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Résumé

Un système couvrant est un ensemble fini de progressions arithmétiques avec la propriété que
chaque entier appartient à au moins une des progressions. L’étude des systèmes couvrants
a été initié par Erdős dans les années 1950, et il posa dans les années qui suivirent plusieurs
questions sur ces objets mathématiques. Une de ses questions les plus célèbres est celle du
plus petit module : est-ce que le plus petit module de tous les systèmes couvrants avec
modules distinct est borné uniformément?

En 2015, Hough a montré que la réponse était affirmative, et qu’une borne admissible
est 1016. En se basant sur son travail, mais en simplifiant la méthode, Balister, Bollobás,
Morris, Sahasrabudhe et Tiba on réduit cette borne a 616, 000. Leur méthode a menée a
plusieurs applications supplémentaires. Entre autres, ils ont compté le nombre de système
couvrant avec un nombre fixe de module.

La première partie de ce mémoire vise a étudier une question similaire. Nous allons essayer
de compter le nombre de système couvrant avec un ensemble de module fixé. La technique
que nous utiliserons nous mènera vers l’étude des symmétries de système couvrant.

Dans la seconde partie, nous répondrons à des variantes du problème du plus petit mod-
ule. Nous regarderons des bornes sur le plus petit module d’un système couvrant de mul-
tiplicité s, c’est-à-dire un système couvrant dans lequel chaque module apparait au plus s

fois. Nous utiliserons ensuite ce résultat afin montrer que le plus petit module d’un système
couvrant de multiplicité 1 d’une progression arithmétique est borné, ainsi que pour montrer
que le n-eme plus petit module dans un système couvrant de multiplicité 1 est borné.

Mots clés : Système couvrant, Translation, Groupe symmétrique, Borne, Plus
petit module, Méthode des distortions, Théorie des nombres analytique
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Abstract

A covering system is a finite set of arithmetic progressions with the property that every
integer belongs to at least one of them. The study of covering systems was started by Erdős
in the 1950’s, and he asked many questions about them in the following years. One of the
most famous questions he asked was if the minimum modulus of a covering system with
distinct moduli is bounded uniformly.

In 2015, Hough showed that it is at most 1016. Following on his work, but simplifying
the method, Balister, Bollobás, Morris, Sahasrabudhe and Tiba showed that it is at most
616, 000. Their method led them to many further applications. Notably, they counted the
number of covering systems with a fixed number of moduli.

The first part of this thesis seeks to study a related question, that is to count the number
of covering systems with a given set of moduli. The technique developped to do this for some
sets will lead us to look at symmetries of covering systems.

The second part of this thesis will look at variants of the minimum modulus problem.
Notably, we will be looking at bounds on the minimum modulus of a covering system of
multiplicity s, that is a covering system in which each moduli appears at most s times, as well
as bounds on the minimum modulus of a covering system of multiplicity 1 of an arithmetic
progression, and finally look at bounds for the n-th smallest modulus in a covering system.

Key words : Covering system, Translations, Symmetric group, Bound, Small-
est modulus, Distortion method, Analytic number theory
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Prerequisites

Prerequisites from elementary number theory
In this section, we go over some well known definitions and results from elementary

number theory that we will be using throughout the thesis. We denote by Z the set of
integers, that is

Z = {. . . , − 3, − 2, − 1,0,1,2,3, . . .}.

We say an integer d divides another integer n, usually denoted d|n if there exists some integer
k such that dk = n. If d does not divide n, we will write d ∤ n.

For example, 6 = 2 · 3, and so 2|6 and 3|6. A prime number, usually denoted by p, is
a positive integer who’s only positive divisors are 1 and itself. A fundamental result about
prime numbers is that any positive integer can be written uniquely as a product of prime
numbers up to ordering. This is known as the fundamental theorem of arithmetic. For a
positive integer a, we will say that pa∥n if pa|n but pa+1 ∤ n.

The gcd, or greatest common divisor of two integers a and b is the largest integer d that
divides both a and b. The lcm, or least common multiple of two integers a and b, is the
smallest positive integer m such that a|m and b|m.

The arithmetic progression, a (mod m) is the set of integers

a (mod m) = {a + km : k ∈ Z}.

We will often say the congruence class a (mod m) to denote the same set. We say an integer
n is square-free if n is not divisible by the square of any prime, that is if p2 ∤ n for every
prime p.

We say an integer n is y-smooth if every prime factor of n is ≤ y. Denote the k-th prime
by pk. Then the primorial of pk is

Pk =
k∏

i=1
pi.

Finally, the Euler totient function of an integer n, ϕ(n), is the number of integers k ∈ [1,n]
such that (n,k) = 1.



Prerequisites from group theory
A group is composed of a set G and an associative binary operation that is denoted

by + when the group is additive, and by · when the group is multiplicative. For example,
the integers modulo p form a group under addition, usually denoted by Z/pZ, and non-
zero integers modulo p form a group under multiplication, usually denoted by (Z/pZ)∗. In
particular, any integer that is not divisible by p is invertible modulo p, or again for each
n ∈ {1,2,...,p−1}, there exists an integer n−1 ∈ {1,2, . . . ,p−1} such that n ·n−1 ≡ 1 (mod p).

Another important family of groups that we will be using are the symmetric groups. The
symmetric group over the set of n elements E = {1,2, . . . ,n}, usually denoted by Sn, is the
set of bijective functions from E to E, with function composition as the binary operation.
The group has order n!, that is the number of elements in Sn is n!.

The last result we need from group theory concerns generating symmetric groups.

Proposition 0.1. The symmetric group Sn is generated by transpositions. That is, any
element σ ∈ Sn can be written as σ = (i1i2)(i3i4) · · · (ikik+1) for some integer k, where the
transposition (ij) is understood to be the bijection of {1,2, · · · ,n} that sends i onto j, j onto
i, and sends each other k, with k /∈ {i,j} onto itself.

Prerequisites from analytic number theory
In this section, we go through some results from analytic number theory that we will need

in order to prove our bound on the minimum modulus of a covering system of multiplicity
s. We first introduce some notation that will be used in what follows.

Definition 0.1. We say that a function f(x) has smaller or equal order of magnitude in I

than g(x), or that f(x) is big-Oh of g(x) in I, denoted by

f(x) = O(g(x)) (x ∈ I),

if there exists some positive constant c such that |f(x)| ≤ cg(x) for all x ∈ I. When the set
I we are dealing with is clear from the context, we will simply write f(x) = O(g(x)). We
will also write

f(x) ≪ g(x) (x ∈ I),

which can be read f(x) is less than less than g(x), to say the same thing.

Definition 0.2. We say that a function f(x) has the same order of magnitude in I as g(x),
denoted by

f(x) ≍ g(x) (x ∈ I),
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if f(x) has smaller or equal order of magnitude in I than g(x) and g(x) has smaller or equal
order of magnitude in I than f(x).

Definition 0.3. We denote by π(x) the prime counting function, that is

π(x) = |{n ≤ x : n is prime}|.

The first result we will look at is Chevyshev’s estimate. For a proof of this result, see
chapter 2 in [20].

Theorem 0.2. (Chebyshev’s estimate)

π(x) ≍ x

log(x)
.

The next result we look at is Merten’s three estimates. For a proof of this result, see
chapter 3 in [20].

Theorem 0.3. (Merten’s three estimates) There are constants c and γ such that for x ≥ 2,
we have that :

(1) ∑
p≤x

log p

p
= log x + O(1),

(2) ∑
p≤x

1
p

= log log x + c + O(1/ log x),

(3) ∏
p≤x

(
1 − 1

p

)
= e−γ

log x

(
1 + O

( 1
log x

))
.

Finally, we will require Theorem 16.3 from [20] to estimate inverse smooth number sums.

Theorem 0.4. Let f be a multiplicative function such that 0 ≤ f ≤ τk for some k ∈ Z≥1.
Let x ≥ y ≥ 3, and u = log(x)/ log(y). If y ≥ (log(x))2+δ for some δ > 0, then

∑
n∈S(y),n>x

f(n)
n

≤ eOk,δ(u)

(u log(2u))u
· exp

{∑
p≤y

f(p)
p

}
.
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Chapter 1

Introduction

1.1. Definitions and origin
We learn at a very young age that every integer is either odd or even. In other terms,

we say that every integer is either divisible by 2, or not. Another way of rephrasing this is
that any integer is either congruent to 0 (mod 2) or to 1 (mod 2), or again that

Z = A1 ∪ A2,

where A1 is the arithmetic progression 0 (mod 2) and A2 is the arithmetic progression
1 (mod 2). This is a particular case of what we call a covering system. Before defining what
a covering system, it will be useful to define what it is to cover an integer, or again what it
is for an integer to be covered.

Definition 1.1. We say an integer n is covered by a finite set of arithmetic progressions

{a1 (mod m1), a2 (mod m2), ..., ak (mod mk)},

or that the set of arithmetic progressions covers the number n, if there is some 1 ≤ i ≤ k

such that n ≡ ai (mod mi).

Definition 1.2. A covering system is a finite set of arithmetic progressions that covers every
integer.

Normally, covering systems are described as a finite set of arithmetic progressions for
which each integer belongs to at least one of them. We decompose this definition here
because it will be useful later on to talk about integers that are covered by some arithmetic
progressions, and so it will improve readibility of certain proofs.

The covering system described above is simply a way of classifying the integers according
to their residue modulo 2. In a first class of discrete mathematics, we realise that 2 is pretty
arbitrary in this type of construction; we may instead classify the integers according to their



residue modulo n, for any integer n. Another way of saying this is that

{0 (mod n), 1 (mod n), ..., n − 1 (mod n)}

is a covering system.
However interesting these above covering systems may be, the main focus of our investi-

gations will be on what is called covering systems of multiplicity s.

Definition 1.3. Let A = {a1 (mod d1),a2 (mod d2), . . . ,an (mod dn)} be a set of congru-
ences. We define the multiplicity of A to be the number

M(A) := max
d∈N

#{1 ≤ j ≤ n : dj = d}.

If C is a covering system, we define the multiplicity of C to be M(C), and if M(C) = s, we
say that C is a covering system of multiplicity s.

For example,

{1 (mod 2), 1 (mod 3), 2 (mod 4), 4 (mod 8), 8 (mod 12),0 (mod 24)}

is a covering system of multiplicity 1. We will look at how to verify that this is indeed a
covering system in the following section.

The concept of a covering system of multiplicity 1 was first introduced by Erdős [10]
in 1950, where he used the above covering system of multiplicity 1 to answer a question of
Romanoff about integers of the form 2k + p. We show here a proof of Erdős’s result.

Theorem 1.1. There exists an arithmetic progression of odd numbers, no term of which is
of the form 2k + p, where k is a positive integer and p is a prime.

Proof. Note that the periods of the powers of 2 for the primes 3,5,7,13,17,241 are
2,4,3,12,8,24 respectively. The following table gives this information in a clear and concise
way.

Table 1.1. Periods of powers of 2 for various primes

Primes Periods
3 2
5 4
7 3
13 12
17 8
241 24
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If we choose n to be simultaneously −21 (mod 3), −22 (mod 5), −21 (mod 7),
−28 (mod 13), −24 (mod 17), and −20 (mod 241), then 2k + n is always composite. In-
deed, we know that any integer k belongs to at least one of the arithmetic progressions

{1 (mod 2), 1 (mod 3), 2 (mod 4), 4 (mod 8), 8 (mod 12),0 (mod 24)}.

If k ≡ 1 (mod 2), then 2k ≡ 1 (mod 3), and so 2k + n ≡ 0 (mod 3), and similarly for each
other prime we mentionned above. □

Notice that if we take the above covering system and add some random arithmetic progres-
sion, it remains a covering system. For example,

{1 (mod 2), 1 (mod 3), 2 (mod 4), 4 (mod 8), 8 (mod 12),0 (mod 24), 2 (mod 5)}

is also a covering system. However, the arithmetic progression that we added is redundant; it
may be removed from the set and the remaining arithmetic progressions still form a covering
system. For this reason, we define the concept of a minimal covering system.

Definition 1.4. We say a covering system

C = {a1 (mod m1), . . . ,an (mod mn)}

is minimal if for each ai (mod mi) in C, there exists some integer k such that k ≡ ai (mod mi),
but k ̸≡ aj (mod mj) for each j ̸= i. Another way of saying this is that a covering system
C is minimal if there does not exists a proper subset of C that is also a covering system, or
again that there exists no proper subcover of C.

The study of non-minimal covering systems can get hard, as we can artificially insert
arithmetic progressions into a covering system to create another one that is not minimal,
but can then have certain properties that we did not have before. We will see how important
minimality is in the study of certain problems in the following sections. Some results that
we can prove true for minimal covering systems are much harder to prove, or may even be
false, if we leave the assumption of minimality behind.

For an example of minimality, let us show the covering system used by Erdős is minimal.
It suffices to find for each arithmetic progression an integer that is in that arithmetic pro-
gression, but that is not in any of the others. The following table gives us such integers for
each arithmetic progression in the covering system.

Although it was quite easy here to show that the covering system was minimal as we have
few arithmetic progressions, it can get quite hard to show in practice when we have a large
number of progressions, or to show that certain families of covering sytems are minimal. We
will be building some tools in the following sections that will help us show minimality when
certain conditions are met.
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Table 1.2. Minimality of Erdós’s covering system

Arithmetic progression Integer
1 (mod 2) 3
1 (mod 3) 16
2 (mod 4) 2
4 (mod 8) 12
8 (mod 12) 8
0 (mod 24) 0

1.2. Structure and symmetry in covering systems
The first part of this thesis will focus on covering systems and their transformations.

Notably, we will be looking at various ways to take a covering system and transform it into
another covering system that has the same moduli, but different arithmetic progressions.
For example, we may translate each arithmetic progression in a covering system by a fixed
integer t, and the resulting set of arithmetic progressions is a covering system. We may
also dilate each arithmetic progression in a covering system by a fixed integer λ, and under
certain conditions, the resulting set of arithmetic progressions is a covering system.

In search for more general ways to transform covering systems, we will show that if C is
a covering system, p1, . . . ,pℓ are the distinct prime factors of lcm(C), and η∗(C) is the set
of minimal covering systems that have the same moduli as C, then the group S1 × . . . × Spℓ

acts on η∗(C) in a very natural way. Using this, we will prove the following proposition.

Proposition 1.2. Let C be a minimal covering system of multiplicity 1, and suppose p1,...,pℓ

are the distinct prime divisors of the lcm of the moduli in C. Denote by H∗(C) the number
of minimal covering systems with the same moduli as C. Then

p1! · · · pℓ!|H∗(C).

We will also show how to construct infinitely many covering systems C for which this
divisibility condition is sharp, that is for which p1! · · · pℓ! = H∗(C), as well as how to construct
infinitely many covering systems for which this is not sharp, that is for which p1! · · · pℓ! <

H∗(E).

