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Résumé

La matière condensée moderne porte un intérêt particulier pour la classe de matériaux
formée par les isolants topologiques. Ils sont différents des isolants typiques par leurs inté-
ressantes propriétés quantiques; ils se comportent comme des isolants dans leur intérieur,
mais contiennent des états conducteurs sur leur surface. On peut mieux comprendre le com-
portement de certains systèmes en matière condensée, tel que les chaînes de polyacétylène,
en étudiant un système unidimensionnel simple : le modèle de Su-Schrieffer-Heeger (SSH).
Le modèle SSH décrit des fermions sans spin sautant sur un réseau unidimensionnel où les
amplitudes de saut alternent d’un site à l’autre. Ce modèle, bien que simpliste, expose les
propriétés clés des isolants topologiques tel que les états délocalisés dans tout le réseau ainsi
que les états exponentiellement localisés aux frontières du réseau. Dans ce projet, nous
étudions le modèle SSH, mais en ajoutant un défaut central dans le réseau qu’on appelle un
soliton. Dans notre cas, le soliton consiste en un site central donc les amplitudes de saut
sont les mêmes d’un côté et de l’autre. Nous trouvons un ensemble de solutions complet
incluant des états de basse énergie localisés aux frontières ainsi que des états de haute
énergie localisés au soliton.

mots clés: matériaux topologiques, modèle Su-Schrieffer-Heeger (SSH), états de surface,
soliton
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Abstract

Topological insulators are a class of materials that have attracted much attention in modern
condensed matter. They are different from typical insulators as they exhibit interesting
quantum properties; they behave as insulators in their interior but have conducting
states on their surface. We can better understand the properties of low dimensional
condensed matter systems (like poly-acetylene chains) by studying a toy model known as
the Su-Schrieffer-Heeger (SSH) Model. The SSH model describes spinless fermions hopping
on a one-dimensional lattice with staggered hopping amplitudes. Such a toy model exhibits
key properties of topological insulators, such as bulk states (delocalized states across the
lattice) and edge states (exponentially localized states at the boundaries of the lattice).
In this project, we study the SSH model with an added central defect to the chain, which
we call a soliton. In our case, the soliton consists of a central site with the same hopping
amplitude on either side. We study the impact of such a defect on the properties of the
system; we find a complete set of solutions including near-zero-energy edge states as well as
high-energy states localized at the soliton.

keywords: topological materials, Su-Schrieffer-Heeger (SSH) model, edge states, soliton
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Introduction

The emergence of the field of topological materials can be traced back to the observation of
the quantum Hall effect where conducting electrons at fixed quantized levels of conductance
move along the surface of a material that is insulating in its interior [1]. Topological materials
are a classification of materials that can host topological states, which are states confined to
the boundaries (edges, surface) of the system and are robust to disorder and deformations
[2]. From topological superconductors to topological insulators, there is a variety of such
materials that have caught researchers’ attention mostly due to the stability of topological
states. Topological insulators differ from classical insulators by the existence of conducting
states on their surface while maintaining insulating states in their bulk. These metallic states
have been the focus of much research as they have various useful and surprising properties
such as having the ability to assure light transport in nanophotonics systems [3], to magnify
the sound intensity at photonic crystal interfaces [4], to enable a stable one-way propagation
[5] and to permit the observation of the anomalous quantum hall effect [6]. The Su-Schrieffer-
Heeger model (SSH) was first introduced in 1979 to describe the formation of solitons in
polyacetylene chains [7]. In this context, the soliton refers to the boundary between two
domains with different ground states, which arises when these states are degenerate [8].
In this work, a soliton will refer to a spatial boundary between two domains. The SSH
model is one of the simplest models to showcase topological insulator properties such as
topological edge states [9, 10, 11, 12]. It may feel like we have been throwing around the
term ‘topological’ up to this point, so let’s briefly discuss what this label actually means.
The existence of topological states in one-dimensional materials is explained through the
calculation of the Zak Phase [13]. This non-vanishing phase is picked up by particles in
systems with a periodic parameter space (for the SSH model, the Brillouin Zone) and changes
for different topological configurations. Phase differences are gauge-invariant, which allows



for topological classifications of different configurations of the system. At the domain wall
between configurations with different Zak phases (distinct topological arrangements), robust
states localized at the system’s boundaries emerge [14]. In the context of the SSH model, we
call these states topological edge states when they are localized at the edges of the chain and
topological solitonic modes when they are localized at a spatial domain wall. A topology-
oriented analysis of SSH-analogous models has been widely discussed in various works [9, 15,
16]. The focus of this work will be to provide a full description of the energy solutions and
wave functions of both an infinite and finite SSH chain, each with an added soliton (defect,
domain wall). We aim to find solitonic modes as well as edge states in both of these systems
as it will show that the presence of conducting states is robust to disorder; a signature of
topological insulators. In Chapter 1, we provide a detailed analysis of the SSH model’s energy
spectrum and wave functions. Chapter 2 introduces the effect of a soliton on an infinite SSH
chain through the calculation of all wave functions of the Hamiltonian. Studying the infinite
system allows us to essentially study the effect of a defect on a continuous system analogous
to solitons in quantum fields [17]. Chapter 3 considers both possible configurations of a finite
SSH chain with a central soliton; we provide a complete description of the solutions to such
systems. Notably, we find that, in addition to edge states with near-zero energies, there are
also high-energy states in the presence of a soliton. Finally, we present concluding remarks
as well as discuss possible applications of the work presented in this thesis.
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Chapter 1

The Su-Schrieffer-Heeger Model

The Su-Schrieffer-Heeger model (SSH model) is named after the three authors who introdu-
ced it in the highly influential 1979 paper to describe a polyacetylene chain [7] and has been
of interest for its intriguing properties such as the existence of solitons [7, 18] and charge
fractionalization [19]. More recently, the model has attracted attention for being one of the
simplest examples of topological insulators due to its one-dimensional structure. Fig. 1.1
illustrates an SSH chain.

Fig. 1.1. SSH Chain with N = 18 with staggered hopping parameters t1 and t2. The chain
being even, the hopping parameter at the edges of the chain is t1. The dotted square defines
a unit cell with the dark (light) site corresponding to sublattice A (B).

1.1. Hamiltonian and solutions
In this section, we will find the states and the energy spectrum of the SSH model as well
as discuss some of its properties that will be relevant to what follows. The SSH model is



a tight-binding model that describes a spinless (or spin-polarized) electron moving along a
one-dimensional lattice (chain). In the work that follows, we will use the terms electron,
fermion, and particle interchangeably. The dashed region in Fig. 1.1 represents a unit cell,
which contains two sites labeled A and B. The unit cell being the periodic structure of
the chain, we can create a chain of any length by translating this region as many times
as necessary. We will also refer to unit cells as dimers since the SSH model was originally
developed to describe a chain of polyacetylene, which is composed of a series of dimers. The
chain is commonly described as having staggered hopping amplitudes. This simply means
that the chain has alternating tunneling amplitudes, which correspond to bond strengths
between atoms due to the overlap of electronic orbitals from neighbouring sites. The chain
being composed of two staggered and connected sublattices A and B, we distinguish the
hopping parameters by having an inter-cell and an intra-cell hopping parameter. In Fig. 1.1,
t1 (t2) is the intra-cell (inter-cell) hopping amplitude. However, please note that these roles
are not rigidly assigned to either parameters and will change as we move through this work.
Moreover, t1 (t2) is drawn with a thin (thick) line, but the thickness doesn’t necessarily
indicate the bond strength of inter/intra-cellular parameters, but instead serves as a visual
label. Fig. 1.2 illustrates a simplified representation of an SSH chain that from now on will
be the preferred visualization.

Fig. 1.2. Simplified representation of an SSH Chain with N = 10 and alternating hopping
parameters t1 and t2. Note that we don’t specify a value for either hopping parameter; both
cases t1 < t2 and t1 > t2 are considered. The thicker/thinner lines don’t indicate the strength
of the coupling, but serve as visual labels for t1 and t2. This representation will be used for
the rest of the work.

As the work in subsequent chapters is based on the SSH model, we now derive its well-known
results closely following the formalism in [20]. We start by considering an SSH chain with
an even number of sites; the case of an odd chain will be discussed in less detail in section
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1.1.3. As shown in Fig. 1.2, there are two sites, A and B, per unit cell, labeled m. For an
even chain, we have a total number of sites N = 2M , where M is the total number of unit
cells. We start by writing the Hamiltonian describing our system

HSSH = t1
M∑

m=1

(
|m,B⟩⟨m,A| + h.c.

)
+ t2

M−1∑
m=1

(
|m+ 1, A⟩⟨m,B| + h.c.

)
, (1.1.1)

for which we will find the eigenenergies and eigenstates. Expressing the Hamiltonian in
matrix form,

HSSH,Even =



0 t1

t1 0 t2

t2 0 t1

t1 0 . . .
. . . . . . t1

t1 0


. (1.1.2)

where the last hopping parameter is t1 as we are considering an even chain. We search for
solutions of the Schrödinger equation (HSSH − E) |ψ⟩ = 0. Since the system is invariant
under translation by an even number of sites, we have the following ansatz

|ψ⟩ =
N∑

n=1
ψn|n⟩ =

M−1∑
m=0

(
A|2m+ 1⟩ +B|2m+ 2⟩

)
ei2mk, (1.1.3)

where n ∈ {1,...,N} and m ∈ {0,1,...,M − 1} denotes the unit cells. The odd sites are
denoted by |nodd⟩=|2m+ 1⟩ and the even sites, |neven⟩=|2m+ 2⟩. A and B are constants to
be determined. The last site’s oscillatory factor is ei2(M−1)k = ei(2M−2)k = ei(N−2)k since an
even-length chain has a total of N = 2M sites. The Schrödinger equation in matrix form is
then

(HSSH − E) |ψ⟩ =



−E t1

t1 −E t2

t2 −E t1

t1 −E . . .
. . . . . . t1

t1 −E





A

B

Aei2k

Bei2k

...
Aei(N−2)k

Bei(N−2)k



= 0, (1.1.4)
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of which all but the first and last equations are of the form

t1ψn−1 − Eψn + t2ψn+1 = 0 ,

t2ψn−1 − Eψn + t1ψn+1 = 0 ,
(1.1.5)

for n even and odd respectively. From here on out, these will be referred to as the bulk
equations. This system of equations is attributed to the periodicity of the Brillouin Zone
over a unit cell. Since every neighbouring unit cell’s oscillatory term differs by ei2k, these
two equations can be reduced to

t1A− EB + t2Ae
i2k = 0,

t2B − EAei2k + t1Be
i2k = 0,

(1.1.6)

which we express in matrix form as t1 + t2e
i2k −E

−E t1 + t2e
−i2k


 A

B

 = 0. (1.1.7)

The determinant must vanish for a nontrivial solution, which yields the dispersion relation

E2 = t21 + t22 + 2t1t2 cos 2k, (1.1.8)

which has energy bands from ±(t1 + t2) to ±|t1 − t2|.

1.1.1. The Dispersion Relation

The dispersion relation (1.1.8) deserves a closer look as it illustrates the most important
features of the model; in the thermodynamic limit N → ∞ the chain has no edges. From the
dispersion relation (1.1.8), it is clear that there are positive and negative energy solutions,
which will yield two bands. For a given energy solution, there is an equal and opposite
k solution; we define k to be the positive solution such that solutions take the form ±k.
Since the ansatz (1.1.3) is invariant under a phase shift k → k + π, we choose k to take
values in the range [−π

2 ,
π
2 ]. The positive and negative energy bands are symmetric due to

the chiral symmetry of the Hamiltonian [21]. It is informative to look at a few different
configurations of the energy bands for several values of the hopping parameters t1 and t2 as
shown in Fig. 1.3.
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Fig. 1.3. Dispersion relation (1.1.8) for various choices of parameters t1 and t2: (a) t1=1,
t2=0 ; (b) t1=1.3, t2=0.7; (c) t1=1, t2=1; (d) t1=0.7, t2=1.3; (e) t1=0, t2=1. We acknowledge
that this figure is heavily inspired by Fig. 1.2 of [22].

The case where one of the hopping parameters is zero corresponds to the chain breaking
into a series of disconnected dimers. When t1 = t2, the model reduces to a linear tight-
binding chain. We let t1 = t2 = t in (1.1.8) to get the well-known dispersion relation of the
tight-binding model

E2 = 2t2(1 + cos 2k), (1.1.9)

where it is easy to see that the energy bands go from −2t to 2t. Since there is no band gap,
this describes a conductor. Finally, we have the cases where t1 ̸= t2 where the gap is open.
It is clear that it is necessary to have staggered hopping parameters to describe an insulator.
This resulting energy gap, 2∆, in terms of the hopping parameters is given by [7]

∆ = |t1 − t2|. (1.1.10)

Back to the Search for Wave Functions

The following constants satisfy the pair of equations (1.1.6) A

B

 =

 t1 + t2e
−i2k

E

 . (1.1.11)

The first expression of the dispersion relation (1.1.8) allows us to define

|E|ei2φ ≡ (t1 + t2e
i2k), (1.1.12)

where the phase φ takes values 0 < φ < π/2. Using this definition, we rewrite (1.1.11) such
that  A

B

 =

 |E|e−i2φ

E

 , (1.1.13)
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which is further simplified by multiplying by eiφ/|E| to get the final form A

B

 =

 e−iφ

±eiφ

 , (1.1.14)

where the upper (lower) sign corresponds to positive (negative) energy. We now obtain the
general form of the solution to the bulk equations |ψ±⟩ by substituting (1.1.14) in (1.1.3)
and combining solutions for (k,φ) and (k, φ) → (−k,− φ)

|ψ±⟩ =
M−1∑
m=0

{(
C+e

−iφei2mk + C−e
iφe−i2mk

)
|2m+ 1⟩

±
(
C+e

iφei2mk + C−e
−iφe−i2mk

)
|2m+ 2⟩

}
,

(1.1.15)

where C± are constants to be determined, which are associated with the positive and negative
solutions of k and φ. To solve for C±, we use this general form of the wave function to rewrite
the Schrödinger equation (1.1.4)



−E t1

t1 −E t2

t2 −E t1

t1 −E . . .
. . . . . . t1

t1 −E





C+e
−iφ + C−e

iφ

±(C+e
iφ + C−e

−iφ)
C+e

−iφei2k + C−e
iφe−i2k

±(C+e
iφei2k + C−e

−iφe−i2k)
...

