.6850391	0.9400516	1.133		0.870321					129	5268.184	2557.941	0.4855451	0.65207714	0.785635		0.776354	0.785635	0.539049
	CTRL	5298.477	3861.134	0.7287253	1.0000003	1.205		0.799521					137	6394.134	3669.77	0.5739276	0.77077301	0.928642		0.906649	0.74106	0.736834
	761	4142.355	2627.184	0.6342247	0.8703211	1.049		0.726582					CTRL	6035.598	4494.184	0.7446129	0.99999984	1.204819		0.50489	1.218477	0.952278
	766	4218.598	2131.477	0.5052572	0.6933441	0.835		0.661152					761	5404.719	2593.234	0.4798092	0.64437395	0.776354		0.716806	1.067635	0.990123
	954	4157.598	2201.891	0.5296065	0.7267577	0.876		0.832818					766	3794.77	1737.991	0.4579964	0.61507978	0.74106		0.84561	0.947643	1.073246
	767	4696.305	3872.305	0.8245429	1.1314871	1.363	repeated	the next da	ay, so avar	age was do	one		954	4967.891	1655.042	0.3331478	0.44741068	0.539049		1.092885	0.793679	0.785151
2020-04-21	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm t	o TotalSali	ne					767	4214.598	3173.82	0.753054	1.01133613	1.218477		0.795204	0.818211	0.938884
	720	2550.891	2383.962	0.9345605	0.7995214	0.963		Average H	ipp - norm	nalized to s		2020-04-21	Sample	Actin	Cdk5	Cdk5/Actin	Cdk Norm	Norm to T	otalSaline			
	557	2795.234	3112.477	1.1134943	0.9526001	1.148			Male				72	3527.113	1887.234	0.5350648	0.61157252	0.736834				
	CTRL	3615.184	4225.891	1.1689283	1.0000242	1.205		Saline	50	100			720	4647.355	3059.719	0.6583786	0.75251867	0.906649				
	891	3395.113	2883.477	0.8493022	0.7265824	0.875		1.333148	1.201879	1.132592			646	3582.698	2777.598	0.7752811	0.8861368	1.067635				
	N 74	3415.891	3904.598	1.1430687	0.9779012	1.178		1.04858	0.835354	0.875612			557	3560.577	2462.184	0.6915126	0.79039049	0.952278				
	71	4965.426	4470.962	0.9004186	0.7703128	0.928		0.963279	1.11652	1.147711			CTRL	5013.113	4386.012	0.8749079	1.00000899	1.20483				
	767	5331.477	4499.083	0.8438718	0.7219367	0.87	repeated	0.875401	1.178194	0.928088			891	3001.698	1100.527	0.3666348	0.41905911	0.50489				
2020-04-27	Sample	Actin	Cdk5	Cdk5/Actir	Cdk Norm	Norm t	o TotalSali	0.796569	0.777915	0.882381			74	4812.941	3312.012	0.6881472	0.78654386	0.947643				
N	535	4691.598	1857.083	0.3958317	0.6611519	0.797							71	3999.062	2875.305	0.7189949	0.82180233	0.990123				
	858	5418.841	2094.719	0.3865622	0.6456693	0.778							556	3544.648	1845.062	0.5205205	0.59494858	0.716806				
	861	6134.669	2689.891	0.4384737	0.7323763	0.882						2020-04-27	Sample	Actin	Cdk5	Cdk5/Actin	Cdk Norm	Norm to T	otalSaline			
	CTRL	5459.184	3268.598	0.5987338	1.0000565	1.205							535	3709.648	2149.305	0.5793825	0.70185641	0.84561				
													497	3786.648	2059.184	0.5438013	0.65875381	0.793679				
													779	4172.012	3067.891	0.7353505	0.89079403	1.073246				
													CTRL	5778.941	4770.598	0.8255142	1.00001723	1.20484				
													860	3482.406	2607.648	0.7488064	0.9070944	1.092885				
													858	4297.527	2409.234	0.5606094	0.67911495	0.818211				
													861	3827.234	2058.891	0.537958	0.6516753	0.785151				
												2020-04-27	Sample	Actin	Cdk5	Cdk5/Actin	Cdk Norm	Norm to T	otalSaline			
													CTRL	5976.376	3268.598	0.5469197	0.99999952	1.204819				
													-	-	-	-	-	-	epty well l	because ge	l was dama	aged
													851	5276.497	1904.698	0.3609777	0.66001928	0.795204				
													≤ 679	5049.012	2151.891	0.4262004	0.77927378	0.938884				

	Hippocampus	Female	Total prot	ein Cdk5					Avera	ge Hippoca	ampus		Hippocampus	Female	SYNAPTO	NEUROSON	1AL proteir	n Cdk5			Average H	ipp - norm	alized to s
		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline		Females				Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline		Females	
		526	4728.134	3232.305	0.683632	0.938282	1.013264		Saline	50	100			526	6129.255	2128.598	0.347285	0.475733	0.51375		Saline	50	100
		539	4241.305	2807.527	0.661949	0.908522	0.981125		1.177135			_		539	5825.426	2455.891	0.421581	0.577509	0.62366		0.579373	0.51375	0.62366
		803	3651.184	3131.477	0.857661	1.177135	1.271204		0.848729					803	5165.426	2023.012	0.391645	0.5365	0.579373		0.454331	0.581108	0.513857
		CTRL	4628.941	3372.648	0.7286	1	1.079914		1.034159					694	4756.477	1663.062	0.349642	0.478961	0.517237	spot on Cdk	0.523301	0.469987	0.816983
		694	3442.355	2184.062	0.634467	0.870803	0.940392		0.832941					CTRL	5282.062	3858.184	0.730431	1.000591	1.080552		0.567449	0.708675	0.788263
		715	3574.82	1941.648	0.543146	0.745465	0.805038		0.677536					715	5234.891	2056.355	0.392817	0.538106	0.581108		0.815779	0.851492	0.846607
		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline	0.984169					716	5391.305	1655.77	0.307119	0.42071	0.454331		0.781359	0.521348	0.79447
Tet Report		78	4381.598	3469.891	0.791924	0.905573	0.977941		0.925778					Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline			
		500	4185.355	3771.719	0.901171	1.030498	1.112849							78	4172.305	2153.933	0.516245	0.521776	0.563473	Stripe on Cdk	5		
	160 767 C766 771 776 114 277	757	4945.477	3670.598	0.742213	0.848729	0.916554		Average H	ipp - norm	nalized to s	s i i	ж. ог. _{сов.} л. он 27	500	4511.426	1942.598	0.430595	0.435208	0.469987				
		CTRL	5079.648	4442.134	0.874496	0.999996	1.079909			Females		<u> </u>		757	4968.426	2382.062	0.47944	0.484576	0.523301				
		571	4262.062	2868.527	0.673037	0.769625	0.831129		Saline	50	100			CTRL	5065.062	5011.426	0.989411	1.000011	1.079925				
		776	5166.376	3027.234	0.585949	0.670039	0.723584	Stripe on a	1.271204	1.013264	0.981125	5		771	4725.012	2224.477	0.470788	0.475831	0.513857				
		134	5333.548	3655.477	0.685374	0.783733	0.846364		0.916554	0.805038	0.940392	2		776	4454.598	2315.891	0.519888	0.525458	0.567449				
		277	5177.305	4470.234	0.863429	0.98734	1.066242		1.116802	0.977941	0.831129	9		134	3166.941	2370.477	0.748507	0.756526	0.816983				
		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline	0.899505	1.112849	0.846364	1		277	3592.184	2594.255	0.722194	0.729932	0.788263				
	N 10 10 10 10 10 10	76	4757.891	3618.497	0.760525	0.741976	0.80127		0.73168	0.831371	1.066242	2		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline			
		61	4096.062	3232.184	0.789095	0.769849	0.831371		1.062818	0.951427	0.80127	/	5 el 14. CR5. 34 36 14 39	76	4133.77	2657.376	0.642846	0.783958	0.846607				
		66	3176.941	3367.598	1.060013	1.034159	1.116802			0.702094	0.89982	2		61	5277.74	2840.012	0.538111	0.656233	0.708675				
		CTRL	4671.527	4790.426	1.025452	1.000441	1.08039			0.726456	1.162991			5 66	3921.598	2429.184	0.619437	0.755411	0.815779				
		34	3553.184	3034.648	0.854064	0.833234	0.89982					VA Higgs		CTRL	4949.184	4060.598	0.820458	1.000559	1.080517				
_		36	3556.648	3211.82	0.903047	0.881021	0.951427							34	4042.184	2438.477	0.603257	0.73568	0.79447				
		44	3923.184	3349.477	0.853765	0.832941	0.899505							36	3964.184	2563.062	0.646555	0.788481	0.851492				
		399	3763.355	2507.87	0.666392	0.650139	0.702094							44	5665.012	3361.062	0.593302	0.723539	0.781359				
		Sample	Actin	Cdk5	Cdk5/Acti	Cdk Norm	Norm to T	otalSaline						399	4375.406	1732.092	0.39587	0.482768	0.521348				
		538	3481.577	2335.305	0.670761	0.677536	0.73168																
		650	2645.991	2578.062	0.974328	0.984169	1.062818																
		429	3736.87	2488.648	0.665971	0.672698	0.726456																
		956	3776.406	4026.255	1.066161	1.07693	1.162991																
		CTRL	4714.062	4676.497	0.992031	1.002052	1.082129																

TOTAL GLT1 P	ROTEI	l (males)											SYNAPTONEUR	ROSOMAL	ilti P	ROTEIN	(males)							
Thalamus/Hypo	othalar	Male	Total prot	ein GLT1					Ave	rage Thala	mus		Thalamus/Hypo	thalar Male	SY	(NAPTON	IEUROSON	1AL protei	in GLT1			Average T	halamus N	ormTotSa
2020)-08-29	Sample	Actin	GLT1	GLT1/Actir	Norm GLT	Norm toTo	talSaline		Male			2020-	08-29 Sampl	e Ac	ctin	GLT1	GLT1/Acti	Norm GLT	Norm toTe	otalSaline		Male	
		535	8423.933	11276.07	1.338575	0.7757606	0.891679		Saline	50	100				535	7691.64	16194.69	2.105493	1.311017	1.506916		Saline	50	100
		497	6770.64	12251.82	1.8095517	1.0487115	1.205416		0.775761						497 6	6105.861	10818.48	1.771819	1.10325	1.268103		1.506916	1.268103	1.162075
		557	6500.276	11960.22	1.8399553	1.0663316	1.225669		1.031929					1	557 6	085.154	9880.309	1.623674	1.011005	1.162075		1.438652	1.280047	1.238992
		CTRL	9678.518	16700.14	1.7254849	0.9999913	1.149415		1.177208					N C	TRL 8	385.104	13463.43	1.605637	0.999774	1.149165		1.385785	1.908877	1.746877
		553	6271.569	11167.12	1.7805937	1.0319291	1.186125		0.750889						553 7	830.033	15739.26	2.010114	1.251628	1.438652		2.158493	2.17986	1.98170
		552	6668.861	11938.46	1.7901796	1.0374846	1.192511		0.850063						552 6	314.447	11293.43	1.788507	1.11364	1.280047		2.144361	1.447466	2.09586
		679	6682.983	12480.65	1.8675271	1.0823107	1.244035		0.718198						679 6	365.912	11020.31	1.731144	1.077923	1.238992		2.411981	2.930521	2.55846
		556	7145.154	14513.75	2.0312721	1.1772078	1.353112		0.805218						556 5	349.861	10358.65	1.936247	1.205633	1.385785		2.025634		2.05054
2020	0-09-01	Sample	Actin	GLT1	GLT1/Actir	Norm GLT	Norm toTo	otalSaline	0.872752				2020-	09-01 Sampl	e Ac	ctin	GLT1	GLT1/Acti	Norm GLT	Norm toT	talSaline			
		766	3629.134	6715.61	1.8504718	0.5784532	0.664889								766	3202.77	13244.1	4.1352	1.660723	1.908877				
		768	3711.648	9185.288	2.4747196	0.7735916	0.889186								768 3	352.113	12685.27	3.78426	1.519783	1.746877				
		647	4018.426	9652.631	2.4020925	0.7508886	0.86309								647 1	979.577	9256.388	4.675942	1.877889	2.158493				
		767	4180.355	10654.17	2.5486273	0.796695	0.915741		Average T	halamus N	IormTotSal		-		767 2	797.577	13210.8	4.72223	1.896478	2.17986				
100 C		779	5196.891	11812.7	2.2730325	0.7105447	0.816718			Male	-	L			779 2	999.698	12877.63	4.292976	1.724087	1.981709				
		CTRL	5892.891	18852.55	3.1992024	1.0000633	1.149498		Saline	50	100			C	TRL 5	342.184	13320.46	2.493448	1.001385	1.151017				
		720	3777.234	10271.63	2.7193526	0.8500633	0.977084		0.891679	1.205416	1.225669				720 3	073.698	14278.34	4.645329	1.865594	2.144361				
		861	3397.406	8588.924	2.5280829	0.7902729	0.90836		1.186125	1.192511	1.244035				861 2	248.406	13578.39	6.039117	2.425348	2.787757	Part of ac	tin lost at th	ne end of t	he gel
2020	0-09-02	Sample	Actin	GLT1	GLT1/Actir	Norm GLT	Norm toTo	otalSaline	1.353112	0.664889	0.889186		2020-	09-02 Sampl	e Ac	ctin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline			
		72	3911.941	7180.953	1.8356496	0.7232662	0.83134		0.86309	0.915741	0.816718				72 3	313.234	11966.7	3.611789	1.823399	2.095861				
		860	3489.941	6361.418	1.8227867	0.7181981	0.825515		0.977084	0.711221	0.90836			1	860 3	117.113	12956.46	4.156557	2.098424	2.411981				
		129	4058.234	6373.125	1.5704183	0.6187621	0.711221		0.825515	1.110597	0.83134				129 3	775.941	9418.752	2.494412	1.259295	1.447466				
-		137	3391.406	6367.125	1.8774293	0.7397279	0.850262		0.925538		0.850262	-			137 3	304.577	14569.87	4.408998	2.225867	2.558468				
		CTRL	5585.77	14176.2	2.5379126	0.9999656	1.149386				1.048433			C	TRL 5	063.941	10030.63	1.980795	0.999998	1.149423				
		891	4290.355	8767.953	2.0436428	0.8052178	0.925538								891 2	533.163	8842.681	3.490767	1.762301	2.025634				
		138	3476.527	8525.368	2.4522657	0.9662197	1.110597								138 2	075.749	10482.85	5.050154	2.549553	2.930521				
		100	3386.406	7839.539	2.3150027	0.9121366	1.048433								570 3	291.698	11631.85	3.533694	1.783973	2.050544				

		-					-				STRAFTOREOROSO	MAL GETT	NOTEIN	(remaies)						
Thalamus/Hypothalam	Female	Total prot	ein GLT1					Ave	rage Thala	imus	Thalamus/Hypothalan	Female	SYNAPTO	NEUROSON	/AL protei	n GLT1			Average T	halamus I
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline		Female			Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline		Female
1942 133. 1940 (PTot CP6, 411 16, 1943)	130	4242.234	15033.26	3.543713	1.104993	0.945651	repeated	Saline	50	100		130	2820.355	13146.53	4.661303	1.601272	1.370366		Saline	50
	133	4561.719	15172.62	3.326076	1.03713	0.887574	stripe on	0.714176			GET ME EET - MET - VIE ME AND - MAIN - AND - MAIN	133	2933.527	9751.045	3.324	1.141876	0.977215		0.977215	1.37036
	134	4275.577	13990.67	3.27223	1.02034	0.873205		1.192683			2 (in case one can be be be be	134	2767.941	9200.338	3.323892	1.141839	0.977183		1.159348	1.0349
	277	4850.527	11898.02	2.452933	0.764868	0.654573		0.851408				CTRL	5261.184	15313.41	2.910639	0.999876	0.855692		1.715696	1.192
	CTRL	6702.841	21496.4	3.207058	1.000018	0.855814		0.933025				277	3449.062	11299	3.275962	1.125373	0.963092		1.311642	1.55130
	61	4851.548	12594.48	2.595971	0.80947	0.692743	repeated	1.080821				61	3939.234	13867.22	3.520283	1.209304	1.03492		1.326615	1.46295
	66	4904.77	11233.7	2.290363	0.714176	0.61119		1.200631				66	3842.648	15153.58	3.943526	1.354698	1.159348		1.294526	1.3726
	104	4932.527	16054.89	3.254902	1.014937	0.868581		1.752396				104	3857.184	17089.95	4.430679	1.522047	1.302565		1.635554	1.33636
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline	1.168494				Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline		
a 158 177 117 CM 1148 170 174	526	3045.82	12287.75	4.0343	0.996123	0.852481						36	3962.477	14743.53	3.720786	1.393553	1.1926			
	538	2227.335	10756.17	4.829164	1.192386	1.020442						3	2937.941	15726.19	5.352792	2.004791	1.715696			
	757	2112.163	7282.56	3.447916	0.851337	0.728573					men une per la	34	3754.648	13779.82	3.670071	1.374558	1.176344			
	771	2836.284	11980.34	4.223956	1.042952	0.892556		Average T	'halamus N	lormTotSal		78	3423.719	13193.46	3.853546	1.443276	1.235152	damaged	actin, was i	repeated
	CTRL	4489.991	18179.95	4.048994	0.999752	0.855585			Female			CTRL	5265.477	14067.58	2.671663	1.000623	0.856331			
	649	2450.577	10538.75	4.300519	1.061856	0.908735		Saline	50	100		42	3777.355	16907.89	4.47612	1.676449	1.434702			
	715	2251.87	9874.167	4.384874	1.082685	0.92656		0.61119	1.154832	0.873205		44	4015.891	16433.77	4.092186	1.532654	1.311642			
	716	2753.82	11399.46	4.139508	1.022101	0.874712	spot on a	1.020442	0.850291	0.654573		400	2401.355	10960.41	4.56426	1.709461	1.462953			
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline	0.728573	0.852481	0.868581		Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT			
.3 ∞34 ∞78 65% ∞42 ∞44 ∞400	36	5991 426	15208 19	2 538325	0 89064	0 762208	reneated	0 797808	0.92656	0.892556		526	2880 355	13859 36	4 811684	1 603895	1 37261			
	3	5002,305	13290.53	2.656881	0.932239	0.797808	repeated	0 924171	0 789661	0.908735	343, 38, 200 20, 28, 980 200, 28, 39 (538	3034,355	14111.12	4,65045	1.55015	1.326615			
	1 34	-	13059.8	-	-	-	Damaged	1.027456	0.730026	0.813383	and the set of an or but the top	A 771	3198,941	14875.87	4.65025	1.550083	1.326558			
	78	-	-	-	-	-	Compress	1.499637	0.824296	0.88939		757	3244.305	14722.53	4.537961	1.512654	1.294526			
	CTRL	5999.134	17082.87	2.847557	0.999143	0.855064			0.871924	0.882203		CTRL	4378.77	13138.24	3.00044	1.000147	0.855924			
	42	4521.77	12248.34	2,708749	0.950438	0.813383				0.689288		649	3289.941	14597.29	4.436945	1.478982	1.26571			
	44	4718.841	14523.17	3.077698	1.079894	0.924171						715	2748.113	12873.87	4.684623	1.561541	1.336364			
	400	5034.79	12240.34	2.431152	0.853036	0.730026						716	3053.82	17508.87	5.733434	1.911145	1.635554			
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline					78	995.991	-	-	-	-	Part of act	tin lost at th	ne end of
Ho be the No No No Ch	397	2467.062	12537.77	5.082066	1.200583	1.027456						Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline		
	399	3141.648	12809.07	4.077181	0.963189	0.824296					10 H 10	CTRL	5948.062	14602.65	2.455027	1.000011	0.855807			
an and been state of the set of the	⊲ 34	2436.527	13398.31	5.498937	1.299064	1.111736	repeated	later, so av	erage was	done		, 78	2688.82	11965.7	4.450168	1.812696	1.551302			
	61	2764.77	13782.48	4.985037	1.17766	1.00784	repeated	earlier, so	average w	as done		399	3516.841	-	-	-	-	Part of ba	nds lost at	the end o
	CTRL	5089.305	21542.16	4.232829	0.99996	0.855763						N								
	78	2629.234	11339.26	4.312761	1.018843	0.871924														
	76	3187.477	13908.89	4.363606	1.030854	0.882203														
	36	3309.941	13377.65	4.041659	0.954798	0.817114	repeated	earlier, so	average w	as done										
	133	1699.163	12603.7	7.417594	1.752326	1.499637														
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toT	otalSaline													
THE R. CHE 13 10 14 00	CTRL	5922.062	17428.48	2.942975	0.999991	0.855791														
	1 130	2332.749	10942.22	4.690696	1.593849	1.364012	repeated	earlier, so	average w	as done										
	725	4071.648	9651.388	2.370389	0.805433	0.689288														

	Cortex	Male	Total prote	ein GLT1					Ave	erage Cort	ex		Cortex	Male	SYNAPTO	IEUROSON	1AL protei	n GLT1			Average C	ortex - nor	m to TOTS
	2020-10-30	Sample	Actin	GLT1	GLT1/Actin	Norm GLT1	Norm toTot	alSaline		Male			2020-10-30	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline		Male	
Ĩ		215	5228.376	23267.54	4.4502429	1.6919358	1.442032		Saline	50	100		The local line and local line	215	5523.184	25150.35	4.553596	1.060448	0.903817		Saline	50	100
		100	7622.205	27258.74	3.576227	1.3596441	1.15882		1.323762					100	3950.234	22184.09	5.615892	1.307837	1.114666		1.129434	0.903817	1.114666
		954	8160.79	28414.64	3.4818486	1.3237624	1.128239		1.483681					954	4482.406	25506.23	5.690299	1.325165	1.129434		0.874266	1.06572	1.109514
		129	9509.205	27984.22	2.9428559	1.118843	0.953586		1.044612					129	4715.355	25318.13	5.369294	1.250409	1.06572		1.741164	1.034471	2.047324
		137	7923.548	23908.44	3.0173909	1.1471805	0.977738		1.109972					137	4604.355	25738.06	5.589938	1.301793	1.109514		2.358048	2.278681	1.606599
		CTRL	9129.548	24013.15	2.630267	1	0.852297		1.208775					CTRL	5069.715	21769.5	4.294029	1	0.852297		1.951409	1.914185	1.249101
		958	6143.426	23974.58	3.9024779	1.4836813	1.264537		1.139549					958	5322.891	23445.82	4.404714	1.025776	0.874266		1.373854	1.410664	1.482951
		138	7051.912	29144.69	4.132877	1.5712766	1.339194		0.939285					138	4520.841	23561.99	5.211859	1.213745	1.034471		1.244408	1.441865	
	2020-11-04	Sample	Actin	GLT1	GLT1/Actin	Norm GLT1	Norm toTot	alSaline	0.869201				2020-11-04	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline		1.319816	
		535	4923.355	13371.69	2.7159717	1.0446119	0.89032		1.173333					535	3872.991	12799.51	3.304813	2.042908	1.741164				
		59	4611.477	10876.65	2.3586048	0.9071621	0.773172								3199.284	13837.05	4.325044	2.673576	2.278681				
		71	5047.941	14623.53	2.8969297	1.1142116	0.949639							71	3899.991	15155.05	3.885918	2.402125	2.047324				
	-	CTRL	5216.527	13562.87	2.5999816	1	0.852297					_		CTRL	4416.456	7144.489	1.617697	0.999998	0.852296				
		860	4017.234	11593.36	2.8859058	1.1099716	0.946025							860	3192.87	14290.29	4.475687	2.766698	2.358048				
		74	4137.82	15255.43	3.6868278	1.4180207	1.208575		Average Co	ortex - nor	m to TOTS	i i i i i i i i i i i i i i i i i i i		74	3712.87	13489.65	3.633214	2.245913	1.914185				
		72	4589.941	12654.43	2.7569919	1.060389	0.903766			Male				72	3489.456	10640.75	3.049401	1.885023	1.606599				
		891	4921.184	15466.26	3.1427921	1.2087747	1.030235		Saline	50	100			891	3753.406	13902.12	3.703867	2.289588	1.951409				
	2020-07-06	Sample	Actin	GLT1	GLT1/Actin	Norm GLT1	Norm toTot	alSaline	1.128239	1.442032	1.15882		2021-07-28	Sample	Actin	GluR1	GluR1/Act	Norm Glu	Norm toTo	otalSaline			
		553	3738.477	12727.58	3.4044829	1.1395492	0.971234		1.264537	0.953586	0.977738			801	5144.891	23106.74	4.491202	1.655132	1.410664				
		497	3655.234	11808.63	3.2306088	1.08135	0.921631		0.89032	1.339194	0.949639			720	4356.648	19056.02	4.374009	1.611943	1.373854				
		570	3480.991	13269.22	3.8119079	1.2759225	1.087465		0.946025	0.773172	0.903766			766	5127.305	23537.09	4.590538	1.69174	1.441865				
		CTRL	4921.698	14703.92	2.9875714	1.0000005	0.852297		1.030235	1.208575	1.087465	-7		768	5107.598	20312.02	3.976824	1.46557	1.249101				
		959	4536.891	12731.34	2.8061811	0.9392855	0.80055		0.971234	0.921631				CTRL	5574.134	15125.53	2.713521	1.000008	0.852304				
		779	3797.991	13348.34	3.5145786	1.1764004	1.002642 b	ubble or	0.80055					763	5819.134	23054.72	3.961882	1.460063	1.244408				
		997	3872.77	10056.8	2.5967984	0.8692009	0.740817		0.740817					767	5212.376	21902.21	4.201962	1.54854	1.319816				

	Cortex	Female	Total prot	ein GLT1					Av	erage Cort	tex		Cortex	Female	SYNAPTO	NEUROSON	/AL protei	n GLT1			Average C	ortex - nor	m to TOTS
		Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline		Female				Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline		Female	
	Date that there are constructed and	526	4688.598	16567.14	3.533495	1.088904	0.684846		Saline	50	100			78	3590.527	14353.63	3.997639	2.530151	1.59129	repeated later, s	Saline	50	100
		538	4917.891	16239.38	3.302102	1.017597	0.639998		1.017597					803	3491.062	11093.8	3.177773	2.011249	1.264936		1.264936	1.601115	1.101057
_		539	5351.012	19173.84	3.583218	1.104228	0.694483		1.621191					76	5495.548	15201.1	2.766074	1.75068	1.101057		1.280397	1.356315	1.481809
		61	4757.477	15556.72	3.269952	1.007689	0.633767		1.279613					130	4316.891	14709.1	3.407335	2.156541	1.356315		1.434559	1.035054	2.52985
		CTRL	5256.184	17056.31	3.244998	1	0.628931		1.250008				N KD 31- 100 CK 120 27- 75% 761	CTRI	4754.77	7507.489	1.578938	0.999328	0.628508		1.004721	1.134946	1.620892
		66	3657.456	19241.02	5.260765	1.621191	1.019617		2.971067				54 Certan	133	4635.598	14910.92	3.216613	2.035831	1.280397		1.364017	1.234767	1.377372
		104	4156.406	16141.72	3.883577	1.196788	0.752697		2.441221					277	7 3607.941	13430.92	3.722601	2.356076	1.481809		1.406262	1.393838	1.208279
		649	4364.477	16242.89	3.721613	1.146876	0.721306		1.624774					715	3699.184	9618.853	2.600263	1.645736	1.035054		1.397593	1.079045	0.892878
		650	3730.891	15491.95	4.152345	1.279613	0.804788		1.096811					716	5 -	-	-	-	-	Part of bands los	t at the en	d of the ge	d in the second s
		Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline	1.033102					Sample	Actin	GLT1	GLT1/Actii	Norm GLT	Norm toTo	otalSaline			
	80. No See 10. (D), 10. 20. 11. De.	803	-	9140.196	-	-	-	Damaged	1.59282			653	410 6490 716 CTL 780 7250 5210 7271	650	2616.598	4595.61	1.75633	2.280948	1.434559				
_		1 78	-	9555.853	-	-	-	Damaged	actin					61	L 2941.406	4087.125	1.389514	1.804564	1.134946				
_		76	3720.234	12012.8	3.229045	1.129511	0.710384		Average Co	ortex - nor	m to TOTSa	-		649	3293.577	15601.67	4.737	6.151948	3.869149	repeated later, s	o average	was done	
		133	3327.113	11889.51	3.573522	1.250008	0.786168			Female				716	5 3122.941	3841.468	1.23008	1.597507	1.004721				
		CTRL	4560.941	13038.63	2.858759	0.999986	0.628922		Saline	50	100			CTRI	4441.598	3419.175	0.769807	0.99975	0.628774				
		130	3166.82	9863.388	3.114603	1.089479	0.685207		0.639998	0.684846	0.694483			78	3 2563.577	5056.075	1.972274	2.561394	1.61094	repeated earlier	, so averag	e was done	e
		277	2895.698	14615.41	5.047284	1.765525	1.110393		1.019617	0.633767	0.752697			725	2415.749	4793.953	1.984458	2.577218	1.620892				
		715	2514.991	12023.75	4.780833	1.672322	1.051775		0.804788	0.685207	0.721306			526	5 2633.284	13455.22	5.109672	6.635937	4.173546				
		716	-	-	-	-	-	Damaged	0.786168	1.051775	0.710384			757	7 -	-	-	-	-	Part of bands los	t at the en	d of the ge	1
		Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline	1.868596	1.54235	1.110393			Sample	Actin	GLT1	GLT1/Activ	Norm GLT	Norm toTo	otalSaline			
31	360 34m 44 CRL 40310 42m 39910 771m	3	3910.234	11966.1	3.060199	2.971067	1.868596		1.535359	0.882015	1.004951		No ha to the to ha ha		3 2730.941	13036.07	4.77347	2.544494	1.600311	repeated later, s	o average	was done	
		36	3855.355	9738.267	2.525907	2.452337	1.54235		1.021871	0.901863	1.930305			36	3759.941	13365.48	3.554705	1.894832	1.191718	repeated later, s	o average	was done	
		⊿ <u>34</u>	3837.234	11576.12	3.016787	2.928919	1.842087	spot on Gl	0.689818	1.202887	0.770703		and and and and and and sold	1 34	3624.941	15236.36	4.203202	2.240513	1.409128	repeated later, s	o average	was done	
		K 44	4076.648	10250.56	2.514458	2.441221	1.535359		0.64975					44	3016.305	12652.36	4.194655	2.235957	1.406262		Ŭ		
-		CTRL	5584.376	5768.296	1.032935	1.002849	0.630723					-		CTRI	5229.305	9809.167	1.875807	1.010672	0.635643				
		400	5575.205	8068.418	1.447197	1.405045	0.883676	repeated	later, so av	erage was	done			400	3848.406	-	-	-	-	Defective transf	er. Sample	repeated	
		42	4698.648	7733.075	1.645809	1.597872	1.004951							42	2 2991.941	-	-	-	-	Defective transf	er. Sample	repeated	
		399	4924.598	7273.539	1.476981	1.433962	0.901863							399	4440.991	18463.84	4.157595	2.216202	1.393838				
		771	4212.698	13317.44	3.161261	3.069186	1.930305							771	L -	-	-	-	-	Damaged bands			
		Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline						Sample	Actin	GLT1	GLT1/Actin	Norm GLT	Norm toTo	otalSaline			
	1011 711 721 722 CR.03 5218 4838	803	2591.87	16451.07	6.34718	1.624774	1.021871					-			3777.355	12859.41	3.404342	1.79308	1.127723	repeated earlier	, so averag	e was done	e
		716	3483.456	14925.53	4.28469	1.096811	0.689818							42	3535.698	12896.53	3.64752	1.921163	1.208279				
		1 776	4044.991	16324.82	4.035812	1.033102	0.64975							a 400	3907.941	12729.7	3.257394	1.715682	1.079045				
		78	1618.627	12093.63	7.471537	1.912591	1.202887					-	· 	36	5 3821.406	14740.82	3.857434	2.031726	1.277815	repeated earlier	, so averag	e was done	e
		CTRL	3959.698	15468.65	3.906523	1.000006	0.628935							CTRI	4086.82	7759.267	1.898607	1.000004	0.628933		Ĭ		
		725	3467.991	16601.6	4.787095	1.225418	0.770703							771	4304.698	11602.87	2.695398	1.419677	0.892878				
		400	3306.406	18080.02	5.468178	1.399764	0.880355	repeated	earlier, so	average w	as done			757	3507.284	14797.29	4.219016	2.222172	1.397593				
														34	3632.284	14754.75	4.062114	2.139531	1.345617	repeated earlier	, so averag	e was done	e
														649	3305.698	11880.68	3.594001	1.892974	1.19055	repeated earlier	, so averag	e was done	e

HIPPOCAMPUS	Male	Total p	rotein Gl	.T1					Avera	ge Hippoca	ampus		HIPPOCAN	IPUS	Male	SYNAPTO	NEUROSON	/AL protei	n GLT1			Average Hi	pp - norm	to TOTSal
2020-04-07	Sample	Actin	GLT1	0	GLT1/Actin	Norm GLT1	Norm toTo	otalSaline		Male			2020-	04-07	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline		Male	
	9	97 2847.0	12 1055	58.65	3.7086784	1.5354939	1.435041		Saline	50	100				59	4472.719	21003.59	4.695934	1.542909	1.429944		Saline	50	100
	1 1	3888.0	12 1	1244	2.8919651	1.1973523	1.119021		1.535494						997	4196.891	17991.42	4.286845	1.38688	1.285338		1.285338	1.441971	1.243666
	1	4353.3	05 127	724.7	2.922998	1.2102008	1.131029		0.954754						1 129	5268.184	24979.4	4.741558	1.5579	1.443837		1.375906	1.455981	1.392428
	СТ	RL 5298.4	77 1279	97.46	2.415309	1.0000037	0.934583		0.831778					_	137	6394.134	25897.08	4.050131	1.330722	1.233292		1.520366	1.470431	2.04264
	7	51 4142.3	55 9552	2.338	2.3060163	0.9547536	0.892293		0.882229						CTRL	6035.598	18369.69	3.043558	1	0.934579		1.54773	1.808466	1.356419
	7	6 4218.5	98 8018	3.681	1.9007929	0.78698	0.735495		1.773036						761	5404.719	24421.08	4.518473	1.484602	1.375906		1.891328	1.692779	1.708262
	9	64 4157.5	98 6318	3.146	1.5196626	0.6291817	0.58802		0.799219						766	3794.77	18171.69	4.788615	1.573361	1.458166		2.444776	1.491031	1.981809
	7	4696.3	05 2163	34.36	4.6066767	1.9072897	1.782514	repeated	0.776444						954	4967.891	22527.35	4.53459	1.489898	1.380813		2.279267	1.865906	3.778151
2020-04-21	Sample	Actin	GLT1	(GLT1/Actin	Norm Eph/	Norm to T	otalSaline	1.078993						767	4214.598	25208.64	5.981267	1.935059	1.793382		3.151163	1.671605	
	7	2550.8	91 9467	7.288	3.7113652	0.8317783	0.777363						2020-	04-21	Sample	Actin	GLT1	GLT1/Acti	Norm Eph	Norm to To	otalSaline			
	⊲ 5	57 2795.2	34 7975	5.267	2.8531661	0.6394417	0.597609		Average H	ipp - norm	to TOTSa				72	3527.113	17593.72	4.988137	2.185624	2.04264				
	🖌 СТ	RL 3615.1	84 1613	30.82	4.4619646	1	0.934579			Male	-				720	4647.355	17254.43	3.712742	1.626792	1.520366				
	8	3395.1	13 1336	54.77	3.9364737	0.8822288	0.824513		Saline	50	100				646	3582.698	14810.07	4.133775	1.811273	1.692779				
		74 3415.8	91 1248	39.36	3.6562522	0.8194265	0.765819		1.435041	1.119021	1.131029				557	3560.577	11794	3.312383	1.451369	1.356419				
		4965.4	26 1677	78.48	3.3790615	0.7573035	0.70776		0.892293	0.735495	0.58802				CTRL	5013.113	11441.17	2.282248	1	0.934579				
	7	57 5331.4	77 1542	24.19	2.893042	0.6483785	0.605961	repeated	0.777363	1.194237	0.597609)			891	3001.698	11345.12	3.779566	1.656072	1.54773				
2020-04-27	Sample	Actin	GLT1	0	GLT1/Actin	Norm Eph/	Norm to T	otalSaline	0.824513	0.765819	0.70776	i			74	4812.941	17524.43	3.641106	1.595403	1.491031				
	5	4691.5	98 7107	7.217	1.5148819	1.773036	1.657043		1.657043	1.466743	1.041863				71	3999.062	16682.43	4.171586	1.827841	1.708262				
	8	58 5418.8	41 7266	5.167	1.340908	1.5694147	1.466743		0.746933	0.877568	0.831326	i			556	3544.648	16371.43	4.618634	2.023721	1.891328				
	8	6134.6	69 5843	3.146	0.9524794	1.1147933	1.041863		0.725648	0.844474	0.871782	2	2020-	04-27	Sample	Actin	EphA4	EphA4/Ac	Norm Eph	Norm to To	otalSaline			
	СТ	RL 5459.1	84 4664	1.489	0.8544297	1.0000348	0.934612								535	3709.648	14809.72	3.992218	2.637913	2.444776				
2020-07-06	Sample	Actin	GLT1	(GLT1/Actin	Norm Eph/	Norm to T	otalSaline							497	3786.648	11441.48	3.021533	1.996519	1.850342				
	5	3655.6	48 1184	17.34	3.2408312	0.7992185	0.746933								779	4172.012	13333.79	3.19601	2.108186	1.953833	Bubble on	GLT1 band		
	4	3609.0	12 137	741.8	3.8076357	0.9389977	0.877568								CTRL	5778.941	8745.752	1.513383	0.999989	0.934569				
	5	70 3579.6	98 1291	L1.97	3.6070009	0.8895193	0.831326								860	3482.406	12983.6	3.728342	2.459329	2.279267				
	СТ	RL 3953.9	91 1603	33.75	4.0550806	1.0000199	0.934598								858	4297.527	11632.95	2.706893	1.788617	1.657662				
	5	56 3673.6	98 1156	6.56	3.1484787	0.7764436	0.725648								861	3827.234	12282.43	3.209218	2.120536	1.965279				
	5	4699.5	27 1721	19.29	3.664047	0.9035874	0.844474						2020-	04-27	Sample	Actin	GLT1	GLT1/Acti	Norm Eph	Norm to To	otalSaline			
	6	79 4249.9	41 1607	75.53	3.7825302	0.9328065	0.871782						From the T	otal memb	orane:									
																5976.376	4664.489	0.780488	1.000625	0.935164				
															851	5276.497	13993.7	2.652082	3.400105	3.151163				
															679	5049.012	15920.77	3.153245	4.042622	3.746638				

HIPPOCAMPUS	Female	Total prot	ein GLT1					Avera	ige Hippoc	ampus	HIPPOCAMPUS	Female	SYNAPTO	NEUROSON	/AL protei	n GLT1			Average H	ipp - norm	i to TOTSa
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTotal	ISaline		Female			Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	talSaline		Female	
	526	4728.134	14140.36	2.990685	0.821617	0.810273		Saline	50	100		526	6129.255	24234.84	3.953962	2.415371	2.382023		Saline	50	100
and the set of a local set	539	4241.305	14159.95	3.338582	0.917193	0.904529		0.827494				539	5825.426	21463.62	3.684473	2.250747	2.219671		1.593665	2.382023	2.219671
	803	3651.184	10997.65	3.012078	0.827494	0.816069		0.70226				3 803	5165.426	13664.38	2.645354	1.615977	1.593665		1.553562	1.573655	1.449223
	CTRL	4628.941	16858.24	3.641921	1.000528	0.986714		0.882503				694	4756.477	11442.14	2.405591	1.469512	1.449223		1.18379	1.786925	1.16892
	694	3442.355	16468.05	4.783947	1.314271	1.296125		0.878417			Press	CTRL	5282.062	8647.995	1.637238	1.000146	0.986337		1.546517	1.240156	2.09777
	715	3574.82	17950.95	5.021496	1.379532	1.360485		1.309458				715	5234.891	13674.26	2.612138	1.595686	1.573655		1.324322	1.045706	1.915186
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTota	ISaline	1.384174	-			716	5391.305	13903.02	2.578785	1.575311	1.553562		1.058716	1.555446	1.554876
	78	4381.598	13586.24	3.10075	1.066649	1.051922		0.997384				Sample	Actin	GLT1	GLT1/Actii	Norm GLT	Norm toTo	otalSaline			1.39244
	500	4185.355	10945.41	2.615169	0.899611	0.88719						78	4172.305	17564.09	4.209684	1.811942	1.786925				
	57	4945.477	10096.05	2.04147	0.70226	0.692564						500	4511.426	13180.55	2.921593	1.257519	1.240156				
	CTRL	5079.648	14768.87	2.90746	1.000158	0.986349		Average H	lipp - norm	n to TOTSa		757	4968.426	13855.97	2.788804	1.200363	1.18379				
	771	4262.062	11134.58	2.612487	0.898688	0.88628			Female			CTRL	5065.062	11767.7	2.323309	1.000004	0.986197				
	776	5166.376	11722.46	2.268991	0.780527	0.76975 Str	ripe on	Saline	50	100		771	4725.012	13011.6	2.753771	1.185284	1.16892				
	134	5333.548	14496.75	2.718032	0.934995	0.922086		0.816069	0.810273	0.904529		776	4454.598	16229.55	3.643326	1.568168	1.546517				
	277	5177.305	10945.63	2.114156	0.727264	0.717223		0.692564	1.360485	1.296125		134	3166.941	15650.97	4.941982	2.127139	2.09777				
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTotal	ISaline	0.870318	1.051922	0.88628		277	3592.184	16207.38	4.511846	1.941999	1.915186				
	76	4757.891	10927.22	2.296651	0.739901	0.729685		0.866289	0.88719	0.922086	N 41 44 C% H 31 44 25	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTo	otalSaline			
	61	4096.062	10920.56	2.666112	0.858928	0.847069		1.291378	0.847069	0.717223		76	4133.77	17597.21	4.256939	1.576644	1.554876				
	66	3176.941	8702.56	2.739289	0.882503	0.870318		1.384174	0.935518	0.729685	· · · · · · · · · · · · · · · · · · ·	61	5277.74	15109.82	2.862934	1.060346	1.045706				
	CTRL	4696.941	14578.27	3.103779	0.999929	0.986123			0.986594	0.816489		66	3921.598	14218.65	3.625729	1.342863	1.324322				
	34	3553.184	9131.196	2.569863	0.82792	0.816489			1.255954	1.281837		CTRI	5501.891	14867.75	2.702299	1.000851	0.987033				
	36	3556.648	10472.56	2.944503	0.948616	0.935518						34	4042.184	15409.7	3.812222	1.411934	1.39244				
	44	3923.184	10696.97	2.726605	0.878417	0.866289						36	3964.184	16881.48	4.258501	1.577222	1.555446				
	399	3763.355	11686.2	3.10526	1.000406	0.986594						44	5665.012	16420.34	2.898553	1.073538	1.058716				
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTotal	ISaline					399	4375.406	-	-			Part of band lost	t at the end	of the gel	
	538	3481.577	8406.853	2.414668	1.108663	1.093356 ha	d to incr	ease a lot	the expos	ure, so it v	is repeated to check. Avarage w	as done									
		2645.991	7305.439	2.760946	1.267652	1.25015 ha	d to incr	rease a lot	the expos	ure, so it v	is repeated to check. Avarage w	as done									
2-2	429	3736.87	10365.2	2.773764	1.273537	1.255954															
	956	3776.406	10690.73	2.830927	1.299783	1.281837															
	CTRL	4714.062	10267.2	2.177993	0.999997	0.98619															
	Sample	Actin	GLT1	GLT1/Acti	Norm GLT	Norm toTotal	ISaline														
	538	3224.648	13071.17	4.053517	1.510252	1.489401 rep	peated														
	650	3125.113	12912.63	4.131893	1.539453	1.518198 rep	peated														
	CTRL	6039.941	16209.87	2.68378	0.999918	0.986113															

Table S2. Differentially expressed genes (DEGs) between RHY100 and saline at ZT4 and ZT14 in female and male brains.

Table S2A. DEGs at ZT4 in female and male full brains (bulk). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT4 FEMALES - Bulk					ZT4 MALES - Bulk				
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR
ENSMUSG0000026822	Lcn2	0.869514549	7.041533061	8.25433E-61	ENSMUSG0000048572	Tmem252	0.301522266	3.436333172	9.1296E-40
ENSMUSG0000048572	Tmem252	0.406429199	4.530032722	7.47375E-60	ENSMUSG0000023067	Cdkn1a	0.728708476	2.575387298	2.57076E-38
ENSMUSG00000103034	Gm8797	0.258887137	3.792684066	9.85481E-49	ENSMUSG0000090137	Uba52	1.566705425	-1.592591861	1.9628E-24
ENSMUSG0000023067	Cdkn1a	0.69285752	2.947335022	1.66595E-40	ENSMUSG0000025591	Tma16	0.512623452	1.988273614	2.35032E-22
ENSMUSG0000019970	Sgk1	3.497337024	2.687560996	9.51568E-39	ENSMUSG0000019970	Sgk1	4.075000454	1.783373553	2.35032E-22
ENSMUSG0000090137	Uba52	1.34912461	-2.401030667	5.14977E-35	ENSMUSG0000002910	Arrdc2	0.534338751	1.972320584	2.4024E-22
ENSMUSG0000002831	Plin4	0.199476867	3.566097483	1.18204E-34	ENSMUSG0000026822	Lcn2	0.318965703	3.976808511	4.16514E-21
ENSMUSG0000020713	Gh	0.127476341	-7.064504344	6.30449E-32	ENSMUSG0000020713	Gh	0.00249192	-4.908971261	2.10465E-18
ENSMUSG0000021342	Prl	0.220722924	-7.081251693	2.23951E-30	ENSMUSG0000034936	Arl4d	0.671750315	1.603404159	4.72061E-16
ENSMUSG0000098234	Snhg6	0.114886085	-2.386385158	1.31535E-29	ENSMUSG0000070369	Itgad	0.129223828	2.216207357	2.98866E-15
ENSMUSG0000070369	Itgad	0.159345426	3.151600826	5.24894E-27	ENSMUSG0000005705	Agrp	0.004983839	-4.510227569	3.50875E-13
ENSMUSG0000028298	Cga	0.018491938	-7.447204959	3.47791E-26	ENSMUSG0000002831	Plin4	0.238868289	1.677518709	5.54416E-13
ENSMUSG0000002910	Arrdc2	0.566954961	2.328043661	6.44245E-26	ENSMUSG0000045005	Fzd5	0.00961169	-2.579389594	1.37469E-12
ENSMUSG0000038489	Polr2l	0.499675781	-1.987088892	5.278E-24	ENSMUSG0000021025	Nfkbia	0.856864339	1.340768081	1.37469E-12
ENSMUSG00000113902	Ndufb1-ps	3.111366991	-1.934297638	1.40121E-23	ENSMUSG0000027301	Oxt	0.108932484	-4.69224172	4.48353E-12
ENSMUSG0000060143	Gm10076	5.250136714	-1.902615352	7.10562E-23	ENSMUSG0000030880	Polr3e	0.77320704	1.370673745	4.48353E-12
ENSMUSG0000074170	Plekhf1	0.270297057	2.317786142	2.535E-21	ENSMUSG0000024907	Gal	0.187961932	-2.177349175	4.48353E-12
ENSMUSG0000067288	Rps28	5.370924481	-1.780213169	4.0999E-20	ENSMUSG0000022114	Spry2	0.076181541	-1.450285029	1.73023E-11
ENSMUSG0000028998	Tomm7	1.962899585	-1.767832341	9.48946E-20	ENSMUSG0000027483	Bpifa1	0.000355989	-5.417118165	2.99229E-11
ENSMUSG0000104960	Snhg8	0.660201544	-1.74573269	8.21573E-19	ENSMUSG0000028298	Cga	0.001423954	-7.861166751	4.38548E-11
ENSMUSG0000097383	1500026H17Rik	0.05941027	-2.058365498	8.21573E-19	ENSMUSG0000074170	Plekhf1	0.279450979	1.45531296	6.23744E-11
ENSMUSG0000064360	mt-Nd3	10.14420525	-1.719382457	8.21573E-19	ENSMUSG0000017697	Ada	0.07155369	2.182199629	4.90995E-10
ENSMUSG0000034936	Arl4d	0.535085876	1.900401307	5.34175E-18	ENSMUSG0000031431	Tsc22d3	2.740755525	1.11920956	6.33229E-10
ENSMUSG0000016427	Ndufa1	1.936145291	-1.659049331	1.88339E-17	ENSMUSG0000009630	Ppp2cb	0.106796552	-1.263871905	1.28236E-09
ENSMUSG0000046516	Cox17	1.957784794	-1.64535227	3.4674E-17	ENSMUSG0000031962	Cdh15	0.106796552	1.757607823	1.67321E-09
ENSMUSG0000030711	Sult1a1	0.318690853	1.827894918	1.92996E-16	ENSMUSG0000025509	Pnpla2	0.626183786	1.17771458	2.59802E-09
ENSMUSG0000021025	Nfkbia	0.755415354	1.711700349	2.58374E-16	ENSMUSG0000064220	Hist2h2aa1	0.021003322	-1.807908118	5.91358E-09
ENSMUSG0000079641	Rpl39	5.942994234	-1.560340603	1.34817E-15	ENSMUSG0000024066	Xdh	0.141327438	1.519066737	9.67857E-09
ENSMUSG0000074754	Smim26	0.540987559	-1.594941394	1.78564E-15	ENSMUSG0000041378	Cldn5	0.380551715	-1.087303393	1.2652E-08
ENSMUSG0000090733	Rps27	6.487522802	-1.550998544	2.17679E-15	ENSMUSG0000000567	Sox9	0.158414886	-1.137164273	1.59906E-08
ENSMUSG0000034892	Rps29	14.23525153	-1.516695694	9.24708E-15	ENSMUSG0000056973	Ces1d	0.002135931	-5.50861652	4.77881E-08
ENSMUSG0000071528	Atp5md	11.92572646	-1.513851646	9.87152E-15	ENSMUSG0000034579	Pla2g3	0.072265667	1.795875558	1.76116E-07
ENSMUSG0000038803	Ost4	0.446560639	-1.551390547	1.09321E-14	ENSMUSG0000025217	Btrc	0.445697612	1.092692821	2.16421E-07
ENSMUSG0000021290	Atp5mpl	4.967249401	-1.507785787	1.40945E-14	ENSMUSG0000040856	Dlk1	0.199709553	-1.11979411	2.36065E-07
ENSMUSG0000020018	Snrpf	0.538626886	-1.556548426	1.46713E-14	ENSMUSG0000024659	Anxa1	0.009967678	-2.4499081	2.52211E-07
ENSMUSG0000048489	Depp1	0.072000526	2.717646113	4.31224E-14	ENSMUSG0000022146	Osmr	0.074757587	1.719018523	3.65805E-07
ENSMUSG0000024222	Fkbp5	0.474101824	1.595521958	4.9092E-14	ENSMUSG0000019960	Dusp6	0.184758036	-1.021676146	3.91831E-07
ENSMUSG0000050370	Ch25h	0.033442867	4.942277007	4.9398E-14	ENSMUSG0000024222	Fkbp5	0.51547136	1.042977372	5.347E-07
ENSMUSG0000030880	Polr3e	0.710562568	1.632643164	5.23942E-14	ENSMUSG0000089661	Mia	0.124595978	-1.612842636	5.3474E-07
ENSMUSG0000057322	Rpl38	16.00024803	-1.471016733	5.23942E-14	ENSMUSG0000038059	Smim3	0.285146795	1.128802235	6.07004E-07
ENSMUSG0000025739	Gng13	1.678045045	-1.487478096	5.52036E-14	ENSMUSG0000096768	Gm47283	1.410782458	-0.882580924	7.69614E-07
ENSMUSG0000035674	Ndufa3	4.461671937	-1.470225982	5.94352E-14	ENSMUSG0000090247	Bloc1s1	0.29582645	-0.940680121	1.17646E-06
ENSMUSG0000060981	Hist1h4h	0.044065896	-1.886201207	7.61688E-14	ENSMUSG0000026051	Ecrg4	0.220356887	-1.537598541	1.37974E-06
ENSMUSG0000071637	Cebpd	0.68066071	1.593922162	8.03251E-14	ENSMUSG0000066687	Zbtb16	0.046990483	2.05320177	1.37974E-06
ENSMUSG0000064220	Hist2h2aa1	0.022819839	-2.161040441	1.22362E-13	ENSMUSG0000020954	Strn3	0.158770875	1.244054902	1.79836E-06
ENSMUSG0000095366	Gm21860	0	-5.876305171	1.52615E-13	ENSMUSG0000048108	Tmem72	0.008899713	-2.301640948	1.96757E-06
ENSMUSG0000041841	Rpl37	14.41269545	-1.419407427	4.65333E-13	ENSMUSG0000048450	Msx1	0.043074609	-1.377151758	2.75133E-06
ENSMUSG0000017778	Cox7c	11.1010647	-1.413577968	5.82646E-13	ENSMUSG0000023043	Krt18	0.025631173	-1.537148869	3.27024E-06
ENSMUSG0000062997	Rpl35	6.179848423	-1.409445665	7.17019E-13	ENSMUSG0000021250	Fos	0.064077931	-1.158858265	4.39028E-06
ENSMUSG0000050856	Atp5k	7.013952877	-1.404559388	8.58855E-13	ENSMUSG0000039672	Kcne2	0.024563207	-2.051600802	4.76489E-06
ENSMUSG0000042737	Dpm3	0.733775852	-1.443213218	1.05969E-12	ENSMUSG0000056174	Col8a2	0.020647333	-1.564222459	4.80369E-06
ENSMUSG0000078974	Sec61g	2.879234148	-1.388304776	2.04433E-12	ENSMUSG0000098234	Snhg6	0.198285599	-0.934446545	5.64636E-06
ENSMUSG0000028407	Smim27	0.158951981	-1.527265997	2.39313E-12	ENSMUSG0000021903	Galnt15	0.072265667	1.554867459	5.64636E-06
ENSMUSG0000039001	Rps21	18.02098411	-1.371409727	3.1534E-12	ENSMUSG0000056380	Gpr50	0.009967678	-2.144099671	5.64636E-06

ENSMUSG0000037095	Lrg1	0.082230109	2.457668266	5.0485E-12	ENSMUSG0000060143	Gm10076	4.767042114	-0.807162958	6.59757E-06
ENSMUSG0000025591	Tma16	0.346232037	1.557543474	6.07736E-12	ENSMUSG0000061517	Sox21	0.03346292	-1.349762897	6.59757E-06
ENSMUSG0000038059	Smim3	0.360789521	1.475719546	1.64738E-11	ENSMUSG0000062960	Kdr	0.035598851	-1.440730722	6.64928E-06
ENSMUSG0000023153	Tmem52	0.092066246	2.000211776	1.80994E-11	ENSMUSG0000005057	Sh2b2	0.140615461	1.212238455	7.118E-06
ENSMUSG0000020108	Ddit4	0.682234492	1.433334527	1.83573E-11	ENSMUSG0000020108	Ddit4	0.792074431	0.913042782	7.43314E-06
ENSMUSG0000005057	Sh2b2	0.153443744	1.769485045	2.17421E-11	ENSMUSG0000021506	Pitx1	0.000355989	-5.35571762	9.15131E-06
ENSMUSG0000031431	Tsc22d3	2.495624788	1.322760872	3.24659E-11	ENSMUSG0000086765	Gm11827	0.021715299	3.122040646	1.15526E-05
ENSMUSG00000100916	Lhb	0.000393445	-5.680384961	3.33812E-11	ENSMUSG0000027525	Phactr3	1.849716289	0.859359069	1.21847E-05
ENSMUSG0000027364	Usp50	0.052328251	-1.643507692	3.82257E-11	ENSMUSG0000048489	Depp1	0.056602173	1.734884928	1.27795E-05
ENSMUSG0000073412	Lst1	0.094033474	-1.50980404	4.54067E-11	ENSMUSG0000064360	mt-Nd3	16.7403596	-0.784468461	1.33429E-05
ENSMUSG0000017697	Ada	0.069246407	2.246652208	8.54096E-11	ENSMUSG0000021848	Otx2	0.046990483	-1.203137984	1.34594E-05
ENSMUSG0000093565	Rab26os	0.03934455	-1.704338138	8.54096E-11	ENSMUSG0000078640	Gm11627	0.171586461	1.11793943	1.39575E-05
ENSMUSG0000021903	Galnt15	0.056262706	2.226505635	1.03519E-10	ENSMUSG0000016024	Lbp	0.061942	-1.226434603	2.17263E-05
ENSMUSG0000090247	Bloc1s1	0.23764108	-1.374195906	1.09E-10	ENSMUSG0000045337	Defb11	0.009255701	-1.910158176	2.17263E-05
ENSMUSG0000038570	Saxo2	0.143214161	-1.406863322	1.59074E-10	ENSMUSG0000021390	Ogn	0.033818908	-1.366134236	2.18737E-05
ENSMUSG0000016252	Atp5e	7.407398375	-1.271103734	1.6124E-10	ENSMUSG0000021453	Gadd45g	0.756831568	0.884826752	2.23606E-05
ENSMUSG0000042541	Sem1	1.563552406	-1.281022485	1.61632E-10	ENSMUSG0000095845	Gm5741	0.246344048	-1.518272117	2.25552E-05
ENSMUSG0000064356	mt-Atp8	1.61824133	-1.285016592	1.61632E-10	ENSMUSG0000048583	lgf2	0.212525139	-1.100007086	2.26312E-05
ENSMUSG0000057278	Snrpg	1.47581406	-1.274398194	2.13945E-10	ENSMUSG0000066196	Spag8	0.019223379	-1.510227569	2.82838E-05
ENSMUSG0000089665	Fcor	0.204591659	-1.355685117	2.98945E-10	ENSMUSG0000036169	Sostdc1	0.087217185	-1.315905914	3.1342E-05
ENSMUSG0000079523	Tmsb10	10.82329218	-1.255320642	3.35808E-10	ENSMUSG0000020660	Pomc	0.146311277	-1.69061957	3.15718E-05
ENSMUSG0000046330	Rpl37a	8.860392595	-1.249458433	3.58252E-10	ENSMUSG0000066363	Serpina3f	0.013527563	4,453246555	4.10844E-05
ENSMUSG0000056023	Gm9989	0.035016649	-1.687942921	4.18119E-10	ENSMUSG0000034227	Foxi1	0.079029449	-1.134543573	4.12766E-05
ENSMUSG0000087687	Pet100	0.983220297	-1.251557804	5.86739E-10	ENSMUSG0000028294	Cfap206	0.018867391	-1.503532917	4.29179E-05
ENSMUSG0000024778	Fas	0.083803891	1 79804762	7 9994F-10	ENSMUSG0000031875	Cmtm3	0 253463818	0 97317726	5.05313E-05
ENSMUSG0000025509	Pnnla2	0.643676833	1 314288986	8 39378F-10	ENSMUSG0000051367	Six1	0.001423954	-3 154083759	5 33756E-05
ENSMUSG0000090101	Snhg9	0.084984227	-1 43897021	8 66369E-10	ENSMUSG0000038418	Fgr1	0 549646257	-0.814303788	5.72994E-05
ENSMUSG0000014313	Covec	15 7456888	-1 223496121	8 76123E-10	ENSMUSG0000024610	Cd74	0.072265667	-1 50402623	5.85769E-05
ENSMUSG0000036372	Tmem258	1 217320368	-1 242329735	9 04911E-10	ENSMUSG000005994	Tvrn1	0.005339828	-2 189707669	6.04408E-05
ENSMUSG0000034579	Pla2g3	0.068066071	2 020356292	1 43156E-09	ENSMUSG0000066720	Cldn9	0.003915874	-2 861903008	6.06954E-05
ENSMUSG0000096956	Snhg18	0.056262706	-1 539671881	2 05925E-09	ENSMUSG0000009553	Gm29538	0.006407793	-2 04365977	8.82731E-05
ENSMUSG0000047721	Bola2	1 661126889	-1 208119541	2 20024E=09	ENSMUSG0000025915	Sak3	0.273399174	0 934505161	8 88497E-05
ENSMUSG0000057863	Pol36	7 552570763	-1.200113341	2.200246-05	ENSMUSG0000025515	Appd2	0.2755555174	-0 858700701	0.00457E-05
ENSMUSG0000045394	Encam	0.003034455	-1.150753477	2.21703L-05	ENSMUSG0000035202	Lynd2	0.171380401	-3.002080666	9.47284E-05
ENSMUSG0000031760	M+3	16 58136703	-1 186344046	3 430455-09	ENSMUSG0000022355	Nr/a3	0.00245152	-0.954446094	9.30133E 05
ENSMUSC0000031040	Slirp	0.707415004	1 100797042	4 92907E 00	ENSMUSC0000028341	101485	0.012915596	4 277207701	0.775412-05
ENSMUSG0000021040	Pol//1	15 30857085	-1.155767542	4.83837E-09	ENSMUSG0000024903	Laoi Irrc55	0.012010000	-1 05077/387	0.000101629
ENSMUSG0000093074	2210010117Pik	0.079082545	-1.174500202	7 105315-00	ENSMUSG0000073224	CalmIA	0.1128/8357	-1.053774587	0.000101029
ENSMUSG0000070394	Tmem256	1 9180/6799	-1.333038007	7.36663E-09	ENSMUSG0000032240	Wdr63	0.004627851	-1.255562525	0.000101023
ENSMUSG0000070354	Tchh	0.001067227	-7.457445961	1 17424E-08	ENSMUSG0000043020	Coro1h	0.061220023	-2.510053055	0.000111217
ENSMUSC0000067847	Pomo1	1 00476967	1 169/61/0	1 221905 09	ENSMUSC0000024833	A 2200E0L01Bik	0.020071	1 255267005	0.000122781
ENSIVIUS G0000007847	Vdh	0 107060707	1 507199401	1.221091-00	ENSMUSC0000022064	Color	0.030371	1 542640047	0.000123194
ENSIVIOS00000024000	Auri Come	0.127803787	1.30/188401	1.539191-00	ENSING 300000023904	Calci	0.013307300	-1.342049047	0.000123194
	Cobsa Kitaa	0.10662272	-1.140/08051	1.506765-06		FOILT	0.004309270	-1.340/2003/	0.000123194
	KIIZZ Soznino2f	0.10002373	-1.511406295	1.51529E-08		Alixaz	0.122104056	-0.93330/910	0.000125194
	Serpinasi	0.024595021	4.495292175	1.51529E-08		Cyp212 Deg10	0.000333989	-0.134063739	0.000126909
ENSIVIUSG00000091030	9550020H09Kik	0.039803710	-1.410424404	1.750972-08		Pegio Kifar	0.071909079	-1.012309796	0.000127046
ENSIVIUS G00000041431	Tokt4	0.014337463	1 762559525	2.04294E.09	ENSMUSC0000030424	Castor1	0.487704230	1 10062210	0.000127040
ENSIVIUS G00000024175	mt Nd4l	0.008000071	1 12767256	2.04304E=00	ENSMUSC0000020424		0.104304033	1.136003313	0.000140193
	Creating 2	2.777551704	-1.13/0/330	2.42033E-06	ENSINUSG0000041323		0.022427270	-1.38/043100	0.000144921
	Ciliuns Anone12	0.505540476	1.20/10/035	2.00555-08		HZ-ADI	0.028125092	-1.498912250	0.000184155
ENSIVUSG00000035048		1.048138804	-1.14252972	2.00555E-08	ENSMUSG0000052384	NFFOS	0.134919645	1.051199417	0.000186427
ENSINUSG00000112639	A/30063W14KIK	0.028328076	-1.616091284	3.00992E-08	ENSMUSG00000118506	1700094D03Rik	0.122104058	-1.106330628	0.000188448
ENSMUSG0000068240	Gm11808	0.335215564	-1.17594599	3.15183E-08	ENSMUSG0000028645	SIC2a1	1.699489138	0.76342051	0.000192821
	SiTIITI4	0.31042849/	-1.181/09025	3.08849E-U8		порх	0.184402047	-0.8432320/2	0.000192821
	FZQZ	0.1/58/013/	1.34608/25	4.3/185E-U8		BSX Dhur 2	0.002135931	-2.72524046	0.000214234
	Nautci	4.900009065	-1.106169324	5.0U/26E-U8		крт3 Алаг2	2./3012/0/4	0.746252951	0.000223529
	крізба	11.539/5643	-1.104369	5.60/26E-08	ENSIMUSG0000038007	ACET2	0.166602622	0.986006013	0.000228951
	Gm20878	0.044065896	-1.445168499	0.00183E-08	ENSIMUSG0000033737	FN0C3C1	U 0.004637056	-5.29158/283	0.000236008
	KDIS	1.390436387	-1.109239496	0.0/94E-08		Epcam	0.004627851	-3.002080666	0.000264381
ENSIMUSG00000020163	Uqcr11	/.338545413	-1.091994166	8.61124E-08	ENSI/USG0000024053	Emilin2	0.119968127	1.109292153	0.000285141
	AKr1C14	0.003147564	-3.051028341	8.7689E-08	ENSIMUSG0000034467	Dynirb2	0.090421081	-1.2/2430455	0.000296056
	Gm32031	0.042492114	-1.4391/9953	1.1333/E-U/	ENSIVIUSG00000054160	INKX2-4	0.000407793	-1.9/65455/4	0.000307222
ENSIVIUSGUUUUUU21506	PITXT	U	-3.068950249	1.15238E-U/	ENSIVIUSGUUUUUU31/3/	11X5	0.011391032	-1.020021222	0.000314815

ENSMUSG0000027525	Phactr3	1.80434105	1.103178062	1.34584E-07	ENSMUSG0000068323	Slc4a5	0.019223379	-1.477060706	0.000351498
ENSMUSG0000022146	Osmr	0.063738171	1.749263189	1.358E-07	ENSMUSG00000110500	Gm32568	0.013527563	3.453246555	0.000376839
ENSMUSG0000058626	Capn11	0.002360673	-2.998560921	1.43649E-07	ENSMUSG0000024175	Tekt4	0.082589334	1.174049485	0.000421777
ENSMUSG0000038690	Atp5j2	8.296191753	-1.063626771	2.15611E-07	ENSMUSG0000074637	Sox2	0.373787934	-0.731246649	0.000431586
ENSMUSG0000085035	Gm12031	0.014164038	-1.829123234	2.4187E-07	ENSMUSG0000050105	Grrp1	0.151651105	0.975199258	0.000431586
ENSMUSG0000079435	Rpl36a	4.480950767	-1.058979843	2.67751E-07	ENSMUSG0000089809	Rasgef1b	0.26485545	-0.756625454	0.000431586
ENSMUSG0000028645	Slc2a1	1.499814235	1.087042838	3.3358E-07	ENSMUSG0000071497	Nutf2-ps1	0.022427276	-1.291587283	0.000434378
ENSMUSG0000028655	Mfsd2a	0.464659132	1.12311373	3.71767E-07	ENSMUSG0000022194	Pabpn1	0.701297361	0.763828242	0.00045181
ENSMUSG0000046768	Rhoj	0.110164739	1.467216748	4.32626E-07	ENSMUSG0000035615	Frmpd1	0.211813162	0.887166969	0.000568897
ENSMUSG0000087336	Gm15860	0.049967578	-1.341968743	4.40353E-07	ENSMUSG0000027857	Tshb	0.001423954	-5.168439052	0.000585174
ENSMUSG00000106918	Mrpl33	1.156336316	-1.052720307	4.54798E-07	ENSMUSG0000023153	Tmem52	0.067281828	1.245846848	0.000586609
ENSMUSG00000110156	Gm42067	0.180984929	-1.151064646	4.55776E-07	ENSMUSG0000022376	Adcv8	0.101812713	-0.862005592	0.000627491
ENSMUSG0000023089	Ndufa5	5,289087818	-1.039316174	4.88508E-07	ENSMUSG0000042607	Asb4	0.027055127	-1.209225313	0.000679898
ENSMUSG0000020424	Castor1	0.116853313	1.34286335	5.89433E-07	ENSMUSG0000068566	Mvadm	0.103592656	-0.851784471	0.000685141
ENSMUSG0000087590	Epb41l4aos	0.279739748	-1.099248849	5.90408E-07	ENSMUSG0000033453	Adamts15	0.048414437	-1.0195258	0.000685141
ENSMUSG0000019689	Fmc1	1.135090259	-1.04237929	6.24909E-07	ENSMUSG0000043102	Qrfp	0.022783265	3.190212149	0.000693471
ENSMUSG0000053113	Socs3	0.062164389	1.658970206	6.24909E-07	ENSMUSG0000045903	Npas4	0.021715299	-1.28735029	0.000718836
ENSMUSG0000006360	Crip1	0.212067123	-1.305017607	6.76147E-07	ENSMUSG0000034640	Tiparp	0.198997576	0.887736416	0.000728276
ENSMUSG0000028862	Map3k6	0.132197687	1.297907189	6.89845E-07	ENSMUSG0000050335	Lgals3	0.026699138	-1.198937995	0.000728276
ENSMUSG0000025362	Rns26	7 840581867	-1 020553956	8 50403E-07	ENSMUSG0000050370	-8 Ch25h	0.031682977	1 85234251	0.000764233
ENSMUSG0000059534	Lacr10	6 645294447	-1 013983329	1.05263E-06	ENSMUSG0000047793	Sned1	0.032038966	-1 131715946	0.00076572
ENSMUSG0000085255	Taco1os	0.036590431	-1 394284945	1 11407E-06	ENSMUSG0000020922	Ism12	0 259159634	0.838415552	0.00076572
ENSMUSG0000041481	Sernina3g	0.033049422	2 340440687	1 15979E-06	ENSMUSG0000045382	Cxcr4	0.003203897	-2 317582492	0.000813882
ENSMUSG0000030087	Klf15	0 472134597	1 085442482	1 22572E-06	ENSMUSG0000075514	Gm13375	0.06443392	1 249374221	0.000813882
ENSMUSG0000025508	RnIn2	6.015388206	-1 006321193	1 31949F-06	ENSMUSG0000019997	Ccn2	0.065857874	-1 08741272	0.000815002
ENSMUSG0000025915	Søk3	0 24944445	1 197268413	1 34258E-06	ENSMUSG0000017723	Wfdc2	0.025275184	-1 507720714	0.000886336
ENSMUSG0000052384	Nrros	0 127869787	1 28983157	1 39616E-06	ENSMUSG0000046470	Sox18	0.009255701	-1 662230663	0.000886336
ENSMUSG0000086765	Gm11827	0.024000175	2 505730///	1.830325-06	ENSMUSG0000096225	Lbv8	0.036666816	1 608350052	0.0000000350
ENSMUSG00000117662	Gm4013	0.016131265	-1 666579161	1.00052E-00	ENSMUSG0000054255	Msi1	0.067281828	-0.955787013	0.000989788
ENSMUSG00000177002	Snhg3	0.340330355	-1 040914096	2 36533E-06	ENSMUSG0000034250	Cd93	0.02634315	-1 188299475	0.00000000000000
ENSMUSG0000034634	Lv6d	0.030688749	2 234830499	2.36533E-06	ENSMUSG0000027435	Kcni13	0.038446759	-1 321359182	0.001003231
ENSMUSG0000010406	Mrnl52	1 613126538	-0.993156682	2 48107E-06	ENSMUSG0000032303	Chrna3	0.077961483	-1 225721633	0.00111163
ENSMUSG0000062006	Rnl34	10 31810816	-0.978616387	2 95411E-06	ENSMUSG0000021806	Nid2	0.012103609	-1 560853643	0.001121292
ENSMUSG0000084786	Ubl5	4 550197174	-0.980208298	2 96554E-06	ENSMUSG0000022425	Ennn2	3 57946445	-0 788756498	0.001127579
ENSMUSG0000102014	2900009106Rik	0.038557659	-1 335757818	2 99722E-06	ENSMUSG0000030125	Lrrc23	0.021715299	-1 252998785	0.001128426
ENSMUSG0000053332	Gas5	5 640434647	-0.978123652	3 20372E-06	ENSMUSG0000027597	Aboy	0.081877357	-0.869149872	0.001256925
ENSMUSG00000108668	Gm32816	0.003541009	-2 50783449	3 24725E-06	ENSMUSG0000039155	Cdb26	0.008187736	-1 706624782	0.001256925
ENSMUSG0000030827	Egf21	0.012983701	4 188437594	4 52289E-06	ENSMUSG0000048416	Mlf1	0 054466242	-1 049184901	0.00127101
ENSMUSG0000045106	Ccdc73	0.030688749	-1 402599421	4 6959E-06	ENSMUSG0000017144	Rnd3	0.068705782	-0.897578739	0.00139399
ENSMUSG0000041378	Cldn5	0 288788995	-1 048965874	4 72941F-06	ENSMUSG0000036598	Ccdc113	0.039158736	-1 037739798	0.00139399
ENSMUSG0000024018	Ccdc167	0 277772521	-1 020298631	5 55073E-06	ENSMUSG0000020182	Ddc	0 378415784	0 771915659	0.001396689
ENSMUSG0000050105	Grrp1	0.15816509	1.17064828	5.59129E-06	ENSMUSG0000071637	Cebpd	0.44142575	0.765651636	0.001396689
ENSMUSG0000002289	Angotl4	0.097967929	1.338838583	6.40808E-06	ENSMUSG0000015652	Stean1	0.017443437	-1.358224476	0.001402833
ENSMUSG0000021453	Gadd45g	0 871088331	0 9840453	7 96896F-06	ENSMUSG0000027985	Lef1	0 187605944	-0 767901123	0.001424238
ENSMUSG00000114639	Gm31946	0.017311602	-1 567043488	8 11466F-06	ENSMUSG0000031492	Chrnh3	0.020291345	-1 259576888	0.001424238
ENSMUSG0000002416	Ndufb2	4.409343686	-0.939200546	1.03328E-05	ENSMUSG0000006386	Tek	0.046990483	-0.986326594	0.001500136
ENSMUSG0000096887	Gm20594	0.012590256	-1.700121179	1.06054E-05	ENSMUSG0000070436	Serpinh1	0.166246633	-0.765921966	0.001500136
ENSMUSG0000084883	Crdc85c	0.06295128	-1 175438683	1.07705E-05	ENSMUSG0000022096	Hr	0 159482852	0.890953129	0.001500136
ENSMUSG0000086943	4732414G09Rik	0.022426393	-1 458896767	1.09512E-05	ENSMUSG000000530	Acyrl1	0.07155369	-0.881303314	0.001580084
ENSMUSG0000098120	Gm5914	0 149902734	-1 042695608	1.0983E-05	ENSMUSG0000028023	Pitx2	0.006763782	-2 064816421	0.001602432
ENSMUSG0000050423	Pnn1r3g	0 207345777	1 100974753	1 13638F-05	ENSMUSG0000052957	Gas1	0.046634495	-0 977586104	0.001609231
ENSMUSG0000046991	Wdr27	0.038951104	-1 277536871	1 13638F-05	ENSMUSG0000062456	Rnl9-ns6	0 108220506	-0.803491906	0.001660928
ENSMUSG0000070637	Srarn	0 166427445	1 13540825	1.2508E-05	ENSMUSG0000024546	Cfan45	0.033818908	-1 080083178	0.001673196
ENSMUSG0000014294	Ndufa2	4 822854904	-0.92127175	1 64541F-05	ENSMUSG0000045690	Wdr89	0.07867346	-0.85791876	0.001763808
ENSMUSG000000739	Sult5a1	0.019278829	-1 5125569	2 11233E-05	ENSMUSG0000050423	Pnn1r3g	0 184758036	0.859295271	0.001857368
ENSMUSG0000084843	B230312C02Rik	0.029114967	-1.32841804	2.34453E-05	ENSMUSG0000030888	Rrp8	0.161974771	0.871451333	0.001920228
ENSMUSG0000054312	Mrps21	2.19660621	-0.913037722	2.35774E-05	ENSMUSG0000036594	H2-Aa	0.032750943	-1.42227987	0.001920228
ENSMUSG0000038357	Camp	0	-4.757006243	2.47341E-05	ENSMUSG0000075602	Lv6a	1.323921262	0.690194859	0.001984644
ENSMUSG0000028967	Errfi1	- 0.381642132	1.015873616	2.49489E-05	ENSMUSG0000084989	Crocc2	0.002847908	-2.306086853	0.002085562
ENSMUSG0000074218	Cox7a1	0 121968104	-1 050796378	2 51183E-05	ENSMUSG0000064057	Sceb3a1	0.01673146	2 430878742	0.002085562
ENSMUSG0000024038	Ndufv3	3.736158441	-0.907733771	2.51183E-05	ENSMUSG0000017754	Pltp	0.673174269	-0.686239901	0.002099188
ENSMUSG0000052974	Cyp2f2	0.000786891	-3.401525588	2.88874E-05	ENSMUSG0000003477	Inmt	0.012103609	-1.484232361	0.002110706
ENSMUSG0000087627	A230059L01Rik	0.013770592	-1.599464966	3.00443E-05	ENSMUSG0000058488	ĸ	0.117832196	-1.14361676	0.002201363
		· · · · · · =	· · · · · · • •				· · · · •	· · · ·	
ENSMUSG0000034390	Cmip	0.142820715	1.100974753	3.67067E-05	ENSMUSG0000039543	Cfap70	0.006407793	-1.793681517	0.002201363
-----------------------	--------------------	-------------	--------------	-------------	--------------------	-----------------	-------------	--------------	-------------
ENSMUSG0000024517	Grp	0.301772696	1.06022841	4.26963E-05	ENSMUSG0000035202	Lars2	1.8493603	-0.629160652	0.002504385
ENSMUSG0000048603	Gm9828	0.02360673	-1.369167346	4.71687E-05	ENSMUSG0000034738	Nostrin	0.084369276	1.040294286	0.002515591
ENSMUSG0000087269	D330023K18Rik	0.120787768	-1.007278138	4.8092E-05	ENSMUSG0000024176	Sox8	0.368448106	0.745860771	0.002515972
ENSMUSG0000062960	Kdr	0.026754294	-1.337395251	5.35042E-05	ENSMUSG0000052861	Dnah6	0.02135931	-1.223346422	0.002533174
ENSMUSG0000080727	C920021L13Rik	0.024787066	-1.341968743	5.42366E-05	ENSMUSG0000019982	Myb	0.004271862	-2.038606542	0.002593861
ENSMUSG0000086841	2410006H16Rik	1.120532776	-0.890136156	5.42366E-05	ENSMUSG0000024778	Fas	0.066213863	1.129776295	0.002593861
ENSMUSG0000056313	Tcim	0.041311777	1.543492988	6.832E-05	ENSMUSG0000025795	Rassf3	0.190097863	-0.708339797	0.002892749
ENSMUSG0000045996	Polr2k	1.397518406	-0.874660699	7.82529E-05	ENSMUSG0000097451	Rian	2.419297902	0.642907993	0.002892749
ENSMUSG0000038393	Txnip	0.333641782	0.981972556	7.89443E-05	ENSMUSG0000044177	Wfikkn2	0.015307506	-1.326920356	0.00297103
ENSMUSG0000038717	Atp5l	8.397700691	-0.863512856	7.98101E-05	ENSMUSG0000049382	Krt8	0.010679655	-1.521815544	0.003016929
ENSMUSG0000022820	Ndufb4	5.208824937	-0.864342215	8.01877E-05	ENSMUSG0000073079	Srp54a	0.213949093	-0.69393301	0.0030698
ENSMUSG0000004328	Hif3a	0.049180687	1,434398486	8.91632E-05	ENSMUSG0000037235	Mxd4	0.904566799	0.661010473	0.003077909
ENSMUSG0000073702	RnI31	5 579450595	-0 858115841	9 46912E-05	ENSMUSG0000043164	Tmem212	0 111068415	-1 225131401	0.003114902
ENSMUSG0000078879	7fn973	0.003541009	-2 277536871	0.000100197	ENSMUSG0000030093	Wnt7a	0.077249506	-0.832155664	0.003200154
ENSMUSG0000047369	Dnah14	0.055475815	1 57829653	0.000104079	ENSMUSG0000018569	Cldn7	0.001067966	-3.080083178	0.003200154
ENSMUSG0000052296	Pnn6r1	0 209313004	-0 925841912	0.000105902	ENSMUSG0000061808	Ttr	28 66526265	-1 313820279	0.003200154
ENSMUSG000002290	Lao1	0.009442692	3 744830942	0.000110064	ENSMUSG0000023267	Gabrr?	0.039514724	1 390236757	0.00344292
ENSMUSC0000073844	GE20011006Bik	0.070860436	1 219911242	0.000112591	ENSMUSC000001E812	Gaph1	0.004271862	4 515420220	0.00344252
ENSIVIUS G00000072844	CfaneE	0.075005450	1.210011245	0.000115381	ENSMUSC0000013812	GIIIII	0.004271802	-4.515420255	0.00344292
ENSINUSC00000022114	Ciapos Spru2	0.040067579	1 109479612	0.000110238	ENSMUSC0000020038	SIc29aE	0.001007500	1 096472952	0.00340215
ENSIVIUS G00000022114	5µ1 y2 \$100-12	0.043307378	-1.100478015	0.000120033	ENSMUSC0000031170	Doge2	0.029191038	1 247102164	0.00340213
ENSIVIUS G00000042312	5100015	0.041373310	-0.871400239	0.000130403	ENSMUSC0000021205	Meam	0.019955550	-1.247193104	0.003330133
	SpSUS Din 4	0.18904075	-0.922723083	0.000130373		Note: 2	0.110330438	-0.780203383	0.003333109
	PIN4 Bhau	0.998171220	-0.000000200	0.000146024		nptx2	0.404756954	-0.033/18/9	0.003082420
	KIIUU Cav20	0.774500756	0.879515222	0.000154244		FD Trime 2 F	0.025967101	-1.377369601	0.004050525
ENSINUSG0000026500	Cox20	0.920662463	-0.853638973	0.000154244	ENSINUSG0000000275	Trim25	0.030971	-1.045149388	0.004050323
ENSMUSG0000022861	Dgkg	0.029114967	1.744830942	0.000155836	ENSMUSG0000044988	Ucn3	0.017799425	2.25530/1//	0.004050323
ENSMUSG0000032807	Alox12b	0.032655976	1.63531118	0.000161436	ENSMUSG0000037086	Prr32	0.019223379	-1.24062051	0.004149169
ENSMUSG0000020954	Strn3	0.111345076	1.100974753	0.000169339	ENSMUSG0000021913	Ogani	0.223916772	-0.675054703	0.004271098
ENSMUSG0000039911	Spsb1	0.202624431	0.993260935	0.000172519	ENSMUSG0000048234	Rnf149	0.060518046	1.126265232	0.004479799
ENSMUSG0000070858	Gm1673	2.592018935	-0.837748455	0.000174248	ENSMUSG0000050288	Fzd2	0.217864967	0.769376117	0.004479799
ENSMUSG0000051243	Isir2	0.254559237	0.933030115	0.000189654	ENSMUSG0000087211	Lhx1os	0.07155369	1.044696105	0.004513917
ENSMUSG0000055148	KIf2	0.281706976	0.939345635	0.000191847	ENSMUSG0000039004	Bmp6	0.066213863	-0.870223705	0.004513917
ENSMUSG0000051439	Cd14	0.061377498	1.351201382	0.00019471	ENSMUSG0000027654	Fam83d	0.06443392	1.15207702	0.004573007
ENSMUSG0000054256	Msi1	0.026754294	-1.249932409	0.000213737	ENSMUSG0000043415	Otud1	0.117120219	-0.741957855	0.004582828
ENSMUSG0000066687	Zbtb16	0.022426393	1.958955748	0.000220351	ENSMUSG0000003469	Phyhip	0.689905729	-0.613231262	0.004894825
ENSMUSG0000028936	Rpl22	3.488681223	-0.825093164	0.000230581	ENSMUSG0000096215	Smim22	0.020291345	-1.183628035	0.004894825
ENSMUSG0000009630	Ppp2cb	0.121968104	-0.937926598	0.000248744	ENSMUSG0000046768	Rhoj	0.108576495	0.901670222	0.005033352
ENSMUSG0000022194	Pabpn1	0.705841222	0.85004695	0.00025596	ENSMUSG0000030711	Sult1a1	0.278027025	0.729020584	0.005064698
ENSMUSG0000029062	Cdk11b	0.43515072	-0.852001875	0.000261776	ENSMUSG0000032081	Apoc3	0.031682977	-1.510227569	0.005064698
ENSMUSG0000032330	Cox7a2	10.38381356	-0.815681795	0.000266864	ENSMUSG0000046242	Nme9	0.023495242	-1.305225285	0.005064698
ENSMUSG0000030790	Adm	0.076721872	1.161095745	0.000270422	ENSMUSG0000090698	Apold1	0.076181541	1.00914659	0.005115579
ENSMUSG0000059412	Fxyd2	0.1703619	-0.900686382	0.000280856	ENSMUSG0000012123	Crybg2	0.058738104	1.116619012	0.005165727
ENSMUSG0000036781	Rps27l	0.755415354	-0.832947792	0.000281941	ENSMUSG0000041616	Nppa	0.033106931	-1.243351097	0.005166392
ENSMUSG0000027456	Sdcbp2	0.037377322	1.476483888	0.000282284	ENSMUSG0000015112	Slc25a13	0.087217185	1.179621503	0.005166392
ENSMUSG0000033685	Ucp2	0.56184017	0.865802963	0.000290139	ENSMUSG0000048154	Kmt2d	0.13598761	-0.718560632	0.005166392
ENSMUSG00000041789	2700046A07Rik	0.092066246	1.170136777	0.000312281	ENSMUSG0000015970	Chdh	0.025631173	-1.085274601	0.005371662
ENSMUSG0000020660	Pomc	0.273838066	-1.208062769	0.00033871	ENSMUSG0000028967	Errfi1	0.484856348	0.670521099	0.005578178
ENSMUSG00000110834	Gm39469	0.129443569	-0.916407326	0.000355028	ENSMUSG0000028998	Tomm7	2.696968938	-0.579101933	0.005578178
ENSMUSG0000005580	Adcy9	0.040918332	1.645295269	0.000355569	ENSMUSG0000031537	Ikbkb	0.309354014	-0.637139682	0.005678313
ENSMUSG0000042699	Dhx9	0.202230986	-0.877860637	0.000366251	ENSMUSG00000104960	Snhg8	1.074017329	-0.590191188	0.005692166
ENSMUSG0000029313	Aff1	0.108590957	1.054845582	0.000407986	ENSMUSG0000091705	H2-Q2	0.043430598	-0.977104	0.005851028
ENSMUSG0000008090	Fgfrl1	0.05508237	-1.030936923	0.000409763	ENSMUSG0000031762	Mt2	4.544549296	0.608917451	0.005856246
ENSMUSG0000027133	Nop10	2.076605334	-0.803855592	0.000410839	ENSMUSG0000021095	Gsc	0.008543724	3.811700525	0.005856246
ENSMUSG0000054514	Atad3aos	0.020852611	-1.293884865	0.000411113	ENSMUSG0000027400	Pdyn	0.347800773	-0.712246201	0.006015617
ENSMUSG0000037235	Mxd4	0.808137051	0.823967404	0.000417412	ENSMUSG0000039391	Ccdc81	0.011391632	-1.431617735	0.006015617
ENSMUSG0000016942	Tmprss6	0.025573957	1.753051449	0.000417412	ENSMUSG0000090101	Snhg9	0.19080984	-0.670267982	0.006118532
ENSMUSG0000079017	Ifi27l2a	0.066885735	-1.60270625	0.000470096	ENSMUSG0000068240	Gm11808	0.530422877	-0.605240684	0.006149497
ENSMUSG0000040429	Mterf1a	0.051934806	-1.038499666	0.000490845	ENSMUSG0000029380	Cxcl1	0.008543724	3.811700525	0.006149497
ENSMUSG0000027654	Fam83d	0.044852787	1.487033185	0.000501026	ENSMUSG0000024206	Rfx2	0.02135931	-1.14934584	0.006241133
ENSMUSG0000000791	ll12rb1	0.022426393	1.958955748	0.000572874	ENSMUSG0000090061	Nwd2	0.324661519	-0.788847503	0.00630159
ENSMUSG0000014198	Zfp385c	0.036590431	1.446110239	0.000577166	ENSMUSG0000026525	Opn3	0.080097414	-0.786763762	0.006358853
ENSMUSG00000106583	4930447N08Rik	0.012590256	-1.469340972	0.000612318	ENSMUSG0000031927	1700012B09Rik	0.037734782	-1.188720761	0.006358853

ENSMUSG0000041957	Pkp2	0.189247284	0.91057628	0.000618255	ENSMUSG0000096887	Gm20594	0.017087448	-1.239813633	0.006577867
ENSMUSG0000046470	Sox18	0.008655801	-1.642249832	0.000632867	ENSMUSG0000047712	Ust	0.088997127	-0.767502706	0.006646939
ENSMUSG0000078572	Ndufaf8	0.849055383	-0.79621634	0.000632867	ENSMUSG0000035621	Midn	0.105372598	-0.736777616	0.00692716
ENSMUSG0000039221	Rpl22l1	6.019322661	-0.780728249	0.000656288	ENSMUSG0000027217	Tspan18	0.071909679	-0.803444368	0.006982252
ENSMUSG0000008601	Rab25	0.002754118	-2.390878344	0.000656288	ENSMUSG0000019929	Dcn	0.117476208	-0.827790472	0.00721717
ENSMUSG0000096215	Smim22	0.016918156	-1.416873552	0.000667518	ENSMUSG0000035539	Ccdc180	0.004983839	-1.832155664	0.007333016
ENSMUSG0000095385	D630033011Rik	0.00786891	-1.864259829	0.000670749	ENSMUSG0000033006	Sox10	0.336765129	-0.638422006	0.007333016
ENSMUSG0000029570	Lfng	0.183739047	0.91064354	0.000671056	ENSMUSG0000052539	Magi3	0.062653977	-0.823981733	0.007504628
ENSMUSG0000015112	Slc25a13	0.068459517	1.212335861	0.000675827	ENSMUSG0000060586	H2-Eb1	0.035242862	-1.188299475	0.007538441
ENSMUSG0000026072	ll1r1	0.054295479	1,219915825	0.000699939	ENSMUSG0000074794	Arrdc3	0.590228947	0.654489141	0.007731375
ENSMUSG0000023019	Gpd1	0 734562743	0 808382155	0.000742081	ENSMUSG0000031216	Stard8	0.05731415	-0.841033816	0.008158629
ENSMUSG0000097467	Gm26737	0.004721346	-1 926505984	0.000798246	ENSMUSG0000045930	Clec14a	0.018867391	-1 185792619	0.008336022
ENSMUSG0000078640	Gm11627	0 183345602	0 902164302	0.000798246	ENSMUSG0000045550	Ccdc85c	0 187605944	-0 658126265	0.008419133
ENSMUSG0000078040	Evalc	0.100040002	1 200/00200	0.000738240	ENSMUSC0000084885	Tnfcf10	0.107003344	-0.038120203	0.008415155
ENSMUSC00000399057	Cof2	0.000826127	2 201414471	0.000807345	ENSMUSC0000035504	Su#1E	0.005695816	1 744602820	0.00804027
ENSMUSC00000111E4	CSIS Cfap161	0.009650157	1 50640159	0.000815072	ENSMUSC0000041479	Sov12	0.003033610	-1.744052825	0.00804027
ENSIVIUSG0000011154		0.032033970	1.58040158	0.000915055	ENSIVE 00000070843	30X13	0.042302032	-0.902544992	0.008721682
	KIIUD Cm 42C00	4.925957624	0.763574942	0.000952155		Zidilu4	0.076181541	0.961840875	0.00898854
ENSIVIUSG00000104675	Gm43689	0.006688573	-1.729100246	0.000986939	ENSIVIUSG0000032595	Canr4	0.038446759	-1.263643684	0.009019491
ENSMUSG0000034640	Tiparp	0.142033824	0.928395298	0.00105458	ENSMUSG0000033731	3300002A11Rik	0.014951517	-1.383170833	0.009341553
ENSMUSG0000068523	Gng5	1.627290576	-0.768826524	0.001063086	ENSMUSG0000057836	XIr3a	0.033818908	1.360489414	0.009341553
ENSMUSG0000038418	Egr1	0.387543815	-0.804549562	0.001070181	ENSMUSG0000103502	9330121J05Rik	0.030259023	1.424184089	0.009352272
ENSMUSG0000035828	Pim3	0.742038208	0.788096606	0.001142191	ENSMUSG0000097842	9330104G04Rik	0.030615012	1.44086283	0.00960603
ENSMUSG0000085348	Myhas	0.021639502	1.738404673	0.00116282	ENSMUSG0000026301	lqca	0.013527563	-1.301640948	0.009609887
ENSMUSG0000026525	Opn3	0.062557834	-0.95647552	0.001174204	ENSMUSG0000026679	Enkur	0.060518046	-0.8819087	0.009609887
ENSMUSG0000037820	Tgm2	0.151476516	0.94523894	0.001177694	ENSMUSG0000064280	Ccdc146	0.013527563	-1.301640948	0.009609887
ENSMUSG0000050397	FoxI2	0.001573782	-2.621491272	0.001245381	ENSMUSG0000039477	Tnrc18	0.211457174	-0.640549368	0.009661802
ENSMUSG0000034161	Scx	0.100328602	0.98203368	0.001245381	ENSMUSG0000078302	Foxd1	0.013171575	-1.417118165	0.009815458
ENSMUSG0000032766	Gng11	0.863612866	-0.785626921	0.00126244	ENSMUSG0000037095	Lrg1	0.06443392	1.249374221	0.009815458
ENSMUSG0000041881	Ndufa7	3.91793026	-0.75118499	0.001272023	ENSMUSG0000096753	Fam181a	0.023139253	-1.073163764	0.009829558
ENSMUSG0000032278	Paqr5	0.093640028	1.024561637	0.001329385	ENSMUSG0000026840	Lamc3	0.018511402	-1.191698051	0.009958856
ENSMUSG0000046916	Myct1	0.003934455	-1.99418248	0.001341097	ENSMUSG0000029056	Pank4	0.113916323	-0.734544868	0.009958856
ENSMUSG0000008683	Rps15a	8.466947098	-0.745390007	0.001407009	ENSMUSG0000086742	Gm16201	0.025987161	-1.048967053	0.009958856
ENSMUSG0000051851	Rtl8c	0.020459166	-1.215498912	0.001407009	ENSMUSG0000032232	Cgnl1	0.039158736	-0.920382847	0.009958856
ENSMUSG0000027907	S100a11	0.064525062	-0.979786259	0.0014497	ENSMUSG0000096140	Ankrd66	0.008899713	-1.489267951	0.009958856
ENSMUSG0000025730	Rab40c	0.64131616	0.776748668	0.0014497	ENSMUSG0000045817	Zfp36l2	0.21715299	-0.661935482	0.009958856
ENSMUSG0000024521	Pmaip1	0.06295128	1.109963536	0.001479977	ENSMUSG0000041789	2700046A07Rik	0.084013288	0.927304568	0.009958856
ENSMUSG0000031231	Cox7b	8.438619022	-0.741923691	0.001526965	ENSMUSG00000118332	Fam220a	0.010679655	-1.432548206	0.010094625
ENSMUSG0000059852	Kcng2	0.232132843	0.848557454	0.001558807	ENSMUSG0000029843	Slc13a4	0.058738104	-0.948969329	0.010240133
ENSMUSG0000020940	1700023F06Rik	0.169968455	-0.822040445	0.001567715	ENSMUSG0000052085	Dock8	0.013883552	-1.265115072	0.010620114
ENSMUSG0000029182	1700001C02Rik	0.035016649	1,734846854	0.001574113	ENSMUSG0000031075	Ano1	0.053754265	-0.832155664	0.010662893
ENSMUSG0000016179	Camk1g	0.317117071	0.81488511	0.001613383	ENSMUSG0000031871	Cdh5	0.03809077	-0.922758213	0.010715145
ENSMUSG0000041966	Dcaf17	0.077508763	-0 924304656	0.001681767	ENSMUSG0000022949	Clic6	0 133139702	-0 925265069	0.010715145
ENSMUSG0000107219	Gm42738	0.008262355	-1 568876646	0.00171941	ENSMUSG0000040562	Gstm2	0.029903035	-1 109265255	0.010726771
ENSMUSG0000038745	Mirn6	0.008202333	2 1/0503117	0.00171941	ENSMUSG0000040302	Cidna	0.025505055	-1.105205255	0.010720771
ENSMUSG00000038743	Snrpe	1 250812482	-0 745920707	0.00171341	ENSMUSC0000070473	Soth1	0.000031803	-1.700024782	0.011203304
ENSMUSC0000018585	Atox1	2 224212124	0.727016960	0.00182178	ENSMUSC000000425	Snch1	0.221424952	0.702720820	0.011001238
ENSMUSC0000103503	02201210506	0.022262521	1 476014194	0.00182178	ENSMUSC0000035511	Akan10	0.221424052	1 020060540	0.011010557
ENSMUSC0000025615	Ermod1	0.16052502551	0.976064079	0.001801415	ENSMUSC0000047804		1 905572714	0 501524122	0.012003033
ENSINGSG00000053013	Prinpui Des17	4.707674202	0.370004378	0.0010/11		Lyoci Nr4e1	0.10220176	0.591554155	0.012003039
	Rps17	4.797074392	-0.751095215	0.00194612		NI4d1	0.19550176	-0.0304/0320	0.012090052
	ZIASI	0.740837871	-0.749062741	0.001977725		50X14	0.004627851	-1.832133004	0.012358839
ENSMUSG0000040856	DIK1	0.238427971	-0.904954952	0.001977725	ENSMUSG0000085069	Pram160s	0.039158736	-0.895720793	0.012787804
ENSMUSG0000059278	Naa38	2.373656684	-0.731906872	0.002035175	ENSMUSG0000037846	Rtkn2	0.044854552	1.156529022	0.012849066
ENSMUSG0000043102	Qrtp	0.000786891	-2.957918937	0.002047454	ENSMUSG0000086284	Frmpd1os	0.006407793	-1.62862227	0.0136942
ENSMUSG0000046707	Csnk2a2	0.335215564	-0.775491813	0.002076012	ENSMUSG0000027134	Lpcat4	0.182978093	-0.634298677	0.013731296
ENSMUSG0000104444	Gm33051	0.01219681	2.29361983	0.002084796	ENSMUSG0000018604	Tbx3	0.009255701	-2.077268162	0.013812396
ENSMUSG0000032083	Apoa1	0.046033123	-0.982166483	0.00210234	ENSMUSG0000090439	Gm17455	0.017799425	-1.204124442	0.014029511
ENSMUSG0000022220	Adcy4	0.008262355	-1.548118086	0.002217464	ENSMUSG0000026814	Eng	0.136343599	-0.665045678	0.014091916
ENSMUSG0000027120	Fshb	0.000393445	-4.483987748	0.002220958	ENSMUSG0000021466	Ptch1	0.320389657	-0.590419556	0.014091916
ENSMUSG0000012483	Rpa3	0.094426919	-0.859580024	0.002220958	ENSMUSG0000026303	Mlph	0.025987161	1.470407106	0.014225111
ENSMUSG0000022651	Retnlg	0.016918156	2.97544387	0.002221803	ENSMUSG0000047228	A2ml1	0.493044084	0.618713941	0.014225111
ENSMUSG0000095362	Gm14325	0.007082019	-1.628377658	0.002257272	ENSMUSG0000046886	Zfp474	0.004271862	-1.832155664	0.014225111
ENSMUSG0000027434	Nkx2-2	0.05154136	-0.957918937	0.002265266	ENSMUSG00000108634	Gm38534	0.024919196	-1.022258548	0.014620212
ENSMUSG0000001768	Rin2	0.260854365	0.810678267	0.002323849	ENSMUSG0000040420	Cdh18	0.039158736	1.2073727	0.014620212

