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Résumé

L’apprentissage fédéré est un paradigme émergent qui permet à un grand nombre de
clients disposant de données hétérogènes de coordonner l’apprentissage d’un modèle global
unifié sans avoir besoin de partager les données entre eux ou avec un stockage central.
Il améliore la confidentialité des données, car celles-ci sont décentralisées et ne quittent
pas les dispositifs clients. Les algorithmes standard d’apprentissage fédéré impliquent le
calcul de la moyenne des paramètres du modèle ou des mises à jour du gradient pour
approcher le modèle global au niveau du serveur. Cependant, dans des environnements
hétérogènes, le calcul de la moyenne peut entraîner une perte d’information et conduire
à une mauvaise généralisation en raison du biais induit par les gradients dominants
des clients. Nous supposons que pour mieux généraliser sur des ensembles de données
non-i.i.d., les algorithmes devraient se concentrer sur l’apprentissage du mécanisme in-
variant qui est constant tout en ignorant les mécanismes parasites qui diffèrent entre les clients.

Inspirés par des travaux récents dans la littérature sur la distribution des données,
nous proposons une approche de calcul de la moyenne masquée par le gradient pour FL
comme alternative au calcul de la moyenne standard des mises à jour des clients. mises à jour
des clients. Cette technique d’agrégation des mises à jour des clients peut être adaptée en
tant que remplacement dans la plupart des algorithmes fédérés existants. Nous réalisons des
expériences approfondies avec l’approche de masquage du gradient sur plusieurs algorithmes
FL avec distribution, monde réel et hors distribution (en tant qu’algorithme fédéré). hors
distribution (comme le pire des scénarios) avec des déséquilibres quantitatifs. déséquilibres
quantitatifs et montrent qu’elle apporte des améliorations constantes, en particulier dans le
cas de clients hétérogènes. clients hétérogènes. Des garanties théoriques viennent étayer
l’algorithme proposé.

Mots clés : Apprentissage fédéré, généralisation hors distribution
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Abstract

Federated learning is an emerging paradigm that permits a large number of clients with
heterogeneous data to coordinate learning of a unified global model without the need to
share data amongst each other or to a central storage. In enhances data privacy as data is
decentralized and do not leave the client devices. Standard federated learning algorithms
involve averaging of model parameters or gradient updates to approximate the global model
at the server. However, in heterogeneous settings averaging can result in information loss
and lead to poor generalization due to the bias induced by dominant client gradients. We
hypothesize that to generalize better across non-i.i.d datasets, the algorithms should focus on
learning the invariant mechanism that is constant while ignoring spurious mechanisms that
differ across clients.

Inspired from recent works in the Out-of-Distribution literature, we propose a gradi-
ent masked averaging approach for FL as an alternative to the standard averaging of
client updates. This client update aggregation technique can be adapted as a drop-in
replacement in most existing federated algorithms. We perform extensive experiments with
gradient masked approach on multiple FL algorithms with in-distribution, real-world, and
out-of-distribution (as the worst case scenario) test datasets along with quantity imbalances
and show that it provides consistent improvements, particularly in the case of heterogeneous
clients. Theoretical guarantees further supports the proposed algorithm.

Keywords: Federated Learning, Out-of-Distribution Generalization
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Introduction

Recently, phones, tablets, smart home assistants, and other personal devices have become
the primary source of compute and data collection for most people around the world
[36]. These devices are equipped with powerful sensors like cameras, microphones, and
GPS and are often synchronized with the user’s calendars, social-media, and other
contacts. These features combined with the fact they are often carried by the user,
provides an access to an abundance of data, majority of which is personal and private
in nature. With the increasing privacy concerns and constraints, utilizing these data
to learn machine learning models in the traditional setting, where the data is collected
at a single centralized storage and it is directly accessed by the model, may not be
feasible. Federated Learning is a machine learning paradigm that enables learning the
decentralized data without having direct access to the raw data; thereby ensuring data privacy.

Federated Learning (FL) is a distributed machine learning approach that allows
clients with decentralized data to efficiently learn a shared global model without having to
share their sensitive datasets [36, 25]. This enhances privacy as data is neither collected at a
central location or cloud nor communicated over any channel. Furthermore, [41] and [44]
argue that federated learning has a lower carbon footprint than traditional machine learning.
A challenge in FL is heterogeneity in the data distributed across clients. The non-i.i.d data
distribution degrades the performance of federated learning models [34, 59, 70]. One of the
reasons for this is the loss of information regarding invariances across clients induced by
the averaging of model parameters or updates. This is further exacerbated by the multiple
local steps taken by each client with the aim of reducing communication rounds which
results in "client drift"[26]. Each client after multiple local steps can progress too far towards
minimizing their local objective which may deviate from that of the global objective.

Recently [40] proposed an approach for improving generalization across "environ-
ments" in the Out-of-Distribution (OOD) setting . In this work, we draw connections between
the OOD setting and the federated learning setting, proposing to adapt the approach of
[40] to FL. Specifically, we propose a new aggregation method called gradient masked



averaging with the goal of improving generalization across clients and of the global model.
The gradient masked averaging can be plugged into any FL algorithm as an alternative to
naive averaging of model parameters at the server. Intuitively, gradient masking prioritizes
gradient components that are aligned with the overall dominant direction across clients while
the inconsistent components of the gradient are given lesser importance.

Applying this approach leads to improved performance in the out of distribution
FL evaluation settings such as real-world federated EMNIST [10] and FedCMNIST and
FedRotMNIST [16]. We also observe that the robust features of this method leads to
improved performance in a variety of other non-iid training scenarios of FL like label skew
and quantity skew in a variety of datasets including CIFAR10, CIFAR100, MNIST, and
Fashion MNIST.

Contribution
In this thesis, we propose a gradient masked averaging as a drop-in alternative to naive

averaging of model parameters or updates to obtain a global model at the server in federated
learning. Our main findings and contributions can be summarized as follows:

• We draw connections between OOD generalization in a centralized setting and global
model generalization in FL in terms of clients and environments and also in terms of
learning objectives.

• We introduce gradient masked averaging as an alternative to naive averaging of
parameters or updates in federated algorithms that focus on global model performance.

• We show that the proposed aggregation leads to an algorithm that benefits from
standard convergence results in FL.

• We empirically show that applying gradient masking to any FL algorithm consistently
improves out-of-distribution generalization performance of the algorithm. This
improvement was also observed on in-distribution evaluations and its various settings.

Outline
The thesis is organized as follows. Chapter 1 provides the background information needed

to understand the fundamentals of federated learning. We describe the motivations for
FL, major problems of the research space, and the various federated settings. We further
describe the various federated algorithms. In Chapter 2, we introduce Out-of-Distribution
Generalization in centralized learning and draw connections between OOD generalization and

20



federated learning. In Chapter 3, we introduce the proposed gradient masking algorithm. We
also include theoretical guarantees for the same. Chapter 4 is an extensive empirical analysis
of the proposed algorithm. We apply the proposed masking upon various FL algorithms like
FedAVG, FedProx, SCAFFOLD, FedAdam, and FedYogi with various datasets and data
distribution strategies.

Working Paper
This thesis is based on the working paper called Gradient Masked Averaging for Federated

Learning[52], which is currently under review for NeurIPS 2022. As the first co-author
of the paper, I contributed to literature review, implementation, experiments, and paper
writing. Dr. Edouard Oyallon contributed to the theoretical guarantees. Further, earlier
versions of this work has also previously been presented at ICLR 2021 DPML workshop [51]
and NeurIPS 2021 PPML workshop [53]. The code accompanying the work is available on
https://github.com/arvi797/FL. Section ?? is based on the paper Towards Causal Federated
Learning For Enhanced Robustness and Privacy[17], which was presented at ICLR 2021
DPML workshop. I contributed to the experiments and analysis.
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Chapter 1

Background

Federated Learning is a machine learning paradigm that learns decentralized data thereby
preserving user data privacy. Since its conception in 2016 [22], the field has grown
exponentially with research and applied contributions from academia and industry. In this
chapter, we first motivate federated learning from a privacy perspective as well environmental
perspective. We describe the various practical problems of this field. We also introduce a
variety of federated settings or types. We further discuss some related federated algorithms
for generalization and personalization objectives.

