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Abstract

We study random assignment of indivisible objects among a set of agents with strict

preferences. Random Serial Dictatorship is known to be only ex-post efficient and

there exist mechanisms which Pareto-dominate it ex-ante. However, we show that

there is no mechanism that is likewise (i) strategy-proof and (ii) boundedly invariant,

and that Pareto-dominates Random Serial Dictatorship. Moreover, the same holds for

all mechanisms that are ex post efficient, strategy-proof and boundedly invariant: no

such mechanism is dominated by any other mechanism that is likewise strategy-proof

and boundedly invariant.
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1 Introduction

Consider the problem of assigning indivisible objects among a set of agents – each agent is

to receive at most one and we assume they have strict preferences over the set of objects.

Further, while objects’ characteristics may include a fixed monetary payment, there are no

additional transfers. Problems like this arise in many real-life applications such as on-campus

housing (where rents are fixed), organ allocation, school choice with ties in applicants’ pri-

orities, etc.. Whenever several agents would like to consume the same object, the indivisible
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nature of objects, together with the absence of any compensating transfers, will render any

deterministic assignment unfair. For that reason, both theorists and policy makers have

implemented of random assignments in such contexts.

Since agents’ preferences are private information, the design of random assignment mech-

anisms has to take into account agents’ incentives to reveal their preferences. Moreover,

eliciting preferences over all possible lotteries is often difficult in practice, so that assign-

ments should instead be based on agents rankings of objects alone – for example, school

choice programs will typically ask applicants to provide a list of schools, ranked from most-

to least-preferred.

Strategy-proofness makes truthful reporting a dominant strategy and thus should en-

sure that agents truthfully reveal their ordinal preferences over objects for any underlying

utility representation of preferences. Unfortunately, the literature on random assignment

mechanisms contains numerous impossibility results as soon as strategy-proofness and equal-

treatment-of-equals, as a minimal fairness requirement, are married with different ex-ante

notions of efficiency.1 We will consider throughout ex-post efficiency and constrained ex-

ante efficiency in a class of mechanisms satisfying certain properties. Furthermore, for the

applications given above, indivisible objects can be seen as goods where any agent desires,

or needs to consume, exactly one object and finds all objects acceptable. We will refer to

this as the no-disposal domain.

A mechanism frequently used in real life is the random serial dictatorship (RSD) mech-

anism. It works as follows. An order of the agents is drawn uniformly at random and then

agents pick their most preferred objects among the remaining objects according to the se-

lected order. RSD satisfies many desirable criteria: (0) equal treatment of equals as any two

agents with the same preference obtain identical random assignments, (1) ex-post efficiency

as it selects only assignments which cannot be Pareto improved, and (2) strategy-proofness

as no agent profits from misreporting his true preference. Furthermore, it satisfies the con-

dition of (3) bounded invariance saying that the chosen random assignment of any object

x depends only on agents’ preferences over objects that are weakly preferred to x – hence

changing the reported ordering of less preferred objects should not affect the probability

with which agents are assigned an object. According to our knowledge no real-life mech-

anism used in practice and virtually no mechanism considered in the theoretical literature

violates bounded invariance. For example, Probabilistic Serial, Deferred- and Immediate

Acceptance, as well as the Top-Trading-Cycles Mechanism all satisfy bounded invariance.

Our main result establishes that any mechanism satisfying properties (1)-(3) is not Pareto

1Throughout ‘ex-ante’ is to be understood as before realizing the final deterministic assignment; this
corresponds to the term ‘interim’ used in mechanism design outside of the literature on random assignments.
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dominated (in terms of first-order stochastic dominance) by any strategy-proof and bounded

invariant mechanism. As immediate corollary we obtain that the RSD mechanism is not

Pareto dominated by any mechanism satisfying strategy-proofness and bounded invariance.

It is important to stress that our main result applies to any mechanism and is not exclusive to

RSD. For instance, in applications one might take into account affirmative action constraints

with respect to minorities or disadvantaged groups by not choosing certain orders of agents

(where majorities or advantaged groups come first in the order) and apply a weighted version

of RSD. Any such mechanism satisfies (1)-(3) and is not Pareto dominated by any strategy-

proof and bounded invariant mechanism. This answers the longstanding question whether

RSD is constrained efficient in the class of strategy-proof mechanisms (while admittedly

we impose bounded invariance in addition), and provides a positive partial answer on the

no-disposal domain to the long-standing open question by Zhou (1990) whether RSD is

undominated in the class of mechanisms satisfying (0)-(2) – our result does not impose (0)

but instead imposes (3). This is the first affirmative result for RSD in connection with

ex-post efficiency and strategy-proofness.

We connect our main result to previous literature. Numerous contributions establish

the impossibility of strategy-proofness, envy-freeness and ex-ante efficiency. Zhou (1990)

showed that in the cardinal framework there exists no mechanism satisfying equal treatment

of equals, strategy-proofness and ex-ante efficiency (where the latter postulates always to

choose a random assignment which is not Pareto dominated in terms of expected utility

by any other one). In the ordinal framework, Bogomolnaia and Moulin (2001) show the

impossibility when envy-freeness is weakened to equal-treatment-of-equals. Nesterov (2017)

shows that the impossibility persists when ex-ante efficiency is weakened to ex-post efficiency

(while maintaining envy-freeness).2 Shende and Purohit (2020) show that strategy-proofness

and envy-freeness are incompatible with unanimity (which they refer to as contention-free

efficiency). When strengthening equal-treatment-of-equals to envy-freeness, Basteck and

Ehlers (2023) showed that a strategy-proof mechanism can be unanimous and hence ex-post

efficient with probability of at most 2
n

(where n is the number of agents). In other words,

for any strategy-proof and envy-free mechanism there exist profiles where ex-post efficient

assignments are chosen with probability of at most 2
n

(and inefficient assignments are chosen

with probability of at least 1− 2
n
). This finding strengthens significantly the impossibility of

strategy-proofness, envy-freeness and ex-post efficiency and provides an exact upper bound

for ex-post unanimity.

Furthermore, one might allow agents to rank certain objects unacceptable, which we

2Zhang (2019) proves a strong group-manipulability result, imposing ex-post efficiency and auxiliary
fairness axioms that are by themselves weaker than envy-freeness.
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refer to the full domain. If agents may rank objects unacceptable and possibly receive no

object, notions of efficiency have to take into account the set of (un)assigned objects: a

deterministic assignment is non-wasteful if no agent prefers an unassigned object to her

assignment. As a stronger requirement, ex-ante non-wastefulness demands that if an agent

prefers an object over another and is assigned the less-preferred with positive probability,

then the more-preferred object must be assigned with probability one. On the full domain

there is no relation between ex-post efficiency and ex-ante non-wastefulness, and RSD might

be ex-ante wasteful. Erdil (2014) established that there are mechanisms Pareto-dominating

RSD which are less ex-ante wasteful, which is a negative answer on the full domain to the

open question by Zhou (1990). In particular, the mechanism constructed in the proof of

Proposition 3 by Erdil (2014) satisfies equal treatment of equals and strategy-proofness but

violates bounded invariance. It is unknown which mechanisms Pareto dominate RSD and at

the same time are not Pareto dominated by any other strategy-proof mechanism. Our main

result implies that any strategy-proof and bounded invariant mechanism, which dominates

RSD on the full domain, must coincide with RSD on the no-disposal domain. In other words,

then Pareto improvements over RSD are only possible for profiles where objects are classified

unacceptable in a “certain” way. For the full domain we show the following object-by-object

domination lemma: if one mechanism sd-dominates another mechanism, then there is a

profile where the first mechanism assigns each object to each agent with weakly greater

probability than the second one, with strict inequality holding for some agent and some

object. Furthermore, Martini (2016) shows that there is no mechanism satisfying strategy-

proofness, equal-treatment-of-equals and ex-ante non-wastefulness, i.e. another principal

impossibility result on the full domain.

