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Résumé 

Afin d’étudier l’écologie microbienne, il est nécessaire, dans un premier temps, de 

déterminer quels micro-organismes sont présents dans un milieu et à quel instant. Ces informations 

sont requises pour pouvoir ensuite développer des outils permettant de prédire l’assemblage des 

communautés et les fonctions que celles-ci peuvent contenir. Cependant, la multitude des processus 

entrant en jeu dans la structure et la composition des communautés microbiennes, rendent leur 

étude complexe. Parmi les nombreux processus à étudier, il est notamment question de l’échelle 

temporelle à prendre en compte pour comprendre l’assemblage des communautés microbiennes. 

En effet, les événements historiques conditionnent la composition et la biodiversité des futures 

communautés microbiennes. Pourtant, dans les sols, peu d’études se sont intéressées à l’impact des 

événements historiques dans l’assemblage des communautés microbiennes. Par conséquent, 

l’objectif de cette thèse était de quantifier comment les différentes histoires du sol ont influencé la 

structure et biodiversité des communautés bactériennes et oomycètes associées aux plantes hôtes 

des Brassicaceae à travers le temps. 

Les rotations de cultures de Brassicaceae sont de plus en plus courantes dans le monde et 

ont démontré des avantages pour les cultures concernées, telles que la rétention de l’humidité du 

sol ou la suppression de certains agents pathogènes des plantes. En revanche, l’impact des rotations 

de cultures de Brassicaceae sur la structure et biodiversité des communautés microbiennes 

résidentes est peu connu. Ainsi, des terrains agricoles des prairies canadiennes ayant des 

expériences de rotations de cultures en cours ont été utilisés pour modéliser l’impact des histoires 

de sol précédemment établies sur les futures communautés microbiennes. Les communautés 

microbiennes des racines, de la rhizosphère, et du sol éloigné des racines des Brassicaceae ont été 
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étudiées grâce aux métabarcodes d’ARNr 16S ou ITS. La PCR quantitative et des méthodes 

phylogénétiques ont été utilisées pour améliorer l’analyse des communautés microbiennes.  

Cette thèse illustre comment différentes histories de sol établies par les cultures de l’année 

précédente ont continué à structurer les communautés microbiennes de la rhizosphère tout au long 

de la saison de croissance, à différents stades de croissance, jusqu’à un an après leur établissement. 

Cependant, le phénomène de rétroactions entre plantes et micro-organismes a permis de masquer 

cet héritage dans la rhizosphere de différentes espèces hôtes de Brassicacea pour lesquelles des 

communautés bactériennes phylogénétiquement similaires ont été retrouvées malgré diverses 

histoires du sol. Nos résultats montrent également que les différentes espèces hôtes de Brassicacea 

n’avaient pas d’impact sur la structure des communautés d’oomycètes et que le stress hydrique 

limitait également cette structuration pour les communautés bactériennes. Dans ces deux cas, l’effet 

de l’histoire du sol était donc encore visible sur la structure les communautés microbiennes durant 

l’année subséquente. 

Les découvertes selon lesquelles différentes histoires de sol persistent jusqu'à un an, même 

en présence de nouvelles plantes hôtes, et qu’elles peuvent continuer à façonner les communautés 

microbiennes ont des implications importantes pour la gestion agricole et les recherches futures sur 

les composants physiques de l'histoire du sol. Comprendre comment l'histoire du sol est impliquée 

dans la structure et la biodiversité des communautés microbiennes à travers le temps est une 

limitation de l'écologie microbienne et est nécessaire pour utiliser les technologies microbiennes à 

l'avenir pour une agriculture durable et dans toute la société. 

 

Mots-clés : Histoire du sol, bactéries, oomycètes, Brassicaceae, phylogénétique, interactions 

plantes-microbes, écologie microbienne, biodiversité. 
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Abstract 

A fundamental task of microbial ecology is determining which organisms are present, and 

when, in order to improve the predictive models of community assembly and functions. However, 

the heterogeneity of community assembly processes that underlie how microbial communities are 

formed and structured are makes assembly of taxonomic and functional profiles difficult. One 

reason for this challenge is the compounding effect temporal scales have on microbial 

communities. For example, historical events have been shown to condition future microbial 

community composition and biodiversity. Yet, how historical events structure microbial 

communities in the soil has not been well tested. Therefore, the objective of this thesis was to 

quantify how different soil histories influenced the structure and biodiversity of bacterial and 

oomycete communities associated with Brassicaceae host plants through time.  

Brassicaceae crop rotations are increasingly common globally, and have demonstrated 

benefits for the crops involved, such as retaining soil moisture, or suppressing certain plant 

pathogens. In contrast, there is a lack of knowledge surrounding how Brassicaceae crop rotations 

impact the structure and biodiversity of resident microbial communities. As such, on-going 

agricultural field experiments with crop rotations on the Canadian prairies were used to model how 

previously established soil histories impacted future microbial communities. The Brassicaceae 

microbial communities were inferred from the roots, rhizosphere and bulk soil using 16S rRNA or 

ITS metabarcodes. Quantitative PCR and phylogenetic methods were used to improve the analysis 

of the microbial communities. 

This thesis illustrates how different soil histories established by the previous year’s crops 

continued to structure the microbial rhizosphere communities throughout the growing season, at 

various growth stages, and up to a year after being established. However, active plant-soil microbial 
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feedback allowed different Brassicaceae host species to mask the soil history in the rhizosphere 

and derive phylogenetically similar bacterial communities from these diverse soil histories. 

Furthermore, host plants were unable to structure the oomycete communities, and lost the ability 

to structure the bacterial rhizosphere communities under water stress. In both circumstances, the 

soil history continued to structure the microbial communities. 

The findings that different soil histories persist for up to a year, even in the presence of new 

host plants, and can continue to shape microbial communities has important implications for 

agricultural management and future research on the physical components of soil history. 

Understanding how soil history is involved in the structure and biodiversity of microbial 

communities through time is a limitation in microbial ecology and is required for employing 

microbial technologies in the future for sustainable agriculture and throughout society. 

 

 

Keywords: Soil history, bacteria, oomycetes, Brassicaceae, phylogenetics, plant-microbial 

interactions, microbial ecology, biodiversity. 
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Introduction 

“[T]here has never been any natural animal or plant free of microorganisms”  

– Zilber-Rosenberg & Rosenberg, 2008 

 

We live in a microbial world. After ~3.7 billion years of evolution, microbes, particularly 

prokaryotes, are found in every environment on Earth, where they define the limits of life (Takai, 

2019; Shu & Huang, 2022). The number of microbial individuals on Earth has been estimated from 

~1026 for protists, as well as fungi, to ~1030 for archaea, and even higher for bacteria (Bar-On et 

al., 2018), with species estimates that range from thousands to trillions (Louca et al., 2019). Of the 

~550 Gt of carbon that composes all biomass on Earth, prokaryotes account for ~77 Gt—second 

only to land plants—while fungi add ~12 Gt, and protists are another ~4 Gt (Bar-On et al., 2018). 

Where plants are not dominant, such as marine and subsurface environments, microbes account 

for nearly all the biomass (Bar-On et al., 2018). They are also fundamental drivers of global 

systems, including climate regulation and nutrient cycling (Guerra et al., 2020). As such, given 

their pervasive nature, studying microbial biodiversity ought to be a priority to understanding 

which organisms are present, when are they present, and what roles do they play. 

 

Microbial Communities 

In contrast to laboratory conditions, where microbes are typically studied in isolation, one 

at a time, microbes in the environment do not exist in seclusion. Rather, they live in dynamic 

communities, or microbiomes (Konopka et al., 2015; Berg et al., 2020), whose functions cascade 
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out to determine the presence or absence of other organisms, and ultimately the biodiversity and 

stability of ecosystems (Escalas et al., 2019). Moreover, microbial communities often exhibit 

emergent, or novel functions that arise from the diversity of organismal interactions in the 

community (Konopka et al., 2015). This underscores the importance of studying microbial 

community composition as a first step to determine their collective and individual functions 

(Konopka et al., 2015) 

Unfortunately, culture-dependent approaches to unravel microbial community composition 

are tedious (Yarza et al., 2014). One estimate suggests that, counting the ~11 000 archaeal and 

bacterial species that have already been isolated, at the current rate of culturing ~600 new species 

per year it would take more than a thousand years to catalogue all prokaryotes (Yarza et al., 2014). 

Albeit time consuming, this kind of fundamental research is required in order to develop 

experimental systems that permit testing the ecological roles and interactions of different microbes 

(Geller & Levy, 2023). This is even more pertinent in non-model microbes and their hosts (Geisen 

et al., 2022). 

Nonetheless, with the advent of high-throughput sequencing technologies, it is now 

possible to use culture-independent, community-scale strategies, to detail when and where specific 

microbes are present (Escalas et al., 2019; Fitzpatrick et al., 2020). By sequencing all, or specific 

pieces, of the nucleic acids extracted from an environment, meta-omics or metabarcoding 

approaches allow us to identify community composition, and their potential or actual functions, 

without having to isolate each individual microbe (Escalas et al., 2019; Fitzpatrick et al., 2020). 

These are useful complements to culture-based approaches, but are by no means perfect.  
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In the case of metabarcoding, the prokaryotic 16S rRNA gene and the eukaryotic ITS 

region are used as standard markers, or tags, to identify organisms present in a sample (Karst et 

al., 2018). These markers fulfil key criteria to be used as standard barcodes: first, the 16S rRNA 

gene and ITS region are thought to be nearly universal, for prokaryotes and eukaryotes 

respectively. Second, these markers have sufficiently conserved regions to allow for standard PCR 

primers, but also have variable regions that can allow for high resolution of taxa (Santos & 

Ochman, 2004). However, the utility of these markers has been hotly contested, particularly for 

their inability to discriminate between closely related strains (Santos & Ochman, 2004; Blakney 

& Patten, 2011). Nonetheless, these PCR amplified sequences, or amplicons, do provide a quick, 

cost-effective, first estimate of species diversity (Bulgarelli et al., 2012; Lundberg et al., 2012; 

Lebeis et al., 2015; Revillini et al., 2016; Lay et al., 2018). 

As our tools and capacities continue to develop for investigating how microbial 

communities function, along with the importance of doing so, three broad trends have emerged in 

studying microbial community ecology (Konopka et al., 2015): 1) determining the relative 

strengths of each mechanism (dispersal, drift, selection, and speciation) of community ecology 

theory in structuring different communities (Vellend, 2010; Stegen et al., 2013); 2) identifying 

emergent properties at the community-level and how biodiversity generates these functions 

(Bissett et al., 2013; Loreau & de Mazancourt, 2013; Thibaut & Connolly, 2013; Kuang et al., 

2022); and 3) microbial community engineering, to produce products or services (Volger et al., 

2020; Agoussar & Yergeau, 2021; Correa-García et al., 2021; Zhalnina et al., 2021). As trends 2) 

and 3) fall largely beyond the scope of my work, here I am more curious in 1) the mechanisms 

involved in structuring microbial communities. 
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The interest in how these mechanisms—dispersal, drift, selection, and speciation—

structure, or determine, microbial species composition (for a specific time and place; Vellend, 

2010) stems from how variable microbial communities appear to be (Thompson et al., 2017). By 

studying how these mechanisms function, their relative strengths and interactions, microbial 

ecologists may uncover guidelines for why some organisms are found in similar environments, 

while others are absent (Vellend, 2010; Nemergut et al., 2013); i.e. how microbial communities 

are assembled. Furthermore, being able to accurately predict the composition of microbial 

communities bolsters the loftier goals of uncovering the functions of these communities and 

engineering them, items 2) and 3) mentioned above (Konopka et al., 2015; Thompson et al., 2017; 

Escalas et al., 2019). 

Broadly, these community ecology mechanisms can be conceptualized for how they impact 

diversity, or the number of species present. Processes related to dispersal and speciation tend to 

increase local diversity, while drift and selection are thought to decrease local microbial diversity 

(Vellend, 2010; Nemergut et al., 2013). Selection, also referred to as environmental filtering, or 

deterministic processes, is the differential rate of survival and reproduction of organisms, as a 

function of biotic and abiotic interactions, and niches (Vellend, 2010; Nemergut et al., 2013). It 

has been suggested that selection is the main driver for microbial community assembly (Nemergut 

et al., 2013; Herrera Paredes & Lebeis, 2016; Goss-Souza et al., 2020), though this emphasis could 

be an artefact of the many processes that interact to determine the force of selection. Although 

selection pressure may typically drive a maladapted species to extinction, selection can also push 

the diversification, or speciation, of microbes (Vellend, 2010; Nemergut et al., 2013). Through a 

myriad of mechanisms, such as recombination, or horizontal gene transfer, microbes, especially 
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prokaryotes, can alter or exchange genetic elements and vary their mutation rates (Nemergut et al., 

2013; Crits-Christoph et al., 2020; Chase et al., 2021). This allows components of microbial 

communities to rapidly diversify, or potentially speciate, and take advantage of changing biotic 

and abiotic conditions (Crits-Christoph et al., 2020).  

Less emphasis, however, has been given to studying the impact of ecological drift, where 

stochastic, or random, effects impact community composition (Vellend, 2010; Nemergut et al., 

2013). Typically, drift is thought to be more significant for small populations; for microbial 

populations, however, it remains unclear how small is small for drift to be important (Herrera 

Paredes & Lebeis, 2016). Drift may have a greater impact on founder populations, or priority 

effects, where the order and timing of arrival may determine community composition (Herrera 

Paredes & Lebeis, 2016; Debray et al., 2022). The impact of random ecological drift could be 

countered by efficient microbial dispersal (Herrera Paredes & Lebeis, 2016). For microbes, this 

tends to be largely passive over macro scales, as cells, or spores are moved through air, or water 

cycles, or by other organisms (Nemergut et al., 2013; Fitzpatrick et al., 2020; Ruuskanen et al., 

2021; Amend et al., 2022). Moreover, some microbes may also be dispersed vertically across 

generations by being incorporated into gametes, such as seeds (Herrera Paredes & Lebeis, 2016; 

Shade et al., 2017). 

Studying how drift, dispersal, selection and speciation, function may not only help describe 

how microbial communities are assembled, but it may also help explain and quantify some of the 

drivers of microbial biodiversity (Vellend, 2010; Nemergut et al., 2013; Thompson et al., 2017). 

Moreover, understanding how these mechanisms of community assembly function and interact 

also raises important questions concerning the tools and assumptions we use to identify microbial 
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communities. Finally, the specific context of a study will also help to shape how we analyze and 

understand a given microbial community. 

 

Plant-Soil Microbial Communities 

 Soils are one of the largest biodiversity reservoirs on Earth (FAO et al., 2020), where they 

are home to a wide array of life, including viruses, prokaryotes, microbial eukaryotes, such as 

algae, oomycetes, and nematodes, fungi, and arthropods, all enmeshed in intricate interactions 

within a complex medium. In particular, microbes gather around the soils adjacent to root systems, 

or rhizosphere, to take advantage of the nutrient rich habitat the plants provide, as up to 25-40% 

of a plant’s photosynthetically fixed-carbon is secreted out of the roots (Berendsen et al., 2012; 

Lakshmanan et al., 2014). This phenomenon of plants actively attracting micro-organisms from 

the surrounding bulk soil to the rhizosphere (Mendes et al., 2013; Yergeau et al., 2014; 

Vandenkoornhuyse et al., 2015) is known as the rhizosphere effect (Berendsen et al., 2012; 

Yergeau et al., 2014; Vandenkoornhuyse et al., 2015; Gkarmiri et al., 2017). Most prominently, 

the rhizosphere effect is seen by a change in microbial composition between the bulk soil and the 

rhizosphere, a decrease in diversity, and an increase in microbial abundance and activity (Yergeau 

et al., 2014; Lebeis et al., 2015). Plants invest substantial resources in rhizodeposition, not only in 

sugars, but also amino acids, phenols, and other secondary metabolites (Berendsen et al., 2012; 

Mendes et al., 2013; Lakshmanan et al., 2014; Yergeau et al., 2014), to carefully curate an 

assemblage of micro-organisms, that will in turn benefit them (Lakshmanan et al., 2014; Yergeau 

et al., 2014). 
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 For example, Haney et al., (2015) and Lebeis et al., (2015) elegantly demonstrated how 

variation in Arabidopsis thaliana genotypes impacted the effect of colonizing bacteria, recruited 

from the surrounding soil. As different plant genotypes produced variations in the quantity and 

diversity of metabolites for rhizodeposition, these experiments illustrated how plant hosts make 

use of their rhizodeposition profile to order their bacterial rhizosphere and root microbiomes. 

Furthermore, these studies illustrate, first, that rhizosphere microbes are largely recruited from the 

surrounding bulk soil. Thus, the complete genetic potential of the microbiota is largely limited to 

what organisms are present in the nearby soil, as determined by its history (Azarbad et al., 2018; 

Hartman et al., 2018; Hannula et al., 2021) and abiotic factors (Vandenkoornhuyse et al., 2015). 

Second, the host plant’s genotype is an important factor in structuring its microbial communities 

(Haney et al., 2015; Lebeis et al., 2015) and that the microbes are curated to perform specific 

functions, including increasing access to nutrients (Richardson et al., 2009; Weidner et al., 2015; 

Yu et al., 2021), temper environmental change (Lau & Lennon, 2012), or stress (Marasco et al., 

2012; Hou et al., 2021), and protect against pathogens (Sikes et al., 2009; Mendes et al., 2011). 

Therefore, depending on which microbes are present in the nearby bulk soil can limit what 

functions, or genes, the host plant may have access to.  

However, the evidence suggests that microbial recruitment from surrounding soils is rather 

more organized, as over the course of Viridiplantae evolution, from unicellular algae to the 

emergence of embryophytes on land ~450 million years ago, the lineage has been in constant 

contact with microbes (Remy et al., 1994; Redecker et al., 2000; Knack et al., 2015; Durán et al., 

2022). Thus, over the course of time, plants and microbes have co-evolved, to the point that the 

presence, or absence, of microbes—or specific taxa—actually impacts the well-being of the plant; 
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individual plant productivity, as well as community composition, have been shown to vary based 

on the microbial assemblage (Bell et al., 2016; Klironomos, 2002; van der Heijden et al., 1998; 

van der Heijden et al., 2016). This has sparked discussion of plants and their associated microbes 

evolving as collective meta-organisms, holobionts, or hologenomes, where associated groups of 

genes co-occur and interact generation after generation (Zilber-Rosenberg & Rosenberg, 2008; 

Vandenkoornhuyse et al., 2015). 

 Two themes of experimental evidence that support the holobiont concept for plants and 

their associated microbes are, first, that similar bacteria are consistently found associated with 

plant hosts across the Viridiplantae linage (Yeoh et al., 2017; Alcaraz et al., 2018; Fitzpatrick et 

al., 2018; Duran et al., 2022), and second, that some microbes are inherited vertically via the seeds 

(Shade et al., 2017; Abdelfattah et al., 2021). Beginning with the 2012 descriptions of A. thaliana 

by Lundberg et al., and Bulgarelli et al., plant bacterial communities have been routinely found it 

be dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. The same bacterial phyla were 

found again in the rhizosphere of A. thaliana by Lebeis et al., (2015)—Proteobacteria (~30% 

relative abundance), Bacteroidetes (~17%), Actinobacteria (~15%)—along with Acidobacteria 

(~17%) and Firmicutes (~5%). Lebeis et al., (2015) also found the predominant bacterial phyla in 

the roots to be Actinobacteria (~55%), Proteobacteria (~20%), Bacteroidetes (~10%), and 

Firmicutes (~10%), demonstrating a selective shift in the relative abundance of taxa between soil, 

rhizosphere and the interior of the root (Vandenkoornhuyse et al., 2015). Furthermore, by 

comparing the root microbiomes of closely related Brassicaceae A. thaliana Shakdara, Landsberg, 

and Columbia, A. lyrata, A. halleri, and Cardamine hirsute Schlaeppi et al., (2014) found “a 

largely conserved and taxonomically narrow” set of microbes, again largely composed of 
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Proteobacteria, Bacteroidetes, and Actinobacteria. Other studies have continued to reaffirm the 

same bacterial phyla predominate across the Viridiplantae lineage, from algae to angiosperms 

(Yeoh et al., 2017; Alcaraz et al., 2018; Fitzpatrick et al., 2018; Durán et al., 2022). 

 One interpretation of the re-occurring bacterial taxa found among plants is that these taxa 

are perennially present in the environment, such that each generation of plant host can recruit them 

anew via horizontal transmission. However, evidence is accruing that plants also inherit microbes 

vertically via the seeds (Shade et al., 2017; Abdelfattah et al., 2021). By co-ordinating the vertical 

transmission of their genetic material plants and portions of their associated microbiomes ensure 

that the same organisms, and their genes, co-occur as a unit across generations. This has been 

experimentally demonstrated for bacteria, fungi and oomycetes (Saikkonen et al., 2002; Rodriguez 

et al., 2009; Ploch & Thines, 2011; Walters et al., 2018; Abdelfattah et al., 2021; Abdelfattah et 

al., 2022) and is strong evidence for the plant-microbial holobiont concept and understanding how 

these communities are formed.  

 

Spatial, Temporal & Phylogenetic Scales in Microbial Communities 

 An underlying issue in plant-soil microbial communities, and microbial ecology generally, 

is the complexity associated with each mechanism of community assembly, as they all interact and 

are all compounded by spatial, temporal, and phylogenetic scales, i.e., each process will act 

differently according to distances, time and evolutionary position (Gonzalez et al., 2012; Ladau & 

Eloe-Fadsh, 2019). This generates a vast heterogeneity among how each process may function, as 

well as what the relative strength, or importance, of each community assembly processes may be. 

For example, abiotic selection pressures, or environmental filtering, can exist in soils between 
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scales of kilometers to micrometers, while biotic interactions tend to be limited to local scales 

(Ladau & Eloe-Fadsh, 2019). Microbial dispersal seems unlimited, yet soil communities that are 

millimeters apart appear different and are often described as patchy (Nemergut et al., 2013; 

Ramirez et al., 2017; Ruuskanen et al., 2021). Thus, as these examples illustrate, the fundamental 

task of ecology of determining community composition at a specific time and place (Vellend, 

2010) is rendered more challenging by our incomplete understanding of how each mechanism 

involved in structuring plant-soil microbial communities is warped, or altered, depending on 

spatial, temporal, and phylogenetic scales (Ladau & Eloe-Fadsh, 2019). 

 One reason for microbial ecologists being fuzzy on how scales impact community 

composition is the disconnect, or bias between the scales microbes inhabit, and those of the 

researchers. Such a bias in perspective is compounded by the weight of research experience on 

plant ecology, from which microbial ecologists borrow heavily (Vellend, 2010; Revillini et al., 

2016; Shade et al., 2018; Shade & Stopnisek, 2019). This bias in perspective has the potential to 

add a number of artefacts into analyzing plant-soil microbial communities. For example, 

experimental soil, or plant tissue, samples are visibly harvested—at the scale of centimeters, 

grams, or milliliters— even though the microbes of interest may inhabit only a fraction of those 

scales. Soils, for instance, are highly structured and form a lattice of potentially unique 

environments at different scales. This heterogeneity of soil environments has been proposed as a 

leading factor for the hyper-diversity observed in soil microbial communities (Upton et al., 2019). 

Unfortunately, soils are often sampled at coarse spatial scales and homogenized, or pooled (Allen 

et al., 2021; Fleishman et al., 2022), which may reduce the specificity, or grain, of the study, and 
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consequently artificially increase the diversity reported (Nemergut et al., 2011; Ladau & Eloe-

Fadsh, 2019). 

 Phylogenetic uncertainty among many soil microbes can also conflate community analysis 

and reporting. That many microbes have poorly established species concepts is a perennial 

example (Cordero & Polz, 2014; Shapiro & Polz, 2014; Jain et al., 2018; Chase et al., 2021). This 

uncertainty has caused considerable ink to be spilled in the literature over, first, how microbes 

ought to be identified by blurring how community members may be counted—by binning or 

splitting (Callahan et al., 2017; Schloss, 2021). This can create difficulties or artifacts when 

reporting what microbes have been identified, and is further complicated by reporting disparate or 

uneven taxonomic levels, or conflating the vast evolutionary distances among microbes (Parks et 

al., 2018; Martiny et al., 2023).  

 Interacting with the phylogenetic and spatial scales are the diverse temporal scales 

microbes inhabit. For instance, many soil micro-organisms have access to various mechanisms 

that enable them to gain new functions within a generation through horizontal gene transfer 

(Tenaillon et al., 2012, Chase et al., 2021). Moreover, microbes have variable lengths to their life 

cycles, completing them within days to decades depending on environmental conditions (Shade et 

al., 2013a; Fuhrman et al., 2015). These examples can also confound reporting on microbial 

communities, depending on which organisms may be active, or dormant. These examples highlight 

some of the biases that occur by not recognizing how temporal scales can confound which 

organisms are actually determined to be present in a community at a specific time, and who gets 

counted, when and how (Lozupone & Knight, 2008; Hannula et al. 2019; Chase et al., 2021)? 
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Although incorporating different time scales into plant-soil microbial ecology has often 

been suggested (Shade et al., 2013b; Chaparro et al., 2014), methodological complexities have 

tended to dissuade including temporal dimensions (Shade & Stopnisek, 2019). However, with 

growing recognition of how important different time scales are for plant microbial communities, 

and with improving methods for incorporating temporal data (Shade & Stopnisek, 2019), omitting 

these aspects is becoming less justified. As such, new avenues of microbial temporal properties 

are being explored, such as microbial memory, legacy, and priority, effects (Kaisermann et al., 

2017; Hannula et al. 2019; Hannula et al. 2021; Debray et al., 2022; Vermeersch et al., 2022). 

These concepts describe how previous microbial communities impact future assemblages. 

 

Plant-Soil Feedback & Soil History 

 Perhaps one of the least understood contexts of how past events structure future microbial 

generations is in plant-soil microbial communities, as they are highly dynamic, not easily accessed 

or observed, and sensitive to multiple temporal scales. This is due to the reciprocal plant-soil 

microbial community feedback (PSF) process, where plant hosts and their associated microbial 

communities engage in an on-going dialogue. The existing state of the local soil environment is 

signalled via the extant soil microbial communities, which provide a variety of ecological roles 

that impact the local chemistry (Duchicela et al., 2013; Graf & Frei, 2013; Talbot et al., 2013). 

For their part, plant hosts continually communicate their above and below ground status to the 

rhizosphere through rhizodeposition, as previously discussed (Berendsen et al., 2012; Mendes et 

al., 2013; Lakshmanan et al., 2014; Yergeau et al., 2014; Lebeis et al., 2015; Korenblum et al., 

2020; Kawasaki et al., 2021; Yu et al., 2021). Thus, through the continuing dialogue of PSF the 
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environmental and chemical context of the soil will be incorporated and reflected in the 

composition of the microbial root and rhizosphere communities (Bever et al., 2010; van der Putten 

et al., 2013; Revillini et al., 2016). 

Clearly, the temporal scale of PSF will have a role in its outcome. For example, classic 

“home and away” studies illustrate how exchanging the established “home”, or local soil, of two 

plant host species mid-season, or for a growing season, can negatively or positively impact the 

growth of the individual plants (van der Putten et al., 2013; Kong et al., 2019; Fitzpatrick et al., 

2018: Hannula et al., 2021). These experiments suggest that some plant-microbial communities 

fair better or worse depending on the soil biotic and abiotic context, or environmental filter, such 

that the misalignment of the plant host and its microbial communities can be suboptimal. 

Furthermore, “home and away” experiments demonstrate that the rate of PSF may vary, as certain 

plant holobionts may re-establish their optimal soil biotic and abiotic environments more readily 

(van der Putten et al., 2013; Fitzpatrick et al., 2018). Nonetheless, over longer-term experiments, 

such as during succession or colonization events, plant hosts and their microbial communities can 

adapt over multiple seasons to new soil environments without penalty (Van Nuland et al., 2019; 

Ware et al., 2019). This further illustrates the importance of time in PSF. 

More recently this interaction of temporality and PSF has come under scrutiny, where a 

growing body of evidence demonstrates that PSF shapes future plant-soil microbial communities 

(Kaisermann et al., 2017; Berendsen et al., 2018; Fitzpatrick et al., 2018). This suggests that the 

environmental filter established by PSF from a plant-soil microbial community is transmitted 

through time to structure future generations of the plant holobiont. This environmental filter, or 

context that will condition future plant-soil microbial communities is referred to as soil history, or 
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soil legacy (Kaisermann et al., 2017; Bakker et al., 2021; Hannula et al., 2021). However, 

studying, or predicting the impact of soil history has proven challenging, in part due to the 

microbial variation involved (De Long et al., 2019).    

The soil history established by closely related plant hosts may fluctuate according to the 

variation among the plant host’s rhizodeposition, as discussed (Van Nuland et al., 2019), but it 

may also differ based on the initial microbial load and composition (Van Nuland et al., 2016). 

Given the large diversity of soil microbes, their community structure and interactions will shape 

am important biotic component of PSF, and the subsequent soil history that is established (van der 

Putten et al., 2013; Van Nuland et al., 2016). For example, fungi are widespread soil microbes 

with a range of impacts on PSF (Sheng et al., 2022; Xi et al., 2022). Increased mycorrhizal fungi 

and saprotrophs tend to produce more positive PSF by liberating nutrients from organic matter, 

and then increasing the plant host’s nutrient acquisition, while fungal pathogens may have positive 

or negative effects on PSF (van der Putten et al., 2013; Bennett & Klironomos, 2019; Xi et al., 

2022). However, mycorrhiza can also have variable roles in PSF, depending on other factors 

involved in the feedback process, including soil chemistry, or due to yet other microbes (Hart & 

Reader, 2002; Maherali & Klironomos 2007; Xi et al., 2022).  

The multi-layer interactions of soil microbial denizens, including fungi, oomycetes and 

bacteria, among others, may all vary the biotic component of PSF. Fungi are well known to host 

their own microbiota, as well as interact with other soil organisms, all of which can influence the 

activities of the soil microbiome, and resulting PSF (Bian et al., 2020; Nguyen, 2023). Fungi may 

also leak nutrients around their hyphae, which can generate fungal host-specific bacterial 

communities, analogous to how plants attract microbes to their root systems (Revillini et al., 2016; 
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Nguyen, 2023). Similarly, bacteria have also been shown to colonize the endophytic spaces of 

fungi, where even bacterial phytopathogens can benefit from the habitat and dispersal (Venkatesh 

et al., 2022). Conversely, fungal-bacterial antagonisms in the soil are also well documented, 

particularly among bacterial taxa typically associated with plants, such as Bacillus and 

Pseudomonas (Ansari & Ahmad, 2019; Dahlstrom & Newman, 2022: Geisen et al., 2022; Hansen 

et al., 2022; Hong et al., 2023). A high diversity of Pseudomonas strains has also been shown to 

maintain a Pythium disease suppressive soil through the production of anti-oomycete compounds 

(Oni et al., 2020). 

Though canonically less studied than bacteria and fungi, oomycetes are also important 

members of soil communities, especially given their outsized impact as phytopathogens (Kamoun 

et al., 2015), and a tendency to linger in soils (Martin & Loper, 1999; Fernández-Pavía et al., 2004; 

Kikway et al., 2022; Subila & Suseela, 2022). Furthermore, beginning with Ploch and Thines 

(2011), a number of studies have shown that oomycetes are also widespread plant endophytes, 

particularly among the Brassicaceae plant family (Sapp et al., 2018; Macía-Vicente et al., 2020). 

However, there is considerably less known about oomycete soil communities, and the diversity of 

their interactions with other microbes. Nonetheless, in briefly discussing some of these soil 

microbial groups and their interactions it underscores a fraction of their functional diversity. This 

demonstrates the complexity that is incorporated into the biotic fraction of PSF and highlights an 

important source of the variation in the resulting soil history. 

 Perhaps unsurprisingly, given this complexity, to date there have been few experiments 

that aim to study or predict the impact of soil microbes on establishing soil history, nor on the 

impact of soil history on future microbial communities (De Long et al., 2019). Rather, the focus 
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in this domain has been on examining strategies and responses of plant communities to PSF and 

soil history, including their growth and nutrient acquisition strategies, functional groups, or 

phylogenetic relatedness (Jongen et al., 2021; Chung, 2023; Rutten & Allan, 2023). From these 

different plant strategies, perhaps changes to microbial communities could be deduced, such as 

declines in specific pathogens, or promoting decomposers, or more copiotrophic vs oligotrophic 

bacteria (Jongen et al., 2021). However, an alternate strategy could also be “belowground-up”, 

where exploring how soil history impacts microbial community structure will better inform us to 

the plant host’s needs (Bennett & Klironomos, 2018; Li et al., 2019). Therefore, studying the plant 

holobiont as a whole may help tease apart how soil history established by PSF will alter the 

structure of the associated microbial communities. As such, a first step toward this is would be to 

identify which microbes may be present after different soil history scenarios. 

 

Structure of the Thesis 

In order to predict their functions, and better engineer microbial communities as 

technologies, there is an urgent need to better understand how bacterial communities assemble and 

are structured through time. In no context is this need clearer than for soil microbial communities, 

as they play a complex—though less studied—part in PSF and in the subsequent soil history that 

is established. Moreover, as soil histories impact future microbial communities (Kaisermann et al., 

2017; Bakker et al., 2021; Hannula et al., 2021), it is relevant to investigate how we currently treat 

soils to better understand how microbial communities may be affected and establish baseline data 

on how microbial communities change through time (Chung, 2022; Geller & Levy, 2023). As 

such, my thesis addresses the lack of experiments, particularly field experiments (Revillini et al., 
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2016), that aim to study and predict the impact of soil history on future microbial communities 

(De Long et al., 2019). Following the “belowground-up” strategy, I used amplicon sequencing to 

identify the composition of the bacterial and oomycete communities from different soil histories, 

with the aim to identify how changes among these communities may influence their Brassicaceae 

host plants (Bennett & Klironomos, 2018; Li et al., 2019). 

 My thesis is composed of three chapters, presented as stand-alone scientific articles, that 

revolve around the theme of how soil history structures future microbial communities in the soil. 

Chapter 1 addresses how bacterial communities with different soil histories adapt to new plant 

hosts. I found that the communities converged toward similar bacterial compositions in response 

to new Brassicaceae plant hosts, regardless of their different soil histories. However, this plant-

induced adaptation broke down if the new host was water-stressed, such that the previous soil 

histories continued to drive the bacterial community structure for up to a year afterward. Chapter 

2 identified a clear influence of soil history on the structure of oomycete plant pathogens the 

following year, regardless of the presence of a new Brassicaceae plant host. This study highlights 

a number of avenues for future research to explore regarding how to monitor and control this 

understudied group of pathogens. Chapter 3 then considers the interaction of different soil 

histories and plant growth stages on the development of the soil bacterial communities. This 

experiment showed that the plant hosts rapidly mask the previously established soil history upon 

germinating and derive common rhizosphere communities from the surrounding bulk soil. I then 

present a general conclusion on my work, its limits, and perspectives on how soil history may 

inform microbial community assembly more broadly, as discussed above, and how future studies 

may be improved based on these experiments. 
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Chapter 1: Host plants can “re-write” soil history for bacterial communities 

 

In order for the soil history from a previous plant–soil microbial community to condition 

future plant generations and the composition of their bacterial communities (Kaisermann et al., 

2017; Berendsen et al., 2018; Fitzpatrick et al., 2018), information must be transmitted through 

time to impact subsequent plant–microbial generations. One set of mechanisms thought to 

accomplish this transmission is through plant-soil microbial community feedback (PSF), such that 

the biotic and abiotic context of the soil will be incorporated and reflected in the composition of 

the bacterial root and rhizosphere communities. However, it remains unclear what the effect of 

different soil histories may be, or how long they can continue to influence future plant-microbial 

communities. Therefore, Chapter 1 tested the hypothesis that different soil histories established 

the previous year by PSF would continue to structure bacterial root and rhizosphere communities 

hosted by Brassicaceae crop plants the subsequent year. 

To test the soil history hypothesis, I used an existing crop rotation field experiment as a 

model for how a previous PSF establishes soil history that may impact the biotic and abiotic soil 

conditions of a future plant-bacterial community (Yang et al., 2021; Liu et al., 2022). Thus, three 

different soil histories (fallow, lentil, wheat) were established throughout a growing season, and 

the following year each soil history was divided into five subplots and planted with a different 

Brassicaceae plant host. I examined the taxonomic composition and diversity of bacterial 

communities from the root and rhizosphere of the five different Brassicaceae hosts, as estimated 
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by amplicon sequence variants (ASVs), to identify any changes associated with soil history on the 

various bacterial communities.  

 

Chapter 2: Soil history drives oomycete community structure 

 

 Crop rotations in agricultural fields are an example of applying PSF to establish beneficial 

soil histories (Hwang et al., 2015; Yang et al., 2021; Liu et al., 2022). Though extensive work has 

investigated how Brassicaceae oilseed rotations benefit the crop plants involved (recently 

reviewed by Yang et al., 2021), the influence of Brassicaceae crops on the biodiversity of soil 

oomycete phytopathogens remains unknown (Maciá-Vicente et al., 2020). Therefore, Chapter 2 

investigate this knowledge gap, where I hypothesized that the three soil histories established by 

the previous crops would structure different oomycete communities, regardless of their current 

Brassicaceae host, in both the roots and rhizosphere. 

I used the same crop rotation field experiment, described briefly for Chapter 1, to model 

how previously established soil histories may structure future soil oomycete biodiversity (Yang et 

al., 2021; Liu et al., 2022). The three different soil histories (fallow, lentil, wheat) were established 

throughout a growing season, along with their agricultural inputs, while the following year each 

soil history was divided into five subplots and planted with different Brassicaceae plant hosts. I 

examined the biodiversity of the oomycete communities inferred as ASVs to identify any changes 

associated with soil history on the various Brassicaceae soil oomycete communities. 
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Chapter 3: Bacterial communities are structured by soil across plant growth stages 

  

 The previous experiment found that mature adult host plants “re-wrote”, or masked 

different soil histories (Blakney et al., 2022). However, this does not illustrate how soil history 

influences the structure of bacterial communities across different growth stages of the host plant. 

Therefore, Chapter 3 hypothesized that previously established soil histories would decrease in 

influence throughout the growing season of Brassica napus. 

