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RÉSUMÉ

Soit q ⩾ 2 une puissance première fixe. L’objectif principal de cette thèse est d’étudier le com-

portement asymptotique de la fonction arithmétique Πq(n,k) comptant le nombre de polynômes

moniques de degré n et ayant exactement k facteurs irréductibles (avec multiplicité) sur le corps

fini Fq. Warlimont et Car ont montré que l’objet Πq(n,k) est approximativement distribué de

Poisson lorsque 1 ⩽ k ⩽ A logn pour une constante A > 0. Plus tard, Hwang a étudié la fonc-

tion Πq(n,k) pour la gamme complète 1 ⩽ k ⩽ n. Nous allons d’abord démontrer une for-

mule asymptotique pour Πq(n,k) en utilisant une technique analytique classique développée

par Sathe et Selberg. Nous reproduirons ensuite une version simplifiée du résultat de Hwang

en utilisant la formule de Sathe-Selberg dans le champ des fonctions. Nous comparons égale-

ment nos résultats avec ceux analogues existants dans le cas des entiers, où l’on étudie tous les

nombres naturels jusqu’à x avec exactement k facteurs premiers. En particulier, nous montrons

que le nombre de polynômes moniques croît à un taux étonnamment plus élevé lorsque k est un

peu plus grand que logn que ce que l’on pourrait supposer en examinant le cas des entiers.

Pour présenter le travail ci-dessus, nous commençons d’abord par la théorie analytique des

nombres de base dans le contexte des polynômes. Nous introduisons ensuite les fonctions arith-

métiques clés qui jouent un rôle majeur dans notre thèse et discutons brièvement des résultats

bien connus concernant leur distribution d’un point de vue probabiliste. Enfin, pour comprendre

les résultats clés, nous donnons une discussion assez détaillée sur l’analogue de champ de fonc-

tion de la formule de Sathe-Selberg, un outil récemment développé par Porrit et utilisons ensuite

cet outil pour prouver les résultats revendiqués.

Mots-clés : Polynômes sur des corps finis, Nombres premiers, Polynômes irréductibles,

Nombre Fixe de facteurs Irréductibles, Fonction zêta de Riemann, Méthode de Sathe-

Selberg, Fonctions multiplicatives, Théorème d’Erdos-Kac, Approximation du point de

selle, Théorie analytique des nombres.



ABSTRACT

Let q ⩾ 2 be a fixed prime power. The main objective of this thesis is to study the asymptotic

behaviour of the arithmetic function Πq(n,k) counting the number of monic polynomials that

are of degree n and have exactly k irreducible factors (with multiplicity) over the finite field Fq.

Warlimont and Car showed that the object Πq(n,k) is approximately Poisson distributed when

1 ⩽ k ⩽ A logn for some constant A > 0. Later Hwang studied the function Πq(n,k) for the

full range 1 ⩽ k ⩽ n. We will first prove an asymptotic formula for Πq(n,k) using a classical

analytic technique developed by Sathe and Selberg. We will then reproduce a simplified version

of Hwang’s result using the Sathe-Selberg formula in the function field. We also compare our

results with the analogous existing ones in the integer case, where one studies all the natural

numbers up to x with exactly k prime factors. In particular, we show that the number of monic

polynomials grows at a surprisingly higher rate when k is a little larger than logn than what one

would speculate from looking at the integer case.

To present the above work, we first start with basic analytic number theory in the context of

polynomials. We then introduce the key arithmetic functions that play a major role in our

thesis and briefly discuss well-known results concerning their distribution from a probabilistic

point of view. Finally, to understand the key results, we give a fairly detailed discussion on the

function field analogue of the Sathe-Selberg formula, a tool recently developed by Porrit and

subsequently use this tool to prove the claimed results.

Keywords: Polynomials over finite fields, Prime numbers, Irreudcible polynomials, Fixed

number of irreducible factors, Riemann zeta function, Sathe-Selberg method, Multiplica-

tive functions, Erdos-Kac theorem, Saddle point approximation, Analytic number theory.
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NOTATION

In this thesis, the sets of numbers N, Z, Q, R and C, respectively, represent the positive integers,

the integers, the rational numbers, the real numbers and the complex numbers. The variables

p, I (and their subscripts) always represent prime numbers and irreducible polynomials un-

less explicitly stated otherwise. We employ some other standard notation which will be used

throughout the work. For a complex number z ∈ C, we denote the real and the imaginary parts

by ℜ(z) and ℑ(z) respectively.

⌊x⌋ The greatest integer smaller than or equal to x for x ∈ R.

P,P The set of all primes and the set of all monic irreducibles in Fq[t] where

q ⩾ 2 is a prime power.

M The set of all monic polynomials in Fq[t].

Mn,Pn The set of monics (respectively monic irreducible polynomials) of de-

gree n.

1A(x) The indicator function of the set A which returns 1 or 0 depending on

whether x ∈ A or not.

γ Euler-Mascheroni constant.

(a,b) The greatest commmon divisor of two integers a and b. The same no-

tation is also used for polynomials and for open intervals but there will

be no ambiguity from the context.

[a,b] The least commmon multiple of two integers a and b. The same notation

is also used for polynomials and for closed intervals but there will be no

ambiguity from the context.

#B The cardinality of any set B.

f (x) = OA(g(x)) f (x) ⩽ Cg(x) for a sufficiently large constant C > 0. The subscript A

signifies that the constant C is allowed to depend on the quantity A.

f (x)≪A g(x) Vinogradov’s notation, same as f (x) = OA(g(x)).

f (x)∼ g(x) lim
x→∞

f (x)
g(x)

= 1.

f (x) = o(g(x)) lim
x→∞

f (x)
g(x)

= 0.



ACKNOWLEDGMENTS

The author would like to thank his supervisor, Prof. Andrew Granville, for suggesting that

he work on this exciting project and also his co-supervisor, Prof. Dimitris Koukoulopoulos,

for many helpful conversations and continuous support during this project and for their valu-

able suggestions and comments on the previous versions of this thesis. The dissertation would

not have taken shape without their help. The author was financially supported by his supervi-

sors and the fellowships provided by Faculté des études supérieures et postdoctorales (FESP),

Bourse d’exemption of Université de Montréal, Centre interuniversitaire en calcul mathéma-

tique algébrique (CICMA) while carrying out this work. The author would especially like to

thank Prof. Granville for patiently reading through the work several times and for his continuous

constructive feedback to improve on the earlier versions. Moreover, everything the author tells

in his dissertation is based on techniques that he learned in his analytic number theory classes

with Prof. Granville and Prof. Koukoulopoulos. He would also like to thank Ofir Gorodetsky

for informing him that this thesis reproduces two earlier results established by Warlimont and

Hwang, which the author was initially unaware of. Finally, the author would also like to thank

the jury members for their attentive reading and instructive comments.





CHAPTER 1

INTRODUCTION

Analytic Number theory is a branch of mathematics that studies the patterns and properties of

integers using tools from real and complex analysis. One of the central aims of this subject is

to understand the underlying distribution of the prime numbers that remains mysterious to this

date. The prime numbers are the fundamental building blocks of the integers. It is evident that

some integers can be broken down into non-trivial smaller parts, for instance, 12= 4×3= 6×2,

while the integer 7 can not be broken down any further. All these unbreakable integers share

the common feature that they are only divisible by 1 and themselves and are called the Prime

numbers. Once one learns from the Fundamental Theorem of Arithmetic that every integer

can be uniquely factored into its prime divisors, one quickly realizes the importance of under-

standing these building blocks. Perhaps the first question that comes to our mind concerning

prime numbers is whether there are finite or infinitely many primes. By elementary means, it

is possible to show that there are infinitely many primes, but their occurrences do seem to get

rarer as we travel further along the number line. It was a challenge for mathematicians for a

long time to figure out how many primes there are up to a given large parameter x. This question

was resolved in the 19th century and today is known as the Prime number theorem, one of the

most celebrated results in analytic number theory. But then, there are still several fundamental

questions that stem from the study of the distributions of primes that remain unanswered. A

notable example is the Riemann hypothesis, a solution to which will help us quite accurately

understand how the primes are distributed among integers. In this regard, there are often sit-

uations where we do not have answers to both archaic and simple questions concerning prime

numbers. For instance, we already discussed that it can be shown that there are infinitely many

primes. However, a natural follow-up that asks whether there are infinitely many pairs (p, p+2)

of primes, also known as the Twin prime conjecture remains wide open. Another primary goal

of the subject is to understand the interaction between the two fundamental operations, addition

and multiplication. It is generally believed that these two operations do not see each other in

the sense that, from the prime decomposition of a given integer a ∈ N, it is impossible to spec-

ulate anything about the prime decomposition of a+ 1 apart from the obvious fact that these
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decompositions have no prime numbers in common.

1.1 Analytic number theory in function fields

Classical number theory is primarily concerned with studying the arithmetic properties of the

set of integers Z. While the field of number theory in function fields is definitely more recent

than the old classical number theory, the resemblance of properties of the ring Fq[t] with Z has

long been well known. A significant similarity between these two worlds can be observed at

the nascent level. We know that every integer can be uniquely decomposed into prime factors,

and likewise, every polynomial f ∈ Fq[t] can also be uniquely decomposed into irreducible el-

ements. Also, by elementary means, it is possible to show there are infinitely many irreducible

polynomials in Fq[t] as it is in the case for Z. All these observations hint at the possible exis-

tence of an analogous theory in the world of polynomials. As we shall see in Chapter 1 that this

is indeed the case.

The study of Algebraic number theory deals with the finite extensions K of the rationals Q, also

known as algebraic number fields. Just like the set of integers Z inside Q, we can also consider

the set of algebraic integers, denoted by OK inside K. Formally OK is defined by the integral

closure of Z in K. All these can be summarized in the following commutative diagram,

Z Q

OK K

where all the arrows denote the natural inclusion maps. We can now consider the field of frac-

tions k := Fq(t) of the polynomial ring Fq[t] and carry out another similar construction. The

finite extensions of the field k are called algebraic function fields.

The main focus of this thesis will be to explore the arithmetic of polynomials over finite fields.

However, in what follows, we also plan to provide the resemblance (except in very rare cases)

between Z and Fq[t] for every result we discuss.
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1.2 Structure of the thesis

The thesis is divided into six chapters. Chapter 2 presents the function field analogues of well-

known results in elementary number theory. We mention famous results due to Fermat and

Euler. We also discuss the prime number theorem for both Z and Fq[t].

In chapter 3, we introduce the Riemann zeta function, an object of utmost importance in ana-

lytic number theory and discuss its key properties.

Chapter 4 gives a basic but relatively detailed introduction to arithmetic functions. In particular,

we focus on the statistical behaviour of two arithmetic functions ω(n), Ω(n) which count the

number of prime factors of a given integer n. We will mention a central limit theorem due to

Erdos and Kac for the function ω(n) and prove an analogous CLT for Fq[t].

Later in chapter 5, we introduce the reader to a famous problem that was originally asked by

Gauss and later was pursued by many mathematicians, including Hardy and Ramanujan and

Landau. We will then briefly explore how this problem later motivated the invention of a spe-

cific analytic technique due by Sathe, Selberg and Delange, which will be one of the key step-

ping stones of two new theorems that we will prove in Chapter 6, where the main contribution

of this thesis is made.

In Chapter 6, our goal will be to present detailed proofs of the two main results of this thesis us-

ing some techniques discussed in the earlier chapters. Our main results concern the distribution

of the functions Ωq( f ) and ωq( f ) for some f ∈ Fq[t] which counts the number of irreducible

factors of a given monic polynomial f .



CHAPTER 2

THE WORLD OF INTEGERS AND POLYNOMIALS

2.1 Arithmetic in Fq[t]

In this chapter we will work with the polynomial ring Fq[t] and explore the basic arithmetic

structure of polynomials. For the exposition of this chapter we closely follow the material

presented in [22].

Let f ∈ Fq[t] be a degree n polynomial, we know f can be written as

f (t) = antn +an−1tn−1 + · · ·+a0,

where the coefficients ai ∈ Fq for every i ∈ {0, . . . ,n}. If the leading coefficient an is 1, we call

f a monic polynomial. Let us define the set

M :=
{

f ∈ Fq[t] : f is monic
}
.

Elements of the set M will essentially play the role of positive integers. If the field Fq has q

elements then the cardinality of the set M is qn since there are q choices for each coefficients

a0, . . . ,an−1. Given two polynomials f (t),g(t) ∈ Fq[t] we say g(t) divides f (t) if and only if

there exist a polynomial h(t) ∈ Fq[t] such that f (t) = g(t)h(t). We write g| f to denote that, g

divides f and g ∤ f to denote otherwise. With the above framework in mind we can readily prove

the following proposition that reveals a key nature about the ring Fq[t].

Proposition 2.1.1. Let f (t),g(t) ∈ Fq[t] be given such that g ∤ f and g ̸= 0. There exists poly-

nomials q(t),r(t) ∈ Fq[t] such that f (t) = g(t)q(t)+ r(t) and deg(r)< deg(g)

We refer the reader [22] for a proof of the claim using mathematical induction.

The above proposition can be used show that Fq[t] is a Unique Factorization Domain (UFD)

which implies every polynomial f ∈ M can be uniquely written as

f = ∏
1⩽ j⩽k

Iα j
j
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where I j is a monic irreducible polynomial for each 1 ⩽ j ⩽ k. The previous proposition can

actually be used to show a stronger fact that Fq[t] is a Euclidean Domain (ED) which implies

every ideal of Fq[t] is generated by a single element. We have already started to see a strong

connection here between Fq[t] and the set of integers Z.

Our next goal is to discuss some elementary number theory over Fq[t] which will be helpful in

later chapters, in particular, analogues of Euler’s phi function and establish some related results.

We record the following;

Lemma 2.1.2. The multiplicative group of a finite field is cyclic.

The above result from abstract algebra turns out to be useful in what we are going to prove next.

The proof of the above lemma can be found in [2].

Proposition 2.1.3. Let I ∈ Fq[t] be a monic irreducible polynomial. Then the multiplicative

group
(
Fq[t]/(I)

)∗ is cyclic and has qdeg(I)−1 elements.

Proof. The polynomial ring Fq[t] is an Euclidean Domain and hence a Principal Ideal Domain

(PID). Therefore the ideal (I)⊂ Fq[t] generated by an irreducible element is maximal. Thus the

quotient Fq[t]/(I) is isomorphic to a finite field. Since an element g ∈ Fq[t]/(I) in the quotient

can be uniquely expressed as

g =
deg(I)-1

∑
j=1

b jt j(mod I) for coefficients b j ∈ Fq,

there are qdeg(I)−1 choices for g ̸= 0 as the coefficients b j can be chosen in q different ways for

each j excluding the case where they all are zero. The conclusion now follows from Lemma

2.1.2.

The above proposition rings a bell about introducing a notion of size for a given polynomial.

The norm of an integer n, is defined as

|n|=

n, if n ⩾ 0

−n, otherwise.

As we can notice |n| is also equal to the cardinality of the quotient ring Z/nZ. Inspired by this

observation, we would like to define the norm for a given polynomial f ∈ Fq[t] to be the size of
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the quotient ring Fq[t]/( f ).

Definition 2.1.4 (Norm of a polynomial). Let f ∈ Fq[t] be a non-zero polynomial. We define

the norm of f , denoted by | f |, to be the quantity qdeg( f ). We also define | f |= 0 if f is identically

0.

Remark 2.1.5. Given a polynomial f ∈ Fq[t], the norm defined above is multiplicative and

satisfies all the properties of an usual norm.

2.2 Euler’s theorem for integers and polynomials

In elementary number theory, for a positive integer n ∈ N we define Euler’s phi(φ) function as

follows

φ(n) := #
{

1 ⩽ m ⩽ n−1 : gcd(m,n) = 1
}
= #(Z/nZ)∗. (2.2.1)

If we know the prime decomposition of n, it is not difficult to obtain an explicit formula de-

scribing φ(n) using the inclusion-exclusion principle. Let us assume the prime decomposition

for n; n =
k
∏
j=1

pα j
j where p1, . . . , pk are primes. We will not take the path of inclusion exclusion

here and use the Chinese remainder theorem instead.

Theorem 2.2.1 (Chinese Remainder theorem for Integers). Let m1,m2, . . .mk be pairwise co-

prime integers. We have the following isomorphism for rings,

Z/m1Z×·· ·×Z/mkZ∼= Z/MZ

where M is the product m1m2 · · ·mk.

In the above theorem, we can only focus on the group of units of each ring and get

Corollary 2.2.2. Let m1,m2, . . .mk be pairwise co-prime integers. We have the following group

isomorphism,

(Z/m1Z)∗×·· ·× (Z/mkZ)∗ ∼= (Z/MZ)∗

where M is the product m1m2 · · ·mk.

In our case, the corollary readily gives us the group isomorphism

(Z/pα1
1 Z)∗×·· ·× (Z/pαk

k Z)∗ ∼= (Z/nZ)∗
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and hence equating the cardinalities both side, we readily obtain

φ(n) =
k

∏
j=1

φ(pα j
j ) =

k

∏
j=1

pα j−1
j (p j −1) = n ∏

p|n
p prime

(
1− 1

p

)
,

since the number of elements that are co-prime to pα j
j in Z/pα j

j Z is pα j−1
j (p j − 1) for each j.

An exact analogue of this result exists for polynomials as we are going to see next.

Proposition 2.2.3. Let I ∈ Fq[t] be a monic irreducible polynomial. Then for each integer ℓ∈N

we have

#
(
Fq[t]/(Iℓ)

)∗
= |I|ℓ−1(|I|−1),

where |I| denotes the norm of I.

Proof. Let us denote the group
(
Fq[t]/(Iℓ)

)∗ by G. We consider the group homomorphism

ψ : G → (Fq[t]/(I))∗ defined by

f
(

mod Iℓ
)
7→ f (mod I).

The map ψ is surjective with the kernel ker(ψ) = (I)/
(
Iℓ
)

and we have the following commu-

tative diagram

G
ψ

//

π
##

(Fq[t]/(I))∗

G/ker(ψ)

ψ̄

77

First isomorphism theorem says the induced map ψ̄ : G/ker(ψ) → (Fq[t]/(I))∗ is an isomor-

phism which gives us #G = #ker(ψ)#(Fq[t]/(I))∗ = |I|ℓ−1(|I| − 1) as the kernel has exactly

|I|ℓ−1 elements.

Let f ∈ Fq[t] be given. We define the Euler’s phi(Φ) function in Fq[t] in the following way

Φ( f ) := #(Fq[t]/( f ))∗

Using Proposition 2.2.3 we can evaluate the function Φ explicitly in terms of the irreducible

factors of of f . First, we invoke the validity of CRT for general principal ideal domains and
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hence in particular, for the polynomial ring Fq[t].

Theorem 2.2.4 (Chinese Remainder theorem for Polynomials). Let f1, f2, . . . , fk ∈Fq[t] be pair-

wise co-prime polynomials. We then have the following isomorphism of rings

Fq[t]/( f1)×·· ·×Fq[t]/( fk)∼= Fq[t]/( f )

where f is the product f1 f2 · · · fk.

The above theorem implies the following analogue of Corollary 2.2.2.

Corollary 2.2.5. Let f1, f2, . . . , fk ∈ Fq[t] be pairwise co-prime polynomials. We have the fol-

lowing isomorphism of groups

(
Fq[t]/( f1)

)∗×·· ·×
(
Fq[t]/( fk)

)∗ ∼= (Fq[t]/( f )
)∗
,

where f is the product f1 f2 · · · fk.

