
Université de Montréal

Extraction of UML Class Diagrams from Natural
Language Specifications

par

Song Yang

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Discipline

November 15, 2022

© Song Yang, 2022

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Extraction of UML Class Diagrams
from Natural Language Specifications

présenté par

Song Yang

a été évalué par un jury composé des personnes suivantes :

Stefan Monnier
(président-rapporteur)

Houari Sahraoui
(directeur de recherche)

Michalis Famelis
(membre du jury)

Résumé

Dans l’ingénierie dirigée par modèle, les diagrammes de classes UML servent à la planification
et à la communication entre les différents acteurs d’un projet logiciel. Dans ce mémoire,
nous proposons une méthode automatique pour l’extraction des diagrammes de classes UML
à partir de spécifications en langues naturelles. Pour développer notre méthode, nous créons
un dépôt de diagrammes de classes UML et de leurs spécifications en anglais fournies par
des bénévoles. Notre processus d’extraction se fait en plusieurs étapes: la segmentation
des spécifications en phrases, la classification de ces phrases, la génération des fragments de
diagrammes de classes UML à partir de chaque phrase, et la composition de ces fragments en
un diagramme de classes UML. Nous avons validé notre approche d’extraction en utilisant
le dépôt de paires diagramme-spécification. Même si les résultats obtenus montrent une
précision et un rappel bas, notre travail a permis d’identifier les éléments qui peuvent être
améliorés pour une meilleure extraction.

Mots clés: Génie logiciel, UML, Ingénierie dirigée par modèle, Extraction d’information,
Informatique

5

Abstract

In model-driven engineering, UML class diagrams serve as a way to plan and communicate
between developers. In this thesis, we propose an automated approach for the extraction of
UML class diagrams from natural language software specifications. To develop our approach,
we create a dataset of UML class diagrams and their English specifications with the help of
volunteers. Our approach is a pipeline of steps consisting of the segmentation of the input into
sentences, the classification of the sentences, the generation of UML class diagram fragments
from sentences, and the composition of these fragments into one UML class diagram. We
develop a quantitative testing framework specific to UML class diagram extraction. Our
approach yields low precision and recall but serves as a benchmark for future research.

Keywords: Software engineering, Model-driven engineering, Information extraction, Nat-
ural language processing, Machine learning, UML

7

Contents

Résumé . 5

Abstract . 7

List of tables . 13

List of figures . 15

List of abbreviations. 17

Chapter 1. Introduction. 19

1.1. Context. 19

1.2. Problem . 19

1.3. Contributions . 20

1.4. Thesis structure . 20

Chapter 2. Background and Related Work . 21

Introduction . 21

2.1. Definitions and examples . 21
2.1.1. Software specification . 21
2.1.2. Model (Software engineering) . 22
2.1.3. Model-driven engineering (MDE). 22
2.1.4. Unified Modeling Language (UML) . 22
2.1.5. UML class diagram . 22
2.1.6. Natural language processing (NLP) . 23
2.1.7. Part-of-speech (POS) tagging . 24
2.1.8. Dependency parsing . 24
2.1.9. Lemmatization. 25
2.1.10. Vectorization (NLP) . 25
2.1.11. Coreference resolution . 25

9

2.2. Related Work . 26
2.2.1. Survey of relevant literature . 26
2.2.2. Automatic approaches . 26
2.2.3. Semi-automatic approaches . 27

2.3. Synthesis . 28
2.3.1. Fully automated . 28
2.3.2. Unrestricted input . 28
2.3.3. Simpler heuristics and computational optimizations . 29
2.3.4. Consistent testing metrics . 29

Chapter 3. From Specifications to UML Class Diagrams 31

Overview . 31

3.1. Dataset Creation. 32

3.2. Preprocessing and Fragmentation of Specifications . 34

3.3. Sentence Classification . 36

3.4. UML Fragment Generation . 37

3.5. Composition of UML Fragments . 40

Chapter 4. Evaluation . 45

Overview . 45

4.1. Setup . 45

4.2. Evaluation Metrics . 45

4.3. Results . 47

4.4. Discussion . 49
4.4.1. Evaluation metrics . 51
4.4.2. Conclusion . 51

4.5. Threats to Validity . 51
4.5.1. Dataset . 51
4.5.2. Language model used for fragment generation . 52
4.5.3. Composition algorithm. 52

Chapter 5. Conclusion . 53

10

References . 55

Appendix A. The UML Labeling Initiative . 59

11

List of tables

2.1 Results of the 2021 survey [2] . 26

3.1 UML datasets and their sizes by version . 32
3.2 Accuracy of binary classification of English sentences. 37
3.3 Summary of patterns . 38
3.4 Priority of patterns with the top line being the highest priority. 39
3.5 How multiplicities are expressed . 39
3.6 Additional processing following parse results . 40

4.1 Performance of generating classes from English specification. 48
4.2 Performance of generating relationships from English specification. 48
4.3 Accuracies of each statistical component in our approach . 50

13

List of figures

2.1 An example of a short software specification . 21
2.2 Example of a UML class diagram . 23
2.3 Example of a UML class diagram with a package . 23
2.4 Example of a sentence’s parse tree containing POS and dependency information . 24
2.5 DoMoBOT’s graphical user interface [29] . 28

3.1 Overview of the extraction process of UML class diagrams from natural language
specification . 31

3.2 Class fragment. 33
3.3 Relationship fragment . 33
3.4 Example labels received by crowdsourcing. 34
3.5 Landing page of the UML Labeling Initiative . 34
3.6 Interface of the UML Labeling Initiative . 35
3.7 Example of class generation . 39
3.8 Example of relationship generation. 40
3.9 Attribute-Class conflict and its resolution . 42
3.10 Attribute-Relationship conflict and its resolution . 43

4.1 An original UML class diagram from the AtlanMod Zoo . 46
4.2 Mapping positive reals to the [0,1] interval using f(x) = 2(1− σ(x)) 47
4.3 The generated UML class diagram from the original (Figure 4.1) 49
4.4 A generated UML class diagram with many synonymous class names 50

A.1 The website presents one fragment from one model. 59
A.2 Users can choose other fragments and models.. 60
A.3 Examples and explanations for users on how to label . 60

15

List of abbreviations

MDE Model-driven engineering, a style of software development based
on modeling

UML Unified Modeling Language, a standard adopted by the Object
Management Group for visual diagrams

OOP Object-oriented programming, a programming language para-
digm that treats classes and objects as first-class citizens

NLP Natural language processing, a field of computer science dealing
with human language and linguistics

POS Part of speech, a linguistic feature of words, such as nouns, verbs,
adjectives, conjunction, etc.

AI Artificial intelligence, a computational agent

17

Chapter 1

Introduction

1.1. Context
Software is more and more present in our daily lives. Not only is there more software, but

the software itself is also becoming increasingly complex. For example, the Apollo Program
that sent the first human to the Moon had 600k lines of code. In comparison, Microsoft had
200 million lines of code for their main services by 2010 [36]. Hence, the process of making
software is becoming complex as well.

When making software, developers need to take care of low-level concerns, such as li-
braries and programming languages, as well as high-level concerns, such as functionality and
user experience. Thinking about all of this at once for real-world applications is unfeasible.
As such, model-driven engineering (MDE) has been introduced as an efficient approach for
reducing the complexity of software development by increasing the level of abstraction [19].

MDE makes use of a model, which is an abstraction of a running system, to understand,
communicate and analyze software-intensive systems [35]. One way of describing a model is
through the Unified Modeling Language (UML), which is a visual language used to specify,
construct and document software systems. A UML class diagram is the most used UML
diagram. It shows a static view of the system, consisting of classes, their interrelationships
(including generalization/specialization, association, aggregation, and composition), opera-
tions, and attributes of the classes [32].

The creation of a UML class diagram requires a software specification, which in turn is
obtained when the developer interviews their customer. This thesis deals with the difficulty
of creating a UML class diagram from a natural language specification.

1.2. Problem
Modeling a UML class diagram from a specification is hard, especially when developers

engage in a domain that they have little or no knowledge of. Since modeling requires skill

and experience, several approaches have been proposed to automate the extraction of models
from natural language. One recent approach is DoMoBOT [29]. However, this tool is not
fully automated because it requires the user to provide interactive feedback. A survey of
existing publications concluded that most proposed tools are not fully automated and require
consistent user intervention. And if they are automated, most tools require the specification
to be written in a specific form or use a restricted subset of English [2]. For example, [1, 20]
are automated but they require the English specification to be written in a certain way.