1.3. The minimum modulus problem
Notice that the smallest modulus in the covering system used by Erdős above is 2.

Naturally, the larger the smallest modulus in a covering system of multiplicity 1 is, the more
there will be arithmetic progressions in the system. Indeed, through a union bound, we have
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that if a set of arithmetic progressions

{a1 (mod m1), a2 (mod m2), . . . , an (mod mn)}

covers the integers, then
n∑

i=1

1
mi

≥ 1.

This led Erdős to ask [10] if there could be covering systems of multiplicity 1 with arbitrarily
large smallest modulus, or again if the smallest modulus in a covering system of multiplicity
1 is bounded, which led many mathematicians to look for covering systems of multiplicity
1 with large smallest moduli, see for example [6], [21], [5], [22], [16], [23] and [24]. The
following table gives a history of the search for these covering systems.

Table 1.3. History of the largest smallest modulus

Minimum modulus Discovered by Year
9 Churchhouse 1968
18 Krukenberg 1971
20 Choi 1971
24 Morikawa 1981
25 Gibson 2006
40 Nielsen 2007
42 Owens 2014

Owens was a student of Nielsen when he found the covering system with minimum mod-
ulus 42, and used a very similar method. Note that after so many years of research, the
largest known minimum modulus of a covering system of multiplicity 1 remains very small.
This led Nielsen to suggest [23] that the answer to Erdős’s question was negative, that is
that the minimum modulus is bounded. It did not take very long after that for the answer
to come. The answer to this question is that it is bounded, as proven by Hough [18] in
2015, who showed that it is smaller than 1016. A few years later, in 2018, Balister, Bollobás,
Morris, Sahasrabudhe and Tiba [4] simplified Hough’s proof, and in doing this reduced the
bound on the minimum modulus to 616,000.

Many similar questions to the minimum modulus problem can arise. For example, since
we know that the smallest modulus is bounded, we may wonder if the second smallest
modulus is also bounded, or in general if the n-th smallest modulus is bounded. Since the
minimum modulus is bounded, it is very natural to conjecture that the answer here is yes,
that is that the n-th minimum modulus should be bounded. Interestingly enough, it was
proved recently by Cummings, Filaseta and Trifonov that the n-th minimum modulus is
bounded [8]. The bounds that come from their method, however, are of tower type. In the
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same article, they also managed to reduce Hough’s bound to 118 in the special case where
all the moduli are square-free.

Another natural question is to ask if the minimum modulus of a partial covering system
with certain properties is bounded. For example, one may wonder if the minimum modulus
of a covering system of some arithmetic progression a (mod m) is bounded.

One last possible question we will consider here is the problem of the minimum modulus
of a covering system of multiplicity s. One may ask if the minimum modulus of a covering
system of multiplicity s is bounded. It would be natural to conjecture that it is, since it is
the case that the minimum modulus of a covering system of multiplicity 1 is bounded, as we
mentionned above.

In the last chapter of this thesis, we will give an answer to all these questions. In joint
work with Dimitris Koukoulopoulos and Simon Lemieux [19], we showed the following three
theorems. Our first theorem is about bounding the minimum modulus for covering system
of multiplicity s.

Theorem 1.3. The minimum modulus of a covering system of multiplicity s is bounded.
More precisely, there exists a constant c such that the minimum modulus in a covering
system of multiplicity s is smaller than

exp
(

c
log2(s + 1)

log log(s + 2)

)
.

An immediate consequence of Theorem 1.3 is the following theorem about the minimum
modulus in a covering system of some arithmetic progression.

Theorem 1.4. The minimum modulus of a covering system of multiplicity 1 of the arith-
metic progression a (mod m) is bounded. More precisely, there exists a constant c such that
the minimum modulus in a covering system of multiplicity 1 of the arithmetic progression
a (mod m) is smaller than

exp
(

c
log2(m + 1)

log log(m + 2)

)
.

The trick to proving this theorem from the previous one will be to construct from our
covering system of multiplicity 1 of a (mod m) a covering system of multiplicity m that has
the same minimum modulus. The result then follows immediately. This is actually why we
considered the problem of the minimum modulus for covering system of multiplicity s in
the first place. Finally, using a similar trick, that is constructing some covering system of
multiplicity s with a suitable minimum modulus and a suitable value of s, we can prove the
following theorem about the j-th minimum modulus in a covering system.

28



Theorem 1.5. The n-th minimum modulus in a minimal covering system of multiplicity 1
is bounded. More precisely, there exists a constant c such that the n-th minimum modulus in
a minimal covering system of multiplicity 1 is smaller than

exp
(

c
n2

log(n + 1)

)
.

The trick will be to construct a covering system of multiplicity s from our covering system
in which we remove the n − 1 arithmetic progressions with smallest moduli. This can always
be done with s lesser or equal to the lcm of the first n − 1 moduli. Indeed, we have by
minimality that the first n − 1 moduli are not a covering system, hence there is at least
one integer modulo their lcm that is not covered by them. This implies that the remaining
moduli cover this arithmetic progression, which in turn using the previous theorem would
give us a bound, assuming the lcm is bounded. However, by induction, the lcm of the first
few moduli is bounded. Indeed, it is bounded for n = 2 by the minimum modulus problem,
and then taking the product of our first n − 1 bounds gives us a bound for the lcm at step
n.

However, using this value of s would yield bounds that are far from the ones we obtain
here. To get the above result, we need to find a value of s that does not depend on the
first n − 1 moduli. We will discuss this further in the last chapter of this thesis. We do not
know if the way we use the trick is optimal, and even if in the case of this particular trick it
is optimal, we do not know if the asymptotic bounds we found are optimal, as there could
be some other way of viewing the problem that bypasses this trick completely. However,
we do know that the j-th largest modulus can grow at least exponentially, as the following
proposition shows.

Proposition 1.6. For each j ≥ 5, there exists a minimal covering system with the following
j distinct moduli placed in increasing order:

2 < 22 < 23 < · · · < 2j−4 < 3 · 2j−5 < 2j−3 < 3 · 2j−4 < 3 · 2j−3.

Proof. Fix j ≥ 5, and let

Cj = {1 mod 2, 2 mod 4, . . . , 2j−4 mod 2j−3, A0, A1, A2},

where Ak is the intersection of the congruence classes k mod 3 and 0 mod 2j−5+k. We claim
that Cj is a covering system.

Indeed, for each integer n, either 2j−3|n or 2j−3 ∤ n. In the former case, let k ∈ {0,1,2}
be such that n ≡ k mod 3. In particular, we have n ∈ Ak, and thus n is covered by Cj. Let
us now consider the case when 2j−3 ∤ n. Then, there must exist some i ∈ {1,2 . . . ,j − 3} such
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that 2i−1|n and 2i ∤ n. Hence, n ≡ 2i−1 mod 2i, so that n is covered again by
mathcalCj.

We have thus proven that Cj is a covering system. Clearly, its list of moduli is the one
prescribed in the statement of the theorem. Lastly, Cj is a minimal covering system: the
arithmetic progressions 2i−1 mod 2i with i = 1, . . . ,j − 3 are disjoint and cover exactly the
integers not divisible by 2j−3. On the other hand, the arithmetic progressions A0,A1,A2 are
disjoint and are all needed to cover the integers in 0 mod 2j−3. This completes the proof of
the proposition. □
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Chapter 2

Structure and symmetry in covering systems

2.1. Some examples of covering systems
In this section we will look at a few examples of covering system of multiplicity 1. We

start off showing a useful result that gives a simple algorithm which allows to verify if a set
of arithmetic progressions is a covering system in a fairly easy way. We first need to define
the least common multiple of a covering system. This definition will come back a lot, and it
is one of the principal invariants of a covering system that we will use to study them.

Definition 2.1. Let
C = {a1 (mod m1),...,ak (mod mk)}

be a set of arithmetic progressions. We define the least common multiple of C to be the lcm
of the moduli in C, that is

lcm(C) = lcm(m1,m2,...,mk).

We are now ready to give an easy to use criterion to verify if a set of arithmetic pro-
gressions is a covering system. Since all the moduli in a covering system divide the lcm of
the covering system, a set of arithmetic progressions covers all integers if it covers all inte-
gers modulo the lcm. We give the following proposition as a rigorous way to use the above
discussion in practice.

Proposition 2.1. Let

C = {a1 (mod m1), a2 (mod m2), ..., an (mod mn)}

be a set of arithmetic progressions, and let M = lcm(C). Then C is a covering system if and
only if there exists some interval of M consecutive integers that is covered by progressions in
C.



Proof. If C is a covering system, then any integer belongs to one of the arithmetic pro-
gressions in C, and so any interval of M consecutive integers is covered by C. In partiular,
there exists one interval of M consecutive integers that are covered by progressions in C.

On the other hand, suppose there is some interval of M consecutive integers that is
covered by arithmetic progressions in C, say k + 1,k + 2,...,k + M . We must show that any
integer belongs to one of the arithmetic progressions in C. Take an integer a. Choose an
integer ℓ so that a−ℓM ∈ [k+1,k+M ]. By assumption, we know that a−ℓM ≡ ai (mod m)i

for some arithmetic progression ai (mod mi) in C. Since mi|M , a−ℓM ≡ a (mod mi), hence
a ≡ ai (mod mi). This gives us the result. □

In practice, we will usually verify that any integer in [1,M ] is covered by some arithmetic
progression in C. The following example illustrates the use of this lemma.

We now verify that

C = {1 (mod 2), 1 (mod 3), 2 (mod 4), 4 (mod 8), 8 (mod 12),0 (mod 24)},

the covering system used by Erdős in his proof, is indeed a covering system. Notice that the
lcm of this set of arithmetic progressions is

M = lcm(C) = lcm(2,3,4,8,12,24) = 24,

and so by our previous lemma, to show that C is a covering system, it suffices to show that
any integer in the interval [1,24] belongs to one of the above arithmetic progressions. Any
odd integer in [1,24] is covered by 1 (mod 2). The even integers can then be split into those
that are 0 (mod 4) and those that are 2 (mod 4). The arithmetic progression 2 (mod 4) takes
care of half of these, and we are left with the integers ≡ 0 (mod 4). We can split these into
those that are 0 (mod 8) and those that are 4 (mod 8). Any integer that is ≡ 4 (mod 8) is
covered by 4 (mod 8), and so we are left to cover the integers that are 0 (mod 8). There are
exactly 3 of these in [1,24], which are 8, 16, and 24. 8 is covered by 8 (mod 12), 16 is covered
by 1 (mod 3) and 24 is covered by 0 (mod 24). We conclude that the set of arithmetic
progressions used by Erdős is indeed a covering system of multiplicity 1. Since we showed
earlier that it was minimal, it is in fact a minimal covering system of multiplicity 1.

Another way of using this lemma to show that a set of arithmetic progressions

C = {a1 (mod m1),...,ak (mod mk)}

is indeed covering is to write down all the integers in [1, lcm(C)], and then cross out re-
cursively all the integers congruent to a1 (mod m1), then to a2 (mod m2), all the way till
ak (mod mk). If all the integers in [1, lcm(C)] are crossed out, then the set of arithmetic
progressions is a covering system. Doing this can give us a good way to look at how a cov-
ering system covers step by step, as well as a good way to implement an algorithm to verify
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if sets of arithmetic progressions are covering systems. For example, we can illustrate via a
graph how the above covering system covers.

Fig. 2.1. Verifying that the set covers

In this figure, the lowest line shows all the integers modulo 24 as black squares, and the
subsequent lines show in black the integers remaining after sieving out the first few arithmetic
progressions. If the highest line in the graphic is all white, it means all the integers in our
interval have been covered, and hence that our set of arithmetic progressions is a covering
system.

The system used by Erdős in his proof is not the simplest covering system of multiplicity
1. Indeed, Krukenberg [21] showed that if the minimum modulus of a covering system of
multiplicity 1 is 2, then the largest modulus is at least 12, and a widely known example of
a covering system of multiplicity 1 with minimum modulus 2 and largest modulus 12 is

C = {0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)}.

We offer below a proof by graphic that this set of arithmetic progressions is indeed a covering
system.

The last example of a covering system we look at here is the simplest square-free covering
system of multiplicity 1. We first define what a square-free covering system is.

Definition 2.2. We say that a covering system C is square-free if all the moduli appearing
in C are square-free.

As it is sometimes the case in number theory, where the square-free case of a problem is
often simpler than the original problem, it turns out that the study of square-free covering
systems is easier than that of general covering system.

A recently famous example of this that concerns covering systems is that of the Erdős-
Selfridge problem. The first mention of this problem seems to be in 1965 [13], where Erdős
asked if there exists a covering system of multiplicity 1 in which all the moduli are odd (and
greater than 1). A few years later [14], Erdős went further and conjectured that there does
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Fig. 2.2. Verifying that the set covers

in fact exist such a system. In 1977, Erdős went even further, and conjectured [9] that there
exists square-free covering systems with the prime factors of the moduli arbitrarily large,
which would imply the existence of a square-free covering system with only odd moduli. We
know that the last conjecture is false, of course, by the solution to the minimum modulus
problem.

Selfridge, on the other hand, believed that covering systems of multiplicity 1 with only
odd moduli do not exist. This is perhaps why the problem has become known as the Erdős-
Selfridge problem. In any case, it took until 2019 for a solution to this problem to come for
the square-free case. In [3], Balister, Bollobás, Morris, Sarahsrabudhe and Tiba, building
upon their methods in [4], showed that there cannot be a square-free covering system of
multiplicity 1 with only odd moduli. The answer to the general Erdős-Selfridge problem,
however, remains unknown.

For these reasons, we will direct most of our attention for the rest of this chapter to the
study of square-free covering systems. We initiate this with our first example of a square-free
covering system. As we will see, there are many covering systems with the set of square-free
moduli

{2,3,5,6,7,10,15,30,14,21,35,42,70,105}.

Here is an example of one.

C ={0 (mod 2), 0 (mod 3), 0 (mod 5), 1 (mod 6), 0 (mod 7), 1 (mod 10),

8 (mod 15), 17 (mod 30), 1 (mod 14), 17 (mod 21), 19 (mod 35), 23 (mod 42),

39 (mod 70), 104 (mod 105)}.

(2.1.1)
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We say one of the many because there exists more than one covering system with the same
moduli as the above covering system. In fact, there are exactly 7,257,600 covering systems
with these moduli. We have verified this using a computer. However, we will be proving
this is the following sections, and in doing so will develop an approach to unravel patterns of
symmetry and structure in square-free covering systems. The following graphic shows that
the above set of arithmetic progressions is indeed a covering system.

Fig. 2.3. Verifying that the set covers

Krukenberg [21] showed that if the smallest modulus in a square-free covering system
of multiplicity 1 is 2, then the largest is at least 105. The above covering system shows
that it is indeed possible to construct a square-free covering system of multiplicity 1 with
minimum modulus 2 and largest modulus 105. In the following sections, we will work towards
a new proof that this is the simplest square-free covering system of multiplicity 1, and use
the results we build along the way to analyse other properties of this covering system and
other covering systems that have similar structures. Later, we will show that all 7,257,600
covering systems with the moduli set above are minimal. In order to demonstrate that the
naive argument for proving minimality gets quite complicated, we explain how it works in
the case of the covering system 2.1.1. To show minimality, we give, for each a (mod m) in
C, an arithmetic progression modulo 210 = lcm(C) that belongs to that progression but no
others in C. The notation used in this table is described in the following section.