To test the “declining soil history hypothesis”, I used another agricultural field experiment 

where soil histories were established by different crop rotations; monocrop canola (B. napus), or 

wheat-canola, or pea-barley-canola rotations (Harker et al., 2015). During the canola Test Phase, 

we repeatedly sampled the surrounding bulk soil, rhizosphere and roots of B. napus at different 

growth stages— the initial seeding conditions, seedling, rosette, bolting, and flower—from all 

three soil history plots. I compared the taxonomic composition and diversity of bacterial 

communities, as estimated using 16S rRNA metabarcoding, to identify any changes associated 

with soil history and growth stages on the different B. napus soil bacterial communities. 

 

 

 

 

 

 

 

 



 
 

 

41 

Chapter 1: Brassicaceae host plants mask the feedback from the previous 

year’s soil history on bacterial communities, except when they experience 

drought 

 

Andrew J.C. Blakney1*, Luke D. Bainard2, Marc St-Arnaud1, Mohamed Hijri1, 3* 

 

1 Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin 

botanique de Montréal, Montréal, QC, Canada 

2 Agassiz Research and Development Centre, AgricuSlture and Agri-Food Canada, Agassiz, BC, V0M 1A2, Canada 

3 African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 

43150, Morocco 

 

* Corresponding authors: andrew.blakney@umontreal.ca ; mohamed.hijri@umontreal.ca 

 

Keywords: Brassicaceae, bacterial communities, soil legacy, plant-soil feedbacks, drought 

 

 

 

Published in: Environmental Microbiology 

 

DOI: https://doi.org/10.1111/1462-2920.16046 

 



 
 

 

42 

Abstract 

Soil history operates through time to influence the structure and biodiversity of soil 

bacterial communities. Examining how different soil histories endure will help clarify the rules of 

bacterial community assembly. In this study, we established three different soil histories in field 

trials; the following year these plots were planted with five different Brassicaceae species. We 

hypothesized that the previously established soil histories would continue to structure the 

subsequent Brassicaceae bacterial root and rhizosphere communities. We used a MiSeq 16S rRNA 

metabarcoding strategy to determine the impact of the different soil histories on the structure and 

biodiversity of the bacterial root and rhizosphere communities from the five different Brassicaceae 

host plants. We found that the Brassicaceae hosts were consistently significant factors in 

structuring the bacterial communities. Four host plants (Sinapis alba, Brassica napus, B. juncea, 

B. carinata) formed similar bacterial communities, regardless of different soil histories. Camelina 

sativa host plants structured phylogenetically distinct bacterial communities compared to the other 

hosts, particularly in their roots. Soil history established the previous year was only a significant 

factor for bacterial community structure when the feedback of the Brassicaceae host plants was 

weakened, potentially due to limited soil moisture during a dry year. Understanding how soil 

history is involved in the structure and biodiversity of bacterial communities through time is a 

limitation in microbial ecology and is required for employing microbiome technologies in 

improving agricultural systems. 
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Introduction 

Soil history is an understudied aspect involved in structuring soil microbial communities 

through time (Fitzpatrick et al., 2018; Hannula et al., 2021). Understanding how past events in soil 

history continue to shape the plant-soil microbial community is paramount for maintaining global 

biodiversity, agricultural productivity, and climate management (Albright et al., 2021). Without 

this knowledge, plant microbial communities cannot be predicted, design, or deployed for future 

needs (Albright et al., 2021, Busby et al., 2017, Zengler et al., 2019). As such, a clear barrier to 

successfully developing bacterial-microbiome technologies is an understanding of the role of soil 

history and time in structuring soil bacterial communities (Albright et al., 2021, Busby et al., 

2017). 

The ecological function and biological stability, of soils are regulated by microbial 

communities (Griffiths & Philippot, 2013). Soil microbes aggregate, structure, and stabilize soils 

(Duchicela et al., 2013; Graf & Frei, 2013), as well as cycle water and nutrients through the 

biosphere (Talbot et al., 2013). For plants, soil microbes increase access to nutrients (Richardson 

et al., 2009; Weidner et al., 2015; Yu et al., 2021), temper environmental change (Lau & Lennon, 

2012), or stress (Marasco et al., 2012; Hou et al., 2021), and protect against pathogens (Mendes et 

al., 2011; Sikes et al., 2009). Soil bacterial communities help integrate these diverse signals and 

modulate the plant’s responses (Castrillo et al., 2017; Hou et al., 2021). 

In turn, plant hosts contribute to above-ground-below-ground communication by adjusting 

the environmental filter imposed on the surrounding soil chemistry. The plant host alters the soil 

chemistry through two concurrent processes; first, the host plant’s own growth, development, and 

homeostasis is determined by its capacity to uptake nutrients from the soil, which will adjust the 
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soil chemistry (Hu et al., 2021). Second, through rhizodeposition the host plant can vary the 

quantity and array of compounds released into the rhizosphere as required, thereby changing its 

soil chemistry (Lebeis et al., 2015; Korenblum et al., 2020; Kawasaki et al., 2021; Yu et al., 2021). 

Modifying their rhizodeposition profile allows plants to tailor the structure of their bacterial 

rhizosphere community in response to variable conditions and the plant’s needs (Lebeis et al., 

2015; Korenblum et al., 2020; Kawasaki et al., 2021; Yu et al., 2021). 

This plant-soil community, above-ground-below-ground communication generates a 

reciprocal feedback process (Hou et al., 2021). Through plant-soil community feedbacks (PSF) 

the environmental and chemical context of the soil will be incorporated and reflected in the 

composition of the bacterial root and rhizosphere communities. Thus, PSF contributes to the 

dynamic environmental filtering that determines how specific bacteria come to inhabit a given site 

(Bever et al., 2010; van der Putten et al., 2013; Revillini et al., 2016). Accordingly, given the 

reciprocal feedback, soil bacterial communities have been identified as well-established drivers of 

plant growth and development, and plant community assembly (Fig. 1A; Berendsen et al., 2012; 

Hannula et al., 2021; Yu et al., 2021). 

 Furthermore, there is evidence that current PSF impacts future plant generations and the 

composition of their soil bacterial communities (Kaisermann et al., 2017; Berendsen et al., 2018; 

Fitzpatrick et al., 2018). This implies that information from PSF in one plant-soil community is 

transmitted through time to impact subsequent plant-microbial generations, i.e., that the soil 

history, also referred to as soil legacy, of previous plant-soil communities condition future ones 

(Fig. 1A; Kaisermann et al., 2017; Bakker et al., 2021; Hannula et al., 2021). How long soil history 

lasts, or the variation in length, or impact between different soil histories on future plant-microbial  
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Figure 1. Conceptual design of the experiment. (A) Plant-soil microbial community, above-

ground-below-ground communication generates a reciprocal feedback process, where plants use 

rhizosdeposition to tailor the microbial community to their needs. In turn, the microbial community 

services the plant host, including by increasing nutrient access. The soil history established by one 

plant-soil microbial community (t =1) is then projected through time to impact subsequent plant-

microbial generations (t =2). (B) Two field trials were set-up on adjacent sites in a split-plot design 

replicated in four complete blocks. Three soil histories were established in the Conditioning Phase 

(t =1) of a two-phase cropping sequence, consisting of wheat, lentil, or left fallow (brown, black, 

green, respectively), plus their standard agricultural management practices and inputs. The 

following year (t =2), during the Test Phase, the conditioned plots were each subdivided and five 

Brassicaceae oilseed crop species were randomly assigned to one of these five subplots. At full 

flower, the plants were harvested and divided into root and rhizosphere components for 16S rRNA 

metabarcoding by Illumina MiSeq PE250 (paired-end 250 bp). 
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communities is unclear. Moreover, it has been suggested that a weakness in studying PSF and the 

soil history they establish, has been their lack of field experiments (Revillini et al., 2016). 

Agricultural systems provide ready-made field opportunities to investigate how soil history 

established a previous year continues to impact bacterial communities in subsequent years. Crop 

rotations and their agricultural inputs model how a previous PSF establishes a soil history that may 

impact the biotic and abiotic soil conditions for a future plant-bacterial community (Yang et al., 

2021; Liu et al., 2022). When lentils, or other legumes, are introduced into a rotation the 

subsequent crops tend to have higher yields (O’Donovon et al., 2014; Hamel et al., 2018). 

Leguminous plants cause a shift in the soil microbial community, which can include decreasing 

potential pathogens (Bazghaleh et al., 2016; Yang et al., 2021). Evidence suggests that the 

resulting PSF among the lentil-soil community establishes more bioavailable nitrogen and 

moisture in the soil, which benefits the subsequent crop (O’Donovon et al., 2014; Hamel et al., 

2018; Yang et al., 2021). Canola rotations also establish beneficial soil histories, as they reduce 

the growth of cereal-specific pathogens. As such, cereals tend to have higher yields when they are 

planted after canola (Etesami & Alikhani, 2016; Yang et al., 2021). Extensive work has 

investigated how crop rotations benefit the plants involved (recently reviewed by Yang et al., 

2021). However, less is known concerning how crop rotations and their agricultural inputs 

establish soil history and subsequently impact future soil bacterial communities. 

Recent work on canola (Brassica napus L. or B. juncea L.) bacterial communities has 

begun to correct this knowledge deficit (Lay et al., 2018; Floch et al., 2020; Taye et al., 2020; 

Wang et al., 2020; Morales Moreira et al., 2021). Brassicaceae oilseed-based rotations are 

common throughout the world, as demand for vegetable oil and biofuels increase (Yang et al., 
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2021). Expanding the diversity of Brassicaceae oilseed species has been on-going in order to 

improve production by identifying varieties resistant to pathogens, and better adapted to the heat 

and drought stress of the Canadian Prairies (Bailey-Serres et al., 2019; Hossain et al., 2019; Liu et 

al., 2019). Studying closely related Brassicaceae species will help illustrate how bacterial 

communities may be changed through plant breeding, as well as the fine-tuning of bacterial 

community structures in response to different soil histories (Bailey-Serres et al., 2019).  

To study the impact of previously established soil history on the biodiversity and structure 

of soil bacterial communities, we took advantage of an existing agricultural field experiment. 

Three different soil histories (fallow, lentil, wheat) were established; the following year each soil 

history was divided into five subplots and planted with a different Brassicaceae oilseed species. 

This design allowed us to test the hypothesis that soil histories established the previous year by 

PSF—i.e. lentil and wheat, along with their respective microbial communities and agricultural 

treatments—would continue to structure the subsequent Brassicaceae bacterial root and 

rhizosphere communities. As such, we predict i) if the fallow soil history does not influence the 

five Brassicaceae soil bacterial communities, then each community should appear distinct, ii) if 

the lentil and wheat soil histories continue to structure the Brassicaceae bacterial communities, 

then these communities should reflect their soil histories and not the variation of the five 

Brassicaceae host plants. To test the soil history hypothesis, we examined the taxonomic 

composition and diversity of bacterial communities from the root and rhizosphere, as estimated by 

amplicon sequence variants (ASVs), to identify any changes associated with soil history on the 

various Brassicaceae soil bacterial communities. 
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Materials & Methods 

Site and experimental design 

 A field experiment was conducted at the experimental farm of Agriculture and Agri-Food 

Canada’s Research and Development Centre, in Swift Current, Saskatchewan (50°15′N, 

107°43′W). The site is located in the semi-arid region of the Canadian Prairies; according to the 

weather station at the research farm, the 2016 and 2017 growing seasons (May, June and July) had 

328.4 mm and 55.0 mm of precipitation, respectively; compared to the 30-year average [1981-

2010] of 169.2 mm. The daily temperature averages for the 2016 and 2017 seasons were 15.6°C 

and 15.9°C, respectively, while the 30-year average was 14.93°C. The farm is on a Brown 

Chernozem with a silty loam texture (46% sand, 32% silt, and 22% clay), and has been well-

described previously (see Liu et al., 2019 & 2020).  

The experiment was established in a field previously growing spring wheat (Triticum 

aestivum cultivar AC Lillian). A two-phase cropping sequence—consisting of a Conditioning 

Phase the first year, and a Test Phase in the second year (Fig. 1)—was repeated in two field trials, 

Trial 1, 2015-2016, and Trial 2, 2016-2017, on adjacent sites (Fig. S1A & B). On each site, the 

experimental design was a split-plot replicated in four complete blocks. In the Conditioning Phase, 

three soil history treatments were randomly assigned to the main plots, consisting of spring wheat 

(Triticum aestivum, cv. AC Lillian), red lentil (Lens culinaris cv. CDC Maxim CL), or left fallow 

(Fig. 1 & S1). Thus, the Conditioning Phase established a soil history composed of either wheat, 

lentil, or fallow, plus their respective management plans as described below (Hossain et al., 2019; 

Liu et al., 2019). 
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In the Test Phase, the 12 Conditioning Phase plots were each subdivided and five 

Brassicaceae oilseed crop species were randomly assigned to one of these five subplots (Fig. 1 & 

S1). The Brassicaceae crops seeded were Ethiopian mustard (Brassica carinata L., cv. ACC110), 

canola (B. napus L., cv. L252LL), oriental mustard (B. juncea L., cv. Cutlass), yellow mustard 

(Sinapis alba L., cv. Andante), and camelia (Camelina sativa L., cv. Midas). The Test Phase 

established the Brassicaceae host PSF, composed of the individual Brassicaceae genotypes, their 

soil bacterial community, and their respective management plans, as described below (Hossain et 

al., 2019; Liu et al., 2019). In total, each field trial had 60 subplots to sample (Fig. S1 & S2). For 

further details of this well-described experiment, its design, and treatments, see Hossain et al. 

(2019), Liu et al. (2019), and Wang et al. (2020). 

 

Crop management and sampling 

Crops in both field trials were grown and maintained according to standard management 

practices, as previously described by Hossain et al. (2019), Liu et al. (2019), and Wang et al. 

(2020). A pre-seed ‘burn off’ herbicide treatment using glyphosate (Roundup, 900 g acid 

equivalent per hectare, a. e. ha−1) was applied to all plots each year to ensure a clean starting field 

prior to seeding. Lentil seeds were treated with a commercial rhizobium-based inoculant 

(TagTeam at 3.7 kg ha−1), which contains the phosphate-solubilizing fungi Penicillium bilaiae, 

and the lentil-nodule partner Rhizobium leguminosarum. Lentil and wheat were direct-seeded into 

wheat stubble from late April to mid-May depending on the crop and year. The herbicides 

glyphosate (Roundup, 900 g a. e. ha−1), Assure II (36 g active ingredient per hectare, a. i. ha−1), 

and Buctril M (560 g a.i. ha−1) were applied to the fallow, lentil, and wheat plots, respectively, for 
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in-season weed control, while fungicides were only applied as needed. Soil tests were used to 

determine the rates of in-season nitrogen, phosphorus, and potassium application; no synthetic 

nitrogen fertilizer was applied to the lentil plots during the Conditioning Phase. Both lentil and 

wheat were harvested between late August and early October, depending on the crop and year.  

The subsequent Test Phase Brassicaceae plant hosts were subjected to the same standard 

management practices as the Conditioning Phase, including pre-seed ‘burn off’, in-season 

herbicide and fungicide treatments as needed, and fertilized as recommended by soil tests (Table 

S4; Hossain et al. 2019, Liu et al. 2019, and Wang et al. 2020). Additionally, all Brassicaceae 

crops, except B. napus, were treated with Assure II mixed with Sure-Mix or Merge surfactant 

(0.5% v/v) for post-emergence grass control: Liberty (glufosinate, 593 g a.i. ha−1) was used for B. 

napus. We accounted for the use of the various agricultural treatments in the downstream amplicon 

data by considering each plant sample and their total complement of particular agricultural 

treatments as a unit. 

Test phase Brassicaceae plants were sampled in mid-late July at full flowering, i.e. when 

50% of the flowers on the main raceme were in bloom, as described by the Canola Council of 

Canada (Canola Encyclopedia: Canola Growth Stages, 2017), where flowering corresponds to 

higher activity in rhizosphere microbial communities (Chaparro et al., 2014). Four plants from two 

different locations within each subplot were excavated and pooled together as a composite sample 

(Hossain et al., 2019; Liu et al., 2019, Wang et al., 2020). In the field, each plant had its 

rhizosphere soil divided from the root material by gently scraping it off using bleach sterilized 

utensils into fresh collection trays. The roots were then gently washed three times with sterilized 

distilled water to remove any soil. Both the rhizosphere and root portions were immediately flash-



 
 

 

52 

frozen and stored in liquid nitrogen vapour shipping containers until stored in the lab at -80°C 

(Delavaux et al., 2020). Based on the sampling strategy, in this study we define the rhizosphere 

microbiome as the microbial community in the soil in close contact with the roots (Hannula et al., 

2021), and the root microbiome as the microbial community attached to, and within, the roots 

(Berendsen et al., 2018).  Two additional soil cores were sampled from each plot, pooled, and kept 

on ice in coolers. These samples were homogenized in the lab, and sieved to remove rocks and 

roots. They were then used for soil chemistry analyses, including total carbon, nitrogen, pH, and 

micronutrients (see Wang et al., 2020 for details). Aerial portions of each harvested plant sample 

were retained to determine dry weight (Fig. S3). 

 

DNA extraction from Test Phase Brassicaceae root and rhizosphere samples 

 Nucleic acids were extracted from Trial 1 Test Phase Brassicaceae samples, both 

rhizosphere and root portions. First, all the root samples were ground in liquid nitrogen via sterile 

mortar and pestles (Fig. S2). Total DNA and RNA were extracted from ~1.5 g of rhizosphere soil 

using the RNA PowerSoil Kit with the DNA elution kit (Qiagen, Germany). DNA and RNA were 

extracted using ~0.03 g of roots using the DNeasy Plant DNA Extraction Kit, and RNeasy Plant 

Mini Kit (Qiagen, Canada), respectively, following the manufacturer’s instructions (see Wang et 

al. (2020) for use of the RNA samples). All remaining harvested material from Trial 1 and 2, as 

well as the extracted DNA from Trial 1, were kept at -80°C before being shipped to Université de 

Montréal’s Biodiversity Centre, Montréal (QC, Canada) on dry ice for further processing 

(Delavaux et al., 2020; Lay et al., 2018).  
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Total DNA was extracted from the Trial 2 Test Phase samples; ~500 mg of rhizosphere 

soil was used for the NucleoSpin Soil gDNA Extraction Kit (Macherey-Nagel, Germany), and 

~130 mg of roots was used for the DNeasy Plant DNA Extraction Kit (Qiagen, Germany) (Lay et 

al., 2018). A no-template extraction negative control was used with both the root and rhizosphere 

extractions and included with the Test Phase samples (Fig. S2), to assess the influence of the 

extraction kits on our sequencing results, and the efficacy of our lab preparation. All 242 extracted 

DNA samples (60 plots x 2 parallel field trials x 2 compartments, rhizosphere and root, +2 no-

template extraction control samples) were quantified using the Qubit dsDNA High Sensitivity Kit 

(Invitrogen, USA), and qualitatively evaluated by mixing ~2 µL of each sample with 1 µL of 

GelRed (Biotium), and running it on a 0.7 % agarose gel for 30 minutes at 150 V. The no-template 

extraction negative controls were confirmed to not contain DNA after extraction, where the 

detection limit was > 0.1 ng (Qubit, Invitrogen, USA). Samples were kept at -80°C (Bell et al., 

2016; Delavaux et al., 2020). 

 

16S rRNA gene amplicon generation and sequencing to estimate the bacterial community 

 To estimate the composition of the bacterial communities in the rhizosphere and roots from 

the Test Phase Brassicaceae species, extracted DNA from all samples were used to prepare 16S 

rRNA gene amplicon libraries following Illumina’s MiSeq protocols. First, all DNA samples were 

diluted 1:10 into 96-well plates using the Freedom EVO100 robot (Tecan, Switzerland).  To assess 

potential bias caused by lab manipulations, sequencing and downstream bioinformatic processing, 

a commercially available 16S rRNA mock community, of known composition (Table S1), was 

included on each plate (Fig. S2) following the manufacturer’s instructions (BEI Resources, USA). 
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The mock community contained DNA of 20 bacterial species (Table S2) in equimolar counts (106 

copies/µL) of 16S rRNA genes. 

 DNA plates were stored at -20°C before ~ 5-15 ng/µL from each sample was used as 

template in the 16S rRNA PCR reactions (see Supplementary Methods for details), set-up in 96-

well plates using the Freedom EVO100 robot (Tecan, Switzerland). A no-template PCR negative 

control was included on each plate, to assess the influence of the PCR reaction, and the efficacy 

of our lab preparation on sequencing (Fig. S2). Each sample, and all controls, were PCR amplified 

in two independent reactions, except four rhizosphere samples from 2017, which we were unable 

to amplify and were subsequently excluded hereafter (Fig. S2). Four µL of each reaction product 

was mixed with 1 µL of loading dye containing Gel Red (Biotium) and visualized on a 1% agarose 

gel after 60 minutes at 100 V. None of the no-template negative controls, from either the 

extractions, or the PCR reactions, contained detectable amounts of DNA after PCR amplification. 

All samples were then cleaned using the NucleoMag NGS Clean-Up Kit (Macherey-Nagel, 

Germany) following the manufacturer’s instructions. The cleaned products of the duplicated 16S 

rRNA gene PCR reactions were then pooled together and submitted for paired-end 250 bp 

sequencing using Illumina’s MiSeq platform (Genome Québec, Montréal) (Bell et al., 2016; Lay 

et al., 2018). We estimated this should provide a mean of 39 000 reads per sample, which is in line 

with previous studies that describe bacterial communities (Bell et al., 2016; Lay et al., 2018). 

 

Estimating ASVs from MiSeq 16S rRNA gene amplicons 

The 16S rRNA gene amplicons generated by Illumina MiSeq were used to estimate the 

diversity and composition of the bacterial communities present in both the rhizosphere and roots 



 
 

 

55 

of each Test Phase Brassicaceae sample. The integrity and totality of the 16S MiSeq data 

downloaded from Génome Québec was confirmed using their MD5 checksum protocol (Roy et 

al., 2018). Subsequently, all data was managed, and analyzed in R (4.0.3 R Core Team, 2020), and 

plotted using ggplot2 (Wickham, 2016). 

Instead of generating OTUs from the 16S rRNA gene amplicon data, we opted to use 

DADA2 for ASV inference as it generates fewer false-positives than OTUs, and reveals more low-

abundant, or cryptic, microbes (Callahan et al., 2016a & 2017). Moreover, as ASVs are unique 

sequence identifiers, they are directly comparable between studies, unlike OTUs (Callahan et al., 

2016a & 2017; Fitzpatrick et al., 2018). The dada2 package (Callahan et al., 2016a) was first used 

to filter and trim all 23 313 756 raw reads, forward and reverse, from the 16S rRNA gene amplicon 

data generated from the control samples, the mock communities, and the Test Phase Brassicaceae 

samples, using the filterAndTrim function (Fig. S2). All reads were trimmed from the 3’ end to 

240 bp, as determined a posteriori to be the optimum length to maximize retention of reads (14 

666 924 after filtration, 10 178 467 retained overall), and the subsequent inference of ASVs (37 

445). Any residual sequencing artifacts, including primers, were trimmed from the 5’, and low-

quality (Q = < 20) reads removed, before ASVs were inferred (Fig. S4). 

 Filtered and trimmed reads were then processed through DADA2 for ASV inference (Fig. 

S2). Default settings were used throughout the DADA2 pipeline, except the DADA inference 

functions dadaF and dadaR which used the pool =’pseudo’ argument, to increase the likelihood 

of identifying rare taxa. Consequently, the chimera removal function removeBimeraDenovo 

included the method =’pooled’ argument (Callahan et al., 2016b).  



 
 

 

56 

ASVs identified from the 16S rRNA gene amplicon data were assigned taxonomy, to the 

species level when possible, using the Silva database (Yilmaz et al., 2013), and the quality of the 

data was assessed using the included controls (Fig. S5). Any ASVs identified as chloroplasts, or 

mitochondria were subsequently removed from the data, as were the 58 off-target Archaeal ASVs. 

Rarefaction curves confirmed that we captured the majority of the bacterial communities in both 

the roots and rhizosphere (Fig. S6). Test Phase Brassicaceae 16S rRNA sequencing data was 

subsequently re-analysed independently following the described protocol to avoid any biases from 

the six no-template negative controls and the four mock communities. These are the Test Phase 

Brassicaceae ASVs which are reported hereafter. 

 

a-diversity of the Test Phase Brassicaceae rhizosphere and root communities 

First, to identify any changes in abundance of the bacterial ASVs within the Test Phase 

Brassicaceae species, we estimated the absolute abundance, or size, of the bacterial communities 

in each Test Phase DNA sample by qPCR (Azarbad et al., 2018). We used the standard universal 

Eub338/Eub518 primers (Muyzer et al., 1993; Nogales et al., 1999; Bathe & Hausner, 2006; Davis 

et al., 2009) to detect copies of the 16S rRNA gene sequences present in each DNA sample prior 

to estimating their absolute abundance from a standard curve (Zhang et al., 2017; Azarbad et al., 

2018; see Supplementary Methods for details, Fig. S7). Given the technical limitations of high-

throughput sequencing in assessing abundance, estimating the absolute abundance by qPCR can 

provide data to better interpret the bacterial communities (Gloor et al., 2017; Props et al., 2017; 

Harrison et al, 2020; Jian et al., 2020). 
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Second, to visualise taxonomic diversity, ASVs were plotted as taxa cluster maps using 

heat_tree from the metacoder package (Foster et al., 2017) for the rhizosphere and roots of both 

sampling years, where nodes represent phyla and class: node colours represent the absolute 

abundance of each ASV, while node size indicates the number of unique taxa. Taxa cluster maps 

facilitate visualizing abundance, as well as diversity across taxonomic hierarchies (Foster et al., 

2017). Relative and absolute abundance bar charts were plotted at the phyla level for comparison. 

Finally, in order to estimate the coverage of the bacterial domain of life, we incorporated 

phylogenies into the phyloseq object following the method described by Callahan et al., 2016b 

(see Supplementary Methods for details). Faith’s phylogenetic diversity was calculated as an a-

diversity index from the Test Phase Brassicaceae samples using the pd function from the picante 

package (Kembel et al., 2010; sum of all branch lengths separating taxa in a community). For 

comparison, Simpson and Shannon’s a-diversity indices were calculated (Fig. S8). Log 

transformed phylogenetic diversity indices were confirmed to respect normality (see 

Supplementary Methods for details). 

We assessed differences between the mean phylogenetic diversity between soil histories, 

Brassicaceae hosts, and their interactions using a Multi-Factor ANOVA and Tukey’s post hoc test 

for significant groups that respected the assumptions of normality (Azarbad et al., 2020, Wang et 

al., 2020; see Supplementary Methods for details). Where normality could not be respected, we 

used the non-parametric Kruskal-Wallis rank sum test, kruskal.test. Specific groups of 

statistical significance were identified with the post hoc pairwise Wilcoxon Rank Sum Tests, 

pairwise.wilcox.test, with the FDR correction on the p-values to account for multiple 

comparisons. As the relative and absolute abundance datasets yielded similar a-diversities, with 
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and without ASV rarefaction using rarefy_even_depth (McMurdie & Holmes, 2013), only the 

results incorporating the absolute abundance are reported. 

  

Identification of differentially abundant ASVs and specific indicator species 

 To refine our understanding of the abundance and composition of the Test Phase 

Brassicaceae bacterial communities, we used two complementary methods to identify taxa 

specific to soil histories, or the Brassicaceae hosts (see Supplementary Methods for details). First, 

taxa cluster maps were used to calculate the differential abundance of ASVs between experimental 

groups, including rhizosphere and root compartments, Brassicaceae host plants, and soil histories. 

Second, indicator species analysis was used to detect ASVs that were preferentially abundant in 

pre-defined environmental groups (soil histories, or Brassicaceae host). A significant indicator 

value is obtained if an ASV has a large mean abundance within a group, compared to another 

group (specificity), and has a presence in most samples of that group (fidelity) (De Cáceres & 

Legendre; Legendre & Legendre, 2012). The fidelity component complements the differential 

abundance approach between taxa clusters, which only considers abundance. Moreover, given the 

large number of taxa in our study, it is not practical to view taxa clusters as matrices below class, 

whereas indicator species analysis pinpoints specific ASVs of interest. 

 

b-diversity of the Test Phase Brassicaceae rhizosphere and root communities 

To test for significant community differences between both field trials, compartments, soil 

histories and Brassicaceae hosts, we used the non-parametric permutational multivariate ANOVA 

(PERMANOVA), where any variation in the ordinated data distance matrix is divided among all 
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the pairs of specified experimental factors. The PERMANOVA was calculated using the adonis 

function in the vegan package (Oksanen et al., 2020), with 9999 permutations, and the 

experimental blocks were included as “strata”. Our preliminary PERMANOVA (Table S3) used a 

distance matrix calculated with the Bray-Curtis formula and tested the significance of the effects 

of soil history, Brassicaceae host, compartment, and field trial (Fig. S9). This was complemented 

with a PERMANOVA for each trial and compartment that specifically tested treatments and hosts 

as experimental factors, and used a weighed UniFrac distance matrix (Lozupone & Knight, 2005; 

Lozupone et al., 2007). This distance index incorporates the phylogenetic relationship of each 

dataset and the absolute abundance of each ASV, as estimated by qPCR of the 16S rRNA gene 

(Lozupone & Knight, 2008).  

We used a variance partition, as a complement to the PERMANOVA, to model the 

explanatory power of soil history, Brassicaceae host, and soil chemistry in the structure of the Test 

Phase Brassicaceae bacterial communities. We then quantified how each significant factor (ie, the 

explanatory variables) impacted bacterial community structure with a distance-based redundancy 

analysis (db-RDA) (Legendre & Legendre, 2012). First, singleton ASVs were removed before the 

phyloseq data were transformed using Hellinger’s method, such that ASVs with high abundances 

and few zeros are treated equivalently to those with low abundances and many zeros (Legendre & 

de Cáceres, 2013). A weighted UniFrac index was calculated (Lozupone & Knight, 2005; 

Lozupone et al., 2007), where this distance index gives an estimate of how similar communities 

contain more phylogenetically related ASVs weighed by the absolute abundance of each ASV, as 

estimated by qPCR of the 16S rRNA gene (Lozupone & Knight, 2008). Using a weighted UniFrac 

index in an ordination provides one way to test if bacterial community composition follows the 
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evolutionary history within the Brassicaceae host plant family, as determining community 

distances based only on the number of shared taxa does not account for evolutionary distances 

between taxa, which are often extremely diverse among microbes (Fitzpatrick et al., 2018; Walters 

et al., 2018). The weighted UniFrac distance matrix was calculated using the distance function 

in phyloseq (McMurdie & Holmes, 2013), and gave similar results as a Bray-Curtis distance 

matrix. 

With the vegan package (Oksanen et al., 2020), soil chemistry was standardized (Legendre 

& Legendre, 2012) using the decostand function. We modelled the explanatory power of each 

experimental factor in each compartment from both field trials with a variance partition of a partial 

RDA, using the varpart function, and the weighted UniFrac distance matrix (Borcard et al., 

1992).  Variation in the bacterial community data not described by the explanatory variables were 

quantified by the residuals. Finally, to quantify the amount of variation described by each 

explanatory factor, db-RDA were calculated using the capscale function, and plotted using 

phyloseq (McMurdie & Holmes, 2013). 

 

Results 

The bacterial rhizosphere communities had larger absolute abundances and diversity than the root 

communities. 

In order to estimate the composition of the bacterial rhizosphere and root communities 

from the Test Phase Brassicaceae species, we used the DADA2 pipeline (Callahan et al., 2016 & 

2017) to infer the retained16S rRNA amplicons as ASVs. We retained 10 178 467 high-quality 

16S rRNA MiSeq amplicons (43 129 ±18 032 reads/sample) through the pipeline (Table 1 & Fig.  
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Table 1. The bacterial rhizosphere communities had more ASVs and larger absolute abundance 

than the root communities of five Brassicaceae host plants from the Test Phase of a two-year crop 

rotation, harvested from two field trials (Trial 1, 2016; Trial 2, 2017) from Swift Current, 

Saskatchewan. Raw reads were produced via Illumina’s MiSeq at Génome Québec, and processed 

through DADA2, where 10 178 467 reads were retained (16S rRNA Reads reported here) for ASV 

inference. A total of 37 445 ASVs were identified across the entire dataset. Bacterial community 

size was estimated by qPCR as the number of copies of the 16S rRNA gene. 

 

 

  16S rRNA Readsa ASV Occurrence 
16S rRNA Gene Copies 

/ Sampleb 
     

Trial 1 

Test Phase  

Rhizosphere 
1 139 535  

(18 992 ± 4333 / sample) 
14 047 

25 747 358  

± 17 838 649  
    

Root 
3 315 289  

(55 254 ± 5600 / sample) 
3009 

2 823 077  

± 2 099 135 
     

Trial 2 

Test Phase 

Rhizosphere 
2 122 186  

(37 896 ± 7080/ sample) 
26 001 

7 692 764  

± 4 988 172 
    

Root 
3 601 457  

(60 024 ± 11 835 / sample) 
4307 

3 509 901  

±1 818 824 
a, Total retained reads (mean ± SD / sample) 
b, Mean number of 16S rRNA gene copies ± SD / sample 
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S4). More reads were retained in the Test Phase Brassicaceae root samples than from the 

rhizosphere in both field trials (Table 1). However, more bacterial ASVs were consistently 

identified in the rhizosphere compared to the root communities (Table 1). The absolute abundance, 

or size, of each Test Phase bacterial community from both trials were estimated by qPCR 

amplification of the 16S rRNA gene, where we observed that the bacterial rhizosphere 

communities were consistently larger than the root communities (Table 1). Faith’s phylogenetic 

diversity was also consistently higher in the Test Phase bacterial rhizosphere communities, 

compared to the root communities (Fig. 2); Simpson and Shannon’s a-diversity illustrated the 

same trend (Fig. S8). 

ASVs were plotted as taxa clusters to the class level, where we observed that the bacterial 

communities from Trial 1 (Fig. 3) and 2 (Fig. S10A) were dominated by phyla Acidobacteria 

(classes Acidobacteria and Blastocatellia), Actinobacteria (Actinobacteria), Bacteroidetes 

(Bacteroidia), Firmicutes (Clostridia), Proteobacteria (Gammaproteobacteria), and 

Verrucomicrobia (Verrucomicrobae). These taxa were dominant in both the rhizosphere and root 

communities (Fig. 3 & Fig. S10). Moreover, we observed that all the taxa identified in the root 

communities were also present in the rhizosphere. Finally, we found no evidence for a bias among 

the lentil bacterial communities due to the use of the TagTeam inoculant, such as a spike of 

Rhizobium leguminosarum. 

 

Soil history was only significant in structuring bacterial communities in the driest year 

Next, we evaluated our hypothesis that the three soil histories established the previous year 

would continue to structure the Brassicaceae bacterial communities. Soil history only significantly 
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Figure 2. Phylogenetic diversity was consistently higher in the bacterial rhizosphere communities 

than in the root communities from five Brassicaceae host plants in the Test Phase of a two-year 
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rotation, harvested in 2016 (A, Trial 1) and 2017 (B, Trial 2) from Swift Current, Saskatchewan. 

Phylogenetic diversity, the sum of branch lengths of a phylogenetic tree connecting all species in 

the sample, accounts for the wide evolutionary distance among bacterial populations, and better 

represents the functions present (Hsieh & Chao, 2017). Diversity indices were log-transformed, 

before being tested with a nested ANOVA, which confirmed the soil histories established in the 

first Conditioning Phase, and the Test Phase Brassicaceae hosts did not interact. Statistically 

significant groups were identified using Tukey’s post hoc test, and indicated with capital or lower-

case letters, where capitals represent the significantly larger groups and lower-case represent the 

smaller groups. (A, top panel) Bacterial communities from the Test Phase rhizosphere with soil 

histories of growing wheat were significantly more (adj. p = 0.054) phylogenetically diverse than 

those communities with lentil soil histories. The non-parametric Kruskal test was used to test for 

significance among Test Phase communities grouped by soil histories. (A, bottom panel) Bacterial 

root communities from the Test Phase in Trial 1 with Camelina sativa cv. Midas hosts were more 

phylogenetically diverse than root communities from Brassica carinata (adj. p = 0.0679). (B, top 

panel) Bacterial communities from the Test Phase rhizosphere from Trial 2 with Brassica napus 

cv. canola hosts were significantly more (adj. p = 0.027) phylogenetically diverse than rhizosphere 

communities with Sinapis alba cv. Polish hosts. (B, middle panel) Trial 2 bacterial root 

communities from Test Phase Sinapis alba cv. Polish hosts were more phylogenetically diverse 

than root communities from Brassica juncea cv. Cutlass hosts (adj. p = 0.070). (B, bottom panel) 

Bacterial communities from the Test Phase roots from Trial 2 with soil histories of growing lentils 

were significantly more (adj. p = 0.0097) phylogenetically diverse than those communities with 

wheat soil histories.  
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Figure 3. The abundance and composition of the bacterial communities varies noticeably between 

the rhizosphere (A, left) and root (A, right), as represented by taxa clusters of ASVs inferred from 

among the five Brassicaceae host plants in Trial 1, harvested in 2016 during the Test Phase of a 

two-year rotation, from Swift Current, Saskatchewan. ASV absolute abundance, represented by 

the colour scale, was estimated by multiplying the 16S rRNA copy number / 106 by the ASV 

abundance, while the size of each bubble represents the number of unique taxa represented to the 

class level. (A, left) Trial 1 Test Phase bacterial rhizosphere communities were larger (1.5 x109 

ASVs) than the root communities (1.69 x108 ASVs, right). (B) Test Phase Brassicaceae host plants 

only had significant variation in terms of composition among their root bacterial communities; 

among the root communities in Trial 1 there were only differences between Brassicaceae hosts 

(B, top panel, p. adj < 0.07), while among the root communities in Trial 2 there were significant 

differences between soil histories (B, bottom panel, p. adj < 0.075). Significantly enriched taxa, 

labelled in bold, were tested between each pair of host plants and soil history. Taxa that were 

significantly more abundant are highlighted brown or green, following the labels for each 

compared host. These differential taxa clusters identified significantly enriched (ie, abundant), 

using the non-parametric Kruskal test, followed by the post hoc pairwise Wilcox test, with an FDR 

correction.  
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structured the Test Phase bacterial communities in Trial 2, the driest year, in both the rhizosphere 

(PERM R2 = 0.0722, p = 0.0387) and root (PERM R2 = 0.0873, p = 0.003, Table 2). Soil history 

was also identified as a significant factor in Trial 2 by variance partition, both in the Test Phase 

rhizosphere communities (0.4%, p < 0.01, Fig. 4A) and root communities (4.3%, p < 0.01, Fig. 

