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Abstract

Generalized linear models (GLMs) form one of the most popular classes of models in statis-
tics. This class contains a large variety of commonly used regression models, such as normal
linear regression, logistic regression and gamma GLMs. In GLMs, the response variable
distribution defines an exponential family. A drawback of these models is that they are
non-robust against outliers. For models like the normal linear regression and gamma GLMs,
the non-robustness is a consequence of the exponential tails of the densities. The difference
in trends in the bulk of the data and the outliers yields skewed inference and prediction.

To our knowledge, there is no Bayesian robust approach specifically for GLMs. The most
popular method is frequentist; it is that of Cantoni and Ronchetti (2001). Their approach
is to adapt the robust M-estimators for linear regression to the context of GLMs. However,
their estimator is derived from a modification of the derivative of the log-likelihood, instead
of from a modification of the likelihood (as with robust M-estimators for linear regression).
As a consequence, it is not possible to establish a clear correspondence between the modified
function to optimize and a model. Having a robust model has two advantages. First, it
allows for an understanding and an interpretation of the modelling. Second, it allows for both
frequentist and Bayesian analysis. The method we propose is based on ideas from Bayesian
robust linear regression. We adapt the approach proposed by Gagnon et al. (2020), which
consists of using a modified normal distribution with heavier tails for the error term. In our
context, the distribution of the response variable is a modified version where the central part
of the density is kept as is, while the extremities are replaced by log-Pareto tails, behaving
like (1/|x|)(1/ log |x|)λ. The focus of this thesis is on gamma GLMs. The performance is
measured both theoretically and empirically, with an analysis of hospital costs data.

Keywords: Bayesian statistics; heavy-tailed distributions; outlier detection;
outliers; Pearson residuals.
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Résumé

Les modèles linéaires généralisés (GLMs) constituent l’une des classes de modèles les plus
populaires en statistique. Cette classe contient une grande variété de modèles de régression
fréquemment utilisés, tels que la régression linéaire normale, la régression logistique et les
gamma GLMs. Dans les GLMs, la distribution de la variable de réponse définit une famille
exponentielle. Un désavantage de ces modèles est qu’ils ne sont pas robustes par rapport
aux valeurs aberrantes. Pour les modèles comme la régression linéaire normale et les gamma
GLMs, la non-robustesse est une conséquence des ailes exponentielles des densités. La dif-
férence entre les tendances de l’ensemble des données et celles des valeurs aberrantes donne
lieu à des inférences et des prédictions biaisées.

A notre connaissance, il n’existe pas d’approche bayésienne robuste spécifique pour les
GLMs. La méthode la plus populaire est fréquentiste ; c’est celle de Cantoni and Ronchetti
(2001). Leur approche consiste à adapter les M-estimateurs robustes pour la régression li-
néaire au contexte des GLMs. Cependant, leur estimateur est dérivé d’une modification de la
dérivée de la log-vraisemblance, au lieu d’une modification de la vraisemblance (comme avec
les M-estimateurs robustes pour la régression linéaire). Par conséquent, il n’est pas possible
d’établir une correspondance claire entre la fonction modifiée à optimiser et un modèle. Le
fait de proposer un modèle robuste présente deux avantages. Premièrement, il permet de
comprendre et d’interpréter la modélisation. Deuxièmement, il permet l’analyse fréquentiste
et bayésienne. La méthode que nous proposons s’inspire des idées de la régression linéaire ro-
buste bayésienne. Nous adaptons l’approche proposée par Gagnon et al. (2020), qui consiste
à utiliser une distribution normale modifiée avec des ailes plus relevées pour le terme d’er-
reur. Dans notre contexte, la distribution de la variable de réponse est une version modifiée
où la partie centrale de la densité est conservée telle quelle, tandis que les extrémités sont
remplacées par des ailes log-Pareto, se comportant comme (1/|x|)(1/ log |x|)λ. Ce mémoire
se concentre sur les gamma GLMs. La performance est mesurée à la fois théoriquement et
empiriquement, avec une analyse des données sur les coûts hospitaliers.

Mots-clés : Statistiques bayésiennes ; distributions à ailes relevées ; détection
des valeurs aberrantes ; valeurs aberrantes ; résidus de Pearson.
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Introduction

Generalized linear models (GLMs) are regression models introduced by Nelder and
Wedderburn (1972). They generalize normal linear regression, i.e. linear regression with
normally distributed errors, in the following way: in normal linear regression, the dependent
variable is modelled by using a normal distribution with parameters that are functions of
explanatory variables; with GLMs, the distribution of the dependent variable defines an
exponential family, which is the case for the normal distribution, and parameters of the
assumed distribution depend on the explanatory variables as with normal linear regression.
As a result, GLMs can handle both discrete and continuous responses, with distribution
shapes that offer flexibility regarding in particular the skewness. A specificity of GLMs is
that the expectation of the response variable is linear in the explanatory variables, up to a
transformation. GLMs are among the most widely used classes of statistical models, with
applications ranging from actuarial science (Goldburd et al., 2019) to medicine (Casals
et al., 2014). GLMs indeed cover many popular statistical models such as, as mentioned,
the classical linear regression for normally distributed responses, logistic regression for
binary ones, Poisson regression for count data, gamma regression for right-skewed positive
data, plus many other statistical models obtained through its general model formulation.
For an excellent reference about GLMs, their applications and features, we refer readers to
the book of Dobson and Barnett (2018).

The use of GLMs in actuarial fields can be traced back to the early 1980s. Indeed,
McCullagh and Nelder (1983) give many examples of the fitting of GLMs to insurance data,
such as average claim costs data from a motor insurance portfolio. In the insurance industry,
levels of interest and rates of adoption for this class of models have increased to the point
where it now seems as though GLMs are near-ubiquitous (Goldburd et al., 2019). Among all
the GLMs, the gamma and inverse Gaussian GLMs, meaning that the dependent variable
has a gamma or inverse Gaussian distribution, are commonly used for modelling insurance
claim severity due to the similar characteristics of the PDFs with those of the observed
data. The PDFs of these two distributions are both right-skewed, have a sharp peak with
an exponential right tail, and are supported on the positive real numbers. Compared to
the gamma, inverse Gaussian has a sharper peak at a positive value and a wider tail, and



is therefore appropriate for situations where the skewness of the severity curve is expected
to be somewhat extreme (Goldburd et al., 2019). Gamma distribution can have a peak
at a positive real value or at 0, whereas the mode is always positive in inverse Gaussian
distribution. Thus, the shape parameter of the gamma distribution allows the model to
fit different scenarios. Our understanding is that gamma GLMs are preferred in typical
situations in practice. It can for instance be used by an insurance company to determine
the factors that contribute the most to the claim size and how they influence the latter, and
to predict claims based on a given set of explanatory variables, ultimately leading to the
pricing of insurance products.

Insurance companies, like any companies exploiting data for commercial use on a daily
basis, are however not shielded from issues such as data quality. Also, extreme claims are
often present in their data bases. Both issues have a negative impact on the conclusions drawn
and predictions made from statistical analyses. This is due to the non-robustness of the
regression models typically employed, such as gamma GLMs, against outliers, and therefore
against data with gross errors and extreme claims. More specifically, the non-robustness is
a consequence of the exponential tails of those models, combined with the difference in the
trends in the bulk of the data and the outliers. When the likelihood function is evaluated at
parameter values reflecting the trends in the bulk of the data, the exponential tails penalize
heavily those values for the outliers, diminishing significantly the likelihood function value.
The analogous phenomenon arises when the likelihood function is evaluated at parameter
values reflecting the trends in the outliers: those values are heavily penalized for the bulk
of the data. All this makes values in between those mentioned more likely, representing an
undesirable compromise. The resulting maximum likelihood estimates are thus consistent
with neither the bulk of the data nor the outliers. Because the model adjusts itself for the
outliers, another undesirable consequence is that identifying outliers using standard measures
such as Pearson residuals (which will be defined in detail in Chapter 1) may be ineffective.
This is called the masking effect (Hadi and Simonoff, 1993), as outliers may mask one another
due to an adjustment of the model. Moreover, univariate analyses of extreme values may
not allow to deal with the problem, because outliers here are considered as outliers with
respect to the model employed, i.e. data points that are unlikely under that model when
using parameter values reflecting the trends in the bulk of the data. A data point can thus
be an outlier with respect to the model without having any extreme values in the explanatory
or response variables.

All that motivates the use of robust GLMs in situations where one wants protection
in case the data set to be analysed contains outliers. The non-robustness properties of
classical maximum likelihood estimators in the context of GLMs have been studied by se-
veral authors. Pregibon (1982) proposed a resistant fitting method for logistic regression,
by applying different loss functions at the step of estimation. Stefanski et al. (1986) and
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Kunsch et al. (1989) studied optimally bounded score functions for estimating parameters
in GLMs. However, all the aforementioned methods focus particularly on the logistic re-
gression. Cantoni and Ronchetti (2001) studied robust estimators for GLMs based on the
notion of quasi-likelihood, and their approach is to adapt the robust M-estimators for linear
regression of Huber (1973). Their approach is valid for any GLM, and is also the most
commonly used approach for robust GLMs. These are all, of course, frequentist approaches.
On the Bayesian side, we did not find any robust approach specifically for GLMs. A general
approach is that of Bissiri et al. (2013) which introduces another statistical paradigm based
on the premise that the model assumed is incorrect, but we consider it as another type of
approach and will not focus on such approaches in the current document. Bayesian robust
approaches typically consist in adapting the original model to the presence of outliers by
replacing the distribution by one that is similar, but with heavier tails. A famous example
is a robust Bayesian linear regression where the normal distribution of the errors is replaced
by a Student distribution (West, 1984).

Frequentist and Bayesian robust methods are often seen as being fundamentally different.
In former methods, the loss function to be minimized or the likelihood function to be maximi-
zed at the step of estimation is modified for the purpose of diminishing the impact of outliers,
whereas in the latter, the original PDF is directly replaced by another density which, while
being as similar as possible to the original one, has heavier tails. Interestingly, these two
approaches are connected. Indeed, the modified loss function in linear regression is often
quadratic below a certain threshold, but then grows more slowly beyond that threshold. As
shown in detail in Chapter 4, this can be seen as using a modified normal PDF with tails that
have been replaced by heavier ones. With the approach of Cantoni and Ronchetti (2001)
applicable for distributions which have tails for GLMs, it is not possible to establish a clear
correspondence between the modified function to optimize for estimation and a model. This
is also explained in Chapter 4.

The approach of using a modified normal PDF with tails that have been replaced by
heavier ones has been proposed by Desgagné (2015) in a context of Bayesian location-scale
models. The PDF used is called log-Pareto-tailed normal (LPTN) distribution because the
central part of this continuous density is that of the standard normal and the tails are log-
Pareto, meaning that they behave like (1/|x|)(1/ log |x|)λ, hence is name. This distribution
belongs to the class of log-regularly varying distributions introduced in Desgagné (2015).
This approach was subsequently adapted to the context of Bayesian linear regression by
Gagnon et al. (2020). The authors assumed that the distribution of the error was LPTN
instead of normal. Estimation of parameters based on this model was shown to be more
robust than the Student one; the latter is the most popular Bayesian solution for robust
linear regression.

5



With this project, we take one step further by adapting that approach to GLMs, which
means that the distribution of the dependent variable is a modified version where the central
is kept as is, while the extremities are replaced by log-Pareto tails. We focus on gamma
GLMs throughout the document, but our approach remains valid for any GLM based on
a distribution with tails, whether it is continuous or discrete, such as inverse Gaussian or
Poisson GLMs. Our approach has two advantages over the most popular approach to robust
GLMs of Cantoni and Ronchetti (2001):

• firstly, we have a precise characterization of the model, which is important from a
modelling point of view;

• secondly, given that the approach is a direct modification of the distribution of the
dependent variable, it can be used for both frequentist and Bayesian analyses.

We now present how the document is organized. We start this document by introducing,
in Chapter 1, the general ideas of GLMs, gamma GLMs in particular, as well as estimation
and inference for GLMs. In Chapter 2, we present a data set of health care expenditure at a
hospital in Lausanne and an analysis based on (non-robust) gamma GLMs. Such analysis can
be conducted by actuaries in insurance companies to get insights regarding the key factors
influencing the costs. This data set contains several outliers, and with this example, issues
mentioned earlier regarding non-robust GLMs become apparent. In particular, there is an
evident masking effect which has a significant negative impact on the outlier detection. In
Chapter 3, we present in detail the approach of Cantoni and Ronchetti (2001) and apply it
to analyse the same data set as in Chapter 2. Presenting their approach is useful to compare
it with ours. It helps to highlight in Chapter 4 that their modified function cannot be clearly
connected to a model, because the function that they modified to gain in robustness is the
derivative of the log-likelihood, instead of the log-likelihood, as with robust linear regression.
In Chapter 4, we also explain how some frequentist robust linear regression approaches can
be connected to the use of heavy-tailed distributions. This motivates the introduction of
our method in Chapter 5. In Chapter 5 we also explain how to perform inference using our
method, which is applied to analyse the data set mentioned earlier. Theoretical results are
also presented: we present sufficient conditions under which the posterior distribution for a
Bayesian analysis is proper, and results that allow to characterize the asymptotic behaviour
of the likelihood function and posterior distribution as outliers move away from the bulk of
the data. We also present simulation results that support the latter results.
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Chapter 1

Generalized Linear Models

We start this chapter in Section 1.1 with a general definition of GLMs. We present three
components characterizing this class of models:

• random component: a response variable that is assumed to have a distribution defi-
ning an exponential family;

• linear predictor: a set of explanatory variables and regression coefficients that toge-
ther produce a linear predictor;

• link function: a function which links previous components together.
We then have a closer look in Section 1.2 at the special case of gamma GLMs, representing, as
mentioned in the introduction, the focus of our work. In Section 1.3, inference and estimation
methods for GLMs from both frequentist and Bayesian perspectives are explained.

1.1. General Definition

Proposed by Nelder and Wedderburn (1972), GLMs were created out of a desire to bring
under one umbrella a wide variety of regression models that span a spectrum from normal
linear regression to logistic regression. The response variable follows no longer strictly a
Gaussian distribution, such as with normal linear regression, but any distribution defining
an exponential family, such as a Poisson distribution, a Binomial distribution, a gamma
distribution, etc. In addition to the diversity of the distribution of the response, the relation
between the response and explanatory variables is not necessarily linear in GLMs; it is
determined through a link function l(·) chosen by users. This function often relates non-
linearly a linear combination of the explanatory variables to the mean of the distribution.
Additionally, appropriate link functions have inverse functions which allow to map such a
linear combination taking values on the real line to an interval corresponding to the support of
the distribution of the response, so that predictions belong to the support. For instance, the
exponential function (the inverse of the logarithmic link function) is used in gamma GLMs to
map the linear combination to a positive number. Besides, certain GLMs, such as gamma and
inverse Gaussian GLMs, take heteroscedasticity into account through a dispersion parameter,



allowing the variance of the response to vary with the explanatory variables. In brief, GLMs
greatly improve the modelling flexibility over normal linear regression. Therefore, there are
considerably more types of data that can be dealt with by using GLMs than normal linear
regression.

Let us now present a formal definition of GLMs. Let y ∈ R be a random variable
representing the random variable that we are interested in modelling, called the response in
our context. A GLM is such that the distribution of y defines an exponential family, i.e. its
PDF or probability mass function (PMF) is such that

fθ,ϕ(y) = exp
{
yθ − b(θ)
a(ϕ) + c(y, ϕ)

}
, (1.1.1)

where θ ∈ R is the canonical parameter, ϕ > 0 is a dispersion parameter, and a(·), b(·)
and c(·) are some specific functions that define the distribution of y and are seen to satisfy
regularity conditions. Typically, a(ϕ) = ϕ or a(ϕ) = ϕ/w, where the weight w > 0 is
usually known. For example, with binomial distributions, the weight w is the number of
independent experiments. For an exponential family, the expected value is E[y] = b′(θ) =: µ
and the variance is Var[y] = a(ϕ)b′′(θ), where b′ and b′′ denote the first and second derivatives
of b, respectively. The term b′′(θ) = b′′[(b′)−1(µ)] = v(µ) represents what is called the
mean-variance relationship, where (b′)−1 denotes the inverse function of b′. The function v

determines the effect of the mean on the variance.
In a GLM, the information carried by the explanatory variables is incorporated by setting

l(µ) =: η := xT β, where η is called the linear predictor in our context, x := (x1, . . . , xp)T ∈
Rp is a vector of p explanatory variables, and β := (β1, . . . , βp)T ∈ Rp is the vector of regres-
sion coefficients. Regarding the explanatory variables, x1 = 1 to introduce an intercept in
the model; other explanatory variables can be quantitative, qualitative, or mixed, in the case
of an interaction term that is the product of a quantitative variable and a qualitative factor.
As mentioned, the function l is called the link function in our context. It satisfies the follo-
wing condition: strictly monotone and differentiable. For example, the link is often chosen
to be the identity when the distribution of the response is normal, and to be the logarithm
when the distribution of the response is Poisson or gamma. It is named canonical link when
l(µ) = (b′)−1(µ), thus the resulting GLM assumes that µ = l−1(θ) when this link function
is applied. We can obtain benefits of convenient mathematical and algorithmic properties
from using the canonical link in modelling, as will be explained in the Section 1.3.1. Even if
convenient, this link can be replaced with a different one for the purpose of practicality or
enhanced interpretation. For instance, in gamma GLMs, the logarithmic link log(µ) is prefe-
rable to the canonical link −1/µ. The predicted value of a response using the former link is
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always positive, which corresponds to the domain of gamma observations. Indeed, the pre-
dicted value is µ̂ = exp(xT β̂), where µ̂ and β̂ are mean and regression coefficient estimates,
respectively. However, if the canonical link is applied, the predicted value is µ̂ = −1/(xT β̂),
which can be negative. In terms of interpretation, the log link yields a multiplicative effect
of the explanatory variables (other than the intercept) with respect to what can be seen as a
base rate, exp(β1), which is the value when all explanatory variables (except the intercept)
are null. This interpretation makes sense when all explanatory variables are categorical (0–1)
variables or standardized continuous variables, given that a departure from 0, which can be
seen as a base value, results in a multiplicative adjustment of the base rate. For example, let
x2 be the sex of a person, and y be the cost of stay at a certain hospital. Considering that
x2 = 0 signifies that the person is a female, the expected cost of stay for a man is the base
rate exp(β1) that is adjusted by multiplying by a factor of exp(β2), if all other explanatory
variables are null. This interpretation is practical in actuarial science, and in particular in
insurance pricing.