C+e
−iφei(N−2)k + C−e

iφe−i(N−2)k

±(C+e
iφei(N−2)k + C−e

−iφe−i(N−2)k)



= 0.

(1.1.16)
We take a look at the first and last equations, which from now on will be referred to as the
boundary/edge equations. We have

−E(C+e
−iφ + C−e

iφ) ± t1(C+e
iφ + C−e

−iφ) = 0,

∓E(C+e
iφei(N−2)k + C−e

−iφe−i(N−2)k) + t1(C+e
−iφei(N−2)k + C−e

iφe−i(N−2)k) = 0.
(1.1.17)

These boundary equations are what makes the energy spectrum discrete as opposed to an
infinite SSH chain that has continuous energy bands. We write (1.1.17) in matrix form −Ee−iφ ± t1e

iφ −Eeiφ ± t1e
−iφ

(∓Eeiφ + t1e
−iφ)ei(N−2)k (∓Ee−iφ + t1e

iφ)e−i(N−2)k


 C+

C−

 = 0. (1.1.18)
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We can considerably simplify this pair of equations by using the expression derived from the
definition (1.1.12)

−Ee±iφ ± t1e
∓iφ = ∓t2e∓iφe±i2k, (1.1.19)

to get  eiφe−i2k e−iφei2k

e−iφeiNk eiφe−iNk


 C+

C−

 = 0. (1.1.20)

Taking the determinant of this matrix, imposing it must vanish for nontrivial solutions,
using (1.1.19) to simplify and defining the ratio of hopping parameters r ≡ t1/t2, we find the
relation

rsN+2 + sN = 0, (1.1.21)

where we have used the shorthand sin(Ak) ≡ sA. We will discuss the solutions to this
equation in the next section.
We can see from (1.1.20) that C± can take the form C+

C−

 =

 e−iφei2k

−eiφe−i2k

 , (1.1.22)

which we substitute in the general form of the wave function (1.1.15), reexpress the φ factors
in terms of k using (1.1.19) and simplify to get the form

∣∣∣ψbulk
±

〉
=

M−1∑
m=0

{
(t1s2(m+1) + t2s2m)|2m+ 1⟩ +Es2(m+1)|2m+ 2⟩

}
. (1.1.23)

1.1.2. A complete set of solutions

We now want to verify that we have found a complete set of solutions. As the Hamiltonian
has dimension N × N , we expect to find N eigenstates and eigenenergies. To do so, we
examine the k equation (1.1.21), which will provide us with the number of wavenumber
solutions. Note that, for now, we still assume k to be real. This equation cannot be solved
analytically, but can easily be solved graphically as shown in Fig. 1.4. We note that (1.1.21)
depends on r and thus, the number of solutions will also be dependent on r. We define the
parameter rc on which the number of solutions depends

rC = N

N + 2 ,
(1.1.24)
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which has been shown in [16], but rederived independently in [20]. As shown in Fig. 1.4, for
r > rc, there are N solutions for k in the range [−π

2 ,π
2 ] as expected, while for r < rc there

are only N − 2 solutions.

-
π

2
-
π

4

π

4

π

2

k

-1.5

-1.0

-0.5

0.5

1.0

1.5

-
π

2
-
π

4

π

4

π

2

k

-1.0

-0.5

0.5

1.0

Fig. 1.4. Graphical solutions to the boundary condition (1.1.21) for N=6. The pink curve
is r sin (N + 2)k and the blue curve is sin (Nk). The case for r > rC is shown on the left;
where there are (N = 6) solutions and r < rC on the right where there are (N − 2 = 4)
solutions.

We must find these two missing solutions in order to complete the set. Letting k take complex
values of the form k → π

2 + iκ, where κ is defined as positive, equation (1.1.21) becomes

r = sinh(Nκ)
sinh((N + 2)κ) . (1.1.25)

In Fig. 1.5, we see that there are indeed no solutions for r > rc and two κ solutions for
r < rc.
We can now find the corresponding wave function for these complex-valued solutions by
substituting k → π

2 + iκ in the ansatz (1.1.3) and applying the same procedure as previously
shown for the real-valued wavenumber. We find that the wave function takes the form

∣∣∣ψedge
±

〉
=

M−1∑
m=0

(−1)m {shN−2m|2m+ 1⟩ ±sh2m+2|2m+ 2⟩} , (1.1.26)

where we have used the notation sinh(Aκ) → shA. These solutions have near-zero-energy
and are called edge states as they have an exponential form due to the hyperbolic sines.
These will be discussed further in the next section.
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Fig. 1.5. Graphical solutions to the κ boundary condition (1.1.25) for N = 20. The pink
curve shows sinhNκ/ sinh ((N + 2)κ), the grey curve corresponds to rc = 0.91 and the pink
curve is r = 0.5. we see that for r < rc, there are two κ solutions while for r > rc, there are
no solutions.

1.1.3. Summary of Results

We have shown that for a chain with an even number of sites N , the topological phase of the
system depends on rc (1.1.24). For r > rc, there are N solutions while for r < rc, there are
N − 2 bulk solutions. The two missing solutions are edge states and were found by letting
k be complex-valued. For a chain with N odd, the critical parameter corresponds to r = 1
[20]. Since the dispersion relation (1.1.8) is symmetric, there must be an odd number of
zero-energy states. In this case, we find N − 1 bulk states, hence there can only be one
zero-energy state. For more details on this case, see [20]. We summarize both cases’ results.

N even

with rC = N
N+2

• r > rC ; N bulk solutions and no edge states
• r < rC ; N -2 bulk solutions and 2 edge states near E = 0
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N odd

∀ r there exist N -1 bulk solutions and 1 edge state with E = 0
• r < 1, left edge state
• r > 1, right edge state

Bulk solutions are delocalized oscillatory states which come in ±E pairs as a consequence
of the chiral symmetry of the band structure [21]. Moreover, they can be antisymmetric or
symmetric. There are N to N − 2 bulk states depending on the parity of N and the value
of r. An example of two bulk states is shown in Fig. 1.6.

������

10 20 30 40
n

-0.2

-0.1

0.1

0.2

|ψn>
Bulk States N=42

Even

Odd

Fig. 1.6. A pair of SSH bulk states for N = 42. As expected, the electrons are delocalized
throughout the bulk.

The more interesting solutions are the edge states, states that are exponentially localized
at the boundaries of the chain. Fig. 1.7 shows the edge states for N even and N odd.
For N even, the edge states exist simultaneously when r < rc and come in a symmetric-
antisymmetric pair. These states have E/t2 = ±3.57628e−7 where the positive (negative)
energy corresponds to the symmetric (antisymmetric) state.
For odd N , there is a single edge state for all values of r; the state is localized on the right
(left) for r < 1 (r > 1).
For an even chain, the wavenumber solutions are given by (1.1.21) and if r < rc, by (1.1.25).
We then find the corresponding energy with (1.1.8). We show the energy spectrum of both
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Fig. 1.7. Edge states for a finite SSH chain. On the left, edge modes for a N even chain;
they exist simultaneously for r < rc with energies E/t2 = ±3.57628e−7. On the right, the
two possible forms of the edge states for an N odd chain. The mode is localized on the left
(right) when r < 1 (r > 1) and has E = 0.

even and odd SSH chains in Fig. 1.8 as a function of a new parameter, σ. We define σ ≡ t1

and 1 − σ ≡ t2 such that t1 + t2 = 1. This parameter σ therefore takes values from zero to
one. The topological parameter r can be expressed in terms of σ as r = σ/(1 −σ). The blue
region in Fig. 1.8 shows the energy spectrum in the thermodynamic limit N → ∞ given by
the dispersion relation (1.1.8). Solid lines represent bulk states for all r. For an even chain,
the dotted lines show edge states (r < rc) transitioning to bulk states (r > rc). The most
striking feature certainly is that there are states in the band gap, which is defined in the
thermodynamic limit, for r < rc, which are the edge states (1.1.26). On the other hand, for
the odd chain, the dotted line shows the edge state’s presence for all values of r.

1.1.4. Building Intuition

We can understand the energy spectrum by taking a look at the limiting case (t1 = 0, t2 = 1)
or r = 0 and (t1 = 1, t2 = 0) or r → ∞. This analysis will be found useful throughout this
work.
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Fig. 1.8. Energy spectrum as a function of parameter σ for SSH chains of even (N = 20) on
the left and odd (N = 21) parity on the right. We make the parametrization choice t1 = σ

and t2 = 1 − σ such that t1 + t2 = 1 and σ takes values from zero to one. The dotted line
shows the corresponding σ value for the transition point at r = rc (r = 1) for the even (odd)
chain.

Even SSH Chain

We start with the even chain with r = 0 (t1 = 0, t2 = 1): the Hamiltonian (1.1.2) now
describes a series of dimers in the bulk with a monomer at each end of the chain as shown
in Fig. 1.9(a) and is given by

HSSH,Even → Hmonomer

M−1⊕
i=1

Hdimer,i

⊕
Hmonomer (1.1.27)

where M is the total number of unit cells of the chain and the monomer and dimer Hamil-
tonians are given by

Hmonomer =
[

0
]

, Hdimer =

 0 1
1 0

 . (1.1.28)

Evidently, the monomers each only have energy solution E = 0 while the dimers each have
eigenenergies ±1. Since only the first and last sites support a zero-mode in that limit, the
states will be localized at these sites while allowing for some tunneling throughout the bulk
as we increase t1 while still letting it be smaller than t2. Moreover, in the r = 0 limit, the
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chain’s states for E = 0 will be superpositions of the monomers’ eigenstates; there are two
such combinations which are antisymmetric edge states. As we let t1 increase but still be
smaller than t2, the two zero-modes gain small equal and opposite energies and the highly
degenerate ±1 eigenenergies broaden and join the bands as shown in Fig. 1.8.

Fig. 1.9. SSH chain with N = 10 where we have imposed σ = 0 (t1 = 0, t2 = 1) in (a):
the system breaks up into a series of dimers with a monomer at each end. In (b),we have
imposed σ = 1 (t1 = 1, t2 = 0): the system breaks up into a series of dimers. Note that
σ = 0 corresponds to r = 0 and σ = 1 corresponds to r → ∞

Now we let r → ∞, which corresponds to the limit (t1 = 1, t2 = 0); the Hamiltonian (1.1.2)
now describes an even chain broken up into a series of dimers as shown in Fig. 1.9(b) and
given by

HSSH,Even →
M⊕

i=1
Hdimer,i (1.1.29)

where M is the total number of unit cells. The only eigenergies are ±1. Thus, we expect
to have only bulk states with energies ±1 when r → ∞, which is indeed what we observe
on the right end (σ = 1) of the even chain’s spectrum in Fig. 1.8. Moreover, we see that
the near-zero-energy states transition to bulk states when r → ∞ (σ → 1) as shown by the
dotted lines in Fig. 1.8.

Odd SSH Chain

We do the same analysis for the odd SSH chain. Our convention consists of the first hopping
parameter to be t1 and the last, t2, as shown in Fig. 1.10.
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Fig. 1.10. Representation of an SSH Chain with N = 11 and alternating hopping parame-
ters t1 and t2.

In the limiting case r = 0 (t1 = 0, t2 = 1), the Hamiltonian now describes a chain of dimers
except for the first site, which becomes a monomer as shown in Fig. 1.11(a). The Hamiltonian
of this system is given by

HSSH,Odd → Hmonomer

M−1⊕
i=1

Hdimer,i (1.1.30)

The first site being a monomer, it is the only one to support a zero-energy state; we must
have one left edge state for r = 0. The rest of the states have energies ±1 as shown on
the left of the odd chain’s spectrum in Fig. 1.8. When we let t1 take values larger but still
smaller than t2, the two highly degenerate ±1 eigenenergies broaden and join the bands.
The zero-energy mode remains as is required by the symmetry of the energy spectrum: this
is indeed what we observe in Fig. 1.8. For the limiting case, r → ∞ (t1 = 1, t2 = 0), the

Fig. 1.11. SSH chain with N = 11 where we have imposed (t1 = 0, t2 = 1) or r = 0 in (a):
the system breaks up into a series of dimers and a single monomer at the left edge of the
chain. In (b), we have imposed (t1 = 1, t2 = 0) or r → ∞: the system breaks up into a series
of dimers and a single monomer at the right edge of the chain.

chain is once again a series of dimers and a single monomer, but this time it is the last site
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that is a monomer as shown in Fig. 1.11(b). The Hamiltonian is now given by

HSSH,Odd →
M−1⊕
i=1

Hdimer,i

⊕
Hmonomer (1.1.31)

The zero-energy state is only supported by the last site, and thus we have one right edge
state for r → ∞. The rest of the states are bulk states with energies ±1 as we see on the
right end of the odd chain’s spectrum (σ = 1) in Fig. 1.8.
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Chapter 2

Infinite SSH Chain with a Soliton

Before diving into the computational work of this chapter, we will discuss the SSH soliton.
In the original papers [18, 19], it was found that the SSH model has solitonic modes, low-
energy excitations confined to the soliton that travel along the chain with constant velocity
and without dispersion. Most importantly, this provides a description of conducting polymers
[7] as these modes allow for the transportation of charges along the chain. Without solitonic
excitations, the model would describe an insulator. The soliton in question refers to a region
that connects two different topological phases of the SSH chain and has been observed in
many different engineered systems [23, 24, 25, 26, 27].

Fig. 2.1. Infinite SSH chain with repeated hopping parameter t2 at the centre to make up
the soliton. The central site is labeled by i = 0. The sites on the right chain segment are
labeled by i = (1, 2, 3, . . . ) while the sites on the left are labeled by i = (-1, -2, -3, . . . ).