This thesis addresses the shortcomings by proposing a tool that is fully automated and
that accepts unrestricted natural language input.

1.3. Contributions
This thesis contributes a tool to make the software development process better. The

tool automatically turns a specification written in English into a UML class diagram. More
specifically, the contributions are:

• An automated pipeline of natural language processing (NLP) and machine learning
techniques
• A set of English linguistic grammar patterns to detect common expressions in a

specification
• An algorithm to merge simple UML class diagrams into one larger UML class diagram
• A binary classifier to detect what part of a UML class diagram a sentence is describing
• A dataset of UML-English pairs, where each pair consists of a UML class diagram

fragment and an English specification describing the fragment
• An executable that performs the pipeline of translating English into UML class dia-

grams

1.4. Thesis structure
Chapter 2 gives a background in model-driven engineering and natural language pro-

cessing (NLP) and surveys the related work in feature extraction from natural language
specifications. Chapter 3 details the approach used to build the NLP pipeline, including
the data collection of the novel dataset, preprocessing, machine learning, and NLP grammar
techniques. Chapter 4 discusses the performance of the translation. Chapter 5 concludes
the thesis and provides avenues for future work.

20

Chapter 2

Background and Related Work

Introduction
In this chapter, we provide the necessary background to understand the contributions of

this thesis and summarize the related work in model-driven engineering and natural language
processing. Finally, we show how our system to extract UML class diagrams from English
differs from the related work.

2.1. Definitions and examples
2.1.1. Software specification

Software requirements specification denotes a precise description of the system
objects, a set of methods to manipulate them, and a statement on their collective behavior
for the duration of their existence in the system to be developed [4]. A specification can be
obtained by speaking to the customer.

A contact has a name. The phone number of a land line is encoded as a String.

A cell phone number is mapped to a single contact. The number of a cell phone

number is encoded as a String. A Contact may have any number of land line

numbers. A land line number is mapped to exactly one contact.

Fig. 2.1. An example of a short software specification

Figure 2.1 shows an example specification for a software system requested by a customer
interested in managing personal contact information. Software specification is not limited
to text. There can be images and recordings. But in this thesis, we are only interested in
textual descriptions.

A specification is considered "good" when it describes what is needed rather than how
to implement it [5]. There is a possibility that a customer doesn’t know what they want
or how to express ideas properly. As such, a specification written directly by the customer
might require further clarification. In this thesis, we make use of good specifications.

2.1.2. Model (Software engineering)

In software engineering, a model is an abstraction of a running system, to understand,
communicate and analyze software-intensive systems [35]. This can range from whiteboard
drawings to more formal representations that can generate code. The Object Management
Group has defined many kinds of models, most notably the Unified Modeling Language
(UML). If a model describes models, then it is a meta-model [15].

2.1.3. Model-driven engineering (MDE)

MDE is a field of software engineering. It refers to all methodologies that are model-
centric and which encourage efficient use of models during all stages of software development.
MDE encourages the use of abstraction to improve understanding, fit the needs of the domain,
and automate repetitive tasks. A case study in the industry concluded that MDE, while
useful in some regards, is not widely adopted due to poor ease of use and a lack of mature
tools [19].

2.1.4. Unified Modeling Language (UML)

UML is a family of graphical notations, backed by a single meta-model, that help in
describing and designing software systems, particularly software systems built using the
object-oriented style [10]. There are many kinds of UML diagrams. The most used one is
the class diagram [32].

UML can be used as a sketch to communicate between developers [10]. It can also be
used as a blueprint to plan out the code, check for consistencies and potentially generate code
from it [7], such as Java [22]. Furthermore, UML can be used for reverse-engineering [12].

2.1.5. UML class diagram

A UML class diagram is a kind of UML diagram that shows a static view of a system,
consisting of classes, their interrelationships (including generalization/specialization, associ-
ation, aggregation, and composition), operations, and attributes of the classes. The UML
class diagram can be presented in three perspectives, which are the conceptual perspective,
the specification/design perspective, and the implementation perspective [32].

22

The perspective of interest in this thesis is the specification/design perspective. In this
perspective, the diagram is interpreted as a description of software abstraction, without a
particular implementation in mind [32].

ClassA
variableName: type

ClassB
variableName: type

associationA
0..*

Fig. 2.2. Example of a UML class diagram

Figure 2.2 is an example of a UML class diagram. In this diagram, there are two classes,
represented by boxes, and one unidirectional association, represented by the arrow. In gen-
eral, there is a nonzero number of classes and any number of associations. The "variableName:
type" entry inside classes represents an attribute of name "variableName" and type "type".
In a UML class diagram, there is an arbitrary number of attributes, including none at all,
and the presence of attribute types is optional.

"associationA" over the arrow is the name of a unidirectional association. The "0..*"
(pronounced "zero to many") under the arrow is a multiplicity and means that instances of
ClassA can be associated with any number of instances of ClassB, including none at all. In
Figure 2.2, the association reads as "Class A is associated to Class B under the ’associationA’
relationship, where for each Class A there are zero-to-many Class B."

PackageName

ClassA
variableName: type

ClassB
variableName: type

associationA
0..*

Fig. 2.3. Example of a UML class diagram with a package

Figure 2.3 shows the possibility of having a package inside a UML class diagram. A UML
package is used to denote some groupings within a diagram, for example to help with clarity.

A UML class diagram can have other kinds of associations and other entities than classes.
For example, inheritance, which allows new object definitions to be based upon existing
ones [33], can be drawn between two classes. In this thesis, we will use a simplified version
of the UML class diagram that makes use of only classes, unidirectional associations, and
packages, such as Figure 2.3.

2.1.6. Natural language processing (NLP)

NLP is a field of computer science. It is a collection of computational techniques for
automatic analysis and representation of human languages, motivated by theory [8]. An
example use of NLP is Google Translate.

23

There are two broad camps in NLP. The first camp is older and makes use of statistical
methods, such as the N-gram based on a multi-order Markov model [21]. The second camp
is newer and makes use of neural networks from machine learning, such as word vectors [30].
In this thesis, we use mostly statistical methods due to the lack of sufficient data for neural
methods. We have tried fine-tuning an existing neural model called BERT [9] on our dataset,
and the results were very poor.

2.1.7. Part-of-speech (POS) tagging

Part-of-speech tagging tries to tag (or label) each word in a sentence with the correct
part of speech [16]. A POS is the words of a language that can be collected into classes of
formal equivalents [6], such as nouns, verbs, adjectives, etc.

Figure 2.4 shows an example of a tagging result. The tags are shown in color under the
words of the sentence being parsed.

2.1.8. Dependency parsing

Dependency parsing is a form of syntactic parsing of natural language based on the
theoretical tradition of dependency grammar. A dependency is between a syntactically
subordinate word, called the dependent, and another word on which it depends called the
head [24].

Figure 2.4 shows the example of a parse result for the sentence "The tree has grown taller".
In the figure, the capitalized words under the sentence are the POS tags, whose complete list
can be found here1. In addition, arrows represent the dependencies by connecting words to
each other. Under each arrow is the abbreviation of a grammatical function. For example,
"nsubj" means the word "tree" plays the role of a nominal subject for "grown". The complete
list of abbreviations can be found here2.

The tree has grown taller.

DET NOUN AUX VERB ADJ

det

nsubj

aux acomp

Fig. 2.4. Example of a sentence’s parse tree containing POS and dependency information

1https://machinelearningknowledge.ai/tutorial-on-spacy-part-of-speech-pos-tagging/
2https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/dependency_
labels.md

24

https://machinelearningknowledge.ai/tutorial-on-spacy-part-of-speech-pos-tagging/
https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/dependency_labels.md
https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/dependency_labels.md

2.1.9. Lemmatization

Lemmatization is the process of finding the normalized form of a word. It is the same
as looking for a transformation to apply to a word to get its normalized form [27].

In this thesis, we perform lemmatization on nouns and verbs in an English sentence.
Nouns are changed to their singular form, while verbs are changed to their non-conjugated
(indicative) form. For example, "cities" is changed to "city" and "bought" is changed to "buy".

2.1.10. Vectorization (NLP)

Vectorization is the process of storing text in a specified vector space [14]. By doing
this, we open more path ways to manipulate the data. Two broad categories of vectorization
exist.

