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Résumé

Dans l’apprentissage fédéré, un modèle global est appris en agrégeant les mises à jour du
modèle calculées à partir d’un ensemble de nœuds clients, un défi clé dans ce domaine est
l’hétérogénéité des données entre les clients qui dégrade les performances du modèle. Les
algorithmes d’apprentissage fédéré standard effectuent plusieurs étapes de gradient avant
de synchroniser le modèle, ce qui peut amener les clients à minimiser exagérément leur
propre objectif local et à s’écarter de la solution globale. Nous démontrons que dans un tel
contexte, les modèles de clients individuels subissent un oubli catastrophique par rapport
aux données d’autres clients et nous proposons une approche simple mais efficace qui
modifie l’objectif d’entropie croisée sur une base par client en repondérant le softmax de les
logits avant de calculer la perte. Cette approche protège les classes en dehors de l’ensemble
d’étiquettes d’un client d’un changement de représentation brutal. Grâce à une évaluation
empirique approfondie, nous démontrons que notre approche peut atténuer ce problème,
en apportant une amélioration continue aux algorithmes d’apprentissage fédéré standard.
Cette approche est particulièrement avantageux dans les contextes d’apprentissage fédéré
difficiles les plus étroitement alignés sur les scénarios du monde réel où l’hétérogénéité des
données est élevée et la participation des clients à chaque cycle est faible. Nous étudions
également les effets de l’utilisation de la normalisation par lots et de la normalisation de
groupe avec notre méthode et constatons que la normalisation par lots, qui était auparavant
considérée comme préjudiciable à l’apprentissage fédéré, fonctionne exceptionnellement bien
avec notre softmax repondéré, remettant en question certaines hypothèses antérieures sur la
normalisation dans un système fédéré.

Mots clés : Apprentissage fédéré, dérive du client, généralisation hors distribution,
oubli catastrophique
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Abstract

In Federated Learning, a global model is learned by aggregating model updates computed
from a set of client nodes, a key challenge in this domain is data heterogeneity across
clients which degrades model performance. Standard federated learning algorithms perform
multiple gradient steps before synchronizing the model which can lead to clients overly
minimizing their own local objective and diverging from the global solution. We demonstrate
that in such a setting, individual client models experience a catastrophic forgetting with
respect to data from other clients and we propose a simple yet efficient approach that
modifies the cross-entropy objective on a per-client basis by re-weighting the softmax of
the logits prior to computing the loss. This approach shields classes outside a client’s
label set from abrupt representation change. Through extensive empirical evaluation, we
demonstrate our approach can alleviate this problem, providing consistent improvement to
standard federated learning algorithms. It is particularly beneficial under the challenging
federated learning settings most closely aligned with real world scenarios where data
heterogeneity is high and client participation in each round is low. We also investigate the
effects of using batch normalization and group normalization with our method and find that
batch normalization which has previously been considered detrimental to federated learning
performs particularly well with our re-weighted softmax, calling into question some prior
assumptions about normalization in a federated setting.

Keywords: Federated Learning, Client Drift, Out of Distribution Generalization,
Catastrophic Forgetting
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Introduction

Machine learning (ML), is a branch of artificial intelligence that uses data and specialized
algorithms to iteratively learn how to perform tasks of interest. Data collection and
availability has increased rapidly in the recent decade and often a single computation node
is infeasible to store all the required data and optimize the machine learning objective
functions necessary to derive insight from it and as we continue to scale ML operations,
the use of a distributed computational frameworks becomes increasingly necessary. In
distributed learning, training data is distributed across a number of interconnected nodes
and the optimization problem is solved collectively by the cluster of nodes. Federated
Learning (FL) is distributed machine learning paradigm introduced by Google [42] that has
become a popular choice for distributed learning due to its communication efficiency and
concern for user privacy.

In FL a shared global model is learned from decentralized data located at a number
of independent client nodes [42, 28, 36, 25]. Motivated by communication constraints,
FL algorithms typically perform a number local gradient update steps before synchronizing
with the global model [42]. This reduced communication strategy is very effective under
independent and identically distributed (i.i.d.) settings but data inhomogeneity across
clients has direct implications on the convergence of FL algorithms and its performance
degrades on clients without i.i.d. data distributions [71]. [26] show that non i.i.d. condi-
tions frequently induce client drift, a phenomenon in which clients progress too far towards
optimizing their own local objective, leading to a solution that has severely "drifted" from
an optimal global solution. Under realistic settings, client data will often have non-i.i.d.
distributions so federated learning algorithms that are able to address the challenges of
convergence and client drift are an important research direction. Prominent examples of
approaches tackling heterogeneous data in a federated learning setting include but are not
limited to [37, 26, 36, 39, 59].

Continual learning is another emerging paradigm in which a model is trained on a
number of tasks sequentially. The learner needs to learn each new task without forgetting



knowledge obtained from the preceding tasks. When learning new information a continual
learning model has a tendency to forget previously learned information. This phenomenon,
termed catastrophic forgetting [41] is typically a focus of study in continual learning
literature. Similar to FL, data heterogeneity in continual learning presents a challenge since
different tasks typically contain data drawn from different underlying distributions. We can
draw a connection between the continual learning problem of catastrophic forgetting and
the client drift problem in federated learning. We consider one round of federated learning
in which C random clients are selected and initialized with a copy of the current global
model. Each client performs a pre-determined number of local update steps to optimize the
objective on their local data. A round ends with an update to the global model achieved by
aggregating the updates from each client. At the beginning of a round, the clients receive
a model previously derived from training on other clients data. As local training proceeds,
the model becomes increasingly biased towards a given client and as discussed in [31, 18],
this can cause client models to rely on spurious correlations to improve their in-distribution
performances creating a situation in which local models to experience a catastrophic
forgetting with respect to data (drawn from distinctly different distributions) of the other
clients. Naturally, aggregating models that have deviated from a joint solution will lead to
degraded results with respect to the global objective. We denote this problem as local client
forgetting and it is covered in greater depth in section 2.1. The ability to achieve a reduction
in local client forgetting would moderate the increase in loss with respect to other clients
data at individual client models. This would increase the ability of local models to generalize
to out of distribution (OOD) data and improve the loss of individual models over the
combined data. Therefore we propose to reduce client drift by tackling local client forgetting.

There are numerous approaches to tackle catastrophic forgetting in the continual
learning literature [27, 38, 12, 53, 14] but we find them to be largely impractical in
the FL setting. Experience Replay methods [12] require access to other clients data,
violating the primordial data communication constraints of FL. Similar concerns exist
for many regularization methods such as elastic weight consolidation (EWC) [27] which
require communicating additional information. Regularization methods can additionally
require many steps to converge due to the additional conflicting objectives [5] and this
computational constraint can hurt convergence of the FL algorithm, a key desiderata. For
the supervised continual learning setting [10, 3] proposed a modification of the standard
cross entropy objective function that truncates the softmax denominator, removing terms
corresponding to classes from old tasks. This simple approach mitigates catastrophic
forgetting by reducing the bias on the model to avoid predicting old classes.

Inspired by the parallels between client drift in FL and catastrophic forgetting in the
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continual learning case, we propose an adaptation of the CL method from [10, 3] to
modify the loss function of each client based on its class distribution using a re-weighted
softmax. We will empirically demonstrate this approach can drastically reduce client level
forgetting in the heterogeneous setting leading to substantially improved overall global
model convergence and final performance. We apply the re-weighted softmax to baseline
methods FedAvg [42], SCAFFOLD [26] and FedProx [36] demonstrating performance
improvements in all cases.

Main Contributions
This thesis addresses the problem of local client forgetting for clients with heterogeneous
data distributions in a federated learning setting. Our main findings and contributions are
summarized as follows:

• We link the concepts of client drift in federated learning with catastrophic forgetting
in continual learning and contextualize the challenge of federated learning in an i.i.d.
setting as local client forgetting.

• We develop the re-weighted softmax (WSM) as a means to tackle local client forget-
ting. It directly tackles the problem of distribution shifts between clients by weighting
class labels present in the local distributions according to the proportions of labels
present in the local dataset.

• We show empirically that WSM is effective in significantly improving performance
outcomes for federated learning models across a broad range of hyper parameters
and under different federated learning conditions such as different fractions of clients
participating in each round or for different scales of data heterogeneity.

• We investigate the role of different normalization methods on FedAvg and Fe-
dAvg+WSM by performing experiments in which we use only batch normalization
(BN) and only group normalization (GN).

• We demonstrate that WSM can easily be added to different federated learning al-
gorithms from the literature and that it provides consistent improvement to these
algorithms.