This chapter will provide derivations of electronic solutions for an infinite chain that has
a domain wall as shown in Fig. 2.1 The original SSH papers gave the soliton a continous
structure, while in this work we will consider a discrete domain wall which locally breaks the
translational symmetry of the Hamiltonian. We introduce this domain wall by having two of



the same hopping parameters on each side of a single site. We will be using the terms soliton,
interface, defect, and domain wall interchangeably. We choose hopping parameter t2 to be
repeated. There is no loss of generality in making this choice as we can always make the
substitution t1 ↔ t2 in the final expressions to get the case where t1 is repeated. Since the
chain is infinite, the soliton is always central wherever it’s located and we can view the chain
as two semi-infinite SSH chains that are joined by a soliton site. We exploit the symmetry
of the system by labeling the soliton site i = 0 and letting its wave function amplitude be a
constant, B0. Sites of the right chain segment are labeled by i = (1, 2, 3, . . . ) while sites on
the left, by i = (−1,−2,−3, . . . ).

2.1. Real k Solutions
Firstly, we consider solutions that have a real wavenumber k that is in the range [−π

2 ,
π
2 ].

Solutions with such a wavenumber will have energies withing the bands. As for the stan-
dard SSH chain, we start by writing the Schrödinger equation where we now denote the
Hamiltonian by HSSH,S where the ‘s’ stands for soliton

(HSSH,S − E) |ψ⟩ = 0. (2.1.1)

In matrix form, with repeated hopping parameter t2 in the middle, we have



. . . . . .

. . . −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E . . .
. . . . . .





 BL

AL

 ei2k

 BL

AL


B0 AR

BR

 AR

BR

 ei2k



= 0, (2.1.2)
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where we have defined the wave function as

|ψ⟩ =



...
ψ−3 = ALe

i2k

ψ−2 = BL

ψ−1 = AL

ψ0 = B0

ψ1 = AR

ψ2 = BR

ψ3 = ARe
i2k

...



. (2.1.3)

We can now solve for the wave functions by following the method used for the SSH chain,
but we separate the chain into its right and left segments. The soliton site has index i = 0,
the right (left) segment has positive (negative) site indices. We consider the right segment
of the chain, which has two coupled bulk equations:

t2BR − EARe
i2k + t1BRe

i2k = 0,

t1AR − EBR + t2ARe
i2k = 0.

(2.1.4)

We notice that these equations are identical to the bulk equations of the standard SSH chain
(1.1.6). We follow the same method as in Chapter 1 and obtain the same form for the
wave function. This can be done for the left segment as well. We find both solutions and
distinguish them by denoting the right bulk |ψR⟩ and the left bulk |ψL⟩

|ψR±⟩ =
∞∑

m=0

{(
C+e

−iφei2mk + C−e
iφe−i2mk

)
|2m+ 1⟩

±
(
C+e

iφei2mk + C−e
−iφe−i2mk

)
|2m+ 2⟩

}
,

|ψL±⟩ =
∞∑

m=0

{(
D+e

−iφei2mk +D−e
iφe−i2mk

)
| − (2m+ 1)⟩

±
(
D+e

iφei2mk +D−e
−iφe−i2mk

)
| − (2m+ 2)⟩

}
,

(2.1.5)

where C± and D± are constants to be determined. We notice that attaching both of these
wave functions will not describe the full chain as we are missing the soliton site |0⟩. This
site’s amplitude will be included in the final form of the wave function.
We now consider the three central equations in (2.1.2) which result from joining the right
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and left SSH chains to the soliton:

t1ψ−2 − Eψ−1 + t2ψ0 = 0,

t2ψ−1 − Eψ0 + t2ψ1 = 0,

t2ψ0 − Eψ1 + t1ψ2 = 0.

(2.1.6)

We use the bulk solutions (2.1.5) to rewrite these equations in terms of C± and D±

±t1(D+e
iφ +D−e

−iφ) − E(D+e
−iφ +D−e

iφ) + t2B0 = 0,

t2(D+e
−iφ +D−e

iφ) − EB0 + t2(C+e
−iφ + C−e

iφ) = 0,

t2B0 − E(C+e
−iφ + C−e

iφ) ± t1(C+e
iφ + C−e

−iφ) = 0.

(2.1.7)

where we notice that we have three equations and five unknowns C±, D± and B0. We
therefore have a family of solutions with two parameters. We can make a normalization
choice to eliminate one parameter and are left with one unknown. Hence, there are two
solutions per energy, which we will separate into symmetric and antisymmetric states as
discussed in the section below.

On the Parity of Site Indices and Solutions

We can represent the site index parity i → −i in matrix form by an antidiagonal unit matrix.
We call this transformation X with properties

X =



0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0


, (Xψ)i = ψ−i , XHX = H, (2.1.8)

where we consider N = 5, but the generalization to an infinite chain is straightforward. From
this, we can easily see that if |ψ⟩ is a solution to the Schrödinger equation (2.1.1), then X|ψ⟩

is also a solution. Additionally, there are two possible classes of solutions; even solutions
with X|ψ⟩ = |ψ⟩ and odd solutions with X|ψ⟩ = −|ψ⟩. We consider both in what follows.
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Even Solutions

For even solutions, we have ψi = ψ−i, which we can see from (2.1.7) corresponds to C± = D±.
We also choose the normalization B0 = 1. We make the substitution D± = C± in all three
equations (2.1.7). It is easy to see that the first equation (i = −1) is now equal to the third
equation (i = 1), thus reducing the number of coupled equations to two

2t2(C+e
−iφ + C−e

iφ) = E,

C+(Ee−iφ ∓ t1e
iφ) + C−(Eeiφ ∓ t1e

−iφ) = t2.
(2.1.9)

where the first equation corresponds to i = 0 and the second, i = 1. We can simplify the
latter by using the relation

Ee±iφ ∓ t1e
∓iφ = ±t2e±i2ke∓iφ, (2.1.10)

which can easily be derived from the φ definition (1.1.12). Using this relation, we rewrite
(2.1.9)

2t2(C+e
−iφ + C−e

iφ) = E,

C+e
−i2keiφ + C−e

i2ke−iφ = ±1.
(2.1.11)

We write these in matrix form e−i2keiφ ei2ke−iφ

2t2e−iφ 2t2eiφ


 C+

C−

 =

 ±1
E

 , (2.1.12)

for which we find the matrix’S determinant to be ∓ 1
E

4it1t2s2 where we have used the shor-
thand sA ≡ sinAk. Since the determinant is non-vanishing, we can invert the matrix to
solve for C±, which yields C+

C−

 = ∓E
4it1t2s2

 2t2eiφ −ei2ke−iφ

−2t2e−iφ e−i2keiφ


 ±1
E

 . (2.1.13)

We multiply this out to get C+

C−

 = ∓E
4it1t2s2

 ±2t2eiφ − Eei2ke−iφ

∓2t2e−iφ + Ee−i2keiφ

 , (2.1.14)

or, using (2.1.10),  C+

C−

 = E

4it1t2s2

 (t1ei2k − t2)eiφ

(t2 − t1e
−i2k)e−iφ

 . (2.1.15)
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We combine the right and left segment solutions from (2.1.5); this gives the full solution

|ψeven⟩ = |0⟩ +
∞∑

m=0

E

4it1t2s2

{[
(t1ei2k − t2)ei2mk + (t2 − t1e

−i2k)e−i2mk
][

|2m+ 1⟩ +| − (2m+ 1)⟩
]

±
[
(t1ei2k − t2)ei2φei2mk + (t2 − t1e

−i2k)e−i2φe−i2mk
][

|2m+ 2⟩ +| − (2m+ 2)⟩
]

}.
(2.1.16)

We use the definition (1.1.12) to eliminate the φ dependence and simplify to obtain the final
form of the solution:

|ψeven⟩ = |0⟩ +
∞∑

m=0

1
2t1t2s2

{
E(t1s2m+2 − t2s2m)

[
|2m+ 1⟩ +| − (2m+ 1)⟩

]
+(t21 − t22)s2m+2 + t1t2(s2m+4 − s2m)

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]
}.

(2.1.17)

Odd Solutions

For odd solutions, we have ψi = −ψ−i, which we can see from the i = 0 equation in (2.1.7)
corresponds to B0 = 0 and therefore C± = −D±. Again, by making these substitutions in
(2.1.7), we see that the i = −1 and i = 1 equations are equivalent. We use the latter

C+(±t1eiφ − Ee−iφ) + C−(±t1e−iφ − Eeiφ) = 0, (2.1.18)

which we can further simplify by using relation (2.1.10) to obtain

C+e
−i2keiφ + C−e

i2ke−iφ = 0,

C+

C−
= −ei2ke−iφ

e−i2keiφ
,

(2.1.19)

so we can reexpress as
C+ = −ei2ke−iφ,

C− = e−i2keiφ,
(2.1.20)

up to a normalization constant. From (2.1.5), this gives the solution

|ψodd⟩ =
∞∑

m=0

{
(e−i2kei2φe−i2mk − ei2ke−i2φei2mk)

[
|2m+ 1⟩ −| − (2m+ 1)⟩

]
±(e−i2ke−i2mk − ei2kei2mk)

[
|2m+ 2⟩ −| − (2m+ 2)⟩

]}
.

(2.1.21)

We use the definition (1.1.12) to eliminate the φ dependence and simplify to obtain the final
form of the solution:
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|ψodd⟩ =
∞∑

m=0

{
(t1s2m+2 + t2s2m)

[
|2m+ 1⟩ −| − (2m+ 1)⟩

]
+ (Es2m+2)

[
|2m+ 2⟩ −| − (2m+ 2)⟩

]}
.

(2.1.22)

2.2. Complex k Solutions
We now perform a similar derivation as in the previous section, but this time considering a
complex wavenumber k → π

2 + iκ. This leads to ei2mk → (−1)me−2mκ. The wave functions
now having an exponential behaviour, we can imagine a set of solutions decaying away from
the central site. The energy of these solutions will be in the band gap. The Schrödinger
equation in matrix form is now given by



. . . . . .

. . . −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E . . .
. . . . . .





... BL

AL

 e−4κ

−

 BL

AL

 e−2κ

 BL

AL


B0 AR

BR


−

 AR

BR

 e−2κ

 AR

BR

 e−4κ

...



= 0. (2.2.1)

We have the following bulk equations for the right segment of the chain

t2BRe
2κ + EAR − t1BR = 0,

t1AR − EBR − t2ARe
−2κ = 0.

(2.2.2)
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Putting these into matrix form and requiring the determinant be equal to zero for a nontrivial
solution leads to the dispersion relation

E2 = t21 + t22 − 2t1t2 cosh (2κ). (2.2.3)

We define φ, similarly to the real wavenumber case, as

|E|e±2φ ≡ (t1 − t2e
∓2κ). (2.2.4)

It is interesting to notice that this definition depends on the chosen relative size of the
hopping parameters. This definition is valid for t1 > t2. However, we can do (and we have
done) the following calculation with the definition valid for t1 < t2 and it leads to the same
wave function. Using (2.2.4), we find that the following AR and BR satisfy (2.2.2) AR

BR

 =

 e−φ

±eφ

 , (2.2.5)

where the upper (lower) sign corresponds to the positive (negative) energy solutions. The
ansatz is the same as the real-valued wavenumber case, but with ei2mk → (−1)me−2mκ, such
that

|ψ⟩ =
∞∑

m=0
(−1)m

(
A|2m+ 1⟩ +B|2m+ 2⟩

)
e−2mκ. (2.2.6)

Using (2.2.5), we take a linear combination of positive and negative solutions for κ and φ to
get

|ψR±⟩ =
∞∑

m=0
(−1)m

{(
C+e

−φe−2mκ + C−e
φe2mκ

)
|2m+ 1⟩

±
(
C+e

φe−2mκ + C−e
−φe2mκ

)
|2m+ 2⟩

}
,

|ψL±⟩ =
∞∑

m=0
(−1)m

{(
D+e

−φe−2mκ +D−e
φe2mκ

)
| − (2m+ 1)⟩

±
(
D+e

φe−2mκ +D−e
−φe2mκ

)
| − (2m+ 2)⟩

}
,

(2.2.7)

where C± and D± are constants to be determined. As m → ∞, the terms multiplied by C−

and D− will also go to infinity. These solutions are not normalizable, hence we set C− and
D− equal to zero to avoid this problem. The general form of the wave function becomes

|ψR±⟩ =
∞∑

m=0
C+e

φe−2mκ|2m+ 1⟩ ± C+e
−φe−2mκ|2m+ 2⟩,

|ψL±⟩ =
∞∑

m=0
D+e

φe−2mκ| − (2m+ 1)⟩.±D+e
−φe−2mκ| − (2m+ 2)⟩,

(2.2.8)
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where C+ and D+ are to be determined. We now write down the three coupled central
equations

t1ψ−2 − Eψ−1 + t2ψ0 = 0,

t2ψ−1 − Eψ0 + t2ψ1 = 0,

t2ψ0 − Eψ1 + t1ψ2 = 0,

(2.2.9)

which we express in terms of C+ and D+ by using (2.2.8)

±t1D+e
φ − ED+e

−φ + t2B0 = 0,

t2D+e
−φ − EB0 + t2C+e

−φ = 0,

t2B0 − EC+e
−φ ± t1C+e

φ = 0.

(2.2.10)

Even Solutions

For the even solutions, we have C+ = D+ and make the normalization choice B0 = 1 which
yields the boundary equations

2t2C+e
−φ = E,

C+e
2κeφ = ∓1.

(2.2.11)

Solving for C+ we get two expressions

C+ = Eeφ

2t2
,

C+ = ∓e−φe−2κ.

(2.2.12)

Putting these two equations equal to one another, we obtain an expression for φ

|E|e2φ = −2t2e−2κ. (2.2.13)

Using the φ definition (2.2.4), we get the following condition on κ

e−2κ = −t1
t2
, (2.2.14)

which has no solutions for all values of t1 and t2 since κ is always positive. Therefore, it
is tempting to conclude that there are no even solutions with an energy in the band gap.
As will be discussed in section 2.2, this is not the case as the method we have been using
until now to find all solutions to the Schrödinger equation (2.3.1) doesn’t take into account
solutions with zero-energy.
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Odd Solutions

For the odd solutions, B0 = 0 and C+ = −D+, thus producing the boundary condition

C+(±t1eφ − Ee−φ) = 0, (2.2.15)

which leads to the expression

±t1eφ − Ee−φ = 0. (2.2.16)

Using this equation, we find the following expression for φ

|E|e−2φ = t1. (2.2.17)

Using the φ definition (2.2.4), we get a condition on κ, given by

t2e
2κ = 0, (2.2.18)

which has no physical solutions. Once again, we could conclude that there are no κ solutions
for an energy in the band gap, but the method we have just used does not take into account
solutions with E = 0. This will be discussed in the next section.

