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Abstract

Background: Foot orthotics (FOs) are frequently prescribed to provide
comfortable walking for patients. Finite element (FE) simulation and 3D print-
ing pave the way to analyse, optimize and fabricate functionally graded lattice
FOs where the local stiffness can vary to meet the therapeutic needs of each in-
dividual patient. Explicit FE modelling of lattice FOs with converged 3D solid
elements is computationally prohibitive. This paper presents a more computa-
tionally efficient FE model of cellular FOs. Method: The presented FE model
features shell elements whose mechanical properties were computed from the
numerical homogenization technique. To verify the results, the predictions
of the homogenized models were compared to the explicit model’s predictions
when the FO was under a static pressure distribution of a foot. To validate the
results, the predictions were also compared with experimental measurements
when the FO was under a vertical displacement at the medial longitudinal arch.
Results: The verification procedure showed that the homogenized model was
46 times faster than the explicit model, while their relative difference was less
than 8% to predict the local minimum of out-of-plane displacement. The val-
idation procedure showed that both models predicted the same contact force
with a relative difference of less than 1%. The predicted force-displacement
curves were also within a 90% confidence interval of the experimental mea-
surements having a relative difference smaller than 10%. In this case, using
the homogenized model reduced the computational time from 22 hours to 22
minutes. Conclusion: The presented homogenized model can be therefore
employed to speed up the FE simulation to predict the deformations of the
cellular FOs.
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Highlights

• We introduced a computationally efficient FE model of a honeycomb lat-
tice foot orthotic by numerical homogenization.

• The homogenized model’s prediction is verified by the explicit model’s
prediction and validated by the experimental measurements.

• The homogenized model predicts the same displacement field as the ex-
plicit model, but it is 46 times faster.

• In a contact simulation, the homogenized model predicts the force-
displacement curve 60 times faster than the explicit model. The relative
difference between their predictions is less than 1.0%.

• Both models predict a contact force close to the experimental results with
a relative difference smaller than 10%.
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1 Introduction
Orthopedic insoles or foot orthotics (FOs) are one of the most common devices prescribed to
mitigate the difficulties associated with foot disorders [1] or to alleviate the risk of feet ulcers,
which is a source of major suffering for diabetic patients [2]. This motivates researchers to
design customized FOs to obtain functional orthoses that satisfy the biomechanical needs of
each specific patient. Besides, Three-Dimensional (3D) printing paves the way to manufac-
ture patient-specific and affordable FOs featuring customizable mechanical properties and
complex geometries [3, 4]. Customized mechanical properties can be obtained by cellular
structures. In 3D printed cellular FOs, the cell dimensions can be locally modified to pro-
vide a functionally-graded component whose mechanical response meets the patient-specific
therapeutic needs.

Finite Element (FE) simulations could also provide insights into the interaction between
foot, FO and shoe. Some researchers focused on FE simulation and geometrical optimization
of 3D printed lattice FOs for diabetic patients. The critical factor in designing diabetic FOs
is the contact stress between the foot and the FO [5]. Tang et al. [6] optimized the stress
distribution of contact surfaces between the foot and the diabetic FO by conducting FE
simulations and using 3D printed functionally graded materials. They found that the cus-
tomized FO reduced the peak contact pressure by approximately 35%. Although their study
has had positive contributions in designing and optimizing diabetic FOs, in their validation,
there was approximately a relative difference of 50% between the experimentally measured
equivalent stiffness and that predicted by the FE model. Moreover, in their optimization,
their objectives have been limited to control the static pressure distribution of the foot over
the FO. However, prescribed FOs for treating other pathological symptoms do not follow
the same objective. In designing FOs for the flat feet condition, for instance, the key is to
avoid the excessive collapse of the longitudinal arch to develop an efficient propulsion during
gait [1]. To design such insoles, the FE simulation, therefore, should accurately predict the
deformation of the cellular insoles under the pressure distribution of the foot.

The FE simulation of cellular insoles should be also efficient in terms of computations.
Computational efficiency is important for the optimization application in which iteratively
running a large-scale and detailed FE simulation of a lattice structure with a converged 3D
mesh is computationally prohibitive, even with modern computers [7, 8, 9]. Moreover, for
instance, the optimization’s objective might be the outcome of a FE simulation including
a patient’s foot topology and the cellular FO. In this case, the literature shows that the
FE simulation of a foot having nonlinear material properties and complex geometry takes 17
hours using a computer with an Intel® CoreTM i7-6700 CPU @ 3.4 GHz and 32 GB RAM [10].
Adding a cellular FO to such a complex biomechanical system would make the simulation
even more time-consuming. The computational time is important because simulations in
biomechanics often require real-time computing [11]. The urgent nature of clinical problems
demands reliable and fast computations [12]. To the best of our knowledge, there is no
literature reporting a computationally efficient and experimentally validated FE model of a
functionally graded cellular FOs.

The objective of this study was therefore to provide this computationally-efficient FE
model (called surrogate in the context of optimization) to characterize and predict the me-
chanical behaviour of a honeycomb lattice FO. We demonstrated that the homogenized FE
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model of a honeycomb lattice FO is able to predict the displacement field with almost the
same level of accuracy as the explicit FE model featuring 3D elements, for a fraction of the
computational cost. Within this context, Section 2 presents the numerical homogenization
technique to compute the effective mechanical properties of lattice structures which leads to
build and develop our surrogate model. Section 3 presents the verification and validation pro-
cedures of the surrogate’s predictions. Section 4 discusses the simulation and experimental
results and, finally, Section 5 presents the conclusions and contributions of this modelling.
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2 Background

2.1 Homogenization technique
Homogenization delivers the effective mechanical properties of a heterogeneous material using
the mechanical behaviour of its microstructure. The homogenized model should be able to
predict the same mechanical response as that of the heterogeneous structure represented by
an explicit fully meshed model when both of them are submitted to the same loading and
boundary conditions. Figure 1 schematically shows the application of the homogenized FE
model of honeycomb lattice FO under the pressure distribution of the foot.