Outline
The thesis is organized as follows. Chapter 1 provides the background information required
to understand the fundamentals of topics related to this work. It covers distributed learning,
federated learning, continual learning and out of distribution data, providing the motivation
behind the development of each field and open research areas within them. Chapter 2
addresses the formulation of WSM as well as the concept of local client forgetting that
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motivates it. We describe a method of evaluating local client forgetting in a federated
setting and demonstrate the success of WSM in addressing it. Chapter 3 contains the results
of our experiments using WSM. There are four subsets of experiments presented:

• a direct comparison of WSM with FedAvg in which we show that WSM has a positive
effect across a variety of hyperparameters

• an ablation study in which we ablate one parameter at a time to evaluate it’s effect
with and without WSM

• we perform a series of experiments investigating the impact of using batch normal-
ization and group normalization in the federated setting with and without WSM.

• we apply WSM to different federated learning algorithms from the literature demon-
strating its widespread effectiveness and ease of application.

Working Paper
Chapters 2 and 3 of this thesis are based on the working paper “Re-Weighted Softmax Cross-
Entropy to Control Forgetting in Federated Learning", which is currently under review for
the Conference on Computer Vision and Pattern Recognition (CVPR) 2023. As the first
author of the paper, I contributed to literature review, implementation, experiments, and
paper writing. An earlier version of this work was presented at the Neurips 2022 Dist-shift
workshop [30].
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Chapter 1

Background and Related Work

Machine learning is a branch of artificial intelligence that enables systems to learn and
improve from information/experience without being explicitly programmed. Typical subsets
of machine learning include the following:

• Supervised Learning: the ML system is provided with a set of labeled data and since
the desired outcome is know, the model recieves feedback on it’s predictions and
adjusts its weights appropriately until it has converged to a solution

• Unsupervised Learning: The ML system is given a set of unlabeled data with no
predefined output expectations. The algorithm uses the data to derive patterns and
underlying similarities that lead to insights about the provided data.

• Reinforcement Learning: The ML system operates in a virtual environment where a
reward is provided for actions taken to achieve a goal.

At the core of ML is the use of large sets of training data which allows ML models to search
for and model patterns within the data. Given a set of n input/output pairs x ∈ Rd and
y ∈ R, respectively and a loss function f(w) = ℓ(xi, yi, w) where w are the parameters of the
model, a finite sum objective function is defined as follows:

min
w∈Rd

1
n

n∑
i=1

fi(w) (1)

Equation 1 is a general formulation that can be applied to a range of machine learning prob-
lems such as linear or logistic regressions, support vector machines or more complicated,
non-convex models including neural networks [28]. Model parameters are learned by opti-
mizing the objective function by minimizing the error function. Because the error function,
ℓ(xi, yi, w) is a continuous function of w, its smallest value will occur at a point in weight
space such that norm of the gradient of the loss function vanishes → ||∇ℓ(xi, yi, w)|| = 0



[8]. Gradient descent(GD) [44] is an optimization algorithm used to train machine learning
models by iteratively finding a solution to equation 1 (sub-gradient descent is used for non
smooth functions). This is done using equation 2 where the parameter η is the learning rate
that governs the step size GD will take in the optimal direction for optimization and t is a
given update round.

wt+1 = wt − η∇f(wt) (2)

Since the number of samples n is typically very large, GD is an impractical optimization
method and stochastic gradient descent(SGD) [51] is used instead. In SGD, a sample or a
subset of samples i ∈ {1, ..., n} is chosen uniformly at random and the gradient is calculated
using equation 3.

wt+1 = wt − η∇fi(wt) (3)

This chapter will provide the fundamentals required to understand the core concepts covered
in this thesis including distributed learning and federated learning (a subset of distributed
learning central to this work). Within federated learning, a particular area of focus will be
data heterogeneity between clients along with the related topics of catastrophic forgetting
from continual learning, distribution shifts and out of distribution generalization. Some
specific FL algorithms developed to address client heterogeneity will be given more in depth
coverage and the concepts of batch normalization and group normalization which are relevant
to a subset of our experiments will also have their fundamentals covered.

1.1. Distributed Learning
With the increased availability of data in the last decade, new challenges have arisen in

machine learning regarding the scalability and efficiency of optimizing models with respect
to available computational and memory resources [46]. One of the most promising avenues
for scaling up storage and compute resources for large-scale learning is distributed learning in
which the training data is stored in a distributed fashion across a number of interconnected
nodes and we solve the objective function in equation 1 for distributed learning. This can
include a range of scenarios from just two different RAM/computer/nodes, to a situation
in which data are distributed across multiple data centers around the world, and across
many nodes in those data centers. In the system described above, no single processing unit
will have direct access to all the data and the optimization problem will then be solved
collectively by the cluster of nodes [28].

18



New computational challenges arise in a distributed learning situation, including diffi-
culty with optimization procedures and the added practical consideration of the high
cost of sharing and communicating parameters across multiple nodes. To illustrate the
additional complexity inherent in distributed learning, section 1.1.1 outlines the structure
of a distributed learning system and illustrates how gradient descent would proceed under
such conditions. Additionally, in much of the distributed learning literature data is assumed
to be evenly distributed, with an assumption that each node possesses an i.i.d. sample from
the underlying distribution. [28, 42] indicate these assumptions are often too strong and
bring attention to a sub domain of distributed learning which they call federated learning
(described in section 1.2) in which none of these assumptions hold.

1.1.1. Distributed Stochastic Gradient Descent

As outlined at the beginning of section 1, a classical supervised ML problem consists of op-
timizing an objective function such as equation 1. This function is optimized incrementally
over many epochs to minimize the error of prediction using SGD (equation 3). Distributed
SGD has an added layer of complexity due to the distributed nature of the computations,
the system consists of server nodes and worker nodes with different responsibilities in the
system [32]. The training data is partitioned among all of the worker nodes and at each
training iteration the workers independently compute the the gradient using their own
training data. Since an individual worker’s update reflects only its own training on a subset
of the data, the subgradients calculated at each client are sent to the server nodes which
aggregate all of them before applying an update to the model parameters. Algorithm 1
outlines the steps taken at each node involved in the computation where Ω(·) is a regularizer
that penalizes high model complexity. Figure 1.1 demonstrates the algorithm pictorially for
additional clarity.

In algorithm 1, the most computationally expensive task is the calculation of the gradient
over all the data so it is distributed between the worker nodes to lighten the load. Workers
compute wT xik so for very high dimensional models this computation would be infeasible on
any single node. However, one of the benefits of distributed learning is that each node works
with only a subset of the data and that worker only needs the weights for which features of
their training set are relevant when making a prediction [32]

1.1.2. Parameter Server

To address some of the challenges inherent in distributed learning, we introduce the concept
of the parameter server. The original ideas behind the parameter server were proposed by
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Fig. 1.1. Steps required to perform distributed subgradient descent [32]

[57] followed by a complete description of the system and an API by [32]. Parameter server
has the following requirements

• Efficient communication: An asynchronous task model and API that can reduce the
overall network bandwidth for ML algorithms

• Flexible consistency models: Relaxed consistency helps reduce the cost of synchro-
nization and offers developers the choice between algorithmic convergence and system
performance.

• Elasticity for adding resources: Can add more capacity without restarting a compu-
tation

• Efficient Fault tolerance: Given high rate of failures and large amounts of data,
recovery of tasks is possible if failures are not catastrophic

• Ease of use: API to supports ML constructs such as sparse vectors, matrices or
tensors.

Parameter Server [32], whose architecture is shown in figure 1.2, has nodes that are grouped
into a server group and several worker groups. Server nodes facilitate the running of multiple
algorithms and each node in the server group is responsible for a partition of the globally
shared parameters. Servers can communicate with each other to migrate or replicate param-
eters for scalability and availability. A server manager node is responsible for maintaining
the consistent view of the servers, it monitors node liveness and assigns parameter partitions
to each server node. Each worker group is typically assigned to an application and will

20



Algorithm 1 Distributed Subgradient Descent [32]

Task Scheduler:
issue LoadData() to all workers
for iteration, t = 0, 1,..., T do

issue WorkerIterate(t) to all workers
end for

Worker r = {1, ...m}:
function LoadData()

load a part of training data {yik, xik}nr
k=1

pull the working set w(0)
r from servers

end function
function WorkerIterate(t)

gradient g(t)
r ←

∑nr
k=1 ∂ℓ(yik, xik, w(t)

r )
push g(t)

r to servers
pull w(t+1)

r from servers
end function

Servers
function ServerIterate(t)

aggregate g(t) ← ∑m
r=1 g(t)

r

wt+1 ← w(t) − η(g(t) + ∂Ω(w(t))
end function

Fig. 1.2. Architecture of a parameter server communicating with several groups of workers.

communicate with the sever groups for pulling of parameters and pushing of gradients as
mentioned in section 1.1.1 but they do not communicate amongst themselves. A scheduler
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node exists for each worker group, it assigns tasks, monitors progress and reassigns tasks if
workers are added or removed from the group. Generally the same worker node leverages
data stored locally by running iterative algorithms on the same dataset. Parameter names-
paces can be used for parallelizing work further among multiple worker groups. In addition,
same parameter namespace can be shared among multiple groups if additional resources are
required. The objective of the parameter server is to simplify distributed machine learning.
The shared parameters are stored as key, value pairs and distributed across a group of server
nodes. Any node has the capability to push its local parameters and pull parameters from
remote nodes. Tasks are designed to be asynchronous and run in parallel.