Applying the corollary for f =
k
∏
j=1

Iα j
j we get

(
Fq[t]/(I

α j
1 )
)∗

×·· ·×
(
Fq[t]/(I

α j
k )
)∗ ∼= (Fq[t]/( f )

)∗
,

and once again equating the cardinalities we get

Φ( f ) =
k

∏
j=1

Φ(Iα j
j ) =

k

∏
j=1

|I j|α j−1(|I j|−1) = | f | ∏
I| f

I irreducible

(
1− 1

|I|

)
.

We are now in a position of establishing the analogues of Euler’s theorem and as a result Fer-

mat’s little theorem for polynomials.

Theorem 2.2.6 (Euler’s Theorem for polynomials). Let f ∈ Fq[t] be a non zero polynomial and

g be another polynomial which is co-prime to f . We then have

gΦ( f ) ≡ 1(mod f )

Proof. By definition of Φ, the group
(
Fq[t]/( f )

)∗ has Φ( f ) elements. Therefore for every

g ∈
(
Fq[t]/( f )

)∗ such that gcd(g, f ) = 1, the conclusion follows from Lagrange’s theorem for
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finite groups.

If I ∈ Fq[t] is a monic irreducible polynomial, then the above theorem immediately implies the

analogue of Fermat’s little theorem,

g|I|−1 ≡ 1(mod I)

for any polynomial g ∈ Fq[t] such that gcd(g, I) = 1.

2.3 Prime numbers and Irreducible polynomials

We have already seen that monic irreducible polynomials in Fq[t] play a similar role that of the

prime numbers in Z. The goal of this section will be to discuss the analogue of the famous Prime

Number Theorem (PNT) for polynomials. We begin this section with a brief introduction to

Prime Number Theorem for integers.

2.3.1 The prime counting function

When we first start studying how prime numbers are distributed among integers, perhaps the

most fundamental question that comes to our mind is, how many primes are there up to a given

integer, say x? More formally, let us define the prime counting function

π(x) = #
{

p ⩽ x : p is prime
}
.

Therefore, the basic question is, what can we say about the behaviour of π(x) as x increases.

This question goes back to the eminent mathematician Gauss who predicted the average nature

of π(x) by hand! According to Gauss’s speculation in [9], we have

π(x)≈ Li(x) where Li(x) :=
∫ x

2

dt
log t

=
x

logx
+O

(
x

log2 x

)
.

Table 2.I (below) captures the fluctuations of π(x) from the function x/ logx. [28]

It took a considerable amount of time for mathematicians to prove formally that this prediction

about the behavior of π(x) was correct. In 1986, french mathematician de la Vallée Poussin [7]
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x π(x) π(x)− x/ logx π(x)
x/ logx

10 4 -0.3 0.921
102 25 3.3 1.151
103 168 23 1.161
104 1229 143 1.132
105 9592 906 1.104
106 78498 6116 1.084
107 664579 44158 1.071
108 5761455 332774 1.061
109 50847534 2592592 1.054
1010 455052511 20758029 1.048
1015 29844570422669 891604962452 1.031
1020 2220819602560918840 49347193044659701 1.023
1025 176846309399143769411680 3128516637843038351228 1.018

Table 2.I – x/ logx and the function π(x).

and Jaques Hadamard [13], [12] independently proved the following asymptotic result as x → ∞

π(x)∼
∫ x

2

dt
log t

. (2.3.1)

The PNT has several equivalent forms. In modern textbooks on analytic number theory, it

is easy to find a proof of (2.3.1) that uses techniques from complex analysis, in particular,

Cauchy’s residue theorem. Most proofs do not directly show the result described in (2.3.1);

instead, they take a more convenient route via the Von-Mangoldt function to show an equivalent

form of (2.3.1). The Von-Mangoldt function for natural numbers is defined as follows,

Λ(n) =

log p, if n = pk for some prime p and a positive integer k

0, otherwise.

Using partial summation technique (see ref), a method often used in analytic number theory, it

can be checked that (2.3.1) is equivalent to the following asymptotic result as x → ∞

∑
n⩽x

Λ(n)∼ x (2.3.2)

A significant amount of effort goes into the proof of (2.3.2). It is no surprise that an analogous

prime number theorem also exists for polynomials. However, the proof in the case of Fq[t] is



11

much simpler. In what follows, we shall see the results we discuss in the later chapters; almost

always, the proof techniques in the integer case are relatively “more-involved” and harder than

the corresponding counterparts for polynomials. We will try to explain this phenomenon in the

next section, where we introduce the Riemann zeta function and discuss its properties for both

integers and function fields.

2.3.2 Prime number theorem for polynomials

We turn our attention to the prime number theorem in Fq[t] for now. We wish to count how

many irreducible polynomials there are of a given degree. We define

πq(n) = #
{

I ∈ Mn : I is irreducible
}
,

where the subscript q denotes the number of elements in the ground field F.

We follow an elegant proof outlined in [11]. It is possible to define an analogue of the Von-

Mangoldt function that only detects the contribution of irreducible polynomials, similar to the

one we saw in the integer setting.

Let f ∈ M be given. We define

Λq( f ) =

deg( f ), if f = Ik for some irreducible I and a positive integer k

0, otherwise.

We observe the following identity

deg( f ) = ∑
g| f

g∈M

Λq(g)

holds, since the only degree contribution to the sum on the right hand side comes from the

monic polynomials that divide f and are powers some irreducible. Our idea is to sum the above

identity over all possible monics of degree n, so that we get

∑
f∈Mn

deg( f ) = ∑
f∈Mn

∑
g| f

g∈M

Λq(g).
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We have already seen in the beginning of the section 2.1 that there are qn monic polynomials

of degree n which means the left hand side is equal to nqn. We also interchange the order of

double summation and obtain

nqn = ∑
1⩽k⩽n
g∈Mk

∑
f=gh

h∈Mn−k

Λq(g) = ∑
1⩽k⩽n
g∈Mk

∑
h∈Mn−k

Λq(g) = ∑
1⩽k⩽n
g∈Mk

Λq(g)qn−k. (2.3.3)

The final equality follows as the term Λq(g) is independent of h and there are exactly qn−k

possible candidates for h, since given a degree k monic polynomial g, every choice for h with

deg(h) = n− k would be valid and will contribute to the sum. Rewriting the identity with n−1

instead of n gives us

(n−1)qn−1 = ∑
1⩽k⩽n−1

g∈Mk

Λq(g)qn−k−1. (2.3.4)

Multiplying both sides by q of (2.3.4) and subtracting from (2.3.3) we get

qn = nqn − (n−1)qn = ∑
1⩽k⩽n−1

g∈Mk

[
Λq(g)qn−k −Λq(g)qn−k

]
+ ∑

g monic
deg(g)=n

Λq(g).

Thus we arrive at the following conclusion

∑
g monic

deg(g)=n

Λq(g) = qn. (2.3.5)

This is already good news as we established the analogue of (2.3.2). Also, passing to πq from

Λq will be less painful here as the partial summation will not be required, and in particular,

using a simple Mobius inversion will be enough.

In (2.3.5) the summands on the left hand side is only non zero if g = Ik for some monic irre-

ducible polynomial I and some positive integer k. Therefore a contribution of deg(I) is made

πq(deg(I)) times where I varies over the set of all monic irreducibles whose degree is at most

n. Also, we have an additional constraint n = deg(g) = kdeg(I) which implies deg(I)|n. Letting

d = deg(I) we get (2.3.5) is equivalent to

∑
d|n

dπq(d) = qn. (2.3.6)
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Mobious inversion of the above gives

πq(n) =
1
n ∑

ab=n
µ(a)qb =

qn

n
+O

(
q

n
2

n

)
, (2.3.7)

where we absorbed the lower order terms inside big O. (2.3.7) is the polynomial analogue of

(2.3.1), since letting x the number of irreducible polynomials of degree n we see the expression

for πq(n) is ∼ x/ logq x as x → ∞.

As mentioned earlier, in the next chapter we will try to explore why proofs in the polynomial

case often turn out to be considerably “less-harder” than their counterpart in the integer case.



CHAPTER 3

THE RIEMANN ZETA FUNCTION

The Riemann zeta function is one of the most fundamental objects in number theory. It has a

rich connection with the distribution of prime numbers, as we shall see in this section. We begin

this section with the following definition.

3.1 Definition and a brief introduction of ζ (s)

Definition 3.1.1 (The Riemann Zeta function). For every complex number s∈C with ℜ(s)> 1,

we define Riemann zeta (ζ ) function as

ζ (s) :=
∞

∑
n=1

1
ns .

Furthermore, in what follows, we shall always assume s=σ + it where σ and t are real numbers.

We know the series
∞

∑
n=1

1
ns converges absolutely in {s ∈ C : ℜ(s) > 1} since it is dominated by

the series
∞

∑
n=1

1
nσ which converges absolutely if σ > 1. Thus ζ (s) defines an analytic function in

the region {s ∈ C : ℜ(s)> 1}. Moreover, we also have an Euler product representation of ζ (s)

in this region given by

ζ (s) =
∞

∑
n=1

1
ns = ∏

p

(
1− 1

ps

)−1

. (3.1.1)

The convergence of the above product can be checked easily. Since |p−s| < 1 we have the

following identity

∏
p

(
1− 1

ps

)−1

= ∏
p

(
1+

1
ps +

1
p2s + · · ·

)
.

Upon expanding the infinite product above we obtain an infinite sum where each term in the

summation looks like
1

pe1s
1 · · · peks

k
=

1(
pe1

1 · · · pek
k

)s .

The conclusion in (3.1.1) is an immediate consequence of the Fundamental theorem of Arith-

metic which says that every integer n ⩾ 2 can be uniquely decomposed into product of prime
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numbers. However it is possible to extend ζ (s) beyond the region {s : ℜ(s) > 1} of absolute

convergence. The following result partially accomplishes this.

Lemma 3.1.2. There is a function H0(s), analytic for σ > 0 such that the following formula

ζ (s) =
s

s−1
− sH0(s)

holds for every s ̸= 1 and hence provides a meromorphic continuation of ζ (s) for ℜ(s)> 0.

Proof. Let x > 0 and s = σ + it with σ > 1 be given. Using partial summation we obtain

∑
n⩽x

1
ns =

⌊x⌋
xs + s

∫ x

1

⌊t⌋
ts+1 dt.

Letting x → ∞ we get that

ζ (s) = 0+ s
∫

∞

1

⌊t⌋
ts+1 dt

= s
∫

∞

1

t − (t −⌊t⌋)
ts+1 dt

= s
∫

∞

1

dt
ts − s

∫
∞

1

t −⌊t⌋
ts+1 dt

= s
t1−s

1− s

∣∣∣∣∣
∞

t=0

− s
∫

∞

1

t −⌊t⌋
ts+1 dt

=
s

s−1
− s
∫

∞

1

t −⌊t⌋
ts+1 dt.

Now we observe the function H0 defined by

H0(s) :=
∫

∞

1

t −⌊t⌋
ts+1 dt

is analytic for every s with σ = ℜ(s) > 0 since the integral in the definition of |H0(s)| ⩽∫
∞

1 dt/tσ+1 and hence converges absolutely in the concerned region.

3.2 Meromorphic continuation ζ (s) on C

Having continued ζ (s) partially beyond the region of absolute convergence, let us begin this

section by introducing Γ function which is intimately linked to ζ (s) and will be essential for
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obtaining the analytic continuation of ζ to the whole complex plane.

Definition 3.2.1. For s ∈ C, we define Gamma function via the following infinite product

1
Γ(s)

:= seγs
∞

∏
n=1

(
1+

s
n

)
e−s/n,

where γ is known as Euler’s constant and is defined by

γ = lim
N→∞

N

∑
i=1

1
i
− logN.

A detailed introduction aboubt Gamma function can be found in [25]. Here we only note the

two following important properties of Γ(s) which we shall use repeatedly.

— Γ(s) is an analytic function on C except the simple poles at non positive integers s =

0,−1, . . . with residue (−1)n/n! at s =−n.

— Gamma function satisfies the following recurrence relation for each s ∈ C

Γ(s+1) = sΓ(s).

3.2.1 Functional equation of ζ (s)

In Lemma 3.1.2, we have already seen a way to analytically extend ζ (s) for σ > 0 except a

simple pole at s = 1. In this section we talk about the functional equation that ζ satisfies and as

a result we will be able to further extend ζ analytically to the entire complex plane.

Definition 3.2.2 (The completed zeta function). We define the completed zeta function by

ξ (s) := π
−s

Γ

( s
2

)
ζ (s)

The above definition is purely for convenience; as we shall see later functional equation looks

much nicer in terms of the completed zeta function than the zeta function. Using techniques

from complex analysis, one can prove the following result [25].

Proposition 3.2.3. The function ξ (s) is analytic for σ > 1 and has an analytic continuation

to all of C with simple poles at s = 0 and s = 1. Additionally ξ also satisfies the following



17

functional equation

ξ (s) = ξ (1− s) for all s ∈ C.

As a consequence, we can quickly prove the following result.

Corollary 3.2.4. The Riemann zeta function ζ (s) analytically extends to all of C as a meromor-

phic function only with a simple pole at s = 1.

Proof. We re-write the definition of completed zeta function and get

ζ (s) = π
s/2 ξ (s)

Γ

( s
2

) .
From the definition of gamma function we note that 1/Γ(s/2) is an entire function with zeros at

s = 0 and the negative even integers s =−2,−4, . . ., resulting a cancellation of the simple pole

of ξ (s) at s = 0. Thus ζ (s) only has a simple pole at s = 1 and admits an analytic continuation

to all of C.

It is possible to play with the functional equation of the completed zeta function and obtain

an analogous equation for ζ (s). Rewriting the functional equation in Proposition 3.2.3 and

expanding we get

π
−s/2

Γ

( s
2

)
ζ (s) = π

−(1−s)/2
Γ

(
1− s

2

)
ζ (1− s)

and consequently,

ζ (s) =
πs−1/2Γ((1− s)/2)

Γ(s/2)
ζ (1− s).

We now observe a few things about the zeros of the Riemann zeta function. For σ > 1, we can

infer that ζ (s) ̸= 0 since ζ (s) has a Euler product representation in the concerned domain given

by (3.1.1). This observation combined with the functional equation discussed above immedi-

ately implies ζ (s) ̸= 0 for σ < 0 unless s =−2,−4, . . . since ℜ(1− s)> 1, Γ((1− s)/2) is zero

free and 1/Γ(s/2) has zeros only at s = −2,−4, . . .. We are only left to analyze ζ (s) in the

region 0 ⩽ σ ⩽ 1, called the critical strip.

We can now state one of the most celebrated open problems in mathematics concerning the

zeros of the Riemann zeta function inside the critical strip. Before doing so, it is a good time
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to summarize the important facts and results about ζ (s) that we briefly glanced upon so far.

— For s ∈ C with σ > 1 we have

ζ (s) =
∞

∑
n=1

1
ns = ∏

p

(
1− 1

ps

)−1

.

— ζ (s) meromorphically continues to the entire complex plane with a simple pole at s = 1.

— The Riemann zeta function ζ (s) satisfies the following functional equation

ζ (s) =
πs−1/2Γ((1− s)/2)

Γ(s/2)
ζ (1− s).

— ζ (s) ̸= 0 for σ > 1 and σ < 0 except at s =−2,−4 . . ..

— ζ (s) = 0 for negative even integers s =−2,−4, . . ., and these are called the trivial zeros.

3.3 The Riemann Hypothesis

The zeros of Riemann zeta function in the region 0 ⩽ σ ⩽ 1, i.e. the critical strip lie on

the line σ = 1/2. Riemann himself said: “It would certainly be desirable to have a rigorous

demonstration of this proposition; nevertheless, I have for the moment set this aside, after sev-

eral quick but unsuccessful attempts, because it seemed unneeded for the immediate goal of my

study.” [25] It is noteworthy that despite the significant effort by several brilliant mathemati-

cians for over a century and a half now, we are yet to discover a rigorous proof and numerical

experiments continue to speak for the validity of the Riemann Hypothesis. Today the Riemann

hypothesis is widely considered one of the most famous unsolved problems in mathematics.

3.4 Riemann zeta function for polynomials

This section is devoted to developing the analogue of the Riemann zeta function for the ring

Fq[t]. As we shall see, analyzing the zeta function for polynomials will be much simpler than

its integer counterpart, which partly explains why one should expect a more straightforward

argument for many results, including the prime number theorem in the polynomial setting.

The corresponding zeta function will be more subtle to handle in more general function fields.
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However, we will confine our discussion mostly to the simpler version of the zeta function

concerning only polynomials.

Definition 3.4.1 (Riemann zeta function for polynomials). The Riemann zeta function for the

polynomial ring Fq[t] is defined by

ζq(s) = ∑
f∈M

1
| f |s

for ℜ(s)> 1.

Since there are exactly q j monic polynomials of degree j, it is possible to quickly obtain a

closed form of the infinite sum above.

ζq(s) = lim
d→∞

∑
deg( f )≤d

1
| f |s

= lim
d→∞

d

∑
j=0

q j

q js =
1

1− q
qs

=
1

1−q1−s for ℜ(s)> 1.

In the classical integer setting, it took us a considerable amount of work to analytically continue

ζ (s) beyond the region of absolute convergence ℜ(s)> 1. Also, proving the functional equation

for the completed zeta function ξ (s) = ξ (1− s) was not at all a trivial job. As we shall see in

this section, it is possible to establish analogous results for ζq(s) with much less work.

It is immediate from the closed form of ζq(s) = 1/(1−q1−s) that, ζq can be meromorphically

continued to all of C with a simple pole at s = 1. We now move onto the following definition.

Definition 3.4.2 (The completed zeta function for polynomials). The completed zeta function

for Fq[t] is defined as follows

ξq(s) = q−s(1−q−s)−1
ζq(s)

It can be easily verified that ξq satisfies an analogous functional equation as that of ξ (s) in the
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classical case of the completed Riemann zeta function.

ξq(1− s) = q−1+s (1−q−1+s)−1
ζq(1− s)

=
1

qu

(
1− 1

qu

)−1 1
1− 1

u

(u = q−s)

=
1

qu
.

qu
qu−1

u
u−1

= u(1−u)−1.
1

1−qu

= ξq(s)

A polynomial analogue of (3.1.1) also exists. We have the following Euler product expansion

of ζq(s) for s ∈ C with ℜ(s)> 1

ζq(s) = ∏
I∈P

(
1− 1

|I|s

)−1

. (3.4.1)

The above equality holds precisely because the ring Fq[t] is an unique factorization domain

(UFD) which is the main crux of the argument we used to establish (3.1.1).

3.5 A second proof of Prime number theorem using the zeta function

It is possible to give yet another proof of prime number theorem for polynomials using the

Euler product expansion. For this proof we closely follow the notation and the ideas discussed

in [22]. Using the definition of norm of a polynomial, we can rewrite the product in (3.4.1) in

the following way

ζq(s) =
∞

∏
d=1

(1−q−ds)−πq(d) for ℜ(s)> 1

At this point it is often convenient to substitute u = q−s. Since ζq(s) = 1/(1−q1−s) we arrive

at the following identity
1

1−qu
=

∞

∏
d=1

(1−q−ds)−πq(d)

Taking logarithmic derivatives we obtain

qu
1−qu

=
∞

∑
d=1

dπq(d)ud

1−ud .
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Since ℜ(s)> 1, we have that |qu|< 1. This allows us to expand both sides of the above equality

and get

qu
(
1+qu+q2u2 + . . .