Numerical homogenization is one of the most common ways to compute the effective
properties of a heterogeneous material. In numerical homogenization, the microstructure
is explicitly meshed, and then by applying six orthogonal strain tensors, all components of
the effective stiffness tensor (C̄ijkl) are computed through a volume integration of stress and
strain over the entire microstructure. In cellular materials, the microstructure is heteroge-
neous since it consists of solid and void phases [13]. It is common to assign comparatively
soft material properties to the void phase to avoid the numerical difficulties to compute
the average strain and stress over the entire microstructure under the applied boundary
conditions [14, 15, 16].

Periodic Boundary Conditions (PBC) are the most computationally efficient boundary
conditions to provide the effective properties for a heterogeneous material [17, 18]. For
heterogeneous materials having a periodic microstructure, such as cellular materials, applying
PBC requires only one unit cell to mesh. PBC is then satisfied by

u(x2) − u(x1) = E · (x2 − x1), (1)

where E is the macroscopic strain, and u(x1) and u(x2) represent the displacement vectors
of two corresponding nodes on opposite faces of the unit cell whose location vectors are x1
and x2. Corresponding nodes means two nodes sharing the same in-plane coordinates for
two surfaces with the same normal. Note that applying Equation (1) requires a periodic
mesh over the two opposite sides [19, 20, 21].

2.2 Critical factor in designing insoles for flat feet
For patients with flat feet, clinicians seek to reduce rearfoot eversion and longitudinal arch
collapse. A recent study has shown that the deformation of customized FOs at the medial
arch region is related to excessive rear-foot eversion, longitudinal arch collapse and abnormal
plantar pressure distribution in flat foot individuals [22]. It has been shown that insoles with
arch support are more efficient in reducing rear-foot eversion during walking than flat insole
[23]. Xu et al. also reported that 3D printed insoles having arch support could provide better
comfort for patients with symptomatic flatfoot than prefabricated insoles [24]. Moreover,
FOs with customized mechanical features support more efficiently the medial longitudinal
arch from collapsing when compared to prefabricated FOs in flat foot participants [25].
Consequently, the critical factor in designing FO for flat feet condition was assumed to be
the FO deformation, especially at the medial arch, rather than foot plantar pressure such as
in diabetic patients [6].
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Figure 1: Schematic representation of the application of a homogenized foot orthotics under
the pressure distribution of a foot; (a) The CAD file of the designed FO, (b) explicit FE model
of the FO that was meshed with 3D solid elements, (c) the homogenized FE model of the
FO featuring shell solid elements whose mechanical properties are computed from numerical
homogenization. Both FE models are submitted to the same pressure distribution of the
foot (P (X, Y, Z)) and boundary conditions (BC1 and BC2). The predicted displacement
field by the homogenized model (UHmg(X, Y, Z)) should be therefore approximately equal
to the predicted displacement field by the explicit model (UE(X, Y, Z)). The explicit model
then can be replaced by the homogenized model to speed up the simulation.

3 Methods

3.1 Geometrical description of the foot orthotics
We have designed a honeycomb lattice FO that can provide support to the longitudinal arch
of flat feet. Figure 2 schematically shows the geometrical details of this honeycomb lattice
FO. The biomechanical and clinical performance of this FO has been already discussed and
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published in [4, 26, 22].
The FO consisted of two layers. The first layer, with a height of h1, was an infilled layer

with a distribution of circular holes with a diameter of d. These holes were actually required
for ventilation purposes during walking or running. The second layer, with a height of h2, was
a reinforced layer with a honeycomb lattice for the purpose of increasing the insole’s rigidity
to support the longitudinal arch of the foot. Figure 3 shows the geometrical parameters of a
periodic unit cell within the FO structure. The horizontal and inclined hexagon side lengths
are hb and lb, the wall thickness is t and the angle between vertical and inclined hexagon
sides is θ. Furthermore, the hexagon outer side lengths are l and h, which can be explicitly
computed by l = lb + t/(2 cos θ) and h = hb + t(1 − sin θ)/ cos θ. Using these geometrical
parameters, the relative density ρ for a honeycomb unit cell is computed as per [27]:

ρ = 1 − lb(hb + lb sin θ)
l(h+ l sin θ) . (2)

The relative density ρ directly effected the homogenized mechanical properties of a honey-
comb cell. Besides the effective properties, the height of h1 and h2 can be also locally varied
to change the stiffness of the structure. In this work, a constant height of h1 = 1.5 mm and
a variable height of h2 were considered. In addition, the homogenized mechanical properties
are affected by the cell topology. For instance, the literature shows that for the same relative
density, square and triangular cells result in stiffer in-plane effective properties when com-
pared to the honeycomb cell [28]. In this research, two other insoles featuring square and
triangular cells were also designed and studied, as illustrated in Figure 4. For the square cell
having a wall thickness of t and a side length of lb, ρ is computed by:

ρ = t (t+ 2lb)
(t+ lb)2 . (3)

For the triangular cell having a wall thickness of t and a triangle’s side length of lb, ρ is:

ρ =

(
3(t/lb) +

√
3

)(
1 + (t/lb)

√
3

)
− lb

√
3(

3(t/lb) +
√

3
)(

1 + (t/lb)
√

3
) . (4)

3.2 Experiments
3.2.1 Material and manufacturing

The honeycomb lattice FOs were fabricated by Selective Laser Sintering (SLS) from Shape-
Ways company. The insole’s material was Nylon-12 which is one of the most common materi-
als used in SLS 3D printing [29]. The elastic modulus of the Nylon-12 was measured through
tensile testing of dog-bone specimens. The dog-bone specimens were type I according to
ASTM-D638 standard and manufactured by SLS 3D printing employing the same company.
Due to the fact that 3D printing orientation affects the mechanical properties, two types of
specimens with different 3D printing orientations including longitudinal (in direction of the
tensile test) and transverse directions were considered. Five specimens of each type were
manufactured. The printed specimens were tested using an MTS Insight electromechanical
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tensile machine under displacement-control at a loading rate of 5 mm/min. The reaction
force was measured through a load cell of 50 kN. Next, the Young’s modulus (E) and the
Poisson’s ratio (ν) of the specimens were computed.