1.1.3. Distributed Learning vs. Federated Learning

Federated learning is a subset of distributed learning and appears very similar at first
glance. The parameter server framework detailed in section 1.1.2, is a typical feature in
distributed machine learning, it stores data on distributed worker nodes that perform the
bulk of the computations and allocates data and computing resources through a central
scheduling node that controls all of these decisions. In federated learning the client node
has complete autonomy over its local data and decision to share its model updates or not
and with what frequency [42, 28]. This additional autonomy of the client nodes makes
the federated learning setting more complex [66], federated learning also places a strong
emphasis on data privacy at the client nodes creating additional constraints not required
for distributed learning in general.

Another feature of FL is that data is massively distributed, so the data is stored
across a much larger number of nodes than it typically the case with distributed learning.
With FL, the number of nodes participating in an update round can be much larger than
than the average amount of data stored at each node [28] whereas with distributed learning
data is partitioned by the scheduling node to take maximum advantage of available resources
so fewer nodes handle more data [32]. Logistically, in distributed learning, nodes will be
able to communicate relatively quickly and reliably unlike in the case of FL in which some
clients may suffer from weak connections, slow networks or dead batteries [42].

1.2. Federated Learning
Federated learning (FL) is a distributed learning paradigm that aims to preserve privacy
by leaving training data distributed on individual nodes, and learning a shared model by
aggregating updates computed locally. Different FL architectures exist for data structures
across nodes [66] with the most typically used architecture being the one described above,
for a horizontal FL system. A typical assumption is that FL clients are honest and the server
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is honest-but-curious so no information leakage from participants to the server is permitted
[66]. Optimization in a federated learning setting has some key properties, outlined below,
that distinguish it from the typical distributed optimization problem [28, 42]

• Data is massively distributed, meaning the number of nodes can be very large and
the average number of training examples stored per node can be comparatively small

• Data at each node may be drawn from a different distribution than the distribution
that exists over the complete dataset from all nodes K and the number of samples
at each node may also vary considerably between nodes

• Communication may be limited or sporadic since mobile devices are sometimes
offline or on slow or expensive connections.

For federated learning, training data is distributed and optimization occurs over K clients
with each client k ∈ 1, ..., K having data Xk with number of samples nk, drawn from distri-
bution Dk. We define the total number of samples across all clients as n = ∑K

k=1 nk. The
data Xk at each node may be drawn from different distributions and/or may be unbalanced
with some clients possessing more training samples than others. We modify the finite sum
objective given in equation 1 to give the typical objective function for federated optimization
in equation 4.

min
w∈Rd

K∑
k=1

nk

n
L(w, Xk), (4)

with L(w, Xk) measuring client k’s local objective, and w representing the global model
parameters.

In local SGD [58] each participating device performs a single local SGD step and
then communicates their updated local models back to the server. Since the communication
cost between two nodes is orders of magnitude larger than the cost between processor and
memory on the same node, communication efficiency in federated learning of upmost impor-
tance [28]. The most commonly used baseline in federated learning is the FedAvg algorithm
proposed by [42] which is a generalization of local SGD. FedAvg reduces communication
costs by allowing clients to train multiple iterations successively by performing a number
of epochs of local SGD on each client before sending the locally updated model weights to
a central server for averaging. There are many possible variations of FL algorithms but in
general, they follow a similar structure to FedAvg which proceeds as follows:

• client selection: for a set of K clients, K ∗ C are selected at each round {ti}T
i=1 ,

where 0 < C ≤ 1 is a pre-determined fraction.
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• client updates: At the beginning of round, client models are initialized with the
current weights of the server model. Each client selected for the round performs E

local iterations of SGD.

• server update: The weights of the individual client models are aggregated to form
an update to the shared global model.

The steps in the FedAvg algorithm are outlined explicitly in algorithm 2.

Algorithm 2 FedAVG [42]

Server Executes:
Initialize w0
for each server epoch, t = 1,2,3,... do

m← max(C ·K, 1)
St ← random set of m clients
for k ∈ St in parallel do

wk
t+1 = ClientUpdate(wt)

end for
wt+1 ←

∑K
k=1

nk

n
wk

t+1
end for

ClientUpdate(w):
Initialize w0 = w
B ← split client data into batches of size B
for each local client iteration, i ∈ {1, 2, .., E} do

for b ∈ B do
w ← η∇ℓ(w, b)

end for
end for
return w to server

1.2.1. Applications and Challenges in Federated Learning

Federated learning has broad applications including learning from personal devices such
as smart phones which possess a wealth of data that can assist in training text prediction
models or facial recognition software [42, 35]. Organizations or institutions can also be
viewed as clients in a FL system, hospitals are examples of organizations that contain a large
amount of patient data which has major potential benefits for applications such as finding
tumors in medical imaging or genome sequencing [50]. Modern IoT networks, such as
wearable devices, autonomous vehicles, or smart homes contain numerous sensors that allow
them to collect, react, and adapt to incoming data in real-time. In this case data like traffic
conditions from autonomous vehicles or information from home monitoring devices can
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help to train models that will benefit users in everyday tasks [35]. In all of the previously
mentioned scenarios, privacy is an important consideration. Hospitals operate under strict
privacy practices, and can face strong legal, administrative, or ethical constraints that
require data to remain local. While privacy is more relaxed in the other two contexts,
smartphone and IoT users may also be sensitive about sharing their data in order to protect
their personal privacy or to save limited bandwidth/battery power of their phones. A key
focus of FL are its ability to train on massively distributed data and privacy advantages
compared to distributed learning which motivate the need to keep each clients raw data
private. As such FL offers a promising solution for these situations since it can train models
or greater volumes of data and facilitate private learning between devices or organizations.
However, recent work has indicated that sharing information such as model updates which
are required in the training process can also leak sensitive user information [7, 43]. Privacy
in a federated setting is challenging for existing privacy preserving algorithms such as
differential privacy [16]. FL requires rigorous privacy guarantees, computationally cheap
methods that are also communication-efficient, and tolerant to dropped devices. All of this
must be achieved without compromising the accuracy of the training method [35]

Convergence of FedAvg has been widely studied for both i.i.d [58, 61, 49] and non
i.i.d settings [36, 17, 48, 62, 69]. Convergence guarantees can be difficult to achieve for
FL since a number of assumptions are made that do not necessarily hold in a federated
setting. In the i.i.d. case results often rely on the premise that each client node is a copy
of the same stochastic process, which is not the case in typical federated settings [35]. For
the non i.i.d. case, simplifying assumptions such as convexity for [62] or uniformly bounded
gradients for [69] are made in order to achieve convergence guarantees. Heterogeneous data
settings offer additional challenges, convergence deteriorates as a function of increasing
heterogeneity [21, 71] and [36] show that when data is not distributed i.i.d. across clients
networks can even begin to diverge.

1.2.2. Distribution Shifts in Federated Learning

The goal of an ML model is to learn the underlying distribution of the data it is trained
on with the goal of leveraging this learned distribution to generate accurate predictions for
unseen data. Traditionally the test data used to evaluate a model during development comes
from a stationary distribution with the same underlying distribution as the training data.[22]
define three types of distribution shift: covariate shift, label shift and concept drift. Given
a traditional, supervised ML model, a set of inputs X and a set of outputs Y , the joint
distribution from which we want the model to learn can be defined as P(X, Y ). The joint
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distribution can be decomposed in two ways:

P(X, Y ) = P(X|Y )P(Y ) (5)

P(X, Y ) = P(Y |X)P(X) (6)

Formally, covariate shift is when P(X) changes but P(Y |X) does not, this occurs when
feature distributions differ across parties. Concept drift occurrs when P(Y |X) changes but
P(X) stays the same, in such a situation the distribution of features remains the same
but the relation of those features to their labels has shifted. Both of these shifts refer to
decomposition 6. Label shift which refers to 5 is when P(Y ) changes but P(X|Y ) does not,
this occurs when label distributions differ across parties [33, 22].

