
Université de Montréal

Mixed-Integer Programming Representation for
Symmetrical Partition Function Form Games

par

Justine Pepin

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en informatique

Orientation recherche opérationnelle

22 novembre 2022

© Justine Pepin, 2022





Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Mixed-Integer Programming Representation for
Symmetrical Partition Function Form Games

présenté par

Justine Pepin

a été évalué par un jury composé des personnes suivantes :

Emma Frejinger
(présidente-rapporteuse)

Margarida Carvalho
(directrice de recherche)

Sriram Sankaranarayanan
(codirecteur)

Andrea Lodi
(membre du jury)





Résumé

Dans tout contexte impliquant plusieurs agents (joueurs), il est impératif de déterminer
comment les agents coopéreront par la formation de coalitions et comment ils partageront
les bénéfices supplémentaires issus de la collaboration. Ceci peut fournir une aide à la décision
aux joueurs, ou encore des outils d’analyse pour les responsables en charge de réguler les
marchés économiques. De telles situations relèvent de la théorie des jeux coopérative. Un
élément crucial de ce domaine est la taille de la représentation de ces jeux : pour chaque
partition de joueurs possible, la valeur de chaque coalition qu’on y retrouve doit être donnée.

Les jeux symétriques à fonction de partition (SPFG) appartiennent à une classe de jeux
coopératifs possédant deux caractéristiques principales. Premièrement, ils sont sensibles aux
externalités, provoquées par n’importe quel groupe de joueurs qui s’allient ou défont leurs al-
liances, qui sont ressenties par les autres coalitions de joueurs. Deuxièmement, ils considèrent
que les joueurs sont indistincts, et donc que seul le nombre de joueurs dans chaque coalition
est à retenir pour représenter un SPFG. Par l’utilisation d’outils de programmation mixte
en nombres entiers, nous présentons la première représentation de SPFG qui est polynomiale
en nombre de joueurs dans le jeu. De surcroît, nous caractérisons la famille des SPFG qu’il
est possible de représenter, qui inclut notamment tous les SPFG de cinq joueurs ou moins.
De plus, elle dispose d’une approximation compacte pour le cas où, dans un jeu à six joueurs
ou plus, le SPFG ne peut pas être représenté de façon exacte. Également, nous introduisons
un cadre flexible qui utilise des méthodes visant la stabilité inspirées par la littérature pour
identifier, à l’aide de notre représentation, une issue stable qui maximise le bien-être social
des joueurs. Nous démontrons la valeur de notre représentation (approximée) compacte et
de notre approche pour sélectionner une partition stable et une allocation des profits dans
une application de marché compétitif provenant de la littérature.

Mots clés: Théorie des jeux, Théorie des jeux coopératifs, Jeux à fonction de partition,
Programmation mixte en nombres entiers.

5





Abstract

In contexts involving multiple agents (players), determining how they can cooperate through
the formation of coalitions and how they can share surplus benefits coming from the col-
laboration is crucial. This can provide decision-aid to players and analysis tools for policy
makers regulating economic markets. Such settings belong to the field of cooperative game
theory. A critical element in this area has been the size of the representation of these games:
for each possible partition of players, the value of each coalition on it must be provided.

Symmetric partition function form games (SPFGs) belong to a class of cooperative games
with two important characteristics. First, they account for externalities provoked by any
group of players joining forces or splitting into subsets on the remaining coalitions of play-
ers. Second, they consider that players are indistinct, meaning that only the number of
players in each coalition is relevant for the SPFG. Using mixed-integer programming, we
present the first representation of SPFGs that is polynomial on the number of players in the
game. We also characterize the family of SPFGs that we can represent. In particular, the
representation is able to encode exactly all SPFGs with five players or less. Furthermore,
we provide a compact representation approximating SPFGs when there are six players or
more and the SPFG cannot be represented exactly. We also introduce a flexible framework
that uses stability methods inspired from the literature to identify a stable social-welfare
maximizing game outcome using our representation. We showcase the value of our com-
pact (approximated) representation and approach to determine a stable partition and payoff
allocation to a competitive market from the literature.

Keywords: Game theory, Cooperative game theory, Partition function games, Mixed-
integer programming.

7





Contents

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Notation and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2. Partitions and related concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3. Partition function form game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.1. Symmetric partition function form game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.2. Characteristic function form game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.3. Games with positive and negative externalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4. Mixed-integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 2. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1. Non-cooperative game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2. Payoff sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3. Coalition structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 3. Coalition structure formation and payoff sharing . . . . . . . . . . . . . . 47

3.1. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2. Stability constraints for partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9



3.2.1. PFG with positive and negative externalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3. Payoff sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 4. Integer programming representation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1. SPFG representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1. Variables and constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2. Parameters and MILP-representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.3. Solving MILP-representable games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2. MILP-Representable Family of SPFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1. The matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2. Characterization of MILP-representable SPFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3. MILP-approximations of SPFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3. Bounding approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 5. Application: competitive markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1. Game setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2. Computational analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Références bibliographiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix A. McCormick envelope implementation . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix B. Stability constraints for an MILP-representation . . . . . . . . . . . . 101

10



List of tables

1.1 Bell and Partition Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 MILP-representation for 5 or less players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Rank exception for n = 7 and i = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Snippet of the results for n = 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

11





List of figures

3.1 Advantageous partition transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13





Notation and abbreviations

CFG Characteristic Function Form Game

CSG Coalition Structure Generation

MAS Multi-Agent System

MILP Mixed-Integer Linear Program

MIP Mixed-Integer Programming

PDT Partition Decision Tree

PFG Partition Function Form Game

SPFG Symmetric Partition Function Form Game

SW Social Welfare

15





Acknowledgements

First of all, I would like to thank my advisors, Margarida and Sriram. Without their care,
insights and constant involvement, I don’t think I would have been able to accomplish the
work you will find in this thesis. I am so, so grateful for the rigor they instilled in me (or
tried to, at least!), their generous advice, their communicative love of maths and game theory,
their very creative minds full of suggestions that were master-saving in situations of stalling,
and their comprehensiveness when I was losing a week of work or two to the problem-solving
competitions I always get caught in. You have complementary qualities that make for an
awesome duo of advisors, and I know the next person after me will be very lucky, just like I
was.

Also, I am sending a warm thought in the direction of my lab mates that were willing to
embark on the competition train with me, just for the sake of doing a project together: Carl,
Caroline, Federico, Feng, Flore, Warley and William, please keep being as funny, intelligent,
hard-working and supporting as you are. Planet Earth is more beautiful (and optimized)
because of you!

Finally, I would like to thank IVADO for their financial support through the granting of
a MSc Excellence Scholarship.

17





Introduction

Context. Countries must come together to find effective solutions to global warming. Small
independent craftspeople and artists must ally to organize fares to attract customers and
achieve more sales. From local to international and from small to big scales, there will
always be a category of problems where agents, in a system, want to optimize their own
individual payoffs and have the option of collaborating to do so. However, in many cases,
these systems are incredibly complex, as there can be various types of agents with various
palettes of strategies and end goals without necessarily having the same ideal solution. But
above these layers of complexity, we could also add a very natural consequence of being part
of a system that is just like a web: the actions of an agent can affect those of the other
agents.

Game theory has revealed to be very useful to formalize, solve and analyze such problems.
Yet, standard methods either focus on (i) the computation of equilibria (individual strategies)
to non-cooperative games or (ii) the determination of agreements to cooperative games where
the side effects of the agents’ actions are ignored (e.g., characteristic function form games
(CFGs)). In Nagarajan and Sošić [55], they describe the former method as a micro approach,
as it concentrates on the details of “what happens” instead of looking at the possible outcomes
and studying what stable alliances and payoff splittings would lead there. Without taking
agreements between players into consideration, the strategies might be more conservative
and lead to lower player benefits due to mistrust and unpredictability. The latter method
considering cooperation is indeed pertinent since it captures relevant applications, such as
optimal medical team formation and assignation or airline crew scheduling. However, it fails
to capture the nuances of externality-driven problems, like the exploitation of international
seas or shared audits for firms sharing suppliers, which are common in our contemporary
setting.

Partition function form games (PFGs), first defined by Thrall and Lucas [78], are coop-
erative games where externalities can be considered. In other words, in PFGs, the set of
alliances formed (coalitions), i.e., the partition of the players, is important in determining
the value of each alliance. PFGs generalize CFGs and present interesting applications. No-
tably, Basso et al. [4] look into the logistic of collaborative transportation of merchandise by



firms, with the addition of a case study of the Swedish forestry industry, while Nagarajan
and Sošić [54] study the dynamic formation of alliances among symmetric agents that are
competing in the same market. In both cases, the possibility of cooperating and externalities
are crucial elements on their analysis and results.

Inspired by these works and the potential of the cooperative game theory field to promote
and improve collaborations, we decided to study symmetric PFGs (SPFGs), that are PFGs
with indistinct (symmetric) agents. As it is often done, we also consider transferable utility,
i.e., for any alliance, players on it are able to distribute the alliance’s value among themselves,
and they can make side payments as well to outsider players, because what they get from the
game is not indivisible. In order to solve SPFGs, we first use mixed-integer programming
(MIP) to model it. Mixed-integer programming is a field that is devoted to the modeling
of decision-making problems and the development of solution methods for combinatorial
optimization problems. This is very much in line with solving an SPFG since it involves
determining a partition of the players (coalition formation) and utility sharing. Once a
problem is modeled with the MIP paradigm, there are many available, powerful and easy to
use off-the-shelf MIP solvers, such as Gurobi [33] or CPLEX [22], that one can use to solve
the problem. As we will see in our literature review, this fusion of game theory and MIP
tools is not uncommon and gives good results.
Motivations. In settings that belong to the field of cooperative game theory, where mul-
tiple agents (players) can cooperate through the formation of coalitions, determining the
partition that will result as well as how the agents will share the additional gains generated
by the collaboration is critical. Moreover, since those settings necessitate, for each possible
partition of agents, the value of each coalition it contains, the size and practicability of the
representation of these games are at stake. In that respect, a good representation can help
to provide decision-aid to players and analysis tools for policy makers regulating economic
markets.
Contributions. In this thesis, we provide the following contributions:

(1) The first compact mixed-integer linear program (MILP)-representation for SPFGs;
(2) A flexible framework exploiting the MILP-representation to find a stable partition

and a stable payoff allocation vector;
(3) A characterization of the family of SPFGs that we can represent exactly with the

new compact representation;
(4) A compact approximated MILP-representation for any SPFG;
(5) Approximation bounds relating the MILP-representation approximation with the sta-

bility on the original game of the outcome proposed by our framework;
(6) A computational study validating the value of our framework when we apply it to

solve an SPFG from the literature.

20



Thesis organization. In Chapter 1, we review the main theoretical elements that will
be used throughout the thesis. In Chapter 2, we survey the literature linked to coalition
formation and payoff sharing. Chapter 3 presents the solution concepts used for solving
SPFGs. Chapter 4 contains the details on the MIP formulation that we introduce, combined
with the solution concepts from Chapter 3, into a flexible framework to solve SPFGs. It
contains as well a description of the SPFG family that the formulation can represent exactly
and a procedure to approximate SPFG with our representation. Finally, Chapter 5 tests
the framework on a symmetric agent market equivalent to the deterministic game presented
in Nagarajan and Sošić [54]. Finally, the thesis ends with conclusions and future research
directions.

21





Chapter 1

Background

In this chapter, we will review mathematical definitions that will serve us in the present
document. The subjects revolve around Partition Function Form Games (PFG), our main
interest, and their mathematical surroundings. In Section 1.1, we will establish a few con-
ventions to enhance comprehension, and subsequent sections will each detail a concept and
exemplify it.

If, after consulting this chapter, the reader would like to know more on the matter of
PFG, we suggest the related Kóczy textbook [42].

1.1. Conventions
In this thesis, we will follow some conventions for our notation:

• Sets will be written in uppercase calligraphic style, such as A, B or C.
• The cardinality of a set A is denoted |A|.
• Matrices will be written in uppercase bold regular style, such as A, B or C.
• We will indicate the dimensions of a matrix of n×m real entries as A ∈ Rn×m.
• The entry of a matrix A at row i and column j will be written Aij.
• The i-th row of a matrix will be written Ai.
• The j-th column of a matrix will be written A∗j.
• The rank of a matrix A is denoted rank(A).
• Vectors will be written in lowercase normal style and surmounted by an arrow, such

as a⃗, b⃗, c⃗.
• We will indicate the dimension of a vector of n real components as a⃗ ∈ Rn.
• The i-th component of a vector a⃗ will be written a⃗i. Note that this is an abuse of

notation since a⃗i is not a vector; nevertheless, we represent it in this way to make it
clear that it is a component of a vector.
• The set of all subsets of a set A will be denoted 2A.



1.2. Partitions and related concepts
Now we will define partitions, a concept central to the thesis. A partition is always

defined in relation to a set, because it represent a distribution of the elements of the set into
subsets.
Definition 1.2.1 (Partition). Given a set D of n elements, a partition of D is a set P of
non-empty, disjointed elements whose union form the set D. We have

(∀A ∈ P ,A ≠ ∅)
∧

(∀A,B ∈ P ,A ≠ B =⇒ A∩ B = ∅)
∧( ⋃

A∈P
A = D

)
.

We denote by Π(D) the set of all partitions that can be generated given the set D.
A partition P ∈ Π(D) has its cardinality limited by the cardinality of D such that

1 ≤ |P| ≤ |D|.

Example 1.2.1 (Partition P of set D). Let us consider D = { , , , }, a set
of dinosaurs. If we write down all the partitions P ∈ Π(D), we will get the set

Π(D) =
{

{{ , , , }},

{{ , , }, { }},

{{ , , }, { }},

{{ , , }, { }},

{{ }, { , , }},

{{ , }, { , }},

{{ , }, { , }},

{{ , }, { , }},

{{ , }, { }, { }},

{{ , }, { }, { }},

{{ , }, { }, { }},

{{ }, { , }, { }},

24



{{ }, { , }, { }},

{{ }, { }, { , }},

{{ }, { }, { }, { }}}
.

In this work, since we are in the context of game theory, we will treat partitions of players
labeled by a number from 1 to n. Consequently, the set of elements we will manipulate is
N := {1, 2, . . . , i, . . . , n}, of which each element is known respectively as player 1, player 2,
..., player i, ..., player n.

If, beside their labels, players are considered interchangeable, it could be advantageous to
try to reduce the amount of information needed to represent them. In such occasions, Kóczy
[42] uses numerical partitions.

A numerical partition is a synthesized way of representing a partition of a set of indistinct
elements. It substitutes the elements of the ordinary partition by their cardinalities without
the loss of any information.
Definition 1.2.2 (Numerical Partition). Given a set I of n indistinct elements, a numerical
partition Pnum of I is a set of strictly positive integers whose sum equals n.

Pnum ∈ Πnum(I) := {c1, c2, . . . , cj, . . . , ck} : cj = |Pj| ∀Pj ∈ P ∈ Π(I).

We denote by Πnum(I) the set of all numerical partitions that can be generated given the
set I.

A numerical partition set Pnum has the same cardinality as P .
Example 1.2.2 (Numerical Partition Pnum of set I). Let us consider |I| = 4. A first
numerical partition of I is {4}. Another numerical partition of I is {2,1,1}. The set of all
numerical partitions is Πnum(I) = {{4},{3, 1},{2, 2},{2, 1, 1},{1, 1, 1, 1}}.

When partitioning a set I where it is possible to consider the elements indistinct, using
numerical partitions reduces |Π(I)| into |Πnum(I)|, which is a significant concision advantage,
especially for big |I|. Example 1.2.3 will highlight better this advantage.

There are two sequences, the Bell Numbers and the Partition Numbers, that rep-
resent the number of ways to partition a set of n distinct elements and of n indistinct
elements, respectively. They both grow exponentially in the size of n, but Bell Numbers
grow faster.

Given a set D of n distinct elements, the respective Bell Number is Bell(n) = |Π(D)| =∑n−1
i=0

(
n−1

i

)
Bell(i). This recursive formula starts with Bell(0) = 1, and this e-book [32]

contains a chapter that explains this formula clearly.

25



Given a set I of n indistinct elements, the respective Partition Number is PN(n) =
|Π(I)|. There is an asymptotic formula for PN(n) found by Hardy and Ramanujan [34]
demonstrating that the sequence follows an exponential growth:

PN(n) ∼ 1
4n
√

3
exp

√2
3πn

1
2

. (1.1)

This approximation function is best when n is large: when n ≤ 25, the relative error is
greater than 9%, while when 1000 ≤ n ≤ 10000, the relative error is greater than 0.44%.
In Li [48], they find experimentally a better approximation function when n ≤ 80, with a
relative error less than 0.004%:

PN(n)n≤80 ∼

 1
4(n + C(n))

√
3

exp
√2

3πn
1
2

 , (1.2)

where C(n) = 0.4527092482×
√

n + 4.35278− 0.05498719946. For n > 80, they recommend
using instead:

PN(n)n>80 ∼

 1
4(n + a

√
n + c + b)

√
3

exp
√2

3πn
1
2

 , (1.3)

where a = 0.4432884566, b = 0.1325096085 and c = 0.274078. In this case, the relative error
is below 0.001% [48]. 1 If we take Approximations (1.3) and (1.3) minus their respective
relative error, we create PNlb(n), a lower bound on PN(n):

PNlb(n) =


⌊

1
4(n+C(n))

√
3 exp

(√
2
3πn

1
2
)⌋
× 0.996 n ≤ 80⌊

1
4(n+a

√
n+c+b)

√
3 exp

(√
2
3πn

1
2
)⌋
× 0.999 n > 80,

(1.4)

where the 0.996 and 0.999 correspond to 1 minus the aforementioned errors.
If the reader wants more information on those sequences and how to generate them, they

can consult [60, 61].

1.3. Partition function form game
In cooperative game theory, players are allowed to cooperate, i.e., players can establish

binding agreements. Once a subset of players have agreed to cooperate, we call it a coalition:
a cluster of players who have decided to coordinate their actions in order to favor their group.
When the outcome of a coalition depends on its context, the partition, we need to embed
their definitions into a single representative entity.
Definition 1.3.1 (Embedded Coalition). Given a set of players N , an embedded coalition
is a pair (C,P) composed of a coalition C and a partition P of N , where the coalition C ∈ P.
The set of all embedded coalitions is denoted by E(N ).
1We verified experimentally the approximations provided by Li [48].

26



Example 1.2.3 (Comparing the Bell and Partition Numbers sequences with small n).

n Bell(n) PN(n)
0 1 1
1 1 1
2 2 2
3 5 3
4 15 5
5 52 7
6 203 11
7 877 15
8 4140 22
9 21147 30
10 115975 42
11 678570 56
12 4213597 77
13 27644437 101
14 190899322 135
15 1382958545 176

Table 1.1. Bell and Partition Numbers.

Example 1.3.1 (Embedded Coalitions (C,P) of set N ). Let us consider N = {1, 2, 3}. An
embedded coalition example could be ({3},{{1,2},{3}}). If we write down all the embedded
coalitions (C,P) of N , we obtain the set

E(N ) =
{

({1, 2, 3}, {{1, 2, 3}}),

({1, 2}, {{1, 2}, {3}}),

({3}, {{1, 2}, {3}}),

({1, 3}, {{1, 3}, {2}}),

({2}, {{1, 3}, {2}}),

({1}, {{1}, {2, 3}}),

({2, 3}, {{1}, {2, 3}}),

({1}, {{1}, {2}, {3}}),

({2}, {{1}, {2}, {3}}),

({3}, {{1}, {2}, {3}}),}
.

In terms of size, keeping in mind that |Π(N )| = Bell(|N |), we are left with a set that is
towering: |E(N )| = ∑

P∈Π(N ) |P|.

27



In the eventuality where, from the game’s point of view, the players in the set N are
indiscernible, they can still form coalitions. Moreover, the writing of the coalitions can be
synthesized using embedded numerical coalitions in a manner similar to that we previously
demonstrated with numerical partitions.
Definition 1.3.2 (Embedded Numerical Coalition). Given a set of indiscernible players N
of cardinality n, an embedded numerical coalition is a pair (c,Pnum) composed of a strictly
positive integer c ∈ I>0, c ≤ n, and a numerical partition Pnum of N , where the coalition
c ∈ Pnum. The set of all embedded numerical coalitions is denoted by Enum(N ).
Example 1.3.2 (Embedded Numerical Coalitions (c,Pnum) of setN ). Let us consider |N | =
3. If we write down all the embedded coalitions (c,Pnum) of N , we will get the set

Enum(N ) =
{

(3, {3}),

(2, {2,1}),

(1, {2,1}),

(1, {1,1,1})}
.

With embedded numerical coalitions, we still have |E(N )| = ∑
P∈Π(N ) |P|, however, this

time |Π(N )| = PN(|N |), which makes it sensibly smaller than the embedded coalition set
for the same number of players. We have |Enum(N )| that coincides with CN(|N |− 1), where
CN(n) is the number of embedded numerical coalitions of a set possessing n + 1
elements [59].

Once the players in N have formed a partition P , we are interested in determining how
they split the value of each coalition in P among them. In simple words, the players in a
coalition will collaborate if they deem it worthwhile in terms of their individual interests.
Hence, we provide the following definition:
Definition 1.3.3 (Utility allocation vector). Given a set of players N of cardinality n, a
utility allocation vector, also called payoff allocation vector, is a vector y⃗ ∈ Rn where the i-th
entry y⃗i indicates the allocation received by player i.

Building on top of the previous definitions, we are now ready to define Partition Function
Form Game (PFG). The minimal information required to define a PFG is the worth (payoff)
of a coalition, which may depend on the context in which it is formed, i.e., how the players
partition themselves into coalitions. As a result, the definition of a PFG links an embedded
coalition to a payoff.

28



Definition 1.3.4 (Partition Function Form Game (PFG)). A game in partition function
form is given by a pair (N , V ) where N is the set of players and V : E(N ) → R is the
partition function assigning a real number to every embedded coalition.

