
Université de Montréal

Neural Probabilistic Path Prediction: Skipping Paths for Acceleration

par
Bowen Peng

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en Informatique, Option Imagerie

Août, 2022

© Bowen Peng, 2022.

Université de Montréal
Faculté des études supérieures

Ce mémoire intitulé:

Neural Probabilistic Path Prediction: Skipping Paths for Acceleration

présenté par:

Bowen Peng

a été évalué par un jury composé des personnes suivantes:

Mikhail Bessmeltsev, président-rapporteur
Pierre Poulin, directeur de recherche
Glenn Berseth, membre du jury

Mémoire accepté le: 6 octobre, 2022

RÉSUMÉ

La technique de tracé de chemins est la méthode Monte Carlo la plus populaire en in-

fographie pour résoudre le problème de l’illumination globale. Une image produite par

tracé de chemins est beaucoup plus photoréaliste que les méthodes standard tel que le

rendu par rasterisation et même le lancer de rayons. Mais le tracé de chemins est coûteux

et converge lentement, produisant une image bruitée lorsqu’elle n’est pas convergée. De

nombreuses méthodes visant à accélérer le tracé de chemins ont été développées, mais

chacune présente ses propres défauts et contraintes. Dans les dernières avancées en ap-

prentissage profond, en particulier dans le domaine des modèles génératifs condition-

nels, il a été démontré que ces modèles sont capables de bien apprendre, modéliser et

tirer des échantillons à partir de distributions complexes. Comme le tracé de chemins

dépend également d’un tel processus sur une distribution complexe, nous examinons les

similarités entre ces deux problèmes et modélisons le processus de tracé de chemins

comme un processus génératif. Ce processus peut ensuite être utilisé pour construire un

estimateur efficace avec un réseau neuronal afin d’accélérer le temps de rendu sans trop

d’hypothèses sur la scène. Nous montrons que notre estimateur neuronal (NPPP), utilisé

avec le tracé de chemins, peut améliorer les temps de rendu d’une manière considérable

sans beaucoup compromettre sur la qualité du rendu. Nous montrons également que l’es-

timateur est très flexible et permet à un utilisateur de contrôler et de prioriser la qualité

ou le temps de rendu, sans autre modification ou entraînement du réseau neuronal.

Mots clés: tracé de chemins, illumination globale, apprentissage profond, mo-

dèles génératifs conditionnels.

ABSTRACT

Path tracing is one of the most popular Monte Carlo methods used in computer graph-

ics to solve the problem of global illumination. A path traced image is much more

photorealistic compared to standard rendering methods such as rasterization and even

ray tracing. Unfortunately, path tracing is expensive to compute and slow to converge,

resulting in noisy images when unconverged. Many methods aimed to accelerate path

tracing have been developed, but each has its own downsides and limitiations. Recent

advances in deep learning, especially with conditional generative models, have shown

to be very capable at learning, modeling, and sampling from complex distributions. As

path tracing is also dependent on sampling from complex distributions, we investigate

the similarities between the two problems and model the path tracing process itself as a

conditional generative process. It can then be used to build an efficient neural estima-

tor that allows us to accelerate rendering time with as few assumptions as possible. We

show that our neural estimator (NPPP) used along with path tracing can improve ren-

dering time by a considerable amount without compromising much in rendering quality.

The estimator is also shown to be very flexible and allows a user to control and priori-

tize quality or rendering time, without any further training or modifications to the neural

network.

Keywords: path tracing, global illumination, deep learning, conditional gener-

ative models.

CONTENTS

RÉSUMÉ . iii

ABSTRACT . iv

CONTENTS . v

LIST OF ABBREVIATIONS . viii

NOTATION . ix

ACKNOWLEDGMENTS . x

CHAPTER 1: INTRODUCTION . 1

1.1 Overview of Rendering . 4

1.2 Global Illumination . 7

1.3 Light Transport . 8

1.4 Monte Carlo Techniques . 10

1.4.1 Path Tracing . 12

1.4.2 Photon Mapping . 17

CHAPTER 2: ACCELERATION OF PATH TRACING 20

2.1 Overview . 21

2.1.1 Computational Efficiency . 22

2.1.2 Convergence, Bias, and Variance Reduction 23

2.2 Sampling Methods . 24

2.2.1 Early Stopping . 24

2.2.2 Russian Roulette . 25

vi

2.2.3 Adaptive Sampling . 26

2.2.4 Importance Sampling . 26

2.2.5 Next Event Estimation . 27

2.2.6 Bidirectional Path Tracing . 27

2.2.7 Metropolis Path Tracing . 29

2.2.8 Resampling . 30

2.3 Information Reuse Methods . 30

2.3.1 Irradiance Caching . 31

2.3.2 Light Probes . 31

2.3.3 Temporal Reprojection . 32

2.4 Screen Space Methods . 33

2.4.1 Screen Space Ray Tracing . 34

2.4.2 Denoising and Super-Resolution 34

CHAPTER 3: NEURAL PROBABILISTIC PATH PREDICTION (NPPP) 36

3.1 Motivation . 36

3.2 Theory . 37

3.2.1 Statistical Model of Path Tracing 37

3.2.2 Sampling . 39

3.2.3 Light Fields . 41

3.3 Algorithm . 44

3.3.1 Neural Architecture . 45

3.3.2 Acceleration Structures . 47

3.3.3 Training . 47

3.4 Results . 49

3.5 Discussion . 52

3.5.1 Grid Size . 55

vii

3.5.2 Quantization . 55

3.6 Implementation Details . 56

CHAPTER 4: CONCLUSION . 61

4.1 Future Work . 61

BIBLIOGRAPHY . 63

LIST OF ABBREVIATIONS

BDF Bidirectional Distribution Function

BRDF Bidirectional Reflectance Distribution Function

BSDF Bidirectional Scattering Distribution Function

BTDF Bidirectional Transmittance Distribution Function

BVH Bounding Volume Hierarchy

CPU Central Processing Unit

GAN Generative Adversarial Network

GI Global Illumination

GLSL OpenGL Shading Language

GPU Graphics Processing Unit

KiB/MiB/GiB Kibibyte/Mebibyte/Gibibyte (210/220/230 bytes)

LTE Light Transport Equation

MIS Multiple Importance Sampling

MLP Multilayer Perceptron

PM Photon Mapping

PT Path Tracing

VAE Variational Autoencoder

VR Virtual Reality

NOTATION

∫
Ω

Definite integral over a solid angle Ω

f ◦ g Function composition: f(g(x)))

(x0 → x1 → · · · → xn) Ordered list of vertices x0, x1, . . . , xn

N(0, 1) Normal distribution (Gaussian distribution with µ = 0 and σ = 1)

P (X|Y) Conditional probability distribution of X given Y

x ∼ P (X) Sample x is distributed according to the distribution P (X)

θp→t Learned parameters of an estimator for the distribution P (Xt|Xp)

ACKNOWLEDGMENTS

Many thanks to Prof. Pierre Poulin for the ideas, discussions, and encouragements

that led to the investigation and development of NPPP. Also thanks to Arnaud Schoent-

gen for helping me troubleshoot and setting up the computing environments. Finally, all

the thanks to my family, friends, professors, colleagues, and the open source community.

Without the help from everyone, I would not be where I am today.

CHAPTER 1

INTRODUCTION

In computer graphics, rendering is the process of converting the representation of a

combination of many models (geometry, textures, light sources, materials, shaders, etc.)

that form a scene in a computer, into something visible to the human eye, often as a 2D

raster image displayed on a screen.

To generate images with ever increasing photorealism, an accurate simulation of the

various effects of light is necessary. To reproduce such effects, many global illumination

(GI) algorithms have been developed. Some only simulate a subset of all possible effects

of light, but most are able to accurately simulate the three most important ones: direct

illumination and indirect illumination with and without caustics.

For example, "light tracing" actually simulates the path of photon particles by trac-

ing photons 1 emitted from light sources until they are deposited on a camera’s sensor,

accounting for the effects of light being reflected/refracted/absorbed by surfaces or scat-

tered/absorbed in volumes (often called "participating media").

One flaw of light tracing (or more specifically, tracing from the light sources) is

that it is an extremely inefficient algorithm. In a general situation, infinitely few of all

traced photons will actually hit a camera sensor before being absorbed and detected, as

a camera’s aperture and the path from it to the sensor is very small compared to the

scene 2. Most of the work devoted to paths unconnected to the camera is thus wasted and

1. We are not actually tracing each individual photon, but a group of photons that follow the same
path. In the physical world, the intensity of light, or radiance, is proportional to the amount of photons
being emitted per unit of time. Each individual photon does not have a notion of intensity. The energy of
a photon only depends on its wavelength, which affects the perceived color, but not true intensity. This
leads to a long debate about the representation of light transport between physics and computer graphics
communities that we will not settle here.

2. Real cameras have apertures that are often measured in millimeters, while a scene can be meters in
size, captured on a sensor that is usually a few centimeters wide.

2

does not contribute to the rendered image.

An obvious modification is to compute the path followed by this process but in re-

verse order. If we trace a photon’s path backward, starting from the camera until it hits a

light source, we can compute the equivalent contribution of the light source in the same

way as before, with the benefit that all paths are "hitting" a camera’s sensor. The caveat

here is that a path must reach a light source instead, and intense tiny light sources will be

as difficult to hit compared to a camera’s sensor through its aperture. Fortunately, most

scenes in computer graphics are composed of much larger light sources.

This small modification in the ordering gives us the simplest, most powerful, general,

and commonly used Monte Carlo (MC) algorithm for computing global illumination:

path tracing (PT).

With path tracing, instead of expecting the photons to hit by chance a very small

sensor through an aperture, we want the "inverted" photons to hit light sources with a

higher probability. This is less of a problem for interior scenes, as unoccluded light

sources are often larger than a camera’s aperture. For example, a standard A19 light

bulb’s diameter is 6cm if we consider that it uses a diffusing glass (whereas if the bulb

uses a clear glass, we would need to intersect with the emitting filament size instead).

In outdoor scenes, while the Sun is very small as seen from Earth, the whole sky can be

considered a light source due to atmospheric scattering, especially on cloudy days.

Path tracing is still computationally expensive, as it is based on a Monte Carlo al-

gorithm that converges slowly. We need to compute millions or even billions of paths

to get an image with an acceptable level of noise. Each ray that we trace for a straight

segment within a complete path needs an intersection check with the scene’s geometry,

a texture/material lookup, and a random sampling process to compute the next ray for

the same path.

Because of this high computational cost, many methods have been developed to im-

3

prove performance and convergence. Some methods improve the data structure of the

geometry, such that each intersection is evaluated in less time. Some methods try to

intelligently compute the next ray, such that it has a higher probability to eventually hit a

light source. Other methods try to reduce the final image’s variance by introducing some

bias.

More recently, learning-based methods have found success in this domain. As the

global illumination problem is highly nonlinear and slow to resolve, machine learning

(ML) algorithms and deep learning models can be used to learn and predict some pro-

cesses within an algorithm that is difficult to compute and/or that converges slowly.

One simple example of a machine learning method commonly used to accelerate

convergence of path tracing is denoising [2, 6, 36]. We learn a function using a neural

network that takes as input an unconverged noisy image from path tracing with a small

number of samples 3 and that tries to output a converged image with a very large number

of samples. As this algorithm works in screen space, its complexity depends only on the

size of the image, while a path tracing algorithm might be slowed down by many other

factors related to the 3D scene.

This thesis starts by giving an overview of common acceleration techniques for path

tracing. Then we propose a new family of accelerators for path-based Monte Carlo

global illumination algorithms. We specifically design a new technique for path tracing

called neural probabilistic path prediction (NPPP). It is based on the standard theory

of distribution estimation that aims to predict future rays within a path and allows the

path tracing algorithm to skip the evaluation of some rays. This makes the construction

of a full path from the camera to a light source much faster, as we are able to sample

a few times the learned distribution within neural networks instead of intersecting the

3. The number of samples in path tracing usually refers to the number of computed paths per pixel
in the rendered image. Path tracing’s time complexity for a static scene is proportional to the number of
pixels multiplied by the number of samples.

