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Alice Nguyen 
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Résumé  

Introduction: L'étude des biomarqueurs a le potentiel de documenter sur les mécanismes sous-

jacents de l'étiologie du cancer du poumon. Dans cette étude, nous avons étudié l’association entre 

la méthylation de l’ADN dans les gènes F2RL3 et AHRR et le cancer du poumon.  

Méthodes: Une étude cas-témoin avec échantillonnage cumulatif a été nichée dans la cohorte 

CARTaGENE. Les cas (N=187) se composent de tous les participants diagnostiqués avec un 

cancer du poumon incident entre le début de la cohorte (2009) et 2015 et qui avaient fourni un 

échantillon de sang; les témoins (N=378) ont été échantillonnés à la fin du suivi parmi les non-

malades selon un appariement fréquentiel (2 :1) pour l'âge, le sexe et le moment du prélèvement 

sanguin. Sequenom EpiTYPER® a été utilisé pour quantifier les niveaux de méthylation dans sept 

et 33 sites CpG de F2RL3 et AHRR, respectivement. Les rapports de méthylation de l'ADN sur 

tous les sites CpG individuels et en tant que mesure moyenne ont été paramétrés à la fois comme 

variables continues et catégorielles. Une régression logistique multivariable non conditionnelle a 

été utilisée pour estimer les rapports de cotes (OR) et les intervalles de confiance (IC) à 95 % de 

l’association entre la méthylation de F2RL3 et AHRR et le cancer du poumon tout en contrôlant 

les facteurs de confusion identifiés à l'aide de graphiques acycliques dirigés. 

Résultats: Une forte association inverse entre les niveaux moyens de méthylation de l'ADN et le 

cancer du poumon a été observée pour F2RL3 (OR par écart type (SD) de changement de 

méthylation = 0,65, IC à 95 % : 0,53-0,80) et AHRR (OR par SD de changement de méthylation = 

0,66, IC à 95 % : 0,53 à 0,80). De même, les sites CpG individuels ont montré des ORs (par SD 

de changement de méthylation) allant de 0,61 à 0,70 pour six des sept sites CpG de F2RL3 et de 

0,57 à 0,79 pour 17 des 33 sites CpG de AHRR. Les sites CpG restants de F2RL3 et AHRR n'ont 
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montré aucune association avec le risque de cancer du poumon, à l'exception d'un site CpG dans 

AHRR (chr5:369774) qui avait un OR de 1,25 (IC à 95 % : 1,02-1,54). 

Conclusion : Ces résultats confirment le rôle des mécanismes épigénétiques dans l'étiologie du 

cancer du poumon. 

Mots-clés : Cancer du poumon, épigénétique, méthylation de l'ADN, répresseur du récepteur 

d’aryl hydrocarbone, facteur de coagulation II (thrombine) receptor-like 3 
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Abstract 

Background: The study of biomarkers has the potential to inform on underlying mechanisms in 

lung cancer etiology. In this study, we investigated DNA methylation in the F2RL3 and AHRR 

genes, and lung cancer risk. 

Methods: A case-control study with cumulative sampling was nested in the CARTaGENE cohort. 

Cases (N=187) consisted of all participants diagnosed with incident lung cancer from baseline to 

2015 and who had provided a blood sample; controls (N=378) were sampled at a ratio of 2:1 with 

frequency-matching by age, sex, and timing of blood sampling. Sequenom EpiTYPER® was used 

to quantify methylation levels in seven and 33 CpG sites of F2RL3 and AHRR, respectively. DNA 

methylation ratios across all individual CpG sites and as an average measure were parametrized 

both as continuous and categorical variables. Unconditional multivariable logistic regression was 

used to estimate odds ratios (ORs) and 95% confidence intervals (CI) for lung cancer associated 

with F2RL3 and AHRR methylation while controlling for confounders identified using directed 

acyclic graphs.  

Results: A strong inverse relationship between average DNA methylation levels and lung cancer 

was observed for both F2RL3 (OR per standard deviation (s.d.) in methylation change = 0.65, 95% 

CI: 0.53-0.80) and AHRR (OR per s.d. in methylation change = 0.66, 95% CI: 0.53-0.80). 

Similarly, ORs for individual CpG sites (per s.d. in methylation change) ranged from 0.61-0.70 

for six out of the seven CpG sites of F2RL3 and from 0.57-0.79 for 17 out of 33 CpG sites of 

AHRR. The methylation levels of the remaining CpG sites within F2RL3 and AHRR were not 

associated with lung cancer risk, except for one CpG site within AHRR (chr5:369774) which had 

an OR of 1.25 (95% CI: 1.02-1.54). 

Conclusion: These findings support the role of epigenetic mechanisms in lung cancer etiology. 
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Keywords: Lung cancer, epigenetics, DNA methylation, aryl-hydrocarbon receptor repressor, 

coagulation factor II (thrombin) receptor-like 3 



 V 

Table of contents 

Résumé ............................................................................................................................................. I 

Abstract ......................................................................................................................................... III 

Table of contents ............................................................................................................................ V 

List of tables ..................................................................................................................................... I 

List of figures .................................................................................................................................. II 

List of acronyms ........................................................................................................................... III 

List of abbreviations ...................................................................................................................... V 

Acknowledgements ....................................................................................................................... VI 

Chapter 1. Introduction ................................................................................................................... 1 

Chapter 2. Literature review ........................................................................................................... 3 

2.1 Burden of lung cancer ........................................................................................................... 3 

2.2 Overview of lung cancer risk factors .................................................................................... 4 

2.2.1 Tobacco smoking ........................................................................................................... 4 

2.2.2 Age ................................................................................................................................. 4 

2.2.3 Sex ................................................................................................................................. 5 

2.2.4 Fruits and vegetable consumption ................................................................................. 5 

2.2.5 Body mass index ............................................................................................................ 5 

2.2.6 Ethnicity ......................................................................................................................... 6 

2.3 The importance of secondary prevention in reducing the burden of lung cancer ................. 7 

2.4 DNA methylation as a biomarker of lung carcinogenesis .................................................... 8 

2.5 Biological mechanism underlying the methylation-lung cancer relationship ....................... 9 

2.5.1 Environmental exposure and methylation of F2RL3 and AHRR ................................. 12 



 VI 

2.6 Rationale of the study ......................................................................................................... 13 

Chapter 3. Objectives .................................................................................................................... 14 

3.1 Study objective and hypothesis ........................................................................................... 14 

Chapter 4. Methods ....................................................................................................................... 15 

4.1 Study Design ....................................................................................................................... 15 

4.2 Quantification of methylation ............................................................................................. 16 

4.3 Conceptualization and parametrization of variables ........................................................... 18 

4.3.1 DNA methylation ......................................................................................................... 18 

4.3.2 Additional covariates ................................................................................................... 19 

4.4 Statistical analysis ............................................................................................................... 22 

4.4.1 Data cleaning ............................................................................................................... 23 

4.4.2 Statistical modeling ...................................................................................................... 24 

4.5 Supplementary analysis ...................................................................................................... 24 

4.6 Ethical considerations ......................................................................................................... 25 

Chapter 5. Manuscript ................................................................................................................... 26 

Abstract ..................................................................................................................................... 27 

Introduction ............................................................................................................................... 28 

Methods ..................................................................................................................................... 29 

1. Study Design and Population ........................................................................................ 29 

2. Gene-specific DNA methylation quantification ........................................................... 30 

3. Statistical Analysis ........................................................................................................ 31 

Results ....................................................................................................................................... 33 

Discussion ................................................................................................................................. 34 



 VII 

Conclusion ................................................................................................................................ 37 

Acknowledgment ...................................................................................................................... 37 

Authors contribution ................................................................................................................. 37 

Funding ..................................................................................................................................... 37 

References ................................................................................................................................. 47 

Chapter 6. Supplementary results ................................................................................................. 50 

6.1 Computation of the principal components of F2LR3 and AHRR ....................................... 50 

6.2 Assessing the association of the principal components for F2RL3 and AHRR with lung 

cancer risk ................................................................................................................................. 50 

Chapter 7. Discussion ................................................................................................................... 56 

7.1 Summary of key findings .................................................................................................... 56 

7.2 Comparison with relevant literature .................................................................................... 57 

7.3 Potential mechanisms of the methylation of F2RL3 and AHRR in lung carcinogenesis .... 60 

7.4 Study validity: methodological strengths and limitations ................................................... 61 

7.4.1 Selection bias ............................................................................................................... 61 

7.4.2 Measurement of outcome ............................................................................................. 62 

7.4.3 Measurement of exposure ............................................................................................ 62 

7.4.4 Implication of control selection strategy ..................................................................... 64 

7.4.5 Confounding ................................................................................................................ 65 

7.4.6 Temporality .................................................................................................................. 65 

7.5 External validity .................................................................................................................. 66 

7.6 Conclusion and future directions ........................................................................................ 67 

References ..................................................................................................................................... 68 



 I 

List of tables  

 

  

Table 5.1 Baseline characteristics of study population, n(%)………………………...…37 

Table 5.2 Associations between average DNA methylation of the F2RL3 and AHRR genes 

and the risk of lung cancer…………………………………………………….38 

Table 5.3 Associations between DNA methylation of individual CpG sites within F2RL3 

and the risk of lung cancer…………………………………………………….39 

Table 5.4 Associations between DNA methylation of individual CpG sites within AHRR 

and the risk of lung cancer…………………………………………………….40 

Table 6.1 Summary of variation explained by the seven principal components of 

F2RL3………………………………………………………………………...50 

Table 6.2 Summary of variation explained by the first 10 principal components of 

AHRR…………………………………………………………………………51 

Table 6.3 Associations between DNA methylation of retained principal components of 

F2RL3 and the risk of lung cancer…………………………………………….52 

Table 6.4 Associations between DNA methylation of retained principal components of 

AHRR and the risk of lung cancer……………………………………………..53 



 II 

List of figures  

Figure 2.1 Summary of the associations found in relation to F2RL3 and AHRR 

methylation…………………………………………………………………...12 

Figure 4.1 Directed acyclic graph of the association between DNA methylation and lung 

cancer …….………………………………………………………….……….21 

Figure 5.1 Data cleaning of methylation ratios of CpG sites within F2RL3 and AHRR 

genes……………..…………………………………………………………...44 

Figure 6.1 Scree plot for the seven principal components of F2RL3…………………….50 

Figure 6.2 Scree plot for the seven principal components of AHRR  …………………...51 

  



 III 

List of acronyms  

AhR: Ah Receptor pathway 

AHR: Aryl Hydrocarbon Receptor 

AHRR: Aryl Hydrocarbon Receptor Repressor 

ARNT: Aryl Hydrocarbon Nuclear Translocator 

BH: Benjamini-Hochberg 

BMI: Body Mass Index 

CDC: Centers for Disease Control and Prevention 
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Chapter 1. Introduction    

Despite progress in lung cancer treatment, both primary and secondary prevention 

continues to be important for this disease with a high mortality rate and considerable burden on 

the patient. Although smoking is the principal risk factor, only a proportion of smokers develop 

lung cancer and approximately 10-15% of incident cases occur in never-smokers (1). A better 

understanding of risk factors and underlying causal mechanisms is thus necessary to support 

prevention initiatives. The study of intermediate endpoints or events has enormous potential with 

respect to understanding lung cancer etiology. The relationship between intermediate endpoints 

and lung cancer must thus be established in order to effectively use such markers in population 

health studies.  

Accumulating evidence supports the role of DNA methylation in cancer development; hence, 

its use as an intermediate carcinogenic event in lung cancer development shows promise (2). DNA 

methylation is an epigenetic process whereby a methyl group is transferred to a cytosine residue 

in sites where it is followed by a guanine residue, also called CpG sites (3). Global genome-wide 

methylation and specific hyper- or hypomethylation of CpG rich regions (or CpG islands) in 

promoters of particular genes are two forms of aberrant DNA methylation found in lung cancer. 

The former has been mostly associated with cancer progression, a late event in cancer development 

while the latter has been linked to early lung cancer initiation (2). The exploration of gene-specific 

methylation in relation to lung cancer could therefore be of relevance to identify potential early 

markers of lung carcinogenesis.  

In an epigenome-wide association study (EWAS) of four pooled prospective cohorts, 

hypomethylation of specific CpG sites in the smoking-related genes F2RL3 and AHRR were found 

to be strongly associated with increased lung cancer risk (4). F2RL3, or the coagulation factor II 
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receptor like 3 gene, encodes for the protease-activated receptor-4 (PAR-4) known to influence 

blood coagulation and immune response and to be involved in neoplastic diseases (5,6). AHRR 

encodes for the aryl hydrocarbon receptor repressor (AHRR) and is involved in the inflammatory 

response, apoptosis, and cell proliferation (7,8). This thesis thus, sought to determine whether 

methylation levels in additional CpG sites of these two genes are associated with lung cancer risk 

in order to inform on the role of methylation as an intermediate endpoint in lung cancer etiology.  

This thesis is organized into seven chapters. An overview of lung cancer burden and the 

current state of knowledge in relation to the role of DNA methylation in lung cancer etiology are 

introduced in Chapter 2. Chapter 3 presents this study’s objective and hypothesis. Chapter 4 

describes the methodology used in this thesis. Chapter 5 is the manuscript that will be submitted 

to the “Cancer Epidemiology, Biomarkers & Prevention” journal. Supplementary results are 

presented in Chapter 6. Summaries of our study findings and the strengths and limitations of the 

study, as well as future directions, are discussed in Chapter 7.  
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Chapter 2. Literature review  

2.1 Burden of lung cancer 

The global proportion of deaths attributed to non-communicable diseases is predicted to 

increase from 59% in 2002 to 69% by 2030 (9). Cancer is projected to account for a quarter of 

those deaths, making it the second leading cause of death after cardiovascular diseases (9). 