Essentially, we can model the gain of an embedded coalition through the definition of a
partition function. Therefore, the value V (C,P) will be referred as the utility of the coalition
C ∈ P .
Example 1.3.3 (Partition Function Form Game (PFG)). Let us define a PFG (N , V ) where
N = {1,2,3} and

V =
{

({1, 2, 3}, {{1, 2, 3}}) 7→ 9

({1, 2}, {{1, 2}, {3}}) 7→ 5

({3}, {{1, 2}, {3}}) 7→ 2

({1, 3}, {{1, 3}, {2}}) 7→ 7

({2}, {{1, 3}, {2}}) 7→ 3

({1}, {{1}, {2, 3}}) 7→ 1

({2, 3}, {{1}, {2, 3}}) 7→ 5

({1}, {{1}, {2}, {3}}) 7→ 4

({2}, {{1}, {2}, {3}}) 7→ 3

({3}, {{1}, {2}, {3}}) 7→ 3}
.

When solving a PFG, we aim at answering two questions:
(1) Which partition P̃ of N will form?
(2) What will be the payoff allocation ⃗̃y ∈ Rn received by each player in N such that∑n

i=1 ⃗̃yi = ∑
C∈P̃ V (C, P̃)?

The two questions are tightly related. On one hand, knowing which partition will be
formed gives us the total amount of utility the players can share. On the other hand,
knowing the payoff that each player will get in every partition influences the formation of a
partition. Depending on the method used, they can be answered sequentially (in any order)
or simultaneously. Together, their answers constitute the outcome of the game.
Definition 1.3.5 (Outcome of a PFG). An outcome for a partition function form game
(N , V ) is a pair (P̃ , ⃗̃y) where P̃ ∈ Π(N ) and ⃗̃y ∈ Rn is a payoff allocation vector such that∑n

i=1 ⃗̃yi = ∑
C∈P̃ V (C, P̃).

29



When studying PFGs, a few partitions are worth noting because of their relation with
solution concepts for these games. They will reveal of interest for our work.

• The grand coalition (GC) is the partition of coarser granularity where all players are
teamed up together. Thus, the grand coalition is simply when N ∈ P .
• The singleton partition (SP) is the partition of finer granularity where all the players

are alone in their coalition. This is given by {{1},{2}, . . . , {n}}, or, more generally,
when ∀j ∈ N , {j} ∈ P .
• The γ-partitions are the partitions where at most one coalition has more than one

player. It is any partition of structure such that
(
∃!S ∈ P : |S| > 1

)
∨
(
|S| = 1 ∀S ∈ P

)
,

which includes the GC and the SP.

Example 1.3.4 (GC, SP and γ-partitions of N ). When N = {1,2,3,4}, we have

GC = {{1,2,3,4}},

SP = {{1}, {2}, {3}, {4}} and

γ-partitions =
{

{{1}, {2}, {3}, {4}},

{{1,2}, {3}, {4}},

{{1,3}, {2}, {4}},

{{1,4}, {2}, {3}},

{{1}, {2,3}, {4}},

{{1}, {2,4}, {3}},

{{1}, {2}, {3,4}},

{{1,2,3}, {4}},

{{1,2,4}, {3}},

{{1,3,4}, {2}},

{{1}, {2,3,4}},

{{1,2,3,4}}}
.

Those special partitions also have their numerical version.
Example 1.3.5 (Numerical GC, SP and γ-partitions of N ). When N = {1,2,3,4}, we have

GC = {4},

30



SP = {1,1,1,1} and

γ-partitions =
{

{1,1,1,1},

{2,1,1},

{3,1},

{4}}
.

1.3.1. Symmetric partition function form game

A Symmetric Partition Function Form Game (SPFG) is a special case of a PFG where
players are clones of each other. We mean by using this term they possess the same initiative
levels, strategies, objectives, perceived payoff value, risk tolerance, etc. This creates symme-
try in the game, in the sense that if you were to swap any two players in any partition, the
permutation would not generate any perturbation to the game at the exception of the two
players now receiving the payoff of the other player, and continuing the game from there.

Giving the utility in terms of embedded coalitions becomes redundant, since the impor-
tant parameter under this paradigm is the number of players per coalition in the partition.
Thus, the partition function links an embedded numerical coalition to a payoff.
Definition 1.3.6 (Symmetric Partition Function Form Game (SPFG)). A symmetric parti-
tion function form game is given by a pair (N , W ) where N is a set of indiscernible players
and W : Enum(N ) → R is the partition function assigning a real number to every embedded
numerical coalition.
Example 1.3.6 (Symmetric Partition Function Form Game (SPFG) of N ). Let us define
an SPFG (N , W ) where |N | = 3 and

W =
{

({3}, {3}) 7→ 9,

({2}, {2, 1}) 7→ 6,

({1}, {2, 1}) 7→ 1,

({1}, {1, 1, 1}) 7→ 2}
.

31



The study of an SPFG is very advantageous as symmetry greatly simplifies the game.
Not only does it reduces the size of its representation, it also collapses its solution concepts
for fairness study. We will see in Chapter 3 that such solution concepts in symmetric games
become vain since the distribution of utility between identical players is trivial.

1.3.2. Characteristic function form game

A characteristic function form game (CFG) is a game of type similar to the PFG’s, but
where the partition function (here known as the characteristic function) maps a coalition to
a payoff. Hence, the players of a coalition are not impacted by the actions of the remaining
players.
Definition 1.3.7 (Characteristic Function Form Game (CFG)). A characteristic function
form game is given by a pair (N , U) where N is the set of players and U : 2N → R is the
characteristic function assigning a real number to every subset of N . We have U(∅) = 0.

Note that a PFG (N , V ) where the partition function satisfies the following equation for
each C ⊆ N :

V (C,P) = V (C,P ′) ∀P ∈ Π(N ) : C ∈ P

is a CFG.
Example 1.3.7 (Characteristic Function Form Game (CFG) of N ). Let us define a CFG
(N , U) where N = {1,2,3} and

U =
{

{1, 2, 3} 7→ 9,

{1, 2} 7→ 5,

{1, 3} 7→ 6,

{2, 3} 7→ 4,

{1} 7→ 2,

{2} 7→ 3,

{3} 7→ 1,}
.

When solving a CFG, we aim at answering two questions:
(1) Which partition P̃ of N will form? We know that the payoffs do not depend on the

partition, but two coalitions figuring a common player cannot be formed simultane-
ously.

32



(2) What will be the payoff allocation ⃗̃y ∈ Rn received by each player of N such that∑n
i=1 ⃗̃yi = ∑

C∈P̃ U(C)?
The two questions above are the same as the ones posed for PFGs. However, as we will

discuss in Chapter 2, the assumptions and reasoning usually employed to solve CFGs do not
hold when tackling PFGs. Indeed, the class of PFGs is a more general class of games than
the class CFGs. Thus, the study in this thesis for PFGs will hold for CFGs.

1.3.3. Games with positive and negative externalities

Externalities in a game are the quantifiable impact of the formation of a coalition on the
other coalitions. In a CFG, there are no externalities, since the partition function value of a
coalition only depends on the players in the coalition itself.

In the general case of PFGs, we can have externalities. Whenever a coalition changes,
the context, or partition in which the players are currently distributed, also switches. Thus,
when a coalition benefits (resp. does not benefit) from the distribution into coalitions of the
other players, we say that this variation in utility is the fruit of positive (resp. negative)
externalities on the coalition.

If, in a game, all coalition formations are beneficial to all coalitions, we say that the game
is with positive externalities. On the contrary, if all coalition formations are detrimental to
all coalitions, we say that the game is with negative externalities.

Many games will not be limited to only positive or negative externalities, but will have
a mixture of both. Therefore, coalition formations will be sometimes beneficial, sometimes
detrimental, depending on the context and on the observed impacted coalition.
Definition 1.3.8 (PFG with positive externalities). A PFG (N , V ) is with positive ex-
ternalities if for each mutually disjoint coalitions R, S, T ⊆ N and partition P ∈
Π(N \ (R∪ S ∪ T )), the following inequality holds:

V (R, (R,S ∪ T ,P)) ≥ V (R,(R,S, T ,P)) ∀R,S, T .

Definition 1.3.9 (PFG with negative externalities). A PFG (N , V ) is with negative ex-
ternalities if for each mutually disjoint coalitions R, S, T ⊆ N and partition P ∈
Π(N \ (R∪ S ∪ T )), the following inequality holds:

V (R, (R,S ∪ T ,P)) ≤ V (R,(R,S, T ,P)) ∀R,S, T .

Example 1.3.8 (PFG of N with positive externalities). Let us define a PFG (N , V ) where
N = {1,2,3} and

V =
{

({1, 2, 3}, {{1, 2, 3}}) 7→ 300,

({1, 2}, {{1, 2}, {3}}) 7→ 250,

33



({3}, {{1, 2}, {3}}) 7→ 40,

({1, 3}, {{1, 3}, {2}}) 7→ 260,

({2}, {{1, 3}, {2}}) 7→ 30,

({1}, {{1}, {2, 3}}) 7→ 20,

({2, 3}, {{1}, {2, 3}}) 7→ 270,

({1}, {{1}, {2}, {3}}) 7→ 2,

({2}, {{1}, {2}, {3}}) 7→ 3,

({3}, {{1}, {2}, {3}}) 7→ 4}
.

Example 1.3.9 (PFG of N with negative externalities). Let us define a PFG (N , V ) where
N = {1,2,3} and

V =
{

({1, 2, 3}, {{1, 2, 3}}) 7→ 1,

({1, 2}, {{1, 2}, {3}}) 7→ 20,

({3}, {{1, 2}, {3}}) 7→ 100,

({1, 3}, {{1, 3}, {2}}) 7→ 30,

({2}, {{1, 3}, {2}}) 7→ 120,

({1}, {{1}, {2, 3}}) 7→ 140,

({2, 3}, {{1}, {2, 3}}) 7→ 40,

({1}, {{1}, {2}, {3}}) 7→ 200,

({2}, {{1}, {2}, {3}}) 7→ 250,

({3}, {{1}, {2}, {3}}) 7→ 300}
.

As we will show in Chapter 3, if we know that a PFG is with positive or negative
externalities, this simplifies the existence of a solution satisfying stability conditions inspired
by strategical behavior.

34



1.4. Mixed-integer programming
The flexible framework of mixed-integer programming (MIP) allows us to model several

real-world decision-making problems. Concretely, a mixed-integer linear program (MILP) is
given by

max
x∈Rn

c⃗T x⃗

s.t. Ax⃗ ≤ b⃗

x⃗i ∈ Z i = 1, . . . , n′,

where n′ < n, A ∈ Rm×n, and c⃗ and b⃗ are vectors of dimension n and m, respectively. An
MILP models the problem of determining the decision vector x⃗ maximizing the linear objec-
tive function c⃗T x⃗, while respecting the m linear constraints and the integer requirements.

MILPs have their usefulness well-proven in many domains such as supply chains and
health care, although they are classified as NP-hard and thus are theoretically intractable.
Nonetheless, motivated by their undeniable modeling flexibility and the existence of powerful
solvers to tackle them, MILPs applied to cooperative game theory will be used and discussed
in this work. For further details about integer programming, we refer the interested reader
to the textbooks by Conforti et al. [18], Wolsey [84].

35





Chapter 2

Literature review

We stated in Chapter 1 the central questions to cooperative game theory: “What will be the
partition P̃ of the set of players N to be formed?” and “What will be the payoff allocation
⃗̃y ∈ Rn received by each player of N ?” This literature review will revolve around existent
work seeking to solve one or both of those questions. We observe that solution concepts in
cooperative game theory are usually defined first for CFGs, which is a game class attributed
to von Neumann and Morgenstern [82]. They are then frequently extended to PFGs, a game
class first presented by Thrall and Lucas [78] considering the case with externalities. We
defined both game classes in Section 1.3.

Before diving into the literature related to cooperative game theory, in Section 2.1, we
briefly describe a classic solution to non-cooperative games. Our goal is to emphasize that
in both cases, cooperative and non-cooperative games, it is strategic behavior that is mostly
in the base of the existent solution concepts.1 In Section 2.2, we review works discussing
multiple solution concepts for the distribution of the payoff between the players. Then,
in Section 2.3, we discuss coalition structure formation in Multi-Agent Systems (MAS), which
are settings with more than one decision maker (agent). We divide this MAS literature for
coalition structure formation into two categories, based on whether the agents are benevolent
and willing to accept the agenda of a central planner coordinating their efforts to reach a
common objective, or whether the agents are self-interested and open to cooperation strictly
because it might enhance their individual payoffs. Since within coalition structure formation,
some classical payoff allocation concepts are used, this explains why we first provide a review
of the literature on them.

1It must be noted that in cooperative game theory, players can still behave strategically as in non-cooperative
games. The main difference is in the fact that in cooperative games players can form coalitions and thus,
for their mathematical formalization, we only need a partition function. In non-cooperative games, we must
know each player payoff function and set of feasible strategies.



2.1. Non-cooperative game theory
The most well-known solution concept of a game is the Nash equilibrium. It defines

a stable solution for non-cooperative games with two or more players, i.e., games where
players cannot form binding agreements. The Nobel laureate John Nash proved that there
is a Nash equilibrium (solution) for every finite game [56]. An outcome of a non-cooperative
game (i.e., strategies selected by the players) where no player has incentive to unilaterally
deviate is a Nash equilibrium. This definition makes it clear why we can see an equilibrium
as a concept of stability and that it defines a neighbourhood around the equilibrium (set of
unilateral deviations). This concept is widely used, sometimes alongside MIP tools, to solve
various games such as in the context of power markets [27], (symmetric) network congestion
games [66], knapsack and competitive lot-sizing games [13] and the games generated by the
test suite GAMUT [58, 72]. These works show us that applying MIP techniques to games
can be an effective tool to solve them. However, in the context of cooperative games, we
have to look further than Nash Equilibria in order to find a solution concept for PFGs or
CFGs, although stability stays an important component of what a solution concept attempts
to capture.

What would constitute a satisfactory solution concept for a game where players are
open to cooperating, but have conflicting interests about what the best partition and the
best payoff allocation are? Certain philosophies put emphasis on stability, i.e., attempt at
predicting in which state the game would naturally fall; by state we mean partition of the
set of players and payoff allocations. The following sections present a discussion on the main
payoff allocation and partition formation philosophies together with well-known solution
concepts for cooperative games.

2.2. Payoff sharing
As far as the allocation of payoffs is concerned, stability must reflect the fact that no set

of players has an interest in breaking away from their respective coalitions to form a new
one where their payoffs would be higher. Beyond stability, one could argue that we must
represent the interests of all players, so what is needed is fairness. For instance, the payoff
allocation should reward players according to their contribution to the coalition they are in.
Thus, a good solution concept will try to mathematically capture fairness, i.e., to treat the
players impartially, like any good referee in a game. Stability is not antagonist to fairness,
and a solution concept could arguably present both of these characteristics. Just like in real
life, whether something is stable or fair resides primarily in the eye of the observer and in
the context of the game. One thing is for sure: within the limits imposed by the rules of the
game, each player deserves the same chance to maximize their winnings. Depending on one’s

38



philosophy, the ideal solution concept for payoff allocation could resemble the core [28], the
nucleolus [73] or the Shapley value [74], to name a few.
Core concepts. The core was first introduced by Gillies [28]. It is a solution concept based
on efficiency and on subset rationality, originally defined given a game (N , U) where there
are no externalities, i.e., U is a characteristic function. First, we have efficiency:

n∑
i=1

y⃗i =
∑
C∈P̃

U(C). (2.1)

Second, we have coalitional rationality:∑
i∈C

y⃗i ≥ U(C) ∀C ⊆ N . (2.2)

According to the core, if we can find a payoff allocation y⃗ such that Constraints (2.1)-(2.2)
hold, the chosen partition P̃ is stable. This is because respecting Constraints (2.1)-(2.2)
ensures that no set of players has incentive to change from P̃ if each player i receives the
respective y⃗i, as they would not be able to do better on their own [23]. Originally defined
for CFGs, the core assumes the GC will form and thus, an allocation y⃗ is in the core if
it satisfies Constraints (2.1)-(2.2) with P̃ = {N}. Since in a CFG, the formation of a
coalition does not impact the value of the remaining coalitions, it is possible to consider that
the GC is always forming. In fact, we can consider the existence of a central planner who
finds the social welfare (SW)-maximizing partition, and then, we assume that the determined
maximum SW is the characteristic value of GC. This scheme allows players to always dispose
of the greatest total payoff that the game could offer to share. In addition, it systematizes
the solving of the problem, as the GC will always be assumed to be formed, reducing the
problem to the allocation of payoffs among the players in N . The core, when it is non-empty,
furnishes a stable set of payoff allocation vectors. To name one common core usage, Anupindi
et al. [1] employ it for their cooperative surplus allocation step in a two-stage decentralized
distribution system.

Numerous works aim at tempering the limitations of this solution concept, notably by
extending its definition to a broader class of games such as PFGs. In PFGs, the GC scheme
cannot be utilized to simplify solving a game: since there are externalities, we cannot re-
define the partition function value for the GC as the total value of the SW-maximizing
partition. Most concepts are based on reducing PFGs to CFGs, and then applying the core
definition to the obtained CFG. For this reduction, authors make different assumptions on
how players outside of a coalition react to it. A first example is the α-core, by Aumann [2],
that reads just like the core, but replaces in a game (N , W ) the partition function W by
W α. This new function attributes to every coalition C ⊆ N the lowest value it can obtain:

W α(C) = min {W (C,P) : P ∈ {C,S},S ∈ Π(N \ C)} .

39



This pessimistic approach allows to apply the core to a game with externalities by trans-
forming it into the CFG (N ,W α). In the same fashion, but following an optimistic approach,
there is the ω-core, by Shenoy [75]. It replaces in a PFG (N , W ) the partition function W

by W ω, attributing to every coalition C ⊆ N the largest value it can obtain:

W ω(C) = max {W (C,P) : P ∈ {C,S},S ∈ Π(N \ C)} .

In Chander and Tulkens [16], they focus on a model where the deviating coalition expects the
other players to split into singletons, in order to prevent free-riding by any deviating coalition.
Basically, it replaces in the PFG (N , W ), the partition function W by W γ, attributing to
every coalition C ⊆ N the value it obtains when it is the coalition of greatest cardinality in
the γ-partition:

W γ(C) = W (C, {C,S}) such that S ∈ Π(N \ C), |T | = 1 ∀T ∈ S.

In Hart and Kurz [36], it is assumed that players will not react to a partition deviation: W of
(N , W ) becomes W δ, where the new partition after C deviates from the coalition structure
P ∋ C is simply P \ C:

W δ(C) = W (C, {C,P \ C}) such that ∀S ∈ P , (S − (S ∩ C)) ∈ P \ C.

For a given game (N , W ), let F (α)(W ), F (γ)(W ) and F (δ)(W ) represent respectively the
set of α-, γ- and δ-stable coalition structures, i.e., the set of players’ partitions such that
the core of the obtained CFG is non-empty. In other words, a partition P̃ is in F (α)(W ),
F (γ)(W ) and F (δ)(W ), if there is a payoff allocation y⃗ such that Constraints (2.1)-(2.2) hold
for U = W α, U = W γ and U = W δ, respectively. Then, according to these definitions, we
have

(
F (δ)(W ) ∪ F (γ)(W )

)
⊂ F (α)(W ) [36]. In a similar vein, there are works by Kóczy

[40, 41, 43], who models games with various levels of externalities using the recursive core,
a solution concept that, when a deviation occurs, allows the non-deviating players to react
and form a core-stable partition. It is also relevant to mention the strong-core by Chander
[15], a solution concept for PFGs that reduces to the core when the PFG is also a CFG. A
feasible payoff vector belongs to the strong-core if, when compared to the SP, no coalition is
strictly better-off in the SP, and if, when compared to the remaining partitions, there exists
no partition such that every non-singleton coalition is strictly better-off in the partition. For
PFGs with positive externalities, they also show that δ-core ⊂ strong-core ⊂ γ-core, and
for PFGs with negative externalities, γ-core ⊂ strong-core ⊂ δ-core. Bloch and van den
Nouweland [10] analyze different definitions of cores and find that the projection core (which
is equivalent to the δ-core proposed by Hart and Kurz [36]), because it satisfies subset
consistency, and the pessimistic core (which is equivalent to the α-core proposed by Aumann
[2]), because it preserves superadditivity, are the most interesting to study PFGs.

40



In Gopalakrishnan and Sankaranarayanan [29], the authors define an agreeable allocation
for cost sharing of interdependent risks that is the average of the extreme core allocations.
This custom version of the core is applied to tackle network-wide cooperative security in
the food manufacturing sector. Finally, it is important to mention the work by Zhao [87],
linking the Nash equilibrium concept to the core through the definition of hybrid solutions
that consist in the responses of the players when there is coexistence of cooperation (within a
coalition) and competition (between the coalitions). We are in presence of a Nash equilibrium
without hybridization when the SP forms, and in presence of a core without hybridization
when the GC forms. The present thesis uses a custom version of the core applied to PFGs
that is presented in Section 3.3.
Nucleolus. While the definition of core defines a set of payoff allocations, the nucleolus
solution concept for CFGs is unique, lies in the core if the core is non-empty, and it is
guaranteed to exist in games with individually rational payoff allocations, i.e., allocations
where all the players can get at least their SP characteristic function value, as it aims
at returning the most stable of them by lexicographically minimizing the dissatisfaction
of all coalitions. Introduced by Schmeidler [73], the nucleolus is generally considered a
computationally demanding problem for many classes of games, as only a few special classes
are guaranteed to have polynomially bounded running times for the computation of the
nucleolus [23]. Multiple works seek to extend or refine this solution concept. In Benedek et al.
[5], the computation of the nucleolus is democratized to moderately large cooperative games
by the introduction of a new, reasonably-sized set of necessary and sufficient conditions to be
in the nucleolus, as well as a new lexicographical descent algorithm for finding the nucleolus.
While the nucleolus is defined for CFGs, the work by Tripathi and Amit [79] tackles the issue
of adapting it to games with externalities (PFGs). In this thesis, we consider SPFGs, so the
payoff sharing is more straightforward. Nonetheless, in future work, it could be interesting
to investigate the computation of the nucleolus using our MILP-representation (Chapter 4).
Shapley value. Among the popular solution concepts for the allocation of payoffs, we can
also include the Shapley value [74]. This one is peculiar as it makes two assumptions from
the get-go: (i) every coalition of the same size is equally likely to form, and (ii) every player
is equally likely to join any coalition of the same size. For a CFG (N , U), it results in a payoff
distribution scheme where each player receives ϕi(U), a weighted average of their marginal
contributions:

ϕi(U) =
∑

S⊆N \{i}

|S|!(n− |S| − 1)!
n! (U(S ∪ {i})− U(S)).