Finally, for the no-disposal domain, Bogomolnaia and Moulin (2001) introduced the

probabilistic serial (PS) mechanism and show that it is envy-free and ex-ante efficient (hence

necessarily violates strategy-proofness). Bogomolnaia and Heo (2012) provide an axiomatic

characterization of the PS mechanism via ex-ante efficiency, envy-freeness and bounded

invariance. Hashimoto et al. (2014) weakened bounded invariance to weak invariance in this

characterization, a property which is satisfied by any strategy-proof mechanism.

The paper is organized as follows. Section 2 introduces random assignments, their prop-

erties and several popular mechanisms. Section 3 states our main result pertaining to the

constrained efficiency of any mechanism satisfying ex-post efficiency, strategy-proofness and

bounded invariance. Section 4 contains the proof of our main result. Section 5 allows agents

to rank objects unacceptable and the waste of objects, and states the object-by-object dom-

ination lemma. Section 6 concludes.
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2 Model

Let N = {1, . . . , n} denote the set of agents and O = {o1, . . . , on} denote the finite set of

objects. Throughout we suppose |N | = |O| ≥ 3. Each agent i has strict preferences over

O ∪ {i} where i stands for being unassigned; let Ri denote the corresponding linear order3

and write Pi for its asymmetric part (where xPiy is defined by xRiy and x 6= y). Let W i

denote the set of all strict preferences of agent i over O∪{i}. LetWN = ×i∈NW i denote the

set of all preference profiles R = (R1, . . . , Rn). Let Ri denote the set of all strict preferences

of agent i over O ∪ {i} such that oRii for all o ∈ O, i.e., where all objects are acceptable.

We denote this domain by RN = ×i∈NRi and refer to it as the no-disposal domain, as no

agent would ever dispose of any assigned object. We call WN the full domain.

An assignment is a mapping µ : N → O ∪ N such that4 µi ∈ O ∪ {i} for all i ∈ N and

µi 6= µj for all i 6= j. Let M denote the set of all assignments.

An assignment µ is efficient under R if there exists no µ′ ∈ M such that µ′iRiµi for all

i ∈ N and µ′jPjµj for some j ∈ N . Let PO(R) denote the set of all efficient assignments

under R. If R is a unanimous profile (where any two agents rank different objects first),

then the unique efficient assignment allocates each agent his most preferred object.

An assignment µ is weakly efficient under R if there exists no µ′ ∈ M such that µ′iPiµi

for all i ∈ N . Let WPO(R) denote the set of all weakly efficient assignments under R.

An assignment µ is non-wasteful under R if for all i ∈ N and all x ∈ O ∪ {i}, xRiµi

implies there exists j ∈ N with µj = x. Note that this implies µiRii. Let NW(R) denote

the set of all non-wasteful assignments under R.

For any profile R, we have PO(R) ⊆ NW(R), and there is no relation between non-

wastefulness and weak efficiency.

Let ∆(M) denote the set of all probability distributions over M. Given p ∈ ∆(M), let

pia denote the associated probability of i being assigned a. Let supp(p) denote the support

of p. Then (i) p is ex-post efficient under R if supp(p) ⊆ PO(R), (ii) p is ex-post weakly

efficient under R if supp(p) ⊆ WPO(R), and (iii) p is ex-post non-wasteful under R if

supp(p) ⊆ NW(R).

For all i ∈ N , all Ri ∈ W i and all x ∈ O ∪ {i}, let B(x,Ri) = {y ∈ O ∪ {i} : yRix}.
Then given any p, q ∈ ∆(M), pi stochastically Ri-dominates qi if for all x ∈ O ∪ {i},∑

y∈B(x,Ri)

piy ≥
∑

y∈B(x,Ri)

qiy.

3Thus, Ri is (i) complete, (ii) transitive and (iii) antisymmetric (xRiy and yRix implies x = y).
4We will use throughout the convention to write µi instead of µ(i) for any i ∈ N .
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A random assignment p stochastically R-dominate another random assignment q if pi Ri-

dominates qi for all i ∈ N . A random assignment is sd-efficient if there is no random

assignment q 6= p that stochastically R-dominates it.5 Given two random assignments p and

q, we say that p and q are equivalent if pi = qi for all i ∈ N .

A mechanism is a mapping f : RN → ∆(M). Then f(R) denotes the random assignment

chosen for R, and fia(R) denotes the probability of agent i being assigned object a. For

i ∈ N , fi(R) denotes the tuple of assignment probabilities (fia(R))a∈O, and for a ∈ O, fa(R)

is defined accordingly as the tupple of probabilities with which a is assigned to the various

agents. Then f is sd-efficient if for all R ∈ RN , f(R) is sd-efficient under R. Similarly, we

define ex-post (weak) efficiency and ex-post non-wastefulness for a mechanism.

Then f is strategy-proof if for all R ∈ RN , all i ∈ N and all R′i ∈ Ri, fi(R) stochastically

Ri-dominates fi(R
′
i, R−i). Note that for any ordinal mechanism (where an agent only submits

his ordinal ranking), strategy-proofness is equivalent to the requirement that for any von

Neumann-Morgenstern utility presentation of his true ordinal ranking, submitting the true

ordinal ranking maximizes his expected utility. Most real-life mechansims only elicit this

ordinal information (instead of von Neumann-Morgenstern utilities).

Furthermore, f is envy-free if for all R ∈ RN and all i ∈ N , fi(R) stochastically Ri-

dominates fj(R) (where in fj(R) the outside option j is replaced by i). If f(R) attaches

probability one to assignment µ, then this is equivalent to µiRiµj for all i, j ∈ N . Finally, f

is symmetric (respectively, treats equals equally) if for all R ∈ RN and all i, j ∈ N , Ri = Rj

implies fio(R) = fjo(R) for all o ∈ O.

Note that most properties are defined in terms of an agent’s random assignment. For a

given set of properties, we say that a mechanism f is unique in terms of probability shares,

if for any other mechanism φ satisfying this set of properties, f(R) and φ(R) are equivalent

for any profile R.

Below we introduce some of the well-known mechanisms on the no-disposal domain.

The uniform assignment (UA) mechanism6 randomizes uniformly over all |N |! deter-

ministic non-wasteful assignments (irrespective of agents preferences). Hence for individual

object assignment probabilities we have: for all R ∈ RN , UAio(R) = 1
n

for all i ∈ N and

o ∈ O.

A strict priority ranking over N is denoted by �. Let L denote the set of all strict priority

rankings. Given �∈ L, let f� denote the (deterministic) serial dictatorship mechanism

where agents are assigned their most-preferred among all available objects in order of their

5Bogomolnaia and Moulin (2001) refer to this as ‘ordinal efficiency’. It implies Pareto-efficiency with re-
spect to expected utilities for some von Neumann-Morgenstern-representations of agents’ ordinal preferences
over objects McLennan (2002).

6Chambers (2004) characterizes UA via consistency.
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priority.7 Then the random serial dictatorship (RSD) mechanism is defined by RSD(R) =
1
n!