4B). RDA further confirmed soil history significantly structured the bacterial communities in Trial 

2. The Test Phase root communities followed a clear gradient between the three soil histories (adj. 

R2 = 0.0989, p = 0.001, Fig. 4C). The relationship among the Test Phase rhizosphere communities 

and soil history remained significant, though a similar gradient between the three soil histories was 

less clear (adj. R2 = 0.0399, p = 0.019, Fig. S11A). 

Soil history also had a significant impact on the composition of the Test Phase bacterial 

root communities in Trial 2. First, root communities with a lentil soil history had significantly 

higher phylogenetic diversity (p. adj = 0.0097, Fig. 2B, bottom panel) than root communities with 

wheat soil histories. Second, Test Phase root communities with wheat soil histories were enriched 

in Patescibacteria (Saccharimonadia) compared to Test Phase root communities with fallow soil 

histories (p. adj < 0.075, Fig. 3B). Finally, indicator species analysis of Trial 2 detected ASVs that 

were preferentially abundant in the Test Phase Brassicaceae roots with lentil or fallow soil 

histories (p. adj < 0.05, Table 3). Conversely, soil history did not significantly impact the absolute  

abundance, nor the composition (Fig. S10A) of the bacterial rhizosphere communities in Trial 2. 

Nonetheless, our data illustrated an important role for soil history in structuring the Test Phase 

bacterial communities in Trial 2, especially the root communities. 

 Soil history had a weak impact on the Test Phase bacterial rhizosphere communities in 

Trial 1 (PERM R2 = 0.0524, p = 0.0789). Variance partition identified soil history as significant (p 

< 0.001; Fig. 5A) in these rhizosphere communities, though it only explained 1.6% of the variance. 

RDA illustrated a gradient between the Test Phase bacterial rhizosphere communities with fallow  
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Table 2. PERMANOVA identified that the Brassicaceae host plants were always a significant 

experimental factor in structuring the bacterial rhizosphere and root communities from the Test 

Phase of a two-year crop rotation, harvested in 2016 (Trial 1) and 2017 (Trial 2) from Swift 

Current, Saskatchewan. The previous year’s soil history was only significant in the Test Phase 

bacterial rhizosphere and root communities of Trial 2, while the Brassicaceae host ~ crop history 

interaction was never significant. The PERMANOVA was calculated using a weighted UniFrac 

distance matrix, with 9999 permutations. 

 

 

 Trial 1a 
    

Experimental 

Factors 

Rhizosphere  Root 
       

F Model R2 Pr (> F)  F Model R2 Pr (> F) 
        

Soil Historyb 1.859 0.0524 0.0789  1.271 0.0332 0.2207 

Brassicaceae Hostc 3.912 0.2207 0.0002  5.267 0.2751 0.0001 

Soil History * 

Brassicaceae Host 
0.820 0.0925 0.7603 

 
0.995 0.104 0.4577 

  

 Trial 2 
    

Experimental 

Factors 

Rhizosphere  Root 
       

F Model R2 Pr (> F)  F Model R2 Pr (> F) 
        

Soil History 2.1358 0.0722 0.0387  2.7623 0.0873 0.0003 

Brassicaceae Host 2.0705 0.1400 0.0097  1.7879 0.1130 0.0045 

Soil History * 

Brassicaceae Host 
0.6999 0.0947 0.8860 

 
0.7014 0.0887 0.9666 

a, Values in bold indicate significant factors or interactions 
b, Fallow, wheat, or lentil 
c, Brassica carinata, B. napus, B. juncea, Sinapis alba, or Camelina sativa  



 
 

71 

 

 



 
 

72 

Figure 4. Soil chemistry explained the most variance in the bacterial community structures in the 

rhizosphere and roots of five Brassicaceae host in Trial 2, harvested in 2017 during the Test Phase 

of a two-year rotation, from Swift Current, Saskatchewan. Weighted UniFrac distances were used 

with a variance partition (A & B), which modelled the explanatory power of each experimental 

factor (Brassicaceae host, soil history, and soil chemistry) in the Test Phase bacterial communities. 

Distance-based redundancy analyses (C & D) quantified how the experimental factors impacted 

community structure, where communities with similar phylogenetic composition appear closer 

together. (A) Variance partition illustrated the strong influence of Brassicaceae host plants (9.4%) 

and soil chemistry (8.3%) in explaining the Test Phase rhizosphere communities in Trial 2. (B) 

The influence of soil chemistry increased (19%), as did soil history (4.3%) in the Test Phase 

bacterial root communities in Trial 2. (C) Soil history was still significant (R2 = 0.0989, p = 0.001) 

in structuring the Test Phase bacterial root communities in Trial 2, though soil chemistry was more 

explanatory (D, R2 = 0.231, p = 0.001). D) pH was opposed by potassium, as well as phosphate, 

while calcium was contrasted by zinc, and magnesium was contrasted by total nitrogen and organic 

carbon. However, soil chemistry does not have a clear relationship in explaining the phylogenetic 

similarity between communities, as a function of soil history, nor Brassicaceae host plant. 
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Table 3. Indicator species were identified in the bacterial root communities in the Test Phase of a 

two-year crop rotation, harvested in 2016 (Trial 1) and 2017 (Trial 2) from Swift Current, 

Saskatchewan. In Trial 1, seven ASVs were identified as indicator species in the Test Phase root 

communities of Camelina sativa. In Trial 2, ten ASVs were identified from Test Phase root 

communities with soil history of growing lentils, while ten different ASVs were identified as 

indicator species from root communities with a fallow soil history. Indicator species analysis relies 

on abundance and site specificity to statistically test each ASV, which we report here as p < 0.05, 

with a FDR correction. 

 

 

   

Most Closest Taxon (No. of ASVs) 
Trial 1  

Roots (p < 0.05) 

Trial 2  

Roots (p < 0.05) 
   

   

Alphaproteteobacteria, Phenylobacterium (3x ASVs) C. sativa  

Actinobacteria, Mycobacterium C. sativa  

Gammaproteobacteria, Burkholderiales, Aquabacteria C. sativa  

Alphaproteteobacteria, Micropepsaceae (2x ASVs) C. sativa  

Bacteroidetes, Mucilaginibacter  Lentil 

Bacteroidetes, Chitinophagales, Chitinophaga (2x ASVs)  Lentil 

Alphaproteteobacteria, Sphingomonas  Lentil 

Alphaproteteobacteria, Rhizobales, Labrys  Lentil 

Alphaproteteobacteria, Caulobacter  Lentil 

Gammaproteobacteria, Burkholderiales, Rhizobacter  
  (2x ASVs) 

 Lentil 
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Actinobacteria, Mycobacterium  Lentil 

Gammaproteobacteria, Xanthomonadales, Luteibacter  Lentil 

Bacteroidetes, Chitinophagales, Niastella (4x ASVs)  Fallow 

Gammaproteobacteria, Pseudomonas (3x ASVs)  Fallow 

Gammaproteobacteria, Burkholderiales, Massilia  Fallow 

Gammaproteobacteria, Xanthomonadales, Lysobacter  Fallow 

Firmicutes, Bacilli, Paenibacillus  Fallow 
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Figure 5. Bacterial communities were primarily structured by Brassicaceae host plants among 

rhizosphere and roots of five Brassicaceae host plants in Trial 1, harvested in 2016 during the Test 

Phase of a two-year rotation, from Swift Current, Saskatchewan. Weighted UniFrac distances were 

used with a variance partition (A & B), which modelled the explanatory power of each 

experimental factor (Brassicaceae host, soil history, and soil chemistry) in the Test Phase bacterial 

communities of Trial 1. Distance-based redundancy analyses (C) quantified how Brassicaceae 

host plants impacted community structure, where communities with similar phylogenetic 

composition appear closer together. Variance partition illustrated the strong influence of 

Brassicaceae host plants (20.1%) in explaining the Test Phase rhizosphere communities (A), and 

the root (B, 16.5%) communities in Trial 1. (C) Brassicaceae host plants were also significant (R2 

= 0.204, p < 0.001) in structuring the Test Phase bacterial root communities, as seen by RDA. C. 

sativa (red, at right) bacterial root communities were significantly more similar amongst 

themselves, than to root communities from other Brassicaceae host plants. 

 

 

 

 

 

 

 

 

 

 

 



 
 

77 

soil histories versus communities that were conditioned with lentil, or wheat (adj. R2 = 0.027, p = 

0.054, Fig. S12A). Phylogenetic diversity was also higher among Test Phase rhizosphere 

communities from Trial 1 with wheat soil histories (p. adj = 0.054, Fig. 2A, top panel) compared 

to those rhizosphere communities conditioned with lentils. The only evidence we observed where 

soil history significantly influenced the Test Phase bacterial root communities in Trial 1 was in the 

variance partition, where soil history explained 0.8% of the root communities (p < 0.001; Fig. 5B). 

Soil history was not found to be significant in the Trial 1 root communities by PERMANOVA 

(PERM R2 = 0.0332, p = 0.2207, Table 2), nor by RDA.  

 

Bacterial communities were more influenced by soil chemistry than soil history in the driest year 

 The variance partition used to model the explanatory power of each factor in Trial 2 

revealed that the Test Phase bacterial root and rhizosphere communities were significantly 

explained by the current soil chemistry (Fig. 4A & B). Soil history explained 0.4% of variance in 

the data among the rhizosphere communities, while soil chemistry accounted for 8.3% (Fig. 4A). 

RDA further supported the key role of soil chemistry in the rhizosphere communities of Trial 2 

(adj. R2 = 0.27, p = 0.001, Fig. S11B). Soil chemistry also explained the most variance in the Test 

Phase root communities of Trial 2; 19% was attributed to soil chemistry, compared to 4.3% of the 

variance in the root community data being explained by soil history (Fig. 4B). RDA further 

supported the importance of soil chemistry in the root communities from the Test Phase of Trial 2 

(adj. R2 = 0.231, p = 0.001, Fig. 4D). These data strongly indicate that the Test Phase bacterial 

rhizosphere and root communities were strongly shaped by the current soil chemistry in the dry 

year of Trial 2, which was not detected in Trial 1. 
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Brassicaceae host plants were significant in structuring bacterial communities in both field trials 

We further evaluated our hypothesis that soil history would continue to structure the 

subsequent bacterial communities by comparing the root and rhizosphere communities of the 

different Brassicaceae host plants. We found that the Brassicaceae host plants significantly 

structured the bacterial root and rhizosphere communities, in the Test Phase of both Trial 1 and 2 

(Table 2). We noted there was never a significant interaction effect between soil history and 

Brassicaceae host plants, regardless of field trial, or compartment (Table 2).  

In Trial 2, the Brassicaceae host plants were also significant in the variance partition, 

which explained 9.4% and 5.3% of the community variance in the Test Phase rhizosphere and 

roots, respectively (Fig. 4A & B). RDA illustrated that the distribution of the Test Phase root 

communities in Trial 2 were significantly influenced by the Brassicaceae host effect (adj. R2 = 

0.0307, p = 0.039, Fig. S12). However, RDA was not significant in the corresponding rhizosphere 

communities in Trial 2 despite being significant in the root communities.  

 The Brassicaceae host plants also modified the composition of the Test Phase bacterial 

communities in Trial 2. Rhizosphere communities from B. napus were more diverse than S. alba 

(p. adj = 0.0268, Fig. 2B). Trial 2 root communities from S. alba hosts were significantly more 

diverse than B. juncea (p. adj = 0.0698, Fig. 2B). Furthermore, the mean absolute abundance of 

the root communities from S. alba were significantly smaller than root communities from B. 

carinata (pairwise Wilcox test, p. adj < 0.05, data not shown).  

In Trial 1, the Brassicaceae host plants were highly significant in structuring the Test Phase 

bacterial rhizosphere and root communities (Table 2). In the rhizosphere, the variance partition 

attributed 20.1% of the data as explained by the Brassicaceae hosts (Fig. 5A). Among the root 

communities from Trial 1, the variance partition modeled 16.5% of the data due to the 

Brassicaceae host plants (Fig. 5B). RDA illustrated how the bacterial rhizosphere communities 
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from Trial 1 were significantly structured by the Brassicaceae host (adj. R2 = 0.147, p = 0.0001, 

Fig. S13B). Rhizosphere communities from C. sativa were particularly impacted, as they appeared 

the most distinctly clustered. Interestingly, B. carinata had particularly diffuse communities (Fig. 

S10B), likely related to variation in species richness across the x-axis. The Brassicaceae host 

plants structured the Test Phase root communities from Trial 1 even more drastically than their 

corresponding rhizosphere communities (adj. R2 = 0.204, p = 0.001, Fig. 5C); particularly for 

communities from C. sativa, which were distinctly clustered from communities with other host 

plants (Fig. S14).  

The Brassicaceae host plants created significant changes in the composition of the Test 

Phase root communities from Trial 1, primarily in the C. sativa communities. First, we found that 

root communities from C. sativa were more phylogenetically diverse than those communities from 

B. carinata (p. adj = 0.0679, Fig. 2 bottom panel). C. sativa root communities were enriched in 

both Alphaproteobateria and Chlamydiae, compared to root communities from S. alba and B. 

juncea hosts, as determined by comparing taxa clusters of the bacterial root communities between 

each Brassicaceae host (p. adj < 0.07, Fig. 3B). C. sativa root communities were also enriched in 

Firmicutes (Negativicutes) compared to B. juncea hosts (Fig. 3B). However, C. sativa root 

communities were depleted in Firmicutes (Clostridia) compared to B. carinata communities, and 

were also depleted in Firmicutes compared to B. napus communities (Fig. 3B). Finally, indicator 

species analysis identified seven unique ASVs that were specific to the Test Phase bacterial root 

communities of C. sativa from Trial 1 (Table 3). Taken together, our data points to a significant 

impact of Brassicaceae host plants on the structure of the Test Phase bacterial communities, 

especially in the roots of C. sativa from Trial 1, while soil chemistry and soil history were only 

key factors structuring the bacterial communities in the dry year of Trial 2. 
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Discussion 

Soil history is an understudied aspect involved in structuring soil microbial communities 

through time (Fitzpatrick et al., 2018; Hannula et al., 2021). In this study, we took advantage of 

an agricultural experiment to test how soil history endures to structure subsequent soil bacterial 

communities. Agricultural systems bridge the gap between controlled greenhouse conditions and 

experiments in “natural” environments and provide the opportunity for field experiments, which 

are urgently needed to study PSF (Revillini et al. 2016). Given that crop rotations can provide 

advantages to the subsequent crop in agricultural systems—i.e., something is stored, or transmitted 

through time in the soil—we hypothesized that soil histories established the previous year through 

plant-soil community feedback would continue to structure the subsequent Brassicaceae bacterial 

root and rhizosphere communities. We coupled 16S rRNA metabarcoding with two field trials 

done over successive years that largely differed by the amount of rain received during the plant 

growth period. Contrary to our hypothesis, we actually found that the current Brassicaceae host 

plants were the primary factor in structuring the bacterial rhizosphere and root communities in 

agricultural conditions, but that this influence could be weakened. 

 

Bacterial communities among Brassicaceae hosts 

 In opposition to our hypothesis, we found that the influence of the PSF from the current 

Brassicaceae host plants were always significant in structuring the Test Phase bacterial 

communities in both field trials. In Trial 2, during the dry year, the effect of the Brassicaceae host 

plant, while still significant, was noticeably weaker (Fig. 4), whereas our results from Trial 1 

illustrated that the current Brassicaceae host plants were strong enough to obscure any influence 

from the previously established soil history (Fig. 5). Refuting our predictions, these results 

illustrated that four of the Brassicaceae host plants, S. alba, B. carinata, B. juncea and B. napus, 
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assembled essentially the same bacterial rhizosphere and root communities, over-riding any 

residual effects from soil history, and variation in the Brassicaceae management practices, and 

agricultural inputs. However, C. sativa assembled significantly different bacterial communities, 

most prominently in the root communities (Fig. S14). Overall, these results refute our hypothesis 

about the duration of soil history and highlight the capacity of plant-soil bacterial communities to 

re-shape their soil environment. 

 Traditionally, there has been robust debate surrounding the degree to which host plants 

play a role in shaping their microbial communities (Erlandson et al., 2018). More recently, 

however, there are a growing number of studies that demonstrate stable bacterial relationships with 

host plants conserved through evolutionary time. Stopnisek & Shade (2021) reported that 48 

bacterial taxa were persistent in Phaseolus vulgaris root communities across time and space, 

including between soils of different continents. Zhang et al., (2019) reported clear differences 

between Oryza sativa L. indica and japonica cultivars, and demonstrated that the SNP variation 

of a rice nitrate transport gene, NRT.1B, was responsible for enriching the root microbiome in 

bacterial nitrogen-use genes. Fitzpatrick et al., (2018) quantified larger host impacts on the 

bacterial root community than in the rhizosphere for 30 angiosperms grown in a common soil. 

Finally, within the same bog, Wicaksono et al., (2021) identified similar bacterial communities, 

which were differentially enriched depending on if the host was a bryophyte, or a vascular plant. 

Thus, we see a variety of examples, through different plant taxonomic relationships, that 

demonstrate the important role of plant hosts in structuring their bacterial communities. Our results 

from five Brassicaceae host plants in an agricultural setting fits with this perspective of intimate 

PSF and interaction through evolutionary time. 

 To better understand how these PSF develop through time, future studies ought to be 

carefully designed such that they are capable of detecting the influence of host plants on structuring 
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their bacterial communities. First, plants grown in soils from the same source, like a “Common 

Garden” design, will all experience the same environmental filter, which establishes a common 

microbial starting point (Bouffaud et al., 2014). Second, detecting the impact of the host plant will 

be easier when the hosts are at larger evolutionary distances. Wicaksono et al., (2021) 

demonstrated clear host dominance over soil between bryophytes and vascular plants. Similarly 

between angiosperm families, Fitzpatrick et al., (2018) had sufficient evolutionary distance 

between host plants for clear resolution.  

Detecting a clear impact of host plants within a given plant family, as we have reported 

here with our novel approach in the Brassicaceae, may create challenges; the evolutionary distance 

of the host plants may be insufficient to discriminate between the bacterial soil communities 

(Bouffaud et al., 2014). This may be the case for our findings for S. alba, B. carinata, B. juncea, 

and B. napus, which we predicted were sufficiently genetically distinct to form unique bacterial 

communities. Instead, we found that these host plants had phylogenetically similar bacterial 

communities, despite variation between their genotypes, and the agricultural management 

practices and inputs they were treated with.  

Therefore, we encourage future studies to design experiments as though designing a 

phylogenetic tree, and include a diversity of host plants, at varying evolutionary distances from 

the hosts of interest—as if adding appropriate outgroups (Bouffaud et al., 2014; Fitzpatrick et al., 

2018). In our study, C. sativa functioned as the outgroup to help identify any specific host plant 

impact on the bacterial communities from among the genus Brassica. We found phylogenetically 

distinct bacterial communities associated with C. sativa, particularly within the roots (Fig. 5C). 

Furthermore, we observed a clear trend of C. sativa having compositional differences compared 

to the other Brassicaceae hosts (Fig. 2, 3B & Table 3). This distinctiveness between bacterial root 

communities may reflect the evolutionary history of the host plants (Fig. S14). It will be important 
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to determine how and why this occurs, as well as if this distinct bacterial community is responsible 

for lower yields, and higher potential for the loss of nitrogen through denitrification, as reported 

by Wang et al., (2020).   

 

Soil history and soil chemistry are revealed when the host plants feedback is weakened 

In partial support of our hypothesis, our results illustrated that the previously established 

soil history was still significant a year later in structuring the Test Phase bacterial communities in 

Trial 2 (Fig. 4). In Trial 1, however, the strength of the current Brassicaceae plant-bacterial 

community feedback dominated the structure of the communities, and the influence of the previous 

soil history was minimized (Fig. 5). Moreover, despite the variation among the host plants in terms 

of genotypes, and agricultural management practices and inputs they were treated with, all five 

Brassicaceae plants overturned the different soil histories we tested.  

Conversely, in Trial 2, both the previously established soil history, and the current 

Brassicaceae host plants were significant factors in structuring the bacterial communities (Table 

2). The influence of different soil histories was most obvious by the phylogenetically distinct 

communities that were formed between root communities with different soil histories (Fig. 4C). 

This observation supports our initial hypothesis and confirms our expected prediction that the 

bacterial root and rhizosphere communities would reflect their soil histories over their host plants. 

Nonetheless, that both soil history and the Brassicaceae hosts were significant in Trial 2, 

but not Trial 1, suggests that the dominating, homogenizing effect that the Brassicaceae hosts had 

in Trial 1 on structuring their bacterial communities was curtailed in Trial 2. As noted, all five of 

the Brassicaceae host plants dominated the structure of the bacterial communities in Trial 1, to the 

exclusion of any effect from the different soil histories, or any variation in soil chemistry due to 

the particular agricultural management practices and inputs that were employed. However, in Trial 
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2, we observed that the three different soil histories established the previous year structured 

different soil bacterial communities, with a much-reduced effect from the Brassicaceae host 

plants. This could suggest that, despite identical experimental protocols, and the use of the 

appropriate agricultural management practices and inputs, that another factor reduced the impact 

of the Brassicaceae host plants in Trial 2. 

One hypothesis for the disparate observations between the two field trials could be that the 

environmental conditions were 6x drier in the Test Phase of Trial 2: 55.0 mm of precipitation 

versus 328.4 mm in Trial 1. The drier conditions may have restricted the growth capacity of the 

Brassicaceae host plants, which the data may suggest (Fig. S3). Water availability is a key 

determinant of plant performance, as it constrains nutrient uptake from the soil, and 

rhizodeposition. Consequently, the impact of the plant-soil bacterial feedback would be weakened, 

which would decrease the structure the host plants imposed on their bacterial communities, as we 

observed in Trial 1 (Fitzpatrick et al., 2018). Drought conditions have been previously observed 

to alter bacterial soil communities. For example, Santos-Medellín et al., (2021) noted that various 

taxa of Actinobacteria were enriched in rice endosphere communities, as had been observed 

previously (Naylor et al., 2017, Santos-Medellín et al., 2017). Fitzpatrick et al., (2018) went a step 

further and noted that across multiple plant families, the enrichment of Actinobacteria appears 

adaptive for drought conditions. Our results in Trial 2 also exhibited an enrichment in the absolute 

abundance of Actinobacteria (Fig. 3 vs Fig. S10), further suggesting that the Brassicaceae host 

plants were experiencing a drought event. 

If the reciprocal plant-soil bacterial community feedback was impaired due to the 

availability of water, and the host plants were restricted in nutrient uptake and growth, it may 

account for the decreased influence of the Brassicaceae hosts on the bacterial communities in Trial 

2. Our data illustrated that soil chemistry accounted for the largest portion of the variance among 
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the bacterial rhizosphere and root communities in Trial 2 (Fig. 4). In our agricultural setting, soil 

chemistry is largely a synthesis between previous soil history, current agricultural management 

practices, and PSF (Bouffaud et al., 2014). In the absence of plant hosts to structure the bacterial 

communities through rhizodeposition, or nutrient uptake, this could suggest why the current soil 

chemistry was so influential (Kaisermann et al., 2017). Finally, the weak PSF could also explain 

why the three soil histories remained influential a year later, as the subsequent Brassicaceae plant-

bacterial community feedback was unable to alter the environmental filter and erase the soil 

history. 

 

Conclusion 

Understanding how soil history is involved in structuring bacterial communities through 

time is a limitation in microbial ecology, and is required for employing microbiome technologies 

aimed at improving agricultural systems. Here, we found that the three different soil histories 

established the previous year had very limited impact on the soil bacterial communities, except 

when the host plants suffered from drought conditions. Each soil history was consistently rewritten 

by the current Brassicaceae plants; four host plants (Sinapis alba, Brassica napus, B. juncea, B. 

carinata) formed nearly the same bacterial communities regardless of soil history, and variations 

in their management practices and agricultural inputs. Camelina sativa plants, however, structured 

phylogenetically distinct bacterial communities compared to the other hosts, particularly in their 

roots. These are novel findings that illustrate how the breeding and development of these crop 

species has had limited impact on altering their bacterial communities, and will be informative for 

further agricultural practices, including rotations, or intercropping. Moreover, our data 

demonstrates the Brassicaceae plants capacities to overcome the previously established soil 

history. This is in line with previous work by Hannula et al., (2021) which also demonstrated how 
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the impact of soil history on bacterial soil communities fades rapidly. Our data should help limit 

concerns that these agricultural crop rotations may negatively disrupt the soil bacterial 

communities, at least in the short term, and encourage planting diverse Brassicaceae plants to help 

protect against potential phytopathogens. 

 Our study also highlighted a potential limit of plant-soil microbial community feedback, 

which allowed the previously established soil history to persist and structure the bacterial root and 

rhizosphere communities. From our data we argued that the Brassicaceae host plants in our second 

field trial experienced drought conditions, which negatively impacted their feedback on the soil. 

This could explain why soil history was still able to influence the bacterial soil communities, which 

was not observed in our first field trial. Future studies should further investigate the limitations of 

soil history and host plants to structure bacterial communities; we provide some ideas for how to 

help design such experiments. Our results, along with others (Schlaeppi et al., 2014; Dombrowski 

et al., 2016; Erlandson et al., 2018; Vieria et al., 2020), demonstrate the influence and interactions 

between soil chemistry, host plants, and previously established soil history, in structuring soil 

bacterial communities. Our study illustrates how agricultural systems, PSFs and soil history, 

impacts soil bacterial communities and biodiversity, and offers new pathways forward for future 

research. 
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Supplementary Materials 

16S rRNA gene amplicon generation 

The 16S PCR reactions consisted of 11.5 µL dH2O, 5.0 µL of 10X Buffer (Qiagen, 

Canada), 2.5 µL of 10 µM S-D-Bact-0341-b-S-17 forward and S-D-Bact-0785-a-A-21 reverse 

primers, commonly referred to as 341F and 805R, respectively (Alpha DNA, Montréal, Canada; 

Klindworth et al., 2012), 1.0 µL of dNTPs (Qiagen, Canada), 0.5 µL of T. aq polymerase (Qiagen, 

Canada), and 2 µL of template DNA, for a total volume of 25 µL. Template DNA ranged in 

concentration from ~5-15 ng/µL. 16S rRNA gene primers, F17 and R21, indicated in 

Supplementary Table 2, were synthesized with the CS1 and CS2 adapters, respectively, and HPLC 
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purified, as per Genome Québec’s (Montréal, Canada) submission requirements. PCR 

amplification of a 416 bp fragment from the V3-V4 region of the 16S rRNA gene (Klindworth et 

al., 2012) was run in an Eppendorf Mastercycle ProS (Germany) thermocycler, and consisted of 

an initial denaturation of 2 minutes at 95°C, followed by 30 cycles of 30 seconds denaturation at 

95°C, 30 seconds annealing at 55°C, and 1 minute elongation at 72°C, before a final elongation of 

5 minutes at 72°C (Bell et al., 2016; Lay et al., 2018). 

 

Quality control of the 16S rRNA gene amplicon MiSeq data 

In order to evaluate potential biases, or flaws, in our lab preparation, sequencing, and 

bioinformatic analysis, we included six no-template negative controls in our pipeline, two during 

DNA extraction, four during 16S rRNA gene amplification, as well as four replicates of a bacterial 

mock community of known composition (Fig. S2). All six no-template negative controls did yield 

reads, to a maximum of 3750 in the rhizosphere extraction sample from Trial 2 (Fig. S5A), though 

they were all confirmed to contain no detectable DNA at any step during our lab manipulation. 

Given the drastic difference in the number of reads between the six no-template negative controls 

(Fig. S5A), and the replicates of the mock communities (Fig. S5B), we would suggest that the 

inferior numbers are sequencing artefacts. Moreover, the stringency of the filterAndTrim step 

eliminated nearly all the reads from these six samples (Fig. S5A). 

The replicates of the bacterial mock community (Fig. S5B) also help to assess the accuracy 

and sensitivity of our lab preparation, sequencing, and particularly the bioinformatic analysis. The 

four samples were sequenced to an average of ~101 000 reads, suggesting a consistency in 

sequencing. Furthermore, Fig. S5B illustrates the reproducibility of the DADA2 pipeline, as each 

replicate looks similar through each step of the pipeline. Approximately a third of the reads were 

retained overall, which follows recommended standards (Callahan et al., 2016b). The greatest loss 
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of reads is consistently among the filtering step, further illustrating the stringency of this step to 

retain only high-quality reads for subsequent analysis. 

 Evaluating the inference of DADA2, the six no-template negative controls contained 

between 1 and 32 different ASVs identified from the few remaining reads (Fig. 5A). The majority 

were inferred as a single ASV identified to the phylum Cyanobacteria (Order Chloroplast), which 

we insured to have removed from the experimental Test Phase Brassicaceae data presented (Fig. 

S5A). The four mock community replicates again largely resembled each other in ASV 

composition. DADA2 inferred 34– 55 individual ASVs from the retained MiSeq reads, from a 

community composed of 20 possible ASVs (Fig. S5B). Highlighting the accuracy of the DADA2 

pipeline to correctly infer ASVs, every bacterial species included in the mock community (Table 

S1) was detected in all four replicates.  

The Bacteroidetes, Deinococcus, and Actinobacteria, were the most specific, as only 1, or 

2, species were included in the mock community, and were accurately detected in the pipeline in 

each replicate (Fig. S5B). Interestingly, both mock replicates from among the endosphere samples 

added a third ASV identified as an Actinobacteria, while the other two replicates did not, despite 

there only being two Actinobacteria ASVs in the community. There was also an expansion among 

the ASVs identified as Bacteriodetes across all four replicates. Though there was only one 

Bacteriodetes included in the mock community, between five and ten were identified in the four 

mock replicates; the 2016 and 2017 endospheres contained six, the Trial 1 rhizosphere had 8, and 

the Trial 2 rhizosphere had 10. The mock community contained six Proteobacteria, yet eight, nine, 

11, and 14, were identified in the Trial 1 rhizosphere, Trial 1 root, Trial 2 root, and Trial 2 

rhizosphere, respectively. Fully half of the mock community was composed of Firmicutes, and 

from the possible ten included in the mock community, the Trial 1 rhizosphere and root both 

identified 15 Firmicutes ASVs, while the Trial 2 rhizosphere and root had 22, and 28, respectively 
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(Fig. S5B). All of these “over-identifications” may be due to the heterogenous nature of colony 

inoculation. Finally, while there were no bacterial specimens of Cyanobacteria, nor Chloroflexi, 

included in the mock community, three of the mock replicates had an ASV identified as a 

Cyanobacteria, while one of the replicates also had an ASV identified as Chloroflexi (Fig. S5). 

Two potential confounding issues with the 16S rRNA gene sequencing data from the Test 

Phase Brassicaceae bacterial communities are the depth of sequencing, and batch effects from 

sequencing. First, to confirm that the depth of Illumina sequencing was appropriate to detect the 

majority of bacteria present in each sample post-processing, a rarefaction curve was plotted using 

the vegan package in R (Oksanen et al., 2020; R Core Team, 2020). Most of the samples plateau 

by ~15 000 reads in the rhizosphere, and ~5000 reads in the roots, which suggests that the majority 

of the available bacterial ASVs were estimated from the retained reads in each samples (Fig. S6). 

To confirm that the Illumina MiSeq process did not introduce detectable biases into the 

data, an ordination was used to visual the distribution of the all the Test Phase Brassicaceae 

sequencing data (Fig. S9). Here we see that data falls into the most prominent groupings, 

compartment, rhizosphere, or root (Fig. S9A), and sampling year (Fig. S9B), as expected. 

Sequencing data produced from the same Illumina sequencing reaction that was biased in some 

way would be expected to group together in an unknown a priori fashion. 

 

Ordination 

As a preliminary exploration of the Test Phase data, the relative, and absolute abundance, 

were ordinated using a non-metric multidimensional scaling (NMDS) approach. First, singletons 

were removed from the data, which were subsequently transformed using the Hellinger 

transformation. The transformed data were then ordinated in phyloseq (McMurdie & Holmes, 

2013), where the method was assigned as “NMDS”, and the distance matrix was set as “bray”. 
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Similar results were obtained using principal co-ordinate analysis, and a Jaccard distance matrix. 

Ordinations were then plotted in phyloseq, and statistically tested using PERMANOVA, as 

described in the Methods section, except Trials, and Compartments (rhizosphere and root), were 

included in the model, and we used a Bray-Curtis distance matrix. 

 

Generating phylogenetic trees 

 In order to employ phylogeny-based analysis methods, such as phylogenetic diversity, or 

UniFrac, for analyzing diversity of the Test Phase Brassicaceae bacterial communities, we 

assembled phylogenies for each compartment, from both field trials. Following the method 

described by Callahan et al., 2016b, 16S rRNA gene sequences for each ASV inferred from the 

Test Phase Brassicaceae data were aligned using a profile-to-profile algorithm (Wang et al., 2004), 

and a dendrogram guide tree, from the decipher package (Wright, 2016). With the phangorn 

package (Schliep, 2011), the maximum likelihood of each site was calculated using the dist.ml 

function using a JC69 equal base frequency model, before assembling phylogenies using the 

neighbour-joining method. An optimized (GTR) nucleotide substitution model was fitted to the 

phylogeny using the optim.pml function. Phylogenies were subsequently added to each phyloseq 

object (McMurdie & Holmes, 2013). 

 

Estimating absolute abundance of bacterial communities by quantitative PCR 

In order to better understand and intpret the dynamics of the bacterial communities found 

among the rhizospheres and roots of the five Brassicaceae crop species, we estimated the absolute 

abundance of the bacterial 16S rRNA gene in each Test Phase DNA sample by qPCR (Azarbad et 

al., 2018; Props et al., 2017). First, a standard curve of 16S rRNA gene copy numbers was 

constructed. Near full-length 1.5 kb 16S rRNA gene fragments were PCR amplified using the 
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primers PA-27F-YM and PH-R (Bruce et al., 1992; Table S1) from DNA extracted from 

previously used soil samples (Lay et al., 2018). The PCR reaction and cycling conditions were as 

described above. The amplified 1.5 kb 16S rRNA gene fragment was visualized by a 0.7% gel 

electrophoresis, as described above, quantified using the QuBit dsDNA High Sensitivity Kit 

(Invitrogen, USA), and then serially diluted to 10-9. One µL of each dilution was then used as 

template in a 10 µL qPCR reaction. 

The 16S rRNA gene qPCR reactions consisted of 5.0 µL of Maxima SYBR Green/ROX 

qPCR Mix (ThermoFisher Scientific, Canada), 3.4 µL dH2O, 0.3 µL of 10 µM Eub 338 forward 

and Eub 518 reverse primers (Alpha DNA, Montréal, Canada; Fierer et al., 2005). All qPCR 

reactions were set-up in triplicate in 96-well plates using the Freedom EVO100 robot (Tecan, 

Switzerland), with a no-template negative control included on each plate. Reactions were run in a 

ViiA 7 Real-Time PCR System (Life Technologies, Canada) following the same cycling 

conditions as described previously for the 16S rRNA PCR amplification. The Eub338/Eub518 

qPCR reaction amplified a 200 bp region of the V3 region (Muyzer et al., 1993; Nogales et al., 

1999; Bathe & Hausner, 2006; Davis et al., 2009). The number of 16S rRNA gene copies present 

in the serially diluted standard were calculated using the formula (Godornes et al., 2007):   

 

Number of 16S rRNA gene copies µL-1 = Avogadro’s Constant x DNA (g µL-1) 

            Number of base pairs x 600 Daltons 

 

The standard curve for each diluted sample was plotted, with an R2 value of 0.9938 and an 

amplification efficiency of -3.2013 (Fig. S7), falling within acceptable values (Fierer et al., 2005). 
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16S rRNA gene copy numbers were estimated for each Test Phase sample by using 1 µL 

of a 1:10 dilution of DNA as template in the same 16S rRNA qPCR reaction and cycling conditions 

as described above for the standard curve. Melt curves generated by 0.5°C increments at the end 

of the qPCR programme confirmed amplicon specificity, and the 16S rRNA gene copy number 

was determined from the standard curve. A correction to determine the absolute abundance of 

ASVs from the Test Phase samples was achieved by multiplying the 16S rRNA gene copy number 

per ng, as estimated from the qPCR reaction, by the relative abundance matrix of ASVs identified 

(Azarbad et al., 2018; Bakker, 2018). 

Total community absolute abundance per sample, and their distributions within each 

Brassicaceae host and soil history, were plotted. Absolute abundance data from the rhizosphere 

and root of each sampling year were log transformed. We used a Multi-Factor ANOVA to test for 

statistical differences in the means of community size between soil histories, Brassicaceae hosts, 

and their interaction, using the anova function (see Wang et al., 2020 for details). All assumptions 

were confirmed to be respected: normality of the residuals established with a Shapiro-Wilk test, 

shapiro.test, while the heteroscedascity of residuals was confirmed with using a Bartlett test, 

bartlett.test. For significant ANOVAs, a post hoc Tukey’s Honest Significant Difference test, 

TukeyHSD, was used to determine which groups were statistically different. 

 

Identification of differentially abundant ASVs and specific indicator species 

Taxa cluster maps were generated using compare_groups, in the metacoder package 

(Foster et al., 2017), the non-parametric Wilcoxon Rank Sum Tests determined if a randomly 

selected abundance from one group was greater on average than a randomly selected abundance 

from another group.  As the statistical test was performed for each taxon, we used a false discovery 

rate (FDR) correction on the p-values to account for the multiple comparisons. When the 
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comparison was between more than two groups, the differential abundances were plotted onto the 

taxa cluster map using heat_tree_matrix (Foster et al., 2017).  

We performed an indicator species analysis for the Test Phase ASVs identified in the 

rhizosphere and roots of both experiments. We obtained similar results from the relative, and 

absolute, abundance datasets, and so are only reporting the results using the absolute abundance. 

From the indicspecies package (De Cáceres & Legendre, 2009), we used the multipatt function 

with 9999 permutations. As the statistical test is performed for each ASV, we used the FDR 

correction on the p-values to account for multiple comparisons. 

 

Cluster Analysis 

 We also generated cluster diagrams to further explore the relationships between bacterial 

communities. Using the Bray-Curtis and Unifrac (weighted and unweighted) distance matrices 

generated for the PERMANOVA, we produced clusters with the hclust function. Simple and 

complete clustering approaches, as well as different distance matrices yielded similar results. We 

only retained the cluster diagram from the Trial 1 bacterial root communities (Fig. S14B). 
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Table S1. Bacterial strains included in the mock community (BEI Resources, USA) of known 

composition, was included on each plate (Fig. S2). The mock community contains DNA of 20 

bacterial species in equimolar counts (106 copies/µL) of 16S rRNA genes. Taxa have been 

provided to illustrate the level of comparison.  