3.2.2 Foot orthotics under a pressure distribution of foot

The first experiment was testing the honeycomb FO with a relative density of 40% in gait
analysis of a 37 years old male participant having normal feet with size of 43 during walking
with FOs on a treadmill. The participant’s Body Mass Index (BMI) was 27 kg/m2 (height
of 174 cm and weight of 82 kg). The pressure distributions of feet over FOs were measured
during 23 walking cycles. Each FO was put in standard sports shoes (New Balance 860 v8 ).
The pressure insole Medilogic WLAN were placed on the plantar surfaces of the FOs. The
sensors recorded plantar pressure distributions with a frequency of 400 Hz. As a result, the
measured plantar pressure included 23 walking cycles normalized to 101 time frames. Only
the pressure distribution of time frame of 50 was considered in this work, which corresponds
to the pressure at the mid-stance phase. The mean pressure distribution was then computed
from the 23 cycles.

3.2.3 Foot orthotics under concentrated force

We conducted a compression test over the honeycomb insole with a relative density of ρ =
40% and using an MTS Insight electromechanical machine. Figure 5 shows this experimental
setup. It should be noted that this setup does not correspond to the same loading and
boundary conditions when the FO is in contact with the shoe and the foot during walking.
However, it enabled to accurately measure the displacement and the FO’s reaction force,
simultaneously. The displacement was imposed over one point at the medial longitudinal arch

Figure 2: Geometrical details of the designed honeycomb FO; (a) isometric view, (b) left
view, (c) back view, (d) right view, (e) front view (f) bottom view, and (g) top view of the
FO. The dimensions are in mm and the relative density of the honeycomb cell is 40%.
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Figure 3: Schematic of the FO’s honeycomb unit cell; (a) top view, (b) front view and (c)
isometric view. The geometrical parameters (t, l, θ, d, h1 and h2) can be locally varied to
provide a functionally graded cellular FO. In this study, we considered θ = π/6, lb = hb,
l = h and d = 1.5 mm. The unit cell is divided into two separated layers; a layer with
honeycombs and a layer with holes. The effective properties of each layer were computed
by numerical homogenization. The layers were then assembled according to the classical
lamination theory to build the surrogate model.

and at the edge of the insole. This point was considered for two reasons. First, it was assumed
that the critical factor in designing FOs for flat feet is to avoid the collapse of the longitudinal
arch. Thus, the force-displacement curves of a point at the medial longitudinal arch obtained
from experimental measurements and predicted by the computational simulation were the
system response quantity of interest. Second, the literature shows that, during walking, the
maximum out-of-plane displacement of the insole is in the medial longitudinal arch region
[26]. Applying loading at this point, therefore, might deliver a global displacement field
closer to the actual FO deformation during walking. The loading was applied with the rate
of 5 mm/min through a blunt-ended steel punch. The diameter of the punch at the contact
point was approximately of 2.0 mm. The FO was fixed at the heel part using a C-clamp,
while the fore-foot was free. The test was repeated three times. Each time, the FO and
the clamped boundary condition were re-installed to account for the uncertainty of manual
installation. The displacement and the reaction force at the contact point were measured
with the MTS machine using a load cell of 1 kN. Our validation metric was defined as the
contact force between the punch and the insole with respect to the vertical displacement of
the punch. Moreover, to evaluate the machine’s precision, we also recorded the displacement
by the Digital Image Correlation (DIC) technique.

3.2.4 Digital image correlation technique

DIC is a contact-less optical technique to measure the full displacement field by comparing
two images of the undeformed and deformed structure under loading [30, 31]. To perform
this comparison, the area of interest is painted in white and coated with a black dots pattern.
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In our test, the insole’s edge was painted with a thin layer of white spray using Painter’s
Touch® 2X Ultra Cover paint spray. The speckle pattern was then applied over the surface
with an airbrush and Golden Fluid Acrylics Carbon Black ink. The punch was also covered
by white paint and black dots patterns (as shown in Figure 5) to track its displacement.

In the insole, the area of interest was limited to the longitudinal arch since it was difficult
to capture its whole displacement field due to the lack of pixels within its thin thickness. The
two cameras were placed close to the specimen (about 30 cm) and a 10 mm lens extension
was employed. The cameras were then calibrated to determine the extrinsic parameters
(e.g., distance between cameras and the specimen) and the intrinsic parameters (e.g., focal
length). The displacement fields were extracted during the whole load history using the
calibration data and the commercial software Vic-3DTM (version 7.2.4). Figure 6 shows
three points in the area of interest, as well as the corresponding nodes in the FE models
having approximately the same positions. The predicted vertical displacements at these
nodes were compared against the experimental measurements for the purpose of validation
of the numerical simulations.

3.3 Numerical simulations
Two FE models were developed to predict the mechanical response of the honeycomb insole,
namely an Explicit model and a Homogenized model using Abaqus (version 6.14) commercial

Figure 4: Geometrical details of the designed square and triangular lattice FOs; (a) isometric
view, (b) bottom view, (c) top view, (d) left view and (e) right view of the square lattice
FO; (f) isometric view, (g) bottom view, (h) top view, (i) left view and (j) right view of
the triangular lattice FO. The dimensions are in mm and the relative density of the cells is
40%. The holes at the first layer have different diameters and patterns when compared to
the honeycomb lattice FO design. Correspondingly, their first layer have a different effective
properties. These two lattice insoles were designed to study the effect of the cell topology
on the predictive capability of their homogenized models.
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Figure 5: Experimental setup to apply a displacement over the longitudinal arch of the 3D
printed insole and measure the reaction force; (a) the painted insole is under a compression
loading using a MTS uni-axial tensile machine in front of two cameras, (b) the insole before
load application, (c) the insole after load application. The machine applied a vertical dis-
placement and a 1 kN load cell recorded the reaction force over the punch. The punch was
an M6 screw that was mounted into the fixture. The insole was fixed at the heel part using
a C-clamp. The cameras were mounted on a tripod, placed close to the specimen and a 10
mm lens extension was employed to have a higher resolution. An LED-Olympus LG-PS2
Microscope Ring Light was also employed to control the lighting.