∑
�∈L f

�(R) for all R ∈ RN .8

We omit the formal definition of the probabilistic serial (PS) mechanism9 and provide an

intuitive formulation instead: each agent starts eating with uniform speed from his most-

preferred object; once an object is exhausted, each agent eats with uniform speed from his

most-preferred among the remaining objects, and so on until all objects are exhausted. The

assignment probabilities of any agent in PS are simply the shares of objects the agent has

eaten during this process.10

3 Main Result

Before we state our main result, we introduce two more definitions.

Given i ∈ N , Ri ∈ Ri and x ∈ O, let Ri(x) = Ri|B(x,Ri) denote the restriction of Ri to

the weak upper contour set of x. Now a mechanism f satisfies bounded invariance (BI) if for

all R ∈ RN , all i ∈ N , all R′i ∈ Ri and all x ∈ O, if R′i(x) = Ri(x), then fx(R) = fx(R′i, R−i).

In other words, if agent i’s preference above object x remains unchanged, then the random

assignment of x remains unchanged.

Given two mechanisms f and g, f sd-dominates g (denoted by f �sd g) if for any profile

R the random assignment f(R) stochastically R-dominates the random assignment g(R),

and for some profile R̄ and i ∈ N we have fi(R̄) 6= gi(R̄).

Theorem 1 On the no-disposal domain, if mechanism g satisfies ex-post efficiency, bounded

invariance and strategy-proofness, then there exists no bounded invariant and strategy-proof

mechanism f which sd-dominates g.

RSD satisfies ex-post efficiency, bounded invariance and strategy-proofness, and by The-

orem 1 RSD cannot be sd-dominated by another mechanism satisfying bounded invariance

and strategy-proofness. The same is true for weighted versions of RSD, i.e. where we

7For any R ∈ RN and i1 � i2 � · · · � in, i1 receives his most Ri1-preferred object in O (denoted by
f�i1 (R)), and for l = 2, . . . , n, il receives his most Ril-preferred object in O\{f�il (R), . . . , f�il−l

(R)} (denoted

by f�il (R)).
8Pycia and Troyan (2023a) construct a random mechanism distinct from RSD but where for any profile

R the chosen random assignment is equivalent to RSD(R).
9For that, we refer the reader to Bogomolnaia and Moulin (2001); Bogomolnaia (2015) offers an alter-

native definition of PS, and Katta and Sethuraman (2006) extend PS to the domain where indifferences are
allowed.

10Note that the PS-mechanism pins down individuals’ object assignment probabilities directly, rather
than a random assignment per se, i.e., a convex combination of deterministic assignments. Nonetheless,
corresponding random assignments exists as any bistochastic matrix (pia)i∈N,a∈O can be decomposed as a
convex combination of permutation matrices by the Birkhoff-von Neumann Theorem Birkhoff (1946).
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attach different weights to different orders of agents and apply SD. Such weights could

take into account minorities/majorities and (dis)advanted groups. Furthermore, in Theo-

rem 1 ex-post efficiency cannot be weakened to ex-post weak efficiency. For instance, the

Random-Dictatorship-cum-Equal-Division11 by Basteck and Ehlers (2023) satisfies ex-post

weak efficiency, bounded invariance and strategy-proofness, but is sd-dominated by RSD.

Several questions remain. First, does Theorem 1 remain unchanged when we drop

bounded invariance from the second mechanism, i.e. we keep bounded invariance just for the

first mechanism? Second, do we obtain a characterization of RSD by adding symmetry to

the mechanism g (i.e. RSD is the only symmetric, strategy-proofness and ex-post-eff mech-

anism which is undominated)? Third, is RSD characterized by ex-post efficiency, bounded

invariance, strategy-proofness and symmetry? Obviously, an affirmative answer to the third

question implies the affirmative answer to the second question, but not the reverse.

We provide an outline of the proof of Theorem 1. As a basic step we show that for any

efficient deterministic assignment, any agent must rank his allocated object weakly above

some non-top ranked object. Then for a fixed object, say z, we count for any profile and

for any agent the number of non-top ranked objects below z, and lexicographically minimize

with respect to those numbers. If g sd-dominates f , then the set of profiles where f and

g differ is non-empty. Now in this set we choose a profile where object z is ranked as

low as possible with respect to the minimization outlined above and show that the random

assignment of z must coincide for f and g. Remaining in the set of profiles where f and

g differ and z is ranked as low as possible, we take another object, say y, choose a profile

where y is ranked as low as possible and show that the random assignment of y (and z) is

identical for f and g. Iterating we eventually exhaust the set of objects and obtain that f

and g coincide, which implies that the set of profiles where f and g differ was empty yielding

the final contradiction.

4 Proof

First, we show a basic consequence of efficiency. Given Ri ∈ Ri, let top(Ri) denote the top

ranked object in O by Ri. For profile R, let top(R) = ∪i∈N{top(Ri)} denote the set of top

ranked objects under R.

Lemma 1 Let R ∈ RN and µ ∈ PO(R). Then for all i ∈ N there exists x ∈ O\top(R)

such that µiRix.

11We omit the formal definition and refer to Basteck and Ehlers (2023). Informally, the mechanism works
as follows: any agent i is chosen with probability 1

n , then agent i picks his most preferred object and the
remaining objects are assigned uniformly among the other agents.
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Proof. Suppose not, i.e. say for agent 1 we have xP1µ1 for all x ∈ O\top(R). Then

O 6= top(R) as otherwise R is a unanimous profile and the unique efficient assignment gives

each agent his most preferred object. Thus, O\top(R) 6= ∅ and top(R1)P1xP1µ1 for all

x ∈ O\top(R). Now µ1 ∈ top(R), and say top(R2) = µ1. By efficiency, µ2 /∈ O\top(R) and

µ2 ∈ top(R), say top(R3) = µ2, and so on. At some point we find a (improvement) cycle, a

contradiction to efficiency of µ. �

Suppose that mechanism g satisfies ex-post efficiency, bounded invariance and strategy-

proofness, and there a bounded invariant and strategy-proof mechanism f such that f �sd g.

By Lemma 1, if g is ex-post efficient, then for all R ∈ RN , all i ∈ N and all x ∈ top(R) such

that yPix for all y ∈ O\top(R), we have gix(R) = 0. Furthermore, by f �sd g we then also

have fix(R) = 0.

We introduce additional notation. If f �sd g, then let

R6= = {R ∈ RN : fi(R) 6= gi(R) for some i ∈ N}

denote the set of profiles where f and g differ. In the set R6= we identify a minimal profile

as follows for a given object.

Note that for any R ∈ R 6= we have O\top(R) 6= ∅ as otherwise O = top(R), R is a

unanimous profile, and by ex-post efficiency of g and f �sd g both f and g attach probability

one to the unique assignment where each agent received his top ranked object.

Let N = {0, 1, . . .} denote the set of natural numbers including zero. Let Nn
≥ denote the

set of all vectors v ∈ Nn such that v1 ≥ v2 ≥ · · · ≥ vn, i.e. the coordinates of v are arranged

in non-increasing order. Let - denote the lexicographical ordering on Nn
≥: for all v, w ∈ Nn

≥,

v - w means either v = w or there is 1 ≤ t ≤ n, such that vi = wi for every 1 ≤ i < t and

vt < wt. We write v ≺ w if v - w and w 6- v.