The Shapley value is usually considered as a fair solution concept: its design does not force
stability, but it rather puts emphasis on giving to a player the fair share of the payoff
according to their contribution to any coalition. Just like with other solution concepts,

41



research has been made with the intention of extending the Shapley value to other types of
games, e.g., Norde and Pham Do [57] extended the concept to PFGs. Let Permutations(N )
be the set of all possible permutations of the players, i.e., the set of all possible player orders.
For a given σ ∈ Permutations(N ) and i ∈ {1, 2, . . . , n}, let γσ

i be the γ-partition where
coalition Cσ

i = {σ(1), σ(2), . . . , σ(i)} is the coalition of greatest cardinality, with Cσ
0 = SP.

The marginal vectors of a PFG (N , W ) are defined as follows:

m⃗σ
σ(1)(W ) = W ({σ(1)}, SP) = W (Cσ

1 , γσ
1 ),

m⃗σ
σ(k>1)(W ) = W (Cσ

k , γσ
k )−W (Cσ

k−1, γσ
k−1).

The Shapley value vector Ω⃗(W ) of the PFG (N , W ) is defined as the average of the n!
marginal vectors,

Ω⃗(W ) = 1
n!

∑
σ∈Permutations(N )

m⃗σ(W ).

In Bartholdi and Kemahlioğlu-Ziya [3] and Kemahlıoğlu-Ziya and Bartholdi [38], the authors
are interested in using the Shapley value for a fair distribution of the excess profit generated
by inventory pooling in supply chains, that might not be immediately stable, but can be
considered stable in a farsighted sense. In Granot and Sošić [30], they present a 3-stage
decentralized cooperative system of inventory ordering and inventory residuals sharing. In
this system, the Shapley value can lead to the best result for given inventory decisions, but
it does not coincide with core allocation rules, and thus, may result in lower total additional
profit from the pooling of residual inventories in the third stage. Again, because we focus
on SPFGs in this thesis, the computation of the Shapley value is arguably excessive in our
case, because it is clear that to reach fairness, the payoff sharing should be equal for all the
players.

2.3. Coalition structure formation
In multi-agent systems, when the system is a game, agents are also called players2. When

agents are allowed to cooperate by forming coalitions, according to Chalkiadakis et al. [14],
there are two main classes of problems: (i) coalition structure generation (CSG) is the
case where agents are not selfish, but rather benevolent, and are willing to implement the
solution dictated by a central planner whose goal is often to maximize the SW (i.e., the
sum of the values of all coalitions formed), and (ii) coalition formation activities by selfish
rational agents is the case where the agents want to maximize their individual payoff when
participating in coalition formations. Real-world situations where agents share the same
intentions and may request help from a central planner to coordinate include problems
2Usually, the term “players” is reserved for cases where agents are exclusively self-interested, i.e., they behave
strategically.

42



in the context of wide-area surveillance with multi-sensor networks [46] and airline crew
scheduling [77]. Inventory pooling [38], demand pooling for bulk buying, distributed vehicle
routing coalitions for delivery/transportation cost sharing [4, 81], audit/demand information
sharing [24, 47], multi-country disaster prevention [71] and vaccine distribution [83] are, for
their part, examples of situations where agents may be tempted to strategically team up to
lower their individual operation costs.
Coalition structure generation. There is a great body of works on the subject of CSG.
They mainly focus on finding an efficient representation and/or an efficient algorithm to deal
with such large combinatorial problems (remember Table 1.1 depicting the input size of a
game). In the realm of efficient representations, there is a trade-off between succinctness,
computational tractability and full expressivity, as remarked by Skibski et al. [76] in their
work introducing partition decision trees (PDTs). PDTs are a rule-based concise represen-
tation of PFGs that does not take a fixed amount of space, but can express every PFG
fully and can be exponentially more concise than the conventional representation of a par-
tition function. They also develop algorithms using PDTs that compute direct extensions
of the Shapley value in polynomial time, which is of equal time complexity to what a parti-
tion function form conventional representation can achieve for the same operations. In Zha
et al. [86], PDTs are used to solve the CSG problem along with two methods: a depth-first
branch-and-bound algorithm and a MaxSAT encoding. In Ueda et al. [80], they examine
three rule-based fully-expressive concise representations of CFGs: (i) marginal contribution
nets [37] (with a variation, embedded marginal contribution nets (embedded MC-nets) [51],
that can be applied on PFGs), (ii) synergy coalition groups [20], and (iii) synergy coalition
groups in multi-issue domains [19]. They develop MIP formulations to solve the CSG prob-
lem and state that the best-performing representation scheme depends on the application.
Since embedded MC-nets can be applied on PFGs, Skibski et al. [76] compare their PDTs to
them and found that embedded MC-nets can be exponentially more concise than PDTs, and
at most polynomially less concise than PDTs. However, neither of the two representations
is guaranteed to be systematically concise, i.e., to take space polynomial on the number of
players in the PFG.

In this thesis, we take the opposite stance and seek a well-determined compact repre-
sentation at the potential expense of only approximating a PFG. Präntare and Heintz [68]
and Olariu et al. [62] also take the branch-and-bound approach to solve the CSG problem,
but their perhaps more holistic views on the role of the CSG encourage them to extend or
transform the CFG/PFG definition, and hence to use different representations. In the for-
mer work, coalitions are formed in order to perform a task. Thus, partitions become ordered
sets such that each coalition is assigned to a task, and they can perform simultaneous coali-
tion structure generation and assignment with an anytime algorithm for the case without
externalities (most commonly modeled by CFG). In the latter work, the CSG problem is

43



modeled by a graph and solved using mixed integer linear/quadratic programming. Graphs
are another representation on which CSG is studied with many methods being proposed such
as the one by Kong et al. [44] based on min-k-cuts. They are not equivalent to CFGs: using
graphs allows to give more context that is useful to the problem solving than what a CFG
can by adding structure to the set of agents [81]. For instance, when the agents of the MAS
are embedded in a network (e.g., computer or social network), there can be situations where
two agents are disconnected and, without the presence of intermediaries, cannot cooperate.
There are other works using various methods to solve the CSG problem, such as mixed in-
teger programming tools as in Caprara and Letchford [11], Rahwan et al. [69] and Bistaffa
et al. [6]. There are also authors developing metaheuristics. For example Contreras et al. [21]
employ a genetic algorithm to solve the CSG problem, stating that the major issue faced in
this context is to choose a proper encoding of the game that enables efficient computation.
Coalition formation activities by selfish rational agents. Stability is important with
regards to solution concepts that aim to anticipate how players will partition themselves in a
game. In this context, we immediately think of two algorithmic designs when talking about
stability: stability constraint set design, such as in Chwe [17], and process-based designs,
such as in Konishi and Ray [45]. Both of these solution concepts are used by Nagarajan and
Sošić [54] in an attempt to propose a solution that captures farsightedness to a symmetric
Bertrand price problem. In the following, we first discuss the literature primarily on stability
constraint set design and then on process-based design.

When we talk about selfish rational agents who are allowed to cooperate (i.e., enter into
binding agreements), but who will only do so if it will improve their individual payoffs, the
body of literature is slightly more modest. We speculate here that it may be because when
agents are no longer guided by a central planner, there is no longer a consensus on what
constitutes a good solution to the game, which brings an additional layer of nuance and
difficulty. Moreover, an additional question is in order: is collaboration even fruitful for the
players, or is it better to stick to the SP? Fang and Cho [24] study the effects of externalities
on the players’ incentives to cooperate in the context of firm audits, while Basso et al.
[4] attempt to justify why cooperation, albeit rewarding for the players in theory, is not
common in reality, by analyzing different firms competing in multiple markets in a Cournot
fashion. Prior to competing, the firms have the option of signing collaboration agreements
that must conform with antitrust authorities’ requirements. There are plenty of reasons why
collaboration is desirable: better offer of complementary products, diminishing of the waste
generated by perishable products, etc. However, as collaborative agreements are rarely seen
in reality, the authors underline three possible explanations: (i) forming coalitions might
be unprofitable, (ii) coalition formations might be refused by antitrust authorities and (iii)
firms (or a central planner) might fail to compute an optimal partition. To navigate this
delicate situation, they designed a few custom stability constraints in order to solve their

44



coalition formation problem modeled with a PFG. Custom stability constraints allow to
adapt the solution concept (stability definition) precisely to the context of a problem. They
target a few key rational deviations that are plausible in their context and ensure they do
not compromise the stability of a partition. Basso et al. share the same philosophy as in Ray
and Vohra [70]: in terms of deviations, they are more concerned by coalition splitting than
merging. We will discuss the constraints presented by Basso et al. [4] in Section 3.2, as
we decided to follow this route and use an algorithm with custom stability constraints for
the coalition structure formation. Similarly to Basso et al., Nagarajan and Sošić [54] study
the behaviour of self-interested agents competing in a Cournot-like market, where signing
agreements to enter coalitions could reveal beneficial to the agents. This time however, agents
are symmetric and the authors are interested in finding a farsighted outcome. In Carraro
and Marchiori [12] just like in Nagarajan and Sošić [54], the coalition structures analyzed
are restricted to γ-partitions, since there are many situations where a single agreement is
proposed and agents have to choose between signing it or not signing it. In Anupindi et al.
[1], the authors analyze decentralized distribution systems where, in a two-stage game, the
retailers first cooperatively decide on the allocation rules to share surplus profits, and then
competitively decide on the inventory levels.

A work by Yi [85] considers the case where symmetric and self-interested agents can
cooperate, and it focuses on how coalitions form (e.g., open membership or unanimity)
and the effect that it has on the stable coalition structures of games with positive/negative
externalities. Using a two-stage PFG model, Pintassilgo and Lindroos [67] study cooperation
between symmetric players in the context of high seas fisheries. They find that prospects of
cooperation are low because of countries free-riding cooperative agreements.

In selfish MAS, bargaining is also studied in multiple contexts, such as in supply chains,
because it is often a natural activity that occurs when seeking cooperation. Also in the con-
stext of self-interested agents, Klusch and Gerber [39] design and implement a simulation-
based dynamic coalition formation model that let agents negotiate rationally their participa-
tion to coalitions, a method crafted for the applications of ubiquitous and mobile computing,
including mobile commerce in wireless environments. In Nagarajan and Bassok [53], using
the Nash bargaining concept, they find that suppliers do not form any coalition when the
assembler (that buys from the suppliers) has a strong negotiation power, but form coali-
tions of coarser granularity as the assembler’s negotiation power weakens. On the subject
of environmental and social responsibility of companies, the article by Feng et al. [25] uses
a combination of bargaining and Shapley value to find the gain allocation across a network.
Another instance of Nash bargaining in action is by Mu et al. [52], where it is applied to
pulses imports in India. In Feng et al. [26], they decide to compare the very common Nash
bargaining solution to the less-known Kalai-Smorodinsky solution, that captures different
elements of answer, notably negotiation power shifts. We do not use bargaining for a model

45



simplification purpose in this thesis, but the value function of a PFG can be seen as the
aftermaths of any negotiation process between the agents. In Granot and Sošić [31], three
firms with products of a certain degree of substitutability have the option of creating an
alliance to share development and operation costs. The authors seek to study the impacts
of the marketplace joint venture on the (joined or remained independent) firms and their
suppliers. Since any two firms can communicate and coordinate to deviate, they select the
largest consistent set [17] to identify stable coalition structures.

In Liao et al. [49], they tackle the two same problems we do this thesis: coalition forma-
tion and payoff sharing. However, they make different design choices. On one hand, their
payoff division employs the Shapley value, as they aim to enforce individual agents to get
a payoff corresponding to their contribution to a coalition. On the other hand, their coali-
tion formation employs a Markov process, because they notice that the process of individual
agents morphing into different coalition structures fits naturally a Markov process method.
We contemplated using a dynamic process to find stability in the coalition formation step,
but ultimately chose a deterministic method due to its simplicity and suitability.

This thesis is in line with the research on coalition formation with rational and selfish
agents, in contrast with most literature that is devoted to CSG. Moreover, it focuses on a
less studied and more general class of games, the PFGs, and on building a framework that
welcomes customized stability constraints. In addition, we propose an MILP game represen-
tation providing a novel compact modeling for SPFGs. Our compact representation is not
guaranteed to achieve full expressiveness for all SPFGs, but it can be used to approximate
games while being of polynomial size in the number of players.

46



Chapter 3

Coalition structure formation and payoff
sharing

Summarizing our setting so far, we have a set of self-interested symmetric players that are
open to coalition formation if it can benefit them individually, which we will model using
an SPFG. This chapter will describe our stability-oriented solution concept for coalition
formation and payoff sharing.

First of all, let us discuss the impact of having symmetric players on the design of a
solution concept. We would like to point out that relying exclusively on fairness to select the
outcome of an SPFG gives a trivial solution. No matter from which player’s perspective the
game is studied, it will always be exactly the same, since the players are copies of each other.
Thus, the natural path to follow is to select the partition that generates the greatest total
payoff and to split it equally among the players. This solution is convenient, as it answers
both the questions raised in Section 1.3: “What partition will form?” and “What will be
the payoff allocation received by each player?”. In conclusion, symmetry simplifies both the
encoding and the solving of a PFG when we are aiming for fairness. But, what if we are
instead interested in stability? After all, we are in the presence of self-interested players,
and fairness alone will not prevent the players from deviating. Therefore, the consideration
of stability is crucial if we seek to consider strategical behavior, i.e., self-interested players.

3.1. Preliminaries
In our setting, the solution to our problem must be a stable outcome of the game. Recall

Definition 1.3.5 formalizing the notion of game outcomes, which composed of two parts: (i)
the partition that will form P̃ , and (ii) the payoff allocation vector ⃗̃y. To determine if an
outcome is stable or not, we need to find what threatens its stability, and if it will be acted
upon (this is, the plausibility of the threat). In cooperative game theory with self-interested
players, threats to stability are often deviations, i.e., players leaving or joining coalitions



in the hope of a better individual payoff. In this thesis, we use the term neighbourhood
to designate the set of deviations that are considered as threats to stability according to a
solution concept. We can trace a parallel with competitive game theory, where deviations
are a change in strategy from one or more players, and the Nash Equilibrium is the set of
strategies selected by the players such that none of them has incentive to unilaterally deviate.
In this case, the neighbourhood is the set of unilateral deviations, and a unilateral deviation
will be carried out if the player who commits it gains utility by doing so.

Consider a PFG (N , V ) and its outcome (P̃ , ⃗̃y). The outcome is stable if there is no
incentive to deviate to other outcomes we want to prevent deviations to. Going forward, we
will refer to the other outcomes we want to prevent deviations to as the neighbourhood. By
extension, we call the partition P̃ (resp. vector ⃗̃y) of a stable outcome a stable partition
(resp. stable payoff allocation vector).

In the following Section 3.2, we propose and explain a few partition stability concepts.
Moreover, we formalize our definition of stable partition for general PFGs, and we restrict
our attention to those maximizing SW for the SPFG case. Then, in Section 3.3, we present a
simple payoff sharing methodology, this time taking full advantage of the fact that the focus
of this work are games with symmetric players.

3.2. Stability constraints for partitions
Being interested in stability, we define a deviation neighbourhood for our embedded

coalitions. Given a partition, what are the plausible or threatening partition transitions?
Before discussing plausible transitions between any two partitions, we determined that a
“natural” state in the game is the state without agreement, the singleton partition (SP).
Coalitions have to be worked for to be formed. Thus, every stable partition candidate
should improve upon the SP, that will de facto belong to their neighbourhood.

Basso et al. [4] define some concepts of stability that they find relevant in the context
of competing firms that have the option of cooperating for transport and distribution of
(timber-related) products. Those stability concepts are expressed through constraints. For
the studied PFG, they introduce F1 (see Equation (3.1)), a set of constraints stipulating
that the induced stable partition should have a total utility larger or equal than the sum of
utilities of the players in the SP. They even go further on this notion by stating, with their
set of constraints F3 (see Equation (3.3)), that each coalition in a stable partition should
receive a payoff greater or equal to what its members would make if their payoffs from the
SP were summed. Together, F1 and F3 are there to certify that coarser partitions are worth
the extra work of making agreements.

But being worthy of making agreements is not enough for ensuring reasonable stability,
in most cases. Players will also seek the maximization of their individual utilities, and so

48



we could witness all sorts of deviations: a subset of players splitting from a coalition and
creating a new coalition together, coalitions joining their forces, etc. In [4], they define F2

(see Equation (3.2)), a constraint set accounting for a coalition dividing itself into two parts
of varying sizes: the payoff of the coalition should be greater or equal than the sum of the
utilities of the two parts for it to be considered stable.

Applying F1, F2 and F3 to partitions of a PFG constitutes an example of a partition
neighbourhood modeling stability notions. We devised one additional kind of transition
(deviation), also simple enough to be fairly plausible, that we denote by F4 (see (3.4)). We
can say it is antagonist to F2, because F4 concerns the merging of two coalitions.

These are the four types of stability constraints used in our methodology, particularly,
with the goal of showcasing later the benefits of the MIP representation of SPFGs that we
propose in Chapter 4. Please note that these stability conditions can be applied for general
PFGs, since we have not used the fact that players are symmetric neither their plausibility
depends on this property. In this way, in the remainder of this thesis, a partition P of a
PFG (N ,W ) is called stable if the intersection of the following sets is non-empty:

F1(P) :
∑
C∈P

W (C,P) ≥
∑
i∈N

W (i, SP ) (3.1)

F2(P) : W (C,P) ≥ W (S, (P − C,S, T )) + W (T , (P − C,S, T ))

∀C ∈ P ,∀Q ∈ Π(C) : |Q| = 2, {S,T } = Q.
(3.2)

F3(P) : W (C,P) ≥
∑
i∈C

W (i, SP ) ∀C ∈ P (3.3)

F4(P) : W (C,P) + W (S,P) ≥ W (C ∪ S, (P − C − S, C ∪ S)) ∀C,S ∈ P : C ̸= S. (3.4)

For SPFGs, given a numerical partition, the number of Constraints (3.1)-(3.4) is O(n2)
which is polynomial on the number of players. Moreover, for the case of SPFGs as discussed
in Chapter 4, we design our algorithm to return the stable partition with maximum SW

P̃ = max
P∈F

∑
C∈P

W (C,P), (3.5)

where F :=
{
P ∈ Π(N ) : F1(P)∩F2(P)∩F3(P)∩F4(P)

}
. The optimization problem (3.5)

can be infeasible since F can be empty. Nonetheless, when a solution exists, we will call its
solution P̃ the SW-maximizing partition. Equivalently to our definition of stable partition,
a partition of an SPFG is stable if it is in F .

There are important real-world contexts, such as ride sharing among individuals [7] and
risk sharing among wind producers [8], where a central planner coordinates the activities of
the participating agents (players). In such cases, most works in the literature guide this co-
ordination through the maximization of the SW. Moreover, a coalition structure maximizing
SW allow us to reduce inefficiencies. We are aware that, in an asymmetric setting, using SW

49



as a selection criterion among stable partitions can cause a lack of fairness. For instance, if
one player regularly achieves greater payoff allocations in partitions that are not maximizing
the SW, it means that the central planner would force this player to under-perform. How-
ever, in a symmetric setting, this issue is mitigated by the fact that if the chosen partition
is the SP, the GC, or a partition with coalitions of same cardinality exclusively, coalitions
will already receive equal payoffs. Moreover, if the chosen partition is not a partition where
all coalitions are equal in size, coalitions can use extracoalitional payments, if they are not
prohibited, to compensate between themselves until the desired level of fairness is reached.
Example 3.2.1 (Finding stability in a PFG using the F1 to F4 constraints). In this example,
we aim to show the application of our stability constrains, while demonstrating that the set F
can lead to (stable) partitions with no benefit to the players with respect to their individual
payoffs. Consider the PFG ({1,2,3,4,5}, V ) where only four partitions lead to coalitions with
payoffs different from zero. We have:

• V ({1,2},{{1,2},3,{4,5}}) = 4
• V (3,{{1,2},3,{4,5}}) = 2
• V ({4,5},{{1,2},3,{4,5}}) = 3
• V ({1,2},{{1,2},3,4,5}) = 2
• V (3,{{1,2},3,4,5}) = 2
• V (4,{{1,2},3,4,5}) = 4
• V (5,{{1,2},3,4,5}) = 4
• V ({1,2,3},{{1,2,3},4,5}) = 7
• V (4,{{1,2,3},4,5}) = 1
• V (5,{{1,2,3},4,5}) = 1
• V ({1,2,3},{{1,2,3},{4,5}}) = 4
• V ({4,5},{{1,2,3},{4,5}}) = 5
• Remaining embedded coalitions have the partition value function equal to 0.

We can see that no partition with a total payoff strictly greater than zero is stable according
to our definition (i.e., the F1 to F4 constraints):

• Partition {{1,2},3,{4,5}} does not respect F2, because if {4,5} splits into two, players
4 and 5 would make 4 each, while they make only 3 together.
• Partition {{1,2},3,4,5} does not respect F4, because if coalition {1,2} merges with

player 3, they would make 7 together, while they are only making 2 each separately.
• Partition {{1,2,3},4,5} does not respect F4, because if player 4 joins player 5, they

would make 5 together, while they are only making 1 each separately.
• Partition {{1,2,3},{4,5}} does not respect F2, because if {1,2,3} splits into coalitions

{1,2} and 3, they would make respectively 4 and 2, while they make only 4 together.
Figure 3.1 summarizes the transitions described above. However, the stable partitions

set F is not empty! For instance, the partition P = {{1,5},2, {3,4}} belongs to F , because:

50



{{1,2},{3},{4,5}}:(4,2,3)

{{1,2},{3},{4},{5}}:(2,2,4,4)

{{1,2,3},{4},{5}}:(7,1,1)

{{1,2,3},{4,5}}:(4,5)

Fig. 3.1. Diagram describing the advantageous partition transitions. For each node, in the
left we have the partition, and in the right the vector of payoffs for the associated embedded
coalitions.