FE software. In the explicit model, the geometry was explicitly meshed by 3D elements whose
mechanical properties were considered as isotropic and linearly elastic with the measured
Young’s modulus and Poisson’s ratio during the tensile test. In the homogenized model, on
the other hand, the geometry was meshed by shell elements whose mechanical properties
were computed from the numerical homogenization process.

3.3.1 Numerical homogenization process

Numerical homogenization was employed to compute the effective properties of the unit cell
in Figure 3. The microstructure is periodic in-plane but is not periodic out-of-plane. This
causes a challenge because the numerical homogenization technique requires 3D periodic
micro-structures. To circumvent this problem, we relied on the classical lamination theory
to assemble two layers made of a homogenized layer with a distribution of circular holes
and a layer consisting of the homogenized mechanical properties of the honeycomb cell (see
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Figure 6: The selected points for validating the predicted vertical displacement field by
the models; (a) the area of interest and selected points in the digital image correlation
measurement, (b) the corresponding selected nodes over the explicit FE model, (c) the
selected nodes over the homogenized FE model.

Figure 3(c)). The numerical homogenization computes the effective stiffness tensor of the
layer with holes and the layer with honeycomb namely as C̄Hole

ijkl and C̄Honeycomb
ijkl , respectively.

A Python code was written to automatically generate, mesh, apply PBC, apply strain ten-
sors, and compute the effective properties of the unit cells as a function of the geometrical
parameters described in Section 3.1. Particularly, the effective properties were computed
for honeycomb cells having relative densities of ρ = 10%, 20%, 30%, 40%, 50%, 60%, 70% and
80%. The same relative densities were also used to compute the square and triangular cells
effective properties. The effective properties were reported as the engineering constants (i.e.,
E11, E22, E33, G12, G13, G23, ν12, ν13, and ν32) since all the cells have three symmetrical planes
and are orthotropic. The computed effective properties were injected to a shell FE model
with a variable thickness.

3.3.2 Modelling of the variable thickness

The height of h2 was a variable in our designed FO. Figure 7(a) shows the distribution of
h2 with respect to X − Y in-plane coordinate system attached to the insole. The CAD
file of the insole was meshed and the Z coordinate of nodes at the top (ZT op) and bottom
(ZBottom) surfaces of the FO were used to compute h2. In this way, h1 +h2 = ZT op −ZBottom.
Assuming that h1 is constant, h2 is simply computed by h2(X, Y ) = ZT op −ZBottom −h1. To
simulate this variable thickness, the homogenized model was divided into nx × ny segments.
The segmentation was conducted using vertical (in direction of Y ) and horizontal planes (in
direction of X). Each segment was assigned to a mean value of h2 in the corresponding
domain. Figure 7 shows our discretization of h2 when the segment size was ∆x = ∆y = 24
mm. The appendix A shows the numerical stability of such discretization scheme for more
segment sizes.
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Figure 7: Modelling of variable height h2; (a) the reference distribution of h2(X, Y ) over the
explicit model of the insole, (b) the discretized distribution of h2(X, Y ) over the homogenized
model of the insole by ∆x = ∆y = 24.0 mm.

3.3.3 Simulation of insole under static pressure distribution

The simulation of the insole under the static pressure distribution of the foot was conducted
to assess the predictive capability of the homogenized model when compared to the pre-
dictions of the explicit model. In both models, the heel part of the insole was assumed to
be fixed in all degrees of freedom, and the forefoot part was fixed in the vertical direction.
The static pressure distribution of the foot (i.e., P (X, Y )) was then directly applied over
the top surface (i.e., the surface that is in contact with the foot) of the models. Figure 8
shows how the loading and the boundary conditions were applied over the FE model of the
insole. In this Figure, part (a) shows the pressure distribution at 50% of the stance phase
that was selected to be applied over the nodes at the top surface of the FE models. This
pressure was measured through a continuous surface of the pressure sensor. The FO’s top
surface, however, is not continuous and has circular holes. This leads to a mismatch between
the applied total force (Ft = P × A) over the explicit model and the homogenized model
since the area of the top surface having circular holes is A1 = 110 cm2, and without holes,
is A2 = 130 cm2. Therefore, the applied pressure distribution over the explicit model was
scaled up by the factor A2/A1 = 1.18 to ensure that loading in both FE models are equiv-
alent. The same pressure distribution having scaling factors of A2/A1 = 130/120 = 1.08
and A2/A1 = 130/110 = 1.18 was applied over the square and triangular cells, respectively.
Note that the foot pressure distribution was particularly measured for honeycomb lattice
insole and changing the cell topology changes the insole’s rigidity and it would affect the
foot pressure distribution within the gait [32]. However, from a verification point of view,
as far as the loading and the boundary conditions are the identical for both the explicit and
the homogenized models, they should predict the same mechanical response and thus the
comparison of their predictions is still valid.

In Figure 8 (b), the boundary conditions at the heel part were applied in a circular zone
having its center at (34.31,−2.06) mm. In the full meshed model, the radius is 10.5 mm
to fix the three translations of UX , UY and UZ . In the homogenized model, the radius is
13.25 mm to fix the three translations (i.e., UX = UY = UZ = 0) and two in-plane rotations
(i.e., RX = RZ = 0). The difference between the selected radius comes from the geometrical
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details of the insole at the heel part (see Figure 2). In the forefoot, a circular zone having
its center located at (195.0,−20.0) mm and a radius of 52.0 mm was selected to fix only
the out-of-plane translation UZ . These boundary conditions of course are not accurately
representative of the interactions of insoles between the shoes and the feet. It was employed
only for the purpose of the verification of the homogenized model’s predictions.

