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ABSTRACT  26 

Background: The 3D printing technology allows to produce custom shapes and add functionalities 27 

to foot orthoses which offers better options for the treatment of flatfeet. This study aimed to assess 28 

the effect of 3D printed foot orthoses stiffness and/or a newly design posting on muscle activity, 29 

plantar pressures, and center of pressure displacement in individuals with flatfeet. 30 

Methods: Nineteen individuals with flatfeet took part in this study. Two pairs of foot orthoses with 31 

different stiffness were designed for each participant and 3D printed. In addition, the flexible foot 32 

orthoses could feature an innovative rearfoot posting. Muscle activity, plantar pressures, and center 33 

of pressure displacement were recorded during walking.  34 

Findings: Walking with foot orthoses did not alter muscle activity time histories. Regarding plantar 35 

pressures, the most notable changes were observed in the midfoot area, where peak pressures, mean 36 

pressures and contact area increased significantly during walking with foot orthoses. The latter was 37 

reinforced by increasing the stiffness. Concerning the center of pressure displacement, foot 38 

orthoses shifted the center of pressure forward and medially at early stance. At the end of the stance 39 

phase, a transition of the center of pressure in posterior direction was observed during the posting 40 

condition. No effect of stiffness was observed on center of pressure displacement. 41 

Interpretation: The foot orthoses stiffness and the addition of posting influenced plantar pressures 42 

during walking. The foot orthoses stiffness mainly altered the plantar pressures under the midfoot 43 

area. However, posting mainly acted on peak and mean pressures under the rearfoot area. 44 

Keywords: 3D printing, foot orthoses, plantar pressure, muscle activity, flatfoot 45 

  46 
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INTRODUCTION 47 

Flatfoot is defined as a foot deformity that appears or persists after skeletal maturity and is 48 

characterized by partial or complete loss of the medial longitudinal arch. The prevalence of flatfeet 49 

in the population can be as high as 20–25% (Dunn et al., 2004; Lee et al., 2005). Compared to 50 

people with neutral feet, individuals with flatfeet present an altered gait pattern. Thus, it is generally 51 

characterized by an excessive rearfoot eversion and a greater forefoot abduction, an increase in the 52 

inversion moment at the ankle, as well as an increase in plantar pressures at the medial midfoot 53 

area. Foot orthoses (FOs) are commonly prescribed for the treatment of flatfeet and the relief of 54 

the pain caused by this condition (Desmyttere et al., 2021). FOs, either custom-made or 55 

prefabricated, aim to improve postural stability and lower limb biomechanical parameters during 56 

gait such as kinematics, kinetics, electromyography (EMG), and plantar pressures (Banwell et al., 57 

2014; Murley et al., 2009; Redmond et al., 2006). In their meta-analysis, Cheung et al. (Cheung et 58 

al., 2011) found that customized FOs are more effective than prefabricated ones in controlling 59 

excessive pronation of the foot. However, most of the previous studies have used generic FOs with 60 

little adapted to the participants (Aminian et al., 2013; Jafarnezhadgero et al., 2018), thus limiting 61 

the application of published research in clinical practice. Moreover, to date only a few studies have 62 

investigated the effect of FOs on plantar pressure distribution and muscle activity during gait in 63 

individuals with flatfeet.  64 

Regarding plantar pressures, previous studies has provided some evidence that depending 65 

on FOs material properties (e.g., density, thickness and ability to adapt to foot contour), pressure 66 

distribution may be affected (Gerrard et al., 2020; Hodge et al., 1999; Telfer et al., 2013). It has 67 

been shown that softer materials can reduce peak pressures by increasing contact areas during 68 

walking (Gerrard et al., 2020). In a similar context, Telfer et al., (Telfer et al., 2013) reported a 69 

dose-response effect on plantar pressures when altering the degree of posting inclination. 70 

Specifically for flatfeet, FOs aim to compensate for the collapse of the medial longitudinal arch, 71 

reduce the forces during heel strike, distribute pressure during the stance phase and facilitate 72 

supination for a more efficient propulsion (Desmyttere et al., 2018). A better understanding of the 73 

effects of FOs on plantar pressures is essential to enable a targeted treatment specific to flatfeet 74 

biomechanics. 75 
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Similarly, lower limb muscle activity may also be affected by the wear of FOs. However, 76 

contradictory results can be observed in the literature, particularly for the tibialis anterior and the 77 

peroneus longus. According to previous studies, FOs can increase (Murley and Bird, 2006), 78 

decrease (Dedieu et al., 2013) or have no significant effect (Garbalosa et al., 2015; Telfer et al., 79 

