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Sommaire

Les réseaux de neurones actuels obtiennent des résultats de pointe dans une gamme de
domaines problématiques difficiles. Avec suffisamment de données et de calculs, les réseaux de
neurones actuels peuvent obtenir des résultats de niveau humain sur presque toutes les tâches.
En ce sens, nous avons pu former des spécialistes capables d’effectuer très bien une tâche
particulière, que ce soit le jeu de Go, jouer à des jeux Atari, manipuler le cube Rubik, mettre
des légendes sur des images ou dessiner des images avec des légendes. Le prochain défi pour
l’IA est de concevoir des méthodes pour former des généralistes qui, lorsqu’ils sont exposés à
plusieurs tâches pendant l’entraînement, peuvent s’adapter rapidement à de nouvelles tâches
inconnues. Sans aucune hypothèse sur la distribution génératrice de données, il peut ne pas
être possible d’obtenir une meilleure généralisation et une meilleure adaptation à de nouvelles
tâches (inconnues).

Les réseaux de neurones actuels obtiennent des résultats de pointe dans une gamme de
domaines problématiques difficiles. Une possibilité fascinante est que l’intelligence humaine et
animale puisse être expliquée par quelques principes, plutôt qu’une encyclopédie de faits. Si
tel était le cas, nous pourrions plus facilement à la fois comprendre notre propre intelligence
et construire des machines intelligentes. Tout comme en physique, les principes eux-mêmes
ne suffiraient pas à prédire le comportement de systèmes complexes comme le cerveau, et des
calculs importants pourraient être nécessaires pour simuler l’intelligence humaine. De plus,
nous savons que les vrais cerveaux intègrent des connaissances a priori détaillées spécifiques
à une tâche qui ne pourraient pas tenir dans une courte liste de principes simples. Nous
pensons donc que cette courte liste explique plutôt la capacité des cerveaux à apprendre et à
s’adapter efficacement à de nouveaux environnements, ce qui est une grande partie de ce dont
nous avons besoin pour l’IA. Si cette hypothèse de simplicité des principes était correcte, cela
suggérerait que l’étude du type de biais inductifs (une autre façon de penser aux principes
de conception et aux a priori, dans le cas des systèmes d’apprentissage) que les humains et
les animaux exploitent pourrait aider à la fois à clarifier ces principes et à fournir source
d’inspiration pour la recherche en IA.

L’apprentissage en profondeur exploite déjà plusieurs biais inductifs clés, et mon travail
envisage une liste plus large, en se concentrant sur ceux qui concernent principalement le
traitement cognitif de niveau supérieur. Mon travail se concentre sur la conception de tels
modèles en y incorporant des hypothèses fortes mais générales (biais inductifs) qui permettent
un raisonnement de haut niveau sur la structure du monde. Ce programme de recherche
est à la fois ambitieux et pratique, produisant des algorithmes concrets ainsi qu’une vision
cohérente pour une recherche à long terme vers la généralisation dans un monde complexe et
changeant. Mon travail explore les thèmes de:
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• IA cognitivement informée : Incorporer des informations sur la façon dont les
humains traitent les informations visuelles et exploitent la structure du monde dans
la conception des architectures d’IA et des méthodes d’apprentissage automatique.

• Apprentissage de la représentation causale : Intégration des idées de causalité
dans des réseaux profonds pour apporter des améliorations à la généralisation hors
distribution plus théoriquement fondées et mathématiquement rigoureuses.

Pour passer de spécialistes à généralistes, il est important de réfléchir à la façon dont
un agent peut réutiliser, recomposer et recombiner les informations entre les tâches. Un
paradigme dominant dans l’apprentissage par renforcement (RL) moderne consiste à apprendre
des règles de comportement à usage général à partir des expériences passées de l’agent. Ces
règles sont généralement représentées dans les poids synaptiques d’un modèle de réseau de
neurones calculant une politique paramétrique ou une fonction de valeur. On peut réaliser un
transfert à des tâches nouvelles via la représentation des compétences, via des modèles de la
dynamique du système et via des données brutes. Ma thèse explore ces différentes manières
de réaliser le transfert en incorporant des biais inductifs généraux pour exploiter la structure
du monde.

Dans le premier article, nous montrons comment la décomposition des connaissances en
morceaux interchangeables promet un avantage de généralisation lorsqu’il y a des changements
dans la distribution. Un agent apprenant interagissant avec son environnement est susceptible
d’être confronté à des situations nécessitant de nouvelles combinaisons de connaissances
existantes. Nous émettons l’hypothèse qu’une telle décomposition des connaissances est
particulièrement pertinente pour pouvoir généraliser de manière systématique aux change-
ments hors distribution. Dans le deuxième article, nous avons proposé une architecture
qui synchronise les connaissances entre ces différents modules par rapport à l’utilisation
d’interactions par paires dominantes dans les architectures d’apprentissage automatique.

Dans le troisième article, nous proposons un objectif théorique de l’information qui permet
d’apprendre des politiques modulaires de manière complètement décentralisée.

Dans le quatrième article, nous explorons un paradigme alternatif dans lequel nous formons
un réseau pour mapper un ensemble de données d’expériences passées à un comportement
optimal. Plus précisément, nous augmentons un agent RL avec un processus de récupération
(paramétré comme un réseau de neurones) qui a un accès direct à un ensemble de données
d’expériences. Cet ensemble de données peut provenir des expériences passées de l’agent, de
démonstrations d’experts ou de toute autre source pertinente. Le processus de récupération
est formé pour récupérer des informations de l’ensemble de données qui peuvent être utiles
dans le contexte actuel, pour aider l’agent à atteindre son objectif plus rapidement et plus
efficacement.

Mots-clés: Apprentissage en profondeur, traitement du langage naturel, apprentissage
des représentations, modèles génératifs, modélisation du langage
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Summary

Current neural networks achieve state-of-the-art results across a range of challenging problem
domains. Given enough data, and computation, current neural networks can achieve human-
level results on mostly any task. In the sense, that we have been able to train specialists
that can perform a particular task really well whether it’s the game of GO, playing Atari
games, Rubik’s cube manipulation, image caption or drawing images given captions. The
next challenge for AI is to devise methods to train generalists that when exposed to multiple
tasks during training can quickly adapt to new unknown tasks. Without any assumptions
about the data generating distribution it may not be possible to achieve better generalization
and adaption to new (unknown) tasks.

A fascinating possibility is that human and animal intelligence could be explained by
a few principles (rather than an encyclopedia). If that was the case, we could more easily
both understand our own intelligence and build intelligent machines. Just like in physics,
the principles themselves would not be sufficient to predict the behavior of complex systems
like brains, and substantial computation might be needed to simulate human intelligence. In
addition, we know that real brains incorporate some detailed task-specific a priori knowledge
which could not fit in a short list of simple principles. So we think of that short list rather as
explaining the ability of brains to learn and adapt efficiently to new environments, which is
a great part of what we need for AI. If that simplicity of principles hypothesis was correct
it would suggest that studying the kind of inductive biases (another way to think about
principles of design and priors, in the case of learning systems) that humans and animals
exploit could help both clarify these principles and provide inspiration for AI research.

Deep learning already exploits several key inductive biases, and my work considers a
larger list, focusing on those which concern mostly higher-level cognitive processing. My work
focuses on designing such models by incorporating in them strong but general assumptions
(inductive biases) that enable high-level reasoning about the structure of the world. This
research program is both ambitious and practical, yielding concrete algorithms as well as
a cohesive vision for long-term research towards generalization in a complex and changing
world. My work explores the topics of:

• Cognitively Informed AI: Incorporating insights as to how humans process visual
information and exploit the structure of the world into the design of AI architectures
and machine learning methods.

• Causal Representation Learning: Integrating ideas from causality into deep
networks to make improvements in out-of-distribution generalization more theoretically
grounded and mathematically rigorous.

In order to make a transition from specialists to generalists, it’s important to think about
how an agent reuse, recompose and recombine information across tasks. A dominant paradigm
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in modern reinforcement learning (RL) is to learn general purpose behaviour rules from the
agent’s past experiences. These rules are typically represented in the weights of a parametric
policy or value function network model. One can achieve transfer via representation of skills,
through models of the system dynamics and through raw data. My thesis explore these
different ways to achieve transfer by incorporating general inductive biases for exploiting the
structure of the world.

In the first article, we show how decomposing knowledge into interchangeable pieces
promises a generalization advantage when there are changes in distribution. A learning
agent interacting with its environment is likely to be faced with situations requiring novel
combinations of existing pieces of knowledge. We hypothesize that such a decomposition
of knowledge is particularly relevant for being able to generalize in a systematic manner
to out-of-distribution changes. In the second article, we proposed an architecture which
synchronizes knowledge among these different modules as compared to using pair-wise
interactions dominant in machine learning architectures.

In the third article, we propose an information theoretic objective that allows one to learn
modular policies in a completely decentralized fashion.

In the fourth article, we explore an alternative paradigm in which we train a network
to map a dataset of past experiences to optimal behavior. Specifically, we augment an RL
agent with a retrieval process (parameterized as a neural network) that has direct access to
a dataset of experiences. This dataset can come from the agent’s past experiences, expert
demonstrations, or any other relevant source. The retrieval process is trained to retrieve
information from the dataset that may be useful in the current context, to help the agent
achieve its goal faster and more efficiently.

Keywords: Deep Learning, Natural Language Processing, Representation Learning,
Generative Models, Language Modeling
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Chapter 1

Introduction

1.1. Introduction
Is 100% accuracy on the test set enough? Many machine learning systems have achieved

excellent accuracy across a variety of tasks (Deng et al., 2009; Mnih et al., 2013; Schrittwieser
et al., 2019), yet the question of whether their reasoning or judgement is correct has come under
question, and answers seem to be wildly inconsistent, depending on the task, architecture,
training data, and interestingly, the extent to which test conditions match the training
distribution. Have the main principles required for deep learning to achieve human-level
performance been discovered, with the main remaining obstacle being to scale up? Or do we
need to follow a completely different research direction not built on the principles discovered
with deep learning, in order to achieve the kind of cognitive competence displayed by humans?
Our goal here is to better understand the gap between current deep learning and human
cognitive abilities so as to help answer these questions and suggest research directions for
deep learning with the aim of bridging the gap towards human-level AI. Our main hypothesis
is that deep learning succeeded in part because of a set of inductive biases (preferences,
priors or assumptions), but that additional ones should be included in order to go from good
in-distribution generalization in highly supervised learning tasks (or where strong and dense
rewards are available), such as object recognition in images, to strong out-of-distribution
generalization and transfer learning to new tasks with low sample complexity (few examples
needed to generalize well). To make that concrete, we consider some of the inductive biases
humans may exploit in conscious thought using highly sequential cognition operating at the
level of conscious processing, and review some early work exploring these “high-level cognitive
inductive priors” in deep learning. We use the term high-level to talk about variables that
are manipulated at the conscious level of processing and are thus generally verbalizable.
However, humans can consciously focus attention on low-level or intermediate-level features,
e.g., by describing an odd-coloured pixel, not just very abstract concepts like objects or
social situations. We argue that the deep learning progression from MLPs to convnets to
transformers has in many ways been an (incomplete) progression towards the original goals
of deep learning, i.e., to enable the discovery of a hierarchy of representations, with the
most abstract ones, often associated with language, at the top. Note however, that although
language may give us a view on system 2, these abilities are likely to pre-exist language as
there is evidence of surprisingly strong forms of on-the-fly reasoning in some non-human
animals, like corvids (Taylor et al., 2009). Our arguments suggest that while deep learning
brought remarkable progress, it needs to be extended in qualitative and not just quantitative



ways: larger and more diverse datasets and more computing resources (Brown et al., 2020) are
important but insufficient without additional inductive biases (Vaswani et al., 2017; He et al.,
2016; Gilmer et al., 2017; Shazeer et al., 2017; Fedus et al., 2021a; Hinton, 2021; Welling, 2019;
Dosovitskiy et al., 2020; Battaglia et al., 2018). We make the case that evolutionary forces,
the interactions between multiple agents, the non-stationary and competition systems put
pressure on the learning machinery to achieve the kind of flexibility, robustness and ability
to adapt quickly which humans seem to have when they are faced with new environments
(Bansal et al., 2017; Liu et al., 2019; Baker et al., 2019; Leibo et al., 2019) but needs to be
improved with deep learning. The sought-after inductive biases should thus especially help AI
to progress on these fronts. In addition to thinking about the learning and sample complexity
advantage of these inductive biases, this paper links them with knowledge representation
in neural networks, with the idea that by decomposing knowledge into its stable parts (like
causal mechanisms) and volatile parts (random variables), and factorizing knowledge in
small and somewhat independent pieces that can be recomposed dynamically as needed (to
reason, imagine or explain at an explicit and verbalizable level), one may achieve the kind of
systematic generalization which humans enjoy and is common in natural language (Marcus,
1998, 2019; Lake & Baroni, 2017; Bahdanau et al., 2018; McClelland et al., 1987).

This thesis is based on the following publications:

Knowledge Decomposition and Modularity

• Inductive biases od deep learning for higher level cognition: Anirudh Goyal, Yoshua
Bengio, arXiv:2011.15091.

• Recurrent Independent Mechanisms: Anirudh Goyal, Alex Lamb, Jordan Hoffmann,
Shagun Sodhani, Sergey Levine, Bernhard Schölkopf, Yoshua Bengio, arXiv:1909.10893
(ICLR’21).

• Object Files and Schemata: Factorizing Declarative and Procedural Knowledge in
Dynamical Systems: Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe
Beaudoin, Sergey Levine, Charles Blundell, Yoshua Bengio, Michael Mozer,
arXiv:2006.16225 (ICLR’21).

• Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Net-
works with Attention over Modules: Sarthak Mittal, Alex Lamb, Anirudh Goyal,
Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael Mozer, Yoshua Bengio,
(ICML’20).

• Neural Production Systems: Learning Rule-Governed Visual Dynamics: Anirudh
Goyal, Aniket Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin,
Nicolas Heess, Michael Mozer, Yoshua Bengio, arXiv:2103.01937 (NeurIPS’21).

• Coordination Among Neural Modules Through a Shared Global Workspace: Anirudh
Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim
Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, Yoshua Bengio,
arXiv:2103.01197 (ICLR’22).

• Discrete Valued Neural Communication: Dianbo Liu, Alex Lamb, Kenji Kawaguchi,
Anirudh Goyal, Chen Sun, Michael Curtis Mozer, Yoshua Bengio, arXiv:2107.02367
(NeurIPS’21).

• Fast and slow learning of Recurrent Independent Mechanisms: Kanika Madan,
Nan Rosemary Ke, Anirudh Goyal, Bernhard Schölkopf, Yoshua Bengio,
arXiv:2105.08710 (ICLR’21).
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• Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding:
Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Michael C.
Mozer, Chris Pal, Yoshua Bengio, arXiv:1809.03702 (NeurIPS’17).

Deep Learning and Causality

• A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms: Yoshua
Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa
Bilaniuk, Anirudh Goyal, Christopher Pal, arXiv: 1901.10912 (ICLR’20).

• Learning Neural Causal Models from Unknown Interventions: Nan Rosemary Ke,
Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Chris Pal, Yoshua
Bengio, arXiv:1910.01075.

• Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement
Learning: Nan Rosemary Ke, Aniket Didolkar, Sarthak Mittal, Anirudh Goyal,
Guillaume Lajoie, Stefan Bauer, Danilo Rezende, Yoshua Bengio, Michael Mozer,
Christopher Pal, arXiv:2107.00848 (NeurIPS’21).

• CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning: Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander
Neitz, Yoshua Bengio, Bernhard Schölkopf, Manuel Wüthrich, Stefan Bauer,
arXiv:2010.04296 (ICLR’21).

Information bottleneck and Reinforcement Learning

• InfoBot: Transfer and Exploration via the Information Bottleneck: Anirudh Goyal,
Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo Larochelle,
Sergey Levine, Yoshua Bengio, arXiv:1901.10902 (ICLR’19).

• The Variational Bandwidth Bottleneck: Stochastic Evaluation on an Information
Budget: Anirudh Goyal, Yoshua Bengio, Matthew Botvinick, Sergey Levine, arXiv:
2004.11935 (ICLR’20).

• Reinforcement Learning with Competitive Ensembles of Information-Constrained
Primitives: Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng,
Sergey Levine, Yoshua Bengio, arXiv:1906.10667 (ICLR’20).

• Retrieval-Augmented Reinforcement Learning: Anirudh Goyal, Abram L. Friesen,
Andrea Banino, Theophane Weber, Nan Rosemary Ke, Adria Puigdomenech Badia,
Arthur Guez, Mehdi Mirza, Peter C. Humphreys, Ksenia Konyushkova, Laurent Sifre,
Michal Valko, Simon Osindero, Timothy Lillicrap, Nicolas Heess, Charles Blundell,
arXiv:2202.08417 (ICML’22).

1.2. Thesis Overview
The thesis contains 4 representative articles from the above list that focus on knowledge

factorization and generalization in deep learning and deep reinforcement learning. This thesis
is organized in the following unusual way, due to the large number of papers to be covered.
The first substantive part of this document (chapter 2) contains a review of my proposed
research area (inductive biases for deep learning of higher level cognition), an overview of
the main contributions of the above papers, as well as a vision of proposed future research.
It is written as a position paper which could stand on its own and a version of it is posted
on arXiv (co-authored by Yoshua Bengio and myself) and accepted for publication. The
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next four chapters are four of the above papers whose contributions we believe to be more
significant and central to the thesis, going in more details in some of the key ideas and have
the more usual format of a machine learning conference paper.

Chapter 5 presents an architectural bias for promoting systematic generalization by
factorizing knowledge into variables and rules, such that one can reuse information about
rules across variables as long as type of variables matches the type of input a particular rule
expects.

Chapter 9 explores the use of information bottleneck for learning policy primitives in a
completely decentralized fashion.

Chapter 11 presents an architecture where RL agent is augmented with the retrieval
process parameterized as a neural network. The goal of the retrieval process is to provide
contextual information relevant to the RL agent from a large database.

Chapter 12 presents an overall conclusion of the contributions in this thesis.

1.3. Probabilistic Machine Learning
Machine learning systems are able to make predictions or produce actions by automatically

learning from data and experience. Mitchell et al. (1997) define a learning machine as an
algorithm that improves with experience on a particular task, given a certain performance
measure to evaluate the system. In this thesis, we are interested in questions of how machine
learning systems can generalize either when trained with limited data or limited task diversity.

We often assume the ability to independently sample a certain finite number of datapoints
from the same unknown data distribution. Some of that data is partitioned for our systems
to learn on and the rest is reserved for testing how it generalizes on unseen examples.
Generalizing to data drawn from the same distribution is a fairly common evaluation setup
used in most machine learning systems. Most theoretical guarantees on the generalization
properties of machine learning systems have required this assumption. This is however being
questioned more as our systems do not generalize systematically and perform poorly when
dealing with out-of-distribution data. For the sake of this introduction however, we will focus
on the case where our data is independent and identically distributed (iid), which means that
both training data and test cases are assumed to come from the same distribution.

1.3.1. Supervised Learning

Supervised Learning serves as the fundamental framework for most of the work in this
thesis and much of machine learning research as a whole. It consists of learning to predict
output targets from inputs given a labeled dataset of input/output pairs, where all pairs are
assumed to be sampled uniformly from an unknown distribution. An appealing aspect of
supervised learning is that the learned model’s accuracy on held-out samples is an objective
measure of success. Additionally, the correct outputs for the model are provided in the
dataset, which makes credit assignment relatively straightforward. Compare this to playing a
video game, where the correct actions are never given to the player.

Some examples of supervised learning include image classification (where the image is the
input and the class label is the output) and speech recognition (where the speech signal is
the input and the corresponding text is the output).

The goal of supervised learning is to learn a function fθ which maps an example’s input to
its output. These functions fθ map a d-dimensional, typically real-valued vector input x ∈ R

d

from the space of possible inputs X to a discrete scalar output label y from the space of k
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possible outputs Y . We assume our data comes from an unknown joint probability distribution
over inputs and outputs p(x, y) where x ∈ X and y ∈ Y and we would like to learn a function
fθ : R

d → R
k that maps X to an estimate of some statistic of P (Y |X), like the probability

itself or E[Y |X]. We observe examples from this distribution ((x1, y1) . . . (xN, yN)). The
subscript θ is used to indicate that our function is parameterized. This doesn’t always have
to be the case, and there exist “non-parameteric” models in machine learning, but in the
context of this thesis that focuses on neural networks, we are interested in learning parametric
functions. There are many possible functions that can map from X to a distribution over
Y , but we are often interested in learning one that makes as few mistakes as possible. We
define a loss function L(ŷ, y) that measures the penalty incurred when classifying y as ŷ and
we try to optimize fθ to minimize this loss given a finite amount of data. We can use this
loss to define the empirical risk associated with a particular function as the expected loss

over the entire training set Remp(X, Y, fθ) =
1
N

N∑
i=1

L(fθ(xi), yi). Empirical Risk Minimization

(ERM) tries to find argminf∈F Remp(f). However, for a given dataset, there may be many
functions f ∈ F in the hypothesis space, that achieve the same or even 0 empirical risk on
the training data subset, but generalize poorly to unseen examples. In such cases, we want
to bias our learners to certain solutions that may have better generalization properties such
as those with low parameter norms with L1/L2 regularization, with max-margin methods
(?), or by using dropout (Srivastava et al., 2014).

In the case where we want to do probabilistic classification, fθ(x) outputs a probability
distribution over possible class labels and the loss function used is typically the negative
log-likelihood of the correct class − log qθ(Y = y|x) = − log fθ,y((x)), where fθ,y() is the
y-th output element of the vector fθ(x) containing all the output probabilities. Intuitively,
we wish to maximize the probability the model assigns to the correct class, and the use
of the log causes a very high loss when a small probability is assigned to the correct class.
The frequentist approach to parameter estimation termed Maximum Likelihood Estima-
tion (MLE) seeks a setting of parameters that maximizes the likelihood of the observed
data. This decomposes into a product over the examples in the case where their condi-
tional distributions are independent and identically distributed (the i.i.d. assumption):

qθ(Y |X) =
N∏
i=1

qθ(yi|xi). Since the logarithm is a monotonically increasing function, we

can maximize the log qθ(y1, y2, . . . , yN |x1,x2, . . . ,xN) and break the product into a bunch of

sums log qθ(y1, y2, . . . , yN |x1,x2, . . . ,xN) =
N∑
i=1

log qθ(yi|xi). To turn it into a minimization

problem, we can minimize the negative log-likelihood of the data, showing that empirical risk
minimization (ERM) with the negative log-likelihood loss corresponds to maximum-likelihood
estimation of the parameters of the model. At inference/test time, if we want to choose one
of the labels, the model would output argmaxỹ qθ(ỹ|xi). However, the output probability
distribution also gives us other information, such as the uncertainty in the output, which can
be represented by the entropy of qθ(yi|xi).

1.3.2. Distributions and Likelihood

So far, we have discussed generative modeling in qualitative terms. We want models which
can simulate from the dynamics of the world. We want models that can synthesize realistic
looking data. However, before going further it is useful to understand the probabilistic
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interpretation of generative models, which gives a formal framework for studying generative
models. The essential idea is that we treat observations from the world as samples from a
distribution x, y ∼ p(x, y). For example, we could consider the distribution over all human
faces which can occur in reality to be p(x) and consider each face as a sample with an
associated label y ∼ p(y|x). If we have access to a recorded dataset (for example a set of
faces), we may also choose to treat these points as a finite collection of samples from this
distribution.

At the same time, we can interpret our generative model as an estimating distribution
qθ(y|x), which is described by a set of parameters θ. Then we can frame generative modeling as
trying to ensure that p(y|x) and qθ(y|x) become as similar as possible. Statistical divergences
give a natural mathematical framework for this. A divergence is a function D(p||q) : S×S → R
taking two distributions p and q over a space of distributions S as inputs, with the properties:

D(p||q) ≥ 0.0 (1.1)
D(p||q) = 0.0 ⇐⇒ p = q (1.2)

Notably, there is no symmetry assumption, so in general D(p||q) 	= D(q||p). The proba-
bilistic approach to generative modeling frames learning as an optimization problem where
the loss corresponds to a given divergence.

L(θ) = argmin
θ

D(p(y|x)||qθ(y|x)). (1.3)

1.3.3. Maximum Likelihood and KL-Divergence

We will now present the classical result showing how minimizing KL-divergence can be
applied to the supervised learning setting introduced previously. In particular, we assume
the ability to sample from p(x, y) and wish to learn qθ(y|x).

What is the right algorithm for finding a distribution qθ(y|x) which minimizes a divergence
between itself and p(y|x)? Before selecting the type of divergence to minimize, a natural
question is to consider what types of expressions we are capable of optimizing, and work
backwards to find a suitable divergence. In general, we only have access to samples from the
distribution p(x, y) and not any additional information about the distribution. At the same
time, qθ(y|x) is a model that we control, so it’s reasonable to believe that we’ll be able to
design it so that it has a density that we can compute as well as the ability to draw samples.

The KL-divergence can be rewritten as an expression in which the only term that depends
on the parameters is an expectation involving qθ(y|x) over samples from p(x, y). Beginning
with two distributions p(x, y) (the empirical distribution) and qθ(y|x) (the model distribution),
we write the KL-divergence:
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DKL(p(y|x)||qθ(y|x)) = E
x∼p(x)

[∫
p(y|x) log p(y|x)dy −

∫
p(y|x) log qθ(y|x)dy

]
(1.4)

= E
x∼p(x)

∫
p(y|x) log p(y|x)

qθ(y|x)
dy (1.5)

= E
x,y∼p(x,y)

[
log

p(y|x)
qθ(y|x)

]
(1.6)

= E
x,y∼p(x,y)

[log p(y|x)− log qθ(y|x)] (1.7)

= Hp(y|x)− E
x,y∼p(x,y)

[log qθ(y|x)] (1.8)

Then we can show the maximum likelihood estimation for a set of N data points.

θ∗ = argmax
θ

N∏
i=1

qθ(yi|xi) (1.9)

= argmax
θ

N∑
i=1

log qθ(yi|xi) (1.10)

= argmin
θ

1

N

N∑
i=1

− log qθ(yi|xi) (1.11)

∼= argmin
θ

E
xi,yi∼p(x,y)

[− log qθ(y|x)] (1.12)

The objective for maximum likelihood is to maximize the log-density log(qθ(y|x)) over
real data points sampled from the distribution p(x, y). It can be written as:

DKL(p(y|x)||q(y|x)) = Ex∼p(x)

[∫
p(y|x) log p(y|x)dy −

∫
p(y|x) log qθ(y|x)dy

]
= −H(p(y|x)) + CE(p(y|x), qθ(y|x))

Thus we can see that the KL-divergence decomposes into two terms in Eq. 2.3.3: a cross-
entropy term (likelihood) and a term for the entropy of the true data distribution. Because
the entropy of the true data distribution doesn’t depend on the estimator, the KL-divergence
can be minimized by maximizing likelihood. Another useful consequence of this is that
the entropy of the true data distribution can be estimated by such a generative model if it
maximizes likelihood among all possible distributions, i.e., qθ = p, the KL-divergence is 0 and
the cross-entropy equals the entropy.

1.3.4. ERM and probabilistic framing of the learning problem

The empirical risk minimization objective corresponds to minimizing a loss function of
interest over a set of examples x with labels y sampled from a generally unknown distribution
p(x, y)
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θ∗ = argmin
θ

∑
x,y∼p(x,y)

L(y, f(x)) (1.13)

in the hope of obtaining a function with low expected loss on examples from the same
distribution. A special case of empirical risk minimization is the maximum likelihood
objective. Essentially, it can be shown that maximizing a model’s likelihood on some data
distribution is equivalent to minimizing an expectation of loss over samples from the empirical
data distribution (which is non-zero only on the data points), which can then be empirically
estimated with a sum over examples. The objective for maximum likelihood is maximizing
the log-density log(qθ(x)) over real data points sampled from the distribution p(x). The
use of maximum likelihood training for generative models (such as sequence models) is an
unconditional generalization of the use of conditional maximum likelihood for supervised
learning.

1.3.5. Teacher Forcing

A specific variant of the maximum likelihood principle can be used for training sequence
models. This form of training is known as teacher forcing (Williams & Zipser, 1989), due to
the use of the ground-truth samples yt being fed back into the model to be conditioned on for
the prediction of later outputs. These fed back samples force the next-step-ahead predictions
to stay close to the specific ground-truth sequence being trained on. The teacher forcing
procedure can be formally justified by using the chain rule of probability. For example, in the
case of three variables, this factorization is: p(y1, y2, y3) = p(y3|y1, y2)p(y2|y1)p(y1), where we
see that we take the ground-truth samples (coming from the "teacher") as input, rather than
the predictions generated by the model itself.

When performing prediction, the ground-truth sequence is not available for conditioning
predictions and we sample from the joint distribution over the sequence by sampling each
yt from its conditional distribution given the previously generated samples. This procedure
can result in poor generation over long sequences as small prediction errors compound over
many steps of generation. This can lead to poor prediction performance as the sequence of
previously generated samples diverges from observed sequences seen during training.

1.4. Neural Architectures
1.4.1. Deep Neural Networks

The simplest deep neural networks consist of multiple alternating layers which each consist
of a learnable linear projection followed by a (generally) fixed non-linearity:

hl
j = f

( dlin∑
i=1

Wl
ijh

l−1
i + bl

i

)
(1.14)

If we use matrix notation, we can remove the subscripts and simplify this expression to:

hl = f(Wlhl−1 + bl) (1.15)
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In the above equation, the non-linearity is referred to as f(). Many different non-linearities
have been shown to work well, but the ReLU non-linearity is simple and remains in wide
usage: f(a) = max(a, 0).

The necessity of the non-linearity is intriguing. Initially, we observe that any product
of multiple weight matrices can be equivalently written as a single weight matrix: W =
W1W2...Wn. Thus a deep network without the use of a non-linearity is no more expressive
than a linear model.

Neural networks with a single wide enough hidden layer are universal function approx-
imators, but the width of the hidden layer may need to be very large to handle complex
problems. Htad (1987) showed limited expressiveness for shallow networks.

1.4.2. Training Neural Networks with Backpropagation

In the simplest case, we want to train a neural network to minimize error on an i.i.d dataset
of examples ((x1, y1) . . . (xN , yN )). When using the negative log-likelihood loss function, ERM
corresponds to maximum-likelihood estimation of the parameters of the model. In this
section, we will discuss by far the most popular approach to training deep neural networks,
the backpropagation algorithm (Rumelhart et al., 1986a; Werbos, 1974).

This technique involves computing gradients of the network’s loss with respect to the
parameters ∂L

∂θ
, which can then be used to incrementally update θ in the direction which

locally reduces the loss:

θt = θt−1 − ε
∂L
∂θ

. (1.16)

This gradient descent algorithm is provably justified for convex optimization problems,
such as optimizing linear models with mean square error as the loss function. While neural
networks are generally non-convex, it has been found empirically that gradient descent can
still work well for a wide range of neural network architectures. However, this success depends
on the details of the architecture and the initialization scheme and is far from guaranteed.
For example, if a neural network is initialized with all parameters set to zero, the gradient
is zero, and training stagnates - so it is generally essential to initialize the network with
random-valued parameters.

A following question is how gradients can be computed for gradient descent. By far the
most popular algorithm for this is backpropagation, which is a special case of reverse-mode
automatic differentiation (for a review of automatic differentiation techniques we refer the
reader to Margossian (2019)). The backpropagation algorithm is the application of the
chain rule of calculus to neural networks. In its first stage, the gradient with respect to an
intermediate hidden layer is computed as: ∂L

∂hi
= ∂L

∂hi+1

∂hi+1

∂hi
, which can further be reduced to

multiplying by the transposed weight matrix and multiplying by the point-wise derivative
of the activation function. The gradient with respect to the weight matrices (and hence
parameters) can then be computed based on the hidden states and the gradients with respect
to the hidden states.

1.4.3. Stochastic Gradient Descent

On small datasets, it is often reasonable to compute the gradient across all the examples
in the dataset and use this full gradient for each update. However, for large datasets, this is
clearly sub-optimal, as the gradient on a small subset of the dataset may be very similar to
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the gradient on the full dataset. As a result, the number of updates done for a fixed amount
of computation would scale poorly in the size of the dataset. To illustrate this, we could
imagine that with our computation budget we are able to do N full gradient descent updates.
If we were to modify our dataset by duplicating every example K times, then we would only
be able to do N

K
updates, which eventually would shrink to be less than 1 (meaning that we’d

never do a single update). We can instead use a random subset of the examples to compute
an unbiased estimate of the gradient (referred to as a stochastic gradient). The model takes
many stochastic gradient steps to converge around a point estimate of the parameters that
achieves low error. The SGD update rule at step t for a parameter Wl, after seeing example
(x,y), can be written as

Wl
t = Wl

t−1 − α
∂L(x,y; θt−1)

∂Wl
t−1

(1.17)

Where we use a learning rate α to control how large of a step to take in the direction of
the gradient. α can be fixed over the course of training or changed adaptively as a function
of t. Often we want to decay α near the end of training (to approach the minimum closer)
and we also may want α to be small near the beginning of training to improve stability.

1.4.4. Recurrent Neural Networks

Another form of structure that can be added to deep neural networks involves applying
the same function to a hidden state multiple times. Such an architecture is called a Recurrent
Neural Network and the most basic variant can be written as: ht = F (ht−1, x, θ) where F is
our function parameterized by θ (Rumelhart et al., 1986a). This kind of repeated computation
could be significantly more parameter-efficient and could be useful in problems which require
multiple functionally similar processing steps.

We can generalize this further to consider an architecture in which a sequence of inputs x =
(x1, x2, . . . , xn) is transformed it into a sequence of vector representations h = (h1,h2, . . . ,hn).
We use subscripts to denote the position of an element within the sequence. This more
general form of recurrent neural network can be written as: ht = F (ht−1,xt, θ). In this setup,
each step in the repeated computation is provided with a single position in an input sequence.
This is a widely used architecture for processing time series or other sequences such as text
and audio.

A simple choice for the recurrent function F is to use a learned linear function of the
input and the hidden state followed by an elementwise non-linearity. We can then write this
as: ht = tanh(Wht−1+Uxt+b). This is parameterized by a recurrent weight matrix W and
input weight matrix U and a bias term b that are shared across time. If the inputs xi ∈ R

din

are continuous vector valued inputs, then U ∈ R
din×dhid and W ∈ R

dhid×dhid . The hidden
state of the recurrent network may then be processed by a linear layer or an MLP to produce
an output from the network, such as: yt = Wo2 tanh(Wo1ht)

Recurrent networks can be trained using backpropagation, in much the same way as
feedforward networks like MLPs are trained. These RNNs can be unrolled in time into a deep
feedforward model with shared weights and the same principles used to compute gradients
in Section 2.4.2 can be used while adding gradients across multiple positions to account for
weight sharing. This algorithm is commonly referred to as Backpropagation Through Time
(BPTT) (Rumelhart et al., 1986a; Werbos, 1990) due to its original usage for time-series, but
the concept applies to any type of sequential data.
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While exact gradients can be computed via backpropagation through time, the algorithm
has a significant challenge in practice. If we backpropagate gradients for T steps, then in
the absence of an activation function (the linear-RNN case), the backward gradient contains
a product with the term W occuring T times, which approximately scales as ||W ||T . If the
norm of W is larger than 1, the resulting gradient tends to be very large for even moderately
long time horizons. This is referred to colloquially as Exploding Gradients. If the norm of
||W || is smaller than 1, the resulting gradient will tend to be small, which is referred to as
Vanishing Gradients (Hochreiter, 1991b; Bengio et al., 1994b; Pascanu et al., 2013a). To
illustrate this problem more concretely, if we consider 200 time steps, then if the weight norm
is 1.05, the resulting ||W ||T is about 15000. If the weight norm is 0.95, the resulting ||W ||T
is about 10−5. So even if the weight norm is only slightly deviated from 1, the resulting
gradients are very badly scaled. Adding an activation function which has very small or zero
gradients at many points can help address the exploding gradient problem at the expense of
making the vanishing gradient problem more severe.

The simplest solution to this is Truncated Backpropagation through Time which simply
stops computing gradients after a certain number of steps K (even if we compute the
hidden state of the recurrent neural network for more than K steps). This clearly solves the
gradient scaling issue yet also means that the model fails to systematically learn Long Range
Dependencies (Bengio et al., 1994b; Pascanu et al., 2013a).

A simple way of reducing the impact of exploding gradients is gradient clipping, where
the magnitude of the gradients with respect to every parameter is clipped to a maximum
value (Pascanu et al., 2012). This is a poor solution in principle since it changes the expected
value of the gradients. However, if the gradients only occasionally become very large, this
gradient clipping strategy can prevent these very large gradients from ruining the progress of
the training algorithm.

A more practical and more widely used solution for addressing vanishing and exploding
gradients is to construct a recurrent neural network in which information is added into the
hidden state on each recurrent time step after passing through a Gating Function. Gated
recurrent networks were first presented in the form of the Long Short-Term Memory (LSTM)
architecture (Hochreiter & Schmidhuber, 1997a), which was simplified to the Gated-Recurrent
Unit (GRU) architecture (Cho et al., 2014).

The GRU introduces two gates zt = σ(Wzxt + Uzht−1) and rt = σ(Wrxt + Urht−1), which
both output a score from 0 to 1 for each unit. A pre-gated update value for the recurrent
state is computed as: h̃t = tanh(Wxt + U(rt 
 ht)). The update for the recurrent state is:
ht = (1− zt)ht−1 + zth̃t. Intuitively, zt controls whether each unit keeps its value from the
previous time-step or takes an updated value. rt controls which units are used to compute
that updated value for the recurrent hidden state.