The verification consisted in comparing the displacement field in direction of Z over the
nodes at the top surface of the explicit model, as well as the top surface of the homogenized
model of the lattice insole. The predictions were also compared over three vertical and
three horizontal lines, as shown in Figure 9. In all six lines, the relative discrepancy of
the homogenized model’s prediction against the explicit model was reported to evaluate
the homogenized model’s performance assuming that the explicit model’s prediction is the
reference solution. The evaluation metric was defined as δ =

∣∣∣∣max |UE
Z |−max |UHmg

Z |
||UE

Z ||2

∣∣∣∣ which is the
relative difference between the maximum absolute values of the predictions normalized by
the norm-2 of the reference solution. This metric was selected since it was expected that
the homogenized model, as the surrogate, predicts well the maximum vertical displacement
within an optimization problem.

The computational costs of the simulations were then compared within a convergence
study of mesh refinement. The mesh of both FE models was uniformly refined as lelement

lb
= 3,

3
2, 1, 1

2, 1
3, 1

4, 1
5 , ... . The refinement was stopped when:

∆̄UZmin = Ufine
Zmin − U coarse

Zmin
Ufine

Zmin
≤ 0.001, (5)

where ∆̄UZmin returns the normalized difference between the predicted minimum out-of-
plane displacement having a fine mesh (Ufine

Zmin) against the predicted one by a coarse mesh
(U coarse

Zmin ). The required memory and the computational time to provide the converged result
were reported to compare the computational efficiency of the explicit model against the
homogenized model.

3.3.4 Simulation of foot orthotic under a concentrated force

The simulation of the FO under the concentrated force was a contact simulation. The
geometry of the punch was approximately defined in Abaqus. A fillet radius of 2.5 mm was
added into the geometry of the punch to avoid numerical issues due to the contact problem
between a sharp edge and the insole’s surface. The center of the cylindrical punch was placed
close to the edge of the insole at coordinates (89.75, 25.5, 41.2) mm. The punch was assumed
to be an analytical rigid body since the steel punch was much stiffer than the polymeric 3D
printed insole (i.e., Esteel

Einsole

≈ 200GP
2GP = 100). To apply the displacement over the punch, one

Reference Point was defined at the top and the center of the punch. A rigid constrain was
then defined between the reference point and the surface of the punch. The normal contact
behaviour was defined as Hard Contact and the tangential contact behaviour was defined as
Frictionless between the punch and the insole’s top surface. In this interaction, the master
element was the punch and the slave element was the top surface of the insole. Next, the
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Figure 8: Loading and boundary conditions over the FE simulation of the insole; (a) applying
the measured pressure distribution of right foot at 50% of the stance phase (midstance) over
the FE model of the insole in the same coordinate system as the FE simulation. Note that
the pressure values of lower than 0.5 N/cm2 have been neglected in this presented pressure
contour; (b) applied boundary conditions on the heel and forefoot parts of the insole withing a
circular zone with center’s coordinate and radius of (cH

x , c
H
y , r

H) and (cF
x , c

F
y , r

F ), respectively.
At the heel part, all degrees of freedom were fixed and at the forefoot, only the out-of-plane
translation was fixed (i.e., UZ = 0).

Figure 9: Selected lines to compare the predicted UZ by the explicit and the homogenized
models in the FE simulation of the insole under the foot pressure.

vertical displacement was applied at the reference point with a value of UZ = 15.0 mm while
the other five degrees of freedom of the reference point were considered to be fixed to 0.
As a result, the vertical reaction force over the punch was computed at the reference point
and plotted as a function of the reference point’s vertical displacement for the purpose of
validation against the experimentally measured force-displacement curve.
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Figure 10: The experimentally measured stress-strain curve over the 3D printed Nylon-12
dog-bone specimens submitted to a uni-axial tensile test. The stress is the nominal stress
which is computed by the measured reaction force divided by the cross-section area. The
strain is the Green-Lagrangian strain which was computed by Vic-3D. The dog-bones were
type I according to ASTM-D638 standard. The printing orientations included longitudinal
and transverse directions. The computed Young’s modulus over these two types were almost
the same having relative difference smaller than 3%. The Young’s modulus, therefore, was
assumed to be constant and equal to E = 2 056 MPa.

4 Results and Discussion

4.1 Stress-Strain curve of dog-bone specimens
Figure 10 shows the stress-strain curves of the tested dog-bone specimens submitted to the
tensile test. The curves correspond to the means of the measured axial stress and strain at the
center point of the specimens, along with 90% confidence intervals that are computed from a
t-distribution of five specimens for longitudinal and transverse 3D printing orientations. The
material reveals a nonlinear behaviour after ε ≈ 0.015 with the yield stress of σy ≈ 28 MPa.
In the linearly elastic domain, the Young’s modulus of the specimens with longitudinal and
transverse 3D printing orientations were extracted as El = 2 078 ± 14 and Et = 2 033 ± 19
MPa, respectively. The relative difference between Et and El is 2.18%. Assuming that
Et ≈ El, the average value of E = 2 056 MPa was injected into the numerical simulations.
Moreover, it was assumed that νt ≈ νl, and the average Poisson’s ratio was computed as
ν = 0.37 at the center point of the dog-bone specimens using the extracted strain fields of
εxx and εyy by DIC.
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4.2 Effective mechanical properties for the unit cell
Table 1 reports the computed effective properties of the unit cells, when the material’s elastic
properties are E = 2 056 MPa and ν = 0.37. Here, the relative density of the honeycomb
cell is 40%. These effective properties have been verified and validated by the authors in
[33]. The relative density of its corresponding layer with circular holes is 96%. As a result,
its effective properties are close to the bulk material properties. Table 1 also reports the
computed effective properties of square and triangular cells having the same relative density
of 40%, as well as the effective properties of their layers with holes. Moreover, Figure 11
shows the computed effective properties of the three cells as a function of the relative density.
Depending on the required stiffness, the proper cell topology, as well as its relative density,
could be selected from these curves.