2013) on muscle activity of the peroneus longus. Concerning the tibialis anterior, walking with 80 

FOs can increase the activation duration (Tomaro and Burdett, 1993) and the maximum amplitude 81 

(Murley and Bird, 2006), having no significant effect (Garbalosa et al., 2015), or decrease the 82 

amplitude (Moisan and Cantin, 2016) and the duration of activation (Dedieu et al., 2013). In 83 

individuals with flatfeet, Murley et al. (Murley et al., 2010) highlighted a reduction in the activation 84 

peak and the root mean square amplitude of the tibialis anterior during loading and conversely, an 85 

increase in the activation peak and the root mean square amplitude of peroneus longus between the 86 

middle to the end of the stance phase. Other studies assessed the impact of posting on muscle 87 

activity, but no significant difference was observed (Murley and Bird, 2006; Telfer et al., 2013). 88 

The authors explain the absence of change by the variability present in the response of participants 89 

to FOs. In general, several factors such as foot type and FOs designs and material properties might 90 

affect these measurements, hence FOs still require further investigation. 91 

Overall, due to the massive variety of FOs geometrical designs, materials and the 92 

heterogeneity of protocols that have been used, the current evidence about the effectiveness of FOs 93 

on flatfeet is still weak (Desmyttere et al., 2018). The mechanism of action of FOs to improve feet 94 

and lower limb function depends on several parameters such as FOs' geometrical design and 95 

material properties (Hajizadeh et al., 2020). To the best of our knowledge, no study has investigated 96 

the effect of customized FOs design by adjusting the stiffness, on muscle activity and plantar 97 

pressure in flatfeet individuals.  98 

The aim of the present study was then to evaluate the effect different levels of stiffness of 99 

3D printed FOs and the addition of an innovative anti-pronator component on muscle activity and 100 

plantar pressures in individuals with flexible flatfeet during gait. Our hypothesis was that a lower-101 

level 3D printed FOs stiffness and/or the addition of an innovative anti-pronator component would 102 

improve plantar pressure distribution without altering muscle activation patterns in individuals with 103 

flatfeet. 104 

  105 
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METHODS 106 

Participants 107 

Nineteen participants with flexible flatfeet (13 Females and 6 Males; age: 37.6±14.0 years; 108 

weight: 68.9±11.5 kg; height: 166.7±9.9 m) were included. The inclusion criteria were: (1) a 109 

pronated foot type as defined by the foot posture index (≥6) (Redmond et al., 2006), (2) an arch 110 

height flexibility >16 mm/kN (Zifchock et al., 2017), (3) no history of wearing FOs prior to this 111 

study, (4) no lower limb surgery or injury during the last three months, and (5) having normal 112 

lower-limb range of motions and no leg length discrepancy (<0.5 cm) (Burrows, 1966). The 113 

participants presented a foot posture index at 7.8±1.3 (range = 6 – 10) and an arch height flexibility 114 

equal to 25.6±7.3 mm/kN. All participants gave their written informed consent prior to data 115 

collection. This study was approved by the Research Ethics Board of University of Montréal (17–116 

145-CERES-D).  117 

Experimental procedure 118 

FOs used in this study were customized based on a 3D scan of each participant foot shape, 119 

obtained in semi-weight bearing using foot impression boxes while the feet were maintained in a 120 

neutral subtalar position by an experienced podiatrist. Detailed description of the FOs design is 121 

available in previous studies (Desmyttere et al., 2021, 2020). Briefly, FOs consisted of a plate of 122 

1.5 mm thickness superimposed to honeycombs cells whose height was adjusted as a function of 123 

participants’ body weight and arch height flexibility to reach two different stiffnesses. Each 124 

participant had a 2-weekperiod of familiarization to each FO (flexible and rigid), in a randomized 125 

order. After this month of familiarization, the participants were invited to the laboratory to evaluate 126 

the effect of the provided FOs on gait parameters. For each participant, the session started with a 127 