We can gain more insights into the training dynamics of the GRU when zt and rt are
saturated. If we always have zt = 1 and rt = 1, then the GRU becomes identical to a vanilla
RNN, and it has the exact same training dynamics and resulting instabilities. On the other
hand, when zt = 0, then ht = ht−1 and the gradient is passed backward without modification.
When rt = 0, we can make updates to the hidden state but only using the input and an
additive dependence on the previous hidden state (weighted by zt). For example if zt = 0.5
and rt = 0, the GRU behaves as an additive integrator of a non-linear function of the input
value: tanh(Wxt).

The resulting parameter gradients from a GRU network can still be an exponential of
||W ||, but it is no longer simply ||W ||T . Rather, it depends on the value of zt and rt, with

11



lower values for these gates making the gradient less sensitive to the value of ||W ||. Intuitively,
if a unit is only relevant on a small number of time steps and the computation between units
is well-separated (the latter is unlikely to exactly hold in practice), then the gradient for that
unit may effectively only go through a few applications of the recurrent weight matrix. For
this reason, these gated recurrent networks tend to be fairly stable to train on sequences of
substantial length (thousands of time steps), although if all the gates are saturated to 1 then
it can still suffer from vanishing or exploding gradients, so gradient clipping can help if this
saturated condition occurs infrequently.

1.4.5. Attention

Attention (as it is most widely used in deep learning) was introduced for the purpose of
improving the capture of long-range dependencies and reducing the information bottleneck in
sequence models (Bahdanau et al., 2014). The essential idea is to learn an input-dependent
weighting to directly control how information is shared between pairs of positions. This can
improve long-range dependencies by allowing information to directly flow from a distant
position, rather than being preserved across many steps by a gated recurrent network. It can
reduce the bottleneck by allowing a position to depend on many other positions, rather than
the single most recent recurrent hidden state.

The most general interface for attention considers three matrices (each consisting of
multiple positions each with its own representation vector) as input: queries Q ∈ RNq×dq ,
keys K ∈ RNk×dq , and values V ∈ RNk×dv . The basic concept of attention (Bahdanau et al.,
2014) is that by taking the dot product of all combinations of position-vectors in Q and
K will yield a matrix of affinities α ∈ RNq×Nk between the queries and keys. This is then
normalized such that every querying position 1, 2, ..., Nq will have an affinity over the keys
which sums to 1, which is accomplished using a softmax function. This normalized affinity
score is then multiplied by V (effectively weighting over positions in V ) to yield an output
matrix A ∈ Nq × dv.

Attention can be used to complement a gated recurrent network (Bahdanau et al., 2014),
by allowing information to flow between distant positions. Vaswani et al. (2017) found that
attention can be used in the absence of any recurrent architecture in the Transformer. This
has a significant scaling advantage since it removes the sequential processing between positions
required for recurrent networks. At the same time, a single layer of attention has much weaker
processing capabilities compared to a single recurrent layer, so Transformers typically require
many attention layers to achieve good performance. Additionally, the attention operation
is permutation invariant, so ordering information needs to be provided through position
encoding (either sinusoids with different periods or separate learned parameters per position).
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Chapter 2

Introduction

2.1. Introduction
Is 100% accuracy on the test set enough? Many machine learning systems have achieved

excellent accuracy across a variety of tasks (Deng et al., 2009; Mnih et al., 2013; Schrittwieser
et al., 2019), yet the question of whether their reasoning or judgement is correct has come under
question, and answers seem to be wildly inconsistent, depending on the task, architecture,
training data, and interestingly, the extent to which test conditions match the training
distribution. Have the main principles required for deep learning to achieve human-level
performance been discovered, with the main remaining obstacle being to scale up? Or do we
need to follow a completely different research direction not built on the principles discovered
with deep learning, in order to achieve the kind of cognitive competence displayed by humans?
Our goal here is to better understand the gap between current deep learning and human
cognitive abilities so as to help answer these questions and suggest research directions for
deep learning with the aim of bridging the gap towards human-level AI. Our main hypothesis
is that deep learning succeeded in part because of a set of inductive biases (preferences,
priors or assumptions), but that additional ones should be included in order to go from good
in-distribution generalization in highly supervised learning tasks (or where strong and dense
rewards are available), such as object recognition in images, to strong out-of-distribution
generalization and transfer learning to new tasks with low sample complexity (few examples
needed to generalize well). To make that concrete, we consider some of the inductive biases
humans may exploit in conscious thought using highly sequential cognition operating at the
level of conscious processing, and review some early work exploring these “high-level cognitive
inductive priors” in deep learning. We use the term high-level to talk about variables that
are manipulated at the conscious level of processing and are thus generally verbalizable.
However, humans can consciously focus attention on low-level or intermediate-level features,
e.g., by describing an odd-coloured pixel, not just very abstract concepts like objects or
social situations. We argue that the deep learning progression from MLPs to convnets to
transformers has in many ways been an (incomplete) progression towards the original goals
of deep learning, i.e., to enable the discovery of a hierarchy of representations, with the
most abstract ones, often associated with language, at the top. Note however, that although
language may give us a view on system 2, these abilities are likely to pre-exist language as
there is evidence of surprisingly strong forms of on-the-fly reasoning in some non-human
animals, like corvids (Taylor et al., 2009). Our arguments suggest that while deep learning
brought remarkable progress, it needs to be extended in qualitative and not just quantitative



ways: larger and more diverse datasets and more computing resources (Brown et al., 2020) are
important but insufficient without additional inductive biases (Vaswani et al., 2017; He et al.,
2016; Gilmer et al., 2017; Shazeer et al., 2017; Fedus et al., 2021a; Hinton, 2021; Welling, 2019;
Dosovitskiy et al., 2020; Battaglia et al., 2018). We make the case that evolutionary forces,
the interactions between multiple agents, the non-stationary and competition systems put
pressure on the learning machinery to achieve the kind of flexibility, robustness and ability
to adapt quickly which humans seem to have when they are faced with new environments
(Bansal et al., 2017; Liu et al., 2019; Baker et al., 2019; Leibo et al., 2019) but needs to be
improved with deep learning. The sought-after inductive biases should thus especially help AI
to progress on these fronts. In addition to thinking about the learning and sample complexity
advantage of these inductive biases, this paper links them with knowledge representation
in neural networks, with the idea that by decomposing knowledge into its stable parts (like
causal mechanisms) and volatile parts (random variables), and factorizing knowledge in
small and somewhat independent pieces that can be recomposed dynamically as needed (to
reason, imagine or explain at an explicit and verbalizable level), one may achieve the kind of
systematic generalization which humans enjoy and is common in natural language (Marcus,
1998, 2019; Lake & Baroni, 2017; Bahdanau et al., 2018; McClelland et al., 1987).

This thesis is based on the following publications:

Knowledge Decomposition and Modularity

• Inductive biases od deep learning for higher level cognition: Anirudh Goyal, Yoshua
Bengio, arXiv:2011.15091.

• Recurrent Independent Mechanisms: Anirudh Goyal, Alex Lamb, Jordan Hoffmann,
Shagun Sodhani, Sergey Levine, Bernhard Schölkopf, Yoshua Bengio, arXiv:1909.10893
(ICLR’21).

• Object Files and Schemata: Factorizing Declarative and Procedural Knowledge in
Dynamical Systems: Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe
Beaudoin, Sergey Levine, Charles Blundell, Yoshua Bengio, Michael Mozer,
arXiv:2006.16225 (ICLR’21).

• Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Net-
works with Attention over Modules: Sarthak Mittal, Alex Lamb, Anirudh Goyal,
Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael Mozer, Yoshua Bengio,
(ICML’20).

• Neural Production Systems: Learning Rule-Governed Visual Dynamics: Anirudh
Goyal, Aniket Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin,
Nicolas Heess, Michael Mozer, Yoshua Bengio, arXiv:2103.01937 (NeurIPS’21).

• Coordination Among Neural Modules Through a Shared Global Workspace: Anirudh
Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim
Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, Yoshua Bengio,
arXiv:2103.01197 (ICLR’22).

• Discrete Valued Neural Communication: Dianbo Liu, Alex Lamb, Kenji Kawaguchi,
Anirudh Goyal, Chen Sun, Michael Curtis Mozer, Yoshua Bengio, arXiv:2107.02367
(NeurIPS’21).

• Fast and slow learning of Recurrent Independent Mechanisms: Kanika Madan,
Nan Rosemary Ke, Anirudh Goyal, Bernhard Schölkopf, Yoshua Bengio,
arXiv:2105.08710 (ICLR’21).

14



• Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding:
Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Michael C.
Mozer, Chris Pal, Yoshua Bengio, arXiv:1809.03702 (NeurIPS’17).

Deep Learning and Causality

• A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms: Yoshua
Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa
Bilaniuk, Anirudh Goyal, Christopher Pal, arXiv: 1901.10912 (ICLR’20).

• Learning Neural Causal Models from Unknown Interventions: Nan Rosemary Ke,
Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Chris Pal, Yoshua
Bengio, arXiv:1910.01075.

• Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement
Learning: Nan Rosemary Ke, Aniket Didolkar, Sarthak Mittal, Anirudh Goyal,
Guillaume Lajoie, Stefan Bauer, Danilo Rezende, Yoshua Bengio, Michael Mozer,
Christopher Pal, arXiv:2107.00848 (NeurIPS’21).

• CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning: Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander
Neitz, Yoshua Bengio, Bernhard Schölkopf, Manuel Wüthrich, Stefan Bauer,
arXiv:2010.04296 (ICLR’21).

Information bottleneck and Reinforcement Learning

• InfoBot: Transfer and Exploration via the Information Bottleneck: Anirudh Goyal,
Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo Larochelle,
Sergey Levine, Yoshua Bengio, arXiv:1901.10902 (ICLR’19).

• The Variational Bandwidth Bottleneck: Stochastic Evaluation on an Information
Budget: Anirudh Goyal, Yoshua Bengio, Matthew Botvinick, Sergey Levine, arXiv:
2004.11935 (ICLR’20).

• Reinforcement Learning with Competitive Ensembles of Information-Constrained
Primitives: Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng,
Sergey Levine, Yoshua Bengio, arXiv:1906.10667 (ICLR’20).

• Retrieval-Augmented Reinforcement Learning: Anirudh Goyal, Abram L. Friesen,
Andrea Banino, Theophane Weber, Nan Rosemary Ke, Adria Puigdomenech Badia,
Arthur Guez, Mehdi Mirza, Peter C. Humphreys, Ksenia Konyushkova, Laurent Sifre,
Michal Valko, Simon Osindero, Timothy Lillicrap, Nicolas Heess, Charles Blundell,
arXiv:2202.08417 (ICML’22).

2.2. Thesis Overview
The thesis contains 4 representative articles from the above list that focus on knowledge

factorization and generalization in deep learning and deep reinforcement learning. This thesis
is organized in the following unusual way, due to the large number of papers to be covered.
The first substantive part of this document (chapter 2) contains a review of my proposed
research area (inductive biases for deep learning of higher level cognition), an overview of
the main contributions of the above papers, as well as a vision of proposed future research.
It is written as a position paper which could stand on its own and a version of it is posted
on arXiv (co-authored by Yoshua Bengio and myself) and accepted for publication. The
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next four chapters are four of the above papers whose contributions we believe to be more
significant and central to the thesis, going in more details in some of the key ideas and have
the more usual format of a machine learning conference paper.

Chapter 5 presents an architectural bias for promoting systematic generalization by
factorizing knowledge into variables and rules, such that one can reuse information about
rules across variables as long as type of variables matches the type of input a particular rule
expects.

Chapter 9 explores the use of information bottleneck for learning policy primitives in a
completely decentralized fashion.

Chapter 11 presents an architecture where RL agent is augmented with the retrieval
process parameterized as a neural network. The goal of the retrieval process is to provide
contextual information relevant to the RL agent from a large database.

Chapter 12 presents an overall conclusion of the contributions in this thesis.

2.3. Probabilistic Machine Learning
Machine learning systems are able to make predictions or produce actions by automatically

learning from data and experience. Mitchell et al. (1997) define a learning machine as an
algorithm that improves with experience on a particular task, given a certain performance
measure to evaluate the system. In this thesis, we are interested in questions of how machine
learning systems can generalize either when trained with limited data or limited task diversity.

We often assume the ability to independently sample a certain finite number of datapoints
from the same unknown data distribution. Some of that data is partitioned for our systems
to learn on and the rest is reserved for testing how it generalizes on unseen examples.
Generalizing to data drawn from the same distribution is a fairly common evaluation setup
used in most machine learning systems. Most theoretical guarantees on the generalization
properties of machine learning systems have required this assumption. This is however being
questioned more as our systems do not generalize systematically and perform poorly when
dealing with out-of-distribution data. For the sake of this introduction however, we will focus
on the case where our data is independent and identically distributed (iid), which means that
both training data and test cases are assumed to come from the same distribution.

2.3.1. Supervised Learning

Supervised Learning serves as the fundamental framework for most of the work in this
thesis and much of machine learning research as a whole. It consists of learning to predict
output targets from inputs given a labeled dataset of input/output pairs, where all pairs are
assumed to be sampled uniformly from an unknown distribution. An appealing aspect of
supervised learning is that the learned model’s accuracy on held-out samples is an objective
measure of success. Additionally, the correct outputs for the model are provided in the
dataset, which makes credit assignment relatively straightforward. Compare this to playing a
video game, where the correct actions are never given to the player.

Some examples of supervised learning include image classification (where the image is the
input and the class label is the output) and speech recognition (where the speech signal is
the input and the corresponding text is the output).

The goal of supervised learning is to learn a function fθ which maps an example’s input to
its output. These functions fθ map a d-dimensional, typically real-valued vector input x ∈ R

d

from the space of possible inputs X to a discrete scalar output label y from the space of k
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possible outputs Y . We assume our data comes from an unknown joint probability distribution
over inputs and outputs p(x, y) where x ∈ X and y ∈ Y and we would like to learn a function
fθ : R

d → R
k that maps X to an estimate of some statistic of P (Y |X), like the probability

itself or E[Y |X]. We observe examples from this distribution ((x1, y1) . . . (xN, yN)). The
subscript θ is used to indicate that our function is parameterized. This doesn’t always have
to be the case, and there exist “non-parameteric” models in machine learning, but in the
context of this thesis that focuses on neural networks, we are interested in learning parametric
functions. There are many possible functions that can map from X to a distribution over
Y , but we are often interested in learning one that makes as few mistakes as possible. We
define a loss function L(ŷ, y) that measures the penalty incurred when classifying y as ŷ and
we try to optimize fθ to minimize this loss given a finite amount of data. We can use this
loss to define the empirical risk associated with a particular function as the expected loss

over the entire training set Remp(X, Y, fθ) =
1
N

N∑
i=1

L(fθ(xi), yi). Empirical Risk Minimization

(ERM) tries to find argminf∈F Remp(f). However, for a given dataset, there may be many
functions f ∈ F in the hypothesis space, that achieve the same or even 0 empirical risk on
the training data subset, but generalize poorly to unseen examples. In such cases, we want
to bias our learners to certain solutions that may have better generalization properties such
as those with low parameter norms with L1/L2 regularization, with max-margin methods
(?), or by using dropout (Srivastava et al., 2014).

In the case where we want to do probabilistic classification, fθ(x) outputs a probability
distribution over possible class labels and the loss function used is typically the negative
log-likelihood of the correct class − log qθ(Y = y|x) = − log fθ,y((x)), where fθ,y() is the
y-th output element of the vector fθ(x) containing all the output probabilities. Intuitively,
we wish to maximize the probability the model assigns to the correct class, and the use
of the log causes a very high loss when a small probability is assigned to the correct class.
The frequentist approach to parameter estimation termed Maximum Likelihood Estima-
tion (MLE) seeks a setting of parameters that maximizes the likelihood of the observed
data. This decomposes into a product over the examples in the case where their condi-
tional distributions are independent and identically distributed (the i.i.d. assumption):

qθ(Y |X) =
N∏
i=1

qθ(yi|xi). Since the logarithm is a monotonically increasing function, we

can maximize the log qθ(y1, y2, . . . , yN |x1,x2, . . . ,xN) and break the product into a bunch of

sums log qθ(y1, y2, . . . , yN |x1,x2, . . . ,xN) =
N∑
i=1

log qθ(yi|xi). To turn it into a minimization

problem, we can minimize the negative log-likelihood of the data, showing that empirical risk
minimization (ERM) with the negative log-likelihood loss corresponds to maximum-likelihood
estimation of the parameters of the model. At inference/test time, if we want to choose one
of the labels, the model would output argmaxỹ qθ(ỹ|xi). However, the output probability
distribution also gives us other information, such as the uncertainty in the output, which can
be represented by the entropy of qθ(yi|xi).

2.3.2. Distributions and Likelihood

So far, we have discussed generative modeling in qualitative terms. We want models which
can simulate from the dynamics of the world. We want models that can synthesize realistic
looking data. However, before going further it is useful to understand the probabilistic
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interpretation of generative models, which gives a formal framework for studying generative
models. The essential idea is that we treat observations from the world as samples from a
distribution x, y ∼ p(x, y). For example, we could consider the distribution over all human
faces which can occur in reality to be p(x) and consider each face as a sample with an
associated label y ∼ p(y|x). If we have access to a recorded dataset (for example a set of
faces), we may also choose to treat these points as a finite collection of samples from this
distribution.

At the same time, we can interpret our generative model as an estimating distribution
qθ(y|x), which is described by a set of parameters θ. Then we can frame generative modeling as
trying to ensure that p(y|x) and qθ(y|x) become as similar as possible. Statistical divergences
give a natural mathematical framework for this. A divergence is a function D(p||q) : S×S → R
taking two distributions p and q over a space of distributions S as inputs, with the properties:

D(p||q) ≥ 0.0 (2.1)
D(p||q) = 0.0 ⇐⇒ p = q (2.2)

Notably, there is no symmetry assumption, so in general D(p||q) 	= D(q||p). The proba-
bilistic approach to generative modeling frames learning as an optimization problem where
the loss corresponds to a given divergence.

L(θ) = argmin
θ

D(p(y|x)||qθ(y|x)). (2.3)

2.3.3. Maximum Likelihood and KL-Divergence

We will now present the classical result showing how minimizing KL-divergence can be
applied to the supervised learning setting introduced previously. In particular, we assume
the ability to sample from p(x, y) and wish to learn qθ(y|x).

What is the right algorithm for finding a distribution qθ(y|x) which minimizes a divergence
between itself and p(y|x)? Before selecting the type of divergence to minimize, a natural
question is to consider what types of expressions we are capable of optimizing, and work
backwards to find a suitable divergence. In general, we only have access to samples from the
distribution p(x, y) and not any additional information about the distribution. At the same
time, qθ(y|x) is a model that we control, so it’s reasonable to believe that we’ll be able to
design it so that it has a density that we can compute as well as the ability to draw samples.

The KL-divergence can be rewritten as an expression in which the only term that depends
on the parameters is an expectation involving qθ(y|x) over samples from p(x, y). Beginning
with two distributions p(x, y) (the empirical distribution) and qθ(y|x) (the model distribution),
we write the KL-divergence:
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DKL(p(y|x)||qθ(y|x)) = E
x∼p(x)

[∫
p(y|x) log p(y|x)dy −

∫
p(y|x) log qθ(y|x)dy

]
(2.4)

= E
x∼p(x)

∫
p(y|x) log p(y|x)

qθ(y|x)
dy (2.5)

= E
x,y∼p(x,y)

[
log

p(y|x)
qθ(y|x)

]
(2.6)

= E
x,y∼p(x,y)

[log p(y|x)− log qθ(y|x)] (2.7)

= Hp(y|x)− E
x,y∼p(x,y)

[log qθ(y|x)] (2.8)

Then we can show the maximum likelihood estimation for a set of N data points.

θ∗ = argmax
θ

N∏
i=1

qθ(yi|xi) (2.9)

= argmax
θ

N∑
i=1

log qθ(yi|xi) (2.10)

= argmin
θ

1

N

N∑
i=1

− log qθ(yi|xi) (2.11)

∼= argmin
θ

E
xi,yi∼p(x,y)

[− log qθ(y|x)] (2.12)

The objective for maximum likelihood is to maximize the log-density log(qθ(y|x)) over
real data points sampled from the distribution p(x, y). It can be written as:

DKL(p(y|x)||q(y|x)) = Ex∼p(x)

[∫
p(y|x) log p(y|x)dy −

∫
p(y|x) log qθ(y|x)dy

]
= −H(p(y|x)) + CE(p(y|x), qθ(y|x))

Thus we can see that the KL-divergence decomposes into two terms in Eq. 2.3.3: a cross-
entropy term (likelihood) and a term for the entropy of the true data distribution. Because
the entropy of the true data distribution doesn’t depend on the estimator, the KL-divergence
can be minimized by maximizing likelihood. Another useful consequence of this is that
the entropy of the true data distribution can be estimated by such a generative model if it
maximizes likelihood among all possible distributions, i.e., qθ = p, the KL-divergence is 0 and
the cross-entropy equals the entropy.

2.3.4. ERM and probabilistic framing of the learning problem

The empirical risk minimization objective corresponds to minimizing a loss function of
interest over a set of examples x with labels y sampled from a generally unknown distribution
p(x, y)
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θ∗ = argmin
θ

∑
x,y∼p(x,y)

L(y, f(x)) (2.13)

in the hope of obtaining a function with low expected loss on examples from the same
distribution. A special case of empirical risk minimization is the maximum likelihood
objective. Essentially, it can be shown that maximizing a model’s likelihood on some data
distribution is equivalent to minimizing an expectation of loss over samples from the empirical
data distribution (which is non-zero only on the data points), which can then be empirically
estimated with a sum over examples. The objective for maximum likelihood is maximizing
the log-density log(qθ(x)) over real data points sampled from the distribution p(x). The
use of maximum likelihood training for generative models (such as sequence models) is an
unconditional generalization of the use of conditional maximum likelihood for supervised
learning.

2.3.5. Teacher Forcing

A specific variant of the maximum likelihood principle can be used for training sequence
models. This form of training is known as teacher forcing (Williams & Zipser, 1989), due to
the use of the ground-truth samples yt being fed back into the model to be conditioned on for
the prediction of later outputs. These fed back samples force the next-step-ahead predictions
to stay close to the specific ground-truth sequence being trained on. The teacher forcing
procedure can be formally justified by using the chain rule of probability. For example, in the
case of three variables, this factorization is: p(y1, y2, y3) = p(y3|y1, y2)p(y2|y1)p(y1), where we
see that we take the ground-truth samples (coming from the "teacher") as input, rather than
the predictions generated by the model itself.

When performing prediction, the ground-truth sequence is not available for conditioning
predictions and we sample from the joint distribution over the sequence by sampling each
yt from its conditional distribution given the previously generated samples. This procedure
can result in poor generation over long sequences as small prediction errors compound over
many steps of generation. This can lead to poor prediction performance as the sequence of
previously generated samples diverges from observed sequences seen during training.

2.4. Neural Architectures
2.4.1. Deep Neural Networks

The simplest deep neural networks consist of multiple alternating layers which each consist
of a learnable linear projection followed by a (generally) fixed non-linearity:

hl
j = f

( dlin∑
i=1

Wl
ijh

l−1
i + bl

i

)
(2.14)

If we use matrix notation, we can remove the subscripts and simplify this expression to:

hl = f(Wlhl−1 + bl) (2.15)
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In the above equation, the non-linearity is referred to as f(). Many different non-linearities
have been shown to work well, but the ReLU non-linearity is simple and remains in wide
usage: f(a) = max(a, 0).

The necessity of the non-linearity is intriguing. Initially, we observe that any product
of multiple weight matrices can be equivalently written as a single weight matrix: W =
W1W2...Wn. Thus a deep network without the use of a non-linearity is no more expressive
than a linear model.

Neural networks with a single wide enough hidden layer are universal function approx-
imators, but the width of the hidden layer may need to be very large to handle complex
problems. Htad (1987) showed limited expressiveness for shallow networks.

2.4.2. Training Neural Networks with Backpropagation

In the simplest case, we want to train a neural network to minimize error on an i.i.d dataset
of examples ((x1, y1) . . . (xN , yN )). When using the negative log-likelihood loss function, ERM
corresponds to maximum-likelihood estimation of the parameters of the model. In this
section, we will discuss by far the most popular approach to training deep neural networks,
the backpropagation algorithm (Rumelhart et al., 1986a; Werbos, 1974).

This technique involves computing gradients of the network’s loss with respect to the
parameters ∂L

∂θ
, which can then be used to incrementally update θ in the direction which

locally reduces the loss:

θt = θt−1 − ε
∂L
∂θ

. (2.16)

This gradient descent algorithm is provably justified for convex optimization problems,
such as optimizing linear models with mean square error as the loss function. While neural
networks are generally non-convex, it has been found empirically that gradient descent can
still work well for a wide range of neural network architectures. However, this success depends
on the details of the architecture and the initialization scheme and is far from guaranteed.
For example, if a neural network is initialized with all parameters set to zero, the gradient
is zero, and training stagnates - so it is generally essential to initialize the network with
random-valued parameters.

A following question is how gradients can be computed for gradient descent. By far the
most popular algorithm for this is backpropagation, which is a special case of reverse-mode
automatic differentiation (for a review of automatic differentiation techniques we refer the
reader to Margossian (2019)). The backpropagation algorithm is the application of the
chain rule of calculus to neural networks. In its first stage, the gradient with respect to an
intermediate hidden layer is computed as: ∂L

∂hi
= ∂L

∂hi+1

∂hi+1

∂hi
, which can further be reduced to

multiplying by the transposed weight matrix and multiplying by the point-wise derivative
of the activation function. The gradient with respect to the weight matrices (and hence
parameters) can then be computed based on the hidden states and the gradients with respect
to the hidden states.

2.4.3. Stochastic Gradient Descent

On small datasets, it is often reasonable to compute the gradient across all the examples
in the dataset and use this full gradient for each update. However, for large datasets, this is
clearly sub-optimal, as the gradient on a small subset of the dataset may be very similar to
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the gradient on the full dataset. As a result, the number of updates done for a fixed amount
of computation would scale poorly in the size of the dataset. To illustrate this, we could
imagine that with our computation budget we are able to do N full gradient descent updates.
If we were to modify our dataset by duplicating every example K times, then we would only
be able to do N

K
updates, which eventually would shrink to be less than 1 (meaning that we’d

never do a single update). We can instead use a random subset of the examples to compute
an unbiased estimate of the gradient (referred to as a stochastic gradient). The model takes
many stochastic gradient steps to converge around a point estimate of the parameters that
achieves low error. The SGD update rule at step t for a parameter Wl, after seeing example
(x,y), can be written as

Wl
t = Wl

t−1 − α
∂L(x,y; θt−1)

∂Wl
t−1

(2.17)

Where we use a learning rate α to control how large of a step to take in the direction of
the gradient. α can be fixed over the course of training or changed adaptively as a function
of t. Often we want to decay α near the end of training (to approach the minimum closer)
and we also may want α to be small near the beginning of training to improve stability.

2.4.4. Recurrent Neural Networks

Another form of structure that can be added to deep neural networks involves applying
the same function to a hidden state multiple times. Such an architecture is called a Recurrent
Neural Network and the most basic variant can be written as: ht = F (ht−1, x, θ) where F is
our function parameterized by θ (Rumelhart et al., 1986a). This kind of repeated computation
could be significantly more parameter-efficient and could be useful in problems which require
multiple functionally similar processing steps.

We can generalize this further to consider an architecture in which a sequence of inputs x =
(x1, x2, . . . , xn) is transformed it into a sequence of vector representations h = (h1,h2, . . . ,hn).
We use subscripts to denote the position of an element within the sequence. This more
general form of recurrent neural network can be written as: ht = F (ht−1,xt, θ). In this setup,
each step in the repeated computation is provided with a single position in an input sequence.
This is a widely used architecture for processing time series or other sequences such as text
and audio.

A simple choice for the recurrent function F is to use a learned linear function of the
input and the hidden state followed by an elementwise non-linearity. We can then write this
as: ht = tanh(Wht−1+Uxt+b). This is parameterized by a recurrent weight matrix W and
input weight matrix U and a bias term b that are shared across time. If the inputs xi ∈ R

din

are continuous vector valued inputs, then U ∈ R
din×dhid and W ∈ R

dhid×dhid . The hidden
state of the recurrent network may then be processed by a linear layer or an MLP to produce
an output from the network, such as: yt = Wo2 tanh(Wo1ht)

Recurrent networks can be trained using backpropagation, in much the same way as
feedforward networks like MLPs are trained. These RNNs can be unrolled in time into a deep
feedforward model with shared weights and the same principles used to compute gradients
in Section 2.4.2 can be used while adding gradients across multiple positions to account for
weight sharing. This algorithm is commonly referred to as Backpropagation Through Time
(BPTT) (Rumelhart et al., 1986a; Werbos, 1990) due to its original usage for time-series, but
the concept applies to any type of sequential data.
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While exact gradients can be computed via backpropagation through time, the algorithm
has a significant challenge in practice. If we backpropagate gradients for T steps, then in
the absence of an activation function (the linear-RNN case), the backward gradient contains
a product with the term W occuring T times, which approximately scales as ||W ||T . If the
norm of W is larger than 1, the resulting gradient tends to be very large for even moderately
long time horizons. This is referred to colloquially as Exploding Gradients. If the norm of
||W || is smaller than 1, the resulting gradient will tend to be small, which is referred to as
Vanishing Gradients (Hochreiter, 1991b; Bengio et al., 1994b; Pascanu et al., 2013a). To
illustrate this problem more concretely, if we consider 200 time steps, then if the weight norm
is 1.05, the resulting ||W ||T is about 15000. If the weight norm is 0.95, the resulting ||W ||T
is about 10−5. So even if the weight norm is only slightly deviated from 1, the resulting
gradients are very badly scaled. Adding an activation function which has very small or zero
gradients at many points can help address the exploding gradient problem at the expense of
making the vanishing gradient problem more severe.

The simplest solution to this is Truncated Backpropagation through Time which simply
stops computing gradients after a certain number of steps K (even if we compute the
hidden state of the recurrent neural network for more than K steps). This clearly solves the
gradient scaling issue yet also means that the model fails to systematically learn Long Range
Dependencies (Bengio et al., 1994b; Pascanu et al., 2013a).

A simple way of reducing the impact of exploding gradients is gradient clipping, where
the magnitude of the gradients with respect to every parameter is clipped to a maximum
value (Pascanu et al., 2012). This is a poor solution in principle since it changes the expected
value of the gradients. However, if the gradients only occasionally become very large, this
gradient clipping strategy can prevent these very large gradients from ruining the progress of
the training algorithm.

A more practical and more widely used solution for addressing vanishing and exploding
gradients is to construct a recurrent neural network in which information is added into the
hidden state on each recurrent time step after passing through a Gating Function. Gated
recurrent networks were first presented in the form of the Long Short-Term Memory (LSTM)
architecture (Hochreiter & Schmidhuber, 1997a), which was simplified to the Gated-Recurrent
Unit (GRU) architecture (Cho et al., 2014).

The GRU introduces two gates zt = σ(Wzxt + Uzht−1) and rt = σ(Wrxt + Urht−1), which
both output a score from 0 to 1 for each unit. A pre-gated update value for the recurrent
state is computed as: h̃t = tanh(Wxt + U(rt 
 ht)). The update for the recurrent state is:
ht = (1− zt)ht−1 + zth̃t. Intuitively, zt controls whether each unit keeps its value from the
previous time-step or takes an updated value. rt controls which units are used to compute
that updated value for the recurrent hidden state.

We can gain more insights into the training dynamics of the GRU when zt and rt are
saturated. If we always have zt = 1 and rt = 1, then the GRU becomes identical to a vanilla
RNN, and it has the exact same training dynamics and resulting instabilities. On the other
hand, when zt = 0, then ht = ht−1 and the gradient is passed backward without modification.
When rt = 0, we can make updates to the hidden state but only using the input and an
additive dependence on the previous hidden state (weighted by zt). For example if zt = 0.5
and rt = 0, the GRU behaves as an additive integrator of a non-linear function of the input
value: tanh(Wxt).

The resulting parameter gradients from a GRU network can still be an exponential of
||W ||, but it is no longer simply ||W ||T . Rather, it depends on the value of zt and rt, with
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lower values for these gates making the gradient less sensitive to the value of ||W ||. Intuitively,
if a unit is only relevant on a small number of time steps and the computation between units
is well-separated (the latter is unlikely to exactly hold in practice), then the gradient for that
unit may effectively only go through a few applications of the recurrent weight matrix. For
this reason, these gated recurrent networks tend to be fairly stable to train on sequences of
substantial length (thousands of time steps), although if all the gates are saturated to 1 then
it can still suffer from vanishing or exploding gradients, so gradient clipping can help if this
saturated condition occurs infrequently.

2.4.5. Attention

Attention (as it is most widely used in deep learning) was introduced for the purpose of
improving the capture of long-range dependencies and reducing the information bottleneck in
sequence models (Bahdanau et al., 2014). The essential idea is to learn an input-dependent
weighting to directly control how information is shared between pairs of positions. This can
improve long-range dependencies by allowing information to directly flow from a distant
position, rather than being preserved across many steps by a gated recurrent network. It can
reduce the bottleneck by allowing a position to depend on many other positions, rather than
the single most recent recurrent hidden state.

The most general interface for attention considers three matrices (each consisting of
multiple positions each with its own representation vector) as input: queries Q ∈ RNq×dq ,
keys K ∈ RNk×dq , and values V ∈ RNk×dv . The basic concept of attention (Bahdanau et al.,
2014) is that by taking the dot product of all combinations of position-vectors in Q and
K will yield a matrix of affinities α ∈ RNq×Nk between the queries and keys. This is then
normalized such that every querying position 1, 2, ..., Nq will have an affinity over the keys
which sums to 1, which is accomplished using a softmax function. This normalized affinity
score is then multiplied by V (effectively weighting over positions in V ) to yield an output
matrix A ∈ Nq × dv.

Attention can be used to complement a gated recurrent network (Bahdanau et al., 2014),
by allowing information to flow between distant positions. Vaswani et al. (2017) found that
attention can be used in the absence of any recurrent architecture in the Transformer. This
has a significant scaling advantage since it removes the sequential processing between positions
required for recurrent networks. At the same time, a single layer of attention has much weaker
processing capabilities compared to a single recurrent layer, so Transformers typically require
many attention layers to achieve good performance. Additionally, the attention operation
is permutation invariant, so ordering information needs to be provided through position
encoding (either sinusoids with different periods or separate learned parameters per position).
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Chapter 3

Inductive Biases of Deep Learning of Higher
Level Cognition

3.1. Data, Statistical Models and Causality
Our current state-of-the-art machine learning systems sometimes achieve good performance

on a specific and narrow task, using very large quantities of labeled data, either by supervised
learning or reinforcement learning (RL) with strong and frequent rewards. Instead, humans
are able to understand their environment in a more unified way (rather than with a separate
set of parameters for each task) which allows them to quickly generalize (from few examples)
on a new task, thanks to their ability to reuse previously acquired knowledge. Instead, current
systems are generally not robust to changes in distribution (Peters et al., 2017b; Geirhos
et al., 2020; Hendrycks et al., 2021; Koh et al., 2021; Schneider et al., 2020), adversarial
examples (Goodfellow et al., 2014; Kurakin et al., 2016), spurious correlations (Krueger et al.,
2021; Beery et al., 2018; Arjovsky et al., 2019) etc.

One possibility studied in the machine learning literature is that we should train our
models with multiple datasets, each providing a different view of the underlying model of the
world shared by humans (Baxter, 2000). Whereas multi-task learning usually just pools the
different datasets (Caruana, 1997; Collobert & Weston, 2008; Ruder, 2017), we believe that
there is something more to consider: we want our learner to perform well on a completely new
task or distribution, either immediately (with zero-shot out-of-distribution generalization), or
with a few examples (i.e. with efficient transfer learning) (Ravi & Larochelle, 2016; Wang
et al., 2016; Finn et al., 2017; Cabi et al., 2019; Jang et al., 2022; Reed et al., 2022; Ahn
et al., 2022; Brown et al., 2020; Alayrac et al., 2022; Borgeaud et al., 2022; Chowdhery et al.,
2022; Sanh et al., 2021; Lu et al., 2022; Raffel et al., 2020).

This raises the question of changes in distribution or task. Whereas the traditional
train-test scenario and learning theory assumes that test examples come from the same
distribution as the training data, just dropping that assumption means that we cannot say
anything about generalization to a modified distribution. Hence new assumptions are required
about how the different tasks or the different distributions encountered by a learning agent
are related to each other.

We use the term structural-mechanistic (Schölkopf, 2015) to characterize models which
follow an underlying mechanistic understanding of reality. They are closely related to the
structural causal models used to capture causal structure (Pearl, 2009). The key property of
such models is that they will make correct predictions over a variety of data distributions



which are drawn from the same underlying causal system, rather than being specific to a
particular distribution. To give a concrete example, the equation E = MC2 relates mass
and energy in a way which we expect to hold regardless of other properties in the world.
On the other hand, an equation like "GDPt = 1.05GDPt−1+ noise" may be correct under a
particular data distribution (for example a country with some growth pattern) but will fail
to hold when some aspects of the world are changed, even in ways which did not happen or
could not happen, i.e., in a counterfactual.