ENSMUSG0000022096	Hr	0.099541711	0.93991232	0.002439851	ENSMUSG0000053414	Hunk	0.062653977	-0.782402629	0.014735828
ENSMUSG0000020399	Havcr2	0.032655976	1.364009158	0.002442079	ENSMUSG0000041577	Prelp	0.175502335	-0.671690992	0.014755071
ENSMUSG0000072473	1700024G13Rik	0.036196986	2.116571608	0.002479057	ENSMUSG0000016427	Ndufa1	2.621855363	-0.53527465	0.014765482
ENSMUSG0000023267	Gabrr2	0.031869085	1.504330447	0.002491956	ENSMUSG0000030376	Slc8a2	0.347088796	-0.580898426	0.01548848
ENSMUSG0000044894	Uqcrq	9.422232765	-0.71725975	0.002495463	ENSMUSG0000022805	Maats1	0.017443437	-1.142495785	0.015661122
ENSMUSG0000032394	Igdcc3	0.009442692	2.744830942	0.002627544	ENSMUSG0000001029	Icam2	0.033818908	-0.919618506	0.016245691
ENSMUSG0000034317	Trim59	0.07947599	-0.951365753	0.002642072	ENSMUSG0000027845	Dclre1b	0.103592656	0.818510083	0.016396578
ENSMUSG0000094786	Gm14403	0.016524711	-1.240944818	0.002801129	ENSMUSG0000074892	B3galt5	0.43430598	0.620791921	0.016396578
ENSMUSG0000005705	Agrp	0.102689275	1.830617006	0.002877406	ENSMUSG0000074274	D930028M14Rik	0.034886874	1.273639	0.016503916
ENSMUSG0000042622	Maff	0.02006572	1.801414471	0.00288383	ENSMUSG0000054146	Krt15	0.002847908	-2.185792619	0.016521919
ENSMUSG0000031609	San30	0.138492815	0.871012168	0.002894328	ENSMUSG0000058443	Rpl10-ps3	0.053398276	-0.803204291	0.017056563
ENSMUSG0000060404	Olfr1369-ps1	0.002754118	-2.146952761	0.002895401	ENSMUSG0000070306	Ccdc153	0.136699587	-1.011625354	0.017976807
ENSMUSG0000032902	Sic16a1	0 125115668	-0.831911052	0.003001489	ENSMUSG0000053161	Daw1	0.007475759	-1 502007063	0.017979975
ENSMUSG0000035885	Cox8a	20 11529449	-0 708164853	0.003001489	ENSMUSG0000037738	Nek5	0.007475759	-1 502007063	0.017979975
ENSMUSG0000073877	Gm13306	0.005901682	-1 70638017	0.003027053	ENSMUSG00000115625	2900040C04Rik	0.085437242	-1 069013448	0.017979975
ENSMUSG0000045690	W/dr89	0.078689099	-0.8626834	0.003201153	ENSMUSG0000030551	Nr2f2	0.429678129	-0 572461384	0.018588868
ENSMUSG0000049768	Tmsh15h1	0 112525412	-0.818926709	0.003246579	ENSMUSG0000038011	Dnah10	0.013171575	-1 256653493	0.018812698
ENSMUSG0000030048	Gkn3	0.027147739	-1 179133167	0.003240375	ENSMUSG0000016028	Color1	0.012459598	-1 276940507	0.010012050
ENSMUSC0000086340	191005001784	0	2.096499090	0.003423770	ENSMUSC000000E6212	Teim	0.025242862	1 226729025	0.010142507
ENSMUSC0000080340	1010039C17Kik	0 609750202	-3.360466063	0.003404090	ENSING 3G00000030313	Cot111	0.053242802	1 107250622	0.019142307
ENSMUSC0000037503	Hacrb	0.036733203 E 04673E203	0.740433333	0.003404090	ENSING 3G00000059720	Gutin	0.014931317	1 20561406	0.019642744
ENSINGSG0000021320	Crubal	0.052228251	-0.703038503	0.003404090	ENSING 3G00000039834	Hyum	0.013307300	-1.20301400	0.019665412
	Crybgz	0.052526251	1.100974755	0.003531503		LSI Sla44a2	0.003009900	-0./050151/	0.020009055
	Iviluii Socri	0.046000551	-0.939304317	0.003576974	ENSIVIUSG00000039805	SIL44d5	0.000333969	-5.291567265	0.020720695
ENSINUSG0000038332	Sesti	0.788858222	0.72430091	0.003577689	ENSIVIUSG00000047281	SIII Dab 116-1	0.005359828	-1.090130059	0.021068037
ENSMUSG0000048731	Ggnbpi	0.050361024	-0.932192111	0.003638002	ENSMUSG0000031488	Rabiinpi Cfaur 52	0.012815586	-1.237412143	0.021465874
ENSMUSG0000026580	Seip	0.007082019	4.348902266	0.003661073	ENSMUSG0000020904	Crap52	0.012815586	-1.23/412143	0.021465874
ENSMUSG0000032595	Cdnr4	0.031082194	1.83/94034/	0.00369698	ENSMUSG0000004266	Ptpnb	0.02135931	-1.1108/1692	0.021526249
ENSMUSG0000039202	Abnd2	0.112131967	-0.842441719	0.004016473	ENSMUSG0000053175	BCI3	0.029547046	1.312234245	0.021526249
ENSMUSG0000114018	Gm36495	0.006295128	-1.64445242	0.004016473	ENSMUSG0000032511	Sch5a	0.100744748	0.809796815	0.021526249
ENSMUSG0000030748	ll4ra	0.076721872	0.987764142	0.004061078	ENSMUSG0000038485	Socs7	0.229968576	-0.592565845	0.021526249
ENSMUSG0000070306	Ccac153	0.142033824	1.534731449	0.004061078	ENSMUSG0000020799	Tekt1	0.041294667	-0.915987255	0.021799834
ENSMUSG0000024208	Uqcc2	5.066791112	-0.694537678	0.004147299	ENSMUSG0000015950	NCT1	0.090065093	0.871126804	0.022105049
ENSMUSG0000048015	Neurod4	0.002754118	-2.108478613	0.004152039	ENSMUSG0000037727	Avp	0.736896212	-1.733415906	0.024579047
ENSMUSG0000034064	Poglut1	0.5854469	-0.715899301	0.004152039	ENSMUSG0000022758	P2rx6	0.013171575	-1.228084341	0.024579047
ENSMUSG00000118107	Gm34455	0.003147564	-2.086652251	0.004185082	ENSMUSG0000070866	Zfp804a	0.129935805	-0.651846181	0.024634837
ENSMUSG0000036751	Cox6b1	7.61317037	-0.690692087	0.004370487	ENSMUSG0000014158	Trpv4	0.019935356	-1.065354841	0.024669444
ENSMUSG0000028211	Trp53inp1	0.074754644	0.977963862	0.004451442	ENSMUSG0000047502	Mroh7	0.024563207	-0.988274866	0.02477868
ENSMUSG0000097032	4930539J05Rik	0.018885384	-1.166958453	0.004503077	ENSMUSG0000052387	Trpm3	0.455309302	-0.554621689	0.02477868
ENSMUSG0000070866	Ztp804a	0.06727918	-0.869365274	0.004533303	ENSMUSG0000042699	Dhx9	0.383399623	-0.552430068	0.024913243
ENSMUSG0000029380	Cxcl1	0.00786891	2.908329675	0.004680221	ENSMUSG0000039349	C130074G19Rik	0.052330311	-0.908104518	0.024913243
ENSMUSG0000026388	3110009E18Rik	0.033442867	-0.996322449	0.004715331	ENSMUSG0000030827	Fgt21	0.008899713	2.868284054	0.024913243
ENSMUSG00000113769	5033406O09Rik	0.025573957	1.501512682	0.004772365	ENSMUSG0000027276	Jag1	0.032394954	-0.90850655	0.024977884
ENSMUSG0000058600	Rpl30	10.5423721	-0.686024182	0.004792632	ENSMUSG0000057914	Cacnb2	0.200065542	-0.593010008	0.025486888
ENSMUSG0000055839	Elob	9.734235045	-0.684372061	0.004898402	ENSMUSG0000035357	Pdzrn3	0.079385437	-0.704280842	0.025486888
ENSMUSG0000027985	Lef1	0.103869611	-0.835018635	0.004919939	ENSMUSG0000027737	Slc7a11	0.181198151	-0.612589287	0.025747072
ENSMUSG0000021099	Six6	0.013377147	-1.369655073	0.005000274	ENSMUSG0000041930	Fam222a	0.113204346	-0.654294403	0.025747072
ENSMUSG0000030785	Cox6a2	0.674759028	-0.722147485	0.005018877	ENSMUSG0000051041	Olfml1	0.065501886	-0.760205822	0.025747072
ENSMUSG0000063320	1190007I07Rik	0.159738872	-0.761521724	0.005267126	ENSMUSG00000113902	Ndufb1-ps	4.088528017	-0.506171122	0.02590477
ENSMUSG0000075602	Ly6a	1.615487211	0.704498188	0.005267126	ENSMUSG0000034041	Lyl1	0.01423954	-1.175043378	0.026028871
ENSMUSG0000040055	Gjb6	1.259025591	0.695433165	0.005553065	ENSMUSG0000047420	Fam180a	0.005695816	-1.602673818	0.026031573
ENSMUSG0000091625	Lsm5	0.354494393	-0.714128037	0.005586645	ENSMUSG0000067288	Rps28	7.950291354	-0.504467008	0.026031573
ENSMUSG0000001025	S100a6	0.583479672	-0.714136613	0.005708075	ENSMUSG0000057068	Fam47e	0.008187736	-1.417118165	0.02646749
ENSMUSG0000039634	Zfp189	0.07947599	0.933420656	0.005837174	ENSMUSG0000050721	Plekho2	0.056246184	-0.767200222	0.02646749
ENSMUSG0000036915	Kirrel2	0.063738171	0.990271288	0.005837174	ENSMUSG0000057722	Lepr	0.003559885	-1.896286002	0.026558433
ENSMUSG0000048807	Slc35e4	0.412330881	0.724262727	0.005837174	ENSMUSG0000017756	Slc12a7	0.016019483	-1.141483722	0.027242939
ENSMUSG0000085691	Gm14216	0	-3.986488089	0.005874335	ENSMUSG0000050397	Foxl2	0.003915874	-1.891049353	0.027357894
ENSMUSG0000074521	Gm14327	0.019278829	-1.137812107	0.00602167	ENSMUSG0000098176	Ccdc166	0.145955288	0.711287567	0.027357894
ENSMUSG0000024176	Sox8	0.274624957	0.778633928	0.006180547	ENSMUSG0000025494	Sigirr	0.012815586	-1.207664799	0.027614442
ENSMUSG0000014846	Тррр3	1.769717846	0.737514198	0.006318625	ENSMUSG0000048655	Ccdc169	0.001423954	-2.417118165	0.027651531
ENSMUSG0000086939	Gm13530	0.007475464	-1.50783449	0.006411516	ENSMUSG0000063975	Slco1a5	0.001423954	-2.417118165	0.027651531
ENSMUSG0000097333	Zfp87	0.118033649	-0.776541241	0.006411516	ENSMUSG0000042379	Esm1	0.001423954	-2.417118165	0.027651531
ENSMUSG0000064057	Scgb3a1	0.02006572	1.553486957	0.006478958	ENSMUSG0000021194	Chga	2.055477646	-0.607429728	0.027678834
ENSMUSG0000043164	Tmem212	0.100722047	1.663655806	0.00687256	ENSMUSG0000090877	Hspa1b	0.049126414	-0.790030189	0.027850204

ENSMUSG00000110500	Gm32568	0.009049246	3.100974753	0.007045714	ENSMUSG0000024033	Rsph1	0.136699587	-0.801861742	0.028105164
ENSMUSG0000086003	B230206L02Rik	0.055475815	-0.88882948	0.007093317	ENSMUSG0000035200	Chrnb4	0.027055127	-1.08893108	0.028155257
ENSMUSG0000066170	E230001N04Rik	0.018491938	1.598474412	0.007093317	ENSMUSG0000048349	Pou4f1	0.046990483	-0.926620348	0.028405891
ENSMUSG0000048416	Mlf1	0.070820189	1.108967543	0.007294238	ENSMUSG0000026565	Pou2f1	0.083657299	-0.690979601	0.028649182
ENSMUSG0000034855	Cxcl10	0.002360673	-3.220953342	0.007294238	ENSMUSG0000027360	Hdc	0.035598851	-1.031925177	0.02870055
ENSMUSG0000071451	Psmg4	0.465052578	-0.692199084	0.007294238	ENSMUSG0000024521	Pmaip1	0.065857874	0.899648225	0.02870055
ENSMUSG0000056501	Cebpb	0.488265862	0.708767962	0.007345006	ENSMUSG0000050199	Lgr4	0.149515173	-0.610334268	0.029142335
ENSMUSG0000025993	Slc40a1	0.025180512	-1.036528771	0.007585711	ENSMUSG0000075703	Selenoi	0.154499013	-0.606442885	0.029250306
ENSMUSG0000046683	0610025113Rik	0.007475464	2.837940347	0.007585711	ENSMUSG0000037206	Isir	0.039870713	-0.918867298	0.029250306
ENSMUSG0000020562	Ffcah10	0 175083246	-0.736561262	0.007585711	ENSMUSG0000084843	B230312C02Rik	0.043074609	-0.820281564	0.029288618
ENSMUSG0000035215	lsm7	2 188737301	-0.667181026	0.007611373	ENSMUSG0000035686	Thrsn	0.499807866	0 582539599	0.029476393
ENSMUSG0000024535	Sny24	0 289969331	0.730606303	0.007632785	ENSMUSG0000021638	Ocln	0.058738104	-0 751736982	0.020470355
ENSMUSC0000024555	Cnz	0.000786801	2 772404265	0.007052785	ENSMUSC0000021038	Mula	0.250971611	0.622577621	0.030033117
	4022421010Bik	0.000780891	-2.775454505	0.007850010	ENSMUSC0000027111	Itrac	0.233671011	-0.033377031	0.030213643
	4955421010NK	0.030334147	-0.780233477	0.007602336	ENSIN03G0000027111	Figat A	0.111780352	-0.041472103	0.030418319
ENSINUSG00000030494	KIIPIIZ	0.076328426	0.960364612	0.007942138	ENSINUSG00000048807	SILSSE4	0.439225176	0.377303117	0.030418319
ENSMUSG0000033126	Ybey	0.059803716	-0.85109077	0.008305005	ENSINUSG0000030494	Rnpnz	0.114272311	0.757294227	0.031103021
ENSMUSG0000034271	Jap2	0.321444971	0.718940063	0.008305005	ENSMUSG0000046402	Rbp1	0.357056474	-0.588532565	0.03119545
ENSMUSG0000001029	Icam2	0.029114967	-0.992134652	0.00836354	ENSMUSG0000038331	Satb2	0.109288472	-0.647518165	0.031294552
ENSMUSG0000026335	Pam	0.320264635	-0.695974548	0.008573585	ENSMUSG0000028655	Mfsd2a	0.468480877	0.573781924	0.032422791
ENSMUSG0000044734	Serpinb1a	0.218755696	-0.764755742	0.008607378	ENSMUSG0000025352	Gdf11	0.169094541	-0.59197393	0.032422791
ENSMUSG0000098332	2310009A05Rik	0.471347706	-0.682636559	0.008607821	ENSMUSG0000026875	Traf1	0.011035644	-1.258420419	0.032484524
ENSMUSG0000052336	Cx3cr1	0.070820189	-0.829631912	0.008607821	ENSMUSG0000004655	Aqp1	0.02135931	-1.091242886	0.032484524
ENSMUSG0000026126	Ptpn18	0.077115317	-0.812248805	0.008717356	ENSMUSG0000041431	Ccnb1	0.013527563	-1.2746739	0.032854392
ENSMUSG0000024033	Rsph1	0.167214336	0.965319653	0.008881633	ENSMUSG0000047109	Cldn14	0.045922518	1.020287147	0.033397244
ENSMUSG0000043773	1700048020Rik	0.128263232	0.810265388	0.008896325	ENSMUSG0000031340	Gabre	0.031326989	-0.895581044	0.033397244
ENSMUSG0000096768	Gm47283	1.541912903	0.663116546	0.008930307	ENSMUSG0000039001	Rps21	24.63760867	-0.489045246	0.033925358
ENSMUSG0000054091	1810037I17Rik	2.008539263	-0.659031399	0.008957028	ENSMUSG0000038738	Shank1	0.852948466	-0.510528476	0.033925358
ENSMUSG0000086682	Gm16023	0.003934455	-1.797145633	0.009334708	ENSMUSG0000038489	Polr2l	0.761459419	-0.512753444	0.034477523
ENSMUSG0000043832	Clec4a3	0.005508237	-1.606844496	0.009334708	ENSMUSG0000030111	A2m	0.069773748	-0.725803683	0.034631973
ENSMUSG0000009079	Ewsr1	0.987548198	-0.662632274	0.00959201	ENSMUSG0000037868	Egr2	0.003915874	-1.77075512	0.034682608
ENSMUSG0000037279	Ovol2	0.113312303	0.892196143	0.009642095	ENSMUSG0000014686	Ceacam16	0.000711977	-2.832155664	0.035150933
ENSMUSG0000000567	Sox9	0.092459692	-0.787871668	0.009682379	ENSMUSG0000046516	Cox17	2.881014997	-0.494050825	0.035357681
ENSMUSG0000000567 ENSMUSG00000091255	Sox9 Speer4e	0.092459692 0	-0.787871668 -3.805915843	0.009682379 0.009907102	ENSMUSG0000046516 ENSMUSG0000047867	Cox17 Gimap6	2.881014997 0.063365954	-0.494050825 0.896772611	0.035357681
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000063316	Sox9 Speer4e Rpl27	0.092459692 0 5.08882406	-0.787871668 -3.805915843 -0.64942375	0.009682379 0.009907102 0.009907102	ENSMUSG00000046516 ENSMUSG00000047867 ENSMUSG00000022861	Cox17 Gimap6 Dgkg	2.881014997 0.063365954 0.04770246	-0.494050825 0.896772611 0.996732419	0.035357681 0.035427787 0.03554528
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG00000063316 ENSMUSG0000009885	Sox9 Speer4e Rpl27 Apobec3	0.092459692 0 5.08882406 0.035410095	-0.787871668 -3.805915843 -0.64942375 1 182504638	0.009682379 0.009907102 0.009907102 0.009907102	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG0000022861 ENSMUSG0000027434	Cox17 Gimap6 Dgkg Nkx2-2	2.881014997 0.063365954 0.04770246 0.067637817	-0.494050825 0.896772611 0.996732419 -0.762521476	0.035357681 0.035427787 0.03554528 0.036318793
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000063316 ENSMUSG0000009585 ENSMUSG0000009281	Sox9 Speer4e Rpl27 Apobec3 Barres2	0.092459692 0 5.08882406 0.035410095 0.384396251	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG0000022861 ENSMUSG00000027434 ENSMUSG0000002384	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471	-0.494050825 0.896772611 0.996732419 -0.762521476 -1 084921735	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG00000093316 ENSMUSG0000009885 ENSMUSG0000009281 ENSMUSG0000009281	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Pos27tt	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.8058415843	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG0000022861 ENSMUSG00000027434 ENSMUSG00000092384 ENSMUSG0000092384	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.016375471	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510596	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000063316 ENSMUSG0000009885 ENSMUSG0000009281 ENSMUSG00000095621 ENSMUSG00000005621	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105442303	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010121951	ENSMUSG0000046516 ENSMUSG00000047867 ENSMUSG00000022861 ENSMUSG00000027434 ENSMUSG0000002384 ENSMUSG00000038765 ENSMUSG00000032656	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nactio2	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114727311	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.63536008	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036353834 0.036353834
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG00000063316 ENSMUSG0000009285 ENSMUSG0000009281 ENSMUSG000000050621 ENSMUSG0000005064 ENSMUSG0000006731	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Blakbo2	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.751278506	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.01032337 0.01032368	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG00000027434 ENSMUSG0000002384 ENSMUSG00000038765 ENSMUSG0000002656 ENSMUSG00000026833	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.4798913	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 0.49587328	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036353834 0.037772341 0.037772341
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000063316 ENSMUSG0000009585 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000040564 ENSMUSG00000040721 ENSMUSG00000050721	Sox9 Speer4e RpI27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Aptrd122	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.50134562	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.79201767	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010392337 0.010422868	ENSMUSG0000046516 ENSMUSG00000047867 ENSMUSG00000022861 ENSMUSG00000027434 ENSMUSG0000002384 ENSMUSG0000002384 ENSMUSG0000002683 ENSMUSG0000002683	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.066407302	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 1.40113746	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036353834 0.037772341 0.037897383 0.027897282
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG0000009316 ENSMUSG0000009585 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000040564 ENSMUSG00000041870 ENSMUSG00000041870	Sox9 Speer4e RpI27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1910048028#	0.092459692 0 5.08882406 0.035410095 0.384396251 0.07200526 0.105443393 0.047606905 0.501249563 0.04012833	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 0.80058147	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010392337 0.010422868 0.010533049 0.010533049	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000027634 ENSMUSG00000027434 ENSMUSG0000002384 ENSMUSG00000038765 ENSMUSG00000026633 ENSMUSG00000026833 ENSMUSG00000059343	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.119544122	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.7495844	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036353834 0.037772341 0.037897383 0.037897383
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000093125 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050721 ENSMUSG0000005721 ENSMUSG00000041870 ENSMUSG00000041870	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805946717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.85900441	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.01032237 0.010422868 0.010533049 0.010812764 0.010812764	ENSMUSG0000046516 ENSMUSG00000047867 ENSMUSG00000022861 ENSMUSG00000027834 ENSMUSG00000027834 ENSMUSG00000038765 ENSMUSG00000026633 ENSMUSG00000026933 ENSMUSG0000026013 ENSMUSG00000086013	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 LmX1b Nectin3 Olfm1 Aldoart1 Gm15706	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.01067966 0.114272311 12.47988913 0.006407793 0.118544173	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 5.01061806	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036353834 0.037772341 0.037897383 0.037897383 0.037897383
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG00000093125 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG0000040564 ENSMUSG0000040564 ENSMUSG00000041475 ENSMUSG00000044145 ENSMUSG00000055652	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 0.852094441	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010392337 0.010422868 0.010533049 0.010812764 0.01082272 0.01082272	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG00000027434 ENSMUSG0000002384 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG00000026833 ENSMUSG00000059343 ENSMUSG00000057534	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036353834 0.037772341 0.037897383 0.037897383 0.037897383
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG000009315 ENSMUSG0000009585 ENSMUSG0000009281 ENSMUSG0000040564 ENSMUSG0000040564 ENSMUSG00000041870 ENSMUSG00000041870 ENSMUSG00000041870 ENSMUSG00000041930	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.049318332 0.093640028 0.069246407	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703010767	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010322337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459	ENSMUSG0000046516 ENSMUSG00000047867 ENSMUSG00000022861 ENSMUSG00000027434 ENSMUSG00000027434 ENSMUSG0000002856 ENSMUSG00000026833 ENSMUSG00000059343 ENSMUSG00000059343 ENSMUSG00000057534 ENSMUSG0000043091	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.20205254	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877	0.035357681 0.0355427787 0.03554528 0.036318793 0.036318793 0.036353834 0.037772341 0.037897383 0.037897383 0.037897383 0.037897383
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG0000009315 ENSMUSG0000009585 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000040564 ENSMUSG00000050721 ENSMUSG00000041870 ENSMUSG00000025552 ENSMUSG00000022324 ENSMUSG00000022324	Sox9 Speer4e RpI27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik KlhI25 Fam222a Matn2	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.30846127	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.76125354 -0.75178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010392337 0.010422868 0.010533049 0.010812764 0.0108272 0.010869459 0.010943689	ENSMUSG0000046516 ENSMUSG00000047867 ENSMUSG00000022861 ENSMUSG00000027434 ENSMUSG0000002384 ENSMUSG0000002883 ENSMUSG0000026833 ENSMUSG0000026833 ENSMUSG0000026813 ENSMUSG00000057534 ENSMUSG00000024513 ENSMUSG00000024513	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036353834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000093255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050621 ENSMUSG00000041870 ENSMUSG0000041870 ENSMUSG0000041145 ENSMUSG00000041130 ENSMUSG00000041930 ENSMUSG00000022324 ENSMUSG0000020672	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.30846127	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.705091	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.011011921	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG0000022844 ENSMUSG0000022384 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG0000026613 ENSMUSG0000086013 ENSMUSG0000086013 ENSMUSG0000008013 ENSMUSG000000457534 ENSMUSG000000457534 ENSMUSG000000457534	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 LmX1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfrl1	2.881014997 0.063365954 0.04770246 0.067637817 0.01067566 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115	0.035357681 0.035542787 0.036542787 0.036318793 0.036318793 0.036353834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000093255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000040564 ENSMUSG00000040564 ENSMUSG00000044145 ENSMUSG00000055652 ENSMUSG00000055652 ENSMUSG0000022324 ENSMUSG0000020672 ENSMUSG00000020672 ENSMUSG00000079657	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.76125354 -0.76125354 -0.733010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010392337 0.010422868 0.010533049 0.010812764 0.0108272 0.010869459 0.010943689 0.01011921 0.011207639	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG0000002284 ENSMUSG0000022384 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG00000026833 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000024513 ENSMUSG0000028051	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.288588772	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506	0.035357681 0.0355427787 0.03554528 0.036318793 0.036318793 0.036358344 0.037772341 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG0000093125 ENSMUSG0000009585 ENSMUSG0000009581 ENSMUSG0000040564 ENSMUSG0000040564 ENSMUSG0000040567 ENSMUSG0000044145 ENSMUSG00000041930 ENSMUSG0000041930 ENSMUSG0000022324 ENSMUSG0000022324 ENSMUSG0000022324 ENSMUSG0000022324	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212 2.290246239	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010043689 0.01101921 0.011207639 0.011207639	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG00000227434 ENSMUSG0000022454 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG00000026833 ENSMUSG0000008013 ENSMUSG00000086013 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000024513 ENSMUSG0000008901 ENSMUSG000000891	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfrl1 Gm27032 Hist1b4h	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.0272411115 0.292622554 0.070841713 0.285858772 0.063721943	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999	0.035357681 0.0355427787 0.03554528 0.036318793 0.036318793 0.036353834 0.037772341 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.03812764 0.038217764
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG0000009315 ENSMUSG0000009585 ENSMUSG0000009281 ENSMUSG0000040564 ENSMUSG0000040564 ENSMUSG00000041870 ENSMUSG00000041870 ENSMUSG0000002522 ENSMUSG00000022324 ENSMUSG0000002657 ENSMUSG0000002657 ENSMUSG00000092541 ENSMUSG00000028234	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Kihl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Kihdc7a	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.76125354 -0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.011011921 0.011207639 0.011207639 0.011397366	ENSMUSG0000046516 ENSMUSG00000047867 ENSMUSG00000022861 ENSMUSG00000027434 ENSMUSG0000002384 ENSMUSG00000022656 ENSMUSG0000026833 ENSMUSG00000026833 ENSMUSG00000059343 ENSMUSG00000057534 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000024513 ENSMUSG00000024513 ENSMUSG0000008090 ENSMUSG0000008091 ENSMUSG0000008091 ENSMUSG00000060981 ENSMUSG00000060981	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.01067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.28588772 0.063721943 0.003559885	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664	0.035357681 0.035427787 0.036542787 0.036518793 0.036535834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.0381221784 0.038127764 0.038217764
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000093125 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050621 ENSMUSG00000041870 ENSMUSG0000041870 ENSMUSG00000041145 ENSMUSG00000041930 ENSMUSG0000002672 ENSMUSG00000079657 ENSMUSG00000079657 ENSMUSG000000792341 ENSMUSG00000078234 ENSMUSG00000078234	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Kihl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Kihdc7a Gm807	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.039647578 0.619283212 2.290246239 0.046820014 0.011803365	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.011011921 0.011207639 0.011207639 0.011397366 0.011408709	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG0000022844 ENSMUSG0000022844 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG0000026833 ENSMUSG00000086013 ENSMUSG00000086013 ENSMUSG0000008013 ENSMUSG00000027534 ENSMUSG00000027534 ENSMUSG00000027534 ENSMUSG0000008091 ENSMUSG0000008051 ENSMUSG0000008091 ENSMUSG0000008091 ENSMUSG00000074207 ENSMUSG00000074207	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1 She	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.00359885 0.007831747	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.569094115 0.599727506 -0.715341999 -1.832155664 -1.39605655	0.035357681 0.0355427787 0.036542787 0.036518793 0.036318793 0.036353834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.038363129 0.038500966
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG00000931255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050721 ENSMUSG00000040564 ENSMUSG00000041870 ENSMUSG00000055652 ENSMUSG00000055652 ENSMUSG0000002324 ENSMUSG0000002672 ENSMUSG0000002341 ENSMUSG00000078234 ENSMUSG0000078234 ENSMUSG0000078234 ENSMUSG0000078234 ENSMUSG0000078234 ENSMUSG0000078234	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Kihl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Kihdc7a Gm807 Plac9b	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.039645127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76123354 -0.76123354 -0.76123354 -0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010392337 0.010422868 0.010533049 0.010812764 0.0108272 0.010869459 0.010843689 0.010101921 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG0000022844 ENSMUSG0000022384 ENSMUSG0000022656 ENSMUSG0000022653 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000026513 ENSMUSG0000002801 ENSMUSG0000008090 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG0000006081 ENSMUSG0000006280	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1 She Rassf9	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003559885 0.007831747 0.007831747	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655	0.035357681 0.035427787 0.0365427787 0.036318793 0.036318793 0.036358344 0.037772341 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.038217764 0.03851298 0.03851298
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG0000093125 ENSMUSG0000009385 ENSMUSG0000009385 ENSMUSG0000040564 ENSMUSG0000040564 ENSMUSG0000040567 ENSMUSG0000044145 ENSMUSG00000041930 ENSMUSG0000002324 ENSMUSG0000002324 ENSMUSG0000002324 ENSMUSG0000007257 ENSMUSG0000078234 ENSMUSG000007824 ENSMUSG000007824 ENSMUSG000007824 ENSMUSG000007824 ENSMUSG000007824 ENSMUSG000007824 ENSMUSG0000007824 ENSMUSG0000007824 ENSMUSG0000007824 ENSMUSG0000007824	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024803Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm39271	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.000786891	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.010322337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010043689 0.01011921 0.011207639 0.011207639 0.011397366 0.011408709 0.011385155 0.012179771	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG0000022844 ENSMUSG0000022434 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG00000026833 ENSMUSG00000086013 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060881 ENSMUSG00000060881 ENSMUSG00000042207 ENSMUSG0000004280 ENSMUSG00000042921	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfrl1 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1	2.881014997 0.063365954 0.04770246 0.06737817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003559885 0.007831747 0.007831747 0.194369725	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -0.588507683	0.035357681 0.035427787 0.0365427787 0.036318793 0.036318793 0.036353834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.03826129 0.038250966 0.038500966 0.038577649
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000093255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050621 ENSMUSG00000041870 ENSMUSG0000041870 ENSMUSG0000041130 ENSMUSG00000041130 ENSMUSG0000022324 ENSMUSG0000020672 ENSMUSG0000020672 ENSMUSG00000278234 ENSMUSG0000097848 ENSMUSG00000072674 ENSMUSG00000072674 ENSMUSG00000072674 ENSMUSG0000012767	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm39271 Nr4a1	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.049918332 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.000786891 0.150689625	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.01101921 0.011207639 0.011207639 0.011207639 0.011397366 0.011408709 0.011886155 0.012179771 0.012488316	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000027841 ENSMUSG0000027834 ENSMUSG0000027834 ENSMUSG00000038765 ENSMUSG0000022656 ENSMUSG0000026833 ENSMUSG0000086013 ENSMUSG0000008013 ENSMUSG0000008001 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008091 ENSMUSG000000891 ENSMUSG0000006981 ENSMUSG00000046280 ENSMUSG00000046280 ENSMUSG00000042511 ENSMUSG0000044921 ENSMUSG00000049511 ENSMUSG0000004951	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 LmX1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.01067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285885772 0.063721943 0.003559885 0.007831747 0.194369725 0.332493267	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -0.588507683 -0.5582047745	0.035357681 0.0355427787 0.036518793 0.036318793 0.036535834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.03897383 0.038122198 0.038217764 0.038500966 0.038500966 0.038500966
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000093125 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050621 ENSMUSG00000041870 ENSMUSG0000041870 ENSMUSG00000041870 ENSMUSG0000002324 ENSMUSG0000002657 ENSMUSG00000079657 ENSMUSG00000079657 ENSMUSG000000792341 ENSMUSG00000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG00000072674	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm392711 Nr4a1 Snhg10	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.000786891 0.15068925 0.078689099	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.011011921 0.011207639 0.011207639 0.011397366 0.011408709 0.011886155 0.01279771 0.012488316 0.012583557	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000022861 ENSMUSG0000022844 ENSMUSG0000022844 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG0000026613 ENSMUSG0000086013 ENSMUSG00000086013 ENSMUSG0000008001 ENSMUSG00000027534 ENSMUSG0000008090 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000004921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000049521 ENSMUSG00000049521 ENSMUSG00000049521	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Slc2a12	2.881014997 0.063365954 0.04770246 0.067637817 0.010675966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.00359885 0.007831747 0.07831747 0.32493267 0.332493267 0.32493267 0.098964805	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.569094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292	0.035357681 0.035427787 0.036542787 0.036318793 0.036318793 0.036353834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.03851296 0.03850966 0.03850966 0.038577469 0.038577469
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000093255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050721 ENSMUSG00000040564 ENSMUSG00000041870 ENSMUSG00000055652 ENSMUSG00000023244 ENSMUSG0000002672 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG0000078234 ENSMUSG0000078234 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG00000110716 ENSMUSG00000110716 ENSMUSG00000113722 ENSMUSG0000013731	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024803Rik Kihl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Kihdc7a Gm807 Plac9b Gm392711 Nr4a1 Sntg10 3300002A11Rik	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.039646127 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.00786891 0.150689625 0.0078689099 0.014950929	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76123554 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010392337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010843689 0.011011921 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207839 0.011207839 0.011207839 0.011207839 0.011207839 0.011207839 0.011207835 0.012183557 0.012622281	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG0000022861 ENSMUSG000002284 ENSMUSG0000022384 ENSMUSG0000022856 ENSMUSG0000022656 ENSMUSG0000026833 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000027534 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008091 ENSMUSG0000008091 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG0000004221 ENSMUSG00000049211 ENSMUSG00000049521 ENSMUSG00000049521 ENSMUSG00000049521 ENSMUSG00000030849 ENSMUSG00000037490 ENSMUSG00000034364	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Slc2a12 Rhob	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003559885 0.007831747 0.09831747 0.194369725 0.332493267 0.098964805 5.271121841	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036358334 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.03879783 0.038217764 0.038217764 0.03851298 0.03851296 0.038500966 0.03857469 0.0385592047 0.03852882 0.038592047
ENSMUSG0000000567 ENSMUSG0000091255 ENSMUSG0000093125 ENSMUSG0000009385 ENSMUSG0000009385 ENSMUSG000000050621 ENSMUSG00000040564 ENSMUSG00000040564 ENSMUSG00000041870 ENSMUSG00000041870 ENSMUSG00000014145 ENSMUSG0000002324 ENSMUSG0000002324 ENSMUSG00000023241 ENSMUSG0000002341 ENSMUSG0000002341 ENSMUSG0000007824 ENSMUSG0000007824 ENSMUSG0000007848 ENSMUSG0000072674 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023371 ENSMUSG0000023371 ENSMUSG0000023371 ENSMUSG000000371	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm39271 Nr4a1 Snhg10 3300002A11Rik Rmst	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.00786891 0.150689625 0.07868999 0.014950929 0.107410621	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971 0.815302543	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.011011921 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207535 0.012655288	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000047867 ENSMUSG00000027844 ENSMUSG00000027834 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG00000026833 ENSMUSG0000008013 ENSMUSG00000037534 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG0000004221 ENSMUSG0000004221 ENSMUSG00000030849 ENSMUSG0000037490 ENSMUSG0000037490 ENSMUSG0000037490 ENSMUSG0000037490 ENSMUSG0000037490	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr1 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Slc2a12 Rhob	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003559885 0.007831747 0.007831747 0.194369725 0.332493267 0.332493267 0.098964805 5.271121841 0.001067966	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.656094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394 -2.532595382	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036318793 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038797383 0.038217764 0.038217764 0.038217764 0.038500966 0.038500966 0.038500966 0.03857469 0.038592047 0.038592047
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000091255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050621 ENSMUSG00000041870 ENSMUSG0000041870 ENSMUSG0000041145 ENSMUSG00000041430 ENSMUSG0000022324 ENSMUSG0000020672 ENSMUSG0000020672 ENSMUSG0000002672 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG0000007848 ENSMUSG00000072674 ENSMUSG000001716 ENSMUSG00000113722 ENSMUSG00000113722 ENSMUSG0000013731 ENSMUSG0000013721 ENSMUSG0000013721	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm39271 Nr4a1 Snhg10 3300002A11Rik Rmst	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.049918332 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.00786891 0.150689625 0.078689099 0.107410621 0.003541009	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.01101921 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011279771 0.01248316 0.012583557 0.0122289 0.012744598	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000027841 ENSMUSG00000027834 ENSMUSG0000027834 ENSMUSG00000027834 ENSMUSG0000022656 ENSMUSG0000026833 ENSMUSG0000086013 ENSMUSG0000008013 ENSMUSG0000008001 ENSMUSG0000008090 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG00000046280 ENSMUSG00000046280 ENSMUSG00000046280 ENSMUSG0000046280 ENSMUSG0000004521 ENSMUSG0000004521 ENSMUSG00000037490 ENSMUSG00000034364 ENSMUSG00000034364 ENSMUSG00000034364	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 LmX1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Slc2a12 Rhob Styx11 Gm20627	2.881014997 0.063365954 0.04770246 0.067637817 0.01067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.02559885 0.007831747 0.007831747 0.09355985 0.007831747 0.0935985 0.007831747 0.0935925 0.332493267 0.098964805 5.271121841 0.001067966 0.000355889	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394 -2.532595822 -3.154083759	0.035357681 0.0353427787 0.036542787 0.036318793 0.036318793 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.038500966 0.038500966 0.038500966 0.03857469 0.03857469 0.03857469 0.038592047 0.038592047
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000093255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050621 ENSMUSG00000041870 ENSMUSG0000041870 ENSMUSG00000041870 ENSMUSG00000025652 ENSMUSG00000079657 ENSMUSG00000079657 ENSMUSG00000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000012717 ENSMUSG0000012311 ENSMUSG0000012117 ENSMUSG0000012117 ENSMUSG0000012562 ENSMUSG0000025652 ENSMUSG00000205652	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Kihl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Kihdc7a Gm807 Plac9b Gm39271 Nr4a1 Snhg10 3300002A11Rik Rmst Tmem89 Prr29	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.039647578 0.619283212 2.290246239 0.04820014 0.011803365 0.005901682 0.00786891 0.15068925 0.078689099 0.014950929 0.017410621 0.003541009 0.015344374	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971 0.815302543 -1.862499371 1.963471229	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.0108459 0.0108459 0.01027639 0.011207639 0.011207639 0.011397366 0.011408709 0.011886155 0.01274771 0.012683557 0.012652281 0.012652281 0.012574598 0.012744598 0.01274659	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000027841 ENSMUSG0000027844 ENSMUSG0000027844 ENSMUSG0000027844 ENSMUSG0000022656 ENSMUSG0000022656 ENSMUSG0000026833 ENSMUSG00000086013 ENSMUSG00000086013 ENSMUSG00000075734 ENSMUSG00000075734 ENSMUSG00000027534 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008051 ENSMUSG0000004921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG0000004364 ENSMUSG00000037490 ENSMUSG00000034364 ENSMUSG0000019178 ENSMUSG0000003507	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Sic2a12 Rhob Styxl1 Gm20627 Sic282	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.01067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003559885 0.007831747 0.07831747 0.07831747 0.07831747 0.032493267 0.332493267 0.332493267 0.098964805 5.271121841 0.01067966 0.000355989 0.03610828	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495832239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.3960565 -1.396056 -1.	0.035357681 0.035427787 0.036542787 0.036318793 0.036318793 0.036353834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.03851299 0.038512796 0.038500966 0.038500966 0.038570469 0.03852047 0.03852047 0.0382592047 0.038628882 0.039578423 0.039578423 0.039578423
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000091255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050721 ENSMUSG00000040564 ENSMUSG00000055652 ENSMUSG00000055652 ENSMUSG0000002672 ENSMUSG0000002672 ENSMUSG00000079637 ENSMUSG00000079637 ENSMUSG00000078234 ENSMUSG0000078234 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG00000110716 ENSMUSG00000110716 ENSMUSG00000112712 ENSMUSG00000112712 ENSMUSG00000112717 ENSMUSG00000112717 ENSMUSG0000012652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000012117 ENSMUSG0000012107	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024803Rik Kihl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Kihdc7a Gm807 Plac9b Gm39271 Nr4a1 Snhg10 3300002A11Rik Rmst Tmem89 Prr29 Bhmt	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.039640028 0.069246407 0.30846127 0.30846127 0.30846127 0.30846127 0.409967578 0.619283212 2.290246239 0.04682014 0.011803365 0.007901682 0.007868919 0.150689625 0.078689099 0.014950929 0.107410621 0.003541009 0.015344374 0.005901682	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.76125354 -0.76125354 -0.73010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971 0.815302543 -1.862499371 1.963471229 3.100974753	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.0108459 0.010843689 0.011011921 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207835 0.012179771 0.012488316 0.012583557 0.012652281 0.012652289 0.012746598 0.01276659 0.0130298	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000047867 ENSMUSG00000027844 ENSMUSG0000027844 ENSMUSG0000028765 ENSMUSG0000022656 ENSMUSG0000026833 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000027534 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008091 ENSMUSG0000008091 ENSMUSG0000008091 ENSMUSG0000004921 ENSMUSG0000004921 ENSMUSG0000004921 ENSMUSG0000004921 ENSMUSG0000004921 ENSMUSG0000004921 ENSMUSG0000030849 ENSMUSG000003849 ENSMUSG0000003507 ENSMUSG0000003507 ENSMUSG0000025094 ENSMUSG0000025094	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Netin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr11 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Slc2a12 Rhob Styxl1 Gm20627 Slc18a2 Dcaf4	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003559885 0.007831747 0.09831747 0.0984305 5.271121841 0.001067966 0.000355989 0.036310828 0.252039864	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394 -2.532595382 -3.154083759 1.099457361 0.604063151	0.035357681 0.035427787 0.0365427787 0.036318793 0.036318793 0.036318793 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.03851298 0.03850966 0.038550966 0.038550966 0.0385592047 0.038528822 0.03850966 0.03857469 0.038528423 0.039857413 0.038652842 0.039857423
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000091255 ENSMUSG0000009285 ENSMUSG0000009281 ENSMUSG000000050621 ENSMUSG00000040564 ENSMUSG00000040564 ENSMUSG00000041870 ENSMUSG00000041870 ENSMUSG0000002304 ENSMUSG0000002304 ENSMUSG00000023034 ENSMUSG00000072674 ENSMUSG00000110716 ENSMUSG0000012304 ENSMUSG00000123034 ENSMUSG00000123034 ENSMUSG00000123034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000012317 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000025652 ENSMUSG00000025652 ENSMUSG00000025053	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm39271 Nr4a1 Snhg10 3300002A11Rik Rmst Tmem89 Prr29 Bhmt Cited1	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.30846127 0.30846127 0.409967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.00786891 0.150689625 0.078689099 0.107410621 0.003541009 0.015344374 0.005901682 0.302559587	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971 0.815302543 -1.862499371 1.963471229 3.100974753 0.721022595	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.01011921 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.0112783557 0.012652281 0.012652289 0.012744598 0.012744598 0.0127659 0.013522572	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000047867 ENSMUSG00000027844 ENSMUSG00000027844 ENSMUSG0000002856 ENSMUSG0000022656 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG00000043091 ENSMUSG00000043091 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000030849 ENSMUSG0000030849 ENSMUSG0000037400 ENSMUSG0000037490 ENSMUSG0000037490 ENSMUSG0000003749 ENSMUSG0000037490 ENSMUSG0000037490 ENSMUSG0000037490 ENSMUSG000003507 ENSMUSG0000035074 ENSMUSG00000035074 ENSMUSG0000025094 ENSMUSG0000025094	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr1 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Slc2a12 Rhob Styxl1 Gm20627 Slc38a2 Dcaf4 O610040B10Rik	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003559885 0.007831747 0.09841747 0.09841747 0.098964805 5.271121841 0.001067966 0.000355989 0.036310828 0.25203864 0.119968127	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394 -2.532595382 -3.154083759 1.099457361 0.604063151 0.614063151	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036318793 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.038217764 0.038500966 0.038500966 0.038500966 0.03857469 0.038500966 0.03857469 0.038577469 0.03850247 0.038628822 0.039167368 0.039578423 0.039805711 0.041032296 0.04103375
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000091255 ENSMUSG0000009281 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050621 ENSMUSG00000041870 ENSMUSG00000041870 ENSMUSG00000041870 ENSMUSG0000002324 ENSMUSG00000020672 ENSMUSG0000002672 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG00000078234 ENSMUSG00000113722 ENSMUSG00000113722 ENSMUSG00000113722 ENSMUSG00000113722 ENSMUSG0000023034 ENSMUSG00000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG00000023034 ENSMUSG0000023034 ENSMUSG00000023034 ENSMUSG00000023034 ENSMUSG00000023034 ENSMUSG00000023034 ENSMUSG00000023034 ENSMUSG00000023034 ENSMUSG00000023034 ENSMUSG00000023034 ENSMUSG00000023034 ENSMUSG0000009210 ENSMUSG0000009210 ENSMUSG0000009210	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm39271 Nr4a1 Snhg10 3300002A11Rik Rmst Tmem89 Prr29 Bhmt Cited1 Gm26881	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.04938322 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.00786891 0.150689625 0.078689099 0.107410621 0.003541009 0.015344374 0.005901682 0.302559587 0.201050649	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971 1.963471229 3.100974753 0.721022595 -0.691815542	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.01101921 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.01248316 0.012583557 0.01248316 0.0125289 0.012744598 0.012744598 0.013102998 0.013522572 0.01382708	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000027841 ENSMUSG0000027834 ENSMUSG0000027834 ENSMUSG0000022865 ENSMUSG0000022656 ENSMUSG0000026833 ENSMUSG0000086013 ENSMUSG0000008013 ENSMUSG0000008001 ENSMUSG0000008001 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000006981 ENSMUSG00000046280 ENSMUSG00000046280 ENSMUSG00000046280 ENSMUSG00000046280 ENSMUSG0000004521 ENSMUSG0000004521 ENSMUSG00000049521 ENSMUSG00000037490 ENSMUSG00000034364 ENSMUSG00000054364 ENSMUSG00000054364 ENSMUSG00000054364 ENSMUSG00000054364 ENSMUSG0000025094 ENSMUSG0000025094 ENSMUSG0000021222 ENSMUSG0000021222 ENSMUSG0000021222	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 LmX1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfrl1 Gm27032 Hist1h4h Adh1 She Rasf9 Cdc42ep1 Fgfr2 Slc2a12 Rhob StyXl1 Gm20627 Slc18a2 Dcaf4 O610040B10Rik Wdr86	2.881014997 0.063365954 0.04770246 0.067637817 0.01067966 0.114272311 12.4798913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.02559885 0.007831747 0.063721943 0.00355985 0.007831747 0.32493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.332493267 0.3355889 0.33518828 0.252039864 0.119968127 0.017087448	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394 -2.532595382 -3.154083759 1.099457361 0.604063151 0.710742777 -1.10008887	0.035357681 0.0353427787 0.036542787 0.036318793 0.036318793 0.036535834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.038217764 0.038500966 0.038500966 0.038577469 0.038550947 0.038550947 0.038592047 0.038592047 0.038592047 0.038592047 0.038592047 0.038592047 0.038592047 0.038592047 0.038592047 0.038592047 0.038578423 0.039805711 0.041032296 0.041063975 0.0412384
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG00000091255 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050621 ENSMUSG00000041870 ENSMUSG0000041870 ENSMUSG0000041870 ENSMUSG0000002652 ENSMUSG0000002657 ENSMUSG00000079657 ENSMUSG00000079657 ENSMUSG00000072674 ENSMUSG00000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000012672 ENSMUSG000001277 ENSMUSG000001277 ENSMUSG00000023331 ENSMUSG000001277 ENSMUSG00000023562 ENSMUSG0000002177 ENSMUSG000000210 ENSMUSG0000002176 ENSMUSG00000074768 ENSMUSG00000051159 ENSMUSG00000051159 ENSMUSG0000005565	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm39271 Nr4a1 Snhg10 3300002A11Rik Rmst Tmem89 Prr29 Bhmt Cited1 Gm26881 Gm38243	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.0078689099 0.014950929 0.107410621 0.003541009 0.015344374 0.005901682 0.302559587 0.201050649 0.011016474	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.76125354 -0.76125354 -0.73010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971 0.815302543 -1.862499371 1.963471229 3.100974753 0.721022595 -0.691815542 -1.269862943	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032377 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.010943689 0.010943689 0.011011921 0.011207639 0.011207639 0.011207639 0.011397366 0.011408709 0.011885155 0.0127639 0.01283557 0.012652281 0.012652281 0.012652289 0.012744598 0.012744598 0.012744598 0.0127659 0.01302298	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000027841 ENSMUSG0000027844 ENSMUSG0000027844 ENSMUSG0000027844 ENSMUSG0000022656 ENSMUSG0000026833 ENSMUSG0000086013 ENSMUSG0000086013 ENSMUSG0000008011 ENSMUSG0000008011 ENSMUSG0000008001 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG0000008051 ENSMUSG00000046280 ENSMUSG00000046280 ENSMUSG00000044221 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000044921 ENSMUSG00000054364 ENSMUSG00000054364 ENSMUSG00000054364 ENSMUSG00000054364 ENSMUSG0000025094 ENSMUSG0000025094 ENSMUSG0000025235 ENSMUSG0000005235	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr1 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Sic2a12 Rhob Styx11 Gm20627 Sic18a2 Dcaf4 O610040B10Rik Wdr86 Pik3c2b	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.01067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003721943 0.00359885 0.007831747 0.194369725 0.332493267 0.098964805 5.271121841 0.01067966 0.32493267 0.098964805 5.271121841 0.01067966 0.000355899 0.036310828 0.252039864 0.119968127 0.017087448 0.038446759	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394 -2.532595382 -3.154083759 1.099457361 0.604063151 0.710742777 -1.10008887 -0.81885842	0.035357681 0.035427787 0.036542787 0.036318793 0.036318793 0.036353834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.0385129 0.0385129 0.03850966 0.03850966 0.03850966 0.038570469 0.03850946 0.03850947 0.03852047 0.038262882 0.039167368 0.039578423 0.03985711 0.041032296 0.041063975 0.04129384
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG0000093125 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG00000050621 ENSMUSG00000050721 ENSMUSG00000040564 ENSMUSG00000055652 ENSMUSG0000002672 ENSMUSG0000002672 ENSMUSG00000079657 ENSMUSG00000079657 ENSMUSG0000079657 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG0000072674 ENSMUSG00000072674 ENSMUSG00000110716 ENSMUSG00000112712 ENSMUSG00000112712 ENSMUSG00000112712 ENSMUSG00000112712 ENSMUSG00000112717 ENSMUSG00000112717 ENSMUSG00000112717 ENSMUSG00000112117 ENSMUSG00000112117 ENSMUSG00000025652 ENSMUSG0000009210 ENSMUSG0000009516 ENSMUSG00000051159 ENSMUSG000000567 ENSMUSG000000567 ENSMUSG000000567 ENSMUSG000000567 ENSMUSG0000009567	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Klhl25 Fam222a Matn2 Sntg2 Rab26 Malat1 Klhdc7a Gm807 Plac9b Gm39271 Nr4a1 Snhg10 3300002A11Rik Rmst Tmem89 Prr29 Bhmt Cited1 Gm36881 Gm38243 Mcam	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.093640028 0.069246407 0.30846127 0.039246407 0.30846127 0.049967578 0.619283212 2.290246239 0.046820014 0.011803365 0.005901682 0.007868919 0.150689625 0.078689099 0.014950929 0.017410621 0.003541009 0.015344374 0.005901682 0.302559587 0.201050649 0.011016474 0.064525062	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 -0.783248933 2.386376971 0.815302543 -1.862499371 1.963471229 3.100974753 0.721022595 -0.691815542 -0.691815542 -0.631911052	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032337 0.010422868 0.010533049 0.010812764 0.01082272 0.010869459 0.0108459 0.0108459 0.01027639 0.011207639 0.011207639 0.011207639 0.011397366 0.011408709 0.011397366 0.012188155 0.012179771 0.012683557 0.012652281 0.012652289 0.012744598 0.012744598 0.01274659 0.013102998 0.01382708 0.01382708 0.01387708	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000027841 ENSMUSG0000027844 ENSMUSG0000027844 ENSMUSG0000022863 ENSMUSG0000022656 ENSMUSG00000026833 ENSMUSG00000057534 ENSMUSG0000007534 ENSMUSG0000007534 ENSMUSG00000027534 ENSMUSG00000027534 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008090 ENSMUSG0000008051 ENSMUSG00000046280 ENSMUSG00000046280 ENSMUSG0000004521 ENSMUSG0000004521 ENSMUSG0000003849 ENSMUSG00000037490 ENSMUSG0000003464 ENSMUSG0000003464 ENSMUSG0000003507 ENSMUSG0000025034 ENSMUSG0000025094 ENSMUSG0000025235 ENSMUSG00000052447 ENSMUSG00000026447 ENSMUSG0000026447	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr1 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Slc2a12 Rhob Styxl1 Gm20627 Slc18a2 Dcaf4 0610040810Rik Wdr86 Pik3c2b Chrm2	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.01067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.00359885 0.307831747 0.0984305 5.271121841 0.001667966 0.00355989 0.36310828 0.252039864 0.119968127 0.17087448 0.038446759 0.033446759	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.666094115 0.599727506 -0.715341999 -1.83215564 -1.39605655 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394 -2.532595382 -3.154083759 1.099457361 0.604063151 0.710742777 -1.10008887 -0.818858842 -0.818858842	0.035357681 0.035427787 0.0365427787 0.036318793 0.036318793 0.036353834 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.0385129 0.038500966 0.038500966 0.038500966 0.03857469 0.03852047 0.038652047 0.038652882 0.039578423 0.039578423 0.039578423 0.039578423 0.041063975 0.04129384 0.04174747 0.0420232
ENSMUSG0000000567 ENSMUSG00000091255 ENSMUSG0000093125 ENSMUSG0000009385 ENSMUSG0000009281 ENSMUSG000000050621 ENSMUSG00000040564 ENSMUSG00000040564 ENSMUSG00000041870 ENSMUSG00000055652 ENSMUSG0000002334 ENSMUSG0000002334 ENSMUSG0000002341 ENSMUSG0000002727 ENSMUSG0000002341 ENSMUSG0000002344 ENSMUSG0000002344 ENSMUSG000001274 ENSMUSG000001274 ENSMUSG000001274 ENSMUSG000001234 ENSMUSG000001234 ENSMUSG000001234 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000023034 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000025652 ENSMUSG0000023135 ENSMUSG0000023135	Sox9 Speer4e Rpl27 Apobec3 Rarres2 Rps27rt Apoc1 Plekho2 Ankrd13a 1810024B03Rik Kihl25 Fam222a Matn2 Sntg2 Rab26 Mala11 Kihdc7a Gm807 Plac9b Gm39271 Nr41 Snhg10 3300002A11Rik Rmst Tmem89 Prr29 Bhmt Cited1 Gm26881 Gm3843 Mcam Cidn14	0.092459692 0 5.08882406 0.035410095 0.384396251 0.072000526 0.105443393 0.047606905 0.501249563 0.040918332 0.039640028 0.069246407 0.30846127 0.03946127 0.03996407578 0.619283212 2.290246239 0.04682014 0.011803365 0.005901682 0.00786891 0.150689625 0.07868909 0.014950929 0.014950929 0.014950929 0.014950929 0.014950929 0.014950929 0.015344374 0.00591682 0.302559587 0.201050649 0.011016474 0.064525062	-0.787871668 -3.805915843 -0.64942375 1.182504638 0.805846717 -0.805915843 -0.76125354 -0.875178506 0.703010767 -0.899025247 0.852094441 -0.81512399 0.703503126 1.013511911 0.676351204 0.655532629 1.030585425 2.055171063 -1.65391275 -2.70638017 -0.723453683 2.386376971 0.815302543 -1.862499371 1.963471229 3.100974753 0.721022595 -0.691815542 -1.269862943 -0.831911052 1.05581633	0.009682379 0.009907102 0.009907102 0.010079016 0.010121951 0.01032937 0.010422868 0.010533049 0.010812764 0.0108272 0.010869459 0.010843689 0.010101921 0.01027639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.011207639 0.012179771 0.012483155 0.012652289 0.012652281 0.012652289 0.01274659 0.013522572 0.01388708 0.01434974 0.014427737 0.014437055	ENSMUSG0000046516 ENSMUSG0000047867 ENSMUSG00000027844 ENSMUSG0000027844 ENSMUSG0000027844 ENSMUSG0000022863 ENSMUSG0000022656 ENSMUSG00000057534 ENSMUSG00000057534 ENSMUSG0000007534 ENSMUSG0000007534 ENSMUSG0000002651 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG00000060981 ENSMUSG0000004921 ENSMUSG0000004921 ENSMUSG0000004921 ENSMUSG0000004921 ENSMUSG0000004521 ENSMUSG00000037490 ENSMUSG00000037490 ENSMUSG00000037490 ENSMUSG00000037490 ENSMUSG0000003507 ENSMUSG0000003507 ENSMUSG0000025094 ENSMUSG0000025094 ENSMUSG0000025295 ENSMUSG0000025427 ENSMUSG0000026447 ENSMUSG0000026447 ENSMUSG0000026447 ENSMUSG0000026447 ENSMUSG0000026447 ENSMUSG0000026447 ENSMUSG0000026447 ENSMUSG0000026447 ENSMUSG000002647	Cox17 Gimap6 Dgkg Nkx2-2 Gm4189 Lmx1b Nectin3 Olfm1 Aldoart1 Gm15706 Elobl Tuba1c Mbd2 Fgfr1 Gm27032 Hist1h4h Adh1 She Rassf9 Cdc42ep1 Fgfr2 Sic2a12 Rhob Styxl1 Gm20627 Sic18a2 Dcaf4 Oc10040B10Rik Wdr86 Pik3c2b Chrm2 Cacna1a	2.881014997 0.063365954 0.04770246 0.067637817 0.016375471 0.001067966 0.114272311 12.47988913 0.006407793 0.118544173 0 0.027411115 0.292622554 0.070841713 0.285858772 0.063721943 0.003559885 0.007831747 0.09351747 0.0935985 0.32493267 0.098964805 5.271121841 0.00167966 0.000355989 0.36310828 0.252039864 0.119968127 0.017087448 0.038446759 0.38446759 0.523659096	-0.494050825 0.896772611 0.996732419 -0.762521476 -1.084921735 -2.639510586 -0.625360098 -0.495835239 -1.491118746 0.718658614 -5.919618506 -0.921792877 -0.541869739 -0.696094115 0.599727506 -0.715341999 -1.832155664 -1.39605655 -1.39605655 -0.588507683 -0.552047745 -0.644672292 0.505002394 -2.532595382 -3.154083759 1.099457361 0.604063151 0.6710742777 -1.10008887 -0.818558842 -0.518366958	0.035357681 0.035427787 0.03554528 0.036318793 0.036318793 0.036318793 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.037897383 0.038217764 0.038217764 0.03851298 0.03851298 0.038500966 0.038500966 0.038500966 0.038500966 0.03857469 0.038502047 0.038652882 0.039805711 0.04163375 0.041032296 0.041063375 0.04129384 0.04174747 0.0420232 0.0420232

ENSMUSG0000091329	1700112D23Rik	0.022032948	-1.020331544	0.014917524	ENSMUSG0000028139	Riiad1	0.180486174	-0.574790009	0.042286029
ENSMUSG00000118038	Gm9895	0.029901858	1.367761293	0.015202933	ENSMUSG0000040809	Chil3	0	-3.832155664	0.042286029
ENSMUSG0000001506	Col1a1	0.025573957	-1.093035867	0.015371985	ENSMUSG0000029236	Nmu	0	-3.832155664	0.042286029
ENSMUSG0000064179	Tnnt1	1.150041188	0.692117946	0.015397733	ENSMUSG0000025511	Tspan4	0.421490394	0.561532056	0.04246014
ENSMUSG0000025163	Cd7	0.013377147	1.770826151	0.015426173	ENSMUSG0000018581	Dnah11	0.006051805	-1.520211658	0.042549922
ENSMUSG0000074001	Klhl40	0.063738171	0.910544096	0.01561253	ENSMUSG0000091378	Gm4219	0.006407793	3.415771849	0.042854909
ENSMUSG0000020182	Ddc	0.24550999	0.730475649	0.015750554	ENSMUSG0000027364	Usp50	0.07867346	-0.667096418	0.042963346
ENSMUSG0000074637	Sox2	0.337182791	-0.667919006	0.015822107	ENSMUSG0000063594	Gng8	0.211101185	-0.710593684	0.042999705
ENSMUSG0000062931	Zfp938	0.266362602	-0.668809467	0.016107692	ENSMUSG0000030235	Slco1c1	0.302590232	-0.53376857	0.043977564
ENSMUSG0000029499	Pxmp2	0.206558886	0.722041227	0.016151591	ENSMUSG0000024985	Tcf7l2	1.440685493	-0.51582993	0.043977564
ENSMUSG0000046806	Cvren	0.104263057	-0.735526515	0.016287527	ENSMUSG0000022701	Ccdc191	0.037378793	-0.832155664	0.044101596
ENSMUSG0000009927	Rps25	4.976692093	-0.622700355	0.016287527	ENSMUSG0000026227	2810459M11Rik	0.043430598	-0.784458922	0.0442699
ENSMUSG0000114241	Gm30108	0.005901682	-1.542881437	0.016377427	ENSMUSG0000039485	Tspyl4	2.0569016	-0.481801956	0.044631205
ENSMUSG0000045930	Clec14a	0.015344374	-1 131686004	0.016736753	ENSMUSG0000047671	Tctex1d4	0.022071288	-1 00462286	0.044700022
ENSMUSG0000029255	Gnrhr	0	-3 70638017	0.016861241	ENSMUSG0000018919	Tm4sf5	0.050906357	0 945451914	0.044942124
ENSMUSG0000045854	Lvrm2	0 354100947	-0.652548106	0.017496404	ENSMUSG0000034634	Lv6d	0.018511402	1 573836695	0.04502661
ENSMUSG0000081683	Ezd10	0.007475464	-1 409987167	0.017676424	ENSMUSG0000041624	Gucv1a2	0.007831747	2 691406292	0.046434444
ENSMUSG00000106951	5930430L01Rik	0.01219681	-1 202805996	0.018023272	ENSMUSG0000015890	Amdhd1	0.007831747	2.691406292	0.046434444
ENSMUSG0000010122	SIc/7a1	0.0043279	-1 740327501	0.018203608	ENSMUSG0000025225	Nfkb2	0.15083884	-0.607089109	0.047076438
ENSINUS G00000010122	042006551704	0.0043275	1 162050552	0.018203098	ENSINUSG00000023223	Cirbp	1 710790492	-0.007089109	0.047070438
ENSMUS G0000037300	5450005F17Kik	0.013377147	-1.102039035	0.018402131	ENSINGSG0000043193	Cirbp Doc2b	0.120122541	0.503873901	0.047105094
ENSINIUS G00000051700	Optz Atpif1	0.02123044	0.61524953	0.010417203	ENSINUSC0000020848	VIr2h	0.136123341	-0.350473053	0.047103034
ENSINGSG00000054428	Atpil1	9.002230133	-0.01324802	0.010470102	ENSING 300000073123	All SU Dealea	0.003009900	0.802218055	0.04/5/2/85
	CSLdZ	0.007082019	-1.432437448	0.018004200		PLUICE Stam/2	0.093980966	-0.671050364	0.046552624
	Idid4	0.001630003	0.805819579	0.018904209	ENSIVESCO0000027744	SLUIIIIS	0.012615560	-1.17729115	0.049599406
ENSINUSG00000084849	Gm16105	0.008655801	2.302608614	0.018904209	ENSIVIUSGUUUUU27386	FDIN7	0.020647333	-0.971880428	0.049600021
	Niertk	0.121968104	0.759693703	0.019537773					
ENSMUSG0000019738	Poir2i	1.152401861	-0.621043578	0.019537773					
ENSMUSG0000025810	Nrp1	0.03/3//322	1.0/122/409	0.019537773					
ENSMUSG0000053907	Matza	1.698504211	0.618223299	0.020182282					
ENSMUSG00000113186	A330076C08Rik	0.041705223	-0.851045219	0.020302791					
ENSMUSG0000004654	Gnrnr	0.000393445	-2.986488089	0.020552072					
ENSMUSG0000027333	Smox	0.795940241	0.632757215	0.020688326					
ENSMUSG0000071653	1810009A15Rik	0.009836137	-1.286048371	0.021137635					
ENSMUSG0000027173	Depdc7	0.013377147	-1.196006985	0.02138189					
ENSMUSG0000029056	Pank4	0.079869436	-0.754076912	0.02138189					
ENSMUSG0000020327	Fgf22	0.082623554	0.822073941	0.02138189					
ENSMUSG0000033863	KIf9	1.275156856	0.617710982	0.02138189					
ENSMUSG0000074794	Arrdc3	0.311608834	0.693232819	0.021406446					
ENSMUSG0000089996	Tmsb15b2	0.319477744	-0.642365057	0.022396808					
ENSMUSG0000020722	Cacng1	0.011409919	1.837940347	0.022423326					
ENSMUSG0000093483	AA465934	0.007475464	-1.384452075	0.022635575					
ENSMUSG00000109089	4833411C07Rik	0.010229583	2.048507333	0.022686895					
ENSMUSG0000035860	Cdhr3	0.044852787	0.992268493	0.023163753					
ENSMUSG0000025488	Cox8b	0.055869261	-1.056566524	0.023310161					
ENSMUSG0000031962	Cdh15	0.114099194	0.754468635	0.023928706					
ENSMUSG0000089809	Rasgef1b	0.231345952	-0.654003465	0.024180208					
ENSMUSG0000053198	Prx	0	-3.70638017	0.02452101					
ENSMUSG00000117674	Gm31087	0.007475464	2.422902847	0.024977107					
ENSMUSG0000032680	6820408C15Rik	0.040131441	1.006115566	0.02502793					
ENSMUSG0000031827	Cotl1	0.819940416	0.616042253	0.025322301					
ENSMUSG0000029394	Cdk2ap1	0.461118123	0.633403946	0.02571083					
ENSMUSG0000033326	Kdm4a	0.208919559	0.688651638	0.026549168					
ENSMUSG0000026032	Ndufb3	2.797004039	-0.597246852	0.026710522					
ENSMUSG0000003309	Ap1m2	0.00786891	-1.339597839	0.027586762					
ENSMUSG0000105703	Gm43305	0.057443043	0.891256161	0.027586762					
ENSMUSG0000079018	Ly6c1	1.881062922	0.607982378	0.027815412					
ENSMUSG0000003541	ler3	0.328920436	0.647667236	0.027815412					
ENSMUSG0000052310	Slc39a1	0.108984403	-0.695963554	0.028930031					
ENSMUSG0000006386	Tek	0.038951104	-0.8550819	0.028930031					
ENSMUSG0000109080	Gm38944	0.012983701	-1.133490501	0.028930031					

1.779046658

1.039574208

-0.956972597

ENSMUSG0000021414

ENSMUSG0000068079

ENSMUSG0000062077

Fam217a

Tcf15

Trim54

0.01219681

0.03580354

0.02360673

0.029031126

0.029650206

0.029650206

Drd4	0.017705047	1.454611707	0.029650206
Tgfbr3l	0.04721346	-0.813052024	0.029652001
Spns2	0.376133895	0.637027653	0.029712128
Ogdhl	0.105836839	-0.695653763	0.029712128
Vit	0.054295479	0.953129285	0.029712128
Chrd	0.160525763	0.694782744	0.029848152
Hvdin	0.012983701	2.018512592	0.030542443
Net1	0.214821241	0.668894769	0.030774054
Efcc1	0.011803365	1.733242968	0.031075161
Six1	0.001967227	-2.014502465	0.031308295
Tsnan4	0 363150194	0 630795699	0.031312968
Ccdc78	0.009836137	2 479486376	0.031312968
Stk32c	1 16302489	0.600226144	0.03173769
Nntv2	0.365510867	-0 624778129	0.032473817
1022/122M17Pik	0.0030310007	-1 649046994	0.032473817
Dclro1b	0.003334433	0.835513609	0.032820313
Utro1	2 611207764	0.055515005	0.032804447
Cmim11	2.011237704	0.36774371	0.032940875
31111111	0.417032227	-0.009307339	0.032940873
VdSII	0.092655157	0.700899311	0.033578038
Spink8	0.47449527	0.69613302	0.033584499
Akap12	0.21/968805	0.670424254	0.033584499
Aria50	0.268/232/5	0.654641123	0.033584499
21069	0.002754118	-1.853221558	0.033961079
Gm166//	0.002754118	-1.853221558	0.033961079
Daw1	0.009049246	2.364009158	0.034172595
Fcgr3	0.289969331	0.65403/169	0.034194379
Ncaph	0.021639502	1.264473485	0.03466795
Itpripl2	0.015344374	-1.068950249	0.035281616
4933406B17Rik	0.002754118	-1.853221558	0.036247007
H19	0.001180336	-2.29134267	0.036591775
Henmt1	0.017311602	1.422902847	0.036902636
Rps23	9.694890495	-0.574782723	0.037171529
Dnajb13	0.01219681	1.779046658	0.037397574
Kcnmb1	0.016918156	1.47294353	0.037397574
Bhlha9	0.063738171	0.834993063	0.037397574
Lypd1	1.308599723	0.619828647	0.038435906
Endod1	2.006572035	0.590593488	0.03852894
Dusp18	0.155410971	0.680482823	0.038985898
Gm15867	0.007082019	-1.351537452	0.039244597
Gm33727	0.03934455	-0.848144078	0.039282045
DellaCal			
крізбаі	4.539967591	-0.572244596	0.039527792
Slc24a5	4.539967591 0.14242727	-0.572244596 0.691911154	0.039527792 0.039904457
Slc24a5 Phyhd1	4.539967591 0.14242727 0.201050649	-0.572244596 0.691911154 0.666346525	0.039527792 0.039904457 0.039939971
Slc24a5 Phyhd1 A230056P14Rik	4.539967591 0.14242727 0.201050649 0.033049422	-0.572244596 0.691911154 0.666346525 -0.847186316	0.039527792 0.039904457 0.039939971 0.039939971
Slc24a5 Phyhd1 A230056P14Rik Crygn	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756	0.039527792 0.039904457 0.039939971 0.039939971 0.040282757
Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935	0.039527792 0.039904457 0.039939971 0.039939971 0.040282757 0.040367955
Rpisoal Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.019278829	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512	0.039527792 0.039904457 0.039939971 0.039939971 0.040282757 0.040367955 0.040797095
Slc24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.019278829 0.01219681	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134	0.039527792 0.039904457 0.039939971 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118
Sic24a5 Phyhd1 A230056P14Rik Crygn Fam181a Gm35572 Hmox1	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.012978829 0.01219681 0.01219681	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207	0.039527792 0.039904457 0.039939971 0.049939971 0.040282757 0.040367955 0.040797095 0.040797095 0.04103118 0.041259036
Rpisoa Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.012978829 0.01219681 0.062164389 0.031869085	-0.572244596 0.691911154 0.665346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198	0.039527792 0.039904457 0.039939971 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.041377302
SIc24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.019278829 0.01219681 0.062164389 0.031869085 1.965260258	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833	0.039527792 0.039904457 0.039939971 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.041777302 0.041990945
Rpisoa Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gp146	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.019278829 0.01219681 0.031869085 1.965260258 0.219936033	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134	0.039527792 0.039904457 0.039939971 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.041990945 0.041990945
kpisoa Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2	4.539967591 0.14242727 0.201050649 0.033049422 0.033069085 0.139673151 0.012978829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.101115493	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913	0.039527792 0.039904457 0.039939971 0.040282757 0.040367955 0.040367955 0.04103118 0.041259036 0.0413118 0.041929045 0.041990945
Rpisoal Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm17750	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.012978829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.101115493 0.123935332	-0.572244596 0.691911154 0.66346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913 -0.666706862	0.039527792 0.039904457 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.041259036 0.041990945 0.041990945 0.041990945
Rp150a1 SIc24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm17750 Hes6	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.012978829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.121935332 0.283674203	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913 -0.666706862 0.625286225	0.039527792 0.039904457 0.039939971 0.040282757 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.04177302 0.041990945 0.041990945 0.041990945 0.041990945 0.041990945
Rp150a1 SIc24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm17750 Hes6 Dgat2	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.019278829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.10115493 0.123935332 0.283674203 0.987154752	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913 -0.666706862 0.625286225 0.587896779	0.039527792 0.039904457 0.039939971 0.040282757 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.04177302 0.041990945 0.041990945 0.041990945 0.04219654
Rpisoa Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm1750 Hes6 Dgat2 Serpina3n	4.539967591 0.14242727 0.201050649 0.033049422 0.033069085 0.139673151 0.012978829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.101115493 0.123935332 0.283674203 0.987154752 0.236067298	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913 -0.666706862 0.625286225 0.587896779 0.642197962	0.039527792 0.039939971 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.0413118 0.04190945 0.041990945 0.041990945 0.041990945 0.04290215 0.042513
kpisoal Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm17750 Hes6 Dgat2 Serpina3n Socs2	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.019278829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.101115493 0.123935332 0.283674203 0.987154752 0.236067298 0.159345426	-0.572244596 0.691911154 0.66346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913 -0.666706862 0.625286225 0.587896779 0.642197962 0.668278587	0.039527792 0.039904457 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.04129036 0.041990945 0.041990945 0.041990945 0.041990945 0.042902165 0.042519654 0.0425133 0.042982871
Rp150a1 SIc24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm1750 Hes6 Dgat2 Serpina3n Socs2 Ly6g6f	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.012978829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.101115493 0.123935332 0.283674203 0.987154752 0.236067298 0.159345426 0.024787066	-0.572244596 0.691911154 0.666345525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913 -0.666706862 0.625286225 0.587896779 0.66278587 -0.965114438	0.039527792 0.039904457 0.039939971 0.040282757 0.0400367955 0.0400367955 0.04103118 0.041259036 0.041259036 0.041990945 0.041990945 0.041990945 0.041990945 0.041990945 0.0429045 0.04296513 0.04298513
RUISGAI SIC24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm17750 Hes6 Dgat2 Serpina3n Socs2 Ly6g6f Rpp25I	4.539967591 0.14242727 0.201050649 0.033049422 0.031869085 0.139673151 0.012278829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.121935332 0.283674203 0.987154752 0.236067298 0.1239345426 0.024787066 0.575610762	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913 -0.666706862 0.625286225 0.587896779 0.642197962 0.686278587 -0.965114438 0.590151148	0.039527792 0.039904457 0.039939971 0.040282757 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.04177302 0.041990945 0.041990945 0.041990945 0.042902165 0.042963513 0.042982871 0.042982553 0.04227135
Ruisoai Sic24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Fam181a Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm17750 Hes6 Dgat2 Serpina3n Socs2 Ly6g6f Rpp251 Ces1d	4.539967591 0.14242727 0.201050649 0.033049422 0.033069085 0.139673151 0.012978829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.101115493 0.123935332 0.283674203 0.987154752 0.236067298 0.159345426 0.023147554	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.641543134 0.790273913 -0.666706862 0.625286225 0.587896779 0.642197962 0.668278587 -0.965114438 0.590151148 -1.773494365	0.039527792 0.039939971 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.0413118 0.04190945 0.041990945 0.041990945 0.041990945 0.042902165 0.042513654 0.042963513 0.042982871 0.04298533 0.044227135
Rupsoal Slc24a5 Phyhd1 A230056P14Rik Crygn Rrp8 Gm35572 Hmox1 Med9os Paxx Gpr146 Sbno2 Gm17750 Hes6 Dgat2 Serpina3n Socs2 Ly§g6f Rpp25I Cestd Gm10457	4.539967591 0.14242727 0.201050649 0.033049422 0.0331869085 0.139673151 0.012978829 0.01219681 0.062164389 0.031869085 1.965260258 0.219936033 0.101115493 0.123935332 0.238074203 0.987154752 0.236067298 0.159345426 0.024787066 0.575610762 0.003147564 0.001967227	-0.572244596 0.691911154 0.666346525 -0.847186316 1.288601756 0.687964935 -0.983089512 1.641543134 0.828895207 -0.854356198 0.571348833 0.571348833 0.591348833 -0.666706862 0.625286225 0.587896779 0.642197962 0.662278587 -0.965114438 0.590151148 -1.773494365 -1.757918937	0.039527792 0.039904457 0.039939971 0.040282757 0.040367955 0.040797095 0.04103118 0.041259036 0.04129036 0.041990945 0.041990945 0.041990945 0.042902165 0.042519654 0.042982533 0.042982533 0.042285533 0.044227135 0.04425962
	Drd4 Tgfb73l Spns2 Ogdhl Vit Chrd Hydin Net1 Efcc1 Six1 Tspan4 Ccdc78 Stk32c Nptx2 4932422M17Rik Dclre1b Htra1 Smim11 Vasn Spink8 Akap12 Akap12 Akap12 Arid5b Zfp69 Gm16677 Daw1 Fcgr3 Ncaph Itpripl2 4933406B17Rik H19 Henmt1 Rps23 Dnajb13 Kcnmb1 Bhlha9 Lypd1 Endod1 Dus18 Gm15867 Gm15867 Gm15867 Gm33727	Drd4 0.017705047 Tgfbr3l 0.04721346 Spns2 0.376133895 Ogdhl 0.105836839 Vit 0.054295479 Chrd 0.10012983701 Net1 0.214821241 Efcc1 0.011803365 Six1 0.001967227 Tspan4 0.363150194 Ccdc78 0.09836137 Stk32c 1.16302489 Npt2 0.365510867 4932422M17Rik 0.003934455 DcIre1b 0.077508763 Htra1 2.611297764 Smim11 0.41705227 Vasn 0.092853137 Spink8 0.47449527 Akap12 0.217968805 Arid5b 0.268723275 Zip69 0.002754118 Gm16677 0.002754118 Daw1 0.002754118 Gm2677 0.021530427 Vasn 0.021639502 ItpripI2 0.015344374 4933406817Rik 0.002754118 H19	Drd4 0.017705047 1.454611707 Tgfbr3l 0.04721346 -0.813052024 Spn52 0.376133895 0.637027653 Ogdhl 0.105836839 -0.695653763 Vit 0.054295479 0.953129285 Chrd 0.102983701 2.018512592 Net1 0.214821241 0.668894769 Efcc1 0.011983701 2.014502465 Tspan4 0.363150194 0.630795699 Ccdc78 0.009836137 2.479486376 Stk32c 1.16302489 0.600226144 Nptx2 0.365510867 -0.624778129 4932422M17Rik 0.003934455 -1.649046994 Dclre1b 0.077508763 0.835513609 Htra1 2.611297764 0.58774971 Smim11 0.417052227 -0.699367539 Vasn 0.92853137 0.760899311 Spink8 0.47449527 0.6961302 Akap12 0.217968805 0.670424254 Arid5b 0.28723275 0.654641123 Zfp69

ENSMUSG0000092593	Gm20492	0.003541009	-1.664559994	0.045062826
ENSMUSG00000117069	Gm49894	0.000786891	-2.483987748	0.045062826
ENSMUSG0000086771	1700080G11Rik	0.008655801	2.039574208	0.045213846
ENSMUSG00000110332	Gm19935	0.165640554	0.794167945	0.045213846
ENSMUSG0000046242	Nme9	0.023213284	1.54843373	0.045213846
ENSMUSG0000026874	Hc	0.009836137	1.801414471	0.045783324
ENSMUSG0000031765	Mt1	18.6851201	-0.562265232	0.04621443
ENSMUSG00000109006	B230209E15Rik	0.084590782	0.747337798	0.046568697
ENSMUSG0000025006	Sorbs1	0.077902208	0.771815088	0.047060966
ENSMUSG0000040710	St8sia4	0.05154136	-0.749448891	0.047124666
ENSMUSG0000044156	Hepacam2	0.002360673	-1.899025247	0.047124666
ENSMUSG0000015575	Atp6v0e	1.462043467	0.568580303	0.047512346
ENSMUSG00000114780	AI197445	0	-3.483987748	0.047770713
ENSMUSG00000116097	Gm36738	0.005508237	-1.418399407	0.04789418
ENSMUSG0000044786	Zfp36	0.060197161	0.859966653	0.048577925
ENSMUSG0000087466	A330041J22Rik	0.076721872	-0.693706339	0.04894278
ENSMUSG0000056043	Rgs9bp	0.005901682	2.516012252	0.049335242

Table S2B. DEGs at ZT14 in female and male full brains (bulk). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT14 FEMALES - Bulk					ZT14 MALES - Bulk				
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR	FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR
ENSMUSG0000026822	Lcn2	0.553259877	7.466298495	2.3751E-46	ENSMUSG0000035383	Pmch	1.998712712	-2.353167152	2.35485E-28
ENSMUSG0000048572	Tmem252	0.267647257	4.57169635	3.05839E-45	ENSMUSG0000098178	Gm42418	4.129713873	-1.227666651	4.22846E-27
ENSMUSG0000019970	Sgk1	3.198201398	2.084449132	1.75882E-21	ENSMUSG0000030711	Sult1a1	0.229550169	1.371871646	8.90599E-22
ENSMUSG0000095366	Gm21860	0.031531047	6.670837251	2.99987E-20	ENSMUSG0000028656	Cap1	0.169504348	-1.222523099	8.32202E-20
ENSMUSG0000023067	Cdkn1a	0.437401613	2.182694336	3.5189E-20	ENSMUSG0000071753	Cdr1os	0.156369325	-1.116405331	9.7768E-16
ENSMUSG0000020713	Gh	0.005499601	-5.428531108	1.95465E-17	ENSMUSG0000090137	Uba52	1.985577689	0.882789073	9.68068E-15
ENSMUSG0000021342	Prl	0.005499601	-5.623855286	1.95465E-17	ENSMUSG0000020922	Lsm12	0.031586604	-1.533201777	3.1847E-14
ENSMUSG0000037727	Avp	0.04949641	-6.88699684	4.31384E-15	ENSMUSG0000095041	AC149090.1	0.823440865	0.923804219	7.65731E-14
ENSMUSG0000002910	Arrdc2	0.477732021	1.69703866	1.60202E-12	ENSMUSG00000117465	Gm49980	0.106956618	1.312062251	4.90829E-13
ENSMUSG0000027301	Oxt	0.003299761	-9.863673861	8.54863E-12	ENSMUSG0000027875	Hmgcs2	0.05316557	1.759976818	8.52135E-13
ENSMUSG0000017697	Ada	0.09459314	2.244702043	9.0161E-12	ENSMUSG0000092274	Neat1	0.236743158	1.126818627	8.52135E-13
ENSMUSG0000021025	Nfkbia	0.762611362	1.476167945	1.17651E-10	ENSMUSG0000037095	Lrg1	0.040030547	2.201348465	2.58136E-12
ENSMUSG0000050370	Ch25h	0.042896889	3.303181883	1.32257E-10	ENSMUSG0000002910	Arrdc2	0.116026039	1.231029153	2.69212E-12
ENSMUSG0000048489	Depp1	0.053529451	2.672678598	2.61866E-10	ENSMUSG0000064356	mt-Atp8	0.618909788	-0.84869804	4.09293E-12
ENSMUSG0000020108	Ddit4	0.749412319	1.439509256	4.45124E-10	ENSMUSG0000019970	Sgk1	0.764645999	0.870412537	7.05283E-12
ENSMUSG0000034936	Arl4d	0.47076586	1.470638012	1.70947E-09	ENSMUSG0000015090	Ptgds	15.69697832	0.809234721	3.03677E-11
ENSMUSG0000002289	Angptl4	0.104125782	1.682272146	2.3496E-08	ENSMUSG0000001827	Folr1	0.110396743	1.185238988	4.01792E-11
ENSMUSG0000030711	Sult1a1	0.414303288	1.340609833	2.63538E-08	ENSMUSG0000022949	Clic6	0.161373143	1.050336343	4.44441E-11
ENSMUSG0000066363	Serpina3f	0.024564885	5.315356597	2.72284E-08	ENSMUSG0000018339	Gpx3	0.217353362	-0.892847556	5.89498E-11
ENSMUSG0000037095	Lrg1	0.086160418	2.179799467	1.07656E-07	ENSMUSG0000027570	Col9a3	0.136979529	1.075807313	1.43951E-10
ENSMUSG0000056054	S100a8	0.039230488	5.397818757	2.56181E-07	ENSMUSG0000026822	Lcn2	0.03252482	3.525855104	2.0377E-10
ENSMUSG0000071637	Cebpd	0.576724842	1.253788977	3.27299E-07	ENSMUSG0000090101	Snhg9	0.090694208	1.262296419	2.39549E-10
ENSMUSG0000041481	Serpina3g	0.026031446	3.397818757	6.98299E-07	ENSMUSG0000031765	Mt1	12.0054113	0.719344555	3.3024E-10
ENSMUSG0000034579	Pla2g3	0.066728494	1.699199474	1.16082E-06	ENSMUSG0000042524	Sun2	0.110396743	1.127905813	3.41145E-10
ENSMUSG0000029380	Cxcl1	0.015032243	4.620211178	1.66657E-06	ENSMUSG0000048583	lgf2	0.162311359	0.979828265	9.61704E-10
ENSMUSG0000002831	Plin4	0.18918628	1.353170977	1.98523E-06	ENSMUSG0000024176	Sox8	0.048474491	-1.145062982	1.15979E-09
ENSMUSG0000031765	Mt1	57.21748388	1.081425773	3.30897E-06	ENSMUSG0000032246	Calml4	0.133852142	1.028064451	1.21155E-09
ENSMUSG0000048001	Hes5	0.323009908	-1.152378326	3.9046E-06	ENSMUSG00000115625	2900040C04Rik	0.110709482	1.088906755	1.35036E-09
ENSMUSG0000090137	Uba52	8.572778296	1.067205038	4.58418E-06	ENSMUSG0000062591	Tubb4a	1.214051439	-0.743815144	1.79123E-09
ENSMUSG00000103034	Gm8797	0.111091944	-1.189514648	1.29675E-05	ENSMUSG0000020681	Ace	0.171068042	0.948303289	1.90505E-09
ENSMUSG0000043102	Qrfp	0	-6.486351762	3.31648E-05	ENSMUSG0000021268	Meg3	3.171482649	0.704409911	2.07384E-09
ENSMUSG0000033585	Ndn	2.106713886	-1.027295451	4.19956E-05	ENSMUSG0000029843	Slc13a4	0.070678935	1.261782194	3.05532E-09
ENSMUSG0000034317	Trim59	0.075894496	-1.239084672	4.26826E-05	ENSMUSG0000050063	Klk6	0.033463036	-1.283809979	4.57522E-09
ENSMUSG0000029394	Cdk2ap1	0.201652043	-1.071339199	4.93272E-05	ENSMUSG0000068240	Gm11808	0.290534206	0.824314302	4.70221E-09
ENSMUSG0000064220	Hist2h2aa1	0.131990428	1.208048944	5.41386E-05	ENSMUSG0000011884	Gltp	0.134164881	-0.878029646	4.70221E-09
ENSMUSG0000090247	Bloc1s1	0.872970025	1.008099381	5.41386E-05	ENSMUSG0000021647	Cartpt	0.440961496	-1.188154442	4.85206E-09
ENSMUSG0000035383	Pmch	22.13589469	1.663208759	5.56116E-05	ENSMUSG0000079484	Phyhd1	0.124157244	1.045386116	5.37025E-09
ENSMUSG0000039634	Zfp189	0.086527058	1.296458042	5.97694E-05	ENSMUSG0000030048	Gkn3	0.010633114	-1.768058615	5.37025E-09
ENSMUSG0000060143	Gm10076	19.89022421	0.964531407	7.51305E-05	ENSMUSG0000048572	Tmem252	0.023455399	2.759976818	5.37025E-09
ENSMUSG0000025591	Tma16	0.290012301	1.075890662	0.000122527	ENSMUSG0000006522	Itih3	0.348703595	0.790680565	7.62815E-09