2.2. The p-valuation and hyperplane notation
We introduce in this section here some notation that will be useful when dealing with

square-free covering systems.
As in [3], we may view square-free covering system in a purely geometric way. Indeed,

consider a covering system

C = {a1 (mod m1),...,ak (mod mk)},

with

lcm(C) = p1 · · · pℓ.

Let Si = {1,2,...,pi}. We say that (x1, . . . ,xℓ) is a hyperplane if xi ∈ Si∪{⋆}. This hyperplane
is to be thought of as the arithmetic progression corresponding to the intersection of the
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Table 2.1. Minimality of the square-free covering system

a (mod m) Progression mod 210
(0) (0,2,3,1)

(⋆,0) (1,0,3,3)
(1,1) (1,1,3,6)

(⋆, ⋆ ,0) (1,2,0,5)
(1, ⋆ ,1) (1,2,1,4)
(⋆,2,2) (1,2,2,5)
(1,2,3) (1,2,3,4)

(⋆, ⋆ , ⋆ ,0) (1,2,4,0)
(1, ⋆ , ⋆ ,1) (1,2,4,1)
(⋆,2, ⋆ ,2) (1,2,4,2)
(1,2, ⋆ ,3) (1,2,4,3)
(⋆, ⋆ ,4,4) (1,2,4,4)
(1, ⋆ ,4,5) (1,2,4,5)
(⋆,2,4,6) (1,2,4,6)

arithmetic progressions xi (mod pi) for each xi ̸= ⋆, and 1 ≤ i ≤ ℓ. By the Chinese Remainder
Theorem we may consider the covering system C as covering the set S1 × S2 × . . . × Sℓ by
hyperplanes. We say two hyperplanes (x1, . . . ,xℓ) and (y1, . . . ,yℓ) are parallel when xi = ⋆

if, and only if, yi = ⋆. In other words, parallel hyperplanes are hyperplanes for which
the corresponding arithmetic progressions have the same modulus. A covering system of
multiplicity 1 is then a covering by hyperplanes for which no two hyperplanes are parallel.

For practical purposes, as we will be using hyperplane notation to define covering systems,
we will use the following slightly easier to work with notation for hyperplanes. Let pj denote
the j-th prime, so that p1 = 2, p2 = 3, etc.. We wish to construct a function that, for an
arithmetic progression a (mod m) with square-free moduli, would give us the j-th coordinate
of a (mod m) in hyperplane notation. To do so, we define the p-valuation of an arithmetic
progression with square-free moduli.

Definition 2.3. Let a (mod m) be an arithmetic progression with m square-free. We will
denote the p-valuation of a (mod m) to be

[a (mod m)]p :=

min{n ∈ Z≥0 : n ≡ a (mod m)} if p|m,

⋆ if p ∤ m.

Let pk be the largest prime dividing m. We will denote

a (mod m) = ([a (mod m)]2,[a (mod m)]3, . . . ,[a (mod m)]pk
).

For example, 0 (mod 2) = (0), 1 (mod 21) = (⋆,1, ⋆ ,1) and 29 (mod 30) = (1,2,4).
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Using this notation, we may rewrite the square-free covering system (2.1.1) described
above in the following way.

C ={0 (mod 2), 0 (mod 3), 0 (mod 5), 1 (mod 6), 0 (mod 7), 1 (mod 10),

8 (mod 15), 17 (mod 30), 1 (mod 14), 17 (mod 21), 19 (mod 35), 23 (mod 42),

39 (mod 70), 104 (mod 105)}

={(0),(⋆,0),(⋆, ⋆ ,0),(1,1), (⋆, ⋆ , ⋆ ,0),(1, ⋆ ,1),(⋆,2,3),(1,2,2),

(1, ⋆ , ⋆ ,1),(⋆,2, ⋆ ,3), (⋆, ⋆ ,4,5),(1,2, ⋆ ,2),(1, ⋆ ,4,4),(⋆,2,4,6)}.

The usefulness of this notation will become clear once we start defining very large square-free
covering systems of multiplicity 1.

2.3. Divisibility conditions on the moduli in covering
systems

Notice that for the covering system

C ={0 (mod 2), 0 (mod 3), 0 (mod 5), 1 (mod 6), 0 (mod 7), 1 (mod 10),

8 (mod 15), 17 (mod 30), 1 (mod 14), 17 (mod 21), 19 (mod 35), 23 (mod 42),

39 (mod 70), 104 (mod 105)},

there are exactly seven moduli that are divisible by 7, and the 7-valuation of these moduli
form a complete set of residues modulo 7. Also, if we look at the moduli that are divisible
by 5, we also have that their 5-valuations contain a complete set of residues modulo 5, and
the same happens when we look at the moduli divisible by 3, as well as those divisible by
2. We show here that this is a special case of a more general result. We first introduce the
concept of relevant congruences for an arithmetic progression.

Definition 2.4. Let C be a set of arithmetic progressions, and p be a prime dividing M =
lcm(C). We define the set of relevant congruences for the arithmetic progression y (mod p)
to be the set Cp(y) := {a (mod m) ∈ C : p|m, a ≡ y (mod p)}.

Why exactly we call this set the set of relevant congruences for the arithmetic progression
y (mod p) is because these are the congruences that intersect in a non-trivial manner with
y (mod p). The following lemma shows that the pattern we noted above is actually something
that always happens in minimal covering systems.

Lemma 2.2. Let C be a minimal covering system, let M = lcm(C), and let p be a prime
dividing M . Then for each y ∈ {0,...,p − 1}, Cp(y) is non-empty.
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Proof. Suppose that C is a covering system for which there is some prime p| lcm(C) and
some integer y ∈ {0,1, . . . ,p−1} such that Cp(y) is empty. We claim that C ′ = {a (mod m) ∈
C : p ∤ m} is a covering system. Denote by L = lcm(C ′). To show that C ′ is a covering
system, we will show that for each n ∈ {1, . . . ,L}, there is a progression a (mod m) in C ′

for which n ≡ a (mod m). Indeed, fix n ∈ {1, . . . ,L}. Since Cp(y) is empty, we know that
any integer congruent to y (mod p) is covered by some progression in C ′. In particular, the
least non-negative integer that lies in the arithmetic progression n (mod L) ∩ y (mod p)
is covered by some progression a (mod m) in C ′. However, since p ∤ m, this implies that
n ≡ a (mod m), and so n is covered by a congruence in C ′. Since n can be any integer in
{1, . . . ,L}, we deduce the result. □

One consequence we find from this result is that if for some covering system C, there is
some prime p| lcm(C) and some integer y for which Cp(y) is empty, then C is not a minimal
covering system. This will be useful to us later. Another corollary of this result is that if C is
a minimal covering system, and p| lcm(C), then there are at least p arithmetic progressions
in C whose moduli are divisible by p. This is a special case of a more general result of
Krukenberg.

To show that the square-free covering system

{0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)}

is the simplest covering system of multiplicity 1 with minimum modulus 2, as well as many
other similar results, Krukenberg [21] used the following theorem.

Theorem 2.3. Let
C = {a1 (mod m1), . . . ,ak (mod mk)}

be a minimal covering system, and suppose M = lcm(C). Let p be a prime that divides
M , and suppose pα is the largest power of p that divides M . If β is an integer such that
1 ≤ β ≤ α, then pβ divides at least p + (p − 1)(α − β) distinct mi.

Proof. Write M = pαN , with (N,p) = 1. Note that pα must divide at least one modulus
in C, say mj with j ∈ {1, . . . ,k}. By possibly reindexing the elements of C, we may assume
that j = 1.

By minimality of our covering system, there is at least one integer n ∈ [1,M ] that is
covered only by a1 (mod m1), and not by any of the other arithmetic progressions in C. By
translating our covering system by −n if necessary, we may suppose n = 0, which gives us
that n ≡ 0 (mod pα) and n ≡ 0 (mod N).

We claim that the residue class 0 (mod N) must then be covered only by arithmetic pro-
gressions with modulus divisible by p. Indeed, if there were some progression with modulus
not divisible by p that intersects non-trivially with 0 (mod N), then the modulus would
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divide N , hence it would cover all of 0 (mod N), contradicting the fact that 0 is covered
only by 0 (mod m1) in C.

For the remainder of the proof we consider only the integers ≡ 0 (mod N). We shift our
attention towards how the congruence classes modulo pα are covered within this class. The
congruence classes ipα−1 (mod pα), for i ∈ {0,1, . . . ,p − 1}, must be covered by progressions
with modulus divisible by pα, for or else the progression would cover all of 0 (mod pα),
contradicting our assumption about 0 (mod m1), hence we must have at least p different
classes divisible by pα.

By a similar argument, all integers x ≡ 0 (mod pα−2) such that x ̸≡ 0 (mod pα−1) are
covered by arithmetic progressions with moduli divisible by pα−1. Since x ̸≡ 0 (mod pα−1),
these arithmetic progressions must be distinct from the ones considered before. Hence, we
have p − 1 new arithmetic progressions whose moduli are divisible by pα−1. Continuing in
this fashion, we find that there are disjoint sets C1, . . . ,Cα ⊂ C such that all moduli in Cj

are divisible by pj and |Cj| ≥ 1j=α + p − 1. To complete the proof, note that the set ⋃j≥β Cj

contains 1 + (α − β)(p − 1) elements all of whose moduli are divisible by pβ. □

Remark 2.1. For the case β = 0, we recover the corollary of our lemma mentionned above.

2.4. How Krukenberg used the result
Krukenberg proved the above result in order to show that if the minimum modulus of a

covering system is 2, then the largest is at least 12, and similar results when the minimum
modulus is 3 or 4. We include the proof in the case of the minimum modulus 2 here.

We first start by proving a crucial corollary of Krukenberg’s result.

Proposition 2.4. Let C be a minimal covering system, and let p be a prime. Suppose the
largest modulus in C is m. If (p + 1)pa > m, then pa is not a divisor of any modulus in C.

Proof. The first two positive integers divisible by pa+1 are pa+1 and 2pa+1. Since mk <

(p+1)pa < 2pa+1, Theorem 2.3 gives us that pa+1 cannot divide any modulus in the covering
system. Therefore, the first p available moduli divisible by pa are pa,2pa, . . . , (p + 1)pa.
However, (p+1)pa > mk, hence we cannot have p moduli divisible by pa, and so by Theorem
2.3, pa is not a divisor of any modulus in C. This gives us the result. □

Using this result, we can now show Krukenberg’s result about the minimum modulus 2
problem.

Proposition 2.5. If the smallest moduli in a covering system of multiplicity 1 is 2, then
the largest moduli is at least 12.
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Proof. Suppose it is not. Then the largest is lesser than or equal to 11. Note that (11 +
1) · 11 > 11, hence 11 cannot be in the cover, and any divisors of it either. Similarly,
(7 + 1) · 7 > 11, (5 + 1) · 5 > 11, and (3 + 1) · 3 > 11, and (2 + 1) · 22 > 11, hence no
moduli divisible by 3,4,5,7 can be used in the covering system. Only 2 remains as a possible
modulus in our covering system, and clearly we cannot cover the integers with a single
arithmetic progression modulo 2. This gives us the result. □

A similar reasoning gives us that if the minimum modulus is 3, then the largest is at
least 36, and if the minimum modulus is 4, then the largest is at least 120. The details in
these proofs, however, are not of interest to what we will be doing henceforth, and so we do
not include the proofs of these results here.

2.5. The number of covering systems with a prescribed
set of moduli

In [3], Balister, Bollobás, Morris, Sahasrabudhe, and Tiba study the number of covering
systems with exactly n moduli. In the following sections, we study a related problem.

Question 2.1. If E is a multiset of moduli, how many covering systems can we construct
whose multiset of moduli is precisely E?

To work towards an answer to this question, we use the following definitions that will
make the rest easier to read.

Definition 2.5. Let E be a multiset of integers. We define η(E) to be the set of covering
systems whose multiset of moduli is E, and H(E) := |η(E)|. By a slight abuse of notation,
if C is a covering system, we define η(C) to be the set of covering systems with exactly
the same moduli as C, and H(C) := |η(C)|. We also define η∗(E) to be the set of minimal
covering systems in η(E), H∗(E) := |η∗(E)|, η∗(C) to be the set of minimal covering systems
in η(C), and H∗(C) := |η∗(C)|.

Let us look at some examples of this.

Example 2.1. If E = {2,2}, then H(E) = 1. If E = {2,3,4,6,12}, a quick check with a
computer shows that H(E)=24. Note that lcm(E) = 12, and that 12|24. We will see shortly
that this is not a coincidence. Finally, if E = {2,3,5,6,7,10,15,30,14,21,35,42,70,105}, we
have mentionned above that H(E) = 7,257,600. Notice here also that 2 · 3 · 5 · 7|H(E). Once
again, this is not a coincidence.
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To study H(E), we will see that it is useful to look at automorphisms of η(E). This leads
us to look at ways to transform a covering system with a given set of moduli into another
one with the same set of moduli. One very natural way to do this is to look at translations
of covering systems. We will in fact be using translations in our proof of Theorem 1.5, and
it is through studying these that we came with the results that follow in this section.

Definition 2.6. Let

C = {a1 (mod m1), a2 (mod m2), ..., an (mod mn)}

be a covering system. We define the translate of C by t to be

C + t := {a1 + t (mod m1), a2 + t (mod m2), ..., an + t (mod mn)}.

It is easy to see that the translate of a covering system is also a covering system. We now
show how different translations induce different covering systems, and how certain transla-
tions yield the same covering systems.

Lemma 2.6. Let C be a covering system of multiplicity 1, let M = lcm(C), and let t1,t2 ∈ Z.
We have that C + t1 = C + t2 if, and only if, t1 ≡ t2 (mod M).

Proof. If t1 ≡ t2 (mod M), then clearly C + t1 = C + t2. Let us now prove the converse.
It suffices to show that if t1 ̸≡ t2 (mod M), then C + t1 ̸= C + t2. If t1 ̸≡ t2 (mod M), then
there is some prime power pα∥M for which t1 ̸≡ t2 (mod pα). Since pα is the highest power
of p that divides M , there must be some arithmetic progression a (mod m) in C for which
pα|m, for pα would not divide M if this were not the case. For this progression, we have that
a + t1 ̸≡ a + t2 (mod m). Since we supposed all the moduli were distinct, this gives us that
C + t1 ̸= C + t2. □

Using these results, we can now prove that the observation we made earlier that 12|24 is
indeed a general phenomenon.

Proposition 2.7. Let E be set of moduli, and M = lcm(E). Then M |H(E).

