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If the brain were so simple we could understand it,

we would be so simple we couldn’t.

Lyall Watson





Résumé

Les interfaces cerveau-machine (ICMs) nous o�rent un moyen de fermer la boucle

entre notre cerveau et le monde de la technologie numérique. Cela ouvre la porte

à une pléthore de nouvelles applications où nous utilisons directement le cerveau

comme entrée. S’il est facile de voir le potentiel, il est moins facile de trouver la

bonne application avec les bons corrélats neuronaux pour construire un tel système en

boucle fermée. Ici, nous explorons une tâche de suivi d’objets multiples en 3D, dans

un contexte d’entraînement cognitif (3D-MOT).

Notre capacité à suivre plusieurs objets dans un environnement dynamique

nous permet d’e�ectuer des tâches quotidiennes telles que conduire, pratiquer des

sports d’équipe et marcher dans un centre commercial achalandé. Malgré plus de

trois décennies de littérature sur les tâches MOT, les mécanismes neuronaux sous-

jacents restent mal compris. Ici, nous avons examiné les corrélats neuronaux via

l’électroencéphalographie (EEG) et leurs changements au cours des trois phases d’une

tâche de 3D-MOT, à savoir l’identification, le suivi et le rappel. Nous avons observé

ce qui semble être un transfert entre l’attention et la de mémoire de travail lors

du passage entre le suivi et le rappel. Nos résultats ont révélé une forte inhibition

des fréquences delta et thêta de la région frontale lors du suivi, suivie d’une forte

(ré)activation de ces mêmes fréquences lors du rappel. Nos résultats ont également

montré une activité de retard contralatérale (CDA en anglais), une activité négative

soutenue dans l’hémisphère contralatérale aux positions des éléments visuels à suivre.

7



Afin de déterminer si le CDA est un corrélat neuronal robuste pour les tâches de

mémoire de travail visuelle, nous avons reproduit huit études liées au CDA avec un

ensemble de données EEG accessible au public. Nous avons utilisé les données EEG

brutes de ces huit études et les avons analysées avec le même pipeline de base pour

extraire le CDA. Nous avons pu reproduire les résultats de chaque étude et montrer

qu’avec un pipeline automatisé de base, nous pouvons extraire le CDA.

Récemment, l’apprentissage profond (deep learning / DL en anglais) s’est révélé

très prometteur pour aider à donner un sens aux signaux EEG en raison de sa capacité

à apprendre de bonnes représentations à partir des données brutes. La question

à savoir si l’apprentissage profond présente vraiment un avantage par rapport aux

approches plus traditionnelles reste une question ouverte. Afin de répondre à cette

question, nous avons examiné 154 articles appliquant le DL à l’EEG, publiés entre

janvier 2010 et juillet 2018, et couvrant di�érents domaines d’application tels que

l’épilepsie, le sommeil, les interfaces cerveau-machine et la surveillance cognitive et

a�ective.

Enfin, nous explorons la possibilité de fermer la boucle et de créer un ICM passif

avec une tâche 3D-MOT. Nous classifions l’activité EEG pour prédire si une telle

activité se produit pendant la phase de suivi ou de rappel de la tâche 3D-MOT. Nous

avons également formé un classificateur pour les essais latéralisés afin de prédire si

les cibles étaient présentées dans l’hémichamp gauche ou droit en utilisant l’activité

EEG. Pour la classification de phase entre le suivi et le rappel, nous avons obtenu un

80% lors de l’entraînement d’un SVM sur plusieurs sujets en utilisant la puissance des

bandes de fréquences thêta et delta des électrodes frontales.

Mots clés: Suivi d’objets multiples, MOT, CDA, EEG, Mémoire de travail,

Attention, Apprentissage profond
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Abstract

Brain-computer interfaces (BCIs) o�er us a way to close the loop between our brain

and the digital world of technology. It opens the door for a plethora of new applications

where we use the brain directly as an input. While it is easy to see the disruptive

potential, it is less so easy to find the right application with the right neural correlates

to build such closed-loop system. Here we explore closing the loop during a cognitive

training 3D multiple object tracking task (3D-MOT).

Our ability to track multiple objects in a dynamic environment enables us to

perform everyday tasks such as driving, playing team sports, and walking in a crowded

mall. Despite more than three decades of literature on MOT tasks, the underlying

and intertwined neural mechanisms remain poorly understood. Here we looked at

the electroencephalography (EEG) neural correlates and their changes across the

three phases of a 3D-MOT task, namely identification, tracking and recall. We

observed what seems to be a hando� between focused attention and working memory

processes when going from tracking to recall. Our findings revealed a strong inhibition

in delta and theta frequencies from the frontal region during tracking, followed by

a strong (re)activation of these same frequencies during recall. Our results also

showed contralateral delay activity (CDA), a sustained negativity over the hemisphere

contralateral to the positions of visual items to be remembered.

In order to investigate if the CDA is a robust neural correlate for visual working

memory (VWM) tasks, we reproduced eight CDA-related studies with a publicly
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accessible EEG dataset. We used the raw EEG data from these eight studies and

analysed all of them with the same basic pipeline to extract CDA. We were able to

reproduce the results from all the studies and show that with a basic automated EEG

pipeline we can extract a clear CDA signal.

Recently, deep learning (DL) has shown great promise in helping make sense

of EEG signals due to its capacity to learn good feature representations from raw

data. Whether DL truly presents advantages as compared to more traditional EEG

processing approaches, however, remains an open question. In order to address such

question, we reviewed 154 papers that apply DL to EEG, published between January

2010 and July 2018, and spanning di�erent application domains such as epilepsy, sleep,

brain-computer interfacing, and cognitive and a�ective monitoring.

Finally, we explore the potential for closing the loop and creating a passive BCI

with a 3D-MOT task. We classify EEG activity to predict if such activity is happening

during the tracking or the recall phase of the 3D-MOT task. We also trained a

classifier for lateralized trials to predict if the targets were presented on the left or

right hemifield using EEG brain activity. For the phase classification between tracking

and recall, we obtained 80% accuracy when training a SVM across subjects using the

theta and delta frequency band power from the frontal electrodes and 83% accuracy

when training within subjects.

Keywords: Multiple-Object Tracking, MOT, Contralateral Delay Activity, CDA,

EEG, Working Memory, Attention, Deep Learning
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Introduction

The field of Brain-Computer Interface (BCI) started in the 1970s with the work of

Jacques Vidal at the University of California, Los Angeles (UCLA) ([9, 10]) but only

became popular in the early 2000s with Jonathan Wolpaw’s paper on Communication

& Control ([11]) which laid the foundation for the field as we know it today. Brain-

computer interfaces stemmed from the need to help people with severe neuromuscular

disorders, such as amyotrophic lateral sclerosis, brainstem stroke, and spinal cord

injury. In such conditions, the body is somewhat unresponsive but brain functions

remain, in most cases, intact. Therefore, the idea behind a brain-computer interface

as its name implies, is to create a direct interface between the brain and a computer

in order to bypass the body and leverage technology to help people communicate and

have some control over their environment by controlling, for example, a robotic arm

or a wheelchair. While this objective is still at the forefront of BCI research, the field

has now evolved to wider ambitions extending to the general and healthy population

as well.

0.1. Neurotechnology becoming mainstream
The quest to better understand the brain and cure neurological disorders is nothing

new. While centuries of human experiments have enabled us to amass valuable

knowledge on how the brain works, the recent technological advances in brain imaging

have been a paradigm shift in how we study the brain and the speed at which we



gather evidences on brain functions. With tools such as functional magnetic resonance

imaging (fMRI), functional near-infrared spectroscopy (fNIRS), positron emission

tomography (PET), computed tomography (CT), magnetoencephalography (MEG),

electroencephalography (EEG), and electrocorticography (ECoG), neuroscientists

have been able to look at both the anatomical and functional aspect of the brain at

unprecedented scale ([1]). While these advances have been very beneficial from both

a medical and research standpoint, they have also paved the way to a cultural shift

towards human enhancement and the ethical concerns that come with it [29, 37, 4].

In 2013, the US launched the Brain Research through Advancing Innovative

Neurotechnologies® (BRAIN) Initiative under the Obama administration aiming to

revolutionize our understanding of the human brain. Shortly after, other major brain

initiatives were launched in di�erent parts of the world, all committing significant

budget allocations towards understanding the brain. For example, in 2013 as well the

Human Brain Project was announced as a concerted e�ort in Europe. In 2014, Japan

launched their Japan Brain/MINDS (Brain/Mapping by Innovative Neurotechnologies

for Disease Studies) project. South Korea announced their ten-year brain-mapping

project in 2016. The China Brain Project, a 15-year project, was approved in March

2016. Many other countries such as Canada, Australia, Cuba and others also launched

their own brain initiatives [36]. In 2017, the International Brain Initiative (IBI) was

established to coordinate e�orts across all these existing and emerging brain initiatives

([2]). These years marked an unprecedented e�ort and budget allocation towards

understanding the brain.

In 2016 and 2017, the neurotechnology field was shook again and brain-computer

interfaces suddenly became a popular mainstream subject when back-to-back an-

nouncements were made by Elon Musk and Facebook, announcing that they were

venturing in neurotechnology to create brain-computer interfaces enhancing human

experiences. Other announcements from other groups were made during that period

as well but nothing compares with the reach and influence that Facebook and Elon
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Musk had and more importantly, the ethical debate it generated on public forums.

Regardless of the opinions on these specific entities and projects, the capital and

attention that these announcements generated is massively positive for the field as a

whole. Future will tell if this was for better or for worse.

For a good review on neurotechnology covering the recent trends in research as

well as industry and the societal impact of such technology, I recommend the book I

co-authored with the NeuroTechX community The Neurotech Primer: A Beginner’s

Guide to Everything Neurotechnology ([22]).

0.2. Consumer EEG & BCI
There are two very distinct trends in the BCI field; the research & medical devices

and the consumer devices. The research and medical devices are usually bucketed

together as they both require the upmost quality, as opposed to the consumer devices

usually sacrificing quality for form factor, manufacturing, price, and ease of use. For

the BCIs as medical devices, they are usually separated in two categories; invasive

and non-invasive. For consumer devices, there aren’t any invasive devices as the

regulation in most countries does not allow such procedure on healthy individuals.

While there are di�erent technologies and approaches to record brain activity and

make use for a brain-computer interface, the BCI field is heavily dominated by

electroencephalography (EEG) for non-invasive approaches and electrocorticography

(ECoG) as well as microelectrode arrays for invasive approaches. This thesis however,

focuses on non-invasive technology in a research context using research devices looking

at neural correlates from a fundamental perspective but with the objective of potentially

translating such research into the consumer space.

EEG is not a new technology, however, the early 2010s marked a pivotal moment

in the evolution of the technology when four companies successfully disrupted a field

that was previously reserved to the medical and research world given the price tag
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of such equipment. Neurosky, Muse, Emotiv and OpenBCI paved the way for a new

industry by o�ering low cost (sub $1000) EEG devices for people to use and develop

applications using their software development kit (SDK). Until then, the market was

dominated by a handful of EEG manufacturers selling devices in the tens of thousands

of dollars. Neurosky was the first one to challenge the whole industry when they

proposed their EEG device with 1 channel on the forehead for only $200. While the

quality of such device can’t be compared, these consumer EEG devices democratized

the EEG technology and enabled a plethora of opportunities.

In the late 2010s and early 2020s, we have seen a pivot from making custom EEG

headsets to rather try to embed these sensors into existing devices that we are already

wearing such as headphones, glasses and headmounted display for augmented reality

(AR), virtual reality (VR), and mixed reality (MR).

0.3. Towards Pervasive Passive and Reactive BCIs
In 2011, Thorsten Zander suggested to breakdown brain-computer interfaces into

three distinct categories: (1) Active BCIs, (2) Passive BCIs, and (3) Reactive BCIs

([12]). Active BCIs refers to the interfaces where the user has to do a conscious e�ort

to control it, like in a motor imagery paradigm where the user voluntarily thinks about

moving their right or left arm to control a device ([18, 34]). Passive BCIs are those

where the experience is seamless to the user. The user doesn’t have to do anything

specific while the BCI records and analyze the brain activity to modulate the task or

the experience in real-time based on brain activity ([5, 38]). Reactive BCIs are those

were a specific stimulus is presented while the BCI monitor the brain’s reaction to

that stimulus. The most popular use case of a reactive BCI is the P300 speller where

a grid of letters, representing a keyboard, is shown on a screen and di�erent rows and

columns of letters are being randomly highlighted in rapid flashing sequences. When

the letter that the user is paying attention to (i.e. trying to write) is highlighted, the
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brain will naturally produce an evoked potential called the P300 ([17, 38]) that can

be detected by the BCI and the letter be written on the screen allowing the user to

type words and sentences.

Because non-invasive active BCIs are hard to implement given the quality of the

signal, the mental fatigue, the exhaustion, and the frustation they cause, passive and

reactive BCIs are most likely the first everyday life BCI implementations that we

might see in the coming years.

0.4. Neural Correlates
Each brain imaging modality has its pros and cons. Electroencephalography (EEG),

o�ers a very good temporal resolution as it measures the electrical activity of the brain,

which is generated by the neurons firing. On the counterpart, EEG is a non-invasive

technology recording from the scalp and therefore, reading a distorted signal prone

to noise. Moreover, given that the potential di�erence (i.e. voltage measured) is

calculated from two points on the scalp, the measurement obtained is the sum of all

electrical signals being propagated and entangled together making it hard to interpret

and o�ering a poor spatial resolution on where the activity is originating from.

The most popular analogy to describe EEG is using microphones in a stadium to

infer what people are talking about. In this analogy the microphones represent the

electrodes and the people represent the neuron communicating together. If we put

microphones outside the stadium (non-invasive), we will be able to tell when there is

a goal and we’ll also be able to tell which team scored because these are synchronised

signals with almost the whole stadium shouting in unison. On the other hand, we

wouldn’t be able to understand the various conversations people are having in smaller

groups.

Despite such limitations, there are many di�erent signals that can be used in a

BCI context or to infer the underlying brain mechanisms at play. Just to name a few,
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in the time domain, the most used signals are the evoked-related potentials (ERPs)

which represent a reaction of the brain to a given stimulus. Hence their name: evoked.

The most well known ERPs include the P300, a component elicited in the process of

decision making and the N270, usually elicited in conflict or incongruity processing. In

the frequency domain, the scientific community have separated the EEG spectrum in

five main frequency bands: delta, theta, alpha, beta and gamma. Di�erent groups use

di�erent limits for these bands, but usually they fall around the following breakdown:

[1-3]Hz for Delta, [4-7]Hz for Theta, [8-12]Hz for Alpha, [13-30]Hz for Beta, and over

30Hz for Gamma. The role of these bands is still vaguely understood and many studies

link the di�erent bands with di�erent cognitive processes. These bands are believed

to be natural oscillatory speed at which the di�erent brain networks communicate

together ([2]). Another interesting EEG pattern linked to working memory is the

contralateral delay activity (CDA) which will be explored in greater details in the

next chapter.

0.5. Cognitive Training
One of the most disruptive concept in modern neuroscience is undoubtedly brain

plasticity. It is now accepted among the scientific community that the adult brain can

alter it structure and re-wire itself in response to environmental demands ([9, 16]).

This fundamental concept has paved the way for the cognitive training subfield, where

the idea is to harness brain plasticity by o�ering a controlled and targeted training

environment. Despite hundreds of studies on the matter, the debate is still going on as

if cognitive training really works and if participants in such training can derive value

in their daily life activities. The main argument reside in the generalization of the

training across di�erent domains, also called far transfer. Simply put, it’s one thing to

train on a task and get better at it, but can it really help be better at other tasks as

well. Systematic reviews have reached inconsistent conclusions ([27]) on the subject.
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Since the publication from Bavelier and Green in 2003, showing that playing

an action video game leads to a higher performance on complex visual tasks ([13]),

many research groups and companies have tried to leverage video games as a tool for

cognitive training. On paper, video games are the perfect vehicle for cognitive training

because they are engaging, easy to make and easy to adapt to target specific brain

functions. Several companies such as CogMed, Lumosity, BrainHQ, NeuroTracker,

and Akili have commercialized brain training applications, often called brain games.

While they all have di�erent claims and level of scientific validation, Akili paved the

way to not only for cognitive training but also for digital therapeutics by being the

first company ever to obtain FDA approval for the marketing of a video game as a

medical solution for ADHD in June 2020.

Adam Gazzaley, the scientist behind Akili and their video game as a digital therapy,

with his colleague Jyoti Mishra, claimed in their 2015 paper that closed-loop systems

will be the next evolution of cognitive training, using the term closed-loop cognition

([21]).

The question remains however as if video games can o�er something more than

just a means of entertainment but rather a platform to train the brain and enhance

our cognitive abilities? And if so, how do we close the loop in real-time to improve the

experience and create a direct relationship between the brain and the training task?

0.6. Multiple Object Tracking (MOT)
NeuroTrackerTM is a commercially available 3D-MOT task currently used by a

multitude of users in many countries around the world as a perceptual-cognitive

training and assessment tool. It has been used and studied in various fields such as

sport ([1, 13, 26, 38]), ESports ([3]), education ([43]), aviation ([18]) and military

([45]). 3D-MOT training has been demonstrated to enhance attention, working

memory and visual information processing speed ([34]). Given the wide adoption of
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the NeuroTrackerTM and existing literature showing e�ective transfer, we opted for a

modified version of the NeuroTrackerTM for our study.

The multiple-object tracking (MOT) paradigm was originally developed by

Pylyshyn & Storm in 1988 ([6]). Since then, many researchers have developed their

own version of the task with slight variations to study di�erent aspect of perception

and cognition. In a MOT task, the participant is asked to follow number of targets

(usually between 1 and 4 objects of interest) while ignoring distractors. In order to

modulate task di�culty, parameters usually include the number of targets ([35]),

speed ([7, 19]), and distance between objects ([1, 41]).

Most MOT studies are using a 2D-MOT, however, given that we live in a 3D

environment we believe that a 3D-MOT makes for a more ecological task to study and

train cognitive functions. The modified version of the NeuroTracker (i.e. 3D-MOT

task) is a great candidate for a passive BCI based on attention and working memory

neural correlates. Moreover, while the task remains simple as opposed to a fancy

video game with too many confounding elements, the task still engages complex brain

networks as would some real-life activities such as driving and playing a team sport.

Despite the increasing literature on multiple-object tracking and evidence of

e�ective training showing transfer on real tasks in real environments ([1]), our un-

derstanding of the underlying neural mechanisms remains fuzzy. Over the last few

decades, several cognitive models have been brought forward trying to explain how

individual items are being encoded and deciphering the intertwined roles of attention

and working memory in such tasks. Such models are discussed in chapter 2. Recent

EEG studies try to disentangle working memory and attention during a 2D-MOT

task. For example, Drew and colleagues tried to delineate the neural signatures of

tracking spatial position and working memory during attentive tracking. They found

that there was a unique contralateral negativity related to the process of monitoring

target position during tracking which was absent when objects briefly stopped moving.
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These results suggest that the process of tracking target locations elicits an electro-

physiological response that is distinct and dissociable from neural responses of the

number of targets being attended ([10]). In this research we seek to explore if we can

classify via machine learning the neural signatures of the participants to di�erentiate

the phases of the 3D-MOT task, the number of targets being tracked as well as the

hemifield (i.e. side) in which they where presented.

0.7. Machine Learning or Deep Learning?
Machine learning plays a central role in a BCI application as that’s where a

decision will be made by the system from interpreting brain activity. While most

brain-computer interface pipeline still use traditional machine learning approaches

such as Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), or

more complex approaches such as Reimannian geometry (which is still considered

state-of-the-art for most BCI classification problems ([103])), the promises of AI

and deep learning have generated a huge interest in the community. While the field

lacks the data size that other fields such as image processing and natural language

processing have access to, large neuro-related datasets have recently been released

publicly to foster innovation in this area. In 2019, we published the first review on deep

learning for EEG (see chapter 3), which was quickly appreciated by the community,

where we shed light on the trends and tried to answer a few questions researchers

interested in the field might have such as how much data is enough data?, how deep

should the model be?, should one use convolutional neural networks or recurrent neural

networks?, can one use the raw signal or should we extract features first?, does the

model generalize across subjects or should one retrain a new model for each subject?.

While a few questions remained unanswered we were able to extract the trends and to

highlight practices providing the best results.
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0.8. This Research
Given the current pace of innovation in neurotechnology and the di�erent trends

mentioned throughout this introduction, it is now clear that the quest to use the

brain as an input for technology is here to stay and will spawn across many di�erent

sectors over the coming decades. This thesis seeks to explore new neural correlates

related to attention and working memory that could be used to create a passive BCI to

improve cognitive training tasks. Having a closed-loop system analyzing brain activity

in real-time while the user is performing a cognitive training task, would allow for a

more personalized experience leading to, we believe, a better training and transfer

e�ect.

This research sits at the intersections of several fields such as brain-computer

interfaces, neurotechnology, cognitive training, perception and cognition, machine

learning and artificial intelligence. The next four chapters represents four articles

either published or at least submitted in peer reviewed journals. In the first chapter,

we conducted a reproducibility study on CDA to better understand if this represent

a robust neural correlate for visual working memory and if it could potentially be

used in a passive BCI. In order to do so, we used eight di�erent EEG datasets from

published studies with open access data and with the same pipeline we successfully

extracted the CDA signal, showing robustness across di�erent visual WM tasks, EEG

recording devices, experimenters and subjects. In the second chapter, we conducted

our own experiment on a 3D-MOT task exploring the CDA as well as the changes

of neural oscillations across di�erent phases of the task. In the third chapter, before

using the insights from the two previous studies to develop a passive BCI, we look at

recent developments in deep learning for EEG to better understand if deep learning

approaches surpasses traditional machine learning approaches. To do so, we reviewed

154 papers using deep learning on EEG data. Finally, we bring it all that together to

build a passive BCI for a 3D-MOT task in the forth chapter.
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Résumé. La mémoire de travail visuelle nous permet d’activement conserver et de

manipuler l’information visuel nous entourant. Bien que les mécanismes sous-jacents

à la mémoire de travail visuelle ne soient pas bien compris, l’activité contra latérale

(contralateral delay activity ou CDA en anglais) est souvent utilisée pour les étudier.

Il s’agit d’une activité négative soutenue dans l’hémisphère du côté opposé aux

objets visuels présentés. Afin d’étudier si le CDA est une activité cérébrale robuste

et fiable pour les tâches de mémoire de travail visuelle, nous avons reproduit huit

études dans le domaine avec des données EEG accessible et les avons analysées avec

la même séquence d’analyse rudimentaire. Nous avons été capable de reproduire les

résultats de toutes les études et de montrer qu’une séquence automatisée de base

permet d’extraire le signal CDA. Dans cette étude, nous partageons les tendances

observées à travers les études reproduites et soulevons quelques questions sur le

déclin du CDA ainsi que le CDA durant la phase de rappel, qui surprenamment n’a

pas été adressé dans aucune de ces huit études. Finalement, nous proposons des

recommandations sur la reproducibilité basés sur notre expérience et les di�cultés

rencontrées durant la reproduction de ces études.

Mots clés : CDA, EEG, Mémoire de travail, Activité contra latérale

Abstract. Visual working memory (VWM) allows us to actively store, update

and manipulate visual information surrounding us. While the underlying neural

mechanisms of VWM remain unclear, contralateral delay activity (CDA), a sustained

negativity over the hemisphere contralateral to the positions of visual items to be

remembered, is often used to study VWM. To investigate if the CDA is a robust

neural correlate for VWM tasks, we reproduced eight CDA-related studies with

a publicly accessible EEG dataset. We used the raw EEG data from these eight

studies and analysed all of them with the same basic pipeline to extract CDA. We

were able to reproduce the results from all the studies and show that with a basic

automated EEG pipeline we can extract a clear CDA signal. We share insights from

the trends observed across the studies and raise some questions about the CDA

decay and the CDA during the recall phase, which surprisingly, none of the eight

studies did address. Finally, we also provide reproducibility recommendations based

on our experience and challenges in reproducing these studies.

Keywords: EEG, CDA, Contralateral Delay Activity, Working Memory

46



1. Introduction
Visual working memory (VWM) allows us to actively store, update and manipulate

visual information surrounding us. Acting as a mental bu�er for visual information,

VWM has been an active area of research for several decades. While behavioural

studies have shown that working memory (WM), of which VWM is a subset, has

a limited capacity of only a few items, usually ranging between 3 to 5 ([8, 5]), the

underlying neural mechanisms remain vague. One ongoing challenge in the field is

dissociating WM from attention ([8, 27, 3, 26]). There is no clear consensus yet as

how separated or intertwined these two mechanisms really are.

Given the crucial role of VWM in our everyday life, much prior work has tried to

understand the neural correlates underlying its functioning via electroencephalogram

(EEG). One such VWM neural measurement being studied is the contralateral delay

activity (CDA) ([46, 24]). CDA is a sustained negativity over the hemisphere

contralateral to the positions of the items to be remembered. A prevailing view of

CDA is that it is modulated by the number of items held in WM reaching a plateau at

around three or four items. The CDA has been shown to be linked with the number

of items held in WM ([46, 44, 25]).

In order to study CDA, the most common task is a change detection task. The

sequence of such task typically looks something like the following: the participant is

cued with an array of items, varying in numbers but usually between one and eight,

balanced on both sides of the visual field. The items then disappear, forcing the

participant to hold relevant information in mind and after a short period of time,

usually one or two seconds, the participant is quizzed on the visual representation held

in WM. For example, a new array of items can be presented and the participant is

asked if there has been a change versus the initial items. The participant will answer

with a keyboard or a mouse and the results will be logged with di�erent levels of
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granularity depending on what the study is interested in. There are many variants of

such tasks.

Many well-known event-related potentials (ERPs) such as the P300 and N270,

benefit from a large volume of studies and replications and are well understood

([30, 31, 11, 21]). CDA, however, doesn’t benefit from such volume of evidence

yet. Our primary goal with this reproducibility study was to answer the following

question: Is the Contralateral Delay Activity (CDA) a robust and consistent neural

correlate for Visual Working Memory (VWM) tasks?. We wanted to know if CDA is

a consistent measure across di�erent tasks, subjects and EEG recording devices, or

if it requires a lot of manual cleaning and handcrafting of the data to obtain it. To

investigate the robustness of the CDA EEG signal, we looked for CDA-related EEG

datasets available online and tried to reproduce their results using a basic independent

automated pipeline with no human intervention on the data to extract the CDA. Given

that robustness can be interpreted in di�erent ways, we should mention that we use the

same definition as in the Framework for Open and Reproducible Research Teaching

(FORRT): The persistence of support for a hypothesis under perturbations of the

methodological/analytical pipeline. In other words, applying di�erent methods/analysis

pipelines to examine if the same conclusion is supported under di�erent analytical

conditions ([28]).

Lastly, before we dive in, we should also define the terms reproducibility and

replicability given that researchers from di�erent fields, and even from within the same

field, often use them interchangeably. Here we will use the same definitions as in the

Recommendations to Funding Agencies for Supporting Reproducible Research by the

American Statistical Association ([7]):

Reproducibility: A study is reproducible if you can take the original data and

the computer code used to analyze the data and reproduce all of the numerical findings

from the study. This may initially sound like a trivial task but experience has shown

that it’s not always easy to achieve this seemingly minimal standard.
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Replicability: This is the act of repeating an entire study, independently of the

original investigator without the use of original data (but generally using the same

methods).

Simply put, one can replicate a study or an e�ect (outcome of a study) but

reproduce results (data analyses). A third term, repeatability, is also used although

less often, referring to the same group repeating the same experiment with the same

analysis and obtaining the same results.

This current work focuses on reproducibility and not on replicability nor repeatabil-

ity as we did not collect new data but only used publicly available datasets. Moreover,

given the nature of the studies and the data we are handling, we could be even more

specific using the terminology computational reproducibility, as defined in the FORRT

([28]). This computational reproducibility study also intersects with a review given

that we extract common trends among studies and explore them from a computational

point of view. Note that we initially reproduced the result either with the original

code or with a re-written version of it before using the same pipeline for all studies to

assess the robustness.

Other fields such as artificial intelligence (AI) have benefited tremendously from

good reproducibility frameworks, standards and overall culture. The accelerated pace

of innovation and breakthroughs in AI were mainly enabled by accessibility of both

data and code. These best practices of sharing both data and code in a reproducible

manner aren’t, unfortunately, the default behavior in psycho- and neuro-related fields.

Here, we share how a few groups of researchers have made their data and code available

and we hope to inspire others to follow that path.

2. Method
After looking through CDA-related literature, searching for available datasets

and asking (i.e. emailing) a few researchers in the field if they were aware of open
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access CDA-related EEG datasets, we ended up with eight recent CDA-related studies

published between 2018 and 2020 with di�erent task paradigms. We do not claim that

the list of studies included in this review represents an exhaustive list of CDA papers

with available EEG datasets, however, we believe that these eight datasets represent

a good sample of the CDA literature as they used di�erent VWM tasks exploring

things such as di�erent set sizes (from 1 to 6 targets), adding new targets after the

initial array, retro-cueing, adding targets bilaterally, adding interruptions, halving the

targets to create more items to track, and all that using di�erent shapes and colors

as stimuli across studies. The search of CDA-related literature was done on Google

Scholar using the following search terms in di�erent orders and combinations: CDA,

Contralateral Delay Activity, and EEG. From the bibliography section of these articles,

a few additional relevant studies were added to the list. Open Science Framework

(OSF) with the keywords previously listed was also used to search for additional studies

and datasets. It is important to note that six out of the eight studies included here

have Edward Awh and Edward Vogel as co-authors, highlighting a lack of independent

studies on CDA with openly available EEG data.

In this section, we detail the studies we’ve reproduced and provide the resulting

CDA signal figure, which matches the CDA figure from the original study. It is

important to note that some of the reproduced studies were also looking at di�erent

neural correlates, however, for simplicity and readability we focus only on the CDA

relevant part of the study. In our analysis, we used all the available data, but did not

include any data files that were clearly marked as not being used (for various reasons).