On the Zero-Mode

We take a look at the definition for φ when the wavenumber is complex

e±2φ ≡ 1
|E|

(t1 − t2e
∓2κ). (2.2.19)

If E = 0, it is clear that φ is undefined as the exponential tends to ∞. Our method of
calculation thus breaks down for this case. Fortunately, we can find the solution nonetheless.
Since E = 0 is located in the band gap, we know that the corresponding solution must have
a complex wavenumber. We set E = 0 in the dispersion relation (2.2.3)

0 = t21 + t22 − 2t1t2 cosh 2k, (2.2.20)

which can then be solved for κ such that

κ = 1
2 arcosh [12(r + 1

r
)], (2.2.21)

which has one real and positive κ solution.
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Odd Zero-Mode

To find the form of the zero-mode’s wave function, we set E = 0 in the Schrödinger
equation (2.3.1) to get



. . . . . .

. . . 0 t2

t2 0 t1

t1 0 t2

t2 0 t2

t2 0 t1

t1 0 t2

t2 0 . . .
. . . . . .





...
ψ−4

ψ−3

ψ−2

ψ−1

ψ0

ψ1

ψ2

ψ3

ψ4
...



= 0. (2.2.22)

We look at the three central equations as well as three bulk equations to the right of the
soliton

t1ψ−2 + t2ψ0 = 0,

t2ψ−1 + t2ψ1 = 0,

t2ψ0 + t1ψ2 = 0,

t1ψ1 + t2ψ3 = 0,

t2ψ2 + t1ψ4 = 0,

t1ψ3 + t2ψ5 = 0,

(2.2.23)

where we note that each equation only has even or odd sites. We can rewrite equations
(2.2.25) by considering the parity of the solution we are looking for. We start by considering
an antisymmetric solution for which the amplitude of the soliton site is ψ0 = 0 and ψj =
−ψ−j. The latter is confirmed for odd sites by the second equation in (2.2.25) where ψ1 =
−ψ−1. Using our two constraints for antisymmetric solutions, we rewrite equations (2.2.25)

47



as

t1ψ−2 = t1ψ2 = 0,

t1ψ1 + t2ψ3 = 0,

t2ψ2 + t1ψ4 = 0,

t1ψ3 + t2ψ5 = 0.

(2.2.24)

Clearly, ψ2 and ψ−2 must be equal to zero. Consequently, we see from the fifth equation
that ψ4 must also be equal to zero. This procedure can be applied to all the even site bulk
equations and leads to the conclusion that ψj = ψ−j = 0 for even j. We are left with two
nontrivial equations

t1ψ1 + t2ψ3 = 0,

t1ψ3 + t2ψ5 = 0.
(2.2.25)

From the first equation, we see that we can write ψ3 in terms of ψ1 and thus, with the second
equation, we can also write ψ5 in terms of ψ1

ψ3 = −
(
t1
t2

)
ψ1,

ψ5 = −
(
t1
t2

)
ψ3 =

(
t1
t2

)2
ψ1.

(2.2.26)

We can do this procedure for all odd site bulk equations and find that odd site amplitudes
can all be expressed in terms of ψ1. Doing so, we find the following form of the wave function
for odd sites

ψ2m+1 = (−1)m
(
t1
t2

)m

ψ1, (2.2.27)

where m takes integer values from zero to infinity. We can now write the final form of the
antisymmetric zero-mode solution, where we make the normalization choice ψ1 = 1

|ψE=0,odd⟩ =
∞∑

m=0
(−1)m

(
t1
t2

)m[
|2m+ 1⟩ − | − (2m+ 1)⟩

]
, (2.2.28)

which is only physical in the regime where t1 < t2 as this solution blows up as m → ∞

for t1 > t2.
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Even Zero-Mode

We now find the symmetric zero-mode wave function by imposing that ψj = ψ−j and
making the normalization choice ψ0 = 1 in equations (2.2.25), which reduce to five equations

t2ψ−1 + t2ψ1 = 0,

t2 + t1ψ2 = 0,

t1ψ1 + t2ψ3 = 0,

t2ψ2 + t1ψ4 = 0,

t1ψ3 + t2ψ5 = 0.

(2.2.29)

From the first equation, we see that ψ1 can only be equal to ψ−1 if it is equal to zero. From
the third equation, we see that ψ3 must then also be equal to zero. As all odd site amplitudes
can be expressed in terms of ψ1, they must all vanish: ψj = ψ−j = 0 for odd j. Now, we
look at the even site equations: from the second equation, we can find ψ2 in terms of t1 and
t2, and thus, ψ4

ψ2 = −
(
t2
t1

)
,

ψ4 = −
(
t2
t1

)
ψ2 =

(
t2
t1

)2
.

(2.2.30)

We can express all even site amplitudes in terms of ψ2. Doing so, we find the following form
of the wave function for even sites

ψ2m+2 = (−1)m+1
(
t2
t1

)m+1
, (2.2.31)

where m takes integer values from zero to infinity. We can now write the final form of the
symmetric zero-mode solution as

|ψE=0,even⟩ = |0⟩ +
∞∑

m=0
(−1)m + 1

(
t2
t1

)m

+ 1
[
|2m+ 2⟩ + | − (2m+ 2)⟩

]
, (2.2.32)

which is only valid in the regime where t1 > t2 as this solution will blow up as m → ∞

if t1 < t2.
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2.3. Imaginary k Solutions
We now consider an imaginary wavenumber k → iκ, which leads to ei2mk → e−2mκ. As for
the solutions with a complex wavenumber, the exponential behaviour of the wave functions
allows us to consider solutions that decay away from the soliton. The energy of these solutions
will be outside the bands.
The Schrödinger equation in matrix form becomes



. . . . . .

. . . −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E . . .
. . . . . .





... BL

AL

 e−4κ

 BL

AL

 e−2κ

 BL

AL


B0 AR

BR

 AR

BR

 e−2κ

 AR

BR

 e−4κ

...



= 0. (2.3.1)

The two coupled bulk equations are given by

t2BRe
2κ − EAR + t1BR = 0,

t1AR − EBR + t2ARe
−2κ = 0,

(2.3.2)

which we put in matrix form and require the determinant to be equal to 0 to find the
dispersion relation

E2 = t21 + t22 + 2t1t2 cosh 2κ, (2.3.3)

from which we define φ as

|E|e±2φ = (t1 + t2e
±2κ), (2.3.4)
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which is independent of whether t1 > t2 or t1 < t2. Using this definition, we find that the
following expressions for AR and BR satisfy (2.3.2) AR

BR

 =

 eφ

±e−φ

 . (2.3.5)

We obtain the ansatz from taking its real-valued k counterpart and making the substitution
ei2mk → e−2mκ, which yields

|ψ⟩ =
∞∑

m=0

(
A|2m+ 1⟩ +B|2m+ 2⟩

)
e−2mκ. (2.3.6)

By using AR and BR from (2.3.5) and by taking a linear combination of the positive and
negative solutions for κ and φ, we get the solution

|ψR±⟩ =
∞∑

m=0

{(
C+e

φe−2mκ + C−e
−φe2mκ

)
|2m+ 1⟩

±
(
C+e

−φe−2mκ + C−e
φe2mκ

)
|2m+ 2⟩

}
,

|ψL±⟩ =
∞∑

m=0

{(
D+e

φe−2mκ +D−e
−φe2mκ

)
| − (2m+ 1)⟩

±
(
D+e

−φe−2mκ +D−e
φe2mκ

)
| − (2m+ 2)⟩

}
,

(2.3.7)

where C± and D± are constants to be determined. As m → ∞, the terms multiplied by C−

and D− will also go to infinity. These solutions are not normalizable, hence we set C− and
D− equal to zero to avoid this problem. The general form of the wave function becomes

|ψR±⟩ =
∞∑

m=0

{
C+e

φe−2mκ|2m+ 1⟩ ±C+e
−φe−2mκ|2m+ 2⟩

}
,

|ψL±⟩ =
∞∑

m=0

{
D+e

φe−2mκ| − (2m+ 1)⟩ ±D+e
−φe−2mκ| − (2m+ 2)⟩

}
,

(2.3.8)

where the constants to be determined are now C+ and D+. We take a look at the three
central equations (2.2.9), which we express in terms of C+ and D+

±t1D+e
−φ − ED+e

φ + t2B0 = 0,

t2D+e
φ − EB0 + t2C+e

φ = 0,

t2B0 − EC+e
φ ± t1C+e

−φ = 0.

(2.3.9)
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Even Solutions

For even solutions, we have C+ = D+ and choose the normalization such that B0 = 1, which
leads to the coupled central equations

2t2C+e
φ = E,

C+e
2κe−φ = ±1.

(2.3.10)

Solving for C+, we get the following two expressions

C+ = Ee−φ

2t2
,

C+ = ±eφe−2κ.

(2.3.11)

Setting these expressions equal to one another, we get the following expression for φ

|E|e−2φ = 2t2e−2κ. (2.3.12)

Using the φ definition (2.3.4), we get an equation for κ

e2κ = t2
t1
, (2.3.13)

or, equivalently,

e−2κ = t1
t2
. (2.3.14)

Since κ is positive, we must have e2κ > e−2κ and therefore, t2 > t1. We therefore conclude
that we have even solutions with an energy outside the bands only in the case where t2 > t1.
We use κ equations (2.3.12) and (2.3.13) in the dispersion relation (2.3.3) to find the energy
of the modes outside the bands

E2 = 2(t21 + t22), (2.3.15)

which is valid in the regime where t2 > t1. We now use the second equation in (2.3.11) for
C+ and substitute it into the general form of the solution (2.3.8) to find the final form of the
wave function

|ψeven⟩ = |0⟩ +
∞∑

m=0

{ 1
E

(t1e−2(m+1)κ + t2e
−2mκ)

[
|2m+ 1⟩ +| − (2m+ 1)⟩

]
±e−2(m+1)κ

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]
}.

(2.3.16)
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Odd Solutions

For odd solutions, B0 = 0 and C+ = −D+, therefore yielding the central equation

C+(±t1e−φ − Eeφ) = 0, (2.3.17)

which allows us to obtain an expression for φ

|E|e2φ = t1 + t2e
2κ. (2.3.18)

Using the φ definition (2.3.4), we get an equation for κ

t2e
2κ = 0, (2.3.19)

which has no nontrivial solutions. Therefore, we conclude that there are no odd solutions
with an energy outside the bands.

2.4. Discussion of the Energy Spectrum
We show the energy spectrum as a function of parameter σ for the infinite SSH chain with a
soliton in Fig. 2.2. As we did for the energy spectrum of the finite SSH chain, we make the
parametrization choice σ = t1 and 1 − σ = t2 such that t1 + t2 = 1 and σ ranges from zero
to one. The orange region corresponds to the infinite number of bulk states with energies
within the bands. The two states in red with an energy outside the bands correspond to
the even solutions found for an imaginary wavenumber in section 3.1.3. This state joins the
bands when t1 = t2, which corresponds to r = 1 (σ = 0.5). Finally, we show the zero-mode
in blue, which is an odd solution for t1 < t2 (r < 1), and an even solution for t1 > t2

(r > 1). We can understand the parity of the zero-mode by considering limiting cases of the
hopping parameters t1 and t2. In Fig. 2.3(a), we show the chain in the limiting case r = 0
(t1 = 0,t2 = 1); the soliton becomes a trimer while the rest of the sites become dimers. We
consider r → ∞ (t1 = 1,t2 = 0) in Fig. 2.3(b), in which the soliton becomes a monomer while
the rest of the sites become dimers. Firstly, we discuss the limiting case r = 0 (t1 = 0,t2 = 1)
illustrated in Fig. 2.3(a). The Hamiltonian (3.1.14) reduces to

HSSH,S →
−1⊕

i=−∞
Hdimer,i

⊕
Htrimer

∞⊕
i=1

Hdimer,i (2.4.1)
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r < 1 r > 1
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-1.5

-1.0

-0.5

0.5

1.0

1.5

E

Fig. 2.2. Energy spectrum as a function of parameter σ for the infinite SSH chain with a
soliton. We make the parametrization choice t1 = σ and t2 = 1 −σ such that t1 + t2 = 1 and
σ takes values from zero to one. Highlighted in red are the high-energy states (imaginary k),
highlighted in purple is the zero-mode (complex k) and in orange, the infinite bulk states.

Fig. 2.3. Infinite SSH chain with a soliton where we have imposed (t1 = 0, t2 = 1) in (a):
the system breaks up into a trimer and an infinite series of dimers. In (b), we have imposed
(t1 = 1, t2 = 0): the system breaks up into a monomer and an infinite series of dimers.

where the dimer’s Hamiltonian is given by (1.1.28). The trimer’s Hamiltonian in matrix
form is given by

Htrimer =


0 1 0
1 0 1
0 1 0

 , (2.4.2)

54



which has eigenenergies 0 and ±
√

2. The trimer’s eigenstate corresponding to E = 0 is
antisymmetric. The dimers each have eigenenergies ±1. Therefore, only the trimer supports
a zero-mode. As shown in Fig. 2.2, in the r = 0 (σ = 0) limit, we indeed only have states
with energies zero, ±1 and ±

√
2. As we let r → 1, the zero-energy state will no longer be

purely localized at any site as this allows for tunneling along the chain. The zero-mode in
the regime where t1 < t2 is therefore antisymmetric and is expected to decay away from
the soliton, which is indeed what we have determined in section 2.2. Let’s now discuss the
trimer’s other eigenenergies, E = ±

√
2. Only the trimer supports these high energies and

the corresponding eigenstates are symmetric. This allows us to conclude that we expect to
have even solutions that have an energy outside the bands in the regime where t1 < t2. This
is indeed what we found in section 2.3.
We now consider the limiting case r → ∞ (t1 = 1,t2 = 0) for which the chain becomes an
infinite series of dimers on each side of a monomer as shown in Fig. 2.3(b). The Hamiltonian
(3.1.14) reduces to

HSSH,S →
−1⊕

i=−∞
Hdimer,i

⊕
Hmonomer

∞⊕
i=1

Hdimer,i (2.4.3)

where the monomer’s and dimer’s Hamiltonians are given by (1.1.28). As was discussed in
section 1.1.4, a monomer only has eigenenergy E = 0 and its corresponding eigenstate is
symmetric. Moreover, dimers only have eigenenergies ±1. Therefore, only the soliton site
supports the zero-mode. As shown in Fig. 2.2, in the r → ∞ (σ = 1) limit, we indeed
only have states with energies zero and ±1. As we let t2 grow, but still be smaller than t1

(r > 1), we expect the zero-energy state to no longer be completely localized at the soliton
as we now allow for tunneling along the chain. The zero-mode in the regime where t1 > t2 is
therefore symmetric and expected to decay away from the soliton, which is what we observed
in section 2.2.
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Chapter 3

Finite SSH Chain with a Central Soliton

In this chapter, we will find the solutions of a finite SSH chain with a central soliton. Once
again, we impose that the repeated hopping parameter be t2. Let the complete chain have
a total number of sites N . We understand the system to be two finite SSH chains joined by
the soliton site. There are two possible configurations: the two chain segments can have an
even or odd number of sites α. Therefore, the total number of sites is N = 2α+ 1, which is
an odd number regardless of the parity of α. If α is even (odd), the last hopping parameter
of each chain segment is t1 (t2). We denote the former configuration as Φ12 as the edges’
hopping parameter is t1 and the domain wall’s parameter is t2. Similarly, we denote the
configuration with t2 at both the edges and the interface by Φ22. The Φ12 configuration will
be discussed in section 3.1 and the Φ22, in section 3.2.



