
Surrogate optimization of a lattice foot orthotic

Mohammadreza Moeinia, Lingyu Yuea,
Mickael Begonb, Martin Lévesquea,*
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Abstract

Background: Additive manufacturing enables to print patient-specific
Foot Orthotics (FOs). In FOs featuring lattice structures, the variation of the
cell’s dimensions provides a locally variable stiffness to meet the therapeutic
needs of each patient. In an optimization problem, however, using explicit
Finite Element (FE) simulation of lattice FOs with converged 3D elements is
computationally prohibitive. This paper presents a framework to efficiently op-
timize the cell’s dimensions of a honeycomb lattice FO for flat foot condition.
Methods: We built a surrogate based on shell elements whose mechanical
properties were computed by the numerical homogenization technique. The
model was submitted to a static pressure distribution of a flat foot and it
predicted the displacement field for a given set of geometrical parameters of
the honeycomb FO. This FE simulation was considered as a black-box and a
derivative-free optimization solver was employed. The cost function was de-
fined based on the difference between the predicted displacement by the model
against a therapeutic target displacement. Results: Using the homogenized
model as a surrogate significantly accelerated the stiffness optimization of the
lattice FO. The homogenized model could predict the displacement field 78
times faster than the explicit model. When 2000 evaluations were required in
an optimization problem, the computational time was reduced from 34 days to
10 hours using the homogenized model rather than explicit model. Moreover,
in the homogenized model, there was no need to re-create and re-mesh the
insole’s geometry in each iteration of the optimization. It was only required
to update the effective properties. Conclusion: The presented homogenized
model can be used as a surrogate within an optimization framework to cus-
tomize cell’s dimensions of honeycomb lattice FO in a computationally efficient
manner.
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Highlights

• We presented a surrogate optimization of a honeycomb lattice foot orthotic.

• The cost function was reaching a target deflection of the foot orthotic.

• The variables were the geometrical parameters of the honeycomb lattice.

• The difference between the solutions and the target was less than 0.5 mm.

• The surrogate reduces the computational time from 34 days to 10 hours.
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1 Introduction

A flat foot is characterized by a loss of dynamic and static support of the medial longitudinal

arch. It has a prevalence of 20-25% in the adult population [1]. This foot deformity affects

the walking function as well as the alignment of the ankle (i.e., excessive foot pronation),

knee and hip joints [2, 3]. Prescription of foot orthotics (FOs) is one of the most common

treatment to prevent pain and overuse injuries [4,5]. Moreover, customized FOs enable better

control of excessive foot pronation and provide better comfort for patients than prefabricated

FOs [6–8]. Additive manufacturing has paved the way to rapidly manufacture patient-specific

and affordable FOs with customized mechanical properties [9,10]. In 3D printed lattice FOs,

the cell dimensions are locally varied to build a functionally-graded lattice structure whose

mechanical response satisfies the therapeutic needs.

Yet, the remaining challenge is how to find the best variation of the cells dimensions

to meet the therapeutic needs. This question can be answered by model developers within

an optimization problem based on the predictions of a Finite Element (FE) simulation of

the lattice structure under representative loading and boundary conditions [11, 12]. The

therapeutic needs of the patients, on the other hand, should be addressed by clinicians.

Desmyttere et al. [4], for instance, reported that, in general, the key is to avoid the excessive

collapse of the longitudinal arch to deliver an efficient propulsion during gait. Nevertheless,

the flat foot condition includes a broad spectrum of clinical pathologies. Many medical

tests are required to accurately determine the appropriate therapy for each patient [13].

The prescribed therapy is usually based on the morphological parameters of the foot. These

parameters can be identified by footprint evaluations, anthropometric measures, gait analysis

in laboratory or simply through a visual inspection in clinical practice [14]. Thus, the whole

designing process of customized FOs depends on the clinical data and the experience of

the orthotists [15]. The structural optimization features (e.g., the cost functions, variables,

constraints, etc.) as well as the optimized solution, correspondingly, should be frequently

updated and interpreted for each patient receiving clinical feedback from orthotists. To
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speed up this process, there is a need for a computationally fast, robust, and easy-to-use

optimization tool to help orthotists make decisions and design customized lattice FOs to

correct the flat foot condition.

In this paper, we have introduced a computationally efficient simulation-based optimiza-

tion framework to design honeycomb lattice FOs for flat feet. Although we have not proposed

any specific treatment, the presented optimization procedure could be employed to rapidly

provide the best honeycomb cells dimensions to control the FO’s deflections under any given

pressure distribution of a flat foot.
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2 Background and methods

This section presents the Numerical Homogenization technique and the Derivative-free al-

gorithms to build a computationally efficient FE model and the optimization framework. It

also presents our designed honeycomb FO and introduces six examples where the geometrical

parameters of this FO were optimized. All examples consist of previously known solutions to

assess the performance of the surrogate in terms of computational cost and accuracy. Note

that, in this study, a vector is denoted by a boldface letter (e.g., x).

2.1 Simulation-based optimization problems

In simulation-based optimization problems, the cost function is an outcome of a computer

simulation (so called Black-box) which might also be computationally expensive. In black-

box optimization, it is assumed that there is no information about the gradient of the

cost function. The optimized solution is found by evaluating the black-box output and

updating its input, iteratively. In our case, the 3D printed FO should be sufficiently rigid to

support the medial longitudinal arch of a flat foot (Figure 1). The FE simulation output of

interest, therefore, is the predicted displacement field when the FO is subjected to a static

pressure distribution of a flat foot. However, when a lattice FO is explicitly meshed by 3D

solid elements (so called explicit model), the FE simulation requires at least 106 elements

to provide a converged solution [16]. Iteratively running such a complex FE simulation

would be inevitably computationally expensive because, in black-box optimization, more

than 1000 evaluations are usually required to reach a minimum [17–19]. The computational

cost, however, can be significantly reduced by a surrogate optimization.

2.2 Surrogate optimization by the homogenization technique

When the cost function is computationally expensive, it can be replaced by a more efficient

function so called Surrogate. The surrogate should provide a close, but not necessarily the
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exact, local minimum [18]. In a lattice structure, the surrogate can be provided by the

homogenization technique [20–23]

The homogenization technique delivers the effective mechanical properties of heteroge-

neous materials such that the homogenized model predicts almost the same mechanical

response as the heterogeneous structure. In numerical homogenization, a Representative

Volume Element (RVE) of the heterogeneous material is explicitly meshed, a set of periodic

boundary conditions are applied, and six orthogonal strain tensors are exerted over the RVE

to find all the six columns of the effective stiffness tensor C̄ijkl [24]. The honeycomb cell has

three symmetrical planes and is orthotropic [25]. Its effective stiffness tensor C̄ijkl [24] can be

represented by the engineering constants (i.e., E11, E22, E33, G12, G13, G23, ν12, ν13, and ν23).

We have already verified and experimentally validated the computed effective properties of

a honeycomb cell using the above procedure in [25]. Moreover, we verified and validated the

homogenized FE model of a honeycomb cellular FO in [16]. This FE model was employed

in this study to customize the stiffness of honeycomb lattice FOs within a simulation-based

optimization problem and using a derivative-free optimization algorithm.

2.3 Derivative-free optimization algorithms

In derivative-free optimization algorithms, there is no need to compute the gradient of the

cost function which is suitable to solve the simulation-based optimization problems [18].

Mesh Adaptive Direct Search (MADS) is a derivative-free optimization algorithm to solve

either single or bi-objective optimization problems [26]. MADS is a direct search method that

finds the optimum by evaluating the black-box output at some trial points lying on the mesh.