4

geometry and computing the next ray potentially many times in a scene.

1.1 Overview of Rendering

In order for a computer to synthesize an image given some data, we need a way

of representing 2D or 3D scenes, a method to coherently display that scene given a

viewport/camera, and in cases where interactivity is important such as in video games,

the method has to be fast enough so that the user does not notice any latency. The speed

of rendering is often measured in frames per second (FPS), with at least 60 FPS being a

good target for video games.

In the following overview, we will mostly focus on rendering 3D objects and scenes,

but will not go into details about the different ways to represent such scenes, as the field

of geometry in computer graphics is very vast. We will start by giving a quick overview

on rendering, and go more in depth when talking about global illumination techniques.

A modern graphics pipeline usually consists of three parts: the application step, the

geometry step, and a rasterization step. The first step, which is the application step,

usually consists of everything running on the CPU, for example, loading assets into

memory, physics simulations, animations, culling of unnecessary geometry, etc. Any-

thing that does not run on the GPU can be considered to be in the application step. After

parsing and transforming the scene that we want to display, we usually obtain a large list

of triangles represented as three vertices in 3D space, called primitives 4. Each vertex of

the triangles can also have associated data represented in the form of a multidimensional

vector, in which it can encode anything from the normal at that location to uv coordinates

for texture lookup. A collection of primitives that form an object is called a mesh.

All of the data previously generated can now be copied and loaded in the memory

4. A primitive is usually a triangle, but can sometimes be a quadrilateral, a line, or a point. Other more
sophisticated primitives can include bicubic patches, implicit surfaces, signed distance fields, etc. They
are often pre-converted into simpler triangles for better performance during rendering.

5

of a graphics processing unit (GPU). Unlike CPUs, GPUs have a very large number of

highly specialized parallel processing units that can work on large amounts of data in

parallel.

First, one type of graphics processing programs called shaders can be run on each of

the primitives in parallel. Vertex shaders can apply distortions to the vertices depending

on external data and can be used for effects such as wind or procedural animations.

Geometry shaders can remove or add primitives, and can provide ways to simplify or

add details to an object or scene without sending as much data to the GPU.

During the geometry step, the list of vertices in world space is transformed to the

camera’s local space. Then a projection transformation is applied to all vertices depend-

ing on the type of camera. The two main types of projection are central projection for

perspective cameras and parallel projection for orthographic cameras.

Finally, during rasterization, each triangle is drawn on the screen according to its

depth, and in some cases, a fragment shader can be used to apply effects on the pixels

drawn to the screen. For example, fragment shaders can be used to compute lighting,

change an object’s color, or procedurally generate textures on surfaces.

This rather complex method described above is commonly referred to as the raster-

Intersections in light Intersections in shadow

Figure 1.1 – Visualization of the ray tracing algorithm, where a secondary ray (in red) is
traced to verify if a point on the surface is being illuminated by the light source or not.

6

ization pipeline. It is very fast and most GPUs from the last decade are designed and

optimized for it. Ray tracing is an alternative to rasterization that is much simpler to

understand and to program, but more computationally expensive. Ray tracing has only

recently started to become a viable real-time rendering algorithm due to the increasing

power of GPUs. The ray tracing algorithm can be described as follows. For each pixel in

the viewport, we launch a ray and check for the closest intersection to the geometry, then

we color and shade that pixel depending on surface color, textures, lighting, shadows,

shading, reflections, etc. A simple visualization of ray tracing is provided in Figure 1.1.

Algorithm 1 Basic ray tracing algorithm
for every pixel do

cast a ray from the camera’s position through the pixel’s position
find the closest intersection point of the ray with the scene
while a reflective or refractive surface is intersected do

ray trace recursively using reflection or refraction laws
if a closed loop is detected then

stop recursion
end if

end while
for all light sources do

cast a ray from the intersection point towards the light source
if the ray is not blocked then

accumulate the contribution of the light source for shading
end if

end for
compute the final color at the intersection point

end for

Ray tracing allows for a much more flexible representation of geometry, where in

some cases traditionally rasterized primitives such as triangles are not necessarily useful

or desirable. For example, a voxel grid can be efficiently ray traced and allows for a

much more direct representation, without any need to convert the grid to a list of simpler

primitives. The ray tracing problem can also be generalized to not just finding the first

intersection, as it is possible to launch a followup ray at the first intersection to check if a

7

light source is visible from that point. This allows us to directly compute exact shadows,

without much change to the algorithm. Mirror and refractive surfaces can also be treated

by recursively calling the ray tracing algorithm.

1.2 Global Illumination

In order to generate photorealistic images from a scene, an accurate simulation of the

light effects present in the real world is necessary. As light itself is what enables us to

see, simulating the interaction of light with the scene can be a good starting point. How

light affects illumination in a scene can be decomposed in three main categories: direct

illumination, and indirect illumination with and without caustics.

Direct illumination affects all objects that are directly illuminated by a light source.

This can easily be computed using the ray tracing algorithm described above as we sim-

ply check if the light source is visible from the target location and compute its contribu-

Local illumination Global illumination

Figure 1.2 – Effects of local vs global illumination. Note how the ceiling cannot be
directly illuminated by the square Lambertian light source. In the rendering with global
illumination, color bleed is also noticeable on the white walls, where it has a red, yellow,
and green tinge.

8

tion to that location using information from the surface’s material. Note that all surface

points that do not have a free line of sight to a light source will be completely black.

Indirect illumination describes all the light bouncing around a scene from all kinds of

materials. For example, when sunlight enters a window, it does not only illuminate the

parts directly visible to the sun. Light bounces around on the walls and illuminates the

whole room. Common algorithms for indirect illumination include radiosity [7], photon

mapping [13], and path tracing.

Caustics describe the complex patterns that occur when light reflects or refracts on

curved surfaces. For example, caustics can be seen very prominently at the bottom of

a pool when the water surface is disturbed. Caustics may be considered a different

category from general indirect illumination due to the fact that they are much harder to

accurately compute, as they involve complex processes that concentrate large amounts

of light on potentially small areas. The basic path tracing algorithm will have difficulties

in simulating caustics as it is tracing rays in reverse. When large amounts of light are

focused on a very small area, we need to generate a very large number of backward paths

on that small area in order to have an accurate estimate. Many of the backward paths

will also not contribute to the caustics as they might not hit a light source. Light tracing,

photon mapping, bidirectional path tracing, and Metropolis path tracing are usually more

efficient at simulating caustics.

1.3 Light Transport

To get a general picture on how to solve global illumination, we can try to figure

out how to transport light in a scene. We can describe the light transport process math-

ematically in an equation called the light transport equation (LTE), also often called

the rendering equation. All previous algorithms listed in the global illumination section

aim to partially or fully solve the LTE. A simplified version from the one described by

9

Kajiya [14] is as follows:

Lo(p, ωo) = Le(p, ωo) +

∫
Ω

fd(p, ωo, ωi)Li(p, ωi)(n · ωi)dωi . (1.1)

As this equation might seem fairly complex, we can look at it one part at a time.

Lo(p, ωo) describes the radiance 5 leaving the surface at position p and direction ωo; it

is effectively how bright a surface is when looked at from direction −ωo. Le(p, ωo) de-

scribes the emitted radiance from the surface itself given p and ωo, for example from

black body radiation due to heat. Finally, the large integral represents all the light scat-

tered and reflected from the surface with direction ωo from all possible incoming light

paths over the hemisphere (or sphere) Ω.

Inside the integral, fd(p, ωo, ωi) is a bidirectional distribution function (BDF) repre-

senting the properties of the surface at point p given outgoing direction ωo and incoming

direction ωi. Li(p, ωi) is the incoming radiance from direction ωi. (n · ωi) represents

the cosine of the angle between the normal vector n and ωi, assuming all direction and

normal vectors are normalized. We are effectively integrating over the contribution of

all incoming rays for a specific outgoing direction ωo.

Common BDFs for surfaces include bidirectional reflectance distribution functions

(BRDFs), bidirectional transmittance distribution functions (BTDFs), and their general-

ization, bidirectional scattering distribution functions (BSDFs). A visualization of three

common BRDFs can be found in Figure 1.3, where the length of an outgoing arrow is

proportional to the value returned by the function fd.

The integral part of the LTE is intractable if we try to solve it by brute force, as light

rays might scatter around infinitely and might form closed loops where Li could depend

on Lo. Furthermore, if the function fd is not a dirac delta, we will have an infinite number

5. Radiance is defined as a unit of power per unit of solid angle per unit of projected area. In SI units,
it is watt per steradian per square meter, or W

sr·m2 . In the less-formal literature, radiance is also sometimes
referred to as "intensity".

10

Diffuse surface Rough metal surface Mirror surface

Figure 1.3 – Visualization of common BSDFs.

of rays to launch in order to correctly integrate over all ωi.

A popular family of algorithms used to solve these types of intractable problems is

based on Monte Carlo.

1.4 Monte Carlo Techniques

Instead of computing the LTE by brute force, we can simply decompose the problem

as a sampling problem, and solve it using the Monte Carlo method.

Given a multidimensional definite integral I with volume V of the form:

I =

∫
Ω

f(x)dx

V =

∫
Ω

dx .

If V is known, the integral I can be approximated by uniformly sampling xi, where

xi ∈ Ω:

I = lim
N→∞

V

N

N∑
i=1

f(xi) . (1.2)

One simple example is to calculate π using a naive Monte Carlo approach. We know

that the area of a circle is πr2, thus for a unit circle with r = 1, its area is π. We can

simply integrate the area of a unit circle bounded by a square to get π.

11

N = 10, π ≈ 2.8 N = 50, π ≈ 3.2 N = 10M, π ≈ 3.141406

Figure 1.4 – Monte Carlo integration of π.

The function to integrate would be:

g(x) =


1 if ||x|| ≤ 1

0 otherwise

with Ω = [−1, 1]× [−1, 1] and V = 4 for the area of the square.

π = lim
N→∞

4

N

N∑
i=1

g(xi) .

Similarly, the LTE over a unit hemisphere can be expressed as such:

Lo(p, ωo) = Le(p, ωo) + lim
N→∞

2π

N

N∑
k=1

fd(p, ωo, ω
k
i)Li(p, ω

k
i)(n · ωk

i) .

An alternative to using a volume V in Monte Carlo estimation is to use the probability

distribution p(xi).

I = lim
N→∞

1

N

N∑
i=1

f(xi)

p(xi)
. (1.3)

When sampling uniformly, this is equivalent to using the volume, as the probability

12

distribution of a uniform distribution is simply the reciprocal of its volume. However,

this allows us to sample using other distributions that are not uniform.

1.4.1 Path Tracing

As discussed earlier, path tracing consists of launching rays from the camera and

tracing paths of virtual photon particle groups randomly until they hit a light source.

More formally, it consists of solving the LTE by sampling one path at a time and inte-

grating over many paths using the Monte Carlo algorithm. This is done so that branching

is no longer needed.

Given the LTE described earlier in Equation 1.1, we can define a ray tracing function

that returns a new position after tracing a ray with position p and direction ω against

the scene. The outgoing direction of this new position is simply the negated incoming

direction of the previous position.

pj+1 = r(pj, ωj+1
o)

ωj+1
o = −ωj

i .

Now we can substitute Li with Lo by incrementing the position index

Lo(p
j, ωj

o) = Le(p
j, ωj

o) +

∫
Ω

fd(p
j, ωj

o, ω
j
i)Lo(p

j+1, ωj+1
o)(nj · ωj

i)dω
j
i .

We can then simplify the equation as follows:

Lj = Lo(p
j, ωj

o)

Ej = Le(p
j, ωj

o)

Kj ◦ Lj+1 =

∫
Ω

fd(p
j, ωj

o, ω
j
i)Lo(p

j+1, ωj+1
o)(nj · ωj

i)dω
j
i .

(1.4)

13

We then obtain this infinitely recursive function, starting at j = 0:

Lj = Ej +Kj ◦ Lj+1

L = L0 .
(1.5)

Now to further understand what is happening in this function, we can try to isolate

the contribution of each path length to the total radiance by using a select function that

zeroes out the emissivity of surfaces from other path lengths:

s(x, j,m) =


x if j = m

0 otherwise
(1.6)

Lm
j = s(Ej, j,m) +Kj ◦ Lm

j+1

Lm = Lm
0 .