Notice that with GLMs, we cannot in general write y as with the traditional linear
regression, i.e. y = xT β + ϵ, where ϵ is a zero mean error. We make instead assumptions on
the distribution of y whose parameters depend on xT β, allowing us to break away from the
assumption of additive, zero mean errors model. Nonetheless, we can still recover the normal
linear regression model by letting y ∼ N (µ, σ2), with an identity link l(µ) = µ = xT β.

In summary, in any GLM, the distribution of the response variable y defines an expo-
nential family with θ that depends on x and β and that controls the mean of the response,
and with ϕ that controls the variance. The explanatory variables x are considered known
and fixed; the dispersion parameter ϕ is known in certain distributions such as Bernoulli
and Poisson, but unknown and to be estimated in other distributions such as Gaussian
and gamma; regression coefficients β are parameters to be estimated. Although GLMs are
flexible, they still have limitations:

• the distribution of the response must define an exponential family, meaning that
distributions not satisfying this are excluded, such as the Student distribution, the
hypergeometric distribution and the log-normal distribution;

• the predicted value is linear in the explanatory variables, up to a transformation, i.e.
l(µ̂) = xT β̂;

• the estimation is sensitive to outliers if no modification to the model or the estimation
procedure is applied.

The latter issue is the focus of our document.

1.2. Gamma GLMs

In this document, we are particularly interested in gamma GLMs, as this is a model
commonly used in actuarial science, especially in insurance pricing. We will show through a
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data analysis in the next chapter that it is non-robust to outliers. We will propose a slight
modification to the model that will allow to gain significantly in robustness. The approach
will be seen to be valid for other GLMs with distributions having tails, such as inverse
Gaussian and Poisson GLMs.

Recall the PDF of a gamma distribution:

fα,β(y) = βα

Γ(α)y
α−1 exp(−βy), y > 0,

where α > 0 and β > 0 are shape and rate parameters, respectively, and Γ is the gamma
function. We now rewrite the gamma PDF using the reparametrization µ = α/β and ν = α:

fµ,ν(y) = exp
{

−y/µ− log µ
1/ν + (ν − 1) log y + ν log ν − log(Γ(ν))

}
. (1.2.1)

We thus have that the gamma distribution defines an exponential family with:

θ = −1
µ
, b(θ) = log

(
−1
θ

)
, ϕ = a(ϕ) = 1

ν
,

c(y, ϕ) =
(

1
ϕ

− 1
)

log y + 1
ϕ

log
(

1
ϕ

)
− log

Γ
(

1
ϕ

) .
With this distribution, E[y] = b′(θ) = µ and Var[y] = a(ϕ)b′′(θ) = µ2/ν. We notice that
the standard deviation of a random variable with a gamma distribution is proportional to
its mean (equal, up to a factor 1/

√
ν).

Information carried by the explanatory variables are incorporated in the model by setting
l(µ) = η = xT β. As mentioned previously, the logarithmic link l(µ) = log(µ) is more
appropriate than the canonical link for gamma GLMs. The expected value with this link
function is µ = exp(xT β). The gamma PDFs in form of (1.2.1) and the logarithmic link will
be used throughout this document.

1.3. Estimation and Inference

In this section, we explain how to estimate GLMs from data and how to perform inference.
We first present in Section 1.3.1 a statistical framework for GLMs, and then derive the
likelihood function. In Section 1.3.2, we start with the likelihood estimating equations for
the maximum likelihood estimators (MLEs), and proceed with frequentist estimation and
inference. In particular, we present two numerical methods for finding the MLEs, and a type
of residual which is essential for the robust approaches that will be used in the following
chapters. Next, we present in Section 1.3.3 a Bayesian perspective for parameter estimation
and inference. Finally, in Section 1.3.4, we discuss estimation for a special case of gamma
GLMs in particular.
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1.3.1. Statistical Framework and Likelihood Function

We consider that we have access to a data set of the form (xi, yi)n
i=1, where y1, ..., yn are

n independent realizations of the response, each associated with a given set of explanatory
variable data points xi. With some abuse of notation, we denote by y1, . . . , yn the random
variables as well. We want to analyse this data set by using a GLM (which can be any GLM,
not necessarily a gamma GLM for now). The PDF or PMF associated to the GLM evaluated
at yi is thus such that:

fβ,ϕ(yi) = exp
{
yiθi − b(θi)
ai(ϕ) + c(yi, ϕ)

}
, (1.3.1)

where θi = (b′)−1 ◦ l−1(xT
i β) (recall that for an exponential family, µ = b′(θ) and l(µ) = xT β,

using the notation of Section 1.1), and ai(ϕ) = ϕ or ai(ϕ) = ϕ/ωi where wi is considered to
be a known weight. Note that in the first case, ai(ϕ) can be viewed as being equal to ϕ/ωi

but with ωi = 1. We define the i-th linear predictor as ηi := xT
i β, and the expected value

as µi = l−1(ηi).
The likelihood and log-likelihood functions are central to both frequentist and Bayesian

estimation. We thus present these functions here and then present frequentist and Bayesian
estimation in Section 1.3.2 and Section 1.3.3, respectively. The likelihood function is defined
as

L(β, ϕ) =
n∏

i=1
fβ,ϕ(yi) =

n∏
i=1

exp
{
yiθi − b(θi)
ai(ϕ) + c(yi, ϕ)

}
.

In practice, it is often more convenient to work with the log-likelihood function instead of
directly with the likelihood function. Indeed, by taking the log-likelihood, we end up with
a sum of terms which allows to calculate derivatives more easily than a product of terms.
Note that maximizing the likelihood is equivalent to maximizing the log-likelihood, given
that the log function is monotonically increasing. Another reason why we work with the
log-likelihood instead of the likelihood is that with many observations, the likelihood can
become extremely small (or large) such that we will run out of the floating point precision
very quickly, yielding easily an underflow (or overflow). A problem of underflow or overflow
occurs when a number becomes too small or too large to be processed or stored in allocated
space correctly in the computer, meaning that significant rounding errors are introduced.
This problem is alleviated by working on the log scale. The log-likelihood function is defined
as

ℓ(β, ϕ) = log
(
L(β, ϕ)

)
=

n∑
i=1

{
yiθi − b(θi)
ai(ϕ) + c(yi, ϕ)

}
=

n∑
i=1

ℓi(β, ϕ), (1.3.2)
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where ℓi(β, ϕ) is the contribution of one data point to the likelihood, i.e.

ℓi(β, ϕ) := yiθi − b(θi)
ai(ϕ) + c(yi, ϕ).

If the link function is canonical, an advantage is that a sufficient statistic for β exists.
Indeed, in this case, θi = xT

i β, and when a(ϕ) is a fixed constant, the part of the log-likelihood
involving both the data and the model parameters is

n∑
i=1

yi

(
xT

i β
)

=
n∑

i=1
yi

 p∑
j=1

βjxij

 =
p∑

j=1
βj

 n∑
i=1

yixij

 .
The sufficient statistic for {β1, . . . , βj} is thus {∑n

i=1 yixij, j = 1, . . . , p}. For the purpose of
estimating β, the sufficient statistic contains all relevant information.

1.3.2. Frequentist Estimation

Frequentist estimation is commonly performed using the maximum likelihood method. In
order to maximize the likelihood, or equivalently, the log-likelihood, we can obtain likelihood
estimating equations by taking the derivative of the log-likelihood with respect to β and
ϕ if the log-likelihood function is differentiable in β and ϕ, and by setting these partial
derivatives to 0. Typically with GLMs, the log-likelihood is strictly concave, implying that
the identified root of each likelihood estimating equation yields indeed a global maximum.
These equations regarding β are defined as

∂ℓ(β, ϕ)
∂βj

=
n∑

i=1

∂ℓi(β, ϕ)
∂βj

= 0, j = 1, . . . , p. (1.3.3)

To differentiate ℓi, we use the chain rule,
∂ℓi(β, ϕ)
∂βj

= ∂ℓi(β, ϕ)
∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

.

Since we have
∂ℓi(β, ϕ)
∂θi

= yi − b′(θi)
ai(ϕ) = yi − µi

ai(ϕ) ,

∂θi

∂µi

= 1
b′′(θi)

= ai(ϕ)
[yi]

,

∂µi

∂ηi

= 1
l′(µi)

,

∂ηi

∂βj

= xij,

the equation (1.3.3) becomes
∂ℓ(β, ϕ)
∂βj

=
n∑

i=1

(yi − µi)xij

Var[yi]l′(µi)
= 0, j = 1, . . . , p. (1.3.4)
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Recall that Var[yi] = ai(ϕ)v(µi). As mentioned, ai(ϕ) is typically ϕ/wi and we will consider
that it is the case here to simplify the explanation. As ϕ does not depend on i, the disper-
sion parameter can be cancelled out in these estimating likelihood equations, thus will not
influence the estimation of β. More precisely, regardless of the value of ϕ, the likelihood is
maximized at β = β̂ which is the solution of (1.3.4). Therefore, to jointly maximize ℓ(β, ϕ)
with respect to β and ϕ, we can first find β̂ and then maximize ℓ(β̂, ϕ) with respect to ϕ.

The solution of β has an analytic form in very particular cases, such as a Gaussian
distribution with an identity link, which corresponds to the OLS solution for classical linear
regression. For the rest not having an analytic solution, numerical methods are commonly
used to solve the equation (1.3.4) and provide estimation of model parameters. There are
two numerical methods with iterative process that are classical in frequentist estimation for
GLMs. They are Newton–Raphson method and Fisher scoring method. The latter is the
most commonly used for GLMs estimation. It is, for instance, used in R (R Core Team,
2021), command glm. It can be seen as a modification of Newton–Raphson method. We now
briefly describe Newton–Raphson method and then explain how Fisher scoring differs from
it.

The Newton–Raphson method is an iterative method for solving nonlinear equations. One
of its applications is to find the maximum of a function, as in our case of finding MLE for
β in GLMs. It begins with an initial approximation β(0) for the solution, then it obtains
a quadratic approximation by approximating the function in a neighbourhood of the initial
approximation by a Taylor polynomial of second-degree. Next, it finds the location of that
polynomial’s maximum value, which becomes the initial point β(1) for the next iteration.
This step is repeated until the sequence of approximations converges.

In the context of GLMs, the log-likelihood approximated by the quadratic polynomial at
the t-th iteration is given by

ℓ
(
β(t+1)

)
≈ ℓ

(
β(t)

)
+ U

(
β(t)

) (
β(t+1) − β(t)

)
+ 1

2
(
β(t+1) − β(t)

)T
H
(
β(t)

) (
β(t+1) − β(t)

)
,

(1.3.5)

where U(β(t)) is the score vector evaluated at β(t), and H(β(t)) is the Hessian matrix
evaluated at β(t). We wrote ℓ(β), instead of ℓ(β, ϕ) to simplify the notation, and also
because here we consider that ϕ is fixed to an arbitrary value that does not influence the
outcome of the optimization process. The score vector is the gradient of the log-likelihood
function with respect to the parameter vector. In our context, it is defined as

U(β) =
(
∂ℓ(β)
∂β1

,
∂ℓ(β)
∂β2

, . . . ,
∂ℓ(β)
∂βp

)T

.

The Hessian matrix is a square matrix of second-order partial derivatives with respect to the
parameter vector. In our context, it is defined as
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H(β) =



∂ℓ2(β)
∂β2

1

∂ℓ2(β)
∂β1∂β2

. . .
∂ℓ2(β)
∂β1βp

∂ℓ2(β)
∂β2∂β1

∂ℓ2(β)
∂β2

2
. . .

∂ℓ2(β)
∂β2βp

... ... . . . ...

∂ℓ2(β)
∂βpβ1

∂ℓ2(β)
∂βp∂β2

. . .
∂ℓ2(β)
∂β2

p



.

To maximize the equation (1.3.5), we differentiate with respect to β(t+1) and set the
derivative equal to 0. We obtain U

(
β(t)

)
+ H

(
β(t)

) (
β̂(t+1) − β(t)

)
= 0. If H

(
β(t)

)
is

invertible, the solution for β(t+1) is thus

β̂(t+1) = β(t) −
[
H
(
β(t)

)]−1
U
(
β(t)

)
.

The expression above is the iterative formula for Newton–Raphson method. We consider
that the algorithm has converged when ||β(t+1) − β(t)|| < δ or

∣∣∣∣∣∣U (
β(t)

) ∣∣∣∣∣∣ < δ, where δ is a
stopping criterion chosen by users. If the Hessian matrix is invertible, which is typically the
case with GLMs, the estimates given by Newton–Raphson method converge to the MLE.

Another method for solving likelihood equations is called the Fisher scoring method.
Sometimes, the calculation of the Hessian matrix can be quite complicated in Newton–
Raphson method. The idea of the Fisher scoring method is to use the so-called Fisher
information (or expected information) matrix to replace the Hessian matrix, when the former
is easier to calculate. It is easier to calculate the Fisher information in the context of GLMs.
Let us define the Fisher information for β, denoted by I(β), with entries

Ijk(β) = E
[
∂ℓ(β)
∂βj

∂ℓ(β)
∂βk

]
=

n∑
i=1

E

(∂ℓi(β)
∂βj

)(
∂ℓi(β)
∂βk

)
=

n∑
i=1

E

( yi − µi

Var[yi]

)2 (
∂µi

∂ηi

)2

xijxik

 =
n∑

i=1

xijxik

(
1

Var[yi]

)(
∂µi

∂ηi

)2
 . (1.3.6)

With GLMs, the Fisher information is equal to the expected value of the observed infor-
mation, which is the negative of the Hessian matrix. This is in fact the case for statistical
models that are considered to be regular enough (i.e. that satisfy some regularity conditions),
which is the case for GLMs.

As shown in (1.3.6), I(β) can be written as I(β) = XT W (β)X, where X is the
design matrix, and W (β) is a n × n diagonal matrix with diagonal elements Wii(β) =
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(
1

Var[yi]

)(
∂µi

∂ηi

)2

. The iterative formula for Fisher scoring method is

β(t+1) = β(t) −
[
I(β(t))

]−1
U
(
β(t)

)
. (1.3.7)

The Fisher information, defined as I(β) = E

(∂ℓ(β)
∂β

)(
∂ℓ(β)
∂β

)T
 is positive semi-

definite by design. If the design matrix is of full rank, and ∂µi/∂ηi is non-null for all i, which
are typically the case with GLMs, the Fisher information is invertible, so that the update
in (1.3.7) is valid. If the matrix is invertible, the estimates given by Fisher scoring method
converge to the MLE.

Moreover, if the canonical link is used, the observed information is equal to the expected
information, which means Newton–Raphson method is exactly the same as Fisher Scoring
method. Indeed, when this link is used, θi = ηi, then

∂µi

∂ηi

= ∂b′(θi)
∂θi

= b′′(θi) = Var[yi]
a(ϕ) .

Hence, Wii(β) = Var[yi]
a(ϕ)2 . Regarding the observed information, we observe that

∂2ℓi(β, ϕ)
∂βj∂βk

= ∂

∂βk

(
yi − µi

a(ϕ) xij

)
= xij

a(ϕ)

(
−∂µi

∂ηi

∂ηi

∂βk

)
= −Var[yi]

a(ϕ)2 xijxik = −Ijk(β).