5-min of walking familiarization on a treadmill at a comfortable speed which was also useful to 128 

determine the speed for the following conditions. Participant were asked to walk as normal as 129 

possible in four conditions (control (CO), flexible FOs (F), flexible FOs with posting (P) and rigid 130 

FOs (R)). The FOs conditions order was randomized, except for the posting condition which was 131 

always performed at the end as the posting was glued on the flexible FOs (see Fig 1). The 132 

participants were blinded to the conditions. A 5-min rest period was provided between conditions 133 

to avoid any fatigue effects.  134 
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 135 
Fig 1: Medial view of a flexible FO without (A) and with (B) posting. Bottom view of a flexible 136 
FO with posting (C). 137 

Outcome measures 138 

During the experimentation, neutral running shoes (860 v8, New Balance, USA) were 139 

provided to the participants. Four EMG electrodes (Trigno™; Delsys Inc., Boston, MA) placed on 140 

the right leg to record the activity of following muscles: Tibialis Anterior (TA), Gastrocnemius 141 

Medialis (GM), Soleus (SOL) and Peroneus Longus (PL). Prior to electrode placement, the skin 142 

was shaved and cleaned with isopropyl alcohol pads to minimize the impedance between the skin 143 

and the electrode. Each electrode location was determined according to the SENIAM 144 

recommendations (Hermens et al., 2000). The sampling rate for EMG data was set to 2000 Hz. 145 

Moreover, we measured in-shoe plantar pressures as well as the center of pression (CoP) 146 

displacement using the Medilogic Flex-Sohle plantar pressure system (T&T Medilogic 147 

Medizintechnik GmbH, Germany) at 400 Hz. Plantar pressure insoles were placed between the foot 148 

and FO. Although each participant was asked to walk during 3-min in each FO condition, EMG 149 
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and plantar pressure data were recorded during the last 30-s of each trial to allow participants to 150 

familiarize to each condition. 151 

Data processing 152 

EMG data 153 

Data were analyzed using customized Matlab scripts (Matlab R2021a, The Mathworks, 154 

MA). All filters mentioned thereafter are zero-lag 4th-order Butterworth filters. Raw EMGs were 155 

band-pass filtered between 10 and 400 Hz. Thereafter, filtered EMG signals were full-wave 156 

rectified and envelopes were obtained using a low-pass filter with a cut-off frequency of 9 Hz. 157 

Then, the resulting envelopes were normalized by the peak amplitude of the average EMG profile 158 

during walking.  159 

Plantar pressure insoles data 160 

For plantar pressure analysis, the foot contact area was divided into seven regions (i.e., 161 

medial, and lateral rearfoot, medial and lateral midfoot, and medial, central, and lateral forefoot). 162 

The gait events (heel strike and toe off) were detected based on a 10% force threshold (Catalfamo 163 

et al., 2008). Peak pressure (N/cm2), mean pressure (N/cm2) and contact area (cm2) were extracted 164 

during the stance phase for forefoot, midfoot, rearfoot regions (see Fig 2). All data were normalized 165 

from 0 to 100% of the stance phase. 166 
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 167 

Fig 2. Representation of the foot contact areas. 168 
 169 

Statistical analysis 170 

One-way ANOVAs using Statistical non-Parametric Mapping (SnPM) (Pataky et al., 2015) 171 

were used to assess the effect of FOs stiffness and posting on muscle activity and plantar pressures. 172 

In case of significance, post-hoc analysis was performed using paired t-tests. P-values were 173 

corrected were adjusted for multiple comparison using Holm-Bonferronni’s method (0.05/6 = 174 

0.008) and refined by effect sizes (Cohen’s d>0.4). Cohen's d effect sizes were computed over the 175 

entire stance phase per post-hoc comparison. If statistical differences were found, only the time 176 

periods with a Cohen's d exceeding 0.4 (moderate), for at least 10% of the stance phase, were 177 

considered relevant (Armijo-Olivo et al., 2011). When it occurred, the beginning and end of these 178 

time periods, and the mean difference (MD) throughout these periods was reported. SnPM analyses 179 

were implemented in Matlab R2021a using open-access SPM1D scripts (www.spm1d.org). For 180 

muscle activity, a zero-dimensional analysis (ANOVA) was also performed to assess the effect of 181 

FOs on the mean muscle activation during the stance phase.  182 
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RESULTS 183 