(1.7)

Now for every path length M , we can derive a corresponding equation that does not

include the contribution of shorter and longer path lengths. For example, for increasing

path lengths starting from M = 0, denoted by the superscript m in Lm, we have:

L0 = E0

L1 = K0 ◦ E1

L2 = K0 ◦K1 ◦ E2

LM = K0 ◦K1 ◦ · · · ◦K(M−1) ◦ EM .

(1.8)

14

If we expand one Lm term we obtain:

Tm =
m−1∏
j=0

fd(p
j, ωj

o, ω
j
i)(n

j · ωj
i)dω

j
i

Lm =

∫
Ω

· · ·
∫
Ω︸ ︷︷ ︸

m

EmT
m .

(1.9)

The Tm term is commonly called the throughput. Thus the most important part of path

tracing is to be able to compute the throughput for any path length, and multiply it by

the emissivity of the surface at the end of the path in order to obtain the contribution for

a single path.

Finally, we simply sum all Lm to compute all the paths:

L =
∞∑

m=0

Lm . (1.10)

With this, we can see how a path tracing algorithm is rather simple to understand and

Algorithm 2 Naive path tracing algorithm
for every pixel do

cast a ray from the camera’s position through the pixel’s position
p0 ← find the closest intersection point of the ray with the scene
L← 0
for number of samples n = 0 to N do

for path of length m = 0 to M do
randomly and uniformly sample a path of length m starting from p0

compute the throughput Tm of that path
find the emissivity Em of the surface at the end of the path
L← L+ Em · Tm

end for
end for
set the pixel color as L

end for

15

implement. The pseudocode for a naive path tracing algorithm based on Equation 1.10

is shown in Algorithm 2.

We will not go into details about every step of the path tracing algorithm here, as this

is just to illustrate the general idea and should facilitate the understanding of the next

chapters if the reader is unfamiliar with path tracing in general.

One observation we can make is that we are wasting the computation from the pre-

vious path of length m when computing a new path of length m + 1. To accelerate the

algorithm we can simply re-use the throughput of the previous path and sample from the

end of the previous path (see Equation 1.9), where the total throughput is simply a prod-

uct of the previous path’s throughput p0 . . . pj−1 with the throughput of the current vertex

at position pj . The pseudocode of this improved algorithm is described in Algorithm 3.

Algorithm 3 Basic path tracing algorithm
for every pixel do

cast a ray from the camera’s position through the pixel’s position
p0 ← closest intersection point of the ray with the scene
L← 0
for number of samples n = 0 to N do

T ← 1.0
p← p0

for path of length m = 0 to M do
starting from p, randomly and uniformly sample a ray
q ← closest intersection point of the ray
Tq ← the throughput of q → p
find the emissivity Em of the surface at q
p← q
T ← T · Tq

L← L+ Em · T
end for

end for
set the pixel color as L

end for

An interesting property of this algorithm is that N and M control the bias and vari-

ance of the estimator. More specifically, when N is increased, variance decreases, but

16

Figure 1.5 – Visualization of the path tracing (left) and photon mapping (right) algo-
rithms.

the algorithm runs for a longer time. When M is increased, bias is reduced, variance is

increased, and the algorithm runs for a longer time. We will discuss bias and variance

more in depth in Chapter 2, but for now, a simple explanation of bias and variance in

path tracing is that higher variance means that the output is more noisy, and higher bias

means that averaging an infinity of noisy outputs does not converge to the correct value.

We can see that for this simple algorithm, it is always biased when M ̸=∞, as we skip

the evaluation of some paths of light. We will discuss in later chapters ways to make this

algorithm unbiased without having to always sample up to infinity.

One of the biggest problems with path tracing is that it handles caustics 6 very poorly.

Caustics that manifest on surfaces as strong and visually obvious shapes are formed

when a large amount of light from a very small 7 light source is concentrated into a

much small surface area. This is a major problem for the path tracing algorithm as it

cannot reliably find very small light sources viewed from the surface where caustics are

6. Caustics are an optical phenomenon where an envelope of light rays is refracted or reflected, and
then focused by a curved object in a way that forms concentrated dots, lines and patterns of light on a
surface. They are commonly seen at the bottom of pools or when sunlight passes through a wine glass.

7. It is not necessary for the light source itself to be small. This requirement is also met for light
sources hidden behind objects with a small gap or behind a small hole, where the receiving surface is very
small, or a directional light source infinitely far away.

17

cast. Most of the caustics will be missed as the path tracing algorithm has a very low

probability of finding the light. However, some paths, by chance, could reach a light.

These connecting paths will add a very large contribution to the radiance, which makes

the resulting few pixels very bright. This adds a lot of noise to the final image and slows

down convergence considerably (see Figure 1.6). These artifacts are commonly called

"fireflies" in the rendering community.

1.4.2 Photon Mapping

The photon mapping algorithm introduced by Jensen [13] aims to solve this issue by

applying the LTE directly to "photons", or photon particles. We thus deposit photons on

diffuse surfaces using surface absorption rules (e.g., BRDFs). These photons are used

to encode the surface radiance at their locations. This creates a photon map that we can

use to compute the surface radiance when we launch camera rays. Instead of recursively

trying to reach the light sources like in path tracing, we use the photons in the photon

map as a density estimation to compute surface radiance.

If we were able to launch an infinity of photons, all positions of surfaces in the

scene that should be lit would have photons that describe the radiance at that position.

We can simply sum those photons to get an exact radiance of that surface. Note that

the brightness/contribution of each photon is scaled by the number of photons that we

launched. This is to normalize the brightness of a scene so that it does not vary in

function of the number of photons. This is expressed by the following equation:

Lo(p, ωo) = Le(p, ωo) + lim
N→∞

1

N

N∑
k=1

fd(p, ωo, θk)δ(p, pk)ϕk ,

where δ(p, pk) is the Kronecker delta function, which returns 1 when p = pk and 0

otherwise. θ is the photon’s incident direction and ϕ the photon contribution.

However, if the number of photons is finite, the Kronecker delta will always be equal

18

Path tracing Photon mapping

Figure 1.6 – A glass Suzanne monkey rendered using two different algorithms. Note that
while both are rendered using very large numbers of samples, the path tracing algorithm
fails to converge in that time while the blur present in photon mapping becomes negli-
gible when using a small kernel. The overall visual effects of photon mapping is more
perceptually pleasing compared to path tracing for rendering caustics.

to 0, as the probability of a photon to be exactly at a position p is 0. To solve this

problem when the number of photons is finite, we can use kernel density estimation

(KDE) to average the photons within an area instead, expressed as:

Lo(p, ωo) ≈ Le(p, ωo) +
1

Nh

N∑
k=1

fd(p, ωo, θk)K

(
p− pk

h

)
ϕk

where K is a kernel function and h the bandwidth (or "width"). Increasing h will widen

Algorithm 4 Basic photon mapping algorithm
while all photons are not yet cast do

choose a random light source in the scene according to its emission
cast a photon in a random direction using the light source’s emissive distribution
trace that photon’s path and save "radiance particles" along it on diffuse surfaces

end while
for every pixel do

cast a ray from the camera’s position through the pixel’s position
p← closest intersection point of the ray with the scene
recursively apply path tracing if the surface at p is not diffuse
accumulate radiance particles around p using a kernel and compute L
set the pixel color as L

end for

19

the area within which photons are summed. This decreases variance but increases bias. A

schematic illustration of the photon mapping algorithm can be found in Figure 1.5 (right)

and a resulting image in Figure 1.6 (right).

One of the main drawbacks of photon mapping is that it is biased by design. If a

bandwidth h is bigger than zero, averaging the output of this algorithm many times will

not converge to a correct solution, as the result will be blurry from averaging photons

over an area. It also has to store all the photons in memory, which can be expensive

when using large numbers of photons. We will not discuss further improvements that

can be brought to photon mapping, but many of them exist. Notably, Progressive Photon

Mapping (PPM) [11] and Stochastic Progressive Photon Mapping (SPPM) [10], as they

relieve photon mapping from its biased nature by using multiple passes.

CHAPTER 2

ACCELERATION OF PATH TRACING

Monte Carlo algorithms such as the one used in path tracing are computationally

very expensive, and often do not produce an acceptable image given constraints on time,

computational power, or monetary budget. As path tracing is very simple to understand

and implement, and produces unbiased and photorealistic images, substantial effort and

research have been invested to improve its performance.

In this chapter, we give an overview of the main families of acceleration methods

for path tracing. This gives context and helps understand the motivation for creating

our novel acceleration method described in Chapter 3. This overview also provides a

point of reference to compare the strengths and weaknesses of existing algorithms. As

making an extensive literature survey on the acceleration of path tracing is very difficult,

we condense both previous work, related work, and background into this chapter while

providing information about the techniques as much as possible with mostly intuitive

explanations, in order to avoid overwhelming the reader. However, we must warn that

this list is far from exhaustive and does not come even near to describing all existing

acceleration methods, not to mention the many other methods for global illumination

that can be used with path tracing simultaneously for the purpose of acceleration. The

field of rendering is simply too vast to be able to condense each algorithm’s contributions

into a few pages. Rather, the reader can expect to see a few simple algorithms that hold

the core ideas which can be further developed into the methods used today.

21

2.1 Overview

This chapter is subdivided into four sections: an introduction to the terminology,

sampling methods, information reuse methods, and screen space methods. The first

section describes the terminology behind the acceleration of algorithms, such as compu-

tational efficiency, consistency, bias, and variance reduction.

The second section describes the largest family of acceleration methods, sampling

methods, that modify the sampling process at the heart of path generation. These meth-

ods add major modifications to the path tracing algorithm itself, and therefore combining

them with other algorithms from the same family may not be a trivial task. Many of the

methods in this family are mathematically proven to be unbiased and are also used as a

base method to be combined with algorithms from the next two families if needed.

The third section introduces information reuse methods. These methods can usually

be described as adding a fast cache for difficult-to-compute methods within the path

tracing algorithm. If an expensive function often returns similar values, we can store that

function’s output in a cache. Caching methods often take advantage of strong priors in

the scene, lighting conditions, and temporal/spatial coherency for applying corrections.

For example, if a light switch is toggled on/off or an object appears in the scene, we

might want to clear the cache or update the cache intelligently as its information might

be outdated. Due to the nature of caching, many methods in this family are biased, with

moderate visual side effects. However, these methods can bring important performance

improvements to the path tracing algorithm, often many orders of magnitude compared

to sampling methods. They are used extensively in real-time applications such as video

games or interactive software, when speed is of the utmost importance.

The fourth and final section describes the most controversial family of methods,

screen space methods. These methods completely ignore the 3D nature of the scene,

and use very strong priors from the 2D image itself, that is, "use the image to estimate

22

the image". As they work with pixels from an image, their speed only depends on the

resolution and not on the complexity of the scene, which means that they can be trivially

parallelized on the GPU to offer unprecedented acceleration. However, in many cases,

these biased methods have severe visual side effects that can be hard to rectify without

adding constraints to the scene.

2.1.1 Computational Efficiency

Computational efficiency refers to the general property of an algorithm that evaluates

how many resources it needs to complete a task. Even if the algorithm itself cannot be

modified, any subtask within the algorithm can still be improved, which in turn improves

the overall performance of the algorithm. For example, one obvious improvement to a

subtask within the path tracing algorithm would be to speed up ray-scene intersections.

A naive intersection algorithm would need to check each object against the ray, and find

the closest intersecting object. This is very slow if there are many objects, as each ray

needs to loop over a long list of objects. Checking one million ray intersections against

one thousand objects would require one billion comparisons for a single ray. Using a

better data structure such as a bounded volume hierarchy (BVH) can significantly reduce

the number of comparisons. In the general case where primitives are well distributed

in a scene, the BVH intersection algorithm has a time complexity of O(log(n)), thus

each ray in our example (with 1M rays and 1000 objects) only needs to be intersected

log2(1000) ≈ 10 times instead of 1000 times, which amounts to a total of ten million

comparisons, two orders of magnitude fewer than the naive method.

