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Résumé

La médecine personnalisée promet des soins adaptés à chaque patient. Cependant, l’ap-
prentissage automatique appliqué à cette fin nécessite beaucoup d’améliorations. L’évalua-
tion des modèles est une étape cruciale qui nécessite du travail pour amener à un niveau
acceptable pour son utilisation avec des participants. Actuellement, les performances sur
les ensembles de données biomédicales sont évaluées à l’aide d’un découpage intra-sujet ou
inter-sujet. Le premier se concentre sur l’évaluation des participants présents à la fois dans les
ensembles d’entraînement et de test. Ce dernier sépare les participants pour chaque ensemble.
Ces termes sont respectivement synonymes de fractionnement aléatoire et par sujet. Deux
méthodes principales se présentent comme des solutions pour obtenir des performances de
franctionnement aléatoires lors d’entraînement de méthodes par sujet, calibration et sans ca-
libration. Alors que la calibration se concentre sur l’entraînement d’un petit sous-ensemble
de participant non vues, les méthodes sans calibration visent à modifier l’architecture du
modèle ou les traitements préliminaire pour contourner la nécessité du sous-ensemble. Ce
mémoire étudiera la calibration non paramétrique pour ses propriétés d’indépendance de
la modalité. L’article présenté détaillera cette enquête pour combler l’écart de performance
sur un ensemble de données d’essais de marche sur des surfaces irrégulières. Nous détermi-
nons que quelques cycles (1-2) de marche sont suffisants pour calibrer les modèles pour des
performances adéquates (F1 : +90%). Avec accès à des essais de cycle de marche supplémen-
taires (+10), le modèle a atteint à peu près les mêmes performances qu’un modèle formé
à l’aide d’une approche de fractionnement aléatoire (F1 : 95-100%). Suivant les objectifs
de la médecine personnalisée, des voies de recherche supplémentaires sont décrites, telles
qu’une méthode alternative de distribution de modèles qui s’adapte aux étapes de recherche
tout en réduisant les coûts de calcul pour les développeurs de modèles. Nous constatons
que l’étalonnage est une méthode valable pour surmonter l’écart de performance. Les ré-
sultats correspondent aux découvertes précédentes utilisant l’étalonnage pour obtenir des
performances robustes.

Mots clés : Médecine personnalisée, Apprentissage Machine, Apprentissage Profond, Éva-
luation Intra/Inter-Sujet, Fractionnement Aléatoire/Par sujet
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Abstract

Personalized medicine promises care tailored to each patient; however, machine learning
applied to this end needs much improvement. Evaluation of models is a crucial step which
necessitates attention when utilized with participants. Currently, performance on biomed-
ical datasets is evaluated using either intra-subject or inter-subject splitting. The former
focuses on the evaluation of participants present in both training and testing sets. The lat-
ter separates participants for each set. These terms are synonymous with random-wise and
subject-wise splitting, respectively. Two main methods present themselves as solutions to
achieving random-wise performance while training on a subject-wise dataset split, calibra-
tion and calibration-free methods. While calibration focuses on training a small subset of
unseen data trials, calibration-free methods aim to alter model architecture or pre-processing
steps to bypass the necessity of training data points. This thesis investigates non-parametric
calibration for its modality-agnostic properties. The article presented details this investiga-
tion at bridging the performance gap on a dataset of gait trials on irregular surfaces. We
determine few (1-2) gait cycles are sufficient to calibrate models for adequate performance
(F1:+90%). With access to additional gait cycle trials, the model achieved nearly the same
performance as a model trained using a random-split approach (F1:95-100%). Following the
goals of personalized medicine, additional research paths are outlined, such as an alternative
model distribution method which fits with research steps while reducing computational costs
for model developers. We find that calibration is a valid method to overcome the perfor-
mance gap. The presented results correspond with previous findings by using calibration to
achieve robust performance.

Key Words: Personalized medicine, Machine Learning, Deep Learning, Intra/Inter-
subject evaluation, Random/Subject-wise split
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Chapter 1

Introduction

At the time of writing this thesis, machine learning (ML) in clinical use cases is very much
in its infancy. According to Weissler et al. (2021), the frequency of publications relating to
ML and clinical research started taking off in 2012. In 2018, just under 100 publications were
submitted, doubling in 2019. As programming becomes ever more present in the lives of the
population, the power of ML becomes accessible to a more significant number of people. As
researchers in all fields see the potential of ML, its usage and subsequent research are only
expected to grow.

Adopting ML models in clinical settings will benefit clinicians and patients (Weissler
et al. 2021; Deo 2015). Faster diagnosis and treatment would benefit the patients. Off-site
systems will help cases where a patient’s movement is hindered. Rehabilitation could be per-
formed in the comfort of the patient’s home without compromising the quality of supervision.
Continuous monitoring in critical times would allow quicker responses for patients needing
medical attention. Additionally, help from computing systems would unburden clinicians,
allowing for better management of their attention toward patients in immediate need.

However, medicine aided by ML is not without its counterpart of potential danger. Since
models potentially impact the diagnosis and treatment of real people, mistakes are extremely
costly; several challenges stand in the way of greater adoption (c.f. Watson and al. 2019).
Explainable artificial intelligence is a required field for clinical doctors, mainly to have more
confidence in the systems deciding patients’ future (Obermeyer and Emanuel 2016). Barriers
to the adoption of these systems are not to be underestimated. If the friction for usage is
too great, researchers and clinicians will favour traditional methods. Focus on making these
systems intuitive, easy to adopt, and filling the needs of the platform’s users will be crucial
(Patel et al. 2008). Most importantly, as mistakes are bound to happen, researchers must
put safety nets around the models to catch errors caused for multiple reasons.

The future of AI-augmented medicine is inspiring for its various possibilities. With much
work to bring ML to an acceptable level of rigour for clinical use, this work attempts to



advance progress. For assurance and trust in these models, evaluation is needed. Indeed,
two modes of assessment present themselves in a repeated-measures study of participants.
Recorded trials might be split across both training and testing sets. This method is commonly
used in ML theory. In the biomechanics literature using ML methods, it is referred to as
random-wise or record-wise splitting or intra-subject evaluation.