Proof. Define an equivalency relation on η(E) by C ∼ C ′ if there exists some integer k for
which C = C ′ + k. By our previous Lemma, the equivalency classes each have cardinality
M , hence M |H(E). □

Another very natural operation that we may perform on a covering system is a dilation of
it.
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Definition 2.7. Let

C = {a1 (mod m1), a2 (mod m2), . . . , an (mod mn)}

be a covering system. For any integer λ, we define the dilation of C by λ to be

λC := {λa1 (mod m1), λa2 (mod m2), . . . , λan (mod mn)}.

Unlike for translations, not any dilation of a covering system gives us another covering
system. The following propositions shows us when it is.

Proposition 2.8. Let C be a covering system, and M = lcm(C). Whenever (λ,M) = 1,
λC is a covering system.

Proof. Let b ∈ Z. We wish to find some λa (mod m) ∈ λC such that b ≡ λa (mod m).
Since (λ,M) = 1, (λ,m) = 1 for all moduli m in C. We know that there is some a (mod m)
in C such that λ−1b ≡ a (mod m), and so b ≡ λa (mod m), hence b is covered in λC. As b

was an arbitrary integer, we deduce that all integers must be covered. □

We can now prove that λC is a covering system only if (λ,M) = 1. However, in the case of
this result, we need minimality. Indeed, if we did not have minimality, we could construct a
counter-example, by taking a minimal covering system C, then adding in a modulus coprime
to all the moduli is C, and then dilating out by one of the new primes that we introduced
with our extra coprime modulus. In light of this observation, we show the following result.

Proposition 2.9. Let C by a minimal covering system, and let lcm(C) = M . If (λ,M) > 1,
then λC is not a covering system.

Proof. Suppose by contradiction that this is not the case. Then there exists a minimal
covering system C with lcm(C) = M , and an integer λ with (λ,M) > 1, such that λC is
a covering system. Let p1, . . . ,pk be the distinct prime divisors of M that divide λ. Since
(λ,M) > 1, we know that such primes exist, that is that k ≥ 1.

Let p denote one of the pi, i ∈ {1, . . . ,k}. We will look at what happens to the sets
Cp(y) when we dilate by λ. Since p|λ, these sets are all sent onto a new set (λC)p(0), and so
(λC)p(1), for example, must be empty. By our arguments about the non-emptiness of Cp(y)
in the proof of Lemma 2.2, we know that this implies that the prime p is redundant in λC,
that is we can remove all moduli divisible by p, and λC will remain a covering system.

Doing this over each of the pi, i ∈ {1, . . . ,k}, we find a new covering system D with
lcm(D) not divisible by any of the pi’s. Let j = λ/(λ,M). Notice that (lcm(D),j) = 1, hence
j is invertible modulo lcm(D). Let j−1 denote it’s inverse.
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Then j−1D is also a covering system. However, notice that by construction, it is a proper
subcover of C, contradicting the minimality of C. We deduce the result. □

From these two lemma, we may deduce the following result.

Lemma 2.10. Let C be a minimal square-free covering system of multiplicity 1, let M =
lcm(C), and let λ1,λ2 ∈ Z. Suppose (λ1λ2,M) = 1. Then λ1C = λ2C if, and only if,
λ1 ≡ λ2 (mod M).

Proof. If λ1 ≡ λ2 (mod M), then clearly λ1C = λ2C. We are left to prove to converse.
Suppose λ1 ̸≡ λ2 (mod M). Then there is some prime p|M such that λ1 ̸≡ λ2 (mod p). By
minimality of C, we know that Cp(1) is non-empty, hence there is some congruence a (mod m)
in C such that p|m and a ̸≡ 0 (mod p). Then λ1a ̸≡ λ2a (mod m), hence λ1C ̸= λ2C. □

We are now ready to prove another proposition about H∗(E).

Proposition 2.11. Let E be a set of square-free integers that are greater than 1, and let
M = lcm(E). Then ϕ(M)|H∗(E).

Proof. Define an equivalency relation on η∗(E) by C ∼ C ′ if there exists some integer λ,
with (λ,M) = 1, such that C = λC ′. By the previous lemma, this partitions η∗(E) into sets
of size ϕ(M), hence the result. □

We saw in this section that we can translate and dilate covering systems to create new
covering systems with the same set of moduli. This leads us to the following question.

Question 2.2. What other operations can we perform on covering systems that give us
other covering systems with the same set of moduli?

The aim of the following sections will be to answer this question.

2.6. Generalising a result of Hammer, Harrington and
Marotta

In this section we will look at an operation we can perform on covering systems that can
be seen in some sense as the most basic operation that can be performed on all covering
systems. We will see in the following sections that translations and dilations are special
cases of this operation. We will start by looking at a lemma from Hammer, Harrington and
Marotta [17]. It is by looking for a generalisation of this lemma that the ideas that follow
came.
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Lemma 2.12. Let C be a covering system, M = lcm(C), and p be a prime that divides M .
Let a1,a2 be integers, with 0 ≤ a1,a2 ≤ p − 1. Suppose that a2 (mod p) is in C, but that
a1 (mod p) is not. Then there exists a covering system C ′ with the following properties :

(1) C ′ has the same moduli as C,
(2) a1 (mod p) is in C ′,
(3) a2 (mod p) is not in C ′,
(4) If a (mod p) is in C, with a ̸≡ a2 (mod p), then a (mod p) is in C ′,
(5) Any arithmetic progression with modulus coprime to p in C is also in C ′.

Proof. Let
T = Cp(a1) = {a (mod m) ∈ C : p|m, a ≡ a1 (mod p)}.

Write M = ptN , with pt∥M . Since (N,p) = 1, N is invertible modulo p, and so we may
choose an integer k such that

kN ≡ a2 − a1 (mod p).

Let
T ′ = {a + kN (mod m) : a (mod m) ∈ T}.

We claim that
C ′ =

(
C \ (T ∪ a2 (mod p))

)
∪ a1 (mod p) ∪ T ′

is a covering system. Since C is a covering system, we need to show that what was covered
by T ∪ a2 (mod p) is now covered by either C \ (T ∪ a2 (mod p)) or by a1 (mod p) ∪ T ′. By
what we noticed about T and a1 (mod p), we know that whatever was covered by T is now
covered by a1 (mod p). We are left to find what covers a2 (mod p) in C ′.

Let b be an integer such that b ≡ a2 (mod p). Since C is a covering system, we know that
b − kn ≡ a (mod m) for some a (mod m) ∈ C. Then b ≡ a + kN (mod m). If p ∤ m, then
a + kN ≡ a (mod m), as m|N , and so b is still covered in C ′. If p|m, then a (mod m) ∈ T ,
and so a + kN ∈ T ′, and so b is also still covered in C ′. We deduce that C ′ is a covering
system. It is easy to see from the definition of C ′ that it satisfies the conditions in the lemma,
and so we have the result. □

This lemma seems generalisable, and indeed we will see that it is. We would like to
be able to change a (mod m) for a′ (mod m) in any covering system C, where m is not
necessarily prime, while changing as little as possible on the rest of the covering system.
However, there need to be restrictions on when and how we can do this, as we will see.

To do so, we make use of the following lemma, which is a very slight generalisation of the
previous one, but as we will see it leads us exactly to the generalisation we are looking for.
Notice while looking at the proof that it is almost exactly the same as that of the previous
lemma.
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Lemma 2.13. Let C be a covering system, M = lcm(C), and p be a prime dividing M . Let
0 ≤ a1 < a2 ≤ p − 1 be integers, and for α ∈ {0,1,...,p − 1}, let

Cp(α) = {a (mod m) ∈ C : p|m, a ≡ α (mod p)}.

Let t be an integer such that t ≡ 1q=p · (a2 − a1) mod qvq(M) for every prime q|M . Then

C ′ =
(

C \ (Cp(a1) ∪ Cp(a2))
)

∪ (Cp(a1) + t) ∪ (Cp(a2) − t)

is a covering system.

Remark 2.2. In the hyperplane notation for arithmetic progressions we introduced earlier,
we have that the progressions in C ′ differ from those in C precisely when their p-valuation is
either a1 or a2, and the operation we just described corresponds to changing the p-valuation
of each progression in C with p-valuation a1 to a2, and similarly changing the p-valuation of
each progression with p-valuation a2 to a1.

Proof. Let b ∈ Z. If b is covered by

C \ (Cp(a1) ∪ Cp(a2))

in C, then b is still covered in C ′. If b is covered by Cp(a1) in C, we look at what covers b + t

in C. If it is covered by some element in C \ (Cp(a1) ∪ Cp(a2)), then b + t ≡ a (mod m), and
p ∤ m. Indeed, if p|m, then a (mod m) is in Cp(a2), which contradicts our assumption about
a (mod m). Hence b + t ≡ b (mod m), and so b is covered by a (mod m) in C’. If it was
covered by some element in Cp(a2), then b + t ≡ a2 (mod m), and so b ≡ a2 − t (mod m),
which is in Cp(a2) − t, and so b is still covered in C ′.

We now look at the mirror case, that is if b is covered by Cp(a2). We look at what covers
b−t in C. If it is in C \(Cp(a1)∪Cp(a2)), then by our previous argument, it is still covered in
C ′. If it is covered by some congruence in Cp(a1), then b − t ≡ a (mod m), and so b ≡ a + t,
hence b is covered by Cp(a1) + t in C ′. Since b was an arbitrary integer, we deduce that C ′

is a covering system. □

We now look at a couple of examples of this lemma. First off, consider the covering
system discussed earlier

C = {0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)}.

Take 3 as our prime, and take a1 = 1 and a2 = 2. Then

C3(1) = {a (mod m) ∈ C : 3|m, a ≡ 1 (mod 3)} = {1 (mod 6)},

and
C3(2) = {a (mod m) ∈ C : 3|m, a ≡ 2 (mod 3)} = {11 (mod 12)}.
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We have that lcm(C) = 12, and we can write it as 31 · 4. We then have that there is some
integer k, namely k = 1, such that 4k ≡ a2−a1 (mod 3). Indeed, a2−a1 ≡ 2−1 ≡ 1 (mod 3),
and 4 ·1 ≡ 4 ≡ 1 (mod 3). We can then take t = 4 in our lemma, and so we replace 1 (mod 6)
by 5 (mod 6) and 11 (mod 12) by 7 (mod 12). Our lemma guarantees that this is a covering
system.

Our next example will deal with the square-free covering system

C ={0 (mod 2), 0 (mod 3), 0 (mod 5), 1 (mod 6), 0 (mod 7), 1 (mod 10),

8 (mod 15), 17 (mod 30), 1 (mod 14), 17 (mod 21), 19 (mod 35),

23 (mod 42), 39 (mod 70), 104 (mod 105)}

={(0),(⋆,0),(⋆, ⋆ ,0),(1,1), (⋆, ⋆ , ⋆ ,0),(1, ⋆ ,1),(⋆,2,3),(1,2,2),

(1, ⋆ , ⋆ ,1),(⋆,2, ⋆ ,3), (⋆, ⋆ ,4,5),(1,2, ⋆ ,2),(1, ⋆ ,4,4),(⋆,2,4,6)}.

We will see here why the hyperplane notation for square-free arithmetic progressions comes
in handy. In terms of this notation, our lemma can be seen as choosing some coordinate of
our hyperplane, say the third, which corresponds to the prime 5, then choose two residues
modulo 5, say 1 and 2. We then replace all the progressions which have a 1 in the third
component by the same hyperplane with 1 replaced by 2, and all those with a 2 in the third
component by the same hyperplane with a 2 replaced by a 1. The lemma says that this
remains a covering system. Indeed, translating out by t in our lemma can be seem as simply
switching the residues modulo p without changing the residues modulo any other prime,
which corresponds to changing the residues modulo p, and that is exactly what we described
above.

For our example, take p = 5, a1 = 1 and a2 = 4. Then C5(1) is the set of progressions
that have a 1 as their third component, and C5(4) is the set of progressions that have a 4 as
their third component. Hence

C5(1) = {(1, ⋆ ,1)},

and
C5(4) = {(⋆, ⋆ ,4,5),(1, ⋆ ,4,4),(⋆,2,4,6)}.

Our new sets are
C5(1) + t = {(1, ⋆ ,4)}

and
C5(4) − t = {(⋆, ⋆ ,1,5),(1, ⋆ ,1,4),(⋆,2,1,6)}.

The lemma guarantees that the covering system C ′ which replaces our C5(1) by C5(1) + t

and C5(4) by C5(4) − t is indeed a covering system. This example perfectly illustrates the
usefullness of the hyperplane notation for arithmetic progressions. It makes using the lemma
easier.
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2.7. The p-automorphisms of covering systems
We start out this section with a lemma that looks at how to apply Lemma 2.13 succes-

sively.

Lemma 2.14. Let C be a minimal covering system. Let M = lcm(C), and let p be a prime
that divides M . Let σ be a permutation in Sp. Then there is a unique covering system
C ′ ∈ η(C) such that :

(1) For each y ∈ {1, . . . ,p}, C ′
p(y) = Cp(y) + t , where t ≡ 1q=p(σ(y) − y) (mod qνq(M))

for each prime q|M ,
(2) If a (mod m) is an arithmetic progression in C and (m,p) = 1, then a (mod m) is

also in C ′.

Proof. By Proposition 0.1, there exists some transpositions τ1, . . . ,τk ∈ Sp such that σ =
τ1 · · · τk. For i ∈ {1, . . . ,p}, we may write τi = (ni,1ni,2). Note that since C is minimal, we
have that Cp(y) is non-empty for each prime p|M and y ∈ {1, . . . ,p}. We may then apply
Lemma 2.13 onto C with a1 = n1,1 and a2 = n1,2. Call the resulting covering system C1. We
then apply Lemma 2.13 onto C1 with a1 = n2,1 and a2 = n2,2. Call the resulting covering
system C2. In general, let Cj be the covering system we get after doing this process j times,
using the lemma on Cl−1 with a1 = nℓ,1 and a2 = nℓ,2 at step ℓ, for 1 ≤ ℓ ≤ j. We claim
that C ′ := Ck respects (a) and (b).

At each application of the lemma, we only change arithmetic whose moduli are divisible
by p, hence C ′ has property (b). For property (a), we look at what happens to a specific
Cp(y) after the multiple applications of the lemma. Note that since τ1 · · · τk = σ, we have
that Cp(y) is sent on to a corresponding set of arithmetic progressions for which the residue
mod p is σ(y), and the residues modulo any other prime are left unchanged. This is exactly
what property (a) describes, hence (a) is also satisfied by C ′. The fact that C ′ is unique
follows from the fact that we describe exactly what happens to each progression in C to get
C ′. We deduce the result. □

Remark 2.3. Notice that if C is a covering system of multiplicity 1, and if σ is not the
identity in Sp, then the C ′ we find in Lemma 2.14 is distinct from C, and so by applying the
lemma with all permutations in Sp, we get p! different covering systems. Doing this for all
the distinct prime divisors p1, . . . ,pℓ of M , we get p1! · · · pℓ! different covering systems.