Given z ∈ O and R, consider for each i ∈ I the number of objects in O\top(R) ranked

below z. Furthermore, for any z ∈ O and Ri, let

L(z,Ri) = {y ∈ O : zPiy}

denote the strict lower contour set at z of Ri. Note that this set excludes z.

We are going to build a vector with all these numbers in non-increasing order from highest
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to lowest. Formally, let12

θ(z,R) ∈ Nn
≥ , where {θi(z,R) : 1 ≤ i ≤ n} = {|L(z, Ri) ∩ (O\top(R))| : i ∈ N} and

θ1(z,R) ≥ θ2(z, R) ≥ · · · ≥ θn(z,R).

We say that z is ranked lower in R′ than in R′′, if, starting with the highest number in

each case, that number is lower for R′ than for R′′ (and vice versa). If the two are equal,

move to the second highest number for each profile and iterate. Hence, we lexicographically

minimize θ(z, R), but we start from the highest number (first trying to lower z further for

those agents that already rank it rather high). Let

R6=z ={R ∈ R6= : there exists no R̄ ∈ R6= such that θ(z, R̄) ≺ θ(z,R).}.

We show in two lemmas that for any profile in R6=z the random assignment of z is identical

under f and g.

Lemma 2 Let z ∈ O and R ∈ R6=z . If there is some j ∈ I such that fjz(R) > gjz(R), then we

partition I as follows: I = I1∪ I2 where for all i ∈ I1, z is ranked least relative to O\top(R),

i.e., L(z,Ri) ∩ (O\top(R)) = ∅, while for all i ∈ I2 (where j ∈ I2), L(z, Rj) ∩ (O\top(R)) ⊆
L(z,Ri) ∩ (O\top(R)) (i.e., i’s lower contour set of z at R contains all objects in O\top(R)

that are contained in j’s lower contour set).

Proof. First note that for j, L(z,Rj) ∩ (O\top(R)) 6= ∅ (as j has more of z under f

and hence needs to have less of some lower ranked object for f to dominate g – hence by

Lemma 1, L(z,Rj) ∩ (O\top(R)) is non-empty). Now take any a ∈ L(z, Rj) ∩ (O\top(R))

and move it up to just below z. Since R was minimal, we cannot push it past z, so we have

fjz(R) > gjz(R) and fja(R) < gja(R). Any agent i 6= j who does not rank z least relative to

O\top(R), i.e., for whom L(z,Rj) ∩ (O\top(R)) 6= ∅, must also rank a below z: otherwise,

they could move z to the bottom of O\top(R) while, by BI, we still have fja(R) < gja(R) –

contradicting the minimality of R. Since a ∈ L(z, Rj) was chosen arbitrarily, this proves the

lemma. �

Lemma 3 Let z ∈ O and R∗ ∈ R6=z . Then fiz(R
∗) = giz(R

∗) for all i ∈ I.

Proof. Suppose not. Then there exists j ∈ I with fjz(R
∗) > gjz(R

∗) and the strict lower

contour set L(z,R∗j ) must intersect with O\top(R∗) as otherwise we have L(z,R∗j ) ⊆ top(R∗)

12Here identical numbers appear multiple times, i.e. we could have {2, 2, 2, 1, 1, 0, . . .}.
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and by Lemma 1 and f �sd g, gjo(R
∗) = 0 = fjo(R

∗) for all o ∈ L(z, R∗j ) (which is then a

contradiction to f �sd g and fjz(R
∗) > gjz(R

∗)).

Consider the partition {I1, I2} as in Lemma 2 (where j ∈ I2). Let top(R∗I1) denote the

set of top objects of agents in I1. If top(R∗I1) ∩ L(z,R∗j ) 6= ∅, take any i ∈ I1 such that

top(R∗i ) = x ∈ L(z, R∗j ). Then move x in R∗j just below z. Denoting the obtained profile by

R, we have fjz(R) > gjz(R).

If fjx(R) < gjx(R), let i push {z} ∪ (L(z,R∗j ) ∩ (O\top(R))) to the bottom of Ri in the

same order as Rj. Same for all other i′ in I1 who rank x first. Then by BI, we still have

fjx(R) < gjx(R). Towards a contradiction, if fjz(R) ≤ gjz(R), then there is some higher

ranked object y such that fjy(R) > gjy(R). Moreover, yPhz for all h in I1 that rank x first

as well as for h = j – hence, we can push z to the bottom for all Rh, arrive at a profile

where f and g differ in the assignment probabilities of y yet z is ranked lower relative to

objects O\top(R) than at our initial profile. Since this contradicts the minimality of our

initial profile, we conclude that fjz(R) > gjz(R).

If instead we have fjx(R) ≥ gjx(R), swap x and z in the ranking of j: if we now have

fjx(R) > gjx(R) then we can push down z down for j, below all other O\top(R) – by

SP this preserves fjx(R) > gjx(R) and by BI we may push down again z for any i ∈ I1

with top(Ri) = x (as xPi(O\top(R))∩L(z,Rj)), contradicting minimality of R∗. Therefore,

we know that, after having swapped x and z, we must have fjx(R) ≤ gjx(R) and thus

fjz(R) > gjz(R).

Thus, independently of whether we are able to push x past z or not, we still have fjz(R) >

gjz(R). Note that if we are able to push x above z, then after the swap of x and z we have

fjx(R) ≤ gjx(R) and the preferences of agents in I1 are unchanged.

If there is any other x′ that is a top object of some agent in I1 and also in L(z, Rj), we

proceed as before and move x′ in Rj just below z. By BI, we have fjz(R) > gjz(R).

If fjx′(R) < gjx′(R) do the same as we did above with x: let all i ∈ I1 who rank x′ first

push {z} ∪ (L(z,R∗j ) ∩ O\top(R)) to the bottom of Ri in the same order as Rj. Then by

BI we still have fjx′(R) < gjx′(R) and moreover fjz(R) > gjz(R) as otherwise there would

be a higher ranked object in the ranking of j as well as all other agents i ∈ I1 for whom we

have so far constructed new preferences – hence we could move z down in their ranking and

arrive at a contradiction to the minimality or R∗.

If instead we have fjx′(R) ≥ gjx′(R), swap x′ and z in the ranking of j: if we now have

fjx′(R) > gjx′(R) then we can push down z to the bottom for j as well as for all other i ∈ I1
(i.e., those were we had already raised z in the previous steps as they must prefer x′ to z)

– by BI this preserves fjx′(R) > gjx′(R), contradicting minimality of R∗. Hence, instead

we know that, after having swapped x′ and z, we must have fjx′(R) ≤ gjx′(R) and thus
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fjz(R) > gjz(R).

Thus, independently of whether we are able to push x′ past z or not, we still have

fjz(R) > gjz(R).

Repeat the last step until there are no more objects in top(R∗I1) ∩ L(z,R∗j ) that we

have not considered. Then we have arrived at a profile, refer to it once more as R, where

top(Ri) = top(R∗i ) for all i ∈ I, fjz(R) > gjz(R) and I1 has been partitioned into two subsets:

I ′1 includes all agents i ∈ I1 for whom L(z,Ri) ∩ (O\top(R∗)) = ∅, Ri = R∗i , and whose top

ranked objects are ranked above z by j – in R∗ but also in R since j’s lower contour set has

only gotten smaller. Second, I ′′1 includes all agents i ∈ I1 whose lower contour set L(z, Ri)

consists of all objects (O\top(R∗))∩L(z,R∗j ), ranked in the same order as by R∗j and Rj (j′s

ranking over these objects was not altered moving from R∗ to R). Compared to R∗, j’s lower

contour set at z has gotten smaller, while the ranking of other agents k ∈ I2 is unchanged.