1.1. Introduction to Federated Learning
In today’s world, everyone has access to at least one personal phone. Most people

have personal laptops or tablets and most homes are equipped with one or more smart
assistants and automation setups. With this comes a bulk of informative data. However,
with more data regulations like the European General Data Protection Regulation(GDPR)
and American Data Privacy and Protection Act in place, collection, transmission, and
storage of private data at central servers will not be possible. This affects the current ML
and DL methods since they require data available at a central location. Federated learning
was introduced by Google to tap this bulk data decentralized across edge devices. It aims
to learn the data distributed across devices while preserving privacy of the users since the
data remains at the devices where they are generated or collected. To further motivate
federated learning, as per a study by Cambridge University on carbon footprint of various
ML algorithms, training an FL model emits only about one-tenth of carbon dioxide compared
to centralized ML[43].



Fig. 1.1. Cross-Device Federated Learning[25]

In FL, the clients train on their private data for a few epochs and the client mo-
dels are then aggregated at the server. The aggregated model then replaces the client
models and the process continues until convergence. This ensures data privacy to some
extend since the data do not leave the client devices. The only data that is shared from the
devices to the server is the client model updates. These updates do not contain more in-
formation than the raw data. DP noise can be added to the updates to further enhance privacy.

Though federated learning is of major privacy benefits, it is not devoid of problems.
Some of the most important problems are listed below:

• Data Heterogeneity The data at the clients are often dependent on the user
characteristics and behaviour in case of personal devices. When the clients are
hospitals or banks or other silos, the data is often based on factors like geographical
location, ethnicity, language and so on. Therefore the data distribution varies from one
client to the other. In other words, the data distribution across clients is heterogeneous
or non-IID. This gravely affects the model performance since ML assumes that the
data is IID.

• Unbalanced Data The data generated or collected at the clients would be extremely
dependent on the user’s device usage patterns in case of edge devices or on the area
coverage or subject count in case of institutions. This induces a quantity skew in the
data which drastically affects the generalization capability of the FL model.
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• Communication Bottleneck FL training involves uploading and downloading of
client models. Depending on the model size this can be vary large. Furthermore, not
all devices would be connected to the network all the time. Due to various issues like
lack of connectivity or lack of power, the devices may fail to upload or download the
updates. This may slow down model training.

• Massive network The number of devices in the federated network can be large.
Often the number of data samples per client would be lesser than the total number of
clients in the network.

1.2. Federated Learning Settings
Depending on the type of clients involved in the network, federated learning can be

cross-device or cross-silo federated learning. Depending on model aggregation it can be
split learning or split federated learning. FL without a central server is called decentralized
federated learning. When the data is distributed vertically or feature wise across devices, its
called vertical federated learning. In this section we give an overview of the various federated
settings.

• Cross-Device FL When the clients are all edge devices like mobile phones and IoT
devices and the number of clients in the federated network is large with full or partial
participation in training, it is considered to be cross-device FL. The data at each
device is user-specific and extremely heterogeneous. Additionally, the data partition
is expected to be horizontal, that is by data samples. Figure 1.1 is a representation of
cross-device FL.

• Cross-Silo FL When the clients are institutions like hospitals or banks that hold
data from multiple individuals, it is considered to be cross-silo FL. The data is skewed
in terms of features like geographical location and ethnicity that may be more related
to the institution itself than individual users. Additionally, the number of clients in
the network is significantly lesser.

• Decentralized FL The entire federated learning process is under the orchestration
of a server, though it does not have control over data. This makes the server a single
point of failure. It may also spread adversarial updates to all clients which may slowly
make them corrupted. Decentralized FL or server-less FL completely removes the
server from FL using various methods like consensus technique by sharing model
updates [19] or tree like aggregator structure involving intermediate aggregators [18].
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• Vertical FL When the data is distributed vertically across clients, it is considered
to be vertical FL. This is a practically promising area since it allows non-competing
institutions or entities to collaborate and boost their performance while not giving up
user data privacy [61].

• Split Learning In split learning, the model is split into two where the input part
resides at every client and output part resides at the server. Each client forward
passes the input and the representation is sent to the server to continue the forward
pass. The gradients are during back propagation is sent back to client with which the
client part of the model is updated [54].

1.3. Related Works
This section is a brief introduction to various active areas of federated learning research.

We also briefly discuss the most common federated algorithms.

In FedAVG [36] for each communication round, all selected B fraction of clients
perform E local steps of gradient descent with their local datasets. The model parameters
from participating clients are averaged at the server to obtain the global model. It is
equivalent to FedSGD [36] when E = 1 and each client performs stochastic gradient descent.
Multiple local steps help minimize communication costs, which is a major bottleneck in
FL. Quantization methods [46] and gradient descent acceleration [67] methods have been
proposed to reduce communication overhead.

Convergence of FedAVG under i.i.d settings have been analyzed widely [50, 66, 57]. The
convergence rate of FedAVG worsens with increasing heterogeneity among client datasets
and this has been analyzed by several works [34, 59, 34]. Multiple variations of FedAVG
have been proposed to improve convergence in non-i.i.d data distribution settings, including
adding regularization to the client objective [34], normalized averaging of model parameters
[58], and introducing server momentum [24]. [26] uses control variates to reduce client drift.
[35] introduces a proximal term at the client loss functions to limit this divergence of the
client models by keeping the client model close to the global model. Adaptive optimizers
like Adam and Yogi have been introduced to the federated setting by [45]. Algorithms like
PerFedAVG [15], Ditto [33], FedBABU [39] focus on personalization of clients. Differential
privacy and blockchain have been used in FL to enhance data privacy in federated learning
[60, 38]. Probabilistic Federated Neural Matching (PFNM) [69] and FedMA[56] addresses
the problems due to permutation variances in the neural networks.
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Reduction of communication bandwidth required [36, 21, 47] and fairness [35, 37]
in FL are active areas of research. Federated protocols [3] and privacy and security [6, 1]
in FL are other important research areas. Knowledge distillation has been used in FL to
improve model performance [65, 22]. FedHE[11] uses knowledge distillation to learn from
models when they are different in architecture. Furthermore, FL has a variety of applications
in the real world including but not limited to predictive health models [8], communication
between vehicles [48], learning words [12], and next-word prediction [23].
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Chapter 2

OOD Generalization and Federated Learning

In this chapter we introduce out-of-distribution generalization. We also introduce a few
related algorithms that were proposed with the aim of improving OOD generalization
performance of the model.We then draw the connections between OOD generalization and
federated learning.

2.1. Out-of-Distribution Generalization
In traditional machine learning, a model is evaluated based on its test performance on

an unseen dataset drawn i.i.d from the train data distribution. However, this assumption
may not hold true in real-world datasets and many supervised learning models do not
perform well on related but non-i.i.d test datasets. This problem is often refered to as
the out-of-distribution generalization or the closely related domain generalization problem
[27, 2]. This is because the data used to train models often hold several biases and
spurious correlations and models that are trained by minimizing the error on this data
inherits those biases and correlations [2]. However, to effectively generalize to data from
varying distribution, the models should focus on the causal features that are not related
to the spurious correlations. These are also called invariant mechanisms and the spurious
correlations are often referred to as spurious mechanisms [2]. Invariant mechanisms are
expected to be prevalent in all data distributions while we do not expect spurious mechanisms
to be present in the test distributions or future data distributions. According to [40],
invariant mechanisms are shared across all environments and are hard to model while
spurious mechanisms are easy to spot but are unreliable and varies across environments. An
algorithm that generalizes to out-of-distribution data learns the invariant mechanisms while
ignoring the spurious correlations.