However, humans do not represent all of their knowledge in such a neat verbalizable
way as Newton’s equations. Most humans understand physics first of all at an intuitive
level and in solving practical problems we typically combine such implicit knowledge with
explicit verbalizable knowledge (McCloskey, 1983; Baillargeon et al., 1985; Spelke et al., 1992;
Battaglia et al., 2013). We can name high-level variables like position and velocity but may
find it difficult to explain the intuitively known mechanisms which relate them to each other,
in everyday life (by opposition to a physicist running a simulation of Newton’s equations).

Implicit and Explicit Knowledge
An important question for us is how knowledge can be represented
in these two forms, the implicit – intuitive and difficult to verbalize –
and the explicit – which allows humans to share part of their thinking
process through natural language.

Causal understanding hinges on capturing the effect of interventions as changes in
distribution. Humans frequently explain their perception (at the explicit level) and reason
in terms of causal structure, and causal structure is really about how a joint distribution
between causal random variables can change under interventions, i.e., actions. This suggests
that one possible direction that deep learning needs to incorporate includes more notions
about agency, reasoning and causality, even when the application only involves single inputs
like an image and not actually learning a policy. For this purpose we need to examine
how to go beyond the statistical learning framework that has dominated deep learning and
machine learning in recent decades. Instead of thinking of data as a set of examples drawn
independently from the same distribution, we should probably reflect on the origin of the
data through a real-world non-stationary process. We claim that this perspective would help
learning agents, such as babies or robots to succeed in the changing environments. This paper
mostly discusses inductive biases inspired by higher-level cognition and aimed at facing these
generalization challenges, pointing to existing work to implement some of them. However, for
the most part, how to efficiently implement and combine these inductive biases in a single
system remains an open question.

3.2. About Inductive Biases
The no-free-lunch theorem for machine learning (Wolpert et al., 1995; Baxter, 2000)

basically says that some set of preferences (or inductive bias) over the space of all functions
is necessary to obtain generalization, that there is no completely general-purpose learning
algorithm, that any learning algorithm will generalize better on some distributions and worse
on others. Typically, given a particular dataset and loss function, there are many possible
solutions (e.g. parameter assignments) to the learning problem that exhibit equally “good”
performance on the training points. Given a finite training set, the only way to generalize to

26



Inductive Bias Corresponding property
Distributed representations Inputs mapped to patterns of features

Convolution group equivariance (usually over space)
Deep architectures Complicated functions = composition of simpler ones

Graph Neural Networks equivariance over entities and relations
Recurrent Nets equivariance over time
Soft attention equivariance over permutations

Self-supervised pre-training P (X) is informative about P (Y |X)

Table 1. Examples of current inductive biases in deep learning. Many have to do with the architecture while the last
one influences the training framework and objective.

new input configurations is then to rely on some assumptions or preferences about the solution
we are looking for. An important question for AI research aiming at human-level performance
then is to identify inductive biases that are most relevant to the human perspective on the
world around us. Inductive biases, broadly speaking, encourage the learning algorithm to
prioritise solutions with certain properties. Table 1 lists some of the inductive biases already
used in various neural networks, and the corresponding properties. Although they are often
expressed in terms of a neural architecture, they can also be about how the networks are
trained, e.g., unsupervised pre-training, self-supervised learning and semi-supervised training,
which all have to do with the input distribution P (X) being informative about future tasks
P (Y |X). Other relevant elements which are not directly about inductive biases (and not
discussed further in this paper) include for example the ability of a learning agent to actively
seek knowledge (e.g. in active learning or reinforcement learning) or to obtain information
from other agents (e.g., social learning, multi-agent learning).

From Inductive Biases to Algorithms. There are many ways to encode such bi-
ases—e.g. explicit regularisation objectives (Bishop et al., 1995; Bishop, 1995; Srivastava
et al., 2014; Kukačka et al., 2017; Zhang et al., 2017), architectural constraints (Yu &
Koltun, 2015; Long et al., 2015; Dumoulin & Visin, 2016; He et al., 2016; Huang et al.,
2017), parameter sharing (Hochreiter & Schmidhuber, 1997b; Pham et al., 2018), implicit
effects of the choice of the optimization method (Jastrzębski et al., 2017; Smith & Le, 2017;
Chaudhari & Soatto, 2018), self-supervised learning or self-supervised pre-training (Hinton
et al., 2006; Erhan et al., 2010; Devlin et al., 2018b; Chen et al., 2020b,d; Grill et al., 2020),
invariance or equivariance to known transformations (Bruna et al., 2013; Defferrard et al.,
2016; Ravanbakhsh et al., 2017; Thomas et al., 2018; Finzi et al., 2020; Satorras et al., 2021)
or choices of prior distributions in a Bayesian model (Jeffreys, 1946; Berger & Bernardo,
1992; Gelman, 1996; Fortuin, 2022). For example, one can build translation invariance of
a neural network output by replacing matrix multiplication by convolutions (LeCun et al.,
1995) and pooling (Krizhevsky et al., 2012), or by averaging the network predictions over
transformations of the input (feature averaging) (Zhang et al., 2017), or by training on a
dataset augmented with these transformations (data augmentation) (Krizhevsky et al., 2012).
Whereas some inductive biases can easily be encoded into the learning algorithm (e.g. with
convolutions), the preference over functions is sometimes implicit and not intended by the
designer of the learning system, and it is sometimes not obvious how to turn an inductive
bias into a machine learning method, this conversion often being the core contribution of
machine learning papers.
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Inductive Bias Corresponding Property
High-level variables
play a causal role

Learning representations of
latent entities/attributes

Changes in distribution are
due to causal interventions

The source of changes in distribution
is sparse and localized in the appropriate semantic space

Knowledge is generic, defined
over abstract variables, and can

be applied on different
instances

Factorizing knowledge in terms of
abstract variables and reusable functions

that encapsulate how these variables
interact with each other

Sparsity of dependencies

Learned functions operate on
a sparse set of variables

(like arguments in
typed-programming languages)

Short causal chains

Causal chains used to perform learning
or inference (to obtain explanations or plans

for achieving some goal) are broken
down into short causal chains of events
that may be far in time from each other

Context-dependent processing
involving goals, top-down
influence, and bottom-up

competition

Top-down contextual information is
dynamically combined with bottom-up

sensory signals at every level
of the hierarchy of computations

relating low-level and
high-level representations

Table 2. Proposed additional inductive biases for deep learning: much progress has been made in learning representa-
tion of high level variables (entities or objects). Much more progress is needed on other inductive biases such as the
ones listed above. It would also be useful to integrate these inductive biases into a unified architecture.

Inductive Biases as Data. We can think of inductive biases or priors and built-in
structure as “training data in disguise”, and one can compensate lack of sufficiently powerful
priors by more data (Welling, 2019). Interestingly, different inductive biases may be equivalent
to more or less data (even possibly exponentially more data): we suspect that inductive biases
based on a form of compositionality (like distributed representations (Pascanu et al., 2013b),
depth (Montufar et al., 2014) and attention (Bahdanau et al., 2014; Vaswani et al., 2017))
can potentially also provide a larger advantage (to the extent that they apply well to the
function to be learned). In general, priors can be imperfect and this shows most with large
datasets. Even for good priors, the advantage of inductive biases may be smaller on very
large datasets, which suggests that transfer settings (where only few examples are available
for the new distribution) are interesting to evaluate the advantage of inductive biases and of
their implementation.

Agency, Sequential Decision Making and Non-Stationary Data Streams. The
classical framework for machine learning is based on the assumption of identically and
independently distributed data (i.i.d.), i.e test data has the same distribution as the training
data. This is a very important assumption, because if we did not have that assumption,
then we would not be able to say anything about generalization to new examples from the
same distribution. Unfortunately, this assumption is too strong, and reality is not like this,
especially for agents taking decisions one at a time in an environment from which they also get
observations. The distribution of observations seen by an agent may change for many reasons:
the agent acts (intervenes) in the environment, other agents intervene in the environment, or
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simply our agent is learning and exploring, visiting different parts of the state-space as it
does so, discovering new parts of it along the way, thus experiencing non-stationarities along
the way. Although sequential decision-making is ubiquitous in real life, there are scenarios
where thinking about these non-stationarities may seem unnecessary (like object recognition
in static images). However, if we want to build learning systems which are robust to changes
in distribution, it may be necessary to train them in settings where the distribution changes!
And then of course there are applications of machine learning where the data is sequential and
non-stationary (like historical records of anything) or even more so, where the learner is also
an agent or is an agent interacting with other agents (like in robotics, autonomous driving
or dialogue systems). That means we may need to go away from large curated datasets
typical of supervised learning frameworks and instead construct non-stationary controllable
environments as the training grounds and benchmarks for our learners. This complicates the
task of evaluating and comparing learning algorithms but is necessary and we believe, feasible,
e.g. see (Yu et al., 2017; Packer et al., 2018; Chevalier-Boisvert et al., 2018a; Dulac-Arnold
et al., 2020; Ahmed et al., 2020).

Transfer Learning and Continual Learning. Instead of a fixed data distribution
and searching for an inductive bias which works well with this distribution, we are thus
interested in transfer learning (Pratt et al., 1991; Pratt, 1993) and continual learning (Ring,
1998) scenarios, with a potentially infinite stream of tasks, and where the learner must
extract information from past experiences and tasks to improve its learning speed (i.e., sample
complexity, which is different from asymptotic performance which is currently the standard)
on future and yet unseen tasks. Suppose the learner faces a sequence of tasks, A, B, C and
then we want the learner to perform well on a new task D. Short of any assumptions it is
nearly impossible to expect the learner to perform well on D. However if there is some shared
structure, between the transfer task (i.e task D) and source tasks (i.e tasks A, B and C),
then it is possible to generalize or transfer knowledge from the source task to the target task.
Hence, if we want to talk meaningfully about knowledge transfer, it is important to talk
about the assumptions on the kind of data distribution that the learner is going to face, i.e.,
(a) what they may have in common, what is stable and stationary across the environments
experienced and (b) how they differ or how changes occur from one to the next in case we
consider a sequential decision-making scenario. This division should be reminiscent of the
work on meta-learning (Bengio et al., 1990; Schmidhuber, 1987; Finn et al., 2017; Ravi
& Larochelle, 2016), which we can understand as dividing learning into slow learning (of
stable and stationary aspects of the world) and fast learning (of task-specific aspects of the
world). This involves two time scales of learning, with an outer loop for meta-learning of
meta-parameters and an inner loop for regular learning of regular parameters. In fact we
could have more than two time scales (Clune, 2019): think about the outer loop of evolution,
the slightly faster loop of cultural learning (Bengio, 2014) which is somewhat stable across
generations, the faster learning of individual humans, the even faster learning of specific tasks
and new environments within a lifetime, and the even faster inner loops of motor control and
planning which adapt policies to the specifics of an immediate objective like reaching for a
fruit. Ideally, we want to build an understanding of the world which shifts as much of the
learning to the slower and more stable parts so that the inner learning loops can succeed
faster, requiring less data for adaptation.

Systematic Generalization and Out-of-Distribution Generalization. In this
paper, we focus on the objective of out-of-distribution (OOD) generalization, i.e., generalizing
outside of the specific distribution(s) from which training observations were drawn. A more
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general way to conceive of OOD generalization is with the concept of sample complexity in the
face of new tasks or changed distributions. One extreme is zero-shot OOD generalization while
the more general case, often studied in meta-learning setups, involves k-shot generalization
(from k examples of the new distribution).

Whereas the notions of OOD generalization and OOD sample complexity tell us what we
want to achieve (and hint at how we might measure it) they say nothing about how to achieve
it. This is where the notion of systematic generalization becomes interesting (Smolensky, 1988;
Fodor & Pylyshyn, 1988; Marcus, 1998; McClelland et al., 1987). Systematic generalization
is a phenomenon which was first studied in linguistics (Lake & Baroni, 2017; Bahdanau
et al., 2018) because it is a core property of language: the meaning for a novel composition
of existing concepts (e.g. words) can be derived systematically from the meaning of the
composed concepts. This very clearly exists in language, but humans benefit from it in
other settings, e.g., understanding a new object by combining properties of different parts
which compose it. Systematic generalization even makes it possible to generalize to new
combinations that have zero probability under the training distribution: it is not just that
they did not occur in the training data, but that even if we had seen an infinite amount of
training data from our training distribution, we would not have any sample showing this
particular combination. For example, when you read a science fiction scenario for the first
time, that scenario could be impossible in your life, or even in the aggregate experiences of
billions of humans living today, but you can still imagine it and make sense of it (e.g., predict
the end of the scenario from the beginning). Empirical studies of systematic generalization
were performed by (Bahdanau et al., 2018, 2019), where particular forms of combinations of
linguistic concepts were present in the training distribution but not in the test distribution,
and current methods take a hit in performance, whereas humans would be able to answer
such questions easily.

Humans use inductive biases providing forms of compositionality, making it possible
to generalize from a finite set of combinations to a larger set of combinations of concepts.
Deep learning already benefits from a form of compositional advantage with distributed
representations (Hinton, 1984; Bengio & Bengio, 2000; Bengio et al., 2001), which are at
the heart of why neural networks work so well. There are theoretical arguments about
why distributed representations can bring a potentially exponential advantage (Pascanu
et al., 2013b), if this matches properties of the underlying data distribution. Another
advantageous form of compositionality in deep nets arises from the depth itself, i.e., the
composition of functions, with provable up to exponential advantages under the appropriate
assumptions (Montufar et al., 2014). However, a form of compositionality that we propose
here and should be better incorporated in deep learning is the form called systematicity (Lake
& Baroni, 2018) defined by linguists, and more recently systematic generalization in machine
learning papers (Bahdanau et al., 2018; Ruis et al., 2020; Akyürek et al., 2020).

Current deep learning methods tend to overfit the training distribution. This would not
be visible by looking at a test set from the same distribution as the training set, so we need
to change our ways of evaluating the success of learning because we would like our learning
agents to generalize in a systematic way, out-of-distribution. This only makes sense if the new
environment has enough shared components or structure with previously seen environments,
which corresponds to certain assumptions on distributional changes, bringing back the need
for appropriate inductive biases, about distributions (e.g., shared components) as well as
about how they change (e.g., via agents’ interventions).

30



The structure of next two sections is as follows: In section 3.3, we motivate some of the
system-2 inductive biases inspired by human cognition. We think endowing machine learning
systems with an efficient implementation of these inductive biases could improve (there’s an
ample evidence already but much more progress needs to be made to achieve human-level AI)
the generalization and adaptation performance of the machine learning models. In section 3.4,
we open a parenthesis to review material on causal dependencies to deepen some of the
discussion made in section 3.3 on inductive biases linked to the causal nature of high-level
semantic variables.

3.3. Inductive biases based on higher-level cognition as a
path towards systems that generalize better OOD

Synergy between AI research and cognitive neuroscience. Our aim is to take
inspiration from (and further develop) research into the cognitive science of conscious process-
ing, to deliver greatly enhanced AI, with abilities observed in humans thanks to high-level
reasoning leading among other things to greater abilities to face unusual or novel situations by
reasoning, compositionally reusing existing knowledge and being able to communicate about
that. At the same time, new AI models could drive new insights into the neural mechanisms
underlying conscious processing, instantiating a virtuous circle. Machine learning procedures
have the advantage that they can be tested for their effective learning abilities, and in our
case in terms of out-of-distribution abilities or in the context of causal environments changing
due to interventions, e.g., as in (Ahmed et al., 2020). Because they have to be very formal, AI
models can also suggest hypotheses for how brains might implement an equivalent strategy
with biological machinery. Testing these hypotheses could in turn provide more understanding
about how brains solve the same problems and help to refine the deep learning systems.

3.3.1. Conscious vs Unconscious Processing in Brains

Imagine that you are driving a car from your office, back home. You do not need to pay a
lot of attention to the road and you can talk to the passenger. Now imagine encountering a
road block due to construction: you have to pay more attention, you have to be on lookout for
new information, if the passengers starts talking to you, then you may have to tell the person,
“please let me drive”. It is interesting to consider that when humans are confronted with a
new situation, very commonly they require their conscious attention (Carlson & Dulany,
1985; Newman et al., 1997). In the driving example, when there is a road block you need to
pay attention in order to think through what to do next, and you probably don’t want to be
disturbed, because your conscious attention can only focus on one thing at a time.

There is something in the way humans process information which seems to be different
– both functionally and in terms of the neural signature in the brain – when we deal with
conscious processing and novel situations (changes in the distribution) which require our
conscious attention, compared to our habitual routines. In those novel situations, we generally
have to think, focus and attend to specific elements of our perception, actions or memories
and sometimes inhibit our reactions based on context (e.g., facing new traffic rules or a
road block). Why would humans have evolved to deal with such an ability with changes in
distribution? Maybe simply because life experience is highly non-stationary.

System 1 and System 2. Cognitive scientists distinguish (Schneider et al., 1982;
Redgrave et al., 2010; Botvinick et al., 2001a,b; Mozer et al., 2001; Bargh, 1984) habitual
versus controlled processing, where the former correspond to default behaviors, whereas the
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latter require attention and mental effort. Daniel Kahneman introduced the framework of
fast and slow thinking (Kahneman, 2011), and describes the system 1 and system 2 styles of
processing in our brain. Some tasks can be achieved using only system 1 abilities whereas
others also require system 2 and conscious processing. There are also notions of explicit
(verbalizable) knowledge and explicit processing (which roughly correspond to system 2) and
implicit (intuitive) knowledge and corresponding system 1 neural computations. The default
(or unconscious) processing of system 1 can take place very rapidly (as fast as about 100ms)
and mobilize many areas of the brain in parallel. On the other hand, controlled (or conscious)
processing involves a sequence of thoughts, usually verbalizable, typically requiring seconds
to achieve. Whereas we can act in fast and precise habitual ways without having to think
consciously, the reverse is not true: controlled processing (i.e., system 2 cognition) generally
requires unconscious processing to perform much of its work. It is as if the conscious part of
the computation was just the top-level program and the tip of the iceberg. Yet, it seems to
be a very powerful one, which makes it possible for us to solve new problems creatively by
recombining old pieces of knowledge, to reason, to imagine explanations and future outcomes,
to plan and to apply or discover causal dependencies. It is also at that level that we interface
with other humans through natural language. And when a word refers to a complex concept
for which we do not have a clear verbalizable and precise explanation (like how we manage
to drive our bike), we can still name it and reason about how it relates with other pieces of
knowledge, etc. Even imagination and planning (which are hallmarks of system 2 abilities)
require system 1 computations to sample candidate solutions to a problem (from a possibly
astronomical number, which we never have to explicitly examine).

Our brain seems to thus harbour two very different types of knowledge: the kind we can
explicitly reason about and communicate verbally (system 2 knowledge) and the kind that is
intuitive and implicit (system 1 knowledge). When we learn something new, it typically starts
being represented explicitly, and then as we practice it more, it may migrate to a different,
implicit form. When you learn the grammar of a new language, you may be given some set of
rules, which you try to apply on the fly, but that requires a lot of effort and is done painfully
slowly. As you practice this skill, it can gradually migrate to a habitual form, you make less
mistakes (for the common cases), you can read / translate / write more fluently, and you may
even eventually forget the original rules. When a new rule is introduced, you may have to
move back some of that processing to system 2 computation to avoid inconsistencies. It looks
as if one of the key roles of conscious processing is to integrate different sources of knowledge
(from perception and memory) in a coherent way.

The Global Worskpace Theory. The above division of labour is at the heart of
the cognitive neuroscience Global Workspace Theory (or GWT) from Baars (Baars, 1993,
1997) and its extension, the Global Neuronal Workspace model (Shanahan, 2006, 2010, 2012;
Dehaene & Changeux, 2011; Dehaene et al., 2017; Dehaene, 2020). The GWT suggests an
architecture allowing specialist components to interact. The key claim of the GWT is the
existence of a shared representation—sometimes called a blackboard (McClelland, 1986),
sometimes a workspace—that can be modified by any selected specialist and whose content is
broadcast to all specialists. That selection is based on a form of attention and can correspond
to dynamically selecting (based on the input) a module or a few modules in a modular
neural net that are most appropriate for a particular context and task. The basic idea
of deep learning frameworks inspired by the GWT is to explore a similar communication
and coordination scheme for a neural net comprising of distinct modules (Shanahan, 2006,
2005). The GWT theory posits that conscious processing revolves around a communication
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bottleneck between selected parts of the brain which are called upon when addressing a
current task. There is a threshold of relevance beyond which information which was previously
handled unconsciously gains access to this bottleneck, instantiated in a working memory.
When that happens, that information is broadcast to the whole brain, allowing the different
relevant parts of it to synchronize, forcing each module to learn to exchange with other
modules in a way that allows swapping one module for another as source or destination of
communicated content, i.e., with a shared "language". These shared representations can be
interpreted by many other modules. This gives rise to semantic representations that are not
tied to a particular modality but can be triggered by any of the sensory channels. As we
argue throughout this paper, this makes it possible to flexibly obtain new combinations of
pieces of knowledge, enabling a compositional advantage aligned with the needs of systematic
generalization out-of-distribution.

3.3.2. Attention as dynamic information flow.

The GWT suggests a fleeting memory capacity in which only one consistent content can
be dominant at any given moment, which suggests a sharper form of attention than the
soft attention currently dominant in deep learning and described below. Attention is about
sequentially selecting what computation to perform on what quantities. Let us consider a
machine translation task from English to French. To obtain a good translation generating the
next French word, we normally focus especially on the “right” few words in the source English
sentence that may be relevant to do the translation. This is the motivation that stimulated
our work on content-based soft self-attention (Bahdanau et al., 2014) but may also be at the
heart of conscious processing in humans as well as in future deep learning systems with both
system 1 and system 2 abilities.

Content-Based Soft Attention. Soft attention forms a soft selection of one element
(or multiple elements) from a set of elements at the previous level of computations, i.e we are
taking a convex combination of the values of the elements at the previous level. These convex
weights are coming from a softmax that is conditioned on how each of the elements’ key
vector matches some query vector. In a way, attention is parallel, because computing these
attention weights considers all the possible elements in some set, yielding a score for each
of them, to decide which of them are going to receive the most attention. With stochastic
hard-attention (Xu et al., 2015) one samples from a distribution over elements to choose
the attended content, whereas with soft attention (Bahdanau et al., 2014) one mixes these
contents with different positive convex weights. Content-based attention also introduces
a non-local inductive bias into neural network processing, allowing it to infer long-range
dependencies that might be difficult to discern if computations are biased by local proximity.
Attention is at the heart of the current state-of-the art NLP systems (Devlin et al., 2018a;
Brown et al., 2020) and is the standard tool for memory-augmented neural networks (Graves
et al., 2014a; Sukhbaatar et al., 2015; Gulcehre et al., 2016; Santoro et al., 2018). Attention
and memory can also help address the problem of credit assignment through long-term
dependencies (Ke et al., 2018; Kerg et al., 2020) by creating dynamic skip connections
through time (i.e., a memory access) which unlock the problems of vanishing gradients and
learning long-term dependencies (Hochreiter, 1991a; Bengio et al., 1994a). Attention also
transforms neural networks from machines that are processing vectors (e.g., each layer of a
deep net), to machines that are processing sets, more particularly sets of key/value pairs,
as with Transformers (Vaswani et al., 2017; Santoro et al., 2018). Soft attention uses the
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product of a query (or read key) represented as a matrix Q of dimensionality Nr × d, with d
the dimension of each key, with a set of No objects each associated with a key (or write-key)
as a row in matrix KT (No × d), and after normalization with a softmax yields outputs in
the convex hull of the values (or write-values) Vi (row i of matrix V ). The result is

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V,

where the softmax is applied to each row of its argument matrix, yielding a set of convex
weights. With soft attention, one obtains a convex combination of the values in the rows of V ,
whereas stochastic hard attention would sample one of the value vectors with probability equal
to that weight. If the soft attention is focused on one element for a particular row (i.e., the
softmax is saturated), we get deterministic hard attention: only one of the objects is selected
and its value copied to row j of the result. Note that the d dimensions in the key can be
split into heads which then have their attention matrix and write values computed separately.
Note that hard attention is more biologically plausible (we only see one interpretation of the
Necker cube (Cohen, 1959) at once, and have one thought at a time) but soft attention enables
end-to-end training and has been the most commonly used in deep learning architectures up
to now,. e.g., with transformers (Vaswani et al., 2017). However, there is recent evidence (Liu
et al., 2021) that if the communication bottleneck is discretized, better OOD generalization
is observed, maybe because the resulting simpler lingua franca would make it easier to swap
one module for another in the attention-controlled communication between modules.

Attention as dynamic connections. We can think of attention as a way to create
a dynamic connection between different blocks of computation, whereas in the traditional
neural net setting, connections are fixed. On the receiving end (downstream module) of an
attention-selected input, it is difficult to tell from the selected value vector from where it
comes (among the selected upstream modules which competed for attention). To resolve this,
it would make sense that the information being propagated along with the selected value
includes a notion of key or type or name, i.e., of where the information comes from, hence
creating a form of indirection (a reference to where the information came from, which can be
passed to downstream computations).

Attention implements variable binding. When the inputs and outputs of each of the
modules are a set of objects or entities (each associated with a key and value vector), we have
a generic object-processing machine which can operate on “variables” in a sense analogous to
variables in a programming language: as interchangeable arguments of functions. Because
each object has a key embedding (which one can understand both as a name and as a type),
the same computation can be applied to any variable which fits an expected “distributed type”
(specified by a query vector). Each attention head then corresponds to a typed argument of
the function computed by the factor. When the key of an object matches the query of head
k, it can be used as the k-th input vector argument for the desired computation. Whereas in
regular neural networks (without attention) neurons operate on fixed input variables (the
neurons which are feeding them from the previous layer), the key-value attention mechanisms
make it possible to select on the fly which variable instance (i.e. which entity or object) is
going to be used as input for each of the arguments of some computation, with a different set
of query embeddings for each argument head. The computations performed on the selected
inputs can be seen as functions with typed arguments, and attention is used to bind their
formal argument to the selected input, albeit in a soft differentiable way (that mixes multiple
possibilities) in the case of soft attention. Type constraints have already been found useful in
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identification for causal discovery (Brouillard et al., 2022). Current attention-based neural
network already implement key-value-query soft attention mechanism (as above). What
is missing is an ability to handle discrete types, hard (but possibly stochastic) choices of
arguments, and more powerful inference machinery that uses not just type matching but is
also able to reason about which modules and variables should be composed in a given context.

3.3.3. Blend of Serial and Parallel Computations.

From a computational perspective, one hypothesis about the dynamics of communication
between different modules is that different modules generally act in parallel and receive
inputs from other modules. However, when they do need to communicate information with
another arbitrary module, the information has to go through a routing bottleneck (the global
workspace) controlled by an attention mechanism. Because so few elements can be put in
coherence at each step of the GWT selection, the inference process generally requires several
such steps, leading to the highly sequential nature of system 2 computation (compared with
the highly parallel nature of system 1 computation). The contents which have thus been
selected are essentially the only ones which can be committed to memory, starting with
short-term memory. Working memory refers to the ability of the brain to operate on a few
recently accessed elements (i.e., those in short-term memory) (Baddeley, 1992; Cowan, 1999).
These elements can be remembered and have a heavy influence on the next thought, action or
perception, as well as on what learning focuses on, possibly playing a role similar to desired
outputs, goals or targets in supervised learning for system 1 computations.

Partial State. From an RL perspective, it is interesting to note that if the GWT holds
an important part of the state (including imagined future states, when planning), it does
not describe all the aspects of the environment, only a handful of them, as already explored
in the RL litterature (Zhao et al., 2021). This is different from standard RL approaches
where the input (or the sequence of past inputs) is mapped to a fixed-size (estimated and
latent) state vector. The GWT suggests instead that, besides long-term memory content
(which mostly does not change), the rapidly changing state should be seen as a very small
set of entities (e.g., objects or particular attributes of objects, and their relation), with an
information content similar to that of a single sentence. This suggests neural net architectures
in which very few modules and specific (variable, value) pairs are selected at every inference
step, based on those that were recently selected, the current sensory input and the current
contents of memory (which can also compete for write-access to the workspace). Only the
selected modules would be under pressure to adapt when the result of the combination needs
to be tuned, leading to selective adaptation similar to that explored by (Bengio et al., 2019)
(see Section 3.4.3 above) where just a few relevant modules need to adapt to a change in
distribution.

System 2 to System 1 Consolidation. As an agent, a human being is facing frequent
changes because of their actions or the actions of other agents in the environment. Most
of the time, humans follow their habitual policy, but tend to use system 2 cognition when
having to deal with unfamiliar settings. It allows humans to generalize out-of-distribution in
surprisingly powerful ways, and understanding this style of processing would help us build
these abilities in AI as well. This is illustrated with our early example of driving in an area
with unfamiliar traffic regulations, which requires full conscious attention (Section 3.3.1).
This observation suggests that system 2 cognition is crucial in order to achieve the kind of
flexibility and robustness to changes in distribution required in the natural world (Shenhav
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et al., 2017; Kool & Botvinick, 2018). It looks like current deep learning systems are fairly
good at perception and system 1 tasks. They can rapidly produce an answer (if you have
parallel computing like that of GPUs) through a complex calculation which is difficult (or
impossible) to dissect into the application of a few simple verbalizable operations. They
require a lot of practice to learn and can become razor sharp good at the kinds of data they
are trained on. On the other hand, humans enjoy system 2 abilities which permit fast learning
(I can tell you a new rule in one sentence and you do not have to practice it in order to be
able to apply it, albeit awkwardly and slowly at first) and systematic generalization, both of
which should be important characteristics of the next generation of deep learning systems.

Between-Modules Interlingua and Communication Topology. If the brain is
composed of different modules, it is interesting to think about what code or lingua franca
is used to communicate between them, such that it can lead to interchangeable pieces of
knowledge being dynamically selected and combined to solve a new problem. The GWT
bottleneck may thus also play a role in forcing the emergence of such a lingua franca (Baars,
1997; Koch, 2004; Shanahan, 2006): the same information received by module A (e.g. “there
is a fire”) can come from any other module (say B, which detected a fire by smell, or C which
detected a fire by sight). Hence B and C need to use a compatible representation which
is broadcast via the GWT bottleneck for A’s use. Again, we see the crucial importance of
attention mechanisms to force the emergence of shared representations and indirect references
exchanged between the modules via the conscious bottleneck. However, the GWT bottleneck
is by far not the only way for modules to communicate with each other. Regarding the
topology of the communication channels between modules, it is known that modules in the
brain satisfy some spatial topology such that the computation is not all-to-all between all the
modules. It is plausible that the brain uses both fixed local or spatially nearby connections
as well as the global broadcasting system with top-down influence. We also know that
there are hierarchical communication routes in the visual cortex (on the path from pixels
to object recognition), and we know how successful that has been in computer vision with
convnets. Combining these different kinds of inter-module communication modalities in
deep network thus seems well advised as well (Watts & Strogatz, 1998; Latora & Marchiori,
2001; Rahaman et al., 2020): (1) Modules which are near each other in the brain layout can
probably communicate directly without the need to clog the global broadcast channel (and
this would not be reportable consciously). (2) Modules which are arbitrarily far from each
other in the spatial layout of the brain can exchange information via the global workspace,
following the theatre analogy of Baars’ GTW. The other advantage of this communication
route is of course the exchangeability of the sources of information being broadcast, which
we hypothesize leads to better systematic generalization. The role of working memory in the
GWT is not just as a communication buffer. It also serves as a blackboard (or analogously
the “registers” in CPUs) where operations can be done locally to improve coherence. This
enables a coherence-seeking mechanism: the different modules (especially the active ones)
should adopt a configuration of their internal variables (and especially the more abstract
entities they communicate to other modules) which is consistent with what other active
modules “believe”. It is possible, that a large part of the functional role of conscious processing
is for that purpose, which is consistent with the view of the working memory as a central
element of the inference machinery seeking to obtain coherent configurations of the variables
interacting according to some piece of knowledge (such as a factor of the factor graph, a
causal dependency).

36



System 2 inductive biases
We are proposing to take inspiration from cognition and build ma-
chines which integrate two very different kinds of representations and
computations corresponding to the system 1 / implicit / unconscious
vs system 2 / explicit / conscious divide.

This paper is about inductive biases not yet sufficiently integrated in state-of-the-art
deep learning systems but which could help us achieve these system 2 abilities. In the next
subsection, we summarize some of these system 2 inductive biases.

3.3.4. Semantic Representations Describing Verbalizable Concepts

Conscious content is revealed by reporting it, often with language (Colagrosso & Mozer,
2004). This suggests that high-level variables manipulated consciously are closely related with
their verbal forms (like words and phrases). This yields maybe the most influential inductive
bias we want to consider in this paper: that high-level variables (manipulated consciously)
are generally verbalizable. To put it in simple terms, we can imagine the high-level semantic
variables captured at this top level of a representation to be associated with single words
(although we can also use words to identify some lower-level variables). In practice, the
notion of word is not always the same across different languages, and the same semantic
concept may be represented by a single word or by a phrase. There may also be more subtlety
in the mental representations (such as accounting for uncertainty, concept representation
and continuous-valued properties) which is not always or not easily well reflected in their
verbal rendering. Much of what our brains know actually cannot be easily translated in
natural language and forms the content of system 1 knowledge. This means that system 2
(verbalizable) knowledge is incomplete: words are mostly pointers to knowledge which belongs
to system 1 and thus is in great part not consciously accessible. The system 2 inductive
biases do not need to cover all the aspects of our internal model of the world (they couldn’t),
only those aspects of our knowledge which we are able to communicate with language. The
rest would have to be represented in pure system 1 (non system 2) machinery, such as in
an encoder-decoder that could relate low-level actions and low-level perception to semantic
variables that can be operated on at the system-2 level. If there is some set of properties that
apply well to some aspects of the world, then it would be advantageous for a learner to have
a subsystem that takes advantage of these properties (the inductive priors described here)
and a subsystem which models the other aspects. These inductive priors then allow faster
learning and potentially other advantages like systematic generalization, at least concerning
these aspects of the world which are consistent with these assumptions (system 2 knowledge,
in our case).

High-level representations describe verbalizable concepts
There is a simple lossy mapping from semantic representations going
through the GWT bottleneck to natural language expressions. This
is an inductive bias which could be exploited in grounded language
learning scenarios (Winograd, 1972; Hermann et al., 2017; Chevalier-
Boisvert et al., 2018a; Hill et al., 2019) where we couple language data
with observations and actions by an agent.
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This suggests that natural language understanding systems should be trained in a way
that couples natural language with what it refers to. This is the idea of grounded language
learning. It would put pressure on the top-level representation so that it captures the kinds
of concepts expressed with language. One can view this as a form of weak supervision, where
we don’t force the top-level GWT representations to be human-specified labels, only that
there is a simple relationship between these representations and utterances which humans
would often associate with the corresponding meaning. Our discussion about causality should
also suggest that passive observation may be insufficient: in order to capture the causal
structure understood by humans, it may be necessary for learning agents to be embedded in
an environment in which they can act and thus discover its causal structure (Binz & Schulz,
2022; Kosoy et al., 2022). Studying this kind of setup was the motivation for our work on the
Baby AI environment (Chevalier-Boisvert et al., 2018a).

3.3.5. Semantic Variables Play a Causal Role and Knowledge about
them is Modular

Biological phenomena such as bird flocks have inspired the design of several distributed
multi-agent systems, for example, swarm robotic systems, sensor networks, and modular
robots. Despite this, most machine learning models employ the opposite inductive bias, i.e.,
with all elements (e.g., artificial neurons) interacting all the time. The GWT (Baars, 1997;
Dehaene, 2020) also posits that the brain is composed in a modular way, with a set of expert
modules which need to communicate but only do so sparingly and via a bottleneck through
which only a few selected bits of information can be squeezed at any time. If we believe
that theory, these selected elements are the concepts present to our mind at any moment,
and a few of them are called upon and joined in working memory in order to reconcile the
interpretations made by different modular experts across the brain. The decomposition of
knowledge into recomposable pieces, a hallmark of classical AI based on rules (Russell, 2010)
also makes sense as a requirement for obtaining systematic generalization (Bahdanau et al.,
2018): conscious attention would then select which expert and which concepts (which we
can think of as variables with different attributes and values) interact with which pieces of
knowledge (which could be verbalizable rules or non-verbalizable intuitive knowledge about
these variables) stored in the modular experts. On the other hand, the modules which are
not brought to bear in this conscious processing may continue working in the background in
a form of default or habitual computation (which would be the form of most of perception).
For example, consider the task of predicting from pixel-level information the motion of balls
sometimes colliding against each other as well as the walls. It is interesting to note that all
the balls follow their default dynamics, and only when balls collide do we need to intersect
information from several bouncing balls in order to make an inference about their future
states. Saying that the brain modularizes knowledge is not sufficient, since there could be a
huge number of ways of factorizing knowledge in a modular way. We need to think about
the desired properties of modular decompositions of the acquired knowledge, and we propose
here to take inspiration from the causal perspective on understanding how the world works,
to help us define both the right set of variables and their relationship.
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Semantic variables are often also causal variables
We hypothesize that semantic variables are often also causal variables.
Words in natural language often refer to agents (subjects, which
cause things to happen), objects (which are controlled by agents),
actions (often through verbs) and modalities or properties of agents,
objects and actions (for example we can talk about future actions, as
intentions, or we can talk about time and space where events happen,
or properties of objects or of actions). However, note that we can
also name many low-level (like pixels) and intermediate features (like
L-shaped edges). It is thus plausible to assume that causal reasoning
of the kind we can verbalize involves as variables of interest those
semantic variables which we can name, and that they can be at any
level of the processing hierarchy in the brain, including at the highest
levels of abstraction, where signals from all modalities join, such as
pre-frontal cortex (Cohen et al., 2000), and where concepts can be
manipulated in a way that is not specific to a single modality.