• All the coalitional payoffs are equal to 0;
• Any merging of two coalitions also leads to null coalitional payoffs, which makes
F4(P) hold;
• Any splitting of any coalition into two also leads to null coalitional payoffs, which

makes F2(P) hold;
• SP has null coalitional payoffs, so constraints F1(P) and F3(P) are guaranteed to

hold.
Solving Problem (3.5) would thus return a partition that presents no advantage over any
of the four non-zero coalitional payoff partitions. This partition is stable according to our
definition, but it is not “efficient” in the sense that it would be possible to strictly improve the
utility for some sets of players since there are non-zero partition value embedded coalitions.

51



If stability is itself the end goal of a study, this non-efficient stable partition would be
appropriate. If we instead prefer to primarily focus on enabling the players to achieve some
gains, restricting the candidate partition space to a set of embedded coalitions satisfying
some minimum payoff value beforehand would be wise. This minimum payoff would need
to be formalized and, possibly, defined according to the real-world situation at hand. In our
four non-zero coalitional payoff partition example, this would encourage the players to seek
another kind of stability – or even to rely more on fairness or side payments – in order to
finish the game with profits. In summary, this example demonstrates that the context of the
game is very important to define a satisfying solution concept.

3.2.1. PFG with positive and negative externalities

In Chapter 1, we defined PFGs with positive (see Definition 1.3.8) and negative (see
Definition 1.3.9) externalities. Such games usually have an underlying payoff structure that
makes the finding of a stable partition more systematic and logical.
Theorem 1 (PFG with positive externalities). A PFG with positive externalities has exactly
one stable partition which is the grand coalition (GC).

Proof. In a PFG with positive externalities, players’ associations are beneficial to all the
coalitions. With the exception of the GC, all other partitions have more than one coalition,
and thus there is always incentive for them to merge, according to F4. Hence, the GC, where
every player agrees to collaborate with every other player, is the most beneficial partition
and is stable. □

Theorem 2 (PFG with negative externalities). A PFG with negative externalities has ex-
actly one stable partition which is the SP.

Proof. In a PFG with negative externalities, players’ associations are detrimental to all
the coalitions. Except for the SP, all other partitions have at least one coalition with at least
two players. Thus, the latter has incentive to deviate by splitting, according to F2. Hence,
the SP, where every player is alone in their partition, is the most beneficial partition and is
stable. □

3.3. Payoff sharing
We conceive that the determination of a game outcome is done in two steps: first, the

computation of P̃ solving Problem (3.5), and second, the allocation of payoffs. Symmetry
motivates this 2-step design choice, since we know that a subset of players from a coalition
will be as tempted to depart from it as any other subset of the same size. Hence, the overall
stability of a coalition within its neighbourhood will not be affected by diverging opinions
from its members: they will all share the same view on the coalition. A natural action to

52



take in an SPFG payoff sharing problem is to split the payoff of a coalition equally among
its members. However, with the intention of targeting mainly stability, we decided to not
enforce the equal allocation. Each player payoff will be constrained to be greater or equal to
the utility of the player in the deviation neighbourhood.

We detailed in Chapter 2 the core, a solution concept which seeks stability by validating
payoff allocations that are both efficient and coalitionally rational. We take inspiration from
those two criteria to design our allocation constraints. First, we have efficiency:

n∑
i=1

y⃗i =
∑
C∈P̃

W (C, P̃). (3.1)

Second, we have a slightly restrained version of coalitional rationality:∑
i∈S

y⃗i ≥ W (S, (P̃ − C, C \ S,S)) ∀S ⊆ C ∈ P̃ . (3.2)

In this version, we do not consider all subsets S ⊆ N , as done in the original definition of the
core, because at this stage we are not looking for additional agreements to be made. Thus,
the deviating players are made such that they come from the same coalition, i.e. S ⊆ C.

There is no guarantee on the existence of a payoff allocation vector y⃗ satisfying the
efficiency and coalitional rationality constraints. Thus, for the payoff sharing, we strive to
find the most stable sharing by starting with the efficiency constraint and gradually adding
coalitional rationality constraints. The latter are added in increasing order of the size of
the deviating coalition S. Those constraints are added simultaneously for each embedded
coalition (C,P). This is because we assume that small-sized coalition deviations are more
likely to happen than large-sized coalition deviations because they require less coordination
from the deviating players. If the size of S can go all the way to maxC∈P̃ |C| without making
the set of feasible payoff allocations empty, it means the solutions it contains are robust
with respect to the neighbourhood defined by us. Else, if one increment of the maximal
size of the deviating coalition S empties the set of stable payoff allocations, we backtrack
to the previous maximal size and content ourselves with one of its elements. This will be
a weaker solution, but it will provide us some degree of stability according with the last
size of S for which there was a feasible allocation vector. By following this procedure, we
are certain to always obtain a payoff sharing vector. The worst-case scenario would be that
we are given a solution that respects the efficiency constraint, but it cannot integrate any
coalitional rationality constraint to the model without emptying the set of feasible payoff
allocations.

At last, those two criteria of efficiency and coalitional rationality say nothing on coalitions
having to keep their utility to themselves. It means the algorithm might return a solution
that contains extracoalitional exchanges of utility. If we want to prevent those exchanges

53



from happening, we can add an anti-extracoalitional exchange constraint:∑
i∈C

y⃗i = W (C, P̃) ∀C ∈ P̃ . (3.3)

The convenience of having an MILP-representation of the partition function W will be
demonstrated in the following chapters, when using our definition of stable partition and of
most stable payoff allocation as defined in this chapter.

54



Chapter 4

Integer programming representation

Recall from Chapter 1 that solving a PFG means answering to the questions about how
players partition themselves and how they share (allocate) payoffs. In Chapter 3, where
we start to turn our attention to SPFGs, we propose solutions to these two questions by
modeling certain aspects of strategical behavior by the players. Indeed, it is the behavior of
each player that renders the answers to these questions more complex, as players are driven
by the goal of maximizing their individual gains. Hence, these two problems are naturally
related to optimization. This brings us to the heart of this thesis: we are interested in
designing a representation of PFGs that is compatible with MILP tools for solving a game,
all because they are a very powerful modeling framework and there are solvers capable of
efficiently solving MILPs. To this end, we only need to find a concise and compact way
to express a PFG using an MILP-formulation, and then let the solvers work for us. As a
first step in this research direction, we decided to keep our focus on the representation and
solving of SPFGs, as they are expected to be much simpler because of their naturally more
compact representation (recall Table 1.1), and their payoff sharing made uncomplicated due
to indistinct players. We also anticipated that SPFGs could be a good starting point to
showcase the usefulness of applying integer programming on PFGs.

4.1. SPFG representation
In this section, we show that we can represent a family of SPFGs through an MILP-

formulation of size bounded by a polynomial in the number of players n. The main ingre-
dient of the formulation is the definition of an n × n matrix of parameters. Of course, the
expressiveness of this representation lessens as n grows, and thus as the difference between
PN(n) and n2 accentuates. Nevertheless, the advantages of this framework are: (i) a compact
representation, (ii) the compatibility with the integer programming paradigm, which allows
solving the game with off-the-shelf solvers, and (iii) its promising computational results,
even when used to approximate SPFGs, as we will see in Chapter 5.



4.1.1. Variables and constraints

The main idea behind our representation is to have three matrices whose product gives the
partition function values for a specific partition. The first matrix X encodes the coalition
formation, i.e., how the players partition themselves. The matrix X is a variable for the
MILP-formulation. The second (auxiliary) matrix M plays the role of the intermediary
between X and the third matrix A by ensuring that each embedded coalition gets the right
payoff from A. The third matrix A encodes information of the SPFG partition function
values and is not a variable, but an input parameter. Next, we go into the details for the
description of X and M, and in Section 4.1.2, we describe A.

The first set of variables is given by the binary square matrix X ∈ {0,1}n×n. Rows
represent players and columns represent coalitions indexed from 1 to n. Therefore, Xij is 1
if player i is in coalition j, and 0 otherwise.
Example 4.1.1 (Matrix X expressing various partitions for a game with four players).
Below are possible representations of the singleton partition (SP):

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , X =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , or X =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .

Next, we present possible representations of a γ-partition with two players in its largest
coalition, here players 2 and 3:

X =


0 1 0 0
1 0 0 0
1 0 0 0
0 0 1 0

 , X =


0 0 0 1
1 0 0 0
1 0 0 0
0 0 1 0

 , or X =


0 1 0 0
0 0 0 1
0 0 0 1
0 0 1 0

 .

The grand coalition (GC) can be expressed as follows:

X =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 , X =


0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

 , or X =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 .

We can already see that each row must have exactly one entry equal to 1, i.e., X provides
a partition of the players. Moreover, we remark that in Example 4.1.1, there are multiple
possibilities on how to express a partition with a matrix. More precisely, the variations result
from the fact that we are trying to represent a set, but sets are non-ordered, so all column
permutations are valid. This forces us to add constraints on the order in which the columns
present themselves in the matrix to achieve uniqueness. We add two uniqueness-related

56



constraints: (i) the coalitions are sorted in descending order of their cardinality, i.e., the
columns with the most ones come first, and (ii) the coalitions of same size are further sorted
by their lowest player indexes. Hence, we will formulate constraints on X which will enforce
the following: 1) every row has exactly one entry 1 so that each player belongs exactly to
one coalition, 2) coalitions (rows) are ordered from the largest to the smallest, and 3) if two
coalitions have the same cardinality, the player indexes are used as a tiebreaker.

To write them down in our MILP, we need an auxiliary binary vector q⃗ ∈ {0,1}n−1, an
indicator that flags a 1 at index j if the coalitions from column j and j + 1 in X are of the
same cardinality, and that is 0 otherwise.
Example 4.1.2 (Vector q⃗ works as an indicator for coalitions of the same size that are
adjacent in X). Here are some example of q⃗ given X:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =⇒ q⃗T =
[
1 1 1

]

X =


0 1 0 0
1 0 0 0
1 0 0 0
0 0 1 0

 =⇒ q⃗T =
[
0 1 0

]

X =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 =⇒ q⃗T =
[
0 1 1

]
.

With variables X and q⃗ defined, we can present our constraints forcing the representation
of a partition through X to be unique:

n∑
j=1

Xij = 1 ∀i ∈ {1, ..., n}

(4.1)
n∑

i=1
Xij ≥

n∑
i=1

Xi(j+1) ∀j ∈ {1,..., n− 1}

(4.2)
n∑

i=1

(
Xij −Xi(j+1)

)
≥ 1− q⃗j ∀j ∈ {1,..., n− 1}

(4.3)

57



[
2n−1 2n−2 ... 20

]
×X∗j ≥

[
2n−1 2n−2 ... 20

]
×X∗j+1 − L̄(1− q⃗j) ∀j ∈ {1,..., n− 1},

(4.4)

X ∈ {0,1}n×n, q⃗ ∈ {0,1}n−1, (4.5)

where L̄ is a very large number. These constraints allow a partition to be uniquely defined
by a X. Constraints (4.1) force each player to be in one coalition. Constraints (4.2) sort
coalitions based on their size, in decreasing order. Constraints (4.3) ensure that q⃗j = 1 when
two coalitions of the same cardinality are adjacent in indices j and j + 1. Constraints (4.4)
are “relaxed” when q⃗j = 0, but “activated” q⃗j = 1, to enforce sorting based on the player
indices. Indeed, Constraints (4.3) to (4.4) model the following implications:

q⃗j = 0 =⇒
n∑

i=1
Xij >

n∑
i=1

Xi(j+1) ∀j{1,..., n− 1} (4.6)

q⃗j = 1 =⇒
n∑

i=1
Xij =

n∑
i=1

Xi(j+1) ∀j{1,..., n− 1}. (4.7)

When qj = 1, the respective Constraint (4.4) is “activated”, forcing the ordering of coalitions
of the same size by player labels since 2k >

∑k−1
i=0 2i,∀k ∈ N. Finally, Constraints (4.5) ensure

that the variables are binary.
Let us now introduce the binary rectangular M ∈ {0,1}(n+1)×n. Each row represents the

number of players in a coalition (which can be zero), and columns represent the coalitions.
Thus, an entry Mij equals 1 if coalition j has a cardinality of n− i + 1, and 0 otherwise.
Example 4.1.3 (Matrix M represents the sizes of the coalitions of a partition.). Consider
an SPFG with 10 players and the numerical partition Pnum = {4,3,1,1,1}, i.e., there is a
coalition with 4 players, one with 3 players, and the remaining players are by themselves.
Then, M is

Coalition size
10
9
8
7
6
5
4
3
2
1
0



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1



58



To represent the described M, we need the following constraints: 1) each column has
exactly one entry equal to 1, as a coalition cannot have two cardinalities, and 2) this non-zero
entry must be placed in row i such that the cardinality of coalition j as written in X∗j equals
n− i + 1:

n+1∑
i=1

Mij = 1 ∀j ∈ {0,..., n} (4.8)
[
1 1 ... 1 1

]
1×n
×X =

[
n n− 1 ... 1 0

]
1×n+1

×M (4.9)

M ∈ {0,1}(n+1)×n. (4.10)

Based on Constraints (4.8)-(4.10), it is clear that M is a variable entirely determined with
respect to X. Consequently, we can see X as the sole “true” variable of this model with q⃗

and M as auxiliary variables. Still, M is crucial to our representation. Recall that our goal
is to describe SPFGs, this is, their partition functions with MILP-representations. In the
next section, we will introduce the second matrix A ∈ Rn×n that will provide information on
the partition function values. If we limit our MILP-representation of the partition function
of an SPFG to X and A, e.g., coalition k values ∑n

j=1 Xjk (∑n
i=1 Aij), then symmetry would

not be necessarily guaranteed, i.e., coalitions of same cardinality could have different payoffs
(values). Under a symmetric game, this is unacceptable, because the result would be different
based on the order in which the players are labeled. This motivates the introduction of our
second matrix, M.

4.1.2. Parameters and MILP-representation

Our MILP-representation does not have a wide array of parameters. Two suffice to set it
up. The first parameter is the number of players n, while the second is the matrix describing
the information on the partition function, A ∈ Rn×n. Since we have restricted ourselves to
an MILP-representation, next we describe our formulation of the partition function stressing
that 1) it is linear in the decision variables, 2) it guarantees symmetry, i.e., the partition
function value only depends on the numerical partition and cardinality of the coalition under
evaluation, and 3) empty coalitions have null payoff. On the latter point note that our
representation X can have coalitions with zero players (e.g., the GC in Example 4.1.1), since
we insist that X always has fixed dimensions of n×n. To comply with empty coalitions, we
need to append a column of zeros to A which we denote by [A|0]. With this new form, we
ensure that empty coalitions always get a null payoff when we define the payoffs as follows:

1⃗T ×X× [A|0]×M. (4.11)

59



In particular, entry ℓ of the vector given by the expression above provides the payoff (partition
function value) of coalition ℓ

Mn+1,ℓ × 0 +
n∑

k=1
Mkℓ

 n∑
j=1

Ajk

(
n∑

i=1
Xij

) ,

so if the cardinality of coalition ℓ is 0, then Mkℓ = 0 for k = 1, . . . , n, and Mn+1,ℓ = 1. In
simple words, we first obtain the (n + 1)-dimensional vector by multiplying a row vector
containing, in decreasing order, the cardinalities of the coalitions under the current partition
X with [A|0], and second, we obtain the payoff of coalition ℓ by keeping from that vector
the entry corresponding to the cardinality of that coalition. In this way, we ensure that
coalitions with the same cardinality have the same payoff (partition function value).

Expression (4.11) is non-linear. This formulation of the payoffs for each coalition contains
bilinear terms between entries of the binary matrices X and M. The recent version of the
MIP solver we use, Gurobi [33], can cope with bilinear (quadratic) MIP formulations without
manual linearization. The manual linearization, using the McCormick envelope, will give an
exact linearization in this context because the variables that have been multiplied are binary
(see Appendix A for more details about our manual linearization). Nonetheless, we can claim
that the formulation described is MILP-representable. Hence, in the remainder of this thesis
we define an SPFG as MILP-representable as follows:
Definition 4.1.1. An SPFG (N ,W ) is MILP-representable if there is a matrix A ∈ Rn×n

such that for any partition X satisfying Constraints (4.1)-(4.5) and its associated numerical
representation M satisfying Constraints (4.8)-(4.10), the partition function payoffs for each
embedded coalition of X are given by Expression (4.11), i.e.,

(W (X∗1, X), W (X∗2, X), . . . , W (X∗n, X)) = 1⃗T ×X× [A|0]×M.

Of course, other SPFGs could be represented by MILP, if other design choices were taken.
This definition only concerns our framework.
Example 4.1.4 (Matrix A with positive/negative externalities for an SPFG with 5 players.).
Firstly, an example of what A looks like for a game with positive externalities:

Apos =



100 80 60 40 20
0 30 25 20 15
0 0 15 10 5
0 0 0 5 2
0 0 0 0 1


.

60



And, for a game with negative externalities:

Aneg =



2 3 4 5 6
0 4 5 6 7
0 0 6 7 8
0 0 0 8 9
0 0 0 0 10


.

To highlight the positive/negative externalities, let us look at the case where the coalition
structure is (2, 2, 1), so

X =



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0


, M =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1


.

We have the partition function payoffs for each embedded coalition of X given by:

1⃗T ×X× [Apos|0]×M

= 1⃗T ×



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0


×



100 80 60 40 20 0
0 30 25 20 15 0
0 0 15 10 5 0
0 0 0 5 2 0
0 0 0 0 1 0


×



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1


=
[
130 130 75 0 0

]
,

in case of positive externalities, and by:

1⃗T ×X× [Aneg|0]×M

= 1⃗T ×



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0


×



2 3 4 5 6 0
0 4 5 6 7 0
0 0 6 7 8 0
0 0 0 8 9 0
0 0 0 0 10 0


×



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1


=
[
29 29 34 0 0

]
,

61



in case of negative externalities. Now, let us suppose that the first coalition of players would
like to split as (2, 1, 1, 1). This would change matrices X and M into:

Xsplit =



0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
1 0 0 0 0


, Msplit =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 1 1 0
0 0 0 0 1


.

We can then compute again the partition function payoffs for each embedded coalition of
Xsplit given by:

1⃗T ×Xsplit × [Apos|0]×Msplit

=
[
115 62 62 62 0

]
,

in case of positive externalities, and by:

1⃗T ×Xsplit × [Aneg|0]×Msplit

=
[
31 36 36 36 0

]
,

in case of negative externalities. We can already see that with Apos, players are all disad-
vantaged by the split. Initially, a coalition of cardinality 2 was receiving 130, but after the
split it is only receiving 115, while the utility of a coalition of cardinality 1 dropped from
75 to 62. However, with Aneg, we observe the opposite. Initially, a coalition of cardinality 2
was receiving 29, but after the split it is receiving 31, while a coalition of cardinality 1 saw
its payoff increase from 34 to 36.

Finally, if instead of a split, we have a merge where player 2 joins the first coalition to
create the coalition structure (3,2,1), we obtain:

Xmerge =



1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0


, Mmerge =



0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 1 1


.

We can then compute again the partition function payoffs for each embedded coalition of
Xmerge given by:

1⃗T ×Xsplit × [Apos|0]×Mmerge

=
[
230 160 0 0 0

]
,

62



in case of positive externalities, and by:

1⃗T ×Xmerge × [Aneg|0]×Mmerge

=
[
22 27 0 0 0

]
,

in case of negative externalities. When the partition has a coarser granularity, we can see that
with Apos, players are advantaged compared to A. A coalition of cardinality 2 was receiving
130 before, and is now receiving 160. Plus, the new coalition of cardinality 3 receives 230,
which is more than what the two joining parties were making separately initially(130 and
75). Again, with Aneg, the result goes the opposite way. A coalition of cardinality 2 was
receiving 29 before, and is now receiving only 27, while the payoff of the new coalition of
cardinality 3 is 22, which is less than what the two joining parties were making separately
initially (29 and 34).

In a nutshell, this example displays simultaneously how we can compute the partition
function values and how a game with positive/negative externalities reacts to coalitions
merging and splitting.

4.1.3. Solving MILP-representable games

Now that we have our MILP-representation (4.1)-(4.5), (4.8)-(4.10) with payoffs given
by Expression (4.11), we can demonstrate its usefulness to solve SPFGs.

In this thesis, as specified in Chapter 3, we are targeting a stability-oriented solution
concept. Moreover, remembering Problem (3.5), if there are multiple partitions in the stable
partition set, we select the partition maximizing the SW, i.e., the sum of the coalition values
(payoffs).

Using the variables and parameters described in Sections 4.1.1 and 4.1.2, given an MILP-
representable game, it is straightforward to model the problem of finding the partition max-
imizing the SW:

(SWmax) max 1⃗T ×X× [A|0]×M× 1⃗ (4.12)

s.t. Constraints (4.1)− (4.5)

Constraints (4.8)− (4.10),

where the objective (4.12) is the so-called SW. Once we input the model (SWmax) to a solver
and solve it to optimality, matrix X identifies the partition that maximizes the SW. To know
the payoff of each coalition, we can keep the first part 1⃗T ×X× [A|0]×M of the objective
function. This row vector will indicate the partition function payoff of coalition j at index
j.

63



Recall that Problem (3.5) imposes the restriction of optimizing SW among the stable
partitions. Thus, in order to integrate the stability constraints, we devise an algorithm with
the following steps:

(1) Create the mathematical program in (4.12) and denote it by (SWmax).
(2) Using an off-the-shelf solver, solve (SWmax) and save the corresponding optimal par-

tition X∗.
(3) Generate the stability Constraints (3.1)-(3.4) for the partition X∗; see Appendix B.

If X∗ verifies those constraints, i.e., it is stable, return X̃ = X∗.
(4) Add to (SWmax) a constraint banning X∗ and go to step (2).

In step (4), we add the following banning constraint when partition X∗ is not stable:
n∑

i=1

n∑
j=1

(
(2X∗

ij − 1)Xij + 1−X∗
ij

)
≤ n2 − 1. (4.13)

This constraint sums the number of entries of the same indices that are equal in X and X∗.
If this number equals n2, it means the two matrices are identical and we want to prevent
that. This is why we restrict the sum to n2 − 1.