)
=

∞

∑
d=1

dπq(d)(ud +u2d +u3d + . . .).

Equating the coefficient of un both sides, we get qn = ∑
d|n

dπq(d) which is same as (2.3.6) in the

previous chapter and the conclusion follows.



CHAPTER 4

A BRIEF INTRODUCTION TO ARITHMETIC FUNCTIONS

This chapter aims to understand the fundamental properties and distribution of two interesting

classes of arithmetic functions called additive and multiplicative functions. We will mainly

focus on a few examples of each class and study their distribution using standard tools from

probability theory. Materials presented in this chapter also motivate the natural problems that

arise in this context and call for their subsequent solutions, which we will sketch in later chap-

ters.

4.1 Additive and Multiplicative functions

We begin with the definition of additive and multiplicative functions.

Definition 4.1.1. An arithmetic function f : N→C is called additive if it satisfies the following

relation

f (mn) = f (m)+ f (n) for all co-prime positive integers m and n.

Definition 4.1.2. An arithmetic function f : N → C is called multiplicative if it satisfies the

following relation

f (mn) = f (m) f (n) for all co-prime positive integers m and n.

We see that if f is additive and n = pα1
1 · · · pαk

k then f (n) = f (pα1
1 )+ · · ·+ f (pαk

k ) and thus the

value of f (n) is determined by the values of f on the prime powers.

Similarly if f is multiplicative then f (n) = f (pα1
1 ) · · · f (pαk

k ) and hence the value of f (n) is also

determined by the values of f on the prime powers. We now look at few common examples of

such arithmetic functions.

Example 4.1.3 (The divisor function). The divisor function τ(n) := #{d : d|n} is a multiplica-

tive function. For instance, we have τ(6) = 4 = τ(2)τ(3).

It is possible to argue quickly that the function τ is multiplicative. Indeed if n = pα1
1 · · · pαk

k then
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every divisor d of n must be of the form d = pe1
1 · · · pek

k where 0 ⩽ e j ⩽ α j for each 1 ⩽ j ⩽ k.

This observation allows us to count the number of such divisors which is given by the product

∏
k
j=1(1+α j) and hence τ(n) = ∏

k
j=1(1+α j).

If two co-prime integers m = qβ1
1 · · ·qβℓ

ℓ and n = pα1
1 · · · pαk

k are given (we note that qi ̸= p j for

every i and j due to co-primality condition) then

τ(mn) = τ

(
qβ1

1 · · ·qβℓ
ℓ pα1

1 · · · pαk
k

)
=

ℓ

∏
i=1

(1+βi)
k

∏
j=1

(1+α j) = τ(m)τ(n).

Example 4.1.4 (Euler’s phi function). The Euler’s phi function φ(n) defined in (2.2.1) is multi-

plicative as can be directly verified either by Chinese remainder theorem, corollary 2.2.2 or the

explicit formula derived as a consequence of CRT.

Example 4.1.5 (The functions ω and Ω). The functions Ω(n) and ω(n) count the number

of prime factors of an integer n with and without the multiplicity respectively. For instance,

ω(12) = 2 since 12 = 22 ×3 has only two distinct prime factors while Ω(12) = 3.

It is very easy to check both ω and Ω are additive functions and the function Ω even satisfies

the following stronger condition

Ω(mn) = Ω(n)+Ω(m) for all positive integers m and n.

Justification of the above claim is immediate once we observe for m = qβ1
1 · · ·qβℓ

ℓ and n =

pα1
1 · · · pαk

k given, we have

Ω(mn) = Ω

(
qβ1

1 · · ·qβℓ
ℓ pα1

1 · · · pαk
k

)
=

ℓ

∑
i=1

βi +
k

∑
j=1

α j = Ω(m)+Ω(n).

Functions like above are called completely additive functions. Likewise, one can also define

completely multiplicative functions. It is worth noting that the exponentiation of an additive

function naturally leads to a multiplicative function. For example the function f (n) := zΩ(n) is

multiplicative (in fact completely multiplicative) where z ∈ C is a fixed complex number.
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4.2 Mean behaviour of interesting arithmetic functions?: introducing ω and Ω

Let f :N→C be an arithmetic function, possibly additive or multiplicative. As we have already

seen in the previous section, the values of common arithmetic functions fluctuate considerably.

(for instance, the value of Ω(n) is 1 whenever n is prime, but it can also attain arbitrarily

large values for large prime powers) It is, therefore, reasonable to seek to understand the mean

behaviour of f up to some integer x defined by

Ave⩽x( f ) :=
1
x ∑

n⩽x
f (n).

Once we have a good understanding of the average Ave⩽x( f ), we can also ask how much f

deviates from this average and how often it does so. In particular, we may want to consider the

mean squared deviation and also ask what proportion of the integers in {1,2, . . . ,x} fluctuates

from Ave⩽x( f ) by a significant margin,

1
x ∑

n⩽x
| f −Ave⩽x( f )|2 1

x
#{n ⩽ x : | f (n)−Ave⩽x( f )|⩾ a large quantity}.

Above expressions remind us about the variance and large deviations from probability theory.

We shall see in the later sections techniques from probability theory will enable us to study

the behaviour of erratic arithmetic functions (such as ω and Ω). Once we set up a suitable

probability space we will be able to study large deviations, higher moments and finally establish

a central limit theorem for ω(n), one of the most celebrated results in probabilistic number

theory. We can also ask similar questions for Ω(n). It is evident that the difference |Ω−ω| can

become arbitrarily large on the prime powers. However, on average one expects them to behave

in a very alike fashion in view of the following observation

Ave⩽x(Ω−ω) =
1
x ∑

n⩽x
(Ω(n)−ω(n)) =

1
x ∑

n⩽x
∑

pa∥n
a⩾2

1 =
1
x ∑

p,a⩾2
∑
n⩽x
pa∥n

1 =
1
x ∑

p,a⩾2

⌊
x
pa

⌋
.

We infer the average difference Ave⩽x(Ω−ω) is at most 1 since the rightmost sum is;

1
x ∑

p,a⩾2

⌊
x
pa

⌋
⩽ ∑

p,a⩾2

1
pa ⩽ ∑

p,a⩾2

1
p(p−1)

⩽ ∑
n

1
n(n−1)

= 1.
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4.2.1 Distribution of the function ω for integers: a probabilistic set up

To have a better understanding of the arithmetic functions it is essential to study their distribu-

tions. To do that we first consider the set of all integers up to x and define

S := {1,2, . . .x}.

Given a set B ⊂S , then we define the probability that a randomly chosen integer from S will

land inside B by the proportion that B occupies inside S . Hence we write

P(B) =
#B

#S
=

1
x

#B

In this setting it is convenient to replace the usual average by the expectation operator; Thus for

an arithmetic function f we write

E( f ) :=
1
x ∑

n⩽x
f (n).

Similarly one can also define the variance which measures on average how much the function

f fluctuates from its mean.

Var( f ) := E( f −E( f ))2 =
1
x ∑

n⩽x
f 2(n)−

(
1
x ∑

n⩽x
f (n)

)2

.

We also define the covariance between two arithmetic function f and g which encapsulates the

interaction between these two functions.

Cov( f ,g) := E( f g)−E( f )E(g) =
1
x ∑

n⩽x
f (n)g(n)−

(
1
x ∑

n⩽x
f (n)

)(
1
x ∑

n⩽x
g(n)

)

Let us try to calculate the average value of ω(n) with the above definition in mind. We first

note that the identity ω(n) = ∑p≤x 1p|n holds for every n ∈ S , where 1p|n denotes the indicator

function that detects the divisibility by a fixed prime p ⩽ x. Therefore, from the definition of

expectation

E(ω) =
1
x ∑

n⩽x
ω(n) =

1
x ∑

n⩽x
∑
p|n
p⩽x

1 =
1
x ∑

p⩽x
∑
p|n

n⩽x

1 =
1
x ∑

p⩽x

⌊
x
p

⌋
= ∑

p⩽x

1
p
+O

(
π(x)

x

)
.
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The sum appearing above is well known in analytic number theory. Also by using π(x) ≪
x/ logx, we get

µ := E(ω) = log logx+ c+O
(

1
logx

)
for some c > 0.

The variance calculation is a bit trickier since the indicator functions 1p|n and 1q|n are not in

general independent when n is randomly sampled from the interval [1,x], which means we have

to take care of the covariance terms very carefully.

Lemma 4.2.1. We have the following estimate

Var(ω) = log logx+O
(
(log logx)1/2+δ

)
for every δ ∈ (0,1/2).

Proof. We shall begin by introducing a truncated version of ω(n) to avoid some technical dif-

ficulties in the proof. We define another arithmetic function ω0(n) := ∑
p⩽y

1p|n. It would then be

possible to estimate Var(ω) by estimating Var(ω0) if the difference (Var(ω)−Var(ω0)) is not

too large for an appropriate choice of the parameter y ⩽ x such that y = xo(1). We will decide

the value of exponent of y later in the proof in terms of x.

Therefore the average value of ω0 is given by

E(ω0) =
1
x ∑

n⩽x
ω0(n) =

1
x ∑

n⩽x
∑
p|n
p⩽y

1 =
1
x ∑

p⩽y
∑
p|n

n⩽x

1 =
1
x ∑

p⩽y

⌊
x
p

⌋
= ∑

p⩽y

1
p
+O

(
π(y)

x

)
.

Using PNT and keeping in mind that y ⩽ x, we obtain

µ0 := E(ω0) = log logy+ c+O
(

1
logy

)
+O

(
y

x logy

)
= log logy+ c+O

(
1

logy

)
. (4.2.1)



27

The variance of ω0 is given by

Varω0 = E(ω2
0 )− (Eω0)

2

= E

(
∑

p,q⩽y
1p|n1q|n

)
−

(
∑
p⩽y

P(p|n)

)2

= ∑
p⩽y

[
P(p|n)−P(p|n)2]+ ∑

p̸=q
p,q⩽y

Cov(1p|n,1q|n)

= ∑
p⩽y

[
1
p
− 1

p2 +O
(

1
x

)]
+ ∑

p ̸=q
p,q⩽y

Cov(1p|n,1q|n), (4.2.2)

where we used P(p|n) = {n ⩽ x : n ≡ 0(mod p)}/x = 1
x

⌊
x
p

⌋
= 1

p +O
(1

x

)
and now we observe

the covariance term equals

Cov(1p|n,1q|n) = E(1p|n1q|n)−E(1p|n)E(1q|n)

= E(1pq|n)−E(1p|n)E(1q|n)

= P(pq|n)−P(p|n)P(q|n)

=
1
pq

+O
(

1
x

)
−
(

1
p
+O

(
1
x

))(
1
q
+O

(
1
x

))
= O

(
1
x

)
.

Hence the right sum in (4.2.2) is at most O(1/x)
(

∑
p⩽y

1
)2

and using prime number theorem it

is seen to be bounded by O(y2/x log2 y) and hence we obtain from (4.2.2)

Varω0 = log logy+O(1)+O
(

1
logy

)
+O

(
π(y)

x

)
+O

(
y2

x log2 y

)
= log logy+O(1)+O

(
1

logy

)
+O

(
y

x logy

)
+O

(
y2

x log2 y

)
(4.2.3)

At this point we set y = x1/(log logx)δ

and δ ∈ (0,1) is a free variable at the moment. We ob-

serve O(1/ logy) dominates the last two big-O terms, which we justify below. Our choice of y
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essentially has the form y = xo(1), which means for x sufficiently large we have

y
x
⩽

1√
x

and
y2

x
⩽

1√
x
.

Thus after substituting the value of y, we have that from (4.2.1) and (4.2.3)

µ0 = log logx+ c+O

(
(log logx)δ

logx

)
and Varω0 = log logx+O(1)+O

(
(log logx)δ

logx

)
.

Next we compare Varω with Varω0. We call the difference D := Varω −Varω0. We have

D =
1
x ∑

n⩽x
(ω(n)−µ)2 − 1

x ∑
n⩽x

(ω0(n)−µ0)
2

=
1
x ∑

n⩽x
[A(n)+B(n)]2 − 1

x ∑
n⩽x

A2(n). (4.2.4)

where the functions A(n) and B(n) are such that

A(n)+B(n) := ω(n)−µ and A(n) = ω0(n)−µ0.

Before proceeding with (4.2.4), we would like to have an upper bound on the average of

∑
n⩽x

B2(n). Since there can be at most (log logx)δ distinct prime factors > y of any integer

n ∈ [1,x], the inequality (ω(n)−ω0(n))⩽ (log logx)δ holds. Hence we have that, 1
x ∑

n⩽x
(ω(n)−

ω0(n))2 = O((log logx)2δ ). Also from the values of µ and µ0 from the previous calculations,

the upper bound 1
x ∑

n⩽x
(µ −µ0)

2 = O((log logx)2δ/ log2 x) holds. Therefore we get

1
x ∑

n⩽x
B2(n) =

1
x ∑

n⩽x
[(ω(n)−ω0(n))+(µ0 −µ)]2

⩽
2
x

(
∑
n⩽x

(ω(n)−ω0(n))2 + ∑
n⩽x

(µ −µ0)
2

)

= 2

(
O((log logx)2δ )+O

(
(log logx)2δ

log2 x

))
= O((log logx)2δ ).

Thus from (4.2.4) after expanding and using Cauchy-Schwartz inequality, we get an upper
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bound on D.

D ⩽
1
x

(
∑
n⩽x

A2(n)+ ∑
n⩽x

B2(n)

)
+

2
x ∑

n⩽x
|A(n)||B(n)|− 1

x ∑
n⩽x

A2(n)

⩽
1
x

(
∑
n⩽x

A2(n)+ ∑
n⩽x

B2(n)

)
+

2
x

√√√√(
∑
n⩽x

A2(n)

)(
∑
n⩽x

B2(n)

)
− 1

x ∑
n⩽x

A2(n) (CS inequality)

=
1
x ∑

n⩽x
B2(n)+2

√√√√(1
x ∑

n⩽x
A2(n)

)(
1
x ∑

n⩽x
B2(n)

)

= O
(
(log logx)2δ

)
+2
√

O(log logx)O((log logx)2δ )

(
1
x ∑

n⩽x
A2(n) = Varω0 = O(log logx)

)
= O

(
max

{
(log logx)2δ ,(log logx)1/2+δ

})
.

We have Varω = Varω0 +D and Varω0 = log logx+O(1)+O((log logx)δ/ logx). Therefore,

we pick a fixed δ such that 0 < δ < 1/2 so that the error term becomes D = O((log logx)1/2+δ )

leading to the conclusion. We also note the smaller δ ∈ (0,1/2) we choose, the better our

estimate becomes.

Lemma 4.2.1 immediately calls for an application in the form of a large deviation inequality

which says if an integer is picked at random from the interval [1, . . . ,x] then with high probabil-

ity, it has about log logx distinct prime factors. More formally, we have the following result;

Corollary 4.2.2 (Hardy and Ramanujan). Let ξ (x) be any function that tends to infinity as

x → ∞. If an integer n ∈ [1,x] is picked uniformly at random, then we have

P
(
|ω(n)− log logx|⩾

√
ξ (x) log logx

)
≪ 1

ξ (x)
.

Proof. Let us consider the following set

S = {n : 1 ⩽ n ⩽ x and |ω(n)− log logx|⩾
√

ξ (x) log logx},

where ξ (x) is any function that tends to infinity as x → ∞. We have

#S
x

= P
(
|ω(n)− log logx|⩾

√
ξ (x) log logx

)
(4.2.5)
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We note the inclusion of events
{
|ω(n)−log logx|⩾

√
ξ (x) log logx

}
⊂

{∣∣∣∣ω − log logx− c−O
(

1
logx

)∣∣∣∣⩾
√

ξ (x) log logx− c−O
(

1
logx

)}
and hence applying Chebyechev’s inequality from classical

probability theory in (4.2.4) we get

#S
x

⩽ P
(∣∣∣∣ω − log logx− c−O

(
1

logx

)∣∣∣∣⩾√ξ (x) log logx− c−O
(

1
logx

))
⩽

Var(ω)[√
ξ (x) log logx− c−O

(
1

logx

)]2

(
Var(ω) = E

∣∣∣∣ω − log logx− c−O
(

1
logx

)∣∣∣∣2
)

= O
(

1
ξ (x)

)
( from Lemma 4.2.1),

The above result shows as x → ∞, 100% of the integers in the interval [1,x] have very close to

loglogx distinct prime factors in the sense that the following inequality holds

log logx−
√

ξ (x) log logx ⩽ ω(n)⩽ log logx+
√

ξ (x) log logx

for almost all n ∈ [1,x] and for every function ξ (x) that increases to infinity, no matter how

slowly.

4.2.2 Erdos Kac theorem: rates of convergence and a generalization

Having explored the average behaviour and the variability of ω , we now might want to ask

if there is a limiting distribution for the normalized arithmetic functions (ω −Eω)/
√

Var(ω).

We have already noticed the identity, ω = ∑p⩽x 1p|n and since the summands, 1p|n and 1q|n are

approximately independent when n is sampled uniformly at random from the interval [1,x], as

we checked in the covariance calculation in the proof of Lemma 4.2.1, it is therefore, reasonable

to expect a central limit theorem for this normalized function. This is indeed the case and was

first proved jointly by Erdos and Kac [16]. However, we do not give their proof here and instead

outline a simplified sketch due to Billingsley [5]. The essential idea is to consider a sequence

of independent random variables indexed by prime numbers whose sum closely approximates

ω . More specifically, by closely approximate, we mean the difference of k-th moment of ω and
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this newly constructed sum of independent random variables will be very small for every k ∈N.

The construction involves truncation of the original function ω(n) by getting rid of the large

primes p appearing in the sum ∑p⩽x 1p|n which will help us maintain enough independence in

the structure while retaining most information about ω .

In the next section, we shall also establish an analogous result for polynomials. As one would

expect, the proof there will be quite similar to the one in the integer case. We now state the

celebrated Erdos-Kac theorem for integers.

Theorem 4.2.3 (Erdos and Kac). For any fixed B ⊆ R Borel set, we have

P
(

ω − log logx√
log logx

∈ B

)
→ 1√

2π

∫
B

e−t2/2dt as x → ∞.

The above theorem is in alignment with our observations in the previous sections that a typical

integer n ∈ [1,x] has roughly about log logx prime factors. For instance the integer 109 + 3 =

23× 397× 141623. Table 4.I (below) captures the growth of the average number of distinct

prime factors of all natural numbers less than or equal to x for different values. [27] The second

column displays the the number of digits in x which is 1+⌊logx/ log10⌋. Clearly all the integers

less than x will have at most 1+ ⌊logx/ log10⌋ digits. The third column shows the expected

number of distinct prime factors for a typical integer n ∈ [1,x] chosen uniformly at random,

which is about ≈ log logx. The last column captures how much ω(n) deviates around the mean

value on average which is approximately given by ≈
√

log logx.

x Number of digits in x Average number of distinct primes Standard deviation

1000 4 2 1.4
109 10 3 1.7
1024 25 4 2
1065 66 5 2.2

109566 9567 10 3.2
10210704568 210704569 20 4.5

101022
1022 +1 50 7.1

101044
1044 +1 100 10

1010434
10434 +1 1000 31.6

Table 4.I – Number of distinct prime factors of a typical integer n ⩽ x.

Before proving the Erdos-Kac theorem, let us mention a few interesting facts about in what

ways the result can be interpreted and generalized. The same theorem also holds if one replaces
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ω by Ω, and in fact, there is a vast generalization of the Erdos-Kac theorem for a certain class

of additive functions that obey some regularity conditions. [4]

Theorem 4.2.4 (Generalized Erdos-Kac). Suppose that { fn} is a sequence of additive functions

and let

An = ∑
p⩽n

fn(p)
p

Bn = ∑
p⩽n

f 2
n (p)

p
.