Now that we have ways of computing a point estimate of β, let us discuss interval
estimation. The maximum likelihood estimator β̂ has an asymptotic normal distribution.
Assuming that the GLM employed is well specified with a true coefficient vector β∗ and that
n is large enough, the distribution of β̂ is approximately a normal with a mean of β∗ and
a covariance of I(β̂)−1. We are then able to construct an approximate confidence interval,
also called the Wald confidence interval, with a confidence level α for β∗

j , j = 1, . . . , p, by

β∗
j ∈

[
β̂j ± z1−α/2

√[
I(β̂)−1

]
jj

]
,

where z1−α/2 is the (1 − α/2) quantile of the standard normal distribution.
Let us now talk about the estimation of the dispersion parameter ϕ. Since the likelihood

estimating equation with respect to ϕ is different for every distribution defining an exponen-
tial family, we are going to take gamma GLMs as an example. The log-likelihood function
for gamma GLMs is defined as

n∑
i=1

{
−yi/µi − log µi

1/ν + (ν − 1) log yi + ν log ν − log(Γ(ν))
}
. (1.3.8)

We derive the log-likelihood function with respect to ν, which is the inverse of the dispersion
parameter ϕ, and set the partial derivative to 0. We thus write the log-likelihood as a

15



function of ν instead of a function of ϕ here. Let us consider that we already found β̂

which maximizes the log-likelihood (regardless of the value of ν). The estimating likelihood
equation with µ̂i = exp(xT

i β̂) is thus given by

∂ℓ(β̂, ν)
∂ν

=
n∑

i=1

(
µ̂i − yi

µ̂i

− log(µ̂i) + log(yi) + log(ν) − Γ(ν)′

Γ(ν)

)
= 0,

which is equivalent to

2n
(

log(ν) − Γ(ν)′

Γ(ν)

)
= 2

n∑
i=1

log
(
µ̂i

yi

)
+ yi − µ̂i

µ̂i

 = D(y, µ̂), (1.3.9)

where D(y, µ̂) is called the deviance. Deviance is a measure of goodness of fit of data to
the model; the greater the deviance, the poorer the fit. The value of ν which maximizes the
likelihood is also the solution of the equation (1.3.9) concerned with the deviance.

The principal problem with maximum likelihood estimation of ϕ in gamma GLMs is that
it is sensitive to rounding errors of small observation values due to divisions by yi (as seen in
(1.3.9) above). As a result, we prefer to use another method for estimating ϕ, called Pearson
method, which is the method applied in R, command glm.

For this method, we use the Pearson statistic, defined as
n∑

i=1

(yi − µ̂i)2

v(µ̂i)ϕ∗/wi

, (1.3.10)

where ϕ∗ is the true value of the dispersion parameter, assuming that the model is well
specified. In this case, the Pearson statistic has a distribution which is asymptotically
equivalent to a chi-squared distribution with n− p degrees of freedom, in the limit n → ∞.
The Pearson method for estimating ϕ is based on the Pearson statistic. This estimator is
consistent and given by

ϕ̂ =
n∑

i=1

wi(yi − µ̂i)2

v(µ̂i)(n− p) , (1.3.11)

which can be derived by noticing that a chi-squared random variable with n − p degrees of
freedom, divided by n− p, converges in probability to 1.

Let us now present an important type of residuals, called Pearson residual, which is one
of the most commonly used class of residuals for GLMs. It will also be involved in different
robust approaches for GLMs in the next chapters. The Pearson residual is defined as

ri = yi − µ̂i√
V̂ar[yi]

. (1.3.12)

To avoid ambiguity, it is necessary to mention that the Pearson residual in R is defined as

r̃i = yi − µ̂i√
v(µ̂i)/wi

,
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which is similar to ri, the difference being that it is not divided by
√
ϕ̂. We can consider r̃i

as a non-standardized version of the Pearson residual. In this document, we use all along
the standardized version, i.e. ri, as the definition of Pearson residual.

1.3.3. Bayesian Estimation

From a Bayesian perspective, parameters β and ϕ are random variables. Let π be the
prior distribution, i.e. the distribution that is assumed on the parameters before having
collected the data. The response is assumed to have the same distribution as in (1.1.1),
but it is here considered as a conditional distribution given β and ϕ. The random variables
y1, . . . , yn are assumed to be independent as before, but conditionally on the parameters.
The explanatory variables are assumed to be fixed and known as before.

Bayesian estimation and inference rest upon the posterior distribution, which is the condi-
tional distribution of the parameters given the observed data set:

π(β, ϕ | y) = 1
m(y)π(β, ϕ)

n∏
i=1

fβ,ϕ(yi), (1.3.13)

where y := (y1, . . . , yn)T , and m(y) is the marginal density evaluated at y:

m(y) =
∫∫

π(β, ϕ)
n∏

i=1
fβ,ϕ(yi) dϕ dβ.

Note that the product term in (1.3.13) corresponds to the likelihood function, but here it
is considered, as mentioned, as the joint conditional density of (y1, . . . , yn)T = y, given
parameters β and ϕ.

Several types of prior distribution are employed in practice. A subjective prior reflects a
prior opinion about the plausible parameter values, whereas an objective prior is relatively
uninformative, implying that the data will have a more important impact on the resulting
inference. Regarding subjective priors for parameters in GLMs, Bedrick et al. (1996) consider
conditional means priors, which are priors for the mean of potential observations given the
explanatory variables, i.e. priors on µi. The idea is to assign a prior distribution to a
vector (µ1, . . . , µp) = (l−1(xT

1 β), ..., l−1(xT
p β)), which is random through β, and to identify

a prior on β through a smooth one-to-one transformation. In practice, it is assumed that
we have access to p linearly independent explanatory variables, that components of the
vector (µ1, . . . , µp) are independent, and that each element is assigned a PDF. Then, we
can deduce a prior on β by performing a change of variable. The method is useful when it
is more practical to assign a prior to conditional means of observations given explanatory
variables, instead than directly to the coefficients. Bedrick et al. (1996) suggest for instance
to assign an inverse-gamma distribution as prior to µi for gamma GLMs, conditionally on ϕ.
We then specify a prior on ϕ, such as an inverse-gamma distribution with parameters that
reflect opinions on the response variance, in order to create a joint prior for β and ϕ.
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Regarding objective priors, Ibrahim and Laud (1991) propose to use a Jeffreys’s prior,
whose density is proportional to the square root of the determinant of the Fisher information
matrix. It is shown that, under certain conditions, the posterior moment generating function
of β exists for any GLM, in the case where ϕ is known. For example, under the log link
for gamma GLMs, the Jeffreys’s prior for β reduces to a uniform prior on Rp, and all
posterior moments are finite under this link. In our numerical experiments, we focus on
point estimation and maximum likelihood estimation for simplicity. Note that the MLE
corresponds to the maximum a posteriori estimator (MAP) when the prior is set to be a
uniform on the whole parameter space. In Chapter 5, we present a result stating that the
posterior distribution is proper for gamma GLMs with a log link in the case where ϕ = 1/ν
is considered unknown and n ≥ p, under weak assumptions on the prior distribution. Even
though a proper posterior distribution is required to perform inference under the Bayesian
paradigm, theoretical guarantees that it is the case are scarce.

Even though we focus on maximum likelihood/a posteriori estimation in our numerical
experiments, we now briefly describe how other estimates such as posterior means and cre-
dible intervals can be computed for Bayesian GLMs. The posterior distribution defined in
(1.3.13) is typically intractable. This implies that we have to resort to numerical methods,
such as Markov chain Monte Carlo (MCMC) methods to compute integrals with respect
to the posterior distribution. Hamiltonian Monte Carlo (Duane et al., 1987) can for ins-
tance be employed. This sampling algorithm can also be used to sample from the posterior
distribution resulting from the robust approach presented in this document.

1.3.4. Gamma GLMs Estimation

Compared to the previous sections, we here consider a special case of gamma GLMs
to provide details about the estimation procedure. In particular, we present the likelihood
estimations, and the Hessian matrix and the Fisher information that allow to solve those
equations.

Recall that in the context of gamma GLMs with a logarithmic link, µi = exp(xT
i β) and

ϕ = 1/ν. The log-likelihood function defined in (1.3.8) is thus

ℓ(β, ν) =
n∑

i=1


[

−yi

exp(xT
i β) − xT

i β

]
ν + (ν − 1) log yi + ν log ν − log(Γ(ν))

 .
This is the function that one maximizes for maximum likelihood estimation. This is also the
function that one uses, after applying the exponential function, to define a posterior density
for Bayesian inference (see (1.3.13)). The likelihood estimating equations regarding β (recall
(1.3.4)) are

∂ℓ(β, ν)
∂βj

=
n∑

i=1
ν

(
yi − µi

µi

)
xij =

n∑
i=1

ν

(
yi − exp(xT

i β)
exp(xT

i β)

)
xij = 0, j = 1, . . . , p, (1.3.14)
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because Var[yi] = µ2
i /ν and l′(µi) = 1/µi.

As mentioned in Section 1.3.2, to solve these estimating equations, one can use Newton–
Raphson or Fisher scoring method. The former uses the Hessian matrix and the latter the
Fisher information. When the log link is used, the elements of the Hessian matrix evaluated
at β are given by

Hjk(β) =
n∑

i=1

∂2ℓi(β)
∂βj∂βk

= ν
n∑

i=1

∂

∂βk

(yi − exp(xT
i β)

exp(xT
i β)

)
xij

 = −ν
n∑

i=1

(
yi

exp(xT
i β)

)
xijxik.

(1.3.15)

The Fisher information evaluated at β is given by

I(β) = ν(XT X),

since it is the minus of the expected value of the Hessian matrix in (1.3.15).
With the Fisher information, we can also find an approximate confidence interval for the

true coefficient β∗
j , j = 1, . . . , p, based on the asymptotic normality of MLE:

β∗
j ∈

[
β̂j ± z1−α/2

√
(XT X)−1

jj /ν̂
]
. (1.3.16)

Based on the above expression, it is observed that the length of the confidence interval
depends heavily on the estimate of ν. As we will see in Section 2.2, outliers in the data set
may have a significant impact on the estimation of ν yielding a smaller estimate compared
to the estimate without the outliers, which implies an overly large confidence interval. The
same is true for Bayesian credible intervals.

Regarding the estimation of ν, the estimator based on the Pearson method (recall
(1.3.11)) is

ϕ̂ = 1
ν̂

= 1
n− p

n∑
i=1

(yi − µ̂i)2

µ̂2
i

= 1
n− p

n∑
i=1

yi − exp(xT
i β̂)

exp(xT
i β̂)

2

,

using that wi = 1 and v(µ̂i) = µ̂2
i in this case. Note that with gamma GLMs, the Pearson

residuals are given by

ri =
(
yi − µ̂i

µ̂i

)√
ν̂ =

yi − exp(xT
i β̂)

exp(xT
i β̂)

√
ν̂. (1.3.17)
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Chapter 2

Example of Health Care Expenditures

In this chapter, we present an analysis of a data set by using a gamma GLM. This presenta-
tion reveals clearly the issues of non-robustness against outliers mentioned in Introduction:
an invalid estimation of parameters which leads to skewed inference, interpretation and pre-
dictions, as well as a masking effect which has a significant negative impact on the outlier
detection. We first describe the data set in Section 2.1, and this is followed by parameter
estimation and residual analysis based on a gamma GLM in Section 2.2. The non-robustness
of gamma GLMs is revealed through the comparison with robust methods, which motivates
the presentation of robust alternatives in the next chapters.

2.1. Data Description

The data set that will be analysed is about health care expenditures. It is known for
containing outliers, and has been analysed by Marazzi and Yohai (2004) and Cantoni and
Ronchetti (2006) to highlight the benefits of using robust statistical methods. This data
set is about 100 patients hospitalized at the Centre Hospitalier Universitaire Vaudois in
Lausanne, Switzerland for medical back problems during 1999. The goal is to model the
response variable, which is the cost of stay in this hospital (cost in Swiss francs), using the
following explanatory variables: length of stay (los, in days), age (age, in years), admission
type (adm: 0, planned; 1, emergency), insurance type (ins: 0, regular; 1, private), sex (sex:
0, female; 1, male) and discharge destination (dest: 1, home; 0, another health institution).
The data set is available in the package robmixglm (Beath, 2021) in R.

The average cost of stay is 11 126 Swiss francs, with a standard deviation equal to 7 981.35.
The empirical distribution of this variable is highly right-skewed, as seen in Figure 2.1. This
characteristic of the data motivates the use of a gamma GLM.

We now discuss the characteristics of the explanatory variables. The average length of
stay is 12.20 days, with a standard deviation equal to 10.10. The empirical distribution of
this variable is also right-skewed. In our analysis, we use this variable on log scale as did
in Cantoni and Ronchetti (2006), which can help to correct the asymmetry of this variable
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Figure 2.1. Histogram and a density estimate for the cost of stay (in Swiss francs)

and to yield a better fit of the model. The average age of patients is 57.62 years, with a
standard deviation equal to 19.96; the youngest patient is 16 years old and the oldest is 93
years old. This variable is distributed symmetrically. Regarding the categorical explanatory
variables, both sexes are well represented in the sample with 53 men and 47 women; the
administration type is also quite balanced with 40 planned and 60 emergency. However,
regarding the insurance type, only 9 patients out of 100 have private insurance. Regarding
the discharge destination, 82 patients out of 100 go home after being treated, and the others
go to another hospital.

Analysing such a data set is of interest for actuaries. It can, for instance, help them un-
derstand the main contributing factors, in this case, to the health cost, and provide accurate
insurance pricing.

2.2. Analysis and Non-robustness Problems

To analyse the data set of health care expenditure, we use a gamma GLM with a loga-
rithmic link. The model uses all explanatory variables and is such that

E[cost] = exp
[
β1 + β2 log(los) + β3 age + β4 adm + β5 ins + β6 sex + β7 dest

]
,

where the variables log(los) and age have been standardized. We standardize the continuous
variables to benefit from the appealing interpretation described in Section 1.1. Recall that the
relation between the mean and the variance of the response is given through the dispersion
parameter ϕ = 1/ν with Var[cost] = E[cost]2/ν.

22



To highlight the non-robustness of gamma GLMs, we present an analysis by using a
gamma GLM and we compare the results with those obtained using two robust alterna-
tives: the gamma version of the robust GLMs based on M-estimators proposed by Cantoni
and Ronchetti (2001), which we refer to as the robust M method, and our proposed robust
gamma GLM. As mentioned in Introduction, the robust M method is a frequentist method,
which consists of an adaptation of robust M-estimators for linear regression. At the step of
estimation, the likelihood estimating equations are modified in a way to assign low weight
to outliers. Our proposed method consists instead of modifying directly the distribution of
the response variable: the central part of the PDF is kept as is, while the extremities are
replaced by log-Pareto tails. The latter two methods will be explained in detail in Chapter 3
and Chapter 5, respectively.

We present four estimations in Table 2.1: a gamma GLM with all observations, a gamma
GLM without identified outliers, the robust M method, and our proposed method.

all observations without outliers robust M method proposed method

β̂1 9.00 9.04 9.02 9.03
β̂2 0.68 0.71 0.70 0.70
β̂3 -0.01 -0.03 -0.02 -0.02
β̂4 0.21 0.23 0.22 0.22
β̂5 0.09 -0.03 0.01 -0.01
β̂6 0.10 0.08 0.07 0.07
β̂7 -0.10 -0.14 -0.12 -0.12
ν̂ 20.16 41.27 41.11 41.32

Table 2.1. Parameter estimates for a gamma GLM based on all observations, a gamma
GLM based on the data set excluding identified outliers, the robust alternative of Cantoni
and Ronchetti (2001), and our proposed method

As observed in Table 2.1, estimation based on a gamma GLM is sensitive to outliers. Let
us examine that of the coefficient β5 as an example, and more specifically, the interpretation
that results from it. Based on the analysis with a gamma GLM with all observations,
if all other explanatory variables are null, the estimated expected cost for a person who
has a private insurance is the base rate exp(β̂1) = 8 113.09, adjusted by multiplying by
exp(β̂5) = 1.10. Based on the analysis with our proposed method, the value is instead equal
to the base rate exp(β̂1) = 8 316.95, multiplied by exp(β̂5) = 0.98. The estimated effect of a
variable on the cost of stay with or without a robust method can be very different, or even
opposite.

It is observed that the biggest difference in estimates is for ν. Its estimate with a gamma
GLM is almost half of that with the robust M method or our proposed method. This estimate
is involved in the estimation of the response variance and uncertainty regarding the plausible
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values for β, thus also credible/confidence interval lengths. For example, if we calculate a
95% approximate confidence interval for β7 (recall (1.3.16)), the one obtained by using a
gamma GLM with all observations is [-0.24; 0.03], which contains 0. It means that at 5%
level, we cannot reject the hypothesis that the variable dest has no effect on the cost of stay.
However, if we replace the estimates involved in the calculation of the confidence interval by
those of our proposed method, we obtain [-0.21; -0.02], which does not contain 0 any longer.
The conclusion made can be changed to a great extent depending on whether we take care
of outliers contained in the data set.