Furthermore, lung cancer is currently the second most common cancer in both men and women 

globally with an estimated 2.21 million incident cases in 2020 (10,11). It is also the leading cause 

of cancer death, accounting for the 18% of the global cancer-related mortality burden in 2020 (10). 

In Canada, 29,600 Canadiens are estimated to have been diagnosed with lung cancer in 2021, 

representing up to 13% of incident cancer cases (12). One in 19 Canadians are estimated to die 

from lung cancer, as lung cancer also remains the leading cause of cancer death in Canada, 

representing approximately 25% of all cancer deaths (13).  

Lung cancer incidence has been on a downward trend, closely following the decrease in 

smoking after the introduction of cessation programs globally (14). Nevertheless, the global lung 

cancer mortality rate remains dismally high (14), with more than half of lung cancer cases dying 

within one year of being diagnosed (15). This poor survival rate is largely determined by the late 

stages (stage III/IV) at which 75% of lung cancer cases are diagnosed (16). Lung cancers detected 

at an early and localized stage (stage I) have a five-year survival rate of 52% compared to 24.3% 

and 3.6% for lung cancers diagnosed at later stages where the cancer has spread to regional or 

distant parts of the body (stage II/III and IV, respectively) (15). The low survival rates along with 

the late stages at which lung cancer cases are diagnosed highlights the need for continued research 

on alternative screening methods to effectively support secondary prevention initiatives.  
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2.2 Overview of lung cancer risk factors 

While tobacco smoking is the leading risk factor for lung cancer, additional risk factors are 

implicated in lung carcinogenesis. The following sections present an overview of established lung 

cancer risk factors.  

2.2.1 Tobacco smoking  

Tobacco smoking is one of the most established risk factors for lung cancer. The World 

Health Organisation has estimated that the global smoking pattern of 5.6 trillion cigarettes smoked 

per year will be the cause of more than 8 million lung cancer deaths by 2030 (17). A pooled 

analysis of 13,169 cases and 16,010 controls from seven case-control studies in Europe and Canada 

showed that current smokers have higher odds of having lung cancer compared to never smokers 

(men: OR: 23.6, 95% CI: 20.4-27.2;  women: OR: 7.8, 95% CI: 6.8-9.0) (18). In the same study, 

it was found that the odds of lung cancer among former smokers never decreases down to those 

observed for never smokers even 35 years after smoking cessation (men: OR: 7.5, 95% CI: 6.5-

8.7; women: OR: 2.8, 95% CI: 2.4-3.3) (18). Results from an analysis within the Framingham 

cohort study showed that while lung cancer risk drops for heavy former smokers within five years 

since quitting relative to current smokers (Hazards ratio [HR]: 0.61, 95% CI: 0.40-0.93), this risk 

remains more than threefold higher than never smokers even 25 years after quitting (HR: 3.85, 

95% CI: 1.80-8.26) (19).  

2.2.2 Age 

Lung cancer is most often diagnosed in patients over 65 years old, accounting for 

approximately 69% of incident cases from 2004 to 2008 (11). In Canada, the incidence rate of lung 

cancer peaks among the population aged 75 to 84 (13).  
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2.2.3 Sex  

Several studies have shown that women are at a higher risk of lung cancer than men (1,20). 

Specifically, a review that presented new data on never-smokers from six large population-based 

cohorts has described that age-adjusted incidence rates of lung cancer for women (14.4 to 20.8 per 

100,000 person-years) were higher than men (4.8 to 13.7 per 100,000 person-years) (1). The 

disparity in lung cancer risk by sex among never-smokers has been suggested to be due to 

differences by sex in molecular (such as sex hormones and genetic factors) and environmental 

exposures (such as second-hand smoke) (21,22).   

2.2.4 Fruits and vegetable consumption  

Dietary factors are important risk factors for lung cancer. A high intake of fruits and 

vegetables has been found to be inversely associated with lung cancer risk. A meta-analysis of 13 

cohort studies and 19 case-control studies reported a pooled relative risk (RR) for lung cancer of 

0.74 (95% CI: 0.67-0.82) when comparing the highest versus lowest intake of fruits and vegetables 

(23). Stratified by study design, RRs of 0.88 (95% CI: 0.81-0.97) and 0.62 (95% CI: 0.54-0.70) 

were estimated for cohort and case-control studies, respectively, when comparing the highest 

versus lowest intake categories of vegetable intake (23). In the same study, the pooled RR of lung 

cancer for the highest category of fruit intake versus the lowest category was 0.84 (95% CI: 0.75-

0.94) and 0.77 (95% CI: 0.67-0.88) for cohort and case-control studies, respectively (23). A similar 

reduction in lung cancer risk was observed in a meta-analysis that looked at the association of fruit 

and vegetable intake and lung cancer risk among participants with different smoking statuses (24).  

2.2.5 Body mass index 

Contrary to other types of cancer, obesity has been unexpectedly observed to be inversely 

associated with lung cancer risk, and this surprising observation is often referred to as the obesity 
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paradox (25–28). After stratification by study design, a meta-analysis of 20 cohort studies and 11 

case-control studies reported an inverse association between BMI and lung cancer risk. 

Participants in the overweight (body mass index, BMI = 25-29.925 kg/m2) and obese (BMI ≥ 25 

kg/m2) categories had a lower risk for lung cancer relative to participants in the normal weight 

category (BMI = 18.5-24.9 kg/m2) for both cohorts studies (overweight: RR = 0.78, 95% CI: 0.72-

0.84; obese: RR = 0.80, 95% CI: 0.73-0.88) and case-control studies (overweight: RR = 0.68, 95% 

CI: 0.57-0.82; obese: RR = 0.56, 95% CI: 0.40-0.79) (27). An additional BMI category named as 

“excess body weight” (BMI ≥ 25 kg/m2), which combines both the overweight and obese 

categories, was considered by the same meta-analysis. Similarly to the overweight and obese 

categories, participants with a BMI considered as “excess body weight” had a lower risk for lung 

cancer relative to participant in the “normal” BMI category for both cohorts studies (RR = 0.78, 

95% CI: 0.72-0.84) and case-control studies (RR = 0.65, 95% CI: 0.52-0.81) (27). Interestingly, 

following stratification by smoking status, this relationship was found to be attenuated in non-

smokers but strengthened in current and former smokers (26–28). A prospective study that has 

looked directly at the question of whether the inverse association between BMI and lung cancer 

risk is due to residual confounding by smoking within previous studies has found no evidence to 

support that theory (28).  

2.2.6 Ethnicity  

There is growing evidence for ethnic differences in lung cancer incidence (29). In the 

United States, a report by the Centers for Disease Control and Prevention (CDC) looking at data 

from 1998 to 2006 from the Surveillance, Epidemiology, and End Results Program and from the 

CDC’s National Program of Cancer Registries revealed that Blacks have a higher lung cancer 

incidence than other ethnic groups (30). Specifically, they reported an annual incidence per 
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100,000 of 76.1 in Blacks, 69.7 in Whites, 48.4 in American Indians/Alaska Natives, 38.4 in 

Asian/Pacific Islanders, and 37.3 in Hispanics (30). While this ethnic disparity in lung cancer was 

not found to be explained by difference in genetic mutations (31), it has been suggested that this 

disparity could instead be due to differences in gene expression (32).  

2.3 The importance of secondary prevention in reducing the burden of lung cancer  

The public health concept of prevention is usually separated into three distinctive 

categories: primary, secondary, and tertiary. Primary prevention consists of measures that aim to 

prevent the onset of illness, such as vaccination and smoking cessation programs. Secondary 

prevention involves the early detection of illness to initiate early treatment and the stalling of its 

progression. Screening programs such as regularly scheduled mammography exams to detect 

breast cancer are a good example of a secondary prevention initiative. Tertiary prevention focuses 

on minimizing the effects of a disease on a person to improve their quality of life (33–35).   

Secondary prevention is of interest for lung cancer given the majority of cases are 

diagnosed at a later stage. Current screening technologies for lung cancer include chest X-ray, 

sputum cytology, and low-dose computed tomography (LDCT) scanning. A systematic review and 

meta-analysis of seven randomized controlled trials in the general adult populations has found that 

current evidence does not support the combined use of chest X-ray and sputum cytological 

screening as a small 12% risk reduction was observed which was not statistically significant (RR: 

0.88, 95%CI: 0.74-1.03) (36). One national randomized controlled trial in the US, which included 

53,454 high-risk and former smokers, has demonstrated that the annual LDCT screening group 

had a lower RR of death compared to the annual chest X-ray screening group after six years of 

follow-up (RR: 0.80, 95% CI:0.70-0.92) (37). The use of LDCT screening however also comes 

with its risks. In the same study, LDCT has been shown to have a high rate of false positives 
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(96.4%) and a rate of 18.50% of overdiagnosis, which is the diagnosis of diseases that would not 

have caused any symptoms or death if left untreated (37,38). The potential physical and mental 

harm to an individual and to society from overdiagnosis and a high false positive rate, such as cost 

and subsequent invasive testing and treatment, must be considered with the continued use of LDCT 

screening. A better understanding of the underlying mechanisms of lung cancer may inform future 

development of better screening tests.   

2.4 DNA methylation as a biomarker of lung carcinogenesis   

The study of biomarkers of intermediate endpoints to facilitate secondary prevention 

efforts is of accrued interest to further knowledge on the causal mechanism of lung cancer (39) 

and potentially aid in future screening endeavours. Cancer development and progression are 

complex processes that are dependent on multiple conditions such as genetic mutations, favorable 

tumor environment, and epigenetic changes (40). Epigenetic modifications alter gene expression 

and chromosomal stability without changing the DNA sequence and are reversible, contrary to 

genetic mutations which are permanent alterations (41). Its disruption has been observed in tandem 

with genetic changes in cancer, indicating a synergy of both genetic and epigenetic changes to 

drive the initiation and progression of cancer (42,43). It has also been hypothesized that epigenetic 

changes are amongst the earliest event in carcinogenesis via the epigenetic disruption of progenitor 

cells (44).  

One epigenetic mechanism highlighted in carcinogenesis is DNA methylation, a process 

in which a methyl group is transferred to a region of DNA where a cytosine residue is followed by 

a guanine residue, also termed CpG dinucleotide sites (3,45). Clusters of high CpG density sites 

near the promoter regions are known as CpG islands. However, regions rich in CpG sites can also 

be found all over the gene body, and not solely in the promoter region, and those that are 2 
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kilobases [unit of length of DNA]  away from the promoter region are referred to as CpG island 

shores (46). DNA methylation is essential to normal development due to its role in multiple key 

biological processes, such as gene expression and regulation, and the disruption of its normal 

pattern has been commonly observed in human diseases, notably in cancer (41,46). Aberrant DNA 

methylation is known to be involved in cancer etiology as compelling evidence supports its role in 

carcinogenesis, and not solely as an event emanating from genetic changes (2,42,44,47).  

In cancer, aberrant DNA methylation is characterized as global hypomethylation of the 

genome and gene-specific hypo- and/or hypermethylation. Global hypomethylation of the genome 

is more commonly observed in highly repetitive sequences of the DNA, also called DNA repeats. 

It promotes genomic instability and has been linked to cancer progression, a later event in cancers 

such as cervical (48), oral (49), and lung (2,50). Specific hyper- or hypo-methylation of CpG sites 

or CpG islands in or near promoters of certain genes are also types of DNA methylation alterations 

that have been observed to be involved in carcinogenesis (2). Hypermethylation in the promoter 

region of a tumor suppressor gene, which drives the silencing of its expression, is often associated 

with carcinogenesis (51). Similarly, demethylation in or near promoter regions has been linked to 

cancer through its upregulation of known oncogenes (50).  

The study of specific hyper- or hypo-methylation of certain genes, therefore, has potential 

with regard to lung carcinogenesis. Given that it is measurable in blood (39), DNA methylation is 

an attractive candidate as a biomarker to aid in secondary prevention efforts.  

2.5 Biological mechanism underlying the methylation-lung cancer relationship  

Recent studies have reported an association between aberrant methylation of the F2RL3 

and AHRR genes in relation to lung cancer risk. F2RL3, or the coagulation factor II receptor like 

3 gene, encodes for the PAR-4 protein. It is located on the human chromosome 19 and spans 3,608 
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base pairs of DNA (52). It is thought to be involved in blood coagulation, immune response, and 

neoplastic diseases (5,6). PAR-4 has also been found to be expressed in several human tissues, 

including at high levels in normal lung tissues (53). Its function has yet to be elucidated as there is 

conflicting evidence of its association with lung cancer (4,54,55). PAR-4 is found to be 

upregulated in cells going through apoptosis, and in vivo experiments have demonstrated that loss 

of PAR-4 instigates the formation of Ras-induced lung carcinoma (56,57). Similarly, a study 

looking at PAR-4 expression in resected lung adenocarcinoma from 35 patients has reported a 

decreased expression of PAR-4 compared to adjacent normal lung tissues, supporting the 

suggestion that PAR-4 acts as a tumor suppressor in lung cancer (54). However, western blotting 

and immunohistochemical analysis showed that this decrease in PAR-4 expression was more 

commonly observed amongst later clinical stages of lung cancer (III-IV) (72.1%) compared to 

earlier stages (I-II) (46.9%) (54). This later observation is in concordance with another study that 

described an expression of PAR-4 in 39 of the 60 resected stage IB non-small-cell lung cancers, 

which is considered an early stage. Further research is, thus, still needed to clearly define and 

clarify the role of PAR-4 in lung cancer.  

