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Résumé

Dans les applications de traitement du langage naturel (NLP), la formation d’un modèle
efficace nécessite souvent une quantité massive de données. Cependant, les données textuelles
dans le monde réel sont dispersées dans différentes institutions ou appareils d’utilisateurs.
Leur partage direct avec le fournisseur de services NLP entraîne d’énormes risques pour
la confidentialité, car les données textuelles contiennent souvent des informations sensibles,
entraînant une fuite potentielle de la confidentialité. Un moyen typique de protéger la confi-
dentialité consiste à privatiser directement le texte brut et à tirer parti de la confidentialité
différentielle (DP) pour protéger le texte à un niveau de protection de la confidentialité quan-
tifiable. Par ailleurs, la protection des résultats de calcul intermédiaires via un mécanisme
de privatisation de texte aléatoire est une autre solution disponible.

Cependant, les mécanismes existants de privatisation des textes ne permettent pas d’ob-
tenir un bon compromis entre confidentialité et utilité en raison de la difficulté intrinsèque
de la protection de la confidentialité des textes. Leurs limitations incluent principalement
les aspects suivants: (1) ces mécanismes qui privatisent le texte en appliquant la notion de
dχ-privacy ne sont pas applicables à toutes les métriques de similarité en raison des exigences
strictes; (2) ils privatisent chaque jeton (mot) dans le texte de manière égale en fournissant
le même ensemble de sorties excessivement grand, ce qui entraîne une surprotection; (3) les
méthodes actuelles ne peuvent garantir la confidentialité que pour une seule étape d’entraî-
nement/d’inférence en raison du manque de composition DP et de techniques d’amplification
DP.

Le manque du compromis utilité-confidentialité empêche l’adoption des mécanismes ac-
tuels de privatisation du texte dans les applications du monde réel. Dans ce mémoire, nous
proposons deux méthodes à partir de perspectives différentes pour les étapes d’apprentissage
et d’inférence tout en ne requérant aucune confiance de sécurité au serveur. La première ap-
proche est un mécanisme de privatisation de texte privé différentiel personnalisé (CusText)
qui attribue à chaque jeton d’entrée un ensemble de sortie personnalisé pour fournir une pro-
tection de confidentialité adaptative plus avancée au niveau du jeton. Il surmonte également
la limitation des métriques de similarité causée par la notion de dχ-privacy, en adaptant
le mécanisme pour satisfaire ϵ-DP. En outre, nous proposons deux nouvelles stratégies de
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privatisation de texte pour renforcer l’utilité du texte privatisé sans compromettre la confi-
dentialité. La deuxième approche est un modèle Gaussien privé différentiel local (GauDP)
qui réduit considérablement le volume de bruit calibrée sur la base d’un cadre avancé de
comptabilité de confidentialité et améliore ainsi la précision du modèle en incorporant plu-
sieurs composants. Le modèle se compose d’une couche LDP, d’algorithmes d’amplification
DP de sous-échantillonnage et de sur-échantillonnage pour l’apprentissage et l’inférence, et
d’algorithmes de composition DP pour l’étalonnage du bruit. Cette nouvelle solution garantit
pour la première fois la confidentialité de l’ensemble des données d’entraînement/d’inférence.

Pour évaluer nos mécanismes de privatisation de texte proposés, nous menons des ex-
périences étendues sur plusieurs ensembles de données de différents types. Les résultats
expérimentaux démontrent que nos mécanismes proposés peuvent atteindre un meilleur com-
promis confidentialité-utilité et une meilleure valeur d’application pratique que les méthodes
existantes. En outre, nous menons également une série d’études d’analyse pour explorer
les facteurs cruciaux de chaque composant qui pourront fournir plus d’informations sur la
protection des textes et généraliser d’autres explorations pour la NLP préservant la confi-
dentialité.

Mots clés: Traitement du langue naturelle, Confidentialité différentielle, Pro-
tection de la confidentialité des textes, Méthode de préservation de la vie privée.
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Abstract

In Natural Language Processing (NLP) applications, training an effective model often
requires a massive amount of data. However, text data in the real world are scattered in
different institutions or user devices. Directly sharing them with the NLP service provider
brings huge privacy risks, as text data often contains sensitive information, leading to po-
tential privacy leakage. A typical way to protect privacy is to directly privatize raw text
and leverage Differential Privacy (DP) to protect the text at a quantifiable privacy protec-
tion level. Besides, protecting the intermediate computation results via a randomized text
privatization mechanism is another available solution.

However, existing text privatization mechanisms fail to achieve a good privacy-utility
trade-off due to the intrinsic difficulty of text privacy protection. The limitations of them
mainly include the following aspects: (1) those mechanisms that privatize text by applying
dχ-privacy notion are not applicable for all similarity metrics because of the strict require-
ments; (2) they privatize each token in the text equally by providing the same and excessively
large output set which results in over-protection; (3) current methods can only guarantee
privacy for either the training/inference step, but not both, because of the lack of DP com-
position and DP amplification techniques.

Bad utility-privacy trade-off performance impedes the adoption of current text privati-
zation mechanisms in real-world applications. In this thesis, we propose two methods from
different perspectives for both training and inference stages while requiring no server security
trust. The first approach is a Customized differentially private Text privatization mecha-
nism (CusText) that assigns each input token a customized output set to provide more
advanced adaptive privacy protection at the token-level. It also overcomes the limitation
for the similarity metrics caused by dχ-privacy notion, by turning the mechanism to satisfy
ϵ-DP. Furthermore, we provide two new text privatization strategies to boost the utility of
privatized text without compromising privacy. The second approach is a Gaussian-based
local Differentially Private (GauDP) model that significantly reduces calibrated noise power
adding to the intermediate text representations based on an advanced privacy accounting
framework and thus improves model accuracy by incorporating several components. The
model consists of an LDP-layer, sub-sampling and up-sampling DP amplification algorithms
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for training and inference, and DP composition algorithms for noise calibration. This novel
solution guarantees privacy for both training and inference data.

To evaluate our proposed text privatization mechanisms, we conduct extensive experi-
ments on several datasets of different types. The experimental results demonstrate that our
proposed mechanisms can achieve a better privacy-utility trade-off and better practical ap-
plication value than the existing methods. In addition, we also carry out a series of analyses
to explore the crucial factors for each component which will be able to provide more insights
in text protection and generalize further explorations for privacy-preserving NLP.

Keywords: Natural language processing, Differential privacy, Text privacy
protection, Privacy-Preserving method.
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Chapter 1

Introduction

1.1. Data Privacy Concerns
Natural Language Processing (NLP) based on neural models has given rise to a new gen-

eration of approaches to deal with problems such as sentiment analysis, question answering,
semantic matching, and so on. These applications may require a massive amount of personal
data during the training stage, as well as personal queries sent to the service providers during
the inference stage. The input text data for these applications often contain sensitive infor-
mation [36], which raises the privacy risks such as potential personal privacy leakage and
data abuse during data sharing and collecting. In general, better services can be provided if
the server can collect more new data for model renewal.

However, the privacy-conscious people might not agree to release their data which might
contain personal information to service providers without privacy guarantees. Meanwhile,
many data protection initiatives and privacy laws have been launched in recent years, such as
the General Data Protection Regulation (GDPR) [64] and the California Consumer Privacy
Act (CCPA) [1]. This imposes obligations to the service providers of NLP applications and
makes their data collection more difficult unless they can address the privacy concern of the
data owners. Thus, the personal sensitive information should have a guarantee not be shared
with unwarranted parties or be attacked by the potential eavesdroppers.

In practice, data owners are allowed to privatize their texts locally by a certain text pri-
vatization mechanism before sending them to service providers. Then, the service providers
can process the privatized texts or privatized representations for further use. For example, to
design a privacy-preserving search engine, the query is first processed by a privacy protection
mechanism. Then the query (or query embedding) is sent to a search engine. The privacy-
preserving search engine will work with the privatized query and find relevant documents to
return to the user. What is required is to send queries so that the search engine cannot read
the private information from the queries, and the returned results are the most similar to
that with the unprivatized query. The procedure overview of different practical application



Fig. 1.1. An overview of local privacy scenario, in which a raw text is privatized before
being sent to the service provider for further use.

scenarios can be summarized as illustrated in Fig. 1.1. The individual record R and the data
collection D should be privatized into R′ and D′ by a text privatization mechanism before
releasing. Then the service provider can leverage them for various goals. Many studies, how-
ever, have discovered privacy violations in neural models no matter whether raw input texts
or text representations are sent to the service providers [67, 15]. Previously, it has been
shown that simple anonymization techniques, such as the removal of personal sensitive infor-
mation or protected attributes, fail to preserve data privacy [70, 40, 46, 10, 39]. Instead of
simply anonymizing raw data, the utilization of the learned representation as abstract real-
number vectors encoded by the neural models does not provide a guarantee of safety either.
The advanced attackers have been shown to be able to recover private information from
the deep neural representations [42, 18, 16, 68, 57]. Therefore, the aforementioned data
privacy concerns necessitate further research on exploring privacy-preserving NLP methods
with provable and quantifiable privacy guarantees for text protection [31, 69].

1.2. Outlook of Our Methods
Currently, many differentially private text privatization mechanisms [30, 62, 81, 35, 52,

44] have been proposed to address the privacy concern of the data owners. The privatization
mechanism aims to protect the private information in the text before releasing it for further
use and the privacy of the original input text in those mechanisms is guaranteed by differ-
ential privacy (DP) [24], which becomes a de facto standard for privacy protection. The DP
randomizes the computation process to stabilize the output in the face of changes to input
data, ensuring that the adversary can hardly tell if an individual data item (e.g. a token or
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a sequence) is in the dataset or not by looking at the computation output (e.g. privatized
text or latent representation). Recently, the DP has been integrated into the deep learning
training stage as the Differentially Private-Stochastic Gradient Descent (DP-SGD) [5] algo-
rithm proposed. It randomizes back-propagation with calibrated noise to limit what could
be breached from the training data when revealing the model. As a result, the model pa-
rameters can be viewed as a sanitized release, with individual training data obscured but the
model still remains functional. However, due to the calibrated noise required for DP, it has
been recognized that DP mechanisms invariably significantly reduce the downstream task
performance, raising the privacy-utility trade-off issue [23]. Instead, the DP-SGD is based
on a centralized differential privacy (CDP) setting which assumes a trusted service provider
can directly collect and process customers’ text data. The concurrent works [41, 22, 79, 7]
based on the CDP setting are also inapplicable for our considered scenarios where the users
have to privatize their texts locally before sending them to the untrusted server providers.
Instead, normally the trusted third party is not available so users should use the local priva-
tization approach. Therefore, our methods are designed based on local differential privacy
(LDP) [21] settings which have been deployed in many real-world applications, such as Apple
IOS [2], Uber [4] and Google Keyboard [3].

Currently, two research lines are conducted based on LDP settings. On one hand, to
reduce the impact of DP mechanism on the original semantics and syntax as much as pos-
sible, some previous researches [44, 52, 35] focus on producing differentially private text
representations. The rationale behind this is to generate random DP noise and add it to
the raw text representation. Then, the text representation in semantic space is changed and
its original position (representation vector) cannot be known. However, they only consider
either training or inference phrases whose calibrated noise for DP protection is based on
training or inference datasets. For example, the size of the training and inference datasets
are different, and the noise calibrated for one might not applicable for another one, i.e. the
noise required to protect one query and one hundred queries should be different. Besides,
the data usage of the two phrases is also different as all queries need to be processed in the
inference stage while we might not need to iterate all data on training, which could make the
construction of the mini-batch different. Thus, no existing approaches can cope with both
the training and inference phases. In addition, these existing works lack some specific DP
techniques (e.g. DP amplification) to enhance the privacy protection level and improve the
model utility. Another line of research privatizes the text data from the original. The basic
idea of achieving privacy protection is to generate privatized text by replacing the original
tokens in the text sequentially with new tokens (can be a character, a subword, a word, or
an n-gram) that are sampled from output token sets. The privacy and the utility of these
existing methods [30, 62, 81] are guaranteed by dχ-privacy [17] which is a relaxation of the
original DP definition. The dχ-privacy inherits the main idea of DP to protect the original
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token from being inferred. It further improves the utility of privatized text by giving higher
sampling probability to tokens that are semantically closer to the original one, so as to pre-
serve more information from the input text. However, the dχ-privacy has strict requirements
for similarity metrics and privatizes each token in the text equally by providing the same
and excessively large output set.

Currently, most existing methods cannot achieve a good privacy-utility trade-off, i.e.,
either large privacy cost with insufficient protection or small privacy cost with unsatisfiable
model accuracy. To address the aforementioned problems, we design our local differentially
private methods for text privacy protection via suitable DP mechanisms following both these
two research lines: (1) directly privatize the user’s original input text by token sampling;
(2) protect the computation results of user’s text by producing differentially private latent
representation.

1.2.1. Differentially Private Text

To directly privatize the user’s original input text via token sampling locally, we propose
a new Customized Text privatization mechanism named CusText to convert the raw user
data into differentially private text. The whole procedure is shown and discussed in Sec. 3.2.
The CusText assigns each input token with a unique output set for customization to provide
adaptive privacy protection at token-level. This is the main difference compared with existing
approaches where they use the whole vocabulary as the output set. Assigning unique output
sets for each input token can avoid the over-protective problem and boost the downstream
task utility. CusText also overcomes the limitation of the applicability of similarity metrics
caused by dχ-privacy notion, by turning the mechanism to satisfy ϵ-DP based on a carefully
designed score function. Furthermore, two new text privatization strategies are provided to
boost the utility of privatized text on downstream tasks without compromising privacy.

1.2.2. Differentially Private Latent Representation

To locally protect the computation results of the user’s text by producing differen-
tially private latent representation, we further propose a Gaussian-based Local Differentially
Private model for NLP named GauDP. We consider a similar scenario to the previous
works [18, 44] and extend it into a complete LDP-NLP tasks pipeline as shown and dis-
cussed in Sec. 4.2. Among our GauDP model, a novel LDP layer is deployed on the user
side to randomize the intermediate output, i.e. latent representation, for training and in-
ference’s forward computations, respectively. The DP composition and DP amplification
techniques should be carefully designed when producing differentially private latent repre-
sentation. Thus, we propose novel sequence-level sub-sampling and up-sampling DP am-
plification techniques based on the Gaussian mechanism with µ-Gaussian DP framework
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for both the training and inference stages, that reduce the privacy cost parameter ϵ to less
than 10 across the entire training/inference dataset. By contrast, the same data privacy
cost parameter ϵ can only be guaranteed in either the training or inference one step in the
previous literature [44, 62, 30] due to the lack of DP techniques. In other words, thousands
of additional training or inference steps can be carried out in our proposed method with the
same privacy level as existing methods.

1.3. Organization
The organization of the thesis is laid out as follows:
In Chapter 1, we introduced the data privacy concerns in the deep learning era and the

necessity of text privacy protection, then outline our methods.
In Chapter 2, we first illustrate some typical privacy risks in NLP and some popular

privacy-preserving methods. Then we introduce the necessary background knowledge of
differential privacy as well as its properties to solve privacy problems. Finally, we review
previous works on differentially private NLP and corresponding settings related to our works.

In Chapter 3, we first introduce how to achieve privacy protection by directly privatizing
text via token-to-token replacement in our customized text privatization mechanism Cus-
Text. Then, we describe our experimental settings and present the privacy-utility results as
well as the comparisons.

In Chapter 4, we first depict the LDP-NLP task pipeline and our designed Gaussian-based
algorithms for noise calibration, which achieves sentence-level protection for differential pri-
vate latent representation. Then, we present the experiment results as well as the comparison
with other methods.

In Chapter 5, we conclude the thesis and give some possible improvement directions for
future work.
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Chapter 2

Related Work

In this chapter, we first introduce the potential privacy risks in NLP to illustrate the de-
fense goals of privacy-preserving methods. Then, we introduce the current privacy-preserving
methods as well as the important background knowledge of differential privacy (DP) and how
these techniques can solve privacy problems, which is the foundation of our text privatiza-
tion mechanisms. Finally, we review the differential private NLP research progress, which is
closely related to our proposed models and corresponding settings.

2.1. Privacy Risks in NLP
The exposure of potential privacy risks raises public concern. In this section, we will first

describe three attacker goals which are also the defense targets of our LDP-based methods.

2.1.1. Local Privacy Risks

One of the most obvious risks is that the complete data from the data owners are stored
in a server in a raw form without any perturbation or transformation, which means that the
user’s private data is completely unguarded and exposed to various possible attacks. This
should be avoided as much as possible in real situations. Besides, when the data owners
do not trust any third parties including the server providers, which is referred to as a local
privacy setting [21], raising local privacy risks. Private information might leakage after
publishing personal data. Thus, a privacy-preserving mechanism should be designed for the
system to enable the data owners to privatize their personal data before sharing or being
collected for processing to defend against local privacy risks.

2.1.2. Reconstruction Attacks

Reconstruction attacks aim to eavesdrop on the raw data in the communication process
or recover the raw data according to its encoded features (e.g. latent representation) which
can be linked to the original form. After the attackers obtain the raw data, personal privacy



is leaked and this can further cheat the machine learning models by reconstructing fake
data. For example, Jia et al. [37] are the first to consider the adversarial attacks on deep
neural networks for text-related tasks, which modifies the original input data to evaluate the
system robustness. Besides, the original form can also be inverse by reconstruction attacking.
Carlini et al. [16] reconstruct verbatim texts of training data through a powerful black-box
attack on GPT-2 [63] and Song et al. [68] also recover sensitive attributes or partial raw
text from the output of a language model without any prior knowledge of the input text
patterns. Therefore, data features in plaintext cannot be considered safe and these studies
suggest that we should avoid explicitly storing feature vectors or any other data forms that
may reveal original data information.