The OOD generalization problem has been addressed in several works like Invariant
Risk Minimization(IRM) [5], Risk Extrapolation(REx) [30], and Gradient Starvation [42].
These approaches typically focus on introducing penalties that learn invariant representations
in a setting with known variations in the data (corresponding to environments). [29] frames
the setting as a game where the algorithm aims to achieve a Nash equilibrium between
environments. However, these idea cannot be easily ported to a FL setting as the clients
performing the optimization steps would require access to the data of other clients. On the
other hand [40] proposed a gradient agreement method based on gradient directions to learn
features that agree across environments. This was extended by [49] to include gradient
magnitude. In this paper we focus on this class of gradient agreement methods. Distinct
from the prior work, which considers the case of individual samples and single global updates,
we consider and adapt this approach to a federated setting, where each client produces an
aggregate update based on multiple gradient iterations.

OOD generalization has been explored in [68] from a out-of-sample gap or partici-
pation gap perspective in federated learning. FL Games[20] tries to attain domain
generalization by extending IRM Games[29].

CausalFed[17] explores Out-of-Distribution generalization in a split federated lear-
ning setting. This method proposes a federated version of IRM for invariant learning in
federated learning. Though the data is decentralized, they use model decoupling. The
extractors are at the clients and forward passed in parallel while the representations are
shared to the sever classifier where training is completed. This is different from cross-device
FL where the models are trained in parallel at the clients and they are aggregated at the server.

In CasalFed[17], the participating clients performs local forward passes of the data
to extract features in the form of numerical vectors. Consider client data DC = (xC

i ,yC
i )NC

i=1

where xC
i is ith input and yC

i is ith label for client C. The hidden representation of each
participating client is produced as hC

i = ϕC(xC
i ); where hC ∈ RNC×d and d is the dimension

of hidden representation layer. The participating clients sends intermediate client data repre-
sentations to the server where they are aggregated and trains the server part of the models by
minimizing the loss as well as regularizing the model by the gradient norm of the loss for all
the participating clients as ∑S,NC

C,i Ld(w ◦ hi,yi) + λ
∑S

C

∥∥∥∥∇w|w=1.0
∑NC

i Ld(w ◦ hi,yi)
∥∥∥∥2

, where
S equals set of clients, NC equals number of samples per client C, Ld equals classification
loss, and h, y to represent the hidden representation and its corresponding true class label
and λ is hyperparameter. With Invariant Risk Minimization (IRM) [5] at the server we
attempt to learn invariant predictors in a federated learning setup that can attain an optimal
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empirical risk on all the participating client domains. Empirically, CausalFed was observed
to improve the OOD generalization performance of models that learn from decentralized data
on a variety of datasets including Colored MNIST, Rotated MNIST, and Rotated FMNIST.

2.2. AND-Mask for OOD Generalization
Parascadalo et. al [40] hypothesizes that gradient descent leads to loss of information

which is potentially important for generalization to out-of-distribution data. This is because
gradient descent leads to averaging of loss surfaces, which may converges to a loss mean to
all environments or data distributions[40]. However this is a "patchwork" solution and may
not be invariant across environments. This is because Averaging maximize learning speed
or convergence speed and training is often stopped when the loss is low enough. Models
learn and converge to the spurious mechanisms in the environments with sole focus on
loss minimization, such that the invariances are ignored. According to [40], to capture the
invariances, learning focus should be consistency. They hypothesize that to generalize to
out-of-distribution data, the convergence should be towards a loss that is consistent across
environments. This is further intuitively supported by the principle "good explanations are
hard to vary", proposed by physiscist David Deutsch[14].

The paper [40] equates arithmetic mean of loss surfaces to their "Logical OR". It
fails to capture the conflicting geometries of landscapes as it performs "Logical OR" on
the dominant eigen directions. As an alternative to that, Parascadalo et. al [40] propose
using geometric mean or "Logical AND" to capture the loss landscapes. These focus on
the invariances across landscapes. However, geometric mean cannot be directly applied
due to several practical limitations like instability induced by the presence of zero gra-
dients, strict requirement for all gradients to be of the same sign, and log domain computations.

Handling the above problems, Parascadalo et. al [40] propose using a practical bi-
nary mask that zero out gradients with inconsistent signs. They call it an AND-Mask. The
gradients are masked as mτ ∗ ∇Le; where mτ zeros out gradients that have less than τ

consistent gradients across environments.
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Here ∇Le is the gradient of the loss with respect to environment e, and τ ∈ [0, 1] is a
hyper-parameter.

2.3. Connections between OOD Generalization and FL
OOD generalization in traditional machine learning involves centralized data and is

often formalized using the notion of domains or environments. Under the formalism of [5]
an environment corresponds to a data generating distribution that can be related through
underlying (potentially unknown) causal variables to a set of other environments. Different
environments can arise during model training and testing, while it is typically assumed all
environments (train and test) share some invariant mechanisms. They can however have
spurious mechanisms that differ across environments [40, 9]. The concept of environments
can be related to the federated learning setting involving decentralized data by considering
each client as producing a set of data generated from a different environment. All clients have
underlying invariant mechanisms to be considered for training a global model. Each client
also has their specific spurious mechanisms or data distributions. For example, consider a
scenario of different clients corresponding to smartphone users capturing pictures of fruits to
build a model that identifies fruit items. Each smartphone may have different camera and
each user may take pictures of different subsets of fruit. Thus the clients may differ in terms
of the label distribution of their local data and the camera related image characteristics,
which can be a spurious mechanism while the overall set of food items is invariant across
clients in the federated network.

The objective of OOD generalization is to improve the performance of a model on
data from distributions that are related yet different from the training data distribution. [4]
quantifies the above-mentioned objective as ROOD(f) = max

e∈ξall

Re(f) where Re(f) is the risk
or expected loss for data from environment e, which belongs to ξall, a large (often infinite)
family of distinct yet related environments. In practical FL, one of the major objectives
of the global model is to improve its performance on non-participating clients (clients that
do not contribute to global model training [25]) and on new train clients (participating
clients that are new to the federated network). The data at these clients will be from related
distributions having the same invariant mechanism but may differ from data distributions
at train clients. Hence, one way to frame the goal for FL global models is to enhance the
performance across a large set of related clients which may have different data distributions.
We can quantify this as min RgF L(f) = max

c∈Call

Rc(f) where Rc(f) is the risk at client c ∈ Call,
and Call is a family of probability distributions, with c corresponding to the distribution of a
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unique client in a FL framework.
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Chapter 3

Gradient Masked Averaging

In this chapter we describe the proposed algorithm in depth. We start with an introduction
of the AND-Mask introduced in [40] for OOD generalization in a centralized setting. We
then describe the motivations for using this algorithm to increase global model generalization
performance in federated learning followed by its shortcomings. Further, we describe
the proposed algorithm in detail. We also provide theoretical guarantees to support the
algorithm.

3.1. Gradient Masked Averaging
Inspired by AND-Mask and the Connections between OOD-generalization and FL

(Chapter 2) we propose Gradient Masked Averaging for generalization in federated learning.
In this chapter we first discuss the motivations for using AND-Mask, followed by details on
transition from the binary AND-Mask to a Soft Mask. Then we discuss the full algorithm in
detail.

3.1.1. Motivation

AND-Mask introduces τ as a hyper-parameter to threshold the agreement across
environments. To understand the relation between the effect of agreement threshold and
the consistency of gradients across clients, we manually vary the level of heterogeneity and
record the fraction of clients that have gradient agreement less than τ = 0.4 in Figure 3.1.
The heterogeneity was induced using a Dirichlet distribution based label skew on MNIST
with α = 0.1 representing heterogeneous case and α = 100 representing homogeneous case.
We observe that as homogeneity increases or as clients become more alike each other, the



Fig. 3.1. Fraction of clients having agreement < τ(= 0.4) vs. homogeneity of data

fraction of clients having gradient agreement less than tau decreased. In other words, with
increasing homogeneity, the number of gradients having agreement greater than tau increased.
This implies a connection between gradient agreement across clients and data heterogeneity.
Therefore, agreement threshold τ can be used in federated learning to implicitly identify the
heterogeneity in data.