• Direct representations: Each vector component traces back to a specific item in a
vocabulary. (ex. bag-of-words)
• Indirect representations: Each vector component does not trace back to any specific

item in a vocabulary. (ex. word vectors)

Direct representations include the bag-of-words representation. A bag of words is a
vector whose components represent the words in a vocabulary. A sentence or the entire
document can be turned into a bag of words. The value of the vector components depends
on the calculation method.

The most straightforward calculation method is count vectorization. According to this
method, the components of a bag of words are the frequencies of the words in the document
being vectorized. The count vectorization method has a bias for very common words. To mit-
igate this bias, the term frequency-inverse document frequency (TF-IDF) method penalizes
very common words in a vocabulary, such as "the".

Indirect representations include word vectors. The creation of word vectors requires
the training of a statistical model on a large third-party dataset of text [17]. With a trained
model, every word can be transformed into a vector of some dimension. Each component in
this vector cannot be linked to any words in the vocabulary, unlike direct representations.
Instead, the components of a word vector represent a semantic meaning. In theory, synonyms
should have very similar word vectors.

In this thesis, we use a direct representation due to its simplicity and speed.

2.1.11. Coreference resolution

A coreference is words or phrases referring to a single unique entity (or union of enti-
ties) in an operating environment. Coreference resolution is the resolution of repeated
references to an object in a document [31].

25

One example of coreference resolution is finding what pronouns ("he", "she", "they", "it")
refer to in a document. Another example is grouping expressions that refer to the same
entity in a document. For example, expressions like "the country" and "the hockey place"
may refer to Canada in a document.

2.2. Related Work
In this section, we summarize the existing research on the extraction of UML class dia-

grams from natural language specification. Without automation, developers produced UML
class diagrams from specifications manually. Several recurring patterns in software engineer-
ing can be identified in specifications. In [23], Nicola et al. describe common situations when
talking to business analysts. In the rest of this section, we talk about the state-of-the-art of
automatic and semi-automatic methods of extracting UML class diagrams.

2.2.1. Survey of relevant literature

In 2021, Abdelnabi et al. surveyed 24 published tools and methods for the extraction
of UML class diagrams from natural language specifications. In the survey, most tools and
methods require consistent user intervention. Most tools also required the specification to
be given in a specific format, such as a more restricted vocabulary of English or a more rigid
structure rather than free-flowing text. The authors concluded that no fully automated tool
to generate complex UML class diagrams exists [2].

Degree of automation # of papers
Semi-automatic 9

Automatic 15

Input # of papers
Unrestricted English 1
Restricted English 19
Structured format 4

Table 2.1. Results of the 2021 survey [2]

2.2.2. Automatic approaches

Automatic approaches do not require extensive user intervention. Once input is given, the
user only needs to wait for a result. The automatic approaches make use of more traditional
NLP techniques, such as hand-written rules and grammar parsing. The authors of [1, 20]
use several heuristics to analyze the natural language specification.

In [1], Abdelnabi et al. describe an extraction process based on NLP techniques. Their
approach requires the user to keep a set of normalization rules in mind when writing a
software specification. For example, one rule prohibits sentences from using conjunctions
to connect objects after the verb. That means a sentence like "The customer has a name
and a shipping address." is not allowed as input to their automated system. Once all rules

26

are satisfied, the automated part of their approach starts preprocessing the restricted input
using NLP techniques that are similar to this thesis. Namely, the input is segmented by
sentence, tokenized by word, and put through lemmatization (see Section 2.1.9). Then,
the approach performs dependency parsing (see Section 2.1.8) based on a large number of
grammar rules for identifying classes, attributes, methods, and relationships, respectively.
There is no mention of how the parsing results are grouped into a UML class diagram. The
approach has been evaluated subjectively in use cases and the results show it is "feasible"
and "acceptable".

In [20], More et al. describe a tool named "RAPID", which is also an extraction process
based on NLP techniques. Similar to [1], RAPID also requires its user to write the English
specification in a restricted way, following a set of normalization rules. RAPID proceeds with
similar preprocessing, such as lemmatization. There is no sentence segmentation because the
user is expected to provide the input in a custom graphical environment. RAPID parses the
input according to a smaller set of grammar rules for identifying classes, attributes, and
relationships, respectively. In addition, RAPID makes use of synonyms via WordNet [18] to
validate generalization relationships. There is also no mention of how the parse results are
merged into a UML class diagram. RAPID’s performance has not been evaluated.

2.2.3. Semi-automatic approaches

Semi-automatic approaches require extensive user intervention before a UML class dia-
gram is generated. In [29], Saini et al. create an AI assistant called "DoMoBOT" that assists
the user in creating UML class diagrams. The tool has a graphical user interface as shown
in Figure 2.5.

Overall, DoMoBot’s architecture is a complex blend of traditional NLP and machine
learning techniques. After receiving an English specification, DoMoBOT preprocesses the
text with sentence segmentation and coreference resolution (see Section 2.1.11). Then, Do-
MoBot extracts concepts from the text by identifying noun phrases and formatting them
according to variable naming conventions with the help of lemmatization. The identification
of relationships is done with dependency parsing from grammar patterns manually decided
by Saini et al. Synonyms of previously extracted concepts are handled via similarity scores.
This is their NLP rule-based part.

DoMoBOT also makes use of machine learning by using word vectors (see Section 2.1.10)
to represent extracted concepts and sentences. Concepts are classified using a pre-trained
neural network to predict if they are a UML class or a UML attribute and if they are an
attribute, what types they have. The word vectors for sentences are grouped into matrices.
Sentences are then classified using another pre-trained neural network to predict what kind

27

Fig. 2.5. DoMoBOT’s graphical user interface [29]

of UML relationships they represent, such as association and composition, and to predict
the multiplicities of the relationships.

The results from machine learning are grouped in clusters using an algorithm. If there
are inconsistencies in the clustering, the result is presented with an "?" to the user who has to
provide clarifications through the chat box. Responses received in the chat box go through
DoMoBOT’s system again. The process repeats until there are no more inconsistencies.

2.3. Synthesis
This thesis distinguishes itself from the related work in several ways.

2.3.1. Fully automated

While tools like DoMoBOT [29] can produce UML class diagrams, the user needs to
provide constant input to guide the AI. The thesis proposes an automated method that
requires minimal user intervention. Once the input is given, the user only has to wait for
the output.

2.3.2. Unrestricted input

The automated approaches presented in [1, 20] have normalization rules, which require
users to write specifications in a restricted English sentence structure. This thesis presents

28

an approach that accepts free-flowing text. We don’t have any normalization rules that users
must keep in mind.

2.3.3. Simpler heuristics and computational optimizations

Although [1] and [20] are automated and use grammar patterns and heuristics as well,
our approach contains a fragmentation step. Instead of parsing all the input at once, the
input is divided by sentence and processed separately, before being reassembled at the end.
Our approach can handle very large texts and can reduce computation time by distribut-
ing fragments to concurrent processing units. In addition, the fragmentation simplifies the
grammar patterns and heuristics even further.

2.3.4. Consistent testing metrics

The authors of the survey [2] did not provide a quantifiable metric for measuring the
performance of UML class diagram extractors. Semi-automatic tools like DoMoBOT cannot
have their performance quantified easily since it requires human intervention. Furthermore,
the papers [1, 20] describing fully automated tools do not provide a guideline for quantifying
performance. The authors of [1] performed a qualitative comparative evaluation with another
tool. Hence, only qualitative assessments have been made.

As such, this thesis describes quantitative testing metrics for the evaluation of UML class
diagrams obtained from English specifications. We provide a dataset that can be used for
the evaluation of future UML class diagram extractors.

29

Chapter 3

From Specifications to UML Class Diagrams

Overview
The goal of this chapter is to design a method to translate English specifications to UML

diagrams. To do this, we implement a tool pipeline that generates UML class diagrams from
natural language specifications. The approach consists of two parts. The first part is the
creation of a dataset. The second part is the NLP pipeline that performs the extraction of
UML class diagrams. Figure 3.1 summarizes the process.