Furthermore, suppose the two following conditions hold,

lim
n→∞

fn(m)√
Bn

= 0 for each fixed m = 1,2, . . . (4.2.6)

max
p⩽n

| fn(p)|√
Bn

→ 0 as n → ∞. (4.2.7)

Then for any fixed B ⊆ R Borel set, we have

P
(

fn −An√
Bn

∈ B

)
→ 1√

2π

∫
B

e−t2/2dt as x → ∞.

If fn is identically equal to f for every n and the quantity Bn → ∞ with n then condition (4.2.6)

is automatically satisfied. Also, if, sup
p
| fn(p)|< ∞ then condition (4.2.7) is guaranteed to hold.

Therefore the above result is true when f ≡ω or f ≡Ω. (In both cases, Bn =
√

log logn+O(1))

We also note for general completely additive functions (like Ω) condition (4.2.7) indeed implies

condition (4.2.6). To see this, we first fix m and assume m = pα1
1 · · · pαℓ

ℓ . Therefore, if n ⩾ m

then

fn(m)√
Bn

=

(
α1 fn(p1)√

Bn
+ · · ·+ αℓ fn(pℓ)√

Bn

)

⩽ max(α1, . . . ,αℓ)

max
p⩽n

| fn(p)|
√

Bn
.

The second step follows from the observation that if n ⩾ m then all the prime factors of m must

be less than n. Thus for each fixed m ∈ N we have

lim
n→∞

fn(m)√
Bn

= 0.
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Rates of convergence: Berry-Esseen type bounds. Once can also ask for an estimate on the

explicit error term in the convergence of distribution described in Theorem 4.2.2. Fix a real

number t ∈ R and let us write

E(x) :=
∣∣∣∣P(ω − log logx√

log logx
⩽ t
)
− 1√

2π

∫ t

0
e−v2/2dv

∣∣∣∣ .
What can we say about the function E(x)? Specifically, can we provide reasonable upper

bounds? In the classical central limit theorem, the rate of convergence in the distribution is

governed by the error function E(x). The well-known Berry-Esseen bound [3] in probabil-

ity theory states that the optimal size of E(x) should be inversely proportional to the standard

deviation of the random variables, i.e. of the order of 1/
√

log logx.

— A. Renyi and P. Turan (1958) [21] proved the upper bound E(x)≪ 1/
√

log logx holds .

— In a fairly recent work A. Harper (2009) [14] gave two new proofs of Erdos-Kac theorem

using sophisticated probabilisitc tools like Stein’s method. The advantage of using Stein’s

method is that, it always provides an estimate on the error term E(x) unlike method of

moments.

However, Harper’s method yields a suboptimal upper bound E(x)≪ log loglogx/
√

log logx.

Below we give an outline of the proof of the Erdos-Kac theorem using Billingsley’s ideas. We

have closely followed the sketch given in [11].

Proof of Theorem 4.2.2. Much like Lemma 4.2.1, first, we first consider a truncation of ω de-

fined by

ωy(n) := ∑
p⩽y

1p|n.

The parameter y will be suitably chosen later. Second, we consider a sequence of independent

random variables indexed by primes {Xp}p⩽y defined on the some probability space such that

P(Xp = 1) =
1
p

and P(Xp = 0) = 1− 1
p
.
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Let us also define the summatory function of these random variables by

Sy := ∑
p⩽y

Xp.

We note the mean and variance of the summatory function Sy is given by

µy = ESy = ∑
p⩽y

1
p
= log logy+O(1).

σ
2
y = Var(Sy) = ∑

p⩽y

1
p

(
1− 1

p

)
= log logy+O(1).

Since the summands in Sy are independent, the classical central theorem tells us that (Sy −
µy)/σy converges to N(0,1) in distribution. Our goal is to show that Sy is a good approximation

of ωy in the sense their moments asymptotically coincides.

We have the difference between the kth moment of ωy and Sy

1
x ∑

n⩽x
(ωy(n)−µy)

k −E(Sy −µy)
k =

k

∑
j=1

(
k
j

)
(−µy)

k− j

(
1
x ∑

n⩽x
ωy(n) j −E(S j

y)

)
.

We call the inner expression L j and upon expanding the sum inside L j we get

L j = ∑
p1,p2,...,p j⩽y

(
1
x ∑

n⩽x
1p1|n1p2|n · · ·1p j|n −E(Xp1Xp2 · · ·Xp j)

)

= ∑
p1,p2,...,p j⩽y

ℓ=lcm[p1,p2,...,p j]

(
1
x

⌊x
ℓ

⌋
− 1

ℓ

)

≪ ∑
p1,p2,...,p j⩽y

1
x

=
π(y) j

x
.

At this point we set y= x1/(log logx)1/3
.Therefore an upper bound on the difference of k th moment

is given by

≪
k

∑
j=1

(
k
j

)
µ

k− j
y

π(y) j

x
=

(µy +π(y))k

x
⩽

(y+ log logy+O(1))k

x
≪ yk

x
= x−1+k/(log logx)1/3

⩽
1√
x
,
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since y = xo(1). Above chain of inequalities implies as x,y → ∞

1
x ∑

n⩽x

(
ωy(n)−µy

σy

)k

∼ E(Zk),

where Z is a random variable distributed as N(0,1).

Now ω(n)−ωy(n)⩽ (log logx)1/3 since there can be at most (log logx)1/3 primes > y that can

divide an integer n ⩽ x and µy,σ
2
y = log logx+O((log logx)1/3). Thus we have for all integers

n ⩽ x
ω(n)− log logx√

log logx
=

ωy(n)−µy

σy
+o(1),

which in turn implies
1
x ∑

n⩽x

(
ω(n)− log logx√

log logx

)k

∼ E(Zk).

4.2.3 Distribution of the function ω for polynomials

All the results discussed so far always had an intuitive counterpart for polynomials, and the

Erdos-Kac theorem is not an exception as we are about to explore. The main goal of this section

is to discuss a probabilistic framework so that we can talk about the distribution of various

interesting arithmetic functions for polynomials which will finally lead to Billingsley’s proof of

the Erdos-Kac theorem. We call an arithmetic function h : M →C multiplicative if the relation

h( f g) = h( f )h(g) holds for every pair of monic coprime polynomials. Likewise, if h satisfies

h( f g) = h( f )+h(g), then it is called an additive function, and the values of multiplicative and

additive functions are completely determined by its values on the powers of irreducible factors.

Example 4.2.5. The Euler’s phi function for polynomials Φ( f ) introduced in chapter 2 is mul-

tiplicative, as can be concluded from corollary 4.2.1. Also, the functions Ωq( f ),ωq( f ), which

count the number of irreducible factors of a given polynomial f with or without multiplicity,

can easily be checked to be additive functions. In accordance with the results in the previous

section, we focus on studying the distribution of ωq in the context of polynomials.
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4.2.4 Mean behaviour and variance of ω for polynomials

We consider Mn, the set of all degree n monic polynomials of cardinality qn. We wish to

study the average behavior of arithmetic functions in the context of polynomials like we did for

integers in the previous sections. Hence given a set, A ⊂ Mn, then we define the probability

of the event that a randomly chosen polynomial from Mn will land inside A by the proportion

that A occupies in Mn. Therefore, we write

P(A ) =
#A

#Mn
=

1
qn #A

In the polynomial setting, for an arithmetic function h : Mn → C we define the average of h( f )

in the following way

E(h) :=
1
qn ∑

f∈Mn

h( f ).

Likewise the variance is given by

Var(h) := E(h−Eh)2 =
1
qn ∑

f∈Mn

h2( f )−

(
1
qn ∑

f∈Mn

h( f )

)2

.

Hence the average number of irreducible factors of a monic polynomial is given by

Eωq :=
1
qn ∑

f∈Mn

ωq( f )

=
1
qn ∑

f∈Mn

∑
I irreducible

I| f

1

=
1
qn ∑

I∈P⩽n

∑
f

I| f

1 ( Interchanging the summations)

=
1
qn ∑

d⩽n
∑

I∈Pd

qn−d ( since f = IG with deg(G)= n−d and G has qn−d choices )

= ∑
d⩽n

πq(d)
qd

= ∑
d⩽n

(
1
d
+O(q−d/2)

)
( using PNT, (2.3.7))

= logn+O(1).

(
since ∑

d⩽n
O(q−d/2) = O

(
1−q−n/2

1−q−1/2

)
= O(1)

)
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It can be shown that Var(ωq) is bounded above by the mean in this case up to a constant.

Lemma 4.2.6. We have the upper bound

Var(ωq) = O(logn).

Proof. We begin the task by estimating E(ω2
q ).

E(ω2
q ) =

1
qn ∑

f∈Mn

∑
I, I′ irreducibles

I| f
I′| f

1

=
1
qn ∑

f∈Mn

∑
I irreducible

I| f

1+
1
qn ∑

f∈Mn

∑
I ̸=I′
I| f
I′| f

1

= Eωq +
1
qn ∑

I ̸=I′
deg(I)=d

deg(I′)=d′

0⩽d+d′⩽n

∑
f∈Mn
f=II′G

deg(G)=n−(d+d′)

1 ( Interchanging the summations)

= logn+
1
qn ∑

2⩽d+d′⩽n
d,d′⩾1

∑
I∈Pd

I′∈Pd′

qn−(d+d′)+O(1)

= logn+ ∑
1⩽d⩽n−1

πq(d)
qd ∑

1⩽d′⩽n−d

πq(d′)

qd′ +O(1)

= logn+ ∑
1⩽d⩽n−1

(
1
d
+O

(
q−d/2

))
∑

1⩽d′⩽n−d

(
1
d′ +O

(
q−d′/2

))
+O(1) ( using PNT, (2.3.7))

= logn+ ∑
1⩽d⩽n−1

(
1
d
+O

(
q−d/2

))
(log(n−d)+O(1))+O(1)

= logn+ ∑
1⩽d⩽n−1

log(n−d)
d

+O

(
∑

1⩽d⩽n−1

1
d

)
+O

(
1+ ∑

1⩽d⩽n−1
q−d/2 + ∑

1⩽d⩽n−1

log(n−d)
qd/2

)

= logn+ ∑
1⩽d⩽n−1

logn
d

+ ∑
1⩽d⩽n−1

log(1− d
n )

d
+O(logn)+O

(
logn ∑

1⩽d⩽n−1

1
qd/2

)
+O(1)

= logn+ ∑
1⩽d⩽n−1

logn
d

+ ∑
1⩽d⩽n−1

1
d

(
d
n
+O

(
d2

n2

))
+O(logn)

= logn+(logn)2 +O(logn)+O(1)+O(logn)

= (logn)2 +O(logn),
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and hence

Var(ωq) = E(ω2
q )− (Eωq)

2 = [(logn)2 +O(logn)]− [logn+O(1)]2 = O(logn).

It is possible to prove a more precise estimate by carefully analyzing the non-diagonal terms

above and show Var(ωq) = logn+O(1). This is what we will do in the proof of the Erdos Kac

theorem in the next section. As a necessary intermediate step to establish the theorem, we will

prove a stronger claim that, for every fixed natural number k, the difference of the k-th moment

of the function ωq and the k-th moment of a certain random variable whose mean and variance

both are given by the value (logn+O(1)), approaches to zero as n → ∞. In particular when

k = 2, this would mean |Var(ωq)− (logn+O(1))| → 0. Therefore there exists N0 ∈N such that

|Var(ωq)− (logn+O(1))| ⩽ 1 for all n ⩾ N0. Also for N < N0, we have from the previous

lemma

|Var(ωq)− (logn+O(1))|⩽ |Var(ωq)|+ |(logn+O(1)|⩽ O(logN0)+ logN0 +O(1) = O(1).

The above observation implies Var(ωq) = logn+O(1) holds for every n ∈ N.

Having understood the mean and variance we can immediately prove a Hardy-Ramanujan type

result for polynomials. The proof of the following result will be similar to Corollary 4.2.2 if we

replace n by some monic polynomial f ∈ Fq[t] and loglogx by logn.

Corollary 4.2.7 (A large deviation result for polynomials). Almost all monic polynomials of

degree n have (1+o(1)) logn distinct irreducible factors.

4.3 Proof of Erdos-Kac theorem for polynomials

We now have all the necessary tools to establish the key result of this chapter which is to present

a detailed proof of Erdos-Kac theorem for polynomials.

Theorem 4.3.1 (Erdos-Kac for polynomials). For any fixed B ⊆ R Borel set, we have

P
(

ωq − logn√
logn

∈ B

)
→ 1√

2π

∫
B

e−t2/2dt as n → ∞.
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As we have discussed in earlier sections that, in the integer case the key idea was to closely

approximate the function ω(n) with another function that is a sum of independent random

variables. We follow a similar approach in this case.

Let f ∈Mn be a given monic polynomial of degree n. We define the indicator function indexed

by a monic irreducible polynomial 1g( f ) which detects the event whether f is divisible by g.

The sequence of the indicator functions {1g( f )} will not be independent when f is chosen

uniformly at random from the set Mn, as we shall check shortly. If g is a monic irreducible with

deg(g) = m ⩽ n then we first note that 1g : Mn →{0,1} with

P(1g = 1) = P(g| f ) = qn−m

qn =
1

qm and P(1g = 0) = P(g ∤ f ) =
qn −qn−m

qn = 1− 1
qm .

We now consider the space M7. Let f be a randomly selected monic polynomial from M7 and

hence f has degree 7 and let g1 be g2 be monic irreducibles of degree 3 and 5 respectively. This

clearly means g1g2 ∤ f but P(1g1 = 1),P(1g2 = 1) ̸= 0 showing the 1g’s are not independent

since

0 = P(1g1 = 1 and 1g2 = 1) ̸= P(1g1 = 1)P(1g2 = 1).

We now return to the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. Let f ∈ Mn be a fixed monic polynomial of degree n. It is immediate

that 1g( f ) = 0 if deg(g) ⩾ n. Inspired from the integer case, to prove a CLT for the function

ωq, our strategy will be decomposing ωq into a sum of indicator functions and approximate the

sum with an appropriate random model. We start with the following identity

ωq( f ) = ∑
g∈P⩽n

1g( f ).

Our probabilistic model for ωq will be the following sum of independent random variables {Yg}
indexed by monic irreducibles and defined on some probability space

Sm := ∑
g∈P⩽m

Yg,

where Yg has the following distribution, if g is a monic irreducible of degree d ⩽ n, then we



40

have

P(Yg = 1) =
1
qd and P(Yg = 0) = 1− 1

qd .

Due to independence, it is now straightforward to calculate the mean and variance of Sm,

µm := E(Sm) = ∑
g∈P⩽m

EYg = ∑
1⩽ j⩽m

πq( j)
q j = logm+O(1),

σ
2
m := Var(Sm) = ∑

g∈P⩽m

Var(Yg) = ∑
1⩽ j⩽m

πq( j)
q j

(
1− 1

q j

)
= logm+O(1).

The classical Central limit theorem (Theorem 3.4.1, [8]) thus tells us that the normalized vari-

ables (Sm −ESm)/
√

Var(Sm) approaches to standard normal distribution N(0,1) as m → ∞.

Following the approach in the integer case, the next natural step is to show the difference be-

tween k-th moments of Sm and a truncated version ωq is very small for every k ∈ N.

Also, Billingsley’s proof in the integer case suggests here we will have to get rid of the irre-

ducible factors with large degree to maintain enough independence. Therefore we define the

following truncated version of the function ωq

ω
(m)
q ( f ) = ∑

g∈P⩽m

1g( f ),

where the parameter m has to be chosen in terms of n which we shall optimize later. Therefore

the difference between the k th moments of Sm and ω
(m)
q is given by

1
qn ∑

f∈Mn

(ω
(m)
q ( f )−µm)

k −E(Sm −µm)
k =

k

∑
j=1

(
k
j

)
(−µm)

k− j

(
1
qn ∑

f∈Mn

ω
(m)
q ( f ) j −E(S j

m)

)
.

(4.3.1)

Before continuing with the proof we first make an observation. Let us write ℓ0 := lcm[I1, I2, . . . , I j]

where I1, I2, . . . , I j are some irreducible monic polynomials (not necessarily distinct). With this

notation we now show that the relation E(YI1YI2 · · ·YI j) = 1/qdeg(ℓ0) holds due to independence

of {YI j}. We first note for a fixed irreducible monic polynomial g ∈ P⩽n the identity Y 2
g = Yg

holds since Yg is a {0,1} valued random variable. Inductively it follows that Y k
g = Yg for every

k ∈ N and every monic irreducible g. Therefore, without loss of generality we can assume all

the irreducible polynomials I1, I2, . . . , I j are distinct. (otherwise we can collect the YI’s corre-

sponding to the repetitions and turn them into a single random variable) Assuming I1, I2, . . . , I j
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are all distinct, we have ℓ0 = I1I2 · · · I j and therefore by the independence,

E(YI1YI2 · · ·YI j) = E(YI1)E(YI2) · · ·E(YI j) =
1

qdeg(I1)+deg(I2)+...+deg(I j)
=

1
qdeg(ℓ0)

.

In (4.3.1), we call the inner term in parenthesis L j. Upon expanding the sum in L j and inter-

changing summation we get

L j := ∑
I1,I2,...I j∈P⩽m

(
1
qn ∑

f∈Mn

1I1( f )1I2( f ) · · ·1I j( f )−E
(
YI1YI2 · · ·YI j

))

= ∑
I1,I2,...I j∈P⩽m

ℓ0=lcm[I1,I2,...,I j]
deg(ℓ0)⩽n

 1
qn ∑

f∈Mn
ℓ0| f

1− 1
qdeg(ℓ0)

− ∑
I1,I2,...I j∈P⩽m

deg(ℓ0)>n

1
qdeg(ℓ0)

(
substituting E(YI1YI2 · · ·YI j)

)

Now using the triangle inequality, we get

|L j|⩽ ∑
I1,I2,...I j∈P⩽m


1
qn ∑

f∈Mn
ℓ0| f

deg(ℓ0)⩽n

1− 1
qdeg(ℓ0)

+ ∑
I1,I2,...I j∈P⩽m

deg(ℓ0)>n

1
qdeg(ℓ0)

⩽ ∑
I1,I2,...I j∈P⩽m

(
qn−deg(ℓ0)

qn − 1
qdeg(ℓ0)

)
+

πq(m) j

qn

= ∑
I1,I2,...I j∈P⩽m

(
1

qdeg(ℓ0)
− 1

qdeg(ℓ0)

)
+

πq(m) j

qn

=
πq(m) j

qn .

Thus an upper bound on the difference of k-th moments of ω
(m)
q and Sm is given by

≪
k

∑
j=1

(
k
j

)
µ

k− j
m

πq(m) j

qn =
(µm +πq(m))k

qn =
(logm+O(1)+πq(m))k

qn ≪ 1
qn

(
qm

m

)k

.

Inspired from the choice we made in the integer case, here we set m = n/(logn)1/3. We can
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verify that as m,n → ∞,

1
qn

(
qm

m

)k

=
qmk−n

mk =
q

kn
(logn)1/3 −n(

n/(logn)1/3
)k → 0 for every fixed k ∈ N

as the numerator becomes bounded (in fact approaches 0) as n increases while the denominator

approaches to infinity. The above observation implies for each fixed k ∈ N

E

(
ω

(m)
q −µm

σm

)k

→ E(Zk) as n,m → ∞,

where Z is distributed as a standard normal variable N(0,1).

