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ABSTRACT

The question of the possibility of intelligent machines is fundamentally intertwined with

the machines’ ability to reason. Or not. The developments of the recent years point in a

completely different direction : What we need is simple, generic but scalable algorithms

that can keep learning on their own. This thesis is an attempt to find theoretical expla-

nations to the findings of recent years where empirical evidence has been presented in

support of phase transitions in neural networks, power law behavior of various entities,

and even evidence of algorithmic universality, all of which are beautifully explained in

the context of statistical physics, quantum field theory and statistical field theory but not

necessarily in the context of deep learning where no complete theoretical framework is

available.

Inspired by these developments, and as it turns out, with the overly ambitious goal of

providing a solid theoretical explanation of the empirically observed power laws in neu-

ral networks, we set out to substantiate the claims that renormalization group theory may

be the sought-after theory of deep learning which may explain the above, as well as what

we call algorithmic universality.

Keywords : Renormalization, Ising Model, Hopfield Networks, Restricted Boltz-

mann Machines, Energy Models, Phase Transitions, Power laws, Algorithms, Uni-

versality, Quantum Mechanics, Statistical Mechanics, Quantum Field Theory, Sta-

tistical Field Theory
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ABSTRACT

La question de la possibilité de machines intelligentes est intimement liée à leur capa-

cité à raisonner. Ou pas. Les développements des dernières années pointent dans une

direction complètement différente : ce dont nous avons besoin, ce sont des algorithmes

simples, génériques mais évolutifs qui peuvent continuer à apprendre par eux-mêmes.

Cette thèse tente de trouver des explications théoriques aux constatations des dernières

années où des éléments de preuve empiriques ont été présentés pour étayer les transitions

de phase dans les réseaux de neurones, le comportement en loi de puissance de diverses

entités et même la preuve d’une universalité algorithmique, tout cela étant merveilleu-

sement expliqué dans le contexte de la physique statistique, de la théorie quantique des

champs et de la théorie statistique des champs, mais pas nécessairement dans le contexte

de l’apprentissage profond où aucun cadre théorique complet n’est disponible.

Inspirés par ces développements et, comme il s’avère, avec l’objectif trop ambitieux de

fournir une explication théorique solide des lois de puissance empiriquement observées

dans les réseaux de neurones, nous avons entrepris de justifier les affirmations selon

lesquelles la théorie du groupe de renormalisation pourrait être la théorie recherchée

de l’apprentissage profond qui pourrait expliquer ce qui précède, ainsi que ce que nous

appelons l’universalité algorithmique.

Mots-Clés : Renormalisation, Modèle d’Ising, Réseaux de Hopfield, Machines de

Boltzmann Restreintes, Modèles Ènergétiques, Transitions de Phase, Lois de Puis-

sance, Algorithmes, Universalité, Mécanique Quantique, Mécanique statistique,

Théorie Quantique des Champs, Théorie Statistique des Champs
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PRÉFACE

Plato : GPT-3, what does it mean to be human?

GPT-3 : Humans are the measure of all things 1, of things that are, that they are, of

things that are not, that they are ... nothing but a joke.

1. Humans are the measure of all things. Of things that are, that they are. Of things that are not, that
they are not. Protagoras cited in Plato’s Theaetetus. Oxford.



CHAPITRE 1

INTRODUCTION

In his reflections over the experiences of the past research [60], R. Sutton concludes

that leveraging on computation has proven more efficient than carefully crafted algo-

rithms that supposedly mimic human thinking. He puts forward the examples of com-

puter chess, computer Go, speech recognition and computer vision. Computers winning

over humans through deep search i.e. brute force, was at the time considered unsatisfac-

tory and perhaps just a coincidence by human-thinking-oriented researchers who pointed

out that human thinking did not involve brute force methods and that better algorithms

i.e. closer to human mind, were yet to be developed and prove their superiority over

massive computational systems.

It has, however, turned out that the human-thinking-based approaches have been coun-

terproductive and that systems based on massive computation have shown significant

success. A reasonable question to ask is how we understand the workings of the mind as

it seems far too complex and beyond reach to us to grasp, let alone replicate. The (bitter)

lesson, according to Sutton, is that building algorithms based on our understanding of

how human minds function 1 either has not worked or has worked only in short term just

to plateau with time and hinder further progress. The bitterness lies in the fact that the

opposing, counter-intuitive and non-human-centric approaches are showing more and

more empirically successful, scale better and are somehow claimed to be reminiscent of

an emergent behavior.

The great power of these general purpose methods that on one hand are more success-

ful and on the other hand scale better with increased computation has been demonstrated

most recently with the introduction of GPT-3 [7] and other Foundation Models i.e. large-

scale neural networks (NNs) that are pre-trained on large diverse data sets. Another rela-

1. ...how we think we think...
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tively recent development is the empirically demonstrated scaling laws [36]. There it is

shown that the performance of language models improves smoothly when certain order

parameters (model size, data set size, amount of compute for training) are increased. Fur-

thermore, it is shown empirically that the performance exhibits a power-law relationship

with each order parameter when not bottle-necked by the other two order parameters.

These findings confirm the bitter lesson stated above : crafting sophisticated algorithms

to achieve a certain performance may turn out to be less useful in a certain limit of the

order parameters where they perform equally well or are outperformed by simpler or

computationally less demanding algorithms.

Empirical evidence aside, the current research lacks a thorough theoretical understanding

of not only scaling laws and phase transitions in NNs but also Deep Learning(DL) itself.

We can even be bold enough to say that the inner workings of NNs has no theoretical

backing. This is indeed the ambitious and quite unrealistic motivation behind this thesis.

What are the governing laws of NNs? How can we understand the empirically proven

scaling laws? How are these laws related to specific algorithms? How can a simple

algorithm be better than a more sophisticated one? How do we explain these laws based

on macroscopic variables/order parameters ?

What are the consequences of these laws in the long run and for the way we think about

artificial intelligence? Are these laws related to optimization and the networks’ ability

to find the minima in the loss landscape? Is there a more profound theory that explains

the empirical findings of the recent years ? If yes, what are the implications of such a

theory? How does it explain the current discoveries and what can we possibly learn

from this theory?

Prior to appearing in the current context, scaling laws and phase transitions have been

studied in the framework of both classical and quantum physics. The commonality bet-

ween this field and DL is that both attempt to extract relevant information from data.

However, while the extraction of macroscopically plausible information from microsco-

pic data is done via so-called coarse-graining in Renormalization Group Theory (RG),
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the mechanisms behind this extraction in NNs is poorly understood. Some researchers

[46, 13] claim that NNs too perform sophisticated coarse-graining procedures. If true,

since coarse-graining is a fundamental ingredient in RG, the entire field of RG would

also be a natural framework for understanding of DL.

Furthermore, what type of coarse-graining do NNs do? Is it even relevant to try to un-

derstand the specifics of coarse-graining in RG? Or is it perhaps sufficient to establish

RG as the theory of NNs and use it to put algorithms into universality classes and com-

pute their universality constants ? We should note some research [13] claim to have found

"evidence of presence of RG-like patterns" in the correlation functions between visible

and hidden neurons of RBMs.

Assuming that NNs do perform some kind of coarse-graining, the question is in the

context of what theory it should be studied. Speaking of consciousness in their Orch

OR paper[24] the authors claim that consciousness is the ability to sustain a superpo-

sition of quantum states that collapse because they originate from different space-time

origins/manifolds that generate the waves. The collapse occurs naturally and is known

as Orchestrated object reduction (Orch OR). Although it is not clear why, consciousness

is attributed to quantum gravitational effects.

If Penrose’s idea [24] is correct, the least we can do is to try to understand the workings

of the brain in terms of Quantum Field Theory (QFT). This means that we can assume

that our dynamic variable is a field instead of a path and that the path integral can be an

integral over all possible field configurations. This is not far-fetched as it is done also in

the transition from quantum mechanics (QM) to QFT.

We explore (and attempt to build upon) these ideas in this work with a particular focus on

Hopfield Networks. This is motivated by (a) the relative mathematical simplicity of these

networks and (b) the fact that they have been used as analogs for associative memory

models i.e. as simplified brain prototypes. Furthermore, based on the fact that there is 14

orders of magnitude’s difference in scale 2 between observable macroscopic brain acti-

2. See section 2.4 for details
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vity and synaptic transmission process [48], it seems that applying RG transformations

is very meaningful 3.

But, as we will see later, RG transformations are a methodical way of zooming out quan-

tum fluctuations and so we could, in some sense, say that by considering RG theory, we

are already in the quantum realm. However, in order to further consolidate the idea that

brain activity involves quantum processes, we note that it is possible to design an expe-

riment involving signals transmitted by neurons analogous to the double slit experiment

involving photons. Keeping this in mind, the fact that the observed photon interference

patterns in the double slit experiment is the strongest motivating factor behind quantum

mechanics provides yet another motivation for neuronal quantum processes.

We should also mention that Feynman’s path integral approach in physics is designed

to include the uncertainty involved in quantum processes and that a consistent descrip-

tion of a theory in terms of path integrals is equivalent to it being a quantum theory.

In the current context, this is done for Hopfield Networks [48] where it is shown that a

path integral formulation is justified and that NNs are in fact discrete versions of path

integrals. 4

This thesis is organized as follows : We first review the general state of research on the

relationship between DL and physics. We then discuss scaling laws, critical exponents

and phase transitions in the context of statistical physics. More often than not, we use the

historically important Ising model to describe the evolution of the ideas from statistical

physics to mean field theory to RG (The latter is also discussed in the context of QFT).

This is done with the hope of better applicability in the absence of a lattice structure. We

then give a short review of two energy-based models but for the reasons we explained

3. As we will see in later chapters, RG is a systematic approach to understanding the manifestations
of the microscopic interactions in the macroscopic observables i.e. different scales

4. Without going into details, we just mention that to mimic the "double slit experiment" they consi-
der three sets of neurons : source neurons (representing emitted photons or electrons), interneurons
Ik(corresponding to the slits) and targent neurons Tk (corresponding to the locations of the arrival of the
photons). The rest of the formulation is simply due to the fact that neuronal signals are treated as waves
and so the outcome is a book example of how interference patterns are generated.
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above, focus only on Hopfield Networks. As we will see, RG, either viewed as a subfield

of statistical physics or as a meta theory, seems to play a more prominent role in whatever

relationship physics has with DL. This thesis also includes a chapter on how RG is used

in the context of DL with a focus on Information Theory. The idea was to investigate

the possible existence of a relationship between RG, Information Theory and Stochastic

Gradient Descent but the matter was not pursued and so this chapter is a stand-alone part

of this document that has been moved to the Appendix in its entirety.

This work includes four projects, all exploring the ideas put forward in this introduction.

Inspired by the transition from classical variables to QM, as formulated in [48], Project 1

is limited to a classical Mean Field Theoretical treatment of Hopfield Networks. Project 2

is moves from Classical Physics to QFT, where we also derive Feynman-like propagators

of Hopfield Networks and run into inexplicable divergencies. Admittedly, the Lagrangian

was have used is a construction of [48] and so Project 3 seeks to remedy the issues

encountered in Project 2 by using a different Lagrangian. Project 4 is done in a Quantum

Field Theoretical setting where we derive Feynman-like rules, provide Feynman-graphs

of a few basic interactions and the correlation functions of Hopfield Networks. Finally,

this work ends with a U-turn, where we return to Statistical Quantum Field Theory and

find the answers to the problems encountered in Projects 1-4. Note also that the details

of most of the calculations in the four projects have been moved to the Appendix.



CHAPITRE 2

ON THE RELATIONSHIP BETWEEN DEEP LEARNING AND PHYSICS

2.1 The General State of Research on DL and Physics

The broad range of modeling tools and algorithms encompassed by ML has been ap-

plied in a vast number of scientific disciplines. Since ML as a tool aims at discer-

ning/recognizing patterns in data, thereby also predicting the behavior of unseen pro-

blems, it makes it ideal for fundamental research also in other fields e.g. physics. The

two disciplines also share other fundamental characteristics concerning data collection

processes, model building, analysis and predictions. However, if physics seeks to un-

derstand the complexities of natural mechanisms through human intuition or some basic

principles gained through it, ML, lacking the said intuition or intelligence, seeks to ex-

tract the intuition i.e. the fundamental concepts from the data. It goes without saying

that although ML has been very successful in certain fields, the scope of its algorithms

is often limited and our lack of theoretical understanding of how it succeeds or fails is a

problem.

The focus of this thesis is not to give a full account of diverse connections between

DL and physics. Therefore, we will not delve into the applications of ML techniques

in physical sciences in general. Suffice it to say that ML has been quite successfully

applied to cosmology [37] 1, quantum computing [23] 2, quantum many body pro-

blem 3, three-body problem [6], particle physics [10] 4,[25] 5,[51] 6, just to mention a

few.

1. Photometric redshift
2. Quantum state tomography
3. with a very diverse set of references that we skip
4. To characterize the landscape of string theories
5. To understand the AdS/CFT correspondence (the subject of my PhD thesis)
6. To classify QCD phase transitions
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2.2 DL and Statistical Physics

Based on the above, it may be premature to assume that ML can be more than a tool

for some sophisticated data analysis. However, the cross-fertilization between ML and

physics goes beyond this observation since the conceptual developments in ML are in

many ways also rooted in insights gained from the relatively old field theoretical physics.

In fact, the large body of evidence of tantalizing parallels between physics and ML [18,

49, 3, 47, 11, 33, 9, 46, 56, 59, 45, 44, 4] seem to indicate a complexly intertwined

relationships. While some research merely draw parallels between the observations in

the two domains, others go further and refer to the frequently encountered physical,

statistical or thermodynamic concepts e.g. symmetry, scale, locality, compositionality,

hierarchy etc as well as phase transitions and power laws in DL, as indications of

the existence of a deeper connection, and perhaps also with the allusions to physics

(statistical) as the missing theoretical framework for understanding DL.

In what follows, we will describe the part of the research that has laid the foundation for

what may very well turn out to be the (future) theory of DL. The research is still in its

infancy but there are too many connections/similarities to ignore the possibility of fin-

ding a theoretical explanation for DL within physics. [4] predict that these connections

will only deepen and that the conceptual insights from many parts of physics and ma-

thematics 7 will contribute towards finding a mature theory of DL. As we will gradually

see, this does not seem to be limited to just classical statistical physics. Quantum physics

and later on, if we are aiming at creating sentient machines, also such alien theories as

supergravity seem to be at play.

We know that the existing learning theory in ML is not able to explain the success of DL.

It cannot explain why deep networks have good generalization properties the number of

adjustable parameters or dimensions or weights greatly exceeds the number of training

examples. Similarly, we are neither able to understand what learning problems are com-

7. spin glasses, random landscapes, phase transitions, chaos, Riemannian geometry, random matrix
theory, free probability, and non-equilibrium statistical mechanics
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putationally tractable[11] nor what architectures or hyperparameters are best suited in

different situations.

It turns out that within the general field of theoretical physics, it is statistical physics

and within its modern versions, RG may be the sought-after framework that is closest to

the theory of ML/DL. Assuming the reader is familiar with supervised and unsupervi-

sed learning, let’s just briefly review some of the contributions of statistical physics to

understanding some basic problems in ML.

Supervised Learning : Simply put, linear regression is the most common learning me-

thod of supervised learning and uses the least squares method to find W , a vector of co-

efficient whose scalar product with the data points X gives the corresponding label y. The

Bayesian version of this approach seeks to establish the relationship yi = XiW +ξi by as-

suming Gaussian prior on the weights and Gaussian noise. And the generalized version

of this approach assumes a generic priors pW (.) and generic conditional pout(yi|XiW )

the weights. When the amount of data is limited [11] state that statistics is not applicable

and propose statistical physics (the replica method) 8 as a possible path forward. It is

also suggested that the replica method can be used to compute the mutual information

between X and y and that it is related to the free energy in physics 9.

Unsupervised Learning : is a key branch of ML that models the structure of complex

data x e.g. the structure of language, images etc. Since we do not know how to model

the distribution of any of the above, unsupervised learning aims at adjusting the parame-

ters w of a family of distributions p(x,w) to find the most similar to the empirical data

distribution of some samples. This is often done by minimizing the log likelihood of the

data with respect to the parameters.[4] point out that this can be thought of as an in-

verse statistical mechanics problem. While the goal of equilibrium statistical mechanics

is to compute bulk statistics of the microstates x from a Boltzmann distribution p(x,w)

where w are the couplings, unsupervised learning aims at constructing the appropriate

distribution p(x,w) from the microstates samples x.

8. For the analysis of optimization methods in statistical physics
9. See [58, 17] for related references
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Apart from this reversed perspective and the insights that follow, unsupervised learning

relies on a few basic mathematical tools based on low rank matrix decomposition 10.

Low rank decomposition is used to uncover a structure in the data by finding a matrix

of much lower rank in terms of dimensionality and the number of samples. This can be

challenging and is so in the regime of high-dimensional noisy data regime. The relevance

of statistical physics becomes apparent if the low rank matrix estimation in this regime

is treated as a spin glass with lower dimensional vector variables and a particular planted

configuration to be found [11].

Regarding low-rank matrix decomposition, it turns out that cluster detection in stochas-

tic block model which was studied in statistical physics [19] was a contributing factor in

finding the exact solution and an understanding of the algorithmic limitations of stochas-

tic block model [14]. There are numerous other similar areas where statistical physics

has inspired/contributed to machine learning but we leave this subject for now as it is not

the objective of this work 11.

Autoencoders and Variational autoencoders (VAE)[38] are other types of unsupervi-

sed learning with close links to statistical physics. Autoencoders with linear activation

functions are related to principle component analysis. VAE use variational inference and

are trained using a prior on latent variables. Some VAEs are closely related to dictonary

learning which in turn has been studied using the techniques from statistical physics[34].

Boltzmann Machines or Restricted Boltzmann Machines which we have used in this

work, belong to the unsupervised learning category. BMs are sometimes referred to as

an Inverse Ising Model. Both have strong relationship with statistical physics. In order

to remedy the difficulties of an analytic study of these models’ learning process through

contrastive divergence algorithm [26], a statistical physics approach is to replace the

Gibbs sampling in contrastive divergence with Thouless-Anderson-Palmer equations

10. This includes matrix completion, independent component analysis (ICA), principle component ana-
lysis (PCA), data clustering etc

11. These include, for instance, understanding approximate message passing algorithms (AMP) [2, 5]
for low rank matrix estimation i.e. generalizations of Thouless-Anderson-Palmer equations [61] in spin
glasses etc
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which in turn stem from statistical physics [20].

2.3 DL and RG

After this short expose on the insights into ML gained through general statistical physics

methods/techniques, we now turn our attention towards RG i.e. the part of statistical

physics that is the focus of this work and that has seems to be a potential candidate for a

future theory of DL. There are multiple accounts of the appearance of RG or RG-like

behavior in ML and consequently questions about the possibly (at least) of it being the

correct framework for understanding many long-standing issues in ML/DL.

We should note that this line of research is not necessarily based on utilizing some tech-

nical solution to a problem achieved by e.g. replacing a distribution in an ML algorithm

by equations from statistical physics, as we described above. In fact, considering some

simple but fundamental notions such as scale and locality, [9] compare the relevance of

scale in RG with scale and depth in deep neural networks. In their work, the authors

conclude that at least some ML algorithms perform some sort of sophisticated RG. This

is clearly a bold statement but in what follows we will review the role of RG transforma-

tions and what it entails.

[44] examine the question of criticality in language models, and show that the decay

of mutual information between two symbols can follow a power law for context-free

grammar and that their findings is closely related to the absence of phase transitions

in fewer than two dimensions in classical statistical mechanics, a result that can have

potential applications on training RNNs. [45] use physics to answer questions about what

neural networks can compute, what they compute, why and how they generalize, how

they can be taught to come alive i.e. imagine[21], and finally, why DL is so successful if

shallow neural networks can approximate any function.

It is known that the classical mathematical guarantees on the ability of neural networks

to approximate arbitrary functions do not set a limit for the width of shallow networks
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and do not explain why and how deep networks work so well. [45] argue that the success

of neural networks is at least in part due to the fact that the functions that are frequently

approximated have exponentially fewer parameters which in turn is related their phy-

sical properties. This, they argue, is not coincidental : real world data and functions

satisfy such conditions as locality, symmetry and compositionality, characteristics that

reduce the number of parameters exponentially, giving rise to significantly simpler neu-

ral networks. Furthermore, it is argued that when the statistical process of information

generation is hierarchical, deep neural networks can be made more efficient than shallow

networks.