Additionally, the participants could be subject to splitting, impacting the distribution
of trials. The article presented in this thesis, submitted to the Journal of Biomechanics
(Accepted as of April 2023), will resolve the performance discrepancy on a dataset pairing
inertial measurement unit measuring gait on various irregular surfaces.

While models trained via random-wise splits perform better on a test set, ML users may
resolve the performance gap by calibrating from new individuals. Additionally, this presents
itself as the more realistic scenario in the face of model development in research. Integrating
model distribution requires less work, allowing public access to the research model develop-
ment workflow. While feasible, using the former method with the intent of public access,
i.e. new participants, requires a computing burden and setup of software infrastructure.
Researchers or clinicians utilizing ML methods might need these programming skills. The
additional calibration step becomes a step at another level than the model’s initial training.
It thus becomes embedded in the life cycle of model distribution to users. We may formulate
additional life cycle diagrams with hypothesized benefits by reasoning about the process
graphically and modelling for diminishing calibration validity.

1.1. Motivation
This section presents the motivation for this work. Broadly, the next step in the medical

revolution is available in tandem with ML models, which can run on multiple available devices
to people. Following its predecessor, evidence-based medicine, which looks for treatments
by tracking the success rates in various populations, personalized medicine aims to tailor
treatments for each user. This paradigm fits perfectly with the current availability of devices
which can run powerful predictive models.

1.1.1. Problem setting: Irregular Surface Classification

The problem setting chosen for this thesis is the classification of various surfaces based
on the collected inertial measurement data from inertial measurement units (IMUs) attached
at multiple points on the lower half of the participants. This particular task was chosen as
it is essential for numerous reasons.

Throughout an average day, humans walk on highly heterogeneous surfaces. The surfaces
vary in complexity (e.g. concrete vs grass/gravel) and incline (e.g. flat vs stairs). The
adaptive walking patterns we employ for each surface differ significantly (Grant et al. 2022).

11



These gait patterns are thus critical biomarkers. Biomechanical clinicians can leverage
this complex data to tailor treatment. Furthermore, gait on a subset of surfaces might yield
tell-tale signs of potential walking habits, which might lead to future injuries (Moy et al.
2013). Thus, stratifying a patient’s daily step count per surface is precious information for
an individual’s health.

Each person is a highly complex individual, and this gait changes throughout one’s
lifetime (Sutherland et al. 1980). To accurately characterize individuals (e.g. for their step
count), investigation of personalized modelling is crucial.

1.1.2. Personalized Medicine

The newest framework in medicine was preceded by evidence-based medicine. Evidence-
based medicine is a systematic approach to medical practice that incorporates the best
available evidence from research studies, clinical experience, and patient values when mak-
ing decisions about diagnosis and treatment. It is a medical practice combining clinical
expertise with the best evidence from clinical studies and patient values. This approach
is used to ensure that medical decisions are based on the most reliable evidence available
and help healthcare practitioners provide the safest and most effective care for their pa-
tients. Evidence-based medicine is used in healthcare settings to ensure that treatments and
interventions are as effective and efficient as possible.

Several drawbacks are associated with evidence-based medicine. Firstly, evidence-based
medicine is limited by the available evidence. Unfortunately, not all medical treatments
have been studied extensively, making it challenging to conclude their effectiveness (Möller
2022). Secondly, evidence-based medicine is expensive. Studies must be conducted, and
the cost of doing so is often passed on to the patient through higher insurance premiums
or out-of-pocket expenses (Straus and McAlister 2000). Next, the data used in evidence-
based medicine often needs to be more reliable and complete. This can lead to incorrect
conclusions, and the wrong treatment is prescribed (James 2013). Lastly, evidence-based
medicine can be seen as an attempt to replace clinical judgment with a set of rules. While
evidence-based medicine has benefits, it can also be seen as limiting a physician’s discretion
and flexibility (White and Taylor 2002).

Personalized medicine aims to decrease these cons while offering different pros. It is a
form of healthcare that provides personalized treatments and therapies to individuals based
on their unique genetic makeup and health history. This approach to healthcare allows for
tailoring treatments to the needs of the individual patient rather than relying on a one-size-
fits-all approach (Hamburg and Collins 2010). Personalized medicine is a growing field that
is making strides to improve the quality and efficiency of healthcare. Its use of genetic and
genomic data allows researchers to understand the underlying causes of disease better and
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to develop more effective treatments with fewer side effects. By utilizing this approach, it is
hoped that patients will have better outcomes and improved quality of life.

Utilizing this different paradigm comes with various benefits. Firstly, personalized
medicine can help doctors tailor treatments to an individual’s genetic makeup, improv-
ing treatment outcomes (Offit 2011). Secondly, by providing the proper treatment for the
right person, personalized medicine can help reduce inefficiencies in the healthcare system
(Ahmed et al. 2020). Additionally, by better understanding a person’s genetic profile and
risk factors, personalized medicine can provide predictive power to help doctors make more
informed decisions (Drake, Cimpean, and Torrey 2022). Next, by better targeting treatments
and reducing inefficiencies, personalized medicine can help save money and lower care costs
(Jakka and Rossbach 2013). Finally, by assisting people in receiving the right treatments,
personalized medicine can improve many patient’s quality of life (Phillips et al. 2014).

The adoption of personalized medicine also comes with its share of drawbacks. First,
personalized medicine raises ethical questions about using its information (Chadwick and
O’Connor 2013). Second, despite the promises of personalized medicine, its results’ accuracy
is only sometimes reliable (Volm and Efferth 2015). Last, while personalized medicine is still
in its early stages, there is a lack of evidence to show that it is more effective than conventional
treatments (Meckley and Neumann 2010; Ginsburg and Kuderer 2012; Conti et al. 2010).