Once this first task is performed, i.e., we have a stable partition, our algorithm has a
second task to achieve: the allocation of payoffs as described in Section 3.3. In particular,
recall from that section that we describe an iterative procedure to find the most stable
allocation. In this way, given the chosen partition X̃ (output of the first task), at iteration
k, we find a vector y⃗ satisfying the following constraints:

n∑
i=1

y⃗i = 1⃗T × X̃× [A|0]× M̃× 1⃗ (4.14a)

Xsplit :
(
∃!j : X∗

∗j /∈ Xsplit, 1⃗T ×X∗
∗j ≥ 2

)
∧(

∃!i,∃!k : Xsplit
∗i /∈ X∗, Xsplit

∗k /∈ X∗, Xsplit
∗i + Xsplit

∗k = X∗
∗j

)
,

(4.14b)

n∑
i:Xneigh

ij =1

y⃗i ≥
(⃗
1T ×Xneigh × [A|0]×Mneigh

)
j
∀j : Xneigh

∗j /∈ X̃,

∀Xneigh ∈ Xsplit : 1⃗T ×Xneigh
∗j ≤ k.

(4.14c)

Operator /∈ between a column and a matrix means there is no such column in the matrix.
In summary, the algorithm for this second task is as follows:

(1) Create a feasibility problem (P) with the efficiency Constraint (4.14a).
(2) Make k = 0 and add to (P) the coalitional rationality Constraints (4.14c) with respect

to k.
(3) While k < n and there is y⃗ solving (P):

(a) Save a feasible y⃗ to (P)

64



(b) Make k = k+1 and add to (P) the coalitional rationality constraints (4.14c) with
respect to k.

(4) Return ⃗̃y = y⃗.
We refer the reader to the thesis’s repository [65] for more details on the implementation.

Example 4.1.5 (Numerical example). Let us define an SPFG (4, W ) with:

W =
{

(4, {4}) 7→ 16,

(3, {3, 1}) 7→ 9,

(1, {3, 1}) 7→ 3,

(2, {2, 2}) 7→ 4,

(2, {2, 1, 1}) 7→ 6,

(1, {2, 1, 1}) 7→ 1,

(1, {1, 1, 1, 1}) 7→ 2}
.

This matrix A is an exact MILP-representation of the game:

A =


4 3 4 −1
0 0 −2 6
0 0 0 −3
0 0 0 0

 .

With our two parameters defined, n = 4 and A, we are now ready to optimize. There
are five partitions in this case, and they get the following SW values:

SW =
{

({4}, 16),

({3, 1}, 12),

({2, 2}, 8),

({2, 1, 1}, 8),

({1, 1, 1, 1}, 8)}
.

65



The chosen partition is thus the GC, and we get the following variable values at the
optimal state:

X =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 and M =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1


.

Hence, we know that the first coalition is the only one to receive a non-zero payoff, and
that this payoff will be 16. The next step to perform is to introduce the stability constraints
F described in section 3.2 to check if the chosen partition belongs to the stable partition set.

• F1: Since the chosen partition has a greater total payoff than the one of the SP
(16 ≥ 8), this constraint holds.
• F2: The neighbourhood of the chosen partition, which is the GC, is {{3,1},{2,2}}.

The comparison with the first neighbour favors the GC (W (3, {3,1}) + W (1,{3,1}) =
12 ≤ 16), and the comparison with the second neighbour does too (W (2, {2,2}) +
W (2,{2,2}) = 8 ≤ 16). This constraint holds.
• F3: Because the chosen partition is the GC, F3 is equivalent to F1. This constraint

holds.
• F4: There are no neighbours in this case, so this constraint holds by default.

We find that yes, the chosen partition belongs to the stable partition set. The last step to
perform is to find a payoff allocation vector that respects efficiency and coalitional rationality.
We enforce the following constraints on y⃗:

4∑
i=1

y⃗i = 16

y⃗i + y⃗j + y⃗k ≥ 9 ∀i,j,k ∈ {1,2,3,4} : i ̸= j ̸= k ̸= i

y⃗i + y⃗j ≥ 4 ∀i,j ∈ {1,2,3,4} : i ̸= j

y⃗i ≥ 3 ∀i ∈ {1,2,3,4}.

The set of feasible payoff allocations is not empty; it will contain {y⃗ : ∑4
i=1 y⃗i = 16, y⃗i ≥

3∀i ∈ {1,2,3,4}}. In other words, to achieve stability, the players could receive each anything
equal or above 3, as long as the sum of their payoffs is 16.

4.2. MILP-Representable Family of SPFG
First, we observe that the MILP-based representation motivated in Section 4.1 cannot be

used to represent every SPFG. This can be shown by a straightforward counting argument.
Every SPFG with n players is defined by CN(n − 1) real numbers, i.e., a payoff associated

66



with each embedded numerical coalition, while the matrix A is defined by n2 real numbers.
It is known that PN(n) ≤ CN(n − 1) = ∑n−1

i=0 PN(i) ∀n ≥ 1, because there are as many
or more embedded numerical coalitions than there are partitions for a given n. We saw
in Equation (1.4) a lower bound for PN(n) that follows an exponential growth such that
n2 ≪ PNlb(n) ≤ PN(n) ≤ CN(n − 1), and hence it is guaranteed that there are SPFGs
not representable in the form defined in Section 4.1. In this section, we characterize the
MILP-representable SPFGs by giving an explicit construction when they are representable,
and an approximation when they are not.

4.2.1. The matrix A

First we prove result that, without loss of generality, A can always be chosen as an
upper-triangular matrix.
Proposition 4.2.1. Let P1 and P2 be two SPFGs defined by matrices A1 and A2 respectively.
The SPFGs P1 and P2 are equal if

[A1]ij = [A2]ij ∀ i ≤ j; i,j ∈ {1, . . . ,n}.

Proof. The proposition statement says that if all the elements above (and including) the
principal diagonal of two matrices are the same, then they necessarily model the same SPFG.
Let us show this.

When computing the payoffs of the embedded coalitions (Equation (4.11)), the partition
with the least empty coalitions to be multiplied with column j of A is the γ-partition with
n−j +1 players in its largest coalition. Thus, the last non-zero component of the γ-partition
will be at index j for column j of A. This implies that all the entries of A that are below
the principal diagonal will be multiplied by zero. For the computations involving the upper-
triangular part of A, if we have

[A1]ij = [A2]ij ∀ i ≤ j; i,j ∈ {1, . . . ,n},

then for partitions X, the embedded coalitions payoffs satisfy

1⃗T ×X× [A1|0]×M = 1⃗T ×X× [A2|0]×M,

i.e., every embedded numerical coalition has equal partition function values for P1 and P2. □

While we have said that the entries in the upper triangular part of the matrix A determine
the SPFG that is being modeled, the theorem below shows that: (i) The set of all such MILP-
representable SPFGs form a vector space. (ii) More importantly, the vector space is given
as the range of a matrix, Q̄n, which depends only on the number of players in the game.
(iii) Further, the theorem also shows that solving a system of linear equations of the form
Q̄nx⃗ = b⃗ identifies the matrix A that has to be used to model the given SPFG.

67



Theorem 4.2.2 (MILP-representation theorem). Given the number of players n, there exist
a matrix Q̄n ∈ RCN(n−1)× n(n+1)

2 such that the following holds: For each SPFG (N , W ), there
exists ⃗̄b ∈ RCN(n−1), such that the SPFG is MILP-representable if and only if Q̄nx⃗ = ⃗̄b has a
solution. Further, any solution to the system of linear equations can be directly interpreted
as the entries of the matrix A after appropriate rearrangement.

Proof. We construct matrix Q̄n by encoding every embedded numerical coalition
(c,Pnum) ∈ Enum(N ) in the CN(n− 1) rows of Q̄n such that:

• Each row i of Q̄n will display Pnum of (c,Pnum) following a decreasing order in the
cardinality of the coalitions, i.e., ∀d,e ∈ Pnum such that Q̄n

ij = d and Q̄n
ik = e we have

d < e =⇒ j < k. We need |Pnum| entries to do so. Unused entries are kept to 0.
• The non-zero entries of each row i of Q̄n are contiguous, i.e., Q̄n

ij = d ̸= 0 and
Q̄n

i j+1 = 0 =⇒ ∀k > j + 1, Q̄n
ik = 0, while Q̄n

ij = d ̸= 0 and Q̄n
i j−1 = 0 =⇒ ∀k <

j − 1, Q̄n
ik = 0.

• Each row i of Q̄n will display Pnum of (c,Pnum) with the first non-zero entry starting
at index 1 + (n− c) ∗ (n− c + 1)/2, i.e., Q̄n

ij = d ̸= 0 and ∀k < j, Q̄n
ik = 0 =⇒ j =

1 + (n− c) ∗ (n− c + 1)/2.
• If the row i of Q̄n encodes (c,Pnum), ⃗̄bi = W (c,Pnum).

This construction allows us to say that if the SPFG is MILP-representable, Q̄nx⃗ = ⃗̄b has a
solution, and reciprocally. Furthermore, if we permute the rows of Q̄n (and of ⃗̄b in the exact
same fashion) such that Q̄n achieves the row echelon form, then

Aij = x⃗ i(i−1)
2 +j

∀i ≤ j; i,j ∈ {1,2, . . . ,n}.

□

Corollary 4.2.3. The following are true.
(1) The set of SPFGs with n players is a vector space of dimension of CN(n).
(2) The set of MILP-representable SPFGs with n players is a vector space of dimension

n(n+1)
2 .

(3) The set of MILP-representable SPFGs is smaller than the vector space we can repre-
sent with the n(n+1)

2 entries of matrix A that we use.
Second of all, the columns of A are treated independently by our model to get the payoff

of any embedded coalition. Thus, what matters is the relationship between the elements of
a column of A. This ascertainment makes the analysis of A very convenient. For instance,
to determine A given an SPFG (N , W ), we just need to define for each column n− i + 1 of
A a system of equations Qv⃗ = b⃗ where:

• Q ∈ ZPN(n−i)×(n−i+1)
+ is a matrix whose rows are all numerical partitions of n players

with at least one coalition of cardinality i, ordered from the largest coalition to the
smallest, and zero-padded to get exactly n− i + 1 elements in each row.

68



• b⃗ ∈ RPN(n−i) is a payoff vector for a coalition of cardinality i such that if partition Qk

forms, the payoff will be b⃗k. Note that this vector is computed through the partition
function W .
• v⃗ ∈ Rn−i+1 is column A∗(n−i+1) truncated to its last useful entry before the zero

padding.
In this way, by interpreting each column of A as a vector of variables with its own system

of linear equations, we can determine whether an SPFG is MILP-representable. The key to
this problem is the rank of matrix Q, as stated by Theorem 3.
Theorem 3 (Solution to a linear equation system [63]). Given a matrix Q ∈ Rm×n and a
vector b⃗ ∈ Rm, let

[
Q|⃗b

]
be the augmented matrix of system Qv⃗ = b⃗. We have that

(1) if rank(
[
Q|⃗b

]
) > rank(Q), then the system admits no solution;

(2) if rank(
[
Q|⃗b

]
) = rank(Q) = r and r = n, then the system admits a unique solution;

(3) if rank(
[
Q|⃗b

]
) = rank(Q) = r and r < n, then the system admits an infinite number

of solutions.
Now having concluded that the MILP-representability of an SPFG relies on the defined

n matrices Q (one for each column of A), we can underline that each of them can be
immediately studied, as they only depend on the parameter n.

Next, we will show that all SPFGs with n ≤ 5 are MILP-representable. As expected, due
to our compact representation, there are not enough linear dependencies between rows of Q
to guarantee exact MILP-representations for all SPFGs with n > 5. This will reveal that
the first four columns of A (when they exist) never experience representation limitations, as
there are more variables than equations constraining them. Finally, we will prove that the
rank of Q for the systems of equations related to the reminding columns of A is either n− i

or n − i + 1, depending on the combination of parameters n and i. This will enable us to
characterize the families of SPFGs which are MILP-representable.

4.2.2. Characterization of MILP-representable SPFGs

Note that Theorem 3 allow us to determine the cases where an SPFG is MILP-
representable through the study of the rank of the matrices Q. We begin this study for
SPFGs with five or less players due to its simplicity which enable us to become familiar with
the notation and the construction of matrices Q for different n and n− i + 1 (column index
of A) setups. This is shown in Table 4.1. From it, we conclude that any SPFG with five
players or less is MILP-representable. Also, we can observe that, no matter the value of n,
for column indexes of A going from 1 to 4, rank(Q) = rank(

[
Q|⃗b

]
) = number of rows in

Q. This is always the case because the rows in Q, once removed the zero padding, all have
different lengths, and thus cannot be linearly dependent. The following lemma summarizes
these findings:

69



n column index of A
[
Q|⃗b

]
rank(

[
Q|⃗b

]
) rank(Q) Verdict

1 1
[
1 b1

]
1 1 Unique solution

2 1
[
2 b1

]
1 1 Unique solution

2 2
[
1 1 b1

]
1 1 Infinity of solutions

3 1
[
3 b1

]
1 1 Unique solution

3 2
[
2 1 b1

]
1 1 Infinity of solutions

3 3
[
2 1 0 b1
1 1 1 b2

]
2 2 Infinity of solutions

4 1
[
4 b1

]
1 1 Unique solution

4 2
[
3 1 b1

]
1 1 Infinity of solutions

4 3
[
2 2 0 b1
2 1 1 b2

]
2 2 Infinity of solutions

4 4

3 1 0 0 b1
2 1 1 0 b2
1 1 1 1 b3

 3 3 Infinity of solutions

5 1
[
5 b1

]
1 1 Unique solution

5 2
[
4 1 b1

]
1 1 Infinity of solutions

5 3
[
3 2 0 b1
3 1 1 b2

]
2 2 Infinity of solutions

5 4

3 2 0 0 b1
2 2 1 0 b2
2 1 1 1 b3

 3 3 Infinity of solutions

5 5


4 1 0 0 0 b1
3 1 1 0 0 b2
2 2 1 0 0 b3
2 1 1 1 0 b4
1 1 1 1 1 b5

 5 5 Unique solution

Table 4.1. Our MILP-representation can express any SPFG composed of five or less players,
as there is always at least one solution of elements to combine for each column of A to give
an embedded coalition its correct partition function value. Note that each bi in the table
corresponds to a partition function value as defined in Section 4.2, e.g., b2 in row n = 4 and
column index of A equal to 4 is W (1,{2,1,1}).

Lemma 4.2.4. Any SPFG with n ≤ 5 is MILP-representable. Moreover, for any SPFG, we
can always find a matrix A such that the payoffs of coalitions of size n, n − 1, n − 2 and
n− 3 are exact.

But then, how good are the payoffs if we look at games with n > 5 and column indexes of
A with n− i + 1 > 4? To answer this question, we need to find a more generalized approach
to study those games. Two observations will allow us to do so. The first observation is

70



as follows. Recall from Section 4.2.1 that in the matrix Q, the first element in each row
corresponds to the size of the largest coalition in a partition. Also, recall that the partition
function value of a coalition of cardinality i is represented through the column n − i + 1 of
matrix A. Now, once i ≥ n

2 , i will always appear as the first element in the rows of matrix
Q, since it will be the largest coalition. This allows us to handle this case separately from
all other. In the analysis below, case 1 corresponds to when i < n

2 and case 2 corresponds
to when i ≥ n

2 . In both these cases, we restrict to n > 5, because from 4.2.4, we already
know that the SPFG can be exactly represented when n ≤ 5. Secondly, γ-partitions have all
a different number of non-zero elements, meaning that once they are written in vector form,
the resulting vectors are linearly independent. Thus, they constitute a good starting point
to find the rank of Q.

Lemma 4.2.5. For any SPFG with n > 5, there is an MILP-representation of the partition
function value of an embedded coalition of cardinality i ≥ n

2 , if n − i + 1 > 4 and [Q|⃗b] has
rank n− i.
Case 1: n > 5, i ≥ n/2 and the column index of matrix A is n− i+1 > 4. We extract
the γ-partitions from Q with respect to n− i players to define its sub-matrix Q′:

Q′ =



i 1 1 1 1 . . . 1 1 1 1
i 2 1 1 1 . . . 1 1 1 0
i 3 1 1 1 . . . 1 1 0 0
i 4 1 1 1 . . . 1 0 0 0
...
i n− i− 2 1 1 0 . . . 0 0 0 0
i n− i− 1 1 0 0 . . . 0 0 0 0
i n− i 0 0 0 . . . 0 0 0 0


∈Z(n−i)×(n−i+1)

+

Note that if we exclude the first column, then each row is a γ-partition for the remaining
n − i players. We now prove that the rows of Q′ are linearly independent. To this end we
subtract from each row the next, starting from the top. The last row is then divided by
n− i, and added to the previous rows.

0 −1 0 0 0 . . . 0 0 0 1
i 2 1 1 1 . . . 1 1 1 0
i 3 1 1 1 . . . 1 1 0 0
i 4 1 1 1 . . . 1 0 0 0
...
i n− i− 2 1 1 0 . . . 0 0 0 0
i n− i− 1 1 0 0 . . . 0 0 0 0
i n− i 0 0 0 . . . 0 0 0 0



Q′
1 ← Q′

1 −Q′
2

71





0 −1 0 0 0 . . . 0 0 0 1
0 −1 0 0 0 . . . 0 0 1 0
i 3 1 1 1 . . . 1 1 0 0
i 4 1 1 1 . . . 1 0 0 0
...
i n− i− 2 1 1 0 . . . 0 0 0 0
i n− i− 1 1 0 0 . . . 0 0 0 0
i n− i 0 0 0 . . . 0 0 0 0



Q′
2 ← Q′

2 −Q′
3

...



0 −1 0 0 0 . . . 0 0 0 1
0 −1 0 0 0 . . . 0 0 1 0
0 −1 0 0 0 . . . 0 1 0 0
0 −1 0 0 0 . . . 1 0 0 0
...
0 −1 0 1 0 . . . 0 0 0 0
0 −1 1 0 0 . . . 0 0 0 0

i/(n− i) 1 0 0 0 . . . 0 0 0 0


Q′

n−i ← Q′
n−i/(n− i)

i/(n− i) 0 0 0 0 . . . 0 0 0 1
i/(n− i) 0 0 0 0 . . . 0 0 1 0
i/(n− i) 0 0 0 0 . . . 0 1 0 0
i/(n− i) 0 0 0 0 . . . 1 0 0 0

...
i/(n− i) 0 0 1 0 . . . 0 0 0 0
i/(n− i) 0 1 0 0 . . . 0 0 0 0
i/(n− i) 1 0 0 0 . . . 0 0 0 0



Q′
1 ← Q′

1 + Q′
n−i

Q′
2 ← Q′

2 + Q′
n−i

Q′
3 ← Q′

3 + Q′
n−i

Q′
4 ← Q′

4 + Q′
n−i

Q′
n−i−2 ← Q′

n−i−2 + Q′
n−i

Q′
n−i−1 ← Q′

n−i−1 + Q′
n−i

It is now clear that the rows of Q′ are linearly independent. Let us rename Q′ the final
matrix obtained from the described linear operations in Q′. Thus, matrix Q has at least
n − i independent rows (or columns), because we can clearly see the (vertically mirrored)
identity matrix pattern starting from the second column. Since the maximum rank that Q
can have is n − i + 1, the next question would now be: is there a row of Q that is linearly
independent from the rows in Q′? We can verify that, thanks to a generic row that we
append to the end of Q′, and which (again) we rename as Q′:

72





i/(n− i) 0 0 0 0 . . . 0 0 0 1
i/(n− i) 0 0 0 0 . . . 0 0 1 0
i/(n− i) 0 0 0 0 . . . 0 1 0 0
i/(n− i) 0 0 0 0 . . . 1 0 0 0

...
i/(n− i) 0 0 1 0 . . . 0 0 0 0
i/(n− i) 0 1 0 0 . . . 0 0 0 0
i/(n− i) 1 0 0 0 . . . 0 0 0 0

i Qk2 Qk3 Qk4 Qk5 . . . Qk(n−i−2) Qk(n−i−1) Qk(n−i) Qk(n−i+1)


We seek to determine whether the last row is independent by reducing it to its first

element using linear operations. Effectively, to ensure that columns with index 2 or larger
will have a single non-zero element, we do the following:

Q′
n−i+1 ← Q′

n−i+1 −Qk(n−i+1)Q′
1 −Qk(n−i)Q′

2 −Qk(n−i−1)Q′
3 − · · · −Qk2Q′

(n−i).

This operation will have the expected effect, but it will also reduce the first element to
zero:

i− i

n− i
Qk(n−i+1) −

i

n− i
Qk(n−i) −

i

n− i
Qk(n−i−1) − · · · −

i

n− i
Qk2

= i− i

n− i

n−i+1∑
ℓ=2

Qkℓ

= i− i

n− i
(n− i)

= i− i

= 0.

Thus, under case 1, we conclude that matrix Q possesses exactly n− i independent rows or
columns. If the SPFG has, under case 1, augmented matrices [Q|⃗b] of rank n − i, it means
the corresponding columns of A will be able to represent their part of the SPFG with fidelity.

Lemma 4.2.6. For any SPFG with n > 5, there is an MILP-representation of the partition
function value of an embedded coalition of cardinality i < n

2 , if n − i + 1 > 4 and [Q|⃗b] has
rank n− i + 1.

73



Case 2: n > 5, i < n
2 and the column index of matrix A is n− i + 1 > 4. Again, using

the γ-partitions extracted from Q⃗ with respect to n− i players, we define the matrix Q′:

Q′ =



i 1 1 1 1 . . . 1 1 1 1
i 2 1 1 1 . . . 1 1 1 0
i 3 1 1 1 . . . 1 1 0 0
...
i i− 1 1 1 1 . . . 0 0 0 0
i i 1 1 1 . . . 0 0 0 0

i + 1 i 1 1 1 . . . 0 0 0 0
...

n− i− 2 i 1 1 0 . . . 0 0 0 0
n− i− 1 i 1 0 0 . . . 0 0 0 0

n− i i 0 0 0 . . . 0 0 0 0


∈Z(n−i)×(n−i+1)

+ .