Let us now take a look at the plot of Pearson residuals against the predicted values in
Figure 2.2. The Pearson residual is the response residual, i.e. yi − µ̂i, standardized with
the estimated standard deviation for the observation, i.e. µ̂i/

√
ν̂. It is worth noting that an

outlier is a couple (xi, yi) such that yi is far from its fitted value µ̂i = l−1(xT
i β̂) under the

applied model that reflects the trend of the bulk of the data (the latter being a desideratum
of a robust model). The observation yi does not need to be extreme, nor xi, for (xi, yi) to be
an outlier. The two just need to be incompatible, according to the estimated model. With
GLMs, a couple is identified as an outlier if its absolute value of Pearson residual exceeds
3, as proposed by Ryan (1997), which matches with the 3σ distance rule used in the normal
linear regression theory. Figure 2.2 below shows the Pearson residuals against the fitted
values, where the Pearson residuals are computed based on gamma GLM estimation with all
observations in the left panel and based on our robust model estimation in the right panel.
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Figure 2.2. Pearson residuals with the gamma GLM and our proposed method

It is clearly observed that the Pearson residuals are overall more dispersed based on our
robust model estimation than gamma GLM estimation with all observations, mainly due
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to a higher ν̂ based on the robust model estimation. In particular, the absolute values of
the identified outliers with a gamma GLM are higher with our method. For example, the
28th and 63rd Pearson residuals have values around 3.4 and -3.3 with a gamma GLMs,
respectively, whereas their values are around 6.4 and -4.8 with the robust counterpart. Even
more interestingly, (x44, y44) is detected as an outlier using our approach, while it is not with
the gamma GLM. The 21st couple has a value of Pearson residual equal to 2.99, which is
close to the threshold beyond which couples are identified as outliers. There is an evident
masking effect in outlier detection based on non-robust estimation. The model indeed adjusts
itself for outliers which mask each other, because their residuals are distorted and appear to
be less extreme than they should. The main reason is due to overestimation of the dispersion
parameter, which is 1/ν in our case, as presented in Table 2.1. The outlier detection based
on a robust model is thus more effective: outliers do not mask each other and are effectively
identified. Regarding the estimation presented in Table 2.1 for the gamma GLM without
outliers, the outliers that we removed are the four outliers identified by using our proposed
method.

In order to understand why these observations are extreme, let us look at the scatter plot
of the response cost in function of log(los). We observe from Figure 2.3 that the outliers
are data points with a relation between log(los) and cost that is significantly different from
the rest of the data points. This observation appears to be coherent with the fact log(los) is
the explanatory variable with the most impact on the calculation of Pearson residuals (recall
Table 2.1). By looking at Figure 2.3, one might wonder why (x31, y31) is not flagged as an
outlier, even if it appears to be further away than (x14, y14) to the trend of the bulk of the
data. Even if |y31 − µ̂31| = 13 581.4 > |y14 − µ̂14| = 2 314.8, the fact that

√
V̂ar[y31] = 6 459.2

is much larger than
√
V̂ar[y14] = 351.9 makes the 31st residual less extreme (the value is

−2.1), reflecting that the model is such that the variance of the response increases with the
mean. The 21st couple which is almost identified as an outlier is also relatively far away to
the trend of the bulk of the data.

The analysis conducted in this section allows to show the problem of non-robustness of
gamma GLMs. The estimates can heavily be influenced by outliers in the data set. Also, the
outlier detection is not effective due to the masking effect under the non-robust estimation.
This highly motivates us to find robust alternatives to tackle the problem of non-robustness
of gamma GLMs.
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Chapter 3

Robust GLMs Based on M-estimators

The objective of this chapter is to present in more details the frequentist robust method for
GLMs proposed by Cantoni and Ronchetti (2001), which we named previously the robust
M method in Chapter 2. This method is applicable in general, meaning as long as the
distribution of the response variable defines an exponential family, such as Poisson and
gamma. As mentioned, we here are particularly interested in the case of gamma GLMs. In
Section 3.1, we present the details of the robust M method for gamma GLMs, and provide a
reason for the robustness of this method, by presenting the notion of the influence function.
In Section 3.2, we present M-estimators in general with the goal of highlighting the connection
between the robust M method (for gamma GLMs) and M-estimators, hence the name of the
former.

3.1. Robust M Method for Gamma GLMs

In order to present the robust M method for gamma GLMs, it helps to recall the likelihood
estimating equation with respect to β:

∂ℓ(β, ν)
∂β

=
n∑

i=1
ν

(
yi − exp(xT

i β)
exp(xT

i β)

)
xi =

n∑
i=1

√
ν ri(β, ϕ)xi = 0, (3.1.1)

where ri(β, ϕ) = (yi − µi)/
√
Var[yi], which is equal to

√
ν
(
yi − exp(xT

i β)
)
/ exp(xT

i β) in
the case of gamma GLMs with a log link. The term ri(β, ϕ) can be viewed as an analogue of
the Pearson residual (recall (1.3.12)). It is a function evaluated at parameters β and ϕ; the
Pearson residual can thus be seen as ri = ri(β̂, ϕ̂). We reformulated the estimating equation
by using the function ri(β, ϕ), because the robust M method that will be presented shortly
consists of replacing ri(β, ϕ) by another function.

The solution of the above equation is the MLE for β, but it is unfortunately not robust,
as we have seen with the example in Section 2.2. To provide a reason for the non-robustness
of gamma GLMs, we present the notion of influence function, which qualitatively measures
the robustness of an estimator.



Proposed by Hampel (1974), the influence function is an important mathematical tool.
It measures the effect of an infinitesimal change in one observation on an estimator. This
measure is generally classified as a measure of qualitative robustness, because it is used
to indicate whether an infinitesimal change results in a bounded effect on the function to
optimize; a bounded influence function is a desirable robustness property. The influence
function of an MLE is proportional to the score function, which is the contribution of one
observation to the derivative of the log-likelihood with respect to the parameters. Therefore,
if the score function is not bounded with respect to yi and/or xi, it implies that an extreme
observation in the response and/or in the explanatory variables can have a large impact on
the estimation of parameters. The score function in the case of gamma GLMs with a log
link is given by

ν

(
yi − exp(xT

i β)
exp(xT

i β)

)
xi.

The score function is not bounded with respect to either yi or xi, which provides a reason
for the non-robustness of the MLE of β.

To deal with the problem, Cantoni and Ronchetti (2001) propose a class of estimators that
have bounded influence functions. They propose to modify directly the original likelihood
estimating equation, or equivalently, the score function, so that the resulting equation is
bounded with respect to yi and xi. The robust estimator for β is obtained by solving the
following equation:

n∑
i=1

[√
ν ψ(ri(β, ϕ), c) w(xi)xi − a(β)

]
= 0, (3.1.2)

where ψ is a function suggested by the authors, given by

ψ(ri(β, ϕ), c) =

 ri(β, ϕ) if |ri(β, ϕ)| ≤ c,

c sign(ri(β, ϕ)) otherwise,
(3.1.3)

w(xi) is a weight function for xi which helps to downweight high leverage points, c > 0 a

tuning parameter, and a(β) = (1/n)
n∑

j=1
E
[√
ν ψ(rj(β, ϕ), c) w(xj)xj

]
with the expectation

taken with respect to the distribution of yj, which is a gamma. The last term a(β) is a cor-
rection term to ensure the Fisher consistency of the estimation of β (Cantoni and Ronchetti,
2001). In this context, the Fisher consistent estimator ensures that the expectation of the
sum of the equivalent of the score functions for the robust M method, regarding β, is equal
to 0, i.e.

n∑
i=1

E
[√
ν ψ(ri(β, ϕ), c) w(xi)xi − a(β)

]
= 0.

The functions w(xi) and ψ(ri(β, ϕ), c) are two new ingredients compared with the original
likelihood estimating equation for gamma GLMs. When w(xi) = 1 and ψ(ri(β̂, ϕ̂)) = ri(β̂, ϕ̂)
for all i, with β̂ and ϕ̂ being the solution to (3.1.2), a(β̂) = 0 because the expectation of the

28



score function under the gamma GLM is equal to 0. The estimator for β based on (3.1.2)
coincides with the MLE in this case. Regarding the weight function w(xi), the authors
suggested several choices, such as w(xi) =

√
1 − hi, where hi is the i-th diagonal element of

the hat matrix X(XT X)−1XT , or a weight proportional to the inverse of the Mahalanobis
distance, which is an effective distance metric where a covariance matrix is used to find the
distance between data points and the centre. Regarding the function ψ(ri(β, ϕ), c), it is
an identity function if its first argument is between −c and c, otherwise, ψ returns c times
the sign of ri(β, ϕ). With this choice of function ψ, combined with an appropriate weight
function such as those mentioned, the influence function associated with the estimating
equation (3.1.2) is bounded.

The function ψ can be also be viewed as ψ(ri(β, ϕ), c) = w̃
(
ri(β, ϕ), c

)
ri(β, ϕ), where

w̃
(
ri(β, ϕ), c

)
is the weight of ri(β, ϕ). With this form, (3.1.2) can be interpreted as an

estimating equation weighted separately with respect to ri(β, ϕ) and xi, and re-centred to
ensure the Fisher consistency of the estimation for β.

The tuning parameter c is typically chosen to reach a compromise between efficiency and
robustness, where efficiency refers to the variance of the estimators in the context where
the true model is the non-robust gamma GLM. If we let c → ∞, we recover the MLE for
gamma GLMs, which is the benchmark in terms of efficiency. In practice, we set the value
of c between 1 and 2 to guarantee robustness with a reasonable level of efficiency (Cantoni
and Ronchetti, 2006).

The solution of the estimating equation with respect to β in (3.1.2) now depends on ν

through ri(β, ϕ), because it cannot be put as a factor which multiplies the sum, as the case
with the gamma GLM. The estimation of ν thus now has an impact on the estimation of β.
The proposed robust estimator for ν with the robust M method is the solution to

n∑
i=1

(
ψ2(ri(β, ϕ), c) − E

[
ψ2(ri(β, ν), c)

])
= 0, (3.1.4)

where the expectation is to ensure the Fisher consistency of the estimation for ν. Ideally,
(3.1.2) and (3.1.4) are to be solved simultaneously. However, in practice, we generally use
a two-step procedure to solve alternately these two equations until convergence. Numerical
approaches such as Newton–Raphson or Fisher scoring algorithms presented in Section 1.3.1
can also be used to solve (3.1.2) and (3.1.4) to provide robust parameter estimation. The
correction terms of Fisher consistency in (3.1.2) and (3.1.4) should be computed explicitly.
Details of all the computational aspects of the robust M method are clearly presented in the
appendix of Cantoni and Ronchetti (2006).

In Chapter 2, we presented the estimation results for the health-care data set based on
the robust M method. For the estimation, the tuning parameter c in the function ψ was
set to 1.5, as in Cantoni and Ronchetti (2006). The weight function was set to 1, as in
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Cantoni and Ronchetti (2006), meaning that all xi have equal weight. With this choice,
the contribution of a couple (xi, yi) to the estimating equation (3.1.2) is modified, compared
to the gamma model, only if yi is far enough from its fitted valued µ̂i = l−1(xT

i β̂), or in
other words, if its Pearson residual in absolute terms is large enough; it is not modified if
xi is extreme but the residual is not. The package robustbase (Maechler et al., 2020) in R,
command glmrob allows to provide parameter estimates for the robust M method.

The parameter estimates were provided in Table 2.1. Comparatively to those of the
gamma GLM based on the whole data set, the estimates of the robust M method are closer
to the estimates of the gamma GLM without identified outliers, especially for the estimate
ν̂. The Pearson residuals with the robust M method have similar values to those obtained
with our proposed robust method (that will be explained in detail in Chapter 5): the same
four couples (14th, 28th, 63rd, and 44th) are identified as outliers, and the 21st couple is
close to being identified as an outlier.

3.2. Connection with M-estimators

We present M-estimators in this section, for the purpose of highlighting a connection
between this class of estimators and the estimator associated with the robust M method. M-
estimators are one of the most popular classes of estimators in frequentist robust estimation,
and they play a crucial role in the development of modern robust statistics (Ronchetti, 2006).
M-estimators can be considered as a generalization of MLEs. As explained in Section 1.3.2,
we obtain MLEs by maximizing the log-likelihood function, or equivalently, by minimizing

n∑
i=1

−ℓi(β, ϕ), where ℓi(β, ϕ) is the contribution of the data point i to the log-likelihood.

Huber (1964) proposed to view maximum likelihood estimation as a special case to a general
estimation method:

min
β,ϕ

n∑
i=1

ρ(yi,xi,β, ϕ), (3.2.1)

where ρ is a loss function to be chosen by the user. An estimator based on the minimization
of ρ is called a maximum likelihood type estimator (M-estimator), and it is seen to correspond
to the MLE when ρ = −ℓi, hence its name.

The development of most M-estimators is generally not based on well-defined and pre-
viously known model PDFs. However, in some cases, we can associate a distribution to a
loss function of an M-estimator. The latter point will be explained in Chapter 4. The loss
function ρ is typically chosen to be continuous, zero-symmetric for a function of its argument
(think of the residuals in a linear-regression framework), and positive. It is also preferable for
the function to be strictly convex in the parameters, as the strict convexity of ρ guarantees
that there exists a unique and global solution to the minimization problem.
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If ρ is differentiable with respect to (β, ϕ), minimizing (3.2.1) can be performed by solving
the following equation (the analogue of the likelihood estimating equation, see Section 1.3.2):

n∑
i=1

Ψ(yi,xi,β, ϕ) = 0, (3.2.2)

where Ψ(yi,xi,β, ϕ) = ∂ρ(yi,xi,β, ϕ)/∂(β, ϕ).
Many different choices for ρ are proposed in the literature. For an excellent reference

about M-estimators and their properties of robustness and efficiency, we refer readers to
Menezes et al. (2021), where 50 M-estimators are presented in the context of linear regression,
including the weighted least squares estimator that is non-robust, the Huber M-estimator
(Huber, 1973), and the Tukey-biweight M-estimator (Beaton and Tukey, 1974).

If we return to the robust M method in the case of gamma GLMs, recall that the esti-
mating equation associated to β is given by

n∑
i=1

[√
ν ψ(ri(β, ϕ), c) w(xi)xi − a(β)

]
= 0.

The latter can be viewed as

−
n∑

i=1

∂

∂β
ρ(yi,xi,β, ϕ) = 0

for a certain loss function ρ. It is in this sense that a connection exists in between the
robust M method and M-estimators. We will see in Chapter 4 that several functions ρ can
produce the same likelihood estimating equations. The approach is thus less elegant than
what would follow from an M-estimator. Robust M-estimators are also more natural in
robustness contexts, as they can be seen as a direct solution to a robustness problem arising
with a model (through the likelihood function).
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Chapter 4

Robust M-Estimators Viewed as Heavy-Tailed
Distributions

In this chapter, we want to establish a connection between the robust M method presented
in Chapter 3, and heavy-tailed distributions, which can be used for both Bayesian and
frequentist robust analysis. However, as we have explained in Section 3.2, there is no one-to-
one correspondence between the frequentist estimator and a PDF. Therefore, in Section 4.1,
we take a step back by first presenting that a clear connection can be established between
robust M-estimators and heavy-tailed distributions in the context of linear regression. We
take the Huber M-estimator (Huber, 1973) as an example, and show that the distribution
of the standardized error associated with this estimator is a modified normal PDF with
tails that have been replaced by Laplace ones. In Section 4.2, we return to the context of
gamma GLMs, and explain that several loss functions correspond to the modified estimating
equations proposed by the robust M method. We choose one loss function in particular, then
derive the corresponding density for the response variable, which is a gamma in the central
part with heavier tails in the extremities. The right tail of this distribution has a polynomial
decrease, whereas that of the gamma has an exponential decrease.

4.1. The Linear Regression Case

Consider that we have access to a data set of the form (xi, yi)n
i=1, where

xi = (xi1, . . . , x1p)T ∈ Rp represents a vector of explanatory variable data points,
and yi ∈ R represents an observation of the response variable, as defined previously in
Section 1.3. The linear regression model is as follows:

yi = xT
i β + σϵi, i = 1, . . . , n, (4.1.1)

where β = (β1, . . . , βp)T ∈ Rp is the vector of regression coefficients, σ is a scale parameter,
and ϵ1, . . . , ϵn are standardized errors, which are assumed to be independent and identically
distributed with ϵi ∼ f . In the normal linear regression model, f = N (0, 1). To find MLEs



for the parameters β and σ, we need to maximize the log-likelihood function, which is defined
as

ℓ(β, σ) = −n

2 log (2π) − n log(σ) − 1
2

n∑
i=1

(
yi − xT

i β

σ

)2

. (4.1.2)

Maximizing (4.1.2) with respect to β is equivalent to the minimization of the following loss
function with respect to β:

1
2

n∑
i=1

(
yi − xT

i β

σ

)2

. (4.1.3)

Thus, the MLE for β in normal linear regression coincides with the OLS estimator, which
consists of minimizing the sum of squared residuals. The scale parameter σ does not influence
the estimation for β, because σ is in fact a factor that multiplies the sum in (4.1.3). Therefore,
the optimization problem can be solved by first finding β which minimizes the sum of squared
residuals, and then by using the obtained value to find σ that maximizes (4.1.2), similarly
as with the gamma GLM.

As mentioned in Section 3.2, a bounded influence function is a desirable property for
an estimator when there is a potential presence of outliers in the data set. If we take the
derivative of (4.1.2) with respect to β, we obtain the score function associated with β, which
is equal to xi

(
yi − xT

i β
)
/σ2. This function is clearly not bounded with respect to either yi

or xi.
The idea of Huber (1973) was to modify the sum of squared standardized residuals to

produce less extreme values when some residuals are extreme. The modified loss function
in linear regression is often quadratic (or similar to a quadratic function) below a certain
threshold, but then grows more slowly beyond that threshold. For example, the Huber
M-estimator proposes to minimize

n log(σ) + 1
2

n∑
i=1

ϱ

(
yi − xT

i β

σ

)
,

and to use the Huber loss function (Huber, 1964), defined as

ϱ (ϵ) =


1
2ϵ

2 if |ϵ| ≤ k,

k|ϵ| − 1
2k

2 otherwise,
(4.1.4)

where k is a tuning parameter chosen by the user to reach a compromise between efficiency
and robustness. In particular, k = 1.345 allows the estimator to produce 95-percent efficiency,
meaning that, asymptotically, the variance of β̂ corresponds to that of the OLS estimator
to which we add a factor of 1.05, if the true model is a normal linear regression. The
penalization by the Huber loss function is quadratic, which is the same as in normal linear
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regression, between −k and k; otherwise, the penalization is linear, which is more moderate.
Note that the term −k2/2 in (4.1.4) is to ensure that ϱ is continuous.