Effect of FOs on muscle activity 184 

Due to technical problems during data acquisition (e.g., battery and/or signal transmission), 185 

some sensors did not provide reliable signals during the tests. Only 17 to 18 out-of-19 participants 186 

– with four EMGs available – were included in this analysis (see Appendix S1). Averaged patterns 187 

of muscle activity are displayed in Fig 3. Overall, the ANOVAs (zero-dimensional analysis and 188 

SnPM) revealed no significant differences between conditions (control, flexible FO, posting, rigid 189 

FO) on muscle activation for all assessed muscles (see Appendix S2). 190 

 191 

Fig 3. EMG patterns for the tested conditions.CO: control, F: flexible FOs, P: flexible FOs with 192 
posting, R: rigid FOs. 193 

 194 

Effect of FOs on plantar pressures 195 

Concerning plantar pressure changes, ANOVAs indicated significant differences between 196 

conditions during the stance phase of walking. Post-hoc analysis results are presented in Figs 4, 5, 197 
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6 for the rearfoot, the midfoot and the forefoot areas, respectively. More details concerning plantar 198 

pressure statistical results are reported in Table S3 as supplementary material. 199 

For the rearfoot area (see Fig 4), a decrease in peak pressure was observed while walking 200 

with flexible or rigid FOs compared control condition under the medial side (MD = -29.9% – -201 

32.5%, respectively; change observed from 65% to 80% of the stance phase). A significant increase 202 

was also observed when walking with FOs compared to the control condition under the lateral side 203 

of rearfoot area (MD ranged from +32.0% to +85.0%). However, a significant increase was 204 

observed during the posting condition compared to the control condition in the medial 205 

(MD = +85.0% change observed from 80% to 100% of the stance phase) and lateral rearfoot areas 206 

(MD = +83.0%, change observed from 43% and 100% of the stance phase). The mean pressure 207 

decreased when wearing the FOs compared to the control condition (MD ranged from -19.1% to  208 

-37.8%) during the beginning of the stance phase, under the medial and lateral sides of the rearfoot. 209 

However, an increase in mean pressure was observed with the posting compared to control 210 

condition at the end of the stance phase (MD = 81.0%). Furthermore, an increase in mean pressure 211 

was observed when comparing the posting condition to the flexible and rigid FOs conditions during 212 

the second half of stance (MD ranged from +40.9% to +79.5%, respectively). Regarding the contact 213 

area under the rearfoot area, a decrease was observed when wearing the FOs compared to the 214 

control condition (MD ranged from -16.8% to 23.0%; changes observed from 40% to 80% of the 215 

stance phase). 216 
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 217 

Fig 4. Rearfoot peak, mean pressure as well as contact area of the medial and lateral sides. Top 218 
graph shows the mean of each condition with 95 % confidence interval cloud (control condition). 219 
In the bottom graph, bars indicate significant periods for which the SnPM {t} statistic exceeded 220 
the supra-critical threshold (P < 0.008). Colormap represents Cohen's d effect size. CO: control, F: 221 
flexible FOs, P: flexible FOs with posting, R: rigid FOs. 222 
  223 
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Concerning the midfoot area, the peak pressure increased when walking with FOs 224 

compared to control condition in both medial and lateral sides (Fig 5). A greater increase was 225 

observed when wearing the rigid FOs compared to flexible (MD ranged from +13.1% to +23.5%) 226 

and posting conditions (MD = +14.3%). Again, an increase was observed in mean pressure when 227 

wearing the FOs compared to the control condition (MD ranged from +227.1% and +345.0%), 228 

throughout the stance phases in both medial and lateral sides. The increase was yet again greater 229 

while wearing the rigid FOs compared to posting (MD = 20.7%) and flexible (MD = 34.4%) 230 

conditions. Under the lateral side, an increase was also observed during the FOs conditions 231 

compared to the control condition (MD ranged between +150.1% and 206.9%), at the end of the 232 

stance phase. The contact area also increased while wearing the FOs compared to the control 233 

condition, regarding the medial side of the midfoot area (MD ranged from +77.7% to +106.1%; 234 

changes observed during all the stance phase). A significant increase was observed when 235 

comparing contact area using rigid FO comparing to flexible (MD ranged from +11.7% and 236 