AHRR encodes for the AHRR protein, a known transcription factor involved in the Ah 

Receptor (AhR) pathway (8). It is located on the human chromosome 5 and spans 134,116 bps 

(58). It has been shown to be regulated through DNA methylation, where hypermethylation 

silences its transcription (8), indicating that hypomethylation of AHRR results in its 

overexpression. AHRR modulates the transcription of AhR-dependent genes by suppressing the 

activity of the aryl hydrocarbon receptor (AHR) through competition for heterodimer formation 

with the aryl hydrocarbon nuclear translocator (ARNT) (59,60). AHR is a ligand-induced 

transcription factor, which is involved in the inflammatory response, apoptosis, and cell 
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proliferation (7,8). Environmental toxicants such as dioxin and polycyclic aromatic hydrocarbons 

(PAHs), which are also recognized carcinogens found in tobacco smoke, are known ligands of 

AHR, demonstrating its role in mediating the toxicity of these xenobiotic compounds through its 

regulation of their metabolism (61). AHRR is recognized as a tumor suppressor gene given its 

inhibiting effect on AHR transcriptional activity. In other words, hypermethylation of AHRR, and 

thus, the silencing of the expression of the repressor for AHR, permits normal AHR transcriptional 

activity and metabolism of toxicants, thus preventing an accumulation of toxicants, which could 

have led to potential genetic damage favorable to cancer development.  

Previous studies have examined the relationship between the methylation levels in these 

two genes with lung cancer risk (Figure 2.1) (4,62). An EWAS of four prospective cohorts by 

Fasanelli et al. has reported inverse associations with lung cancer risk for both the CpG sites 

cg03636183 in F2RL3 (OR per s.d. in methylation change: 0.40, 95% CI: 0.31-0.56) and 

cg05575921 in AHRR (OR per s.d. in methylation change: 0.37, 95% CI: 0.31-0.54), indicating 

hypomethylation of these two genes amongst lung cancer cases as compared to controls (4). This 

is in agreement with another EWAS by Baglietto et al. which looked at five case-control studies 

nested in prospective cohorts and identified hypomethylation of cg03636183 in F2RL3 and 

cg05575921 in AHRR in lung cancer cases as compared to controls (62). However, these studies 

employed epigenome wide methylation assays, such as bead-based microarray technology, to 

quantitively interrogate the methylation levels of selected CpG sites in the genome. This 

technology inadvertently only permits these studies to focus on a few CpG sites within the two 

genes of interest. The study of DNA methylation of multiple CpG sites and their average could 

potentially further inform on lung cancer risks through a more comprehensive representation of 

regional methylation levels in both genes, and serve as a better proxy of gene expression (63).  
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Figure 2.1 Summary of the associations found in relation to F2RL3 and AHRR methylation 

2.5.1 Environmental exposure and methylation of F2RL3 and AHRR 

There is compelling evidence on the association between smoking, and F2RL3 and AHRR 

methylation as they were found to be differentially methylated in current smokers compared to 

never smokers (64,65). An EWAS of 1793 participants has found that current smokers had lower 

levels of methylation when compared to never-smokers for the CpG sites cg03636183 in F2RL3 

and cg05575921 in AHRR, with -14.74% and -24.40% in methylation difference, respectively (65). 

It was also found that the methylation level of these genes in former smokers gradually increases 

towards the level of never smokers, proportionally to time since quitting, although former smokers 

never reach the same methylation levels as those amongst never smokers (66,67).  

Other types of exposure have also been associated with lower methylation levels of the 

same CpG site in the two genes, suggesting that hypomethylation of these genes is not solely 

related to smoking. Alhamdow, et al., has reported that those occupationally exposed to PAHs (i.e. 

employed as chimney sweeps and among creosote-exposed workers) have lower DNA methylation 

levels for both F2RL3 and AHRR when compared to unexposed (68). Likewise, a lower 

methylation level of cg05575921 in AHRR was observed in non-smoking Taiwanese adults living 
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in areas with higher air pollution of fine inhalable particles (also referred to as particulate matter 

2.5) (69).  

2.6 Rationale of the study  

Previous studies on methylation levels of F2RL3 and AHRR, and lung cancer risk have 

focussed on a few CpG sites within each gene. These studies thus assumed that methylation levels 

in those few preselected sites are representative of regional methylation levels and hence, can serve 

as proxies for gene expression. Compared to looking at a single CpG site, the examination of 

multiple CpG sites could potentially provide a more complete measure of methylation. As such, 

the study of the regional methylation pattern within F2RL3 and AHRR by looking at multiple CpG 

sites is likely a better representation of their gene expression. A compelling avenue is the 

investigation of the methylation of multiple CpG sites that are not solely confined to the promoter 

region within the two genes as not only methylation in promoter region can determine gene 

expression (70–73).    
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Chapter 3. Objectives  

3.1 Study objective and hypothesis  

The objective of this thesis was to measure the associations between regional DNA 

methylation patterns within  F2RL3 and AHRR genes, and lung cancer risk 

It was hypothesized that looking at regional methylation patterns is a better representation 

than the use of a single CpG site of the association between F2RL3 and AHRR methylation, and 

lung cancer risk.  It is also hypothesized that aberrant methylation level (i.e., hypermethylation) of 

the two genes of interest is inversely associated with lung cancer risk.  
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Chapter 4. Methods 

4.1 Study Design  

A case-control study with cumulative sampling was nested in the CARTaGENE study. 

Started in 2009, CARTaGENE is the largest ongoing prospective cohort study in Quebec, Canada. 

Briefly, it is composed of men and women, aged between 40 and 69 at baseline, residing in six of 

the metropolitan areas of Quebec (Montreal, Sherbrooke, Quebec, Saguenay, Gatineau, and Trois-

Rivières) (74). Participants were selected through random stratified sampling and were aimed to 

be broadly representative of the Quebec population density from the 2006 Census and the 

provincial health insurance registry files [Régie de l’assurance maladie du Québec (RAMQ)]. 

Participants were enrolled throughout two phases of recruitment: Phase A (from August 2009 to 

October 2010) and Phase B (from December 2012 and February 2015). Information packages on 

the study were first mailed to potential participants, followed by an initial contact by telephone 

through a call center at the RAMQ to enroll them and invite them for an interview and a physical 

assessment at one of the clinical assessment sites. Whole blood samples, among other 

biospecimens, were collected at baseline for each participant during the initial interview and stored 

pending further analysis at Genome Quebec and Saguenay hospital/ECOGENE‐21 Biobank. 

Follow-up of participants was conducted via occasional web-based questionnaires and linkage to 

governmental health administrative databases, such as the RAMQ (74).   

In our case-control study with cumulative sampling, cases (N=187) included all incident 

lung cancer cases in the CARTaGENE cohort which occurred during the follow-up period of 2009-

2015 and who had provided a blood sample. They were identified via linkage with the RAMQ and 

the Québec cancer registry. Cases were defined according to the codes 1622-1625, 1682, and 1629 

from the International Classification of Diseases for Oncology, Tenth Edition (ICD-10). Controls 
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(N=378) were randomly sampled at the end of the follow-up period (2015), at a ratio of 2:1, among 

participants who did not develop lung cancer and had isolated DNA samples from blood. They 

were frequency-matched to cases by sex, age (5 years interval), and phase of blood collection 

(Phase A: 2009-2011; Phase B: 2012-2015). 

4.2 Quantification of methylation  

DNA extraction from whole blood samples was carried out by the Biobanque Génome 

Québec (Chicoutimi) and stored at -80°C. Quantification of DNA methylation of the F2RL3 and 

AHRR genes was then performed at the CHU Sainte-Justine and Genome Quebec Integrated Centre 

for Pediatric Clinical Genomic. For each participant, 1 g of isolated DNA was bisulfite converted 

using the EZ DNA Methylation-Gold kit (ZymoResearch) and stored at -80°C pending DNA 

methylation quantification. This bisulfite conversion step deaminates the unmethylated cytosine 

to uracil, allowing the detection of methylation patterns by selectively differentiating methylated 

and unmethylated cytosine (3).  

Sequenome EpiTYPER® technology was then used to quantify DNA methylation levels 

of F2RL3 and AHRR. EpiTYPER® is a validated and reproducible high-throughput mass 

spectrometry-based method to quantify DNA methylation of multiple CpG sites within genomic 

regions of 100-600 bps(75,76). In brief, bisulfited converted DNA from the regions of interest is 

amplified by PCR (polymerase chain reaction) and transcribed into a single stranded RNA product, 

which is further cleaved into specific fragments to be separated through mass spectrometry.  

The regions of interest for F2RL3 spans 4946 base pairs (GRCh37/hg19: chr19:16999071-

17004017, negative strand) and 33 599 base pairs (GRCh37/hg19: chr5:367471-401070, positive 

strand) for AHRR. Short single-stranded DNA sequences used in the initiation of DNA synthesis 

in PCR, also known as PCR primers, were designed for both F2RL3 and AHRR. The primers were 
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devised to target CpG sites based on the findings of Fasanelli et al. (4), proximity to CpG islands 

or CpG island shores, transcription factor binding sites, DNAse (an enzyme which cleaves DNA) 

hypersensitive sites (77–79), and H3K27Ac marks suggestive of the presence of an active 

regulatory domain within each gene (UCSC Genome Browser, http://genome.ucsc.edu/). 

Additional factors such as their proximity to CpG islands or CpG island shores, transcription factor 

binding sites, deoxyribonuclease hypersensitive sites, and H3K27Ac marks suggestive of the 

presence of an active regulatory domain within each gene were considered during their selection 

(UCSC Genome Browser, http://genome.ucsc.edu/). Seven and 72 CpG sites were selected within 

the regions of interest of F2RL3 and AHRR, and separated into one and six different assays, 

respectively.  

The RNA products from PCR were specifically cleaved with RNase A into fragments. 

Mass spectrometry allows differentiation of the fragments containing a methylated CpG 

dinucleotide, which are 16 Da heavier, resulting in a shift in the corresponding peaks in the mass 

spectrum. The surface area of each peak is a measure of the number of its relative fragment present 

in the assay. The methylation ratio is then calculated by dividing the surface area of the peak 

associated with methylated fragments by the surface area of its corresponding peaks representing 

all fragments, both methylated and unmethylated. A methylation ratio of 0 or 1 indicated, 

respectively, a fully unmethylated or methylated CpG site (75). For each assay, 25 ng of bisulfite-

converted DNA was used to quantify methylation ratios within CpG units, which is defined as 

either an individual CpG site or aggregates of multiple CpG sites, located within each assay. In the 

case of aggregates of multiple CpG sites, the methylation ratio was assigned to each CpG site 

constituting the unit. Reliability of the data was assessed through estimated coefficient of variation 
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(CV) between-plates (4.65%) and between-fragments (4.16%) based on two high methylated 

human DNA quality controls manufactured by EpigenDx that were included on each plate. 

 

4.3 Conceptualization and parametrization of variables 

4.3.1 DNA methylation  

In the main analysis, the methylation levels of all individual informative CpG sites in the 

F2RL3 and AHRR genes were conceptualized via two approaches: by calculating an average 

measure of methylation across all CpG sites of each gene and by looking at each CpG site, 

individually. All DNA methylation measures were parametrized both as a standardized continuous 

variable and as a categorical variable, where the quartile distribution among controls was used to 

determine the categories. As previously mentioned, DNA methylation was measured as a ratio, 

where 0 represents a fully unmethylated CpG site. Given that DNA methylation is represented at 

the ratio level, and thus has no natural metric, parametrization as a standardized continuous 

variable for DNA methylation was considered. Precisely, when looking at an OR calculated from 

an unstandardized coefficient, we can interpret it as the effect that a one-unit difference in the 

independent variable has on the dependent variable. However, if there is no unit of measurement,  

a change of one unit may not hold any meaningful interpretation. Standardization of DNA 

methylation thus allows for ease of interpretation by transforming the “unit-free” DNA 

methylation ratio into a variable measured in standard variation units (80). Furthermore, using 

DNA methylation as a standardized variable, particularly when the ratio of DNA methylation lacks 

a natural metric, guarantees that the magnitude of change in DNA methylation is sufficient to 

produce a significant effect on the dependent variable (i.e. the outcome), assuming that there is a 

relationship between the two. The core of this reasoning lies in Chebyshev's inequality theory, 
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which states that, for any distribution, at least 75% of all values (i.e. cases) are within two standard 

deviations (80). 

The decision to use a standardized continuous variable for analyzing the relationship 

between DNA methylation and lung cancer risk is based on the assumption that this relationship 

is linear. If the association is linear, it may not necessarily be appropriate to look at it categorically 

since it can lead to a loss of information and statistical power. However, if no linear trend was 

found across the categories when testing for trend, categorical measures, such as quartiles, were 

also considered. In such cases, the lowest quartile, representing the lowest methylation category, 

was chosen as the reference group.  

4.3.2 Additional covariates 

The controls in this study were frequency-matched to cases by age, sex, and phase of blood 

sampling.  The latter was done to match cases and controls on their timing of entry in the cohort 

thus removing the potential of varying lengths of storage time of biosamples on affecting DNA 

methylation measures.  Additional potential confounders were identified through a comprehensive 

literature review on predictors of DNA methylation levels and lung cancer on PubMed, Ovid, and 

Clarivate Web of Science platforms, which includes EMBASE and MEDLINE databases. 