The connection between causal representations and modularity is profound: an assumption
which is commonly associated with structural causal models is that it should break down
knowledge about the causal influences into independent mechanisms (Peters et al., 2017b).
As explained in Section 3.4.1, each such mechanism relates direct causes to their direct effect
and knowledge of one such mechanism should not tell us anything about another mechanism
(otherwise we should restructure our representations and decomposition of knowledge to satisfy
this information-theoretic independence property). This is not about statistical independence
of the corresponding random variables but about the algorithmic mutual information between
the descriptions of these mechanisms. What it means practically and importantly for out-
of-distribution adaptation is that if a mechanism changes (e.g. because of an intervention),
the representation of that mechanism (e.g. the parameters used to capture a corresponding
conditional distribution) may need to be adapted but that of the others do not need to be
tuned to account for that change (Bengio et al., 2019).

These mechanisms may be organized in the form of a causal graph which scientists
attempts to identify. The sparsity of the change in the joint distribution between the
semantic variables (discussed more in Section 3.3.6) is different but related to a property
of such high-level structural causal model: the sparsity of the graph capturing the joint
distribution itself (discussed in Section 3.3.8). In addition, the causal structure, the causal
mechanisms and the definition of the high-level causal variables tend to be stable across
changes in distribution, as discussed in Section 3.3.7.

3.3.6. Local Changes in Distribution in Semantic Space

Consider a learning agent, like a learning robot or a learning child. What are the sources
of non-stationarity for the distribution of observations seen by such an agent, assuming
the environment is in some (generally unobserved) state at any particular moment? Two
main sources are (1) the non-stationarity due to the environmental dynamics (including
the learner’s actions and policy) not having converged to an equilibrium distribution (or
equivalently the mixing time of the environment’s stochastic dynamics is longer than the
lifetime of the learning agent) and (2) causal interventions by agents (either the learner of
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interest or some other agents). The first type of change includes for example the case of a
person moving to a different country, or a videogame player learning to play a new game or a
never-seen level of an existing game. That first type also includes the non-stationarity due to
changes in the agent’s policy arising from learning. The second case includes the effect of
actions such as locking some doors in a labyrinth (which may have a drastic effect on the
optimal policy). The two types can intersect, as the actions of agents (including those of the
learner, like moving from one place to another) contribute to the first type of non-stationarity.

Changes in distribution are localized in the appropriate se-
mantic space
Let us consider how humans describe these changes with language. For
many of these changes, they are able to explain the source of change
with a few words (a single sentence, often). This is a very strong
clue for our proposal to include as an inductive bias the assumption
that the source of most changes in distribution are localized in the
appropriate semantic space: only one or a few variables or mechanisms
need to be modified to account for the change.

Note how humans will even create new words when they are not able to explain a
change with a few existing words, with the new words corresponding to new latent variables,
which when introduced, make the changes explainable “easily” (assuming one understand the
definition of these variables and of the mechanisms relating them to other variables).

For system-2 distributional changes (due to interventions), we automatically get locality
of the source of changes (which start at one or a few nodes of the causal graph). This
is a plausible assumption since, by virtue of being localized in time and space, actions
can only directly affect very few high-level variables, with other effects (on downstream
variables) being consequences of the initial intervention. This sparsity of sources of change is
a strong assumption which can put pressure on the learning process to discover high-level
representations which have that property. Here, we are assuming that the learner has to
jointly discover these high-level representations (i.e. how they relate to low-level observations
and low-level actions) as well as how the high-level variables relate to each other via causal
mechanisms.
3.3.7. Stable Properties of the World

Above, we have talked about changes in distribution due to non-stationarities, but there
are aspects of the world that are stationary, which means that learning about them would
eventually converge. In an ideal scenario, our learner has an infinite lifetime and the chance to
learn everything about the world (a world where there are no other agents) and build a perfect
model of it, at which point nothing is new and all of the above sources of non-stationarity are
gone. In practice, only a small part of the world will be understood by the learning agent,
and interactions between agents (especially if they are learning) will perpetually keep the
world out of equilibrium. If we divide the knowledge about the world captured by the agent
into the stationary aspects (which should converge) and the non-stationary aspects (which
would generally keep changing), we would like to have as much knowledge as possible in the
stationary category. The stationary part of the model might require many observations for
it to converge, which is fine because learning these parts can be amortized over the whole
lifetime (or even multiple lifetimes in the case of multiple cooperating cultural agents, e.g.,
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in human societies). On the other hand, the learner should be able to quickly learn the
non-stationary parts (or those the learner has not yet realized can be incorporated in the
stationary parts), ideally because very few of these parts need to change, if knowledge is well
structured. Hence we see the need for at least two speeds of learning, similar to the division
found in meta-learning of learnable coefficients into meta-parameters on one hand (for the
stable, slowly learned aspects) and parameters on the other hand (for the non-stationary, fast
to learn aspects), as already discussed above in Section 3.2.

Stable v/s Unstable properties of the world
There should be several speeds of learning, with more stable aspects
learned more slowly and more non-stationary or novel ones learned
faster, and pressure to discover stable aspects among the quickly
changing ones. This pressure would mean that more aspects of the
agent’s represented knowledge of the world become stable and thus
less needs to be adapted when there are changes in distribution.

For example, consider scientific laws, which are most powerful when they are universal. At
another level, consider the mapping between the perceptual input, low level actions, and the
high-level semantic variables. An encoder that would implement this mapping should ideally
be highly stable, or else downstream computations would need to track those changes (and
indeed the low-level visual cortex seems to compute features that are very stable across life,
contrary to high-level concepts like new visual categories). Causal interventions are taking
place at a higher level than the encoder, changing the value of an unobserved high-level
variable or changing one of the mechanisms. If a new concept is needed, it can be added
without having to disturb other represented knowledge, especially if it can be learned as a
composition of existing high-level features and concepts. We know from observing humans
and their brain that new concepts which are not obtained from a combination of old concepts
(like a new skill or a completely new object category not obtained by composing existing
features) take more time to learn, while new high-level concepts which can be readily defined
from other high-level concepts can be learned very quickly (as fast as with a single example
or definition).

Another example arising from the analysis of causal systems is that causal interventions
(which are in the non-stationary, quickly inferred or quickly learned category) may temporarily
modify the causal graph structure (which specifies which variable is a direct cause of which)
by breaking causal links (when we set a variable we break the causal link from its direct
causes) but that most of the causal graph is a stable property of the environment. Hence,
we need neural architectures which make it easy to quickly adapt the relationship between
existing concepts, or to define new concepts from existing ones.
3.3.8. Sparse Factor Graph in the Space of Semantic Variables

Sparsity as to how variables and factors interact with each
other
Our next inductive bias for high-level variables can be stated simply:
the joint distribution between high-level concepts can be represented
by a sparse factor graph.
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Any joint distribution can be expressed as a factor graph (Kschischang et al., 2001; Frey,
2012; Kok & Domingos, 2005), but we claim that the ones which can be conveniently described
with natural language have the property that they should be sparse. A factor graph is a
particular factorization of the joint distribution. A factor graph is bipartite, with variable
nodes on one hand and factor nodes on the other. Factor nodes represent dependencies
between the variables to which they are connected. To illustrate the sparsity of verbalizable
knowledge, consider knowledge graphs and other relational systems, in which relations between
variables often involve only two arguments (i.e., two variables). In practice, we may want
factors with more than two arguments, but probably not a lot more. A factor may capture a
causal mechanism between its argument variables, and thus we should introduce an additional
semantic element to these factors: each argument of a causal factor should either play the
role of cause or of effect, making the bipartite graph directed.

It is easy to see that linguistically expressed knowledge satisfies this sparsity property by
noting that statements about the world can be expressed with a sentence and each sentence
typically has only a few words, and thus relates very few concepts. When we write “If I drop
the ball, it will fall on the ground”, the sentence clearly involves very few variables, and yet
it can make a very strong prediction about the position of the ball. A factor in a factor
graph involving a subset S of variables is simply stating a probabilistic constraint among
these variables. It allows one to predict the value of one variable given the others (if we
ignore other constraints or factors), or more generally it allows us to describe a preference for
joint sets of values for a subset of S. The fact that natural language allows us to make such
strong predictions conditioned on so few variables should be seen as surprising: it only works
because the variables are semantic ones. If we consider the space of pixel values in images, it
is very difficult to find such strongly predictive rules, e.g., to predict the value of one pixel
given the value of three other pixels. What this means is that pixel space does not satisfy
the sparsity prior associated with the proposed inductive bias.

We claim that the proposed inductive bias is closely related to the bottleneck of the
GWT of conscious processing. Our interpretation of this restriction on write access in the
GWT by a very small number of specialists selected on the fly by an attention mechanism is
that it stems from an assumption on the form of the joint distribution between high-level
variables whose values are broadcast. If the joint distribution factor graph is sparse, then
only a few variables (those involved in one factor or a few connected factors) need to be
synchronized at each step of an inference process, e.g., consider loopy belief propagation (Frey
et al., 2001; Murphy et al., 2013). By constraining the size of the working memory, evolution
may have thus enforced the sparsity of the factor graph. The GWT also makes a claim that
the workspace is associated with the conscious contents of cognition, which can be reported
verbally. One can also make links with the original von Neumann architecture of computers.
In both the GWT and the von Neumann architecture, we have a communication bottleneck
with in the former the working memory and in the latter the CPU registers where operations
are performed. The communication bottleneck only allows a few variables to be brought to
the nexus (working memory in brains, registers in the CPU) . In addition, the operations
on these variables are extremely sparse, in the sense that they take very few variables at a
time as arguments (no more than the handful in working memory, in the case of brains, and
generally no more than two or three in typical assembly languages). This sparsity constraint
is consistent with a decomposition of computation in small chunks, each involving only a few
elements. In the case of the sparse factor graph assumption we only consider that sparsity
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constraint for declarative knowledge (verbalizing "how the world works", its dynamics and
statistical or causal structure).

This assumption about the joint distribution between the high-level variables at the top
of our deep learning hierarchy is different from the assumption commonly found in many
papers on disentangling factors of variation (Higgins et al., 2016; Burgess et al., 2018; Chen
et al., 2018; Kim & Mnih, 2018; Locatello et al., 2019), where the high-level variables are
assumed to be marginally independent of each other, i.e., their joint distribution factorizes
into independent marginals. We think this deviates from the original goals of deep learning
to learn abstract high-level representations which capture the underlying explanations for the
data. Note that one can easily transform one representation (with a factorized joint) into
another (with a non-factorized joint) by some transformation (think about the independent
noise variables in a structural causal model, Section 3.4). However, we would then lose the
properties introduced up to now (that each variable is causal and corresponds to a word or
phrase, that the factor graph is sparse, and that changes in distribution can be originated to
one or very few variables or factors).

Instead of thinking about the high-level variables as completely independent, we propose
to see them as having a very structured joint distribution, with a sparse factor graph
and other characteristics (such as dependencies which can be instantiated on particular
variables from generic schemas or rules, described below). We argue that if these high-level
variables have to capture semantic variables expressible with natural language, then the
joint distribution of these high-level semantic variables must have sparse dependencies rather
than being independent. For example, high-level concepts such as "table" and "chair" are
not statistically independent, instead they come in very powerful and strong but sparse
relationships. Instead of imposing a very strong prior of complete independence at the highest
level of representation, we can have this slightly weaker but very structured prior, that the
joint is represented by a sparse factor graph. Interestingly, recent studies confirm that the
top-level variables in generative adversarial networks (GANs), which are independent by
construction, generally do not have a semantic interpretation (as a word or short phrase),
whereas many units in slightly lower layers do have a semantic interpretation (Bau et al.,
2018).

Why not represent the causal structure with a directed graphical model? In these models,
which are the basis of standard representations of causal structure (e.g., in structural causal
models, described below), knowledge to be learned is stored in the conditional distribution
of each variable (given its direct causal parents). However, it is not clear that this is
consistent with the requirements of independent mechanisms. For example, typical verbally
expressed rules have the property that many rules could apply to the same variable. Insisting
that the independent units of knowledge are conditionals would then necessarily lump the
corresponding factors in the same conditional. This issue becomes even more severe if we
think of the rules as generic pieces of knowledge which can be reused to be applied to many
different tuples of instances, as elaborated in the next subsection. Another reason for a
formulation that is not constrained to an acyclic graph is that humans also reason about
relations between variables at equilibrium (such as voltage and current), which can mutually
be causes of each other (i.e., arrows can go both ways).
3.3.9. Variables, Instances and Reusable Knowledge Pieces

A standard graphical model is static, with a separate set of parameters for each conditional
distribution (in a directed acyclic graph) or factor (in a factor graph). There are extensions
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which allow parameter sharing, e.g. through time with dynamic Bayes nets (Spirtes et al.,
2000), or in undirected graphical models such as Markov Networks (Kok & Domingos, 2005)
which allow one to “instantiate” general “patterns” into multiple factors of the factor graph.
Markov Networks can for example implement forms of recursively applied probabilistic rules.
But they do not take advantage of distributed representations and other inductive biases of
deep learning.

The inductive bias we are presenting here is that instead of separately defining specific
factors in the factor graph (maybe each with a piece of neural network), each having its
separate set of parameters, we would define generic factors, “schemas” or “factor templates”.
A schema, or generic factor is a reusable probabilistic relation, i.e., with argument variables
which can be bound to instances (also discussed in (Rumelhart et al., 1986b)). A static
instantiated rule is a thing like ’if John is hungry then he looks for food’. Instead, a more
general rule is a thing like, ’for all X, if X is a human and X is hungry, then X looks for food’
(with some probability). X can be bound to specific instances (or to other variables which may
involve more constraints on the acceptable set). In classical symbolic AI, we have unification
mechanisms to match together variables, instances or expressions involving variables and
instances, and thus keep track of how variables can ultimately be ’bound’ to instances (or to
variables with more constraints on their attributes), when exploring whether some schema can
be applied to some objects (instances or more generic objects) with properties (constituting
a database of entities).

The proposed inductive bias is also inspired by the presence of such a structure in the
semantics of natural language and the way we tend to organize knowledge according to
relations, e.g., in knowledge graphs (Sowa, 1987). Natural language allows us to state rules
involving variables and is not limited to making statements about specific instances.

Knowledge is generic and can be instantiated on different
instances.
The independent mechanisms (with separate parameters) which specify
dependencies between variables are generic, i.e., they can be instan-
tiated in many possible ways to specific sets of arguments with the
appropriate types or constraints.

What this means in practice is that we do not need to hold in memory the full instantiated
graph with all possible instances and all possible mechanisms relating them (or worse, all
the generic factor instantiations that are compatible with the data, in a Bayesian posterior).
Instead, inference involves generating the needed pieces of the graph and even performing
reasoning (i.e. deduction) at an abstract level, where nodes in the graph (random variables)
stand not for instances but for sets of instances belonging to some category or satisfying some
constraints. Whereas one can unfold a recurrent neural network or a Bayesian network to
obtain the fully instantiated graph, in the case we are talking about, similarly to a Markov
network, it is generally not feasible to do that. It means that inference procedures always
look at a small piece of the (partially) unfolded graph at a time and they can reason about
how to combine these generic schemas without having to fully instantiate them with concrete
instances or concrete objects in the world. One way to think about this, inspired by how
we do programming, is that we have functions with generic and possibly typed variables as
arguments and we have instances on which a program is going to be applied. At any time
(as you would have in Prolog), an inference engine must match the rules with the current
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instances (so the types and other constraints between arguments are respected) as well as
other elements (such as what we are trying to achieve with this computation) in order to
combine the appropriate computations. It would make sense to think of such a computation
controller, as an internal policy with attention and memory access as actions, to select which
pieces of knowledge and which pieces of the short-term (and occasionally long-term) memory
need to be combined in order to push new values in working memory (Shanahan & Baars,
2005; Shanahan, 2006; Baars, 1993, 1997).

An interesting outcome of such a representation is that one can apply the same knowledge
(i.e knowledge specified by a schema which links multiple abstract entities together) to different
instances (i.e different “object files” in cognitive psychology (Noles et al., 2005; Gordon &
Irwin, 1996; Kahneman et al., 1992)). For example, you can apply the same laws of physics
to two different balls that are visually different (and maybe have different colors and masses).
This is also related to notions of arguments and indirection in programming. The power of
such relational reasoning resides in its capacity to generate inferences and generalizations
that are constrained by the roles that elements play, and the roles they can play may depend
on the properties of these elements, but these schemas specify how entities can be related to
each other in systematic (and possibly novel) ways. In the limit, relational reasoning yields
universal inductive generalization from a finite and often very small set of observed cases to
a potentially infinite set of novel instances, so long as those instances can be described by
attributes (specifying types) allowing to bound them to appropriate schemas.

There are two forms of knowledge representation we have discussed: declarative knowl-
edge or hypotheses, i.e., that can be verbalized (e.g. of facts, hypotheses, explicit causal
dependencies, etc), and inference machinery used to reason with these pieces of knowledge.
Standard graphical models only represent the declarative knowledge and typically require
expensive but generic iterative computations (such as Monte-Carlo Markov chains) to perform
approximate inference (Cowles & Carlin, 1996; Gilks et al., 1995). However, brains need
fast inference (Gigerenzer & Goldstein, 1996), and most of the advances made with deep
learning concern such learned fast inference computations. Doing inference using only the
declarative knowledge (the graphical model) is very flexible (any question of the form “predict
some variables given other variables or imagined interventions” can be answered) but also
very slow. In general, searching for a good configuration of the values of top-level variables
which is consistent with the given context is computationally intractable. However, different
approximations can be made which trade-off computational cost for quality of the solutions
found. This difference could also be an important ingredient of the difference between system
1 (fast and parallel approximate and inflexible inference) and system 2 (slower and sequential
but more flexible inference). We also know that after system 2 has been called upon to
deal with novel situations repeatedly, the brain tends to bake these patterns of response in
habitual system 1 circuits which can do the inference job faster and more accurately but
have lost some flexibility. When a new rule is introduced, the system 2 is flexible enough
to handle it and slow inference needs to be called upon again. Neuroscientists have also
accumulated evidence that the hippocampus is involved in replaying sequences (from memory
or imagination) for consolidation into cortex (Alvarez & Squire, 1994; Hassabis et al., 2007)
so that they can be presumably committed to cortical long-term memory and fast inference.
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3.3.10. Relevant causal chains (for learning or inference) can be
approximated as very short chains

In a clock-based segmentation, the boundaries between discrete time steps are spaced
equally (Hihi & Bengio, 1995; Chung et al., 2016; Koutnik et al., 2014). In an event-based
segmentation, the boundaries depend on the state of the environment, resulting in dynamic
duration of intervals (Mozer & Miller, 1997). Our brains seem to segment streams of sensory
inputs into meaningful representations of variable-length episodes and events (Suddendorf &
Corballis, 2007; Ciaramelli et al., 2008; Berntsen et al., 2013; Dreyfus, 1985; Richmond &
Zacks, 2017).

The detection of a relevant event in the temporal stream triggers information processing
of the event. The psychological reality of event-based segmentation can be illustrated through
a familiar phenomenon. Consider the experience of traveling from one location to another,
such as from home to office. If the route is unfamiliar, as when one first starts a new job, the
trip is confusing and lengthy, but as one gains more experience following the route, one has
the sense that the trip becomes shorter. One explanation for this phenomenon is as follows.
On an unfamiliar route, the orienting mechanism that detects novel events is triggered for a
large number of such events over the course of the trip. In contrast, few novel events occur
on a familiar route. If our perception of time is event-based, meaning that higher centers of
cognition count the number of events occurring in a temporal window, not the number of
milliseconds, then one will have the sense that a familiar trip is shorter than an unfamiliar
trip.

Event segmentation allows functional representations that support temporal reasoning,
an ability that arguably relies on neural circuits to encode and retrieve information to and
from memory (Zacks et al., 2007; Radvansky & Zacks, 2017; Baldassano et al., 2017). Indeed,
faced with a task, our brains appear to easily and selectively pluck context-relevant past
information from memory, enabling both powerful multi-scale associations as well as flexible
computations to relate temporally distant events. As we argue here, the ability of the brain to
efficiently segment sensory inputs into events, and the ability to selectively recall information
from the distant past based on the current context helps to efficiently propagate information
(such as credit assignment or causal dependencies) over long time spans. Both at the cognitive
and at the physiological levels, there is evidence of information “routing” mechanisms that
enable this efficient propagation of information, although they are far from being sufficiently
understood (Stocco et al., 2010; Ben-Yakov & Henson, 2018; Bonasia et al., 2018).

Relevant Causal Chains tend to be sparse.
Our next inductive bias is almost a consequence of the biases on
causal variables and the bias on the sparsity of the factor graph for
the joint distribution between high-level variables. Causal chains used
to perform learning (to imagine counterfactuals and to propagate
and assign credit) or inference (to obtain explanations or plans for
achieving some goal) are broken down into short causal chains of
events which may be far in time but linked by the top-level factor
graph over semantic variables.

At least at a conscious level, humans are not able to reason about many such events
at a time, due to the limitations on short-term memory and the bottleneck of conscious
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processing Baars (1997). Hence it is plausible that humans would exploit an assumption on
temporal dependencies in the data: that the most relevant ones only involve short dependency
chains, or a small-depth graph of direct dependencies. Depth here refers to the longest path in
the relevant graph of dependencies between events. What we showed earlier (Ke et al., 2018;
Kerg et al., 2020) is that this prior assumption is the strongest ingredient to mitigate the
issue of vanishing gradients that occurs when trying to learn long-term dependencies (Bengio
et al., 1994a).
3.3.11. Context-dependent processing involving goals, top-down in-

fluence, and bottom-up competition

Successful perception in humans clearly relies on both top-down and bottom-up signals
(Buschman & Miller, 2007; Beck & Kastner, 2009; McMains & Kastner, 2011; Kinchla &
Wolfe, 1979; Rauss & Pourtois, 2013; McClelland & Rumelhart, 1981). Top-down information
encodes relevant context, priors and preconceptions about the current scene: for example,
what we might expect to see when we enter a familiar place. Bottom-up signals consist of what
is literally observed through sensation. The best way to combine top-down and bottom-up
signals remains an open question, but it is clear that these signals need to be combined in a
way which is dynamic and depends on context - in particular top-down signals are especially
important when stimuli are noisy or hard to interpret by themselves (for example walking
into a dark room). Additionally, which top-down signals are relevant also changes depending
on the context. It is possible that combining specific top-down and bottom-up signals that
can be weighted dynamically (for example using attention) could improve robustness to
distractions and noisy data.

In addition to the general requirement of dynamically combining top-down and bottom-up
signals, it makes sense to do so at every level of the processing hierarchy to make the best
use of both sources of information at every stage of that computation, as is observed in the
visual cortex (with very rich top-down signals influencing the activity at every level).

Dynamic Integration of Bottom-up and Top-Down Informa-
tion
In favour of architectures in which top-down contextual information
is dynamically combined with bottom-up sensory signals at every
level of the hierarchy of computations relating low-level and high-level
representations.

3.4. Declarative Knowledge of Causal Structure
Whereas a statistical model captures a single joint distribution, a causal model captures

a large family of joint distributions, each corresponding to a different intervention (or set
of interventions), which modifies the unperturbed or default distribution (e.g., by removing
parents of a node and setting a value for that node). Whereas the joint distribution P (A,B)
can be factored either as P (A)P (B|A) or P (B)P (A|B) (where in general both graph structures
can fit the data equally well), only one of the graphs corresponds to the correct causal structure
and can thus consistently predict the effect of interventions. The asymmetry is best illustrated
by an example: if A is altitude and B is average temperature, we can see that intervening on
A will change B but not vice-versa.
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Preliminaries Given a set of random variables Xi, a Bayesian network is commonly used
to describe the dependency structure of both probabilistic and causal models via a Directed
Acyclic Graph (DAG). In this graph structure, a variable (represented by a particular node)
is independent of all the other variables, given all the direct neighbors of a variable. The edge
direction identify a specific factorization of the joint distribution of the graph’s variables:

p(X1, . . . , Xn) =
m∏
i=1

p(Xi | PAi). (3.1)

Structural causal models (SCMs). A Structural Causal Model (SCM) (Peters et al.,
2017b) over a finite number M of random variables Xi given a set of observables X1, . . . , XM

(modelled as random variables) associated with the vertices of a DAG G, is a set of structural
assignments

Xi := fi(Xpa(i,C), Ni) , ∀i ∈ {1, . . . ,M} (3.2)

where fi is a deterministic function, the set of noises N1, . . . , Nm are assumed to be jointly
independent, and pa(i, C) is the set of parents (direct causes) of variable i under configuration
C of the SCM directed acyclic graph, i.e., C ∈ {0, 1}M×M , with cij = 1 if node i has node
j as a parent (equivalently, Xj ∈ Xpa(i,C); i.e. Xj is a direct cause of Xi). Causal structure
learning is the recovery of the ground-truth C from observational and interventional data,
possibly yielding a posterior distribution over causal structures compatible with the data, and
a neural network can be trained to generate graphs from that posterior (Deleu et al., 2022).

Interventions. Without experiments, or interventions i.e., in a purely-observational
setting, it is known that causal graphs can be distinguished only up to a Markov equivalence
class, i.e., the set of graphs compatible with the observed dependencies. In order to identify the
true causal graph, the learner needs to perform interventions or experiments i.e., interventional
data is generally needed (Eberhardt et al., 2012).
3.4.1. Independent Causal Mechanisms.

A powerful assumption about how the world works which arises from research in causal-
ity (Peters et al., 2017b) and briefly introduced earlier is that the causal structure of the
world can be described via the composition of independent causal mechanisms.

Independent Causal Mechanisms (ICM) Principle. A complex generative model, temporal
or not, can be thought of as composed of independent mechanisms that do not inform or
influence each other. In the probabilistic case, this means a particular mechanism should not
inform (in the information theory sense) or influence the other mechanisms.

This principle subsumes several notions important to causality, including separate inter-
venability of causal variables, modularity and autonomy of subsystems, and invariance (Pearl,
2009; Peters et al., 2017a).

This principle applied to the factorization in equation. 3.1, tells us that the different
factors should be independent in the sense that (a) performing an intervention on one of the
mechanisms p(Xi|PAi) does not change any of the other mechanisms p(Xj|PAj) (i 	= j), (b)
knowing some other mechanisms p(Xi|PAi) (i 	= j) does not give us information about any
another mechanism p(Xj|PAj).
3.4.2. Exploit changes in distribution due to causal interventions

Nature doesn’t shuffle examples. Real data arrives to us in a form which is not
iid, and so in practice what many practitioners of data science or researchers do when they
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collect data is to shuffle it to make it iid. “Nature doesn’t shuffle data, and we should not”
Bottou (2019). When we shuffle the data, we destroy useful information about those changes
in distribution that are inherent in the data we collect and contain information about causal
structure. Instead of destroying that information about non-stationarities, we should use it,
in order to learn how the world changes.

3.4.3. Relation between meta-learning, causality, OOD generalization
and fast transfer learning

To illustrate the link between meta-learning, causality, OOD generalization and fast
transfer learning, consider the example from (Bengio et al., 2019). We consider two discrete
random variables A and B, each taking N possible values. We assume that A and B are
correlated, without any hidden confounder. The goal is to determine whether the underlying
causal graph is A → B (A causes B), or B → A. Note that this underlying causal graph
cannot be identified from observational data from a single (training) distribution p only, since
both graphs are Markov equivalent for p, i.e. consistent with observational data of any size. In
order to disambiguate between these two hypotheses, (Bengio et al., 2019) use samples from
some transfer distribution p̃ in addition to our original samples from the training distribution
p.

Without loss of generality, they fix the true causal graph to be A→ B, which is unknown
to the learner. Moreover, to make the case stronger, they consider a setting called covariate
shift, where they assume that the change (again, whose nature is unknown to the learner)
between the training and transfer distributions occurs after an intervention on the cause
A. In other words, the marginal of A changes, while the conditional p(B | A) does not, i.e.
p(B | A) = p̃(B | A). Changes on the cause will be most informative, since they will have
direct effects on B. (Bengio et al., 2019) find experimentally that this is sufficient to identify
the causal graph, while (Priol et al., 2020) justify this with theoretical arguments in the case
where the intervention is on the cause.

In order to demonstrate the advantage of choosing the causal model A → B over the
anti-causal B → A, (Bengio et al., 2019) compare how fast the two models can adapt to
samples from the transfer distribution p̃. They quantify the speed of adaptation as the
log-likelihood after multiple steps of fine-tuning via (stochastic) gradient ascent on the
example wise log-likelihood, starting with both models trained on a large amount of data
from the training distribution. They show via simulations that the model corresponding to
the underlying causal structure adapts faster. Moreover, the difference between the quality of
the predictions made by the causal and anti-causal models as they see more post-intervention
examples is more significant when adapting on a small amount of data, of the order of 10 to
30 samples from the transfer distribution. Indeed, asymptotically, both models recover from
the intervention perfectly and are not distinguishable. This is interesting because it shows
that generalization from few examples (after a change in distribution) actually contains more
signal about the causal structure than generalization from a lot of examples (whereas in
machine learning we tend to think that more data is always better). (Bengio et al., 2019) make
use of this property (the difference in performance between the two models) as a noisy signal
to infer the direction of causality, which here is equivalent to choosing how to modularize the
joint distribution. The connection to meta-learning is that in the inner loop of meta-learning
we adapt to changes in the distribution, whereas in the outer loop we slowly converge towards
a good model of the causal structure (which describes what is shared across environments and
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interventions). Here the meta-parameters capture the belief about the causal graph structure
and the default (unperturbed) conditional dependencies, while the inner loop parameters are
those which capture the change in the graph due to the intervention.

(Ke et al., 2019) further expanded this idea to deal with more than two variables. To model
causal relations and out-of-distribution generalization one can view real-world distributions
as arising from the composition of causal mechanisms. Any change in distribution (e.g.,
when moving from one setting/domain to a related one) is attributed to changes in as few as
possible (but at least one) of those mechanisms (Goyal et al., 2019b; Bengio et al., 2019; Ke
et al., 2019). A do-intervention or hard intervention would set the value of a variable to some
value irrespective of the causal parents of that variable, thus disconnecting that node from its
parents in the causal graph. By inferring this graph surgery, an intelligent agent should be
able to recognize and make sense of these sparse changes and quickly adapt their pre-existing
knowledge to this new domain. A current hypothesis is that a causal graphical model defined
on the appropriate causal variables would be more efficiently learned than one defined on the
wrong representation. Preliminary work based on meta-learning (Ke et al., 2019; Dasgupta
et al., 2019; Bengio et al., 2019) suggests that, parameterizing the correct variables and
causal structures, the parameters of the graphical model capturing the (joint) observational
distribution can be adapted faster to changes in distribution due to interventions. This comes
as a consequence of the fact that fewer parameters need to be adapted to account for the
intervention (Priol et al., 2020). In this sense, learning causal representations may bring
immediate benefits to machine learning models in terms of reduced sample complexity.
3.4.4. Actions and affordances as part of the causal model

Understanding causes and effects is a crucial component of the human cognitive experience.
Humans are agents and their actions change the world (sometimes only in little ways), and
those actions can inform them about the causal structure in the world. Understanding that
causal structure is important in order to plan further actions in order to achieve desired
consequences, or to attribute credit to one’s or others’ actions, i.e., to understand and cope
with changes in distribution occuring in the world. However, in realistic settings such as
those experienced by a child or a robot, the agent typically does not have full knowledge of
what abstract action was performed and needs to perform inference over that. The agent
would thus have a causal model of latent causal variables (how they influence each other and
relate to each other), an intervention model relating low-level actions with interventions (or
intentions to change specific high-level variables), as well as an observation model (relating
high-level causal variables and sensory observations). In addition to these models, it would
have inference machinery associated with them, including a high-level policy generating goals
(i.e. intentions to intervene in a particular way).

A human-centric version of this viewpoint is the psychological theory of affordances (Gib-
son, 1977; Cisek, 2007; Pezzulo & Cisek, 2016) that can be linked to predictive state represen-
tations in reinforcement learning: what can we do with an object? What are the consequences
of these actions? Learning affordances as representations of how agents can cause changes
in their environment by controlling objects and influencing other agents is more powerful
than learning a data distribution. It would not only allow us to predict the consequences of
actions we may not have observed at all, but it also allows us to envision which potentialities
would result from a different mix of interacting objects and agents. This line of thinking is
directly related to the work in machine learning and reinforcement learning on controllability
of aspects of the environment (Bengio et al., 2017; Thomas et al., 2017). A clue about a
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good way to define causal variables is precisely that there exist actions or skills to control
one causal variable while not directly influencing most others (i.e., except as an effect of the
causal variable which is being controlled). A learner thus needs to discover an intervention
model (what actions give rise to what interventions), but the locality of interventions in
the causal graph can also help the learner figure out a good representation space for causal
variables.
3.5. Conclusions

To be able to handle dynamic, changing conditions, we want to move from deep statistical
models which are able to perform system 1 tasks to deep structural models also able to
perform system 2 tasks by taking advantage of the computational workhorse of system 1
abilities. Today’s deep networks may benefit from additional structure and inductive biases to
do substantially better on system 2 tasks, natural language understanding, out-of-distribution
systematic generalization and efficient transfer learning. We have tried to clarify what some of
these inductive biases may be, but much work needs to be done to improve that understanding
and find appropriate ways to incorporate these priors in neural architectures and training
frameworks. We have motivated these inductive biases in terms of expected (and observed
in recent work) gains in terms of out-of-distribution generalization and fast adaptation in
transfer settings rather than the standard test set from the same distribution as the training
set. The general insight here is that the proposed inductive biases should help organize
knowledge into the stable reusable parts that are likely to be useful in new settings and tasks
(such as causal mechanisms), separating them from the more volatile pieces of information
(the values of variables) that can be changed by agents (through causal intervention) or
those that are affected by these changes and may vary across environments or tasks. Some
of the more salient inductive biases we propose deserve especially more attention in deep
learning research include (a) the fairly direct connection between high-level variables and
natural language or more generally how humans communicate knowledge among them, i.e.,
we can verbalize our thoughts to a large extent and this can provide rich insights about
underlying inductive biases such as these: (b) the modular decomposition of knowledge into
independent reusable pieces that can be composed on the fly to address new contexts, (c) the
causal interpretation of actions by agents and of changes in distribution, with agents generally
intending to affect a single or very few (generally latent) variables, and (d) the sparsity of
dependencies between high-level variables (and thus the small number of variables that are
linked by causal mechanisms imagined by humans to explain their environment). Finally,
we would also like to mention that inductive biases are not the only way to bridge the gap
to high-level human cognition: we may gain by improving our optimization algorithms, by
scaling up neural networks (Sutton, 2019) and by moving to other frameworks that better
capture uncertainty about the world (e.g., by learning a Bayesian posterior over neural
network models as compared to learning a point estimates). It would also be intriguing to
think of ways to combine all these different elements together.
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Chapter 4

Prologue to the first article

4.1. Article Details
Neural Production Systems (NPS). Anirudh Goyal, Aniket Didolkar, Nan Rosemary

Ke, Charles Blundell, Philieppe Beaudoin, Nicolas Heess, Michael Mozer, Yoshua Bengio.
The paper was accepted for presentation at NeurIPS’21.
Personal Contribution. This work builds upon RIMs (Goyal et al., 2019c) which proposes
the idea of decomposing information into an ensemble of modules where each module is
responsible for modelling the state of an entity, as well as dynamics of the entity. Yoshua
Bengio pointed out the limitations of RIMs and provided the direction as to how to address
those limitations i.e., ideally we want to factorize knowledge into set of reusable pieces which
can be dynamically instantiated to change the state of modules. I had the idea of structuring
the architecture as a set of modules, and reusable rules such that rules can be used to
encapsulate interactions between different modules and hence change the state of the slots
in a dynamic and context dynamic fashion. I implemented the model on experiments for
learning a world model. Aniket Didolkar ran the toy experiments. Aniket and myself both
ran the bouncing ball experiments. Nan Rosemary Ke ran physical reasoning experiments.
All the authors contributed in writing the paper.

4.2. Context
Visual environments are structured, consisting of distinct objects or entities. These

entities have properties – both visible and latent – that determine the manner in which
they interact with one another. To partition images into entities, deep learning researchers
have proposed structural inductive biases such as slot-based architectures. Learning modular
structures which reflect the dynamics of the environment can lead to better generalization
and robustness to changes which only affect a few of the underlying causes. In our previous
work, we have proposed Recurrent Independent Mechanisms (RIMs) (ICLR’21) (Goyal et al.,
2019c), a recurrent architecture in which multiple groups of recurrent cells operate with
nearly independent transition dynamics, communicate only sparingly through the bottleneck
of attention, and are only updated at time steps where they are most relevant. In RIMs, each
module was responsible for modelling the state of an individual entity as well as modelling
the dynamics of an entity. To model interactions among entities, equivariant graph neural
nets (GNNs) or self-attention is used, but these are not particularly well suited to the task
for two reasons. First, GNNs do not predispose interactions to be sparse, as relationships



among independent entities are likely to be. Second, GNNs do not factorize knowledge about
interactions in an entity-conditional manner. In this work, we proposed an alternative such
that interactions between different entities are sparse and modelled in a dynamic and context
dependent fashion.