All the studies were reproduced using MNE-Python ([15]) despite the original code

of most studies being in MATLAB. All figures in this section were generated using

the following pipeline: (1) load raw data, (2) rereference and downsample based on

the original study’s preprocessing steps, (3) filter the data between 1 and 30 Hz, (4)

epoch the data, (5) automated removal of bad trials (i.e. epochs) and interpolation of

bad channels via autoreject ([3]), (6) obtain each subject’s CDA for each condition by
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subtracting the averaged ipsilateral electrodes to the averaged contralateral electrodes

(i.e. contra minus ipsi), (7) average the CDA for each condition across subjects.

Table 2 shows the high-level information of the datasets to provide the reader an

idea about the number of subjects and trials for each study.

Year First Author Title

2020 Tobias

Feldmann-

Wüstefeld

Neural measures of working memory in a bilateral change de-

tection task

2020 Nicole Hakim Perturbing neural representations of working memory with task-

irrelevant interruption

2019 Mario Villena-

Gonzalez

Data from brain activity during visual working memory repli-

cates the correlation between contralateral delay activity and

memory capacity

2019 Haley Balaban Neural evidence for an object-based pointer system underlying

working memory

2019 Eren Gunseli EEG dynamics reveal a dissociation between storage and selec-

tive attention within working memory

2019 Nicole Hakim Dissecting the Neural Focus of Attention Reveals Distinct Pro-

cesses for Spatial Attention and Object-Based Storage in Visual

Working Memory

2018 Kristen Adam Contralateral delay activity tracks fluctuations in working mem-

ory performance

2018 Tobias

Feldmann-

Wüstefeld

Contralateral Delay Activity Indexes Working Memory Storage,

not the Current Focus of Spatial Attention

Table 1. Reproduced Studies
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Dataset Task Subjects Trials Target(s)

FW2020 Change Detection Task 21 1560 2,4,6

H2020 - Exp1 Change Detection Task 22 2400 4

H2020 - Exp2 Change Detection Task 20 1920 4

B2019 - Exp1 (Bilateral) Change Detection Task 16 840 2,4

B2019 - Exp2 (Bilateral) Change Detection Task 16 660 2,4

B2019 - Exp3 (Bilateral) Change Detection Task 16 840 2,4

H2019 Change Detection Task 97 1600 2,4

G2019 Orientation Retro-Cued Task 30 500 1, 3*

VG2019 Change Detection Task 23 96 1,2,4

FW2018 - Exp1 (Sequential) Change Detection Task 23 960 1,2,3,4

FW2018 - Exp2 (Sequential) Change Detection Task 20 960 1,2,3,4

A2018 - Exp1 Lateralized Whole-Report Task 31 650 1,3,6

A2018 - Exp1 Lateralized Whole-Report Task 48 540 1,3,6

Table 2. Datasets - Details. If a study contains more than one experiment of interest,

the di�erent experiments have been listed with "- Exp #". The number of trials

represents the total theoretical number of trials per participant according to the design

of the study.

2.1. Feldmann-Wüstefeld et al., 2020

In Neural measures of working memory in a bilateral change detection task ([12]),

Feldmann-Wüstefeld and colleagues used a novel change detection task in which both

the CDA and the negative slow wave (NSW) can be measured at the same time. They

presented memory items bilaterally with di�erent set sizes in both hemifields inducing

an imbalance or “net load” as they called it. Their results showed that the NSW

increased with set size, whereas the CDA increased with net load. There were three
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di�erent set sizes participants had to remember: two, four or six targets. In Figure 1,

we can see the five combinations of targets they used (2:0, 3:1, 4:2, 4:0, 5:1 ). With

their nomenclature 2:0 means 2 targets in one hemifield and 0 target in the other

hemifield for a net load of 2. 4:2 represents 6 targets total, 4 in one hemifield and

2 in the other for a net load of 2. As we can see, the highest CDA is obtained with

4:0 for a net load of 4. Interestingly, the 5:1 condition shows a higher CDA than

3:1 and 4:2 however lower than 2:0 indicating that having targets in both hemifields

reduces the overall CDA amplitude. On the graph, t=0s is when the memory display

appeared on the screen with the targets, then they stayed visible for 500ms after which

the participant had to remember the targets for 1 second before the probe display

appeared for the participant to provide their answer as to confirm if the item in the

probe display was indeed part of the targets or not.

Fig. 1. Reproduced results from Feldmann-Wüstefeld et al., 2020, using our simple

comparative pipeline.

2.2. Hakim et al., 2020

In Perturbing neural representations of working memory with task-irrelevant in-

terruption ([18]), Hakim and colleagues investigated the impact of task-irrelevant

interruptions on neural representations of working memory across two experiments

53



looking at both the CDA and lateralized alpha power. What they found is that after

interruption, the CDA amplitude momentarily sustained but was gone by the end

of the trial. On the other hand, lateralized alpha power, which has been used as an

e�ective tool for discerning which visual hemifield is being attended, was immediately

influenced by the interrupters but recovered by the end of the trial. Hakim and

colleagues suggested that dissociable neural processes contribute to the maintenance

of working memory information and that brief irrelevant onsets disrupt two distinct

online aspects of working memory and also that task-irrelevant interruption could

motivate the transfer of information from active to passive storage, explaining the

reason why the CDA drops significantly after interruptions, even on trials with good

performance (i.e. the participant remembered the targets correctly). In their 2nd

experiment, they go further and test if the expectation of interruption changes the

CDA. The full 1.65s epoch is displayed but not the response period which took place

after 1.65s (see 2). The CDA was obtained by using only PO7 and PO8 electrodes.

Fig. 2. Reproduced results from Hakim et al., 2020 - Experiment 1, using our simple

comparative pipeline.
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2.3. Balaban et al., 2019

In Neural evidence for an object-based pointer system underlying working memory

([4]), Balaban and colleagues argued that to update our representation of the envi-

ronment, our VWM depends on a pointer system such that each representation is

stably and uniquely mapped to a specific stimulus. Therefore, without these pointers,

our VWM representations are inaccessible. Via three experiments, they examined

whether the pointers are allocated in an object-based, featural, or spatial manner.

Their results showed that the separation of an object in two halves invalidated the

pointers. It happened in a shape task, where the separation changed both the ob-

jects and the task-relevant features, but also in a color task, where the separation

destroyed the objects while leaving the task-relevant features intact. They suggested

that objects, and not task-relevant features, underlie the pointer system. Two of their

three experiments are displayed in Figure 3 and Figure 4, while the third experiment

is available in the supplementary material to reduce the length of this manuscript and

enhance readability.

For Experiment 1, t=0s is when the memory display appeared on the screen with

the moving objects which either separated in halves after 400ms or either continued

moving as a whole for another 600ms after which they stopped moving for 300ms and

disappeared. After 900ms of retention with an empty screen displaying only a fixation

cross in the middle, the participant had to give an answer as if the objects being

displayed are the same or di�erent than the initial ones. In one condition the shapes

were the relevant features (i.e. have some of the shapes changed?) and in a second

condition the colors were the relevant features (i.e. have some of the colors changed?).

On the graph, the cognitive impact of the separation that happened for half the trials

(at 400ms) is clearly visible in the CDA signal around 200ms as highlighted by the

grayed region. The full 2.2s epoch is displayed on Figure 3 but not the response period
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which took place after 2.2s. The CDA was obtained by using only PO7-PO8, P7-P8

and PO3-PO4 electrode pairs.

For Experiment 2 (Figure 4), the epochs were shorter in time and only the colors

were the relevant features. The targets were all moving squares that could either

separate after 400ms or continue moving as a whole. Some trials had two targets and

some trials had four targets. In both experiments we see that after the separation,

the CDA amplitude increases, as the number of targets to track has now increased.

Fig. 3. Reproduced results from Balaban et al., 2019 - Experiment 1, using our

simple comparative pipeline.

2.4. Gunseli et al., 2019

In EEG dynamics reveal a dissociation between storage and selective attention

within working memory ([4]) Gunseli and colleagues tested the hypothesis that within

WM, selectively attending to an item and stopping storing other items are independent

mechanisms. In order to make participant drop items from WM, they used a retro-cue

to indicate which of the items were the target(s). As opposed to identifying the targets

at the beginning of the trial like in most WM studies, here they showed 3 items

(bars with di�erent orientations) and then, 1s later they showed a retro-cue indicating
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Fig. 4. Reproduced results from Balaban et al., 2019 - Experiment 2, using our

simple comparative pipeline.

which item is most likely to be tested, or probed, after the retention phase. Their

hypothesis was that if the retro-cue is reliable, the participant would drop the other

item(s) creating an imbalance between hemispheres and therefore increasing the CDA

signal. Whereas if the retro-cue is not reliable the participants would not drop the

item(s) and therefore resulting in a smaller CDA signal. On Figure 5, we see that

indeed the CDA is of higher amplitude for trials where the retro-cue is valid 80% of

the time in comparison to the other condition where the retro-cue is valid only 50%

of the time. The right graph was generated using their MATLAB preprocessed data

files (.mat) and the left graph shows our reproduced version from their raw EEG data,

with a lowpass filter at 6Hz, as they mention in their paper to leave the alpha band

out of the CDA signal. Unfortunately, the preprocessing code used to generate the

MATLAB preprocessed files was not available and it seems like these files benefited

from additional manual cleaning because when we use a higher filter (e.g. 20Hz or

30Hz) with the same pipeline as other studies, both signals end up with a similar

amplitude and the e�ect isn’t visible anymore because of a high variability on both

signals (50% vs 80%). In their paper they mentioned that using a higher filter (e.g.

40Hz) didn’t change the results of the statistical analysis (relative to the 6Hz filter).
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We did not perform any statistical analysis, however, we were only able to obtain a

visible CDA di�erence when plotting the grand average with heavy filtering (6Hz),

which helps reduce the variability. Only the PO7-PO8, P7-P8, and O1-O2 electrode

pairs were used to generate the CDA.

Fig. 5. Reproduced results from Gunseli et al., 2019, using our simple comparative

pipeline. (a) CDA calculated from raw EEG files. (b) CDA obtained from preprocessed

MATLAB files.

2.5. Villena-Gonzalez et al., 2019

In Data from brain activity during visual working memory replicates the correlation

between contralateral delay activity and memory capacity ([34]), Villena-Gonzalez and

colleagues replicated the results from Vogel, 2004 showing that the amplitude of the

CDA correlates with the number of items held in WM using a change detection task

with set sizes of one, two and four. Moreover, they also looked at the individual

performances and showed that participants with higher WM capacity (i.e. better

performance on the task) also had a higher CDA amplitude. Figure 6 shows a

clear di�erence between one target and two or four targets, however, we see similar

amplitudes for two and four targets. Unfortunately, we were not able to reproduce
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their results showing a clear di�erence of amplitude between two and four targets. In

their paper, they had a significant higher amplitude for four targets, which we failed

to reproduce after a few attempts at with di�erent automated preprocessing pipelines.

Our version doesn’t invalidate their conclusion as we also see a higher CDA amplitude

the larger the set size, however the e�ect between two and four isn’t as strong as

in their findings. This might indicate that the results could have benefited from

extra manual cleaning. The following electrode pairs were used to obtain the CDA:

TP7-TP8, CP5-CP6, CP3-CP4, CP1-CP2, P1-P2, P3-P4, P5-P6, P7-P8’, P9-P10,

PO7-PO8, PO3-PO4, and O1-O2.

Fig. 6. Reproduced results from Villena-Gonzalez et al., 2019, using our simple

comparative pipeline.

2.6. Hakim et al., 2019

In Dissecting the Neural Focus of Attention Reveals Distinct Processes for Spatial

Attention and Object-Based Storage in Visual Working Memory ([17]), Hakim and

colleagues showed that the focus of attention in WM is not a monolithic construct

but rather involves at least two neurally separable processes: (a) attention to regions

in space and (b) representations of objects that occupy the attended regions. On

Figure 7, the CDA is clearly visible, showing a slightly higher amplitude for a set size
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of 4 targets vs 2. The full 1.45s epoch of the change detection task is displayed but

excludes the response period which took place right after. It is important to note that

the graph represent the aggregation of 4 sub-experiments with slight variations on the

task. The CDA was obtained by using only O1-O2, PO3-PO4, PO7-PO8, P3-P4, and

P7-P8 electrode pairs.

Fig. 7. Reproduced results from Hakim et al., 2019, using our simple comparative

pipeline.

2.7. Feldmann-Wüstefeld et al., 2018

In Contralateral Delay Activity Indexes Working Memory Storage, not the Current

Focus of Spatial Attention ([13]), Feldmann-Wüstefeld and colleagues seek to explore

the recent hypothesis from Berggren and Eimer suggesting that the CDA tracks the

current focus of spatial attention as opposed to working memory storage ([6]). Figure

8 shows the CDA results of both their experiments in which they displayed four targets

among distractors via two sequential memory displays in a change detection task.

The first set of targets is shown at t=0s for 200ms then disappears for 500ms after

which a second set of targets and distractors appear for 200ms and then disappear for

another 500ms after which the probe display is shown for the participant to confirm if

the items currently displayed are the same as the targets. The whole 1.4s epoch is
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displayed on Figure 8, leaving the response period out of that figure. A total of four

targets were always shown to the participant. The first memory display (i.e. the first

set of targets and distractors to be shown) could either have 1, 2 or 3 targets and the

second memory display, 700ms later, could add 3, 2 or 1 targets for a combined total

of 4. The targets could be either added in the same hemifield or the di�erent (i.e.

opposite) hemifield. The expected result is a higher CDA when the targets are added

in the same hemifield as this will increase the "net load" (term they will later use in

their 2020 paper) and a lower CDA amplitude when added in the opposite hemifield

because it would then decrease the net load. Experiment 1, on the upper row, shows

such expected results somewhat perfectly as on the top left graph we see all three

CDA signals reaching the same amplitude after both sets of targets are added and

equals to four items in the same hemifield. As expected, the top right graph shows a

slight decrease on the CDA amplitude for 3+1 di� but more interestingly, a CDA of

pretty much zero for the 2+2 di� condition where two targets were shown in both

hemifields cancelling out the CDA signal. For the 1+3 di� condition, we see the

CDA flipping side after the new set of three targets is shown on the opposite side.

Experiment 2 was similar to Experiment 1 except for the probe display when the

participant provides the answer. In Experiment 1 the probe display showed the items

at the same spatial location that they were displayed in either the memory display

1 (at t=0ms) or 2 (at t=700ms). However, in Experiment 2 the probe display was

modeled after Berggren and Eimer ([6]) experiment such that the items were spatially

translated and interleaved. The authors suggested that given that the retention period

of Experiment 1 and 2 were identical (i.e. the 1.4s displayed on the graph) and that

only the probe display was di�erent, the di�erences observed between both experiment

can only be explained by di�erent memory strategies. They therefore suggested that

because the mental representation in Experiment 2 is more di�cult as the items are

not displayed "as is" but translated on the probe display, the participants most likely

transferred items of display 1 (i.e. first set of targets) from working memory (WM)
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into long-term memory (LTM) therefore explaining why in Experiment 2 the CDA

seems more a�ected by the second set of items rather than equally a�ected from the

first and second set of targets as in Experiment 1. A clear example of that di�erence

between experiments is the 2+2 di� condition where the CDA is pretty much zero in

Experiment 1 but biased towards the second set of targets in Experiment 2. Only the

PO7-PO8 electrode pair was used for the CDA signal.

Fig. 8. Reproduced results from Feldmann-Wüstefeld et al., 2018, using our simple

comparative pipeline.

2.8. Adam et al., 2018

In Contralateral delay activity tracks fluctuations in working memory performance

([1]), Adam and colleagues looked at the relationship between the CDA amplitude

and working memory performance. Their hypothesis was that if working memory
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Fig. 9. Reproduced results from Adam et al., 2018, using our simple comparative

pipeline. Experiment 1 (left) & 2 (right)

failures are due to decision-based errors and retrieval failures, CDA amplitude would

not di�erentiate good and poor performance trials when load is held constant. If

failures arise during storage (i.e. retention phase), then CDA amplitude should

track both working memory load and trial-by-trial performance. Their Experiment

1, shown on Figure 9, showed that the CDA amplitude increased with set size but

plateaued at three targets showing a similar amplitude for three or six targets. In

their Experiment 2, they kept the set size at 6 and compared the good trials (accuracy

of 3 or more targets identified correctly out of 6) vs bad trials (accuracy of 2 targets

or less identified correctly). Figure 9 (on the right) shows that indeed the amplitude

of the CDA correlated with the performance. The O1-O2, OL-OR, P3-P4, PO3-PO4,

T5-T6 electrode pairs were used for the CDA.

3. Results
Before analysing the CDA and drawing conclusions on the underlying cognitive

functions, we should understand how to best obtain a clean CDA signal in the first

place. In this section, we will first discuss what channels and reference(s) various
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groups have used to obtained their CDA. Second we will discuss some trends we have

observed across the reviewed studies.

Note that we did not look at any eye-tracking data and assumed that the subjects

respected the instructions of fixating the middle of the screen. Many studies had the

eye-tracking data available, however we did not use it nor have we excluded any trials

based on eye-movement. This does certainly impact the results we obtained when

compared to the original curves of the authors in their paper. Given that such data

was not available for all datasets, we decided to not consider it at all.

3.1. EEG Channels

The contralateral delay activity (CDA), as its name implies, is a di�erence in the

activity between the left and right hemisphere. The signal is obtained by subtracting

one or more contralateral channels to equivalent ipsilateral channel(s) to the attended

side. Unsworth et al., mentioned in their 2015 paper that it is now standard procedure

for measuring the CDA to use posterior parietal, lateral occipital and posterior temporal

electrodes (PO3, PO4, T5, T6, OL, and OR), citing the work of Vogel & Machizawa,

2004 and Vogel et al., 2005. Looking at the electrodes used in the reproduced studies

from 2018 to 2020, there seems to be a slight change towards favouring PO7/PO8 as

the best electrode pair. Table 3 shows the selected channels used by the reviewed

studies to obtain the CDA. Adam, 2018, used the recommendations from Unsworth,

2015, without the PO7/8 pair, while all the others included at least the PO7/8 pair.

Feldmann-Wüstefeld, 2018 & 2020, and Hakim, 2020, used only that pair for their

CDA results and did not average with any other pairs. Interestingly, in her 2019

study, Hakim had use PO7/8 but also P7/8, P3/4, PO3/4, and O1/2, which were not

included in the 2020 analysis. Villena-Gonzalez, 2019 used the most electrode pairs of

the reviewed studies, including parietal, occipital, temporal and central sites. It is

worth noting that the PO7/8 is not an electrode pair in the standard 32-electrode
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10-20 placement. This most likely explains why Adam, 2018 did not include this pair

given that they use a system with 20 electrodes with 10-20 locations.

To confirm our empirical estimation of PO7/8 being the best electrode pair for

CDA, we calculated the e�ect size for each available pair of electrodes by comparing

contralateral vs. ipsilateral activity for each study. All the datasets had the PO7/8

pair available but Adam 2018. Aside from Villena 2019, the largest e�ect size was

always observed from a parietal electrode pair. PO7/8, PO3/4 and P7/8 dominated

the top three electrode pairs in most studies. PO7/8 had the largest or second largest

e�ect size for 5 of the 8 studies. The breakdown is available on the repository online.

Study Channels

Feldmann-Westerfel, 2018 PO7/8

Feldmann-Westerfel, 2020 PO7/8

Hakim, 2020 PO7/8

Gunseli, 2019 PO7/8, P7/8, O1/2

Balaban, 2019 PO7/8, P7/8, PO3/4

Adam, 2018 O1/2, OL/R, P3/4, PO3/4, T5/6

Hakim, 2019 O1/2, PO3/4, PO7/8, P3/4, P7/8

Villena-Gonzalez, 2019 TP7/8, CP5/6, CP3/4, CP1/2,

P1/2, P3/4, P5/6, P7/8, P9/10,

PO7/8, PO3/4, O1/2

Table 3. Channel pairs used for the CDA.

In order to better understand the signal shape and amplitude coming from the

various electrode pairs, we looked at each pair for each condition of each study.

Regardless of what the study actually used for their analysis, we used all channel pairs

available in the raw data. We included here only the breakdown for Balaban 2019 and

Villena 2019 on Figure 10. All the other studies followed the trend of Balaban 2019
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showing a stronger CDA from the parietal sites with PO7/8 being the best candidate

(i.e. strongest CDA amplitude) across studies. Villena 2019, is the only one showing

di�erent results with a very strong frontal lateralized activity (see Figure 10(b)). We

initially thought these results were odd, until we analyzed our own data recorded for

another project while writing this review, for which we also observed frontal activity

being way stronger than parietal activity. Our task is a 3D-MOT task (see [13]).

(a) (b)

Fig. 10. CDA Channel Pairs. (a) Shows the CDA from Balaban et al., 2019 for

all available channel pairs. The CDA is the grand average across subjects from all

trials with a good performance for the condition integrated shape in experiment 1.

(b) Shows the CDA from Villena-Gonzalez et al., 2019 for all available channel pairs.

The CDA is the grand average across subjects from all trials with a good performance

for the condition with 2 items.

Finally, the approach for averaging the channel pairs also varied. Some groups

subtracted the pairs first and then averaged across pairs, while others averaged one

side first and then subtracted to the average on other side. The order in which the

averaging and subtracting happens doesn’t really matter if no other operation is done

on the signal and if they are all referenced to the same reference. For example, if

66



we are trying to use the pairs PO7-PO8, P7-P8 and PO3-PO4, we could either start

by subtracting each pair individually (e.g. signal from PO8 minus signal from PO7)

and then averaging the 3 signals obtained, giving us the resulting CDA or we could

average one side together (PO7, P7, and PO3) and subtract it from the average signal

from the other side (PO8, P8, and PO4). Both approaches would give the same CDA

for a given trial.

3.2. EEG Reference(s)

The EEG signal being an electric potential di�erence between two electrodes,

namely the electrode of interest and the reference, it is no surprise that the reference

plays an important role in EEG studies. Changing the reference can drastically

change the signal obtained and therefore influence the conclusion of a study. The

ideal reference would be a neutral point with no electrical activity to which we could

measure a di�erence of potential being only the activity of interest. Unfortunately, no

such point exists on the body, leaving the problem of finding a good reference unsolved

or open to interpretation. Best practices in EEG studies include (1) using the average

of left and right mastoids or (2) to re-reference the signal o�ine to the average of

all channels or (3) using one or multiple electrode(s) on the midline such as Cz or

(4) using a mathematical reference such as the reference electrode standardization

technique (REST) or a Laplacian approach ([37]). Here in the reviewed studies, all of

them used to the average of left and right mastoids except for Feldmann-Wusterfeld

2018 and 2020 which used the average of all electrodes.

Given that CDA is a di�erence between left and right hemispheres, the reference

isn’t as important as in most evoked-related potential (ERP) studies. The choice

of reference will impact the visual inspection and the cleaning of the data, however,

when it comes to obtaining the CDA itself, because we are subtracting one electrode

to the other, the reference gets somewhat cancelled and therefore does not impact the
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resulting CDA signal as much. For example, if the contralateral electrode is PO8(-Ref)

and the ipsilateral electrode is PO7(-Ref), then CDA (contralateral - ipsilateral) is

(PO8 - Ref) - (PO7 - Ref) which is equivalent to PO8 - PO7 as the Ref cancels out.

It is therefore still important to consider the reference for cleaning the signal but to

keep in mind that the CDA itself isn’t as a�ected as much by the reference as typical,

non-latelarized, ERPs. This actually makes the CDA signal even more robust to noise,

assuming that most EEG noise would be visible on both channels, and be cancelled

out during the subtraction. A noise that would survive that subtraction would be a

noise seen only by one electrode or one ’side’ of the head.

3.3. CDA Decay

If the amplitude of the CDA correlates with the number of items being tracked,

one could expect the amplitude to remain somewhat stable for the whole retention or

tracking duration. However, in all the replicated studies we can observe the amplitude

of the CDA declining way before the end of the retention phase even when the

participants did not lose track of the item(s).

In later section 3.6 we look at the CDA when subjects lost track of one of more

item(s) (i.e. bad trials) but all figures previously showed with the reproduced results

and discussed in the methods section were generated from good performances only,

meaning that the subjects did remember all the items for the whole duration of the

trial and provided good answers at the end. As we can see on Figures 1, 3, 4, 5, and 7

the CDA is starting to decrease way before the end of the trials. In Hakim, 2020, they

added interruptions trying to interfere with WM processes and CDA indeed dropped

significantly shortly after such interruptions. And yet, despite the important drop in

amplitude the participants still provided correct answers. While none of the eight

studies addressed directly what seems to be a natural CDA decay, some suggested

(e.g. Hakim, 2020; Feldmann-Wüstefeld, 2018) that the items could be transferred
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from short term memory to long term memory therefore a�ecting the CDA amplitude

observed here.

3.4. Recall

One interesting phenomenon that most studies did not mention in their paper is

the recall, or response, period (i.e. when the participant is providing the answer).

Interestingly, in most studies, we are observing a re-increase in the amplitude of the

EEG signal, sharing similarities with the CDA observed during the identification and

retention (or tracking) periods. One potential reason most studies don’t look at that

period is because eye movements are generally not controlled in this phase, introducing

artifacts in the EEG signal. Moreover, the induced artifacts are most likely lateralized

and not normally distributed as the participants might be fixating and moving their

eyes to the side of interest, complicating the dissociation between eye-movements and

cognitive processes in the EEG signal.

Figures 11, 12, 13, and 14 show the CDA graphs but with a longer epoch this time,

including two seconds after the end of the retention phase. The right-most dashed

line represents when the participant was asked to provide an answer. The figures all

show a re-increase in the signal amplitude also followed by a decay of the signal as

discussed in the last section. Only two studies did not show such re-increase of a

CDA-like signal during recall: Villena-Gonzalez, 2019 and Gunseli, 2019. The graphs

are available online in our repository with the analysis.

In order to investigate if the re-increase of the signal is mainly driven by eye-

movements or by cognitive processes, we looked at di�erent channel pairs with the

assumption that the frontal pairs, especially the ones further from the midline, would

be the most a�ected by eye-movements and such artifacts would then leak to central

and parietal channels. We show the breakdown of channel pairs for Balaban, 2019

Experiment 1 on Figure 15, Feldmann-Wüstefeld, 2018 Experiment 1 on Figure 16,
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and Hakim, 2019 on Figure 17. The di�erent channel pairs available in the dataset,

not only the one used for the CDA, were plotted for the whole trial and extending

over the response period. What we observe is that indeed there seems to be a mixture

of cognitive processes and eye-movement artifacts. For Balaban, 2019, we see the

re-increase in amplitude in the same parietal channels while the frontal channels remain

una�ected during the early part of recall, suggesting that the underlying activity is not

only from eye-movements but similar to the one during the retention period eliciting

the CDA. For Feldmann-Wüstefeld, 2018, on the 2nd and 3rd graph of Figure 16, we

see a big change in amplitude for the F7-F8 pair during recall, which is most likely

driven by eye-movements rather than cognitive processes. However, on the 1st graph,

for the 1+3 same condition, the F7-F8 pair isn’t being impacted as much and have a

similar amplitude as the parietal channels, suggesting that the activity observed from

the parietal channels is mostly cognitive while being slightly a�ected by eye-movement

artifacts. It isn’t very likely that the eye-movement artifacts would a�ect more the

parietal channels than the frontal ones. In Hakim, 2019 on Figure 17, we observe

a very strong increase of amplitude on the F7-F8 pair suggesting that the response

period is highly contaminated by eye-movement artifacts making it quite di�cult to

draw any conclusion on the re-increase in amplitude in the parietal channels as it

could simply be driven by the eye-movement artifacts.

Here we provide some exploratory graphs, however, it is too early to draw any

strong conclusions on the nature of the CDA-like amplitude re-increase during recall,

without a deeper analysis of eye-tracking and EOG data which was outside of the

scope of this reproducibility study.

3.5. CDA Amplitude vs Number of Items

Looking at the reproduced results, it seems fair to conclude that indeed the

amplitude of the CDA correlates with the number of items tracked by the participants
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Fig. 11. Feldmann-Wüstefeld, 2020 - Recall/Probe. Same CDA as on Figure 1 but

with a longer epoch, showing a CDA re-increase during recall (t > 1.5s).

up to a plateau of 3 to 4 items. This correlation and plateau has been discussed in

previous CDA studies (e.g. [46, 44, 25]). Figure 6 from Villena-Gonzalez, 2019, data

shows a clear di�erence in CDA amplitude between one, two and four items. Figure 9

from Adam, 2018, data shows a clear di�erence between one and three or one and

six but a very similar amplitude for three and six items, aligned with some sort of

CDA amplitude plateau around three or four items. Figure 7 from Hakim, 2019, data

shows a small di�erence between two and four items.

The work from Feldmann-Wüstefeld, 2018 (Figure 8) shows that even after the

initial identification and tracking phases, the CDA can be increased by adding items

on the same side or decreased by adding items on the opposite side. Similarly, the

work from Balaban, 2019 (Figures 3 and 4) shows that when a whole item splits in two

separate parts that need to be tracked, the CDA increases. Feldmann-Wüstefeld, 2020

(Figure 1) used a bilateral task with di�erent loads on both sides creating a net load

of either two or four items and what their work shows is that di�erent combinations

of net load of two or four produce di�erent CDA amplitudes. The more objects on

the opposite side, the lower the CDA amplitude despite the same net load. However,

the results are aligned with the CDA theory saying that the more objects the higher
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Fig. 12. Feldmann-Wüstefeld, 2018 - Recall/Probe. Same CDA as on Figure 8 but

with a longer epoch, showing a signal amplitude re-increase during recall (t > 1.5s)

for Experiment 1.

the amplitude. The 4:0 condition shows a higher amplitude than the 2:0 condition.

The 5:1 shows a higher amplitude than the 3:1.

3.6. CDA Amplitude vs Individual Performance

If the CDA amplitude correlates with the number of items held in memory, the

CDA should be indicative of the performance of a specific trial. This obviously holds

true only if the working memory failures occur during the retention phase and not

during the recall phase to provide the answer. If such memory fault occurs during the

initial identification phase, the CDA would not drop per se but instead reach a lower
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Fig. 13. Hakim, 2019 - Recall/Probe. Same CDA as on Figure 7 but with a longer

epoch, showing a CDA re-increase during recall (t > 1.4s).