+19.1% and observed between 35%-45% and 40%-80% of stance phase, respectively) and posting 237 

condition (MD = +11.5%; changes observed from 40% to 60%). At the lateral side of the midfoot 238 

area, a significant increase at the end of the stance phase was observed during rigid condition 239 

(+87.4%) and posting condition (+77.5%) compared to control condition. 240 

 241 
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 242 
Fig 5. Midfoot peak, mean pressure, and contact area of the medial and lateral sides. Top graph 243 
shows the mean of each condition with 95 % confidence interval cloud (control condition). In the 244 
bottom graph, bars indicate significant periods for which the SnPM {t} statistic exceeded the supra-245 
critical threshold (P < 0.008). Colormap represents Cohen's d effect size. CO: control, F: flexible 246 
FOs, P: flexible FOs with posting, R: rigid FOs. 247 

 248 

249 
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Regarding the forefoot area (see Fig 6), no change was observed in terms of peak pressure 250 

under the medial side. However, a small decrease was found under the lateral side when walking 251 

with rigid or flexible FOs compared to the control condition (MD=-16.6% and -13.9%, 252 

respectively). In addition, a brief decrease was observed between posting condition and control 253 

condition under the forefoot central area (MD =-12.4%; changes observed from 39% to 58% of 254 

stance phase). For the mean pressure, a slight decrease was observed under the medial side of the 255 

midfoot, only when comparing the posting condition to the control condition (MD=-24.0%; 256 

changes observed from 33% to 70% of the stance phase). Under the central side, a decrease in mean 257 

pressure was detected during posting condition compared to control condition (MD=-16.7%; 258 

changes observed from 37% and 62% of the stance phase) and flexible FOs condition (MD=-259 

14.9%; changes observed from 46% to 56% of the stance phase). Under the lateral side of forefoot 260 

area, a little decrease was observed when walking with rigid FO vs control condition (MD=-21.8%; 261 

changes observed from 12% to 35% of the stance phase). In term of contact area, no significant 262 

change was found in the medial and central sides of the forefoot area. However, a small decrease 263 

was detected in the lateral side when comparing the rigid FO to the control condition between 0% 264 

and 20% of the stance phase (MD=-36.0%). 265 
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 266 
Fig 6. Forefoot peak, mean pressure as well as contact area of the medial, central, and lateral sides. 267 
Top graph shows the mean of each condition with 95 % confidence interval cloud (control 268 
condition). In the bottom graph, bars indicate significant periods for which the SnPM {t} statistic 269 
exceeded the supra-critical threshold (P < 0.008). Colormap represents Cohen's d effect size. CO: 270 
control, F: flexible FOs, P: flexible FOs with posting, R: rigid FOs. 271 
  272 
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Effect of FOs on center of pressure displacements  273 

The anteroposterior and mediolateral displacements of CoP are displayed in Fig 7. The CoP 274 

patterns in anteroposterior axis showed a difference between conditions. A forward shift has been 275 

observed during FOs conditions compared to the control condition (change observed from 0% to 276 

30% of the stance phase). At the end of the stance phase, a transition of the CoP in posterior 277 

directions has been observed during the posting condition compared to flexible FOs condition and 278 

control condition. Concerning the mediolateral axis, walking with the flexible or rigid FOs lead to 279 

a greater medial displacement of the COP compared to the control condition (change observed 280 

from 10% to 20% of the stance phase). Posting condition had no effect on CoP mediolateral 281 

displacement. 282 

 283 
Fig 7. Center of pression patterns in the anteroposterior and mediolateral axis. Top graph shows 284 
the mean of each condition with 95 % confidence interval cloud (control condition). In the bottom 285 
graph, bars indicate significant periods for which a P-value < 0.008. Colormap represents Cohen's 286 
d effect size. CO: control, F: flexible FOs, P: flexible FOs with posting, R: rigid FOs. 287 

 288 

  289 
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DISCUSSION 290 

The purpose of this study was to assess the effect of 3D printed FOs stiffness, as well as the 291 

addition of an anti-pronator component (i.e., posting) on lower limb muscle activity, plantar 292 

pressures, and CoP displacement in individuals with flatfeet. The main findings were that: 1) EMG 293 

activity was not altered by wearing FOs and/or the addition of posting, 2) plantar pressures were 294 

influenced by the FOs stiffness and the addition of posting, and 3) wearing FOs had little effect on 295 