4.3. Contributions
We take inspiration from cognitive science and resurrect a classic approach, production

systems, which consist of a set of rule templates that are applied by binding placeholder
variables in the rules to specific entities. Rules are scored on their match to entities, and
the best fitting rules are applied to update entity properties. In a series of experiments, we
demonstrate that this architecture achieves a flexible, dynamic flow of control and serves to
factorize entity-specific and rule-based information. This disentangling of knowledge achieves
robust future-state prediction in rich visual environments, outperforming state-of-the-art
methods using GNNs, and allows for the extrapolation from simple (few object) environments
to more complex environments. We are not the first to propose a neural instantiation of a
production system architecture. Touretzky & Hinton (1988) gave a proof of principle that
neural net hardware could be hardwired to implement a production system for symbolic
reasoning; our work fundamentally differs from theirs in that (1) we focus on perceptual
inference problems and (2) we use the architecture as an inductive bias for learning.

4.4. Research Impact
In learning to model a visual environment, many solutions could be found which fit

the data well but will not generalize in a systematic way to different settings. To achieve
systematic generalization, the knowledge about individual entities (in the form of slots) and
sparse rules should be factored from each other. This will allow any rule to be applied to
multiple slots or many rules can be applied to the same slot when appropriate. Although
the above factorization may seem naturally desirable, it is not built into the neural network
architectures: they lump together (for each artificial neuron) both the specification of a rule
(via the synaptic weights of the neuron) and the values of the attributes of entities (via
the neural activity). We conjecture – and experiments with NPS show – that attention
mechanisms offer even more flexibility in factorizing sparse rules and slots and combine
them in arbitrary ways demanded by context and the attributes of entities. The idea of
factorizing knowledge in terms of entities, as well as rules has been useful for influencing
the thoughts of my colleagues as well as the general research community. Even though the
idea is relatively recent, there have been few follow-ups already using it for model-based RL
(Ke et al., 2021) and in the context of continual learning where one can add more rules in
a completely decentralized fashion. This is the only work which I am aware of where the
interactions among the different entities (as well as the representation of these entities) are
sparse and dynamic and learned in a context dependent fashion.
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Chapter 5

Neural Production Systems

5.1. Introduction
Despite never having taken a physics course, every child beyond a young age appreciates

that pushing a plate off the dining table will cause the plate to break. The laws of physics
accurately characterize the dynamics of our natural world, and although explicit knowledge
of these laws is not necessary to reason, we can reason explicitly about objects interacting
through these laws. Humans can verbalize knowledge in propositional expressions such as “If
a plate drops from table height, it will break,” and “If a video-game opponent approaches
from behind and they are carrying a weapon, they are likely to attack you.” Expressing
propositional knowledge is not a strength of current deep learning methods for several reasons.
First, propositions are discrete and independent from one another. Second, propositions must
be quantified in the manner of first-order logic; for example, the video-game proposition
applies to any X for which X is an opponent and has a weapon. Incorporating the ability to
express and reason about propositions should improve generalization in deep learning methods
because this knowledge is modular— propositions can be formulated independently of each
other— and can therefore be acquired incrementally. Propositions can also be composed with
each other and applied consistently to all entities that match, yielding a powerful form of
systematic generalization.

The classical AI literature from the 1980s can offer deep learning researchers a valuable
perspective. In this era, reasoning, planning, and prediction were handled by architectures
that performed propositional inference on symbolic knowledge representations. A simple
example of such an architecture is the production system (Laird et al., 1986; Anderson, 1987),
which expresses knowledge by condition-action rules. The rules operate on a working memory :
rule conditions are matched to entities in working memory inspired by cognitive science, and
such a match can trigger computational actions that update working memory or external
actions that operate on the outside world.

Production systems were typically used to model high-level cognition, e.g., mathematical
problem solving or procedure following; perception was not the focus of these models. It
was assumed that the results of perception were placed into working memory in a symbolic
form that could be operated on with the rules. In this article, we revisit production systems
but from a deep learning perspective which naturally integrates perceptual processing and
subsequent inference for visual reasoning problems. We describe an end-to-end deep learning
model that constructs object-centric representations of entities in videos, and then operates
on these entities with differentiable—and thus learnable—production rules. The essence of
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NPS

GNN

Ball-Ball interaction rule

Ball-Wall interaction rule

GNN common interaction rule

Red ball slot

Purple ball slot

Green ball slot

Slot repersenting the wall
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Fig. 1. In this figure we show a visual comparison between NPS and dense architectures like GNNs. In NPS, a rule is
only applied when an interaction takes place and it is applied only to the slots affected by the interaction. NPS also
uses different rules for different kinds of interactions, while in GNN a common rule is applied to all slots irrespective of
whether an interaction takes place or not (because of parameter sharing). Note the dynamic nature of the interaction
graph in NPS, while in GNN, the graph is static.

these rules, carried over from traditional symbolic system, is that they operate on variables
that are bound, or linked, to the entities in the world. In the deep learning implementation,
each production rule is represented by a distinct MLP with query-key attention mechanisms
to specify the rule-entity binding and to determine when the rule should be triggered for a
given entity.

5.1.1. Variables and entities

What makes a rule general-purpose is that it incorporates placeholder variables that can
be bound to arbitrary values or—the term we prefer in this article—entities. This notion
of binding is familiar in functional programming languages, where these variables are called
arguments. Analogously, the use of variables in the production rules we describe enable a
model to reason about any set of entities that satisfy the selection criteria of the rule.

Consider a simple function in C like int add(int a, int b). This function binds its
two integer operands to variables a and b. The function does not apply if the operands are,
say, character strings. The use of variables enables a programmer to reuse the same function
to add any two integer values

In order for rules to operate on entities, these entities must be represented explicitly.
That is, the visual world needs to be parsed in a task-relevant manner, e.g., distinguishing
the sprites in a video game or the vehicles and pedestrians approaching an autonomous
vehicle. Only in the past few years have deep learning vision researchers developed methods
for object-centric representation (Le Roux et al., 2011; Eslami et al., 2016; Greff et al., 2016;
Raposo et al., 2017; Van Steenkiste et al., 2018; Kosiorek et al., 2018; Engelcke et al., 2019;
Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020; Ahmed et al., 2020; Goyal et al.,
2019c; Zablotskaia et al., 2020; Rahaman et al., 2020; Du et al., 2020; Ding et al., 2020; Goyal
et al., 2020; Ke et al., 2021). These methods differ in details but share the notion of a fixed
number of slots (see Figure 1 for example), also known as object files, each encapsulating
information about a single object. Importantly, the slots are interchangeable, meaning that it
doesn’t matter if a scene with an apple and an orange encodes the apple in slot 1 and orange
in slot 2 or vice-versa.

A model of visual reasoning must not only be able to represent entities but must also
express knowledge about entity dynamics and interactions. To ensure systematic predictions,
a model must be capable of applying knowledge to an entity regardless of the slot it is in
and must be capable of applying the same knowledge to multiple instances of an entity.
Several distinct approaches exist in the literature. The predominant approach uses graph
neural networks to model slot-to-slot interactions (Scarselli et al., 2008; Bronstein et al., 2017;
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Watters et al., 2017; Van Steenkiste et al., 2018; Kipf et al., 2018; Battaglia et al., 2018;
Tacchetti et al., 2018). To ensure systematicity, the GNN must share parameters among
the edges. In a recent article, Goyal et al. (2020) developed a more general framework in
which parameters are shared but slots can dynamically select which parameters to use in a
state-dependent manner. Each set of parameters is referred to as a schema, and slots use a
query-key attention mechanism to select which schema to apply at each time step. Multiple
slots can select the same schema. In both GNNs and SCOFF, modeling dynamics involves
each slot interacting with each other slot. In the work we describe in this article, we replace
the direct slot-to-slot interactions with rules, which mediate sparse interactions among slots
(See arrows in Figure 1).

Thus our main contribution is that we introduce NPS, which offers a way to model
dynamic and sparse interactions among the variables in a graph and also allows dynamic
sharing of multiple sets of parameters among these interactions. Most architectures used
for modelling interactions in the current literature use statically instantiated graph which
model all possible interactions for a given variable at each step i.e. dense interactions.
Also such dense architectures share a single set of parameters across all interactions which
maybe quite restrictive in terms of representational capacity. A visual comparison between
these two kinds of architectures is shown in Figure 1. Through our experiments we show
the advantage of modeling interactions in the proposed manner using NPS in visually rich
physical environments. We also show that our method results in an intuitive factorization of
rules and entities.

5.2. Production System
Formally, our notion of a production system consists of a set of entities and a set of rules,

along with a mechanism for selecting rules to apply on subsets of the entities. Implicit in a
rule is a specification of the properties of relevant entities, e.g., a rule might apply to one
type of sprite in a video game but not another. The control flow of a production system
dynamically selects rules as well as bindings between rules and entities, allowing different
rules to be chosen and different entities to be manipulated at each point in time.

The neural production system we describe shares essential properties with traditional
production system, particularly with regard to the compositionality and generality of the
knowledge they embody. Lovett & Anderson (2005) describe four desirable properties
commonly attributed to symbolic systems that apply to our work as well.

Production rules are modular. Each production rule represents a unit of knowledge and
are atomic such that any production rule can be intervened (added, modified or deleted)
independently of other production rules in the system.

Production rules are abstract. Production rules allow for generalization because their
conditions may be represented as high-level abstract knowledge that match to a wide range of
patterns. These conditions specify the attributes of relationship(s) between entities without
specifying the entities themselves. The ability to represent abstract knowledge allows for the
transfer of learning across different environments as long as they fit within the conditions of
the given production rule.

Production rules are sparse. In order that production rules have broad applicability, they
involve only a subset of entities. This assumption imposes a strong prior that dependencies
among entities are sparse. In the context of visual reasoning, we conjecture that this prior is
superior to what has often been assumed in the past, particularly in the disentanglement
literature—independence among entities Higgins et al. (2016); Chen et al. (2018).
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Production rules represent causal knowledge and are thus asymmetric. Each rule can be
decomposed into a {condition, action} pair, where the action reflects a state change that is a
causal consequence of the conditions being met.

These four properties are sufficient conditions for knowledge to be expressed in production
rule form. These properties specify how knowledge is represented, but not what knowledge is
represented. The latter is inferred by learning mechanisms under the inductive bias provided
by the form of production rules.

5.3. Neural Production System: Slots and Sparse Rules
The Neural Production System (NPS), illustrated in Figure 2, provides an architectural

backbone that supports the detection and inference of entity (object) representations in
an input sequence, and the underlying rules which govern the interactions between these
entities in time and space. The input sequence indexed by time step t, {x1, . . . ,xt, . . . ,xT},
for instance the frames in a video, are processed by a neural encoder (Greff et al., 2019;
Goyal et al., 2019c, 2020) applied to each xt, to obtain a set of M entity representations
{V t

1 , . . . , . . . ,V
t
M}, one for each of the M slots. These representations describe an entity and

are updated based on both the previous state, V t−1 and the current input, xt.
NPS consists of N separately encoded rules, {R1,R2, ..,RN}. Each rule consists of two

components, Ri = ( �Ri,MLPi), where �Ri is a learned rule embedding vector, which can be
thought of as a template defining the condition for when a rule applies; and MLPi, which
determines the action taken by a rule. Both �Ri and the parameters of MLPi are learned along
with the other parameters of the model using back-propagation on an objective optimized
end-to-end.

Fig. 2. Rule and slot combinatorics. Condition-action
rules specify how entities interact. Slots maintain the time-
varying state of an entity. Every rule is matched to every
pair of slots. Through key-value attention, a goodness of
match is determined, and a rule is selected along with its
binding to slots.

In the general form of the model, each
slot selects a rule that will be applied to
it to change its state. This can potentially
be performed several times, with possibly
different rules applied at each step. Rule se-
lection is done using an attention mechanism
described in detail below. Each rule speci-
fies conditions and actions on a pair of slots.
Therefore, while modifying the state of a slot
using a rule, it can take the state of another
slot into account. The slot which is being
modified is called the primary slot and other
is called the contextual slot. The contextual
slot is also selected using an attention mechanism described in detail below.

5.3.1. Computational Steps in NPS

In this section, we give a detailed description of the rule selection and application procedure
for the slots. First, we will formalize the definitions of a few terms that we will use to explain
our method. We use the term primary slot to refer to slot Vp whose state gets modified by
a rule Rr. We use the term contextual slot to refer to the slot Vc that the rule Rr takes
into account while modifying the state of the primary slot Vp.
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Algorithm 1 Sequential Neural Production System model

Input: Input sequence {x1, . . . ,xt, . . . ,xT }, set of embeddings describing the rules �Ri, and set of MLPs
(MLPi) corresponding to each rule R1...N . Hyper-parameters specific to are the number of stages K, the
number of slots M , and the number of rules N . W k, W q, W̃ k, and W̃ q are learnable weights.

for each input element xt with t← 1 to T do

Step 1: Update or infer the entity state in each slot j, V t,0
j , from the previous state, V t−1,K

j and the
current input xt.

for each stage h← 0 to K − 1 do
Step 2: Select {rule, primary slot} pair
• ki = �RiW

k ∀i ∈ {1, . . . , N}
• qj = V t,h

j W q ∀j ∈ {1, . . . ,M}
• r, p = argmaxi,j (qjki + γ)

where γ ∼ Gumbel(0, 1)

Step 3: Select contextual slot
• qr,p = V t,h

p W̃ q

• kj = V t,h
j W̃ k ∀j ∈ {1, . . . ,M}

• c = argmaxj (qr,pkj + γ)
where γ ∼ Gumbel(0, 1)

Step 4: Apply selected rule to primary slot conditioned on contextual slot
• R̃ = MLPr(Concatenate([V

t,h
p ,V t,h

c ]))

• V t,h+1
p = V t,h

p + R̃

end
end

Notation. We consider a set of N rules {R1,R2, . . . ,RN} and a set of T input frames
{x1,x2, . . . ,xT}. Each frame xt is encoded into a set of M slots {V t

1 ,V
t
2 , . . . ,V

t
M}. In the

following discussion, we omit the index over t for simplicity.
Step 1. is external to NPS and involves parsing an input image, xt, into slot-based

entities conditioned on the previous state of the slot-based entities. Any of the methods
proposed in the literature to obtain a slot-wise representation of entities can be used (Greff
et al., 2019; Goyal et al., 2019c, 2020). The next three steps constitute the rule selection and
application procedure.

Step 2. For each primary slot Vp, we attend to a rule Rr to be applied. Here, the queries
come from the primary slot: qp = VpW

q, and the keys come from the rules: ki = �RiW
k ∀i ∈

{1, . . . ,N}. The rule is selected using a straight-through Gumbel softmax (Jang et al., 2016)
to achieve a learnable hard decision: r = argmaxi(qpki + γ), where γ ∼ Gumbel(0, 1). This
competition is a noisy version of rule matching and prioritization in traditional production
systems.

Step 3. For a given primary slot Vp and selected rule Rr, a contextual slot Vc is
selected using another attention mechanism. In this case the query comes from the primary
slot: qp = VpW

q, and the keys from all the slots: kj = VjW
q ∀j ∈ {1, . . . ,M}. The

selection takes place using a straight-through Gumbel softmax similar to step 2: c =
argmaxj(qpkj + γ), where γ ∼ Gumbel(0, 1). Note that each rule application is sparse since
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Fig. 3. This figure demonstrates the sequential and parallel rule application.

it takes into account only 1 contextual slot for modifying a primary slot, while other methods
like GNNs take into account all slots for modifying a primary slot.

Step 4. Rule Application: the selected rule Rr is applied to the primary slot Vp based
on the rule and the current contents of the primary and contextual slots. The rule-specific
MLPr, takes as input the concatenated representation of the state of the primary and
contextual slots, Vp and Vc, and produces an output, which is then used to change the state
of the primary slot Vp by residual addition.

5.3.2. Rule Application: Sequential vs Parallel Rule Application

In the previous section, we have described how each rule application only considers another
contextual slot for the given primary slot i.e., contextual sparsity. We can also consider
application sparsity, wherein we use the rules to update the states of only a subset of the
slots. In this scenario, only the selected slots would be primary slots. This setting will be
helpful when there is an entity in an environment that is stationary, or it is following its own
default dynamics unaffected by other entities. Therefore, it does not need to consider other
entities to update its state. We explore two scenarios for enabling application sparsity.

Parallel Rule Application. Each of the M slots selects a rule to potentially change its
state. To enable sparse changes, we provide an extra Null Rule in addition to the available
N rules. If a slot picks the null rule in step 2 of the above procedure, we do not update its
state.

Sequential Rule Application. In this setting, only one slot gets updated in each
rule application step. Therefore, only one slot is selected as the primary slot. This can be
facilitated by modifying step 2 above to select one {primary slot, rule} pair among NM
{rule, slot} pairs. The queries come from each slot: qj = VjW

q ∀j ∈ {1, . . . ,M}, the keys
come from the rules: ki = RiW

k ∀i ∈ {1, . . . ,N}. The straight-through Gumbel softmax
selects one (primary slot, rule) pair: p, r = argmaxi,j(qpki + γ), where γ ∼ Gumbel(0, 1).
In the sequential regime, we allow the rule application procedure (step 2, 3, 4 above) to be
performed multiple times iteratively in K rule application stages for each time-step t.

A pictorial demonstration of both rule application regimes can be found in Figure 3. We
provide detailed algorithms for the sequential and parallel regimes in Appendix.

5.4. Experiments
We demonstrate the effectiveness of NPS on multiple tasks and compare to a comprehen-

sive set of baselines. To show that NPS can learn intuitive rules from the data generating
distribution, we design a couple of simple toy experiments with well-defined discrete oper-
ations. Results show that NPS can accurately recover each operation defined by the data

60



and learn to represent each operation using a separate rule. We then move to a much more
complicated and visually rich setting with abstract physical rules and show that factorization
of knowledge into rules as offered by NPS does scale up to such settings. We study and
compare the parallel and sequential rule application procedures and try to understand the
settings which favour each. We then evaluate the benefits of reusable, dynamic and sparse
interactions as offered by NPS in a wide variety of physical environments by comparing it
against various baselines. We conduct ablation studies to assess the contribution of different
components of NPS. Here we briefly outline the tasks considered and direct the reader to
the Appendix for full details on each task and details on hyperparameter settings.

Table 1. This table shows the segregation of rules
for the MNIST Transformation task. Each cell indi-
cates the number of times the corresponding rule is
used for the given operation. We can see that NPS
automatically and perfectly learns a separate rule for
each operation.

Rule 1 Rule 2 Rule 3 Rule 4
Translate Down 5039 0 0 0
Translate Up 0 4950 0 0
Rotate Right 0 0 5030 0
Rotate Left 0 0 0 4981

Discussion of baselines. NPS is an interac-
tion network, therefore we use other widely used
interaction networks such as multihead attention
and graph neural networks (Goyal et al. (2019c),
Goyal et al. (2020), Veerapaneni et al. (2019),
Kipf et al. (2019)) for comparison. Goyal et al.
(2019c) and Goyal et al. (2020) use an attention
based interaction network to capture interactions
between the slots, while Veerapaneni et al. (2019)
and Kipf et al. (2019) use a GNN based inter-
action network. We also consider the recently
introduced convolutional interaction network (CIN) (Qi et al., 2021) which captures dense
pairwise interactions like GNN but uses a convolutional network instead of MLPs to better
utilize spatial information. The proposed method, similar to other interaction networks, is
agnostic to the encoder backbone used to encode the input image into slots, therefore we
compare NPS to other interaction networks across a wide-variety of encoder backbones.

5.4.1. Learning intuitive rules with NPS: Toy Simulations

We designed a couple of simple tasks with well-defined discrete rules to show that NPS
can learn intuitive and interpretable rules. We also show the efficiency and effectiveness of the
selection procedure (step 2 and step 3 in section 5.3.1) by comparing against a baseline with
many more parameters. Both tasks require a single modification of only one of the available
entities, therefore the use of sequential or parallel rule application would not make a difference
here since parallel rule application in which all-but-one slots select the null rule is similar
to sequential rule application with 1 rule application step. To simplify the presentation, we
describe the setup for both tasks using the sequential rule application procedure.

MNIST Transformation. We test whether NPS can learn simple rules for performing
transformations on MNIST digits. We generate data with four transformations: {Translate
Up, Translate Down, Rotate Right, Rotate Left}. We feed the input image (X) and the
transformation (o) to be performed as a one-hot vector to the model. The detailed setup is
described in Appendix. For this task, we evaluate whether NPS can learn to use a unique
rule for each transformation.

We use 4 rules corresponding to the 4 transformations with the hope that the correct
transformations are recovered. Indeed, we observe that NPS successfully learns to
represent each transformation using a separate rule as shown in Table 1. Our model
achieves an MSE of 0.02.
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Fig. 4. Coordinate Arithmetic Task. Here, we compare NPS to the baseline model in terms of segregation of
rules as the training progresses. X-axis shows the epochs and Y-axis shows the frequency with which Rule i is used for
the given operation. We can see that NPS disentangles the operations perfectly as training progresses with a unique
rule specializing to every operation while the baseline model fails to do so.

Coordinate Arithmetic Task. The model is tasked with performing arithmetic
operations on 2D coordinates. Given (X0, Y0) and (X1, Y1), we can apply the following
operations: {X Addition: (Xr, Yr) = (X0 + X1, Y0), X Subtraction: (Xr, Yr) = (X0 −
X1, Y0), Y Addition: (Xr, Yr) = (X0, Y0 + Y1), Y Subtraction: Xr, Yr = (X0, Y0 − Y1)},
where (Xr, Yr) is the resultant coordinate.

Table 2. This table shows segregation of rules when
we use NPS with 5 rules but the data generation
distributions describes only 4 possible operations. We
can see that only 4 rules get majorly utilized thus
confirming that NPS successfully recovers all possible
operations described by the data.

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

X Addition 360 99 45 13 0

X Subtraction 0 482 0 1 0

Y Subtraction 0 39 453 2 0

Y Addition 0 57 15 99 335

In this task, the model is given 2 input coor-
dinates X = [(xi, yi), (xj, yj)] and the expected
output coordinates Y = [(x̂i, ŷi), (x̂j, ŷj)] . The
model is supposed to infer the correct rule to
produce the correct output coordinates. During
data collection, the true output is obtained by per-
forming a random transformation on a randomly
selected coordinate in X (primary coordinate),
taking another randomly selected coordinate from
X (contextual coordinate) into account. We use
an NPS model with 4 rules for this task. We use
the the selection procedure in step 2 and step 3
of algorithm 1 to select the primary coordinate,
contextual coordinate, and the rule. For the baseline we replace the selection procedure
in NPS (i.e. step 2 and step 3 in algorithm 1) with a routing MLP similar to Fedus et al.
(2021b).

This routing MLP has 3 heads (one each for selecting the primary coordinate, contextual
coordinate, and the rule). The baseline has 4 times more parameters than NPS. The final
output is produced by the rule MLP which does not have access to the true output, hence
the model cannot simply copy the true output to produce the actual output. Unlike the
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MNIST transformation task, we do not provide the operation to be performed as a one-hot
vector input to the model, therefore it needs to infer the available operations from the data
demonstrations.

We show the segregation of rules for NPS and the baseline in Figure 4. We can see that
NPS learns to use a unique rule for each operation while the baseline struggles
to disentangle the underlying operations properly. NPS also outperforms the
baseline in terms of MSE achieving an MSE of 0.01±0.001 while the baseline achieves an
MSE of 0.04±0.008. To further confirm that NPS learns all the available operations correctly
from raw data demonstrations, we use an NPS model with 5 rules. We expect that in
this case NPS should utilize only 4 rules since the data describes only 4 unique
operations and indeed we observe that NPS ends up mostly utilizing 4 of the
available 5 rules as shown in Table 2.

5.4.2. Parallel vs Sequential Rule Application

We compare the parallel and sequential rule application procedures, to understand the
settings that favour one or the other, over two tasks: (1) Bouncing Balls, (2) Shapes Stack.
We use the term PNPS to refer to parallel rule application and SNPS to refer to sequential
rule application.

Model Name Test Transfer

RPIN (Qi et al. (2021)) 1.254±0.008 6.377±0.325

PNPS 1.250±0.007 5.411±0.45

SNPS 1.68±0.02 5.80±0.15

Table 3. Prediction error of the compared models
on the shapes stack dataset (lower is better) for the
test as well as transfer setting. In the test setting
the number of rollout steps t is set to 15 and in the
transfer setting it is set to 30. We can see that PNPS
outperforms the RPIN baseline in both the test and
transfer setting while SNPS fails to do so. Results
across 15 seeds.

Shapes Stack. We use the shapes stack dataset
introduced by Groth et al. (2018). This dataset
consists of objects stacked on top of each other
as shown in Figure 5. These objects fall under
the influence of gravity. For our experiments, We
follow the same setup as Qi et al. (2021). In this
task, given the first frame, the model is tasked
with predicting the object bounding boxes for the
next t timesteps. The first frame is encoded using
a convolutional network followed by RoIPooling
(Girshick (2015)) to extract object-centric visual
features. The object-centric features are then
passed to the dynamics model to predict object
bounding boxes of the next t steps. Qi et al.
(2021) propose a Region Proposal Interaction Network (RPIN) to solve this task. The
dynamics model in RPIN consists of an Interaction Network proposed in Battaglia et al.
(2016b). To better utilize spatial information, Qi et al. (2021) propose an extension of the
interaction operators in interaction net to operate on 3D tensors. This is achieved by replacing
the MLP operations in the original interaction networks with convolutions. They call this
new network Convolutional Interaction Network (CIN). For the proposed model, we replace
this CIN in RPIN by NPS. To ensure a fair comparison to CIN, we use CNNs to represent
rules in NPS instead of MLPs. CIN captures all pairwise interactions between objects using
a convolutional network. In NPS, we capture sparse interactions (contextual sparsity) as
compared to dense pairwise interactions captured by CIN. Also, in NPS we update only a
few subset of slots per step instead of all slots (application sparsity).

We consider two evaluation settings. (1) Test setting: The number of rollout timesteps
is same as that seen during training (i.e. t = 15); (2) Transfer Setting: The number of
rollout timesteps is higher than that seen during training (i.e. t = 30).
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We present our results on the shapes stack dataset in Table 3. We can see that both
PNPS and SNPS outperform the baseline RPIN in the transfer setting, while only PNPS
outperforms the baseline in the test setting and SNPS fails to do so. We can see that PNPS
outperforms SNPS. We attribute this to the reduced application sparsity with PNPS, i.e.,
it is more likely that the state of a slot gets updated in PNPS as compared to SNPS. For
instance, consider an NPS model with N uniformly chosen rules and M slots. The probability
that the state of a slot gets updated in PNPS is PPNPS = N − 1/N (since 1 rule is the null
rule), while the same probability for SNPS is PSNPS = 1/M (since only 1 slot gets updated
per rule application step).

Rule 1 Rule 2

0.84 0.16

0.62 0.38

0.29 0.71

Fig. 5. Here we show the rule selection statistics from the
proposed model for all entities in the shapes stack dataset
across all examples. Each example contains 3 entities as
shown above. Each cell in the table shows the probability
with which the given rule is triggered for the corresponding
entity. We can see that the bottom-most entity triggers rule
2 most of the time while the other 2 entities trigger rule 1
most often. This is quite intuitive as, for most examples,
the bottom-most entity remains static and does not move at
all while the upper entities fall. Therefore, rule 2 captures
information which is relevant to static entities, while rule
1 captures physical rules relevant to the interactions and
motion of the upper entities.

For this task, we run both PNPS and
SNPS for N = {1, 2, 4, 6} rules and M = 3.
For any given N , we observe that PPNPS >
PSNPS. Even when we have multiple rule ap-
plication steps in SNPS, it might end up
selecting the same slot to be updated in
more than one of these steps. We report
the best performance obtained for PNPS
and SNPS across all N , which is N =
{2+1 Null Rule} for PNPS and N = 4 for
SNPS, in Table 3. Shapes stack is a dataset
that would prefer a model with less applica-
tion sparsity since all the objects are tightly
bound to each other (objects are placed on
top of each other), therefore all objects spend
the majority of their time interacting with
the objects directly above or below them. We
attribute the higher performance of PNPS
compared to RPIN to the higher contex-
tual sparsity of PNPS. Each example in the
shapes stack task consists of 3 objects. Even
though the blocks are tightly bound to each
other, each block is only affected by the ob-
jects it is in direct contact with. For example, the top-most object is only affected by the
object directly below it. The contextual sparsity offered by PNPS is a strong inductive bias
to model such sparse interactions while RPIN models all pairwise interactions between the
objects. Figure 5 shows an intuitive illustration of the PNPS model for the shapes stack
dataset. In the figure, Rule 2 actually refers to the Null Rule, while Rule 1 refers to all
the other non-null rules. The bottom-most block picks the Null Rule most times, as the
bottom-most block generally does not move.
Bouncing Balls. We consider a bouncing-balls environment in which multiple balls move with
billiard-ball dynamics. We validate our model on a colored version of this dataset. This is a
next-step prediction task in which the model is tasked with predicting the final binary mask of
each ball. We compare the following methods: (a) SCOFF (Goyal et al., 2020): factorization
of knowledge in terms of slots (object properties) and schemata, the latter capturing object
dynamics; (b) SCOFF++: we extend SCOFF by using the idea of iterative competition as
proposed in slot attention (SA) (Locatello et al., 2020); SCOFF + PNPS/SNPS: We replace
pairwise slot-to-slot interaction in SCOFF++ with parallel or sequential rule application.
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For comparing different methods, we use the Adjusted Rand Index or ARI (Rand, 1971). To
investigate how the factorization in the form of rules allows for extrapolating knowledge from
fewer to more objects, we increase the number of objects from 4 during training to 6-8 during
testing.

We present the results of our experiments in Table 4. Contrary to the shapes stack task,
we see that SNPS outperforms PNPS for the bouncing balls task. The balls are not tightly
bound together into a single tower as in the shapes stack. Most of the time, a single ball
follows its own dynamics, only occasionally interacting with another ball. Rules in NPS
capture interaction dynamics between entities, hence they would only be required to change
the state of an entity when it interacts with another entity. In the case of bouncing balls, this
interaction takes place through a collision between multiple balls. Since for a single ball, such
collisions are rare, SNPS, which has higher application sparsity (less probability of modifying
the state of an entity), performs better as compared to PNPS (lower application sparsity).
Also note that, SNPS has the ability to compose multiple rules together by virtue of having
multiple rule application stages.

Given the analysis in this section, we can conclude that PNPS is expected to work better
when interactions among entities are more frequent while SNPS is expected to work better
when interactions are rare and most of the time, each entity follows its own dynamics. Note
that, for both SNPS and PNPS, the rule application considers only 1 other entity as context.
Therefore, both approaches have equal contextual sparsity while the baselines that we consider
(SCOFF and RPIN) capture dense pairwise interactions. We discuss the benefits of contextual
sparsity in more detail in the next section.

5.4.3. Benefits of Sparse Interactions Offered by NPS

Model Name Test Transfer

SCOFF 0.28 0.15

SCOFF++ 0.8437 0.2632

PNPS (10 Rules+1 Null Rule) 0.7813 0.1997

SNPS (10 Rules) 0.8518 0.3553

Table 4. Here we show the ARI achieved by the
models on the bouncing balls dataset (higher is bet-
ter). We can see that SNPS outperforms SCOFF and
SCOFF++ while PNPS has a poor performance in
this task. Results average across 2 seeds.

In NPS, one can view the computational
graph as a dynamically constructed GNN re-
sulting from applying dynamically selected rules,
where the states of the slots are represented on the
different nodes of the graph, and different rules
dynamically instantiate an hyper-edge between a
set of slots (the primary slot and the contextual
slot). It is important to emphasize that the topol-
ogy of the graph induced in NPS is dynamic and
sparse (only a few nodes affected), while in most
GNNs the topology is fixed and dense (all nodes
affected). In this section, through a thorough set
of experiments, we show that learning sparse and dynamic interactions using NPS indeed
works better for the problems we consider than learning dense interactions using GNNs. We
consider two types of tasks: (1) Learning Action Conditioned World Models (2) Physical
Reasoning. We use SNPS for all these experiments since in the environments that we consider
here, interactions among entities are rare.
Learning Action-Conditioned World Models. For learning action-conditioned world models,
we follow the same experimental setup as Kipf et al. (2019). Therefore, all the tasks in this
section are next-K step (K = {1, 5, 10}) prediction tasks, given the intermediate actions, and
with the predictions being performed in the latent space. We use the Hits at Rank 1 (H@1)
metrics described by Kipf et al. (2019) for evaluation. H@1 is 1 for a particular example if
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the predicted state representation is nearest to the encoded true observation and 0 otherwise.
We report the average of this score over the test set (higher is better).
Physics Environment. The physics environment (Ke et al., 2021) simulates a simple physical
world. It consists of blocks of unique but unknown weights. The dynamics for the interaction
between blocks is that the movement of heavier blocks pushes lighter blocks on their path.
This rule creates an acyclic causal graph between the blocks. For an accurate world model,
the learner needs to infer the correct weights through demonstrations. Interactions in this
environment are sparse and only involve two blocks at a time, therefore we expect NPS to
outperform dense architectures like GNNs. This environment is demonstrated in Appendix
Fig ??.

We follow the same setup as Kipf et al. (2019). We use their C-SWM model as baseline.
For the proposed model, we only replace the GNN from C-SWM by NPS. GNNs generally
share parameters across edges, but in NPS each rule has separate parameters. For a fair
comparison to GNN, we use an NPS model with 1 rule. Note that this setting is still different
from GNNs as in GNNs at each step every slot is updated by instantiating edges between all
pairs of slots, while in NPS an edge is dynamically instantiated between a single pair of slots
and only the state of the selected slot (i.e., primary slot) gets updated.

a Physics Env b Atari Games

Fig. 6. Action-Conditioned World Models, with number of future steps to be predicted for the world-model on
the horizontal axes. (a) Here we show a comparison between GNNs and the proposed NPS on the physics environment
using the H@1 metric (higher is better). (b) Comparison of average H@1 scores across 5 Atari games for the proposed
model NPS and GNN.

The results of our experiments are presented in Figure 6(a). We can see that NPS
outperforms GNNs for all rollouts. Multi-step settings are more difficult to model as errors
may get compounded over time steps. The sparsity of NPS (only a single slot affected per
step) reduces compounding of errors and enhances symmetry-breaking in the assignment of
transformations to rules, while in the case of GNNs, since all entities are affected per step,
there is a higher possibility of errors getting compounded. We can see that even with a
single rule, we significantly outperform GNNs thus proving the effectiveness of dynamically
instantiating edges between entities.
Atari Games. We also test the proposed model in the more complicated setting of Atari. Atari
games also have sparse interactions between entities. For instance, in Pong, any interaction
involves only 2 entities: (1) paddle and ball or (2) ball and the wall. Therefore, we expect
sparse interactions captured by NPS to outperform GNNs here as well.

We follow the same setup as for the physics environment described in the previous section.
We present the results for the Atari experiments in Figure 6(b), showing the average H@1
score across 5 games: Pong, Space Invaders, Freeway, Breakout, and QBert. As expected, we
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can see that the proposed model achieves a higher score than the GNN-based C-SWM. The
results for the Atari experiments reinforce the claim that NPS is especially good at learning
sparse interactions.
Learning Rules for Physical Reasoning. To show the effectiveness of the proposed approach
for physical reasoning tasks, we evaluate NPS on another dataset: Sprites-MOT (He et al.,
2018). The Sprites-MOT dataset was introduced by He et al. (2018). The dataset contains
a set of moving objects of various shapes. This dataset aims to test whether a model can
handle occlusions correctly. Each frame has consistent bounding boxes which may cause the
objects to appear or disappear from the scene. A model which performs well should be able
to track the motion of all objects irrespective of whether they are occluded or not. We follow
the same setup as Weis et al. (2020). We use the OP3 model (Veerapaneni et al., 2019) as
our baseline. To test the proposed model, we replace the GNN-based transition model in
OP3 with the proposed NPS.

Model MOTA ↑ MOTP ↑
OP3 89.1±5.1 78.4±2.4

NPS 90.72±5.15 79.91±0.3

Table 5. Sprites-MOT. Comparison
between the proposed NPS and the
baseline OP3 using the MOTA and
MOTP metrics on the sprites-MOT
dataset (↑: higher is better). Average
over 3 random seeds.

We use the same evaluation protocol as followed by Weis
et al. (2020) which is based on the MOT (Multi-object track-
ing) challenge (Milan et al., 2016). The results on the MOTA
and MOTP metrics for this task are presented in Table 5.
We can see that for almost all metrics, NPS outperforms
the OP3 baseline. Although this dataset does not contain
physical interactions between the objects, sparse rule appli-
cation should still be useful in dealing with occlusions. At
any time step, only a single object is affected by occlusions
i.e., it may get occluded due to another object or due to
a prespecified bounding box, while the other objects follow
their default dynamics. Therefore, a rule should be applied
to only the object (or entity) affected (i.e., not visible) due to occlusion and may take into
account any other object or entity that is responsible for the occlusion.

5.5. Discussion and Conclusion
For AI agents such as robots trying to make sense of their environment, the only observables

are low-level variables like pixels in images. To generalize well, an agent must induce high-level
entities as well as discover and disentangle the rules that govern how these entities actually
interact with each other. Here we have focused on perceptual inference problems and proposed
NPS, a neural instantiation of production systems by introducing an important inductive
bias in the architecture following the proposals of Marcus (2003); Bengio (2017); Goyal &
Bengio (2020); Ke et al. (2021).

Limitations & Looking Forward. Our experiments highlight the advantages brought
by the factorization of knowledge into a small set of entities and sparse sequentially applied
rules. Immediate future work would investigate how to take advantage of these inductive
biases for more complex physical environments (Ahmed et al., 2020) and novel planning
methods, which might be more sample efficient than standard ones (Schrittwieser et al., 2020).
We also find that Sequential and Parallel NPS have different properties suited towards different
domains. Future work should explore how to effectively combine these two approaches.
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Chapter 6

Prologue to the second article

6.1. Article Details
Coordination Among Neural Modules Through a Shared Global Workspace.

Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim
Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, Yoshua Bengio. This work was
accepted for presentation at International Conference on Learning Representations
(ICLR), 2022.