Definition 2.8. Let C be a minimal covering system, and let M = lcm(C). Let p be a prime
such that p|M , and let σ ∈ Sp. We define the p-automorphism of C for the permutation σ

to be the covering system C ′ described in the above lemma, and we denote it by Tp,σ(C).
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Proposition 2.15. Let E be a set of positive integers that are greater than 1, and let

lcm(E) = M = pα1
1 · · · pαℓ

ℓ

be the prime factorisation of M , with p1 < . . . < pℓ. Then

p1!p2! · · · pℓ!|H∗(E).

Proof. Define an equivalency relation on η∗(E) by C ∼ C ′ if there exists some p-
automorphisms Tp1,σ1 , Tp2,σ2 , . . . , Tpℓ,σℓ

such that

C ′ = Tp1,σ1 ◦ Tp2,σ2 ◦ · · · ◦ Tpℓ,σℓ
(C).

This partitions η∗(E) into sets of size p1! · · · pℓ!, hence the result. □

This leads us to a few questions :
(1) Are there sets E for which H(E) is equal to p1! · · · pℓ!, where lcm(E) = pα1

1 · · · pαℓ
ℓ ?

(2) Are there sets E for which H(E) is greater than p1! · · · pℓ!, where lcm(E) = pα1
1 · · · pαℓ

ℓ ?
(3) Does there exist a set of moduli E for which there are both minimal and non-minimal

covering systems with this set of moduli?
We already noted that for the set

E = {2,3,4,6,12},

H(E) = 24, whereas lcm(E) = 12 = 22 · 3, so 2!3! = 12 < 24. However, we may still wonder
if this can happen if E is instead a set of square-free integers. In the following sections,
we will show that there are infinitely many square-free sets E that respect (a), as well as
infinitely many that respect (b).

Note that in the case (b), we can in fact construct sets of square-free integers for which
H(E) is an arbitrarily large multiple of p1! · · · pℓ!, where lcm(E) = p1 · · · pℓ. We will mention
how to construct such sets at the end of the chapter.

Finally, we give a lemma that hints towards a possible answer to question (c).

Lemma 2.16. Let C be a covering system, let M = lcm(C), and let p be a prime dividing
M . Let σ be a permutation in Sp. If C is a minimal covering system, then Tp,σ(C) is also
minimal.

Proof. Suppose by contradiction that there is some minimal covering system C and some
that does not satisfy this condition, so that there is some p| lcm(C), and some 0 ≤ x < y ≤
p − 1 such that the covering system

D = Tp,(xy)(C)
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is not minimal. Since D is not minimal, there exists some proper subcover of D, call it D′.
Then Tp,(xy)(D′) is a proper subcover of C, contradicting the fact that C was minimal. We
deduce the result. □

Note that this lemma is very interesting on its own. Since

Tp,(xy)(Tp,(xy)(C)) = C,

it in fact shows that a covering system is minimal if and only if Tp,((xy)(C) is, for all appropri-
ate p,x,y. It also says that the minimal covering systems with a given set of moduli E group
together through our p-automorphisms. So if E is a set of integers, with lcm(E) = pα1

1 ...pαℓ
ℓ ,

then p1! · · · pℓ! divides not only H(E), but also H∗(E). It remains unclear, for now, if for
some set E, there can be minimal covering systems with moduli set E, as well as non-minimal
covering system with the same set of moduli. This remains a question we would like to find
a solution to.

2.8. A square-free covering system
In this section, we show that the square-free covering system described earlier respects

property (a) mentionned above. The following lemma shows an interesting property about
how arithmetic progressions divisible by some prime p in a covering system tend to group
into certain arithmetic progressions. Since we will only need the lemma for the square-free
case, we will only prove it for the square-free case, but we note that it remains true even
when we are dealing with covering systems that are not square-free.

Lemma 2.17. Let C be a square-free covering system, and let M = lcm(C). Let p be some
prime dividing M , Cp = {a (mod m) ∈ C : p|m} and N = M/p. If some progression
b (mod N) is covered only by progressions in Cp, then for each y ∈ {0,1, . . . ,p − 1}, there is
an arithmetic progression in Cp(y) that intersects with b (mod N).

Proof. Since the progressions in Cp cover all of b (mod N), then at least one progression
in Cp must intersect with (y (mod p)) ∩ (b (mod N)). Since this progression is in Cp and it
intersects with y (mod p), it must in fact be in Cp(y). □

We remind here that we proved earlier that each Cp(y) is non-empty if C is a minimal
covering system. We will use this result in the following lemma. For technical reasons, we
first need to show that any covering system with moduli set

{2,3, 5, 6, 7, 10, 15, 30, 14, 21, 35, 42, 70, 105}

is minimal. This leads us to the following lemma.
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Lemma 2.18. If C is a covering system with moduli set

E = {2,3, 5, 6, 7, 10, 15, 30, 14, 21, 35, 42, 70, 105},

then C is a minimal covering system.

Proof. Suppose by contradiction that this is not the case, so that there exists some covering
system C with this set of moduli that is not minimal. Let D be a minimal proper subcover
of C. Since there are exactly seven progressions with moduli divisible by 7 in C, or again
that |C7| = 7, by minimality of D and Lemma 2.2, we have two possible cases :

(1) All progressions in C7 are in D

(2) No progressions in C7 are in D.
In case (b), notice that there are only four moduli in C that are divisible by 5 but not by
7. Since D is minimal, if 5| lcm(D), then |D5| ≥ 5 or |D5| = 0. Since it is impossible to
have five progressions in D5, we deduce that there must be none. The possible moduli in D

are now reduced to those that are 3-smooth, that is {2,3,6}. Once again, there are only two
moduli divisible by 3 here, hence there can not be any of those. Therefore, D can only have
a single progressions modulo 2, and clearly this can not be a covering system. We deduce
that case (b) is impossible.

We now direct our study towards case (a). Note that the set of progressions in D not
divisible by 7, that is those that are 5-smooth, cover some set of residues modulo 30, and
cannot cover them all by the minimality of D. We therefore have that the seven progressions
in D7 cover some arithmetic progressions modulo 30. By minimality of D, note that D7(a) is
a singleton for each a. Furthermore, we know that all seven progressions in D7 must intersect
with any progression modulo 30 that they cover. However, by the Chinese Remainder The-
orem, the progressions modulo 2 · 7 and modulo 15 · 7 can only intersect in one progression
modulo 30, and so our seven progressions in D7 can only cover one progression modulo 30.
This implies that our 5-smooth arithmetic progressions must cover all twenty-nine others.
However, we need all of the 5-smooth progressions to do this. Indeed, suppose we can do it
with some proper subset of them. Taking one we do not have in our proper subset, we can
cover the remaining progression modulo 30. But then, we would have a covering system with
the 5-smooth moduli, which we showed was impossible when studying case (b). Therefore,
D must have all the same arithmetic progressions as C, which contradicts the fact that D

was a proper subcover. We deduce that all the covering systems with the set of moduli E

are minimal. □

We are now ready to show that we have exactly 2!3!5!7! covering systems with the moduli
set E as described above.
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Proposition 2.19. Let

E = {2,3, 5, 6, 7, 10, 15, 30, 14, 21, 35, 42, 70, 105}.

Then H(E) = 2!3!5!7!.

Proof. Let C be the square-free covering system described above, that is

C ={0 (mod 2), 0 (mod 3), 0 (mod 5), 1 (mod 6), 0 (mod 7), 1 (mod 10),

8 (mod 15), 17 (mod 30), 1 (mod 14), 17 (mod 21), 19 (mod 35), 23 (mod 42),

39 (mod 70), 104 (mod 105)}

={(0),(⋆,0),(⋆, ⋆ ,0),(1,1), (⋆, ⋆ , ⋆ ,0),(1, ⋆ ,1),(⋆,2,3),(1,2,2),

(1, ⋆ , ⋆ ,1),(⋆,2, ⋆ ,3), (⋆, ⋆ ,4,5),(1,2, ⋆ ,2),(1, ⋆ ,4,4),(⋆,2,4,6)}.

Let C ′ be some covering system in η(E). Note that by our previous lemma, C ′ is minimal.
We will show that we can reach C from C ′ by a sequence of p-automorphisms. As there are
exactly 2!3!5!7! such automorphisms, we will deduce the result.

We analyse the covering system prime by prime, starting with the prime 2. Whatever the
progression modulo 2 we have in C ′, we can via a 2-automorphism bring it back to 0 (mod 2).

We then look at the prime 3. Via a 3-automorphism, we may suppose we have 0 (mod 3).
Since p-automorphisms preserve minimality, we know that our progression modulo 6 has to
be either 1 (mod 6) or 5 (mod 6). Via a 3-automorphism, we may suppose we have 1 (mod 6).

By minimality, all the remaining progressions must intersect with 5 (mod 6), which means
that their 2-valuation (see definition 2.3) is either 1 or ⋆, and their 3-valuation is either 2 or
⋆.

We now look at the prime 5. The only thing we do not know about the new progressions
introduced at this stage is their 5-valuation. However, we know that they must all have
different 5-valuation. Indeed, they can each cover at most one of the remaining residues
modulo 30, for all 5 residues left to cover modulo 30 are incongruent modulo 5, and if their
5-valuation were the same, they would cover the same residue, which would give us a non-
minimal covering system where one could be removed. Hence they must all have different
5-valuation, and so via a series of 5-automorphisms we may suppose their 5-valuations are
as in C.

Finally, we are left to deal with the prime 7. We introduce at this stage exactly 7
progressions, and they must all intersect with 29 (mod 30) by minimality, hence they must
cover 29 (mod 30). By Lemma 2.17, we must therefore have that they all have a different
7-valuation, and that their 2,3 and 5-valuations are respectively either 1 or ⋆, 2 or ⋆ and 4 or
⋆. Via a series of 7-automorphisms, we may then suppose that their 7-valuations are exactly
as in C. This gives us the result. □

51



We end this section with some graphs that show the structure of our covering system
C and some of its p-automorphisms. We will construct the graphs prime by prime, and a
branch that ends signifies that the arithmetic progression corresponding to the intersection
of the different prime arithmetic progressions that compose its sub branches is covered.

(0)

Z (⋆,0) (⋆, ⋆ ,0)

(1,1) (1, ⋆ ,1) (⋆, ⋆ , ⋆ ,0)

(⋆,2,2) (1, ⋆ , ⋆ ,1)

(1,2,3) (⋆,2 ⋆ ,2)

(1,2, ⋆ ,3)

(⋆, ⋆ ,4,4)

(1, ⋆ ,4,5)

(⋆,2,4,6)

1(2)

2(3)

4(5)

Fig. 2.4. A graph of the square-free covering system

We now discuss this graph a little. We wonder how the p-automorphisms will affect the
structure of the branches. It turns out that they affects them in a very simple way. Applying
the 2-automorphism T2,(01) onto C will simply switch how the two first branches cover, that is
we will have the structure that covers 1 (mod 2) covers 0 (mod 2) instead, and the structure
that covers 0 (mod 2) now cover 1 (mod 2) instead.

We can see that the structure of the covering system is, in essence, the same as before,
just that the roles of 1 (mod 2) and 0 (mod 2) have been switched. This is exactly what
the p-automorphisms do : they give us a new covering system, but the structure of the
system remains essentially the same. If we were to look at 3-automorphisms of our covering
system, the resulting graph would simply change the roles of the three branches modulo 3,
and similarly if we were to look at 5-automorphisms and 7-automorphisms.
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(1)

Z (⋆,0) (⋆, ⋆ ,0)

(0,1) (0, ⋆ ,1) (⋆, ⋆ , ⋆ ,0)

(⋆,2,2) (0, ⋆ , ⋆ ,1)

(0,2,3) (⋆,2 ⋆ ,2)

(0,2, ⋆ ,3)

(⋆, ⋆ ,4,4)

(0, ⋆ ,4,5)

(⋆,2,4,6)

0(2)

2(3)

4(5)

Fig. 2.5. A graph of T2,(01)(C)

2.9. An infinite family of covering systems with the
same property

In the previous section, we showed our covering system had the desired property. This
property essentially came from the way our graph branches out in a nice way, as well as some
technical features. We wish to reproduce this. Let pk denote the k-th prime. The idea will
be to construct covering systems whose corresponding graphs have a similar structure as the
graph above. Notably we will, for j ≥ 4, construct covering systems Cj that have

lcm(Cj) =
j∏

k=1
pk,

and such that their corresponding sets of moduli Ej have the property that

H(Ej) = H∗(Ej) =
j∏

k=1
pk!.
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We will construct these covering systems prime by prime, that is we look at the 2-smooth
moduli, then the 3-smooth, and so on. We start with the case j = 4. Although the covering
system we will construct will be precisely the square-free covering system we just talked
about, it will be useful to look at how exactly we construct it to see how we will do it for
the subsequent ones.

We start with the progression modulo 2. Since we know by a 2-automorphism that it
does not really matter what we choose, we take (0). We then look at the 3-smooth moduli
that have not been used yet, that is 3 and 6. We know that by a 3 automorphism it does not
really matter what we take modulo 3, and so we take (⋆,0). We want our covering system to
be minimal, and so we are left with either (1,1) or (1,2) for our progression modulo 6. By a
3-automorphism, our choice does not really matter, so we take (1,1).

We now look at the 5-smooth moduli that are not 3-smooth. Since we want a minimal
covering system, and we are left to cover 5 (mod 6), we note that the 3-valuation of any
of these new progressions is either 2 or ⋆, and the 2-valuation of these is either 1 or ⋆. We
therefore only have a choice on the 5-valuation of these progressions that are 5-smooth and
divisible by 5. We are in fact even restricted among the 5-valuations : to have a minimal
covering system, they must all be distinct, for if two were to have the same 5-valuation, then
one of them would be redundant. By 5-automorphisms, our choice for the 5-valuations does
not really matter. We therefore add in the progressions (⋆, ⋆ ,0), (1, ⋆ ,1), (⋆,2,2) and (1,2,3).
We are left to cover (1,2,4).

To do this, we take seven progressions divisible by 7. By a similar reasoning as with the
moduli divisible by 5 that were 5-smooth, the only choice we have for these progressions is
their 7-valuation. By p-automorphisms, it does not matter which progression divisible by 7
takes which 7-valuation, hence taking the progressions (⋆, ⋆ , ⋆ ,0),(1, ⋆ , ⋆ ,1),(⋆,2, ⋆ ,3), (⋆, ⋆

,4,5),(1,2, ⋆ ,2),(1, ⋆ ,4,4),(⋆,2,4,6) gives us our covering system.
Note that we proved in the previous section that this covering system C4 satisfies our

desired property. We now construct C5.
To do so, we take the same progressions as in C4, except for the last one we added in,

in this case (⋆,2,4,6). We are now left to cover the progression (1,2,4,6). To do so, we use
progressions that are divisible by 11. We have access to sixteen of these, but we only need
eleven for our covering system. We choose any of these sixteen for our eleven, so long as their
are 2 of the progressions a1 (mod m1) and a2 (mod m2) such that m1m2 = 112 ·2 ·3 ·5 ·7. This
is a technical detail that makes our proof much easier, and it can easily be done. We then
have a covering system, if each of the eleven new progressions has a different 11-valuation,
which we take to be the case. We then construct our Cj, for j ≥ 6, inductively.