In a federated learning setting, one significant challenge encountered when training
on decentralized data is heterogeneity of samples across clients [25, 34]. Partitions
contain data generated under different conditions which can reasonably be expected to
create different local distributions at each client. For the case of supervised multi-class
classification, which is the focus of this thesis, users may frequently be missing data from
an entire class or multiple classes of the global underlying distribution. For example,
smartphones containing images of sailboats will be more concentrated in coastal regions
than in desert regions. This type of distribution shift corresponds to a label shift between
clients which is our focus in this work. During FL training, data at each client are sampled
from these local distributions, creating different local objectives. When clients progress too
far towards minimizing their own objective, local models drift from one another, degrading
the performance of the shared global model and slowing down convergence [67, 37, 26].
Performing several local client optimization steps at a time saves on communication costs
which is crucial for large scale federated learning systems [28, 42] therefore creating an
environment in which each client is able to generalize well to the unseen distributions of the
others is a desirable goal. Unfortunately many machine learning models do not generalize
well to data that is not drawn i.i.d. from the training set distribution. This problem is
known as out of distribution generalization [54]. A clients local data will be biased and
the local models trained on this data may be relying on spurious correlations to improve
their performance [18, 4]. In order to achieve good generalization on unseen OOD data,
the classifier must model invariant mechanisms, shared across environments [45] these
features are difficult to identify and model while spurious correlations are much easier to
spot and model but are detrimental to generalization. In the FL environment, an algorithm
capable of OOD generalization will learn these invariant mechanisms while ignoring spurious
correlations. Local models that achieve better generalization will also reduce client drift.
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Several attempts have been made to alleviate the problem of client drift through var-
ious methods. One approach centers around knowledge distillation to regulate local
training, [72] and [39] ensemble information about the global data distribution and
disseminate it to clients via additional models trained at the server. These methods possess
the added risk of privacy attacks and while [72] take steps to mitigate this risk, their
method requires the existence of an unlabeled dataset, which may not be available in all
settings. Other approaches attempt to constrain gradient updates from the clients to reduce
the impact of client drift. FedProx [36] adds a proximal term to the local objective to
limit the impact of variation in local updates. This term is weighted with an additional
hyperparameter, µ which must be tuned appropriately. [26] propose SCAFFOLD, an
algorithm to control client drift using control norms to modify client gradients. The control
norms estimate the drift at each client use that estimate to correct the local updates. [1]
also estimate client drift for each client but they do this at the server and corrects the
server updates thus avoiding SCAFFOLD’s use control norms and saving on the inherent
communication burden. The general strategy for each of these methods is similar. They
attempt to estimate client drift using gradient updates and then constrain the updates
to reduce the drift. SCAFFOLD has additionally been shown to have unstable accuracy
and has twice the communication burden of the other algorithms due to its use of control
norms required for each client as well as the global model [33]. Our proposed method
modifies the objective functions locally, creating no additional communication burdens
and introducing no additional hyperparameters. It also directly tackles the problem of
the underlying distribution shift unlike the other methods mentioned which attempt to
address client heterogeneity through constrained gradient optimization and/or knowledge
distillation. [59] propose a gradient masking technique that modifies the aggregation of
updates on the server side. This method does directly tackle the problem of distribution
shift and while it has been shown to be effective at achieving better generalization on
non i.i.d. data, our re-weighted softmax is able to take advantage of the structure of the
commonly used cross-entropy loss making it simpler to implement. Additionally, since we
modify the objective functions locally, the re-weighted softmax method is compatible with
any federated optimization method in the literature.

[15] propose HeteroFL which challenges the notion that FL models at the server and
all of the client nodes need to be the same. As part of this work they propose a method very
similar to ours called masked cross entropy. In masked cross entropy the final layer outputs
not associated with labels existing the in the client distribution are masked for each client.
Masked cross entropy is also applied by [19] in their work building off of the previous work
done in HeteroFL. While the methods are very similar, WSM proposes a masking of the
CE loss which offers greater flexibility in label customization at the clients. Additionally,
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masked cross entropy was not the focus of HeteroFL and therefore lacks the focus on
studying its behavior under different FL conditions and applied to different algorithms that
our work on WSM offers.

1.2.3. Heterogeneous Federated Learning Algorithms

Since both SCAFFOLD and FedProx are used as comparison baselines in section 3.5, they
are covered here in greater depth than other algorithms mentioned previously.

FedProx
FedProx [36] improves model performance with i.i.d. data over FedAvg. This is achieved
by limiting the size of local updates by introducing an additional L2 regularization term
weighted by hyperparameter µ to its local objective functions. This has the effect of limiting
the distance between the local model and the global model. FedProx must be tuned carefully
to achieve good model performance, the choice of µ can have a significant effect on training
outcomes since a small µ drastically reduces the effect of the regularization term and a
large µ causes very small local updates which can greatly slow down convergence. FedProx
does require additional computation when compared with FedAvg but its communication
requirements remain the same.

SCAFFOLD
SCAFFOLD [26] considers that non i.i.d. data introduces variance to the learning situation
and thus introduces control norms for both the global and the local models to control the
induction of variance. The control norms are used to estimate the update directions of
the global model and each client and client drift is estimated as the difference between
the global model and each client. There are two approaches proposed to update the
control norms. Either the gradient of the local data is re-computed at the server or by
the previously computed gradients at the client can be reused. The second approach
has a lower computational overhead but the first is more stable. Compared to FedAvg,
SCAFFOLD doubles the communication per round due to the control norms which must
be communicated at every round and it requires greater computational overhead due to the
control norm updates required at every round.

1.2.4. Normalization Methods in Federated Learning

The goal of normalization is to transform features so they exist on a similar scale this results
in improved performance, faster convergence and better overall stability when training
[56]. When training a neural network, weight parameters are adjusted iteratively in an
attempt to converge to an optimal solution. The modification of parameters in previous
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Fig. 1.3. This figure from [63] shows feature map tensors, with N as the batch axis and C as
the channel axis and W and H are the width and height of your input. For each subfigure,
the blue sections are normalized by the same mean and variance showing the differences
between the normalization techniques.

layers has the effect of changing the distribution of the following layer inputs, [23] refer to
this phenomenon as internal covariate shift. Internal covariate shift slows down training by
requiring lower learning rates and careful parameter initialization it also makes some models
difficult to train. The most commonly used normalization methods for neural networks
are batch normalization (BN) [23] and group normalization (GN) [63]. Other options
include layer normalization [6] which estimates normalization statistics directly from the
summed inputs to the neurons in a hidden layer and instance normalization [60] which is
similar to layer norm except that it normalizes across each channel in each training example
instead of summed inputs to the hidden layer. Both layer norm and instance norm have
limited success in visual recognition tasks [63]. Figure 1.3 shows representations of each
normalization method that illustrate how they differ from one another.

Batch Normalization
BN tries to reduce internal covariate shift by applying a normalization step to modify the
means and variances of layer inputs. For an input x, normalization is done for each feature
independently giving it a mean of 0 and a variance of 1. Ideally, normalization would take
place over the entire training set, but with the use of stochastic optimization methods in
ML this is impractical and normalization statistics are calculated with respect to each
mini-batch instead. For a mini batch B of size m, we define mini batch mean and variance
in equations 7 and 8, respectively.

µB = 1
m

m∑
i=1

xi (7)

σ2
B = 1

m

m∑
i=1

(xi − µB)2 (8)
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For an individual input xi ∈ Rd, normalization is applied feature wise, prior to the non
linearity of each layer according to equation 9 where ε is a small constant added for numerical
stability and the k superscript indicates feature k of input i.

x̂
(k)
i = x

(k)
i − µB√
σ2

B + ε
(9)

To restore the representation power of the network a transformation step shown in equa-
tion 10 will follow, where parameters γ(k) and β(k) are learned during optimization.

y
(k)
i = γ(k)x

(k)
i + β(k) (10)

The batch normalization transform BNγ(k),β(k) : x
(k)
i → y

(k)
i combines these operations to

achieve batch normalization during training. During the inference stage a dependence on
mini batches is no longer useful so normalization is achieved using population statistics
instead.

Batch norm has strong empirical performance and despite its limitation of requiring
sufficiently large batch sizes to be effective [63], it continues to be widely used. [23]
attribute the success of BN to its ability to reduce internal covariate shift but this
conclusion is challenged by [52] who find the difference in the mean and variance in
networks trained with and without BN is marginal. They instead suggest BN works by
smoothing the parameter space and gradients which increases the “Lipschitznes” of the loss
function and of the gradients. For reference, we define a function f to be L-Lipschitz if
|f(x1)− f(x2)| ≤ L||x1− x2||,∀x1, x2. The key of this is to make the gradients more reliable
and predictive. Improved Lipschitzness offers increased confidence that a step in a direction
of a computed gradient is a fairly accurate estimate of the actual gradient direction thus
allowing us to take larger steps with greater confidence.

Group Normalization
GN seeks to improve upon some of the inherent weaknesses in BN, in particular, GN is com-
puted independent of batch size, and it is stable in a wide range of batch sizes. If we define a
2D image as i = (iN , iC , iH , iW ) where N is the batch axis, C is the channel axis and H and
W are the height and width axes, we can define the set, Si = {k|kN = iN , ⌊ kC

C/G
⌋ = ⌊ iC

C/G
⌋}

where G, the number of groups is a predefined hyperparameter and C/G is the number
of channels per group which means that the indexes i and k are in the same group of
channels, assuming each group of channels are stored sequentially along the C axis. Group
norm computes normalization statistics along the (H, W ) and the group along the C axis.
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Normalization is then carried out in the same manner as for BN.