[29, 56] have investigated the concept of scale invariance 12 and scale invariant feature

extraction in deep neural networks. For instance, [29] train an energy model (RBM) on

Monte-Carlo simulated Ising Hamiltonian data samples for different values of tempe-

rature and external magnetic field 13, concluding that the features are extracted hierar-

chically through coarse-graining, which in turn is a fundamental ingredient in RG in

statistical physics.

[46] construct an exact mapping between RG flows and DL 14 suggesting that DL may

indeed be employing an RG-like scheme to learn relevant features from data. Note that

this is done in the context of Information Theory. We refer the reader to Appendix V

where we have done a large part of the calculations in [46]. At the same time, while

investigating this relationship, [13] use the prototypical statistical model of magnets to,

again, train an RBM after which the configurations created by the physical model, and

those generated by RBM are compared. The focus of their work is a comparison between

a single layer of a deep neural network and one step in the RG flow. And so they conclude

that at least in this experimental setting, it is possible to confirm the presence of "RG-

like" patterns in the correlators computed via RBM.

12. See also the last part of this work and comments on Conformal Field Theory
13. Note that this is discussed in later parts of this work as well, both in terms of Mean Field Theory

and RG.
14. They use what is known as Variational RG
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Empirical findings of recent years strengthen the links between RG and ML. In their

study of scaling laws for language models [36] show that the cross-entropy loss scales as

a power-law with model size, dataset size, and the amount of training compute. Interes-

tingly enough, the network width or depth have minimal effects within a wide range and

so the findings are architecture agnostic. This is yet another addition to the idea of the

possibility of DL performing some sort of RG transformation simply because it was only

in the RG framework that many of the observed power laws in nature were explained 15

A consequence of these findings is that, for instance, in the limit of infinite data, neither

architecture nor algorithms seems to matter. This is very similar to the idea of universa-

lity in physics and perfectly described in RG. For example, in the same way as seemingly

very different types of matter (glass and water) turn out to be in the same universality

class, we might be able to talk about algorithmic universality classes. Note also that

this has some practical implications : Instead of blindly training all kinds of models until

convergence, optimally compute-efficient training involves training large models on a

modest amount of data and stopping significantly before convergence as other smaller

models trained on larger amount of data or with a much bigger compute budget will

simply not perform better.

With these expressions of RG in DL, is it then premature to say that the Theory of

DL is hidden within the Theory of Statistical Physics? To put it differently, if neural

networks are capable of identifying different phases of matter [39, 9], proper coarse-

graining schemes when the knowledge of microscopic details is insufficient [43] or other

physical concepts [30], do they also somehow apply RG transformations to approximate

functions i.e. solve particular ML tasks? In other words, does RG also provide a theore-

tical understanding of neural networks? Or perhaps, is DL a renormalization group

flow?[13]

We cannot possibly ignore the observed scaling laws and phase transitions as they seem

to demonstrate something more than just coincidental parallels. But to conclude that

15. We will discuss this extensively later in this work.
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RG is THE THEORY of DL seems premature. The fact is that research has uncovered

differences at every stage of these discoveries, which may or may not be irreconcilable

with this proposed theoretical framework. For instance, [9] observe that while the trained

machine obtains the the flow of spin state configurations and reproduces the obserevables

of the physical system e.g. physical phase transitions, this cannot always be put in a one

to one relationship with the fixed points of the renormalization group flow.

[45] point out that Effective Field Theory and RG, both revolving around the idea of

distilling out desired information from undesired noise, have little to do with the idea of

unsupervised learning or pattern recognition. On the contrary, since RG and Effective

Field Theory distill the long wavelength i.e. macroscopic degrees of freedom, they make

sense if the features of interest are specified, and so it is only meaningful to discuss RG

in the context of supervised learning.

So perhaps a direct adaptation of RG to ML or the expectation of its full presence in ML

may be too simplistic. The starting point of RG in physics is to reveal the way in which

microscopic effects are crystallized on the macroscopic scale of interest, which may

coincide with the goals of some supervised ML algorithms. But since all ML algorithms

do not aim at distilling long-range properties of statistical distributions, the exact nature

of the involvement of RG in ML may be alien at this stage of research.

As we will see later, coarse-graining which is at the heart of RG is related to scale trans-

formation and so perhaps in the context of ML, we may have to replace scale transforma-

tion with other transformations before we have an RG-like theory of DL. The downside

of this approach is that while we have an understanding of scale, we may lack the right

intuition to deal with an abstract form of transformation. Once again, we may have to

rethink our approach and to study the symmetries of the problems at hand, as well as

understanding what type of manifolds are best suited to describe natural languages or

images. There is a long way to go.
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2.4 Statistical Mechanics or Statistical Field Theory?

Most of the research about the relationship between ML and statistical physics is focused

on classical arguments describing the links between the two. This relationship is most

easily investigated in terms of energy based models in ML [42] with little to no empha-

sis on the relevance of quantum fluctuations. But it is nearly impossible to discuss RG

without considering quantum effects in physics. And so any meaningful relationship bet-

ween DL and RG, if it truly exists, will have to involve quantum physics. The procedure

of coarse-graining in RG is essentially a zooming out of unobserved quantum fluctua-

tions that, depending on the system under investigation, may influence the macroscopic

behavior of the system in particular ways [22]. We will see later that the fundamental

meaning of this is in terms of operators in the Hamiltonian that may or may not sur-

vive RG-transformations. In fact, as we know from the double-slit experiment, quantum

mechanics originated in the inability of classical physics to explain natural phenomena

solely based on the determinism [64].

We could (and should) ask what we mean by quantum effects and why we should consi-

der them in e.g. image recognition. Although it may be incomplete, one answer is that

since we have observed RG or RG-like behavior in ML, we have already confirmed the

existence of quantum effects. Another, perhaps more reasonable or equally incomplete,

answer is that whatever RG-like behavior we see in ML, could be the the effect of the

unseen and unobserved microscopic variables in the same way as we experience magne-

tism without observing electrons or their spin.

As usual, there is more to this than the eye can see. It turns out that we can approach

this problem from a completely different angle. [48] investigate Hopfield Networks as a

model of the brain and its activity by proposing a double-slit experiment and the inherent

quantum nature of neuronal signals being transmitted in the brain. This is motivated by

the fact that there are "at least 14 orders of magnitude difference in scale between brain

observable macroscopic brain activity and synaptic transmission process"[48]. The result

of their work is in fact a Schrödinger-like equation deduced from Hopfield networks.
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Note the utmost important word scale and its two-fold implications in the current

context. First of all, we should mention that quantum effects are present at all scales,

but are negligible at macroscopic scales. At the same time, RG theory shows that pro-

cesses at scales that are much smaller in comparison to the scale at which their effect

is measured can influence the latter. Secondly, since the human brain contains roughly

1011 neurons and 1014 synapses, observations at macroscopic scale of what happens at

neuronal or sub-neuronal scale motivates the study of brain activity from the perspective

of quantum mechanics.

So assuming that the recent observations in ML point in the direction of RG and remin-

ding ourselves that RG is fundamentally quantum mechanical, we might stop there and

somehow try to formulate a theory of ML based on the unknown and unobserved micro-

scopic effects and their manifestations at macroscopic scales (or something equivalent

to scale) 16.

But there are recent claims that not only Quantum Mechanics or Statistical Field Theory

but also such (at least in the present state of research) distant theories as Supergravity

must be taken into account if we want to have a complete understanding of brain activity.

At best, this means that our current efforts to do ML in a classical setting is beyond

primitive and that ML will not be able to understand why, how and what it does as

long as the right framework is not used.

This idea is put forward by Penrose et al in what is called Orch OR Theory i.e. Or-

chestrated Objective Reduction [1, 24]. This theory claims that quantum effects occur

in micro-tubules, the walls of which are composed of "tubulin dimers", which are sup-

posedly the units that encode the quantum effects. It is noteworthy that according to

this theory, consciousness, the holy grail of artificial intelligence, consists of the ability

of these tubulin dimers to hold superpositions of quantum gravity waves that collapse

16. Scale refers to symmetries in the system which can also be studied in an abstract form i.e. group
theoretically. Note that we previously referred to the question of what kind of a sophisticated RG-like
behavior neural networks perform and whether it is based on something other than coarse-graining as it is
done in statistical physics.
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(reduce as in Reduction in OR) due to an objective factor ascribed to a fundamental cha-

racteristic of space time. Here, the reduction produces the classical output of a (quan-

tum)computer.

The Orch Or theory is mentioned here solely as another motivating factor behind the pos-

sible relevance of some kind of quantum theory, without which RG theory as we know

it, is not meaningful. If RG theory is to be taken seriously as a possible candidate for the

theory of DL, it will then be necessary to leave the classical deterministic input-output

framework of neural networks as models of brain activity. Indeed, if the human mind is

viewed as a metaphor for what we know as information technology, or prior to that, a

telegraph switching circuit, the modern metaphor for brain activity is dominated by clas-

sical computers which at least in their current form cannot include such fundamental but

elusive concepts as consciousness. Regarding the latter, the Orch OR theory refers to it

as the collapse of quantum waves in micro-tubules due to an intrinsic property of space-

space time geometry [52, 53, 54], which in turn is understood within the framework of

Quantum Gravity.

Otherwise, since it is not the objective of this thesis, we will not delve into the details of

Orch OR theory’s claims, particularly due to the fact that they are neither mathematically

proven nor substantiated in any other way, albeit put forward by one of the greatest minds

of our time.



CHAPITRE 3

STATISTICAL PHYSICS - A CLASSICAL APPROACH

The most beneficial aspect statistical physics is that it, by construction, incorporates

ensembles of systems. An ensemble of systems is composed of many systems that are

constructed as replica of the original system, such that each system in the ensemble

represents one of the quantum/microscopic states accessible to the system. Since the

microscopic conditions are immeasurable/inaccessible, this is equivalent to repeating

an experiment multiple times under the same macroscopic conditions. The idea of en-

sembles allows for the introduction of ensemble average, i.e. the overall average of a

quantity over the ensembles. This is equivalent to averaging over all possible microsco-

pic states viewed from a macroscopic perspective 1.

Falling short of understanding the inner workings of thermodynamic systems in classi-

cal physics, statistical physics was developed to bridge the gap between microscopic

interactions and their macroscopic manifestations. Without delving into the details of

constructing such a theory, we note that the starting point of statistical physics(and

many other theories) is to write down a generic Hamiltonian for a microscopic system

−βH = ∑
n

KnΘn (3.1)

Here, β = 1/kBT , Kn are the coupling constants (external to the system), Θn are so-

called local operators (internal) and the sum is over all possible internal operators. Using

the Ising model [65] as a simple but descriptive representation of a statistical systems,

we note that Θn are different spin configurations Si, SiS j etc 2. In this approach, the

1. Let’s note that already at this point we can discern parallels between this idea and its suitability when
considering NNs : If the objective is to determine average performance of a certain type of NN on many
data sets, ensemble methods circumvents the tedious and elaborate process of testing the performance of
an algorithm on the data sets separately.

2. See section 3.3 for a treatment of this approach that models ferromagnets as a collection of micro-
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probability of a certain spin configuration in the Ising model is given by

P({Si}) =
e−βH({Si})

Z
(3.2)

It turns out that the partition function Z, entering here as a normalization constant, is

what we will encounter the most and includes all we need to know about the system i.e.

its microscopic interactions. It is defined as

Z[K] = Tr(e−βH) (3.3)

where [K] = [{Kn}] and Tr (or Tr()) denote trace and refer to the sum over all possible

degrees of freedom. In the case of the Ising model with N spins, this means

Tr = ∑
S1

∑
S2

...∑
SN

(3.4)

Crucially, this results in the partition function being a function of the coupling constants

only. Another important quantity/notion from which all the macroscopic observables

can be deduced is given by the free energy

F [K] =− 1
β

logZ[K] (3.5)

and its derivatives with respect to the coupling constants.

In the thermodynamic limit (typically when system size or number of particles approach

infinity), if the free energy exists, we can study the D-dimensional phase space of D

coupling constants, where the free energy will be analytical except in singular loci that

can be points, lines, planes etc. Here, we also encounter the somewhat ambiguous notion

of phases and phase boundary. Phases can generally be defined as regions of analyticity

of the free energy. A phase transition is said to occur in two ways, either if the first

scopic particles on a grid that in simplest cases can take on two values up/down or +1/− 1. Here, spin
configurations refer to how the microscopic entities interact with an external field ∑KSi, pairwise ∑KSiS j
etc
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derivative of the free energy is discontinuous in some direction (first order phase tran-

sition) or if the derivative is continuous across the phase boundary which is referred to

as second order or continuous phase transition.

In the context of statistical physics, a crude argument for the existence of phase tran-

sitions is the so-called energy-entropy argument. Entropy, as a measure of disorder, is

a link between microscopic and macroscopic worlds in the sense that it quantifies the

probabilities that quantum states of a system can possibly acquire. Given this probability,

also known as the Boltzmann distribution (3.2), entropy is related to the multiplicity of

the energy states of a system. A system in contact with a reservoir will always show a

net increase of entropy hence, the notion being indirectly linked to the forward direction

of time. The competition between lowering the internal energy E and increasing entropy

S of a system at a temperature T is also encapsulated in the classical definition of the

free energy

F = E−T S (3.6)

Here, temperature controls the the competition between energy and the number of avai-

lable states. At high temperatures, the free energy will be lowered by maximizing the

entropy. On the other hand, at low temperatures, the first term might dominate the en-

tropy term and so the free energy can be lowered by lowering the internal energy. We say

that a phase transition must have occurred if these two procedures lead to two different

macroscopic states.

As a final note, we should briefly mention that the dynamics of a statistical system is

reflected in the identification of time averages of any quantity with its ensemble average.

Ergodic Hypothesis identifies the time average of an observable quantity A(ηi), where

ηi(t) are the dynamical degrees of freedom

〈A〉= lim
t→∞

1
t

∫ t

0
A(ηi(t ′))dt ′ (3.7)
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with its statistical average

〈A〉=
∫

∏
i

P(ηi)A(ηi)dηi (3.8)

based on the hypothesis that the dynamical degrees of freedom ηi(t) come arbitrarily

close to all possible configurations of A(ηi) (within the limits of conservation laws), as

time goes to infinity.

We end this short exposé with a comment that relates the statistical physics approach

to ML : Training a NN can be viewed as a stochastic optimization process. As such, the

ensemble approach would allows for the calculation of the typical learning behavior with

the weights of the network as its outcome. Similar to above definitions, the probability of

observing a certain weight configuration is then given by the Boltzmann density where

weights w replace the spins Si and H(w) is a cost/energy/Lyapunov function to be

minimized. We will draw many more parallels between ML and other theories in this

thesis. Indeed, the overly ambitious goal of this thesis is(was) to provide a motivation

for why and how the black box of NNs should be opened.

3.1 Scaling Laws

In its simplest form scaling refers to the dependence between quantities in a power law

fashion. Power laws are by no means specific to the study of microscopic systems. For

instance, Kepler’s third law (clearly macroscopic) states that the ratio of the square of

an planet’s orbital period T with the cube of its circular orbit R is constant [63]

T ∝ R3/2 (3.9)

scaling laws can often be derived from simple dimensional analysis where the power is a

rational number. There is, however, also a much broader class of phenomena exhibiting
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scaling laws 3 where the exponent is an irrational number hence cannot be derived

through dimensional analysis. For example, the relationship between magnetization and

temperature in the vicinity of the critical exponent Tc in ferromagnets is given by

M ∝ |Tc−T |.311±.005 (3.10)

And relationship between the density and temperature for different phases of a particular

fluid follows a different scaling law 4

|ρ+−ρ−| ∝ |T −Tc|.327±.006 (3.11)

We should mention that even other fluids, despite behaving differently in many other

aspects and having, say, a different coexistence curve, demonstrate nearly exactly the

same critical exponent. Note also that the critical exponents are valid only near the

critical points as the system deviates from this behavior when we move further from the

critical exponents.

It should be added that the classical study of power laws produces incorrect (rational-

valued) exponents. Landau’s theory of phase transitions is based on Mean Field

Theory (MFT) where a physical variable is replaced by its average value. An implication

of MFT is to ignore (important, as it turns out) fluctuations near a critical point. As a

result, even if MFT offers a qualitative understanding of the observed phenomena, it falls

short of adequately addressing the divergencies when a variable such as the temperature

approaches its critical value. This is believed to explain why MFTs do not explain the

numerical discrepancies between the theoretically deduced rational exponents and the

measured irrational exponents.

3. In general, when a quantity approaches its critical value, the meaning of f (t)∼ tλ is

λ = lim
t→0

log f (t)
logt

4. The fact that the two powers are close to each other is a much broader subject related to universality
which will be discussed in different context in this thesis
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3.2 Characterization of Phases

Landau’s MFT approach defines phases based on a symmetry principle. It states that

different phases of matter are distinguished according to the symmetries that are present

in them i.e. in the Hamiltonian of the system 5. These symmetries reflect the possibility

of transitioning between phases, abruptly when the symmetries change/break or conti-

nuously when the symmetries remain unchanged. Again, since the phases of matter are

defined based on the symmetries of the Hamiltonian, if two seemingly different phases

(e.g. glass and water) are described by the same Hamiltonian the inevitable conclusion

is that these "different" phases are essentially the same 6.

Traditionally, but incorrectly, different phases were considered, and ordered, as discon-

tinuities of the derivatives of the free energy[31](thereof the expression second order

phase transitions, which is nowadays replaced by continuous phase transitions). We will

return to this subject in the final chapter of this work on Statistical Field Theory.

3.3 Ising model : A Classical Treatment

Studying the Ising model, a prototype in many fields of physics as well as in NNs, in-

formation theory etc, sheds light on what is possible/impossible to explain/understand in

the MFT approach (classical) versus modern approaches such as RG Theory. Here we

will review how phases, phase transitions, correlation functions and critical exponents

of the Ising model can be computed and what lessons can be learned from it 7. Of parti-

cular interest is keeping in mind the differences between the predictions made in the two

approaches in terms of scaling laws and universality classes.

As mentioned above, the objective of statistical physics is to compute the partition

5. We will return to this in the final chapter of this thesis. In particular, we will explain what is meant
by the Hamiltonian and what symmetries are used to characterize different or same phases

6. Glass is in fact considered a very slow moving liquid
7. Later, for comparison and in the interest of moving beyond the Ising model, we will do explicit

calculations of the much more complex model of Hopfield Networks



23

function for the Ising model for a system with N spins (For simplicity, in 1 dimension)

and nearest neighbor interaction

H =−K ∑
i

SiSi+1−h∑
i

Si (3.12)

In the absence of an external field (h = 0), this is given by

Z(N) = 2(2coshK)N−1 (3.13)

The free energy for this system in the limit N→ ∞ is given by

F =−N
β
[log(2coshK)+O(1/N) (3.14)

This result does not seem very interesting. The behavior of this system can is better

illustrated if we compute the free energy through the transfer matrix method, which

is also applicable in the presence of an external field, and includes elements that are

reminiscent of the the study of phase transitions in RG. Using

T =

 T11 T1−1

T−11 T−1−1

=

eh+K e−K

e−K e−h+K

 (3.15)

the partition function (3.3) can be written as

Z = ∑
S1

∑
S2

...∑
SN

TS1S2TS2S3...TSNS1 = TrTN = λ
N
1 +λ

N
2 (3.16)

which we arrive at after diagonalizing T. Calculating the eigenvalues

λ1,2 = eK[coshh±
√

sinh2 h+ e−4K] (3.17)

it is easily verified that in the thermodynamic limit the largest eigenvalue dominates the

partition function

Z = λ
N
1 (1+O(e−αN)) (3.18)
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and that the free energy is given by

F
N

=
1
β

log{eK[coshh±
√

sinh2 h+ e−4K]} (3.19)

In 1 dimension, in the limit of T = 0 or equivalently K→ ∞ the largest eigenvalue and

the free energy can be simplified to

λ1 = eK+|h| (3.20)

and

F =−N(J+ |H|) (3.21)

In this case, depending on the sign of the external field, the magnetization ( defined as

the derivative of the free energy) will be

M =− 1
N

∂F
∂H

=±1 (3.22)

We conclude that a phase transition occurs at T = 0. However, a phase transition is

not possible at T > 0 in the one dimensional Ising model. Technically, this can be pro-

ven by Perron’s theorem which states that the largest eigenvalue is real, positive, non-

degenerate and analytic. Therefore the free energy above will be manifestly analytic in

this regime and so phase transitions will not occur.