By Lemma 2 as well as the preceding construction, we still have

L(z,Ri) ∩ (O\top(R)) ⊆ L(z,Rj) ∩ (O\top(R)) ⊆ L(z, Rk) ∩ (O\top(R))

for all i ∈ I ′′1 and all k ∈ I2. Now, for all k ∈ I2 (including j) change the order of objects in

the lower contour set L(z, Rk) as follows: (i) objects that are in L(z, Rk)\L(z,Rj) are ranked

immediately below z (beyond that, their order does not matter), (ii) objects that are also in

(O\top(R)) ∩ L(z,Rj) are ranked next, in the same order as by Rj, (iii) last, all objects in

L(z, Rk)∩L(z,Rj)∩top(R) are ranked below (beyond that, their order does not matter). By

BI, we still have fjz(R) > gjz(R). By Lemma 1 and f �sd g, we have fkx(R) = 0 = gkx(R)

for all k ∈ I2 and all x ∈ L(z, Rk) ∩ L(z,Rj) ∩ top(R).

Hence, we now have all agents in I ′′1 ∪ I2 ranking objects L(z, Rj)∩ (O\top(R)) adjacent

and in the same order as Rj, and below that only objects in top(R). Since fjz(R) > gjz(R),

there is some y, ranked below z by Rj, such that fjy(R) < gjy(R) – and thus some i ∈ I
with fiy(R) > giy(R). Moreover by Lemma 1 we have y ∈ L(z,Rj) ∩ (O\top(R)).

If i ∈ I ′′1 ∪ I2 then there is y′ with yRiy
′, such that fiy′(R) < giy′(R) – and thus some

i′ ∈ I with fi′y′(R) > gi′y′(R). Moreover, by Lemma 1 and y ∈ O\top(R), we have y′ ∈
L(y,Rj) ∩ (O\top(R)). Hence, y′ is ranked lower than y according to Rj.

If i′ ∈ I ′′1 ∪ I2 then there is y′′ with y′Ri′y
′′, such that fi′y′′(R) < gi′y′′(R) – and thus some

i′′ ∈ I with fi′′y′′(R) > gi′′y′′(R), and so on.

Since L(z,Rj)∩(O\top(R)) is finite and we move down (according to Rj) in each iteration,

eventually we have exhausted the set. Hence, eventually, there is some y∗ ∈ L(z,Rj) ∩
(O\top(R)) and i∗ ∈ I ′1 such that fi∗y∗(R) > gi∗y∗(R).

Note that Ri∗ = R∗i∗ . But then i∗ can exchange the positions of y∗ and top(Ri∗) in Ri∗ ,
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reduce the number of non-top objects ranked below z for j (as well as all i ∈ I ′′1 ) and it

weakly decreases for all in I2\{j}. Hence, z was not minimal in initial R∗. �

Now we continue in the same way: having established that f and g agree on the as-

signment probabilities of z for all profiles R ∈ R6=z , we then take y 6= z and consider those

profiles in R6=z where y is ranked as low as possible relative to (O\{z})\top(R). Repeating

the same arguments in Lemma 3 where y plays the role of z we get again fy(R) = gy(R) and

fz(R) = gz(R). Reiterating, we thereby prove the theorem.

Formally, let O = {z1, . . . , zn} and define Zt = {z1, . . . , zt} as well as O−t = O\Zt, for

any 1 ≤ t < n. Moreover, let

θ(zt+1, R) ∈ Nn
≥ where {θi(zt+1, R) : 1 ≤ i ≤ n} = {|L(zt+1, Ri) ∩ (O−t\top(R))| : i ∈ N}}

be the vector of ranks that zt+1 occupies in agents’ preferences (ordered in non-increasing

fashion and allowing for multiple identical entries). We rewrite R6=z1 as R6=1 and define

R 6=t+1 ={R ∈ R6=t : there exists no R̄ ∈ R6=t such that θ(zt+1, R̄) ≺ θ(zt+1, R)},

where θ(zt+1, R̄) and θ(zt+1, R) ordered by lexicographic minimization. Hence,R6=zt+1
contains

all profiles where zt+1 is ranked as low as possible, provided that (i) f and g still differ in the

assignment probabilities of some object, and that (ii) all objects z ∈ Zt are likewise ranked as

low as possible (with rank-minimization of zm taking precedence over the rank-minimization

of zm′ for any m < m′ ≤ t).

As a first observation, we show that if we rank an object zt+1 as low as possible in R6=t ,

then zt+1 cannot be ranked at the top of any agent j’s ranking for whom fj and gj differ.

Lemma 4 Let 0 ≤ t < n, zt+1 ∈ O and R ∈ R 6=t+1. If there is some j ∈ I such that

fjzt+1(R) > gjzt+1(R), then we partition I as follows: I = I1 ∪ I2 where for all i ∈ I1, zt+1

is ranked least relative to O−t\top(R), i.e., L(zt+1, Rj) ∩ (O−t\top(R)) = ∅, while for all

i ∈ I2 (where j ∈ I2), L(zt+1, Rj) ∩ (O−t\top(R)) ⊆ L(zt+1, Ri) ∩ (O−t\top(R)) (i.e., i’s

lower contour set of zt+1 at R contains all objects in O−t\top(R) that are contained in j’s

lower contour set).

Lemma 5 Let 0 ≤ t < n, zt+1 ∈ O and R ∈ R6=t+1. Then fizt+1(R) = gizt+1(R) for all i ∈ I.

Proof of Lemma 4 and 5.

For t = 0, this is established by Lemma 2 and 3, which serve as the basis for the follow-

ing induction. For the induction step, assume we have established both statements for all
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0 ≤ t < k ≤ n (induction hypothesis). It remains to show that both hold for t = k.

Induction step for Lemma 4. First note that for j, L(zk+1, Rj) ∩ (O−k\top(R)) 6= ∅ (as j

has more of zk+1 under f and hence needs to have less of some lower ranked object for f to

dominate g – hence by Lemma 1, and our induction hypothesis, L(zk, Rj)∩ (O−k\top(R)) is

non-empty). Now take any a ∈ L(zk+1, Rj)∩(O−k\top(R)) and move it up to just below zk+1.

Since R was minimal, we cannot push it past zk+1, so we have fjzk+1
(R) > gjzk+1

(R) and

fja(R) < gja(R). Any agent i 6= j who does not rank zk+1 least relative to O−k\top(R) must

also rank a below zk+1: otherwise, they could move zk+1 to the bottom of all O−k\top(R)

while, by BI, we still have fja(R) < gja(R) – contradicting the minimality of R. Since

a ∈ L(zk+1, Rj) was chosen arbitrarily, this completes the induction step for lemma 4.

Induction step for Lemma 5. Suppose the statement is not true for t = k. Then there

exists R∗ ∈ R 6=k+1 and j ∈ I with fjzk+1
(R∗) > gjzk+1

(R∗). Without loss of generality, we

may assume that all objects in Zk are ranked at the bottom of R∗j such that z′mR
∗
jzm for

m < m′ ≤ k: Otherwise we can begin by moving z1 to the bottom of j’s preference list in

single, pairwise swaps. Since these transformations keep the profile in R6=k ⊆ R
6=
1 we have

fjz1(R) = gjz1(R) both before and after the swap and hence, by SP, fjzk+1
(R) > gjzk+1

(R)

(where R denotes an arbitrary profile in the sequence starting at R∗). Repeating this for

each m with 1 < m ≤ k establishes the claim.