Desired convergence in distribution follows by the method of moments (see appendix C, [17])

and after we note ωq( f )−ω
(m)
q ( f )⩽ (logn)1/3 since there can be at most (logn)1/3 irreducibles

with degree > m that divide f ∈ Mn and µm,σ
2
m = logn+O

(
(logn)1/3

)
. Thus we have

ωq( f )− logn√
logn

−
ω

(m)
q ( f )−µm

σm
= o(1) as m,n → ∞.

Needless to mention that the Erdos-Kac theorem also holds for the completely additive function

Ωq( f ) with mean and variance both logn. Generalizations of this theorem also exist for various

arithmetic functions in this context.



CHAPTER 5

ON A PROBLEM OF GAUSS, LANDAU, HARDY AND RAMANUJAN

In the previous chapter, we discussed the statistical properties of the functions ω,Ω. We now

take the discussion one step further in this and the later chapter. We ask the fundamental ques-

tion, how many integers are there up to 1000 billion (or any large number) with exactly 2022

(or any given integer) prime factors? This exciting question fascinated mathematicians for ages.

Gauss initially started the investigation and the question was later pursued by several eminent

mathematicians, including Landau, Hardy and Ramanujan.

5.1 The functions π(x,k) and Π(x,k)

Let m ⩽ x be positive integers. We begin with the following definitions.

π(x,k) := #
{

m ⩽ x : ω(m) = k
}
,

Π(x,k) := #
{

m ⩽ x : Ω(m) = k
}
.

Using Chebyechev’s estimate and mathematical induction one can establish an upper bound on

π(x,k). (see chapter 9 in [11])

Theorem 5.1.1 (Hardy-Ramanujan upper bound). There are two positive constants A1,B1 such

that for any integer x ⩾ 2 the following upper bound holds

π(x,k)⩽
A1x
logx

(log logx+B1)
k−1

(k−1)!
for each k ∈ N.

In the next section we prove an asymptotic result for π(x,k) when k will be a fixed positive

integer and then move onto discuss about the results when k grows uniformly with x to infinity

for both π(x,k), Π(x,k) and their analogues in the polynomial setting.
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5.1.1 Landau’s theorem: an asymptotic for π(x,k) and Π(x,k) when k ∈ N fixed

The following result goes back to E. Landau. Below we present two proofs of Landau’s theorem

including the one due to E.M. Wright [29] with some minor modifications in the arguments.

Theorem 5.1.2. For k ∈ N fixed we have

π(x,k)∼ Π(x,k)∼ x
logx

(log logx)k−1

(k−1)!
.

Before proving the theorem, we need a technical lemma from analysis which will be helpful

along the way.

Lemma 5.1.3. Let F(u,x) be a function (2 ⩽ u ⩽ x) such that F(u,x) is non negative. Let

F(u,x)/ logu be a decreasing function of u when x is fixed. We further assume the condition

F(2,x) = o(
∫ x

2 F(u,x)du/ logu) holds. Then we have that

∑
p⩽x

F(p,x)∼
∫ x

2

F(u,x)
logu

du.

A proof of the above lemma using Abel’s partial summation can be found in [18] (see page

203).

First proof of the asymptotic for π(x,k). We proceed by strong induction on k. The case k = 1

is the prime number theorem. We observe the following identity holds for each positive integer

k

∑
p⩽x

π

(
x
p
,k
)
=(k+1)π(x,k+1)+#{m⩽ x : m = p2m′ with ω(m′) = k−1 for some prime p}.

LHS counts all the integers of the form pℓ⩽ x where ℓ has k distinct prime factors and then we

take a sum over all possible p and this is same as the RHS since if p ∤ ℓ then the integer pℓ has

(k+ 1) distinct prime factors and hence contributes (k+ 1) times in the sum and if p | ℓ then

pℓ can be split into two parts one of which is p2 and the other part consists of (k−1) different
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prime factors. We show the latter is small using the strong induction hypothesis on k;

#{m ⩽ x : m = p2m′ with ω(m′) = k−1 for some prime p}= O

 ∑
p⩽
√

x/2

π

(
x
p2 ,k−1

)
= O

 ∑
1⩽n⩽

√
x/2

π

( x
n2 ,k−1

)
= O

√
x/2

∑
n=1

x
n2

(log logx)k−2

log
( x

n2

)


= O

x(log logx)k−2

√
x/2

∑
n=1

1

n2 log
( x

n2

)
 .

The sum inside the O-term is small once we note

√
x/2

∑
n=1

1

n2 log
( x

n2

) =
x1/4

∑
n=1

1

n2 log
( x

n2

) +

√
x/2

∑
n=x1/4+1

1

n2 log
( x

n2

)
⩽

x1/4

∑
n=1

1

n2 log
(

x√
x

) +

√
x/2

∑
n=x1/4+1

1
n2 log2

= O
(

1
logx

)
+O

(
1

x1/4

)
= O

(
1

logx

)
.

Thus we get that

#{m ⩽ x : m = p2m′ with ω(m′) = k−1 for some prime p}= O
(

x(log logx)k−2

logx

)
.

Hence we obtain,

(k+1)π(x,k+1)+O
(

x(log logx)k−2

logx

)
= ∑

p⩽x
π

(
x
p
,k
)
.

By induction hypothesis the leading term in the sum π(x/2,k) ∼ (x/2)(log log(x/2))k−1

log(x/2) . Thus we
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get

(k+1)π(x,k+1)∼ ∑
p⩽x

π

(
x
p
,k
)
. (5.1.1)

Now we will use Lemma 5.1.3 to evaluate the sum on the right hand side. In the framework of

Lemma 5.1.3 since k is fixed, it is convenient to set

F(u,x) := π

(x
u
,k
)
.

Using the induction hypothesis our aim is now to calculate the key integral I0 :=
∫ x

2 F(x,u)du/ logu

and show it satisfies the hypothesis of Lemma 5.1.3. Therefore we start with

I0 =
∫ x

2

F(u,x)
logu

du

=
∫ x/2

2

π

(x
u
,k
)

logu
du

(
π

(x
u
,k
)
= 0 if u ⩾ x/2

)
= x

∫ 2

x/2

π(v,k)
logx− logv

(
−dv

v2

) (
substituting v =

x
u

)
= x

∫ x/2

2

π(v,k)
logx− logv

dv
v2

∼ x
∫ x/2

2

v(log logv)k−1

(k−1)! logv
dv

v2(logx− logv)
(induction hypothesis) (5.1.2)

To rigorously justify the above substitution we let f (x,k) = x(log logx)k−1

(k−1)! logx be a non negative func-

tion so that π(x,k) ∼ f (x,k) by the induction hypothesis. Therefore given ε > 0, there exists

x0(ε) and a constant C(ε) such that the following two inequalities hold

|π(x,k)− f (x,k)|⩽ ε f (x,k) whenever x > x0(ε),

|π(x,k)− f (x,k)|⩽C(ε) f (x,k) whenever 2 ⩽ x ⩽ x0(ε).

The second claim is valid since |π(x,k)/ f (x,k)−1|⩽ π(x,k)/ f (x,k)+1⩽ π(x0(ε),k)/ f (2,k)+

1 as both π(x,k) and f (x,k) are increasing functions in x. The error caused by the replacement

of the integrals is defined by

E(x) :=
∣∣∣∣∫ x/2

2

π(v,k)
logx− logv

dv
v2 −

∫ x/2

2

f (v,k)
logx− logv

dv
v2

∣∣∣∣ .
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Therefore when x sufficiently large and in particular when x ⩾ max{2x0(ε),x4
0(ε)} we can

bound the error in the following way

E(x)⩽C(ε)
∫ x0(ε)

2

f (v,k)dv
v2(logx− logv)

+ ε

∫ x/2

x0(ε)

f (v,k)
logx− logv

dv
v2

⩽
C(ε)

(k−1)!

∫ x0(ε)

2

(log logv)k−1dv
v logv(logx− logv)

+
ε

(k−1)!

∫ x/2

x0(ε)

f (v,k)
logx− logv

dv
v2

⩽
4C(ε)

3(k−1)! logx

∫ x0(ε)

2

(log logv)k−1dv
v logv

+ ε

∫ x/2

2

f (v,k)
logx− logv

dv
v2 .

In the final step, for the first integral, we used logx−logv⩾ logx−logx0(ε)⩾ logx−log(x1/4)=

(3/4) logx. We also observe the first integral is a finite number depending only on ε . We thus

obtain

E(x) = Oε

(
1

logx

)
+ ε

∫ x/2

2

f (v,k)
logx− logv

dv
v2 .

Since the first quantity decays, we have

∫ x/2

2

π(v,k)
logx− logv

dv
v2 ∼

∫ x/2

2

f (v,k)
logx− logv

dv
v2 .

We continue our integral calculation from (5.1.2) and get

(k−1)!I0

x
∼
∫ x/2

2

(log logv)k−1

v logv
dv

(logx− logv)

=
∫ logx−log2

log2

logk−1 wdw
w(logx−w)

(w = logv)

=
∫ logx−log2

log2

logk−1 wdw
logx

(
1
w
+

1
logx−w

)
=
∫ logx−log2

log2

logk−1 wdw
w logx

+
∫ logx−log2

log2

logk−1 wdw
logx(logx− logw)

= I1 + I2. (5.1.3)

We can explicitly calculate I1 and I2. With the substitution z = logw, I1becomes

I1 =
∫ log(logx−log2)

log log2

zk−1dz
logx

=
logk(logx− log2)− logk(log2)

k logx
∼ (log logx)k

k logx
.
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The estimation of I2 a bit more involved;

I2 =
∫ logx−log2

log2

logk−1 wdw
logx(logx− logw)

=
∫ (logx)/2

log2

logk−1 wdw
logx(logx− logw)

+
∫ logx−log2

(logx)/2

logk−1 wdw
logx(logx− logw)

= O
(

logx
(log logx)k−1

log2 x

)
+
∫ logx−log2

(logx)/2

logk−1 wdw
logx(logx− logw)

(
logk−1 w

logx− logw
is increasing in w

)

= O
(
(log logx)k−1

logx

)
+ logk−1

(
logx− log2− Θ

2
logx

)∫ logx−log2

(logx)/2

dw
logx(logx− logw)

(5.1.4)

for some 0 < Θ ⩽ 1. This follows from generalized mean value theorem which we show now.

Let F1(w) =
logk−1 w

logx(logx−logw) and F2(w) = 1
logx(logx−logw) . Then we consider the two following

functions defined by

G1(t) :=
∫ t

1
F1(w)dw and G2(t) :=

∫ t

1
F2(w)dw for 1 ⩽ t ⩽ logx.

By the fundamental theorem of calculus G′
1(t) = F1(t) and G′

2(t) = F2(t) for all t ∈ (1, logx).

Therefore using generalized mean value theorem on the interval [(logx)/2, logx− log2], we get

G1(logx− log2)−G1((logx)/2)
G2(logx− log2)−G2((logx)/2)

=
G′

1(c)
G′

2(c)
=

F1(c)
F2(c)

= logk−1 c

for some point c ∈ (logx/2, logx − log2) and therefore we can select 0 < Θ ⩽ 1 such that

c = logx− log2− Θ

2 logx holds. We first note that

logk−1
(

logx− log2− Θ

2
logx

)
∼ (log logx)k−1.

Secondly,

∫ logx−log2

(logx)/2

dw
logx(logx− logw)

=
1

logx
log

 logx− logx
2

logx− (logx− log2)

=
1

logx
log

logx
2log2

∼ log logx
logx

.
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Combining the above observations with (5.1.4) we obtain

I2 ∼
(log logx)k

logx
.

Finally we get from (5.1.3)

(k−1)!I0

x
∼
(

1+
1
k

)
(log logx)k

logx
.

Thus

I0 ∼
x

logx
(k+1)(log logx)k

k!
.

We can now verify that F(u,x) indeed satisfies the hypothesis described in Lemma 5.1.3.

F(u,x) = π(x/u,k) is clearly non negative and decreasing in u when x is fixed. Furthermore

using the induction hypothesis

F(2,x) = π

(x
2
,k
)
=

(x/2) logk−1(log(x/2))
log(x/2)(k−1)!

= o(I0) .

Hence from (5.1.1)

(k+1)π(x,k+1)∼ ∑
p⩽x

π

(
x
p
,k
)

= ∑
p⩽x

F(p,x) (definition of F)

∼ I0 (Lemma 5.1.3)

∼ x
logx

(k+1)(log logx)k

k!
.

Therefore the induction step is complete as

π(x,k+1)∼ x
logx

(log logx)k

k!
.
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5.1.2 Wright’s proof of Landau’s theorem

The proof due to E.M. Wright of Theorem 5.1.2 is fairly complicated and will require some

auxiliary results. We begin the proof by introducing three different sums, and our final goal will

be to connect these sums to extract the asymptotic information. Here ∗ above the summation

symbol indicates the sum runs over all possible k tuples of primes (p1, p2, . . . , pk) such that their

product p1 p2 · · · pk ⩽ x. Note that we allow repetitions so that pi = p j is possible in the tuple

for i ̸= j. Therefore different k tuples may correspond to the same product, and we let each of

them contribute to the following sums.

We set

A(x,k) :=
∗

∑
p1···pk⩽x

1
p1 · · · pk

B(x,k) :=
∗

∑
p1···pk⩽x

1

C(x,k) :=
∗

∑
p1···pk⩽x

log(p1 · · · pk)

π(x,k) = ∑
n⩽x

ω(n)=k

1

Π(x,k) = ∑
n⩽x

Ω(n)=k

1

Clearly every square-free integer with k distinct prime factors, i.e. m = q1q2 · · ·qk ⩽ x where

qi’s are primes and qi ̸= q j for different i and j, that appears exactly once in π(x,k) will appear

k! times in the sum B(x,k). Also every integer m ⩽ x with Ω(m) = k that appears once in the

sum Π(x,k) will appear at most k! times in B(x,k) since we allowed repetitions in the tuples.

Hence we arrive at the inequality

π(k,x)⩽
B(k,x)

k!
⩽ Π(k,x). (5.1.5)

We also observe

Π(x,k)−π(x,k)⩽ ∑
p1···pk⩽x
pi=p j,i ̸= j

1 ⩽

(
k
2

)
∑

p1···pk−1⩽x
1 =

(
k
2

)
B(x,k−1). (5.1.6)
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At the second step, for a fixed i and j with pi = p j, the range of the summation is over

p1 · · · pi · · · pk ⩽ x/p j ⩽ x where the product is comprised of k − 1 primes and there are
(k

2

)
different choices for i and j in total.

Lemma 5.1.4. To establish the asymptotics of π(x,k) and Π(x,k) mentioned in the statement of

the Theorem 5.1.2, It is enough to prove the following estimate

B(x,k)∼ kx(log logx)k−1

logx
.

Proof. Suppose the asymptotic for B(x,k) described in the hypothesis holds. The inequality

(5.1.6) implies

1− π(x,k)
Π(x,k)

⩽

(k
2

)
B(x,k−1)
Π(x,k)

⩽ k!

(k
2

)
B(x,k−1)
B(x,k)

( Using the inequality (5.1.5))

≪ k!
(

k
2

)
(k−1)

k
1

loglogx
( Plugging in the asymptotic in hypothesis)

The above reasoning implies π(x,k)∼ Π(x,k) since k is fixed.

Let ε > 0 be given. Therefore, the inequality

π(x,k)⩾ Π(x,k)(1− ε/2) (5.1.7)

holds for x sufficiently large. Also the two following inequalities in view of the assumption on

the asymptotic of B(x,k)

π(x,k)⩽
x(log logx)k−1

(k−1)! logx
(1+ ε), (5.1.8)

Π(x,k)⩾
x(log logx)k−1

(k−1)! logx

(
1− ε

2

)
hold when x is sufficiently large. Hence we obtain from (5.1.7)

π(x,k)⩾ Π(x,k)
(

1− ε

2

)
⩾

x(log logx)k−1

(k−1)! logx

(
1− ε

2

)2
⩾

x(log logx)k−1

(k−1)! logx
(1− ε) . (5.1.9)

The claim follows from (5.1.8) and (5.1.9).
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We now prove two another auxiliary results.

Lemma 5.1.5. We have

A(x,k)∼ (log logx)k

Proof. We note the inequality

 ∑
p⩽x1/k

1
p

k

⩽ A(x,k)⩽

(
∑
p⩽x

1
p

)k

. (5.1.10)

Using Merten’s estimate we see that

 ∑
p⩽x1/k

1
p

k

∼
(

log log
(

x1/k
))k

∼ (log logx− logk)k

∼ (log logx)k.

We also know that ( ∑
p⩽x

1/p)k ∼ (log logx)k holds and the conclusion follows from (5.1.5).

Lemma 5.1.6. To establish the asymptotics of π(x,k) and Π(x,k) mentioned in the statement of

the Theorem 5.1.2, It is enough to prove the following estimate

C(x,k)∼ kx(log logx)k−1,

where

C(x,k) =
∗

∑
p1···pk⩽x

log(p1 · · · pk) .

Proof. Let d(n,k) denotes the number of tuples (p1, p2, . . . , pk) of prime numbers (not neces-

sarily distinct) such that n = p1 · · · pk. For instance, we have d(n,k) = k! if n is a square-free

integer with ω(n) = k. We also note from the definition C(x,k) can be re-written as

C(x,k) = ∑
n⩽x

d(n,k) log(n) = B(x,k) logx−
∫ x

1

B(t,k)
t

dt,

where the last step is obtained via partial summation and B(x,k) = ∑
n⩽x

d(n,k).
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We have B(x,k)⩽ k!Π(x,k)⩽ k!x = O(x) which in turn implies C(x,k) = B(x,k) logx+O(x).

So if we are allowed to assume C(x,k)∼ kx(log logx)k−1 then it would also imply

B(x,k)∼ kx(log logx)k−1

logx
.

The conclusion now follows from Lemma 5.1.4.

We have now set the stage for proving Theorem 5.1.2.

Second proof of Theorem 5.1.2. Using the previous lemma it is enough to show

C(x,k)∼ kx(log logx)k−1.

We proceed by induction. The case k = 1 follows from PNT. To connect C(x,k) with C(x,k+1)

we should look for a recurrence relation.

From Lemma 5.1.5 we conclude that

C(x,k+1)− (k+1)x(log logx)k =C(x,k+1)− (k+1)xA(x,k)+o
(

x(log logx)k
)
. (5.1.11)

We now build two recurrences that connect C(x,k+1) to C(x,k) and A(x,k) to A(x,k−1).

kC(x,k+1) =
∗

∑
p1···pk+1⩽x

log
(

pk
1 pk

2 · · · pk
k

)
=

∗

∑
p1···pk+1⩽x

[log(p2 · · · pk+1)+ log(p1 p3 · · · pk+1)+ . . .+ log(p1 · · · pk)]

= (k+1) ∑
p1⩽x

∗

∑
p2···pk+1⩽x/p1

log(p2 · · · pk+1)

= (k+1) ∑
p1⩽x

C
(

x
p1

,k
)
.

and likewise after letting A(x,0) = 1 we get

A(x,k) =
∗

∑
p1···pk⩽x

1
p1 · · · pk

= ∑
p1⩽x

1
p1

A
(

x
p1

,k−1
)
.



54

Combining these recurrences and plugging in (5.1.11), we obtain

C(x,k+1)− x(log logx)k =
(k+1)

k ∑
p1⩽x

(
C
(

x
p1

,k
)
− kx

p1
A
(

x
p1

,k−1
))

. (5.1.12)

Our induction hypothesis says that

C(x,k)− kxA(x,k−1) = o(x(log logx)k−1).