23

2.1.2 Convergence, Bias, and Variance Reduction

In statistics, an estimator is said to be consistent if it converges 1 to the true value as

the number of samples (sample size) increases. Both path tracing and photon mapping

are consistent. In path tracing, increasing the number of samples towards infinity gives

the correct radiance. In photon mapping, if we reduce the size of the kernel towards zero

while increasing the number of photons towards infinity, we also obtain the correct value

for radiance. This is the basis for Progressive Photon Mapping (PPM) [11].

An unbiased estimator has the property that the mean (average) of its output distribu-

tion is the same as the correct value, no matter what sample size we choose. Path tracing

is unbiased while photon mapping is biased. In path tracing, if we take a finite number of

samples in each pass, but repeat this process infinitely and average the results, we obtain

the correct value. However, in photon mapping, if we choose a finite number of photons

with a non-zero bandwidth for the kernel, averaging the results for an infinite number of

iterations will not produce the correct value, as averaging many blurry outputs from a

non-zero bandwidth does not produce a more detailed output.

The variance of an estimator describes how spread apart is its output distribution.

Given a random variable X , its variance corresponds to E[(X − E[X])2]. A high vari-

ance implies that each time we use the estimator, we can obtain a very different output.

Variance often manifests itself as image noise in the output of a global illumination al-

gorithm. Reducing the variance of an estimator is essential to improve its performance,

as a low variance implies that we will have a higher probability to obtain a good value

when sampling the estimator only a few times. Some variance reduction methods are

unbiased, while others introduce bias by using a strong prior or regularization. Often

biased variance reduction methods are much more effective and flexible in practice than

unbiased ones, as they can benefit from additional parameters that let the user choose the

1. Convergence here refers to the convergence of random variables in probability theory.

24

strength of variance reduction against bias. In classical statistics, this is often referred to

as the "bias-variance tradeoff".

2.2 Sampling Methods

Sampling methods aim to improve the sampling process of paths. In the basic path

tracing algorithm, as we create and randomly sample paths uniformly, we might generate

a lot of paths that add a negligible or even a nil contribution to the final result. Generating

less useful paths wastes a lot of computations for little benefit, especially if they are

common within a complex scene. These methods often try to sample the most useful

paths first in order to improve convergence and performance.

2.2.1 Early Stopping

As discussed in the previous sections, the path tracing algorithm requires evaluating

paths of unbounded lengths in order for the result to be correct and unbiased. However,

in practice, computing a path of infinite length is impossible. An arbitrary limit has to

be chosen in order to terminate the path tracing algorithm. Fortunately, shorter paths

M = 1 M = 3 M = 10 M =∞

Figure 2.1 – A golden Stanford dragon rendered using path tracing with a maximum
path length of M and 1024 samples per pixel. As M increases, we observe new paths
(e.g., the ceiling at M = 3), and a brighter image overall. M =∞ was computed using
Russian roulette (discussed in Section 2.2.2).

25

are often more important than longer paths as they have higher throughput on average 2.

However, as some light sources may only be reached after a large number of bounces,

this can introduce a considerable amount of bias in the output, while at least it guarantees

that the algorithm will stop. We can also add additional conditions such as stopping the

algorithm when the throughput could become negligible, meaning that evaluating further

bounces would be unnecessary. Early stopping causes a loss of energy in the estimation

that makes the rendered image darker, with the magnitude of the effect depending on

the importance of the truncated paths. An example of early stopping (when M ̸=∞) is

given in Figure 2.1.

2.2.2 Russian Roulette

As early stopping is biased, Russian roulette can be used as an unbiased alternative

to aggressive early stopping. This algorithm consists of randomly deciding to terminate

the path tracing algorithm with a probability q each time that we may increase the path

length. Unlike early stopping, we can make this algorithm unbiased by simply divid-

ing the throughput by (1 − q) each time that we increase the path length to get the new

throughput. This division corrects for the lost energy caused by randomly terminating.

The probability q can be chosen arbitrarily or be proportional to 1 − T , where T is the

throughput. In this case, the probability of termination will be high when the throughput

is close to 0. Note that even though this method helps in terminating less useful paths

while staying unbiased, it also increases variance as the contribution is set to 0 when

a path is terminated while the contribution is increased instead when the path is not

terminated. Russian roulette is the simplest of all the sampling methods and is always

implemented in even the most basic path tracers. However, it does not guarantee termi-

2. This is true on average as the only way for this to fail is to use Dirac deltas for all BRDFs (e.g., a
room with perfect mirrors on all sides). As long as one of the BRDFs in the scene is not a Dirac delta,
throughtput will decrease on average as path length increases, because the product of n values between 0
and 1 never increases when n increases.

26

nation unless combined with early stopping, usually chosen to be a very large maximum

path length in order to have as little bias as possible.

2.2.3 Adaptive Sampling

One way to reduce variance when given a limited budget of samples is to estimate

variance during the sampling process using previous samples and favor sampling areas

with high variance. In path tracing, this usually consists of computing the variance of

each pixel and allocate more samples to pixels that have higher variance. This way, areas

that converge very quickly do not need to be evaluated many times, saving computational

power. Adaptive sampling is consistent but biased, as the average of weighted averages

is not equal to the true average. Methods to alleviate this bias have been proposed [18].

Uniform sampling Importance sampling

Figure 2.2 – Visualization of random samples using uniform vs importance sampling.
The gray lobe in a dashed line represents the throughput distribution of that surface and
the red arrows indicate rays with throughput of 0. The importance sampling algorithm
samples low throughput rays less often, thus improving efficiency.

2.2.4 Importance Sampling

In importance sampling, instead of sampling uniformly, we sample a probability

distribution that results in a higher probability of larger throughput for the path. With

this sampling method, we favor sampling paths that have a higher throughput and pay

less attention to insignificant paths. A common and simple distribution to sample from

is the cosine hemisphere distribution, which is proportional to the n · ω term used to

27

compute the throughput of a path. This distribution generates more direction vectors

that are close to the normal than the uniform hemisphere distribution, which makes the

generated paths more likely to have a higher throughput due to the cosine term in the

LTE. In order to make the result unbiased, we divide the throughput with the probability

density function (PDF) p(x) of the distribution used in sampling instead of dividing

by the volume like before when sampling uniformly. This is exactly as described in

Equation 1.3.

2.2.5 Next Event Estimation

Trying to find a light source by sampling random directions is hard. It would be more

efficient to sample the light source too at the end of each path length. We are more likely

to find emissive surfaces when explicitly sampling light sources and checking if the ray

is obstructed by an object in between the light source and the surface (see Figure 2.3).

However, deciding on which light source to sample when there are multiple light sources

is difficult, and the naive implementation of Next Event Estimation (NEE) would decide

either to sample a random light or all the lights. Better NEE implementations can be

built using resampling methods, explained in the following sections.

2.2.6 Bidirectional Path Tracing

As stated in the previous chapter, one of the major weaknesses of path tracing is its

inability to efficiently estimate caustics and scenes where there are small areas with very

bright light sources. Bidirectional path tracing aims at correcting these weaknesses by

launching rays from the camera and from light sources, then trying to connect them to

form a full path from the camera to the light source. This helps finding paths from the

camera to the light when the light source is very small or is very hard to find from the

position of the camera, as shown in Figure 2.4.

28

Without NEE With NEE Paths found with NEE

Figure 2.3 – Visualization of the advantages of using Next Event Estimation (NEE). Red
segments are explicitly computed by checking for intersections against the light source.
This algorithm lowers the average path length required to find a light source.

Unidirectional Bidirectional Bidirectional paths found

Figure 2.4 – Visualization of the advantages of bidirectional path tracing. For scenes
where the light is very small or hidden away, unidirectional path tracing might have
difficulties in finding the light. Bidirectional path tracing generates paths from light
sources (in red), which are then properly connected with camera paths (in blue).

Each path in this algorithm is more expensive to generate compared to traditional

path tracing, but as paths can be reused, and connections can be found intelligently and

then weighted using multiple-importance sampling (MIS) [31], it converges in fewer

iterations in more complex scenes. For more detailed information, bidirectional path

tracing is described extensively in the work of Veach and Guibas [32].

29

2.2.7 Metropolis Path Tracing

Metropolis light transport [33] takes the bidirectional path tracing algorithm even

further. The basic idea is similar to bidirectional path tracing, but we also mutate good

paths that contribute well to the prediction in order to find new paths. A simple visual-

ization is shown in Figure 2.5. This general idea is also similar to genetic algorithms.

However, instead of solving an optimization problem where we try to find a global mini-

mum, we solve a sampling problem where we want to sample as much as possible paths

that are diverse and important. For example, outlier paths that have a strong contribution

to the radiance are very important for caustics.

Exploration Mutate good paths New paths found

Figure 2.5 – Illustration of the Metropolis algorithm. Mutating good paths can be an
excellent strategy to find similar good paths to a light source.

While this algorithm is very good at rendering caustics and indirect lighting, it is

more expensive to evaluate per sample compared to other simpler methods. Often

Metropolis path tracing is used alongside regular path tracing for rendering complex

scenes, where the algorithm can be selected depending on sampling conditions in order

to speed up simpler light paths.

30

2.2.8 Resampling

Resampling methods such as RIS [28], GRIS [20], ReSTIR [3], and ReSTIR GI [25]

are all based on similar principles to importance sampling. These algorithms use a reser-

voir of previous samples to weigh and change how future samples are generated. For

example, in the case of ReSTIR, it improves the NEE algorithm by saving previous light

sources that were successfully sampled in a reservoir and weighing future samples us-

ing that reservoir by reducing the probability to sample occluded light sources. ReSTIR

improves convergence significantly for scenes that have many small light sources as tra-

ditional path tracing with NEE is ineffective at finding light sources in these types of

scenes. ReSTIR GI further improves the algorithm to include past indirect light samples

in the reservoir. We not only sample light sources directly, we also sample previous paths

and sub-paths saved in the reservoir that are connected to an unoccluded light source,

similarly to how bidirectional path tracing connects two paths together. The ReSTIR

family of algorithms also accounts for changes in the scene during rendering by using

temporal reprojection, which allows these algorithms to be used for real-time rendering

of interactive media.

2.3 Information Reuse Methods

Information reuse methods are methods that accelerate rendering by re-using previ-

ous estimations stored in a fast cache. Often assumptions are made such as a static scene

or static light sources. Furthermore, some of these methods can only accelerate one

part of a global illumination algorithm and are biased. As such, they are usually limited

in scope and constrained in the type of scenes they can render, but they offer excellent

acceleration for the specific purpose they were designed for. Using information reuse

methods alongside with a sampling method usually offers the acceleration needed for

31

interactive applications, such as 3D video games.

2.3.1 Irradiance Caching

The original irradiance caching algorithm was proposed in 1988 by Ward et al. [34].

Its basic idea is to cache the estimated irradiance at positions of Lambertian surfaces in

the scene that were previously sampled. If a full path from the camera to the light source

is found, it is possible to compute the radiance at each vertex along that path, and to

accumulate its radiance in an irradiance cache for use in future samples. An irradiance

cache is more memory efficient compared to other methods that store the entire path of

the light, like Metropolis path tracing, but can suffer from problems such as blurriness if

the irradiance cache is not precise enough or has a too low resolution. Similarily to pho-

ton mapping, if the previously sampled positions are stored as particles, a kernel density

estimator can be used. If the cache is represented instead by a regular grid or an adaptive

grid (e.g., octree) where we accumulate the irradiance in each cell, simply querying the

grid is sufficient. However, as the discontinuities of the grid can be visible in the render-

ing, interpolation or smoothing is commonly used. The main disadvantage of irradiance

caching is that it assumes that the scene and lighting conditions are static. If there are

significant changes in the scene, the cache might need to be cleared or corrected using

temporal reprojection. For a static scene, pre-generating an irradiance cache and saving

it alongside the scene itself for future use is very beneficial. More recent algorithms that

encode the cache within a neural network [23] have shown to be faster and suffer less

from discontinuities and loss of details.