Within the context of FL, work by [20] claim that distributed training using BN un-
der non i.i.d. settings is particularly vulnerable to performance issues due to its dependence
on mini batch statistics. Since BN uses µB and σB for training, but an estimated global
mean and variance for validation, if there is a major mismatch between these statistics,
as in the case of non i.i.d. partitions, validation accuracy will be low. They show that
batch statistics across clients vary significantly more in the non i.i.d. case than in the i.i.d.
case and seek to mitigate this effect by using GN in lieu of BN since GN is not dependent
on batch statistics. Additionally, they show that for experiments using BN-LeNet and
CIFAR-10 FedAvg with non i.i.d data partitions, GN performs significantly better than BN.

1.3. Continual Learning
In the quest to develop an artificial general intelligence, we require agents capable of learning
and retaining that knowledge on a variety of unrelated tasks. In continual learning, tasks are
learned sequentially over a period of time and knowledge of previous tasks is retained and
leveraged to learn new tasks [13]. It is therefore critical for intelligent agents to demonstrate
a capacity for continual learning: that is, the ability to learn consecutive tasks without
forgetting how to perform previously learned tasks [27]. CL in real-world settings has proven
particularly difficult since:

• a sequence of tasks may not be explicitly labelled

• tasks may switch unpredictably

• individual tasks may not recur for long time intervals

Continual learning is made difficult by the fact that neural networks suffer from catastrophic
forgetting [41]. In catastrophic forgetting learning a new task causes weights in the network
that are important for previously learned tasks to change in order to meet the objectives of the
new task, thus degrading model performance on previously learned tasks. Several families of
methods have been developed to mitigate catastrophic forgetting. The first class of methods
are architecture based approaches [53] that attempt to grow or modify an architecture over
time to expand its knowledge. In the second class of methods, approaches which store
some subset of old data for rehearsal are applied [40, 12, 47]. Finally, a third class of
methods regularizes the learned parameters to limit drastic weight changes when learning a
new task [27, 70]. None of these solutions are widely applicable in a FL setting since they
typically require some sort of information sharing across client nodes which is prohibited
in the FL framework. A federated continual learning setting has been considered in the
literature [68]. Here each client in the federated network continuously collects data. Our
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work on the other hand considers the standard FL setting where each client maintains a
fixed set of data and draws connections to a notion of forgetting across clients to motivate
a modification of the loss function. [55] have used ideas from continual learning to propose
FedCurv, based on the EWC algorithm [27] from continual learning. FedCurv requires
sending additional information and is not compatible with all FL methods. Along this line,
[64] also proposed an approach inspired from rehearsal methods, generating pseudo data and
adding an additional regularization term. This requires an expensive pseudo data generating
procedure and increases the local training time.
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Chapter 2

Reducing Local Client Forgetting with a
Re-Weighted Softmax Cross-Entropy

2.1. Local client forgetting
The notion of local client forgetting mentioned in the introduction will now be formalized
for a multi-class classification problem. Local client forgetting is a feature of training a FL
model with heterogeneous data. It combines the concept of catastrophic forgetting from
continual learning with the concept of local client drift from federated learning to frame
client drift as catastrophic forgetting on the part of the client model with respect to the
distributions of other clients and the global distribution as the rounds of local SGD progress.

We denote Acck(w), as the accuracy on client k’s local test data, where w are the
model parameters of the model being evaluated on the test data of client k. Local client
forgetting Fki is defined according to equation 11 where wt refers to the global model
parameters after the aggregation step of round t. These wt are used to initialize the local
models at the beginning of round t + 1. wi

t−1 are the model parameters of client i after local
training during round t + 1 (prior to aggregation).

Fki = Acck(wt)− Acck(wi
t−1) (11)

.
For client i where i ̸= k, we observe a performance degradation of the model of client i when
it is evaluated on the data of client k since by optimizing for its own local objective, it has
“forgotten” how to generalize on out of distribution data such as the dataset of a different
client. Figure 2.1 illustrates local client forgetting within a round of federated learning. In
equation 12 we define an average forgetting for a client k’s model evaluated on all of the
K − 1 datasets of other clients.



Fig. 2.1. A global model with knowledge of all classes is sent to all clients participating in
a given FL round. Local training decreases the loss for a clients local data distribution but
tends to simultaneously increase the loss with respect other clients distributions leading to
poor aggregation and overall model performance. Mitigating the effects of local client forget-
ting, which we propose to do with our re-weighted softmax, is capable of greatly improving
model performance under these conditions.

Fk = 1
K − 1

∑
i ̸=k

Fki (12)

In order to demonstrate the impact of local client forgetting and evaluate the effectiveness
of WSM in alleviating this effect, for one round of FL, each clients model is evaluated on its
own dataset and the dataset of every other client selected for the round, both before and
after local training. It is important to note that for FL in general sharing of data between
clients is prohibited. Our evaluation of local client forgetting shares data between nodes
for evaluation purposes only and never as a part of model training. For comparison we
do FedAvg using typical cross entropy (equation 14) and FedAvg with cross entropy using
our re-weighted softmax (equation 15). Figure 2.2 shows client forgetting for ten clients
selected for round 2800 training. On the LHS of figure 2.2 we have the difference heatmap,
the values shown on the heatmap are Fik from equation 11, indicating the forgetting of that
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Fig. 2.2. We show local client forgetting for a given round with and without WSM. The x
axes contain the indices of clients selected for the round where each of the 100 clients have
labels in the set {0, ..., 99}. The Difference heatmaps (LHS) show the difference in accuracy
before and after local training when the kth client’s model is evaluated on the ith client’s
dataset. The final column gives Fk, the average forgetting over all clients. The Post Local
Update heatmaps (RHS) show the accuracy of each client’s model on the other client’s data.

particular client model. Smaller absolute values of Fik indicate less forgetting since there
is less difference in accuracy between the model before and after local training. The final
column gives the average forgetting Fk (equation 12) which is the average of each row of
the heatmap. The “post local update" heatmaps on the RHS of figure 2.2 shows accuracy
of each client model on each other clients dataset. We note that in some cases the accuracy
can completely collapse on out of distribution client data, we observe this particularly when
we evaluate the model of client k on the data of client i and the datasets of client k and
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client i do not share any common class labels.

The difference in forgetting observed when using FedAvg+WSM (top row of figure 2.2)
and vanilla FedAvg (bottom row of figure 2.2) is significant. In the difference heatmaps of Fik

we notice that when adding WSM to FedAvg (top left of figure 2.2), the forgetting values are
all relatively small in magnitude i.e. the difference between Acck(wt) and Acck(wi

t−1) is small
indicating less forgetting. FedAvg without WSM (bottom left of figure 2.2) has several values
farther towards the red end of the heatmap indicating forgetting by that client model after
local training. On the RHS when we examine the accuracy of each model on each other clients
local dataset we observe FedAvg + CE (bottom right of figure 2.2) has a string preference for
it’s own local dataset which is indicated by the markedly better accuracies observed along
the diagonal of the heatmap. FedAvg+WSM however, (top right of figure 2.2) shows no such
preference along the diagonal. In this case we observe similar accuracies clustered along
rows indicating the row representing a particular model has approximately equal difficulty
with all datasets which indicates that WSM has the ability to greatly limit the effects of
local client forgetting by de-prioritizing classes outside of its data distribution and focusing
learning on the classes present. This narrower focus also leads to better overall performance
of the global model after aggregation. The observations made for round 2800 are not unique
and are further confirmed for other rounds as shown in appendix A.

2.2. Re-weighted Softmax Cross Entropy
Based on the work of [10] we know catastrophic forgetting in continual learning can be
reduced by removing terms corresponding to old tasks from the cross entropy loss term,
this reduces the model bias to avoid predicting old classes. Since some federated learning
clients may not possess a complete set of class labels in their distributions and/or will have
class labels present in very low proportions, this same bias to avoid predicting old classes is
a factor in local client forgetting. In our approach, which we call the re-weighted softmax
(WSM), we adapt the approach in [10] for federated learning and scale the terms in the
denominator of the cross entropy loss so they match the clients local distribution. While we
have only attempted this method for stationary distributions, it is extremely flexible and
could easily be applied to a situation in which the label distributions at the client nodes are
evolving over time.

Consider a neural network f : RD → RC where C is the total number of distinct
labels in the complete data distribution across all clients. The standard cross entropy is
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given by equation 13 where y(x) is the label of a sample x and C is the set of all labels
available to the clients.

LCE(Xk, w) = −
∑
x∈X

log exp(fw(x)y(x))∑
c∈C exp(fw(x)c)

(13)

= −
∑
x∈X

[
fw(x)y(x) − log

(∑
c∈C

exp(fw(x)c

)]
(14)

One interpretation of this classical loss function considers the two terms in equation 14 as
a tightness term (the first term) which brings samples close to their representative classes
and a contrast term (the second term) which pushes them away from other classes [9].