For most of the subsequent modifications of preference profiles, up until the very end,

we will leave all objects Zk ⊆ L(zk+1, R
∗
j ) at the bottom of j’s preference in the order just

described.

Second, note that the strict lower contour set L(zk+1, R
∗
j ) must intersect withO−k\top(R∗):

otherwise we could move to R by pushing all o ∈ L(zk+1, R
∗
j )∩Zk up against zk+1, leaving only

objects o ∈ L(zk+1, R
∗
j ) ∩ top(R∗) at the bottom of Rj, so that by induction hypothesis and

Lemma 1 we have the same assignment probabilities fjo(R) = gjo(R) for all o ∈ L(zk+1, Rj).

Moreover, by SP, we still have fjzk+1
(R∗) > gjzk+1

(R∗). Together that contradicts the stand-

ing assumption that f sd-dominates g.

Consider the partition {I1, I2} as in Lemma 4 (where j ∈ I2) – by the induction hypothesis

and the induction step for Lemma 4 above, this exists for t = k. Let top(R∗I1) denote the

set of objects most-preferred by some agent in I1. If top(R∗I1) ∩ L(zk+1, R
∗
j ) ∩O−k 6= ∅, take

any i ∈ I1 such that top(R∗i ) = x ∈ L(zk+1, R
∗
j ) ∩ O−k. Then move x in R∗j just below zk+1.

Denoting the obtained profile by R, we have fjzk+1
(R) > gjzk+1

(R) (by SP).

If fjx(R) < gjx(R), then for all i ∈ I1 who rank x ∈ L(zk+1, R
∗
j )∩O−k at the top, we can

let i push all objects in (L(zk+1, R
∗
j ) ∩ (O−k\top(R))) ∪ Zk to the bottom in the same order
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as Rj: {zk+1} ∪ (L(zk+1, R
∗
j ) ∩ (O−k\top(R))) is ranked first, then Zk at the very bottom

(with zm′ ranked above zm for any m < m′ ≤ k). Same for all other i′ in I1 who rank x first.

Then by BI, we still have fjx(R) < gjx(R). Towards a contradiction, if fjzk+1
(R) ≤ gjzk+1

(R)

then there is some higher ranked object y such that fjy(R) > gjy(R). Moreover, yPhzk+1

for all h ∈ I1 ∪ {j} – hence, we can push zk+1 below L(zk+1, R
∗
j ) ∩ (O−k\top(R)) for all Rh,

arrive at a profile where f and g differ in the assignment probabilities of y yet zk+1 is ranked

lower relative to objects O−k\top(R) than at our initial profile. Since this contradicts the

minimality of our initial profile, we conclude that fjzk+1
(R) > gjzk+1

(R). Moreover, since

all objects in Zk are ranked as low as possible for all i for whom we have constructed new

preferences, we still have R ∈ R6=k (though not necessarily R ∈ R6=k+1 since zk+1 is not ranked

as low as possible).

If instead we have fjx(R) ≥ gjx(R), then swap x and zk+1 in the ranking of j: if we now

have fjx(R) > gjx(R) then we can push down zk+1 down for j, below all other O−t\top(R)

(but above Zt) – by SP this preserves fjx(R) > gjx(R), contradicting minimality of R∗. So

instead we know that, after having swapped x and zk+1, we must have fjx(R) ≤ gjx(R) and

thus fjzk+1
(R) > gjzk+1

(R). Again, since the swap does not raise any object in Zk in the

ranking of any agent, we have R ∈ R 6=k . So independently of whether we are able to push x

past zk+1 or not, we still have fjzk+1
(R) > gjzk+1

(R) and R ∈ R6=k .

If there is any other x′ ∈ O−k that is a top object of some agent in I1 and also in

L(zk+1, Rj), move x′ in Rj just below zk+1. By SP, we have fjzk+1
(R) > gjzk+1

(R).

If fjx′(R) < gjx′(R), then do the same as we did above with x: let all i ∈ I1, who

rank x′ first, push all objects in (L(zk+1, R
∗
j ) ∩ (O−k\top(R))) ∪ Zk to the bottom in the

same order as Rj – first {zk+1} ∪ (L(zk+1, R
∗
j ) ∩ (O−k\top(R))), then Zk. By BI, we still

have fjx(R) < gjx(R) and moreover we also have fjzk+1
(R) > gjzk+1

(R) as otherwise there

would be some y with fjy(R) > gjy that is ranked above zk+1 by j and all i ∈ I1 for whom

we have so far constructed new preferences. Hence, by pushing zk+1 down further below

L(zk+1, R
∗
j ) ∩ (O−k\top(R)) in the ranking of j and all i ∈ I1 for whom we have so far

constructed new preferences leads to a contradiction to minimality of R∗.

If instead we have fjx′(R) ≥ gjx′(R), swap x′ and zk+1 in the ranking of j: if we now

have fjx′(R) > gjx′(R) then we can push down zk+1 to the bottom of all O−k\top(R) (but

above Zk) for j as well as for all other i ∈ I1 for whom we have so far constructed new

preferences – by BI this preserves fjx′(R) > gjx′(R), contradicting minimality of R∗. So

instead we know that, after having swapped x′ and zk+1, we must have fjx′(R) ≤ gjx′(R)

and thus fjzk+1
(R) > gjzk+1

(R). So independently of whether we are able to push x′ past

zk+1 or not, we still have fjzk+1
(R) > gjzk+1

(R).

Note that neither of the two manipulations increases the rank of objects in Zk. Hence,
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as a result, we have another profile R where fjzk+1
(R) > gjzk+1

(R) and R ∈ R6=k .

Repeat the last step until there are no more objects in O−k ∩ top(R∗I1)∩L(zk+1, R
∗
j ) that

we have not considered. Then we have arrived at a profile, refer to it once more as R, where

top(Ri) = top(R∗i ) for all i ∈ I, fjzk+1
(R) > gjzk+1

(R) and I1 has been partitioned into two

subsets: I ′1 ⊆ I1 includes all agents i ∈ I1 that rank zk+1 least relative to O−k\top(R∗)
and for which Ri = R∗i and whose top ranked objects are either in Zt or ranked above zk+1

by j – in R∗j but also in Rj since j’s lower contour set has only gotten smaller. Second,

I ′′1 includes all agents i ∈ I1 whose lower contour set L(zk+1, Ri) consists of all objects

(L(zk+1, R
∗
j ) ∩ (O−k\top(R))) ∪ Zk, ranked in the same order as by R∗j and Rj (j′s ranking

over these objects was not altered moving from R∗ to R). Compared to the initial profile R∗,

j’s lower contour set at zk+1 may have gotten smaller, while the preference order of other

agents in I2 is unchanged.

By Lemma 4 as well as the preceding construction, we still have

L(zk+1, Ri) ∩ (O−k\top(R)) ⊆ L(zk+1, Rj) ∩ (O−k\top(R)) ⊆ L(zk+1, Rh) ∩ (O−k\top(R))

for all i ∈ I ′′1 and all h ∈ I2. Now, for all h ∈ I2 (other than j) change the order of objects in

the lower contour set L(zk+1, Rh) as follows: (i) objects that are in L(zk+1, Rh)\L(zk+1, Rj)

are ranked immediately below zk+1 (beyond that, their order does not matter), (ii) objects

that are in L(zk+1, Rh)∩L(zk+1, Rj) are ranked next, in the same order as by Rj (hence, with

objects in L(zk+1, Rh) ∩ L(zk+1, Rj) ∩ Zk at the bottom). By BI, we still have fjzk+1
(R) >

gjzk+1
(R). Moreover, since objects in Zk have only seen their rank lowered, we still have

R ∈ R6=k .