Fig. 14. Balaban, 2019 - Recall/Probe. Same CDA as on Figure 3 but with a longer

epoch, showing a CDA re-increase during recall (t > 2.2s)

amplitude than the expected peak amplitude should the participant have tracked

the correct amount of items. However, if the participant mistakenly identifies the

wrong target (for example in a multiple-object tracking task) and confidently holds

and tracks the correct number of items, despite some of them being wrong, this kind

of mistake would result in the same CDA amplitude as if the right items were kept in

memory. While the current state of CDA literature lacks the trial-by-trial analysis

to evaluate the role CDA plays in performance, several studies have looked at the

individual di�erences in CDA amplitude vs working memory performance or capacity.

73



Fig. 15. Balaban, 2019 - Recall/Probe. Same CDA as on Figure 3 but with a longer

epoch, showing a CDA re-increase during recall (t > 2.2s). Three conditions are

shown, from left to right: Separation Color, Separation Shape, Integrated Shape.

Fig. 16. Feldmann-Wüstefeld, 2018 - Recall/Probe. Same CDA as on Figure 8 but

with a longer epoch, showing a signal amplitude re-increase during recall (t > 1.5s)

for Experiment 1. Three conditions are shown, from left to right: 1+3 Same, 2+2

Same, 1+3 Di�.

For example, Unsworth and colleagues in 2015 ([44]) replicated the work from Vogel

& Machizawa, 2004 ([46]) showing a correlation between CDA and performance on a

change detection task where high working memory individuals had larger CDA (r=0.30;

Unsworth, 2015) and concluded their study saying that CDA is a reliable and valid

individual measure of working memory that predicts behavioral performance on visual

working memory tasks. Of the studies reviewed here, only three looked at the direct

correlation between individual working memory performance and CDA amplitude.

Most studies looked at the relationship between task conditions and performance,
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Fig. 17. Hakim, 2019 - Recall/Probe. Same CDA as on Figure 7 but with a longer

epoch, showing a CDA re-increase during recall (t > 1.4s). Two conditions are shown,

set size = 2 on the left and set size = 4 on the right.

as well as the relationship between task conditions and CDA amplitude, however,

only three looked at the direct correlation between performance and CDA amplitude

(Adam, 2018; Feldmann-Wüstefeld, 2020; Villena-Gonzalez, 2019). Among these three

studies, working memory performance, or capacity, was evaluated di�erently based on

the task and the granularity in the answers provided by the participants.

In Adam, 2018, they used a whole report task with a set size of six items and noted

the participants’ answer accuracy between zero and six targets identified correctly.

With this granularity, they looked at the correlation between CDA amplitude and

accuracy (from 0/6 to 6/6, steps of 1) and showed individual di�erences in working

memory performance with a correlation of r=-.26 and p=.028. They also noted

that the magnitude of the e�ect is relatively small, but consistent with previously

observed e�ects in the literature, citing Unsworth, 2015 work. With their EEG and

behavioural data we were able to reproduce a similar result with a slightly higher

and more significant correlation (r=-0.34, p=0.001). It is important to note that the

classes are quite unbalanced as there are very few trials with an accuracy score of 0/6

(all wrong) or 6/6 (all good) and two thirds (66%) of the trials have an accuracy of

either 2/6 or 3/6.
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In Feldmann-Wüstefeld, 2020, they used the K score from [8] as a performance

measure for each subject, where K = N ◊ (hit rate — false alarm rate) and reported

a correlation r=-0.43, p=0.026 in their study. With their EEG and behavioural data

we were able to reproduce a similar result with a slightly higher correlation (r=-0.53,

p=0.016).

Villena-Gonzalez 2019 used the formula from [29], K = S x ((H-F)/(1-F)), where

H is the observed hit rate, F the false alarm rate and S is the higher set size (maximum

number of to-be-remembered items). In their study, instead of looking at the correlation

with WMC and CDA amplitude, they looked at the increase in CDA amplitude between

set size of two and set size of four items and reported r=0.448; p=0.0159 showing

that participants with high WMC (i.e. better performance) showed larger amplitude

increase in CDA between two and four items, compared with participants with low

WMC. Unfortunately, their behaviour files were not available with their EEG data,

preventing us from calculating the WMC with the same formula. In the EEG files,

a binary trigger identifying good and bad answers was available so we were able

to calculate the accuracy for each participant. Unfortunately, when correlating the

di�erence in amplitude between ss=2 and ss=4 with accuracy for each participant we

found no significant correlation and therefore were unable to reproduce the e�ect of

CDA on individual performance. It is worth noting that according to a recent study

by Ngiam and colleagues, a substantial number of subjects and trials is required to

detect a significant CDA di�erence between set sizes (approximately 400 trials with

25 subjects for approximately 80% statistical power) ([30]). Therefore, according to

Ngiam’s study, the Villena-Gonzalez design is quite underpowered.

The figures of the correlations, statistical analyses and distributions are available

in the supplementary material.
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3.7. Subjects Variability

Given the weak but consistent correlation between CDA amplitude and individual

performance, we looked at the individual level to explore the variability on CDA

across participants. On figures 19, 18, 21, and 20 in supplementary material, we

did plot the CDA amplitude of the top 5 and bottom 5 participants of four di�erent

studies reviewed here (Adam, 2018; Villena-Gonzalez, 2019; Balaban, 2019; Feldmann-

Wüstefeld, 2020), including three di�erent conditions for each. These figures are

exploratory and no further statistics were performed, however, we believe it gives

more perspective on the CDA shape and its variability across subjects and across

studies. The blue graphs on left represents the CDA of the 5 participants with the

best performance on the task (top 5) and the orange graphs represents the CDA for

the 5 participants with the worst performance (bottom 5). The top left graphs in blue

on the first row represent the best participant, performance wise, and the bottom right

graphs in orange the last row represent the participant with the lowest performance

score. By visually looking at the graphs, it would be di�cult to decipher a clear trend

of CDA amplitude on performance, explaining the weak correlation. It is important

to note here that the y axis (CDA amplitude in microvolt) was not fixed since the

peak-to-peak amplitude varies quite significantly between participants and finding a

once-size-fits-all range ends up hiding the shape of the CDA, which is what we seek to

showcase here. We invite the reader to pay a close attention to the value on the y

axis before drawing any conclusion.

4. Discussion
As shown on previous figures, all the reproduced studies showed a clear CDA

across di�erent VWM paradigms. While it is now fair to say that the CDA amplitude

correlates with the number of items in WM, the shape and amplitude of the CDA

requires more investigation to be better understood. For example, in Balaban, 2019,
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when the items are separated, the CDA increases and reaches a higher peak than for

integrated shape as expected if the CDA amplitude correlates with the number of

items in working memory. However, by the end of the retention phase, just before

being probed, the two conditions have pretty much the same CDA amplitude, which

would normally indicate that at that point in time there is the same number of

items in working memory, which is not the case. Moreover, in Feldmann-Wüsterfeld

2018 Experiment 1, we see a cumulative e�ect of the CDA amplitude, whether from

external stimuli or during recall. As mentioned before, the CDA decay can either

come from an amplitude increase in the ispilateral electrodes, reducing the di�erence

between contra minus ipsi, or from a decrease of the amplitude in the contralateral

electrodes. A combination of both is also possible. Fukuda, Woodman, and Vogel

suggested that the waning CDA amplitude over time is actually a result of a selective

increase in the negativity of the ipsilateral electrodes, while activity in the contralateral

electrodes appears mostly unchanged ([14]). If the decay is caused by a decrease

of amplitude in the contralateral electrodes, it would be coherent with WM models

where oscillatory processes are keeping the information ’alive’ via cell assembly firing

together synchronizing lower frequencies in the theta and alpha bands (4 Hz to 12 Hz)

with higher frequencies ( 40 Hz). The cell assembly passively decays, requiring regular

updates before it decays too much and the information is lost ([20, 22]).

While we did not investigate further the CDA-like signal during recall, we thought

it would be relevant to highlight it in this review as this period was not looked at

in any of the reproduced studies and could help shed light on the neural correlates

involved in VMW and underlying the CDA. For example, in their 2018 study, Feldmann-

Wüstefeld and colleagues mentioned that the di�erence between their Experiment 1 and

Experiment 2 is the memory strategy the participants might have used. Interestingly,

when we compare the recall/response period of Experiment 1 we see the CDA amplitude

re-increasing, however in Experiment 2 we do not see the CDA re-increasing, as if

indeed a di�erent recall strategy was used. Interestingly, the CDA-like signal during
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recall seems to have the same amplitude for all conditions which is not the case

during the retention phase (see Figures 14, 13, 11, and 12 top-left corner). If the

observed EEG signal represents cognitive processes and not simply eye-movement

artifacts, a possible explanation could be that during the initial identification of the

items, the indexing happens one by one in a serial fashion, increasing the CDA in a

cumulative way for each item being indexed, explaining the di�erent amplitudes for

di�erent number of items. During recall, the update or refreshing of working memory

is internally induced and could bring back all the items at once, hence showing the

same CDA amplitude for all conditions. Moreover, the rate of ascend of the signal is

significantly higher during recall, as if the items were brought back in a more parallel

fashion to memory. Here we shared our early speculative ideas, however, given that

we did not look at eye-tracking data nor exhaustively remove trials based on EOG and

eye-movements during the response period, a more throughout examination would

be required before drawing any strong conclusions on the meaning of that CDA-like

signal.

As mentioned earlier, this sample of studies does not represent an exhaustive list

of CDA studies with publicly available EEG datasets and this review could su�er from

a bias given that many of the authors of selected studies are present and/or previous

colleagues and collaborators.

There are several barriers for researchers to make their research reproducible,

however, one that can be alleviated is the lack of knowledge and awareness about the

available tools and best practices for reproducibility. In this study, we thought we

would share what others have done and how they’ve done it, with the hope of helping

other fellow researchers to do the same. Hopefully this study will reduce the fear of

the extra steps required to make your study reproducible as well as highlight the value

of taking these extra steps enabling one’s work to generate a greater impact on the

field.
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Moreover, the FAIR principles ([193]) and the Brain Imaging Data Structure

(BIDS) ([55]) both provide guidelines and standards on how to acquire, organize

and share brain-related data and code. As the amount of recorded brain data keep

increasing around the world and becomes more openly accessible it is important to have

best practices to reduce the friction and wasted time. In addition to reproducibility

aiming at validating or invalidating scientific evidences, data mining leveraging new

approaches such as artificial intelligence (AI) and deep learning (DL) can benefit from

having access well documented and openly accessible brain datasets ([7]). Trainees are

also benefiting tremendously from reproducible experiments. Unintuitively however,

most young trainees venturing in a new field think that it will be quick and easy to

reproduce someone else’s work and then take it from there to either modify or improve

it. Unfortunately, they quickly realize that despite being theoretically easy, it isn’t.

There are always a multitude of complications from di�erent operating system (OS)

compatibility issues to versions of software libraries to missing parts of the code or

lack of documentation making it hard to understand the code and its logic. A better

reproducibility culture and best practices can help reduce significantly such friction

and waste of time.

Reproducibility recommendations. (1) EEG preprocessing; in most published

papers, the preprocessing steps are well described, however, many studies have a "visual

inspection" part to remove some of the contaminated data. This subjective step can

make reproducing the results di�cult and we encourage researchers to also share the

preprocessed EEG files of each participants in order to be able to compare where the

results start diverging when failing to reproduce the results. This obviously increases

the size of data being stored and shared but adds a lot of value. (2) Excluded subjects;

in their documentation file (e.g. README.md), researchers should make clear which

subjects have been excluded from the analysis. Usually, in the published paper there

is a mention like "3 subjects were removed because of ...", while this informs the reader

about the number of subjects that were included, if the raw data of these subjects are
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included in the data folder, it puts the burden on someone trying to reproduce the

study to find the excluded ones. We’ve encountered four ways to dealing with this

issue while reproducing the studies for this review. (a) Not sharing the raw data of

excluded subjects. In most cases we would not recommend this as there might be

useful parts in the data. It really depends on the reason for excluding the participants

from the study. (b) Making a specific Excluded folder and inserting the excluded

subjects’ data in it. (c) Identifying the excluded participant in the documentation file.

Sometimes that information is available somewhere in the code as a if statement like

if fname == "participant_X", however this information should be brought forward and

featured in the main documentation file. (d) Identifying the excluded participants in

the published paper. This works well when one or two participants are excluded with

a mention like "participant #12 was excluded because of ..." but doesn’t scale well for

multiple participants. (3) Document triggers/events; the triggers/events allowing to

epoch the data properly should be clearly identified. Such information is usually a mix

of hardware triggers from the EEG file and information from a behavioural file (e.g.

csv file). For example, in most studies the side and the set size of each trial is available

in the EEG file (saved as a signal with the EEG hardware) but the performance of the

trial is available in a behavioural file. Such structure should be clearly described the

main documentation file. (4) Performance scoring code; there are many ways to assess

performance (e.g. K Score) and it would be beneficial to share the corresponding code

to avoid confusion. In most studies, the formula is described in the paper but the

corresponding code is not available. (5) Online repository platform; we recommend

using OSF to share the data. OSF is a free, open platform to support your research

and enable collaboration, as stated on their website. There is a limit of 50GB for

the free tier which might not be enough for most EEG studies, however the cost of

additional storage capacity is fairly low and has a one-time payment which works well

with grants funding. All of the reviewed studies, but one, used OSF to share both the

data and the code. Villena-Gonzalez used Mendeley Data instead. Another option is
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OpenNeuro, a free and open platform for validating and sharing BIDS-compliant MRI,

PET, MEG, EEG, and iEEG data, as one can read on their website. (6) README

file; we recommend having a README.md or .pdf file in the root folder explaining

the crucial information about the data with reproducibility in mind. We provide as

good example from Adam 2018 below. We took a print screen of the beginning of

the file. Their README file provides a clear explanation of the files and the data

contained in these files saving precious time of investigating to figure it out. Beware

of the copy/paste across experiments! Their first sentence shows a good example of a

copy/paste that wasn’t edited. In this case, the information isn’t misleading and the

mistake is pretty obvious but in other contexts it can be very counterproductive. (7)

Raw data; researchers should include the raw data from the EEG recording device and

not an exported version from EEGLab or else. Even if the data hasn’t been modified

and has been exported as is, it creates doubt and questions for no added value. The

preprocessed data will be exported from tools like EEGLab or .mat files, however the

raw data files should be the one coming from the recording device directly.

Finally, our objective with this review, aside from better understanding the

cognitive mechanisms at play during a VWM task and the key role of CDA, was to

evaluate the CDA reliability as a potential candidate for brain-computer interfaces

(BCIs). Many other ERPs and neural correlates are being used in brain-computer

interface paradigms, however, to our knowledge, the CDA has never been used in a

BCI context. We have, however, seen a recent interest in using machine learning for

CDA classification with regards to the number of items held in WM (e.g. [2]. We

believe that within certain contexts, CDA could be used to enhance passive BCIs

([12]).
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5. Conclusion
With this study we were able to look at CDA across di�erent VWM tasks, from

di�erent groups of subjects, recorded by di�erent groups of researchers using di�erent

EEG equipment. By using the same simple independent pipeline for all studies, we

have shown that CDA is a robust neural correlate of visual working memory. As for

its exact role and meaning, more research is required.

Moreover, having access to all these datasets allowed us to look beyond the usual

numerical CDA mean amplitude over a window of interest but to also observe two

phenomenon that are understudied and underdocumented. First, the decay happening

shortly after the CDA peaks while the participant still has to maintain the information.

Second, the CDA-like signal during the response period. For the latter, it can be

di�cult to control e�ciently in order to dissociate eye-movements and other artifacts

from cognitive processes in the EEG signal during the response period, however, we

believe it deserves more investigation as it could help shed more light on the CDA

and working memory.

Finally, all the code and figures generated for this review is available online on our

repository. Many more figures that we did not include in the manuscript to keep it as

short and concise as possible for better readability, are available on the repository.

Code and analysis: https://github.com/royyannick/cda-reprod

6. Funding
This work was supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC-RDC) (reference number: RDPJ 514052-17) and an

NSERC Discovery fund.

7. Conflict of Interest
The authors declare that there is no conflict of interest.

83



8. Supplementary Material

Fig. 18. Top 5 and Bottom 5 from Villena-Gonzalez, 2019. The graphs show the

CDA averaged across trials for 3 di�erent conditions for a total of 10 participants. The

Top 5, shown in blue, represents the 5 participants with the highest performance while

the Bottom 5, in orange, represents the 5 participants with the lowest performance.
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Fig. 19. Top 5 and Bottom 5 from Adam, 2018. The graphs show the CDA averaged

across trials for 3 di�erent conditions for a total of 10 participants. The Top 5, shown

in blue, represents the 5 participants with the highest performance while the Bottom

5, in orange, represents the 5 participants with the lowest performance.
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Fig. 20. Top 5 and Bottom 5 from Feldmann-Wusterfel 2020. The graphs show the

CDA averaged across trials for 3 di�erent conditions for a total of 10 participants. The

Top 5, shown in blue, represents the 5 participants with the highest performance while

the Bottom 5, in orange, represents the 5 participants with the lowest performance.
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Fig. 21. Top 5 and Bottom 5 from Balaban 2019 Exp. 2. The graphs show the CDA

averaged across trials for 3 di�erent conditions for a total of 10 participants. The Top

5, shown in blue, represents the 5 participants with the highest performance while the

Bottom 5, in orange, represents the 5 participants with the lowest performance.
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Fig. 22. CDA Amplitude vs Performance - Feldmann-Wüstefeld, 2020

Fig. 23. CDA Amplitude vs Performance - Adam, 2018
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Fig. 24. Getting Started from Feldmann-Wüstefeld, 2020
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Fig. 25. README from Adam, 2018
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Résumé. Notre habileté à suivre plusieurs objets dans un environnement dynamique

nous permet de performer des tâches quotidiennes comme la conduite automobile,

pratiquer des sports d’équipe, ou marcher dans un centre commercial achalandé.

Malgré plus de trois décennie de littérature sur des tâches de suivi d’objets multiples

(MOT en anglais), les mécanismes neuronaux sous-jacent demeurent très peu compris.

Ici, nous regardons l’activité cérébrale via l’électroencéphalographie (EEG) et ses

changements durant les trois phases d’une tâche 3D-MOT, soit l’identification des

cibles, le suivi et le rappel. Nous avons enregistré l’activité EEG de 24 participants

pendant le 3D-MOT avec soit 1, 2 ou 3 cibles ainsi que certains essais latéralisés à

droite ou à gauche. Nous avons observé ce qu’il semble être un transfert entre les

processus d’attention soutenue et de mémoire de travail lorsque le participant passe

de la phase de suivi au rappel.

Mots clés : Suivi d’objets multiple, EEG, Mémoire de travail, Attention

Abstract. Our ability to track multiple objects in a dynamic environment enables

us to perform everyday tasks such as driving, playing team sports, and walking in

a crowded mall. Despite more than three decades of literature on multiple object

tracking (MOT) tasks, the underlying and intertwined neural mechanisms remain

poorly understood. Here we looked at the electroencephalography (EEG) neural

correlates and their changes across the three phases of a 3D-MOT task, namely

identification, tracking and recall. We recorded the EEG activity of 24 participants

while they were performing a 3D-MOT task with either 1, 2 or 3 targets where some

trials were lateralized and some where not. We observed what seems to be a hando�

between focused attention and working memory processes when going from tracking

to recall. Our findings revealed a strong inhibition in delta and theta frequencies

from the frontal region during tracking, followed by a strong (re)activation of these

same frequencies during recall. Our results also showed contralateral delay activity

(CDA) for the lateralized trials, in both the identification and recall phases but not

during tracking.

Keywords: Multiple-Object Tracking, MOT, EEG, Working Memory, Attention
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1. Introduction
Our ability to track multiple moving objects simultaneously in a dynamic envi-

ronment enables us to perform everyday tasks such as driving, playing team sports,

and walking in a crowded mall. In such tasks, it is required to manage internal

representations of relevant information in order to predict future spatial positions of

surrounding objects and optimize decision making accordingly. A professional athlete

being able to make a perfect pass to a teammate in a high speed sport while avoiding

players from the other team, is a great example of the brain’s remarkable ability

to track multiple objects both in space and time. In order to study this ability in

a laboratory setting, researchers often use a variant of the multiple-object tracking

(MOT) task developed by Pylyshyn & Storm in 1988 ([6]). In typical MOT tasks

we find two categories of visual objects: targets (objects of interest) and distractors

(objects to ignore) both sharing identical visual properties. In order to modulate task

di�culty, parameters usually include the number of targets ([35]), speed ([7, 19]),

and distance between objects ([1, 41]).

Multiple-object tracking is an active area of research in humans but also in computer

vision as we are observing an increasing demand for technology for automated tracking

of vehicles and people in various contexts ([29, 9, 32]). Humans’ visual system has

inspired current neural network architectures driving most of the artificial intelligence

(AI) field as we know it today ([37]) and recent neural network architectures are trying

to take advantage of higher brain mechanisms such as attention ([24]). Therefore,

better understanding the underlying mechanisms of the brain’s ability to track multiple

objects in time and space could also benefit AI-related fields.

Despite the increasing literature on multiple-object tracking and evidence of

e�ective training showing transfer on real tasks in real environments ([1]), our under-

standing of the underlying neural mechanisms across the di�erent phases and their

transitions, remains fuzzy. Several studies have shown that our capacity to keep
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individual items in working memory is limited to 3 or 4 ([8, 46]) and over the last few

decades, several cognitive models have been brought forward trying to explain how

individual items are being encoded and deciphering the intertwined roles of attention

and working memory in such tasks. Older proposals suggested that early individuation

of objects (up to 3-4) does not require attention mechanisms ([42]), however, recent

research indicates otherwise suggesting that simultaneous indexing of items relies on

attention mechanisms ([5]) before involving subsequent mechanisms such as visual

WM to encode the individuated objects in greater details. Another proposal include

multifocal spatial attention, where attention can be split and work in parallel for

multiple targets ([6]). On the other hand, Oksama and Hyöna suggested that rather

than having a fixed-capacity parallel mechanism, the tracking performance would be

better explained by a serial model where the maintenance of moving objects requires

continuous serial refreshing of identity-location bindings ([31]). Moreover, a previous

behavioural study also showed that one cognitive strategy is to process the targets as

one illusory object by mentally creating connections between the targets to make, for

example, a geometrical shape ([48]).

The confounding aspects of attention versus working memory and location-based

versus object-based tracking remains an active area of research and recent EEG studies

were performed trying to provide more insights by disentangling them. For example,

Drew and colleagues tried to delineate the neural signatures of tracking spatial position

and working memory during attentive tracking. They found that there was a unique

contralateral negativity related to the process of monitoring target position during

tracking which was absent when objects briefly stopped moving. These results suggest

that the process of tracking target locations elicits an electrophysiological response

that is distinct and dissociable from neural responses of the number of targets being

attended ([10]). Also, Merkel and colleagues looked at the spectral properties of the

electrophysiological signal, mainly in the gamma range, during tracking to find a

di�erence between location-based and object-based maintenance of visual information
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([28]). Their results suggest that object-based tracking is supported by enhanced

encoding during the initial presentation of the targets and location-based tracking is

characterized by the sustained maintenance of the individual targets during the entire

tracking period, in that same processing neural network. In a previous study Merkel

and colleagues also showed that neural networks involved in both tracking processes

(object-based and location-based) are at least partly overlapping ([27]).

The experiment described in this manuscript is part of a larger study where we seek

to develop a passive brain-computer interface (BCI) composed of an EEG closed-loop

system for a cognitively demanding task. For this experiment and this manuscript,

we hypothesize that by looking at the EEG activity during the 3D-MOT task, we

can identify di�erent neural mechanisms at play during the three di�erent phases

of the task, namely (1) the identification phase, (2) the tracking phase and (3) the

recall phase. If our hypothesis holds true and we observe a significant di�erence in

EEG activity across the three phases of the 3D-MOT, a subsequent manuscript will

explore how to leverage such di�erences in a BCI context. As part of the larger study,

all subjects participated to three di�erent tasks: MOT task, N-Back task, and flight

simulator task. In this publication we share only our findings related to cognitive

processes during the MOT task, and we don’t cover the other tasks nor the BCI

system which will all be discussed in depth in another publication.

Most MOT studies are conducted using a 2D-MOT task on a computer screen.

However, we live in a 3D environment and di�erent cognitive processes might be at

play in a 3D environment. NeuroTrackerTM is a commercially available 3D-MOT

task currently used by a multitude of users in many countries around the world as a

perceptual-cognitive training and assessment tool. It has been used and studied in

various fields such as sport ([1, 13, 26, 38]), ESports ([3]), education ([43]), aviation

([18]) and military ([45]). 3D-MOT training has been demonstrated to enhance

attention, working memory and visual information processing speed ([34]). Given
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the wide adoption of the NeuroTrackerTM and existing literature showing e�ective

transfer, we opted for a modified version of the NeuroTrackerTM for our study.

According to existing literature and the nature of the task, di�erent neural correlates

linked to working memory, attention, workload and visual processes should be at

play during 3D-MOT. In the time domain, event-related potentials (ERPs) should

be observed at the beginning of each phase of the task given the sudden change in

visual information displayed. For lateralized trials, where the targets are displayed and

moving only in one hemifield, we expect to see lateralized activity. In the frequency

domain, we are expecting di�erent changes in frequency bands linked to working

memory (e.g. Theta), attention (e.g. Alpha), workload (e.g. Beta), and visual

processes (e.g. Gamma) during the di�erent phases of the task.

2. Materials and Methods

2.1. Participants

Twenty-four participants (thirteen females) aged between 21 and 41 years of age

(M=29.3, SD=4.9) took part in this study. The participants were healthy university

students of various ethnicity from di�erent universities in Montreal. All participant

self-reported normal or corrected-to-normal visual acuity and passed the Randot

Stereotest for stereo vision. The study was reviewed and approved by the Université

de Montréal ethics committee for health research (Comité d’éthique de la recherche

en santé; CERES #2018-334). Recommended ethics procedures and guidelines were

followed, and informed consent was obtained from all participants. The three hour

long session included the 3D-MOT task discussed here but also included the recording

of a N-Back task and both tasks were part of a larger research project where the

subjects also participated in a second session, on a di�erent day, for a flight simulator

task. All subjects received a monetary compensation for their participation to the

two sessions covering also their transportation to the di�erent facilities. The other

100



components of the larger research project (i.e. N-Back and flight simulator) are not

discussed in this manuscript and will be published separately.

2.2. Task

Figure 56 shows the five di�erent phases of the 3D-MOT task developed with the

Unity engine. (A) presentation phase where 8 yellow spheres are shown in a 3D volume

space for 2 seconds, (B) indexing phase where one, two or three spheres (targets)

change colour (to red) and are highlighted (halo) for 2 seconds, (C) tracking (or

movement) phase where the targets indexed in phase 2 return to their original colour

(yellow) and 1 second later start moving for 8 seconds crisscrossing and bouncing o� of

each other and the virtual 3D volume cube walls, (D) recall phase where the spheres

stop moving and the observer is prompted to identify the spheres originally indexed

in phase 2. Each sphere is labelled with a number between 1 to 8. After identifying

the targets, the observer is asked to provide a confidence level for each answer (either

0%, 25%, 75% or 100% confident). And finally, (E) feedback phase where the correct

targets are clearly identified on the screen. The whole trial takes around 15s (2s + 2s

+ 9s + [1-4]s) depending on how long the participant takes to provide the answers. A

video of the task is available online on the repository provided.

Fig. 26. 3D-MOT Task Sequence. (A) All spheres appear on screen. (B) Targets are

highlighted in red for 2 seconds. (3) All the spheres are moving for 8 seconds. (D)

Participant must identify the targets and provide a confidence level. (E) Feedback is

provided to the participant showing the correct answers.
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The participant was seated 1.75m and centered from the 65" 3D TV screen

(Panasonic TC-P65VT60) wearing the EEG cap as well as active shutter 3D glasses

(Panasonic TY-ER3D5MA). The 3D-MOT virtual cube was 35 degrees of visual angle

(dva) in size and the spheres were 2.5 dva. The 3D glasses were carefully slid under

the EEG cap in a way to minimally disrupt the EEG signal. Additional gel was added

to some temporal electrodes for some participants to compensate for the gap created

by the 3D glass legs. The participants had a keyboard on their lap to provide their

confidence level after giving the answers orally to the instructor, seated 2m behind

the participant with a keyboard.

Each participant started with a training block of 20 trials, without the EEG

equipment, to familiarize themselves with the task and for us to obtain an individualised

speed threshold. They were instructed to keep their eyes on the green fixation dot

in the middle of the screen and to let their covert attention track the targets. An

adaptive staircase algorithm modulated the speed of each new trial based on previous

performances to find the individual speed where the participant gets a performance

of 50% (i.e. they get half the trials right and half wrong) ([1]). To get a good trial

the participant needs to identify correctly all the targets. For the training block, only

the condition with 3 targets was used. After the 20 trial training block, the resulting

speed was used for the remaining of the experiment.

The experiment consisted of 4 blocks of 21 trials with 2 conditions: side and set

size. The speed was kept constant, based on the speed obtained at the end of the

training block. In total, 30 trials were presented in the left hemifield, 10 for each set

size (1,2,3), 30 trials were presented in the right hemifield, 10 for each set size (1,2,3),

and 24 trials were not lateralized and the targets could freely cross from left to right

and vice-versa, 8 for each set size (1,2,3). It is important to note that for lateralized

trials only the targets stayed on one specific hemifield while the other distractors

where moving freely with no restriction. Once the targets stopped moving, a number

between 1 and 8 appeared on each of the spheres and the participants had to provide
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their answer by saying the number of the target(s) out loud for the instructor to enter

the answers. After the answers were entered, a visual cue on top of each of the selected

spheres appeared for the participant to provide a confidence level for each target. The

participant used the arrow on the keyboard to provide the confidence level. Up arrow

means 100% confident (the instruction provided to the participant: "I was able to track

it."). Down arrow means 0% ("I lost it, it’s a random guess."). Right arrow means

75% confident ("I’m somewhat confident. I think I tracked it but I might have switch

target during an overlap/occlusion."). Left arrow means 25% confident ("It’s mostly a

guess. I got confused."). The rational behind this discrete scoring of confidence was to

clearly dissociate between a random guess and a fully confident answer (0% vs 100%).