ENSMUSG0000031762	Mt2	4.716457959	0.952020423	0.000143684	ENSMUSG0000022194	Pabpn1	0.132288449	-0.868554698	8.23329E-09
ENSMUSG0000027173	Depdc7	0.012099123	-1.729037523	0.00025382	ENSMUSG0000004655	Aqp1	0.03471399	1.704694382	1.28307E-08
ENSMUSG0000050105	Grrp1	0.134923549	1.133318942	0.000349249	ENSMUSG0000025225	Nfkb2	0.120717119	1.142454776	1.709E-08
ENSMUSG0000095845	Gm5741	0.14298963	2.908181215	0.000358858	ENSMUSG0000021913	Ogdhl	0.136041313	1.051414938	1.9524E-08
ENSMUSG0000079484	Phyhd1	0.273146858	1.022732726	0.000385329	ENSMUSG0000025488	Cox8b	0.056292957	1.283974737	4.76328E-08
ENSMUSG0000062960	Kdr	0.016865444	-1.474905236	0.000385329	ENSMUSG00000115783	Bc1	0.41000037	0.7147832	5.21375E-08
ENSMUSG0000074170	Plekhf1	0.188453	1.096771025	0.000403887	ENSMUSG0000020660	Pomc	0.086628606	-1.177973798	5.21375E-08
ENSMUSG0000024778	Fas	0.068928335	1.314402749	0.000411708	ENSMUSG0000090247	Bloc1s1	0.219542532	0.817145341	5.34821E-08
ENSMUSG0000044258	Ctla?a	0 32887615	0 996806238	0.000702791	ENSMUSG0000062456	Rnl9-ns6	0.055042002	1 279215136	7 27189E-08
ENSMUSG0000027875	Hmgcs2	0.085427138	1 191367879	0.000713274	ENSMUSG0000030108	Slc6a13	0.068177026	1 167895291	2 29048E-07
ENSMUSC0000060277	Pol26a pc1	0.020165204	1 220700754	0.000710274		Gm1227E	0.005620206	2 021282806	2.230462 07
	Rpi50a-psi	0.020103204	-1.333750734	0.00075545		Gill13373	1 102722427	-2.021382850	2.5502E=07
	BUI DuralD	0.403670726	-0.916496154	0.000652667		COX17	1.193723427	0.038748011	2.5502E-07
ENSINUSG00000037279	OV012	0.211551325	0.980754672	0.001038974	ENSIMUSG00000020954	Strn3	0.018/64319	-1.358113258	2.59061E-07
ENSMUSG0000027525	Phactr3	1.960424495	0.877121482	0.0011/085/	ENSMUSG0000035202	Lars2	0.607338458	-0.6/109/586	2.74678E-07
ENSMUSG0000041378	Clans	0.239415971	-0.932687015	0.001273736	ENSMUSG0000043164	Tmem212	0.06723881	1.12/385454	2.74908E-07
ENSMUSG0000006154	Eps8l1	0.017598724	-1.366849766	0.001274928	ENSMUSG0000043091	Tubalc	0.029397433	1.68958749	3.12461E-07
ENSMUSG0000037169	Mycn	0.029331206	-1.173723228	0.002309043	ENSMUSG0000022763	Aifm3	0.342448822	0.700188303	4.78133E-07
ENSMUSG0000051851	Rtl8c	0.075894496	1.108154511	0.002524497	ENSMUSG0000025739	Gng13	1.39231247	0.621383945	4.78133E-07
ENSMUSG0000034634	Ly6d	0.025664805	1.622753373	0.002661951	ENSMUSG0000058488	KI	0.102265539	0.944788805	4.82413E-07
ENSMUSG0000074896	Ifit3	0.052429531	-1.077914674	0.003407206	ENSMUSG0000064057	Scgb3a1	0.011258591	3.136540169	8.36427E-07
ENSMUSG0000028967	Errfi1	0.383505521	0.874077082	0.003936417	ENSMUSG0000039218	Srrm2	0.395927131	0.677143056	8.99303E-07
ENSMUSG0000022651	Retnlg	0.007332802	4.620211178	0.003970881	ENSMUSG0000021750	Fam107a	1.033913977	0.62639997	1.02581E-06
ENSMUSG0000025509	Pnpla2	0.554359797	0.847110113	0.004125333	ENSMUSG0000036504	Phpt1	0.219855271	0.74506873	1.1906E-06
ENSMUSG0000066170	E230001N04Rik	0.013932323	2.191367879	0.004374364	ENSMUSG0000030088	Aldh1l1	0.324935457	0.736755591	1.33083E-06
ENSMUSG0000069806	Cacng7	0.107425543	-0.914508568	0.00445269	ENSMUSG0000073616	Cops9	3.410414978	0.577677639	2.05911E-06
ENSMUSG0000071497	Nutf2-ps1	0.003299761	-2.064887994	0.00445269	ENSMUSG0000063594	Gng8	0.111647698	0.876924009	2.15525E-06
ENSMUSG0000042622	Maff	0.027498006	1.521624958	0.005078514	ENSMUSG0000061086	Mvl4	0.247689011	0.710684459	2.50986E-06
ENSMUSG0000056071	S100a9	0.040330409	2,774382108	0.005314193	ENSMUSG0000021290	Atp5mpl	3.314404212	0.57378722	2.66964E-06
ENSMUSG0000039883	Lrrc17	0.065995214	-0.958760885	0.005878638	ENSMUSG0000061436	Hink2	0.008756682	-1 641196956	2 72464F-06
ENSMUSG0000038489	Polr2l	2 035219071	0 790168661	0.005878638	ENSMUSG0000031760	Mt3	12 73440509	0 565755981	2 76693E-06
ENSMUSG0000021903	Gaint15	0.037397288	1 359805431	0.007158201	ENSMUSG0000044349	Snhg11	2 278613804	0.583686458	3 1732F-06
ENSMUSG0000053175	Bel3	0.022731685	1 561317489	0.007360366	ENSMUSG0000055235	W/dr86	0.029084694	1 5430762	3.17322.00 3.46700E-06
ENSMUSG0000033006	Sov10	0.022731003	-0.878010804	0.007376207	ENSMUSC0000033233	Pin1	5 605527562	-0.607230461	3.40733E-00
ENSIMUS C0000033000	Delro1b	0.006702081	1 020254462	0.007625222	ENSMUSC0000031425	Hunk	0.400205472	0.652051909	4.074525.06
	Clra	0.030/32361	1.020334402	0.007053532		Trhe?	0.400303472	0.055551000	4.07432E-00
	Cird Cird	0.021031705	1.011222395	0.007705185		TIDC2	0.104813209	0.762027557	4.10072E-06
	Cac42ep2	0.184053319	-0.867812599	0.008/3/31/	ENSINUSG0000008682	KDITO	2.473449983	-0.576378802	4.55077E-06
ENSMUSG0000044734	Serpinb1a	0.18955292	-0.883292278	0.009908798	ENSMUSG0000030677	Kit22	0.08569039	0.928836585	4.63103E-06
ENSMUSG0000074521	Gm14327	0.050229691	1.126964847	0.010512814	ENSMUSG0000074754	Smim26	0.284279433	0.676436122	4.73898E-06
ENSMUSG0000005892	Trh	0.105225702	-1.224233063	0.010669643	ENSMUSG0000089661	Mia	0.104767448	0.859972608	5.28161E-06
ENSMUSG0000045471	Hcrt	2.724869057	-1.2739785	0.010669643	ENSMUSG0000048756	Foxo3	0.195774395	0.724886153	5.44325E-06
ENSMUSG0000021453	Gadd45g	0.639786936	0.785843304	0.010669643	ENSMUSG0000014313	Сохбс	9.783715926	0.551220324	5.44325E-06
ENSMUSG0000021250	Fos	0.040330409	-1.000058191	0.011385147	ENSMUSG0000097767	Miat	0.299603627	0.66421956	5.69631E-06
ENSMUSG00000113902	Ndufb1-ps	12.19151586	0.740738745	0.012964105	ENSMUSG0000026830	Ermn	0.208909418	-0.680460987	5.79327E-06
ENSMUSG0000020469	Myl7	0.00146656	-2.735580369	0.013218809	ENSMUSG0000038570	Saxo2	0.087566822	0.911766004	6.21466E-06
ENSMUSG0000024066	Xdh	0.09312658	0.96485935	0.013575737	ENSMUSG0000020713	Gh	0.08569039	1.5929693	6.24537E-06
ENSMUSG00000044792	lsca1	0.837405937	0.75560508	0.014763436	ENSMUSG0000028998	Tomm7	1.16526421	0.570910736	8.21102E-06
ENSMUSG0000004328	Hif3a	0.055362652	1.100781837	0.015171531	ENSMUSG0000029697	Fezf1	0.012509546	-1.406523097	8.36044E-06
ENSMUSG0000030413	Pglyrp1	0.580391243	0.779099568	0.015171531	ENSMUSG0000086841	2410006H16Rik	0.729932009	0.584262461	8.86285E-06
ENSMUSG0000098234	Snhg6	0.454633696	0.770471535	0.015189679	ENSMUSG0000032579	Hemk1	0.160122189	0.810960746	1.24127E-05
ENSMUSG0000032854	Ugt8a	0.312377346	-0.826867202	0.015189679	ENSMUSG00000118506	1700094D03Rik	0.079435617	0.913945704	1.27317E-05
ENSMUSG0000105703	Gm43305	0.061595533	-0.906502185	0.015189679	ENSMUSG0000021133	Susd6	0.082875742	0.901995822	1.32626E-05
ENSMUSG0000031255	Sytl4	0.005499601	-1.67899684	0.015221247	ENSMUSG0000073424	Cyp4f15	0.097887197	0.846668121	1.32626E-05
ENSMUSG0000049649	Gpr3	0.011732482	-1.327624967	0.01577095	ENSMUSG0000019230	Lhx9	0.06723881	0.963156058	1.77824E-05
ENSMUSG0000025652	Tmem89	0.013565683	1.890858768	0.015797176	ENSMUSG0000070306	Ccdc153	0.086628606	1.053561549	1.79897E-05
ENSMUSG0000020473	Aebp1	0.067095134	-1.023331348	0.016177023	ENSMUSG0000044258	Ctla2a	0.115087823	0.815524636	2.01407E-05
ENSMUSG0000085896	5330429C05Rik	0.011732482	2.102362873	0.016371464	ENSMUSG0000003469	Phyhip	0.491625158	0.599970799	2.42144E-05
ENSMUSG0000097383	1500026H17Rik	0.266913977	0.792224923	0.016700755	ENSMUSG0000091705	H2-02	0.015636932	-1.25846885	2.42144E-05
ENSMUSG0000033213	AA467197	0.030431126	1.262659174	0.018750961	ENSMUSG0000016024	Lbp	0.055354741	1.02199845	2.78065F-05
ENSMUSG0000078193	Gm2000	0 126857467	-0.815113824	0.019655474	ENSMUSG0000022425	Ennn2	2 555700248	0 63910548	2 84733E-05
ENSMUSG000000000	Anold1	0.044730080	1 12601/11/1	0.020746109	ENSMUSG0000022425	Crym	0 520002012	0 507015525	2.047.55L-05
	Cm11927	0.044730003	1.120014141	0.020740138		Gry11960	0.000000012	1 50/51013333	3.4/0E-U3
	01111027	0.012032403	1.33030/138	0.021/01922	LINSINIO 300000093300	01121000	0.022204444	1.334311404	3.37024E-05
	Speain	0 012565602	1 720/7/7/0	0 0 0 0 0 1 7 1 0 0	ENICKALIC/200000000000	Mirco'	0 651561001	0 663467000	J /LU/JL / ···
ENSMUSC0000024354	Sncaip	0.013565683	-1.238424249	0.023817188	ENSMUSG0000059361	Nrsn2	0.654561994	-0.562467909	3.76873E-05

ENSMUSG0000049521	Cdc42ep1	0.131990428	-0.821215651	0.024085651
ENSMUSG0000059325	Норх	0.217050926	-0.776963808	0.026393412
ENSMUSG0000028128	F3	0.388271842	0.754180349	0.026972056
ENSMUSG0000030048	Gkn3	0.04692993	-0.994498666	0.027098366
ENSMUSG0000036362	P2ry13	0.039597128	-0.946436425	0.027166751
ENSMUSG0000024835	Coro1b	0.150322432	0.807600531	0.032144694
ENSMUSG0000019577	Pdk4	0.023098325	1.527454037	0.033238348
ENSMUSG0000078879	Zfp973	0.021631765	1.379896849	0.035121677
ENSMUSG0000038067	Csf3	0.008799362	4.871749945	0.036705309
ENSMUSG0000028927	Padi2	0.09385986	-0.835259973	0.039290818
ENSMUSG0000017754	Pltp	0.416869768	-0.743296201	0.040245447
ENSMUSG0000046470	Sox18	0.005499601	-1.579461167	0.040662375
ENSMUSG0000024650	Slc22a6	0.019798564	-1.303629486	0.040950867
ENSMUSG0000018604	Tbx3	0.007332802	-1.424182941	0.047608412

ENSMUSG0000056054	S100a8	0.014073239	2.865686259	4.18574E-05
ENSMUSG0000003526	Prodh	0.214225975	0.651025717	4.80423E-05
ENSMUSG0000061751	Kalrn	0.800298205	0.552047372	5.69023E-05
ENSMUSG0000025006	Sorbs1	0.015949671	-1.222139205	5.85989E-05
ENSMUSG0000035048	Anapc13	0.755576578	0.564936822	6.315E-05
ENSMUSG0000030541	Idh2	0.335568571	0.582237152	6.97845E-05
ENSMUSG0000021957	Tkt	0.275210012	0.643995822	8 17182F-05
ENSMUSG0000040147	Maob	0.160122189	0.681974306	8 17182E-05
ENSMUSG0000013523	Bcas1	0.35214372	-0 570057223	8 67591F=05
ENSMUSG0000032060	Cryah	1 34133607	-0 534279747	8 74608E-05
ENSMUSG0000032595	Cdbr4	0.026805524	1 370030299	8 85370E-05
ENSMUSG00000044734	Serninh1a	0.020835324	-0.764897409	8 85379E-05
ENSMUSG0000032766	Gng11	0.217253362	-0.648633545	0.55167E-05
ENSMUSC0000032700	Tmch10	7 101660264	0.406252676	0 922045 05
ENSINUS G00000073325	Chodl	0.009756692	1 475450752	9.82204E-03
	Chour	0.008730082	-1.473439732	9.910072-03
	HYOUI Cav7a	0.042645195	-0.863242016	0.000104961
		5./0/636922	0.500518901	0.000104961
ENSINUSG00000038489	POIRZI	0.414065973	0.566413335	0.000107476
ENSMUSG0000019874	Fabp/	0.122280812	-0.657875697	0.000108519
ENSMUSG0000026641	USTI	0.054/29264	-0.800008547	0.000111291
ENSMUSG0000098234	Snhg6	0.060671298	0.919707273	0.0001124
ENSMUSG0000054667	Irs4	0.016575148	-1.167691421	0.00011502
ENSMUSG0000096768	Gm47283	0.315240559	0.594427359	0.000116302
ENSMUSG0000097162	2310010J17Rik	0.06254773	0.905713153	0.000120053
ENSMUSG0000070780	Rbm47	0.014073239	1.948148419	0.000120617
ENSMUSG0000029499	Pxmp2	0.098512675	0.765981503	0.000130584
ENSMUSG0000093674	Rpl41	11.23169588	0.484437454	0.000135837
ENSMUSG0000052188	Gm14964	0.054103786	0.9549928	0.000136405
ENSMUSG0000030600	Lrfn1	0.069740719	-0.738587497	0.000151592
ENSMUSG0000023084	Lrrc71	0.007192989	3.097011805	0.000173905
ENSMUSG0000048108	Tmem72	0.029710172	1.23903081	0.000173905
ENSMUSG0000035545	Leng8	0.12040438	0.70790156	0.000173905
ENSMUSG00000104960	Snhg8	0.460038554	0.541755811	0.000182657
ENSMUSG0000031239	Itm2a	0.246750795	-0.56787424	0.000210328
ENSMUSG0000027562	Car2	0.913509597	-0.510728631	0.000213504
ENSMUSG0000052861	Dnah6	0.02095349	1.470229128	0.000243966
ENSMUSG0000052397	Ezr	0.242685192	0.588299283	0.000243966
ENSMUSG0000037490	Slc2a12	0.068489764	0.842197906	0.000260933
ENSMUSG0000002625	Akap8l	0.450030917	0.550631766	0.000261055
ENSMUSG0000020018	Snrpf	0.288970513	0.567697334	0.00026617
ENSMUSG0000063714	Sp3os	0.122906289	0.687017897	0.000267226
ENSMUSG0000025597	Klhl4	0.038154115	-0.853775221	0.000270806
ENSMUSG0000026575	Nme7	0.577628287	0.641844733	0.000283073
ENSMUSG0000044988	Ucn3	0.008443944	-1.691823029	0.000283073
ENSMUSG0000057103	Nat8f1	0.168878871	0.625749803	0.000344376
ENSMUSG0000034209	Rasl10a	0.241434238	-0.554513362	0.000354247
ENSMUSG0000027199	Gatm	0.401243688	-0.544145235	0.000357013
ENSMUSG0000030329	Pianp	0.293036115	-0.55261591	0.000375308
ENSMUSG00000105361	AY036118	0.021891705	-1.226946825	0.000375891
ENSMUSG0000040420	Cdh18	0.003127386	-1.959256415	0.000410016
ENSMUSG0000015806	Odpr	1 507400293	-0 489745093	0.000418312
ENSMUSG0000036833	Pnnla7	0.059107605	0.862736392	0.000424732
ENSMUSG0000018217	Pmn22	0 103516493	-0 659805724	0.000424732
ENSMUSG0000056553	Ptnrn2	0.013135023	-1 201237294	0.000424732
ENSMUSG0000026051	Fcrg4	0.242059715	0 71563911	0.000458861
ENSMUSG0000020051	Llocr11	4 922193612	0.458783372	0.000438801
ENSMUSG0000020105	C78859	0.048787220	0.430703372	0.000472897
ENSMUSG00000110710	C70033	0.040707225	0.030505555	0.0004/05/0
ENSMUSG0000042341	Vnel4	0.747132033	0.493430043	0.000404387
	1 PE14	0.222044441	0.355052035	0.0004080474
	SIUUU	0.00024024	-0.465451195	0.000488474
		0.102205539	-0.51103/103	0.00049888
	Auuz	0.301/92/97	0.002042405	0.000554345
EN21410200000038861	P14KD	0.030301150	-0.883013495	0.000551/35

ENSMUSG0000033731	3300002A11Rik	0.017513364	1.537584396	0.000578644
ENSMUSG0000058740	Kcnt1	0.237994113	0.562134536	0.000592219
ENSMUSG0000021848	Otx2	0.035026729	1.065441726	0.000608137
ENSMUSG0000037086	Prr32	0.022204444	1.360046211	0.000608137
ENSMUSG0000038685	Rtel1	0.043783411	0.965100129	0.000608812
ENSMUSG0000073702	Rpl31	3.755365709	0.453544903	0.000646113
ENSMUSG0000068196	Col8a1	0.025644569	1.243232546	0.000646113
ENSMUSG0000061808	Ttr	37,40354254	0.866885642	0.000646113
ENSMUSG0000020889	Nr1d1	0.139481438	-0.58770152	0.000646546
ENSMUSG0000038690	Atp5i2	4.893734395	0.449976691	0.000658401
ENSMUSG0000019146	Cacng2	0.055042002	-0.734590663	0.000658401
ENSMUSG0000073982	Rhog	0.167627916	-0.580304301	0.00066331
ENSMUSG0000052353	Cemin	0.036903161	1.031827636	0.000680675
ENSMUSG0000038068	Rnf144h	0 074431799	0 769059922	0.000684822
ENSMUSG0000064220	Hist2h2aa1	0.03252482	1 097011805	0.000732423
ENSMUSG0000025350	Rdh5	0.091319686	0 712452722	0.000732423
ENSMUSG0000022982	Sod1	1 608102138	0 461877932	0.000732423
ENSMUSG00000041841	RnI37	11 33521237	0 442088395	0.000816002
ENSMUSG0000030315	Vall4	0.005003818	-1 629306545	0.000842971
ENSMUSG0000019890	Nts	0 121029858	-0 597121666	0.000879735
ENSMUSG0000087075	Lbbd2	0.073806321	-0 665296637	0.000880836
ENSMUSG0000022805	Maats1	0.018764319	1 442786642	0.000017048
ENSMUSG0000022805	Chuk	0.070366196	0.760085842	0.000317348
ENSMUSG0000072473	1700024G13Bik	0.010380706	1 401866386	0.000958979
ENSMUSG0000062328	2700024015Nik	5 25071/082	-0 446709734	0.000000000000
ENSMUSG000002328	Rijad1	0 105202025	0.665001227	0.001000090
ENSMUSC0000028135	Gm40222	0.105552525	2 175014217	0.001009192
ENSMUSC0000024227	GIII49522 Eovil	0.003029290	0.016160212	0.00103881
ENSMUSG0000004567	Mcoln1	0.160747666	0.5807/0580	0.001113332
ENSMUSG000004507	Hmga1	0.100747000	-0.60010143	0.001141780
ENSMUSG0000016427	Ndufa1	1 032350284	0.00010143	0.001200803
ENSMUSG00000010427	Evco1	0 10/11/107	0.66213392	0.001270343
ENSMUSG00000023241	Crin1	0.180137462	0.570734647	0.001278205
ENSMUSG0000064345	mt_Nd2	23 67306485	-0.438661183	0.001278203
ENSMUSC0000023843	Clen2	0.004447072	0.438001185	0.001283071
ENSMUS G0000022845	Cicilz Comin7	0.034447072	0.078407091	0.001269247
ENSMUSG0000032295	Man2c1	0.168566137	0.57/8///21	0.001368194
ENSMUSG0000032235	1133	0.100300132	-0 512002282	0.001308194
ENSMUSG0000024810	Drec 22	0.24080870	-1 920910103	0.0013338480
ENSINUSG0000043027	F15522	0.002814048	-1.920910105	0.001411778
ENSMUS G0000020034	Cono7	0.032632632	0.70791038	0.001440079
ENSMUS G0000034750	Cprie/	0.323337241	0.510058755	0.001449408
	reis Adrolo	0.11021321	0.02003223	0.001329100
	Aurazu	0.054729204	-0.700944419	0.001599599
	Cit	1.090774445	-0.402015500	0.001399399
ENSINUSG0000029516	Cfem100	0.27114441	0.55/196005	0.001805215
ENSIVIUS G0000048794	Ciapito	0.0312/3603	1.04097777	0.001863739
ENSINUSG00000018974	Jane	1.62070442	0.439606676	0.001863739
ENSINUSG00000041736	Ispo Daub 1	0.091006947	0.673967866	0.001863739
ENSINUSG00000024033	KSpn1	0.085064913	0.685943208	0.001863739
	WTOC2	0.03940507	0.930878383	0.001887459
ENSMUSG0000060671	Atp8b2	0.026895524	1.122102786	0.002023926
ENSMUSG0000026579	F5	0.042219718	0.899072427	0.002059061
ENSMUSG0000023089	Nduta5	3.329415668	0.4218391/7	0.002207608
ENSMUSG0000064354	mt-Co2	41.39221128	-0.424373685	0.002226792
ENSMUSG0000032399	Rpi4	5.692468907	0.441444869	0.002233973
ENSMUSG0000040506	Ambrai	0.1491/6336	0.573712324	0.002299903
	11979	0.246/50/95	0.000556745	0.002362108
		0.040030547	0.908566/15	0.00237771
ENSMUSG0000087590	Ep04114aos	0.212662282	0.526955511	0.002401682
ENSMUSG0000026668	Ucma	0.019077058	1.559355019	0.00241749
ENSMUSG0000021879	Dnah12	0.003752864	4.212489022	0.00241749
ENSMUSG0000060377	RpI36a-ps1	0.012822285	1.656439213	0.00241749
ENSMUSG0000023943	Sult1c1	0.003752864	4.212489022	0.00241749

ENSMUSG0000026255	Efhd1	0.094134334	-0.589395959	0.002479335
ENSMUSG0000042073	Abhd14b	0.094134334	0.65242196	0.002550198
ENSMUSG0000028763	Hspg2	0.025019092	1.123978852	0.002721068
ENSMUSG0000026034	Clk1	0.323997241	0.481762609	0.003047218
ENSMUSG00000113722	Snhg10	0.048787229	0.817985366	0.003092719
ENSMUSG0000024516	Sec11c	0.937277734	-0.431771335	0.003096312
ENSMUSG0000064357	mt-Atp6	58.68509493	-0.41342803	0.003230619
ENSMUSG0000053475	Tnfain6	0.06942798	-0.689865812	0.003259264
ENSMUSG0000020108	Ddit4	0.191396054	0.528618584	0.003307687
ENSMUSG0000040759	Cmtm5	0.377788289	-0.45170017	0.00331469
ENSMUSG0000029718	Pcolce	0.072868105	0.695913497	0.003346835
ENSMUSG0000024186	Røs11	0 083813958	0 664648429	0.003346835
ENSMUSG0000060780	Lrrtm1	0.239557806	-0.48606851	0.003405484
ENSMUSG0000029060	Mih2	0 230488385	0 506196578	0.003590182
ENSMUSG0000062031	Pagha	0.024080876	1 125026181	0.003590402
ENSMUSG0000070304	Scn2h	0 64643079	0.436619293	0.003601929
ENSMUSG0000022861	Døkø	0.005003818	-1 509012311	0.003630065
ENSMUSG0000010044	Zmvnd10	0.037215899	0.91114526	0.003747436
ENSMUSG0000026247	Ecol1	0.076620969	-0 632800032	0.003790014
ENSMUSG0000020247	Srarn	0.070020303	0.052055032	0.003790014
ENSMUSG0000033061	Pern18	1 874555468	-0.435884303	0.003730014
ENSMUSG0000037152	Ndufc1	3 0/388528	0.406754755	0.004069469
ENSINUSG00000037132	Reaco1	0.001E62602	2 199200414	0.004005405
ENSMUS G00000033850	D220022K18Bik	0.001303033	-2.100350414	0.004105040
ENSMUS G00000087209	DSSUUZSKIONIK	0.003302378	0.718300182	0.004100819
ENSIVIUS G00000028248	PIIISI Libo o 2	0.200196557	0.40000303	0.004115108
ENSINUSG0000009917	HDd-dZ	1.56/146049	0.362223464	0.004152621
ENSINUSG00000028495	крѕь	2.24358/0/5	-0.412414797	0.004191268
	Rgiz Tef7l0	0.145110754	0.052957246	0.004209307
ENSINUSG00000024985		0.413440495	0.49578425	0.004234275
ENSIMUSG00000042647	Acad12	0.02/521001	1.033586425	0.00423694
ENSINUSG00000023764	STI1	0.058794866	0.74337485	0.004238323
	NOP10	1.103029218	0.42055095	0.004297469
ENSINUS GOODOOG 7222	KCt015	0.04/5362/5	0.803652862	0.004361118
ENSINUSG00000037322	кµізо Ст.10025	11.8152002	0.590798281	0.004301118
ENSIMUSG00000110332	Gm19935	0.089755993	0.632125756	0.004386174
	EVIZa	0.150114552	-0.621084896	0.004386174
ENSMUSG0000036568	Bicral	0.124469983	0.574865412	0.004386174
ENSMUSG0000054091	181003/11/Rik	0.911320426	0.419094571	0.004579591
ENSMUSG0000068323	SIC4a5	0.029397433	0.994442071	0.004594688
ENSMUSG0000017167	Cntnap1	0.23392851	0.492915137	0.004594688
ENSMUSG0000025266	Gni3i	0.47723918	0.439277473	0.004594688
ENSMUSG0000039004	втрь	0.037215899	0.895377944	0.004714031
ENSMUSG0000036181	Hist1h1c	0.144485256	0.546738725	0.004747644
ENSMUSG0000066129	Kndc1	0.388421403	0.47877693	0.004789872
ENSMUSG0000037625	Cldn11	1.040794227	0.509451413	0.004802414
ENSMUSG0000024299	Adamts10	0.049099968	0.793462239	0.004802414
ENSMUSG0000034936	Arl4d	0.12978654	0.561437331	0.004857803
ENSMUSG0000023826	Prkn	0.035652206	0.914595859	0.004857803
ENSMUSG0000098332	2310009A05Rik	0.220793487	0.495816277	0.004878836
ENSMUSG0000028128	F3	0.150427291	0.539242267	0.004898827
ENSMUSG0000066687	Zbtb16	0.004378341	-1.558340024	0.004914447
ENSMUSG0000069833	Ahnak	0.09726172	0.61257618	0.004953329
ENSMUSG0000034317	Trim59	0.040030547	-0.710343117	0.005193189
ENSMUSG0000036138	Acaa1a	0.352769197	0.475459537	0.005193189
ENSMUSG0000021495	Fam193b	0.172006257	0.51992573	0.005193189
ENSMUSG0000036814	Slc6a20a	0.072868105	0.668168506	0.005291514
ENSMUSG0000029311	Hsd17b11	0.107269357	0.589585905	0.005306342
ENSMUSG0000040690	Col16a1	0.059107605	0.724352908	0.005314475
ENSMUSG0000028936	Rpl22	1.802625578	0.400600968	0.005314475
ENSMUSG0000020799	Tekt1	0.028146478	0.997476131	0.005329476
ENSMUSG0000009281	Rarres2	0.18295211	0.526897069	0.005392156
ENSMUSG0000059412	Fxyd2	0.117276994	0.574785059	0.005417483
ENSMUSG0000071528	Atp5md	7.404713016	0.390631963	0.005417483

ENSMUSG0000039307	Hexdc	0.137917745	0.548407804	0.005437603
ENSMUSG0000033697	Arhgap39	0.172944473	0.517267013	0.005437603
ENSMUSG0000064360	mt-Nd3	6.390814312	0.39143319	0.005437603
ENSMUSG0000039485	Tspvl4	0.629542902	0.426526079	0.005523546
ENSMUSG0000085251	Gm12326	0.01845158	1.249014898	0.005531831
ENSMUSG0000051166	Eml5	0.126346415	0.559117558	0.005651565
ENSMUSG00000103181	A330069K06Rik	0.007505728	2.155905494	0.005724428
ENSMUSG0000054312	Mrps21	1.275348215	0.404073425	0.005751477
ENSMUSG0000029455	Aldh2	0.485370385	0.431653007	0.005751477
ENSMUSG0000028234	Rps20	7.411906005	0.38867587	0.005766315
ENSMUSG0000034467	Dynlrh2	0.060671298	0 709988682	0 005813463
ENSMUSG0000001930	Vwf	0.060671298	0 880974879	0.005981742
ENSMUSG00000048058	I dirad3	0.016575148	-0 952231714	0.006131202
ENSMUSG0000038300	Pth2	0.004065602	3 319404226	0.006482931
ENSMUSG0000015341	Golga7	0 279901092	-0 452085243	0.00659525
ENSMUSG0000031189	Aff2	0.000312739	-3 072913197	0.00659525
ENSMUSG0000053644	Aldh7a1	0 233303033	0.477697799	0.006651213
ENSMUSG0000029994	Anya4	0.021578967	1 117770365	0.006674756
ENSMUSG0000025492	lfitm2	0 150182072	0.520560804	0.006674756
ENSMUSG0000023452	Diec1	0.111884069	1 5/052/01	0.006008452
ENSMUSG0000017639	Pab11fin/	0.011304005	0.428376016	0.006997291
ENSMUSG0000053646	Rabiinp4 Plynh1	0.413440433	0.420370010	0.007247688
ENSMUSG0000001607	Mbn	0.22233718	-0 404119105	0.007247088
ENSMUSC0000047007	Cldn2	0.021801705	1 107207572	0.007313730
ENSMUSG0000037111	Setd7	0.3196189	0.444550543	0.007433137
ENSMUSG0000031762	Mt2	1 265653316	0.39470906	0.007873786
	Agen 2	0.1203033310	0.39470900	0.007055064
ENSIVIUS G0000023422	Agapz	0.139106099	-0.499226101	0.007955964
ENSIVE C00000030279	Uten11	0.091032424	0.597979465	0.008002015
	Connue	0.063613936	-0.556595591	0.008102249
	Cenpw Adh1	0.009420343	0.09/100/09	0.008102249
ENSINUS G00000074207	Auni Trans2	0.006151205	1.945006711	0.008261413
ENSIVIUS G00000032387	Collast1	0.22704828	0.202210220	0.008201413
ENSINUSG0000049721	Galasti Canhal	0.090094208	-0.545600065	0.008330034
	Gglibpi	0.030779393	0.0002100138	0.008353117
	Lamas	0.032212081	0.908/082/4	0.008482808
	Kall	0.124157244	0.575026737	0.008482808
	NKX2-9	0.001876432	-1.965997993	0.008697969
	Semaso Cada 51	0.034088513	0.884018082	0.008716591
		0.02783374	0.959508281	0.008716591
	Adcy9	0.008131205	-1.208/96625	0.008716591
	Citrn	0.010945853	1.594511464	0.008716591
ENSIVIUSGUUUUUU15652	Steap1	0.020640751	1.118/068/6	0.008727626
ENSMUSG0000031170	SIC38a5	0.026270047	0.990702903	0.008781444
ENSMUSG0000099632	2900093K20Rik	0.103516493	0.569676122	0.008827779
ENSMUSG0000024579	PCYOX1	0.06723881	0.659606493	0.008850278
ENSMUSG0000062488	ITIT3D	0.012196807	-1.03638/321	0.008850278
ENSMUSG0000072214	Sept5	0.063798685	-0.593105442	0.00908676
ENSMUSG0000023150	Ivns1abp	0.680519302	0.430249995	0.009100859
ENSMUSG0000047228	A2mi1	0.12509546	-0.500488162	0.009635033
ENSMUSG0000024897	Apbal	0.181388417	0.48/42933/	0.0096/34/6
ENSMUSG0000047904	Sstr2	0.046598059	-0.647149291	0.009727428
ENSMUSG0000004980	Hnrnpa2b1	1.593403422	0.384773673	0.009771878
ENSMUSG0000044033	Ccdc141	0.053478309	0.709495368	0.00980997
ENSMUSG0000039001	Rps21	12.74472546	0.370987549	0.00980997
ENSMUSG0000031537	Ikbkb	0.174195428	0.73228877	0.00980997
ENSMUSG0000025451	Paip1	0.156056586	-0.479268453	0.00980997
ENSMUSG0000085133	B930095G15Rik	0.150740029	0.551411736	0.00980997
ENSMUSG0000032988	SIc16a8	0.016575148	1.266936806	0.00980997
ENSMUSG0000017344	Vtn	0.397803563	0.428391375	0.009928461
ENSMUSG0000079304	Tex52	0.000312739	-3.011512652	0.01004527
ENSMUSG00000113029	Gm40578	0.016575148	-0.912972284	0.01004527
ENSMUSG0000032968	Inha	0.09507255	0.574890178	0.010312591
ENSMUSG0000037820	Tgm2	0.054103786	0.745539434	0.010366569

ENSMUSG0000030638	Sh3gl3	0.232052078	-0.44558788	0.010366569
ENSMUSG0000070394	Tmem256	1.115226026	0.387361285	0.010372018
ENSMUSG0000054428	Atpif1	4.641354304	0.37306198	0.010486643
ENSMUSG0000047557	Lxn	0.326811889	-0.423067844	0.01070306
ENSMUSG0000026500	Cox20	0.499756363	0.414379483	0.010771197
ENSMUSG0000092626	9130230N09Rik	0.013760501	1.360046211	0.010795301
ENSMUSG0000040618	Pck2	0.131662972	0.522342059	0.010795301
ENSMUSG0000020439	Smtn	0.032837558	0.900119756	0.010799323
ENSMUSG0000091955	Gm9844	0.037528638	0.816202697	0.010841174
ENSMUSG0000031775	Pllp	0.384668539	-0.416476888	0.011092754
ENSMUSG0000087211	Lhx1os	0.00688025	-1.249790959	0.011092754
ENSMUSG0000059970	Hspa2	0.258322125	0.448905321	0.011092754
ENSMUSG0000036561	Ppp6r2	0.072555367	-0.56040249	0.011148143
ENSMUSG0000023043	Krt18	0.031273865	0 884858568	0 011148143
ENSMUSG00000113186	A330076C08Rik	0.004065602	-1 513485788	0.011268067
ENSMUSG0000037126	Psd	1 381366617	0 38222525	0.011340628
ENSMUSG0000002007	Srnk3	0.026895524	1 024255462	0.011376076
ENSMUSG00000017009	Sdc4	0 386232233	0 444775949	0.011393838
ENSMUSG0000029068	Copl2	0.290846944	0 44247191	0.011418854
ENSMUSG0000042628	7fwe1	0.053791048	0.698750018	0.012001943
ENSMUSG0000024903	Lao1	0.007818466	1 890560927	0.012001545
ENSMUSG0000024903	Wdr80	0.036277683	0.827825172	0.01218157
ENSMUSG0000043030	Dirac?	0.816560615	0.301821352	0.01218157
ENSMUSG0000047842	Phm/5	0.01/1385978	-0 0//5801	0.012210157
ENSMUSG0000042303	Sfta2-nc	0.002814648	-1 680584557	0.012310402
ENSMUSG00000112343	Δ2m	0.002014040	0 002508781	0.012310402
ENSMUSC00000036111		0.03002231	1 0562508781	0.012401340
ENSMUS G0000060424	D150056E05Nik	0.021378907	0.205050502	0.012803292
ENSMUSG00000037852	Cne	12 0110/050	0.362463557	0.012849484
ENSMUSG0000037852	cpe 1#172	0 1/25/70/	0.502403337	0.012043484
ENSMUSG0000020272	Stk10	0.14334704	1 2567022/0	0.01328810
ENSMUSG0000025272	Pdafa	0.015077058	-0 470805532	0.013280554
ENSMUSG0000023850	Gm13373	0.14004855	1 5005121/15	0.013247744
ENSMUSG0000042707	Dnali1	0.010320373	1.07505012140	0.013347744
ENSMUSC0000046160	Olia1	0.02033343	0.204209250	0.013347744
ENSMUSC0000074022	Eam122a	0.00921489	1 007062520	0.013347744
ENSMUSG0000017677	Wch1	0.202054858	0.461882517	0.013352036
ENSMUSG0000015850	AdamtelA	0.008756682	-1 121822707	0.013733/2030
ENSMUSG0000024076	Vit	0.000750082	0.802080354	0.013723485
ENSMUSC0000024070	Tmom1945	0.025557455	2 240014909	0.01403690
ENSMUS G0000050087	Chach	0.005942034	2.245014656	0.014120143
ENSMUS G00000056301	Cfl2511	4 720477192	0.266702662	0.014120143
	CIII Anlud 25	4.720477165	-0.500765505	0.014192439
	Adinar2	0.107562090	0.55/500595	0.01420769
	Aulporz Thha	0.24545564	0.456009464	0.01420769
	11054	0.032212081	0.654957016	0.01420769
	ALdd2 DesClub2	0.160/049/4	0.400924299	0.014569075
ENSINUSG00000024830	KPSOKUZ	0.094447072	0.300400433	0.014806506
	CakSrz	0.201/0225	0.434953178	0.014925461
	Ppox	0.083188481	0.578391799	0.015048326
ENSIMUSG00000038803	Ust4	0.197963565	0.458444561	0.015048326
ENSMUSG0000074676	FOXS1	0.005316557	2.360046211	0.015064354
ENSMUSG0000019831	Wast1	0.868162492	0.386258688	0.015064354
ENSMUSG0000038936	Scopan	0.39/1/8085	-0.399600796	0.015177206
ENSMUSG00000074457	S100a16	0.445652576	-0.389029143	0.015204127
	Alg2	0.2939/4331	-0.426883406	0.015204127
	IVIE023	0.128222846	0.508543361	0.015204127
	ZKSCan2	0.045972582	0.72150267	0.015266352
ENSMUSG0000066705	Fxyd6	0.622037175	-0.392809939	0.015266352
ENSMUSGUUUU0071637	серра	0.160122189	0.4/8690/0/	0.015266352
ENSMUSG0000109394	A230057D06Rik	0.038154115	0.782138468	0.015325132
ENSMUSG0000086859	Snhg20	0.444401622	0.405496486	0.015325132
ENSMUSG0000033880	Lgals3bp	0.079122878	0.587844655	0.015325132
ENSIMUSG00000050856	Атрък	5.16831893	0.357090001	0.015476647

ENSMUSG0000032590	Apeh	0.1019528	0.543268035	0.015476647
ENSMUSG0000006456	Rbm14	0.134477619	0.498721772	0.01560091
ENSMUSG00000109006	B230209E15Rik	0.015324194	-0.899376942	0.015772195
ENSMUSG0000033386	Frrs1	0.012509546	1.41016969	0.016084216
ENSMUSG0000057729	Prtn3	0.009694898	-1.072913197	0.016084216
ENSMUSG0000053964	Lgals4	0.013135023	1.353351558	0.016102281
ENSMUSG0000030792	Dkkl1	0.059420343	-0.575857785	0.016153113
ENSMUSG0000024665	Fads2	0.311174957	-0.409062724	0.016292566
ENSMUSG0000092341	Malat1	2.338972363	0.365456807	0.016307175
ENSMUSG0000029154	Cwh43	0.014385978	1.259283234	0.016357236
ENSMUSG0000046242	Nme9	0.015324194	1,249014898	0.016357236
ENSMUSG0000069919	Hba-a1	2.042808862	0.499297573	0.016633884
ENSMUSG0000020697	Lig3	0.080686572	0.586343086	0.016633884
ENSMUSG0000004328	Hif3a	0.02314266	0 985980492	0.016813296
ENSMUSG0000028962	Slc4a2	0 190770576	0 614793032	0.016954178
ENSMUSG0000006651	Anin1	3 695632627	-0 361198536	0.017171863
ENSMUSG0000045996	Polr2k	0.669260711	0 38382557	0.017383245
ENSMUSG00000041957	Pkn2	0.089443254	0 558015158	0.01746401
ENSMUSG0000063320	110000710701	0.069115242	0.606025452	0.017471463
ENSMUSG000003320	lafbn?	0.2015/1870	0.000023432	0.017703867
ENSMUSG0000018395	Kif3a	0.079435617	-0 520770872	0.017707306
ENSMUSG0000034390	Cmin	0.073455300	-1 662087949	0.019130058
ENSMUSG0000034486	Gbv2	0.023455555	0 007278322	0.018146116
ENSMUSC0000034480	Inconn	0.007331346	0.507278522	0.018140110
ENSMUSC00000112450	Gm49610	0.033334741	1 556442422	0.018190034
ENSMUSC0000062007	011140015 Ppl25	4.461520591	0.251717602	0.01834398
ENSING 3G0000002337	Ndufe 2	4.401323361	0.351717092	0.018438038
ENSINUS G00000014294	Nuuldz Diekhh1	3.121444405	0.32307130	0.018573673
	Plexito1	1.12565914	-0.372907437	0.018573672
	PIII14	0.071929669	0.595014021	0.0180/4015
	DIUO ZfmCZ2	0.10/02/910	0.404465021	0.018944915
ENSINUSG0000049755	21µ072	0.022462026	0.012049504	0.01942926
ENSINUSG0000024610	Cu74	0.033403030	0.607505166	0.01969607
	Cygo	0.002752864	-0.425502050	0.01970471
ENSINUS G00000021099	SIX0	0.003752804	-1.48/950090	0.01970471
	RODO3	0.049725445	0.68423028	0.020015662
ENSIMUSG00000028463	Car9	0.00469108	2.512049304	0.020086813
	FDT1	0.1466/442/	0.475676914	0.020107538
ENSINUSG00000092074	Dynitia	0.055980218	0.646350396	0.020107538
	Atplia Casta d2	0.15/62028	0.467049319	0.020115024
ENSINUS GOODOOD 4 4000	Sertad3	0.008756682	-1.089401319	0.020325956
ENSIMUS G00000044986	IST C-IO1	0.143859779	-0.453108947	0.020487093
ENSMUSG0000037706	Cd81	2.84467076	0.392491117	0.020644725
ENSMUSG0000097383	1500026H17Rik	0.045659843	0.700494394	0.020680502
ENSMUSG0000056155	Nanos3	0.022829921	0.966615168	0.020708069
ENSMUSG0000027429	Sec23b	0.341510606	0.446255653	0.020809577
ENSMUSG0000024268	Celt4	0.819375263	-0.37284039	0.020809577
ENSMUSG0000022974	Paxbp1	0.131662972	0.488314655	0.020811009
ENSMUSG0000052296	Ppp6r1	0.143859779	0.478029195	0.020831961
ENSMUSG0000095845	Gm5741	0.127284631	0.716869096	0.020871573
ENSMUSG0000033526	Ppip5k1	0.118527948	0.500704331	0.020988901
ENSMUSG0000093989	Rnasek	1.514906021	-0.360550774	0.021269738
ENSMUSG0000103034	Gm8797	0.013447762	1.271041205	0.021329043
ENSMUSG0000028843	Sh3bgrl3	1.387934129	-0.361326202	0.021329043
ENSMUSG0000017165	Gast	0.001876432	-1.850520775	0.021329043
ENSMUSG0000008658	Rbfox1	0.08569039	-0.506196405	0.02178793
ENSMUSG0000073627	C130036L24Rik	0.056605696	0.636139652	0.02192364
ENSMUSG0000087336	Gm15860	0.040030547	0.741916846	0.021960441
ENSMUSG0000016346	Kcnq2	0.652060085	0.371781996	0.02234933
ENSMUSG0000037221	Mospd3	0.03252482	-0.674571986	0.022670369
ENSMUSG0000039108	Lsm14b	0.246125318	0.421574123	0.022815723
ENSMUSG0000046999	1110032F04Rik	0.094759811	0.531158127	0.023163756
ENSMUSG0000020027	Socs2	0.035026729	-0.65645642	0.023202106
ENSMUSG0000030125	Lrrc23	0.015949671	1.168094903	0.023376142

ENSMUSG0000060636	Rpl35a	7.147954584	0.34140213	0.023504128
ENSMUSG0000086040	Wipf3	0.524462716	0.392477459	0.023517568
ENSMUSG0000026841	Fibcd1	0.076308231	0.566044194	0.023842504
ENSMUSG0000048234	Rnf149	0.009694898	-1.042539548	0.023882392
ENSMUSG0000029797	Sspo	0.008443944	1.859972608	0.023981905
ENSMUSG0000036241	Ube2r2	0.404683813	-0.386424274	0.02415337
ENSMUSG0000032854	Ugt8a	0.137292267	-0.474775307	0.024260072
ENSMUSG0000001248	Gramd1a	0.481304782	0.382231064	0.024260072
ENSMUSG0000034587	8430429K09Rik	0.03940507	0.732549666	0.024290387
ENSMUSG0000071604	Fam189a2	0.114775085	0.563936046	0.024370997
ENSMUSG0000049892	Rasd1	0.113211391	0.504122388	0.024601007
ENSMUSG0000073125	Xlr3b	0.009382159	1.765805896	0.024693864
ENSMUSG0000001014	Icam4	0.021578967	0.968906979	0.024743735
ENSMUSG0000030761	Myo7a	0.046910797	0.684364853	0.024801872
ENSMUSG0000090002	Gm16006	0.013135023	1.294457869	0.024857321
ENSMUSG0000034064	Poglut1	0.332128446	0.45875811	0.025168192
ENSMUSG0000006333	Rps9	3.143336171	-0.346624395	0.025224262
ENSMUSG0000003934	Efnb3	0.249878181	-0.40442734	0.025224262
ENSMUSG0000001103	Sebox	0.01845158	1 061387895	0.025224262
ENSMUSG0000015377	Dennd6b	0 167002439	0 451323074	0.025224262
ENSMUSG0000040225	Prrc2c	0.08350122	-0 501346289	0.0253572
ENSMUSG0000045608	Dbx2	0 102891016	-0 476979578	0.025507516
ENSMUSG0000017376	NIk	0.298665411	0.411507918	0.025536069
ENSMUSG0000078193	Gm2000	0.090068731	0.532156878	0.025537444
ENSMUSG0000006476	Nsmf	1 617484298	0.356230476	0.025557.444
ENSMUSG0000026751	Nr5a1	0.003440125	-1 487950696	0.026461101
ENSMUSG0000085084	1030570G10Rik	0.055080218	0.628862060	0.026475213
ENSMUSG00000020919	Stat5h	0.118527048	0.020002000	0.020073213
ENSMUSG0000020919	Jurc17	0.110527548	0.460710100	0.027488113
ENSMUSG0000039885	Htt	0.075082755	0.300344801	0.028166665
ENSMUSC0000023104	Ebloc	0.214330714	0.422467997	0.028100003
ENSMUS G00000021180	FUILD	0.035052551	1 202462692	0.028198389
ENSMUS G0000000732	Nupr1	0.02/055/4	0.076717571	0.028231007
ENSMUSC0000025122	ArbganE	0.021200228	0.370717371	0.028498279
	Arrigapo Drolo	0.203900094	-0.387734000	0.028510790
	Preip	0.111334959	0.909680527	0.028511361
ENSIMUSG00000041444	Arngap32	0.101014584	-0.47228124	0.028511361
ENSIMUSG00000039648	Kyati Revit	0.060984037	0.60319/192	0.028799167
	KSUI	0.070678935	-0.516270592	0.028849951
ENSINUSG0000008958	vps/2	0.094759811	-0.478427922	0.028981283
ENSIMUSG00000041264	Uspil	0.103516493	0.503384443	0.028997434
	vangi1	0.029397433	0.815118372	0.029573969
ENSMUSG0000048029	Eno4	0.020328012	0.971480923	0.030080894
ENSMUSG0000028441	1110017D15Rik	0.072868105	0.562235061	0.030154009
ENSMUSG0000037664	Cdkn1c	0.071304412	0.67882775	0.030154009
ENSMUSG0000004626	Stxbp2	0.056918434	0.618358206	0.030154009
ENSMUSG0000023952	Gtpbp2	0.08099931	0.54006368	0.030154009
ENSMUSG0000002210	Smg9	0.156369325	0.447293096	0.030331671
ENSMUSG0000027327	1700037H04Rik	0.359962186	-0.38613217	0.03070747
ENSMUSG00000117172	A230051N06Rik	0.026895524	1.048102204	0.031177944
ENSMUSG0000074466	Gm15417	0.106331141	0.52053577	0.03139407
ENSMUSG0000089669	Tnfsf13	0.028771956	0.822389425	0.03139407
ENSMUSG0000076439	Mog	0.658627597	-0.37697416	0.03139407
ENSMUSG0000078202	Nrarp	0.042532456	-0.594489757	0.031551801
ENSMUSG0000035674	Ndufa3	2.838103249	0.334865888	0.031578057
ENSMUSG0000049932	H2afx	0.117276994	-0.451031232	0.031585432
ENSMUSG0000031309	Rps6ka3	0.104767448	0.499225264	0.03160933
ENSMUSG0000034156	Tspoap1	0.281777524	0.401254965	0.03165467
ENSMUSG0000073418	C4b	0.091319686	0.5169816	0.031863777
ENSMUSG0000026072	ll1r1	0.020640751	0.96342865	0.032032882
ENSMUSG0000055723	Rras2	0.080686572	0.540172905	0.0320985
ENSMUSG0000050732	Vamp8	0.207971202	0.438157037	0.03210183
ENSMUSG0000005268	Prlr	0.036903161	0.734441725	0.032170661
ENSMUSG0000039904	Gpr37	0.18764319	-0.414076451	0.032309085

ENSMUSG0000019232	Etnppl	0.21078585	0.451361377	0.032371595
ENSMUSG0000037029	Zfp146	0.00688025	-1.134313741	0.032371595
ENSMUSG0000074748	Atxn7l3b	0.417193359	-0.37211321	0.032789
ENSMUSG0000006676	Usp19	0.29428707	0.394453073	0.032792038
ENSMUSG00000117979	Gm50341	0.002501909	3.681974306	0.03290133
ENSMUSG0000027087	Itgav	0.284592171	0.389160238	0.034186143
ENSMUSG0000008136	Fhl2	0.249565443	0.400884248	0.034228983
ENSMUSG0000034271	Jdp2	0.080061094	0.534680279	0.034277741
ENSMUSG0000085241	Snhg3	0.179511985	0.426802018	0.034548346
ENSMUSG0000042258	Isl1	0.019389796	-0.777457313	0.034548346
ENSMUSG0000032621	Srek1	0.197963565	0.419508898	0.034807112
ENSMUSG0000034312	lasec1	0.487872294	0.360415943	0.03485044
ENSMUSG0000047671	Tctex1d4	0.014385978	1,15974756	0.035003874
ENSMUSG0000089997	1810020005Rik	0.009382159	1.466245615	0.035082594
ENSMUSG0000041559	Fmod	0.053478309	0.616385964	0.035166392
ENSMUSG0000021700	Rab3c	0 411876802	0 369380521	0.03529573
ENSMUSG0000041084	Ostc	0 281152046	-0 383253317	0.035384421
ENSMUSG0000064210	Anof	0.012822285	-0 890049139	0.035384421
ENSMUSG0000060429	Snth1	0.03002291	0.864034633	0.035571461
ENSMUSG00000024018	Ccdc167	0.18295211	0.423717806	0.035641927
ENSMUSG0000035781	R3hdm4	0.536659523	0.362905865	0.035864608
ENSMUSG0000052248	Zeb2os	0.0150/0671	1.083206005	0.035032586
ENSMUSG0000032248	Dvl2	0.052860469	0.57780375	0.035932586
ENSMUSG0000050335	Sing	0.002800403	1 083206005	0.035932586
ENSMUSG00000020752	Recal5	0.071304412	0.556837226	0.035352580
ENSMUSG0000020732	Ndufu2	2 206134805	0.331534505	0.03608344
ENSMUSC0000024038	Grid2	0.0001048000	0.331334333	0.03008344
ENSING 300000071424	Blim	0.023433333	-0.713730013	0.030350455
ENSMUSC0000036357	D2n/12	0.200403473	0.414512502	0.030333332
	P21912	0.00942798	-0.504054419	0.030372135
	G750005C15Kik	0.01000/05/	0.480356304	0.030802055
ENSMUS G0000027900	Dialitz Pac14	0.087879301	-0.480230304	0.037030032
	RgS14	0.100950016	0.482902958	0.037030652
	PIXID2	0.160157462	0.424755549	0.037030052
	Annus Catala	0.010945855	1.300040211	0.037184616
	GOTILI	0.010945853	1.360046211	0.037184616
	Prkx	0.001250955	-1.9/33//523	0.037184616
ENSMUSG0000029189	Sel113	0.122280812	0.46498105	0.037188886
ENSMUSG00000055912	Imem150a	0.048474491	0.637580186	0.03/188886
ENSMUSG0000054509	Parp4	0.01688/88/	1.045481504	0.037370091
ENSMUSG0000022415	Syngr1	0.918826154	0.344034543	0.03/3/0091
ENSMUSG0000073678	Pgap1	0.140419654	0.449313549	0.037473354
ENSMUSG00000113902	Nauto1-ps	1.50114552	0.334432042	0.037719128
ENSMUSG0000024907	Gal	0.163875053	0.60277908	0.037841477
ENSMUSG0000026632	Tatdn3	0.061296775	0.579512272	0.038615763
ENSMUSG0000018909	Arrb1	0.343074299	0.373113114	0.038615763
ENSMUSG0000027434	Nkx2-2	0.02095349	-0.740337857	0.039622788
ENSMUSG0000003974	Grm3	0.024080876	-0.702394364	0.040350034
ENSMUSG0000045282	Tmem86b	0.013760501	1.145921405	0.040350034
ENSMUSG0000086775	Snhg7os	0.006567512	1.801555921	0.040439658
ENSMUSG0000079659	Tmem243	0.037215899	-0.603427913	0.04045687
ENSMUSG0000064370	mt-Cytb	49.06619227	-0.324250754	0.041031722
ENSMUSG0000028245	Nsmaf	0.079748356	0.523364617	0.041049776
ENSMUSG0000052605	Isoc2b	0.054103786	0.624075922	0.041113799
ENSMUSG0000061576	Dpp6	0.404996552	-0.364846551	0.041192215
ENSMUSG0000039682	Lap3	0.165751484	-0.408362431	0.041358652
ENSMUSG0000053877	Srcap	0.010945853	-0.932735539	0.041506583
ENSMUSG0000086943	4732414G09Rik	0.025644569	0.887088735	0.041667248
ENSMUSG0000027858	Tspan2	0.402494643	-0.365268176	0.041667754
ENSMUSG0000079427	Mthfsl	0.068177026	0.803020586	0.041714759
ENSMUSG0000021902	Phf7	0.026270047	0.833977399	0.042130259
ENSMUSG0000024339	Tap2	0.021578967	0.913411867	0.042132071
ENSMUSG0000000787	Ddx3x	0.622975391	0.347361828	0.042132071
ENSMUSG0000020695	Mrc2	0.025331831	0.847233496	0.042270004

ENSMUSG0000020961	Ston2	0.044408888	0.753057404	0.042612765
ENSMUSG0000050074	Spink8	0.156994802	0.428472171	0.042653705
ENSMUSG0000007872	Id3	0.425637303	-0.352564113	0.0429661
ENSMUSG0000021032	Ngb	0.142296086	-0.470443978	0.043471741
ENSMUSG0000022623	Shank3	0.00469108	-1.269310409	0.044045858
ENSMUSG0000064363	mt-Nd4	30.14300204	-0.322018503	0.044045858
ENSMUSG0000033735	Spr	0.306483877	0.369341103	0.044398269
ENSMUSG0000084883	Ccdc85c	0.091006947	0.536966936	0.044653526
ENSMUSG0000031808	Slc27a1	0.325248196	0.36462686	0.045209475
ENSMUSG0000020658	Efr3b	0.324935457	0.37454578	0.045427486
ENSMUSG0000024165	Jpt2	0.011258591	-0.90785395	0.045427486
ENSMUSG0000024824	Rad9a	0.029710172	-0.644455182	0.045427486
ENSMUSG0000043461	Sptssb	0.011884069	-0.902988195	0.045697929
ENSMUSG0000030098	Grip2	0.054729264	0.596441491	0.046205117
ENSMUSG0000000318	Clec10a	0.005942034	1.833977399	0.046205117
ENSMUSG0000021520	Uqcrb	2.186981379	0.322863495	0.046377692
ENSMUSG0000097617	Gm10687	0.000312739	-2.657875697	0.04668102
ENSMUSG0000092009	Myh15	0.000312739	-2.657875697	0.04668102
ENSMUSG0000027284	Cdan1	0.065675116	0.553668393	0.047842698
ENSMUSG0000078485	Plekhn1	0.139481438	0.436597076	0.047842698
ENSMUSG0000057278	Snrpg	0.888490505	0.335483966	0.047842698
ENSMUSG0000007783	Cpt1c	0.426575519	0.358778465	0.047859947
ENSMUSG0000035578	lqcg	0.020015274	0.919707273	0.047859947
ENSMUSG0000025758	Plk4	0.02095349	0.899072427	0.04811178
ENSMUSG0000033029	1700088E04Rik	0.082875742	0.506635808	0.04811178
ENSMUSG0000030321	Efcab12	0.021891705	0.88043671	0.048114851
ENSMUSG0000025481	Urah	0.022829921	0.863521675	0.048114851
ENSMUSG0000057614	Gnai1	0.235492203	-0.378678628	0.048397047
ENSMUSG0000038011	Dnah10	0.011258591	1.262071051	0.048918078
ENSMUSG0000032855	Pkd1	0.244874363	0.385292162	0.048918078
ENSMUSG0000005204	Senp3	0.134790358	0.437214071	0.049306353
ENSMUSG0000010592	Dazl	0.015949671	1.042564021	0.049592223
ENSMUSG0000030309	Caprin2	0.01845158	0.959508281	0.049677114
ENSMUSG0000009292	Trpm2	0.075057276	0.697018186	0.049677114

Table S2C. DEGs at ZT4 in female and male white matter tracts (WMT). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT4 FEMALES - WMT					ZT4 MALES - WMT				
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR
ENSMUSG0000019970	Sgk1	12.22844387	4.341656905	4.39497E-48	ENSMUSG0000023067	Cdkn1a	1.406913391	4.326396111	1.57205E-21
ENSMUSG0000023067	Cdkn1a	1.511577619	5.115798269	3.29374E-31	ENSMUSG0000019970	Sgk1	13.10120628	2.427985905	4.10734E-15
ENSMUSG0000090137	Uba52	0.709784273	-2.723652859	1.34045E-22	ENSMUSG0000025591	Tma16	1.162232801	3.341042887	2.57966E-13
ENSMUSG0000030880	Polr3e	2.313370964	3.027854235	6.25148E-22	ENSMUSG0000034936	Arl4d	1.867488619	2.669923743	3.22343E-13
ENSMUSG0000002910	Arrdc2	1.673688842	2.802939004	9.95692E-18	ENSMUSG0000027525	Phactr3	3.382349329	2.178804079	4.22436E-11
ENSMUSG0000020108	Ddit4	1.551010078	2.830917161	1.05911E-17	ENSMUSG0000090137	Uba52	1.147839825	-1.835628947	1.61915E-10
ENSMUSG0000034936	Arl4d	1.419568546	2.989842039	1.1297E-17	ENSMUSG0000030880	Polr3e	2.392832238	2.058643156	1.68261E-09
ENSMUSG0000027525	Phactr3	3.325470761	2.443670727	1.1793E-17	ENSMUSG0000002910	Arrdc2	1.525655442	2.201997198	2.54621E-09
ENSMUSG0000021025	Nfkbia	1.235550401	2.562793878	5.4901E-14	ENSMUSG0000021025	Nfkbia	1.352939731	2.174949747	4.71984E-09
ENSMUSG0000060143	Gm10076	2.874188168	-1.848432251	1.02926E-12	ENSMUSG0000024222	Fkbp5	0.345431421	2.963675806	2.86293E-06
ENSMUSG0000005057	Sh2b2	0.381180443	3.877567254	8.17257E-12	ENSMUSG0000005057	Sh2b2	0.291457761	3.52866989	6.86038E-06
ENSMUSG00000113902	Ndufb1-ps	0.963904568	-1.82921913	8.92748E-11	ENSMUSG0000020108	Ddit4	1.464485294	1.653718669	9.27128E-06
ENSMUSG0000002831	Plin4	0.530147513	3.233395755	1.13858E-10	ENSMUSG0000032788	Pdxk	1.122652118	1.679777019	7.19249E-05
ENSMUSG0000025591	Tma16	0.617775201	2.830917161	1.31266E-10	ENSMUSG0000025915	Sgk3	0.744836501	1.784094762	9.42119E-05
ENSMUSG0000067288	Rps28	3.106401541	-1.657726379	3.46855E-10	ENSMUSG0000031167	Rbm3	1.30616256	1.393510307	0.000808791
ENSMUSG0000064360	mt-Nd3	3.750465048	-1.618979319	7.68493E-10	ENSMUSG0000074170	Plekhf1	0.87077504	1.452074199	0.002009625
ENSMUSG0000026822	Lcn2	0.240976142	5.810453058	1.22152E-09	ENSMUSG0000048572	Tmem252	0.219492882	3.540351695	0.003093199
ENSMUSG0000074170	Plekhf1	0.687877351	2.448897889	1.2759E-09	ENSMUSG0000025509	Pnpla2	0.913953968	1.384111609	0.004632009
ENSMUSG0000071637	Cebpd	0.499477822	2.600660673	6.24814E-09	ENSMUSG0000027301	Oxt	0.014392976	-2.899271442	0.007142704
ENSMUSG0000057322	Rpl38	8.066128684	-1.489137818	6.88532E-09	ENSMUSG00000109517	Gm44763	0.003598244	-3.73577271	0.012880888
ENSMUSG0000079641	Rpl39	3.575209672	-1.505724597	1.01234E-08	ENSMUSG0000019947	Arid5b	0.604504986	1.442714305	0.012880888
ENSMUSG00000041841	Rpl37	8.092416991	-1.464824944	1.3282E-08	ENSMUSG0000002831	Plin4	0.597308498	1.467359337	0.013950836
ENSMUSG0000028998	Tomm7	0.788649192	-1.651874086	1.35926E-08	ENSMUSG0000029780	Nt5c3	0.831194356	1.301178426	0.014280348

ENSMUSG0000032788	Pdxk	0.858751343	2.040187455	1.43373E-08	ENSMUSG0000028967	Errfi1	0.784417185	1.302048755	0.01443361
ENSMUSG0000070369	Itgad	0 521384744	2 450557113	1 83137F-08	ENSMUSG0000031431	Tsc22d3	2 274090187	1 11962757	0.01443361
ENSMUSG0000025509	Popla?	1 152304098	1 897745136	2.088645-08	ENSMUSG0000037855	7fn365	1 108250142	1 1946534	0.018/3172
ENSMUSC0000023305	AtaEmal	1.152504058	1.60510497	2.000042-00	ENSMUSC0000037855	Zip303 Polbo1	0 626990192	1 261440008	0.01040172
	Atp311pi	0.822462026	1 501000545	2.391035-00	ENSING 300000024050	Naipht	0.030889182	2,971557604	0.01556647.
	C0X17	0.852405050	-1.591900545	5.26424E-06	ENSINUSG00000034379	Plazgo	0.136/332/1	2.8/155/604	0.021409170
ENSINUSG0000090733	Rps27	3.824948583	-1.444580915	4.67892E-08	ENSINUSG00000020713	Gn	0	-4.916344956	0.02164322
ENSMUSG0000017778	Cox7c	4.096594416	-1.418858777	5.86828E-08	ENSMUSG0000060143	Gm10076	3.112481031	-0.911436823	0.02164322
ENSMUSG0000016427	Ndufa1	0.62653797	-1.627876762	7.82712E-08	ENSMUSG0000070369	Itgad	0.406601568	1.544576281	0.02346244
ENSMUSG0000035674	Ndufa3	2.046106516	-1.430317893	1.15425E-07	ENSMUSG0000017697	Ada	0.212296394	2.078008481	0.02682153
ENSMUSG0000024222	Fkbp5	0.372417674	2.622007969	1.39384E-07	ENSMUSG0000030268	Bcat1	0.694461086	1.279177631	0.02682153
ENSMUSG0000034892	Rps29	9.757343064	-1.356158548	1.9106E-07	ENSMUSG0000054277	Arfgap3	0.568522547	1.354717824	0.02731719
ENSMUSG0000071528	Atp5md	3.010011084	-1.397185597	2.43899E-07	ENSMUSG0000031608	Galnt7	0.147528003	2.563435308	0.02754737
ENSMUSG0000039001	Rps21	10.78258701	-1.323977433	3.18576E-07	ENSMUSG0000034858	Fam214a	0.38141386	1.520267449	0.03453027
ENSMUSG0000062997	Rpl35	3.299182455	-1.360322088	3.68464E-07	ENSMUSG0000059325	Норх	0.22668937	-1.27182561	0.03911220
ENSMUSG0000050856	Atp5k	2.352803424	-1.371488908	4.24416E-07	ENSMUSG0000023019	Gpd1	0.90675748	1.15411146	0.03911220
ENSMUSG0000006205	Htra1	2,790941864	1.45014603	6.72739E-07	ENSMUSG0000052296	Ppp6r1	0.057571903	-1.828882114	0.040786959
ENSMUSG0000104960	Snhø8	0 363654905	-1 692047282	1 02527E-06	ENSMUSG0000037235	Mxd4	0 939141675	1 138451697	0.04079424
ENSMUSG0000031431	Tsc22d3	2 076776207	1 485490903	1 16123E-06	ENSMUSG0000038267	SIc22a23	0 136733271	-1 497676206	0.04997981
	mt Nd4l	0.022224979	1 427920221	1 16123E 06	211311103000000000000000000000000000000	51622025	0.150/552/1	1.457070200	0.04557501
ENSING 300000003947	C	0.935254676	-1.437823231	1.10123E-00					
ENSINUSG00000021453	Gadd45g	0.902565187	1.863695079	1.32/3/E-06					
ENSMUSG0000048572	Tmem252	0.254120295	5.885741185	1.32/3/E-06					
ENSMUSG0000074754	Smim26	0.214687836	-1.745363097	1.87517E-06					
ENSMUSG0000014313	Cox6c	5.616934804	-1.255619349	1.97326E-06					
ENSMUSG0000078974	Sec61g	1.266220092	-1.338593214	2.40458E-06					
ENSMUSG0000023019	Gpd1	1.055913641	1.636559154	2.7334E-06					
ENSMUSG0000025739	Gng13	0.460045362	-1.608831412	4.11047E-06					
ENSMUSG0000037458	Azin1	0.76674227	1.655174833	4.11088E-06					
ENSMUSG0000098234	Snhg6	0.052576613	-2.446209265	4.30478E-06					
ENSMUSG0000015112	Slc25a13	0.245357527	2.666063149	6.8017E-06					
ENSMUSG0000093674	Rpl41	7.25557257	-1.193947973	6.86236E-06					
ENSMUSG0000025915	Søk3	0.692258736	1 672124902	8 12701F-06					
ENSMUSG0000016252	Atn5e	3 023155237	-1 217204937	9 53806E-06					
ENSMUSG0000010252	Errfi1	0.62653797	1 780705715	9.53806E-06					
ENSMUSC0000028507	Tmch10	2 242260014	1.774957610	1 260745 05					
	THISDIU D. 1100	2.243208814	-1.2/485/019	1.30974E-05					
ENSMUSG0000087687	Pet100	0.433757056	-1.424508037	1.3/25/E-05					
ENSMUSG0000064356	mt-Atp8	0.639682123	-1.426586139	1.51735E-05					
ENSMUSG0000038489	Polr2l	0.192780914	-1.714502133	1.77089E-05					
ENSMUSG0000041378	Cldn5	0.135822916	-1.879544913	1.95124E-05					
ENSMUSG0000073616	Cops9	1.958478828	-1.202171481	2.37348E-05					
ENSMUSG0000019947	Arid5b	0.4775709	1.926476854	2.40989E-05					
ENSMUSG0000036372	Tmem258	0.98581149	-1.295663974	2.79951E-05					
ENSMUSG0000030711	Sult1a1	0.236594758	2.614532848	3.03101E-05					
ENSMUSG0000007659	Bcl2l1	1.415187162	1.331720883	3.15693E-05					
ENSMUSG0000057863	RpI36	4.679318541	-1.119731069	3.82418E-05					
ENSMUSG0000021285	Ppp1r13b	0.302315524	2.132381153	4.492E-05					
ENSMUSG0000037152	Ndufc1	1.616730844	-1.174604216	6.51201E-05					
ENSMUSG0000028407	Smim27	0.131441532	-1.756951071	7.02204F-05					
ENSMUSG0000031760	Mt3	7 676185473	-1 105462102	7 15215F-05					
ENSMUSG0000089665	Fcor	0.006300457	-1 081134548	8 2250/E-05					
ENSMUSC0000031343	Del	0.090390437	=1.301134340 A 0A7A01370	0.223045-05					
	r'ii D-127-	0.005240304	-4.04/4012/8	0.223U4E-U5					
ENSMUSG0000046330	RpI37a	5.49425604	-1.088753391	8.33272E-05					
ENSMUSG0000038690	Atp5j2	3.110782926	-1.110035902	8.33272E-05					
ENSMUSG0000038803	Ost4	0.240976142	-1.529396945	8.63053E-05					
ENSMUSG0000020163	Uqcr11	2.843518477	-1.101754601	9.38887E-05					
ENSMUSG0000046768	Rhoj	0.254120295	2.300778685	9.38887E-05					
ENSMUSG0000060636	Rpl35a	6.563313834	-1.048423722	0.000172196					
ENSMUSG0000017697	Ada	0.227831989	2.271586972	0.000182913					
ENSMUSG0000057963	Itpk1	1.629874998	1.215213078	0.000184656					
ENSMUSG0000067847	Romo1	0.73607258	-1.203352741	0.000187801					
ENSMUSG0000021750	Fam107a	0.933234878	1.387013118	0.000218167					
ENSMUSG0000000791	II12rh1	0.092009072	4 462529755	0.000226816					
ENSMUSG000005731	Mrns21	0.801703346	-1 159840425	0.000220010					
ENSMUSC000004312	1911 P321	0.001/30340	1 247620011	0.000243007					
EN3IVIU300000042737	opins	0.400008131	-1.24/038911	0.000508755					

ENSMUSG0000041020	Map7d2	0.552054435	1.499929726	0.000348178
ENSMUSG0000084786	Ubl5	1.634256382	-1.084818454	0.000362143
ENSMUSG0000079435	Rpl36a	2.317752349	-1.043768469	0.000398385
ENSMUSG0000028298	Cga	0	-4.697341582	0.000448602
ENSMUSG0000001025	S100a6	0.757979502	-1.205010059	0.000454702
ENSMUSG0000020018	Snrpf	0.205925067	-1.48875496	0.000464375
ENSMUSG0000021986	Amer2	0.490715053	1.501349004	0.000547678
ENSMUSG0000059534	Llacr10	2 352803424	-1 020836524	0.000562737
ENSMUSG0000070394	Tmem256	0.828081652	-1 275669196	0.000580622
ENSMUSC00000F2007	Mat2a	2 041725121	1 092474216	0.000580022
ENSING 300000033907	NIGLZO	2.041723131	2.401145422	0.000038373
ENSINUSG00000029313	ATTI	0.166492607	2.481145433	0.000676437
ENSMUSG0000031483	Erlin2	0.503859206	1.468/61/08	0.000676437
ENSMUSG0000033863	KIt9	0.823700268	1.317413047	0.000699194
ENSMUSG0000062006	RpI34	5.75275772	-0.969748361	0.000741944
ENSMUSG0000047721	Bola2	0.854369958	-1.092998454	0.000794055
ENSMUSG0000057278	Snrpg	0.661589045	-1.132678643	0.000795953
ENSMUSG00000044734	Serpinb1a	0.788649192	-1.119107796	0.000806958
ENSMUSG0000047617	Paxx	1.331940858	1.116212216	0.001033532
ENSMUSG0000021981	Cab39l	0.324222446	1.70835487	0.001033532
ENSMUSG0000023089	Ndufa5	1.822655911	-0.996901864	0.001202916
ENSMUSG0000030168	Adipor2	1.038388103	1.183670382	0.001223374
ENSMUSG0000025362	Rps26	4.609216391	-0.953791624	0.001229531
ENSMUSG0000054277	Arfgan3	0.521384744	1.386426776	0.001350648
ENSMUSG0000034317	Trim59	0 188399529	-1 514750169	0.001820467
ENSMUSG0000035342	17ts2	1 020862566	1 145542401	0.00186583
ENSMUSG0000022820	Ndufb4	1 62087/008	-0.987199776	0.00100303
	Clo2o1	1.023074358	1 1221 40081	0.001017707
ENSIVIUSG00000028645	516281	1.634256382	1.132140081	0.001989417
ENSIVIUS GOODOOU 14846	трррз	4.433961015	0.976289339	0.001989417
ENSMUSG0000029780	Nt5c3	0.749216733	1.239538332	0.002128345
ENSMUSG0000014294	Ndufa2	2.16002251	-0.955425228	0.002128345
ENSMUSG0000037855	Zfp365	0.920090724	1.139234824	0.00248826
ENSMUSG0000025508	Rplp2	3.259749995	-0.912159664	0.003160292
ENSMUSG0000053332	Gas5	4.223654564	-0.901897523	0.003511849
ENSMUSG0000034579	Pla2g3	0.118297379	2.810453058	0.003768934
ENSMUSG0000055148	Klf2	0.21906922	1.97508376	0.003838673
ENSMUSG0000037419	Endod1	4.942201606	0.927182049	0.003903619
ENSMUSG0000020713	Gh	0.096390457	-4.550155505	0.003903619
ENSMUSG0000042541	Sem1	0.718547042	-1.027184431	0.004311289
ENSMUSG0000098120	Gm5914	0.026288306	-2.318829959	0.005145062
ENSMUSG0000035048	Anapc13	0.65720766	-1.039267895	0.005252416
ENSMUSG0000029465	Arpc3	0.968285953	1.097074284	0.006027555
ENSMUSG0000086841	2410006H16Rik	0.512621975	-1.062626046	0.006730073
ENSMUSG0000018143	Mafk	0 254120295	1 637813672	0.006907777
ENSMUSG0000073702	Pol31	2 479863572	-0.881742666	0.007053162
ENSMUSC0000010680	Emc1	0.405006427	1 024276560	0.007033102
	FILLE	0.495090457	-1.034370303	0.008580571
ENSINUSG00000019558	SILOdo Naturfa 2	0.703402889	1.133494773	0.008505054
ENSINUSG0000002416	NOUTDZ	1.489670697	-0.907454482	0.008917102
ENSMUSG0000078784	RDIS	0.503859206	-1.021563918	0.00914761
ENSMUSG0000021040	Slirp	0.354892137	-1.090560971	0.01040907
ENSMUSG0000010406	Mrpl52	0.823700268	-0.954295693	0.01098157
ENSMUSG0000037235	Mxd4	0.722928426	1.092735348	0.012008421
ENSMUSG0000038717	Atp5l	2.900476474	-0.843205324	0.012008421
ENSMUSG0000033326	Kdm4a	0.280408602	1.501903993	0.012032127
ENSMUSG0000036781	Rps27l	0.460045362	-1.023868912	0.012872243
ENSMUSG0000098188	Sowahc	0.013144153	-2.640758054	0.014078021
ENSMUSG0000051495	Irf2bp2	0.80617473	1.075047978	0.014184404
ENSMUSG0000039601	Rcan2	2.790941864	0.873427524	0.014184404
ENSMUSG0000028936	Rpl22	2.725221098	-0.840517984	0.014406366
ENSMUSG0000047369	Dnah14	0.17963676	1.810453058	0.016046823
ENSMUSG0000042312	S100a13	1.090964716	-0.892204485	0.017066517
ENSMUSG0000027200	Sema6d	0.188399529	-1.237909964	0.017623323
ENSMUSG0000045503	Svs1	2 698932792	0.858596886	0.017623323
ENSMUSG00000097451	Rian	0 346129368	1 325026231	0.017656671
LINSINIO300000037431	Man	0.040120000	1.323020231	0.01/0200/1

ENSMUSG0000066687	Zbtb16	0.056957997	3.810453058	0.018604346
ENSMUSG0000032766	Gng11	2.234506045	-0.832612397	0.020028156
ENSMUSG0000068523	Gng5	1.310033936	-0.889616691	0.020359508
ENSMUSG0000031770	Herpud1	0.58710551	1.125717423	0.021371414
ENSMUSG0000007656	Arpp19	1.121634407	-0.861642034	0.023330043
ENSMUSG0000038332	Sesn1	0.407468749	1.235758893	0.02392477
ENSMUSG0000024018	Ccdc167	0.096390457	-1.450619831	0.024268268
ENSMUSG0000043587	Pxylp1	0.105153226	2.325026231	0.024726799
ENSMUSG0000042213	Zfand4	0.105153226	2.325026231	0.024777212
ENSMUSG0000090247	Bloc1s1	0.21906922	-1.144655484	0.025650293
ENSMUSG0000028982	Slc25a33	0.69664012	1.021245483	0.025895916
ENSMUSG0000058600	Rpl30	7.347581642	-0.758587801	0.028371748
ENSMUSG0000021702	Thbs4	0.315459677	1.549066505	0.028423356
ENSMUSG0000039958	Etfbkmt	0.074483535	3.173023137	0.030565811
ENSMUSG00000106918	Mrpl33	0.530147513	-0.936529246	0.031065199
ENSMUSG0000030494	Rhpn2	0.197162298	1.71930517	0.031065199
ENSMUSG0000022321	Cdh10	0.021906922	-2.318829959	0.032800179
ENSMUSG0000025511	Tspan4	0.271645833	1.395415559	0.033819812
ENSMUSG0000022340	Sybu	0.065720766	-1.640758054	0.034920174
ENSMUSG0000024535	Snx24	0.306696908	1.29486426	0.035376339
ENSMUSG0000045975	C2cd2	0.184018145	1.622007969	0.036200029
ENSMUSG0000031681	Smad1	0.240976142	1.488524963	0.036218642
ENSMUSG0000027434	Nkx2-2	0.061339382	-1.613573224	0.037046344
ENSMUSG0000039221	Rpl22l1	1.450238237	-0.831315798	0.037046344
ENSMUSG0000039911	Spsb1	0.451282593	1.118575353	0.037046344
ENSMUSG0000078572	Ndufaf8	0.350510752	-1.049369284	0.037607137
ENSMUSG0000030087	Klf15	0.569579972	1.036521138	0.039271913
ENSMUSG0000021520	Uqcrb	1.54224731	-0.800164031	0.039304576
ENSMUSG0000043300	B3gaInt1	0.271645833	1.33652187	0.040729041
ENSMUSG0000034858	Fam214a	0.271645833	1.33652187	0.040729041
ENSMUSG0000079480	Pin4	0.424994287	-0.952047628	0.042306858
ENSMUSG0000055839	Elob	3.562065519	-0.747977058	0.044309259
ENSMUSG0000024176	Sox8	0.670351814	1.021957163	0.044556246
ENSMUSG0000034855	Cxcl10	0.004381384	-4.041295983	0.044585512
ENSMUSG0000045996	Polr2k	0.499477822	-0.906299315	0.044585512
ENSMUSG00000041926	Rnpep	0.297934139	1.304267671	0.044945226
ENSMUSG0000066129	Kndc1	0.87627688	0.953710109	0.045155614
ENSMUSG0000050423	Ppp1r3g	0.127060148	1.909988732	0.045155614
ENSMUSG0000001827	Folr1	0.105153226	2.325026231	0.04581761
ENSMUSG0000056501	Cebpb	0.254120295	1.426309567	0.047308218
ENSMUSG0000008683	Rps15a	4.929057452	-0.726416964	0.049963412

Table S2D. DEGs at ZT14 in female and male white matter tracts (WMT). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT14 FEMALES - WMT					ZT14 MALES - WMT				
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR	FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR
ENSMUSG0000019970	Sgk1	15.33411555	3.103763158	2.33957E-32	ENSMUSG0000098178	Gm42418	1.963501908	-2.102590143	9.74786E-21
ENSMUSG0000023067	Cdkn1a	1.657876779	3.882743633	8.05058E-28	ENSMUSG0000022949	Clic6	0.303350014	4.115248792	1.05426E-13
ENSMUSG0000021025	Nfkbia	2.135823238	2.852953251	1.10911E-20	ENSMUSG0000062591	Tubb4a	2.029687366	-1.57402006	1.37227E-12
ENSMUSG0000034936	Arl4d	1.807235047	2.726726061	4.1166E-17	ENSMUSG0000035202	Lars2	0.270257285	-1.906230936	4.03595E-10
ENSMUSG0000020108	Ddit4	2.235395416	2.442103549	2.77813E-16	ENSMUSG0000061808	Ttr	33.09824424	2.449730537	4.08047E-10
ENSMUSG0000027525	Phactr3	5.486427058	2.113487614	6.90934E-16	ENSMUSG0000061718	Ppp1r1b	0.639792757	1.930331076	2.89429E-09
ENSMUSG0000002910	Arrdc2	2.260288461	2.172642874	8.64123E-14	ENSMUSG0000011884	Gltp	0.435720929	-1.543438749	5.69047E-08
ENSMUSG0000048572	Tmem252	0.333566799	5.130822698	1.97842E-08	ENSMUSG0000090137	Uba52	2.178604645	1.232194144	7.57462E-08
ENSMUSG0000025591	Tma16	0.677090817	2.334037018	8.09277E-08	ENSMUSG0000050063	Klk6	0.170979099	-1.933692117	1.17322E-07
ENSMUSG0000028967	Errfi1	0.9459357	1.746319567	1.25206E-06	ENSMUSG0000033208	S100b	1.180307327	-1.311692027	2.39415E-07
ENSMUSG0000017697	Ada	0.492882286	2.272178547	1.30959E-06	ENSMUSG0000019970	Sgk1	3.232056511	1.127177058	2.62209E-07
ENSMUSG0000021453	Gadd45g	0.911085437	1.742493377	5.41865E-06	ENSMUSG0000015090	Ptgds	39.63957363	0.994931811	1.53213E-06
ENSMUSG0000074170	Plekhf1	0.935978482	1.63597593	7.33623E-06	ENSMUSG0000001827	Folr1	0.193040918	3.062781372	3.30714E-06
ENSMUSG0000031765	Mt1	63.35279883	1.244744334	1.01557E-05	ENSMUSG0000032246	Calml4	0.204071828	2.818855789	3.30714E-06
ENSMUSG0000018143	Mafk	0.602411682	1.858619977	2.68255E-05	ENSMUSG0000018217	Pmp22	0.209587282	-1.622641311	8.71003E-06
ENSMUSG0000031762	Mt2	5.2872827	1.300705288	3.37333E-05	ENSMUSG0000024516	Sec11c	1.285100968	-1.100965055	1.1544E-05

ENSMUSG0000005057	Sh2b2	0.32858819	2.170849592	3.53707E-05	ENSMUSG00000115625	2900040C04Rik	0.159948189	3.214784465	1.30988E-05
ENSMUSG0000002831	Plin4	0.821470476	1.593970853	4.52786E-05	ENSMUSG0000026051	Ecrg4	0.204071828	2.555821383	2.38502E-05
ENSMUSG0000025509	Pnpla2	1.433839376	1.376983285	6.24583E-05	ENSMUSG0000068696	Gpr88	0.182010008	2.658391117	4.09486E-05
ENSMUSG0000090137	Uba52	6.327811969	1.143543787	0.000128374	ENSMUSG0000092341	Malat1	1.582935527	-1.156387149	7.09617E-05
ENSMUSG0000060143	Gm10076	13.35262919	1.113319075	0.000164886	ENSMUSG0000027400	Pdyn	0.154432734	2.750837366	0.000163777
ENSMUSG0000034579	Pla2g3	0.174251313	2.798247359	0.000341716	ENSMUSG0000002910	Arrdc2	0.512937296	1.425077409	0.000203533
ENSMUSG0000036390	Gadd45a	0.298716537	2.035497739	0.000360506	ENSMUSG0000032766	Gng11	0.667370031	-1.110096947	0.000247004
ENSMUSG0000033585	Ndn	0.37837428	-1.488595394	0.000644606	ENSMUSG0000015341	Golga7	0.54051457	-1.143122927	0.000247004
ENSMUSG0000015090	Ptgds	97.48116315	1.044514612	0.001718155	ENSMUSG0000045573	Penk	0.606700028	1.959351782	0.000346754
ENSMUSG0000025915	Sgk3	0.811513258	1.327662879	0.002194032	ENSMUSG0000013523	Bcas1	1.378863699	-0.962148563	0.000378069
ENSMUSG0000079484	Phyhd1	0.687048034	1.337872494	0.00272086	ENSMUSG0000039323	lgfbp2	0.281288195	1.785941166	0.000456881
ENSMUSG0000019947	Arid5b	0.672112208	1.375935196	0.002934949	ENSMUSG0000025739	Gng13	0.904534587	1.140237512	0.000469143
ENSMUSG0000030880	Polr3e	1.692727041	1.076166002	0.004824638	ENSMUSG0000020163	Uqcr11	3.469221068	0.843336235	0.000611732
ENSMUSG0000027845	Dclre1b	0.258887665	1.771280311	0.006566404	ENSMUSG0000061762	Tac1	0.375050926	1.509527731	0.000699013
ENSMUSG0000071637	Cebpd	0.582497247	1.466571287	0.007114369	ENSMUSG0000026830	Ermn	1.152730053	-0.943644897	0.00077584
ENSMUSG0000045664	Cdc42ep2	0.592454464	-1.133672031	0.010264593	ENSMUSG0000079523	Tmsb10	2.619841029	0.905031084	0.000786511
ENSMUSG0000021750	Fam107a	1.41392494	1.075781334	0.011093968	ENSMUSG0000021750	Fam107a	0.904534587	1.05950624	0.000929967
ENSMUSG0000026822	Lcn2	0.80155604	6.38320986	0.011506063	ENSMUSG0000027570	Col9a3	0.231649102	1.859689506	0.001166228
ENSMUSG0000034317	Trim59	0.333566799	-1.209027305	0.011800922	ENSMUSG0000020681	Ace	0.170979099	2.192416652	0.001511259
ENSMUSG0000032788	Pdxk	1.070400923	1.107085454	0.011800922	ENSMUSG0000031760	Mt3	9.530705891	0.759835275	0.001900172
ENSMUSG0000050370	Ch25h	0.074679134	4.628322357	0.011982577	ENSMUSG0000043164	Tmem212	0.066185458	4.593296089	0.001906343
ENSMUSG0000030711	Sult1a1	0.388331498	1.505838351	0.012459407	ENSMUSG0000048583	Igf2	0.115824551	2.767325488	0.001908205
ENSMUSG0000027301	Oxt	0	-3.956640143	0.012924531	ENSMUSG0000008682	Rpl10	2.277882831	-0.827284601	0.001975214
ENSMUSG0000029780	Nt5c3	1.100272577	1.065186219	0.012924531	ENSMUSG0000072235	Tuba1a	4.153137463	-0.797243521	0.00216524
ENSMUSG0000027875	Hmgcs2	0.119486615	2.464823625	0.016454046	ENSMUSG0000027199	Gatm	1.869739176	-0.834743806	0.002389341
ENSMUSG0000059824	Dbp	0.433138978	-1.145865701	0.016454046	ENSMUSG0000027562	Car2	3.187932873	-0.796230304	0.002389341
ENSMUSG0000031681	Smad1	0.363438453	1.4454583	0.020250815	ENSMUSG0000034936	Arl4d	0.408143655	1.340315347	0.002389341
ENSMUSG0000074466	Gm15417	0.771684387	1.106369654	0.025726804	ENSMUSG0000030605	Mfge8	0.766648217	1.056355103	0.002514509
ENSMUSG0000037235	Mxd4	1.110229795	1.043359857	0.02742538	ENSMUSG0000025597	Klhl4	0.099278186	-1.614103618	0.002529692
ENSMUSG0000036564	Ndrg4	0.721898297	-1.088743679	0.029851459	ENSMUSG0000032060	Cryab	5.454784795	-0.767344858	0.002793927
ENSMUSG0000021259	Cyp46a1	0.129443833	-1.411206007	0.034073755	ENSMUSG0000034858	Fam214a	0.242680011	1.684269749	0.003025315
ENSMUSG0000050105	Grrp1	0.149358268	2.997556167	0.034449183	ENSMUSG0000025889	Snca	0.507421841	1.203196491	0.00308563
ENSMUSG0000032523	Hhatl	0.358459844	1.391882162	0.034449183	ENSMUSG0000004207	Psap	5.565093891	0.747582478	0.00308563
ENSMUSG0000049907	Rasl11b	0.542668375	1.14289553	0.040105802	ENSMUSG0000089661	Mia	0.14891728	2.240779674	0.004015601
ENSMUSG0000058297	Spock2	0.243951838	-1.243521291	0.041089504	ENSMUSG0000092274	Neat1	0.843864584	0.98971791	0.004108782
ENSMUSG0000022548	Apod	46.84373157	0.834301573	0.041089504	ENSMUSG0000090247	Bloc1s1	0.352989107	1.360635332	0.004653044
ENSMUSG00000113902	Ndufb1-ps	4.211903168	0.840812921	0.043211036	ENSMUSG0000032014	Oaf	0.215102737	1.755352847	0.004904564
ENSMUSG0000038332	Sesn1	0.532711157	1.135282346	0.044142416	ENSMUSG0000003863	Ppfia3	0.198556373	1.780381641	0.006252628
ENSMUSG0000058672	Tubb2a	0.99074318	-0.980486885	0.046102722	ENSMUSG0000028495	Rps6	1.946955544	-0.784196322	0.006541904
					ENSMUSG0000041577	Prelp	0.132370915	2.214784465	0.006936334
					ENSMUSG0000030711	Sult1a1	0.209587282	1.718826971	0.006936334
					ENSMUSG0000024176	Sox8	0.12685546	-1.416998892	0.006936334

ENSMUSG0000039530

ENSMUSG0000018411

ENSMUSG0000014313

ENSMUSG0000039901

ENSMUSG0000025221

ENSMUSG0000034317

ENSMUSG0000073616

ENSMUSG0000025006

ENSMUSG0000031425

ENSMUSG0000005089

ENSMUSG0000098234

ENSMUSG0000016024

ENSMUSG0000004626

ENSMUSG0000031833

ENSMUSG0000000184

ENSMUSG0000073702

ENSMUSG0000044734

ENSMUSG0000027525

ENSMUSG0000089810

ENSMUSG0000064360

ENSMUSG0000035772

Tusc3

Mapt

Cox6c

Armh3

Kcnip2

Trim59

Cops9

Sorbs1

Plp1

Slc1a2

Snhg6

Stxbp2

Mast3

Ccnd2

Rpl31

Serpinb1a

Phactr3

mt-Nd3

Mrps2

Gm16536

Lbp

0.474329113

0.463298203

6.215917557

0.066185458

0.170979099

0.154432734

2.294429196

0.005515455

33.99726337

3.320303788

0.088247277

0.071700912

0.071700912

0.832833674

0.220618192

2.956283772

0.325411833

1.202369146

0.093762732

4.313085652

0.005515455

1.165874865

-1.001533442

0.683679569

3.593296089

1.89285637

-1.30444507

0.735673038

-3.151537749

-0.685617178

0.715242633

2.658391117

3.115248792

3.115248792

0.89285637

1.606552185

0.680863878

-1.014034225

0.79727871

2.477818871

0.650856484

-3.014034225

0.007201947

0.007217052

0.008110117

0.009744557

0.009801111

0.010324173

0.010377688

0.011149644

0.011162901

0.014387197

0.016368532

0.016368532

0.016368532

0.016368532

0.017892589

0.018688173

0.019137933

0.019202402

0.019330015

0.019330015

0.021606706

ENSMUSG0000063446	Plppr1	0.077216367	2.799746966	0.022973206
ENSMUSG0000034675	Dbn1	0.198556373	1.57874778	0.024853923
ENSMUSG0000060126	Tpt1	8.493800389	-0.642905954	0.027517938
ENSMUSG0000026959	Grin1	0.364020017	1.151590639	0.027855242
ENSMUSG0000032118	Fez1	1.185822782	-0.74457355	0.028194312
ENSMUSG0000035133	Arhgap5	0.159948189	-1.211480289	0.028335846
ENSMUSG0000083282	Ctsf	0.386081836	1.111866152	0.028335846
ENSMUSG0000006333	Rps9	3.408551065	-0.661484515	0.028625451
ENSMUSG0000038393	Txnip	0.170979099	1.644928857	0.029471822
ENSMUSG0000020431	Adcy1	0.281288195	1.271367994	0.031814539
ENSMUSG0000034312	lqsec1	0.424690019	1.048975572	0.033350768
ENSMUSG0000032554	Trf	6.12767028	-0.639254248	0.033550336
ENSMUSG0000034574	Daam1	0.286803649	1.26322482	0.036927745
ENSMUSG0000010064	Slc38a3	0.253710921	1.318162205	0.037045319
ENSMUSG0000026500	Cox20	0.457782748	1.018387252	0.039154114
ENSMUSG0000041736	Tspo	0.13788637	1.785941166	0.040391676
ENSMUSG0000037843	Vstm2l	0.193040918	1.477818871	0.040561208
ENSMUSG0000037625	Cldn11	6.364834837	0.608126893	0.040561208
ENSMUSG0000003411	Rab3b	0.226133647	1.378283198	0.040561208
ENSMUSG0000030701	Plekhb1	4.097982915	-0.641456972	0.040561208
ENSMUSG0000066129	Kndc1	0.694947305	0.870313802	0.040561208
ENSMUSG0000031980	Agt	0.452267293	-0.984769631	0.040561208
ENSMUSG0000035383	Pmch	0.077216367	-2.634881262	0.040561208
ENSMUSG0000049154	Fam183b	0.071700912	2.700211292	0.040561208
ENSMUSG0000020640	ltsn2	0.204071828	1.440344166	0.040561208
ENSMUSG0000028971	Cort	0.297834559	3.214784465	0.040696967
ENSMUSG0000024740	Ddb1	0.700462759	0.859433369	0.043285987
ENSMUSG0000015806	Qdpr	5.796742992	-0.618971426	0.045274106
ENSMUSG0000026289	Atg16l1	0.143401825	1.740853277	0.04751763

Table S2E . DEGs at ZT4 in female and male cerebral cortex. The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT4 FEMALES - Cerebral cortex					ZT4 MALES - Cerebral cortex				
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR
ENSMUSG0000021342	Prl	0.003002926	-7.02545104	1.68909E-34	ENSMUSG0000090137	Uba52	1.763018452	-1.713776154	3.56536E-09
ENSMUSG0000020713	Gh	0.003002926	-6.111424263	1.55108E-22	ENSMUSG0000002831	Plin4	0.18060189	4.071153169	0.000201854
ENSMUSG0000090137	Uba52	1.414377981	-2.344029123	1.63692E-19	ENSMUSG0000071637	Cebpd	0.39560414	2.184047225	0.000581514
ENSMUSG00000113902	Ndufb1-ps	3.288203586	-1.923062154	4.15684E-14	ENSMUSG0000035383	Pmch	0.210702205	-1.618145992	0.00442071
ENSMUSG0000038489	Polr2l	0.51049736	-2.057796864	6.59881E-13	ENSMUSG0000038059	Smim3	0.348303645	2.095549823	0.00466838
ENSMUSG0000060143	Gm10076	5.047918017	-1.796835481	1.02109E-12	ENSMUSG0000019970	Sgk1	2.287623943	1.243448518	0.010090375
ENSMUSG0000028998	Tomm7	2.084030401	-1.752396128	1.28277E-11	ENSMUSG0000025509	Pnpla2	0.442904635	1.701471942	0.011487033
ENSMUSG0000016427	Ndufa1	2.032980665	-1.72773316	4.25484E-11	ENSMUSG0000096768	Gm47283	1.659817372	-1.076334444	0.012421973
ENSMUSG0000067288	Rps28	4.717596195	-1.614465245	3.41311E-10	ENSMUSG0000045471	Hcrt	0.055900585	-2.07131862	0.013987563
ENSMUSG0000046516	Cox17	2.135080137	-1.6222146	5.49444E-10	ENSMUSG0000023067	Cdkn1a	0.481605041	1.510871066	0.022296484
ENSMUSG0000064360	mt-Nd3	9.861607833	-1.563790999	9.9814E-10	ENSMUSG0000045903	Npas4	0.012900135	-3.055551304	0.022296484
ENSMUSG0000098234	Snhg6	0.129125803	-2.167757635	1.93963E-09	ENSMUSG0000025217	Btrc	0.584806121	1.457518278	0.023362874
ENSMUSG0000071637	Cebpd	0.489476881	2.410103476	2.60781E-09	ENSMUSG0000041378	Cldn5	0.28380297	-1.468931486	0.025869487
ENSMUSG00000103034	Gm8797	0.264257457	3.475817483	2.69729E-09	ENSMUSG0000048572	Tmem252	0.193502025	2.361095448	0.02616895
ENSMUSG0000019970	Sgk1	2.147091839	1.848311255	2.69729E-09	ENSMUSG0000061808	Ttr	21.78402799	1.017376487	0.033118309
ENSMUSG0000048572	Tmem252	0.306298416	3.908977	2.82903E-09	ENSMUSG0000002910	Arrdc2	0.39560414	1.599084724	0.033197769
ENSMUSG0000071528	Atp5md	13.58823856	-1.491613199	3.96338E-09	ENSMUSG0000025591	Tma16	0.374103915	1.580758076	0.039228942
ENSMUSG0000057322	Rpl38	16.24582776	-1.452325602	1.13707E-08					
ENSMUSG0000021290	Atp5mpl	5.576432931	-1.463596803	1.21767E-08					
ENSMUSG0000025739	Gng13	2.495431215	-1.474401913	1.73006E-08					
ENSMUSG0000074170	Plekhf1	0.156152134	4.535359428	2.38487E-08					
ENSMUSG00000104960	Snhg8	0.645629015	-1.610101033	3.2633E-08					
ENSMUSG0000017778	Cox7c	11.73843636	-1.407449028	3.67381E-08					
ENSMUSG0000078974	Sec61g	2.699630159	-1.430668491	4.9453E-08					
ENSMUSG0000050856	Atp5k	7.843641796	-1.397815143	5.50533E-08					
ENSMUSG0000079641	Rpl39	5.954801563	-1.394763861	6.29281E-08					
ENSMUSG0000041841	Rpl37	14.41404312	-1.372965336	8.65117E-08					
ENSMUSG0000097383	1500026H17Rik	0.06906729	-2.294099053	1.8319E-07					