Suppose Cj−1 is defined. We define Cj as follows. First take Cj−1 and remove the
progression that is divisible by pj−1 and has pj−1-valuation pj−1 − 1. Then take any pj of the
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2j−1 square-free moduli available that are divisible by pj, so long as there are two of them,
a1 (mod m1) and a2 (mod m2), that have the property that m1m2 = p2

j · Pj−1.
We now need to choose a residue for each of these pj moduli. For each of these moduli

m, we take their pk-valuation to be pk − 1 if k < j and pk|m, and ⋆ if pk ∤ m. We then take
any pj-valuation for them, so long as they are all distinct. This gives us a covering system.
Indeed, let us prove that any sequence Cj of covering systems constructed in this way are
indeed covering systems. Before delving into the proof, let us first look at the key properties
of our Cj’s.

(1) Cj has exactly pj moduli divisible by pj,
(2) The pj-valuation of these arithmetic progressions form a complete set of residues

modulo pj,
(3) The pk-valuation of these arithmetic progressions is either ⋆ or pk − 1, for 1 ≤ k < j,
(4) There are at least two moduli divisible by pj with product p2

j · Pj−1.
With this in mind, let us show that our Cj are indeed covering systems.

Proposition 2.20. Any sequence of collections of arithmetic progressions Cj constructed as
above are all covering systems.

Proof. We prove the result by induction on j ≥ 4. The case j = 4 is a covering system,
as we have already verified. Suppose Cj is a covering system for some j ≥ 4. We wish
to prove that Cj+1 is also a covering system. Note that when we remove the progression
with modulus divisible by pj and that has pj-valuation pj − 1, we are left with only the
progression (1,2,4, . . . ,pi − 1, . . . ,pj − 1) to cover. To cover this progression, we simply need
pj+1 moduli divisible by pj+1, that each have a different residue modulo pj+1, but all intersect
with (1,2,4,...,pi − 1,...,pj − 1). This is exactly what we do in our inductive definition, hence
we have a covering system. □

2.10. The covering systems Cj have the desired property
The goal of this section is to show that the covering systems Cj have moduli set Ej with

H(Ej) =
j∏

k=1
pk!.

The proof will be quite similar to the proof for the case j = 4.

Lemma 2.21. Let {Cj}j≥4 be a sequence of covering systems constructed as above, and let
Ej be the set of moduli appearing in Cj. Then for each j ≥ 4, all the covering systems in
η(Ej) are minimal.
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Proof. We will show the result by induction on j. We already covered the base case j = 4.
Suppose the result is true for some j. We will show that the result is also true for j + 1.
Suppose by contradiction that the result is not true for j + 1, that is that there is some
covering system C in η(Ej+1) that is not minimal. Let D be a proper minimal subcover
of C. Since there are exactly pj+1 progressions in Cpj+1 , we have by Lemma 2.2 and the
minimality of D two possibilities :

(1) All progressions in Cpj+1 are in D.
(2) No progressions in Cpj+1 are in D.

The second case is impossible, as the moduli appearing in D would then be a proper subset
of Ej, contradicting our induction hypothesis.

We will show that the first case is also impossible. Note that the progressions that are
in D \ Dpj+1 cover a set of residues modulo Pj, and cannot cover them all by minimality.
We therefore have that the progressions in Dpj+1 cover at least one arithmetic progression
modulo Pj. However, by Lemma 2.17, we know that all of them must intersect with any
progression modulo Pj that they cover. We know that there are two progressions in Dpj+1 ,
a1 (mod m1) and a2 (mod m2) such that m1m2 = p2

j+1Pj. By the Chinese Remainder
Theorem, these two progressions can only intersect in one progression modulo Pj, hence the
moduli in Dpj+1 cover only one progression modulo Pj. This implies that the progressions
in D \ Dpj+1 must cover the Pj − 1 other progressions modulo Pj. However, to do this, we
need all the progressions in C that are not in Cpj+1 . Indeed, if we could do it without all of
them, then taking one we did not use, we could construct a covering system, contradicting
once again our induction hypothesis. Hence the moduli in D are the same as the moduli in
C, which contradicts the fact that D was a proper subcover of C. Hence, all of the covering
systems in η(Ej) are minimal. □

We are now ready to prove our result.

Proposition 2.22. Let Cj and Ej be defined as above. Then

H(Ej) =
j∏

k=1
pk!.

Proof. Fix j ≥ 4. We will show the result for j. Let C ′ be some covering system in η(Ej).
Note that by our previous lemma, C ′ is minimal. We will show that we can reach Cj from
C ′ by a sequence of p-automorphisms. As there are exactly ∏j

k=1 pk! such automorphisms,
we will deduce the result.

We analyse C ′ prime by prime, starting with 2. Whatever the progression modulo 2
we have in C ′, we can bring it back to 0 (mod 2) via a 2-automorphism. We then look
at the prime 3. Via 3-automorphism, we can suppose we have 0 (mod 3). We know our
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covering system is still minimal as p-automorphisms conserve minimality, hence we have
either 1 (mod 6) or 5 (mod 6). Via a 3-automorphism, we may suppose we have 1 (mod 6).
By minimality, all the remaining progressions must intersect with 5 (mod 6), which means
that their 2-valuation is either 1 or ⋆, and their 3-valuation is either 2 or ⋆. We now look at
our four new progressions that are divisible by 5 and are 5-smooth. Since their 2-valuations
and 3-valuations are already set, we need only look at their 5-valuations, and since by
minimality they must all be distinct, we may, by a sequence of 5-automorphisms, suppose
they are exactly as in C.

For the k-th prime, we have a similar argument. We are left to cover the arithmetic
progression Pk−1 − 1 (mod Pk−1). Therefore, all the new progressions divisible by pk must
intersect with this arithmetic progression by minimality, and so the only thing we may choose
about them is their pk-valuation. However, since they must all have distinct pk-valuations,
we may, via a sequence of pk-automorphisms, have them exactly as in Cj.

Iterating this argument all the way up to pj gives us that we can reach Cj by C ′ through
a series of p-automorphisms, which in turn gives us our result. □

2.11. A troublesome covering system
In this section, we construct a square-free covering system C of multiplicity 1 with moduli

set E such that
lcm(C) = 2 · 3 · 5 · 7 · 11,

but

H(E) >
5∏

k=1
pk!.

We construct our covering system prime by prime. For the first level, we take

0 (mod 2) = (0).

We are left to cover (1) = 1 (mod 2). For the second level, we take

(⋆,0),(1,1).

We are left to cover (1,2) = 5 (mod 6). For the third level, we take

(⋆, ⋆ ,0), (1, ⋆ ,1),(⋆,2,2),(1,2,3).

We are left to cover (1,2,4) = 29 (mod 30). For the fourth, we take

(⋆, ⋆ , ⋆ ,0),(1, ⋆ , ⋆ ,1),(1,2, ⋆ ,2),(⋆,2, ⋆ ,3),(⋆, ⋆ ,4,4).

Notice that after this level, we are left to cover (1,2,4,x,y), for all x ∈ {5,6} and y ∈
{0,1, . . . ,10}. We will cover (1,2,4,x,y) x ∈ {5,6} and y ∈ {0,1, . . . ,7} with the first eight
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progressions, and (1,2,4,x,y) for x ∈ {5,6} and y ∈ {8,9,10} with the last six, using one to
cover each of the six available congruences. For the fifth level, we take

(⋆,⋆,⋆,⋆,0),(1,⋆,⋆,⋆,1),(⋆,2,⋆,⋆,2),(⋆,⋆,4,⋆,3),(1,2,⋆,⋆,4),(1,⋆,4,⋆,5),(⋆,2,4,⋆,6),(1,2,4,⋆,7)

and
(⋆, ⋆ , ⋆ ,5,8),(1, ⋆ , ⋆ ,6,8),(⋆,2, ⋆ ,5,9),(⋆, ⋆ ,4,6,9),(1,2, ⋆ ,5,10),(1, ⋆ ,4,6,10).

This is a covering system. Notice that the structure of this covering system is fundamentally
different than the Cj covering systems we constructed earlier. This leads us to notice that
we may replace (1,2, ⋆ ,5,10) and (1, ⋆ ,4,6,10) by (1,2, ⋆ ,6,10) and (1, ⋆ ,4,5,10), and the
system remains a covering system. However, this is not a p-automorphism, as the sets C7(5)
and C7(6) contain three elements each. This is a change of only one element in each of these
sets. Here is a graph of the covering system to illustrate why the structure of this covering
system is different than that of the previous square-free covering systems we studied.

Fig. 2.6. The first 4 primes in our covering system
(0)

Z (⋆,0) (⋆, ⋆ ,0)

(1,1) (1, ⋆ ,1) (⋆, ⋆ , ⋆ ,0)

(⋆,2,2) (1, ⋆ , ⋆ ,1)

(1,2,3) (⋆,2 ⋆ ,2)

(1,2, ⋆ ,3)

(⋆, ⋆ ,4,4)

1(2)

2(3)

4(5)

5(7)

6(7)

This first graph shows what happens on the first 4 levels of our covering system. We
separate the last level into another graph as it is much more complex, and it is where the
structure really breaks down.
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Fig. 2.7. The prime 11 in our covering system
(⋆, ⋆ , ⋆ ,5,8) (⋆,2, ⋆ ,5,9) (1,2, ⋆ ,5,10)

(⋆, ⋆ ,4, ⋆ ,3) (1, ⋆ ,4, ⋆ ,5)

(⋆,2 ⋆ , ⋆ ,2) (⋆, ⋆ , ⋆ , ⋆ ,0) (1,2, ⋆ , ⋆ ,4) (⋆,2,4, ⋆ ,6)

(1, ⋆ , ⋆ , ⋆ ,1) (1,2,4, ⋆ ,7)

(1, ⋆ , ⋆ ,6,8) (⋆, ⋆ ,4,6,9) (1, ⋆ ,4,6,10)

3(11)

0(11)2(11)

1(11)

5(11)

4(11) 6(11)

7(11)

8(11) 9(11) 10(11)

6(7)

5(7)

1(11)

2(11) 0(11) 4(11) 6(11)

7(11)

5(11)3(11)

8(11) 9(11) 10(11)

The main problem here is that the arithmetic progressions (1,2,4,5,x) and (1,2,4,6,x),
for x = 8,9,10 are covered by two different arithmetic progressions, whereas the arithmetic
progressions (1,2,4,5,x) and (1,2,4,6,x) for x ∈ {1,2,3,4,5,6,7} are covered by only one pro-
gression. It is where they are covered by two different arithmetic progressions that our
previous argument for counting H(E) breaks down, and it is the fundamental difference
in between the structure of this covering system and the previous ones. We would in fact
conjecture that in our case,

H(E) = 23
5∏

i=1
pi!.

2.12. An infinite family of similar covering systems
Let pj denote the j-th prime. We construct here a sequence Cj, j ≥ 5, of square-free

covering systems of multiplicity 1, such that the moduli set Ej of Cj has lcm(Ej) = p1 · · · pj,
but

H(Ej) >
j∏

i=1
pj!.

The idea will be to mimic the structure of the last level of the covering system from the
previous section, but to do it for a larger and larger last prime.

Instead of constructing the covering systems explicitly, we will give the idea of how to
construct these covering systems by constructing such a system with 13 as our largest prime.
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We start out with a very similar approach as the sequence of square-free covering systems
that we constructed earlier. For the later stage, we will simultaneously cover two progressions
modulo 11 in our first few progressions divisible by 13 by taking them to be coprime to 11,
but cover the last couple of residues modulo 13 with progressions divisible by 11. This will
mimic the structure of the last covering system we defined.

We construct our covering systems level by level, startig with the prime 2. We take (0).
We are left to cover (1). For the next level, we take (⋆,0) and (1,1), and we are left to cover
(1,2). For the prime 5, we take (⋆, ⋆ ,0), (1, ⋆ ,1), (⋆,2,2), (1,2,3). We are left to cover (1,2,4).
For the prime 7, we take (⋆,⋆,⋆,0), (1,⋆,⋆,1), (⋆,2,⋆,2), (1,2,⋆,3), (⋆,2,4,4) and (1,⋆,4,5). We
are left to cover (1,2,4,6). For the prime 11, we take (⋆, ⋆ , ⋆ , ⋆ ,0), (1, ⋆ , ⋆ , ⋆ ,1), (⋆,2, ⋆ , ⋆ ,2),
(1,2, ⋆ , ⋆ ,3), (⋆, ⋆ ,3, ⋆ ,4), (1,2,4, ⋆ ,5), (⋆, ⋆ , ⋆ ,6,6), (⋆,2,4, ⋆ ,7) and (1, ⋆ ,4, ⋆ ,8). We are left
to cover (1,2,4,6,9) and (1,2,4,6,10). To do this, we use the prime 13. We start by taking
(⋆, ⋆ , ⋆ , ⋆ , ⋆ ,0), (1, ⋆ , ⋆ , ⋆ , ⋆ ,1), (⋆,2, ⋆ , ⋆ , ⋆ ,2), (1,2, ⋆ , ⋆ , ⋆ ,3), (⋆, ⋆ ,4, ⋆ , ⋆ ,4), (1,2,4, ⋆ , ⋆ ,5),
(⋆, ⋆ , ⋆ ,6, ⋆ ,6), (1,2, ⋆ ,6, ⋆ ,7), (1,2,4,6, ⋆ ,8), (⋆,2,4, ⋆ , ⋆ ,9) and (⋆, ⋆ ,4,6, ⋆ ,10). We are left
to cover (1,2,4,6,9,11), (1,2,4,6,9,12), (1,2,4,6,10,11) and (1,2,4,6,10,12).

To do this, we use four progressions that are divisible by 11 and 13. We take (⋆,⋆,⋆,⋆,9,11),
(1, ⋆ , ⋆ , ⋆ ,9,12), (1,2, ⋆ , ⋆ ,10,11) and (⋆,2, ⋆ , ⋆ ,10,12). This constructs our covering system.

To see that this covering system respects the desired property, note that we may change
out (⋆, ⋆ , ⋆ , ⋆ ,9,11) and (1,2, ⋆ , ⋆ ,10,11) by (⋆, ⋆ , ⋆ , ⋆ ,10,11) and (1,2, ⋆ , ⋆ ,9,11). However,
doing this is not a p-automorphism, as part of C11(9) and C11(10) remains unchanged, while
part of them changes. If we denote the covering system described above by C, this gives us
that

H(C) >
j∏

i=1
pj!.