We propose to modify the standard cross entropy using a re-weighted softmax (WSM)
which leads to our per-client objective function in Equation 15 where αk ∈ RC is a weight
vector for each client k containing the fraction of each class that makes up the dataset Xk

for that client.

LW SM(Xk, w) = −
∑
x∈X

[
fw(x)y(x) − log

(∑
c∈C

αc exp(fw(x)c)
)]

(15)

We note that in Equation 15 the weighting αk introduced in the second term is a function
only of the labels present in the client data Yk. In a highly imbalanced class scenario as
is often studied for FL, for a class fraction where αc ∈ αk, many αc will be zero or very
small values. This has the effect of removing or substantially minimizing the contribution
of that class to the contrast term. The intuition behind this choice is that aggressive
optimization of LCE for multiple gradient steps during a client update round can lead to
a drastic increase in Ex,y∼Dj ̸=k

[lCE(x, y)] where Dj are the distributions of clients other
than client k. This increase is caused by the contrast term in equation 14 which discour-
ages the local model from ever predicting class labels not present in that client’s local dataset.

Our re-weighted softmax approach modifies the second term of the original cross en-
tropy loss to avoid the excessive pressure that will cause the loss to increase when evaluated
on the datasets of other clients. This re-weighting causes class labels not present in the
dataset of client k to be ignored by the local optimization for that client and encourages
the local model to learn by adapting its internal representation of only the classes present
in its training data. It discourages abruptly shifting representations of classes outside its
local distribution [10]. This thesis empirically demonstrates that using WSM instead of
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traditional cross entropy leads to a reduction in local client forgetting which is defined in
section 2.1.
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Chapter 3

Experiments

3.1. Datasets and Data Partitioning
Datasets used in these experiments are CIFAR-10, CIFAR-100 [29] and FEMNIST [11].
Since local client forgetting occurs when the underlying distributions between clients differ
we require a method of dividing the data between clients such that their datasets are not
i.i.d. Furthermore, we require a means of quantifying how i.i.d. the distributions between
clients so we can investigate the effectiveness of WSM under different conditions. The
method most commonly employed in the federated learning literature was popularized
by [21] where they achieve this by dividing the complete dataset between clients using
the Dirichlet distribution. The Dirichlet distribution is parameterized by α where as
α ← ∞ the distribution at each client that is approaches i.i.d. and as α ← 0 the
distribution at each client approaches a situation where each client possesses only a single
class label. To provide some intuition into what client partitions parameterized by α look
like in practice, Fig. 3.1 shows the data distributions of ten randomly selected clients for
alpha = {0.01, 0.1, 0.5, 100}. Dirichlet distributions parameterized by α = 0.1 and α = 0.5
are commonly used in federated learning literature [21, 48, 33].

In our baseline experiments we use α = 0.1 where the entire training set is sepa-
rated into K equally sized non-i.i.d. partitions where K is the number of clients. Referring
to figure 3.1 we observe that the for α = 0.1 distribution, some clients such as client 6
have heavily skewed partitions and no client possesses each of the ten class labels in their
distributions. Since each client requires its own training and validation sets according
to their own unique distributions the client partitions are further separated into training
(90%) and validation (10%) sets for each client. For example, 100 clients trained using
CIFAR-10 which contains 50 000 training samples would each have 500 of these training
samples. Of those 500 samples, 450 would be used for local model updates and 50 would
be used exclusively for validation. The testing sets provided with each dataset are accurate



Fig. 3.1. The data proportions of ten randomly selected clients whose data was partitioned
according to a Dirichlet distribution with α = 0.01 (top left), 0.1 (top right), 0.5 (bottom
left), 100 (bottom right). The ten cifar-10 classes are represented by different colors and
the y-axis indicates the percentage occurrence of each label for each client listed along the
x-axis.

representations of the global distributions of the combined data of each client. The testing
sets are used only at then end of training to evaluate the final accuracy of the global model,
no part of the test sets are partitioned or distributed to the clients.

3.2. Experimental Settings
In our baseline experiments, for each round of federated learning a fraction, 0.1, of the
total 100 clients are selected randomly and initialized with a copy of the current global
model. Clients are sampled without replacement for each round but can be selected again
in subsequent rounds. The fraction of clients sampled is 10% for CIFAR-10 and FEMNIST
datasets and 2% for CIFAR-100.

We train a ResNet-18 model over 4000 communication rounds and each client per-
forms 3 local update steps, using a mini-batch of size 64. and a learning rate of 0.1 for
CIFAR-10 and CIFAR-100. Femnist, which converges faster due to its large size, is trained
for 2000 rounds with all other settings the same as for the CIFAR datasets. We use SGD as
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our optimizer, with weight decay of 1×10−4 following [67, 21]. In these experiments, we use
a combination of GN and BN, the exact configuration of which is specified in appendix B.

3.3. Validation Methods
Each client receives a sample of the training data corresponding to their unique under-
lying distribution. In order to have test sets for each client that also correspond to this
distribution, the training sample at each client is split 90 : 10 into training and validation
sets. Throughout the training process the global model is periodically evaluated on the
aggregation of the client validation sets to gauge overall training progress. The test data
provided as part of the CIFAR and FEMNIST datasets, on the other hand is only used at
the end of the training process to evaluate the final global model accuracy.

It is a known feature of federated learning training that as client distributions be-
come more skewed, in our case when we use lower values of α, there can be significant
changes in accuracy between training runs [21]. Since we focus our analysis on the highly
heterogeneous case in which the Dirichlet distributions at each client are parameterized
by α = 0.1, we observe high variance in our results. Variance is particularly pronounced
for smaller datasets such as CIFAR-10 and CIFAR-100. To mitigate these effects on the
validation statistics, we follow the lead of [48] and report our final accuracy as the average
of the test accuracies taken over the last 100 rounds of training, it is this value that is
reported in table 3.1.

3.4. Evaluation of WSM
In this section we demonstrate how WSM used in combination with FedAvg can greatly
improve model performance. Figure 3.2 shows the best performing models among FedAvg
and FedAvg+WSM for CIFAR-10, CIFAR-100 and FEMNIST. We observe that combining
FedAvg with WSM generally provides a stronger performance from the very beginning of
training since for CIFAR-10 and CIFAR-100 the green curve showing the WSM training
progression starts off with higher reported accuracy than FedAvg and this improvement in
performance persists for the duration of training. Work on critical learning periods, where
critical learning periods are defined as the early epochs of a training regime, have shown they
can determine the final quality of a deep neural network for traditional ML methods [24, 2].
[65] Investigate critical learning periods in the FL setting and discover they do indeed exist
consistently in FL. Based on this work we can theorize that the early training advantage
we see when applying WSM may be having a positive impact on it’s consistent ability to
outperform other FL algorithms it is applied to.
Table 3.1 shows model performance across a range of learning rates. For all three datasets
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Fig. 3.2. We show the performance on CIFAR-10 and CIFAR-100 over 4000 rounds in a
highly heterogenous setting with FedAvg, FedAvg+WSM (top row) and over 2000 rounds
of training on FEMNIST (bottom). We observe that WSM consistently gives the best
performance, out performing FedAvg on a per round basis For both CIFAR-10 and CIFAR-
100. Results for the FEMNIST dataset are more subtle due to the size of the dataset.
FEMNIST has many times the sample data of the CIFAR datasets so the amount of training
per round is much greater. However, even with a very large datasets, WSM does provide
obvious improvement with FedAvg+WSM clearly overtaking FedAvg in accuracy results at
≈ round 1200 and remining the better performer thereafter.

used in training, FedAvg+WSM offers a substantial improvement in performance over the
top vanilla FedAvg accuracy. We observe improvements in model accuracy of ≈ 3% for
CIFAR-10 and FEMNIST datasets and ≈ 1% for CIFAR-100. Additionally, we note that
improvement using WSM is fairly consistent across learning rates, in table 3.1 we notice that
for each dataset, FedAvg+WSM generally has a higher accuracy than for FedAvg.