3.1.2. Binary AND-Mask to Soft Mask

Fig. 3.2. FedAVG[36] vs. FedGMA vs. Binary Mask [40] on MNIST with label skew.
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Parascadalo et. al [40] propose using a binary mask to zero out incosistent gradients.
Direct application of this idea to FL setting is however challenging. [40] applies the rule
assuming each sample represents an environment, whereas each client more naturally
corresponds to the environment in FL. Furthermore, they show that this can lead to a slower
convergence rate in practice as too many components can be masked at each iteration. The
same was observed on using the binary mask in a federated setting. As expected from the
results of Parascandalo et. al. [40], the binary mask converges to a higher test accuracy
than averaging, which corresponds to FedAVG in federated learning. However, the number
of communication rounds required to achieve it was higher when the data was non-iid as
shown in 3.2. The heterogeneity introduced here is label skew on MNIST. In a federated
setting, this would be impractical as we would not want to sacrifice convergence speed for
generalization. Communication bottleneck is severe practical federated learning settings.

3.1.3. Algorithm

Algorithm 1 Gradient Masked FedAVG [36]

Server Executes:
Initialize w0
for each server epoch, t = 1,2,3,... do

Choose C clients at random
for each client in C, n do

wn
t = ClientUpdate(wt−1)

∆n
t = ns∑

n∈C
ns

(wn
t − wt−1)

end for
∆t = ∑

n∈C ∆n
t

b = m̃τ ({∆n
t }n∈C)

wt = wt−1 + ηg ∗ b ⊙ ∆t

end for

ClientUpdate(w):
Initialize w0 = w
for each local client iteration, i=0,1,2,3,..,n do

gi = ∇wi
L(wi)

wi+1 = wi − ηc gi

end for
return wi+1 to server
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Algorithm 2 Gradient Masked, FedADAM , and FedYogi [45]

Server Executes:
Initialize w0
for each server epoch, t = 1,2,3,... do

Choose C clients at random
for each client in C, n do

wn
t = ClientUpdate(wt−1)

∆n
t = nk∑N

n=1 nk

(wn
t − wt−1)

end for
∆t = ∑N

n=1 ∆n
t

zt = β1zt−1 + (1 − β1)∆t

vt = vt−1 − (1 − β2)∆2
t sign(vt−1 − ∆2

t )

vt = β2vt−1 + (1 − β2)∆2
t

∆t = zt√
vt+e−3

b = m̃τ ({∆n
t }n=1..C)

wt = wt−1 − ηg ∗ b ⊙ ∆t

end for

In the federated setting, we propose a variant of the binary mask that doesn’t
sacrifice convergence speed while retaining some of the improved generalization properties.
Specifically, we propose to use masking at the aggregation stage of standard FL, with
a mask computed based on each client update (which arise from multiple local gradient
steps). The mask is calculated based on sign agreement among client updates ∆n and
it is applied on the global model update ∆k

n. This masking controls the parameter
update based on the agreement of direction among the gradients across clients or envi-
ronments. To provide rapid convergence we apply a soft masking procedure instead of
the hard binary mask. In Figure 3.2, we observe that the proposed algorithm (marked as
GMA) which use the soft-mask is capable of converging to the higher accuracy achieved
by binary mask, while not requiring as many communication rounds. Number of com-
munication rounds required for GMA to converge is almost equal to that required by FedAVG.

We define an agreement score, Aj ∈ (0,1], given as a function of all the client up-
dates and mask m̃τ is defined element-wise,

[m̃τ ]j = 1 if Aj ≥ τ else Aj where A =
∣∣∣∣∣ 1
|N |

∑
n∈N

sign(∆n)
∣∣∣∣∣ (3.1.1)
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Algorithm 3 Gradient Masked SCAFFOLD [26]

Server Executes:
Initialize w0
for each server epoch, t = 1,2,3,... do

Choose C clients at random
for each client in C, n do

wn
t = ClientUpdate(wt−1)

wn
t , ∆n

c = ClientUpdate(wt−1, ∆c)
∆n

t = nk∑N

n=1 nk

(wn
t − wt−1)

end for
∆t = ∑N

n=1 ∆n
t

∆c = 1
N

∑N
n=1 ∆n

c

mask = m̃τ ({∆n
t }n=1..C)

wt = wt−1 − ηg ∗ mask ⊙ ∆t

end for

ClientUpdate(w):
Initialize w0 = w
ci = c+

i

for each local client epoch, i=0,1,2,3,..,n do
gi = ∇wi

L(wi)
wi+1 = wi − ηc gi − ci + c

end for
c+

i = (i)gi(x)or (ii)ci − c + 1
Kηl

(x − yi)
return wi+1 , c+

i − ci to server

The global model update is given by m̃τ ⊙ ∆t. This ensures that the updates to
the global model are with respect to their agreement across clients. When the agreement
across clients is greater than the hyperparameter τ , it would be assigned 1 and when the
agreement is lesser than τ , the mask value would be equivalent to the agreement score.
This real mask ensures that each parameter updates but the magnitude is adjusted to
be proportional to the agreement across clients. Furthermore, we observe empirically in
Figure 3.1 that the fraction of clients whose magnitude gets adjusted as mentioned above is
correlated to the heterogeneity in the distribution of data across clients. The full algorithm
for Gradient Masked Aggregation on FedAVG is given in Algorithm. 1. Extended version of
GMA on FedAdam and FedYogi are given in Algorithm 2 and GMA on SCAFFOLD is given
in Algorithm 3. Client updates in Algorithm 2 is same as that in Algorithm 1
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(a) Test accuracy vs. τ (b) Test loss vs. τ

Fig. 3.3. Effects of τ on model performance

3.1.4. Effect of τ

τ ∈ {0,1} is a hyper-parameter introduced to threshold agreement across clients. It
marks the minimum agreement required to consider the gradient for aggregation. When
τ = 0 or negligible, the gradients of all parameters will have an agreement score greater
than or equal to τ . This makes all gradients consistent across clients. The agreement score
would be over-written by 1 and the equation becomes equal to that of naive federated
aggregation where all gradients are averaged with the same importance. This is equivalent to
an underfit condition. The opposite overfit criterion can happen with a high τ value. In
this case, no gradient would be considered dominant and all parameters updates would be
diminished corresponding to their agreement score. The agreement score can be 1 when
the data distribution across clients is an ideal i.i.d distribution where all gradients across
clients would be along the same direction. But in practical scenario, such data distributions
are rare in a federated setting. When agreement = 1, wk = wk−1 − ηg 1 ⊙ ∆k = wk − ηg∆k;
equivalent to naive federated aggregation. This implies that the naive federated aggregation
is a case of the proposed gradient masked averaging.

τ = 0.4 implies that the gradient being considered have a 40% excess or a total of
60% of the client gradients along the dominant direction. From our experiments it was
observed that when τ is low, the model underfits. The accuracy was best at τ = 0.4 and on
further increasing τ , it was overfitting. This is visible from the test accuracy vs. τ plot in
Figure 3.3a and test loss vs. τ plot in Figure 3.3b .
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3.2. Federated Aggregation Preliminaries
In this section we introduce the notations used and review standard federated aggregation.

Consider a federated setting having N clients where the data at each client, n ∈ N is
Dn = (xn

i , yn
i ) and each client have ns samples. The clients collectively learn a function,

f : X → Y f(x ∈ X; w) that, in our case, corresponds to a neural network model with
parameters, w, and (X,Y ) = {(xn,yn) : ∀n ∈ N} is the entire set of data distributed across
clients. At each communication round, k, the parameters of the global model, wk, are sent
to participating clients who perform multiple local gradient steps to obtain an update, ∆k

n,
corresponding to the difference between the clients model after multiple updates and wk. In
most FL algorithms the global model update at kth communication round is then obtained as

wk+1 = wk − ηg∆k where ∆k = 1
|N |

∑
n∈N

∆k
n (3.2.1)

ηg is the global learning rate and for sufficiently large K, ηg = Kηl [26]. ∆k is the
update or "pseudo-gradient" at the kth global communication round obtained by aggregating
the updates from the participating clients (∆k

n; n∀N). The pseudo-gradient is an approxima-
tion of the global model gradient which is used for the model update.