Apart from the above results, this approach is inadequate. In order to venture into the

field of phase transitions, we take a look at the correlation functions between spins. This

helps us calculate an expression for the correlation length. Knowledge of the behavior

of the correlation length i.e. knowing whether the spins are ordered at long or short

range, is intimately related to the phases of the matter. The correlation function between

the spins at different sites is

G(i, i+ j) = 〈SiSi+ j〉= (tanhK) j = e− j log(cothK) = e− j/ξ (3.23)
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where ξ is defined as the correlation length. Note that at zero temperature i.e. K→ ∞,

G(i, i+ j) = 1, which is equivalent to diverging correlation length ξ i.e. spins being

correlated over long ranges. We can understand the specific power law in this case by

studying how this divergence happens when the temperature approaches zero. For T > 0

i.e. finite but large K >> 1, the correlation length

ξ = eJ/kBT (3.24)

As T → 0 the divergence is obviously exponential in the 1-dimensional case. However,

this is due to the particularity of the 1-dimensional Ising model. In its most general form

the dependence on temperature in the vicinity of the critical exponents Tc is more like

ξ = (T −Tc)
ν (3.25)

3.4 Ising Model : Mean Field Theory

The experimentally motivated scaling behavior, at least quantitatively, can be achieved

through MFT as well. Here the basic idea is to replace an interacting field 8 by its ave-

rage value and to ignore fluctuations all together. Although the critical exponents will

not be correct, MFT gives a better picture of the expected and experimentally proven

scaling behavior of the Ising model. For example, we can calculate the magnetisation,

also known as the order parameter by making the plausible assumption that each spin

experiences a combination of the external field and an effective field originating from all

the other spins 9.

Using the new modified Ising Hamiltonian, and dropping the last fluctuation term, we

8. It is too early to use the word field here. We will be able to provide proper motivation for the use of
this word in the last chapter of this work. To avoid confusion, we can also use the word quantity instead
of field.

9. Later in this work, we will do this calculation for the Hopfield Network
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arrive at the magnetization

M =− 1
N

∂F
∂H

= ...= tanh(H/kBT +2dJM/KBT ) = tanh(H/kBT +Mτ) (3.26)

where τ = Tc/T . This expression can be expanded for small values of H and M. The

critical exponents for this as well as other physical quantities can then be extracted. For

instance, we get

M2 ≈ 3
T −Tc

Tc
+ ... (3.27)

The critical exponent 1/2 above is good but not exact. Nor is it in accordance with

the experimental results. What went wrong? In the above calculations we made two

assumptions, the first being that the fluctuations near Tc can be neglected all together (we

replaced the "field" by its average). The second assumption is that the magnetization is

small near the critical exponents.

As it turns out, none of these assumptions are entirely correct as fluctuations are of

utmost importance in the vicinity of critical points and the order parameter is not ne-

cessarily small. Despite these shortcomings, MFT gives a good qualitative picture of

scaling laws and universality classes for different systems. Modifications of MFT, such

as inclusion of fluctuations, do not seem to resolve the issues. Hence the next approach

i.e. the RG theory.



CHAPITRE 4

RENORMALIZATION GROUP THEORY ON A LATTICE

So what went wrong and why is classical physics not able to calculate the observed

power law exponents correctly? Or perhaps the real question is : What are the origins

of scaling laws? RG springs from, among other things, Kadanoff’s intuitive explanation

that near a criticality, the system looks the same at all length scales. Put differently,

and more precisely, divergencies in correlation length, mean that there is a relationship

between coupling constants and the (effective) Hamiltonian.

RG is a meta theory i.e. a theory of theories which has been applied in diverse fields,

from forest fires to disease control to spin/lattic models and quantum field theory, just to

mention a few. The common thread in all its applications is that it is an attempt to distill

large scale structure behavior from complex microscopic interactions. As such, it seems

absolutely ideal for the purpose of this thesis as we too try to understand observed sca-

linglaws in neural networks and the logical consequences that follow. In what follows,

we will describe RG, as applied in statistical physics and quantum field theory. By the

time we arrive at the chapter on Statistical field theory, the validity of RG will be taken

for granted. As a meta theory, it is simply the language we use to understand what is and

is not possible to observe at a given scale and how the microscopic world is or is not

manifested in the macroscopic world.

4.1 Renormalization Group Theory in Statistical Physics

As we will see, RG offers a consistent framework for modeling phase transitions, cri-

tical phenomena, scaling laws and universal constants, of which the latter describes

common behavior in wildly different types of phenomena as they are perceived by us

in a low energy regime. It is not too far-fetched to say that RG explains the "nature" of
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observed phenomena. For instance, it turns out that a self-avoiding random walk [57]

and an isolated polymer in a solution [16] demonstrate very close critical exponents

(around .5880± .0015). Thanks to RG, the inevitable conclusion is that it is not the

specific chemistry but the "nature" of the matter in question that is responsible for this

behavior.

The central theme of the theory consists of a so-called coarse-graining. This is a process

under which degrees of freedom of a given system are grouped together resulting in a

Hamiltonian with fewer degrees of freedom. For instance, in the case of Ising model,

if the distance between spins is a, blocks of spin of linear dimension la where l > 1 are

grouped together. We are going to see that that this process allows for non-integer values

of l, although integer values are helpful in creating the intuitive picture in lattice models.

Coarse-graining results in a new system. If the distances between the blocks of spin

are re-scaled in terms of la, the correlation length will also be re-scaled, leading to a

new system that for all purposes is identical to the original system albeit with a different

Hamiltonian. If the new system looks like the old system, there is no reason to assume

the physics will be different. Therefore, a crucial point here is the reasonable imposition

of the new condition that the new Hamiltonian should have more or less the same

functional form after a block spin transformation.

In its most general form, this type of re-scaling or RG transformation consists of a

re-definition of the coupling constants of the system. For instance, starting with the

Hamiltonian for a d-dimensional spin system (a hypercube with lattice spacing a) with

nearest neighbor interaction and an external field h

βH = ...=−K ∑
<i j>

SiS j−h∑
i

Si (4.1)

If the spins are correlated on lengths of order ξ , then the spins on length scale la can be

considered acting as a single unit as long as

a� la� ξ (T ) (4.2)
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While there is no reason to assume that the block spins interact differently the conse-

quence of coarse-graining is that the block spins interact with a different effective ex-

ternal field at the given scale

βHl = ...=−Kl ∑
<IJ>

SISJ−hl ∑
I

SI

where the effective coupling constants under successive RG transformation are defined

such that K1 = K, h1 = h.

4.2 What are the consequences of RG transformations?

Since an RG transformations into blocks of length scale l, here denoted by Rl , will

include ld spins Si, RG reduces the degrees of freedom from N described by a the original

Hamiltonian HN to N′ = N/ld where the block spins SI are described by an effective

Hamiltonian H ′N′ . Furthermore, even though the actual correlation length measured in

a is unchanged, the correlation length measured in units of la vs a changes to

ξl = ξ1/l (4.3)

An important consequence of this is that successive RG transformation push the new

block spin Hamiltonian further from criticality, to longer distances and lower tempera-

tures tl . Under and RG transformation, the coupling constants Kn of a generic Hamil-

tonian (3.1) transform

[K′] = Rl[K] (4.4)

Here [K′] refers to the set of RG transformed coupling constants. RG transformations

are not reversible as two different systems may give rise to the same block spin Hamil-

tonian. Therefore, these transformations form a semi-group

Rl1l2 [K] = Rl1Rl2[K] (4.5)
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Computing Rl is usually neither simple nor unique. Consequently, an equivalent approxi-

mation can be found even in abstract scenarios 1.

Despite these difficulties, we can gain certain insights into the behavior of a system

subject to coarse-graining and subsequent re-scaling. How are the partition function

and consequently free energy affected by RG transformations? As we mentioned above,

coarse-graining reduces the degrees of freedom by a factor equal to the size of the

block ld i.e. from N to N′ = N/ld , giving rise to an effective Hamiltonian H ′N′ of block

variables {S′I}. A common approach that we will also encounter in the last chapter on

Statistical Field Theory is to do a partial trace over the degrees of freedom within {Si}
while keeping the block degrees of freedom {S′I} fixed.

eH ′N′{[K
′],S′I} = Tr′{Si}e

HN{[K],Si} = Tr{Si}P(Si,S′I)e
HN{[K],Si} (4.6)

This seems daunting to look at but in the case of Ising model with an odd number of

spins in the blocks, this block spins and the projection operator P(Si,S′I) would look like

S′I = sign∑
i∈I

Si =±1

and

P(Si,S′I) = ∏
I

δ (S′I− sign∑
i∈I

Si)

i.e. 1 if in the blocks and zero otherwise. We can use the properties of the projection

operator to prove that while the partition function remains invariant under RG transfor-

mations

ZN′[K
′] = ...= ZN [K]

the free energy per degree of freedom (note different notation) will be re-scaled

g[K] =
1
N

logZN [K] = ...=
1
ld g[K′] (4.7)

1. Although it is not clear how these results can be extended to abstract cases, where the notions of
space, length, blocks etc can be hard to define, this is good news for what we are trying to achieve in the
case of Neural Networks.
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An important fact to note is that since at every step of RG transformation we sum over a

finite number of degrees of freedom, the local operators are analytic.

4.3 The Critical Manifold in the Theory Space

Consecutive RG transformations, define trajectories in the space of coupling constants.

Since each iteration reduces the correlation length, RG transformations move the theory

away from criticality. The flows created by RG transformations can either lead to fixed

points or infinity 2. A fixed point of the RG transformation is defined as one that is

invariant under the transformation

[K∗] = Rl[K∗] (4.8)

A consequences of the fact that an Rl reduces the length scale (measured in Ångstrom) 3

by a factor l is that the correlation length ξ at the fixed point has to satisfy

ξ [K∗] = ξ [K∗]/l (4.9)

which in turn results in ξ = 0 or ξ = ∞, referred to as trivial and critical fixed points,

respectively.

The basin of attraction of a fixed point, also known as the critical manifold, is defined as

the set of points that flow into the fixed point. It can be proven that all points in the basin

of attraction of a critical fixed point have infinite correlation length. The critical fixed

points (with ξ = ∞) are associated with singular critical behavior and the trivial fixed

points (ξ = 0) describe the bulk phases of the system. We will see that it is the behavior

of the system near particular fixed points that is associated with scalingbehavior.

2. Although it is theoretically possible to also have limit cycles too.
3. The actual correlation length measured in Å is unchanged but the correlation length measured in

la vs a is changed :
ξl = ξ1/l



32

4.4 What is the Origin of Singular Behavior?

A system described by the Hamiltonian H before an RG transformation and a Hamil-

tonian Hl after an RG transformation is the same apart from the difference in spacing

between the spins( a vs la). Therefore, the spin block Hamiltonian has lower tempe-

rature and is further from criticality. Since consecutive coarse-graining result from

performing a sum over a finite number of degrees of freedom an RG transformation is

an analytic process. However, non-analyticities arise from the mere fact that we may

have to do infinite RG iterations during which all degrees of freedom are integrated out.

This is, for instance, what we do in the thermodynamic limit N → ∞, where an infinite

number of RG transformations would be needed in order to eliminate all the degrees of

freedom.

This can happen also in much more mundane situations. This is no stranger than the

observation that depending on the starting point of a particle in a perfectly analytic two-

well potential, its final destination is a discontinuous function of its initial position as

it can role into one of the two minima. This non-analyticity is not due to pathologies

associated with the potential well but due to the fact that even if the position of the

particle is a continuous function of its initial position for a finite time, its final destination

need not be [22].

4.5 Understanding Universality

In the current context, the possibility of describing seemingly different types of mat-

ter/phenomena in a unified manner i.e. with the same Hamiltonian, places them in a

class of common universality. This way, water and glass are in the same universality

class and the only reason they appear different is that glass flows much more slowly

than water. Universality is related to the behavior of the systems close to but not at a

criticality. To understand this, the system is usually analyzed slightly off the critical

manifold. Performing an RG transformation on a coupling constant Kn at a point close
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to the critical manifold Kn = K∗n +δKn, we get

K′n = K∗n +∑
m

∂K′n
∂Km
|Km=K∗mδKm +O((δK)2)

= K∗n +MnmδKm +O((δK)2) (4.10)

The linearized RG transformation near K∗

δK′n = ∑
m

MnmδKm (4.11)

can help clarify how RG flows behave near a fixed point. Assuming, for clarity, that the

above matrix M is symmetric, it can be expanded in the its eigen-directions.

δK′ = MδK = ...= ∑
s

a(s)λ (s)e(s) = ∑
s

a′(s)e(s) (4.12)

where s enumerates the eigenvectors/eigenvalues and a′(s) is the projection of δK on

the eigen-directions. Depending on whether the eigenvalues |λ (s)| > 1, |λ (s)| < 1 or

|λ (s)| = 1, the components in the eigen-direction will grow(relevant), shrink(irrelevant)

or remain the same (marginal).

4.6 The Origin of Scaling Laws

How do RG transformations account for scalinglaws? Since RG transformations form a

semi-group

R(ll′)[K] = Rl′Rl[K] (4.13)

we can use the above linearization to write

M(l)M(l′) = M(ll′) => λ
(s)
l λ

(s)
l′ = λ

(s)
ll′ (4.14)
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which has the solution λ
(s)
l = lys . This means that some (relevant) eigenvalues drive

slightly off-critical systems away from the fixed points regardless of the initial values

of the coupling constants. We can get this result in a slightly different manner. Sup-

pose we have a system with one coupling constant, playfully called T . After an RG

transformation from T to T ′ near a fixed point T ∗, we can write

T ′−T ∗ = Rl(T )−Rl(T ∗) =
∂Rl

∂T
|T=T ∗(T −T ∗)+O((T −T ∗)2) (4.15)

Again, the linearized RG transformation has the solution

∂Rl

∂T
|T=T ∗ = lyt (4.16)

which after n iterations (and some modifications and re-definitions) can be expressed as

t(n) = t(lyt )n (4.17)

Similarly, n-fold RG iterations, transform the correlation length to

ξ (t) = ln
ξ (t(n)) = ln

ξ (tlnyt ) (4.18)

which with a suitable choice of variables, can be written in a more familiar from (in the

context of scaling laws)

ξ (t) = (t/b)−1/yt ξ (b) (4.19)

with b as an arbitrary large positive number. The relevant quantities can be read off

ξ ∼ t−ν ∼ t−1/yt (4.20)
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4.7 RG Applied to The Ising Model in two dimensions (Exact Calculation)

Here, we will put the above in practice by applying RG to the 2D Ising model. This

is quite standard and illustrates how RG works in practice and what problems may lie

ahead if we try to apply RG in other models[22]. Consider a 2D Ising model with trian-

gular block spins where the value of the block spin is decided by a majority rule. The

Hamiltonian for such a system, and all other systems in fact, is largely determined by

the symmetries. The simplest such Hamiltonian (a modification of (3.12)) with nearest

neighbor interaction is given by

H = K ∑
<i j>

SiS j +h∑
i

Si (4.21)

4.7.1 Coarse-Graining

In the process of coarse-graining, each block spin SI can arise from four different com-

bination of 3 spins |{σI}| = 4 and the distance between the block spins is easily calcu-

lated to
√

3. The effective Hamiltonian H ′ after an RG transformation can be approxi-

mated using perturbation theory on the original Hamiltonian (H = H0 +V ) which in

this context amounts to separating spin interactions within a block of spins H0 and the

interactions between spins in different blocks V .

H0 = K ∑
I

∑
i, j∈I

SiS j, V = K ∑
I 6=J

∑
i∈I, j∈J

SiS j (4.22)

Defining the average of a quantity A with respect to H0 as

〈A〉0 =
∑{σI} eH0{SI ,σI}A(SI,σI)

∑{σI} eH0{SI ,σI}
(4.23)
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we can easily prove

eH ′ = ∑
{σI}

eH{SI ,σI} = ...= 〈eV 〉0 ∑
{σI}

eH0{SI ,σI} (4.24)

If there are M blocks and Z0 is the partition function for one block, we get

eH ′ = 〈eV 〉0ZM
0 (4.25)

Assuming that V is small, we can do the following expansion in terms of cumulants

〈eV 〉0 = e〈V 〉0+
〈V 2〉0

2 −
〈V 〉20

2 +O(V 3) (4.26)

And the effective Hamiltonian is given by

H ′{SI}= MlogZ0 + 〈V 〉0 +
〈V 2〉0

2
−
〈V 〉20

2
+O(V 3) (4.27)

Note that the first term(easily calculated by summing over all possible spin configura-

tion in one block) is the contribution from a finite number of blocks and so it does not

contribute to the singular behavior. We can write V , the interaction between blocks of

spins as

V = ∑
I 6=J

VIJ (4.28)

where

VIJ = KSJ
3(S

I
1 +SI

2) (4.29)

due to the particular nature of interaction between triangular blocks. After some calcu-

lation we get

〈V 〉0 = 2KΦ(K)2
∑

<IJ>
SISJ (4.30)

where

Φ(K) =
e3K + e−K

e3K +3e−K (4.31)
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And the effective Hamiltonian to the first order in V is given by

H ′{SI}= MlogZ0(K)+K′ ∑
<IJ>

SISJ +O(V 2) (4.32)

with K′ = 2KΦ(K)2.

4.7.2 The phase space

At this point, the analysis of the phase space is quite trivial. We first find the fixed points

of the RG transformation through

K∗ = 2K∗Φ(K∗)2 (4.33)

which has the solutions K∗ = 0, K∗ = ∞ or Φ(K∗) = 1/
√

2 where the latter relationship

gives the non-trivial fixed point. Inserting this in (4.31), we get

Kc =
log(1+

√
2)

4
(4.34)

and the eigenvalue of the linearized RG transformation

λt =
∂K′

∂K
|Kc = 1.62 (4.35)

Since we used perturbation theory, this is an approximation. More precise calculations

can be done with the inclusion of higher order terms.



CHAPITRE 5

RENORMALIZATION GROUP THEORY IN QUANTUM FIELD THEORY

We have seen the application of RG to lattice models. Although it is possible that this

is most suitable approach to Hopfield Networks or Restricted Boltzmann Machines

(RBM), which we are aiming to do, it is not clear whether we should imagine neural net-

works as lattices. And if we do, it does not seem reasonable to discuss coarse-graining,

particularly block-spin transformations and correlation lengths in the absence of a lat-

tice structure. Yes, some researchers point at the similarities between coarse-graining,

and the inner workings of RBMs in the context of information theory but as far as we

have seen, their goal is to find meaningful coarse-graining schemes in physical systems

where our knowledge of the microscopic structure of the system is limited. Our goal

is quite the opposite. We are hoping to prove that the observed scaling laws in neural

networks can be studied in the context of RG in the absence of a lattice structure.

In this section, we explore RG from the point of view of Quantum Field Theory. It

should be noted that RG is used in similar manner in a wide range of fields from Quantum

Electrodynamics to Quantum Chromo-dynamics to Statistical Field Theory to which we

will return at the end of this work. In all these cases, a path-integral formulation is used.

Our objective is to understand if we can move beyond prototyping RBMs as "coarse-

graining machines" and to general NNs. Furthermore, if we make the bold assumption

that NNs really do perform some kind of coarse-graining beyond RBMs, it is plausible

to start with RG as a working hypothesis that will hopefully explain the empirical results

of recent few years.

Is it possible to explain the empirical finding that many algorithms seem to behave simi-

larly in certain limits as algorithmic universality ? Is it possible that discovered scaling

laws in NNs set a limit or constraint on our ability to perform certain calculations? Is
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there an algorithm (M-algorithm, perhaps) 1 capable of producing the same results as all

possible algorithms? As far as we know, there is no thorough theoretical understanding

of why we observe algorithm-agnostic phase transitions.