Table 1: The effective proprieties of the honeycomb, triangular and square lattice insoles.

Property Hc. Tr. Sq. HolesHc. HolesTr. HolesSq.

Ē11 (MPa) 231 369 512 1823 1574 1838
Ē22 (MPa) 231 367 511 1823 1572 1757
Ē33 (MPa) 817 822 821 1965 1851 2001
Ḡ12 (MPa) 73 141 18 673 586 587
Ḡ13 (MPa) 183 177 181 686 614 633
Ḡ23 (MPa) 183 177 181 686 614 632
ν12 0.58 0.30 0.06 0.36 0.35 036
ν13 0.10 0.17 0.23 0.34 0.31 0.31
ν23 0.10 0.17 0.23 0.34 0.31 0.35

4.3 Simulation of insole under static pressure distribution
4.3.1 Convergence study of the explicit and the homogenized models

Figure 12 shows the convergence and the required memory of the explicit model, as well as
the homogenized model, to predict the minimum out-of-plane displacement of the honeycomb
insole having a relative density of ρ = 40% and under the pressure distribution of the foot.
In the explicit model’s convergence study, the mesh size were of lelement

lb
= 3, 3

2, 1, 1
2, 1

3, 1
4, 1

5
and 1

6 with a uniform mesh refinement. In the homogenized model’s convergence study, the

mesh size were of lelement

lb
= 3, 3

2, 1, 1
2, 1

3, 1
4, 1

5, 1
6 and 1

7. When considering the convergence

criterion of Equation 5, the accepted mesh size for the explicit model is 1
6, which results

approximately in 106 solid elements and 4.68×106 DOFs, while, for the homogenized model,
the accepted mesh size is 1

7 which results in 3.7 × 104 shell elements and 9 × 105 DOFs. The
required memory to obtain the converged results by the explicit model is 4 280 MB. The total
CPU time to accomplish this converged simulation is 2 149 seconds on a personal computer

17



Figure 11: Computed effective properties of honeycomb, square and triangular cells with
respect to the relative density; (a) E11/Es, (b) E22/Es, (c) E33/Es, (d) G12/Gs, (e) G13/Gs,
(f) G23/Gs (g) ν12, (h) ν13 and (i) ν32. The effective properties were computed particularly
for ρ = {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%}. Except for the Poisson’s ratios, the
computed elastic constants are normalized with the bulk properties Es and Gs.

featuring an Intel® CoreTM i7-8700K CPU @ 3.7 GHz and 64 GB RAM. In the homogenized
model, on the other hand, employing 464 MB memory yields the converged results in which
the total CPU time is 47 seconds. Therefore, in this simulation, the homogenized model is
almost 9 times more efficient and 46 times faster than the explicit model in terms of the
required memory and the computational time, respectively.
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Figure 12: Mesh size convergence study for (a) the explicit model and (b) the homogenized
model under the pressure distribution of the foot. The Figure also shows the minimum
required memory to conduct the FE simulations using Abaqus. The explicit model needs
4 280 MB to predict the converged results while the homogenized model only requires 464
MB to return the converged result according to the convergence criterion of Equation 5.
Consequently, the total CPU time for the explicit model was 2 149 seconds while it was 47
seconds (i.e. 46 times faster) for the homogenized model using a personal computer featuring
Intel® CoreTM i7-8700K CPU @ 3.7 GHz and 64 GB RAM.

4.3.2 Comparing the predictions of the explicit and homogenized models

Figure 13 shows a comparison between the performance of the explicit model and homoge-
nized model to predict the vertical displacement UZ of the honeycomb insole having a relative
density of 40% under the foot pressure distribution and boundary conditions of Figure 8. In
Figure 13, part (a) shows the predicted UZ by the explicit model, part (b) shows the pre-
dicted UZ by the homogenized model and part (c) shows the computed relative difference at
each point normalized by the maximum predicted displacement by the explicit model (i.e.,
|UE

Z −UHmg
Z |

max |UE
Z | ). To compute this difference, the predicted nodal displacements of the explicit

model were interpolated using cubic interpolation into the same coordinate nodes of the
homogenized model. This result shows that the maximum value of this relative difference
is 29%. The discrepancy is higher around the applied boundary conditions at forefoot and
near the edge (i.e. 110.0 ≤ X ≤ 150.0 mm and −60.0 ≤ Y ≤ −40.0 mm). This error
might be due to the fact that the homogenized model relies on a structure having an infinite
number of cells and thus it does not account for edge effects. Nevertheless, the homogenized
model, as a surrogate, is able to approximately predict the same local minimum or maximum
displacement, when compared to the predictions of the explicit model. For instance, Fig-
ure 14 shows the predicted UZ by the two models along three vertical and three horizontal
lines between points (A,B), (C,D), (E,F ), (G,H), (I, J) and (K,L) over the top surface
of the insole. Among them, the highest discrepancy is 7.85% to predict the local minimum
displacement UZ within the line (G,H).