In a final reshuffling, let all agents in I ′′1 ∪ I2 push all objects in L(zk+1, Rj) ∩ top(R) to

the bottom. Again, we will call the new profile R. Since top ranked objects do not matter in

the rank-minimization of objects Zk, we still have R ∈ R 6=k , as well as fjzk+1
(R) > gjzk+1

(R)

(by BI). Hence there is some y, ranked below zk+1 by Rj, such that fjy(R) < gjy(R) – and

thus some i ∈ I with fiy(R) > giy(R). Moreover, by Lemma 1 and our induction hypothesis,

we have y ∈ L(zk+1, Rj) ∩ (O−k\top(R)).

If i ∈ I ′′1 ∪ I2 then there is y′ with yRiy
′, such that fiy′(R) < giy′(R) – and thus some

i′ ∈ I with fi′y′(R) > gi′y′(R). Moreover, by Lemma 1 and our induction hypothesis, we

have y′ ∈ L(y,Rj) ∩ (O−k\top(R)). Hence, y′ is ranked lower than y according to Rj.

If i′ ∈ I ′′1 ∪ I2 then there is y′′ with y′Ri′y
′′, such that fi′y′′(R) < gi′y′′(R) – and thus some

i′′ ∈ I with fi′′y′′(R) > gi′′y′′(R), and so on.

Since L(zk+1, Rj) ∩ (O−k\top(R)) is finite and we move down (according to Rj) in

each iteration, eventually we have exhausted the set. So eventually, there is some y∗ ∈

16



L(zk+1, Rj) ∩ (O−k\top(R)) and i∗ ∈ I ′1 such that fi∗y∗(R) > gi∗y∗(R).

If top(Ri∗) ∈ O−k, let i∗ exchange y∗ with his top ranked object in Ri∗ . since, as a result

of our changes to the initial preference profile R∗, we know that top(Ri∗) is not included in

j’s lower contour set of zk+1, this reduces the number of non-top objects ranked below zk+1

for j (as well as all i ∈ I ′′1 ) and it weakly decreases it for all in I2\{j}. Hence zk+1 was not

minimal in the initial R∗.

Finally, consider top(Ri∗) = zm ∈ Zk (i.e., m ≤ k). Since fi∗y∗(R) > gi∗y∗(R) there must

be some lower ranked ŷ such that fi∗ŷ(R) < gi∗ŷ(R). But then, consider the strict upper

countour set of ŷ, i.e. U(ŷ, R∗i ) = {o ∈ O : oP ∗i ŷ}. Push all elements in U(ŷ, Ri∗) ∩ Zk to

just above ŷ to arrive at R′. This preserves fi∗ŷ(R
′) < gi∗ŷ(R

′) (by SP). Moreover, since we

have pushed these objects below y∗ and y∗ ∈ O−k\top(R), we have reduced their rank. But

that contradicts R ∈ R6=k – which concludes the proof. �

5 Unacceptable Objects

So far, our results were confined to the no-disposal domain RN , where every agent finds all

objects acceptable. For the full domain WN being unassigned is not necessarily ranked at

the bottom of an agent’s preference. As this represents the outside option, we want to avoid

any agent to be assigned to an unacceptable object.

Given profile R, the random assignment p is individually rational if for all i ∈ N and

x ∈ O such that iPix we have pix = 0.13 Obviously, for the no-disposal domain any random

assignment is individually rational.

Given two random assignments p and q, we say that p object-by-object dominates q if for

all i ∈ N and all o ∈ O we have pio ≥ qio (with strict inequality holding for some j ∈ N and

some x ∈ O). Object-by-object domination makes no reference to a preference profile. Now

given profile R and two individually rational random assignments p and q, if p object-by-

object dominates q, then p stochastically R-dominates q and pi 6= qi for some i ∈ N . Note

that for this assertion we do not need to know the exact preferences over acceptable objects.

On the full domain we show that if one strategy-proof mechanism sd-dominates another

strategy-proof mechanism, then we can find a profile where object-by-object dominance

holds.

Lemma 6 (Object-by-object domination lemma) Let f and g be two individually ra-

tional and strategy-proof mechanisms on the full domain. If f sd-dominates g, then there

13For individual rationality its ex-ante and ex-post notions are equivalent.
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exists a profile R̂ where f(R̂) object-by-object dominates g(R̂).

Proof. As f �sd g, there exists R ∈ WN , i ∈ N and x ∈ O such that fix(R) > gix(R).

Without loss of generality, let x be the Ri-most preferred object where fi(R) and gi(R)

differ. Let R′i be such that {o ∈ O : oP ′i i} = B(x,Ri) and R′i|B(x,Ri) = Ri|B(x,Ri). Let

R′ = (R′i, R−i). By our choice of x and both strategy-proofness and individual rationality

of f and g, we obtain fix(R′) = fix(R) > gix(R) = gix(R′) and fio(R
′) = gio(R

′) for all

o ∈ O\{x}. If f(R′) object-by-object dominates g(R′), then we are done. Otherwise there

exist j ∈ N\{i} and y ∈ O such that fjy(R
′) < gjy(R

′). By individual rationality, yPjj. As

fj(R
′) sd-dominates gj(R

′), there exists z ∈ O such that zPjy and fjz(R
′) > gjz(R

′). But

then we repeat the same procedure for j as above and obtain the same conclusions for R′, j

and z. As at each iteration the set of acceptable objects of some agent shrinks and the set

of objects is finite, eventually we find R̂ such that f(R̂) object-by-object dominates g(R̂).�

The power of the object-by-object domination lemma is that for sd-dominance among

strategy-proof mechanisms on the full domain, we can always find a profile where one mech-

anism unambiguously dominates the other mechanism, i.e., knowing only which objects are

considered acceptable to agents. Lemma 6 does not hold for the no-disposal domain as, for

example, UA is strategy-proof and sd-dominated by RSD, but there exists no R ∈ RN such

that RSD(R) object-by-object dominates UA(R).

Erdil (2014) was the first one to take into account possible ex-ante waste of objects on

the full domain. Given profile R and random assignment p, p is ex-ante non-wasteful if there

exists no i ∈ N and x, y ∈ O ∪ {i} such that xPiy, piy > 0 and
∑

j∈N pjx < 1. In other

words, if agent i prefers x to y and is assigned with positive probability to y, then object

x is assigned with probability one. Obviously, on the no-disposal domain ex-post efficiency

implies ex-ante non-wastefulness as all objects are assigned with probability one. A weaker

version is ex-ante weak non-wastefulness of a random assignment p where there exists no

i ∈ N and x ∈ O such that xPii, pii > 0 and
∑

j∈N pjx < 1. In other words, if agent i

remains unassigned with positive probability, then all objects, which i finds acceptable, are

assigned with probability one.

The size of any random assignment p is the total amount of objects allocated by p, i.e.

|p| =
∑

o∈O
∑

i∈N pio. Now given two mechanisms f and g, f is of greater size than g if

|f(R)| ≥ |g(R)| for all R ∈ WN and |f(R̂)| > |g(R̂)| for some R̂.