2.3.2 Light Probes

The light probes or irradiance probes methods are very similar to irradiance caching,

but with a key difference. Instead of an irradiance cache present in the entire scene,

32

we can approximate that cache using discrete light probes that effectively act like pre-

baked light sources that simulates indirect lighting 3. We first generate the probes by

solving the LTE in advance, and while we usually evaluate the full LTE for each sample,

we can query the light probes as light sources during sampling instead of the actual

light sources. This reduces the number of bounces that we need to evaluate, as light

probes scattered around in the scene act like simulated indirect illumination. With most

implementations of light probes only requiring one bounce, we can use ray tracing to

evaluate direct illumination against the probes instead of the much slower path tracing

algorithm. Traditional light probes cannot encode adequately light effects from specular

and mirror surfaces, and require additional bounces to handle them. More recently, light

probes have been augmented with light fields [22], which allows more complex effects

to be taken in account by the probes themselves.

2.3.3 Temporal Reprojection

For interactive applications, the scene and lighting conditions might change often

and unpredictably. If we are reusing previous estimations, we need to correct the posi-

tion of that estimation when an object moves. For example, the ReSTIR [3] algorithm

uses reprojection when reusing samples that are on moving objects and light sources to

improve acceptance rates. If samples are not reprojected when an object moves, that

sample might not be at an adequate location anymore or might even be inside an object.

Reprojection in 3D scenes is rather simple as we just need to track the movement

and velocity of all vertices or compute the position difference by subtracting the previ-

ous positions with the new positions. For screen space reprojection methods where past

3. Light probes can be placed regularly, using an adaptive algorithm, or manually in the scene. As the
light probes are capable of emitting different amounts of light in different directions, only a few of them
are needed for simpler scenes. This is commonly achieved using spherical harmonics. However, a related
algorithm, Instant Radiosity [16], uses simpler but many more virtual point lights (VPLs) instead of a few
probes. In this case, each VPL is acting as a point light source that emits the same amount of light in all
directions.

33

Initial rendered scene Reprojection Reprojected image

Figure 2.6 – An illustration of the 2D reprojection algorithm, where the reprojection
of a single pixel is shown in the middle figure. The final reprojected image is entirely
created from the initial rendering by reprojecting the pixels using the motion vectors of
the triangle.

information is kept in a 2D buffer and is attached to the camera position, we can use op-

tical flow or project the 3D velocity of vertices from the scene to the 2D screen using the

camera projection matrix. Special care has to be made for occlusions and self-occlusions

when working in 2D, as a previously hidden object can become visible without any asso-

ciated reprojected data. This might cause a conflict with the overridden data at the target

position. An example of 2D reprojection is shown in Figure 2.6.

2.4 Screen Space Methods

Screen space methods work on the final 2D rendering or on intermediate buffers

such as depth, normal, or albedo buffers. As they ignore the 3D nature of a scene, these

methods do not scale with the complexity of the scene, but rather only with the screen

resolution. If a smaller resolution is used, these methods can be extremely fast compared

to other methods. The only downside is that hidden objects cannot affect the result of

these algorithms. Currently, these methods are often used to provide global illumination

effects for devices with less compute power, or for highly interactive applications that

34

require very high framerates, such as VR games, especially if the accuracy of the illumi-

nation is not very important. Screen space methods generate results that are inaccurate

but often look right at a first glance, as they generally remove obvious and distracting

artifacts present in the final image.

2.4.1 Screen Space Ray Tracing

Screen space ray tracing [21] is a family of algorithms that ignore the true 3D ge-

ometry of the scene and use 2D proxies such as depth and normal buffers to compute

illumination. Intersecting rays with a scene can be expensive if the geometry is very

complex, and might not bring obvious benefits to the image if most of the scene is not

visible on screen. Intersecting rays against a 2D buffer is very quick and scales in com-

plexity only with the resolution of the image. For scenes where effects of on-screen

objects are the most obvious and hidden objects do not contribute much to the image,

for example indirect illumination on small objects or a puddle of water in the lower part

of the screen reflecting the upper half, screen space ray tracing can be a fast way to ap-

proximate the effects of global illumination. This method will fail in cases where objects

outside of the viewport contribute a lot to the illumination of the image, such as a very

bright light behind the viewport that is shining in the forward direction. In such cases,

the rendering will fail to include any effect from objects not visible on screen.

2.4.2 Denoising and Super-Resolution

Denoising [2, 6, 36] and super-resolution [35] methods consist of first quickly gener-

ating a low quality image, then using an algorithm to remove noise, increase resolution,

remove some artifacts, or improve the image in other ways. These methods have seen

a resurgence in recent times due to the popularity of deep learning and their ease of use

after training a end-to-end deep neural network, where we can simply input everything

35

(e.g., noisy image, depth buffer, normal buffer, etc.) into the network to obtain the fi-

nal rendering as output. As they work on the image itself, they are very easily adapted

for any global illumination algorithm as they do not modify the algorithm itself. In the

simplest case, the denoising or super-resolution algorithms can take the output from the

path tracer, as is without any additional information, and process the image as it sees

fit. Deep learning denoising and super-resolution methods are especially effective at

improving unconverged images from path tracing, as the neural network can be trained

using ground truths obtained from the same path tracing algorithm. Common issues in

machine learning such as domain generalization and overfitting problems are much less

pronounced here as a high quality dataset can be created for training using the same

global illumination algorithm used for rendering, whereas other domains using machine

learning do not always have correct and high quality ground truths.

CHAPTER 3

NEURAL PROBABILISTIC PATH PREDICTION (NPPP)

As seen in the previous chapter, many sub-problems within path tracing can be ac-

celerated by modifying how paths are sampled and by reusing past information. While

the field of deep generative models [8, 17, 19, 26] has started to mature recently and

was found to be very useful in conditional image generation [15, 27, 29], language mod-

elling [4, 30], and audio synthesis [24], very few attempts (that we are aware of) have

been made to investigate the potential applications of modelling the path tracing process

of light transport itself as a conditional generative process. In this chapter we will show

similarities between conditional generative processes and the sampling process used in

path tracing, and then lay down the foundations for constructing a fast conditional gen-

erative model that allows the skipping of ray evaluations during sampling given as few

assumptions as possible on the 3D scene.

3.1 Motivation

A common method to accelerate the path tracing algorithm for real-time use is to

truncate the maximum number of light bounces to a very small number (e.g., less than

four bounces). This limits the number of ray-scene intersections and reduces divergence

on the GPU, but introduces a large amount of bias from discarding the energy from

longer paths, which darkens the scene displayed in the image. Fewer bounces also mean

that light travels for a shorter distance before stopping, which can look unrealistic in

some scenarios, for example a long corridor with reflective walls and a light source

at the other end. Finding a way to allow us to evaluate longer paths without taking a

performance hit from more computations and GPU thread divergence will be our main

37

goal. This is what our method tries to solve.

We can describe a single light path from a camera into a 3D scene as an ordered

list of vertices (x0 → x1 → · · · → xn), where each vertex encodes the position, total

throughput, and accumulated radiance of a ray interacting with the scene. Note that

while the sampling process requires us to find each vertex, one at a time, a probabilistic

generative process does not. To compute the final radiance of a single path, we only need

the information from vertex xn and the emissivity of the surface at xn, as the final vertex

already contains the total throughput and accumulated radiance.

Thus, the general idea for our method is to use a deep generative model to output the

final vertex xn given x0 as input, as it does not need to reproduce the sampling process

x0 . . . xn−1 that led to the sampling of xn. If this generative model is fast enough, it

can replace the sampling process within the path tracing algorithm for longer paths. As

the reader might guess, generating light paths with a statistical model is not that simple

and the many problems and pitfalls to this approach will be discussed in the following

sections.

3.2 Theory

To successfully create a conditional generative model for path tracing, we first need

to define the conditional probabilities of each vertex with respect to previous vertices,

sampled in the past. From now on, it will be more useful to describe paths as probability

distributions instead of individual paths.

3.2.1 Statistical Model of Path Tracing

As stated before, we can use an ordered list of vertices (x0 → · · · → xn) to describe

a full path of light of length n where each vertex xi encodes the position, outgoing

direction, total throughput, and accumulated radiance.

38

We can define a joint distribution of all possible paths of length n as follows:

P (Xn, ..., X0) (3.1)

where Xi is the random variable that describes all the possible outcomes for xi.

As the position of the camera x0 in a path tracer is pre-defined and given as input, we

can describe the previous distribution as a joint distribution of vertices conditioned on the

initial camera ray described by vertex x0. The path tracing algorithm can be described

as updating a pixel’s value by sampling and integrating over the radiance given by this

conditional distribution

P (Xn, ..., X1|X0) .

As directly computing this joint distribution is intractable, we can expand the joint con-

ditional distribution using the chain rule and sample the light path incrementally. This

gives us the probabilistic formulation for the path tracing algorithm.

P (Xn, . . . , X1|X0) =
P (Xn, . . . , X0)

P (X0)

=
P (Xn|Xn−1, . . . , X0)P (Xn−1, . . . , X0)

P (X0)

=
P (Xn|X<n)P (Xn−1|X<n−1) . . . P (X1|X0)P (X0)

P (X0)

= P (Xn|X<n)P (Xn−1|X<n−1) . . . P (X2|X1, X0)P (X1|X0) .

(3.2)

For the basic path tracing algorithm, as the probability of sampling the next vertex only

depends on the previous vertex and not on all previous vertices, we can further simplify

39

the conditional probability equation:

P (Xn|X<n) . . . P (X1|X0) = P (Xn|Xn−1) . . . P (X1|X0)

=
n∏

i=1

P (Xi|Xi−1) .
(3.3)

This final conditional probability equation represents the statistical model of the basic

path tracing algorithm. It is very similar to the generative processes seen in recurrent

models and autoregressive models. In fact, this equation is a special case of the equation

describing an autoregressive model, where the model has a context size 1 of one, which

can also be considered to be a Markov process.

3.2.2 Sampling

Sampling xn from the distribution described in Equation 3.3 is slow, as we need to

sample each vertex incrementally from x0 to xn−1 before being able to sample xn. In

order to obtain xn quickly, what about sampling from the following conditional distribu-

tion?

P (Xn|X0) .

If this distribution is known, sampling from it would be extremely efficient as we are

skipping many ray-scene intersections, especially if n is large. However, path tracing

does not allow us to directly sample xn from x0 without computing the full path. Fortu-

nately, we can find an estimator f using deep learning. A neural network with parameters

θ can learn the following function either explicitly or implicitly:

f(X0, θ) ∼ P (Xn|X0) .

1. The context size here refers to how many previous values in a sequence are taken into account by
an autoregressive model to predict the next value’s probabilities.

40

One requirement for this estimator f is that it needs to be quicker to sample from,

when compared to evaluating the full path of light, in order to be useful at accelerating

path tracing.

The next major obstacle for creating this estimator is that a neural network’s pa-

rameters θ are fixed and cannot be easily modified without retraining the whole neural

network. Training is especially expensive and best avoided for real-time applications. It

would not be acceptable to train an estimator for the whole scene as it would break as

soon as any object moves.

The solution to this problem is to train an estimator that learns the probability func-

tion of a sub-path for only a portion of the scene.

f(Xp, θp→t) ∼ P (Xt|Xp) . (3.4)

Instead of sampling the full path, we can skip the vertices between t and p,

where n > t > p > 0.

P (Xn|Xn−1) . . . P (Xt|Xp) . . . P (X1|X0) . (3.5)

Now, static portions of a scene can be approximated by this estimator, and dynamic

objects can use the original path tracing algorithm. Sampling from this new distribution

with an estimator in the middle can be much more efficient than sampling from the

original distribution if (t − p) is big and the estimator is very quick. A simple diagram

of an estimator used with path tracing is provided in Figure 3.1.