3.1. Φ12 Configuration

Fig. 3.1. Finite SSH chain with N = 9, repeated hopping parameters t2 at the centre to
make up the soliton and t1 at its edges (Φ12 configuration) The central site is labeled by
i = 0. The sites on the right chain segment are labeled by i = (1, 2, 3, . . . , α) while the sites
on the left are labeled by i = (-1, -2, -3, . . . ,−α)). In this case, α = 4 and the total number
of unit cells on each chain segment is 2; in this case, the sum over m would run from 0 to
β = 1.

As previously mentionned, this configuration of the chain has hopping parameters t1 at its
edges and t2 as the repeated hopping parameter. We think of this system as two even-length
SSH chains with α sites joined by a central site. The total length of the chain can take up
values N = 4n+1 with n = 1, 2, 3, . . . A pair of sites (A,B) forms a unit cell, which is labeled
by the index m. We run this index from 0 to α

2 − 1 ≡ β to get the total number of unit cells.
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3.1.1. Real k Solutions

We consider solutions with a real wavenumber k, which have energy within the bands.
The Schrödinger equation in matrix form is given by



−E t1

t1 −E t2
. . . . . . . . .

t1 −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E t1
. . . . . . . . .

t2 −E t1

t1 −E





 BL

AL

 ei(α−2)k

... BL

AL

 ei2k

 BL

AL


B0 AR

BR

 AR

BR

 ei2k

... AR

BR

 ei(α−2)k



= 0,

(3.1.1)
where each side of the chain’s last two sites’ wave functions carry a factor ei2mk = ei(α−2)k

as the last unit cell corresponds to index m = β = α
2 − 1. As the wave function only differs

from (2.1.5) by the upper bound of the sum, we can directly write it in terms of C± and D±

|ψR±⟩ =
β∑

m=0

{(
C+e

−iφei2mk + C−e
iφe−i2mk

)
|2m+ 1⟩

±
(
C+e

iφei2mk + C−e
−iφe−i2mk

)
|2m+ 2⟩

}
,

|ψL±⟩ =
β∑

m=0

{(
D+e

−iφei2mk +D−e
iφe−i2mk

)
| − (2m+ 1)⟩

±
(
D+e

iφei2mk +D−e
−iφe−i2mk

)
| − (2m+ 2)⟩

}
.

(3.1.2)

We have five boundary conditions to consider: three which arise from the the juncture of
the chains, which are given by (2.1.6), and two that come from the left and right edges of
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the chain. We directly write the latter in terms of the constants C± and D± as

∓E(D+e
iφei(α−2)k +D−e

−iφe−i(α−2)k) + t1(D+e
−iφei(α−2)k +D−e

iφe−i(α−2)k) = 0,

t1(C+e
−iφei(α−2)k + C−e

iφe−i(α−2)k) ∓ E(C+e
iφei(α−2)k + C−e

−iφe−i(α−2)k) = 0.
(3.1.3)

In the next sections, we will rewrite these equations according to the parity of the solutions.

Even Solutions

As per usual, when we consider even solutions to the Schrödinger equation, we have C± =
D± and we make the normalization choice B0 = 1. This yields three nontrivial boundary
equations since a pair of equations (2.1.6) reduce to the same equation, as do (3.1.3). These
three equations are given by

2t2(C+e
−iφ + C−e

iφ) = E,

C+(±t1eiφ − Ee−iφ) + C−(±t1e−iφ − Eeiφ) = −t2,

C+(t1e−iφ ∓ Eeiφ)ei(α−2)k + C−(t1eiφ ∓ Ee−iφ)e−i(α−2)k = 0.

(3.1.4)

We can simplify the second and third equations using relation (2.1.10) to get the form

C+e
iφe−i2k + C−e

−iφei2k = ±1,

C+e
−iφeiαk + C−e

iφe−iαk = 0.
(3.1.5)

To solve for C±, we rewrite these in matrix form as
 eiφe−i2k e−iφei2k

e−iφeiαk eiφe−iαk


 C+

C−

 =

 ±1
0

 . (3.1.6)

The matrix in this equation has determinant ∓2i/E(t1sα+2 + t2sα). We invert this matrix
and solve for the constants, yielding

 C+

C−

 = E

2i(t1sα+2 + t2sα)

 −eiφe−iαk

e−iφeiαk

 . (3.1.7)

These expressions for C± are substituted into (3.1.2) to find the final form of the wave
function, which is given by
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|ψeven⟩ = |0⟩ +
β∑

m=0

1
t1sα+2 + t2sα

{
Esα−2m

[
|2m+ 1⟩ +| − (2m+ 1)⟩

]
+(t1sα−2m + t2sα−2m−2)

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]}
.

(3.1.8)

As was done for a regular finite SSH chain (1.1.21), we are interested in finding a transcen-
dental equation which can then be solved graphically to determine the number of solutions
for real-valued wavenumber k. Here, we do so by using the expressions for C± (3.1.7) and
substituting them in the first boundary equation in (3.1.4). After a few lines of algebra, we
get the equation

rsα+2 − sα = 0, (3.1.9)

which has α − 2 solutions for r < rc and α solutions for r > rc, where rc = N/N + 2. We
will discuss this further in Section (3.1.4.)

Odd Solutions

When considering odd solutions, we have C± = −D±, which gives B0 = 0. Using these
constraints to rewrite the boundary equations (2.1.6) and (3.1.3) yields the two following
nontrivial conditions

C+(±t1eiφ − Ee−iφ) + C−(±t1e−iφ − Eeiφ) = 0,

C+(t1e−iφ ∓ Eeiφ)ei(α−2)k + C−(t1eiφ ∓ Ee−iφ)e−i(α−2)k = 0.
(3.1.10)

We take the first equation, simplify using (2.1.10), and solve for the ratio of the constants
to get

C+ = e−iφei2k,

C− = −eiφe−i2k,
(3.1.11)

up to normalization constant. From (3.1.2), we get the solution

|ψodd⟩ =
β∑

m=0

{
(t1s2m+2 + t2s2m)

[
|2m+ 1⟩ −| − (2m+ 1)⟩

]
+Es2m+2

[
|2m+ 2⟩ −| − (2m+ 2)⟩

]}
.

(3.1.12)
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We substitute (3.1.11) in the second boundary equation in (3.1.10) and simplify to find the
transcendental k equation

rsα+2 + sα = 0, (3.1.13)

which has α − 2 solutions for r < rc and α solutions for r > rc. This will be further
discussed in section 3.2.4.
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3.1.2. Complex k Solutions

A complex wavenumber k → π
2 + iκ leads to the exponential ei2mk → (−1)me−2mκ. The wave

functions with a complex wavenumber will have energies in the band gap. The Schrödinger
equation in matrix form (3.1.1) is now given by



−E t1

t1 −E t2
. . . . . . . . .

t1 −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E t1
. . . . . . . . .

t2 −E t1

t1 −E





 BL

AL

 e−(α−2)κ

...

−

 BL

AL

 e−2κ

 BL

AL


B0 AR

BR


−

 AR

BR

 e−2κ

... AR

BR

 e−(α−2)κ



= 0.

(3.1.14)
We have the same bulk equations as for the infinite chain with the soliton (2.2.2) and
therefore, the same dispersion relation

E2 = t21 + t22 − 2t1t2 cosh 2κ. (3.1.15)

We define φ as follows

−|E|e2φ ≡ (t1 − t2e
2κ), (3.1.16)

which is valid for t1 < t2, but, once again, yields the same solutions as the other possible
definition. From (3.1.16), we find that AR and BR which satisfy (2.2.2) are given by AR

BR

 =

 −eφ

±e−φ

 . (3.1.17)
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We have the same ansatz as for the infinite chain with complex k (2.2.6), but, since we have
different expressions for A and B, the wave function takes the form

|ψR±⟩ =
β∑

m=0
(−1)m

{
−

(
C+e

φe−2mκ + C−e
−φe2mκ

)
|2m+ 1⟩

±
(
C+e

−φe−2mκ + C−e
φe2mκ

)
|2m+ 2⟩

}
,

|ψL±⟩ =
β∑

m=0
(−1)m

{
−

(
D+e

φe−2mκ +D−e
−φe2mκ

)
| − (2m+ 1)⟩

±
(
D+e

−φe−2mκ +D−e
φe2mκ

)
| − (2m+ 2)⟩

}
,

(3.1.18)

where C± and D± are constants to be determined. The three central boundary equations
(2.2.9) become

±t1(D+e
−φ +D−e

φ) + E(D+e
φ +D−e

−φ) + t2B0 = 0,

−t2(D+e
φ +D−e

−φ) − EB0 − t2(C+e
φ + C−e

−φ) = 0

t2B0 + E(C+e
φ + C−e

−φ) ± t1(C+e
−φ + C−e

φ) = 0.

(3.1.19)

From the left and right edges of the chain, we also have the two following conditions

∓E(D+e
−φe−(α−2)κ +D−e

φe(α−2)κ) − t1(D+e
φe−(α−2)κ +D−e

−φe(α−2)κ) = 0,

−t1(C+e
φe−(α−2)κ + C−e

−φe(α−2)κ) ∓ E(C+e
−φe−(α−2)κ + C−e

φe(α−2)κ) = 0.
(3.1.20)

Even Solutions

The conditions for even solutions C± = D± and B0 = 1 lead to three nontrivial boundary
equations given by

−2t2(C+e
φ + C−e

−φ) = E

C+(±t1e−φ + Eeφ) + C−(±t1eφ + Ee−φ) = −t2,

C+(−t1eφ ∓ Ee−φ)e−(α−2)κ) + C−(−t1e−φ ∓ Eeφ)e(α−2)κ) = 0.

(3.1.21)

With the definition (3.1.16), we find the relation

−t1e∓φ ∓ Ee±φ = −t2e∓φe±2κ, (3.1.22)

which enables us to simplify the second and third equations of (3.1.21) to get the form

C+e
−φe2κ + C−e

φe−2κ = ∓1

C+e
φe−ακ + C−e

−φeακ = 0,
(3.1.23)
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which we put in matrix form e−φe2κ eφe−2κ

eφe−ακ e−φeακ


 C+

C−

 =

 ∓1
0

 . (3.1.24)

We find the determinant of this matrix to be −2/|E|(t1shα+2 + t2shα). We invert the matrix
and solve for C±, which yields

 C+

C−

 = E

2(t1shα+2 + t2shα)

 e−φeακ

−eφe−ακ

 , (3.1.25)

which are substituted in (3.1.18) to find the following solution,

|ψeven⟩ = |0⟩ +
β∑

m=0

(−1)m

t1shα+2 − t2shα

{
Eshα−2m

[
|2m+ 1⟩ +| − (2m+ 1)⟩

]
+(t1sα−2m − t2sα−2m−2)

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]}
.

(3.1.26)

To find the equation that gives us the number of κ solutions for an even wave function, we
substitute (3.1.25) in the first boundary equation of (3.1.21), simplify, and get the following
transcendental equation

rshα+2 + 3shα = 0. (3.1.27)

We find that this equation has no solutions for all r. It may seem like time was wasted by
doing this computation, but there are two reasons for its importance. First of all, when we
count all of the wavenumber solutions of the system at the end of this chapter, we need to find
exactly 2α+1 = N solutions. This means that we need to make sure that every possibility of
a solution has been checked and accounted for. Secondly, and most importantly, the method
of calculation that we have used up to now can’t find the E = 0 solution of the system as
was discussed in section 2.2. Once again, the E = 0 solution is located in the band gap and
therefore has a complex wavenumber. Since the complex wavenumber dispersion relation for
the finite chain is the same as for the infinite chain, (2.2.3), the κ solution for E = 0 is also
the same, which is given by

κ = 1
2 arcosh [12(r + 1

r
)], (3.1.28)
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which has one real and positive κ solution. We will discuss the even parity of the zero-mode
in section 3.1.4. With solution (3.1.26), we set E = 0 to find the wave function of the
zero-mode

|ψE=0⟩ = |0⟩ +
β∑

m=0

(−1)m

t1shα+2 − t2shα

{
(t1shα−2m − t2shα−2m−2)

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]}
.

(3.1.29)

Odd Solutions

As we always do for odd solutions, we have C± = −D± and therefore B0 = 0. We have two
nontrivial boundary equations simplified using (3.1.22), which are

C+e
−φe2κ + C−e

φe−2κ = 0,

C+e
φe−ακ + C−e

−φeακ = 0.
(3.1.30)

The first equation is used to find the ratio of C+ and C−, which lets us write

C+ = −e−φeακ,

C− = eφe−ακ,
(3.1.31)

up to a normalization constant. We substitute these expressions in (3.1.18) to find the
following form of the solution

|ψodd⟩ =
β∑

m=0
(−1)m

{
(t1sh2m+2 − t2sh2m)

[
|2m+ 1⟩ −| − (2m+ 1)⟩

]
+Esh2m+2

[
|2m+ 2⟩ −| − (2m+ 2)⟩

]}
.