ENSIVIUSG0000042737	Dpm3	0.675658271	-1.493915581	2.50514E-07
ENSMUSG0000062997	Rpl35	6.056901035	-1.321394599	4.29448E-07
ENSMUSG0000039001	Rps21	18.1466797	-1.303698423	4.88767E-07
ENSMUSG0000035674	Ndufa3	4.690569864	-1.321817671	4.94299E-07
ENSMUSG0000074754	Smim26	0.48347103	-1.503762714	7.14016E-07
ENSMUSG0000079523	Tmsb10	10.96067862	-1.288298257	1.6591E-06
ENSMUSG0000016252	Atp5e	8.113905105	-1.243426341	2.64334E-06
ENSMUSG0000047721	Bola2	1.501462825	-1.303379017	3.96385E-06
ENSMUSG0000034892	Rps29	13.54019175	-1.22122426	4.8033E-06
ENSMUSG0000090733	Rps27	5.831681611	-1.225229986	5.0446E-06
ENSMUSG0000021025	Nfkhia	0 630614386	1 828098444	5 0446F-06
ENSMUSG0000014313	Сохбс	18 93344622	-1 208713737	5 0446F-06
ENSMUSG0000065947	mt-Nd4l	2 216159129	-1 260251901	6 27153E-06
ENSMUSG0000042541	Sem1	1 510471602	-1 259675222	7 50238F-06
ENSMUSG0000024222	Ekhn5	0.429418368	1 889901134	7.50238E-06
ENSMUSG0000024222	Oct4	0.387377409	-1 455595432	7.50250E 00
ENSMUSG0000078747	Gm20878	0.072070216	-1.455555452	8 46808E-06
ENSMUSG0000073616	Cons	5 03800021	-1 102000501	9.40808L-00
ENSMUSC0000021760	C0p35	16 5591224	1 192100952	0.16004E-06
	Tmom 2EC	10.55815205	-1.102150052	1 20101 C
	Tmem250	1.000070788	1 257897274	1.301012-05
ENSINUSG0000038372	Ndufe1	1.099070788	-1.25/66/2/4	1.56974E-05
ENSINUSG00000037132	NUUICI	4.010092742	-1.160626005	1.50656E-05
	Siirp	0.545529545	-1.55/191/26	1.50546E-05
	Shirpi Anona12	1.000036313	-1.520144161	1.90303E-05
ENSIVIUS G00000033048	Anaputs	1.054020905	1 280526506	2.04601E-05
ENSIVIOSG00000031431	1502205	2.306246899	1.280536596	2.76422E-05
ENSMUSG0000020163	Uqcr11	7.837635945	-1.131040358	3.29858E-05
ENSMUSG0000091050	9330020H09Rik	0.024023405	-2.695061367	3.80865E-05
	RpI35a	10.55528366	-1.110895155	4.77746E-05
ENSMUSG0000093674	Rpi41	15.80740062	-1.09917758	5.79467E-05
	Shrpg	1.516477453	-1.103/03/02	6.01/E-05
ENSIMUS GOODOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	UCD2	0.318310119	2.025344004	6.15997E-05
ENSINUS GOODOODO23089	Noutas	5.831681611	-1.097024051	8.0566E-05
ENSIMUSG00000038690	Atp5j2	8.64842587	-1.0/55180/8	0.000107812
ENSIVIUSG0000038570	Saxo2	0.132128729	-1.65490424	0.00011235
51/01 41/00000000000000000000000000000000	B. 10.0		4 075567705	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
ENSMUSG0000057863	RpI36	7.264077146	-1.075567785	0.00011235
ENSMUSG0000057863 ENSMUSG0000087687	Rpl36 Pet100	7.264077146 0.951927431	-1.075567785 -1.18573976	0.00011235
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG00000064356	Rpl36 Pet100 mt-Atp8	7.264077146 0.951927431 1.423386758	-1.075567785 -1.18573976 -1.132084567	0.00011235 0.000119776 0.000133914
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000064356 ENSMUSG0000002910	Rpl36 Pet100 mt-Atp8 Arrdc2	7.264077146 0.951927431 1.423386758 0.378368632	-1.075567785 -1.18573976 -1.132084567 1.751729541	0.00011235 0.000119776 0.000133914 0.000223294
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000064356 ENSMUSG0000002910 ENSMUSG00000084786	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848	0.00011235 0.000119776 0.000133914 0.000223294 0.000300913
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG00000064356 ENSMUSG0000002910 ENSMUSG0000002910 ENSMUSG00000059534	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883	0.00011235 0.000119776 0.000133914 0.000223294 0.000300913 0.000329332
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG00000064356 ENSMUSG00000084356 ENSMUSG00000084786 ENSMUSG0000003855 ENSMUSG00000038559	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069	0.00011235 0.000119776 0.000133914 0.000223294 0.000300913 0.000329332 0.000428535
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG00000064356 ENSMUSG00000002910 ENSMUSG00000084786 ENSMUSG0000059534 ENSMUSG00000038059 ENSMUSG00000067847	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Udgc10 Smim3 Romo1	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886	0.00011235 0.000119776 0.000133914 0.000223294 0.000300913 0.000329332 0.000428535 0.00044978
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000064356 ENSMUSG0000002910 ENSMUSG00000084786 ENSMUSG0000059534 ENSMUSG0000038059 ENSMUSG00000038634	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196	0.00011235 0.000119776 0.00013914 0.000223294 0.000300913 0.000329332 0.000428535 0.00044978 0.0004791
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG00000087687 ENSMUSG0000002910 ENSMUSG0000002910 ENSMUSG00000059534 ENSMUSG00000038059 ENSMUSG00000034634 ENSMUSG0000034634 ENSMUSG0000030677	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837	0.00011235 0.000119776 0.000133914 0.000223294 0.000300913 0.000329332 0.000428535 0.00044978 0.0004978
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG0000002910 ENSMUSG00000039534 ENSMUSG0000038059 ENSMUSG00000038659 ENSMUSG00000034634 ENSMUSG0000034634 ENSMUSG000003677 ENSMUSG0000039689	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836	0.00011235 0.000113776 0.000133914 0.000223294 0.000329332 0.000428535 0.000428535 0.00044978 0.0004791 0.0004786 0.0004520631
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG00000064356 ENSMUSG00000084356 ENSMUSG00000039534 ENSMUSG0000038059 ENSMUSG00000038659 ENSMUSG00000034634 ENSMUSG00000034634 ENSMUSG0000003677 ENSMUSG0000003108	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548	0.00011235 0.000112376 0.000133914 0.000232324 0.00030913 0.000329332 0.000428535 0.000428535 0.00044978 0.0004791 0.00049786 0.000553122
ENSMUSG0000057863 ENSMUSG0000084356 ENSMUSG0000064356 ENSMUSG00000084786 ENSMUSG0000059534 ENSMUSG0000038059 ENSMUSG0000067847 ENSMUSG0000034634 ENSMUSG0000034634 ENSMUSG0000019689 ENSMUSG00000108	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Ulgcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Klf15	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.4496509878	0.00011235 0.000113776 0.000133914 0.000223294 0.000300913 0.000329332 0.000428535 0.00044978 0.0004978 0.00049786 0.000520631 0.000553122 0.000604595
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG0000002910 ENSMUSG0000002910 ENSMUSG00000059534 ENSMUSG00000038059 ENSMUSG00000034634 ENSMUSG00000034634 ENSMUSG00000030677 ENSMUSG00000019689 ENSMUSG0000002108 ENSMUSG0000003087 ENSMUSG0000003087	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Kif15 Bloc1s1	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471453327 0.195190167	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.496509878 -1.405554749	0.00011235 0.000113776 0.000133914 0.000223294 0.00030913 0.000329332 0.000428355 0.00044978 0.00049786 0.00049786 0.000520631 0.000553122 0.000604595 0.000705559
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG0000002910 ENSMUSG0000002910 ENSMUSG0000038059 ENSMUSG0000038059 ENSMUSG00000034634 ENSMUSG00000034634 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG0000000198	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Kif15 Bloc1s1 Rpl36a	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.195190167 4.156049099	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944	0.00011235 0.000113776 0.000133914 0.00023294 0.000329322 0.000428355 0.00044978 0.0004791 0.00049786 0.000520631 0.000520631 0.00052559 0.000705559 0.000900315
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000064356 ENSMUSG00000084356 ENSMUSG00000039534 ENSMUSG0000038059 ENSMUSG0000038659 ENSMUSG00000034634 ENSMUSG00000034634 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG0000002108 ENSMUSG000000018 ENSMUSG0000000247 ENSMUSG000000247 ENSMUSG00000079435 ENSMUSG00000014018	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Rom01 Ly6d Kif22 Fmc1 Ddit4 Klf15 Bloc1s1 Rpl36a Gm36495	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.4951459167 4.156049099 0.003002926	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944 -3.777523527	0.00011235 0.000112376 0.000133914 0.000223294 0.000329332 0.000428535 0.000428535 0.00044978 0.0004791 0.0004791 0.00053122 0.000553122 0.000604595 0.000705559 0.000705559
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000064356 ENSMUSG00000084356 ENSMUSG00000039534 ENSMUSG0000038059 ENSMUSG0000007847 ENSMUSG00000007847 ENSMUSG000000014639 ENSMUSG00000019689 ENSMUSG0000002108 ENSMUSG0000002108 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000007435 ENSMUSG00000114018 ENSMUSG00000114018	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Klf15 Bloc1s1 Rpl36a Gm36495 Lcn2	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.471459327 0.195190167 4.156049099 0.003002926 0.477465178	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.05530837 -1.085949836 1.443027548 1.496509878 -1.495554749 -0.988711944 -3.777523527 7.129367069	0.00011235 0.00011376 0.000133914 0.000223294 0.00030913 0.000329332 0.000428535 0.00044978 0.0004978 0.0004978 0.000520631 0.000553122 0.000604595 0.000705559 0.000705559 0.000705559 0.000705559
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG0000002910 ENSMUSG0000002910 ENSMUSG00000039534 ENSMUSG00000038059 ENSMUSG00000034634 ENSMUSG00000034634 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG00000014018 ENSMUSG00000014018 ENSMUSG000002822 ENSMUSG0000028822 ENSMUSG0000016918	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Kif15 Bloc1s1 Rpl36a Gm36495 Lcn2 Mrpl33	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471453327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.028923232	0.00011235 0.000112376 0.000133914 0.000223294 0.00030913 0.000329332 0.000428535 0.00044978 0.00049786 0.00049786 0.000520631 0.000533122 0.000604595 0.000705559 0.000900315 0.001150749 0.001202189
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG0000002910 ENSMUSG0000002910 ENSMUSG0000038059 ENSMUSG0000038059 ENSMUSG0000034634 ENSMUSG00000034634 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG000000217 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG0000002822 ENSMUSG0000002822 ENSMUSG0000114018 ENSMUSG0000114018 ENSMUSG0000114018	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Rom01 Ly6d Kif22 Fmc1 Ddit4 Kif15 Bloc1s1 Rpl36a Gm36495 Lcn2 Mrpl33 Ifj27l2a	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.495059878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.02892322 -2.555131106	0.00011235 0.000113776 0.000133914 0.00032932 0.00032932 0.000428355 0.00044978 0.0004978 0.0004978 0.0004978 0.000520631 0.000553122 0.000604595 0.000705559 0.000900315 0.001150749 0.001202189 0.001202189 0.001238144
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG00000084356 ENSMUSG0000003910 ENSMUSG0000038059 ENSMUSG00000038059 ENSMUSG00000034634 ENSMUSG00000034634 ENSMUSG00000019689 ENSMUSG0000002108 ENSMUSG0000002108 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG00000114018 ENSMUSG00000114018 ENSMUSG00000114018 ENSMUSG000001822 ENSMUSG0000016918 ENSMUSG0000016918 ENSMUSG00000177 ENSMUSG00000078784	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Kif15 Bloc1s1 Rpl36a Gm36495 Lcn2 Mrpl33 Ifi2712a Rbis	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554 1.444407237	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.443027548 1.495509878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.028923232 -2.555131106 -1.016073621	0.00011235 0.000113776 0.000133914 0.00023294 0.000329322 0.000428535 0.00044978 0.0004791 0.00049786 0.00049786 0.000520631 0.000520631 0.00052559 0.000705559 0.000705559 0.000705559 0.00070315 0.001150749 0.001202189 0.001202189 0.001228144 0.001244523
ENSMUSG0000057863 ENSMUSG0000064356 ENSMUSG0000064356 ENSMUSG0000005910 ENSMUSG0000003859 ENSMUSG0000038059 ENSMUSG0000038659 ENSMUSG0000007847 ENSMUSG00000034634 ENSMUSG00000019689 ENSMUSG0000002108 ENSMUSG0000002108 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000784 ENSMUSG000000784 ENSMUSG00000784	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Rom01 Ly6d Kif22 Fmc1 Ddit4 Klf15 Bloc1s11 Rpl36a Gm36495 Lcn2 Mrpl33 Ifi27l2a Rbis Ndufv3	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.495190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554 1.444407237 3.765668764	-1.075567785 -1.182084567 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.05530837 -1.085949836 1.443027548 1.4496509878 -1.495554749 -0.988711944 -3.777523527 7.129367069 -1.028923232 -2.555131106 -1.016073621 -0.97323084	0.00011235 0.000113776 0.000133914 0.0003293294 0.00032932 0.000428535 0.00044978 0.0004791 0.00049786 0.000520631 0.000553122 0.000604595 0.000705559 0.000705559 0.000705559 0.0001202189 0.0011202189 0.001202189 0.001202189 0.001238144 0.001244523 0.001323479
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG0000002910 ENSMUSG0000002910 ENSMUSG00000039534 ENSMUSG00000038059 ENSMUSG00000034634 ENSMUSG0000034634 ENSMUSG0000019689 ENSMUSG00000019689 ENSMUSG00000018682 ENSMUSG00000079435 ENSMUSG0000014018 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG0000007943 ENSMUSG00000079438 ENSMUSG00000079017 ENSMUSG00000079017 ENSMUSG0000007917	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Rom01 Ly6d Kif22 Fmc1 Ddit4 Klf15 Bloc1s1 Rpl36a Gm36495 Lcn2 Mrpl33 Ifi2712a Rbis Ndufv3 Ndufv3	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554 1.444407237 3.765668764 4.804681039	-1.075567785 -1.182084567 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.05330837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.028923222 -2.555131106 -1.016073621 -0.97323084 -0.954539916	0.00011235 0.000113776 0.000133914 0.0003293294 0.000309913 0.000428535 0.00044978 0.0004978 0.00049786 0.000520631 0.000553122 0.000604595 0.000705559 0.000705559 0.000705559 0.0001202189 0.001202189 0.001202189 0.001238144 0.001238144 0.00123479 0.001656034
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG0000008768 ENSMUSG0000002910 ENSMUSG0000038059 ENSMUSG0000038059 ENSMUSG0000034634 ENSMUSG00000034634 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG000000247 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000014018 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000078784 ENSMUSG00000078784 ENSMUSG00000078784 ENSMUSG00000078784 ENSMUSG00000078784	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Rom01 Ly6d Kif22 Fmc1 Ddit4 Kif15 Bloc1s1 Rpl36a Gm36495 Lcn2 Mrpl33 Ifi2712a Rbis Ndufb2 Ttr	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471453327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554 1.243211219 0.018017554 1.444407237 3.765668764 4.804681039 13.16782897	-1.075567785 -1.182084567 1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.02892322 -5555131106 -1.016073621 -0.97323084 -0.954539916 -1.22829725	0.00011235 0.000113776 0.000133914 0.00032932 0.00032932 0.000428535 0.00044978 0.0004978 0.0004978 0.0004978 0.000520631 0.000520631 0.0005053122 0.000604595 0.000705559 0.000900315 0.001150749 0.001202189 0.00122189 0.00122489 0.001238144 0.00123479 0.001656034 0.001656034
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG00000087687 ENSMUSG0000002910 ENSMUSG0000038059 ENSMUSG0000038059 ENSMUSG0000034634 ENSMUSG00000034634 ENSMUSG0000019689 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG0000002108 ENSMUSG0000002108 ENSMUSG0000002108 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG00000078784 ENSMUSG00000078784 ENSMUSG00000024038 ENSMUSG0000002416 ENSMUSG000002416 ENSMUSG000002416 ENSMUSG000002416	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Kif15 Bloc1s1 Rpl36a Gm36495 Lcn2 Mrpl33 Ifi27l2a Rbis Ndufv3 Ndufv3 Ndufb2 Ttr Rpl34	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554 1.444407237 3.765668764 4.804681039 13.16782897 9.57332697	-1.075567785 -1.18573976 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.02892323 -2.555131106 -1.016073621 -0.97323084 -0.954539916 -1.22829725 -0.930883174	0.00011235 0.000112376 0.000133914 0.00023294 0.00032932 0.000428355 0.00044978 0.0004791 0.00049786 0.00049786 0.000520631 0.000520631 0.000520631 0.000705559 0.000900315 0.00150749 0.001202189 0.001202189 0.001202189 0.00122489 0.001224823 0.001238144 0.001244523 0.00123479 0.0012656034 0.001864424 0.0020991
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000084356 ENSMUSG0000084356 ENSMUSG00000039534 ENSMUSG0000038059 ENSMUSG00000038059 ENSMUSG00000034634 ENSMUSG0000002108 ENSMUSG0000002108 ENSMUSG0000002108 ENSMUSG000000247 ENSMUSG000000247 ENSMUSG00000114018 ENSMUSG00000114018 ENSMUSG0000014018 ENSMUSG0000014018 ENSMUSG000002477 ENSMUSG000002477 ENSMUSG000002477 ENSMUSG000002477 ENSMUSG00000024784 ENSMUSG0000024038 ENSMUSG0000024038 ENSMUSG0000024038 ENSMUSG0000024038 ENSMUSG0000024038 ENSMUSG0000024038 ENSMUSG0000024038 ENSMUSG0000024038 ENSMUSG0000024038	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Klf15 Bloc1s11 Rpl36a Gm36495 Lcn2 Mrpl33 Ifi27l2a Rbis Ndufv3 Ndufv4 Ttr Rpl34 Fcor	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.471459327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554 1.243211219 0.018017554 1.444407237 3.765668764 4.804681039 13.16782897 9.57332697 0.192187242	-1.075567785 -1.182084567 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.4530887 -1.45530837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.028923232 -2.555131106 -1.016073621 -0.97323084 -0.954539916 -1.22829725 -0.930883174 -1.29947623	0.00011235 0.000112376 0.000133914 0.000329329 0.00032932 0.000428535 0.0004978 0.0004978 0.0004978 0.000520631 0.000553122 0.000604595 0.00070555 0.00070555 0.000700559 0.00090315 0.0011202189 0.001202189 0.001202189 0.001202189 0.001202189 0.001202189 0.001238144 0.00124523 0.00156034 0.00156034 0.002150436
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG0000002910 ENSMUSG0000002910 ENSMUSG00000039534 ENSMUSG00000038059 ENSMUSG00000034634 ENSMUSG00000034634 ENSMUSG00000018689 ENSMUSG00000018689 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079438 ENSMUSG00000079438 ENSMUSG00000079438 ENSMUSG00000079017 ENSMUSG00000079017 ENSMUSG00000079017 ENSMUSG0000002416 ENSMUSG0000002416 ENSMUSG0000002416 ENSMUSG0000002416 ENSMUSG0000002416 ENSMUSG0000002416 ENSMUSG00000024065 ENSMUSG0000008841	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Klf15 Bloc1s1 Rpl36a Gm36495 Lcn2 Mrpl33 Ifi2712a Rbis Ndufv3 Ndufv3 Ndufv2 Ttr Rpl34 Fcor 2410006H16Rik	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471459327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554 1.243211219 0.018017554 1.444407237 3.765668764 4.804681039 13.16782897 9.57332697 0.192187242 0.97294791	-1.075567785 -1.182084567 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.028923232 -2.555131106 -1.028923232 -2.555131106 -0.97323084 -0.954539916 -1.22829725 -0.930883174 -1.29947623 -1.020692627	0.00011235 0.000113776 0.000133914 0.000329329 0.000309913 0.000329332 0.000428535 0.00044978 0.0004978 0.0004978 0.000520631 0.000553122 0.000604595 0.000705559 0.000705559 0.000705559 0.000705559 0.000705559 0.000705559 0.000705559 0.001202189 0.001202189 0.001202189 0.001202189 0.001238144 0.00124523 0.001323479 0.001656034 0.001864424 0.00226991 0.002150436 0.0022568015
ENSMUSG0000057863 ENSMUSG0000087687 ENSMUSG0000087687 ENSMUSG00000087687 ENSMUSG0000002910 ENSMUSG00000038059 ENSMUSG00000038059 ENSMUSG00000034634 ENSMUSG00000034634 ENSMUSG00000019689 ENSMUSG00000019689 ENSMUSG000000247 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079435 ENSMUSG00000079438 ENSMUSG0000002822 ENSMUSG0000007917 ENSMUSG00000079017 ENSMUSG00000079017 ENSMUSG0000007917 ENSMUSG0000007917 ENSMUSG0000007917 ENSMUSG0000007917 ENSMUSG0000002416 ENSMUSG0000002416 ENSMUSG00000062006 ENSMUSG00000062006 ENSMUSG0000008841 ENSMUSG000000855 ENSMUSG000000855	Rpl36 Pet100 mt-Atp8 Arrdc2 Ubl5 Uqcr10 Smim3 Romo1 Ly6d Kif22 Fmc1 Ddit4 Kif15 Bloc1s1 Rpl36a Gm36495 Lcn2 Mrpl33 Ifi2712a Rbis Ndufv3 Ndufv2 Ttr Rpl34 Fcor 2410006H16Rik Rplp2	7.264077146 0.951927431 1.423386758 0.378368632 4.924798065 7.543349231 0.399389111 1.909860713 0.201196019 0.129125803 1.093064936 0.519506137 0.471453327 0.195190167 4.156049099 0.003002926 0.477465178 1.243211219 0.018017554 1.243211219 0.018017554 1.444407237 3.765668764 4.804681039 13.16782897 9.57332697 0.192187242 0.97294791 5.798649429	-1.075567785 -1.182084567 -1.132084567 1.751729541 -1.037232848 -1.026004883 1.551600069 -1.0510886 2.435470196 -1.55330837 -1.085949836 1.443027548 1.496509878 -1.405554749 -0.988711944 -3.777523527 7.129367069 -1.02892322 -2.555131106 -1.016073621 -0.97323084 -0.954539916 -1.22829725 -0.930883174 -1.29947623 -1.020692627 -0.928630258	0.00011235 0.000112376 0.000133914 0.00032932 0.00030913 0.00032932 0.000428535 0.0004978 0.0004978 0.0004978 0.000520631 0.000520631 0.000520631 0.000705559 0.000000315 0.001020189 0.001202189 0.001202189 0.0012244523 0.001238144 0.001244523 0.00123479 0.001656034 0.001864424 0.002150436 0.0022501366

ENSMUSG0000038717	Atp5I	8.624402465	-0.913367459	0.002911552
ENSMUSG0000050074	Spink8	0.32431597	1.621426988	0.002911552
ENSMUSG0000023067	Cdkn1a	0.450438847	1.401987523	0.003162964
ENSMUSG0000054312	Mrps21	2.582516059	-0.92952662	0.003200791
ENSMUSG0000053332	Gas5	4.651531831	-0.914180647	0.003346799
ENSMUSG0000070369	Itgad	0.093090695	2.807438974	0.003346799
ENSMUSG0000014294	Ndufa2	5.110979455	-0.905781533	0.003766082
ENSMUSG0000026500	Cox20	0.810789925	-1.005229748	0.003838844
ENSMUSG0000028298	Cga	0	-4.280023867	0.005188058
ENSMUSG0000039634	Zfp189	0.108105323	2.431929839	0.005529261
ENSMUSG0000085241	Snhg3	0.309301342	-1.135977498	0.005533673
ENSMUSG0000037095	Lrg1	0.096093621	2.529904998	0.005985448
ENSMUSG0000052296	Ppp6r1	0.213207721	-1.212460584	0.006725315
ENSMUSG0000045996	Polr2k	1.453416014	-0.92177178	0.007250412
ENSMUSG0000025362	Rps26	6.696524198	-0.869177216	0.007289026
ENSMUSG0000095366	Gm21860	0	-4.192561026	0.00753414
ENSMUSG0000084883	Ccdc85c	0.04804681	-1.805537903	0.008975534
ENSMUSG0000085255	Taco1os	0.012011703	-2.571072649	0.00950672
ENSMUSG00000110156	Gm42067	0.150146282	-1.327490606	0.009813861
ENSMUSG0000029062	Cdk11b	0.465453476	-1.015683264	0.010521618
ENSMUSG0000024066	Xdh	0.144140431	2.100220723	0.010521618
ENSMUSG0000098120	Gm5914	0.111108249	-1.387577009	0.010603885
ENSMUSG0000068240	Gm11808	0.351342301	-1.078102302	0.01191302
ENSMUSG0000046707	Csnk2a2	0.297289639	-1.087863647	0.012097919
ENSMUSG0000059991	Nptx2	0.267260383	-1.184523707	0.012364583
ENSMUSG0000002831	Plin4	0.111108249	2.248011565	0.01243912
ENSMUSG0000010406	Mrpl52	1.432395535	-0.878534006	0.012692312
ENSMUSG0000025509	Pnpla2	0.468456401	1.195169127	0.015894641
ENSMUSG0000018585	Atox1	2.465401958	-0.842721793	0.016680786
ENSMUSG0000045471	Hcrt	0.033032182	-1.999915948	0.018335053
ENSMUSG0000070858	Gm1673	2.828755962	-0.828132015	0.018522808
ENSMUSG0000039202	Abhd2	0.084081918	-1.443104488	0.021284535
ENSMUSG00000044894	Uacra	10.36009349	-0.797314272	0.022282675
ENSMUSG0000073702	Rpl31	5.888737199	-0.798933222	0.024023701
ENSMUSG0000024778	Fas	0.087084844	2.392401475	0.025274243
ENSMUSG0000037926	Ssh2	0.168163836	1.640328988	0.025350438
ENSMUSG0000022820	Ndufb4	5.753605544	-0.792248853	0.025350438
ENSMUSG0000024018	Ccdc167	0.237231126	-1.109037671	0.025504214
ENSMUSG0000037820	Tgm2	0.135131654	2.009072835	0.030804723
ENSMUSG0000028936	Rpl22	3.549458118	-0.79168159	0.030804723
ENSMUSG0000078572	Ndufaf8	0.879857215	-0.857074826	0.031348968
ENSMUSG0000030905	Crvm	1.183152706	0.957414386	0.031448866
ENSMUSG0000021903	Galnt15	0.066064364	2.746038429	0.036169197
ENSMUSG0000090101	Snhg9	0.072070216	-1.431347886	0.03714152
ENSMUSG0000019232	Etnopl	0.234228201	1.410780004	0.03739686
ENSMUSG0000028656	Cap1	0.918895249	0.940250802	0.039347962
ENSMUSG0000034390	Cmip	0.129125803	1.807438974	0.039347962
ENSMUSG0000023034	Nr4a1	0.222216498	-1.072266792	0.039525825
ENSMUSG0000056071	S100a9	0.042040959	3.714329569	0.03978326
ENSMUSG0000030711	Sult1a1	0.249242829	1.392401475	0.03991156
ENSMUSG0000038418	Før1	0 852830884	-0.857921879	0.040910434
ENSMUSG0000032330	-o Cox7a2	11 98767919	-0 753110628	0.042375928
2.13.1.3360000032350	55%/UL	11.50,07515	000110020	3.342373320

Table S2F. DEGs at ZT14 in female and male cerebral cortex. The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT14 FEMALES - Cerebral cortex					ZT14 MALES - Cerebral cortex				
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR	FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR
ENSMUSG0000048572	Tmem252	0.196267198	5.057580732	8.26296E-11	ENSMUSG0000098178	Gm42418	5.176275493	-1.565230904	1.93103E-08
ENSMUSG0000026822	Lcn2	0.282384438	7.162933732	1.7136E-09	ENSMUSG0000071753	Cdr1os	0.317028334	-1.583771128	8.43705E-06
ENSMUSG0000019970	Sgk1	2.050791946	1.630890515	2.57911E-08					
ENSMUSG0000071637	Cebpd	0.402548029	1.864043174	2.61222E-06					
ENSMUSG0000020108	Ddit4	0.646880663	1.545681694	7.02411E-06					

ENSMUSG0000030711	Sult1a1	0.450613465	1.51143748	4.67368E-05
ENSMUSG0000031765	Mt1	54.15172211	1.042833921	0.00028467
ENSMUSG0000061808	Ttr	5.781871435	1.764207802	0.00028467
ENSMUSG00000048001	Hes5	0.278378985	-1.321054743	0.000418649
ENSMUSG0000090137	Uba52	9.536983641	1.017129648	0.000528063
ENSMUSG0000033585	Ndn	1.748380243	-0.981852826	0.003350996
ENSMUSG0000095366	Gm21860	0.042057257	4.472618232	0.003350996
ENSMUSG0000031762	Mt2	4.335902894	0.945527558	0.004519423
ENSMUSG0000021025	Nfkbia	0.604823406	1.158328513	0.007085098
ENSMUSG0000060143	Gm10076	20.80232026	0.871497488	0.009964843
ENSMUSG0000090247	Bloc1s1	0.867180579	0.999950786	0.011402831
ENSMUSG0000052397	Ezr	0.767044253	0.998236271	0.01976613
ENSMUSG00000103034	Gm8797	0.118160864	-1.209205808	0.025812148
ENSMUSG0000023067	Cdkn1a	0.25835172	1.280666924	0.025812148
ENSMUSG00000115783	Bc1	0.446608012	-0.917550725	0.046984042

Table S2G. DEGs at ZT4 in female and male basolateral amygdala (BLA). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT4 FEMALES - BLA					ZT4 MALES - BLA				
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR
ENSMUSG0000090137	Uba52	1.852354195	-2.333993921	1.48E-10	ENSMUSG0000061808	Ttr	0.930888315	-2.390990387	0.000108547
ENSMUSG00000113902	Ndufb1-ps	4.106051799	-2.085446327	2.95E-10	ENSMUSG0000090137	Uba52	3.016078142	-1.537809812	0.002900805
ENSMUSG0000025739	Gng13	3.087256992	-2.084253057	2.95E-10	ENSMUSG0000035383	Pmch	0.539915223	-2.147963119	0.002900805
ENSMUSG0000060143	Gm10076	7.13156365	-1.955787675	5.52E-10					
ENSMUSG0000061808	Ttr	5.665116579	3.430250654	3.84E-09					
ENSMUSG0000064360	mt-Nd3	13.3369502	-1.779163451	5.18E-09					
ENSMUSG0000071528	Atp5md	16.6248789	-1.750598369	5.99E-09					
ENSMUSG0000028998	Tomm7	2.716786153	-1.893096563	8.33E-09					
ENSMUSG0000021290	Atp5mpl	6.313440548	-1.722904093	1.89E-08					
ENSMUSG0000038489	Polr2l	0.555706258	-2.445361465	0.0000002					
ENSMUSG0000067288	Rps28	7.594652199	-1.677486933	2.66E-08					
ENSMUSG0000050856	Atp5k	9.200025835	-1.658994857	4.65E-08					
ENSMUSG0000035674	Ndufa3	5.32551831	-1.664488696	4.65E-08					
ENSMUSG0000046516	Cox17	2.284570174	-1.844758975	6.22E-08					
ENSMUSG0000016427	Ndufa1	2.300006459	-1.820189385	6.22E-08					
ENSMUSG0000073616	Cops9	5.495317445	-1.626560987	7.89E-08					
ENSMUSG0000079523	Tmsb10	15.79131951	-1.636966829	8.57E-08					
ENSMUSG0000021342	Prl	0.015436285	-5.972005006	0.00000151					
ENSMUSG0000017778	Cox7c	14.52554415	-1.528073743	0.00000158					
ENSMUSG0000057322	Rpl38	19.58864561	-1.50798231	0.00000159					
ENSMUSG0000034892	Rps29	18.55441452	-1.541958721	0.00000164					
ENSMUSG0000020018	Snrpf	0.432215979	-2.223648502	0.0000023					
ENSMUSG0000062997	Rpl35	7.841632759	-1.489667814	0.000000435					
ENSMUSG0000031760	Mt3	17.96783569	-1.465741215	0.000000435					
ENSMUSG0000014313	Cox6c	18.58528709	-1.435191542	0.000000496					
ENSMUSG0000079641	Rpl39	7.795323904	-1.491511772	0.00000562					
ENSMUSG0000047721	Bola2	2.161079894	-1.664899557	0.000000611					
ENSMUSG0000078974	Sec61g	3.164438416	-1.604899307	0.00000611					
ENSMUSG0000039001	Rps21	20.66918556	-1.423523049	0.0000087					
ENSMUSG0000016252	Atp5e	8.953045275	-1.430426388	0.00000904					
ENSMUSG0000090733	Rps27	8.165794743	-1.453401098	0.00000135					
ENSMUSG0000041841	Rpl37	18.80139508	-1.363366012	0.00000179					
ENSMUSG0000093674	Rpl41	20.96247497	-1.342732193	0.00000233					
ENSMUSG0000059534	Uqcr10	7.826196474	-1.387640266	0.00000274					
ENSMUSG0000020163	Uqcr11	9.24633469	-1.377901852	0.00000362					
ENSMUSG0000035383	Pmch	0.077181425	-3.282072946	0.0000099					
ENSMUSG0000104960	Snhg8	0.926177097	-1.643005882	0.0000151					
ENSMUSG0000037152	Ndufc1	6.544984822	-1.299579664	0.0000261					
ENSMUSG0000057278	Snrpg	1.96040819	-1.415239397	0.0000273					
ENSMUSG0000023067	Cdkn1a	0.617451398	3.218437013	0.0000457					
ENSMUSG0000057863	Rpl36	8.860427566	-1.205316523	0.0000626					
ENSMUSG0000098234	Snhg6	0.138926565	-2.724077493	0.000065					

ENSMUSG0000038690	Atp5j2	10.86714461	-1.20217726	0.0000683
ENSMUSG0000087687	Pet100	1.250339082	-1.446898905	0.0000733
ENSMUSG0000084786	Ubl5	6.081896273	-1.213845867	0.0000753
ENSMUSG0000078784	Rhis	1 821481625	-1 378723549	0.0000985
ENSMUSG0000014294	Ndufa2	5 726861719	-1 194280785	0.000113408
ENSMUSC0000074754	Smim26	0.970969242	1 575754746	0.000113400
ENSINUSG0000074734	Similizo	0.879808243	1.3/3/34/40	0.0001270
ENSINUSG00000021040	Slirp	0.679196538	-1.745293979	0.00013659
ENSMUSG0000061718	Ppp1r1b	1.559064781	1.948347849	0.000148098
ENSMUSG0000046330	RpI37a	12.56513596	-1.123989466	0.000229821
ENSMUSG0000035048	Anapc13	0.895304528	-1.485290633	0.000243845
ENSMUSG0000060636	Rpl35a	14.18594588	-1.104196576	0.000243845
ENSMUSG0000025508	Rplp2	7.841632759	-1.1191367	0.000270929
ENSMUSG0000032330	Cox7a2	13.84634761	-1.096727682	0.000285646
ENSMUSG0000090247	Bloc1s1	0.108053995	-2.598546611	0.000314002
ENSMUSG0000036372	Tmem258	1.559064781	-1.318438691	0.000390128
ENSMUSG0000027133	Nop10	2.516114448	-1.281408874	0.000402898
ENSMUSG0000031431	Tsc22d3	2.269133889	1.578485277	0.000402898
ENSMUSG0000024038	Ndufv3	4.399341213	-1.144150582	0.000462901
ENSMUSG0000023089	Ndufa5	6.051023703	-1.075318341	0.0004946
ENSMUSG0000042541	Sem1	2.191952464	-1.273864404	0.000495083
ENSMUSG0000020713	Gh	0.03087257	-5.387042505	0.000563178
ENSMUSG0000067847	Romo1	2 855712717	-1 146850641	0.000569283
ENSMUSG0000038717	Atn5l	10 85170833	-1 039432934	0.000707645
ENSMUSG0000035215	Ism7	2 269133889	-1 196448167	0.000927156
ENSMUSC0000033213	Tmem256	2.205155005	-1.150580178	0.000327130
ENSMUSC0000067786	Net	12 42620020	1 296702246	0.001200000
		12.42020535	1.280702340	0.001391018
ENSINUSG0000019970	SgKI	1.92953562	1.75070209	0.001391618
ENSMUSG0000103034	Gm8/9/	0.355034554	4.445847509	0.001556516
ENSMUSG0000044442	N6amt1	0.586578828	2.561324726	0.001802378
ENSMUSG0000090223	Pcp4	15.31279468	-1.091857705	0.002062422
ENSMUSG00000106918	Mrpl33	1.68255506	-1.203245329	0.002090551
ENSMUSG0000025362	Rps26	10.69734548	-0.997239346	0.002090551
ENSMUSG0000002416	Ndufb2	5.695989149	-1.03189982	0.002138803
ENSMUSG0000054312	Mrps21	2.454369308	-1.165915051	0.002158799
ENSMUSG0000079435	Rpl36a	6.267131693	-0.983957604	0.002846168
ENSMUSG0000041431	Ccnb1	0	-4.387042505	0.003152361
ENSMUSG00000048572	Tmem252	0.370470839	3.504741198	0.003152361
ENSMUSG0000022820	Ndufb4	7.40941678	-0.974055746	0.003855154
ENSMUSG0000062006	Rpl34	12.61144481	-0.922589578	0.004008837
ENSMUSG00000044894	Uqcrq	11.14499774	-0.934734804	0.004008837
ENSMUSG0000024208	Uqcc2	5.57249887	-0.979119108	0.004520007
ENSMUSG0000031231	Cox7b	10.69734548	-0.95180555	0.004850455
ENSMUSG0000021025	Nfkbia	0.771814248	2.073878731	0.005099429
ENSMUSG0000073412	Lst1	0.216107989	-1.932664115	0.005099429
ENSMUSG0000064356	mt-Atp8	2.253697604	-1.08410089	0.005266929
ENSMUSG0000035885	Cox8a	23.67926113	-0.880959632	0.005668951
ENSMUSG0000053332	Gas5	7.054382226	-0.934722254	0.006094416
ENSMUSG00000110834	Gm39469	0.185235419	-1.898106892	0.006099485
ENSMUSG0000055839	Flob	13.18258735	-0.879114646	0.006233565
ENSMUSG0000056023	Gm9989	0.108053995	-2.226577833	0.006468478
ENSMUSG0000042737	Dnm3	0.987922237	-1 182836369	0.008478432
ENSMUSG00000042737	Llacrb	5 804043144	-0.018316181	0.008478432
ENSMUSC0000021320	Smim4	0.255024554	1 521/22/15	0.008002715
ENSMUSC0000038331	Oct4	0.662760252	1 204202217	0.010003038
	USL4	1.65168240	1 406210145	0.010992175
	iviyii/	1.05108249	1.406319145	0.012061155
	OULO Manif 2	0.090004020	1.020002210	0.01253//95
	IVIFPI52	2.008402184	-1.0395/9318	0.0125/2698
	Kp51/	5.942969709	-0.8/5332882	0.014800974
ENSIVIUSGUUUUUU/3/U2	крізі	/./95323904	-0.850561135	0.016859279
ENSMUSG0000026344	Lypd1	13.21345992	1.144604784	0.017598406
ENSMUSG0000039221	RpI2211	8.536265582	-0.834337001	0.018939642
ENSMUSG0000059278	Naa38	3.272492411	-0.92010521	0.020462198
ENSMUSG0000028936	Rpl22	3.905380094	-0.898623155	0.021053948

ENSMUSG0000097451	Rian	3.82819867	1.065999438	0.024223762
ENSMUSG0000036751	Cox6b1	11.09868888	-0.802080005	0.028070135
ENSMUSG0000068523	Gng5	1.265775367	-1.040199966	0.033966122
ENSMUSG0000052837	Junb	0.740941678	1.66823993	0.040027598
ENSMUSG0000021377	Dek	2.083898469	1.166988136	0.040092184
ENSMUSG0000054428	Atpif1	13.66111219	-0.768964959	0.042542539
ENSMUSG0000026411	Tmem9	2.670477298	1.037041963	0.043891971
ENSMUSG0000087269	D330023K18Rik	0.12349028	-1.969189991	0.046653223
ENSMUSG0000008683	Rps15a	10.74365433	-0.768241609	0.046653223
ENSMUSG0000050608	Micos10	5.171155461	-0.823613166	0.047679553

Table S2H. DEGs at ZT14 in female and male basolateral amygdala (BLA). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT14 FEMALES - BLA					ZT14 MALES - BLA				
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR	FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR
ENSMUSG0000061808	Ttr	1.328497359	2.112642623	0.033319254	ENSMUSG0000092341	Malat1	6.912736451	1.685515117	0.002017662
					ENSMUSG0000098178	Gm42418	5.069340064	-1.373612314	0.0055336
					ENSMUSG0000061808	Ttr	2.801962508	1.741951062	0.007760099
					ENSMUSG0000028656	Cap1	0.294943422	-1.926427446	0.010236631

Table S2I. DEGs at ZT4 in female and male hippocampus. The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT4 FEMALES - Hippocampus					ZT4 MALES - Hippocampus				
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR
ENSMUSG0000021342	Prl	0.006490427	-6.452346191	2.27939E-33	ENSMUSG0000090137	Uba52	1.600379074	-1.610239306	3.8161E-08
ENSMUSG0000020713	Gh	0.003245213	-6.058682343	2.36301E-22	ENSMUSG0000023067	Cdkn1a	0.37544438	2.711688789	4.11612E-06
ENSMUSG0000090137	Uba52	1.515514643	-2.333275709	5.99736E-19	ENSMUSG0000048572	Tmem252	0.326143603	4.247741689	4.11612E-06
ENSMUSG0000026822	Lcn2	1.52200507	8.905297445	1.03031E-17	ENSMUSG0000031431	Tsc22d3	1.661056954	1.567924982	6.92184E-05
ENSMUSG00000113902	Ndufb1-ps	3.186799528	-1.873307806	3.46221E-13	ENSMUSG0000027301	Oxt	0	-5.417594228	0.000128445
ENSMUSG0000038489	Polr2l	0.483536792	-2.043897006	1.1523E-12	ENSMUSG0000028645	Slc2a1	1.460061478	1.6071783	0.000145559
ENSMUSG0000060143	Gm10076	5.354602058	-1.674144136	1.07882E-10	ENSMUSG0000026822	Lcn2	0.682626145	5.304644081	0.00101572
ENSMUSG0000016427	Ndufa1	2.015277502	-1.723871733	1.10319E-10	ENSMUSG0000002910	Arrdc2	0.269258091	2.237757601	0.003373802
ENSMUSG00000104960	Snhg8	0.749644288	-1.716864852	2.02351E-09	ENSMUSG0000024066	Xdh	0.170656536	3.32836015	0.005156005
ENSMUSG0000067288	Rps28	6.055568145	-1.575372163	2.02351E-09	ENSMUSG0000021025	Nfkbia	0.652287206	1.398124167	0.023762108
ENSMUSG0000098234	Snhg6	0.155770242	-2.124693982	2.32329E-09					
ENSMUSG0000079523	Tmsb10	6.003644731	-1.562662541	5.1304E-09					
ENSMUSG0000028998	Tomm7	2.096407836	-1.553950455	6.8718E-09					
ENSMUSG0000048572	Tmem252	0.415387311	3.339568036	9.58994E-09					
ENSMUSG0000074754	Smim26	0.580893193	-1.656785943	1.07172E-08					
ENSMUSG0000042737	Dpm3	0.743153861	-1.593335001	3.27726E-08					
ENSMUSG0000035674	Ndufa3	4.910007826	-1.437737148	4.8815E-08					
ENSMUSG0000079641	Rpl39	6.139943693	-1.43348896	6.29577E-08					
ENSMUSG0000017778	Cox7c	11.50103618	-1.403048004	7.37716E-08					
ENSMUSG00000103034	Gm8797	0.201203229	3.1987055	9.84175E-08					
ENSMUSG0000078974	Sec61g	3.079707487	-1.435337437	9.84175E-08					
ENSMUSG0000038803	Ost4	0.444594231	-1.624246277	1.08775E-07					
ENSMUSG0000057322	Rpl38	16.29097111	-1.373884733	1.51878E-07					
ENSMUSG0000050856	Atp5k	7.282258799	-1.373752087	1.73174E-07					
ENSMUSG0000021290	Atp5mpl	5.718065955	-1.379078889	1.76957E-07					
ENSMUSG0000046516	Cox17	2.096407836	-1.406736806	1.76957E-07					
ENSMUSG0000071528	Atp5md	13.95117227	-1.363473016	1.76957E-07					
ENSMUSG0000097383	1500026H17Rik	0.051923414	-2.438345512	2.34158E-07					
ENSMUSG0000041841	Rpl37	15.22329591	-1.339024311	3.07549E-07					
ENSMUSG0000020018	Snrpf	0.639307034	-1.481414234	5.15731E-07					
ENSMUSG0000016252	Atp5e	7.820964218	-1.287271519	1.36916E-06					

ENSMUSG0000042541	Sem1	1.509024216	-1.339454284	1.36916E-06
ENSMUSG0000057278	Snrpg	1.762150859	-1.327736203	1.8155E-06
ENSMUSG0000025739	Gng13	1.479817296	-1.339740291	2.61979E-06
ENSMUSG0000031760	Mt3	21.61636625	-1.246312453	2.63115E-06
ENSMUSG0000023067	Cdkn1a	0.334256977	2.269788598	3.35547E-06
ENSMUSG0000019970	Sgk1	1.853016833	1.537600144	4.17588E-06
ENSMUSG0000031431	Tsc22d3	1.872488114	1.422346467	5.41124E-06
ENSMUSG0000090247	Bloc1s1	0.246636216	-1.611323557	5.97719E-06
ENSMUSG0000095845	Gm5741	0.032452134	-3 369768878	6 00137E-06
ENSMUSG0000064360	mt-Nd3	12 44863848	-1 24240872	6 64286E-06
ENSMUSG0000036372	Tmem258	1 294840134	-1 265472638	9.02664E-06
ENSMUSG0000039001	Pnc21	10 47777064	-1.203472038	1.02608E-05
	Fcor	0 199222275	1 66600E29	1.020382-05
	Ato El 2	0.100222373	1 100000328	1.083732-05
ENSIVIOS00000038090	Alp5j2 Tmom2E6	0.020037875	1,220227764	1.172522=05
	Del25	2.016522715	-1.229227704	1.20057E-05
ENSIVIUSG00000082997	ты	0.0000000000000000000000000000000000000	-1.1/000/002	1.40526E-05
ENSIVIUSG00000061808	itr Gaura D	19.59459832	3.884970883	1.8/036E-05
ENSIVIUSG00000038570	Saxoz	0.136298961	-1.684506099	2.7619E-05
ENSMUSG0000057863	RpI36	7.655458336	-1.147920913	2.80128E-05
ENSMUSG0000014313	Сох6с	17.97199163	-1.12581186	3.78953E-05
ENSMUSG0000023153	Tmem52	0.175241522	2.64021521	4.06128E-05
ENSMUSG0000090733	Rps27	7.412067333	-1.14163549	4.25324E-05
ENSMUSG0000067847	Romo1	1.953618448	-1.166702914	4.58069E-05
ENSMUSG0000050315	Synpo2	0.094111188	-1.84568862	4.95057E-05
ENSMUSG0000033685	Ucp2	0.444594231	1.77975295	5.21308E-05
ENSMUSG0000029516	Cit	0.090865974	-1.907654373	6.91185E-05
ENSMUSG0000034892	Rps29	16.79397918	-1.108570984	8.73119E-05
ENSMUSG0000037152	Ndufc1	5.25075523	-1.100680728	9.1634E-05
ENSMUSG0000078784	Rbis	1.379215682	-1.149399218	9.94601E-05
ENSMUSG0000087687	Pet100	1.093636905	-1.157179853	0.000101229
ENSMUSG0000019689	Fmc1	1.142315106	-1.165906611	0.000104513
ENSMUSG0000023089	Ndufa5	6.376844269	-1.05496528	0.000225229
ENSMUSG0000020163	Uqcr11	8.405102624	-1.044231406	0.000248782
ENSMUSG0000002910	Arrdc2	0.285578776	1.919551429	0.000287375
ENSMUSG0000059534	Ugcr10	7.476971601	-1.035186552	0.000303926
ENSMUSG0000030785	Cox6a2	0.431613378	-1.314521247	0.000316859
ENSMUSG0000084786	Ubl5	4.549789142	-1.019752012	0.00054524
ENSMUSG0000058351	Smim4	0.31803091	-1.266675385	0.000625366
ENSMUSG0000093674	Rpl41	15.92750721	-0.992225746	0.000641463
ENSMUSG0000025508	Rplp2	6.568311858	-0.983633672	0.000902378
ENSMUSG0000021040	Slirp	0.681494807	-1.117399053	0.000902378
ENSMUSG0000029062	Cdk11b	0.340747404	-1.220578971	0.00093606
ENSMUSG00000110156	Gm42067	0.253126643	-1.267351596	0.001191486
ENSMUSG0000065947	mt-Nd4l	3.245213368	-1.006808258	0.001397974
ENSMUSG0000030711	Sult1a1	0.30829527	1.56934888	0.001631043
ENSMUSG0000021025	Nfkbia	0.61659054	1.358281813	0.001631043
ENSMUSG0000048483	Zdhhc22	0.188222375	-1.410504547	0.001631043
ENSMUSG0000034936	Arl4d	0 421877738	1 507614648	0 001987894
ENSMUSG0000106918	Mrnl33	1 262388	-0 995066244	0.00212992
ENSMUSG0000002831	Plin4	0.094111188	2 935671094	0.002151113
ENSMUSG0000063594	Gng8	0.055168627	-2 210685436	0.00234901
ENSMUSG0000060636	Rnl35a	12 72448162	-0 926388498	0.00234501
ENSMUSG0000047721	Rola2	1 927656741	-0.968792764	0.002410075
ENSMUSG0000073616	Cons	7 415212547	-0.936407905	0.002682761
ENSMUSG0000022820	Ndufb4	5 247510017	-0.930407903	0.002082701
ENSMUSG0000022820	Prkcd	0 538705419	-1 11/1997215	0.002317477
ENSMUSC0000021340	Dlokhf1	0.1752/1522	2 100700/0/	0.003203330
ENSMUSC0000074170		0.17 J241J22	-1 256872104	0.003420424
ENSMUSC0000024363	Ananc13	1 100862072	-1.3300/3134	0.003310307
	Anaputo Del24	1.103007315	-1.006360334	0.003620771
	Rp134	10.0248285/	-0.693155805	0.004484613
	крізба	4.98140252	-0.689088805	0.00583/45/
	CSRK282	0.253120043	-1.12222102	0.006416007
ENSIVIUSG0000025362	крѕ26	1.823306118	-0.878387932	0.006416007

ENSMUSG0000055839	Elob	10.01472845	-0.869328489	0.006890533
ENSMUSG0000014294	Ndufa2	4.809406212	-0.875188675	0.007209803
ENSMUSG0000038059	Smim3	0.571157553	1.174457954	0.007365981
ENSMUSG0000044894	Uqcrq	10.03419974	-0.857723288	0.008090527
ENSMUSG0000054312	Mrps21	2.609151548	-0.880616953	0.008942773
ENSMUSG0000070858	Gm1673	2.219725944	-0.878811968	0.008942773
ENSMUSG0000024066	Xdh	0.133053748	2.25117292	0.008942773
ENSMUSG0000042312	S100a13	0.746399075	-0.995987407	0.00915835
ENSMUSG0000024038	Ndufv3	3.731995374	-0.868636574	0.00915835
ENSMUSG0000002416	Ndufb2	5.000873801	-0.856365883	0.009782948
ENSMUSG0000026500	Cox20	0.88594325	-0.92575547	0.010934257
ENSMUSG0000098120	Gm5914	0 246636216	-1 139061189	0.01184317
ENSMUSG0000037095	l rø1	0.074639907	4 613742999	0.012499731
ENSMUSG00000090101	Snhø9	0 107092041	-1 391551301	0.013035723
ENSMUSG0000084883	Code85c	0.035697347	-1 878110097	0.013177563
ENSMUSG0000068240	Gm11808	0 382935177	-1 018916244	0.013565945
ENSMUSG0000089809	Rasgef1h	0.051923414	-1 665116374	0.013003545
ENSMUSG0000046330	Rol27a	0.813525226	-0 823077782	0.015275847
ENSMUSC0000028407	Smim27	0.16550525220	1 201517121	0.015275047
ENSING 300000028407	Jillinz/	0.103303662	-1.201317121	0.015818250
	EC114	0.012960655	-2.430040329	0.010341304
	GIII15600	0.055097547	-1.64506602	0.010403722
		2.101312103	-0.839974988	0.018493662
	Gng11	0.421877738	-1.025259341	0.018493662
	Cripi	0.210938869	-1.394430932	0.019501369
ENSMUSG0000025572	Tmc6	0.081130334	2.407292122	0.020479896
ENSMUSG0000038530	Rgs4	0.707456514	-0.934524702	0.020593516
ENSMUSG0000061086	Myl4	0.084375548	-1.406156558	0.020710856
ENSMUSG0000010406	Mrpl52	1.833545553	-0.840581729	0.020710856
ENSMUSG0000053332	Gas5	6.159414973	-0.804709165	0.021473776
ENSMUSG0000032368	Zic1	0.165505882	-1.270779784	0.021498035
ENSMUSG0000028298	Cga	0	-3.971219502	0.021620364
ENSMUSG0000063320	1190007I07Rik	0.155770242	-1.189399672	0.022292943
ENSMUSG0000031231	Cox7b	7.908584979	-0.796552688	0.022292943
ENSMUSG0000045996	Polr2k	1.632342324	-0.829989933	0.023272487
ENSMUSG0000027985	Lef1	0.045432987	-1.708185096	0.023533696
ENSMUSG0000072844	G530011006Rik	0.123318108	2.144257716	0.024363618
ENSMUSG0000056608	Chd9	0.220674509	-1.091513735	0.024528512
ENSMUSG0000024903	Lao1	0.042187774	3.83613542	0.02557891
ENSMUSG0000078747	Gm20878	0.016226067	-2.244237996	0.027147526
ENSMUSG0000052384	Nrros	0.142789388	1.820193877	0.029240642
ENSMUSG0000055148	Klf2	0.331011764	1.255849407	0.030148458
ENSMUSG00000110834	Gm39469	0.139544175	-1.19828841	0.030197716
ENSMUSG0000041881	Ndufa7	3.852068268	-0.779961631	0.03334443
ENSMUSG0000044145	1810024B03Rik	0.02920692	-1.858744772	0.036984958
ENSMUSG0000019828	Grm1	0.107092041	-1.276074083	0.036984958
ENSMUSG0000024018	Ccdc167	0.438103805	-0.955219023	0.036984958
ENSMUSG0000028645	Slc2a1	1.165031599	0.950777986	0.039009523
ENSMUSG0000045625	Pigz	0.103846828	-1.319142805	0.042379045
ENSMUSG0000054364	Rhob	4.491375302	0.77620045	0.042956137
ENSMUSG0000095687	Rnaset2a	0.058413841	2.691745511	0.042956137
ENSMUSG0000032330	Cox7a2	10 5112461	-0 745111665	0.0450318
ENSMUSG0000025472	Agan2	0 730173008	0.966316411	0.0450318
ENSMUSG0000023422	Δsna	0.123318108	-1 270779784	0.0450318
ENSMUSG0000020774	Kif22	0.155770242	-1.270775704	0.0450510
ENSMUSG0000050077	Soce3	0.133770242	2 06727005/	0.040432403
FIA914103000000033TT3	50055	0.071334034	2.30/3/3334	0.040020/03

Table S2J. DEGs at ZT14 in female and male hippocampus. The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT14 FEMALES - Hippocampus				ZT14 MALES - Hippocampus					
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR	FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR
ENSMUSG0000026822	Lcn2	0.505808848	7.648477359	3.03434E-16	ENSMUSG0000098178	Gm42418	3.826001176	-1.772203119	3.19309E-11
ENSMUSG0000064179	Tnnt1	0.072258407	-2.560976006	1.43436E-10	ENSMUSG0000035202	Lars2	0.474697026	-1.326498787	0.001322907

ENSMUSG0000048572	Tmem252	0.258065739	3.879596585	1.0493E-09	ENSMUSG0000092274	Neat1	0.201817298	2.168099686	0.001322907
ENSMUSG0000090137	Uba52	9.438324284	1.055344888	5.73367E-07	ENSMUSG0000044349	Snhg11	1.938583063	1.028485416	0.004689054
ENSMUSG0000019970	Sgk1	1.686029493	1.384249771	5.73367E-07					
ENSMUSG0000023067	Cdkn1a	0.185807332	2.760952089	9.60092E-07					
ENSMUSG0000031765	Mt1	64.117293	1.049684728	1.28934E-06					
ENSMUSG0000060143	Gm10076	18.71492737	0.949435725	8.20126E-06					
ENSMUSG0000021025	Nfkbia	0.598712514	1.414501675	1.33409E-05					
ENSMUSG00000048001	Hes5	0.127312431	-1.560976006	0.000134514					
ENSMUSG0000090247	Bloc1s1	0.812046858	1.147858153	0.000168402					
ENSMUSG0000029394	Cdk2ap1	0.082581036	-1.724474738	0.0003238					
ENSMUSG0000038489	Polr2l	1.89592296	0.921839608	0.00052978					
ENSMUSG0000060803	Gstp1	2.532485116	0.887729206	0.000689449					
ENSMUSG0000076498	Trbc2	0.22709785	1.750225682	0.001226888					
ENSMUSG0000061808	Ttr	7.301539967	1.520806759	0.001327999					
ENSMUSG0000028967	Errfi1	0.443873071	1.232573116	0.001624137					
ENSMUSG0000041378	Cldn5	0.175484702	-1.336269719	0.001624137					
ENSMUSG0000074896	Ifit3	0.027527012	-2.321788342	0.001624137					
ENSMUSG00000113902	Ndufb1-ps	11.87446486	0.76126557	0.001935362					
ENSMUSG0000033585	Ndn	1.286887817	-0.824010412	0.005352643					
ENSMUSG0000003541	ler3	0.30623801	1.573325086	0.005687186					
ENSMUSG0000031762	Mt2	5.484757167	0.782595768	0.007242177					
ENSMUSG0000045471	Hcrt	0.030967889	-2.020407625	0.00920427					
ENSMUSG0000076617	Ighm	0.529894983	1.014708681	0.013635941					
ENSMUSG0000095845	Gm5741	0.082581036	2.760952089	0.015140115					
ENSMUSG0000030711	Sult1a1	0.37505554	1.132920866	0.01594955					
ENSMUSG0000037279	Ovol2	0.06881753	2.831341417	0.017808339					
ENSMUSG0000061086	Myl4	0.289033627	1.263452429	0.018466199					
ENSMUSG0000089762	Ier5l	0.103226295	-1.33470015	0.02013557					
ENSMUSG0000037095	Lrg1	0.072258407	3.313493112	0.02027057					
ENSMUSG0000095366	Gm21860	0.041290518	4.139463712	0.023950468					
ENSMUSG0000026701	Prdx6	2.398290932	-0.731360245	0.024320571					
ENSMUSG00000113919	Gm34466	0.116989802	-1.251871952	0.024445993					
ENSMUSG0000074170	Plekhf1	0.116989802	1.867867293	0.026720514					
ENSMUSG0000085007	Gm11549	0.175484702	1.495607522	0.028709249					
ENSMUSG0000034936	Arl4d	0.323442393	1.175989588	0.028709249					
ENSMUSG0000079242	C730034F03Rik	0.072258407	2.576527518	0.034555723					
ENSMUSG0000017697	Ada	0.058494901	3.023986495	0.03672282					
ENSMUSG0000002910	Arrdc2	0.258065739	1.227519889	0.03672282					
ENSMUSG0000019960	Dusp6	0.14795769	-1.123912201	0.041050137					
ENSMUSG0000027525	Phactr3	1.321296582	0.765643784	0.042676578					
ENSMUSG0000060063	Alox5ap	0.230538727	1.278559322	0.047421181					
ENSMUSG0000014846	Тррр3	0.705379686	0.89670583	0.047421181					

Table S2K. DEGs at ZT4 in female and male thalamus. The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

-0.950542818

ENSMUSG0000021948

Prkcd

0.340646775

0.047421181

ZT4 FEMALES - Thalamus					ZT4 MALES - Thalamus					
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR	
ENSMUSG0000021342	Prl	0.050593522	-5.564013646	5.71824E-47	ENSMUSG0000023067	Cdkn1a	0.919225887	3.239040362	3.43701E-16	
ENSMUSG0000020713	Gh	0.02069735	-5.740301312	7.1886E-39	ENSMUSG0000061808	Ttr	1.143089088	-2.014638228	9.91958E-14	
ENSMUSG0000023067	Cdkn1a	0.862389579	4.03488668	1.25456E-27	ENSMUSG0000027301	Oxt	0	-6.676494328	9.266E-13	
ENSMUSG0000090137	Uba52	1.016469851	-2.423540564	1.32588E-20	ENSMUSG0000048572	Tmem252	0.342728618	4.52133667	3.26176E-11	
ENSMUSG0000026822	Lcn2	0.450742287	7.625911603	3.00306E-17	ENSMUSG0000019970	Sgk1	3.96614273	1.693193055	5.95993E-07	
ENSMUSG0000048572	Tmem252	0.482938164	4.024519255	4.20017E-17	ENSMUSG0000037727	Avp	0.033678535	-2.817771015	1.57545E-06	
ENSMUSG0000019970	Sgk1	3.233385995	2.078562105	8.87524E-14	ENSMUSG0000025591	Tma16	0.570553999	2.165856016	1.93987E-06	
ENSMUSG0000060143	Gm10076	3.631235054	-1.852483002	2.55283E-13	ENSMUSG0000034936	Arl4d	0.570553999	1.895766852	2.54335E-05	
ENSMUSG0000002910	Arrdc2	0.554229036	2.674795508	3.71918E-13	ENSMUSG0000090137	Uba52	1.046015665	-1.302843086	3.18161E-05	
ENSMUSG0000028298	Cga	0.006899117	-4.471873647	4.8879E-13	ENSMUSG0000002910	Arrdc2	0.471499485	1.58694256	0.00214153	
ENSMUSG00000113902	Ndufb1-ps	3.525448599	-1.793789061	1.50466E-12	ENSMUSG0000024222	Fkbp5	0.556686367	1.463057025	0.002763405	
ENSMUSG0000038489	Polr2l	0.595623736	-1.917752317	1.91225E-12	ENSMUSG0000071637	Cebpd	0.303106812	1.821617759	0.002993239	
ENSMUSG0000034209	Rasl10a	0.597923442	2.359340439	5.03652E-12	ENSMUSG0000030880	Polr3e	0.653759791	1.449080581	0.0034392	
ENSMUSG00000103034	Gm8797	0.246068493	3.588822285	5.84812E-12	ENSMUSG0000022114	Spry2	0.06933816	-1.817771015	0.0034392	

ENSMUSG0000064360	mt-Nd3	10.75572283	-1.732889914	5.84812E-12	ENSMUSG0000070369	Itgad	0.116884326	2.663355675	0.005083074
ENSMUSG0000046516	Cox17	1.45571361	-1.730144566	3.44387E-11	ENSMUSG0000045471	Hcrt	0.174335944	-1.479296396	0.005083074
ENSMUSG0000070369	Itgad	0 167878505	4 21331315	5 08692F-11	ENSMUSG0000021025	Nfkhia	0 946961151	1 268029502	0.005083074
ENSMUSG0000067288	Rns28	4 994960442	-1 665763967	5.08692E-11	ENSMUSG000002831	Plin4	0 237730833	1 82733141	0.005083074
ENSMUSG0000028998	Tomm7	1 777672386	-1 68477456	7 80655E-11	ENSMUSG000002051	Smim?	0.293201361	1 712599194	0.005083074
ENSMUSC0000028558	Arl4d	0.42214592	2 525241245	0 E1641E 11	ENSMUSC0000010060	Ducof	0.253201301	1 242524021	0.005085074
ENSINGSG00000034550	Ani4u SabaC	0.121984204	2.353241243	3.310412-11	ENSING 3G0000013300	Duspo	0.207447187	-1.245554521	0.005051005
ENSIVIUSG0000098234	Snngb	0.121884394	-2.142119522	3.32559E-10	ENSINUSG00000022146	Osmr	0.101035604	2.778832892	0.00632507
ENSMUSG0000002831	Plin4	0.183976444	3.758747286	3.8/424E-10	ENSMUSG0000041378	Clans	0.402161326	-1.214965768	0.008411763
ENSMUSG0000104960	Snhg8	0.551929331	-1.737886908	4.64682E-10	ENSMUSG0000034579	Pla2g3	0.108959965	2.563820002	0.009940146
ENSMUSG0000024222	Fkbp5	0.457641403	2.124154018	3.07524E-09	ENSMUSG0000025509	Pnpla2	0.709230318	1.26245246	0.010295107
ENSMUSG0000079641	Rpl39	5.284723341	-1.513002063	3.46023E-09	ENSMUSG0000096768	Gm47283	1.032148033	-1.004836499	0.01316389
ENSMUSG0000016427	Ndufa1	2.081233518	-1.524816402	4.43716E-09	ENSMUSG0000035615	Frmpd1	0.459612944	1.327869475	0.015994508
ENSMUSG0000090733	Rps27	5.029456025	-1.498795693	5.62238E-09	ENSMUSG0000034640	Tiparp	0.410085687	1.352568138	0.018404754
ENSMUSG0000071528	Atp5md	11.30075304	-1.486799134	5.62238E-09	ENSMUSG0000021215	Net1	0.570553999	1.299122546	0.02128259
ENSMUSG0000021290	Atp5mpl	5.201933941	-1.498227988	5.82341E-09	ENSMUSG0000047712	Ust	0.035659625	-1.959081531	0.02243376
ENSMUSG0000034892	Rps29	12.80935988	-1.481678024	6.50088E-09	ENSMUSG0000021250	Fos	0.07330034	-1.60441665	0.022869049
ENSMUSG0000025591	Tma16	0.418546409	2.234157403	1.92781E-08	ENSMUSG0000063445	Nmral1	0.364520611	1.400321269	0.025565819
ENSMUSG0000074754	Smim26	0.450742287	-1.590834255	3.48647E-08	ENSMUSG0000030157	Clec2d	0.118865416	2.20177559	0.034344683
ENSMUSG0000035674	Ndufa3	4 594811677	-1 431156362	3 48647F-08	ENSMUSG0000031431	Tsc22d3	3 833409681	0 969350415	0 038497342
ENSMUSG0000031025	Nfkhia	0.777300474	1 750789764	3 01716E-08	ENSMUSG0000023153	Tmem52	0.063394889	3 122787294	0.030437542
ENSMUSC0000021025	Sul+1o1	0.297462102	2 227202510	7 202205 00	ENSMUSC0000025155	Slc2Eo12	0.112022146	2 120010247	0.049220572
	Sullar	0.287403193	2.337283318	7.36326E-06	ENSIN03G0000013112	31023413	0.112922148	2.129019247	0.049220572
ENSIVIUSG00000057322	кріза	14.66752196	-1.380693386	8.2583E-08					
ENSMUSG0000038059	Smim3	0.390949943	2.13631008	8.2583E-08					
ENSMUSG0000041841	RpI37	10.87990693	-1.382696976	8.54028E-08					
ENSMUSG0000039001	Rps21	14.5571361	-1.360329851	1.50993E-07					
ENSMUSG0000062997	Rpl35	4.859277815	-1.360036668	1.8198E-07					
ENSMUSG0000038803	Ost4	0.386350531	-1.540704616	2.09976E-07					
ENSMUSG0000020018	Snrpf	0.44384317	-1.499515182	2.81041E-07					
ENSMUSG0000017778	Cox7c	12.57478992	-1.336781387	2.81995E-07					
ENSMUSG0000050856	Atp5k	7.112989248	-1.303823058	7.23647E-07					
ENSMUSG0000071637	Cebpd	0.416246704	2.052222806	7.3527E-07					
ENSMUSG0000021215	Net1	0.538131097	1.751093714	7.9809E-07					
ENSMUSG0000078974	Sec61g	2 412391116	-1 3153177	8 89696F-07					
ENSMUSG0000005057	Sh2h2	0 126483805	3 226252205	1 39872E-06					
ENSMUSCOODOOSE382	Adrb1	0.1126955555	1 796012264	4 10072E 06					
	Auroi Dah40a	1.050065424	1 408425244	4.109732-00					
ENSIVIUSG00000025730	Rab40C	7 20046422	1.408435344	0.33/33E-00					
ENSMUSG0000046330	Rpi37a	7.30846422	-1.196846407	1.06112E-05					
ENSMUSG0000042737	Dpm3	0.577226092	-1.308879139	1.18793E-05					
ENSMUSG0000064356	mt-Atp8	1.81676738	-1.235885071	1.26732E-05					
ENSMUSG0000014313	Cox6c	16.41299847	-1.179966403	1.34477E-05					
ENSMUSG0000034579	Pla2g3	0.119584688	2.924425317	1.39477E-05					
ENSMUSG0000060981	Hist1h4h	0.032195878	-2.337177134	1.59367E-05					
ENSMUSG0000016252	Atp5e	7.554532713	-1.166748011	1.93685E-05					
ENSMUSG0000070394	Tmem256	1.50170772	-1.208095469	2.02019E-05					
ENSMUSG0000027525	Phactr3	1.938651774	1.269631752	2.15186E-05					
ENSMUSG0000028407	Smim27	0.096587633	-1.709426814	2.17339E-05					
ENSMUSG0000057278	Snrpg	1.044066317	-1.225761942	2.17339E-05					
ENSMUSG0000025509	Pnpla2	0.708309308	1.417341817	2.70547E-05					
ENSMUSG0000057863	Rpl36	6.266697608	-1.143664327	3.14698E-05					
ENSMUSG0000017697	Ada	0.080489694	3.588822285	3.65702E-05					
ENSMUSG0000031760	Mt3	17 5467533	-1 129150941	3 657025-05					
ENSMUSC0000031700	Dolr2o	0 570525707	1 470059710	1 AEEA2E OE					
ENSMUSG000002015	Sak2	0.373223737	1 854202420	4.4J042E-0J					
	SgK5	0.2/1303234	1.004200420	4.34496E-U3					
	KPI41	11.415/3832	-1.1103/41/3	4.770755.05					
	Fgt21	0.06209205	4.811214/06	4.//8/5E-05					
ENSMUSG0000073616	Cops9	5.420405968	-1.120906108	5.28498E-05					
ENSMUSG0000087687	Pet100	0.97047574	-1.183018351	5.82054E-05					
ENSMUSG0000079523	Tmsb10	12.21833556	-1.106512765	6.35288E-05					
ENSMUSG0000074170	Plekhf1	0.269065549	1.757219816	8.82349E-05					
ENICA 4110 C000000 47734	Polo2	1 517905650	1 127470642	0.00010775					
ENSIVIUSG0000047721	BUIAZ	1.31/803039	-1.12/4/9042	0.00010775					
ENSMUSG00000047721 ENSMUSG00000031431	Tsc22d3	3.599039177	1.122872832	0.00011436					
ENSMUSG00000047721 ENSMUSG00000031431 ENSMUSG00000067847	Tsc22d3 Romo1	3.599039177 1.77537268	-1.127475042 1.122872832 -1.096173499	0.00011436 0.00018447					

ENSMUSG0000053332	Gas5	4.771889004	-1.030475369	0.000395903
ENSMUSG0000035048	Anapc13	1.096959545	-1.079691867	0.000395903
ENSMUSG0000060636	Rpl35a	8.971151328	-1.022155231	0.000397235
ENSMUSG0000028655	Mfsd2a	0.600223147	1.309362331	0.000494523
ENSMUSG0000054364	Rhob	6.770333122	1.022100149	0.000534347
ENSMUSG0000030790	Adm	0.285163487	1.543379314	0.000577421
ENSMUSG0000000739	Sult5a1	0.045994111	-1.907603541	0.000582835
ENSMUSG0000025739	Gng13	1.299333633	-1.059716331	0.000582835
ENSMUSG0000073412	Lst1	0.027596467	-2.153681493	0.000582835
ENSMUSG0000064220	Hist2h2aa1	0.011498528	-2.73310581	0.000584104
ENSMUSG0000028645	Slc2a1	1.766173858	1.13948846	0.000584104
ENSMUSG0000037152	Ndufc1	4.992660737	-1.008376327	0.000589121
ENSMUSG00000114639	Gm31946	0.050593522	-1.794506355	0.000589121
ENSMUSG0000036372	Tmem258	1.0785619	-1.053313924	0.000598766
ENSMUSG0000042541	Sem1	1.460313021	-1.039709231	0.000614784
ENSMUSG0000023089	Ndufa5	5.183536297	-1.000930575	0.000643635
ENSMUSG0000020163	Uqcr11	7.30846422	-0.996593965	0.000654836
ENSMUSG0000036545	Adamts2	0.305860837	1.45523913	0.000817948
ENSMUSG0000065947	mt-Nd4l	2.994216619	-1.006070852	0.000840612
ENSMUSG0000038690	Atp5j2	8.207649087	-0.975586628	0.00098459
ENSMUSG0000012123	Crybg2	0.156379977	1.864456727	0.000993474
ENSMUSG0000037095	Lrg1	0.045994111	4.396177207	0.001018217
ENSMUSG0000097383	1500026H17Rik	0.043694405	-1.823959241	0.001027951
ENSMUSG0000021040	Slirp	0.666914608	-1.052056205	0.001128039
ENSMUSG0000025362	Rps26	5.772260916	-0.967415927	0.001194227
ENSMUSG0000052384	Nrros	0.14948086	1.960791062	0.001264819
ENSMUSG0000024175	Tekt4	0.075890283	2.76939453	0.001303184
ENSMUSG0000025508	Rplp2	4.804084882	-0.962973352	0.001314683
ENSMUSG0000020108	Ddit4	0.609421969	1.1887775	0.001887163
ENSMUSG0000058351	Smim4	0.282863782	-1.150468362	0.00205367
ENSMUSG0000097162	2310010J17Rik	0.059792344	-1.633570137	0.002270527
ENSMUSG00000106918	Mrpl33	0.864689285	-1.003773541	0.002280845
ENSMUSG0000010406	Mrpl52	1.409719499	-0.966466298	0.002392987
ENSMUSG0000059534	Uacr10	6.841623994	-0.925350892	0.002648568
ENSMUSG00000110156	Gm42067	0.12878351	-1.312997321	0.002648568
ENSMUSG0000027364	Usp50	0.059792344	-1.616292145	0.002764971
ENSMUSG0000074794	Arrdc3	0.303561132	1.386716878	0.002764971
ENSMUSG0000020424	Castor1	0.114985277	2.091322625	0.003018725
ENSMUSG0000026525	Opn3	0 17017821	-1 251137303	0.003148715
ENSMUSG0000021250	Fos	0.0413947	-1.770580516	0.003196101
ENSMUSG0000035615	Frmnd1	0 351854948	1 293366401	0.003278232
ENSMUSG0000027985	Lef1	0 397849059	-1 076758676	0.003340506
ENSMUSG0000014846	Topo 3	1 050965434	1 055161013	0.003771968
ENSMUSC0000014840	Emc1	1 12825/2//	-0 94421902	0.003771308
ENSMUSC0000019089	Sn3oc	0 1/7181155	-0.54451502	0.0044055597
	5p503 Tmom41a	1 671995021	0.072405612	0.0044355594
ENSINUSC00000022850	Mdufb2	1.0/1003931	0.972493013	0.0044555594
	Rhic	4.400233823	0102020400	0.004400829
	Cm11927	1.320030362	-0.323304403	0.004340392
	Dialate	0.020/22202	4.031322023	0.004546392
	Pidzg4e	0.032893228	3.003859784	0.00405202
	rd5	0.0022004	2.325/8/8/9	0.00485383
EN5MUSG0000038570	Saxo2	0.0827894	-1.41604347	0.004902562

Table S2L. DEGs at ZT14 in female and male thalamus. The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

T14 FEMALES - Thalamus					ZT14 MALES - Thalamus					
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR	FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR	
ENSMUSG0000061808	Ttr	3.232929116	3.394445966	1.57E-25	ENSMUSG0000061808	Ttr	3.440108055	2.612381186	9.84948E-49	
ENSMUSG0000023067	Cdkn1a	0.487621285	2.906010256	2.56E-14	ENSMUSG0000022421	Nptxr	1.213466784	2.126876067	1.16796E-36	
ENSMUSG0000019970	Sgk1	2.986680368	2.059132849	7.15E-13	ENSMUSG0000098178	Gm42418	2.537035767	-1.576775804	1.34457E-29	
ENSMUSG0000045471	Hcrt	0.19748662	-3.321006529	2E-12	ENSMUSG0000035202	Lars2	0.424010594	-1.643996378	3.57087E-25	
ENSMUSG0000026822	Lcn2	0.226743897	5.897010257	5.31E-10	ENSMUSG0000071753	Cdr1os	0.086676199	-2.283313121	5.2083E-25	

ENSMUSG0000035383	Pmch	0.47055454	-2.760704141	1.25E-09	ENSMUSG0000021268	Meg3	3.452992355	1.409865203
ENSMUSG0000002910	Arrdc2	0.416916198	2.18372366	1.65E-08	ENSMUSG0000090223	Pcp4	7.100420507	-1.281130499
ENSMUSG0000031765	Mt1	65.5582436	1.350383794	0.00000103	ENSMUSG0000003657	Calb2	2.118881672	1.391583784
ENSMUSG0000048572	Tmem252	0.17066745	3.492168525	0.00000134	ENSMUSG0000046093	Hpcal4	0.401755895	1.771008001
ENSMUSG0000034936	Arl4d	0.331582473	2.082901484	0.00000245	ENSMUSG0000044349	Snhg11	1.930302375	1.245522568
ENSMUSG0000071637	Cebpd	0.380344602	1.936602436	0.00000441	ENSMUSG0000006522	Itih3	0.643043692	1.448031055
ENSMUSG0000020108	Ddit4	0.70217465	1.586609751	0.00000579	ENSMUSG0000064354	mt-Co2	16.32675049	-0.968509547
ENSMUSG0000031762	Mt2	5.536939686	1.239503093	0.0000338	ENSMUSG0000095041	AC149090.1	0.640701092	1.319918582
ENSMUSG0000021025	Nfkbia	0.607088499	1.475315676	0.0000455	ENSMUSG0000009394	Syn2	1.643333879	1.092251218
ENSMUSG0000090137	Uba52	6.553630064	1.188380986	0.0000613	ENSMUSG0000006930	Hap1	0.286968496	1.713021658
ENSMUSG0000002831	Plin4	0.182857982	2.1309173	0.000163152	ENSMUSG0000064370	mt-Cytb	17.95954267	-0.896148087
ENSMUSG0000048001	Hes5	0.117029108	-1.612724359	0.000541281	ENSMUSG0000039059	Hrh3	0.865590689	1.115312371
ENSMUSG0000030711	Sult1a1	0.338896793	1.564813827	0.000637091	ENSMUSG0000064363	mt-Nd4	12.47668744	-0.886243081
ENSMUSG0000060143	Gm10076	13.63389112	1.031108073	0.001558424	ENSMUSG0000043388	Tmem130	0.549339693	1.237379858
ENSMUSG0000027525	Phactr3	1.860275201	1.10286661	0.002153135	ENSMUSG0000096768	Gm47283	0.237773897	1.676131671
ENSMUSG0000069806	Cacng7	0.097524257	-1.52884528	0.002306344	ENSMUSG0000097767	Miat	0.214347897	1.716302109
ENSMUSG0000090247	Bloc1s1	0.73630814	1.193277966	0.002306344	ENSMUSG0000025889	Snca	0.645386292	1.150704933
ENSMUSG0000017697	Ada	0.085333725	2.512346407	0.003541877	ENSMUSG0000019986	Ahi1	0.267056397	1.546517114
ENSMUSG0000034579	Pla2g3	0.09508615	2.342421406	0.004912788	ENSMUSG0000070802	Pnmal2	0.624302892	1.155825288
ENSMUSG0000017144	Rnd3	0.046324022	-1.727967922	0.008696063	ENSMUSG0000018451	6330403K07Rik	0.73323379	1.106550163
ENSMUSG0000034209	Rasl10a	0.285258451	1.294327117	0.025654769	ENSMUSG0000064345	mt-Nd2	11.10275255	-0.845180263
ENSMUSG0000049649	Gpr3	0.009752426	-2.505575501	0.035049565	ENSMUSG0000034892	Rps29	2.520637567	-0.85448342
ENSMUSG0000021453	Gadd45g	0.70217465	1.033531311	0.041140168	ENSMUSG0000032060	Cryab	0.427524494	-1.007453379
ENSMUSG0000038393	Txnip	0.180419875	1.526845977	0.041300337	ENSMUSG0000021708	Rasgrf2	0.156954198	1.86901782
ENSMUSG0000025509	Pnpla2	0.597336074	1.06576739	0.042431145	ENSMUSG0000064367	mt-Nd5	1.54260208	-0.85387332
ENSMUSG0000002289	Angptl4	0.078019406	2.06488743	0.048701561	ENSMUSG0000064357	mt-Atp6	26.13404526	-0.794789346
					ENSMUSG0000024736	Tmem132a	0.432209694	1.188068713
					ENSMUSG0000050071	Bex1	0.814053489	0.998769068