Potential confounders were identified using directed acyclic graphs (DAG) (Figure 4.1) to 

construct minimally sufficient sets to estimate the total effect of DNA methylation on lung cancer. 

Identified and retained confounders of lung cancer included body mass index (BMI), fruit and 

vegetable consumption, ethnicity, and smoking (11,27,81,82).  

Age and sex: Age and sex were self-reported by the participants through the questionnaire. Age 

was treated as a continuous variable and sex as a dichotomous discrete variable.  

Phase of blood sampling: Phase of blood sampling was treated as a dichotomous discrete variable. 
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BMI: BMI was calculated as a ratio of weight to the square of height (kg/m2) from the self-

reported measures in the baseline questionnaire. BMI was treated as a categorical variable, where 

the categories were based on the cut points used by the National Institutes of Health (1994). 

Specifically, a BMI of less than 18.5 kg/m2 was considered “underweight”, between 18.5 and 24.9 

kg/m2 was considered “normal”, between 25.0 and 29.9 was considered “overweight” and a BMI 

of greater than 30 was considered “obese”. The “obese” category grouped the “moderately obese”, 

“severely obese” and “very severely obese” subcategories (N=103, 28, and 13, respectively) given 

the small cell size of the two latter subcategories. Similarly, the “underweight” category was 

grouped with the “normal” category due to its small size (N=3). In brief, BMI was represented as 

three categories, “normal” (N=177), “overweight” (N=200), and obese (N=144).  

Fruit and vegetable consumption: Fruits and vegetable consumption was self-reported by the 

participants through the questionnaire. It was treated as a categorical variable, with three categories 

representing the number of fruit or vegetable consumed on an average per day: 0-3, 4-6, 7 or more. 

The variable was initially categorized into seven categories in the questionnaire: none (N=6), 1 

(N=13), 2-3 (N=91), 4-6 (N=216), 7-10 (N=169), 11 or more (N=32). However, due to their small 

size, the none, 1, and 2-3 categories were grouped together and so were the 7-10 and 11 or more 

categories.  

Ethnicity: Participants were asked to self-report their ethnicity in the questionnaire by indicating 

which category they belonged to: White, Black, Arab, American-Latino/Hispanic, Filipino, South 

Asian, Occidental Asian, East Asian, Jewish, South East Asian, Aboriginal, and Others. Ethnicity 

was treated as a categorical variable with two categories, where participants who indicated that 

they were White were classified as “Caucasian”, and all the other participants who specified other 

ethnicities were classified as “Others” due to the small cell size (N=17). 
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Smoking: Smoking was conceptualized as a cumulative smoking index (CSI), which was 

developed by Hoffmann et al.(83).  It allows to consolidate the multiple metrics on smoking history 

and behavior. Information on current smoking status of all participants, and for the ones having 

smoked at least 100 cigarettes in their lifetime (i.e., age at initiation and cessation, and average 

number of cigarettes smoked per week) was collected through the questionnaire. CSI, a reliable 

mathematical and continuous measure of smoking history and behaviour, was derived for each 

participant and parameterized as a standardized continuous variable:  

CSI = (1-0.5𝑑𝑢𝑟/τ ) (0.5𝑡𝑠𝑐/τ ) ln (int + 1) 

Where dur is the duration of smoking, tsc is the time since cessation, 𝜏 is the biological 

half-life of tobacco carcinogens, and int is the average daily amount smoked in cigarettes. Never 

smokers and participants who smoked less than 100 cigarettes in their lifetime were attributed a 

CSI of 0.   
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Figure 4.1. Directed acyclic graph of the association between DNA methylation and lung cancer 

 

4.4 Statistical analysis  

All statistical analyses were conducted in R, version 4.0.3, (R Core Team, 2020) with the 

package dplyr.  

Legend 

  Exposure variable 

  Outcome variable 

   Minimum sufficient adjustment set 
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4.4.1 Data cleaning 

The cleaning of methylation data was carried out as per Ho et al. (76) and summarized in 

Figure 5.1. Methylation ratios defined as ‘unreliable’ by Sequenom EpiTYPER® were excluded 

(N=30 CpG sites for AHRR excluded). In brief, fragments overlapping in mass and fragments with 

a common or uncommon single nucleotide polymorphism(s) (SNP) present were considered 

unreliable. The former is due to the inability to associate the methylation signal to a unique CpG 

site as it shares a similar mass to another fragment. As for the latter, the presence of a SNP in the 

fragment can result in a biased PCR amplification or a bi-modal or tri-modal peak in the spectrum, 

thus affecting the reliability of those fragments. Fragments with a mass too low or too high for the 

mass spectrometer to read were also excluded (75). To ensure that only methylation ratios with 

meaningful differences were included in the calculation of average methylation measures, CpG 

sites with a s.d. lower than 0.02 were excluded (N=6 CpG sites excluded for AHRR). Missing 

methylation data were assigned the sex-specific mean methylation ratios of their respective CpG 

site. However, participants with more than 10% of missing methylation data were excluded to 

ensure that participants in the analytical sample only had a small proportion of missing values 

imputed (N=8 cases and 26 controls excluded). Similarly, CpG sites with more than 25% of 

missing participant data were also excluded (N=3 CpG sites excluded for AHRR). The remaining 

CpG sites, which were not defined as ‘unreliable’ by Sequenom EpiTYPER® criteria and had a 

s.d. ≥ 0.2 and <10% of missing data, were considered and defined as informative. A total of seven 

and 33 out of the initial seven and 72 CpG sites for F2RL3 and AHRR, respectively, were retained 

for 179 cases and 352 controls.  
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4.4.2 Statistical modeling  

Separate multivariate unconditional logistic regression models were used to estimate ORs 

and 95% CIs for lung cancer risk associated with methylation of the F2RL3 and AHRR genes. The 

minimally-adjusted model included the variables used for frequency-matching (sex, age, and phase 

of blood sampling). BMI, fruit and vegetable consumption, ethnicity, and smoking were the 

potential confounders identified through our DAG and were included in the fully-adjusted model, 

which also included the variables adjusted for in the minimally-adjusted model (Figure 1). The 

linearity across the DNA methylation quartiles was assessed via a test for trend. Specifically, the 

median value of each quartile was treated as a score. This continuous variable was then treated as 

the independent variable in the logistic models to determine P-value for trend across categories, 

where the null hypothesis indicates no linear trend across the categories (84). Measures with a P-

value for trend greater than 0.10 in the fully-adjusted model, and which upon visual inspection 

showed a linear relationship, were considered as linear and represented as standardized continuous 

measures. Otherwise, categorical representations were also used. 

The Benjamini-Hochberg (BH) adjustment was applied to account for the potential 

inflation of the type I error rate due to the multiple testing in the main analysis (i.e. testing of the 

association between lung cancer and each individual CpG sites, and for both the minimal- and 

fully-adjusted models). The BH method was preferred over the Bonferroni correction as it retains 

statistical power even when a considerable number of tests are done, a situation where the 

Bonferroni correction is known to be particularly conservative (80, 81).  

4.5 Supplementary analysis  

Principal component analysis (PCA) was an additional approach considered for the 

conceptualization of DNA methylation. This was done with the aim to better capture regional 
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methylation patterns within the two genes and facilitate interpretation, by reducing the number of 

dimensions in the dataset while minimizing information loss. Briefly, PCA is an approach that 

reduces the dimensions of the data set, while preserving as much information as possible through 

the creation of “new” independent variables, also called principal components (PCs) (87). PCs of 

each gene were obtained, for a maximum of seven and 33 PCs for F2RL3 and AHRR, respectively, 

using unsupervised PCA, a pattern derivation and data-reduction approach technique (87). The 

adequate number of PCs to retain was determined based on a combination of multiple criteria: an 

eigenvalue of ≥1, at least 65-80% of cumulative variance explained, and each PC should account 

for ≥5% of the variation. Since the data in the unsupervised PCA is standardized, in other words, 

centered and scaled, the s.d. is also the eigenvalue of the PC. These criteria ensured that the 

retained PCs explained an adequate proportion of the variation in DNA methylation of each gene, 

while also allowing to effectively reduce the number of dimensions in the data. In total, two and 

five PCs were retained out of the initial seven and 33 PCs for F2RL3 and AHRR, respectively. The 

PCs were parametrized in the same way as the two other approaches (i.e., as a standardized 

continuous variable and as a categorical variable based on the quartile distribution of controls). 

Unconditional logistic regression was used to estimate ORs and 95% CI of the retained PCs for 

lung cancer risk, for both the minimally- and fully-adjusted models.  

4.6 Ethical considerations  

This study is part of an ongoing project approved on the 27th February 2019 by the Comité 

d’éthique de la recherche (CER) of Centre hospitalier de l'Université de Montréal (CHUM) co-led 

by Dr. Vikki Ho and Dr. Anita Koushik. Access to the CARTaGENE database was granted. The 

Canadian Institute of Health Research (CIHR) supported and funded this project (FRN#162502, 

2019). 
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Abstract  

Background: The study of biomarkers has the potential to inform on underlying mechanisms in lung 

cancer etiology. In this study, we investigated DNA methylation in the F2RL3 and AHRR genes, and 

lung cancer risk. 

Methods: A case-control study with cumulative sampling was nested in the CARTaGENE cohort. Cases 

(N=187) consisted of all participants diagnosed with incident lung cancer from baseline to 2015 and who 

had provided a blood sample; controls (N=378) were sampled at a ratio of 2:1 with frequency-matching 

by age, sex, and timing of blood sampling. Sequenom EpiTYPER® was used to quantify methylation 

levels in seven and 33 CpG sites of F2RL3 and AHRR, respectively. DNA methylation ratios across all 

individual CpG sites and as an average measure were parametrized both as continuous and categorical 

variables. Unconditional multivariable logistic regression was used to estimate odds ratios (ORs) and 

95% confidence intervals (CIs) for lung cancer associated with F2RL3 and AHRR methylation while 

controlling for confounders identified using directed acyclic graphs (age, sex, timing of blood sampling, 

ethnicity, BMI, and fruits and vegetable consumption).  

Results: A strong inverse relationship between average DNA methylation levels and lung cancer was 

observed for both F2RL3 (OR per standard deviation (s.d.) in methylation change = 0.65, 95% CI: 0.53-

0.80) and AHRR (OR per s.d. in methylation change = 0.66, 95% CI: 0.53-0.80). Similarly, individual 

CpG sites showed ORs (per s.d. in methylation change) ranging from 0.61-0.70 for six out of the seven 

CpG sites of F2RL3 and from 0.57-0.79 for 17 out of 33 CpG sites of AHRR. The remaining CpG sites 

within F2RL3 and AHRR showed no association with lung cancer risk, except for one CpG site within 

AHRR (chr5:369774) which had an OR of 1.25 (95% CI: 1.02-1.54). 

Conclusion: These findings support the role of epigenetic mechanisms in lung cancer etiology. 

Keywords: Lung cancer, epigenetics, DNA methylation, aryl-hydrocarbon receptor repressor, 

coagulation factor II (thrombin) receptor-like 3 
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Introduction 

Prevention is key in the fight against lung cancer as it continues to be the leading cause of 

cancer mortality despite progress in treatment (1). Although smoking is the principal known risk 

factor for lung cancer, only a proportion of smokers develop the disease and approximately 10-

20% of incident cases occur in never-smokers (2). A better understanding of underlying 

mechanisms is, therefore, necessary to further progress in prevention initiatives. The study of 

intermediate endpoints has enormous research potential to further knowledge on the causal 

mechanism of lung cancer (3) and potentially aid in future screening endeavours.  However, their 

relation to the health outcome must be established in order to be effectively used as a biomarker 

in population health studies.  

The use of DNA methylation as an intermediate event in lung cancer etiology shows 

promise (4). DNA methylation is an epigenetic process where a methyl group is transferred to sites 

in the DNA where a cytosine residue is followed by a guanine residue, which are called CpG sites 

(5). Regions rich in CpG sites are referred to as CpG islands, and those that are 2kb away from the 

promoter region are referred to as CpG island shores (6). Global genome hypomethylation, and 

gene-specific hyper- or hypomethylation of CpG islands in promoters of particular genes are two 

forms of aberrant DNA methylation implicated in lung cancer etiology. The former has been 

mostly associated with lung cancer progression, a later event in cancer development, while the 

latter has been linked to early events in lung cancer etiology (4).  

An epigenome-wide association study (EWAS) by Fasanelli et al. of four pooled 

prospective cohort studies reported a strong association between lung cancer risk and 

hypomethylation in the CpG sites cg03636183 of the F2RL3 gene (OR per s.d. in methylation 

change = 0.40, 95% CI: 0.31-0.56) and cg05575921 of the AHRR gene (OR per s.d. in methylation 
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change = 0.37, 95% CI: 0.31-0.54) (7). These findings have also been replicated and validated in 

another EWAS (8). F2RL3, or the coagulation factor II receptor like 3 gene, encodes for the 

protease-activated receptor-4 (PAR-4) which influences blood coagulation and immune response 

and is involved in neoplastic diseases (9,10). AHRR encodes for the aryl hydrocarbon receptor 

repressor (AHRR), a recognized tumor suppressor gene involved in the inflammatory response, 

apoptosis, and cell proliferation (11,12). AHRR has also been linked to smoking as many of its 

known agonists are chemicals found in tobacco smoke, such as polycyclic aromatic carbons 

(13,14).  