The algorithm starts by discretizing the domain with a mesh size of ∆m and setting a frame

with a poll size of ∆p. The frame is moving through the space variables while the trial points

are selected from its inside and the objective is evaluated at those points. Simultaneously, the

mesh size and the poll size are dynamically updated at each iteration. This feature could

potentially help the algorithm to evade local minima. The convergence proof of MADS
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Figure 1: Simulation of a FO under the pressure distribution of a foot; (a) a flat foot, (b) a
flat foot over a 3D printed honeycomb lattice FO. The FO supports the medial longitudinal
arch of the foot. (c) Explicit FE simulation of the FO having 3D solid elements under the
foot pressure distribution (P (X, Y, Z)), while the boundary conditions are applied on the
heel part (BC1) and on the fore foot (BC2). The objective is to design the FO’s geometrical
parameters such that, when it is submitted to the foot pressure, it exhibits a target deflection.
The designing process requires to solve a simulation-based optimization problem.

was presented in [18]. NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search)

is also an open-source C++ implementation of MADS algorithm to solve simulation-based

optimization problems [27,28].

2.4 Building the surrogate

2.4.1 Geometrical details of the designed foot orthotics

Figure 2 shows the designed lattice FO which was a lattice structure consisting of two

layers; an infilled layer with a distribution of circular holes and a reinforced layer made

of a honeycomb cellular structure. The holes were needed for ventilation functions during

walking. The overall geometrical parameters were T1, T2 and L, which represented the height

at the Lateral Longitudinal Arch (LLA), the height at Medial Longitudinal Arch (MLA),

and the total length of the FO, respectively (Figure 2a). These parameters impact also on

the curvature of the FO at the MLA and the LLA. Thus, they affect the overall stiffness

of the FO, and correspondingly affect the resulting displacement when the FO is under the

pressure distribution of the foot. In this research, we chose them arbitrarily and along with

the previous studies [10, 29, 30]. Therefore, they were not treated as optimization variables,

5



and they remained constant as per T1 = 19.6 mm, T2 = 23.0 mm, L = 170.0 mm. The

surrogate model (Figure 2b) is a simplified geometry of the honeycomb lattice FO having

the same topology, but with a continuous surface and featuring a variable local stiffness. The

variable local stiffness comes from the variation of the local geometrical parameters. These

parameters (Figure 2c) are the height of the infilled layer (h1), the height of the honeycomb

layer (h2), the diameter of the circular holes (d), the horizontal and inclined hexagon side

lengths (hb and lb), the wall thickness (t) and the angle between the vertical and inclined

hexagon sides (θ). The hexagon outer side lengths (l and h) can be explicitly computed by

l = lb + t/2 cos θ and h = hb + t(1 − sin θ)/ cos θ. Using these geometrical parameters, the

relative density, ρ, for a honeycomb unit cell is computed as per [31]:

ρ = 1− lb(hb + lb sin θ)
l(h + l sin θ) . (1)

Parameters ρ and h2 were locally varied to provide a variable stiffness. The other parameters

(i.e., h1, d, θ), however, were considered to be constant to reduce the number of optimization

variables. In this way, the parameters h1 and d were fixed and arbitrarily assigned as per

h1 = 1.5 mm and d = 0.75 mm. Moreover, only regular hexagons were considered in which

lb = hb, l = h and θ = π/6.

2.4.2 Numerical homogenization of the honeycomb cells

The effective properties of the honeycomb unit cells were computed as a function of the

relative density by the numerical homogenization technique (Algorithm 1). A unit cell was

considered to be the RVE of the whole lattice structure. The numerical homogenization

was conducted using Abaqus (version 6.14) FE software. The material of the RVE was

assumed to be a linearly elastic and isotropic, and had a Young’s modulus of Esolid and

a Poisson’s ratio of νsolid. A comparatively very soft material, named as elastic air and

having Evoid ≪ Esolid and νvoid ≃ νsolid, was attributed to the void phase to compute the

macro-strain and macro-stress through volume integration [25]. The effective engineering
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constants were computed for a honeycomb cell having relative densities ρ = 10%−80% with

10% increments. A continuous regression function using a polynomial interpolation (i.e.,
n∑

i=0
Θiρ

i) was then obtained through these points to compute the effective properties for any

arbitrary 10% ≤ ρ ≤ 80% during the optimization process.

2.4.3 Mesh and Material properties

The homogenized FO consisted of quadratic shell elements (i.e., S8R5 element having 8 nodes

and 5 degrees of freedom at each node) whose effective properties were computed from the

numerical homogenization of a honeycomb cell whose constituting material had a Young’s

Figure 2: Schematic representation of the honeycomb lattice FO; (a) FO geometry having
the global geometrical parameters of T1 (the height at the lateral longitudinal arch), T2 (the
height at the medial longitudinal arch), and L (the total length of the FO), (b) surrogate
of the detailed problem which is a simplified geometry of the FO with the same global geo-
metrical parameters but for which the shell effective properties are obtained from numerical
homogenization, (c) FO local geometrical parameters including the height of the infilled layer
(h1), the height of the honeycomb layer (h2), the diameter of the circular holes (d), the hor-
izontal and inclined hexagon side lengths (hb and lb) and the wall thickness (t). The relative
density (ρ) is computed from Equation 1. Parameters ρ and h2 are optimized to provide
the required stiffness in this lattice FO. The other parameters are considered to be constant
with h1 = 1.5 mm and d = 0.75 mm. Also, only a regular hexagonal cell was considered in
which lb = hb, l = h and θ = π/6.
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Algorithm 1: Computation of the effective properties
1 Simulation parameters
2 (Esolid, νsolid): Young’s modulus and Poisson’s ratio of the solid phase.
3 (Evoid, νvoid): Young’s modulus and Poisson’s ratio of the void phase (elastic air).
4 Process
5 for ρ ∈ {10, 20, · · · , 80} do
6 Generate the RVE (one unit cell).
7 Mesh the RVE
8 Assign (Esolid, νsolid) and (Eair, νair) to the solid and void phases.
9 Apply periodic boundary conditions.

10 Apply six orthogonal macro-strains.
11 Compute the macro-stress Σ = 1

V

∫
σdV over the entire volume (V )

12 Compute the macro-strain E = 1
V

∫
εdV over the entire volume (V )

13 Compute the effective stiffness tensor C̄ijkl by solving Σ = C̃ : E for C̃
14 Compute the engineering constants Ēii, Ḡij and νij.
15 Provide a continuous polynomial regression function (Ēii(ρ), Ḡij(ρ) and νij(ρ)).

modulus of Es = 2055.63 MPa and a Poisson’s ratio of νs = 0.37. These properties were

extracted from Selective Laser Sintering (SLS) 3D printed Nylon-12 dog-bone specimens

mechanically tested according to the ASTM-D638 standard [16].

2.4.4 Boundary conditions and loading

The FO was subjected to a static pressure distribution of a flat foot (P (X, Y, Z)). This

pressure was measured during a gait analysis of a 21-year-old female participant having a

Body Mass Index (BMI) of 21.2 (height of 164 cm and weight of 57 kg), a shoe size of 8 US,

arch height flexibility of 28 (right foot), arch height of 55.3 mm (right foot), and foot posture

index of +6. The feet pressure distributions were measured using plantar pressure insoles

(Medilogic WLAN, Germany) on the plantar surfaces of the FOs and during 23 walking cycles.

The sensors recorded pressure distributions with a frequency of 400 Hz. Consequently, the

measured plantar pressure consisted of 23 walking cycles normalized to 101 time frames.

The pressure distribution of time frame 50, which corresponds to the pressure at the mid-

stance phase, was selected and the mean pressure distribution was then computed from the

23 cycles. This pressure distribution was employed as a static loading in the FE simulation.
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The boundary conditions were applied on the heel and the forefoot. In the heel part, all

degrees of freedom were fixed while in the forefoot, only the out-of-plane displacement was

fixed. These boundary conditions are a simplification of the interaction between the FO, the

foot and the shoe. Nevertheless, it might be acceptable in a quasi-static simulation in which

the goal is to only predict the FO’s deformation at the mid-stance phase.