ENSMUSC0000006324 Inth3 0.64304362 1.448031055 2.81935- ENSMUSC0000006334 ACL49090.1 0.640701092 1.319318822 5.66335- ENSMUSC000000334 Syn2 1.64333373 1.092251218 1.09655- ENSMUSC000000330 Hap1 0.28698496 1.713021658 1.20973- ENSMUSC0000003309 Hth3 0.86559067 -0.389614807 2.75948- ENSMUSC0000004338 mt-Nd4 1.24768744 -0.886243081 7.0226-1 ENSMUSC00000097767 Miat 0.24738797 1.7602109 2.17246-1 ENSMUSC00000097867 Miat 0.24705387 1.54631711 7.76326- ENSMUSC000000097867 Miat 0.24705497 1.546317114 2.796054- ENSMUSC0000001986 Ahi1 0.267056397 1.54631714 2.796054- ENSMUSC00000018451 G330403071k 0.73223379 1.10655013 3.04475 ENSMUSC0000001845 G330403071k 0.73223379 1.0655013 3.04484 ENSMUSC00000018452 Rp29 2.502568 -0.5387	ENSMUSG0000044349	Snhg11	1.930302375	1.245522568	1.99067E-14
ENSMUSCO0000063504 m. ⁺ Co.2 16.32675049 -0.96809547 5.66333E ENSMUSCO0000059041 AC149900.1 0.6407101092 1.31991852 5.66333E ENSMUSCO000006303 Hap1 0.26668466 1.713021658 1.2073E ENSMUSCO0000064363 mt-Cytb 17.95954267 -0.886148087 2.75948E ENSMUSCO0000064363 mt-N44 12.4766744 -0.866243001 7.0226E1 ENSMUSCO000006768 Gm47283 0.23773897 1.76531671 7.76832E ENSMUSCO0000087676 Miat 0.214347897 1.715302109 2.21724E ENSMUSCO0000078628 Anit 0.26705637 1.546517114 2.780654 ENSMUSCO000007802 Pmmal2 0.64336202 1.15825288 2.28216-0 ENSMUSCO000007802 Pmmal2 1.1027525 -0.845180253 4.6604-0 ENSMUSCO0000018451 G3304030784 0.7323379 1.105551613 3.4664-0 ENSMUSCO0000024535 mt-Nd2 1.1027525 -0.845180253 4.6604-0 ENSMUSCO0000024545 mt-Nd2 1.10275255 </td <td>ENSMUSG0000006522</td> <td>Itih3</td> <td>0.643043692</td> <td>1.448031055</td> <td>2.81993E-14</td>	ENSMUSG0000006522	Itih3	0.643043692	1.448031055	2.81993E-14
ENSMUSCO00009394 AC149090.1 0.640701092 1.31991882 Sc6833E- ENSMUSCO000009394 Hap1 0.286968496 1.713021658 1.20973E- ENSMUSCO000006330 HHaj1 0.286968496 1.7133211 S.7333E- ENSMUSC00000063305 HHaj1 0.2869590639 1.115312371 S.7333E- ENSMUSC00000064326 mt-Md4 1.2.47668744 -0.886434081 7.0206E- ENSMUSC00000078767 Mia1 0.21347897 1.716302109 2.21724E- ENSMUSC00000078767 Mia1 0.24747897 1.716302109 2.21724E- ENSMUSC00000078986 Ani1 0.2765377 1.54651711 2.76662F- ENSMUSC00000078986 Ani1 0.277255 -0.845180263 4.6604E-O ENSMUSC00000018421 Final 1.10075357 -0.845180263 4.6604E-O ENSMUSC00000021206 Cryab 0.4272444 1.100743379 2.0324E- ENSMUSC000000024327 mt-Md2 1.156954198 1.86087132 3.89894E- ENSMUSC000000024357 mt-Md5 2.613404526	ENSMUSG0000064354	mt-Co2	16.32675049	-0.968509547	5.66833E-12
ENSMUSC0000006930 Hp1 0.266968496 1.71302155 1.207355 ENSMUSC0000006430 mt-Oytb 17.95954267 -0.866140087 2.753486- ENSMUSC0000006433 mt-N44 12.47568744 -0.86243001 7.022621 ENSMUSC0000005768 mt-N44 12.47568744 -0.86243001 7.022621 ENSMUSC0000005767 Miat 0.2137397 1.576311671 7.763262- ENSMUSC0000005768 Snca 0.65336292 1.150704933 2.421384 ENSMUSC0000007880 Ahit 0.267056397 1.56531161 2.763624 ENSMUSC00000018451 GS34038078ik 0.7332379 1.106550163 3.044795 ENSMUSC00000018451 mt-Nd2 1.10275255 -0.85448342 1.281574 ENSMUSC00000018452 Rps29 2.50637567 -0.85448342 1.281574 ENSMUSC00000021708 Resgr2 1.5063133 5.312484 ENSMUSC00000021708 Resgr2 1.5063133 5.312484 ENSMUSC00000021708 Resgr2 0.16964198 1.66901782 3.70884- <	ENSMUSG0000095041	AC149090.1	0.640701092	1.319918582	5.66833E-12
ENSMUSC00000064370 Hep1 0.286958496 1.713021658 1.270735 ENSMUSC00000064370 mt-Vqtb 17.95954267 -0.896140087 2.794956 ENSMUSC00000064363 mt-Nd4 12.47668744 -0.886243081 7.022651 ENSMUSC00000064363 mt-Nd4 12.47668744 -0.886243081 7.030667 ENSMUSC00000064366 Gm47283 0.237773897 1.676131671 7.763627 ENSMUSC00000078767 Miat 0.2473379 1.566527114 2.760627 ENSMUSC00000078805 Ania 0.267056397 1.58652718 2.82316-0 ENSMUSC00000078802 Pmmal2 0.624302892 1.15650713 3.044795 ENSMUSC00000078802 Pmal2 0.56954198 1.86907782 3.76986-0 ENSMUSC00000034802 Rps29 2.52063767 -0.8445180263 4.6604-0 ENSMUSC00000034206 Cryab 0.42752444 1.007433379 2.032426 ENSMUSC00000003435 mt-Nd5 1.5462021 0.3387323 3.899464 ENSMUSC000000004345 mt-Nd6 0.37013795	ENSMUSG0000009394	Syn2	1.643333879	1.092251218	1.03665E-11
ENSMUSCO000064370 mt-Cytb 17.95954267 -0.896148087 2.739485 ENSMUSCO0000039059 Hth3 0.865390689 1115312371 5.733365 ENSMUSCO0000064768 mt-Md4 12.47668744 -0.866743081 7.02265-11 ENSMUSCO0000067767 Miat 0.214347897 1.716302169 2.217246-1 ENSMUSCO0000097767 Miat 0.244347897 1.5165116171 7.763626-1 ENSMUSCO0000078062 Pmmal2 0.64336529 1.159704933 2.425186-1 ENSMUSCO000078062 Pmmal2 0.64302872 1.15825258 2.28816-0 ENSMUSCO000018451 6330403K07Rik 0.7323379 1.06550163 3.044796-1 ENSMUSCO000024455 mt-Md2 1.10275255 -0.845180263 4.6046-0 ENSMUSCO000024765 mt-Md5 1.54650198 1.8690172 3.76889-6 ENSMUSCO000024736 mt-Md5 1.54260208 -0.83543342 1.331246-1 ENSMUSCO0000064357 mt-Atp8 0.24597297 -1.064356288 2.131246-1 ENSMUSCO0000004776 Tmem132a	ENSMUSG0000006930	Hap1	0.286968496	1.713021658	1.20973E-11
ENSMUSCO00003969 Hrh3 0.85530689 1.115312371 5.73285-E ENSMUSCO000064633 mr.Nd4 12.4766744 -0.866743081 7.02261-E ENSMUSCO000004388 Tmem130 0.549339693 1.237379858 7.30306-E ENSMUSCO000009767 Miat 0.21474787 1.71630210 2.12724-E ENSMUSCO0000037889 Snca 0.645386292 1.150704933 2.42518-E ENSMUSCO0000079806 Ahil 0.26705697 1.546517114 2.70662-E ENSMUSCO0000079802 Pmm12 0.67320379 1.106550163 3.46042-O ENSMUSCO0000078424 mt.Nd2 11.1027255 -0.845180263 4.6042-O ENSMUSCO0000021206 Cryab 0.4272444 -1.007453379 2.03242-E ENSMUSCO0000021708 Rasgrf2 0.156954198 1.8607173 2.33246-E ENSMUSCO0000021761 Rasgrf2 0.150954198 1.8607173 2.33246-E ENSMUSCO0000004357 mt.Atp6 2.613404526 -0.794789346 4.33592-E ENSMUSCO00000004177 Mab 0.370130795	ENSMUSG0000064370	mt-Cytb	17.95954267	-0.896148087	2.75949E-10
ENSMUSG0000064383 mt:Nd4 12.47668744 -0.886243081 7.0226E1 ENSMUSG0000094388 Tmem130 0.54939633 1.237379858 7.30306E ENSMUSG000009787 Miat 0.214347897 1.716302109 2.21724E ENSMUSG0000025889 Snaa 0.645386292 1.150704933 2.42518E ENSMUSG0000012589 Anil 0.267056397 1.546517114 2.79605E ENSMUSG0000018451 G330403K07Rik 0.73323379 1.106550163 3.04479E ENSMUSG0000018492 Primalz 0.156954198 1.86901782 3.7688E-0 ENSMUSG00000021708 Rasgrf2 0.156954198 1.86901782 3.7688E-0 ENSMUSG0000004357 mt:Nd5 1.54260208 -0.8548313 5.31248E-1 ENSMUSG0000004357 mt:Nd5 1.54260208 -0.8548733 5.31248E-1 ENSMUSG0000004356 mt:Nd5 1.54260208 -0.8548733 5.31248E-1 ENSMUSG0000004357 mt:Nd5 1.54260208 -0.8548733 5.31248E-1 ENSMUSG00000004356 mt:Nd5 0.343104953	ENSMUSG0000039059	Hrh3	0.865590689	1.115312371	5.73533E-10
ENSMUSG0000004388 Tmem130 0.549339693 1.237379858 7.30306E ENSMUSG0000097676 Gm47283 0.21737897 1.676131671 7.6362E ENSMUSG00000097676 Miat 0.214347897 1.716302109 2.21724E ENSMUSG0000001986 Ahi1 0.267056397 1.546517144 2.79605E ENSMUSG0000018451 G33003K07kk 0.7333379 1.10550163 3.04479E ENSMUSG0000018451 G33003K07kk 0.7332376 -0.85448342 1.28157E ENSMUSG000000232060 Cryab 0.47524494 1.00453379 2.03324E ENSMUSG00000064357 mt-Nd2 1.56654198 1.86091782 3.7689E-0 ENSMUSG00000064376 mt-Nd5 1.5426208 -0.934789346 4.33924E ENSMUSG0000006437 mt-Nd5 1.5426208 -0.934789346 2.334954E ENSMUSG00000004147 Maob 0.370130795 1.202420868 2.21274E ENSMUSG00000004147 Maob 0.370130795 1.204240868 2.21274E ENSMUSG000000031492 Pjn1 2.6304545	ENSMUSG0000064363	mt-Nd4	12.47668744	-0.886243081	7.0226E-10
ENSMUSG000009767 Mint 0.23773897 1.676131671 7.763252 ENSMUSG0000097767 Mint 0.244347897 1.71630109 2.217264 ENSMUSG0000001986 Ahi1 0.267056397 1.546517114 2.790054 ENSMUSG000007802 Pmmalz 0.643302892 1.15522528 2.82216-0 ENSMUSG000006435 mt.Nd2 1.11027525 -0.4544842 1.831754 ENSMUSG000006435 mt.Nd2 1.15027254494 -1.007453379 2.032467 ENSMUSG0000002100 Cryab 0.427524494 -1.007453379 2.0332467 ENSMUSG0000004367 mt.Nd5 1.54260208 -0.354387332 3.8599467 ENSMUSG0000004375 mt.Atp5 2.61404526 -0.79479346 4.3359274 ENSMUSG0000004170 Bex1 0.43209694 1.188068713 5.3124867 ENSMUSG0000004170 Bex1 0.43209694 1.88001733 5.3124867 ENSMUSG0000000110 Bex1 0.40320861 -0.138484843 1.01428196 ENSMUSG00000001170 Bex1 0.84057207 1.2934	ENSMUSG0000043388	Tmem130	0.549339693	1.237379858	7.30306E-10
ENSMUSG000009767 Miat 0.214347897 1.716302109 2.21724E ENSMUSG00000025889 Snca 0.645386292 1.150704933 2.42518E- ENSMUSG0000013986 Ahi1 0.267056397 1.54651114 2.79605E- ENSMUSG0000018451 G330403K078k 0.7332379 1.1055510513 3.04479E- ENSMUSG0000018451 mtNu2 1.110275255 -0.85448342 1.28157E- ENSMUSG00000232060 Cryab 0.472724494 1.00453379 2.03324E- ENSMUSG0000004357 mt-Atp6 2.613404526 -0.794789346 4.33592E- ENSMUSG0000004357 mt-Atp6 2.613404526 -0.794789346 4.33592E- ENSMUSG0000004357 mt-Atp6 2.613404526 -0.794789346 4.33592E- ENSMUSG00000024736 Tmem132a 0.432209694 1.188068713 5.2124E- ENSMUSG00000024736 Tmem132a 0.432209694 1.88068713 5.2134E- ENSMUSG00000024736 Tmen132a 0.43209594 1.88068713 5.2134E- ENSMUSG00000002473 Mt-Atp8 0.	ENSMUSG0000096768	Gm47283	0.237773897	1.676131671	7.76362E-10
ENSMUSG00000025889 Snca 0.643386292 1.150704933 2.425184- ENSMUSG00000019986 Ahi1 0.267056397 1.546517114 2.796054- ENSMUSG00000070802 Pnmal2 0.624302892 1.155825288 2.82816-0 ENSMUSG0000064345 mt-Md2 1.10275255 0.485180263 4.6604E-0 ENSMUSG00000032060 Cryab 0.427524494 -1.007453379 2.03324E- ENSMUSG00000021708 Rasgrf2 0.156954198 1.86001782 3.7689E-0 ENSMUSG0000002476 mt-Md5 1.51240020 -0.83387332 3.89594E- ENSMUSG0000002476 Tmen132a 0.432209694 1.180069713 5.31248E- ENSMUSG0000002476 Tmen132a 0.343109395 0.998769068 6.37808E- ENSMUSG00000024765 Carg2 0.343109395 0.998769068 2.339574- ENSMUSG00000031950 Agt 1.168957385 0.888047874 4.14404E- ENSMUSG00000031950 Agt 1.168957385 0.888047874 4.14404E- ENSMUSG00000031950 Agt 1.168957385	ENSMUSG0000097767	Miat	0.214347897	1.716302109	2.21724E-09
ENSMUSG0000001986 Ahi1 0.267056397 1.546517114 2.79605E- ENSMUSG0000070802 Pnmal2 0.624302892 1.155825288 2.8281E-0 ENSMUSG0000018451 G330403K07Rik 0.73323379 1.100550163 3.04479E- ENSMUSG000003485 mt-Md2 1.11027525 0.845180263 4.6604E-0 ENSMUSG000003485 mt-Md2 1.50650163 3.04479E- ENSMUSG000003485 mt-Md5 1.54260208 0.833732 3.89594E- ENSMUSG0000004376 mt-Map6 26.13404526 0.794789346 4.33392E- ENSMUSG00000024736 Tmem132a 0.81205649 1.18805713 5.31248E- ENSMUSG00000024736 Tmem132a 0.814053489 0.998769068 6.37088E-4 ENSMUSG00000024755 Car2 0.34190896 0.988870875 2.39957E-1 ENSMUSG00000031425 Pip1 2.620198066 0.820861804 3.133E-0 ENSMUSG00000031425 Pip1 2.620198066 0.820861804 3.13426-E ENSMUSG00000031425 Pip1 2.620198066 0.820861804<	ENSMUSG0000025889	Snca	0.645386292	1.150704933	2.42518E-09
ENSMUSG000007802 Pmmal2 0.624302892 1.155822588 2.8281E-0 ENSMUSG00000018451 6330403K07Rik 0.73323379 1.106550163 3.04479E- ENSMUSG00000031660 Cryab 0.42752444 1.00733379 2.0324E- ENSMUSG00000032060 Cryab 0.42752444 1.007433379 2.0324E- ENSMUSG0000004357 mt-Atp6 2.131404526 0.79879346 3.3392E- ENSMUSG00000064357 mt-Atp6 2.131404526 0.79879346 3.3392E- ENSMUSG00000064357 mt-Atp6 2.131404526 0.79879364 3.3392E- ENSMUSG00000064356 mt-Atp6 0.3130795 1.202420668 2.03419E- ENSMUSG00000027562 Car2 0.34109866 -0.98870875 2.39957E- ENSMUSG00000031425 Pip1 2.620198066 -0.82861804 3.1335E-0 ENSMUSG00000031425 Pip1 2.620198066 -0.82861804 3.1335E-0 ENSMUSG00000031425 Pip1 2.620198066 -0.82861804 3.1335E-0 ENSMUSG00000031425 Pip1 2.62019806 <td>ENSMUSG0000019986</td> <td>Ahi1</td> <td>0.267056397</td> <td>1.546517114</td> <td>2.79605E-09</td>	ENSMUSG0000019986	Ahi1	0.267056397	1.546517114	2.79605E-09
ENSMUSG0000014811 6330403K07Rik 0.73223379 1.106550163 3.04479E ENSMUSG0000003485 mt-Nd2 11.10275255 0.845180263 4.660E-0 ENSMUSG000003485 mt-Nd2 1.12275255 0.8488424 1.28157E-1 ENSMUSG0000003480 Cryab 0.427524494 -1.007453379 2.03324E-1 ENSMUSG00000064367 mt-Nd5 1.54260208 0.85387332 3.89594E-1 ENSMUSG00000024736 Tmemi32a 0.432209694 1.188068713 5.3124E-2 ENSMUSG00000064357 mt-Atp6 0.2473657297 -1.06435228 2.21274E-1 ENSMUSG0000006436 mt-Atp8 0.24797297 -1.06435228 2.21274E-1 ENSMUSG00000027562 Car2 0.343190896 -0.8887087-5 2.39957E-1 ENSMUSG00000031425 Pip1 2.620198066 -0.82061804 3.133E-0 ENSMUSG00000031411 Rab3b 0.105416999 2.09646347 4.14404E-1 ENSMUSG00000032180 Agt 1.085281186 0.872922275 1.06084E-1 ENSMUSG0000003318 Agt 0.0	ENSMUSG0000070802	Pnmal2	0.624302892	1.155825288	2.8281E-09
ENSMUSG00000034892 mt-Nd2 11.10275255 -0.85448342 1.2817E- ENSMUSG0000034892 Rps29 2.520637567 -0.85448342 1.2817E- ENSMUSG0000032060 Cryab 0.427524494 -1.007453379 2.03324E ENSMUSG0000064367 mt-Nd5 1.54260208 -0.85387332 3.8594E- ENSMUSG00000064357 mt-Atp6 2.13404526 -0.794789346 4.33592E- ENSMUSG00000050071 Bex1 0.814053489 0.998769068 6.37086E- ENSMUSG00000024736 Tmem132a 0.432209694 1.138068713 5.1248E- ENSMUSG00000024736 Tmt-Atp8 0.245972997 -1.064356288 2.12174E- ENSMUSG00000031425 P[p11 2.620198066 -0.820861804 3.1335E-0 ENSMUSG00000034125 P[p11 2.620198066 -0.820861804 3.1335E-0 ENSMUSG0000003412 Pa12 0.54454493 1.01428196 9.06008E- ENSMUSG0000003411 Rab3b 0.105416999 2.09646347 6.14815E- ENSMUSG00000034351 mt-Co1 4.8350208	ENSMUSG0000018451	6330403K07Rik	0.73323379	1.106550163	3.04479E-09
ENSMUSG0000024892 Rps29 2.520637567 -0.85448342 1.28157E- ENSMUSG0000021708 Rasgrf2 0.156554198 1.86901782 3.7689E-0 ENSMUSG00000064357 mt-Nd5 1.54260208 -0.85387332 3.89594E-1 ENSMUSG00000064357 mt-Ndp5 2.6.13404526 -0.794789346 4.33592E-1 ENSMUSG00000024736 Tmem132a 0.432209694 1.188068713 5.31248E-1 ENSMUSG00000024736 Tmen132a 0.432209694 1.188063713 5.31248E-1 ENSMUSG00000024736 mt-Atp8 0.24597297 -1.064356288 2.12174E-1 ENSMUSG0000002562 Car2 0.343109866 -0.988870875 2.39957E-1 ENSMUSG00000031925 Plp1 2.60198066 -0.828870874 4.1440E-1 ENSMUSG0000033198 Agt 1.168957385 0.888047874 4.1440E-1 ENSMUSG0000033198 Agt 1.05221186 0.87292275 1.06084E-1 ENSMUSG0000033939 Zench12 0.54454493 1.01428196 9.06008E+1 ENSMUSG00000064351 mt-Co1 <td< td=""><td>ENSMUSG0000064345</td><td>mt-Nd2</td><td>11.10275255</td><td>-0.845180263</td><td>4.6604E-09</td></td<>	ENSMUSG0000064345	mt-Nd2	11.10275255	-0.845180263	4.6604E-09
ENSMUSG0000032060 Cryab 0.427524494 -1.007453379 2.03324E-4 ENSMUSG00000064357 mt-Nd5 1.54260208 -0.83287332 3.89594E-4 ENSMUSG0000064357 mt-Nd5 1.54260208 -0.83287332 3.89594E-4 ENSMUSG0000005071 Bex1 0.43209664 1.188068713 5.1248E-4 ENSMUSG0000005071 Bex1 0.44053489 0.998769068 6.37086E-4 ENSMUSG0000024736 Tmem132a 0.4321997 -1.064356288 2.12174E-4 ENSMUSG0000021752 Ca12 0.343190896 -0.988870875 2.39957E-4 ENSMUSG00000031980 Agt 1.168957385 0.880047874 4.1404E-4 ENSMUSG0000003411 Rab3b 0.105416999 2.096645347 6.14815E-4 ENSMUSG0000003411 Rab3b 0.105416999 2.096645347 6.14815E-4 ENSMUSG0000003277 Neat1 0.20029297 1.534940643 9.32848E-4 ENSMUSG0000003277 Neat1 0.20029297 1.534940643 9.32848E-4 ENSMUSG00000023191 Ogdh1 0.199120997 </td <td>ENSMUSG0000034892</td> <td>Rps29</td> <td>2.520637567</td> <td>-0.85448342</td> <td>1.28157E-08</td>	ENSMUSG0000034892	Rps29	2.520637567	-0.85448342	1.28157E-08
ENSMUSG00000021708 Rasgrf2 0.156954198 1.86901782 3.7689E-00 ENSMUSG0000064367 mt-Nd5 1.54260208 -0.85387332 3.89954E- ENSMUSG00000024736 Tmem132a 0.432209694 1.188068713 5.31248E- ENSMUSG00000040147 Maob 0.370130795 1.202420868 2.03419E- ENSMUSG00000040147 Maob 0.370130795 1.202420868 2.03419E- ENSMUSG00000040147 Maob 0.370130795 1.202420868 2.03419E- ENSMUSG00000027562 Car2 0.343190896 -0.988870875 2.3997E-4 ENSMUSG00000031425 Plp1 2.60198066 -0.888047874 4.14404E-4 ENSMUSG0000003411 Rab3b 0.105416999 2.09646347 6.14815E-4 ENSMUSG0000003411 Rab3b 0.105416999 1.0428196 9.06008E-4 ENSMUSG0000006373 Pgrmc1 1.082281186 0.87292275 1.068484 ENSMUSG0000006373 Pgrmc1 1.08228118 0.1428196 9.06008E+ ENSMUSG00000063385 Ndn 0.673226191	ENSMUSG0000032060	Cryab	0.427524494	-1.007453379	2.03324E-08
ENSMUSG0000064367 mt-tqb5 1.54260208 -0.85387332 3.89594E-4 ENSMUSG00000024736 Tmem132a 0.432209694 1.188068713 5.31248E-4 ENSMUSG00000024736 Tmem132a 0.432209694 1.188068713 5.31248E-4 ENSMUSG0000004147 Maob 0.370130795 1.202420668 2.03419E-4 ENSMUSG0000004147 Maob 0.370130795 1.202420668 2.03419E-4 ENSMUSG00000061435 mt-tqb8 0.245972997 -1.064356288 2.12174E-4 ENSMUSG00000031425 Pip1 2.620198066 -0.820861804 3.1335E-0 ENSMUSG00000031425 Pip1 2.620198066 -0.820861804 3.133E-0 ENSMUSG0000003411 Rab3b 0.105416999 2.09646347 6.14815E-4 ENSMUSG0000003569 Zcchcl2 0.544564493 1.01428156 0.800064 ENSMUSG000000373 Pgrmc1 1.082281186 0.87292275 1.066486357 ENSMUSG00000021913 Ogdh1 0.19912097 1.669486357 2.06109E-4 ENSMUSG00000023185 Ndn 0.	ENSMUSG0000021708	Rasgrf2	0.156954198	1.86901782	3.7689E-08
ENSMUSG0000064357 mt-Atp6 26.13404526 -0.794789346 4.33592E-4 ENSMUSG0000005071 Bex1 0.814053489 0.998769068 2.03419E-4 ENSMUSG00000040147 Maob 0.370130795 1.202420868 2.03419E-4 ENSMUSG0000027562 Car2 0.343190896 -0.988870875 2.39957E-4 ENSMUSG00000031425 Plp1 2.620198066 -0.820861804 3.1335E-0 ENSMUSG00000031425 Plp1 2.62198066 -0.820861804 3.1335E-0 ENSMUSG00000031425 Plp1 2.62198066 -0.820861804 3.1335E-0 ENSMUSG00000031425 Plp1 2.62198066 -0.820861804 3.1335E-0 ENSMUSG00000031425 Plp1 2.64454493 1.01428196 9.06008E-4 ENSMUSG0000003669 Zcchc12 0.544654493 1.01428196 9.029646347 6.14815E-4 ENSMUSG0000006437 Ptcc11 1.082281186 0.87292275 1.060846357 2.06109E-4 ENSMUSG0000006373 Ptcc1 1.082281186 0.8729275 1.0628465357 2.06109E-4	ENSMUSG0000064367	mt-Nd5	1.54260208	-0.85387332	3.89594E-08
ENSMUSG0000024736 Tmem132a 0.432209694 1.188068713 5.31248E-4 ENSMUSG0000004017 Bex1 0.814053489 0.998759068 6.37808E- ENSMUSG00000040137 Maob 0.370130795 1.202420868 2.03419E- ENSMUSG0000007455 Car2 0.343190896 -0.98870875 2.39957E- ENSMUSG00000031425 Plp1 2.60198066 -0.820861804 3.1335E-0 ENSMUSG0000003141 Rab3b 0.105416999 2.09646347 6.144216 ENSMUSG00000036699 Zcchc12 0.544654493 1.01428196 9.06008E- ENSMUSG0000002274 Neat1 0.200292277 1.534940643 9.32843E- ENSMUSG0000002333 Pgrmc1 1.082281186 0.87292275 1.06048E- ENSMUSG0000002131 Ogdhl 0.19912097 1.669486357 2.06109E- ENSMUSG0000002385 Ndn 0.672326191 1.085151251 3.22015E- ENSMUSG00000035897 Col25a1 0.447436594 1.086698647 4.67562E- ENSMUSG0000001586 Cdpr 0.68872431	ENSMUSG0000064357	mt-Atp6	26.13404526	-0.794789346	4.33592E-08
ENSMUSG0000050071 Bex1 0.814053489 0.998769068 6.37808E- ENSMUSG00000064356 mt-Atp8 0.245972997 1.064335628 2.12174E- ENSMUSG00000027562 Car2 0.343190896 -0.988870875 2.39957E- ENSMUSG00000031425 Plp1 2.620198066 -0.82081804 3.1335E-0 ENSMUSG00000034125 Plp1 2.620198066 -0.820861804 3.1335E-0 ENSMUSG00000034125 Plp1 2.64654493 1.01428196 9.06068E- ENSMUSG00000036699 Zcchc12 0.544654493 1.01428196 9.06008E- ENSMUSG00000064351 mt-Co1 44.83502081 -0.71811359 1.64958E- ENSMUSG00000064351 mt-Co1 44.83502081 -0.71811359 1.64958E- ENSMUSG00000033805 Ndr 0.672326191 1.085151251 3.22015E- ENSMUSG00000033807 Hexdc 0.09383199 1.998059765 3.52957E- ENSMUSG00000016345 mt-Co3 40.6151217 -0.668198519 6.02465E+ ENSMUSG000000058897 Col25a1 0.447465	ENSMUSG0000024736	Tmem132a	0.432209694	1.188068713	5.31248E-08
ENSMUSG0000040147 Maob 0.370130795 1.202420868 2.03419E-4 ENSMUSG00000027562 Car2 0.343190896 -0.988870875 2.39957E-4 ENSMUSG00000031425 Plp1 2.620198066 -0.82081804 3.1335E-0 ENSMUSG00000031425 Plp1 2.620198066 -0.82081804 3.1335E-0 ENSMUSG0000003141 Rab3b 0.105416999 2.09646347 6.14815E-4 ENSMUSG0000003699 Zchch12 0.544654493 1.01428196 9.06008E-4 ENSMUSG0000006373 Pgrmc1 1.082281186 0.87292275 1.06048E-4 ENSMUSG0000002391 Ogdhl 0.19120997 1.669486357 2.06109E-4 ENSMUSG000000239307 Hexdc 0.09838199 1.99805765 3.52957E-4 ENSMUSG0000003385 Ndn 0.672326191 1.085151251 3.22015E-4 ENSMUSG00000038907 Col25a1 0.447436594 1.086880047 4.67562E-4 ENSMUSG0000001586 Opr 0.668127091 0.994194421 9.37813E-4 ENSMUSG00000025266 Gnl31 0.477890394<	ENSMUSG0000050071	Bex1	0.814053489	0.998769068	6.37808E-08
ENSMUSG0000064356 mt-Atp8 0.245972997 -1.064356288 2.12174E-4 ENSMUSG00000031425 Pip1 2.60198066 -0.982870875 2.39957E-4 ENSMUSG00000031425 Pip1 2.60198066 -0.820861804 3.1335E-0 ENSMUSG0000003411 Rab3b 0.105416999 2.0664347 6.14815E-4 ENSMUSG00000036699 Zcchc12 0.544654433 1.01428196 9.06008E-4 ENSMUSG000000292274 Neat1 0.20292297 1.534940643 9.32843E-4 ENSMUSG0000002913 Ogdh1 0.199120997 1.669486357 2.06109E-4 ENSMUSG00000023307 Hexdc 0.09838919 1.98055765 3.5297E-4 ENSMUSG00000035805 Ndn 0.672326191 1.085151251 3.22015E-4 ENSMUSG00000035807 Col25a1 0.447436594 1.086880047 4.6752E-4 ENSMUSG00000025867 Col25a1 0.447436594 1.086880047 4.6752E-4 ENSMUSG000000364358 mt-Co3 40.61951217 -0.686198519 6.02465E-4 ENSMUSG000000164358 mt-Co3 <t< td=""><td>ENSMUSG0000040147</td><td>Maob</td><td>0.370130795</td><td>1.202420868</td><td>2.03419E-07</td></t<>	ENSMUSG0000040147	Maob	0.370130795	1.202420868	2.03419E-07
ENSMUSG00000027562 Car2 0.343190896 -0.988870875 2.39957E-4 ENSMUSG00000031425 PIp1 2.620198066 -0.820861804 3.1335E-0 ENSMUSG00000031980 Agt 1.168957385 0.888047874 4.14404E-4 ENSMUSG00000031980 Agt 1.168957385 0.888047874 4.14404E-4 ENSMUSG00000036699 Zcchc12 0.544654493 1.01428196 9.06008E-4 ENSMUSG00000064373 Pgrnc1 1.082281186 0.87292275 1.06084E-4 ENSMUSG00000064351 mt-Co1 44.83502081 -0.71811359 1.64958E-4 ENSMUSG0000003385 Ndn 0.672326191 1.085151251 3.22015E-4 ENSMUSG0000003385 Ndn 0.672326191 1.086880047 4.67562E-4 ENSMUSG0000003385 Ndn 0.61951217 -0.666198519 6.02465E-4 ENSMUSG00000025266 Gnl31 0.477890394 0.973394555 8.57961E-4 ENSMUSG00000025266 Gnl31 0.477890394 0.973394555 8.57961E-4 ENSMUSG00000025266 Gnl31 0.477890	ENSMUSG0000064356	mt-Atp8	0.245972997	-1.064356288	2.12174E-07
ENSMUSG0000031425 Plp1 2.620198066 -0.820861804 3.1335E-0 ENSMUSG00000031980 Agt 1.168957385 0.88047874 4.14044-E ENSMUSG0000031980 Agt 1.168957385 0.88047874 4.14044-E ENSMUSG0000036699 Zcchc12 0.544554493 1.01428196 9.06008E+ ENSMUSG0000006373 Pgrmc1 1.082281186 0.872922275 1.06044E ENSMUSG0000006373 Pgrmc1 1.082281186 0.872922275 1.06045E ENSMUSG00000021913 Ogdhl 0.19120997 1.669486357 2.06109E+ ENSMUSG0000003385 Ndn 0.672326191 1.085151251 3.22015E+ ENSMUSG0000003385 Ndn 0.672326191 1.08580047 4.6752E+ ENSMUSG0000003880 Col25a1 0.44736594 1.068680047 4.6752E+ ENSMUSG00000025266 Gnl3l 0.477890394 0.973394565 8.57961E+ ENSMUSG0000003801 Cplane1 0.094875299 1.946220834 9.6036E+ ENSMUSG0000003801 Cplane1 0.094875299 <t< td=""><td>ENSMUSG0000027562</td><td>Car2</td><td>0.343190896</td><td>-0.988870875</td><td>2.39957E-07</td></t<>	ENSMUSG0000027562	Car2	0.343190896	-0.988870875	2.39957E-07
ENSMUSG00000031980 Agt 1.168957385 0.888047874 4.14404E-4 ENSMUSG0000003411 Rab3b 0.105416999 2.09646347 6.14815E ENSMUSG00000032411 Rab3b 0.105416999 2.09646347 6.14815E ENSMUSG00000069274 Neat1 0.200292297 1.534940643 9.32843E4 ENSMUSG0000006373 Pgrmc1 1.082281186 0.872922275 1.06084E4 ENSMUSG00000021913 Ogdh1 0.19120997 1.669486357 2.06109E4 ENSMUSG0000003385 Ndn 0.672326191 1.085151251 3.22015E4 ENSMUSG0000003807 Hexdc 0.098389199 1.998059765 3.52957E4 ENSMUSG0000005806 Qdpr 0.688724391 0.868198519 6.02465E4 ENSMUSG00000058897 Col25a1 0.44736594 1.08688047 4.67562E4 ENSMUSG00000016346 Kcnq2 0.664127091 0.904194421 9.37813E4 ENSMUSG0000003112 AW551984 0.052708499 3.038230204 9.37813E4 ENSMUSG00000038112 Cpiae1 0.904875299	ENSMUSG0000031425	Plp1	2.620198066	-0.820861804	3.1335E-07
ENSMUSG0000003411 Rab3b 0.105416999 2.09646347 6.14815E-4 ENSMUSG00000066699 Zcchcl2 0.544554493 1.01428196 9.06008E-4 ENSMUSG0000006373 Pgrmc1 1.02029297 1.534940643 9.32843E- ENSMUSG0000006373 Pgrmc1 1.082281186 0.87292275 1.06084E-4 ENSMUSG00000021913 Ogdhl 0.199120997 1.669486357 2.06109E-4 ENSMUSG00000033855 Ndn 0.672326191 1.085151251 3.22015E-4 ENSMUSG00000033855 Ndn 0.672326191 0.9846976207 4.52919E-4 ENSMUSG00000038867 Col25a1 0.447436594 1.08688047 4.67562E-4 ENSMUSG00000025266 Gn31 0.477890394 0.973394555 8.57961E-4 ENSMUSG00000038112 AWS51984 0.052708499 3.038230204 9.37813E-4 ENSMUSG0000003801 Cplane1 0.94475299 1.946220834 9.60386E-4 ENSMUSG0000003801 Cplane1 0.94475299 1.946220834 9.60386E-4 ENSMUSG00000003801 Cplane1 <t< td=""><td>ENSMUSG0000031980</td><td>Agt</td><td>1.168957385</td><td>0.888047874</td><td>4.14404E-07</td></t<>	ENSMUSG0000031980	Agt	1.168957385	0.888047874	4.14404E-07
ENSMUSG00000036699 Zcchc12 0.544654493 1.01428196 9.06008E-4 ENSMUSG0000002274 Neat1 0.200292297 1.534940643 9.32834E ENSMUSG000006373 Pgrmc1 1.082281186 0.7292275 1.0608E-4 ENSMUSG0000006373 mt-Co1 44.83502081 -0.71811359 1.64958E4 ENSMUSG00000033585 Ndn 0.672326191 1.085151251 3.22015E4 ENSMUSG00000033585 Ndn 0.672326191 1.08680047 4.67562E4 ENSMUSG00000035897 Col25a1 0.447436594 1.08688047 4.67562E4 ENSMUSG0000005266 Gnl31 0.477890394 0.973394565 8.57961E4 ENSMUSG00000025266 Gnl31 0.477890394 0.937334565 8.57961E4 ENSMUSG00000038801 Cplane1 0.094875299 1.946220834 9.60386E4 ENSMUSG00000038901 Cplane1 0.094875299 1.946220834 9.60386E4 ENSMUSG00000039303 Cplane1 0.094875299 1.946220834 9.60386E4 ENSMUSG00000039301 Cplane1 0.094875	ENSMUSG0000003411	Rab3b	0.105416999	2.09646347	6.14815E-07
ENSMUSG00000092274 Neat1 0.200292297 1.534940643 9.32843E-4 ENSMUSG0000006373 Pgrmc1 1.082281186 0.872922275 1.06084E-4 ENSMUSG0000006373 Pgrmc1 1.082281186 0.872922275 1.06084E-4 ENSMUSG00000021913 Ogdhl 0.199120997 1.669486357 2.06109E-4 ENSMUSG000003385 Ndn 0.672326191 1.085151251 3.22015E-4 ENSMUSG0000003806 Qdpr 0.688724391 -0.846976207 4.52919E-4 ENSMUSG0000005886 Col25a1 0.447436594 1.086880047 4.67562E-4 ENSMUSG00000058897 Col25a1 0.447436594 0.968198519 6.02465E-4 ENSMUSG00000016346 Kcnq2 0.664127091 0.904194421 9.37813E-4 ENSMUSG00000038112 AWS51984 0.052708499 3.038230204 9.37813E-4 ENSMUSG00000038112 AWS51984 0.052708499 3.038230204 9.37813E-4 ENSMUSG00000038112 AWS51984 0.052708499 3.038230204 9.37813E-4 ENSMUSG00000038112 AWS51984 <td>ENSMUSG0000036699</td> <td>Zcchc12</td> <td>0.544654493</td> <td>1.01428196</td> <td>9.06008E-07</td>	ENSMUSG0000036699	Zcchc12	0.544654493	1.01428196	9.06008E-07
ENSMUSG0000006373 Pgrmc1 1.082281186 0.872922275 1.06084E4 ENSMUSG00000064351 mt-Co1 44.83502081 -0.71811359 1.64958E4 ENSMUSG0000003358 Ndn 0.673236191 1.06514557 2.06109E4 ENSMUSG0000033585 Ndn 0.673236191 1.085151251 3.22015E4 ENSMUSG000003385 Ndn 0.678236191 1.08688047 4.52919E4 ENSMUSG0000005806 Qdpr 0.688724391 -0.8686198519 6.02465E4 ENSMUSG00000058897 Col25a1 0.447436594 1.086880047 4.67562E4 ENSMUSG00000025266 Gnl3l 0.477890394 0.973394565 8.57961E4 ENSMUSG00000038112 AW551984 0.052708499 3.038230204 9.37813E4 ENSMUSG00000038112 AW551984 0.052708499 3.038230204 9.37813E4 ENSMUSG00000038112 AW551984 0.052708499 3.038230204 9.37813E4 ENSMUSG0000003812 Cplane1 0.904875299 1.946220834 9.60386E4 ENSMUSG000000032936 Camkv 0.7824	ENSMUSG0000092274	Neat1	0.200292297	1.534940643	9.32843E-07
ENSMUSG0000064351 mt-Co1 44.83502081 -0.71811359 1.64958E-4 ENSMUSG0000021913 Ogdhl 0.199120997 1.669486357 2.06109E-4 ENSMUSG0000033858 Ndn 0.672326191 1.085151251 3.22015E-4 ENSMUSG0000033807 Hexdc 0.08389199 1.98059765 3.52957E-4 ENSMUSG0000015806 Qdpr 0.688724391 -0.846976207 4.52919E-4 ENSMUSG00000058897 Col25a1 0.447436594 1.086880047 4.67562E-4 ENSMUSG00000025266 Gnl31 0.477890394 0.973394565 8.57961E-4 ENSMUSG00000038112 AW551984 0.052708499 3.038230204 9.37813E-4 ENSMUSG0000003801 Cplane1 0.94875299 1.946220834 9.60386E-4 ENSMUSG0000003801 Cplane1 <t< td=""><td>ENSMUSG0000006373</td><td>Pgrmc1</td><td>1.082281186</td><td>0.872922275</td><td>1.06084E-06</td></t<>	ENSMUSG0000006373	Pgrmc1	1.082281186	0.872922275	1.06084E-06
ENSMUSG0000021913 Ogdhl 0.199120997 1.669486357 2.06109E-4 ENSMUSG00000033585 Ndn 0.672326191 1.085151251 3.22015E-4 ENSMUSG00000033585 Ndn 0.672326191 1.085151251 3.22015E-4 ENSMUSG00000035866 Qdpr 0.688724391 0.846976207 4.52919E-4 ENSMUSG00000058897 Col25a1 0.447436594 1.086880047 4.67562E-4 ENSMUSG00000064358 mt-Co3 40.61951217 -0.686198519 6.02465E-4 ENSMUSG00000064358 mt-Co3 40.61951217 -0.686198519 6.02465E-4 ENSMUSG00000016346 Kcnq2 0.664127091 0.904194211 9.37813E-4 ENSMUSG0000003801 Cplane1 0.094875299 1.946220834 9.60386E-4 ENSMUSG00000038936 Camkv 0.78242839 0.856136529 1.04445E-4 ENSMUSG0000003936 Camkv 0.78242839 0.856136529 1.04445E-4 ENSMUSG0000003936 Camkv 0.78242839 0.856136529 1.04445E-4 ENSMUSG000000033936 Camkv <td< td=""><td>ENSMUSG0000064351</td><td>mt-Co1</td><td>44.83502081</td><td>-0.71811359</td><td>1.64958E-06</td></td<>	ENSMUSG0000064351	mt-Co1	44.83502081	-0.71811359	1.64958E-06
ENSMUSG0000033585 Ndn 0.672326191 1.085151251 3.22015E- ENSMUSG0000003307 Hexdc 0.098389199 1.998059765 3.52957E ENSMUSG0000015806 Qdpr 0.688724391 -0.846976207 4.52919E- ENSMUSG00000058807 Col2511 0.44736594 1.086880047 4.67562E- ENSMUSG00000052566 Gnl31 0.477890394 0.973394565 8.57961E- ENSMUSG00000025266 Gnl31 0.477890394 0.90419421 9.37813E- ENSMUSG00000038112 AWS51984 0.052708499 3.038230204 9.37813E- ENSMUSG0000003801 Cplane1 0.094875299 1.946220834 9.60386E- ENSMUSG00000034796 Cpne7 0.632501992 0.899272839 9.90571E- ENSMUSG0000003233 Rps27 1.02020287 -0.747262758 1.1198E-0 ENSMUSG00000006357 Wdr6 0.692238291 0.866140618 1.38095E- ENSMUSG0000002212 Cpne6 0.274084196 1.143257681 1.38095E- ENSMUSG00000023818 Srm2 0.340848296 <td>ENSMUSG0000021913</td> <td>Ogdhl</td> <td>0.199120997</td> <td>1.669486357</td> <td>2.06109E-06</td>	ENSMUSG0000021913	Ogdhl	0.199120997	1.669486357	2.06109E-06
ENSMUSG0000039307 Hexdc 0.098389199 1.998059765 3.52957E-1 ENSMUSG00000015806 Qdpr 0.688724391 -0.846976207 4.52919E-4 ENSMUSG00000058807 Col25a1 0.447436594 1.086880047 4.67562E-4 ENSMUSG0000005266 Gnl31 0.477890394 0.973394565 8.57961E-4 ENSMUSG00000016346 Kcnq2 0.664127091 0.904194421 9.37813E-4 ENSMUSG00000038112 AWS51984 0.052708499 3.038230204 9.37813E-4 ENSMUSG0000003812 Cpne7 0.632501992 0.89977283 9.90571E-4 ENSMUSG00000032936 Camkv 0.78242839 0.856136529 1.04445E-4 ENSMUSG0000006682 Rp10 0.77891449 -0.7771289302 1.11127E-4 ENSMUSG0000002625 Akap8I	ENSMUSG0000033585	Ndn	0.672326191	1.085151251	3.22015E-06
ENSMUSG0000015806 Qdpr 0.688724391 -0.846976207 4.52919E-4 ENSMUSG00000058897 Col25a1 0.447436594 1.086880047 4.67562E-4 ENSMUSG00000025266 Gnl31 0.477890394 0.973394565 8.57961E-4 ENSMUSG0000016346 Kcnq2 0.664127091 0.904194421 9.37813E-4 ENSMUSG00000038112 AW551984 0.052708499 3.038230204 9.37813E-4 ENSMUSG0000003801 Cplane1 0.094875299 1.946220834 9.60386E-4 ENSMUSG0000003801 Cplane1 0.094875299 0.89272839 9.90571E-4 ENSMUSG0000003801 Cplane1 0.77891449 -0.771289302 1.11127E-4 ENSMUSG0000003803 Camkv 0.78242839 0.866136529 1.04445E-4 ENSMUSG00000008682 Rp10 0.77891449 -0.771289302 1.11127E-4 ENSMUSG0000002625 Akap8I 0.316250996 1.143257681 1.38095E-4 ENSMUSG0000002625 Akap8I 0.316250996 1.19082493 1.42662E-4 ENSMUSG0000002625 Akap8I	ENSMUSG0000039307	Hexdc	0.098389199	1.998059765	3.52957E-06
ENSMUSG00000058897 Col25a1 0.447436594 1.086880047 4.67562E-4 ENSMUSG00000054358 mt-Co3 40.61951217 -0.686198519 6.02465E-4 ENSMUSG00000025266 Gn3l 0.477890394 0.973394565 8.57961E-4 ENSMUSG0000016346 Kcnq2 0.664127091 0.904194421 9.37813E-4 ENSMUSG0000003801 Cplane1 0.94875299 1.946220834 9.60386E-4 ENSMUSG0000003801 Cplane1 0.94875299 1.946220834 9.60386E-4 ENSMUSG000000393801 Cplane1 0.94875299 1.946220834 9.60386E-4 ENSMUSG0000003801 Cplane1 0.94875299 1.946220834 9.60386E-4 ENSMUSG00000032395 Camkv 0.78242839 0.856136529 1.04445E-4 ENSMUSG000000066357 Wdr6 0.692238291 0.866140618 1.38095E-4 ENSMUSG0000002212 Cpne6 0.274084196 1.143257681 1.38095E-4 ENSMUSG00000021120 Nbl1 0.258857297 1.155278778 1.80112E-4 ENSMUSG00000023218 Srm2	ENSMUSG0000015806	Qdpr	0.688724391	-0.846976207	4.52919E-06
ENSMUSG0000064358 mt-Co3 40.61951217 -0.686198519 6.02465E-4 ENSMUSG00000052566 Gnl3l 0.477890394 0.973394565 8.57961E-4 ENSMUSG00000016346 Kcnq2 0.664127091 0.90419421 9.37813E-4 ENSMUSG0000038112 AWS51984 0.052708499 3.038230204 9.37813E-4 ENSMUSG0000003801 Cplane1 0.094875299 1.946220834 9.60386E-4 ENSMUSG00000034796 Cpne7 0.632501992 0.892772839 9.90571E-4 ENSMUSG00000032936 Camkv 0.78242839 0.856136529 1.10445E-4 ENSMUSG000000082376 Cpne7 1.020202287 -0.747262758 1.1198E-0 ENSMUSG00000006357 Wdr6 0.692238291 0.866140618 1.38095E-4 ENSMUSG00000002252 Akap8l 0.316250996 1.10082493 1.42622E4 ENSMUSG0000001120 Nbl1 0.258857297 1.155278778 1.80112E-4 ENSMUSG00000013218 Srm2 0.340848296 1.07224591 1.84262E-4 ENSMUSG00000019874 Fab7	ENSMUSG0000058897	Col25a1	0.447436594	1.086880047	4.67562E-06
ENSMUSG00000025266 Gnl3l 0.477890394 0.973394565 8.57961E-4 ENSMUSG00000016346 Kcnq2 0.664127091 0.904194421 9.37813E-4 ENSMUSG00000038112 AW551984 0.052708499 3.038230204 9.37813E-4 ENSMUSG00000038112 Cplane1 0.094875299 1.946220834 9.60386E-4 ENSMUSG00000034796 Cpne7 0.632501992 0.899272839 9.90571E-4 ENSMUSG00000032936 Camkv 0.78242839 0.856136529 1.04445E-4 ENSMUSG00000008682 Rpl10 0.77891449 -0.771289302 1.11127E-4 ENSMUSG00000008682 Rpl10 0.77891449 -0.747262758 1.1198E-00 ENSMUSG000000066357 Wdr6 0.692238291 0.866140618 1.38095E-4 ENSMUSG0000002212 Cpne6 0.274084196 1.143257681 1.38095E-4 ENSMUSG0000002625 Akap8l 0.316250996 1.19082493 1.42662E-4 ENSMUSG00000024251 Mpc1 0.579353991 -0.7705429591 1.80112E-4 ENSMUSG000000232861 Mpc1	ENSMUSG0000064358	mt-Co3	40.61951217	-0.686198519	6.02465E-06
ENSMUSG0000016346 Kcnq2 0.664127091 0.904194421 9.37813E- ENSMUSG00000038112 AWS51984 0.052708499 3.038230204 9.37813E- ENSMUSG0000038112 Cplane1 0.094875299 1.946220834 9.60386E- ENSMUSG000003801 Cpne7 0.632501992 0.89927283 9.90571E- ENSMUSG00000032936 Camkv 0.78242839 0.856136529 1.04445E- ENSMUSG0000008682 Rpl10 0.77891449 -0.771289302 1.11127E- ENSMUSG00000066857 Wdr6 0.692238291 0.866140618 1.38095E- ENSMUSG00000022212 Cpne6 0.274084196 1.143257681 1.38095E- ENSMUSG0000002252 Akap8I 0.316250996 1.19082493 1.42662E- ENSMUSG0000002625 Akap8I 0.316250996 1.19082493 1.80112E- ENSMUSG0000002625 Akap8I 0.316250996 1.1032576781 1.80112E- ENSMUSG00000023218 Srrm2 0.34084296 1.07224591 1.80112E- ENSMUSG000000232861 Mpc1 0.679353991 <td>ENSMUSG0000025266</td> <td>Gnl3l</td> <td>0.477890394</td> <td>0.973394565</td> <td>8.57961E-06</td>	ENSMUSG0000025266	Gnl3l	0.477890394	0.973394565	8.57961E-06
ENSMUSG0000038112 AW551984 0.052708499 3.038230204 9.37813E-4 ENSMUSG000003801 Cplane1 0.094875299 1.946220834 9.60386F-4 ENSMUSG000003801 Cpne7 0.632501992 0.899272839 9.90571E-4 ENSMUSG00000032936 Camkv 0.78242839 0.856136529 1.04445E-4 ENSMUSG00000008682 Rpl10 0.77891449 -0.771289302 1.11127E-4 ENSMUSG0000006357 Wdr6 0.692238291 0.866140618 1.38095E-4 ENSMUSG0000002625 Akap8I 0.316250996 1.19082493 1.42662E-4 ENSMUSG0000002625 Akap8I 0.316250996 1.19082493 1.42662E-4 ENSMUSG0000002625 Akap8I 0.316250996 1.19082493 1.42662E-4 ENSMUSG0000002625 Akap8I 0.316250996 1.19082493 1.80112E-4 ENSMUSG0000003218 Srrm2 0.340848296 1.07224591 1.80112E-4 ENSMUSG00000023661 Mpc1 0.679353991 -0.770542949 1.88426E-4 ENSMUSG00000023861 Mpc1 0.7326	ENSMUSG0000016346	Kcnq2	0.664127091	0.904194421	9.37813E-06
ENSMUSG0000039801 Cplane1 0.094875299 1.946220834 9.60386E-4 ENSMUSG00000034796 Cpne7 0.632501992 0.899272839 9.90571E-4 ENSMUSG00000032936 Camkv 0.78242839 0.856136529 1.04445E ENSMUSG00000090733 Rps27 1.020202287 -0.747262758 1.1198E-0 ENSMUSG00000066357 Wdr6 0.692238291 0.866140618 1.38095E-4 ENSMUSG0000002625 Akap8l 0.316250996 1.10982493 1.4262E4 ENSMUSG00000041120 Nbl1 0.258857297 1.155278778 1.80112E4 ENSMUSG00000032861 Mpc1 0.679353991 -0.770542949 1.88426E4 ENSMUSG00000023261 Syrt4 0.7426019 0.838870094 2.0441E-0 ENSMUSG00000023942 Sic29a1 0.373644695 0.998653101 2.333E-0 ENSMUSG00000013942 Scn3b 0.256514697 1.14222625 2.48193E4 ENSMUSG00000013942 Scn3b 0.256514697 1.14222625 2.48193E4 ENSMUSG00000013942 Scn3b 0.256514697<	ENSMUSG0000038112	AW551984	0.052708499	3.038230204	9.37813E-06
ENSMUSG0000034796 Cpne7 0.632501992 0.899272839 9.90571E-4 ENSMUSG00000032936 Camkv 0.78242839 0.856136529 1.04445E-4 ENSMUSG00000008682 Rpl10 0.77891449 -0.771289302 1.11127E-4 ENSMUSG0000009733 Rps27 1.0202287 -0.747262758 1.1198E-0 ENSMUSG0000002212 Cpne6 0.274084196 1.143257681 1.38095E-4 ENSMUSG0000002255 Akap8l 0.316250996 1.19082493 1.42662E-4 ENSMUSG0000002625 Akap8l 0.316250996 1.072247578 1.80112E-4 ENSMUSG0000002625 Akap8l 0.340848296 1.07224791 1.80112E-4 ENSMUSG0000003218 Srrm2 0.340848296 1.07224591 1.80112E-4 ENSMUSG00000019874 Fabp7 0.0363103 -1.639137088 2.03395E-4 ENSMUSG000000234261 Syt4 0.74260419 0.838870094 2.0441E-0 ENSMUSG00000023421 Scn3b 0.256514697 1.14222625 2.48193E-4 ENSMUSG00000019874 Fabp7 0.0363103<	ENSMUSG0000039801	Cplane1	0.094875299	1.946220834	9.60386E-06
ENSMUSG0000032936 Camkv 0.78242839 0.856136529 1.04445E4 ENSMUSG0000008682 Rpl10 0.77891449 -0.771289302 1.11127E4 ENSMUSG0000008682 Rps27 1.02020287 -0.747262758 1.1198E-0 ENSMUSG00000066357 Wdr6 0.692238291 0.866140618 1.38095E4 ENSMUSG00000022212 Cpne6 0.274084196 1.143257681 1.38095E4 ENSMUSG0000002625 Akap8l 0.316250996 1.19082493 1.42662E4 ENSMUSG0000002625 Akap8l 0.340848296 1.07224591 1.80112E4 ENSMUSG0000003218 Srrm2 0.340848296 1.07224591 1.80112E4 ENSMUSG00000019874 Fabp7 0.0363103 -1.639137088 2.03395E4 ENSMUSG00000024261 Syt4 0.74260419 0.838870094 2.0441E-0 ENSMUSG00000023942 Sic29a1 0.37364695 0.998653101 2.3433E-0 ENSMUSG00000019874 Scn3b 0.256514697 1.14222625 2.48193E4 ENSMUSG000000124261 Syt4 0.73644695	ENSMUSG0000034796	Cpne7	0.632501992	0.899272839	9.90571E-06
ENSMUSG0000008682 Rp10 0.77891449 -0.771289302 1.11127E-1 ENSMUSG00000090733 Rps27 1.020202287 -0.747262758 1.1198E-0 ENSMUSG00000066357 Wdr6 0.692238291 0.866140618 1.38095E-1 ENSMUSG00000022212 Cpne6 0.274084196 1.143257681 1.38095E-1 ENSMUSG0000002252 Akap8I 0.316250996 1.19082493 1.42662E-1 ENSMUSG0000002253 Akap8I 0.316250996 1.15278778 1.80112E-1 ENSMUSG0000002361 Nbl1 0.258857297 1.15278778 1.80112E-1 ENSMUSG00000023861 Mpc1 0.679333991 -0.770542949 1.88426E-1 ENSMUSG00000023861 Mpc1 0.679353991 -0.770542949 1.88426E-1 ENSMUSG00000023861 Mpc1 0.679353991 -0.770542949 1.88426E-1 ENSMUSG00000023942 St29a1 0.373644695 0.998653101 2.3433E-0 ENSMUSG00000013942 Scn3b 0.256514697 1.14222625 2.48193E-1 ENSMUSG000000117465 Gm49980 0.	ENSMUSG0000032936	Camkv	0.78242839	0.856136529	1.04445E-05
ENSMUSG0000009733 Rps27 1.020202287 -0.747262758 1.1198-0 ENSMUSG0000006357 Wdr6 0.692238291 0.866140618 1.38095E4 ENSMUSG00000022212 Cpne6 0.274084196 1.143257681 1.38095E4 ENSMUSG0000002252 Akap8l 0.316250996 1.19082493 1.42662E4 ENSMUSG0000003218 Srm2 0.340848296 1.072224591 1.8112E4 ENSMUSG00000023861 Mpc1 0.679353991 -0.770542949 1.88426E4 ENSMUSG00000023861 Mpc1 0.679353991 -0.770542949 1.88426E4 ENSMUSG00000023861 Syt4 0.74260419 0.838870094 2.0441E-0 ENSMUSG00000023942 Sic29a1 0.373644695 0.998653101 2.333E-0 ENSMUSG00000013942 Scn3b 0.256514697 1.14222625 2.48193E4 ENSMUSG000000117465 Gm49980 0.01903099 1.772466005 2.64917E	ENSMUSG0000008682	Rpl10	0.77891449	-0.771289302	1.11127E-05
ENSMUSG0000066357 Wdr6 0.692238291 0.866140618 1.38095E4 ENSMUSG00000022212 Cpne6 0.274084196 1.143257681 1.38095E4 ENSMUSG00000022212 Cpne6 0.274084196 1.143257681 1.38095E4 ENSMUSG0000002625 Akap8l 0.316250996 1.19082493 1.42662E4 ENSMUSG0000001120 Nbl1 0.258857297 1.155278778 1.80112E4 ENSMUSG00000023861 Mpc1 0.679353991 -0.770542949 1.88426E4 ENSMUSG0000019874 Fabp7 0.0363103 -1.639137088 2.03395E4 ENSMUSG00000024261 Syt4 0.74260419 0.838870094 2.0441E-0 ENSMUSG00000023942 Sic29a1 0.373644695 0.998653101 2.3433E-0 ENSMUSG00000049281 Scn3b 0.256514697 1.14222625 2.48193E4 ENSMUSG00000117465 Gm49980 0.01903099 1.772466005 2.4917E4	ENSMUSG0000090733	Rps27	1.020202287	-0.747262758	1.1198E-05
ENSMUSG00000022212 Cpne6 0.274084196 1.143257681 1.38095E4 ENSMUSG0000002625 Akap8l 0.316250996 1.19082493 1.42662E4 ENSMUSG00000012625 Nbl1 0.258857297 1.155278778 1.80112E4 ENSMUSG0000003281 Srm2 0.340848296 1.072224591 1.80112E4 ENSMUSG0000019874 Fabp7 0.0363103 -1.639137088 2.03395E4 ENSMUSG000000234261 Syt4 0.74260419 0.838870094 2.0441E-0 ENSMUSG00000023942 Sic29a1 0.373644695 0.998653101 2.3433E-0 ENSMUSG00000049281 Scn3b 0.256514697 1.14222625 2.48193E-4 ENSMUSG00000117465 Gm49980 0.01093099 1.772466005 2.64917E-4	ENSMUSG0000066357	Wdr6	0.692238291	0.866140618	1.38095E-05
ENSMUSG0000002625 Akap8l 0.316250996 1.19082493 1.42662E4 ENSMUSG00000041120 Nbl1 0.258857297 1.155278778 1.80112E4 ENSMUSG0000003218 Srrm2 0.340848296 1.072224591 1.80112E4 ENSMUSG00000032861 Mpc1 0.679353991 -0.770542949 1.88426E4 ENSMUSG00000019874 Fabp7 0.0363103 -1.639137088 2.03395E4 ENSMUSG00000024261 Syt4 0.74260419 0.838870094 2.0441E-00 ENSMUSG00000023942 Sic29a1 0.373644695 0.998653101 2.3433E-00 ENSMUSG00000049281 Scn3b 0.256514697 1.142222625 2.48193E4 ENSMUSG000000117465 Gm49980 0.01903099 1.772466005 2.64917E4	ENSMUSG0000022212	Cpne6	0.274084196	1.143257681	1.38095E-05
ENSMUSG0000041120 Nbl1 0.258857297 1.15278778 1.80112E- ENSMUSG0000003218 Srm2 0.340848296 1.07224591 1.80112E- ENSMUSG00000039218 Mpc1 0.679353991 -0.770542949 1.88426E- ENSMUSG00000023861 Mpc1 0.0363103 -1.639137088 2.03395E-I ENSMUSG00000024261 Syt4 0.74260419 0.838870094 2.0441E-0 ENSMUSG00000023942 Sic29a1 0.373644695 0.998653101 2.3438E-0 ENSMUSG00000049281 Scn3b 0.256514697 1.14222625 2.48193E-4 ENSMUSG00000117465 Gm49980 0.101903099 1.772466005 2.64917E-4	ENSMUSG0000002625	Akap8l	0.316250996	1.19082493	1.42662E-05
ENSMUSG0000039218 Srrm2 0.340848296 1.072224591 1.80112E- ENSMUSG0000023861 Mpc1 0.679353991 -0.770542949 1.88426E- ENSMUSG00000023861 Kpc1 0.0363103 -1.639137088 2.03395E- ENSMUSG00000024261 Syt4 0.74260419 0.83887094 2.0441E-0 ENSMUSG00000023942 Slc29a1 0.373644695 0.998653101 2.3433E-0 ENSMUSG00000049281 Scn3b 0.256514697 1.142222625 2.48193E-4 ENSMUSG00000117465 Gm49980 0.101903099 1.772466005 2.64917E-4	ENSMUSG0000041120	Nbl1	0.258857297	1.155278778	1.80112E-05
ENSMUSG0000023861 Mpc1 0.679353991 -0.770542949 1.88426E-1 ENSMUSG0000019874 Fabp7 0.0363103 -1.639137088 2.03395E-1 ENSMUSG00000024261 Syt4 0.74260419 0.838870094 2.0441E-0 ENSMUSG00000023942 Slc29a1 0.373644695 0.998653101 2.3433E-0 ENSMUSG00000049281 Scn3b 0.256514697 1.142222625 2.48193E-4 ENSMUSG00000117465 Gm49980 0.101903099 1.772466005 C4917E-4	ENSMUSG0000039218	Srrm2	0.340848296	1.072224591	1.80112E-05
ENSMUSG0000019874 Fabp7 0.0363103 -1.639137088 2.03395E-1 ENSMUSG0000024261 Syt4 0.74260419 0.838870094 2.0441E-0 ENSMUSG00000023942 Slc29a1 0.373644695 0.998653101 2.3433E-0 ENSMUSG00000049281 Scn3b 0.256514697 1.142222625 2.48193E-4 ENSMUSG00000117465 Gm49980 0.101903099 1.772466005 2.64917E-4	ENSMUSG0000023861	Mpc1	0.679353991	-0.770542949	1.88426E-05
ENSMUSG0000024261 Syt4 0.74260419 0.838870094 2.0441E-00 ENSMUSG0000023942 Slc29a1 0.373644695 0.998653101 2.3433E-00 ENSMUSG00000049281 Scn3b 0.256514697 1.142222625 2.48193E-0 ENSMUSG00000117465 Gm49980 0.101903099 1.772466005 2.64917E-0	ENSMUSG0000019874	Fabp7	0.0363103	-1.639137088	2.03395E-05
ENSMUSG0000023942 Slc29a1 0.373644695 0.998653101 2.3433E-00 ENSMUSG0000049281 Scn3b 0.256514697 1.14222625 2.48193E-1 ENSMUSG00000117465 Gm49980 0.101903099 1.772466005 2.64917E-1	ENSMUSG0000024261	Syt4	0.74260419	0.838870094	2.0441E-05
ENSMUSG0000049281 Scn3b 0.256514697 1.14222625 2.48193E-1 ENSMUSG00000117465 Gm49980 0.101903099 1.772466005 2.64917E-1	ENSMUSG0000023942	Slc29a1	0.373644695	0.998653101	2.3433E-05
ENSMUSG00000117465 Gm49980 0.101903099 1.772466005 2.64917E-	ENSMUSG0000049281	Scn3b	0.256514697	1.142222625	2.48193E-05
	ENSMUSG00000117465	Gm49980	0.101903099	1.772466005	2.64917E-05

5.61753E-22 1.15287E-20 4.49771E-16 2.09575E-15

ENSMUSG0000046314	Stxbp6	0.377158595	0.992077607	2.80804E-05
ENSMUSG0000026575	Nme7	0.446265294	1.391657358	3.89423E-05
ENSMUSG0000047507	Baiap3	0.060907599	2.394591796	3.99738E-05
ENSMUSG0000046447	Camk2n1	4.494278041	0.683390878	4.1795E-05
ENSMUSG0000064373	Selenop	0.569251793	-0.765056249	4.54373E-05
ENSMUSG0000031508	Ankrd10	0.117129998	1.58791723	4.62877E-05
ENSMUSG0000025579	Gaa	0.979206787	0.767603026	4.79556E-05
ENSMUSG0000063511	Snrnp70	0.236602597	1.144380255	4.88443E-05
ENSMUSG0000018909	Arrb1	0.298681496	1.042180476	4.88443E-05
ENSMUSG0000020230	Prmt2	0.354903895	0.975999399	5.49229E-05
ENSMUSG0000018339	Gpx3	0.115958698	1.622471537	5.49229E-05
ENSMUSG0000021273	Edft1	0 421667994	0 923060433	5 70073E-05
ENSMUSG0000064341	mt-Nd1	14.32499881	-0.630652636	5.70073E-05
ENSMUSG0000060126	Tnt1	2 30628967	-0 659254627	7 11475E-05
ENSMUSG0000025555	Farn1	0 220204397	1 150911254	8 06518E-05
ENSMUSG0000021957	Tkt	0.221017397	1 151292868	0.000103477
ENSMUSG0000034486	Ghy2	0.368959495	1 270012371	0.000103479
ENSMUSG0000046844	Vat1	0 105416999	1 580503481	0.000103473
ENSMUSC00000040844	Vife2	0.103410333	0.010716110	0.000113091
ENSMUSC0000004187	Back	0.038270391	1 021042041	0.000113091
	PILK Dol17	1 882270075	0.640246287	0.00014077
	Kpi17	1.0022/90/5	-0.040340287	0.00019829
ENSIMUS GOODOODS 3963	Stum Brace1	0.79882659	0.801126999	0.000222503
ENSIVIUS GOODOOD 12296	Рррыт	0.1/1009/98	1.203378673	0.000247709
ENSMUSG0000034220	Gpc1	0.315079696	1.018594176	0.000252851
ENSMUSG0000064179	Innti	0.409954995	-0./524/0556	0.000252851
ENSMUSG0000030729	Pgm2l1	0.666469691	0.767412778	0.000252851
ENSMUSG0000043384	Gprasp1	1.56368548	0.663794581	0.000280937
ENSMUSG0000042750	Bex2	3.422538555	0.628731268	0.000280937
ENSMUSG0000019230	Lhx9	0.154611598	1.248022588	0.000290952
ENSMUSG0000028004	Npy2r	0.042166799	2.724121613	0.000290952
ENSMUSG0000037072	Selenof	0.325621396	-0.784116183	0.00029739
ENSMUSG0000040690	Col16a1	0.071449299	1.883902058	0.000299048
ENSMUSG0000028137	Celf3	0.161639398	1.227616961	0.000302078
ENSMUSG00000115783	Bc1	0.428695794	0.840532757	0.000346925
ENSMUSG0000031654	Cbln1	0.114787399	1.421558843	0.000358756
ENSMUSG0000021130	Galnt16	0.327963996	0.915740227	0.000395572
ENSMUSG0000024423	Impact	0.873789789	0.709135434	0.000395572
ENSMUSG0000004207	Psap	4.918288636	0.596063935	0.000397538
ENSMUSG0000029516	Cit	0.857391589	0.706807304	0.000456177
ENSMUSG0000024603	Dctn4	0.298681496	0.953953293	0.000468868
ENSMUSG0000069919	Hba-a1	0.277598096	-1.560907527	0.000561286
ENSMUSG0000021508	Cxcl14	0.222546997	-0.833902343	0.000564941
ENSMUSG0000075486	Commd6	0.094875299	-1.063239495	0.000564941
ENSMUSG0000016194	Hsd11b1	0.046851999	-1.345010464	0.000592005
ENSMUSG0000050708	Ftl1	0.917127888	-0.637482052	0.000597196
ENSMUSG0000027495	Fam210b	0.180380198	1.112720748	0.000601273
ENSMUSG0000026688	Mgst3	0.607904692	-0.672417305	0.000624267
ENSMUSG0000032621	Srek1	0.142898598	1.224521996	0.000656116
ENSMUSG0000026163	Sphkap	0.253000797	0.968790955	0.000696576
ENSMUSG0000029723	Tsc22d4	0.415811495	-0.790958035	0.000728408
ENSMUSG0000062296	Trank1	0.089018799	1.579820927	0.000728408
ENSMUSG0000022982	Sod1	1.029572687	0.717089248	0.00074965
ENSMUSG0000053286	Trmt1	0.078477099	1.676131671	0.000789863
ENSMUSG0000000088	Cox5a	1.481694481	-0.598808954	0.000792926
ENSMUSG0000035847	Ids	0.453293094	0.792652995	0.000792926
ENSMUSG0000072966	Gprasp2	0.472033894	0.780562308	0.000804991
ENSMUSG0000002957	Ap2a2	1.129133185	1.019662444	0.000820628
ENSMUSG0000028677	Rnf220	0.858562889	0.680275563	0.000827339
ENSMUSG0000023147	Wrb	0.363102995	0.841242708	0.000832218
ENSMUSG0000070304	Scn2h	0 76485889	0 693888141	0.000854797
ENSMUSG0000030541	Idh2	0 204977497	1 029241421	0 000857719
ENSMUSG0000017677	Wsh1	0 131185598	1 264457882	0.000874152
ENSMUSG0000017077	Thra	0.913613988	0.670988021	0.000874132
LING/000000000000000000000000000000000000	inia	0.010010000	0.070300021	0.0000333330

ENSMUSG0000030711	Sult1a1	0.127671698	1.260404052	0.000908713
ENSMUSG0000026568	Mpc2	0.672326191	-0.657763609	0.000910025
ENSMUSG0000039735	Fnbp1l	0.110102199	1.362057832	0.000910025
ENSMUSG0000020297	Nsg2	1.645676479	0.61625758	0.000910025
ENSMUSG0000037266	Rsrp1	0.678182691	0.708166403	0.000920267
ENSMUSG0000007783	Cpt1c	0.354903895	0.836596343	0.000920267
ENSMUSG0000020483	Dvnll2	1.827227976	0.602500821	0.000940508
ENSMUSG0000005973	, Rcn1	0.096046599	1.456748272	0.000951093
ENSMUSG0000032788	Pdxk	0.349047395	0.841429496	0.000955255
ENSMUSG0000022048	Dpvsl2	1.779204677	0.60717033	0.000980385
ENSMUSG0000020894	Vamp2	3,593548353	0.573091927	0.001005855
ENSMUSG0000051853	Arf3	1 224008484	0 633643802	0.001039209
ENSMUSG0000046500	Tafa4	0.0327964	-1.455169782	0.001047196
ENSMUSG0000023473	Celsr3	0.081990999	1.594026039	0.001047196
ENSMUSG0000024897	Apba1	0.215519197	0.992938372	0.001047196
ENSMUSG00000041773	Fnc1	0 570423093	0 728414691	0 001075044
ENSMUSG0000032314	Etfa	0.052708499	-1 239754543	0.001120091
ENSMUSG0000021700	Rab3c	0 667640991	0 699322529	0.001120091
ENSMUSG0000049517	Ros23	1 330067187	-0 508/6153	0.001152714
ENSMUSG0000023484	Proh	0.078/77099	1 602131080	0.001152714
ENSMUSG0000023484	Idb2	0.002532600	1 458084710	0.001230333
ENSMUSG0000030062	Ron1	0.032332033	0 772207840	0.001278831
ENSMUSG0000019124	Scrn1	0.430723334	0.081704258	0.001330157
ENSMUSG0000013124	Kcnc4	0.433237434	1 380137366	0.001347162
ENSMUSG0000027855	Tubb2a	0.101903035	0.505588243	0.001349102
ENSMUSG0000046287	Pnma3	0.065502700	1 762505761	0.001348125
ENSMUSC000003040E	C2hn2	0.0000002700	0.656354735	0.001343823
ENSMUS G0000023403	Uppz Upp br	0.000303403	1 296061646	0.001372823
ENSING 5600000032505	Dirac2	0.507757466	-1.580001040	0.001372823
ENSMUSC0000007872	Dirasz	0.341140355	0.723080441	0.001372823
ENSINUSG0000007872	Tet	0.173532398	1 00550325	0.001381172
ENSMUSC0000067274	ISL Bolo0	0.094673299	-1.003323337	0.001411309
	кріро	0.06/555091	-0.020130170	0.001682484
	FUXUS	0.100408098	2 280016850	0.001082484
ENSINUSG0000016918	Sull1	0.039824199	2.360910639	0.001701476
ENSIMUSG00000025905	Uprk1	0.0257686	3.360158299	0.001723681
ENSINUS GOODOOOO31239	Itm2a	0.108930899	-0.95754296	0.001755609
ENSMUSG0000029878	Dbpnt2	0.330306596	0.821383249	0.001/814/1
ENSMUSG0000002910	Arrdc2	0.086676199	1.480452533	0.001852495
ENSMUSG0000047215	RDI9	2.16924/5/2	-0.555684005	0.001856537
ENSMUSG0000015222	Map2	0.73206249	0.663090816	0.001979855
ENSMUSG00000112117	Rmst	0.043338099	2.27/168934	0.002036851
ENSMUSG0000063229	Ldna	0.633673292	0.689926694	0.002061324
ENSMUSG0000022132	Cldn10	0.192093197	-0.797081443	0.002082363
ENSMUSG0000053550	Shisa7	0.098389199	1.339096683	0.002128031
ENSMUSG0000041141	Pnmal1	0.446265294	0.741599829	0.002128031
ENSMUSG0000022577	Ly6h	1.035429186	0.617701366	0.002170425
ENSMUSG0000024985	Tcf7l2	1.875251276	0.608810663	0.00218457
ENSMUSG0000026185	lgfbp5	0.331477896	0.806434372	0.00219798
ENSMUSG0000006369	Fbln1	0.105416999	1.299996864	0.00219798
ENSMUSG0000030499	Kctd15	0.071449299	1.620867652	0.002399594
ENSMUSG0000030231	Plekha5	0.134699498	1.139988486	0.00244209
ENSMUSG0000032580	Rbm5	0.277598096	0.873433111	0.00244209
ENSMUSG0000058740	Kcnt1	0.161639398	1.04864682	0.002456796
ENSMUSG0000061689	Dlgap4	0.881988888	0.626832731	0.002520846
ENSMUSG0000030726	Pold3	0.060907599	1.757161875	0.002525802
ENSMUSG0000060301	2610008E11Rik	0.055051099	1.836596343	0.002525802
ENSMUSG0000024186	Rgs11	0.058564999	1.808581967	0.002570124
ENSMUSG0000020886	Dlg4	0.638358492	0.667258638	0.002696619
ENSMUSG0000029869	Ephb6	0.094875299	1.336167352	0.002854479
ENSMUSG0000025575	Cant1	0.156954198	1.055430945	0.002854479
ENSMUSG0000075590	Nrbp2	0.425181894	0.836596343	0.002983152
ENSMUSG0000041697	Cox6a1	2.154020672	-0.532232727	0.003006917
ENSMUSG0000022836	Mylk	0.083162299	1.421558843	0.003006917

ENSMUSG0000022974	Paxbp1	0.083162299	1.421558843	0.003006917
ENSMUSG0000083282	Ctsf	0.296338896	0.814053774	0.003188529
ENSMUSG0000052105	Mtcl1	0.099560499	1.308664787	0.003241347
ENSMUSG0000031066	Usp11	0.180380198	0.983437731	0.003411547
ENSMUSG0000033208	S100b	0.435723594	-0.675654272	0.003446905
ENSMUSG0000021314	Amph	0.498973793	0.692045553	0.003562599
ENSMUSG0000024566	Atp9b	0.115958698	1.195050314	0.003568618
ENSMUSG0000073755	5730409E04Rik	0.270570296	0.836596343	0.003644247
ENSMUSG0000017466	Timp2	0.979206787	0.669163209	0.003761335
ENSMUSG0000003778	Brd8	0.119472598	1.165544865	0.00377789
ENSMUSG0000027221	Chst1	0.579793492	0.661509636	0.00389604
ENSMUSG0000001525	Tubb5	2.685790865	0.556266476	0.0039125
ENSMUSG0000024270	SIc39a6	0.122986498	1.138252043	0.004000849
ENSMUSG0000056222	Spock1	1.009660587	0.598291246	0.004036719
ENSMUSG0000042524	Sun2	0.113616099	1.241852821	0.004136352
ENSMUSG0000012848	Rns5	1 001461487	-0 581808008	0.00421804
ENSMUSG0000024767	Otub1	0 74494679	0.639993251	0.004260771
ENSMUSG0000033735	Sor	0 183894098	0.950552532	0.004391216
ENSMUSG0000024516	Sec11c	0 427524494	-0 630697394	0.004443768
ENSMUSG0000024510	Cck	2 517123667	-0 517449002	0.00445929
ENSMUSG0000058420	Svt17	0 165153298	1 342487272	0.004591707
ENSMUSG0000008668	Rns18	0.702779991	-0 579640903	0.004595777
ENSMUSG0000018707	Dync1h1	1.065882986	0.59108799	0.00433337147
ENSMUSG0000022415	Syngr1	0 715664291	0.622308971	0.004886982
ENSMUSG0000022415	lcn2	0.0187408	3 924059184	0.004945197
ENSMUSG0000029068	Conl2	0.181551498	1 055909371	0.004956936
ENSMUSG0000022018	Racc	0.048023200	-1 180/177171	0.004958967
ENSMUSG0000022018	Hba-a?	0.048023233	-1.100477171	0.0049338307
ENSMUSG0000061028	Clasro	0.006046500	1 257/20/6/	0.004987139
ENSMUSG00000025151	Maged1	1 7807/6377	0 561650470	0.005218961
ENSMUSG00000025151	Matk	0.315070606	0.76366482	0.005516616
ENSMUSG0000004955	Abch1a	0.0100101	-1 578//1157	0.005510010
ENSMUSG0000032594	In6k1	0.364274295	0 720681120	0.005653543
ENSMUSG00000032554	Eam163b	0.076134499	1 421558843	0.005707147
	ChdE	0.070134435	0.006006052	0.005707147
ENSMUS G0000001248	Gramd1a	0.133120337	0.050050055	0.003708093
ENSMUSC0000022424	Graniuia	0.373044093	1 020412226	0.003802390
ENSINUSG00000033434	Gtpbpb Mcf2l	0.141727298	1.039413220	0.003893330
ENSMUSC00000031442	Grike	0.120045656	0.721926156	0.003917938
ENSMUS G000000378	Dhuhin	0.300010893	1 01/2020150	0.000089711
ENSMUS G0000005409	Tmom1E0a	0.100408098	1.014303402	0.000089711
ENSINUSG00000033912	Slc27o1	0.039730299	0.020143403	0.000119832
ENSINUS G00000031808	SICZ/dl	0.236945197	0.629575915	0.006190681
	Gpil	1.769834277	0.534652622	0.006202377
ENSINUSG0000009079	EWSF1	0.326792696	0.746710839	0.006202377
ENSINUSG00000061032	Rrp1	0.614932492	0.62/58/819	0.00625301
ENSINUSG00000034949	ZTFZ	0.094875299	1.239952037	0.00625301
	Fam107a	0.76485889	0.608542586	0.00625301
ENSIMUSG00000073940	HDD-Dt	0.083162299	-1.452910274	0.00636549
	Imem114	0.0269399	2.836596343	0.006660958
ENSINUSG00000019831	Wasti	0.3560/5195	0.722939561	0.006900518
ENSMUSG0000042804	Gpr153	0.400584595	0.696418685	0.007026243
ENSMUSG0000022621	Rabiz	0.080819699	1.380916859	0.007223338
ENSMUSG0000014602	Kifla	1.619907879	0.531443961	0.007299015
	Scn1a	0.03/4816	-1.248292555	0.007299015
	ZTP931	0.0245973	-1.458859541	0.007299015
ENSINUSG00000109336	Samd4b	0.045680699	-1.163403657	0.007299015
ENSMUSG0000004937	Sgta	0.589163892	0.629000923	0.007299015
ENSINUSG0000040867	ведаіп	0.255343397	0.80402848	0.007299015
ENSI/USG0000090101	Snng9	0.063250199	1./11065461	0.007299015
ENSMUSG0000039579	Grin3a	0.155782898	0.971948196	0.007405342
ENSMUSG0000027405	Nop56	0.208491397	0.860980501	0.00744215
ENSMUSG0000074923	Pak6	0.035139	2.205830152	0.007497526
ENSMUSG0000040759	Cmtm5	0.138213398	-0.807744705	0.007497526
ENSMUSG0000023067	Cdkn1a	0.060907599	1.564516797	0.007625932
---------------------------	---------------	-------------	---------------	--------------
ENSMUSG0000054387	Mdm4	0.100731799	1.192076997	0.007635863
ENSMUSG0000013787	Ehmt2	0.385357695	0.695123917	0.00817316
ENSMUSG0000016541	Atxn10	1.125619285	0.551732572	0.00825078
ENSMUSG0000003352	Cacnb3	0.274084196	0.770598784	0.008301854
ENSMUSG0000032554	Trf	0.500145093	-0.596862353	0.008372109
ENSMUSG0000019302	Atp6v0a1	0.74846069	0.588668829	0.00841391
ENSMUSG0000090071	Cdk5r2	0.182722798	1.001934075	0.008505697
ENSMUSG0000021340	Gpld1	0.151097698	0.976321106	0.008676146
ENSMUSG0000034312	lasec1	0.494288594	0.642246959	0.00879622
ENSMUSG0000024735	Prof19	0.486089494	0.648292812	0.00879622
ENSMUSG0000024608	Rps14	2.210243071	-0.502951746	0.008915466
ENSMUSG0000092627	D130058E05Rik	0.089018799	1.245401888	0.008964427
ENSMUSG0000026117	Zap70	0.064421499	1.474026263	0.009109656
ENSMUSG0000006676	Usp19	0.174523698	0.915667914	0.009155646
ENSMUSG0000031775	Plip	0.174523698	-0.741939889	0.009178182
ENSMUSG0000055065	Ddx17	0 428695794	0 662745638	0 009461148
ENSMUSG0000036006	Rinor2	0 110102199	1 121049732	0 009774808
ENSMUSG0000015377	Dennd6h	0 138213398	1 003493651	0.009774808
ENSMUSG0000087651	1500009116Rik	0.081990999	-0 932519775	0.009882989
ENSMUSG0000060314	7fn941	0.071449299	1 39847523	0.009920993
ENSMUSG0000051022	HeRet1	0.0363103	-1 229492848	0.010122716
ENSMUSG0000067786	Nnat	0.514200693	0.62927137	0.010206745
ENSMUSG0000007780	Pacal1	0.077305700	1 217722022	0.010213014
ENSMUSG0000023002	Chka	0.077303733	0.821220586	0.010213014
ENSMUSG0000024845	Ghe1	0.038652800	-1 2052232822	0.010/50115
ENSMUSC0000022707	Mpp2	0.053052655	1 572561027	0.010712542
ENSING 300000032575	Nang	0.037333033	0.626260097	0.010712543
ENSINUSG0000024381	Hink?	0.021226495	0.020200307	0.010712343
ENSMUSG0000001450	Sotech	0.0040832	-1 32004/03/	0.010707303
ENSMUSG00000043401	Washc1	0.0232023	1 1667//0//	0.0111000300
ENSMUSG0000024101	Ankzf1	0.101903039	1.100744544	0.0111330626
ENSMUSG0000006476	Nemf	2 752554964	0.403500624	0.011637432
ENSMUSG00000034156	Tenoan1	0 217861707	0.433330024	0.011666204
ENSMUSG0000022296	Baalc	0.242450007	-0 667535083	0.011666204
ENSMUSG0000031617	Tmem184c	0.242455057	-1.043109424	0.011671627
ENSMUSG0000032297	Celf6	0.057353035	1 448031055	0.011870207
ENSMUSG0000036667	Tcaf1	0.412297595	0.656264526	0.011978869
ENSMUSG0000038886	Man2a2	0.288139796	0.729681139	0.011978869
ENSMUSG0000020882	Cacnb1	0.126500398	1 019818167	0.011978869
ENSMUSG0000028653	Trit1	0.046851999	1 734716729	0.012016708
ENSMUSG0000029817	Tra?a	0 167495898	0.897996887	0.012016708
ENSMUSG0000023021	Pnc3a1	1 611708779	-0 492647136	0.012010700
ENSMUSG0000023081	Atp1a1	0.660083501	0.581135157	0.012176476
ENSMUSG0000028139	Rijad1	0.042166799	1 876124707	0.012323131
ENSMUSG0000022957	Itsn1	0.293996296	0 726413425	0.012352872
ENSMUSG0000022557	Dcaf15	0.233330230	1 375016258	0.012633308
ENSMUSG0000037103	Secn1	0.183894098	0.85/07/872	0.012804536
ENSMUSG0000006435	Neurl1a	0.100004000	1 084573856	0.012132632
ENSMUSG00000039904	Gor37	0.110102133	-0.004323030	0.013645031
ENSMUSC0000035504	Gpi 57	0.081990999	0.900474501	0.013045051
ENSMUSC0000028034	Pubpi Opp2	0.183003338	1 109262102	0.013843270
ENSMUS G00000020525	Opii5 Nyf1	0.043080033	1 100202105	0.013838273
ENSMUSC0000078517	Emc1	0.127071098	0 724702462	0.014033773
	Emim10l2a	0.285511050	1 544415501	0.0140704
ENSMUS G00000034830	Castor?	0.030222333	0.0102/0707	0.014143919
	Mboat7	0.200140/5/	0.012340/5/	0.01419234
	Fabra	0.203/3/150	-0 516/0077	0.014019003
	Pro2	1 361050582	-0.31043377	0.014070083
	npso	1.301030362	-0.306222367	0.014974686
	rex5i	0.142898598	-0./0004/903	0.014978645
	PUDJ3	0.212005297	0.000232172	0.014978645
	EVIZA	0.0558/9/99	-1.006246424	0.014978645
EIN31VIU3GUUUUUUUUUUUUUUU	Cdl4	0.005592799	-0.974309833	0.014978645

ENSMUSG0000032855	Pkd1	0.167495898	0.877238327	0.014978645
ENSMUSG0000050121	Opalin	0.103074399	-0.837417346	0.0152566
ENSMUSG0000079523	Tmsb10	4.692227739	0.467838798	0.015400386
ENSMUSG0000076439	Mog	0.285797196	-0.661393946	0.015514149
ENSMUSG0000027712	Anxa5	0.159296798	-0.730707491	0.01555272
ENSMUSG0000062981	Mrpl42	0.267056397	-0.632538899	0.01555272
ENSMUSG0000007476	Lrrc8a	0.188579298	0.836596343	0.015616304
ENSMUSG0000027248	Pdia3	0.353732595	0.67037939	0.015704259
ENSMUSG0000076609	løkc	0.048023299	1 643951265	0.015704259
ENSMUSG0000020386	Sar1h	0 135870798	-0 760644488	0.015763895
ENSMUSG0000008206	Cers4	0 112444799	1 044191762	0.015916163
ENSMUSG0000031278	Acsl4	0 323278796	0.683551968	0.015916163
ENSMUSG0000027067	Sern1	0.242459097	0.755676347	0.015924871
ENSMUSG0000027007	Srrm1	0 115958698	1 021020914	0.016137232
ENSMUSG0000016940	Ketd2	0.416982795	0.636896507	0.016137232
ENSMUSG0000070814	7swim9	0.0292825	2 537036061	0.0162026
ENSMUSG0000068523	Gng5	0.230746097	-0.65298811	0.016320881
ENSMUSG00000040430	Ditpoc1	0.230740037	-0.628420202	0.016320881
ENSMUSC0000040430	Phone 20	1 127061995	0.020423232	0.010320881
ENSMUSC0000026820	rµszo Ermn	0 112616000	-0.301990732	0.010320881
ENSMUS G0000020850	Nofm	0.115010055	-0.800081030	0.010470833
ENSMUS G0000022034	Cmtr1	0.303703230	-0.029820345	0.010470833
ENSMUSC0000024019	DovelE	0.202034037	1 07475609	0.010009398
ENSMUS G0000023108	Opysio Ofra2	0.100366233	1.07475008	0.010983481
ENSMUSC0000022105	Gilaz Gafi	0.030032833	1.324033104	0.017049555
ENSMUSC0000027439	GZI1 Ppc11	1 604971079	0.40051451	0.017134085
ENSING 30000003423	Arlad	0.072620500	1 20021421	0.017134085
	An4u Cv2al1	0.072020599	1.29031431	0.017134065
	U1f0	1.029572087	0.519925975	0.017284541
	Tinch 4v	0.265454590	0.700120411	0.017406079
ENSINUS G0000049773	Code180	5.705995152	-0.451295252	0.017450562
	CCUC189	0.0209399	2.421556645	0.017759756
ENSMUSC0000021134	51515 Cwf1011	0.010079090	1 762505761	0.017772611
ENSIVIUS G00000025200	CWI19I1	0.045556099	1./02595/01	0.017772011
ENSINUSG0000016349	zer142	2.055266675	0.465055054	0.017874469
ENSIMUSG00000061524		0.0023426	-2.748366158	0.017874469
ENSINUSG00000019878	HST2	0.055051099	1.514668248	0.01/911939
	Gitp	0.053879799	-1.018205742	0.018129773
ENSINUS GOODOODOODOOO	Apzsi	1.270860483	0.522661039	0.018247546
ENSIMUS GOODOOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOC		0.281111996	0.70509156	0.018295001
ENSINUSG00000026034	CIKI Ciki	0.188579298	0.818894341	0.018318802
	Grb10	0.107759599	1.053827059	0.018433598
ENSMUSG0000021194	Cnga	0.633673292	0./141/424	0.018536699
ENSMUSG0000015396	Cd83	0.185065398	0.827551203	0.018564073
ENSMUSG0000034799	Unc13a	0.234259997	0.746181048	0.018627172
ENSMUSG0000059070	RpI18	1.038943086	-0.494401261	0.01894278
ENSMUSG0000026895	Nduta8	0.550510993	-0.531747921	0.019034361
ENSMUSG0000026765	Lypd6b	0.052708499	1.552803377	0.019034361
ENSMUSG0000046330	RpI37a	1.834255776	-0.466986272	0.019178228
ENSMUSG0000036636	Clcn7	0.090190099	1.121998562	0.019706169
ENSMUSG0000030102	Itpr1	0.528256293	0.585312943	0.019878139
ENSMUSG0000022194	Pabpn1	0.045680699	-1.070294253	0.020087315
ENSMUSG0000032332	Col12a1	0.046851999	1.609185847	0.020508823
ENSMUSG0000059439	Bcas3	0.127671698	1.003246212	0.020604004
ENSMUSG0000024271	Elp2	0.201463597	0.795491139	0.020604004
ENSMUSG0000023328	Ache	0.316250996	0.670817871	0.020761419
ENSMUSG0000041629	Fam104a	0.119472598	-0.771523879	0.020850819
ENSMUSG0000071659	Hnrnpul2	0.343190896	0.652564395	0.020850819
ENSMUSG0000000538	Tom1l2	0.489603394	0.593206466	0.020912192
ENSMUSG0000053411	Cbx7	0.098389199	1.076062277	0.020939679
ENSMUSG0000006333	Rps9	1.267346583	-0.473829719	0.021503479
ENSMUSG0000063882	Uqcrh	1.731181377	-0.459545807	0.021655128
ENSMUSG0000032579	Hemk1	0.065592799	1.347558262	0.021700725
ENSMUSG0000039623	Ap5z1	0.056222399	1.451306187	0.02177641

ENSMUSG0000027858	Tspan2	0.229574797	-0.634108979	0.021786227
ENSMUSG0000074457	S100a16	0.213176597	-0.647703819	0.021941515
ENSMUSG0000047844	Bex4	0.188579298	0.801406914	0.021941515
ENSMUSG0000048218	Amigo2	0.110102199	1.014134528	0.022238182
ENSMUSG0000039087	Rreb1	0.081990999	1.17898854	0.022308139
ENSMUSG0000048814	Lonrf2	0.387700295	0.626673273	0.022506783
ENSMUSG0000000296	Tpd52l1	0.112444799	-0.782659336	0.022506783
ENSMUSG0000031343	Gabra3	0.227232197	0.743486938	0.022506783
ENSMUSG0000027188	Pamr1	0.125329098	0.947627655	0.022750676
ENSMUSG0000032766	Gng11	0.130014298	-0.933477563	0.022750676
ENSMUSG0000039108	Lsm14b	0.145241198	0.895490032	0.022771949
ENSMUSG0000032238	Rora	0.674668791	-0.508645537	0.022771949
ENSMUSG0000015476	Prrt1	0.374815995	0.631644369	0.022771949
ENSMUSG0000096188	Cmtm4	0.189750598	0.793007074	0.022985233
ENSMUSG0000020022	Ndufa12	1.055341286	-0.478276995	0.02319016
ENSMUSG0000040952	Rps19	1.51097698	-0.463941422	0.02349639
ENSMUSG0000033278	Ptnrm	0 224889597	0 756628038	0 02349639
ENSMUSG0000040479	Døkz	0 317422296	0 657272643	0 023974067
ENSMUSG0000056413	Adan1	0 577450892	0.5609619	0.023974067
ENSMUSG0000020634	Libyn2a	0.0222547	-1 365037518	0.023974844
ENSMUSG00000041351	Ran1gan	0.887845388	0 555929478	0.023574844
ENSMUSG0000045608	Dby2	0.038652899	-1 120334935	0.024908359
ENSMUSG0000030002	Dusp11	0.066764099	1 302259915	0.0240000000
ENSMUSG0000030400	Ercc2	0.066764099	1 302259915	0.025075414
ENSMUSG0000005338	Cadm3	0.457978294	0 587120042	0.025472551
ENSMUSG000002354	Ndufb9	1 755778677	-0 452647942	0.025472551
ENSMUSG0000004636	Stybn?	0.048023200	1 528474047	0.025472551
ENSMUSG0000004020	Twen1	0.048023233	1.528474047	0.025623784
ENSMUSG0000024058	Ccdc85c	0.046023233	1.328474047	0.025025784
ENSMUSG0000084885	Ennn?	0.482575594	0 578227083	0.0258220
ENSMUSG0000031837	Necah2	0.664127091	0.539260236	0.025517114
ENSMUSG0000022973	Svni1	0.880817588	0.510459348	0.026008444
ENSMUSG0000039630	Hnrnnu	0.611418592	0.545335384	0.0200000444
ENSMUSG0000024067	Dov30	0.072620599	-0 886563452	0.026257437
ENSMUSG0000024007	Mib2	0.1//060808	0.883002058	0.026367051
ENSMUSG0000023000	Aifm3	0.1440056307	0.687115444	0.020307051
ENSMUSG0000039782	Cneh?	0.120643898	0.95207356	0.026589866
ENSMUSG0000048154	Kmt2d	0.045680699	1 573561937	0.026689866
ENSMUSG0000041607	Mhn	5 103354033	-0 433428225	0.026770757
ENSMUSG0000035754	Wdr18	0 241287797	0.709904338	0.026887239
ENSMUSG0000022890	Atn5i	1 467638881	-0 456044525	0.026887239
ENSMUSG0000005986	Ankrd13d	0 206148797	0.749613041	0.026887239
ENSMUSG0000056812	St8cia2	0.260028507	0.60/081737	0.020007233
ENSMUSG00000011877	Git1	0.200020337	0.553795506	0.027485528
ENSMUSG0000029578	Wini2	0.224889597	0.728613662	0.027800876
ENSMUSG0000021186	Fbln5	0.084333599	1 119530306	0.027964132
ENSMUSG00000017639	Pab11fin/	0.384186395	0.606083079	0.027504132
ENSMUSG0000017035	Rtol1	0.0281112	2 480452533	0.028554228
ENSMUSG0000004961	Sv#5	0.0201112	0 731898964	0.028750645
ENSMUSG0000004501	Tifa	0.0163082	-1 504440575	0.028750045
ENSMUSC0000022480	Ddo1b	0.0103382	0 542277792	0.020000144
ENSMUS G0000022489	Cofb	0.004330732	0.342277765	0.020000144
ENSING 5G00000071054	Grippp1	0.213170397	0.757580557	0.029330078
ENSMUS G000001240E	Bolic	1 205257694	0.035075530	0.030274002
ENSMUSC0000002405	Efroh	0.272644605	0.402173844	0.030328783
	Topp	0.373044033	0.011025578	0.030430038
	1 PPP	0.401/33033	0.011005400	0.030469035
	raisa Kici	1 801/50376	0.303437731	0.031471021
	Ral2	1.001435370	0.477407303	0.031471021
	ngiz Fom1h	0.122300430	0.520000008	0.0314/1021
	reliitu	0.230336630	0.00000020	0.031552005
	IZUIII04 Chebd10	0.000004899	T.02T02226	0.031552065
	Dev	1.032/042/8	-0.440303328	0.032035284
EN3INIO3G0000031283	DUX	0.0210854	2.433301333	0.032035284

ENSMUSG0000022044	Stmn4	1.834255776	0.515220758	0.032169119
ENSMUSG0000035545	Leng8	0.089018799	1.058988764	0.032353263
ENSMUSG0000027624	Epb41l1	0.144069898	0.860055316	0.032859464
ENSMUSG0000039661	Dusp26	0.349047395	0.617654521	0.033045893
ENSMUSG0000029064	Gnb1	1.964270074	0.452408189	0.033349556
ENSMUSG00000108348	Gm42372	0.199120997	0.746654217	0.033350213
ENSMUSG0000006576	Slc4a3	0.265885097	0.669486357	0.033377537
ENSMUSG0000001666	Ddt	0.255343397	-0.593187742	0.033377537
ENSMUSG0000038141	Tmem181a	0.046851999	1,493708629	0.033601925
ENSMUSG0000050069	Grem2	0.062078899	1.26955575	0.033692887
ENSMUSG0000045294	Insig1	0 221375697	0 748240468	0 03385957
ENSMUSG0000007207	Stx1a	0 226060897	0 70858873	0.03385957
ENSMUSG0000020044	Timn3	0 479061694	0 561880132	0.03385957
ENSMUSG0000037541	Shank2	0 120643898	0 922326217	0.03394193
ENSMUSG0000042066	Tmcc2	0 267056397	0.664572875	0.034447816
ENSMUSG0000065947	mt-Nd4l	0 474376494	-0 514876028	0.034447816
ENSMUSG0000021136	Smoc1	0.072620599	1 170020076	0.034599681
ENSMUSG00000116165	Pdyn	0.972984388	0 500475901	0.034599681
ENSMUSG0000026175	Vil1	0.0175695	2 836596343	0.035078617
ENSMUSG0000020175	Pop3ca	0.826037780	-0 460326722	0.035078617
ENSMUSG0000028101		0.0175605	2 8365063/3	0.035078617
ENSMUSG0000034579	Pla2a2	0.01/3033	2.850550545	0.035403526
ENSMUSC0000034375	Fidzgo	0.0210834	0.00020E162	0.033403320
ENSING 5G00000022111	Mat2a	0.000704099	-0.050505105	0.033403320
ENSMUS G0000004112	Cacha1h	0.333363033	0.027049432	0.033491085
ENSMUSC0000001227	SomaCh	0.155526198	0.874751472	0.033340033
	Dhu0	0.303443335	0.031334441	0.035540035
	Diix9	0.120042990	0.8/0124/0/	0.03509/366
ENSIVIUS G00000030852	IdUUZ Dedu1	0.179206696	0.703532661	0.035676191
ENSINUSG00000028691	Pruxi	0.570425095	-0.49945260	0.035943914
ENSIVIUS G00000037431	Nonh	0.401492194	0.06/516120	0.03029070
ENSIVIUS G00000027438	Napo	0.615224769	0.4909/0343	0.030551708
ENSINUSG000000317	Abcf1	0.110102199	0.947020332	0.030023924
ENSMUS G00000038762	Abtri Cloten1	0.344302190	0.000559259	0.030032207
	Cistili	2.467641106	0.430372833	0.037233347
	Spryd3	0.284625896	0.648392608	0.037308855
ENSIMUS G00000037400	Atplib	0.070277999	1.1823/118	0.037462153
ENSINUSG00000043670	Dirasi	0.251829497	0.797067979	0.037462153
ENSINUSG0000001082	Mird24 2k -	0.069106699	1.28405532	0.037483641
	IVIIF124-2ng	0.189750598	0.742381001	0.038237704
ENSINUSG00000018012	Raca Carriela A	0.2213/569/	0.706012233	0.038237704
	Samd14	0.176866298	0.762595761	0.038514656
ENSIVIUSG00000079018		0.270570296	-0.572209203	0.038627203
ENSMUSG0000057894	Ztp329	0.057393699	1.310527531	0.038874046
ENSMUSG0000078515	Ddi2	0.073791899	1.136156625	0.038911007
ENSMUSG0000022515	Anks3	0.073791899	1.136156625	0.038911007
ENSMUSG0000030647	Ndutc2	0.689895691	-0.476501901	0.039082226
ENSMUSG0000034751	Mast4	0.160468098	0.79537368	0.039082226
ENSMUSG0000024130	Abca3	0.319764896	0.62174547	0.039082226
ENSMUSG0000027977	Ndst3	0.0269399	2.099630749	0.039144179
ENSMUSG0000033295	Ptprf	0.099560499	0.977458879	0.039342276
ENSMUSG0000017167	Cntnap1	0.213176597	0.708439991	0.039342276
ENSMUSG0000025085	Ablim1	0.222546997	0.699779653	0.039462954
ENSMUSG0000033615	Cplx1	1.459439781	-0.435663962	0.039673012
ENSMUSG0000034472	Rasd2	0.169838498	0.778493388	0.039885344
ENSMUSG0000060261	Gtt2i	0.709807791	0.504720221	0.039945098
ENSMUSG0000029152	Ociad1	1.038943086	0.471140872	0.040233431
ENSMUSG0000062683	Atp5g2	0.469691294	-0.537491528	0.040430594
ENSMUSG0000044080	S100a1	0.466177394	-0.506152296	0.040533359
ENSMUSG0000033068	Entpd6	0.161639398	0.785612414	0.041208704
ENSMUSG0000038615	Nfe2l1	0.477890394	0.546769091	0.041764013
ENSMUSG0000086968	4933431E20Rik	0.171009798	0.769482147	0.042195998
ENSMUSG0000085438	Oip5os1	0.603219492	0.51690672	0.042317946
ENSMUSG0000061702	Tmem91	0.179208898	0.745830879	0.042400963

ENSMUSG0000030846	Tial1	0.213176597	0.708439991	0.042425798
ENSMUSG0000019188	H13	0.188579298	0.73350285	0.04255296
ENSMUSG0000003526	Prodh	0.112444799	0.912947229	0.04255296
ENSMUSG0000031393	Mecp2	0.153440298	0.793527621	0.04255296
ENSMUSG0000037095	Lrg1	0.0163982	3.743486938	0.042736583
ENSMUSG0000050821	Fam131a	0.097217899	0.980986252	0.042776365
ENSMUSG0000038602	Slc35f1	0.100731799	0.957611744	0.04280376
ENSMUSG0000053819	Camk2d	0.440408794	0.555813268	0.042821178
ENSMUSG0000032850	Rnft2	0.190921898	0.734716729	0.042848891
ENSMUSG0000031781	Ciapin1	0.174523698	0.875590474	0.042861879
ENSMUSG0000034403	Pja1	0.407612395	0.597179042	0.043067723
ENSMUSG0000037224	Zfyve28	0.074963199	1.104076654	0.043329168
ENSMUSG0000030811	Fbxl19	0.085504899	1.046049708	0.043337848
ENSMUSG0000093930	Hmgcs1	0.620788992	0.522842179	0.043373773
ENSMUSG0000025375	Aatk	0.541140593	0.526557799	0.04351797
ENSMUSG0000050875	Minar2	0.130014298	0.862591551	0.044059922
ENSMUSG0000062248	Cks2	0.0140556	-1.507358058	0.044824946
ENSMUSG0000059213	Ddn	0.168667198	0.768577919	0.045047663
ENSMUSG0000031546	Gins4	0.023426	-1.262939331	0.045376398
ENSMUSG0000044783	Hjurp	0.086676199	1.021020914	0.04578739
ENSMUSG0000026554	Dcaf8	0.284625896	0.648392608	0.04578739
ENSMUSG0000028582	Cc2d1b	0.069106699	1.158524438	0.04578739
ENSMUSG0000051515	Fam181b	0.046851999	-0.975776654	0.04578739
ENSMUSG0000035762	Tmem161b	0.0199121	2.421558843	0.04578739
ENSMUSG0000017713	Tha1	0.0304538	2.006521344	0.046259935
ENSMUSG0000028656	Cap1	0.063250199	-0.889838584	0.046277221
ENSMUSG0000024940	Ltbp3	0.099560499	1.092936096	0.046277221
ENSMUSG0000024953	Prdx5	0.833965589	-0.465364746	0.047069917
ENSMUSG0000027447	Cst3	8.093682894	-0.396344205	0.047147292
ENSMUSG0000022843	Clcn2	0.048023299	1.421558843	0.047147292
ENSMUSG00000041380	Htr2c	0.178037598	0.736432181	0.047163899
ENSMUSG0000013076	Amotl1	0.525913693	0.536635368	0.047289062
ENSMUSG0000032178	IIf3	0.187407998	0.724569725	0.047289062
ENSMUSG0000031622	Sin3b	0.265885097	0.636063355	0.047364452
ENSMUSG0000028876	Epha10	0.062078899	1.199166422	0.047434679
ENSMUSG0000027332	Ivd	0.165153298	0.757524772	0.047454283
ENSMUSG0000022353	Mtss1	0.165153298	0.757524772	0.047454283
ENSMUSG0000033287	Kctd17	1.226351084	0.47555665	0.047454283
ENSMUSG0000049630	C1ql3	0.040995499	1.547089726	0.047790869
ENSMUSG0000050022	Amz1	0.040995499	1.547089726	0.047790869
ENSMUSG0000024136	Dnase1l2	0.0128843	3.421558843	0.048028948
ENSMUSG0000073678	Pgap1	0.115958698	0.895490032	0.049554377
ENSMUSG0000021669	Col4a3bp	0.132356898	0.836596343	0.049837251
ENSMUSG0000039686	Zer1	0.343190896	0.60164046	0.049985936
ENSMUSG0000020189	Osbpl8	0.221375697	0.678531497	0.049985936

Table S2M. DEGs at ZT4 in female and male hypothalamus (LH + DMVH). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT4 FEMALES - Hypothalamus					ZT4 MALES - Hyp[othalamus				
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR
ENSMUSG0000021342	Prl	1.978699864	-5.654865506	5.62742E-18	ENSMUSG0000061808	Ttr	0.759038645	-2.340355734	3.77522E-14
ENSMUSG0000028298	Cga	0.160435124	-6.190119041	4.53065E-16	ENSMUSG0000024907	Gal	0.504741434	-3.741804169	5.73868E-13
ENSMUSG0000090137	Uba52	2.044062322	-2.301182933	1.10646E-14	ENSMUSG0000027301	Oxt	0.115589641	-7.678059154	2.64473E-08
ENSMUSG0000019970	Sgk1	2.329280321	2.944841987	3.11128E-13	ENSMUSG0000023067	Cdkn1a	0.766744621	2.581034431	2.64473E-08
ENSMUSG0000020713	Gh	0.825943787	-5.99547161	4.10665E-12	ENSMUSG0000019970	Sgk1	3.298157767	1.907740132	8.7814E-07
ENSMUSG0000023067	Cdkn1a	0.754639288	3.380904269	1.01509E-11	ENSMUSG0000005705	Agrp	0	-7.904124013	1.45867E-06
ENSMUSG00000113902	Ndufb1-ps	4.824937808	-1.872222513	8.93262E-11	ENSMUSG0000090137	Uba52	2.138408365	-1.416007377	2.37671E-06
ENSMUSG0000060143	Gm10076	9.465672325	-1.843654735	1.46504E-10	ENSMUSG0000040856	Dlk1	1.051865737	-1.5925262	6.63177E-06
ENSMUSG0000067288	Rps28	9.584513157	-1.780392506	4.75265E-10	ENSMUSG0000048572	Tmem252	0.323650996	3.516494179	0.000120894
ENSMUSG0000103034	Gm8797	0.475363331	3.836231489	1.4611E-09	ENSMUSG0000045005	Fzd5	0.015411952	-4.094530618	0.000344534
ENSMUSG0000028998	Tomm7	2.810585693	-1.783129513	1.4611E-09	ENSMUSG0000027400	Pdyn	0.601066135	-1.727559025	0.000377447
ENSMUSG0000048572	Tmem252	0.297102082	5.753769329	7.50199E-09	ENSMUSG0000021453	Gadd45g	1.229103187	1.546388288	0.000406886