Personal Contribution. Yoshua Bengio had the original thought of having a bottleneck
which can be used for synchronizing information in the human brains, and made the connection
to the theories of consciousness (global workspace). I had the idea of how such a bottleneck
can be implemented efficiently in commonly used neural networks such as slot based models
(RIMs), Transformers and Graph Neural Networks. I implemented the original version and got
proof-of-concept results on toy tasks. Aniket Didolkar and Kartikeya Badola ran experiments
on bouncing balls and the CIFAR jumbling task. Nasim Rahaman ran the experiments
on Starcraft dataset which are not included in the paper. Alex Lamb ran the experiments
integrating shared workspace and Transformers with independent mechanisms (TIMs)(Lamb
et al., 2021). Nan Rosemary Ke ran the experiments on the physical reasoning benchmark.
Jonathan Binas ran MNIST experiments. All the authors contributed in writing of the paper.

6.2. Context
Deep learning has seen a movement away from representing examples with a monolithic

hidden state towards a richly structured state. For example, Transformers segment by position,
and object-centric architectures decompose images into entities. In all these architectures,
interactions between different elements are modeled via pairwise interactions: Transformers
make use of self-attention to incorporate information from other positions and object-centric
architectures make use of graph neural networks to model interactions among entities. We
consider how to improve on pairwise interactions in terms of global coordination and a
coherent, integrated representation that can be used for downstream tasks.

6.3. Contributions
In cognitive science, a global workspace architecture has been proposed in which func-

tionally specialized components share information through a common, bandwidth-limited



communication channel. We explore the use of such a communication channel in the context
of deep learning for modeling the structure of complex environments. The proposed method
includes a shared workspace through which communication among different specialist modules
takes place but due to limits on the communication bandwidth, specialist modules must
compete for access. We show that capacity limitations have a rational basis in that (1) they
encourage specialization and compositionality and (2) they facilitate the synchronization of
otherwise independent specialists. All communication occurs through key-value attention,
which ensures that the specialists are interchangeable, and that any specialist can pass
information to the workspace in a form that others can learn to interpret. Experiments on
prediction and visual reasoning tasks highlight the advantages brought by the conjunction of
modularity and the shared workspace.

6.4. Research Impact
This paper is very recent, and already led to many follow-ups where the authors have

scaled the idea to more complex datasets (Jaegle et al., 2021). Even more recently, Lu
et al. (2022) used the idea to synchronize information among different modalities such that
a single model can perform a large variety of AI tasks spanning classical computer vision
tasks, including pose estimation, object detection, depth estimation and image generation,
vision-and-language tasks such as region captioning and referring expression comprehension,
to natural language processing tasks such as question answering and paraphrasing. They
achieve this unification by homogenizing every supported input and output into a bottleneck
of discrete vocabulary tokens, and running a transformer on top of the encoded tokens. My
work has also gained a lot of attention from researchers thinking about global workspace
theories in cognitive neuroscience.

The proposed model can also be seen as integrating out different ideas popular in modular
architectures (Andreas et al., 2016; Goyal et al., 2019c), memory networks (Graves et al.,
2014b; Santoro et al., 2018) and mixture of experts (Jacobs et al., 1991), and hence combining
some of their benefits in a unified architecture. The proposed model is factored as a set of
specialists (incorporating modularity). The proposed model achieves coordination among
different specialists via the use of a shared workspace (in the Neural Turing machines, there
is only a single specialist i.e., without any modularity). Multiple experts can be active at the
same time (generally not the case with a mixture of experts).
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Chapter 7

Coordination Among Neural Modules Through a
Shared Global Workspace

7.1. Introduction
1. Parallel, competing specialists 2. Write to shared workspace 3. Broadcast workspace contents

Fig. 1. Step 1: an ensemble of specialist modules doing their own default processing; at a particular computational
stage, depending upon the input, a subset of the specialists becomes active. Step 2: the active specialists get to write
information in a shared global workspace. Step 3: the contents of the workspace are broadcast to all specialists.

Deep Learning has seen a movement towards more structured models with cleaner
separation between different pieces of information often handled by different components.
The induced structure, and separation of knowledge has improved generalization, model-size
scaling, and long-range dependencies (Berner et al., 2019; Vinyals et al., 2019; Brown et al.,
2020). This opens up questions about how to achieve coherence and coordination between
different components in such architectures. Looking back to the 1980s, the focus in AI was
much less on learning and more on constructing articulated, multi-component architectures
and examining how intelligence might emerge from interactions among this collection of
simple, functionally specialized components (Fodor, 1983; Braitenberg, 1986; Minsky, 1988;
Brooks, 1991). Each of these specialist modules is on the scale of a typical component of a
computer program, like a subroutine that implements a narrow, prespecified function from
certain input contents to certain output contents.1 Through appropriate communication
and coordination, a set of specialists can achieve complex, dynamic, and flexible behavior
patterns.
1In the literature, specialists are sometimes referred to as processes or agents.



As a concrete illustration, consider the task of driving a car in terms of specialists. One
specialist might monitor the position of the car with respect to lines on the road, and another
specialist might adjust the steering direction based on the perceptual data. In addition, there
might be specialists which provide alerts when certain events occur, such as loud sounds,
reaching a critical intersection on a route, or coming into close proximity to the car in front.
To execute the task of driving the car properly, all these specialists need to interact coherently
and broadcast their individual information to each other.

Arguably, modern ML and AI has yet to develop broad architectural frameworks for
learning both the specialist modules and how they should interact, while the classical view
lacks an articulate story about how learning could take place successfully in such frameworks.
In this article, we revisit this classical view with modern machine learning tools based on
end-to-end learning and differentiable memory and attention mechanisms. Inspired by the
Global Workspace Theory (Baars, 1993; Dehaene et al., 1998; Shanahan & Baars, 2005;
Shanahan, 2006, 2010, 2012; Dehaene et al., 2017) from cognitive neuroscience, we argue
that more flexibility and generalization emerge through an architecture of specialists if their
training encourages them to communicate effectively with one another via the bottleneck of
a shared workspace (Figure. 1).

Distributed specialist modules. From a computational perspective, articulated multi-
component architectures composed of sparsely interacting specialist modules show desirable
scaling properties (e.g., more specialists can seamlessly be added), increased robustness
(the system can tolerate the removal of or changes in individual specialists), and efficiency
(information is processed predominantly locally, reducing the cost of communication between
specialists). However, modularization also requires mechanisms to establish sharing of
compatible representations across specialists, a form of shared internal language. While
portions of a task might be solved by independent specialists, synchronization is critical
particularly when there are statistical, functional, or causal dependencies among the specialists.

Coherence through a shared workspace. In cognitive neuroscience, the Global
Workspace Theory (GWT) (Baars, 1993; Dehaene et al., 2017) suggests an architecture
allowing specialist modules to interact. The key claim of GWT is the existence of a shared
representation—sometimes called a blackboard, sometimes a workspace—that can be modified
by any specialist and that is broadcast to all specialists, along with the notion that write
access is limited to maintain coherence. Our interpretation of this restriction on write access
is that it stems from an assumption on the form of the joint distribution between high-level
concepts. In this paper, we explore a communication and coordination scheme similar to the
one proposed by GWT for modern neural network architectures like Transformers (Vaswani
et al., 2017; Dehghani et al., 2018; Parmar et al., 2018; Radford et al., 2019; Brown et al.,
2020) and attention-based modular architectures (Goyal et al., 2019c; Rahaman et al., 2020;
Mittal et al., 2020a; Goyal et al., 2020; Madan et al., 2021).

In terms of our driving example, the workspace could be used to override default behaviors
by giving high priority to specialist modules which provide alerts of various sorts (loud sounds,
presence of a child on the street), allowing specialists which respond to such alerts to take
control of behavior over default driving routines. This scenario implies that prioritization of
signals in a shared workspace is critical.

A shared communication channel necessitates common representations. For a
multitude of specialist modules to cooperate, a common language is necessary (Baars, 1997).
For example, in the driving scenario, alerts may come from auditory or visual processing
specialists, but regardless of the source, a signal for danger must be placed in the workspace
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Fig. 2. Using a Shared Workspace for creating global coherence in RIMs, Transformers, TIMs and
Universal Transformers (UT). (Top Half) All four of these architectures use pairwise communication (using
key-value attention) to establish coherence between individual specialist modules. In the case of RIMs (Goyal et al.,
2019c) and TIMs (Lamb et al., 2021), these specialists are independent modules that compete with each other in
order to take control over the state update based on a given input. In the case of Transformers (Vaswani et al., 2017)
and Universal Transformers (Dehghani et al., 2018), each specialist is associated with a different position. Activated
specialists are denoted by a blue shade and the intensity depends on the degree of activation. In the case of Universal
Transformers, the state update dynamics for each position is shared across all layers and all positions (denoted by a
yellow triangle). (Bottom Half) We replace pairwise communication with a shared workspace to create global coherence
between different specialists. Communication using the shared workspace is a two-step process (as denoted by 1 and 2
in the figures). In the first step (1), specialists compete for write access to the shared workspace, resulting in a subset
of them being activated (in blue), and only the activated specialists perform the write operation on the workspace. In
the second step (2), the contents of the shared workspace are broadcast to all the specialists.

to override default behavior, whether that behavior is controlled by a radio-tuning specialist
or a steering specialist. Although specialist modules can be pre-wired to have compatible
communication interfaces, we will model an architecture in which an ensemble of specialist
modules is trained in coordination, which should lead to a shared language (Colagrosso &
Mozer, 2005). Internally, individual specialists can use whatever form of representations
that serves them, but their inputs and outputs require alignment with other specialists in
order to synchronize. For example, an unusual event such as a rough thud under the wheels
might not have been previously experienced, but the mere signalling of novelty could override
default specialists. Without a global communication channel, specialists would have to learn
to communicate through pairwise interactions, which might limit coordination of behavior
in novel situations: global communication ensures exchangeability of knowledge to achieve
systematic generalization.

7.2. Synchronizing neural modules through a shared
workspace

We investigate a neural architecture reminiscent of the GW model, where a number
of sparsely communicating specialist modules interact via a shared working memory. In
particular, we extend the Transformer (Vaswani et al., 2017), attention and slot-based modular
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architectures (Goyal et al., 2019c) by adding a shared workspace and allowing modules (each
representing an entity) to compete for write access in each computational stage.

Key-value attention. Key-value attention defines the backbone of updates to the
hidden states in the proposed model. This form of attention is widely used in self-attention
models and performs well on a wide array of tasks (Bahdanau et al., 2014; Vaswani et al.,
2017; Santoro et al., 2018). Key-value attention selects an input value based on the match of
a query vector to a key vector associated with each value. To allow differentiability and thus
easier learnability, selection is soft and computes a convex combination of all the values. Such
a mechanism makes it possible to change on-the-fly both the source of input and how the
shared workspace is updated. It also makes the outputs of the specialists and the elements of
the memory permutation invariant: they should be considered as an unordered set of elements
to be selected by an attention mechanism from the contents of specialists. More precisely, soft
attention uses the product of a query (represented as a matrix Q of dimensionality Nr × d,
with Nr queries, and d the dimension of each query) with a set of No objects each associated
with a key as a row in matrix KT (No × d). After normalization with a softmax the resulting
convex weights are used to combine the values Vi (row i of matrix V ): where the softmax
is applied to each row of its argument matrix, yielding a set of convex weights. For our
experiments, we use multihead dot product attention.
Neural modules with pairwise interactions. Our approach to synchronizing neural modules is
highly general and mostly agnostic to the task, domain, or specific choice of architecture, with
the only requirement being that the model consists of multiple specialist modules which either
operate independently or have sparse interactions requiring to only match pairs of modules
at a time. Our goal is to explore how introducing a shared workspace can help these modules
to become better synchronized and coordinated. We show the utility of the shared workspace
for synchronization in (a) Transformers (Vaswani et al., 2017), in which all interactions
between positions are performed via attention, and (b) slot-based architectures like Recurrent
Independent Mechanisms or RIMs (Goyal et al., 2019c) in which all pairwise interactions
between modules are performed via attention. In the context of slot-based architectures,
each slot’s content is associated with a specialist module, whereas in Transformers different
entities each associated with a different position acts as a specialist module (Figure 2).

Both Transformers and RIMs utilize a self-attention mechanism for sharing information
between modules, typically implemented in a pairwise manner, i.e., each specialist attends to
every other specialist. Instead, we facilitate information sharing among specialist modules
through a limited capacity shared workspace. In this framework at each computational stage,
different specialists compete for write access to the common workspace. The contents of the
workspace, in turn, are broadcast to all specialist modules simultaneously.
Notation. The input is processed through a sequence of computational stages indexed by t, and
at each stage, ns entities are operated on (i.e., ns different modules in slot-based architectures
like RIMs or ns different positions in the case of Transformers). Each of these ns specialist
modules has a distinct internal nh-dimensional state hk

t , for k ∈ {1, ..., ns}. The specialist
modules communicate with each other via a shared workspace divided into nm memory
slots, each consisting of a vector of nl elements, denoted M = [m1; . . .mj; . . .mnm ]. The
shared workspace is updated across different computational stages i.e., different time-steps in
recurrent architecture and different layers in the case of Transformers. At each computational
stage t, different specialists compete for writing in the shared workspace, but all specialists
can read from the current state of the workspace. In the case of an autoregressive task, we
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can restrict the information sharing to previous positions and keep a separate version of the
workspace for each position.

7.2.1. Specifics of the Shared Workspace.

Step 1: Process Input to obtain an entity representation for each specialist.
The first step is external to the proposed method, and involves processing the input to form
the initial representation vector for each of the different specialists. Different common deep
learning architectures can be used to form the representation of different specialists. For
example, Transformers start with a matrix ns × nh whose rows are initialized as the nh-
dimensional embeddings of the input at each position of the sequence. Slot-Based Recurrent
architectures like RIMs consist of a single-layer recurrent structure where the hidden state
ht at computational stage t is decomposed into the substates of the ns specialists, hk

t for
k = 1, ...ns.

In the proposed scheme, within each computational stage, the updates of the hidden
state of different specialists follow a two-step process. First, specialists compete and write
to a shared workspace. Second, information from the workspace gets broadcast to all the
specialists, as detailed next.

Step 2: Writing Information in the shared workspace. The specialists compete
to write into the shared workspace, whose contents need to be updated in the context of
new information received from different specialists. This step ensures that only the critically
important signals make it to the shared workspace, therefore preventing the workspace
from being cluttered. Let matrix R represent the combined state of all the specialists (i.e.
hk
t ∀k ∈ {1, . . . , ns} as the rows of R). In order to implement the competition between

specialists to write into the workspace, we use a key-query-value attention mechanism. In
this case, the query is a function of the state of the current workspace memory content,
represented by matrix M (with one row per slot of the memory), i.e Q̃ = MW̃ q. Keys and
values are a function of the information from the specialists i.e., a function of R. We apply
dot product attention to get the updated memory matrix: M ← softmax

(
˜Q(R˜W e)T√

de

)
RW̃ v.

The use of a regular softmax to write into M leads to a standard soft competition among
different specialists to write in the shared workspace. One can also use a top-k softmax (Ke
et al., 2018) to select a fixed number of specialists allowed to write in the shared workspace:
based on the pre-softmax values, a fixed number of k specialists which have the highest
values are selected, and get access to write in the shared workspace. Selection with a top-k
softmax is a hybrid between hard and soft selection. We denote the set of thus selected
specialists as Ft. We note that we can apply the attention mechanism multiple times to distill
information from different specialists into the shared workspace. Here, the contents of the
shared workspace are updated in the gated way as proposed in RMC (Santoro et al., 2018).

Step 3: Broadcast of information from the shared workspace. Each specialist
then updates its state using the information broadcast from the shared workspace. We
again utilize an attention mechanism to perform this consolidation. All the specialists create
queries q̂k = hk

t Ŵ
q, which are matched with the keys κ̂j = (mjŴ

e)T ∀k ∈ {1, . . . , ns}, j ∈
{1, . . . , nm} from the updated memory slots, forming attention weights sk,j = softmax

(
q̂kκ̂j√

de

)
.

The memory slot values generated by each slot of the shared workspace and the attention
weights are then used to update the state of all the specialists: hk

t ← hk
t +

∑
j sk,jv̂j

where v̂j = mjŴ
v ∀k ∈ {1, . . . , ns}. After receiving the broadcast information from the
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workspace, each specialist update their state by applying some dynamics function i.e., one
step update of LSTM or GRU units in the case of recurrent architectures, and a feedforward
layer in the case of Transformers. This yields the new value hk

t+1 for the k-th specialist, from
which we start the next stage (t+ 1).

Replacing pairwise interactions among neural modules with interaction facilitated by the
shared workspace allows for the following:

1. Higher-order (HO) interaction among neural modules. The two-step write-read
process first allows each memory slot to store a ‘filtered summary’ of the current input where
the ‘filter’ is determined by the previous state of that slot (‘Query’ for the write step). Neural
modules then summarize the information contained in these slots and update their state.
Hence unlike pairwise interaction, messages passed among neural modules in the shared
workspace setting also include HO interaction terms; those consisting of more than 2 modules
at a time. Naturally, HO interaction require that messages passed among neural modules
lie in the same representation space, which is precisely what we aim to achieve by allowing
message passing only via a singular global channel.

2. Dynamic filtering due to persistence of memory. With a shared workspace
(SW), contents of the memory slot play a key role in filtering and summarizing the information
contained in the input at a given time step. Persistence of memory throughout an episode 1)
would allow the memory layer to summarize and filter information based on what it has seen
thus far 2) should ideally lead to better generalization as the model is able to dynamically
modify its filtering machinery for a particular input. In contrast, “inducing points” in Set
Transformers (Lee et al., 2019a) are fixed after training and hence the bottleneck cannot
adjust itself on the fly for any new input. We present comparisons on several tasks in section
7.4. They show the importance of these properties by comparing performance of SW with
2×Self-Attention (to simulate HO interaction without global communication).

Computational Complexity of using shared workspace for synchronizing differ-
ent specialists. To encourage a coherent global coordination, Transformers and slot-based
recurrent architectures rely on pairwise interactions captured via an attention mechanism.
Unfortunately, such attention mechanisms scale quadratically with the number of specialists.
Here, we propose a method which uses a shared workspace to create global coherence between
different specialists and in the process, replaces the pairwise interactions of conventional
dot-product attention. The computational complexity of the proposed method is thus linear
in the number of specialists. In our experimentation, the number of memory slots is practically
constant, which suggests a very favourable scaling behavior, and certainly much less than
quadratic. As a point of reference, what would correspond to the number of slots in human
working memory (Baars, 1993) is indeed very small (less than 10 slots).

7.3. Related Work
This work taps into a line of reasoning put forward by historical works, such as Minsky

(1988); Braitenberg (1986); Fodor (1983), wherein it is argued that in order to be able to
deal with a wide spectrum of conditions and tasks, an intelligent system should be comprised
of many interacting specialized modules or programs, rather than a single “one-size-fits-all”
entity. While modular architectures have been the subject of a number of research directions,
(Jacobs et al., 1991; Bottou & Gallinari, 1991; Ronco et al., 1997; Reed & De Freitas, 2015;
Andreas et al., 2016; Rosenbaum et al., 2017; Fernando et al., 2017; Shazeer et al., 2017;
Rosenbaum et al., 2019a; Goyal & Bengio, 2020), we focus here on a mechanism for achieving
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coherence and synchronization between specialist modules via a global workspace shared
between all specialists.

Prior works have explored incorporating slot-based memory in the context of recurrent
neural networks (Graves et al., 2014b, 2016; Santoro et al., 2018). In the context of trans-
formers, Burtsev & Sapunov (2020) introduce memory tokens that are processed in addition
to sequence tokens, whereas Dai et al. (2019) (Transformer-XL) propose to partition a long
sequence to smaller segments and use the activations of the previous segment in memory while
processing the current segment. Building on the latter, Rae et al. (2019) propose to store
activations from prior segments in a compressed memory. However, these methods do not
restrict memory writes to be sparse and competitive. Recent advances in this direction include
the global neuronal workspace (GNW) model (Dehaene & Changeux, 2011), which identifies
the global workspace with a large network of excitatory pyramidal neurons with long-range
axonal processes connecting prefrontal and parietal cortices. Further, deploying a shared
workspace to establish coherence between different specialists as opposed to using all-pair
communication has an added benefit, in that it allows us to tackle the O(n2) complexity of
self-attention. This makes our work related to previous work on reducing the computational
complexity of dot product attention in Transformers. Lee et al. (2019a) introduce the ISAB
module, which maps between sets and comprises two dot-product attention layers. In the
first layer, a set of trainable parameters are used as queries and the elements of the input
set as keys; in the second layer, the output of the first layer is used as keys and the input
set as queries. However, unlike in this work, the intermediate states (corresponding to the
output of the first layer) are not maintained across layers. Concurrent to our work, (Jaegle
et al., 2021) also introduced the idea of using a latent bottleneck for addressing quadratic
complexity by learning a bottleneck but there are important differences. For example. in
Perceiver the latent bottleneck iteratively queries the information about different positions,
and does not maintain the representation of the different specialists. More precisely, in our
proposed method different specialists write information in the workspace and then information
gets read from the shared workspace. In Perceiver, the latent bottleneck iteratively reads
information from the set of positions. We also show the applicability of the proposed idea
both for slot based models and Transformers.

7.4. Experiments
Here we briefly outline the tasks on which we applied the idea of the shared workspace

and direct the reader to the appendix for some more experiments (Appendix ??), full details
on each task and details on hyperparameter settings for the model. The experiments have
the following goals: (a) Demonstrate that the use of the shared workspace can improve
results on a wide array of challenging benchmark tasks, with the goal of demonstrating the
practical utility and breadth of the technique. (b) Show that the shared workspace addresses
coherence between different specialists by achieving improved performance without requiring
all pairwise interactions. Finally, to show wide applicability of our model, we integrate SW
in TIMs (Lamb et al., 2021), SCOFF (Goyal et al., 2020) and BRIMs (Mittal et al., 2020b)
and show improvements over the default communication method used in each.
Making sense of the visual input. Using a shared workspace introduces a bottleneck in sharing
of information between specialists. Since the size of the workspace is limited and generally
much lower than the number of specialists, there is a limit to the amount of information that
can be exchanged among specialists. We hypothesize that mediating communication through
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Fig. 3. Detecting Equilateral Triangles. Here, we compare the performance of the Transformers with shared
workspace to other Transformer baselines. Here, we plot the test accuracy for each model.

Model Top-1 % Top-5 %
ISAB 65.3±0.025 83.6±0.011
STR 70.6±0.08 87.33±0.06
TR 70.83±0.44 87.8±0.08

TR + HC 70.17±0.31 88.33±0.2

TR + HSW (Ours) 71.07±0.04 88.6±0.49

TR + SSW (Ours) 71.33±0.34 88.3±0.05

Fig. 4. Comparison on CATER Object Tracking. Here, we compare the Top-1 and Top-5 accuracy of
Transformers with shared workspace and Transformers with self-attention. We can see that Transformers with a
shared workspace outperform those with pairwise self-attention.

a limited capacity workspace should encourage the model to look at relevant information
that is important for the downstream objective. We test this hypothesis on a set of visually
challenging benchmarks. For our experiments, we use either Transformers or RIMs as a
backbone. We consider variants of Transformers based on different subsets of important
properties. Transformers [TR]: Self-attention based multi-layer architecture (Vaswani et al.,
2017) with shared parameters across layers. Set transformer [ISAB]: Transformers where
self attention is replaced by ISAB module (Lee et al., 2019a). Sparse Transformers [STR]:
Transformers with sparse factorizations of the attention matrix (Child et al., 2019). High
Capacity Transformers [TR+HC]: Same as TR but with different parameters across layers.
Transformers with Shared Workspace with soft-competition [TR+SSW]: Transformers with
different positions competing with each other to write in shared workspace using soft-
competition. Transformers with Shared Workspace with top-k competition [TR+HSW]:
Transformers with different positions competing with each other to write in shared workspace
using top-k competition.

Detecting Equilateral Triangles. We first use a simple toy task to test our hypothesis
where the model should detect equilateral triangles in images (Ahmad & Omohundro, 2009).
Each image is of size 64×64 and contains 3 randomly placed clusters of points. For equilateral
triangles, the midpoints of these clusters are equidistant from each other. This is a binary
classification task where the model has to predict whether the three given clusters form
an equilateral triangle or not. To feed an image into a Transformer, we follow the same
methodology as used in vision Transformers (Dosovitskiy et al., 2020). We first divide an
image into equal sized 4× 4 patches and treat each patch as a different input position of the
Transformer.

To solve this task correctly, the model only needs to attend to relevant information i.e.,
to patches that contain the cluster of points. Therefore, using a limited capacity shared
workspace should be useful here. Our results (presented in Figure 3) confirm this hypothesis.
We can see that Transformers with shared workspace attention converge much faster and
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reach higher accuracy as compared to the baseline Transformer. Our method also outperforms
Set Transformer by a significant margin.

Fig. 5. Comparison on Sort-of-CLEVR relational
reasoning. Speed of convergence for relational and non-
relational questions in the sort-of-clevr dataset. We can see
that the proposed model converges much faster than the
baselines in both cases.

Multi MNIST Generation. In this
task, we train an Image Transformer (Par-
mar et al., 2018) (pixel-by-pixel, raster-order
generative model) for next-pixel prediction
on the “MultiMNIST dataset” where each
image consists of 4 independently sampled
MNIST digits stacked horizontally to form
one image (see Figure ?? for demonstration).
The main aim of this task is to observe the
inductive biases that allow for specialization
of mechanisms in TIMs (Lamb et al., 2021).
Each image in the MultiMNIST dataset can
be broken down into different sets of inde-
pendent spatial components. Since the digits
which make up the image are independently
selected, the joint distribution of pixel inten-
sities in any one of the four sections of the
image is statistically independent of the pixel
intensities in any other section of the image. Moreover each section of the image can be further
broken down into independent spatial components: one that pertains to the background and
one that pertains to the foreground. One can expect that architectures that are made up of
sparsely interacting different mechanisms to naturally capture this statistical independence
by dividing labour among different mechanisms. While, for monolithic architectures, a major
portion of their training time will be spent in learning these statistical independencies from
scratch. We find that replacing the pairwise communication in TIMs with a shared workspace
(TIMs + SW) leads to better and more interpretable division of labor among specialists as
shown in Figure 6. From the figure, It is clear that the TIMs model is unable to divide labour
among specialists with mechanism 2 being activation for all the pixels in the image. On
the other hand, we can see that TIMs + SW is able to divide labor among specialists with
each mechanism focusing on a different aspect of the image. We can see that mechanism 2
gets activated for the digits which are present towards the centre of each of the 4 columns
while mechanisms 3 and 4 cover the background of the digits, with mechanism 3 covering the
area between adjacent digits and mechanism 4 covering the area above and below the digits.
Thus, we can see that using a shared workspace aids the division of labor among different
specialists. We also find that TIMs + SW results in the least cross-entropy loss in the test
set when compared to TIMs and Image Transformers (Parmar et al., 2018).

CATER: Object Tracking. Cater is a spatio-temporal reasoning video dataset intro-
duced in Girdhar & Ramanan (2019). Each video contains 3D objects organized in a 6× 6
grid. Each object affords certain actions that can be performed on them. These actions result
in movement of the concerned objects and change in their positions. Some of these actions
include: rotate, pick-place, slide, contain. Throughout the duration of the video, a number of
these actions are performed to get the final state of the grid. Note that only a single object
undergoes an action, at any instant. The task that we focus on here is called localization. In
this task, the goal is to predict the location of the target object in the final frame. In this
case the target object is called a snitch. The snitch as well as the other objects move across
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the 6× 6 grid. In some scenarios, the snitch may be covered by other objects hence hiding it
from the view. In such cases, tracking the movement of the snitch across frames becomes
essential. Therefore, capturing long-range temporal dependencies is essential to solve this
task.

a Mechanism
Activation Maps for
TIMs

b Mechanism
Activation Maps for
TIMs+SW

Fig. 6. This figure shows the mechanism activation map for
all 4 mechanims used in the multi-mnist generation task for
both TIMs and TIMs + SW. Both the images in the figure
correspond to the activation maps from 4 different examples.
Each activation map contains 4 mechanisms shown from left
to right in a single row. Each mechanism is shown using a
32 x 32 image, a particular pixel in a mechanism activation
map is shown in white if that mechanism was used during
the generation of that pixel while generating the image.

The information exchange limit enforced
by the limited capacity of the shared
workspace should be useful here as well. For
CATER, in some frames the snitch is not vis-
ible as it is covered by other objects. There-
fore, ideally the model only needs to attend
to frames in which the snitch is visible. Addi-
tionally, if the snitch is visible throughout the
video in all frames, then to accurately predict
the final position of the snitch, the model only
needs to attend to the final frame of the video
and can completely ignore the initial frames.
The results for this task are presented in Ta-
ble 4. We also experimented with both soft
competition TR+SSW and hard competi-
tion TR+HSW, with only k = 5 specialists
writing into the shared workspace. We can
see that models with a shared workspace
outperform those with pairwise multihead at-
tention thus confirming our hypothesis about
the benefits of a shared workspace for this task. As shown in Table 4 proposed method
convincingly outperforms the Set Transformer.

Model Num. Slots ARI ↑ MSE ↓
SCOFF - 0.276±0.001 0.083±0.0

SCOFF + SW 2 0.154±0.007 0.135±0.002

SCOFF + SW 4 0.487±0.085 0.059±0.0

SCOFF + SW 5 0.915±0.0 0.035±0.0

SCOFF + SW 8 0.891±0.001 0.039±0.0

SCOFF + SW 10 0.351±0.001 0.08±0.0

Table 1. Here we show the performance of SCOFF
augmented with shared workspace attention on the
bouncing balls task. We also analyse the effect of
varying number of slots in the shared workspace. This
also shows that by increasing the number of slots per-
formance decreases hence validating claims regarding
bandwidth limited communication channel via shared
workspace.

Relational Reasoning : Sort-of-CLEVR.
In relational reasoning, the model is tasked with
answering questions about certain properties of
various objects and their relations with other ob-
jects. The model is presented with an image and
a question for that image. This task has a clear
sparse structure as in order to answer the ques-
tions correctly, it needs to only reason about a
specific subset of objects that the question men-
tions. For this task, we use the Sort-of-CLEVR
dataset (Santoro et al., 2017).

Each image in Sort-of-CLEVR is of size 75 ×
75 and contains 6 randomly placed geometrical
shapes of 6 possible colors and 2 possible shapes.
Each image comes with 10 relational questions
and 10 non-relational questions. Non-relational
questions only consider properties of individual
objects. On the other hand, relational questions
consider relations among multiple objects. The
input to the model consists of the image and the corresponding question. We first obtain a
sequence of equal-sized patches for the image as in vision Transformers (Dosovitskiy et al.,
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2020). We concatenate the resulting patch sequence with the representation of the question
and pass the combined sequence through the Transformer. Sort-of-CLEVR has a finite
number of possible answers, hence this task is setup as a classification task.

We present the results for this task in Figure 5. We observe that the Transformers with
the shared workspace converge faster and outperform the baselines for relational as well as
non-relational questions. The superior performance with shared memory can be attributed
to the inherent sparsity of this task. For instance, in non-relational questions, the model
only needs to attend to a single object referenced in the question to answer it correctly,
while relational questions only consider a small subset of objects in the image, thus sparsity
is helpful for both these types of questions. Therefore, the limited capacity of the shared
workspace forces the model to attend to only relevant information.
Shared Workspace for Physical Reasoning. In this task, we consider a set of bouncing balls
and the model is tasked with predicting the trajectory of the balls at each step. In order
to solve this task, a coherent picture of where and which objects will collide needs to be
established by the learner. We use the bouncing-ball dataset from Van Steenkiste et al.
(2018). We train the model for next-step prediction. We compare the proposed approach
against SCOFF (Goyal et al., 2020). The results of our comparison are shown in Table 1.
We use the ARI and MSE metric for comparison. ARI measures how well the different balls
are segregated into different slots, higher ARI means better segregation. We can see that
using a shared workspace results in higher ARI as compared to pairwise communication in
SCOFF. Thus, using a shared workspace results in better division of labor among specialists.
Shared Workspace for Atari Video Games. We start by training RIMs, RIMs + shared
workspace (SW) on three "source" games (Pong, River Raid, and Seaquest) and test if the
learned features transfer to a different subset of randomly selected "target" games (Alien,
Asterix, Boxing, Centipede, Gopher, Hero, James Bond, Krull, Robotank, Road Runner, Star
Gunner, and Wizard of Wor). We take a sufficient number of specialists in RIMs (10). We
train on source games for 10M steps, and then fine-tune on transfer games for 10M more
steps. We choose these games as they were also used in the original RIMs paper (Goyal
et al., 2019c). Using a suite of 36 game pairs, we find that RIMs + SW outperforms RIMs
on both game A (a median performance ratio of 1.13; mean of 1.16) and game B (a median
performance ratio of 1.11; mean of 1.15). The improved performance with RIMs + SW is
due to better forward transfer (knowledge acquired for game A facilitates the learning of
game B) and reduced backward interference (knowledge acquired for game B does not disrupt
knowledge acquired for game A), presumably thanks to a more appropriate modularization
of knowledge.

7.5. Conclusion
Inspired by cognitive neuroscience global workspace theories, we have proposed a shared

workspace model for establishing coherence among modular neural specialists while exchanging
information in a systematic way. We show that using a limited capacity shared workspace as
a bottleneck for mediating communication among specialists results in better performance
across a wide range of visual reasoning benchmarks as compared to the pairwise interactions
typically used in self-attention schemes.

The proposed approach combines several key properties: knowledge and expertise is
divided among specialists, they compete to post new contents to the workspace, and after
being updated, the shared workspace is accessible to all specialists for their own updates.
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Chapter 8

Prologue to the third article

8.1. Article Details
Reinforcement Learning with Competitive Ensembles of Information-

Constrained Primitives Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng,
Sergey Levine, Yoshua Bengio. This work was accepted for presentation at International
Conference on Learning Representations (ICLR), 2020.

Personal Contribution. This work was conducted during my visit to Prof. Sergey Levine’s
lab at U.C Berkeley (Fall 2018). When thinking about factorizing knowledge into set of
policies, Yoshua Bengio used to mention to train a central controller which learns to select
which policy to activate. I did not resonate with the thought of learning such a central
controller to decide which policy to activate. I was thinking there should be a decentralized
approach where each policy can decide in which state to act. Thus I had the initial idea of
learning policies in completely decentralized fashion. I ran experiments for continuous control
experiments. Shagun Sodhani ran experiments for Four Rooms and BabyAI. Xue Bin Peng
ran imitation learning experiments. Jonathan Binas and myself wrote majority of the paper.
Sergey Levine and Yoshua Bengio assisted in general high level advising of the project.

8.2. Context
A central challenge in reinforcement learning is discovering effective policies for tasks where

rewards are sparsely distributed. In our previous work (Goyal et al., 2019a), we postulate
that in the absence of useful reward signals, an effective exploration strategy should seek out
decision states. These states lie at critical junctions in the state space from where the agent
can transition to new, potentially unexplored regions. We propose to learn about decision
states from prior experience. By training a goal-conditioned policy with an information
bottleneck, we can identify decision states by examining where the model actually leverages
the goal state. We find that this simple mechanism effectively identifies decision states, even
in partially observed settings. In effect, the model learns the sensory cues that correlate with
potential subgoals. In new environments, this model can then identify novel subgoals for
further exploration, guiding the agent through a sequence of potential decision states and
through new regions of the state space. In this work, we extended the idea of training a policy
with an information bottleneck to policy primitives such that different policies “activate” in
different parts of the state space.



8.3. Contributions
Reinforcement learning agents that operate in diverse and complex environments can

benefit from the structured decomposition of their behavior. Often, this is addressed in the
context of hierarchical reinforcement learning, where the aim is to decompose a policy into
lower-level primitives or options, and a higher-level meta-policy that triggers the appropriate
behaviors for a given situation. However, the meta-policy must still produce appropriate
decisions in all states. In this work, we propose a policy design that decomposes into primitives,
similarly to hierarchical reinforcement learning, but without a high-level meta-policy. Instead,
each primitive can decide for themselves whether they wish to act in the current state. We use
an information-theoretic mechanism for enabling this decentralized decision: each primitive
chooses how much information it needs about the current state to make a decision and the
primitive that requests the most information about the current state acts in the world. The
primitives are regularized to use as little information as possible, which leads to natural
competition and specialization. We experimentally demonstrate that this policy architecture
improves over both flat and hierarchical policies in terms of generalization.

8.4. Research Impact
Most of the work in hierarchical reinforcement learning focused on learning policy prim-

itives and a meta-policy such that the meta-policy decides which policy primitive should
activate for decision making. In this work, we propose a decentralized method where each
primitive can decide for themselves whether they wish to act in the current state or not. The
general idea of making decisions in decentralized fashion has changed my entire research
trajectory (as summarized in chapter. 5 as well as influenced the broader research commu-
nity). There have been a few follow-ups using the similar idea (Tirumala et al., 2019, 2020)
including a review paper. This work was a followup to my previous work InfoBot (Goyal
et al., 2019a) which has been used extensively for training goal conditioned policies with
information bottleneck for improving generalization. At the time of writing, this was the only
work that can learn different primitives corresponding to different ”motions” for continuous
control tasks directly from pixel observations.