Furthermore, the number of estimators is not limited to one in a scene; there can be

multiple estimators in a single light path, which can further accelerate the path tracing

process. In fact, each object in a scene that has a static mesh can be considered static

and have a corresponding estimator to accelerate the path tracing process. Euclidean

41

transformations 2 on objects can be applied to the estimator by transforming the vertices

xt and xp using the forward and inverse transformations respectively. For non-static

meshes (e.g., animated characters), additional parameters can be added to the estimator

to learn the effect of non-Euclidean transformations.

Figure 3.1 – The general idea of NPPP. Instead of computing many bounces and ray-
scene intersections, a neural network is used for encapsulating light interactions within
a set of potentially complex objects.

3.2.3 Light Fields

In order to parameterize our estimator, we take inspiration from light fields. A light

field is a vector function that returns the amount of light flowing through every point in

space. The 5D function that describes all possible light rays in 3D space is called the

plenoptic function:

L(x, y, z, θ, ϕ) , (3.6)

where x, y, z are the 3D coordinates, and the two additional variables θ, ϕ encode the

direction of the ray. For any point and direction in 3D space, this function can return a

value representing some data for that ray (e.g., radiance, visibility, etc.).

2. Euclidean transformations preserve lengths and angle measures (i.e., rotation, translation, and re-
flection).

42

Similarly to a light field, we can define a "latent path field" that encodes the proba-

bility distribution of the final vertex of a sub-path given an arbitrary vertex and direction

in space.

O(Xp, θ, ϕ) = P (Xt|Xp) . (3.7)

If the region of interest of this arbitrary field (e.g., radiance, latent, visibility, etc.) is

always outside of a convex hull 3, we know that any ray outside would not encounter

any obstacle that is not our target object within the convex hull, thus the values along

any ray would be constant before hitting the convex hull. For example, if the field

encodes radiance, the radiance values along a ray will always be constant before hitting

the convex hull, where we would not know if it was changed unless we look inside of the

convex hull. With this property, we can compress this field to only encode information

from within the convex hull on its surface and not waste space to represent all of the

constant rays outside of the convex hull.

This poses a constraint on our new estimator. We might get an incorrect result if we

start the sampling process inside of the convex hull that we are estimating or have some

external object intersecting the space within the convex hull. However, this constraint

can be respected in most scenes without too much difficulty. If somehow we must have

two objects intersecting each other’s convex hulls or allow the camera to go inside of

an object’s convex hull, we can simply detect when that happens and revert back to the

standard path tracing algorithm without using our estimator for that specific object.

Furthermore, instead of learning a complicated distribution of rays on a surface de-

scribed by an arbitrary convex hull, we can simplify our estimator f(xp, θp→t) by es-

timating the distribution of rays on a spherical projection that bounds the convex hull.

The bounding sphere parameterization simplifies our estimator significantly, as we do

not need to know about the geometry, textures, or other properties of objects inside of

3. A convex hull of an object is the smallest convex shape that the object can fit in.

43

the bounding sphere, and as we are only interested in the distribution of rays exiting

this sphere conditioned on a ray entering this sphere. Additionally, intersection checks

against a sphere are much faster than most other arbitrary geometry representations.

If a ray hits the bounding sphere, a "mask field" can be used just like our path field

in order to check if the ray has hit the object itself (or a set of objects). This mask

field (which can use the same parameterization as the latent field) simply returns 0 or 1

depending on whether an incoming ray hits the object itself after entering the bounding

sphere. For better performance, if the mask field does not confirm a hit, the estimator is

not used. This allows the correct handling of cases where an external object intersects

with the bounding sphere, we just need to move the predicted rays on the bounding

sphere slightly back along the direction of the ray, otherwise the predicted output rays

might start from within another object. In Figure 3.1, the output ray from the estimator

starts at the surface of the bounding sphere, but might need to be moved back a bit

(the distance of the dashed blue line) if another object is slightly inside of the bounding

sphere. However, for accurate results, external objects still cannot reside (partially or

fully) within the convex hull itself. An additional estimator can be trained to learn the

distance from the sphere to the convex hull so that we can know exactly how far back

to move the ray. However, this is not needed if only a few objects slightly intersect the

volume of the object’s bounding sphere. In practice, moving back for a predetermined

distance or to the plane that intersects the object’s midpoint with the same normal as the

direction works well. The latter method will always keep the ray inside of the bounding

sphere.

For a better mask field that does not suffer from "staircase" artifacts (see Figure 3.8)

from the limited resolution of a discrete regular grid (shown in Figure 3.3), which stores

the values for the field, a potential candidate for future research is to use signed distance

fields [9] instead of just encoding a binary value. Signed distance fields can allow smooth

44

representation of curved surfaces when the underlying grid is very coarse.

Finally, the convex hull parameterization can also be trivially modified to allow the

encoding of something similar to an environment map or hemispherical skylight, where

the camera is always inside of the inverted inner convex hull. For example, we can

accelerate the volumetric path tracing of faraway clouds using NPPP. The animation of

those clouds can also be encoded in an additional parameter and learned in advance.

NPPP is more versatile than a hemispherical skylight as it is an encoding placed in 3D

space that allows portions of the scene to be "outside" while a hemispherical skylight is

only 2D and is placed at infinity.

3.3 Algorithm

In path tracing, efficiently sampling from the probability distribution is more impor-

tant than finding its density function. Therefore, our estimator f(xp, θp→t) should be a

generative model. Training a density estimation model would not be beneficial if we

cannot sample efficiently from it.

Pre-existing generative models such as GANs, VAEs, and autoregressive models are

either too slow or too hard to train for our purpose of accelerating path tracing. We will

design a simple and fast generative model specifically for our task of sampling outgoing

rays Xt depending on incoming rays Xp.

For any specific incoming ray xp in a scene, sampling the outgoing rays multiple

times will give us a 12-dimensional point cloud (two sets of x, y, z values for the position

and normalized direction vector, and two sets of r, g, b values for total throughput and

accumulated radiance), which is a good approximation of Xt if this point cloud is very

large. The core idea of our method is to train a deep neural network that allows efficient

sampling of Xt by learning a mapping from a random point cloud generated with a

normal distribution N(0, 1) to the outgoing rays’ point cloud using Chamfer loss in the

45

output (which is order invariant). This nonlinear mapping of a high-dimensional space

will allow us to sample an approximation of Xt by first sampling N(0, 1), which is very

easy and quick, and passing it through the neural network.

Figure 3.2 – Illustration of the neural architecture during training. The decoders have
shared weights but do not share the random vector r, which is re-sampled at each training
iteration for each decoder. In our implementation, each object or group of objects uses
a completely different model. Sharing the decoder is possible, but it complicates the
training procedure.

3.3.1 Neural Architecture

To be able to sample from the distribution P (Xt|Xp), our neural network has to take

into account the value of xp. Directly inputting xp to the neural network is not feasible

as the network would need to be very large, and consequently very slow when trying to

encode the distribution P (Xt|Xp) itself in the weights of the neural network.

To solve this problem, we can divide our network into two parts, an encoder f(xp) =

z that will map xp to a latent vector z, and a decoder g(z) = P (Xt|z) ≈ P (Xt|Xp)

that will take the latent z and a random vector r from N(0, 1) to produce one sample of

Xt. Both the encoder and decoder are implemented using a basic multilayer perceptron

(MLP) architecture.

After training, we can sample the encoder from all needed positions and directions,

46

Figure 3.3 – Illustration of the latent field method used to bypass the encoder during ren-
dering. This allows the estimator to be extremely fast when the decoder is lightweight.

and store each of the latents z corresponding to each input vector in a regular grid param-

eterized by O(Xp, θ, ϕ) or other parameterizations such as the bounded sphere described

earlier. Any parameterization will work as long as it does not take too much memory

and preserves needed details. For any new incoming ray xp, we can linearly interpolate

the regular grid to obtain its corresponding latent z, which can then be used to sample

P (Xt|z) ≈ P (Xt|Xp) during rendering.

As we will not be using the encoder to sample from Xt during rendering, we can

make it as large as we want. Larger encoders allow faster convergence during training

and result in a better encoding of the distribution within the latent z. The decoder can be

made very small and lightweight for fast sampling on the GPU.

47

3.3.2 Acceleration Structures

For our basic implementation of NPPP, we use a two-level acceleration structure, also

called top-level/bottom-level acceleration structures (TLAS/BLAS), where each individ-

ual object’s mesh is represented in a bottom-level bounding volume hierarchy (BVH),

and the placements of those objects in the scene are encoded in a top-level BVH. This

allows us to attach an estimator to the leaf nodes of the top-level BVH and reuse the

mesh and estimator if an object is duplicated in the scene with an Euclidean or uniform

scaling transformation. Also, depending on whether we want greater speed or more ac-

curacy, we can choose to use the estimator without evaluating the bottom-level BVH or

go with the standard path tracing algorithm. Because our estimator is a neural network

with a fixed number of parameters, sampling a path using the estimator reduces diver-

gence 4 on a GPU compared to sampling using the BVH, where a BVH is often traversed

at different depths depending on the location of the intersection. Reducing divergence

further accelerates the path tracing algorithm on a GPU.

If multiple objects are static in relation to each other and form together a convex hull

that no other object or the camera will ever enter, for example a boat tied to the roof of a

car, an extension to this algorithm can be made by allowing it to dynamically train and

attach estimators to non-leaf nodes of the top-level BVH during the rendering process.

3.3.3 Training

To train an estimator for an object or a group of objects, the target objects are first

placed in an empty scene. Then, we select a random initial position on the bounding

sphere and a random direction which forms the incoming ray; they will serve as input

4. Due to how modern GPUs are designed, parallel code is most efficient when all threads run the
same operations at the same time. Divergence occurs when some threads run different code or run for
longer than others due to branching, which results in slowdowns as all threads executed in parallel must
wait for the diverging threads to finish before the others can continue running.

48

to the neural network. Using the same path tracing algorithm that is used for rendering,

we randomly trace the path of that incoming ray until it leaves the object’s convex hull

and save the outgoing position, direction, total throughput, and accumulated radiance as

a 12D vector k times in order to obtain a 12D point cloud of size k. If the object is not

intersected by the incoming ray, a flag is set for later when creating the "mask field".

A larger point cloud lets us train a better and more accurate estimator, but significantly

increases the size of the dataset on disk or in memory. For reference, the uncompressed

dataset size for our Stanford Dragon model was 10 GiB. One example pair of an input

and a target in the dataset consists of an incoming ray paired with its corresponding

point cloud. Finally, we generate as many examples as possible for our dataset in order

to maximally cover the object with incoming rays. If some input rays are more important

than others (e.g., when modeling a pipe that carries light inside, where both ends of the

pipe have a more complex output ray distribution than the outer surface), another ray

parameterization can be used and/or a non-uniform distribution of input rays around

the object can be generated in the dataset to optimize for quality and memory usage in

specific use cases.

During training, the decoder is duplicated until there are k decoders with shared

weights. There should be as many decoders as points in the point cloud. All random

inputs r to each decoder should be a new and different value sampled from N(0, 1). The

input to the encoder is the incoming ray as a vector. The output of the many duplicated

decoders is the point cloud itself, represented as a unordered list of vectors. The full

network is trained end-to-end using Chamfer loss to account for output order invariance

and using standard Adam loss for quick convergence.

49

3.4 Results

The results shown in this section are from our implementation of a standard path

tracer in GLSL shaders, using importance sampling, Russian roulette, the Disney prin-

cipled shader [5], and a two-level BVH acceleration structure. NPPP is incorporated by

replacing parts of our scene with a neural network estimator when conditions are met.

For fairness during benchmarking, the NPPP code inside of the shader is removed when

the algorithm is disabled to avoid branching. The machine used to run tests has the

following specs: AMD Vega 64 GPU, AMD Ryzen 1700 CPU, 32 GiB of RAM, and

Google Chrome as the browser for benchmarks.

The first scene tested, shown in Figure 3.4, is a simple box with colored walls and a

golden Stanford Dragon in the middle, similar to the Cornell box. The target quality for

this rendering is to use a maximum of five bounces for light (M = 5) and 1024 samples

per pixel on a 512× 512 canvas. The time needed to render this scene using path tracing

only is 38.3s.