ENSMUSG0000034892	Rps29	20.65453672	-1.633671901	1.07021E-08	ENSMUSG0000056380	Gpr50	0.023117928	-3.892896757	0.001292256
ENSMUSG0000064360	mt-Nd3	11.70582202	-1.633047916	1.24045E-08	ENSMUSG0000025591	Tma16	0.685831872	1.890479302	0.001638317
ENSMUSG0000090733	Rps27	12.30596823	-1.629130055	1.2884E-08	ENSMUSG0000031431	Tsc22d3	3.949312747	1.258169217	0.001827015
ENSMUSG0000046516	Cox17	3.291891066	-1.673447236	1.2884E-08	ENSMUSG0000035202	Lars2	1.194426294	-1.204583024	0.002288506
ENSMUSG0000079641	Rpl39	9.590455199	-1.619714044	1.2884E-08	ENSMUSG0000020713	Gh	0.003852988	-5.140824271	0.002529156
ENSMUSG0000016427	Ndufa1	2.656092611	-1.683053735	1.2884E-08	ENSMUSG0000021680	Crhbp	0.381445817	2.165996932	0.005665505
ENSMUSG0000002910	Arrdc2	0.635798455	2.666306488	2.56179E-08	ENSMUSG0000002831	Plin4	0.308239044	2.125025151	0.006694902
ENSMUSG0000027857	Tshh	0	-7 137824534	3 45454F-08	ENSMUSG0000002910	Arrdc2	0 504741434	1 692065744	0.006719216
ENSMUSG00000104960	Snhg8	0 921016453	-1 780458719	3.45772E-08	ENSMUSG0000023964	Calcr	0 100177689	-1 86592971	0.006836577
ENSMUSG0000064356	mt_Atn8	1 408263867	-1 731107382	5.2367E-08	ENSMUSG0000023304	Δνη	0.65115498	-5 008537166	0.007080381
	Ato Erod	1.408203807	1 511050442	1 107755 07		Thur	0.0115498	-5.008557100	0.007989381
ENSIVE C00000071328	AtpSillu	6 172781250	1.511950445	1.13//32=07	ENSINGSG0000018004	Cm11C27	0.011338904	-5.214624652	0.008873304
ENSINUSG00000021290	Atpsmpi	6.1/3/81259	-1.53200632	1.23405E-07	ENSIVE COOLOGO 78640	Gm11627	0.385298805	1.85842413	0.008873304
ENSINUSG0000089661	iviia	0.041594291	-4.068403133	1.73006E-07	ENSIMUSG0000092035	Pegiu	0.277415139	-1.471256523	0.01100/318
ENSMUSG0000038489	PoirZi	0.814059704	-1.6/431//01	5.2/24E-0/	ENSMUSG0000047502	Miron7	0.034676892	-2.570968662	0.011998874
ENSMUSG0000026822	Lcn2	0.320870248	4.8627037	5.60506E-07	ENSMUSG0000054360	Bsx	0.023117928	-2.729398025	0.015002692
ENSMUSG0000046330	RpI37a	15.00959717	-1.443185713	5.7433E-07	ENSMUSG0000021025	Nfkbia	0.770597609	1.365837511	0.016667502
ENSMUSG0000074754	Smim26	0.921016453	-1.619095731	7.12561E-07	ENSMUSG0000027210	Meis2	0.566389243	1.85712499	0.019329747
ENSMUSG0000098234	Snhg6	0.118840833	-2.39670331	7.86557E-07	ENSMUSG0000027525	Phactr3	2.015112748	1.118158431	0.022616389
ENSMUSG0000062997	Rpl35	11.20669052	-1.42533281	8.32876E-07	ENSMUSG0000063564	Col23a1	0.03852988	-3.291446134	0.023726566
ENSMUSG0000057322	Rpl38	28.59904639	-1.382928986	1.70659E-06	ENSMUSG0000060143	Gm10076	7.043262148	-0.892896757	0.02537904
ENSMUSG0000035674	Ndufa3	6.310448216	-1.397573043	1.85751E-06	ENSMUSG0000029819	Npy	0.489329482	-2.14556219	0.027979162
ENSMUSG0000071637	Cebpd	0.570435997	2.359328734	3.70704E-06	ENSMUSG0000034936	Arl4d	0.612625099	1.474835027	0.029150868
ENSMUSG0000070369	Itgad	0.184203291	5.081343987	4.99999E-06	ENSMUSG0000022096	Hr	0.423828685	1.579591014	0.029150868
ENSMUSG0000050856	Atp5k	9.70335399	-1.339860768	5.245E-06	ENSMUSG0000054160	Nkx2-4	0.050088845	-2.085541835	0.0300094
ENSMUSG0000017778	Cox7c	14.64119059	-1.330764181	5.37963E-06	ENSMUSG0000031880	Rrad	0.123295617	-1.706483633	0.030019959
ENSMUSG0000078974	Sec61g	5.205228472	-1.366827662	7.32859E-06	ENSMUSG0000090247	Bloc1s1	0.346768924	-1.192457039	0.030019959
ENSMUSG0000047721	Bola2	2.299570113	-1.387521449	7.63596E-06	ENSMUSG0000091705	H2-Q2	0.19650239	-1.684310135	0.030645124
ENSMUSG0000020018	Snrpf	0.938842578	-1.506639866	9.34481E-06	ENSMUSG0000019817	Plag11	0.29668008	-1.375678863	0.03257112
ENSMUSG0000042737	Dom3	1,265654868	-1.480969775	9.62087E-06	ENSMUSG0000020660	Pomc	0.547124303	-2.630870876	0.041865115
ENSMUSG0000096956	Snhg18	0.059420416	-2 781152489	9 65024E-06	ENSMUSG0000042607	Ash4	0 154119522	-1 643869209	0.045051143
ENSMUSG0000034936	Arl4d	0.445653123	2 521916578	1.05238E-05	ENSMUSG0000025509	Pnnla?	0.839951394	1 20946496	0.045051143
ENSMUSG00000034330	Plin/	0.243623707	3 888698909	1.05238E-05	214310030000023303	Thpluz	0.035551554	1.20340430	0.045051145
ENSMUSG0000002831	Pol27	28 22165/52	-1 286962462	1.05258E-05					
ENSINUSC00000041841	Npi37	0 712044006	1 520051507	1.101000-05					
	0514	0.713044996	-1.556951567	1.24349E-05					
ENSMUSG0000039001	Rps21	33.14470824	-1.2/44/2503	1.58087E-05					
ENSMUSG0000025739	Gng13	1.533046742	-1.397/02/52	2.1/103E-05					
ENSMUSG0000016252	Atp5e	9.99451403	-1.245547415	3.16019E-05					
ENSMUSG0000057278	Snrpg	2.151019072	-1.31720539	5.96406E-05					
ENSMUSG0000097383	1500026H17Rik	0.0713045	-2.347499312	6.50101E-05					
ENSMUSG0000087687	Pet100	1.206234452	-1.309625752	9.98101E-05					
ENSMUSG0000057863	Rpl36	13.66075372	-1.181429038	0.000109509					
ENSMUSG0000042541	Sem1	2.537251778	-1.249991561	0.000122574					
ENSMUSG0000027525	Phactr3	1.996525989	1.379916685	0.000122993					
ENSMUSG0000014313	Сохбс	19.24627286	-1.173690413	0.000122993					
ENSMUSG0000079523	Tmsb10	24.94469078	-1.159386579	0.000160804					
ENSMUSG0000058351	Smim4	0.386232706	-1.518118084	0.000185675					
ENSMUSG0000052296	Ppp6r1	0.160435124	-1.825546609	0.000196251					
ENSMUSG0000078784	Rbis	2.335222363	-1.224382156	0.000198751					
ENSMUSG0000073616	Cops9	6.262911883	-1.154078188	0.000260913					
ENSMUSG0000093565	Rab26os	0.101014708	-2.015517552	0.000260913					
ENSMUSG0000064179	Tnnt1	0.350580456	2.666306488	0.000310029					
ENSMUSG00000100916	Lhb	0	-4.726010935	0.000310029					
ENSMUSG0000093674	Rpl41	25.44976432	-1.124500589	0.000310029					
ENSMUSG0000031431	Tsc22d3	3.648413564	1.253029446	0.000371284					
ENSMUSG0000030711	Sult1a1	0.404058831	2.102405602	0.000391551					
ENSMUSG0000031760	Mt3	20.27424606	-1.10534451	0.000402243					
ENSMUSG0000065947	mt-Nd4l	3.131455942	-1.173469912	0.000504658					
ENSMUSG0000090101	Snhg9	0.089130625	-2 02718047	0.00107887					
ENSMUSG000000161	Llacr11	8 651612621	-1 04921156	0.001388064					
ENSMUSC0000020105	Drked	0.00012021	1 722420692	0.001300004					
	Pomo1	0.5051525/	1.733420083	0.001506004					
	ROLLOT	3.012/01314	-1.011202012	0.00121385					
	Clo17o7	0 457527206	1 04210425	0.00151093					
	Slc17a7	0.457537206	1.84318425	0.00151982					

ENSMUSG0000036372	Tmem258	1.711307991	-1.112236792	0.002001772
ENSMUSG0000060636	Rpl35a	23.10859992	-1.015122543	0.002146088
ENSMUSG0000079435	Rpl36a	8.520887705	-1.013962973	0.002380416
ENSMUSG00000106918	Mrpl33	1.5984092	-1.099228259	0.00272204
ENSMUSG0000068240	Gm11808	0.499131497	-1.243974697	0.002754748
ENSMUSG0000038690	Atp5i2	13.12596997	-1.000809872	0.002754788
ENSMUSG0000025362	Rns26	15 99003404	-0 999166703	0.002812796
ENSMUSG0000019689	Emc1	1 81826474	-1 078625934	0.003091672
ENSMUSG0000070394	Tmem256	2 477821362	-1 045767931	0.003051072
ENSMUSC0000022018	Pace	0.021005020	1 262014244	0.003132332
	LIPLE	6.051085625	0.00000010	0.003342383
ENSIVIUS G00000084786		0.765611547	-0.9888805015	0.003835230
ENSIMUSG0000090247	BIOCISI	0.356522498	-1.3/1622968	0.004337865
ENSIVIUS GOODOOD SU288	FZOZ	0.380290665	1.781783705	0.004448522
	Atp5i	11.99698206	-0.965/31321	0.004931629
ENSMUSG0000096215	Smim22	0	-4.240584108	0.005049629
ENSMUSG0000035048	Anapc13	1.396379784	-1.0666801	0.005667956
ENSMUSG0000037152	Ndutc1	8.348568497	-0.957130161	0.006226643
ENSMUSG0000062006	RpI34	17.16655828	-0.948301475	0.006226643
ENSMUSG0000039960	Rhou	0.742755204	1.358184192	0.006934866
ENSMUSG0000059534	Uqcr10	8.79422162	-0.944720801	0.007875137
ENSMUSG0000021040	Slirp	1.467684284	-1.019742138	0.008130211
ENSMUSG0000045996	Polr2k	2.026236198	-0.994658948	0.009085592
ENSMUSG0000053332	Gas5	10.58871819	-0.93434857	0.009287802
ENSMUSG0000024222	Fkbp5	0.665508663	1.409669853	0.009350504
ENSMUSG0000060981	Hist1h4h	0.03565225	-2.281226093	0.00974932
ENSMUSG0000025508	Rplp2	10.3332104	-0.913672606	0.012308663
ENSMUSG0000064220	Hist2h2aa1	0.017826125	-2.673543515	0.012841243
ENSMUSG0000010406	Mrpl52	2.935368568	-0.947510876	0.012869087
ENSMUSG0000045394	Epcam	0.005942042	-3.619095731	0.013363983
ENSMUSG0000073702	Rpl31	9.043787368	-0.908198211	0.013807877
ENSMUSG0000028407	Smim27	0.202029416	-1.461798338	0.015748189
ENSMUSG0000033715	Akr1c14	0	-4.088581015	0.015901553
ENSMUSG0000051159	Cited1	1.78261249	1.206439207	0.015987177
ENSMUSG0000046768	Rhoj	0.154493083	2.514303394	0.017640506
ENSMUSG0000014294	Ndufa2	7.344363461	-0.886221282	0.019034875
ENSMUSG0000023089	Ndufa5	8.574366079	-0.882744835	0.020141701
ENSMUSG0000022820	Ndufb4	7.504798585	-0.878731285	0.020797722
ENSMUSG0000087590	Epb41l4aos	0.392174748	-1.183483701	0.022262226
ENSMUSG0000032330	Cox7a2	12.92394056	-0.865648267	0.023615558
ENSMUSG0000079480	Pin4	1.651887575	-0.936641759	0.027860133
ENSMUSG0000032532	Cck	3.280006983	1,175671369	0.031481806
ENSMUSG0000021025	Nfkbia	0.641740497	1 23/818/68	0.031/81806
ENSMUSG0000024038			1.2.14010400	(1.(1.))++()+()(/())
ENSMUSG0000029054	Ndufv3	5 621171387	-0.860365225	0.031481806
	Ndufv3 Gabrd	5.621171387	-0.860365225	0.031481806
ENSMUSG0000087336	Ndufv3 Gabrd Gm15860	5.621171387 0.243623707 0.041594291	-0.860365225 1.888698909 -2.088581015	0.031481800 0.031481806 0.031528134 0.031528134
ENSMUSG00000087336	Ndufv3 Gabrd Gm15860 Borml	5.621171387 0.243623707 0.041594291 0.695218871	-0.860365225 1.888698909 -2.088581015 1.263547318	0.031481806 0.031528134 0.031528134 0.031528134
ENSMUSG0000087336 ENSMUSG00000046215 ENSMUSG00000048603	Ndufv3 Gabrd Gm15860 Rprml Gm9828	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083	-0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131	0.031481806 0.031481806 0.031528134 0.031528134 0.031528134
ENSMUSG0000087336 ENSMUSG00000046215 ENSMUSG00000048603 ENSMUSG00000028583	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdnn	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291	-0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.165583527	0.031481806 0.031528134 0.031528134 0.031528134 0.031528134 0.031528134
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG00000285334	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958	-2.0860365225 1.88869809 -2.088581015 1.263547318 -2.793125131 -2.166583527 2.66630488	0.031481806 0.031481806 0.031528134 0.031528134 0.031528134 0.031528134 0.031528134
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG0000002384 ENSMUSG00000052384	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Ecor	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.2109554	-2.0860365225 -0.860365225 -1.888698909 -2.088581015 1.263547318 -2.793125131 -2.166583527 2.666306488 -1.30315842	0.031481806 0.031528134 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG0000052384 ENSMUSG0000089665	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 20100000005 Bit	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.4937414	-0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.166533527 2.666306488 -1.343153842 1.092375202	0.031481806 0.031528134 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035059894
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG0000052384 ENSMUSG0000098332 ENSMUSG0000098332	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87246712	-2.0860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.1665306488 -1.343153842 -1.082775393 1.293062773	0.031481806 0.031528134 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035059894 0.035320562
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG0000052384 ENSMUSG0000089665 ENSMUSG0000098332 ENSMUSG0000098332	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Soba2	0.243623707 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015591	1.2.3615430 0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.1665305478 2.666306488 -1.343153842 -1.082775393 1.383906757 1.082475	0.031481806 0.031481806 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035059894 0.035320562 0.0374818 0.040242020
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG00000028584 ENSMUSG0000098322 ENSMUSG0000098332 ENSMUSG00000041046 ENSMUSG00000083241	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Snhg3 Zm1	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015581 0.370477	1.2.5515430 0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.166583527 2.666306488 -1.343153842 -1.082775393 1.383906757 -1.053141345 -1.75041590	0.031431806 0.0314528134 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.035059894 0.03530562 0.0374818 0.0430308
ENSMUSG0000087336 ENSMUSG000004215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG00000028584 ENSMUSG000000865 ENSMUSG00000865 ENSMUSG0000008332 ENSMUSG00000085241 ENSMUSG0000008323	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Snhg3 Zar1 Dbadd2	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015581 0.279275957 2.470473015	-1.2.5616400 -0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.166583527 2.666306488 -1.343153842 -1.082775393 1.383906757 -1.053141345 1.759415892 0.020240802	0.031431806 0.031431806 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035059894 0.035320562 0.0374818 0.040340308 0.041322093
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG0000002384 ENSMUSG0000098332 ENSMUSG0000098332 ENSMUSG00000083241 ENSMUSG0000063935 ENSMUSG0000063935 ENSMUSG00000017734	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Snhg3 Zar1 Dbndd2	5.621171387 0.243623707 0.041594291 0.095218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015581 0.279275957 3.470152315	1.2.3615430 0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.1665305488 -1.343153842 -1.082775393 1.383906757 -1.053141345 1.759415892 0.929340893 4.1525622	0.031431806 0.031431806 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035059894 0.035059894 0.035320562 0.0374818 0.040340308 0.044322093 0.042379832
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG0000052384 ENSMUSG0000098332 ENSMUSG0000098332 ENSMUSG00000083241 ENSMUSG0000008241 ENSMUSG000000335 ENSMUSG00000024018	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Snhg3 Zar1 Dbndd2 Ccdc167	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015581 0.279275957 3.470152315 0.380290665 0.21941720	1.2.5615405 0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.1665306488 -1.343153842 -1.082775393 1.383906757 -1.053141345 1.759415892 0.929340893 -1.153676043 4.56450426	0.031431806 0.031431806 0.031528134 0.031528134 0.031528134 0.0319528134 0.031961723 0.035059894 0.035320562 0.0374818 0.040340308 0.041322093 0.042579832 0.04287511
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG0000028583 ENSMUSG00000028583 ENSMUSG0000098332 ENSMUSG00000098332 ENSMUSG00000085241 ENSMUSG00000085241 ENSMUSG0000009355 ENSMUSG00000024018 ENSMUSG00000024018	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Snhg3 Zar1 Dbndd2 Ccdc167 9330020H09Rik	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015581 0.279275957 3.470152315 0.380290665 0.101014708	1.2.5615430 1.2.655425 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.166583527 2.666306488 -1.343153842 -1.082775393 1.383906757 -1.053141345 1.759415892 0.929340893 -1.153676043 -1.581621026 4.36254555 -1.05255555 -1.052141345 -1.553676043 -1.553676045 -1.55676045 -1.5567664 -1.5567664 -1.5567664 -1.5567664 -1.5567664 -1.5567664 -1.5567664 -1.5567664 -1.5567664 -1.5567664 -1.5567664 -1.5567666 -1.5567666 -1.5567666 -1.5567666 -1.5567666 -1.5567666 -1.5567666 -1.5567666 -1.5567666 -1.556766 -1.556766 -1.5567666 -1.5567666 -1.55676	0.031431806 0.031431806 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035320562 0.0374818 0.0432093 0.042579832 0.042897511 0.044051321
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG0000028583 ENSMUSG0000098322 ENSMUSG0000098322 ENSMUSG00000085241 ENSMUSG00000085241 ENSMUSG00000085241 ENSMUSG0000003935 ENSMUSG0000001734 ENSMUSG00000024018 ENSMUSG00000024018	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Snhg3 Zar1 Dbndd2 Ccdc167 9330020H09Rik Sax02	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015581 0.279275957 3.470152315 0.380290665 0.101014708 0.225797582	1.2.3451430 0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.166583527 2.666306488 -1.343153842 -1.082775393 1.383906757 -1.053141345 1.759415892 0.929340893 -1.153676043 -1.581621026 -1.262610414	0.031431806 0.031431806 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035059894 0.035320562 0.0374818 0.040340308 0.041322093 0.042379832 0.04287511 0.044051321
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG00000028384 ENSMUSG0000098332 ENSMUSG0000098332 ENSMUSG00000085241 ENSMUSG0000063935 ENSMUSG00000017734 ENSMUSG00000017734 ENSMUSG0000001750 ENSMUSG000000150 ENSMUSG00000038570 ENSMUSG00000074170	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Snhg3 Zar1 Dbndd2 Ccdc167 9330020H09Rik Saxo2 Plekhf1	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015581 0.279275957 3.470152315 0.380290665 0.101014708 0.225797582 0.332754332	1.2.5915430 0.860365225 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.1665305488 -1.343153842 -1.082775393 1.383906757 -1.053141345 1.759415892 0.929340893 -1.153676043 -1.581621026 -1.262610414 1.666306488	0.031431806 0.031431806 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035059894 0.035320562 0.0374818 0.040340308 0.041322093 0.042579832 0.04287511 0.044051321 0.0446119486 0.044961213
ENSMUSG0000087336 ENSMUSG0000046215 ENSMUSG0000048603 ENSMUSG0000028583 ENSMUSG000002384 ENSMUSG0000098332 ENSMUSG0000098332 ENSMUSG0000041046 ENSMUSG0000008335 ENSMUSG00000024018 ENSMUSG00000024018 ENSMUSG00000038570 ENSMUSG000003570 ENSMUSG0000038570 ENSMUSG00000028645	Ndufv3 Gabrd Gm15860 Rprml Gm9828 Pdpn Nrros Fcor 2310009A05Rik Ramp3 Snhg3 Zar1 Dbndd2 Ccdc167 9330020H09Rik Sax02 Plekhf1 Slc2a1	5.621171387 0.243623707 0.041594291 0.695218871 0.011884083 0.041594291 0.136666958 0.21985554 0.487247414 0.87348012 0.511015581 0.279275957 3.470152315 0.380290665 0.101014708 0.225797582 0.332754332 1.895511282	1.2.5615405 1.8865825 1.888698909 -2.088581015 1.263547318 -2.793125131 -2.1665306488 -1.343153842 -1.082775393 1.383906757 -1.053141345 1.759415892 0.929340893 -1.153676043 -1.581621026 -1.262610414 1.666306488 0.977007327	0.031431806 0.031431806 0.031528134 0.031528134 0.031528134 0.031528134 0.031961723 0.031961723 0.035059894 0.035320562 0.0374818 0.040340308 0.041322093 0.042579832 0.04287511 0.044051321 0.04619486 0.046961213 0.048067423

Table S2N. DEGs at ZT14 in female and male hypothalamus (LH+DMVH). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT14 MALES - Hypothalamaus

ZT14 FEMALES - Hypothalamus				
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR
ENSMUSG0000037727	Avp	0.116561404	-9.112164234	4.65898E-12
ENSMUSG0000019970	Sgk1	1.9491657	2.271902072	8.60226E-09
ENSMUSG0000027301	Oxt	0	-12.62259643	2.77485E-08
ENSMUSG0000048572	Tmem252	0.531001951	5.163424266	3.60707E-06
ENSMUSG0000071637	Cebpd	0.589282653	3.196469573	4.00702E-06
ENSMUSG0000035383	Pmch	363.3024693	2.01899502	8.22172E-06
ENSMUSG0000023067	Cdkn1a	0.407964914	2.788384835	8.22172E-06
ENSMUSG0000021342	Prl	0.012951267	-4.887180215	8.19715E-05
ENSMUSG0000020713	Gh	0.032378168	-4.064057977	0.000424301
ENSMUSG0000026822	Lcn2	1.560627687	6.292210573	0.00049881
ENSMUSG0000027360	Hdc	0.18131774	4.231328331	0.000723699
ENSMUSG0000025400	Tac2	2.596729055	1.834574468	0.001024751
ENSMUSG0000043102	Qrfp	0	-6.241362509	0.004258072
ENSMUSG0000033585	Ndn	6.13890061	-1.063379562	0.00600644
ENSMUSG0000051851	Rtl8c	0.187793373	2.958309836	0.020282481
ENSMUSG0000024647	Cbln2	0.388538013	1.660228483	0.031013223
ENSMUSG0000021025	Nfkbia	0.602233921	1.404374231	0.032969559
ENSMUSG0000021453	Gadd45g	0.822405461	1.264822879	0.032969559
ENSMUSG0000031765	Mt1	56.30563376	0.898673092	0.037259892

FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR
ENSMUSG0000024907	Gal	5.945300548	2.536753074	1.4494E-127
ENSMUSG0000035383	Pmch	30.62436446	-1.97345778	2.04563E-49
ENSMUSG0000061808	Ttr	2.875584143	2.007105212	4.08821E-46
ENSMUSG0000006522	Itih3	3.457980931	1.54415204	8.69837E-41
ENSMUSG0000031425	Plp1	4.295176315	-1.391146053	8.66446E-39
ENSMUSG0000064354	mt-Co2	45.4633493	-0.962654012	6.80502E-36
ENSMUSG0000098178	Gm42418	3.257782035	-1.932232959	2.2589E-35
ENSMUSG0000064357	mt-Atp6	61.15166278	-0.945894129	2.2589E-35
ENSMUSG0000064345	mt-Nd2	27.90651278	-0.95255922	2.76426E-33
ENSMUSG0000037852	Cpe	21.56081444	0.886159442	2.91809E-33
ENSMUSG0000064363	mt-Nd4	35.08333987	-0.848470399	1.89294E-28
ENSMUSG0000041607	Mbp	8.887617657	-0.91621057	6.57152E-23
ENSMUSG0000041841	Rpl37	29.86603531	0.718664513	1.53292E-22
ENSMUSG0000008682	Rpl10	5.132371698	-0.897267608	4.9648E-22
ENSMUSG0000064351	mt-Co1	101.1611088	-0.729535052	1.34415E-21
ENSMUSG0000092341	Malat1	1.644057601	-1.141090271	6.95E-21
ENSMUSG0000064341	mt-Nd1	32.21988899	-0.693464577	3.91917E-19
ENSMUSG0000090137	Uba52	3.937244955	0.937429674	6.87149E-18
ENSMUSG0000031760	Mt3	22.30094369	0.663204359	2.43274E-17
ENSMUSG0000045573	Penk	2.038388759	1.150526755	2.52641E-16
ENSMUSG0000079523	Tmsb10	22.47687605	0.60394459	1.21395E-14
ENSMUSG0000078974	Sec61g	4.956439335	0.779479971	2.80945E-14
ENSMUSG0000062328	Rpl17	11.06553898	-0.660971788	2.85071E-14
ENSMUSG0000073702	Rpl31	8.990750421	0.668171691	2.93804E-14
ENSMUSG0000021647	Cartpt	4.556041543	-1.140825439	2.99558E-14
ENSMUSG0000064370	mt-Cytb	70.4518115	-0.59009197	5.12731E-14
ENSMUSG0000062591	Tubb4a	1.6986573	-0.92718056	2.42574E-13
ENSMUSG0000000214	Th	1.213326643	1.302162859	3.89732E-13
ENSMUSG0000004366	Sst	2.056588659	-0.872111056	4.11358E-13
ENSMUSG0000022982	Sod1	3.815912291	0.79659962	8.91932E-13
ENSMUSG0000031765	Mt1	20.0016897	0.564501686	1.16419E-12
ENSMUSG0000057322	Rpl38	28.22804434	0.567490062	5.42047E-12
ENSMUSG0000038274	Fau	26.15325578	0.531564314	9.79877E-12
ENSMUSG0000093674	Rpl41	22.41014309	0.538702134	1.52076E-11
ENSMUSG0000004558	Ndrg2	10.33147636	0.583928557	1.98278E-11
ENSMUSG0000029819	Npy	0.709796086	-1.161391201	4.4825E-11
ENSMUSG0000031980	Agt	5.011039034	0.68350999	4.53189E-11
ENSMUSG0000014313	Cox6c	16.22217721	0.537643167	8.98663E-11
ENSMUSG0000064356	mt-Atp8	0.545996989	-1.227218999	9.97746E-11
ENSMUSG0000028234	Rps20	17.37483752	0.525870727	1.08716E-10
ENSMUSG0000038690	Atp5j2	11.22327144	0.555690118	2.24373E-10
ENSMUSG0000020660	Pomc	0.946394781	-1.088215415	2.46296E-10
ENSMUSG0000023089	Ndufa5	7.650024481	0.592265384	2.75389E-10
ENSMUSG0000025579	Gaa	9.015016954	0.571633434	7.39175E-10
ENSMUSG0000032554	Trf	0.934261515	-0.978127553	8.69668E-10
ENSMUSG0000030088	Aldh1l1	0.818995484	1.346620123	9.14013E-10
ENSMUSG0000064367	mt-Nd5	4.756240439	-0.621823832	1.02202E-09
ENSMUSG0000021268	Meg3	5.648035521	0.623240443	1.05587E-09
ENSMUSG0000041453	Rpl21	35.70213646	0.466130093	2.82709E-09
ENSMUSG0000037152	Ndutc1	7.000894728	0.571647433	3.87112E-09
ENSMUSG0000018593	Sparc	13.91078996	0.558021729	3.8/112E-09
	KHIASEK	2.49338025	-0.702844746	3.9344/E-U9
	Sultial	0.424004325	1.903009093	4.1088E-09
	Cops9	7.104093824	0.700122970	4.91511E-09
	CUX1/	2.00301/01	0.151409454	J.23393E-U9
	nµsz4 Cfl1	50.70525009 6 157622711	0.430293243	7.01/9/E-U9
	Cruah	1 443858705	-0.372748781	0.433010-09
ENSMUSG000006333	PncQ	5 60050105	-0.505570520	1 70523E-09
LININGSG000000000000000000000000000000000	1,622	3.030301334	0.0505/4054	1.,03236-00

ENSMUSG0000027375	Mal	1.249726442	-0.83294006	1.80584E-08
ENSMUSG0000028495	Rps6	4.841173304	-0.576614562	2.41628E-08
ENSMUSG0000054428	Atpif1	10.12521083	0.508534628	2.41628E-08
ENSMUSG0000020163	Uacr11	7.55295835	0.529215686	2.53227E-08
ENSMUSG0000032399	Rpl4	12.82486261	0.703768547	2.95007E-08
ENSMUSG0000035215	Lsm7	3.227448869	0.664015001	4.4911E-08
ENSMUSG00000102252	Snrpn	5.902834116	-0.558007071	5.41356E-08
ENSMUSG0000042750	Bex2	19.17056095	0.45042539	8.09689E-08
ENSMUSG0000034892	Rps29	11.68433557	-0.492661599	9.07978E-08
ENSMUSG0000044349	Snhg11	4.907906269	0.564518908	1.73979E-07
ENSMUSG0000095041	AC149090.1	1.437792071	0.874551679	2.16908E-07
ENSMUSG0000024517	Grp	0.242665329	2.400980595	2.51427E-07
ENSMUSG0000061762	Tac1	0.861461916	-0.919096704	2.5301E-07
ENSMUSG0000032532	Cck	0.867528549	-0.881164007	3.03502E-07
ENSMUSG0000022194	Pabon1	0.16986573	-1.579717104	4.70209E-07
ENSMUSG00000040856	Dlk1	1 504525037	0.833505521	5 02039E-07
ENSMUSG0000028656	Can1	0 090999498	-1 956571409	5 25391F-07
ENSMUSG0000086841	2410006H16Rik	1 941322628	0 735652058	9.05542E-07
ENSMUSG00000018707	Dvnc1h1	2 711785046	0 647843454	9 51771E-07
ENSMUSG0000020922	Ism12	0.0181999	-3 072048627	2 1647E-06
ENSMUSG0000024608	Rns14	8 881551023	-0.466870901	2 44585F-06
ENSMUSG0000015806	Odor	2 481252984	-0 586946572	4 59692F-06
ENSMUSG0000024038	Ndufv3	4 822973404	0.51124183	5.06034E-06
ENSMUSG0000064358	mt-Co3	144 5314697	-0 3895819	5.06034E-06
ENSMUSG0000020460	Rns27a	25 97732342	0.386165691	5.00034E 00
ENSMUSG0000015812	Gnrh1	0 157732464	3 160886172	5.46913E-06
ENSMUSG0000013523	Bras1	0.20/221150	-1 082102201	5 73204E-06
ENSMUSG00000013525	Myl6	8 420486800	0 437651476	5.75204E-00
ENSMUSG0000037499	Nenf	7 522625184	0.461353765	6.82843E-06
ENSMUSG0000037455	Pdlim?	0 18806563	-1 416003028	7 91135E-06
ENSMUSG0000022050	Dhi	0.100000000	0 422720040	8 69047E-06
ENSMUSG0000026585	Zcchc12	5.003473372	0.423723043	9.02664F-06
ENSMUSG0000033615	Cnlv1	1 298259508	-0 696665041	9 31539F-06
ENSMUSG0000090223	Pcn4	6 521630704	-0.469236413	1.0422E-05
ENSMUSG0000025739	Gng13	1 705722/21	0.405250415	1.04222.05
ENSMUSG0000023733	Pnc21	27 66001/08	0.385632561	1.04433E-05
ENSMUSG0000021910	Nisch	1 128612215	0.50/032501	1.12224E-05
ENSMUSG0000021910	Goraco1	5 760368185	0.304280283	1.20103E-03
ENSMUSG00000043384	0prasp1 An2a2	1 612724425	0.470084945	1.20103E-03
ENSMUS G0000002337	Apzaz Gpracp2	1.013724433	0.7110071	2.002055.05
ENSMUS G0000072300	Opraspz Ddb1	4.21024343	0.303200221	2.00393E-03
ENSMUSC0000022048	Dougl2	1.393324333	0.714713891	2.12763E-03
	Dpysiz	4.203043040	1 525594644	2.14707E-03
	LdrSZ	0.52155150	-1.555564644	2.17791E-05
ENSINUSG00000028998	Clta	2.155054791	0.023091942	2.01142E-05
ENSINUSG0000047128	CILC Ball2C	3.39/314399	0.331429301	2.04755E-05
	крізо	12.32/39009	0.39019647	2.95500E-05
	DSX Calu1	0.12/399297	3.06/622/1	3.11052E-05
ENSINUSG00000019970	SgKI	0.905926549	0.905015471	3.32953E-05
	Psap	12.33340332	0.3906/9112	3.79080E-05
	крізоа сна 2-	17.15057209	0.577156055	3.79080E-05
ENSMUSG0000044258	Ctiaza	0.303331661	1.637851421	4.00753E-05
ENSMUSG0000028452	Vcp	3.524/1389/	0.512532562	4.74203E-05
ENSMUSG0000005716	Pvalb	0.461064124	-0.995593298	4.86719E-05
	INITIE /	0.928194882	1.194/3/914	0.90338E-05
	Fam107a	1.225459909	0.754568197	7.7419E-05
	ianz	0.86/528549	0.891425497	7.816/4E-05
	KpS18	3.312381/34	-0.488910911	8.66691E-05
EINSIVIUSG0000054452	He5	4./4410/1/2	-0.44/5/351	9.9/8/8E-05
EINSIVIUSGUUUUUU/1528	Atpoma	13.4/39923/	0.374257548	0.000104227
ENSMUSG0000002477	Snrpd1	2.918050575	0.526330086	0.000114862
ENSMUSG0000018339	Gpx3	2.317453887	-0.529626373	0.000126249
ENSMUSG0000020777	ACOX1	1.468125237	0.682838875	0.000130175
ENSMUSG0000050071	Bex1	6.285032008	0.425809899	0.000134039

ENSMUSG0000014294	Ndufa2	6.418497939	0.418704555	0.000140107
ENSMUSG0000017390	Aldoc	13.98965619	0.359324212	0.000154088
ENSMUSG0000037706	Cd81	6.55196387	0.40886135	0.000161801
ENSMUSG0000027574	Nkain4	1.595524535	0.650417398	0.000166212
ENSMUSG0000027133	Nop10	2.554052583	0.539990086	0.000169927
ENSMUSG0000011884	Gltp	0.133465931	-1.442993542	0.000172127
ENSMUSG0000027422	Rrbp1	0.467130757	1.176827716	0.000174058
ENSMUSG0000020658	Efr3b	0.788662318	0.898048439	0.000193602
ENSMUSG0000016346	Kcng2	1.079860712	0.754654864	0.000247637
ENSMUSG0000021290	Atp5mpl	5,496369691	0.426365391	0.000295894
ENSMUSG0000049422	Chchd10	5.866434317	-0.415641677	0.000308185
ENSMUSG0000027562	Car2	1.085927345	-0.645732493	0.000308251
ENSMUSG0000062997	Rpl35	10.20407706	0.398304278	0.000310797
ENSMUSG0000027301	Oxt	16.33744324	1.14230139	0.000322769
ENSMUSG0000029831	Npvf	0.309398294	1.454361692	0.000322769
ENSMUSG0000084786	Ubl5	5 490303058	0 415584719	0.000322769
ENSMUSG0000039686	7er1	1 219393276	0 716746966	0.000323502
ENSMUSG0000027643	Ghrh	0.897861715	1 803165492	0.000327263
ENSMUSG0000076439	Mog	0 576330155	-0.809014221	0.000358691
ENSMUSG0000067274	Rolo	2 984783541	-0.470559192	0.000367186
ENSMUSG00000020018	Snrnf	0 782595684	0.860681974	0.00037179
ENSMUSG0000028936	Bnl22	3 500447364	0.463466771	0.000434794
ENSMUSG0000028550	Dynll2	1 731073006	0.403400771	0.000434734
ENSMUSG0000020485	Akangl	4.751575500	0.422720371	0.000473133
ENSMUSG0000059534	Llacr10	7 279959855	0.384029567	0.000491203
ENSMUSG0000059291	Rnl11	19 68622478	0.329219758	0.000495644
ENSMUSG0000020496	Pof187	1 725007273	0.41080447	0.000541491
ENSMUSG0000020450	Sphg0	0.236508605	1 677300602	0.000541491
ENSMUSG0000037771	Slc22a1	2 150721/2/	0.548475613	0.000541491
ENSMUSG0000035674	Ndufa3	5 68443532	0.040473013	0.000541888
ENSMUSG0000063457	Poc15	13 5710585	0.400438181	0.000571357
ENSMUSG00000003437	Tot1	8 08/683788	-0.460941144	0.000578096
ENSMUSG00000032855	Dkd1	0.52770700	1 028020021	0.000578050
ENSMUSG0000016252	Atn5e	8 735051826	0.4400073	0.000605776
ENSMUSC0000010232	Hmga1	0.17502220	1 227207917	0.000610128
ENSING 300000040711	Hingdi	0.173332303	-1.23/30/81/	0.000615157
ENSMUSC00000027243	Пурк Арір1	1.0/3/340/3 E 120220422	0.717343409	0.000013137
ENSINUSG000000000000	Abibi	1 120230432	-0.402373233	0.000003004
ENSMUSC0000023147	Rkm	1.10500011	0.063036232	0.000009004
ENSMUSC0000032254	F NIII Dink1	2 620070020	0.381020142	0.000089833
ENSING 560000028750	Tmom120	1 209200070	0.445100578	0.000741343
ENSMUSC0000002274	Nost1	4.336303073	1 17029497	0.000937049
	NedL1	0.394331139	1.1/026467	0.000937049
ENSIMUSG0000005360	SICIAS	2.32958/154	0.509746595	0.000938171
		2.196121223	0.51/506985	0.001046811
	IVIaged1	7.753157246	0.383772172	0.001094625
ENSINUSG00000074656	EITZSZ	0.922128248	-0.637783022	0.001285399
ENSINUSG0000012848	Kps5	8.11/155239	-0.364768919	0.001289768
	Gm49179	0.145599197	2.156770064	0.001289768
	Ispoap1	0.570263522	0.950319186	0.00131889
ENSINUSG0000040907	Atplas	1.6/4390/6/	-0.519961588	0.00136709
ENSMUSG0000058135	Gstm1	1.807856697	-0.586399087	0.001397357
ENSMUSG0000042541	Semi	1.577324635	0.579481491	0.001415367
ENSMUSG0000021186	FbIn5	0.194132263	1.734185755	0.001429529
	Uqcrq	8.996817054	0.344019571	0.001473138
	PIEKND1	1.813923331	-0.5032/1554	0.001555475
EINSMUSG0000079484	Phynai	0.388264526	1.148258564	0.001/6979
ENSMUSG0000054312	Mrps21	2.34172042	0.489871227	0.00176979
ENSINUSG0000022884	EIT4a2	3.548980429	-0.415256794	0.001796776
ENSI/USG0000029455	Aldn2	0.994927847	0.70315886	0.001836626
ENSMUSG0000038545	Cul7	0.327598193	1.239825803	0.002036476
ENSMUSG0000029064	Gnb1	3.85231209	0.54609697	0.002105335
ENSMUSG0000007850	Hnrnph1	1.6622575	0.55176981	0.002109309
ENSMUSG0000023072	Cep89	0.181998996	1.77523248	0.002139448

ENSMUSG0000020267	Hint1	13.32839317	0.317091441	0.002169538
ENSMUSG0000013236	Ptprs	1.407458905	0.593723959	0.002183937
ENSMUSG0000055839	Elob	10.65300792	0.325140526	0.002222286
ENSMUSG0000024735	Prpf19	1.51059167	0.575511532	0.002222286
ENSMUSG0000027858	Tspan2	0.515663823	-0.765523116	0.002247436
ENSMUSG0000002012	Pnck	3.02118334	0.441539977	0.002247436
ENSMUSG0000033208	\$100b	1.504525037	-0.520131433	0.002383875
ENSMUSG0000022425	Enpp2	0.649129754	-0.70064389	0.002383875
ENSMUSG0000024208	Uacc2	5.575235923	0.368845672	0.002383875
ENSMUSG0000073982	Rhog	0.157732464	-1.211667996	0.002386903
ENSMUSG0000039463	SIc9a8	0.370064626	1.145182089	0.002390417
ENSMUSG0000018909	Arrb1	0.788662318	0.771043163	0.002390417
ENSMUSG0000029516	Cit	0.448930858	1.015907528	0.002575421
ENSMUSG0000040759	Cmtm5	0 479264024	-0 782130927	0.002604097
ENSMUSG0000039661	Dusn26	1 716857199	0 536552224	0.002606636
ENSMUSG0000050708	Ftl1	4 792640238	-0 378281044	0.002653271
ENSMUSG0000053192	Milt11	2 426653285	-0 446388791	0.002669472
ENSMUSG0000032788	Pdxk	1.176926843	0.630859347	0.002678241
ENSMUSG0000022037	Clu	10.05847787	0 388833082	0.002680902
ENSMUSG0000025508	RnIn2	7 607558049	0 428007291	0.00269237
ENSMUSG0000006782	Cnn	2 050522026	-0 500446018	0.003183032
ENSMUSG0000001415	Smg5	0 430730958	1 025726589	0.003265613
ENSMUSG0000037166	Pnn1r14a	0 333664827	-0.886182082	0.003268578
ENSMUSG0000005892	Trh	1 15266031	1 251623609	0.003294077
ENSMUSG0000004110	Cacnale	0 461064124	0 988287036	0.00340367
ENSMUSG0000048721	Endc9	0 248731962	1 396217649	0.003710085
ENSMUSG0000070858	Gm1673	4 440775512	0 377876155	0.003856649
ENSMUSG0000022415	Syngr1	1 6622575	0.528738841	0.003856649
ENSMUSG0000022413	Hsd17h11	0.260865228	1 350857116	0.003914666
ENSMUSG0000038570	Savo2	0.260865228	1 350857116	0.003914666
ENSMUSG0000017778	Cox7c	9 324415248	0 323447176	0.003914666
ENSMUSG0000034994	Fef2	6 642963368	0 336971085	0.003984312
ENSMUSG0000039126	Prune2	0 734062619	0 760386637	0.004157421
ENSMUSG0000020230	Prmt2	1 856389763	0 503904883	0.004305585
ENSMUSG0000051483	Chr1	1 486325137	0 548537784	0.004305585
ENSMUSG0000097156	Gm3764	0.485330657	0.938493751	0.004522539
ENSMUSG0000039801	Cnlane1	0 394331159	1 149223255	0.004522539
ENSMUSG0000026830	Frmn	0 181998996	-1 099236638	0.004527716
ENSMUSG0000032244	Fem1h	0.958528048	0.668255552	0.004552111
ENSMUSG0000074657	Kif5a	3 075783039	0 417403433	0.004552111
ENSMUSG0000017740	Slc12a5	1 917056095	0 493786626	0.004735723
ENSMUSG0000027706	Sec62	0.812928851	-0 616721407	0 004784791
ENSMUSG0000026688	Mast3	0.922128248	-0 587250288	0.004884901
ENSMUSG0000005089	Sic1a2	4 331576114	0 373224929	0.004921413
ENSMUSG00000031026	Trim66	0 230532062	1 41129297	0.004921413
ENSMUSG0000015149	Sirt2	0.806862217	-0 618402674	0.005161102
ENSMUSG0000028618	Tmem59	1 474191871	-0.49976526	0.005185774
ENSMUSG0000006435	Neurl1a	0.667329653	0.788600938	0.005239864
ENSMUSG00000000000	Iratd1	0.315464927	1 186386544	0.005257484
ENSMUSG0000040591	1110051M20Rik	1 395325639	0 55334998	0.00551426
ENSMUSG0000018293	Pfn1	1 116260511	-0 545283794	0.00551426
ENSMUSG0000036752	Tubb4b	4 052510986	0.377628871	0.005599417
ENSMUSG0000022389	Tef	1 213326643	0.588280878	0.005628663
ENSMUSG0000053046	Brsk2	0 570263522	0.840694695	0.005629298
ENSMUSG0000030683	Sez6l2	3 160715904	0 406788539	0.005650135
ENSMUSG0000053310	Nrgn	1.929189362	-0.453652253	0.005751499
ENSMUSG0000015837	Sastm1	4.446842145	0.366667631	0.005751499
ENSMUSG0000058756	Thra	4.319442847	0.369183764	0.005751499
ENSMUSG0000057880	Abat	2.19005459	0.460534047	0.005931687
ENSMUSG0000018451	6330403K07Rik	18.27876587	0.28574273	0.006058167
ENSMUSG0000029104	Htt	0.412531058	0.999949954	0.006199186
ENSMUSG0000032594	lp6k1	1.413525539	0.544559501	0.006244013
ENSMUSG0000054226	Tprkb	0.206265529	-1.032402822	0.006249616

ENSMUSG0000028298	Cga	0.0181999	-2.996099774	0.006315679
ENSMUSG0000059208	Hnrnpm	0.818995484	0.69348612	0.00645024
ENSMUSG0000021497	Txndc15	1.401392272	0.543857581	0.00667553
ENSMUSG0000020577	Tspan13	0.861461916	-0.589671077	0.006714586
ENSMUSG0000044550	Tceal3	3.087916305	0.403576008	0.006747161
ENSMUSG0000053646	Plxnb1	0.521730456	0.874937374	0.006938583
ENSMUSG0000041697	Cox6a1	5.277970895	-0.34598508	0.006993497
ENSMUSG0000034161	Scx	0.127399297	1.972345493	0.006993497
ENSMUSG0000024176	Sox8	0.012133266	-2.59400133	0.006993497
ENSMUSG0000045763	Basp1	2.857384243	-0.398858943	0.007178761
ENSMUSG0000045996	Polr2k	1.486325137	0.526511477	0.0076356
ENSMUSG0000087336	Gm15860	0.139532564	1.891425497	0.007653844
ENSMUSG0000060036	Rpl3	10.52560862	-0.320577149	0.007701886
ENSMUSG0000030310	Slc6a1	1.716857199	0.495821972	0.007976853
ENSMUSG0000070394	Tmem256	1.874589663	0.475457527	0.007976853
ENSMUSG0000022055	Nefl	1.35892584	-0.496427173	0.007976853
ENSMUSG0000026614	Slc30a10	0.230532062	1.369472794	0.00830351
ENSMUSG0000032333	Stoml1	0.715862719	0.733131924	0.00830351
ENSMUSG0000066357	Wdr6	3.427647765	0.383597245	0.00834646
ENSMUSG0000024287	Thoc1	0.303331661	1.157858479	0.008827276
ENSMUSG0000025374	Nabp2	0.539930356	-0.687110734	0.008872901
ENSMUSG0000042453	Reln	0.254798595	1.282066342	0.008889327
ENSMUSG0000020282	Rhbdf1	0.097066131	2.300816433	0.009019268
ENSMUSG0000040952	Rps19	8.141421771	-0.43088927	0.009084193
ENSMUSG00000112639	A730063M14Rik	0.084932865	2.535281687	0.009084193
ENSMUSG0000021957	Tkt	0.655196387	0.862596844	0.009084193
ENSMUSG0000063236	1110038F14Rik	0.454997491	0.906692254	0.009198362
ENSMUSG0000015759	Cnih1	0.673396287	-0.633927514	0.009439808
ENSMUSG0000024736	Tmem132a	0.746195885	0.708118284	0.00983618
ENSMUSG0000010406	Mrpl52	2.444853185	0.422416429	0.009921851
ENSMUSG0000061046	Haghl	1.777523531	0.476387998	0.010027521
ENSMUSG0000027894	Slc6a17	0.879661816	0.648290649	0.010272113
ENSMUSG0000000826	Dnaic5	1.553058102	0.501301718	0.010294881
ENSMUSG0000036241	Ube2r2	0.673396287	-0.626749912	0.010294881
ENSMUSG0000050121	Opalin	0.35793136	-0.79861905	0.010352452
ENSMUSG0000057278	Snrpg	1.722923832	0.482475328	0.010719082
ENSMUSG0000020570	Svpl	0.224465429	-0.964983649	0.010906331
ENSMUSG0000039218	Srrm2	0.685529553	0.948211523	0.0113453
ENSMUSG0000004980	Hnrnpa2b1	2.820984444	0.459154234	0.01171382
ENSMUSG0000028572	Hook1	0.32153156	1.61068909	0.012453139
ENSMUSG0000035183	SIc24a5	0.260865228	1.213353592	0.012506322
ENSMUSG0000029499	Pxmp2	0.260865228	1.213353592	0.012506322
ENSMUSG0000063253	Scoc	1 953455895	-0 427104021	0.012506322
ENSMUSG0000000881	Dlg3	0 552063622	0.806178211	0.012506322
ENSMUSG0000020368	Canx	3 615713395	0 366162435	0.012523367
ENSMUSG0000005804	Bloc1s6	0 485330657	0.852763877	0.012667919
ENSMUSG0000077450	Rab11b	1 225459909	-0 496349922	0.012929535
ENSMUSG0000038068	Rnf144h	0 15166583	1 665865797	0.01310998
ENSMUSG0000024423	Impact	4 276976415	0 345961087	0.013297173
ENSMUSG0000024425	Pnm1f	0 370064626	0.997624901	0.013313113
ENSMUSG0000025203	Scd2	9.470014445	0.287256054	0.013455422
ENSMUSG0000059412	Exvid?	0 227502102	1 0/0516995	0.013455422
ENSMUSG0000055412	Spock1	1 272002075	0.533573344	0.014051252
ENSMUSG0000038668	Jport	0.066732965	-1 /87086126	0.014853072
ENSMUSG0000034059	Vpel/	0.351864726	1 020007/51	0.014803484
ENSMUSG0000027199	Gatm	0.50959719	-0 67646349	0.014918801
ENSMUSG0000017009	Sdc4	0.740129252	0.680134666	0.014918801
ENSMUSG00000017003	Hdaf	0.552063622	-0 659689233	0.014918801
ENSMUSG000004337	Treal9	1 613724435	-0.447049665	0.014010201
ENSMUSC0000042712	Socn3	0.870661816	0.628201001	0.014910001
	Jesiij Tmch/v	16 22217721	-0.020391091	0.015329503
		0 181008006	-0.2/0330000	0.015329303
	Pol36a	6 321/31808	-1.022274030	0.01536054
EN31910300000079433	rhi209	0.321431606	0.340093331	0.01556034

ENSMUSG0000050856	Atp5k	8.89368429	0.292175864	0.01584459
ENSMUSG0000031708	Tecr	3.931178322	-0.346192898	0.01584459
ENSMUSG0000028843	Sh3bgrl3	1.613724435	-0.445339297	0.015961663
ENSMUSG0000019986	Ahi1	4.440775512	0.336560286	0.015961663
ENSMUSG0000062825	Actg1	13.78339066	0.289928714	0.016099424
ENSMUSG0000001289	Pfdn5	9.918945303	0.285220764	0.016391304
ENSMUSG0000038520	Tbc1d17	0.570263522	0.771981945	0.016694466
ENSMUSG0000024099	Ndufv2	3.506513997	-0.354060707	0.016852175
ENSMUSG0000015341	Golga7	0.32153156	-0.806545965	0.016912608
ENSMUSG0000018585	Atox1	2.329587154	0.409750805	0.016928088
ENSMUSG0000033152	Podxl2	4.355842647	0.49985355	0.017165646
ENSMUSG0000057069	Ero1lb	0.242665329	1,213353592	0.017165646
ENSMUSG0000051335	Gfod1	0.230532062	1.250828297	0.017165646
ENSMUSG0000028803	Ninal3	0 643063121	0 716415839	0.017605978
ENSMUSG0000005986	Ankrd13d	0.606663321	0 732013722	0.01804529
ENSMUSG0000057649	Brd9	0 412531058	0 912487113	0.018106904
ENSMUSG0000062044	Lmtk3	0 442864225	0.868218106	0.018434337
ENSMUSG00000044709	Gemin7	0 448930858	-0 69737907	0.018563158
ENSMUSG0000006930	Han1	3 882645256	0 345241324	0.018775231
ENSMUSG0000039016	Timm8h	5 569169289	0.315807657	0.019149666
ENSMUSG0000047675	Rns8	25 32212703	0.250100995	0.019313615
ENSMUSG0000035048	Apanc13	1 383102373	0.497968528	0.010313615
ENSMUSG0000015222	Man2	2 21/221122	0.437308328	0.019337681
ENSMUSG00000013222	Adam11	0.470264024	0.413303808	0.019375316
ENSMUSG0000020920	Ptn1	0.475204024	-0.201320108	0.019375316
ENSMUSC0000022087	Carmil2	0.205407077	1 007076275	0.019373310
	Dell	0.263131701	1.09/8/03/3	0.019373310
ENSINUSG0000049191	Rub	0.351604720	0.900713024	0.019575510
ENSIVIUSG00000019738	POIL21	1.031327040	0.303110910	0.019055755
	Cers4	0.479204024	0.621050109	0.020117635
	nerci San3h	0.928194882	0.591590664	0.020117035
ENSINUSG00000070304	SCHZD	0.994927647	0.574051257	0.020475255
	Kalifi Gaza	0.200000220	0.220280826	0.020475255
ENSIVE C00000022161	Atp1o1	3.01//02333	-0.320389830	0.020084985
	Atpidi Demo1	2.700564745	0.442075055	0.020737230
	PSINE1	1.419592172	1 178062821	0.0208001
ENSIVIUS G00000052854	Ugloa	0.115200051	-1.1/0903031	0.021022467
	Cotro1	2.409119718	-0.379630112	0.021026254
	Bre22	2.155054791	-0.394392304	0.021149074
ENSIMUSG00000049517	Kpsz3	7.279959855	-0.29/6/1549	0.021576161
	KIT1a	2.250720922	0.403784249	0.022258804
	Spton2	0.67946292	0.67598055	0.022441747
ENSINUSG00000053226	Dands	0.18806563	1.3553/259/	0.022569773
ENSMUSG00000022548	Apod	1.261859708	-1.070809122	0.022569773
ENSMUSG0000042751	Nmnat2	0.946394781	0.583161837	0.022877574
ENSMUSG0000048756	F0X03	0.260865228	1.118196359	0.022877574
ENSMUSG00000047844	Bex4	1.60/65/801	0.461281105	0.022877574
ENSMUSG0000079657	Rab26	0.503530557	0.785492052	0.023131229
ENSMUSG0000040860	Crocc	0.200198896	1.300816433	0.023304583
ENSMUSG0000049154	Fam183b	0.612729954	0.715853933	0.023426418
ENSMUSG0000005417	Mprip	1.013127747	0.561276895	0.023426418
ENSMUSG0000019362	D8Ertd738e	2.990850174	0.364059298	0.023573911
ENSMUSG0000002930	Ppp1r17	0.224465429	1.213353592	0.023815726
ENSMUSG0000026667	Uhmk1	1.401392272	0.482619952	0.024237759
ENSMUSG0000058239	Ust2	0.594530055	0.713427195	0.024790811
ENSMUSG0000018669	Cdk5rap3	0.442864225	0.837844457	0.024920038
ENSMUSG0000021400	Wrnip1	0.691596186	0.66652622	0.024920038
ENSMUSG0000020198	Ap3d1	0.976727947	0.564518908	0.024958729
ENSMUSG0000044627	Swi5	5.217304563	0.373571873	0.025101343
ENSMUSG0000027474	Ccm2l	0.048533066	3.383278593	0.025601807
ENSMUSG0000066129	Kndc1	0.855395283	0.601549479	0.025644208
ENSMUSG0000024403	Atp6v1g2	2.268920822	-0.383104548	0.025644208
ENSMUSG0000002763	Pex6	0.479264024	0.807361232	0.025644208
ENSMUSG0000037103	Dcaf15	0.230532062	1.213353592	0.025828926

ENSMUSG0000003469	Phyhip	0.412531058	0.86244643	0.02596094
ENSMUSG0000033735	Spr	0.776529051	0.624668005	0.026587158
ENSMUSG0000031775	Pllp	0.461064124	-0.669606987	0.026587158
ENSMUSG0000027244	Atg13	0.479264024	0.793814701	0.026660584
ENSMUSG0000022992	Kansl2	0.497463923	0.781038101	0.026726274
ENSMUSG0000010803	Gabra1	1.134460411	-0.47523154	0.027068996
ENSMUSG0000029817	Tra2a	0.588463422	0.719538979	0.027184501
ENSMUSG0000042699	Dhx9	0.33973146	0.958780765	0.027275372
ENSMUSG0000041351	Rap1gap	1.195126743	0.511793334	0.027911923
ENSMUSG0000061032	Rrp1	2.456986451	0.380837672	0.028454113
ENSMUSG0000032046	Abhd12	1.383192373	-0.441298069	0.028456707
ENSMUSG0000027523	Gnas	22.85300731	0.276153162	0.028456707
ENSMUSG0000031683	Lsm6	1.577324635	0.4500967	0.028456707
ENSMUSG00000110156	Gm42067	0.418597692	0.850783513	0.028456707
ENSMUSG0000006476	Nsmf	1.219393276	0.500877668	0.028634644
ENSMUSG0000057897	Camk2b	1.965589161	0.415542443	0.028835047
ENSMUSG0000014606	Slc25a11	1.735057099	0.435746013	0.028835047
ENSMUSG0000030854	Ptpn5	1.134460411	0.52001493	0.029255761
ENSMUSG0000026238	Ptma	3.366981433	-0.338361584	0.029384128
ENSMUSG0000056972	Magel2	0.454997491	0.817424916	0.029529223
ENSMUSG0000033475	Tomm6	3.142516004	-0.344484508	0.029671357
ENSMUSG0000032249	Anp32a	0.333664827	-0.754078546	0.029775323
ENSMUSG0000031310	Zmym3	0.770462418	0.620896555	0.029775323
ENSMUSG0000046160	Olig1	0.909994982	-0.525521592	0.031167435
ENSMUSG0000062006	Rpl34	10.95633958	0.264550058	0.031221576
ENSMUSG0000005034	Prkacb	3.925111689	0.324384904	0.031298375
ENSMUSG0000057751	Megf6	0.121332664	1.698780419	0.031521721
ENSMUSG0000074884	Serf2	5.071705366	0.303134449	0.03153985
ENSMUSG0000036634	Mag	1.037394279	-0.484502965	0.031695474
ENSMUSG0000030137	Tuba8	0.084932865	2.120244188	0.031866423
ENSMUSG0000019505	Ubb	35.45947113	0.229359575	0.032389572
ENSMUSG0000042439	Zfp532	0.285131761	1.016956379	0.03249908
ENSMUSG0000013787	Ehmt2	0.946394781	0.553778031	0.032509682
ENSMUSG0000009621	Vav2	0.097066131	1.978888338	0.032798841
ENSMUSG0000027797	Dclk1	1.201193376	0.519061334	0.032993977
ENSMUSG0000019232	Etnppl	0.703729453	0.640774816	0.034216426
ENSMUSG00000116165	Pdxp	2.632918814	0.365356685	0.034315312
ENSMUSG0000031066	Usp11	1.346792573	0.471221672	0.034315312
ENSMUSG00000117465	Gm49980	0.224465429	1.175878887	0.034843212
ENSMUSG0000038503	Mesd	1.182993476	0.497146558	0.034843981
ENSMUSG0000036357	Gpr101	0.394331159	0.848356775	0.034843981
ENSMUSG0000037400	Atp11b	0.200198896	1.256422314	0.035014782
ENSMUSG0000023092	Fhl1	1.055594179	0.525013351	0.037044433
ENSMUSG0000017631	Abr	1.898856196	0.409942258	0.037257381
ENSMUSG0000030757	Zkscan2	0.163799097	1.376852324	0.037964657
ENSMUSG0000025786	Zdhhc3	0.181998996	-0.940974554	0.038342672
ENSMUSG0000024076	Vit	0.115266031	1.727926765	0.038342672
ENSMUSG0000044252	Osbpl1a	0.315464927	-0.752212911	0.038361467
ENSMUSG0000040687	Madd	1.00099448	0.628391091	0.038515486
ENSMUSG0000026173	Plcd4	0.224465429	1.139353011	0.039616513
ENSMUSG0000029415	Sdad1	0.175932363	1.312889266	0.039616513
ENSMUSG00000104960	Snhg8	0.818995484	0.579717245	0.039669568
ENSMUSG0000032890	Rims3	1.401392272	0.46030979	0.039669568
ENSMUSG0000024858	Grk2	0.994927847	0.529827257	0.039669568
ENSMUSG0000031227	Magee1	1.553058102	0.437618428	0.04015754
ENSMUSG0000025266	Gnl3l	1.067727445	0.516052215	0.04015754
ENSMUSG0000033685	Ucp2	0.333664827	-0.734178988	0.040321563
ENSMUSG0000024985	Tcf7l2	0.564196889	0.701853253	0.040561658
ENSMUSG0000026404	Ddx59	0.115266031	2.365356685	0.040971476
ENSMUSG0000058740	Kcnt1	0.473197391	0.762246838	0.040971476
ENSMUSG0000070802	Pnmal2	3.154649271	0.337626346	0.040971476
ENSMUSG0000034818	Celf5	0.436797591	0.788468307	0.040971476
ENSMUSG0000000325	Arvcf	0.242665329	1.111473978	0.040971476

ENSMUSG0000006676	Usp19	0.643063121	0.65103983	0.041962897
ENSMUSG0000068240	Gm11808	0.50959719	0.727926765	0.042118482
ENSMUSG0000010277	2610507B11Rik	0.424664325	0.80851186	0.042170815
ENSMUSG0000029697	Fezf1	0.200198896	-0.898855912	0.042669083
ENSMUSG0000030846	Tial1	0.685529553	0.628391091	0.042669083
ENSMUSG0000032480	Dhx30	0.545996989	0.698780419	0.042669083
ENSMUSG0000060002	Chpt1	0.224465429	-0.85160185	0.042669083
ENSMUSG0000022054	Nefm	0.442864225	-0.806011733	0.042669083
ENSMUSG0000059920	4930453N24Rik	0.084932865	-1.237307817	0.042669083
ENSMUSG0000024127	Prepl	0.084932865	-1.237307817	0.042669083
ENSMUSG0000000787	Ddx3x	1.104127245	0.505051756	0.042669083
ENSMUSG0000025982	Sf3b1	0.897861715	0.549879063	0.043163672
ENSMUSG0000008036	Ap2s1	3.803779024	0.315681526	0.043509767
ENSMUSG0000019817	Plagl1	0.479264024	0.753921973	0.043509767
ENSMUSG0000021951	Eef1akmt1	0.770462418	0.591301773	0.043509767
ENSMUSG0000022897	Dyrk1a	0.376131259	0.850783513	0.043509767
ENSMUSG0000030706	Mrpl48	1.425658805	0.448538215	0.043647071
ENSMUSG0000003934	Efnb3	0.35793136	-0.699934775	0.043647071
ENSMUSG0000021913	Ogdhl	0.242665329	1.0790525	0.043647071
ENSMUSG0000006740	Kif5b	0.67946292	-0.547668027	0.043647071
ENSMUSG0000026473	Glul	2.990850174	0.339946842	0.04390829
ENSMUSG0000075700	Selenot	1.553058102	0.431075582	0.04390829
ENSMUSG0000036606	Plxnb2	0.394331159	0.831482957	0.04390829
ENSMUSG0000041261	Car8	0.127399297	1.585322369	0.045224056
ENSMUSG0000020262	Adarb1	0.952461414	0.534140766	0.045224056
ENSMUSG0000048731	Ggnbp1	0.127399297	1.585322369	0.045224056
ENSMUSG0000017639	Rab11fip4	0.673396287	0.628391091	0.045565914
ENSMUSG0000039067	Psmd7	0.533863723	-0.596315196	0.045869774
ENSMUSG0000042532	Golga7b	0.734062619	0.59719647	0.046140835
ENSMUSG0000020919	Stat5b	0.448930858	0.769746941	0.046968234
ENSMUSG0000023169	Slc38a1	0.740129252	0.601279246	0.047210131
ENSMUSG0000097767	Miat	0.503530557	0.723027965	0.047816003
ENSMUSG0000062661	Ncs1	1.346792573	0.455832779	0.048337464
ENSMUSG0000050608	Micos10	4.695574107	0.36742655	0.048384015
ENSMUSG00000109006	B230209E15Rik	0.024266533	-1.857035736	0.048658054
ENSMUSG0000020990	Cdkl1	0	-3.178963831	0.048705171
ENSMUSG0000021071	Trim9	0.964594681	0.524054432	0.049414861
ENSMUSG0000022390	Zc3h7b	0.291198394	0.970082441	0.049414861
ENSMUSG0000024773	Atg2a	0.291198394	0.970082441	0.049414861
ENSMUSG0000029578	Wipi2	0.643063121	0.641937623	0.04946882
ENSMUSG0000026333	Gin1	0.024266533	-1.890983068	0.049661827
ENSMUSG0000006390	Elovl1	0.090999498	-1.178963831	0.049694097
ENSMUSG0000038602	Slc35f1	0.303331661	0.931582624	0.049694097
ENSMUSG0000006058	Snf8	0.740129252	-0.520088936	0.049694097

Table S2O. DEGs at ZT4 in female and male lateral hypothalamus (LH). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT4 FEMALES - LH					ZT4 MALES - LH				
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR
ENSMUSG0000021342	Prl	1.375169903	-6.786365676	1.22011E-16	ENSMUSG0000061808	Ttr	0.571219563	-2.2803153	4.20083E-07
ENSMUSG0000028298	Cga	0.173340744	-6.71023795	5.47115E-12	ENSMUSG0000019970	Sgk1	4.74112237	2.356302045	1.0211E-05
ENSMUSG0000090137	Uba52	1.837411888	-2.417527753	1.07506E-11	ENSMUSG0000023067	Cdkn1a	0.780666736	3.383155315	0.000965066
ENSMUSG0000019970	Sgk1	3.050797097	3.24025382	4.12921E-10	ENSMUSG0000090137	Uba52	1.837422927	-1.458060465	0.001047777
ENSMUSG0000020713	Gh	0.739587175	-7.520932748	4.12921E-10	ENSMUSG0000024907	Gal	0.552178911	-2.217765524	0.001424408
ENSMUSG0000060143	Gm10076	8.528364611	-1.965107557	3.35918E-09	ENSMUSG0000025591	Tma16	0.904430974	2.423153383	0.007674619
ENSMUSG0000034892	Rps29	18.95192136	-1.817291199	4.21161E-08					

8.88087E-08 9.38102E-08 7.19538E-07 8.69631E-07 1.9162E-06 2.03345E-06 2.6602E-06 2.95563E-06 7.57475E-06 1.89871E-05 5.71333E-05 6.22085E-05 9.4124E-05 0.00012338 0.000130809 0.000136388 0.000137962 0.00013874 0.0001655 0.0002658 0.000207816 0.000289872 0.00033583
9.38102E-08 7.19538E-07 8.69631E-07 1.9162E-06 2.03345E-06 2.6502E-06 2.95563E-06 1.89871E-05 5.71333E-05 6.22085E-05 9.4124E-05 0.00012338 0.00013638 0.00013638 0.00013655 0.0001655 0.0001258 0.00027816 0.00027816 0.00027816
7.19538E-07 8.69631E-07 1.9162E-06 2.03345E-06 2.95563E-06 7.57475E-06 1.89871E-05 5.71333E-05 9.4124E-05 0.00012338 0.000130809 0.000136388 0.00013874 0.0001655 0.00027816 0.000289872 0.000331533
8.69631E-07 1.9162E-06 2.03345E-06 2.6002E-06 2.95563E-06 1.89871E-05 5.71333E-05 6.22085E-05 9.4124E-05 0.00012338 0.000136388 0.000136388 0.00013655 0.00016258 0.00029872 0.000331583
1.9162E-06 2.03345E-06 2.95563E-06 7.57475E-06 1.89871E-05 5.71333E-05 6.22085E-05 9.4124E-05 0.00012338 0.000130809 0.000136388 0.000136388 0.00013655 0.0001655 0.0001655 0.000207816 0.000289872 0.00033533
2.03345E-06 2.6602E-06 2.95563E-06 7.57475E-06 1.89871E-05 5.71333E-05 6.22085E-05 9.4124E-05 0.00012338 0.000130809 0.000136388 0.000137962 0.00013874 0.0001565 0.0001655 0.0001655 0.0001258 0.00027816 0.00027816
2.6602E-06 2.95563E-06 7.57475E-06 1.89871E-05 5.71333E-05 9.4124E-05 0.0001338 0.000130809 0.000136388 0.000136388 0.00013874 0.00016258 0.000207816 0.000289872 0.000331583
2.95563E-06 7.57475E-06 1.89871E-05 5.71333E-05 6.22085E-05 9.4124E-05 0.00012338 0.000136388 0.000136388 0.000136388 0.00013655 0.00016258 0.000207816 0.000289872 0.000331583
7.57475E-06 1.89871E-05 5.71333E-05 6.22085E-05 9.4124E-05 0.000130809 0.000136388 0.000137962 0.00013874 0.0001655 0.0001655 0.000207816 0.000289872 0.000331583
1.89871E-05 5.71333E-05 6.22085E-05 9.4124E-05 0.00012338 0.000130809 0.000136388 0.000137962 0.00013874 0.00016258 0.00016258 0.000207816 0.000289872 0.000331583
5.71333E-05 6.22085E-05 9.4124E-05 0.00012338 0.000130809 0.000136388 0.000137962 0.0001365 0.00016258 0.00016258 0.000207816 0.000289872 0.000331583
6.22085E-05 9.4124E-05 0.00012338 0.000130809 0.000136388 0.000137962 0.0001365 0.00016258 0.00016258 0.000207816 0.000289872 0.000331583
9.4124E-05 0.00012338 0.000130809 0.000137962 0.000137962 0.000137965 0.00016258 0.000207816 0.000289872 0.000331533
0.0012338 0.000130809 0.000136388 0.000137962 0.000137962 0.0001565 0.00016258 0.00016258 0.000207816 0.000289872 0.000331583
0.000130809 0.000136388 0.000137962 0.00013874 0.0001565 0.00016258 0.000207816 0.000289872 0.000331583
0.000136388 0.000136388 0.000137962 0.00013874 0.0001655 0.00016258 0.000207816 0.000289872 0.000331583
0.000137962 0.000137962 0.00013874 0.0001565 0.00016258 0.000207816 0.000288872 0.000331583
0.00013562 0.00013874 0.0001565 0.00016258 0.000207816 0.000289872 0.000331583
0.00013874 0.0001565 0.00016258 0.000207816 0.000289872 0.000331583
0.0001365 0.00016258 0.000207816 0.000289872 0.000331583
0.00016258 0.000207816 0.000289872 0.000331583
0.000207816 0.000289872 0.000331583
0.000289872
0.000331583
0.000331583
0.000352322
0.000390158
0.000398798
0.000966939
0.001108275
0.001326848
0.001326848
0.001522974
0.001819579
0.001917705
0.002015659
0.002259617
0.002740503
0.002740503
0.002740503
0.002862031
0.00293295
0.003602502
0.005107021
0.005845884
0.006302443
0.007400646
0.007489616
0.007489616
0.007489616 0.007925194 0.007925194
0.007489616 0.007925194 0.007925194 0.009286494
0.007489616 0.007925194 0.007925194 0.009286494 0.009286494
0.007489616 0.007925194 0.007925194 0.009286494 0.009286494 0.010126745
0.007489616 0.007925194 0.007925194 0.009286494 0.009286494 0.010126745 0.010126745
0.007925194 0.007925194 0.007925194 0.009286494 0.009286494 0.010126745 0.010126745
0.00745916 0.007925194 0.007925194 0.009286494 0.009286494 0.010126745 0.010126745 0.010126745 0.010126745
0.00745916 0.007925194 0.007925194 0.009286494 0.009286494 0.010126745 0.010126745 0.010126745 0.012996313
0.007489616 0.007925194 0.007925194 0.009286494 0.0010126745 0.010126745 0.010126745 0.010126745 0.0102996313 0.012996313 0.015029545
0.007489616 0.007925194 0.007925194 0.009286494 0.009286494 0.010126745 0.010126745 0.010126745 0.010126745 0.012996313 0.012996313 0.015029545 0.018344421
0.007489616 0.007925194 0.007925194 0.009286494 0.009286494 0.010126745 0.010126745 0.010126745 0.010126745 0.010126745 0.012996313 0.012996313 0.012996313 0.012996313 0.018344421 0.027022777
0.007489616 0.007925194 0.007925194 0.009286494 0.009286494 0.010126745 0.010126745 0.010126745 0.010296313 0.012996313 0.012996313 0.015029545 0.018344421 0.027022777
0.00743916 0.007925194 0.007925194 0.009286494 0.010126745 0.010126745 0.010126745 0.012966313 0.012996313 0.015029545 0.01834421 0.027022777 0.027022777 0.0200224
0.007489616 0.007925194 0.007925194 0.009286494 0.010126745 0.010126745 0.010126745 0.010126745 0.012996313 0.015929545 0.018344421 0.027022777 0.027022777 0.03000204 0.030241254

ENSMUSG0000009079	Ewsr1	0.87825977	-1.180238109	0.034543761
ENSMUSG0000097383	1500026H17Rik	0.069336298	-2.201548615	0.035984768
ENSMUSG0000027525	Phactr3	1.860523987	1.219053585	0.037223367
ENSMUSG0000045471	Hcrt	124.1928651	1.53374946	0.037388548
ENSMUSG0000058420	Syt17	0.450685935	1.945292773	0.03805242
ENSMUSG0000098234	Snhg6	0.115560496	-1.952827613	0.042058026
ENSMUSG0000019539	Rcn3	0.034668149	-3.054707227	0.044021407
ENSMUSG0000020163	Uqcr11	8.539920661	-0.917788461	0.044598924
ENSMUSG0000053332	Gas5	9.776417969	-0.922813672	0.045596224
ENSMUSG0000020473	Aebp1	0.080892347	-2.340109446	0.048729861
ENSMUSG0000062006	Rpl34	16.02824081	-0.897845401	0.049137587
ENSMUSG0000073616	Cops9	6.448275682	-0.925182235	0.049946804
ENSMUSG0000066637	Ttc32	0.28890124	2.645732491	0.049946804

Table S2P. DEGs at ZT14 in female and male lateral hypothalamus (LH). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT14 FEMALES - LH					ZT14 MALES - LH				
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR	FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR
ENSMUSG0000037727	Avp	0.026226657	-9.226531502	2.3256E-13	ENSMUSG0000052305	Hbb-bs	37.32690729	5.390754979	1.37552E-34
ENSMUSG0000035383	Pmch	502.9092534	3.027155608	4.69757E-09	ENSMUSG0000069917	Hba-a2	10.21721915	5.326481166	6.97737E-25
ENSMUSG0000027301	Oxt	0	-12.12594974	0.002027866	ENSMUSG0000069919	Hba-a1	12.43094996	5.00992389	4.3607E-24
ENSMUSG0000019970	Sgk1	1.901432603	1.808402901	0.006389625	ENSMUSG0000027301	Oxt	80.10299812	5.687720491	2.76025E-22
ENSMUSG0000035413	Tmem98	0.065566641	-2.546480904	0.026958944	ENSMUSG0000037727	Avp	63.5511031	4.343816881	2.06896E-20
					ENSMUSG0000073940	Hbb-bt	3.23545273	4.807107007	1.04956E-18
					ENSMUSG0000098178	Gm42418	4.120945056	-1.645589957	6.69664E-14
					ENSMUSG0000064354	mt-Co2	40.97104878	-1.132599104	1.32362E-08

ENSMUSG0000069917	Hba-a2	10.21721915	5.326481166	6.97737E-25
ENSMUSG0000069919	Hba-a1	12.43094996	5.00992389	4.3607E-24
ENSMUSG0000027301	Oxt	80.10299812	5.687720491	2.76025E-22
ENSMUSG0000037727	Avp	63.5511031	4.343816881	2.06896E-20
ENSMUSG0000073940	Hbb-bt	3.23545273	4.807107007	1.04956E-18
ENSMUSG0000098178	Gm42418	4.120945056	-1.645589957	6.69664E-14
ENSMUSG0000064354	mt-Co2	40.97104878	-1.132599104	1.32362E-08
ENSMUSG0000064357	mt-Atp6	57.79540298	-0.988089402	1.07325E-06
ENSMUSG0000020932	Gfap	1.873156844	2.57006781	2.99781E-06
ENSMUSG0000061808	Ttr	1.941271638	1.670734565	4.8471E-06
ENSMUSG0000015090	Ptgds	25.71333486	1.04967731	5.18416E-06
ENSMUSG0000064345	mt-Nd2	27.21186033	-0.959156858	5.41726E-06
ENSMUSG0000045471	Hcrt	14.16787722	-2.009301163	1.20522E-05
ENSMUSG0000026697	Myoc	0.47680356	4.129035102	1.32654E-05
ENSMUSG0000037852	Сре	15.35988612	0.815911276	2.37809E-05
ENSMUSG0000064363	mt-Nd4	34.22768415	-0.85855384	6.59217E-05
ENSMUSG0000031760	Mt3	21.5583324	0.719911902	9.14437E-05
ENSMUSG0000019970	Sgk1	1.702869858	1.70474529	0.000294996
ENSMUSG0000064351	mt-Co1	94.7136215	-0.765617054	0.00084692
ENSMUSG0000062328	Rpl17	8.548406687	-0.849743442	0.001183737
ENSMUSG0000027643	Ghrh	0.885492326	4.169677087	0.001380958
ENSMUSG0000006333	Rps9	3.780371085	-0.963438908	0.001446574
ENSMUSG0000030711	Sult1a1	0.47680356	2.959110101	0.001516386
ENSMUSG0000017344	Vtn	1.157951503	1.650987805	0.001627684
ENSMUSG0000008682	Rpl10	4.325289439	-0.928872032	0.001631068
ENSMUSG0000078974	Sec61g	4.665863411	0.896040736	0.001861285
ENSMUSG00000102252	Snrpn	4.325289439	-0.917406846	0.001891456
ENSMUSG0000041841	RpI37	24.28292417	0.630462408	0.003513643
ENSMUSG0000064341	mt-Nd1	31.29874799	-0.696822406	0.004699813
ENSMUSG0000000214	Th	0.817377532	1.866000696	0.00561609
ENSMUSG0000069516	Lyz2	0.340573972	3.35964803	0.006884644
ENSMUSG0000090137	Uba52	3.780371085	0.869628092	0.007370812
ENSMUSG0000056201	Cfl1	4.733978205	-0.8506963	0.009401936
ENSMUSG0000038274	Fau	22.47788213	0.561363741	0.010195362
ENSMUSG0000092341	Malat1	1.805042049	-1.034195247	0.011854983
ENSMUSG0000090223	Pcp4	4.972379985	-0.808203584	0.012126081
ENSMUSG0000079484	Phyhd1	0.47680356	2.428595384	0.013346405
ENSMUSG0000028495	Rps6	3.678198893	-0.85516122	0.013346405
ENSMUSG0000031765	Mt1	19.03808501	0.562709191	0.0150342
ENSMUSG0000006522	Itih3	2.077501227	1.0470578	0.015946773
ENSMUSG0000037706	Cd81	7.765086552	0.753009264	0.016827013
ENSMUSG0000073418	C4b	0.374631369	2.807107007	0.017049361
ENSMUSG0000047261	Gap43	3.576026702	-0.860506674	0.01903113

ENSMUSG0000052387	Trpm3	0.613033149	1.946510064	0.022447144
ENSMUSG0000028234	Rps20	15.6323453	0.549965169	0.025094366
ENSMUSG0000050711	Scg2	3.099223142	-0.861623851	0.026343221
ENSMUSG0000024403	Atp6v1g2	1.294181092	-1.073653857	0.026343221
ENSMUSG0000092274	Neat1	0.544918355	2.061679834	0.026343221
ENSMUSG0000030541	Idh2	0.919549723	1.505937472	0.032293599
ENSMUSG0000032399	Rpl4	14.47439379	1.094216769	0.032860839
ENSMUSG0000084786	Ubl5	5.449183546	0.679617272	0.032942304
ENSMUSG0000034892	Rps29	9.570128602	-0.67722313	0.032942304
ENSMUSG0000068240	Gm11808	0.749262738	1.658243621	0.040583204
ENSMUSG0000026676	Ccdc3	0.170286986	4.807107007	0.043367352
ENSMUSG0000042485	Mustn1	0.170286986	4.807107007	0.043367352
ENSMUSG0000057322	RpI38	23.05685788	0.496072065	0.046101016

Table S2Q. DEGs at ZT4 in female and male dorso-medial-ventral hypothalamus (DMVH). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT4 FEMALES - DMVH					ZT4 MALES - DMVH				
FeatureID	FeatureName	ZT4RF count average	ZT4RF Log2FoldChange	ZT4RF FDR	FeatureID	FeatureName	ZT4RM count average	ZT4RM Log2FoldChange	ZT4RM FDR
ENSMUSG0000090137	Uba52	1.96882357	-2.223594237	2.23848E-11	ENSMUSG0000024907	Gal	0.411714734	-4.162043042	3.27962E-09
ENSMUSG0000019970	Sgk1	2.437019419	2.994200473	2.23848E-11	ENSMUSG0000061808	Ttr	0.797288849	-2.087004451	7.87488E-09
ENSMUSG0000060143	Gm10076	7.67120891	-2.111184277	1.5028E-10	ENSMUSG0000027400	Pdyn	0.33329288	-2.461603324	1.45532E-05
ENSMUSG0000032532	Cck	5.09012923	2.304632929	6.62678E-10	ENSMUSG0000040856	Dlk1	0.810359158	-1.734427047	7.64395E-05
ENSMUSG0000023067	Cdkn1a	0.900376633	3.513119116	1.70164E-09	ENSMUSG0000005705	Agrp	0	-7.375638515	0.000104185
ENSMUSG00000113902	Ndufb1-ps	4.309802815	-1.838284518	8.62741E-09	ENSMUSG0000023067	Cdkn1a	0.660050605	2.364531433	0.000104185
ENSMUSG0000090733	Rps27	10.0361982	-1.778040896	1.17313E-08	ENSMUSG0000090137	Uba52	2.038968204	-1.378131275	0.000107851
ENSMUSG0000067288	Rps28	8.811685978	-1.745189167	2.03219E-08	ENSMUSG0000078640	Gm11627	0.372503807	2.92859871	0.000481398
ENSMUSG0000048572	Tmem252	0.360150653	5.919827631	3.75316E-08	ENSMUSG0000019970	Sgk1	3.019241379	1.755561097	0.000541481
ENSMUSG0000079641	Rpl39	8.41552026	-1.70864647	3.75316E-08	ENSMUSG0000048572	Tmem252	0.26140618	3.750097814	0.000887925
ENSMUSG0000046516	Cox17	2.857195181	-1.774650469	4.534E-08	ENSMUSG0000021453	Gadd45g	1.169792656	1.67494554	0.001824611
ENSMUSG00000104960	Snhg8	0.756316371	-1.968059334	1.21939E-07	ENSMUSG0000027301	Oxt	0.058816391	-8.285526096	0.005484349
ENSMUSG0000028998	Tomm7	2.761155007	-1.686445376	1.2616E-07	ENSMUSG0000056380	Gpr50	0.006535155	-4.736737207	0.006653239
ENSMUSG0000002910	Arrdc2	0.648271176	2.746991034	3.00353E-07	ENSMUSG0000045005	Fzd5	0.013070309	-3.270419203	0.013544148
ENSMUSG00000103034	Gm8797	0.396165718	4.053094162	4.29623E-07	ENSMUSG0000031431	Tsc22d3	3.646616211	1.206367327	0.015719899
ENSMUSG0000062997	Rpl35	9.712062611	-1.54564304	5.93495E-07	ENSMUSG0000020660	Pomc	0.287546798	-3.726625891	0.017298432
ENSMUSG0000057322	Rpl38	24.77836493	-1.505124543	6.54865E-07	ENSMUSG0000070369	Itgad	0.156843708	4.036401999	0.019843932
ENSMUSG0000034892	Rps29	19.55618046	-1.523899007	6.54865E-07	ENSMUSG0000027210	Meis2	0.758077922	1.940982434	0.022101418
ENSMUSG0000016427	Ndufa1	2.593084702	-1.620438816	6.54865E-07	ENSMUSG0000042607	Asb4	0.13070309	-2.048026782	0.027579895
ENSMUSG0000038489	Polr2l	0.600251088	-1.924185762	7.03223E-07	ENSMUSG0000035202	Lars2	1.026019257	-1.161654437	0.031051324
ENSMUSG0000078974	Sec61g	4.189752597	-1.607604692	7.38982E-07	ENSMUSG0000023964	Calcr	0.084957009	-2.085501487	0.044979456
ENSMUSG0000046330	Rpl37a	13.43361936	-1.493097516	8.22909E-07	ENSMUSG0000019817	Plagl1	0.222195253	-1.60745419	0.046212612
ENSMUSG0000021647	Cartpt	1.644687982	-2.879313185	1.11251E-06	ENSMUSG0000038760	Trhr	0.045746082	-2.362341693	0.046212612
ENSMUSG0000031431	Tsc22d3	3.997672249	1.548435713	2.13677E-06	ENSMUSG0000034936	Arl4d	0.65351545	1.65843987	0.047225161
ENSMUSG0000074754	Smim26	0.768321393	-1.733100055	2.97588E-06					
ENSMUSG0000021290	Atp5mpl	5.882460667	-1.487106888	2.97588E-06					
ENSMUSG0000041841	Rpl37	23.86598328	-1.405075808	4.12428E-06					
ENSMUSG0000071528	Atp5md	15.89464882	-1.399416734	5.42018E-06					
ENSMUSG0000064360	mt-Nd3	11.84895649	-1.409056208	7.44724E-06					
ENSMUSG0000039001	Rps21	28.37987146	-1.371346476	7.48762E-06					
ENSMUSG0000035383	Pmch	18.53575361	-2.842457102	1.0694E-05					
ENSMUSG0000079523	Tmsb10	19.17201976	-1.360083614	1.13032E-05					
ENSMUSG0000027525	Phactr3	1.96882357	1.659528193	1.27602E-05					
ENSMUSG0000035674	Ndufa3	5.642360231	-1.389602861	1.65715E-05					
ENSMUSG0000057863	Rpl36	11.63286609	-1.321981108	2.03481E-05					
ENSMUSG0000093674	Rpl41	21.09282325	-1.350540788	2.33115E-05					
ENSMUSG0000021342	Prl	2.749149985	-6.712593716	5.32092E-05					
ENSMUSG0000057278	Snrpg	1.896793439	-1.416714016	7.29222E-05					
ENSMUSG0000020018	Snrpf	0.852356546	-1.557930636	7.29222E-05					
ENSMUSG0000038803	Ost4	0.61225611	-1.642267992	8.19196E-05					
ENSMUSG0000047721	Bola2	2.112883831	-1.364424655	8.19196E-05					
ENSMUSG0000050856	Atp5k	9.135821566	-1.255543465	0.000112159					
ENSMUSG0000071637	Cebpd	0.61225611	2.344142944	0.000120635					

ENSMUSG0000020713

Gh

1.800753265

-5.895640495

0.000219948

ENSMUSG0000016252	Atp5e	9.483967197	-1.180798163	0.000341356
ENSMUSG0000098234	Snhg6	0.132055239	-2.204293681	0.000408241
ENSMUSG0000060636	Rpl35a	19.23204487	-1.146865909	0.000441032
ENSMUSG0000073616	Cops9	5.63035521	-1.189208329	0.00055217
ENSMUSG0000017778	Cox7c	14.62211651	-1.1354815	0.00055217
ENSMUSG0000070369	Itgad	0.264110479	4.489193277	0.000557791
ENSMUSG0000025362	Rps26	13.19351892	-1.136568691	0.000557791
ENSMUSG0000053332	Gas5	8.787675935	-1.160555481	0.000558739
ENSMUSG0000036372	Tmem258	1.584662873	-1.303266791	0.000566134
ENSMUSG0000028298	Cga	0.240100435	-6.591513236	0.000580949
ENSMUSG0000078784	Rbis	1.896793439	-1.277991779	0.000594279
ENSMUSG0000068240	Gm11808	0.396165718	-1.583530459	0.000594279
ENSMUSG0000079435	Rnl36a	7 26303817	-1 148196788	0.000631311
ENSMUSG0000093565	Rab26os	0.060025109	-2 599153298	0.000710069
ENSMUSG0000070570	Slc17a7	0 780326415	2 36616925	0.000815705
ENSMUSG0000041046	Ramn3	1 15248209	1 758189241	0.00082466
ENSMUSG0000021948	Prkcd	1 42859759	2 287559415	0.000989993
ENSMUSG0000021540	Mia	0.024010044	-4 884034406	0.000909599
ENSMUSG0000042737	Dom3	1 332557/16	-1 300162700	0.0000000000000000000000000000000000000
ENSMUSG00000642757	mt-Atn8	1.532557410	-1 217502245	0.001034500
ENSMUSC0000067847	Bomo1	2 027270507	1 162027054	0.001123303
ENSING 300000007847	Dhadd2	3.037270307 4.340777706	1 220274452	0.001203437
ENSINGSG00000017734	Emc1	4.243777700	1.333274432	0.001548015
ENSINUSG00000019089	Ploc1c1	0.20409527	-1.224030012	0.001003584
ENSING 3000000000247	Toot1	0.20406337	2.024313013	0.001093827
ENSINGSG0000004179	Den2	0.004200241	4.079762700	0.001707804
ENSING 300000019339	RUIS Caulo	0.012003022	-4.078702733	0.002000901
ENSINIUS G00000014313		16.67169422	-1.053954106	0.002015175
	Kpi54	13.33442264	-1.059995229	0.002124412
	nuri Dahan1	14.62020166	-2.420130172	0.002124412
	Paupini Rotino	1.392362323	1.312434064	0.002107558
	Petituu Somi	2.412000276	-1.2/140/8//	0.002228075
ENSINGSG00000042341	Arldd	2.413009370	-1.137706429	0.002303890
	An4u Sla2a1	1.000020000	2.094914557	0.002775495
	JICZdI MaralE2	2.2000000000	1.331900003	0.002903942
	IVIT PISZ	2.300333332	-1.121651521	0.002903942
	Clim	1.0592/9215	-1.034920003	0.003446691
	Sili p Saba18	1.15246209	-1.202040102	0.003487606
	Gng12	1 512622742	1 210111501	0.003487000
ENSINUSG0000023739	Dol22	2 745566702	1 090755070	0.003904043
ENSINUSG0000028950	Rhoh	4 741092500	1 017550112	0.004470734
ENSINUSG00000034304	kilob	4.741903399	2 490102277	0.005050055
	LUIIZ Dept1r1h	0.204110479	1 751506515	0.005819337
	Ppp11D	0.566240007	1./51500515	0.005651754
	IVIT PISS	0.272155675	-1.104/5600/	0.008097034
ENSING 300000038331	JIIIII14 Dol21	7 025210290	-1.391920004 0.0714E120E	0.008107383
ENSING 300000073702	Rpc1Ep	12 02126225	-0.971431303	0.008247858
	Rpin2	0.0E1796414	-0.902781107	0.008247838
ENSMUSC0000023308	N/H2	10 07625622	-0.900890403	0.009378429
ENSINGSG00000031700	Sul+1-1	0 40917074	1 946096974	0.00943239
	Juiliai	1 200577502	1.040500024	0.009049030
	Anapcis Dia	1.360377303	-1.095250922	0.010217727
	PIIN4	0.168070305	3.8/2521916	0.010397566
ENSINUS GOODOODOS 332	2310009A05RIK	0.4201/5/62	-1.34017/109	0.010819553
	FZUZ	0.546145051	1.90505152	0.011000092
	INT PSZT	2.4/3034464	-1.01201223	0.0120/8269
		0.102300211	-0.34343/419	0.0122203919
	ni Bacc	0.432100704	2.003133063	0.0122295
	nguu Dtada	0.50075200	1.300000002	0.01322363
	r ugus Adm	20.3/2//303	4 666071020	0.013239232
	Aum	0.144060261	4.0000/1039	0.01396/404
	Rome	12.22111210	-0.3123222201	0.014600301
	Mall	0.072201219	-2.213499130	0.015390128
EN31010300000033174	IVIGII	0.732300328	1.400390012	0.01014052

ENSMUSG0000038717	Atp5l	10.87654972	-0.907246297	0.01614652
ENSMUSG0000019890	Nts	0.684286241	-2.184816306	0.016188412
ENSMUSG0000039114	Nrn1	0.900376633	1.458671332	0.016188412
ENSMUSG0000029641	Rasl11a	0.396165718	2.146203566	0.0169259
ENSMUSG0000079480	Pin4	1.35656746	-1.046968716	0.017513845
ENSMUSG0000063935	Zar1	0.264110479	2.319268275	0.019693633
ENSMUSG0000026500	Cox20	1.080451959	-1.06573285	0.02140617
ENSMUSG0000070348	Ccnd1	0.072030131	-2.059903772	0.022890178
ENSMUSG0000006205	Htra1	2.98925042	0.983048374	0.023042588
ENSMUSG0000036781	Rps27l	1.104462003	-1.072638696	0.023533606
ENSMUSG0000033715	Akr1c14	0	-4.356296774	0.024363321
ENSMUSG0000037568	Vash2	0.192080348	2.468131661	0.024885812
ENSMUSG0000070394	Tmem256	2.413009376	-0.949804384	0.024987075
ENSMUSG0000026278	Bok	1.22451222	1.128569892	0.026552935
ENSMUSG0000070637	Srarp	0.216090392	2.628596333	0.028160412
ENSMUSG0000028583	Pdpn	0.012005022	-2.98856499	0.029467631
ENSMUSG0000020108	Ddit4	0.636266154	1.550593821	0.030089379
ENSMUSG0000052296	Ppp6r1	0.156065283	-1.61933118	0.031074995
ENSMUSG0000020427	lgfbp3	0.060025109	-2.149845897	0.033416145
ENSMUSG0000049154	Fam183b	0.432180784	-1.394770922	0.036491533
ENSMUSG0000079018	Ly6c1	2.725139941	1.147469643	0.038595648
ENSMUSG0000024038	Ndufv3	5.150154339	-0.87207728	0.039045599
ENSMUSG0000046215	Rprml	0.444185805	1.513119116	0.040164772
ENSMUSG0000039960	Rhou	0.648271176	1.354673611	0.042390492
ENSMUSG0000087590	Epb41l4aos	0.360150653	-1.269996928	0.043003241
ENSMUSG0000052384	Nrros	0.132055239	2.96563132	0.045593175
ENSMUSG0000021453	Gadd45g	1.368572482	1.042937047	0.045996425
ENSMUSG0000026335	Pam	0.492205893	-1.24938157	0.046276353
ENSMUSG0000071451	Psmg4	0.432180784	-1.191237528	0.046380195
ENSMUSG0000040856	Dlk1	1.536642786	-1.203050514	0.048003757
ENSMUSG0000027364	Usp50	0	-4.078762799	0.04928374

Table S2R. DEGs at ZT14 in female and male dorso-medial-ventral hypothalamus (DMVH). The average number of counts per spot in the RHY condition, the log2 fold change in gene expression (RHY relative to saline), and the adjusted p-value (FDR) are shown.