The cake k = 1 is PNT since A(x,0) = 1 implies C(x,1)∼ x.

Let ε > 0 be a given real number. The above equation implies the existence of an integer x0

such that

|C(x,k)− kxA(x,k−1)|⩽ εx(log logx)k−1 holds whenever x ⩾ x0.

We pick a suitable constant c > 0 such that the following inequality also holds

|C(x,k)− kxA(x,k−1)|⩽ c whenever x ⩽ x0.

Thus from (5.1.12) we have for x sufficiently large,

∣∣∣C(x,k+1)− x(log logx)k
∣∣∣⩽ (1+

1
k

)(
∑

x/x0⩽p1⩽x
c+ ∑

p1⩽x/x0

εx
p1

(
log log

(
x
p1

))k−1
)

⩽ 2

(
cx+ εx(log logx)k−1

∑
p1⩽x/x0

1
p1

)
⩽ 2cx+4εx(log logx)k

≪ εx(log logx)k.

Hence it follows that

C(x,k+1)− x(log logx)k = o(x(log logx)k)

and the induction argument completes.

Thus, from Theorem 5.1.2 we can conclude the functions π(x,k) and Π(x,k) are approximately
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Poisson distributed with parameter log logx for k ∈ N fixed, in the sense that we have

P(ω(n) = k)∼ P(Ω(n) = k)∼ 1
logx

(log logx)k−1

(k−1)!
as x → ∞.

However, the story becomes significantly different if we let k uniformly vary with x to infinity.

It then becomes considerably harder to understand the asymptotic behaviour of π(x,k) and

Π(x,k). It remained as an open problem for quite a long time.

In 1953, Sathe ingeniously showed that if A > 0 is given, then uniformly for 1 ⩽ k ⩽ A log logx

and x ⩾ 3 we have

π(x,k)∼ λ

(
k−1

loglogx

)
(log logx)k−1

(k−1)!
x

logx
, (5.1.13)

where

λ (z) =
1

Γ(z+1)∏
p

(
1− 1

p

)z(
1+

z
p−1

)
.

Using his methods one can also show [23] that if ε ∈ (0,2) is given, then uniformly for 1 ⩽ k ⩽

(2− ε) log logx we have

Π(x,k)∼ F
(

k
log logx

)
(log logx)k−1

(k−1)!
x

logx
, (5.1.14)

where

F(z) =
1

Γ(z+1)∏
p

(
1− 1

p

)z(
1− z

p

)−1

(|z|< 2).

This beautiful result then was further extended by Selberg [24] when k is a little larger and

varies uniformly in a slightly wider range (2+ ε) log logx ⩽ k ⩽ B∗ log logx, where B∗ > 2 is a

real constant. In his paper Selberg only discussed the main ideas behind the proof. He observed

a significant change in the asymptotic behaviour of Π(x,k). He showed for this range we have

Π(x,k)∼ Cx log(x/2k)

2k , (5.1.15)

where C is an absolute constant.

The main ingredient of the attack of their method was to analyze the following sums

∑
n⩽x

zω(n) and ∑
n⩽x

zΩ(n)
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and then identifying the π(x,k) and Π(x,k) as the coefficient of zk in those expressions, in the

case of ω(n) and Ω(n) respectively. Therefore Cauchy’s integral formula can be used to extract

information about these coefficients. We do not discuss the Sathe-Selberg method over inte-

gers here, but we will provide a detailed sketch of this method in the function field setting and

demonstrate two applications in the next chapter.

Finally Nicolas [19] settled this question for the entire range (2+ ε) log logx ⩽ k < logx/ log2

by proving the same asymptotic result holds as (5.1.15) in this range. Unlike the previous at-

tempts his main idea behind the proof was less analytic and more of combinatorial nature.

5.2 The functions πq(x,k) and Πq(n,k)

The goal of this is section is to study the analogs of π(x,k) and Π(x,k) over Fq[t]. We define

πq(n,k) := #
{

f ∈ Mn : ωq( f ) = Ωq( f ) = k
}
,

Πq(n,k) := #
{

f ∈ Mn : Ωq( f ) = k
}
.

Even though the main focus of the thesis is to derive asymptotic estimates for Πq(n,k) using

the Sathe-Selberg’s method for polynomials, we start the discussion with a brief interlude to

mention some results on πq(n,k) first. We first notice πq(n,k) is slightly different from its

integer analogue π(x,k) since we are only considering the square-free monics. We have the

following analogue of the classical Hardy-Ramanujan upper bound in the function field setting

described in [10].

Theorem 5.2.1 (Gomez-Colunga–Kavaler–McNew–Zhu). Uniformly for all k,n ⩾ 1,

πq(n,k)⩽
qn

n
(logn+2− log2)k−1

(k−1)!
.

In a fairly recent work, Afshar and Porrit [1] proved an asymptotic estimate on πq(n,k) using

the so-called Sathe-Selberg technique for function fields.
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Theorem 5.2.2 (Afshar–Porritt). Let A > 1. Uniformly for all n ⩾ 2 and 1 ⩽ k ⩽ A logn,

πq(n,k)∼ G
(

k−1
logn

)
(logn)k−1

(k−1)!
qn

n
,

where

G(z) =
1

Γ(z+1) ∏
p∈P

(
1+

z
qdeg(p)

)(
1− 1

qdeg(p)

)z

.

In the above result authors were also able to obtain an error term. As we have already mentioned

the final goal of this thesis is to prove asymptotic estimates on the object Πq(n,k). Our main

weapon to resolve this problem will be the Sathe-Selberg device developed in the context of

polynomials in [20].

5.2.1 Review of notations

We remind the reader

M :=
{

set of all monics in Fq[T ]
}
,

M̃ :=
{

set of all monics in Fq[T ] having no root in Fq

}
,

P :=
{

set of all monic irreducibles in Fq[T ]
}
.

Mn consists of only those monics that have degree = n and similarly we define M̃n, Pn. Let

P⩾ j denotes the set of all monic irreducibles whose degree is at least j.

We also set

Πq(n,k) := #
{

f ∈ Mn : Ωq( f ) = k
}
,

Π
′
q(n,k) := #

{
f ∈ M̃n : Ωq( f ) = k

}
.

As discussed initially, we are interested in understanding the object Πq(n,k) for different ranges

of k. Surprisingly one of our main results reveals that the situation in Fq[t] is quite different than

what one could naively guess from the knowledge in the integer case. This is remarkable since

these two worlds are significantly different in only a few instances.

Our first result is fairly what one could speculate in light of (5.1.14). The following was proved

by Warlimont [26] and also in Car [6].
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Theorem 5.2.3. Given ε ∈ (0,q), then uniformly for 1 ⩽ k ⩽ (q− ε) logn we have

Πq(n,k)∼
qn

n
H
(

k
logn

)
(logn)k−1

(k−1)!
,

where

H(z) =
1

Γ(z+1) ∏
p∈P

(
1− 1

qdeg(p)

)z(
1− z

qdeg(p)

)−1

for |z|< q.

We may notice that the expression for the function H is quite similar to F in the integer case.

The appearance of qn/n is also no surprise as letting qn ≈ x yields qn/n ≈ x/ logx up to constant

factors. The above theorem is more or less a straight forward application of the Selberg-Delange

method developed in [20]. The object Πq(n,k) was extensively studied by Hwang [15] for the

entire range 1 ⩽ k ⩽ n. We recover the following simplified version of Hwang’s asymptotic

formula in a restricted range using a different set of techniques.

Theorem 5.2.4. Let B ⩾ 2 be a real constant and q > 2 be a prime power. Let ξ : N→ R be a

function such that ξ (n)→∞ however slowly as n→∞. Then uniformly for ξ (n) logn⩽ k ⩽ n/B

we have

Πq(n,k)∼C(q)
qnkq−1(n− k)q−1

qk ,

where

C(q) =
1

((q−1)!)2

(
1− 1

q

)q2

∏
p∈P⩾2

(
1− 1

qdeg(p)−1

)−1(
1− 1

qdeg(p)

)q

,

an absolute constant that depends only on q.

Here “however slowly” means that ξ (n) could be any function that grows to infinity with an

additional constraint that ξ is sufficiently small so that the interval [ξ (n) logn,n/B] contains

at least one integer for n large enough. As was expected, we remind the reader that x/2k is

replaced by qn/qk. The appearance of (n−k) is not also surprising in light of the main theorem

proved in [19] and (5.1.15) where a factor of log
(
x/2k) is present in the statement. However,

the extra factor kq−1 and also the presence of higher powers of (n−k) are what seem surprising

at the moment, which shows Πq(n,k) grows at a much larger rate than what we would predict
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from (5.1.15). The proofs of the above theorems are discussed in detail in the following sections.

We note Theorem 5.2.4 is valid for q ̸= 2. Our methods do not cover the case q = 2 for tech-

nical reasons. We will discuss this technical restriction in the proof of Proposition 6.3.7. (See

Remark 6.3.8) Also, there is a significant gap between the upper bound of k in Theorem 5.2.3

and the lower bound of k in Theorem 5.2.4. While it is fairly easy to prove an upper bound of

the shape Πq(n,k)≪ qn−kkq−1(n−k)q−1 in the intermediate range q logn ⩽ k ≪ logn using the

ideas in Proposition 6.3.7, it seems fairly difficult to obtain any non-trivial lower bound for that

range. The proofs of the above theorems are discussed in detail in the following sections. The

main ingredients of our proofs are the following two key propositions. The main ingredients of

our proofs are the following two key propositions.

Proposition 5.2.5. For all ε ∈ (0,q) and uniformly for |z|⩽ q− ε we have

Mn(z) := ∑
f∈Mn

zΩq( f ) = qnnz−1

{
zH(z)+Oε

(
1
n

)}
,

with H(z) as described in Theorem 5.2.3.

Proposition 5.2.6. For all δ ∈ (0,1) and uniformly for |z|⩽ q2 −δ we have

M̃n(z) := ∑
f∈M̃n

zΩq( f ) = qnnz−1

{
zh(z)+Oδ

(
1
n

)}
,

where h(z) =
1

Γ(z+1)

(
1− 1

q

)qz

∏
p∈P⩾2

(
1− z

qdeg(p)

)−1(
1− 1

qdeg(p)

)z

, an analytic function

for |z|< q2.

The connection between Theorem 5.2.3 and Proposition 5.2.5 becomes clear once we notice

Πq(n,k) is precisely given by the coefficient of zk in Mn(z). In other words, if we could extract

the information about Πq(n,k) from Mn(z), we would have our result. Furthermore, we note that

Mn(z) is polynomial of degree at most n and therefore, we could hope to study the coefficients

using Cauchy’s integral formula. This is going to be our main strategy to attack Theorem 5.2.3.

The connection between M̃n(z) and Theorem 5.2.4 is not as immediate as the previous case

since the coefficient of zk in M̃n(z) is Π′
q(n,k) and not Πq(n,k). As we shall see, in Section 6.3

the two objects Πq(n,k) and Π′
q(n,k) are intimately entangled, and information about one could
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be transferred into another. We also note the relation C(q) = qh(q)/(q−1)! holds.

In the later chapters, we will prove these claims in detail which is the main work we developed

during this thesis.



CHAPTER 6

ON THE DISTRIBUTION OF POLYNOMIALS HAVING A GIVEN NUMBER OF

IRREDUCIBLE FACTORS

In this chapter we present the detailed proof of every claim we made in the previous chapter

about Πq(n,k) for different ranges of k.

6.1 Set-up and the proof of Proposition 5.2.5

6.1.1 Preparatory results for Proposition 5.2.5

In this subsection we aim to develop the framework for a Selberg-Delange type argument that

will be used to establish Proposition 5.2.5. As already discussed we are interested in the quantity

Mz(n) := ∑
f∈Mn

zΩq( f ) = ∑
k⩾0

zk
Πq(n,k).

We also want to introduce an auxiliary quantity

Gz(u) = ∑
f∈M

zΩq( f )udeg( f ) = ∏
p∈P

(
1− zudeg(p)

)−1
. (6.1.1)

The function Gz(u) defines an analytic function since the Euler product converges absolutely

for |u|< min
{
|z|−1,q−1} which we argue now. We have that

|1− zudeg(p)|⩾ 1−|zudeg(p)|⩾ 1−|zu|> 0,

showing there is no pole in the concerned region.

We now recall a well known result from complex analysis that says for a sequence of complex

numbers {an} ⊂ C with an ̸=−1 if
∞

∑
n=1

|an|< ∞, then

∞

∏
n=1

(1+an) converges.
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Using this result we see the product in (6.1.1) converges whenever 0 < |u| < q−1. Indeed we

have

∑
p∈P

∣∣∣zudeg(p)
∣∣∣⩽ ∑

p∈P

|u|deg(p)−1 (|uz|< 1)

⩽ q+ ∑
p∈P⩾2

|u|deg(p)−1

⩽ q+
∞

∑
n=2

qn|u|n−1 ( since #Pn ⩽ qn)

⩽ q+
1
|u|

∞

∑
n=2

|qu|n < ∞. (|qu|< 1)

Our job is to understand Mz(n), which is precisely given by the coefficient of un in the power se-

ries of Gz(u). Hence information about Mz(n) can be obtained from Gz(u) by applying Cauchy’s

integral formula. We took this leap from Mz(n) to Gz because it seems to have a nicer arithmetic

structure (i.e. an Euler product expansion), making it more amenable from the analytic point

of view. Therefore it is natural to seek to meromorphically extend Gz(u) beyond the region of

absolute convergence discussed above to collect the contribution coming from the singularity of

Gz in the extended domain. We do this job by introducing another function Fz(u) via the Euler

product

Fz(u) = ∏
p∈P

(
1− zudeg(p)

)−1(
1−udeg(p)

)z
. (6.1.2)

We intend to analyze the above Euler product in the following open region and show it is

holomorphic.

R :=
{
(u,z) ∈ C2 : |z|< q, |u|< |z|−1, |u|< q−1/2

}
⊂ C2.

The following lemma shows Fz(u) does converge absolutely in R which is what we wanted to

establish.

Lemma 6.1.1. We have that Fz(u) defined in (6.1.2) is holomorphic in R.

Proof. We take the standard branch of complex logarithm defined over C \ (−∞,0]. Since
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|u|n, |zun|< 1 we could make use of their Taylor series and write for |z|< q,

z log(1−un)− log(1− zun) =−zun +O
(∣∣zu2n∣∣)+ zun +O

(∣∣z2u2n∣∣)
= O

(∣∣q2u2n∣∣) (
|u|< |z|−1 and |u|< q−1/2

)
(6.1.3)

and hence using exp(O(x)) = 1+O(x) for x = O(1) we get

(1−un)z(1− zun)−1 = 1+O
(∣∣q2u2n∣∣) .

We now observe the product in (6.1.2) converges absolutely in R. Since #Pn ⩽ qn, we have

that

∑
p∈P

|u|2n ⩽ ∑
n⩾1

|qu2|n < ∞.

We recall the Riemann zeta function in the context of polynomials over finite field, defined for

|u|< q−1

ζ (u) =
1

1−qu
= ∏

p∈P

(
1−udeg(p)

)−1
.

As we can see ζ (u) can be continued mermorphically on C with a simple pole at u = 1/q.

Furthermore considering the Euler products in (6.1.1) and (6.1.2) we can connect Gz(u) and

Fz(u) in the following way whenever |u|< min
{
|z|−1,q−

1
2
}

Gz(u) = ζ (u)zFz(u). (6.1.4)

We are now in a position to prove our first Proposition. However, first, we want to record the fol-

lowing estimate [20], which is going to be helpful in the further calculation of the contribution

that comes from the singularity of Gz(u) at u = 1/q.

Lemma 6.1.2. Let A,δ > 0. Let H be the Hankel contour of radius 1 around 0 going in

clockwise direction along the negative real axis to −nδ . Then uniformly for |z| ⩽ A we have
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that
1

2πi

∫
H

wz dw(
1− w

n

)n+1 =− 1
Γ(−z)

+Oδ ,A

(
1
n

)
.

Figure 6.1 – THE CONTOUR

x

y

H ′

|u|= 1/q+η

|u|= 1/q

|u|= r

6.1.2 Deduction of Proposition 5.2.5

Proof of Proposition 5.2.5. Let |u| = r < q−1 (small green circle in Fig-6.1 above). Using

Cauchy’s integral formula on (6.1.1) we get for each fixed z satisfying the hypothesis |z|⩽ q−ε ,

Mz(n) =
1

2πi

∫
|u|=r

Gz(u)
du

un+1 =
1

2πi

∫
|u|=r

ζ (u)zFz(u)
du

un+1 . (6.1.5)

We wish to get past the point u = 1/q so that we could collect the contribution coming from

the singularity of ζ (u) there. We shift the smaller (green) circle |u| = r to a bigger circle (red)

|u| = q−1 +η and a portion of Hankel contour around the point q−1 (Fig-6.1). Let H ′ be the

contour that consists of a circle of radius (qn)−1 traversed clockwise around q−1 and the two

line segments on the ray 0 to q−1 joining this small circle to the bigger circle |u| = q−1 +η
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where η > 0 is a fixed number. (to be specified shortly) However we must have q−1+η < q−
1
2

as we cannot go beyond the region R in (6.1.4) where Gz(u) makes sense. We recall that

|z|⩽ (q−ε) inside R while performing the above integral. Keeping this in mind we get another

constraint on η , |uz|⩽ (q−1 +η)(q−ε)⩽ 1. This shows taking any 0 < η < min{1/(q−ε)−
1/q,1/

√
q−1/q} suffices. We then plan to use Lemma 6.1.2 to evaluate the integral in (6.1.5)

with η = min{1/(q− ε)− 1/q,1/
√

q− 1/q}/2 for |z| ⩽ q− ε. We observe that for z fixed,

Fz(u) and ζ (u) are both analytic in an open neighbourhood containing the circle |u|= q−1 +η

which is compact. This implies Fz(u),ζ (u) and hence Gz(u) are uniformly bounded (bound

depends on q,η) on this circle. Thus we obtain

Mz(n) =
1

2πi

∫
H ′

Gz(u)
du

un+1 +O

 ∫
|u|= 1

q+η

∣∣∣∣Gz(u)
du

un+1

∣∣∣∣
 := I +Oq,ε

(
qn

(1+qη)n

)
.

where at the last step we used the fact that,
∫
|u|=R |du/un+1|= 1

Rn+1

∫
|u|=R |du|= 2π/Rn and the

big-O-uniform bound here depends only on q,η and η according our choice depends only on q

and ε . Now we focus on the integral I.

Analyticity of Fz near q−1 allows us to consider the Taylor series around q−1 and write

Fz(u) = Fz (1/q)+a1 (u−1/q)+a2 (u−1/q)2 + . . .

Hence we have that,

I = Fz

(
1
q

)
1

2πi

∫
H ′

ζ (u)z du
un+1 +O

(∫
H ′

∣∣∣∣(u− 1
q

)
ζ (u)z du

un+1

∣∣∣∣) .

We use a change of variable so that our contour H ′ transforms to H and we could then use

our Lemma 6.1.2. The change of variable is given by, w = n(1−uq) =⇒ u = 1/q(1−w/n) .