Reducing the maximum number of bounces for the path tracing algorithm alone

accelerates the rendering but reduces the overall brightness of the scene due to a loss

of energy carried by longer light paths. NPPP allows us to have an additional parameter

that controls when to use the estimator. Instead of stopping the path of light, we can opt

to use the much faster but less precise neural network estimator after P bounces. This

allows us to effectively accelerate rendering without reducing the maximum number of

bounces.

NPPP, when used conservatively with P = 2, can offer some acceleration without

sacrificing visual quality. Compared to lowering the hard limit M on the number of

bounces that the path tracing algorithm can generate, it is more efficient with respect

to perceived quality to use NPPP instead for longer paths. In this scene, PT + NPPP

can produce an almost identical image compared to the original rendering in 0.64× the

50

PT (18.9s) PT (26.4s) PT (38.3s)
M = 2 M = 3 M = 5

PT + NPPP (6.6s) PT + NPPP (14.1s) PT + NPPP (24.6s)
P = 0,M = 5 P = 1,M = 5 P = 2,M = 5

Figure 3.4 – A benchmark of a golden Stanford Dragon with 300k triangles rendered
at 1024 samples per pixel (spp) using various parameter values. M is the maximum
number of bounces. P is the minimum number of bounces before NPPP is used. NPPP
is enabled only for the Dragon model and not for the walls/ceiling/floor. The latent
vector size is set to 16. Both latent and mask grids used are of size 324 and are quantized
to 8 bits, occupying 17 MiB of memory.

When using PT alone, reducing the parameter M increases speed but noticeably darkens
the scene. With PT + NPPP, decreasing P yields similar acceleration without noticeable
degradation, unless using the extreme case where P = 0 (no real geometry bounce is
performed)

running time (24.6s).

If we can tolerate a reduction of quality in the shadows and small details in lighting,

setting P = 1 makes the rendering faster than limiting the maximum number of bounces

to two (M = 2) and runs in 0.37× as long as the original rendering (14.1s). Empirically,

51

we find that on average, setting P = n is faster than setting M = n + c because the

overhead of using NPPP is very low and the neural network runs in constant O(1) time

with respect to scene complexity. How small c can be depends on the complexity of the

scene.

Diagram PT (14.2s) PT + NPPP (7.8s)
M = 4 P = 0,M = 4

Figure 3.5 – A benchmark of a scene simulating difficult lighting conditions rendered at
1024spp. NPPP is enabled only for the curved corridor and not for the walls and objects
in the room. No modifications to the bounding sphere parameterization is used here, and
better parameterizations of the NPPP estimator specifically for a curved tunnel should
yield even better results (such as allocating the entire latent field to the entrance only).

The second test aims to see if NPPP can allow us to estimate light effects from large

numbers of bounces (M > c) when given a limited number of bounces (M ≤ c). In the

scene shown in Figure 3.5, the path from the camera to the light source is more complex

and requires a larger number of bounces due to the curved tube leading to the light. The

curved tube’s material is a diffuse white surface with an albedo of 0.9.

In this scene, using only a maximum of four bounces (M = 4) does not allow path

tracing alone to find the light source effectively. However, by attaching an estimator

to the curved tube, a ray entering the estimator will have a larger probability of exiting

from the same end and a smaller probability of exiting from the opposite end. Even if

the probability of exiting from the illuminating end of the tube is small, it is still much

large than the probability without NPPP. For standard path tracing, a ray that bounced

52

for three times or more in the room will never find the light source due to the curved

tunnel, but for PT + NPPP, all rays that enter the tunnel have a chance of exiting towards

the light source.

Rendering with NPPP improves convergence (less noise) and reduces rendering time

due to not having to evaluate any bounce within the tunnel.

The third scene is used as a stress test for our algorithm and shows that the neu-

ral estimator can be instanced without using any additional memory when an object is

duplicated and moved in the scene. This scene is very similar to the first one, but we

instead lay out in a very large room fourty thousand Stanford Dragons in a (200 × 200)

grid, each having random rotations along their Y axis. In this scene, we observe that

NPPP can be used to great effect, where it accelerates the path tracing algorithm almost

twofold. When NPPP is used with the settings P = 1 and M = 6, the rendering takes

only 5 minutes and 2 seconds, while path tracing alone with M = 6 takes 9 minutes

and 45 seconds to produce a slightly higher quality image. The decrease in visual qual-

ity from NPPP is almost imperceptible unless it is being compared directly side by side

to a ground truth image (see Figure 3.6). We can see that NPPP produces the desired

global illumination effects while only needing a single bounce against the dragon geom-

etry (P = 1), with higher order bounces being estimated using NPPP. With P = 2, the

result is almost identical while being faster to path tracing alone. The NPPP overhead in

this scene for five NPPP bounces (P = 1, M = 6) is 1 minute and 52 seconds, as path

tracing with a single bounce (M = 1) takes 3 minutes and 10 seconds.

3.5 Discussion

One important property to note about NPPP is that it is biased for most scenes due to

inaccuracies in the estimator. However, this bias may be more acceptable if the alterna-

tive is to limit the number of bounces, which is also biased. One can think of NPPP as

53

PT + NPPP (5m 2s) PT (3m 10s) PT (9m 45s)
P = 1,M = 6 M = 1 M = 6

PT + NPPP (5m 2s) PT + NPPP (7m 9s) PT (9m 45s)
P = 1,M = 6 P = 2,M = 6 M = 6

Figure 3.6 – Stress test scene with 40k (200 × 200) instanced Stanford Dragons placed
in a large room for a total of 12 billion triangles rendered at 2048spp. Unless otherwise
stated, all other settings are the same as the first scene (see Figure 3.4).

a better approximation of the correct result compared to truncating path lengths. NPPP

does not guarantee the accuracy of light transport when it is used, as the neural network

is simply an estimation of the properties of the object, and is subject to bias. Further

research in this direction might be needed in order to quantify the bias and variance

reduction of this algorithm.

Many factors and parameters affect the quality of the estimation given by NPPP. As

seen earlier, changing P , which is the minimum number of bounces before NPPP is used,

greatly affects the quality of the final image. A lower number for P increases rendering

speed but decreases quality, and vice versa. The grid sizes used for the latent and mask

54

fields also affect the estimator’s quality. However, they only change how much memory

is used and do not affect performance. If the object is only viewed from a certain angle,

we might want to construct a specific parameterization that is more memory efficient

or discard parts of the latent field for that specific use case to have a better rendering

quality for the same memory requirement. For example, for objects far away, we might

only need to store a 2D latent field that only encodes position instead of the full 4D latent

field, as small changes in ray direction will not be noticeable.

Sz = 84 (64.0 KiB) Sz = 164 (1.0 MiB) Sz = 244 (5.1 MiB)

Sz = 324 (16.0 MiB) Sz = 484 (81.0 MiB) Sz = 644 (256.0 MiB)

Figure 3.7 – Visual comparison and memory requirements for different Sz (size of latent
grid). The mask grid size is set to 644. The settings P = 0 and M = 5 are used for all
instances. The latent vector size is set to 16. Both the mask and latent grids are quantized
to 8 bits.

55

3.5.1 Grid Size

Another parameter determined in advance is the size of the grid for both the latent

field and the mask field. As our spherical parameterization of the field is 4D, a large field

will occupy much more memory. If stored as 32-bit floating point numbers, the latent

field is 32
8
· d · q4 bytes in size, where d is the size of the latent vector and q is the size

of one side of the regular grid. For example, a 32-bit regular grid of size q = 324 with a

latent vector of size d = 16 occupies 128MiB of memory.

A smaller grid saves memory but results in a much lower quality of images. During

our tests, a grid size smaller than 164 is barely usable. The only downside of using

a larger grid is memory size, as the grid size does not affect performance. Therefore,

if memory is plentiful, larger grid sizes may and should be used for a higher quality

result. For a 32-bit mask field, its size is simply 32
8
· q4 bytes. The sizes of the mask and

latent fields are independent and can be changed depending on the desired quality and

complexity of the object or scene.

3.5.2 Quantization

Encoder-decoder architectures in machine learning are somewhat naturally resistant

to degradation from quantization because of the way the encoder compresses similar

outputs as similar latent vectors. We can greatly compress the latent field using quanti-

zation without much loss in quality. In our tests, the latent field can be quantized to 4

bits and the mask field to 2 bits before noticeable artifacts appear. A 4-bit latent field is

8× smaller than a full-precision 32-bit latent field. As we did not have access to special-

ized hardware during our tests that can take advantage of quantization, we did not test

for performance improvements from quantization. Newer GPUs with specialized ray

tracing hardware and machine learning compute units (e.g., NVIDIA RTX 3080, AMD

RX 6800 XT) can take advantage of the memory speed and latency improvements from

56

Sm = 84 (4.0 KiB) Sm = 164 (64.0 KiB) Sm = 244 (324.0 KiB)

Sm = 324 (1.0 MiB) Sm = 484 (5.1 MiB) Sm = 644 (16.0 MiB)

Figure 3.8 – Visual comparison and memory requirements for different Sm (size of mask
grid). The latent grid size is set to 644. The settings P = 0 and M = 5 are used for all
instances. Both the mask and latent grids are quantized to 8 bits.

using quantized data to improve the speed of NPPP even further.

Recently, methods for training neural networks that take into account quantization [12]

have been developed and can be used to further improve the robustness of the estimator

to quantization. Future research directions in this domain could be about the compres-

sion of the latent vector representation using quantization or some other methods for

reducing the memory footprint of the latent and mask grids.

3.6 Implementation Details

In order for the results to be more easily reproducible, we give in this section details

about all the steps we took in order to obtain the results discussed above. The basic tools

57

2 bits (72.0 MiB) 3 bits (102.0 MiB) 4 bits (136.0 MiB)

5 bits (170.0 MiB) 6 bits (204.0 MiB) 8 bits (272.0 MiB)

Figure 3.9 – Visual comparison and memory requirements for quantization levels of both
the latent and mask grids. The latent and mask grid sizes are set to 644. The settings
P = 0 and M = 5 are used for all instances.

required are an open-source rendering engine (PBRT, Mitsuba, etc.) where NPPP can

be implemented and a machine learning library (TensorFlow, PyTorch, scikit-learn, etc.)

that will ease the training process of the neural network. We opted to use a mix of online

open-source code and custom code in order to write a specialized interactive path tracer

that runs on web browsers for portability of the demos. We used TensorFlow [1] to train

our network but any other machine learning library that supports Chamfer loss will work

out of the box.

To generate the dataset, we need to modify the rendering engine to save pairs of

input ray and output ray cloud instead of an image. Modifications can be made inside

of the path tracing routine to save the position, direction, throughput, and accumulated

58

radiance of rays instead of accumulating radiance values. After the modifications, we

place in an empty scene the object or collection of objects that we want the estimator

to learn. To generate the input-output pairs, we choose a random ray that intersects the

bounding sphere of our object as input, and run the path tracing algorithm many times

in order to obtain many output rays with their corresponding data for throughput and

accumulated radiance. To save storage, we can opt to not save output rays that do not

intersect our object but only save a flag that will be used later to determine the mask. We

repeat these steps by choosing another random input ray until enough input rays cover

our object. How many input-output pairs and the size of the output point cloud needed

to have an accurate estimator depend on the complexity of the object, but we found that

200k pairs with a point cloud size of 512 are a good starting point for fairly complex

objects.

After obtaining the full dataset, the training step is pretty straightforward. Using

the neural architecture shown in Figure 3.2, we train two networks. The first network

predicts the mask field, where the input is the input ray and the output is a binary value

representing whether the ray intersects the object. The random vector r in the decoder is

removed and only one decoder is used for learning the mask field. The second network

predicts the rays themselves. It is trained as-is with Chamfer loss using the input rays

(that intersect our object) and the point clouds. Experimentally, we found that using a

16-dimensional vector for both r and z is good for most objects. We trained the networks

for 10 epochs using Adam with parameters α = 0.001, β1 = 0.9, β2 = 0.999.

To obtain the mask and latent fields, we sample the encoder in both of the two net-

works using a predetermined parameterization, and save the outputs of the mask network

and the encoder network for the latent field in a regular grid. A common 4D parameter-

ization for our use case is a pair of points on a sphere described by a pair of two angles

(longitude and latitude). Both regular grids can be quantized to 8 bits in order to save

59

space without any noticeable degradation in quality.