3.5. WSM for Heterogeneous FL methods
In section 3.4 we demonstrated the ability of WSM to improve model performance for the
FedAvg algorithm but we wish to demonstrate its versatility by showing WSM is effective
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Dataset
lr CIFAR-10 CIFAR-100 FEMNIST

FedAvg 0.771 0.486 0.803
FedAvg+WSM (ours) 0.7 0.777 0.539 0.822

FedAvg 0.740 0.522 0.806
FedAvg+WSM (ours) 0.5 0.803 0.546 0.838

FedAvg 0.775 0.533 0.804
FedAvg+WSM (ours) 0.3 0.815 0.560 0.832

FedAvg 0.801 0.573 0.832
FedAvg+WSM (ours) 0.1 0.846 0.591 0.855

FedAvg 0.811 0.569 0.787
FedAvg+WSM (ours) 0.07 0.838 0.596 0.857

FedAvg 0.791 0.577 0.817
FedAvg+WSM (ours) 0.05 0.836 0.595 0.851

FedAvg 0.796 0.589 0.740
FedAvg+WSM (ours) 0.03 0.809 0.586 0.861

FedAvg 0.753 0.564 0.833
FedAvg+WSM (ours) 0.01 0.767 0.580 0.830

FedAvg 0.740 0.552 0.829
FedAvg+WSM (ours) 0.007 0.758 0.569 0.828

Table 3.1. Accuracy results of FedAvg with and without WSM for different settings of client
learning rates. We observe that for many learning rate settings WSM consistently improves
performance, as well as having the highest overall accuracy by a large margin.

over a range of FL algorithms. In Table 3.2 we apply WSM to SCAFFOLD [26] and
FedProx [36]. These are two constrained optimization methods specifically designed to
address the challenges of heterogeneous data in federated learning. Since both SCAFFOLD
and FedProx perform better with smaller learning rates we decrease the learning rate
for these algorithms to 0.01 while we keeping 0.1 for FedAvg. The best value for the
additional FedProx hyperparameter λ = 1.1 was empirically determined by a grid search of
λ = {0.8, 0.9, ..., 1.3}. In these experiments we use 20 clients and select the fraction 0.1 of
all clients at each round. As in the previous section, the data is distributed between clients
using a Dirichlet distribution parameterized by α = 0.1 and we train the models over 1500
rounds, keeping the same local batch size of 64 and 3 local iterations from the base case.
Since results are more stable with 20 clients than with 100 clients, accuracies in this case
are evaluated one time after the completion of training.

From table 3.2 we see that both FedProx and SCAFFOLD outperform FedAvg with-
out WSM. This is expected since both the FedProx and SCAFFOLD algorithms were
developed to tackle the problem of heterogeneous data distributions and they have been
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Method CIFAR-10 CIFAR-100
FedAvg 0.684 0.519

FedAvg+WSM (ours) 0.833 0.603
Scaffold 0.816 0.532

Scaffold+WSM (ours) 0.825 0.598
FedProx 0.752 0.498

FedProx+TCE (ours) 0.822 0.554

Table 3.2. Accuracy results of FedAvg [42], Scaffold [26] and FedProx [36] with and without
WSM. We observe that even combined with FL optimization based methods designed to
address heterogeneity, WSM provides consistent performance gains. Furthermore, the best
performance overall is highlighted in red. We find that although SCAFFOLD and FedPROX
can handle heterogeneity better than FedAvg, when combined with WSM FedAvg can obtain
the best performance amongst all methods.

previously shown to outperfrom FedAvg [36, 26, 33]. Combining each of FedAvg, FedProx
and SCAFFOLD with WSM shows improved performance for each algorithm on both
CIFAR-10 and CIFAR-100. These results validate our hypothesis that using WSM in
combination with and FL algorithm will help to mitigate local client forgetting therefore
providing improvement over base cases for each method. Additionally, the implementation
of SCAFFOLD and FedProx was taken from the repository for [33] and the substitution
of WSM for CE was very simple to make since it is entirely self contained. The ease of
application of WSM is a significant advantage since this feature makes it an easy way to
achieve a substantial improvement over a baseline algorithm. Finally, we observe that
combining WSM with FedAvg has the largest overall effect since the best overall method
in table 3.2 is FedAvg+WSM. While WSM does offer improvements over all baseline
algorithms, this result is somewhat surprising since our intuition was that WSM would
work independently alleviate local client forgetting and would augment the value of the
modifications offered by the different federated learning algorithms. We theorize that
the superior performance of FedAvg+WSM over SCAFFOLD+WSM or FedProx+WSM
is because while SCAFFOLD, FedProx and WSM all individually improve the baseline
FedAvg, they may need to be further optimized to work effectively together.

3.6. Ablations
We now further study the behavior of WSM in combination with FedAvg under different
data distributions, client participation settings and different numbers of local iterations. In
Figure 3.3 ablations are shown using the CIFAR-10 dataset where we ablate one setting
at a time. Except for where we specify the value of the parameter being ablated, the
hyperparameters for the ablation studies are the same as for our base case described in
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Fig. 3.3. Plots of ablations of dataset heterogenaity, number of local iterations and the
fraction of clients selected at each round studied with WSM. We observe WSM provides
performance increases under most of the conditions studied but it’s most significant advan-
tages are in scenarios with very heterogeneous client data and smaller fractions of clients are
selected for each training round.

section 3.4. We observe that under conditions of low α (high heterogeneity) and low fractions
of clients selected at each round, the use of WSM is particularly advantageous.

3.6.1. Parameter α of the Dirichlet Distribution

The Dirichlet distribution is parameterized by α as α→ 0 the client distributions will become
increasingly heterogeneous and as α → ∞, each client data edges closer towards the same
i.i.d. distribution. In our base case we use α = 0.1 and we now investigate how model
performance is affected by changes in the heterogeneity of the client data distributions.
Similar to the work of [21], we investigate α = {0.01, 0.1, 0.2, 0.5, 1, 10, 100}. Figure 3.1,
showing the label distributions for ten randomly selected clients, offers a practical illustration
of how local data partitions change as a function of α. From Figure 3.3 we observe WSM has
a more significant effect as α decreases with the biggest margin of improvement over vanilla
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FedAvg occurring when α = 0.01. As the data becomes increasingly homogeneous, the α

vector in equation 15 representing proportions of labels present at each client, converges to
equal proportions at each client (i.i.d. data). The gap between cross entropy and WSM
then shrinks until the two methods are equivalent. From Figure 3.1 (bottom left) we see
that by the time α = 0.5 most of the clients possess all of the classes, albeit in very skewed
proportions. This is also the point at which the performance of FedAvg and FedAvg+WSM
become very close. While WSM continues to offer a performance increase over the entire
range of α except for α = 100, we conclude WSM is most advantageous when clients do not
possess the entire set possible class labels.

3.6.2. Fraction of Participating Clients

One of the characteristics of FL is that data is massively distributed and nodes may
have limited communication with the central server as nodes may be offline or have slow
connections limiting their communication [42, 36]. The direct result of the limited capacity
for connection is that only a small number of client nodes may participate in updates at any
given time. These ablations focus on the fraction of clients participating in an update round,
for each experiment the fraction of participating clients is constant for all rounds of training
and we explore fractions from 1%, where only one client participates in the update, up to 60%.

For the fraction C of participating clients, we observe the largest performance gap
between FedAvg+WSM and FedAvg when the number of participating clients is low. This
feature is significant since as explained above, low client participation is a known feature of
real world federated learning settings. We hypothesize the performance gap as a function of
client fraction between the FedAvg and FedAvg+WSM is due to the larger impact of local
client forgetting when we limit communication capability. Unless we actively take steps
to control forgetting, non-participating clients will have their data distributions forgotten
because unlike participating clients, they will be unable to contribute their updates to the
global model. As the fraction of clients selected at each round increases, we observe the
performance gap between the two methods narrow and ultimately converge since more
clients will have the opportunity to be selected at each round and "remind" the model of
their data distributions.

3.6.3. Local Iterations

Altering the number of local training iterations results in the least accuracy variation of
the three parameters investigated in the ablation study. We observe model performance
increase as local training iterations decreases, and find that WSM prevents the steep decline
in accuracy observed in FedAvg as the number of training iterations increases. Since WSM
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Fig. 3.4. Accuracy over 4000 rounds for FedAvg and FedAvg+WSM with batch norm and
with group norm. Experiments are performed using the CIFAR-10 dataset.

helps to alleviate the effects of local client forgetting, this explains the more pronounced
positive effect we see as the number of local iterations increases causing the effects of local
client forgetting become more serious.