For the in-between, we decided to avoid having only one additional option as we felt

like most participants might default to that option whether they are quite confident

but do have a small doubt or if they are mostly guessing it, making this option hard to

use for further analysis. Adding more granularity than four options for the confidence

level would have only added a cognitive load with no additional benefit. Therefore

the compromise with four discrete options was chosen. For the analysis presented

in this manuscript, we regrouped 75% and 100% as being a confident answer and

therefore a good trial is a trial where the participant identified all the correct targets

and indicated a confidence level of 75% or 100%, otherwise it is labeled as a bad trial.

2.3. EEG Acquisition

The electroencephalogram (EEG), electrocardiogram (ECG), and electrooculogram

(EOG) were recorded using the Biosemi ActiveTwo system (Biosemi, Amsterdam,

Netherlands) with 71 Ag–Ag/Cl electrodes positioned at 64 standard International

10/20 System sites (EEG), left and right mastoids for o�ine EEG re-reference, 1cm

lateral to the external canthi for horizontal EOG (HEOG), left and right ribs plus

right collarbone for ECG. The HEOG was used for eye movements to confirm that
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the participant was tracking the targets with covert and not overt attention (i.e. not

moving their eyes). Electrophysiological signals were digitized at 2048Hz.

2.4. EEG Analysis

EEG o�ine analysis was performed in MNE-Python ([15]) an open-source Python

package for neurophysiological data. Both our EEG data and code are available

online. Here we will breakdown the analysis in two parts, first in the time domain and

second, in the frequency domain to look at the oscillation variations over time and

power spectrum across conditions. Four conditions were examined across di�erent

brain regions: side (left, right), set size (1, 2, 3), performance (good, bad), 3D-MOT

phase (indexing, tracking, recall). Note that because of low amount of trials with bad

performances, we looked at the data internally but do not draw any conclusion in this

paper about performance. It is important to note that after looking at our results

we realized that we unfortunately had a 150ms o�set in our Unity code between the

trigger (i.e. EEG event) and the color change (from yellow to red and red back to

yellow) appearing on screen. The o�set is fixed and due to a Unity fixed update delay

we forgot to remove for the color change. This o�set does not apply for when the

movement stops and ends. What it means is that the events at t=0s, and at t=2s, are

in fact visible on screen only at t=0.15s and t=2.15s.

Preprocessing. First, the EEG channels were re-referenced to the left and right

mastoids. Second, independent component analysis (ICA) was used to remove eye

blinks and eye movement artifacts. Third, the EEG data was epoched in [-1, 15]s

windows where t=0s represents the stimuli/trigger of the spheres being highlighted in

red. Fourth, AutoReject ([3]) was used to automatically remove bad trials and correct

bad channels. After looking at the clean EEG data and separately analyzing EOG

channels for eye movements during tracking to see if people were really tracking with
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covert attention instead of overt attention, 4 subjects were removed and 20 subjects

remained for the analysis.

Time domain. First, the non-lateralized occipital grand average signal was

obtained over O1, O2 and Oz to confirm visual ERPs. Since the 3D-MOT is a visual

task with sudden visual changes between the di�erent phases, a visual/occipital ERP

should be observed accordingly. Second, for the lateralized activity, we looked at

di�erent clusters of electrodes, namely frontal, central, parietal, temporal and occipital.

For readability the electrodes used in each cluster are listed in Table 4 in supplementary

material. For the frontal cluster, all channels with the letter ’F’ were included. For the

central cluster, all the electrodes with the letter ’C’ were included. For the parietal

cluster, all the channels with the letter ’P’ were included. For the temporal cluster, all

the channels with the letter ’T’ were included. For the occipital cluster, all the channels

with the letter ’O’ were included. For lateralized activity of both left and right trials,

we averaged the left channels (i.e. channels with odd numbers) and subtracted the

average of the right channels resulting in the di�erence between the two hemispheres.

The rationale behind this analysis is to confirm that indeed we see more activity in

one hemisphere than the other for lateralized trials. The gross activity observed here

should encompass specific neural signatures such as ERPs and contralateral delay

activity (CDA). The CDA is a sustained negativity over the hemisphere contralateral

to the positions of the items to be remembered. The CDA has been shown to be linked

with the number of items held in WM ([44, 25, 39]) and previous studies have shown

a correlation between CDA amplitude and the number of targets during a 2D-MOT

task ([11, 10]). We therefore looked at the e�ect of the number of targets on the CDA

by averaging of the channels contralateral to the hemifield where the targets were

presented minus the average of the ipsilateral channels. The midline channels (ending

with the letter z) were not included in the CDA nor the lateralized analysis. The

CDA, as defined in the literature, should be strongest in the parietal region. However,

we also calculated the same activity (i.e. contra minus ipsi) for the di�erent clusters
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mentioned above. For both lateralized activity and CDA we used only the trials with

a good performance (i.e. the participant identified all the targets correctly with high

level of confidence) for a total of N=982 trials, an average of 49 trials per subject. A

three-way repeated measures analysis of variance (ANOVA) was performed with the

number of targets (1, 2, and 3), phases (id, tacking, and recall), and clusters (frontal,

central, parietal, temporal, and occipital) as independent variables and the mean CDA

amplitude over a 1s time window as the dependent variable. For the identification (id)

phase, the time window was from 0.5s to 1.5s, for the tracking we selected the 5s to

6s and for the recall, we used 11.5s to 12.5s.

Frequency domain. To obtain a more detailed representation of neural oscillation

changes over time, Event-Related Spectrum Perturbation (ERSP) graphs were used.

The time-frequency decomposition was computed using Morlet wavelets for frequencies

between 1 and 50Hz with varying cycles of half the frequency. The ERSP maps were

then obtained by getting the log ratio of the power relative to the baseline power. For

the time-frequency analysis, the baseline was selected as -1s to 0s prior to the targets

being colored in red (t=0.15s). Instead of using raw power, the log ratio has the

advantage of normalizing the power across participants. To investigate the potential

role of di�erent brain regions we used the midline channels from frontal to occipital

to give a representation in space of the time-frequency activity. For this analysis we

included only the trials with a good performance. With the same time-frequency

decomposition, we analyzed a 1s window of average power as a dependent variable

using a repeated measure three-way ANOVA, with Phase (Identification [0.3, 1.3]s,

Tracking [5, 6]s, and Recall [11.5, 12.5]s), Set Size (1, 2, and 3), and Frequency Band

(delta [1-3]Hz, theta [4-7]Hz, alpha [8-12]Hz, beta [13-30]Hz, gamma [31-50]Hz) as

independent variables. The time windows across the phases were selected to capture

mostly top-down cognitive processes.
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3. Results

3.1. Time Domain

Non-lateralized occipital activity in O1, O2 and Oz (see Figure 27) confirmed the

visual ERPs when drastic visual changes occured, such as the target spheres changing

color from yellow to red at t=0.15s, then reverting back to yellow at t=2.15s, start

moving at t=3s and stop moving at t=11s. Noteworthy, the occipital ERP of the

initial color change from yellow to red is significantly stronger than when the targets

revert back to yellow (t-test on 200ms window; p < 0.001) and the strongest ERP

occurs when the targets start moving. On the other hand, the ERP elicited when

spheres stop moving isn’t as sharp as the other ones, most likely due to the time it

takes for individuals to realize that the spheres have indeed stopped moving. Moreover,

we can also see a sustained cognitive activity following the ERPs at t=0.15s and t=11s,

respectively during identification of targets and recall.

Fig. 27. Non-lateralized occipital ERPs (channels: O1, O2, Oz). Grand average over

all participants for all conditions and performances.

As expected, we obtained a clear lateralization of activity in left vs right trials

during both identification and recall phases as shown on Figure 28. However, we did

not observe lateralized activity during tracking despite the targets staying in only one

hemifield for the full duration of the trial. Zooming in on the identification and recall
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phases, we observe that the same brain regions (clusters) are activated the strongest,

namely the frontal and temporal regions, during both identification and recall (see

Figure 29). This could be indicative of similar cognitive functions during identification

and recall phases. Note that automated scales were used to preserve a clear shape of

the signal, however the amplitude, or strength of the signal, varies across clusters.

Fig. 28. Lateralized activity in the frontal region for whole sequence. Left vs right

trials.

Figure 30 shows the lateralized amplitude for the frontal cluster for the whole

duration of the trial and on Figure 31 we zoom in on the identification and recall

phases across EEG channel clusters. The lateralized activity observed here has a

similar shape as what we see in the literature for the CDA, peaking around 500-600ms

post-stimuli and slowly decaying for another ≥500ms but is expected to be stronger

in posterior parietal regions as opposed to frontal regions ([46, 44]). The initial

three-way repeated measures ANOVA with the number of targets (1, 2, and 3), phases

(id, tacking, and recall), and clusters (frontal, central, parietal, temporal, occipital)

as independent variables and the mean CDA amplitude as the dependent variable,

revealed a significant e�ect for the number of targets (F(2,34) = 3.59, p = .039), a strong

significant e�ect for the phase (F(2,34) = 20.17, p < .0001), a strong significant e�ect

for the cluster (F(4,68) = 32.85, p < .0001), a near significant e�ect for the interaction

between the targets and phases (F(4,68) = 2.46, p = .053), a non significant e�ect

for the interaction between targets and clusters (F(8,136) = 1.56, p = .14), a strong

significant e�ect for the interaction between phases and clusters (F(8,136) = 18.3, p <
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Fig. 29. Lateralized activity from the di�erent brain regions for identification (first

column) and recall (second column) phases. Left vs right trials.

.0001), and a trending but non significant e�ect for the interaction between the three

(F(16,272) = 1.6, p = .067). Post hoc one-way ANOVAs looking only at the number of

the targets, independently for each phase and cluster, revealed no significant e�ect on

the mean CDA amplitude during the identification phase nor during tracking, in any
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of the clusters. During recall, however, the e�ect was significant in the parietal cluster

(F(2,34) = 8.15, p < .005), the temporal cluster (F(2,34) = 7.76, p < .005), the central

cluster (F(2,34) = 5.59, p < .01), the occipital cluster (F(2,34) = 6.93, p < .005) and

trending but non significant in the frontal cluster (F(2,34) = 2.6, p = .088). Note that

the post hoc ANOVA values are provided as is and were not corrected for multiple

comparisons. A total of 15 post hoc ANOVAs were performed (5 clusters x 3 phases).

After obtaining and writing the results, We also performed the same analysis with a

0.5s window to see if it would change the results but it yielded similar results.

Fig. 30. CDA in the frontal region for the full sequence. Trials with 1, 2 and 3

targets.

3.2. Frequency Domain

The ERSP for the whole trial is shown on Figure 32 which includes 1 second prior

to the targets being identified in red and up to 15s post identification, with frequencies

ranging from 1 to 50Hz. It represents the grand average across all participants, all

conditions, and all channels. Before breaking down the time-frequency analysis to

look at specific elements, we can easily distinguish the di�erent phases of the MOT

task with drastic changes in neural oscillations across these phases. It is important

to note the range of the color scale of the ERSP maps presented in it section as in

EEG studies blue usually means a desynchronization (i.e. negative value) and red a

synchronization (i.e. positive value). Here, we purposefully used a none symmetrical
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Fig. 31. Lateralized activity from the di�erent brain regions for identification (first

column) and recall (second column) phases. Trials with 1, 2 and 3 targets.

color scale to accentuate the di�erences observed given that most of the values are

negative.

On the spectral map (Figure 32) we can identify, as expected, a perturbation near

t=0.15s when the spheres turn red, creating a narrow perturbation corresponding to
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Fig. 32. ERSP: Grand Average (GA) across all subjects, all conditions and all

channels. The color represents the log ratio of the power at each instant with average

power of the baseline [-1,0]s for that same frequency, averaged across subjects.

the ERP in the time domain related to the sudden visual change. Also visible are

perturbations from the ERP near t=2.15s when they turn back yellow and from the

ERP near t=3s when they suddenly start moving. During tracking, we observe a

strong inhibition of lower frequencies until alpha band (≥8Hz) where the inhibition

isn’t as strong, then the inhibition seems to continue in the ≥14-18Hz range after which

there is a change in inhibition intensity for high beta and gamma. More strikingly, we

observe a clear cognitive switch as soon as the spheres stop moving and the participant

is asked to answer (at t=11s). Suddenly, the lower frequencies are re-activated and

alpha slightly reduced. After t=13s, the values can’t really be interpreted given the

variability in speed to answer from trial to trial, across participants and the number

of targets.

Looking at the spatial distribution over the midline channels on Figure 33, we

observe that during tracking (t=[3-11]s), there is a strong delta and theta inhibition

in the frontal regions. During recall (t=[11-13]s), we observe a sudden re-activation of

these lower frequencies in the delta and theta bands from frontal to occipital regions.
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During recall, we also observe a strong activation of high-beta to low-gamma in the

occipital region.

To better understand the e�ect across participants, both the mean and the median

values were calculated for each time-frequency points and what we observe on Figure

33 is that the mean is not being distorted by outliers and that the distribution across

trials and participants is somewhat symmetrical. A paired t-test was done for each

time-frequency point comparing with the mean power of the baseline and the time-

frequency points with p >= .05 were grayed-out on Figure 34. For readability we

show the statistical analysis of only three channels (Fpz, Cz, Oz) as the six others

were showing similar overall trends. We did not perform any multiple comparison

correction, so given that we have performed tens of thousands of comparisons (i.e. for

each time-frequency point independently) we are exposed to familywise type 1 error,

meaning that the graphs presented here with the statistical masks are most likely

showing more significant e�ects then there really are. Performing multiple comparison

corrections like false discovery rate (FDR) on such a high amount of comparisons

would obviously result in the opposite and hide all e�ects (type 2 error). Di�erent

approaches have been suggested to deal with ERSP significance such as cluster-level

statistical permutation tests, however, given the mean and median of the log ratio

with the baseline being both similar and biologically sound in time and frequency,

correcting for the comparisons would most likely not invalidate the general trends

we are observing here. Also noteworthy, as we can see on the ERSP graphs, the

edge between alpha and theta bands around 8Hz and the edge between alpha and

beta bands around 12Hz are blurry and comes out as non-statistically significant (vs

baseline). This is most likely due to the individual di�erences in frequency bands

([17]).

The analysis for the e�ect of the number of targets showed a significant di�erence

only during recall. ERSP values for 1, 2 and 3 targets were obtained and paired t-tests

were performed for condition 1 vs 3 targets on the whole trial for each time-frequency
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Fig. 33. ERSP: Midline electrodes, frontal to occipital. The color represents the log

ratio of the power at each instant with average power of the baseline [-1,0]s for that

same frequency, averaged across subjects.

point. The statistical mask shown on the right on Figure 35 grays out the points

for which the p-value was higher or equal to 0.05, and therefore, not significantly

di�erent from 1 to 3 targets. The mask is plotted on top of the resulting ERSP map

obtained by subtracting the ERSP values of 1 target to the ERSP values of 3 targets

to highlight the di�erence in power between the two. The statistical tests for 1 vs

2 and 2 vs 3 targets were not performed because we assume some sort of linearity

between 1, 2 and 3 targets and therefore their e�ect would be somewhere between
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Fig. 34. ERSP: Fpz, Cz, and Oz electrodes. The color represents the log ratio of

the power at each instant with average power of the baseline [-1,0]s for that same

frequency. The first column is the mean across subjects. The second column is the

median across subjects. The third column is the mean across subjects with a gray

mask where the p-value of a t-test >=.05 (i.e. gray means not significantly di�erent

than baseline).

what we observe for 1 and 3 targets. For readability only the frontal and parietal

clusters are displayed. Frontal because that’s where we observed the strongest CDA in

the time domain and parietal because that’s where we initially expected the strongest

di�erence.
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Fig. 35. ERSP: Frontal and parietal regions for 1, 2, and 3 targets. The color

represents the log ratio of the power at each instant with average power of the baseline

[-1,0]s for that same frequency. The first column is the mean across subjects. The last

column is the ERSP with 3 targets minus the ERSP with 1 target with a gray mask

where the p-value of a t-test between the two >=.05 (i.e. gray means no significant

di�erence between set size of 1 target vs 3 targets.)

Finally, as expected given the results from the ERSP maps showed and explained

above, the repeated measure three-way ANOVA on raw power revealed a significant

e�ect for Phase (F(2,36) = 12.13, p < .0001), for Frequency Band (F(4,72) = 50.4, p <

.0001), and smaller yet significant e�ect for Set Size (F(2,36) = 4.6, p = .016). The

interaction between Phase and Frequency Band was significant (F(8,144) = 11.58, p

< .0001), the interaction between Phase and Set Size was significant (F(4,72) = 6.36,

p < .0005), the interaction between Frequency Band and Set Size was significant

(F(8,144) = 5.24, p < .0001) and finally, the interaction between Phase, Set Size and

Frequency Band was also significant (F(16,288) = 6.71, p < .0005). The statistical

analysis was performed on both the raw power (results mentioned above) and the

power ratio (ERSP maps on figures). We reported the results from the raw power as

most studies use the raw power directly. Using the power ratio instead of raw power
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provides a more normalized value across subjects, and we obtained similar results.

The di�erences include the Set Size e�ect that came out slightly over the p = .05

significance threshold, with (F(2,38) = 2.92, p = .066), the interaction between Set

Size and Phase was trending towards significance (F(4,76) = 2.46, p = .0521) and the

interaction between Set Size, Phase and Frequency Band was significant (F(16,304) =

2.88, p < .0005).

4. Discussion
Several studies have been published on EEG activity during MOT tasks (e.g.

[11, 4, 28]), usually focusing on either the indexing or tracking phase but very

little, if at all, on the recall phase. Here, we took a more holistic view to look at

electrophysiological changes over the whole sequence (i.e. trial).

CDA. During the identification and tracking phases, we did observe lateralized

activity as expected. However, the highest amplitude were seen in frontal and temporal

regions and not in the parietal region as expected from the recent CDA literature.

Also, the amplitude in the parietal region did not increase with the number of targets

during identification and tracking which is in contradiction with the recent CDA

literature ([46, 11, 44]) and our own CDA review paper ([39]). Moreover, during

recall, we actually observed the opposite e�ect where the amplitude in certain regions

was actually higher with less targets and the activity lasted longer in time with more

targets. Given the clear lateralized ERPs and activity observed in the results (e.g.

Figure 28) the design of the task clearly had laterialized targets. Therefore, to explain

our results being di�erent from what we expected based on the literature, we rule out

a bad task design and point out four ways in which our 3D-MOT task is di�erent than

most VWM tasks used to study CDA. First, as opposed to change detection tasks

where the participant has to remember all the items at once, here the participants

could have recalled the items one by one, sustaining a longer CDA over time. Second,
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most VWM tasks in CDA studies have very short trials of about 1 to 2 seconds long.

Third, in most CDA related tasks, the objects are temporarily removed from the screen

forcing the participant to have an internal representation of the objects. Here the

objects are always visible for the participant and perhaps engage a di�erent cognitive

strategy. Forth, most tasks are done in 2D without stereoscopy. These confounding

di�erences could make the participant use a di�erent cognitive strategy relying more

on attention mechanisms than working memory during tracking.

In order to better understand the results we obtained, two things have to be

disentangled. First, is WM required for the 3D-MOT task and if so, are the targets

held in memory for the whole duration of tracking or only held in memory during

indexing and/or recall? Second, is the lateralized activity observed here the same as

the CDA referred to in the literature and believed to play a role in WM, or is it a

di�erent, yet lateralized, activity? If the answer is yes to both we should have observed

a CDA during tracking and the CDA amplitude should have varied in amplitude

based on the number of targets. Our results diverge from [11] where they showed

a clear CDA with di�erent amplitudes during tracking in a di�erent and shorter

2D-MOT task. As we can see in our results, the activity is clearly lateralized and

has a CDA-like shape, in both the identification and recall phases but not during

tracking which leads us to believe that there might be a cognitive switch between

memory and attention, where the targets might not be held in working memory during

tracking but rather only tracked with attention mechanisms. During recall, there is

no doubt that the participant has to leverage working memory to provide the answers

and even more so, the confidence level for each target. Interestingly, during the

identification phase for the lateralized trials, the activity is nicely symmetrical early

post-stimulus and then a change occurs and the following 500ms are not as symmetrical.

We hypothesize that the period between 100-400ms engages more bottom-up brain

mechanisms as a response to the stimuli and the following 500-600ms engages more
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top-down mechanisms to which there seems to be a di�erence between left and right

hemispheres.

Eye movements. In order to rule out the possibility that remaining eye movement

artifacts be the main driver of the frontal EEG activity observed in the results, we

calculated the correlation of the EOG channel pair with the lateralized signal obtained

from the frontal cluster. The Pearson product-moment correlation coe�cients was

calculated for each participant and then averaged to obtain the group level correlation

coe�cient. A weak to moderate correlation is expected at the minimum, as nearby

electrophysiological channels share information. For the EOG channels, we obtained a

correlation coe�cient of 0.765 which, when compared with the other channel pairs

(F5-F6 r=0.875; F7-F8 r=0.845; AF7-AF8 r=0.823; F3-F4 r=0.798; FT7-FT8 r=0.788;

AF3-AF4 r=0.769; F1-F2 r=0.739; Fp1-Fp2 r=0.581), is among the weakest correlation

with the lateralized CDA-like activity presented in the results. This supports the

notion that the signal obtained isn’t driven by eye movements but rather cognitive

processes.

Frequency bands. During tracking, there is a strong inhibition of both delta

and theta frequencies, followed by a significant reactivation of these same frequencies

during recall. For such a strong switch between inhibition and activation, we ruled

out the hypothesis that it could be muscle activity or artifacts based on releasing the

tension after being focused during tracking, because if that was the case, we would

see the opposite e�ect on Figure 35 and the activity would spread longer with only 1

target as they would start releasing the tension and moving their body faster. However

here we see a stronger but shorter activity in delta and theta during recall for 1 targets,

less strong and slightly longer for 2 targets, and the weakest power but longer spread

over time. This is aligned with the CDA plots in the time domain (see Figure 31). We

also ruled out the motor and speech brain-related activity from providing the answers,

as such activity would be more localized and not clearly visible on all clusters as seen

here.
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The activation of lower frequencies (delta and theta) during recall is distributed

spatially but the strong inhibition during tracking is frontal. We hypothesize that

such inhibition might be coming from a top-down cognitive mechanism to ignore

task distractors and prevent them from being encoded during tracking. Also, the

3D-MOT task requires the participant’s full attention, because many occlusions and

contacts between the objects (targets and distractors alike) are happening and one tiny

lapse in attention can make the participant fail the trial. Therefore, it is of upmost

importance for our top-down mechanisms to protect our attention from task-related,

environment-related as well as internal distractions. Theta has been linked to memory,

cognitive control and attention systems ([2, 21, 12]) and as observed here, has a key

role in the MOT task during tracking and recall. Theta and gamma phase coupling has

also been accumulating supportive evidence for playing a key role in visual processes

involving working memory ([40, 22, 23]). This theta-gamma coupling might explain

why during recall we observe also a strong gamma activation at the same time as

the theta activation, strongest in the occipital region. We haven’t done any phase

coupling nor connectivity analysis to confirm the link between these frequencies but it

is in our future plans to look at phase coupling, source localization, and connectivity.

As for delta, the literature for its role in cognitive functions, aside from sleep

studies, isn’t as extensive as for the other frequency bands but it has been linked to

similar attention mechanisms than theta ([16]). Alpha, one of the most prominent

rhythm in the human brain, also plays a key role in attention, especially for inhibition

of distractors. A previous study providing online feedback on a 3D-MOT task based

on real time alpha peak frequency has helped improve performance on the task ([33]).

While it is clear that alpha is playing a role, it remains unclear exactly how, as studies

have shown both an increase ([47]) as well as a decrease ([28]) in alpha during object

tracking. Based on the previous evidences, looking at the grand average over the

whole trial and then averaging all the trials together might be the wrong way of

looking at alpha as it might be involved in a more granular fashion during a trial.
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Calculating the grand average might hide the subtle within-trial changes of alpha. On

the ERPS graphs, we see that power changes are clearly happening around, and at,

alpha frequencies however the e�ect isn’t as strong as some other frequencies.

Given the clear EEG pattern we observed in the frequency domain for the whole

trial (≥15s), we wanted to compare with another MOT task and run a similar frequency

analysis to see if we’d see the same pattern of activity. Thanks to Nicholas S. Bland

and colleagues, who shared their EEG data from their 2020 study ([4]), we were able

to generate an ERSP graph and we found a striking resemblance. Bland and colleagues

used a 2D-MOT (our task is a 3D-MOT), their stimuli were 2D circles with no filling

(i.e. rings), their trials had either 2 or 4 targets presented either between-hemifield

moving freely left and right but not crossing the middle part vertically or within-

hemifield moving freely up and down but not crossing the middle part horizontally.

At the start of the trial they presented all the circles in white, then highlighted the

targets in blue for 2 seconds (like our task) after which they reverted back to white

for 500ms (we used 1s in our task) before all objects start moving for 8 seconds (like

our task). Their recall phase was slightly di�erent as their participants had to click

on the targets with a mouse and then received the visual feedback with the correct

answers for 1.5s. In our task the participant gave their answer verbally before entering

their confidence level with the keyboard and then received visual feedback with the

correct answers for 2s. They recorded EEG activity with a 64 channels BrainCap

(BrainProducts) device. On Figure 36, we see the ERSP grand average across all

conditions, all channels and all participants of our study on the right (as presented on

Figure 32 before) and Bland et al., 2020 on the left. We used all the trials (N=192) for

all the participants (N=41). The spatial distribution on the midline was also similar

to ours, showing a stronger inhibition of delta and theta in the frontal regions during

tracking. Their inhibition of lower frequencies (compared to baseline) was stronger

than our results so we slightly adjusted the color scale to keep a smooth range.
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Fig. 36. ERSP: Bland, 2022 vs Roy, 2022.

One obvious limitation of our study for addressing the CDA memory load, is the

number of trials per condition. According to a recent study by William X. Q. Ngiam

and colleagues on the statistical power to detect set-size e�ects in contralateral delay

activity, it requires between 30 to 50 clean trials with a sample of 25 subjects to

achieve approximately 80% statistical power on detecting the presence of the CDA

([30]). In our study, we kept 20 subjects with an average of 45 clean (lateralized) trials

after removing bad trials during preprocessing.

In order to keep the participants engaged and energized (knowing they had another

task after), we asked them to give the answers orally as opposed to entering them

with a keyboard. Therefore, the instructor, despite entering the answers really fast

on the numpad, induced an external timing factor during the recall phase. Finally,

given the interesting results we observed during the recall phase, having more granular

information during that phase such as the time of entry of each answer for each

participant would have allowed us to investigate deeper the neural activity during

that phase.

In conclusion, we believe that we o�ered a more holistic view of the neural

substrates during a 3D-MOT task looking at the activity across the three di�erent

phases (Identification/Indexing, Tracking, Recall/Answer) both in the time and
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frequency domains. We also analysed the raw EEG data of another MOT study to

compare our findings and observed similar overall trends, solidifying our findings. This

study sheds more light at what seems to be some sort of a hando� between focused

attention and working memory processes during tracking and recall and how the delta

and theta bands in the frontal regions play a key role in the 3D-MOT task as they

are being toggled like an on/o� switch across phases.

Both the data and the code is available online: https://github.com/royyannick/3DMOT_EEG
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5. Supplementary Material

Cluster Channels

Frontal Fp1, AF7, AF3, F1, F3, F5, F7, FT7

Fp2, AF8, AF4, F2, F4, F6, F8, FT8

Fpz, AFz, Fz

Central C1, C3, C5, CP1, CP3, CP5, FC1, FC3, FC5

C2, C4, C6, CP2, CP4, CP6, FC2, FC4, FC6

Cz CPz

Temporal FT7, T7, TP7

FT8, T8, TP8

Parietal TP7, CP1, CP3, CP5, P1, P3, P5, P7, P9, PO3, PO7

TP8, CP2, CP4, CP6, P2, P4, P6, P8, P10, PO4, PO8

POz, Pz, CPz

Occipital O1

O2

Oz, POz

Table 4. Electrode Clusters
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Contributions. The first author did most of the breakdown and analysis of the

DL-EEG papers reviewed, the second author did most of the writing and the graphs.

The other authors helped with the writing and reviewing.

Résumé. L’électroencéphalographamme (EEG) est un signal complexe et peut né-

cessiter plusieurs années d’expérience, ainsi que des techniques avancées de traitement

du signal et d’extraction des caractéristiques afin de l’interpréter. L’apprentissage

profond a un potentiel intéressant pour la classification des signaux EEG. Dans cette

revue de littérature, nous avons analysé 154 papiers publiés entre janvier 2010 et

juillet 2018 à travers di�érents domaines tel que l’épilepsie, le sommeil, les interfaces

cerveau-machine et la mesure des états a�ectifs et cognitifs. Notre analyse révèle

que la quantité de donnée EEG utilisé varie grandement à travers les articles allant

de quelques minutes à plusieurs milliers d’heures. Environ 40% des études ont utilisé

un réseau neuronal convolutif, pour 13% avec un réseau récurrent, généralement avec

un total allant de 3 à 10 couches. Finalement, le gain médian avec une approche

profonde comparée à une approche traditionnelle est de 5.4% à travers toutes les

études.

Mots clés : EEG, apprentissage profond, réseaux de neurones, review, survey
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Abstract.
Context. Electroencephalography (EEG) is a complex signal and can require

several years of training, as well as advanced signal processing and feature extraction

methodologies to be correctly interpreted. Recently, deep learning (DL) has shown

great promise in helping make sense of EEG signals due to its capacity to learn

good feature representations from raw data. Whether DL truly presents advantages

as compared to more traditional EEG processing approaches, however, remains an

open question.

Objective. In this work, we review 154 papers that apply DL to EEG, published

between January 2010 and July 2018, and spanning di�erent application domains

such as epilepsy, sleep, brain-computer interfacing, and cognitive and a�ective

monitoring. We extract trends and highlight interesting approaches from this large

body of literature in order to inform future research and formulate recommendations.