2.1.3. Membership Inference Attacks

In addition to obtaining the original data or its corresponding features, an attacker may
also want to infer whether a certain data sample was used to build the machine learning
model, which is referred to as membership inference attacks [67, 78, 65]. This attack ex-
ploits differences in model predictions due to the inclusion or exclusion of a sample in the
dataset. An attacker can use membership inference attacks to know whether an individual’s
records were used to train the model according to the computation results as well as the
gradient change of different input data. Zhao et al. [82] evaluates various differential pri-
vacy implementations against membership inference attacks and measures their ability for
defending, which provides some clues for implementing privatized position among the whole
model pipeline.

2.2. Privacy-Preserving Methods
Different privacy-preserving methods can be adapted for specific attack scenarios. In this

section, we introduce the general idea of four main privacy-preserving methods and mainly
focus on illustrating the suitability of Differential Privacy as well as its basic definition
under the local privacy protection scenarios.

2.2.1. Differential Privacy

Differential privacy (DP) [24] has recently been considered a promising strategy for
privacy-preserving in machine learning because it has a rigorous theoretical model and can
provide a provable privacy guarantee for individuals, which benefits from the most solid
theoretical basis compared with other privacy-preserving methods [70, 77, 32]. It has be-
come the de facto standard of privacy definition. Besides, DP achieves privacy-preserving by
adding a calibrated amount of noise to the model or output results according to the concrete
mechanisms instead of simply anonymizing the individual data. From a computational point
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of view, DP can solve the disadvantage of the excessive overhead of cryptography [27]. It
also solves the privacy leakage of the data calculation results rather than the calculation
process in cryptography. DP aims to prevent membership inference and data reconstruction
attacks and can be adopted in both centralized and local privacy settings. For distributed
computing machine learning algorithms, DP can protect the original data of multiple input
parties [25]. Considering the advantages of DP, it is the most suitable method for our privacy
requirements and thus our text privatization mechanisms for NLP are guaranteed by DP in
this thesis.
Definition of Differential Privacy. In the field of NLP, a random DP algorithm’s output
is stabilized to the point where the presence or absence of any specific data item, such as a
token or a sequence is hardly distinguishable. The type of data item is the DP granularity.
The greatest possible divergence between two output distributions of DP algorithms when
applied to two data inputs that differ by arbitrary data item of the DP granularity describes
the DP protection level. An intuitive description is given in Fig. 2.1. By injecting random
noise via sampling from Laplace distribution, the distribution of two input data samples
would become similar which makes the attackers hard to distinguish them. A concrete
instance of DP intuition for NLP is also shown below. Assuming two sentences have a one-
word difference, after applying the DP mechanism to each token, the attackers might not
infer whether "marry" or "divorce" are included in the sentence, because of the randomization
of the two distributions.

Text One: when did spielberg and irving marry?

Text Two: when did spielberg and irving divorce?

More precisely, differential privacy is defined as follows:
Definition 1. (Differential Privacy [24]) Let X and X ′ be adjacent data inputs that differ
in one data item, then the randomized algorithmM satisfy (ϵ, δ)-DP if for possible arbitrary
subset Y of the all possible output of M:

Pr[M(X ) ∈ Y ] ≤ eϵ Pr[M(X ′) ∈ Y ] + δ. (2.2.1)

where the probability Pr[·] is taken over the randomness of M, and ϵ ≥ 0.
In the above definition, the privacy protection level is characterized by calculating a

pair of DP privacy parameters1 (ϵ, δ) in differential privacy, which defines an upper bound
on privacy leakage because it satisfies the above conditions and further defines the worst-
case protection level for a single data sample. Intuitively, this means that we cannot easily
tell whether the result of the random function M comes from X or X ′ by a random DP

1Also denote the DP privacy cost, DP privacy level, and DP budget in literature.
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Fig. 2.1. An intuitive description of protecting private data from distinguishing two data
distributions. The greatest possible divergence between two output distributions indicates
privacy level ϵ.

algorithm’s output. Therefore, it is almost impossible for an adversary to infer the existence
of any particular data sample in the input dataset.

Specifically, privacy parameter ϵ ≥ 0 depicts the upper limit of the difference between
the two output results obtained by the random functionM acting on two data inputs X and
X ′. The smaller the ϵ, the smaller the difference, the higher privacy protection level, but the
lower the usability of the results as a trade-off. Without considering δ, when ϵ = 0, two data
inputs after DP processing will output the same probability distribution. On this basis, the
attacker will be completely unable to distinguish the input data, but the noise that needs to
be added tends to be close to∞. In this case, such noise will overwhelm the data, making the
impact of the data to be null, and making the model learning meaningless. When ϵ → ∞,
the noise that needs to be added is infinitely close to 0. In this case, the attacker can easily
distinguish two input datasets and then deduce the relevant information of the original data,
which does not achieve the effect of privacy protection. When δ = 0, (ϵ,δ)-DP becomes ϵ-DP,
which is also the strictest definition of DP at the beginning. The value δ can be interpreted
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as the likelihood of not achieving DP and allows for suppressing the long-tail effect of the
distribution. In other words, there is a certain probability of failure for long-tailed samples
but we reduce the noise that needs to be added by relaxing the restriction. Usually, we
set δ to be less than or equal to the reciprocal of the number of samples to ensure that
the differential privacy mechanism fails as a small probability event. Specifically, because of
the mathematical constraints and proof within the Laplace mechanism [24] and Gaussian
mechanism [25] (refer in Sec. 2.3.1), we should apply the former in conjunction with ϵ-DP
and the latter for (ϵ,δ)-DP.

Besides, the dX -privacy is a relaxation of DP definition which is widely used in the text
field [62, 30, 81] as it can intuitively measure the distance between two input tokens. The
dX -privacy allows the indistinguishability of the output distributions to be scaled by the
distance between the respective inputs. Formally,
Definition 2. (dX -privacy) [17] Let x,x′ ∈ X be adjacent data inputs that differ in one data
item, given a privacy parameter ϵ, and a distance metric d, the randomized algorithm M
gives dX -privacy if for a possible arbitrary subset Y of all possible output of M

Pr[M(x) ∈ Y ] ≤ eεd(x,x′) Pr[M(x′) ∈ Y ] (2.2.2)

So far, we have introduced the standard definition of DP as well as its relaxation. Then,
we introduce how to exploit general DP with deep learning methods.
Differential Privacy Deep Learning. After Abadi et al. [5] proposed the Differentially
Private-Stochastic Gradient Descent (DP-SGD), DP can be used for neural network model
training within an acceptable accuracy loss. The general neural model parameters θ train-
ing is optimized through Stochastic Gradient Descent (SGD). For each training step t, the
calculation result of the gradient for data sample Xt sampled from dataset X is denoted as
gx = ∂fx

∂θ
, where fx is the loss function of the specific task. Since the gradient generated

by back-propagation has no fixed range of variation, in order to calibrate the noise power
required by the DP mechanism, the paradigm proposed by the DP-SGD algorithm first clips
the ℓ2 norm of the gradient. That is to limit the maximum value of the gradient norm by
proportional reduction. The clip function CL(.) is defined as

g̃x = CL (gx; C) = gx / max
(

1,
C

∥gx∥2

)
, (2.2.3)

The DP-SGD algorithm makes the maximum ℓ2 norm of the gradient generated by back-
propagation to become C through the clip operation, then the sensitivity ∆ (refer to Sec. 2.3.1
for details) of the back-propagation function is limited to C. After clipping, the noise is
calibrated through the DP mechanism as ξt ∼ N (0, σ2Id), where σ2 is the variance of noise
power and d is the dimension of the gradient. Then, the parameter θ updating of DP-SGD
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algorithm [5] at step t is formulated as

θt = θt−1 − η
1
|Xt|

∑
x∈Xt

g̃x + ξt

 , t ∈ [1, T ]. (2.2.4)

According to the DP post-processing property (refer to Definition 7), preserving the
gradient provides the same level of privacy protection for the output model. Therefore, DP-
SGD has become a standard paradigm for training differentially private neural networks.
However, since DP-SGD training is inefficient and cannot provide local privacy protection
in some cases, we only compare the effectiveness with it rather than applying it in our work.

2.2.2. Other Privacy-Preserving Methods

2.2.2.1. Anonymization. Anonymization [70, 40, 46] is a data processing technique that
removes or modifies personally identifiable information (PII). The PII is generally under-
stood as any information that can directly identify an individual, and such information has
different degrees of importance depending on the degree of identifiability and sensitivity. For
example, information such as names and email addresses are highly identifiable but low-
sensitivity, and posting such information usually does not harm individuals. In the contrast,
information such as location data and personal health records are low-identifiable but high-
sensitivity and need to be treated with caution. The identifiability and sensitivity of PII
also depend on the composite effect of the text background and data mixing. For example,
posting someone’s name from a Facebook fan database might have low risk, but posting
someone’s name on a list of political dissidents carries significantly more risk. When multi-
ple pieces of data are combined, the value of the information will also change. For example,
if you look at a database of purchase records alone, it is difficult to connect to any specific
individual, but combining location information or credit card numbers will greatly increase
the recognizability and sensitivity.

The anonymization which is also referred to as de-identification is to prevent re-
identification, in other words, to anonymize the data so that the data cannot be used to
identify any individual. Typical anonymization methods include data redaction and sta-
tistical noise. The former can directly delete all personal or sensitive data or perform
pseudonymization for the PII by replacing identifiable data with random or algorithmi-
cally generated pseudonyms. For example, in the search engine log, the system tends to
substitute the true user name as a unique anonymized ID. Compare with direct delegation,
pseudonymization can somehow keep the availability of data. The statistical noise refers to
a certain number of individuals with an indirect identifier, and the best practice is to use
the same unique identifier for no less than ten entries, thus making re-identification diffi-
cult. The most common technique to add statistical noise to a dataset is generalization,
such as substituting continents for country names and numerical ranges for exact values.
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However, these method has been proved in some literature [58, 71] to be unable to provide
sufficient privacy guarantee especially when the adversaries own auxiliary side information.
For instance, even if the same pseudonym is reused throughout the dataset, the effective-
ness of pseudonymization is reduced because each occurrence of the pseudonym increases
the chances of finding relationships between variables. In other cases, the algorithm used to
generate the pseudonym has the opportunity to be cracked by a third party, or the algorithm
itself has loopholes. Besides, because of the theoretical and empirical limitations [6, 13],
anonymization does not apply to high dimensional data, and thus might not be suitable for
neural models compared with DP.

2.2.2.2. Federated Learning. Federated learning (FL) [77] is designed to carry out efficient
machine learning among multiple participants or multiple computing nodes under the premise
of ensuring information security. It is commonly used during big data sharing to protect the
privacy of terminal data and personal data and ensure legal compliance. Generally, the
distributed optimization process can be described as

min
w

{
L(w) =

N∑
k=1

pkLk(w)
}

where N is the total number of user devices and pk is the weight of the kth device. Assuming
that the data on the kth device is Xk = (xk,1, xk,2 · · ·xk,nk

), then the optimization function
for local training can be

Lk(w) = 1
nk

nk∑
j=1

ℓ(w; xk,j)

Since the data comes from various devices, the data distribution no longer satisfies the
traditional machine learning assumption that the data is independently and equally divided,
so the occurrence of Non-IID is very common. Non-IID has profoundly affected the final
training results of federated learning. Different data distributions can lead to significant
skewness between devices or locations. Data augmentation, regularization on the server,
and scheduled client participation during training can be applied to alleviate such issues.

Centralized FL is used by most NLP applications such as keyboard word predic-
tion [48, 43]. The central server is used to coordinate the different steps of the algorithm
and coordinate all participating clients/devices during the learning process. The server is
responsible for selecting clients/devices at the beginning of the training process and aggre-
gating the received model updates. The whole procedure can be depicted as Fig. 2.2, where
each local participant train a model for a specific purpose Q based on their own data Di and
service, and communicate with the global service with gradient Ri and updated Q to pro-
duce a global model. On decentralized FL, clients/devices can coordinate with each other
to obtain a global model. This setup prevents a single point of failure as model updates
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Fig. 2.2. An overview of centralized FL training framework.

are only exchanged between interconnected nodes without the need for orchestration on a
central server. The FL training framework ensures the user data is left on users’ local de-
vices without sacrificing local data privacy [47], which can also satisfy local privacy settings.
However, FL still has its privacy flaws. Though the transmission of gradients replaces the
sharing of original data, the gradients might still leak available information and be attacked
to recover the original data [45]. Therefore, to ensure the required privacy settings, previous
works [48, 12, 9] leverage the DP mechanisms to randomize the data in gradient form when
applying FL. In our works, we consider a local-global situation similar to centralized FL.

2.2.2.3. Adversary Training. Adversarial training is originally proposed by Goodfellow et
al. [32] as a way to defend against adversarial attacks. Since the private information can
take the form of keywords explicitly contained in the text or be implicitly included in the
latent representation. For example, demographic information about the author of a text can
be predicted with above-chance accuracy from linguistic cues in the text [61]. Because an
attacker can access to the hidden representations which are non-intentional and incidental
learned by a network, they may exploit the latent representation to recover information about
the input. For privacy-preserving purposes, some existing works [18, 42] train the models to
learn private text representation to enable them not to memorize the unintended information
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via adversarial training. The goal is to prevent an attacker from recovering information
about the input text as reconstruction attacks. Coavoux et al. [18] provides an example of
a potential application that would be a spam detection scenario where the service provider
does not access verbatim emails sent to users, only their vector representations. These
vector representations should not be used to gather information about the user’s contacts
or correspondents, i.e. protect the user from profiling. However, this principle provides only
empirical improvements in privacy, without privacy guarantees in mathematical form and
theoretical proof as DP, which might not be enough to convince users.

2.3. Differential Privacy Accounting
The core of DP is its accounting framework. The accounting is used to assure accurate

measurement of privacy protection level during the whole DP training and inference proce-
dure. Specifically, it ensures the conversion between applying several DP mechanisms and the
total privacy protection level2 ϵ. Generally, the DP accounting framework consists of three
parts. The first part is how to describe the relation between the required noise amount of a
single DP mechanism and the DP protection parameter ϵ. The second part is how to realize
the conversion between the composed results of multiple DP mechanisms and DP protection
parameter ϵ. The third part is how to combine randomized mechanisms (such as sampling
in our works) to achieve DP amplification, a practical technique to reduce the required noise
and then promote the downstream task performance, though it is not mandatory. Then we
can describe the privacy cost more accurately and achieve better utility.

In the following, we will first introduce the different DP mechanisms and several desirable
DP properties including DP composition, DP amplification, and DP post-processing. They
are used for calibrating accurate noise to ensure the final model has accurate and strong
privacy protection while retaining acceptable model utility. We will also introduce two
widely used advanced privacy accounting methods which inherit the original DP properties
and can produce accurate and quantifiable DP guarantees. We design our methods and
calibrate the privacy protection level base on these DP accounting frameworks in Chapter 4.

2.3.1. DP Mechanisms

The DP mechanisms are used for generating different types of random noise to achieve DP
protection. Before introducing DP mechanisms, we first introduce the concept of sensitivity.
Definition 3. (Sensitivity) Given a deterministic vector-valued computation function f and
two arbitrary data inputs x and x′, the sensitivity ∆ of f , which is the greatest variation

2If using the Gaussian mechanism, it becomes (ϵ,δ)
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output for only one data item change in the worst case is given by

∆ = max
x,x′
||f(x)− f(x′)||p. (2.3.1)

where ||f(x)− f(x′)||p refers to the ℓp-norm between f(x) and f(x′).
The sensitivity plays an important role in the noise calibration process because the quan-

titative noise generated by DP mechanisms can only be made after estimating the sensitivity
of the protection target. As the protection level ϵ is based on the distribution divergence
of two protection targets according to the DP definition, an object with larger sensitivity
∆ needs to be added more noise to achieve the same protection level. This is because the
greatest variation output for only one data item change will become larger. Therefore, esti-
mating the sensitivity ∆ correctly and tightly for input x is crucial for privacy guarantees
and it will affect the required amount of noise. In terms of NLP, the x should be a token or
sequence depending on the type of task and the f(x) is the embedding of the input. Thus,
the sensitivity ∆ estimation is based on a representation unit.

After introducing the concept of sensitivity, we now introduce the three common DP
mechanisms: the Laplace mechanism, the Gaussian mechanism, and the Exponential mech-
anism. The first two mechanisms are widely used for numerical results while the last is used
for discrete results. Their utilization will affect the final DP guarantee.
Definition 4. (Laplace Mechanism) [24] Given a computation function f(x) := x→ Rd, a
randomized algorithm M with Laplace mechanism can be defined as

M(x) = f(x) + Lap(0,
∆
ϵ

)

where the noise Lap(0, ∆
ϵ
) can be viewed as drawn from the Laplace distribution with the

center of 0 and the scaling of ∆
ϵ
. The sensitivity ∆ of the Laplace mechanism is l1-norm.