ZT14 FEMALES - DMVH					ZT14 MALES - DMVH				
FeatureID	FeatureName	ZT14RF count average	ZT14RF Log2FoldChange	ZT14RF FDR	FeatureID	FeatureName	ZT14RM count average	ZT14RM Log2FoldChange	ZT14RM FDR
ENSMUSG0000019970	Sgk1	2.230997998	2.535042475	6.45981E-08	ENSMUSG0000061808	Ttr	2.789054253	2.021688075	8.26556E-18
ENSMUSG0000037727	Avp	0.00851526	-11.23355207	2.52328E-06	ENSMUSG0000024907	Gal	4.767496679	2.550448482	8.26556E-18
ENSMUSG0000027301	Oxt	0.00851526	-10.02895523	6.90888E-06	ENSMUSG0000006522	Itih3	3.792014649	1.650090451	1.08413E-11
ENSMUSG0000071637	Cebpd	0.817464915	3.880307637	6.90888E-06	ENSMUSG0000070306	Ccdc153	0.838090194	4.342987407	3.62616E-11
ENSMUSG0000048572	Tmem252	0.766373358	5.958114436	1.14063E-05	ENSMUSG0000049154	Fam183b	1.099134681	1.769283084	3.58646E-07
ENSMUSG0000026822	Lcn2	2.443879487	7.620244797	5.20717E-05	ENSMUSG0000031760	Mt3	26.06323112	0.950629767	4.02563E-07
ENSMUSG0000023067	Cdkn1a	0.459824015	2.909751415	0.000159024	ENSMUSG0000098178	Gm42418	3.09131629	-1.465025991	4.02563E-07
ENSMUSG0000031762	Mt2	5.075094683	1.447905243	0.000401332	ENSMUSG0000064357	mt-Atp6	52.2501149	-1.039459716	5.58888E-07
ENSMUSG0000025400	Tac2	2.57160838	1.938606277	0.001676427	ENSMUSG0000032246	Calml4	0.329740404	3.617609787	7.61999E-07
ENSMUSG0000045471	Hcrt	15.97462689	-2.150694047	0.003589792	ENSMUSG0000064345	mt-Nd2	24.12600625	-1.032527905	7.61999E-07
ENSMUSG0000031765	Mt1	58.58498561	1.124915477	0.003684561	ENSMUSG0000064354	mt-Co2	38.23614771	-1.036316261	7.61999E-07
ENSMUSG0000021025	Nfkbia	0.723797061	1.92238824	0.004979644	ENSMUSG0000045471	Hcrt	78.97282683	1.839577055	8.36245E-07
ENSMUSG0000051851	Rtl8c	0.17882045	3.909751415	0.007493165	ENSMUSG0000024033	Rsph1	0.50834979	2.484715517	1.61064E-06
ENSMUSG0000033585	Ndn	5.160247279	-1.105835857	0.018370209	ENSMUSG0000040856	Dlk1	1.56626692	1.392978894	2.29809E-06
ENSMUSG0000090137	Uba52	8.336439086	0.99249504	0.029054179	ENSMUSG0000017754	Pltp	1.346439984	1.648913907	2.52772E-06
ENSMUSG0000027360	Hdc	0.153274672	3.698247309	0.032528142	ENSMUSG0000035383	Pmch	36.05161754	-1.943832735	4.64909E-06
ENSMUSG0000027875	Hmgcs2	0.170305191	3.257674718	0.036603739	ENSMUSG0000008682	Rpl10	4.369060357	-1.050908457	7.36993E-06
					ENSMUSG0000043164	Tmem212	0.343479588	3.451800894	7.75249E-06
					ENSMUSG0000062328	Rpl17	8.779338264	-0.95895329	1.07815E-05
					ENSMUSG0000034467	Dynlrb2	0.343479588	3.259155816	1.13653E-05

ENSMUSG0000009281

ENSMUSG0000026385

ENSMUSG0000026879

ENSMUSG0000034227

ENSMUSG0000022982

ENSMUSG0000064363

Rarres2

Dbi

Gsn

Foxj1

Sod1

mt-Nd4

1.071656314

12.9148325

0.686959176

0.288522854

4.259146889

31.16046821

1.73321383

1.00318157

1.873589436

3.210792795

0.947703165

-0.902621746

1.1972E-05

1.25927E-05

1.25927E-05

2.26598E-05

2.26598E-05

2.26598E-05

ENSMUSG0000031765	Mt1	21.35069118	0.824350625	5.79787E-05
ENSMUSG0000015090	Ptgds	21.70790995	1.352447737	6.85274E-05
ENSMUSG0000047021	Cfap65	0.206087753	3.973753598	7.59208E-05
ENSMUSG0000026679	Enkur	0.302262037	2,76034996	0.000146793
ENSMUSG0000073616	Cops9	7.116897059	0.843597206	0.000260544
ENSMUSG0000045573	Penk	1.689919572	1.353041072	0.000260544
ENSMUSG0000032399	Rpl4	14.35744677	0.884614995	0.000278044
ENSMUSG0000064351	mt-Co1	88.4116459	-0.806796195	0.000278044
ENSMUSG00000118506	1700094D03Rik	0.453393056	2.186747321	0.000321669
ENSMUSG0000052861	Dnah6	0.206087753	3.558716098	0.000321669
ENSMUSG0000032532	Cck	0.54956734	-1.387512645	0.000395562
ENSMUSG00000110332	Gm19935	0.384697138	2.16876958	0.00043915
ENSMUSG0000090137	Uba52	3 668361998	0 97016926	0.000534508
ENSMUSG0000027744	Stom/3	0 178609386	3 78110852	0.000580786
ENSMUSG0000078974	Sec61g	4 932366881	0 800270777	0.000580786
ENSMUSG0000074555	Gm10714	0 192348569	3 465606694	0.000729911
ENSMUSG00000041841	Rnl37	28 05541273	0.676372302	0.000780581
ENSMUSG0000047139	Cd24a	0 632002442	1 589742994	0.000806343
ENSMUSG0000026649	Cfan126	0 23356612	2 921286178	0.000813785
ENSMUSG0000035805	Mic1	2 775315069	0.96195717	0.001175074
ENSMUSG00000102252	Snrnn	4 946106064	-0.808066232	0.001207706
ENSMUSG00000064341	mt-Nd1	28 67367599	-0 744854727	0.001384885
ENSMUSG0000001345	Col6a5	0 164870202	3 67/102216	0.001538911
ENSMUSG00000044772	Sntn	0.164870202	3 674193316	0.001538911
ENSMUSG0000044772	Rijad1	0.563306524	1 593481516	0.001558511
ENSMUSG0000028135	Cap1	0.041217551	-2 611208903	0.001034255
ENSMUSC0000028050	Dmkn	0.041217551	2.011200505	0.001076502
ENSMUS G0000000000000	Aobo1	0.200087733	2.575755556	0.001370333
ENSMUSC0000020475	Kede1	1 126612049	1 100965516	0.002718923
ENSMUSC0000000129	Mia	0 5220000072	1.100803310	0.0033913
ENSMUS G0000004447E	Accel	0.322000373	1.336710036	0.00429902
ENSMUSC0000028224	ASULI Rec20	17 62727245	0 621990006	0.00423302
ENSINUSG0000028234	KpS20 E+b1	17.02737243 6E 10000066	0.031889000	0.004823783
ENSINUSG0000024001	Fulli Llacr11	7 07252152	0.080333203	0.005304907
ENSMUSC0000020103	Dolo11	0 600720270	0.0300020	0.005307557
ENSINUSG00000075702	24100060160%	1 027224975	0.043244462	0.000719023
ENSIVE C0000001025	2410000010Kik	0.74101501	1 272096621	0.000719623
	S100d0	0.74191391	0.710220802	0.007681645
	CIII	2.362/2993/	-0.719230803	0.008082349
ENSIVIUS G00000038274	Fdu Zmund10	20.72271193	0.562050979	0.00916556
ENSINUS G0000010044	Cm40170	0.200087753	2.556710096	0.009656604
	GIII49179	0.200067755	2.556710096	0.009656604
ENSIMUSG00000073418	C4D	0.329740404	1.880644193	0.010698426
ENSINUSG00000071658	Gng3	4.410277907	-0.720469087	0.010837128
ENSINUSG00000042707	Drail1	0.178609386	2.78110852	0.011097479
ENSMUSG0000029182	1/00001C02Rik	0.178609386	2.78110852	0.011097479
ENSMUSG0000057816	Ctap299	0.137391835	3.433185216	0.011097479
ENSMUSG00000025784	Clec3b	0.13/391835	3.433185216	0.011097479
ENSMUSG0000031137	Fgf13	0.178609386	-1.576443485	0.011097479
ENSMUSG0000045763	Basp1	2.102095077	-0.881856493	0.011451038
ENSMUSG0000046242	Nme9	0.151131019	3.143678599	0.011592795
ENSMUSG0000026688	Mgst3	0.673219992	-1.035832451	0.012461207
ENSMUSG0000033615	Cplx1	1.126613048	-0.905448258	0.013268367
ENSMUSG0000031980	Agt	4.520191376	0.691418636	0.01341726
ENSMUSG0000023084	Lrrc71	0.096174285	4.558716098	U.U14178829
ENSMUSG0000021950	Anxa8	0.096174285	4.558716098	U.U14178829
ENSMUSG0000069833	Annak	0.261044487	2.073289271	U.U14178829
ENSMUSG0000034892	Rps29	9.521254174	-0.663824802	0.016351724
ENSMUSG0000067786	Nnat	12.4202219	0.628109434	0.019199533
ENSMUSG0000023150	Ivns1abp	1.195308966	0.94133212	0.019244549
ENSMUSG0000048794	Ctap100	0.192348569	2.465606694	0.01939357
ENSMUSG0000018593	Sparc	13.78040106	0.614380273	0.021363873
ENSMUSG0000020799	Tekt1	0.178609386	2.558716098	0.022287136
ENSMUSG0000041577	Prelp	0.261044487	1.973753598	0.022502162

ENSMUSG0000027712	Anxa5	1.030438763	0.99928869	0.022502162
ENSMUSG0000062591	Tubb4a	1.511310186	-0.811774962	0.022502162
ENSMUSG0000049641	Vgll2	0.109913468	3.7286411	0.022537496
ENSMUSG0000033731	3300002A11Rik	0.109913468	3.7286411	0.022537496
ENSMUSG0000064370	mt-Cytb	65.60460127	-0.603266084	0.024263499
ENSMUSG0000006333	Rps9	5.715500341	-0.65400625	0.024295408
ENSMUSG0000027360	Hdc	0.123652652	3.295681693	0.02504895
ENSMUSG0000048416	Mlf1	0.123652652	3.295681693	0.02504895
ENSMUSG0000012126	Ubxn11	0.329740404	1.743140669	0.02504895
ENSMUSG0000057101	Zfp180	0.27478367	1.951033521	0.02504895
ENSMUSG0000052397	Ezr	0.27478367	1.951033521	0.02504895
ENSMUSG0000024403	Atp6v1g2	1.717397939	-0.77915354	0.02504895
ENSMUSG0000044646	Zbtb7c	0.151131019	2.821750504	0.02504895
ENSMUSG0000033161	Atp1a1	3.32488241	0.718657011	0.025766584
ENSMUSG0000004558	Ndrg2	10.05708233	0.581529902	0.026163689
ENSMUSG0000092274	Neat1	0.370957955	1.611183518	0.027287135
ENSMUSG0000064356	mt-Atp8	0.439653872	-1.1111353	0.028199658
ENSMUSG0000059991	Nptx2	0.632002442	1.182567612	0.028797953
ENSMUSG0000027800	Tm4sf1	0.343479588	1.615299627	0.030344844
ENSMUSG0000029455	Aldh2	1.195308966	0.995779904	0.033564769
ENSMUSG0000040952	Rps19	6.910809307	-0.619454709	0.036433608
ENSMUSG0000018451	6330403K07Rik	21.90025852	0.586109865	0.036433608
ENSMUSG0000026173	Plcd4	0.261044487	1.973753598	0.037906068
ENSMUSG0000074656	Eif2s2	0.755655093	-0.923947827	0.037906068
ENSMUSG0000038570	Saxo2	0.329740404	1.617609787	0.037906068
ENSMUSG0000070436	Serpinh1	0.316001221	1.68424698	0.037906068
ENSMUSG0000035539	Ccdc180	0.082435101	4.36607102	0.03822583
ENSMUSG0000050335	Lgals3	0.082435101	4.36607102	0.03822583
ENSMUSG0000004207	Psap	13.60179168	0.534177422	0.038282804
ENSMUSG0000042613	Pbxip1	0.357218771	1.558716098	0.039817307
ENSMUSG0000041037	Irgq	0.480871423	1.302376345	0.040671778
ENSMUSG0000024076	Vit	0.164870202	2.451800894	0.042323041
ENSMUSG0000004110	Cacna1e	0.535828157	1.236788003	0.042912982
ENSMUSG0000031513	Leprotl1	0.206087753	-1.360147139	0.042912982
ENSMUSG0000019817	Plagl1	0.535828157	1.236788003	0.042912982
ENSMUSG0000074748	Atxn7l3b	0.357218771	-1.137607511	0.043859397
ENSMUSG0000030711	Sult1a1	0.439653872	1.603110218	0.044906018
ENSMUSG0000020932	Gfap	0.590784891	1.185257703	0.044906018
ENSMUSG0000020018	Snrpf	0.824351011	1.013720005	0.045436595
ENSMUSG0000063428	Ddo	0.151131019	2.558716098	0.046847112
ENSMUSG0000057322	RpI38	26.37923234	0.505270012	0.046847112
ENSMUSG0000029311	Hsd17b11	0.247305303	1.899753016	0.048739351
ENSMUSG0000031927	1700012B09Rik	0.247305303	1.899753016	0.048739351

Table S3. Gene Ontology analysis performed with DAVID for the DEG sets for bulk, white matter tracts (WMT), cerebral cortex, hippocampus, thalamus, and hypothalamus (LH+DMVH).

The tables show the results for the FunctAnn_ChartD - Functional Annotation Chart (obtained checking the options BP_DIRECT + CC_DIRECT + MF_DIRECT + KEGG terms).

Table S3A. Bulk analysis

ZT4F (556 DEG	s used; 19 not found in DAVID)						
Sublist	Category	Term	Count	Genes	%	P-Value	Benjamini
Ribosome	KEGG_PATHWAY	Ribosome	31	Mrpl33,Mrps21,Rp	5.6	3.10E-19	3.30E-17
	GOTERM_MF_DIRECT	structural constituent of ribosome	35	Ndufa7,Mrpl33,Mr	6.3	1.90E-17	9.60E-15
	GOTERM_CC_DIRECT	ribosome	30	Mt3,Mrpl33,Mrpl5	5.4	1.10E-16	3.70E-14
	GOTERM_CC_DIRECT	cytosolic large ribosomal subunit	17	Rpl22l1,Rpl22,Rpl2	3.1	1.20E-10	1.40E-08
	GOTERM_CC_DIRECT	intracellular ribonucleoprotein complex	29	Dhx9,Lsm5,Nop10,	5.2	5.60E-10	3.60E-08
	GOTERM_BP_DIRECT	translation	32	Mrpl33,Mrpl52,Mr	5.8	5.70E-10	1.10E-06
	GOTERM_CC_DIRECT	cytosolic small ribosomal subunit	11	Rps15a,Rps17,Rps2	2	1.90E-07	7.90E-06
	GOTERM_BP_DIRECT	ribosomal small subunit assembly	6	Rps17,Rps25,Rps27	1.1	6.40E-05	4.20E-02
	GOTERM_CC_DIRECT	small ribosomal subunit	6	Rps21,Rps23,Rps25	1.1	3.80E-04	1.00E-02
Mitochondria	KEGG_PATHWAY	Oxidative phosphorylation	31	Atp8,Atp5j2,Atp5l,/	5.6	8.70E-20	1.80E-17
	GOTERM_CC_DIRECT	mitochondrial inner membrane	35	Atp5j2,Atp5l,Atp5e	6.3	6.70E-12	1.10E-09
	GOTERM_CC_DIRECT	respiratory chain	14	Ndufa1,Ndufa2,Nd	2.5	2.90E-10	2.40E-08
	GOTERM_CC_DIRECT	mitochondrion	75	Atp8,Atp5j2,Atp5l,/	13.5	1.30E-08	7.30E-07
	GOTERM_CC_DIRECT	mitochondrial respiratory chain complex I	11	Ndufa1,Ndufa2,Nd	2	5.80E-08	2.70E-06
	GOTERM_MF_DIRECT	cytochrome-c oxidase activity	9	Cox8a,Cox8b,Cox7a	1.6	7.60E-08	2.00E-05
	GOTERM_CC_DIRECT	mitochondrial proton-transporting ATP synthase complex	7	Atp8,Atp5j2,Atp5l,4	1.3	1.60E-06	5.80E-05
	GOTERM_BP_DIRECT	ATP biosynthetic process	6	Atp8,Atp5j2,Atp5l,/	1.1	1.00E-04	5.00E-02
	GOTERM_MF_DIRECT	ubiquinol-cytochrome-c reductase activity	4	Uqcrb,Uqcrq,Uqcr1	0.7	3.00E-04	3.90E-02
	GOTERM_CC_DIRECT	proton-transporting ATP synthase complex, coupling factor F(o)	4	Atp8,Atp5j2,Atp5l,4	0.7	2.00E-03	4.00E-02
	GOTERM_CC_DIRECT	mitochondrial proton-transporting ATP synthase complex,	4	Atp8,Atp5j2,Atp5l,/	0.7	2.00E-03	4.00E-02
Disease	KEGG PATHWAY	Parkinson's disease	26	Atp8.Atp5e.Ndufa1	4.7	6.70E-14	4.70E-12
	KEGG PATHWAY	Huntington's disease	29	Atp8,Atp5e,Ndufa1	5.2	1.60E-13	8.70E-12
	KEGG PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	25	Fas.Ndufa1.Ndufa2	4.5	1.80E-12	7.70E-11
	KEGG PATHWAY	Alzheimer's disease	26	Atp8.Atp5e.Fas.Ndu	4.7	3.70E-12	1.30E-10
Membrane	GOTERM CC DIRECT	membrane	190	Akap12.Arl4d.Atp8	34.2	2.10E-04	6.30E-03
	GOTERM CC DIRECT	focal adhesion	20	Akap12.Tek.Fzd2.Ki	3.6	1.10E-03	2.80E-02
	GOTERM CC DIRECT	extracellular space	52	Cd14.Cmtm3.Fas.2	9.4	1.20E-03	2.90E-02
Others	KEGG PATHWAY	Cardiac muscle contraction	15	Fxvd2.Cacng1.Cox8	2.7	9.30E-09	2.80E-07
	GOTERM BP DIRECT	hydrogen ion transmembrane transport	6	Atp6v0e.Cox8a.Cox	1.1	3.80E-05	3.70E-02
	GOTERM CC DIRECT	intracellular	59	Akap12.Arl4d.Depd	10.6	1.00E-04	3.30E-03
	GOTERM_MF_DIRECT	growth factor binding	7	Htra1,Tek,Ghrhr,Kd	1.3	2.30E-04	3.90E-02
ZT4M (453 DEG	s used; 5 not found in DAVID)						
Sublist	Category	Term	Count	Genes	%	P-Value	Benjamini
Transcription	GOTERM_MF_DIRECT	transcriptional activator activity, RNA polymerase II core promoter	24	Cebpd,Fos,Pou4f1,	5.3	3.30E-09	1.00E-06
	GOTERM BP DIRECT	positive regulation of transcription from RNA polymerase II promot	49	Bcl3,Cebpd,Fos,Klf1	10.8	7.60E-09	1.80E-05
	GOTERM MF DIRECT	sequence-specific DNA binding	33	Cebpd,Fos,Irx5,Lhx	7.3	8.30E-07	1.30E-04
	GOTERM BP DIRECT	positive regulation of transcription, DNA-templated	31	Bcl3,Fos,Klf15,Sox1	6.8	1.30E-06	1.50E-03
	GOTERM ME DIRECT	RNA polymerase II core promoter proximal region sequence-specifi	23	Cebpd.Fos.Sox10.Sc	5.1	2.30E-06	2.80E-04

Sublist	Category	Term	Count	Genes	%	P-Value	Benjamini
ZT14F (114 DEG	s used; 3 not found in DAVI)					
	GUTERIVI_CC_DIRECT	Mine class if protein complex	4	Cu74,nz-Aa,Hz-Ab.	0.9	1.40E-03	5.60E-02
minune	GOTERIVI_CC_DIRECT	MHC class II protoin complex	2	Cd74 U2 A2 U2 Ab	1.1	0.00E-04	2.30E-02
Immuno	COTERNA CO DIRECT	milleri meculon	18	rus,Adcy8,Cakh1a,I	4	2.70E-04	2.00E-02
Disease	KEGG_PATHWAY	Patnways in cancer	23	FOS, FaS, Irat1, Adcy	5.1	1.50E-04	1.60E-02
Discourse	GUTERM_BP_DIRECT	cell rate commitment	9	SOX2,SOX8,SOX9,Fgt	2	8.20E-05	3.80E-02
lissue developm	GOTERNI_BP_DIRECT	angiogenesis	16	Sox18,Acvrl1,Anxa2	3.5	8.00E-05	3.80E-02
Apoptosis	GUTERIVI_BP_DIRECT	negative regulation of apoptotic process	28	BCI3,Ca74,Fas,Pou4	ъ.2 о.г	2.10E-05	1.70E-02
A	GUTERINI_INIF_DIRECT	normone activity	12	Avp,Gai,Cga,Gnrn1	2.6	1.20E-05	1.20E-03
Hormone	GUTERM_MF_DIRECT	neuropeptide normone activity	9	Agrp,Avp,Gal,Nppa	2	5.60E-08	1.20E-05
	GUTERM_MF_DIRECT	protein neterodimerization activity	24	Ceppd,Fos,Sox14,Sc	5.3	1.90E-04	1.20E-02
Protein binding	GOTERM_MF_DIRECT	protein binding	137	Bcl3,Cebpd,Cd74,C	30.2	4.20E-12	2.60E-09
	GOTERM_CC_DIRECT	apicolateral plasma membrane	5	Cldn3,Cldn5,Cldn7,	1.1	6.70E-04	2.10E-02
	GOTERM_CC_DIRECT	cell junction	29	Shank1,Stard8,Ada,	6.4	4.50E-04	1.60E-02
	GOTERM_CC_DIRECT	integral component of plasma membrane	40	Cd74,Fas,Gpr50,Ac	8.8	4.00E-04	1.60E-02
	GOTERM_CC_DIRECT	external side of plasma membrane	18	Clec14a,Cd74,Fas,A	4	1.80E-04	8.40E-03
	GOTERM_CC_DIRECT	bicellular tight junction	12	Cdh5,Cgnl1,Cldn14	2.6	5.50E-05	4.40E-03
	KEGG_PATHWAY	Cell adhesion molecules (CAMs)	15	Cdh15,Cdh5,Cldn14	3.3	2.70E-05	5.90E-03
	GOTERM_CC_DIRECT	cell surface	30	Cd74,Cd93,Fas,Ada	6.6	2.00E-05	2.10E-03
	GOTERM_CC_DIRECT	extracellular space	56	Bpifa1,Cmtm3,Fas,	12.4	5.20E-06	8.30E-04
Membrane	GOTERM_CC_DIRECT	extracellular region	73	Bpifa1,Fas,Lao1,Ly	16.1	1.10E-09	3.50E-07
	GOTERM_MF_DIRECT	DNA binding	59	Bcl3,Cebpd,Dhx9,F	13	1.60E-04	1.10E-02
	GOTERM_CC_DIRECT	nuclear transcription factor complex	5	Sox14,Sox18,Sox2,S	1.1	1.70E-04	8.40E-03
	GOTERM_CC_DIRECT	transcription factor complex	17	Fos,Pou2f1,Sox2,Sc	3.8	8.00E-05	5.10E-03
	GOTERM_MF_DIRECT	transcription regulatory region sequence-specific DNA binding	8	Pou2f1,Sox2,Sox9,E	1.8	7.00E-05	5.40E-03
	GOTERM_MF_DIRECT	transcription factor activity, sequence-specific DNA binding	37	Bcl3,Cebpd,Fos,Klf1	8.2	2.20E-05	2.00E-03
	GOTERM_MF_DIRECT	RNA polymerase II core promoter proximal region sequence-specifi	23	Cebpd,Fos,Sox10,Sc	5.1	2.30E-06	2.80E-04
	GOTERM BP DIRECT	positive regulation of transcription, DNA-templated	31	Bcl3,Fos,Klf15,Sox1	6.8	1.30E-06	1.50E-03
	GOTERM MF DIRECT	sequence-specific DNA binding	33	Cebpd, Fos, Irx5, Lhx	7.3	8.30E-07	1.30E-04

Sublist	Category	Term	Count	Genes	%	P-Value	Benjamini
Membrane	GOTERM_CC_DIRECT	extracellular space	25	Aebp1,Fas,S100a8,	21.7	3.70E-07	4.60E-05
	GOTERM_CC_DIRECT	extracellular region	25	Aebp1,Fas,S100a8,	21.7	5.50E-06	2.30E-04
	GOTERM_CC_DIRECT	secretory granule	8	Fas,Avp,Gh,Hcrt,Ox	7	1.70E-06	1.00E-04
Hormone	GOTERM_MF_DIRECT	neuropeptide hormone activity	5	Avp,Hcrt,Oxt,Qrfp,	4.3	1.50E-05	2.90E-03
	GOTERM_MF_DIRECT	hormone activity	7	Avp,Gh,Oxt,Pmch,F	6.1	2.60E-05	2.90E-03

ZT14M (627 DE	Gs used; 14 not found in DA	WID)					
Sublist	Category	Term	Count	Genes	%	P-Value	Benjamini
Mitochondria	GOTERM_CC_DIRECT	mitochondrion	93	Hmgcs2Mthfslmt-A	14.8	2.20E-09	1.10E-06
	KEGG_PATHWAY	Oxidative phosphorylation	21	mt-Atp6mt-Atp8Atr	3.3	3.90E-09	5.50E-07
	GOTERM_CC_DIRECT	respiratory chain	14	mt-Nd2mt-Nd3mt-I	2.2	5.60E-09	1.40E-06
	KEGG_PATHWAY	Thermogenesis	27	mt-Atp6mt-Atp8Atr	4.3	7.20E-09	6.80E-07
	GOTERM_BP_DIRECT	mitochondrial ATP synthesis coupled proton transport	14	mt-Atp6mt-Atp8Atr	2.2	9.50E-09	2.60E-05
	GOTERM_CC_DIRECT	mitochondrial inner membrane	39	Hmgcs2mt-Atp6Atr	6.2	1.20E-08	2.10E-06
	GOTERM_BP_DIRECT	aerobic respiration	12	mt-Nd2mt-Nd3mt-I	1.9	3.00E-06	2.70E-03
	KEGG_PATHWAY	Chemical carcinogenesis - reactive oxygen species	22	mt-Atp6mt-Atp8mt	3.5	3.80E-06	1.50E-04
	GOTERM_CC_DIRECT	mitochondrial respiratory chain complex I	10	mt-Nd2mt-Nd3mt-I	1.6	5.90E-06	3.30E-04
	GOTERM_CC_DIRECT	mitochondrial proton-transporting ATP synthase complex	6	mt-Atp6mt-Atp8Atr	1	7.60E-05	3.50E-03
Disease	KEGG_PATHWAY	Huntington disease	32	mt-Atp6mt-Atp8mt	5.1	2.30E-09	5.50E-07
	KEGG_PATHWAY	Parkinson disease	28	mt-Atp6mt-Atp8Gp	4.5	2.90E-08	2.00E-06
	KEGG_PATHWAY	Pathways of neurodegeneration - multiple diseases	35	mt-Atp6mt-Atp8Gp	5.6	2.20E-06	1.20E-04
	KEGG_PATHWAY	Amyotrophic lateral sclerosis	30	mt-Atp6mt-Atp8mt	4.8	2.50E-06	1.20E-04
	KEGG_PATHWAY	Prion disease	23	mt-Atp6mt-Atp8mt	3.7	2.10E-05	7.70E-04
	KEGG_PATHWAY	Diabetic cardiomyopathy	19	mt-Atp6mt-Atp8mt	3	7.50E-05	2.40E-03
	KEGG_PATHWAY	Alzheimer disease	27	mt-Atp6mt-Atp8mt	4.3	1.00E-04	3.00E-03
	KEGG_PATHWAY	Non-alcoholic fatty liver disease	15	Ndufv3Ndufa1Ndu	2.4	2.80E-04	6.20E-03
	KEGG_PATHWAY	Coronavirus disease - COVID-19	20	VwfAceC4bChukIkb	3.2	1.90E-04	4.40E-03
Ribosome	GOTERM_CC_DIRECT	cytosolic ribosome	14	Rpl10Rpl17Rpl22R	2.2	1.60E-07	1.70E-05
	GOTERM_CC_DIRECT	cytosolic large ribosomal subunit	13	Rpl10Rpl17Rpl22R	2.1	1.60E-07	1.70E-05
	GOTERM_CC_DIRECT	ribosome	19	Mt3Mrps21Gm118	3	3.40E-06	2.20E-04
	GOTERM_MF_DIRECT	structural constituent of ribosome	20	Mrps21Gm11808G	3.2	6.20E-07	5.20E-04
	GOTERM_BP_DIRECT	cytoplasmic translation	13	Rpl17Rpl22Rpl31R	2.1	2.80E-06	2.70E-03
	KEGG_PATHWAY	Ribosome	16	Mrps21Rpl10Rpl17	2.6	3.60E-04	7.40E-03
	GOTERM_CC_DIRECT	cytosolic small ribosomal subunit	8	Ddx3xHba-a1Hba-a	1.3	2.60E-04	1.00E-02
Membrane	GOTERM CC DIRECT	extracellular region	82	Adamtsl4Cap1Cart	13.1	2.80E-06	2.00E-04
	GOTERM CC DIRECT	membrane	221	Arl4dmt-Atp8Atp5n	35.2	3.40E-05	1.70E-03
	GOTERM_CC_DIRECT	extracellular space	77	CartptCd74Cmtm5I	12.3	3.10E-04	1.10E-02
	GOTERM_CC_DIRECT	extracellular matrix	18	Adamtsl4SspoVwfA	2.9	1.50E-03	4.40E-02
Cytosol	GOTERM_CC_DIRECT	cytoplasm	246	MthfslAkap8lArl4d	39.2	1.10E-06	9.30E-05
	GOTERM_CC_DIRECT	cytosol	139	MthfslAhnakAtp8b.	22.2	1.30E-03	4.40E-02
Others	GOTERM_MF_DIRECT	protein binding	187	AhnakAtpif1Atp8b2	29.8	1.30E-05	5.40E-03
	GOTERM_BP_DIRECT	neuropeptide signaling pathway	11	CartptEcrg4Gpr37E	1.8	1.10E-04	7.70E-02
	GOTERM_CC_DIRECT	myelin sheath	16	Car2Cldn11Cntnap:	2.6	1.60E-04	6.70E-03
	KEGG_PATHWAY	Retrograde endocannabinoid signaling	15	mt-Nd2mt-Nd3mt-I	2.4	1.60E-04	4.20E-03
	KEGG_PATHWAY	Cardiac muscle contraction	10	Fxyd2Cacng2mt-Cy	1.6	1.30E-03	2.40E-02
	GOTERM_CC_DIRECT	postsynaptic density	21	mt-Nd2NsmfArhga	3.3	1.40E-03	4.40E-02
	ZT4 F&M COMMON DEG	s < 0.05 (105 used : 3 not found in DAVID)					
	Category	Term	Count	Genes	%	P-Value	Benjamini
	GOTERM_MF_DIRECT	transcriptional activator activity, RNA polymerase II core promoter	9	Cebpd,Sox2,Sox9,E	8.6	3.00E-05	6.30E-03
	KEGG_PATHWAY	PI3K-Akt signaling pathway	9	Ddit4,Tek,Fgf21,Gh	8.6	4.40E-04	4.10E-02
	ZT14 F&M COMMON DEC	Ss < 0.05 (28 used : 1 not found in DAVID)					
	Category	Term	Count	Genes	%	P-Value	Benjamini
	GOTERM_CC_DIRECT	extracellular space	8	S100a8,Bloc1s1,F3	29.6	1.20E-03	5.50E-02
	GOTERM BP DIRECT	steroid metabolic process	3	Hmgcs2.Ch25h.Sult	11.1	4.20E-03	8.00E-01

Table S3B. DAVID GO analysis for white matter tracts (WMT).

ZT4F WMT					
Category	Term	Count	%	P-Value	Benjamini
GOTERM_MF_ALL	structural constituent of ribosome	28	15.1	1E-21	5E-19
KEGG PATHWAY	Ribosome	25	13.5	1.3E-20	1.8E-18
GOTERM CC ALL	ribosome	28	15.1	2.5E-20	9.6E-18
GOTERM CC ALL	ribosomal subunit	25	13.5	8E-20	1.5E-17
GOTERM CC ALL	cytosolic ribosome	22	11.9	2.2E-19	2.8E-17
GOTERM CC ALL	inner mitochondrial membrane protein complex	18	9.7	6.8E-16	6.5E-14
GOTERM CC ALL	cytosolic part	23	12.4	2.8E-15	2.1E-13
GOTERM CC ALL	mitochondrial inner membrane	27	14.6	3.3E-15	2.1E-13
GOTERM CC ALL	mitochondrial protein complex	19	10.3	3.8E-15	2.1E-13
GOTERM CC ALL	organelle inner membrane	28	15.1	6.7E-15	3.2E-13
KEGG PATHWAY	Oxidative nhosphorylation	20	10.8	8 5E-15	5 7E-13
GOTERM CC ALL	mitochondrial membrane part	20	10.8	1 2F-14	5.1E-13
GOTERM CC ALL	large ribosomal subunit	17	9.2	4.8F-14	1 9E-12
GOTERM CC ALL	cytosolic large ribosomal subunit	15	8.1	4.0E 14	1.9E-12
GOTERM CC ALL	mitochondrial envelope	21	16.9	7.4L-14	1.5L-12 2.4E-12
GOTERM CC ALL	cutoplasmic part	112	60.5	9.2E-14	2.4L-12 2.4E-12
COTERNA CC ALL		50	27	0.21-14	2.40-12
COTERNA ME ALL	structural melecule activity	30	10.0	2.50-13	0.25-12
GOTERIVI_IVIF_ALL	structural molecule activity	31	10.0	5.7E-15	9.25-11
GOTERINI_CC_ALL	mitochondrial memorane	29	15.7	5.4E-13	1.4E-11
GOTERIVI_CC_ALL	mitochondrial part	34	18.4	8.2E-13	2E-11
GOTERM_CC_ALL	cytoplasm	136	/3.5	3.3E-12	7.4E-11
GOTERM_CC_ALL	intracellular part	156	84.3	1.5E-11	3.2E-10
GOTERM_CC_ALL	respiratory chain	13	7	1.6E-11	3.2E-10
GOTERM_CC_ALL	organelle	151	81.6	2.8E-11	5.3E-10
GOTERM_BP_ALL	organonitrogen compound metabolic process	49	26.5	3.8E-11	0.0000011
GOTERM_CC_ALL	intracellular organelle	143	77.3	7.9E-11	1.4E-09
GOTERM_BP_ALL	translation	28	15.1	8.8E-11	0.0000013
GOTERM_CC_ALL	respiratory chain complex	12	6.5	9E-11	1.6E-09
GOTERM_CC_ALL	mitochondrial respiratory chain	12	6.5	1E-10	1.7E-09
GOTERM_CC_ALL	intracellular organelle part	108	58.4	1.1E-10	1.7E-09
GOTERM_CC_ALL	intracellular	158	85.4	1.3E-10	1.9E-09
GOTERM_BP_ALL	peptide biosynthetic process	28	15.1	1.7E-10	0.00000016
GOTERM_CC_ALL	cytosol	48	25.9	2E-10	2.9E-09
GOTERM CC ALL	organelle part	108	58.4	5.5E-10	7.9E-09
GOTERM CC ALL	intracellular ribonucleoprotein complex	31	16.8	5.9E-10	0.00000008
GOTERM CC ALL	ribonucleoprotein complex	31	16.8	6.1E-10	0.00000008
KEGG PATHWAY	Parkinson's disease	16	8.6	6.2E-10	0.00000028
GOTERM CC ALL	organelle envelope	33	17.8	8.4E-10	0.000000011
GOTERM CC ALL	envelone	33	17.8	9 4F-10	0.00000012
GOTERM BP ALL	amide biosynthetic process	28	15.1	1 3F-09	0.00000089
GOTERM CC ALL	oxidoreductase complex	12	65	1.3E-09	0.000000016
GOTERM BP ALL	nentide metabolic process	29	15.7	1.5E 05	0.00000089
GOTERM CC ALL	macromolecular complex	82	44.3	1.5E 05	0.000000000
GOTERM BP ALL	organonitrogen compound hiosynthetic process	36	19.5	2.4F-09	0.00000012
GOTERM CC ALL		30	10.5	5.4E-09	0.0000012
GOTERM CC ALL	respiratory chain complex	9	4.5	6.85-09	0.000000073
GOTERNI_CC_ALL	mitochandrial respiratory chain complex I	9	4.5	6.85.00	0.00000073
COTERM PD ALL	collular amido motobolic process	20	4.5	0.00-00016	0.00000075
GOTERIN_BP_ALL	Luptington's disease	30	10.2	0.000000010	0.0000003
COTEDNA DD ALL	Huntington's disease	16	8.0	0.00000032	0.000011
GOTERM_BP_ALL	purine nucleoside tripnosphate metabolic process	14	7.6	0.0000013	0.000041
GOTERM_BP_ALL	purine ribonucieoside monophosphate metabolic process	14	7.6	0.0000014	0.000041
GOTERM_CC_ALL	membrane-bounded organelle	136	/3.5	0.0000014	0.0000015
GOTERM_BP_ALL	purine nucleoside monophosphate metabolic process	14	7.6	0.0000014	0.000041
GOTERM_BP_ALL	purine ribonucleoside metabolic process	15	8.1	0.0000022	0.000053
GOTERM_BP_ALL	ribonucleoside monophosphate metabolic process	14	7.6	0.0000024	0.000053
GOTERM_BP_ALL	purine nucleoside metabolic process	15	8.1	0.0000026	0.000053
GOTERM_BP_ALL	ATP metabolic process	13	7	0.0000026	0.000053
GOTERM_BP_ALL	nucleoside monophosphate metabolic process	14	7.6	0.0000035	0.000067
GOTERM_BP_ALL	nucleoside triphosphate metabolic process	14	7.6	0.0000004	0.000072
KEGG_PATHWAY	Alzheimer's disease	14	7.6	0.00000041	0.000011
GOTERM_BP_ALL	ribonucleoside metabolic process	15	8.1	0.0000057	0.000096
GOTERM_BP_ALL	purine ribonucleoside triphosphate metabolic process	13	7	0.0000063	0.0001
KEGG_PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	13	7	0.0000077	0.000017
GOTERM_BP_ALL	ribonucleoside triphosphate metabolic process	13	7	0.0000087	0.00013
GOTERM_CC_ALL	mitochondrial proton-transporting ATP synthase complex	6	3.2	0.0000011	0.000011
GOTERM_BP_ALL	nucleoside metabolic process	15	8.1	0.0000012	0.00017
GOTERM_CC_ALL	proton-transporting ATP synthase complex	6	3.2	0.0000014	0.000014
GOTERM_MF_ALL	hydrogen ion transmembrane transporter activity	9	4.9	0.0000021	0.00035
GOTERM_BP_ALL	glycosyl compound metabolic process	15	8.1	0.0000024	0.00032
GOTERM_CC_ALL	cytosolic small ribosomal subunit	7	3.8	0.0000067	0.000064
GOTERM_CC_ALL	small ribosomal subunit	8	4.3	0.000089	0.000084
GOTERM_CC_ALL	membrane protein complex	25	13.5	0.00001	0.000093
GOTERM CC ALL	intracellular membrane-bounded organelle	121	65.4	0.000017	0.00015
GOTERM CC ALL	cell part	167	90.3	0.000022	0.00019
GOTERM CC ALL	cell	167	90.3	0.000029	0.00025
GOTERM BP ALL	respiratory electron transport chain	7	3.8	0.000034	0.0044
GOTERM BP ALL	mitochondrial respiratory chain complex assembly	6	3.2	0.000037	0.0044
GOTERM BP ALL	purine-containing compound metabolic process	16	8.6	0.000039	0.0044
GOTERM BP ALL	purine ribonucleoside monophosphate biosynthetic process	7	3,8	0.00004	0.0044
GOTERM BP ALL	purine nucleoside monophosphate biosynthetic process	7	3,8	0.00004	0.0044
GOTERM RP ALL	electron transport chain	7	3.8	0.000054	0.0057
GOTERM CC ALL	catalytic complex	, 24	13	0.000058	0.00048
20.2CC_ALL		27	15	0.000000	0.00040

GOTERM_BP_ALL	purine nucleotide metabolic process	15	8.1	0.000062	0.0064
GOTERM_CC_ALL	proton-transporting two-sector ATPase complex	6	3.2	0.000067	0.00055
GOTERM_BP_ALL	ATP biosynthetic process	6	3.2	0.000069	0.0069
GOTERM_BP_ALL	ribonucleoside monophosphate biosynthetic process	7	3.8	0.000093	0.0089
GOTERM_BP_ALL	nucleoside monophosphate biosynthetic process	7	3.8	0.00013	0.012
GOTERM_BP_ALL	purine ribonucleotide metabolic process	14	7.6	0.00014	0.012
GOTERM_BP_ALL	cytochrome complex assembly	5	2.7	0.00014	0.012
GOTERM_BP_ALL	nitrogen compound metabolic process	80	43.2	0.00014	0.012
GOTERM_BP_ALL	oxidation-reduction process	21	11.4	0.00015	0.012
GOTERM_BP_ALL	purine ribonucleoside biosynthetic process	7	3.8	0.00015	0.012
GOTERM_BP_ALL	purine nucleoside biosynthetic process	7	3.8	0.00015	0.012
GOTERM_BP_ALL	generation of precursor metabolites and energy	12	6.5	0.00016	0.012
GOTERM_BP_ALL	proton transport	7	3.8	0.00017	0.012
GOTERM_CC_ALL	mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)	4	2.2	0.00018	0.0014
GOTERM_BP_ALL	purine ribonucleoside triphosphate biosynthetic process	6	3.2	0.00018	0.012
GOTERM_BP_ALL	hydrogen transport	7	3.8	0.00018	0.012
GOTERM_BP_ALL	ribonucleotide metabolic process	14	7.6	0.00019	0.012
GOTERM_BP_ALL	hydrogen ion transmembrane transport	6	3.2	0.0002	0.012
GOTERM_BP_ALL	cytoplasmic translation	6	3.2	0.0002	0.012
GOTERM_BP_ALL	purine nucleoside triphosphate biosynthetic process	6	3.2	0.0002	0.012
GOTERM_BP_ALL	nucleotide metabolic process	16	8.6	0.00021	0.013
GOTERM_MF_ALL	NADH dehydrogenase (quinone) activity	5	2.7	0.00021	0.02
GOTERM_MF_ALL	NADH dehydrogenase (ubiquinone) activity	5	2.7	0.00021	0.02
GOTERM_CC_ALL	vesicle	52	28.1	0.00022	0.0018
GOTERM BP ALL	energy derivation by oxidation of organic compounds	10	5.4	0.00024	0.014
GOTERM MF ALL	NADH dehydrogenase activity	5	2.7	0.00024	0.02
GOTERM BP ALL	ribose phosphate metabolic process	14	7.6	0.00024	0.014
GOTERM BP ALL	cellular nitrogen compound metabolic process	76	41.1	0.00024	0.014
GOTERM BP ALL	nucleoside phosphate metabolic process	16	8.6	0.00025	0.014
GOTERM BP ALL	response to endogenous stimulus	29	15.7	0.00025	0.014
GOTERM CC ALL	proton-transporting ATP synthese complex coupling factor E(o)	25	22	0.00023	0.014
COTERNA DR ALL	ribonucloocido trinhosobato biosunthatic process	4	2.2	0.00028	0.0021
COTERNA DR ALL	collular biosunthatia process	71	3.2	0.00028	0.010
GOTERINI_BP_ALL	cellular process	/1	30.4	0.00037	0.02
GOTERIM_BP_ALL	cellular respiration	8	4.3	0.00038	0.02
GOTERIN_BP_ALL	ribonucieoside biosynthetic process	/	3.8	0.00042	0.022
GOTERM_BP_ALL	nucleoside biosynthetic process	/	3.8	0.00042	0.022
GOTERM_CC_ALL	organelle membrane	37	20	0.00044	0.0033
GOTERM_BP_ALL	cellular nitrogen compound biosynthetic process	61	33	0.00045	0.023
GOTERM_BP_ALL	glycosyl compound biosynthetic process	7	3.8	0.00046	0.023
GOTERM_BP_ALL	metabolic process	115	62.2	0.00049	0.024
GOTERM_BP_ALL	cellular metabolic process	106	57.3	0.00054	0.026
GOTERM_MF_ALL	oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor	5	2.7	0.00057	0.04
GOTERM_BP_ALL	cellular response to endogenous stimulus	23	12.4	0.00057	0.027
GOTERM_BP_ALL	nucleobase-containing small molecule metabolic process	16	8.6	0.00057	0.027
	hter with extension				0.027
GOTERM_BP_ALL	biosynthetic process	72	38.9	0.00058	0.027
GOTERM_BP_ALL GOTERM_BP_ALL	nucleoside triphosphate biosynthetic process	72 6	38.9 3.2	0.00058	0.027
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process	72 6 71	38.9 3.2 38.4	0.00058 0.0006 0.00063	0.027 0.027 0.028
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	organic substance biosynthetic process organic substance biosynthetic process	72 6 71	38.9 3.2 38.4	0.00058 0.0006 0.00063	0.027 0.027 0.028
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process	72 6 71	38.9 3.2 38.4	0.00058 0.0006 0.00063	0.027 0.027 0.028
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term	72 6 71 Count	38.9 3.2 38.4 %	0.00058 0.0006 0.00063 P-Value	0.027 0.027 0.028 Benjamini
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL	Diosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus	72 6 71 Count 11	38.9 3.2 38.4 % 27.5	0.00058 0.0006 0.00063 P-Value 0.000025	0.027 0.027 0.028 Benjamini 0.041
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound	72 6 71 Count 11 10	38.9 3.2 38.4 % 27.5 25	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056	0.027 0.027 0.028 Benjamini 0.041 0.047
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL	Term response to abiotic stimulus response to nitrogen compound	72 6 71 Count 11 10	38.9 3.2 38.4 27.5 25	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056	0.027 0.027 0.028 Benjamini 0.041 0.047
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL ZT14F WMT	Dosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound	72 6 71 Count 11 10	38.9 3.2 38.4 % 27.5 25	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056	0.027 0.028 Benjamini 0.041 0.047
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL ZT14F WMT Category	Term Term Term Term	72 6 71 Count 11 10 Count	38.9 3.2 38.4 % 27.5 25 %	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL ZT14F WMT Category GOTERM_BP_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process	72 6 71 Count 11 10 Count 30	38.9 3.2 38.4 % 27.5 25 % 51.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL ZT14F WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle	72 6 71 11 10 Count 30 50	38.9 3.2 38.4 27.5 25 % 51.7 86.2	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL ZT14F WMT Category GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL	Dosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle	72 6 71 Count 11 10 Count 30 50 48	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034	0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL ZT14F WMT Category GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle	72 6 71 Count 11 10 Count 30 50 48 52	38.9 3.2 38.4 % 27.5 25 % 51.7 86.2 82.8 89.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034 0.0000034	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular intracellular part	72 6 71 Count 11 10 Count 30 50 48 52 51	38.9 3.2 38.4 % 27.5 25 % 51.7 86.2 82.8 89.7 87.9	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034 0.0000031	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular part response to glucocorticoid	72 6 71 11 10 Count 30 50 48 52 51 7	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034 0.0000034 0.0000051 0.0000058	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction	72 6 71 Count 11 10 Count 30 50 48 52 51 7 20	38.9 3.2 38.4 % 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034 0.0000034 0.0000051 0.0000058 0.0000058	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle	72 6 71 Count 11 10 Count 30 50 48 52 51 7 20 45	38.9 3.2 38.4 % 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034 0.0000043 0.0000043 0.0000043 0.0000043 0.0000089	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00032
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular signal transduction intracellular bounded organelle response to corticosteroid	72 6 71 11 10 0 50 48 52 51 7 20 45 7	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 9 12.1 34.5 77.6 12.1	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000033 0.0000034 0.0000051 0.0000051 0.0000058 0.0000089 0.000001	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular ginal transduction intracellular intracellular intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 47	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 34.5	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034 0.0000051 0.0000051 0.0000058 0.0000058 0.0000051 0.0000051 0.0000051 0.0000051 0.0000051 0.0000051	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00053
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular isgnal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 20 45 7 47 40	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034 0.0000034 0.0000051 0.0000051 0.0000058 0.0000089 0.0000089 0.000017 0.000017 0.0000032	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.0011
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction	72 6 71 Count 11 10 0 50 48 52 51 7 7 20 45 7 47 40 31	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000034 0.0000043 0.0000043 0.0000043 0.0000043 0.0000043 0.0000043 0.0000089 0.0000089 0.0000089 0.0000089	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00053 0.011
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular signal transduction intracellular source organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction signel organelles	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 47 40 31 32	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000033 0.0000031 0.0000051 0.0000051 0.0000051 0.0000051 0.0000089 0.0000017 0.000017 0.000017 0.000032 0.000003 0.0000045	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.011
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular ginal transduction intracellular ginal transduction intracellular isignal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxir substance	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 20 45 7 47 40 31 32 6	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 7.5 25	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.0000022 0.0000033 0.0000034 0.0000031 0.0000051 0.0000051 0.000017 0.000017 0.000017 0.000032 0.000017 0.000017 0.000032 0.000038	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.011
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signalutar	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 20 45 7 47 40 31 32 6 32	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2	0.00058 0.0006 0.00063 P-Value 0.000025 0.000025 0.000022 0.000033 0.000033 0.000034 0.0000034 0.0000031 0.0000051 0.0000089 0.000017 0.000017 0.000017 0.000032 0.000038 0.000038 0.000017	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.0011
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4WWT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to timulus	72 6 71 Count 11 10 0 50 48 52 51 7 7 20 45 7 47 40 31 32 6 32 35	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 10.3 55.2	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000034 0.0000043 0.0000043 0.0000043 0.000001 0.000001 0.000001 0.000038 0.0000089 0.0000089 0.000001 0.000038 0.0000051 0.000045 0.000051 0.000051 0.000051	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.011 0.011
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular signal transduction signal transduction signal transduction signal response to stimulus cellular response to stimulus cellular response to stimulus	72 6 71 11 10 0 50 48 52 51 7 7 20 45 7 7 47 40 31 32 6 32 35 32	38.9 3.2 38.4 27.5 25 % % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 60.3 55.2	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000033 0.0000031 0.0000051 0.000017 0.000017 0.000017 0.000032 0.00001 0.00001 0.00001 0.000051 0.000051 0.000051 0.000051 0.000051 0.000051 0.000051 0.000051 0.000051 0.000051	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.011 0.011
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular signal transduction intracellular membrane-bounded organelle response to cotticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to stimulus cell communication preative regulation of cellular process	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 20 45 7 7 20 45 7 47 40 31 32 6 32 35 32 26	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 20 8 9 9 53.4 8 12.1 34.8 8 9 7 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000033 0.000033 0.0000031 0.0000051 0.0000051 0.000017 0.000017 0.000017 0.000032 0.000051 0.000055 0.0000	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.0011 0.011 0.011 0.011 0.011 0.011 0.013
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to stimulus cell communication negative regulation of cellular process	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 7 20 45 7 7 47 40 31 32 6 32 35 32 26 12	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 60.3 55.2 44.8 20.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000034 0.0000031 0.0000051 0.0000051 0.0000051 0.000032 0.000032 0.000032 0.000032 0.000031 0.000055 0.000055 0.000055 0.000055 0.00000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.0005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0005 0.0005 0.0005 0.00005 0.00005 0.00005 0.0000	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.0011 0.011 0.011 0.011 0.011 0.011 0.013 0.014
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to toxic substance signaling cellular response to stimulus cellular response to stimulus cellular response to dimulus cellular response to dimulus cellular response to stimulus cellular response to stimulus	72 6 71 Count 11 10 Count 30 50 48 52 51 7 7 20 45 51 7 47 40 31 32 6 32 35 32 26 12	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 10.3 55.2 44.8 20.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000034 0.0000031 0.0000043 0.0000043 0.0000043 0.0000089 0.000001 0.0000089 0.000003 0.000035 0.000063 0.000063 0.000063 0.000089 0.000063 0.000089	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.011 0.011 0.011 0.011 0.011 0.014
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular intracellular intracellular part response to glucocorticoid intracellular signal transduction intracellular signal transduction signal transduction signal organism signaling response to stimulus cell communication negative regulation of cellular process negative regulation of signal transduction growth	72 6 71 11 10 0 50 48 52 51 7 7 20 45 51 7 20 45 7 47 40 31 32 6 32 35 32 26 12 12	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 60.3 55.2 60.3 55.2 44.8 20.7 20.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000033 0.000033 0.0000043 0.0000051 0.0000051 0.000017 0.00003 0.000017 0.00003 0.000011 0.000051 0.000051 0.000051 0.000051 0.000051 0.000051 0.000051 0.000051 0.000063 0.000089 0.000063 0.000089 0.0000089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.011 0.011 0.011 0.011 0.013 0.014 0.014 0.014 0.014
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_CC_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular signal transduction intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to toxic substance signaling cellular response to stimulus cell communication negative regulation of cellular process negative regulation of signal transduction growth cytoplasm	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 20 45 7 7 20 45 7 47 40 31 32 6 32 35 32 26 12 12 12 42	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 81 69 53.4 55.2 60.3 55.2 75.2 75 75.2 75 75 75 75 75 75 75 75 75 75 75 75 75	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000033 0.000033 0.0000031 0.0000051 0.0000051 0.0000051 0.0000017 0.000017 0.000017 0.000012 0.000011 0.000055 0.000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.000005 0.000055 0.0005	0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00053 0.0011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.014 0.014 0.014 0.0058
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to stimulus cell communication negative regulation of cellular process negative regulation of cellular process negative regulation of cell communication response to cellular of cell communication	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 20 45 7 7 20 45 7 47 40 31 32 6 32 35 32 26 12 12 22 42 12	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 35.2 10.3 75.2 75.2 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 35.2 10.3 75.2 77.6 12.1 35.2 77.6 12.1 35.2 77.6 12.1 35.2 77.6 12.1 77.6 12.1 77.6 12.1 77.6 12.1 77.6 77.2 77.6 77.2 77.7 77.6 77.2 77.2	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000034 0.000034 0.000034 0.000034 0.000034 0.0000034 0.0000031 0.0000051 0.0000089 0.00001 0.00001 0.00001 0.000055 0.000055 0.000055 0.000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.000055 0.00055 0.00055	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.0011 0.0053 0.001 0.011 0.0053 0.0011 0.0012 0.0053 0.0053 0.0010 0.0020 0.0000 0.00000 0.0000000000
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction intracellular signal intransduction intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction signal response to stimulus cellular response to toxic substance signaling cellular response to stimulus cellular response to fimulus cellular response to time to the tothetothe	72 6 71 Count 11 10 Count 30 50 48 52 51 7 7 20 45 51 7 47 40 31 32 6 32 35 32 26 12 22 6 12 42 12 12	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 10.3 55.2 44.8 20.7 20.7 20.7 20.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000034 0.000031 0.000043 0.000043 0.0000043 0.0000043 0.0000051 0.0000089 0.0000045 0.0000089 0.0000045 0.0000051 0.0000051 0.0000051 0.000063 0.000063 0.000063 0.000063 0.000063 0.000089 0.000097 0.000022 0.00027 0.00022	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.0012 0.001 0.0053 0.0011 0.0011 0.0053 0.0011 0.0011 0.0011 0.00053 0.0011 0.0011 0.0011 0.00053 0.0011 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0012 0.0058 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011 0.0012 0.0028 0.0011 0.0011 0.0011 0.0012 0.0028 0.0028 0.0011 0.0011 0.0012 0.0028 0.0028 0.0011 0.0011 0.0011 0.0012 0.0028 0.002
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular intracellular part response to glucocorticoid intracellular signal transduction intracellular nembrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to stimulus cell communication negative regulation of signal transduction growth cytoplasm negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of signaling cell surface receptor signaling pathway	72 6 71 11 10 0 50 48 52 51 7 7 20 45 51 7 7 20 45 7 47 40 31 32 6 32 35 32 26 12 12 12 12 12 12 12	38.9 32.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 10.3 55.2 60.3 55.2 44.8 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000033 0.0000031 0.0000051 0.0000051 0.000017 0.000017 0.000017 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.000052 0.0000051 0.000051 0.0000051 0.0000051 0.0000051 0.0000051 0.000051 0.000051 0.000051 0.000051 0.000051 0.000052 0.000051 0.000052 0.000052 0.000052 0.000051 0.000052 0.000052 0.000052 0.000051 0.000053 0.000055 0.000057 0.00057 0.	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.013 0.014 0.013 0.014 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.011 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.011 0.011 0.011 0.012 0.012 0.012 0.011 0.011 0.011 0.011 0.012 0.0220 0.0220 0.02200
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular signal transduction intracellular signal transduction intracellular organelle response to glucocorticoid intracellular signal transduction intracellular signal transduction intracellular membrane-bounded organelle response to cotticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to stimulus cell communication negative regulation of signal transduction growth cytoplasm negative regulation of signaling cell surface receptor signaling pathway response to endogenous stimulus	72 6 71 11 10 Count 30 50 48 52 51 7 20 45 7 7 20 45 7 7 20 45 7 7 20 45 32 35 32 26 32 35 32 26 12 12 12 12 12 12 12 12 12	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 35.2 10.3 75.2 2 44.8 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 72.6 72.4 20.7 72.4 20.7 72.4 72.6 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 20.7 72.4 72.6 72.4 20.7 72.4 72.6 72.4 72.6 72.4 20.7 72.4 72.6 72.4 20.7 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.0000033 0.0000033 0.0000031 0.0000051 0.0000051 0.0000051 0.000017 0.000017 0.000051 0.000052 0.000051 0.000051 0.000052 0.000051 0.000051 0.000052 0.000052 0.000051 0.000052 0.00052 0.00	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.0011 0.013 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.012 0.022 0.022 0.022 0.025 0.010 0.011 0.011 0.011 0.011 0.013 0.014 0.014 0.032
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to toxic substance signal transduction single organism signaling response to toxic substance signaling cellular response to stimulus cell communication negative regulation of cellular process negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of signal masduction growth cytoplasm negative regulation of signaling cell surface receptor signaling cell surface receptor signaling pathway response to to encommunication negative regulation of signaling pathway	72 6 71 2 2 30 50 48 52 51 7 20 45 7 7 20 45 7 7 20 45 7 47 40 31 32 6 32 35 32 26 12 12 12 42 12 12 17 14 10	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 35.2 10.3 35.2 2 44.8 20.7 77.6 12.1 34.5 77.6 12.1 35.2 2 44.8 20.7 77.6 12.1 35.2 2 44.8 20.7 77.6 12.1 35.2 2 44.8 20.7 77.6 12.1 35.2 2 44.8 20.7 77.6 20.7 77.6 20.7 77.4 20.7 72.4 20.7 20.7 72.4 20.7 20.7 72.4 20.7 20.7 72.4 20.7 20.7 72.4 20.7 20.7 72.4 20.7 20.7 72.4 20.7 20.7 72.4 20.7 20.7 72.4 20.7 20.7 72.4 20.7 72.4	0.00058 0.0006 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000034 0.000034 0.0000034 0.0000031 0.0000051 0.0000089 0.0000089 0.0000089 0.000001 0.00001 0.00001 0.00001 0.000051 0.000051 0.000051 0.000051 0.000051 0.000063 0.000063 0.000063 0.000089 0.000089 0.000089 0.000089 0.00007 0.00022 0.00027 0.00027 0.00028 0.00032 0.00032 0.00032 0.00032 0.00032	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.0011 0.012 0.0220 0.022 0.0220 0.022000000
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL ZT4M WMT Category GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	Dissynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular membrane-bounded organelle response to glucocorticoid membrane-bounded organelle response to corticosteroid membrane-bounded organelle response to stimulus signal transduction single organism signaling response to toxic substance signaling cellular response to toxic substance signaling cellular response to stimulus cell communication negative regulation of cellular process negative regulation of cellular process negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of signal gramsy response to endogenous stimulus enzyme linked receptor protein signaling pathway transmembrane receptor protein tyrosine kinase signaling pathway	72 6 71 Count 11 10 Count 30 50 48 52 51 7 7 20 45 51 7 7 47 40 31 32 6 32 35 32 26 12 42 12 12 42 12 12 12 12 12 12 12 12 12 12 12 12 12	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 10.3 55.2 44.8 20.7 20.7 20.7 20.7 20.7 22.5	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000034 0.000034 0.000043 0.000043 0.000043 0.000043 0.0000043 0.0000089 0.0000089 0.0000089 0.0000045 0.0000051 0.0000051 0.0000051 0.000063 0.000063 0.000063 0.000063 0.000063 0.000063 0.000063 0.000063 0.000089 0.000063 0.000089 0.000063 0.000089 0.000063 0.000089 0.000063 0.000089 0.000063 0.000063 0.000063 0.00008 0.000063 0.000063 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.000063 0.00008 0.000051 0.000051 0.000008 0.0000008 0.0000008 0.00008 0.00008 0.00008 0.000008 0.000008 0.00008 0.00008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.000008 0.00008 0.00008 0.000008 0.000008 0.000008 0.00008 0.000008 0.000008 0.000008 0.000008 0.000008 0.0008 0.0008 0.00008 0.00008 0.000	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.0011 0.012 0.0220 0.022 0.0220 0.020000000
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular nembrane-bounded organelle response to stimulus signal transduction single organism signaling response to totic substance signaling cellular response to stimulus cell communication negative regulation of cellular process negative regulation of signal transduction growth cytoplasm negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of signaling cell surface receptor signaling pathway response to endogenous stimulus eenzyme linked receptor protein tyrosine kinase signaling pathway transmebrane receptor protein tyrosine kinase signaling pathway response to steroid hormone	72 6 71 Count 11 10 Count 30 50 48 52 51 7 7 20 45 51 7 7 20 45 51 7 47 40 31 32 6 32 35 32 26 12 12 12 12 12 12 12 12 12 12 12 12 12	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 81 69 53.4 55.2 10.3 55.2 10.3 55.2 60.3 55.2 60.3 55.2 44.8 20.7 20.7 20.7 22.7 20.7 20.7 20.7 20.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000056 P-Value 0.000022 0.000033 0.000033 0.000031 0.0000051 0.000051 0.000017 0.000017 0.000017 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.000051 0.0000051 0.000052 0.0000051 0.0000051 0.0000052 0.0000052 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.000057 0.000057 0.000057 0.000052 0.000057 0.000052 0.000055 0.000055 0.000057 0.000055 0.00055 0	0.027 0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.0043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.032 0.035 0.04 0.04 0.055
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_CC_ALL GOTERM_BP_ALL GOTERM_CC_ALL	biosynthetic process nucleoside triphosphate biosynthetic process organic substance biosynthetic process Term response to abiotic stimulus response to nitrogen compound Term negative regulation of biological process organelle intracellular organelle intracellular organelle intracellular part response to glucocorticoid intracellular signal transduction intracellular signal transduction single organism signaling response to ostimulus signal transduction single organism signaling cell communication negative regulation of cellular process negative regulation of signal transduction growth cytoplasm negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of cell communication negative regulation of signaling cell surface receptor signaling pathway response to endogenous stimulus enzyme linked receptor protein signaling pathway response to steroid hormone cytosol	72 6 71 Count 11 10 Count 30 50 48 52 51 7 20 45 7 7 20 45 7 7 20 45 7 7 20 45 7 7 20 45 51 7 20 45 51 7 20 45 51 22 51 22 51 22 51 22 51 22 51 22 51 22 51 22 51 22 51 22 51 7 20 48 52 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 51 7 20 45 52 51 7 22 51 7 7 20 45 52 51 7 7 20 45 52 55 7 7 47 40 31 32 26 52 25 51 7 7 47 40 31 22 56 82 57 25 51 7 7 47 40 31 22 56 82 57 25 51 7 7 47 40 31 22 6 8 22 55 32 22 5 5 32 22 5 5 32 22 5 5 32 22 5 5 32 22 5 5 32 22 5 5 32 22 5 5 32 22 5 5 32 2 25 5 32 2 25 5 32 2 2 5 5 32 2 2 5 5 32 2 2 5 5 32 2 2 5 5 32 2 2 5 5 5 5	38.9 3.2 38.4 27.5 25 % 51.7 86.2 82.8 89.7 87.9 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 34.5 77.6 12.1 81 69 53.4 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 60.3 55.2 7 8.4 80.7 7 8.4 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7	0.00058 0.0006 0.00063 P-Value 0.000025 0.000025 0.000022 0.0000033 0.0000033 0.0000031 0.0000051 0.0000051 0.0000051 0.0000017 0.0000017 0.000017 0.000017 0.000011 0.000011 0.000052 0.000089 0.000051 0.000052 0.000089 0.000027 0.00028 0.00044 0.00052 0.00057 0.0005	0.027 0.028 Benjamini 0.041 0.047 Benjamini 0.043 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00053 0.0011 0.012 0.005

ZT14M WMT					
Category	Term	Count	%	P-Value	Benjamini
GOTERM CC ALL	extracellular region	51	49	1 1E-09	0.00000028
GOTERM BR ALL	hehavior	20	10.2	2 1E-00	0.00000020
GOTERM CC ALL	extracellular vesicle	38	36.5	2.1E 05	0.00000000
GOTERM CC ALL	extracellular organelle	38	36.5	2.22 05	0.00000028
COTERM CC ALL	extracellular organizie	27	25.5	7.2E.00	0.00000028
GOTERNI_CC_ALL	membrane bounded vericle	37	40.4	0.00000016	0.00000004
GOTERNI_CC_ALL		42	40.4	0.00000010	0.00000090
GOTERIVI_CC_ALL	exciace and a region part	45	45.5	0.00000018	0.00000096
GOTERIVI_CC_ALL		45	41.5	0.00000019	0.0000096
GOTERIVI_CC_ALL	single ergenism helpevier	27	20	0.00000000	0.000026
GOTERIVI_BP_ALL	single-organism behavior	15	14.4	0.00000021	0.00028
GOTERM_CC_ALL	axon	15	14.4	0.0000088	0.000033
GOTERIVI_CC_ALL	cell projection	29	27.9	0.0000094	0.000033
GOTERIVI_CC_ALL	extracenular space	24	23.1	0.0000024	0.000077
GOTERM_CC_ALL	neuron projection	21	20.2	0.000003	0.000089
GOTERM_BP_ALL	response to metal ion	11	10.6	0.000008	0.0055
GOTERM_BP_ALL	modulation of synaptic transmission	11	10.6	0.000008	0.0055
GOTERM_MF_ALL	G-protein coupled receptor binding	10	9.6	0.0000088	0.0038
GOTERM_CC_ALL	myelin sheath	9	8.7	0.000012	0.0003
GOTERM_CC_ALL	somatodendritic compartment	17	16.3	0.000012	0.0003
GOTERM_BP_ALL	regulation of neuronal synaptic plasticity	6	5.8	0.000019	0.008
GOTERM_CC_ALL	axon part	10	9.6	0.000023	0.00054
GOTERM_BP_ALL	cognition	10	9.6	0.000024	0.008
GOTERM_BP_ALL	long-term memory	5	4.8	0.000027	0.008
GOTERM_BP_ALL	response to inorganic substance	13	12.5	0.000028	0.008
GOTERM_BP_ALL	anterograde trans-synaptic signaling	13	12.5	0.000035	0.008
GOTERM_BP_ALL	synaptic signaling	13	12.5	0.000035	0.008
GOTERM_BP_ALL	chemical synaptic transmission	13	12.5	0.000035	0.008
GOTERM_BP_ALL	trans-synaptic signaling	13	12.5	0.000035	0.008
GOTERM_MF_ALL	hormone activity	7	6.7	0.000038	0.0083
GOTERM_BP_ALL	memory	7	6.7	0.000045	0.0096
GOTERM_BP_ALL	response to endogenous stimulus	22	21.2	0.000053	0.01
GOTERM_BP_ALL	response to abiotic stimulus	18	17.3	0.000069	0.012
GOTERM_BP_ALL	neurogenesis	22	21.2	0.000069	0.012
GOTERIN_BP_ALL	response to normone	15	14.4	0.000076	0.012
GOTERM_BP_ALL	learning or memory	y 22	8.7	0.000078	0.012
GOTERM_BP_ALL	response to oxygen-containing compound	22	21.2	0.000092	0.013
GOTERIN_BP_ALL	regulation of synapse structure of activity	9	8.7	0.000098	0.013
GOTERIN_BP_ALL	positive regulation of synaptic transmission	/	6.7	0.00011	0.015
GOTERIN_BP_ALL	regulation of cellular component organization	27	26	0.00013	0.016
GOTERIVI_BP_ALL		26	25	0.00014	0.010
GOTERIVI_BP_ALL	aging	9	0.7	0.00015	0.017
GOTERIVI_CC_ALL		/1	00.5	0.00015	0.0035
GOTERIN_BP_ALL	response to organonitrogen compound	15	14.4	0.00015	0.017
GOTERIN_BP_ALL	cellular response to stimulus	56	53.8	0.00016	0.017
GOTERIN_BP_ALL	response to nitrogen compound	16	15.4	0.00018	0.018
GOTERM_BP_ALL	response to organic cyclic compound	16	15.4	0.00018	0.018
GOTERM_BP_ALL	cellular component organization	48	46.2	0.00022	0.021
GOTERIVI_CC_ALL		13	12.5	0.00025	0.0053
GOTERM_BP_ALL	regulation of synaptic plasticity	/	6./	0.00026	0.024
GOTERIM_BP_ALL	regulation of neurogenesis	14	13.5	0.0003	0.026
GOTERM_CC_ALL	cell projection part	16	15.4	0.00031	0.0061
GOTERM_CC_ALL	dendrite	12	11.5	0.00033	0.0061
GOTERM_CC_ALL	membrane-bounded organelle	76	73.1	0.00036	0.0063
GOTERM_BP_ALL	cellular component organization or biogenesis	48	46.2	0.00046	0.039
GOTERM_BP_ALL	neuron-neuron synaptic transmission	6	5.8	0.00048	0.04
GOTERM_BP_ALL	astrocyte differentiation	5	4.8	0.00052	0.041
GOTERM_BP_ALL	response to lipid	15	14.4	0.00052	0.041
GOTERIM_CC_ALL	ribosome	8	7.7	0.00057	0.0096
GOTERIVI_BP_ALL	regulation of provident quality	32	5U.δ	0.00059	0.045
GOTERNA DD ALL	response to transition metal hanoparticle	р г	5.8	0.00062	0.046
GOTERNI BP_ALL	neuropeptide signaling patriway	5	4.ð	0.00063	0.040
GOTERNI DP_ALL	generation of neurons	0	18 2	0.00066	0.047
GOTERNI BP_ALL	scheration of long-term neuronal synantic plasticity	19	3 8 10.3	0.00009	0.047
GOTERM RD ALL	response to organic substance	4 20	3.0 27 Q	0.0007	0.047
SSTERNI_DF_ALL	response to enguine substance	25	21.0	0.00075	0.040

Table S3C. DAVID GO analysis for the cerebral cortex.

ZT4F Cortex					
Category	Term	Count	%	P-Value	Benjamini
GOTERM_MF_ALL	structural constituent of ribosome	23	17.4	1.3E-20	4.3E-18
KEGG_PATHWAY	Ribosome	21	15.9	3.1E-19	3.3E-17
GOTERM CC ALL	ribosome	23	17.4	7.2E-19	1.3E-16
GOTERM CC ALL	ribosomal subunit	21	15.9	8 3F-19	1 3E-16
GOTERM CC ALL	cytosolic ribosome	18	13.6	1.8E-17	1.8E-15
KEGG DATHWAY	Ovidative phosphorulation	10	14.4	7.8E-17	1.0E 15 4.2E-15
COTERNA CC ALL	mitashandrial anualana	15	24.4	7.00-17	4.20-13
GOTERIVI_CC_ALL		28	21.2	5.5E-10	2.0E-14
GOTERM_CC_ALL	mitochondrion	43	32.6	4.3E-16	2.6E-14
GOTERM_CC_ALL	mitochondrial membrane part	18	13.6	1.7E-15	8.4E-14
GOTERM_CC_ALL	mitochondrial inner membrane	23	17.4	1.9E-15	8.4E-14
GOTERM_CC_ALL	mitochondrial membrane	26	19.7	6.5E-15	2.5E-13
GOTERM CC ALL	mitochondrial part	30	22.7	7.4E-15	2.5E-13
GOTERM CC ALL	inner mitochondrial membrane protein complex	15	11.4	1.2E-14	3.6E-13
GOTERM CC ALL	cytosolic nart	19	14.4	2F-14	5 4F-13
GOTERM CC ALL	organelle inner membrane	23	17.4	2 3F-14	5.4F-13
COTERM CC ALL	mitochondrial protein complex	16	12.1	2.50 14	5.4E 13
GOTERNI_CC_ALL		10	12.1	2.55-14	J.4E-13
GUTERIVI_CC_ALL	large ribosomai subunit	15	11.4	3.6E-14	7.8E-13
GOTERM_CC_ALL	respiratory chain	13	9.8	1E-13	2.1E-12
GOTERM_CC_ALL	cytoplasmic part	81	61.4	1.4E-13	2.7E-12
GOTERM_CC_ALL	cytosolic large ribosomal subunit	13	9.8	1.5E-13	2.7E-12
GOTERM_CC_ALL	mitochondrial respiratory chain	12	9.1	1E-12	1.7E-11
GOTERM CC ALL	organelle envelope	29	22	8.3E-12	1.3E-10
KEGG PATHWAY	Huntington's disease	17	12.9	9.2E-12	3.3E-10
GOTERM CC ALL	envelope	29	22	9.3E-12	1.4E-10
GOTERM ME ALL	structural molecule activity	23	17.4	1 7E-11	2.85-00
		25	17.4	2.25.44	2.81-05
KEGG_PATHWAY	Alzheimer s disease	16	12.1	2.3E-11	6E-10
GOTERM_CC_ALL	respiratory chain complex	11	8.3	2.7E-11	3.9E-10
KEGG_PATHWAY	Parkinson's disease	15	11.4	2.8E-11	6E-10
GOTERM_BP_ALL	translation	23	17.4	4.8E-11	0.00000084
KEGG_PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	15	11.4	5.8E-11	0.000000001
GOTERM BP ALL	peptide biosynthetic process	23	17.4	8.3E-11	0.00000084
GOTERM CC ALL	intracellular ribonucleoprotein complex	26	19.7	8.6E-11	1.2E-09
GOTERM CC ALL	ribonucleoprotein complex	26	19.7	8 8F-11	1 2F-09
COTERM CC ALL	exteniesm	02	70 5	2 55 10	2 25 00
GOTERIVI_CC_ALL		95	70.5	2.5E-10	5.2E-U9
GOTERM_BP_ALL	organonitrogen compound metabolic process	36	27.3	4./E-10	0.0000024
GOTERM_BP_ALL	amide biosynthetic process	23	17.4	4.8E-10	0.0000024
GOTERM_BP_ALL	peptide metabolic process	23	17.4	2.1E-09	0.0000084
GOTERM_BP_ALL	organonitrogen compound biosynthetic process	28	21.2	2.9E-09	0.0000098
GOTERM CC ALL	cvtosol	35	26.5	4.2E-09	0.000000051
GOTERM CC ALL	oxidoreductase complex	10	7.6	6.7E-09	0.000000078
COTERM CC ALL	mitachandrial rospiratory chain complex I	0	6 1	8 0E 00	0.000000002
GOTERIVI_CC_ALL		0	0.1	8.9E-09	0.000000093
GOTERM_CC_ALL	NADH denydrogenase complex	8	6.1	8.9E-09	0.000000093
GOTERM_CC_ALL	respiratory chain complex l	8	6.1	8.9E-09	0.00000093
GOTERM_BP_ALL	cellular amide metabolic process	24	18.2	9.1E-09	0.0000027
GOTERM_MF_ALL	hydrogen ion transmembrane transporter activity	9	6.8	0.00000055	0.0000061
GOTERM CC ALL	macromolecular complex	57	43.2	0.00000059	0.00000059
GOTERM CC ALL	intracellular organelle	94	71.2	0.0000002	0.0000019
GOTERM CC ALL	organelle	98	74.2	0.0000005	0.0000047
COTERNA CC ALL	intracellular ergenelle pert	70	, , , 2	0.00000058	0.0000047
GUTERIVI_CC_ALL	Intracellular organelle part	70	53	0.0000058	0.0000053
UP_SEQ_FEATURE	zinc finger region:C4-type	8	6.1	0.0000011	0.00032
GOTERM_BP_ALL	metabolic process	84	63.6	0.0000016	0.00041
GOTERM_CC_ALL	organelle part	70	53	0.0000016	0.000015
GOTERM_CC_ALL	intracellular part	100	75.8	0.000002	0.000017
GOTERM BP ALL	cellular protein metabolic process	47	35.6	0.0000096	0.0022
GOTERM CC ALL	intracellular	101	76 5	0.000011	0.000093
GOTERM CC ALL	membrane protein complex	19	14.4	0.000021	0.00017
COTERNA DR ALL	mitachandrian extension	15	14.4	0.000021	0.00017
GUTERIVI_BP_ALL	initochondhon organization	15	11.4	0.000025	0.0047
GOTERM_CC_ALL	organelle membrane	30	22.7	0.000038	0.0003
GOTERM_BP_ALL	cellular nitrogen compound metabolic process	55	41.7	0.000056	0.0094
GOTERM_BP_ALL	nitrogen compound metabolic process	57	43.2	0.000057	0.0094
GOTERM_BP_ALL	cellular metabolic process	75	56.8	0.00006	0.0094
GOTERM BP ALL	mitochondrial respiratory chain complex assembly	5	3.8	0.0001	0.015
GOTERM CC ALL	small ribosomal subunit	6	4.5	0.00012	0.00096
COTERM RD ALL	ATR metabolic process	0	4.5 6 1	0.00012	0.00050
GOTERNI_BF_ALL	ATP filetabolic process	0	0.1	0.00017	0.025
GUTERIVI_CC_ALL	memorane-bounded organelle	87	65.9	0.00019	0.0014
GOTERM_BP_ALL	oxidation-reduction process	16	12.1	0.0002	0.025
GOTERM_BP_ALL	protein metabolic process	47	35.6	0.00023	0.027
GOTERM_CC_ALL	cytosolic small ribosomal subunit	5	3.8	0.00024	0.0018
GOTERM CC ALL	mitochondrial proton-transporting ATP synthase complex	4	3	0.00026	0.0019
GOTERM BP ALL	purine ribonucleoside triphosphate metabolic process	8	6.1	0.00028	0.031
GOTERM CC ALL	proton-transporting ATP synthase complex	4	3	0.0003	0,0021
GOTERM BD ALL	ribonucleoside trinhosobate metabolic process	Q	61	0.00033	0.034
COTERNA DR ALL	nucleoside triphosphate metabolic process	0	0.1	0.00035	0.034
GUTERM_BP_ALL	purine nucleoside triphosphate metabolic process	8	6.1	0.00035	0.034
KEGG_PATHWAY	Metabolic pathways	24	18.2	0.00035	0.0053
GOTERM_BP_ALL	purine ribonucleoside monophosphate metabolic process	8	6.1	0.00036	0.034
GOTERM_MF_ALL	monovalent inorganic cation transmembrane transporter activity	9	6.8	0.00037	0.031
GOTERM BP ALL	purine nucleoside monophosphate metabolic process	8	6.1	0.00037	0.034
GOTERM BP ALL	cytoplasmic translation	5	3.8	0.0004	0.035
GOTERM CC AV	A set of the set of th	5	2.0		5.005
SOTENNI_CC_ALL	focal adhesion	10	76	0 00043	0 003
GOTEPNA CC AV	focal adhesion	10	7.6	0.00043	0.003
GOTERM_CC_ALL	focal adhesion cell-substrate adherens junction	10 10	7.6 7.6	0.00043	0.003
GOTERM_CC_ALL GOTERM_BP_ALL	focal adhesion cell-substrate adherens junction ribonucleoside monophosphate metabolic process	10 10 8	7.6 7.6 6.1	0.00043 0.00047 0.00048	0.003 0.0032 0.041

KEGG_PATHWAY	Cardiac muscle contraction	6	4.5	0.00056	0.0075
GOTERM_MF_ALL	ubiquinol-cytochrome-c reductase activity	3	2.3	0.00057	0.032
GOTERM_MF_ALL	oxidoreductase activity, acting on diphenols and related substances as donors, cytochrome as accepto	3	2.3	0.00057	0.032
GOTERM_BP_ALL	gene expression	46	34.8	0.00057	0.046
GOTERM_BP_ALL	nucleoside monophosphate metabolic process	8	6.1	0.00058	0.046
GOTERM_BP_ALL	nucleoside triphosphate metabolic process	8	6.1	0.00062	0.047
GOTERM_BP_ALL	cytochrome complex assembly	4	3	0.00068	0.048
GOTERM_BP_ALL	positive regulation of cell death	12	9.1	0.00068	0.048
GOTERM_MF_ALL	electron carrier activity	5	3.8	0.00073	0.032
GOTERM_MF_ALL	oxidoreductase activity, acting on diphenols and related substances as donors	3	2.3	0.00075	0.032
ZT4M Cortex					
Category	Term	Count	%	P-Value	Benjamini
GOTERM_MF_ALL	hormone activity	3	18.8	0.0022	0.25
GOTERM_BP_ALL	positive regulation of biological process	9	56.2	0.0037	0.75
GOTERM_BP_ALL	response to glucocorticoid	3	18.8	0.0043	0.75
GOTERM_MF_ALL	protein binding	10	62.5	0.0051	0.29
GOTERM_BP_ALL	response to corticosteroid	3	18.8	0.0052	7.5E
ZT14F Cortex					
Term	RT	Count	%	P-Value	Benjamini
GOTERM_BP_ALL	response to toxic substance	4	28.6	0.000081	0.047
GOTERM_CC_ALL	cytosol	7	50	0.00061	0.047
GOTERM_BP_ALL	cellular transition metal ion homeostasis	3	21.4	0.0012	0.21
GOTERM_BP_ALL	homeostatic process	6	42.9	0.0021	0.21
GOTERM_BP_ALL	transition metal ion homeostasis	3	21.4	0.0024	0.21
7T14M Cortox					

ZT14M Cortex Only two DEGs, GO analysis not possible

Table S3D. DAVID GO analysis for the hippocampus.

ZT4F ZT14M Hippe	campus				
Category	Term	Count	%	P-Value	Benjamini
GOTERM_CC_ALL	mitochondrial membrane part	22	26.8	5.6E-25	1.5E-22
GOTERM_CC_ALL	inner mitochondrial membrane protein complex	19	23.2	4.8E-24	6.2E-22
GOTERM_CC_ALL	mitochondrial envelope	30	36.6	7.9E-24	6.8E-22
GOTERM_CC_ALL	mitochondrial protein complex	20	24.4	1.4E-23	9.3E-22
GOTERM_CC_ALL	mitochondrial inner membrane	25	30.5	2.9E-22	1.5E-20
KEGG_PATHWAY	Oxidative phosphorylation	21	25.6	6.4E-22	5.5E-20
GOTERM_CC_ALL	organelle inner membrane	25	30.5	4.6E-21	2E-19
GOTERM_CC_ALL	mitochondrial membrane	27	32.9	7.3E-21	2.7E-19
GOTERM_CC_ALL	mitochondrial part	30	36.6	2.3E-20	7.5E-19
GOTERM_CC_ALL	respiratory chain	15	18.3	1.9E-19	5.6E-18
GOTERM_CC_ALL	respiratory chain complex	14	17.1	2.6E-18	6.7E-17
KEGG_PATHWAY	Parkinson's disease	19	23.2	2.7E-18	1.2E-16
GOTERNI_CC_ALL		14	26.6	5.1E-10 6.1E-19	7.2E-17 1.2E-16
GOTERM CC ALL	envelope	30	36.6	6 9F-18	1.3E-10 1.4E-16
GOTERM CC ALL	mitochandrian	36	13.0	2E-17	1.4E-10 3.7E-16
GOTERM CC ALL	cytonlasmic part	63	76.8	2 6F-16	4 5E-15
GOTERM CC ALL	cytoplashie pare	15	18.3	5.9E-16	9 5E-15
GOTERM CC ALL	macromolecular complex	54	65.9	6.2E-16	9.5E-15
GOTERM MF ALL	structural constituent of ribosome	16	19.5	7.4E-15	1.6E-12
GOTERM CC ALL	ribosome	17	20.7	1.1E-14	1.5E-13
GOTERM CC ALL	membrane protein complex	26	31.7	2.7E-14	3.7E-13
KEGG_PATHWAY	Ribosome	16	19.5	3E-14	8.6E-13
GOTERM_CC_ALL	ribosomal subunit	15	18.3	7.6E-14	9.8E-13
GOTERM_CC_ALL	cytosolic part	16	19.5	9.6E-14	1.2E-12
KEGG_PATHWAY	Huntington's disease	17	20.7	1.8E-13	3.9E-12
KEGG_PATHWAY	Alzheimer's disease	16	19.5	5.9E-13	1E-11
GOTERM_CC_ALL	oxidoreductase complex	11	13.4	5.1E-12	6E-11
GOTERM_CC_ALL	respiratory chain complex I	9	11	8.5E-12	8.8E-11
GOTERM_CC_ALL	NADH dehydrogenase complex	9	11	8.5E-12	8.8E-11
GOTERM_CC_ALL	mitochondrial respiratory chain complex I	9	11	8.5E-12	8.8E-11
GOTERM_CC_ALL	cytoplasm	68	82.9	1.5E-11	1.5E-10
KEGG_PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	14	17.1	3.5E-11	5E-10
GOTERM_MF_ALL	hydrogen ion transmembrane transporter activity	10	12.2	4.6E-11	4.8E-09
GOTERM_CC_ALL	cytosolic large ribosomal subunit	10	12.2	6.4E-11	6.1E-10
GOTERM_CC_ALL	intracellular organelle part	57	69.5	1.2E-10	1.1E-09
GOTERM_CC_ALL	intracellular part	74	90.2	3E-10	2.6E-09
GOTERM_CC_ALL	organelle part	57	69.5	3.5E-10	0.00000003
GOTERM_CC_ALL	large ribosomal subunit	10	12.2	2.1E-09	0.00000017
GOTERINI_BP_ALL	inters a llular	28	34.1	2.1E-09	0.0000032
GOTERINI_CC_ALL	intracellular	74	90.2	0.00000005	0.00000041
GOTERINI_CC_ALL	ritracellular ribonucleoprotein complex	19	23.2	9.5E-09	0.000000074
GOTERM CC ALL	outosol	19	23.2	0.00000011	0.000000074
GOTERM ME ALL	structural molecule activity	16	195	0.000000011	0.000000078
GOTERM CC ALL	catalytic complex	20	24.4	0.000000012	0.000000086
GOTERM BP ALL	organonitrogen compound biosynthetic process	22	26.8	0.000000013	0.00001
GOTERM CC ALL	mitochondrial proton-transporting ATP synthase complex	6	7.3	0.000000018	0.00000012
GOTERM CC ALL	proton-transporting ATP synthase complex	6	7.3	0.00000022	0.0000015
GOTERM CC ALL	organelle membrane	28	34.1	0.000000049	0.0000032
GOTERM BP ALL	translation	16	19.5	0.0000006	0.00003
GOTERM_BP_ALL	peptide biosynthetic process	16	19.5	0.00000087	0.000033
GOTERM_CC_ALL	protein complex	37	45.1	0.0000025	0.0000016
GOTERM_BP_ALL	amide biosynthetic process	16	19.5	0.0000029	0.000086
GOTERM_BP_ALL	electron transport chain	7	8.5	0.00000047	0.00012
GOTERM_BP_ALL	peptide metabolic process	16	19.5	0.0000078	0.00017
GOTERM_CC_ALL	proton-transporting two-sector ATPase complex	6	7.3	0.0000012	0.0000075
GOTERM_BP_ALL	ATP metabolic process	9	11	0.0000012	0.00023
GOTERM_CC_ALL	intracellular organelle	65	79.3	0.0000013	0.0000077
GOTERM_CC_ALL	organelle	68	82.9	0.0000013	0.0000077
GOTERM_MF_ALL	monovalent inorganic cation transmembrane transporter activity	10	12.2	0.0000016	0.000084
GOTERM_BP_ALL	oxidation-reduction process	16	19.5	0.0000017	0.00029
GOTERM_BP_ALL	purine ribonucleoside triphosphate metabolic process	9	11	0.000023	0.00034
GOTERM_BP_ALL	ribonucleoside triphosphate metabolic process	9	11	0.0000029	0.00035
GOTERM_BP_ALL	purine nucleoside triphosphate metabolic process	9	11	0.0000031	0.00035
GOTERM_BP_ALL	purine ribonucleoside monophosphate metabolic process	9	11	0.0000032	0.00035
GOTERM_BP_ALL	purine nucleoside monophosphate metabolic process	9	11	0.0000033	0.00035
GOTERIVI_BP_ALL	ribonucieoside monophosphate metabolic process	9	12.2	0.0000045	0.00044
GOTERIVI_BP_ALL	nucleoside metabolic process	10	12.2	0.0000047	0.00044
GOTERNI BP_ALL	nucleoside monophosphate metabolic process	9	11	0.0000057	0.0005
GOTERM RD ALL	cellular amide metabolic process	16	195	0.0000064	0.0003
GOTERM CC AU	cytochrome complex	то 5	£1.5	0.000004	0.0003
GOTERM RP ALL	respiratory electron transport chain	6	73	0.0000005	0.000058
GOTERM RP ALL	glycosyl compound metabolic process	10	12.2	0.0000075	0.00054
GOTERM BP ALL	purine nucleotide metabolic process	11	13.4	0.000012	0.00079
GOTERM BP ALL	purine ribonucleoside metabolic process	9	11	0.000014	0.00091
KEGG PATHWAY	Cardiac muscle contraction	- 7	8.5	0.000015	0.00018
GOTERM BP ALL	purine nucleoside metabolic process	9	11	0.000015	0.00096
KEGG_PATHWAY	Metabolic pathways	23	28	0.000019	0.0002
GOTERM_BP_ALL	purine-containing compound metabolic process	11	13.4	0.000023	0.0014
GOTERM_BP_ALL	ribonucleoside metabolic process	9	11	0.000025	0.0014

GOTERM_BP_ALL	cellular respiration	7	8.5	0.000027	0.0015
GOTERM_BP_ALL	proton transport	6	7.3	0.000031	0.0017
GOTERM_BP_ALL	hydrogen transport	6	7.3	0.000033	0.0017
GOTERM_BP_ALL	energy derivation by oxidation of organic compounds	8	9.8	0.000035	0.0017
GOTERM_MF_ALL	inorganic cation transmembrane transporter activity	10	12.2	0.000036	0.0015
GOTERM_BP_ALL	generation of precursor metabolites and energy	9	11	0.000039	0.0019
GOTERM_BP_ALL	ATP synthesis coupled electron transport	5	6.1	0.000046	0.0021
GOTERM_BP_ALL	purine ribonucleotide metabolic process	10	12.2	0.000048	0.0022
GOTERM_CC_ALL	cytosolic small ribosomal subunit	5	6.1	0.00005	0.00029
GOTERM_BP_ALL	ribonucleotide metabolic process	10	12.2	0.000064	0.0028
GOTERM_BP_ALL	ribose phosphate metabolic process	10	12.2	0.000076	0.0033
GOTERM_MF_ALL	oxidoreductase activity	12	14.6	0.000083	0.0023
GOTERM_BP_ALL	nucleotide metabolic process	11	13.4	0.000083	0.0035
GOTERM_BP_ALL	hydrogen ion transmembrane transport	5	6.1	0.000092	0.0037
GOTERM_BP_ALL	nucleoside phosphate metabolic process	11	13.4	0.000095	0.0038
GOTERM_MF_ALL	heme-copper terminal oxidase activity	4	4.9	0.00011	0.0023
GOTERM_MF_ALL	oxidoreductase activity, acting on a heme group of donors, oxygen as acceptor	4	4.9	0.00011	0.0023
GOTERM_MF_ALL	cytochrome-c oxidase activity	4	4.9	0.00011	0.0023
GOTERM_MF_ALL	cation transmembrane transporter activity	10	12.2	0.00012	0.0023
GOTERM_MF_ALL	oxidoreductase activity, acting on a heme group of donors	4	4.9	0.00013	0.0023
GOTERM_MF_ALL	electron carrier activity	5	6.1	0.00013	0.0023
GOTERM_BP_ALL	oxidative phosphorylation	5	6.1	0.00014	0.0054
GOTERM_BP_ALL	metabolic process	57	69.5	0.00016	0.0059
GOTERM_BP_ALL	ribonucleoprotein complex biogenesis	9	11	0.00018	0.0066
GOTERM_MF_ALL	substrate-specific transmembrane transporter activity	12	14.6	0.00018	0.0028
GOTERM_BP_ALL	nucleobase-containing small molecule metabolic process	11	13.4	0.00018	0.0066
GOTERM_BP_ALL	establishment of localization	32	39	0.00019	0.0067
GOTERM_BP_ALL	single-organism metabolic process	28	34.1	0.00022	0.0075
GOTERM_MF_ALL	NADH dehydrogenase (quinone) activity	4	4.9	0.00022	0.0028
GOTERM_MF_ALL	NADH dehydrogenase (ubiquinone) activity	4	4.9	0.00022	0.0028
GOTERM_MF_ALL	ubiquinol-cytochrome-c reductase activity	3	3.7	0.00023	0.0028
GOTERM_MF_ALL	oxidoreductase activity, acting on diphenols and related substances as donors, cytochrome as ac	3	3.7	0.00023	0.0028
GOTERM_MF_ALL	NADH dehydrogenase activity	4	4.9	0.00024	0.0028
GOTERM_BP_ALL	organophosphate metabolic process	13	15.9	0.00024	0.0081
GOTERM_BP_ALL	transport	31	37.8	0.00027	0.0088
GOTERM_CC_ALL	small ribosomal subunit	5	6.1	0.0003	0.0017
GOTERM_MF_ALL	oxidoreductase activity, acting on diphenols and related substances as donors	3	3.7	0.00031	0.0034
GOTERM_CC_ALL	heterotrimeric G-protein complex	4	4.9	0.00041	0.0023
GOTERM_MF_ALL	transmembrane transporter activity	12	14.6	0.00042	0.0044
GOTERM_CC_ALL	membrane-bounded organelle	60	73.2	0.00042	0.0023
GOTERM_MF_ALL	oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor	4	4.9	0.00047	0.0047
GOTERM_BP_ALL	ribosome biogenesis	7	8.5	0.00067	0.021
GOTERM_BP_ALL	carbohydrate derivative metabolic process	13	15.9	0.00072	0.022
GOTERM_BP_ALL	mitochondrial ATP synthesis coupled electron transport	4	4.9	0.00076	0.023
GOTERM_MF_ALL	substrate-specific transporter activity	12	14.6	0.00081	0.0077
GOTERM_BP_ALL	ATP biosynthetic process	4	4.9	0.00092	0.028
GOTERM_MF_ALL	transporter activity	13	15.9	0.00096	0.0087
GOTERM_MF_ALL	ion transmembrane transporter activity	10	12.2	0.00099	0.0087
GOTERM_CC_ALL	mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)	3	3.7	0.0011	0.0058
GOTERM_CC_ALL	proton-transporting ATP synthase complex, coupling factor F(o)	3	3.7	0.0015	0.0076
GOTERM_BP_ALL	purine ribonucleoside triphosphate biosynthetic process	4	4.9	0.0016	0.048
GOTERM_BP_ALL	cellular nitrogen compound metabolic process	37	45.1	0.0016	0.048
GOTERM_BP_ALL	purine nucleoside triphosphate biosynthetic process	4	4.9	0.0017	0.048
GOTERM_BP_ALL	protein targeting	9	11	0.002	0.055
GOTERM_CC_ALL	respiratory chain complex IV	3	3.7	0.0021	0.011
GOTERM_BP_ALL	ribonucleoside triphosphate biosynthetic process	4	4.9	0.0021	0.058
GOTERM_BP_ALL	nitrogen compound metabolic process	38	46.3	0.0022	0.06
GOTERM_CC_ALL	cell part	74	90.2	0.0024	0.012
GOTERM_CC_ALL	intracellular membrane-bounded organelle	54	65.9	0.0024	0.012
GOTERM_CC_ALL	cell	74	90.2	0.0027	0.013
GOTERM_BP_ALL	purine nucleoside monophosphate biosynthetic process	4	4.9	0.0027	0.071
GOTERM_BP_ALL	purine ribonucleoside monophosphate biosynthetic process	4	4.9	0.0027	0.071
GOTERM_MF_ALL	oxidoreductase activity, acting on NAD(P)H	4	4.9	0.0028	0.023
GOTERM_BP_ALL	ribosomal small subunit biogenesis	4	4.9	0.0028	0.072
GOTERM_BP_ALL	nucleoside triphosphate biosynthetic process	4	4.9	0.0034	0.085
GOTERM_BP_ALL	ribosomal small subunit assembly	3	3.7	0.0034	0.085
GOTERM_MF_ALL	RNA binding	14	17.1	0.004	0.032
2T4M ZT14M Hipp Category	Term	Count	0/	P.Value	Benjamini
GOTERNA DD ALL	iem -	count	70	-value	1
A CONTRACTOR A	response to abiotic stimulus	-2			
GOTERM RD ALL	response to abiotic stimulus circadian rhythm	3	23.3	0.045	1
GOTERM_BP_ALL	response to abiotic stimulus circadian rhythm response to stimulus	3 2 5	33.3	0.045	1
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	response to abiotic stimulus circadian rhythm response to stimulus rhythmic process	3 2 5 2	33.3 83.3 33.3	0.045 0.06 0.08	1 1 1
GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	response to abiotic stimulus circadian rhythm response to stimulus rhythmic process	3 2 5 2	33.3 83.3 33.3	0.045 0.06 0.08	1 1 1

ZT14F ZT14M Hipp	ocampus				
Term	RT	Count	%	P-Value	Benjamini
GOTERM_BP_ALL	response to toxic substance	6	25	0.0000034	0.00047
GOTERM_BP_ALL	cellular response to chemical stimulus	13	54.2	0.0000015	0.001
GOTERM_BP_ALL	response to organic substance	13	54.2	0.0000061	0.0028
GOTERM_BP_ALL	cellular response to organic substance	11	45.8	0.000015	0.0052
GOTERM_BP_ALL	response to glucocorticoid	5	20.8	0.000023	0.0062
GOTERM_CC_ALL	cytosol	11	45.8	0.000025	0.0035
GOTERM_BP_ALL	response to chemical	14	58.3	0.000027	0.0062
GOTERM_BP_ALL	response to corticosteroid	5	20.8	0.000033	0.0065
GOTERM_BP_ALL	cellular response to stimulus	17	70.8	0.0001	0.018
GOTERM_BP_ALL	response to endogenous stimulus	9	37.5	0.00012	0.018
GOTERM_BP_ALL	regulation of cell proliferation	9	37.5	0.00014	0.019
GOTERM_BP_ALL	response to stimulus	18	75	0.00031	0.035
GOTERM_BP_ALL	cellular response to growth factor stimulus	6	25	0.00031	0.035
GOTERM_BP_ALL	response to growth factor	6	25	0.00037	0.038
GOTERM_BP_ALL	response to lipid	7	29.2	0.00039	0.038
GOTERM_BP_ALL	response to organic cyclic compound	7	29.2	0.00042	0.038
GOTERM_BP_ALL	response to steroid hormone	5	20.8	0.00052	0.045

ZT14M Hippocampus Only two DEGs, GO analysis not possible

Table S3E. DAVID GO analysis for the thalamus.