Using the same steps as in the previous case, i.e., subtracting from each line the next and
dividing the last line by i before adding it to leave a single non-zero element in the second
column, we get a matrix where we can clearly see linear independence between the vectors
given by its rows.



0 −1 0 0 0 . . . 0 0 0 1
0 −1 0 0 0 . . . 0 0 1 0
0 −1 0 0 0 . . . 0 1 0 0
...
0 −1 0 0 0 . . . 0 0 0 0
−1 0 0 0 0 . . . 0 0 0 0
−1 0 0 0 0 . . . 0 0 0 0
...
−1 0 0 1 0 . . . 0 0 0 0
−1 0 1 0 0 . . . 0 0 0 0

(n− i)/i 1 0 0 0 . . . 0 0 0 0



After subtractions and division;

74





(n− i)/i 0 0 0 0 . . . 0 0 0 1
(n− i)/i 0 0 0 0 . . . 0 0 1 0
(n− i)/i 0 0 0 0 . . . 0 1 0 0

...
(n− i)/i 0 0 0 0 . . . 0 0 0 0
−1 0 0 0 0 . . . 0 0 0 0
−1 0 0 0 0 . . . 0 0 0 0
...
−1 0 0 1 0 . . . 0 0 0 0
−1 0 1 0 0 . . . 0 0 0 0

(n− i)/i 1 0 0 0 . . . 0 0 0 0



After additions.

We redefine the matrix Q′ as the one above. We remark that the first i − 1 rows and row
n− i of Q′ have their first element equal to (n− i)/i, while rows i to n− i−1 have their first
element equal to 1. Thus, adding a generic Qk row to matrix Q′ will leave us performing
the following operation to verify if the rank of Q can reach its maximum n− i + 1:

Q′
n−i+1 ← Q′

n−i+1 −Qk(n−i+1)Q′
1 −Qk(n−i)Q′

2 −Qk(n−i−1)Q′
3 − · · · −Qk2Q′

(n−i). (4.1)

This time however, we are uncertain of the value of Qk1 since i < n
2 , and thus of the associated

modified value resulting from operation (4.1):

Qk1 −
n− i

i
Qk(n−i+1) −

n− i

i
Qk(n−i) − · · · −

n− i

i
Qk(n−2i+3) −Qk(n−2i+2) − · · · −Qk(n−i−1) −Qk2

= Qk1 −
n− i

i
Qk2 −

n−2i+2∑
l=3

Qkl −
n− i

i

n−i+1∑
l=n−2i+3

Qkl. (4.2)

Consequently, since we subtract from Qk1 multiples of other first elements, we identify two
disjoint subcases:

• Subtractions of a multiple of (n− i)/i, coming from rows 1 to i− 1 and n− i. This
multiple will be equal to the sum of players in coalitions 2 and n− 2i + 3 to n− i + 1.
• Subtractions of a multiple of −1, coming from rows i to n− i. This multiple will be

equal to the sum of players in coalitions 3 to n− 2i + 2.
To illustrate better this distinction, let us introduce simpler notation for the appended

row. We use x⃗ = x⃗1 = Qk1 for the vector composed of the first entry, y⃗ is the vector composed
of entries 2 and entries n− 2i + 3 to n− i + 1 (i.e., the entries associated with multiples of
(n − i)/i) and z⃗ is the vector entries from 3 to n − 2i + 2 (i.e., the entries associated with

75



multiples of −1). Under the matrix form, we get:

(n− i)/i 0 0 0 . . . 0 0 . . . 0 1
(n− i)/i 0 0 0 . . . 0 0 . . . 1 0
(n− i)/i 0 0 0 . . . 0 0 . . . 0 0

...
(n− i)/i 0 0 0 . . . 0 1 . . . 0 0
−1 0 0 0 . . . 1 0 . . . 0 0
−1 0 0 0 . . . 0 0 . . . 0 0
...
−1 0 0 1 . . . 0 0 . . . 0 0
−1 0 1 0 . . . 0 0 . . . 0 0

(n− i)/i 1 0 0 . . . 0 0 . . . 0 0
x⃗1 y⃗2 z⃗3 z⃗4 . . . z⃗n−2i+2 y⃗n−2i+3 . . . y⃗n−i y⃗n−i+1


∈Z(n−i+1)×(n−i+1)

+ .

We proceed with some very simple statements. We know that the sum of the appended row
is n, i.e., n = 1⃗T · x⃗ + 1⃗T · y⃗ + 1⃗T · z⃗. Moreover, at least one entry of this numerical partition
equals i. Nor x⃗, y⃗2 or z⃗3 equals to zero and x⃗1 ≥ y⃗2 ≥ z⃗3 ≥ z⃗4 ≥ · · · ≥ y⃗n−i+1 ≥ 0. Also, we
make the hypothesis that there is another independent row we can find in Q. Thus, going
back to the calculation of the modified first entry in (4.2), if we assume that it is different
from zero, we have:

0 ̸= 1⃗T x⃗− n− i

i
1⃗T y⃗ − 1⃗T z⃗

⇔ n− i

i
1⃗T y⃗ ̸= 1⃗T x⃗− 1⃗T z⃗

⇔ n− i

i
̸= 1⃗T x⃗− 1⃗T z⃗

1⃗T y⃗

=⇒ 1⃗T x⃗− 1⃗T z⃗ ̸= n− i
∧

1⃗T y⃗ ̸= i.

A critical remark here is that we need at least one coalition of cardinality i for the numerical
partition Qk. Therefore, as there are exactly i − 1 coalitions under the y⃗ label besides
y⃗2, we will always have that all components of y⃗ are zero except y⃗2, since there are not
enough players left to populate the rightmost coalitions of the partition. This means that
if Qk1 is i, we should restrict y⃗2 ≤ i − 1 and all remaining z⃗l ≤ i − 1, while still obtaining
n = 1⃗T x⃗ + 1⃗T y⃗ + 1⃗T z⃗. Since under this case we have n > 5, for what values of i would it be
possible to find a partition of Q not already in Q′ and conforming to the described criteria?

Under this case, we work in the integer range 1 ≤ i ≤ (n − 1)/2. Also, we know that
whatever the outcome, the maximal number of non-empty coalitions contributing to z⃗ is
n − 2i, which from the last sentence oscillates between 1 and n − 2, knowing that n ≥ 6.

76



Given that we set x⃗1 = i and y⃗ = (i− 1, 0, . . . , 0), we are left with 1⃗T z⃗ = n− 2i + 1. Do we
always have (n − 2i + 1)/(i − 1) ≤ n − 2i, or in other words, is there enough room in the
coalitions of z⃗ for the remaining players?

n−2i+1
i−1 ≤ n− 2i

⇔ n−2i+1
n−2i

≤ i− 1
=⇒ 2 ≤ i− 1 since ⌈n−2i+1

n−2i
⌉ = 2 and i− 1 ∈ Z

=⇒ Yes, if i ≥ 3.

We just found that it is possible to find an additional partition in Q that is linearly inde-
pendent from the initial rows in Q′, for all n ≥ 6 and 3 ≤ i ≤ (n− 1)/2. We simply have to
set x⃗1 = i, y⃗2 = i − 1 and the first ⌊n−2i+1

i−1 ⌋ coalitions in z⃗ to i − 1. The remaining players
from that division can invest the next unoccupied entry in z⃗. The rank of a Q under these
conditions is therefore n− i + 1.

Now, what if i = 1 or i = 2? Well, it is certain that we cannot have x⃗1 = i or y⃗2 = i,
so let us try x⃗1 ≥ y⃗2 > z⃗3 = i. If we decide to set x⃗1 = y⃗2 = i + 1, the maximal number of
non-empty coalitions contributing to z⃗, n − 2i − 1, has now to support n − 3i − 2 players.
Do we always have (n− 3i− 2)/i ≤ n− 2i− 1?

• For i = 1, n−5 ≤ n−3 is always true. Plus, the configuration with x⃗1 = y⃗2 = i+1 = 2
and z⃗3 = i = 1 demands at least 5 players, which causes no trouble under our current
case with n ≥ 6.
• For i = 2, n/2 − 4 ≤ n − 5 is true when n ≥ 2, which is always the case for us

here. However, the configuration x⃗1 = y⃗2 = i + 1 = 3 and z⃗3 = i = 2 demands at
least 8 players, leaving a shadow on what happens when n = 6 or n = 7 and i = 2.
We can elucidate these two cases by simply analyzing their respective Q, as we do
in Table 4.2. We find that n = 7 and i = 2 is the only exception to the rule, with
rank(Q) = n− i.

Thus, we conclude that matrix Q, under case 2, has exactly n − i + 1 independent rows or
columns, unless n = 7 and i = 2 (in which case the rank is n − i). If the SPFG has, under
case 2, augmented matrices [Q|⃗b] of rank n − i + 1 (n − i for the exception), it means that
the corresponding columns of A provide an accurate MILP-representation of the associated
embedded coalitions for the SPFG.

With all of the lemmata stated, we can affirm the following:
Theorem 4. Consider an SPFG (N , W ) and the following matrix and vector for each
i = 1, . . . , n:

77



n column index i Q rank(Q) Verdict

6 5 2


4 2 0 0 0
3 2 1 0 0
2 2 2 0 0
2 2 1 1 0
2 1 1 1 1

 5 Rank = n− i + 1.

7 6 2



5 2 0 0 0 0
4 2 1 0 0 0
3 2 2 0 0 0
3 2 1 1 0 0
2 2 2 1 0 0
2 2 1 1 1 0
2 1 1 1 1 1


5 Rank < n− i + 1.

Table 4.2. For the second to last column of A, when n ≥ 6, we almost always have
rank(Q) = n− i + 1, which is the largest rank we can aim for. There is one exception when
n = 7 and i = 2 with rank(Q) = n− i.

• A matrix Q ∈ ZPN(n−i)×(n−i+1)
+ whose rows are all numerical partitions of n players

composed of at least one coalition of cardinality i, ordered from the largest coalition
to the smallest, zero-padded to get exactly n− i + 1 elements in every row;
• A payoff vector b⃗ ∈ Rn−i+1 for a coalition of cardinality i such that if partition Qk

forms, the payoff is b⃗k = W (i,Qk).
The SPFG (N , W ) is MILP-representable under the following cases:

(1) n ≤ 5;
(2) n = 6 or n ≥ 8 and:

• rank([Q|⃗b]) = n− i ∀i ∈ Z+, n/2 ≤ i ≤ n− 4;
• rank([Q|⃗b]) = n− i + 1 ∀i ∈ Z+, 1 ≤ i ≤ (n− 1)/2;

(3) n = 7 and:
• rank([Q|⃗b]) = 5 ∀i ∈ {2,3};
• rank([Q|⃗b]) = 7 ∀i ∈ {1}.

Corollary 4.2.7. Suppose an SPFG (N , W ) is known to be MILP-representable. Then,
the matrix A can be computed in polynomial time on the number of players, and at most
polynomial calls to an oracle providing the partition function value W (C,P).

Proof. In the proof of Theorem 4, we identified the rank of Q for each i = 1, . . . , n through
an explicit determination of a basis for the vector space generated by the linear map Qv⃗.
Therefore, we can restrict Q to the row vectors (numerical coalitions) associated with the
determined basis. Since the cardinality of the set of vectors forming the basis is linear on
the number of players, determining

A∗(n−i+1) = Q−1⃗b

78



with Q restricted to the described basis can be done in polynomial time on the number
of players [9]. Since A has n columns, then its computation takes polynomial time on the
number of players. □

4.2.3. MILP-approximations of SPFG

For SPFGs that are not MILP-representable, we propose to use the Moore-Penrose inverse
matrix [64], also known as the pseudo-inverse, in order to generate a least-squares solution
to our linear systems of equations Qv⃗ = b⃗. Concretely, given an SPFG (N ,W ), for each
i = 1, . . . , n, column n− i + 1 of A is the solution of the following optimization problem:

A∗(n−i+1) ∈ arg min
v⃗

||Qv⃗ − b⃗||2 (4.3)

where Q and b⃗ are as defined in Section 4.2.1. Hence, A∗(n−i+1) = Q+b⃗, where Q+ is the
pseudo-inverse of Q.
Definition 4.2.8. Given an SPFG (N ,W ), we say that (N , A) is its approximated MILP-
representation if each column n− i + 1 of A for i = 1, . . . , n is a solution of Problem (4.3).

Accordingly with Definition 4.1.1, when the optimal value of the objective in Prob-
lem (4.3) is zero for each i = 1, . . . , n, then we say that its approximated game (N , A)
is an MILP-representation of the SPFG (N ,W ).

The use of approximated MILP-representations is very attractive because it can promote
the use of our MILP-representation to (approximately) solve SPFGs. Moreover, it is not
difficult at all to implement when the rest of the framework to solve SPFGs with MILP-
representations is already in place. In our implementation, we used Numpy [35] as there is a
specific function retrieving the pseudo-inverse given Q and b⃗. In Chapter 5, we will discuss
the performance of this method through the display of an application. However, before this,
we discuss approximation-factor bounds when solving SPFGs through their approximated
MILP-representations.

4.3. Bounding approximations
Consider an SPFG (N , W ) and its approximated MILP-representation (N , A). In what

follows, let us denote by W ′ the partition function induced by A, i.e., the payoff calculated
as in Expression (4.11). We define two approximation measurements:

• ϵ1 is the largest absolute difference between a value returned by W and the value
returned by W ′ for the same embedded numerical coalition, i.e., ϵ1 is the L∞-norm
between W and W ′.
• ϵ2 is the largest gain a coalition can make, in the context of (N , W ), by deviating from

the partition selected when solving the approximated MILP-representation game,

79



given that the only deviations allowed are those described in the stability set F
(defined in section 3.2).

Formally, we have:

ϵ1 = max
{
|W (C,P)−W ′(C,P)| : (C,P) ∈ E(N )

}
(4.1a)

P̃ = max
P∈F

∑
C∈P

W ′(C,P) (4.1b)

F :=
{
P ∈ Π(N ) : F1(P) ∩ F2(P) ∩ F3(P) ∩ F4(P)

}
(4.1c)

F1(P) :
∑
C∈P

W ′(C,P) ≥
∑
i∈N

W ′({i}, SP ) (4.1d)

F2(P) : W ′(C,P) ≥ W ′(S, (P − C,S, T )) + W ′(T , (P − C,S, T ))

∀C ∈ P ,∀Q ∈ Π(C) : |Q| = 2, {S,T } = Q.
(4.1e)

F3(P) : W ′(C,P) ≥
∑
i∈C

W ′({i}, SP ) ∀C ∈ P (4.1f)

F4(P) : W ′(C,P) + W ′(S,P) ≥ W ′(C ∪ S, (P − C − S, C ∪ S)) ∀C,S ∈ P : C ̸= S (4.1g)

ϵ2 = max{0, δF1 , δF2 , δF3 , δF4} (4.1h)

δF1 =
∑
i∈N

W ({i}, SP )−
∑
C∈P̃

W (C, P̃) (4.1i)

δF2 = max
{
W (S, (P̃ − C,S, T )) + W (T , (P̃ − C,S, T ))−W (C, P̃) :

C ∈ P̃ ,Q ∈ Π(C), |Q| = 2, {S,T } = Q
} (4.1j)

δF3 = max
{∑

i∈C
W ({i}, SP )−W (C, P̃) : C ∈ P̃

}
(4.1k)

δF4 = max
{
W (C ∪ S, (P̃ − C − S, C ∪ S))−W (C, P̃)−W (S, P̃) :

C,S ∈ P̃ , C ̸= S
}
.

(4.1l)

Is the SPFG (N ,W ′) different from the original game? If yes, does the computation
of a stable partition provide a useful solution to the original SPFG (N ,W )? Assessing
whether ϵ1 and ϵ2 are equal to zero or strictly positive can help us to answer these questions.
The first measurement, ϵ1 ≥ 0, indicates that W ′ is different from W if and only if it is
greater than 0. Otherwise, the SPFG (N ,W ) is MILP-representable and solving the SPFG
(N ,W ′) provides a stable (SW-maximizing) partition to the SPFG (N ,W ), i.e., ϵ2 = 0.
The second measurement, ϵ2 ≥ 0, has similar behaviour, excepted for the reciprocity: W ′

can be different from W without it affecting the stability verdict apposed by solving its
approximated representation. Hence, we obtain the following logical implications connecting
ϵ1 and ϵ2:

ϵ1 = 0⇔ W ′ = W (4.2a)

ϵ1 = 0⇒ ϵ2 = 0 (4.2b)

80



W ′ = W ⇒ ϵ2 = 0 (4.2c)

ϵ1 > 0⇔ W ′ ̸= W (4.2d)

ϵ2 > 0⇒ ϵ1 > 0 (4.2e)

ϵ2 > 0⇒ W ′ ̸= W. (4.2f)

In practice, we are mainly concerned with whether ϵ2 = 0 or not: the usefulness of our
approximated MILP-representation relies on its capacity to determine a stable partition of
the original game (accordingly with the definition of stability settled by F). When ϵ2 > 0, our
representation introduces approximation errors that compromise stability from the original
SPFG viewpoint. Additionally, the value of ϵ2 signifies how far from stable the chosen
partition is. Thus, in what follows, our goal is to show that ϵ2 is upper-bounded, effectively
demonstrating how much, in the worst-case scenario, the approximation error affects the
stability of the solution. Before we continue let us note that we will not analyze whether
the determined partition P̃ also maximizes the SW of the original game among its stable
partitions. We set as priority being able to use our MILP-representation for finding a stable
partition.
Theorem 5. If P̃ is a stable partition for (N ,A), then ϵ2 ≤ 2nϵ1.

Proof. First, we define ϵ′
2, which is the equivalent of ϵ2 but using W ′.

ϵ′
2 = max{0, δ′

F1 , δ′
F2 , δ′

F3 , δ′
F4} (4.3)

δ′
F1 =

∑
i∈N

W ′({i}, SP )−
∑
C∈P̃

W ′(C, P̃) (4.4)

δ′
F2 = max

{
W ′(S, (P̃ − C,S, T )) + W ′(T , (P̃ − C,S, T ))−W ′(C, P̃) :

C ∈ P̃ ,Q ∈ Π(C), |Q| = 2, {S,T } = Q
} (4.5)

δ′
F3 = max

{∑
i∈C

W ′({i}, SP )−W ′(C, P̃) : C ∈ P̃
}

(4.6)

δ′
F4 = max

{
W ′(C ∪ S, (P̃ − C − S, C ∪ S))−W ′(C, P̃)−W ′(S, P̃) :

C,S ∈ P̃ , C ̸= S
}
.

(4.7)

Since P̃ satisfies all stability criteria in (4.1d)-(4.1g), we have ϵ′
2 = 0 and thus:

δ′
F1 =

∑
i∈N

W ′({i}, SP )−
∑
C∈P̃

W ′(C, P̃) ≤ 0 (4.8)

δ′
F2 = max

{
W ′(S, (P̃ − C,S, T )) + W ′(T , (P̃ − C,S, T ))−W ′(C, P̃) :

C ∈ P̃ ,Q ∈ Π(C), |Q| = 2, {S,T } = Q
}
≤ 0

(4.9)

δ′
F3 = max

{∑
i∈C

W ′({i}, SP )−W ′(C, P̃) : C ∈ P̃
}
≤ 0 (4.10)

81



δ′
F4 = max

{
W ′(C ∪ S, (P̃ − C − S, C ∪ S))−W ′(C, P̃)−W ′(S, P̃) :

C,S ∈ P̃ , C ̸= S
}
≤ 0.

(4.11)

Second, we study each stability criterion separately. By subtracting δ′
Fi

from δFi
and

then applying the triangular inequality |a + b| ≤ |a|+ |b| using the corresponding embedded
coalitions bounded by (4.1a), we get upper-bounds for ϵ2 as a function of ϵ1.
Claim 4.3.1. If δF1 = ϵ2, then ϵ2 ≤ 2nϵ1.

We suppose that δF1 = ϵ2, i.e., the largest stability criterion violation occurs for F1(P̃ ).
(1) Subtraction of δF1 by δ′

F1 .

δ′
F1 =

∑
i∈N

W ′({i}, SP )−
∑
C∈P̃

W ′(C, P̃) ≤ 0 (4.12)

δF1 =
∑
i∈N

W ({i}, SP )−
∑
C∈P̃

W (C, P̃) = ϵ2 (4.13)

δF1 − δ′
F1 =

∑
i∈N

(W ({i}, SP )−W ′({i}, SP )) +
∑
C∈P̃

(
W ′(C, P̃)−W (C, P̃)

)
≥ ϵ2 (4.14)

(2) Triangular inequality.

ϵ2 ≤ |
∑
i∈N

(W ({i}, SP )−W ′({i}, SP )) +
∑
C∈P̃

(
W ′(C, P̃)−W (C, P̃)

)
|

≤
∑
i∈N
|W ({i}, SP )−W ′({i}, SP )|+

∑
C∈P̃

|W ′(C, P̃)−W (C, P̃)|
(4.15)

(3) Bounding by ϵ1 using the worst-case scenario.

|W ({i}, SP )−W ′({i}, SP )| ≤ ϵ1 ∀i ∈ N (4.16)

|W (C, P̃)−W ′(C, P̃)| ≤ ϵ1 ∀C ∈ P̃ (4.17)

|P| ≤ |N | = n ∀P ∈ Π(N ) (4.18)

=⇒ ϵ2 ≤ nϵ1 + nϵ1 = 2nϵ1 (4.19)

Claim 4.3.2. If δF2 = ϵ2, then ϵ2 ≤ 3ϵ1.
We suppose that δF2 = ϵ2, i.e., the largest stability criterion violation happens for F2(P̃ ).

It means ∃C∗,S∗, T ∗ : δF2 = W (S∗, (P̃ −C∗,S∗, T ∗))+W (T ∗, (P̃ −C∗,S∗, T ∗))−W (C∗, P̃) =
ϵ2.

(1) Subtraction of δF2 by δ′
F2 .