Then M can provide ϵ-DP.
Definition 5. (Gaussian Mechanism) [25] Given a computation function f(x) := x → Rd,
a randomized algorithm M with Gaussian mechanism can be defined as

M(x) = f(x) +N (0, σ2)

where the noise variable is drawn from the Gaussian distribution with the standard deviation
of σ = ∆

√
(2ln(2/δ))

ϵ
. The sensitivity ∆ of the Gaussian mechanism is l2-norm. Then M can

provide (ϵ,δ)-DP.
Definition 6. (Exponential Mechanism) [49] Given a score function u(·,·) : X ×Y → R, an
Exponential mechanism M(X ,u,Y) : X → Y satisfies ϵ-DP if it samples an output y ∈ Y to
perturb the input x ∈ X with probability proportional to

e
ϵu(x,y)

2∆u , (2.3.2)

38



where u(x,y) denotes the score for each input and output data pair (x,y) and ∆u :=
max
y∈Y

max
x,x′∈X

|u(x,y)− u(x′,y)| denotes the sensitivity within Exponential mechanism.
To sum up, Laplace and Gaussian DP mechanisms are used to generate random noise by

sampling from a specific distribution. Then the noise is injected into the protected object (e.g.
text representation) for achieving the DP guarantee. For those two, the Laplace mechanism
is popular for most previous text protection works [44, 62, 30] because its DP accounting is
easier to implement. However, we try to explore the superior properties of the Gaussian DP
mechanism for our methods. The Exponential mechanism is used to generate a probability
distribution for all tokens in the output set (usually the whole vocabulary). Then the text
privatization is performed via sampling the token based on the probability to substitute the
sensitive tokens. The main problem is that the existing works still cannot achieve a good
privacy-utility trade-off. To design more advanced DP protection algorithms for text with
suitable DP mechanisms, in this thesis, we use the Exponential mechanism for CusText and
the Gaussian mechanism for GauDP, which are introduced in Chapter 3 and Chapter 4.

2.3.2. DP Composition

The DP composition is used to calculate the total DP privacy parameters after multiple
DP mechanisms are successively applied to the protection target. It plays an important
role in designing DP algorithms. It can be used to control and quantitatively analyze the
DP privacy cost required in use. To complete an NLP downstream task, both the training
and inference stages must perform a series of computation steps on the private train/test
dataset in a neural model, with each computation step potentially based on the results of
previous computation steps on the same dataset. When producing differential private latent
representation, even if each step i is DP protected with privacy cost (ϵi, δi), providing all
step’s outputs together linearly boosts the total privacy cost for the whole training/inference
procedure. The total privacy cost (∑i ϵ,

∑
i δ) is equivalent to the sum of each step’s privacy

cost according to the original DP composition Theorem 1.
Theorem 1. (DP Composition) When any k DP mechanisms Mi satisfying ϵ1 −DP , . . . ,
ϵk −DP are applied to the same dataset, the whole DP algorithm satisfies (∑k

i=1 ϵi)-DP.
In other words, the computation of privacy degradation as the number of steps increases

is DP composition [50]. Thus, a high privacy cost may no longer guarantee privacy as the
adversary can easily distinguish the distribution divergence of the input data. However, the
training stage in a neural network involves intrinsic repetitive mini-batch operations for an
algorithm. Each mini-batch should be applied with a DP mechanism. Therefore, we need
to precisely account for the appropriate privacy cost cap for every training stage through
DP composition, and a tight composition methodology is needed for a better privacy-utility
trade-off. In the following, we introduce general DP composition methods.
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Basic Composition [25]. Suppose M = (M1,. . . ,MT ) is a sequence of DP mechanisms,
whereMi satisfies ϵ-DP, then the DP mechanismM satisfies (T · ϵ)-DP. The basic composi-
tion is the most straightforward way to compose several DP mechanisms. It provides a way
to generate the final privacy guarantee linearly but might degrade utility in the meanwhile.
Advanced Composition [25]. Suppose M = (M1,. . . ,MT ) is a sequence of DP mecha-
nisms, where Mi satisfies (ϵ,δ)-DP, for all ϵ, δ, δ′ ≥ 0, then the DP mechanism M satisfies
(ϵ′, T δ + δ′)-DP under T -fold advanced composition with

ϵ′ =
√

2k ln (1/δ′) · ϵ + k · ϵ (eϵ − 1) . (2.3.3)

where the T , k, δ and δ′ are hyper-parameters.
The advanced composition leverage additional hyper-parameters k, δ, and δ′ to compose

different DP mechanism in a non-linear way. Compared with basic composition, it can
provide a stronger privacy guarantee under the same condition. Since the basic composition
and the advanced composition are not the most superior DP composition so far, we only
give the basic introduction here. More detailed proof can be found in the literature [25].
Other Composition. In addition to the above two common DP composition methods,
there are also moments accountant [5] proposed together with DP-SGD, the Rényi DP [53]
based on Rényi divergence, and the µ-Gaussian DP [20] based on the central limit theorem
approximation as well as hypothesis testing. Since the DP-SGD is not applicable for the
local privacy setting as previously mentioned, we mainly focus on leveraging the µ-Gaussian
DP approach in Chapter 4 and compare it with the Rényi DP. The details of these two
composition procedures are described in the later Sec. 2.3.5 and Sec. 2.3.6.

2.3.3. DP Amplification

DP amplification is a technique to enhance DP protection based on the intuition that
for a sequence of DP mechanisms, if each DP mechanism only acts on part of the data, then
for the whole dataset, the corresponding global privacy protection level of the mechanism is
stronger than that described in part of the data. To implement DP amplification, sampling
is a widely used algorithmic technique, which first randomly samples the data, and then
applies a DP mechanism on the randomly selected subset. Intuitively, privacy amplification
by sampling is caused by the fact that an individual record has complete privacy if it is not
included in the sampled data. For example, if a token never occurs in the training procedure,
the attacker will not able to recover it from the encoded information. Therefore, one can
construct the relation between sampling probability and privacy cost by exploring the impact
on global data protection when applying the DP mechanism on part of the data. This results
in a more precise characterization of the privacy protection level while substantially reducing
the required noise amount. The most common sampling methods for DP amplification are
Reshuffle sampling and Poisson sampling.
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Reshuffle Sampling. After shuffling the whole dataset, the quantity of data for each mini-
batch is selected from the dataset for calculation, and then the DP mechanism is applied
to the computation results. This sampling method is a common practice in neural network
training. For each training epoch, the dataset is reshuffled, and an iterator is constructed
with a certain batch size. Then each time, a number of samples are taken out in sequence
from the shuffled data, and the traversal of the dataset is completed through iteration.
To achieve DP amplification, the reshuffle method provides randomization for constructing
mini-batch data and inherits the current neural model training process to the greatest extent.
Poisson Sampling. Unlike reshuffle sampling, each sampling process of Poisson sampling
is performed independently on the entire dataset. Specifically, if the sampling probability of
Poisson sampling is p, for each sampling process, each sample is independently selected from
the overall dataset with probability p. Because of the randomness of sampling, compared with
reshuffle sampling, the number of samples obtained by Poisson sampling is not uniform each
time. Thus, as each sample selected is an independent Bernoulli experiment, the traversal
of each data in the whole dataset cannot be guaranteed. However, in general, the effect
of DP amplification obtained by Poisson sampling is slightly better than that of Reshuffle
sampling, so we adopt Poisson sampling in our algorithms.

Specifically, since an NLP training stage requires even more than thousands of step
updates which generate larger required noise, employing different random operations such
as sub/up-sampling [73, 20] and dropout [44] can reduce privacy cost for the same noise
power. The detailed analysis and corresponding noise calibration algorithms are provided in
Sec. 4.3.3 and Sec. 4.3.4.

2.3.4. DP Post-Processing

The post-processing property is an excellent property of DP proposed by Dwork et
al. [23], which aims for ensuring the DP guarantee after performing the specific function
on the protected object. Intuitively, if we publish a statistic with a certain level of privacy
protection, then if this statistic is processed by a function (which can be random), the new
degree of privacy protection of statistics should not be lower than the original statistics. The
mathematical definition of post-processing property is as follows:
Definition 7. (DP Post-Processing) Given a randomized mapping function F : R→ R′ and
a randomized function M : X → R, if M satisfies ϵ-DP, then F ◦M is also ϵ-DP.

This desired property ensures the algorithm with the DP mechanism still provides DP
protection. For example, if we apply a DP mechanism on a token representation, then the
token encoder is also satisfied the DP guarantee.

41



2.3.5. Rényi Differential Privacy Accounting Method

Aforementioned in Sec. 2.3.2, Rényi differential privacy (RDP) [53] is a superior DP
accounting method. It is a generalization of (ϵ,δ)-DP that uses Rényi-divergence as a distance
metric which is also a relaxation of moment accountant [5]. It is widely used for private neural
model training and a comparison method for us in experimental sections. In this section,
we introduce the necessary knowledge of RDP such as its properties for protection level
calibration.

2.3.5.1. Theory Introduction. The definition of RDP is formulated as follows:
Definition 8. (Rényi Differential Privacy). For any two data inputs X ,X ′, a DP mechanism
M is (α, ϵ)-RDP with order α ∈ (1,∞) if it satisfies

Dα (M(X )∥M (X ′)) ≜ 1
α− 1 logEθ∼M(X ′)

[(
M(X )(θ)
M (X ′) (θ)

)α]
≤ ϵ

For α → ∞, the RDP reduces to (ϵ, 0)-DP, so a randomized mechanism M is (ϵ, 0)-DP
if and only if for any two inputs X and X ′ it satisfies D∞ (M(X )∥M (X ′)) ≤ ϵ.

For α → 1, the RDP notion reduces to a Kullback-Leibler-based privacy notion, which
is equivalent to a bound on the expectation of the privacy loss random variable.

Generally, the duality between RDP and standard (ϵ, δ)-DP for any δ ≥ 0 is expressed
in Lemma 1 as we can use for conversion.
Lemma 1. (RDP to (ϵ,δ)-DP conversion [53]). If a DP mechanism M obeys (α, ϵ)-RDP,
then M obeys (ϵ + ln(1/δ)

α−1 , δ)-DP for all 0 < δ < 1.
To produce the differentially private outputs, the Gaussian mechanism is an example to

provide the privacy guarantee associated with the randomized function M as Lemma 2.
Lemma 2. (Gaussian Mechanism with RDP) For f : X → R with sensitivity ∆, the
Gaussian mechanism M by adding Gaussian noise with mean 0 and variance σ2 satisfies
(α, α∆2/ (2σ2))-RDP.

As the core parts, the DP composition within the RDP accounting framework can com-
pose naturally by Lemma 3 and the sub-sampling amplification is formulated by Lemma 4.
Lemma 3. (RDP Adaptive Composition [53]). If M1 that takes dataset as input obeys
(α, ϵ1)-RDP, and M2 that takes the dataset and the output of M1 as input obeys (α, ϵ2)-
RDP, then their composition obeys (α, ϵ1 + ϵ2)-RDP.
Lemma 4. (RDP Sub-Sampling Amplification3 [73]) Given a dataset of n samples drawn
from X and a DP mechanism M that takes an input from Xm for m ≤ n, let the DP
mechanismM◦ subsample be defined as: (1) sub-sample: sub-sample without replacement m

data samples of the dataset (sampling parameter p = m/n), and (2) applyM: a randomized
algorithm taking the sub-sampled dataset as the input. For all integers α ≥ 2, if M obeys

3Please refer to autodp library for the computation. https://github.com/yuxiangw/autodp

42

https://github.com/yuxiangw/autodp


(α, ϵ(α))-RDP, then this new randomized algorithm M o subsample obeys (α, ϵ′(α))-RDP
where

ϵ′(α) ≤ 1
α− 1 log

(
1 + p2

(
α

2

)
min

{
4
(
eϵ(2) − 1

)
, eϵ(2) min

{
2,
(
eϵ(∞) − 1

)2
}}

+
α∑

j=3
pj

(
α

j

)
e(j−1)ϵ(j) min

{
2,
(
eϵ(∞) − 1

)j
}) (2.3.4)

2.3.5.2. Practical Implementation. In practice, to implement privacy accounting under
the RDP accounting framework, the accountant procedure is

(1) Given (ϵ, δ)-DP privacy budget, sensitivity ∆ and DP mechanism with corresponding
noise power σ2. Compute the optimal α for (α, ϵR)-RDP via Lemma 2.

(2) Compose (α,ϵR/N)-RDP based on RDP Adaptive Composition Lemma 3.
(3) Achieve DP amplification based on RDP Sub-Sampling Amplification Lemma 4.
(4) Convert (α, ϵR)-RDP to (ϵ,δ)-DP base on Conversion Lemma 1.
The above steps show how to calibrate the DP protection level via RDP and we also

follow them to conduct the comparison.

2.3.6. µ-Gaussian Differential Privacy Accounting Method

In addition to standard (ϵ, δ)-DP and RDP, the µ-Gaussian Differential Privacy [20]
(µ-GDP) is proposed as another advanced privacy accounting method with better DP com-
position and DP amplification effectiveness. Since our models are based on this framework,
we will give some necessary background knowledge first on how to achieve µ-GDP as well as
its privacy calibration method. More details can be found in the paper [20].

2.3.6.1. Theory Introduction.
Hypothesis Testing. The definition of DP points out that we can define the level of pri-
vacy protection by measuring the distributional difficulty of distinguishing two data inputs
(X ,X ′) that differ in one data item after being protected by a random function M. By
applying the random function M, we can think that the results generated by two inputs
(M(X ),M(X ′)) obey two probability distributions (D1, D2). Dong et al. [20] re-examine
DP from the perspective of hypothesis testing and consider a hypothesis testing problem as

H0 : the computation results are from X H1 : the computation results are from X ′

as well as a rejection rule 0 ≤ ϕ ≤ 1, with type I and type II error rates defined as

αϕ = ED1(ϕ) βϕ = 1− ED2(ϕ)

where ED(.) represents the cumulative distribution function of the probability distribution
D. The type I error is α error, which refers to the situation where the null hypothesis is
actually true, but it is rejected. So it is also called the false positive. The type II error is
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the β error, which refers to the situation where the null hypothesis is actually false, but it is
accepted. So it is also called false negative.
f-DP. Based on hypothesis testing, Dong et al. [20] introduces f -DP, which is the original
form of µ-GDP. A trade-off function is defined based on hypothesis testing error as follows:
Definition 9. (Trade-off function) For any two probability distributions D1 and D2 acting
on the same space, their trade-off function f = T (D1,D2) : [0,1]→ [0,1] can be defined as

f = T (D1,D2)(α) = inf
0≤ϕ≤1

{βϕ : αϕ ≤ α} (2.3.5)

where βϕ and αϕ are two type error rates defined before and the α is a statistic to be tested
range in [0, 1].

The trade-off function describes the relation between the two error types in hypothesis
testing. With the trade-off function defined, the relation between DP and hypothesis testing
can be established. Then the f -DP is defined as
Definition 10. (f -DP) For a trade-off function f and two arbitrary data input X and
X ′ that differ in one data item, a random mechanism M satisfies f -DP if it satisfies the
following condition

T (M(X ),M(X ′)) ≥ f (2.3.6)

Meanwhile, Dong et al. [20] point out that f -DP is a generalized version of (ϵ,δ)-DP and
the conversion relation between f -DP and (ϵ,δ)-DP can be established by

fϵ,δ(α) = max(0,1− δ − eϵα,e−ϵ(1− δ − α)) (2.3.7)

The f -DP provides a new perspective of DP. Through the trade-off function, we can
understand DP more comprehensively, and the DP composition and DP amplification prop-
erties can be transformed into the trade-off function. The f -DP is a general analysis frame-
work, which can analyze any DP mechanism. In the following, we will introduce µ-GDP, an
instance mechanism with Gaussian based on f -DP.
µ-GDP. µ-GDP is a dual representation of (ϵ, δ)-DP with the Gaussian mechanism. Bor-
rowing the idea of hypothesis testing in f -DP, a trade-off function is introduced to describe
the privacy protection level. When replacing the trade-off function f in Definition 10 with a
trade-off function for hypothesis testing of two Gaussian distributions, the privacy protection
level can be transformed into the difficulty of distinguishing two Gaussian probability distri-
butions. Thus, Dong et al. [20] defines the function Gµ to represent the trade-off function
for distinguishing Gaussian distributions G1 = N (0,1) and G2 = N (µ,1) corresponding to
hypothesis testing as

Gµ := T (G1 = N (0,1), G2 = N (µ,1)) (2.3.8)
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where the µ ≥ 0 is a duality parameter.
The closed-form solution of the above trade-off function Gµ can be derived according to

the known density function and cumulative distribution function of the Gaussian probability
distribution as

Gµ(α) = Φ(Φ−1(1− α)− µ) (2.3.9)

where Φ represents the cumulative distribution function of the Gaussian distribution and µ

can also be understood as the privacy parameter under this framework. Similar to ϵ, µ is
negatively correlated with the privacy protection level. When µ = 0, the two distributions
that need to be distinguished completely overlap, achieving complete privacy protection, but
meanwhile losing usability. When µ is too large, it becomes very easy to distinguish two
distributions, and the corresponding privacy protection strength is also very weak. Further,
µ-GDP can be defined as a Gaussian distribution version f -DP as follows:
Definition 11. (µ-Gaussian Differential Privacy) A DP mechanism M is said to satisfy
µ-Gaussian Differential Privacy (µ-GDP) if it satisfies the following condition

T (X ,X ′) ≥ Gµ (2.3.10)

The Eq. 2.3.10 instantiates f -DP as µ-GDP with the duality parameter µ and combines
DP protection level with Gaussian distribution hypothesis testing. Therefore, µ-GDP can
achieve the desired privacy protection level by injecting calibrated Gaussian noise into the
object we want to protect. Similar to f -DP, the duality between the original DP privacy
cost parameter (ϵ,δ) and the µ-GDP privacy parameter µ should be implemented. Within
the Gaussian mechanism, if z is a random variable following a Gaussian distribution which
satisfies z ∼ N (0, σ2Id) and f : X → Rd is the function applied on the data, the conversion
between µ-GDP and standard (ϵ, δ)-DP corresponding to Gaussian mechanism M(X ) =
f(X ) + z is formulated as
Lemma 5. (Conversion between µ-GDP and (ϵ, δ)-DP [73]) The duality between µ-GDP
and (ϵ, δ)-DP shows that, for all ϵ ⩾ 0, µ-GDP implies (ϵ, δ(ϵ; µ))-DP by

δ(ε; µ) = Φ
(
− ϵ

µ
+ µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
(2.3.11)

where
µ = ∆2

σ
(2.3.12)

where ∆2 refers to the ℓ2-sensitivity of f and Φ(·) = (1 + erf(
√

2))/2 refers to cumula-
tive distribution function of standard normal distribution. The other variables are hyper-
parameters.