Figures 15, 16, 17 and 18 report the evaluation of the homogenized model’s performance
to predict the displacement UZ of the square and triangle cellular insoles submitted to
the same foot pressure distribution and boundary conditions as shown in Figure 8. In
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both cases, the homogenized model is able to predict the local minima within the lines
(G,H), (I, J) and (K,L). The maximum normalized relative difference is δ = 13.71%
for the homogenized square insole and it is δ = 14.47% for the homogenized triangular
insole. The average discrepancies among the lines (δ̄) are δ̄Hc. = 2.55%, δ̄Sq. = 4.25%
and δ̄Tr. = 5.15% for honeycomb, square and triangular cells, respectively. This shows a
lower predictive capability of the homogenized square insole and the homogenized triangular
insole, when compared to the homogenized honeycomb insole. The difference may come
from a higher stress concentration factor in the corners of square and triangular geometries,
when compared to the hexagonal geometry [34]. In the homogenization process of square
and triangular cells, the effective properties were overestimated and the homogenized model,
correspondingly, is not able to accurately capture the displacement field and overestimates
the structure’s rigidity. Besides modelling, in the manufacturing of square or triangular
lattice insoles, the stress concentration at the corners might be a reason to start the crack
propagation [35]. Moreover, the insole is under repeated bending and/or torsion during
walking cycles and fatigue fracture thus might occur from these critical points. This implies
the necessity of considering fillet radius at the corners to release the stress concentration in
these cells [36, 37]. Otherwise, among these three lattices, the recommended design is the
honeycomb lattice insole.

4.4 Simulation of insole under contact force
4.4.1 Validation of the predicted force-displacement curves

Figure 19 shows the experimentally measured force-displacement curve as well as the pre-
dicted forces by the homogenized model and the explicit model of the honeycomb FO having
a relative density of 40%. The experimental force corresponds to the mean of three repeti-
tions of the test at the same loading point and by re-installation of the clamped boundary
condition. The predicted forces come from the reaction forces at the reference points in
the explicit and the homogenized models. The normalized relative difference between the
measured force and that predicted is computed by ||FExperiment −Fmodel||2/||FExperiment||2. In
this way, the relative difference between the explicit model’s prediction against the average
experimentally measured force-displacement curve is 9.77% and for the homogenized model’s
prediction, it is 9.27%. The relative difference between the predictions of the homogenized
model and the explicit model is less than 1%. This result, therefore, confirms that the ex-
plicit model’s prediction can be replaced by the homogenized model’s prediction to reduce
the computational cost in a contact simulation.

In this simulation, the required memory to run the explicit model in each time increment
is 3 578 MB while it is only 213 MB for the homogenized model. The required memory thus
is reduced by 94% in the homogenized model. Moreover, the homogenized model is more
efficient in terms of the number of iterations to reach convergence. There are 791 iterations
to complete the explicit model simulation, and, on the other hand, there are 276 iterations
for the homogenized model. Consequently, the computational time for the explicit model is
78 184 seconds (i.e., almost 22 hours), while it is 1 298 seconds (i.e., almost 22 minutes) for
the homogenized model using 12 processors in a parallel processing of Abaqus analysis on a
computer featuring an Intel® CoreTM i7-8700K CPU @ 3.7 GHz and 64 GB RAM.
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Figure 13: Evaluation of the predictive capability of the homogenized model for the honey-
comb lattice insole, when compared to the prediction of the explicit model as the reference
solution; (a) The predicted UZ by the explicit model, (b) the predicted UZ by the homog-
enized model, (c) the computed relative difference between the predictions of both models
and normalized by the maximum predicted displacement by the explicit model ( |UE

Z −UHmg
Z |

max |UE
Z | ),

(d) The computed relative difference having a range of 0 − 10% to better show its variation.
The maximum discrepancy in figure (c) is 29.69%, which is close to the applied boundary
conditions and may come from the edge effect.

4.4.2 Validation of the predicted displacement field

Figure 20 shows the experimentally measured and the predicted displacement field UZ by
the explicit and the homogenized models of the honeycomb FO. The displacement fields
are presented at five time frames during the load history having applied displacements of
D = 4, 6, 8, 10 and 12 mm over the punch. Figure 21 quantitatively shows the measured and
predicted displacements at three points of β, γ and ψ with respect to the displacement of the
punch at point α. In this comparison, the normalized relative difference between the mea-
sured displacement and that predicted is computed by ||UExperiment

Z −Umodel
Z ||2/||UExperiment

Z ||2.
In this way, the discrepancy of the explicit model is 6.32%, 6.28%, 5.67%, and for the ho-
mogenized model is 4.16%, 4.25% and 4.33% over the points β, γ and ψ, respectively.

4.4.3 Contribution factors to the variability of measurements

The uncertainty of the experiment mainly comes from variability of measurements. To
quantify this variability, Figure 22 shows the average measured displacements by the MTS
machine and the DIC within three repetitions. The DIC displacement was extracted at
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Figure 14: Comparison of the predicted displacement UZ by the explicit model as well as
the homogenized model for the honeycomb lattice insole at; lines (a) (A,B), (b) (C,D), (c)
(E,F ), (d) (G,H), (e) (I, J) and (f) (K,L). The metric δ represents the discrepancy of the
homogenized model to predict the minimum displacement when compared to the predictions
of the explicit model. This metric shows that the maximum discrepancy of the homogenized
model is 7.85% in line (G,H) (i.e., the medial arch) among the selected lines. This level of
accuracy could be acceptable for the optimization application.

point α over the punch. The MTS displacement was received from the machine which repre-
sents the vertical translation of the upper fixture (see also Figure 5). In this measurement,
the inaccuracy thus mainly comes from the mismatches and looseness between the body
components (frame, fixture, punch, ...) and of course the finite machine precision. In this
experiment, the force acting on the system is small (less than 0.5 kN) and this variability is
not probably significant. The inaccuracy in DIC measurement comes from the calibration
error and the projection error. In this test, the calibration error is 0.074 and the projection
errors for each of the repetitions are 0.0628, 0.0579 and 0.0763. Yet, both calibration and
projection errors are accepted according to the VIC3D software. Moreover, in general, as
Figure 22 shows, these two measurements are very close to each other (having a normalized
relative difference of ||DMTS − DDIC||2/||DMTS||2 = 1.02%). Both measurements, therefore,
could be acceptable for the purpose of the validation of the simulation’s predictions.
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Figure 15: Evaluation of the predictive capability of the homogenized model for the square
insole, when compared to the prediction of the explicit model as the reference solution; (a)
The predicted UZ by the explicit model, (b) the predicted UZ by the homogenized model, (c)
the computed relative difference between the predictions of both models and normalized by
the maximum predicted displacement by the explicit model ( |UE

Z −UHmg
Z |

max |UE
Z | ), (d) The computed

relative difference having a range of 0 − 15% to better show its variation. The maximum
discrepancy in figure (c) is 31.99%, which is close to the applied boundary conditions and
may come from the edge effect.