In the Wilsonian RG, large momenta above a certain so-called cut-off are integrated

out. This is equivalent to removing short-distance behavior/fluctuations of the system

as a result of which the remaining theory is a lower energy description of the original

system. To this end, a cut-off Λ and a dimensionless parameter b are introduced and the

field is separated into low and high energy parts :

φ(x) = φl(x)+φh(x)

and integrate out the fields with high-momenta k in the interval bΛ≤ k ≤ Λ

e−Se f f [φl ] = e−S[φl ]
∫

Dφhe−S[φl ,φh]e−S[φh], (5.1)

where we have put h = 1 for simplicity. While the purely high energy part of this is

just a normalization factor, the interesting contribution comes from the part of the action

that involves both φl and φh. The partition function in terms of the effective action (or

Largrangian) is then given by

Z =
∫

D [φl]e−
1
h Se f f (φl) =

∫
D [φ ]bΛe−

1
h
∫

ddxLe f f (φ). (5.2)

What the effective action (Euclidean) looks like, how it changes across energy scales

and how it is interpreted depends on the action. For instance, the prototypical φ 4-theory

above, often used in QFT to understand the RG flow, provides an adequate understanding

of RG flows as it leads to the general discovery that operators of RG flow can be classified

as relevant, irrelevant and marginal. In general, an RG transformation is defined such

that the functional form of the Lagrangian is kept intact while rescaling/redefining other

entities.

1. Similar to M-theory being the origin of all string theories
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Z =
∫

D [φl]e−S(φl)
∫

D [φh]e−
∫

ddx{ 1
2 (∂µ φh)

2+ 1
2 m2φ 2

h+λ ( 1
6 φ 3

l φh+...)}. (5.3)

where

S(φl) =
∫

ddx{1
2
(∂µφl)

2 +
1
2

m2
φ

2
l +

λ

4!
φ

4
l }

Note that due to orthogonality condition in the momentum space i.e. Fourier transfor-

ming the fields,

φ(x) =
∫ ddk

(2π)d e−ik.x
φ(k), (5.4)

the mixed terms linear in φl and φh and/or their derivatives do not contribute to the above

action. Integrating out the high energy modes in the first part of the above action results

in the effective action

Z =
∫

D [φl]e−Se f f (φl) =
∫

D [φl]e−
∫

ddx{ 1
2 (∂µ φl)

2+ 1
2 m2φ 2

l +
λ

4! φ 4
l +O(λ )} (5.5)

Note that apart from integrating out the high energy modes in the mixed terms, which

will contribute with λ -correction terms to the effective action, it is also customary to

disregard the high energy mass term as due to the fact that m2� Λ. As such, the largest

contribution will come from the kinetic high energy term.

Z ∼
∫

D [φh]e−
∫

ddx 1
2 (∂µ φh)

2
=
∫

D [φh]e
−
∫ ddk

(2π)d
1
2 φh(k)k2φh(−k)

(5.6)

We use the method of external source

Z ∼
∫

D [φh]e
−
∫ ddk

(2π)d
{ 1

2 φh(k)k2φh(−k)+J(k)φh(k)} (5.7)

and demand k2

(2π)d to be the momentum space propagator by imposing

DF(k+ p) =
(2π)d

k2 δ
d(k+ p) (5.8)

The remaining terms can now be integrated out using Wick’s theorem i.e. approximating
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each of the terms as e−x = 1− x+ .... For instance

e−
∫

ddx λ

4 φ 2
l (x)φh(x)φh(x) = 1− λ

4

∫
ddxφ

2
l (x)φh(x)φh(x) (5.9)

which in momentum space results in

Z ∼
∫

D [φl]e−S[φl ]φ
2
l (x)
−λ

4

∫
D [φh]e

−
∫ ddk

(2π)d
{ 1

2 φh(k)k2φh(−k)}
φh(q)φh(p) (5.10)

∼
∫

D [φl]e−S[φl ]φ
2
l (x)
−λ

4

∫
ddqdd pDF(p+q) (5.11)

∼
∫

D [φl]e−S[φl ]φ
2
l (x)
−λ

4

∫ ddq
(2π)d

dd p
(2π)d (2π)d 1

q2 δ (p+q) (5.12)

∼
∫

D [φl]e−S[φl ]φ
2
l (x)
−λ

4

∫
Λ

bΛ

ddq
(2π)d

1
q2 (5.13)

∼
∫

D [φl]e−S[φl ]
−µ

2
φ

2
l (x) (5.14)

which looks like A contribution to the mass of low energy modes if we define

µ =
λ

2

∫
Λ

bΛ

ddq
(2π)d

1
q2 (5.15)

This cut-off and dimension-dependent quantity is interpreted as a shift in the mass term

m2. This is in fact a general conclusion in the Wilsonian RG : Whatever IR terms we

have in the theory, are the result of integrating out high energy modes. It is quite clear that

this process can potentially generate an infinite tower of higher dimensional operators

that were either present or absent in the original theory. For instance, the same term in

second order in λ

(
−λ

4
)2
∫

ddxφ
2
l (x)φ

2
h (x)

∫
ddyφ

2
l (y)φ

2
h (y) (5.16)

generates a correction to the φ 4-term, present in the original theory. But the φ 3
l φh in

O(λ ) gives a contribution towards φ 6
l that was not there to begin with. Another interes-

ting fact in the RG theory is that while all corrections are cut-off dependent, some are

renormalizable but others are not. For instance, due to division by d−4, the contribution

to the phi4-term is non-renormalizable in 4 dimensions. Neither is the new λ 2

Λ2 φ 6
l opera-
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tor. Interestingly enough, we also see that this operator was not visible in the low energy

theory simply due to being suppressed by the cut-off. This is in fact the definition of a

renormalizable theory as one which has a high enough cut-off compared to its typical

energy scale.

5.1 RG flow in Quantum Field Theory

In summary, integrating out high energy modes leads to a modification of existing pa-

rameters of the theory. These modifications appear as changes in the couplings, masses,

fields etc. We also know that integrating out corresponds to a change in perspective i.e.

the scale at which we examine the theory. Although there is a natural interpretation of

scale in lattices, it is more natural to consider the change of scale as a continuous pro-

cess. In other words, we are interested in understanding how the parameters of the theory

change continuously with scale.

Under a rescaling with b < 1, the relationship between high and low momentum modes

(k′ and k, respectively) or equivalently short and long distances (x′ and x) is given by

k′ =
k
b
, x′ = bx, =⇒ ddx = b−dddx′, ∂µ =

∂

∂xµ

= b
∂

∂x′µ
= b∂

′
µ (5.17)

As we saw, integrating out the high energy modes results in an action with modified

couplings. Suppose we have done this and that the resulting low energy action is given

by

S[φ ] =
∫

ddx{1+∆Z
2

(∂µφ)2 +
m2 +∆m2

2
φ

2

+
λ +∆λ

4!
φ

4 +∆C(∂µφ∂µφ)2 +∆Dφ
6 + ...} (5.18)

Note that this action is the result of integrating out the high energy modes only and that
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it does not take into account the rescaling upon which the action changes to

S[φ ] =
∫

b−dddx′{1+∆Z
2

b2(∂ ′µφ)2 +
m2 +∆m2

2
φ

2

+
λ +∆λ

4!
φ

4 +∆Cb4(∂ ′µφ∂
′
µφ)2 +∆Dφ

6 + ...} (5.19)

The requirement that the free-field Lagrangian 1
2(∂µφ)2 is written in canonical form i.e.

should remain unchanged (thereby creating the so-called Gaussian fixed point of the RG

flow in the space of all possible Lagrangians) determines the full RG transformation of

the above action.

φ
′ =[b2−d(1+∆Z]1/2

φ (5.20)

m′2 =(m2 +∆m2)[1+∆Z]−1b−2 (5.21)

λ
′ =(λ +∆λ )[1+∆Z]−2bd−4 (5.22)

C′ =∆C[(1+∆Z]−2bd (5.23)

D′ =∆D[(1+∆Z]−3b2d−6 (5.24)

The new action is given by

S[φ ′] =
∫

ddx′{1
2
(∂ ′µφ

′)2 +
1
2

m′2φ
′2 +

1
4!

λ
′
φ
′4 +C′(∂ ′µφ

′
∂
′
µφ
′)2 +D′φ ′6 + ...} (5.25)

5.2 What is Renormalizability?

Above we mentioned that after an RG transformation, the corrections ξ to the φ 4 term
−ξ

4!
∫

ddxφ 4
l (x), given by

ξ =−4!(
λ

4
)2
∫

Λ

bΛ

ddk
(2π)d

1
(k2)2 =− 1

(2π)d
1

Γ(d/2)
(1−bd−4)Λd−4

d−4
(5.26)

is not renormalizable in 4 dimensions. This dependence on dimensionality is intimately

connected to changes in scale. We have seen that the evolution of operators and couplings
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in RG. The real question to be asked is how how the change of operators affect the

theory across energy scales. If we consider the effect of rescaling (ignoring the quantum

corrections we get from integrating out the high momentum modes, the most generalized

action

S[φ ] =
∫

ddx∑
j

c jO j(φ) (5.27)

will transform into

S[φ ′] =
∫

ddx′b−d
∑

j
bNdφ+Mc jO j(φ

′) =
∫

ddx′∑
j

c′jO j(φ
′) (5.28)

Here, M, N and dφ are the number of derivatives, the number of fields in the operator,

and canonical dimension of φ , respectively. Comparing the transformed action to the

previous action, we have

c′j = bNdφ+M−dc j = bdO j−dc j (5.29)

Here, we are interested in the behavior of the operators under continuous RG transfor-

mations. It is easily proven that

x
dc j

dx
=−(dO j −d)c j (5.30)

which helps classify operators. For instance, if dO j = d, we can conclude that resclaing

does not change the coupling. This is called a marginal operator. The other two cases

are classified similarly : If dO j < d, the derivative will be positive and c j will grow with

x i.e. going towards the IR regime. These are the so-called relevant operators. The only

remaining option is dO j > d i.e. when the derivative shrinks with x. These so-called

irrelevant operators are non-renormalizable. The problem with these operators is that

they become suppressed in IR, the higher the cut-off is. In other words, they will not be

visible in the large scale theory. In principle, the higher the cut-off, the fast the irrelevant

operators become invisible for larger distances.
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5.3 Callan-Symanzik Equation

Understanding the RG flow in the language of correlation functions is a practical ap-

proach to making contact with actual measurements such as amplitudes in QFT. The idea

is to investigate how physically measurable quantities behave under RG transformations.

The demensionless parameter b introduced above to set the line between low and high

momenta can be understood as a parameter controlling the cut-off. Here, we want to

understand how amplitudes/correlation functions behave under a continuous change of

the cut-off.

In calculating the correlation functions, the (imposed renormalization condition deter-

mines what is called a renormalization scale µ . Variation of this scale defines a renorma-

lization flow of the parameters of the theory. This way, the same problem is cast as the

renormalization scale flow. Above we saw that the relationship between the unrenorma-

lized and renormalized fields (φ0 and φ ) is given by

φ(x) = Z−1/2
φ0(x) (5.31)

As a result, the correlation functions transform as

〈T φ(x1)...φ(xn)〉= Z−n/2〈φ0(x1)...φ0(xn)〉 (5.32)

of which the relevant i.e. connected n-point correlation functions transform as

G(n)(x1, ...,xn) = Z−n/2G(n)
0 (x1, ...,xn) (5.33)

The non-renormalized/renormalized correlation functions depend on φ0/φ , m0/m,

λ0/λ , respectively. Furthermore, while the non-renormalized correlation functions de-

pend on the cut-off Λ (but not the renormalization scale), the renormalized correlation
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functions depend on the renormalization scale µ . This means that

dG(n)
0

dµ
= 0 (5.34)

a consequence of which is the Callan-Symanzik equation

[µ
∂

∂ µ
+µ

∂λ

∂ µ

∂

∂λ
−nµ

∂η

∂ µ
]G(n)(x1, ...,xn,µ,λ ) = 0

[µ
∂

∂ µ
+β

∂

∂λ
−nγ]G(n) = 0 (5.35)

In its most general form, the Callan-Symanzik equation can be derived based on the

observation that the β function’s dependence on the scale comes from the counterterms.

A schematic description of an n-point function with a fictitious coupling g is given by

G(n) = [−ig+1PI loops

+vertex counterterms

+ external leg loops+ external leg counterterms]
n

∏
i

i
p2

i
(5.36)

Or equivalently

G(n) = [−ig+1PI loops− iδg− ig
n

∑
j=1

(external leg loops−δZi)]
n

∏
i

i
p2

i
(5.37)

where i is the fields/legs that may or may not be different, hence a counter terms δZi is

inserted for each of these fields. Applying the Callan-Symanzik equation on this generic

n-point function (skipping some steps) results in an expression for the β function

β (g) = µ
∂

∂ µ
(
1
2

g∑
i

δZi−δg) (5.38)

which can be calculated based on the renormalization scale dependence of the counter-

terms. A quick glance at the φ 4 theory shows that these are giveing by the coefficients of

the divergences.
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5.4 The beta-function

The CS equation is useful in the context of perturbation theory employed in the renorma-

lization procedure which also helps calculate the β -function. The latter provides an un-

derstanding of the flow of QFTs across energy scales. Suppose we calculate a β -function

β (g) with g is some coupling.

β (g) > 0 : This means that the coupling g increases with the energy E. As the cou-

pling grows beyond a certain limit, the theory becomes non-perturbative but as long as

it remains perturbative, the growth of the coupling can be traced.

β (g)< 0 : The coupling decreases with increasing energy. In the limit of infinitely high

energies the coupling goes to zero, a so-called asymptotic freedom where the coupling

reaches a UV fixed point. On the contrary, the coupling grows towards the IR which also

means that the theory no longer is perturbative. For example, if

β (g) =
dg

d ln µ
=−1

2
Cg3, C > 0 (5.39)

we get

g2(q) =
g2(µR

1+Cg2(µR) ln(q/µR)
(5.40)

where µR is a reference scale. We see a logarithmically decreasing coupling towards the

UV with a fixed point at infinity.

β (g) = 0 : The coupling g is energy- or length-scale independent. Scale invariance is an

interesting limit of RG flow. This property (also called conformal invariance) is often

imposed on theories to learn about their properties otherwise. This vanishing point is a

fixed point of the RG flow. If a theory has a positive beta function for small values of

the coupling, and the function is well-behaved, it will have to change sign. The coupling

grows with the scale as long as the beta function is positive. As the beta-function crosses

zero, the behavior is reversed and the coupling shrinks with growing energy scales. This

makes the fixed point a UV stable fixed point in the sense that we reach this point no
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matter how we approach it.

An IR fixed point is possible in the case where the beta function is negative for small

values of the coupling constant hence grows with decreasing energy scale. As the func-

tion crosses the fixed point and becomes positive, the flow is reversed and the coupling

decreases with decreasing scale. An interesting approach is to linearize the beta function

in the vicinity of the fixed point g∗. Assuming that B > 0, this means that in the case

when β is positive for g < g∗ and negative when g > g∗ :

β (g)'−B(g−g∗)
dg

d ln µ
=−B(g−g∗)

dg
g−g∗

=−Bd ln µ∫ q

µR

dg
g−g∗

=
∫ q

µR

−Bd ln µ = ln(
q

µR
)B

g(q)' g∗+(g(µR)−g∗)(µR

q
)B (5.41)

when clearly shows the UV fixed point i.e. the coupling approaches the fixed point in the

high energy limit.



CHAPITRE 6

ENERGY-BASED MODELS

It seems difficult to apply RG to models that are not equipped with a Hamiltonian or

an energy function. There is an interesting interplay between energy-based models in

neural networks and the physics of interacting particles. Historically, these models in-

clude Hopfield Networks, Boltzmann Machines and RBMs some of which have evolved

over time from discrete to more widely applicable or realistic scenarios with continuous

variables. The most fundamental characteristic of these models is that they are probabi-

listic models where a Lyapunov function (Here understood as a Hamiltonian) is used

to describe the probability of any particular state of the system.

It is a fact of life that the presumably complex interactions between microscopic entities

of any system is beyond access to us. Instead, we observe the macroscopic properties

or what is known as coarse-grained information about the system. One such property

is the total energy of a system, defined as a Hamiltonian H(x) which determines the

energy values of each possible state of a system of N particles where x is a vector whose

elements are the degrees of freedom of the particles.

Energy-based learning is an alternative approach to probabilistic estimation for many

machine learning tasks where the usual necessity of estimating normalized probability

densities that more often than not are intractable, can be avoided. This, simply because

the objective is to lower the energy of the system (this is easily seen in Hopfield net-

works). Still, the only consistent approach is to turn the collection of all possible energies

and possible outcomes into a normalized (Gibbs) distribution [42].

P(Y |X) =
e−βE(Y,X)∫

y∈Y e−βE(Y,X)
(6.1)

This is of course meaningful only if the denominator, the partition function, is tractable.
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This is not necessarily a problem since, as we will see in the last chapter of this work,

the partition function can be constructed based on the symmetries of the system. In the

context of energy-based models, training means finding the best energy function in a

family of all possible functions. This is qualitatively measured by a loss functional that

is minimized during the learning procedure.

Energy-based models assign a probability to each energy level. The probability distribu-

tion in question is Boltzmann distribution

P(x) =
e
−H(x)

T

Z
(6.2)

which is derived from Jayne’s maximum entropy principle [32] stating that the most

probable state of a system on the basis of partial information must be one determined by

a distribution with largest possible entropy.

max
P(x)

∑
x
−P(x)logP(x) s.t. ∑

x
P(x)H(x) = 〈H(x)〉 (6.3)

The Boltzmann distribution also establishes a relationship between the likelihood of

energy levels (the most probably energy levels are those with highest entropy), and the

parameter T which is interpreted as temperature. Since a system is a collection of states

of different energy, the temperature T can also be viewed as a measure of average energy

of the system. In the limit of low temperature (See (6.2) the minima of the energy func-

tion i.e. the ground states are more likely. In contrast, in the limit of high or infinite

temperature, all states are equally likely.

Inference in EBMs consists of clamping down the values of the observed variables and

finding the values of other variables that minimize the energy. When the energy function

is not known, learning is the process of finding an energy function in a family of func-

tions such that the correct values of variables are associated with lower energies than the

incorrect variables. A loss function is one that measures the quality of energy functions

in the family to be considered.
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Interestingly, while the inference algorithm selects the Y with lowest energy, learning

shapes the energy landscape in such a way that the correct examples are associated with

lower energy (lower loss) and incorrect examples with higher energies (higher loss).

Note also that this reshaping of the loss landscape is crucial in EBMs. For this reason,

the per sample energy E(W,Y i,X i) cannot be used as a loss function simply because it

will not push up the loss landscape for incorrect answers [42]. On the other hand the

negative log-likelihood loss (also known as maximum mutual information or cross

entropy loss) which stems from maximizing the likelihood of the data P(Y |X) satisfies

the reshaping criterion for EBMs

LNLL =
1
P ∑[E(W,Y i,X i)+

1
β

log
∫

y∈Y
e−βE(W,y,X i)] (6.4)

This loss function reshapes the energy landscape for every example by pushing up the

energy of every example with an amount proportional to its likelihood (second so-called

contrastive term)

∂LNLL

∂W
=

∂E(W,Y i,X i)

∂W
−
∫

Y∈Y

∂E(W,Y,X i)

∂W
P(Y |W,X i) (6.5)

Again, this integral is not always tractable [42] due to the similar difficulty of calculating

the likelihood P(Y |W,X i) which in turn is related to the intractable partition function as

in many other cases. We will in the last chapter of this work that Statistical Field Theory

can circumvent this issue.

One of our ideas was to explore the interplay between the loss function, lowering the

energy of the system, the principle of maximum entropy and RG theory.
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TWO SPECIFIC ENERGY-BASED MODELS

The most fundamental step in designing energy-based systems is the choice of a Hamil-

tonian that reflects the most relevant interactions in the system. For instance, a particle

system where energy is assigned to each particle plus pairwise interactions between par-

ticles that have two degrees of freedom is known as the Ising model. In this chapter we

review two such models both of which are variations of the Ising model. And even if

the variations do not seem significantly drastic, these models are much more difficult to

handle. In this work, we mainly focused on analyzing Hopfield Networks from various

angles.