Hopefully, this chapter has clarified that the focus on individualized and calibrated models
fits the vision of personalized medicine. The usage of ML for personalized medicine-oriented
goals is a fruitful path.

1.2. Objectives
The following objectives accompany this thesis. Personalized medicine still needs fur-

ther research to marry with ML properly. The first aim of this thesis is to investigate the
evaluation of ML models faced with biomarker datasets. Due to different priors, several
steps in the model development pipeline must be adapted. The second aim is to bridge the
performance gap between intra-subject and inter-subject evaluation. This gap, if not known,
leads ML utilizers to overestimate the performance of their models when encountering new
participants.

This thesis may guide clinicians and researchers to utilize ML for purposes of personalized
medicine appropriately.

1.3. Literature Review
This chapter presents various concepts researchers may use to solve the gap between

random and subject-wise splitting. As it is a multi-faceted problem, different methods have
been devised to resolve the disparity in performance between the two splitting techniques.
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To obtain high performance on prediction, two main methods exist. In supervised learn-
ing, the first method observes combinations of inputs and outputs while optimizing param-
eters. Exposing a model to these data points reduces the error in prediction for the various
categories.

It is, however, unrealistic to expect a single training phase for most deep learning ap-
plications. Suppose new data has symmetrical properties, e.g. repeated-measure studies,
label similarities, existing label subsets, etc., to the previously seen data. In that case, the
optimization process will require fewer data points while achieving similar performance on
previous axes of symmetry, e.g. per participant performance, per label performance, etc.
(Charoenphakdee, Lee, and Sugiyama 2021). Calibration thus allows us to gather data to
train a model they deem helpful. After, this model can be distributed and repurposed for
relatively similar use cases while leveraging all previously seen data points.

While one avenue calibrates models, the other focuses on calibration-free methods. These
methods generally avoid the need to gather additional data. This allows a model to be
distributed while necessitating no additional training for strong prediction of new data.
The general approach of these methods is to embed the symmetries of encountered data
with architectural priors or preprocessing steps. By having a particular model architecture
or preprocessing steps, e.g. abdomen imaging (Tomi-Tricot et al. 2019), blood pressure
(Kachuee et al. 2015), segment positioning (Yang et al. 2022), the labels are predictable for
all individuals, seen or unseen.

The rest of this chapter presents the individualized calibration methodology used in the
article of chapter 2. The following section introduces some recent calibration-free methods
to gain a contrasting view.

1.3.1. Calibration Methods

Recent advances in machine learning have enabled the development of individualized
calibration techniques. Training the model on an individual’s data and testing it on new
data is adjusted to fit the individual data better and then tested on the latest data to
determine its performance. This process is repeated until the model’s performance meets
the desired accuracy. The method of individual calibration is beneficial for optimizing the
performance of an ML model for an individual, as it allows the model to fit the individual’s
data better and thus improve its performance (Bol and Hacker 2012).

This section reviews individualized calibration, including both parametric and non-
parametric approaches. We discuss different techniques’ potential advantages and drawbacks
and possible future research directions.
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Parametric approaches for individual calibration involve fitting a model with theorized
or known parameters to an individual’s data. Researchers can use techniques, including least
squares regression, generalized linear models, and Bayesian methods.

They generally require fewer data for each individual (Dawkins, Srinivasan, and Whalley
2001) but can be computationally expensive (Tolson and Shoemaker 2007; Huot et al. 2019).
The main advantage of these methods lies in the high explainability of these methods. Since
these methods’ parameters and their relations are explicitly provided, understanding these
techniques is generally more accessible. Unfortunately, an underlying theory and prior are
needed to filter the many parameters present.

Non-parametric approaches for individual calibration involve using models where the
direct relation between the learned problem space and the target is not necessarily known.
As such, more variables can be provided to the model in the hope that the model will highlight
predictive from non-predictive parameters. Examples of such models include decision trees,
random forests, and neural networks.

These models are usually more accurate than parametric models but require more data
for each individual. Additionally, they are challenging to interpret as the models generally
have an increased complexity(Q. Zhang, Wu, and Zhu 2018).

Calibration is viable for multiple data types of biomedical literature. Transfer learning
may be used for brain-computer interface decoding models (Khazem et al. 2021; Vidaurre
et al. 2011). Khazem et al. (2021) successfully reduced calibration set size by selecting the
minimal dataset needed for training a priori. Calibration depends on the data type to inform
the number of trials. Cano et al. (2022) apply calibration to cardiovascular data to obtained
a 30% increase in F1-score utilizing one trial. Lehmler et al. (2021) gain 35% in F1-score
using five gait cycles of electromyography data.

Individual calibration can improve existing calibration techniques, increase the accuracy
of calibration techniques, and reduce the computational cost of existing techniques. Potential
applications of individual calibration cover areas such as healthcare.

1.3.2. Calibration-Free Methods

An individual calibration-free summary is a machine learning model that does not require
users to adjust each data point for accuracy manually. This model assumes that unique
data points should be treated equally, without assumptions about handling each data point.
Instead, the model uses algorithms to automatically analyze and process each data point to
create an overall summary. This model offers an efficient way to process large datasets and
can be used to generate summary statistics and visualizations (Yongle Luo et al. 2021).
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Han et al. (2020) utilize raw heart rate signals processed by convolutional neural networks
in combination with body mass index information to estimate blood pressure and hyperten-
sion class with no initial calibration. Kwon et al. (2019) analyze electroencephalography
data to develop and subject-independent method with better results than subject-dependent
models.

Among other fields, individual calibration-free models have been used in marketing (Cam-
puzano et al. 2020), finance (Idili et al. 2019), and healthcare (Mirshekari, P. Zhang, and
Noh 2017). This model can be used in marketing to identify customer segments and develop
targeted campaigns. In finance, the model can be used to analyze financial data and detect
patterns in the market. In healthcare, clinicians can use this model to identify trends in
patient health and treatment outcomes.