 

 
Bacteria Taxonomy 

    
    

 Phyla Class Order/Family 
    

Actinomyces odontolyticus Actinobacteria (P) Actinomycetales (C)  

Propionibacterium acnes Actinobacteria (P) Actinomycetales (C)  

Bacteroides vulgatus Bacteroidetes (P)   

Deinococcus radiodurans Deinococcus (P)   

Bacillus cereus Firmicutes (P) Bacilli (C) Bacillales (O)/ 
Bacillaceae (F) 

    

Listeria monocytogenes Firmicutes (P) Bacilli (C) Bacillales (O)/ 
Listeriaceae (F) 

    

Staphylococcus aureus Firmicutes (P) Bacilli (C) Staphylococcaceae (F) 

Staphylococcus 
epidermidis Firmicutes (P) Bacilli (C) Staphylococcaceae (F) 

Enterococcus faecalis Firmicutes (P) Bacilli (C) 
 

Lactobacillales (O)/ 
Enterococcaceae (F) 

 

Lactobacillus gasseri Firmicutes (P) Bacilli (C) Lactobacilliaceae (F) 

Streptococcus pneumoniae Firmicutes (P) Bacilli (C) Streptococcaceae (F) 

Streptococcus agalactiae Firmicutes (P) Bacilli (C) Streptococcaceae (F) 

Streptococcus mutans Firmicutes (P) Bacilli (C) Streptococcaceae (F) 

Clostridium beijerinckii Firmicutes (P) Clostridia (C) Clostridiale (O) 

Rhodobacter sphaeroides Proteobacteria (P) Alphaproteobacteria (C)  



 
 

96 

Neisseria meningitides Proteobacteria (P) Betaproteobacteria (C)  

Helicobacter pylori Proteobacteria (P) Epsilonproteobacteria (C)  

Escherichia coli K12 Proteobacteria (P) Gammaproteobacteria (C) Enterobacteriales (O) 
 

Acinetobacter baumannii Proteobacteria (P) Gammaproteobacteria (C) 
 

Pseudomonadales (O)/ 
Moraxellaceae (F) 

 

Pseudomonas aeruginosa 
PAO1-LAC 

 
Proteobacteria (P) Gammaproteobacteria (C) Pseudomonadaceae (F) 

 
 
 
 
 
 
 
  

 

Table S2. Primers used in this study. 
   

Name Sequence (5’-3’) Reference 
   

S-D-Bact-0341-b-S-17 CCTACGGGNGGCWGCAG Klindworth et al., 2012 

S-D-Bact-0785-a-A-21  GACTACHVGGGTATCTAATCC Klindworth et al., 2012 

CS1 Adapters ACACTGACGACATGGTTCTACA Illumina, 2013 

CS2 Adapters TACGGTAGCAGAGACTTGGTCT Illumina, 2013 

16S PA-27F-YM  AGAGTTTGATCCTGGCTCAG Bruce et al., 1992 

16S PH-R AAGGAGGTGATCCAGCCGCA Bruce et al., 1992 

Eub338 ACTCCTACGGGAGGCAGCAG Fierer et al., 2005 

Eub518 ATTACCGCGGCTGCTGG Fierer et al., 2005 
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Table S3. PERMANOVA for all the sampled Test Phase communities identified compartment 

(rhizosphere, or root), year harvested (2016 for Trial 1, or 2017 for Trial 2), Brassicaceae host, 

and soil history established in the Conditioning Phase, as significant experimental factors. 

PERMANOVA was calculated using a Bray-Curtis distance matrix, with 9999 permutations. 

 

  

 Whole Dataset with Bray-Curtis Distancesa 

    

Experimental Factors F Model R2 Pr (> F) 

    

Yearb 25.170 0.07067 0.001 

Compartmentc 68.750 0.19304 0.001 

Hostd 1.700 0.01909 0.003 

Crop Historye 1.634 0.00918 0.029 

Year ~ Compartment 14.743 0.04139 0.001  

Year ~ Host 2.548 0.02862 0.001  

Year ~ Crop History 2.047 0.01149 0.005  

Compartment ~ Host 1.257 0.01412 0.071 

Compartment ~ Crop History 1.257 0.00706 0.139 

Host ~ Crop History 0.993 0.02232 0.458 

Year ~ Compartment ~ Host 1.931 0.02169 0.001  

Year ~ Compartment ~ Crop History 1.325 0.00744 0.087 

a, Values in bold indicate significant factors or interactions 
b, Trial 1 test phase conducted in 2016, or Trial 2 test phase conducted in 2017 
c, Rhizosphere, or root 
d, Brassica carinata, B. napus, B. juncea, Sinapis alba, or Camelina sativa 
e, Fallow, wheat, or lentil  
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Table S4. Nitrogen (N), phosphorous (P), potassium (K), and sulfur (S), available in the soil upon 

establishing the Test Phase, and the fertilizer that was subsequently applied during the Test Phase 

for the experiment at Swift Current, Saskatchewan. Adapted from Hossain et al., 2019. 

 

 

Swift Current Test Phase Plot Fertilization (N-P2O5-K2O-S kg ha -1) 

    

 Soil History Nutrients Availablea Fertilizer Applied 

Trial 1 

Chem-fallow 37-34-646-22 48-7-0-10 

Lentil 20-33-578-28 65-7-0-10 

Wheat 18-31-511-19 68-7-0-10  

Trial 2 

Chem-fallow 42-34-446-83 55-7-0-10 

Lentil 30-43-488-83 43-7-0-10 

Wheat 18-26-482-82 67-7-0-10 

a, Measurements taken at Brassicaceae planting prior to fertilizing, with available N and S 
measured at 0–60 cm depth, P and K at 0–15 cm depth. 
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Figure S1. Field plans for the experiment. A two-phase cropping sequence—consisting of a 

Conditioning Phase the first year, and a Test Phase in the second year—was repeated in two field 

trials, Trial 1, 2015-2016, and Trial 2, 2016-2017, on adjacent sites in a field previously growing 

spring wheat (Triticum aestivum cultivar AC Lillian). The experimental design was a split-plot 

replicated in four complete blocks. In the ‘Conditioning Phase’, three soil history treatments were 

randomly assigned, consisting of spring wheat (Triticum aestivum, cv. AC Lillian), red lentil (Lens 

culinaris cv. CDC Maxim CL), or left fallow (brown, black, green, respectively). In the ‘Test 

Phase’, the conditioned plots were each subdivided and five Brassicaceae oilseed crop species 

were randomly assigned to one of these five subplots. Thus, each experiment had 60 subplots to 

sample. (A) Trial 1 field plan for the Brassicaceae crops, which were Ethiopian mustard (Brassica 

carinata L., cv. ACC110), canola (B. napus L., cv. L252LL), oriental mustard (B. juncea L., cv. 

Cutlass), yellow mustard (Sinapis alba L., cv. Andante), and camelia (Camelina sativa L., cv. 

Midas). Boarder space between plots and blocks is in white. (B) Trial 2 field plan for the same 

Brassicaceae crops. For further details of this well-described experiment and its design, see 

Hossain et al. (2019), Liu et al. (2019), and Wang et al. (2020). 
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Figure S2. Organization of our lab workflow for the Test Phase Brassicaceae samples from 

harvest to generating amplicon sequence variants (ASVs). The Test Phase Brassicaceae samples 

were harvested in mid-late July. Four plants from two different locations within each of the 60 

subplots were excavated and pooled together as a composite sample (Hossain et al., 2019; Liu et 

al., 2019, Wang et al., 2020). In the field, each plant had its rhizosphere soil divided from the root 

material, both portions were immediately flash-frozen in liquid nitrogen, and kept on ice. In the 

lab, roots were ground in liquid nitrogen, and DNA was extracted from all the Test Phase 

Brassicaceae root and rhizosphere portions. No-template extraction controls were included to 

assess what contaminates, or biases, the extraction kits might impart. All DNA samples were used 

as templates for PCR amplification of the 16S rRNA gene as a metabarcode. All the samples were 

PCR amplified twice, in two independent reactions, except four rhizosphere samples from Trial 2, 

which we were unable to be amplify, and were subsequently excluded. We included root and 

rhizosphere DNA from a previous experiment as PCR positive controls, as well as a bacterial mock 

to assess the accuracy, bias, and sensitivity of the lab workflow and bioinformatics pipeline. We 

also included no-template PCR negative controls, and confirmed by gel electrophoresis that none 

of the no-template extraction controls, nor the no-template PCR controls, contained DNA prior to 

sequencing. The two independent PCR reactions were pooled together for each sample, and all 

controls, cleaned and submitted for paired-end 250 bp Illumina MiSeq sequencing. To help 

identify sequencing biases, or bath effects, a replicate of the bacterial mock community was 

included on each of the four plates submitted for sequencing. All reads were subsequently trimmed 

and processed through the DADA2 pipeline for ASV inference. 
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Figure S3. Brassicaceae host dry weights (g) decreased in Trial 2 (black outlines), compared to 

Trial 1 (no outlines). The Test Phase Brassicaceae samples were harvested in mid-late July, at 

Swift Current, Saskatchewan. The aerial portions were retained and dried to determine their 

weight.  
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Figure S4. The DADA2 workflow processed 23 313 756 raw reads produced from one lane of sequencing via Illumina’s MiSeq at Génome 

Québec in order to infer amplicon sequence variants (ASVs). An average of 43 129 ±18 032 high-quality reads per Test Phase Brassicaceae 

sample, for a total of 10 178 467, were retained. Trial 2 samples tended to have more reads than the Trial 1 samples. Among the Test Phase 

Brassicaceae samples, the root samples retained noticeably more reads than their rhizosphere partners. Note that root samples also retained 

more reads during the merging and chimera steps in DADA2 than the rhizosphere samples. There was no evident difference in reads among 

the five Brassicaceae species, beyond the effects of compartment and year. 
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Figure S5. High-quality MiSeq reads retained through the DADA2 pipeline from among the no-

template negative controls, and mock community replicates, were inferred as inferred amplicon 

sequence variants (ASVs), and assigned taxonomy using the Silva database, represented here as 

phlya. A) ASVs inferred from among the six no-template negative controls, represented as their 

corresponding abundance of reads to illustrate these ASVs were derived from few reads. The 

negative controls had between 1 and 32 different ASVs, where most reads that were retained were 

inferred as ASVs identified as Cyanobacteria and Proteobacteria. B) 34 – 55 individual ASVs 

were inferred from among the four mock community replicates; the mock replicate prepared with 

the Trial 2 rhizosphere samples, followed by the mock replicate in the Trial 2 root sample, 

contained the most ASVs. Every bacterial group included in the mock community was detected in 

each replicate. The Actinobacteria, and Deinococcus, were the most specific, as 2, or 1, species 

were included in the mock community, respectively, and accurately detected in our bioinformatics 

pipeline. There was an expansion among the ASVs identified as Bacteriodetes, Firmicutes, and 

Proteobacteria. Three of the mock replicates had an ASV identified as a Cyanobacteria, while 

one of them also replicates had an ASV identified as a Chloroflexi, though none were included in 

the community’s composition. 
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Figure S6.  Rarefaction curves illustrated that the majority of the bacterial communities were identified in (A) the rhizosphere, and (B) 

the roots. The samples were harvested from two field trials during the Test Phase of a two-year crop rotation, in Swift Current, 

Saskatchewan. 
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Figure S7. A standard curve of the 16S rRNA gene copy numbers (X-axis) versus the number of 

cycles required for detection (cycle threshold, Ct, Y-axis), as determined from the serial dilution 

of a quantified 16S rRNA gene.  
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Figure S8. Taxa-based a-diversity indices (y-axis) for the rhizosphere (A) and root (B) 

communities from Trial 1, harvested 2016. Each a-diversity index was grouped by Brassicaceae 

host, and reflect the phylogenetic diversity observed, where communities are broadly similar 

across hosts, and soil histories. Similar results were also observed for the communities based on 

relative abundance, as well as in Trial 2 (data not shown).   



 
 

115 

 

 

 

Figure S9. A non-metric multidimensional scaling (NMDS) of all the Test Phase data illustrates that the most important factors shaping 

the bacterial communities are: A) compartment, rhizosphere (orange), or root (turqoise) (PERMANOVA, R2 = 0.19304, p = 0.001), and 

B) Trial 1 (harvested 2016, orange), or Trial 2 (harvested 2017, turqoise) (PERMANOVA, R2 = 0.07067, p = 0.001). As all the bacterial 

communities appear clustered together respectively by compartment and year, regardless of other factors, we can be confident that the 

data is not excessively biased, and batch effects have been subsumed within these larger factors/patterns. See Table S3 for these 

PERMANOVA results. 
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Figure S10. (A) Taxa clusters of the ASVs inferred from among the rhizosphere (left) and root 

(right) of the Test Phase bacterial communities from Trial 2, harvested 2017, represented to the 

class level. The size of the taxonomic groups (bubbles) represents the number of ASVs that 

occurred, and the colour scale represents the absolute abundance of each ASV. (B) The differential 

taxa cluster between the absolute abundance of the rhizosphere and root in Trial 1, where the 

abundance of each taxonomic group in the cluster is compared between each compartment, using 

the using the non-parametric Kruskal test and the post hoc pairwise Wilcox test, with the FDR 

correction. Taxa that are significantly (p. adj < 0.05) more abundant in rhizosphere are highlighted 

in green.
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Figure S11. Bacterial rhizosphere communities exhibited significant structure according to (A) soil history, and (B) soil chemistry in 

Trial 2, harvested in 2017, from Test Phase of a two-year crop rotation, in Swift Current, Saskatchewan. Weighted UniFrac distances 

were used with a distance-based redundancy analysis. (A) Soil histories established in the Conditioning Phase were still significant a 

year later (R2 = 0.0399, p = 0.019) in structuring the bacterial communities from the Test Phase rhizosphere communities in Trial 2, 

though it is difficult to observe a clear trend among phylogenetically similar communities being more distinctive according to their soil 

histories. (B) Soil chemistry was also significant in structuring the Test Phase bacterial rhizosphere communities (R2 = 0.27, p = 0.001): 

manganese was contrasted by calcium, iron and zinc contrasted with magnesium, while potassium was opposed by pH, though there is 

not a clear trend among phylogenetically similar communities being more distinctive according to their soil chemistries. Note that the 

Test Phase bacterial rhizosphere communities from Trial 2 were not significantly structured by Brassicaceae host plants (data not 

shown). 
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Figure S12. Bacterial root communities from Trial 2 exhibited significant structure according to 

their Brassicaceae host plants when harvested in 2017 from the Test Phase of a two-year crop 

rotation, in Swift Current, Saskatchewan. Weighted UniFrac distances were used with a distance-

based redundancy analysis. Brassicaceae host plants were significant (R2 = 0.0307, p = 0.039) in 

structuring the Test Phase bacterial root communities. 

 



 
 

122 

 

 

 

 

 

 

 

 

 



 
 

123 

Figure S13. Bacterial rhizosphere communities exhibited significant structure according to (A) 

soil history, and (B) Brassicaceae host plants when harvested in 2016 from the Test Phase in Trial 

1 of a two-year crop rotation, in Swift Current, Saskatchewan. Weighted UniFrac distances were 

used with a distance-based redundancy analysis. (A) Soil histories established in the Conditioning 

Phase were significant (R2 = 0.027, p = 0.054) a year later in structuring the bacterial communities 

from the Test Phase rhizosphere communities in Trial 1, as illustrated by phylogenetically similar 

communities being more distinctive according to their soil histories. (B) C. sativa (red) bacterial 

rhizosphere communities were more phylogenetically similar compared to communities from 

other Brassicaceae hosts (R2 = 0.147, p = 0.001). Communities from Brassica carinata appeared 

the least structured by host, and strongly impacted by lower species richness (SpRich). Note that 

the Test Phase bacterial rhizosphere communities in Trial 1 were not significantly structured by 

soil chemistry (data not shown). 
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Figure S14. Evolution of the Brassicaceae host plants represented in a dendrogram (A) compared to a hierarchical cluster (B) of the 

bacterial root communities from Trial 1, during the Test Phase of a two-year crop rotation, in Swift Current, Saskatchewan. The 

comparison illustrates how the unique composition of the Camelina sativa communities (red) may be due to the evolutionary distance 

between C. sativa and the other Brassicaceae hosts. Equally, the similarity between the bacterial communities from the other four 

Brassicaceae host plants may be due to their closer evolutionary relationships. The cluster analysis was generated using a weighted 

unifrac distance matrix.
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Abstract 

Oomycetes are critically important soil microbial communities, especially for agriculture 

where they are responsible for major declines in yields. Unfortunately, oomycetes are vastly 

understudied compared to bacteria and fungi. As such, our understanding of how oomycete 

biodiversity and community structure varies through time in the soil remains poor. Soil history 

established by previous crops is one factor known to structure other soil microbes, but has not been 

investigated for its influence on oomycetes. In this study, we established three different soil 

histories in field trials; the following year these plots were planted with five different Brassicaceae 

crops. We hypothesized that the previously established soil histories would structure different 

oomycete communities, regardless of their current Brassicaceae crop host, in both the roots and 

rhizosphere. We used a nested-ITS amplicon strategy incorporated with MiSeq metabarcoding, 

where the sequencing data was used to infer amplicon sequence variants (ASVs) of the oomycetes 

present in each sample. This allowed us to determine the impact of different soil histories on the 

structure and biodiversity of the oomycete root and rhizosphere communities from the five 

different Brassicaceae crops. We found that each soil history structured distinct oomycete 

rhizosphere communities, regardless of different Brassicaceae crop hosts, while soil chemistry 

structured the oomycete communities more during a dry year. Interestingly, soil history appeared 

specific to oomycetes, but was less influential for bacterial communities previously identified from 

the same samples. These results advance our understanding of how different agricultural practices 

and inputs can alter edaphic factors to impact future oomycete communities. Examining how 

different soil histories endure and impact oomycete biodiversity will help clarify how these 

important communities may be assembled in agricultural soils.  
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Introduction 

Soil history established by previous plant-soil microbial communities condition future 

generations (Kaisermann et al., 2017; Bakker et al., 2021; Hannula et al., 2021; Blakney et al., 

2022). These communities are subject to various biotic and abiotic factors—including the initial 

soil chemistry and microbes present, changes in the plant communities, and environmental 

extremes, such as drought—and subsequently reflect them through a plant-soil microbial feedback 

process (Hwang et al., 2015; Yang et al., 2021; Liu et al., 2022). Plant hosts alter soil chemistry, 

first, through their capacity to uptake nutrients from the soil (Hu et al., 2021), and second, through 

rhizodeposition. Through this mechanism host plants can vary the quantity and array of compounds 

released into the rhizosphere as required, thereby changing the soil chemistry (Lebeis et al., 2015; 

Korenblum et al., 2020; Kawasaki et al., 2021; Yu et al., 2021). Modifying their rhizodeposition 

profile also permits plants to actively tailor the structure of their microbial rhizosphere community 

in response to variable conditions and the plant’s needs (Lebeis et al., 2015; Korenblum et al., 

2020; Kawasaki et al., 2021; Yu et al., 2021). For example, soil microbes increase the host plant’s 

access to nutrients (Richardson et al., 2009; Weidner et al., 2015; Yu et al., 2021), temper 

environmental change (Lau & Lennon, 2012), or stress (Marasco et al., 2012; Hou et al., 2021), 

and protect against pathogens (Sikes et al., 2009; Mendes et al., 2011). Soil bacterial communities 

in particular help integrate these diverse signals and modulate the plant’s responses (Castrillo et 

al., 2017; Hou et al., 2021).  

As such, the plant-soil microbial community generates a reciprocal feedback process that 

incorporates various biotic and abiotic factors (Hwang et al., 2015; Yang et al., 2021; Liu et al., 

2022), and impacts future plant-soil microbial generations and their composition (Kaisermann et 

al., 2017; Berendsen et al., 2018; Fitzpatrick et al., 2018). Thus, information from one plant-soil 
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microbial community is transmitted through time to impact subsequent plant-microbial 

generations, i.e., that the soil history, also referred to as soil legacy, of previous plant-soil microbial 

communities condition future ones (Kaisermann et al., 2017; Bakker et al., 2021; Hannula et al., 

2021). However, how different biotic and abiotic factors interact to establish soil histories are not 

well understood. 

Drought, or water-stress, for example, is an increasingly important abiotic factor for 

establishing plant-soil microbial communities, as well as its growing impact on global agricultural 

production (Preece et al., 2019). On the Canadian Prairies, drought is a common experience. 

During the last event of the 2021 season, major crop production plunged nationally to a 15-year 

low due to severe drought conditions: wheat decreased by 38.5% to 21.7 M tonnes, while canola 

decreased by 35.4% to 12.6 M tonnes (Statistics Canada, 2021). Water availability is a key 

determinant of plant nutrition and performance, such that their growth becomes restricted due to 

drought, as they are constrained in nutrient uptake from the soil (Fitzpatrick et al., 2018). Soil 

moisture is also critical for microbial communities (reviewed by Schimel et al., 2007); bacteria 

depend on water for nutrient diffusion and mobility (Preece et al., 2019). Soil moisture is also a 

key promotor of phytopathogenic oomycete growth and dispersion (Hwang et al., 2015; Rojas et 

al., 2017; Karppinen et al., 2020). As such, there is interest in investigating how soil history and 

plant-microbial communities interact under dry, water-stressed conditions in an agricultural 

setting. 

Crop rotations, complete with their agricultural inputs, model how a previous crop plant 

establishes a soil history by altering the biotic and abiotic soil conditions for future plant-microbial 

communities (Hwang et al., 2015; Yang et al., 2021; Liu et al., 2022). For example, when lentils, 

or other legumes, are introduced into a rotation they shift the soil microbial community, which 
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establishes more bioavailable nitrogen and moisture in the soil (O’Donovon et al., 2014; Bazghaleh 

et al., 2016; Hamel et al., 2018; Yang et al., 2021). These benefits translate to the subsequent crops, 

which tend to have higher yields (O’Donovon et al., 2014; Hamel et al., 2018). 

Beneficial soil histories have also been established by canola (cultivars of Brassica napus, 

B. rapa, or B. juncea) rotations, as they are thought to reduce the growth of cereal-specific 

pathogens. As such, cereals tend to have higher yields when they are planted after canola (Etesami 

& Alikhani, 2016; Yang et al., 2021). As demand for vegetable oil and biofuels increases, 

Brassicaceae oilseed-based rotations are increasingly common throughout the world, such as the 

frequent canola-wheat rotation in Canada (Yang et al., 2021). Increasing Brassicaceae oilseed crop 

diversity has been on-going in order to improve production by identifying and breeding crop plants 

better adapted to the drought stress of the Canadian Prairies, as well as cultivars that are more 

resistant to pathogens (Bailey-Serres et al., 2019; Hossain et al., 2019; Liu et al., 2019). Though 

extensive work has investigated how Brassicaceae oilseed rotations benefit the crop plants 

involved (recently reviewed by Yang et al., 2021), less is known how these crops and their 

agricultural inputs impact beneficial, or pathogenic soil microbial communities.  

Brassicaceae oilseed crops are known hosts to many microbial pathogens, including fungi, 

such as Fusarium sp., Leptosphaeria sp. (blackleg), Rhizoctonia solani, Sclerotinia sclerotiorum 

(stem rot), and oomycetes, like Pythium sp., Phytophthora sp., Albugo sp. (staghead), and 

Peronospora and Hyaloperonospora spp. (downy mildews) (Canola Council of Canada, 2017; 

Maciá-Vicente et al., 2020). Oomycete phytopathogens alone have had an historically outsized 

impact on global agriculture (Kamoun et al., 2015). Although particular oomycetes strains have 

been fairly well studied as model patho-systems with specific Brassicaceae species (Kamoun et 

al., 2015; Derevnina et al., 2016; Prince et al., 2017; Cevik et al., 2019; Mohammed et al., 2019), 
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as a whole soil oomycete biodiversity remains relatively under-studied, notably among 

Brassicaceae crops (Maciá-Vicente et al., 2020).  

A few high-throughput sequencing studies have yielded some clues concerning soil 

oomycete communities: Maciá-Vicente et al (2020) and Sapp et al (2018) both illustrated oomycete 

communities present in agricultural and natural Brassicaceae soil samples, respectively. They 

identified root and rhizosphere communities dominated by Pythiales (Pythium sp., or 

Globisporangium sp.), with minorities of Peronosporales (Phytophthora sp., Peronospora sp., and 

Hyaloperonospora sp.), and Saprolegniales (Aphanomyces sp.), though they indicated substantial 

difficulties in assigning taxa (Sapp et al., 2018; Maciá-Vicente et al., 2020). Taheri et al (2017a) 

yielded further insights by also identifying oomycete root and rhizosphere communities dominated 

by Pythiales from various agricultural pea fields across the Canadian Prairies. Beyond these 

examples, there is a lack of baseline knowledge concerning how oomycete communities are 

structured around diverse Brassicaceae oilseed crops.  

Crop rotations and the soil histories they establish, highlight important factors to investigate 

in order to better understand oomycete community dynamics. First, different crops, along with their 

agricultural treatments, alter edaphic factors, which may have important consequences for 

oomycete communities. For example, legumes tend to retain soil moisture, which is a key factor 

for oomycete growth as discussed (Hwang et al., 2015; Rojas et al., 2017; Karppinen et al., 2020). 

Second, crop rotations are known to shift bacterial communities, which may interact to suppress or 

promote, oomycete communities (Löbmann et al., 2016). Both of these examples highlight what 

impact crop rotations might have on the subsequent crop plant-oomycete community. 

We took advantage of an existing agriculture experiment to investigate the impact of soil 

history established by the previous year’s crop, and the current Brassicaceae oilseed host crops, on 
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the soil oomycete communities. Three soil histories were established by growing wheat, lentils, or 

being left fallow (Fig. S1A). The following year, each soil history plot was divided into five 

subplots and planted with a different Brassicaceae oilseed crop. At full flower, the root systems of 

these Brassicaceae host crops were harvested, and divided into root and rhizosphere compartments, 

from which environmental DNA was extracted. We hypothesized that the three soil histories 

established by the previous crops would structure different oomycete communities, regardless of 

their current Brassicaceae host, in both the roots and rhizosphere. We used a MiSeq metabarcoding 

approach to specifically target the oomycete communities for each root and rhizosphere sample, 

where the sequencing data was used to infer amplicon sequence variants (ASVs) to identify the 

oomycete biodiversity, and how this understudied group varies in agricultural soils.  

 

Materials & Methods 

Site and experimental design  

 A field experiment was conducted at the experimental farm of Agriculture and Agri-Food 

Canada’s Research and Development Centre, in Swift Current, Saskatchewan (50°15′N, 

107°43′W). The site is located in the semi-arid region of the Canadian Prairies; according to the 

weather station of the research farm, the 2016 and 2017 growing seasons (May, June and July) had 

328.4 mm and 55.0 mm of precipitation, respectively; compared to the 30-year average [1981-

2010] of 169.2 mm. The daily temperature averages for the 2016 and 2017 seasons were 15.6°C 

and 15.9°C, respectively, while the 30-year average was 14.93°C. The farm is on a Brown 

Chernozem with a silty loam texture (46% sand, 32% silt, and 22% clay), and has been well-

described previously by Liu et al (2019) and Liu et al (2020).  



 
 

134 

The experiment was established in a field previously growing spring wheat (Triticum 

aestivum cultivar AC Lillian). A two-phase cropping sequence—consisting of a Conditioning 

Phase the first year, and a Test Phase in the second year (Fig. S1)—was repeated in two field trials, 

Trial 1, 2015-2016, and Trial 2, 2016-2017, on adjacent sites (Fig. S1B & C). On each site, the 

experimental design was a split-plot replicated in four complete blocks. In the Conditioning Phase, 

three soil history treatments were randomly assigned to the main plots, consisting of spring wheat 

(Triticum aestivum, cv. AC Lillian), red lentil (Lens culinaris cv. CDC Maxim CL), or left fallow 

(Fig. S1). Thus, the Conditioning Phase established a soil history composed of either wheat, lentil, 

or fallow, plus their respective management plans as described below (Hossain et al., 2019; Liu et 

al., 2019; Blakney et al., 2022). 

In the Test Phase, the 12 Conditioning Phase plots were each subdivided and five 

Brassicaceae oilseed crop species were randomly assigned to one of these five subplots (Fig. S1). 

The Brassicaceae crops seeded were Ethiopian mustard (Brassica carinata L., cv. ACC110), 

canola (B. napus L., cv. L252LL), oriental mustard (B. juncea L., cv. Cutlass), yellow mustard 

(Sinapis alba L., cv. Andante), and camelia (Camelina sativa L., cv. Midas). Therefore, the Test 

Phase established the Brassicaceae host plant-soil microbial community feedback, composed of 

the individual Brassicaceae genotypes, their soil microbial community, and their respective 

management plans, as described below (Hossain et al., 2019; Liu et al., 2019; Blakney et al., 2022). 

In total, each field trial had 60 subplots to sample (Fig. S1 & S2). For further details of this well-

described experiment, its design, and treatments, see Hossain et al (2019), Liu et al (2019), and 

Blakney et al (2022). 
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Crop rotation management and sampling 

Crops in both field trials were grown and maintained according to standard management 

practices, as previously described by Hossain et al (2019), Liu et al (2019), and Blakney et al 

(2022). A pre-seed ‘burn off’ herbicide treatment using glyphosate (Roundup, 900 g acid 

equivalent per hectare, a. e. ha−1) was applied to all plots each year to ensure a clean starting field 

prior to seeding. Lentil seeds were treated with a commercial rhizobium-based inoculant (TagTeam 

at 3.7 kg ha−1). Lentil and wheat were direct-seeded into wheat stubble from late April to mid-May, 

depending on the crop and year. The herbicides, glyphosate (Roundup, 900 g a. e. ha−1), Assure II 

(36 g active ingredient per hectare, a. i. ha−1), and Buctril M (560 g a.i. ha−1) were applied to the 

fallow, lentil, and wheat plots, respectively, for in-season weed control, while fungicides were only 

applied as needed. Soil tests were used to determine the rates of in-season nitrogen, phosphorus, 

and potassium application; no synthetic nitrogen fertilizer was applied to the lentil plots during the 

Conditioning Phase. Both lentil and wheat were harvested between late August and early October, 

depending on the crop and year.  

The subsequent Test Phase Brassicaceae plant hosts were subjected to the same standard 

management practices as the Conditioning Phase, including pre-seed ‘burn off’, in-season 

herbicide and fungicide treatments as needed, and fertilized as recommended by soil tests (Table 

S1; Hossain et al (2019); Liu et al (2019); Wang et al., 2020). Additionally, all Brassicaceae crops, 

except B. napus, were treated with Assure II mixed with Sure-Mix or Merge surfactant (0.5% v/v) 

for post-emergence grass control: Liberty (glufosinate, 593 g a.i. ha−1) was used for B. napus. 

Test phase Brassicaceae plants were sampled in mid-late July at full flowering, i.e. when 

50% of the flowers on the main raceme were in bloom, as described by the Canola Council of 

Canada (Canola Council, 2017), where flowering corresponds to higher activity in rhizosphere 
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microbial communities (Chaparro et al., 2014). Four plants from two different locations within 

each subplot were excavated and pooled together as a composite sample (Hossain et al., 2019; Liu 

et al., 2019; Wang et al., 2020; Blakney et al., 2022). In the field, each plant had its rhizosphere 

soil divided from the root material by gently scraping it off using bleach sterilized utensils into 

fresh collection trays. The roots were then gently washed three times with sterilized distilled water 

to remove any soil. Both the rhizosphere and root portions were immediately flash-frozen and 

stored in liquid nitrogen vapour shipping containers until stored in the lab at -80°C (Delavaux et 

al., 2020). Based on the sampling strategy, in this study we define the rhizosphere microbiome as 

the microbial community in the soil in close contact with the roots (Hannula et al., 2021), and the 

root microbiome as the microbial community attached to, and within, the roots (Berendsen et al., 

2018).  Two additional soil cores were sampled from each plot, pooled, and kept on ice in coolers. 

These samples were homogenized in the lab and sieved to remove rocks and roots. They were then 

used for soil chemistry analyses, including total carbon, nitrogen, pH, and micronutrients (see 

Wang et al., 2020 for details). Aerial portions of each harvested plant sample were retained to 

determine dry weight (Fig. S3). 

 

DNA extraction from Test Phase Brassicaceae root and rhizosphere samples 

 Nucleic acids were extracted from Trial 1 Test Phase Brassicaceae samples, for both 

rhizosphere and root portions. First, all the root samples were ground in liquid nitrogen via sterile 

mortar and pestles (Fig. S2). Total DNA and RNA were extracted from ~1.5 g of rhizosphere soil 

using the RNA PowerSoil Kit with the DNA elution kit (Qiagen, Germany). DNA and RNA were 

extracted using ~0.03 g of roots using the DNeasy Plant DNA Extraction Kit, and RNeasy Plant 

Mini Kit (Qiagen, Canada), respectively, following the manufacturer’s instructions (see Wang et 



 
 

137 

al., 2020 for use of the RNA samples). All remaining harvested material from Trial 1 and 2, as well 

as the extracted DNA from Trial 1, were kept at -80°C before being shipped to Université de 

Montréal’s Biodiversity Centre, Montréal (QC, Canada) on dry ice for further processing (Lay et 

al., 2018; Delavaux et al., 2020).  

Total DNA was extracted from the Trial 2 Test Phase samples; ~500 mg of rhizosphere soil 

was used for the NucleoSpin Soil gDNA Extraction Kit (Macherey-Nagel, Germany), and ~130 

mg of roots was used for the DNeasy Plant DNA Extraction Kit (Qiagen, Germany) (Lay et al., 

2020). A no-template extraction negative control was used with both the root and rhizosphere 

extractions and included with the Test Phase samples (Fig. S2), to assess the influence of the 

extraction kits on our sequencing results, and the efficacy of our lab preparation. All 242 extracted 

DNA samples (60 plots x 2 parallel field trials x 2 compartments, rhizosphere and root, +2 no-

template extraction control samples) were quantified using the Qubit dsDNA High Sensitivity Kit 

(Invitrogen, USA), and qualitatively evaluated by mixing ~2 µL of each sample with 1 µL of 

GelRed (Biotium), and running it on a 0.7 % agarose gel for 30 minutes at 150 V. The no-template 

extraction negative controls were confirmed to not contain DNA after extraction, where the 

detection limit was > 0.1 ng (Qubit, Invitrogen, USA). Samples were kept at -80°C (Lay et al., 

2018; Delavaux et al., 2020). 

  

Assembly of oomycete mock community 

 To assess potential bias caused by lab manipulations, sequencing and downstream 

bioinformatic processing, we assembled an oomycete mock community of known composition   

from twenty species with staggered copy numbers of the ITS1 region. To do so, we followed the 

method of Bakker (2018) beginning with generating a standard curve of the copy numbers of the 
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ITS region from DNA extracted from Pythium ultimum strain 6358.Ba.B, generously provided by 

Dr. S. Chatterton (Agriculture and Agri-Food Canada, Lethbridge Research and Development 

Centre). We then used this standard curve to estimate the ITS copy number from a diversity of 

oomycete DNA samples provided from the Ministry of Agriculture and Fisheries of Quebec, and 

Agriculture and Agri-Food Canada (Table S2).  

A ~1 kb fragment containing the entirety of the ITS 1 region, the 5.8S gene, and the ITS 2 

region, was PCR amplified from P. ultimum 6358.Ba.B using the ITS4 and ITS6 primers (Table 1; 

52; Alpha DNA, Montréal, Canada). The ITS4/6 PCR reaction consisted of 11.5 µL dH2O, 5.0 µL 

of 10X buffer (Qiagen, Canada), 2.5 µL of 10 µM ITS4 and ITS6 primers (Alpha DNA, Montréal, 

Canada), 1.0 µL of dNTPs (Qiagen, Canada), 0.5 µL of T. aq polymerase (Qiagen, Canada), and 2 

µL of a 1:10 dilution of the template, for a total volume of 25 µL. The PCR was run in an Eppendorf 

Mastercycle ProS (Mississauga, ON, Canada) thermocycler and consisted of an initial denaturation 

of 2 minutes at 95°C, followed by 30 cycles of 30 seconds denaturation at 95°C, 30 seconds 

annealing at 55°C, and 1 minute elongation at 72°C, before a final elongation of 5 minutes at 72°C 

(Sapkota & Nicolaisen, 2015). Four µL of the ITS PCR product was mixed with 1 µL of loading 

dye containing Gel Red (Biotium), and visualized on a 1% agarose gel after 60 minutes at 100 V. 

The amplified ITS fragment was quantified using the QuBit dsDNA High Sensitivity Kit 

(Invitrogen, USA), then serially diluted to 10-9, where 1 µL of each dilution was then used as 

template in a 10 µL qPCR reaction. 

The ITS1 region qPCR reactions amplified ~350 bp region using the oomycete-specific 

ITS6 forward and ITS7-a.e. reverse primers (Table 1; Taheri et al., 2017b). All qPCR reactions 

were set-up in triplicate in 96-well plates using the Freedom EVO100 robot (Tecan, Switzerland), 

with a triplicate no-template negative control included on each plate. The reactions consisted of  



 
 

139 

 

Table 1. ITS primers used in this study. 

 
   

Name Sequence (5’-3’) Reference 
   

ITS6 F GAAGGTGAAGTCGTAACAAGG Cooke et al., 2000 

ITS4 R TCCTCCGCTTATTGATATGC White et al., 1990 

ITS7-a.e. WGYGKTCTTCATCGATGTGC Taheri et al., 2017 

 
 

 

 

 

5.0 µL of Maxima SYBR Green/ROX qPCR Mix (ThermoFisher Scientific, Canada), 3.4 µL dH2O, 

0.3 µL of 10 µM ITS6 and ITS7-a.e. primers (Alpha DNA, Montréal, Canada), and were run in a 

ViiA 7 Real-Time PCR System (ThermoFisher Scientific, Canada). The cycling conditions 

consisted of an initial denaturation of 2 minutes at 94°C, followed by 30 cycles of 30 seconds 

denaturation at 94°C, 30 seconds annealing at 59°C, and 1 minute elongation at 72°C, before a 

final elongation of 10 minutes at 72°C (Taheri et al., 2017b). The number of ITS1 region copies 

present in the serially diluted standards were calculated using the formula (Godornes et al., 2007). 