In order to implement NPPP in our path tracer, we need to attach the estimator to the

BVH node that bounds the entirety of our object or collection of objects. When a ray

intersects a node with an estimator attached, we want to be able to skip all intersections

with deeper nodes by using the mask field. We can simply check for intersections against

the mask field to determine if the ray has intersected with the object of interest or passed

through empty space. If the intersection is confirmed, we can use the estimator to predict

a new outgoing ray, skipping most of the code in the path tracing algorithm. If the object

was moved using Euclidian transformations, we can simply apply the reverse and for-

ward transformations to the input and output rays respectively from the estimator. Note

that we must not use the estimator if the current bounce is smaller than the parameter

P , which controls the rendering quality, or if the incoming ray is coming from within

the object itself or from a bounce within the object’s convex hull. If the convex hulls of

objects with estimators are not allowed to intersect with other objects, the last check can

be skipped, improving performance.

The estimator is implemented in two parts. First we need to implement the sam-

pling routine for the mask and latent fields. When an input vector is given, we can find

the mask value and the latent vector by interpolating values in the mask/latent grids.

We used a simple quadrilinear interpolation for our 4-dimensional regular grids. More

complex interpolation methods such as cubic or spline interpolation will produce higher

quality renderings but will be significantly slower due to the high dimensionality of our

grids. After sampling from the grids, we can generate a random vector r from a normal

distribution and use it with the sampled latent vector z for the decoder to produce an

output ray. As the decoder network is a simple MLP, only a few hundred multiply-add

operations are needed, combined with the ReLU function. For the weights of the net-

work, we simply generated our shaders dynamically at runtime to include the weights,

60

but loading them as uniforms or textures will work too.

Finally, the output ray from the estimator (after performing necessary Euclidean

transformations) can be used as-is for the next bounce against the scene in the path

tracer, as it already contains values for throughput and radiance. We multiply the esti-

mated throughput with the total throughput and add the estimated radiance with the total

accumulated radiance of that path.

CHAPTER 4

CONCLUSION

We explored deep conditional generative models for light transport in this thesis.

We showed that an estimator can be built for path tracing to allow the skipping of ray

evaluations in arbitrary scenes. This new method is very flexible and allows a higher

degree of control over the quality and speed tradeoff it offers to a path tracing algorithm.

Furthermore, unlike neural caching methods, the neural network is trained only for each

individual object or a group of many objects. It does not need re-training when there are

some changes in the scene or lighting conditions. One downside of this method is its

memory consumption, where each complex object might need up to tens of megabytes

for a high quality rendering. Future research in this direction would be needed to reduce

the memory footprint and allow very complex scenes to be represented accurately.

4.1 Future Work

The method presented in this thesis is not only applicable to path tracing, but also

to many other light transport algorithms such as photon mapping, light tracing, bidirec-

tional path tracing, and volumetric path tracing. The estimator network would need to be

tweaked in order to take into account the additional information required for these meth-

ods. For instance, for photon mapping, we can modify the estimator so that it returns

the position of a deposited photon in addition to the output ray. For bidirectional path

tracing, we would need an additional estimator to handle path connections. For volu-

metric path tracing, the algorithm works as-is if the volume in question is far away (e.g.,

clouds). It can bring significant performance improvements as volumetric path tracing is

very expensive due to ray marching and multiple scattering. If the camera is within the

62

fluid such as inside of a smoke filled room, we would need to use a 5D parameterization

for the mask and latent fields. We also need to consider the case when an object inter-

sects with the fluid. If the object is static, it can be included within the estimator, but if

the object can move anywhere it wants, another solution must be found.

Furthermore, improvements to the algorithm itself are also promising, such as find-

ing good parameterizations for each type of objects and scene, finding memory efficient

representations of the latent field, and designing higher quality/faster neural architec-

tures.

Finally, we can avoid the need to create a pre-trained neural estimator if we imple-

ment the training step within the rendering engine. This would allow the flexibility of

immediately using new objects without the need to train the neural networks manually

using an external library.

BIBLIOGRAPHY

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-

lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus-

ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,

Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-

den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-

sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

https://www.tensorflow.org/. Software available from tensorflow.org.

[2] Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex

Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. Kernel-predicting con-

volutional networks for denoising Monte Carlo renderings. ACM Trans. Graph.,

36(4), jul 2017. ISSN 0730-0301. doi: 10.1145/3072959.3073708. URL https:

//doi.org/10.1145/3072959.3073708.

[3] Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wo-

jciech Jarosz. Spatiotemporal reservoir resampling for real-time ray tracing with

dynamic direct lighting. ACM Trans. Graph. (Proceedings of SIGGRAPH), 39(4),

July 2020. doi: 10/gg8xc7.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. Advances in Neural Information Pro-

cessing Systems, 33:1877–1901, 2020.

https://www.tensorflow.org/
https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1145/3072959.3073708

64

[5] Brent Burley and Walt Disney Animation Studios. Physically-based shading at

disney. In ACM SIGGRAPH, volume 2012, pages 1–7, 2012.

[6] Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco

Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. Interactive recon-

struction of Monte Carlo image sequences using a recurrent denoising autoencoder.

ACM Transactions on Graphics (TOG), 36(4):1–12, 2017.

[7] Michael F Cohen, John R Wallace, and Pat Hanrahan. Radiosity and realistic image

synthesis. Morgan Kaufmann, 1993.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

Advances in Neural Information Processing Systems, 27, 2014.

[9] Chris Green. Improved alpha-tested magnification for vector textures and special

effects. In ACM SIGGRAPH 2007 courses, pages 9–18. 2007.

[10] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive photon

mapping. ACM Trans. Graph., 28(5):1–8, dec 2009. ISSN 0730-0301. doi:

10.1145/1618452.1618487. URL https://doi.org/10.1145/1618452.

1618487.

[11] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive pho-

ton mapping. ACM Trans. Graph., 27(5), dec 2008. ISSN 0730-0301. doi:

10.1145/1409060.1409083. URL https://doi.org/10.1145/1409060.

1409083.

[12] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-

drew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and train-

https://doi.org/10.1145/1618452.1618487
https://doi.org/10.1145/1618452.1618487
https://doi.org/10.1145/1409060.1409083
https://doi.org/10.1145/1409060.1409083

65

ing of neural networks for efficient integer-arithmetic-only inference. In Proceed-

ings of the IEEE conference on Computer Vision and Pattern Recognition, pages

2704–2713, 2018.

[13] Henrik Wann Jensen. Global illumination using photon maps. In Eurographics

workshop on Rendering techniques, pages 21–30. Springer, 1996.

[14] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):

143–150, aug 1986. ISSN 0097-8930. doi: 10.1145/15886.15902. URL https:

//doi.org/10.1145/15886.15902.

[15] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

for generative adversarial networks. In Proceedings of the IEEE/CVF conference

on Computer Vision and Pattern Recognition, pages 4401–4410, 2019.

[16] Alexander Keller. Instant radiosity. In Proceedings of the 24th Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, page 49–56,

USA, 1997. ACM Press/Addison-Wesley Publishing Co. ISBN 0897918967.

doi: 10.1145/258734.258769. URL https://doi.org/10.1145/258734.

258769.

[17] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[18] David Kirk and James Arvo. Unbiased sampling techniques for image synthesis.

ACM SIGGRAPH Computer Graphics, 25(4):153–156, 1991.

[19] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator.

In Proceedings of the fourteenth International Conference on Artificial Intelligence

and Statistics, pages 29–37. JMLR Workshop and Conference Proceedings, 2011.

https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/258734.258769

66

[20] Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel,

and Chris Wyman. Generalized resampled importance sampling: Foundations

of ReSTIR. ACM Trans. Graph., 41(4), jul 2022. ISSN 0730-0301. doi:

10.1145/3528223.3530158. URL https://doi.org/10.1145/3528223.

3530158.

[21] Morgan McGuire and Michael Mara. Efficient GPU screen-space ray tracing. Jour-

nal of Computer Graphics Techniques (JCGT), 3(4):73–85, 2014.

[22] Morgan McGuire, Mike Mara, Derek Nowrouzezahrai, and David Luebke. Real-

time global illumination using precomputed light field probes. In Proceedings of

the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,

pages 1–11, 2017.

[23] Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. Real-time

neural radiance caching for path tracing. arXiv preprint arXiv:2106.12372, 2021.

[24] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499,

2016.

[25] Yaobin Ouyang, Shiqiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni.

ReSTIR GI: Path resampling for real-time path tracing. In Computer Graphics

Forum, volume 40, pages 17–29. Wiley Online Library, 2021.

[26] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with nor-

malizing flows. In Proceedings of the 32nd International Conference on Interna-

tional Conference on Machine Learning - Volume 37, ICML’15, page 1530–1538.

JMLR.org, 2015.

https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158

67

[27] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Den-

ton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,

Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with

deep language understanding. arXiv preprint arXiv:2205.11487, 2022.

[28] Justin F. Talbot, David Cline, and Parris Egbert. Importance resampling for global

illumination. In Proceedings of the Sixteenth Eurographics Conference on Ren-

dering Techniques, EGSR ’05, page 139–146, Goslar, DEU, 2005. Eurographics

Association. ISBN 3905673231.

[29] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neu-

ral networks. In International conference on machine learning, pages 1747–1756.

PMLR, 2016.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in Neural Information Processing Systems, 30, 2017.

[31] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD

thesis, Stanford, CA, USA, 1998. AAI9837162.

[32] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In

EGWR ’94, pages 147–162, 1994.

[33] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Proceedings

of the 24th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’97, page 65–76, USA, 1997. ACM Press/Addison-Wesley Publishing

Co. ISBN 0897918967. doi: 10.1145/258734.258775. URL https://doi.

org/10.1145/258734.258775.

https://doi.org/10.1145/258734.258775
https://doi.org/10.1145/258734.258775

68

[34] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing

solution for diffuse interreflection. SIGGRAPH Comput. Graph., 22(4):85–92,

jun 1988. ISSN 0097-8930. doi: 10.1145/378456.378490. URL https:

//doi.org/10.1145/378456.378490.

[35] Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and

Anton Kaplanyan. Neural supersampling for real-time rendering. ACM Trans.

Graph., 39(4), jul 2020. ISSN 0730-0301. doi: 10.1145/3386569.3392376. URL

https://doi.org/10.1145/3386569.3392376.

[36] Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and

Rui Tang. Adversarial monte carlo denoising with conditioned auxiliary fea-

ture modulation. ACM Trans. Graph., 38(6), nov 2019. ISSN 0730-0301. doi:

10.1145/3355089.3356547. URL https://doi.org/10.1145/3355089.

3356547.

https://doi.org/10.1145/378456.378490
https://doi.org/10.1145/378456.378490
https://doi.org/10.1145/3386569.3392376
https://doi.org/10.1145/3355089.3356547
https://doi.org/10.1145/3355089.3356547

	Résumé
	Abstract
	Contents
	List of Abbreviations
	Notation
	Acknowledgments
	Introduction
	Overview of Rendering
	Global Illumination
	Light Transport
	Monte Carlo Techniques
	Path Tracing
	Photon Mapping

	Acceleration of path tracing
	Overview
	Computational Efficiency
	Convergence, Bias, and Variance Reduction

	Sampling Methods
	Early Stopping
	Russian Roulette
	Adaptive Sampling
	Importance Sampling
	Next Event Estimation
	Bidirectional Path Tracing
	Metropolis Path Tracing
	Resampling

	Information Reuse Methods
	Irradiance Caching
	Light Probes
	Temporal Reprojection

	Screen Space Methods
	Screen Space Ray Tracing
	Denoising and Super-Resolution

	Neural probabilistic path prediction (NPPP)
	Motivation
	Theory
	Statistical Model of Path Tracing
	Sampling
	Light Fields

	Algorithm
	Neural Architecture
	Acceleration Structures
	Training

	Results
	Discussion
	Grid Size
	Quantization

	Implementation Details

	Conclusion
	Future Work

	Bibliography