The strong associations observed demonstrate the potential of gene-specific DNA 

methylation to serve as an early marker in lung cancer etiology. However, previous studies have 

only focused on one to three CpG sites within those two genes. The study of regional patterns of 

DNA methylation could have greater predictive power and further inform on the association 

between DNA methylation and lung cancer risk (15). In this study, we aimed to investigate the 

association between lung cancer and DNA methylation of the F2RL3 and AHRR genes, measured 

in seven and 33 CpG sites of each gene, respectively.  

 

Methods  

1. Study Design and Population  

A case-control study with cumulative sampling was nested in the CARTaGENE study. 

Briefly, CARTaGENE is the largest ongoing prospective cohort in Quebec, Canada (16,17) 

comprising men and women, aged between 40 and 69, recruited from six metropolitan areas of 

Quebec (Montreal, Sherbrooke, Quebec, Saguenay, Gatineau, and Trois-Rivières). At the time of 

enrollment in 2009, participants came to an assessment center for an interview, donated whole 
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blood samples, and consented to have their information linked to provincial health databases. For 

this study, cases (N=187) consisted of all incident lung cancer cases occurring during the follow-

up period of 2009-2015 identified via linkage with the Régie de l’assurance-maladie du Québec 

and Québec cancer registry and defined according to the codes 1622-1625, 1682, and 1629 from 

the International Classification of Diseases for Oncology, Tenth Edition (ICD-10). Controls 

(N=378) were randomly sampled at the end of the follow-up period (2015), at a ratio of 2:1, among 

participants who did not develop lung cancer and had isolated DNA from blood. Controls were 

frequency-matched to cases by sex, age (5 year-interval), and the phase of blood collection (Phase 

A: 2009-2011; Phase B: 2012-2015).  

2. Gene-specific DNA methylation quantification  

DNA isolation from baseline blood samples was conducted at the Biobanque Genome 

Quebec. Quantification of DNA methylation levels in the AHRR and F2RL3 genes was conducted 

at the CHU Sainte-Justine and Genome Quebec Integrated Centre for Pediatric Clinical Genomics. 

For each participant, 1 g of isolated DNA was bisulfite converted using the EZ DNA 

Methylation-Gold kit (ZymoResearch). Bisulfite conversion allows for the detection of 

methylation patterns by selectively deaminating unmethylated cytosine to uracil while leaving 

methylated cytosine unchanged.  

DNA methylation levels were quantified using the Sequenom EpiTYPER® technology, a 

validated and reproducible high-throughput mass spectrometry-based method (18,19). Primers for 

the two genes were designed from the promoter region based on the findings of Fasanelli et al. 

(14), proximity to CpG islands or CpG island shores, transcription factor binding sites, DNAse (an 

enzyme which cleaves DNA)  hypersensitive sites (20–22), and H3K27Ac marks suggestive of the 

presence of an active regulatory domain within each gene (UCSC Genome Browser, 
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http://genome.ucsc.edu/). The region of interest spans 4,946 base pairs for F2RL3 (GRCh37/hg19: 

chr19:16999071-17004017, negative strand) and 33,599 base pairs for AHRR (GRCh37/hg19: 

chr5:367471–401070, positive strand). Thirty and 63 CpG sites were analyzed within the regions 

of interest of F2RL3 and AHRR, and separated into one and six different assays, respectively. For 

each assay, 25 ng of bisulfite-converted DNA was used to quantify methylation ratios within CpG 

units (a unit consists of either an individual CpG site or aggregates of multiple CpG sites) located 

within each assay. Methylation ratios were calculated by dividing the number of methylated 

cytosine at a specific CpG site of the gene by the total number of copies of that CpG site in the 

sample. A methylation ratio of 0 or 1 indicated, respectively, a fully unmethylated or methylated 

CpG site. A methylation ratio of each CpG unit was then assigned to its corresponding individual 

CpG site or in the case of an aggregate of multiple CpG sites, to each CpG site constituting the 

unit. Two highly methylated human DNA quality controls manufactured by EpigenDx were 

included on each plate. A coefficient of variation (CV) of 4.65% and 4.16% was estimated 

between-plates and between-fragments, respectively, based on the high methylated DNA quality 

controls.   

3. Statistical Analysis 

Figure 1 illustrates the processing of the methylation data as described by Ho et al. (23). 

In brief, unreliable methylation ratios for CpG sites were identified according to Sequenom 

EpiTYPER specifications, and CpG sites with methylation ratios that had a s.d. lower than 0.02 

were excluded. The latter restriction was used to ensure that only methylation ratios with 

meaningful differences were included in the calculation of average methylation measures. Missing 

methylation data were assigned the sex-specific mean methylation ratios of their respective CpG 

site. However, participants with more than 10% of missing methylation data were excluded to 
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ensure that participants in our analytical sample only had a small proportion of missing values 

imputed. Similarly, CpG sites with more than 25% of missing methylation data were also excluded.  

A total of seven and 33 CpG sites for F2RL3 and AHRR, respectively, were retained and considered 

informative for 179 cases and 352 controls.  

Multivariate unconditional logistic regression was used to estimate odds ratios (ORs) and 

95% confidence intervals (CIs) for lung cancer risk associated with methylation of the F2RL3 and 

AHRR genes, in separate models. For each gene, we considered both the average methylation level 

across all informative CpG sites and the methylation level of individual informative CpG sites. All 

DNA methylation measures were parametrized both as a standardized continuous variable and as 

a categorical variable. The categories were determined according to the quartile distribution of the 

methylation measures among controls, where the lowest methylation category was used as the 

reference group. Linear relationships were identified by a visual evaluation of the dose-response 

pattern represented categorically as well as the assessment of linear trend across categories. P-

value for trend across categories was estimated by assigning the mid-point of each category and 

treating them as a score which was then included in the logistic models (24). CpG sites for which 

the P-trend was less than 0.10, and for which upon visual inspection showed a linear relationship 

with lung cancer risk were considered as linear and represented as standardized continuous 

measures. Otherwise, categorical representations were also shown.  

Minimally-adjusted models included the frequency-matching factors (sex, age with 5 years 

intervals, timing of blood sampling). Using a directed acyclic graph (DAG), body mass index 

(BMI), fruit and vegetable consumption, ethnicity, and smoking were identified as potential 

confounders and included in the fully-adjusted model.  To account for the potential inflation of the 
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type I error rate as a result of multiple testing in our main analysis, the Benjamini-Hochberg 

procedure was applied to control for the false discovery rate (25).  

 

Results  

In this study, the mean (s.d.) age of participants at recruitment was 58 (7) years, and they 

were mainly White (95%), and overweight (38%) (Table 1). Relative to controls (13%), cases were 

more likely to be current smokers (33%).  

Table 2 shows the estimated ORs for the association between average DNA methylation 

levels of F2RL3 and AHRR and lung cancer. Higher average DNA methylation in both genes was 

associated with a lower lung cancer risk in the fully-adjusted model (F2RL3: OR per s.d. of 

methylation change = 0.65, 95% CI: 0.53-0.80; AHRR: OR per s.d. of methylation change = 0.66, 

95% CI: 0.53-0.80), indicating that hypomethylation of these two genes was associated with 

cancer. Similar associations were also observed in the minimally-adjusted models. 

The associations found for methylation levels of individual CpG sites in the F2RL3 and 

AHRR genes and lung cancer risk are summarized in Table 3 and 4, respectively. A total of six out 

of seven CpG sites for F2RL3 (range of OR per s.d. of methylation change: 0.61-0.70) and 17 out 

of 33 CpG sites for AHRR (range of OR per s.d. of methylation change: 0.57-0.79) showed an 

inverse association with lung cancer risk in the fully-adjusted model. Null associations were found 

for one out of seven CpG sites for F2RL3 (OR per s.d. of methylation change = 1.08, 95% CI: 

0.89-1.31) and 15 out of 33 CpG sites for AHRR (range of OR per s.d. of methylation change: 

0.84-1.18). One CpG site in the AHRR gene (chr5:369774) had an OR of 1.25 (95% CI: 1.02-1.54), 

denoting hypermethylation in cancer cases relative to controls.  
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Discussion 

Epigenetics is a promising field to further research on the still elusive mechanisms 

underlying lung carcinogenesis. We believe that our study is the first to measure regional 

methylation patterns of F2RL3 and AHRR in association with lung cancer, by looking at more CpG 

sites than previous studies. Across the majority of CpG sites, methylation levels in both genes were 

inversely associated with lung cancer suggesting hypomethylation of the two genes amongst lung 

cancer cases relative to controls. These associations are in concordance with an EWAS study of 

four prospective cohorts which previously described similar inverse associations between lung 

cancer risk and the methylation levels for the CpG sites, cg03636183 (also referred to as 

chr19:17000585) within F2RL3, and cg05575921 and cg21161138 (also referred to as 

chr5:373378 and ch5:399360, respectively) within AHRR (7). The same research lab validated 

these associations for cg03636183 in F2RL3 and cg05575921 and cg23916896 in AHRR, the latter 

being an additional CpG site described in their study, in further analyses adding an additional 

cohort to the four studies included in their previous EWAS (8).  

Our results for F2RL3 methylation and lung cancer are also in concordance with a 

prospective study that considered three CpG sites, including cg03636183, within the same region 

of F2RL3 and lung cancer (9). However, our findings and that of others contradict another 

longitudinal study that reported null associations between the methylation level of cg05575921 for 

AHRR and lung cancer risk (26). 

Our findings of hypomethylation in F2RL3 and AHRR in lung cancer cases relative to 

controls are consistent with the current understanding of the mechanisms of both genes. F2RL3 

encodes for PAR-4, a thrombin receptor, which is found to be involved in the process of blood 

coagulation and its disruption has often been described in lung cancer (27). However, methylation 
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level of one CpG site out of seven within F2RL3 (chr19:17000567) was not associated with lung 

cancer; further research may need to be conducted explain this result as the function and 

mechanism of PAR-4 have not been fully elucidated.  

The observation in this study that hypermethylation of AHRR is inversely associated with lung 

cancer risk is consistent with its role in the AhR pathway (12). Hypomethylation of AHRR, and 

thus the overexpression of AHRR, would disrupt the AhR pathway, which is crucial to the 

metabolism of environmental toxicants in the body (11,12,28). Its disruption through the 

overexpression of AHRR could result in the harmful accumulation of such toxicants. One of 33 

CpG sites for AHRR supported a positive association between hypermethylation and an increased 

lung cancer risk. This is plausible as AHRR has also been shown to be involved in the inflammatory 

response (12), and its disruption through the hypermethylation of AHRR, thus its downregulation, 

could therefore result in the increased risk for cancer observed.  

This study represents the first investigation into the correlation between lung cancer and 

the methylation of multiple CpG sites in both the F2RL3 and AHRR genes. We hypothesized that 

their methylation levels could likely be more representative of gene expression than a single CpG 

site, and thus of the association between F2RL3 and AHRR and lung cancer. Nonetheless, the 

consistent associations that we observed for the average methylation and the majority of individual 

CpG sites for F2RL3 and AHRR support that the methylation of the well-studied CpG sites 

cg03636183 for F2RL3 and cg05575921 for AHRR site can be representative of the methylation 

level of the other CpG sites located within the same gene.  

Previous studies have used microarray chips to quantify methylation within F2RL3 and 

AHRR. While that technology permits the investigation of epigenomic-wide data, it does not allow 

for the examination of CpG sites other than the predetermined ones on the microarray. As such, 
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systematic examination of regional methylation patterns via the quantification of multiple CpG 

sites within a gene was not possible. In our study, quantification of methylation was carried out at 

a single nucleotide resolution through the use of Sequenome EpiTYPER®, a reliable method (19) 

as demonstrated by the obtained CVs of 4.65% and 4.16%, estimated between-plate and between-

fragment variation, respectively. We believe that our study is the first to examine methylation 

levels across considerably more CpG sites, relative to previous studies, within the two genes in 

association with lung cancer risk; in particular for AHRR as 33 CpG sites were retained as 

compared to seven CpG sites for F2RL3.  

The Quebec Cancer Registry was used to identify cases up until 2010; subsequently, cases 

after 2010 were identified through linkage with RAMQ [Régie de l’assurance maladie du Québec], 

an administrative database of health information on Québec citizens. RAMQ has recently been 

found to underestimate the number of cases in the Québec population (29). Thus it is possible that 

the some lung cancer cases in CARTaGENE was not included in our study. However, there is no 

reason to believe that being diagnosed (or not) in the RAMQ as a case is related to exposure status. 

While we could also consider an alternate scenario whereby an undiagnosed case was selected as 

a control, this is unlikely as lung cancer is rare and symptoms are severe and thus, people are likely 

to seek care and thereby get a diagnosis.. 

DNA methylation was measured in the blood leukocytes from whole blood samples instead 

of directly in lung tissues. The heterogeneous nature of whole blood samples and the variability of 

blood cell type composition between individuals could confound the estimated association as it is 

widely accepted that DNA methylation measurements can differ between different cell types (30). 

Due to the lack of an external validation set, the proposed algorithm to adjust for cell type 

distribution within blood samples could not be applied in our study (31). Five EWASs have noted 
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however that the variation in DNA methylation due to the heterogonous nature of whole blood is 

relatively small and insignificant when comparing differential methylation patterns (32–37). The 

consistency and concordance of our results with previous EWASs (7,8) which have adjusted for 

cell type composition in whole blood lend confidence that the influence of cell composition in 

whole blood samples on the association observed was minimal.  