2.4.5 Verification of the surrogate’s predictions

The verification of the surrogate’s predictions consisted of three assessments. In the first

assessment (Appendix A), the performance of the homogenized model was verified by the

predictions of the explicit model assuming that the explicit model results in an exact solution

(this assumption was verified and validated in our previous research works [16,25]). Partic-

ularly, the predicted displacement field by the homogenized model was compared with the

predictions of the explicit model over the top surface of the FO. In this comparison, we re-

ported the relative difference between the predictions normalized by the maximum predicted

UZ by the explicit model (i.e., |UHmg
Z −UE

Z |
max |UE

Z | ). Moreover, the predictions were compared over

three vertical lines and three horizontal lines on the top surface of the FO. In this comparison,

the metric ξ =
∣∣∣∣max |UHmg

Z |−max |UE
Z |

||UE
Z ||2

∣∣∣∣ was defined and reported for each line. Furthermore, the

predicted arguments of the minimums (i.e., argmin) over the selected lines were also men-

tioned. These values are reported to evaluate the performance of the homogenized model to

predict the local minimum of the out-of-plane displacement, when compared to the predic-

tion of the explicit model. In the second assessment (Appendix B), the convergence of the

mesh size of both models was studied. In the third assessment, the computational time and

the required memory to run the simulations were reported on a personal computer Intel®

CoreTM i7-8700K CPU @ 3.7 GHz and 64 GB RAM. The computational costs of the explicit

and the homogenized models were compared together to assess the efficiency of the surrogate

within the optimization procedure.
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Algorithm 2: Simulation of the Foot Orthotic
1 Simulation parameters
2 lelement: Element’s size.
3 E, ν: Young’s modulus and Poisson’s ratio.
4 (h1, θ, d): Constant geometrical parameters.
5 P (X, Y, Z): Pressure distribution of the foot.
6 (BC1, BC2): Boundary conditions at the heel and forefoot.
7 Process
8 Import the geometry.
9 Mesh the geometry.

10 Read the input ρ and h2 from a text file.
11 Compute the effective properties using the regression function.
12 Assign the effective material properties to the model.
13 Assign the shell thickness h2 to the model.
14 Apply the boundary conditions (BC1, BC2).
15 Apply the foot pressure distribution P (X, Y, Z).
16 Solve the FE problem.
17 Save the displacement field UZ into a csv file.

2.5 Optimization procedure

A python/shell code was written to run Abaqus (the simulator) for a given input and to

return the output as the cost function to NOMAD (the optimizer). NOMAD evaluated the

output and updated the input (i.e., ρ and h2) at each iteration. Algorithm 2 presents the

simulation procedure for the homogenized FO under the pressure distribution of the flat

foot. Algorithm 3 presents the optimization procedure by NOMAD.

The input geometrical variables were ρ and h2. Moreover, the FO’s domain was dis-

cretized into nine sub-domains (Figure 3). Each sub-domain represented a group of honey-

comb cells having a height of h
(i)
2 and a relative density of ρ(i), where i ∈ {1, . . . , 9}.

Constraints were mainly defined as the lower and upper bounds of the input variables

(i.e., lb ≤ x ≤ ub) in the optimization problems. The relative density was limited to

10.0 ≤ ρ ≤ 80.0 due to the manufactural limitations of 3D printing of honeycomb cells with

a relative density of higher than 80% or lower than 10%. The constraint over the height of

the cells was considered as 0.1 ≤ h2 ≤ 5.0 mm due to the limited space inside the shoes.

Moreover, in one optimization problem, a group of nonlinear constraints was also defined
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Algorithm 3: Optimization algorithm
1 Optimization parameters
2 DIMENSIONS: Number of variables.
3 x0: The initial point.
4 lb, ub : The bounds (lb ≤ x ≤ ub).
5 NEval : Maximum number of black-box evaluations.
6 ∆m

0 : Initial value of the mesh size to discretize the domain.
7 ∆m

min: Minimum value of the mesh size to discretize the domain.
8 ∆p

min: Minimum value of the poll size to create a frame.
9 Run NOMAD

10 k ← 0
11 for i ∈ J1, NEvalK do
12 ∆m

k+1 ← ∆m
k Update the mesh size

13 ∆p
k+1 ← ∆p

k Update the poll size
14 xk+1 ← xk Update the input
15 Run Abaqus
16 Evaluate the output f(xk+1)
17 if ∆m

k+1 ≤ ∆m
min or ∆p

k+1 ≤ ∆p
min then

18 stop

19 Return optimal solution x∗

Figure 3: The discretized FO’s domain to build a functionally graded honeycomb lattice
structure (dimensions are in mm); Two vertical lines (with coordinates of X = 65.0 and
X = 125.0) and two horizontal lines (with coordinates of Y = −25 and Y = 10) were
considered to discretize the FO’s domain into nine sub-domains. Each sub-domain includes
a group of honeycomb cells having a relative density of ρ(i) and a height of h

(i)
2 , where i ∈

{1, . . . , 9}. In the optimization process, the effective properties of each group were computed
using the continuous regression function resulting from the numerical homogenization process
and assigned into the corresponding elements in the FE simulation. The optimization solver
updates ρ(i) and/or h

(i)
2 in each iteration to minimize the given cost function(s).
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such that the difference between the height of a sub-domain (h(i)
2 ) against the neighbor sub-

domains did not become higher than a given value δi. Such constraints were devised to

yield a smoother surface at the optimal solution. Table 1 indicates the constraints over the

variable h2 and Figure 4 shows why imposing these constraints might be needed within the

optimization process. Note that in NOMAD, the constraints were handled using the Extreme

Barrier approach as per [18]:

fΩ :=
f(x) if x ∈ Ω

+∞ if x /∈ Ω
(2)

where Ω is the feasible domain of the variable x. Therefore, those trial points that are not

in the feasible domain, would not be definitely selected as the optimal solution of the cost

function f(x).

Table 1: The constraints over the heights of the cells

δ1 = 1
3

(∑
i

(
h

(1)
2 − h

(i)
2

)2
)1/2

i ∈ {2, 4, 5}

δ2 = 1
5

(∑
i

(
h

(2)
2 − h

(i)
2

)2
)1/2

i ∈ {1, 3, 4, 5, 6}

δ3 = 1
3

(∑
i

(
h

(3)
2 − h

(i)
2

)2
)1/2

i ∈ {2, 5, 6}

δ4 = 1
5

(∑
i

(
h

(4)
2 − h

(i)
2

)2
)1/2

i ∈ {1, 2, 5, 7, 8}

δ5 = 1
8

(∑
i

(
h

(5)
2 − h

(i)
2

)2
)1/2

i ∈ {1, 2, 3, 4, 6, 7, 8, 9}

δ6 = 1
5

(∑
i

(
h

(6)
2 − h

(i)
2

)2
)1/2

i ∈ {2, 3, 5, 8, 9}

δ7 = 1
3

(∑
i

(
h

(7)
2 − h

(i)
2

)2
)1/2

i ∈ {4, 5, 8}

δ8 = 1
5

(∑
i

(
h

(8)
2 − h

(i)
2

)2
)1/2

i ∈ {4, 5, 6, 7, 9}

δ9 = 1
3

(∑
i

(
h

(9)
2 − h

(i)
2

)2
)1/2

i ∈ {5, 6, 8}

δi ≤ 4.0 i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}

The cost function was defined as a function of the predicted displacement field. The

objective was to minimize the difference between the predicted out-of-plane displacement
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Figure 4: Variation of the height of the honeycomb cells in the discretized nine sub-domains
of the FO. This figure schematically shows that it might be necessary to impose a set of
constraints over the height of the cells to limit abrupt changes. The necessity comes from an
undesirable large difference between the height of the cells in the adjacent sub-domains which
might make the manufacturing process difficult and also cause a high stress concentration.
To mitigate this issue, we proposed imposing a group of non-linear constraints over the
height of the cells that are presented in Table 1 to provide a smoother surface at the optimal
solution.

field (UZ) by the current FE model against the predicted displacement field by the reference

FE model (UR
Z ) of a FO having arbitrary geometrical parameters (xR). Therefore, in this

way, the expected minimum value was f(xR) = 0.0. The absolute error of the resulting

optimal solution (x∗) was estimated as per:

e = |xR − x∗|. (3)

The optimization process was stopped when it reached the given stopping criteria. Three

stopping criteria were tested including; the maximum number of black-box evaluations

(NEval), the minimum value of the mesh size (∆m
min) and the minimum value of the poll

size (∆p
min). It was considered that ∆p

min =
√

∆m
min for ∆m

min, ∆p
min < 1 [18]. Note that the
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initial mesh size (∆m
0 ) can be also determined. The above hyperparameters were defined in

NOMAD for each optimization example.