2.3.6.2. Practical Implementation. The above results show that in order to obtain an
(ϵ, δ)-DP-protected output based on Gaussian mechanism for a function f : X → R with
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sensitivity ∆2, it is enough to find a noise power variance σ2 satisfying homologous privacy
level. To implement µ-GDP, one should first set up a privacy cost parameter (ϵ, δ) referring
to the final privacy level. Then, for each training step t, the privacy cost is computed by the
duality Eq. 2.3.11. To reduce the privacy cost, DP amplification can be generated under the
µ-GDP framework as

µt =

√√√√ln
(

µ2

p2t
+ 1

)
(2.3.13)

where µt indicates the new duality parameter with achieving DP amplification and p denotes
the sampling rate. Then, the model training will stop at step T when the privacy cost achieves
its threshold. Therefore, for t ∈ [1, T ], all µt achieve the DP composition. Finally, the DP
composition and amplification are connected.

We exploit µ-GDP as the DP accounting method for our proposed privacy-preserving
NLP model because its lower bound of privacy cost is a good approximation and easily con-
verts with (ϵ,δ)-DP. In addition, it is easier to implement privacy protection level calibration
with DP composition and amplification compared with RDP. More algorithm details of our
method will be discussed in Chapter 4.

2.4. Differentially Private NLP
More and more efforts [44, 52, 35, 81, 41, 62, 30] aim to preserve the utility of the

text data with provable and quantifiable privacy guarantees via DP. When applying DP in
deep learning, there are two common usage settings: Centralized DP (CDP) [5] and Local
DP (LDP) [21], whose overview is depicted in Fig. 2.3.
Centralized DP. The CDP setting is suitable when the central server is considered trust-
worthy and acts as a centralized data aggregator. The general idea of most existing differen-
tially private NLP methods [41, 22, 79, 7] under the CDP setting is to protect the training
data by introducing additive randomized noise into the clipped gradients computed from a
random group of data samples. For text protection under the CDP settings, Mcmahan et
al. [48] successfully exploit DP to train a small word-level language model and integrated
it into a federated learning framework. More recently, Anil et al. [7] and Dupuy et al. [22]
both show how to efficiently train a privacy-preserving NLP model via DP-SGD [24]. Li et
al. [41] and Yu et al. [80] focus on differentially private parameters tuning for better model
performance and use re-parameterized gradient perturbation method as well as memory-
saving technique to improve the training efficiency. However, the CDP setting still cannot
address the privacy concern of the data owners who do not trust any third parties including
the central servers.
Local DP. To address the concerns of privacy-conscious users, the LDP setting has been
proposed which allows data owners to privatize their data locally before releasing them. It
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Fig. 2.3. An overview of differences between CDP and LDP.

becomes a pressing problem that remains less explored. For the LDP setting, since priva-
tizing the text data from the root will hurt the semantics and syntax of the sentence, the
challenge is how to maintain the utility-privacy trade-off. Some works [30, 62, 81] con-
sider a token-to-token privatization and rely on dX -privacy [17] definition to preserve the
token semantics. Among them, both Feyisetan et al. [30] and Qu et al. [62] report avail-
able model accuracy but with large privacy parameter (e.g., ϵ > 50) or become a random
classifier under strong privacy condition (e.g., ϵ < 10), which indicates no practical value.
The state-of-the-art SANTEXT method [81] ingeniously combines dX -privacy with Expo-
nential mechanism [49] to avoid the curse of dimensionality problem. Besides, some LDP
works [44, 38, 35] privatize text representation before they are collected by untrusted server
provider and prevent potential eavesdropped. The crucial procedure is to correctly estimate
sensitivity and compose for multiple training steps. However, some open questions still re-
main. For example, Habernal [34] provides detailed proof to argue the sensitivity estimation
is wrong in paper [38] and the same problem can be found in paper [44]. We will explore
this problem in our models when producing privatized text representation.

The above CDP and LDP settings define the privacy scenario for corresponding private
NLP works. From the utilization point of view, we can further consider how to improve
the utility of a specific local text privatization mechanism, which can be connected with
customized local DP.
Customized Local DP. The traditional token-to-token LDP mechanisms [30, 62, 81] give
each data sample the same degree of privacy protection, which jeopardizes the utility due to
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the over-protection of data privacy. Since different users have different concerns about their
data privacy (e.g. the minority are more concerned about their special information) and
the sensitivity of different values is different within the value range (e.g. people are more
concerned about writing negative comments online rather than the positive ones), we provide
adaptive DP protection for different tokens in text instead of treating them equally. Recently
works [56, 76, 55] propose new LDP mechanisms that give customized privacy protection
for each user’s private data and bring a significant boost in the utility. The main idea
of them is to treat different sensitive data with unequal protection strength. The sensitive
category classification is based on (user) data distribution estimation. Though their methods
are applicable for user attribute data but not unstructured text, we can provide adaptive
protection for various data by semantic similarity. Inspired by them, our customized text
privatization mechanism CusText in Chapter 3 provides a new way of designing customized
LDP in the text domain.

2.5. Threat Model
The Threat Model is an academic term in the privacy field that describes what information

is available for the attacker. Following the previous works [62, 30, 81], we consider a semi-
honest threat model [28] under the LDP setting where data owners only submit privatized
texts or privatized representations to service providers. Malicious service providers may
try to learn sensitive information from their received information. We assume adversaries
only have access to the privatized information, and all algorithms/mechanisms are publicly
known. Besides, we assume the adversaries have unlimited computation resources. Our
privacy-preserving methods and privacy-utility experiments are conducted under the above
conditions.

In this chapter, we described the main concepts and techniques for defending privacy risks
in NLP, especially the core foundation of our method: differential privacy. Among them,
the DP mechanisms are used to establish privacy protection. The advanced DP accountant
framework with composition and amplification is used for calibrated protection level and to
achieve better privacy-utility trade-off. This preliminary background knowledge helps us to
design two text privatization methods CusText and GauDP in the following chapters, which
are more sophisticated compared with existing approaches.
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Chapter 3

CusText: A Customized Text Privatization
Mechanism with Differential Privacy

3.1. Introduction
To protect the privacy of the data owners, a typical way is to privatize their text data

locally before releasing them to the NLP service provider for further applications. In ex-
isting text privatization mechanisms [30, 62, 81, 29, 75], the privacy of the input text
is usually guaranteed by Differential Privacy (DP) [24] or its variants (e.g. dχ-privacy),
which ensures data privacy with calibrated perturbation. Among them, SANTEXT [81] has
demonstrated to be the state-of-the-art approach and greatly improved the efficiency of the
text privatization process compared with other mechanisms [30, 29, 75, 62].

The basic idea of SANTEXT is to generate privatized texts by replacing the original
tokens in the text sequentially with new tokens, which are generated by DP guarantee.
Despite its effectiveness, SANTEXT faces two inherent limitations. First, satisfying dχ-
privacy limits the applicability of SANTEXT for some similarity metrics such as cosine
similarity [54] and TF-IDF [66]. Second, SANTEXT cannot achieve a good privacy-utility
trade-off, i.e., either a large privacy cost with insufficient protection or a small privacy cost
with unsatisfiable model accuracy. The first limitation is caused by the definition of dχ-
privacy since it tries to give adaptive privacy protection based on the distance between
the tokens, which is currently only applicable to Euclidean distance metrics. The second
limitation arises as SANTEXT treats each token in the text equally by assigning each input
token with the same output set, which is excessively large (e.g., the output set size could be
over 80000). The input token set and output token set denote the two X and Y of the score
function in Exponential mechanism as described in Definition 6. Such a large output set will
lead to the over-protection of input text and hurts the model’s utility. Intuitively, to resolve
the first limitation, we can convert the proposed privatization mechanism to satisfy ϵ-DP
rather than dχ-privacy. Because under the ϵ-DP notion, one can use any similarity metric



measuring two input tokens. But the difficult point is how to keep the adaptive privacy
protection as proposed in dχ-privacy i.e. still keep the semantic information between tokens.
To tackle the second limitation, we can assign each input token a customized output set of
a smaller size. What we should deal with is how to customize the output set for each input
token that achieves a good privacy-utility trade-off needs to be explored. Thus, resolving
these limitations is non-trivial. It is a challenging task to design an effective mechanism that
retains the advantages of dχ-privacy and satisfies ϵ-DP notion for wider adaptability at the
same time. Our goal is to privatize raw text locally via customized DP protection that meets
ϵ-DP based on the Exponential mechanism.

3.2. Overview
Here, we aim to design Customized Text privatization mechanism named CusText that

provides more advanced adaptive privacy protection at the token-level. The CusText is
applicable to all similarity metrics by turning the mechanism from satisfying dχ-privacy to
satisfying ϵ-DP as we give the proof in Appendix A.1. Meanwhile, CusText inherits the
merits of dχ-privacy by designing a proper score function to overcome the shortcoming of
the ϵ-DP notion that it cannot provide adaptive privacy based on the semantic similarity
between the tokens. The score function is also available for the Exponential mechanism to
achieve DP protection. Furthermore, we assign each input token a customized output set of
a relatively small size to achieve better adaptive token-level privacy protection. Its relatively
small size enables CusText to sample output tokens that are more semantically related to
their corresponding input token, thus alleviating the over-protection problem and retaining
relatively better performance on downstream tasks.

Conceptually, the sampling process is performed based on a given mapping. Three types
of mappings ranging from aggressive to conservative are provided to assign the customized
output set for each input token to satisfy different privacy protection needs, i.e., the trade-off
between utility and privacy. The utility-privacy trade-off in CusText can be further adjusted
by a customization parameter K, which determines the size of the output set for each input
token. In addition to the existing token-level text privatization strategy, we propose two
more privatization strategies with a larger granularity, i.e., at the record-level or text-level,
to reduce the entropy of the sampling distribution, which further improves the utility of
the privatized text. Furthermore, since not all tokens contain sensitive information, the
above three text privatization strategies which replace all tokens might be over-protective.
Therefore, we can retain some original tokens that have low privacy risk (e.g., stopwords) to
improve the utility of the privatized text. Skipping some tokens in the raw text can improve
the efficiency of the text privatization process as well.
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Problem Formulation. We formulate our text privatization task as follows: suppose each
document D = ⟨Ri⟩mi=1 contains multiple records1 R and each record R = ⟨tj⟩nj=1 contains
multiple tokens t. Given an input text D that contains sensitive information, a global input
set X and a global output set Y contains all potential input and output tokens, and a text
privatization mechanism M, we consider a token-to-token case where each token tj ∈ D is
privatized with M to get its corresponding privatized token t′

j sampled from Y if tj ∈ X .
Then the privatized tokens forms the privatized text D′ = ⟨R′

i⟩
m
i=1.

Method Overview. A high-level overview of our customized text privatization mechanism
CusText is presented in Fig. 3.1. In general, Custext aims to replace the original text with a
new text to achieve the privacy goal. It mainly consists of three components: (1) a mapping
function fmap : X → {Y ′ ⊆ Y} which determines the output set Y ′

j for each input token
xj ∈ X based on a semantic metric; (2) a sampling function2 fsample : X ′ → Y ′ based on
the Exponential mechanism, to sample a new token from an output set to privatize the
input token; (3) a text privatization strategy S, to give instructions when privatizing the
text i.e. make the repeated token be mapped to the same token. Specifically, under a text
privatization strategy S, for each tj ∈ D, CusText first gets the output set Y ′

j corresponding
to tj by fmap, i.e., Y ′

j = fmap(tj), then fsample samples an output token t
′
j from Y ′

j as the
privatized token of tj, i.e., t′

j = fsample(tj), t′
j ∈ Y ′

j. Finally, after applying CusText on each
input token tj in D according to the text privatization strategy S, the final D′ is formed
by all output privatized tokens. An example that does not replace stopwords privatized by
CusText is provided below:

Original Text: when did spielberg and irving marry?

Privatized Text: when did scenario and treasure mademoiselle?

3.3. Methodology
3.3.1. Mapping Function

Within text privatization mechanisms, the mapping function fmap : X → {Y ′ ⊆ Y}
produces the output set for each input token. In SANTEXT [81], different input tokens
share the same output set while we improve it in CusText by making different input tokens
may have different output sets. Then, if a bunch of input tokens in global X are mapped to
the same output set Y ′, they belong to the same input set X ′ (X ′ ⊆ X ). The comparison of
the mapping function between CusText and SANTEXT is shown in Fig. 3.2.

1Could be a sequence sample in NLP dataset.
2Given Y ′ ⊆ Y, X ′ = {x|x ∈ X , fmap(x) = Y ′}.
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Fig. 3.1. The Overview of CusText.

Fig. 3.2. The comparison of mapping function between SANTEXT and our CusText. The
figure only contains some core examples within three mapping strategies (K = 2), but not
the complete mapping relations. Each circle indicates a token set.

When using CusText, the mapping function fmap needs to be pre-determined. According
to the mapping relation fmap : X → {Y ′ ⊆ Y}, for each input token x ∈ X , we can find which
output set Y ′ = fmap(x) it is mapped to and which input set X ′ = {x|x ∈ X , fmap(x) = Y ′}
it belongs to. Based on the size of X ′ and the size of Y ′, we categorize the input token into
four types: 1 - 1, N - 1, 1 - N and N - M (1, N, M denote the size of the input/output set and
N, M > 1). In Fig. 3.2 we illustrate some general cases about the input tokens belonging
to the type N - M and 1 - N with specific mapping functions introduced later. As type N -
1 and type 1 - 1 are not commonly used in existing differentially private text privatization
mechanisms, we do not consider them in our methods. Technically, if we want CusText to
provide ϵ-DP protection to all input tokens, it requires all input tokens in the global input
set X to belong to type N - M or type N - 1, which ensures that every input token has
adjacent tokens. As shown in Fig. 3.2, an input set circle containing more than one token
means this bunch of tokens belongs to N - M mapping. Adjacent tokens mean that two data
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inputs differ in one data item as in DP Definition 1. This is because the original intention of
ϵ-DP is to make the adjacent tokens indistinguishable, so as to protect the input token from
being inferred. Our mechanism CusText would contain both type N - M and type 1 - N.

The generation of fmap : X → {Y ′ ⊆ Y} is established by assigning the output set
for each input token under a mapping strategy, which takes the semantic closeness under
consideration. We provide three mapping strategies to generate fmap in CusText for different
scenarios with the examples shown in Fig. 3.2. From the privacy perspective, we hope to
contain as many token mappings belonging to type N - M as possible, because the type 1 -
N without adjacent tokens cannot guarantee DP protection. These three mapping strategies
approach this goal to vary degrees. For example, the conservative mapping contains the
most type N - M, while the aggressive contains the most type 1 - N. However, the number
of type 1 - N token mappings would affect the downstream task utility. For simplicity, we
unify the size of each input token’s corresponding output set Y ′ to K and define K as the
customization parameter. The details for generating fmap are presented in Algorithm 1 with
the balanced mapping as the default mapping strategy. For every token x that needs to
be privatized, we first calculate the semantic distance between each candidate token y in
the output set and the input token x and select the K closest ones. Then we generate the
mapping function according to the mapping strategy.

Assuming we are processing the token marry within the given original text as below and
the top-3 semantically closest tokens of it are {married, engage, divorce}. Jointly with the
description in Fig. 3.2, we give some intuitive examples for different mapping results.

Original Text: when did spielberg and irving engage and marry?