7.1 Hopfield Networks

Hopfield networks [28], were introduced in 1982. These networks consist of a group

of connected neurons each of which are given a certain value (+1 or -1 in discrete net-

works). The neurons interact through simple rules which can be shown to follow a form

of Hebbian rule as a result of which Hopfield networks are suitable for repairing cor-

rupted data or retrieving a certain pattern when given a partial pattern.

These networks are associated with an energy function. Training the network amounts

to identifying the parameters of the network such that the minima or ground states of the

energy function are the states of the input data. In its simplest form (binary valued nodes,

one stored pattern or a few different patterns) it is easily proven that each update of the

Hopfield network lowers its energy until the network settles down in a configuration of

minimum energy (local minima corresponding to stored patterns) after which the updates

do not have any effect on the network or the energy.
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A binary Hopfield network that stores N d-dimensional patterns {xi}N
1 in neurons whose

activation values are {−1,1}d , can be trained by constructing a matrix of outer products

of the patterns

W =
N

∑
1

xixi
T (7.1)

which is used to retrieve the pattern corresponding to a particular state/corrupt pattern ξξξ

according to the update rule

ξξξ
t+1

= sgn(Wξξξ
t−bbb) (7.2)

with convergence when ξξξ
t+1

= ξξξ
t . Here bbb is a bias term that can be seen as a direct input

to the neurons. The update rule can also be used asynchronously i.e. each component

of ξξξ
t is updated separately until the minimum corresponding to the corrupt pattern in

question is reached. Note that removing the bias term is equivalent to the energy of a

pattern being equal to the energy of its inverse.

However, this type of (Hebbian) learning does not work well if the data vectors are not

mutually orthogonal, in which case so-called spurious minima can appear. These minima

may be combinations of other data vectors hence do not correspond to the actual data

vectors. This way, the minima of the energy function may lead to wrong memory retrie-

val, a problem that is usually helped (see below) by designing Lyapunov functions that

lead to a larger memory which in turn contributes to separating the basins of attraction

of the local minima.

Another strategy involves so-called unlearning of spurious minima. Here, by modifying

the matrix in 7.1 as in

wi j = 〈xix j〉data− ε〈xix j〉model (7.3)

or equivalently injecting energy into the system, all the energy states , there-among the

local and spurious minima, are lifted/moved a process that with a suitable choice of ε

can lead to the removal/unlearning of spurious minima.
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A more reasonable approach to lowering the energy of the system is in direct corres-

pondence to the Boltzmann distribution being a connection between the energy of the

system

E =−1
2 ∑

i j
Wi jξiξ j +∑

i
biξi (7.4)

and its probability at a particular temperature. In order to mimic a realistic situation as

dictated by the Boltzmann distribution, the nodes are flipped at zero temperature only

if it lowers the energy, at higher temperature the nodes are flipped both if the energy is

decrease and also when it is increased but with the probability p = e
−∆E

T . The nodes are

left unchanged with a probability of 1− p otherwise. This is the Metropolis-Hastings

algorithm.

Useful as the above model has proven to be, perhaps a more realistic approach [27]

is to consider a network of biological neurons with graded response. Note that this is

also the energy function we used in this work. The graded response is usually taken to

be a sigmoid input-output Vi = g(xi). Provided certain simple conditions on the matrix

TTT below (symmetric and with zero diagonal elements) a Lyapounov function that is

guaranteed to converge to stable states is given by

E =−1
2 ∑

i6= j
Ti jViVj−∑

i
IiVi +

1
τ

∑
i

∫ Vi
g−1(z)dz (7.5)

Assuming that the synaptic current has a lag behind the firing rate of the form e
−t
τ ,

the evolution of the state of the network can be described by the ordinary differential

equation
dxi

dt
=−xi

τ
+∑

i j
Ti jVj + I j (7.6)

It turns out the classic Hopfield networks are not able to retrieve a specific pattern if many

similar such patterns are stored in the network. This problem was initially attributed to

the memory capacity of the network. Hopfield networks have since been generalized

from binary patterns to modern or dense associative memory networks with very large
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memory capacity. The energy of these is given by

E =−∑
i

F(xxxT
i ξξξ ) (7.7)

where F is a polynomial [40] or an exponential [15] function. It is also shown [15] that

the network will converge to a minimum with high probability and with the component-

wise update rule

ξξξ
new

[l] = sgn[−E(ξξξ [l+])+E(ξξξ [l−])] (7.8)

after only one update of the entire vector ξξξ . Here ξξξ [l+] = 1 and ξξξ [l−] =−1 and all the

other components remain unchanged.

Note that in the exponential case [15] the authors prove that their network has an ex-

ponential memory capacity in terms of the number of neurons. This alone, however, is

not the solution since even with an exponentially large memory capacity, the basins of

attraction of each stored pattern can be as large as the original Hopfield networks, which

are already known to have pattern retrieval problems. The issue is that if the basins of

attraction are large and/or overlapping, the network will then converge towards a solu-

tion that may be close to a stored pattern or an average of several patterns instead of a

particular pattern. In other words, Hopfield networks with large memory capacity can

demonstrate a large number of metastable fixed points.

A recent generalization of the above modern Hopfield networks to the case of continuous

valued inputs/patterns [55] proposes a new energy function and update mechanism that

is equivalent to the attention mechanism in transformers, originally introduced in [62].

In this approach, the Lyapounov function i.e. energy is given by

E =− 1
β

log
N

∑
i=1

eβxxxT
i ξξξ +

1
2

ξξξ
T

ξξξ + c (7.9)

where XXX = (xxx1,xxx2, ...xxxN), c = 1
β

logN + 1
2M2 and M is the largest norm of all stored
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patterns. The proposed update rule for this network is given by

ξξξ
new

= XXXsoftmax(βXXXT
ξ ) (7.10)

This update rule is deduced from the concave-convex procedure (CCCP)[66] which gua-

rantees that the energy function will decrease to a minimum or a saddle point.

7.2 Restricted Boltzmann Machines

Including other interactions in the Hamiltonian of Hopfield networks will inevitably

lead to less manageable models in terms of the number of parameters. This is circumven-

ted by the introduction of new "particles" to the model who help increase the complexity

of the system without encoding the data. These so-called hidden units act as intermedia-

ries between visible units that actually encode the data. These networks are known as

Boltzmann Machine and are constructed exactly for the purpose of increasing the com-

plexity of the model. When the interactions between hidden and visible units are set to

zero, Boltzmann machines reduce to Hopfield networks.

Both Hopfield networks and Boltzmann machines are difficult to train as each local

update of nodes also depends on other nodes. A simplification of Boltzmann machines

is to cancel all the intralayer interactions i.e. interactions between the units within each

hidden and visible layer. This gives rise to RBMs [41, 50] which is described by the

Hamiltonian

E =−∑
i

bihi−∑
i

civi−∑
i j

wi jhiv j (7.11)

where hhh and vvv are hidden and visible units, respectively. The direct benefit of training

these networks is related to the fact that the energy change in updating visible/hidden

nodes is independent from other visible/hidden nodes. As a consequence the conditional
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probabilities factorize

P(vvv|hhh) = ∏
i

P(vi|hhh), P(hhh|vvv) = ∏
i

P(hi|vvv) (7.12)

where the individual factors can be calculated separately. The training of RBM is

done through the Gibbs sampling algorithm by iterating the following procedure until

convergence : After fixing the hidden nodes, the individual conditional probability of

the state of each node is sampled from P(vi|hhh). Then the visible nodes are fixed and the

conditional probability of the hidden nodes are individually sampled from P(hi|vvv).

Note that spurious minima can occur in RBMs as well where a process similar to "un-

learning" in Hopfield networks is employed to shape the energy landscape such that the

minima of the energy function are associated with the data.
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EXPLORATIONS

8.1 Project 1 : Studying phase transitions in Hopfield Networks from the perspec-

tive of Mean field theory

In this section we apply MFT to Hopfield networks. The reader is referred to Appendix

I for all the calculations and technical details. These networks can be described by a

Hamiltonian that is somewhat reminiscent of various forms of the Ising model.

H(v) =−1
2 ∑

i j
Ti jviv j−∑

i
fivi +∑

i
Φi(vi) (8.1)

The problem is significantly simplified if we assume that we are only dealing with nodes

that can take on the two values ±1 or equivalently black/white pixels in Hopfield ter-

minology. The main assumption of the MFT is that the systems evolves towards a state

where most nodes have values close to the average value of all the nodes. In other words,

we assume that vi = 〈vi〉+δvi = m+δvi. This leads to viv j = 〈vi〉v j + 〈v j〉vi−〈vi〉〈v j〉
and the mean field Hamiltonian can be written as (See I.1)

HMF(v) = ...=−∑
j
[m∑

i
Ti j + f j]v j +

m2

2 ∑
i j

Ti j +∑
i

Φi(vi) (8.2)

If Ti j are the elements of a matrix T , we can further simply this expression by defining

the sum of the elements in column (or equivalently row) j as C j = ∑i Ti j. The mean field

Hamiltonian can then be written as (see I.2)

HMF(v) = ...=−∑
j

h jv j +
m2

2 ∑
j

C j +∑
j

Φ j(v j) (8.3)
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where h j = mC j + f j. The end result of this approximation is that the nodes have been

decoupled and so each node/spin experiences an effective field h j. We can use this result

to calculate the partition function for the system. As usual Tr refers to sum over all the

degrees of freedom of the system, which for simplicity has been chosen to be +1 or −1

(See I.3)

ZMF = Tre−βHMF = ...= e
−βm2

2 ∑ j C j ∏
j
{eβ [h j−Φ j(1)]+ eβ [−h j−Φ j(−1)]} (8.4)

Following the manipulations after I.3, this expression can be expressed as

ZMF = ...= e
−βm2

2 ∑ j C j ∏
j
{(a j +b j)coshβh j +(a j−b j)sinhβh j} (8.5)

The partition function of this system can insights into the behavior of the system, inclu-

ding its possible critical behavior and phase shifts. First, we note that

∂ZMF

∂hi
= ...=−βTr(vie−βHMF ) (8.6)

and(see I.6)

m =
1
N

N

∑
k=1
〈vk〉== ...=

−1
βN

N

∑
k=1

∂

∂hk
lnZMF (8.7)

Calculating this entity leads to a transcendental equation whose solutions can be illus-

trated by graphing. Solving for m results in (see I.7 and I.8)

m = ...=−1+
2
N

N

∑
k=1

bk

ake2β (mCk+ fk)+bk
(8.8)

Unlike the Ising model or variations of it, the analysis of the behavior of the mean field

Hopfield Networks is quite involved. There are a few contributing factors to this : Firstly,

the fact that the original model includes Ti j, hence not an index independent entity as in

the Ising model makes it difficult to analyze Hopfield networks. The ultimate conse-

quence of this is the dependency of the final expression on indices and the difficulty

posed by this to calculate a compact expression for the "magnetization" as in the Ising
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model. The second issue is the inclusion of the gain function term ∑ j Φ j(v j) in the Ha-

miltonian. In other words, despite the simplification provided by the approximation, the

magnetization has a contribution from each node.

Suppose we did not include the gain function in the Hopfield network, as it’s done in

many cases. This is equivalent to setting Φ j(v j) = 0 and consequently ak = bk = 1. The

above expression would then simplify to

m =
−1
N

N

∑
k=1

[1− 1
e2βhk +1

] =
−1
N

N

∑
k=1

tanhβhk (8.9)

Again, the existence of this sum can be traced back to the indexed term Ti j in the Hopfield

energy function. However, both in the simpler cases (Ising model) and here, it is easily

understood by comparing the two sides of the transcendental equation that there will be

three solutions if
d

dm
−1
N

N

∑
k=1

tanhβhk|m=0 > 1 (8.10)

which gives (see I.9)

−1
N

N

∑
k=1

βCk

cosh2( fk)
> 1 (8.11)

In the very special case fk = 0, this is simplified to

β
−1
N

N

∑
k=1

Ck = β
−1
N ∑

kl
Tlk = βM > 1 (8.12)

where M denotes the sum of all the matrix elements Ti j. In conclusion βM = 1 defines a

critical temperature through kBTc = −M/N below which there are the three solutions

m = 0 and m = ±m0 and above which there is only one solution m = 0. Note that the

inclusion of fk in the above calculations forces each tanh(mCk) to shift right or left with

the amount fk. Clearly, this poses a major obstacle to drawing conclusions about the

existence or number of solutions or even the existence of a critical temperature.
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8.1.1 Critical Behavior

Here, with the same assumptions as above, we attempt to calculate the critical exponents

of the system. As usual, the critical temperature Tc was found at m = 0. So assuming

that we are at the vicinity of this point, after a series expansion and a few other manipu-

lations (See the calculations after I.11) :

m = ...=
−1
N

[
m

kBT

N

∑
k=1

Ck−
m3

3k3
BT 3

c

N

∑
k=1

C3
k ] = ...= m(

Tc

T
)− N2m3

3
(
Tc

T
)3 + ... (8.13)

The solution to this equation is either m = 0 when T → T+
c or m = ± 1

N (3t)1/2 when

T → T−c . Here, t = Tc−T
Tc

.

Let’s return to the original case

m =−1+
2
N

N

∑
k=1

bk

ake2β (mCk+ fk)+bk

and suppose that the contribution from fk is small enough to keep the graph of the RHS

function centered around m= 0. In order to find the critical temperature, it makes sense

to do as we did previously and calculate the derivative of the above expression w.r.t m.

Doing this, we get

1 =
2
N

N

∑
k=1

2βakbkCke2β (mCk+ fk)

(ake2β (mCk+ fk)+bk)2
|m=0 =

2
N

N

∑
k=1

2βakbkCke2β fk

(ake2β fk +bk)2 (8.14)

which in the absence of fk but presence of the gain function Φi(vi), hence ak and bk

simplifies to

1 =
4
N

N

∑
k=1

βakbkCk

(ak +bk)2 (8.15)

Defining the critical temperature as

kbTc =
4
N

N

∑
k=1

akbkCk

(ak +bk)2 (8.16)
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we can understand the critical behavior of the system as follows. A simple Taylor ex-

pansion around m = 0 shows that we are not able to find an analytical solution beyond

first order (see the calculations before I.18) :

m = ...=
−1
N

N

∑
k=1

ak−bk

ak +bk
(1− Tc

T
) =
−1
N

N

∑
k=1

ak−bk

ak +bk
t as T → T−c (8.17)

Note that MFT does not necessarily reflect the actual behavior of the system. It is well-

known that even for the simplest Ising model, MFT does not describe the system’s beha-

vior correctly and in all dimensions since fluctuations may practically be strong enough

to bring into question the original idea of the spins/nodes organizing themselves around

the mean field.
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8.2 Project 2 : Using the Greedy Variational Principle to derive the Feynman pro-

pagators of Hopefield Networks

In this project, we explore how/if quantum field theory can be applied directly to Hop-

field Networks. This line of work follows the ideas put forward in [48] where it is argued

that replacing the usual canonical variables of classical mechanics, x and ẋ by v and v̇,

where v is the output of a neural network, opens up the possibility of applying a path

integral formulation of neural network that is then used to derive a wave function for

neural network. This wave function is then modified to satisfy a Schrödinger-like wave

equation, thereby opening up the field for application of quantum mechanical tools.

Based on the fundamental assumption that neural nets are dissipative systems, [48]

argues that the Lagrangian formalism of least action must be derived not from Euler-

Lagrange equations but from the so-called greedy variational principle. Then, by in-

terpreting v and v̇ as the position and velocity in analytical mechanics, they prove that

the equations of motion in dissipative systems can be derived from

∂GS
∂Gv

=
∂L
∂ v̇

(8.18)

The application of this principle on Hopfiled Networks with the energy function

E(v) =−1
2 ∑

i j
Ti jviv j−∑

i
fivi +∑

i
Φi(vi) (8.19)

has consequences that are later used to derive the wave equation of neural nets. Note that

here ui is the output of the last layer of the network, g is a typical threshold (linear or

non-linear), vi = g(ui) and Φ′ = g−1.

The derivation of the path integral formulation of NNs and as a result the wave function

and the Schrödinger’s equation for NNs, are quite involved 1. It relies heavily on (a)

1. The reader is encouraged to refer to [48] for further details
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the interpretation of Feed-forward NNs as a series of discrete weighted sums

g∑
x0

...g ∑
xN−1

N−1

∏
k=1

wxkxk−1ve
x1x0

(8.20)

where wxkxk−1 are the synaptic weights connecting the neurons in layers xk and xk−1, g

as described above and ve
x1x0

is the output of the neuron transmitted from layer 0 to layer

1, and (b) the idea that "the neuronal activity models the frequency of the frequency of

the actual output, a spiky waveform"[12], allowing us to formally replace e.g. the kth

neuron’s output in the model with

eivkt (8.21)

where vk is the output frequency and t is the time it takes for the signal to travel along

the axon. Equipped with these preliminary observations/assumptions and with additional

introduction of two time scales ∆x/A and (tk− tk−1)/h where A and h are appropriate

scaling factors, the transformed equation (8.20) can be interpreted as a collection of

Riemann sums i.e. discrete versions of path-integrals of the form

∫
∞

−∞

. . .
∫

∞

−∞

e
i
h Sg

dv1

A
. . .g

dvN−1

A
(8.22)

and S, defined by

S =
∫ t

0
L(v̇,v)dt (8.23)

is interpreted as the action. The above path-integral is then used in a straight-forward

application of the quantum mechanical framework to define the wave function ψ(v, t) of

the neural network which, after a great deal of manipulations, leads to the wave equation

∂ψ

∂ t
=

ih
2m

∂ 2ψ

∂v2 +
1
m

∂E
∂v

∂ψ

∂v
− i

h
V ψ (8.24)

with E as in equation (8.19), m = 1/g′(g−1(v) and an appropriate definition of V invol-

ving E, m etc 2.

2. Again, for details and (quite unclear) derivations the reader is referred to the appendix in [48]
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It is quite easily argued that the propagator from one point to another is QM is given by

< x f , t f ;xi, ti >=
∫

D[x]ei
∫ t f

ti
dtL (8.25)

A common technical approach is to use an auxiliary field j to calculate the correlation

functions in quantum mechanics. Writing

< x f , t f ;xi, ti > j=
∫

D[x]ei
∫ t f

ti
dt(L+ j(t)x(t) (8.26)

the time ordered correlation functions can be be obtained through functional derivatives

as follows

< x f , t f |T (x(t1), ...x(tn))|xi, ti > j= (−i)n δ n

δ j(t1)...δ j(tn)
< x f , t f ;xi, ti > j | j(t)=0 (8.27)

And defining the generating functional

Z[ j] = lim
t f ,ti→±∞

< x f , t f |xi, ti > j (8.28)

the master formula for correlation functions is given by

< 0|T (x(t1), ...x(tn))|0 > j= (−i)n 1
Z[0]

δ n

δ j(t1)...δ j(tn)
Z[ j]| j(t)=0 (8.29)

So far so good. Assuming that Hopfield networks are correct description models of

the brain function, we will now examine them in the current context. It is important

to note that the construction of the Lagrangian from the Hamiltonian through Le-

gendre transformation is not possible in this case simply because the Hamiltonian here

is not written in terms of the canonical variables (generally called pi and qi). Thus it

has to be constructed indirectly. Again, inspired by the results obtained in (quantum

brain) where the authors identify the mass term in the Hopfield network wave function

as m= 1/g′(g−1(vi) (along with certain assumptions), where vi = g(ui), g−1(vi)=Φ′i(vi)
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and 1/g′(ui) = ∂g−1(vi)/∂vi, we write the kinetic term in a more familiar form

1
2 ∑

i
u̇2

i g′(ui) =
1
2 ∑

i

v̇i

g′(ui)

v̇i

g′(ui)
g′(ui) =

1
2 ∑

i
mv̇i

2 (8.30)

This choice has been made based on the assumption that the Lagrangian is of the form

L = K +
dE(v)

dt
= K +

∂E(v)
∂v

dv
dt

(8.31)

where E refers to equation (8.19). As such the greedy extremization of the action

"Greedy Least action principle"[48] leads to the equations of motion of the Hopfield

network given by

u̇i = ∑
j

Ti jv j + fi−Φ
′(vi) (8.32)

With the addition of the auxiliary fields ji, as described above, the action is now given

by (See II.1)

S j = ...=
∫

dt ∑
i j

[
δi j

mv̇iv̇ j

2
−Ti jv jv̇i−δi j fiv̇ j +δi jg−1(vi)v̇ j +δi jvi j j

]
(8.33)

After a series of manipulations (See II.2-II.19) the inverse Fourier transform of the action

reads

S j =
∫

dt
[
∑

i

mv̇′2i
2
−∑

i j
Ti jv′iv̇′ j +[G0v̇′j +G0

′v′iv̇
′
j + ...]−∑

i
fiv̇′i

]
−

−∑
i j

δi j(G0− f j)

m

∫
dt ′ ji(t ′)D1(t− t ′)

−∑
i j

δi j

2m

∫
dt
∫

dt ′ ji(t)D1(t− t ′) j j(t ′)

−∑
i j

iTi j− iδi jG0
′

m2

∫
dt
∫

dt ′ ji(t)D2(t− t ′) j j(t ′) (8.34)

We observe that the action has been separated into a source independent part that is

reminiscent of the action we started with and a part that contains all the dependence on
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the external sources. In its simplest form, as it is in the case of harmonic oscillator, where

D(t− t ′) are called the Green’s functions, here defined by

D1(t− t ′) =
∫

∞

−∞

dE
2π

e−iE(t ′−t)

E2 , D2(t− t ′) =
∫

∞

−∞

dE
2π

e−iE(t ′−t)

E3 (8.35)

Changing the variable z =−E(t− t ′) we can rewrite the above integral and compute it in

the complex plane. It turns out that one of the contour integrals diverges (See II.20-II.30).