(3.1.32)

Finally, we substitute the expressions (3.1.31) in the second boundary equation of (3.1.30)
and find the following transcendental equation for κ

rshα+2 − shα = 0, (3.1.33)

which has 2 solutions for r < rc and no solutions for r > rc.
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3.1.3. Imaginary k Solutions

Considering the wavenumber to be imaginary k → iκ leads to the exponential ei2mk → e−2mκ.
Solutions with an imaginary wavenumber have energies outside the bands. The Schrödinger
equation in matrix form becomes



−E t1

t1 −E t2
. . . . . . . . .

t1 −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E t1
. . . . . . . . .

t2 −E t1

t1 −E





 BL

AL

 e−(α−2)κ

... BL

AL

 e−2κ

 BL

AL


B0 AR

BR

 AR

BR

 e−2κ

... AR

BR

 e−(α−2)κ



= 0.

(3.1.34)
The two coupled bulk equations are still the same as for the infinite chain with a soliton,
(2.3.2), and thus the dispersion relation is also the same. Again, we use the definition for
φ (2.3.4) which yields the same form of the wave function as for the infinite chain case but
with a finite upper bound β

|ψR±⟩ =
β∑

m=0

{(
C+e

φe−2mκ + C−e
−φe2mκ

)
|2m+ 1⟩

±
(
C+e

−φe−2mκ + C−e
φe2mκ

)
|2m+ 2⟩

}
,

|ψL±⟩ =
β∑

m=0

{(
D+e

φe−2mκ +D−e
−φe2mκ

)
| − (2m+ 1)⟩

±
(
D+e

−φe−2mκ +D−e
φe2mκ

)
| − (2m+ 2)⟩

}
.

(3.1.35)
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We have five boundary equations to consider; the three central conditions (2.3.9) and the
two equations from the edges of the chain, given by

∓E(D+e
−φe−(α−2)κ +D−e

φe(α−2)κ) + t1(D+e
φe−(α−2)κ +D−e

−φe(α−2)κ) = 0,

t1(C+e
φe−(α−2)κ + C−e

−φe(α−2)κ) ∓ E(C+e
−φe−(α−2)κ + C−e

φe(α−2)κ) = 0.
(3.1.36)

Even Solutions

From imposing C± = D± and choosingB0 = 1, we get the following three nontrivial boundary
equations

2t2(C+e
φ + C−e

−φ) = E,

C+(±t1e−φ − Eeφ) + C−(±t1eφ − Ee−φ) = −t2,

C+(t1eφ ∓ Ee−φ)e−(α−2)κ + C−(t1e−φ ∓ Eeφ)e(α−2)κ = 0,

(3.1.37)

of which we simplify the second and third lines using (2.3.4) to get

C+e
−φe2κ + C−e

φe−2κ = ±1,

C+e
φe−ακ + C−e

−φeακ = 0.
(3.1.38)

We write these two in matrix form and find its determinant to be −2/|E|(t1shα+2 + t2shα).
We invert the matrix and solve for C±, which yields C+

C−

 = E

2(t1shα+2 + t2shα)

 e−φeακ

−eφe−ακ

 . (3.1.39)

We use these expressions in (2.3.7) and simplify to find the final form of the solution

|ψeven⟩ = |0⟩ +
β∑

m=0

1
t1shα+2 + t2shα

{
Eshα−2m

[
|2m+ 1⟩ +| − (2m+ 1)⟩

]
+(t1shα−2m + t2shα−2m−2)

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]}
.

(3.1.40)

All we have left to do is find the equation that will provide us with the number of κ solutions.
We substitute (3.1.39) in the first boundary equation in (3.1.37) and find the relation

rshα+2 − shα = 0, (3.1.41)

which has 2 solutions for r < rc and no solutions for r > rc.
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Odd Solutions

As per usual, we have C± = −D± which leads to B0 = 0. We then have two nontrivial
boundary equations given by

C+e
−φe2κ + C−e

φe−2κ = 0,

C+e
φe−ακ + C−e

−φeακ = 0,
(3.1.42)

of which we use the first equation to solve for the constants to get

C+ = −eφe−2κ,

C− = e−φe2κ,
(3.1.43)

up to a normalization constant. Using these expressions in the second equation of (3.1.42),
we find the transcendental equation

rshα+2 + shα = 0, (3.1.44)

which has no solutions for all r.
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3.1.4. Discussion of States and the Energy Spectrum

We start by summarizing the number of solutions obtained graphically, as was done for a
regular SSH chain, from all the transcendental equations found in the previous sections.

r < rc r > rc

Even Solutions Real k rsα+2 − sα = 0 α− 2 α

Complex k rshα+2 + 3shα = 0 0 0
k = 1

2 arccos
(

− 1
2

(
r + 1

r

))
1 1

Imaginary k rshα+2 − shα = 0 2 0

Odd Solutions Real k rsα+2 + sα = 0 α− 2 α

Complex k rshα+2 − shα = 0 2 0

Imaginary k rshα+2 + shα = 0 0 0

Total 2α + 1 2α + 1

Tableau 3.1. Summary of the number of solutions for the wavenumber k for the ϕ12

configuration

Real k

The solutions with real wavenumber k correspond to bulk states; oscillatory solutions that
are expected in periodic materials as is shown in Fig. 3.2. Depending on the value of r, there
can be from (2α − 4 = N − 5) to (2α = N − 1) of these states as will be discussed in the
next section.

70



Fig. 3.2. In the Φ12 configuration, a pair of bulk states for a system of length N = 21. In
blue, a symmetric state about the soliton and in orange, an antisymmetric state.

The Energy Spectrum

Before looking at the more interesting states we have found, let’s discuss the energy spec-
trum as it will inform our future analysis. As was done for the regular SSH chain, we find
the k solutions using the various transcendental equations, feed them to the corresponding
dispersion relation and take the positive and negative root of the energy. Fig. 3.3. shows
the energy spectrum of the Φ12 configuration as a function of parameter σ where we have
defined σ = t1 and 1 − σ = t2 such that t1 + t2 = 1.
For the regime where r < rc, we have (2α − 4 = N − 5) bulk energy solutions. There
is one solution with exactly E = 0 corresponding to the even solution with complex k.
Additionally, we have two energy solutions that are near zero, which we call edge states and
correspond to the two complex k odd solutions. Finally, we have two high-energy solutions
which are associated with the imaginary k even solutions. For the regime where r > rc,
the high-energy and the near-zero-energy solutions transition to bulk states such that we
indeed have (2α = N − 1) bulk energy solutions. The zero-energy mode stays and is still
a complex k even solution. This differs from the regular SSH chain, which only has a pair
of near-zero-energy edge states for a chain with even N and a single zero energy state for
odd N ; we have all three states in this system. Moreover, we have high-energy states, which
are not present for the regular SSH chain, but were present in the infinite SSH chain with a
soliton. Let’s take a look at the limiting cases (t1 = 0, t2 = 1) or r = 0 and (t1 = 1, t2 = 0)

71



r < rc r > rc

0.2 0.4 0.6 0.8 1.0
σ

-1.5

-1.0

-0.5

0.5

1.0

1.5

E
Energy Spectrum (N=25)

Fig. 3.3. Energy spectrum as a function of parameter σ for a finite SSH chain with a central
soliton in the Φ12 configuration. We make the parametrization choice t1 = σ and t2 = 1 − σ

such that t1 + t2 = 1 and σ takes values from zero to one. Highlighted in red are the high-
energy solutions (imaginary k), in purple is the zero-energy midgap state (complex k), in
blue are the edge states (complex k) and in orange are the bulk state (real k).

or r → ∞ to intuitively understand the energy spectrum shown in Fig. 3.3. When r = 0,
the chain has a central trimer, a series of dimers on both sides of this trimer and the edges
of the chain become monomers as shown in Fig. 3.4(a). The Hamiltonian (3.1.1) becomes

HΦ12 → Hmonomer

α−2
2⊕

i=1
Hdimer,i

⊕
Htrimer

α−2
2⊕

i=1
Hdimer,i

⊕
Hmonomer (3.1.45)

where the monomer’s and dimer’s Hamiltonians are given by (1.1.28) and the trimer’s Ha-
miltonian, by (2.4.2).
The trimer structure has three energy solutions: ±

√
2 and 0. The dimers each have eige-

nenergies ±1 and there are two monomers with zero-energy solutions. Let the number of
dimers on each side of the central trimer be D = α−2

2 . There is therefore a number 4D of
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Fig. 3.4. SSH chain in the Φ12 configuration with N = 13 where, in (a), we have imposed
(t1 = 0, t2 = 1): the system breaks up into a central trimer, a series of dimers (D) and a
monomer at each edge. In (b), we have imposed (t1 = 1, t2 = 0): the system breaks up into
a central monomer and a series of dimers (D′ = D + 1).

energy solutions from the dimers in the chain. If we add up the solutions from the trimer
and the monomers, we have a total of (4D + 5 = 2α + 1 = N) energy solutions for the
complete chain, as expected. By looking at the r = 0 (σ = 0) end of the energy spectrum in
Fig. 3.3, we indeed see the aforementioned behaviour.
Now, we consider the limiting case (t1 = 1, t2 = 0); the chain has a central monomer and
the rest of the chain breaks into dimers as shown in Fig. 3.4(b). The Hamiltonian (3.1.1)
reduces to

HΦ12 →
α
2⊕

i=1
Hdimer,i

⊕
Hmonomer

α
2⊕

i=1
Hdimer,i (3.1.46)

where the monomer’s and dimer’s Hamiltonians are given by (1.1.28). Once again, the central
monomer only has eigenenergy E = 0 and the dimers each have solutions of energy ±1. On
each side of the central site, there are (D′ = D + 1 = α−2

2 + 1) dimers since there is one
more dimer per side in this case than there are in the previous limiting case. We therefore
have 4(D + 1) energy solutions from the dimers and one solution from the monomer. In
total, we have (4D + 5 = N) solutions, as we should. This is indeed the behaviour when
r → ∞ (σ = 1) as shown in Fig. 3.3; there is one zero energy state and all remaining energies
correspond to bulk states.
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Complex k

First, we discuss the zero-energy midgap state highlighted in purple in Fig. 3.3 and shown
in Fig. 3.5.

10 20 30 40
n

-0.4

-0.2

0.2

0.4

0.6

|ψn>

Midgap State N=45 (r>rc)

10 20 30 40
n

-0.4

-0.2

0.2

0.4

|ψn>

Midgap State N=45 (r<rc)

Fig. 3.5. In the Φ12 configuration, zero-energy midgap states for r > rc (r < rc) on the left
(right). Both states are symmetric about the central site.

The midgap state exists for all values of r, similarly to the odd SSH chain. For r < rc, the
state is localized at both ends of the chain while, for r > rc, it is localized at the soliton.
Both states are symmetric with respect to the central site. We can understand this behaviour
by considering the limiting cases r = 0 and r → ∞. We start with the limit r → ∞ as it
will inform our discussion of the other case. As shown in Fig. 3.4(b) and as discussed in
the previous section, only the central monomer has a zero-energy solution. Therefore, when
r > rc, the zero-energy state will be localized at the central site and will exponentially
fall off on each side of the soliton as tunneling between sites is allowed. Additionally, a
monomer’s E = 0 eigenstate is symmetric; this parity carries through when r > rc, which
is what we observe in Fig. 3.5. When r < rc, the zero-energy midgap state is still present
and stays even unlike the zero-mode of the infinite SSH chain with a soliton. We look at
the opposite limiting case for which r = 0. The zero-energy solution is triply degenerate;
there are therefore three corresponding states. The central trimer’s zero-energy eigenstate
is antisymmetric and there are zero-modes localized on the first and last sites of which we
can choose even or odd combinations. Therefore, we can construct one symmetric state
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with both monomers’ eigenstates and two antisymmetric states with a superposition of all
three wave functions. The even wave function is localized at both ends of the chain and,
we expect that when we let r < rc, it will exponentially die off towards the centre of the
chain. This corresponds to the midgap state we observe in Fig. 3.5. The two other possible
states for r = 0 are antisymmetric and purely localized at the soliton and at both edges; this
description is very similar to the edge states as represented in Fig. 3.6.

10 20 30 40
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Edge State N=45 (r<rc)
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Edge State N=45 (r<rc)

Fig. 3.6. In the Φ12 configuration, near-zero-energy edge states for N = 45. These edge
states correspond to energies E/t2 = ±0.0007.

As always, when we let r increase towards rc, the states are not purely localized at any site
anymore as this allows for tunneling through the rest of the chain. For r > rc, these edge
states become delocalized oscillatory bulk states.
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Imaginary k

Lastly, we have high-energy states localized at the interface which only exist for r < rc and
transition to bulk states for r > rc as highlighted in red in the spectrum shown in Fig. 3.3.
The positive energy state is strictly positive while the negative energy state is oscillatory as
shown in Fig. 3.7.
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Fig. 3.7. In the Φ12 configuration, high-energy modes localized at the interface, which only
exist in the regime r < rc. This pair of symmetric states about the soliton has energies
E/t2 = ±1.581, with positive (negative) energy on the right (left).

Looking at the chain’s form when r = 0, the high-energy states are only supported by the
central trimer and are symmetric. Therefore, as r < rc, we expect even wave functions that
are localized at the soliton and that exponentially die off on both sides, which is what we
see in Fig. 3.7. As the central trimer only exists in the r < rc regime, it is expected that
these high-energy states delocalize throughout the bulk for r > rc.
The Φ12 configuration was studied in the context of a spin chain in [8], which is related to the
SSH model through the Jordan-Wigner transformation [28]. Results are in good agreement
with the authors’ findings of a single localized zero-energy state for r > rc as well as 5
localized states for r < rc. However, there is a discrepancy with their observation of a triply-
degenerate zero-energy state for r < rc. This may be due to the choice of parameters in their
study as our near-zero-energy edge states quickly tend to zero with large N and small r as
shown in Fig. 3.3.
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3.2. Φ22 Configuration
This configuration of the finite chain with a central soliton has t2 at its edges and as the
repeated hopping parameter. The system consists of two finite SSH chains with an odd
number of sites α connected by a central interface site. The total length of the chain can
take up values N = 4n+ 3 with n = 1, 2, 3, . . . As usual, a unit cell consists of a pair of sites
(A,B) labeled by the m index. We run this index from zero to α−1

2 to get the total number
of unit cells η.