If we take the derivative of ϱ with respect to β, we obtain

∂

∂β
ϱ

(
yi − xT

i β

σ

)
=


−xT

i (yi − xT
i β)

σ2 if
∣∣∣∣∣yi − xT

i β

σ

∣∣∣∣∣ ≤ k,

−xT
i

σ
k sign

(
yi − xT

i β

σ

)
otherwise,

(4.1.5)

which is similar to the derivative with the robust M method (recall (3.1.2) and (3.1.3)). Note
that the function in (4.1.5) is bounded with respect to the residual.

Figure 4.1 shows the functions ϱ associated with the OLS estimator and the Huber M-
estimator with k = 1.345.

0
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e

r(
e)

Loss function

OLS estimator

Huber M-estimator

Figure 4.1. Loss functions ϱ(ϵ) associated with the OLS estimator and the Huber M-
estimator (k = 1.345)

From a perspective of modelling, it is helpful to have a precise characterization of the mo-
del associated with robust M-estimators, if possible, i.e. to associate PDFs to the estimators,
as with the MLE and the model in (4.1.1). With robust M-estimators, the associated PDFs
are no longer normal distributions, since the likelihood is modified through the loss function.
In order to establish a connection between robust M-estimators and heavy-tailed distribu-
tions, let us rewrite the log-likelihood for the linear regression model by using f(ϵ) = g(ϵ)/m,
where m is a normalizing constant:
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ℓ(β, σ) =
n∑

i=1
log

 1
σ
f

(
yi − xiβ

σ

) = −n log(σ) +
n∑

i=1
log

f (yi − xiβ

σ

)
= −n log(σ) − n log(m) +

n∑
i=1

log
g (yi − xT

i β

σ

) .
In the case of normal linear regression,

g = exp

−1
2

(
yi − xT

i β

σ

)2
 and m =

√
2π.

By presenting the log-likelihood of the regression model in this form, it is observed that
for Huber M-estimator, the Huber loss function ϱ(ϵ) in (4.1.4) can be viewed as − log(g(ϵ)),
where g(ϵ) is defined as

g(ϵ) =


exp

(
−1

2ϵ
2
)

if |ϵ| ≤ k,

exp
(

−k|ϵ| + 1
2k

2
)

otherwise.

After the normalization, the PDF associated with the Huber M-estimator is equal to g(ϵ)/m,
where m = 2 exp(−k2/2)/k+

√
2π(2Φ(k)−1) with Φ(k) the cumulative distribution function

(CDF) of a standard normal distribution evaluated at k. The equation to minimize with
the Huber M-estimator thus corresponds to a likelihood function, where f(ϵ) is such that
the density in the central part is proportional to a standard normal distribution, and the
tails of the density behave like exp(−k|ϵ|), which corresponds to a Laplace distribution.
As k increases, f approaches a standard normal, meaning that the mass of the heavy tails
decreases. As we can see in Figure 4.2, the density has a slower decrease than a standard
normal after the threshold k.

The Huber M-estimator is a proper example to present a connection between robust
M-estimators and heavy-tailed distributions. However, not all robust M-estimators have a
clear correspondence with a model. For example, it is not possible to find a model associated
with the Tukey-biweight M-estimator (Beaton and Tukey, 1974). Indeed, the loss function
is constant beyond a certain threshold, thus yields an improper distribution.

4.2. The Gamma GLM Case

In the linear regression case, we had an expression for ρ for the Huber M-estimator,
which is a loss function that can be seen as being the negative of the log density associated
with the distribution of the response variable (recall the discussion in Section 3.2). The
difference between the gamma GLM case and the linear regression one is that there is no
expression for ρ in the former case, but rather an expression for Ψ which is the derivative
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Figure 4.2. Density of the N (0, 1) and that corresponding to the Huber M-estimator with
k = 1.345

of ρ. In this section, we make an attempt at establishing a connection between the robust
M method and heavy-tailed distributions. The first step is to identify a function ρ which
yields the proposed Ψ by the robust M method. As we will present shortly, the choice of
ρ is not unique, which makes the connection not as clear as with robust linear regression.
We will identify a function ρ which, in our opinion, corresponds to the most natural choice.
The second step is to connect this function ρ with a PDF for the response variable, as we
performed in the linear regression case. We then compare this density with the original
gamma one to see if this PDF has a slower decrease than that of gamma, i.e. whether it is
a heavy-tailed distribution.

Let us recall the proposed estimating equation by the robust M method. To simplify, we
consider that the weight function is such that w(xi) = 1 for all i, and we omit the Fisher
consistency term a(β). The estimating equation regarding β (recall (3.1.2) and (3.1.3)) with
this simplification is given by

−
n∑

i=1
Ψ(yi,xi,β, ϕ) = 0,

where

Ψ(yi,xi,β, ϕ) =

 −
√
ν ri(β, ϕ) xi if |ri(β, ϕ)| ≤ c,

−
√
ν c sign(ri(β, ϕ)) xi otherwise,

(4.2.1)

with ϕ = 1/ν. Recall that with gamma GLMs, ri(β, ϕ) =
√
ν(yi − exp(xT

i β))/ exp(xT
i β).

We will write ν instead of ϕ as an argument in following functions to avoid confusion.
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As mentioned in Section 3.2, Ψ can be viewed as the partial derivative of ρ with respect
to β. If we set ρ as following:

ρ(yi,xi,β, ν) =


−ℓi(β, ν) if |ri(β, ν)| ≤ c,

c
√
ν
(
h(yi) − xT

i β
)

+ a1(ν) if ri(β, ν) > c,

−c
√
ν
(
h(yi) − xT

i β
)

+ a2(ν) if ri(β, ν) < −c,
(4.2.2)

where ℓi(β, ν) is the contribution of the data point i to the log-likelihood in gamma GLMs,
i.e.

ℓi(β, ν) = −ν(yi/µi + log µi) + (ν − 1) log yi + ν log ν − log(Γ(ν)),

we can verify that the derivative of (4.2.2) with respect to β is equal to Ψ(yi,xi,β, ϕ) in
(4.2.1). The terms a1(ν) and a2(ν) will be used to ensure that this loss function is continuous.
There are many possible loss functions that can result in the estimating equation above,
because h(yi) which does not depend on β has no influence on the derivative of ρ with
respect to β. Different choices for h can thus yield the same estimating equation.

In order to establish a connection between the loss function in (4.2.2) and a heavy-tailed
distribution as we achieved in the linear regression case, we consider a natural choice for h,
as we now explain.

When yi → ∞, with β and ν fixed, the dominant term of ℓi(β, ν) in gamma GLMs is

−ν(yi/µi) = −ν exp
{
log(yi) − xT

i β
}
.

To retrieve a similar form in the function in (4.2.2) when ri(β, ν) > c (which is the part
of the function that is activated when yi is large, and β and ν are fixed), h should be set
to be the log function. With this function, the PDF of the response variable yi based on
ρ(yi,xi,β, ν) in (4.2.2) is given by

fβ,ν,c(yi) = exp(−ρ(yi,xi,β, ν)) = 1
µi

fν,c

(
yi

µi

)
∝ 1
µi

gν,c

(
yi

µi

)
,

where gν,c is defined as

gν,c(z) :=


gmid(z) := exp {−νz} zν−1νν/Γ(ν) if |

√
ν(z − 1)| ≤ c,

gright(z) := z−c
√

ν exp(a1(ν)) if
√
ν(z − 1) > c,

gleft(z) := zc
√

ν exp(a2(ν)) if
√
ν(z − 1) < −c.

(4.2.3)

After the normalization, fν,c(z) = gν,c(z)/m(ν), where the normalizing constant m(ν) de-
pends on ν. The explicit forms of a1(ν), a2(ν), and m(ν) are presented in Appendix A. The
density fν,c can be viewed as a standardized version of fβ,ν,c, as it does not depend on β any
longer. Unfortunately, the parameter ν controls the shape of the gamma PDF, thus it is not
possible to further standardize the random variable, contrarily to what can be done in the
linear regression case.
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The random variable z is the response variable divided by the mean of the gamma model;
its PDF is proportional to that of the gamma distribution with µ = 1, when evaluated at
z belonging to a closed interval. When z is outside of this interval, the function decreases
polynomially.

The function g may not be integrable. It is integrable if c
√
ν > 1. Moreover, the left tail

of g may not exist. Since z > 0, it means that to have a left tail, −c/
√
ν + 1 > 0 must be

satisfied. The first condition c
√
ν > 1 needs to be satisfied in order for the density to be a

PDF. If we combine it with the second one, in order to obtain a PDF with a left part gleft,
c must satisfy 1/

√
ν < c <

√
ν and ν > 1. This condition makes sense, because the original

gamma PDF does not converge to 0 as z → 0 when ν ≤ 1 (it converges to a constant when
ν = 1 and goes to infinity when ν < 1), meaning that the gamma PDF has, in a sense, no
left tail in this case.

In order to understand better the difference with gamma GLMs in terms of tail behaviour,
let us take a closer look at the two tails of fν,c separately. For simplicity, we study gν,c instead,
as the normalizing constant m(ν) does not influence the tail behaviour. On the right side,
when z → ∞, with ν fixed, the dominant term of the gamma PDF is exp(−νz), whose
decrease is exponential, which is thus a faster decrease compared with that of gright. On
the left side, when z → 0, with ν fixed, the dominant term of the gamma PDF is zν−1,
which has a polynomial decrease. The dominant term of gleft is zc

√
ν , which also decreases

polynomially. Different from the right side, the gamma PDF and gleft have both a polynomial
decrease when z tends to 0.

Comparisons between fν,c and gamma PDF with different values of ν and c are shown in
Figure 4.3. As we can observe, when c and/or ν increases, fν,c approaches more and more
a gamma PDF. We understand why it is the case when c increases by looking at (3.1.2).
When ν increases, it is because the right tail has a faster decrease as it behaves like zc

√
ν ;

the left tails of the two densities have similar behaviour. The left tail of fν,c is nearly the
same as that of a gamma when ν = 30 and c = 2, whereas the difference for the right tails
of the two densities is still visible.

The analysis conducted in this section to establish a connection between the estimator
associated with the robust M method and a heavy-tailed distribution is more complicated
than that in the linear regression framework in Section 4.1. The main reason is because, with
the robust M method, the estimating equation is modified, instead of the log-likelihood func-
tion. That in turn is because the Pearson residual in the likelihood function of gamma GLMs
is not retrieved, contrarily to the standardized residual (yi − xT

i β)/σ in the linear-regression
framework. We saw that modifying the estimating equation yields a robust estimator that
does not allow to establish a one-to-one correspondence with a response PDF, which is not
appealing from a modelling perspective. We nevertheless managed to establish a natural
connection with a specific heavy-tailed model, whose PDF is similar to that of the gamma
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Figure 4.3. Comparison between gamma PDFs and fν,c for different values of ν and c

on the central part. That motivates the introduction of robust alternatives based directly
on a modified response PDF, with similar desirable characteristics. Our proposed method
presented in detail in Chapter 5 represents such a robust alternative.
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Chapter 5

Proposed Robust Gamma GLMs

In this chapter, we will present our proposed robust method for gamma GLMs. As we
mentioned in Introduction and Chapter 4, the idea comes from recent Bayesian approaches
(Desgagné, 2015; Gagnon et al., 2020): we adapt the original gamma GLMs to a robust
version by replacing the tails by heavier ones, while keeping the central part of the PDF
as is. In Section 5.1, we present the definition of our model, and the differences between
this one and the one identified in Section 4.2. In Section 5.2, we present theoretical results
that characterize our model: first, we provide sufficient conditions under which the posterior
distribution is proper, guaranteeing that a Bayesian analysis can be conducted; second, we
present an asymptotic result about the behaviour of the posterior distribution as outliers
move further and further away from the bulk of the data. We present also simulation results
that support those theoretical results.

5.1. Model Definition

Recall that with gamma GLMs (see (1.2.1)), the density of a response variable yi is given
by

fβ,ν(yi) = 1
µi

fν

(
yi

µi

)
,

where fν is given by

fν(z) = exp {−νz} zν−1νν/Γ(ν).

We have shown with an example in Chapter 2 that gamma GLMs are not robust against out-
liers. In Chapter 3, we presented the robust M method proposed by Cantoni and Ronchetti
(2001), which is the most popular frequentist method for robust GLMs. It consists in a
robust estimator, which is similar, in essence, to M-estimators. We stress that the difference
with our approach is that we adapt the model to the potential presence of outliers, rather
than estimators. As mentioned, the advantage is that it is easier to understand the difference



with gamma GLMs from a modelling point of view, and it can be applied to both frequentist
and Bayesian analyses.

We consider a new density to replace fν(z), which consists of an adaptation of the log-
Pareto-tailed normal (LPTN) distribution proposed by Desgagné (2015) and used by Gagnon
et al. (2020) in the context of linear regression. The errors ϵi in linear regression follow an
LPTN distribution, whose central part is a standard normal, but with tails that have been
replaced by log-Pareto ones, which behave like (1/|x|)(1/ log |x|)λ. In the context of gamma
GLMs, we assume that the response variable yi follows no longer a gamma distribution: fν is
replaced by fν,c, whose central part is that of a gamma PDF, whereas the tails are replaced
by log-Pareto ones.

There are two main differences between our proposed model and the one identified in
Section 4.2 (see (4.2.3)). Firstly, the central part of our proposed distribution fν,c matches
exactly a gamma PDF, rather than being proportional to it as in (4.2.3), which aims to
improve efficiency. Secondly, both left and right tails in our model are log-Pareto, implying
that they are heavier than polynomial ones. Models with log-Pareto tails have better ro-
bustness properties than models with polynomial tails, at least in a linear regression context
(Gagnon et al., 2020).

The PDF of our proposed distribution fν,c is defined as

fν,c(z) :=



fmid(z) := exp {−νz} zν−1νν/Γ(ν) if zl ≤ z ≤ zr,

fright(z) := fmid(zr)
zr

z

(
log(zr)
log(z)

)λr

if z > zr,

fleft(z) := fmid(zl)
zl

z

(
log(zl)
log(z)

)λl

if 0 < z < zl,

(5.1.1)

where zr, λr, zl, λl are functions of ν and c given by

zr := 1 + c/
√
ν, zl :=

 1 − c/
√
ν if ν > 1

0 if ν ≤ 1
,

λr := 1 + fmid (zr) log(zr) zr

P[Zgamma > zr]
, and λl := 1 − fmid (zl) log(zl) zl

P[0 < Zgamma < zl]
,

with Zgamma being a random variable following a gamma distribution whose mean and dis-
persion parameter are given by 1 and 1/ν, respectively.

The tuning parameter c with this model is considered to be a positive constant, and thus
0 < c/

√
ν < ∞. This implies that zr > 1 and thus the log terms in fright are positive. Also,

fleft exists when zl > 0, i.e. when c <
√
ν and ν > 1, and zl is upper bounded by 1. This

implies that both log terms in fleft are negative and thus that fleft(z) > 0 when 0 < z < zl.
We now make two remarks about the tuning parameter c. First or all, it plays the same

role as the parameter with the same notation c in the robust M method (recall (4.2.3)): the
conditions in (5.1.1) to determine which part of the function is activated can be rewritten as
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in (4.2.3). Furthermore, there is a correspondence between the value of c and the mass under
fν,c assigned to the part where the density exactly matches the gamma PDF. For example,
when c = 1.35 and ν = 41.32 (the value used for c and estimated for ν in the real-data
example in Chapter 2), the mass of the central part is P[−1.35 ≤ Zgamma ≤ 1.35] ≈ 0.83.
We can use this correspondence to guide the choice of c, if one has prior belief about ν. If,
for instance, one believes that ν should take values around 40, and one wants 90% of the
mass to be assigned to the central part where the density matches the gamma PDF, one
could set c to 1.65. In Chapter 2, we presented the estimation results for the health-care
data set based on our proposed method. The parameter c was set to 1.35, which provides
good results. Studies about how to choose objectively and effectively this tuning parameter
are left for future work.

The terms zl and zr, depending on ν and c, control which part of the function is activated.
The terms fmid(zr), zr and log(zr) in fright, as well as fmid(zl), zl and log(zl) in fleft ensure
that the PDF is continuous. The function fν,c is integrable for all c, ν > 0. It goes to +∞
when z → 0, when fleft exists. This behaviour close to 0 allows to have integrals that are
similar to those on the right tails, and that are to be contrasted with those under the original
gamma PDF given that the latter goes to 0 as z → 0. Indeed, integrals from 0 to small
values a can be rewritten as∫ a

0
fmid(zl)

zl

z

(
log(zl)
log(z)

)λl

dz =
∫ ∞

1/a
fmid(zl)

zl

u

(
log(1/zl)
log(u)

)λl

du.