ZT4F Thalamus					
Category	Term	Gene count	%	P-Value	Benjamini
GOTERM_CC_ALL	ribosome	20	15	3.9E-15	1.3E-12
GOTERM_MF_ALL	structural constituent of ribosome	18	13.5	2.9E-14	1E-11
KEGG_PATHWAY	Ribosome	17	12.8	3.2E-14	4.5E-12
GOTERM_CC_ALL	ribosomal subunit	17	12.8	1.3E-13	2.2E-11
GOTERM_CC_ALL	cytosolic ribosome	15	11.3	2.6E-13	2.8E-11
KEGG_PATHWAY	Oxidative phosphorylation	16	12	3.2E-13	2.2E-11
GOTERM_CC_ALL	inner mitochondrial membrane protein complex	14	10.5	3.3E-13	2.8E-11
GOTERINI_CC_ALL	mitochondrial protein complex	15	11.3	5.3E-13 6 1E 12	3.4E-11 2.4E-11
GOTERINI_CC_ALL	nitochonurial memorane part	10	12	0.12-13	3.4E-11 3.3E 10
GOTERIN_CC_ALL	cycopidsinic part	19	59.4 14 3	4.6E-12 3E-11	2.3E-10 1.3E-09
GOTERM_CC_ALL	mitochondrial envelope	19	14.5	1 55-10	1.3E-09
GOTERM_CC_ALL	organelle inner membrane	19	14.3	2 1F-10	6.9E-09
GOTERM CC ALL	mitochondrial membrane	21	15.8	2.1E 10 2.9E-10	8 9F-09
GOTERM CC ALL	large ribosomal subunit	12	9	3.4E-10	9.7E-09
GOTERM CC ALL	cvtosolic part	15	11.3	6.1E-10	0.000000015
GOTERM CC ALL	cytoplasm	93	69.9	6.2E-10	0.00000015
GOTERM CC ALL	mitochondrial part	24	18	8.5E-10	0.00000019
GOTERM_CC_ALL	mitochondrion	34	25.6	1.2E-09	0.00000024
GOTERM_CC_ALL	respiratory chain	10	7.5	2.1E-09	0.00000041
GOTERM_CC_ALL	cytosolic large ribosomal subunit	10	7.5	2.8E-09	0.00000053
KEGG_PATHWAY	Parkinson's disease	13	9.8	0.00000003	0.0000014
GOTERM_CC_ALL	intracellular organelle part	75	56.4	5.4E-09	0.00000095
GOTERM_CC_ALL	intracellular ribonucleoprotein complex	23	17.3	0.00000017	0.0000027
GOTERM_CC_ALL	ribonucleoprotein complex	23	17.3	0.00000017	0.0000027
GOTERM_CC_ALL	organelle part	75	56.4	0.00000018	0.0000027
GOTERM_CC_ALL	respiratory chain complex	9	6.8	0.00000018	0.0000027
GOTERM_CC_ALL	mitochondrial respiratory chain	9	6.8	0.0000002	0.0000029
GOTERM_MF_ALL	structural molecule activity	19	14.3	0.00000029	0.000005
GOTERM_CC_ALL	intracellular part	103	77.4	0.00000012	0.0000016
GOTERM_BP_ALL	organonitrogen compound biosynthetic process	25	18.8	0.0000013	0.00021
GOTERM_CC_ALL	intracellular organelle	95	/1.4	0.0000014	0.0000018
GOTERM_BP_ALL	organonitrogen compound metabolic process	31	23.3	0.00000019	0.00021
KEGG_PATHWAY	Alzheimer's disease	12	42.1	0.00000021	0.0000075
GOTERM_CC_ALL	macromolecular complex	20	42.1	0.00000024	0.000003
GOTERINI_CC_ALL	cylosol translation	32	24.1 12 E	0.00000026	0.000031
GOTERM CC ALL	respiratory chain complex l	10	53	0.00000020	0.00021
GOTERM_CC_ALL	NADH debydrogenase complex	7	53	0.00000023	0.0000032
GOTERM CC ALL	mitochondrial respiratory chain complex I	7	53	0.00000029	0.0000032
GOTERM CC ALL	organelle	99	74.4	0.00000037	0.0000039
GOTERM BP ALL	peptide biosynthetic process	18	13.5	0.00000039	0.00024
KEGG PATHWAY	Huntington's disease	12	9	0.00000066	0.000019
GOTERM CC ALL	organelle envelope	22	16.5	0.00000078	0.0000079
GOTERM CC ALL	envelope	22	16.5	0.0000084	0.000083
GOTERM_BP_ALL	amide biosynthetic process	18	13.5	0.0000014	0.00068
GOTERM_CC_ALL	oxidoreductase complex	8	6	0.000002	0.000019
GOTERM_CC_ALL	intracellular	103	77.4	0.0000027	0.000025
GOTERM_BP_ALL	peptide metabolic process	18	13.5	0.0000041	0.0016
KEGG_PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	10	7.5	0.0000059	0.00014
GOTERM_CC_ALL	mitochondrial proton-transporting ATP synthase complex	5	3.8	0.0000072	0.000066
GOTERM_CC_ALL	proton-transporting ATP synthase complex	5	3.8	0.0000087	0.000077
GOTERM_BP_ALL	response to abiotic stimulus	20	15	0.000011	0.0038
GOTERM_MF_ALL	hydrogen ion transmembrane transporter activity	7	5.3	0.000014	0.0016
GOTERM_BP_ALL	response to glucocorticoid	8	6	0.000031	0.0088
GOTERM_BP_ALL	cellular amide metabolic process	18	13.5	0.000037	0.0088
GOTERM_BP_ALL	purine nucleoside triphosphate metabolic process	9	6.8	0.000042	0.0088
GOTERM_BP_ALL	purine ribonucleoside monophosphate metabolic process	9	6.8	0.000043	0.0088
GOTERM_BP_ALL	purine nucleoside monophosphate metabolic process	9	6.8	0.000044	0.0088
GOTERM_BP_ALL	response to corticosteroid	8	6	0.000058	0.01
GOTERM_BP_ALL	ribonucleoside monophosphate metabolic process	9	6.8	0.000061	0.01
GOTERIN_BP_ALL	nucleoside monophosphate metabolic process	9	0.8	0.000076	0.012
GOTERIN_BP_ALL	nucleoside tripnosphate metabolic process	10	0.0 12 E	0.000082	0.012
COTERM PD ALL	ATR motobolic process	0	13.J C	0.000084	0.00072
GOTERNI_BP_ALL	ATP metabolic process	0	0 6 0	0.00014	0.019
GOTERM CC ALL	proton-transporting two-sector ATPase complex	5	3.8	0.00018	0.025
GOTERM RP ALL	purine nucleoside metabolic process	9	6.8	0.00019	0.024
GOTERM RP ALL	response to extracellular stimulus	11	8.3	0.0002	0.024
GOTERM BP ALL	purine ribonucleoside triphosphate metabolic process	8	6	0.00023	0.026
GOTERM BP ALL	purine nucleotide metabolic process	11	8,3	0.00024	0.027
GOTERM CC ALL	cytosolic small ribosomal subunit	5	3.8	0.00025	0.0021
GOTERM BP ALL	ribonucleoside triphosphate metabolic process	- 8	6	0.00028	0.029
GOTERM BP ALL	ribonucleoside metabolic process	9	6.8	0.0003	0.03
GOTERM CC ALL	membrane-bounded organelle	87	65.4	0.00032	0.0026
GOTERM_BP_ALL	nucleoside metabolic process	9	6.8	0.00045	0.043
GOTERM_BP_ALL	purine-containing compound metabolic process	11	8.3	0.00046	0.043
GOTERM_BP_ALL	response to hormone	14	10.5	0.00049	0.043
GOTERM_BP_ALL	response to nutrient levels	10	7.5	0.00054	0.047

7T4M Thalamus					
Category	Term	Gene count	%	P. Value	Benjamini
GOTERM BP ALL	neuropeptide hormone activity	3	8.8	0.00084	0.35
GOTERM BP ALL	neurohypophyseal hormone activity	2	5.9	0.0029	0.14
GOTERM BP ALL	maternal aggressive behavior	2	5.9	0.0054	0.85
GOTERM BP ALL	negative regulation of transmission of nerve impulse	2	5.9	0.0067	0.85
GOTERIN_BF_ALL	negative regulation of transmission of herve impulse	۷.	5.5	0.0007	0.85
ZT14F Thalamus					
Category	Term	Gene count	%	P-Value	Benjamini
GOTERM_CC_DIRE	cytosol	12	38.7	0.000025	0.0013
GOTERM_BP_DIRE	detoxification of copper ion	2	6.5	0.0057	0.91
GOTERM_BP_DIRE	regulation of cell cycle	3	9.7	0.011	0.91
GOTERM_BP_DIRE	response to drug	4	12.9	0.012	0.91
GOTERM_BP_DIRE	negative regulation of growth	2	6.5	0.017	0.91
ZT14M Thalamus					
Category	Term	Gene count	%	P-Value	Benjamini
GOTERM_CC_DIRE	myelin sheath	28	5.3	3.4E-13	1.5E-10
GOTERM_CC_DIRE	neuron projection	37	7	1.2E-10	0.00000027
GOTERM_CC_DIRE	neuronal cell body	42	8	1.9E-10	0.00000027
GOTERM CC DIRE	cytoplasm	232	44.1	3.5E-10	0.00000036
GOTERM CC DIRE	cytosolic small ribosomal subunit	14	2.7	4.1E-10	0.00000036
GOTERM CC DIRE	ribosome	22	4.2	0.00000001	0.00000075
GOTERM CC DIRE	membrane	234	44.5	0.00000025	0.0000015
GOTERM CC DIRE	intracellular ribonucleoprotein complex	28	5.3	0.00000038	0.0000021
GOTERM CC DIRE	extracellular exosome	111	21.1	0.00000047	0.0000022
KEGG PATHWAY	Ribosome	19	3.6	0.00000063	0.000014
GOTERM CC DIRE	synanse	35	67	0.00000017	0.0000075
GOTERM ME DIRE	nolv(A) RNA hinding	58	11	0.00000046	0.00033
GOTERM CC DIRE	dendrite	33	63	0.00000079	0.000031
GOTERM BR DIRE	cellular oxidant detoxification	5	1	0.00000075	0.000031
GOTERM CC DIRE	terminal bouton	1/	27	0.0000021	0.0044
GOTERM CC DIRE	synantic vecicle	14	2.7	0.0000048	0.00018
GOTERNI CC DIRE	cutosol	14	2.7	0.000010	0.00034
GOTERNI ME DIRE	hantoglohin hinding	12	12.7	0.000054	0.0017
GOTERNA CO DIRE	maploground unding	4	1.0	0.000068	0.02
COTERN ME DIRE	sman nuosomai Subullit	/	1.5	0.000000	0.002
GOTERNI_IVIF_DIRE	protein nonoumenzation activity	40	/.0	0.000092	0.02
GUTERM_MF_DIRE	peroxidase activity	/	1.3	0.00012	0.02
GUTERM_CC_DIRE	naptoglobin-nemoglobin complex	4	0.8	0.00015	0.004
GUTERM_MF_DIRE	protein complex binding	23	4.4	0.00015	0.02
GUTERM_MF_DIRE	structural constituent of ribosome	19	3.6	0.00017	0.02
KEGG_PATHWAY	Huntington's disease	16	3	0.00031	0.034
GUTERM_CC_DIRE	postsynapse	6	1.1	0.0004	0.01
GOTERM_CC_DIRE	axon	22	4.2	0.00043	0.01
GOTERM_CC_DIRE	extracellular matrix	19	3.6	0.00045	0.01
GOTERM_CC_DIRE	postsynaptic density	16	3	0.001	0.022
GOTERM_CC_DIRE	neurofilament	4	0.8	0.0012	0.024
GOTERM_CC_DIRE	nucleolus	37	7	0.0012	0.024
GOTERM_CC_DIRE	synaptic membrane	6	1.1	0.0013	0.024

Table S3F. DAVID GO analysis for the hypothalamus (LH+DMVH).

ZT4F Hypothalamu	15				
Category	Term	Count	%	P-Value	Benjamini
KEGG_PATHWAY	Oxidative phosphorylation	20	15.3	1.3E-18	1.4E-16
GOTERM_CC_ALL	mitochondrial membrane part	20	15.3	2.2E-18	7.5E-16
GOTERM_CC_ALL	inner mitochondrial membrane protein complex	17	13	9.5E-18	1.6E-15
GOTERM_CC_ALL	mitochondrial protein complex	18	13.7	2.7E-17	3.1E-15
KEGG_PATHWAY	Ribosome	19	14.5	7E-17	3.7E-15
GOTERM_MF_ALL	structural constituent of ribosome	20	15.3	1.1E-16	3.6E-14
GOTERM_CC_ALL	ribosome	21	16	1.2E-16	1E-14
GOTERM_CC_ALL	ribosomal subunit	19	14.5	2.1E-16	1.4E-14
GOTERM_CC_ALL	cytosolic ribosome	17	13	2.9E-16	1.7E-14
GOTERM_CC_ALL	mitochondrial inner membrane	23	17.6	1.1E-15	5.5E-14
GOTERM_CC_ALL	mitochondrial envelope	27	20.6	1.9E-15	8E-14
GOTERM_CC_ALL	organelle inner membrane	23	17.6	1.2E-14	4.8E-13
GOTERM_CC_ALL	mitochondrion	40	30.5	2.6E-14	8.6E-13
GOTERM_CC_ALL	mitochondrial part	29	22.1	2.7E-14	8.6E-13
GOTERM_CC_ALL	mitochondrial membrane	25	19.1	3.2E-14	9.1E-13
GOTERIM_CC_ALL	respiratory chain	13	9.9	7.3E-14	1.9E-12
GOTERINI_CC_ALL	cytosolic part	18	13.7	1.8E-13	4.6E-12
GOTERINI_CC_ALL	ninge hibosonnai subunit	14	10.7	5./E-15	1.35-11
KEGG DATHWAY		12	9.2 12.2	0F-13	1.7E-11 3.2E-11
GOTERM CC ALL	cytosolic large ribosomal subunit	10	0.2	3 2E-13	5.2E-11 6.7E-11
GOTERM CC ALL	respiratory chain complex	11	8.4	2 1F-11	4F=10
GOTERM CC ALL	cytonlasmic nart	75	573	6F-11	1 1F-09
GOTERM CC ALL	organelle envelope	27	20.6	1.4E-10	2.5E-09
GOTERM CC ALL	envelope	27	20.6	1.6E-10	2.6E-09
GOTERM CC ALL	respiratory chain complex I	9	6.9	1.9E-10	2.8E-09
GOTERM CC ALL	mitochondrial respiratory chain complex I	9	6.9	1.9E-10	2.8E-09
GOTERM CC ALL	NADH dehydrogenase complex	9	6.9	1.9E-10	2.8E-09
KEGG PATHWAY	Huntington's disease	15	11.5	6.8E-10	0.00000018
GOTERM CC ALL	cytoplasm	90	68.7	9.2E-10	0.00000013
GOTERM_CC_ALL	intracellular ribonucleoprotein complex	24	18.3	1.6E-09	0.00000021
GOTERM_CC_ALL	ribonucleoprotein complex	24	18.3	1.6E-09	0.00000021
GOTERM CC ALL	macromolecular complex	59	45	1.8E-09	0.00000022
KEGG_PATHWAY	Alzheimer's disease	14	10.7	1.9E-09	0.0000004
GOTERM_CC_ALL	intracellular organelle part	73	55.7	5.1E-09	0.0000006
GOTERM_CC_ALL	oxidoreductase complex	10	7.6	5.2E-09	0.0000006
GOTERM_BP_ALL	translation	20	15.3	5.5E-09	0.0000046
GOTERM_MF_ALL	structural molecule activity	20	15.3	5.7E-09	0.0000093
GOTERM_BP_ALL	amide biosynthetic process	21	16	6.7E-09	0.0000046
GOTERM_BP_ALL	organonitrogen compound metabolic process	33	25.2	7.7E-09	0.0000046
GOTERM_BP_ALL	peptide biosynthetic process	20	15.3	8.8E-09	0.0000046
GOTERM_CC_ALL	organelle part	73	55.7	0.00000017	0.0000019
GOTERM_BP_ALL	organonitrogen compound biosynthetic process	26	19.8	0.0000002	0.000082
GOTERM_MF_ALL	hydrogen ion transmembrane transporter activity	9	6.9	0.00000055	0.000006
KEGG_PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	12	9.2	0.00000063	0.0000011
GOTERM_CC_ALL	mitochondrial proton-transporting ATP synthase complex	6	4.6	0.00000012	0.0000013
GOTERM_BP_ALL	peptide metabolic process	20	15.3	0.00000013	0.000046
GOTERM_CC_ALL	proton-transporting ATP synthase complex	6	4.6	0.0000016	0.0000016
GOTERM_BP_ALL	cellular amide metabolic process	21	16	0.0000004	0.00012
	ring finger region C4 time	21	16	0.0000009	0.000092
OP_SEQ_FEATURE	zinc finger region:04-type	8	0.1	0.00000094	0.00027
GOTERINI_CC_ALL	CYTOSOI	30	22.9	0.0000013	0.000012
GOTERINI_CC_ALL	intracellular	98	74.8	0.0000013	0.000012
GOTERM CC ALL	nroton-transporting two-sector ATPase complex	55	15.0	0.0000008	0.000004
GOTERM CC ALL	organelle	93	71	0.0000078	0.000071
GOTERM CC ALL	intracellular organelle	88	67.2	0.000012	0.000055
GOTERM ME ALL	NADH dehydrogenase (ubiquinone) activity	5	3.8	0.000033	0.0001
GOTERM ME ALL	NADH dehydrogenase (guinone) activity	5	3.8	0.000033	0.002
GOTERM MF ALL	NADH dehvdrogenase activity	5	3.8	0.000037	0.002
GOTERM CC ALL	mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)	4	3.1	0.000047	0.00039
GOTERM MF ALL	monovalent inorganic cation transmembrane transporter activity	10	7.6	0.000064	0.003
GOTERM CC ALL	proton-transporting ATP synthase complex, coupling factor F(o)	4	3.1	0.000074	0.00061
GOTERM_MF_ALL	oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor	5	3.8	0.000091	0.0037
GOTERM_BP_ALL	ATP metabolic process	8	6.1	0.00012	0.028
GOTERM_BP_ALL	ATP biosynthetic process	5	3.8	0.00014	0.028
GOTERM_BP_ALL	metabolic process	76	58	0.00014	0.028
GOTERM_BP_ALL	proton transport	6	4.6	0.00015	0.028
GOTERM_CC_ALL	organelle membrane	28	21.4	0.00016	0.0013
GOTERM_BP_ALL	hydrogen transport	6	4.6	0.00016	0.028
GOTERM_BP_ALL	purine ribonucleoside triphosphate metabolic process	8	6.1	0.0002	0.032
GOTERM_CC_ALL	cytosolic small ribosomal subunit	5	3.8	0.00022	0.0017
GOTERM_BP_ALL	ribonucleoside triphosphate metabolic process	8	6.1	0.00024	0.032
GOTERM_MF_ALL	substrate-specific transmembrane transporter activity	15	11.5	0.00024	0.0089
GOTERM_BP_ALL	purine nucleoside triphosphate metabolic process	8	6.1	0.00026	0.032
GOTERM_BP_ALL	purine ribonucleoside monophosphate metabolic process	8	6.1	0.00026	0.032
GOTERM_BP_ALL	purine nucleoside monophosphate metabolic process	8	6.1	0.00027	0.032
GOTERM_BP_ALL	purine ribonucleoside triphosphate biosynthetic process	5	3.8	0.00031	0.032
GUIERM_BP_ALL	nyorogen ion transmembrane transport	5	3.8	0.00033	0.032
GOTERINI_BP_ALL	purme nucleoside tripnosphate biosynthetic process	5	3.8 2.1	0.00033	0.032
GOTERNA BD ALL	Air synthesis coupled proton transport	4	3.1 2 1	0.00035	0.032
GUTERIVI_BP_ALL	energy coupled proton transport, down electrochemical gradient	4	5.1	0.00035	0.032

	ribonucloosido mononhosphato motabolis prososs	0	6 1	0 00025	0 0 2 2
COTERNA CC ALL	noonacieoside monophosphate metabolic process	8	0.1	0.00035	0.032
GOTERM_CC_ALL	proton-transporting two-sector Al Pase complex, proton-transporting domain	4	3.1	0.00036	0.0028
GOTERM_BP_ALL	establishment of localization	40	30.5	0.00042	0.034
GOTERM BP ALL	nucleoside monophosphate metabolic process	8	6.1	0.00043	0.034
GOTERM BP ALL	ribonucleoside triphosphate biosynthetic process	5	3.8	0 00044	0.034
COTEDM DE	nisenaereestae urprospriate biosyntricae process	5	12.0	0.00044	0.034
GUTERIVI_MF_ALL	substrate-specific transporter activity	16	12.2	0.00045	0.015
GOTERM_BP_ALL	transport	39	29.8	0.00046	0.034
GOTERM_BP_ALL	nucleoside triphosphate metabolic process	8	6.1	0.00046	0.034
GOTERM BP ALL	nitrogen compound metabolic process	68	50.4	0.00000019	0.000075
	hormone activity	6	4.6	0.0005	0.015
		5	4.0	0.0005	0.015
GOTERM_BP_ALL	cellular nitrogen compound metabolic process	50	38.2	0.00052	0.036
GOTERM_BP_ALL	purine nucleoside monophosphate biosynthetic process	5	3.8	0.00061	0.04
GOTERM BP ALL	purine ribonucleoside monophosphate biosynthetic process	5	3.8	0.00061	0.04
GOTERM BP ALL	cellular nitrogen compound biosynthetic process	41	31 3	0.00063	0.04
COTERM ME ALL	transmembrane transporter activity	15	11 5	0.00064	0.019
GOTERINI_INIF_ALL		15	11.5	0.00004	0.018
GOTERM_BP_ALL	nucleoside triphosphate biosynthetic process	5	3.8		
ZT4M Hypothalam	ius				
Category	Term	Count	%	P-Value	Benjamini
GOTERM ME ALL	neuropeptide hormone activity	7	16.3	1.9E-11	4.1E-09
	hormono activity	0	20.0	15 10	0.00000011
GUTERIVI_IVIF_ALL	normone activity	9	20.9	1E-10	0.00000011
GOTERM_BP_ALL	single-multicellular organism process	26	60.5	0.0000071	0.012
GOTERM_BP_ALL	neuropeptide signaling pathway	5	11.6	0.000014	0.012
GOTERM ME ALL	G-protein coupled receptor binding	7	16.3	0.000014	0.001
GOTERM RP ALL	maternal aggressive behavior	2	7	0 000022	0.013
COTEDAA ASS AND	naterina appressive penavior	5	<i></i>	0.000022	0.015
GUTERM_MF_ALL	protein binaing	29	ь/.4	0.000034	0.0015
GOTERM_MF_ALL	neuropeptide receptor binding	4	9.3	0.000035	0.0015
GOTERM_BP ALL	behavior	9	20.9	0.000044	0.019
GOTERM CC ALL	extracellular space	13	30.2	0.000048	0.0054
COTERNA CC ALL	corretory grapula		16.2	0.000066	0.0054
GOTERIVI_UL_ALL	secretory granule	/	10.3	0.000066	0.0054
GOTERM_BP_ALL	teeding behavior	5	11.6	0.000082	0.026
GOTERM_BP_ALL	single organism signaling	24	55.8	0.00012	0.026
GOTERM BP ALL	signaling	24	55.8	0.00013	0.026
GOTERM RP ALL	response to pentide	7	163	0.00014	0.026
COTEDM DD AT	cingle organism process	20	20.0	0.00014	0.020
GOTERIN_BP_ALL	single-organism process	36	83.7	0.00014	0.026
GOTERM_BP_ALL	cell communication	24	55.8	0.00016	0.027
GOTERM_BP_ALL	endocrine hormone secretion	4	9.3	0.00017	0.027
GOTERM BP ALL	aggressive behavior	3	7	0.0002	0.029
GOTERM BR ALL	response to organonitrogen compound	10	22.2	0.00011	0.031
COTEDNA DO ALL	single ergenism helevier	-	20.0	0.00011	0.031
GOTERM_BP_ALL	single-organism behavior	7	16.3	0.00032	0.04
GOTERM_BP_ALL	multicellular organismal process	27	62.8	0.00037	0.043
GOTERM BP ALL	negative regulation of biological process	20	46.5	0.0004	0.043
GOTERM CC ALL	secretory vesicle	7	163	0 00042	0.023
KECC DATHINAN	Adinacutakina signaling nathway	4	0.2	0.000E9	0.041
	AUDOCVLOKINE SIGNATING DATINWAV			0.00056	0.041
	· · · · · · · · · · · · · · · · · · ·	4	9.5	0.00070	0.000
GOTERM_MF_ALL	receptor binding	11	25.6	0.00073	0.026
GOTERM_MF_ALL	receptor binding	11	25.6	0.00073	0.026
GOTERM_MF_ALL	receptor binding	11	25.6	0.00073	0.026
GOTERM_MF_ALL ZT14F Hypothalan Category	receptor binding	11 Count	25.6 %	0.00073 P-Value	0.026 Benjamini
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL	receptor binding us Term hormone activity	11 Count 6	\$.5 25.6 % 31.6	0.00073 P-Value 0.00000047	0.026 Benjamini 0.0000065
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding us Term hormone activity receptor of biological quality.	11 Count 6 13	5.5 25.6 % 31.6 68.4	0.00073 P-Value 0.000000047 0.0000016	0.026 Benjamini 0.0000065 0.002
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL COTERM_DP_ALL	receptor binding	11 Count 6 13	% 31.6 68.4	0.00073 P-Value 0.000000047 0.0000016 0.000013	0.026 Benjamini 0.000065 0.002
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure	11 Count 6 13 4	3.5 25.6 31.6 68.4 21.1	0.00073 P-Value 0.000000047 0.0000016 0.000012	0.026 Benjamini 0.0000065 0.002 0.0072
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding us Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure	, 11 6 13 4 5	% 31.6 68.4 21.1 26.3	0.00073 P-Value 0.00000047 0.000016 0.000012 0.000018	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound	, 11 6 13 4 5 9	% 31.6 68.4 21.1 26.3 47.4	0.00073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034	0.026 Benjamini 0.000065 0.002 0.0072 0.0075 0.011
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis	11 Count 6 13 4 5 9 6	% 31.6 68.4 21.1 26.3 47.4 31.6	0.00073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis groomine behavior	, 11 6 13 4 5 9 6 3	5.5 25.6 31.6 68.4 21.1 26.3 47.4 31.6 15.8	0.00073 P-Value 0.000000047 0.000016 0.000012 0.000018 0.000034 0.000034 0.000034	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014
GOTERM_MF_ALL Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior	, 11 6 13 4 5 9 6 3 2	5.5 25.6 31.6 68.4 21.1 26.3 47.4 31.6 15.8	0.00073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000034 0.000064 0.000077 0.00011	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure cellular metal ion homeostasis grooming behavior maternal behavior	11 Count 6 13 4 5 9 6 3 3 3 3	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 15.8	0.00073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000064 0.000064 0.000077 0.00011 0.0001	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis	11 Count 6 13 4 5 9 6 3 3 6	5.5 25.6 31.6 68.4 21.1 26.3 47.4 31.6 15.8 15.8 31.6	0.00073 P-Value 0.000000047 0.000016 0.000012 0.000018 0.000034 0.000034 0.000064 0.000077 0.00011 0.00011	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014
GOTERM_MF_ALL Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis metal ion homeostasis	11 Count 6 13 4 5 9 6 3 3 3 6 6 6	5.5 25.6 % 31.6 68.4 21.1 26.3 47.4 31.6 15.8 15.8 31.6 31.6	0.00073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure cellular metal ion homeostasis grooming behavior cellular cation homeostasis metal ion ho	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 3 6 6 3 3	5.5 25.6 % 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.5	0.00073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation and blood pressure regulation an	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 6	5.5 25.6 % 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6	0.00073 P-Value 0.000000047 0.000016 0.000012 0.000018 0.000034 0.00004 0.000064 0.000077 0.00011 0.00011 0.00011 0.00012 0.00013	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
GOTERM_MF_ALL Category GOTERM_MF_ALL GOTERM_BP_A	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis	11 Count 6 13 4 5 9 6 3 3 6 6 6 3 6 6 3 6 7	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6 31.6 32.8	P-Value 0.0000047 0.00000047 0.000016 0.000012 0.000034 0.000064 0.000077 0.00011 0.00011 0.00011 0.00012 0.00012 0.00013 0.00013	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation af blood pressure regula	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 3 6 7 7	5.3 25.6 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	0.00073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00013 0.00013 0.00013	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior cellular cation homeostasis parental behavior cellular ion homeostasis response to lipid single organism signaling	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14	5.3 25.6 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	0.00073 P-Value 0.000000047 0.000016 0.000018 0.000034 0.000034 0.00004 0.000077 0.00011 0.00011 0.00011 0.00012 0.00013 0.00013 0.00014	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
GOTERM_MF_ALL Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis response to lipid single organism signaling signaling	11 Count 6 13 4 5 9 6 3 3 6 6 6 3 6 6 7 14 14	5.3 25.6 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 15.8 31.6 15.8 31.6 31.6 31.6 31.6 37.7 73.7	P-Value 0.000073 0.00000047 0.00000016 0.000018 0.000034 0.000034 0.000011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00014 0.00013	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
GOTERM_MF_ALL ZT14F Hypothalan Category GOTERM_MF_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL GOTERM_BP_ALL	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation af blood pressure regulation af blood pressure regulation af blood pressure regulation of blood pressure regulation af blood pressure regula	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14	5.3 25.6 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	0.00073 P-Value 0.00000047 0.000016 0.00012 0.000034 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00013 0.00013 0.00015 0.00015 0.00017	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
GOTERM_MF_ALL GOTERM_BP_ALL GOTERM	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior cellular cation homeostasis metal ion homeostasis metal ion homeostasis parental behavior cellular cation homeostasis parental behavior cellular cation homeostasis parental behavior cellular ion homeostasis parental behavior cellular containing compound cellular containing parental behavior cellular containing parental behavior cellular containing cell communication positive regulation of biological process	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 13	% 31.6 68.4 21.1 26.3 47.4 31.6 31.6 31.6 31.6 31.6 31.6 31.6 36.8 73.7 68.4	0.00073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000034 0.000034 0.000011 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00014 0.00017 0.00021	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL GOTERM	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis response to lipid single organism signaling signaling cell communication positive regulation of biological process cation homeostasis	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 14 13 5	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 36.3 31.6 36.3 73.7 73.7 31.6	P-Value 0.00073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000047 0.000018 0.000012 0.000014 0.00011 0.00012 0.00012 0.00013 0.00013 0.00014 0.00015 0.00017 0.00017	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.006
GOTERM_MF_ALL Category GOTERM_MF_ALL GOTERM_BP_A	receptor binding	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 13 6 6 7	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 35.8 31.6 36.8 73.7 68.4 31.6 <td>P-Value 0.00073 P-Value 0.00000047 0.000016 0.00012 0.000034 0.000034 0.000077 0.00011 0.00012 0.00013 0.00013 0.00013 0.00015 0.00017 0.00015 0.00021 0.00021</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016</td>	P-Value 0.00073 P-Value 0.00000047 0.000016 0.00012 0.000034 0.000034 0.000077 0.00011 0.00012 0.00013 0.00013 0.00013 0.00015 0.00017 0.00015 0.00021 0.00021	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016
GOTERM_MF_ALL Category GOTERM_BP_ALL GOTERM_BP_A	receptor binding tus Term hormone activity regulation of biological quality positive regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior cellular cation homeostasis metal ion homeostasis metal ion homeostasis parental behavior cellular cation homeostasis parental behavior cellular ion homeostasis response to lipid single organism signaling signaling cell communication positive regulation of biological process cation homeostasis inorganic ion homeostasis	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 6 3 6 7 14 14 14 14 13 6 6 6 7 14 14 14 15 14 14 14 15 15 15 15 15 15 15 15 15 15	% 31.6 68.4 21.1 26.3 47.4 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 36.8 73.7 68.4 31.6 31.6 31.6 31.6	0.00073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00013 0.00013 0.00013 0.00014 0.00015 0.00017 0.00021 0.00021 0.00021 0.00024 0.00024	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 7 14 14 14 14 13 6 6 6 6 6 6 6 6 6 6 6 6 6	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 36.4 31.7 73.7 68.4 31.6 31.6 31.6	P-Value 0.00073 P-Value 0.0000047 0.000016 0.00012 0.000034 0.000034 0.000034 0.000011 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00014 0.00015 0.00017 0.00017 0.00021 0.00024 0.00024	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016
GOTERM_MF_ALL Category GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 13 6 6 6 6 6 6 6 6 6 6 6 6 6	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	P-Value 0.00073 P-Value 0.0000047 0.000016 0.00012 0.000034 0.00004 0.00001 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00017 0.00017 0.00017 0.00017 0.00017 0.00021 0.00024 0.00024 0.00026	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL GOTERM	receptor binding	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 6 3 6 7 14 14 14 14 14 14 14 13 6 6 6 6 3 3 6 7 14 14 15 13 13 13 13 13 13 13 13 13 13	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.0000047 0.00000047 0.000016 0.000018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00013 0.00014 0.00015 0.00017 0.00021 0.00021 0.00021 0.00024 0.00028</td> <td>0.026 Benjamini 0.000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.019</td>	P-Value 0.0000047 0.00000047 0.000016 0.000018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00013 0.00014 0.00015 0.00017 0.00021 0.00021 0.00021 0.00024 0.00028	0.026 Benjamini 0.000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.019
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding results results regulation of biological quality positive regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis response to lipid single organism signaling signaling cell communication positive regulation of biological process cation homeostasis regulation of growth behavior neuropeptide hormone activity response to abiotic stimulus	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 14 14 13 6 6 6 6 3 7	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00014 0.00021 0.00024 0.00024 0.00024 0.00024 0.00028 0.0003</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.017 0.016 0.017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00014 0.00021 0.00024 0.00024 0.00024 0.00024 0.00028 0.0003	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.017 0.016 0.017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000
GOTERM_MF_ALL Category GOTERM_MF_ALL GOTERM_BP_A	receptor binding receptor bin	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 14 13 6 6 6 6 3 7 14 15 13 13 13 13 13 13 14 15 13 13 13 14 15 13 13 14 15 13 13 13 14 15 13 13 14 15 13 13 13 13 13 13 13 14 15 13 13 14 15 15 15 15 15 15 15 15 15 15	5.3 25.6 % 31.6 126.3 47.4 31.6 15.8 15.8 31.6 <td>P-Value 0.00073 P-Value 0.00000047 0.000016 0.00012 0.00018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00013 0.00013 0.00013 0.00015 0.00015 0.00015 0.00017 0.00021 0.00021 0.00024 0.00024 0.00024 0.00026 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00026 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00024 0.00024 0.00024 0.00026 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.00024 0.00024 0.00025 0.00024 0.00024 0.00025 0.00024 0.00024 0.00025 0.00024 0.00024 0.00024 0.00024 0.00025 0.00024 0.00024 0.00024 0.00025 0.00024 0.00024 0.00025 0.00024 0.00025 0.00024 0.00025 0.0</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.017 0.017</td>	P-Value 0.00073 P-Value 0.00000047 0.000016 0.00012 0.00018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00013 0.00013 0.00013 0.00015 0.00015 0.00015 0.00017 0.00021 0.00021 0.00024 0.00024 0.00024 0.00026 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00026 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00024 0.00024 0.00024 0.00026 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.00024 0.00024 0.00025 0.00024 0.00024 0.00025 0.00024 0.00024 0.00025 0.00024 0.00024 0.00024 0.00024 0.00025 0.00024 0.00024 0.00024 0.00025 0.00024 0.00024 0.00025 0.00024 0.00025 0.00024 0.00025 0.0	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.017 0.017
GOTERM_MF_ALL Category GOTERM_MF_ALL GOTERM_BP_A	receptor binding	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 6 3 7 14 14 14 14 14 14 14 13 6 6 6 3 7 7 14 15 6 6 6 7 7 14 15 6 6 6 7 7 14 14 15 15 15 15 15 15 15 15 15 15	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 31.6 31.6 31.7 73.7 73.7 73.7 73.7 73.7 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00021 0.00021 0.00024 0.00024 0.00028 0.0003 0.0003 0.0003 0.0003</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.021</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00021 0.00021 0.00024 0.00024 0.00028 0.0003 0.0003 0.0003 0.0003	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.021
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding receptor bin	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 7 14 14 14 14 13 6 6 6 6 6 6 3 7 16 6 6 7 19 13 13 13 14 13 13 13 14 15 13 13 14 15 13 13 14 15 13 13 14 15 13 13 13 13 13 13 13 13 13 13	3.3 25.6 % 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000034 0.00004 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00015 0.00017 0.00021 0.00021 0.00024 0.00021 0.00021 0.00015 0.00015 0.00015 0.00017 0.00012 0.00021 0.00024 0.00024 0.00024 0.00024 0.00023 0.00024 0.00024 0.00024 0.0003 0</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000034 0.00004 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00015 0.00017 0.00021 0.00021 0.00024 0.00021 0.00021 0.00015 0.00015 0.00015 0.00017 0.00012 0.00021 0.00024 0.00024 0.00024 0.00024 0.00023 0.00024 0.00024 0.00024 0.0003 0	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding response to abiotic stimulus in homeostasis response to abiotic stimulus in homeostasis response to abiotic stimulus in homeostasis response to nutrient levels	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 14 13 6 6 6 3 7 14 14 13 6 6 5 5 6 6 3 7 14 15 6 6 6 7 15 15 15 15 15 15 15 15 15 15	5.3 25.6 % 31.6 68.4 21.1 26.3 47.4 31.6	P-Value 0.00073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.00004 0.00012 0.00013 0.00011 0.00012 0.00013 0.00013 0.00014 0.00015 0.00017 0.00021 0.00021 0.00024 0.00026 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.016 0.017 0.017 0.021 0.017 0.021 0.021 0.017 0.021
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding response activity regulation of biological quality positive regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis response to lipid single organism signaling signaling cell communication positive regulation of biological process cation homeostasis regulation of growth behavior neuropeptide hormone activity response to abiotic stimulus ion homeostasis response to nutrient levels signal transduction	11 Count 6 13 4 5 9 6 3 3 6 6 6 3 6 7 14 14 14 14 14 14 14 14 14 15 6 6 6 3 7 14 15 6 6 5 13 13 13 13 14 15 13 13 14 15 15 15 15 15 15 15 15 15 15	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00014 0.00015 0.00014 0.00021 0.00021 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00026 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00046 0.0005</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.024 0.024 0.024</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00014 0.00015 0.00014 0.00021 0.00021 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00026 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00046 0.0005	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.024 0.024 0.024
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding receptor bin	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 13 6 6 6 6 6 6 3 7 14 14 13 12 12	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00015 0.00017 0.00021 0.00021 0.00024 0.00021 0.00021 0.00015 0.00015 0.00024 0.0003 0.00024 0.00024 0.0003 0.00024 0.0003 0.0003 0.0003 0.0003 0.00024 0.0003 0.0005</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.024</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00015 0.00017 0.00021 0.00021 0.00024 0.00021 0.00021 0.00015 0.00015 0.00024 0.0003 0.00024 0.00024 0.0003 0.00024 0.0003 0.0003 0.0003 0.0003 0.00024 0.0003 0.0005	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.024
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding receptor bin	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 6 3 6 7 14 14 14 14 14 14 14 14 14 14	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00021 0.00021 0.00024 0.00028 0.00028 0.0003 0.0003 0.0003 0.00028 0.0003 0.00028 0.0003 0.0003 0.0003 0.0003 0.00028 0.0003 0.0003 0.0003 0.0003 0.00028 0.0003 0.0003 0.0003 0.00028 0.0003 0.0003 0.0003 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00028 0.0003 0.0005 0.00</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00021 0.00021 0.00024 0.00028 0.00028 0.0003 0.0003 0.0003 0.00028 0.0003 0.00028 0.0003 0.0003 0.0003 0.0003 0.00028 0.0003 0.0003 0.0003 0.0003 0.00028 0.0003 0.0003 0.0003 0.00028 0.0003 0.0003 0.0003 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00028 0.0003 0.0005 0.00	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding response activity regulation of blood pressure regulation of blood pressure regulation of blood pressure regulation of blood pressure response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis response to lipid signaling cell communication positive regulation of biological process cation homeostasis regulation of growth behavior neuropeptide hormone activity response to abiotic stimulus ion homeostasis cellular chemical homeostasis response to abiotic stimulus ion homeostasis response to abiotic cilulular process blood circulation	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 7 14 14 14 14 14 13 6 6 6 6 3 7 6 6 3 7 6 5 13 13 13 14 15 13 13 14 15 13 13 14 15 13 15 13 15 15 15 15 15 15 15 15 15 15	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00013 0.00015 0.00017 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.0003 0.0003 0.0003 0.0003 0.0005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.05</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.017 0.021 0.021 0.022 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00013 0.00015 0.00017 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.0003 0.0003 0.0003 0.0003 0.0005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.05	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.017 0.021 0.021 0.022 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding receptor bin	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 13 6 6 6 6 3 7 14 14 14 13 6 6 5 13 13 13 14 15 13 13 13 13 13 14 15 13 13 13 14 15 13 13 14 15 13 13 14 15 13 13 13 14 15 15 15 15 15 15 15 15 15 15	3.3 25.6 % 31.6 126.3 47.4 31.6 15.8 15.8 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000034 0.000034 0.000011 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00021 0.00021 0.00021 0.00021 0.00023 0.0003 0.0003 0.0003 0.0003 0.0003 0.00051 0.00053 0.00054</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.021 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000034 0.000034 0.000011 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00021 0.00021 0.00021 0.00021 0.00023 0.0003 0.0003 0.0003 0.0003 0.0003 0.00051 0.00053 0.00054	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.021 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding response to abintic stimulus response to abintic stimulus response to abintic stimulus response to nutrient levels response to receptor binding response to nutrient levels response to receptor binding receptor binding receptor binding receptor binding receptor binding response to receptor	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 6 7 14 14 14 14 14 14 14 14 14 14	% 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00014 0.00015 0.00015 0.00014 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00024 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.026 0.026 0.026 0.026 0.026 0.026 0.005</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00014 0.00015 0.00015 0.00014 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00024 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.026 0.026 0.026 0.026 0.026 0.026 0.005
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding receptor bin	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 7 14 14 14 14 13 6 6 6 6 6 6 6 6 5 13 12 5 5 5 5 5 5 5	3.3 25.6 % 31.6 68.4 21.1 26.3 31.6	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000034 0.000034 0.00004 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00015 0.00017 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00023 0.0003 0.0003 0.0003 0.0003 0.0003 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00054 0.0005 0.00051 0.00054 0.0005 0.00051 0.0005 0	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.024 0.024 0.024 0.024 0.024 0.026 0.029
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL GO	receptor binding	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 6 3 6 7 14 14 14 14 14 14 14 14 14 14	9.3 25.6 % 31.6 68.4 21.1 26.3 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 32.6.3 26.3 26.3 26.3 26.3 26.3 31.6 31.6	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00014 0.00015 0.00017 0.00021 0.00021 0.00021 0.00021 0.00028 0.00028 0.00028 0.0003 0.00028 0.0003 0.00028 0.0003 0.00028 0.0003 0.0003 0.00028 0.0003 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.00	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis parental behavior cellular cation homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis parental behavior cellular on binding compound cellular cation homeostasis parental behavior cellular cation homeostasis parental behavior cellular on bomeostasis parental behavior cellular ion homeostasis parental behavior cellular ion homeostasis parental behavior cellular ion bomeostasis response to otiological process cation homeostasis inorganic ion homeostasis regulation of biological process cation homeostasis cellular chemical homeostasis response to abiotic stimulus ion homeostasis cellular chemical homeostasis response to abiotic stimulus cellular homeostasis response	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 7 14 14 14 14 14 14 14 14 13 6 6 6 6 3 7 14 14 14 13 6 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 14 15 7 7 14 15 7 7 14 15 15 15 15 15 15 15 15 15 15	3.3 25.6 % 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.00073 0.0000047 0.0000047 0.000016 0.000012 0.000013 0.00004 0.000014 0.000012 0.00014 0.00012 0.00011 0.00012 0.00012 0.00013 0.00014 0.00015 0.00017 0.00021 0.00024 0.00026 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0005 0.00051 0.00053 0.00054 0.00070 0.00074</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0072 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.021 0.021 0.021 0.024 0.024 0.024 0.024 0.024 0.024 0.026 0.029 0.03</td>	P-Value 0.00073 0.0000047 0.0000047 0.000016 0.000012 0.000013 0.00004 0.000014 0.000012 0.00014 0.00012 0.00011 0.00012 0.00012 0.00013 0.00014 0.00015 0.00017 0.00021 0.00024 0.00026 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0005 0.00051 0.00053 0.00054 0.00070 0.00074	0.026 Benjamini 0.0000065 0.002 0.0072 0.0072 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.021 0.021 0.021 0.024 0.024 0.024 0.024 0.024 0.024 0.026 0.029 0.03
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding receptor bin	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 7 14 14 14 13 6 6 6 6 6 6 6 6 5 13 12 5 5 5 6 6 5 5 5 6 6 5 5 6 6 6 5 5 6 6 6 6 6 7 7 14 14 15 15 15 15 15 15 15 15 15 15	3.3 25.6 % 31.6 15.8 15.8 31.6	P-Value 0.000073 P-Value 0.0000047 0.000016 0.000018 0.000034 0.000034 0.00004 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00015 0.00017 0.00021 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00024 0.00026 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.00051 0.00051 0.00051 0.00051 0.00054 0.00054 0.00074 0.00074 0.00074 0.00074	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.025 0.029 0.03 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL	receptor binding receptor bin	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 6 3 7 14 14 14 14 14 14 14 14 14 14	9.3 25.6 % 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00021 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00028 0.0003 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.025 0.03 0.03 0.03 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.004 0.032 0.032 0.032 0.032 0.032 0.004 0.032 0.032 0.032 0.032 0.032 0.032 0.004 0.032 0.032 0.032 0.032 0.032 0.04 0.04 0.04 0.04 0.04 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.025 0.03 0.032 0.04 0.</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000018 0.000034 0.000064 0.000077 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00021 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00028 0.0003 0.00028 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.021 0.024 0.025 0.03 0.03 0.03 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.004 0.032 0.032 0.032 0.032 0.032 0.004 0.032 0.032 0.032 0.032 0.032 0.032 0.004 0.032 0.032 0.032 0.032 0.032 0.04 0.04 0.04 0.04 0.04 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.025 0.03 0.032 0.04 0.
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL GO	receptor binding response to oxygen-containing compound cellular metal ion homeostasis grooming behavior maternal behavior cellular cation homeostasis parental behavior cellular ion homeostasis cellular ion homeostasis response to abitic stimulus ion homeostasis cellular chemical homeostasis response to organonitrogen compound circulatory system process response to organonitrogen compound single-organism behavior response to stress	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 7 14 14 14 14 14 14 14 13 6 6 6 6 6 3 7 6 6 5 13 12 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 10 10 10 10 10	3.3 25.6 % 31.6 126.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00014 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0007 0.0007 0.0007 0.0007 0.0007 0.0005 0.0005 0.0005 0.0005 0.0007 0.0007 0.0007 0.0007 0.0007 0.0005 0.0005 0.0007 0.0007 0.0007 0.0007 0.0005</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.021 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.026 0.029 0.03 0.03 0.032 0.044</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 0.00013 0.00013 0.00014 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0007 0.0007 0.0007 0.0007 0.0007 0.0005 0.0005 0.0005 0.0005 0.0007 0.0007 0.0007 0.0007 0.0007 0.0005 0.0005 0.0007 0.0007 0.0007 0.0007 0.0005	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.021 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.026 0.029 0.03 0.03 0.032 0.044
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL GO	receptor binding	11 Count 6 13 4 5 9 6 3 3 6 6 3 6 6 3 6 6 3 6 6 3 6 6 3 6 6 3 6 6 3 7 14 14 14 14 13 6 6 6 3 7 14 14 14 13 6 6 6 3 3 6 6 6 3 7 14 14 15 5 5 5 5 5 5 5 5 5 5 5 6 6 6 3 13 14 14 14 14 14 13 6 6 6 6 3 7 14 14 14 14 13 6 6 6 6 3 7 14 14 14 14 14 13 6 6 6 6 5 5 13 12 5 5 5 5 5 5 5 5 5 5 5 5 5	3.3 25.6 % 31.6 126.3 47.4 31.6 15.8 31.6 15.8 31.6 15.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	P-Value 0.000073 P-Value 0.00000047 0.000012 0.000018 0.000034 0.000034 0.00004 0.00011 0.00011 0.00011 0.00012 0.00013 0.00013 0.00013 0.00013 0.00014 0.00021 0.00025 0.0003 0.0005 0.0005 0.0005 0.0005 0.00075 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075 0.00084 0.00075	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.021 0.021 0.024 0.03 0.03 0.032 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.055 0.055 0.011 0.014 0.016 0.016 0.016 0.017 0.021 0.024 0
GOTERM_MF_ALL GOTERM_MF_ALL GOTERM_BP_ALL GO	receptor binding	11 Count 6 13 4 5 9 6 3 3 6 6 3 3 6 7 14 14 14 14 14 14 14 14 14 14	3.3 25.6 % 31.6 68.4 21.1 26.3 47.4 31.6 15.8 31.6 <td>P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00013 0.00014 0.00015 0.00014 0.00021 0.00021 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0</td> <td>0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.021 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.025 0.033 0.032 0.032 0.044 0.047</td>	P-Value 0.000073 P-Value 0.00000047 0.000016 0.000012 0.000034 0.000064 0.000077 0.00011 0.00012 0.00012 0.00012 0.00012 0.00013 0.00014 0.00015 0.00014 0.00021 0.00021 0.00021 0.00021 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0	0.026 Benjamini 0.0000065 0.002 0.0072 0.0075 0.011 0.014 0.016 0.016 0.016 0.017 0.021 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.025 0.033 0.032 0.032 0.044 0.047
GOTERM_BP_ALL response to nitrogen compound	6	31.6	0.0014	0.047	
---	---	------	--------	-------	
GOTERM_BP_ALL response to organic cyclic compound	6	31.6	0.0014	0.047	
GOTERM MF_ALL G-protein coupled recentor binding	4	21.1	0.0015	0.047	
GOTERM_MF_ALL reurohypophyseal hormone activity	2	10.5	0.0017	0.047	

ZT14M Hypothala	ZT14M Hypothalamus								
Category	Term	Count	%	P-Value	Benjamini				
GOTERM_CC_ALL	cytoplasm	343	72.8	6.1E-27	3.3E-24				
GOTERM_CC_ALL	cytoplasmic part	272	57.7	1E-26	3.3E-24				
GOTERM_CC_ALL	neuron part	109	23.1	1.2E-25	2.5E-23				
GOTERM_CC_ALL	cytosolic ribosome	35	7.4	2.5E-24	4.2E-22				
GOTERM_BP_ALL	organonitrogen compound metabolic process	129	27.1	1E-23	2.9E-20				
GOTERM_CC_ALL	intracellular organelle	359	76.2	1.7E-22	2.3E-20				
GOTERM_CC_ALL	ribosome	43	9.1	2.3E-22	2.5E-20				
KEGG_PATHWAY	Ribosome	35	7.4	4.4E-22	9E-20				
GOTERM_CC_ALL	intracellular part	389	82.6	7.9E-22	7.4E-20				
GOTERINI_CC_ALL	intracellular organelle part	207	50.7	9.4E-22	7.7E-20				
GOTERINI_CC_ALL	organelle	3/0 97	79.8 19 E	1.0E-21	1.2E-19 2.9E 10				
GOTERM CC ALL	ribosomal subunit	36	76	4.3E-21 3.1E-20	2.8E-19 1.9E-18				
GOTERM_CC_ALL	organelle part	267	56.7	4.5E-20	2.5E-18				
GOTERM CC ALL	membrane-bounded organelle	354	75.2	4.32-20 5F-20	2.5E-18				
GOTERM ME ALL	structural constituent of ribosome	38	81	1 2F-18	1 2F-15				
GOTERM CC ALL	cytosol	109	23.1	2E-18	9.5E-17				
GOTERM CC ALL	somatodendritic compartment	69	14.6	2.4E-18	1.1E-16				
GOTERM CC ALL	macromolecular complex	198	42	4.8E-18	1.9E-16				
GOTERM CC ALL	intracellular	391	83	5.5E-18	2.1E-16				
GOTERM CC ALL	cytosolic part	37	7.9	8.1E-18	2.9E-16				
GOTERM BP ALL	localization	216	45.9	8.8E-18	2.6E-14				
GOTERM CC ALL	myelin sheath	33	7	1.5E-17	5.3E-16				
GOTERM CC ALL	intracellular membrane-bounded organelle	325	69	1.8E-17	5.8E-16				
GOTERM CC ALL	intracellular ribonucleoprotein complex	68	14.4	1.9E-17	6E-16				
GOTERM CC ALL	ribonucleoprotein complex	68	14.4	2E-17	6E-16				
GOTERM CC ALL	axon	52	11	2.6E-17	7.5E-16				
GOTERM BP ALL	establishment of localization	181	38.4	4.7E-16	7.7E-13				
GOTERM BP ALL	transport	175	37.2	2.3E-15	2.9E-12				
GOTERM CC ALL	membrane-bounded vesicle	146	31	3.4F-15	9 4F-14				
GOTERM CC ALL	vesicle	150	31.8	6.8F-15	1 8F-13				
GOTERM BP ALL	organonitrogen compound biosynthetic process	80	17	1 5F-14	1.5E-11				
GOTERM CC ALL	cell projection	104	22.1	2F-14	5F-13				
GOTERM CC ALL	cell body	54	11.5	3.5E-14	8.4E-13				
GOTERM CC ALL	extracellular vesicle	119	25.3	1 9F-13	4 5F-12				
GOTERM CC ALL	extracellular organelle	119	25.3	2 3F-13	5 3F-12				
GOTERM CC ALL	neuronal cell hody	49	10.4	2.0E 10	5 3F-12				
GOTERM CC ALL	extracellular exosome	118	25.1	3 1F-13	6.6E-12				
GOTERM CC ALL	cytosolic small ribosomal subunit	16	3.4	4 3F-13	8.8F=12				
KEGG PATHWAY		25	53	4.5E 15	1 2F-10				
GOTERM CC ALL	synanse part	50	10.6	1.5E-12	3 1F-11				
GOTERM ME ALL	structural molecule activity	52	11	1.6E-12	7 7F-10				
GOTERM CC ALL	mitochondrial protein complex	24	51	1.02 12 1.7F-12	3 3F-11				
GOTERM CC ALL	mitochondrial envelope	48	10.2	1.9E-12	3.6E-11				
GOTERM BP ALL	regulation of biological quality	140	29.7	2.6E-12	1 9F-09				
GOTERM BP ALL	cellular amide metabolic process	64	13.6	2.02 12 2.7F-12	1.9E-09				
GOTERM CC ALL	dendrite	47	10	3 1F-12	5.7F=11				
GOTERM CC ALL	extracellular region part	150	31.8	4.6F-12	8 1F-11				
GOTERM CC ALL	inner mitochondrial membrane protein complex	21	4 5	5F-12	8 6F-11				
GOTERM BP ALL	nervous system development	105	22.3	5 3F-12	3 3F-09				
KEGG PATHWAY	Parkinson's disease	25	53	5.4F-12	3.7E-10				
GOTERM BP ALL	nentide metabolic process	57	12.1	6.7F-12	3 7F-09				
GOTERM CC ALL	mitochondrion	87	18.5	9.4F-12	1.6E-10				
GOTERM CC ALL	respiratory chain	18	3.8	1F-11	1.6E-10				
GOTERM BP ALL	translation	50	10.6	1 5F-11	7 7E-09				
GOTERM CC ALL	cytosolic large ribosomal subunit	18	3.8	1.3E 11 1.8F-11	2 8F-10				
GOTERM CC ALL	mitochondrial inner membrane	36	7.6	2 1F-11	3 3F-10				
GOTERM CC ALL	mitochondrial membrane part	25	53	2 3F-11	3.4F-10				
GOTERM BP ALL	amide biosynthetic process	53	11.3	3 5F-11	0.00000016				
GOTERM CC ALL	mitochondrial part	54	11.5	4 3F-11	6 3F-10				
GOTERM BP ALL	nentide biosynthetic process	50	10.6	4 3F-11	0.00000018				
GOTERM CC ALL	small ribosomal subunit	17	3.6	5 1E-11	7 /F-10				
GOTERM CC ALL	synance	54	11 5	5.4E-11	7.4E 10				
GOTERM CC ALL	extracellular region	161	34.2	9.6F-11	1 3F-09				
GOTERM BP ALL	single-organism localization	133	28.2	1E-10	0.00000004				
GOTERM CC ALL	mitochondrial membrane	43	9.1	1 1F-10	1 5F=09				
GOTERM CC ALL	respiratory chain complex	16	3.4	2 2F-10	2.9E-09				
GOTERM BP ALL	cellular localization	102	21.7	2.2E 10 2.2F-10	0.00000079				
GOTERM BP ALL	central nervous system development	57	12.1	3.8F-10	0.000000073				
GOTERM CC ALL	avon nart	29	6.2	3.8F_10	0.00000013				
GOTERM CC ALL	organelle inner membrane	23	7.6	5.3E-10 5.3E-10	6.000000000000000000000000000000000000				
GOTERNIVI_CC_ALL		240	7.0 52.7	5.35-10	0.02-09				
GOTERNI IVIE ALL	cell projection part	240 50	JZ./	9.0E-10 9.7E 10	0.00000019				
GOTERM CC ALL	large ribosomal subunit	10	12.3	1 35-00	0.00000011				
GOTERM CC ALL	mitochondrial respiratory chain	15	- 2 0	2.32-05	0.00000010				
GOTERINI_CC_ALL	intracellular non-membrane-bounded organelle	1/5	30.9	2.7 5-09	0.000000032				
GOTERINI_CC_ALL	nn acenaian non-membrane-bounded organelle	145	30.0	3.05-09	0.000000044				
COTERNA DD ALL	coll coll cigabling	145	14	3.05-09	0.000000044				
GUIERINI_BP_ALL	centen sgudling	27	14	0.000000004	0.0000012				
GUTERIVI_BP_ALL	regulation of normone levels	57	1.9	4.1C-09	0.0000012				

GOTERM BP ALL	single-organism transport	122	25.9	4.7E-09	0.0000013	
GOTERM BP ALL	generation of precursor metabolites and energy	29	6.2	6.3E-09	0.0000015	
GOTERM BP ALL	oxidative phosphorylation	14	3	6.3E-09	0.0000015	
GOTERM BP ALL	secretion	58	123	6.4E-09	0.0000015	
GOTERM CC ALL	perikanyon	19	4	0.42 05	0.00000015	
KEGG PATHWAY	Huntington's disease	24	51	0.000000012	0.000000052	
COTERNA ME ALL	nolu(A) RNA binding	24	12	0.000000012	0.00000001	
GOTERM BR ALL	brain development	45	96	0.000000013	0.0000033	
GOTERM ME ALL		45	16.3	0.000000018	0.0000041	
COTERNA DR ALL	nue billoing	77	10.5	0.000000023	0.0000043	
GOTERIN_BF_ALL	membrane protein complex	75	11.5	0.000000027	0.0000039	
COTERM PD ALL	head development	16	0.0	0.000000034	0.00000038	
GOTERNA ME ALL	inerganic cation transmombrano transporter activity	24	3.0 7.0	0.000000058	0.0000079	
COTERNA DR ALL	anorganic cation transmeniorane transporter activity	34	1.2	0.000000032	0.0000084	
GOTERINI_BP_ALL	ribenueleenretein eemplev biegeneeie	23	4.9	0.000000055	0.00001	
GOTERIVI_DP_ALL	monucleoprotein complex biogenesis	27	0.0	0.000000056	0.000011	
GOTERINI_IVIF_ALL	monovalent morganic cation transmembrane transporter activity	27	5./	0.000000077	0.000011	
GOTERIM_BP_ALL	respiratory electron transport chain	13	2.8	0.00000087	0.000016	
GOTERIM_BP_ALL	purine ribonucieoside tripnosphate metabolic process	22	4.7	0.00000009	0.000016	
GOTERIM_CC_ALL	Cell	420	89.2	0.00000098	0.0000011	
GOTERIM_BP_ALL	ATP metabolic process	21	4.5	0.000001	0.000018	
GOTERM_BP_ALL	secretion by cell	50	10.6	0.00000012	0.000019	
GOTERM_BP_ALL	cellular respiration	18	3.8	0.00000013	0.000021	
GOTERM_CC_ALL	cell part	419	89	0.00000014	0.0000016	
GOTERM_CC_ALL	organelle membrane	91	19.3	0.00000015	0.0000016	
GOTERM_BP_ALL	ribonucleoside triphosphate metabolic process	22	4.7	0.00000015	0.000024	
GOTERM_BP_ALL	neuron development	55	11.7	0.00000016	0.000025	
GOTERM_BP_ALL	purine nucleoside triphosphate metabolic process	22	4.7	0.00000017	0.000025	
GOTERM_BP_ALL	generation of neurons	69	14.6	0.00000018	0.000025	
GOTERM_BP_ALL	ribosome biogenesis	24	5.1	0.0000018	0.000025	
GOTERM_MF_ALL	hormone activity	16	3.4	0.000002	0.000024	
GOTERM_BP_ALL	electron transport chain	13	2.8	0.0000022	0.000027	
GOTERM_BP_ALL	anterograde trans-synaptic signaling	36	7.6	0.0000022	0.000027	
GOTERM_BP_ALL	synaptic signaling	36	7.6	0.0000022	0.000027	
GOTERM_BP_ALL	trans-synaptic signaling	36	7.6	0.0000022	0.000027	
GOTERM_BP_ALL	chemical synaptic transmission	36	7.6	0.0000022	0.000027	
GOTERM_MF_ALL	neuropeptide hormone activity	9	1.9	0.0000023	0.000025	
GOTERM_BP_ALL	ATP synthesis coupled electron transport	11	2.3	0.000003	0.000035	
GOTERM_BP_ALL	gliogenesis	24	5.1	0.0000031	0.000035	
GOTERM_BP_ALL	modulation of synaptic transmission	26	5.5	0.0000033	0.000037	
GOTERM_CC_ALL	organelle envelope	52	11	0.0000033	0.000035	
GOTERM_BP_ALL	hormone transport	27	5.7	0.0000034	0.000038	
GOTERM_BP_ALL	nitrogen compound metabolic process	204	43.3	0.0000037	0.000039	
GOTERM_BP_ALL	positive regulation of synaptic transmission	17	3.6	0.0000037	0.000039	
GOTERM_CC_ALL	envelope	52	11	0.0000038	0.000039	
GOTERM CC ALL	presynapse	25	5.3	0.00000051	0.0000052	
GOTERM BP ALL	neuron differentiation	63	13.4	0.00000052	0.000054	
GOTERM BP ALL	nitrogen compound transport	40	8.5	0.00000055	0.000056	
GOTERM BP ALL	cellular metabolic process	280	59.4	0.00000056	0.000056	
GOTERM MF ALL	hydrogen ion transmembrane transporter activity	14	3	0.00000057	0.000055	
GOTERM BP ALL	single-organism behavior	32	6.8	0.0000063	0.000062	
GOTERM BP ALL	system development	154	32.7	0.0000067	0.000064	
GOTERM ME ALL	cation transmembrane transporter activity	35	7.4	0.00000067	0.000059	
GOTERM BP ALL	hormone secretion	26	5.5	0.0000079	0.000074	
GOTERM BP ALL	nurine ribonucleoside mononhosphate metabolic process	20	4 5	0.000000075	0.000074	
GOTERM BP ALL	nurine nucleoside monophosphate metabolic process	21	4.5	0.00000086	0.000074	
GOTERM BR ALL	nucleoside triphosphate metabolic process	21	4.5	0.00000088	0.000078	
GOTERM CC ALL	focal adhesion	22	5.7	0.00000094	0.0000095	
GOTERM CC ALL	cell-substrate adherens junction	27	5.7	0.00000034	0.0000000	
GOTERM BR ALL	cellular component organization or biogenesis	180	40.1	0.0000012	0.000012	
GOTERM BR ALL	macromolecule localization	105	21 /	0.0000015	0.00012	
GOTERM CC ALL	cell-substrate junction	27	5.7	0.0000015	0.00012	
GOTERM BR ALL	ribonucleoside mononhosphate metabolic process	21	4.5	0.0000017	0.00015	
GOTERM ME ALL	rBNA binding	12	2.5	0.0000019	0.00015	
COTERM PD ALL		20	6.2	0.0000013	0.00015	
GOTERM BP ALL	homeostatic process	71	15.1	0.0000022	0.00018	
COTERM PD ALL	nomeostatic process	16	0.0	0.0000025	0.0002	
GOTERIN_BF_ALL	evidereductors complex	40	3.0	0.0000020	0.00021	
COTERM PD ALL	nuclearide mononhosphate metabolic process	21	2.0	0.0000028	0.000027	
COTERNA DR ALL	avidation reduction process	21	4.5	0.0000028	0.00022	
GOTERIN_BP_ALL	balancian	40	9.8	0.0000034	0.00026	
GOTERINI_BP_ALL	bellavior	30	0.1	0.0000034	0.00026	
COTERNA DD ALL	regulation of secretion by call	20	2.5	0.0000033	0.000034	
GOTERINI_BP_ALL	regulation of secretion by cell	30	0.1	0.0000036	0.00027	
GOTERINI_BP_ALL		19	4	0.0000039	0.00029	
GOTERIVI_UL_ALL	protein complex	132	20./	0.0000046	0.00043	
GUIERIVI_BP_ALL	regulation of IOCd1/2d1011	94	20	0.0000049	0.00036	
GUTERIVI_BP_ALL	pume noonucleoside metadolic process	22	4./	0.000005	0.00036	
GUIERM_BP_ALL	cellular nitrogen compound metabolic process	190	40.3	0.0000056	0.0004	
GUTERM_BP_ALL	cnemical nomeostasis	51	10.8	0.0000057	0.0004	
GUIERM_CC_ALL	axon terminus	17	3.6	0.0000057	0.000053	
GUTERM_BP_ALL	purine nucleoside metabolic process	22	4.7	0.000062	0.00043	
GUIERM_BP_ALL	establishment of localization in cell	70	14.9	0.0000066	0.00045	
GUTERM_BP_ALL	regulation of secretion	39	8.3	0.0000074	0.0005	
GOTERM_BP_ALL	purine nucleotide metabolic process	29	6.2	0.000076	0.0005	
GUTERM_BP_ALL	purine ribonucieotide metabolic process	28	5.9	0.000076	0.0005	
GOTERM_BP_ALL	ribose phosphate metabolic process	29	6.2	0.000078	0.0005	
GOTERM_BP_ALL	response to toxic substance	15	3.2	0.000089	0.00057	

GOTERM_CC_ALL	mitochondrial respiratory chain complex I	9	1.9	0.0000089	0.000079
GOTERM_CC_ALL	NADH dehydrogenase complex	9	1.9	0.0000089	0.000079
GOTERM_CC_ALL	respiratory chain complex I	9	1.9	0.0000089	0.000079
GOTERM_BP_ALL	protein localization	88	18.7	0.000011	0.00067
GOTERM_BP_ALL	glycosyl compound metabolic process	24	5.1	0.000011	0.00068
GOTERM_BP_ALL	positive regulation of amine transport	8	1.7	0.000012	0.00071
GOTERM_BP_ALL	mitochondrial ATP synthesis coupled electron transport	9	1.9	0.000012	0.00073
KEGG_PATHWAY	Cardiac muscle contraction	12	2.5	0.000012	0.00051
GOTERM_BP_ALL	nucleotide metabolic process	33	7	0.000012	0.00075
GOTERM_BP_ALL	cell projection organization	59	12.5	0.000013	0.00076
GOTERM_BP_ALL	nucleoside metabolic process	23	4.9	0.000014	0.0008
GOTERM_CC_ALL	neuron projection terminus	17	3.6	0.000014	0.00012
GOTERM_BP_ALL	ribonucleotide metabolic process	28	5.9	0.000014	0.00083
GOTERM_BP_ALL	cellular protein localization	62	13.2	0.000016	0.0009
GOTERM_CC_ALL	nucleus	194	41.2	0.000017	0.00014
GOTERM_BP_ALL	ribonucleoside metabolic process	22	4.7	0.000017	0.00096
GOTERM_BP_ALL	nucleoside phosphate metabolic process	33	7	0.000018	0.00099
GOTERM_BP_ALL	ribonucleoprotein complex subunit organization	18	3.8	0.000018	0.001
GOTERM_BP_ALL	ribosome assembly	10	2.1	0.00002	0.0011
GOTERM_BP_ALL	cellular macromolecule localization	62	13.2	0.00002	0.0011
GOTERM_BP_ALL	multicellular organism development	162	34.4	0.000021	0.0011
GOTERM_BP_ALL	cellular component organization	179	38	0.000021	0.0011
GOTERM_BP_ALL	response to organonitrogen compound	42	8.9	0.000022	0.0011
GOTERM_BP_ALL	single-multicellular organism process	186	39.5	0.000022	0.0012
GOTERM_BP_ALL	ion transport	57	12.1	0.000023	0.0012
GOTERM_BP_ALL	aging	21	4.5	0.000026	0.0013
GOTERM_BP_ALL	RNA processing	38	8.1	0.000027	0.0013
GOTERM_BP_ALL	single-organism metabolic process	121	25.7	0.000029	0.0014
GOTERM_BP_ALL	metabolic process	296	62.8	0.00003	0.0015
GOTERM_CC_ALL	perinuclear region of cytoplasm	35	7.4	0.00003	0.00025
GOTERM_CC_ALL	postsynaptic density	18	3.8	0.000031	0.00026
GOTERM_CC_ALL	postsynaptic specialization	18	3.8	0.000031	0.00026
GOTERM_BP_ALL	intracellular transport	55	11.7	0.000032	0.0015
GOTERM_BP_ALL	purine-containing compound metabolic process	29	6.2	0.000033	0.0016
GOTERM_CC_ALL	postsynapse	26	5.5	0.000033	0.00027
GOTERM_BP_ALL	cellular homeostasis	41	8.7	0.000036	0.0017
GOTERM_BP_ALL	response to abiotic stimulus	50	10.6	0.000036	0.0017
GOTERM_BP_ALL	ribonucleoprotein complex assembly	17	3.6	0.000036	0.0017
GOTERM_BP_ALL	response to extracellular stimulus	27	5.7	0.000038	0.0018
GOTERM_BP_ALL	regulation of homeostatic process	28	5.9	0.000039	0.0018
GOTERM_CC_ALL	adherens junction	34	7.2	0.000042	0.00034
GOTERM_BP_ALL	cation transport	42	8.9	0.000049	0.0022
GOTERM_MF_ALL	ion transmembrane transporter activity	37	7.9	0.000052	0.0039
GOTERM_BP_ALL	cytoskeleton-dependent intracellular transport	11	2.3	0.000053	0.0024
KEGG_PATHWAY	Alzheimer's disease	17	3.6	0.000054	0.0019
GOTERM_CC_ALL	cell projection cytoplasm	9	1.9	0.000056	0.00045
GOTERM_BP_ALL	ribosomal small subunit biogenesis	10	2.1	0.000057	0.0025
GOTERM_CC_ALL	synaptic vesicle	14	3	0.000057	0.00045
GOTERM_BP_ALL	regulation of neurogenesis	39	8.3	0.000057	0.0025
GOTERM_CC_ALL	terminal bouton	12	2.5	0.000057	0.00045
GOTERM_BP_ALL	small molecule metabolic process	68	14.4	0.000057	0.0025
GOTERM_BP_ALL	regulation of hormone secretion	20	4.2	0.000059	0.0026
GOTERM_BP_ALL	organelle disassembly	16	3.4	0.000063	0.0027
GOTERM_CC_ALL	catalytic step 2 spliceosome	11	2.3	0.000065	0.0005
GOTERM_BP_ALL	regulation of nervous system development	42	8.9	0.000066	0.0028
GOTERM_BP_ALL	mitochondrion disassembly	15	3.2	0.000068	0.0029
GOTERM_BP_ALL	mitophagy	15	3.2	0.000068	0.0029
GOTERM_CC_ALL	anchoring junction	34	7.2	0.000068	0.00052
GOTERM_CC_ALL	cytochrome complex	/	1.5	0.000069	0.00052
GOTERIVI_CC_ALL	memorane-enclosed lumen	115	24.4	0.00007	0.00052
GOTERINI_MF_ALL	oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor	8	1./	0.000075	0.0052
GOTERIVI_BP_ALL	anatomical structure development	174	36.9	0.00008	0.0033
GOTERIVI_BP_ALL	nucleobase-containing small molecule metabolic process	33	/	0.000083	0.0034
GOTERIVI_BP_ALL	regulation of transport	69	14.6	0.000083	0.0034
GOTERINI_INIF_ALL	neuropeptide receptor binding	/	1.5	0.000084	0.0054
GOTERIVI_BP_ALL	oligodendrocyte differentiation	11	2.3	0.000085	0.0034
GOTERIVI_BP_ALL	response to nutrient levels	25	5.5	0.000085	0.0034
GOTERIVI_BP_ALL	phosphate-containing compound metabolic process	98	20.8	0.000085	0.0034
GOTERIVI_BP_ALL	amine transport	10	2.1	0.000086	0.0034
GOTERIVI_CC_ALL	excitatory synapse	18	3.8	0.000089	0.00065
GOTERIVI_BP_ALL	myelination	12	2.5	0.000089	0.0035
GOTERIVI_CC_ALL	transport vesicle	20	4.2	0.00009	0.00066
GOTERNI_BP_ALL	phosphorus metabolic process	98	20.8	0.000092	0.0050
GOTERM RD ALL	nentide hormone secretion	40	э.о Л	0.000033	0.0036
GOTERM RD ALL	organic substance transport	19	4 19 5	0.000093	0.0030
GOTERM PD AT	regulation of mitochondrial membrane notential	87	10.3	0.000093	0.0037
GOTERM BD ALL	negulation of millionional memorane potential	9	1.9	0.000090	0.0037
GOTERM ME ALL	ovidoreductase activity	20	4.Z 0 1	0.0001	0.0038
GOTERM RP ALL	response to nitrogen compound	28 28	9.1	0.0001	0.0039
GOTERM BP AIL	axon ensheathment	44	2.5	0.0001	0.0039
GOTERM RP ALL	ensheathment of neurons	12	2.5	0.0001	0.0039
GOTERM CC ALL	mitochondrial proton-transporting ATP synthase complex	12 6	13	0.00011	0 00078
GOTERM CC ALL	secretory vesicle	26	55	0.00012	0.00085
GOTERM RP ALL	cellular chemical homeostasis	20	7.6	0 00012	0.00085
GOTERM CC ALL	extracellular matrix	50 27	5.7	0.00012	0 00043
		21	5.7	0.00014	0.00004

GOTERM CC ALL	proton-transporting ATP synthase complex	6	1.3	0.00014	0.00094
GOTERM_MF_ALL	substrate-specific transmembrane transporter activity	40	8.5	0.00014	0.0068
GOTERM_MF_ALL	NADH dehydrogenase (ubiquinone) activity	7	1.5	0.00014	0.0068
GOTERM_MF_ALL	NADH dehydrogenase (quinone) activity	7	1.5	0.00014	0.0068
GOTERM_CC_ALL	exocytic vesicle	14	3	0.00014	0.00099
GOTERM_BP_ALL	peptide secretion	19	4	0.00015	0.0053
GOTERM_MF_ALL	receptor binding	60	12.7	0.00015	0.0068
GOTERM_BP_ALL	single-organism cellular localization	42	8.9	0.00016	0.0057
GOTERM_BP_ALL	regulation of neuron differentiation	33	7	0.00016	0.0058
GOTERM_MF_ALL	NADH dehydrogenase activity	7	1.5	0.00017	0.0074
GOTERM_CC_ALL	nuclear part	113	24	0.00017	0.0011
GOTERM_BP_ALL	regulation of synaptic transmission, GABAergic	7	1.5	0.00017	0.0062
GOTERM_BP_ALL	single-organism developmental process	174	36.9	0.00018	0.0062
GOTERM BP ALL	cellular protein metabolic process	142	30.1	0.00018	0.0064
KEGG PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	15	3.2	0.00018	0.0052
GOTERM MF ALL	transporter activity	51	10.8	0.00019	0.0079
KEGG PATHWAY	GABAergic synapse	11	2.3	0.0002	0.0052
GOTERM BP ALL	autophagy	25	5.3	0.0002	0.0071
GOTERM BP ALL	phosphorylation	74	15.7	0.00021	0.0072
GOTERM BP ALL	cell development	80	17	0.00021	0.0072
GOTERM BP ALL	regulation of cell projection organization	32	6.8	0.00021	0.0073
GOTERM BP ALL	amide transport	20	4.2	0.00021	0.0073
GOTERM ME ALL	G-protein coupled receptor binding	18	3.8	0.00021	0.0087
GOTERM BP ALL	ion homeostasis	34	7.2	0.00021	0.0073
GOTERM BP ALL	developmental process	176	37.4	0.00022	0.0073
GOTERM BP ALL	cellular component biogenesis	90	19.1	0.00024	0.0081
GOTERM BP ALL	regulation of cellular component organization	83	17.6	0.00025	0.0082
GOTERM BP ALL	catecholamine secretion	8	17	0.00025	0.0084
GOTERM BP ALL	RNA splicing via transesterification reactions with bulged adenosine as nucleophile	16	3.4	0.00026	0.0086
GOTERM BR ALL	mRNA splicing via spliceosome	16	3.4	0.00026	0.0086
GOTERM BR ALL	PNA splicing, via transecterification reactions	16	3.4	0.00020	0.0080
GOTERM CC ALL	min synchig, via transester incation reactions	10	1.0	0.00027	0.0085
GOTERNI_CC_ALL	nragrammed cell death	5	1.9	0.00028	0.0019
COTERNA DR ALL		10	14.4	0.00028	0.009
COTERNA DR ALL	giai celi development	10	2.1	0.00028	0.009
GOTERIVI_BP_ALL	eschellum development	41	0.7	0.0003	0.0094
GOTERIVI_BP_ALL	cerebellum development		2.3	0.0003	0.0096
GOTERM_BP_ALL	axo-dendritic transport	/	1.5	0.00031	0.0098
GOTERM_BP_ALL	response to inorganic substance	28	5.9	0.00033	0.01
GOTERM_BP_ALL	response to oxygen-containing compound	62	13.2	0.00033	0.01
GOTERM_BP_ALL	regulation of amine transport	9	1.9	0.00033	0.01
GOTERM_BP_ALL	cell morphogenesis involved in neuron differentiation	27	5.7	0.00034	0.01
GOTERM_CC_ALL	nuclear lumen	99	21	0.00034	0.0023
GOTERM_BP_ALL	apoptotic process	65	13.8	0.00035	0.011
GOTERM_BP_ALL	mitophagy in response to mitochondrial depolarization	12	2.5	0.00037	0.011
GOTERM_BP_ALL	response to mitochondrial depolarisation	12	2.5	0.00037	0.011
GOTERM_BP_ALL	organic substance metabolic process	280	59.4	0.00037	0.011
GOTERM_BP_ALL	regulation of multicellular organismal process	93	19.7	0.00039	0.012
GOTERM_BP_ALL	neuropeptide signaling pathway	9	1.9	0.0004	0.012
GOTERM_BP_ALL	positive regulation of transport	42	8.9	0.0004	0.012
GOTERM_MF_ALL	oxidoreductase activity, acting on diphenols and related substances as donors, cytochrome as acceptor	4	0.8	0.00041	0.015
GOTERM_MF_ALL	ubiquinol-cytochrome-c reductase activity	4	0.8	0.00041	0.015
GOTERM_BP_ALL	cell death	71	15.1	0.00041	0.012
GOTERM_BP_ALL	regulation of cell development	42	8.9	0.00042	0.012
GOTERM_MF_ALL	electron carrier activity	9	1.9	0.00042	0.015
GOTERM_MF_ALL	pyrophosphatase activity	35	7.4	0.00043	0.015
GOTERM_BP_ALL	monovalent inorganic cation transport	23	4.9	0.00043	0.012
GOTERM_BP_ALL	mRNA processing	23	4.9	0.00043	0.012
GOTERM_BP_ALL	neuron projection morphogenesis	28	5.9	0.00045	0.013
GOTERM_MF_ALL	hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides	35	7.4	0.00045	0.015
GOTERM_BP_ALL	metal ion transport	35	7.4	0.00046	0.013
GOTERM_CC_ALL	organelle lumen	109	23.1	0.00046	0.0031
GOTERM_BP_ALL	macromitophagy	12	2.5	0.00047	0.013
GOTERM_BP_ALL	regulation of neuron projection development	26	5.5	0.00048	0.014
GOTERM_MF_ALL	hydrolase activity, acting on acid anhydrides	35	7.4	0.00049	0.016
GOTERM_BP_ALL	regulation of peptide transport	16	3.4	0.00052	0.014
GOTERM_BP_ALL	response to ethanol	12	2.5	0.00053	0.015
GOTERM_BP_ALL	vesicle localization	14	3	0.00054	0.015
GOTERM_BP_ALL	purine ribonucleoside triphosphate biosynthetic process	8	1.7	0.00054	0.015
GOTERM CC ALL	endomembrane system	111	23.6	0.00058	0.0038
GOTERM CC ALL	cytoplasmic vesicle	46	9.8	0.00058	0.0038
GOTERM BP ALL	animal organ development	111	23.6	0.0006	0.016
GOTERM BP ALL	purine nucleoside triphosphate biosynthetic process	8	1.7	0.0006	0.016
GOTERM_BP_ALL	cytoplasmic translation	8	1.7	0.0006	0.016
GOTERM_CC_ALL	intracellular organelle lumen	108	22.9	0.00061	0.0039
GOTERM BP ALL	cellular component disassembly	22	4.7	0.00062	0.017
GOTERM CC ALL	intracellular vesicle	46	9.8	0.00062	0.004
GOTERM BP ALL	primary metabolic process	265	56.3	0.00064	0.017
GOTERM MF AU	nucleoside-triphosphatase activity	33	7	0.00064	0.02
GOTERM MF ALL	oxidoreductase activity, acting on diphenols and related substances as donors	4	0.8	0.00065	0.02
GOTERM BP ALL	hormone metabolic process	13	2.8	0.00066	0.017
GOTERM BP ALL	negative regulation of protein kinase activity by regulation of protein phosphorylation	4	0.8	0.00066	0.017
GOTERM BP ALL	metencephalon development	11	2.3	0.00068	0.018
GOTERM CC ALL	aggresome	6	1.3	0.00068	0.0043
KEGG PATHWAY	Endocrine and other factor-regulated calcium reabsorption	8	1.7	0.00071	0.016
GOTERM BP ALL	regulation of neuronal synaptic plasticity	8	1.7	0.00073	0.019
GOTERM BP ALL	positive regulation of cell death	29	6.2	0.00076	0.02
					0.02

GOTERM_BP_ALL	regulation of synaptic plasticity	13	2.8	0.00077	0.02
GOTERM BP ALL	response to organic cyclic compound	41	8.7	0.00077	0.02
GOTERM_CC_ALL	proton-transporting two-sector ATPase complex	7	1.5	0.00077	0.0048
GOTERM_BP_ALL	neuron-neuron synaptic transmission	11	2.3	0.00078	0.02
GOTERM_CC_ALL	nucleoplasm	76	16.1	0.00079	0.0049
GOTERM_BP_ALL	regulation of membrane potential	21	4.5	0.00081	0.021
KEGG_PATHWAY	Mineral absorption	7	1.5	0.00083	0.017
GOTERM_CC_ALL	cytoplasmic, membrane-bounded vesicle	42	8.9	0.00085	0.0052
GOTERM_BP_ALL	sodium ion homeostasis	7	1.5	0.00086	0.022
GOTERM_CC_ALL	cell junction	51	10.8	0.00087	0.0053
GOTERM_BP_ALL	positive regulation of catecholamine secretion	5	1.1	0.00087	0.022
GOTERM_MF_ALL	sodium ion transmembrane transporter activity	11	2.3	0.00089	0.025
GOTERM_MF_ALL	protein kinase binding	28	5.9	0.0009	0.025
GOTERM_BP_ALL	locomotory behavior	16	3.4	0.0009	0.023
GOTERM_CC_ALL	ribonucleoprotein granule	12	2.5	0.00091	0.0055
GOTERM_BP_ALL	establishment of localization by movement along microtubule	10	2.1	0.00093	0.023
GOTERM_BP_ALL	adult behavior	13	2.8	0.00094	0.023
GOTERM_BP_ALL	establishment of vesicle localization	13	2.8	0.00094	0.023
GOTERM_MF_ALL	kinase binding	30	6.4	0.00094	0.025
GOTERM_MF_ALL	transmembrane transporter activity	40	8.5	0.00094	0.025
GOTERM_BP_ALL	ribonucleoside triphosphate biosynthetic process	8	1.7	0.00096	0.024
GOTERM_BP_ALL	cellular process	397	84.3	0.001	0.025
GOTERM_BP_ALL	regulation of ion homeostasis	14	3	0.001	0.025
GOTERM_BP_ALL	catecholamine transport	8	1.7	0.001	0.025
GOTERM_BP_ALL	ATP biosynthetic process	7	1.5	0.0011	0.026
GOTERM_BP_ALL	response to endogenous stimulus	58	12.3	0.0011	0.026
GOTERM_CC_ALL	prespliceosome	5	1.1	0.0011	0.0066
GOTERM_BP_ALL	organelle organization	112	23.8	0.0011	0.027
GOTERM_MF_ALL	ATPase activity	22	4.7	0.0011	0.03
GOTERM_BP_ALL	response to alcohol	13	2.8	0.0011	0.027
GOTERM_BP_ALL	regulation of peptide hormone secretion	15	3.2	0.0012	0.027
GOTERM_BP_ALL	response to transition metal nanoparticle	11	2.3	0.0012	0.027
GOTERM_BP_ALL	regulation of catecholamine secretion	7	1.5	0.0012	0.027
GOTERM_BP_ALL	macroautophagy	18	3.8	0.0012	0.027
GOTERM_BP_ALL	regulation of cellular protein catabolic process	13	2.8	0.0012	0.027
GOTERM_BP_ALL	rRNA processing	13	2.8	0.0012	0.027
GOTERM_BP_ALL	positive regulation of secretion	22	4.7	0.0012	0.027
GOTERM_CC_ALL	U4 snRNP	4	0.8	0.0012	0.0071
GOTERM_BP_ALL	positive regulation of secretion by cell	21	4.5	0.0012	0.028
GOTERM_BP_ALL	response to chemical	124	26.3	0.0012	0.028
GOTERM_BP_ALL	RNA splicing	19	4	0.0013	0.029
GOTERM_BP_ALL	regulation of response to food	5	1.1	0.0013	0.029
GOTERM_BP_ALL	positive regulation of neurogenesis	24	5.1	0.0013	0.03
GOTERINI_INIF_ALL	metal ion transmembrane transporter activity	21	4.5	0.0014	0.035
GOTERM_BP_ALL	organic substance biosynthetic process	167	35.5	0.0014	0.032
GOTERM_BP_ALL	regulation of peptide secretion	15	3.2	0.0014	0.032
GOTERM_BP_ALL	astrocyte differentiation	8	1./	0.0015	0.033
GOTERM_BP_ALL	regulation of blood pressure	13	2.8	0.0015	0.033
GOTERIN_BP_ALL		27	5.7	0.0015	0.033
COTERINI_BP_ALL	rBNA metabolic process	12	1.9	0.0015	0.035
GOTERIVI_BP_ALL	Invalue transmission CARAseria	15	2.0	0.0016	0.034
GOTERIVI_BP_ALL	synaptic transmission, GABAergic	6	1.5	0.0016	0.035
GOTERINI_BP_ALL	regulation of dendrite morphogenesis	9	1.9	0.0015	0.035
GOTERIVI_BP_ALL	regulation of programmed cell death	54	11.5	0.0017	0.037
COTERINI_CC_ALL	spliceosomal strenge complex	65	1.5	0.0017	0.01
COTERNA PR ALL	single erganism erganization	60	13.0	0.0017	0.037
COTERNA PR ALL	proton transport	00	12.7	0.0018	0.037
GOTERM BP ALL	establishment of organelle localization	10	1.5	0.0018	0.037
GOTERM BR ALL	regulation of developmental process	76	16.1	0.0018	0.038
GOTERM BP ALL	substantia nigra development	6	13	0.0018	0.038
GOTERM BP ALL	nositive regulation of cell development	27	5.7	0.0018	0.038
GOTERM BP ALL	ribosomal small subunit assembly	5	11	0.0010	0.038
GOTERM BP ALL	hydrogen transport	9	1.1	0.0019	0.039
GOTERM BP ALL	forebrain development	21	4.5	0.0019	0.039
GOTERM BP ALL	learning or memory	16	3.4	0.0019	0.039
GOTERM BP ALL	endocrine hormone secretion	7	15	0.0019	0.039
GOTERM BP ALL	insulin secretion	13	2.8	0.002	0.04
GOTERM CC ALL	mitochondrial intermembrane space	8	17	0.002	0.012
GOTERM BP ALL	cognition	17	3.6	0.002	0.041
GOTERM BP ALL	nositive regulation of hormone secretion	11	23	0.002	0.041
GOTERM BP ALL	feeding behavior	10	2.1	0.0021	0.042
GOTERM BP ALL	regulation of cell death	57	12.1	0.0021	0.042
GOTERM BP ALL	response to drug	22	4.7	0.0021	0.042
GOTERM BP ALL	organelle transport along microtubule	7	1.5	0.0021	0.042
GOTERM CC ALL	cytoplasmic ribonucleoprotein granule	11	2.3	0.0021	0.012
GOTERM BP ALL	cellular ion homeostasis	27	5.7	0.0022	0.043
GOTERM BP ALL	biosynthetic process	168	35.7	0.0022	0.043
GOTERM BP ALL	regulation of appetite	5	1.1	0.0022	0.043
GOTERM BP ALL	anterograde axonal transport	- 5	1.1	0.0022	0.043
GOTERM BP ALL	negative regulation of protein complex assembly	10	2.1	0.0022	0.043
GOTERM BP ALL	regulation of apoptotic process	53	11.3	0.0022	0.043
GOTERM BP ALL	protein transport	60	12.7	0.0022	0.043
GOTERM BP ALL	cell projection morphogenesis	34	7.2	0.0022	0.043
GOTERM BP ALL	response to metal ion	18	3.8	0.0023	0.044
GOTERM BP ALL	transition metal ion transport	9	1.9	0.0023	0.044
		-			

GOTERM_BP_ALL	cellular response to external stimulus	16	3.4	0.0023	0.044
GOTERM_BP_ALL	response to food	6	1.3	0.0023	0.044
GOTERM_BP_ALL	positive regulation of homeostatic process	14	3	0.0023	0.044
GOTERM_BP_ALL	ribosomal large subunit biogenesis	8	1.7	0.0023	0.044
GOTERM_MF_ALL	angiotensin receptor binding	4	0.8	0.0024	0.059
GOTERM_BP_ALL	exocytosis	17	3.6	0.0024	0.045
GOTERM_BP_ALL	growth	40	8.5	0.0024	0.045
GOTERM_BP_ALL	positive regulation of ion transport	15	3.2	0.0024	0.045
GOTERM_BP_ALL	positive regulation of apoptotic process	26	5.5	0.0025	0.046
GOTERM_BP_ALL	nucleoside triphosphate biosynthetic process	8	1.7	0.0025	0.046
GOTERM_CC_ALL	dendritic spine	11	2.3	0.0026	0.015
GOTERM_BP_ALL	axon development	22	4.7	0.0026	0.048
GOTERM_BP_ALL	hindbrain development	12	2.5	0.0026	0.048
GOTERM_BP_ALL	carbohydrate homeostasis	15	3.2	0.0027	0.049
GOTERM_BP_ALL	glucose homeostasis	15	3.2	0.0027	0.049
GOTERM_CC_ALL	melanosome	9	1.9	0.0027	0.015
GOTERM_CC_ALL	pigment granule	9	1.9	0.0027	0.015
GOTERM_BP_ALL	cellular metal ion homeostasis	24	5.1	0.0027	0.049
GOTERM_BP_ALL	regulation of cell morphogenesis	26	5.5	0.0027	0.05
GOTERM_BP_ALL	regulation of ion transport	26	5.5	0.0028	0.05
GOTERM_BP_ALL	positive regulation of programmed cell death	26	5.5	0.0028	0.05
GOTERM_CC_ALL	neuron spine	11	2.3	0.0028	0.016
GOTERM_CC_ALL	small nuclear ribonucleoprotein complex	7	1.5	0.0029	0.016
GOTERM_CC_ALL	small nucleolar ribonucleoprotein complex	5	1.1	0.0029	0.016
GOTERM_CC_ALL	U12-type spliceosomal complex	5	1.1	0.0029	0.016
GOTERM_CC_ALL	internode region of axon	3	0.6	0.0029	0.016
GOTERM_CC_ALL	spliceosomal complex	12	2.5	0.0031	0.016