The roots of these non-glamorous results can be traced back to the Lagrangian of the

Hopfiled network. In order to generate interesting results akin to those in the case of,

for instance, harmonic oscillator, the Lagrangian would need to include a kinetic type

term ∼ v̇2 as well as a term ∼ v2. It is in fact the interplay between these two terms that

leads to interesting/manageable Green’s functions can then be used for a path-integral

formulation of the Hopfield networks, opening the possibility of investigating all kinds

of phenomena such as phase transitions, which we set out to do originally. It should be

noted that the truncated Taylor expansion in the above treatment is not to be blamed for

this as it would not have lead to the desired result.
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8.3 Project 3 : What went wrong?

It is perhaps time to re-examine the formulation of the Lagrangian derived from (8.31)

in [48] 3. The problem is related to the fact that while it is relatively easy to determine and

understand what canonical variables (often physically meaningful) are in analytical

mechanics, it is much harder to handle what abstract variables and their derivatives mean

and how the Lagrangian or Hamiltonian description of a system should be formulated.

Here, we consider the possibility the Lagrangian not being in a correct form and so we

rewrite it (See Appendix III for details). With this new form of the Lagrangian, the action

becomes

S j =
∫

dt{1
2 ∑

i
u̇2

i g′(ui)−
1
2 ∑

i j
Ti jviv j−∑

i
fivi +∑

i
Φ
′
i(vi)vi +∑

i
vi ji}

=
∫

dt ∑
i j

[
mδi j

2
v̇iv̇ j−

Ti j

2
viv j−δi j fiv j +δi jg−1(vi)v j +δi jvi j j

]
(8.36)

Following similar steps as before, including the truncated Taylor expansion of the term

involving g−1, we Fourier transform the terms in the action along with redefining some

other quantities (See III.5-III.10 for details)

S j = ∑
i j

∫ dE
2π

[
Kṽ′i(E)ṽ

′
j(−E)−

δi j

4K
j̃i(E) j̃ j(−E)+Mδi j

∫
dt[ṽ′j(E)−

δi j

2K
j̃i(E)]e−iEt

]
(8.37)

Before inverse Fourier transforming this action, we note that the last term is nothing but

the shifted variable vi. We touch upon this subject later when we discuss the ultimate

goal of this analysis i.e. using the path integral formalism to calculate the correlation

functions. There, we will see that the partition function will be written in a certain form

with the requirement that the measure of the path integral is invariant under the transfor-

mation from vi to v′i, as described above. For now, lets just note that the last term in the

above action is exactly this transformation or shift of variables.

3. Unfortunately, this paper has numerous mistakes and at times, also quite ambiguous arguments
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The new action is given by

S j =
∫

dt
[
∑

i

mv̇′2i
2
−∑

i j

Ti j

2
v′iv
′
j +∑

i
[G0v′i +G0

′v′iv
′
i + ...]−∑

i
fiv′i

]
−

−∑
i j

Mδi j

∫
dt
∫

dt ′ ji(t)D(t ′− t)− 1
2 ∑

i j
δi j

∫
dt
∫

dt ′ ji(t)D(t ′− t) j j(t ′) (8.38)

where

D(t− t ′) = ...=
1

2mδi j

∫ dE
2π

1
E2−ω2 e−iE(t−t ′) (8.39)

and

ω
2 =

Ti j−2G0
′
δi j

mδi j
(8.40)

This is a much more interesting result, reminiscent of the harmonic oscillator but with the

special characteristics of the Hopfield networks. Let’s note that this Green’s function

satisfies

(
∂ 2

∂ t2 +ω
2)D(t− t ′) =−δ (t− t ′) (8.41)

which is also similar to what should be expected of Green’s functions. Computing this

integral, the new action reads (For the details see III.10-III.13)

S j =
∫

dt
[
∑

i

mv̇′2i
2
−∑

i j

Ti j

2
v′iv
′
j +∑

i
[G0v′i +G0

′v′iv
′
i + ...]−∑

i
fiv′i

]
−

−∑
i= j

M
∫

dt
∫

dt ′ ji(t)D(t ′− t)− 1
2 ∑

i= j

∫
dt
∫

dt ′ ji(t)D(t ′− t) j j(t ′) (8.42)

with the Green’s function

D(t− t ′) = ...=
−i

4mω ′
e−iω ′|t−t ′|, ω

′ =

√
−2G′0

m
(8.43)
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8.3.1 The path-integral formulation

Here we return to the the main goal of this analysis i.e. to build a path integral formula-

tion for Hopfield networks. The ultimate goal is to use this formalism to investigate the

fixed points of the RG transformation and all the knowledge that it entails in terms of

universality classes and power-laws etc. Formally, this requires a generating functional

which is then used to compute the correlation functions of the network. For instance, the

two-point function is given by

〈0|T (vi(t1),vi(t2)|0〉=
(−i)2

Z[0]
δ 2

δ ji(t1)δ ji(t2)
Z[ j]

∣∣∣∣
j=0

(8.44)

The partition function can be written as

Z[ j] = Z[0]e−
i
2 ∑i= j

∫∫
ji(t)D(t ′−t) j j(t ′)e−i∑i M

∫∫
ji(t)D(t ′−t) (8.45)

where

Z[0] =
∫

D[v′]eiS j[v′] (8.46)

Generally speaking, the implicit assumption made here is that the measure of the path

integral is invariant under the transformation

vi→ v′i = vi +
δi j

2K
ji (8.47)

Failure of the measure of the path integral to satisfy the invariance under this shift is

usually considered as a sign of anomaly i.e. a broken symmetry in the classical theory.

In our case, the last part of the partition function above

e−i∑i M
∫∫

ji(t)D(t ′−t) (8.48)



71

seems problematic. One could reason that as far as the computation of the Green’s func-

tions of any order is concerned, this term does not contribute. Even then, the measure

of the path-integral does not seem invariant under this transformation and so there is a

problem. We end this part of the investigation with the remark that this term is a remnant

from the shift (8.47) of all the linear terms in vi in the original action.
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8.4 Project 4 : Quantum field theoretical approach

The QFT approach is fundamentally different in that it is built on the concept of fields

and not traditional canonical variables. As we saw previously, the canonical variables xi

in quantum mechanics or statistical physics (in the current context replaced by the inputs

vi to Hopfield network) are treated as functions of time. In a quantum field theoretical

context, the fields φ(x) are functions of every point in space-time. A reasonable approach

seems to be to consider the inputs vi(t) to the network as field Vi(x) where x= (t,x) refers

to space-time.

As such the Lagrangian and the action are defined as

L =
∫

d3xL (φ(x),∂µφ(x))

S =
∫

dtd3xL =
∫

d4xL (φ(x),∂µφ(x)) (8.49)

where L is the Lagrangian density. We will proceed to treat the fields as fundamental

objects and construct a Hamiltonian density through a Legendre transformation of the

Lagrangian density we have already used but with vi(t) replaced by the fields Vi(x).

L = ∑
i j

[
mδi j

2
V̇iV̇j−

Ti j

2
ViVj−δi j fiVj +δi jg−1(Vi)Vj

]
(8.50)

Defining

πi(x) =
∂L

∂V̇i
= ∑

i j
mδi jV̇j (8.51)

it is straightforward to find the Hamiltonian, that is the central object in both quantum

mechanics and quantum field theory. This not-withstanding, the main difference with the

classical field theory is that both πi and Vi are now considered as operators, hence the

change to π̂i and V̂i, acting on some eigenstates in a Hilbert space according to

π̂i(x, t)|πi〉= πi(x)|πi〉, V̂i(x, t)|Vi〉=Vi(x)|Vi〉 (8.52)
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The Hamiltonian

H =
∫

d3x
[
πi(x)∂tVi(x)−L (Vi(x),∂µVi(x)

]
=
∫

d3x∑
i j

[
δi j

2m
πiπ j +

Ti j

2
ViVj +δi j fiVj−δi jg−1(Vi)Vj

]
=
∫

d3x∑
i j

[
δi j

2m
π̂iπ̂ j +V (V̂ )

]
(8.53)

can then be used to derive the path integral formulation partition function by dividing up

the time interval between the initial and final states t f − ti = N∆t i.e. somewhat Rieman-

nian approach, and finally arriving at the following in the limit ∆t→ 0.

〈0|0〉= N
∫

D[V ]eiS[V ], S[V ] =
∫

d4xL (8.54)

Note that apart from using the Hamiltonian and the operator formalism, the definition

of the correlation functions remains intact. Expressed somewhat differently and with the

normalization constant included, the 4-point function, for instance, is defined

G(4)(x1, ...,x4) =

∫
D[V ]V (x1)...V (x4)D[V ]eiS∫

D[V ]eiS (8.55)

where the indices have been omitted for clarity. And this is exactly the same as it was

defined previously in terms of the functional derivatives of the source augmented parti-

tion function. We will derive the 2- and 4-point functions with the new formalism. We

start with the action where we expand g−1 around zero and reorganize the terms(See

IV.1-IV.2).

S = ...=
∫

d4x∑
i j

[
− 1

2
ViOtVj +δi jMVj +δi jO(V 3)

]
(8.56)

where

Ot = mδi j∂t∂
t +Ti j−2δi jG′0

is an operator. Running through the machinery of QFT, we finally arrive at the partition
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function (IV.3-IV.6).

Z[ j] = ...= Z[0]e
1
2 ∑i

∫
d4xd4y ji(x)D(x−y) ji(y)e−∑i

∫
d4xd4yMD(x−y) ji(y) (8.57)

8.4.1 Feynman Rules for Hopfield Networks

The question is whether the extra term above has any effect on the Green’s functions.

The relevance of this consist in the fact that Green’s functions are considered the buil-

ding blocks of measurable quantities so a change might result in a measurable quantity.

We rewrite the relevant terms of the partition function and compute the 2-point function

(See Appendix IV for all the details)

G(2)(x1,x2) =
(−i)2

Z[0]
δ 2

δ ji(x1)δ ji(x2)
Z[ j]

∣∣∣∣
ji=0

= ...=

=−
[

D(x1− x2)+M2
∫

d4xD(x− x2)
∫

d4yD(y− x1)

]
(8.58)

We are in a position to formulate Feynman-like rules :

(1) A propagator is represented by a solid straight line

(2) Solid dots represent a factor −M

(3) Loops are the integrals of propagators at the nodes

Using the above conventions, the two-point function can be diagrammatically shown as

Note that −M at each node is multiplied with the loop terms that originate from the

second exponentional in the above action. Computing the 4-point function in a similar
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manner, we get

G(4)(x1,x2,x3,x4) =
(−i)4

Z[0]
δ 4

δ ji(x1)δ ji(x2)δ ji(x3)δ ji(x4)
Z[ j]

∣∣∣∣
ji=0

= ...

=

[
D(x1− x2)D(x3− x4)+D(x1− x3)D(x2− x4)+D(x1− x4)D(x2− x3)

+M4
∫

d4xD(x− x4)
∫

d4yD(y− x3)
∫

d4zD(z− x2)
∫

d4wD(w− x1)

]
(8.59)

Following the Feynman-like rules above, the diagrammatic representation of the 4-point

function can be seen below. We note that apart from freepropagation of particles from

one point to another, each node is accompanied by an −M representing the second term

in the above calculation.

+ +

We note that the 4-point function satisfies Wick’s theorem in that in consists of products

of 2-point functions i.e. product of propagators with permuted positions. It should also

be noted that oddly enough, the odd Green’s functions have a somewhat unexpected

contribution. In these cases, while the first part of the Green’s functions i.e. the part

satisfying Wick’s theorem vanishes, the second part does not. As such the contribution

from the 3-point Green’s function would be (with our conventions) represented by
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8.4.2 Perturbation theory

It seems that what we saw above is just part of the story. A more powerful technique to

deal with the correlation functions, particularly to have control over the essential parts

of the calculations is to separate the free theory and the interaction terms. Then, by ma-

king the assumption that the interaction term is equipped with a parameter that is small,

making the interactions weak enough to allow for a series expansion of the interaction

exponential. Approaching the interactions in the manner, it is clear that this assumption

results in suppressing the majority of the interactions to lower order terms.

Below we will investigate the consequences of this approach in the case of Hopfield

networks. Recall that after reorganizing the terms in the action, we arrived at

S = i
∫

d4x∑
i j

[
mδi j

2
∂tVi∂Vj−

Ti j

2
ViVj +δi jG′0ViVj +δi j(G0− fi)Vj +δi jO(V 3)

]

where the first three terms are reminiscent of the "free Lagrangian". Earlier, we also

derived the Feynman propagator based on the free Lagrangian and used Wick’s theorem

to show that the correlation functions lead to combinations of propagators. While it is

clear that the remaining O(V 3) terms can be thought of additional interaction terms, it is

not clear how the linear terms in V should be treated. We note that when a source term

was added to the action, the shift of the variable that otherwise leads to the separation of

the shifted variable from the source, also created an extra term that
∫

JD that is directly

lined to the linear term in the above action. The implications of the appearance of this

term are not clear.

However, if we are to treat all other terms outside the free Lagrangian as interaction

terms, we can consider the linear term as well as all the other terms included in O(V 3)

as perturbations of the free Lagrangian. This way, the correlation functions can be

calculated up to any desired precision. Separating the interaction term in a general action,
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schematically, the partition function

Z[J] = N
∫

D[V ]ei
∫
{L0+Lint+ jV} (8.60)

A quite straight-forward way of including interactions as perturbation is to implement it

in the generating functional. Expanding the external source part of the above action, it

is quite easy to realize that the Green’s functions can be written as

G(n)(x1, ...,xn) =
1

Z[0]

∫
D[V ]ei

∫
{L0+Lint}V (x1)...V (xn) (8.61)

=
1

Z[0]

∫
D[V ]ei

∫
L0V (x1)...V (xn)

[
1+ i

∫
Lint +

i2

2!

∫
Lint

∫
Lint + ...

]
Note that in our case, the free and interaction Lagrangians are

L0 =−∑
i j

1
2

ViOtVj (8.62)

Lint = ∑
i j

δi jMVj (8.63)

Wick’s theorem can then be used to represent the correlations functions and their per-

turbative corrections to any desired order. Let’s assume that M is the parameter in the

interaction Lagrangian that we referred to. The 2-point function to the zeroth order in

M is then given by the propagator

1
Z[0]

∫
D[V ]ei

∫
d4xL0V (x1)V (x2) = D(x1− x2) (8.64)

Again, higher order terms seem somewhat odd. We know very little Measure Theory

to conclude that the measure of the path-integral does not survive the kind of variable

shift that we saw/did multiple times. This does not in fact have to be the only culprit.

The constructed Hopfield Lagrangigan, or the greedy variational principle or one of the

many other assumptions made in [48] may have been incorrect.

Or perhaps we should have used a different Lagrangian/Hamiltonian in the path-
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integral ? We dealt with this issue by making a short U-turn to study/review Statistical

Field Theory. As we will see, the problem lies in the perspective and an extra step in

the analysis : The formalism is of course correct but it is in the formulation of the Free

Energy as a Hamiltonian that the problem lies. It turns out that there is a second layer

of difficulty at play.

We will see in the discussion of the models beyond the Ising model in section 9.1 that

it is quite easy to understand the free energy in 9.4 in the case of the Ising model,

where magnetization is a natural measure of the macroscopic behavior of the model. It

is, however, very difficult to do this in the context of, for instance, Hopfield networks,

as the level of abstraction here or in other cases, makes it difficult to replace the free

energy with a measurable entity, particularly since this measurable entity must satisfy all

or parts of the symmetries of the microscopic system as well as other system dependent

requirements.



CHAPITRE 9

FROM QUANTUM FIELD THEORY TO STATISTICAL FIELD THEORY

To begin with, and without going further into details, there is a clear analogy between,

the partition functions of Statistical Mechanics

Z = ∑
all states

e−βE ,

where E is the energy of the system, statistical field theory

Z =
∫

Dme−β
∫

ddx f [m],

where m is the magnetization of e.g. a ferromagnet, and QFT

Z =
∫

D [φ ]e−
1
h
∫

ddxL (φ).

where φ is a scalar field.

Beyond this resemblance, it is well-known that studying critical phenomena requires

an understanding of a physical system’s long distance behavior. This is equivalent to

understanding the role of fluctuations in a physical system. A typical example is the

Landau-Ginzburg model of ferromagnetism where the scalar field φ plays the role of

magnetization. A well-studied and simple action for this theory is the scalar φ 4 theory

S[φ ] =
∫
{1

2
(∂µφ)2 +

1
2

m2
φ

2 +
λ

4!
φ

4}+ ... (9.1)

Using MFT approximation (ignoring fluctuations by definition) is equivalent to consi-

dering a spatially uniform field configuration ∂µφ = 0 whose ground state is given by
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minimizing the action. This leads to the solution

φ = 0 or φ =

√
−6m2

λ

In other words, while the first solution describes the paramgnetic phase the second solu-

tion is accessible for negative m2∼ T−Tc i.e. below the critical temperature Tc. This type

of transition from one phase to another is a so-called spontaneous symmetry breaking

and does not correspond to the complexity of the actual phase transition process.

On the contrary, if the field in question is not restricted to its mean value, the RG evo-

lution describing how the system behaves at different energy scales and how chaning

of energy scale is manifested in the parameters (or coupling constants) of the theory is

dedcued in the following manner : Let us remember that coarse-graining in statistical

mechanics can be seen as a change of energy scale from higher to lower at which we

want to examine the behavior of the system. At every step of coarse-graining the sys-

tem moves from a microscopic (i.e. high energy) theory towards a macroscopic scale

(i.e. lower energies). The functional formulation of RG does this by summing over large

momenta of the Fourier transformed theory, hence resulting in a theory describing the

system at lower energy scales.

It is about time to explain where we went wrong. It seems that approaching neural net-

works by treating its input as some kind of canonical variables on which the whole

formalism of analytical mechanics can be applied may work. It is, however, at least not

straight-forward to extend it beyond this point and to QFT. To begin with, we can ques-

tion the validity of constructing a Lagrangian from static lattice models such as the

Ising model (or even Hopfield network). The second issue could be related to the greedy

variational approach which may or may not apply in the current situation as it simply

ignores the Euler-Lagrange equations in the case of Hopfield networks[48].

But even if this approach was correct, what justifies a quantum field theoretical ap-

proach? What is the motivation behind the treatment of input/out of neural networks
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as fields? Is it fruitful to apply these methods to Ising model-like systems where no dy-

namical variables exist and where it is problematic to think of spins or input/output of

networks as canonical variables?

It turns out that many of these questions can be answered by Statistical Field theory

which apart from postdating QFT has inherited its methods along with providing a phi-

losophic motivation for what and how the notion of fields can be used in the treatment

the Ising model and other systems alike, including Hopfield networks, (R)Boltzmann

Machines etc. The two fundamental ingredients of this approach include parallels to the

path integral formulation of QFT which in turn provides a reasonable explanation to

what should be considered a field in these systems.