2.6 Optimization examples

2.6.1 Single-variable optimization examples

The single-variable optimization consisted in optimizing either ρ or h2 uniformly distributed

through the whole FO. In this regard, the first example was:

min
x∈R

||UZ − UR
Z ||2

s.t. 10.0 ≤ x ≤ 80.0,
(4)

while the height of the cells was set at h2 = 3.0 mm. The target displacement field was

predicted by a honeycomb homogenized model having a relative density of ρ = 40%. The

expected optimal solution was therefore xR = 40%. Two initial solutions were considered as

x0 = 10% and x0 = 80% to start the optimization. The initial mesh size was ∆m
0 = 10.0.

Moreover, the stopping criteria was set to ∆m
min = 0.25 and ∆p

min = 0.5.

The second example was:
min
x∈R

||UZ − UR
Z ||2

s.t. 0.1 ≤ x ≤ 5.0,
(5)

while the relative density was ρ = 40%. The reference solution was xR = 3.0 mm. Two

initial points were considered as x0 = 0.1 mm and x0 = 5.0 mm. The hyper parameters were

considered as ∆m
0 = 1.0, ∆m

min = 0.01 and ∆p
min = 0.1.

14



2.6.2 Multi-variables optimization examples

The third example was a multi-variable optimization of ρ(i), as per:

min
x∈R9

||UZ − UR
Z ||2

x = [ρ(1), ρ(2), . . . , ρ(9)]T

s.t. 10.0 ≤ ρ(i) ≤ 80.0

i ∈ {1, 2, . . . , 9},

(6)

while all h
(i)
2 were set to h

(i)
2 = 3.0 mm. To start the optimization, the initial solution was set

to ρ(i) = 10% for all sub-domains. Moreover, the initial mesh size and the stopping criteria

were set to ∆m
0 = 10.0, ∆m

min = 0.25 and ∆p
min = 0.5. The reference solution of this example

was:

xR = [30.0, 35.0, 40.0, 45.0, 50.0, 55.0, 60.0, 65.0, 70.0]T%. (7)

The fourth example was an optimization of h
(i)
2 , as per:

min
x∈R9

||UZ − UR
Z ||2

x = [h(1)
2 , h

(2)
2 , . . . , h

(9)
2 ]

s.t. 0.1 ≤ h
(i)
2 ≤ 5.0

i ∈ {1, 2, . . . , 9},

(8)

while all ρ(i) were set to ρ(i) = 40.0%. The initial solution was set to h
(i)
2 = 0.1 for all

sub-domains. The hyper parameters were ∆m
0 = 1.0, ∆m

min = 0.01 and ∆p
min = 0.1. The

reference solution was:

xR = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]Tmm. (9)
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The fifth example was an optimization of ρ(i) and h
(i)
2 , simultaneously, as per:

min
x∈R18

||UZ − UR
Z ||2

x = [ρ(1), . . . , ρ(9), h
(1)
2 , . . . , h

(9)
2 ]T

s.t. 10.0 ≤ ρ(i) ≤ 80.0

0.1 ≤ h
(i)
2 ≤ 5.0

i ∈ {1, 2, . . . , 9}.

(10)

The reference solution was:

xR = [30, 35, 40, 45, 50, 55, 60, 65, 70, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]T%, mm. (11)

The initial solutions were considered as ρ(i) = 10% and h
(i)
2 = 0.1 for all sub-domains.

The initial mesh size and the stopping criteria for the relative density were ∆m
0 = 10.0,

∆m
min = 0.25, ∆p

min = 0.5 and for the height of the cells were ∆m
0 = 1.0, ∆m

min = 0.01 and

∆p
min = 0.1. Moreover, the computational budget was set to NEval = 2000.
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2.6.3 Multi-variable and bi-objective optimization example

The sixth example was an optimization of h
(i)
2 and ρ(i) featuring two cost functions to achieve

the target displacement as well as minimizing the total mass, as per:

min
x∈R18

F (x) =
(
f (1)(x), f (2)(x)

)
f (1) = ||UZ − UR

Z ||2

f (2) =
(

1∑
i

a(i)

)∑
i

ρ(i)h
(i)
2 a(i)

x = [ρ(1), . . . , ρ(9), h
(1)
2 , . . . , h

(9)
2 ]T

s.t. 0.1 ≤ h
(i)
2 ≤ 5.0

10.0 ≤ ρ(i) ≤ 80.0

δi − 4.0 ≤ 0.0

i ∈ {1, 2, . . . , 9}.

(12)

In the first objective, UR
Z was the predicted displacement field by a homogenized model

consisting of the reference geometrical parameters like the previous example (Equation 11).

The second objective represents the apparent total mass of the FO, in which a was a constant

vector consisting of the area of each sub-domain:

a = [676, 2214, 1177, 1685, 2173, 1155, 1238, 1753, 865]T mm2. (13)

The computational budget was set to NEval = 1000. The initial solution and other hyperpa-

rameters (i.e., x0, ∆m
0 , ∆m

min, ∆p
min) were considered similar to Example #5. Moreover, the

nonlinear group of constraints (Table 1) were also imposed to the variables h
(i)
2 . Note that

there is no unique optimal solution in this example and the final response is a set of optimal

solutions (so called Pareto front [18]).

17



3 Results

3.1 Computed effective properties of honeycomb cells

Figure 5 shows the computed effective properties of the honeycomb cells having relative

densities of ρ = 10% − 80% with 10% increments, as well as the regression results using

polynomial regression functions. Except for the Poisson’s ratios, the other computed effective

elastic constants are normalized with the bulk properties Es and Gs. Moreover, the computed

regression coefficients are reported in Table 2.

Figure 5: Computed effective properties of the honeycomb cells; (a) axial elastic constants
Ēii, (b) shear elastic constants Ḡij and (c) Poisson’s ratios ν̄ij. The figure also shows the
continuous regression functions using a polynomial regression function.

Table 2: Regression of the computed effective proprieties using R(ρ) =
6∑

i=0
Θiρ

i.

Property Θ0 Θ1 Θ2 Θ3 Θ4 Θ5 Θ6

Ē11 0.0 0.0 0.0 3.57e-06 -2.38e-05 -6.93e-05 2.20e-03
Ē22 0.0 0.0 0.0 2.23e-06 1.05e-05 -4.92e-04 4.10e-03
Ē33 1.00e-02 -1.82e-03 - - - - -
Ḡ12 0.0 0.0 0.0 -1.71e-06 5.31e-05 -6.07e-04 3.23e-03
Ḡ13 0.0 0.0 0.0 -6.01e-06 2.39e-04 9.85e-04 2.72e-02
Ḡ23 0.0 0.0 0.0 -4.91e-06 2.08e-04 1.38e-03 2.53e-02
ν12 0.0 1.29e-05 -8.63e-04 8.28e-03 9.48e-01 - -
ν13 3.86e-03 -4.43e-02 - - - - -
ν23 3.86e-03 -4.39e-02 - - - - -
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3.2 Optimization results

In the single-variable optimization examples, the solver found the exact solutions in less

than 8 minutes. Figure 6 shows the variation of the input and output with respect to the

number of evaluations in Example #1. The solver was stopped by reaching to the predefined

minimum mesh size. The minimum values were found at the third and seventh evaluations,

while the solver was stopped at the seventh and eighth evaluations for the initial points

of x0 = 10 and x0 = 80, respectively. For both initial points, the optimal solution was

x∗ = 40.0% and where f(x∗) = 0.0. The error of the optimal solution was therefore e = 0.0.