We can quickly check the transformation is indeed a valid one. If u is parameterized by u =

1/q+(1/qn)e−it , t ∈ [ε ′,2π − ε ′] for some small enough ε ′ > 0 near the tiny circle around 1/q

then w=−e−it is a circle revolving around 0 of radius 1 in the clockwise direction and similarly

the horizontal ray part also gets reflected and H ′ indeed transforms into H and as |u| goes up

to 1/q+ η , we have w goes up to −nδ with δ = ηq. We note for this change of variable
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du =−dw/nq. First we show the alleged error term is small. The O-term is

≪q

∫
H ′

∣∣∣∣ (1−qu)du
un+1(1−qu)z

∣∣∣∣= ∫
H

∣∣∣∣∣∣∣∣
1(w

n

)z−1

−dw
nq

1
qn+1

(
1− w

n

)n+1

∣∣∣∣∣∣∣∣
=

qn

n

∫
H

∣∣∣∣∣∣∣
1(w

n

)z−1
dw(

1− w
n

)n+1

∣∣∣∣∣∣∣ ( using Lemma 6.1.2)

≪ qnnℜ(z)−2.

Now, we evaluate the main term using Lemma 6.1.2

Fz

(
1
q

)
1

2πi

∫
H ′

ζ (u)z du
un+1 = Fz

(
1
q

)
1

2πi

∫
H ′

1
(1−qu)z

du
un+1

= Fz

(
1
q

)
qn

n
1

2πi

∫
H

1(w
n

)z
−dw(

1− w
n

)n+1

= Fz

(
1
q

)
qnnz−1

(
1

Γ(z)
+Oε

(
1
n

))
.

Hence we have that

Mz(n) = Fz

(
1
q

)
qnnz−1

Γ(z)
+O

(
qnnℜ(z)−2

)
= qnnz−1

{
zH(z)+Oε

(
1
n

)}
, (6.1.6)

where H(z) = 1
Γ(z+1)Fz

(
1
q

)
is an analytic function for |z|< q.

6.2 Deduction of Theorem 5.2.3

With Proposition 5.2.5 at our disposal, we are now ready to prove Theorem 5.2.3. We also note

three other straightforward results which will help us do so. We will verify the following claims

in the appendix I.

Lemma 6.2.1. For t ∈ [−π,π] we have cos t −1 ⩽−t2

5
and

∣∣1− eit
∣∣2 ⩽ t2.

Lemma 6.2.2. We have the following upper bound

∫
|z|=r

∣∣nz−r∣∣ |dz| ≪ r√
j
,
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where j = r logn.

Lemma 6.2.3. We have the following estimate

∞∫
−∞

θ
2 exp

(
−kθ 2

5

)
dθ ≪ k−

3
2 .

Deduction of Theorem 5.2.3. We plan to recover Πq(n,k) with another application of Cauchy’s

integral formula,

Πq(n,k) =
1

2πi

∫
|z|= k

logn

Mz(n)
dz

zk+1 . (6.2.1)

Given ε ∈ (0,q) by the hypothesis of Theorem 5.2.3, from (6.1.6) we see the main term of Mz(n)

which is Fz

(
1
q

)
qnnz−1

Γ(z) is analytic in the disk |z|= r = k/logn ⩽ (q−ε) since Fz

(
1
q

)
is analytic

for |z| < q and nz,1/Γ are entire functions. Now writing Mz(n)/qn = nz−1 ( f (z)+O(1/n))

where f (z) = zH(z) = Fz (1/q) 1
Γ(z) and considering the Taylor expansion of f (z) near z = r,

f (z) = f (r)+ f ′(r)(z− r)+O(|z− r|2) we get

1
qn Πq(n,k) =

1
2πi

∫
|z|=r

nz−1 f (z)
dz

zk+1 +O(E), (6.2.2)

where E is given by
1
n

∫
|z|=r

∣∣∣∣nz−1

zk+1

∣∣∣∣ |dz|. We see that

1
2πi

∫
|z|=r

(z− r)nz−1 dz
zk+1 =

1
n

{
(logn)k−1

(k−1)!
− r

(logn)k

k!

}
= 0.

Hence

1
qn Πq(n,k) = f (r)

1
2πi

∫
|z|=r

nz−1 dz
zk+1 +O

(
r−k−1

∫
|z|=r

|nz−1(z− r)2||dz|+E
)

= f (r)
(logn)k

k!n
+Error term.

Here using Lemma 6.2.1 and Lemma 6.2.3 the integral in the Error term is bounded by

r3

n

∫
π

−π

|1− eiθ |2ek cosθ dθ ≪ r3

n

∫
∞

−∞

θ
2ek(1− θ2

5 )dθ ≪ r3

n
ekk−

3
2 .
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Since there is a factor of r−k−1 outside, we have the above expression (final step by Stirling’s

formula)

≪ 1
n

r2−kekk−
3
2 ≪ (logn)k−2 ek

√
k

nkk ≪ 1
n
(logn)k−2

(k−1)!
.

Noting ek = nr ⇐⇒ k = r logn and using Lemma 6.2.2, we also see the term E is bounded by

≪ r−k−1ek

n2

∫
|z|=r

|nz−r||dz| ≪ r−k−1ek

n2

(
r√
k

)
≪ 1

n2
(e logn)k

kk+ 1
2

≪ 1
n2

(logn)k

k!
,

where in the last step we have used Stirling. Thus we finally obtain

Πq(n,k)∼ qn f (r)
(logn)k

k!n
=

qn

n
Fr

(
1
q

)
1

Γ(r+1)
(logn)k−1

(k−1)!

and the proof follows once we recall r = k/logn. The derived expression is identical to the

integer case for k ⩽ (2 − ε) log logx as mentioned in [19] on the first page, a result due to

Sathe(1953) [23].

6.3 Preparatory results and an odd-even decomposition

6.3.1 An odd-even decomposition for polynomials

We begin this subsection by introducing a decomposition for Π(x,k) into k smaller parts used

by Nicolas [19] to prove (5.1.15). We first note that any integer n ⩽ x can be uniquely written

as n = 2 jℓ with ℓ odd. We note the following identity

Π(x,k) = ∑
0⩽ j⩽k

Π
′(x/2k− j, j), (6.3.1)

where

Π
′(x,k) := #

{
m ⩽ x : m odd and Ωq(m) = k

}
holds. The key idea discussed in [19] says the major contribution in the former sum comes if we

restrict 0 ⩽ j ⩽ α log logx for some explicit constant α > 2 whenever k ranges from 2loglogx

to logx/ log2.

Inspired from the idea above we wish to write f = hg for any f ∈Mn, where the polynomials g

and h are expected to play the role of “odd” and “even” respectively in some appropriate sense.
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Let us define the set

S ( j) :=
{

h ∈ M j : h has only degree 1 irreducible factors
}
.

Given f ∈ Mn with Ωq( f ) = k, we can uniquely write f = hg where h ∈ S ( j) for some 0 ⩽

j ⩽ k and g has no degree 1 irreducible factor. Elements of the set S ( j) mimic the even part

while the odd part is mimicked by the polynomial g. Using this heuristic we could prove the

following decomposition result for Πq(n,k).

Lemma 6.3.1. We have

Πq(n,k) = ∑
1⩽ j⩽k

(
k− j+q−1

q−1

)
Π

′
q(n+ j− k, j)

for k ⩾ 1.

Proof. We observe that for any h ∈S ( j), one can find non negative integers a1,a2, . . . ,aq such

that h(t)= (t−α1)
a1(t−α2)

a2 . . .(t−αq)
aq with Ωq(h)= a1+a2+ . . .+aq = j. Here {αi}1⩽i⩽q

are the q-elements in Fq. Counting the number of non negative integral solutions we readily see

that, #S ( j) =
( j+q−1

q−1

)
. If we consider the unique decomposition f = hg for some f ∈Mn with

Ωq( f ) = k then we note that j ̸= k. For if j = k then f = hg will imply f = h and hence they

both have the same degree, a contradiction since k ⩽ n/2 by the hypothesis of Theorem 5.2.4.

Therefore we obtain

Πq(n,k) = ∑
0⩽ j⩽k−1

∑
h∈S ( j)

Π
′
q(n− j,k− j) = ∑

0⩽ j⩽k−1

(
j+q−1

q−1

)
Π

′
q(n− j,k− j).

The statement of the lemma follows after we make the change of variable j 7→ k− j.

The rough sketch of our strategy to prove the Theorem 5.2.4 is: (a) In light of the approach

discussed in (6.3.1) in the integer setting, we start by splitting the whole sum in the above de-

composition up to j ≪ log(n−k) and hence we end up with two parts so that we can write, T1 =

∑1⩽ j≪log(n−k)
(k− j+q−1

q−1

)
Π′

q(n+ j− k, j) and T2 = ∑log(n−k)≪ j⩽k
(k− j+q−1

q−1

)
Π′

q(n+ j− k, j).

(b) We then show the main contribution comes from T1 and is of order qn−kkq−1(n− k)q−1

while the term T2 is significantly smaller and is of order qn−k(n− k)q−2. Unlike the ideas dis-
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cussed in the integer case, which is very combinatorial, our proof will be more analytical. The

central idea to use a Selberg-Delange type argument followed by an application of residue the-

orem shall remain the same. The situation over Fq[t] is quite different due to the presence of

many degree 1 irreducibles which is why an extra binomial term and other technical difficulties

arise.

We begin our preparation with the easier task, a non-trivial upper bound on T2. To do so, we

would like an upper bound on each summand of T2. The following result accomplishes this job.

Lemma 6.3.2. Let 0 < δ < 1,0 < η ⩽ q2−q−δ be given. We have the following upper bound

Π
′
q(n, j)≪δ qnnq+η−1

(
1

q+η

) j

.

Throughout our discussion, the implied constant solely depends on q,δ , which will be a fixed

quantity. (the value of δ is soon to be decided in the following result) It is possible to show

the above result as a direct application Proposition 5.2.6. The proof of Proposition 5.2.6 will

roughly be in the same spirit as that of Proposition 5.2.5. We will present this proof followed

by an argument leading to Lemma 6.3.2 in the section 6.4.1, 6.4.2. We now shift our attention

to check that the term T2 is small as claimed.

Proposition 6.3.3. Let q > 2 be an integer and Y = log(n− k). We have the following upper

bound

T2 = ∑
eqY< j⩽k

(
q−1+ k− j

q−1

)
Π

′
q(n+ j− k, j)≪B qn−k(n− k)q−2.

Proof. We plan to use
(

α

β

)
⩽ α

β/β !. We apply Lemma 6.3.2 with η = (e−1)q and δ = 0.6

so that (q+η) = eq. First we check this choice satisfies the hypothesis of Lemma 6.3.2. We

see that (e−1)q < q2 −q−0.6 is true whenever q ⩾ 3. We now have that

T2 ≪ ∑
j>(q+η)Y

(q−1+ k− j)q−1

(q−1)!
qn−k+ j(n+ j− k)q+η−1

(
1

q+η

) j

≪ qn−k
∑

j>(q+η)Y
(q−1+ k− j)q−1(n+ j− k)q+η−1

(
q

q+η

) j

= qn−k
∑

j>eqY
(n− k)q−1

(
q−1
n− k

+
k− j
n− k

)q−1

(n− k)q+η−1
(

1+
j

n− k

)q+η−1

e− j.
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We used q+η = eq. Since k⩽ n/B we have
(

q−1
n−k +

k− j
n−k

)q−1
⩽
(
q−1+ k

n−k

)q−1
⩽
(
q−1+ 1

B−1

)q−1 ≪B

1 . Also k+ j ⩽ 2k ⩽ n gives
(

1+ j
n−k

)eq−1
≪ 1. Recalling Y = log(n− k) and continuing

from the previous step we get,

T2 ≪B qn−k(n− k)eq+q−2
∑

j>eqY
e− j ≪B qn−k(n− k)eq+q−2e−eqY = qn−k(n− k)q−2.

We are now only left to estimate T1 and show it dominates in the asymptotic of Πq(n,k). For the

ease of exploration, the calculation of T1 is broken down into three smaller sub-parts. To have

a good estimate for T1 = ∑1⩽ j≪log(n−k)
(k− j+q−1

q−1

)
Π′

q(n+ j− k, j), first it is natural to want to

understand the terms Π′
q(n+ j− k, j) when the range for j is restricted to ≪ log(n− k). With

these observations in mind we could show the following result.

Lemma 6.3.4. Let Y = log(n− k). We have uniformly for j ⩽ eqY,

Π
′
q(n+ j− k, j) =

qn+ j−k

n− k

{
Q j(Y )+O

(
(log(n− k)) j+1

j!(n− k)

)}

where

Q j(X) := ∑
m+ℓ= j−1

1
m!ℓ!

h(m)(0)X ℓ.

If we are given the above result in our toolbox, it is then evident that we are just a few steps

away from proving an estimate for T1 once we take care of what happens with the sum when

the terms Π′
q(n + j − k, j) are twisted by appropriate binomial coefficients for different j’s.

However, before we proceed to do that, we would like to mention a few words about what goes

into the proof of Lemma 6.3.4. The proof of the above result rests on another two fairly technical

auxiliary lemmas, which we shall state next. Details of these three claims are postponed till the

section 6.4.3, 6.4.4, 6.4.5 and can be skipped at the moment as they do not offer many insights

into our actual goal.

Lemma 6.3.5. We have uniformly for j ⩽ eq logn,

Π
′
q(n, j) =

qn

n

{
Q j(logn)+O

(
(logn) j

j!n

)}
.



72

Lemma 6.3.6. Let m ⩾ 1 be an integer. We have the following upper bounds

h(m)(0)/m! ≪
(

1
2.9q

)m

,

Q j(X)≪ X j−1

( j−1)!
and Q′

j(X)≪ X j−2

( j−2)!
,

for 1 ⩽ j ⩽ eqX uniformly, where X is a parameter that tends to ∞ with n.

We can now set up the stage for proving Theorem 5.2.4. As mentioned earlier we need to

have a precise estimate for the twisted binomial sum appearing in T1. Therefore the following

Proposition plays a key role in establishing Theorem 5.2.4.

Proposition 6.3.7. Let Y = log(n− k). We have the following estimate

∑
j⩽eqY

(
q−1+ k− j

q−1

)
q jQ j(Y ) =

kq−1qeqY

(q−1)!
h(q)

{
1+o(1)

}
.

Proof. We start with an observation first. By the hypothesis of Theorem 5.2.4 we have k >

ξ (n) logn yielding k− j ⩾ ξ (n) logn− eq log(n− k)⩾ (ξ (n)− eq) logn → ∞. Therefore using

the standard fact
(

α

β

)
= (1+o(1))αβ

β ! where β is assumed to be fixed and α → ∞ we obtain

∑
j⩽eqY

(
q−1+ k− j

q−1

)
q jQ j(Y ) =

1
(q−1)! ∑

j⩽eqY

{
q j(q−1+ k− j)q−1Q j(Y )

}
(1+o(1))

=
kq−1

(q−1)! ∑
j⩽eqY

{
q jQ j(Y )

}
(1+o(1)),

where we used the the Taylor expansion of (k+q− j−1)q−1 = kq−1(1+o(1)) since j = o(k).
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We now evaluate the sum

∑
j⩽eqY

q jQ j(Y ) =

∑
j⩾1

q j
∑

m+ℓ= j−1
m,ℓ⩾0

hm(0)
m!ℓ!

Y ℓ

−R

=

(
q ∑
ℓ⩾0

(qY )ℓ

ℓ! ∑
j−m=ℓ+1

hm(0)
m!

q j−ℓ−1

)
−R (after interchanging the sum)

=

(
q ∑
ℓ⩾0

(qY )ℓ

ℓ! ∑
m⩾0

hm(0)
m!

qm

)
−R (since m = j− ℓ−1 and j ⩾ ℓ+1)

= qeqY h(q)−R, (h(z) is analytic for |z|< q2)

where

R = ∑
j>⌊eqY⌋

q jQ j(Y ) (where ⌊x⌋ denotes the greatest integer ⩽ x)

= ∑
j⩾⌊eqY⌋+1

q j
∑

m+ℓ= j−1
m,ℓ⩾0

hm(0)
m!ℓ!

Y ℓ

= q

(
∑

0⩽ℓ⩽⌊eqY⌋

(qY )ℓ

ℓ! ∑
m⩾⌊eqY⌋−ℓ

hm(0)
m!

qm

)
+q

(
∑

ℓ⩾⌊eqY⌋

(qY )ℓ

ℓ! ∑
m⩾0

hm(0)
m!

qm

)
≪q S1 +S2. (say)

We have the following estimates,

S1 ⩽ ∑
0⩽ℓ⩽⌊eqY⌋

(qY )ℓ

ℓ! ∑
m⩾⌊eqY⌋−ℓ

(
1
2

)m (
using h(m)(0)/m! < (1/2q)m from Lemma 6.3.6

)
= ∑

0⩽ℓ⩽⌊eqY⌋

(qY )ℓ

ℓ!

(
1
2

)⌊eqY⌋−ℓ

=

(
1
2

)⌊eqY⌋

∑
0⩽ℓ⩽⌊eqY⌋

(2qY )ℓ

ℓ!

⩽ e0.12qY .

(
since

(
1
2

)⌊eqY⌋
= e−1.88qY and the rest is bounded by the complete sum e2qY

)
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Similarly

S2 = h(q) ∑
ℓ⩾⌊eqY⌋

(qY )ℓ

ℓ!

≪ (qY )⌊eqY⌋
∑
ℓ⩾0

(qY )ℓ

(ℓ+ ⌊eqY⌋)!
(dropping h(q)and using a change of variable ℓ 7→ ℓ−⌊eqY⌋)

⩽
(qY )⌊eqY⌋

⌊eqY⌋! ∑
ℓ⩾0

(qY )ℓ

ℓ!

(
since

(
ℓ+ ⌊eqY⌋

ℓ

)
⩾ 1 so that

1
(ℓ+ ⌊eqY⌋)!

⩽
1

ℓ!⌊eqY⌋!

)
≪ 1√

⌊eqY⌋
eqY ,

where at the last step we used Stirling. Indeed letting p = eqY , we have

(qY )⌊eqY⌋

⌊eqY⌋!
≪

( p
e

)⌊p⌋

(
⌊p⌋

e

)⌊p⌋√
⌊p⌋

=

(
p

⌊p⌋

)⌊p⌋ 1√
⌊p⌋

⩽

(
1+

1
⌊p⌋

)⌊p⌋ 1√
⌊p⌋

⩽
e√
⌊p⌋

.

Remark 6.3.8. In the hypothesis of the above proposition, the factor e in the parameter eqY was

chosen carefully. The final application of Stirling will not work if we choose a factor strictly

smaller than e. This choice induces a restriction in the hypothesis of the Lemma 6.3.5. The

proof of Lemma 6.4.3 crucially uses the technical condition q > e. This is why our methods do

not cover the case q = 2.

Proof of Theorem 5.2.4. We have that

Πq(n,k) = ∑
1⩽ j⩽eqY

(
k− j+q−1

q−1

)
Π

′
q(n+ j− k, j)+ ∑

j>eqY

(
k− j+q−1

q−1

)
Π

′
q(n+ j− k, j)

= T1 +T2.

Proposition 6.3.3 shows the tail T2 is small and is ≪ qn−k(n− k)q−2.
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Lemma 6.3.4 and Proposition 6.3.7 implies,

T1 = ∑
j⩽eqY

(
k− j+q−1

q−1

)
qn+ j−k

n− k
Q j(Y )+O

(
∑

j⩽eqY

(
k− j+q−1

q−1

)
(log(n− k)) j+1

j!(n− k)

)

=
qn−k

n− k ∑
j⩽eqY

(
k− j+q−1

q−1

)
q jQ j(Y )+O

(
∑

j⩽eqY

(
k− j+q−1

q−1

)
(log(n− k)) j+1

j!(n− k)

)

=
qn−k+1kq−1eqY

(q−1)!(n− k)
h(q)

{
1+o(1)

}
+O

(
(1+o(1))

kq−1

(q−1)!