Methods. Major databases spanning the fields of science and engineering were

queried to identify relevant studies published in scientific journals, conferences, and

electronic preprint repositories. Various data items were extracted for each study

pertaining to 1) the data, 2) the preprocessing methodology, 3) the DL design choices,

4) the results, and 5) the reproducibility of the experiments. These items were then

analyzed one by one to uncover trends.

Results. Our analysis reveals that the amount of EEG data used across studies

varies from less than ten minutes to thousands of hours, while the number of samples

seen during training by a network varies from a few dozens to several millions,

depending on how epochs are extracted. Interestingly, we saw that more than half

the studies used publicly available data and that there has also been a clear shift

from intra-subject to inter-subject approaches over the last few years. About 40% of

the studies used convolutional neural networks (CNNs), while 13% used recurrent

neural networks (RNNs), most often with a total of 3 to 10 layers. Moreover, almost

one-half of the studies trained their models on raw or preprocessed EEG time series.

Finally, the median gain in accuracy of DL approaches over traditional baselines was

5.4% across all relevant studies. More importantly, however, we noticed studies often

su�er from poor reproducibility: a majority of papers would be hard or impossible

to reproduce given the unavailability of their data and code.

Keywords: EEG and electroencephalogram and deep learning and neural networks

and review and survey
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1. Introduction

1.1. Measuring brain activity with EEG

EEG, the measure of the electrical fields produced by the active brain, is a brain

mapping and neuroimaging technique widely used inside and outside the clinical

domain [66, 150, 19]. Specifically, EEG picks up the electric potential di�erences,

on the order of tens of µV , that reach the scalp when tiny excitatory post-synaptic

potentials produced by pyramidal neurons in the cortical layers of the brain sum

together. The potentials measured therefore reflect neuronal activity and can be used

to study a wide array of brain processes.

Thanks to the great speed at which electric fields propagate, EEG has an excellent

temporal resolution: events occurring at millisecond timescales can typically be

captured. However, EEG su�ers from low spatial resolution, as the electric fields

generated by the brain are smeared by the tissues, such as the skull, situated between

the sources and the sensors. As a result, EEG channels are often highly correlated

spatially. The source localization problem, or inverse problem, is an active area of

research in which algorithms are developed to reconstruct brain sources given EEG

recordings [70].

There are many applications for EEG. For example, in clinical settings, EEG is

often used to study sleep patterns [1] or epilepsy [3]. Various conditions have also

been linked to changes in electrical brain activity, and can therefore be monitored

to various extents using EEG. These include attention deficit hyperactivity disorder

(ADHD) [10], disorders of consciousness [46, 41], depth of anaesthesia [59], etc. EEG

is also widely used in neuroscience and psychology research, as it is an excellent tool

for studying the brain and its functioning. Applications such as cognitive and a�ective

monitoring are very promising as they could allow unbiased measures of, for example,

an individual’s level of fatigue, mental workload, [18, 12], mood, or emotions [5].
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Finally, EEG is widely used in brain-computer interfaces (BCIs) - communication

channels that bypass the natural output pathways of the brain - to allow brain activity

to be directly translated into directives that a�ect the user’s environment [104].

1.2. Current challenges in EEG processing

Although EEG has proven to be a critical tool in many domains, it still su�ers

from a few limitations that hinder its e�ective analysis or processing. First, EEG has

a low signal-to-noise ratio (SNR) [20, 77], as the brain activity measured is often

buried under multiple sources of environmental, physiological and activity-specific

noise of similar or greater amplitude called “artifacts”. Various filtering and noise

reduction techniques have to be used therefore to minimize the impact of these noise

sources and extract true brain activity from the recorded signals.

EEG is also a non-stationary signal [30, 56], that is its statistics vary across time.

As a result, a classifier trained on a temporally-limited amount of user data might

generalize poorly to data recorded at a di�erent time on the same individual. This is

an important challenge for real-life applications of EEG, which often need to work

with limited amounts of data.

Finally, high inter-subject variability also limits the usefulness of EEG applications.

This phenomenon arises due to physiological di�erences between individuals, which

vary in magnitude but can severely a�ect the performance of models that are meant

to generalize across subjects [29]. Since the ability to generalize from a first set of

individuals to a second, unseen set is key to many practical applications of EEG, a lot

of e�ort is being put into developing methods that can handle inter-subject variability.

To solve some of the above-mentioned problems, processing pipelines with domain-

specific approaches are often used. A significant amount of research has been put into

developing processing pipelines to clean, extract relevant features, and classify EEG
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data. State-of-the-art techniques, such as Riemannian geometry-based classifiers and

adaptive classifiers [103], can handle these problems with varying levels of success.

Additionally, a wide variety of tasks would benefit from a higher level of automated

processing. For example, sleep scoring, the process of annotating sleep recordings

by categorizing windows of a few seconds into sleep stages, currently requires a lot

of time, being done manually by trained technicians. More sophisticated automated

EEG processing could make this process much faster and more flexible. Similarly,

real-time detection or prediction of the onset of an epileptic seizure would be very

beneficial to epileptic individuals, but also requires automated EEG processing. For

each of these applications, most common implementations require domain-specific

processing pipelines, which further reduces the flexibility and generalization capability

of current EEG-based technologies.

1.3. Improving EEG processing with deep learning

To overcome the challenges described above, new approaches are required to

improve the processing of EEG towards better generalization capabilities and more

flexible applications. In this context, deep learning (DL) [88] could significantly sim-

plify processing pipelines by allowing automatic end-to-end learning of preprocessing,

feature extraction and classification modules, while also reaching competitive perfor-

mance on the target task. Indeed, in the last few years, DL architectures have been

very successful in processing complex data such as images, text and audio signals [88],

leading to state-of-the-art performance on multiple public benchmarks - such as the

Large Scale Visual Recognition challenge [35] - and an ever-increasing role in industrial

applications.

DL, a subfield of machine learning, studies computational models that learn

hierarchical representations of input data through successive non-linear transformations

[88]. Deep neural networks (DNNs), inspired by earlier models such as the perceptron
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[136], are models where: 1) stacked layers of artificial “neurons” each apply a linear

transformation to the data they receive and 2) the result of each layer’s linear

transformation is fed through a non-linear activation function. Importantly, the

parameters of these transformations are learned by directly minimizing a cost function.

Although the term “deep” implies the inclusion of many layers, there is no consensus

on how to measure depth in a neural network and therefore on what really constitutes

a deep network and what does not [53].

Fig. 38 presents an overview of how EEG data (and similar multivariate time series)

can be formatted to be fed into a DL model, along with some important terminology

(see Section 1.4), as well as an illustration of a generic neural network architecture.

Usually, when c channels are available and a window has length l samples, the input

of a neural network for EEG processing consists of an array Xi œ Rc◊l containing the

l samples corresponding to a window for all channels. This two-dimensional array

can be used directly as an example for training a neural network, or could first be

unrolled into a n-dimensional array (where n = c ◊ l) as shown in Fig. 38. As for

the m-dimensional output, it could represent the number of classes in a multi-class

classification problem. Variations of this end-to-end formulation can be imagined

where the window Xi is first passed through a preprocessing and feature extraction

pipeline (e.g., time-frequency transform), yielding an example X Õ
i which is then used

as input to the neural network instead.

Di�erent types of layers are used as building blocks in neural networks. Most

commonly, those are fully-connected (FC), convolutional or recurrent layers. We refer

to models using these types of layers as FC networks, convolutional neural networks

(CNNs) [89] and recurrent neural networks (RNNs) [140], respectively. Here, we

provide a quick overview of the main architectures and types of models. The interested

reader is referred to the relevant literature for more in-depth descriptions of DL

methodology [88, 53, 149].

135



FC layers are composed of fully-connected neurons, i.e., where each neuron receives

as input the activations of every single neuron of the preceding layer. Convolutional

layers, on the other hand, impose a particular structure where neurons in a given

layer only see a subset of the activations of the preceding one. This structure, akin to

convolutions in signal or image processing from which it gets its name, encourages

the model to learn invariant representations of the data. This property stems from

another fundamental characteristic of convolutional layers, which is that parameters

are shared across di�erent neurons - this can be interpreted as if there were filters

looking for the same information across patches of the input. In addition, pooling

layers can be introduced, such that the representations learned by the model become

invariant to slight translations of the input. This is often a desirable property: for

instance, in an object recognition task, translating the content of an image should

not a�ect the prediction of the model. Imposing these kinds of priors thus works

exceptionally well on data with spatial structure. In contrast to convolutional layers,

recurrent layers impose a structure by which, in its most basic form, a layer receives

as input both the preceding layer’s current activations and its own activations from a

previous time step. Models composed of recurrent layers are thus encouraged to make

use of the temporal structure of data and have shown high performance in natural

language processing (NLP) tasks [225, 206].

Additionally, outside of purely supervised tasks, other architectures and learning

strategies can be built to train models when no labels are available. For example,

autoencoders (AEs) learn a representation of the input data by trying to reproduce

their input given some constraints, such as sparsity or the introduction of artificial

noise [53]. Generative adversarial networks (GANs) [54] are trained by opposing a

generator (G), that tries to generate fake examples from an unknown distribution of

interest, to a discriminator (D), that tries to identify whether the input it receives

has been artificially generated by G or is an example from the unknown distribution

of interest. This dynamic can be compared to the one between a thief (G) making
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fake money and the police (D) trying to distinguish fake money from real money.

Both agents push one another to get better, up to a point where the fake money

looks exactly like real money. The training of G and D can thus be interpreted as

a two-player zero-sum minimax game. When equilibrium is reached, the probability

distribution approximated by G converges to the real data distribution [54].

Overall, there are multiple ways in which DL improve and extend existing EEG

processing methods. First, the hierarchical nature of DNNs means features could

potentially be learned on raw or minimally preprocessed data, reducing the need for

domain-specific processing and feature extraction pipelines. Features learned through

a DNN might also be more e�ective or expressive than the ones engineered by humans.

Second, as is the case in the multiple domains where DL has surpassed the previous

state-of-the-art, it has the potential to produce higher levels of performance on di�erent

analysis tasks. Third, DL facilitates the development of tasks that are less often

attempted on EEG data such as generative modelling [52] and domain adaptation [15].

The use of deep learning-based methods allowed the synthesis of high-dimensional

structured data such as images [25] and speech [120]. Generative models can be

leveraged to learn intermediate representations or for data augmentation [52]. In

the case of domain adaptation, the use deep neural networks along with techniques

such as correlation alignment [164] allows the end-to-end learning of domain-invariant

representations, while preserving task-dependent information. Similar strategies can

also be applied to EEG data in order to learn better representations and thus improve

the performance of EEG-based models across di�erent subjects and tasks.

On the other hand, there are various reasons why DL might not be optimal for

EEG processing and that may justify the skepticism of some of the EEG community.

First and foremost, the datasets typically available in EEG research contain far fewer

examples than what has led to the current state-of-the-art in DL-heavy domains such

as computer vision (CV) and NLP. Data collection being relatively expensive and data

accessibility often being hindered by privacy concerns - especially with clinical data -
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openly available datasets of similar sizes are not common. Some initiatives have tried

to tackle this problem though [64]. Second, the peculiarities of EEG, such as its low

SNR, make EEG data di�erent from other types of data (e.g, images, text and speech)

for which DL has been most successful. Therefore, the architectures and practices

that are currently used in DL might not be readily applicable to EEG processing.

1.4. Terminology used in this review

Some terms are sometimes used in the fields of machine learning, deep learning,

statistics, EEG and signal processing with di�erent meanings. For example, in machine

learning, “sample” usually refers to one example of the input received by a model,

whereas in statistics, it can be used to refer to a group of examples taken from a

population. It can also refer to the measure of a single time point in signal processing

and EEG. Similarly, in deep learning, the term “epoch” refers to one pass through

the whole training set during training; in EEG, an epoch is instead a grouping

of consecutive EEG time points extracted around a specific marker. To avoid the

confusion, we include in Table 5 definitions for a few terms as used in this review.

Fig. 37 gives a visual example of what these terms refer to.

1.5. Objectives of the review

This systematic review covers the current state-of-the-art in DL-based EEG pro-

cessing by analyzing a large number of recent publications. It provides an overview of

the field for researchers familiar with traditional EEG processing techniques and who

are interested in applying DL to their data. At the same time, it aims to introduce

the field applying DL to EEG to DL researchers interested in expanding the types

of data they benchmark their algorithms with, or who want to contribute to EEG

research. For readers in any of these scenarios, this review also provides detailed

methodological information on the various components of a DL-EEG pipeline to
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Definition used in this review

Point or sample A measure of the instantaneous electric po-

tential picked up by the EEG sensors, typi-

cally in µV .

Example An instantiation of the data received by a

model as input, typically denoted by xi in

the machine learning literature.

Trial A realization of the task under study, e.g.,

the presentation of one image in a visual

ERP paradigm.

Window or segment A group of consecutive EEG samples ex-

tracted for further analysis, typically be-

tween 0.5 and 30 seconds.

Epoch A window extracted around a specific trial.

Table 5. Disambiguation of common terms used in this review.

inform their own implementation1. In addition to reporting trends and highlighting

interesting approaches, we distill our analysis into a few recommendations in the hope

of fostering reproducible and e�cient research in the field.

1.6. Organization of the review

The review is organized as follows: Section 1 briefly introduces key concepts in EEG

and DL, and details the aims of the review; Section 2 describes how the systematic

review was conducted, and how the studies were selected, assessed and analyzed;

Section 3 focuses on the most important characteristics of the studies selected and

1Additional information with more fine-grained data can be found in our data items table

available at http://dl-eeg.com.
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Fig. 37. Overlapping windows (which may correspond to trials or epochs in some

cases) are extracted from multichannel EEG recordings.

Fig. 38. Illustration of a general neural network architecture.

describes trends and promising approaches; Section 4 discusses critical topics and

challenges in DL-EEG, and provides recommendations for future studies; and Section 5
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concludes by suggesting future avenues of research in DL-EEG. Finally, supplementary

material containing our full data collection table, as well as the code used to produce

the graphs, tables and results reported in this review, are made available online.

How to use this review

We advise readers interested in a specific application domain of EEG to use the

review in the following way:

(1) Read or glance over the main result sections and corresponding

discussion sections covering general data items. This should give the

reader a broad overview of the current practices and design choices used

in the field of DL-EEG.

(2) If the reader is interested in a specific application (e.g., brain-computer

interfacing) or in a specific type of architecture (e.g., CNNs), identify

relevant references.

(3) Consult the detailed summary of the relevant references - which

includes the data items introduced in Table 39 as well as many more

(e.g., detailed preprocessing and feature extraction methodology, software

implementation, values of specific hyperparameters, etc.) - contained in

the data items spreadsheet available online at http://dl-eeg.com.

(4) Check the data items spreadsheet for regular updates (including

additional studies) and the online repository for an updated version of the

figures included in this review. We aim to provide readers with evolving

and up-to-date information on various domains and architectures;

therefore the table will remain open for external contributions from the

community and authors of DL-EEG studies.

(5) Use our checklist provided in Appendix 5 to ensure that you

include all the relevant information in your future DL-EEG publications.
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2. Methods
English journal and conference papers, as well as electronic preprints, published

between January 2010 and July 2018, were chosen as the target of this review. PubMed,

Google Scholar and arXiv were queried2 to collect an initial list of papers containing

specific search terms in their title or abstract.3 Additional papers were identified by

scanning the reference sections of these papers. The databases were queried for the

last time on July 2, 2018.

The following search terms were used to query the databases: (1) EEG, (2) elec-

troencephalogra*, (3) deep learning, (4) representation learning, (5) neural network*,

(6) convolutional neural network*, (7) ConvNet, (8) CNN, (9) recurrent neural net-

work*, (10) RNN, (11) long short-term memory, (12) LSTM, (13) generative adversarial

network*, (14) GAN, (15) autoencoder, (16) restricted boltzmann machine*, (17) deep

belief network* and (18) DBN. The search terms were further combined with logical

operators in the following way: (1 OR 2) AND (3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9

OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16 OR 17 OR 18). The papers were

then included or excluded based on the criteria listed in Table 6.

To assess the eligibility of the selected papers, the titles were read first. If the

title did not clearly indicate whether the inclusion and exclusion criteria were met,

the abstract was read as well. Finally, when reading the full text during the data

collection process, papers that were found to be misaligned with the criteria were

rejected.

Non-peer reviewed papers, such as arXiv electronic preprints4, are a valuable source

of state-of-the-art information as their release cycle is typically shorter than that of

2The queries used for each database are available at http://dl-eeg.com.
3Since the Google Scholar search engine only allows searching full text or titles, and not titles

and abstracts, the query was performed using the flag allintitle to search titles only. On arXiv and

PubMed, however, both abstracts and titles were queried.
4https://arxiv.org/
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Table 6. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

• Training of one or multiple deep learn-

ing architecture(s) to process non-

invasive EEG data.

• Studies focusing solely on invasive

EEG (e.g., electrocorticography

(ECoG) and intracortical EEG) or

magnetoencephalography (MEG).

• Papers focusing solely on software

tools.

• Review articles.

peer-reviewed publications. Moreover, unconventional research ideas are more likely

to be shared in such repositories, which improves the diversity of the reviewed work

and reduces the bias possibly introduced by the peer-review process [124]. Therefore,

non-peer reviewed preprints were also included in our review. However, whenever a

peer-reviewed publication followed a preprint submission, the peer-reviewed version

was used instead.

A data extraction table was designed containing di�erent data items relevant to

our research questions, based on previous reviews with similar scopes and the authors’

prior knowledge of the field. Following a first inspection of the papers with the data

extraction sheet, data items were added, removed and refined. Each paper was initially

reviewed by a single author, and then reviewed by a second if needed. For each article

selected, around 70 data items were extracted covering five categories: origin of the

article, rationale, data used, EEG processing methodology, DL methodology and

reported results. Table 39 lists and defines the di�erent items included in each of

these categories. We make this data extraction table openly available for interested

readers to reproduce our results and dive deeper into the data collected. We also
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invite authors of published work in the field of DL and EEG to contribute to the table

by verifying its content or by adding their articles to it.

The first category covers the origin of the article, that is whether it comes from a

journal, a conference publication or a preprint repository, as well as the country of

the first author’s a�liation. This gives a quick overview of the types of publication

included in this review and of the main actors in the field. Second, the rationale

category focuses on the domains of application of the selected studies. This is valuable

information to understand the extent of the research in the field, and also enables

us to identify trends across and within domains in our analysis. Third, the data

category includes all relevant information on the data used by the selected papers. This

comprises both the origin of the data and the data collection parameters, in addition

to the amount of data that was available in each study. Through this section, we aim

to clarify the data requirements for using DL on EEG. Fourth, the EEG processing

parameters category highlights the typical transformations required to apply DL

to EEG, and covers preprocessing steps, artifact handling methodology, as well as

feature extraction. Fifth, details of the DL methodology, including architecture design,

training procedures and inspection methods, are reported to guide the interested reader

through state-of-the-art techniques. Sixth, the reported results category reviews the

results of the selected articles, as well as how they were reported, and aims to clarify

how DL fares against traditional processing pipelines performance-wise. Finally, the

reproducibility of the selected articles is quantified by looking at the availability of

the data and code. The results of this section support the critical component of our

discussion.

3. Results
The database queries yielded 553 di�erent results that matched the search terms

(see Fig. 40). 49 additional papers were then identified using the reference sections
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Fig. 39. Data items extracted for each article selected.

of the initial papers. Based on our inclusion and exclusion criteria, 448 papers were
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Fig. 40. Selection process for the papers.

excluded. One additional paper was excluded since it had been retracted. Therefore,

154 papers were selected for inclusion in the analysis.

3.1. Origin of the selected studies

Our search methodology returned 51 journal papers, 61 conference and workshop

papers and 42 preprints that met our criteria. A total of 28 journal and conference

papers had initially been made available as preprints on arXiv or bioRxiv. Popular

journals included Neurocomputing, Journal of Neural Engineering and Biomedical

Signal Processing and Control, each with three publications contained in our selected

studies. We also looked at the location of the first author’s a�liation to get a

sense of the geographical distribution of research on DL-EEG. We found that most

contributions came from the USA, China and Australia (see Fig. 41).

3.2. Domains

The selected studies applied DL to EEG in various ways (see Fig. 42). Most studies

(86%) focused on using DL for the classification of EEG data, most notably for sleep

staging, seizure detection and prediction, brain-computer interfaces (BCIs), as well as

for cognitive and a�ective monitoring. Around 9% of the studies focused instead on

the improvement of processing tools, such as learning features from EEG, handling
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Fig. 41. Countries of first author a�liations.

artifacts, or visualizing trained models. The remaining papers (5%) explored ways of

generating data from EEG, e.g. augmenting data, or generating images conditioned

on EEG.

Despite the absolute number of DL-EEG publications being relatively small as

compared to other DL applications such as computer vision [88], there is clearly a

growing interest in the field. Fig. 43 shows the growth of the DL-EEG literature since

2010. The first seven months of 2018 alone count more publications than 2010 to 2016

combined, hence the relevance of this review. It is, however, still too early to conclude

on trends concerning the application domains, given the relatively small number of

publications to date.

3.3. Data

The availability of large datasets containing unprecedented numbers of examples

is often mentioned as one of the main enablers of deep learning research in the early

2010s [53]. It is thus crucial to understand what the equivalent is in EEG research,
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Fig. 42. Focus of the studies. The number of papers that fit in a category is showed in

brackets for each category. Studies that covered more than one topic were categorized

based on their main focus.

given the relatively high cost of collecting EEG data. Given the high dimensionality of

EEG signals [103], one would assume that a considerable amount of data is required.

Although our analysis cannot answer that question fully, we seek to cover as many

dimensions of the answer as possible to give the reader a complete view of what has

been done so far.
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Fig. 43. Number of publications per domain per year. To simplify the figure, some

of the categories defined in Fig. 42 have been grouped together.

3.3.1. Quantity of data. We make use of two di�erent measures to report the

amount of data used in the reviewed studies: 1) the number of examples available

to the deep learning network and 2) the total duration of the EEG recordings used

in the study, in minutes. Both measures include the EEG data used across training,

validation and test phases. For an in-depth analysis of the amount of data, please see

the data items table which contains more detailed information.

The left column of Fig. 44 shows the amount of EEG data, in minutes, used in

the analysis of each study, including training, validation and/or testing. Therefore,

the time reported here does not necessarily correspond to the total recording time of

the experiment(s). For example, many studies recorded a baseline at the beginning

and/or at the end but did not use it in their analysis. Moreover, some studies recorded

more classes than they used in their analysis. Also, some studies used sub-windows of

recorded epochs (e.g. in a motor imagery BCI, using 3 s of a 7 s epoch). The amount

of data in minutes used across the studies ranges from 2 up to 4,800,000 (mean =

62,602; median = 360).

The center column of Fig. 44 shows the amount of examples available to the models,

either for training, validation or test. This number presents a relevant variability
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as some studies used a sliding window with a significant overlap generating many

examples (e.g., 250 ms windows with 234 ms overlap, therefore generating 4,050,000

examples from 1080 minutes of EEG data [153]), while some other studies used very

long windows generating very few examples (e.g., 15-min windows with no overlap,

therefore generating 62 examples from 930 minutes of EEG data [48]). The wide range

of windowing approaches (see Section 3.3.4) indicates that a better understanding

of its impact is still required. The number of examples used ranged from 62 up to

9,750,000 (mean = 251,532; median = 14,000).

The right column of Fig. 44 shows the ratio between the amount of data in minutes

and the number of examples. This ratio was never mentioned specifically in the papers

reviewed but we nonetheless wanted to see if there were any trends or standards across

domains and we found that in sleep studies for example, this ratio tends to be of two

as most people are using 30 s non-overlapping windows. Brain-computer interfacing is

seeing the most sparsity perhaps indicating a lack of best practices for sliding windows.

It is important to note that the BCI field is also the one in which the exact relevant

time measures were hardest to obtain since most of the recorded data isn’t used (e.g.

baseline, in-between epochs). Therefore, some of the sparsity on the graph could

come from us trying our best to understand and calculate the amount of data used

(i.e., seen by the model). Obviously, in the following categories: generation of data,

improvement of processing tools and others, this ratio has little to no value as the

trends would be di�cult to interpret.

The amount of data across di�erent domains varies significantly. In domains like

sleep and epilepsy, EEG recordings last many hours (e.g., a full night), but in domains

like a�ective and cognitive monitoring, the data usually comes from lab experiments

on the scale of a few hours or even a few minutes.

3.3.2. Subjects. Often correlated with the amount of data, the number of subjects

also varies significantly across studies (see Fig. 45). Half of the datasets used in the
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Fig. 44. Amount of data used by the selected studies. Each dot represents one

dataset. The left column shows the datasets according to the total length of the EEG

recordings used, in minutes. The center column shows the number of examples that

were extracted from the available EEG recordings. The right column presents the

ratio of number of examples to minutes of EEG recording.

selected studies contained fewer than 13 subjects. Six studies, in particular, used

datasets with a much greater number of subjects: [127, 159, 185, 147] all used

datasets with at least 250 subjects, while [22] and [49] used datasets with 10,000 and

16,000 subjects, respectively. As explained in Section 3.7.4, the untapped potential of

DL-EEG might reside in combining data coming from many di�erent subjects and/or

datasets to train a model that captures common underlying features and generalizes

better. In [198], for example, the authors trained their model using an existing public

dataset and also recorded their own EEG data to test the generalization on new

subjects. In [189], an increase in performance was observed when using more subjects

during training before testing on new subjects. The authors tested using from 1 to

30 subjects with a leave-one-subject-out cross-validation scheme, and reported an

increase in performance with noticeable diminishing returns above 15 subjects.
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Fig. 45. Number of subjects per domain in datasets. Each point represents one

dataset used by one of the selected studies.

3.3.3. Recording parameters. As shown later in Section 3.8, 42% of reported results

came from private recordings. We look at the type of EEG device that was used by

the selected studies to collect their data, and additionally highlight low-cost, often

called "consumer" EEG devices, as compared to traditional "research" or "medical"

EEG devices (see Fig. 46). We loosely defined low-cost EEG devices as devices under

the USD 1,000 threshold (excluding software, licenses and accessories). Among these

devices, the Emotiv EPOC was used the most, followed by the OpenBCI, Muse and

Neurosky devices. As for the research grade EEG devices, the BioSemi ActiveTwo

was used the most, followed by BrainProducts devices.

The EEG data used in the selected studies was recorded with 1 to 256 electrodes,

with half of the studies using between 8 and 62 electrodes (see Fig. 47). The number

of electrodes required for a specific task or analysis is usually arbitrarily defined

as no fundamental rules have been established. In most cases, adding electrodes

will improve possible analyses by increasing spatial resolution. However, adding an

electrode close to other electrodes might not provide significantly di�erent information,
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while increasing the preparation time and the participant’s discomfort and requiring a

more costly device. Higher density EEG devices are popular in research but hardly

ecological. In [152], the authors explored the impact of the number of channels on

the specificity and sensitivity for seizure detection. They showed that increasing the

number of channels from 4 up to 22 (including two referential channels) resulted in

an increase in sensitivity from 31% to 39% and from 40% to 90% in specificity. They

concluded, however, that the position of the referential channels is very important as

well, making it di�cult to compare across datasets coming from di�erent neurologists

and recording sites using di�erent locations for the reference(s) channel(s).

Similarly, in [28], the impact of di�erent electrode configurations was assessed

on a sleep staging task. The authors found that increasing the number of electrodes

from two to six produced the highest increase in performance, while adding additional

sensors, up to 22 in total, also improved the performance but not as much. The

placement of the electrodes in a 2-channel montage also impacted the performance,

with central and frontal montages leading to better performance than posterior ones

on the sleep staging task.

Furthermore, the recording sampling rates varied mostly between 100 and 1000 Hz

in the selected studies. As described in Section 3.4, however, it is common to decrease

the EEG sampling rate before further processing - a process called downsampling,

by which a signal is resampled to reduce its dimensionality, often by keeping every

other N points. Around 50% of studies used sampling rates of 250 Hz or less and the

highest sampling rate used was 5000 Hz [68].

3.3.4. Data augmentation. Data augmentation is a technique by which new data

examples are artificially generated from the existing training data. Data augmentation

has proven e�cient in other fields such as computer vision, where data manipulations

including rotations, translations, cropping and flipping can be applied to generate

more training examples [129]. Adding more training examples allows the use of
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Fig. 46. EEG hardware used in the studies. The device name is followed by the

manufacturer’s name in parentheses. Low-cost devices (defined as devices below $1,000

excluding software, licenses and accessories) are indicated by a di�erent color.

more complex models comprising more parameters while reducing overfitting. When

done properly, data augmentation increases accuracy and stability, o�ering a better

generalization on new data [211].

Out of the 154 papers reviewed, three papers explicitly explored the impact of

data augmentation on DL-EEG ([190, 215, 151]). Interestingly, each one looked

at it from the perspective of a di�erent domain: sleep, a�ective monitoring and

BCI. Also, all three are from 2018, perhaps showing an emerging interest in data

augmentation. First, in [190], Gaussian noise was added to the training data to
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Fig. 47. Distribution of the number of EEG channels.

obtain new examples. This approach was tested on two di�erent public datasets for

emotion classification (SEED [223] and MAHNOB-HCI [158]). They improved their

accuracy on the SEED dataset using LeNet ([90]) from 49.6% (without augmentation)

to 74.3% (with augmentation), from 34.2% (without) to 75.0% (with) using ResNet

([71]) and from 40.8% (without) to 45.4% (with) on MAHNOB-HCI dataset using

ResNet. Their best accuracy was obtained with a standard deviation of 0.2 and by

augmenting the data to 30 times its original size. Despite impressive results, it is

important to note that they also compared LeNet and ResNet to an SVM which had

an accuracy of 74.2% (without) and 73.4% (with) on the SEED dataset. This might

indicate that the initial amount of data was insu�cient for LeNet or ResNet but

adding data clearly helped bring the performance up to par with the SVM. Second,

in [215], a conditional deep convolutional generative adversarial network (cDCGAN)

was used to generate artificial EEG signals on one of the BCI Competition motor

imagery datasets. Using a CNN, it was shown that data augmentation helped improve

accuracy from 83% to around 86% to classify motor imagery. In [151], the authors

explicitly targeted the class imbalance problem of under-represented sleep stages by
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generating Fourier transform (FT) surrogates of raw EEG data on the CAPSLPDB

dataset. They improved their accuracy up to 24% on some classes.