Similarly, the optimal results of Example #2 (Figure 7), for both given initial points, were

x∗ = 3.0% and f(x∗) = 0.0, which returned e = 0.0. In this example, the solver found

the optimal solutions after 4 and 11 evaluations, while it was stopped at 23 and 17 since it

reached the minimum mesh size for the initial points of x0 = 0.1 and x0 = 5.0, respectively.

These two single-variable optimization examples were the easiest cases in which the solver

rapidly found the exact solution.

Figure 6: Variations of (a) x and (b) f(x) with respect to the number of evaluations in opti-
mization Example #1, in which the single variable was relative density ρ and the objective
was to minimize ||UZ−UR

Z ||2. In this example, the hyper parameters were set to ∆m
0 = 10.0,

∆m
min = 0.25 and ∆p

min = 0.5. Two initial points were considered as x0 = 10 and x0 = 80 in
which the solver reached the minimum mesh size after 8 and 7 evaluations, respectively. In
both cases, the optimal solutions are exactly equal to the reference solution.
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Figure 7: Variations of (a) x and (b) f(x) with respect to the number of evaluations in
optimization Example #2, in which of the single variable was the height of the cells and the
objective was to minimize ||UZ − UR

Z ||2. In this example, the hyper parameters were set to
∆m

0 = 1.0, ∆m
min = 0.01 and ∆p

min = 0.1. Two initial points were considered as x0 = 0.1 and
x0 = 5.0 in which the solver reached the minimum mesh size after 23 and 17 evaluations,
respectively. In both cases, the optimal solutions are exactly equal to the reference solution.

In the multi-variable optimization of Example #3, after 2 hours and 20 minutes (440 eval-

uations), the solver reached the minimum mesh size and resulted in f(x∗) = 0.31 (Figure 8).

The maximum absolute difference between the optimal solution and the reference solution

was 10%. In Example #4, after 2 hours and 48 minutes (526 evaluations) the solver reached

the minimum mesh size and the cost function was minimized to f(x∗) = 0.11 (Figure 9). In

this case, the maximum absolute difference between the optimal solution and the reference

solution was 0.98 mm. In Example #5, having 18 variables (Figure 10) and after almost

10 hours, the solver reached the maximum budget (2000 evaluations) and the cost function

was minimized to f(x∗) = 0.19. Table 3 reports the effective properties resulted from the

optimized relative densities. Figure 11 shows the reference solution, the optimal solution

and their absolute difference for Example #5. In this example, the maximum absolute dif-

ferences between the reference solution and the optimal solution were 18.93% and 2.24 mm

for ρ(3) and h
(3)
2 , respectively (Figure 11). The results of Examples #3, #4 and #5 imply

that, in high dimensional optimization problems, the solver may find a different optimal
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Table 3: The effective properties of the sub-domains in Example #5.

Properties S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9
E11 [MPa] 101 447 37 257 640 583 353 528 1166
E22 [MPa] 102 448 37 258 641 584 353 529 1166
E33 [MPa] 609 1070 453 857 1250 1200 941 1149 1621
G12 [MPa] 29 155 10 83 232 209 118 187 437
G13 [MPa] 127 258 86 193 320 303 226 284 489
G23 [MPa] 127 258 86 193 320 302 226 284 489

ν12 0.72 0.43 0.84 0.55 0.37 0.39 0.48 0.40 0.33
ν13 0.07 0.15 0.03 0.11 0.19 0.18 0.13 0.17 0.25
ν23 0.07 0.15 0.03 0.11 0.19 0.18 0.13 0.17 0.26

solution when compared to the reference solution, while the minimized cost function is still

acceptable. By acceptable we mean a minimized cost functions smaller than 0.5 mm. We

accepted this value since the resulting displacement field from the optimized FO would be

very close to the target displacement. The maximum absolute differences between the ref-

erence displacement and the displacement from the optimized FO (i.e., max(|UR
Z − U∗

Z |))

were 0.06 mm, 0.01 mm and 0.04 mm for Examples #3, #4 and #5, respectively. Note that

literature shows that the maximum out-of-plane displacement of FOs may reach 10.0 mm

during walking [29]. Considering this range and the computed errors, all of these three

multi-variable optimization examples were successfully solved.

In the bi-objective optimization of Example #6 (Figure 12a), the Pareto front was found

after 5 hours (1000 evaluations) to minimize the apparent total mass and to reach the target

deflection. Since these objectives are conflicting, there is no single vector x∗ that minimizes

both of them, simultaneously. In this case, the decision maker should select the best answer

among the optimal solutions considering the intended application. One possible solution, for

instance, could be (f (1), f (2)) = (5.06, 91.59). In the optimized solution of the single objective

optimization Example #5, the optimized stiffness returned f (1) = 0.19, while the apparent

mass was 159.34. Solving the bi-objective optimization of Example #6 reduced the apparent

mass by about 42%. Although the cost function related to the stiffness is increased from

0.19 mm to 5.06 mm, controlling the FO’s mass might be also important since heavy FOs may
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Figure 8: Variations of (a-i) xi and (j) f(x) in a log scale and with respect to the number of
evaluations in optimization Example #3, in which the variables were the relative densities
of the cells at nine sub-domains and the objective was to minimize ||UZ − UR

Z ||2. In this
example, the hyper parameters were set to ∆m

0 = 10.0, ∆m
min = 0.25 and ∆p

min = 0.5. The
initial point was considered as xi = 10.0. The solver reached the minimum mesh size after
440 evaluations. The optimal solution has a maximum absolute error of 10.0% in sub-domain
5 and the cost function was minimized to f(x∗) = 0.31.
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Figure 9: Variations of (a-i) xi and (j) f(x) in a log scale and with respect to the number
of evaluations in optimization Example #4, in which the variables were the heights of the
cells at nine sub-domains and the objective was the minimization of ||UZ − UR

Z ||2. In this
example, the hyper parameters were set to ∆m

0 = 1.0, ∆m
min = 0.01 and ∆p

min = 0.1. The
initial point was considered as xi = 0.1. The solver reached the minimum mesh size after 526
evaluations. The optimal solution has a maximum absolute error of 0.98 mm in sub-domain
7 and the cost function was minimized to f(x∗) = 0.11.
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Figure 10: Variations of (a-r) xi and (s) f(x) in a log scale and with respect to the number
of evaluations in optimization Example #5, in which the multiple variables were the relative
densities of the cells (i.e., xi for i ∈ {1, . . . , 9}) and the heights of the cells (i.e., xi for
i ∈ {10, . . . , 18}) at nine sub-domains and the objective was to minimize ||UZ − UR

Z ||2; In
this example, the budget was set to NEval = 2000. The initial point was considered as
xi = 10.0 for i ∈ {1, . . . , 9} and xi = 0.1 for i ∈ {10, . . . , 18}. The maximum absolute
difference between the reference solution and the optimal solution is 18.93% and 2.24 mm
for ρ(3) and h

(3)
2 , respectively. Yet, the cost function was minimized to f(x∗) = 0.19.
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Figure 11: Optimized solution and the resulting displacement field in Example #5; (a) ρR, (b)
ρ∗, (c) |ρ∗−ρR|, (d) hR

2 , (e) h∗
2, (f) |h∗

2−hR
2 |, (g) UR

Z , (h) U∗
Z and (i) |U∗

Z−UR
Z |. The maximum

absolute difference between the reference relative density and the optimized one is 18.93%
and for the reference height of the cells and the optimized one it is 2.24 mm. In both cases,
the maximum error is for sub-domain 3. Nevertheless, the resulting displacement field from
the optimized FO is very close to the target displacement field having a maximum absolute
difference of 0.04 mm. This implies that the target displacement might be satisfactorily
achieved with a different set of solutions than the reference solution.

increase the energy consumption and it may cause fatigue during walking or running [32].