After the change of variables, the mass associated to the left tail can be viewed as an integral
from 1/a to ∞ with respect to a function which is similar to fright, but with a different
normalizing constant and a different power term. In other words, the behaviour of fleft is
analogous to that of fright, up to a change of variables.

The constraint that zl = 0 if ν ≤ 1 is to ensure that fleft is never activated when the
original gamma PDF does not have a left tail. The idea of the model is to replace the tails
(when they exist) by heavier ones.

Comparisons between gamma PDFs and fν,c with different values of ν and c are shown
in Figure 5.1. In (e) and (f), fleft is not activated since c ≥

√
ν. In (b), (c) and (d),

we do not see that fν,c(z) → ∞ when z → 0 because this explosive behaviour happens too
close to 0 to be observed. Similar to the density in (4.2.3), fν,c approaches more and more
a gamma PDF when c increases. We understand the reason by looking at (5.1.1). When ν

increases, fmid becomes more pointed, and both tails of the gamma PDF and those of fν,c

have a more rapid decrease, although the latter always decrease more slowly; it is thus more
difficult to visually distinguish the gamma PDF from fν,c when ν is large. Different from
the LPTN distribution, fν,c is not symmetric; the mass associated with fright and fleft can be
very unbalanced, which depends on the value of ν.
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Figure 5.1. Comparison between gamma PDFs and fν,c for different values of ν and c

The proposed model can be estimated by the maximum likelihood method. The es-
timation results shown in Chapter 2 were produced using this method. By writing the
log-likelihood function associated with fν,c, the MLE can be viewed as a robust M-estimator
of the gamma GLM according to the definition in (3.2.1). As mentioned, one of the advan-
tages of our approach is that it can be also applied to perform robust Bayesian analyses.
MCMC methods can be employed to obtain posterior means, medians, credible intervals,
and so on. In the next section, we will present theoretical results which characterize the
behaviour of the posterior distribution resulting from our proposed model.
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5.2. Theoretical Results

The theoretical results presented in this section assume that all explanatory variables are
continuous to simplify. To use the proposed model in Bayesian analysis, we need to select a
prior distribution for β and ν, denoted by π. Importantly, we have to make sure that the
posterior distribution is proper. The posterior density with a prior π is such that (recall
(1.3.13)):

π(β, ν | y) = m(y)−1π(β, ν)
n∏

i=1

(
1
µi

)
fν,c

(
yi

µi

)
. (5.2.1)

We will use π(β | ν) to represent the conditional (prior) density of β given ν, and π(ν) to
represent the marginal (prior) density of ν.

Proposition 5.2.1.
Assume that π(β | ν) is bounded, and that π(ν) is a proper PDF such that∫ ∞

0
π(ν)ν(n−p)/2 dν < ∞. If n ≥ p ≥ 1, the posterior distribution is proper.

Proof.
See Appendix B.1. □

The assumptions on the prior are weak, which explains why we require n ≥ p, a condition
similar to that for frequentist inference. The condition on π(β | ν) is satisfied by any
continuous PDF and by Jeffreys prior. The condition on π(ν) is satisfied if the prior is a
gamma distribution with any shape and scale parameters. We believe that our assumption
on π(ν) can be weakened. Indeed, our assumption seems to be a consequence of our proof
technique, but we did not manage to find a more effective technique.

We now state a result characterizing the robustness of our model against outliers. The
result is asymptotic, and more precisely, about the behaviour of the posterior distribution
under an asymptotic regime, where outliers are considered to be further and further from
the bulk of the data. As we explained in Chapter 2, an outlier is defined as a couple (xi, yi)
whose components are incompatible with the trends in the bulk of the data. The analogue
of the Pearson residual ri(β, ν) (recall (3.1.1)) can be used to evaluate this incompatibility.
It can be extreme because, for a given xi, the value of yi makes it extreme or because, for
a given yi, the value of xi makes it extreme. We mathematically represent such extreme
situations by considering an asymptotic scenario where the outliers move away from the
bulk of the data along particular paths (see Figure 5.2). More precisely, we consider that
the outliers (xi, yi) are such that yi → ∞ or yi → 0 with xi being kept fixed (but perhaps
extreme). Our result states that, for the outliers with fixed xi, there exist yi values such that
the posterior distribution is similar to one which excludes the PDF terms of the outliers.
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Figure 5.2. A data set with two outliers where one can be seen as having a yi → ∞ and
the other one can be seen as having a yi → 0

Central to the characterization of the robustness of our proposed model is the limiting
behaviour of the PDF evaluated at an outlying point. The following proposition is about
this limiting behaviour.

Proposition 5.2.2.

Consider c, ν and µ fixed. We have

lim
y→∞

fν,c(y/µ)/µ
fν,c(y) = 1.

If c <
√
ν and ν > 1,

lim
y→0

fν,c(y/µ)/µ
fν,c(y) = 1.

Proof.
See Appendix B.2. □

Figure 5.3 shows the ratio (1/µ)fν,c(y/µ)/fν,c(y) as a function of y, with ν = 30, c = 1.35
and µ = 2. We take the same values of c and ν as in Figure 5.1b. As we observe, this ratio
does converge to 1 but slowly. The speed of the convergence is logarithmic, and it depends
on ν, µ and c. The greater the value of ν, µ and c, the slower the convergence.

To obtain a theoretical result about the asymptotic behaviour of the posterior distri-
bution, we simplify the context and consider that the parameter ν is a fixed constant; the
unknown parameter is thus considered to be only β for the rest of the section. The prior
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Figure 5.3. The ratio (1/µ)fν,c(y/µ)/fν,c(y) as a function of y, with ν = 30, c = 1.35 and
µ = 2

and posterior are thus about this parameter only. We further simplify by considering that
ν is such that c <

√
ν and ν > 1 to ensure the existence of both tails, which corresponds to

the shape that often is sought for and supported by the data. We call a couple (xi, yi) where
yi goes to ∞, a big outlier, and a couple (xi, yi) where yi goes to 0, a small outlier. The yi

itself is called a big/small outlying observation. More precisely, we consider that each yi goes
to ∞ or 0 at its own specific rate. In particular, for a big outlying observation, yi = biω,
whereas yi = bi/ω for a small outlying observation, and we let ω → ∞. For a non-outlying
observation, we assume that yi = ai, where ai ∈ R. Among the n observations y1, . . . , yn, we
assume that k of them form a group of non-outlying observations, s of them form a group
of small outlying observations, and r of them form a group of big outlying observations. We
denote the set of non-outlying observations, small outlying observations, and big outlying
observations as yk,ys,yr, respectively. For i = 1, . . . , n, we define the binary functions ki,
si and ri as follows: ki = 1 if yi is a non-outlying observation, si = 1 if it is a small outlying
observation, and ri = 1 if it is a big outlying observation. These functions take the value of 0
otherwise. Therefore, we have ki + si + ri = 1 for i = 1, . . . , n, with ∑n

i=1 ki = k, ∑n
i=1 si = s,

and ∑n
i=1 ri = r.

In the simplified context described above, Proposition 5.2.2 suggests that the PDF term
of an outlier in the posterior density behaves in the limit like f(yi) ∝ 1. This conflicting
information is thus wholly rejected as its source becomes increasingly remote (West, 1984).
The model is thus said to be wholly robust. Note that this is case in the simplified context

47



where ν is considered fixed. If it is considered unknown, the model is partially robsut, as the
limiting term f(yi) does not depend on β, but depends on ν.

The theoretical result that we demonstrate is a convergence of the posterior distribution
towards π(· | yk), which has a density defined as follows:

π(β | yk) := π(β)
n∏

i=1

[
fν,c(yi/µi)/µi

]ki

/
m(yk), β ∈ Rp,

where

m(yk) :=
∫
Rp
π(β)

n∏
i=1

[
fν,c(yi/µi)/µi

]ki dβ.

Theorem 5.2.1.
Suppose that ν is a fixed constant such that c <

√
ν and ν > 1. Assume that π is bounded.

If k ≥ d(r+ s) + 2p− 1, i.e. n ≥ (d+ 1)(s+ r) + 2p− 1, where d = max{λl/λr, λr/λl}, then
as ω → ∞,

(a) the asymptotic behaviour of the marginal distribution is:
m(y)∏n

i=1[f(yi)]si+ri
→ m(yk);

(b) the posterior density converges pointwise: for any β ∈ Rp,

π(β | y) → π(β | yk);

(c) the posterior distribution converges: π(· | y) → π(· | yk).

Proof.
See Appendix B.3.

□

Figure 5.4 shows the value of d as a function of ν for ν > c2 when c = 1.35. Numerically,
we observe that λl > λr, and that the ratio is monotonically decreasing from a value of 2.27
when ν = 2 (we take a value of ν close to c2 = 1.352 = 1.82) and converges to 1 as ν → ∞.

For our proposed model, once the parameter ν is considered as a fixed constant, and that
the prior distribution has been set such that π(β) is bounded, it is seen that Theorem 5.2.1
holds as long as the number of non-outliers is large enough. A sufficient number of non-
outliers is d(r + s) + 2p − 1, where values of d are shown numerically in function of ν
in Figure 5.4. This condition suggests that the breakdown point, generally defined as the
proportion of outliers (r+s)/n that an estimator can handle, is 1/(d+1)−(2p−1)/(n(d+1)),
which is close to 1/(d+ 1) if n is large relatively to p.
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Figure 5.4. The ratio d as a function of ν with c = 1.35

In Theorem 5.2.1, result (a) represents the centrepiece; it leads relatively easily to the
other results of the theorem, but its demonstration requires considerable work. The conver-
gence of the posterior density in result (b) enables to state that the MAP is wholly robust.
Given that this estimate corresponds to the MLE when the prior is proportional to 1, the
frequentist estimate is, as a result, also wholly robust. This allows establishing a connection
between Bayesian and frequentist robustness. Result (c) indicates that any estimation of β

based on posterior quantiles (e.g. using posterior medians or Bayesian credible intervals) is
wholly robust to outliers. All these results characterize the limiting behaviour of a variety
of Bayes estimators.

We now perform a simulation study in order to show the empirical behaviour of estimates
when one outlier is more and more extreme. In the simulation, we set n = 20, and we
consider a model with an intercept and an explanatory variable. We set xi2 from 2 to 6
with equal distances for i = 1, . . . , 20, and the true coefficients are β0 = −1 and β1 = 1.
The observations are generated from a gamma GLM with a logarithmic link with ν = 40.
Therefore, yi follows a gamma distribution with parameters µi = exp(−1 + xi2) and ν = 40.
To generate an outlier, we consider two ways: either generate an extreme observation yi with
an ordinary values of xi2, or generate an extreme explanatory variable xi2 with an ordinary
values of yi. We consider both ways because in practice, with a fixed data set, both x and
y can make a point an outlier.

Let us consider for now the first way. We gradually increase the value of y20, from 170 to
500. The associated ri(β, ν) for the outlying point varies from 0.92 to 14.98. For each data
set, we perform an analysis by using our proposed model in (5.1.1) with c = 1.35 and ν = 40,
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as if we knew the true value of ν. We estimate the parameters β1, β2 with the maximum
likelihood method, based on y1, . . . , y19 and the 20th outlying observation. We also perform
an analysis by removing completely y20.

Figure 5.5 shows the estimates for β1 and β2 as y20 gets more and more extreme. The
black points are estimates by using the maximum likelihood method. The red one indicates
the estimate if y20 were completely removed from the data set. In the first plot, the MLE
of β1 first decreases, then increases, and finally becomes stable as y20 becomes more and
more extreme. The estimates converge to that obtained without y20. In the second plot,
we observe a similar pattern for β̂2 as in the first one: the estimate increases at first, then
decreases, and finally converges to the estimate without the outlying point.
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200 300 400 500
y20

b̂ 1

0.98

1.00

1.02

200 300 400 500
y20

b̂ 2

Figure 5.5. Estimates of β1 and β2 as a function of y20

Let us consider the second way of generating an outlier. We gradually decrease the value
of x20,2 from 6 to 4.52 such that the associated ri(β, ν) vary from -1.44 to 15.13, whose values
approximately match those when we moved y20. The results are presented in Figure 5.6. To
improve readability, the x-axis is the difference between the maximum of x20,2 and x20,2,
which we denote as diffx20,2, so that the limiting case is on the right side of the x-axis.
Figure 5.6 illustrates the estimates for β1 and β2 when diffx20,2 gets more and more extreme.
Because of the log link of the gamma GLM, a small change in the covariates yields a big
change in ri(β, ν). We observe a similar pattern as in Figure 5.5, but the estimates seem to
converge to values that, while being close to estimates obtained without the 20th point, are
not equal to these.
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Conclusion

The objective of this thesis is mainly to propose an approach with a precise characterization
of the model that can be used in both frequentist and Bayesian analyses, in order to solve
the problem of non-robustness for GLMs. With an analysis of a real health-care expenditure
data set by using a gamma GLM, one can clearly see the difference between estimation with
and without a robust method; the outlier detection is also negatively impacted due to the
masking effect, if no robust approach is applied. Before presenting our approach, we study
the most commonly used method for robust GLMs, which is the frequentist method proposed
by Cantoni and Ronchetti (2001). There is a connection between their proposed estimators
and the famous robust M-estimators through likelihood estimating equations, however, it
is not possible to establish a clear correspondence between their proposed estimators and a
model. In the linear regression context, some robust M-estimators can be seen as MLEs with
a regression model where its error term follows a heavy-tailed distribution. For example, we
presented the connection of the Huber M-estimator and the distribution whose central part
is still normal, but the tails have been replaced by Laplace ones. With robust estimators of
Cantoni and Ronchetti (2001) for gamma GLMs, although we still identified a distribution
which can be considered as heavy-tailed, i.e. its density is gamma in the central part, and
tails have been replaced by polynomial ones, this connection is neither natural nor unique.
Therefore, it highly motives the introduction of our model. We mainly focus on gamma
GLMs, but the approach is seen to be valid for other GLMs with distributions having tails.

Our proposed model consists of directly using a heavy-tailed distribution whose central
part is a gamma, while the extremities have been replaced by log-Pareto ones, to replace
the original distribution of the response variable. The theoretical results that characterize
the model, with regard to the properness of the posterior distribution under weak conditions
and the asymptotic behaviour of the posterior distribution, have been the main contribution
of this thesis. The presented simulation study supports these theoretical results.

During the study of the asymptotic behaviour of the posterior distribution, we simplified
the context by considering that one of the parameter for the gamma distribution, which
is the inverse of the dispersion parameter, is a fixed constant. It would be better, in the
future study, that this parameter would be considered as random, which is often the case in



practice, as it is improbable that one knows the value of this parameter before the analysis.
Moreover, it would be also interesting to perform a study of the tuning parameter, which
compromises the efficiency with the robustness of the model. This study would help a user
to choose his tuning parameter in an analysis in a more appropriate way.
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Appendix

Appendix A: Supplementary Material for Chapter 4

Recall the function gν,c in (4.2.3):

gν,c(z) :=


gmid(z) := exp {−νz} zν−1νν/Γ(ν) if |

√
ν(z − 1)| ≤ c,

gright(z) := z−c
√

ν exp(a1(ν)) if
√
ν(z − 1) > c,

gleft(z) := zc
√

ν exp(a2(ν)) if
√
ν(z − 1) < −c.

We define zr := c/
√
ν+1 and zl := −c/

√
ν+1, which signify the right and left thresholds for

z that determine which function is activated. Since the function gν,c is continuous, the terms
exp(a1(ν)) and exp(a1(ν)) should be such that gmid(zr) = gright(zright), and gmid(zl) = gleft(zl).
Thus, we have

exp(a1(ν)) = gmid(zr)
z−c

√
ν

r
=

exp{−νzr}
(
zν+c

√
ν−1

r

)
νν

Γ(ν) ,

exp(a2(ν)) = gmid(zl)
zc

√
ν

l

=
exp{−νzl}

(
zν−c

√
ν−1

l

)
νν

Γ(ν) .

The PDF for z is fν,c(z) = gν,c(z)/m(ν). In order to find the normalizing constant m(ν),
we need to first calculate the mass for gmid, gright and gleft separately, then add them together
to find the normalizing constant.

The mass associated with gmid(z) is given by

massm(ν) =
∫ zr

zl

exp {−νz} zν−1νν

Γ(ν) dz = P
[
Zgamma < zr

]
− P

[
Zgamma < zl

]
,

where Zgamma follows a gamma distribution with µ = 1. For the mass associated with gright,
we can obtain an analytical form. It is given by

massr(ν) =
∫ ∞

zr
z−c

√
ν exp(a1(ν)) dz = z−c

√
ν+1

r
c
√
ν − 1 exp(a1(ν))

= (νzr)ν exp(−νzr)
Γ(ν)(c

√
ν − 1) =

(
ν + c

√
ν
)ν

exp(−ν − c
√
ν)

Γ(ν)(c
√
ν − 1) .



Analogously, the mass associated with gleft is given by

massl(ν) =
∫ zl

0
zc

√
ν exp(a2(ν)) dz = zc

√
ν+1

l
c
√
ν + 1 exp(a2(ν))

= (νzl)ν exp(−νzl)
Γ(ν)(c

√
ν + 1) =

(
ν − c

√
ν
)ν

exp(−ν + c
√
ν)

Γ(ν)(c
√
ν + 1) .