We now mention how to generalise this construction. We start in a similar manner,
covering all but one progression modulo 2, then all but one progression modulo 2 · 3, all
the way till we cover all but one progression modulo Pk. Then, for the (k + 1)-th prime,
we cover all but two progressions. Finally, to cover our two remaining progression modulo
Pk+1, we first take pk+2 − 2 arithmetic progressions that are divisible by pk+2, but coprime
to pk+1 to cover the first pk+2 − 2 progressions modulo pk+2 intersected with both missing
progressions modulo pk+1, and we take four progressions divisible by pk+1pk+2 to cover the
remaining progressions. This gives us the desired property, in the exact same way as with
our previous example.

We should mention that as our primes get very large, the number of available moduli also
grows very large, so that we may, instead of leaving only two progressions uncovered at the
before last level, leave k progressions uncovered. We can then cover these k progressions with
progressions of our next prime, and in doing so get our number H(E) to be an arbitrarily
large multiple of ∏k

i=1 pk!, so that not only can we get covering systems that have more
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automorphisms than the p-automorphisms, we can in fact get covering systems with an
arbitrarily large number of other automorphisms.
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Chapter 3

The j-th smallest modulus in a covering
system

3.1. An overview of the argument
Before getting into the technical details of our argument, we offer an overview of what

we will be doing throughout this chapter. Our goal is to bound the j-th smallest modulus
in a minimal covering system of multiplicity 1.

To do this, we will need two key results. The first is offered in the next section, which
says that any set of n arithmetic progressions that is not a covering system does not cover
some integer in the interval [1,2n]. The first proof of this result was given by Crittenden and
Vanden-Eynden [7] in 1969. We offer here instead a more modern proof of this result [1]
that was given by Balister, Bollobás, Morris, Sahasrabudhe and Tiba in 2019.

The second result we need is a bound on the minimum modulus of a covering system of
multiplicity s. To obtain this, we adapt the ideas of Balister, Bollobás, Morris, Sahasrabudhe
and Tiba in [4]. Note that while adapting their ideas, there is really not much difference
with the original argument. The reader is encouraged to go look at their exposition of the
argument in their new article from november 2022 [2], or again to go look at their original
exposition of the argument in [4]. Notice that in our adaptation for covering systems of
multiplicity s, all we really need is a couple of union bounds, so that the proof of our bound
for the minimum modulus of a covering system of multiplicity s follows from the method
they use for the minimum modulus of a covering system of multiplicity 1.

To put these ideas together, we consider a minimal covering system. From this covering
system, we remove the first j − 1 moduli. Since by minimality they do not form a covering
system, they do not cover at least one integer in any interval of length 2j−1, hence there is
at least one integer in any interval of length 2j−1 that is covered by the remaining moduli.
This allows us to construct a covering system of multiplicity 2j−1 for which the minimum
modulus is the j-th minimum modulus of our original covering system. Our bound on the



j-th minimum modulus of a minimal covering system of multiplicity 1 then follows from our
bound on the minimum modulus for covering system of multiplicity s. With this in mind,
we get into the technical details of our proof.

3.2. A result of Crittenden and Vanden-Eynden
In this section we give a proof of the result of Crittenden and Vanden-Eynden [7] that

we use for the translation argument in our proof of the bound on the j-th smallest modulus
in a covering system. They proved the following theorem.

Theorem 3.1. Any n arithmetic progressions that cover the first 2n integers form a covering
system.

In 2019 , Balister, Bollobás, Morris, Sahasrabudhe, and Tiba [1] gave another proof of
the result of Crittenden and Vanden-Eynden, using some group theory. We offer their proof
here instead of the original one of Crittenden and Vanden-Eynden, as it is much simpler.

Theorem 3.2. Let

A = {A1, . . . ,Ak} = {a1 (mod m1), . . . , ak (mod mk)}

be a set of k arithmetic progressions. If A covers 2k consecutive integers, then it covers all
of Z.

Proof. Let a be an integer, and let

I = {a + 1,a + 2, . . . ,a + 2k}.

Suppose by contradiction that there is some set

A = {A1, . . . ,Ak} = {a1 (mod m1), . . . , ak (mod mk)}

of k arithmetic progressions that covers all of I, but that does not cover the integers. By a
translation of A by −a, we may assume a = 0. Let q = lcm(A). Since A does not cover the
integers, there exists an integer c, with 0 < c ≤ q, that is not covered by A. Since the first
2k positive integers are covered by our assumption, we have in fact that 2k < c ≤ q. Denote
by s the smallest such integer. Let ω = exp(2πi/q), and let Ω be the multiplicative group of
order q generated by ω. Let ϕ : Z → Ω, ϕ(n) = ωn, and note that ϕ is a homomorphism.

Now, let
Zi = ϕ(ai (mod mi)) = {ωai , ωai+mi ,...,ωai+(q/mi−1)mi},

and notice that |ϕ(Ai)| = q/mi. Let Z = Z1 ∪Z2 ∪ . . .∪Zk. Note that {ωj : 1 ≤ j ≤ 2k} ⊂ Z,
and that ωs /∈ Z. We can see that Z is the set of zeroes of the polynomial
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P (z) :=
k∏

i=1

(
zq/mi − ωaiq/mi

)
.

Expanding this polynomial into a sum of monomials, we find that

P (z) =
∑

J⊂{1,...,k}
cJz

∑
j∈J

q/mj =
∑

J⊂{1,...,k}
cJzαJ ,

where the cJ ’s are complex numbers and αJ = ∑
j∈J q/mj.

Denote by W the linear span of the zαJ over C, and note that the dimension of W is at
most 2k, and that P (z) ∈ W .

To reach a contradiction, we will show that there are 2k + 1 linearly independent poly-
nomials in W , which will contradict the fact that the dimension of W is at most 2k.

For m ∈ Z, denote by
Pm(z) := P (ω−mz).

Note that
Pm(z) =

∑
S⊂{1,...,k}

cJω−mαJ zαJ ,

and so Pm(z) ∈ W . We now show that P0(z),P1(z),...,P2k(z) are linearly independent. To
do so, we will show that for each 0 ≤ l ≤ 2k, we have that if

2k∑
m=ℓ

λmPm(z) = 0, (3.2.1)

then λℓ = 0. Recall that by our definition of s, we have that P (ωs) ̸= 0, and so Pℓ(ωs+ℓ) =
P (ωs) ̸= 0. However, if ℓ < m ≤ 2k, then Pm(ωs+ℓ) = P (ωs+ℓ−m) = 0, as 0 < s + ℓ − m < s,
and s was minimal. This and (3.2.1) imply that λℓPℓ(ωs) = 0, and so that λℓ = 0. This
gives us the result. □

3.3. Constructing covering systems of multiplicity s

In this section, we prove a key lemma that we will use to bound the j-th smallest modulus
in a covering system. The idea is that we may construct a covering system of multiplicity
s from our original covering system from which we removed the j − 1 first moduli. The
following lemma shows precisely how we will do this.

Lemma 3.3. Let C = {a1 (mod m1),a2 (mod m2), . . . ,ak (mod mk)} be a minimal
covering system of multiplicity 1, and suppose m1 < m2 < . . . < mk. Let Cj =
{aj (mod mj),aj+1 (mod mj+1), . . . ,ak (mod mk)}. Then the set

C ′ =
2j−1⋃
ℓ=1

(
Cj + ℓ

)
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is a covering system of multiplicity ≤ 2j−1 with minimum modulus mj.

Proof. By Theorem 3.2, we know that any n arithmetic progressions that do
not cover the integers do not cover at least one integer in [1,2n]. By minimality,
{a1 (mod m1), . . . ,aj−1 (mod mj−1)} is a set of j − 1 arithmetic progressions that do
not cover the integers, and so we know that they do not cover at least one integer in
[1,2j−1]. In fact, we have that they do not cover at least one integer in any interval of
the form [x,x + 2j−1 − 1], where x is an integer. Indeed, if this were not the case, then
a1 − x + 1 (mod m1), . . . ,aj−1 − x + 1 (mod mj−1) would be a set of j − 1 arithmetic
progressions that do not cover the integers, but cover all the integers in [1,2j−1]. This means
that Cj covers at least one integer in any interval of length 2j−1.

Suppose now that C ′ is not a covering system. Then there exists some integer x that is
not covered by C ′. This means that for each ℓ ∈ {1, . . . ,2j−1}, x is not covered by Cj + ℓ,
which in turn implies that Cj does not cover x− l, for ℓ ∈ {1, . . . ,2j−1}. This contradicts the
fact that Cj covers at least one integer in any inverval of length 2j−1, and so C ′ is a covering
system. The fact that it is 2j−1-distinct and that it has minimum modulus mj follows from
the definition. □

In general, we only need to find some value of s for which there exists a covering system
of multiplicity s with the same minimum modulus as the j-th minimum modulus in our
covering system. We do not know if the way we did this in the lemma above is the best way
to do this. Indeed, we could possibly introduce into our covering system of multiplicity s

some moduli which do not appear in the original covering system, but that are greater than
the j-th smallest modulus, in order to get a smaller value of s. However, this can get very
complicated, which is why we opted for the simpler method here that yields a bound in a
fairly easy manner.

3.4. Towards covering systems of multiplicity s

In this section, we slightly modify the definitions in [4] to allow for covering systems of
multiplicity s, instead of simply distinct.

We start with a finite set of arithmetic progressions A = {a1 (mod d1), . . . ,an (mod dn)}.
Denote by D = D(A) the multiset of moduli m that appear in A. Our goal is to show that
the density of the set of uncovered integers

R = Z \ A

is greater than 0. Instead of immediately considering all the progressions, we instead let
them appear according to the primes that divide them. Let Q = lcm[D], and let p1, . . . ,pJ
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be the distinct prime divisors of Q. We may write

Q =
J∏

k=1
pνk

k ,

where νk is the pk-adic valuation of Q. For j ∈ {1,2, . . . ,J}, we define

Qj :=
j∏

k=1
pνk

k ,

and
Aj := {a (mod m) ∈ A : m|Qj}.

We adopt the convention that Q0 = 1 and that A0 = D0 = ∅. We also define

Dj := {d ∈ D : d|Qj},

and
Rj := Z \ Aj.

Denote by Nj = Dj \ Dj−1, and

Bj = Aj \ Aj−1 =
⋃

1≤i≤n
P +(di)=pj

{
a mod Q : a ≡ ai mod di

}
,

so that Rj = Rj−1 \ Bj. We may view Rj as a subset of Z/QjZ, or even of Z/QZ, and it
will be useful to do so, as the density of Rj is the measure of Rj in the uniform probability
measure over ZQj

.
The most crucial definition is that of certain probability measures P0,P1, . . . ,PJ on Z/QZ,

which we construct exactly as in [4] in terms of some free parameters δ1, . . . ,δJ ∈ [0,1/2].
Let πj : Z/QZ → Z/QjZ be the natural projection for all j ∈ {0,1, . . . ,J}, where Q0 = 1.

In addition, let
Fj(x) := {x′ ∈ Z/QZ : πj(x′) = πj(x)},

so that |Fj(x)| = Q/Qj. The measure Pj will be Qj-measurable by construction, meaning
that it will have the property that

Pj(x) = Pj(x′) whenever πj(x′) = πj(x).

Let
αj(x) := |Fj−1(x) ∩ Bj|

|Fj−1(x)| for all x ∈ Z/QZ,

and note that αj is a Qj−1-measurable function, meaning that αj(x′) = αj(x) if πj−1(x′) =
πj−1(x). We then define Pj on the congruence class x ∈ Z/QZ as follows:

• If αj(x) < δj, we let

Pj(x) := Pj−1(x) ·
1x/∈Bj

1 − αj(x) .
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• If αj(x) ≥ δj, we let

Pj(x) := Pj−1(x) ·



αj(x) − δj

αj(x)(1 − δj)
if x ∈ Bj,

1
1 − δj

if x /∈ Bj.

Note that the probability measures are constructed so that Pi(Bi) is small, but without
changing the measure of Bj, for j < i. It follows that the measure of what is covered by our
arithmetic progressions is at most ∑i Pi(Bi), and so if this quantity is less than 1, our set
of arithmetic progressions do not form a covering system. Instead of doing this directly, we
will instead be using the method of moments, which we expand upon in more detail in the
following section.

We now show a couple of simple lemmas that will be useful for what follows.

Lemma 3.4. If S is a union of congruence classes modulo Qi−1, then Pi(S) = Pi−1(S).

Proof. Let x ∈ Z/Qi−1Z. We do a simple computation starting from the definition, where
we separate the x ∈ Z/Qi−1Z into two categories :

(1) αi(x) ≤ δi,
(2) αi(x) > δi.

In both cases, we may write Pi(x) = ∑
y∈Fi(x) Pi(y). For the first case :

Pi(x) =
(

αi(x) · 0 + (1 − αi(x)) · 1
1 − αi(x) ·

)
Pi−1(x) = Pi−1(x).

In the second case :

Pi(x) =
(

αi(x) · αi(x) − δi

αi(x)(1 − δi)
+ (1 − αi(x)) 1

1 − δi

)
Pi−1(x) = Pi−1(x).

Summing these over all x ∈ S, we get the desired result. □

We then look at our second lemma.

Lemma 3.5. For any S ⊂ Z/QZ, we have that

Pi(S) ≤ 1
1 − δi

· Pi−1(S).

Furthermore, if S ⊂ Bi, we have that

Pi(S) ≤ Pi−1(S).
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Proof. Both results follow directly from the definition when S = {y}, and so for any S by
additivity. □

Given a function f : ZQ → R≥0, we define the expected value of f in relation to Pi to be

Ei[f(x)] =
∑

x∈ZQ

f(x)Pi(x).

We can deduce a couple of results immediately on these expected values by using the two
previous lemma. First of all,

Ei[f(x)] ≤ 1
1 − δi

Ei−1[f(x)].

Furthermore, if f has support over Bi, then Ei[f(x)] ≤ Ei−1[f(x)], and if f is Qi−1-
measurable, then Ei[f(x)] = Ei−1[f(x)].

3.5. Bounding the moments is sufficient
In this section, we offer a proof of a theorem in section 3 of [4]. We put ourselves in the

context of the previous section, in the sense that we suppose that we have a system A of
arithmetic progressions, and M(A) = s. We let δ1,...,δJ be some parameters that will be
chosen later to either optimise or simplify some computations. Finally, we suppose that the
αi and the Pi are defined as above.

We now introduce a few new definitions. We will denote by

M
(1)
i := Ei[αi(x)] and M

(2)
i := Ei[αi(x)2].

We also introduce the following multiplicative function, which is defined over the factors d

of Q.

ν(d) =
∏
pk|d

(
1

1 − δk

)
.

Our goal for the rest of the section is to prove the following lemma.

Lemma 3.6. Let A be a finite set of arithmetic progressions, and let δ1,.., δn ∈ [0,1/2]. If

η :=
n∑

i=1
min

{
M

(1)
i−1,

M
(2)
i−1

4δi(1 − δi)

}
< 1,

then A is not a covering system. Furthermore, the uncovered set R has density at least

P0(R) ≥ (1 − η) exp
(

− 2
1 − η

∑
d∈D

ν(d)
d

)
.
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3.5.1. Proof of Lemma 3.6

We start of this section with a few lemmas that will be usefull in proving our lemma.
First off, Lemma 3.3 from [4] follows as is :

Lemma 3.7.