Furthermore, minimizing the FO’s mass reduces the material consumption and leads to a

more economical fabrication of 3D printed FOs. Note that the mass could be also considered

as a constraint or a regularization term in the cost function instead of adding it in the second

objective function in the optimization problem. Figure 12b shows that, at every iteration,

the imposed nonlinear constraints were satisfied.
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Figure 12: Results of Example #6: Optimization of ρ(i) and h
(i)
2 when there were two

objectives including the minimization of f (1) = ||UZ − UR
Z ||2 and f (2) = 1∑

a(i)
∑

ρ(i)h
(i)
2 a(i)

where i ∈ {1, . . . , 9}. a) The evaluated cost functions and the Pareto front, b) values
of nine constraints versus the number of evaluations. Figure (a) shows a set of possible
solutions which leads to minimize both cost functions. The first cost function is linked to
the structure’s stiffness and the second one is linked to the structure’s total mass. Based on
the user’s preference, the best solution might be selected among the optimal solutions. For
instance, one possible solution could be (f (1), f (2)) = (5.06, 91.59). Figure (b) shows that
the imposed non-linear constraints in the problem have been satisfied for every evaluation.
The Extreme barrier technique was an efficient technique to filter the solutions.
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4 Discussion

4.1 Required computational time and memory

Running each FE simulation of the homogenized model approximately requires 19 seconds

and its required memory is about 18 MB. A summary of the optimization parameters and

the needed computational time for each example using the homogenized model are reported

in Table 4. The explicit FE simulation of the optimized and modified FO, resulting from

Example #5, takes 1 483 seconds in which the required memory is 3 715 MB. This means

that the homogenized model is 78 times faster and 206 times more efficient than the explicit

model in terms of the computational time and memory, respectively. Running 2000 times the

explicit FE simulation in an optimization process would require 823 hours (34 days) when

compared to 10 hours with the homogenized model. The presented surrogate optimization,

therefore, accelerates the whole prescription time. For instance, the total estimated time

from starting the clinical test to the manufacturing of the FOs using the presented surrogate

is about 44 hours. This estimated time includes 1 hour to diagnose the target FO’s deflection

(i.e., UR
Z ), 1 hour to measure the foot pressure (i.e., P (X, Y, Z)), 2 hours for 3D scanning of

the feet, 10 hours to optimize 18 variables and finally 30 hours for additive manufacturing

of a pair of FOs (e.g., using Fused Deposition Modeling 3D printing machine Raise3D Pro2

Technologies, Inc., US by Polylactic acid filament and 0.4 mm nozzle). The optimized 3D

printed FO would be ready in less than two days.

4.2 Improving the results

From a biomechanical point of view, the cost function can be articulated to meet the ther-

apeutic needs of a patient with flat feet. For instance, the cost function might be extracted

from a normal foot. In this way, the target deflection at the medial longitudinal arch of the

flat foot can be roughly determined according to the navicular drop test of a person with

a normal foot having the same gender and foot length [33]. From an optimization point
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Table 4: Computational time and optimization parameters of the examples.

Prob. var. obj. x0 stopped by #eval. time[h : m : s] f(x∗)
Ex.#1 1 1 10 ∆m

min 8 00 : 02 : 39 0.00
Ex.#1 1 1 80 ∆m

min 7 00 : 02 : 17 0.00
Ex.#1 1 1 10 NEval 50 00 : 16 : 01 0.00
Ex.#1 1 1 80 NEval 50 00 : 15 : 56 0.00
Ex.#2 1 1 0.1 ∆m

min 23 00 : 07 : 22 0.00
Ex.#2 1 1 5.0 ∆m

min 17 00 : 05 : 19 0.00
Ex.#2 1 1 0.1 NEval 50 00 : 15 : 48 0.00
Ex.#2 1 1 5.0 NEval 50 00 : 15 : 57 0.00
Ex.#3 9 1 [10] ∆m

min 440 02 : 19 : 53 0.31
Ex.#3 9 1 [10] NEval 1000 05 : 16 : 35 0.08
Ex.#4 9 1 [0.1] ∆m

min 526 02 : 48 : 06 0.11
Ex.#4 9 1 [0.1] NEval 1000 05 : 09 : 21 0.04
Ex.#5 18 1 [10, 0.1] NEval 2000 09 : 54 : 26 0.19
Ex.#6 18 2 [10, 0.1] NEval 1000 04 : 56 : 44 pareto
Ex.#6 18 2 [10, 0.1] NEval 8000 46 : 30 : 03 pareto

of view, there are four ways to reduce the required number of evaluations and get a faster

response: 1) reducing the number of variables (using model order reduction techniques such

as principal component analysis [34]); 2) reducing the intervals of the variables ρ and h2 by

modifying the lower and upper bounds based on the orthotics experience with the product;

3) improving the initial solution (using the educated guesses); 4) increasing the minimum

mesh size ∆m
min and/or the minimum poll size ∆p

min in the stopping criteria. On the other

hand, removing the minimum mesh size and increasing the number of evaluations, increases

the accuracy of the optimized solution (see for instance Appendix C). Conducting a sensitiv-

ity analysis highlights how to compromise between the accuracy and the computational cost.

It also answers how a change in a variable affects the structural behavior of the FO and,

thus, it helps to set the above hyper-parameters before starting the optimization process.

Using other optimization solvers (such as genetic algorithm [35]) may also improve both the

accuracy and the computational efficiency. From a manufacturing point of view, the 3D

printing limitations (such as minimum wall thickness) can be imposed on the solution by

setting the constraints over the geometrical parameters.
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4.3 A qualitative comparison with related works

To the best of our knowledge, the presented framework was the first stiffness optimization

of the honeycomb lattice FO for the flat foot condition. The previous optimized FOs were

mostly related to diabetic feet [36, 37]. In the diabetic FOs, the objective is to minimize

the predicted contact stress between the foot and the FO to mitigate the risk of feet ulcers

[38]. Having a clinical-based objective function enables previous authors to fabricate their

optimized FO and clinically evaluate its performance [36], which has not been done in this

research. In designing a FO for the flat foot condition, further studies are required to

mathematically express the expectations from an orthopedic FO for the flat foot deformity.

From a mechanical and computational point of view, however, the presented homogenized FO

is more comprehensive and more computationally efficient, when compared to the previous

FE simulation-based optimization of FOs. It is more comprehensive because previous authors

considered only an isotropic property for the FO’s material in their FE simulations [36,

37]. In a functionally graded lattice FO, Tang et al. [36] did not implement the numerical

homogenization over the cells and they employed one elastic constant as the effective property

of the cells. It is more computationally efficient because the previous authors used 3D

elements to mesh the FO, which of course increases the computational cost [36,37]. Moreover,

Tang et al. [36] optimized the FO by the Grid Search (GS) algorithm, in which the variables

are discretized and the cost function is evaluated at the points and the best solution is

selected from the evaluated points. Although GS is not a heuristic method and consists of a

convergence proof, it requires a tremendous number of evaluations to find a solution whose

cost function is close to the optimal one [18].

4.4 Limitations and future works

The first limitation of this work is related to the applied pressure distribution over the FO.

In fact, changing the FO’s stiffness affects the interaction between the foot and the FO, and

correspondingly alters the foot pressure distribution [39]. On other hand, we assumed that
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the applied foot pressure remains constant during the whole optimization procedure. To solve

this issue, measuring the foot pressure distribution for several FOs with different stiffness and

conducting a regression may provide a continuous regression function of pressure with respect

to the FO’s stiffness. This task could be also done by a verified and validated foot/FO/ground

FE simulation. The predicted foot pressure can then be used in the optimization process.