Fig. 3.8. Finite SSH chain with N = 11, repeated hopping parameters t2 at the centre to
make up the soliton and at its edges (Φ22 configuration). The central site is labeled by i = 0.
The sites on the right chain segment are labeled by i = (1, 2, 3, . . . , α) while the sites on the
left are labeled by i = (-1, -2, -3, . . . ,−α)). In this case, α = 5 and the total number of unit
cells on each chain segment is 3; in this case, the sum over m would run from 0 to η = 2 and
we impose that the amplitude of the B site of the last unit cell be 0.
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3.2.1. Real k Solutions

We consider electronic solutions with a real-valued wavenumber k which have energies within
the bands. We start by writing the Schrödinger equation in matrix form as



−E t2

t2 −E t1
. . . . . . . . .

t1 −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E t1
. . . . . . . . .

t1 −E t2

t2 −E





AL e
i(α−1)kL BL

AL

 ei(α−3)k

... BL

AL

 ei2k

 BL

AL


B0 AR

BR

 AR

BR

 ei2k

... AR

BR

 ei(α−3)k

AR e
i(α−1)kR



= 0,

(3.2.1)
where each side of the chain’s last site’s wave function carries a factor ei2mk = ei(α−1)k as the
last unit cell index is m = η = α−1

2 . The general form of the wave functions differs from the
infinite chain’s (2.1.5) only by the sum’s upper bound: we immediately write in in terms of
C± and D± as
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|ψR±⟩ =
η= α−1

2∑
m=0

{(
C+e

−iφei2mk + C−e
iφe−i2mk

)
|2m+ 1⟩

±
(
C+e

iφei2mk + C−e
−iφe−i2mk

)
|2m+ 2⟩

},

|ψL±⟩ =
η= α−1

2∑
m=0

{(
D+e

−iφei2mk +D−e
iφe−i2mk

)
| − (2m+ 1)⟩

±
(
D+e

iφei2mk +D−e
−iφe−i2mk

)
| − (2m+ 2)⟩

}
,

(3.2.2)

where we impose that the site |2η + 2⟩ = |α + 1⟩ amplitude’s be zero as the chain ends on
an A sublattice site (as opposed to the usual B sublattice site). There are five boundary
conditions to consider: three from the juncture of the chains (2.1.6) and two from the chain’s
edges

−E(D+e
−iφei(α−1)k +D−e

iφe−i(α−1)k) ± t2(D+e
iφei(α−3)k +D−e

−iφe−i(α−3)k) = 0,

±t2(C+e
iφei(α−3)k + C−e

−iφe−i(α−3)k) − E(C+e
−iφei(α−1)k + C−e

iφe−i(α−1)k) = 0.
(3.2.3)

Even Solutions

Even solutions to the Schrödinger equation have C± = D± and thus we can make the
normalization choice B0 = 1. We make these substitutions in the five boundary equations
(2.1.6), (3.2.3) to get the following three nontrivial conditions

2t2(C+e
−iφ + C−e

iφ) = E,

C+(±t1eiφ − Ee−iφ) + C−(±t1e−iφ − Eeiφ) = −t2,

C+(−Ee−iφ ± t2e
iφe−i2k)ei(α−1)k + C−(−Eeiφ ± t2e

−iφei2k)e−i(α−1)k = 0.

(3.2.4)

of which we can simplify the second and third equations using (2.1.10) to get

C+e
iφe−i2k + C−e

−iφei2k = ±1

C+e
iφei(α−1)k + C−e

−iφe−i(α−1)k = 0.
(3.2.5)

To solve for C±, we rewrite these in matrix form eiφei(α−1)k e−iφe−i(α−1)k

eiφe−i2k e−iφei2k


 C+

C−

 =

 0
±1

 . (3.2.6)
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The matrix has determinant 2isα+1. We invert this matrix and solve for C±, yielding

 C+

C−

 = 1
2isα+1

 ∓e−iφe−i(α−1)k

±eiφei(α−1)k

 . (3.2.7)

We substitute these expressions in (3.2.2) and simplify to find the final form of the wave
function, given by

|ψeven⟩ = |0⟩ +
η∑

m=0

1
sα+1

{
(t1sα−1−2m + t2sα+1−2m)

[
|2m+ 1⟩ +| − (2m+ 1)⟩

]
+Esα−1−2m

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]}
.

(3.2.8)

We find the transcendental k equation by taking the expressions for C± (3.2.7) and substitu-
ting them in the boundary equation that links the 3 central sites of the chain (3.2.4). After
simplifying, this yields

sα−1 − sα+3 +
(1
r

− r
)
sα+1 = 0, (3.2.9)

which has α− 1 solutions for all values of r.

Odd Solutions

Odd solutions must have C± = −D± and therefore B0 = 0. When imposing these conditions,
we obtain two nontrivial boundary equations

C+(±t1eiφ − Ee−iφ) + C−(±t1e−iφ − Eeiφ) = 0,

C+(±t2eiφe−i2k − Ee−iφ)ei(α−1)k + C−(±t2e−iφei2k − Eeiφ)e−i(α−1)k = 0,
(3.2.10)

which we simplify using relation (2.1.10) to get

C+e
iφe−i2k + C−e

−iφei2k = 0,

C+e
iφei(α−1)k + C−e

−iφe−i(α−1)k = 0.
(3.2.11)
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We use the first equation to solve for the ratio of C+ and C−, which yields

C+ = e−iφei2k,

C− = −eiφe−i2k,
(3.2.12)

up to a normalization constant. We use these expressions to rewrite the wave function
(3.2.2), which results in the following final form of the solution

|ψodd⟩ =
η∑

m=0

{
(t1s2m+2 + t2s2m)

[
|2m+ 1⟩ −| − (2m+ 1)⟩

]
+Es2m+2

[
|2m+ 2⟩ −| − (2m+ 2)⟩

]}
.

(3.2.13)

Substituting the expressions (3.2.12) in the second boundary equation of (3.2.11), and sim-
plifying, we find the following transcendental equation

sα+1 = 0, (3.2.14)

which has α− 1 solutions for all values of r.
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3.2.2. Complex k Solutions

We now take the wavenumber to be complex with the form k → π
2 + iκ, for which the

exponential factor now becomes ei2mk → (−1)me−2mκ. Solutions with a complex wavenumber
have energies in the band gap. The Schrödinger equation in matrix form is given by



−E t2

t2 −E t1
. . . . . . . . .

t1 −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E t1
. . . . . . . . .

t1 −E t2

t2 −E





AL e
−(α−1)κ

−

 BL

AL

 e−(α−3)κ

...

−

 BL

AL

 e−2κ

 BL

AL


B0 AR

BR


−

 AR

BR

 e−2κ

...

−

 AR

BR

 e−(α−3)κ

AR e
−(α−1)κ



= 0,

(3.2.15)
where the last unit cell has factor (−1)me−2mκ → (−1)ηe−2ηκ = e−2( (α−1)

2 )κ = e−(α−1)κ since η
is an even number. Similarly the second to last unit cell has index m → η − 1, which yields
the exponential factor −e−(α−3)κ. We have the same bulk equations as for the infinite chain
with the central soliton (2.2.2) and therefore, the same dispersion relation (2.2.3). As it has
been discussed in previous sections, there are two possible definitions for φ, which yield the
same solution; we use the definition used in the Φ12 configuration (3.1.16) and therefore the
values of A and B given by (3.1.17). The general form of the wave function only differs from
(3.1.18) by the upper bound on the sum, such that the wave function takes the following
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form
|ψR±⟩ =

η∑
m=0

(−1)m
{
−

(
C+e

φe−2mκ + C−e
−φe2mκ

)
|2m+ 1⟩

±
(
C+e

−φe−2mκ + C−e
φe2mκ

)
|2m+ 2⟩

}
,

|ψL±⟩ =
η∑

m=0
(−1)m

{
−

(
D+e

φe−2mκ +D−e
−φe2mκ

)
| − (2m+ 1)⟩

±
(
D+e

−φe−2mκ +D−e
φe2mκ

)
| − (2m+ 2)⟩

}
,

(3.2.16)

where the values of constants C± and D± will differ depending on the parity of the solutions.
In addition to the three boundary equations from the bulk (2.1.6), we have two conditions
that account for the left and right edges of the chain

E(D+e
φe−(α−1)κ +D−e

−φe(α−1)κ) ∓ t2(D+e
−φe−(α−3)κ +D−e

φe(α−3)κ) = 0,

∓t2(C+e
−φe−(α−3)κ + C−e

φe(α−3)κ) + E(C+e
φe−(α−1)κ + C−e

−φe(α−1)κ) = 0.
(3.2.17)

Even Solutions

For even solutions, C± = D± and we set B0 = 1. These conditions yield three nontrivial
boundary equations given by

−2t2(C+e
φ + C−e

−φ) = E,

C+(±t1e−φ + Eeφ) + C−(±t1eφ + Ee−φ) = −t2,

C+(Eeφ ∓ t2e
−φe2κ)e−(α−1)κ + C−(Ee−φ ∓ t2e

φe−2κ)e(α−1)κ = 0,

(3.2.18)

of which we simplify the second and third equations using (3.1.22) to get

C+e
−φe2κ + C−e

φe−2κ = ∓1,

C+e
−φe−(α−1)κ + C−e

φe(α−1)κ = 0.
(3.2.19)

We express these in matrix form as e−φe−(α−1)κ eφe(α−1)κ

e−φe2κ eφe−2κ


 C+

C−

 =

 0
∓1

 . (3.2.20)

The matrix has determinant −2shα+1. We invert this matrix and solve for C±, which yields C+

C−

 = ∓1
2shα+1

 eφe(α−1)κ

−e−φe−(α−1)κ

 . (3.2.21)

We substitute these expressions for C± in (3.2.16) to obtain the final form of the wave
function, which is given by
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|ψeven⟩ = E|0⟩ +
η∑

m=0

(−1)m

shα+1

{
(t2shα+1−2m − t1shα−1−2m)

[
|2m+ 1⟩ +| − (2m+ 1)⟩

]
−Eshα−1−2m

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]}
.

(3.2.22)

We now find the transcendental κ equation. We use the expressions for C± (3.2.21) in the
first boundary equation of (3.2.18) to find

shα+3 − shα−1 +
(1
r

− r
)
shα+1 = 0, (3.2.23)

which has no solutions for r < 1 and two solutions for r > 1.

Odd Solutions

For antisymmetric solutions, we have C± = −D± which leads to the constraint B0 = 0.
These two conditions give us the two following nontrivial boundary equations

C+(±t1e−φ + Eeφ) + C−(±t1eφ + Ee−φ) = 0,

C+(Eeφ ∓ t2e
−φe2κ)e−(α−1)κ + C−(Ee−φ ∓ t2e

φe−2κ)e(α−1)κ = 0,
(3.2.24)

which are simplified using relation (3.1.22) to get the form

C+e
−φe2κ + C−e

φe−2κ = 0,

C+e
−φe−(α−1)κ + C−e

φe(α−1)κ = 0.
(3.2.25)

We use the second equation to solve for the ratio of C± and get

C+ = −eφe(α−1)κ,

C− = e−φe−(α−1)κ,
(3.2.26)

up to a normalization constant. These are substituted in (3.2.16) to find the final form of
the wave function, which is given by

|ψodd⟩ =
η∑

m=0
(−1)m

{
(t1shα−1−2m − t2shα+1−2m)

[
|2m+ 1⟩ −| − (2m+ 1)⟩

]
+shα−1−2m

[
|2m+ 2⟩ −| − (2m+ 2)⟩

]}
.

(3.2.27)
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We substitute the expressions for C± (3.2.26) in the first boundary equation in (3.2.25) to
get the transcendental κ equation

shα+1 = 0, (3.2.28)

which has no solutions for all values of r. However, as discussed in section (2.2), this does
not include the E = 0 solution. Since the dispersion relation is the same as for the Φ12

configuration, the κ solution for the zero-mode is also the same, given by (2.2.21). We will
discuss the odd parity of the zero-energy solution in section (3.2.4).To find the form of the
wave function of the zero-mode, we impose E = 0 in (3.2.27) and get

|ψE=0⟩ =
η∑

m=0
(−1)m

{
(t1shα−1−2m − t2shα+1−2m)

[
|2m+ 1⟩ −| − (2m+ 1)⟩

]}
.

(3.2.29)
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3.2.3. Imaginary k Solutions

Considering solutions with an imaginary wavenumber k → iκ results in the exponential form
ei2mk → e−2mκ. Solutions with an imaginary wavenumber have energies outside the bands.
The Schrödinger equation in matrix form is given by



−E t2

t2 −E t1
. . . . . . . . .

t1 −E t2

t2 −E t1

t1 −E t2

t2 −E t2

t2 −E t1

t1 −E t2

t2 −E t1
. . . . . . . . .

t1 −E t2

t2 −E





AL e
−(α−1)κ BL

AL

 e−(α−3)κ

... BL

AL

 e−2κ

 BL

AL


B0 AR

BR

 AR

BR

 e−2κ

... AR

BR

 e−(α−3)κ

AR e
−(α−1)κ



= 0.

(3.2.30)
The bulk equations are the same as for the infinite chain with the soliton (2.3.2), hence the
dispersion relation is also identical. We also use the same definition for φ (2.3.4). All of
this makes for the same general form of the wave function in terms of constants C± and D±

except for the upper bound on the sum such that the wave function is now given by
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|ψR±⟩ =
η∑

m=0

{(
C+e

φe−2mκ + C−e
−φe2mκ

)
|2m+ 1⟩

±
(
C+e

−φe−2mκ + C−e
φe2mκ

)
|2m+ 2⟩

}
,

|ψL±⟩ =
η∑

m=0

{(
D+e

φe−2mκ +D−e
−φe2mκ

)
| − (2m+ 1)⟩

±
(
D+e

−φe−2mκ +D−e
φe2mκ

)
| − (2m+ 2)⟩

}
.