 

Number of ITS1 copies µL-1 = Avagadro’s Constant x DNA (g µL-1) 

      Number of base pairs x 600 Daltons 
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The standard curve was plotted, with an R2 value of 0.9938 and an amplification efficiency of              

-3.389 (Fig. S4) falling within acceptable values (Fierer et al., 2005).  

Copy numbers of the ITS1 region were then estimated for each oomycete sample (Table 

S2). One µL of a 1:10 dilution of extracted oomycete DNA was used as template for the ITS1 

qPCR reaction, following the cycling conditions as described for generating the standard curve. 

Melt curves generated by 0.5°C increments at the end of the qPCR programme confirmed amplicon 

specificity. The mean cycle threshold was then calculated from the qPCR reactions for each 

oomycete sample, and the corresponding ITS1 copy number was estimated off the standard curve 

(Fig. S4; Bakker, 2018). Finally, the oomycete mock community was assembled with staggered 

ITS1 copy numbers, where different oomycete community members had different ranges of ITS1 

copy numbers (Bakker, 2018). 

 

ITS amplicon generation and sequencing to estimate the composition of the oomycete community 

 To estimate the composition of the oomycete communities in the rhizosphere and roots 

from the Test Phase Brassicaceae species, extracted DNA from all samples were used to prepare 

ITS amplicon libraries following Illumina’s MiSeq protocols. First, all DNA samples were diluted 

1:10 into 96-well plates using the Freedom EVO100 robot (Tecan, Switzerland). To assess 

potential bias caused by lab manipulations, sequencing and downstream bioinformatic processing, 

we included a no-template DNA extraction control, and mock community, on each plate.  

 The prepared plates of the Test Phase DNA samples were submitted to Génome Québec 

(Montréal, Québec) for ITS amplicon generation and sequencing (Bell et al., 2016; Lay et al., 

2018). In order to preferentially target the oomycete community, and exclude other eukaryotes, as 

well as ensure sufficient quantity for detection, a semi-nested PCR strategy was used to generate 
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the ITS1 amplicons from each Test Phase DNA sample (Sapkota & Nicolaisen, 2015). Each sample 

was used as template in a PCR reaction consisting of 15 cycles using the ITS6 and ITS4 primers 

(Table 1; Cooke et al., 2000; Sapkota & Nicolaisen, 2015) to amplify a ~1 kbp fragment. A second 

round PCR reaction was then done using the oomycete-specific ITS6 and ITS7ae primers (Table 

1; Sapkota & Nicolaisen, 2015, Taheri et al., 2017b) to amplify a ~350 bp fragment of the ITS1 

region. This semi-nested PCR strategy has previously been shown to enrich for oomycete 

sequences and limit off-target amplification from other eukaryotes (Sapkota & Nicolaisen, 2015; 

Taheri et al., 2017b). The degenerate primer design has been suggested to allow for the wider 

capture of oomycete-specific ITS1 sequences, but not at the cost of being biased for a particular 

oomycete group (Sapkota & Nicolaisen, 2015; Taheri et al., 2017b).  

These amplicons were then prepared for paired-end 250 bp sequencing using Illumina’s 

MiSeq platform and the MiSeq Reagent Kits v3 (600-cycles) (Génome Québec, Montréal) (Bell et 

al., 2016; Lay et al., 2018). We estimated this should provide a mean of 40 000 reads per sample, 

which is in line with previous studies that describe microbial eukaryote communities (Bell et al., 

2016; Lay et al., 2018). 

 

Estimating ASVs from MiSeq ITS amplicons 

The ITS amplicons generated by Illumina MiSeq sequencing were used to estimate the 

diversity and structure of the oomycete communities present in both the rhizosphere and roots of 

each Test Phase Brassicaceae sample. The integrity and totality of the ITS MiSeq data downloaded 

from Génome Québec, all 17 656 076 reads, was confirmed using their MD5 checksum protocol 

(Roy et al., 2018). Subsequently, all data were managed, and analyzed in R (R Core Team, 2020), 

and plotted using ggplot2 (Wickham, 2016). 
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Instead of generating OTUs from the ITS amplicon data, we opted to use DADA2 for ASV 

inference, as it generates fewer false-positives than OTUs, reveals more low-abundant, or cryptic, 

microbes, and as ASVs are unique sequence identifiers, they are directly comparable between 

studies, unlike OTUs (Callahan et al., 2016a; Callahan et al., 2017; Fitzpatrick et al., 2018). ASV 

inference has also been successfully used with oomycete datasets to discriminate to the species 

level (Foster et al., 2020; Maciá-Vicente et al., 2020). Here, due to the variable length of the ITS 

region, we first used cutadapt (Martin, 2011) to carefully remove primer sequences from all the 

ITS reads generated from the control samples, the mock communities, and the experimental Test 

Phase Brassicaceae samples, including any primer sequences generated due to read-through. The 

filterAndTrim function from the dada2 package (Callahan et al., 2016b) was then used for all 

reads, following the default settings, including, removing reads shorter than 50 nucleotides, or of 

low-quality (Q = < 20). Filtered and trimmed reads were then processed through DADA2 for ASV 

inference (Fig. S2 & S5). Default settings were used throughout the DADA2 pipeline, except the 

DADA inference functions dadaF and dadaR which used the pool =’pseudo’ argument, to 

increase the likelihood of identifying rare taxa. Consequently, the chimera removal function 

removeBimeraDenovo included the method =’pooled’ argument (Callahan et al., 2016b). 

The unique ASVs inferred from the ITS amplicon data were assigned taxonomy using the 

UNITE database for all eukaryotes (Abarenkov et al., 2020). ASVs were assigned species when 

possible, though UNITE may not account for all the latest taxonomic revisions to individual groups 

between versions, such as Nguyen et al (2022). Moreover, it is important to keep in mind that 

species names reported here for each ASV are the closest designations after comparisons with 

reference sequences. Thus, even at 100% similarity, species names remain approximations. Data 

quality was assessed using the included controls (Fig. S5B), any off-target ASVs assigned to the 
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taxa Viridiplantae, Alveolata, Fungi, Heterolobosa, or Metazoa were subsequently removed, and 

the remaining oomycete ASVs were assigned functional lifestyles based on the FungalTraits 

database (Põlme et al., 2020). Rarefaction curves confirmed that we captured the majority of the 

oomycete communities in both root and rhizosphere samples from both field trials (Fig. S6). The 

oomycete-specific ITS sequencing data was subsequently re-analysed independently following the 

described protocol to avoid any biases from the four no-template negative controls, and the four 

mock communities. These are the Test Phase oomycete ASVs which are reported hereafter 

(Supplementary Materials). 

 

Inferring phylogenetic trees 

 We assembled phylogenies for each compartment, from both trials, in order to infer 

phylogenetic diversity of the Test Phase Brassicaceae oomycete communities. Following the 

method described by Callahan et al., 2016b, the ITS region sequences for each ASV inferred from 

the Test Phase Brassicaceae data were aligned using a profile-to-profile algorithm (Wang et al., 

2004), and a dendrogram guide tree, from the decipher package (Wright, 2016). With the 

phangorn package (Schliep, 2011), the maximum likelihood of each site was calculated using the 

dist.ml function using a JC69 equal base frequency model, before assembling phylogenies using 

the neighbour-joining method. An optimized general time reversible (GTR) nucleotide substitution 

model was fitted to the phylogeny using the optim.pml function. Phylogenies were subsequently 

added to each phyloseq object (McMurdie & Holmes, 2013). 
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a-diversity of the Test Phase Brassicaceae rhizosphere and root communities 

First, to visualise taxonomic diversity, ASVs were plotted as taxa cluster maps using 

heat_tree from the metacoder package (Kembel et al., 2010) for the rhizosphere and roots of 

both experiments, where nodes represent class to genus: node colours represent the number of 

unique taxa, while node size indicates the relative abundance of each ASV. Taxa cluster maps 

facilitate visualizing abundance, as well as diversity across taxonomic hierarchies (Kembel et al., 

2010).  

Second, in order to estimate the coverage of the oomycete class, we incorporated the 

oomycete phylogenies into the phyloseq object following the method described by Callahan et al 

(2016b). Faith’s phylogenetic diversity was calculated as an a-diversity index from the Test Phase 

Brassicaceae samples using the pd function from the picante package (sum of all branch lengths 

separating taxa in a community; Kembel et al., 2010). For comparison, Simpson and Shannon’s a-

diversity indices were also calculated (Fig. S7). 

We assessed differences between the mean phylogenetic diversity between soil histories, 

and Brassicaceae hosts using the non-parametric Kruskal-Wallis rank sum test, kruskal.test, as 

the transformed data did not respect the assumptions for normality. Specific groups of statistical 

significance were identified with the post hoc pairwise Wilcoxon Rank Sum Tests, 

pairwise.wilcox.test, with the FDR correction on the p-values to account for multiple 

comparisons. 

 

Identification of differentially abundant ASVs and specific indicator species 

To refine our understanding of the abundance and composition of the Test Phase 

Brassicaceae oomycete communities, we used two complementary methods to identify taxa 



 
 

145 

specific to soil histories, or Brassicaceae hosts. First, taxa cluster maps were used to calculate the 

differential abundance of ASVs between experimental groups, including rhizosphere and root 

compartments, Brassicaceae host plants, and soil histories. Taxa cluster maps were generated using 

compare_groups, in the metacoder package (Foster et al., 2017), where the non-parametric 

Wilcoxon Rank Sum Tests determined if a randomly selected abundance from one group was 

greater on average than a randomly selected abundance from another group.  As the statistical test 

was performed for each taxon, we used a false discovery rate (FDR) correction on the p-values to 

account for the multiple comparisons. When the comparison was between more than two groups, 

the differential abundances were plotted onto the taxa cluster map using heat_tree_matrix 

(Foster et al., 2017).  

 Second, indicator species analysis was used to detect ASVs that were preferentially 

abundant in pre-defined environmental groups (roots, or rhizosphere, soil histories, or 

Brassicaceae host). A significant indicator value is obtained if an ASV has a large mean abundance 

within a group, compared to another group (specificity), and has a presence in most samples of that 

group (fidelity) (Legendre & Legendre, 2012). The fidelity component complements the 

differential abundance approach between taxa clusters, which only considers abundance. We 

performed an indicator species analysis for the ASVs identified in the Test Phase of Trial 1, and 

then Trial 2. From the indicspecies package (De Cáceres & Legendre, 2009), we used the 

multipatt function with 9999 permutations. As the statistical test is performed for each ASV, we 

used the FDR correction on the p-values to account for multiple comparisons. 
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b-diversity of the Test Phase Brassicaceae rhizosphere and root communities 

To test for significant community differences between both trials, compartments, soil 

histories and Brassicaceae hosts, we used the non-parametric permutational multivariate ANOVA 

(PERMANOVA), where any variation in the ordinated data distance matrix is divided among all 

the pairs of specified experimental factors. The PERMANOVA was calculated using the adonis 

function in the vegan package (Oksanen et al., 2020), with 9999 permutations, and the 

experimental blocks were included as “strata”. Our PERMANOVA used a distance matrix 

calculated with the Bray-Curtis formula and tested the significance of the effects of soil history, 

Brassicaceae host, and compartment.  

We used a variance partition, as a complement to the PERMANOVA, to model the 

explanatory power of soil history, Brassicaceae host, and soil chemistry in the structure of the Test 

Phase Brassicaceae oomycete communities. We then quantified how each significant factor (ie, 

the explanatory variables) impacted oomycete community structure with a distance-based 

redundancy analysis (db-RDA) (Legendre & Legendre, 2012). First, singleton ASVs were removed 

before the phyloseq data were transformed using Hellinger’s method, such that ASVs with high 

abundances and few zeros are treated equivalently to those with low abundances and many zeros 

(Legendre & de Cáceres, 2013). With the vegan package (Oksanen et al., 2020), soil chemistry 

was standardized (Legendre & Legendre, 2012) using the decostand function. We modelled the 

explanatory power of each experimental factor in each compartment from both experiments with a 

variance partition of a partial RDA, using the varpart function, and a Bray-Curtis distance matrix 

(Borcard et al., 1992). Variation in the oomycete community data not described by the explanatory 

variables were quantified by the residuals. Finally, to quantify the amount of variation described 

by each explanatory factor, db-RDA were calculated using the capscale function. Colinear 
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variables were only identified in the soil chemistry from Trial 2, such that specific variables were 

removed without a loss of information. We subsequently removed total carbon from both the Trial 

2 root and rhizosphere RDAs, as well as the zinc concentration from the root RDA.  The final plots 

were generated using phyloseq (McMurdie & Holmes, 2013).  

 

Co-inertia analysis of the relationship between oomycetes and bacterial communities 

We used a co-inertia analysis (Dolédec & Chessel, 1994; Legendre & Legendre, 2012) to 

compare how each sample was influenced by different ASVs as a means to evaluate the strength 

of the soil history effect. Briefly, this analysis identifies the relationship between two datasets from 

a common sample by projecting that sample into a common multivariate space. For this analysis 

the two datasets were the oomycete ASVs identified in this study—and were structured by soil 

history—and the bacterial ASVs identified from the same experiment, and extracted DNA samples, 

but were not structured by soil history (Blakney et al., 2022). This type of analysis is appropriate 

for exploring relationships in species-rich datasets—for example, where there are more ASVs than 

sites—and it imposes no assumptions on the datasets, such as co-occurrence, or interactions 

(Legendre & Legendre, 2012). 

The analysis identifies the axes of the common co-inertia space that represent the greatest 

inertia, or spread, of the common data. The analysis then compares how the positions of each 

sample in the new co-inertia space are influenced by particular bacterial or oomycete ASVs. The 

direction of the arrows indicates how a sample is influenced by bacterial ASVs (tail) compared to 

oomycete ASVs (head); samples with shorter arrows are more similar (Legendre & Legendre, 

2012; Mamet et al., 2017). Co-inertia analysis is also evaluated with a RV co-efficient (R = 

correlation, V = vectorial); a multidimensional correlation coefficient equivalent to the Pearson 
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correlation coefficient. A higher RV indicates a stronger relationship between the oomycete and 

bacterial community matrices (Legendre & Legendre, 2012; Iffis et al. 2016).  

Therefore, if soil history was particularly significant to the relationship between the 

bacterial and oomycete ASVs, the samples might be clustered by soil history on the common co-

inertia space. Alternatively, a weaker soil history may only be reflected in the shift from bacterial 

ASVs to oomycete ASVs. This might be plotted by longer arrows oriented toward common 

oomycete ASVs, which represent the different by soil histories. Finally, if soil history has little to 

do with the relationship between the bacterial and oomycete ASVs, there may be no discernable 

pattern in how the sample are plotted, and the arrows between communities would be short. 

First, to facilitate the analysis we reduced the bacterial phyloseq objects by removing any 

ASVs that occurred only once. The phyloseq objects for the oomycete and bacterial communities 

from the roots and rhizosphere of both field trials were transformed using Hellinger’s 

transformation. Finally, each oomycete-bacterial sample pair were subjected to co-inertia analysis 

using the coinertia function from the ade4 package (Dray & Dufour, 2007). The large number 

of ASVs identified here and from Blakney et al (2022), precluded us from plotting the ASVs onto 

the co-inertia plane. However as noted in Legendre & Legendre (2012) these plots are not essential 

to evaluating the co-inertia analysis.  
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Results 

The Brassicaceae rhizospheres had significantly different oomycete communities compared to the 

roots. 

 To identify the composition of the oomycete rhizosphere and root communities from the 

Test Phase Brassicaceae crop species, we inferred ASVs from the retained oomycete-specific ITS 

amplicons using the DADA2 pipeline (Callahan et al., 2016a & 2017). The four replicates of the 

oomycete mock community were sequenced to an average of ~23 000 reads, and closely resembled 

each other in ASV composition (Fig. S5B & C). From the retained MiSeq reads of the mock 

community, DADA2 inferred 316 individual ASVs which were assigned taxa to at least the order 

level as 2 Pythiales, 2 Peronosporales, 1 Saprolegniales, and 1 Albuginales (Fig. S5B). Since the 

mock community was composed of 21 individuals from these four orders (Table S2), this provides 

some reassurance that our pipeline ought to be effective in identifying the oomycetes present in 

each experimental sample.  

We retained 8 222 283 high-quality ITS MiSeq amplicons through the pipeline, with more 

reads retained in the rhizosphere samples of the Test Brassicaceae crop species in both Trials 

(Table 2; Fig. S5). The 1037 ASVs inferred from the retained reads, were subsequently filtered to 

412 oomycete ASVs identified among the Test Phase samples. Differences between the 

rhizosphere and root Test Phase oomycete communities were highly significant in both field trials 

(Trial 1 PERM R2 = 0.1226, p < 0.0001; Trial 2, PERM R2 = 0.0751, p < 0.0001, Table 3). The 

majority of oomycete ASVs were found in the rhizosphere compared to their cognate root samples 

(Table 2). The oomycete rhizosphere communities were also consistently more phylogenetically 

diverse than the root communities (Fig. 1), which reflects the greater species richness observed in 

the rhizosphere (Fig. S7).  
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Table 2. The oomycete rhizosphere communities had more unique ASVs than the root 

communities of five Brassicaceae host plants in the Test Phase of a two-year crop rotation, 

harvested from two field trials (Trial 1, 2016; Trial 2, 2017) from Swift Current, Saskatchewan. 17 

656 076 raw reads were produced via Illumina’s MiSeq at Génome Québec, and processed through 

DADA2, where 8 068 013 reads were retained (ITS reads reported here) for ASV inference. A total 

of 1037 ASVs were identified across the entire dataset, which were filtered to 412 oomycete ASVs. 

 

     

 

 
 

Retained ITS Reads 

(mean ± SD / sample) 

ASV Occurrence 

(mean ± SD / sample) 

ASV Abundance 

(mean ± SD / sample) 

Trial 1 

Rhizosphere 
2 178 736 

(36 312 ± 12 084 / sample) 
227 

(69 ± 34 / sample) 

 

1 353 787 
(22 563 ± 15 585 / sample) 

 

Roots 
1 785 905 

(29 765 ± 11 416 / sample) 

89 
(63 ± 36 / sample) 

 

81 396 
(1357 ± 4627 / sample) 

 

Trial 2 

Rhizosphere 
2 355 829 

(39 263 ± 14 105 / sample) 

218 
(74 ± 40 / sample) 

 

1 237 771 
(20 629 ± 16 799 / sample) 

 

Roots 
1 747 543 

(29 126 ± 11 252 / sample) 

43 
(56 ± 39 / sample) 

 

1820 
(33 ± 147 / sample) 
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Table 3. PERMANOVA identified that the compartment and soil history were significant 

experimental factors in structuring the oomycete communities from the Test Phase of a two-year 

crop rotation, harvested in 2016 (Trial 1) and 2017 (Trial 2) from Swift Current, Saskatchewan. 

Brassicaceae host crops were only significant in the Test Phase oomycete communities of Trial 1, 

while the Brassicaceae host ~ soil history interaction was never significant. The PERMANOVA 

was calculated using a Bray-Curtis distance matrix, with 9999 permutations. 

 

 

Experimental 

Factors 

Trial 1a  Trial 2 

F Model R2 Pr (> F)  F Model R2 Pr (> F) 
        

Compartmentb 17.8018 0.12264 0.0001  8.3717 0.07508 0.0001 

Soil Historyc 2.1235 0.02926 0.0015  1.6600 0.02977 0.0018 

Brassicaceae Hostd 1.8876 0.05202 0.0003  0.9364 0.03359 0.6464 

Compartment ~ 
Soil History 1.3196 0.01818 0.0941 

 
1.6202 0.02906 0.0020 

Compartment ~ 
Brassicaceae Host 1.7741 0.04889 0.0008 

 
1.0426 0.03740 0.3031 

Soil History ~ 
Brassicaceae Host 1.0734 0.05916 0.2367 

 
0.8299 0.05954 0.9822 

Compartment ~ 
Soil History ~ 

Brassicaceae Host 
0.9040 0.04982 0.7576 

 

0.8778 0.06298 0.9235 

a, Values in bold indicate significant factors, or interactions 
b, Rhizosphere or roots 
c, Fallow, lentil, or wheat 
d, Brassica carinata, B. napus, B. juncea, Sinapis alba, or Camelina sativa 
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Figure 1. Phylogenetic diversity tended to be higher in the oomycete rhizosphere communities (A, 

B, E, F) than in the root communities (C, D, G, H) from five Brassicaceae host plants in the Test 

Phase of a two-year rotation, harvested in 2016 (Trial 1, A-D) and 2017 (Trial 2, E-H) from Swift 

Current, Saskatchewan. Phylogenetic diversity also tended to be higher in the Brassicaceae host 

plants in Trial 2 (E, G) than Trial 1 (A, C). Diversity tended to be higher in the root communities 

in Camelina sativa compared to the corresponding rhizosphere communities only in Trial 2 (G vs 

E). As the transformed data did not adhere to assumptions of normality, the non-parametric Kruskal 

test was used to test for significance among the Test Phase oomycete communities grouped by 

Brassicaceae host crops, or by their Conditioning Phase soil histories; no significant differences 

were detected. 
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When the oomycete ASVs were plotted as taxa clusters, we observed similar taxonomic 

composition between the oomycete Test Phase rhizosphere and root communities from Trial 1 and 

2 (Fig. 2). Pythium species dominated the roots and rhizosphere in both trials in terms of relative 

abundance, while the order Peronosporales consistently had the most taxa across each community 

(Fig. 2). In Trial 1, Pythium and Peronospora genera were significantly enriched (p < 0.01) in the 

Test Phase rhizosphere communities compared to the roots, while in Trial 2, only Pythium species 

were significantly more abundant in the rhizosphere (Fig. S8). 

Indicator species analysis identified oomycete ASVs specific to the Test Phase rhizosphere 

communities in both trials, but none in the root communities. Forty-one ASVs were specific to the 

oomycete rhizosphere communities in Trial 1 (p < 0.005, Table 4), while no ASVs were specific 

to the root communities. Thirty-four ASVs belonged to the Pythiaceae, of which half were further 

identified as Pythium sp., two ASVs were Lagena sp., and one was Aphanomyces sp. (Table 4). 

The final four indicator ASVs were unknown oomycetes (Table 4). In Trial 2, indicator ASVs in 

the rhizosphere communities were similar to those from the rhizosphere of Trial 1; 45 ASVs were 

specific to the Test Phase rhizosphere communities in Trial 2 (p < 0.05, Table 4), whereas none 

were identified in the cognate root communities.  The Pythiaceae accounted for 37 of these ASVs, 

of which 19 were further identified as Pythium sp. (Table 4). Two ASVs were recognized as Lagena 

sp., one was Aphanomyces sp., while the remaining five ASVs were unknown oomycetes (Table 

4). All of the oomycete ASVs, including those identified by indicator species analysis as 

significant, were matched to plant pathogen functional lifestyles from the FungalTraits database 

(Põlme et al., 2020). 
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Figure 2. Taxa clusters of the oomycete ASVs inferred from among the rhizosphere and roots of five Brassicaceae host crops in the 

Test Phase of a two-year rotation from Swift Current, Saskatchewan. The abundance and composition of the oomycete communities are 

represented to the genus level, where the size of each taxonomic group (bubble) represents the abundance of inferred ASVs, and the 

colour scale represents the number of unique taxa. (A) In Trial 1 (harvested 2016), Pythium dominated in both the rhizosphere (left) and 

root (right) communities, while the genera Aphanomyces, Lagena, and Peronospora, were dramatically reduced between the rhizosphere 

and the root communities. (B) Significantly enriched taxa, labelled in bold, were identified between each pair of Brassicaceae host crops 

in Trial 1 rhizosphere (top panel), and root (bottom panel). Taxa that were significantly more abundant are highlighted brown or green, 

following the labels for each compared factor. Differential taxa clusters identified significantly enriched (ie, abundant) taxa, using the 

non-parametric Kruskal test, followed by the post hoc pairwise Wilcox test, with an FDR correction. No enrichment was detected for 

Trial 2, nor did soil histories enrich any taxa in either experiment. (C) In Trial 2 (harvested 2017), similar to A, Pythium dominates in 

both the rhizosphere and root communities, though there are very few oomycete ASVs detected in the Brassicaceae root communities. 
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Table 4. Indicator species were identified exclusively in the oomycete rhizosphere communities in 

the Test Phase of a two-year crop rotation, harvested in 2016 (Trial 1) and 2017 (Trial 2) from 

Swift Current, Saskatchewan. In Trial 1, 41 ASVs were identified as indicator species in the Test 

Phase rhizosphere communities, while 45 ASVs were identified in Trial 2, notably from the same 

taxonomic groups. ASVs from the rhizosphere communities were also significant in specific soil 

histories established in the previous Conditioning Phase: in Trial 1, five ASVs were associated 

with the lentil soil history, while in Trial 2, 11 ASVs were again associated with the lentil soil 

history, and one ASV was associated with wheat soil history. No indicator species were identified 

for any of the five Brassicaceae host crops. Indicator species analysis relies on abundance and site 

specificity to statistically test each ASV, which we report here as p < 0.05, with a FDR correction. 

 

 

 

   

Most Closest Taxon 
Trial 1 Trial 2 

  

Compartmenta (p < 0. 05) Compartment (p < 0.05) 
   

Aphanomyces sp. Rhizosphere Rhizosphere 

Lagena sp. Rhizosphere, 2x ASVs Rhizosphere, 2x ASVs 

Pythium sp. Rhizosphere, 17x ASVs Rhizosphere, 19x ASVs 

Pythiaceae Rhizosphere, 17x ASVs Rhizosphere, 18x ASVs 

Unknown Oomycetes Rhizosphere, 4x ASVs Rhizosphere, 5x ASVs 
   

   

 Soil Historyb (p < 0. 05) Soil History (p < 0. 05) 
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Pythium sp. Rhizosphere/Lentil - 

Pythiaceae Rhizosphere/Lentil, 4x ASVs Rhizosphere/Lentil, 11x ASVs 

Aphanomyces sp. - Rhizosphere/Wheat  

a, Rhizosphere communities, but never root communities 
b, Fallow, lentil, or wheat, grown the previous year 
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Soil history significantly structured the soil oomycete communities of Brassicaceae crops 

Next, we tested if the three soil histories established by the previous crops structured 

significantly different oomycete communities. Soil history was significant in structuring the Test 

Phase oomycete communities in both field trials (Trial 1, PERM R2 = 0.0292, p < 0.0015; Trial 2, 

PERM R2 = 0.0300, p < 0.0018, Table 3), though the soil history ~ crop host interaction was not 

significant in either trial. We complemented the PERMANOVA by a variance partition to model 

the explanatory power of each factor (soil histories, soil chemistry, and the Brassicaceae host 

crops). Variance partitioning found that soil history explained similar amounts of the oomycete 

rhizosphere community data in both field trials (Trial 1 R2 = 0.0453, p < 0.001, Fig. 3A; Trial 2 R2 

= 0.0476, p < 0.001, Fig. 3C). We also quantified how the experimental factors impacted the 

oomycete community structure with an RDA. Soil history was highly significant for the Test Phase 

oomycete rhizosphere communities in both field trails (Trial 1 adj. R2 = 0.0539, p < 0.001, Fig. 4A; 

Trial 2 adj. R2 = 0.0727, p < 0.001, Fig. 4B), where the communities were grouped by soil history 

(Fig. 4). 

Soil history was less consistent in the oomycete root communities of both field trials. First, 

it explained a similar amount of the variance in the Test Phase root community data as in the 

rhizosphere communities in Trial 1 (R2 = 0.0418, p < 0.001, Fig. 3B), but was not significant in the 

root community data of Trial 2 (Fig. 3D). Second, RDAs demonstrated the importance of soil 

history in the oomycete root communities of both trials (Trial 1 adj. R2 = 0.0429, p = 0.007, Fig. 

S9A; Trial 2 adj. R2 = 0.0403, p = 0.005, Fig. S9B). Though they were less significant compared 

to the rhizosphere (Fig. 4), they explained a similar amount of the data (R2 = ~0.04, Fig. 4 & S9). 

A gradient separating the oomycete root communities based on their previous soil history was 

observed in Trial 2 (Fig. S9B), similar to the corresponding rhizosphere communities (Fig. 4), but  
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Figure 3. Soil chemistry, soil history, and the Brassicaceae host crops were each influential in structuring the oomycetes communities 

in the rhizosphere and roots, from the Test Phase of a two-year crop rotation, harvested in 2016 (Trial 1) and 2017 (Trial 2) from Swift 

Current, Saskatchewan. Soil history explained a consistent amount of variance in the oomycete communities (A, B, & C). The current 

soil chemistry consistently explained the most variance in the oomycete communities (A, B, & D), except in the roots of Trial 1, where 

soil chemistry explained the least variance. In Trial 1 (A & B), the influence of the host plants increased between the rhizosphere 

communities (A) and the roots (B). Bray-Curtis distances were used in the variance partition. 
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Figure 4. Soil history was significant in structuring the oomycete rhizosphere communities in both field trials of a two-year crop rotation,  

harvested in 2016 (Trial 1, A) and 2017 (Trial 2, B) from Swift Current, Saskatchewan. Distance-based redundancy analyses quantified 

how soil history impacted the oomycete community structure, where communities with similar composition appear closer together. 
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was less obvious in Trial 1 (Fig. S9A).  

Soil history also determined indicator species identified in the Test Phase rhizosphere 

communities in both field trials. In Trial 1, five oomycete ASVs were specific to rhizosphere 

communities with lentil crop histories; four were recognized as Pythiaceae and the fifth as a 

Pythium sp. (Table 4). In Trial 2, 11 Pythiaceae ASVs were specific to rhizosphere communities 

with the lentil soil history (p < 0.05, Table 4), while another Pythiaceae ASV was specific to 

rhizosphere communities with the wheat soil history (Table 4).  

 

The Brassicaceae crop hosts had limited influence on their oomycete communities 

Brassicaceae hosts had a significant effect on oomycete community structure in Trial 1 (R2 

= 0.0520, p < 0.0003, Table 3), but not in the dry year of Trial 2. The variance partition illustrated 

that the Brassicaceae crop hosts accounted for 4.67% of variance of the Test Phase rhizosphere 

community data in Trial 1 (Fig. 3A). However, Brassicaceae crop hosts were not significant in the 

variance partition of Trial 2 (Fig. 3C & D). RDA also supported the significance of the 

Brassicaceae crop host in the oomycete rhizosphere communities in Trial 1 (R2 = 0.0454, p = 0.006, 

Fig. S10A), but was not significant in Trial 2. The first RDA axis showed a gradient among 

oomycete communities between C. sativa and S. alba, with a notable amount of overlap. 

Interestingly, the second axis showed a gradient between soil histories, with the majority of 

communities from lentil sites clustered in the bottom left (Fig. S10A).  

In the oomycete root communities, Brassicaceae crop hosts explained the most variation in 

Trial 1 (R2 = 0.0719, p < 0.001, Fig. 3B), but were not significant in the variance partition of the 

root communities in Trial 2, similar to the rhizosphere in Trial 2. RDA also illustrated the 

importance of the Brassicaceae crop hosts in structuring the Test Phase oomycete root 

communities (R2 = 0.0961, p = 0.002, Fig. S10B) in Trial 1, but not in Trial 2. Oomycete root 
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communities from C. sativa and B. carinata had more distinct clusters than the other three crop 

hosts in Trial 1 (Fig. S10A). 

Differential taxa clusters from Trial 1 identified variations between Brassicaceae hosts in 

Trial 1, but not in the dry year of Trial 2. The Test Phase oomycete communities in S. alba 

rhizospheres were depleted in Lagena sp. ASVs relative to the rhizosphere communities of both B. 

napus and C. sativa (p < 0.06, Fig. 2B). S. alba root (p < 0.01) and rhizosphere (p < 0.06) 

communities were also depleted in Pythiaceae ASVs relative to the oomycete communities of B. 

carinata (Fig. 2B). Test Phase oomycete root communities from B. carinata were enriched in 

Pythium sp. ASVs, compared to B. napus (p < 0.01, Fig. 2B). Indicator species analysis did not 

identify any oomycete ASVs as specific to any of the five Brassicaceae host crops in either field 

trial. 

 

Soil chemistry significantly influenced the oomycete rhizosphere and root communities 

Variance partitioning revealed that the soil chemistry was the most significant factor in the 

oomycete rhizosphere communities in both field trials (Trial 1 R2 = 0.0945%, p < 0.001, Fig. 3A; 

Trial 2 R2 = 0.2024, p < 0.001, Fig. 3C). RDA also supported that soil chemistry was the most 

explicative experimental factor of the Test Phase oomycete rhizosphere communities in both trials 

(Trial 1 adj. R2 = 0.1004, p = 0.012, Fig. 5A; Trial 2 adj. R2 = 0.271, p < 0.001, Fig. 5B). These 

data indicate that the Test Phase oomycete rhizosphere communities were strongly shaped by soil 

chemistry in both field trials. This effect was stronger in the rhizosphere during the dry year of 

Trial 2. 
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Figure 5. Soil chemistry was the most significant factor structuring oomycete community 

structures in the rhizosphere (A, R2 = 0.1004, p - 0.012; B, R2 = 0.271, p < 0.001) from both field 

trials, as well as in the roots from five Brassicaceae crop hosts from Trial 2 (C, R2 = 0.1148, p < 

0.001) in the Test Phase of a two-year crop rotation, harvested in 2016 (Trial 1), and 2017 (Trial 

2) from Swift Current, Saskatchewan. Distance-based redundancy analyses quantified how soil 

chemistry structured oomycete community structure, where communities with similar composition 

appear closer together. The largest factors in the rhizosphere were (A): iron, calcium, nitrate, and 

manganese, which contrasted with pH; and (B) calcium contrasting with manganese, and to a 

smaller extent zinc, magnesium opposed organic carbon, conductivity and pH contrasted total 

nitrogen; iron was also a strong factor. (C) the largest factor in the root communities were 

magnesium, which was weakly contrasted with calcium, while conductivity contrasted with iron. 

Note that in B and C total carbon was explained by organic carbon, while Zn was explained by Cu 

in C. 
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In the oomycete root communities, soil chemistry explained the least amount of variation 

in Trial 1 (R2 = 0.0330, p < 0.001, Fig. 3B), but was the only significant factor during the dry year 

in Trial 2 (R2 = 0.0576, p < 0.035, Fig. 3D). RDA also supported the significance of soil chemistry 

on the Test Phase oomycete root communities in Trial 2 (adj. R2 = 0.1148, p < 0.001, Fig. 5C), but 

not in Trial 1. The data suggests that soil chemistry was only influential in the oomycete root 

communities during the dry year of Trial 2, when the effects of soil history and Brassicaceae crop 

host were reduced on structuring the communities. 

 

Co-inertia analysis between the Brassicaceae oomycete and bacterial communities 

We used a co-inertia test to investigate how influential soil history was on the relationship 

between the Test Phase oomycete communities investigated here and the previously identified 

bacterial communities (Blakney et al., 2022). In Trial 1, the root and rhizosphere samples had 

similar RV coefficients, 0.6291 and 0.7049, respectively, suggesting that the oomycete and 

bacterial communities did have significant relationships in both compartments. The rhizosphere  

samples were plotted on the first and second axes which represented 8.185% and 6.551% of the 

co-inertia. The low inertia suggests little influence of the two sets of ASVs on the samples. This is 

further illustrated in that the majority of the 60 samples in Trial 1 appeared quite similar, as they 

remained clustered together toward the centre of the plot. Rhizosphere samples from plots 17, 41, 

46, and 51, were relatively more influenced by the presence of particular microbial ASVs, as they 

are further from the centre (Fig. S11A). Only samples 17 and 51 illustrated any noticeable 

divergence between which microbial ASVs influenced their structure, given their appreciable 

arrow lengths.  

 The root samples from Trial 1 captured 9.404% and 7.682% of the co-inertia in the first 

and second axes, respectively, which suggests minimal influence of the ASVs on each sample, 
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similar to their corresponding rhizosphere communities. Most of the root samples were also 

clustered together in the co-inertia plot; only samples 47 and 51 were noticeably influenced by the 

presence of particular microbial ASVs, given their less central positions. The arrow length of the 

root sample from plot 47 suggests it diverged between which microbial ASVs influenced their 

structure (Fig. S11B).  

 In Trial 2, the root and rhizosphere samples had less similar RV coefficients; the oomycete 

and bacterial communities had a significant relationship (RV = 0.8307) in the rhizosphere samples, 

but not in the root samples (RV = 0.5767). The first and second axes for the rhizosphere samples 

represented 12.776% and 4.578% of the co-inertia, respectively. Given the low inertia the 

rhizosphere samples appeared to be weakly influenced by the two datasets of microbial ASVs. 

Nonetheless, Trial 2 rhizosphere samples were more heterogenous as they were more dispersed 

compared to the rhizosphere samples from Trial 1, with samples 22 and 30 being distinctly 

different (Fig. S11C). Finally, the influence of the microbial ASVs only appeared to shift in 

samples 19 and 30, as shown by their arrow lengths. 

 The Trial 2 root samples captured 8.880% and 8.131% of the co-inertia in the first and 

second axes, respectively. Again, the low inertia suggests minimal influence of microbial ASVs 

on each sample, which is similar to their corresponding rhizosphere communities. Unlike the 

rhizosphere samples, however, the root samples were tightly clustered; only sample 51 was 

noticeably influenced by particular microbial ASVs. The arrow length of sample 51 also suggests 

the influence of the microbial ASVs shifted between the bacterial and oomycete communities (Fig. 

S10C). 
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Discussion 

 How soil history established by previous plant-soil microbial communities conditions 

future generations of oomycete communities remains relatively unknown. Oomycetes are vastly 

understudied compared to bacteria and fungi, yet are important microbial communities, especially 

for agriculture where many oomycetes are responsible for severe declines in yields. In this study, 

we investigated the impact of three different soil histories established by the previous year’s crops 

on the soil oomycete communities associated with five Brassicaceae oilseed host crops. The semi-

nested ITS amplicon strategy we incorporated with MiSeq metabarcoding specifically targeted 

oomycetes and has been previously shown to limit off-target amplification from the ITS region of 

other eukaryotes (Sapkota & Nicolaisen, 2015; Taheri et al., 2017b). The oomycete metabarcoding 

data illustrated that soil history had a greater influence on the communities than the Brassicaceae 

host crops, while soil chemistry structured the oomycete communities more during the dry field 

trial. Our results highlight the impact of edaphic factors over different growing seasons and the 

importance of monitoring and quantifying oomycete biodiversity. 