Conclusion 

Compared to previous studies, we interrogated the methylation level of the largest number 

of CpG sites within F2RL3 and AHRR in relation to lung cancer risk. This present study supports 

that F2RL3 and AHRR methylation can be informative biomarkers in lung cancer etiology. Given 

the previously noted association between smoking and F2RL3 and AHRR methylation, further 

research using a mediation analysis should be done to address the question of whether F2RL3 and 

AHRR methylation mediates the smoking-lung cancer association.  
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Table 5.1. Baseline characteristics of study population, n(%) 

 All  Cases  Controls 

 

(N=531) 

n (%) or 

mean (s.d.)  

(N=179) 

n (%) or 

mean (s.d.)  

(N=352) 

n (%) or  

mean (s.d.) 

Age at baseline (years), mean (s.d.) 58±7  59±7  59±7 

Sex, n (%)      

   Male 260 (49)  86 (48)  174 (49) 

   Female 271 (51)  93 (52)  178 (51) 

Phase of blood sampling, n (%)      

   1 483 (91)  162 (91)  321 (91) 

   2 48 (9)  17 (9)  31 (9) 

Smoking status, n (%)      

   Never smokers 186 (35)  42 (23)  144 (41) 

   Former smokers  237 (45)  75 (42)  162 (46) 

   Current daily smoker 22 (4)  8 (4)  14 (4) 

   Current occasional smoker  84 (16)  52 (29)  32 (9) 

   Missing  2 (0)  2 (1)  0 (0) 

Ethnicity, n (%)       

   White 502 (95)  160 (89)  342 (97) 

   Other  17 (3)  10 (6)  7 (2) 

   Missing  12 (2)  9 (5)  3 (1) 

Body mass index categories, n (%)      

   Normal 177 (33)  65 (36)  112 (31) 

   Overweight  200 (38)   53 (30)  147 (42)  

   Obese 144 (27)  56 (21)  88 (25) 

   Missing  10 (2)  5 (3)  5 (1) 

Fruits and vegetable consumption, 

n (%)      

   0-3 110 (21)  47 (26)  63 (18) 

   4-6 216 (41)  73 (41)  143 (41) 

   7 + 201 (38)  55 (31)  146 (41) 

   Missing  4 (1)  4 (2)  0 (0) 
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Table 5.2. Associations between average DNA methylation of the F2RL3 and AHRR genes and the risk of lung cancer 

  Minimally-adjusted model a,    Fully-adjusted modelb   

  
OR for 1 s.d.c (95% CI) p OR for 1 s.d.c (95% CI) p 

F2RL3 0.58 (0.48-0.70) <0.001 0.65 (0.53-0.80) <0.001 

AHRR 0.59 (0.48-0.71) <0.001 0.66 (0.53-0.80) <0.001 
aAdjusted for age, sex, and timing of blood sampling 
bAdjusted for age, sex, timing of blood sampling, ethnicity, BMI, and fruits and vegetable consumption 
cOR per 1 standard deviation increase in DNA methylation 
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Table 5.3. Associations between DNA methylation of individual CpG sites within F2RL3 and the risk of lung cancer 

Position Methylation categories 

Minimally-adjusted modela Fully-adjusted modelb 

OR for 1 s.d.c 

(95% CI) 
p pTREND

d OR for 1 s.d.c 

(95% CI) 
p pTREND

d 

chr19:17000596 Standardized continuous 0.67 (0.54-0.82) <.001  0.70 (0.56-0.88) <.001  

chr19:17000585 Standardized continuous 0.56 (0.46-0.68) <.001  0.63 (0.51-0.77) <.001  
chr19:17000567 Standardized continuous 1.10 (0.92-1.33) 0.319  1.13 (0.93-1.39) 0.430  

 Q1 Referent  0.811 Referent  0.792 
 Q2 0.65 (0.38-1.12)  0.63 (0.35-1.14)   
 Q3 1.19 (0.73-1.93)  1.24 (0.73-2.11)   
 Q4 0.82 (0.49-1.36)  0.94 (0.54-1.65)   

chr19:17000552 Standardized continuous 0.55 (0.45-0.66) <.001  0.62 (0.50-0.77) <.001  

chr19:17000517 Standardized continuous 0.59 (0.48-0.71) <.001  0.66 (0.54-0.81) <.001  
 Q1 Referent  <.001 Referent  0.102 

 Q2 0.10 (0.05-0.21)   0.14 (0.06-0.29)    

 Q3 0.56 (0.35-0.89)   0.75 (0.45-1.25)    

 Q4 0.42 (0.25-0.68)   0.57 (0.33-0.98)    

chr19:17000476 Standardized continuous 0.55 (0.45-0.66) <.001  0.62 (0.50-0.77) <.001  

chr19:17000465 Standardized continuous 0.54 (0.44-0.65) <.001  0.61 (0.49-0.75) <.001  

aAdjusted for age, sex, and timing of blood sampling 
bAdjusted for age, sex, timing of blood sampling, ethnicity, BMI, fruits and vegetable consumption, and smoking 
cOR per 1 standard deviation increase in DNA methylation 
dp-value for trend across categories was calculated by assigning the median of each category as a score and computed by adding the continuous variable to the logistic 

models 
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Table 5.4. Associations between DNA methylation of individual CpG sites within AHRR and the risk of lung cancer 

Position Methylation categories 

Minimally-adjusted modela Fully-adjusted modelb 

OR for 1 s.d.c 

(95% CI) 
p pTREND

d 
OR for 1 s.d.c 

(95% CI) 
p pTREND

d 

chr5:373249 Standardized continuous 0.54 (0.43-0.66) <.001  0.59 (0.47-0.73)  <.001  
chr5:373251 Standardized continuous 0.54 (0.43-0.66)  <.001  0.59 (0.47-0.73)  <.001  
chr5:373300 Standardized continuous 0.52 (0.42-0.63)  <.001  0.57 (0.46-0.71)  <.001  
chr5:373316 Standardized continuous 0.66 (0.55-0.79) <.001  0.73 (0.59-0.89)  0.002  

 Q1 Referent  0.006 Referent  0.167 

 Q2 0.57 (0.34-0.93)   0.58 (0.34-1.00)   

 Q3 0.63 (0.38-1.02)   0.69 (0.40-1.18)   

 Q4 0.47 (0.28-0.79)  0.68 (0.38-1.20)   
chr5:373378 Standardized continuous 0.58 (0.48-0.70) <.001  0.64 (0.52-0.79)  <.001  
chr5:373424 Standardized continuous 0.55 (0.45-0.67)  <.001  0.61 (0.49-0.75)  <.001  
chr5:373477 Standardized continuous 0.61 (0.51-0.73)  <.001  0.69 (0.56-0.84)  <.001  
chr5:373491 Standardized continuous 0.59 (0.49-0.71)  <.001  0.66 (0.53-0.81)  <.001  
chr5:373495 Standardized continuous 0.59 (0.49-0.71)  <.001  0.66 (0.53-0.80)  <.001  
chr5:373530 Standardized continuous 0.61 (0.51-0.73) <.001  0.71 (0.57-0.88)  0.002  
chr5:373610 Standardized continuous 0.89 (0.74-1.07)  0.213  0.94 (0.77-1.15)  0.54  

 Q1 Referent  0.248 Referent  0.691 

 Q2 0.59 (0.35-0.99)  0.58 (0.32-1.04)   

 Q3 0.92 (0.57-1.50)  0.96 (0.56-1.66)   

 Q4 0.68 (0.40-1.13)   0.80 (0.46-1.41)   
chr5:368449 Standardized continuous 0.76 (0.63-0.91)  0.003  0.84 (0.69-1.02)  0.088  
chr5:368447 Standardized continuous 0.76 (0.63-0.91)  0.003  0.84 (0.69-1.02)  0.088  
chr5:368430 Standardized continuous 0.88 (0.74-1.05)  0.149  0.94 (0.77-1.14)  0.525  

 Q1 Referent  0.378 Referent  0.947 

 Q2 1.58 (0.97-2.58)   1.66 (0.98-2.83)   

 Q3 0.90 (0.53-1.53)   1.03 (0.57-1.85)   

 Q4 0.79 (0.45-1.35)   0.95 (0.52-1.73)   
chr5:368278 Standardized continuous 1.07 (0.89-1.30)  0.468  1.11 (0.91-1.36)  0.319  
chr5:368762 Standardized continuous 1.01 (0.84-1.21)  0.897  0.98 (0.81-1.20)  0.845  
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chr5:368805 Standardized continuous 0.76 (0.62-0.91)  0.004  0.77 (0.63-0.94)  0.013  
chr5:368898 Standardized continuous 0.94 (0.78-1.13)  0.516  0.88 (0.71-1.07)  0.197  

 Q1 Referent  0.587 Referent  0.279 

 Q2 0.73 (0.42-1.25)   0.69 (0.38-1.24)   

 Q3 1.62 (1.01-2.62)   1.40 (0.84-2.34)  

 Q4 0.62 (0.35-1.08)   0.53 (0.29-0.97)   
chr5:368900 Standardized continuous 0.94 (0.78-1.13)  0.516  0.88 (0.71-1.07)  0.197  

 Q1 Referent  0.587 Referent  0.279 

 Q2 0.73 (0.42-1.25)  0.69 (0.38-1.24)   

 Q3 1.62 (1.01-2.62)   1.40 (0.84-2.34)  

 Q4 0.62 (0.35-1.08)   0.53 (0.29-0.97)   
chr5:369774 Standardized continuous 1.21 (1.01-1.46)  0.041  1.25 (1.02-1.54)  0.033  
chr5:369970 Standardized continuous 0.90 (0.75-1.08)  0.271  0.90 (0.74-1.11)  0.321  

 Q1 Referent  0.717 Referent  0.600 

 Q2 0.78 (0.45-1.34)   0.70 (0.39-1.27)   

 Q3 1.42 (0.87-2.34)   1.31 (0.76-2.26)   

 Q4 0.92 (0.54-1.55)   0.97 (0.55-1.70)   
chr5:370021 Standardized continuous 1.14 (0.95-1.37)  0.145  1.18 (0.97-1.44)  0.099  
chr5:377325 Standardized continuous 0.83 (0.69-1.00)  0.050  0.78 (0.63-0.96)  0.019  

 Q1 Referent   0.340 Referent  0.140 

 Q2 0.57 (0.34-0.95)   0.53 (0.30-0.91)   

 Q3 0.51 (0.30-0.85)   0.48 (0.27-0.83)   

 Q4 0.78 (0.48-1.26)   0.67 (0.39-1.14)   
chr5:377359 Standardized continuous 0.66 (0.53-0.80)  <.001  0.67 (0.53-0.83)  <.001  
chr5:377361 Standardized continuous 0.66 (0.53-0.80) <.001  0.67 (0.53-0.83)  <.001  
chr5:377438 Standardized continuous 0.78 (0.64-0.95)  0.013  0.78 (0.63-0.96)  0.022  

 Q1 Referent  0.514 Referent  0.477 

 Q2 1.70 (1.05-2.79)   1.80 (1.05-3.15)   

 Q3 0.54 (0.29-0.97)  0.53 (0.27-1.02)   

 Q4 1.16 (0.67-2.00)   1.16 (0.63-2.13)   
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chr5:377453 Standardized continuous 1.00 (0.83-1.20)  0.989  0.99 (0.82-1.2)  0.927  

 Q1 Referent  0.577 Referent  0.570 

 Q2 1.47 (0.90-2.43)   1.28 (0.74-2.21)   

 Q3 0.49 (0.26-0.89)   0.47 (0.24-0.90)   

 Q4 1.41 (0.86-2.34)   1.39 (0.80-2.41)   
chr5:392693 Standardized continuous 1.08 (0.89-1.29)  0.441  1.09 (0.89-1.33)  0.394  

 Q1 Referent  0.591 Referent  0.732 

 Q2 1.45 (0.87-2.43)   1.46 (0.84-2.55)   

 Q3 1.31 (0.77-2.24)   1.26 (0.70-2.28)   

 Q4 0.99 (0.57-1.73)   1.03 (0.56-1.89)   
chr5:392704 Standardized continuous 1.00 (0.83-1.20) 0.964  1.06 (0.87-1.29)  0.533  

 Q1 Referent  0.879 Referent  0.691 

 Q2 1.00 (0.60-1.66)   0.98 (0.56-1.72)   

 Q3 1.00 (0.60-1.67)   1.06 (0.61-1.86)   

 Q4 0.97 (0.58-1.62)   1.12 (0.63-1.97)   
chr5:392940 Standardized continuous 0.76 (0.63-0.91)  0.004  0.79 (0.64-0.96)  0.021  

 Q1 Referent   0.102 Referent  0.209 

 Q2 0.78 (0.48-1.27)   0.80 (0.47-1.36)   

 Q3 0.54 (0.32-0.92)   0.54 (0.30-0.96)   

 Q4 0.76 (0.46-1.24)  0.82 (0.47-1.42)   
chr5:392946 Standardized continuous 0.76 (0.63-0.91)  0.004  0.79 (0.64-0.96)  0.021  

 Q1 Referent  0.102 Referent  0.209 

 Q2 0.78 (0.48-2.90)  0.80 (0.47-1.36)   

 Q3 0.54 (0.32-0.92)   0.54 (0.30-0.96)   

 Q4 0.76 (0.46-1.24)   0.82 (0.47-1.42)   
chr5:393073 Standardized continuous 0.78 (0.65-0.94)  0.008  0.84 (0.69-1.02)  0.087  

 Q1 Referent  0.097 Referent  0.527 

 Q2 0.76 (0.46-1.23)   0.90 (0.53-1.54)   

 Q3 0.48 (0.28-0.81)  0.58 (0.32-1.05)   

 Q4 0.74 (0.45-1.21)   0.93 (0.54-1.60)   
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chr5:393076 Standardized continuous 0.78 (0.65-0.94)  0.008  0.84 (0.69-1.02)  0.087  

 Q1 Referent  0.097 Referent  0.527 

 Q2 0.76 (0.46-1.23)   0.90 (0.53-1.54)   

 Q3 0.48 (0.28-0.81)   0.58 (0.32-1.05)   
  Q4 0.74 (0.45-1.21)    0.93 (0.54-1.60)    

aAdjusted for age, sex, and timing of blood sampling 
bAdjusted for age, sex, timing of blood sampling, ethnicity, BMI, fruits and vegetable consumption, and smoking 
cOR per 1 standard deviation increase in DNA methylation 
dp-value for trend across categories was calculated by assigning the median of each category as a score and computed by adding the continuous variable to the logistic 

models 
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Figure 5.1.  Data cleaning of methylation ratios of CpG sites within F2RL3 and AHRR genes.  
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 Figure 5.2. Directed acyclic graph of the association between DNA methylation and lung cancer 

 

Legend 

  Exposure variable 

  Outcome variable 

   Minimum sufficient adjustment set 
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Chapter 6. Supplementary results  

The objective of this thesis was to examine the association between DNA methylation in 

the F2RL3 and AHRR genes and lung cancer risk. The main analysis considered average 

methylation as well as individual methylation measures of CpG sites for each gene in relation to 

lung cancer risk. An additional conceptualization of DNA methylation levels of F2RL3 and AHRR 

was carried out using unsupervised PCA, a pattern derivation and data-reduction approach. This 

was done to facilitate interpretation by reducing the number of dimensions in the dataset while 

minimizing information loss. This chapter will present the results of the PCA for F2RL3 and 

AHRR, and its association with lung cancer risk.  