An additional 30 papers explicitly used data augmentation in one form or another

but only a handful investigated the impact it has on performance. In [83, 13], noise

was added to 2D feature images, although it did not improve results in [13]. In [76],

artifacts such as eye blinks and muscle activity, as well as Gaussian white noise, were

used to augment the data and improve robustness. In [205] and [204], Gaussian noise

was added to the input feature vector. This approach increased the accuracy of the

SDAE model from around 76.5% (without augmentation) to 85.5% (with).

Multiple studies also used overlapping windows as a way to augment their data,

although many did not explicitly frame this as data augmentation. In [183, 118],

overlapping windows were explicitly used as a data augmentation technique. In [84],

di�erent shift lengths between overlapping windows (from 10 ms to 60 ms out of a

2-s window) were compared, showing that by generating more training samples with

smaller shifts, performance improved significantly. In [148], the concept of overlapping

windows was pushed even further: 1) redundant computations due to EEG samples

being in more than one window were simplified thanks to "cropped training", which

ensured these computations were only done once, thereby speeding up training and 2)

the fact that overlapping windows share information was used to design an additional

term to the cost function, which further regularizes the models by penalizing decisions

that are not the same while being close in time.

Other procedures used the inherent spatial and temporal characteristics of EEG

to augment their data. In [34], the authors doubled their data by swapping the right

and left side electrodes, claiming that as the task was a symmetrical problem, which

side of the brain expresses the response would not a�ect classification. In [16], the

authors augmented their multimodal (EEG and EMG) data by duplicating samples

and keeping the values from one modality only, while setting the other modality

values to 0 and vice-versa. In [42], the authors made use of the data that is usually
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thrown away when downsampling EEG in the preprocessing stage. It is common to

downsample a signal acquired at higher sampling rate to 256 Hz or less. In their case,

they reused the data thrown away during that step as new samples: a downsampling

by a factor of N would therefore allow an augmentation of N times.

Finally, classification of rare events where the number of available samples are

orders of magnitude smaller than their counterpart classes [151] is another motivation

for data augmentation. In EEG classification, epileptic seizures or transitional sleep

stages (e.g. S1 and S3) often lead to such unbalanced classes. In [187], the class

imbalance problem was addressed by randomly balancing all classes while sampling

for each training epoch. Similarly, in [28], balanced accuracy was maximized by using

a balanced sampling strategy. In [181], EEG segments from the interictal class were

split into smaller subgroups of equal size to the preictal class. In [159], cost-sensitive

learning and oversampling were used to solve the class imbalance problem for sleep

staging but the overall performance using these approaches did not improve. In

[139], the authors randomly replicated subjects from the minority class to balance

classes. Similarly, in [166, 38, 39, 107], oversampling of the minority class was used

to balance classes. Conversely, in [173, 153], the majority class was subsampled.

In [179], an overlapping window with a subject-specific overlap was used to match

classes. Similar work by the same group [178] showed that when training a GAN on

individual subjects, augmenting data with an overlapping window increased accuracy

from 60.91% to 74.33%. For more on imbalanced learning, we refer the interested

reader to [154].

3.4. EEG processing

One of the oft-claimed motivation for using deep learning on EEG processing is

automatic feature learning [127, 76, 45, 69, 110, 11, 209]. This can be explained

by the fact that feature engineering is a time-consuming task [95]. Additionally,
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preprocessing and cleaning EEG signals from artifacts is a demanding step of the

usual EEG processing pipeline. Hence, in this section, we look at aspects related

to data preparation, such as preprocessing, artifact handling and feature extraction.

This analysis is critical to clarify what level of preprocessing EEG data requires to be

successfully used with deep neural networks.

3.4.1. Preprocessing. Preprocessing EEG data usually comprises a few general

steps, such as downsampling, band-pass filtering, and windowing. Throughout the

process of reviewing papers, we found that a di�erent number of preprocessing steps

were employed in the studies. In [72], it is mentioned that “a substantial amount

of preprocessing was required” for assessing cognitive workload using DL. More

specifically, it was necessary to trim the EEG trials, downsample the data to 512 Hz

and 64 electrodes, identify and interpolate bad channels, calculate the average reference,

remove line noise, and high-pass filter the data starting at 1 Hz. On the other hand,

Stober et al. [162] applied a single preprocessing step by removing the bad channels for

each subject. In studies focusing on emotion recognition using the DEAP dataset [82],

the same preprocessing methodology proposed by the researchers that collected the

dataset was typically used, i.e., re-referencing to the common average, downsampling

to 256 Hz, and high-pass filtering at 2 Hz.

We separated the papers into three categories based on whether or not they used

preprocessing steps: “Yes”, in cases where preprocessing was employed; “No”, when the

authors explicitly mentioned that no preprocessing was necessary; and not mentioned

(“N/M”) when no information was provided. The results are shown in Fig. 48.

A considerable proportion of the reviewed articles (72%) employed at least one

preprocessing method such as downsampling or re-referencing. This result is not

surprising, as applications of DNNs to other domains, such as computer vision, usually

require some kind of preprocessing like cropping and normalization as well.
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Fig. 48. EEG processing choices. (a) Number of studies that used preprocessing

steps, such as filtering, (b) number of studies that included, rejected or corrected

artifacts in their data and (c) types of features that were used as input to the proposed

models.

3.4.2. Artifact handling. Artifact handling techniques are used to remove specific

types of noise, such as ocular and muscular artifacts [184]. As emphasized in [199],

removal of artifacts may be crucial for achieving good EEG decoding performance.

Adding this to the fact that cleaning EEG signals might be a time-consuming process,

some studies attempted to apply only minimal preprocessing such as removing bad

channels and leave the burden of learning from a potentially noisy signal on the neural

network [162]. With that in mind, we decided to look at artifact handling separately.

Artifact removal techniques usually require the intervention of a human expert

[115]. Di�erent techniques leverage human knowledge to di�erent extents, and might

fully rely on an expert, as in the case of visual inspection, or require prior knowledge

to simply tune a hyperparameter, as in the case of wavelet-enhanced independent

component analysis (wICA) [26]. Among the studies which handled artifacts, a myriad

of techniques were applied. Some studies employed methods which rely on human

knowledge such as amplitude thresholding [110], manual identification of high-variance
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segments [72], and handling EEG blinking-related noise based on high-amplitude

EOG segments [107]. Moreover, in [165, 203, 204, 45, 126, 128], independent

component analysis (ICA) was used to separate ocular components from EEG data

[106].

In order to investigate the necessity of removing artifacts from EEG when using

deep neural networks, we split the selected papers into three categories, in a similar

way to the preprocessing analysis (see Fig. 48). Almost half the papers (47%) did not

use artifact handling methods, while 23% did. Additionally, 30% of the studies did

not mention whether artifact handling was necessary to achieve their results. Given

those results, we are encouraged to believe that using DNNs on EEG might be a way

to avoid the explicit artifact removal step of the classical EEG processing pipeline

without harming task performance.

3.4.3. Features. Feature engineering is one of the most demanding steps of the

traditional EEG processing pipeline [95] and the main goal of many papers considered

in this review [127, 76, 45, 69, 110, 11, 209] is to get rid of this step by employing

deep neural networks for automatic feature learning. This aspect appears to be of

interest to researchers in the field since its early stages, as indicated by the work of

Wulsin et al. [195], which, in 2011, compared the performance of deep belief networks

(DBNs) on classification and anomaly detection tasks using both raw EEG and features

as inputs. More recently, studies such as [163, 67] achieved promising results without

the need to extract features.

On the other hand, a considerable proportion of the reviewed papers used hand-

engineered features as the input to their deep neural networks. In [172], for example,

authors used a time-frequency domain representation of EEG obtained via the short-

time Fourier transform (STFT) for detecting binary user-preference (like versus dislike).

Similarly, Truong et al. [179], used the STFT as a 2-dimensional EEG representation

for seizure prediction using CNNs. In [214], EEG frequency-domain information
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was also used. Widely adopted by the EEG community, the power spectral density

(PSD) of classical frequency bands from around 1 Hz to 40 Hz were used as features.

Specifically, authors selected the delta (1-4 Hz), theta (5-8 Hz), alpha (9-13 Hz),

lower beta (14-16 Hz), higher beta (17-30 Hz), and gamma (31-40 Hz) bands for

mental workload state recognition. Moreover, other studies employed a combination

of features, for instance [48], which used PSD features, as well as entropy, kurtosis,

fractal component, among others, as input of the proposed CNN for ischemic stroke

detection.

Given that the majority of EEG features are obtained in the frequency-domain, our

analysis consisted in separating the reviewed articles into four categories according to

the respective input type. Namely, the categories were: “Raw EEG” (which includes

EEG time series that have been preprocessed, e.g., filtered or artifact-corrected),

“Frequency-domain”, “Combination” (in case more than one type of feature was used),

and “Other” (for papers using neither raw EEG nor frequency-domain features).

Studies that did not specify the type of input were assigned to the category “N/M”

(not mentioned). Notice that, here, we use “feature” and “input type” interchangeably.

Fig. 48 presents the result of our analysis. One can observe that 49% of the papers

used only raw EEG data as input, whereas 49% used hand-engineered features, from

which 38% corresponded to frequency domain-derived features. Finally, 2% did not

specify the type of input of their model. According to these results, we find indications

that DNNs can be in fact applied to raw EEG data and achieve state-of-the-art results.

3.5. Deep learning methodology

3.5.1. Architecture. A crucial choice in the DL-based EEG processing pipeline is

the neural network architecture to be used. In this section, we aim at answering a few

questions on this topic, namely: 1) "What are the most frequently used architectures?",
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2) "How has this changed across years?", 3) "Is the choice of architecture related to

input characteristics?" and 4) "How deep are the networks used in DL-EEG?".

To answer the first three questions, we divided and assigned the architectures used

in the 154 papers into the following groups: CNNs, RNNs, AEs, restricted Boltzmann

machines (RBMs), DBNs, GANs, FC networks, combinations of CNNs and RNNs

(CNN+RNN), and “Others” for any other architecture or combination not included in

the aforementioned categories. Fig. 49(a) shows the percentage of studies that used the

di�erent architectures. 40% of the papers used CNNs, whereas RNNs and AEs were

both the architecture choice of about 13% of the works, respectively. Combinations

of CNNs and RNNs, on the other hand, were used in 7% of the studies. RBMs and

DBNs corresponded together to almost 10% of the architectures. FC neural networks

were employed by 6% of the papers. GANs and other architectures appeared in 6%

of the considered cases. Notice that 4% of the analyzed papers did not report their

choice of architecture.

In Fig. 49, we provide a visualization of the distribution of architecture types

across years. Until the end of 2014, DBNs and FC networks comprised the majority

of the studies. However, since 2015, CNNs have been the architecture type of choice

in most studies. This can be attributed to the their capabilities of end-to-end learning

and of exploiting hierarchical structure on the data [175], as well as their success and

subsequent popularity on computer vision tasks, such as the ILSVRC 2012 challenge

[35]. Interestingly, we also observe that as the number of papers grows, the proportion

of studies using CNNs and combinations of recurrent and convolutional layers has

been growing steadily. The latter shows that RNNs are increasingly of interest for

EEG analysis. On the other hand, the use of architectures such as RBMs, DBNs and

AEs has been decreasing with time. Commonly, models employing these architectures

utilize a two-step training procedure consisting of 1) unsupervised feature learning

and 2) training a classifier on top of the learned features. However, we notice that

recent studies leverage the hierarchical feature learning capabilities of CNNs to achieve
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Fig. 49. Deep learning architectures used in the selected studies. ‘N/M’ stands for

‘Not mentioned’ and accounts for papers which have not reported the respective deep

learning methodology aspect under analysis. (a) Architectures. (b) Distribution of

architectures across years. (c) Distribution of input type according to the architecture

category. (d) Distribution of number of neural network layers.

end-to-end supervised feature learning, i.e., training both a feature extractor and a

classifier simultaneously.

To complement the previous result, we cross-checked the architecture and input

type information provided in Fig. 48. Results are presented in Fig. 49 and clearly show
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that CNNs are indeed used more often with raw EEG data as input. This corroborates

the idea that researchers employ this architecture with the aim of leveraging the

capabilities of deep neural networks to process EEG data in an end-to-end fashion,

avoiding the time-consuming task of extracting features. From this figure, one can

also notice that some architectures such as deep belief networks are typically used

with frequency-domain features as inputs, while GANs, on the other hand, have been

only applied to EEG processing using raw data.

Number of layers. Deep neural networks are usually composed of stacks of layers which

provide hierarchical processing. Although one might think the use of deep neural

networks implies the existence of a large number of layers in the architecture, there is

no absolute consensus in the literature regarding this definition. Here we investigate

this aspect and show that the number of layers is not necessarily large, i.e., larger

than three, in many of the considered studies.

In Fig 49, we show the distribution of the reviewed papers according to the number

of layers in the respective architecture. For studies reporting results for di�erent

architectures and number of layers, we only considered the highest value. We observed

that most of the selected studies (128) utilized architectures with at most 10 layers.

A total of 16 articles have not reported the architecture depth. When comparing the

distribution of papers according to the architecture depth with architectures commonly

used for computer vision applications, such as VGG-16 (16 layers) [156] and ResNet-18

(18 layers) [71], we observe that the current literature on DL-EEG suggests shallower

models achieve better performance. The same trend is applicable to other domains

such as NLP and speech processing. In unsupervised language modeling, for instance,

the GPT-2 model [134] outperformed previous work5 using architectures with 12 to

48 layers. Likewise, in automatic speech recognition, the state-of-the-art model6 on

5https://paperswithcode.com/sota/word-level-models-penn-treebank
6https://paperswithcode.com/sota/speech-recognition-word-error-rate-on-sw
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human-to-human communication was achieved with a 30-layer architecture containing

residual blocks and recurrent layers [145].

Some studies specifically investigated the e�ect of increasing the model depth.

Zhang et al. [214] evaluated the performance of models with depth ranging from

two to 10 on a mental workload classification task. Architectures with seven layers

outperformed both shallower (two and four layers) and deeper (10 layers) models

in terms of accuracy, precision, F-measure and G-mean. Moreover, O’Shea et al.

[118] compared the performance of a CNN with six and 11 layers on neonatal seizure

detection. Their results show that, in this case, the deeper network presented better

area under the receiver operating curve (ROC AUC) (0.971) in comparison to the

shallower model, as well as a support vector machine (SVM) (0.965). In [84], the e�ect

of depth on CNN performance was also studied. The authors compared results obtained

by a CNN with two and three convolutional layers on the task of classifying SSVEPs

under ambulatory conditions. The shallower architecture outperformed the three-

layer one in all scenarios considering di�erent amounts of training data. Canonical

correlation analysis (CCA) together with a KNN classifier were also evaluated and

employed as a baseline method. Interestingly, as the number of training samples

increased, the shallower model outperformed the CCA-based baseline. These three

examples o�er a representative view of the current state of DL-EEG research, namely

that it is impossible to conclude that either deeper or shallower models perform better

in all contexts. Depending on factors such as the amount of data, the task to be

solved, the type of architecture, the hyperparameter tuning strategy, and the available

computational resources, shallower or deeper models might work best. To gain a

better idea of what might be preferable to use in a specific case, we invite the reader

to identify relevant studies in the data items table and explore their results.

EEG-specific design choices. Particular choices regarding the architecture might enable

a model to mimic the process of extracting EEG features. An architecture can also be

specifically designed to impose specific properties on the learned representations. This
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is for instance the case with max-pooling, which is used to produce invariant feature

maps to slight translations on the input [53]. In the case of EEG signals, one might be

interested in forcing the model to process temporal and spatial information separately

in the earlier stages of the network. In [28, 84, 209, 14, 148, 107], one-dimensional

convolutions were used in the input layer with the aim of processing either temporal

or spatial information independently at this point of the hierarchy. Other studies

[217, 166] combined recurrent and convolutional neural networks as an alternative to

the previous approach of separating temporal and spatial content. Recurrent models

were also applied in cases where it was necessary to capture long-term dependencies

from the EEG data [98, 216].

3.5.2. Training. Details regarding the training of the models proposed in the

literature are of great importance as di�erent approaches and hyperparameter choices

can greatly impact the performance of neural networks. The use of pre-trained models,

regularization, and hyperparameter search strategies are examples of aspects we took

into account during the review process. We report our main findings in this section.

Training Procedure. One of the advantages of applying deep neural networks to EEG

processing is the possibility of simultaneously training a feature extractor and a model

for executing a downstream task such as classification or regression. However, in

some of the reviewed studies [86, 192, 111], these two tasks were executed separately.

Usually, the feature learning was done in an unsupervised fashion, with RBMs, DBNs,

or AEs. After training those models to provide an appropriate representation of the

EEG input signal, the new features were then used as the input for a target task

which is, in general, classification. In other cases, pre-trained models were used for a

di�erent purpose, such as object recognition, and were fine-tuned on the specific EEG

task with the aim of providing a better initialization or regularization e�ect [96].

In order to investigate the training procedure of the reviewed papers, we classify

each one according to the adopted training procedure. Models which have parameters

166



Fig. 50. Deep learning methodology choices. (a) Training methodology used in the

studies, (b) number of studies that reported the use of regularization methods such as

dropout, weight decay, etc. and (c) type of optimizer used in the studies.

learned without using any kind of pre-training were assigned to the “Standard” group.

The remaining studies, which specified the training procedure, were included in the

“Pre-training” class, in case the parameters were learned in more than one step. Finally,

papers employing di�erent methodologies for training, such as co-learning [34], were

included in the “Other” group.

In Fig. 50a) we show how the reviewed papers are distributed according to the

training procedure. “N/M” refers to studies which have not reported this aspect.

Almost half the papers did not employ any pre-traning strategy, while 25% did. Even

though the training strategy is crucial for achieving good performance with deep

neural networks, 25% of the selected studies have not explicitly described it in their

paper.

Regularization. In the context of our literature review, we define regularization as any

constraint on the set of possible functions parametrized by the neural network intended

to improve its performance on unseen data during training [53]. The main goal when

regularizing a neural network is to control its complexity in order to obtain better
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generalization performance [21], which can be verified by a decrease on test error

in the case of classification problems. There are several ways of regularizing neural

networks, and among the most common are weight decay (L2 and L1 regularization)

[53], early stopping [133], dropout [167], and label smoothing [168]. Notice that

even though the use of pre-trained models as initialization can also be interpreted

as a regularizer [96], in this work we decided to include it in the training procedure

analysis instead.

As the use of regularization might be fundamental to guarantee a good performance

on unseen data during training, we analyzed how many of the reviewed studies explicitly

stated that they have employed it in their models. Papers were separated in two groups,

namely: “Yes” in case any kind of regularization was used, and “N/M” otherwise. In

Fig. 50 we present the proportion of studies in each group.

From Fig. 50, one can notice that more than half the studies employed at least

one regularization method. Furthermore, regularization methods were frequently

combined in the reviewed studies. Hefron et al. [72] employed a combination of

dropout, L1- and L2- regularization to learn temporal and frequency representations

across di�erent participants. The developed modelwas trained for recognizing mental

workload states elicited by the MATB task [31]. Similarly, Längkvist and Loutfi [86],

combined two types of regularization with the aim of developing a model tailored to

an automatic sleep stage classification task. Besides L2-regularization, they added

a penalty term to encourage weight sparsity, defined as the KL-divergence between

the mean activation of each hidden unit over all training examples in a training batch

and a hyperparameter fl.

Optimization. Learning the parameters of a deep neural network is, in practice, an

optimization problem. The best way to tackle it is still an open research question in

the deep learning literature, as there is often a compromise between finding a good

solution in terms of minimizing the cost function and the performance of a local

optimum expressed by the generalization gap, i.e. the di�erence between the training
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error and the true error estimated on the test set. In this scenario, the choice of a

parameter update rule, i.e. the learning algorithm or optimizer, might be key for

achieving good results.

The most commonly used optimizers are reported in Fig. 50. One surprising finding

is that even though the choice of optimizer is a fundamental aspect of the DL-EEG

pipeline, 47% of the considered studies did not report which parameter update rule

was applied. Moreover, 30% used Adam [81] and 17% Stochastic Gradient Descent

[135] (notice that we also refer to the mini-batch case as SGD). 6% of the papers

utilized di�erent optimizers, such as RMSprop [176], Adagrad [40], and Adadelta

[210].

Another interesting finding the optimizer analysis provided is the steady increase

in the use of Adam. Indeed, from 2017 to 2018, the percentage of studies using Adam

increased from 28.9% to 54.2%. Adam was proposed as a gradient-based method with

the capability of adaptively tuning the learning rate based on estimates of first and

second order moments of the gradient. It became very popular in general deep neural

networks applications (accumulating approximately 15,000 citations since 20147).

Interestingly, we notice a proportional decrease from 2017 to 2018 of the number of

papers which did not report the optimizer utilized.

Hyperparameter search. From a practical point-of-view, tuning the hyperparameters

of a learning algorithm often takes up a great part of the time spent during training.

GANs, for instance, are known to be sensitive to the choices of optimizer and archi-

tecture hyperparameters [57, 97]. In order to minimize the amount of time spent

finding an appropriate set of hyperparameters, several methods have been proposed

in the literature. Examples of commonly applied methods are grid search [17] and

Bayesian optimization [157]. Grid search consists in determining a range of values for

each parameter to be tuned, choosing values in this range, and evaluating the model,

7Google scholar query run on 30/11/2018.
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usually in a validation set considering all combinations. One of the advantages of grid

search is that it is highly parallelizable, as each set of hyperparameter is independent

of the other. Bayesian optimization, in turn, defines a posterior distribution over the

hyperparameters space and iteratively updates its values according to the performance

obtained by the model with a hyperparameter set corresponding to the expected

posterior.

Given the importance of finding a good set of hyperparameters and the di�culty

of achieving this in general, we calculate the percentage of papers that employed

some search method for tuning their models and optimizers, as well as the amount of

articles that have not included any information regarding this aspect. Results indicate

that 80% of the reviewed papers have not mentioned the use of hyperparameters

search strategies. It is important to highlight that among those articles, it is not clear

how many have not done any tuning at all and how many have just not considered

to include this information in the paper. From the 20% that declared to have

searched for an appropriate set of hyperparameters, some have manually done this

by trial and error (e.g. [2, 38, 181, 127]), while others employed grid search (e.g.

[203, 197, 39, 204, 99, 11, 86]), and a few used other strategies such as Bayesian

methods (e.g. [161, 162, 151]).

3.6. Inspection of trained models

In this section, we review if, and how, studies have inspected their proposed models.

Out of the selected studies, 27% reported inspecting their models. Two studies focused

more specifically on the question of model inspection in the context of DL and EEG

[68, 45]. See Table 7 for a list of the di�erent techniques that were used by more

than one study. For a general review of DL model inspection techniques, see [75].

The most frequent model inspection techniques involved the analysis of the trained

model’s weights [130, 207, 86, 34, 87, 197, 180, 117, 169, 224, 162, 107, 200].
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This often requires focusing on the weights of the first layer only, as their interpretation

in regard to the input data is straightforward. Indeed, the absolute value of a weight

represents the strength with which the corresponding input dimension is used by the

model - a higher value can therefore be interpreted as a rough measure of feature

importance. For deeper layers, however, the hierarchical nature of neural networks

means it is much harder to understand what a weight is applied to.

The analysis of model activations was used in multiple studies [208, 191, 87, 84,

204, 166, 153, 107]. This kind of inspection method usually involves visualizing

the activations of the trained model over multiple examples, and thus inferring how

di�erent parts of the network react to known inputs. The input-perturbation network-

prediction correlation map technique, introduced in [147], pushes this idea further by

trying to identify causal relationships between the inputs and the decisions of a model.

The impact of the perturbation on the activations of the last layer’s units then shines

light onto which characteristics of the input are important for the classifier to make

a correct prediction. To do this, the input is first perturbed, either in the time- or

frequency-domain, to alter its amplitude or phase characteristics [68], and then fed

into the network. Occlusion sensitivity techniques [92, 28, 173] use a similar idea,

by which the decisions of the network when di�erent parts of the input are occluded

are analyzed.

Several studies used backpropagation-based techniques to generate input maps

that maximize activations of specific units [185, 139, 159, 13]. These maps can then

be used to infer the role of specific neurons, or the kind of input they are sensitive to.

Finally, some model inspection techniques were used in a single study. For instance,

in [45], the class activation map (CAM) technique was extended to overcome its

limitations on EEG data. To use CAMs in a CNN, the channel activations of the

last convolutional layer must be averaged spatially before being fed into the model’s

penultimate layer, which is a FC layer. For a specific input image, a map can then

be created to highlight parts of the image that contributed the most to the decision,

171



Table 7. Model inspection techniques used by more than one study.

Citation

Analysis of weights [130, 207, 86, 34, 87, 197, 180, 117,

169, 224, 162, 107, 200, 85, 27]

Analysis of activations [208, 191, 87, 84, 204, 166, 153, 107]

Input-perturbation network-prediction

correlation maps

[147, 189, 68, 14, 148]

Generating input to maximize activation [185, 139, 159, 13]

Occlusion of input [92, 28, 173]

by computing a weighted average of the last convolutional layer’s channel activations.

Other techniques include Deeplift [87], saliency maps [187], input-feature unit-output

correlation maps [148], retrieval of closest examples [34], analysis of performance

with transferred layers [62], analysis of most-activating input windows [68], analysis

of generated outputs [67], and ablation of filters [87].

3.7. Reporting of results

The performance of DL methods on EEG is of great interest as it is still not clear

whether DL can outperform traditional EEG processing pipelines [103]. Thus, a

major question we thus aim to answer in this review is: “Does DL lead to better

performance than traditional methods on EEG?” However, answering this question

is not straightforward, as benchmark datasets, baseline models, performance metrics

and reporting methodology all vary considerably between the studies. In contrast,

other application domains of DL, such as computer vision and NLP, benefit from

standardized datasets and reporting methodology [53].

Therefore, to provide as satisfying an answer as possible, we adopt a two-pronged

approach. First, we review how the studies reported their results by focusing on
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directly quantifiable items: 1) the type of baseline used as a comparison in each study,

2) the performance metrics, 3) the validation procedure, and 4) the use of statistical

testing. Second, based on these points and focusing on studies that reported accuracy

comparisons with baseline models, we analyze the reported performance of a majority

of the reviewed studies.

3.7.1. Type of baseline. When contributing a new model, architecture or methodol-

ogy to solve an already existing problem, it is necessary to compare the performance

of the new model to the performance of state-of-the-art models commonly used for the

problem of interest. Indeed, without a baseline comparison, it is not possible to assess

whether the proposed method provides any advantage over the current state-of-the-art.

Points of comparison are typically obtained in two di�erent ways: 1) (re)implementing

standard models or 2) referring to published models. In the first case, authors will

implement their own baseline models, usually using simpler models, and evaluate

their performance on the same task and in the same conditions. Such comparisons

are informative, but often do not reflect the actual state-of-the-art on a specific task.

In the second case, authors will instead cite previous literature that reported results

on the same task and/or dataset. This second option is not always possible, especially

when working on private datasets or tasks that have not been explored much in the

past.

In the case of typical EEG classification tasks, state-of-the-art approaches usually

involve traditional processing pipelines that include feature extraction and shal-

low/classical machine learning models. With that in mind, 68.2% of the studies

selected included at least one traditional processing pipeline as a baseline model (see

Fig. 55). Some studies instead (or also) compared their performance to DL-based

approaches, to highlight incremental improvements obtained by using di�erent archi-

tectures or training methodology: 34.4% of the studies therefore included at least one

DL-based model as a baseline model. Out of the studies that did not compare their
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models to a baseline, six did not focus on the classification of EEG. Therefore, in

total, 20.8% of the studies did not report baseline comparisons, making it impossible

to assess the added value of their proposed methods in terms of performance.

Fig. 51. Type of performance metrics used in the selected studies. Only metrics that

appeared in at least three di�erent studies are included in this figure.

Fig. 52. Cross-validation approaches.
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3.7.2. Performance metrics. The types of performance metrics used by studies

focusing on EEG classification are shown in Fig. 51. Unsurprisingly, most studies used

metrics derived from confusion matrices, such as accuracy, sensitivity, f1-score, ROC

AUC and precision. As highlighted in [28, 197], it is often preferable to use metrics

that are robust to class imbalance, such as balanced accuracy, f1-score, and the ROC

AUC for binary problems. This is often the case in sleep or epilepsy recordings, where

clinical events are rare.

Studies that did not focus on the classification of EEG signals also mainly used

accuracy as a metric. Indeed, these studies generally used a classification task to

evaluate model performance, although their main purpose was di�erent (e.g., correcting

artifacts). In other cases, performance metrics specific to the study’s purpose, such

as generating data, were used, e.g., the inception score ([144]), the Fréchet inception

distance ([74]), as well as custom metrics.

3.7.3. Validation procedure. When evaluating a machine learning model, it is

important to measure its generalization performance, i.e., how well it performs on

unseen data. In order to do this, it is common practice to divide the available data into

a training and a test sets. When hyperparameters need to be tuned, the performance

on the test set cannot be used anymore as an unbiased evaluation of the generalization

performance of the model. Therefore, the training set is divided to obtain a third set

called a "validation set" which is used to select the best hyperparameter configuration,

leaving the test set to evaluate the performance of the best model in an unbiased way.

However, when the amount of data available is small, dividing the data into di�erent

sets and only using a subset for training can seriously undermine the performance of

data-hungry models. A procedure known as "cross-validation" is used in these cases,

where the data is broken down into di�erent partitions, which will then successively

be used as either training or validation data.
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The cross-validation techniques used in the selected studies are shown in Fig. 52.

Some studies mentioned using cross-validation but did not provide any details. The

category ‘Train-Valid-Test’ includes studies doing random permutations of train/valid,

train/test or train/valid/test, as well as studies that mentioned splitting their data

into training, validation and test sets but did not provide any details on the validation

method. The Leave-One-Out variations correspond to the special case where N = 1 in

the Leave-N-Out versions. 42% of the studies did not use any form of cross-validation.