Our approach combines machine learning with pattern-based diagram generation. To
perform machine learning, we start by creating a dataset of UML class diagrams and their

Data collection

AtlanMod
Zoo

UML Model
Fragmentation

Crowdsourced
Labeling

Postprocessing Data

English specs
Specification

Preprocessing
Sentence

Fragmentation

Runtime operations

Sentence
Classification

UML Fragment
Generation

UML
Composition

UML Class
Diagram

Fig. 3.1. Overview of the extraction process of UML class diagrams from natural language
specification

corresponding specifications in natural language (top part of Figure 3.1). We selected pre-
existing UML class diagrams from the AtlanMod Zoo repository 1. The selected diagrams
were decomposed into fragments and manually labeled by volunteer participants. After
postprocessing, the labeled diagrams were stored in a repository.

The bottom part of Figure 3.1 consists of the diagram generation process, which takes
place right after a user submits a software specification. The submitted natural language
specification is then preprocessed and decomposed into sentences. Using a classifier built
from the above-mentioned dataset, the sentences are labeled according to the nature of the
UML construct they refer to, i.e., a class or a relation. According to this label, specific
procedures of parsing and extraction are performed on the sentence to generate a UML
fragment. In the end, all UML fragments are composed back together into one UML class
diagram.

In the rest of this chapter, we detail all the activities of our approach.

3.1. Dataset Creation
We create a new dataset for both the operation and the evaluation of our approach. In

particular, we use this dataset to learn a classifier for the Classification step in Figure 3.1.
To build the dataset, we start from an existing set of UML class diagrams from the

AtlanMod Zoo. The AtlanMod Zoo has a repository of 305 high-quality UML class diagrams
that model various domains. As defined in Section 2.1.5, a UML diagram contains classes and
relationships. The size of the diagrams varies from a few classes to hundreds of classes. We
fragment each diagram into UML fragments. A fragment is either a simple class (Figure 3.2)
or a relationship (Figure 3.3) linking two attribute-less classes.

Table 3.1 shows the size of the dataset before and after labeling, as well as the quantity of
class and relationship fragments. We only managed to label 7% of the dataset. The labeled
portion is made of UML class diagrams with the least complexity, that is, with the least
number of classes and relationships.

Dataset UML models UML fragments Class fragments Relationship fragments
AtlanMod Zoo 305 8172 4525 3647

Labeled 62 598 291 307

Table 3.1. UML datasets and their sizes by version

Since the goal of this paper is the translation of specifications into diagrams, each UML
class diagram needs to be paired with an English specification. To achieve that goal, we set
up a website where we crowdsource the labeling of fragments. The website was hosted on
the Heroku cloud platform for a monthly fee.
1https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Zoos

32

https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Zoos

ClassName

attributeName

attributeName

Fig. 3.2. Class fragment

ClassA ClassB
related

0..*

Fig. 3.3. Relationship fragment

Web development is done using Django 2 as the web framework, JavaScript 3 for advanced
visualization, and PostgreSQL 4 for database management. The website is made of a landing
page and a work page where users contribute labels for the thesis. The work page displays
one UML fragment at a time and prevents other users from seeing this fragment so only
one label is received per fragment. When a fragment is labeled, the website shows another
fragment from the same UML diagram, until all fragments of the same diagram are labeled.
On the work page, we also show the full UML class diagram and some examples of labeled
fragments, to help users write their English specifications.

We design each labeling session to be anonymous and as short as possible. The minimum
expected time spent per session is 5 minutes. Fragments are presented in the ascending order
of complexity of their parent UML diagram. As such, the first fragment comes from the
smallest UML diagram. A total of 305 diagrams containing 8172 fragments were presented
for labeling.

To find volunteers, we send invitations to different model-driven engineering (MDE, see
Section 2.1.3) mailing lists and specific large research groups active in the MDE field. Vol-
unteer participants are mostly university students and faculty members across the world. To
ensure that the labeling is done in good faith, we do not offer monetary compensation for
participation. However, since participation was low, we did not impose a contribution limit.
Because we promised anonymity to all participants, we have no records of how many people
took part in our experiment.

After about two months of crowdsourcing, we received labels for 598 fragments across 62
UML class diagrams. The produced dataset is available on a public repository5. To ensure
quality, labels are reviewed and less than 5 labels were rejected. We replace the rejected
labels by labeling them again ourselves. Figure 3.4 shows example labels. Our criteria for
acceptance are not very strict. As long as the specification vaguely describes the associated
2https://www.djangoproject.com/
3https://www.javascript.com/
4https://www.postgresql.org/
5https://github.com/XsongyangX/uml-classes-and-specs

33

https://www.djangoproject.com/
https://www.javascript.com/
https://www.postgresql.org/
https://github.com/XsongyangX/uml-classes-and-specs

UML class diagram, it is acceptable. We do not correct English spelling and grammar errors
in the labels.

SimpleRDBS

Key

(a) Key is a class in SimpleRDBMS package

SimpleRDBS

Key Table
owner

1..1

(b) A Key is owned by one and only one Table in an RDBMS

Fig. 3.4. Example labels received by crowdsourcing

We attach some screenshots of the website that volunteers used to label fragments. The
website is called "The UML Labeling Initiative". See Figures 3.5, 3.6, A.1, A.2 and A.3.

Fig. 3.5. Landing page of the UML Labeling Initiative

3.2. Preprocessing and Fragmentation of Specifications
Preprocessing is the first step after receiving an input specification from the user as shown

in Figure 3.1. We substitute pronouns throughout the text, such as it and him, with their

34

Fig. 3.6. Interface of the UML Labeling Initiative

reference nouns. This is done using coreferee [11], which is a tool written in Python that
performs coreference resolution, including pronoun substitution. The reason for this is to
give semantic independence to each sentence in a specification. This way, a sentence has
enough information to produce a UML fragment independently. The following sentence is
an example.

«A course is taught by a teacher. A classroom is assigned to it.
=⇒ A course is taught by a teacher. A classroom is assigned to a course.
»

The accuracy of coreferee for general English text is 81% for all kinds of coreference
resolution. We only use coreferee’s pronoun substitution. As defined in Section 2.1.11,
coreference resolution includes the resolution of generic terms, such as substituting "the
country" with "Canada". Though it gives precision, resolving generic terms will make all
sentences describe the same entity. Software specifications may make use of generic terms
to convey generalizations as a design pattern. Sometimes, the specification intends there to
be two separate UML classes called "Country" and "Canada".

Sentence fragmentation is the second step in the runtime operations in Figure 3.1. We
split the preprocessed text into individual sentences, using spaCy [3]. spaCy is an NLP
library in Python that can be used for various NLP tasks, such as sentence splitting. spaCy
splits text into sentences by looking at punctuation and special cases like abbreviations. Its
decisions are powered by pre-trained statistical models. We use the small English model,

35

which has a good speed and respectable performance. For instance, in the following example,
the first two dots are not considered for splitting the sentences but the third dot is.

«An employee has a level of studies, i.e., a degree. An employee is affiliated
to a department.
=⇒
s1: An employee has a level of studies, i.e., a degree.
s2: An employee is affiliated to a department. »

3.3. Sentence Classification
Sentence classification is the third step in the runtime operations of Figure 3.1. Classifi-

cation provides additional information on the English specification that can be used later to
better generate the related UML diagram fragment. Each sentence is classified as describing
either a "class" or a "relationship".

The training data for the classifier comes from the dataset described in Section 3.1. Each
data point is structured as a pair <English specification, UML fragment> and is assigned a
label of a "class" or "relationship" from the moment the dataset was processed from AtlanMod
Zoo. The pairing means that the English specification belongs to that specific UML fragment.
Our classifier is trained to predict the "class/relationship" label from an English specification.
To evaluate the accuracy of the classifier, we use 80% of the data for the training, and the
remaining 20% for testing.

When training classifiers on natural language text, we have to select a method to map
those sentences into numerical representations. To this end, we experiment with two vec-
torization methods, count and TF-IDF, which are designed to turn words into vectors (see
Section 2.1.10).

Count vectorization looks at the frequency of words in a sentence and creates a vector
based on the observed frequency. The dimension of the vector is the size of the vocabulary
and the components of the vector represent the frequency of each word. We obtain the
vocabulary by running the vectorizer on the entire dataset.

"Term frequency-inverse document frequency" (TF-IDF) also looks at the frequency of
words in a sentence to create a vector. A key difference is the penalization of very common
words in a document. This allows giving less importance to words like "the".