6.1 Computation of the principal components of F2LR3 and AHRR  

Table 6.1 and 6.2 summarise the variation explained by the seven PCs of F2RL3 and the 

first 10 PCs of AHRR, respectively. Scree plots were used to identify the number of PCs with 

eigenvalues >1 for F2RL3 and AHRR (Figure 6.1 and 6.2, respectively). For F2RL3, the first two 

PCs out of seven have eigenvalues of approximately ≥1 and explained 85% of the variation. Eight 

out of 33 PCs for AHRR respect the criteria of eigenvalues of ≥1, accounting for 79% of the 

variation. Nevertheless, we elected to retain only the first five PCs of AHRR (accounting for 67% 

of the variation) since each PC afterward accounted for less than 5% of the variation.  

6.2 Assessing the association of the principal components for F2RL3 and AHRR with lung 

cancer risk  

Table 6.3 and 6.4 present the ORs and 95% CIs for the PCs of F2RL3 and AHRR estimated 

for both the minimally- and fully-adjusted models. Both PCs for F2RL3 showed an inverse 

relationship with lung cancer risk in both the minimally- and fully-adjusted models. For AHRR, 

only the first PC was inversely associated with lung cancer risk (OR per 1 s.d. increase = 0.87, 
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95%CI: 0.82-0.93). No significant associations were observed between the other four PCs of 

AHRR and lung cancer risk.  
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Table 6.1 Summary of variation explained by the seven principal components of F2RL3 

Principal component of 

F2RL3  
Standard deviationa Proportion of variance  Cumulative proportion 

   1 2.25 0.72 0.72 

   2 0.96 0.13 0.85 

   3 0.88 0.11 0.96 

   4 0.40 0.02 0.98 

   5 0.27 0.01 0.99 

   6 0.19 0.01 1.00 

   7 0.00 0.00 1.00 
a Also referred to as eigenvalues, as data has been centered and scaled (standardized) 

 

Figure 6.1. Scree plot for the seven principal components of F2RL3 
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Table 6.2 Summary of variation explained by the first 10 principal components of AHRR  

Principal component of 

AHRR 
Standard deviationa Proportion of variance  Cumulation proportion 

   1 3.40 0.35 0.35 

   2 1.88 0.11 0.46 

   3 1.65 0.08 0.54 

   4 1.48 0.07 0.61 

   5 1.41 0.06 0.67 

   6 1.27 0.05 0.72 

   7 1.16 0.04 0.76 

   8 1.01 0.03 0.79 

   9 0.95 0.03 0.81 

   10 0.94 0.03 0.84 
a Also referred to as eigenvalues, as data has been centered and scaled (standardized) 

 

Figure 6.2. Scree plot for the first 20 principal components of AHRR 
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Table 6.3  Associations between DNA methylation of retained principal components of F2RL3 

and the risk of lung cancer 

Principal 

Component  

Methylation 

categories 

Minimally-adjusted 

modela   Fully-adjusted modelb 

OR for 1 s.d.c  

(95% CI) 
p 

  
OR for 1 s.d.c 

(95% CI) 
p 

1 Continuous 0.77 (0.71-0.84)  <0.001  0.82 (0.74-0.90)  <0.001  

2 Continuous 0.70 (0.57-0.85) <0.001   0.71 (0.56-0.88)  0.003 
aAdjusted for age, sex, and timing of blood sampling 
bAdjusted for age, sex, timing of blood sampling, ethnicity, BMI, and fruits and vegetable consumption 
cOR per 1 standard deviation increase in DNA methylation 
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Table 6.4 Associations between DNA methylation of retained principal components of AHRR and the risk of lung cancer 

Principal 

Component  

Methylation 

categories 

Minimally-adjusted modela   Fully-adjusted modelb 

OR for 1 s.d.c (95% 

CI) 
p pTREND

d 
  

OR for 1 s.d.c 

(95% CI) 
p pTREND

d 

1 Continuous 0.85 (0.80-0.89)  <0.001   0.87 (0.82-0.93)  <0.001  
2 Continuous 1.09 (0.99-1.21)  0.082   1.11 (0.99-1.24)  0.073  
3 Continuous 0.93 (0.84-1.05)  0.247   0.94 (0.83-1.05)  0.282  

 Q1 Referent   0.323  Referent   0.436 
 Q2 0.51 (0.30-0.86)     0.58 (0.33-1.01)    
 Q3 0.47 (0.28-0.79)     0.55 (0.31-0.97)    
 Q4 0.83 (0.52-1.34)     0.85 (0.50-1.43)    

4 Continuous 0.91 (0.80-1.03)  0.156   0.91 (0.79-1.04)  0.173  
 Q1 Referent   0.361  Referent   0.515 
 Q2 1.00 (0.61-1.65)     1.06 (0.61-1.83)    
 Q3 0.95 (0.57-1.58)     1.03 (0.59-1.80)    
 Q4 0.80 (0.47-1.35)     0.84 (0.47-1.50)    

5 Continuous 1.05 (0.92-1.19)  0.483   1.12 (0.98-1.30)  0.109  
 Q1 Referent   0.936  Referent   0.291 
 Q2 0.66 (0.38-1.12)     0.76 (0.42-1.37)    
 Q3 0.98 (0.59-1.61)     1.11 (0.64-1.92)    

  Q4 0.95 (0.57-1.56)        1.27 (0.74-2.21)      
aAdjusted for age, sex, and timing of blood sampling 
bAdjusted for age, sex, timing of blood sampling, ethnicity, BMI, fruits and vegetable consumption, and smoking 
cOR per 1 standard deviation increase in DNA methylation 
dp-Value for trend across categories was calculated by assigning the median of each category as a score and computed by adding the continuous variable 

to the logistic models 
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Chapter 7. Discussion  

This project investigated the association between the DNA methylation levels of F2RL3 

and AHRR, and lung cancer risk. It made use of the readily available data from CARTaGENE by 

nesting a case-control study with cumulative sampling in the cohort. The following chapter 

presents a summary of our results and discusses their contribution to the relevant literature while 

considering the strengths and limitations of the study.  

7.1 Summary of key findings  

The results of our main analysis support our hypothesis that there is an association between 

the methylation levels of F2RL3 and AHRR, and lung cancer risk. Specifically, an inverse 

relationship between the average methylation levels of all informative CpG sites of F2RL3 and 

AHRR, and lung cancer risk was observed, indicating hypomethylation of those two genes in lung 

cancer cases relative to controls. Considering the methylation level of the individual CpG sites, 

similar associations were observed for six out of the seven CpG sites for F2RL3 and 17 out of the 

33 CpG sites for AHRR. Conversely, a positive association with one individual CpG site for AHRR 

and lung cancer risk was observed.  

Different conceptualizations of DNA methylation were used in this study. While the use of 

an average measure of the methylation allows for ease of interpretation, aggregating multiple CpG 

sites within one measure can result in a loss of information from the individual-level data. On the 

other hand, looking at all the CpG sites individually, while precise, can complicate the 

interpretation of our results. A principal component analysis was thus carried out with the aim to 

reduce the number of dimensions in the dataset while facilitating interpretation and information 

loss. Two and five PCs were retained for F2RL3 and AHRR, respectively. Both PCs for F2RL3 

showed an inverse association with lung cancer risk, supporting hypomethylation of F2RL3 in 
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lung cancer development. An inverse association was noted for only one of the PCs for AHRR. 

The other 4 PCs for AHRR showed no association with lung cancer risk. A closer look at the 

location of each CpG site included in each PC within both F2RL3 and AHRR showed that the CpG 

sites were all largely dispersed around the gene body. It was therefore difficult to interpret the 

association of regional methylation of F2RL3 and AHRR with lung cancer risk using PCs as an 

aggregate measure of regional methylation.  

7.2 Comparison with relevant literature   

The results from this study support the association between F2RL3 and AHRR methylation 

levels and lung cancer risk that have been previously reported in other studies (4,62,88,89). 

Considering individual CpG sites, these prior studies have, however, only focused on very few 

individual CpG sites within the two genes of interest. An EWAS pooling data from four 

prospective cohort studies has reported an inverse association with lung cancer risk for only one 

individual CpG site within F2RL3 (chr19:17000585, also known as cg03636183) and two within 

AHRR (chr5:373378, also referred to as cg05575921; and ch5:399360, also referred to as 

cg21161138) (4). The same research lab validated these associations for cg03636183 in F2RL3, 

and cg05575921 and cg23916896 in AHRR, the latter being an additional CpG site described in 

their study, in further analyses adding an additional cohort to the four studies included in their 

previous EWAS (62). Similarly, a meta-analysis of the same four cohorts replicated similar inverse 

associations of the same magnitude for cg03636183 in F2RL3 and cg05575921 in AHRR (88). 

Interestingly, that same study also carried out a two-sample Mendelian randomization on a 

different prospective cohort, a method which uses genetic variants as instrument variables to 

investigate whether DNA methylation is on the causal pathway (90,91), and found no evidence 

that differential methylation of cg03636183 for F2RL3 and cg05575921 for AHRR has potential 
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causal effects on lung cancer risk (88). The association with lung cancer risk found for the 

individual CpG sites for F2RL3 are in agreement with a longitudinal epigenetic study, which 

looked at three CpG sites within the same region of F2RL3, including cg03636183 (89). While the 

associations described in this study for the individual CpG sites within AHRR are in concordance 

with the previous EWAS studies, one study, which looked at the methylation of cg05575921 for 

AHRR in heavy smokers, found no association of its methylation with lung cancer risk (92). 

Despite being largely similar in directionality to the associations reported in previous studies, the 

associations for F2RL3 and AHRR methylation found in our study tend slightly closer to the null 

than the associations reported in previous studies. For example, previous reported inverse 

associations ranged between 0.40-0.64 for cg03636183 of F2RL3 and 0.37-.0.53 for cg05575921 

of AHRR (4,62,88).  However, the ORs found in our study were 0.63 (95% CI: 0.51-0.77) for 

cg03636183 of F2RL3 and 0.64 (95% CI: 0.52-0.79) for cg05575921 of AHRR.  

The inverse associations found for average methylation of F2RL3 and AHRR are also in 

agreement in magnitude and directionality with the inverse associations found for the individual 

CpG sites in our studies. As such, they are also consistent with the associations reported for the 

individual CpG sites reported in the literature. None of the previous studies have looked at average 

methylation of F2RL3 and AHRR in relation to lung cancer risk. This is probably due to the fact 

that previous studies were limited by the few numbers of CpG sites examined to consider a 

different methylation representation.  

Indeed, relatively few CpG sites within F2RL3 and AHRR were examined in relation to 

lung cancer risk in previous studies. Actually, most studies have examined one CpG site within 

F2RL3 (cg03636183). Except for the one study which has looked at three CpG sites, including 

cg03636183, which were however all within the same region of F2RL3 (89). Similarly, most 
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studies have only looked at one CpG site within AHRR (cg05575921). Only two studies out of the 

previous studies have looked at one more CpG site in addition to cg05575921, which were  4,575 

(62) and 25,982 bps (4) away from cg05575921. While our study covers a slightly smaller range 

in bps for AHRR (from 130 to 19,699 bps away from cg05575921), our study has examined 

considerably more CpG sites within F2RL3 and AHRR than previous studies, with 7 and 33 CpG 

sites, respectively. 

Our study aimed to further knowledge on the association of the regional methylation 

patterns within a F2RL3 and AHRR with lung risk by looking at the methylation level of multiple 

CpG sites. Examining multiple CpG sites within both genes and their varying methylation levels 

is likely a better representation of gene expression in relation to lung cancer risk than looking at a 

single CpG site. It was, however, shown in this study that the methylation of the well-studied CpG 

sites cg03636183 for F2RL3 and cg05575921 for AHRR site can be representative of the 

methylation level of the other CpG sites located within the same gene given the consistent inverse 

associations with lung cancer risk observed for the majority of CpG sites in F2RL3 and AHRR.  