CoP displacements during walking.  296 

Effect of FOs on muscle activity 297 

Contradictory results have been reported by previous studies concerning the effect of FOs 298 

on muscle activity. In the present study, no significant change was observed between the different 299 

conditions (three FOs conditions and one control condition) in terms of muscle activation profile 300 

and amplitude. Those results are in agreement with those reported by Garbalosa et al. (Garbalosa 301 

et al., 2015). On the other side, a muscle that was not tested in this study and may be affected by 302 

wearing FOs is tibialis posterior (Murley et al., 2010). This muscle acts as a stabilizer of the rearfoot 303 

and is particularly affected in the pronated foot type (Barn et al., 2013), however as it is a deep 304 

muscle, it cannot be assessed using surface EMG. Furthermore, the absence of changes could be 305 

due to the variability present in the response of participants to FOs. In a similar context, Murley & 306 

Bird (Murley and Bird, 2006) underlined that the effects of FOs on muscle activation can even be 307 

completely opposite between participants and conditions, which is consistent with the paradigm of 308 

the “preferred movement pathway” which assumes that the musculoskeletal system has preferential 309 

and optimal movement (Nigg et al., 2017, 1999), regardless of the type of movement. Finally, both 310 

zero-dimensional and SnPM analyses revealed no significant effect of FOs on muscle activity in 311 

individuals with flatfeet. Unlike previous studies that investigated the effect of FOs on muscle 312 

activity, a one-dimensional statistical non-parametric mapping analyzes were used in the present 313 

study because it takes into account the dependency between time instances of the gait cycle. Using 314 

only variables without temporal dimension, the false positive rate can be as high as 76.4% for 315 

biomechanical data during locomotion (Pataky et al., 2016).  316 

Effect of FOs on plantar pressures 317 

Regarding plantar pressures, only few studies reported the effect of FOs on plantar pressure 318 

distribution in individuals with flatfeet. Looking at individuals with neutral feet, Healy et al. (Healy 319 
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et al., 2012) reported that the use of denser material for the fabrication of FOs increased average 320 

contact area and peak pressures. Recently, Desmyttere et al. (Desmyttere et al., 2020) observed 321 

higher peak pressures under the rearfoot and midfoot (up to +31.7 %) when increasing the stiffness 322 

of the 3D printed FOs in individuals with neutral feet. Somewhat similar results emerged from the 323 

present study in individuals with flatfeet as peak and mean pressures as well as the contact area 324 

were increased under the midfoot area (up to +185.0%) when wearing the FOs compared to the 325 

control condition. This effect was enhanced when increasing the stiffness. On the other hand, our 326 

findings showed a reduction in mean pressures and contact area under the lateral forefoot (up to -327 

21.8% and -36.0%, respectively) and medial rearfoot (up to -32.5 and 27.7%, respectively %) areas 328 

when walking with FOs compared to the control condition. Overall, these results are in agreement 329 

with those of Redmond et al. (Redmond et al., 2009) who reported a shift of the loads from the 330 

rearfoot toward the midfoot  when wearing FOs. Concerning the addition of an anti-pronator 331 

component, the impact was more notable at the rearfoot area, where an increase in peak pressures 332 

and mean pressures were observed. This impact may be attributed to the carbon stiffness and the 333 

heel rise due to the extra thickness (2 mm) induced when using extra-components. In conclusion, 334 

the FOs stiffness has the potential to influence plantar pressures as underlined by our findings but 335 

also alter foot kinematics as pointed out by our previous studies (Desmyttere et al., 2021, 2020). 336 

Further clinical studies on the interaction between stiffness and clinical gait parameters should be 337 

carried out in order to find the amount of stiffness that will have an impact on foot kinematic 338 

correction without increasing peak pressures. 339 

Effect of FOs on CoP displacement 340 

Regarding the displacement of CoP, it has been noted, in the current literature, that FOs 341 

improve postural stability (Masse et al., 2000; Mattacola et al., 2007; Rome and Brown, 2004). In 342 

some previous studies, a decrease in the CoP velocity (from 6.5 to 6.8%) (Mattacola et al., 2007) 343 

as well as a decrease in the CoP mediolateral displacement (-32%) (Rome and Brown, 2004) have 344 

been reported in individuals with flatfeet with the wearing of FOs. Our results underlined a 345 

transition in medial and posterior directions toward the beginning of the stance phase, when 346 

wearing the rigid or flexible FOs. Thus, a certain improvement of postural stability during walking 347 

could be underlined by the reduction of the mediolateral displacement of the CoP when wearing 348 