As for the classification algorithms, we experiment with various algorithms from the
scikit-learn library [25]. We use the default hyperparameter settings for each algorithm.
Table 3.2 shows the performance of the algorithms on the test data. It is worth noting that
the training takes less than one minute. The accuracies represent the proportion of correctly
predicted labels (class or relationship) over the total amount of predictions made.

36

Accuracy by chosen vectorizer
Classifier TF-IDF Count

Bernoulli Bayes 0.87 0.83
Multinomial Bayes 0.83 0.85

k neighbors 0.82 0.74
Linear SVC 0.88 0.84

SVC 0.88 0.55
ADA 0.85 0.85

Random Forest 0.81 0.70
Logistic Regression 0.86 0.85-0.95

Table 3.2. Accuracy of binary classification of English sentences

Although some classifiers have better accuracy, we pick the Bernoulli Naive Bayes clas-
sifier with a TF-IDF vectorizer. Bernoulli Naive Bayes is simple, has a good accuracy that
is more stable across training experiments and is generally faster to execute.

Interestingly, Bernoulli Naive Bayes performs better on a TF-IDF vectorizer than the
count vectorizer, when it should perform equally well on both in theory. The Bernoulli Naive
Bayes classifier uses the Bernoulli distribution, which is a yes-no probabilty distribution.
In our case, it means the Bernoulli Naive Bayes looks at whether a certain word is in a
sentence, not at how many times it shows up in the sentence. We attribute the difference in
performance to the randomized splitting of the dataset when training and testing. Moreover,
if a Bernoulli distribution captures enough information to classify well, it seems frequency-
based vectorization is not needed.

A given sentence may describe both a UML class and a UML relationship. In that case,
we let the classifier make the decision.

3.4. UML Fragment Generation
After classifying each sentence as describing either a "class" or a "relationship", we gen-

erate the corresponding UML fragment according to this classification, which is the fourth
step in the runtime operations of Figure 3.1.

Using spaCy’s small English model [3], we define several grammar patterns to match
the English sentences. We design the patterns based on the data we collected through
crowdsourcing. We broadly group the patterns in Table 3.3. For sentences labeled as class
descriptions, we define eight patterns CP1 to CP8, and for those describing relationships,
we define six patterns RP1 to RP6.

The patterns make use of part-of-speech tagging and dependency analysis. Part-of-speech
tagging means assigning each word with its noun/verb/adjective/etc. Dependency analysis
looks at the grammatical function of each word in the sentence. For example, a word can

37

be the subject or the object of the main verb. spaCy receives the patterns in Table 3.3 in
Semgrex format [34] and explores the parse tree.

Pattern Example of matching sentence
Class Fragments

CP1: Copula (conjugated verb "to be") Key is a class in SimpleRDBMS package
CP2: "there is" There is a place.
CP3: Compound noun Drawing Interchange Format
CP4: Compound explicit Workflow State class
CP5: "to have" a Mesh has a name of type String
CP6: "class named" A class named "Actor".

CP7: "of package" TextualPathExp is part of the
package TextualPathExp

CP8: "and" clauses News have titles and links
Relationship Fragments

RP1: "to have" A MSProject has at least one task.
RP2: Passive voice A news is published on a specific date
RP3: "composed" A node is composed of a label
RP4: Active voice Eclipse plugins may require other plugins
RP5: Noun "with" A table with a caption

RP6: Copula In a Petri Net a Place may be the
destination of a Transition

Table 3.3. Summary of patterns

The patterns in Table 3.3 are the ones we encountered the most in our dataset. There
can be as many patterns as possible. The listed patterns are not exhaustive.

Multiple patterns can overlap and as such, the spaCy parser produces several parse trees
for the same sentence. For example, in the category of class fragments, the patterns CP3:
compound noun and CP4: compound explicit are likely to be both applied at the same time.
In this case, we set the CP4: compound explicit pattern at a higher priority and discard the
parse tree from CP3: compound noun.

In general, the priority of patterns in the event of multiple parse trees is based on how
specific the pattern is and how much information can be acquired in the parse tree. Hence,
for relationship fragments, the patterns for passive voice and active voice are so general that
they always yield priority to the other patterns. Table 3.4 shows the priority of each pattern
relative to each other, with the top line being the highest priority.

After a pattern and its parse tree have been chosen, we generate a UML fragment using
a specific template.

If the classification of the sentence resulted in "class", we generate a UML class fragment
consisting of only one class with some possible attributes. For example, the CP8: and clause
pattern creates a class whose name is the subject noun and whose attributes are the objects

38

In order of high priority
Class Relationship
CP1: Copula RP1: "to have"
CP2: "there is" RP3: "composed"
CP8: "and" clauses RP5: Noun "with"
CP5: "to have" RP2: Passive voice
CP6: "class named" RP4: Active voice
CP4: Compound explicit RP6: Copula
CP3: Compound noun
CP7: "of package"

Table 3.4. Priority of patterns with the top line being the highest priority

among the "and" clauses. Figure 3.7 shows this result. Above the horizontal arrow is the
sentence and below the arrow is the resulting UML class fragment.

News have titles and links
−→
News

title

link

Fig. 3.7. Example of class generation

If the classification of the sentence resulted in "relationship", we generate a UML frag-
ment with two classes and one unidirectional association between them. In the case of a
"relationship", we can also extract the multiplicity by looking for keyword expressions like
in Table 3.5. Here is an example with the pattern RP1: to have in Figure 3.8. Similar to
Figure 3.7, the sentence above the arrow is the input. The UML class diagram below the
arrow is the output, but this time it contains an association arrow and two classes.

Multiplicity UML Notation English expressions
Any number 0..* "zero or more", "zero or many"

Unique 1..1 "one and only one", "exactly one", "one and only"
One or more 1..* "one or more", "at least one", "one or several"

Table 3.5. How multiplicities are expressed

We decide to not encode multiplicity expressions directly into the RP pattern grammars.
Doing so would increase the number of grammars significantly and make the parser harder
to implement.

During the creation of UML class fragments, we perform additional processing on the
parse tree results, such as lemmatization, noun phrase discovery, and variable naming. These

39

A MSProject has at least one task.
−→

MSProject Task
task

1..*

Fig. 3.8. Example of relationship generation

steps are necessary because a UML diagram makes use of words expressed for programming
languages rather than English prose, and because the grammar patterns ignore expressions
where nouns have complements. Table 3.6 summarizes the additional steps.

Processing method Examples
Lemmatization "titles" −→ "title", "opened" −→ "open"

Noun phrase discovery "News have bold titles and url links"
−→

"bold titles", "url links"

Variable naming Class names: "BoldTitle"
Attributes and relationships: "boldTitle"

Table 3.6. Additional processing following parse results

In Table 3.6, lemmatization changes all nouns to singular and verbs to the indicative.
Lemmatization respects the variable naming convention of having words in the singular or
non-conjugated forms. To take into account the words around a noun, we look at noun
phrases in the sentence. A noun phrase is anything that complements a noun. That can
be an adjective, another noun, or even an adverb modifying the adjective attached to a
noun. All words in a noun phrase are combined together following a variable naming con-
vention, depending on whether the noun phrase is describing a class name or attributes and
relationships. These additional steps are all done using spaCy.

3.5. Composition of UML Fragments
The last step in the runtime operations of Figure 3.1 is the composition of UML fragments

into one UML class diagram. After each sentence is turned into a UML fragment, we produce
the final UML diagram by combining the fragments together. Since the merging of general
UML class diagrams is NP-hard [28], we design an algorithm tailored to our use case. The
time complexity of our algorithm is polynomial, more specifically O((c + r)a2c) where c is
the number of classes, r is the number of relationships between classes and a is the number
of class attributes.

The composition algorithm takes a greedy approach. Algorithm 1 merges one UML
fragment at a time into a larger, work-in-progress UML diagram. When all fragments are
used, the work-in-process diagram is the completed UML diagram.