 

Soil history significantly impacted the oomycete rhizosphere communities 

The previous crops, and their agricultural treatments, impacted the subsequent oomycete 

communities through plant-soil microbial community feedback. We hypothesized that the three 

soil histories established by the previous crops would structure significantly different oomycete 

communities, regardless of their current Brassicaceae host, in both the roots and rhizosphere. Our 

data illustrated that this was largely sustained; we found consistent support for soil history 

influencing the structure of the oomycete rhizosphere communities of both field trials, as well as 

the root communities in Trial 2 (Table 3, Fig. 3). Moreover, gradient analysis (Fig. 4 & S9) 

highlighted how different oomycete communities tended to cluster according to the soil histories 
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established by the previous crops, especially among the rhizosphere communities. These are 

exciting results as they raise more questions about oomycete community dynamics and their 

interactions with different soil histories established through crop rotations. 

In this study, we found that the oomycete communities were significantly structured by 

each of the three previously established soil histories. Conversely, we observed little effect from 

the current Brassicaceae crop hosts to re-structure the oomycete communities. Plant-microbial 

community feedback from new host plants has shown to be able to quickly erase the soil history 

established by a previous plant and modify bacterial communities (Kaisermann et al., 2017; 

Hannula et al., 2021; Blakney et al., 2022). Crop rotations, for example, have previously 

demonstrated to quickly adjust subsequent bacterial communities via plant-microbial community 

feedback mechanisms (Hamel et al., 2018; Blakney et al., 2022). Important fractions of bacterial 

rhizosphere communities tend to be fast-growing and have rapid turn-over, which may allow 

bacterial communities to be more responsive to the dynamic needs of their host plants (Mendes et 

al., 2011; Castrillo et al., 2017). 

However, experimental evidence has suggested that such feedback mechanisms are not 

sufficient to alter fungal communities (Kaisermann et al., 2017; Hannula et al., 2021). One 

suggestion for why the influence of established soil history varies between bacterial and fungal 

communities has been due to their different growth rates (Semchenko et al., 2018; Hannula et al., 

2021). Compared to the rapidly growing components of plant bacterial communities, fungal 

communities tend to remain more stable through time. Fungal growth appears more steady and 

less influenced by host plant feedback mechanisms, which limits how responsive fungal 

communities might be to the influence of new host crops (Kaisermann et al., 2017; Hannula et al., 

2021).  
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Although oomycetes are not fungi, and have vastly different evolutionary origins (Fawke 

et al., 2015; Kamoun et al., 2015; Schwelm et al., 2017), our data illustrates a similar trend, where 

oomycetes, like fungi, remained relatively unaffected by changes in hosts, possibly due to their 

growth rate. Complementary to this idea is that oomycete oospores can persist from year to year 

and are constitutively dormant, such that not all oospores germinate at the same time even under 

optimal conditions (Martin & Loper, 1999; Fernández-Pavía et al., 2004; Kikway et al., 2022; 

Subila & Suseela, 2022). This could also help to account for why oomycete communities may 

appear less affected by the influence of the new Brassicaceae hosts feedback mechanisms 

(Kaisermann et al., 2017; Hannula et al., 2021). 

In fact, our results illustrate that the soil history established by the previous lentil and wheat 

crops helped to structure distinct oomycete communities that were still detectable the following 

year (Fig. 4 & S9, Table 4). The lentil-specific oomycete rhizosphere community we detected in 

both field trials may be unsurprising, since legumes, including lentils, tend to retain more soil 

moisture compared to other crops, and soil moisture is a key factor for oomycete growth. Recent 

studies have also suggested that lentils have an increased vulnerability to oomycete outbreaks 

(Hwang et al., 2015; Rojas et al., 2017; Karppinen et al., 2020). Finally, Pythiaceae have 

previously been reported in Canadian pea fields (Taheri et al., 2017a), thus detecting a variety of 

Pythiaceae ASVs specific to the lentil soil history seems reasonable. 

Somewhat more unexpected was the Aphanomyces ASV specific to the rhizosphere 

communities in Trial 2 with wheat soil history (Table 4). Most of the interest concerning the 

Aphanomyces focuses on A. cochlioides and A. euteiches, which are well described pathogens 

specific to sugar beets and legumes, respectively (Diéguez-Uribeondo et al., 2009). However, there 

is a divergent lineage that consists of saprotrophs and opportunistic plant pathogens that are not 

known to maintain specific hosts (Diéguez-Uribeondo et al., 2009). A saprotrophic oomycete 
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capable of degrading wheat residues might explain the Aphanomyces ASV identified among the 

rhizosphere communities with wheat soil history from Trial 2. 

However, oomycete functional lifestyles can actually be rather diverse (Fiore-Donno & 

Bonkowski, 2021). Even though the putative lifestyles identified the ASVs we reported as plant 

pathogens—which is concordant with the number of Pythium and Phytophthora ASVs we 

identified, and with other metabarcoding surveys (Fiore-Donno & Bonkowski, 2021)—these 

lifestyle assignments can still contain a range of functions (Fiore-Donno & Bonkowski, 2021). For 

example, oomycete plant pathogens exist in an array of biotrophic and hemibiotrophic capacities 

(Fiore-Donno & Bonkowski, 2021) in terms of timing, specificity and duration (Fiore-Donno & 

Bonkowski, 2021). Furthermore, hemibiotrophs can also live saprotrophically in the soil in the 

absence of a plant host and have even been shown to play important roles in decomposition 

(Lifshitz & Hancock, 1983; Kramer et al., 2016). Thus, the wheat-specific Aphanomyces ASV we 

detected may hint at more diverse functions among this group of oomycetes. 

 

Oomycete communities were not influenced by Brassicaceae crops during the drier field trial 

Although our initial hypothesis concerning soil history was largely supported, we did 

nonetheless observe an influence of the Brassicaceae crop hosts on the oomycete communities, 

but only during Trial 1 (Fig. 3, Table 3), and particularly in their roots (Fig. S10). This is an 

interesting finding given that the root communities we identified were noticeably reduced and less 

diverse compared to their cognate rhizosphere communities. To reduce any rhizosphere-rhizoplane 

influence on the root communities, we used a rigorous protocol where we scrapped off attached 

soil from the roots, and repeatedly washed the roots to remove the rhizosphere. In theory, 

additional surface washes, or surface sterilization may have further reduced any residual 

rhizosphere-rhizoplane influence on the root communities.  
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Plant hosts ought to have the most influence to select for microbial communities in their 

roots, compared to the rhizosphere, or leaf surface (Gavrin et al., 2020; Maciá-Vicente et al., 

2020). While our data illustrates that the Brassicaceae host crops were quite significant in the roots 

during Trial 1 (Fig. 3 & S9), we did not detect any oomycete ASVs as indicator species from any 

of the five hosts (Table 4).  Furthermore, we observed a considerable amount of overlap among 

the oomycete root communities, notwithstanding the more distinct clusters of communities from 

C. sativa and B. carinata (Fig. S10). Our data may indicate that the influence of the Brassicaceae 

hosts on the oomycete root communities was insufficient to structure more distinct groups of 

oomycetes. Similar results were found for the communities from different cultivars of 

Rhododendron (Foster et al., 2020). This weaker effect of plant hosts could be due to other 

competing factors, such as the previous soil history, or current soil chemistry. Alternatively, the 

close genetic relationship of the host plants may preclude us from identifying more specific 

oomycete assemblages (Foster et al., 2020; Blakney et al., 2022). 

Moreover, there was no influence of any of the Brassicaceae crops on the oomycete 

communities during Trial 2 that we observed, despite following identical experimental protocols, 

and the use of the same agricultural management practices and inputs. The disparate observations 

between the two field trials could be due to the environmental conditions being 6x drier during 

Trial 2: 55.0 mm of precipitation versus 328.4 mm in Trial 1 (Blakney et al., 2022). The 

Brassicaceae host plants appeared to be restricted in growth due to the dry conditions (Fig. S3), 

which would also constrain their nutrient uptake from the soil, and rhizodeposition (Fitzpatrick et 

al., 2018). Therefore, if the reciprocal plant-soil microbial community feedback was impaired due 

to the availability of water, it could account for the absent influence of the Brassicaceae hosts on 

the oomycete communities in Trial 2. 
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The drier field conditions of Trial 2 may also have had an impact on the oomycete 

community itself. Oomycetes prefer high soil moisture for motility, subsequent infection and 

growth, and the completion of their life cycle (Martin & Loper, 1999; Fawke et al., 2015; Martiny 

et al., 2015; Rojas & Huang, 2018). Our data demonstrates a similar community composition 

between both field trails, though with reductions in sequencing reads and diversity in Trial 2. This 

could be evidence for how the drier conditions impacted the community. Quantifying community 

sizes could help determine this in future experiments. 

Nonetheless, the impact of the Brassicaceae crop hosts remained limited, as the structure 

of the oomycete communities remained significantly influenced by the previous crops. This could 

indicate that these specific crops may not be effective as a strategy to limit the accumulation of 

potentially pathogenic oomycetes in the soil over the short term. Various crop rotations, including 

those involving Brassicaceae, have been shown to help control phytopathogens by restructuring 

the microbial communities from one season to the next (Etesami & Alikhani, 2016; Yang et al., 

2021). Such shifts generally occur through plant-soil feedback processes, such as rhizodeposition, 

or by producing anti-microbial compounds (Krasnow & Hausbeck, 2015; Lebeis et al., 2015; 

Revillini et al., 2016; Korenblum et al., 2020; Kawasaki et al., 2021; Yu et al., 2021). For example, 

Brassicaceae crops produce anti-microbial glucosinolates, which have been used to control 

phytopathogens, including oomycetes (Krasnow & Hausbeck, 2015). However, our data illustrates 

that the five Brassicaceae crops were unable to sufficiently alter the soil history established by the 

previous crops, given that the oomycete communities remained significantly structured by soil 

history. This could suggest that these crop rotations may be insufficient to control oomycete 

phytopathogens in the short term.  

In addition, we observed that B. carinata crop hosts were significantly enriched in 

Pythiaceae ASVs in their root and rhizosphere communities compared to the other Brassicaceae 
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hosts (Fig. 2B). This could suggest that B. carinata may be more susceptible to oomycete 

accumulation. Conversely, we also noted that S. alba hosts were depleted in Lagena and 

Pythiaceae ASVs in their rhizosphere communities (Fig. 2B), compared to the other Brassicaceae 

crop hosts. This might demonstrate increased resistance to accumulating these oomycetes in their 

rhizosphere. These two examples warrant further study to help evaluate how effective these 

particular crop rotations may be at limiting oomycete infections. 

Further to this, our study points out three recommendations needed to better understand the  

phytopathogenicity of oomycetes: first, biodiversity monitoring should inventory the oomycete 

communities established at the end of each growing season and observe which ASVs persisted in 

a given plot (Derevnina et al., 2016; Gómez et al., 2021). Second, quantifying the size of each 

community would help determine if crop rotations actually limit, or reduce, the growth of the 

oomycete communities. Third, since the impact of a crop may not be observed during the active 

growing season (Hamel et al., 2018), longer field trials with multiple timepoints could help 

confirm our findings. These additional steps may provide a more nuanced understanding of the 

dynamics within oomycete communities and help determine the utility of crop rotations as a 

strategy to limit the accumulation of oomycete phytopathogens in agricultural soil. 

 

Soil chemistry constrained the oomycete community structure 

Although we initially sought to test the influence of soil history on structuring oomycete 

communities, our data revealed that the soil chemistry had the strongest influence in the 

rhizosphere during both field trials, and among the root communities during the dry season in Trial 

2 (Fig. 3 & 5). In our agricultural setting, soil chemistry was largely a synthesis of the previous 

soil history, current agricultural management practices, and the plant-microbial community 
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feedback mechanisms (Bouffaud et al., 2014). These processes interact to yield a number of 

edaphic conditions previously identified to promote oomycete growth.  

For example, soils with excessive or insufficient nutrients for their local microbial 

communities are prone to outbreaks of oomycete infections, as soil nutrient imbalance provides 

niche space for them (Löbmann et al., 2016; Rojas et al., 2017). Indicators of soil nutrient balance 

may include conductivity, cation exchange capacity (EC), total nitrogen, and total carbon 

(Löbmann et al., 2016; Rojas et al., 2017; Karppinen et al., 2020). Although none of the measured 

edaphic factors were particularly related to the communities observed in Trial 1, oomycete 

rhizosphere and roots communities with lentil soil histories were strongly associated with EC in 

Trial 2 (Fig. 3). Soil moisture is another key factor in promoting oomycete growth and is 

compounded by seeding into cool (< 16°C) soils (Hwang et al., 2015; Rojas et al., 2017; Karppinen 

et al., 2020). These conditions favour the release and chemotaxis of oomycete zoospores (Martin 

& Loper, 1999; Fawke et al., 2015). Therefore, we might have expected to observe a more dramatic 

change in the oomycete rhizosphere community between the wetter season of Trial 1 and the dry 

season of Trial 2. 

The importance of soil chemistry may also be reflected in the results of our co-inertia 

analysis. This analysis illustrated that although the oomycete and bacterial data tended to have a 

significant relationship, neither community was particularly vital in the roots nor the rhizosphere, 

and nor did any of the three soil histories influence their relationship (S11). Given that both of 

these microbial communities were derived from the same soil samples, they were more likely to 

experience the same edaphic factors. Therefore, the lack of obvious influences in the co-inertia 

analysis could be due to the oomycete and bacterial communities being similarly constrained by 

their common soil chemistry. 
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Microbes largely share basic biological reactions to abiotic factors, such as changes to pH, 

temperature, or water availability (Martiny et al., 2015). For example, bacteria, fungi, oomycetes, 

among others, require water for chemotaxis and locomotion, as well for maintaining turgor 

pressure (Martiny et al., 2015; Rojas & Huang, 2018). Cellular function requires the correct 

regulation of pressure, without which cells are unable to grow, divide, or move (Rojas & Huang, 

2018). Although microbes have evolved a number of specialized tactics to regulate osmolarity, 

water stress, among other limitations imposed by soil chemistry, remain common constraints 

(Martiny et al., 2015).  Therefore, the homogeneity we observed from the co-inertia analysis could 

reasonably be due to the oomycete and bacterial communities being similarly constrained by their 

common soil chemistry. 

 

Conclusion 

 Oomycetes are major global phytopathogens, yet are understudied compared to other 

microbes. Here, we have shown for the first time the important role of soil history in structuring 

oomycete rhizosphere and root communities. We tested three different soil histories and found that 

none of the five planted Brassicaceae oilseed crops were able to restructure the oomycete 

communities the following year. We also took a novel approach in investigating how oomycete 

and bacterial communities may have structured one another. To our knowledge this is the first 

demonstration of the weak impact between the two microbial communities. Rather, the similarities 

between the two microbial communities may be due to being constrained by common edaphic 

factors. This study advances our understanding of how different agricultural practices can impact 

future microbial communities differently. Our results also highlight the need for continued 

monitoring of oomycete biodiversity and quantification. 
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Supplementary Materials 

 

Table S1. Nitrogen (N), phosphorous (P), potassium (K), and sulfur (S), available in the soil upon 

establishing the Test Phase, and the fertilizer that was subsequently applied during the Test Phase 

for the experiment at Swift Current, Saskatchewan. Adapted from Hossain et al., 2019. 

 

 

Swift Current Test Phase Plot Fertilization (N-P2O5-K2O-S kg ha -1) 

    

 Soil History Nutrients Availablea Fertilizer Applied 

Trial 1 

Chem-fallow 37-34-646-22 48-7-0-10 

Lentil 20-33-578-28 65-7-0-10 

Wheat 18-31-511-19 68-7-0-10  

Trial 2 

Chem-fallow 42-34-446-83 55-7-0-10 

Lentil 30-43-488-83 43-7-0-10 

Wheat 18-26-482-82 67-7-0-10 

a, Measurements taken at Brassicaceae planting prior to fertilizing, with available N and S 
measured at 0–60 cm depth, P and K at 0–15 cm depth. 
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Table S2. Oomycete strains that composed our mock community, which were included on each 

plate (Figure 2). The oomycete mock community we assembled contained DNA from these 21 

oomycete taxa in staggard copies / µL of ITS1 sequences, as per Bakker (2018). A copy of the 

mock community was included on each 96-well plate submitted for sequencing. Taxa are provided 

below to illustrate the level of comparison.  

 

Oomycetes Copies of 
ITS Orders  

   

Albuginales Albugo candida 2v ~ 100 

Saprolegniales Aphanomyces euteiches 2 10 000 

 Aphanomyces euteiches 206C 1000 

Peronosporales Phytophthora sojae 31594R 1 000 000 

 Phytophthora sojae 31461 500 000 

 Phytophthora capsici 31710 250 000 

 Phytophthora capsici 31598C 100 000 

Pythiales Pythium dissotocum 31309R 20 000 000 

 Pythium sylvaticum 31411R 1 000 000 

 Pythium sylvaticum 31392R 1 000 000 

 Pythium vanterpoolii 31799 750 000 

 Pythium irregulare  30717 500 000 

 Pythium sylvaticum 31019R 500 000 

 Pythium torulosum 31800 250 000 

 Pythium conidiophorum 30918R 100 000 

 Pythium sylvaticum 30623 100 000 
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 Pythium arrhenomanes 30886 75 000 

 Pythium ultimum 50 000 

 Pythium heterothallicum 30538 50 000 

 Pythium irregulare 30717 25 000 

 Pythium irregulare 1000 
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Figure S1. Field plans for the experiment. A two-phase cropping sequence—consisting of a Conditioning Phase the first year, and a Test 

Phase in the second year—was repeated in two field trials, Trial 1, 2015-2016, and Trial 2, 2016-2017, on adjacent sites in a field previously 

growing spring wheat (Triticum aestivum cultivar AC Lillian). The experimental design was a split-plot replicated in four complete blocks. 

In the ‘Conditioning Phase’, three soil history treatments were randomly assigned, consisting of spring wheat (Triticum aestivum, cv. AC 

Lillian), red lentil (Lens culinaris cv. CDC Maxim CL), or left fallow (brown, black, green, respectively). In the ‘Test Phase’, the 

conditioned plots were each subdivided and five Brassicaceae oilseed crop species were randomly assigned to one of these five subplots. 

Thus, each experiment had 60 subplots to sample. (A) Trial 1 field plan for the Brassicaceae crops, which were Ethiopian mustard (Brassica 

carinata L., cv. ACC110), canola (B. napus L., cv. L252LL), oriental mustard (B. juncea L., cv. Cutlass), yellow mustard (Sinapis alba L., 

cv. Andante), and camelia (Camelina sativa L., cv. Midas). Boarder space between plots and blocks is in white. (B) Trial 2 field plan for 

the same Brassicaceae crops. For further details of this well-described experiment and its design, see Hossain et al. (2019), Liu et al. 

(2019), and Wang et al. (2020). 
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Figure S2. Organization of our lab workflow for the Test Phase Brassicaceae samples from 

harvest to generating amplicon sequence variants (ASVs). The Test Phase Brassicaceae samples 

were harvested in mid-late July. Four plants from two different locations within each of the 60 

subplots were excavated and pooled together as a composite sample (Hossain et al., 2019; Liu et 

al., 2019, Wang et al., 2020). In the field, each plant had its rhizosphere soil divided from the root 

material, both portions were immediately flash-frozen in liquid nitrogen, and kept on ice. In the 

lab, roots were ground in liquid nitrogen, and DNA was extracted from all the Test Phase 

Brassicaceae root and rhizosphere portions. No-template extraction controls were included to 

assess what contaminates, or biases, the extraction kits might impart. We confirmed by gel 

electrophoresis that the no-template extraction controls contained DNA prior to sequencing. All 

DNA samples were submitted to Génome Québec for semi-nested ITS PCR amplification, library 

preparation, and paired-end 250 bp Illumina MiSeq sequencing. All reads were subsequently 

trimmed using cutadapt and processed through the DADA2 pipeline for ASV inference. 
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Figure S3. Brassicaceae host dry weights (g) decreased in Trial 2 (black outlines), compared to 

Trial 1 (no outlines). The Test Phase Brassicaceae samples were harvested in mid-late July, at 

Swift Current, Saskatchewan. The aerial portions were retained and dried to determine their 

weight.  
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Figure S4. A standard curve of the ITS copy numbers (X-axis) versus the number of cycles 

required for detection (cycle threshold, Ct, Y-axis), as determined from the serial dilution of a 

quantified ITS amplicon from concentrated Pythium ultimum. 
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Figure S5. (A) The DADA2 workflow processed 17 656 076 raw reads produced from one lane of sequencing via Illumina’s MiSeq at 

Génome Québec in order to infer amplicon sequence variants (ASVs). Reads were produced in each of the no-template negative controls, 

although no DNA was detected in these samples post-extraction. The stringency of the filterAndTrim step eliminated nearly all the 

reads from these samples. 8 222 283 high-quality reads were retained among the Test Phase Brassicaceae samples. Among the Test 

Phase Brassicaceae samples, the rhizosphere samples retained noticeably more reads than their root partners. (B) Mock communities 

were assembled from known oomycete DNA and sequenced with experimental samples to confirm that various taxonomic groups of 

oomycetes were detectable with our pipeline. The mock communities were dominated by Pythiaceae, which is reflected in the 

composition of the mock sequences. (C) With the Pythiaceae sequences are removed, the number of Peronosporales and other groups 

become more evident. 
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Figure S6. Rarefaction curves illustrated that the majority of the oomycete communities were identified in (A) Trial 1, and (B) Trial 2. 

The samples were harvested from two field trials during the Test Phase of a two-year crop rotation, in Swift Current, Saskatchewan. 
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Figure S7. Taxa-based a-diversity indices (y-axis) for the rhizosphere (A & C) and root (B & D) 

communities from field trial 1, harvested 2016, and trial 2, harvest 2017. Each a-diversity index 

was grouped by Brassicaceae host, and reflect the phylogenetic diversity observed (Fig. 1), where 

communities are broadly similar across hosts, and soil histories. 
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Figure S8. Differential taxa clusters of oomycete ASVs illustrated significantly more Pythium species in the rhizosphere communities 

compared to the roots in both field trials harvested from the Test Phase of a two-year rotation from Swift Current, Saskatchewan. 

Peronospora were also enriched in the rhizosphere communities in Trial 1, but not in Trial 2. Here, the size of the taxonomic groups 

(bubbles) represents the number of taxa, and the colour scale represents the proportion of each group, where the abundance of each 

taxonomic group in the cluster is compared between each compartment, using the using the non-parametric Kruskal test and the post 

hoc pairwise Wilcox test, with the FDR correction. Taxa that are significantly (p. adj < 0.01) more abundant in the rhizosphere are 

highlighted in green. 
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Figure S9. RDA illustrated that soil history structures the oomycete root communities in two field trials, Trial 1 (A, adj. R2 = 0.0429, p 

= 0.007), and Trial 2 (B, adj. R2 = 0.0403, p = 0.005), harvested from the Test Phase of a two-year rotation from Swift Current, 

Saskatchewan.  
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Figure S10. RDA illustrated the influence of Brassicaceae crop plants on the oomycete rhizosphere (A, adj. R2 = 0.0454, p = 0.006) 

and root (B, adj. R2 = 0.0961, p = 0.002) communities harvested from the Test Phase of field trial 1, as part of a two-year rotation from 

Swift Current, Saskatchewan. 
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Figure S11. Co-inertia analysis illustrated that oomycete and bacterial communities were more significantly related in the rhizosphere 

(A, RV = 0.7049; C, RV = 0.8307) communities than their cognate root (B, RV = 0.6291; D, RV = 0.5767) samples harvested from the 

Test Phase of Brassicaceae field trial 1 (A & B), or trial 2 (C & D), as part of a two-year rotation from Swift Current, Saskatchewan. 

Moreover, the communities were largely similar, with very little divergence driven by any particular oomycete or bacterial ASV.  
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Abstract 

Soil history has been shown to condition future plant-soil microbial communities up to a 

year after being established (Kaisermann et al., 2017; Bakker et al., 2021; Hannula et al., 2021). 

However, previous experiments have also illustrated that adult plants can “re-write”, or mask, 

different soil histories through host plant-soil microbial community feedbacks. This leaves a 

knowledge gap concerning how soil history influences microbial community structure across 

different growth stages. Therefore, in this experiment we tested the hypothesis that previously 

established soil histories would decrease in influencing the structure of Brassica napus bacterial 

communities specifically over the growing season. We used an on-going agricultural field 

experiment to establish three different soil histories, plots of monocrop canola (B. napus), or 

rotations of wheat-canola, or pea-barley-canola. During the following season, we repeatedly 

sampled the surrounding bulk soil, rhizosphere and roots of B. napus at different growth stages— 

the initial seeding conditions, seedling, rosette, bolting, and flower—from all three soil history 

plots. We compared the taxonomic composition and diversity of bacterial communities, as 

estimated using 16S rRNA metabarcoding, to identify any changes associated with soil history and 

growth stages on the different B. napus soil bacterial communities. We found that soil history 

remained significant across each growth stage in structuring the bulk soil and rhizosphere 

communities, but not the roots. This suggests that the host plant’s capacity to “re-write” different 

soil histories may be quite limited as key components that constitute the soil history’s identity 

remain present and continue to impact bacterial communities. For agricultural, this highlights how 

previously established soil histories persist and may have important long-term consequences on 

future plant-microbial communities, such as bacteria. 

 



 
 

210 

Introduction 

 Microbes are ubiquitous in interacting with plants across growth stages (GS), hence the 

critical impact microbes have on plant metabolism, growth, and survival (Vandenkoornhuyse et 

al., 2015). For instance, soil microbes increase access to nutrients (Richardson et al., 2009; 

Weidner et al., 2015; Yu et al., 2021), temper environmental changes (Lau & Lennon, 2012), or 

stress (Marasco et al., 2012; Hou et al., 2021), protect against pathogens (Sikes et al., 2009; Mendes 

et al., 2011), and cue each plant developmental stage (Lau & Lennon, 2011 & 2012; Chaney & 

Baucom, 2020; O’Brien et al., 2021). Soil microbial communities help integrate these diverse 

signals and modulate the plant’s responses (Castrillo et al., 2017; Hou et al., 2021). Given their 

close, perpetual interactions, plants and their microbial communities can be considered as a holistic 

entity, or holobiont (Zilber-Rosenberg & Rosenberg, 2008; Vandenkoornhuyse et al., 2015; 

Puginier et al., 2022). 

 In the context of a holobiont, plants interact with similar cohorts of microbial traits across 

generations. Establishing such a long-term relationship highlights a host plants capacity to tailor 

the structure of their microbial communities, and particularly the bacterial fraction, in response to 

variable conditions and the plant’s needs through time (Lebeis et al., 2015; Korenblum et al., 2020; 

Kawasaki et al., 2021; Yu et al., 2021). One mechanism host plants use to positively shape bacterial 

communities is by altering the local soil chemistry, since the soil is the source of the majority of 

plant-associated bacteria (Grady et al., 2019). Host plants have the capacity to alter the local soil 

chemistry through two concurrent processes; first, the host plant’s growth, development, and 

homeostasis is determined by its capacity to uptake nutrients from the soil, which will alter the soil 

chemistry (Hu et al., 2021). Second, through rhizodeposition the host plant can vary the quantity 

and array of compounds released into the rhizosphere as required, which also changes the local soil 
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chemistry (Lebeis et al., 2015; Korenblum et al., 2020; Kawasaki et al., 2021; Song et al., 2021; 

Yu et al., 2021). 

As such, plant-soil microbial communities generate a reciprocal feedback process that 

incorporates various biotic and abiotic factors for the benefit of the current community (Hwang et 

al., 2015; Yang et al., 2021; Liu et al., 2022), and which will impact future plant-soil microbial 

generations and their composition (Bever et al., 2010; Kaisermann et al., 2017; Berendsen et al., 

2018; Fitzpatrick et al., 2018). Thus, information from one plant-soil microbial community is 

transmitted through time to impact subsequent plant-microbial generations, i.e., that the soil 

history, also referred to as soil legacy, of previous plant-soil microbial communities’ condition 

future ones (Kaisermann et al., 2017; Bakker et al., 2021; Hannula et al., 2021). Future host plants 

can then alter the soil bacterial communities for their own purposes, in a phylogenetic-dependent 

manner (Fitzpatrick et al., 2018; Blakney et al., 2022). However, several questions remain 

concerning the duration of different soil histories, including what their impact on future plant-

microbial communities may be, or how quickly plant-soil microbial community feedbacks may 

alter, or “re-write” different soil histories. 

 Furthermore, soil history will dictate how future plant-soil microbial communities form 

their microbial communities not only by establishing the biotic and abiotic context, but also through 

priority effects (Meisner et al., 2021; Chase et al., 2021; Debray et al., 2022). This temporal 

mechanic refers to how the order of arrival of microbial species into an environment (i.e. species 

A then B then C vs C then A) will regulate future community composition differently (Debray et 

al., 2022). Therefore, as a new plant host develops not only could its potential microbial community 

be constrained according to the soil history, but also according to the composition at an earlier 

growth stage. For example, a given bacterial taxa recruited to the rhizosphere could be beneficial 
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to the plant host during an early GS, but it may preclude other taxa from the rhizosphere at a later 

GS, such as through niche exclusion, or competition (Debray et al., 2022). Unfortunately, however, 

most experiments testing soil history have only focused on the microbial communities of adult 

plants (Fitzpatrick et al., 2018; Hannula et al., 2021; Blakney et al., 2022; Blakney et al., 2023), 

and have thus been unable to tease apart more of the variation among the microbial communities. 

Consequently, not incorporating temporal sampling has explicitly ignored the different roles of 

time on the assembly of microbial communities (Chung et al., 2022; De Long et al., 2023; de Vries 

et al., 2023). 

This has left a severe knowledge gap of how soil history impacts microbial communities—

and particularly the bacterial component—at different growth stages (GS) of the host plant, as well 

as how these communities develop throughout the growing season (Walsh et al., 2021). For 

example, our previous experiment illustrated how different soil histories could be “re-written” by 

host plant-soil microbial community feedback mechanisms, or persist for up to a year (Blakney et 

al., 2022; Blakney et al., 2023). However, since we only sampled adult host plants, we were unable 

to explore the strength or variation of different soil histories on the microbial communities 

throughout the growing season. Moreover, there is growing evidence of the importance of 

microbial regulation on different plant growth stages, which can impact the ecology and evolution 

of their host plants (O’Brien et al., 2021; Gu et al., 2022). For example, microbial communities 

can shift the timing or transition to different GS through nutritional or phytohormone pathways 

(O’Brien et al., 2021). More recently, increased attention has been paid to seed (Links et al., 2014; 

Nelson et al., 2018; Rezki et al., 2018; Eldridge et al., 2021; Shao et al., 2021) and flower (Shade 

et al., 2013b; Wagner et al., 2014; Cui et al., 2021) microbial communities. This research focuses 

on how microbes are vertically transmitted, subsequently establish new communities, and cue 
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germination (O’Brien et al., 2021). In fact, microbes may be critical at early life stages; seed and 

seedling GS are precarious periods where the plant is most vulnerable to environmental stress and 

infection from phytopathogens (Hwang et al., 2015; Walsh et al., 2021). Thus, experiments are 

needed to test the influence and dynamics of soil microbial communities at a variety of GS. 

In this study, we investigated how different soil histories impacted soil bacterial 

communities at five developmental GS throughout the season. We partnered with an on-going 

agricultural field experiment, as crop rotations and their agricultural inputs provide a ready-made 

model for how a previous plant-soil community feedback establishes a soil history that impacts the 

future plant-bacterial community (Yang et al., 2021; Liu et al., 2022). This addresses the lack of 

field experiments in studying soil history (Revillini et al., 2016). Here, the three established soil 

histories were rotated plots of monocrop canola (Brassica napus), wheat-canola (WC), and pea-

barley-canola (PBC). During the following season, we repeatedly sampled B. napus and 

surrounding soil at different GS— the initial seeding conditions, seedling, rosette, bolting, and 

flower—from all three soil history plots. This design permitted us to test the hypothesis that the 

previously established soil histories—monocrop, WC, PBC, and their respective microbial 

communities and agricultural treatments—would decrease in influencing the structure of the B. 

napus bacterial root and rhizosphere communities over the growing season. We predict i) that the 

bacterial bulk soil communities will remain stable, and continue to be structured by their soil 

history throughout the experiment, ii) that the bacterial bulk soil and rhizosphere communities will 

remain similar at the seed and seedling GS according to their soil history, and iii) that the bacterial 

rhizosphere communities will converge in similarity over the growing season, regardless of their 

soil history, as will the different root communities. To test our “fading soil history through time” 

hypothesis, we estimated the bacterial communities from the bulk soil, rhizosphere and roots, of B. 
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napus plants throughout the growing season using a 16S rRNA metabarcoding approach to infer 

amplicon sequence variants (ASVs). We compared the taxonomic composition and diversity of the 

bacterial communities to identify any changes associated with different soil histories and GS on 

the B. napus soil bacterial communities. 

 

Materials and Methods 

Site and experimental design 

 A field experiment was conducted at the experimental farm of Agriculture and Agri-Food 

Canada’s Research and Development Centre, in Lacombe, Alberta (52°28′06″N, 113°44′13″W). 

The site is located in the semi-arid region of the Canadian Prairies; according to the weather station 

at the research farm, the 2019 growing season (May, June and July) had 197.8 mm of precipitation; 

compared to the 30-year average [1981-2010] of 216.3 mm. The daily temperature average for the 

2019 season was 12.6 °C, while the 30-year average was 14.5°C. The farm has a loam texture (46% 

sand, 33% silt, and 21% clay), and has been well-described previously (Harker et al., 2015).  

Our experiment piggybacked on a long-term crop rotation experiment (Harker et al., 2015), 

however, for the purposes of our experiment we will only discuss the 2018 and 2019 growing 

seasons, which we used as a two-phase cropping sequence; the Conditioning Phase in 2018, and 

the Test Phase in the second year, 2019 (Fig. S1A). The experimental design was a split-plot 

replicated in four complete blocks (Fig. S1B). For the Conditioning Phase, we selected three soil 

history treatments that consisted of i) monocrop canola (Brassica napus L., cv. L252LL), ii) a two-

year crop rotation between spring wheat (Triticum aestivum cv. AAC Brandon) and B. napus, 

referred to as WC, and iii) a three-year rotation between pea (Pisum sativum L. cv AAC Lacombe), 

barley (Hordeum vulgare cv. Canmore), and B. napus, referred to as PBC (Fig. S1B). Thus, the 
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2018 Conditioning Phase established a three different soil histories composed of either canola, 

wheat (WC), or barley (PBC), plus their respective management plans as described below (Harker 

et al., 2015).  In the Test Phase, the 12 Conditioning Phase plots were all seeded with B. napus 

(Fig. S1). The Test Phase established the B. napus host plant-soil microbial community feedback, 

composed of the B. napus genotype, their soil bacterial community, their management plan, and 

previous soil history. 

 

Crop management and sampling 

Crops were grown and maintained according to standard management practices, as 

previously described by Harker et al (2015). A pre-seed ‘burn off’ herbicide treatment using 

glyphosate (Roundup, 900 g acid equivalent per hectare, a. e. ha−1) and bromoxynil (Pardner, 280-

330 g active ingredient per hectare, a.i. ha−1) was applied to all plots each year to ensure a clean 

starting field prior to seeding. The herbicide Liberty was applied to B. napus, while Pixxaro A & 

B with Axial were applied to wheat and barley plots, for in-season weed control, while fungicides 

were only applied as needed. Soil tests were used to determine the rates of in-season nitrogen, 

phosphorus, and potassium application. Crops were harvested between late August and early 

October, depending on the crop and year.  

The subsequent Test Phase B. napus plant hosts were subjected to the same standard 

management practices as the Conditioning Phase, including pre-seed ‘burn off’, in-season 

herbicide and fungicide treatments as needed, and fertilized as recommended by soil tests. We 

accounted for the use of the various agricultural treatments in the downstream amplicon data by 

considering each plant sample and their total complement of particular agricultural treatments as a 

unit. 
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Test phase B. napus plants were sampled at specific growth stages, seed, seedling, rosette, 

bolting, and flower, as described by the Canola Council of Canada (Canola Encyclopedia: Canola 

Growth Stages, 2017). First, at the seed stage (GS00, May 10th, 2019), we took a 25 mL sample of 

the B. napus seeds to be seeded, as well an equivalent amount of soil from each plots. At the 

seedling stage, post-emergence, when only the cotyledons were visible (GS10, May 27th, 2019), 

five seedlings and their accompanying soil were pooled together for each sample. Composite 

samples were taken only at the seedling stage in order to have enough root material for our 

subsequent DNA extractions. At the rosette, bolting and flower stages, individual plants and their 

associated soil were harvested from each plot. The rosette stage (GS19, June 18th, 2019) was 

harvested when nine leaves were visible, followed by the bolting stage (GS34, July 2nd, 2019) when 

a 20 cm stem was present. Finally, the flower stage (GS65, July 15th, 2019) was harvested when 

50% of the flowers on the raceme were open (Canola Encyclopedia: Canola Growth Stages, 2017). 

At each growth stage we sampled three compartments: bulk soil, the rhizosphere, and the 

roots (Fig. S2). Within each plot, bulk soil was sampled from between the seeded rows, at least 10 

cm from any seeds, or plants. Note that at the seed stage the only material collected was bulk soil 

and the seeds, as described. In the field, each plant had its aerial portions removed and its roots and 

accompanying soil stored in coolers on ice. Based on the sampling strategy, in this study we define 

the bulk soil microbiome as the soil bacterial community not influenced by the resident host plant, 

the rhizosphere microbiome as the bacterial community in the soil in close contact with the roots 

(Hannula et al., 2021), and the root microbiome as the bacterial community attached to, and within, 

the roots (Berendsen et al., 2018). In the field, all samples were kept on ice in coolers, then stored 

in the lab at -80°C before being shipped to Université de Montréal’s Biodiversity Centre, Montréal 

(QC, Canada) on dry ice for further processing (Delavaux et al., 2020; Lay et al., 2018). 
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DNA extraction from Test Phase Brassicaceae root and rhizosphere samples 

 Total DNA was extracted from all compartments (bulk soil, seeds, rhizosphere, and roots) 

of the Test Phase field trial samples. Roots were first separated out from the total soil sample and 

gently scraped it off using sterilized utensils into fresh collection trays. Seeds and root samples 

were ground separately in liquid nitrogen via sterile mortar and pestles (Fig. S2). For bulk soil and 

rhizosphere samples, ~500 mg was used for the NucleoSpin Soil gDNA Extraction Kit (Macherey-

Nagel, Germany), while ~130 mg of seeds and roots were used with the DNeasy Plant DNA 

Extraction Kit (Qiagen, Germany) (Lay et al., 2018; Blakney et al., 2022). To assess the influence 

of the extraction kits on our sequencing results, and the efficacy of our lab preparation on the Test 

Phase samples, we included a no-template extraction negative control with the bulk soil, 

rhizosphere and root extractions (Fig. S2). All extracted DNA samples were quantified using the 

Qubit dsDNA High Sensitivity Kit (Invitrogen, USA), and qualitatively evaluated by mixing ~2 

µL of each sample with 1 µL of loading dye containing Gel Red (Biotium) and running it on a 0.7 

% agarose gel for 30 minutes at 150 V. The no-template extraction negative controls were 

confirmed to not contain DNA after extraction, where the detection limit was > 0.1 ng (Qubit, 

Invitrogen, USA). We failed to extract DNA from nine of the seedling root samples due to a lack 

of root material; those samples were subsequently excluded hereafter (Fig. S2). 