For aggressive mapping, we directly assign the candidate set as the output set for x and
add x to the temporary input set. Thus, the output set could be the top-k semantically
closest tokens to the marry in the whole vocabulary, that are {married, engage, divorce}.
And the marry will be added to the temporary input set. So far, the temporary input set
contains all tokens in the Original Text sentence. For balance mapping, we assign the tokens
that are in the candidate set but not in the temporary input set with the candidate set as the
output set. As the result, the top-3 semantically closest tokens to engage (e.g. appointment,
date and marry) which also do not occur in the temporary input set will be added to the
output set. The closest token marry will be eliminated because it is in the temporary input.
And as we only keep the top-3 (assume appointment and divorce are the 4th and the 5th token
close to marry), the final output set of balance mapping could be {married, engage, date}.
For conservative mapping, we eliminate the tokens in the candidate set from the output
set base on the balanced mapping. Thus, the token engage will be eliminated as it has
occurred in the previous output set and the final output set for conservative mapping could
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Algorithm 1 Generating Mapping Function
Input: Customization parameter K, distance function f , mapping mode M , input set X ,

output set Y
Output: Mapping function fmap

1: for token ∈ X do
2: Initial candidate set Ltoken = ∅, distance set d = ∅, temporary input set T = ∅
3: for token′ ∈ Y do
4: Calculate semantic distance dtoken′ = f(token, token′)
5: Add dtoken′ to d
6: end for
7: Add K smallest dtoken′ ∈ d of its responding token′ to Ltoken

8: if M = Aggressive then
9: Assign Ltoken → fmap[token]

10: Add token to T
11: else
12: for token′ ∈ Ltoken do
13: if token′ /∈ T then
14: Assign Ltoken → fmap[token′]
15: end if
16: end for
17: if M = Conservative then
18: Assign (Y − Ltoken)→ Y
19: end if
20: end if
21: end for
22: return fmap

be {married,date}. The mathematical form for these three mapping functions is described
below.

• Aggressive Mapping. For each input token x ∈ X , it leverages a certain similarity
metric to select K tokens y ∈ Y which are semantically closest to x as its customized
output set. Such mapping strategy makes most of the tokens in X belong to type 1
- N, which means few of them will have adjacent tokens.
• Balanced Mapping. Based on the aggressive mapping, the balanced mapping tries

to make more input tokens belong to type N - M by mapping more than one input
token to the same output set, i.e., for most of the input tokens x ∈ X , ∃ x′ ∈ X
and x′ ̸= x s.t. fmap(x′) = fmap(x). However, under the balanced mapping, for most
input tokens x,x′ ∈ X , if fmap(x′) ̸= fmap(x), we have fmap(x) ∩ fmap(x′) ̸= ∅.
• Conservative Mapping. Based on the balanced mapping, the conservative map-

ping makes all input tokens in X belong to type N - M by making different output
sets Y ′ ⊆ Y to have no intersections, i.e., ∀ x,x′ ∈ X , if fmap(x′) ̸= fmap(x), we have
fmap(x) ∩ fmap(x′) = ∅.
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3.3.2. Sampling Function

Based on the mapping function fmap : X → {Y ′ ⊆ Y}, the sampling function
fsample : X ′ → Y ′ can obtain the output set Y ′ corresponding to each input token in X ′ for
implementation. In CusText, we adopt the Exponential mechanism as our sampling func-
tion. However, we need to design a suitable score function for the Exponential mechanism
to provide adaptive privacy protection at token-level under the ϵ-DP notion.

Two rules should be observed when designing the score function u(·,·) : X ′ × Y ′ → R:
(1) The score for each input and output token pair is bounded, i.e., ∀ x ∈ X ′, ∀ y ∈ Y ′,
∃ M ∈ R s.t., u(x,y) < M .

(2) The higher the semantic similarity between the input token and the output token,
the higher the score of u(x,y), i.e., ∀ x ∈ X ′, ∀ y, y′ ∈ Y ′, if u(x,y) > u(x,y′), y is
semantically closer to x than y′.

Since the ϵ-DP requires the sensitivity ∆u to be bounded, the first rule helps the Expo-
nential mechanism to satisfy ϵ-DP as we will illustrate in detail with the sampling procedure
later. The second rule ensures the candidate tokens that have closer semantics to the input
token have higher probabilities to map, so as to retain the advantage of dχ-privacy.

When designing the score function, we use pre-trained embeddings as the token represen-
tations, such as Word2Vec [51], GloVe [59] and Counter-fitting [54]. The similarity metric
used in our mechanism should be determined by the embedding type. For instance, we can
use Euclidean distance and cosine similarity as similarity metrics for GloVe and Counter-
fitting, respectively. Based on the correlation between the similarity score and the semantic
similarity, all text similarity metrics could be categorized into two types: negative correla-
tion (e.g. the lower the value, the stronger the correlation) and positive correlation (e.g. the
higher the value, the stronger the correlation). For example, the Euclidean distance belongs
to the type negative correlation while the cosine similarity belongs to the type positive cor-
relation. To verify our mechanism can suit different similarity metrics, we provide a possible
score function for both similarity metric types.
Negative Correlation. We take Euclidean distance for example to design the score function
u(·,·) : X ′ × Y ′ → R. For any input set X ′ and its corresponding output set Y ′ , we first
calculate the Euclidean distance between one input token x ∈ X ′ and each output token
y in Y ′ to get the distance list Kd ∈ R|Y ′|. The distance between the input and output
token pair is d(x,y) = ∥Φ(x)−Φ(y)∥2. The Φ(x) and Φ(y) denote the embeddings of x and
y. Then, we normalize the value of distance list Kd to be ranged in [0,1] by Eq. 3.3.1 and
transform the distance list Kd into the score function for the corresponding input token x by
u(x,Y ′) = 1 −Kd. This transformation enables the input and output token pair (x,y) with
higher semantic similarity to having a higher score.
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Kd = Kd −min(Kd)
max(Kd)−min(Kd) (3.3.1)

Finally, for each input token in the input set X ′, we repeat the above steps to get the
complete utility score function u(·,·) : X ′ × Y ′ → R.
Positive Correlation. We take cosine similarity for example to design the score function
u(·,·). For any input set X ′ and its corresponding output set Y ′, we first calculate the cosine
similarity between a input token x and each output token y in Y ′ to get the cosine similarity
list Kc ∈ R|Y ′|. The cosine similarity of the input and output token pair is cos(x,y) =

Φ(x)T Φ(y)
∥Φ(x)∥∥Φ(y)∥ . Then, we normalize the cosine similarity list Kc to produce the score function
u(·,·) : {x} × Y ′ → R for input token x by Eq. 3.3.2

u(·,·) = Kc −min(Kc)
max(Kc)−min(Kc)

(3.3.2)

Finally, for each token in the input set X ′, we repeat the above steps to get the complete
utility score function u(·,·) : X ′ × Y ′ → R.
Sampling Procedure. After obtaining the available score function, the sampling function
fsample is competent to generate the privatized token t′

j for the input token tj by adopting
the Exponential mechanism. In this sampling procedure, we make fsample satisfy ϵ-DP. For
any input set X ′ and its corresponding output set Y ′, the sensitivity ∆u between any two
adjacent input tokens x, x′ ∈ X ′ is bound to 1 as Eq. 3.3.3 based on our design and the first
rule of the score function.

∆u = max
y∈Y ′

max
x,x′∈X ′

∥u(x,y)− u(x′,y)∥1 = 1 (3.3.3)

The sampling procedure is the core of CusText. Formally, given a privacy parameter ϵ,
for ∀x ∈ X ′,∀y ∈ Y ′, the sampling function fsample : X ′ → Y ′ is ϵ-DP if it satisfies

Pr[fsample(x) = y] = e
ϵu(x,y)

2∆u∑
y′∈Y ′ e

ϵu(x,y′)
2∆u

(3.3.4)

Our method CusText can provide ϵ-DP with the above sampling function based on the
Exponential mechanism. The proof is shown in Appendix A.1. Based on this sampling
function, each token in the output set constructed by the mapping function will be assigned
a probability for replacement.

3.3.3. Text Privatization Strategies

In addition to the widely used token-level text privatization strategy [30, 62, 81], we
propose two other record-level and dataset-level strategies for CusText to privatize the input
text. The details of three strategies with different granularities are listed below.
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• Token-Level. The idea of the existing token-level strategy is straightforward. For
each token in each record of the dataset (∀ t ∈ R ∈ D), we run the sampling function
to sample a new token and replace the original token with it.
• Record-Level. Within the token-level strategy, the repeated token in the same

record might be mapped to different tokens. To preserve the syntax similarity between
the raw text D and the privatized text D′, we force the repeated token in the same
record to be mapped to the same token. For example, if a token occurs more than
one time in a sequence, then all of its occurrences will be substituted as the same
replacement.
• Dataset-Level. Though the repeated token in the same record will be mapped to

the same token in the record-level strategy, the same token in different records is still
possible to be mapped to different tokens. Therefore, we make the repeated token in
the whole dataset be mapped to the same token.

The goal of different text privatization strategies is to preserve the original syntax feature
to various degrees for improving the utility of privatized text. This may raise the concern
that attacks would become easier if the repeated tokens are replaced by the same tokens.
We will evaluate this concern in privacy experiments at Sec. 3.4.5. The granularity of text
privatization Strategy can be selected according to practical needs.

3.4. Experiments
3.4.1. Experimental Setup

We choose two datasets from GLUE benchmark [72] with privacy implications to demon-
strate the effectiveness of CusText. The dataset information is listed below.

• SST-2 is a popular sentiment prediction dataset for movie reviews, with 67k training
sentences and 872 validation sentences.
• QNLI is a popular dataset for a sentence-pair classification task, with 105k training

samples and 5.4k validation samples.

In our experiments, we first utilize CusText to generate privatized texts, then use those
privatized texts to fine-tune the pre-trained language models (PLMs), specifically Bert3.
Next, we contrast privatized texts and un-privatized texts to evaluate the model’s perfor-
mance loss. In particular, we use Counter-fitting embeddings as the token representation,
which is based on cosine similarity to measure the semantic similarity between tokens. When
producing the privatized text, both the global input set X and the global output set Y in
CusText are equal to the vocabulary of Counter-fitting, and out-of-vocabulary (OOV) to-
kens except the numbers, will be retained. For each downstream task, we set the maximum
3We use bert-base-uncased from https://huggingface.co/bert-base-uncased
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sequence length to 128, training epoch to 1, batch size to 64 and learning rate to 2e-5. Other
hyper-parameters setups are kept default as the Transformer library [74].
Evaluation Metric. We mainly use accuracy as the evaluation metric on the test set with
privatized text and it is calculated by

Accuracy = |correctly predicted samples|
|total samples|

The same evaluation method is applied in the next Chapter for GauDP model.

3.4.2. Comparison of Different Text Privatization Mechanisms

We first compare our CusText under different customization parameters K at privacy
parameter ϵ = 1 with other text privatization mechanisms. The customization parameter K

is to determine the size of the output set for each input token that needs to be privatized,
and ϵ = 1 means strong protection in the context of DP. The protection level ϵ is calibrated
by Eq. 3.3.4 with a pre-defined value of ϵ. Its value would affect the sampling probability
of each token in the output set. The main comparison methods include the state-of-the-art
SANTEXT [81] and FBDD [30], the implementation of which follows its original setting.
Besides, the Random method denotes sampling a privatized token randomly and Original
refers to the non-privacy setting. Because the value of K controls the degree of customization,
smaller K indicates better adaptation to the customized purpose. When applying CusText
to privatize SST-2 and QNLI, we use balanced mapping and record-level text privatization
strategy. Table 3.1 shows the accuracy of the different text privatization mechanisms for
two datasets. The comparison results further confirm the effectiveness of our customized
mechanism CusText under a strong privacy protection condition (ϵ = 1), while the results
of the other mechanisms are similar to random replacement. Besides, we observe that the
trained model performs better with a smaller K in CusText, this indicates the importance
of preserving token semantics when implementing privacy protection. The above results
reflect that shrinking the output set for achieving customized DP can indeed mitigate the
over-protective problem among existing methods. By controlling K, we can preserve more
original semantics for approaching the non-privatized results and yield higher accuracy than
other methods without customization.

Apart from the utility, we also analyze the privacy impact brought by different K, by pro-
viding some privatized examples as a case study from QNLI under different K = [5, 50, 200]
in Table 3.2. We observe that privatized text will be semantically closer to the raw text with
a smaller K. This indicates that smaller K may fail to protect the privacy of the raw text
though it has a better utility. The results in Table 3.1 and Table 3.2 suggest that neither
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Dataset Random SANTEXT [81] FDBB [30] Original CusText
K = 5 K = 20 K = 50 K = 200 K = 500

SST-2 0.4986 0.5101 0.5099 0.9163 0.9117 0.8761 0.8383 0.8119 0.7913
QNLI 0.5152 0.5372 0.5163 0.8947 0.7804 0.5665 0.5441 0.5034 0.5000

Table 3.1. Accuracy of various text privatization mechanisms with privacy parameter ϵ = 1.

Original
when did spielberg and irving marry?
then in 1984 they renewed their romance, and in november 1985,
they mairried, already having had a son, max samuel.

K = 5
when did hanks and irving marries?
then in 2811 they renew their ballad, and in nov 2467,
they marries, after having had a son, maximum josiah.

K = 50
when did theatrcal and benson hens?
then in 2708 they refitted their modern, and in marked 2218,
they daughter, therefore having had a kiddo, paramount jeremiah.

K = 200
when did scenario and treasure mademoiselle?
then in 2702 thet renewed their sweet, and in hsien 2451,
they gender, today having had a school, maximizing abram.

Table 3.2. Qualitative examples from QNLI dataset: Privatized text by CusText under
different customization parameter K. The privatization is based on the balanced mapping,
record-level text privatization strategy with saving stopwords and privacy parameter ϵ = 1.

too big nor too small K, e.g., K = 50, will be a good choice to achieve a good utility-
privacy trade-off. In practice, the customization parameter K should be carefully selected
for different models and datasets.

3.4.3. Comparison of Mapping Strategies

We next compare three mapping strategies on two aspects: (1) the accuracy of the
downstream task; (2) the proportion of input tokens that do not belong to type N - M
mapping. As we mentioned previously, most type N - M mapping means better privacy
because the 1 - N type contained in our methods cannot provide a DP guarantee. Thus, the
accuracy and the proportion of input tokens that do not belong to type N - M mapping form
the utility-privacy trade-off for different mapping strategies. We conduct the experiments
on SST-2 under three different customization parameters K = [20,50,100] with record-level
text privatization strategy and privacy parameter ϵ = 1. From the results in Table 3.3, we
find that aggressive mapping can provide the best utility for privatized texts. The good
performance of the aggressive mapping might be due to its design principle, which aims to
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K Aggressive Balanced Conservative
20 87.96 87.61 83.03
50 84.98 83.83 75.92
100 86.24 84.51 53.56

Table 3.3. Comparison of different K and mapping strategies regarding accuracy on SST-2.

K Aggressive Balanced Conservative
20 96.18 % 0.12% 0.00%
50 99.20 % 0.04% 0.00%
100 99.84 % 0.00% 0.00%

Table 3.4. Comparisons of mapping strategies on the proportion of input tokens NOT
belong to type N - M mapping on SST-2.

give the "best" output set for its corresponding input token. That is to say, our strategy is
designed to make the sampling function sample an output token semantically close to the
original one. We also find that aggressive and balance mapping is worse at K = 50 than at
K = 100, which does not reflect the advantage of customization. This might be because the
1 - N types contained in these two mappings make them less sensitive to K than conservative
mapping. On the other hand, the results of Table 3.4 show the obvious disadvantage of the
aggressive mapping that most input tokens do not belong to type N - M mapping. Besides,
although the conservative mapping ensures every token in the global input set X belongs to
type N - M, it has a bad performance in the utility. Overall, we think balanced mapping is
the best mapping strategy in our experiments because it not only ensures that most of the
input tokens belong to type N - M but also offers good utility, thus offering a good trade-off
between them.

3.4.4. Comparison of Different Text Privatization Strategies

We then compare the utility of the text privatization strategies with three different lev-
els: token-level, record-level, and dataset-level. A higher-level strategy tends to make the
privatized text more similar to a natural language text. The results are shown in Table 3.5.
We can see that the record-level and dataset-level are more applicable than the token-level.
This indicates that the high-level privatization alignment is useful for preserving semantics.
The accuracy improvement is larger when ϵ increases. It means that as privacy protection
becomes weak, the more original semantics can be retained by high-level text privatization
strategies. Furthermore, we can find that the improvement brought by record-level and
dataset-level strategies on QNLI is more significant than SST-2. This may be because QNLI
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S SST-2 QNLI
ϵ = 1 ϵ = 5 ϵ = 10 ϵ = 1 ϵ = 5 ϵ = 10

T 84.63 89.33 90.71 50.83 54.52 64.53
R 86.24 89.45 87.50 52.18 66.16 77.54
D 86.35 87.96 88.76 58.10 53.30 77.82
T + 89.68 89.91 92.09 65.10 71.57 78.35
R+ 89.22 90.60 92.66 79.97 81.01 89.64
D+ 90.25 90.83 90.37 77.73 79.07 85.11
O 91.63 89.47

Table 3.5. Comparison of accuracy of different text privatization strategies S on SST-2
and QNLI. T: Token-Level strategy, R: Record-Level strategy, D: Dataset-Level strategy; +:
save stopwords; O: original training dataset.

is applied for a natural language inference task and mapping the repeated tokens in the
question-answer pair to the same token is crucial for the model to do the right prediction.
In addition, the experiment results also show that saving stopwords could boost the utility
under the same privacy guarantee. This may be because saving stopwords helps to preserve
the original syntax feature. It is an encouraging finding since it enables us to get a relatively
good performance of a downstream task with smaller privacy costs.

3.4.5. Privacy Calibration

To further explore the privacy protection level brought by our text privatization mecha-
nisms, we conduct some supplementary experiments to better empirically calibrate privacy.
Proportion of Original Tokens. Under the DP mechanism, the proportion of the original
tokens in the privatized text does not have a direct connection with differential privacy
calibration since the adversaries cannot identify the original tokens. However, when most
tokens in the privatized text are original tokens, the privatized text will have high readability
as the original text. In such a situation, with the help of human reasoning ability, the original
text can be easily inferred and thus fail to achieve privacy protection.