The second limitation is that the applied boundary conditions were not realistic. The out-of-

plane displacement was fixed at the fore foot and at the heel part. The FO, on the other hand,

is placed over the shoe which is made of a deformable material. Thus, the FO’s displacement

is not equal to zero on the heel part and on the fore foot. Adding an elastic foundation into

the FE simulation might solve this issue. Yet, the adjustable parameters of that foundation

should be experimentally determined. The third limitation is that the homogenized model

is not able to accurately capture the maximum stress at the critical points of the FO with

high stress concentrations. After the optimization process, it is recommended to predict the

maximum von Mises stress by the explicit model and compare it with the material strength

of the 3D printed FO. Moreover, fatigue fracture of the FOs should be taken into account

since the FO is under a repeated loading (bending and torsion) during walking or running.

In this regard, more experimental studies are required to understand the fatigue behavior of

a 3D printed lattice FO during walking.

The fourth limitation of this work is that the predictions of the explicit and the ho-

mogenized models were not compared together within all the iterations of the optimization

process. In Example #5, they were only compared at the final optimized solution. Based

on our experience, it was difficult to write a computer program to automatically generate,

mesh and update the FO CAD file to be used as the explicit FE model within the optimiza-

tion iterations. The geometrical complexity of the honeycomb lattice FO is the main issue.

Nevertheless, progressive development in CAD software along with open-source libraries

in programming languages will enable to automatically re-create and re-mesh functionally

graded honeycomb lattice FO. This might be also an interesting topic for the companies in
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future works. Moreover, only two geometrical variables (ρ and h2) were optimized in the

designed FO. Adding more geometrical variables (such as T1, T2, L, h1 or θ), however, leads

to design more customized functionally graded FO. Yet, it increases the convergence time

of the optimization and it may require more complex cost functions featuring regularization

terms.

A fast optimization process and a rapid manufacturing procedure using 3D printers could

potentially help orthotists to rapidly design, fabricate, and prescribe functionally graded

lattice FOs for patients with flat feet deformities to enjoy comfortable walking or running.
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5 Conclusion

We employed the homogenized model as a surrogate to accelerate the stiffness optimization

of a honeycomb lattice FO for the flat foot condition. The homogenization technique enabled

us to compute the effective properties of honeycomb cells and insert them into an equivalent

and computationally efficient FE model featuring shell elements. Using shell elements rather

than 3D solid elements significantly reduced the computational cost.

In an optimization of 18 geometrical variables of honeycomb lattice insole, the compu-

tational time was reduced from 34 days to 10 hours using the homogenized model rather

than the explicit model. Moreover, the verification results showed that the homogenized

model of the functionally graded honeycomb lattice FO is able to predict the local minimum

out-of-plane displacement having a relative difference of less than 13%, when compared to

the explicit model’s prediction. The homogenization technique, therefore, provided a com-

putationally efficient design tool to produce patient-specific FOs.
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[25] Moeini, M., Begon, M., and Lévesque, M. Mechanics of Materials , 104210 (2022).

[26] Audet, C. and Dennis Jr, J. E. SIAM Journal on optimization 17(1), 188–217 (2006).

[27] Audet, C., Le Digabel, S., and Tribes, C. Technical report, Technical report G-2009-37,

Les cahiers du GERAD, (2009).

[28] Le Digabel, S. ACM Transactions on Mathematical Software (TOMS) 37(4), 1–15

(2011).

[29] Hajizadeh, M., Michaud, B., Desmyttere, G., Carmona, J.-P., and Begon, M. PloS one

15(5), e0232677 (2020).

[30] Hajizadeh, M., Desmyttere, G., Ménard, A.-L., Bleau, J., and Begon, M. Gait & Posture

91, 117–125 (2022).

[31] Malek, S. and Gibson, L. Mechanics of Materials 91, 226–240 (2015).

[32] Divert, C., Mornieux, G., Freychat, P., Baly, L., Mayer, F., and Belli, A. International

journal of sports medicine 29(06), 512–518 (2008).

[33] Nielsen, R. G., Rathleff, M. S., Simonsen, O. H., and Langberg, H. Journal of foot and

ankle research 2(1), 1–7 (2009).

[34] Abdi, H. and Williams, L. J. Wiley interdisciplinary reviews: computational statistics

2(4), 433–459 (2010).

[35] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. IEEE transactions on evolutionary

computation 6(2), 182–197 (2002).

[36] Tang, L., Wang, L., Bao, W., Zhu, S., Li, D., Zhao, N., and Liu, C. Journal of the

Mechanical Behavior of Biomedical Materials (2019).

[37] Jafarzadeh, E., Soheilifard, R., and Ehsani-Seresht, A. Medical Engineering & Physics

98, 44–49 (2021).

36



[38] Schaper, N., Van Netten, J., Apelqvist, J., Lipsky, B., Bakker, K., and on the Diabetic

Foot (IWGDF), I. W. G. Diabetes/metabolism research and reviews 32, 7–15 (2016).

[39] Cherni, Y., Desmyttere, G., Hajizadeh, M., Bleau, J., Mercier, C., and Begon, M.

Clinical Biomechanics , 105553 (2021).

37



A Verification of the optimized solution

The verification of results consists in comparing the predicted out-of-plane displacement by

the homogenized model featuring the optimized stiffness resulting from Example #5 against

that of its explicit model. Figure 13 shows the optimized parameters of Example #5 within

the FO’s domain. In all sub-domains, the side length was fixed to l
(i)
b = 2.0 and the wall

thickness t(i) was computed by Equation 1 having the optimized relative density of ρ(i)

where i ∈ {1, . . . , 9}. The optimized FO is presented in Figure 14a-e. However, as shown in

details A-C, there are some discontinuities between the sub-domains due to their different

cell topologies, which makes its meshing procedure difficult. In the modified version (Figure

14f-j), the borders are filled with solid bars having a width of 2 mm. Moreover, the holes

at the top surface of the FO were removed. Correspondingly, these modifications are also

added to the homogenized model (Figure 14k-o). Figure 15 indicates the comparison of the

predicted displacement field by the homogenized model against that of the explicit model for

the modified version. The maximum discrepancy between the predictions (i.e., |UHmg
Z −UE

Z |
max |UE

Z | ) is

29.6%. Among the selected lines, the maximum discrepancy is ξ = 12.45% in line G − H

(Figure 16). Yet, the predictive capability of the homogenized model might be still accepted

due to the required computational cost to run the explicit model.

B Convergence study of the mesh refinement

Figure 17 shows the convergence study of the mesh refinement in Example #5. The element

sizes of the explicit, as well as the homogenized model, were uniformly refined as lelement

lb
= 8,

4, 2, 1, 0.9, 0.8, 0.7, ..., in which lb = 2.0 mm (see also Figure 13). The refinement was stopped

when:

∆̄UZmin = Ufine
Zmin − U coarse

Zmin
Ufine

Zmin
≤ 0.005, (14)

where ∆̄UZmin returns the relative difference between the predicted minimum out-of-plane

displacement with a fine mesh (Ufine
Zmin) against the predicted one by a coarse mesh (U coarse

Zmin ).
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Figure 13: Schematic representation of the optimized parameters ρ∗ and h∗
2 in the nine

sub-domains resulting from the optimization Example #5; (a) the main structure, (b) cross-
section A-A, (c) cross-section B-B, (d) cross-section C-C and (e) cross-section D-D. Each sub-
domain has been extruded by the optimized height of h

(i)
2 and cut-extruded by a hexagonal

pattern regarding the optimized relative density of ρ(i) where i ∈ {1, . . . , 9}. Note that the
relative density depends on parameters lb, hb, l, h and θ according to Equation 1. We already
considered only regular hexagons in which lb = hb, l = h and θ = π/6. Moreover, the length
side was considered l