δ′
F2 = W ′(S∗, (P̃ − C∗,S∗, T ∗)) + W ′(T ∗, (P̃ − C∗,S∗, T ∗))−W ′(C∗, P̃) ≤ 0 (4.20)

δF2 = W (S∗, (P̃ − C∗,S∗, T ∗)) + W (T ∗, (P̃ − C∗,S∗, T ∗))−W (C∗, P̃) = ϵ2 (4.21)

δF2 − δ′
F2 = W (S∗, (P̃ − C∗,S∗, T ∗))−W ′(S∗, (P̃ − C∗,S∗, T ∗))

+ W (T ∗, (P̃ − C∗,S∗, T ∗))−W ′(T ∗, (P̃ − C∗,S∗, T ∗))

+ W ′(C∗, P̃)−W (C∗, P̃) ≥ ϵ2

(4.22)

82



(2) Triangular inequality.

ϵ2 ≤ |W (S∗, (P̃ − C∗,S∗, T ∗))−W ′(S∗, (P̃ − C∗,S∗, T ∗))

+W (T ∗, (P̃ − C∗,S∗, T ∗))−W ′(T ∗, (P̃ − C∗,S∗, T ∗))

+W ′(C∗, P̃)−W (C∗, P̃)|

≤ |W (S∗, (P̃ − C∗,S∗, T ∗))−W ′(S∗, (P̃ − C∗,S∗, T ∗))|

+|W (T ∗, (P̃ − C∗,S∗, T ∗))−W ′(T ∗, (P̃ − C∗,S∗, T ∗))|

+|W ′(C∗, P̃)−W (C∗, P̃)|

(4.23)

(3) Bounding by ϵ1 using the worst-case scenario.

|W (S∗, (P̃ − C∗,S∗, T ∗))−W ′(S∗, (P̃ − C∗,S∗, T ∗))| ≤ ϵ1 (4.24)

|W (T ∗, (P̃ − C∗,S∗, T ∗))−W ′(T ∗, (P̃ − C∗,S∗, T ∗))| ≤ ϵ1 (4.25)

|W ′(C∗, P̃)−W (C∗, P̃)| ≤ ϵ1 (4.26)

=⇒ ϵ2 ≤ 3ϵ1. (4.27)

Claim 4.3.3. If δF3 = ϵ2, then ϵ2 ≤ (n + 1)ϵ1.
By hypothesis δF3 = ϵ2, i.e., the largest stability criterion violation occurs in F3(P̃ ). It

means ∃C∗ : ∑i∈C∗ W ({i}, SP )−W (C∗, P̃) = ϵ2.
(1) Subtraction of δF3 by δ′

F3 .

δ′
F3 =

∑
i∈C∗

W ′({i}, SP )−W ′(C∗, P̃) ≤ 0 (4.28)

δF2 =
∑
i∈C∗

W ({i}, SP )−W (C∗, P̃) = ϵ2 (4.29)

δF2 − δ′
F2 =

∑
i∈C∗

W ({i}, SP )−W ′({i}, SP ) + W ′(C∗, P̃)−W (C∗, P̃) ≥ ϵ2 (4.30)

(2) Triangular inequality.

ϵ2 ≤ |
∑
i∈C∗

W ({i}, SP )−W ′({i}, SP ) + W ′(C∗, P̃)−W (C∗, P̃)|

≤
∑
i∈C∗
|W ({i}, SP )−W ′({i}, SP )|+ |W ′(C∗, P̃)−W (C∗, P̃)|

(4.31)

(3) Bounding by ϵ1 using the worst-case scenario.

|W ({i}, SP )−W ′({i}, SP )| ≤ ϵ1 ∀i ∈ C∗ (4.32)

|W (C∗, P̃)−W ′(C∗, P̃)| ≤ ϵ1 (4.33)

|C∗| ≤ |N | = n (4.34)

=⇒ ϵ2 ≤ nϵ1 + ϵ1 = (n + 1)ϵ1 (4.35)

Claim 4.3.4. If δF4 = ϵ2, then ϵ2 ≤ 3ϵ1.

83



Finally, let us suppose that δF4 = ϵ2, i.e., the largest stability criterion violation happens
for F4(P̃). It means ∃C∗,S∗ : δF4 = W (S∗∪C∗, (P̃−C∗−S∗,S∗∪C∗))−W (S∗, P̃)−W (C∗, P̃) =
ϵ2.

(1) Subtraction of δF4 by δ′
F4 .

δ′
F4 = W ′(S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))−W ′(S∗, P̃)−W ′(C∗, P̃) ≤ 0 (4.36)

δF4 = W (S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))−W (S∗, P̃)−W (C∗, P̃) = ϵ2 (4.37)

δF4 − δ′
F4 =

W (S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))−W ′(S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))

+W ′(S∗, P̃)−W (S∗, P̃)

+W ′(C∗, P̃)−W (C∗, P̃)

≥ ϵ2

(4.38)

(2) Triangular inequality.

ϵ2 ≤ |W (S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))−W ′(S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))

+W ′(S∗, P̃)−W (S∗, P̃)

+W ′(C∗, P̃)−W (C∗, P̃)|

≤ |W (S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))−W ′(S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))|

+|W ′(S∗, P̃)−W (S∗, P̃)|

+|W ′(C∗, P̃)−W (C∗, P̃)|

(4.39)

(3) Bounding by ϵ1 using the worst-case scenario.

|W (S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))−W ′(S∗ ∪ C∗, (P̃ − C∗ − S∗,S∗ ∪ C∗))| ≤ ϵ1 (4.40)

|W ′(S∗, P̃)−W (S∗, P̃)| ≤ ϵ1 (4.41)

|W ′(C∗, P̃)−W (C∗, P̃)| ≤ ϵ1 (4.42)

=⇒ ϵ2 ≤ 3ϵ1. (4.43)

In conclusion to these four cases, in the worst-case scenario, we have ϵ2 ≤
max{2nϵ1, 3ϵ1, (n + 1)ϵ1} = 2nϵ1; recall that for n ≤ 5, our approximated representa-
tion is exact (ϵ1=0) and thus, ϵ2 = 0. □

84



Chapter 5

Application: competitive markets

In this chapter, we seek to demonstrate the use of our MILP-representation to tackle SPFGs,
namely to determine a stable partition for them. For that purpose, we consider the SPFG
presented by Nagarajan and Sošić [54], since (i) the authors study the problem of determin-
ing a stable partition and (ii) their setup captures classical features of games (competition
for demand, maximization of profits, pricing, etc). In their game, retailers producing inter-
changeable products compete by setting the prices. The game is played in two-stages, the
first consisting of the formation of coalitions (coalition structure), i.e., a partition of the set
N of players (retailers), and the second involving the setting of a price by each coalition.

In Section 5.1, we explain the backward reasoning of Nagarajan and Sošić [54], which
allow us to focus simply on the first stage of the game, i.e., determining a stable partition.
In particular, this backward process where we compute the equilibria prices of the second
stage, provide us with the partition function of their game.

In their article, Nagarajan and Sošić are interested in identifying stable coalition struc-
tures when players are farsighted. Thus, their definition of what constitutes a stable partition
is different from that used in this thesis and presented in Section 3.2. Indeed, our defini-
tion of stability only considers a neighborhood of deviations for a given partition but not
sequences of deviations, which can allow to model farsightedness. Moreover, they study the
effect of multiple parameters, such as substitutability of the individual demands, variability
of the demand process and inventory cost parameters, on the outcome (coalition structure)
of the game. In Section 5.2, we apply our approximated MILP-representation to study the
coalition structure formation for instances of this game combining different parameters of it:
varying degrees of substitutability, number of players and market size. However, we maintain
our definition of stability and do not consider players to be farsighted. This will be sufficient
to showcase the value of the contribution in this thesis and to have a basis of comparison
between the two stability approaches. For the application in hand, we observe from our
computational experiments that when a partition is stable as per our definition, then it is



also stable as per the definition adopted in Nagarajan and Sošić [54], described in the next
section. We will see this empirically in Section 5.2 and also justify why it is true.

5.1. Game setup
Let us describe concretely the SPFG by Nagarajan and Sošić [54], namely, its partition

function value1. In this game, we have n (symmetric) players who represent retailers. The
players compete for demand since they produce interchangeable goods. Each player i aims
to set a price p⃗i for their product in order to maximize their profit; the costs are normalized
so that they are equal to zero and we only have to consider profits (price times the demand).
In the first stage of the game, players form coalitions, which results in a partition of the
set of players N . In the second stage, prices are set, with players in the same coalition
coordinating their prices to be equal. The demand faced by player i belonging to coalition
C, given that the partition formed in the first stage is P ∋ C, is expressed by:

Di∈C,C∈P(P) = A− (1 + α)p⃗i + α

n
|C|p⃗i + α

n

∑
j /∈C

p⃗j, (5.1)

where α ∈ [0,∞[ is the substitutability level between products of any two retailers i and j,
A is the market size and p⃗ is the price vector. Therefore, we can write the profit for player i,

Profiti(D(P), p⃗) = Di∈C,C∈P(P)× p⃗i

= Ap⃗i − (1 + α)p⃗ 2
i + α

n
|C|p⃗ 2

i + α

n

∑
j /∈C

p⃗j p⃗i. (5.2)

Next, we apply a backward induction process to determine the value of the partition
function for this game for any embedded coalition. This means that we start by determining
the equilibrium price p⃗ of the second-stage given a partition P (outcome of the first-stage).
By equilibrium price, we mean the prices p⃗ such that no player has incentive to unilaterally
deviate from the selected price. Through the profit formula (5.2), we can find the equilib-
rium price for each player by finding the maximum profit. In this way, the set of prices p⃗

simultaneously maximizes each player individual profit, and thus, there will be no incentive
to deviate.

We are able to deduce any equilibrium price p⃗k given the size of the coalition T ∋ k, the
price of another player p⃗i and the size of the coalition C ∋ i.

0 = ∂Profiti

∂p⃗i

= A− 2(1 + α)p⃗i + 2α

n
|C|p⃗i + α

n

∑
j /∈C

p⃗j

= A− 2(1 + α)p⃗i + α

n
|C|p⃗i + α

n

∑
S∈P
|S|p⃗j∈S

1We consider the deterministic SPFG version in [54].

86



=⇒ α

n

∑
S∈P
|S|p⃗j∈S = 2(1 + α)p⃗i −

α

n
|C|p⃗i − A

= 2(1 + α)p⃗k −
α

n
|T |p⃗k − A

=⇒
2(1 + α)− α

n
|C|

2(1 + α)− α
n
|T |

p⃗i = p⃗k.

Now, we can replace the price of any player as a function of the price of player i, and get
the equilibrium price p⃗i for any player i ∈ C in any partition P ∋ C.

0 = ∂Profiti

∂p⃗i

= A− 2(1 + α)p⃗i + 2α

n
|C|p⃗i + α

n

∑
j /∈C

p⃗j

= A− 2(1 + α)p⃗i + α

n
|C|p⃗i + α

n

∑
T ∈P
|T |

2(1 + α)− α
n
|C|

2(1 + α)− α
n
|T |

p⃗i

=⇒ p⃗i = A

2(1 + α)− α
n
|C| − (2(1 + α)− α

n
|C|)α

n

∑
T ∈P

|T |
2(1+α)− α

n
|T |

= A

(2(1 + α)− α
n
|C|)(1− α

n

∑
T ∈P

|T |
2(1+α)− α

n
|T |)

(5.3)

Using Equation (5.3), we can calculate the profit for any embedded coalition at equilib-
rium, and thus create the partition function W for this SPFG:

W (C,P) =
∑
i∈C

Profiti(D(P), p⃗), (5.4)

where p⃗ is computed as in Equation (5.3).
The presented backward reasoning enabled us to define the SPFG (N ,W ) by Nagarajan

and Sošić [54]. Now, we can obtain our approximated MILP-representation (N ,A), and run
the algorithm described in Section 4.1.3 to solve the approximated game. This algorithm
will return the stable partition maximizing the SW of the approximated game if a stable
partition exists; otherwise, it returns the empty set. It will also return two approximation
measurements for the MILP-representation, ϵ1 and ϵ2, that we defined in section 4.3. The first
approximation measurement, ϵ1 ≥ 0, describes how different is the MILP-representation from
the original SPFG. If ϵ1 = 0, the representation perfectly captures the game. If ϵ1 > 0, there
are embedded coalitions that will receive different payoffs under the MILP-representation
and under the original SPFG, and ϵ1 is the greatest value among those differences. Up until
n ≤ 5, ϵ1 is 0 (Theorem 4) since our MILP-representation is exact for small symmetrical
games. The second approximation measurement, ϵ2 ≥ 0, describes how far from stable is
the algorithm-chosen partition in the original SPFG. If ϵ2 = 0, the chosen partition is stable
in both the approximated representation and the original game. If ϵ2 > 0, an embedded
coalition, according to the original SPFG, could gain a maximum of ϵ2 when deviating from

87



the chosen partition. In the next section, we analyze our approximated representations for
the described game.

5.2. Computational analysis
We tested our algorithm from Section 4.1.3 for instances of the SPFG by Nagarajan and

Sošić [54] with A ∈ {20,100}, α ∈ {0, 1, 2, . . . , 9} and n ∈ {3, 4, 5, . . . , 14}. When α = 0, it
means the players are indifferent to cooperation since the prices of the other players do not
affect their individual demand. Hence, all partitions are stable. For any other combination
of parameters, as long as α > 0, we observe that our algorithm chooses the GC. This is
concordant with Theorem 1 of Nagarajan and Sošić [54], as it states that when α > 0, the
total profit generated by the GC exceeds the total profit generated in any other coalition
structure. Consequently, we deduce that this is the first partition whose stability is analyzed
by our stability constraints in F . If this partition is stable according to the stability criteria
in F , then we expect to have the GC be the selected partition. Also because of their Theorem
1, we know that our stability constraints F1, F2 and F3 hold, as they involve exclusively
neighbourhoods including all the players, and thus are always comparing the total profit of
a coalition structure that is not the GC to the total profit of the GC. There are no other
neighbour to compare GC to in F4, so this constraint holds by default. Hence, we expect
our algorithm to return the GC.

When analyzing our computational results, we remarked that when ϵ1 > 0, for α > 0
and n > 5, ϵ2 stays equal to 0. In other words, even though the MILP-representation is a
bit off (i.e., it is indeed an approximation to the original game), it never induces an error
on the stability verdict and produces a valid stable partition to the original game. Since
this is a general trend in our results, we provide a sample of them in Table 5.1 for the case
with 14 players. We chose n = 14 because we expect our approximated MILP-representation
to deteriorate with the number of players (increase in ϵ1) as well as the stability error ϵ2

(recall from Theorem 5 that n and ϵ1 play an important role on the upper-bounding of ϵ2).
In Table 5.1, except for the cases with α = 0, it is possible to observe that the GC is a
stable partition to the approximated game (N ,A), column “Chosen partition”. Moreover,
we always have ϵ2 = 0, which implies that the GC is also stable to the original game. Finally,
we observe that augmenting A and α leads to an increase in ϵ1. With respect to the increase
in A, the observed increase in ϵ1 is due to the fact that A, the size of the market, increases
the profits of the players and thus, can potentially create larger divergences between W

and the approximated partition function values. Concerning the increase of α, we note that
it appears in the equilibrium prices (Equation (5.3)) always together with the coalitions
sizes. Thus, a larger value of α introduces more variability in the equilibrium prices and,
consequently, in the profit of each player which is used to compute W (Equation (5.4)).

88



Hence, we hypothesize that different embedded coalitions will have significantly different
partition function values, resulting in worst approximated MILP-representations.

n A α Chosen partition ϵ1 ϵ2
14 20 0 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]] 0.00 0.00
14 20 1 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 8.22 0.00
14 20 2 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 21.56 0.00
14 20 3 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 34.02 0.00
14 20 4 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 44.31 0.00
14 20 5 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 52.41 0.00
14 20 6 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 58.62 0.00
14 20 7 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 63.29 0.00
14 20 8 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 69.07 0.00
14 20 9 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 74.24 0.00
14 100 0 [[1, 4, 5, 6, 7, 9, 10, 12], [8, 11, 13], [2], [3], [14]] 0.00 0.00
14 100 1 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 205.57 0.00
14 100 2 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 538.91 0.00
14 100 3 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 850.44 0.00
14 100 4 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 1107.84 0.00
14 100 5 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 1310.34 0.00
14 100 6 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 1465.54 0.00
14 100 7 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 1582.24 0.00
14 100 8 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 1726.74 0.00
14 100 9 [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]] 1856.04 0.00

Table 5.1. Snippet of the results for n = 14.

In Nagarajan and Sošić [54], the farsighted approach by the authors finds that when α→
∞, the GC is the unique stable outcome, because the products are perfectly substitutable
and full cooperation is beneficial for the players. It also finds that when α = 0, every
partition is stable, because the players are indifferent to cooperation. In our computational
experiments, the associated results for α = 0 and large values of α lead to the same findings.
The comparison with farsighted stability diverges however for small values of α. Their
method will allow more partitions to be stable as stated in their Theorem 2. This can be
explained by the fact that our algorithm is built to return only one stable outcome, the
SW-maximizing partition that is also stable. This is why even with α as small as 0.01, our
algorithm returns the GC.

In conclusion, our stability constraints in F , combined to the SW-maximizing component
seem to capture the same reasoning as the farsightedness as described by Nagarajan and Sošić
[54], since both methods find stability in the GC. Even if our algorithm only replicates a
part of that reasoning by focusing on finding the SW-maximizing partition that is also stable
according to the constraints in F , we could say that it share some farsighted traits, because it
does not contain any stability constraint that is especially protective of unilateral gains (that
could have been, for example, Nash Equilibrium stability requirement), since both parties are
included for comparison in F2 (respectively F4) when there is a split (respectively a fusion).
Again, this highlights the need to define accurate stability criteria based on the context of
the game.

89





Conclusion

In Chapter 1, we explain the PFG-related notions that form the basis on which the thesis is
built. In order to solve such games, we state in particular the need to tackle two questions:
(i) “How do players partition themselves?” and (ii) “How do players allocate the payoffs
attributed to every coalition?”. Thus, the literature review of Chapter 2 targets works
addressing one (or both) of those questions. Although PFGs are more general than CFGs,
we find that the cooperative game theory literature tilts towards the latter, because they
have many applications, but also because of their relative simplicity. We remark that PFGs
also do not lack applicability such as inventory pooling [38] or audit sharing [24], to name
only a few. Thus, we believe in the well-founded good of having scientists interested in
PFGs and pushing their study forward. On the subject of payoff allocations, many concepts
developed for CFGs have been extended to PFGs, e.g., the strong-core [15] is an extension
of the core [28]. On the subject of stable coalition formation, a wide array of techniques
have been used, e.g., the Nash Equilibrium [56], the largest consistent set [17], bargaining
methods [53], Markov processes [49]and custom stability constraints [4].

In Chapter 3, we start by proposing a new set of stability constraints in the context
of coalition structure formation for PFGs as well as in the context of payoff allocation.
Notably, we employ the stability constraints presented in Basso et al. [4] for the formation of
a partition, with the addition of one custom stability constraint of our own, because we find
they are a good compromise between stability and non-emptiness of the stable partitions
set. We also design a core-like approach to find a stable payoff allocation vector that is
guaranteed to always return a payoff allocation.

Chapter 4 contains the bulk of the thesis. We present the first compact MILP-
representation for SPFGs. We also introduce a framework exploiting the MILP-
representation in order to find the SW-maximizing stable partition and a payoff allocation
vector to solve the represented SPFG. Given that our MILP-representation has polynomial
size on the number of players, it does not reach full expressiveness for all SPFGs. Thus, we
characterize the family of SPFGs that our model can represent accurately in Theorem 4.
To palliate the issue of not being able to represent exactly all SPFGs, we describe a step
allowing to find an approximated MILP-representation for any SPFG. The approximation is



based on the least-squares method determining the Moore-Penrose inverse matrix [64]. The
chapter ends with the study of the MILP-approximation bounds of our model. Concretely,
we give insights on the relation between the partition function approximation error and
the violation error of the stability constraints coming from solving the game with the
approximated MILP-representation. An observation to make about the representation
introduced in this chapter, relative to Lemma 4.2.4, is that it can always express fully the
values of any coalition of size n − 3 to n. This hints that our model is very advantageous
for situations where we expect partitions of coarser granularity to form.

Finally, Chapter 5 applies the whole framework to a game described in Nagarajan and
Sošić [54], where firms selling (substitutable) products can form coalitions in the hope of
improving their individual payoffs. We observe that the solution provided to our approxi-
mated MILP-representation is useful to solve the original game, yielding results similar to
those of [54]. Indeed, the stability solution concept picked in Chapter 3 captures some far-
sightedness, because it includes both parties in the deviations, i.e., not just the coalition
deviating, but also the players that are left behind or joined by it. This highlights the im-
portance to pick or design a solution concept appropriated to the context of the game that is
studied. Overall, our compact and well-defined MILP-representation, embedded in a flexible
framework, manages to find satisfying answers to our two guiding questions.

Future work should address many aspects revolving around the MILP-representation and
its framework. A straightforward work direction is the testing of our framework with other
solution concepts for payoff allocation and for stable coalition formation as well as other game
applications. This could give an even better sense of the performance and value of MILP-
representations. Namely, the solving of games coming from real-world contexts through
our approximated MILP-representation would allow us to further analyze its performance
and compare it with existent approaches. Another direction is related with addressing the
existence of multiple ways to encode an SPFG through an MILP-representation. A few
constraints could be devised and added to the determination of matrix A in order to have
a unique (approximated) representation given an SPFG. Finally, generalizing the MILP-
representation to non-symmetric PFGs would undoubtedly be an important step, as many
more applications could find interest in our work.

92



Références bibliographiques

[1] Anupindi, R., Bassok, Y., and Zemel, E. (2001). A general framework for the study
of decentralized distribution systems. Manufacturing & Service Operations Management,
3(4):349–368.

[2] Aumann, R. J. (1961). The core of a cooperative game without side payments. Trans.
Amer. Math. Soc, 98:539–552.

[3] Bartholdi, J. J. and Kemahlioğlu-Ziya, E. (2005). Using shapley value to allocate savings
in a supply chain. In Geunes, J. and Pardalos, P. M., editors, Supply Chain Optimization,
pages 169–208. Springer US, Boston, MA.

[4] Basso, F., Basso, L. J., Rönnqvist, M., and Weintraub, A. (2021). Coalition formation
in collaborative production and transportation with competing firms. European Journal of
Operational Research, 289(2):569–581.