Interestingly, in [102], the authors proposed a ’warm restart’ technique to improve

performance and/or generalization of stochastic gradient descent and to relax the

need to access a validation set by providing a recommendation solution as the latest

solution of the latest completed cycle/restart.

3.7.4. Subject handling. Whether a study focuses on intra- or inter-subject classifi-

cation has an impact on the performance. Intra-subject models, which are trained

and used on the data of a single subject, often lead to higher performance since the

model has less data variability to account for. However, this means the data the

model is trained on is obtained from a single subject, and thus often comprises only a

few recordings. In inter-subject studies, models generally see more data, as multiple

subjects are included, but must contend with greater data variability, which introduces

di�erent challenges.

In the case of inter-subject classification, the choice of the validation procedure can

have a big impact on the reported performance of a model. The Leave-N-Subject-Out

procedure, which uses di�erent subjects for training and for testing, may lead to

lower performance, but is applicable to real-life scenarios where a model must be

used on a subject for whom no training data is available. In contrast, using k-fold

cross-validation on the combined data from all the subjects often means that the same

subjects are seen in both the training and testing sets. In the selected studies, 23 out
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of the 108 studies using an inter-subject approach used a Leave-N-Subjects-Out or

Leave-One-Subjects-Out procedure.

In the selected studies, 26% focused only on intra-subject classification, 62% focused

only on inter-subject classification, 8% focused on both, and 4% did not mention it.

Obviously, ‘N/M’ studies necessarily fall under one of the three previous categories.

The ‘N/M’ might be due to certain domains using a specific type of experiment (i.e.

intra or inter-subject) almost exclusively, thereby obviating the need to mention it

explicitly.

Fig. 53 shows that there has been a clear trend over the last few years to leverage

DL for inter-subject rather than intra-subject analysis. In [34], the authors used a

large dataset and tested the performance of their model both on new (unseen) subjects

and on known (seen) subjects. They obtained 38% accuracy on unseen subjects and

75% on seen subjects, showing that classifying EEG data from unseen subjects can be

significantly more challenging than from seen ones.

In [182], the authors compared their model on both intra- and inter-subject tasks.

Despite the former case providing the model with less less training data than the latter,

it led to better results. In [61], the authors compared di�erent DL models and showed

that cross-subject (37 subjects) models always performed worse than within-subject

models. In [125], a hybrid system trained on multiple subjects and then fine-tuned

on subject-specific data led to the best performance. Finally, in [173], the authors

compared their DNN to a state-of-the-art traditional approach and showed that deep

networks generalize better, although their performance on intra-subject classification

is still higher than on inter-subject classification.

3.7.5. Statistical testing. To assess whether a proposed model is actually better

than a baseline model, it is useful to use statistical tests. In total, 19.5% of the

selected studies used statistical tests to compare the performance of their models to
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Fig. 53. Distribution of intra- vs. inter-subject studies per year.

baseline models. The tests most often used were Wilcoxon signed-rank tests, followed

by ANOVAs.

3.7.6. Comparison of results. Although, as explained above, many factors make this

kind of comparison imprecise, we show in this section how the proposed approaches

and traditional baseline models compared, as reported by the selected studies.

We focus on a specific subset of the studies to make the comparison more meaningful.

First, we focus on studies that report accuracy as a direct measure of task performance.

As shown in Fig. 51, this includes the vast majority of the studies. Second, we only

report studies which compared their models to a traditional baseline, as we are

interested in whether DL leads to better results than non-DL approaches. This means

studies which only compared their results to other DL approaches are not included in

this comparison. Third, some studies evaluated their approach on more than one task

or dataset. In this case, we report the results on the task that has the most associated

baselines. If that is more than one, we either report all tasks, or aggregate them if they

are very similar (e.g., binary classification of multiple mental tasks, where performance

is reported for each possible pair of tasks). In the case of multimodal studies, we

only report the performance on the EEG-only task, if it is available. Finally, when

reporting accuracy di�erences, we focus on the di�erence between the best proposed
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model and the best baseline model, per task. Following these constraints, a total of

102 studies/tasks were left for our analysis.

Figure 54 shows the di�erence in accuracy between each proposed model and

corresponding baseline per domain type (as categorized in Fig. 42), as well as the

corresponding distribution over all included studies and tasks.

The median gain in accuracy with DL is of 5.4%, with an interquartile range of

9.4%. Only four values were negative values, meaning the proposed DL approach led

to a lower performance than the baseline. We notice a slight, although not significant,

di�erence in the median accuracy di�erence of the preprint and peer-reviewed groups

(4.7% and 6.00%), respectively; Mann-Whitney test p = 0.072). While this di�erence

is minor and exemplifies the same trend of slightly higher performance of DL models

over traditional methods, it might originate from the lower publication standards of

non-peer-reviewed research.

The highest improvement in accuracy (76.7%), obtained in [160], was shown to be

caused by flawed experimental design and preprocessing strategy in a replication study

[94]. Therefore, the improvement obtained in [205] (35.3% on a mental workload level

classification task) was the highest achieved in the articles reviewed. In that study, a

naive Bayes classifier trained on various features (including spectral and information

theoretic features) preceded by a principal component analysis (PCA), was used as

baseline.

3.8. Reproducibility

Reproducibility is a cornerstone of science [109]: having reproducible results is

fundamental to moving a field forward, especially in a field like machine learning

where new ideas spread very quickly. Here, we evaluate ease with which the results of

the selected papers can be reproduced by the community using two key criteria: the

availability of their data and the availability of their code.
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Fig. 54. Di�erence in accuracy between each proposed DL model and corresponding

baseline model for studies reporting accuracy (see Section 3.7.6 for a description of the

inclusion criteria). The di�erence in accuracy is defined as the di�erence between the

best DL model and the best corresponding baseline. In the top figure, each study/task

is represented by a single point, and studies are grouped according to their respective

domains. The bottom figure is a box plot representing the overall distribution. The

result which achieved an accuracy di�erence of nearly 77% [160] was found to be

caused by a flawed design in [94] and should therefore be considered as an outlier.

From the 154 studies reviewed, 53% used public data, 42% used private data8, and

4% used both public and private data. In particular, studies focusing on BCI, epilepsy,

sleep and a�ective monitoring made use of openly available datasets the most (see

Table 8). Interestingly, in cognitive monitoring, no publicly available datasets were

used, and papers in that field all relied on internal recordings.

8Data that is not freely available online was considered private regardless of when and where it

was recorded. Moreover, three of the reviewed studies mentioned that their data was available upon

request but were included in the "private" category.
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Fig. 55. Reproductibility of the selected studies. (a) Availability of the datasets used

in the studies, (b) availability of the code, shown by where the code is hosted, (c) type

of baseline used to evaluate the performance of the trained models and (d) estimated

reproducibility level of the studies (Easy: both the data and the code are available,

Medium: the code is available but some data is not publicly available, Hard: either

the code or the data is available but not both, Impossible: neither the data nor the

code are available).

Fittingly, a total of 33 papers (21%) explicitly mentioned that more publicly

available data is required to support research on DL-EEG. In clinical settings, the

lack of labeled data, rather than the quantity of data, was specifically pointed out as

an obstacle.

As for the source code, only 20 papers (13%) chose to make it available online

[83, 147, 191, 159, 221, 194, 151, 87, 148, 217, 219, 166, 220, 218, 102, 160,

13, 162, 161, 85] and as illustrated in Fig 55, GitHub is by far the preferred code

sharing platform. Needless to say, having access to the source code behind published
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results can drastically reduce time and increase incentive to reproduce a paper’s

results.

Therefore, taking both data and code availability into account, only 12 out of

154 studies (8%) could easily be reproduced using both the same data and code

[147, 191, 159, 151, 217, 219, 166, 218, 102, 160, 162, 85]. 4 out of 154 studies

(3%) shared their code but tested on both private and public data making their studies

only partially reproducible [221, 87, 148, 220], see Fig. 55. As follows, a significant

number of studies (61) did not have publicly available data or code, making them

almost impossible to reproduce.

It is important to note, moreover, that for the results of a study to be perfectly

reproduced, the authors would also need to share the weights (i.e. parameters) of the

network. Sharing the code and the architecture of the network might not be su�cient

since retraining the network could converge to a di�erent minimum. On the other

hand, retraining the network could also end up producing better results if a better

performing model is obtained. For recommendations on how to best share the results,

the code, the data and relevant information to make a study easy to reproduce, please

see the discussion section and the checklist provided in Appendix 5.

4. Discussion
In this section, we review the most important findings from our results section,

and discuss the significance and impact of various trends highlighted above. We

also provide recommendations for DL-EEG studies and present a checklist to ensure

reproducibility in the field.

4.1. Rationale

It was expected that most papers selected for the review would focus on the

classification of EEG data, as DL has historically led to important improvements
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Table 8. Most often used datasets by domain. Datasets that were only used by one

study are grouped under "Other" for each category.

Main domain Dataset # articles References

A�ective DEAP [82] 9 [98, 6, 16, 100, 197, 101, 42, 79, 93]

SEED [224] 3 [216, 101, 224]

BCI BCI Competition [23, 24, 141] 13 [43, 87, 142, 148, 148, 169, 169,
107, 143, 200, 37, 37, 27]

Other 8 [69, 87, 148, 62, 62, 62, 165, 8]

eegmmidb [146] 8 [212, 217, 105, 219, 222, 36, 116,
58]

Keirn & Aunon (1989)1 2 [123, 128]

Cognitive Other 4 [83, 60, 60, 60]

EEG Eye State2 1 [113]

Epilepsy Bonn University [9] 7 [76, 183, 4, 170, 2, 119, 112]

CHB-MIT [155] 7 [181, 208, 179, 178, 125, 173, 182]

TUH [65] 5 [51, 152, 50, 49, 201]

Other 3 [179, 50, 171]

Freiburg Hospital3 2 [179, 178]

Generation of data BCI Competition [23, 24, 141] 2 [33, 215]

MAHNOB [158] 1 [190]

Other 1 [151]

SEED [224] 1 [190]

Improvement of processing tools BCI Competition [23, 24, 141] 3 [198, 163, 199]

Other 3 [202, 117, 162]

Bonn University [9] 1 [192]

CHB-MIT [155] 1 [192]

MAHNOB [158] 1 [39]

Others TUH [65] 3 [147, 138, 221]

eegmmidb [146] 3 [221, 220, 218]

Other 2 [185, 221]

EEG Eye State2 1 [91]

Sleep MASS [121] 4 [132, 28, 166, 38]

Sleep EDF [80] 4 [187, 166, 196, 180]

Other 3 [159, 177, 47]

UCDDB4 3 [86, 108, 85]

1 http://www.cs.colostate.edu/eeg/main/data/1989_Keirn_and_Aunon
2 https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
3 http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
4 https://physionet.org/pn3/ucddb/
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on supervised classification problems [88]. Interestingly though, several papers also

focused on new applications that were made possible or facilitated by DL: for instance,

generating images conditioned on EEG, generating EEG, transfer learning between

subjects, or feature learning. One of the main motivations for using DL cited by the

papers reviewed was the ability to use raw EEG with no manual feature extraction

steps. We expect these kinds of applications that go beyond using DL as a replacement

for traditional processing pipelines to gain in popularity.

4.2. Data

A critical question concerning the use of DL with EEG data remains “How much

data is enough data?”. In Section 3.3, we explored this question by looking at various

descriptive dimensions: the number of subjects, the amount of EEG recorded, the

number of training/test/validation examples, the sampling rate and data augmentation

schemes used.

Although a definitive answer cannot be reached, the results of our meta-analysis

show that the amount of data necessary to at least match the performance of traditional

approaches is already available. Out of the 154 papers reviewed, only six reported

lower performance for DL methods over traditional benchmarks. To achieve these

results with limited amounts of data, shallower architectures were often preferred.

Data augmentation techniques were also used successfully to improve performance

when only limited data was available. However, more work is required to clearly assess

their advantages and disadvantages. Indeed, although many studies used overlapping

sliding windows, there seems to be no consensus on the best overlapping percentage to

use, e.g., the impact of using a sliding window with 1% overlap versus 95% overlap is

still not clear. BCI studies had the highest variability for this hyperparameter, while

clinical applications such as sleep staging already appeared more standardized with

most studies using 30 s non-overlapping windows.
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Many authors concluded their paper suggesting that having access to more data

would most likely improve the performance of their models. With large datasets

becoming public, such as the TUH Dataset [64] and the National Sleep Research

Resource [213], deeper architectures similar to the ones used in computer vision might

become increasingly usable. However, it is important to note that the availability of

data is quite di�erent across domains. In clinical fields such as sleep and epilepsy,

data usually comes from hospital databases containing years of recordings from several

patients, while other fields usually rely on data coming from lab experiments with a

limited number of subjects.

The potential of DL in EEG also lies in its ability (at least in theory) to generalize

across subjects and to enable transfer learning across tasks and domains. Although

intra-subject models still work best when only limited data is available, given the

inherent subject variability of EEG data, transfer learning might be the key to moving

past this limitation. Indeed, Page and colleagues [125] showed that with hybrid

models, one can train a neural network on a pool of subjects and then fine-tune it on

a specific subject, achieving good performances without needing as much data from a

specific subject.

While the amount of data is critical in achieving high performance on machine

learning tasks (and particularly for deep learning), the quality of the data is also

very important. In many fields of application of DL, input data usually has a high

SNR: in both CV and NLP, for instance, virtually noise-free images and natural

language excerpts are easy to obtain. EEG data, on the other hand, can accumulate

noise at many di�erent levels, which makes learning from it much harder. Most

often, once the data is recorded, the noise is impossible or very di�cult to mitigate.

With that in mind, high quality and well-maintained hardware is crucial to collecting

clean EEG data, however the capacity of the experimenter to prepare and use the

equipment properly will ultimately determine signal quality. Prepping participants to

ensure their compliance with the recording protocol is also fundamental to obtaining

185



meaningful data. Similarly, reliable recording requires well planned out experimental

design, including stimulus presentation when applicable. Furthermore, while naturally

modulated by its end purpose, the quality of the data is influenced by its diversity,

e.g., how many di�erent individuals and how di�erent they are. A balanced number

of examples in each class can also drastically improve the usefulness of a large dataset.

In brief, we believe both the quantity and the quality of the data must be taken into

account when assessing the usefulness of a dataset, which is particularly true with

electrophysiological data.

While we did report the sampling rate, we did not investigate its e�ect on perfor-

mance because no relationship stood out particularly in any of the reviewed papers.

The impact of the number of channels though, was specifically studied. For example,

in [28], the authors showed that they could achieve comparable results with a lower

number of channels. As shown in Fig. 46, a few studies used low-cost EEG devices,

typically limited to a lower number of channels. These more accessible devices might

therefore benefit from DL methods, but could also enable faster data collection on a

larger-scale, thus facilitating DL in return.

As DL-EEG is highly data-driven, it is important when publishing results to

clearly specify the amount of data used and to clarify terminology (see Table 5 for an

example). We noticed that many studies reviewed did not clearly describe the EEG

data that they used (e.g., the number of subjects, number of sessions, window length

to segment the EEG data, etc.) and therefore made it hard or impossible for the

reader to evaluate the work and compare it to others. Moreover, reporting learning

curves (i.e. performance as a function of the number of examples) would give the

reader valuable insights on the bias and variance of the model.
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4.3. EEG processing

According to our findings, the great majority of the reviewed papers preprocessed

the EEG data before feeding it to the deep neural network or extracting features.

Despite observing this trend, we also noticed that recent studies outperformed their

respective baseline(s) using completely raw EEG data. Almogbel et al. [7] used

raw EEG data to classify cognitive workload in vehicle drivers, and their best model

achieved a classification accuracy approximately 4% better than their benchmarks

which employed preprocessing on the EEG data. Similarly, Aznan et al. [11] out-

performed the baselines by a 4% margin on SSVEP decoding using no preprocessing.

Thus, the answer to whether it is necessary to preprocess EEG data when using DNNs

remains elusive.

As most of the works considered did not use, or explicitly mention using, artifact

removal methods, it appears that this EEG processing pipeline step is in general

not required. However, one should observe that in specific cases such as tasks that

inherently elicit quick eye movements (MATB-II [31]), artifact handling might still be

crucial to obtaining desired performance.

One important aspect we focused on is whether it is necessary to use EEG features

as inputs to DNNs. After analyzing the type of input used by each paper, we observed

that there was no clear preference for using features or raw EEG time-series as input.

We noticed though that most of the papers using CNNs used raw EEG as input.

With CNNs becoming increasingly popular, one can conclude that there is a trend

towards using raw EEG instead of hand-engineered features. This is not surprising,

as we observed that one of the main motivations mentioned for using DNNs on EEG

processing is to automatically learn features. Furthermore, frequency-based features,

which are widely used as hand-crafted features in EEG [103], are very similar to

the temporal filters learned by a CNN. Indeed, these features are often extracted

using Fourier filters which apply a convolutive operation. This is also the case for
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the temporal filters learned by a CNN although in the case of CNNs the filters are

learned.

From our analysis, we also aimed to identify which input type should be used

when trying to solve a problem from scratch. While the answer depends on many

factors such as the domain of application, we observed that in some cases raw EEG as

input consistently outperformed baselines based using classically extracted features.

For example, for seizure classification, recently proposed models using raw EEG data

as input [63, 183, 122] achieved better performances than classical baseline methods,

such as SVMs with frequency-domain features. For this particular task, we believe

following the current trend of using raw EEG data is the best way to start exploring

a new approach.

4.4. Deep learning methodology

Another major topic this review aimed at covering is the DL methodology itself.

Our analysis focused on architecture trends and training decisions, as well as on model

selection techniques.

4.4.1. Architecture. Given the inherent temporal structure of EEG, we expected

RNNs would be more widely employed than models that do not explicitly take

time dependencies into account. However, almost half of the selected papers used

CNNs. This observation is in line with recent discussions and findings regarding the

e�ectiveness of CNNs for processing time series [12]. We also noticed that the use

of energy-based models such as RBMs has been decreasing, whereas on the other

hand, popular architectures in the computer vision community such as GANs have

started to be applied to EEG data as well. As suggested by a Kruskal-Wallis test

(p = 0.043), the choice of architecture seems to have had an impact on the reported

accuracy improvement over traditional baselines: in the reviewed papers, CNNs and

DBNs generally led to higher improvements, while AE-based models led to the lowest
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improvements. Although this might reflect an actual advantage of convolutional

architectures or of DBN-based unsupervised pretraining over vanilla recurrent or fully

connected architectures, the considerable variability in the experiments reported in the

reviewed papers makes it impossible to draw any conclusion yet. Instead, we believe

focused studies will be necessary to evaluate the impact of architectural choices on

performance on a domain-by-domain basis.

Moreover, regarding architecture depth, most of the papers used fewer than five

layers. When comparing this number with popular object recognition models such

as VGG and ResNet for the ImageNet challenge comprising 19 and 34 layers respec-

tively, we conclude that for EEG data, shallower networks are currently necessary.

Schirrmeister et al. [175] specifically focused on this aspect, comparing the perfor-

mance of architectures with di�erent depths and structures, such as fully convolutional

layers and residual blocks, on di�erent tasks. Their results showed that in most

cases, shallower fully convolutional models outperformed their deeper counterpart and

architectures with residual connections. However, the authors later found the weight

initialization to be critical in successfully training deeper architectures such as ResNet

on an intracranial task [188], suggesting hyperparameter tuning might be key to using

deeper architectures on neurophysiological data (personal communication, April 17,

2019).

4.4.2. Training and optimization. Although crucial to achieving good results when

using neural networks, only 20% of the papers employed some hyperparameter search

strategy. Even fewer studies provided detailed information about the method used.

Amongst these, Stober et al. [162] described their hyperparameter selection method

and cited its corresponding implementation; in addition, the available budget in

number of iterations per searching trial as well as the cross-validation split were

mentioned in the paper.
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4.4.3. Model inspection. Inspecting trained DL models is important, as DNNs are

notoriously seen as black boxes, when compared to more traditional methods. Indeed,

straightforward model inspection techniques such as visualizing the weights of a linear

classifier are not applicable to deep neural networks; their decisions are thus much

harder to understand. This is problematic in clinical settings for instance, where

understanding and explaining the choice made by a classification model might be

critical to making informed clinical choices. Neuroscientists might also be interested

by what drives a model’s decisions and use that information to shape hypotheses

about brain function.

Although it can manifest with any machine model based on elaborate EEG features,

the problem of identifying whether or not informative patterns stem from brain or

artifactual activity is exacerbated by DL. Especially when considering end-to-end

models trained on raw data (which is the case of almost half of the studies included

in this review), any pattern correlated with the target of the learning task might

end up being used by a model to drive decisions. When no artifact handling is done

(at least 46% of the studies), it then becomes likely that artifactual components,

which are typically much stronger in amplitude than actual EEG sources, are being

used somehow by a DL model. In many applications where the unique concern is

classification performance (e.g., BCI, sleep staging, seizure detection) and for subjects

for whom artifacts are robust covariates of the measured condition, this might not be

problematic. However, if the end goal requires the system to solely rely on brain activity

(e.g., BCIs for locked-in individuals who can’t rely on residual muscle activity or in

neuroscience-specific investigations), it is necessary to implement artifact handling

procedures and, as far as possible, inspect the models trained. Since artifactual

signatures are usually well-characterized, it should be possible to use methods like

those mentioned in Table 7 to assess whether brain activity or artifacts drive decisions

in a DL model.
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About 27% of the reviewed papers looked at interpreting their models. Interesting

work on the topic, specifically tailored to EEG, was reviewed in [148, 68, 45].

Sustained e�orts aimed at inspecting models and understanding the patterns they

rely on to reach decisions are necessary to broaden the use of DL for EEG processing.

4.5. Reported results

Our meta-analysis focused on how studies compared classification accuracy between

their models and traditional EEG processing pipelines on the same data. Although a

great majority of studies reported improvements over traditional pipelines, this result

has to be taken with a grain of salt. First, the di�erence in accuracy does not tell

the whole story, as an improvement of 10%, for example, is typically more di�cult

to achieve from 80 to 90% than from 40 to 50%. More importantly though, very few

articles reported negative improvements, which could be explained by a publication

bias towards positive results.

The reported baseline comparisons were highly variable: some used simple models

(e.g., combining straightforward spectral features and linear classifiers), others used

more sophisticated pipelines (including multiple features and non-linear approaches),

while a few reimplemented or cited state-of-the-art models that were published on the

same dataset and/or task. Often, the description of baseline models is also too succinct

to e�ectively assess whether the baselines are optimal for a given task: for instance,

the performance on the training set can be used to assess whether the baseline models

are in the overfitting or underfitting regime. Since the observed improvement will

likely be higher when comparing to simple baselines than to state-of-the-art results,

the values that we report might be biased positively. For instance, only two studies

used Riemannian geometry-based processing pipelines as baseline models [11, 87],

although these methods have set a new state-of-the-art in multiple EEG classification

tasks [103].
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Moreover, many di�erent tasks and thus datasets were used. These datasets

are often private, meaning there is very limited or no previous literature reporting

results on them. On top of this, the lack of reproducibility standards can lead to low

accountability: study results are not expected to be replicated and can be inflated by

non-standard practices such as omitting cross-validation.

Notwithstanding the limits of the improvement in accuracy as a performance

metric (as described above), we ran a series of non-parametric statistical tests to assess

whether any of the collected data items seem to covary with accuracy improvement.

We used Mann-Whitney rank-sum tests for binary data items, Kruskal-Wallis analysis

of variance for data items with more than two possible values, and Spearman’s rank

correlation for numerical data items, and considered their p-value. All p-values were

found to be above a significance level of 0.05, except for the data item “Architecture”.

This result was discussed in Section 4.4.1 above. As for the other data items, the

inconclusiveness of the statistical tests most likely stem from highly variable and

imprecise baseline comparisons across studies. Therefore, the impact of each of these

data items remains better described by well-controlled domain-specific (and even

dataset-specific) studies which might not be generalizable across domains. We tried

to highlight studies that reported such interesting comparisons in both the Results

and Discussion sections of this review.

Di�erent approaches have been taken to solve the problem of heterogeneity of result

reporting and benchmarking in the field of machine learning. For instance, OpenML

[186] is an online platform that facilitates the sharing and running of experiments,

as well as the benchmarking of models. As of November 2018, the platform already

contained one EEG dataset and multiple submissions. The MOABB [78], a solution

tailored to the field of brain-computer interfacing, is a software framework for ensuring

the reproducibility of BCI experiments and providing public benchmarks for many

BCI datasets. In [73], a similar approach, but for DL specifically, is proposed.
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Additionally, a few EEG/MEG/ECoG classification online competitions have

been organized in the last years, for instance the Physionet challenge [44] or various

competitions on the Kaggle platform (see Table 1 of [32]). These competitions

informally act as benchmarks: they provide a standardized dataset with training

and test splits, as well as a leaderboard listing the performance achieved by every

competitor. These platforms can then be used to evaluate the state-of-the-art as they

provide a publicly available comparison point for new proposed architectures. For

instance, the IEEE NER 2015 Conference competition on error potential decoding

could have been used as a benchmark for the studies reviewed that focused on this

topic. Generally speaking, rigorous studies of the impact of di�erent methodologies

on specific datasets will be necessary to set up clear benchmarks that can be built

upon (e.g., [137] for the TUH Seizure corpus).

Making use of these tools, or extending them to other EEG-specific tasks, appears

to be one of the greatest challenges for the field of DL-EEG at the moment, and might

be the key to more e�cient and productive development of practical EEG applications.

Whenever possible, authors should make sure to provide as much information as

possible on the baseline models they have used, and explain how to replicate their

results (see Section 4.6).

4.6. Reproducibility

The significant use of public EEG datasets across the reviewed studies suggests

that open data has greatly contributed to recent developments in DL-EEG. On the

other hand, 42% of studies used data not publicly available - notably in domains such

as cognitive monitoring. To move the field forward, it is thus important to create

new benchmark datasets and share internal recordings. Moreover, the great majority

of papers did not make their code available. Many papers reviewed are thus more

di�cult to reproduce: the data is not available, the code has not been shared, and the

193



baseline models that were used to compare the performances of the models are either

non-existent or not available.

Recent initiatives to promote best practices in data and code sharing would benefit

the field of DL-EEG. FAIR neuroscience [193] and the Brain Imaging Data Structure

(BIDS) [55] both provide guidelines and standards on how to acquire, organize and

share data and code. BIDS extensions specific to EEG [131] and MEG [114] were also

recently proposed. Moreover, open source software toolboxes are available to perform

DL experiments on EEG. For example, the recent toolbox developed by Schirrmeister

and colleagues, called BrainDecode [148], enables faster and easier development cycles

by providing the basic functionality required for DL-EEG analysis while o�ering

high level and easy to use functions to the user. The use of common software tools

could facilitate reproducibility in the community. Beyond reproducibility, we believe

simplifying access to data, making domain knowledge accessible and sharing code will

enable more people to jump into the field of DL-EEG and contribute, transforming

what has traditionally been a domain-specific problem into a more general problem

that can be tackled with machine learning and DL methods.

To move forward in that direction, we are planning a follow-up to this literature

review in the form of an online public portal listing in greater detail results of published

research on multiple openly available datasets. We believe such a portal will be critical

in the advancement of the DL-EEG literature.

4.7. Recommendations

To improve the quality and reproducibility of the work in the field of DL-EEG, we

propose six guidelines in Table 9. Moreover, Appendix 5 presents a checklist of items

that are critical to ensuring reproducibility and should be included in future studies.
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A similar checklist, but specifically targeting machine learning publications, has also

recently been proposed.9

Table 9. Recommendations for future DL-EEG studies. See Appendix 5 for a detailed

list of items to include.

Recommendation Description

1 Clearly describe the archi-

tecture.

Provide a table or figure clearly describing your

model (e.g., see [28, 51, 148]).

2 Clearly describe the data

used.

Make sure the number of subjects, the number of

examples, the data augmentation scheme, etc. are

clearly described. Use unambiguous terminology or

define the terms used (for an example, see Table 5).

3 Use existing datasets. Whenever possible, compare model performance

on public datasets.

4 Include state-of-the-art

baselines.

If focusing on a research question that has already

been studied with traditional machine learning,

clarify the improvements brought by using DL.

5 Share internal recordings. Whenever possible.

6 Share reproducible code. Share code (including hyperparameter choices and

model weights) that can easily be run on another

computer, and potentially reused on new data.

4.7.1. Supplementary material. Along with the current paper, we make our data

items table and related code available online at http://dl-eeg.com. We encourage

interested readers to consult it in order to dive deeper into data items that are of

specific interest to them - it should be straightforward to reproduce and extend the

results and figures presented in this review using the code provided. The data item

9https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
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table is intended to be updated frequently with new articles, therefore results will be

brought up to date periodically.

Authors of DL-EEG papers not included in the review are invited to submit a

summary of their article following the format of our data items table to our online

code repository. We also invite authors whose papers are already included in the

review to verify the accuracy of our summary. Eventually, we would like to indicate

which studies have been submitted or verified by the original authors.

By updating the data items table regularly and inviting researchers in the commu-

nity to contribute, we hope to keep the supplementary material of the review relevant

and up-to-date as long as possible.

4.8. Limitations

In this section, we quickly highlight some limitations of the present work. First,

although the search methodology used to identify relevant studies is well-founded, it

undeniably did not capture all of the existing literature on the topic. Therefore, we

have abstained from drawing absolute conclusions on the di�erent data items, and

instead focused on highlighting trends. As described in Section 2, our search terms

were not biased toward any type of architecture, and so we are confident the results

we present in this review are sound.

Second, our decision to include preprints from arXiv and bioRxiv in the database

search requires some justification. It is important to note that preprints are not peer-

reviewed. Therefore, some of the studies we selected might not be of the same quality

and scientific rigor as the ones coming from peer-reviewed journals or conferences.

For this reason, whenever a preprint was followed by a publication in a peer-reviewed

venue, we focused our analysis on the peer-reviewed version. Nonetheless, we did

not find significant di�erences between the preprints and the peer-reviewed studies in

terms of reported improvement in accuracy. ArXiv has been largely adopted by the
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DL community as a means to quickly disseminate results and encourage fast research

iteration cycles. Since the field of DL-EEG is still young and a limited number of

publications was available at the time of writing, we decided to include all the papers

we could find, knowing that some of the newer trends would be mostly visible in

repositories such as arXiv. Our goal with this review was to provide a transparent

and objective analysis of the trends in DL-EEG. By including preprints, we feel we

provided a better view of the current state-of-the-art, and are also in a better position

to give recommendations on how to share results of DL-EEG studies moving forward.