3.7. Effects of Batch and Group Norm on WSM
Our primary experiments used a combination of BN and GN, in this section we perform a
more rigorous evaluation of the effects of the choice of normalization on model performance.
These experiments are performed for the CIFAR-10 dataset only under the same conditions
as specified in section 3.4 except for the choice of normalization scheme and the number
of rounds. In section 3.4 we use 4000 rounds of training for each experiment but referring
to figure 3.4 we observe a much slower learning progression when group norm is used
exclusively and it appears the training using group norm may not have fully converged by
4000 rounds. In order to be certain the group norm experiments had indeed converged,
8000 rounds of training were performed for each result presented in table 3.3. Figure 3.5
shows the accuracies over 8000 rounds of training.As mentioned previously, one of the main differences we observe in figure 3.5 is model accu-
racies improve much faster when using BN than with GN both FedAvg and FedAvg+WSM.
The speed of improvement is unsurprising since BN is known to accelerate convergence
[23, 63]. However, BN is also thought to have a negative effect on training in a federated
setting [20, 63] so while it is also unsurprising to see FedAvg with BN plateau and begin
to diverge the surprising result is that FedAvg+WSM trained with BN does not suffer this
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Fig. 3.5. Accuracy over 8000 rounds for FedAvg and FedAvg+WSM with BN and with GN.
Experiments are performed using the CIFAR-10 dataset.

fate and is able to obtain the best performance at any given round compared to both ver-
sions of FedAVG. Figure 3.5 shows that FedAvg+WSM trained with BN outperforms all
other combinations. Not only does it preform significantly better than the other combina-
tions from the very beginning of training, it requires much fewer rounds of training than the
next best performer, FedAvg with GN to achieve that result. Indeed, referring to table 3.3
which shows a summary of model accuracies over a range of learning rates we observe that
FedAvg+WSM with BN consistently performs the best over the range of learning rates, it
also has the overall best performance with an accuracy of 0.882. These results suggest the
conclusion that GN outperforms BN in a federated setting due to BN’s dependence on batch
statistics [20] may not provide the complete story. [20] do show that GN outperform BN
in their experiments but the conditions under which these experiments were performed are
very limited. Further, while our results support their conclusions in the case of our FedAvg
baseline, we find that FedAvg+WSM performs much better with BN than with GN and
WSM does not in any way modify the divergence of batch statistics across clients which is
central to the argument that GN will perform better in a federated setting. One potential
explanation for the success of FedAvg+WSM with BN is based on the work of [52], in their
work, they suggest that the success of BN is due to a smoothing of the loss function and
a resultant smoothing of the gradients. Since WSM is a modification of the loss function
that reduces local client forgetting, we theorize this improvement in generalization makes
the gradient smoothing induced by BN more broadly applicable than it would be when using
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lr norm accuarcy
FedAvg 0.824

FedAvg+WSM (ours) 0.3 group 0.761
FedAvg 0.828

FedAvg+WSM (ours) 0.3 batch 0.767
FedAvg 0.856

FedAvg+WSM (ours) 0.1 group 0.800
FedAvg 0.779

FedAvg+WSM (ours) 0.1 batch 0.858
FedAvg 0.853

FedAvg+WSM (ours) 0.07 group 0.796
FedAvg 0.811

FedAvg+WSM (ours) 0.07 batch 0.854

FedAvg 0.865
FedAvg+WSM (ours) 0.05 group 0.814

FedAvg 0.822
FedAvg+WSM (ours) 0.05 batch 0.882

FedAvg 0.864
FedAvg+WSM (ours) 0.03 group 0.808

FedAvg 0.827
FedAvg+WSM (ours) 0.03 batch 0.873

FedAvg 0.856
FedAvg+WSM (ours) 0.01 group 0.808

FedAvg 0.810
FedAvg+WSM (ours) 0.01 batch 0.847

FedAvg 0.808
FedAvg+WSM (ours) 0.007 group 0.853

FedAvg 0.824
FedAvg+WSM (ours) 0.007 batch 0.860

FedAvg 0.824
FedAvg+WSM (ours) 0.005 group 0.811

FedAvg 0.812
FedAvg+WSM (ours) 0.005 batch 0.841

Table 3.3. Accuracy results of FedAvg with and without WSM for ResNet18 with BN and
with GN. Experiments are performed over a range of learning rates between 0.3 and 0.005.
We observe that FedAvg+WSM with BN consistently performs the best with the overall
highest accuracy of 0.882. The colored boxes indicate the best accuracy obtained for each
of FedAvg (group), FedAvg+WSM (group), FedAvg (batch), FedAvg+WSM (batch)

FedAvg alone where the forgetting induced by local optimization would be amplified by the
gradient smoothing effects of BN.
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3.8. Conclusions
In this paper we took a deeper look at the local client forgetting problem. We show that when
a client performs local updates during FL, it risks overly optimizing its local objective lead-
ing to forgetting on other subsets of data. We make a connection between the catastrophic
forgetting problem in continual learning and the client drift problem in FL and propose a
client level modification of the objective function which we call the re-weighted softmax.
Our experiments on local client forgetting show that it degrades performance of the global
model, especially in cases where there is a significant distribution mismatch across clients.
We observe that WSM has a significant and consistent positive effect on reducing client level
forgetting which allows us to mitigate local client forgetting across a variety of conditions
commonly studied in FL. We also observe a strong performance of WSM in early rounds
of training, termed the critical learning period, which may be additional feature of its success.

Practically, we show that WSM is very easy to apply to any FL algorithm and while
we use FedAvg heavily as a baseline for our comparisons, we also see performance improve-
ments for SCAFFOLD and FedProx when we apply WSM to them. An ablation study
demonstrated that WSM is particularly effective in the regime of highly heterogeneous
client datasets and/or when a small percentage of clients are selected at each round. These
settings are important for the federated setting since the nature of real-world massively
distributed data means a relatively small percentage of clients will be participating in each
federated round and client nodes often possess only a very small subset of this massively
distributed underlying dataset. An additional study into the effects of BN and GN on
FedAvg and FedAvg+WSM provide the unexpected result that WSM with BN is the most
beneficial combination in terms of accuracy. Prior work has shown that BN performs poorly
in a federated setting and suggests its dependence on batch statistics as the reason for this
but our work contradicts this evaluation since batch statistics do not change between the
FedAvg and FedAvg+WSM settings.

Our current work shows that WSM is broadly effective and widely applicable to a
variety of settings. Our results indicate that addressing local client forgetting in general is
an important consideration for federated learning optimization. Our experiments with BN
and GN also raise interesting questions about normalization in FL and how it may impact
different algorithms
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Appendix A

Additional heatmaps for local client forgetting

Appendix A shows additional forgetting heatmaps evaluated at different rounds

Fig. A.1. Local client forgetting for round 1 with and without WSM. The x axes contain
the indices of clients selected for the round where each of the 100 clients have labels in the set
{0, ..., 99}. The Difference heatmaps (LHS) show the difference in accuracy before and after
local training when the kth client’s model is evaluated on the ith client’s dataset. The final
column gives Fk, the average forgetting over all clients. The Post Local Update heatmaps
(RHS) show the accuracy of each client’s model on the other client’s data.



Fig. A.2. Local client forgetting for round 4000 with and without WSM. The x axes contain
the indices of clients selected for the round where each of the 100 clients have labels in the set
{0, ..., 99}. The Difference heatmaps (LHS) show the difference in accuracy before and after
local training when the kth client’s model is evaluated on the ith client’s dataset. The final
column gives Fk, the average forgetting over all clients. The Post Local Update heatmaps
(RHS) show the accuracy of each client’s model on the other client’s data.

A.1. Round 4000
The heatmaps shown in figure A.2 are evaluated after the last round of training, round 4000.
For the last round of training we again note higher accuarcy observed along the diagonal
of the post local update for the FedAvg model not using WSM indicating a preference for
their own local datasets and at times demonstrating significant forgetting on the datasets of
other clients. With WSM we again observe tends in the accuracies such as one column with
higher accuracies indicating a dataset that all local models were able to do well on or a row
of lower accuracies indicating a model that did badly on all distributions including its own
local distribution. These results are encouraging since they are present across local models
and indicating forgetting is not the cause of the different performances..
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Appendix B

ResNet-18 model used in experiments

The options for the ResNet18 model used in the experiments are shown explicitly in the
model structure presented below:

ResNet(
(conv1): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)

)
(layer_1): Sequential(

(0): ResidualBlock(
(left): Sequential(

(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(2, 64, eps=1e-05, affine=True) )

(shortcut): Sequential()
)
(1): ResidualBlock(

(left): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(2, 64, eps=1e-05, affine=True)

)
(shortcut): Sequential()



)
)
(layer_2): Sequential(

(0): ResidualBlock(
(left): Sequential(

(0): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(2, 128, eps=1e-05, affine=True)

)
(shortcut): Sequential(

(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))
(1): GroupNorm(2, 128, eps=1e-05, affine=True)

)
)
(1): ResidualBlock(

(left): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1):BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(2, 128, eps=1e-05, affine=True)

)
(shortcut): Sequential()

)
)
(layer_3): Sequential(

(0): ResidualBlock(
(left): Sequential(

(0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(2, 256, eps=1e-05, affine=True)

)
(shortcut): Sequential(
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(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))
(1): GroupNorm(2, 256, eps=1e-05, affine=True)

)
)
(1): ResidualBlock(

(left): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(2, 256, eps=1e-05, affine=True)

)
(shortcut): Sequential()

)
)
(layer_4): Sequential(

(0): ResidualBlock(
(left): Sequential(

(0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(2, 512, eps=1e-05, affine=True)

)
(shortcut): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2)) (1): GroupNorm(2, 512, eps=1e-05,
affine=True) )

) (1): ResidualBlock(
(left): Sequential(

(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(2, 512, eps=1e-05, affine=True)

)
(shortcut): Sequential()

)
)
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(avgpool): AvgPool2d(kernel_size=(3, 3), stride=2, padding=0)
(fc): Linear(in_features=512, out_features=10, bias=True)

)
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