The CusText might overcome this issue because the privatized text produced by CusText
is made up of a bunch of independent privatized tokens. The likelihood that the privatized
text is still linguistically inferable will be very low. Based on the above discussion, we use
the proportion of original tokens as one of the metrics to empirically evaluate the privacy
protection provided by text privatization mechanisms. Following the same parameter setting
as in Sec. 3.4.4, we evaluate the proportion of original tokens in different situations. Table 3.6
show that the dataset-level privatized strategy can provide better privacy with regard to
whether the original tokens occur again in the privatized text than the other two. But
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S SST-2 QNLI
ϵ = 1 ϵ = 5 ϵ = 10 ϵ = 1 ϵ = 5 ϵ = 10

T 2.82% 9.92% 30.31% 2.82% 9.76% 29.24%
R 2.83% 9.87% 30.29% 2.84% 9.77% 29.26%
D 3.15% 7.81% 30.06% 1.36% 7.59% 16.03%
T + 43.52% 47.37% 57.55% 45.85% 49.58% 59.44%
R+ 43.51% 47.33% 57.50% 45.86% 49.58% 59.41%
D+ 43.32% 48.15% 56.75% 45.38% 47.28% 50.79%
O 100.00% 100.00%

Table 3.6. The proportion of original tokens preserved in the privatized text under cus-
tomization parameter K = 50. A lower proportion indicates better privacy protection.

S SST-2 QNLI
ϵ = 1 ϵ = 5 ϵ = 10 ϵ = 1 ϵ = 5 ϵ = 10

T 13.54% 15.33% 24.44% 12.68% 14.40% 23.95%
R 12.26% 16.03% 24.18% 11.56% 13.68% 23.29%
D 11.88% 14.88% 24.66% 12.04% 16.32% 26.13%
T + 26.57% 31.33% 39.70% 26.64% 30.88% 37.69%
R+ 28.59% 32.32% 31.11% 29.30% 31.67% 38.45%
D+ 27.37% 31.62% 40.18% 27.53% 31.68% 39.06%
O 61.93% 61.93%

Table 3.7. The percentage of tokens that are successfully inferred by the mask token infer-
ence attack. A lower percentage indicates better privacy protection.

the larger ϵ and preserve stopwords results in a higher proportion of original tokens which
might hurt privacy in this evaluated method. These results confirm that smaller ϵ can bring
better privacy protection and help us how to choose ϵ for a suitable proportion of original
tokens in the privatized text. Since the proportion of original tokens among the three text
privatization strategies is not that significantly different, we think that the proportion of
preserved original tokens is not sensitive to the level of privatization strategies, thus we can
use a more aggressive strategy to boost the model utility.
Mask Token Inference Attack. We also adopt the same attack experiment as previous
work [81, 62] to empirically evaluate the privacy protection provided by CusText. In order
to recover the original text D from the privatized text D′, we assume the adversaries could
use the PLMs4 to infer the original tokens since it is trained via masked language modeling
and very popular as an encoder in most NLP downstream tasks. Specifically, the adversaries

4We use bert-base-uncased for all attack experiments.

62



could first use the special token [MASK] to replace one token in the privatized text, then
input the masked text into the PLM to get the prediction of the [MASK] token and consider
the prediction token as the original one. Finally, the whole recovered text is gained by
replacing each token in the privatized text sequentially with the above procedure. We follow
the same parameter setting in Sec. 3.4.4 to perform the mask token inference attack. The
experiment results are shown in Table 3.7, which shows the dataset-level text privatized
strategy brings better privacy for SST-2 while the record-level is more applicable for QNLI.
Combined with the results in Table 3.6, we observe that although the proportion of original
tokens in the privatized text is smaller when ϵ is small (ϵ = 1 or 5), adversaries could
recover more than 10% original tokens based on the mask token inference attack, while with
ϵ = 10 and retaining stopwords, the quantitative relationship shows the opposite trend. This
indicates that the proportion of original tokens and mask token inference attacks provide
two empirical perspectives for privacy calibration and they do not seem to have an obvious
connection. Our proposed high-level text privatized strategy can achieve higher accuracy
and better empirical privacy protection. The retention of stopwords preserves more syntax
features for better utility but might also become easier for inference attacks.
Privacy Concern: Can X ⊆ Y? In both previous works [30, 62, 81] and our mechanism
CusText, the global input set X is included in the global output set Y (X ⊆ Y). Thus, the
privatized text produced by those mechanisms may retain some original tokens as illustrated
in Table 3.6. Intuitively, this might lead to privacy leakage because of those unchanged
tokens. However, in a practical situation, combining the experiment results of mask token
inference attack in Table 3.7 and the proportion of original tokens in Table 3.6, we observe
that X ⊆ Y has little impact on the privacy protection of the raw text when the proportion
of original tokens in the privatized text is low and the protection level ϵ is small.

3.5. Conclusion
In this chapter, we study how to achieve better utility on the privatized text by designing

a Customized differentially private Text privatization mechanism (CusText) that provides
adaptive privacy protection at the token-level. Specifically, we propose a novel sampling
function by designing a suitable score function on top of the Exponential mechanism and
providing each input token its own customized output set to boost the utility of privatized
text. Meanwhile, it makes the CusText satisfying ϵ-DP notion with broad applicability.
Moreover, we provide two new text privatization strategies to improve the utility of privatized
text without compromising privacy and evaluate privacy calibration empirically from two
views. Extensive experiments show that CusText achieves a better privacy-utility trade-off
and has better practical application value.
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Chapter 4

GauDP: A Gaussian-based Local
Differentially Private NLP Model

4.1. Introduction
The privacy-utility trade-off is the primary issue [23] in the context of DP-NLP [31]. The

reason is that some DP mechanisms such as the Laplace mechanism and Gaussian mechanism
invariably significantly reduce the downstream task performance by injecting noise into the
text representation for DP protection. These paradigms are different from the Exponential
mechanism as we introduce in the last Chapter.

Here, we focus on the practical situation in which the user (data owner) could be an
individual or an institution involved in multi-party computation, are concerned about the
privacy of their sensitive data and the server provider is untrustworthy. Since the data pri-
vacy will still be leaked by model or gradient by specific attacks [67, 15], LDP is required to
protect the user’s input text before sharing their computation results (text representations)
with the server provider. As the downstream task is implemented at the server, the user
himself cannot perform DP-SGD-based model training to protect the privacy of the training
data. Besides, most existing methods [7, 30, 35, 75, 41] can only provide protection for
the training data but not consider the inference ones. The reason is that they assume the
DP guarantee procedure for training and inference are the same, as they did not apply DP
composition and amplification. As we introduced in Sec. 2.3, DP composition is necessary for
calibrating accurate required noise amount to protect the whole dataset and DP amplification
technique (e.g. sub-sampling) can help reduce the amount of required noise for generating
better utility through the model’s inherent randomness. Without DP composition, the pri-
vate model might not achieve the protection level as strong as their declaration and less
practical value. However, protecting inference data privacy is more difficult because the
sub-sampling technique for DP amplification in the training stage cannot be directly applied
in the inference stage. For example, the sub-sampling can be implemented directly when



Fig. 4.1. LDP-NLP pipeline for DP training and DP inference in Stages 2 and Stage 3 to
protect training and inference.

constructing arbitrary training batches, but during inference, all user input needs to be given
responses. Thus, solving the aforementioned problems is difficult. To this end, a carefully
designed noise calibration algorithm for both training and inference stages with DP compo-
sition and DP amplification is necessary to push the privacy-utility trade-off boundary, while
there are fewer explorations on it. Our goal is to design a Gaussian mechanism-based model
to produce differentially private latent representations locally within the µ-GDP framework
for DP accounting under a practical scenario.

4.2. LDP-NLP Task Pipeline
Our goal is to design privacy for NLP tasks from the user side satisfying the LDP setting.

As the original user’s input contains sensitive information, our primary requirement is that
the service provider only accesses LDP-guaranteed representation, which means that all of the
information sent out locally by the user in all training and inference steps must satisfy the DP
definition, then the adversary would be unable to distinguish the input data. Fig. 4.1 depicts
a target scenario with corresponding LDP operations to complete an LDP-NLP task between
the user and the server provider, which contains four stages: pre-training, DP training, DP
inference, and inference results return. After receiving the DP-guaranteed representations
in the training and inference stages, the server computes the back-propagations and forward
computations, respectively. Although this study focuses on a single user case, the LDP can
help to adapt to a more general setting in which sensitive data is collected independently
from multiple users. Fig. 4.2 depicts the differences between existing works on LDP-NLP
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(a) Existing work on LDP-NLP [30, 62, 81].

(b) Our Sub-Sampling+DP-layer for training. The
Stage 2 in Fig. 4.1.

(c) Our Up-Sampling+DP-layer for inference. The
Stage 3 in Fig. 4.1.

Fig. 4.2. Different LDP architectures for the privacy-preserving modules (in blue).

and our methods. The benefits of our methods can be viewed from two perspectives. On
one hand, the noise for DP protection is injected after the encoder via a DP-Layer which
can enable the semantic encoding not to be too much affected by the noise. On the other
hand, we leverage the sub/up-sampling technique to implement DP amplification and thus
bring a better utility-privacy trade-off by ensuring DP composition compared with existing
works. Intuitively, DP amplification by sampling is caused by the fact that an individual
sample has complete privacy if it is not included in the sampled set and whether or not this
individual sample is included is a secret. Both sampling methods inherited this foundation
based on randomness. More details are discussed in the experiments Sec. 4.4. Here, we first
give a description of the role of the four stages.

4.2.1. Pre-training (Stage 1)

The concept of word embedding within the neural method is first pioneered by Bengio et
al. [11] which alleviates the dimensional disaster of the language model. Then the foundation
for the subsequent study of word representation learning, such as Word2Vec [51], GloVe [59]
and BERT [19] are laid down. Word embedding is a feature learning technique in which each
word or phrase from the vocabulary is mapped to a N dimensional vector of real numbers.
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Although the real numbers of each dimensional are unreadable to humans, it is machine-
perceived and can represent high-level semantics in high-dimensional spaces and often get
better performance as input to multi-layer perceptrons (MLP) than the traditional feature
extraction methods. For our target scenario, the server performs pre-training on its own such
as exploiting large-scale public corpus or domain-specific private data for getting pre-trained
word embeddings on stage 1. In our method, we utilize GloVe for LSTM and contextualized
representation in BERT to get word embeddings.

4.2.2. DP Training (Stage 2)

The raw user data often contain private information such as personal attributes and
query logs. Thus, our foremost requirement is that the service provider only allows working
with privatized input at both training and inference time, without any access to the raw
data. During collaborative training, each user applies the DP mechanism to transform
raw data into LDP-guaranteed latent representations before sending them to the server for
task adaptation training. The crucial procedure is calibrating noise for achieving a certain
privacy protection level while maintaining an acceptable level of performance in downstream
tasks. Therefore, we propose a non-parametric DP layer after the encoder to achieve an
LDP guarantee with detailed operations. The noise calibration algorithm depending on DP
composition and sub-sampling DP amplification are described in Sec. 4.3.3.

4.2.3. DP Inference (Stage 3)

After obtaining trained privacy-preserving models, the models are released by the server
and provide services to the users. The raw data which may contain sensitive information
(e.g. medical history) queried by the users is converted by the local DP-layer into DP-
guaranteed latent representations before being sent to the server for the inference process.
The calibrated noise power depending on the up-sampling DP amplification algorithm is
described in Sec. 4.3.4.

4.2.4. Inference Results Return (Stage 4)

The final layer of the neural model will decide what is the best results to respond to users’
DP-protected queries according to the specific NLP tasks. Normally, the decision depends
on the category scores for text classification, ranking scores for text retrieval, decode scores
for text generation and so on.
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4.3. Methodology
4.3.1. Non-Parametric DP-Layer

As we explained earlier in Sec. 2.3, two important operations are required to achieve a
differentially private algorithm: (1) sensitivity bound; (2) noise calibration. The sensitivity
bound operation is used to limit the output value of the encoder into a range as ℓ2-norm.
The noise calibration is calculated under a certain accounting framework with its DP mech-
anism and accounts for the required noise power for one training step protection. However,
we should note that the DP guarantee for one training step does not mean its calibrated
protection level ϵ referring to covers the whole training procedure. Only after compositing all
training steps together by DP composition can reflect the true protection level ϵ, otherwise,
it would be wrong.

To estimate the sensitivity of an arbitrary output representation from the neural layer
is challenging and most previous works lack this crucial procedure [30, 62, 7, 44, 38] or
are wrong i.e. estimate sensitivity at a wrong granularity level for achieving it, which may
incur inaccurate calibration on privacy guarantee. We propose a non-parametric DP-layer
by injecting calibrated noise into the clipped output of the encoder following the gradient
clipping in DP-SGD [60, 5]. We explain this operation below.
Clipping Operation: One method to stabilize the output is clipping. Let x and x′ be
arbitrary inputs from the training or inference sets, and define f(x) as the corresponding
output of the encoder in Fig. 2(b) and Fig. 2(c). The sensitivity ∆ of input f(x), which is
the greatest variation output for a sequence with the ℓ2-norm is given by

∆ = max
x,x′
||f(x)− f(x′)||2. (4.3.1)

Because of the randomness of training data, computing ∆ is difficult. We limit f ’s output
range by clipping each latent representation from the output of the local encoder with

CL (f(x); C) = f(x) ·min
(

1,
C

∥f(x)∥2

)
. (4.3.2)

where the C is a pre-defined hyper-parameter equalling to the value of sensitivity ∆.
This clipping ensures that if ∥f(x)∥2 ≤ C, then the output value of the encoder f(x) is

preserved, whereas if ∥f(x)∥2 > C, it gets scaled down to be of norm C equalling the value
of sensitivity ∆. The privacy-utility trade-off is sensitive to the quantity C because the
lower the value of C, the less calibrated noise power is required for a given DP protection
level. However, cutting too much of the latent representation to achieve a small C will
harm the semantic features and result in a significant performance drop. Therefore, the
hyper-parameter C needs to be carefully tuned.
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Fig. 4.3. An intuitive illustration for the text encoding, representation clipping, and noise-
injecting operations within the DP-layer.

Algorithm 2 Non-parametric DP-Layer
Require: Latent representation f(x) ∈ Rd, clipping value C, noise variance σ2

1: Gaussian Mechanism: x̃← CL (f(x); C) + z with z ∼ N (0, σ2Id).
2: return x̃.

As we mentioned earlier in Sec. 2.3.1, to leverage DP mechanisms for achieving DP
guarantee, the widely used Laplace mechanism provides ϵ-DP with δ = 0 by adding noise
that follows the Laplace distribution, while the Gaussian mechanism provides (ϵ,δ)-DP, which
by introducing very small δ trades off some ϵ to reduce the amount of noise required. Based
on the Gaussian mechanism and after clipping, we apply additive Gaussian noise to the
latent representation for privatization via the DP-layer by

M(x, f(·), σ) = CL(f(x)) +N (0, σ2). (4.3.3)

For better understanding, we provide an intuitive illustration for the text encoding, rep-
resentation clipping, and noise-injecting operations within the DP-layer in Fig. 4.3 in a two-
dimensional perspective. In addition, the details are also formally stated in Algorithm 2.

The advanced µ-GDP accounting method can improve the accuracy of the model while
still providing a DP guarantee. The crucial point for calibrating privacy protection level by
µ-GDP is to form the duality with (ϵ,δ)-DP, where the calibrated noise variance σ2 and the
DP protection level (ϵ, δ) follows Eq. 4.3.4 [20] and we can use it for computation.

δ(ϵ; µ) = Φ
(
− ϵ

µ
+ µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
(4.3.4)

with
µ = ∆/σ, (4.3.5)

where Φ(.) is the cumulative distribution function of the standard normal distribution. ϵ

and δ denotes the theoretical privacy protection level, and the µ plays the role of duality
parameter which determined by sensitivity ∆ and noise variance σ2.
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Finally, we form a DP-layer containing clipping operation to bound the output sensitivity
and additive Gaussian noise on the latent representation. A formal statement for the privacy
guarantees of DP-layer Algorithm 2 is provided in Lemma 6. Thanks to the DP post-
processing property, the DP-layer ensures the DP protection for the algorithm for training
and inference stages containing DP composition and DP amplification. In the following, we
will introduce how to account for privacy costs from each step to the whole procedure and
apply DP amplification.
Lemma 6. (DP-Layer Privacy) Let f(x) be the encoder output with ℓ2 sensitivity C given by
Eq. 4.3.2. For any ϵ > 0 and δ ∈ (0, 1), the mechanism described in Algorithm 2 is (ϵ, δ)-DP
for each time of using the DP-layer.

4.3.2. Sentence-Level DP Composition and Amplification

We first explain why achieving sentence-level DP protection is important for composi-
tion and amplification. The data granularity varies in different fields. For example, in the
computer vision (CV) field, normally a picture is the smallest unit of a training sample
which is composed of multiple pixels, while in NLP a training sample should commonly be a
sequence that is composed of several tokens. Thus, the granularity of tokens for a sequence
is corresponding to that of pixels for a picture. However, in terms of DP training, previous
works [80, 83] performing on pictures in CV field with DP amplification techniques cannot
directly apply to most NLP downstream tasks whose single input unit is a sequence. The
above discussion indicates that to achieve DP amplification, we need to apply for DP protec-
tion on the whole training sample i.e. picture in the CV and the sentence in NLP. However,
some existing works in NLP [62, 81, 30] only focus on the token-level protection but not
the whole sequence. That might explain why they do not apply DP amplification.