[5] Benedek, M., Fliege, J., and Nguyen, T.-D. (2021). Finding and verifying the nucleolus
of cooperative games. Mathematical Programming, 190(1):135–170.

[6] Bistaffa, F., Farinelli, A., Cerquides, J., Rodríguez-Aguilar, J., and Ramchurn, S. D.
(2014). Anytime coalition structure generation on synergy graphs. AAMAS ’14, page 13–20,
Richland, SC. International Foundation for Autonomous Agents and Multiagent Systems.

[7] Bistaffa, F., Farinelli, A., Chalkiadakis, G., and Ramchurn, S. D. (2017). A cooperative
game-theoretic approach to the social ridesharing problem. Artificial Intelligence, 246:86–
117.

[8] Bitar, E. Y., Baeyens, E., Khargonekar, P. P., Poolla, K., and Varaiya, P. (2012). Optimal
sharing of quantity risk for a coalition of wind power producers facing nodal prices. In 2012
American Control Conference (ACC), pages 4438–4445. IEEE.

[9] Björck, Å. (2009). Least squares problems, pages 1856–1866. Springer US, Boston, MA.
[10] Bloch, F. and van den Nouweland, A. (2014). Expectation formation rules and the core
of partition function games. Games and Economic Behavior, 88(C):339–353.

[11] Caprara, A. and Letchford, A. N. (2010). New techniques for cost sharing in combina-
torial optimization games. Mathematical Programming, 124:93–118.

[12] Carraro, C. and Marchiori, C. (2002). Stable coalitions. Technical Report 3258, CEPR
Press Discussion Papers.



[13] Carvalho, M., Lodi, A., and Pedroso, J. (2022). Computing equilibria for integer pro-
gramming games. European Journal of Operational Research, 303(3):1057–1070.

[14] Chalkiadakis, G., Wooldridge, M. J., and Elkind, E. (2012). Coalition structure for-
mation. In Computational aspects of Cooperative Game Theory, page 87–105. Morgan &
Claypool Publishers.

[15] Chander, P. (2014). A core concept for partition function games. Retrieved from http:
//www.parkashchander.com/pdf/Strongcore15.pdf.

[16] Chander, P. and Tulkens, H. (1997). The core of an economy with multilateral environ-
mental externalities. International Journal of Game Theory, 26:379–401.

[17] Chwe, M. S.-Y. (1994). Farsighted coalitional stability. Journal of Economic Theory,
63:299–325.

[18] Conforti, M., Cornuéjols, G., and Zambelli, G. (2014). Integer Programming. Springer
Cham.

[19] Conitzer, V. and Sandholm, T. (2004). Computing shapley values, manipulating value
division schemes, and checking core membership in multi-issue domains. In Proceedings
of the 19th National Conference on Artifical Intelligence, AAAI’04, page 219–225. AAAI
Press.

[20] Conitzer, V. and Sandholm, T. (2006). Complexity of constructing solutions in the core
based on synergies among coalitions. Artificial Intelligence, 170(6):607–619.

[21] Contreras, J. P., Bosch, P., Varas, M., and Basso, F. (2020). A new genetic algorithm en-
coding for coalition structure generation problems. Mathematical Problems in Engineering,
2020.

[22] CPLEX, IBM ILOG (2009). V12. 1: User’s manual for CPLEX. International Business
Machines Corporation, 46(53):157.

[23] Deng, X. and Fang, Q. (2008). Algorithmic cooperative game theory. In Chinchuluun,
A., Pardalos, P. M., Migdalas, A., and Pitsoulis, L., editors, Pareto Optimality, Game
Theory And Equilibria, pages 159–185. Springer New York, New York, NY.

[24] Fang, X. and Cho, S.-H. (2020). Cooperative approaches to managing social respon-
sibility in a market with externalities. Manufacturing & Service Operations Management,
22(6):1215–1233.

[25] Feng, Q., Li, C., Lu, M., and Shanthikumar, J. G. (2022a). Implementing environ-
mental and social responsibility programs in supply networks through multiunit bilateral
negotiation. Management Science, 68(4):2579–2599.

[26] Feng, Q., Li, Y., and Shanthikumar, J. G. (2022b). Negotiations in competing supply
chains: the Kalai-Smorodinsky bargaining solution. Management Science, 68(8):5868–5890.

[27] Gabriel, S. A., Siddiqui, S. A., Conejo, A. J., and Ruiz, C. (2013). Solving discretely-
constrained nash–cournot games with an application to power markets. Networks and
Spatial Economics, 13(3):307–326.

94

http://www.parkashchander.com/pdf/Strongcore15.pdf
http://www.parkashchander.com/pdf/Strongcore15.pdf


[28] Gillies, D. (1959). Solutions to general nonzero sum games. Annals of Mathematical
Studies, 40:47–85.

[29] Gopalakrishnan, S. and Sankaranarayanan, S. (2022). Cooperative security against
interdependent risks. arXiv:2201.04308.

[30] Granot, D. and Sošić, G. (2003). A three-stage model for a decentralized distribution
system of retailers. Operations Research, 51(5):771–784.

[31] Granot, D. and Sošić, G. (2005). Formation of alliances in internet-based supply ex-
changes. Management Science, 51(1):92–105.

[32] Guichard, D. (2022). An introduction to combinatorics and graph theory.
[33] Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual.
[34] Hardy, G. H. and Ramanujan, S. (1918). Asymptotic formulae in combinatory analysis.
Proceedings of the London Mathematical Society, Second Series, 17:75–115. Reprinted in
Collected papers of Srinivasa Ramanujan, Amer. Math. Soc. (2000), pp. 276–309.

[35] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and
Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825):357–362.

[36] Hart, S. and Kurz, M. (1983). Endogenous formation of coalitions. Econometrica,
51(4):1047––64.

[37] Ieong, S. and Shoham, Y. (2005). Marginal contribution nets: A compact representa-
tion scheme for coalitional games. In Proceedings of the 6th ACM Conference on Electronic
Commerce, EC ’05, page 193–202, New York, NY, USA. Association for Computing Ma-
chinery.

[38] Kemahlıoğlu-Ziya, E. and Bartholdi, J. J. (2011). Centralizing inventory in supply
chains by using shapley value to allocate the profits. Manufacturing & Service Operations
Management, 13(2):146–162.

[39] Klusch, M. and Gerber, A. (2002). Dynamic coalition formation among rational agents.
IEEE Intelligent Systems, 17(3):42–47.

[40] Kóczy, L. Á. (2007). A recursive core for partition function form games. Theory and
Decision, 63(1):41–51.

[41] Kóczy, L. Á. (2009). Sequential coalition formation and the core in the presence of
externalities. Games and Economic Behavior, 66(1):559–565.

[42] Kóczy, L. A. (2018). Partition Function Form Games, Coalitional Games with Exter-
nalities. Springer Cham.

[43] Kóczy, L. Á. (2022). Core-stability over networks with widespread externalities. Annals
of Operations Research, 318:1001–1027.

95



[44] Kong, X., Tong, X., and Wang, Y. (2021). Min-k-cut coalition structure generation on
trust-utility relationship graph. Wireless Communications and Mobile Computing, 2021:1–
11.

[45] Konishi, H. and Ray, D. (2003). Coalition formation as a dynamic process. Journal of
Economic Theory, 110:1–41.

[46] Lasisi, R. O. (2017). Overlapping coalition formation in multi-sensor networks. In
FLAIRS Conference, pages 194–197.

[47] Leng, M. and Parlar, M. (2009). Allocation of cost savings in a three-level supply chain
with demand information sharing: A cooperative-game approach. Operations Research,
57(1):200–213.

[48] Li, W. (2016). Approximation of the partition number after hardy and ramanujan: An
application of data fitting method in combinatorics. arXiv:1612.05526.

[49] Liao, S. S., Zhang, J.-D., Lau, R., and Wu, T. (2014). Coalition formation based on
marginal contributions and the markov process. Decision Support Systems, 57:355–363.

[50] McCormick, G. P. (1976). Computability of global solutions to factorable noncon-
vex programs: Part i — convex underestimating problems. Mathematical Programming,
10(1):147–175.

[51] Michalak, T., Marciniak, D., Szamotulski, M., Rahwan, T., Wooldridge, M., McBurney,
P., and Jennings, N. R. (2010). A logic-based representation for coalitional games with
externalities. In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10, page 125–132, Richland, SC.
International Foundation for Autonomous Agents and Multiagent Systems.

[52] Mu, L., Hu, B., Reddy, A. A., and Gavirneni, S. (2022). Negotiating government-to-
government food importing contracts: A nash bargaining framework. Manufacturing &
Service Operations Management, 24(3):1681–1697.

[53] Nagarajan, M. and Bassok, Y. (2008). A bargaining framework in supply chains: The
assembly problem. Management Science, 54:1482––96.

[54] Nagarajan, M. and Sošić, G. (2007). Stable farsighted coalitions in competitive markets.
Management Science, 53(1):29–45.

[55] Nagarajan, M. and Sošić, G. (2008). Game-theoretic analysis of cooperation among
supply chain agents: Review and extensions. European Journal of Operational Research,
187(3):719–745.

[56] Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54(2):286–295.
[57] Norde, H. and Pham Do, K.-H. (2007). The shapley value for partition function form
games. International Game Theory Review (IGTR), 09:353–360.

[58] Nudelman, E., Wortman, J., Shoham, Y., and Leyton-Brown, K. (2004). Run the
GAMUT: A comprehensive approach to evaluating game-theoretic algorithms. volume 2,
pages 880–887.

96



[59] OEIS Foundation Inc (2022a). a(n) = ∑
k=0..n p(k) where p(k) = number of partitions

of k (a000041), entry a000070 in the on-line encyclopedia of integer sequences. (visited on
2022-10-06).

[60] OEIS Foundation Inc (2022b). a(n) is the number of partitions of n (the partition
numbers), entry a000041 in the on-line encyclopedia of integer sequences. (visited on 2022-
09-13).

[61] OEIS Foundation Inc (2022c). Bell or exponential numbers: number of ways to partition
a set of n labeled elements, entry a000110 in the on-line encyclopedia of integer sequences.
(visited on 2022-09-13).

[62] Olariu, E. F., Frasinaru, C., and Policiuc, A. A. (2020). A branch and bound algorithm
for coalition structure generation over graphs. CoRR, arXiv:2004.13425.

[63] Ouellet, G. (2002). Systèmes d’équations linéaires. In Algèbre linéaire : vecteurs et
géométrie, page 95–145. Le griffon d’argile, 2 edition.

[64] Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the
Cambridge Philosophical Society, 51(3):406–413.

[65] Pepin, J. (2022). MIP-Representation-for-SPFG. https://github.com/chair-dsgt/
MIP-Representation-for-SPFG.

[66] Pia, A. D., Ferris, M. C., and Michini, C. (2017). Totally unimodular congestion games.
In SODA.

[67] Pintassilgo, P. and Lindroos, M. (2008). Coalition formation in straddling stock fisheries:
A partition function approach. International Game Theory Review (IGTR), 10:303–317.

[68] Präntare, F. and Heintz, F. (2020). An anytime algorithm for optimal simultaneous
coalition structure generation and assignment. Autonomous Agents and Multi-Agent Sys-
tems, 34(1):29.

[69] Rahwan, T., Ramchurn, S., Viet Dung, D., Giovannucci, A., and Jennings, N. (2007).
Anytime optimal coalition structure generation. volume 2, pages 1184–1190.

[70] Ray, D. and Vohra, R. (1997). Equilibrium binding agreements. Journal of Economic
Theory, 73(1):30–78.

[71] Rodríguez-Pereira, J., Balcik, B., Rancourt, M.-E., and Laporte, G. (2021). A cost-
sharing mechanism for multi-country partnerships in disaster preparedness. Production and
Operations Management, 30(12):4541–4565.

[72] Sandholm, T., Gilpin, A., and Conitzer, V. (2005). Mixed-integer programming methods
for finding nash equilibria. In AAAI, pages 495–501, Pittsburgh, Pennsylvania.

[73] Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal
of Applied Mathematics, 17:1163–1170.

[74] Shapley, L. S. (1951). Notes on the N-Person Game — II: The Value of an N-Person
Game. RAND Corporation, Santa Monica, CA.

97

https://github.com/chair-dsgt/MIP-Representation-for-SPFG
https://github.com/chair-dsgt/MIP-Representation-for-SPFG


[75] Shenoy, P. P. (1979). On coalition formation: A game-theoretical approach. Int. J.
Game Theory, 8(3):133–164.

[76] Skibski, O., Michalak, T., Sakurai, Y., Wooldridge, M., and Yokoo, M. (2015). A
graphical representation for games in partition function form. Proceedings of the AAAI
Conference on Artificial Intelligence, 29(1).

[77] Stojkovic, M., Soumis, F., and Desrosiers, J. (1998). The operational airline crew sched-
uling problem. Transportation Science, 32:232–245.

[78] Thrall, R. M. and Lucas, W. F. (1963). N-person games in partition function form.
Naval Research Logistics Quarterly, 10(1):281–298.

[79] Tripathi, R. R. and Amit, R. (2016). Equivalence nucleolus for coalitional games with
externalities. Operations Research Letters, 44(2):219–224.

[80] Ueda, S., Iwasaki, A., Conitzer, V., Ohta, N., Sakurai, Y., and Yokoo, M. (2018). Coali-
tion structure generation in cooperative games with compact representations. Autonomous
Agents and Multi-Agent Systems, 32(4):503–533.

[81] Voice, T., Polukarov, M., and Jennings, N. R. (2012). Coalition structure generation
over graphs. Journal of Artificial Intelligence Research, 45:165–196.

[82] von Neumann, J. and Morgenstern, O. (1944). Theory of games and economic behavior.
Princeton University Press.

[83] Westerink-Duijzer, L. E., Schlicher, L. P. J., and Musegaas, M. (2020). Core alloca-
tions for cooperation problems in vaccination. Production and Operations Management,
29(7):1720–1737.

[84] Wolsey, L. A. (2020). Integer Programming. Wiley.
[85] Yi, S.-S. (1997). Stable coalition structures with externalities. Games and Economic
Behavior, 20:201–237.

[86] Zha, A., Nomoto, K., Ueda, S., Koshimura, M., Sakurai, Y., and Yokoo, M. (2017).
Coalition structure generation for partition function games utilizing a concise graphical
representation. In An, B., Bazzan, A., Leite, J., Villata, S., and van der Torre, L., edi-
tors, PRIMA 2017: Principles and Practice of Multi-Agent Systems, pages 143–159, Cham.
Springer International Publishing.

[87] Zhao, J. (1992). The hybrid solutions of an n-person game. Games and Economic
Behavior, 4:145–160.

98



Appendix A

McCormick envelope implementation

Gurobi copes well with the formulation presented in Chapter 4. Nevertheless, we imple-
mented the McCormick envelope [50] to linearize the bilinear terms and we tested whether
the solver could perform better when inputting the obtained linear model. Preliminary re-
sults showed that it slightly slowed down Gurobi which possibly performs this linearization
itself. Thus, we decided to leave this implementation aside, but describe how we can make
it in the present appendix.

This model takes after the one introduced in Chapter 4, but makes it linear by using the
McCormick envelope. Given that we have our parameters n (the number of players) and
A ∈ Rn×n (square, upper-triangular and continuous matrix describing the SPFG), we have
the following variables:

• X ∈ {0,1}n×n is a binary square matrix where the rows represent the players and the
columns represent the coalitions. There are ones where a given player is in a given
coalition.
• q⃗ ∈ {0,1}n−1 is a binary vector where if there is a one at index j, it means the

coalitions in X at indices j and j + 1 are of the same cardinality.
• M ∈ {0,1}(n+1)×n is a binary rectangular matrix where the rows represent the number

of players and the columns represent the coalitions. There will be a one at Mij if
coalition j has n− i + 1 players, and there will be a zero otherwise.
• W ∈ {0,1}n×n×(n+1)×n is a four-dimension matrix whose elements represent all dif-

ferent products that are generated by multiplying an element of X with an element
of M. Namely, we write Wirkj = XirMkj.

We can write the objective using the definition of W in order to linearize it.

max
W

n∑
j=1

n∑
i=1

n+1∑
k=1

n∑
r=1

Wirkj[A|0]rk

The augmented matrix [A|0] correspond to matrix A with a column of zeros appended to
it.



Constraints. This first block of constraints regards X. It makes sure every row only has one
"1" (as each player can only belong to one coalition), and orders the coalition from the most
numerous to the least. The players’ indices are used as a tiebreaker.

n∑
j=1

Xij = 1 ∀i ∈ {1, ..., n}

(A.1)
n∑

i=1
Xij ≥

n∑
i=1

Xi(j+1) ∀j ∈ {1,..., n− 1}

(A.2)
n∑

i=1

(
Xij −Xi(j+1)

)
≥ 1− q⃗j ∀j ∈ {1,..., n− 1}

(A.3)[
2n−1 2n−2 ... 20

]
×X∗j ≥

[
2n−1 2n−2 ... 20

]
×X∗j+1 − L̄(1− q⃗j) ∀j ∈ {1,..., n− 1},

(A.4)
n+1∑
i=1

Mij = 1 ∀j ∈ {0,..., n}

(A.5)[
1 1 ... 1 1

]
1×n
×X =

[
n n− 1 ... 1 0

]
1×n+1

×M (A.6)

X ∈ {0,1}n×n, q⃗ ∈ {0,1}n−1, M ∈ {0,1}(n+1)×n. (A.7)

We also add the constraints applying to W’s elements. They happen to be binary because
X and M also are binary.

Wirkj ≥ Xir + Mkj − 1 ∀i,r,j ∈ {0,...,n} and k ∈ {0,...,n + 1} (A.8)

Wirkj ≥ 0 ∀i,r,j ∈ {0,...,n} and k ∈ {0,...,n + 1} (A.9)

Wirkj ≤ Xir ∀i,r,j ∈ {0,...,n} and k ∈ {0,...,n + 1} (A.10)

Wirkj ≤Mkj ∀i,r,j ∈ {0,...,n} and k ∈ {0,...,n + 1} (A.11)

Xir ∈ {0,1} ∀i,r ∈ {0,...,n} (A.12)

Mkj ∈ {0,1} ∀j ∈ {0,...,n} and k ∈ {0,...,n + 1} (A.13)

0 ≤Wirkj ≤ 1 ∀i,r,j ∈ {0,...,n} and k ∈ {0,...,n + 1} (A.14)

This model is now ready to be used just like the one described in Chapter 4.

100



Appendix B

Stability constraints for an
MILP-representation

In step (3) of the procedure determining a stable partition (Section 4.1.3), the stability
constraints in F for the partition X∗, written with our MILP-representation notation are as
follows:

[
1 1 ... 1

]
1×n
×X∗ × [A|0]×M∗


1
1
...
1


n×1

≥
[
1 1 ... 1

]
1×n
×XSP × [A|0]×MSP


1
1
...
1


n×1

,

(B.1a)([
1 1 ... 1

]
1×n
×X∗ × [A|0]×M∗

)
i
≥

∑
j:X∗

ji=1

([
1 1 ... 1

]
1×n
×XSP × [A|0]×MSP

)
j

∀i = 1,2, . . . ,n,

(B.1b)∑
j:X∗

∗j /∈Xneigh

([
1 1 ... 1

]
1×n
×X∗ × [A|0]×M∗

)
j
≥

∑
j:Xneigh

∗j /∈X∗

([
1 1 ... 1

]
1×n
×Xneigh × [A|0]×Mneigh

)
j

∀Xneigh :
(
Xneigh ∈ Xsplit

)
∨
(
Xneigh ∈ Xmerge

)
,

(B.1c)

Xsplit :
(
∃!j : X∗

∗j /∈ Xsplit,
[
1 1 . . . 1

]
1×n
×X∗

∗j ≥ 2
)
∧(

∃!i,∃!k : Xsplit
∗i /∈ X∗, Xsplit

∗k /∈ X∗, Xsplit
∗i + Xsplit

∗k = X∗
∗j

)
,

(B.1d)



Xmerge :
(
∃!j : Xmerge

∗j /∈ X∗,
[
1 1 . . . 1

]
1×n
×Xmerge

∗j ≥ 2
)
∧(

∃!i,∃!k : X∗
∗i /∈ Xmerge, X∗

∗k /∈ Xmerge, X∗
∗i + X∗

∗k = Xmerge
∗j

)
,

(B.1e)

where operator /∈ between a column and a matrix means there is no such column in the
matrix. Constraint (B.1a) is equivalent to F1 and ensures the candidate partition X∗ has
a larger total payoff than the SP. Constraints (B.1b) are equivalent to F3 and ensure that
each coalition in the candidate partition has a larger payoff than its equivalent in the SP.
Constraints (B.1c) is equivalent to F2 when we use Xneigh ∈ Xsplit (B.1d) and to F4 when we
use Xneigh ∈ Xmerge (B.1e). They ensure that given a neighbourhood partition, no coalition
will have incentive to deviate from the candidate partition.

102


	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	Notation and abbreviations
	Acknowledgements
	Introduction
	Chapter 1. Background
	1.1. Conventions
	1.2. Partitions and related concepts
	1.3. Partition function form game
	1.3.1. Symmetric partition function form game
	1.3.2. Characteristic function form game
	1.3.3. Games with positive and negative externalities

	1.4. Mixed-integer programming

	Chapter 2. Literature review
	2.1. Non-cooperative game theory
	2.2. Payoff sharing
	2.3. Coalition structure formation

	Chapter 3. Coalition structure formation and payoff sharing
	3.1. Preliminaries
	3.2. Stability constraints for partitions
	3.2.1. PFG with positive and negative externalities

	3.3. Payoff sharing

	Chapter 4. Integer programming representation
	4.1. SPFG representation
	4.1.1. Variables and constraints
	4.1.2. Parameters and MILP-representation
	4.1.3. Solving MILP-representable games

	4.2. MILP-Representable Family of SPFG
	4.2.1. The matrix A
	4.2.2. Characterization of MILP-representable SPFGs
	4.2.3. MILP-approximations of SPFG

	4.3. Bounding approximations

	Chapter 5. Application: competitive markets
	5.1. Game setup
	5.2. Computational analysis

	Conclusion
	Références bibliographiques
	Appendix A. McCormick envelope implementation
	Appendix B. Stability constraints for an MILP-representation