40

Algorithm 1 Composition algorithm
1: model← previous composition result or any fragment if the composition is just starting
2: f ← incoming fragment
3: if kind(f) = class then
4: if ∃c ∈ model.classes where c.name = f .name then
5: if ∃ Attribute-Class conflict then
6: resolve Attribute-Class conflict according to Figure 3.9
7: else
8: merge attributes from f into c with Algorithm 2
9: else

10: insert f into model

11: else if kind(f) = relationship then
12: if ∃ Attribute-Relationship conflict then
13: resolve Attribute-Relationship conflict according to Figure 3.10
14: left ← class from which f points
15: right ← class to which f points
16: if left ̸∈ model.classes then
17: insert left into model

18: if right ̸∈ model.classes then
19: insert right into model

20: if f ’s relationship ∈ model.relationships then
21: do nothing
22: else
23: insert f into model

24: return model

Algorithm 2 Merge attributes
1: class ← recipient UML class
2: a← incoming attribute
3: if ∃c ∈ class.attributes where c.name = a.name then
4: if a has a type and c has no type then
5: replace c by a inside class
6: else
7: insert c into class.attributes
8: return class

During composition, fragments may present contradicting information to the model in
progress. We identify two situations for this. The first is an Attribute-Class conflict and the
second is an Attribute-Relationship conflict (Figure 3.10). In both situations, the resolution
involves removing attributes to create a new class or a new relationship. We favor having
many smaller classes and relationships, instead of a few very big classes.

An Attribute-Class conflict arises when the UML class diagram in progress contains an
attribute with a name identical to the name of a class from a class fragment. We resolve this

41

conflict by removing the attribute from the diagram in progress, inserting the class fragment
into the larger UML diagram, and creating a new relationship from the class that previously
contained the attribute to the inserted class. This relationship has the name of the attribute
as its name and a multiplicity of zero-to-many. See an example in Figure 3.9.

CurrentModel

News
title
publisher ⊕ Publisher

name

resolves into
MergeResult

News
title

Publisher
name

0..*
publisher

Fig. 3.9. Attribute-Class conflict and its resolution

An Attribute-Relationship conflict arises when the UML class diagram in progress con-
tains an attribute a whose name is identical to the name of the relationship inside the
incoming relationship fragment. Let A be the class of this attribute a in the diagram in
progress. Let C be the class that is the source of the unidirectional association inside the
relationship fragment. Let D be the class that is the destination of the unidirectional asso-
ciation inside the relationship fragment. If the names of A and C are not the same, this is
not a conflict and we proceed with a standard insertion. Otherwise, the resolution starts by
removing the attribute a from A. Then we merge the attributes of A and C. The relationship
from C to D is now from the attribute merge result A

⊕
C to D.

Lines 16 and 18 in the composition algorithm (Algorithm 1) make use of "relationship"
equality. We define two relationships to be equal if the classes they are related to have the
same name and if the name of the relationship is the same after processing. This implies
that multiplicity is ignored when assessing equality.

Finally, this entire pipeline produces one UML class diagram from the received input.
We compile the result into an image using a compiler called plantuml [26].

The proposed algorithm is not the only way of composing fragments together.

42

CurrentModel

News
date
publisher ⊕

News
title

Corporation
name

publisher
1..1

resolves into
MergeResult

News
title
date

Corporation
name

publisher
1..1

Fig. 3.10. Attribute-Relationship conflict and its resolution

43

Chapter 4

Evaluation

Overview
In this chapter, we evaluate our approach and discuss the results. We create a testing

framework from the data of Section 3.1 using metrics of varying strictness. We obtain low
performances and explain their implications for our approach. Lastly, we list out some
threats to validity.

4.1. Setup
To test the performance of our approach, we use the dataset we created through crowd-

sourcing in Section 3.1. We first group all the English specifications for fragments by the
UML model they originated from. This creates 62 testing samples. For example, the follow-
ing grouped specification corresponds to the UML class diagram shown in Figure 4.1.

«Drawing Interchange Format. a Drawing Interchange model may have
multiple meshes. a Mesh has a name of type String. a Mesh may have any
number of points. a point maps to only one Mesh. a point has a name of
type String and coordinates X and Z of type Double. »

4.2. Evaluation Metrics
To evaluate the accuracy of our approach, we use comparative metrics. We design three

levels of strictness for comparing the diagrams generated by our tool and the ground truth of
the dataset. We assume there is only one good UML class diagram per input specification,
because our dataset has only one correct UML class diagram per English specification.

First, we have exact matching, which is the most strict comparison. Under exact
matching, we look at how many classes and relationships from the ground truth are present
in the generated diagrams. A ground truth class is considered present in the prediction if
there is a class in the generated diagram that has an identical name and identical attributes.

Fig. 4.1. An original UML class diagram from the AtlanMod Zoo

A ground truth relationship is considered "present" in the prediction if both of the classes
attached to it are present and if there is a relationship between these two classes with the
same name and multiplicity in the predicted output. Each UML diagram under evaluation
outputs precision, recall, and f-1 score.

Second, we have relaxed matching, which is a weaker form of exact matching. In
relaxed matching, we still look at how many ground truth classes and relationships are
present in the generated diagram. However, a ground truth class is considered "present"
if there is a predicted class with the same name. We don’t look at attributes anymore.
Similarly, ground truth relationships are considered present in the prediction in the same
way as exact matching, except that multiplicities are ignored.

Third, we have general matching. This is the most lenient matching criterion. In
general matching, classes are still evaluated like in relaxed matching. Relationships, on the
other hand, are evaluated collectively instead of individually. We look at a diagram’s graph
connectivity and compare this connectivity to the ground truth diagram’s connectivity. This
comparative metric ignores class names, the orientation of relationships, and the name of
relationships. As such, general matching ignores semantics.

To compare two diagrams’ connectivity, we use the technique of eigenvector similar-
ity [13]. In short, this technique looks at the eigenvalues of the Laplacian matrices of the
two undirected graphs. If the distance between the most prominent eigenvalues is small, the
two graphs are similarly connected. Distances are in the range [0,∞). We apply a mapping
to normalize the distance into a score in the interval (0,1], where 0 means no similarity at all
and 1 means the two diagrams are identically connected. The mapping is f(x) = 2(1−σ(x)),
where x ∈ [0,∞) is the distance and σ(x) is the sigmoid function. We plot the mapping

46

function in Figure 4.2. A perfect connectivity score does not mean the two diagrams are
identical.

Fig. 4.2. Mapping positive reals to the [0,1] interval using f(x) = 2(1− σ(x))

To complement connectivity, we add a size difference score to the general matching metric.
The size difference is evaluated by computing ||s1 − s2||, where si = normalize([number of
nodes, number of edges]) of graph i. The norm is the Pythagorean distance, and the graphs
are the two undirected graphs used in the eigenvector similarity calculation. The norm
ranges from 0 to

√
2, with 0 being the best score. We apply the mapping g(x) = 1− x/

√
2

to make the score fall in the interval [0,1] with 0 being the worst score and 1 being the best
score. This means 0 is attributed to graphs with vastly different sizes, and 1 is attributed
to graphs with similar sizes. A score of 1 means the size vectors si are oriented closely, not
that the graphs have the same sizes. To get a better grasp, we look at the precision and
recall results for class generation and the connectivity similarity.

4.3. Results
After generating 62 candidate UML class diagrams from English specifications, we use an

automated script to compare the predictions with the ground truth. Each predicted diagram
is compared with its ground truth counterpart in the dataset. We take the average of the 62
results for all metrics and present it in Tables 4.1 and 4.2.

Table 4.1 shows the results for class generation. Under exact matching, the precision is
17%, the recall is 25% and the f-1 score is 20%. This low performance means that most
predictions are not identical to the UML diagrams of the dataset we created in Section 3.1.
Differences can arise when the names of the classes and attributes are not identical character

47

Metric Precision Recall F-1 score
Exact matching 0.171 0.251 0.200

Relaxed matching 0.355 0.506 0.409
General matching 0.355 0.506 0.409

Table 4.1. Performance of generating classes from English specification

Metric Connectivity similarity Size difference
General matching 0.639 0.673

Table 4.2. Performance of generating relationships from English specification

by character. In addition, a match is considered negative if attributes do not have the same
type. Here, recall is higher than precision. That means our approach generates more classes
than needed, many of which are not found in the ground truth data.

In Table 4.1, the relaxed matching metric outputs a precision of 35%, a recall of 50%, and
an f-1 score of 40%. As expected, the performance is higher than exact matching because
relaxed matching ignores class attributes. Similar to exact matching, a recall higher than
precision means that the predictions have more classes than necessary. But in this metric,
it seems that much more ground truth classes are found in the prediction. If we take the
difference between the two metrics, we get a gap of 18% in precision, 25% in recall, and
20% in f-1 score. This significant gap suggests that our attribute extraction has room for
improvement.

General matching for classes is defined in the same way as relaxed matching. As such,
there is no difference in performance.