1.4. Sections
Firstly, chapter 2 presents the article. The methodology presented in the article demon-

strates the correct evaluation in light of participants yet to be seen. Secondly, chapter 3
presents an in-depth discussion, which will dive deeper into different hypothesized method-
ologies in line with the personalized medicine vision. Finally, chapter 4 provides concluding
remarks related to the thesis and suggests future research directions.
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Chapter 2

Article

Currently, most utilized ML models follow the basic and traditional pipeline. Participants
gather data according to a protocol to acquire information of interest. The data is then
labelled as a training target. Various models are then deployed and trained on the features
and labels of this dataset. Some data is kept for training, while the rest is saved for validation
and testing. This splitting follows the random-wise approach, whereby trials are divided
randomly across both sets regardless of participant association. The model with the best
performance on the test dataset is kept and optimized. Finally, the deep learning model is
distributed and used to predict the possible label for new participants given their gathered
features.

The previously mentioned pipeline has advantages. Models generated are generally robust
as the training and testing are done in a broader distribution. For a community not centred
around machine learning and computer science, this single powerful model is beneficial and
practical as the single model is distributed.

Unfortunately, disadvantages are present. Firstly, unlike a food classifier, the rate of new
participants’ data increases substantially. Thus, these models need to be re-trained at an
alarming rate, which is unsustainable for laboratories that need access to immense computing
devices. Additionally, transporting this amount of data is a task in its own right. Unique
to the clinical setting, there is also the possibility that new and rare diagnoses will appear.
Secondly, this evaluation framework is unlike the settings customarily encountered. It is
most likely that new participants are continuously being exposed to the model. Evaluation
and assessment of models should be done with this use case in mind. As such, models
generated from the pipeline are implicitly expected to predict equal performance on the
testing data and the new participants. Shah et al. (2022) showcase this overestimation of
performance when indicating surface types. Shah et al. contrast the random-wise split
with the subject-wise split. This splitting scheme reserves some participants for the test set
exclusively. This contrast exposes the gap in performance of models trained with a random



vs subject-wise split (F1-scores of 0.96 vs 0.78, respectively). Therefore, most prediction
models encountering datasets sampled from participants lead deep learning users to believe
their model will perform better than expected.

A method to recover random-wise performance on a subject-wise split-trained model
is to expose it to samples of the unseen participant. This is known as calibration. As
stated previously, this technique is understood and used in various biomedical domains. The
calibration dynamics are, however, very varied and dependent on the dataset.

In the presented article, calibration will be observed using a biomedical dataset. More
precisely, a biomechanical dataset is employed. While this does not cover all use cases, it
is a valid template for various datasets which may be encountered in clinical settings. As
a stepping stone, finding the minimum calibration will allow for extrapolation to training
schemes that can balance use cases ranging from single calibration to continuous calibration
(chapter 3).

The following section of the chapter will be the article as a part of the thesis. The article
presents a non-parameterized individualized calibration solution to the gap problem applied
to a biomechanical gait dataset when travelling on irregular surfaces. This article has been
accepted in the Journal of Biomechanics.
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Estimating individual minimum calibration for deep-
learning with predictive performance recovery: an ex-
ample case of gait surface classification from wearable
sensor gait data
2.1. Abstract

Clinical datasets often comprise multiple data points or trials sampled from a single
participant. When these datasets are used to train machine learning models, the method used
to extract train and test sets must be carefully chosen. Using the standard machine learning
approach (random-wise split), different trials from the same participant may appear in both
training and test sets. This has led to schemes capable of segregating data points from a same
participant into a single set (subject-wise split). Past investigations have demonstrated that
models trained in this manner underperform compared to those trained using random-split
schemes. Additional training of models via a small subset of trials, known as calibration,
bridges the gap in performance across split schemes; however, the amount of calibration
trials required to achieve strong model performance is unclear. Thus, this study aims to
investigate the relationship between calibration training set size and prediction accuracy on
the calibration test set. A database of 30 young, healthy adults performing multiple walking
trials across nine different surfaces while fit with inertial measurement unit sensors on the
lower limbs was used to develop a deep-learning classifier. For subject-wise trained models,
calibration on a single gait cycle per surface yielded a 70% increase in F1-score, the harmonic
mean of precision and recall, while 10 gait cycles per surface were sufficient to match the
performance of a random-wise trained model. Code to generate calibration curves may be
found at (https://github.com/GuillaumeLam/PaCalC).

2.2. Introduction
Deep learning has proven helpful in numerous areas. Naturally, practical issues arise in

clinical settings due to the novelty of applying machine learning tools to these fields (Miotto
et al. 2018; Tobore et al. 2019; Wang et al. 2022; Zemouri, Zerhouni, and Racoceanu 2019).
Handling repeated trials from participants is one such issue.

Generally, training and testing sets are derived for training a model and assessing its
generalizability on unseen data points. As such, data for testing must be kept isolated
from the training set to avoid contaminating the model with information that should not be
available (“data leakage”).

When facing a context where multiple data points or trials may be associated with a
single participant, how to split the dataset remains to be determined. For example, in a
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gait study, participants may be asked to perform walking tasks numerous times. Should
different trials from the same participant be present in the training and testing datasets,
known as a “random-wise”/“record-wise” (intra-subject) split? Or, should all trials from a
single participant appear only in either subset, respecting the principle of unseen data points,
known as a “subject-wise” (inter-subject) split?

This issue is an ongoing discussion (Saeb et al. 2017) and a debated one (Cao 2022; Little
et al. 2017). As shown by Shah et al. (2022), in the context of surface identification from gait
data across multiple participants and trials, evaluation using a random-wise approach led to
an over-estimation of the predictive power of models compared to a subject-wise split (F1-
scores of 0.96 vs 0.78, respectively). Thus, models trained with some of a participant’s data
outperformed those completely naive to the participant. The high evaluation performance
of random-wise trained models may lead to overly optimistic assumptions that the model
could achieve the same performance when deployed on new, unseen participants.