The necessity of our implementation of sentence-level DP can be viewed from two aspects.
On one hand, because the DP composition counts on how many times the DP mechanism is
applied, achieving DP granularity on sentence-level rather than word-level can reduce privacy
budget ϵ as shown in Fig. 4.4. Its results confirm that sentence-level DP achieves a better
protection level (smaller ϵ) compared with word-level on the different numbers of words. On
the other hand, it is difficult to correctly compose DP cost for a series of training steps and
finally achieve a relatively small ϵ at the same time. High DP cost ϵ will lead to an extremely
weak privacy protection level, which deviates from our original intention. One solution is
using the model’s inherent randomness such as sub-sampling and up-sampling to perform
DP amplification to reduce the required noise while keeping the same privacy protection
level. The data sampling should perform directly on the sample level as pictures in CV and
sequences in NLP. Therefore, we use the [CLS] output of the PLMs as the latent sentence
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Fig. 4.4. Comparison of privacy budget ϵ between composing sentence-level training sample
and word-level with the different number of tokens.

representation to achieve sentence-level protection with correct DP composition and leverage
DP amplification.

In summary, correctly performing DP composition is a guarantee to provide DP protec-
tion. In experiments in Sec. 4.4.2, we will show the effect of the true and wrong cases of
DP composition on the model accuracy and demonstrate the importance of DP amplifica-
tion. In the following, we show how to calibrate the noise by leveraging sub-sampling and
up-sampling to conduct DP amplification in the training and inference stages, respectively.

4.3.3. Gaussian-based DP Training

In previous sections, we evaluate the privacy cost for each step of input forward through
DP-layer in Algorithm 2 based on µ-GDP, which measures the privacy protection level (ϵ, δ)
in terms of duality parameter µ via Eq. 4.3.4 and Eq. 4.3.5. As we mentioned earlier, the
computation of privacy degradation as the number of steps increases is DP composition.
Now, we try to composite the privacy cost of each step to the whole training procedure.

The DP composition for each step enjoys a simple and convenient formulation in µ-GDP,
for example, the n-fold composition of ui-GDP mechanisms is Gµ1 ⊗Gµ2 ⊗ · · · ⊗Gµn = Gµ-
DP with µi =

√
µ2

1 + · · ·+ µ2
n. Let xt denote the sampled subset of data for the t-th update

step (training or inference) with |xt| the number of samples and xt
k denote the k-th sample.

The neural network output of xt
k after the DP-layer is ∆

σt
-GDP according to Eq. 4.3.5, where

the duality parameter for conversion between µ-GDP and ϵ-DP is µ = ∆
σt

. By calibrating
the dynamic noise power σt for each step, we have the µ-GDP composition result of all the
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sampled data in each step by Eq. 4.3.6.

µt =
∣∣∣xt
∣∣∣ ∆
σt

. (4.3.6)

During neural network DP training, each update step is performed on a sub-sampled
training sample, which is obtained through an independent Bernoulli trial of all data sam-
ples with probability ptrain. The dual function of Eq. 4.3.4 for each sub-sample with DP
amplification can be expressed by ptrain · Gµt + (1 − ptrain)Id1 [20], with µt computed by
Eq. 4.3.6. Usually the sub-sampling rate ptrain is much smaller than 1, and thus the trade-off
function in µ-GDP is much smaller than Gµt . In the µ-GDP framework, the DP composi-
tion and amplification occur in each step. Consider a series of T adaptive compositions of
each step with µt, according to the recent Central Limit Theorem (CLT) for µ-GDP [14],
the approach to Gµtot-DP on each step duality parameter µt with DP amplification is given
by Eq. 4.3.7. Then the DP composition from one step to all steps privacy cost is com-
puted by Eq. 4.3.8, where the µtrain is the final duality parameter for privacy protection level
calibration.

µtot =

√√√√ln
(

µ2
t

p2
traint

+ 1
)

(4.3.7)

µtrain =
√

µ2
1 + · · ·+ µ2

T tot ∈ [1, T ] (4.3.8)

In practice, to perform the Gaussian-based DP training, we first set up a privacy budget
parameter (ϵ, δ) which refers to the final privacy level, as well as the pre-defined sensitivity
∆ and noise variance σ2. The consumption of the privacy budget of each step is computed
by the duality Eq. 4.3.6 and Eq. 4.3.7 with DP composition in batch samples and DP
amplification. Then the all-steps DP composition is made based on Eq. 4.3.8. The quantity
µtrain indicates the final duality parameter after µ-GDP accounting. The sample probability
ptrain decides the speed of the privacy budget consumption. The model training will stop
at step T when the pre-defined privacy budget parameter (ϵ, δ) is achieved. Therefore, for
t ∈ [1, T ], all µt achieves the DP composition. We estimate the overall privacy cost within
each step update and then calibrate the noise power for the whole end-to-end method. The
process is described in Algorithm 3. All privacy guarantee that we report keeps track of the
entire µ-GDP function to find the numerical solution for ϵ given δ via a binary search.

4.3.4. Up-Sampling DP Amplification

After the privacy-preserve trained model is obtained, the same DP mechanism can be
applied to the inference stage. This process can improve robustness and achieve protection

1Id refers to indicator function.
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Algorithm 3 Gaussian-based DP Training
Require: DP budget (ϵ,δ), sensitivity ∆, noise variance σ2, sampling rate ptrain, encoder f ,

user data S(xn), DP-Layer g
1: Initial DP budget cost ϵ0 = 0 and t = 0
2: while ϵt ≤ (ϵ,δ) do
3: Sub-sample x ⊆ S(xn) with probability ptrain
4: Feature extraction: f(x)← x
5: DP-Layer perturbation: x̃← g(f(x))
6: Compute µt by Eq. 4.3.6
7: Compute µtrain by Eq 4.3.7
8: Compute µtot by Eq. 4.3.8
9: Compute DP budget cost ϵ′

t by Eq. 4.3.4
10: Update model Ft parameters θt

11: Update ϵt+1 ← ϵt + ϵ′
t, t← t + 1

12: end while
13: return Trained model F

Algorithm 4 Up-Sampling Differential Private Amplification (USDPA)
Require: Inference/query DP budget (ϵ,δ), user queries Q, fictitious data M, true data

rate λ, sampling rate pquery
1: Mix the true query data with fictitious data by keeping the true data rate λ
2: Initial queried set D = ∅
3: Initial sampled time t = 0
4: Compute sampling rate pquery = λ · |M|

|M|+|Q|
5: while |D| ≤ |Q| do
6: Sampling query data q from the mixed dataset
7: if q ∈ Q and q /∈ D then
8: D ← D ∨ q
9: end if

10: t← t + 1
11: end while
12: Compute µt by Eq. 4.3.9
13: Compute σ by Eq. 4.3.6
14: return Noise power σ, sampling times t

on user queries. Although some of the current works consider inference privacy [44, 62, 81],
none of them explore the up-sampling DP amplification on this phrase. To improve the
model utility, we propose a DP amplification algorithm via up-sampling for the DP inference
stage. The general idea is to introduce uncertainty into the inference data set by up-sampling
it with fictitious data. We generate some fictitious samples that do not contain any private
information and mix them with the true queries before randomly sampling the queries to send
to the server via the DP-layer. All the true queries will be sent out via multi-up-samplings.
Then, the adversaries are hard to distinguish which are the goal queries that need to be
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attacked. The effectiveness of this kind of up-sampling amplification can be viewed on two
sides. On one hand, the mixed fictitious samples via sampling can achieve a stronger privacy
level. On the other hand, to achieve the same privacy level, the required noise in DP-layer
will be significantly reduced, thus resulting in higher accuracy of downstream tasks without
jeopardizing privacy.

Let Q and M denote the original and fictitious inference sets, respectively. Then we have
the true data ratio λ = |Q|/(|Q| + |M |) for the mixed data set. Originally, for each step
t, we sample each user query by independent Bernoulli trial with probability pquery. After
constructing mixed data set, the sampling probability of each true query is given by λ ·pquery.
Following a similar analysis in the previous Gaussian DP training amplification, the duality
parameter of the up-sampling DP amplification algorithm for the DP inference stage is

µquery = λ ·

√√√√ln
(

µ2
t

p2
queryt

+ 1
)

(4.3.9)

Our up-sampling DP amplification (USDPA) mechanism is formally described in Algo-
rithm 4. Note that the DP amplification in the inference stage does not come for free.
Similar to how sub-sampling reduces the training convergence rate, up-sampling increases
the query/inference times since the mixed fictitious data and uncertainty from the sampling.
We give an analysis about this at Sec. 4.4.4.

4.4. Experiments
4.4.1. Experimental Setup

To evaluate our privacy-preserving GauDP model more comprehensively, we run experi-
ments on six more datasets with different types of text classification tasks in addition to the
two datasets used in Chapter 3. The information of all datasets is summarized in Table 4.1.

Dataset Task Type Classes Training Sample Test Sample
SST-2 Sentiment Analysis 2 67k 872
QNLI Question Answering 2 104k 5.4k
QQP Semantic Matching 2 384k 40k
MNLI Natural Language Inference 3 241k 20k
IMDB Sentiment Analysis 2 25k 25k

AGnews News Categorization 4 120k 7.6k
DBpedia Topic Analysis 9 92k 60k

SNLI Natural Language Inference 3 511k 9.8k

Table 4.1. Statistic of datasets
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We use two-layer stacked Bi-LSTM and BERT2 from Transformer library [74] to perform
privacy-preserving downstream tasks. For all models, we set the max sequence length as 128,
the batch size as 32, the learning rate as 2e-5, and the dropout rate as 0.1. For the Bi-LSTM
model, we set the input embedding dimension as 200 and the hidden layer size as 256. For
BERT, we keep all the other hyper-parameters as the original pre-training setting.

4.4.2. Re-examining DP Composition and Amplification

Some previous works [44, 62, 30, 38, 35, 7] to produce differentially private text rep-
resentation seems to perform well on the privacy-utility trade-off. However, the privacy
protection is not as strong as they claim, because of the lack of DP composition and sensi-
tivity estimation or wrong on them. For example, they [44, 38, 35] only calibrate one step
DP protection level ϵ rather than compositing all training steps together, or they [44, 38]
estimate sensitivity at a wrong granularity level (e.g. need to calculate on a sample but
only on a semantic feature coordinate within a sample) or even lack of sensitivity estima-
tion [62, 30, 7]. Some proof is shown in the other works [34]. The wrong methods for DP
composition and sensitivity estimation will lead to inaccurate privacy protection level cali-
bration. Besides, large privacy cost ϵ reported in [35, 62] implies an extremely weak privacy
guarantee. In this section, we re-examine the role of DP composition and DP amplification
according to the performance gap among three different settings. Meanwhile, we compare
the different DP accounting methods under the same sensitivity estimation as Eq. 4.3.1.
Experiment On Different DP Composition and Amplification. The absence of DP
composition will result in the inaccurate final privacy protection level, because it only counts
the privacy cost of one-step of training to produce the DP-protective representations without
all-steps composition. The true total privacy cost would scale to ϵ = O(T ) based on the
basic composition or ϵ = O(

√
T ) based on the advanced composition [26]. We conduct

experiments with three different settings on SST-2 and IMDB datasets: (1) Compose privacy
cost ϵ on all training steps with corresponding calibrated noise without DP amplification.
(2) Compose privacy cost ϵ on all training steps with corresponding calibrated noise with
DP amplification. (3) Account privacy cost ϵ on only one training step with corresponding
calibrated noise with DP amplification and we should note that this is a inaccurate/wrong
case as reported in some previous works because it only counts one-step privacy cost without
DP composition. We use three different PLMs including Bert, Albert, and Distilbert as the
encoder to explore the impact of different models on DP training. All the privacy protection
level calibrations are based on µ-GDP.

The experiment results are shown in Table 4.2. The all-steps composition without DP
amplification performs much worse than those with amplification techniques. Though the

2including its variants such as Albert, Distilbert, and Roberta for some experiments.
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Models ϵ
Accuracy on SST-2 Accuracy on IMDB

all-steps all-steps one-step all-steps all-steps one-step
w/o amplification w/ amplification Inaccurate w/o amplification w/ amplification Inaccurate

Bert
1 59.40 82.45 90.37 58.79 79.24 89.38
4 74.77 88.88 90.14 76.22 87.42 88.04
8 86.12 90.60 90.83 86.77 88.42 88.90

Albert
1 57.57 80.39 86.58 57.94 78.89 88.83
4 72.82 81.19 84.86 70.35 86.15 88.66
8 82.91 86.24 83.60 84.95 87.19 88.40

Distilbert
1 59.40 81.54 88.19 58.15 78.92 89.02
4 75.57 87.16 88.76 76.18 86.15 88.46
8 84.75 89.68 90.02 84.94 88.10 88.95

Table 4.2. Accuracy of re-exam on three DP composition and DP amplification settings.

one-step DP composition achieves relatively high accuracy and it seems that privacy im-
plementation has no negative impact on the utility, the ϵ of them only accounts for one
training step privacy cost rather than the whole training procedure and thus cannot reflect
the true protection level. The correct way is to composite all training steps together by
DP composition as shown by all-steps, where we can find a significant performance drop.
Thus, using DP amplification is necessary which can greatly improve the performance of the
privacy-preserving model, especially under the high privacy level (small ϵ). We can also find
that using Bert as an encoder is better than Albert and Distilbert, which might indicate a
larger PLM is more suitable to be an encoder for differentially private training. Further, in
Fig. 4.5, we show the noise power (variance) required to achieve the corresponding privacy
level ϵ among these three settings with 100k size data samples. To achieve stronger privacy
protection (small ϵ), the all-data composition without amplification requires several times
more noise than those with amplification technique and wrong without all-data composition.
A large amount of noise would dramatically hurt the original semantics and result in a signif-
icant performance drop. Both results demonstrate the effectiveness of DP amplification and
indicate that we need to carefully implement correct DP composition in all training steps.
The all-steps DP composition avoids taking the privacy protection calibration result of one
training step as the whole training procedure result, which is a common mistake in some
previous works.
Comparison of DP Accounting Method. To choose the suitable privacy accounting
method for DP experiments, we compare three different privacy accounting methods, in-
cluding Rényi DP (RDP) [53, 8], µ-Gaussian DP with CLT (GDP+CLT) [20] and Compose
Tradeoff Function [33], under the same sensitivity estimation with 100k steps DP compo-
sition and corresponding DP amplification. The results are shown in Fig. 4.6 and we can
see that to achieve the same privacy level ϵ, RDP requires more noise than the other two.
The Compose Tradeoff Function is a good approximation when the privacy level is high
(small ϵ) but is still worse than the GDP+CLT method in some cases. Therefore, we use
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Fig. 4.5. The relation of privacy level and noise among three different settings.

Fig. 4.6. The comparison of privacy level and required noise among three methods.

the GDP+CLT method under the µ-GDP framework for all our following experiments to
calibrate noise.

78



Fig. 4.7. The comparison of DP composition privacy cost via various methodologies.

4.4.3. Privacy-Accuracy Trade-off on Training and Inference

The ultimate goal is to achieve a reasonable total privacy cost for the entire training
and inference separately. The total DP cost ϵ, which is a function of training steps, boosts
using the advanced composition method [26] compared with our Gaussian private training
method, as shown in Fig. 4.7. The greatest saving of privacy cost of our method is due to
the proposed DP layer benefits from the model’s inherent randomness, i.e. sub-sampling for
training and a tight DP composition. Therefore, we can calibrate the noise power tightly as
Algorithm 2 so as to achieve a better privacy-accuracy trade-off.
Baseline. To protect text privacy at the token-level, a relaxation of the standard DP defini-
tion known as dχ-privacy [17] and the corresponding mechanisms [30, 81, 62] have recently
been proposed. Because of the unique mechanism used, sampling amplification and tight
composition are still absent. As a result, only the DP cost of each training step can be
calculated in previous methods [30, 81, 62]. To account for the total privacy cost for all
data used at sequence-level protection, as far as we know, the best way for them is to apply
the advanced composition [26] as Eq. 2.3.3 to achieve an overall privacy cost.

We provide the advanced composition of existing DP text protection methods using dχ-
privacy as well as the utility of the null privacy case, which serves as the upper bound.
Training Phrase. We first compare the performance of our proposed method with previous
works [30, 81, 62] at different DP cost constraints for the entire training datasets. Since
none of the existing methods considers the privacy protection of inference data, we consider
this case separately in the next paragraph. To make a fair comparison, we select the smallest
d for neighbor search as a lower bound from Fig. 3 in paper [62], which gives the strongest
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Fig. 4.8. Accuracy vs. training privacy on QQP.