5 Conclusion
We developed a computationally efficient FE model of a honeycomb lattice foot orthotic.
The contributions and conclusions of this modelling are as follows:

• In a FE simulation of a honeycomb lattice FO under static pressure distribution of the
foot, the required memory to run the homogenized model is 9 times smaller than the
required memory for the explicit FE model. The computational time of the homog-
enized model is 46 times faster than the explicit model. Yet, the relative difference
between their predictions is less than 8% to predict the local minimum out-of-plane
displacement within the selected vertical and horizontal lines over the top surface of
the insole. Each line could be a potential target in an optimization problem to control
the deformation of FO by changing the cell’s geometrical parameters.

• For the explicit model, changing the cell’s geometrical parameters requires modifying
the CAD file and correspondingly re-meshing the lattice FO which is an elaborate
task during each iteration of the optimization process. For the homogenized model,
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Figure 16: Comparison of the predicted displacement UZ by the explicit model as well as
the homogenized model for the square lattice insole at; lines (a) (A,B), (b) (C,D), (c)
(E,F ), (d) (G,H), (e) (I, J) and (f) (K,L). The metric δ represents the discrepancy of the
homogenized model to predict the minimum displacement when compared to the predictions
of the explicit model. This metric shows that the maximum discrepancy of the homogenized
model is 13.71% in line (G,H) (i.e., the medial arch) among the selected lines.

on the other hand, it is sufficient to change the effective properties (and/or the shell’s
thickness) and there is no need to change the mesh.

• In a contact simulation, the homogenized model yields approximately the same reaction
force as the explicit model having a relative difference of less than 1%. Both models
predict a contact force with a relative difference of less than 10% when compared to the
experimentally measured force-displacement curve. But, the explicit model takes 22
hours to run while the homogenized model takes 22 minutes using a personal computer
with an Intel® CoreTM i7-8700K CPU @ 3.7 GHz and 64 GB RAM.

• The predictive capability of the homogenized model is affected by the cell topology.
The maximum discrepancy of the homogenized model displacement with respect to the
explicit model displacement (i.e., δ) for the square lattice insole is 13.71% and for the
triangular lattice insole is 14.47%. These homogenized models might be still functional
since they are able to approximately provide the local minimum displacement.

The presented homogenized models, therefore, can be employed as a surrogate to accel-
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Figure 17: Evaluation of the predictive capability of the homogenized model for the triangular
lattice insole when compared to the prediction of the explicit model as the reference solution;
(a) The predicted UZ by the explicit model, (b) the predicted UZ by the homogenized model,
(c) the computed relative difference between the predictions of both models and normalized
by the maximum predicted displacement by the explicit model ( |UE

Z −UHmg
Z |

max |UE
Z | ), (d) The computed

relative difference having a range of 0 − 15% to better show its variation. The maximum
discrepancy in figure (c) is 20.1%.

erate the optimization process of the lattice FOs for a given cost function. Alternatively,
it could be used in a complex biomechanical system including the foot topology and the
cellular FO to speed up the computational time and the convergence rate.
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Figure 18: Comparison of the predicted displacement UZ by the explicit model as well as
the homogenized model for the triangular lattice insole at; lines (a) (A,B), (b) (C,D), (c)
(E,F ), (d) (G,H), (e) (I, J) and (f) (K,L). The metric δ represents the discrepancy of the
homogenized model to predict the minimum displacement when compared to the predictions
of the explicit model. This metric shows that the maximum discrepancy of the homogenized
model is 14.47% in line (G,H) (i.e., the medial arch) among the selected lines.
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Figure 19: Validation of the simulations to predict the reaction force versus the vertical
displacement of the punch; (a) the predicted and experimentally measured force-displacement
curves, (b) the punch position before applying loading, (c) the punch position after applying
loading. In the initial position of the punch in figure (b), there was a gap between the punch
and the insole which was removed in plot (a). The measured force in figure (a) corresponds
to the mean of three repetitions of the experiment. The predicted forces come from the
explicit model as well as the homogenized model having relative differences of 9.77% and
9.27% respectively, against the experimentally measured force. The predicted forces are close
together with a relative difference of less than 1.0%.
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Figure 20: Validation of the predicted UZ distribution of a honeycomb insole having a relative
density of 40% and under the concentrated force of a punch during five time frames of the
loading history including the applied displacements of D = 4, 6, 8, 10 and 12 mm over the
punch; (a) the experimental measurement, (b) the predictions by the explicit model, (c) the
predictions by the homogenized model. In Figure (c) the shell’s thickness in the homogenized
model is expanded by 10%.

A Numerical stability of discretization of height
The explicit model was employed to evaluate the performance of the homogenized model
having different segmentations of variable h2 including ∆x = ∆y = 28, 24, 20, 16, 12, 8 and 4
mm to predict UZ when the honeycomb insole was under the foot pressure. Figure 23 shows
the discretization and Figure 24 shows the norm-2 of the difference between the predicted UZ

normalized by the norm-2 of the explicit model’s prediction (i.e. ||UE
Z −UHmg.

Z ||2
||UE

Z ||2
). The result

confirms the numerical stability of such discretization scheme since the discrepancies of the
homogenized model’s predictions do not grow unbounded by decreasing the segments.
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Figure 21: Validation of the explicit and the homogenized models to predict the vertical
displacement UZ over (a) point β, (b) point γ, (c) point ψ within (d) the area of interest in
the Digital Image Correlation measurement. In this validation, the maximum discrepancy
of the explicit model’s prediction is 6.32% which is over point β, and, for the homogenized
model, it is 4.33% over the point ψ.
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