In the case of a single gradient step at each client, the update ∆k, corresponds to
the gradient of the global objective. Each client has a different data distribution and thus
different loss surface. [40] shows that averaging of gradients across environments leads to poor
consistency of solutions, and reduced generalization, particularly to unseen environments.
Indeed naive averaging of parameters fails to capture the consistencies in the loss landscapes
due to the bias that may be induced by dominant features in the environments as explained
by [49]. This is further exacerbated in real world federated settings as there are multiple
possible scenarios where some clients dominate over others.

3.3. Theoretical Guarantees
We now analyze the convergence properties of the masking, focusing on the case of

FedAVG and gradient masked aggregation. In our setting, we define the global objective
function in terms of the local objective, Fn, of each client as shown below, assuming that

41



E[fn(w)] = Fn(w)

min
w

f(w) = min
w

N∑
n=1

Fn(w)

Following [45], we make the following standard assumptions. We write Ft the fil-
tration adapted over our stochastic process at time t.

Assumption 3.3.1 (Lipschitz gradient). We assume that each client objective has Lipschitz
gradient with constant L, meaning that there exists L > 0, ∀n, ∀w,v, ∥∇Fn(w) − ∇Fn(v)∥ ≤
L∥w − v∥

Assumption 3.3.2 (Bounded gradients). We assume that each client has a bounded gradient
by G, leading to: ∃G > 0, ∀n, ∀w, ∥∇Fn(w)∥ ≤ G.

Assumption 3.3.3 (Finite variance). We assume a global bound on the variance of the
gradient estimate of each individual client, meaning that: ∃σ > 0, ∀n, ∀w,E∥∇Fn(w) −
∇fn(w)∥2 ≤ σ2.

Assumption 3.3.4 (Global variance). We assume a global bound on the variance of the
gradient estimate of each individual client, meaning that: ∃σg > 0, ∀n, ∀w,E∥∇Fn(w) −
∇f(w)∥2 ≤ σ2

g .

Lemma 3.3.5 (Bounded drift from client update, Adapted from Appendix A, Lemma 3 of
[45]).

Given the above Assumptions, there exists C > 0 such that for any time step t and xt,∆t

obtained from Alg. 1:

E[∥∆t − ∇f(wt)∥2] ≤ C(σ2 + σ2
g + E[∥∇f(wt)∥2])

Démonstration. Using the Appendix A, Lemma 3 of [45] is exactlying saying, assuming
the number of iterations performed by a client is bounded (and for local step sizes defined in
[45]), that:

1
N

N∑
n=1

E∥wn
t − wt−1∥2 ≤ C(σ2 + σ2

g + E∥∇f(wt)∥2) ,

42



for some absolute constant C > 0. and now we observe that:

E∥∆t∥2 = E∥
N∑

n=1
∆n

t ∥2 (3.3.1)

≤ N
N∑

n=1
E∥wn

t − wt−1∥2 (3.3.2)

≤ N2C(σ2 + σ2
g + E∥∇f(wt)∥2) (3.3.3)

Now, we know that:

E[∥∆t − ∇f(wt)∥2] ≤ 2E[∥∆t∥2 + 2E[∥∇f(wt)∥2]

and we get the conclusion. □

The above inequality can be deducted from the aforementioned paper by using the
L-smoothness of fn(as done (Eq. 6) in [45]), with K local steps and local parameters wt,n,k

on client n from time t. This Lemma involves the aggregation at every step t of the local
client updates obtained individually on each client. In particular, it does not depend on the
server’s algorithm. Due to this, the proof from Appendix A, Lemma 3 of [45], which gives
the explicit C, applies directly.

The next proposition derives a rate of convergence on the masked gradient which is
similar to [45], and in the order of O( 1

T
).

Proposition 3.3.6 (Convergence analysis). Given assumptions, if 0 ≤ ηg ≤ 1
2L

, then, one
has the following rate over the masked gradients given by the FedAVG algorithm in :

E[min
t<T

∥b ⊙ ∇f(wt)∥2] ≤ 2L

(
f(w0) − f(wT )

T
+ Cηg

(
σ2 + G2 + σ2

g

))

Démonstration. We consider the optimization path given by Alg 1. Let us write ∆̃t =
bt ⊙ ∆t. First, we note that given that 0 ≤ bj

t ≤ 1, we get ∥∆̃t∥ ≤ ∥∆t∥. Next we follow the
approach of [7] for obtaining optimal non-convex bounds. Each fn is L-smooth, thus:

Fn(wt+1) ≤ Fn(wt) + ⟨∇Fn(wt),wt+1 − wt⟩ + L

2 ∥wt+1 − wt∥2

= Fn(wt) − ηg⟨∇Fn(wt),bt ⊙ ∆t⟩ + L

2 ∥bt ⊙ ∆t∥2

≤ Fn(wt) − ηg⟨∇Fn(wt),b ⊙ ∆t⟩ + L

2 η2
g∥bt ⊙ ∆t∥2
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Averaging over 1 ≤ n ≤ N and conditioning over Ft leads to:

E[f(wt+1)|Ft] ≤ f(wt) − ηg⟨∇f(wt),bt ⊙ ∆t⟩ + L

2 η2
g∥bt ⊙ ∆t∥2

= f(wt) − ηg⟨∇f(wt),bt ⊙ (∇f(wt) − ∇f(wt) + ∆t)⟩ + L

2 η2
g∥bt ⊙ ∆t∥2

Now, we use the inequality: ⟨a,b⟩ ≤ ∥a∥∥b∥ ≤ 1
2(∥a∥2 + ∥b∥2) and noting the masking can be

seen as multiplication by diagonal matrix, we obtain:

⟨∇f(wt), b ⊙ (∇f(wt)−∆t)⟩=⟨b ⊙ ∇f(wt), ∇f(wt)−∆t⟩

≤ 1
2∥b ⊙ ∇f(wt)∥2 + 1

2∥∇f(wt) − ∆t∥2 .

From the Bounded gradients and Lemma ??, we get:

E[∥∇f(wt) − ∆t∥] ≤ C(σ2 + E[∥∇f(wt)∥2 + σ2
g) ≤ C(σ2 + G2 + σ2

g)

Since 0 ≤ bj ≤ 1, we get:

−∇f(wt)j × bj
t × ∇f(wt)j ≤ −(bj)2(∇f(wt)j)2 ,

which implies that:
−⟨∇f(wt),b ⊙ ∇f(wt)⟩ ≤ −∥b ⊙ ∇f(wt)∥2

Taking the expectation, and summing, we have:

1
2(ηg − Lη2

g)
T −1∑
t=0

E[∥b ⊙ ∇f(wt)∥2] ≤ f(x0) − f(xT ) + ηgTC(σ2 + G2 + σ2
g)

In particular, this implies for a learning rate ηg = 1
2L

small enough such that ηg −Lη2
g = 1

2L
> 0

E[min
t<T

∥b ⊙ ∇f(wt)∥2] ≤ 2L

(
f(w0) − f(wT )

T
+ Cηg

(
σ2 + G2 + σ2

g

))
□

We now observe that under assumptions similar to those proposed in [40], the distribution
of updates will match the true underlying distribution.