Figure 4.3 is an example of our approach generating too many classes and containing
too little attributes. We notice that the package name is generated as its own class. The
attributes of "Point" in the original diagram are missing in the generation. Given that these
attributes are "x", "y" and "z", the English grammar parser might have trouble recognizing
them.

For relationships, Table 4.2 shows the approach’s performance, which only consists of
the general matching metric. Other matching metrics offer inconclusive results because a
positive result requires the classes to be all positive too, which is not possible when class
prediction performance is below 50%. We achieve a connectivity similarity of 63% and a size
difference of 67%. A connectivity score of 63% implies the nodes and edges of the graph are
connected quite differently. Some classes have too little or too many relationships. A size
difference score of 67% means that diagrams have a noticeable size difference since precision
is also low.

48

Fig. 4.3. The generated UML class diagram from the original (Figure 4.1)

4.4. Discussion
The evaluation results are not great. The performances are below 50%, which makes our

approach not suited for practical use. We explore several reasons for this and the meaning
of low results in the challenge of extracting UML class diagrams from natural language
specifications.

Since the precision for class generation is low at 17% for exact matching and 35% for
relaxed matching, it might be caused by too many classes in the prediction that can be traced
to synonyms in the specification. English specifications can contain synonyms and different
wordings for the same idea. If the user decides to use two different terms for the same
concept in a specification, they might have wanted two different classes, or the user might
have wanted a specification that is more interesting for humans to read. This ambiguity
cannot be resolved without user feedback. However, given our approach generates too many
classes on average, a more aggressive merging during the composition step (Section 3.5)
would be beneficial.

Figure 4.4 shows an example where the generated diagram contains synonyms. The syn-
onyms are "Finiteautomaton", "FiniteautomatonClass" and "Automatoon". The multiword
class names differ only by how specific they are, while "Automatoon" differs by spelling. Our
method cannot mitigate user-provided typos.

While our approach generates too many classes, recall for class generation is still too low
at 25% for exact matching and 50% for relaxed matching. This means there are elements

49

Fig. 4.4. A generated UML class diagram with many synonymous class names

in the ground truth UML class diagram that are not extracted from English specifications.
This can be improved by adding more patterns to the rule set in Section 3.4. Moreover, a
better noun phrase extraction mechanism can extract more class names and attributes from
the text. Currently, our method works well with noun phrases that are one word or two
words long. Noun phrases longer than two words require a more sophisticated extraction
process. We used spaCy’s default noun phrase detector, but exploring the dependency parse
tree ourselves directly might be a better idea.

For example, the following specification cannot be parsed and understood easily by our
approach. Relative clauses in sentence are hard to derive information from. A possible way
to solve this is to turn all relative clauses into independent sentences in the preprocessing
stage.

«A zoo that has animals and different pricing rates. Zoo handlers which
whose work schedule depends on the day. »

A low performance signals that our approach has limits. Since we incorporate several
statistical components with their own imperfect accuracy in our pipeline, there is an upper
ceiling of performance we cannot exceed. Our performance cannot be better than the per-
formances of these components. In fact, if we assume all components have an equal influence
on the output, we have an expected upper limit of accuracy of 0.63 as seen in Table 4.3. One
way of reducing the effect of compounding errors is to introduce a retroactive step. In our
case, that step is the composition algorithm’s attempt to resolve conflicts in Algorithm 1.

Statistical component Accuracy
Pronoun resolution (coreferee) 0.81

Grammar analysis (spaCy) 0.90
Binary classification 0.87

Combined product 0.63

Table 4.3. Accuracies of each statistical component in our approach

50

4.4.1. Evaluation metrics

The definition of general matching makes use of two new metrics. The connectivity
similarity uses eigenvector similarity that produces a positive real distance. Mapping real
numbers to a finite interval results in distortions. Our mapping f(x) = 2(1 − σ(x)) makes
distances above 3 very close to 0 in percentage scores, as seen on Figure 4.2. This implies that
very large positive real distances yield a very close percentage score in the [0,1] interval. This
might be problematic because percentages are often perceived linearly, and close percentages
should intuitively represent similar performances.

The other problematic general matching metric is the size difference score. The definition
is ||s1−s2|| where si = normalize([|Vi|, |Ei|]) for graph Gi = (Vi, Ei). The size difference score
cannot distinguish between graphs of sizes that are multiples of each other. For example, if
a graph has 2 nodes and one edge, then the size difference score would be the same when
computed with a graph with 4 nodes and 2 edges.

4.4.2. Conclusion

To conclude the evaluation, we can mention that this work is an initial attempt to solve
the problem of diagram generation from natural-language specification by combining ma-
chine learning and natural language parsing patterns. Although the overall performance in
Table 3.2 and Table 4.2 is limited, this work allows us to identify the improvement possi-
bilities. Additionally, the approach itself can serve as a baseline for future research on that
problem, and the dataset can be used as a benchmark for the same problem.

4.5. Threats to Validity
4.5.1. Dataset

Although we rejected bad labels during the creation of the dataset, some volunteers
provided specifications with questionable semantics and spelling errors. We kept those labels
because we want our approach to operate under imperfect conditions. Our approach cannot
deal with spelling errors and confusing specifications. Each spelling mistake creates an extra
UML class or relationship that should not exist. And if the specification is unclear, then
the generated diagram is also unclear. A future work could address the spelling mistakes by
adopting a spelling correction preprocessing procedure using edit similarity. Uncertain words
could be flagged and what they end up generating could be merged during composition.

Due to a lack of sufficient data, we did not set aside unseen data for the evaluation. The
evaluation uses the entire dataset for testing. Despite the classifier of Section 3.3 splitting
the data into 80-20, 80% of the evaluation data has been seen during the training of the

51

classifier. We believe this bias to be minimal because the classification is an intermediate
step.

4.5.2. Language model used for fragment generation

To speed up the research process, we used the smallest NLP English model on spaCy. The
accuracy is known to be about 90%. As a consequence, the English model is less accurate
when segmenting the text into sentences, performing dependency parsing (definition provided
in Section 2.1.8), and discovering noun phrases in Section 3.4. Each error on the part of the
language model makes one UML fragment wrong.

For pronoun substitution, we used coreferee which has an overall accuracy of 81%. This
library is the least accurate among all third-party libraries. If a pronoun is wrongly substi-
tuted, our approach generates a very different UML model.

4.5.3. Composition algorithm

In the composition algorithm (Algorithm 1), the merging of the UML class diagram with
fragments is treated in a non-commutative fashion. In other words, the pseudo-code only
addresses the conflicts when it is an Attribute-Class (Figure 3.9) and not Class-Attribute.
A similar situation is happening for the Attribute-Relationship conflict. If the conflicting
relationship is already inside the model in progress, the algorithm will not flag that as an
Attribute-Relationship conflict and it will therefore not resolve it. An improved version of
the algorithm should treat the merging of the UML class diagram and the fragment in two
directions, i.e., in a commutative way. This would increase the performance of our approach.

52

Chapter 5

Conclusion

In this thesis, we propose an automated approach to extract UML class diagrams from
English specifications. The approach uses machine learning and pattern-based techniques.
Machine learning is used in the form of a binary classifier that labels sentences as either
describing a class or a relationship. The pattern-based techniques are handwritten grammar
rules to parse English sentences. In this approach, we fragment the English input into
sentences, generate UML class diagram fragments from them, and combine all the fragments
together into a final result.

To develop our tool, we first create a dataset of UML diagrams paired with English
specifications. The specifications are produced by a crowdsourcing initiative. The resulting
dataset, although small, is enough to train the classifier and evaluate our approach.

We define three evaluation metrics of varying strictness to test our approach’s accuracy
in generating classes and relationships from an English specification. The results for classes
are 17% precision and 25% recall for exact matching, the strictest metric. The results for
relationships are a connectivity similarity of 63% and a size difference of 67%.

The correctness of the produced diagrams is limited. However, these results are in part
explained by the imprecision of the NLP tools we used. Using more sophisticated NLP
tools will help to improve these results. In addition, more grammar patterns can be added
in Section 3.4 and an improved version of the composition algorithm will reduce irrelevant
classes.

From a broader perspective, our research lays the work for a consistent quantitative
evaluation framework with our approach being the baseline and with the dataset and metrics
being the testing framework. From the novelty perspective, we explore intermediate machine
learning steps to simplify a mostly rule-based approach. Furthermore, our approach uses a
divide-and-conquer strategy when fragmenting diagrams and text and when composing them
back together.