Training a model on a small sample of data from a new participant, commonly called
calibration or transfer learning, may bridge the gap, i.e., achieve an acceptable model per-
formance without overfitting to participants. Calibration is generally understood as training
on a primary dataset and then re-training on a more specific/different dataset to maximize
performance. These techniques are applied to a variety of data in the biomedical literature.
Khazem et al. (2021) and Vidaurre et al. (2011) used transfer learning to brain-computer
interface decoding models. Furthermore, Khazem et al. (2021) successfully reduced calibra-
tion training set size by selecting the minimal dataset needed for training a priori; however,
the number of calibration trials appears to depend on the data type. Cano et al. (2022) ob-
tained a 30% increase in F1-score utilizing one trial of cardiovascular data; while Lehmler et
al. (2021) achieved an increased of 35% in F1-score using five gait cycles of electromyography
data.

The actual behaviour of calibration and the impact of the number of calibration training
trials remains unknown. Thus, this paper aims to investigate the relationship between the
number of calibration trials and the prediction accuracy of the corresponding calibrated
deep learning model in a classification study based on biomechanical data. We hypothesized
that a model’s performance would increase with the number of calibration trials, eventually
achieving the same performance as a model trained using a random-wise splitting approach.
This research could inform on calibration training set sizes and behaviour for models based
on data with multiple trials per participant.
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2.3. Methods
2.3.1. Dataset

The current research used the public database of Y. Luo et al. (2020). This database was
gathered from 30 young, healthy adults (15 females; 23.5 ± 4.2 years) as they performed
walking trials across 9 outdoor surfaces while fit with inertial measurement unit (IMU)
sensors (Xsens Awinda, Enschede, The Netherlands). The sensors collected acceleration,
angular velocity, and magnetometer data at 100 Hz. They were located at the wrist, fifth
lumbar vertebra, anterior thigh (bilaterally), and anterior shank (bilaterally) (Fig. 2.1).
The outdoor surface types were: flat-even, slope-up, slope-down, stairs-up, stairs-down,
cobblestone, grass, banked-left, and banked-right (Fig. 2.2). Further information on the
dataset is available in Y. Luo et al. (2020). In line with the results of Shah et al. (2022),
the wrist sensor, which did not provide a meaningful contribution to model performance,
was not used herein. As such, our supervised machine learning problem setting classified the
surface type based on gait data gathered from the 5 IMUs.

2.3.2. Data Processing

Raw IMU data were passed through a 4th-order Butterworth low pass filter (6 Hz cut-off)
to smooth the signal. Following the validated approach of McGrath et al. (2012), gait cycles
were delineated using an adaptive gyroscope-based algorithm, which utilizes the angular
velocity about the y-axis to calculate robust gait events. All found gait cycles were then
normalized to 101-time points.

The processed data were divided into training and testing sets using random and subject-
wise approaches. In random-wise splitting, 10% of all gait cycles appeared in the test set,
regardless of the associated participant. In subject-wise splitting, gait cycles were separated
such that all gait trials from n = 3 participants of the total 30 participants (10%) appeared
in the test set (Fig. 2.3).

The attributes used from the original dataset include three-dimensional acceleration,
angular velocity, and magnetometer data. Based on the work of Shah et al. (2022), an
additional plane was generated from these three planes’ magnitude. These attributes were
fed into a linear discriminant analysis (LDA) for feature extraction. Including the magnitude
input, the passing of pre-processed data to LDA resulted in 32 features per sensor. Applying
this process to acceleration, angular velocity, and magnetometer data resulted in 96 extracted
features. The LDA feature extraction was performed using scikit-learn (Pedregosa and al.
2011) with the single value decomposition solver, no shrinkage, and a 0.0001 solver threshold.
More details on the feature extraction process can be found in Shah et al. (2022).
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Figure 2.1 – Sensor locations from the Y. Luo et al. (2020) database. Sensors used in
the present study and the surface classification work of Shah et al. (2022) shown with green
circles: fifth lumbar vertebra (lower back), anterior thigh (bilaterally), and anterior shank
(bilaterally).

The first deep learning surface classification model followed the feedforward neural net-
work (FFNN) architecture presented by Shah et al. (2022). Developed in Keras (Chollet
et al. 2015), the network comprised three hidden layers: a layer of 606 units, 303 units,
and 606 units. All of these layers had a ReLU activation function. The final output layer
contained 9 units representing each label and a softmax activation function. The model
was trained with an Adam optimizer (learning rate of 0.001) and a categorical cross-entropy
loss function. During training set optimization, forward and backward passes were looped
over 50 epochs with batch sizes of 512 data points (gait cycles) for random and subject-wise
splits. Furthermore, a convolutional neural network (CNN) was also employed to assess the
robustness of results to model architecture; details of the model can be found in the sup-
plementary material (Fig. 2.6). Overall, the CNN had substantially more parameters than
the FFNN (1,536,817 and 665,094, respectively). Thus, a stronger focus was brought to the
model performing better given their parameter count.
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Figure 2.2 – The irregular surface dataset labels from the Y. Luo et al. (2020) database.
Outdoor surfaces types: a) flat-even, b) grass, c) cobblestone, d) banked (right/left) e) slope
(down/up), f) stairs (down/up).