Pi(Bi) ≤ min
{

M
(1)
i−1,

M
(2)
i−1

4δi(1 − δi)

}

Proof. We show that the left hand side of the equation is always smaller than either of the
parts of the right hand side. For the first, we have the result directly from the definition of
the αi’s and Lemma 3.5. For the second, we use the fact that a2

4d
≥ max{0,a − d}, which can

be seen to hold for all a,d > 0 by rearranging the terms in the inequality (a − 2d)2 ≥ 0. We
then find by the definitions of αi and Pi that

Pi(Bi) =
∑

x∈ZQi−1

max
{

0,
αi(x) − δi

αi(x)(1 − δi)

}
· Pi−1(Fi(x) ∩ Bi)

= 1
1 − δi

∑
x∈ZQi−1

max{0,αi(x) − δi} · Pi−1(x)

≤ 1
1 − δi

∑
x∈ZQi−1

αi(x)
4δi

· Pi−1(x) = M
(2)
i−1

4δi(1 − δi)
,

which gives us the result. □

The ease in the use of the previous lemma in showing the first part of Lemma 3.6 comes
from the fact that we suppose that this quantity is lesser than or equal to 1. In practice,
the larger s get, the larger our minimum modulus needs to be to assure that we have this
condition. We also use Lemma 3.4 and 3.5 from [4] as they are.

Lemma 3.8. For each 0 ≤ i ≤ n, and all b,d ∈ Z such that d|Q, we have that

Pi(b + dZ) ≤ 1
d

∏
pk|d,k≤i

1
1 − δk

= ν((d,Qi))
d

.

Proof. We prove this by induction on i. Since P0 is the uniform measure, P0(b+dZ) = 1/d.
Let 1 ≤ i ≤ n, and suppose the result is true for Pi−1. We analyse two cases : either pi|d,
either not. In the first case, by Lemma 3.5 and our induction hypothesis, we find that

Pi(b + dZ) ≤ 1
1 − δi

Pi−1(b + dZ) ≤ 1
d

∏
pk|d,k≤i

1
1 − δk

In the second case, we write d = mℓ, where m = (d,Qi) = (d,Qi−1). We then have that
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Pi(b + dZ) = Pi(b + mZ)
ℓ

= Pi−1(b + mZ)
ℓ

≤ 1
ℓm

∏
pk|d,k<i

1
1 − δk

= 1
d

∏
pk|d,k≤i

1
1 − δk

,

Which gives us the desired result. □

We define the distorsion ∆i(x) of a point x ∈ ZQi
by

∆i(x) := max
{

0, log
(
Pi(x)
P0(x)

)}
.

We then find the following bound on the average distortion.

Lemma 3.9. For each 0 ≤ i ≤ n, we have that

Ei[∆i(x)] ≤ 2
∑

d∈Di

ν(d)
d

.

Proof. We first show that
log

(
Pk(x)
Pk−1(x)

)
≤ 2 · αk(x).

Indeed, we have this result, as Pk−1(x)
Pk(x) ≥ max{1 − αk(x),1 − δk}, and − log(1 − z) ≤ 2z for

all z ≤ 1/2. It follows that

Ei[∆i(x)] ≤
i∑

k=1
Ei

[
max

{
0, log

(
Pk(x)
Pk−1(x)

)}]
≤ 2 ·

i∑
k=1

Ei[αk(x)].

Now, for each 1 ≤ k ≤ i,

Ei[αk(x)] = Ek−1[αk(x)] = Pk−1(Bk),

since αk is Qk−1-measurable. Furthermore, by the previous lemma and a union bound, we
find that

Pj−1(Bj) ≤
∑

A∈Bk

Pk−1(A) ≤
∑

d∈Nk

ν((d,Qk−1)
d

≤
∑

d∈Nk

ν(d)
d

,

and so we have that

Ei[∆i(x)] ≤ 2 ·
i∑

k=1

∑
d∈Nk

ν(d)
d

≤ 2 ·
∑

d∈Di

ν(d)
d

.

This gives us the result. □

We are now ready to prove Lemma 3.6.

Proof. The first part of our lemma follows immediately from a union bound, Lemma 3.4,
Lemma 3.7 and the definition of η. Indeed,
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1 − Pn(R) ≤
n∑

i=1
Pn(Bi) ≤

n∑
i=1

Pi(Bi) ≤ η,

and so, since η < 1, we have that

Pn(R) ≥ 1 − η > 0

The second part of the lemma uses 3.9, as well as the convexity of the exponential function.
We first find that by the definition of ∆n(x),

P0(R) = E0[1x∈R] ≥ En[1x∈R exp(−∆n(x))],

and so by convexity and since ω = Pn(R) · En[∆n(x)|x ∈ R] ≤ En[∆n(x)], we get that

En[1x∈R exp(−∆n(x))] = ω ≥ Pn(R) · exp(−En[∆n(x)|x ∈ R) ≥ Pn(R) · exp
(

− En[∆n(x)]
Pn(R)

)
.

Then by Lemma 3.9, and since Pn(R) ≥ 1 − η, we find that

P0(R) ≥ (1 − η) exp
(

− 2
1 − η

∑
d∈D

ν(d)
d

)
,

which gives us the lemma. □

3.5.2. Bounding the first and second moments

We now proceed with bounding M
(1)
j and M

(2)
j . Doing so is the context of Theorem 3.2

in [4], but this result is only valid for systems of congruences of multiplicity 1. We thus need
to generalize it. This is rather straightforward, and we describe how to do it below.

Lemma 3.10. Assume the above notation. For x ∈ Z/QZ and j ∈ {1,2, . . . ,J}, we have

αj(x) ≤
νj∑

r=1

∑
g|Qj−1

∑
1≤i≤n
di=gpr

j

1x⊆ai+gZ

pr
j

.

Proof. Note that |Fj−1(x)| = Q/Qj−1 and that we may write x = c + QZ for some c ∈ Z.
Hence,

αj(x) = |Fj−1(x) ∩ Bj|
Q/Qj−1

≤ Qj−1

Q

∑
1≤i≤n

P +(di)=pj

∑
a mod Q

a≡c mod Qj−1
a≡ai mod di

1,
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by the union bound. For each i with P +(di) = pj we may write uniquely di = gpr
j with

g|Qj−1 and 1 ≤ r ≤ νj. We thus find that

αj(x) ≤ Qj−1

Qj

νj∑
r=1

∑
g|Qj−1

∑
1≤i≤n
di=gpr

j

∑
a mod Q

a≡c mod Qj−1
a≡ai mod di

1.

For the congruences a ≡ ai mod di and a ≡ c mod Qj−1 to be compatible, we must have
c ≡ ai mod di or, equivalently, that x is a subset of ai + gZ. Under this assumption, a lies
in some congruence class mod Qj−1p

r
j , so there are Q/(Qj−1p

r
j) choices for a mod Q. This

completes the proof of the lemma. □

Lemma 3.11. Assume the above notation, let s = m(A), and let j ∈ {1,2, . . . ,J}.
(1) If δi = 0 for i ∈ {1, . . . ,j − 1}, then

M
(1)
j ≤ s

∑
d≥d1

P +(d)=pj

1
d

.

(2) We have

M
(2)
j ≪ s2(log p)6

p2 .

Proof. We treat both parts simultaneously for now. Let k ∈ {1,2} and let us write p = pj

for simplicity. By Lemma 3.10, we have

Ej−1[αk
j ] ≤

∑
1≤r1,...,rk≤νj

∑
g1,...,gk|Qj−1

∑
1≤i1,...,ik≤n
diℓ

=gℓprℓ ∀ℓ

Pj−1
(⋂k

ℓ=1(aiℓ
+ gℓZ)

)
pr1+···+rk

.

Since di ≥ d1 for all i, we must have gℓp
rℓ ≥ d1 for all ℓ. Given r1, . . . ,rk and g1, . . . ,gk, there

are at most sk choices for i1, . . . ,ik with diℓ
= gℓp

rℓ (because we have assumed that A has
multiplicity s). For each such choice of i1, . . . ,ik, the Chinese Remainder Theorem implies
that the set ⋂k

ℓ=1(aiℓ
+ gℓZ) is either empty, or an arithmetic progression modulo [g1, . . . ,gk].

Hence, Lemma 3.8 implies that

Pj−1

(
k⋂

ℓ=1
(aiℓ

+ gℓZ)
)

≤
∏

pi|[g1,...,gk](1 − δi)−1

[g1, . . . ,gk] , (3.5.1)

for each of the ≤ sk possible values of i1, . . . ,ik. We thus conclude that

Ej−1[αk
j ] ≤ sk

∑
1≤r1,...,rk≤νj

∑
g1,...,gk|Qj−1
gℓprℓ ≥d1 ∀ℓ

∏
pi|[g1,...,gk](1 − δi)−1

[g1, . . . ,gk]pr1+···+rk
.

When k = 1 and δi = 0 for all i < j, this readily proves part (a) of the lemma.
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Now, let us consider the case when k = 2 and prove part (b). Here, there are no
conditions on the parameters δi except for knowing that δi ∈ [0,1/2] for all i. In particular,∏

pi|[g1,g2](1 − δi)−1 ≤ 2ω([g1,g2]). Therefore,

Ej−1[α2
j ] ≤ s2 ∑

1≤r1,r2≤νj

∑
g1,g2|Qj−1

2ω([g1,g2])

[g1,g2]pr1+r2
≤ s2

(p − 1)2

∑
g1,g2|Qj−1

2ω([g1,g2])

[g1,g2]
.

The function N ∋ m → #{(g1,g2) ∈ N2 : [g1,g2] = m} is multiplicative and takes the value
2ν + 1 on each ν-th prime power. Hence,

∑
g1,g2|Qj−1

2ω([g1,g2])

[g1,g2]
=
∏
i<j

(
1 + 6

pi

+ O

(
1
p2

i

))
≤ exp

{∑
i<j

6
pi

+ O

(
1
p2

i

)}
≪ (log p)6

by the inequality 1 + t ≤ et and the second part of Theorem 0.3 . This completes the proof
of part (b) of the lemma too. □

3.5.3. Proof of Theorem 1.3

It remains to prove Theorem 1.3. We will need the following simple consequence of
Theorem 16.3 in [20]:

Lemma 3.12. Let x ≥ y ≥ 2 be such that y ≥ (log x)3, and let u = log x/ log y. Then we
have that ∑

d>yu

P +(d)≤y

1
d

≪ log y

uu
.

Now, let us complete the proof of Theorem 1.3. In the notation of the previous sections,
we must show that if d1 > exp(c log2(s + 1)/ log log(s + 2)), then A that does not cover Z.
In view of Lemma 3.6, it suffices to show that

η :=
∑

1≤j≤J

min
{

M
(1)
j ,

M
(2)
j

4δj(1 − δj)

}
< 1.

Let y = Cs3, where C is a constant that will be chosen to be large enough, and let k =
max{j ∈ [1,J ] ∩ Z : pj ≤ y}. We set δi = 0 for i ≤ k and δi = 1/2 for i > k, so that

η ≤
∑

1≤j≤k

M
(1)
j +

∑
k<j≤J

M
(2)
j =: η1 + η2.

Then, Lemma 3.11(b) and Chebyshev’s estimate [20, Theorem 2.4] imply that

η2 ≪
∑
p>y

s2(log p)6

p2 ≍ s2(log y)5

y
.

If C is large enough, then η2 < 1/2. From now on, we fix such a choice of C.
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It remains to bound η1. Applying Lemma 3.11(a) and our assumption that

d1 > x := exp{c log2(s + 1)/ log log(s + 2)},

we find that
η1 ≤ s

∑
d>x

P +(d)≤y

1
d

.

If c is large enough compared to C (which we have already fixed), then Lemma 3.12, applied
with

u = log x

log y
= c log2(s + 1)

log(Cs3) log log(s + 2) ∼ c log s

log log s
when s → ∞,

implies that the sum over d is < 1/(2s). Hence, η1 < 1/2, and thus η ≤ η1 + η2 < 1, as
needed. This shows that if d1 > x, then A does not cover Z, thus completing the proof of
Theorem 1.3.

3.6. Minimum modulus theorems
In this section, we prove the three theorems we discussed in the introduction of this

thesis. Firstly, from what we proved in the previous sections, we get our first theorem.

Theorem 3.13. The minimum modulus of a covering system of multiplicity s is bounded.
More precisely, there exists a constant c such that the minimum modulus in a covering system
of multiplicity s is smaller than

exp
(

c
log2(s + 1)

log log(s + 2)

)
.

Using this theorem, we can deduce the following theorem.

Theorem 3.14. The minimum modulus of a covering system of multiplicity 1 of the arith-
metic progression a (mod m) is bounded. More precisely, there exists a constant C such that
the minimum modulus in a covering system of multiplicity 1 of the arithmetic progression
a (mod m) is smaller than

exp
(

C
log2(m + 1)

log log(m + 2)

)
.

Proof. Let C be a covering system of multiplicity 1 of the arithmetic progression a (mod m).
Notice that

C ′ =
m−1⋃
i=0

(
C + i

)
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is an m-covering system of multiplicity 1 of the integers. Indeed, let b ∈ Z be an integer.
Then there exists some i, 0 ≤ i ≤ m − 1 such that b − i ≡ a (mod m). Then b − i is covered
in C, so that there exists some progression a1 (mod m1) ∈ C such that b − i ≡ a1 (mod m1).
But then b ≡ a1 + i (mod m1), and so b is covered by a congruence in C + i, which is also
a congruence in C ′. To see that it is m-distinct, it suffices to notice that each moduli in C

appears exactly m times in C ′ by definition.
Therefore, by our previous theorem, the minimum modulus in C ′ is bounded by

exp
(

c
log2(m + 1)

log log(m + 2)

)

for some constant c. However, the minimum modulus in C ′ is also the minimum modulus in
C, hence we get the result. □

The proof of our next theorem will follow in a similar fashion.

Theorem 3.15. The n-th minimum modulus in a minimal covering system of multiplicity
1 is bounded. More precisely, there exists a constant c such that the n-th minimum modulus
in a minimal covering system of multiplicity 1 is smaller than

exp
(

c
n2

log(n + 1)

)
.

Proof. By Lemma 3.3, we know that the n-th minimum modulus of a minimal covering
system of multiplicity 1 is the minimum modulus of some covering system of multiplicity
2n−1. Hence, there is a constant c such that this modulus is bounded by

exp
(

c
log(2n−1 + 1)2

log log(2n−1 + 2)

)
.

However,

exp
(

c
log2(2n−1 + 1)

log log(2n−1 + 2)

)
≤ exp

(
c′ n2

log(n + 1)

)
for an appropriate choice of c′, which gives us the result. □
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