Third, in order to keep this review reasonable in length, we decided to focus our

analysis on the points that we judged most interesting and valuable. As a result,

various factors that impact the performance of DL-EEG were not covered in the review.

For example, we did not cover weight initialization: in [51], the authors compared 10

di�erent initialization methods and showed an impact on the specificity metric, with

ranged from 85.1% to 96.9%. Similarly, multiple data items were collected during the

review process, but were not included in the analysis. These items, which include data

normalization procedures, software toolboxes, hyperparameter values, loss functions,

training hardware, training time, etc., remain available online for the interested reader.

We are confident other reviews or research articles will be able to focus on more

specific elements.

Finally, as any literature review in a field that is quickly evolving, the relevance of

our analysis decays with time as new articles are being published and new trends are

established. Since our last database search, we have already identified other articles

that should eventually be added to the analysis. Again, making this work a living

review by providing the data and code online will hopefully ensure the review will be

of value and remain relevant for years to come.
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5. Conclusion
The usefulness of EEG as a functional neuroimaging tool is unequivocal: clinical

diagnosis of sleep disorders and epilepsy, monitoring of cognitive and a�ective states,

as well as brain-computer interfacing all rely heavily on the analysis of EEG. However,

various challenges remain to be solved. For instance, time-consuming tasks currently

carried out by human experts, such as sleep staging, could be automated to increase the

availability and flexibility of EEG-based diagnosis. Additionally, better generalization

performance between subjects will be necessary to truly make BCIs useful. DL has

been proposed as a potential candidate to tackle these challenges. Consequently,

the number of publications applying DL to EEG processing has seen an exponential

increase over the last few years, clearly reflecting a growing interest in the community

in these kinds of techniques.

In this review, we highlighted current trends in the field of DL-EEG by analyzing

154 studies published between January 2010 and July 2018 applying DL to EEG data.

We focused on several key aspects of the studies, including their origin, rationale, the

data they used, their EEG processing methodology, DL methodology, reported results

and level of reproducibility.

Among the major trends that emerged from our analysis, we found that 1) DL

was mainly used for classifying EEG in domains such as brain-computer interfacing,

sleep, epilepsy, cognitive and a�ective monitoring, 2) the quantity of data used varied

a lot, with datasets ranging from 1 to over 16,000 subjects (mean = 223; median =

13), producing 62 up to 9,750,000 examples (mean = 251,532; median = 14,000) and

from two to 4,800,000 minutes of EEG recording (mean = 62,602; median = 360), 3)

various architectures have been used successfully on EEG data, with CNNs, followed

by RNNs and AEs, being most often used, 4) there is a clear growing interest towards

using raw EEG as input as opposed to handcrafted features, 5) almost all studies

reported a small improvement from using DL when compared to other baselines and
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benchmarks (median = 5.4%), and 6) while several studies used publicly available

data, only a handful shared their code - the great majority of studies reviewed thus

cannot easily be reproduced.

This review also shows that more targeted work needs to be done around the

amount of data required to fully exploit the potential advantages of DL in EEG

processing. Such work could explore the relationship between performance and the

amount of data, the relationship between performance and data augmentation and the

relationship between performance, the amount of data and the depth of the network.

Moreover, given the high variability in how results were reported, we made six

recommendations to ensure reproducibility and fair comparison of results: 1) clearly

describe the architecture, 2) clearly describe the data used, 3) use existing datasets,

whenever possible, 4) include state-of-the-art baselines, ideally using the original

authors’ code, 5) share internal recordings, whenever possible, and 6) share code, as

it is the best way to allow others to pick up where your work leaves o�. We also

provided a checklist (see Appendix 5) to help authors of DL-EEG studies make sure

all the relevant information is available in their publications to allow straightforward

reproduction.

Finally, to help the DL-EEG community maintain an up-to-date list of published

work, we made our data items table open and available online. The code to reproduce

the statistics and figures of this review as well as the full summaries of the papers are

also available at http://dl-eeg.com.

The current general interest in artificial intelligence and DL has greatly benefited

various fields of science and technology. Advancements in other field of application

will most likely benefit the neuroscience and neuroimaging communities in the near

future, and enable more pervasive and powerful applications based on EEG processing.

We hope this review will constitute a good entry point for EEG researchers interested

in applying DL to their data, as well as a good summary of the current state of

the field for DL researchers looking to apply their knowledge to new types of data.
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A planned follow-up to this review will be an online portal providing clear and

reproducible benchmarks for deep learning-based analysis of EEG data, accessible at

http://dl-eeg.com.
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List of acronyms
AE autoencoder.

BCI brain-computer interface.

CCA canonical correlation analysis.

CNN convolutional neural network.

CV computer vision.

DBN deep belief network.

DL deep learning.

DNN deep neural network.

ECoG electrocorticography.

EEG electroencephalography.

EMG electromyography.

EOG electroculography.

ERP event-related potential.

FC fully-connected.

GAN generative adversarial network.

ICA independent component analysis.

LSTM long short-term memory.

MEG magnetoencephalography.

NLP natural language processing.

PCA principal component analysis.

PSD power spectral density.

RBM restricted Boltzmann machine.

RNN recurrent neural network.

ROC AUC area under the receiver operating curve.

RSVP rapid serial visual presentation.

SDAE stacked denoising autoencoder.

SGD stochastic gradient descent.

SNR signal-to-noise ratio.

STFT short-time Fourier transform.

SVM support vector machine.

wICA wavelet-enhanced independent component analysis.
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Checklist of items to include in a DL-EEG study
This section contains a checklist of items we believe DL-EEG papers should mention to ensure

their published results are readily reproducible. The following information should all be clearly stated

at one point or another in the text or supplementary materials of future DL-EEG studies:

Data.

⇤ Number of subjects (and relevant demographic data)

⇤ Electrode montage including reference(s) (number of channels and their locations)

⇤ Shape of one example (e.g., “256 samples ◊ 16 channels”)

⇤ Data augmentation technique (e.g., percentage of overlap for sliding windows)

⇤ Number of examples in training, validation and test sets

EEG processing.

⇤ Temporal filtering, if any

⇤ Spatial filtering, if any

⇤ Artifact handling techniques, if any

⇤ Resampling, if any

Neural network architecture.

⇤ Architecture type

⇤ Number of layers (consider including a diagram or table to represent the architecture)

⇤ Number of learnable parameters

Training hyperparameters.

⇤ Parameter initialization

⇤ Loss function

⇤ Batch size

⇤ Number of epochs

⇤ Stopping criterion

⇤ Regularization (e.g., dropout, weight decay, etc.)

⇤ Optimization algorithm (e.g., stochastic gradient descent, Adam, RMSProp, etc.)

⇤ Learning rate schedule and optimizer parameters

⇤ Values of all hyperparameters (including random seed) for the results that are presented in

the paper
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⇤ Hyperparameter search method

Performance and model comparison.

⇤ Performance metrics (e.g., f1-score, accuracy, etc.)

⇤ Type of validation scheme (intra- vs. inter-subject, leave-one-subject-out, k-fold cross-

validation, etc.)

⇤ Description of baseline models (thorough description or reference to published work)
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Résumé. Les tâches de suivi d’objets multiples (MOT en anglais) ont été utilisé

abondamment en psychophysique et plus récemment pour l’entrainement cognitif.

Ici, nous explorons le potentiel de fermer la boucle en créant un interface cerveau-

machine de type passif. Nous avons utilisé les données EEG d’une étude précédente

pour tenter de classifier si l’activité cérébrale a lieu durant la phase de suivi ou de

rappel. Nous avons aussi tenté de classifier les essais latéralisés où les cibles sont

présentées soit à gauche ou à droite. Pour la classification de la phase, nous avons

obtenus 80% avec un entraînement à travers tous les sujets confondus en utilisant les

électrodes frontales et les bandes de fréquence delta et thêta. Pour la classification

du côté, nous avons obtenu une moyenne de 68% en entraînant un model di�érent

par sujet, en utilisant la hauteur moyenne du signal.

Mots clés : Suivi d’objets multiples, MOT, EEG, ICM

Abstract. Multiple Object Tracking (MOT) tasks have been used extensively

in psychophysics and more recently in the context of cognitive training. Here, we

explore the potential for closing the loop and creating a passive BCI with a 3D-MOT

task. We used the EEG data from our previous study on a 3D-MOT Task to classify

EEG activity to predict if such activity was happening during the tracking or the

recall phase of the 3D-MOT task. We also trained a classifier for lateralized trials to

predict if the targets were presented on the left or right hemifield using EEG brain

activity. For the phase classification between tracking and recall, we obtained 80%

accuracy when training a SVM across subjects using the theta and delta frequency

band power from the frontal electrodes and 83% accuracy when training within

subjects. For the side classification we obtained an average accuracy of 68% when

training within subjects in the time domain using the mean amplitude.

Keywords: MOT, EEG, BCI

1. Introduction
Multiple Object Tracking (MOT) is a paradigm that has been heavily studied

both in human cognition and computer vision. In psychophysics, researchers often

use a variant of the multiple-object tracking (MOT) task developed by Pylyshyn &
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Storm in 1988 ([6]). The task is simple and usually consists of a few targets the

participant has the track among distractors. The shape, the color, the number of

targets and distractors, the pathing of the moving objects, the speed and the length

of the trial are all parameters researchers modulate to generate a MOT task that

allows them to address their research question. While the task itself is rather simple,

it engages complex neural mechanisms and systems, which also makes the task a

great candidate for cognitive training ([1]). Our ability to track multiple objects

in a dynamic environment enables us to perform everyday tasks such as driving,

playing team sports, and walking in a shopping mall. While MOT tasks have been

used extensively in research and even commercially as a cognitive training tool, our

understanding of the underlying roles and relationship between attention and working

memory remains vague. Here, we hypothesize that it is possible to use machine

learning to classify brain activity via electroencephalography (EEG) to distinguish

at least two di�erent phases of a 3D-MOT task as well as the hemifield in which the

targets are presented. Our previous research ([8]) showed very di�erent brain activity

patterns during tracking than during the recall phase of the task. The tracking phase

seems to rely way more on attention mechanisms while the recall phase relies more on

working memory processes. Given these previous results, we believe that a passive

brain-computer interface could be developed to enhance the experience of a 3D-MOT

task.

The field of brain-computer interface (BCI) has come a long way since it’s inception

in the 1970s ([9, 10]). While the promise of brain-computer interfaces is still to

give back some sort of communication and control to those su�ering from severe

neuromuscular disorders, such as amyotrophic lateral sclerosis, brainstem stroke, and

spinal cord injury, as described in Jonathan Wolpaw’s famous paper in the early

2000s ([11]), the field has now extended to various other use cases such as gaming,

neuromarketing, smart appliances, and robotics, just to name a few ([4]). In his

2011 paper, Thorsten Zander ([12]) claimed that passive BCIs will be the first ones
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to become pervasive. Being able to passively monitor brain activity and feed such

information back into the task to o�er a seamless experience between our brain and

the digital world will open a new world of opportunities. In domains such as education

and cognitive training, this closed-loop system could lead to new paradigms allowing

to modulate the task in real time to maximize both the engagement and the learning

experience.

2. Methods
Here we used the data from our previous study on a 3D-MOT Task ([8]). The full

description of the task, the participants and the recording protocol is available in the

original paper, here we will only provide a high-level overview of the dataset.

2.1. Task and Participants

NeuroTrackerTM is a commercially available 3D-MOT task currently used by a

multitude of users in many countries around the world as a perceptual-cognitive

training and assessment tool. Here, we used a modified laboratory version of the

NeuroTrackerTM. Figure 56 shows the five di�erent phases of the 3D-MOT task

developed with the Unity engine. (A) presentation phase where 8 yellow spheres are

shown in a 3D volume space for 2 seconds, (B) indexing phase where one, two or three

spheres (targets) change colour (to red) and are highlighted (hallo) for 2 seconds, (C)

tracking (or movement) phase where the targets indexed in phase 2 return to their

original colour (yellow) and 1 second later start moving for 8 seconds crisscrossing

and bouncing o� of each other and the virtual 3D volume cube walls, (D) recall phase

where the spheres stop moving and the observer is prompted to identify the spheres

originally indexed in phase 2. Each sphere is labelled with a number between 1 to 8.

After identifying the targets, the observer is asked to provide a confidence level for

each answer (either 0%, 25%, 75% or 100% confident). And finally, (E) feedback phase
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where the correct targets are clearly identified on the screen. The whole trial takes

around 15s (2s + 2s + 9s + [1-4]s) depending on how long the participant takes to

provide the answers.

Fig. 56. 3D-MOT Task Sequence. (A) All spheres appear on screen. (B) Targets are

highlighted in red for 2 seconds. (3) All the spheres are moving for 8 seconds. (D)

Participant must identify the targets and provide a confidence level. (E) Feedback is

provided to the participant showing the correct answers.

Twenty-four participants (thirteen females) aged between 21 and 41 years of age

(M=29.3, SD=4.9) took part in this study. The experiment consisted of 4 blocks of 21

trials with 2 conditions: side and set size. The speed was kept constant. In total, 30

trials were presented in the left hemifield, 10 for each set size (1,2,3), 30 trials were

presented in the right hemifield, 10 for each set size (1,2,3), and 24 trials were not

lateralized and the targets could freely cross from left to right and vice-versa, 8 for

each set size (1,2,3). Once the targets stopped moving, a number between 1 and 8

appeared on each of the spheres and the participants had to provide their answer by

saying the number of the target(s) out loud for the instructor to enter the answers.

2.2. EEG Acquisition

The electroencephalogram (EEG), electrocardiogram (ECG), and electrooculogram

(EOG) were recorded using the Biosemi ActiveTwo system (Biosemi, Amsterdam,

Netherlands) with 71 Ag–Ag/Cl electrodes positioned at 64 standard International

10/20 System sites (EEG), left and right mastoids for o�ine EEG re-reference, 1cm

lateral to the external canthi for horizontal EOG (HEOG), left and right ribs plus
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right collarbone for ECG. The HEOG was used for eye movements to confirm that

the participant was tracking the targets with covert and not overt attention (i.e. not

moving their eyes). Electrophysiological signals were digitized at 2048Hz.

2.3. EEG Analysis

Two di�erent pipelines were made based on results from our previous study. For

the phase classification, features from a time-frequency decomposition were obtained

and for the side classification, features from the time domain using a bipolar electrode

configuration were used. All the analysis was performed in Python using MNE-Python

([2]) and scikit-learn ([5]) toolboxes. Like in the original publication, four participants

(out of the twenty-four) were removed from the analysis because of too much eye

movements during the trials or too much noise in the EEG data.

Phase classification. For the phase classification (i.e. ID vs Tracking vs

Recall), the EEG channels were first re-referenced to the left and right mastoids.

Second, independent component analysis (ICA) was used to remove eye blinks and

eye movement artifacts. Third, the EEG data was epoched in [-1, 15]s windows

where t=0s represents the stimuli/trigger of the spheres being highlighted in red.

Fourth, AutoReject ([3]) was used to automatically remove bad trials and correct bad

channels. The time-frequency decomposition was computed using Morlet wavelets

for frequencies between 1 and 50Hz with varying cycles of half the frequency. The

frequency features were then obtained by getting the log ratio of the power relative to

the baseline power. The baseline was selected as -1s to 0s prior to the targets being

colored in red (t=0.15s). Instead of using raw power, the log ratio has the advantage

of normalizing the power across participants. 1s EEG segments were used to extract

relevant features sent to the machine learning classifier. Given the low amount of

trials available, we opted for traditional machine learning approach and not novel
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deep learning models ([7]). We compared linear discriminant analysis (LDA) and

support vector machine (SVM) models.

Side classification. For the side classification (i.e. left vs right), the EEG

channels were used with a bipolar configuration, matching their opposite channels

(e.g. F3 with F4, O1 with O2, etc.) the midline channels weren’t used. No extra

preprocessing step was done. Segments of EEG were extracted from di�erent pairs of

electrodes and the mean amplitude of the segments was added to the feature matrix.

3. Results

3.1. Phase classification

Across subjects. Using 1s EEG segment from each phase we obtained an average

accuracy of 79.84% on a two-classes classification problem (Tracking vs Recall) with

a SVM model using a 10-fold cross-validation across subjects. Chance level is 50%.

Time-frequency features in the delta and theta bands provided the best results. The

1s window from tracking was taken arbitrarily between 5 to 6s and the 1s segment

from recall was taken from 11.5s to 12.5s, when recall activity is the strongest. The

time-frequency features of the two 1s segments were extracted for each trial of each

subject and concatenated into a feature matrix. Di�erent channels and combinations

of channels were tested and the best results were obtained with AFz and Fpz. The re-

sulting feature matrix was of dimension 4047 (trials) by 2 (channels) by 7 (frequencies)

by 256 (time points). The classes were balanced as there was 1 sample of each phase

for each trial. The classification (ID vs Tracking and ID vs Recall) yielded results

too close to chance level (50%) to be included here. The three-classes classification

(i.e. ID vs Tracking vs Recall) had an accuracy of 56.33% where the chance level is 33%.
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Fig. 57. Confusion Matrix. Tracking vs Recall classification.

Accuracy = TP + TN

TP + TN + FP + FN
= 79.84%

Sensitivity = TP

TP + FN
= 77.93%

Specificity = TN

FP + TN
= 82.02%

Within subjects. The same approach was used for within subjects, training a

di�erent model for each participants. The average accuracy on two-classes (tracking

vs recall) with a SVM model and a 5-fold cross-validation for each subject is 83.31%

(std: 7.64%, min: 61.57%, max: 94.62%).
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3.2. Side classification

The best results were obtained using a 200ms segment from the ID phase when the

targets are identified in red ([0.4-0.6]s) as well as a 1s EEG segment from the recall

phase ([11.5-12.5]s) and concatenating them in the feature space. We obtained an grand

average accuracy of 68.1% on a two-classes classification problem (left vs right) with a

SVM model using a 5-fold cross-validation on each subject. The best combination of

channels was: O1/2, PO3/4, FT7/8, and F5/6 in a bipolar configuration.

4. Discussion
Our results show that the implementation of a passive BCI for a 3D-MOT task

would be possible and that distinct brain activity is happening during tracking vs

during recall. In this proof of concept work, specific 1s segment of EEG data were

selected (between 5 and 6s for tracking and 11.5s to 12.5s for recall), however this is

not fully representative of what an online BCI implementation would be, since new

1s windows would be continually sampled and classified. The classes would also be

unbalanced as most of the time is spent in the tracking phase. The trained model

would have to account for such bias.

Moreover, it is worth noting that we also used the mean and median from the

time-frequency features in order to reduce the dimensionality of the feature matrix,

however we obtained better results with the raw time-frequency decomposition.

For the side classification, we can see in Table 10 that we could predict the side

with high-level of accuracy for half the subjects, however the other half obtained a

poor classification accuracy. We did not correlate the classification performance with

the actual behavioural performance.

Here we used basic machine learning models to obtain our results, yet more advance

techniques might yield better results. Single trial EEG classification is challenging
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Participant ID Accuracy (%)

F26F2 97

T25F1 83

M22F2 83

T18M1 82

F12F2 85

M8M2 78

T18F2 78

F19M1 77

W10F2 77

S20M1 73

T9F2 67

T23F1 65

T23F2 65

F12M1 65

T11F1 53

M8M1 53

S21F1 52

W17M2 52

T16F2 47

F5M1 32

Avg 68.17

Min 32.00

Max 96.67

std 15.66

Table 10. Side classification accuracy of the SVM model for each subject using 5-fold

cross-validation.
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given the inherent poor signal-to-noise ratio (SNR) of the EEG signal. However,

achieving 80% accuracy across subjects shows good potential for further investigation.

Finally, this work shows that it is possible to di�erentiate between the tracking

and recall phases of a 3D-MOT task with a high level of accuracy from brain activity

alone and to di�erentiate between lateralized trials where targets are presented either

in the left hemifield or the right hemifield, and that across di�erent subjects, even

with new subjects the system hasn’t trained on.

Both the code and the EEG data are available on github:

github.com/royyannick/3DMOT_BCI

5. Funding
This work was supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC-RDC) (reference number: RDPJ 514052-17) and an

NSERC Discovery fund.

References
[1] Jocelyn Faubert and Lee Sidebottom. Perceptual-cognitive training of athletes. Journal of

Clinical Sport Psychology, 6(1):85–102, 2012.

[2] Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier,

Christian Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri Parkkonen, and Matti S.

Hämäläinen. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience,

7(267):1–13, 2013.

[3] Mainak Jas, Denis A Engemann, Yousra Bekhti, Federico Raimondo, and Alexandre Gramfort.

Autoreject: Automated artifact rejection for meg and eeg data. NeuroImage, 159:417–429, 2017.

[4] Aleksandra Kawala-Sterniuk, Natalia Browarska, Amir Al-Bakri, Mariusz Pelc, Jaroslaw Zygar-

licki, Michaela Sidikova, Radek Martinek, and Edward Jacek Gorzelanczyk. Summary of over

fifty years with brain-computer interfaces—a review. Brain Sciences, 11(1):43, 2021.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

235



M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[6] Zenon W Pylyshyn and Ron W Storm. Tracking multiple independent targets: Evidence for a

parallel tracking mechanism. Spatial vision, 3(3):179–197, 1988.

[7] Yannick Roy, Hubert Banville, Isabela Albuquerque, Alexandre Gramfort, Tiago H Falk, and

Jocelyn Faubert. Deep learning-based electroencephalography analysis: a systematic review.

Journal of neural engineering, 16(5):051001, 2019.

[8] Yannick Roy and Jocelyn Faubert. Significant changes in eeg neural oscillations during di�erent

phases of three-dimensional multiple object tracking task (3d-mot). arXiv preprint, 2022.

[9] Jacques J Vidal. Toward direct brain-computer communication. Annual review of Biophysics

and Bioengineering, 2(1):157–180, 1973.

[10] Jacques J Vidal. Real-time detection of brain events in eeg. Proceedings of the IEEE, 65(5):633–

641, 1977.

[11] Jonathan R Wolpaw, Niels Birbaumer, Dennis J McFarland, Gert Pfurtscheller, and Theresa M

Vaughan. Brain–computer interfaces for communication and control. Clinical neurophysiology,

113(6):767–791, 2002.

[12] Thorsten O Zander and Christian Kothe. Towards passive brain–computer interfaces: applying

brain–computer interface technology to human–machine systems in general. Journal of neural

engineering, 8(2):025005, 2011.

236



Conclusion

Over the last four chapters, we have demonstrated that (1) the CDA is a reliable

neural correlate for working memory. (2) A significant hand-o� between attention

and working memory processes happens in the brain when switching from tracking to

recall during a 3D-MOT task. (3) Deep learning has a lot of potential for the future

of the field but has yet to show a real superior added value compared to simpler and

well understood traditional approaches. (4) It is possible to distinguish between EEG

brain activity occurring during tracking vs during recall with high-level accuracy using

a basic machine learning model and low frequency spectral features.

When taken together, it shows that closing the loop in a cognitive training task is

possible and that the task could eventually be modulated in real-time based on brain

activity. Unfortunately, this work hasn’t closed the loop in a real-time BCI context,

however we will continue to work in this direction given the encouraging results we

have obtained in the di�erent studies published in this thesis.

While single trial EEG classification is the ultimate objective, it remains a very

di�cult challenge due to EEG inherent poor signal-to-noise ratio. This is one of the

reason why the most popular BCI paradigms like motor imagery and P300 speller

relies on averaging a few trials or gathering a few seconds before making a decision.

Unfortunately, not all applications and paradigms are suitable for averaging multiple

trials. In our case, to mitigate our misclassification while trying to classify in real-time

the phases of the task, the laterality of the presented targets and ultimately the



number of targets, we could for example, cumulate the decisions from the classifier

using a sliding window of EEG during the trial to become more and more confident.

Or to reverse the initial decision with accumulating evidences. Moreover, a confidence

level should be provided so that the system can use the classifier output when the

confidence level is high, and not rely on the BCI and brain input when the confidence

is low. This hybrid approach might help alleviate false positive while still providing

added value when the confidence level is high. The exact amount of trials and the time

it takes the BCI system to make a decision is not a one-size-fits-all straightforward

answer. It depends on the context and the severity of the task, for example the error

rate deemed acceptable when operating a robotic arm bringing hot co�ee near your

mouth isn’t the same as for a casual BCI controlling a smart TV. While the field

keeps evolving, BCI applications need to find a good balance between type I error,

type II error and the time it takes for the BCI to make a decision.

Given the inherent low SNR of EEG, it might never be possible to obtain a very

high-level (85%+) on all subjects and all trials. As we have demonstrated here, some

people had brain activity easier to classify, while some others had very poor classifier

performances. Perhaps having a quick profiling test to see the subject responds well or

not to the classifier prior to doing the task. For example, in a real world application,

perhaps the BCI closed-loop system could be tuned down or disable for people that

scored poorly on the profiling test and activate the BCI closed-loop feature for people

who scored higher. The previous chapters have shown that indeed the signal is there

and when averaged across several trials can be easily di�erentiated so perhaps having

more trials would allow to leverage deep learning to perform better, however, 24

participants with 82 trials each wasn’t enough to provide good performances.

While we are still unable to conclude how working memory and attention work

together and interlace in a task such as 3D-MOT, it is clear the the di�erent phases

of the task activate di�erent brain mechanisms. More work in that direction would be

required to isolate both mechanisms. The phase classification across subjects with
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80% accuracy is encouraging and shows that indeed there is a strong change in lower

frequencies, almost like an on/o� switch when transitioning from tracking to recall.

Given the interest (and citations) on our deep learning review paper and the

number of new DL-EEG papers published since 2019, it is clear that the trend to

leverage AI and deep learning for EEG isn’t fading away but only growing. In order

to continue contributing to the DL-EEG field we did put together, as we’d initially

mention in our review paper, an online portal as a resource for researchers in the

field. The DL-EEG portal is a community-driven platform that keeps track of the

scientific literature on deep learning and electroencephalography. It is both a database

of published results in DL-EEG and a tool that simplifies entering metadata from DL-

EEG studies. The main mission of the portal is to foster reproducibility in DL-EEG

research. The project was unfortunately temporarily put on hold given the lack of

funding but we certainly intend to resume working on the project shortly given the

very positive response we received for our proof of concept (available at dl-eeg.com).

239


	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	Liste des sigles et des abréviations
	Remerciements
	Introduction
	0.1. Neurotechnology becoming mainstream
	0.2. Consumer EEG & BCI
	0.3. Towards Pervasive Passive and Reactive BCIs
	0.4. Neural Correlates
	0.5. Cognitive Training
	0.6. Multiple Object Tracking (MOT)
	0.7. Machine Learning or Deep Learning?
	0.8. This Research
	References

	First Article. Is the Contralateral Delay Activity (CDA) a robust neural correlate for Visual Working Memory (VWM) tasks? A reproducibility study.
	1. Introduction
	2. Method
	2.1. Feldmann-Wüstefeld et al., 2020
	2.2. Hakim et al., 2020
	2.3. Balaban et al., 2019
	2.4. Gunseli et al., 2019
	2.5. Villena-Gonzalez et al., 2019
	2.6. Hakim et al., 2019
	2.7. Feldmann-Wüstefeld et al., 2018
	2.8. Adam et al., 2018

	3. Results
	3.1. EEG Channels
	3.2. EEG Reference(s)
	3.3. CDA Decay
	3.4. Recall
	3.5. CDA Amplitude vs Number of Items
	3.6. CDA Amplitude vs Individual Performance
	3.7. Subjects Variability

	4. Discussion
	5. Conclusion
	6. Funding
	7. Conflict of Interest
	8. Supplementary Material
	References

	Second Article. Significant changes in neural oscillations during different phases of three-dimensional multiple object tracking task (3D-MOT).
	1. Introduction
	2. Materials and Methods
	2.1. Participants
	2.2. Task
	2.3. EEG Acquisition
	2.4. EEG Analysis

	3. Results
	3.1. Time Domain
	3.2. Frequency Domain

	4. Discussion
	References
	5. Supplementary Material

	Third Article. Deep learning-based electroencephalography analysis: a systematic review
	1. Introduction
	1.1. Measuring brain activity with EEG
	1.2. Current challenges in EEG processing
	1.3. Improving EEG processing with deep learning
	1.4. Terminology used in this review
	1.5. Objectives of the review
	1.6. Organization of the review

	2. Methods
	3. Results
	3.1. Origin of the selected studies
	3.2. Domains
	3.3. Data
	3.3.1. Quantity of data
	3.3.2. Subjects
	3.3.3. Recording parameters
	3.3.4. Data augmentation

	3.4. EEG processing
	3.4.1. Preprocessing
	3.4.2. Artifact handling
	3.4.3. Features

	3.5. Deep learning methodology
	3.5.1. Architecture
	3.5.2. Training

	3.6. Inspection of trained models
	3.7. Reporting of results
	3.7.1. Type of baseline
	3.7.2. Performance metrics
	3.7.3. Validation procedure
	3.7.4. Subject handling
	3.7.5. Statistical testing
	3.7.6. Comparison of results

	3.8. Reproducibility

	4. Discussion
	4.1. Rationale
	4.2. Data
	4.3. EEG processing
	4.4. Deep learning methodology
	4.4.1. Architecture
	4.4.2. Training and optimization
	4.4.3. Model inspection

	4.5. Reported results
	4.6. Reproducibility
	4.7. Recommendations
	4.7.1. Supplementary material

	4.8. Limitations

	5. Conclusion
	Acknowledgments
	Funding
	References
	List of acronyms
	Checklist of items to include in a DL-EEG study

	Fourth Article. Passive EEG Brain-Computer Interface (BCI) for a 3D Multiple Object Tracking (3D-MOT) task.
	1. Introduction
	2. Methods
	2.1. Task and Participants
	2.2. EEG Acquisition
	2.3. EEG Analysis

	3. Results
	3.1. Phase classification
	3.2. Side classification

	4. Discussion
	5. Funding
	References

	Conclusion