Proposition 3.3.7 (Mask stability). Denote δ,δn the random variable corresponding res-
pectively to a coordinate of ∆,∆n. Furthermore consider δ̃ the random variable for each
coordinate of ∆̃, where ∆̃ = b ⊙ ∆. Assume that δn is σ-sub-Gaussian, that the δn are
mutually independent and write µn = E[δn]. If 1

N
card({n|µn > 0}) > τ , then, with probability

1 − O
(

e−
(infµn>0 µn)2

σ2

)
, we obtain δ̃ = δ .
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Démonstration. We show a lower bound on δn. With probability 1 − e− t2
σ2 , we get

|δn − µn| < t. Let’s thus pick t̃ = inf{µn>0}
µn

2 . By considering the intersection of those events,
it implies that with probability at least 1 − e− t̃2

σ2 , δn > µn − µn

2 = 1
2µn > 0. Consequently,

the mask is equal to 1 and δn = δ̃n. Now, we can note that infµn>0 µn > infµn ̸=0 |µn|, which
allows to conclude. □

Informally we see that if wt is far from a local minimum then the masked gradient bt ⊙ ∆t

is likely to not be equal to 0 thanks to Prop 5.6. Thus, Prop 5.5 suggests that the norm of
the gradient is decreasing.
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Chapter 4

Experiments

In this chapter, we show empirically that the proposed GMA tends to outperform standard
aggregation (AVG), converging at similar or better than standard aggregation, while
enhancing the global model generalization. We observe this for multiple FL algorithms with
respect to multiple datasets and data distributions (i.i.d and non-i.i.d).

Implementation We conduct experiments on gradient masked and naive versions
of non-adaptive federated optimizers like FedAVG [36], FedProx [35], and SCAFFOLD [26]
and adaptive optimizers like FedADAM and FedYogi [45] across a variety of datasets. Our
experiment include label distribution skew, feature distribution skew and quantity skew. The
reported performances are average accuracies of 4 independent runs of the model on a test
dataset. The implementation was an adaptation from that in [35].

Hyperparameters An SGD optimizer with a momentum (ρ = 0.9) and cross-entropy loss
was used to train each client (N = 10 and C = N) for E = 1 client epochs before aggregation
at the server in all our experiments unless specified. For experiments with non-convex
objectives, LeNet architecture was employed at all clients and at the global model for all
datasets except CIFAR-10, which used a ResNet18 with group norm [45]. The momentum
parameters of adaptive federated optimizers are fixed at β1 = 0.9 and β2 = 0.99 as per [45].
For each of the considered algorithms we tune the local client model learning rates and
global model learning rates to consider the best performances of the algorithms. The global
learning rate, client learning rate, and τ are tuned in the range given below.

ηl ∈ {10−3,10−2,5.10−2,10−1}

ηg ∈ {10−2,10−1,1,1.5,2}

τ ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}



Tableau 4.1. Real-World evaluation on FEMNIST and Out-of-Distribution evaluations
with and without label distribution skew on FedCMNIST and FedRotMNIST. Average best
test performance(%) over 4 independent runs of FedAVG, FedProx, SCAFFOLD, FedAdam,
FedYogi and their GMA versions are reported below. The best average result among AVG
and GMA having atleast 0.01% higher than the other algorithm is shown in bold.

Dataset
(Model)

Label
Skew

FedAVG FedProx SCAFFOLD FedAdam FedYogi
AVG GMA AVG GMA AVG GMA AVG GMA AVG GMA

Real-World Evaluation

FEMNIST
(LeNet) ✗ 99.31±0.01 99.38±0.01 99.24±0.01 99.33±0.01 98.88±0.04 99.36±0.03 99.12±0.01 99.16±0.00 99.14±0.01 99.18±0.00

Out-of-Distribution Evaluation

FedRotMNIST
(LeNet) ✗ 99.11±0.02 99.11±0.01 99.14±0.02 99.14±0.03 99.09±0.01 99.10±0.02 98.71±0.05 98.8±0.02 98.73±0.04 98.78±0.02

✓ 98.88±0.04 98.94±0.01 98.90±0.03 98.95±0.01 98.94±0.04 98.97±0.03 98.21±0.01 98.33±0.02 98.41±0.07 98.56±0.04

FedCMNIST
(LeNet) ✗ 89.37±0.83 90.36±0.61 89.61±0.88 90.22±0.78 88.14±0.53 89.54±0.38 88.79±0.86 89.4±0.84 88.78±0.83 89.88±0.75

✓ 86.77±0.43 89.17±0.38 86.84±0.38 89.33±0.34 86.41±0.8 89.49±0.63 85.75±0.53 89.28±0.44 86.67±0.53 89.76±0.37

4.1. Real-World Evaluation
In the practical federated setting, the data across clients is heterogeneous and the clients

which deploy the global model (including test clients, non-participating clients, and new
clients in the federated network) can have data distribution different from that at any train
clients. This can be simulated by using a realistic federated data characterised by a feature
distribution skew unique to each client including the test client. Specifically we use train data
from the same domain distributed across clients such that each client has data corresponding
to one user (or a set of users) unique to the client. The test data consists of data from the
same domain as the train dataset distributed across clients but from one user (or a set of
users) not included in the set of train clients. A similar feature skew is provided by Federated
EMNIST [10] where the data points have a user identifier. The data is distributed amongst
the clients based on the identifiers in a way that no clients share data corresponding to the
same user. The test performance of the algorithms and their gradient masked alternatives
are given in Table 4.1. We observe that gradient masking outperforms naive averaging. In
the next section we consider a more complex out-of-distribution feature skew to further
evaluate GMA.
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(a) FedAVG (b) FedProx

(c) SCAFFOLD (d) FedAdam (e) FedYogi

Fig. 4.1. Train accuracy and test accuracy vs. communication rounds of gradient masked
and naive averaging versions of the algorithms on FedCMNIST distributed non-i.i.d across
clients.

4.2. Out-of-Distribution Evaluation
A more complex OOD test can be implemented to better understand the performance of

gradient masking in federated learning. For this we induce unique spurious mechanisms or
features in the clients (including test) besides the class label based heterogeneity. The global
model would be tested on a dataset having a spurious mechanism that was not present in
any of the train clients, while the spurious mechanism at each train client is unique to itself.
The label skew is induced such that each client would have 90% samples from two classes
and the 10% noise would comprise samples from all other eight classes. Tables 4.2 and 4.3
shows a sample label skewed data distribution across ten clients.

We use FedCMNIST, a federated multiclass version of CMNIST [5] with multiple
color-label correlations. The invariant mechanism here is the digit. There also exists a
spurious mechanism marked by a color given to the numbers. The color is digit specific
to induce correlation to the label. Specifically, each digit would have one or more color
that remains the same across examples in the train set or in the data at the participating
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clients. The color of the same digit in the test set would be different from that at any of
the train clients. This spuriousness is in addition to the label distribution based skew with
non-iid distribution of data across clients. We also use FedRotMNIST, inspired from [16],
where an angle of rotation is the spurious mechanism. Specifically, we rotate each digit
at an angle such that a label based correlation is induced. In our experiments the digits
were rotated at 10, -10, 20, -20, 30, -30, 40, -40, 50, and -50 respectively. The test images
are not rotated at any angle irrespective of the digit or label. The preprocessing includes
padding on rotation and cropping. The performance of the various algorithms and their
gradient masked averaging counterparts on these OOD test datasets is given in Table 4.1. It
is to be noted that across all datasets, data distribution, and algorithms gradient masking
outperforms naive averaging. Figure 2 shows train and test curves of the algorithms and
their gradient masked alternatives on non-i.i.d distribution of FedCMNIST. It is to be noted
that although GMA train accuracies are less than or equal to that of naive averaging, the
GMA test accuracies are higher. This indicates that gradient masked versions generalize
better than the naive versions.

4.3. In-Distribution Evaluation
This is the most widely considered setting in the FL literature. The global model

is evaluated on a test dataset sampled from data at all clients irrespective of the data
distribution across clients. This test dataset is a representation of all participating clients.
The datasets used for in-distribution testing are MNIST [31], Fashion MNIST [63],
FEMNIST (Federated EMNIST) [10, 13], and CIFAR-10 [28].