Two versions of the dataset were generated following each splitting scheme. The train-
ing with random-wise split produced the model referred to here as the “random-wise prior”
model. This model was evaluated, and the performance was reported in red (Fig. 2.4, 2.5).
Similarly, the “subject-wise prior” model was evaluated with its corresponding testing set.
The performance was reported in green (Fig. 2.4, 2.5). From the subject-wise test set, two
sets were derived: the calibration training set (CT r) and the calibration test set (CT e) (Fig.
2.3 b.). The calibration test set was fixed to 50%. The calibration training set was initially
empty. The subsequent evaluation by the subject-wise prior model yielded the baseline
performance. Single gait cycles per label were added to the calibration training set with
evaluation in between to generate the calibration curve shown in blue (Fig. 2.4, 2.5). A
fourteen-fold validation was performed across the subject-wise split train and test set (Fig.
2.3 a.). This cross-fold evaluated robustness and heterogeneity by observing calibration
across different participants. Thus, calibration was conducted with a batch size of 1. Model
performance was evaluated using the F1-score. An early stop was added to stop the calibra-
tion of models that obtained an F1-score of 1.0 for seven consecutive evaluations. Finally, the
calibration models were reset between participants to not influence the calibration curves.
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Figure 2.3 – a) Data splitting schemes: 1. Random-wise: splits total gait cycles uniformly
2. Subject-wise: splits gait cycles such that some participants only appear in the test set
b) Derivation of calibration sets from the test set of a subject-wise split. The calibration
test set (CT e) is set to 50% of a participant’s gait cycles per label. The calibration train set
(CT r) grows progressively larger with the addition of balanced gait cycles per task.

2.4. Results
The calibrated models showed full recapture of performance, as measured by the F1-score

while accessing 1-2 gait cycles of previously unseen participants (Fig. 2.4). Calibration with
a training set of size ⩾ 10 was equivalent to training on a random-wise split based on the
F1-score. A calibration training set size of 1 per label recovered an F1-score of 95 ± 3%
(FFNN) while a calibration size of 10 per label obtained a virtually perfect F1-score.

A discrepancy was noted between the performance of a model trained solely on the
subject-wise training set and the calibrated model with no training. As observed, the F1-
score of the FFNN before calibration was 80 ± 14% while the calibrated FFNN trained on
no gait cycles scored 19 ± 12%.

Most surface types followed the trend of near 1.0 F1-score recovery with exposure to at
least 10 gait cycles (Fig. 2.5). The surfaces cobblestone, flat-even, slope-up, and stair-down
all converged to an F1-score of 1.0 predictably; however, banked-left, banked-right, grass,
and slope-down did so with a varying number of gait trials. In contrast, stair-up never quite
recovered an F1-score of 1.0 for some participants, as demonstrated by the high standard
deviation.
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Figure 2.4 – Effect of calibration train set (Ctr) size (log scale) on the F1-score. Subject-
wise mean performance with standard deviation is shown as a green dot and error bars,
respectively. Random-wise mean performance with standard deviation is shown as a red dot
and error bars, respectively. The mean performance of the calibration is show in dark blue
with 1 standard deviation shown in light blue.

Furthermore, the discrepancy of the models before calibration was different across surface
types. The calibrated FFNN with 0 gait trials scored an F1-score of 0±1% for slope-up/down,
grass, and flat-even. An F1-score of 5 ± 1% was initially obtained for stair-up. F1-scores of
25 ± 17%, and 25 ± 5% were obtained for stair-down and cobblestone, respectively. Finally,
the banked surfaces achieved approximately 0.5 F1-score with no training. Scores of 55±50%
and 48 ± 40% were achieved for the banked surfaces, respectively.

Overall, the CNN achieved similar results as the FFNN with greater variance and ob-
taining an F1-score of 5 ± 6% with no training on the cobblestone surface. Figures for the
results of the CNN on the irregular surface task may be found in the supplementary material
(Fig. 2.7, 2.8).

2.5. Discussion
This project assessed the impact of the number of calibration trials on the performance

of a deep-learning surface classifier based on gait data from inertial sensors. The calibrated
models solved the task in general, given a single trial per label. With access to additional
gait cycle trials, the models achieved nearly the same performance as a model trained using
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Figure 2.5 – Effect of calibration train set (Ctr) size on F1-score for each surface: a) banked-
left, b) banked-right, c) cobblestone, d) flat-even, e) grass, f) slope-down, g) slope-up, h)
stairs-down, i) stairs-up.

a random-wise split approach. These results illustrate the impact of calibration on model
performance.

Our results confirmed our hypothesis. Overall, an increase in the number of calibration
trials improved model performance. Ten gait cycles per surface were sufficient for mastery
of surface type prediction in the current data set for both tested models. We also generated
calibration curves per label to inform on the models’ needed calibration trials and the relative
accuracy return of each additional trial.

Calibration is a practical approach to solving the performance gap of a subject-wise split,
compared to random, for deep learning models exposed to repeated measures of human
subject-based biomedical datasets. Further supported by the findings of Shah et al. (2022),
as some bio-patterns of a label are potentially more variable across patients than across all
the chosen labels, calibration is an integral and necessary step for some datasets. This paper
highlights that a calibrated subject-wise prior deep learning model can match random-wise
prior deep learning model performance while needing exposure to only a fraction of the total
number of a participant’s trials.

The present research is mainly limited by the range of biomedical datasets, types of deep
learning models, and machine learning settings tested: a single data set, two deep learning
architectures, and a single supervised classification setting. This limitation has led to a very
narrow search of the range of calibration dynamics. Nonetheless, the small number of trials
required for gains in performance observed in our present work is consistent with similar
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literature (Cano et al. 2022; Khazem et al. 2021; Lehmler et al. 2021; Vidaurre et al. 2011).
Our methodology can also be transferred to different classification settings Bird et al. 2021;
Ching et al. 2018. or applied to regression problems (Caywood et al. 2017; Davis et al. 2017).

Future investigations may focus on the behaviour or properties of the calibration curve.
For example, a model could require smaller amounts of calibration to achieve similar per-
formance results, increasing the sample efficiency. Additional investigations might target
high performance on many participants as current deep learning models are susceptible to
“catastrophic forgetting”, where the model fails tasks previously known (Kirkpatrick et al.
2017). The machine learning field, continual learning, aims at solving this phenomenon.
Finally, the frequency of calibration of an individual to maintain high performance needs
to be explored. An individual’s gait may change over time enough not to be recognized,
necessitating a re-calibration.

Deep learning models can be calibrated for strong prediction on participants not known
during training (previously unseen participants). Based on our results of calibration dy-
namics, a minimum calibration training set size greatly benefited the performance of deep
learning in this context. By observing the calibration dynamics, researchers are subject to
learn about the interactions between their datasets and their models. Developers of real-
world applications should be aware of the benefits of model calibration.