 

16S rRNA gene amplicon generation and sequencing to estimate the bacterial community 

To estimate the composition of the bacterial communities in the bulk soil, seed, rhizosphere 

and roots from across the Test Phase B. napus growth stages, extracted DNA from all samples were 

used to prepare 16S rRNA gene amplicon libraries following Illumina’s MiSeq protocols (Bell et 
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al., 2016; Lay et al., 2018; Blakney et al., 2022). First, all DNA samples were diluted 1:10 into 96-

well plates using the Freedom EVO100 robot (Tecan, Switzerland). To assess potential bias caused 

by lab manipulations, sequencing and downstream bioinformatic processing, a commercially 

available 16S rRNA mock community of known composition (Table S1) was included on each 

plate (Fig. S2) following the manufacturer’s instructions (BEI Resources, USA). The mock 

community contained DNA of 20 bacterial species (Table S1) in equimolar counts (106 copies/µL) 

of 16S rRNA gene sequences. A no-template PCR negative control was also included on each plate, 

to assess the influence of the PCR reaction, and the efficacy of lab preparation on sequencing (Fig. 

S2). Four µL of each negative control was mixed with 1 µL of loading dye containing Gel Red 

(Biotium) and visualized on a 1% agarose gel after 60 minutes at 100 V. None of the negative 

controls for the DNA extractions, nor the PCR reactions, contained detectable amounts of DNA 

prior to submission. 

The prepared plates of the Test Phase DNA samples were submitted to Génome Québec 

(Montréal, Québec) for 16S rRNA amplicon generation and sequencing (Bell et al., 2016; Lay et 

al., 2018; Blakney et al., 2022). PCR amplification used the S-D-Bact-0341-b-S-17 forward and 

S-D-Bact-0785-a-A-21 reverse primers, commonly referred to as 341F and 805R, respectively, to 

generate a 416 bp fragment from the V3-V4 region of the 16S rRNA gene (Klindworth et al., 2012). 

These amplicons were then prepared for paired-end 250 bp sequencing using Illumina’s MiSeq 

platform (Génome Québec, Montréal) (Bell et al., 2016; Lay et al., 2018; Blakney et al., 2022). 

We estimated this should provide a mean of 60 000 reads per sample, which is in line with previous 

studies that describe bacterial communities (Bell et al., 2016; Lay et al., 2018; Blakney et al., 

2022). 
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Estimating ASVs from MiSeq 16S rRNA gene amplicons 

The 16S rRNA gene amplicons generated by Illumina MiSeq were used to estimate the 

diversity and composition of the bacterial communities present in the bulk soil, seed, rhizosphere 

and roots from across the Test Phase B. napus growth stages. The integrity and totality of the 16S 

MiSeq data downloaded from Génome Québec was confirmed using their MD5 checksum protocol 

(Roy et al., 2018). Subsequently, all data were managed, and analyzed in R (4.0.3 R Core Team, 

2020), and plotted using ggplot2 (Wickham, 2016). 

The dada2 package (Callahan et al., 2016a) was first used to filter and trim all 11 010 728 

raw reads, forward and reverse, from the 16S rRNA gene amplicon data generated from the control 

samples, the mock communities, and the Test Phase B. napus samples, using the filterAndTrim 

function (Fig. S2), as described in Blakney et al., 2022. Filtered and trimmed reads were then 

processed through DADA2 for ASV inference (Fig. S3). Default settings were used throughout the 

DADA2 pipeline, except the DADA inference functions dadaF and dadaR which used the pool 

=’pseudo’ argument, to increase the likelihood of identifying rare taxa. Consequently, the chimera 

removal function removeBimeraDenovo included the method =’pooled’ argument (Callahan et 

al., 2016b).  

ASVs identified from the 16S rRNA gene amplicon data were assigned taxonomy—to the 

species level where possible—using the Silva database release 138, which adopts the standardized 

Genome Taxonomy Database taxonomy structure (Yilmaz et al., 2013; Parks et al., 2018). The 

quality of the data was assessed using the included controls (Fig. S4); any ASVs identified as 

chloroplasts, or mitochondria were subsequently removed from the data, as were off-target archaeal 

ASVs. Rarefaction curves confirmed that we captured the majority of the bacterial communities in 

both the bulk soil, seed, rhizosphere, and roots (Fig. S5). Test Phase Brassicaceae 16S rRNA 
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sequencing data was subsequently re-analysed independently following the described protocol to 

avoid any biases from the no-template negative controls and the mock communities. These are the 

Test Phase B. napus ASVs which are reported hereafter. 

 

Estimating absolute abundance of bacterial communities by quantitative PCR 

To identify any changes in abundance of the bacterial ASVs within the Test Phase B. napus 

growth stages, we estimated the absolute abundance, or size, of the bacterial communities in each 

Test Phase DNA sample by qPCR (Azarbad et al., 2018; Blakney et al., 2022). Given the technical-

limitations of high-throughput sequencing in assessing abundance, estimating the absolute 

abundance can provide complementary data to better interpret the bacterial communities (Gloor et 

al., 2017; Props et al., 2017; Harrison et al, 2020; Jian et al., 2020). As such, we quantified the 

number of 16S rRNA gene sequences present in each DNA sample via qPCR (as cycle threshold, 

Ct, values) and then estimated the corresponding community size as the 16S rRNA gene copy 

number/µg from a standard curve (Zhang et al., 2017; Azarbad et al., 2018, Fig. S6). 

First, a standard curve of 16S rRNA gene copy numbers was constructed. Near full-length 

1.5 kb 16S rRNA gene fragments were PCR amplified using the primers PA-27F-YM and PH-R 

(Bruce et al., 1992; Table S2) from DNA extracted from previously used soil samples (Lay et al., 

2018). The 16S PCR reactions consisted of 11.5 µL dH2O, 5.0 µL of 10X Buffer (Qiagen, Canada), 

2.5 µL of 10 µM PA-27F-YM forward and PH-R reverse primers (Alpha DNA, Montréal, Canada; 

Klindworth et al., 2012), 1.0 µL of dNTPs (Qiagen, Canada), 0.5 µL of T. aq polymerase (Qiagen, 

Canada), and 2 µL of template DNA, for a total volume of 25 µL. PCR amplification was run in 

an Eppendorf Mastercycle ProS (Germany) thermocycler, and consisted of an initial denaturation 

of 2 minutes at 95°C, followed by 30 cycles of 30 seconds denaturation at 95°C, 30 seconds 
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annealing at 55°C, and 1 minute elongation at 72°C, before a final elongation of 5 minutes at 72°C 

(Bell et al., 2016; Lay et al., 2018; Blakney et al., 2022a). The amplified 1.5 kb 16S rRNA gene 

was visualized by a 1% gel electrophoresis, as described above, quantified using the QuBit dsDNA 

High Sensitivity Kit (Invitrogen, USA), and then serially diluted to 10-9. One µL of each dilution 

was then used as template in a 10 µL qPCR reaction. 

The 16S rRNA gene qPCR reactions consisted of 5.0 µL of Maxima SYBR Green/ROX 

qPCR Mix (ThermoFisher Scientific, Canada), 3.4 µL dH2O, 0.3 µL of 10 µM Eub 338 forward 

and Eub 518 reverse primers (Alpha DNA, Montréal, Canada; Fierer et al., 2005). All qPCR 

reactions were set-up in triplicate in 96-well plates using the Freedom EVO100 robot (Tecan, 

Switzerland), with a no-template negative control included on each plate. Reactions were run in a 

ViiA 7 Real-Time PCR System (Life Technologies, Canada) following the same cycling conditions 

as described previously for the 16S rRNA PCR amplification. The Eub338/Eub518 qPCR reaction 

amplified a 200 bp region of the V3 region (Muyzer et al., 1993; Nogales et al., 1999; Bathe & 

Hausner, 2006; Davis et al., 2009). The number of 16S rRNA gene copies present in the serially 

diluted standard were calculated using the formula (Godornes et al., 2007):   

 

Number of 16S rRNA gene copies µL-1 = Avogadro’s Constant x DNA (g µL-1) 

            Number of base pairs x 600 Daltons 

 

The standard curve for the serial diluted samples was plotted, with an R2 value of 0.9938 and an 

amplification efficiency of -3.2013 (Fig. S6), falling within acceptable values (Fierer et al., 2005). 

16S rRNA gene copy numbers were then estimated for each Test Phase sample by using 1 

µL of a 1:10 dilution of DNA as template in the same 16S rRNA qPCR reaction and cycling 
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conditions as described above for the standard curve. Melt curves generated by 0.5°C increments 

at the end of the qPCR programme confirmed amplicon specificity, and the 16S rRNA gene copy 

number was then determined from the standard curve. A correction to determine the absolute 

abundance of each ASVs inferred from the Test Phase samples was achieved by multiplying the 

total 16S rRNA gene copy number per µg, as estimated from the qPCR reaction, by the relative 

abundance matrix of ASVs identified (Azarbad et al., 2018; Bakker, 2018). 

 

Generating phylogenetic trees 

 In order to employ phylogeny-based analysis methods, including phylogenetic diversity 

(PD), and UniFrac distances, we assembled phylogenies for the Test Phase B. napus bacterial 

communities. Following the method described by Callahan et al., 2016b, 16S rRNA gene 

sequences for each ASV inferred from the Test Phase data were aligned using a profile-to-profile 

algorithm (Wang & Dunbrack, 2004) with a dendrogram guide tree using the decipher package 

(Wright, 2016). With the phangorn package (Schliep, 2011), the maximum likelihood of each site 

was calculated using the dist.ml function using a JC69 equal base frequency model, before 

assembling phylogenies using the neighbour-joining method. An optimized GTR nucleotide 

substitution model was fitted to the phylogeny using the optim.pml function. Phylogenies were 

subsequently added to the phyloseq object (McMurdie & Holmes, 2013).  

 

a-diversity of the Test Phase Brassicaceae rhizosphere and root communities 

In order to estimate the coverage of the bacterial domain of life, we incorporated 

phylogenies into the phyloseq object following the method described by Callahan et al., 2016b. 

Faith’s PD was calculated as an a-diversity index from the Test Phase B. napus samples using the 
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pd function from the picante package (Kembel et al., 2010; sum of all branch lengths separating 

taxa in a community). Log transformed PD indices were confirmed to respect normality. 

We assessed differences of the mean PD between GS for each soil history, and their 

interactions using a Multi-Factor ANOVA and Tukey’s post hoc test for significant groups that 

respected the assumptions of normality (Azarbad et al., 2020, Blakney et al., 2022). Normality of 

the residuals was established with a Shapiro-Wilk test, shapiro.test, while the heteroscedascity 

of residuals was confirmed with using a Bartlett test, bartlett.test. For significant ANOVAs, a 

post hoc Tukey’s Honest Significant Difference test, TukeyHSD, was used to determine which 

groups were statistically different.  

 

Identification of differentially abundant ASVs and specific indicator species 

To refine our understanding of the abundance and composition of the Test Phase B. napus 

bacterial communities, we used two complementary methods to identify taxa specific to GS and 

soil histories. First, taxa cluster maps were used to calculate the differential abundance of ASVs 

between experimental groups. Second, indicator species analysis was used to detect ASVs that 

were preferentially abundant in pre-defined environmental groups (compartments, GS, soil 

histories). A significant indicator value is obtained if an ASV has a large mean abundance within 

a group, compared to another group (specificity), and has a presence in most samples of that group 

(fidelity) (De Cáceres & Legendre; Legendre & Legendre, 2012). The fidelity component 

complements the differential abundance approach between taxa clusters, which only considers 

abundance. Moreover, given the large number of taxa in our study, it was not practical to view taxa 

clusters as matrices below class, whereas indicator species analysis pinpoints specific ASVs of 

interest. 
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b-diversity of the Brassica napus bacterial communities 

To test for significant differences between the Test Phase B. napus bacterial communities 

from different GS and soil histories, we used the non-parametric permutational multivariate 

ANOVA (PERMANOVA), where any variation in the ordinated data distance matrix is divided 

among all the pairs of specified experimental factors. The PERMANOVA was calculated using the 

adonis function in the vegan package (Oksanen et al., 2020), with 9999 permutations, and the 

experimental blocks were included as “strata”. This was complemented with a PERMANOVA for 

each compartment (bulk soil, rhizosphere and roots) that specifically tested GS and soil histories 

as experimental factors, and used a weighted Unifrac distance matrix (Lozupone & Knight, 2005; 

Lozupone et al., 2007).  

This distance index incorporates the phylogenetic relationship of each ASV and their 

absolute abundance, as estimated by qPCR of the 16S rRNA gene (Lozupone & Knight, 2008). 

Determining community distances based only on the number of shared taxa does not account for 

evolutionary distances between taxa, which are often extremely diverse among microbes 

(Fitzpatrick et al., 2018; Walters et al., 2018). Conversely, using a UniFrac index illustrates how 

bacterial community composition varies by phylogeny, which provides insight into how different 

community assembly mechanisms, including dispersal, drift, selection, and speciation, may be at 

work (Vellend, 2010). The weighted UniFrac distance matrix was calculated using the distance 

function in phyloseq (McMurdie & Holmes, 2013). 

Distance-based redundancy analyses, using UniFrac distances weighted by absolute 

abundance, were used to quantified the amount of variation described by each experimental factors  

in the bacterial communities from the soils (bulk soil and rhizosphere), or root compartments (i.e. 
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how much of the phylogenetic change between communities was due to the compartment, soil 

history, or GS). Model accuracy was assessed with an adjusted R2 value and tested for significance 

using an ANOVA (Carteron et al., 2021). Results were similar to Bray-Curtis and unweighted 

Unifrac distances, but tended to be more explicative using weighted Unifrac. 

 

Results 

Bulk soil and rhizosphere samples were more similar than to root or seed samples. 

Illumina MiSeq produced 11 010 728 raw reads for the whole dataset, which were then 

processed through DADA2 (Callahan et al., 2016 & 2017). We retained 2 770 390 reads from all 

the experimental samples, which inferred a total of 33 392 ASVs (Table 1 & Fig. S3). As a positive 

control for our experiment, we included two replicates of the bacterial mock community, which 

retained 7430 and 9537 16S rRNA reads (Fig. S4). The mock communities closely resembled each 

other by ASV composition (Fig. S4), where our pipeline correctly identified all 20 of the bacterial 

species included in the communities (Fig. S4 & Table S1). These results provide some reassurance 

that our pipeline ought to be effective in identifying a range of bacterial ASVs present in the 

experimental samples. 

Similar counts of 16S rRNA reads were retained in the bulk soil and rhizosphere samples; 

means of ~25 429 and 22 467 reads, respectively (Table 1). We identified ~1300 to 1700 ASVs in 

the bulk soil samples, while the rhizosphere samples had ~800 to 1800 ASVs (Table 1). In contrast, 

an average of ~3098 16S rRNA reads were retained in the root samples, where only ~100 to 450 

ASVs were inferred (Table 1). Finally, we estimated the absolute abundance, or size, of each 

bacterial community by qPCR amplification of the 16S rRNA gene, where total community sizes 

ranged from ~200 000 to ~18 000 000 16S rRNA gene copies (Table 1). 
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Table 1. The bacterial bulk soil and rhizosphere communities had more unique ASVs than the root 

communities at each growth stage of their host plant Brassica napus. Samples were harvested 

throughout the 2019 growing season during the Test Phase of a multi-year crop rotation in 

Lacombe, Alberta.  11 010 728 raw reads were produced via Illumina’s MiSeq platform at Génome 

Québec, and processed through DADA2, where 2 770 390 reads were retained (16S rRNA Reads 

reported here) for ASV inference. A total of 33 392 ASVs were identified across the dataset. 

Bacterial community size was estimated by qPCR as the number of 16S rRNA gene copies. 

 

 

 

Growth Stagea Compartmentb 16S rRNA Readsc ASV Occurrenced 16S rRNA Gene Copiese 
     

Seed 
Bulk (n = 12) 21 213 ±1842 1497 ±128 2 360 322 ±1 610 500 

Seed (n = 1) 7 6 2 251 078 
     

Seedling 

Bulk (n = 12) 22 886 ±1516 1526 ±72 1 224 464 ±1 083 033 

Rhizosphere 

(n = 12) 
19 817 ±3941 1355 ±143 6 722 767 ±1 929 973 

Root (n = 3) 2519 ±117 432 ±28 1 153 665 ±738 663 
     

Rosette 

Bulk (n = 12) 23 020 ±4472 1448 ±128 1 415 797 ±1 088 160 

Rhizosphere 

(n = 12) 
19 984 ±7475 1295 ±444 2 131 129 ±833 941 

Root (n = 12) 3058 ±1099 361 S±67 13 105 921 ±5 757 254 
     

Bolting Bulk (n = 12) 26 811 ±6475 1567 ±209 3 266 621 ±1 896 126 
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Rhizosphere 

(n = 12) 
29 286 ±6090 1611 ±219 2 305 561 ±1 249 093 

Root (n = 12) 2502 ±3362 231 ±116 8 711 539 ±4 380 029 
     

Flowering 

Bulk (n = 12) 28 704 ±6599 1649 ±150 3 049 801 ±3 738 808 

Rhizosphere 

(n = 12) 
23 263 ±4147 1552 ±132 10 044 431 ±5 541 865 

Root (n = 12) 4353 ±3784 352 ±105 3 159 861 ±1 327 309 

a, Test phase growth stages  
b, Presented with the number of samples (n) retained  
c, Values are presented as mean ± SD 
d, Values are presented as mean ± SD 
e, Values are presented as mean ± SD 
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 Globally, we found that the bacterial communities from the bulk soil, seeds, rhizosphere, 

roots were significantly different (PERM R2 = 0.60135, p < 0.001; Table S3). b-diversity analysis 

highlighted the difference between the bulk soil and rhizosphere communities from the root and 

seed communities (Fig. S8A). These differences were further reflected by significantly different 

levels of phylogenetic diversity (PD), where the bulk soil and rhizosphere communities remained 

the most diverse throughout the growing season (Fig. S7, p < 0.001). Comparatively, the root and 

seed communities remained consistently less diverse (Fig. S7). Indicator species analysis did not 

identify any specific ASVs, according to compartment, growth stage (GS), or soil history. 

 

Bacterial bulk soil communities were significantly impacted by soil history than time 

To test our hypothesis that the previously established soil history would decrease in 

influencing the structure of the B. napus bacterial communities over the growing season, we first 

examined how the bacterial bulk soil communities changed through time. Note that for the bulk 

soil communities GS was a proxy for time through the season, as we would not expect bulk soil to 

be influenced by the growth stages of the plant hosts. Soil history and GS (i.e. time) were both 

significant in the bulk soil communities, thought the interaction was not (PERM R2 = 0.08770, p < 

0.001; R2 = 0.08596, p < 0.016, respectively; Table 2). PD remained stable across the growing 

season, except at the flower stage where diversity was significantly higher (p. adj < 0.01; Fig. 1A).  

PD was also significantly higher at each GS time point the in bulk soil communities with a soil 

history of pea-barley-canola (PBC), compared to the communities from monocrop or wheat-canola 

(WC) plots (p. adj < 0.001; Fig. 1A). Monocrop bulk soil communities were also globally depleted 

in Fibrobacteria, compared to WC or PBC bulk soils (p. < 0.05; Fig. 1B). The bacterial bulk soil 

communities were enriched in class ABY1 (phylum Patescibacteria) at the rosette stage (p. < 0.05; 
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Table 2. PERMANOVA identified growth stage and soil history as significant experimental factors for the bacterial bulk soil and 

rhizosphere communities harvested in 2019 from Brassica napus in the Test Phase of a multi-year crop rotation in Lacombe, Alberta.  

Soil history established the previous year was not significant for the bacterial communities from the root communities. PERMANOVA 

was calculated using a weighted Unifrac distance matrix, with 9999 permutations. 

 

Experimental 

Factors 

  Test Phase Compartmentsa 
     

Bulk Soil  Rhizosphere  Roots 
     

F Model R2 Pr (> F)  F Model R2 Pr (> F)  F Model R2 Pr (> F) 
            

Growth Stageb 1.31843 0.08596 0.016  2.04117 0.12043 0.001  2.33385 0.16454 0.006 

            

Soil Historyc 2.69030 0.08770 0.001  2.73273 0.10749 0.001  1.40096 0.06585 0.163 

            

Soil History ~ 

Growth Stage 
0.71201 0.09285 0.928 

 
0.70968 0.08374 0.812 

 
0.95793 0.13508 0.548 

a, Values in bold indicate significant factors or interactions 
b, Test Phase growth stages: seed, seedling, rosette, bolting, or flower 
c, Soil history established the previous year: monocrop canola (B. napus), wheat-canola rotation (WC), or pea-barley-canola rotation 
(PBC) 
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Figure 1. Bacterial communities identified from bulk soil samples were largely stable across different growth stages and soil histories. 

Samples were harvested throughout the 2019 Brassica napus growing season during the Test Phase of a multi-year crop rotation in 

Lacombe, Alberta. (A) Phylogenetic diversity was significantly higher during the flower growth stage than at the seed or rosette stages 

(A vs B, p < 0.01)). Bacterial bulk soil communities with the pea-barley-canola (PBC) soil history were also more diverse at each growth 

stage than the monocrop or wheat-canola (WC) communities (p < 0.001). Diversity across growth stages and soil histories was tested 

with a Multi-Factor ANOVA, which confirmed the previously established soil histories and the Test Phase B. napus growth stages did 

not interact. Statistically significant groups were identified using Tukey’s post hoc test. (B) Fibrobacteria were significantly enriched 

(p < 0.05) in bacterial bulk soil communities with wheat-canola (WC) and pea-barley-canola (PBC) soil histories, compared to 

communities from monocrop canola (Mono) plots. Significantly enriched taxa, labelled in bold, were tested between each pair of growth 

stages and soil history. Taxa that were significantly more abundant are highlighted brown or green, following the labels for each 

compared host. These differential taxa clusters identified significantly enriched (ie, abundant), using the non-parametric Kruskal test, 

followed by the post hoc pairwise Wilcox test, with an FDR correction. 
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Fig. S9B), and in class Rhodothermia (phylum Bacteroidota) at the bolting stage (p. < 0.05; Fig. 

S9C), when compared to their cognate rhizosphere communities. The b-diversity of the bulk soil 

communities also showed that the PBC communities were more phylogenetically consistent to each 

other across the growing seasons than to either the monocrop, or WC (Fig. 2A), as all the PBC soil 

communities tended to remain more closely clustered. However, we also observed that the bulk 

soil communities at the seed and seedling communities tended to be more phylogenetically similar, 

while the remaining time points (rosette, bolting and flowere) were more diverse (Fig. 2B). 

 

Rhizosphere communities were highly structured by growth stages and soil history 

 Next, we compared the dynamics of the bacterial rhizosphere soil communities. Similar to 

the bulk soil communities, soil history and GS were also both significant for the rhizosphere 

communities, while the interaction was not (PERM R2 = 0.10749, p < 0.001; R2 = 0.12043, p < 

0.016, respectively; Table 2). PD increased across GS, regardless of previous soil history, such that 

the bolting and flower rhizosphere communities were more diverse than those from the seedling 

and rosette GS (p. adj < 0.001; Fig. 3A). Furthermore, PBC communities were significantly more 

diverse at each GS, than the rhizosphere communities from either the monocrop or WC soil 

histories (p. adj < 0.001; Fig. 3A). Nonetheless, unlike the bulk soil communities, there were no 

ASVs that were significantly differential enriched, or depleted, according to soil history.  

However, we did observe a number of significant changes to taxonomic abundances in the 

rhizosphere at several GS. First, we noted widespread taxonomic enrichment between rhizosphere 

communities at the seedling and flower stages (p < 0.05; Fig. 3B). The bacterial rhizosphere 

communities at the seedling and flower stages also had widespread enrichment of taxa compared 

to the bulk soil and root communities (Fig. S9A & D). The rhizosphere communities were also 
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Figure 2. Bacterial communities identified from the bulk soil and rhizosphere of Brassica napus were more phylogenetically similar in: 

(A) plots with pea-barley-canola soil history (black, PBC) versus other soil histories regardless of growth stage, and (B) early growth 

stages (seed and seedling) versus later growth stages (rosette, bolting, and flower). Samples were harvested throughout the 2019 growing 

season during the Test Phase of a multi-year crop rotation in Lacombe, Alberta. Distance-based redundancy analysis, using UniFrac 

distances weighted by absolute abundance, quantified how the experimental factors (A, constrained by soil history) and (B, constrained 

by growth stages) structured the bacterial communities, where those with similar phylogenetic composition appear closer together. 
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Figure 3. Bacterial rhizosphere communities varied significantly between growth stages of their Brassica napus plant host. Samples 

were harvested throughout the 2019 Brassica napus growing season during the Test Phase of a multi-year crop rotation in Lacombe, 

Alberta. (A) Phylogenetic diversity was significantly higher in the bolting and flower growth stages than the seedling and rosette stages 

(p < 0.001). Bacterial rhizosphere communities with the pea-barley-canola (PBC) soil history were also significantly more diverse at 

each growth stage than the other soil histories (p < 0.001). Diversity across growth stages and soil histories was tested with a Multi-

Factor ANOVA, which confirmed the previously established soil histories and the Test Phase B. napus growth stages did not interact. 

Statistically significant groups were identified using Tukey’s post hoc test. (B) The seedling-rosette transition and bolting-flower 

transition were significantly different (p < 0.05) in bacterial taxa. Significantly enriched taxa, labelled in bold, were tested between each 

pair of growth stages and soil history. Taxa that were significantly more abundant are highlighted brown or green, following the labels 

for each compared host. These differential taxa clusters identified significantly enriched (ie, abundant), using the non-parametric Kruskal 

test, followed by the post hoc pairwise Wilcox test, with an FDR correction. 
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enriched in a number of taxa compared to the roots at the rosette and bolting stages, though 

noticeably less widespread than at the seedling and flower stages (Fig. S9B & C). Finally, the 

bacterial rhizosphere communities were largely stable in terms of different taxa abundance between  

the rosette and bolting stages, except for an enrichment in Kazania bacteria (Fig. 3B, phylum 

Desulfobacterota). 

The b-diversity of the rhizosphere communities remained phylogenetically similar between 

the bacterial bulk soil and rhizosphere communities across the growing season; the bacterial 

communities appeared most similar at the seedling stage, as well as to the initial seed stage in the 

bulk soil (Fig. 2B). We also observed more variation in b-diversity among the rhizosphere 

communities at the rosette, bolting and flower stages compared to communities in the bulk soil 

(Fig. 2B). Like the bulk soil communities, the b-diversity illustrated that the PBC communities 

were more phylogenetically consistent to each other, regardless of GS, than to either the monocrop, 

or WC (Fig. 2A). 

 

Root communities were only impacted by growth stages, and not soil history 

Finally, we analyzed how soil history and GS impacted the bacterial root communities. 

Only GS was significant in structuring root communities (PERM R2 = 0.16454, p < 0.006, Table 

2), unlike the bulk soil and rhizosphere communities where both GS and soil history were 

significant. b-diversity further illustrated this, as there was no impact of soil history on the root 

communities. We also observed that the bacterial root communities were more phylogenetically 

consistent at the seedling stage and became more variable at each subsequent GS (Fig. 5). 

In the root communities, PD was low compared to the bulk soil and rhizosphere 

communities (Fig. S7). Nonetheless, these communities were very stable across GS, except at the 
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bolting stage, where PD was significantly lower compared to the other GS (Fig. 4A). We did not 

detect any impact of the different soil histories on the PD, or differential abundances of bacterial 

taxa, in the root communities at any GS. The root communities were significantly depleted in a 

wide variety of bacterial taxa at each GS when compared to the rhizosphere (p < 0.05; Fig. S9C). 

Nevertheless, the root communities were also significantly enriched in specific taxa when 

compared to the rhizosphere. First, at the rosette stage the most prominently enriched taxa in the 

roots were in the Verrucomicrobiae, Actinobacteria, Proteobacteria, and Bacterodia (p < 0.05; 

Fig. S9B9). Second, at the bolting stage the root communities were enriched in the 

Gammaproteobacteria & Bacterodia when compared to the rhizosphere communities (p < 0.05; 

Fig. S9C). We also detected two enriched taxa in the root communities when compared among 

themselves at different GS; Bacterodia were enriched at the rosette stage, compared to the bolting 

stage, while Gammaproteobacteria were enriched at the bolting stage, compared to the flower stage 

(p < 0.05; Fig. 4B). 
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Figure 4. Bacterial root communities were stable across different growth stages and soil histories. Samples were harvested throughout 

the 2019 Brassica napus growing season during the Test Phase of a multi-year crop rotation in Lacombe, Alberta. (A) Phylogenetic 

diversity was significantly lower among the root communities at the bolting stage compared to other growth stages (p < 0.001). Diversity 

across growth stages was tested with a Multi-Factor ANOVA, which confirmed that the previously established soil histories were not 

significant and did not interact with the Test Phase B. napus growth stages. Statistically significant groups were identified using Tukey’s 

post hoc test. (B) Bacteroidia were significantly enriched (p < 0.05) in the bacterial root communities at the rosette stage compared to 

the subsequent bolting stage, while Gammaproteobacteria were enriched in root communities at the bolting stage compared to 

communities at the flower stage. Significantly enriched taxa, labelled in bold, were tested between each pair of growth stages and soil 

history. Taxa that were significantly more abundant are highlighted brown or green, following the labels for each compared host. These 

differential taxa clusters identified significantly enriched (ie, abundant), using the non-parametric Kruskal test, followed by the post hoc 

pairwise Wilcox test, with an FDR correction. 
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Figure 5. Bacterial root communities from the seedling (purple) and rosette stage (blue) were more phylogenetically similar to each 

other, regardless of different soil histories (shapes; not significant), than to the bolting (red) or flower (green) growth stages. Samples 

were harvested throughout the 2019 growing season during the Test Phase of a multi-year crop rotation in Lacombe, Alberta. Distance-

based redundancy analysis (constrained by growth stages), using UniFrac distances weighted by absolute abundance, quantified how the 

experimental factors structured the bacterial communities, where those with similar phylogenetic composition appear closer together. 
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Discussion 

Soil history implies that information is transmitted through time to condition the assembly 

of future plant-soil microbial communities (Kaisermann et al., 2017; Bakker et al., 2021; Hannula 

et al., 2021). Although our previous work has shown this can be true (Blakney et al., 2022; Blakney 

et al., 2023), the influence or longevity of soil history on bacterial community structure across 

growth stages is not clear. In this study, we tested how previously established soil histories endured 

across growth stages throughout a growing season. We took advantage of an agricultural field 

experiment to bridge the gap between controlled greenhouse conditions and experiments in 

“natural” environments, as such studies are currently lacking to understand bacterial temporal 

dynamics (Revillini et al. 2016; Martinović et al., 2021; Gu et al., 2022). We hypothesised that 

previously established soil histories would decrease in influencing the structure of Brassica napus 

bacterial communities over the growing season. We sampled bulk soil, rhizosphere and roots 

successively throughout the growing season from different soil histories and used 16S rRNA 

metabarcoding to estimate the bacterial communities. Contrary to our hypothesis, we actually 

found a strong impact of soil history on the bacterial bulk soil and rhizosphere communities 

throughout the growing season. 

 

Bacterial community diversity changed across growth stages 

 We found that the time points of each GS were significant in structuring bacterial 

communities from all three compartments, the bulk soil, rhizosphere and roots (Table 2). However, 

the data illustrated that the rhizosphere communities were exceptionally dynamic across GS, while 

the bacterial bulk soil and root communities tended to remain more stable. The most striking feature 

we observed among the bacterial rhizosphere communities were the large-scale taxonomic 
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enrichments between GS (Fig. 3B & S9), which were entirely absent in the bulk soil communities 

(Fig. 1B & S9) and quite limited in the roots (Fig. 4B & S9). The increased dynamism of the 

rhizosphere in particular seems reasonable since these communities are at the confluence of the 

bulk soil and the plant. Therefore, the rhizosphere ought to experience the changing influences of 

the B. napus plant host in addition to the local edaphic factors and climate variables. Furthermore, 

the compositional enrichments in the bacterial rhizosphere communities may illustrate the plant 

hosts capacity to increase recruitment from the surrounding bulk soil, particularly at the seedling 

and flower GS. 

In contrast, bacterial root communities should be primarily shaped by the plant host, as we 

observed. Moreover, the bulk soil communities should largely experience similar abiotic conditions 

as the rhizosphere, but with minimal influence from the plant host (Vieira et al., 2020; Blakney et 

al., 2022; Blakney et al., 2023). That there were no compositional changes among the bulk soil 

communities between GS may be an encouraging indication that the bulk soil samples were 

appropriately harvested as they appear free from the influence of the host plant.   

 A second key feature we detected in the rhizosphere communities was an increase in 

phylogenetic diversity over GS (Fig. 2B & 3A), while a similar trend was confined to only the 

flower stage time point in the bulk soil communities (Fig. 1A). Conversely, the roots remained 

relatively phylogenetically stable throughout the experiment (Fig. 4A). The increase in late-stage 

phylogenetic diversity also appears in changes in b-diversity between rhizosphere and bulk soil 

communities (Fig. 2). In both cases we observed increased phylogenetic diversity over time, as 

older soils can slowly accumulate new community members due to different dispersal, drift, 

selection or speciation/diversification events (Nemergut et al., 2013).  
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A key difference between the bulk soil and rhizosphere communities, however, is that 

communities in the rhizosphere are directly influenced by the plant host, while those in the bulk 

soil are not since they are non-planted controls. Therefore, since we observed similar increases in 

diversity late in the growing season among the rhizosphere communities and their cognate bulk 

soil controls, it is perhaps obvious to suggest a common cause. However, it is important to be 

mindful that the trend among the rhizosphere communities may actually be due to the plant host, 

unlike in the bulk soil. Similar increases in phylogenetic diversity across GS have also been 

observed in the rhizosphere of other plants, such as rice (Edwards et al., 2018). Unlike previous 

findings in the perennial Brassicaceae Arabidopsis alpina that showed quite static bacterial 

communities (Dombrowski et al., 2016), our data aligned similarly to other annual crops that 

exhibit quite dynamic bacterial rhizosphere communities across GS (Edwards et al., 2018). 

Nonetheless, we also observed that the variation within the rhizosphere and root 

communities increased through time; communities at the bolting and flower GS were more variable 

than at earlier GS (Fig. 2B & 5). It is possible that this variation could be due to the inherent 

stochasticity of priority effects, where community composition at later GS is constrained by earlier 

GS (Meisner et al., 2021; Chase et al., 2021; Debray et al., 2022). This could be better tested in 

the future as high-frequency sampling from multiple hosts of the same genotype may be 

experimentally valid to detect priority effects (Debray et al., 2022). However, given the dramatic 

morphological changes that occur at different GS, as has been noted in B. napus, attention must be 

paid to ensure that the same physical thing is repeatedly sampled (Mamet et al., 2022). Failure to 

do so could mistake a lack of priority effects for high community turnover. 
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Bacterial diversity was highest in the most diverse soil history 

Our results also illustrated a clear trend that bulk soil and rhizosphere communities with 

the PBC soil history consistently had the highest phylogenetic diversity, compared to the monocrop 

and WC soil histories across all GS (Fig. 1A, 2 & 3A). We can be confident that the increased 

phylogenetic diversity among the PBC soil communities was due to the different soil history for 

two reasons. First, we observed an increase in PD among PBC plots in the bacterial bulk soil 

communities beginning from the first GS, before any host plants was even present. Second, the 

increase in phylogenetic diversity in the bulk soil and rhizosphere communities from the PBC plots 

remained throughout the growing season. Thus, even with the addition of a host plant the common 

PBC soil history still impacted the bacterial communities at each GS, or concordant sampling time 

in the case of the bulk soil. 

Conversely, we found no difference between the three soil histories in the root communities 

(Fig. 4A & Fig. 5) where soil history was not significant to those communities (Table 2). Thus, 

from our experiment we can only observe a change in the root communities according to GS (Fig. 

5). This is consistent with our previous work that also demonstrated bacterial root communities 

tend to be strongly influenced by the host plant, and not to impacted by soil history, unless the host 

plant host is stressed (Blakney et al., 2022). 

Although we found a clear impact of different soil histories on phylogenetic diversity in the 

bacterial bulk soil and rhizosphere communities, it is interesting to note that we only identified a 

slight compositional change in the bulk soil due to soil history (Fig. 1B). Moreover, we did not 

detect different, or specific ASVs within the rhizosphere communities according to their different 

soil histories (Fig. 3B). First, this lack of compositional difference between soil histories might 

suggest that the different agricultural treatments involved in establishing the previous soil history 
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were not sufficiently diverse. However, given our previous results using crop rotations this seems 

unlikely (Blakney et al., 2022; Blakney et al., 2023). Alternatively, the lack of compositional 

differences between rhizosphere communities despite coming from different soil histories, could 

be evidence for the common host plant structuring similar rhizosphere communities. This would 

be consistent with other studies that found declining site-specific bacteria over time, and increasing 

plant-specific bacteria (Edwards et al., 2018). Including other diverse host plants, similar to our 

previous experimental design (Blakney et al., 2022; Blakney et al., 2023), would allow us to better 

support this conclusion. 