It turns out that the answer to the above questions is related to two fundamental facts

about nature which consequently also govern much of the model physics’ understanding

of the world we live in. The world, as we know it, is organized around Scale and Sym-

metry. These two facts explain all from phase transitions and universality to how (or

if) the microscopic world is manifested in what we observe.

It turns out that the partition function of a statistical system cannot be calculated unless in

very restricted cases in one and two dimensions beyond which no exact solutions exist.

And even if this were possible, we would be only be able to describe the equilibrium

states. One way to circumvent this obstacle is coarse-graining which also establishes a

link between the scales of observation. A lattice can be partitioned into smaller parts, all

with its own magnetization (roughly average spin). And so the partition function for a

statistical system spin configuration can be calculated (here we also give its counterpart

in continuum)

Z = ∑
m

e−βF(m)→ Z =
∫

dme−βN f (m) with F(m) = N f (m) (9.2)

The problem is still not solved as we now face the calculation of the free energy density.

Based on Mean Field approximation, Landau explained a great deal of what is obser-

ved in terms of phase transitions and universality based on what is known as an order
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parameter (average magnetization is the simplest case of an order parameter). A rea-

sonable generalization of this approach is the Ginzburg-Landau Theory where they

moved beyond average magnetization, allowing the magnetization to vary across space,

hence promoting it to a field m(x) which is then dubbed local order parameter.

This is closely related to the process of coarse graining where lattices are partitioned

into cells each of which can be attributed a magnetization. The partition function is now

written as

Z = ∑
m(x)

e−βF [m(x)] (9.3)

which can be written as a path integral if we assume that the magnetization various

continuously in space

Z =
∫

D[m]e−βF [m(x)] (9.4)

But what does the Landau-Ginzburg free energy look like and how is it calculated? It

turns out that the free energy density can be constructed based on certain requirements

that in turn originate from the microscopic lattice we started with. For instance, since the

lattice is invariant under translation and rotations, albeit discrete, we could require the

same type of invariance from the free energy. And since switching the direction of the

spins and/or the direction of the external field (we don’t go into details), is inherited by

the magnetization during the process of coarse-graining, the free energy should be in-

variant under Z2 symmetry. Furthermore, since the spins in the underlying Ising model

interact locally, we can require the free energy to satisfy locality. A final, simplifying

assumption is to require the free energy density to be an analytic function of magnetiza-

tion and that it varies slowly across space i.e is mainly dependent on the fields and their

gradient.

However, even with these considerations, the space of all possible theories is infinite.

The crucial step beyond this point is based on the idea of universality. Simply put, since

different systems regardless of their perceived complexity on microscopic level behave

similarly near the critical point, it is reasonable to search for the simplest of models that

give correct predictions instead of dealing with the complex interactions and specific
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details of every system.

The Landau-Ginzburg free energy can be constructed following these observations

and requirements. For example, under specific conditions (such as B = 0 in the original

Ising model) the symmetry requirements inherited from the coarse-grained Ising model

lattice imply that the free energy must include even powers of the magnetization field

and its gradients

F [φ(x)] =
∫

ddx
[1

2
α2φ

2 +
1
4

α4φ
4 +

1
2

γ(∇φ)2 + ...
]

(9.5)

where we have used φ instead of m to signify the field theoretical approach. We should

note that the couplings in front of the field configurations are temperature dependent.

We should note that the entire apparatus of field theory relies on perturbation methods

and the assumption that higher order terms do not contribute as much as lower order

terms. It is very possible that this is not true in some real life cases at which point nume-

rical methods would have to be employed. Assuming that we are still in the perturbative

mode, it is common to work with quadratic terms, treating higher order terms as pertur-

bations.

An interesting outcome of this, which is related to what we did previously when we tried

to treat the entire Hopfield Lagrangian in the context of field theory, is that there will be

no linear terms in the fields if we expand the field around one of the saddle point minima

of the free energy in low temperature i.e. ±m. The absence of linear terms is related to

the fact that the field will obey the Euler-Lagrange equations of motion. In the work

that we did previously, there linear terms were persistent, which might be related to the

greedy variational principle instead of Euler-Lagrange equations. This needs further

investigation.

The path integral in the partition function (9.4) is not necessarily easy to calculate even

with this generic but simple free energy. It can still be done and many interesting quan-

tities, there-among correlation functions, can be extracted from it using the machinery
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of field theory. In conclusion, comparing the partition functions of statistical field theory

and QFT

Z =
∫

D[φ ]e−β
∫

ddxF (φ), Z =
∫

D[φ ]e
i
h
∫

ddxL (φ) (9.6)

reveals obvious similarities but also differences. For instance, while the partition function

of statistical field theory does not involve a time coordinate, the integral in its counter-

part is over space-time. This is dealt with through a Wick rotation of the quantum field

theoretical action into its Euclidean version by setting τ = it. This way the Euclidean

action will be analogous to the free energy in statistical field theory.

As noted above, in its simplest form the Landau-Ginzburg theory does not include

higher order interaction terms and so adding terms like φ 4 to the above action serves the

purpose of including fluctuations particularly as they become more important near the

critical point. This is of course done only if perturbation theory is meaningful.

9.1 Statistical Field Theory beyond the Ising Model

We have concluded that it is philosophically and practically problematic to directly trans-

late the input/output of a neural network into fields. If this analysis is correct, the Ising

model or Hopfield network Hamiltonians are used only indirectly in the investigation

of statistical physical phenomena. A couple of remarks are in place here : Seeking a

similar approach to Hopfield networks or other energy-based models requires a deeper

understanding of the meaningfulness of transferring abstract canonical variables, wha-

tever they may be, to the realm of space-time (QFT) or space (Statistical Field Theory).

More importantly, it is not entirely clear what constitutes coarse-graining in abstract

variables since it is at the heart of the leap from the order parameter as the variable m

(as in Landau theory and the Mean Field approach) to order parameter as a functional

in Statistical Field Theory. This being said, it is also unclear what should be considered

an order parameter in abstract settings. Yes, we can study the equivalent of magnetiza-

tion in every system but even if it can be viewed as a scale-related representation of the
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collective behavior of a microscopic system, it is not necessarily clear what it means in

other networks.

We saw that the form and content of the quantum field theoretical Landau-Ginzburg

Lagrangian is deduced from the symmetries of the original model. Clearly, without

satisfying the analyticity condition, at least in the vicinity of critical points, it is very

difficult to compute anything. This means that the free energy can only include positive

powers of the fields and its gradients (no 1/φ or 1/φ 2 etc terms). Secondly, the symme-

tries of the Hopefiled networks must be inherited by the order parameter and so the free

energy has to be constrained to include or exclude certain terms. If we are working with

the simplest Hopfield networks where the nodes take on ±1 values, we can enforce a Z2

symmetry on the free energy (inverting the pixels of black and white pictures should

not change anything). This restricts the Lagrangian to include only even powers of the

fields or their gradients.

Finally, considering the space of all possible Lagrangians in statistical field theory,

universality implies that it suffices to choose the simplest possible model. The remaining

work is to run through the machinery of QFT to compute the correlation coefficients,

scattering amplitudes etc.

9.1.1 Group Theoretical considerations

Besides stating the obvious fact that different phases of matter are associated with

different symmetries, using symmetry to characterize the phases of matter leads to

conclusions that seem to be conflicting with how they are perceived. symmetry places

seemingly wildly different types of phenomena in the same so called universality class.

The picture is, however, somewhat complicated in that it is not one but two symmetry

groups that are at play here : The free energy as a measure of the behavior of the order

parameter, and the ground state of a system can be invariant under same, different or no

symmetry transformations.
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The most general Landau-Ginzburg free energy is written based on the order parame-

ter, the choice of which may or many not be obvious, and the symmetry group G, under

which it transforms. We then require this generic free energy to be invariant under the

very same symmetry group G. As the system undergoes changes, the ground state of

the system may be invariant under a different symmetry group H. In general, we say

that there is a phase transition when H changes.

Using the Ising model as a prototype, we know that when B = 0, the free energy sym-

metry group is G= Z2. It turns out this symmetry persists also above the critical tempe-

rature Tc. However, at temperatures below Tc, the symmetry of the ground state breaks

spontaneously H = /0 and so the two phases are characterized by the two choices in H,

equivalent to m or −m. On the other hand, when B 6= 0, the free energy is no longer

invariant under Z2 i.e. G = /0, which is understood as the existence of only one phase.

In this case it is possible to move across the phase space without undergoing a phase

transition. A (first order) phase transition does occur in this case when B is changed at

low temperature although according to this classification, there are no two phases.

9.1.2 Conformal field theory

We know from the analysis of RG transformations that some operators simply disappear

as we move across scales and that many operators of high energy regime might have

disappeared in the process of zooming out. It is crucial to understand that the fixed points

of RG are identified with the critical points of statistical physics. The scale invariance at

the fixed points (by definition) of RG means that the actual form of the Lagrangian i.e.

what operators it includes or excludes do not matter.

It turns out that invariance under re-scaling is not the only symmetry at the fixed points

or RG and that the physics is invariant also under larger class of symmetries known as

the conformal symmetry group. Following the philosophy of symmetry and scale as

the two major governing principles of modern physics, it is the clear that all the fields

and correlation function are restricted by conformal group.



CHAPITRE 10

CONCLUSION AND OUTLOOK

The goal of this work was to move beyond empirical findings of recent years and provide

a theoretical understanding of phase transitions in various neural networks regardless of

their description as energy-based models. This is at least somewhat reasonable because

of the parallels we can draw between real world processes in space-time and the em-

pirically but not theoretically explained processes in machine learning that demonstrate

remarkable similarities with physical processes.

Although late, too late to say the least, we have gained a reasonable understanding of

what mistakes we made and what steps we need to take in order to remedy this situation

or perhaps even achieve what we set out to do. This will only be possible if we can

find a neural network equivalent of what is called an order parameter in statistical

field theory. As we saw above, a description of ferromagnetism was made possible by

choosing the free energy as the order parameter. What can possibly be a good candidate

in our case?

Another crucial factor at play is the study of the symmetries of the system and how they

should be incorporated in the order parameter, whatever it may be. What are the symme-

tries of a given energy model ? What obvious or hidden symmetries might they have? As

we explained above, different phases are defined by the symmetries of the Hamiltonian

at different scales. If the current approach is correct, it should be possible to explain the

empirically observed phase transitions in NNs based on how the symmetries change

(continuously or discontinuously) in the process of RG transformations.

Both quantum and statistical field theories play out against the background of space-time.

If we are to treat neural networks in the context of these theories, it seems unreasonable

to look for abstractions of RG transformations. Even in the context of space-time, it
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remains to be seen to what extent it makes sense to involve quantum processes in neural

network. Related to this, we need to understand whether it is reasonable to demand

Lorentz invariance from a theory whose goal answer questions on the inner workings or

performance of neural networks.

It seems plausible that the current approach, which hinges upon the construction of an

order parameter specifically suited to the symmetries of the Hopfield Networks and/or

other energy-based models, will answer many questions about the behavior of these theo-

ries, their performance and scaling laws etc. We are curious how we can move beyond

Hopfield Networks as primitve RNNs to actual RNNs.

Finally, it seems that conformal field theory may be of help in answering questions about

universality and universal constants and so it deserves to be studied particularly tho-

roughly, if quantum field theory proves to be the correct forum for the treatment of

neural networks.
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Annexe I

Technical details of project 1 : Studying phase transitions in Hopfield Networks

from the perspective of Mean field theory

The mean field Hamiltonian

HMF(v) =−
1
2 ∑

i j
Ti jviv j−∑

i
fivi +∑

i
Φi(vi) (I.1)

=−1
2 ∑

i j
Ti j[〈vi〉v j + 〈v j〉vi−〈vi〉〈v j〉]−∑

i
fivi +∑

i
Φi(vi)

=−m∑
i j

Ti jv j +
m2

2 ∑
i j

Ti j−∑
i

fivi +∑
i

Φi(vi)

=−∑
j
[m∑

i
Ti j + f j]v j +

m2

2 ∑
i j

Ti j +∑
i

Φi(vi)

The mean field Hamiltonian can then be written as

HMF(v) =−∑
j
[mC j + f j]v j +∑

j
[
m2

2
C j +Φ j(v j)]

=−∑
j

h jv j +
m2

2 ∑
j

C j +∑
j

Φ j(v j) (I.2)

where h j = mC j + f j. The mean field partition function

ZMF = Tre−βHMF (I.3)

= Treβ ∑ j h jv j−β ∑ j[
m2
2 C j+Φ j(v j)]

= e
−βm2

2 ∑ j C jTreβ ∑ j[h jv j−Φ j(v j)]

= e
−βm2

2 ∑ j C jTr{eβ [h1v1−Φ1(v1)]eβ [h2v2−Φ2(v2)]...eβ [hNvN−ΦN(vN)]}

= e
−βm2

2 ∑ j C j ∏
j
{eβ [h j−Φ j(1)]+ eβ [−h j−Φ j(−1)]}
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This expression can be rewritten using the following fact :

a1ex +b1e−x = a1ex +a1e−x−a1e−x +b1e−x

= 2a1 coshx+(b1−a1)e−x

= 2a1 coshx+(b1−a1)(coshx− sinhx)

= (a1 +b1)coshx+(a1−b1)sinhx

We define a j = e−βΦ j(1) and b j = e−βΦ j(−1), we get

ZMF = e
−βm2

2 ∑ j C j ∏
j
{a jeβh j +b je−βh j}

= e
−βm2

2 ∑ j C j ∏
j
{(a j +b j)coshβh j +(a j−b j)sinhβh j} (I.4)

We note that
∂ZMF

∂hi
= ...=−βTr(vie−βHMF ) (I.5)

and

m =
1
N

N

∑
k=1
〈vk〉=

1
N

N

∑
k=1

Tr(vke−βHMF )

ZMF
=
−1
βN

N

∑
k=1

∂

∂hk
lnZMF (I.6)

Furthermore

lnZMF =
−βm2

2 ∑
j

C j +
N

∑
i=1

ln[(ai +bi)coshβhi +(ai−bi)sinhβhi]

∂

∂hk
lnZMF = β

(ak +bk)sinhβhk +(ak−bk)coshβhk

(ak +bk)coshβhk +(ak−bk)sinhβhk
(I.7)

And we get

m =
−1
N

N

∑
k=1

(ak +bk)sinhβhk +(ak−bk)coshβhk

(ak +bk)coshβhk +(ak−bk)sinhβhk
(I.8)

=
−1
N

N

∑
k=1

[1− 2bk

ake2βhk +bk
] =−1+

2
N

N

∑
k=1

bk

ake2β (mCk+ fk)+bk
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−1
N

d
dm

N

∑
k=1

tanhβ (mCk + fk)|m=0 =
−1
N

N

∑
k=1

βCk

cosh2(mCk + fk)
|m=0

=
−1
N

N

∑
k=1

βCk

cosh2( fk)
> 1 (I.9)

In the very special case fk = 0, this is simplified to

β
−1
N

N

∑
k=1

Ck = β
−1
N ∑

kl
Tlk = βM > 1 (I.10)

I.0.1 Critical Behavior

Series expansion gives :

m =
−1
N

N

∑
k=1

tanhβhk =
−1
N

N

∑
k=1

[βmCk−
β 3m3

3
C3

k ]

=
−1
N

[
m

kBT

N

∑
k=1

Ck−
m3

3k3
BT 3

c

N

∑
k=1

C3
k ] (I.11)

N

∑
k=1

C3
k = (

N

∑
k=1

Ck)
3−3

N

∑
k 6=k′

C2
kCk′−6

N

∑
k 6=k′ 6=k”

CkCk′Ck” (I.12)

We can then write

m =
−1
N
{ m

kBT

N

∑
k=1

Ck−
m3

3k3
BT 3

c
[(

N

∑
k=1

Ck)
3−3

N

∑
k 6=k′

C2
kCk′−6

N

∑
k 6=k′ 6=k”

CkCk′Ck”]}

=
−1
N

[
mM
kBT
− m3

3k3
BT 3

c
M3 +

m3

k3
BT 3

c

N

∑
k 6=k′

C2
kCk′+2

m3

k3
BT 3

c

N

∑
k 6=k′ 6=k”

CkCk′Ck”] (I.13)

Consequently

m = m(
Tc

T
)− N2m3

3
(
Tc

T
)3 + ... (I.14)
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The original case

m =−1+
2
N

N

∑
k=1

bk

ake2β (mCk+ fk)+bk

The derivative of the above expression w.r.t m.

1 =
2
N

N

∑
k=1

2βakbkCke2β (mCk+ fk)

(ake2β (mCk+ fk)+bk)2
|m=0 =

2
N

N

∑
k=1

2βakbkCke2β fk

(ake2β fk +bk)2 (I.15)

In the absence of fk but presence of the gain function Φi(vi)

1 =
4
N

N

∑
k=1

βakbkCk

(ak +bk)2 (I.16)

Defining the critical temperature as

kbTc =
4
N

N

∑
k=1

akbkCk

(ak +bk)2 (I.17)

Taylor expansion around m = 0

m =
−1
N

N

∑
k=1

ak−bk

ak +bk
− 1

N

N

∑
k=1

4akbkCk

(ak +bk)2 βm+
1
N

N

∑
k=1

4akbk(ak−bk)C2
k

(ak +bk)3 β
2m2 + ...

=
−1
N

N

∑
k=1

ak−bk

ak +bk
− Tc

T
m+O(m2) (I.18)

⇒

m =

−1
N ∑

N
k=1

ak−bk
ak+bk

1+ Tc
T

=
−1
N

N

∑
k=1

ak−bk

ak +bk
(1− Tc

T
) =
−1
N

N

∑
k=1

ak−bk

ak +bk
t as T → T−c (I.19)
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Using the Greedy Variational Principle to derive the Feynman propagators of

Hopefield Networks

S j =
∫

dt{1
2 ∑

i
u̇2

i g′(ui)+∑
i
[−∑

j
Ti jv j− fi +Φ

′
i(vi)]v̇i +∑

i
vi ji}

=
∫

dt ∑
i

[
mv̇2

i
2
−∑

j
Ti jv jv̇i− fiv̇i +g−1(vi)v̇i + vi ji

]
=
∫

dt ∑
i j

[
δi j

mv̇iv̇ j

2
−Ti jv jv̇i−δi j fiv̇ j +δi jg−1(vi)v̇ j +δi jvi j j

]
(II.1)

where we have added the Kronecker delta for simplicity. We then Fourier transform vi(t)

and ji(t)

vi(t) =
∫

∞

−∞

dE
2π

e−iEt ṽi(E), ji(t) =
∫

∞

−∞

dE
2π

e−iEt j̃i(E) (II.2)

along with using the following relationships

v̇i(t) =
∫

∞

−∞

dE
2π

(−iE)e−iEt ṽi(E),
∫

dte−i(E+E ′)t = 2πδ (E +E ′) (II.3)

to rewrite the above action. We do this term by term

∫
dtδi j

mv̇iv̇ j

2
=

m
2

δi j

∫ dE
2π

E2ṽi(E)ṽ j(−E) (II.4)∫
dtTi jviv̇ j = Ti j

∫ dE
2π

iEṽi(E)ṽ j(−E) (II.5)∫
dtδi j fiv̇ j = δi j fi

∫ dE
2π

ṽ j(E)e−iEt (II.6)∫
δi jdtvi j j = δi j

∫ dE
2π

ṽi(E) j̃ j(−E) (II.7)

Since there is no known method of calculating g−1(ṽi) and since it is not possible to
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interchange the time integral and the g−1(ṽi), which we would have to do in order to

proceed, we assume that g−1(vi) is an analytic function of vi(t).As such it can be Taylor

expanded

g−1(vi) = ∑
n=0

g−1(n)(0)
n!

vn
i (II.8)

For simplicity we will write g−1(0) = G0.The derivatives of this function at zero will be

denoted G′0 etc.

∫
δi jdtg−1(vi)v̇ j =

∫
dtδi j{G0v̇ j +G0

′viv̇ j +
1
2!

G0
′′v2

i v̇ j +
1
3!

G0
′′′v3

i v̇ j + ...}

= G0δi j

∫ dE
2π

ṽ j(E)e−iEt +G0
′
δi j

∫ dE
2π

(iE)ṽi(E)ṽ j(−E)

+
1
2!