FOs. The cited studies assessed the effect of FOs on the displacement of the CoP during a postural 349 

control task, whereas ours measured the CoP displacement during walking. 350 
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There are some limitations of this present study that need to be acknowledged. Firstly, there 351 

is a methodological limit related to the posting condition which was always carried out at the end 352 

as the posting had to be glued on the flexible FOs. Moreover, no familiarization was performed in 353 

that condition. Secondly, the posting has only been tested in combination with flexible FOs, while 354 

the combination of posting and rigid FOs could provide relevant information. Thirdly, the peroneus 355 

longus activity was quantified using surface electrode in the present study, which may explain the 356 

absence of difference between conditions. 357 

CONCLUSION 358 

The 3D printing techniques offer a wide range of possibilities in terms of material properties 359 

and design, this study brings new knowledge that could guide the clinical choice to better adapt 360 

FOs to individuals with flatfeet, as well as by adding extra-components. Compared to rigid FOs, 361 

flexible FOs and posting appeared to be more effective for distributing forces more equally over 362 

the plantar surface. Future studies should be performed to find the amount of stiffness that can 363 

address the functional needs while avoiding an excessive increase in peak pressures. 364 
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Table S1. Muscle included in the analysis in function of the subject. 1 

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
The crosses indicate the channels included in the analysis (judged of good quality), and the ∅ signs indicate 29 
the non-included channels: TA: tibialis anterior, GM: gastrocnemius medialis, SOL: soleus, PL: Peroneus 30 
Longus. 31 
  32 

subject # TA GM SOL PL total 
1 x x x x 4 
2 x x x x 4 
3 x x x x 4 
4 x x x x 4 
5 x x x x 4 
6 x x x x 4 
7 x x x x 4 
8 x x x x 4 
9 x x x x 4 
10 x x x x 4 
11 x x x	 x 4 
12 x x ∅ x 3 
13 x x x x 4 
14 x x x x 4 
15 x x x x 4 
16 x	 x x x 4 
17 x	 x x x 4 
18 ∅ ∅ ∅ ∅ 0 
19 x	 x x x 4 

total 18 18 17 18   
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 33 
 34 

Table S2 - Mean muscle activation (%) in each condition during the stance phase of walking 35 
 Mean Activation (%) (± SD) ANOVA 
Muscle Control Flexible Posting Rigid P 
TA 26.4 ± 5.6 26.4 ± 7.5 23.5 ± 5.9 25.1 ± 6.8 0.51 
GM 42.7 ± 8.2 46.9 ± 17.2 44.1 ± 10.4 44.9 ± 11.8 0.79 
SOL 41.4 ± 12.6 45.2 ± 28.0 51.0 ± 45.3 47.0 ± 29.4 0.84 
PL 52.0 ± 11.8 55.1 ± 15.3 50.5 ± 15.3 51.2 ± 18.7 0.83 

TA: Tibialis Anterior; GM: Gastrocnemius Medial; SOL: Soleus; PL: Peroneus Longus. 36 

  37 
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Table S3. Peak pressure, mean pressure, and contact area results in rearfoot, midfoot, forefoot regions 38 
during the stance phase. 39 

Foot Region Conditions Cluster range 
(% stance) Mean difference (%) Mean effect size 

Peak Pressure 
MR Control vs. Flex 

Control vs. Posting  
Control vs. Rigid 
Flex vs. Posting 
Posting vs. Rigid 

64 – 77 
80 – 100 
68 – 79 
44 – 87 
46 – 100 

-29.9 
+85  

-32.5 
+57.2 
+37.4 

0.48 
0.65 
0.51 
0.65 
0.64 

          
LR Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 
Flex vs. Posting 
Posting vs. Rigid 