Fig. 4.9. Accuracy vs. training privacy on SST-2.

privacy. For both QQP and SST-2 datasets, it is shown consistently in Fig. 4.8 and Fig. 4.9
that missing a tight DP accounting method results in the total privacy parameter ϵ scaling
to more than 5000 in the existing works, which does not guarantee any privacy for the whole
dataset at sequence-level even though they provide reasonable privacy protection for each
step. Moreover, due to the random noise applied to the embedding layer, the performance
of these methods [30, 62] degrades significantly compared to the null privacy case. These
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Inference ϵ
SST-2 Inference Accuracy QQP Inference Accuracy

no USDPA +USDPA +USDPA (Retrain) no USDPA +USDPA +USDPA (Retrain)
0.3 76.72 +1.25 +3.31 75.83 +1.17 +3.82
0.6 78.44 +0.77 +1.72 78.72 +0.53 +1.29
1 78.90 +0.80 +1.25 79.67 +0.11 +0.64
3 80.70 -0.19 +0.77 79.82 +0.10 +0.69
6 81.30 -0.46 +0.69 80.47 -0.29 +0.66
9 81.53 -1.60 +0.14 80.74 -0.15 +0.47

Table 4.3. Accuracy improvement by USDPA algorithm with different setting at various
privacy level for inference data.

models even tend to become a random classifier when ϵ = 5100, but still with weak privacy
protection. By contrast, our proposed model with Algorithm 3 improves the performance,
which approaches the null privacy case for the SST-2 dataset for both the LSTM and BERT
encoders. Moreover, it is observed that the performance loss to the non-DP version of
the BERT model is larger than that of the LSTM model because its large representation
dimension is more sensitive to clipping and noise.
Inference Phrase. We further test the proposed up-sampling DP amplification algorithm
(USDPA) for accuracy improvement. First, we directly apply the USDPA Algorithm 4 on
inference/query data to check the improvement based on the model obtained by the training
phrase which provides protection for training data. The results are shown in Table 4.3,
where we can find the improvement when ϵ ≤ 1, but degradation on large ϵ ≥ 3. Though
such a model can protect both training and inference data now, in this case, the noise power
for inference is not consistent with the training case. For example, the amplification effect
depends on the size of the sampled set. If the size gap between the training set and the
test set is large, the injected noise amount for the latent representation of the training and
inference stage will be significantly different, which in turn hurts the model robustness. The
change of ϵ would lead to the same problem of misalignment of noise amount, as the privacy
level is not linear to the change of noise amount as shown in Fig. 4.6. Therefore, when ϵ is
relatively large (e.g. ϵ > 3), the training stage requires more noise than inference. The noise
amount calibrated by the training set for model training but applied to the inference set
might lead over-protective problem and thus results in the degradation of accuracy. As we
mainly aim at protecting inference data here, a common practice [44] is to retrain the model
with the noise amount calibrated by the size of the inference set and then apply the USDPA
algorithm for DP amplification. Though the noise for the training phrase is calibrated by
inference set within the retrained model, it can still provide protection for training data to
some extent. The above results show that the up-sampling technique improves accuracy, and
the stronger the privacy guaranteed, the larger an accuracy gain is obtained. In practice,
the retrain procedure is optional according to the dataset size, and we can directly apply
USDPA to inference phrases in most cases.
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Method MNLI QQP QNLI SST-2 Avg.
Yu et al. (2021) [79] - 78.6 - 84.8 - 86.2 - 91.5 - 85.28
Li et al. (2021) [41] 82.29 83.22 85.41 86.15 84.62 84.81 86.12 85.89 84.61 85.02
Ours-Private-Bert 76.80 78.65 86.40 86.95 84.88 85.77 87.50 89.79 83.90 85.29

Ours-Private-RoBerta 79.36 81.65 85.49 86.87 84.09 86.00 82.91 87.84 82.96 85.59
No Privacy Bert 84.52 90.65 90.61 92.31 89.52

No Privacy Roberta 86.19 91.20 91.64 93.69 90.68
ϵ = (RDP) 3 8 3 8 3 8 3 8 3 8

ϵ ≈ (µ-GDP) 2.52 5.83 2.53 5.85 2 4.75 1.73 4.33 <2.53 <5.85

Table 4.4. The comparison with centralized training methods.

Comparison with Centralized Training. We also compare our local differentially pri-
vate training model with existing start-of-the-art centralized differentially private training
models [79, 41] under the same privacy level and model size. These centralized training
methods try to achieve a better privacy-utility trade-off by fully fine-tuning PLMs with DP
gradient perturbation and addressing the computational challenge of running the DP-SGD
algorithm with large PLMs.

From the efficiency perspective, although the two centralized training methods exploit a
re-parameterized gradient perturbation method and a memory-saving technique to improve
the training efficiency, they still require 6 times more time for each epoch training compared
with our GauDP model under the LDP setting. On the effectiveness side, the privacy-
accuracy comparison is shown in Table 4.4. For fair analysis, we implement our Gaussian-
based DP training under two privacy levels ϵ accounted by RDP and µ-GDP with Bert and
Roberta following Yu et al. [79] and Li et al. [41], respectively. We can find that our method
performs better on three datasets except for MNLI, especially under the strong privacy
protection level. This might be because the semantic change by the privacy-preserving
operation is more sensitive for the natural language inference prediction in MNLI. Besides,
the Roberta encoder performs well in two natural language inference tasks, while the Bert
encoder is good at the other tasks. The results indicate that we need to choose a suitable
encoder with DP protection for different tasks.

4.4.4. Detailed Analysis

The design of the entire local differential privacy-preserving NLP model makes several
impacts. Here, we conduct a series of experiments to analyze these impacts, aiming to gain
insight into how to achieve a better privacy-utility trade-off.
DP-Layer Implementation Position Impact. We first analyze the implementation po-
sition impact of the proposed DP layer. We apply it after the embedding layer as ex-
isting works [30, 62, 81] shown at Fig. 2(a) and after the encoder as other previous
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Training ϵ
QQP SST-2

Token Rep. Latent Rep. Token Rep. Latent Rep.
0.3 71.53 75.83 68.23 76.72
0.6 72.85 78.72 71.33 78.44
1 74.25 79.67 73.32 78.90
3 74.51 79.82 73.51 80.70
6 75.51 80.47 74.20 81.30
9 75.71 80.74 74.54 81.53

Null Privacy 83.11 83.91

Table 4.5. DP layer applied to the token representation versus that applied to the latent
representation base on Bi-LSTM model within µ-GDP accounting framework.

Fig. 4.10. Effectiveness and efficiency relation influenced by the sub-sampling rate for train-
ing.

works [44, 35, 38, 52] shown at Fig. 2(b), respectively. Table 4.5 illustrates their privacy-
accuracy results. The difference between them is where to inject the noise, on token repre-
sentation output by embedding layer or latent representation generated by the encoder. We
want to observe the suitable position for differentially private training. Compared with ap-
plying to latent representations, being applied to the token representation is more sensitive
to the random noise privatization and results in performance degradation for downstream
tasks. Using the DP-layer directly on the latent representation, on the other hand, improves
accuracy by 4% to 8% on both QQP and SST-2 datasets.
Sub-sampling Rate Impact. We also explore how the sub-sampling rate ptrain affects
model accuracy and training efficiency. The smaller the ptrain, the smaller the sampled batch
size, and thus the slower the convergence. However, according to Eq. 4.3.7, smaller ptrain

leads to larger DP amplification, resulting in a lower calibrated noise power. As a result,
there might be a "best" ptrain to choose from. Here, we pre-define the privacy cost ϵ = 6 for
SST-2 and QQP datasets to test the effect of ptrain. The results of Fig. 4.10 agree with our
intuition, and there is a ptrain that produces the highest accuracy given a fixed privacy cost.
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Fig. 4.11. The relation between privacy cost, sampling rate q · pquery and the query times
to complete all the test samples.

Model ϵ IMDB AGnews DBpedia SNLI Avg.

Bert+Laplace
1 69.37 58.55 61.86 69.55 64.83

2.5 76.41 68.07 71.08 74.92 72.62
4 78.79 71.80 73.37 77.54 75.28

Bert+Gaussian
1 79.63 70.96 75.68 80.01 76.57

2.5 82.68 80.25 86.73 83.81 83.37
4 87.42 83.23 87.11 85.23 85.75

Null Privacy 89.01 93.26 99.52 89.98 92.94

Table 4.6. Accuracy of the noise type generated by different DP mechanisms on four
datasets.

In practice, we can try to tune this parameter to achieve "optimal" performance based on
demand.
Up-sampling Rate Impact. Similar to the above analysis, we examine the impact of
λ·pquery in USDPA Algorithm 4 for inference. It is expected that the smaller the λ·pquery is, the
larger the accuracy gain we can obtain from the DP amplification. However, it is also evident
that we need more sampling times and inference steps to finish all the test samples, which
further increases the privacy cost. Consistent with the above analysis, Fig. 4.11 illustrates
the relation among sampling rate, query times, and corresponding privacy level ϵ. In practice,
we can determine specific λ · pquery values based on query time and privacy protection level
requirements. The ratio of fictitious data to true data is set to 0, 0.5, 1, 1.5, . . . , 8.5, 9, in our
experiment as shown in Fig. 4.11, and λ · pquery is set to be the reciprocal of total data size.
Based on the results, we can set the sampling rate according to the actual required privacy
protection level and the efficiency limits.
Noise Type Impact. The types of random DP noise are generated by the various DP
mechanisms. These typical random noises are sampled from a specific distribution (e.g.
Laplace or Gaussian). Thus, the noise types might have a specific influence on downstream
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Sensitivity C SST-2 IMDB AGnews QNLI
σ Acc. σ Acc. σ Acc. σ Acc.

1 0.75 82.34 0.94 79.63 0.67 71.56 0.68 82.26
0.9 0.67 81.65 0.85 79.24 0.61 71.96 0.61 82.15
0.7 0.52 82.45 0.66 78.52 0.47 71.61 0.48 81.12
0.5 0.37 77.87 0.47 78.67 0.34 70.47 0.34 81.12
0.3 0.22 81.42 0.28 79.09 0.20 70.00 0.21 81.22
0.1 0.07 78.10 0.09 76.26 0.07 68.72 0.07 78.52

Table 4.7. Accuracy on four datasets with different sensitivity value C and noise variance
σ under ϵ = 1 protection level.

tasks. Most current works [30, 62, 38, 35] use the Laplace mechanism to achieve DP
protection because its accounting framework makes it easy to estimate the privacy level.
Here, we investigate the influence of noise type by applying our method to the different
downstream tasks. We fix the privacy level ϵ and calibrate the required noise power by the
Laplace mechanism with RDP and Gaussian mechanism with µ-GDP to evaluate the model
performance. The results are shown in Table 4.6, the Gaussian mechanism performs better
than the Laplace mechanism in all cases. This might be because the Laplace distribution is
sharper than the Gaussian distribution which results in the random Laplace noise having a
more erratic effect on semantic changes. Thus, designing a DP training algorithm that can
accurately calibrate the privacy level under the Gaussian mechanism may be the appropriate
approach.
Sensitivity and Noise Power Tuning. As mentioned in Sec. 4.3.1, we need to clip the
latent representation with value C to bound the sensitivity for privacy calibration. Though
the smaller the parameter C, the less noise is required which can improve the model utility.
However, a small clip value of C will hurt the semantic information of the latent vector
and result in performance degradation. Therefore, the balance between sensitivity value and
required noise power is difficult to control in practice. Here, we provide an empirical analysis
of it by evaluating four popular datasets with our GauDP model using the Bert encoder.

The experiment results are shown in Table 4.7. We can see each dataset would have
its most suitable sensitivity clip value C for the best accuracy. Though the required noise
variance is positively related to sensitivity, the larger C is not appropriate in most cases.
In practice, the DP parameter C is a hyper-parameter to be carefully tuned to balance
the trade-off between utility and privacy which is similar to the learning rate. Its value
determines the corresponding noise variance and model accuracy.
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4.5. Conclusion
In this chapter, we study how to protect the privacy of local user data while keeping the

model accuracy by designing a Gaussian-based local differentially private model (GauDP). It
protects the privacy of local user data at the sequence-level by producing private latent rep-
resentations while keeping the model’s accuracy. Specifically, we propose a DP-Layer based
on the Gaussian mechanism with sensitivity bound for privacy calibration. Two algorithms
for training and inference phrases via implementing DP composition and DP amplification
by sampling techniques within the µ-GDP accounting framework are proposed. Extensive
experiments show that the GauDP model successfully reduces calibrated noise and achieves
a significant accuracy improvement while lowering total privacy costs to less than 10 for both
the training and inference stages. A series of detailed analyses provide additional insights
into privacy-preserving NLP and generalize future explorations.
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Chapter 5

Conclusion and Future Work

Data privacy is a growing problem in modern life. The great predictive power of neural
models comes with great privacy risks, which might enable user privacy leakage during
deep learning training with a large-scale corpus. Despite the fact that some efforts for text
protection have been made by various privacy-preserving methods, there are only a few works
in differentially private text privatization, probably due to its intrinsic difficulty. Better DP
protective algorithms for provable and quantifiable privacy guarantees are thus needed. This
thesis attempts to study the strong differential privacy for text protection, which aims to
improve the DP-NLP task performance from two perspectives: directly privatizing raw text
or producing DP-protective latent representations.

The core issue of text protection is how to maintain good utility and strong privacy
protection at the same time under a practical scenario. However, most previous works fail
to do so, due to over-protection or inaccurate privacy calibration. In this study, we consider
a local privacy setting where the data owners can choose to privatize their text locally by a
certain text privatization mechanism before releasing them. We propose two methods based
on producing differentially private text or differentially private latent representation to push
the privacy-utility trade-off boundary. The first method is a customized differentially private
text privatization mechanism named CusText that provides adaptive privacy protection at
the token-level. The CusText integrates a novel sampling function by designing a suitable
score function on top of the Exponential mechanism and providing each input token its own
customized output set to boost the utility of privatized text. We also propose two new
text privatization strategies to improve the utility of privatized text without compromising
privacy. The second method is a Gaussian-based local differentially private model named
GauDP that protects the privacy of local user data at the sequence-level by private latent
representations while keeping the model’s accuracy. The GauDP model includes a non-
parametric DP-layer applied to the latent representation on the user side, DP amplifications
for training/inference data via sub-sampling/up-sampling, tight DP composition, and noise



calibration algorithms for privacy accounting based on Gaussian mechanism and µ-GDP
framework.

To understand the function of each component of the methodology, our experiments are
conducted on several text classification datasets with various models. The experimental
results and the comparison with existing works show the effectiveness of our approaches on
both the protection of text privacy and the utility of the protection schema. The experiments
also provide more insights into privacy-preserving NLP.

Despite the good results we obtained in our experiments, there is still a long way to go to
further explore the cross-area of NLP and DP. Towards better text protection, the method
can be improved in several ways in the future. On one hand, to produce private text, we can
design a more advanced customized mechanism by assigning a variable size of the output set
for each input token and looking for a better way to identify the sensitive tokens in the text
rather than based on rules. On the other hand, to produce private latent representations,
we can explore a more efficient and accurate noise calibration privacy accounting algorithm
as well as corresponding DP composition and DP amplification techniques. It is also critical
to designing an algorithm to automatically learn privacy parameters such as clip value and
noise variance. In addition, we can try to reduce communication costs for user-server training
by dimensionality reduction method.
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Appendix A

Mathematical Proof

A.1. DP Guarantee for SANTEXT and CusText
We give the mathematical proof for DP Guarantee in the followings. The main difference

is their applicability in mathematical forms.
dχ-privacy Guarantee for SANTEXT. The proof of SANTEXT [81] can provide ϵ ·
d(x, x′)-DP protection relying on the triangle inequality of d within dχ-privacy notion from
original paper:

Pr[M(x) = y]
Pr[M(x′) = y] = Cx · e− 1

2 ϵ·deuc(ϕ(x),ϕ(y))

Cx′ · e− 1
2 ϵ·deuc(ϕ(x′),ϕ(y))

(A.1.1)

= Cx

Cx′
· e

1
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· e

1
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· e
1
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≤ e
1
2 ϵd(x,x′) · e

1
2 ϵd(x,x′) (A.1.5)

= eϵd(x,x′) (A.1.6)

where Cx = (∑y′∈Y e− 1
2 ϵdeuc(ϕ(x),ϕ(y)))−1, and deuc denotes Euclidean distance.

ϵ-DP Guarantee for CusText. Given the pre-defined sensitivity ∆u = 1 and the con-
straint ∃ M ∈ R s.t., u(x,y) < M , we show the proof of CusText satisfies ϵ-DP guarantee



with Exponential mechanism as below:

Pr[fsample(x) = y]
Pr[fsample(x′) = y] =

e
ϵu(x,y)

2∆u∑
y′∈Y′ e

ϵu(x,y′)
2∆u

e
ϵu(x′,y)

2∆u∑
y′∈Y′ e

ϵu(x′,y′)
2∆u

(A.1.7)

= e
ϵ·(u(x,y)−u(x′,y))

2∆u · (
∑

y′∈Y ′ e
ϵu(x,y′)

2∆u∑
y′∈Y ′ e

ϵu(x′,y′)
2∆u

) (A.1.8)

≤ e
ϵ
2 · e

ϵ
2 · (

∑
y′∈Y ′ e

ϵu(x,y′)
2∆u∑

y′∈Y ′ e
ϵu(x,y′)

2∆u

) (A.1.9)

= eϵ (A.1.10)

The proof, showing CusText ensures ϵ-DP, mainly relies on the triangle inequality of the
score function u(·,·).

To sum up, we can see the dχ-privacy notion is only applicable for the similarity metrics
satisfying triangle inequality of d, while the original ϵ-DP notion has no limitations. This is
the motivation that we design to turn the CusText mechanism from satisfying dχ-privacy to
satisfying ϵ-DP.
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