2.6. Code availability
Python functions are supplied on Github to train the models presented herein and gener-

ate participant calibration curves (PaCalC) (https://github.com/GuillaumeLam/PaCalC).
This code could be adapted to help users discern the number of calibration trials required
for their given application.
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Figure 2.6 – Architecture of the convolutional neural network (CNN) used for the classifi-
cation of irregular surfaces. The first two Conv1D and the second to last Dense layer used
a ReLU activation function. The final Dense layer used a softmax activation to convert the
inputs into normalize probabilites for all labels. Similar to the feedforward neural network
(FFNN) used in this paper, the CNN model was trained with an Adam optimizer with a
learning rate of 0.001 and a categorical cross-entropy loss function
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Figure 2.7 – Effect of calibration train set (Ctr) size (log scale) on the F1-score for the
convolutional neural network architecture.
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Figure 2.8 – Effect of calibration train set (Ctr) size on F1-score for each surface for the
convolutional neural network architecture: a) banked-left, b) banked-right, c) cobblestone,
d) flat-even, e) grass, f) slope-down, g) slope-up, h) stairs-down, i) stairs-up.
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Chapter 3

Discussion

3.1. Significance of Work
Personalized medicine, in conjunction with machine learning (ML), has the potential to

help people. Work will be needed to improve it to an acceptable level for usage with less
strict supervision. To contribute to this endeavour, this project investigated the evaluation
of models facing the assessment of unseen people. This project thus aimed to assess the
impact of the number of calibration trials on the performance of a deep learning surface
classifier based on gait data from body-worn inertial measurement units (IMUs).

The article "Estimating individual minimum calibration for deep-learning with predictive
performance recovery: an example case of gait surface classification from wearable sensor gait
data," presented in Chapter 2, demonstrates how prediction discrepancy between inter- and
intra- subject performance could be overcome with calibration. The minimum calibration per
label and subject is calculated while recovering intra-subject optimization level performance.
Minimum calibration informs on the complexity of mastery of label prediction while giving
a range for future collection.

The calibrated model generally solves the task, given a single trial per label. From the
utilized dataset (Yongle Luo et al. 2021), it was determined that few (1-2) gait cycles are
sufficient to calibrate models for adequate performance (F1:+90%). With access to additional
gait cycle trials, the model achieves nearly the same performance as a model trained using a
random-split approach. Overall, ten gait cycles allow for mastery of the task (F1:95-100%).
These results illustrate the impact of calibration on model performance. Additionally, we
find that some labels require more calibration than others. Most labels are initially predicted
with a much lower F1-score than would be led to believe with inter-subject prediction F1-
score; calibration might be much more helpful than initially thought. In most calibration
curves, the F1 performance of the subject-wise prior model does not match the performance
of models with a calibration training set size of 0. Due to a lack of time, a theory has yet to



be postulated. The code was thoroughly inspected for data leakage, and none was present.
Further research and investigation will be needed to solve this odd behaviour.

Our results confirm our hypothesis. Overall, an increase in the number of calibration
trials improved model performance. Ten gait cycles per surface are sufficient for mastery
of surface type prediction for the irregular surface dataset. We also generated calibration
curves per label to inform the model’s needed calibration trials and the relative accuracy
return of each additional gait cycle.

3.2. Limitations
The main limitation of this project is the breadth of combinations of model types,

datasets, and problem settings. A single public dataset (Yongle Luo et al. 2021) was in-
vestigated. Furthermore, two deep learning model architectures were tested (Shah et al.
2022). Additionally, only classification problems were observed. While few calibration dy-
namics were explored, our findings agree with those of the literature and are transferable to
other settings. Overall, a few trials can provide significant gains in performance.

3.3. Future Directions
The present work has focused on a specific use case and dataset. Multiple improvement

paths are current as we try to follow the vision of personalized medicine. The final section of
this chapter focuses on relevant future directions worth investigating. The model distribution
methodology will present an alternative ML model distribution schema. This schema has
multiple benefits, including added simplicity and reduced computing burden for the model
distributor. Next, schemes are devised to deal with exceptional cases where calibration may
or may not last forever. A spectrum ranging from single calibration to continuous calibration
is shown.

3.3.1. Model Distribution Methodology

As many models are evaluated with an intra-subject scale, an implication of a single
model is suggested. This leads to following the distribution of the monolith prediction
model. These methodologies solve the gap problems by exposing sufficient data points from
the initial round of training. Since most models are not made widely available as they are
more proof of concept, the monolith models are not a genuine issue. When these models
are desired to interact with participants, the traditional model distribution incurs multiple
disadvantages.

The first step is to use the data gathered to train the model. Next, when new partici-
pants are presented, the latest data is added to the sum of collected data. By training on this
more extensive set, new patients are well predicted by the model. It can then be supplied
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Figure 3.1 – Current model distribution schema. Monolith model fθ is trained, distributed,
and made available to a set of users P . Additional data from new user Px is sent back for
the model to train upon, generating fθx .

to the participants to expect more of their collected information. This schema is presented
in figure 3.1, where Px are participants with their associated trials to calibrate the models
fθx . Several negative traits are present in this architecture. Firstly, there is a heavy com-
putational burden on the side of the suppliers of the predictive model. If the base data set
is represented by Pm, where there are m participants, the model fθ1 will need to be trained
on Pnew = Pm ∪ P1. The model constantly retrains on previously computed points as more
participants are added. For smaller teams, this computation burden might be too signifi-
cant. Secondly, this architecture necessitates the management of new participant data. In
cases where sensitive data is concerned, security becomes an additional requirement. Lastly,
a software infrastructure is needed to support the distribution and gathering of data. The
researchers or clinicians utilizing ML methods might not possess the required programming
skills.