The normalizing constant m(ν) is thus given by

m(ν) = massm(ν) + massr(ν) + massr(ν).

Appendix B: Supplementary Material for Chapter 5

Appendix B.1: Proof of Proposition 5.2.1

We first present and prove two lemmas that will be used in the proof of Proposition 5.2.1.

Lemma 1.

Viewed as a function of µ, fν,c(y/µ)/µ is bounded above by (e−1ν)ν/(yΓ(ν)), for all ν, c
and y.

Proof.
Based on (5.1.1),

fν,c(y/µ)/µ =



fmid(y/µ)/µ = exp
{
−νy/µ

}
µ−νyν−1νν/Γ(ν) if zl ≤ y/µ ≤ zr,

fright(y/µ)/µ = fmid(zr)
zr

y

(
log(zr)

log(y/µ)

)λr

if y/µ > zr,

fleft(y/µ)/µ = fmid(zl)
zl

y

(
log(zl)

log(y/µ)

)λl

if 0 < y/µ < zl,

We analyse the three parts of the function (of µ) separately. We consider that all three
parts exist; otherwise, one part (with fleft) has to be skipped.

We first consider that µ ∈ (0, y/zr). In this case, fν,c(y/µ)/µ = fright(y/µ)/µ. We have
that

fright(y/µ)/µ = fmid(zr)
zr

y

(
log(zr)

log(y/µ)

)λr

∝
(

1
log(y/µ)

)λr

.

This function (of µ) is strictly increasing because λr > 0. Thus, for µ ∈ (0, y/zr),

fright(y/µ)/µ ≤ fmid(zr)zr/y.
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Analogously, we consider that µ ∈ (y/zl,∞). In this case, fν,c(y/µ)/µ = fleft(y/µ)/µ.
We have that

fleft(y/µ)/µ = fmid(zl)
zl

y

(
log(zl)

log(y/µ)

)λl

∝
(

−1
log(y/µ)

)λl

.

This function (of µ) is strictly decreasing because λl > 0. Thus, for µ ∈ (0, y/zr),

fleft(y/µ)/µ ≤ fmid(zl)zl/y.

Finally, consider that µ ∈ (y/zl, y/zr). In this case, fν,c(y/µ)/µ = fmid(y/µ)/µ. We
consider a larger domain µ ∈ (0,∞) to find an upper bound for the function fmid(y/µ)/µ.
We have

fmid(y/µ)/µ = fmid(y/µ)(y/µ)/y,

and thus maximizing this function with respect to µ is equivalent to maximizing fmid(z)z/y
with respect to z ∈ (0,∞). The derivative of the log of fmid(z) z/y with respect to z is given
by

∂

∂z
log

[
fmid(z) z/y

]
= ∂

∂z

[
−νz + ν log z + ν log ν − log(Γ(ν)) − log(y)

]
= −ν + ν

z
.

The root of this function is z = 1. If z < 1, −ν + ν/z > 0, meaning that the function
fmid(z) z/y is increasing from z ∈ (0, 1). If z > 1, −ν + ν/z < 0, and the function is
decreasing from z ∈ (1,∞). Thus, fmid(1)/y is the maximum of fmid(z)z/y. The former is
clearly larger than fmid(zr)zr/y and fmid(zl)zl/y, which are the bounds for fright(y/µ)/µ and
fleft(y/µ)/µ on the parts of the domain where these functions are activated, respectively.
Therefore, the upper bound for fν,c(y/µ)/µ is given by fν,c(1)/y = (e−1ν)ν/(yΓ(ν)).

□

Figure 5.7 shows the function (of µ) fν,c(y/µ)/µ with c = 1.35, and with different values
of ν and y. In (b) and (d), fleft is never activated because ν <

√
c.

Lemma 2.

If
∫ ∞

0
π(ν)ν(n−p)/2 dν < ∞, then

∫ ∞

0
π(ν)

[
(e−1ν)ν

Γ(ν)

]n−p

dν < ∞.

Proof.
We will separate the integral into two parts: from 0 to a large positive constant ν∗, and

from ν∗ to ∞. The function (e−1ν)ν/Γ(ν) is strictly increasing, thus this function is bounded
on 0 < ν ≤ ν∗ by (e−1ν∗)ν∗

/Γ(ν∗). As ν gets large, Γ(ν) can be approximated by Stirling’s
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Figure 5.7. The function fν,c(y/µ)/µ with c = 1.35, and with different values of ν and y

formula, given by

Γ(ν) ≈ S(ν) =
√

2π(ν/e)ν

√
ν

.

We thus have (e−1ν)ν/Γ(ν) ≈ (e−1ν)ν/S(ν). More precisely,

S(ν)
Γ(ν) → 1 ⇔ (e−1ν)ν

(e−1ν)ν

S(ν)
Γ(ν) → 1 ⇔

√
2π√
ν

(e−1ν)ν

Γ(ν) → 1.

Therefore, for all δ > 0, we can find a ν∗ such that for all ν ≥ ν∗,

(e−1ν)ν

Γ(ν) = (e−1ν)ν

Γ(ν)

√
2π√
ν

√
ν√
2π

≤ (1 + δ)
√
ν√
2π
.
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Thus,∫ ∞

0
π(ν)

[
(e−1ν)ν

Γ(ν)

]n−p

dν =
∫ ν∗

0
π(ν)

[
(e−1ν)ν

Γ(ν)

]n−p

dν +
∫ ∞

ν∗
π(ν)

[
(e−1ν)ν

Γ(ν)

]n−p

dν

≤

(e−1ν∗)ν∗

Γ(ν∗)

n−p ∫ ν∗

0
π(ν) dν +

∫ ∞

ν∗
π(ν)

[
(1 + δ)

√
ν√
2π

]n−p

dν

=
(e−1ν∗)ν∗

Γ(ν∗)

n−p ∫ ν∗

0
π(ν) dν +

∫∞
ν∗ π(ν)(1 + δ)ν(n−p)/2 dν

2π(n−p)/2

≤

(e−1ν∗)ν∗

Γ(ν∗)

n−p ∫ ν∗

0
π(ν) dν +

∫∞
0 π(ν)(1 + δ)ν(n−p)/2 dν

2π(n−p)/2

<∞.

The last step is due to the condition
∫ ∞

0
π(ν)ν(n−p)/2 < ∞, and because π(ν) is a PDF.

□

Proof of Proposition 5.2.1.
To prove this proposition, it suffices to show that the marginal m(y) is finite, i.e.∫∫

π(β, ν)
n∏

i=1

(
1
µi

)
fν,c

(
yi

µi

)
dβ dν < ∞.

To prove this, we first split the data points into two parts. The first part contains p data
points, which will be used to perform a change of variables from β to zi = yi/(xT

i β) for
i = 1, . . . , p. Without loss of generality, we choose the first p data points. For the rest of
the n− p data points, we bound ∏n−p

i=1 fν,c(yi/µi)/µi by a function depending on ν, then we
show that this bound, multiplied by π(ν), is integrable with respect to ν. We thus use the
condition that n ≥ p. When n = p, the proof is seen to be more simple, because the part
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with the rest of the n− p data points does not actually exist. We have

m(y) =
∫ ∞

0

∫
Rp
π(β, ν)

n∏
i=1

fν,c(yi/ exp(xT
i β))

exp(xT
i β) dβ dν

=
∫ ∞

0

∫
Rp
π(β | ν) π(ν)

p∏
i=1

fν,c(yi/ exp(xT
i β))

exp(xT
i β)

n∏
i=p+1

fν,c(yi/ exp(xT
i β))

exp(xT
i β) dβ dν

a
≤ B

∫ ∞

0

∫
Rp

p∏
i=1

fν,c(yi/ exp(xT
i β))

exp(xT
i β) dβ

 π(ν)
n∏

i=p+1

(e−1ν)ν

yiΓ(ν) dν

b= B
∫ ∞

0


∣∣∣∣∣∣det


xT

1
...

xT
p


∣∣∣∣∣∣
−1

p∏
i=1

∫ ∞

0

fν,c(zi)
yi

dzi

π(ν)
n∏

i=p+1

(e−1ν)ν

yiΓ(ν) dν

c= B

∣∣∣∣∣∣det


xT

1
...

xT
p


∣∣∣∣∣∣
−1

n∏
i=1

1
yi

∫ ∞

0
π(ν)

[
(e−1ν)ν

Γ(ν)

]n−p

dν

d
< ∞.

In step a, we split the data points into two parts as we explained previously, and we use
that π(β | ν) ≤ B with B a positive constant, and we bound the product of f(yi/µi)/µi for
i = p + 1, . . . , n by using Lemma 1. In step b, we perform a change of variables from β to
zi = yi/ exp(xT

i β), for i = 1, . . . , p. For each i, we have
∣∣∣dzi/dβ

∣∣∣ =
∣∣∣yix

T
i /exp(xT

i β)
∣∣∣. The

determinant is non-null because all explanatory variables are continuous. Indeed, consider
the case p = 2 for instance; the determinant is different from 0 provided that x12 ̸= x22,
which happens with probability 1. When any type of explanatory variables is considered, we
need to be able to select p observations, say those with xi1 , . . . ,xip , such that the matrix
with rows xT

i1 , . . . ,x
T
ip

has a non-null determinant. In step c, we used that fν,c is a PDF. In
step d, we used Lemma 2.

□

Appendix B.2: Proof of Proposition 5.2.2

Proof.
We first consider that y → ∞. In this case, fright is activated, and we have

fright(y) = fmid(zr)
zr

y

(
log(zr)
log(y)

)λr

,
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where zr, fmid(zr), and λr depend only on ν and c. As y/µ → ∞, fright is also activated in
fν,c,(y/µ)/µ. Thus,

fright(y/µ)/µ
fright(y) = fmid(zr)

zr

y

(
log(zr)

log(y/µ)

)λr/
fmid(zr)

zr

y

(
log(zr)
log(y)

)λr

=
(

log(y)
log(y) − log(µ)

)λr

→ 1, as y → ∞,

because µ is assumed to be a constant.
We consider now that y → 0, with condition c <

√
ν and ν > 1. In this case, the function

fleft exists and is activated in both fν,c(y) and fν,c(y/µ)/µ. We have

fleft(y/µ)/µ
fleft(y) = fmid(zl)

zl

y

(
log(zl)

log(y/µ)

)λl
/
fmid(zl)

zl

y

(
log(zl)
log(y)

)λl

=
(

log(y)
log(y) − log(µ)

)λl

→ 1, as y → 0.

□

Appendix B.3: Proof of Theorem 5.2.1

Proof of Theorem 5.2.1.
We start with the proof of Result (a), which is quite lengthy. We next turn to the proofs

of Results (b) and (c) which are shorter.
Let us assume for now that m(y) < ∞ for all ω, and m(yk) < ∞. This will be proved

later. We first observe that

m(y)
m(yk)∏n

i=1[fν,c(yi)]si+ri
= m(y)
m(yk)∏n

i=1[fν,c(yi)]si+ri

∫
Rp
π(β | yn) dβ

=
∫
Rp

π(β)∏n
i=1[fν,c(yi/µi)/µi]n

m(yk)∏n
i=1[fν,c(yi)]si+ri

dβ

=
∫
Rp
π(β | yk)

n∏
i=1

[
fν,c(yi/µi)/µi

fν,c(yi)

]si+ri

dβ.
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We show that the last integral converges to 1 as ω → ∞. If we use Lebesgues’s dominated
convergence theorem to interchange the limit and the integral, we obtain that

lim
ω→∞

∫
Rp
π(β | yk)

n∏
i=1

[
fν,c(yi/µi)/µi

fν,c(yi)

]si+ri

dβ

=
∫
Rp

lim
ω→∞

π(β | yk)
n∏

i=1

[
fν,c(yi/µi)/µi

fν,c(yi)

]si+ri

dβ

a=
∫
Rp
π(β | yk) × 1 dβ

b= 1.

In step a, we use Proposition 5.2.2. In step b, we use that π(β | yk) is proper. Indeed, we
notice in the proof of Proposition 5.2.1 that, if ν is fixed, the posterior distribution (of β)
is proper if the prior is bounded and if k ≥ p. These conditions are satisfied because we
assume that π(β) is bounded, and that k ≥ d(r + s) + 2p − 1 ≥ p. Note that this implies
that m(yk) < ∞ and m(y) < ∞ for all ω.

However, to use Lebesgue’s dominated convergence theorem, we need to prove that the
intergral is bounded by an integrable function of β that does not depend on ω. Therefore,
we need to show that

π(β | yk)
n∏

i=1

[
fν,c(yi/µi)/µi

fν,c(yi)

]si+ri

∝ π(β)∏n
i=1[fν,c(yi/µi)/µi]n∏n

i=1 fν,c(yi)si+ri

=π(β)
n∏

i=1

[
fν,c(yi/µi)/µi

fν,c(yi)

]si n∏
i=1

[
fν,c(yi/µi)/µi

fν,c(yi)

]ri n∏
i=1

[
fν,c(yi/µi)/µi

]ki

≤B
n∏

i=1

[
fν,c(yi/µi)/µi

fν,c(yi)

]si n∏
i=1

[
fν,c(yi/µi)/µi

fν,c(yi)

]ri n∏
i=1

[
fν,c(yi/µi)/µi

]ki

=g(β)h(ω),

with g(β) an integrable function and h(ω) a bounded function, where we use π(β) ≤ B; the
functions g and h are defined below.

According to the condition of the proposition, there are at least d(r + s) + 2p − 1
non-outliers in the data set. Without loss of generality, assume that the first d(r+s)+2p−1
points are non-outliers, i.e. k1, . . . , kd(s+r)+2p−1 = 1.

Step 1 : We first choose p points among the non-outliers. Without loss of generality,
we choose (x1, y1), . . . , (xp, yp). We want to show that g(β) := B

∏p
i=1 fν,c(yi/µi)/µi is an

62



integrable function. We have

∫
Rp
B

p∏
i=1

fν,c(yi/ exp(xT
i β))

exp(xT
i β) dβ = B

∣∣∣∣∣∣ det


xT

1
...

xT
p


∣∣∣∣∣∣
−1

p∏
i=1

1
yi

p∏
i=1

∫ ∞

0
fν,c(zi) dzi

= B

∣∣∣∣∣∣ det


xT

1
...

xT
p


∣∣∣∣∣∣
−1

p∏
i=1

1
yi

< ∞

We use the change of variables zi = yi/µi = yi/ exp(xT
i β), for i = 1, . . . , p. The

determinant term is different from 0 because x1, . . . ,xp are linearly independent (because

the covariates are continuous). Since these p observations are non-outlying,
p∏

i=1

1
yi

is bounded

and independent of ω.

Step 2: We want to show that the rest of the product, i.e.

h(ω) :=
n∏

i=d(s+r)+2p

[
fν,c(yi/µi)/µi

fν,c(yi)

]si n∏
i=d(s+r)+2p

[
fν,c(yi/µi)/µi

fν,c(yi)

]ri n∏
i=p+1

[
fν,c(yi/µi)/µi

]ki

is bounded, and that the bound does not depend on β or ω.
In order to show this, let us split the domain of β as follows:

Rp = [∩iOc
i ] ∪

[
∪i(Oi ∩ (∩i1F c

i1))
]

∪
[
∪i,i1(Oi ∩ Fi1 ∩ (∩i2 ̸=i1F c

i2))
]

∪ . . . ∪
[
∪i,i1,...,ip−1(ij ̸=is,∀ij ,is s.t.j ̸=s)

(
Oi ∩ Fi1 ∩ . . . ∩ Fip−1 ∩

(
∩ip ̸=i1,...,ip−1F c

ip

))]

∪
[
∪i,i1,...,ip(ij ̸=is,∀ij ,is s.t.j ̸=s)

(
Oi ∩ Fi1 ∩ . . .Fip

)]
,

where

Oi :=


β : log(biω) − xT

i β < log(ω)/2 if i ∈ IR,

β : xT
i β − log

(
bi

ω

)
< log(ω)/2 if i ∈ IS ,

Fi :=
{
β : |xT

i β| < log(ω)/γ
}

if i ∈ IF ,

γ being a positive constant that will be defined. The sets IR, IS , and IF are defined as
follows:

IR := {i : i ∈ {d(s+ r) + 2p, . . . , n} and ri = 1},

IS := {i : i ∈ {d(s+ r) + 2p, . . . , n} and si = 1},

IF := {p+ 1, . . . , d(s+ r) + 2p− 1}.
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Remember that the first p observations, which are non-outliers, have already been used
for the purpose of integration in step 1. Thus, the index of non-outliers begins from p+ 1.

The set Oi represents the hyperplanes xT
i β characterized by different values of β satis-

fying log(biω) − xT
i β < log(ω)/2 for i ∈ IR, and log(bi/ω) − xT

i β < log(ω)/2 for i ∈ IS . The
points (xi, log(biω)) and (xi, log(bi/ω)) can be seen as log transformations of big outliers and
of small outliers, respectively, since ω → ∞.