(3.2.31)

In addition to the three central boundary equations (2.3.9), we have two conditions which
account for the left and right edges of the chain, which are

−E(D+e
φe−(α−1)κ +D−e

−φe(α−1)κ) ± t2(D+e
−φe−(α−3)κ +D−e

φe(α−3)κ) = 0,

±t2(C+e
−φe−(α−3)κ + C−e

φe(α−3)κ) − E(C+e
φe−(α−1)κ + C−e

−φe(α−1)κ) = 0.
(3.2.32)

Even Solutions

As we know well by now, even solutions have C± = D± and we make the normalization
choice B0 = 1. With these constraints, we have three nontrivial boundary equations, given
by

2t2(C+e
φ + C−e

−φ) = E,

C+(−Eeφ ± t1e
−φ) + C−(−Ee−φ ± t1e

φ) = −t2,

C+(−Eeφ ± t2e
−φe2κ)e−(α−1)κ + C−(−Ee−φ ± t2e

φe−2κ)e(α−1)κ = 0,

(3.2.33)

of which we simplify the last two equations by using (2.3.4) to get

C+e
−φe2κ + C−e

φe−2κ = ±1,

C+e
−φe−(α−1)κ + C−e

φe(α−1)κ = 0.
(3.2.34)

We take these two equations and express them in matrix form and find the determinant to
be −2shα+1. We invert this matrix and solve for C±, which yields

 C+

C−

 = ∓1
2shα+1

 −eφe(α−1)κ

e−φe−(α−1)κ

 . (3.2.35)

We substitute these expressions in the wave function (3.2.31) to find its final form
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|ψeven⟩ = E|0⟩ +
η∑

m=0

1
shα+1

{
(t1shα−1−2m + t2shα+1−2m)

[
|2m+ 1⟩ +| − (2m+ 1)⟩

]
+Eshα−1−2m

[
|2m+ 2⟩ +| − (2m+ 2)⟩

]}
.

(3.2.36)

The final step in our computation is to find the transcendental κ equation. We use the
expressions for C± (3.2.35) in the first boundary equation in (3.2.33) and simplify to find

shα−1 − shα+3 +
(1
r

− r
)
shα+1 = 0, (3.2.37)

which has 2 solutions for r < 1 and no solutions for r > 1.

Odd Solutions

Odd solutions have C± = −D± which leads to the condition B0 = 0. From these two
constraints, we obtain the two following nontrivial boundary equations

C+(−Eeφ ± t1e
−φ) + C−(−Ee−φ ± t1e

φ) = 0,

C+(−Eeφ ± t2e
−φe2κ)e−(α−1)κ + C−(−Ee−φ ± t2e

φe−2κ)e(α−1)κ = 0,
(3.2.38)

which we can simplify by using relation (2.3.4) to get the form

C+e
−φe2κ + C−e

φe−2κ = 0,

C+e
−φe−(α−1)κ + C−e

φe(α−1)κ = 0.
(3.2.39)

We use the first equation to solve for the ratio of C± which enables us to write

C+ = −eφe−2κ,

C− = e−φe2κ,
(3.2.40)

up to a normalization constant. We substitute these expressions in the first boundary equa-
tion in (3.2.39) to find the transcendental equation

shα+1 = 0, (3.2.41)

which has no solutions for all values of r.
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3.2.4. Discussion of States and the Energy Spectrum

To the best of our knowledge, the Φ22 configuration’s localized states have not been reported
in the literature. We start by summarizing the number of solutions obtained numerically
from all the transcendental equations found in the previous sections.

r < 1 r > 1

Even Solutions Real k sα−1 + sα+3 +
(

1
r

− r
)
sα+1 = 0 α− 1 α− 1

Complex k shα+3 − shα−1 +
(

1
r

− r
)
shα+1 = 0 0 2

Imaginary k shα−1 − shα+3 +
(

1
r

− r
)
shα+1 = 0 2 0

Odd Solutions Real k sα+1 = 0 α− 1 α− 1

Complex k shα+1 = 0 0 0
k = 1

2 arccos
(

− 1
2

(
r + 1

r

))
1 1

Imaginary k shα+1 = 0 0 0

Total 2α + 1 2α + 1

Tableau 3.2. Summary of the number of solutions for the wavenumber k for the ϕ22

configuration

Real k

The solutions with real wavenumber k correspond to bulk states as shown in Fig. 3.9. There
are (2α− 2 = N − 3) of these states for all values of r.
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n
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0.3

|ψn>
Bulk States N=23

Even

Odd

Fig. 3.9. In the Φ22 configuration, a pair of bulk states for a system of length N = 23. In
blue, a symmetric state around the soliton and in orange, an antisymmetric state.

The Energy Spectrum

As we’ve done for the Φ12 configuration, let’s discuss the energy spectrum before moving on
to the more intriguing states. As was done for the regular SSH chain, we find the k solu-
tions using the various transcendental equations, feed them to the corresponding dispersion
relation and take the positive and negative root of the energy. Fig. 3.10 shows the energy
spectrum of the Φ22 configuration as a function of parameter σ where we have defined σ = t1

and 1−σ = t2 such that t1 + t2 = 1. We show the separation of the regimes where r < 1 and
r > 1 by a dotted line. For the regime where r < 1, we have (2α − 2 = N − 3) bulk energy
solutions. There is one solution with exactly E = 0 corresponding to the odd solution with
complex k. Additionally, we have two high-energy solutions which are associated with the
imaginary k even solutions.For the regime where r > 1, the high-energy solutions transition
to bulk states and two bulk energy solutions transition to near-zero-energy solutions (edge
states). This leaves us with (2α − 2 = N − 3) bulk solutions. The zero-energy mode stays
and is still a complex k even solution. Let’s take a look at the limiting cases (t1 = 0, t2 = 1)
or r = 0 and (t1 = 1, t2 = 0) or r → ∞ to intuitively understand the energy spectrum shown
in Fig. 3.10. When r = 0, the chain breaks into a central trimer and a series of dimers as
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shown in Fig. 3.11(a). The Hamiltonian (3.2.30) now takes the form

HΦ22 →
α−1

2⊕
i=1

Hdimer,i

⊕
Htrimer

α−1
2⊕

i=1
Hdimer,i (3.2.42)

where the dimer’s Hamiltonian is given by (1.1.28) and the trimer’s, by (2.4.2).

r < 1 r > 1

0.2 0.4 0.6 0.8 1.0
σ

-1.5

-1.0

-0.5

0.5

1.0

1.5

E
Energy Spectrum (N=23)

Fig. 3.10. Energy spectrum as a function of topological parameter r for a finite SSH chain
with a central soliton in the Φ22 configuration. Highlighted in red are the high-energy
solutions (imaginary k),in purple is the zero-energy midgap state (complex k), in blue are
the edge states (complex k) and in orange are the bulk state (real k).

The trimer structure has three energy solutions: one zero-energy and two high-energy solu-
tions, ±

√
2. The dimers each have eigenenergies ±1. Let the number of dimers on each side

of the central trimer be D = α−1
2 . There are therefore 4D energy solutions that come from

the dimers. If we add the solutions from the trimer, we have a total of (4D+3 = 2α+1 = N)
energy solutions for the total chain, as expected. By looking at the r = 0 (σ = 0) end of the
energy spectrum in Fig. 3.10, we see the aforementioned energy solutions. Now, we consider
the limiting case r → ∞; the chain has a central monomer, a series of dimers on each chain
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Fig. 3.11. SSH chain in the Φ22 configuration with N = 11 where we have imposed (t1 =
0, t2 = 1) in (a): the system breaks up into a central trimer and a series of dimers (D). In
(b), we have imposed (t1 = 1, t2 = 0): the system breaks up into a central monomer, a series
of dimers (D) and a monomer at each edge.

segment and a monomer at each edge as illustrated in Fig. 3.11(b). The Hamiltonian (3.2.30)
is now given by

HΦ22 → Hmonomer

α−1
2⊕

i=1
Hdimer,i

⊕
Hmonomer

α−1
2⊕

i=1
Hdimer,i

⊕
Hmonomer (3.2.43)

where the monomer’s and dimer’s Hamiltonians are given by (1.1.28). Once again, the three
monomers each have energy E = 0 and the dimers can each have, ±1. On each side of the
central site, there are D = α−1

2 dimers. We therefore have (4D + 3 = N) solutions, as we
should find. This is indeed the behaviour when r → ∞ (σ = 1); there is precisely one zero-
energy state that remains and two states that break away from the bulk to approach zero as
r → ∞ (σ → 1). All remaining energies must be bulk states as we observe in Fig. 3.10 at
σ = 1.

Complex k

We start by discussing the zero-energy midgap state highlighted in purple in Fig. 3.10 and
shown in Fig. 3.12.
The midgap state exists for all values of r, similarly to the odd SSH chain, but takes different
forms depending on which topological regime we’re in, as depicted in Fig. 3.12. For r > 1,
the wave function is localized at both edges of the chain while it is localized at the soliton
for r < 1. Both states are antisymmetric; the state has the same parity for all values of
r. We understand this behaviour by taking a look at the limiting cases where we let r = 0
and r → ∞. We start with the case where r = 0; as shown in Fig. 3.11(a), the chain
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Fig. 3.12. In the Φ22 configuration, zero-energy midgap states for r > 1 (r < 1) on the left
(right). Both states are antisymmetric about the central site.
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Fig. 3.13. In the Φ22 configuration, near-zero-energy edge states for N = 47. These edge
states correspond to energies E/t2 = ±0.009.

is broken up into a series of dimers on each side of a central trimer. This trimer is the
only structure in the chain that supports a zero-energy mode. Therefore, when r < 1, the
zero-energy state must be localized at the central defect and will exponentially die off on
both sides as there will be hybridization across the rest of the chain. Moreover, a trimer’s
zero-energy eigenstate is antisymmetric; the state must then be antisymmetric when r < 1
and this parity carries through when r > 1, which is what we observe in Fig. 3.12. When
r → ∞, the zero-energy state is three times degenerate as the chain has three monomers that
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each have one zero-energy solution. Thus, there are three corresponding states of the chain.
The monomers’ eigenstates are all symmetric. As we have just mentioned, the midgap state
stays antisymmetric; we can only build an antisymmetric state by using the edges’ monomers’
states. We get a state that is localized at both edges; one side being negative while the other
is positive. As we let r < 1, we expect this behaviour, but with some tunneling along the
chain, which is what we observe in Fig. 3.12. There are two symmetric states left which
are a combination of all three monomers’ eigenstates. This pair of solutions is localized at
both edges as well as at the soliton; they’re edge states. As we allow r < 1, we expect this
behaviour as well as some hybridization along the chain; this is what is depicted in Fig. 3.13.
As expected, the edge states only exist for r < 1 as they delocalize into the bulk for r > 1.

Imaginary k

Lastly, we have high-energy states that are identical to the Φ12 configuration’s states as
shown in Fig. 3.14. This is to be expected as, once again, the high-energy modes are only
supported by the central trimer which is solely present in the r < 1 regime.

n

-0.4

-0.2

0.2

0.4

|ψn>

Soliton State N=47 (r<1)

n

0.2

0.4

|ψn>

Soliton State N=47 (r<1)

Fig. 3.14. In the Φ22 configuration, high-energy modes localized at the interface, which only
exist in the regime r > 1. This pair of antisymmetric states about the soliton has energies
E/t2 = ±1.722. The state with positive (negative) energy is on the right (left).

These states delocalize into the bulk for r > 1 as shown in Fig. 3.10.
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Conclusion

Topological insulators and related materials are at the forefront of today’s condensed mat-
ter physics and quantum information research. Topological modes arising from defects are
promising platforms for quantum computing architectures and quantum devices [29, 30, 31,
32]. Additionally, protected topological states have encouraged a boost in the development
of photonics technology [33, 34, 35, 36, 37, 38]. In particular, solitonic modes are observed
to be robust excitations in the face of deformations and disorder [39].
We began this work by providing a review of the SSH model through the calculation and
discussion of the chain’s energy solutions and wave functions. We showed that the existence
of solutions with a complex wavenumber, which are localized modes called edge states, is
necessary in order to have a complete set of solutions. We intuitively understood the model’s
solutions by using limiting cases of the topological parameter r that break the chain’s edges
into dimers or monomers. In Chapter 2, we added a soliton to an infinite SSH chain and
derived all solutions to the Schrödinger equation, which included solutions with a real, com-
plex, and imaginary wavenumber. These computations provided us with the tools to tackle
the finite SSH model with a central soliton. We give a complete analysis of both possible
configurations of the chain Φ12 and Φ22. In the Φ12 configuration, there are N − 5 (r < 1) to
N − 1 (r > 1) bulk states. For r < 1, we have found one zero-energy state localized at the
chain’s boundaries, two edge states localized both at the boundaries and at the interface as
well as two high-energy solitonic modes. For r > 1, there is a zero-energy state localized at
the soliton. In the Φ22 configuration, there are N−3 bulk states for all values of r. For r < 1,
there exists one zero-energy state localized at the domain wall and there are two high-energy
solitonic modes. In the r > 1 regime, there is still a zero-energy mode, but it is localized
at the edges and there are two edge states localized at both the soliton and at the chain’s
physical edges. It is interesting to note that unlike the SSH model, the near-zero-energy



edge states are not only localized at the edges, but also at the soliton. We were able to
explain this behaviour by looking at the chain in the limiting cases when the topological
parameter r is zero or infinite; the central soliton either becomes a monomer or a trimer
and can support zero-energy modes. The high-energy modes localized at the soliton were
understood using the same reasoning. Our results for the Φ12 configuration were found to be
in good agreement with a SSH-analogous spin chain model [8] while the Φ22 configuration
doesn’t seem to have been reported in the literature. This completes the summary of the
work that was presented.
Let us conclude with the logical next step beyond this work. In [20], it was shown that a
qubit can serve as detector (probe) of topological edge states by studying its dynamics. In
the work we presented, the finite SSH chain with a soliton has topological states located at
the soliton. It would be interesting to extend the work in [20] and study the dynamics of a
qubit attached to the model we have analysed as well as a system modeling an environment.
The goal, of course, would not to simply probe the known characteristics of the localized
modes in these solvable models. Rather, the fact that the probe was shown in [20] to be
sensitive to the existence of localized states suggests its use in more complicated models to
find and characterize any such modes that may exist.
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