∞

∑
j=1

(log(n− k)) j+1

j!(n− k)

)

=
qn−k+1kq−1eqY

(q−1)!(n− k)
h(q)

{
1+o(1)

}
+O

(
kq−1 log(n− k)elog(n−k)

n− k

)

=
qn−k+1kq−1eqY

(q−1)!(n− k)
h(q)

{
1+o(1)

}
+O

(
kq−1 log(n− k)

)
.

Thus we obtain

T1 ∼
qn−kkq−1eqY

(n− k)
qh(q)
(q−1)!

∼C(q)
qnkq−1(n− k)q−1

qk ,

where we used eqY/(n− k) = (n− k)q−1 when Y = log(n− k) and

C(q) =
qh(q)
(q−1)!

=
1

((q−1)!)2

(
1− 1

q

)q2

∏
p∈P⩾2

(
1− 1

qdeg(p)−1

)−1(
1− 1

qdeg(p)

)q

,

an absolute constant that only depends on q.

6.4 Towards Proposition 5.2.6 and auxiliary results for theorem 5.2.4

6.4.1 A Selberg-Delange style argument for M̃z(n)

Proof of Proposition 5.2.6. We recall some definitions for convenience,

M̃ :=
{

set of all monics in Fq[T ] having no root in Fq

}
,

M̃n :=
{

set of all of degree n monics in Fq[T ] having no root in Fq

}
,

Π
′
q(n,k) := #

{
f ∈ M̃n : Ωq( f ) = k

}
.
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We proceed as the proof of Theorem 5.2.3 by first defining the following quantities,

M̃z(n) = ∑
f∈M̃n

zΩq( f ) = ∑
k⩾0

zk
Π

′
q(n,k) and G̃z(u) = ∑

f∈M̃

zΩq( f )udeg( f ).

Our Euler product decomposition for G̃z(u) now becomes

G̃z(u) = ∏
p∈P⩾2

(
1− zudeg(p)

)−1
.

Following the same spirit we now have

G̃z(u) = ζ (u)zF̃z(u),

where F̃z is given by the Euler product below

F̃z(u) = (1−u)qz
∏

p∈P⩾2

(
1− zudeg(p)

)−1(
1−udeg(p)

)z
.

We first show the above Euler product converges absolutely in the region defined by,

R̃ :=
{
(u,z) ∈ C2 : |z|< q2, |u|2 < |z|−1, |u|< q−1/2

}
⊂ C2.

Since |1−zudeg(p)|⩾ 1−|zudeg(p)|⩾ 1−|zu2|> 0, we have none of the
(

1− zudeg(p)
)−1

factors

contribute to a pole in R̃.

We take the standard branch of complex logarithm defined over C \ (−∞,0] and get for each

integer n ⩾ 2,
(
|u|n < 1, |zun|⩽ |zu2|< 1

)
z log(1−un)− log(1− zun) =−zun +O

(∣∣zu2n∣∣)+ zun +O
(∣∣z2u2n∣∣)

= O
(∣∣q4u2n∣∣) (

|z|< q2) .
(6.4.1)

and hence using exp(O(x)) = 1+O(x) for x = O(1) we get,

(1−un)z(1− zun)−1 = 1+O
(∣∣q4u2n∣∣) .
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We now observe the Euler product for F̃z converges absolutely in R̃ as,

∑
p∈P⩾2

|u|2n ⩽ ∑
n⩾2

|qu2|n < ∞. (where we used,#Pn ⩽ qn)

Also (1− u)qz is holomorphic in R̃ and this proves F̃z(u) is holomorphic inside R̃. We deter-

mine the coefficient of un in G̃z(u) using Cauchy’s integral formula and recover M̃z(n) exactly

as in the proof of Theorem 5.2.3. We have that, if |u|= r < q−1 (refer to the small green circle

in the same Fig-6.1 ), then using Cauchy’s residue formula on (6.1.1) gives

M̃z(n) =
1

2πi

∫
|u|=r

G̃z(u)
du

un+1 =
1

2πi

∫
|u|=r

ζ (u)zF̃z(u)
du

un+1 . (6.4.2)

Now we again want to collect the contribution coming from the singularity of ζ (u)z at u = 1/q

to evaluate the above integral. We shift the contour |u| = r to a bigger circle |u| = 1/q+ η̃

with a different choice of η̃ here (not the same choice for η in Proposition 5.2.5) and with

|z| ⩽ q2 − δ . (the same δ in the hypothesis of this lemma) Since the region of absolute con-

vergence for F̃z(u) here is R̃, we have a different set of constraints on η̃ than before. Here we

get for η̃ , |zu2| ⩽ (q−1 + η̃)2(q2 − δ ) ⩽ 1 and |u| = 1/q+ η̃ < q−
1
2 . This shows taking any

0 < η̃ < min{1/
√

q2 −δ − 1/q,1/
√

q− 1/q} suffices. We then plan to use Lemma 6.1.2 to

evaluate the integral in (6.4.2) with, η̃ =min{1/
√

q2 −δ −1/q,1/
√

q−1/q}/2 for |z|⩽ q2−δ

just as we did in the proof of Proposition 5.2.5.

Remark 6.4.1. Fz(u) was absolutely convergent in R which gave us the appropriate choice for

η . All the calculations are identical here with F̃z instead of Fz. The main difference is, here we

have |z|⩽ q2−δ instead of |z|⩽ q−ε . Earlier Fz

(
1
q

)
had a pole at z = q,q2, . . . but we got rid

of the z = q pole here. This is what essentially allowing us to take |z|⩽ q2 −δ .
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We therefore get

M̃z(n) =
1

2πi

∫
{|u|= 1

q+η̃}∪H ′

ζ (u)zF̃z(u)
du

un+1

= F̃z

(
1
q

)
qnnz−1

(
1

Γ(z)
+Oδ

(
1
n

))
= qnnz−1

(
zh(z)+Oδ

(
1
n

))
,

where

h(z) =
1
z

F̃z

(
1
q

)
1

Γ(z)
=

1
Γ(z+1)

(
1− 1

q

)qz

∏
p∈P⩾2

(
1− z

qdeg(p)

)−1(
1− 1

qdeg(p)

)z

.

Also we have h(z) = 1
Γ(z+1) F̃z

(
1
q

)
. Since, F̃z

(
1
q

)
is analytic in |z|< q2, so is h.

6.4.2 An useful upper bound for Π′
q(n, j).

Proof of Lemma 6.3.2. We use Proposition 5.2.6 with z = q+η and if a j( f ) denotes the in-

dicator function of polynomials in M̃n with Ωq( f ) = j then, we see that every time a j = 1

occurs, it contributes an amount of (q+η) j on the left hand side of the sum of Proposition

5.2.6 and all the other terms are positive. We have by the previous lemma h(z) is analytic

in an open set containing the disc |z| ⩽ q2 − δ . Since the disk is compact and h is continu-

ous there, we have h(z) ≪q,δ 1 for every |z| ⩽ q2 − δ . Consequently for every |z| ⩽ q2 − δ ,

|zh(z)| ⩽ |(q+η)h(q+η)| ≪q,δ 1. This observation leads to an upper bound Π′
q(n, j) ≪q,δ

qnnq+η−1
(

1
q+η

) j
.

6.4.3 An uniform estimate for Π′
q(n, j) when j ⩽ eq logn

Proof of Lemma 6.3.5. We use Proposition 5.2.6. The coefficient of z j in M̃z(n) is what we

want to evaluate. We have for r < q2,

Π
′
q(n, j) =

1
2πi

∫
|z|=r

M̃z(n)
dz

z j+1 .
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We recall from Proposition 5.2.6 M̃z(n) =
qn

n

{
zh(z)nz +O

(
nz−1)}. Plugging this back in the

integral we get that
n
qn Π

′
q(n, j) =

1
2πi

∫
|z|=r

zh(z)nz dz
z j+1 +O(E0),

where E0 is given by,
∫
|z|=r

∣∣∣∣nz−1

z j+1

∣∣∣∣ |dz|. At this point we choose r = j
logn ⩽ eq < q2 since by

hypothesis j ⩽ eq logn and q ⩾ 3.

Noting e j = nr ⇐⇒ j = r logn and using Lemma 6.2.2, we get the term E0 is bounded by

≪ r− j−1e j

n

∫
|z|=r

|nz−r||dz| ≪ r− j−1e j

n
r

j
1
2
≪ 1

n
(e logn) j

j j+ 1
2

≪ 1
n
(logn) j

j!
,

where the final step of bounding follows by Stirling. This is the same trick that we used while

bounding above E on page 68 in the proof of Theorem 5.2.3. Now now return to the main term

M0 =
1

2πi

∫
|z|=r

zh(z)nz dz
z j+1 =

1
2πi

∫
|z|=r

h(z)nz dz
z j ,

where h(z) is an analytic function in the region |z|< q2, so the integrand has a pole at z = 0 of

order j. We evaluate this integral using residue theorem and obtain

M0 = lim
z→0

1
( j−1)!

d j−1

dz j−1 h(z)nz.

Using binomial theorem for higher order differentiation of products of two complex functions

1
( j−1)!

d j−1

dz j−1 h(z)nz

∣∣∣∣∣
z=0

=
1

( j−1)! ∑
m+ℓ= j−1

( j−1)!
m!ℓ!

h(m)(z)(nz)(ℓ)

∣∣∣∣∣
z=0

= ∑
m+ℓ= j−1

1
m!ℓ!

h(m)(0)(logn)ℓ.

where we have taken the limits inside the argument of the higher order derivatives which is

allowed because all the functions here are analytic and hence infinitely differentiable. Plugging

everything back we obtain the desired result.
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6.4.4 A technical upper bound for h(z), Q j(X) and their derivatives.

Proof of Lemma 6.3.6. From Proposition 5.2.6 we have that h(z) is holomorphic for |z| < q2

which in particular implies h(z)≪q 1 for |z| ⩽ 2.9q. Therefore we have by Cauchy’s integral

formula,

h(m)(0)/m! =

∣∣∣∣∣∣∣
∫

|z|=2.9q

h(z)
dz

zm+1

∣∣∣∣∣∣∣≪
(

1
2.9q

)m (
2.9q < q2 whenever q ⩾ 3

)
.

We have from Lemma 6.3.4

Q j(X) = ∑
m+ℓ= j−1

1
m!ℓ!

h(m)(0)X ℓ ≪ ∑
m+ℓ= j−1

(
1

2.9q

)m X ℓ

ℓ!

We now take out the top term X j−1

( j−1)! to bound the sum from above and observe for each m ⩾ 1,
Xℓ

ℓ! = X j−m−1

( j−m−1)! ⩽ (eq)m X j−1

( j−1)! which is true after cross multiplying whenever j ⩽ eqX since

( j−1)( j−2) · · ·( j−m)⩽ jm ⩽ (eqX)m. Hence we arrive at the following upper bound,

Q j(X)≪ X j−1

( j−1)! ∑
0⩽m⩽ j−1

(
eq

2.9q

)m

≪ X j−1

( j−1)!
.

Likewise when j ⩽ eqX ,

Q′
j(X) = ∑

m+ℓ= j−1

1
m!(ℓ−1)!

h(m)(0)X ℓ−1

≪ ∑
m+ℓ= j−1

(
1

2.9q

)m X ℓ−1

(ℓ−1)!

≪ X j−2

( j−2)! ∑
0⩽m⩽ j−1

(
eq

2.9q

)m

≪ X j−2

( j−2)!
.
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6.4.5 One of the main ingredients of Proposition 6.3.7 and Theorem 5.2.4

Proof of Lemma 6.3.4. By Lemma 6.3.5 we have that

Π
′
q(n+ j− k, j) =

qn+ j−k

n+ j− k

{
Q j(log(n+ j− k))+O

(
(log(n+ j− k)) j

j!(n+ j− k)

)}
.

We observe n− k ⩾ n
(
1− 1

B

)
→ ∞ as n → ∞. We also note if E1 = (log(n−k)) j+1

j!(n−k)2 and E2 =

(log(n+ j−k)) j

j!(n+ j−k)2 then as n → ∞

E2

E1
=

1
(log(n− k))

(
log(n+ j− k)

log(n− k)

) j (n− k)2

(n+ j− k)2

⩽

1+
log
(

1+
j

n− k

)
log(n− k)


j

1
(log(n− k))

→ 0

=⇒ E2 = o(E1),

where we have at the second step the term inside the bracket is bounded, because j
n−k ⩽

eq log(n−k)
(n−k) → 0 and hence for n large enough it is bounded by (1+ log2/ log(n−k))eq log(n−k) ⩽

eeq log2 = 2eq.

We show at a small cost it is possible to replace Q j(log(n+ j−k))
n+ j−k by Q j(log(n−k))

n−k . We use mean

value theorem to study the error. Let F(x) := Q j(logx)
x which is a regular function if x > 0. The

difference caused by this replacement

D =
Q j(log(n+ j− k))

n+ j− k
−

Q j(log(n− k)
n− k

= F(n+ j− k)−F(n− k).

By mean value theorem one can pick y ∈ (n− k,n+ j− k) such that

D = jF ′(y) = j
Q′

j(logy)−Q j(logy)

y2 =
j

y2 Q′
j(logy)− j

y2 Q j(logy) = F1 +F2.

We apply Lemma 6.3.6 with the choice X = logy. We note from the hypothesis that j ⩽ eqY ⩽

eq logy and y > n− k, so that we must have X = logy → ∞ with n. Using this observation,

we upper bound the first term of F1 which gives F1 =
j

y2 Q′
j(logy)≪ j

y2
(log(n+ j−k)) j−2

( j−2)! . Thus we

obtain



82

F1

E1
=

(n− k)2 j!
(log(n− k)) j+1

j
y2

(log(n+ j− k)) j−2

( j−2)!

⩽

(
log(n+ j− k)

log(n− k)

) j−2 j2( j−1)
(log(n− k))3

≪ 1,

since j ⩽ eq log(n− k) and y > n− k. Hence F1 = O(E1) and likewise from Lemma 6.3.6 one

can show |F2|= j
y2 Q j(logy)≪ j(log(n+ j−k)) j−1

y2( j−1)! , leading to

|F2|
E1

=
j!(n− k)2

(log(n− k)) j+1
j(log(n+ j− k)) j−1

y2( j−1)!

⩽

(
log(n+ j− k)

log(n− k)

) j−1 j2

(log(n− k))2

≪ 1.

Thus we infer F2 = O(E1), which completes the proof of Lemma 6.3.4.



CHAPTER 7

CONCLUSION

This thesis explored the similarities between integers and polynomials over finite fields with re-

spect to several fundamental results of analytic and probabilistic number theory. We started our

exploration with results from elementary number theory like the Chinese remainder theorem,

Euler’s theorem, and Fermat’s little theorem and then took the discussion to advanced analytic

tools like the Sathe-Selberg formula in the function field setting.

On the way, we introduced the reader to one of the key important functions, the Riemann zeta

function, whose presence is ubiquitous in analytic number theory and discussed its’ connection

with the prime numbers. The main goal of thesis was to study the set { f ∈ Mn : Πq( f ) = k}
for various ranges of k. To motivate our interest in this problem, we introduced the reader to

some famous arithmetic functions including ω and Ω that frequently appear in number theoretic

results and discussed several important aspects concerning the distributions of these functions,

one of which is notably a central limit theorem due Erdos and Kac. We compared the two

worlds, integers and polynomials for every result we investigated throughout the work.

In the final two chapters, we talked about the main tool used that lies in the heart of the thesis,

i.e., the Sathe-Selberg formula in the function field setting and proved two applications of the

formula. Although the main results concerning the object Πq(n,k) for different ranges of k are

not new, our proof techniques for reproducing Hwang’s asymptotic of Πq(n,k) when k is a bit

larger than logn is new. From the existing work in the integer setting, we observed a significant

difference in the asymptotic behaviour of π(x,k) and Π(x,k) when k exceeds the 2loglogx bar-

rier. Identical “difference of asymptotic phenomenon” is also observed in the function setting

for the functions πq(n,k) and Πq(n,k) when k is a bit larger than q logn. However, the asymp-

totic result that we established when k is larger than q logn had some major differences than

what we expected from the behaviour of Π(x,k) when k > 2loglogx. This was perhaps the only

instance where we could exhibit integers and the polynomials were behaving differently.
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Appendix I

First Appendix

I.1 Auxiliary results towards Theorem 5.2.3

We establish the technical Lemmas 6.2.1, 6.2.2 and 6.2.3, used in the proofs of Theorem 5.2.3

and will again be used in showing Proposition 5.2.6.

Proof of Lemma 6.2.1. In this result we need to show For t ∈ [−π,π] we have

cos t −1 ⩽−t2

5
and

∣∣1− eit∣∣2 ⩽ t2.

We define the function f (t) := 1− t2

5 −cos t for t ∈ [0,π] and observe that f ′(t) = 0 =⇒ sin t =
2t
5 . A quick graph plot or plugging this equation into a computer reveals that it has only two

solutions in the interval [0,π] , namely t = 0,2.125. Checking that f ′′(0) =−2
5 +cos0 = 3

5 > 0

and hence t = 0 is the global minima in the interval [0,π] since 0 = f (0)< f (2.125) which can

also be checked on a computer. Finally since cos t and t2 are both even functions we have for

all t ∈ [−π,π] the following inequality,

f (t)⩾ 0 =⇒ 1− t2

5
− cos t ⩾ 0 =⇒ cos t −1 ⩽−t2

5
.

For 0 ⩽ x, t ⩽ π it is well known that,

sinx ⩽ x =⇒
∫ t

0
sinxdx ⩽

∫ t

0
xdx =⇒ 1− cos t ⩽

t2

2
.

Again the above inequality is true for −π ⩽ t ⩽ π since cos and t2 are both even functions.

Finally we observe
∣∣1− eit

∣∣2 =(1−cos t)2+sin2 t = 2(1−cos t)⩽ t2 and the claim follows.

Proof of Lemma 6.2.2. We need to establish the following upper bound

∫
|z|=r

∣∣nz−r∣∣ |dz| ≪ r√
j
,



xv

where j = r logn.

We let I0 =
∫
|z|=r

∣∣nz−r∣∣ |dz|. After substituting z = re2πit where t ∈
[
−1

2
,
1
2

)
we get

I0 ≪
∫ 1

2

− 1
2

∣∣∣nre2πit−r
∣∣∣rdt

= r
∫ 1

2

− 1
2

∣∣∣nr(cos2πt−1)
∣∣∣dt

(∣∣∣nir sin2πt
∣∣∣= 1

)
≪ r

∫ 1
2

− 1
2

n−
4π2rt2

5 dt ( by Lemma 6.2.1)

≪ r
∫

∞

−∞

e−t2 dt√
r logn

(
t 7→ 2πt

√
r logn

5

)
≪ r

1√
r logn

=
r√

j
. ( j = r logn)

Proof of Lemma 6.2.3. We need to check the following estimate holds

∞∫
−∞

θ
2 exp

(
−kθ 2

5

)
dθ ≪ k−

3
2 .

We observe

∞∫
−∞

θ
2 exp

(
−kθ 2

5

)
dθ =

5
√

5

k
3
2

∫
∞

0

√
ze−zdz

(
z =

kθ 2

5

)

≪ k−
3
2 .

(
since

∫
∞

0

√
ze−zdz is convergent

)
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