Erdil (2014, Proposition 1) showed that no strategy-proof and ex-ante non-wasteful is

sd-dominated by another strategy-proof mechanism.14 Of course, this is not true for the

14Clearly any deterministic mechanism, which is non-wasteful and strategy-proof (e.g. serial dictatorship
mechanisms), is not sd-dominated by another strategy-proof mechanism.
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no-disposal domain as UA is ex-ante non-wasteful and strategy-proof, but sd-dominated by

RSD. By the same reasoning, Erdil (2014, Proposition 2) does not hold on the no-disposal

domain as he shows that if strategy-proof mechanism f sd-dominates another strategy-proof

mechanism g, then f must be of greater size than g.

The object-by-object domination lemma allows for alternative proofs of the important

Propositions 1 and 2 in Erdil (2014) (where in (1) below ex-ante weak non-wastefulness

suffices).

Corollary 1 Let f and g be two individually rational and strategy-proof mechanisms on the

full domain.

(1) If g is ex-ante weakly non-wasteful, then f cannot sd-dominate g.

(2) If f sd-dominates g, then f is of greater size than g.

Proof. In showing (1), suppose f �sd g. By Lemma 6 there exists R̂ such that f(R̂) object-

by-object dominates g(R̂). Then for some i ∈ N and x ∈ O we have fix(R̂) > gix(R̂). Since

fjx(R̂) ≥ gjx(R̂) for all j ∈ N , we obtain 1 ≥
∑

j∈N fjx(R̂) >
∑

j∈N gjx(R̂), i.e. object x is

not assigned with probability one under g(R̂). Since fio(R̂) ≥ gio(R̂) for all o ∈ O, we obtain

fii(R̂) < gii(R̂). As xP̂ii and
∑

j∈N gjx(R̂) < 1, this implies that g(R̂) is ex-ante weakly

wasteful, a contradiction.

In showing (2), from f �sd g and Lemma 6 there exists R̂ such that f(R̂) object-by-object

dominates g(R̂) which implies |f(R̂)| > |g(R̂)|. As for any R ∈ WN , f(R) sd-dominates g(R)

and both f(R) and g(R) are individually rational, we obtain |f(R)| ≥ |g(R)|. Hence, f is of

greater size than g. �

Most importantly, Erdil (2014, Proposition 3) showed that RSD is sd-dominated by a

strategy-proof mechanism with less ex-ante waste. Unfortunately, Erdil’s mechanism can-

not be adapted to satisfy bounded invariance (while continuing to sd-dominate RSD) in

a straightforward manner.15 Erdil (2014, Proposition 4) showed that any strategy-proof

mechanism, which sd-dominates RSD, must be ex-ante wasteful. The problems of (i) de-

termining the minimal waste in the class of strategy-proof mechanisms which sd-dominate

RSD and (ii) whether there exists a strategy-proof and bounded invariant mechanism, which

15Without going into details and using the same notation, consider the construction on p.158-159 or Erdil
(2014) (where all agents other than agent 1 always receive the same random assignment under g and RSD):
let R1 : ba; then R1 ∈ Rb

1 and g(R) gives ε-more for a to 1 (compared to RSD); now let Q2 : cab and by BI,
g(Q2, R−2) would have to continue to give ε-more of a to 1 (compared to RSD) and give the same of b to 1
under g and RSD; and then for Q1 : ab we obtain by SP that g(Q1, Q2, R3, R4) has to give more to a and b
to 1 than under RSD, but this is a contradiction to g �sd RSD and |RSD(Q1, Q2, R3, R4)| = 1.
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sd-dominates RSD on the full domain remain open. Lemma 6 might offer a tool for resolving

those questions.

6 Conclusion

Instead of reporting ordinal preferences, one might ask agents to report cardinal utility func-

tions. Then agents compare random assignments via their expected utilities. We implicitly

assume ordinality of mechanisms, i.e. the chosen random assignment is the same across car-

dinal utility profiles which induce identical ordinal preferences. For applications ordinality

is a natural requirement as it facilitates reporting, given that agents might be unable to

determine their exact utilities but are able to compare individual objects. Of course, allow-

ing cardinal reports but imposing ordinality gives us the same result. In particular, in such

contexts RSD is not dominated by any mechanism satisfying ordinality, strategy-proofness

and bounded invariance. This is a positive answer on the no-disposal domain to the open

question by Zhou (1990), and who showed that in the cardinal framework there exists no

mechanism satisfying equal treatment of equals, strategy-proofness and ex-ante efficiency.

The latter postulates always to choose a random assignment which is not Pareto dominated

in terms of expected utility by any other one. It is clear that in the cardinal context the

properties of ordinality, equal treatment of equals and ex-ante efficiency are incompatible: as

a simple example, let N = {1, 2, 3}, O = {a, b, c}, u1 = (u1a, u1b, u1c) = (1, 1− ε, 0) = u2 and

u3 = (1, ε, 0) where ε > 0 is small; when all agents have utility function u3 equal treatment

of equals requires each agent to obtain a with probability one third, and similarly, when

all agents have utility function u1 equal treatment of equals requires each agent to obtain c

with probability one third; now ordinality requires for the profile (u1, u2, u3) that each agent

obtains any object with probability 1
3
, which is dominated in terms of expected utility by

assigning agent 3 object b with probability one, and assigning agents 1 and 2 objects a and

c each with probability one half.

The last example shows the disrelation of Zhou’s result and the impossibility results in

the ordinal framework with respect to efficiency, equity and strategy-proofness. Ordinality,

sd-efficiency and envy-freeness are compatible as PS satisfies all those properties. As soon as

strategy-proofness is added, we obtain an incompatibility, which is robust when weakening

sd-efficiency to ex-post efficiency, unanimity and respectively, to ex-ante non-wastefulness

on the full domain, or envy-freeness to equal treatment of equals.

The question whether RSD is characterized by ex-post efficiency, equal treatment of

equals and strategy-proofness remains open. A partial answer has been recently found by
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Brandt et al. (2023) for five agents via computational methods.16 However, an affirmative

answer to this question remains elusive for an arbitrary number of agents. Pycia and Troyan

(2023b) recently showed that RSD is characterized by symmetry, efficiency, and obvious

strategyproofness among all mechanisms that, roughly speaking, can be represented as a

symmetrization of an extensive-form game where in each stage, one agent is allowed to pick

one house from a subset of the remaining houses or “pass” on this opportunity. For the

assignment of one object and the full domain, Ehlers (2002) characterized the uniform ran-

dom dictatorship mechanism with ex-post efficiency, envy-freeness and strategy-proofness.

Another strand of the literature studies large markets. Here one may make markets large in

two different ways: either by keeping the set of object types fixed and adding copies to match

an increasing number of agents, or by considering economies with a large number of distinct

agents and distinct objects. First, when we add object copies, Liu and Pycia (2016) have

shown in their Theorem 2 that any two symmetric and “regular”17 mechanisms, which are

asymptotically strategy-proof and asymptotically efficient, coincide asymptotically, i.e., they

choose the same allocations in the limit. For instance, this implies asymptotic coincidence

of RSD18 and PS (which was first shown by Che and Kojima (2010)), and that RSD and,

respectively, PS satisfy ex-post efficiency and asymptotically both strategy-proofness and

envy-freeness.19 In some sense, then it does not matter in the large whether we choose RSD

or PS (or any other mechanism satisfying the above three properties). However, continued

discussions in real-life markets show the importance of the choice of the random assign-

ment mechanism to be implemented. As we have shown, RSD cannot be improved in an

unambiguous way while maintaining our two basic properties.
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