The work we have presented bears some interesting connections to cognitive science and
neuroscience. Both of these fields draw a fundamental distinction between automatic and
controlled action selection (Miller et al., 2001). In automatic responses, perceptual inputs
directly trigger actions according to a set of habitual stimulus-response associations. In
controlled behaviour, automatic responses are overridden in order to align behaviour with a
more complete representation of task context, including current goals. As an example, on the
drive to work, automatic responding may trigger the appropriate turn at a familiar intersection,
but top-down control may be needed to override this response if the same intersection is
encountered on the route to a less routine destination. Our proposed architecture contains two
pathways that correspond rather directly to the automatic and controlled pathways that have
been posited in cognitive neuroscience models. In the neuroscience context, representation of
task context and the function of overriding automatic responses has been widely linked with
the prefrontal cortex and it is interesting to consider the route within InfoBot from goal to
action representations in this light. Notably, recent work has suggested that prefrontal control
processes are associated with subjective costs; ceteris paribus, human decision-makers will
opt for habitual or automatic routes to behaviour. This correspondence with neuroscience
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provides some indirect encouragement for the approach implemented in the present work.
In turn, proposed framework provides an indication for why a cost of control may exist in
human cognition, namely that this encourages the emergence of useful habits, with payoffs
for efficient exploration and transfer.
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Chapter 9

Reinforcement Learning with Competitive
Ensembles of Information-Constrained Primitives

9.1. Introduction
Learning policies that generalize to new environments or tasks is a fundamental challenge

in reinforcement learning. While deep reinforcement learning has enabled training powerful
policies, which outperform humans on specific, well-defined tasks (Mnih et al., 2015a), their
performance often diminishes when the properties of the environment or the task change to
regimes not encountered during training.

This is in stark contrast to how humans learn, plan, and act: humans can seamlessly
switch between different aspects of a task, transfer knowledge to new tasks from remotely
related but essentially distinct prior experience, and combine primitives (or skills) used for
distinct aspects of different tasks in meaningful ways to solve new problems. A hypothesis
hinting at the reasons for this discrepancy is that the world is inherently compositional, such
that its features can be described by compositions of small sets of primitive mechanisms
(Parascandolo et al., 2017). Since humans seem to benefit from learning skills and learning to
combine skills, it might be a useful inductive bias for the learning models as well.

This is addressed to some extent by the hierarchical reinforcement learning (HRL) methods,
which focus on learning representations at multiple spatial and temporal scales, thus enabling
better exploration strategies and improved generalization performance (Dayan & Hinton,
1993; Sutton et al., 1999b; Dietterich, 2000; Kulkarni et al., 2016). However, hierarchical
approaches rely on some form of learned high-level controller, which decides when to activate
different components in the hierarchy. While low-level sub-policies can specialize to smaller
portions of the state space, the top-level controller (or master policy) needs to know how to
deal with any given state. That is, it should provide optimal behavior for the entire accessible
state space. As the master policy is trained on a particular state distribution, learning it
in a way that generalizes to new environments effectively becomes the bottleneck for such
approaches (Sasha Vezhnevets et al., 2017; Andreas et al., 2017).

We argue, and empirically show, that in order to achieve better generalization, the
interaction between the low-level primitives and the selection thereof should itself be performed
without requiring a single centralized network that understands the entire state space. We,
therefore, propose a decentralized approach as an alternative to standard HRL, where we
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Fig. 1. Illustration of our model (Left): An intrinsic competition mechanism, based on the amount of information
each primitive requests, is used to select a primitive to be active for a given input. Each primitive focuses on distinct
features of the environment; in this case, one policy focuses on boxes, a second one on gates, and the third one on
spheres. Right: The primitive-selection mechanism of our model. The primitive with most information acts in the
environment and gets the reward.

only learn a set of low-level primitives without learning an explicit high-level controller. In
particular, we construct a factorized representation of the policy by learning simple primitive
policies, which focus on distinct regions of the state space. Rather than being gated by a
single meta-policy, the primitives directly compete with one another to determine which
one should be active at any given time, based on the degree to which their state encoders
“recognize” the current state input. While, technically, the competition between primitives
implicitly realizes a global selection mechanism, we consider our model decentralized in the
sense that individual primitives can function on their own, and can be combined in new ways,
without relying on an explicit high-level controller.

We frame the problem as one of information transfer between the current state and a
dynamically selected primitive policy. Each policy can, by itself, decide to request information
about the current state, and the amount of information requested is used to determine
which primitive acts in the current state. Since the amount of state information that a
single primitive can access is limited, each primitive is encouraged to use its resources
wisely. Constraining the amount of accessible information in this way naturally leads to a
decentralized competition and decision mechanism where individual primitives specialize in
smaller regions of the state space. We formalize this information-driven objective based on
the variational information bottleneck. The resulting set of competing primitives achieves
both a meaningful factorization of the policy and an effective decision mechanism for which
primitives to use. Importantly, not relying on a centralized meta-policy enables the individual
primitive mechanisms can be recombined in a plug-and-play fashion, and the primitives can
be transferred seamlessly to new environments.
Contributions: In summary, the contributions of our work are as follows: (1) We propose
a method for learning and operating a set of functional primitives in a decentralized way,
without requiring an explicit high-level meta-controller to select the active primitives (see
Fig. 1 for illustration). (2) We introduce an information-theoretic objective, the effects of
which are twofold: a) it leads to the specialization of individual primitives to distinct regions
of the state space, and b) it enables a competition mechanism, which is used to select active
primitives in a decentralized manner. (3) We demonstrate the superior transfer learning
performance of our model, which is due to the flexibility of the proposed framework regarding
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the dynamic addition, removal, and recombination of primitives. Decentralized primitives
can be successfully transferred to larger or previously unseen environments, and outperform
models with an explicit meta-controller for primitive selection.

9.2. Preliminaries
We consider a Markov decision process (MDP) defined by the tuple (S,A, P, r, γ), where

the state space S and the action space A may be discrete or continuous. The environment
emits a bounded reward r : S × A → [rmin, rmax] on each transition and γ ∈ [0, 1) is
the discount factor. π(.|s) denotes a policy over the actions given the current state s.
R(π) = Eπ[

∑
t γ

tr(st)] denotes the expected total return when an agent follows the policy π.
The standard objective in reinforcement learning is to maximize the expected total return
R(π). We use the concept of the information bottleneck (Tishby et al., 2000b) to learn
compressed representations. The information bottleneck objective is formalized as minimizing
the mutual information of a bottleneck representation layer with the input while maximizing
its mutual information with the corresponding output. This type of input compression has
been shown to improve generalization (Achille & Soatto, 2016; Alemi et al., 2016a).

9.3. Information-Theoretic Learning of Distinct Primitives
Our goal is to learn a policy, composed of multiple primitive sub-policies, to maximize

the expected reward over T -step interactions for a distribution of tasks. Simple primitives
which focus on solving a part of the given task (and not the complete task) should generalize
more effectively, as they can be applied to similar aspects of different tasks (subtasks) even if
the overall objective of the tasks are drastically different. Learning primitives in this way
can also be viewed as learning a factorized representation of a policy, which is composed of
several independent policies.

Our proposed approach consists of three mechanisms: 1) a mechanism for restricting a
particular primitive to a subset of the state space; 2) a competition mechanism between
primitives to select the most effective primitive for a given state; 3) a regularization mechanism
to improve the generalization performance of the policy as a whole. We consider experiments
with both fixed and variable sets of primitives and show that our method allows for primitives
to be added or removed during training, or recombined in new ways. Each primitive is
represented by a differentiable, parameterized function approximator, such as a neural
network.

9.3.1. Primitives with an Information Bottleneck

To encourage each primitive to encode information from a particular part of state space,
we limit the amount of information each primitive can access from the state. In particular,
each primitive has an information bottleneck with respect to the input state, preventing it
from using all the information from the state.

We define the overall policy as a mixture of primitives,

π(a | s) = ∑
k ckπ

k(a | s) ,
where πk(a | s) denotes the kth primitive and ck = δkk′ for k′ ∼ p(k′ | s). We denote the
probability of selecting the kth primitive as αk(s) := p(k | s).
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Rather than learning an explicit model for p(k | s), however, we impose an information-
based mechanism for selecting primitives, wherein we limit the amount of information each
primitive can contain and select the ones that request the most information about the state.
To implement an information bottleneck, we design each of the K primitives to be composed
of an encoder penc(zk | s) and a decoder pdec(a | zk), together forming the primitive policy,

πk
θ (a | s) =

∫
z
penc(zk | s) pdec(a | zk) dzk .1

The encoder output zk is meant to represent the information about the current state s that an
individual primitive k believes is important to access in order to perform well. The decoder
takes this encoded information and produces a distribution over the actions a. Following
the variational information bottleneck objective (Alemi et al., 2016a), we penalize the KL
divergence of penc(zk|s) and a prior p(z),

Lk = DKL (penc(zk | s)||p(z)) . (9.1)

In other words, a primitive pays an “information cost” proportional to Lk for accessing the
information about the current state.

In the experiments below, we fix the prior to be a unit Gaussian. In the general case,
we can learn the prior as well and include its parameters in θ. The information bottleneck
encourages each primitive to limit its knowledge about the current state, but it will not
prevent multiple primitives from specializing to similar parts of the state space. To mitigate
this redundancy, and to make individual primitives focus on different regions of the state
space, we introduce an information-based competition mechanism to encourage diversity
among the primitives.

9.3.2. Competing Information-Constrained Primitives

We can use the information measure from equation 9.1 to define a selection mechanism
for the primitives without having to learn a centralized meta-policy. The intuition is that the
information content of an individual primitive encodes its effectiveness in a given state s such
that the primitive with the highest value Lk should be activated in that particular state.

In particular, we set αk = Z−1 exp(βLk) to obtain a distribution over k as a function of
the information content, activating the primitives with the highest information content. Here,
Z =

∑
k exp(βLk) is a normalization constant. This mechanism enables competition between

primitives, leading them to focus on parts of the state space that they “understand” well and
letting others act in other parts.
Trading reward and information. To perform proper credit assignment, the environment
reward is distributed to primitives according to their participation in the global decision, i.e.
the reward rk given to the kth primitive is weighted by its selection coefficient, such that
rk = αkr, with r =

∑
k rk. Hence, a primitive can potentially get a higher reward when

deciding to act, but it also pays a higher price for accessing more information about the
current state. The information bottleneck and the competition mechanism, when combined
with the overall reward maximization objective, will lead to specialization of individual
primitives to distinct regions in the state space. That is, each primitive should specialize in a
part of the state space that it can reliably associate rewards with. Since the entire ensemble
still needs to understand all of the state space for the given task, different primitives need to
encode and focus on different parts of the state space.

1In practice, we estimate the marginalization over z using a single sample throughout our experiments.
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9.3.3. Regularizing Primitive Selection

The objective described above will optimize the expected return while minimizing the
information content of individual primitives. This is not sufficient, however, as it might lead
to highly unbalanced outcomes: some primitives might be more active initially and learn to
become even more active, completely disabling other primitives.

Thus, in addition to minimizing each primitive’s absolute information content, we need to
normalize their activity with respect to each other. To do so, we penalize their information
content in proportion to their activation by adding a regularization term of the form

Lreg =
∑

k αkLk . (9.2)

Note that this can be rewritten as Lreg = −H(α) + LSE(L1, . . . ,LK) , where H(α) is the
entropy of α, and LSE is the LogSumExp function, LSE(x) = log(

∑
j e

xj). Thus, minimizing
Lreg increases the entropy of α, leading to a diverse set of primitive selections, in turn,
ensuring that different combinations of the primitives are used. Similarly, LSE approximates
the maximum of its arguments, LSE(x) ≈ maxj xj, and, therefore, penalizes the dominating
Lk terms, thus equalizing their magnitudes.

9.3.4. Objective and Algorithm Summary

Our overall objective function consists of 3 terms,
(1) The expected return from the standard RL objective, R(π) which is distributed to

the primitives according to their participation,
(2) The individual bottleneck terms leading the individual primitives to focus on specific

parts of the state space, Lk for k = 1, . . . , K,
(3) The regularization term applied to the combined model, Lreg.
The overall objective for the kth primitive thus takes the form:

Jk(θ) ≡ Eπθ
[rk]− βindLk − βregLreg , (9.3)

where Eπθ
denotes an expectation over the state trajectories generated by the agent’s policy,

rk = αkr is the reward given to the kth primitive, and βind, βreg are the parameters controlling
the impact of the respective terms.

Implementation: In our experiments, the encoders penc(zk | s) and decoders pdec(a | zk)
(see. Fig. 1) are represented by neural networks, the parameters of which we denote by θ.
Actions are sampled through each primitive every step. While our approach is compatible
with any RL method, we maximize J(θ) computed on-policy from the sampled trajectories
using a score function estimator (Williams, 1992; Sutton et al., 1999a) specifically A2C (Mnih
et al., 2016) (unless otherwise noted). Every experimental result reported has been averaged
over 5 random seeds. Our model introduces 2 extra hyper-parameters βind, βreg.

9.4. Related Work
There are a wide variety of hierarchical reinforcement learning approaches(Sutton et al.,

1998; Dayan & Hinton, 1993; Dietterich, 2000). One of the most widely applied HRL
framework is the Options framework ((Sutton et al., 1999b)). An option can be thought of
as an action that extends over multiple timesteps, thus providing the notion of temporal
abstraction or subroutines in an MDP. Each option has its own policy (which is followed if
the option is selected) and the termination condition (to stop the execution of that option).
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Many strategies are proposed for discovering options using task-specific hierarchies, such as
pre-defined sub-goals (Heess et al., 2017), hand-designed features (Florensa et al., 2017), or
diversity-promoting priors (Daniel et al., 2012; Eysenbach et al., 2018). These approaches
do not generalize well to new tasks. Bacon et al. (2017) proposed an approach to learn
options in an end-to-end manner by parameterizing the intra-option policy as well as the
policy and termination condition for all the options. Eigen-options (Machado et al., 2017)
use the eigenvalues of the Laplacian (for the transition graph induced by the MDP) to derive
an intrinsic reward for discovering options as well as learning an intra-option policy.

In this work, we consider a sparse reward setup with high dimensional action spaces. In
such a scenario, performing unsupervised pretraining or using auxiliary rewards leads to much
better performance (Frans et al., 2017; Florensa et al., 2017; Heess et al., 2017). Auxiliary
tasks such as motion imitation have been applied to learn motor primitives that are capable
of performing a variety of sophisticated skills (Liu & Hodgins, 2017; Peng et al., 2017; Merel
et al., 2019b,a). Our work is also related to the Neural Module Network family of architectures
(Andreas et al., 2017; Johnson et al., 2017; Rosenbaum et al., 2019b) where the idea is to learn
modules that can perform some useful computation like solving a subtask and a controller
that can learn to combine these modules for solving novel tasks. More recently, Wu et al.
(2019) proposed a framework for using diverse suboptimal world models to learn primitive
policies. The key difference between our approach and all the works mentioned above is that
we learn functional primitives without requiring any explicit high-level meta-controller or
master policy.

9.5. Experimental Results
In this section, we briefly outline the tasks that we used to evaluate our proposed method

and direct the reader to the appendix for the complete details of each task along with the
hyperparameters used for the model. We designed experiments to address the following
questions: a) Learning primitives – Can an ensemble of primitives be learned over a
distribution of tasks? b) Transfer Learning using primitives – Can the learned primitives
be transferred to unseen/unsolvable sparse environments? c) Comparison to centralized
methods – How does our method compare to approaches where the primitives are trained
using an explicit meta-controller, in a centralized way?
Baselines. We compare our proposed method to the following baselines: a) Option Critic
(Bacon et al., 2017) – We extended the author’s implementation2 of the Option Critic
architecture and experimented with multiple variations in terms of hyperparameters and
state/goal encoding. None of these yielded reasonable performance in partially observed tasks,
so we omit it from the results. b) MLSH (Meta-Learning Shared Hierarchy) (Frans et al.,
2017) – This method uses meta-learning to learn sub-policies that are shared across tasks
along with learning a task-specific high-level master. It also requires a phase-wise training
schedule between the master and the sub-policies to stabilize training. We use the MLSH
implementation provided by the authors3. c) Transfer A2C: In this method, we first learn
a single policy on the one task and then transfer the policy to another task, followed by
fine-tuning in the second task.

2https://github.com/jeanharb/option_critic
3https://github.com/openai/mlsh
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Fig. 2. Snapshots of motions learned by the policy. Top: Reference motion clip. Middle: Simulated character
imitating the reference motion. Bottom: Probability of selecting each primitive.

9.5.1. Learning Ensembles of Functional Primitives

We evaluate our approach on a number of RL environments to demonstrate that we can
indeed learn sets of primitive policies focusing on different aspects of a task and collectively
solving it.

Fig. 3. Convergence of four primitives on Four Room Maze: Left: We trained four primitives on the Four
Room Maze task, where the goal was sampled from one of the two fixed goals. We see that the proposed algorithm is
able to learn four primitives. Right: We transfer the learned primitives to the scenario where the goal is sampled
from one of the four possible goals. The checkpointed model is ran on 100 different episodes (after a fixed number of
steps/updates) and the normalized frequency of activation of the different primitives is plotted.

Four Room Maze: We consider the Four-rooms gridworld environment (Sutton et al., 1999c)
where the agent has to navigate its way through a grid of four interconnected rooms to reach
a goal position within the grid. We consider the scenario where the starting position of the
agent is fixed, but the goal is sampled from a discrete set. Fig. 3 shows that the proposed
algorithm can learn four primitives.
Motion Imitation. To evaluate the proposed method in terms of scalability, we present a
series of tasks from the motion imitation domain, showing that we can use a set of distinct
primitives for imitation learning. In these tasks, we train a simulated 2D biped character to
perform a variety of highly dynamic skills by imitating motion capture clips recorded from
human actors. Each mocap clip is represented by a target state trajectory τ ∗ = {s∗0, s∗1, ..., s∗T},
where s∗t denotes the target state at timestep t. The input to the policy is augmented with a
goal gt = {s∗t+1, s

∗
t+2}, which specifies the the target states for the next two timesteps. Both

the state st and goal gt are then processed by the encoder penc(zt|st, gt). The repertoire of
skills consists of 8 clips depicting different types of walks, runs, jumps, and flips. The motion
imitation approach closely follows Peng et al. (2018). To analyze the specialization of the
various primitives, we computed 2D embeddings of states and goals which each primitive
is active in, and the actions proposed by the primitives. Fig. 4 illustrates the embeddings
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computed with t-SNE (van der Maaten & Hinton, 2008). The embeddings show distinct
clusters for the primitives, suggesting a degree of specialization of each primitive to certain
states, goals, and actions.

9.5.2. Multi-Task Training

S G A

Fig. 4. Embeddings visualizing the states (S) and goals (G)
which each primitive is active in, and the actions (A) proposed
by the primitives for the motion imitation tasks. A total of four
primitives are trained. The primitives produce distinct clusters.

We evaluate our model in a partially-
observable 2D multi-task environment
called Minigrid, similar to the one in-
troduced in (Chevalier-Boisvert et al.,
2018b). The environment is a two-
dimensional grid with a single agent,
impassable walls, and many objects scat-
tered in the environment. The agent is
provided with a natural language string
that specifies the task that the agent
needs to complete. The setup is partially observable, and the agent only gets the small,
egocentric view of the grid (along with the natural language task description). We consider
three tasks here: the Pickup task (A), where the agent is required to pick up an object
specified by the goal string, the Unlock task (B) where the agent needs to unlock the door
(there could be multiple keys in the environment, and the agent needs to use the key which
matches the color of the door) and the UnlockPickup task (C), where the agent first needs to
unlock a door that leads to another room. In this room, the agent needs to find and pick up
the object specified by the goal string.

We train agents with varying numbers of primitives on various tasks – concurrently, as
well as in transfer settings. The different experiments are summarized in Figs. 5 and 7. An
advantage of the multi-task setting is that it allows for quantitative interpretability as to
when and which primitives are being used. The results indicate that a system composed
of multiple primitives generalizes more easily to a new task, as compared to a single policy.
We further demonstrate that several primitives can be combined dynamically and that the
individual primitives respond to stimuli from new environments when trained on related
environments.

9.5.3. Do Learned Primitives Help in Transfer Learning?

We evaluate our approach in the settings where the adaptation to the changes in the task
is vital. The argument in favor of modularity is that it enables better knowledge transfer
between related tasks. Naturally, the transfer is easier when the tasks are closely related,
as the model will only need to learn how to compose the already-learned primitives. In
general, it is difficult to determine how closely related two tasks are, however, and the
inductive bias of modularity could even be harmful if the two tasks are very different. In
such cases, we could add new primitives (which would need to be learned) and still obtain a
sample-efficient transfer, as some part of the task structure would already have been captured
by the pretrained primitives. This approach can be extended towards adding primitives
during training, providing a seamless way to combine knowledge about different tasks to
solve more complex tasks. We investigate here the transfer properties of a primitive trained
in one environment and transferred to a different one. Results are shown in Fig. 5.
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Fig. 5. Multitask training. Each panel corresponds to a different training setup, where different tasks are denoted
A, B, C, ..., and a rectangle with n circles corresponds to an agent composed of n primitives trained on the respective
tasks. Top row: activation of primitives for agents trained on single tasks. Bottom row: Retrain: Two primitives
are trained on task A and transferred to task B. The results (success rates) indicate that the multi-primitive model
is substantially more sample efficient than the baseline (transfer A2C). Copy and Combine: More primitives are
added to the model over time in a plug-and-play fashion (two primitives are trained on task A; the model is extended
with a copy of the two primitives; the resulting four-primitive model is trained on task B.) This is more sample efficient
than other strong baselines, such as (Frans et al., 2017; Bacon et al., 2017). Zero-Shot Generalization: A set of
primitives is trained on task C, and zero-shot generalization to task A and B is evaluated. The primitives learn a form
of spatial decomposition which allows them to be active in both target tasks, A and B. The checkpointed model is ran
on 100 different episodes, and the normalized frequency of activation of the different primitives is plotted.

Fig. 6. Continual Learning Scenario: The plot on the left shows that the primitives remain activated. The solid
green line shows the boundary between the tasks. The plot on the right shows the number of samples required by our
model and the transfer baseline model across different tasks. We observe that the proposed model takes fewer steps
than the baseline (an A2C policy trained in a similar way), and the gap in terms of the number of samples keeps
increasing as tasks become harder. The checkpointed model is ran on 100 different episodes (after a fixed number of
steps/updates) and the normalized frequency of activation of the different primitives is plotted.

Continuous control for ant maze. We evaluate the transfer performance of pretrained primitives
on the cross maze environment (Haarnoja et al., 2018). Here, a quadrupedal ant robot must
walk to the different goals along the different paths. The goal is randomly chosen from a set
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A
B
C
D

◦◦
◦◦
◦◦
◦◦

Method 3 goals 10 goals

Flat Policy (PPO) 11 ± 5 % 4 ± 2 %
Option critic 18 ± 10 % 7 ± 3 %
MLSH 32 ± 3 % 5 ± 3 %
Explicit high level policy 21 ± 5 % 11 ± 2 %
Proposed method 68 ± 3% 40 ± 3%

Fig. 7. Left: Multitask setup, where we show that we are able to
train eight primitives when training on a mixture of four tasks in
the Minigrid environment. Here, the x-axis denotes the number of
frames (timesteps). Right: Success rates of the different methods
on the Ant Maze tasks. Success rate is measured as the number
of times the ant is able to reach the goal (based on 500 sampled
trajectories).

of available goals at the start of each episode. We pretrain a policy with a motion reward in
an environment which does not have any walls (similar to Haarnoja et al. (2018)), and then
transfer the policy to the second task where the ant has to navigate to a random goal chosen
from one of the 3 (or 10) available goal options. For our model, we make four copies of the
pretrained policies and then finetune the model using the pretrained policies as primitives.
We compare to both MLSH (Frans et al., 2017) and option-critic (Bacon et al., 2017). All
these baselines have been pretrained in the same manner. As evident from Fig. 7, our method
outperforms the other approaches. The fact that the initial policies successfully adapt to the
transfer environment underlines the flexibility of our approach.

Zero Shot Generalization: The purpose of this experiment is to show that the model
consisting of multiple primitives is somewhat able to decompose the task C into its subtasks, A
and B. The better this decomposition is the better should the model transfer to the individual
subtasks. In order to test this, we trained a set of 4 primitives on task C, and then evaluate
them (without finetuning) on tasks A and B. We note that the ensemble is able to solve the
transfer tasks, A and B, successfully 72% of the time, while a monolithic policy’s success rate
is 38%. This further shows that the primitives learn meaningful decompositions.
Continual Learning: 4 Rooms Scneario. We consider a continual learning scenario where we
train two primitives for two-goal positions ie the goal position is selected randomly from one of
the two positions at the start of the episode. The primitives are then transfer (and finetuned)
on four-goal positions then transfer (and finetune) on eight-goal positions. The results are
shown in fig. 6. The proposed method achieves better sample efficiency as compared to
training a single monolithic policy.

9.6. Summary and Discussion
We present a framework for learning an ensemble of primitive policies that can collectively

solve tasks without learning an explicit master policy. Rather than relying on a central-
ized, learned meta-controller, the selection of active primitives is implemented through an
information-theoretic mechanism. The learned primitives can be flexibly recombined to solve
more complex tasks. Our experiments show that, on a partially observed “Minigrid” task and
a continuous control “Ant Maze” walking task, our method can enable better transfer than
flat policies and hierarchical RL baselines, including the Meta-learning Shared Hierarchies
model and the Option-Critic framework. On Minigrid, we show how primitives trained with
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our method can transfer much more successfully to new tasks. On the Ant Maze, we show
that primitives initialized from a pretrained walking control can learn to walk to different
goals in a stochastic, multi-modal environment with nearly twice the success rate of a more
conventional hierarchical RL approach, which uses the same pretraining but a centralized
high-level policy. The proposed framework could be very attractive for continual learning
settings, where one could add more primitive policies over time. Thereby, the already learned
primitives would keep their focus on particular aspects of the task, and newly added ones
could specialize on novel aspects.
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Chapter 10

Prologue to the fourth article

10.1. Article Details
Retrieval Augmented Reinforcement Learning. Anirudh Goyal, Abram L. Friesen,

Theophane Weber, Andrea Banino, Nan Rosemary Ke, Adria Puigdomenech Badia, Arthur
Guez, Mehdi Mirza, Peter C. Humphreys, Ksenia Konyushkova, Laurent Sifre, Michal Valko,
Simon Osindero, Timothy Lillicrap, Nicolas Heess, Charles Blundell. This work is accepted
for presentation at International Conference on Machine Learning (ICML), 2022.

Personal Contribution. This work was conducted during an internship at DeepMind.
The original idea of augmenting an RL agent with a retrieval process which has access to
past experiences came in a discussion with Timothy Lillicrap and Nicolas Heess. Adria
Puigdomenech Badia and Andrea Banino helped me to implement the first version of the
model using the DeepMind infrastructure. Abram L. Friesen helped me setup the baseline for
GridRoboman experiments. Rosemary Nan Ke helped me to run baselines for Atari problems.
Theophane Weber helped in general brainstorming. Arthur Guez, Peter Humphreys and
Mehdi Mirza helped me to run experiments on GO (which are not included in this paper).
Ksenia Konyushkova constructed the GridRoboman benchmark used in this paper. The paper
was written by Abram L. Friesen, Theophane Weber, Andrea Banino and myself. Timothy
Lillicrap, Michal Valko and Simon Osindero helped in structuring the paper. Laurent Sifre
participated in group discussions and provided general feedback. Charles Blundell proof read
the paper. David Silver advised the project.

10.2. Context
Learning long-term dependencies in extended temporal sequences requires credit assign-

ment to events far back in the past. The most common method for training recurrent
neural networks, back-propagation through time (BPTT), requires credit information to be
propagated backwards through every single step of the forward computation, potentially
over thousands or millions of time steps. This becomes computationally expensive or even
infeasible when used with long sequences. Importantly, biological brains are unlikely to
perform such detailed reverse replay over very long sequences of internal states (consider
days, months, or years.) However, humans are often reminded of past memories or mental
states which are associated with the current mental state. In our previous work, Sparse
Attentive Backtracking (Ke et al., 2018) we considered the hypothesis that such memory
associations between past and present could be used for credit assignment through arbitrarily



long sequences, propagating the credit assigned to the current state to the associated past
state. Based on this principle, we proposed an algorithm which only back-propagates through
a few of these temporal skip connections, realized by a learned attention mechanism that
associates current states with relevant past states. The work presented in this thesis can be
seen as an generalizing the idea of Sparse Attentive Backtracking for reinforcement learning
problems.

Most deep reinforcement learning (RL) algorithms distill experience into parametric
behavior policies or value functions via gradient updates. While effective, this approach has
several disadvantages: (1) it is computationally expensive, (2) it can take many updates to
integrate experiences into the parametric model, (3) experiences that are not fully integrated
do not appropriately influence the agent’s behavior, and (4) behavior is limited by the capacity
of the model. In this paper we explore an alternative paradigm in which we train a network
to map a dataset of past experiences to optimal behavior.

10.3. Contributions
In this work, we augment an RL agent with a retrieval process (parameterized as a neural

network) that has direct access to a dataset of experiences. This dataset can come from the
agent’s past experiences, expert demonstrations, or any other relevant source. The retrieval
process is trained to retrieve information from the dataset that may be useful in the current
context, to help the agent achieve its goal faster and more efficiently. The proposed method
facilitates learning agents that at test-time can condition their behavior on the entire dataset
and not only the current state, or current trajectory. We integrate our method into two
different RL agents: an offline DQN agent and an online R2D2 agent. In offline multi-task
problems, we show that the retrieval-augmented DQN agent avoids task interference and
learns faster than the baseline DQN agent. On Atari, we show that retrieval-augmented
R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores.
We run extensive ablations to measure the contributions of the components of our proposed
method.

10.4. Research Impact
This paper is very recent, and already led to a follow-up where the authors scale the

idea where one can query a database which consists of millions of past experiences as
compared to few thousands as used in this work (Humphreys et al., 2022). The proposed
work also validates the conjecture put forward in (Logan et al., 2021): Perceiving and
remembering pose the same computational problems: desired information must be extracted
from complex multidimensional structures. The conjecture is that the extraction process is
selective attention. Turned outward, it retrieves information from perception. Turned inward,
it retrieves information from memory.

In the future, I hope to see many more papers using a paradigm in which we train a
network to map a dataset of past experiences to optimal behavior.
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Chapter 11

Retrieval Augmented Reinforcement Learning

11.1. Introduction
A host is preparing a holiday meal for friends. They remember that the last time they

went to the grocery store during the holiday season, all of the fresh produce was sold out.
Thinking back to this past experience, they decide to go early! The hypothetical host is
employing case-based reasoning (e.g., Kolodner, 1992; Leake, 1996). Here, an agent recalls a
situation similar to the current one and uses information from the previous experience to
solve the current task. This may involve adapting old solutions to meet new demands, or
using previous experiences to make sense of new situations.

In contrast, a dominant paradigm in modern reinforcement learning (RL) is to learn
general purpose behaviour rules from the agent’s past experience. These rules are typically
represented in the weights of a parametric policy or value function network model. Most
deep RL algorithms integrate information across trajectories by iteratively updating network
parameters using gradients that are computed along individual trajectories (collected online
or stored in an experience replay dataset, Lin, 1992). For example, many off-policy algorithms
reuse past experience by “replaying” trajectory snippets in order to compute weight updates
for a value function represented by a deep network (Ernst et al., 2005; Riedmiller, 2005; Mnih
et al., 2015a; Heess et al., 2015; Lillicrap et al., 2015).

This paradigm has clear advantages but at least two interrelated limitations: First, after
learning, an agent’s past experiences no longer play a direct role in the agent’s behavior,
even if they are relevant to the current situation. This occurs because detailed information in
the agent’s past experience is lost due to practical constraints on network capacity. Second,
since the information provided by individual trajectories first needs to be distilled into a
general purpose parametric rule, an agent may not be able to exploit the specific guidance
that a handful of individual past experiences could provide, nor rapidly incorporate novel
experience that becomes available—it may take many replays through related traces in the
past experiences for this to occur (Weisz et al., 2021).

In this work, we develop an algorithm that overcomes these limitations by augmenting a
standard reinforcement learning agent with a retrieval process (parameterized via a neural
network). The purpose of the retrieval process is to help the agent achieve its objective by
providing relevant contextual information. To this end, the retrieval process uses a learned
attention mechanism to dynamically access a large pool of past trajectories stored in a
dataset (e.g., a replay buffer), with the aim of integrating information across these. The
proposed method shown in Figure 1, enables an agent to retrieve information from a dataset of



Fig. 1. Retrieval-augmented agent (R2A) architecture: (A) R2A augments the agent with a retrieval process.
The retrieval process and the agent maintain separate internal states, mt and st, respectively. The retrieval process
retrieves information relevant to the agent’s current internal state st from the retrieval batch, which is a pre-processed
sample from the retrieval dataset B. The retrieved information ut is used by the agent process to inform its output
(e.g., a policy or value function). (B) A batch of raw trajectories is sampled from the retrieval dataset B and encoded
(using the same encoder as the agent). Each encoded trajectory is then summarized via forward and a backward
summarization functions (section 11.2.2) and sent to the retrieval process. (C) The retrieval process is parameterized
as a recurrent model and the internal state mt is partitioned into slots. Each slot independently retrieves information
from the retrieval batch, which is used to update the slot’s representation and sent to the agent process in ut. Slots
also interact with each other via self-attention. See section 11.2.3 for more details.

trajectories. The high-level idea is to have two different processes. First, the retrieval process
makes a “query” for relevant contextual information in the dataset. Second, the agent process
performs inference and learning based on the information provided by the retrieval process.
These two processes have different internal states but interact to shape the representations
and predictions of each other: the agent process provides the relevant context, and the
retrieval process uses the context and its own internal state to generate a query and retrieve
relevant information, which is in turn used by the agent process to shape the representation
of its policy and value function (see Fig. 1A). Our proposed retrieval-augmented RL paradigm
could take several forms. Here, we focus on one particular instantiation applied to multiple
different RL agents and environments to validate our hypothesis that learning a retrieval
process can help an RL agent achieve its objective.

Summary of experimental results. We first show that the performance and sample
efficiency of R2D2 (Kapturowski et al., 2018), a state-of-the-art off-policy RL algorithm, on
Atari games can be improved by retrieval augmentation. In this setting, we run a series of
ablations to demonstrate the benefits of our design decisions and to show how our approach
compares with related work. In online Atari, the agent retrieves from its own experiences on
the same game; however, retrieval can also query external data from other agents or other
tasks. We thus evaluated on three separate multi-task offline RL environments (gridroboman,
BabyAI (Chevalier-Boisvert et al., 2018a), CausalWorld (Ahmed et al., 2020)(a continuous
control benchmark), where the retrieved data is first from a different agent in the same
task and then from different agents and includes data from other tasks. In all cases, the
retrieval-augmented agent learns faster and achieves higher reward.
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11.2. Retrieval-Augmented Agents
We now present our method for augmenting an RL agent with a retrieval process, thereby

reducing the agent’s dependence on its model capacity, and enabling fast and flexible use
of past experiences. A retrieval-augmented agent (R2A) consists of two main components:
(1) the retrieval process, which takes in the current state of the agent, combines this with its
own internal state, and retrieves relevant information from an external dataset of experiences;
and (2) a standard reward-maximizing RL agent, which uses the retrieved information to
improve its value or policy estimates. See Figure 1 for an overview. The retrieval process is
trained to retrieve information that the agent can use to improve its performance, without
explicit knowledge of the agent’s policy. Importantly, the retrieval process has its own internal
state, which enables it to integrate and combine information across retrievals. In the following,
we focus on value-based methods, such as DQN (Mnih et al., 2015b) and R2D2 (Kapturowski
et al., 2018), but our approach is equally applicable to policy-based methods.

11.2.1. Retrieval-augmented agent

Formally, the agent receives an input xt at each timestep t. Each input is processed by a
neural encoder (e.g., a resnet if the input is an image) to obtain an abstract internal state for
the agent st = f enc

θ (xt). For clarity, we focus here on the case of a single vector input, however,
each input could also include the history of past observations, actions, and rewards, as is the
case when f enc

θ is a recurrent network. These embeddings are used by the agent and retrieval
processes. The retrieval process operates on a dataset B = {((xt, at, rt), . . . , (xt+l, at+l, rt+l))}
of l-step trajectories, for l ≥ 1 (rt refers to the reward at time-step t, if available). This dataset
could come from other agents or experts, as in offline RL or imitation learning, or consist of the
growing set of the agent’s own experiences. Then, a retrieval-augmented agent (R2A) consists
of the retrieval process and the agent process, parameterized by θ = {θenc, θretr, θagent},

Retrieval process f retr
θ,B : mt−1, st �→mt,ut

Agent process f agent
θ : st,ut �→ Qθ(st,ut, a)

Retrieval Process. The retrieval process is parameterized as a neural network and
has an internal state mt. The retrieval process takes in the current abstract state of the
agent process st and its own previous internal state mt−1 and uses these to retrieve relevant
information from the dataset B, which it then summarizes in a vector ut, and also updates
its internal state mt.

Agent Process. The state of the agent st and the information from the retrieval process
ut are then passed to the action-value function, itself used to select external actions.

The above defines a parameterization for a retrieval-augmented agent. For retrieval to
be effective, the retrieval process needs to: (1) be able to efficiently query a large dataset of
trajectories, (2) learn and employ a similarity function to find relevant trajectories, and (3)
encode and summarize the trajectories in a manner that allows efficient discovery of relevant
past and future information.