In the future, a more complex pattern system can improve the performance of our ap-
proach. Currently, we only use a single rule to generate a UML fragment, but if several rules
contribute together, the performance can increase. The composition algorithm can also be
improved, such as by considering a confidence score in each fragment. Furthermore, inher-
itance can be generated as a new type of relationship by adding more grammar patterns.
Finally, we can generalize our approach to handle other types of UML diagrams, in particular
behavioral ones.

54

References

[1] Esra A Abdelnabi, Abdelsalam M Maatuk, Tawfig M Abdelaziz, and Salwa M Elakeili. Generating
UML class diagram using NLP techniques and heuristic rules. In 2020 20th International Conference
on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pages 277–282.
IEEE, 2020.

[2] Esra A. Abdelnabi, Abdelsalam M. Maatuk, and Mohammed Hagal. Generating UML Class Diagram
from Natural Language Requirements: A Survey of Approaches and Techniques. In 2021 IEEE 1st
International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and
Computer Engineering MI-STA, pages 288–293, 2021.

[3] Explosion AI. spaCy: Industrial-Strength Natural Language Processing, 2016.
[4] V. S. Alagar and K. Periyasamy. The Role of Specification, pages 3–22. Springer London, London, 2011.
[5] Robert Balzer and Neil Goldman. Principles of good software specification and their implications for

specification languages. In Proceedings of the May 4-7, 1981, national computer conference, pages 393–
400, 1981.

[6] Roger W Brown. Linguistic determinism and the part of speech. The Journal of Abnormal and Social
Psychology, 55(1):1, 1957.

[7] Franck Chauvel and Jean-Marc Jézéquel. Code generation from UML models with semantic variation
points. In International Conference on Model Driven Engineering Languages and Systems, pages 54–68.
Springer, 2005.

[8] K. R. Chowdhary. Natural Language Processing, pages 603–649. Springer India, New Delhi, 2020.
[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-

rectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[10] Martin Fowler. UML distilled: a brief guide to the standard object modeling language. Addison-Wesley

Professional, 2004.
[11] Richard Paul Hudson. Coreferee: Coreference resolution for multiple languages, 2021.
[12] R. Kollmann, P. Selonen, E. Stroulia, T. Systa, and A. Zundorf. A study on the current state of the

art in tool-supported UML-based static reverse engineering. In Ninth Working Conference on Reverse
Engineering, 2002. Proceedings., pages 22–32, 2002.

[13] Danai Koutra, Ankur Parikh, Aaditya Ramdas, and Jing Xiang. Algorithms for Graph Similarity and
Subgraph Matching. page 15–16, 2011.

[14] Urszula Krzeszewska, Aneta Poniszewska-Marańda, and Joanna Ochelska-Mierzejewska. Systematic
comparison of vectorization methods in classification context. Applied Sciences, 12(10), 2022.

[15] Ling Liu and M Tamer Özsu. Encyclopedia of database systems, volume 6. Springer, 2009.
[16] Angel R Martinez. Part-of-speech tagging. Wiley Interdisciplinary Reviews: Computational Statistics,

4(1):107–113, 2012.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representa-
tions in Vector Space, 2013.

[18] George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41,
1995.

[19] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel A Fernandez. An empirical study of
the state of the practice and acceptance of model-driven engineering in four industrial cases. Empirical
software engineering, 18(1):89–116, 2013.

[20] Priyanka More and Rashmi Phalnikar. Generating UML diagrams from natural language specifications.
International Journal of Applied Information Systems, 1(8):19–23, 2012.

[21] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. Natural language processing:
an introduction. Journal of the American Medical Informatics Association, 18(5):544–551, 09 2011.

[22] Iftikhar Azim Niaz and Jiro Tanaka. Code generation from uml statecharts. In Proc. 7 th IASTED
International Conf. on Software Engineering and Application (SEA 2003), Marina Del Rey, pages 315–
321, 2003.

[23] Jill Nicola, Mark Mayfield, and Mike Abney. Streamlined object modeling: Patterns, rules, and imple-
mentation. Pearson Education, 2001.

[24] Joakim Nivre. Dependency Parsing. Language and Linguistics Compass, 4(3):138–152, 2010.
[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[26] PlantUML. Open-source tool that uses simple textual descriptions to draw beautiful UML diagrams.,
2021.

[27] Joël Plisson, Nada Lavrac, Dunja Mladenic, et al. A rule based approach to word lemmatization. In
Proceedings of IS, volume 3, pages 83–86, 2004.

[28] Julia Rubin and Marsha Chechik. N-way model merging. In proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 301–311, 2013.

[29] Rijul Saini, Gunter Mussbacher, Jin LC Guo, and Jörg Kienzle. DoMoBOT: a bot for automated and
interactive domain modelling. In Proceedings of the 23rd ACM/IEEE international conference on model
driven engineering languages and systems: companion proceedings, pages 1–10, 2020.

[30] Richard Socher, Yoshua Bengio, and Christopher D. Manning. Deep Learning for NLP (without Magic).
In Tutorial Abstracts of ACL 2012, ACL ’12, page 5, USA, 2012. Association for Computational Lin-
guistics.

[31] Rhea Sukthanker, Soujanya Poria, Erik Cambria, and Ramkumar Thirunavukarasu. Anaphora and
coreference resolution: A review. Information Fusion, 59:139–162, 2020.

[32] Marcin Szlenk. Formal semantics and reasoning about uml class diagram. In 2006 International Con-
ference on Dependability of Computer Systems, pages 51–59. IEEE, 2006.

[33] Antero Taivalsaari. On the notion of inheritance. ACM Computing Surveys (CSUR), 28(3):438–479,
1996.

[34] Fabio Tamburini. Semgrex-Plus: a tool for automatic dependency-graph rewriting. In Proceedings of the
Fourth International Conference on Dependency Linguistics (Depling 2017), pages 248–254, 2017.

[35] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in model-driven engineering.
IEEE software, 31(3):79–85, 2013.

56

[36] Sheng Yu and Shijie Zhou. A survey on metric of software complexity. In 2010 2nd IEEE International
conference on information management and engineering, pages 352–356. IEEE, 2010.

57

Appendix A

The UML Labeling Initiative

In Section 3.1, we create a website for volunteers to contribute labels for our dataset. The
following figures contain more screenshots of the website.

Fig. A.1. The website presents one fragment from one model.

Fig. A.2. Users can choose other fragments and models.

Fig. A.3. Examples and explanations for users on how to label

60

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of abbreviations
	Chapter 1. Introduction
	1.1. Context
	1.2. Problem
	1.3. Contributions
	1.4. Thesis structure

	Chapter 2. Background and Related Work
	Introduction
	2.1. Definitions and examples
	2.1.1. Software specification
	2.1.2. Model (Software engineering)
	2.1.3. Model-driven engineering (MDE)
	2.1.4. Unified Modeling Language (UML)
	2.1.5. UML class diagram
	2.1.6. Natural language processing (NLP)
	2.1.7. Part-of-speech (POS) tagging
	2.1.8. Dependency parsing
	2.1.9. Lemmatization
	2.1.10. Vectorization (NLP)
	2.1.11. Coreference resolution

	2.2. Related Work
	2.2.1. Survey of relevant literature
	2.2.2. Automatic approaches
	2.2.3. Semi-automatic approaches

	2.3. Synthesis
	2.3.1. Fully automated
	2.3.2. Unrestricted input
	2.3.3. Simpler heuristics and computational optimizations
	2.3.4. Consistent testing metrics

	Chapter 3. From Specifications to UML Class Diagrams
	Overview
	3.1. Dataset Creation
	3.2. Preprocessing and Fragmentation of Specifications
	3.3. Sentence Classification
	3.4. UML Fragment Generation
	3.5. Composition of UML Fragments

	Chapter 4. Evaluation
	Overview
	4.1. Setup
	4.2. Evaluation Metrics
	4.3. Results
	4.4. Discussion
	4.4.1. Evaluation metrics
	4.4.2. Conclusion

	4.5. Threats to Validity
	4.5.1. Dataset
	4.5.2. Language model used for fragment generation
	4.5.3. Composition algorithm

	Chapter 5. Conclusion
	References
	Appendix A. The UML Labeling Initiative