Table 4.4 shows the test performance of the algorithms and their GMA versions. It
was observed that with the robust features of GMA, the algorithm is capable of outperforming
naive averaging. The difference in improvement is more significant when the data distribution
is non-i.i.d. The major reason for this is that gradient masking is capable of focusing on
learning the invariances even under increased spuriousness of non-i.i.d data distribution.
Across datasets, we can observe that the improvement with gradient masking is more
prominant on CIFAR10 and FMNIST, which are relatively complex datasets than other
datasets considered. Furthermore, Table 4.6 shows an ablation comparing GMA and AVG
when the same client and global rates are used, showing that for nearly any hyperparameter
choice GMA outperforms AVG, suggesting it is highly robust to the choice of hyperparameters.
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Tableau 4.2. This table shows the label distribution across clients for an IID setting. Each
client will have randomly chosen examples from all 10 classes. This represent the 10 class
setting in MNIST. We have considered 3 clients for the table. The same pattern would be
present across all clients.

0 1 2 3 4 5 6 7 8 9
Client 1 585 643 591 550 571 561 631 628 620 620
Client 2 589 691 593 628 553 526 588 640 602 590
Client 3 531 697 595 627 557 557 596 626 581 633

......

Tableau 4.3. This table shows the label distribution skew used by us for our experiments
for a non-IID data distribution across clients. This represents the 10 class setting in MNIST.
We have taken 3 clients. The same pattern would be present across all clients.

0 1 2 3 4 5 6 7 8 9
Client 1 2894 2247 51 48 50 53 52 47 47 47
Client 2 44 2246 1962 40 42 42 42 41 41 46
Client 3 31 31 33 1962 33 1371 35 31 31 32

......

Using the non-iid distributed FMNIST data we further study how the performance
is affected as the number of clients grows (N = 10,50,100,250) and the number of local
epochs increases (E = 1,3,5,10,20). The results are shown in Figure 4.2a and Figure 4.2b. It
can be observed that gradient masking increasingly outperforms naive averaging in these
more complex scenarios. In Figure 4.2a we observe that with increasing number of clients,
difference between the test accuracies corresponding to GMA and naive averaging increases.
This validates the enhanced invulnerability of gradient masking to the bias that could be
induced by one or more clients in the network. In Figure 4.2b we observe increasing local
epochs beyond 3, the test accuracy decreases due to client drift [26]. Gradient masking is
however more robust in this (challenging) scenario.

To further understand the performance of the proposed algorithm under larger fede-
ration, we experiment on CIFAR10 and CIFAR100 with larger number of clients and with
random sampling of clients per communication round for training. We randomly sample
C = 10 clients per round from a total of N = 500 or N = 100 clients in the federated network
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Tableau 4.4. In-Distribution evaluations with and without label distribution skew on MNIST,
FMNIST, FEMNIST, and CIFAR10 and Quantity skew based evaluation on CIFAR10.
Average best test performance(%) over 4 independent runs of FedAVG, FedProx, SCAFFOLD,
FedAdam, FedYogi and their GMA versions are reported below. The best average result
among AVG and GMA having atleast 0.01% higher than the other algorithm is shown in
bold.

Dataset
(Model)

Label
Skew

FedAVG FedProx SCAFFOLD FedAdam FedYogi
AVG GMA AVG GMA AVG GMA AVG GMA AVG GMA

MNIST
(LeNet) ✗ 99.11±0.02 99.17±0.02 99.13±0.02 99.16±0.03 99.19±0.00 99.19±0.00 98.71±0.02 98.77±0.03 98.68±0.01 98.75±0.00

✓ 99.07±0.02 99.09±0.03 98.91±0.02 99.08±0.02 99.07±0.06 99.14±0.01 98.51±0.05 98.51±0.05 98.54±0.07 98.74±0.01

FMNIST
(LeNet) ✗ 89.35±0.02 89.65±0.03 89.92±0.12 90.12 ±0.03 90.27±0.10 90.49±0.12 88.66±0.22 88.86±0.18 88.85±0.18 89.26±0.21

✓ 87.43±0.05 87.37±0.07 88.25±0.14 88.55±0.12 88.36±0.13 88.97±0.16 87.26±0.07 87.5±0.02 87.39±0.12 87.60±0.11

FEMNIST
(LeNet) ✗ 99.71±0.01 99.79±0.01 99.48±0.01 99.53±0.00 99.58±0.03 99.62±0.03 99.52±0.01 99.76±0.00 99.64±0.02 99.68 ±0.01

✓ 95.51±0.02 96.38±0.01 94.64±0.01 95.83±0.01 94.28±0.04 94.36±0.03 94.82±0.01 96.16±0.00 94.74±0.01 96.22±0.01

CIFAR10
(ResNet) ✗ 86.47±0.04 87.38±0.03 87.04±0.06 86.89±0.14 86.57±0.18 86.85 ±0.11 87.04±0.12 87.28±0.16 87.06±0.11 87.17±0.14

✓ 83.06±0.31 83.21±0.26 83.65±0.41 84.24±0.38 84.26 ±0.21 83.89±0.18 83.63±0.04 84.77±0.03 83.64±0.04 84.28±0.04

Quantity Skew

CIFAR10
(ResNet) ✗ 84.78±0.44 86.28±0.38 83.81±0.55 84.42±0.46 80.58±1.63 81.81±1.12 85.92±0.16 86.58±0.28 85.98±0.15 86.47±0.29

with in-distribution evaluations. We observe that GMA outperforms naive algorithms with
sub-sampled clients. Table 4.5 records the performance of the proposed gradient masking on
FedAVG, FedProx, FedAdam, and FedYogi, when a fraction of clients is sub-sampled for
participation in each communication round. The learning rates that yeilded the performances
reported in Tables 4.4 and 4.1 are given in the appendix.

4.4. Quantity skew
In a real federated setting the quantity of data available for update at each client varies

drastically. Depending on connectivity, processing power, user behaviour, and various other
factors, the number of data samples generated at each client can differ from zero or one data
point to an extremely large number. To simulate this quantity imbalance, we have used
a Dirichlet distribution based quantity skew with α = 0.5 as in [32] on CIFAR-10. The
sampling done by Dirichlet is independent of the labels or the features of the data samples.
The test data contains samples from all classes similar to in-distribution evaluations.
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Tableau 4.5. Performance of FedAVG, FedProx, FedAdam, and FedYogi on CIFAR10 and
CIFAR100 when C clients are sampled from N for training in each communication round.

Dataset Setting FedAVG FedProx FedAdam FedYogi
N C AVG GMA AVG GMA AVG GMA AVG GMA

CIFAR100 500 10 42.68 44.04 38.45 40.74 47.57 49.37 46.27 48.89
100 10 52.65 52.83 50.31 50.76 53.4 56.38 54.64 56.8

CIFAR10 500 10 73.38 74.44 73.21 73.95 76.41 77.12 76.13 77.56
100 10 85.55 85.62 84.91 85.37 85.43 85.52 85.62 85.95

Tableau 4.6. Performance of FedAVG across a range of global learning rate and client rate
on non-iid FMNIST. It can be observed that GMA outperforms AVG in most of the cases
where the algorithms learn and converge.

Global
Learning
Rate

0.01 0.1 56.06 61.66 68.02 0.1 AVG
0.1 57.72 65.13 72.56 0.1 GMA

0.1 56.93 73.66 83.39 85.22 0.1 AVG
57.51 73.9 83.79 87.22 0.1 GMA

1.0 72.69 86.49 87.76 88.31 0.1 AVG
73.34 87.0 88.14 88.4 0.1 GMA

1.5 77.11 86.29 87.82 86.96 0.1 AVG
75.63 87.04 88.21 88.3 0.1 GMA

2.0 71.53 82.42 86.93 87.63 0.1 AVG
77.59 86.9 87.6 88.1 0.1 GMA

0.001 0.01 0.05 0.1 1.0

Client Learning Rate
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(a) (b)

Fig. 4.2. (a) Test accuracy vs. Number of selected clients in the federated network. (b) Test
accuracy vs. number of local epochs per client in each communication round. The experiment
was on non-i.i.d distributed FMNIST using a LeNet model.