Additional studies are still needed to support future development to ascertain whether 

methylation markers can be a tool for lung cancer screening. A recent study using participants 

from the population-based Copenhagen City Heart Study in Denmark has looked at the inclusion 

of the AHRR methylation to improve eligibility criteria to identify individuals at risk from seven 

lung cancer screening trials. They have found that the addition of the methylation of cg05575921 

in AHRR as an eligibility criterion results in a higher specificity for all current screening criteria 

(93). The potential of the methylation of F2RL3 and AHRR to lower the screening burden warrants 

further investigation into the use of methylation markers as a biomarker.  
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7.3 Potential mechanisms of the methylation of F2RL3 and AHRR in lung 

carcinogenesis  

With regards to F2RL3, most of our results concord with previous studies, indicating 

hypomethylation of F2RL3 in cancer cases relative to controls. This association is plausible as 

PAR-4 has been found to be involved in the process of blood coagulation as it is a thrombin 

receptor, and disruption of the normal coagulation process has been commonly described in lung 

cancer (94). Nonetheless, hypermethylation of one CpG site (chr19:17000567) within the F2RL3 

gene was found to be associated with an increased lung cancer risk. This result, while interesting, 

is difficult to explain. Hypermethylation of F2RL3 has however been described in tissues of later 

stages of lung cancer, contrary to its hypomethylation observed in earlier stages tissues (54).  

A priori, we hypothesized that hypomethylation of AHRR would result in its 

overexpression, which in turn, disrupts AHR transcriptional activity in the AhR pathway. It is thus 

expected that hypomethylation of AHRR would ensue an accumulation of environmental toxicants 

in the body which cannot be processed through the AhR pathway, leading to an increased lung 

cancer risk. We observed this association for the average measure of AHRR methylation as well as 

for 21 of 33 of the individual CpG sites in the AHRR gene. Nevertheless, in the individual CpG 

site analysis, we found that hypermethylation of one CpG site (chr5:369774) in the AHRR gene 

was associated with lung cancer risk. The contradicting association may be explained by the fact 

that AHRR has been suggested to play a role in the regulation of inflammatory responses (7). 

Through its interaction with various transcription factors such as NF-κB and HIF-1α, which are 

essential transcription factors in the regulation of inflammation, AHRR has been proposed to 

reduce apoptosis resistance, cell proliferation, and angiogenic and invasive growth by modulating 

the inflammation response to prevent the establishment of an auspicious environment for tumor 
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development (7,8). Hypermethylation of AHRR, and thus its downregulation, could therefore lead 

to an increased risk for cancer development due to the disruption of its regulation of the 

inflammatory response. While there are two possible mechanisms that could lead to carcinogenesis 

following aberrant methylation of AHRR, the association observed for the majority of the CpG 

sites in this study is indicative of hypomethylation among lung cancer cases compared to controls, 

and seems to support the first molecular mechanism described.   

7.4 Study validity: methodological strengths and limitations  

This section will cover the methodological strengths and limitations of our study with 

regard to its internal validity, while external validity will be covered later in the discussion.  

7.4.1 Selection bias  

A systematic difference between the characteristics of the participants selected for the 

study and of the population they are meant to represent is defined as selection bias. Traditional 

case-control studies are generally known to be susceptible to selection bias. The sampling of the 

participants in a typical prospective cohort study is independent of the outcome. Contrary to cohort 

studies, the challenge in case-control studies is to ensure that controls are sampled from the same 

source population of the cases.  

Using a nested case-control design helps minimize selection bias. Participants are recruited 

from a defined study base, in this case, the CARTaGENE cohort, and thus, ensures that cases and 

controls arise from the same study base. Furthermore, given that CARTaGENE is a prospective 

cohort study, differential participation due to awareness of the outcome of interest is unlikely since 

the outcome of interest of the study is not yet known to the participants and researchers during 

enrolment. Selection bias was further minimized through random sampling of the controls for the 

study. Selection bias due to loss to follow-up is reduced as well since cases were identified through 



 62 

linkage with the Quebec Cancer Registry and the RAMQ, a secure and valid administrative 

database of health information on Québec citizens (74). It is important to note that selection bias 

can also arise when participants are excluded based on criteria related to the exposure and the 

outcome, resulting in a systematic difference between groups. In our study, some participants were 

excluded due to missing methylation data. However, considering, the small and similar proportion 

of cases (4%) and controls (7%) excluded, and on the assumption that the data is missing at random 

(MAR) it is unlikely that it could have introduced a selection bias.  

7.4.2 Measurement of outcome 

The cases in our study were selected through linkage of CARTaGENE participants with 

the Quebec Cancer Registry (up to 2010) and the RAMQ, an administrative health database that 

uniformly covers the Québec population (74). However, RAMQ has recently been found to 

underestimate the true number of colorectal cases in the Québec population (95). While there is 

yet evidence of the RAMQ also underestimating the true number of lung cancer cases in the 

population, we should still consider its implication on the results of our study. It is possible that 

some undiagnosed cases were not included in our study. However, there is no reason to believe 

that being diagnosed (or not) in RAMQ as a case is related to exposure status. While we could also 

consider an alternate scenario whereby an undiagnosed case was selected as a control, this is 

unlikely as lung cancer is rare and symptoms are severe and thus, people are likely to seek care 

and thereby get a diagnosis. 

7.4.3 Measurement of exposure 

Information bias is a systematic bias that could emerge from measurement error or 

misclassification of the study variables. DNA methylation of F2RL3 and AHRR, the exposure of 

interest, was measured using Sequenom EpiTYPER®, a method that combines bisulfite 
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sequencing and MALDI-TOF (matrix-assisted laser desorption/ionization coupled with time-of-

flight) mass spectrometry. It is a validated and reliable high-throughput DNA methylation assay, 

which allows the quantification of DNA methylation at the single nucleotide level (75). Reliability 

of the DNA methylation measures was assessed by estimating their variability, and a CV of 4.65% 

between-plates and 4.16% between-fragments, based on the high-methylated DNA quality 

controls, lends confidence in the reliability of the measurements.  

DNA methylation was measured in blood leukocytes, instead of directly in lung tissues. 

The use of whole blood samples as a surrogate for lung tissues permits the utilization of a relatively 

non-invasive, convenient, and inexpensive medium to quantify DNA methylation. While it is 

widely accepted that DNA methylation measurements can differ between cell types (96), multiple 

studies have shown that the use of blood samples to assess methylation is a reliable surrogate for 

DNA methylation in lung tissues (97–99). Considering that DNA methylation is a reversible 

process, its stability over time might be of concern. A study by Talens et al. compared DNA 

methylation at selected known loci involved in diseases in DNA samples that were collected 11 to 

20 years apart. They found only minor DNA methylation differences between time points, 

indicating that DNA methylation is relatively stable over time (100). Given that DNA methylation 

is known to change with old age, it should be taken into account that those samples were taken in 

34 participants aged between 14 and 64 years old from the Netherlands Twin Register biobank 

(100). The possibility of a greater change in DNA methylation over a longer period of time and 

older age cannot therefore be excluded. Another study that looked at global methylation in samples 

in an older population (60 to 87 years old at recruitment) did in fact observe a time-dependant 

change in DNA methylation between samples collected from visits separated on average by 11 to 

16 years. Although, only 8-10% of the individuals in the study showed a methylation change >20% 



 64 

(101). Both studies did however not address the possibility of DNA methylation changes due to 

developing diseases or changes in environmental and behavioural exposure in those individuals 

between time points. Taken together, these observations indicate that similar DNA methylation 

levels over time does not in itself guarantee DNA methylation stability as DNA methylation may 

change depending on the individual. Further investigations are therefore needed to examine DNA 

methylation stability over time with an attention to disease onset and exposure-related DNA 

methylation changes between time points.  

The heterogeneous nature of whole blood specimens and the variability of blood cell type 

composition between individuals could introduce non differential classification due to 

measurement errors in the DNA methylation measurements as it is widely accepted that DNA 

methylation can differ between different cell types (99). Adjustment for cell type distribution was 

not possible in our study due to the absence of an external validation set to apply the algorithm for 

cell composition adjustment proposed by Houseman et al. (96). However, five EWASs which have 

looked at smoking exposures have noted that the variation in DNA methylation due to the 

heterogonous nature of whole blood is relatively small and insignificant when comparing 

methylation patterns between smokers and non-smokers (66,102–106). Furthermore, the results of 

our study are consistent with previous studies which have used the Houseman et al. algorithm to 

adjust for cell type composition, demonstrating that the impact of cell composition in whole blood 

samples on the associations observed in our study is likely minimal.  

7.4.4 Implication of control selection strategy 

Unlike a typical nested case-control study with risk set sampling, the controls in our study 

were sampled through cumulative sampling as they were sampled at the end of the follow-up. 

Indeed, risk set sampling selects controls who are at risk of developing the outcome at the same 
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time as the corresponding case, and who have not yet developed the outcome. However, as the 

controls were selected at the end of the cohort follow-up, our OR gives an estimate of the cohort 

OR, which would overestimates the strength of the association. However, since lung cancer is rare, 

the overestimation is minimal. 

7.4.5 Confounding  

Confounding refers to the “situation in which a noncausal association between a given 

exposure and an outcome is observed as a result of the influence of a third variable (or a group of 

variable), usually designated as a confounding variable or merely a confounder” (107).  

The presence of confounders complicates the interpretation of the estimated association 

and poses a threat to the internal validity of a study. Our strategy to determine which confounding 

factors to include in our analysis consisted of a comprehensive literature review to create a DAG, 

a well-established knowledge-based causal diagram, to determine the minimal sufficient 

adjustment set. Based on the variables available in the CARTaGENE study, our adjusted set 

included age, sex, phase of blood sampling, fruit and vegetable consumption, BMI, ethnicity, and 

smoking. The possibility of residual confounding in our study is not excluded. It could have been 

introduced due to the re-categorization of multiple variables such as fruit and vegetable 

consumption, BMI, and ethnicity due to the small size of some categories. Residual confounding 

could have also occurred due to the unavailability in CARTaGENE and our study of data on 

confounding variables such as air pollution. Given that all participants in our study from similar 

environments (i.e. metropolitans), we expect this residual confounding to be negligible.     

7.4.6 Temporality 

A strength of this study is that it makes use of data collected prospectively, comparatively 

to traditional case-control studies. More precisely, this study used blood samples collected before 
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the diagnosis of lung cancer, ensuring the temporality between F2RL3 and AHRR methylation, and 

lung cancer diagnosis.   

7.5 External validity   

External validity is defined as the extent to which the results of the study can be generalized 

to people and settings outside of the study population. CARTaGENE is the largest prospective 

health study in Quebec composed of men and women aged between 40 to 69 years old from six 

metropolitan areas of Quebec (Montreal, Quebec, Sherbrooke, Saguenay, Gatineau, and Trois-

Rivières). The participants were randomly selected to be representative of the Quebec population 

based on provincial health registries, as such the characteristics of the cohort are representative of 

about 55.7% of the characteristics of the Quebec population (74). Considering the internal validity 

of our study due to the minimized selection bias, information bias, and confounding discussed 

above and that participants from the CARTaGENE cohort are largely representative of the Quebec 

population, it is reasonable to say that our study could be generalized to the Quebec population. 

This requires careful consideration given that DNA methylation is known to vary between ethnic 

groups (108,109), and that there are differences in the ethnical composition between our study 

population and Quebec’s general population. Our study population mainly consisted of ethnically 

white participants (95%), which is slightly different from the proportion of Whites in Québec 

(84%), as of the 2021 Canadian census (110). Further analysis and stratifications could still be 

done to accurately extrapolate the results to Quebec’s general population. However, the observed 

association that hypomethylation of F2RL3 and AHRR increases lung cancer risk can safely be 

generalized to Quebec’s population considering that the difference between the ethnical 

composition of the study’s population and Quebec’s general population is relatively small.  
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Similarly, comparable findings to our study are expected to be found within a population 

with the same ethnical composition. However, generalization to more ethnically diverse 

populations should be done with caution given that DNA methylation is known to differ by 

ethnicity (108,109). While we still expect an inverse association of F2RL3 and AHRR methylation 

with lung cancer risk in more ethnically diverse population, it is possible that the magnitude of the 

association will diverge from the ones reported in this study due to the differing levels of exposure 

(i.e. DNA methylation) by ethnicities.  

7.6 Conclusion and future directions    

In this study, we showed further evidence that the methylation of F2RL3 and AHRR could 

play a role in lung carcinogenesis. Given that smoking has been linked to the hypomethylation of 

F2RL3 and AHRR and that it is likely to be upstream of the F2RL3 and AHRR methylation-lung 

cancer association, future analysis should be carried out to clarify whether aberrant methylation in 

the two genes mediates the smoking-lung cancer association. Similarly, further investigations on 

the independent and combined impact of F2RL3 and AHRR methylation with neighbouring genes 

could be of interest to explore other epigenetic gene-environment interactions in relation to lung 

carcinogenesis.  

Our research adds to the existing body of knowledge regarding the association between 

intermediate endpoints and the risk of developing lung cancer. Such research on risk factors and 

underlying causal mechanisms is important to facilitate prevention initiatives as it can lead to the 

development of effective strategies for utilizing such markers in population health studies. 

Ultimately, enhanced knowledge regarding the fundamental mechanisms of lung cancer and its 

risk factors might lead to the development of more advanced screening tests in the future, and in 

time, a reduction of the burden of lung cancer on public health.  
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