Now we claim that Oi ∩ Fi1 · · · ∩ Fip = ∅ for all i, i1, . . . , ip with ij ̸= is,∀ij, is such that
j ̸= s. To prove this, we use the fact that xi (a vector of dimension p) can be expressed
as a linear combination of xi1 , . . . ,xip . This is true because all explanatory variables are
continuous, therefore the space spanned by the vectors xi1 , . . . ,xip has dimension p.

As a result, if β ∈ Fi1 ∩ . . . ∩ Fip and xi = ∑p
s=1 asxis , for some a1, . . . , ap ∈ R,

• if i ∈ IR,

log(biω) − xT
i β = log(biω) −

 p∑
s=1

asxis

T

β
a
≥ log(ω) −

p∑
s=1

asx
T
is

β

b
> log(ω) − log(ω)

γ

p∑
s=1

as

c
≥ log(ω)/2;

• if i ∈ IS,

log(bi/ω) − xT
i β = log(bi/ω) −

 p∑
s=1

asxis

T

β < − log(ω) −
p∑

s=1
asx

T
is

β

d
< − log(ω) +

 log(ω)
γ

p∑
s=1

as

 e
≤ − log(ω)/2.

In step a, we use that bi ≥ 0 and we simplify the form of the linear combination. In
step b, because β ∈ Fi1 ∩ . . . ∩ Fip , we have xT

i β < log(ω)/γ for all i ∈ {i1, . . . , ip}.
Thus, −∑p

s=1 asx
T
is

β > −(log(ω)/γ)∑p
s=1 as. In step c, we define the constant γ such that

γ ≥ 2∑p
s=1 as (we define γ such that it satisfies this inequality for any combination of i and

i1, . . . ip; without loss of generality, we consider that γ ≥ 1). The proof is analogous in the
case where i ∈ IS . In step d, we use the fact that xT

i β > − log(ω)/γ, thus −∑p
s=1 asx

T
is

β <

log(ω)/γ. In step e, we use that γ is such that γ ≥ 2∑p
s=1 as. Therefore, we have that if

β ∈ Fi1 ∩ . . .∩ Fip , then β /∈ Oi. This proves that Oi ∩ Fi1 ∩ . . .∩ Fip = ∅ for all i, i1, . . . , ip
with ij ̸= is,∀ij, is such that j ̸= s. This result in turn implies that the domain of β can be
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written as

Rp = [∩iOc
i ] ∪

[
∪i(Oi ∩ (∩i1F c

i1))
]

∪
[
∪i,i1(Oi ∩ Fi1 ∩ (∩i2 ̸=i1F c

i2))
]

∪ . . . ∪
[
∪i,i1,...,ip−1(ij ̸=iss.t.j ̸=s)

(
Oi ∩ Fi1 ∩ . . . ∩ Fip−1 ∩

(
∩ip ̸=i1,...,ip−1F c

ip

))]
.

This decomposition of Rp consists of 1 +∑p−1
i=0

(
d(s+r)+p−1

i

)
mutually exclusive sets given by

∩iOc
i , ∪i(Oi ∩ (∩i1F c

i1)),∪i(Oi ∩ Fi ∩ (∩i1F c
i2 ̸=i1)) for i1 ∈ IF , and so on.

We find an upper bound on each of these subsets. Because there is a finite number of
subsets, we will be able to bound h by the maximal bound. Recall that

h(ω) =
n∏

i=d(s+r)+2p

[
fν,c(yi/µi)/µi

fν,c(yi)

]ri n∏
i=d(s+r)+2p

[
fν,c(yi/µi)/µi

fν,c(yi)

]si n∏
i=p+1

[
fν,c(yi/µi)/µi

]ki

:= A×B × C,

where each of A, B and C represents one of the products above.
Case 1: if β ∈ ∩iOc

i , we have

A
a=

n∏
i=d(s+r)+2p

(
log(yi)

log(yi) − log(µi)

)riλr
b
≤

n∏
i=d(s+r)+2p

(
log(bi) + log(ω)

log(ω)/2

)riλr

=
n∏

i=d(s+r)+2p

(
2 + 2log(bi)

log(ω)

)riλr
c
≤ 3rλr

d
< ∞.

In step a, if β ∈ ∩iOc
i , it means that yi/µi = biω/µi ≥

√
ω for i ∈ IR. We are thus

sure that biω/µi and biω are both on the right tail of fν,c, i.e. fright. In step b, we use
log(biω) − xT

i β ≥ log(ω)/2. In step c, we have 2 log(bi)/ log(ω) ≤ 1 for large enough ω. In
step d, for any fixed ν, 3rλr is finite given that λr, which depends only on c and ν, is finite.

For the part B, we have

B
a=

n∏
i=d(s+r)+2p

(
log(yi)

log(yi) − log(µi)

)siλl b
≤

n∏
i=d(s+r)+2p

(
log(bi) − log(ω)

− log(ω)/2

)siλl

=
n∏

i=d(s+r)+2p

(
2 − 2log(bi)

log(ω)

)siλl

< 2sλl
c
< ∞.

The proof is analogous to the part B. In step a, if β ∈ ∩iOc
i , it means that yi/µi =

(bi/ω)/µi ≤ 1/
√
ω for i ∈ IS . We are thus sure that (bi/ω)/µi and bi/ω are both on the

left tail of fν,c, i.e. fleft. In step b, we use log(yi) − xT
i β ≤ − log(ω)/2, and it is noted that

log(yi) = log(bi) − log(ω) < 0. In step c, 2sλl is finite given that λl depending on c and ν is
finite.
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For the part C, we have
n∏

i=p+1

[
fν,c(yi/µi)/µi

]ki a
≤

n∏
i=p+1

[
(e−1ν)ν

yiΓ(ν)

]ki

< ∞.

In step a, according to Lemma 1, fν,c(y/µ)/µ is upper bounded by (e−1ν)ν/(yΓ(ν)) for any
value of µ, when y is considered fixed.

We conclude that in this case, A×B × C is bounded.

Case 2: consider now that β belongs to one of the ∑p−1
i=1

(
d(s+r)+p−1

i

)
mutually exclusive

sets ∪i(Oi ∩ (∩i1F c
i1)), ∪i(Oi ∩ Fi1 ∩ (∩i2 ̸=i1F c

i2)) for i1 ∈ IF , etc.
Consider part A, B and C separately, we have

A =

 n∏
i=d(s+r)+2p

1
µi

fν,c(yi/µi)


ri

n∏
i=d(s+r)+2p

[
1

fν,c(yi)

]ri

∝

 n∏
i=d(s+r)+2p

1
µi

fν,c(yi/µi)


ri

n∏
i=d(s+r)+2p

[
yi

(
log(yi)

)λr
]ri

=

 n∏
i=d(s+r)+2p

yi

µi

fν,c(yi/µi)


ri

n∏
i=d(s+r)+2p

(
log(biω)

)riλr

a
≤
(

(e−1ν)ν

Γ(ν)

)r n∏
i=d(s+r)+2p

(
log(biω)

)riλr . (5.2.2)

In step a, we can deduce from Lemma 1 that, viewed as a function of µ, (y/µ)fν,c(y/µ) is
bounded by (e−1ν)ν/Γ(ν), for all ν, c, and y.

Analogously, for part B we have

B =

 n∏
i=d(s+r)+2p

1
µi

fν,c(yi/µi)


si

n∏
i=d(s+r)+2p

[
1

fν,c(yi)

]si

=

 n∏
i=d(s+r)+2p

1
µi

fν,c(yi/µi)


si

n∏
i=d(s+r)+2p

yi

zl

(
log(yi)
log(zl)

)λl
si

a∝

 n∏
i=d(s+r)+2p

yi

µi

fν,c(yi/µi)


si

n∏
i=d(s+r)+2p

(
− log(bi/ω)

)siλr

b
≤
(

(e−1ν)ν

Γ(ν)

)s n∏
i=d(s+r)+2p

(
log(ω/bi)

)siλl

c
≤
(

(e−1ν)ν

Γ(ν)

)s n∏
i=d(s+r)+2p

(
log(biω)

)siλl . (5.2.3)
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In step a, we change the sign of log(bi/ω) because log(zl) < 0. In step b, we bound
(y/µ)fν,c(y/µ) by (e−1ν)ν/Γ(ν). In step c, we use the fact that bi ≥ 1.

Let us discuss now the part C. We have shown previously that in any of the sets to
which β can belong, there are at most p−1 non-outlying points such that |xT

i β| < log(ω)/γ.
The case where that upper bound is attained is that where β ∈ ∪i(Oi ∩ Fi1 ∩ . . . ∩ Fip−1 ∩
(∩ip ̸=i1,...,ip−1F c

ip
)). Without loss of generality, suppose that all non-outlying points such that

|xT
i β| < log(ω)/γ have index i belonging to {p + 1, ..., 2p − 1}. There are thus at least

d(r + s) + p − 1 − (p − 1) = d(r + s) remaining non-outlying points such that |xT
i β| ≥

log(ω)/γ, with i = 2p, . . . , d(r + s) + 2p − 1. Therefore, for these points, we are sure that
yi/µi is on the extremities of fν,c, as either yi/µi = exp(log(ai) − xT

i β)) ≥ aiω
1/γ > zr or

yi/µi ≤ ai/ω
1/γ < zl, for large enough ω.

In the situation where yi/µi is on the right side of the tails, i.e. yi/µi ≥ aiω
1/γ, we have

1
µi

fν,c(yi/µi) ∝ 1
ai

(
log(zr)

log(ai) − log(µi)

)λr

∝
(

1
log(ai) − log(µi)

)λr

a
≤
(

1
log(ai) + log(ω)/γ

)λr
b
≤
(

2γ
log(ω)

)λr

.

(5.2.4)

In step a, since yi/µi ≥ aiω
1/γ, we have µi ≤ ω−1/γ, thus − log(µi) ≥ log(ω)/γ. In step b,

we use the fact that log(ai) ≥ − log(ω)/(2γ) for large enough ω. We thus have log(ai) +
log(ω)/γ ≥ log(ω)/(2γ).

In the situation where yi/µi is on the left side of the tails, i.e. yi/µi ≤ ai/ω
1/γ, we have

1
µi

fν,c(yi/µi) ∝ 1
ai

(
log(zl)

log(ai) − log(µi)

)λl
a∝
(

1
log(µi) − log(ai)

)λl

≤
(

1
log(ω)/γ − log(ai)

)λl b
≤
(

2γ
log(ω)

)λl

.

(5.2.5)

In step a, we change the sign because log(zl) < 0. In step b, we use the fact that log(ai) ≤
log(ω)/(2γ) for large enough ω.

The reason we consider these two cases is that we want to use a density of an “extreme
non-outlier”, i.e. fν,c(yj/µj)/µj with j such that β ∈ F c

j , to cancel each log(biω) at some
power for i ∈ IR ∪ IS that appears in the bounds of A and B. As we explained, there are
at least d(r+ s) extreme non-outliers that can be used. However, the major problem here is
that we do not know how many extreme non-outliers among d(r+ s) are such that yj/µj are
on the right tail, and how many are on the left tail, depending on the value of β. We thus
have to consider all possible scenarios, including the worst scenario. We now present clearly
how we bound each log(biω) for i ∈ IR ∪ IS , by using the densities of extreme non-outliers.

Let us consider first a big outlying observation yi, i.e. i ∈ IR. Recall that we define
d = max{λl/λr, λr/λl}. This definition is possible for all ν fixed, because λl and λr can be
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computed, and are positive and finite. We take d non-outliers among the d(r + s) extreme
non-outliers that are thus such that β ∈ ∩j∈{i1,...,id}F c

j . In other words, all these points are
such that |xT

j β| ≥ log(ω)/γ. There are two possible cases.
Case 1: there is at least one point among the d points such that yj/µj ≥ ajω

1/γ, implying
that the density is evaluated on the right tail. In this case, we have

log(biω)λr
id∏

j=i1

1
µj

fν,c(yj/µj)

a
≤
[
log(biω)λr

] ( 2γ
log(ω)

)λr

=
(

2γ log(biω)
log(ω)

)λr
b
≤ (4γ)λr c

< ∞.

In step a, we take one point such that yj/µj ≥ ajω
1/γ. We bound fν,c(yj/µj)/µj by the

bound presented in (5.2.4), and we bound the rest of the points by 1 using the bounds in
(5.2.4) and (5.2.5), given that 2γ/ log(ω) ≤ 1 for large enough ω. In step b, we have that
log(biω)/ log(ω) = (log(bi) + log(ω))/ log(ω) ≤ 2, as log(bi)/ log(ω) ≤ 1 for large enough ω.
In step c, since every term is a well-defined constant, it is finite.

Case 2 : no point among the d points is such that yj/µj ≥ ajω
1/γ, implying that the

density of every point is evaluated on the left tail. In this case, we have

log(biω)λr
id∏

j=i1

1
µj

fν,c(yj/µj)

a
≤
[
log(biω)λr

] ( 2γ
log(ω)

)dλl

=
(

2γ log(biω)
log(ω)

)λr ( 2γ
log(ω)

)dλl−λr

b
≤ (4γ)λr < ∞.

In step a, we bound every term fν,c(yj/µj)/µj by the bound in (5.2.5). In step b, since
we have d = max{λl/λr, λr/λl}, then dλl ≥ λr. We also use that 2γ/ log(ω) ≤ 1, and
log(biω)/ log(ω) = (log(bi) + log(ω))/ log(ω) ≤ 2, as log(bi)/ log(ω) ≤ 1 for large enough ω.

We showed that we can use the product of the densities of d extreme non-outliers to offset
log(biω)λr for i ∈ IR, so that the whole product is bounded. The approach is analogous for
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small outliers, i.e. i ∈ IS . Therefore, if we multiply now A, B and C, we obtain that

A×B × C
a
≤

((e−1ν)ν

Γ(ν)

)s+r n∏
i=d(s+r)+2p

(
log(biω)

)riλr+siλl

 n∏
i=p+1

(
fν,c(yi/µi)

µi

)ki

b
≤

((e−1ν)ν

Γ(ν)

)s+r n∏
i=d(s+r)+2p

(
log(biω)

)riλr+siλl

 2p−1∏
i=p+1

(
(e−1ν)ν

yiΓ(ν)

)
n∏

i=2p

(
fν,c(yi/µi)

µi

)ki

c
≤

((e−1ν)ν

Γ(ν)

)s+r
 2p−1∏

i=p+1

(
(e−1ν)ν

yiΓ(ν)

)
 n∏

i=d(r+s)+2p

(
fν,c(yi/µi)

µi

)ki

 [(4γ)rλr+sλl
]

d
≤


(

(e−1ν)ν

Γ(ν)

)n−p−d(r+s)
 2p−1∏

i=p+1

1
yi


 n∏

i=d(r+s)+2p

1
yi


ki
 [(4γ)rλr+sλl

]

e=


(

(e−1ν)ν

Γ(ν)

)n−p−d(r+s)
 2p−1∏

i=p+1

1
ai


 n∏

i=d(r+s)+2p

1
ai


ki
 [(4γ)rλr+sλl

]
f
< ∞.

In step a, we bound the part A and B by expressions that are previously shown (see (5.2.2)
and (5.2.3)). In step b, we bound the density of yi, for i = p+1, . . . , 2p−1, by (e−1ν)ν/(yiΓ(ν))
(see Lemma 1). Recall that these are non-outliers such that |xT

i β| < log(ω)/γ. In step c,
we simplify each log(biω)λr and log(biω)λl by multiplying by the product of densities of d
non-extreme outliers, as we have explained earlier. In step d, we bound the rest of the non-
outliers by (e−1ν)ν/(yiΓ(ν)). If we consider all the k non-outliers, there are p non-outliers
that are taken for the change of variables and to integrate over β at the beginning, d(r+ s)
are used to offset the outliers, and we bound p − 1 others that are not extreme. There are
thus still k − p − (p − 1) − d(r + s) = k − 2p − d(r + s) + 1 non-outliers left, that need to
be considered. The proof is simpler and is still valid if there is no point left. The condition
of this theorem k ≥ d(r + s) + 2p − 1 is to make sure that we have enough non-outlying
points to bound the whole product. In step e, every yi in the expression is a non-outlying
observation, thus is equal to ai. Finally, in step f , the whole expression is bounded since all
terms are constant.

Therefore, h(ω) = A×B × C is bounded. This completes our proof of Result (a).

We now turn to the proof of Result (b). We have that

π(β | y) = π(β | yk)m(yk)∏n
i=1 fν,c(yi)si+ri

m(y)

 n∏
i=1

fν,c(yi/µi)/µi

fν,c(yi)

si+ri

,
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and

m(yk)∏n
i=1 fν,c(yi)si+ri

m(y)

 n∏
i=1

fν,c(yi/µi)/µi

fν,c(yi)

si+ri

→ 1,

as ω → ∞, for any β ∈ Rp, using Result (a) and Proposition 5.2.2. We also showed that
π(β | yk) is proper. This concludes the proof of Result (b).

We now finish with the proof of Result (c). This result is a direct consequence of Result
(b) using Scheffé’s theorem (Scheffé, 1947).

□

Figure 5.8 shows λl and λr as a function of ν with c = 1.35. The numerical calculation
suggests that λl ≥ λr for all ν. Moreover, the ratio d = λl/λr seems to strictly decrease as ν
increases.

3.5
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0 250 500 750 1000
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Figure 5.8. Comparison between λl and λr as a function of ν with c = 1.35
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