 

Conclusion 

 In this experiment we tested the hypothesis that previously established soil histories would 

decrease in influencing the structure of Brassica napus bacterial communities over the growing 

season. We sampled the bulk soil, rhizosphere and roots successively throughout the growing 

season from plots with different soil histories and used 16S rRNA metabarcoding to estimate the 

bacterial communities. We largely confirmed our first prediction that the bacterial bulk soil 

communities would remain stable throughout the experiment and continue to be structured by their 

soil history. Our second prediction, that the bacterial bulk soil and rhizosphere communities would 

remain similar at the initial seed and seedling GS, according to their different soil history, was also 

well supported. In fact, we found that the bacterial bulk soil, rhizosphere, and root communities all 

diverged more as they aged. However, this divergence tended to refute our final prediction, as the 

rhizosphere communities did not converge in similarity over the growing season, regardless of their 

soil history. Yet, this was largely true among the root communities, which only divered according 

to growth stage. Moreover, we did not identify specific community changes in either the 



 
 

249 

rhizosphere or the roots due to different soil histories. Nevertheless, soil history continued to be 

more influential than GS among the rhizosphere communities and was not significant for root 

communities. Therefore, based on our data, our initial hypothesis that posited that the influence of 

soil history on structuring the bacterial community would decline across GS was not well 

supported. Instead, we found a strong impact of soil history on the bacterial bulk soil and 

rhizosphere communities throughout the growing season, but not in the root communities. 

 Our results highlight the importance of studying microbial communities through time, 

which has largely been ignored to date. Studying how communities arrive at a given composition 

is more instructive than just a static snapshot. Here we found that different soil histories persisted 

and impacted bacterial diversity throughout the growing season. This suggests that the host plant’s 

capacity to “re-write” different soil histories may be quite limited as key components that constitute 

the soil history’s identity remained present and continued to impact the bacterial communities. 

From the agricultural perspective, persisting soil histories may have important long-term 

consequences. This presents exciting future experiments to uncover the transmission components, 

or memory, of soil history among soil bacterial communities. Given the significant and myriad 

human-induced changes throughout the biosphere (IPCC 2021), there is a clear need to better 

account for how historical events may structure plant-soil microbial communities going forward 

through time, and more broadly influence the mechanisms of community ecology. 
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Supplementary Materials 

 

Table S1. Bacterial strains included in the mock community (BEI Resources, USA) of known 

composition, was included on each plate (Fig. S2). The mock community contains DNA of 20 

bacterial species in equimolar counts (106 copies/µL) of 16S rRNA genes. Taxa have been provided 

to illustrate the level of comparison.  

 

 
Bacteria Taxonomy 

    
    

 Phyla Class Order/Family 
    

Actinomyces odontolyticus Actinobacteria (P) Actinomycetales (C)  

Propionibacterium acnes Actinobacteria (P) Actinomycetales (C)  

Bacteroides vulgatus Bacteroidetes (P)   

Deinococcus radiodurans Deinococcus (P)   

Bacillus cereus Firmicutes (P) Bacilli (C) Bacillales (O)/ 
Bacillaceae (F) 

    

Listeria monocytogenes Firmicutes (P) Bacilli (C) Bacillales (O)/ 
Listeriaceae (F) 

    

Staphylococcus aureus Firmicutes (P) Bacilli (C) Staphylococcaceae (F) 

Staphylococcus 
epidermidis Firmicutes (P) Bacilli (C) Staphylococcaceae (F) 

Enterococcus faecalis Firmicutes (P) Bacilli (C) 
 

Lactobacillales (O)/ 
Enterococcaceae (F) 

 

Lactobacillus gasseri Firmicutes (P) Bacilli (C) Lactobacilliaceae (F) 

Streptococcus pneumoniae Firmicutes (P) Bacilli (C) Streptococcaceae (F) 

Streptococcus agalactiae Firmicutes (P) Bacilli (C) Streptococcaceae (F) 

Streptococcus mutans Firmicutes (P) Bacilli (C) Streptococcaceae (F) 



 
 

252 

Clostridium beijerinckii Firmicutes (P) Clostridia (C) Clostridiale (O) 

Rhodobacter sphaeroides Proteobacteria (P) Alphaproteobacteria (C)  

Neisseria meningitides Proteobacteria (P) Betaproteobacteria (C)  

Helicobacter pylori Proteobacteria (P) Epsilonproteobacteria (C)  

Escherichia coli K12 Proteobacteria (P) Gammaproteobacteria (C) Enterobacteriales (O) 
 

Acinetobacter baumannii Proteobacteria (P) Gammaproteobacteria (C) 
 

Pseudomonadales (O)/ 
Moraxellaceae (F) 

 

Pseudomonas aeruginosa 
PAO1-LAC 

 
Proteobacteria (P) Gammaproteobacteria (C) Pseudomonadaceae (F) 

 
 

 

 

Table S2. Primers used in this study. 
   

Name Sequence (5’-3’) Reference 
   

S-D-Bact-0341-b-S-17 CCTACGGGNGGCWGCAG Klindworth et al., 2012 

S-D-Bact-0785-a-A-21  GACTACHVGGGTATCTAATCC Klindworth et al., 2012 

CS1 Adapters ACACTGACGACATGGTTCTACA Illumina, 2013 

CS2 Adapters TACGGTAGCAGAGACTTGGTCT Illumina, 2013 

16S PA-27F-YM  AGAGTTTGATCCTGGCTCAG Bruce et al., 1992 

16S PH-R AAGGAGGTGATCCAGCCGCA Bruce et al., 1992 

Eub338 ACTCCTACGGGAGGCAGCAG Fierer et al., 2005 

Eub518 ATTACCGCGGCTGCTGG Fierer et al., 2005 
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Table S3. PERMANOVA for all the sampled Test Phase communities identified compartment 

(bulk soil, rhizosphere, or root), growth stage, and soil history established in the Conditioning 

Phase, as significant experimental factors. PERMANOVA was calculated using a Bray-Curtis and 

Weighted Unifrac distance matrix, with 9999 permutations. 

 

Experimental 

Factors 

Bray-Curtisa  Weighted Unifrac 
       

F Model R2 Pr (> F)  F Model R2 Pr (> F) 
        

Compartmentb 2.82430 0.05461 0.001  81.305 0.60135 0.001 
        

Growth Stagec 1.12762 0.02907 0.006  1.655 0.01632 0.090 
        

Soil Historyd 1.14988 0.01482 0.016  2.924 0.01442 0.025 
        

Compartment ~ 

Growth Stage 
1.29513 0.05008 0.001 

 
2.576 0.03811 0.005 

        

Compartment ~ 

Soil History 
1.03763 0.02675 0.154 

 
1.458 0.01438 0.156 

        

Soil History ~ 

Growth Stage 
0.97479 0.05026 0.762 

 
0.767 0.01514 0.724 

        

Compartment ~ 

Soil History ~ 

Growth Stage 

1.01258 0.07832 0.268 

 

1.150 0.03402 0.296 

a, Values in bold indicate significant factors 
b, Rhizosphere or roots 
c, Test Phase growth stages: seed, seedling, rosette, bolting, or flower 
d, Soil history established the previous year: monocrop canola, wheat-canola rotation, or pea-
barely-canola rotation 
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Figure S1. Conceptual design of the experiment. (A) Soil history was established during the 

growing season of 2018 (Conditioning Phase, t = 0), while the effect of soil history on Brassica 

napus bacterial rhizosphere and root communities, or associated bulk soil, was observed the 

following season, in 2019 (Test Phase, t = 1, 2, 3 … 5). Samples were harvested throughout the 

growing season at five growth stages; seed, seedling, rosette, bolting, and flower. (B) Field plan 

for the experiment. The experimental design was a split-plot replicated in four complete blocks. In 

the ‘Conditioning Phase’, three soil history treatments were randomly assigned: treatment 1 (green) 

another generation of canola (B. napus L., cv. L252LL) as a monocrop, treatment 4 (brown) spring 

wheat (Triticum aestivum cv. AAC Brandon), as the wheat phase of a two-year crop rotation with 

B. napus, and treatment 8 (black) barley (Hordeum vulgare cv. Canmore), as a three-year crop 

rotation with B. napus and pea (Pisum sativum L. cv AAC Lacombe). Plot numbers appear in 

subscript. 
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Figure S2. Organization of our lab workflow for the Test Phase Brassicaceae samples from harvest 

to generating amplicon sequence variants (ASVs). The Test Phase Brassicaceae samples were 

harvested in from 12 plots organized as split plots that were randomly assigned three soil history 

treatments (Fig S1B). Each plot was harvest at five growth stages (seed, seedling, rosette, bolting 

and flower); note the seed was all the same for each plot (n = 1). Bulk soil samples were taken from 

each plot at each growth stage (n = 60). In the field, each plant had its root systems and associated 

immediately flash-frozen in liquid nitrogen and kept on ice. In the lab, samples were sieved to 

remove debris (rocks, undecomposed straw, twigs etc…), and root systems were divided into 

rhizosphere and root samples (n = 48 each). Roots and seeds were then ground in liquid nitrogen, 

and DNA was extracted from all the Test Phase samples. No-template extraction controls were 

included to assess what contaminates, or biases, the extraction kits (Machery-Nagel Nucleospin 

Soil gDNA kit, at left in brown, and Qiagen Plant DNEasy kit in green) might impart.  

We also included no-template PCR negative controls, and confirmed by gel electrophoresis that 

none of the no-template extraction controls, nor the no-template PCR controls, contained DNA. To 

help identify sequencing biases, or bath effects, a replicate of the bacterial mock community (BEI 

Resources, USA) was included on each plate submitted for sequencing. All DNA samples were 

submitted to Génome Québec for 16S rRNA PCR amplification, library preparation, and paired-

end 250 bp Illumina MiSeq sequencing. All reads were subsequently trimmed and processed 

through the DADA2 pipeline for ASV inference. 
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Figure S3. The DADA2 workflow processed 11 010 728 raw reads, produced from one lane of sequencing via Illumina’s MiSeq at 

Génome Québec, and retained 2 770 390 reads which were used to infer amplicon sequence variants (ASVs).  
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Figure S4. High-quality MiSeq reads retained through the DADA2 pipeline from among the mock 

community replicates, were inferred as inferred amplicon sequence variants (ASVs), and assigned 

taxonomy using the Silva database, represented here as phlya. Every bacterial group included in 

the mock community was detected in both replicates, and no others. The Actinobacteria, and 

Deinococcus, were the most accurate between what was included in the community, and retrieved 

in our pipeline. Community 2 showed an expansion among the ASVs identified as Bacteriodetes, 

Campilobacterota, Firmicutes, and Proteobacteria. 
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Figure S5.  Rarefaction curves illustrated that the majority of the bacterial communities were 

identified in the samples harvested in 2019 from the bulk soil, rhizosphere, and roots, from five 

growth stages during the Test Phase of a multi-year crop rotation, in Lacombe, Alberta. 
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Figure S6. A standard curve of the 16S rRNA gene copy numbers (X-axis) versus the number of 

cycles required for detection (cycle threshold, Ct, Y-axis), as determined from the serial dilution 

of a quantified 16S rRNA gene.  
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Figure S7. Phylogenetic diversity was significantly different between compartments (p < 0.001) 

in bacterial communities throughout the Brassica napus growing season. Root and seed 

communities were significantly different from each compartment across growth stages. Bulk soil 

and rhizosphere communities were strikingly similar across growth stages, except for the flower 

and bolting stage, respectively, which were both more diverse than the rhizosphere communities at 

the seedling and rosette stages. Diversity across growth stages was tested with a Multi-Factor 

ANOVA, which confirmed that the compartments and the Test Phase B. napus growth stages were 

significant and did interact. Statistically significant groups were identified using Tukey’s post hoc 

test.  
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Figure S8. Bulk soil and rhizosphere bacterial communities were more phylogenetically similar than to root or seed communities. (A) 

Principal co-ordinate analysis illustrated that seed and root bacterial communities were phylogenetically distinct from bulk soil and 

rhizosphere communities. Bacterial root communities were more similar at the seedling and rosette stages, and appeared more diverse 

over time. Axis 1 and 2 captured 69.4% of the variability among the bacterial communities. (B) Bacterial communities from the bulk 

soil and rhizosphere were more phylogenetically similar at the seed and seedling stages, and increasingly diverse at following growth 

stages. Axis 1 and 2 captured 35% of the variability among the bacterial bulk soil and rhizosphere communities. Principal co-ordinate 

analysis were plotted using UniFrac distances weighted by absolute abundance, where phylogenetically similar communities were plotted 

closer together. 
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Figure S9. Specific bacterial taxa were significantly different between adjacent compartments at 

specific Brassica napus growth stages. (A) Bacterial rhizosphere communities at the seedling stage 

were enriched in taxa compared to the bulk soil and root communities. (B) At the rosette stage, 

bulk soil and rhizosphere communities were relatively similar, while both the rhizosphere and root 

communities were enriched in different taxa. (C) The bacterial communities in the bulk soil and 

rhizosphere were also similar at the bolting stage, though the the rhizosphere and root communities 

both exhibited specific enrichments in different taxa. (D) Bacterial rhizosphere communities were 

enriched in taxa compared to both the bulk soil and root communities. The abundance of each 

taxonomic group was compared between compartments, using the using the non-parametric 

Kruskal test and the post hoc pairwise Wilcox test, with the FDR correction. Taxa that were 

significantly (p. adj < 0.05) more abundant were highlighted. 
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General Conclusions 

How current microbial communities impact future ones, and more broadly, how microbial 

communities vary through time, is a key knowledge gap in understanding how microbial 

communities assemble. Accounting for legacy, or historical, effects will be fundamental in 

developing accurate models of microbial community assembly and evolution, accounting for 

functional roles of communities, and for exploiting microbial technologies for use throughout 

society (Rittmann, 2006; De Vrieze et al., 2020; Gundersen et al., 2021), including medicine 

(Shafquat et al., 2014), waste management (Graham et al., 2004), and agriculture (Quiza et al., 

2015). As such, the goal of my thesis was to investigate how soil history impacts future microbial 

communities in agroecosystems. By modelling soil history in agricultural rotations, and using 

metabarcoding to identify the microbial communities, I was able to test different hypotheses 

concerning the duration and impact of soil history in uncontrolled field conditions on soil bacterial 

and oomycetes. 

In Chapter 1, I showed that bacterial communities with different soil histories converged 

toward similar phylogenetic compositions via the plant-soil microbial community feedback of their 

new Brassicaceae plant hosts. This was an interesting result, as it illustrated that three different 

soil histories could all be equally modified by the new plant hosts, and that despite variation in 

their agricultural treatments, the Brassicaceae hosts assembled phylogenetically similar bacterial 

communities from diverse soil histories. That the Brassicaceae host with the most distinct bacterial 

communities was also the least phylogenetically related among the five hosts is also fascinating, 

as it hints at the shared evolutionary history between host and communities. Moreover, the 

unplanned water-stressed conditions proved serendipitous, as it provided supporting evidence that 

active plant-soil community feedback processes drive the bacterial community changes between 
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host plants. This helped clarify that the bacterial communities were not just a result of variation 

between agricultural treatments, or the mere presence of the plant. The absence of an active 

feedback process also illustrated that soil history continued to shape the bacterial communities for 

up to a year after its establishment. 

I also documented that soil history could continue to shape oomycetes communities for up 

to a year in Chapter 2. In this study, I found that the different soil histories had more significant 

influence on structuring the oomycete communities than the Brassicaceae plant hosts. 

Furthermore, soil chemistry actually appeared to be the primary factor in structuring the oomycete 

communities. This was particularly interesting since the oomycetes, and the bacterial communities 

reported in Chapter 1, were inferred from the same samples, and had to contend with similar 

edaphic factors. Yet, I found that these different microbial communities were influenced to varying 

degrees by soil chemistry, soil history, or their Brassicaceae hosts. 

In Chapter 3 I then investigated how previously established soil histories influenced the 

bacterial communities of Brassica napus throughout a growing season. Building on the data from 

the first experiment, I found that the different soil histories did continue to structure the bacterial 

rhizosphere communities across different growth stages, but had no influence on the root 

communities. This indicates that there are long-term components to soil history that are not 

degraded, or “re-written” by the host plant. Rather, the host plant masks the existing soil history, 

and derives a host-specific community from it. Furthermore, this data also suggested that the host 

plant assembles similar communities from diverse soil histories. 
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Synthesis 

For Agricultural 

 Taken together, my thesis highlights a number of practical considerations for agricultural 

applications. First, as discussed, to date there has been little work on how previous crops and their 

agricultural inputs effect subsequent soil microbial communities (Lay et al., 2018). My data 

directly addresses this knowledge gap and suggests that different crops, and their established soil 

histories, have little impact on the subsequent Brassicaceae oilseed crops in establishing similar 

bacterial communities. This is a positive result for agriculture on several fronts including for crop 

breeding programs that disrupt soil microbial communities (Pérez-Jaramillo et al., 2018; Bailey-

Serres et al., 2019; Taye et al., 2020), as well as issues regarding intensive practises degrading 

“soil health” (Yang et al., 2020; Fierer et al., 2021). 

 In parallel with the concerns over how productive rotations and intensive agricultural 

practices have degraded local environments stems the idea that agriculture has also decreased the 

quality of the soil, or its health. Therefore, with little data available concerning the impact of Big 

Agriculture, and its overuse of fertilizers and pesticides, it has been assumed that the soil microbial 

communities have also been damaged along with the soil (Yang et al., 2020; Moore et al., 2023). 

This inadvertent harm to the resident microbial communities may have negatively impacted their 

functionality in agricultural soils and the ecosystem services they provide (Yang et al., 2020; Fierer 

et al., 2021). My data illustrates that, despite diverse agricultural treatments and sites, soil histories 

established by lentil, wheat, barley, canola, or fallow conditions, have little impact on diverse 

Brassicaceae oilseed crops establishing their own bacterial communities. That the diverse 

Brassicaceae hosts still established phylogenetically similar bacterial communities despite various 
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soil histories suggests that at least this fraction of the resident microbial community has not been 

irreparably harmed in these soils in terms of composition. 

 Another result of not sufficiently studying the soil microbial communities associated with 

plants has been the concern that crop domestication and on-going selection for yields may have 

inadvertently harmed the capacities of crop plants to form healthy microbial communities (Pérez-

Jaramillo et al., 2018; Bailey-Serres et al., 2019; Taye et al., 2020). However, my data 

demonstrates that the different Brassicaceae hosts continue to assemble similar bacterial 

communities from a range of soil histories, while complementary agricultural studies from the same 

crop rotation experiment in Swift Current, Saskatchewan, has illustrated that these diverse 

Brassicaceae oilseed crops are also productive (Hossain et al., 2019; Liu et al., 2019). This 

suggests that the breeding of these oilseed crops has not come at the expense of degraded microbial 

communities. 

Furthermore, there has been interest in diversifying Brassicaceae oilseed crops to expand 

breeding options for improving resistance to phytopathogens, as well as heat and drought-stress 

(Bailey-Serres et al., 2019; Hossain et al., 2019; Liu et al., 2019). My data highlights that during 

the drought event, the diverse Brassicaceae hosts shifted their root bacterial communities to include 

more Actinobacteria, as has been reported elsewhere for plants experiencing drought (Naylor et 

al., 2017; Santos-Medellín et al., 2017; Fitzpatrick et al., 2018). This suggests that the on-going 

breeding of these various Brassicaceae oilseed crops has not impaired this generic plant response 

to drought. In fact, this result provides an interesting foundation for further research into the 

drought response of the Brassicaceae oilseed holobiont and future avenues for breeding programs.  

My investigation into the oomycete communities also has insights for breeding 

Brassicaceae oilseed crops with improved resistance to phytopathogens. My data suggests that B. 
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carinata and S. alba may be less able to prevent oomycete colonization compared to the other 

Brassicaceae crops. This should be further investigated and considered in future breeding 

programs. Concurrently, none of the different Brassicaceae crops appeared to restructure the 

oomycete communities, which indicates that these plant hosts had weaker selection on the 

rhizosphere, be it positive or negative, compared to the soil history. Therefore, this may indicate 

that producers ought to be cautious with these particular rotations, as they may establish optimal 

conditions for oomycete phytopathogens. On-going biomonitoring and quantification should be 

mandated given that oomycetes have been identified throughout the Canadian Prairies (Taheri et 

al., 2017a; Karppinen et al., 2020; Taheri et al., 2021). 

 However, I also identified a strategy to engineer greater resilience into bacterial 

communities, which could improve resistance to pathogens, or other biotic or abiotic perturbations 

(Loreau et al., 2021; Hong et al., 2022; Li et al., 2022). My data indicates that bacterial 

communities from soil histories with more diverse crop rotations had significantly increased 

phylogenetic diversity. From greater diversity, bacterial and other microbial communities tend to 

stock more genetic and functional variation in order to better adapt to changing conditions, as per 

the insurance theory (Loreau et al., 2021). Thus, agricultural producers should be shifting to greater 

crop diversity in an effort to engineer greater resilience into the soil microbial communities (Yang 

et al., 2020; Moore et al., 2023). 
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For Plant-Soil Microbial Community Feedback    

In my thesis, I demonstrated the use of crop rotation experiments to model how PSF 

established a soil history that would structure the subsequent plant-soil microbial community. This 

is an important step forward in studying PSF, as these studies have traditionally not been conducted 

in the field (van der Putten et al., 2013; Revillini et al., 2016; De Long et al., 2019; Chung, 2023). 

A strength of this approach is that it incorporates a full range of biotic and abiotic factors into the 

PSF, both above and below-ground (De Long et al., 2019). Moreover, through the use of different 

crop rotations, and their assortment of varying agricultural management practices, multiple soil 

histories were established and tested. Demonstrating that large-scale field experiments involve PSF 

and establish soil history is a key proof-of-concept, as exposing theories and ideas about PSF and 

soil history to “the real world” is an important step in building-up the model (Revillini et al., 2016; 

De Long et al., 2019). 

Further to this, PSF is often characterised as unpredictable to detect, partially due to the 

high degree of variability among initial microbial communities (De Long et al., 2019; Van Nuland 

et al., 2019; De Long et al., 2023). However, my thesis tested multiple soil histories in two different 

field experiments, 600 km apart, over different years, which repeatedly demonstrated that soil 

history structured the subsequent bacterial and oomycete communities of Brassicaceae hosts. This 

is a robust, replicated test of various PSF (lentil, wheat, or barley) that each established a clear, 

detectable common soil history that structured the subsequent bacterial and oomycete 

communities. This occurred despite the complex biotic and abiotic interactions, including the 

multifaceted connections between different resident microbial communities (Van Nuland et al., 

2019). Thus, my data suggests that PSF and the established soil history can be readily and 

consistently detected in field trials. 
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 Not only do these replicated studies illustrate PSF can establish detectable soil histories in 

a field experiment, but they also demonstrate the primacy of the resident plant host in the hierarchy 

of forces involved in PSF (De Long et al., 2023). The resident Brassicaceae hosts incorporated 

numerous biotic and abiotic factors—variable initial microbial communities, different soil 

histories, and various management practices—into a coherent environmental filter and established 

phylogenetically consistent microbial communities in the rhizosphere. Compared to the previously 

established soil histories, or the different agricultural practices that were employed, the 

Brassicaceae plant hosts melded them together and established, or “re-wrote” a consistent filter for 

bacterial communities in the rhizosphere. 

Conversely, my data illustrated that a strong abiotic factor, water stress, could nullify the 

resident plant’s PSF, and reveal the previously established soil history. I also found that the resident 

Brassicaceae PSF does not apply equally to all microbes; the oomycete communities inferred from 

the same rhizosphere samples as their bacterial cognate communities were virtually unstructured 

by plant hosts. These observations both point to subtleties in the hierarchy of forces involved in 

PSF, as the resident plant host is not always preeminent according to, at least certain, biotic (i.e. 

different groups of microbes), and abiotic (i.e. water stress) factors (De Long et al., 2023). This is 

particularly useful to note, as these parameters can be tested in future experiments.  

For example, if I had included metabarcodes of additional microbial groups, algae and 

fungi, or functional sub-group, such as mycorrhiza and phytopathogens, we could expect these 

groups to fall along a continuum of influence between the resident plant and the established soil 

history. Functionality of fungi, such as mutualists versus parasites, has been shown to be important 

in PSF, particularly whether the outcome for the plant host is beneficial or not (Geisen et al., 2022; 

Semchenko et al., 2022). Therefore, tracking how different microbial groups are influenced by the 
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hierarchy of forces involved in PSF could provide a better understanding of the spatiotemporal 

reach, or strength of these different parameters (De Long et al., 2023). 

To date PSF and the soil history that is established is largely assumed to occur instantly, 

and little work has attempted to dissect how these processes occur through time (Chung, 2023). 

My Lacombe experiment starts to quantify PSF working through time from the “belowground-up”, 

where the changes in bacterial communities can be indictors of the plant host’s status, requirements, 

and potential influence (Bennett & Klironomos, 2018; Li et al., 2019). From the dynamics of 

various microbial communities across different developmental stages, we can develop a more 

nuanced and predictable vision of PSF, and derive clearer concepts of microbial community 

assembly (Chung, 2023; Martiny et al., 2023). 

 

On Community Assembly 

Returning to first principles, what do these data tell us about how previously established 

soil history impacts microbial community assembly? First, our data illustrates that different soil 

histories endure; they last for up to a year, are maintained through seasonal extremes, and are not 

degraded by the presence of a new host plant. As the Trial 2 data from Chapter 1 and the results 

from Chapter 3 show that the soil history remains intact and continues to influence the bacterial 

rhizosphere communities, even in the presence of a new plant host. This is more obvious in 

Chapter 2 where the oomycete communities are continuously structured by the previously 

established soil histories, despite the presence of new host plants.  

Furthermore, the elements responsible for soil history continually assembled consistent 

microbial communities, as we observed for the bacterial communities in the results from Trial 2 in 

Chapter 1 and again in Chapter 3, as well as for the oomycete communities in Chapter 2. 
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Therefore, this suggests that the foundational components of soil history should be resilient against 

variation in the microbial community and should dominate any influence from dispersal, drift, or 

speciation. This suggests that the defining components of soil history should not be physiochemical 

in nature (e.g. pH, moisture, salinity, cation exchange capacity, total carbon, etc…) as this would 

be expected to change over the course of a year.  

This points to some component of soil history that continually, and strongly, selects for 

similar microbial communities, or functions, through time. Broadly, this might be accomplished 

by decaying plant material; as it takes time to breakdown, this could provide a continued source of 

selection. More specifically, particular residual secondary metabolites from the plant-soil microbial 

community feedback process could play long-term roles in framing soil history (Zhang et al., 

2023). In sufficient quantities, or stocked in decaying plant material, secondary metabolites could 

continually select for a common microbial community through time. 

Furthermore, during the Test Phase of each experiment, the data demonstrated a number of 

fates for the previously established soil histories. In the presence of an active feedback process, the 

selective force of soil history was overtaken by selection from the host plant for bacterial 

rhizosphere communities. This could be tested to determine if the previously established soil 

history reasserts itself at the end of a growing season after the plant is removed. Conversely, in the 

absence of an active feedback process, soil history continued to dominate as a selective process in 

the rhizosphere (Chapters 1 and 3) and the bulk soil (Chapter 3). Nonetheless, the bacterial bulk 

soil communities also continued to change over the growing season similar to the rhizosphere 

communities. This might suggest that secondary non-selective forces, such as dispersal events 

through the air or water, are also active. 



 
 

279 

From this work it appears that soil history limits the influence of drift and speciation on 

microbial community assembly. In well provisioned agroecosystems, such as the research farms 

where these experiments were conducted, it seems less likely that microbial communities would 

experience more stochastic events where drift might play a critical role (Gundersen et al., 2021). 

Equally, given the relative stability of the different soil histories, it seems unlikely for speciation 

events to be influential. Though, it is possible that the introduction of a new host plant could be 

sufficient to drive speciation in the rhizosphere. Future metagenomic experiments may be better 

adapted to detect speciation events as genome-level changes in different samples, or populations, 

throughout a growing season. 

 

Perspective 

There are also outstanding questions, or limits, to the analysis of microbial communities in 

soils or other environments. First, it has been well documented that there are biases throughout 

metabarcoding pipelines, from soil to sequencing, and the necessity of striving to follow the best 

practices (Klindworth et al., 2013; Alteio et al., 2021; Lloréns-Rico et al., 2021; Tedersoo et al., 

2022). Adapting new technologies is always accompanied by growing pains to establish 

appropriate protocols and new norms withing the scientific community vis à vis reporting data, 

including proper sampling, use of controls, ASV inference, taxonomic identification, and the use 

of functional assignments (Meyer et al., 2018; Fleishman et al., 2022; Roche & Mukherjee, 2022). 

As such, the onus is on the community to push for more rigorous standards at each step of the 

research process. Preregistered reports, peer community journals, and preprints may all help the 

research community avoid stagnating by setting rigorous practices. 
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Beyond these technically oriented limits, there are also several biological assumptions 

baked into metabarcoding, including questions about the value of which organisms are identified 

without contextual details, such as if they are still alive, dormant, their numbers or what functions 

they have. For example, nucleic acid isolation protocols do not discriminate between biologically 

packaged molecules, i.e. those inside cells and viral particles, versus “relic” nucleic acids, or those 

present in the environment, including the microbial necromass of lysed cells and particles (Sokol 

et al., 2022). This relic DNA has been reported to account for 50-70% of the obtained reads and 

artifactually increase the a and b diversity of studies (Carini et al., 2016; Bowsher et al., 2019).  

However, as Lennon et al., (2017) point out, relic DNA bias is not universal, even when it 

is in high concentrations. Highly active and dynamic environments, such as agricultural soils, are 

thought to be less biased versus more stagnant samples, such as in biofilms or sediments (Carini et 

al., 2016; Lennon et al., 2017; Bowsher et al., 2019). Furthermore, since my data illustrated 

significant plant host-induced changes to the bacterial communities within a growing season in 

Chapters 1 and 3, it seems unlikely that relic DNA caused a significant bias. This is more difficult 

to assess for the oomycete communities, however, since there were fewer dynamic changes. 

Therefore, it could be possible that the strong soil history effect among the oomycete rhizosphere 

communities was due to relic DNA bias. Given this, future studies should make use of treatment 

options to limit the impact of relic DNA. Propidium monoazide, for example, can be used on 

environmental samples, where upon exposure to light it irreversibly intercalates into unprotected 

DNA strands preventing this pool of unprotected DNA from being PCR amplified (Carini et al., 

2016; Emerson et al., 2017; Carini et al., 2020; Ouyang et al., 2021). Through these types of 

innovation, metabarcoding can avoid some the assumptions associated with it and increase its use 

and accuracy. 
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Additionally, there are a few key concepts that more microbial ecologists are calling for to 

strengthen the discipline and move it in from a descriptive “pre-science” toward a productive period 

of “normal science” (Kuhn, 1962). This includes, incorporating quantification, investigating 

functionality, and proposing testable and falsifiable hypotheses. For example, at its base, ecology 

asks what organisms are present and how many? Metabarcoding has been very useful for the 

former; at this point, the literature is replete with what organisms are present in the soil (Thompson 

et al., 2017), yet we still have a poor grasp of how many individuals there are (Roche & Mukherjee, 

2022). Hence, the literature is increasingly articulating the need to quantify community sizes, or 

absolute abundances (Gu et al., 2022; Roche & Mukherjee, 2022). 

Recall, however, that reporting the number of sequencing reads, or the percentage which 

were assigned to a particular ASV is not quantifying the size of the community (Smets et al., 2016; 

Gloor et al., 2017). Rather, the number of NGS reads obtained are a fixed value that has no 

biological relationship to the absolute abundance of a community (Alteio et al., 2021; Lloréns-Rico 

et al., 2021) Consequently, additional tools must be employed to estimate the total size of the 

community. Conveniently, however, there are already a number of strategies that exist to quantify 

microbes, such as qPCR, or flow cytometry (Alteio et al., 2021). 

Therefore, I made it a point of my thesis to attempt to quantify the microbial communities 

studied. This was achieved for all the bacterial communities, and the oomycete mock community, 

but not for the oomycete experimental communities in Chapter 2, though the technical limitation 

of using oomycete-specific ITS primers on environmental samples has since been overcome (Foster 

et al., 2022). The lack of regular reporting of estimated community sizes in the literature had a 

clear impact on my interpretation of the data as there was simply less context with which to evaluate 

it. Therefore, although incorporating the qPCR data into my work was not as productive as it might 
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have been, doing so did help reveal gaps in our understanding which would have otherwise gone 

unnoticed (see Chapter 2). Moreover, the qPCR estimates did nothing to hinder my results, while 

publishing my protocol and data will help future experiments establish quantification as a norm. 

A drawback, however, of whole sample quantification methods, like qPCR, is the lack of 

distinction between which organisms are active in the community, i.e. growing, versus those that 

are dormant. This is an important distinction since many soil microbes are actually dormant, such 

that the dominant portion of ASVs identified via metabarcoding may actually be alive, but inactive 

(Lennon & Jones, 2011; Blagodatskaya & Kuzyakov, 2013). Given that dormancy is a common 

and phylogenetically pervasive trait (Lennon & Jones, 2011; Blagodatskaya & Kuzyakov, 2013), 

it may be more relevant to pair metabarcode biodiversity surveys with estimates of the actively 

growing portion of the community and the total size of the community (Bowsher et al., 2019). This 

can be achieved through biochemical assays, by measuring the 16S rRNA transcription rate 

(Bowsher et al., 2019), or through the incorporation rate of isotopes (Orsi, 2022). 

In the case of my data, quantifying the active portion of the bacterial and oomycete 

communities would have given a more detailed understanding of their dynamics. However, since 

there was only one time point sampled for the Swift Current experiment (Chapters 1 & 2), it is 

unclear if identifying the active portion of those communities would have changed the overall 

interpretation. More likely, additional fine-scale data would simply have further refined or focused 

the data for those chapters. Conversely, estimating the total size and the active portion of the 

bacterial communities from the Lacombe experiment (Chapter 3) would have been very enriching 

since there were multiple time points. This would have yielded a much more detailed understanding 

of how these communities changed across different growth stages. 
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This also highlights the importance of studying communities through time, and not just in 

snapshots (Chung, 2023). Through routine estimates of community size at different proximal time 

points we can begin to catalogue these growth dynamics. This missing data was particularly 

relevant for my oomycete data since the presence of potential phytopathogens is an insufficient 

diagnostic indicator. Given that density-dependence impacts so many biological processes, 

including infection, and plant-soil microbial community feedback, quantifying soil microbes will 

be fundamental to understanding community assembly and functionality (van der Putten et al., 

2013; Chung, 2023). 

Furthermore, in the descriptive phase of soil microbial ecology, it has been important to 

determine which taxa are present. In-line with taxa-centric thinking comes the view that knowing 

the taxa will elucidate knowing the functions; an assumption often seen with metabarcoding 

(Gundersen et al., 2021; Wicaksono et al., 2022). However, this is also a macro-ecological bias; 

microbiologists do not have agreed upon biological species concepts, which limits the use of taxa 

as units of functionality (Escalas et al., 2019; Martiny et al., 2023). Moreover, many microbes, 

bacteria in particular, can be phylogenetically identical, and yet possess different functions 

(Blakney & Patten, 2011; Gundersen et al., 2021). Thus, it has been proposed that a “microbial 

ecology without species” would be more useful, along with a shift to understanding and quantifying 

functionality (Escalas et al., 2019).  

There are several methods available to investigate the functions of microbial communities 

and overcome the limits imposed by metabarcoding taxonomy surveys. First, potential functions 

of a community can be determined via a metagenomics approach, which can catalogue the known 

coding and non-coding genetic elements and their copy numbers (Hug & Co, 2018). This is also 

useful to observe phylogenetically divergent microbes that might be missed using metabarcoding 
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(Eloe-Fadrosh et al., 2016; Hug et al., 2016). For more specific questions and tighter budgets, 

targeted amplicon sequencing can determine if known functions are present in a microbial 

community (Hink et al., 2016). There are some disadvantages with these metagenomic strategies, 

however, including that they could be prone to relic DNA bias, as well as not accounting for active 

versus dormant microbes.  

An alternative approach to estimate the functions of microbial communities would be to 

measure gene expression of the community with a metatranscriptomics strategy. By capturing what 

genes are being actively transcribed, or translated via ribosome profiling, these strategies have the 

advantage of detailing what the microbial community was actually doing near the moment of 

sampling (Grenga et al., 2020). Furthermore, they tend to limit the disadvantages of relic DNA and 

dormant microbes, unlike metagenomic strategies. Although metatranscriptomic approaches may 

be more technically challenging than comparing barcodes to a functional database, they can 

produce far more detailed results (Alteio et al., 2020).  

These functional approaches would have no doubt produced very different datasets than 

what I have reported for the Swift Current and Lacombe experiments using metabarcoding. It 

would have been interesting to see if the community structure due to the plant hosts or water stress 

reflected different functions in the bacterial communities of Chapter 1. Also, knowing the 

potential or active functions of the oomycete communities may have helped interpret why they 

were so strongly determined by soil history and chemistry, but not the plant hosts. However, as 

discussed, since there was only one time point in the Swift Current experiment, having functional 

profiles would still only have given a singular snapshot, which could make interpreting why those 

functions were present, or active, difficult. Conversely, coupled with the multiple time points and 

compartments in the Lacombe experiment (Chapter 3), assessing the functionality of the different 
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bacterial communities would have been very productive. For example, that data showed that 

increased diversity in the soil history increased the phylogenetic diversity of the bacterial bulk soil 

and rhizosphere communities; therefore, observing more diverse bacterial functions would have 

considerably supported this point.  

Moreover, focusing on the ecological patterns of functions, whether as gene content, or 

biochemistry, will deepen our understanding of holobiont theory and help re-invigorate uncovering 

the responsible mechanisms (Doolittle & Booth, 2017). Although given the ease of using 

metabarcoding, perhaps it should be unsurprising that incorporating biological mechanisms into 

microbial ecology is currently a challenge. In a meta-analysis of the five leading microbial ecology 

journals (Applied and Environmental Microbiology, Environmental Microbiology, FEMS 

Microbiology Ecology, ISME Journal and Microbial Ecology), approximately only 10% of the 

published articles in 2020 included an appropriate hypothesis i.e., testable, falsifiable, mechanistic 

(Prosser 2020; Prosser 2022). Since there is certainly no lack of microbial phenomena, proposing 

the how and why for a mechanistic explanation should not be so rare, or so difficult. As has been 

said “an accumulation of facts is no more a science than a heap of bricks is a house” (Poincaré, 

1902). 
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