4.5. Convex Objective
To further understand the performance of gradient masking in the convex setting, we

experiment with MNIST and FedAVG on both i.i.d and non-i.i.d data distributions and
it was observed that GMA outperforms naive averaging in the non-iid setting. A logistic
regression model with SGD with momentum optimizer was used at the clients for these
experiments. When data distribution was i.i.d, GMA was converging to an average (over
last 10 communication rounds) of 92.5% test accuracy while naive averaging obtains to
92.4%. Furthermore, when the data distribution across clients was non-i.i.d, the enhancement
in performance was more significant with gradient masking. While naive averaging was
converging to 87.0% test and 92.0% train, while GMA reached 88.5% test and 92.2% train.
Further demonstrating GMA can generalized better in the non-iid case.

4.6. Client Momentum and Group Norm
In this section we explore the effects of momentum on the client updates and using group

norm instead of batch norm on the algorithm performance. Client momentum induces a
momentum upon the client updates. This incorporates accumulation of gradients from past
steps to determine the direction of updates. Group Normalization is an alternative to Batch
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Normalization which outperforms the latter in various computer vision tasks.

4.6.1. Effect of Client Momentum

In contrast to the experiments in [45], we use an SGD optimizer with momentum
(ρ = 0.9) at each client for all our experiments. This was primarily because of the increase in
test accuracy observed during our experiments on FedAVG with and without momentum. Ho-
wever, the enhancements due to gradient masking was independent of the momentum induced
at the client optimizer. In both cases (with and without momentum), gradient masking was
outperforming naive averaging in most of the algorithms and datasets. Table 4.7 shows the
performance of the algorithms and their GMA versions on non-i.i.d distributed FMNIST using
an LeNet model. The client optimizers used in our experiments is a naive SGD optimizer
with momentum parameter and it does not involve the correction parameter introduced in [64].

Tableau 4.7. Performance of the algorithms and their GMA versions with and without
momentum(ρ) on non-i.i.d distributed FMNIST using an LeNet model. Momentum improves
performance of the algorithms. Irrespective of momentum, GMA outperforms AVG.

Dataset
(Model)

FedAVG
(ρ = 0)

FedAVG
(ρ = 0.9)

AVG GMA AVG GMA

MNIST
(LeNet)

IID 99.01 98.96 99.1 99.16
Non-IID 98.43 98.55 98.87 98.9

FMNIST
(LeNet)

IID 88.61 88.49 89.14 90.52
Non-IID 86.95 87.8 88.1 88.38

FEMNIST
(LeNet)

IID 98.8 98.92 99.7 99.68
Non-IID 92.17 94.61 94.2 96.04

CIFAR-10
(ResNet)

IID 85.8 86.31 87.3 87.61
Non-IID 81.1 82.28 83.25 83.95
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Tableau 4.8. Average in-distribution test performance(%) over the last 10 communication
rounds of FedAVG, FedProx, SCAFFOLD, FedAdam, FedYogi and their GMA versions on
i.i.d and non-i.i.d distributions of CIFAR-10 on ResNet18 models using batch normalization
and group normalization. The best result among AVG and GMA versions of each algorithm
is shown in bold.

Dataset
(Model)

FedAVG FedProx SCAFFOLD FedADAM FedYogi
AVG GMA AVG GMA AVG GMA AVG GMA AVG GMA

ResNet
BatchNorm

IID 87.11 87.42 87.2 87.38 87.56 87.52 77.32 80.65 78.78 80.55
Non-IID 77.3 79.9 78.4 80.2 75.82 78.83 69.82 74.05 67.29 71.51

ResNet
GroupNorm

IID 87.3 87.61 87.18 87.5 86.58 86.72 86.9 87.7 87.53 87.78
Non-IID 83.25 83.66 83.87 84.4 84.01 85.36 83.53 84.84 83.17 84.55

4.6.2. Effect of GroupNorm

The test accuracies reported in paper corresponding to CIFAR-10 used a ResNet18
model with batch normalization layers replaced by group normalization[62] similar to the
experiments in [45]. Our initial experiments involved batch normalization as in the original
ResNet and it was observed that the replacement of batch norm with group norm improved
the test accuracies. Table 4.8 shows the comparison of the algorithms and their GMA versions
on CIFAR-10 using ResNet model having batch normalization and group normalization
layers. It is to be noted that irrespective of the normalization layer used, gradient masking
was outperforming naive averaging across all algorithms and data distributions. This further
validates the capabilities of the proposed GMA.

4.7. Membership Inference Attack
Most machine learning models tends to overfit on their training data and such models

are susceptible to membership inference attacks that can accurately predict whether a data
sample was present in the training set of the model given the model output logits [55]. This
is a major privacy breach and it can simulated by using a black-box adversarial attacker
model. The attacker model we have employed is a binary logistic regression model with
binary cross-entropy loss. The input to this attacker model is the logits of the converged
gradient masked averaging model and naive averaging model. The attacker model is supposed
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(a)

(b)

Fig. 4.3. (a) Data split and creation for attacker model (b) Test loss vs. epochs of the
logistic regression attacker model.

to identify whether the input of the global model corresponding to the logit given was present
in the global model’s training set or not. For our experiments, we used CIFAR-10 and
ResNet models. Firstly, the GMA and AVG models were trained and tested. For each model,
the logits corresponding to the train and test set data and their labels (whether train data
or test data) were stored. The data is split as shown in Figure 4.3a [55] and the attacker
model is trained for 5000 rounds. The accuracy is as reported in the paper and loss as shown
in Figure 4.3b. A lower attack accuracy of gradient masked implies that GMA has better
immunity to membership inference attacks than naive averaging global models.

This experiment is based on [55] which suggests that algorithms focusing on learning the
causal mechanisms provide stronger privacy guarantees in certain cases, for example they can
be more robust to membership inference attacks and model inversion attacks. Based on
our experiments we observe that the attack accuracy with respect to the GMA model is
55% while that of naive averaging model is 57%. This suggests that gradient masking can
potentially enhance robustness to membership inference attacks
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4.8. Conclusion and Future Work
We proposed a new aggregation scheme applicable to a wide variety of federated learning

algorithms. The proposed method, gradient masking enhances generalization performance of
the global model in FL by focusing on learning the invariances across clients. The simple
masking outperforms their naive averaging versions across a variety of algorithms and datasets.
Our theoretical analysis shows the convergence of the proposed masking algorithm and the
stability of the proposed mask. Future directions include exploration of masks incorporating
magnitude and other methods to better capture the invariances, thus leading to better
generalization at the global model.
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Appendix A

Learning Rates

Tableau A.1. The best learning rates corresponding to the performances of the algorithms
and datasets as reported in Table 4.1

Dataset FedAVG FedProx SCAFFOLD FedAdam FedYogi
ηg ηl ηg ηl ηg ηl ηg ηl ηg ηl

FEMNIST Real World 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001
FedCMNIST IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001

Non-IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001
FedRotMNIST IID 1.0 0.01 1.0 0.01 1.5 0.01 0.05 0.001 0.05 0.001

Non-IID 1.0 0.01 1.5 0.01 1.0 0.01 0.05 0.001 0.05 0.001



Tableau A.2. The best learning rates corresponding to the performances of the algorithms
and datasets as reported in Table 4.4

Dataset FedAVG FedProx SCAFFOLD FedAdam FedYogi
ηg ηl ηg ηl ηg ηl ηg ηl ηg ηl

MNIST IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001
Non-IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001

FMNIST IID 1.0 0.1 1.0 0.1 1.0 0.01 0.05 0.001 0.05 0.001
Non-IID 1.0 0.01 1.0 0.01 1.0 0.01 0.05 0.001 0.05 0.001

FEMNIST IID 1.0 0.01 1.0 0.01 1.5 0.1 0.05 0.001 0.05 0.001
Non-IID 1.0 0.01 1.5 0.01 1.0 0.01 0.05 0.001 0.05 0.001

CIFAR-10 IID 1.0 0.01 1.0 0.01 1.5 0.01 0.01 0.001 0.01 0.001
Non-IID 1.5 0.01 1.0 0.001 1.5 0.001 0.05 0.001 0.05 0.001
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