73 – 100 
43 – 100 

38 – 58 / 75 – 100 
58 – 73 / 83 – 100 

66 – 100 

+59.9 
+83.0 

+32.0 / +49.4 
+42.2 / +29.8 

-28.4 

0.77 
0.87 

0.46 / 0.67 
0.45 / 0.51 

0.56 
          
MM Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 
Flex vs. Posting 

Flexible vs. Rigid 
Posting vs. Rigid 

0 – 100 
0 – 100 
0 – 100 

60 – 76 / 85 – 97 
14 – 25 / 68 – 84 / 88 – 98 

13 – 23 

+140.5 
+177.7 
+185.0 

+20.3 / +25.2 
+13.1 / +17.2 / +23.5 

+14.3 

1.21 
1.32 
1.38 

0.48 / 0.53 
0.43 / 0.47 /0.46 

0.47 
          
LM Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 
Flexible vs. Rigid 
Posting vs. Rigid 

86 – 100 
51 – 74 / 80 – 100 

18 – 100 
90 – 100 
11 – 30 

+64.4 
+17.9 / +65.7 

+38.9 
+31.5 
+20.5 

0.67 
0.47 / 0.80 

0.69 
0.54 
0.44 

     
CF Control vs. Posting 39 – 58 -12.4 0.46 
          
LF Control vs. Flex 

Control vs. Rigid 
19 – 42 
13 – 38 

-13.9 
-16.6 

0.42 
0.44 

  
Mean Pressure 

MR Control vs. Flex 
Control vs. Posting 
Control vs. Rigid 
Flex vs. Posting 
Posting vs. Rigid 

7 – 79 
5 – 48 / 85 – 100 

8 – 81 
50 – 89 
35 – 100 

-34.4 
-19.1 / +81.0 

-37.8 
+79.5 
-40.9 

0.69 
0.58 / 0.53 

0.74 
0.56 
0.57 

          
LR Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 
Flex vs. Posting 
Posting vs. Rigid 

7 – 64 / 83 – 100 
75 – 100 

10 – 63 / 81 – 100 
54 – 100 
52 – 100 

-23.1 / +91.7 
+121.5 

-23.7 / +77.8 
+41.4 
-28.5 

0.50 / 0.85 
1.05 

0.52 / 0.86 
0.44 
0.47 

          
MM Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 
Flex vs. Posting 

Flexible vs. Rigid 
Posting vs. Rigid 

0 – 100 
0 – 100 
0 – 100 
57 – 99 
11 – 99 
16 – 55 

+227.1 
+345.0 
+341.6 
+46.0 
+34.4 
+20.7 

1.29 
1.60 
1.72 
0.71 
0.64 
0.50 
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LM Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 
Flexible vs. Rigid 
Posting vs. Rigid 

91 – 100 
85 – 100 
88 – 100 
82 – 93 
93 – 101 

+154.7 
+150.1 
+206.9 
+35.9 
+40.8 

0.85 
1.01 
1.16 
0.52 
0.48 

          
MF Control vs. Posting 33 – 70 -24.0 0.47 
     
CF Control vs. Posting 

Flex vs. Posting 
37 – 62 
46 – 56 

-16.7 
-14.9 

0.46 
0.40 

     
LF Control vs. Rigid 12 – 35 -21.8 0.44 
          

Contact Area 
MR Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 

46 – 77 
45 – 72 
39 – 78 

-26.1 
-18.3 
-27.7 

0.65 
0.52 
0.77 

          
LR Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 
Flex vs. Posting 
Posting vs. Rigid 

36 – 84 
44 – 78 
37 – 81 
59 – 72 
57 – 69 

-22.5 
-16.8 
-23.0 
+19.8 
-15.4 

0.87 
0.96 
0.60 
0.50 
0.47 

          
MM Control vs. Flex 

Control vs. Posting 
Control vs. Rigid 
Flex vs. Posting 

Flexible vs. Rigid 
Posting vs. Rigid 

0 – 100 
0 – 100 
0 – 100 
70 – 94 

36–47 / 63-85 
38 – 61 

+77.7 
+105.3 
+106.1 
+27.1 

+11.7 / +19.1 
+11.5 

0.95 
1/18 
1.35 
0.60 

0.41 / 0.51 
0.44 

          
LM Control vs. Posting 

Control vs. Rigid 
Flex vs. Posting 

87 – 100 
91 – 100 
81 – 94 

+77.5 
+87.4 
+25.5 

0.90 
0.84 
0.57 

          
LF Control vs. Rigid 1 – 19 -36.0 0.83 

MR: Medial Rearfoot; LR: Lateral Rearfoot; MM: Medial Midfoot; LM: Lateral Midfoot; LF: Lateral Forefoot 40 
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