3.3.2. Alternative Participant Model Distribution

Figure 3.2 – Alternative model distribution schema. Base model fθ is duplicated as model
gθ. The duplicated model is calibrated for participant Px to generate an individualized model
gx

θ .
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To mitigate the drawback previously stated, an alternative distribution scheme is pro-
posed. The significant difference lies in duplicating and calibrating the base model to each
new individual. Additionally, the calibration computation is offloaded to the individuals. As
seen in figure 3.2, calibrating the base model fθ for participant Pn results in a personalized
model gn

θ .
This schema comes with advantages. Firstly, since each model is calibrated and not

exposed to increasing amounts of data, these models are not prone to catastrophic forget-
ting. This phenomenon, where ML models forget previously known tasks, is known to be
present unless CL methods are implemented. Secondly, the individualization of models re-
spects the vision of personalized medicine. Thirdly, information about new participants is
kept private by default. Information should be relayed back to the group that created the
model. Individuals may benefit from the model without giving away potential critical details.
Lastly, the computational burden would be significantly reduced for the creators of the base
model. Since the calibration of gθ would be computed on the user’s side, the only centralized
computation would be for training the base model fθ.

Overall, this model distribution presents itself as the more realistic scenario in the face of
model development in research. Integrating model distribution requires less work, allowing
public access to the research model development workflow.

3.3.3. Calibration vs Transfer Learning

A note should be made about the similarities between calibration and transfer learning.
In most cases, including the one presented in this thesis, transfer learning can be employed
instead of calibration for additional benefits.

Transfer learning is an ML technique in which a model trained on one task is modified and
used to perform a second task. The idea behind this approach is to use the knowledge gained
from one task to improve the performance of a different task. Transfer learning can save
time and computational resources when training a new model and enhance the performance
of existing models. This technique is handy for tasks requiring large amounts of data, such
as natural language processing or image recognition.

Calibration is, therefore, a basic technique of transfer learning. In contrast, transfer
learning would allow for high performance on two tasks. The similarity distance would
determine the calibration change to match the previous performance. Additionally, training
solely on the last layers of transfer learning could easily be employed in the calibrations of
figure 3.2 for datasets where the early representations need to be strongly conserved.
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3.3.4. Calibration Frequency

As the article discusses, the calibration frequency must be examined. An individual’s
gait may change over time. If this change were too significant, the personalized model would
need re-calibration. This idea applies to all bio-markers collected. Of the possible values, a
spectrum is possible.

At one extreme, a single calibration would be necessary. Otherwise, one calibration would
be sufficient for the participant’s lifetime.

Figure 3.3 – Single calibration model life cycle. For the participant Pα, the duplicated base
model gα

θ is generated. Exposure to the first trial X,Y 1, results in partially calibrated gα,1
θ .

When c trials have been observed, the model gα,c
θ is adequately calibrated. The weights can

be frozen to retain performance, yielding gα,c
θ . After which, labels of trials (i.e. Y) become

optional.

As figure 3.3 shows, the duplicated model is calibrated for the specific participant. After
the full calibration, the model may be frozen to preserve accuracy. Since it has been deter-
mined that a single calibration is required, all predictions after exposure to the minimum
calibration trials will match previous performance. This situation allows for a twofold ad-
vantage. Since the minimum calibration has been determined, computing costs have been
reduced. Additionally, since the model is frozen afterwards, compressing the model for quick
prediction on edge computing becomes highly accessible.

At the other extreme, continuous calibration would be required. In this situation, con-
tinual learning (CL) should be employed. This allows access to all benefits available to the
CL framework.

Since the CL framework explicitly deals with situations of continuous exposure to new
data points, it is perfectly adapted to deal with this situation. Exposure to m new data
points will result in the base model potentially updating m times. Figure 3.4 shows that the
model is categorized as γβ,m

θ after m trials.
Lastly, a balance may be struck. The timed calibration would allow a model’s calibration

to be valid for certain predictions or times. After which, calibration would be necessary to
generate the calibrated model.
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Figure 3.4 – Continuous calibration model life cycle. Given a continual learner model γθ,
the model will continuously adapt to the participant Pβ. After exposure to m trials, the
model can be expressed as γβ,m

θ .

Figure 3.5 – Timed calibration model life cycle. Similar to figure 3.3, the model is cali-
brated and frozen after the necessary c trials, generating gδ,c

θ . With a threshold ∆ specified,
calibration will be triggered after ∆ trials.

As shown in figure 3.5, a threshold variable ∆ is specified to trigger a re-calibration.
The previously frozen model gδ,c

θ is unfrozen. This allows centering to the new reference
data, yielding gδ,c+1

θ and eventually the re-calibrated model gδ,c′

θ . This cycle will be repeated
ad infinitum. By adding a timed validity to calibration, we allow for more flexibility and
support for more cases of biomarker data. Since people tend to change over time, multiple
healthcare datasets are susceptible to benefit from this model control. Unfortunately, the
re-calibration raises the computational cost. While this step might not be costly, the newer
model must be pushed again to edge devices.
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Chapter 4

Conclusion

The new recent phase of modern medicine, personalized medicine, is exciting. While
many implementation and safety challenges are unsolved, their achievement would mark an
important milestone for the medical care of patients. Currently, powerful mobile devices
allow deep learning models to be accessible outside laboratory settings and in the real world.
This situation aligns with personalized medicine, which aims for tailored treatment for its
users. The evaluation of said models to participants must be verified to tailor models ap-
propriately. When dealing with users’ biomedical data, performance evaluation might be
split into inter- vs intra- subject. The presented article investigates matching intra- level
performance by initially inter-subject training. This is synonymous with matching random-
wise split performance with initial training on a subject-wise split of training and testing
datasets. These deep learning models are calibrated to achieve robust predictions on partici-
pants unknown during training. Our results of calibration dynamics demonstrate a minimum
calibration set size which significantly benefits the performance of deep learning. Observ-
ing these dynamics will inform researchers about their datasets’ and models’ interactions.
Developers will benefit from integrating model calibration into real-world applications.
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