(i)
b = 2.0 mm for all i ∈ {1, . . . , 9}. Consequently, solving Equation 1

having the optimized relative density returns the wall thickness t(i) for i ∈ {1, . . . , 9}.
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Figure 14: Optimized FO geometry in Example #5; (a-e) the optimized FO, (f-j) the opti-
mized and modified FO, (k-o) the homogenized model of the optimized and modified FO.
In the optimized FO, each sub-domain features a different height and relative density which
come from the optimized solution. The holes in the first layer correspond to hexagonal pat-
terns. Thus, in each sub-domain, the holes pattern is different. The optimized FO had to
be modified due to the discontinuity between the sub-domains having different honeycomb
cells topologies and, correspondingly, due to the difficulties in meshing the geometry. In the
modified FO, the holes at the first layer were removed. Moreover, the borders between the
sub-domains have been filled with solid bars with a thickness of 2 mm. In the same way, in
the corresponding homogenized FO, the first layer was considered as an in-filled layer and
the borders were added whose mechanical properties were the bulk mechanical properties.
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Figure 15: Comparison of the predicted displacement fields by the explicit model and the
homogenized model of the optimized and modified FO resulting from Example #5; (a) the
predicted displacement UZ by the explicit model, (b) the predicted displacement UZ by its
homogenized model, (c) the computed relative difference between the predictions normalized
by the maximum predicted UZ by the explicit model (i.e. |UHmg

Z −UE
Z |

max |UE
Z | ) of within a range of

0 − 50%, (d) within a range of 0 − 25% to show better its variation. The discrepancy is
higher around the edge between 70 ≤ X ≤ 125 and 10 ≤ Y as well as around the forefoot
(100 ≤ X ≤ 130 and Y ≤ −40) where the boundary conditions were applied. In both cases,
the discrepancy may come from the edge effect in the explicit model of the functionally
graded honeycomb lattice FO.

The element type in the explicit model was 10-node 3D solid element (i.e., C3D10). Fur-

thermore, the convergence of the homogenized model was studied by two element types,

including 4-node shell element (i.e., S4R) and 8-node shell element (i.e., S8R5). The result

shows that the explicit model required 660 084 degrees of freedom (DOF) for convergence,

while the homogenized model required 45 054 DOF for S4R elements or 128 196 DOF for

S8R5 element.
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Figure 16: Comparison of the predicted displacement fields UZ by the explicit model and the
homogenized model of the optimized and modified FO resulting from Example #5 at lines;
(a) (A, B), (b) (C, D), (c) (E, F ), (d) (G, H), (e) (I, J) and (f) (K, L). The coordinates
of the points in the three vertical lines are A = (75,−40), B = (75, 25), C = (100,−50),
D = (100, 25), E = (125,−50), F = (125, 25), mm and in the three horizontal lines they are
G = (30, 20), H = (155, 20), I = (30,−5), J = (155,−5), K = (30,−30), L = (155,−30)
mm. The maximum discrepancy is over the line (G, H) in which ξ = 12.45%.

C Using a large number of evaluations

In this appendix, Examples #1, #2, #3, #4 and #6 are solved within a sufficiently large

number of evaluations and without stopping criteria of ∆m
min and ∆p

min to investigate the

resulting optimized solution. In Examples #1 and #2, Figures 18 and 19 show that the so-

lutions are stable after 25 evaluations and the optimal solutions remain the same. In Example

#3, the cost function was reduced from 0.31 to 0.08 (i.e., 74% improvement) when 1000 eval-

uations are given as the budget. Similarly, in Example #4, the cost function was reduced

from 0.11 to 0.04 (i.e., 64% improvement) after 1000 evaluations. Increasing the number of

evaluations numerically increases the accuracy of the optimized solution. We accepted the
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Figure 17: Mesh size convergence study for (a) the explicit model and (b) the homogenized
model in optimization Example #5. The explicit model consisted of 3D solid elements
(C3D10) and the homogenized model included 4-node (S4R) and 8-node (S8R5) shell elements.
In both models, the element sizes were uniformly reduced to satisfy the convergence criterion
of Equation 14.

results Example #3 and #4 from the stopping criterion of minimum mesh size since the

predicted displacement from the optimized FO was very close to the reference displacement.

In Example #3, imposing a minimum mesh size returns max(|U∗
Z − UR

Z |) = 0.06 mm, while

stopping by the maximum number of evaluations leads to max(|U∗
Z − UR

Z |) = 0.02 mm. In

Example #4, imposing a minimum mesh size returns max(|U∗
Z − UR

Z |) = 0.02 mm, while

stopping by the maximum number of evaluations leads to max(|U∗
Z − UR

Z |) = 0.01 mm.

In Example #6, Figure 22 shows the resulting Pareto front after 8000 evaluations (almost

46 hours). The result shows that the Pareto front is remarkably improved when compared

to the previous solution in which 1000 evaluations were allocated (Figure 12a). For in-

stance, in this solution, the solver found (f (1), f (2)) = (1.24, 91.56) rather than (f (1), f (2)) =

(5.06, 91.59) in the previous solution. Thus, the first cost function related to the stiffness

is reduced by 75% using almost the same amount of the apparent mass. Furthermore, the

resulting Pareto front includes more options to choose from (the solver found 366 points

rather than 107 points in the previous solution). In this optimization, the computational

time, however, is significantly increased (from 5 hours to 46 hours). The computational bud-

get should be determined based on the time limitations to deliver the FOs or the required

43



accuracy of the optimized solution.

Figure 18: Variations of (a) x and (b) f(x) with respect to the number of evaluations in
optimization Example #1, in which the single variable was the relative density ρ and the
objective was to minimize ||UZ−UR

Z ||2. In this solution, the maximum number of evaluations
was increased to NEval = 50 having no other stopping criterion. The initial points were
considered as x0 = 10 and x0 = 80. In both cases, the optimal solutions are equal to the
reference solution.

Figure 19: Variations of (a) x and (b) f(x) with respect to the number of evaluations in
optimization Example #2, in which of the single variable was the height of the cells and
the objective was to minimize ||UZ − UR

Z ||2. In this solution, the maximum number of
evaluations was increased to NEval = 50 having no other stopping criterion. The initial
points were considered as x0 = 0.1 and x0 = 80. In both cases, the optimal solutions are
equal to the reference solution.
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Figure 20: Variations of (a-i) xi and (j) f(x) in a log scale and with respect to the number
of evaluations in optimization Example #3, in which the multiple variables were the relative
densities of the cells at nine sub-domains and the objective was to minimize ||UZ − UR

Z ||2.
In this solution, the maximum number of evaluations was increased to NEval = 1000 having
no other stopping criterion. The optimal solution has a maximum absolute error of 3.4% in
domain 5 and the minimized cost function was 0.08.
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Figure 21: Variations of (a-i) xi and (j) f(x) in a log scale and with respect to the number
of evaluations in optimization Example #4, in which the multiple variables were the heights
of the cells at nine sub-domains and the objective was minimization of ||UZ − UR

Z ||2. In
this solution, the maximum number of evaluations was increased to NEval = 1000 having no
other stopping criterion. The optimal solution has a maximum absolute error of 0.2 mm in
domain 7 and the minimized cost function was 0.04.
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Figure 22: Evaluated cost functions and the Pareto front in Example #6 with 8000 evalu-
ations. Increasing the number of evaluations from 1000 to 8000 improves the results. By
improvement we mean that the Pareto front consists of lower values of (f (1), f (2)) (as it can
be seen from the figure) and it also includes more optimal points. Allowing 1000 evaluations
returns 107 optimal solutions, while giving 8000 evaluations returns 366 optimal solutions.
Solving an optimization problem with 8000 evaluations, however, takes almost 46 hours. The
decision maker should address whether the computational time is a priority or the accuracy
of the optimal solutions.
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