Below, we explain how we achieve these desiderata. At a high-level, to reduce computa-
tional complexity given a experience dataset of hundreds of thousands of trajectories, R2A
operates on samples from the dataset. R2A then encodes and summarizes the sampled trajec-
tories using auxiliary losses and bi-directional sequence models to enable efficient retrieval of
temporal information. Finally, R2A uses attention to select semantically relevant trajectories.
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11.2.2. Retrieval batch sampling and pre-processing.

Sampling a retrieval batch from the retrieval dataset. To reduce computational
complexity, R2A uniformly samples a large batch of past experiences from the retrieval
dataset and then retrieves from the sampled batch. We denote the sampled batch as the
“retrieval batch” and the number of trajectories in the retrieval batch as nretrieval.

Encoding and forward-backward summarization of the retrieval dataset and
corresponding auxiliary losses. Since the agent’s internal state extracts information from
observations which relate to the task at hand, we choose to re-encode the raw experiences in
the ”retrieval batch” using the agent encoder module (i.e., f enc

θ ). However, this representation
is a function only of past observations (i.e., it’s a causal representation) and may not be fully
compatible with the needs of the retrieval operation. For that reason, we propose to further
encode the retrieved batch of information by a learned summarization function, applied
on the output of the encoder module, which captures information about the past and the
future within a particular trajectory by using a bi-directional model (e.g., parameterized as a
bi-directional RNN or a transformer).

Forward Summarizer f fwd
θ : (s1, . . . , st) �→ ht

Backward Summarizer fbwd
θ : (sl, . . . , st) �→ bt

For each trajectory in the retrieval batch, we represent each time-step within a trajectory
by a set of two vectors hi,t and bi,t where hi,t summarizes the past (i.e., from t′ = 0 to t′ = t
time-steps of the ith trajectory) while bi,t summarizes the future (i.e., from t′ = t to t′ = l
time-steps) within the ith trajectory. In addition, taking inspiration from (Jaderberg et al.,
2016; Ke et al., 2019; Devlin et al., 2018b; Mazoure et al., 2020), we use auxiliary losses to
improve modeling of long term dependencies when training the parameters of our forward and
backward summarizers. The goal of these losses is to force the representation (hi,t, bi,t)i,t≥0

to capture meaningful information for the unknown downstream task. For our experiments,
we use supervised losses where we have access to actions or rewards in the retrieval batch.
For ablations we also experiment with self-supervised losses. For supervised auxiliary losses,
we use policy, value, and reward prediction (Silver et al., 2017; Schrittwieser et al., 2019),
and for self-supervised losses, we use a BERT-style masking loss (Devlin et al., 2018b).

11.2.3. Retrieving contextual information.

In this section, we explain how the retrieval process, when provided with relevant contextual
information represented by the agent’s current state st, interacts with the summarized
information in the retrieval batch to select information ut to provide to the agent in return.

Retrieval process state parameterization. We parameterize the process that retrieves
information from past experience as a structured parametric model with multiple separate
memory slots (or sub-units). The state of the retrieval process is a set of nf memory slots
denoted by mt = {mk

t | k ∈ {1, . . . , nf}} (indexed by the agent time-step t). Slots are
initialized randomly at the beginning of the episode. Each slot independently queries and
retrieves relevant information from the pool of data. The slots then update their values
independently based on the retrieved information, followed by an integration step during
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Algorithm 2 One timestep of a retrieval-augmented agent (R2A).
Input: Current input xt, previous retrieval process state mt−1 = {mt−1,k| k ∈ {1, . . . , nf}}, dataset of
l-step trajectories B = {((xi

t,h
i
t, b

i
t, a

i
t, r

i
t), . . . , (x

i
t+l,h

i
t+l, b

i
t+l, a

i
t+l, r

i
t+l))} for l ≥ 1 and 1 ≤ i ≤ ntraj,

where h and b are the outputs of the forward & backward summarizers. We first encode the current input
at time-step t using the encoder st = f enc

θ (xt).

Step 1: Compute the query. For all 1 ≤ k ≤ nf , compute
m̂k

t−1 = GRUθ

(
st,m

k
t−1

)
qk
t = fquery(m̂

k
t−1)

Step 2: Identify the most relevant trajectories. For all 1 ≤ k ≤ nf , 1 ≤ j ≤ l and 1 ≤ i ≤ ntraj,
κi,j = (hi
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e
ret)
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(
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de

)
αk
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.

Given scores α, the top-ktraj trajectories (resp. top-kstates states) are selected and denoted by T k
t (resp.

Sk
t ).

Step 3: Retrieve information from the most relevant trajectories and states.
αk
i,j = softmax

(
�ki,j

)
, i ∈ T k

t , j ∈ Sk
t .

gk
t =

∑
i,j α

k
i,jvi,j where vi,j = bi,jW

v
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Step 4: Regularize the retrieved information by using information bottleneck.
zk
t ∼ p(z|gk

t )

Step 5: Update the states of the slots.
Slotwise update using retrieved information:
m̃k

t ← m̂k
t−1 + zk

t ∀k ∈ {1, . . . , nf}
Joint slot update through self-attention:
ckt = m̂k

t−1W
q
SA ∀k{1, . . . , nf}
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Step 6: Update the agent state using the retrieved information.
dt = stW

q
ag

κk = (zk
t W

e
ag)

T ∀k ∈ {1, . . . , nf}
γk = softmaxk

(
dtκ

k√
de

)
ut ←

∑
k γkvk where vk = zk

t W
v
ag ∀k ∈ {1, . . . , nf}.

s̃t ← st + ut

which information is shared between slots. Algorithm 2 specifies the six steps of R2A, which
we explain in detail below.

Step 1: Query computation. Each slot independently computes its prestate using
a GRU on the contextual information from the agent: m̂k

t−1 = GRUθ

(
st,m

k
t−1

)
∀k ∈

{1, . . . , nf}. Then, each slot independently computes a retrieval query which will be matched
against information in the retrieval batch: qk

t = fquery(m̂
k
t−1)| k ∈ {1, . . . , nf}1 where qk

t is
the query generated by the kth slot at timestep t.

1fquery is parameterized as a neural network.
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Step 2: Identification of most relevant trajectories and states for each slot.
The retrieval mechanism process uses an attention mechanism to match a query produced
by the retrieval state associated with each slot mk

t to keys computed on each time step
of each trajectory of the retrieval batch. Formally, for each time step and each trajectory
in the buffer, we compute a key κi,j by using a linear projection with matrix W e

ret on the
forward summaries h: κi,j = (hi

jW
e
ret)

T. Each query qk
t is then matched with the set of

all keys κi,j, forming attention logits2 
ki,j =
(

qk
t κi,j√
de

)
and corresponding attention weights

αk
i,j = softmax

(

ki,j

)
for i ≤ ntraj, 0 ≤ j ≤ T .

Intuitively, αk
i,j captures the extent to which the jth timestep of the ith trajectory in

the buffer will be relevant to memory mk
t through the query qkt . It follows that

∑
j α

k
i,j is a

measure of how relevant the ith trajectory is as a whole for qkt . Following previous work (Ke
et al., 2018; Goyal et al., 2019c), matching only on the most relevant trajectories will increase
the robustness of the retrieval mechanism. We therefore select, for each query, the set T k

t

of ktraj trajectories with highest aggregated score
∑

j α
k
i,j. Note that typically the queries

corresponding to different slots will select different top-ktraj trajectories from the retrieval
batch. Following the selection of relevant trajectories, we renormalize the weights α, and use
another top-k mechanism, this time to choose the set of most relevant states Sk

t (i.e. which
maximizes

∑
i∈T k

t
αi,j).

Step 3: Information retrieval from the most relevant trajectories and states.
The next step of the retrieval mechanism consists in computing the renormalized weights α
on the subsets T k

t and Sk
t (αk

i,j = softmax
(

ki,j

)
, i ∈ T k

t , j ∈ Sk
t ) and using those weights to

compute the final retrieved information. The value retrieved from the buffer for query qkt is
computed as the α-weighted average of a linear function of the backward state summaries:
gk
t =

∑
i,j α

k
i,jvi,j where vi,j = bi,jW

v
ret.

Step 4: Regularization of the retrieved information via an information bottle-
neck. We regularize the retrieved information gk

t via the use of an information bottleneck
(Tishby et al., 2000a; Alemi et al., 2016b). Intuitively, each query pays a price to exploit
information from the retrieval batch. Formally, we parametrize two Gaussian distributions
p(Z|gkt ) (which has access to the retrieved information) and r(Z|mt−1) (which only has access
to the memory units). We define zk

t as a single sample from p(Z|gkt ) via the reparameterization
trick to ensure differentiability (Kingma & Welling, 2013; Rezende et al., 2014), and ensure
that zk

t does not contain too much information by adding an additional loss DKL(p||r) to the
overall agent loss. We provide more details in the appendix.

Step 5: Slot update. The representation of each slot is first additively updated as a
function of the retrieved information m̃k

t ← m̂k
t−1 + zk

t . The final update mk
t consists of an

update in which all slots interact through self-attention (as normally done in transformers;
see Algorithm 2 for details).

Step 6: Updating the agent state using retrieved information. The primary goal
of the retrieval process is to extract information which may be useful for the agent process.
Here, we use the retrieved information to change the state of the agent st. In the previous
step, the retrieved information is used to change the state of the slots. For this step, we use
a similar attention mechanism. Here, the query is a function of the state of the agent process
dt = stW

q
ag, which are matched with the keys κk = (zk

t W
e
ag)

T ∀k ∈ {1, . . . , nf}, as a result of

2We drop time indexing from attention-related quantities to simplify notation.
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retrieving information, forming attention weights γk = softmax
(

dtκk√
de

)
. The values generated

as a result of retrieved information by different slots and the attention weights are then used to
update the state of the learning agent : ut ←

∑
k γkvk where vk = zk

t W
v
ag ∀k ∈ {1, . . . , nf}.

ut is the result of the attention over the retrieved information which is then used to change
the representation of the agent process : s̃t ← st + ut. We also shape the representation of
the action-value function Q(st, z

k
t , at) by conditioning the value function on the retrieved

information zk
t (again via a similar attention mechanism).

11.3. Experimental Results
To evaluate R2A, we analyze its performance in three different settings. First, to test

whether an agent equipped with retrieval augmentation can achieve better performance (i.e.,
higher rewards) and scale with more, we test the proposed method on the Atari arcade
learning environment (ALE) (Bellemare et al., 2013), a single-task off-policy setting where
the retrieval process extracts relevant information from the agent’s current replay buffer.
We then run a series of ablations of R2A to better understand the roles and effects of
its components. Second, to test whether an agent equipped with retrieval augmentation
can compensate for lack in capacity when training a single agent on multiple tasks, we
evaluate on a multi-task, offline environment that we created, called gridroboman. In this
environment, a single network is trained on data from all tasks and then, at evaluation time,
the retrieval process queries a retrieval dataset containing only data from the task being
evaluated. Third, to test if the retrieval augmentation can also benefit when data from the
other tasks is present in the retrieval dataset, we evaluate R2A in a multi-task offline version
of the BabyAI environment (Chevalier-Boisvert et al., 2018a), and a continuous control
manipulation benchmark (Ahmed et al., 2020). Again, a single network is trained on all tasks
but now the retrieval process queries a retrieval dataset containing data from all tasks.

In our experiments, the retrieval process selects the top ktraj = 10 most relevant trajectories
(step 2, section 11.2.3), and then retrieves relevant information from the selected trajectories
(step 3, section 11.2.3) using the top kstates = 10 most relevant states. To summarize the
experiences in the retrieval batch we use a forward and backward GRU with 512 hidden units.
To train the representation of these, we use auxiliary losses in the form of action, reward,
and value prediction (section 11.2.2).

11.3.1. Atari: Single-task off-policy RL

In this experiment, our goal is to evaluate whether retrieval augmentation improves the
performance and sample efficiency of a strong, recurrent baseline agent on a challenging,
visually-complex environment—the Atari 2600 videogame suite (Bellemare et al., 2013). We
use recurrent replay distributed DQN (R2D2, Kapturowski et al. (2018)) as the baseline agent
and compare retrieval-augmented R2D2 (RA-R2D2) to vanilla R2D2. The retrieval dataset is
the agent’s current replay buffer. The agent process is parameterized as a GRU (Hochreiter
& Schmidhuber, 1997b), and the retrieval process is parameterized as the slot-based recurrent
architecture described in Section 2, using 8 slots. Retrieval batches consist of 256 trajectories
from the retrieval dataset.

Overall, we observe an increase of 11.32 ± 1.2% in the mean human normalized score
relative to the R2D2 baseline over 2 billion environment steps, demonstrating that retrieval
augmentation is quite beneficial in Atari and that the agent’s own replay buffer is a useful
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a Per-game relative performance of retrieval-augmented R2D2.

Fig. 2. Relative percentage improvement in mean human normalized score of retrieval-augmented R2D2 vs vanilla
R2D2 on different Atari games, measured by human normalized score. We report the average score from 3 seeds per
method and per game. Black lines show standard deviations from 3 seeds.

source for retrieval. Raw scores and training curves are presented in Appendix A.??. Fig-
ure 11.2a shows the relative improvement of RA-R2D2 versus the R2D2 baseline. Empirically,
retrieval augmentation helps the most in the case of Frostbite, which requires temporally
extended planning strategies (Lake et al., 2017). For more discussion, refer to Appendix ??.

11.3.1.1. Ablations and analysis. To understand the benefit of different components of
retrieval augmentation, we ablate RA-R2D2 on the 10 Atari games it performs best relative
to R2D2. The ablations are as follows, and Figure 11.3a shows the performance of RA-R2D2
and each ablation relative to the R2D2 baseline.

a Relative performance of
ablated RA-R2D2.

Fig. 3. Relative percentage improvement of ablated RA-
R2D2 versus baseline R2D2 for 5 ablations on 10 Atari
games. Black lines show standard deviations from 3 seeds

(A-1) Importance of a separate re-
trieval process. In R2A, the retrieval pro-
cess and the agent process are parameterized
separately, i.e., they have their own internal
states. Here we examine what happens when
the agent’s state is used to query the retrieval
batch instead of using the retrieval state mt.
To implement this we modify Step 1 of Algo-
rithm 2 to make the query a direct function
of the state of the agent, qt = fquery(st). The
resulting query is used in the same way as
above. The resulting ablated model is akin to
the episodic control baseline of Pritzel et al.
(2017).
Conclusion: It is crucial to parameterize
the agent process and retrieval process sepa-
rately, as using the agent state does no better
than the baseline. This also shows the benefit of our retrieval formulation as compared to
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episodic control. Further, Pritzel et al. (2017) observed that direct access to the replay buffer
improves performance given low data, but the advantage disappears with more data. Here
our experiments show that the agent equipped with retrieval augmentation achieves better
results even in the large data regime (2B time-steps).

(A-2) Importance of retrieving information. We examine what happens when the
retrieval process does not have access to the retrieval dataset and hence no information is
retrieved, keeping all else the same. This ablation thus validates that R2A benefits from
retrieval, not from an increase in computation and parameters. Specifically, the retrieval
process updates the state of the slots using a transformer (i.e., in Step 1 we replace GRU
with a transformer), and the updated state of the transformer is used by the agent process to
shape the representation of its value function.
Conclusion: R2A retrieves information that is useful to the agent and its performance gains
are not simply due to an increase in model capacity and computation.

(A-3) Shorter retrieved trajectories. We decrease the length of the trajectories that
are summarized during retrieval pre-processing, thus reducing the amount of past and future
information the retrieval process can retrieve. By default, the trajectories in the retrieval
dataset are of length 80. To perform this ablation, we decrease the length of the effective
context to only include information from 5 timesteps.
Conclusion: Decreasing the length of the context in the retrieval dataset results in worse
performance, thus showing the importance of incorporating contextual information using
forward and backward summarization.

(A-4, A-5) Importance of auxiliary losses to summarize retrieval batch. Here we
study the use of self-supervised BERT style masking losses in addition to using action, reward
and value prediction. We use these auxiliary losses on top of the representation learned by
the forward and the backward dynamics model. To implement these losses, we randomly
mask 15% of the hidden states in a trajectory, and then, using the representation of hidden
states at other time-steps, we predict the representation of masked hidden states. In A-5, we
study using only self-supervised BERT style masking losses for summarizing the trajectories.
Conclusion: Ablation A-4 demonstrates that the performance of R2A can further be
improved by incorporating BERT style auxiliary losses but that only using BERT style
auxiliary losses results in worse performance (but still better than baseline R2D2).

11.3.2. Gridroboman: Multi-task offline RL with a task-specific re-
trieval dataset

Beyond querying the agent’s own experiences, retrieval can provide helpful information
from other sources of experiences, including experts or other agents, such as in offline RL
where the agent must learn from a fixed dataset of experiences generated by other agents
without interacting with the environment during training. A major challenge in offline RL is
distributional shift—the mismatch between the distribution of states in the training data and
those visited by the agent when acting— which makes it difficult to learn an accurate value
function for states and actions rarely seen during training. We hypothesize that the retrieval
process can improve performance in the offline setting by retrieving trajectories (including
states, actions, and rewards) relevant to the agent’s current state, particularly for states and
actions that are rare in the offline dataset. We test this hypothesis on a multi-task offline RL
setup where a single agent is trained on multiple tasks simultaneously but at evaluation time
the retrieval dataset contains only trajectories from the evaluated task.
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a Training and testing on 10
tasks.

b Training and testing on 20
tasks.

c Training and testing on 30
tasks.

Fig. 4. Gridroboman: Multi-task offline RL with a task-specific retrieval dataset. Average episode return
vs. learner steps for the multi-task gridroboman environment when training and evaluating on 10, 20, and 30 tasks.
With fewer tasks (a), the baseline DQN agent (blue) and the retrieval-augmented DQN agent (orange) perform
identically; however, when the number of tasks increases (b, c), the retrieval-augmented agent learns much more
effectively than the baseline DQN agent. Results are the average of 3 seeds for each method.

Table 1. BabyAI: Multi-task offline RL with a multi-task
retrieval dataset. Mean success rate of retrieval-augmented
recurrent DQN (RA-RDQN) versus a recurrent DQN (RDQN)
baseline on the 40 BabyAI levels, as a function of the amount
of training data. RA-RDQN is run twice, once with only the
current task being evaluated in the retrieval dataset and once
with all tasks in it. Results are the average of 3 random seeds
with standard errors.

Method Success Rate (50K) Success Rate (200K)

RDQN 32% ± 4% 45% ± 6%
RA-RDQN (single-task retrieval buffer) 48% ± 4% 64% ± 5%
RA-RDQN (multi-task retrieval buffer, without IB) 47% ± 3% 59% ± 6%
RA-RDQN (multi-task retrieval buffer) 55% ± 5% 74% ± 3%

Table 2. CausalWorld: Multi-task offline RL
with a multi-task retrieval dataset. Mean suc-
cess rate of retrieval-augmented behaviour cloning
on continuous control task (RA-RDQN) as com-
pared to vanilla behaviour cloning baseline on the
5 tasks. Results are the average of 3 random seeds
with standard errors.

Method Success Rate (50K)

BC (behavior cloning) 61% ± 10%
RA-BC (single-task retrieval buffer) 71% ± 7%
RA-BC (multi-task retrieval buffer) 82% ± 5%

For this experiment, we created a minimalistic grid-world-based robotic manipulation
environment (gridroboman) with 30 tasks related to the three objects (red, green, and blue)
on the board. Gridroboman is built on the pycolab game engine (Stepleton et al.). The
environment is inspired by the challenges of robotic manipulation, and includes tasks such as
“go to object X” and “put object X on object Y”. Here, we incorporate retrieval augmentation
into a vanilla DQN agent as agent-state-recurrence is not needed for this task. Figure 4
shows the results of training retrieval-augmented DQN (RA-DQN, orange) and DQN (blue)
on increasing numbers of tasks. With fewer tasks, RA-DQN and DQN perform identically;
however, when the number of training tasks increases the retrieval-augmented agent is able to
learn much more effectively than the baseline agent. Training on more tasks requires either
additional model capacity or the ability to extract information from fewer relevant samples
for each task. By directly querying task-relevant experiences in the offline dataset, retrieval
augmentation improves sample efficiency. Note that while the retrieval process does afford
extra model capacity to the agent directly, ablation A-2 in section 11.3.1.1 shows that the
retrieved information is what is crucial to performance, not the increased capacity.
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11.3.3. BabyAI: Multi-task offline RL with a multi-task retrieval
dataset

Here we evaluate the benefit of retrieval augmentation when data from other tasks is
present in the retrieval dataset. Multi-task retrieval data can be either harmful if the retrieved
information misguides the agent or beneficial if information from the other tasks is relevant
to the current task. Due to the use of attention in the retrieval process, we hypothesize that
R2A will be able to retrieve relevant information (and ignore irrelevant information) from
other tasks.

To test our hypothesis, we use the BabyAI environment (Chevalier-Boisvert et al., 2018a),
a partially observable multi-room grid world in which harder tasks are composed of simpler
tasks and are formulated using subsets of a synthetic language. At the start of each episode,
the agent is placed in a random room and must navigate to a randomly located goal. Due to
the partial observability, we use a recurrent DQN (RDQN) agent as the baseline and compare
its performance to a retrieval-augmented RDQN (RA-RDQN) agent.

As is common in this environment, we measure the success rate of each agent, defined as
the ratio of tasks the agent was able to accomplish given a fixed number of steps for each
task. Table 1 shows the performance of RA-RDQN with a multi-task replay, RA-RDQN with
a replay specific to the current task, and the baseline for varying amounts of offline training
data (50K trajectories per task versus 200K trajectories per task). As expected from the
previous experiment, retrieval augmentation improves performance over the baseline when
using a single-task replay. Performance further improves when using a multi-task replay. We
believe that this is due to the compositional nature of tasks in BabyAI, where information
about a subtask can be more informative than information about the overall task.

Analysis of retrieved information. To understand this effect better, we analyzed the
properties of the retrieved information in the multi-task setting in BabyAI. Out of the 40
BabyAI tasks, 15 are compositional—i.e., solving them requires composing information from 2
or more other tasks (e.g., going to the door, fetching a key, etc.). We looked at how often the
agent retrieves information from other tasks when solving each task. For the compositional
tasks, the agent retrieves information from other tasks 54% of the time, whereas this number
is only 21% for the non-compositional tasks. This suggests that the retrieval-augmented
agent is retrieving information from other tasks when the current task is compositional and
using this information retrieved from relevant sub-tasks to improve its performance.

Information bottleneck ablation. We ran an ablation to validate the use of the
information bottleneck (RA-RDQN (multi-task retrieval buffer, without IB)). Table 1 shows
the agent performs worse without the information bottleneck (but better than baseline). Such
an information bottleneck has been shown to improve generalization (Teh et al., 2017; Goyal
et al., 2019a; Galashov et al., 2019).

11.3.4. CausalWorld: Multi-task offline continuous control

We also evaluate the performance of the R2A on a suite of 5 continuous control object
manipulation tasks from the CausalWorld benchmark Ahmed et al. (2020). We use the
same setup for retrieval pre-processing as in BabyAI but use behaviour cloning (BC) as the
underlying algorithm, which has been shown to be a strong baseline for offline RL (Gulcehre
et al., 2020).
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We compare the performance of BC to retrieval augmented BC (RA-BC). Table 2 shows
the performance of the RA-BC with both a multi-task retrieval buffer and a single-task
retrieval buffer. Retrieval augmentation improves the performance of BC in both cases.

11.4. Related Work
Episodic control. The idea of allowing deep RL agents to adapt based on past experiences

using a non-parametric memory is not new (Blundell et al., 2016; Pritzel et al., 2017; Hansen
et al., 2018; Eysenbach et al., 2019; van Hasselt et al., 2019; Fortunato et al., 2019; Zhu et al.,
2020). The basic idea is that the agent is equipped with an episodic memory system, which
is used to recall past experiences to inform decisions. There are two important differences
between R2A and these methods. (1) In these methods, a local action-value function is
constructed by using information about the nearest neighbors in the replay buffer, and then
the agent makes a decision about which action to execute based on both the local value
function as well as the global value function. However, in the proposed work, we employ a
parameterized network (the retrieval process), which has access to the information in the
replay buffer, and the agent process uses the retrieved information to shape the predictions of
its value function in a fully differentiable way (using attention). (2) In these episodic control
methods, there is only one process (the agent), which has direct access to the replay buffer.
However, in R2A, the agent has indirect access to the replay buffer via the retrieval process.

Retrieval in language models. Retrieval-based methods have recently been developed
for question answering, controllable generation, and machine translation (Guu et al., 2020; Lee
et al., 2019b; Lewis et al., 2020; Sun et al., 2021; Borgeaud et al., 2021). The general scheme
in such methods is to combine a parametric model (like a BERT-style masked language model
or a pre-trained seq2seq model) with a non-parametric retrieval system. These methods share
some similarities with our proposed model, since they all involve a retrieval component, but
focus on different domains.

Model-based RL. Their are different ways to integrate knowledge across past experiences.
One of the most common way is by learning a model of the world, and using the predictions
from the model to improve the policy and the value function (Sutton, 1991; Silver et al.,
2008; Silver, 2009; Allen & Koomen, 1983; Silver et al., 2016; Pascanu et al., 2017; Racanière
et al., 2017; Silver et al., 2018; Springenberg et al., 2020; Schrittwieser et al., 2020). To
integrate information across different episodes (potentially separated by many time-steps),
a model may needed be unrolled for many time-steps leading to compounding errors. In ,
the agent has direct access to the information in the retrieval dataset, and querying across
multiple trajectories (in parallel) in the retrieval dataset potentially separated by hundreds
of time-steps.

Structural Inductive Biases. Deep learning have proposed structural inductive biases
such as Transformers (Vaswani et al., 2017; Dehghani et al., 2018; Radford et al., 2019;
Chen et al., 2020a,c; Dosovitskiy et al., 2020) or slot based recurrent architectures (Battaglia
et al., 2016a; Zambaldi et al., 2018; Battaglia et al., 2018; Goyal et al., 2019c; Watters et al.,
2019; Goyal et al., 2020; Veerapaneni et al., 2020) where the induced structure has improved
generalization, model-size scaling, and longrange dependencies.

Reinforcement Learning with Offline Datasets. Recent work in RL has tried
exploiting large datasets collected across many tasks to improve the sample efficiency of RL
algorithms (Vecerik et al., 2017; Pertsch et al., 2020; Nair et al., 2020; Siegel et al., 2020).
An advantage of such large datasets is that they can be collected cheaply, and can then be
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reused for learning many downstream tasks. A general scheme for exploiting information
about such task-agnostic datasets is either using them to directly improve the value function,
or by extracting a set of skills or options and learning new tasks by recombining them. In
our work, we try to use information in the replay buffer by querying and searching for the
relevant information across multiple trajectories which otherwise would take many replays
through coincidentally relevant information for this to occur.

Separation of concerns. In Hierarchical RL (HRL) (Heess et al., 2016; Frans et al.,
2017; Vezhnevets et al., 2017; Florensa et al., 2017; Hausman et al., 2018; Goyal et al., 2019d),
there’s separation of concerns among different policies, each policy focuses on a different
aspect of the task, e.g., giving task relevant information to the high level policy only such
that low level policy learns behaviours that are task agnostic. In these methods, the high
level policy shapes the behaviour of low level policy by either influencing representations or
by influencing rewards.

It is possible to view our work through an analogous lens: wherein the “retrieval process”
is the higher level policy (and has access to the all the information in the replay buffer) and
is influencing the representation of the agent process that is interacting with the environment.
However, there are also notable differences in our work—for instance, the agent process also
directly shapes the representation of the retrieval process, which is generally not the case in
HRL (e.g., in Vezhnevets et al. (2017) the manager directly influences the worker, but the
worker does not directly influence the manager).

Efficient Credit assignment. Learning long term dependencies requires assigning credit
to time-steps far back in the past. Common methods for assigning credit in dynamics model
like backpropagation through time requires information to be propagated backwards through
every single step in the past. This could become computationally expensive when used with
very long sequences. Methods which try to get around this problem only back-propagate
information through a selected time-steps in the past, realized by a learned mechanism
that associates current state with relevant past states (Ke et al., 2018; Wayne et al., 2018;
Arjona-Medina et al., 2019; Goyal et al., 2018; Fortunato et al., 2019). Most of these works
consider assigning credit to states within the same trajectory, whereas the proposed model ,
searches for the relevant information in the replay buffer which includes information from
other trajectories also.

Memory retrieval as attention turned inward. The proposed work also validates
the conjecture put forward in (Logan et al., 2021): Perceiving and remembering pose the same
computational problems: desired information must be extracted from complex multidimensional
structures. The conjecture is that the extraction process is selective attention. Turned outward,
it retrieves information from perception. Turned inward, it retrieves information from memory.

11.5. Conclusion.
In this work, we developed R2A, an algorithm that augments an RL agent with a retrieval

process. The retrieval process and the agent have separate states and shape the representation
and predictions of each other via attention. The goal of the retrieval process is to retrieve
useful information from a dataset of experiences to help the agent achieve its objective more
efficiently and effectively. We show that R2A improves sample efficiency over R2D2, a strong
off-policy agent, and compensates for insufficient capacity when training in multi-task offline
RL environments. Multiple ablations show the importance of the different components of
R2A, including retrieving information from past experiences and parameterizing the agent
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and retrieval process separately instead of giving the agent process direct access to the replay
buffer.

Limitations and Future Work. It would be useful to investigate and extend the
proposed idea in these different ways: (a) First, investigate training of the retrieval process
and the agent process using different objectives as compared to training them in an end-to-end
fashion, (b) Second, scaling R2A to more complex multi-agent problems like in Starcraft
(Vinyals et al., 2019), where the retrieval process may be shared between different agents.
In R2A, we only query a subset of the retrieval dataset, which limits the generality of the
method. (c) Third, even more intriguing would be the possibility of learning an abstract
model with abstract internal actions, and rewards, rather than learning a model which queries
for information from the retrieval dataset, and hence avoiding the need for Monte Carlo tree
search common in the state of the art planning methods (Schrittwieser et al., 2020). (d)
Fourth, we don’t evaluate the R2A in a few-shot learning setting, where we first pre-train
an encoding function of the trajectories in the reply dataset and during test time the agent
is exposed to a new task, and needs to use the helper process to adapt faster. We aim to
formulate these problems and seek answers in the future work.
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Chapter 12

Conclusion

The articles presented as a part of this thesis explore how one can use inductive biases in
models of system dynamics, policies and raw data for achieving transfer from one task to
another task.

(1) Neural Production Systems (Chapter 5): This work factorizes the visual world in
terms of objects and rules that captures causal interactions between entities. This
allows to reuse the knowledge of rules across different object as long as the type of
object matches the type of input that rules expect.

(2) Coordination among Neural Modules Using a Shared Workspace (Chapter
7): This work explores the use of a communication channel in which functionally
specialized components share information through a common, bandwidth-limited
communication channel. The proposed method includes a shared workspace through
which communication among different specialist modules takes place but due to
limits on the communication bandwidth, specialist modules must compete for access.
We show that capacity limitations have a rational basis in that (1) they encourage
specialization and compositionality and (2) they facilitate the synchronization of
otherwise independent specialists.

(3) RL with Competitive Ensembles of Information Constrained Primitives
(Chapter 9): This work proposes an information-theoretic training objective for
learning modular policies in a decentralized fashion. Rather than relying on a
centralized, learned meta-controller, the selection of active primitives is implemented
through an information-theoretic mechanism. The learned primitives can be flexibly
recombined to solve more complex tasks.

(4) Retrieval Augmented Reinforcement Learning (Chapter 11): This work aug-
ments an agent with the retrieval process which is parameterized as a neural network.
There is information asymmetry between the agent and the retrieval process. The
agent has access to the information about its current state or current trajectory,
whereas the retrieval process has access to all the past experiences (i.e., raw visual
observations). The goal of the retrieval process is to provide relevant contextual
information that may be relevant to the agent in its current context.



12.1. Projects Looking Forward
The ideas presented in this paper are still in early stages of maturation, with only a

few papers beginning the necessary work of ironing out the devil in the detail. Many open
questions and paths remain and we highlight a few here.

• One of the big remaining challenges in line with the ideas discussed here remains
to jointly learn a large-scale encoder (mapping low-level pixels to high-level causal
variables) and a large-scale causal model of these high-level variables. An ideal scenario
for this would be that of model-based reinforcement learning, where the causal model
would learn the stochastic system dynamics. We have done this (Bengio et al., 2019)
only at a small scale (with two causal variables) and using an encoder guaranteed
to have singular values 1 for its Jacobian, which avoids a potential collapse of the
encoder. In order to avoid collapse, one possibility is to use a contrastive loss at the
high level (e.g. as in Deep Infomax (Hjelm et al., 2018) for example).

• Another major challenge is to unify in a single architecture both the declarative
knowledge representation (like a structural causal model) and the inference mechanism
(maybe implemented with attention and modularity, like with RIMs and their variants).
There is a lot of data from human cognition about the consolidation of rule-based
behavior into fast habitual skills which could serve as inspiration, e.g., maybe using
replay from the hippocampus to train cortical modules to be consistent with the
declarative knowledge. Existing work on variational auto-encoders can serve as
inspiration as well (with the encoder being the inference machine and the decoder
being the causal model, in that case). See Section 3.3.9 for a relevant discussion.

• Most current deep learning models use fixed parameter sharing and fixed regular
memory access patterns which are well tailored to modern computing hardware (such
as GPUs and TPUs) relying on SIMD parallelism. However, the form of attention-
driven computation described in this thesis may require dynamic, irregular and sparse
memory access and parameter sharing which does not fit well with GPUs and makes it
difficult to parallelize computation across examples of a minibatch. Tackling this may
require innovation in neural architectures, low-level programming and hardware design.
In terms of model-induced parallelism, the SCOFF approach (Goyal et al., 2020)
shows some promise in this direction, where most of the computation is decentralized
in each of the experts, and the conscious processing is just the tip of the iceberg in
terms of computational cost.

• The way humans plan is very different from the approach currently used in model-based
RL (or hybrids such as AlphaZero based on MCTS and value functions). Humans
seem to exploit the inductive bias about the sparsity of the causal factor graph and the
fact that reasoning sequences in the abstract space can be very short. It means that
when humans plan, they do not build trajectories of the full state but instead partial
state trajectories where only some aspects (variables) of the state are considered.
In addition, they do not unfold future trajectories for every discrete time step but
directly learn how to relate temporally distant events, similar to how credit assignment
is considered by Ke et al. (2018). It would be interesting to explore these inductive
biases in novel planning methods, which might be much more efficient than standard
ones. When we plan, we can consider the possibility of novel situations, and if a
model misses important aspects of the causal structure, it may not generalize well to
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these novel changes, and the plans may radically overestimate or underestimate some
novel possibilities.

• Scaling to large number of modules: the brain is probably composed of a very large
number of independent modules, whereas most of the current work in modular deep
learning deals with much smaller numbers of modules, like 20. It would be interesting
to consider new algorithms, architectures that can help in extending to a very large
number of modules.

• Macro and Micro Modules: the kinds of modules that are usually considered in the
GWT are pretty high-level, e.g., face recognition, gait recognition, object recognition,
visual routines, auditory speech perception, auditory object recognition, tactile object
recognition. These are macro-modules rather than modules that carve up the visual
input into single objects i.e micro-modules. Most of the work we have done focuses
on micro-modules. How should a modular hierarchy be structured which accounts for
both these large-scale and fine-scale ways of modularizing knowledge and computation?

12.2. Looking Backward: Relation to Good Old-Fashioned
Symbolic AI

How are the approaches proposed here for system 2 computation different from and related
to classical symbolic AI (GOFAI 1) approaches? Let us first review some of the issues with
these classical approaches which have motivated solutions building on top of deep learning
instead.

(1) We want efficient large scale learning, e.g., brought by variants of stochastic gradient
descent and end-to-end learning behind the state-of-the-art in modern deep learning.
It is challenging to learn to perform pure symbol manipulation on a large scale because
of the discreteness of the operations.

(2) We want semantic grounding of the higher-level concepts in terms of the lower-level
observations and lower-level actions (which is done by system-1 computation in the
brain). This is important because some of the understanding of the world (maybe
a large part) is not represented at the conscious system-2 level, and is completely
lacking when representing knowledge purely in symbolic terms.

(3) We want distributed representations of higher-level concepts (to benefit from the
remarkable advantages this brings in terms of generalization): whereas pure symbolic
representations put every symbol at the same distance of every other symbol, dis-
tributed representations represent symbols through a vector of attributes, with related
symbols having overlapping representations.

(4) We want efficient search and inference. A computational bottleneck of GOFAI is
search, which in probabilistic terms is equivalent to the problem of inference and
is generally intractable and needs to be approximated. Variational auto-encoders
have shown how this computational cost can be amortized by training the inference
machinery. This the only way we currently know how to do this in a general enough
way, and it is consistent with cognitive neuroscience of transfer from system 2 to
system 1 of habitual skills.

(5) We want to handle uncertainty, which most machine learning approaches are meant
to handle.

1Good Old-Fashioned Artificial Intelligence
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We already have these capabilities with the current deep learning toolbox. What is missing
is to integrate to that toolbox what will be required to achieve the kind of systematic
generalization and decomposition of knowledge into small exchangeable pieces which is
typically associated with GOFAI. We believe that it will not be sufficient to slap GOFAI
methods on top of representations produced by neural nets, for the above reasons, but
especially points 1, 3 and 4.
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