G0
′′
δi j

∫ dE
2π

dE1

2π

dE2

2π
(−iE)ṽi(E)ṽi(E1)ṽi(E2)

∫
dte−i(E+E1+E2)t

+ ... (II.9)

It is quite clear that the Taylor expansion has to be truncated. The truncated Fourier

transformed action is

S j = ∑
i j

∫ dE
2π

[
m
2

δi jE2ṽi(E)ṽ j(−E)−Ti jiEṽi(E)ṽ j(−E)−δi j fiṽ j(E)e−iEt

+[G0δi jṽ j(E)e−iEt +G0
′
δi j(iE)ṽi(E)ṽ j(−E)+ ...]+δi jṽi(E) j̃ j(−E)

]
(II.10)

Reorganizing the terms gives

S j = ∑
i j

∫ dE
2π

[
Kṽi(E)ṽ j(−E)+Mṽ j(E)e−iEt +δi jṽi(E) j̃ j(−E)

]
(II.11)

where

K =
mE2δi j

2
− iETi j + iEG0

′
δi j, M = G0δi j−δi j f j (II.12)

The most common approach here is to decouple ṽi from the source j̃i through a variable
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change. Let’s assume that we make the variable change

ṽi(E) = ṽ′i(E)+α(E) j̃i(E) (II.13)

and determine α(E) in order to achieve the desired effect. The new action reads

S j = ∑
i j

∫ dE
2π

[
Kṽ′i(E)ṽ

′
j(−E)+

+K{α(−E)ṽ′i(E) j̃ j(−E)+α(E)ṽ′j(−E) j̃i(E)}+δi jṽ′i(E) j̃ j(−E)

+ [Kα(E)α(−E)+α(E)δi j] j̃i(E) j̃ j(−E)

+Mṽ′j(E)e
−iEt +Mα(E) j̃i(E)e−iEt

]
(II.14)

Taking into account the symmetries of Ti j and δi j, we note that the integrals in the second

line involve terms that either vanish or double. In particular we get two contributions

from

∫ +∞

−∞

dE
2π

E2
α(E)ṽ′j(−E) j̃i(E) =−

∫ −∞

+∞

dE
2π

E2
α(−E)ṽ′j(E) j̃i(−E) (II.15)

while the following integrals cancel due to sign difference

∫ +∞

−∞

dE
2π

Eα(E)ṽ′j(−E) j̃i(E) =
∫ −∞

+∞

dE
2π

Eα(−E)ṽ′j(E) j̃i(−E) (II.16)

This means that the mixed terms will vanish if

mE2
δi jα(−E)+δi j = 0 ⇒ α(E) = α(−E) =

−1
mE2 (II.17)

Finally we arrive at

S j = ∑
i j

∫ dE
2π

[
Kṽ′i(E)ṽ

′
j(−E)+ [

K
m2E4 −

δi j

mE2 ] j̃i(E) j̃ j(−E)

+Mṽ′j(E)e
−iEt− M

mE2 j̃i(E)e−iEt
]

(II.18)
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The inverse Fourier transform of this action is

S j =
∫

dt
[
∑

i

mv̇′2i
2
−∑

i j
Ti jv′iv̇′ j +[G0v̇′j +G0

′v′iv̇
′
j + ...]−∑

i
fiv̇′i

]
−

−∑
i j

δi j(G0− f j)

m

∫
dt ′ ji(t ′)D1(t− t ′)

−∑
i j

δi j

2m

∫
dt
∫

dt ′ ji(t)D1(t− t ′) j j(t ′)

−∑
i j

iTi j− iδi jG0
′

m2

∫
dt
∫

dt ′ ji(t)D2(t− t ′) j j(t ′) (II.19)

D1(t− t ′) =
∫

∞

−∞

dE
2π

e−iE(t ′−t)

E2 , D2(t− t ′) =
∫

∞

−∞

dE
2π

e−iE(t ′−t)

E3 (II.20)

Changing the variable z =−E(t− t ′) we can rewrite and integral of the form

∫
dE

e−iE(t−t ′)

Ek =
∫ eiz

zk dz, k > 0 (II.21)

Assume that z is a complex variable and use this assumption to calculate the integral with

the help of residue calculus, Cauchy’s theorem etc. If we Choose the following contour

−ε ε−R R

Γε

ΓR

×
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it is clear that

∫ −ε

−R

eiz

zk dz−
∫

Γε

eiz

zk dz+
∫ R

ε

eizk

z
dz+

∫
ΓR

eiz

zk dz = 0 (II.22)

In the integrals over the real axis, we simply set the imaginary part of z equal to zero.

This is the integral we are seeking to calculate.

∫ −ε

−R

eix

xk dx

limR→∞
limε→0

+
∫ R

ε

eix

xk dx
limR→∞
limε→0

=
∫

∞

−∞

eix

xk dx

limR→∞

=
∫ R

−R

eix

xk dx (II.23)

Thus ∫
∞

−∞

eix

xk dx =
∫

Γε

eiz

zk dz−
∫

ΓR

eiz

zk dz (II.24)

We can show that the integral over ΓR has a vanishing contribution in the limit R→ ∞

|
∫

ΓR

eiz

zk | ≤
∫

π

0
|e

i(Rcosθ+iRsinθ

Rkeikθ
|Rdθ =

∫
π

0

e−Rsinθ

Rk dθ

= 2
∫

π/2

0

e−Rsinθ

Rk dθ ≤ 2
∫

π/2

0
e−2Rθ/πdθ = πR−k(1− e−R) (II.25)

which clearly vanishes as R approaches infinity. Note that we have used Jordan’s in-

equality 2θ

π
≤ sinθ ≤ θ , valid in [0,π/2], to obtain the above result. The integral over

the indentation at the simple pole in the origin is evaluated by expanding eiz around the

origin and rewriting z = εeiθ

∫
Γε

eiz

zk dz =
∞

∑
0

∫
Γε

inzn−k

n!
dz =

∫
Γε

1
zk [1+ iz− z2

2
− iz3

3!
+ ...]dz (II.26)

If k = 2, this integral can be written as

∫
Γε

[
1
z2 +

i
z
+E(z)]dz (II.27)
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where E(z) is a finite contribution and

|
∫

Γε

E(z)dz| ≤
∫

Γε

|E(z)|dz =Cπε (II.28)

that vanishes at ε → 0. This is, however, not the case for

∫
Γε

1
z2 dz =

∫
π

0

i
ε

e−iθ dθ (II.29)

which diverges in the limit ε → 0. Using a similar argument we can prove that even

∫
Γε

1
z3 dz (II.30)

diverges in the limit ε → 0.

The roots of these non-glamorous results can be traced back to the Lagrangian of the

Hopfiled network. In order to generate interesting results akin to those in the case of,

for instance, harmonic oscillator, the Lagrangian would need to include a kinetic type

term ∼ v̇2 as well as a term ∼ v2. It is in fact the interplay between these two terms that

leads to interesting/manageable Green’s functions can then be used for a path-integral

formulation of the Hopfield networks, opening the possibility of investigating all kinds

of phenomena such as phase transitions, which we set out to do originally. It should be

noted that the truncated Taylor expansion in the above treatment is not to be blamed for

this as it would not have lead to the desired result.



Annexe III

What went wrong?

The Lagrangian in [48]

L = K(v̇)−P(v) = K +
∂E
∂v

dv
dt

(III.1)

where K = 1
2 ∑i u̇2

i g′(ui) and E as in (8.19), can be slightly rewritten through the insertion

of u̇i = v̇i/g′(ui) and the equations of motion resulting from the greedy action principle

u̇i =−∑
i j

Ti jv j− fi +Φ
′
i(vi). (III.2)

With this new Lagrangian

L =
1
2 ∑

i
u̇2

i g′(ui)−
1
2 ∑

i j
Ti jviv j−∑

i
fivi +∑

i
Φ
′
i(vi)vi (III.3)

the modified action with the source term is given by

S j =
∫

dt{1
2 ∑

i
u̇2

i g′(ui)−
1
2 ∑

i j
Ti jviv j−∑

i
fivi +∑

i
Φ
′
i(vi)vi +∑

i
vi ji}

=
∫

dt ∑
i j

[
mδi j

2
v̇iv̇ j−

Ti j

2
viv j−δi j fiv j +δi jg−1(vi)v j +δi jvi j j

]
(III.4)

The Fourier transformed action is

S j = ∑
i j

∫ dE
2π

[
mδi j

2
E2ṽi(E)ṽ j(−E)−

Ti j

2
ṽi(E)ṽ j(−E)−δi j fi

∫
dtṽ j(E)e−iEt

+{
∫

dtG0δi jṽ j(E)e−iEt +G0
′
δi jṽi(E)ṽ j(−E)+ ...}+δi jṽi(E) j̃ j(−E)

]
(III.5)
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We use the abbreviations (note the differences compared to previous cases as well as K

below no longer referring to (III.1))

K =
mE2δi j

2
−

Ti j

2
+G0

′
δi j, M = G0− f j (III.6)

to simplify this action

S j = ∑
i j

∫ dE
2π

[
Kṽi(E)ṽ j(−E)+Mδi j

∫
dtṽ j(E)e−iEt +δi jṽi(E) j̃ j(−E)

]
(III.7)

A change of variable as in the previous analysis leads to

S j = ∑
i j

∫ dE
2π

[
Kṽ′i(E)ṽ

′
j(−E)+

+K{α(−E)ṽ′i(E) j̃ j(−E)+α(E)ṽ′j(−E) j̃i(E)}+δi jṽ′i(E) j̃ j(−E)

+ [Kα(E)α(−E)+α(E)δi j] j̃i(E) j̃ j(−E)

+Mδi j

∫
dt[ṽ′j(E)+α(E) j̃ j(E)]e−iEt

]
(III.8)

A novelty is that α is now given by

α(E) =
−δi j

2K
=

−δi j

mE2δi j−Ti j +2G0
′
δi j

(III.9)

and

S j = ∑
i j

∫ dE
2π

[
Kṽ′i(E)ṽ

′
j(−E)−

δi j

4K
j̃i(E) j̃ j(−E)+Mδi j

∫
dt[ṽ′j(E)−

δi j

2K
j̃i(E)]e−iEt

]
(III.10)

The integrand above has poles at E = ±ω and so the integral can be done as in the

previous case. We can also analytically continue the integrand to the complex plane

thereby shifting the two poles to ω− iε and−ω+ iε . Again the integrals can be evaluated

with the help of Cauchy’s theorem. The final result is different depending on the time
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ordering : If t > t ′, we use the lower contour (blue) as −ΓR its contribution will vanish

in the limit R→ ∞. We do the integration over −ΓR using a parallel argument.

ω− iε

−ω + iε

−R R

ΓR

−ΓR

×

×

The final answer, combining the two time ordering scenarios, is given by

D(t− t ′) =
−i

4mδi jω
e−iω|t−t ′| (III.11)

Note that this is a formal solution which due to the presence of δi j in the denominators

of ω and D(t− t ′) is problematic. Observe, however, that terms with different indices are

excluded from the onset. Taking this into account, the action reads

S j =
∫

dt
[
∑

i

mv̇′2i
2
−∑

i j

Ti j

2
v′iv
′
j +∑

i
[G0v′i +G0

′v′iv
′
i + ...]−∑

i
fiv′i

]
−

−∑
i= j

M
∫

dt
∫

dt ′ ji(t)D(t ′− t)− 1
2 ∑

i= j

∫
dt
∫

dt ′ ji(t)D(t ′− t) j j(t ′) (III.12)
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we see that the Green’s function is

D(t− t ′) =
∫ dE

2π

1
mE2 +2G0

′ e
−iE(t−t ′) =

−i
4mω ′

e−iω ′|t−t ′| (III.13)

with ω ′ =

√
−2G′0

m .



Annexe IV

A Quantum field theoretical approach

The action

S =
∫

d4x∑
i j

[
mδi j

2
∂tVi∂Vj−

Ti j

2
ViVj−δi j fiVj +δi j{G0Vj +G′0ViVj +

G′′0
2

V 2
i Vj + ...}

]
=
∫

d4x∑
i j

[
mδi j

2
∂tVi∂Vj−

Ti j

2
ViVj +δi jG′0ViVj +δi j(G0− fi)Vj +δi jO(V 3)

]
(IV.1)

We can use integration by parts in the first term, neglecting a total time derivative to get

S =
∫

d4x∑
i j

[
Vi{−

mδi j

2
∂t∂

t−
Ti j

2
+δi jG′0}Vj +δi j(G0− fi)Vj +δi jO(V 3)

]
=
∫

d4x∑
i j

[
− 1

2
ViOtVj +δi jMVj +δi jO(V 3)

]
(IV.2)

where Ot = mδi j∂t∂
t +Ti j− 2δi jG′0 is an operator. Adding a source term to the above

action (and dropping the terms O(V 3), the generating functional reads

Z[ j] = N
∫

D[V ]e
−i
∫

d4x∑i j

[
1
2ViOtV j−δi jMV j−δi j jiV j

]
(IV.3)

Once again, but differently this time and without Fourier transforming the variables, we

shift the fields Vi(x) with the goal of separating it from the source term. We find that

Vi(x) =V ′i (x)+ i
∫

d4yD(x− y) ji(y) (IV.4)
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will achieve the desired result. The shift results in

− i
∫

d4x∑
i j

[
1
2

ViOtVj−δi jMVj−δi j jiVj

]
=

− i
∫

d4x∑
i j

[
1
2

V ′i OtV ′j −δi jMV ′j −
i
2

δi j

∫
d4y ji(x)D(x− y) j j(x)

]
− iδi jM

∫
d4y j j(y)D(x− y)} (IV.5)

Once again we get the entire action back plus two terms that we will discuss below. The

partition function is given by

Z[ j] = N
∫

D[V ′]ei
∫

d4xL [V ′]e
1
2 ∑i

∫
d4xd4y ji(x)D(x−y) ji(y)e−∑i

∫
d4xd4yMD(x−y) ji(y)

= Z[0]e
1
2 ∑i

∫
d4xd4y ji(x)D(x−y) ji(y)e−∑i

∫
d4xd4yMD(x−y) ji(y) (IV.6)



Annexe V

Renormalization Group Theory, Deep Learning and Information Theory

The similarities between RG and DL have been pointed out in multiple works [8, 46, 13].

In most cases, the comparison is done between lattice spin models on which the RG

formalism has been applied in the context of statistical physics, and certain types of

basic NNs. Since both RG and NNs are procedures that distill large scale structure from

complex microscopic interactions, it is not far-fetched to try to draw this parallel and

investigate the similarities and differences between these two procedures.

It should be noted that this chapter is part of an exploration attempt to understand the link

between Bayesian learning and RG theory. In the end, it turned out this line of research

focuses on using ML, in particular the machinery of RBMs, to find ideal coarse-graining

schemes in systems that defy description due to our limited knowledge of their microsco-

pic interactions. Although we did not pursue this direction, one of our temporary goals

was to explore the relationship between learning and RG i.e. the probable links between

how NNs find the minima of the loss landscapes, and the effect of an RG transformation

on the loss landscapes. Other than that, the reader can skip this chapter or read it as an

"extra".

As data pass from the input through hidden layers to the output layer of the network, it

is believed that a NN or a Deep Neural Network (DNN) with its multi-layer architecture

successively extracts relevant (hopefully disregarding irrelevant) information. This is

akin to the central theme of RG where an iterative coarse-graining scheme is employed to

tackle problems involving multiple length scales, a process during which short distance

degrees of freedom, sometimes called high momentum or ultraviolet (UV) degrees of

freedom, are integrated out. The resulting large scale theory describes the manifestation

of the microscopic world in the infrared/macroscopic world.
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The Deep Learning equivalent of coarse-graining is seen in the context of RBMs as

sequential marginalizations over some variables that drive the network from UV/high

energy to IR/low energy variables. Similar to the general case of RG, after each sequen-

tial marginalization of UV degrees of freedom, new couplings between IR degrees of

freedom are induced.

Note that this "integrating-out-equivalency" differs from coarse-graining in RG in that

while it is possible to do coarse-graining infinite many times in RG, a process that gives

rise to the phase diagram of RG flows, it is not clear how the "RG flow" of the DL

type of coarse-graining can be studied. This would clearly be necessary for the analy-

sis of different algorithms, phase transitions, scaling laws and universality. Apart from

their structure, NNs also involve various types of learning which adds an extra layer of

complexity to the analysis of possible parallels between RG and DL.

Applications of RG procedures in statistical physics are usually neither unique nor exact.

While it is fairly straight-forward in simple cases such as 1d and 2d Ising models, the

procedure can become increasingly complex and so there are approximate methods such

as variational RG [35], a method used in [46] to bridge the gap between RG and DNNs.

The latter argues for a one-to-one relationship between variational RG and the mecha-

nism by which a simple NN such as an RBM works. An RG flow i.e. the result of infinite

many RG transformations is then equivalent to a DNN of stacked RBMs.

Starting from the Hamiltonian of a typical Ising model 4.1, variational RG finds the

coarse-grained Hamiltonian by constructing a parametrized function that encodes the in-

teractions between the coarse-grained and physical spins. The free energy of the coarse-

grained system is then calculated from the free energy of the coupled system after in-

tegrating out the physical degrees of freedom. The parameters of the coarse-grained

system are those that minimize the difference between the free energy of the physical

and coarse-grained system.

Note that in the case of RBM, the analogy with the above is that the physical spins

are those in the visible layers denoted vi, and the coarse-grained spins are those in the
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hidden layers, denoted hi. With a somewhat simplified notation (using h instead of hi)

this amounts to

e−HRG
λ

(h) = TrveTλ (v,h)−H(v) (V.1)

where HRG
λ

(h) is the coarse-grained Hamiltonian and H(v) is the "exact" Hamiltonian

of the Ising model. Variantional RG has to find the parameters λ such that the difference

between the free energies of the coarse-grained and original system ∆F = Fλ (h)−F(v)

is minimized. When the difference is zero, we get

TrveTλ (v,h) = 1 (V.2)

Without delving into the general method of finding the function Tλ , [46] argues that both

Tλ (v,h) and HRBM
λ

(v,h) encode the connection between the coarse-grained and physical

degrees of freedom and that

Tλ (v,h) =−HRBM
λ

(v,h)+H(v) (V.3)

where λ are the coupling constants (bi,ci,wi j) of the RBM Hamiltonian 7.11. Note that

this statement is equivalent to saying that the hidden layers of RBM are coarse-grained

versions of the physical/visible layer. Not surprisingly, this equation defines a one-to-one

map between variational RG in the Ising model and the RBMs where the visible degrees

of freedom have been marginalized over. Inserting V.3 in V.1, dividing by the partition

function and using the fact that RBM is an energy model

pλ (v,h) =
e−HRBM

λ (v,h)
Z

, pλ (v) =
e−HRBM

λ (v)
Z

(V.4)

we get

HRG
λ

(v) = HRBM
λ

(v) (V.5)

This result opens up the possibility of formulating the problem in Bayesian terms. If V.2
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is satisfied i.e. if the RG transformation is exact, it is easily proven that

1 = TrheTλ (v,h) = ...= Trh pλ (h|v)e−HRBM
λ

(v)+H(v) (V.6)

which implies that the variational RBM Hamiltonian is identical to the exact Hamiltonian

of the Ising model

HRBM
λ

(v) = H(v) (V.7)

We know that RBMs find the relevant coupling constants by e.g. mimizing the Kullback-

Leibler divergence between the true distribution of data P([v]) and the variational distri-

bution pλ ([v]). When an RG transformation can be performed exactly, since both RBM

and the Ising model are engery models, V.7 implies that the

DKL(P(v)||pλ (v)) = 0 (V.8)

Another implication of the above result is that the function Tλ is identical to the condi-

tional distribution through

eTλ (h,v) = pλ (h|v) (V.9)

This conditional probability is the start of a more generalized Bayesian approach to RG.

The following is based on the information theoretical approach to RG employed in [43].

Suppose we start with an energy model where all the degrees of freedom are denoted X .

The joint distribution of all the variables is given by

p(X) =
e−βH(X)

Z
(V.10)

As usual, we are looking for the coarse-grained Hamiltonian HRG(X ′). A common ap-

proach is to split the Hamiltonian H(X) in two parts, one containing the intra-block

interactions with the blocks being the coarse-grained variables, H0, and one containing
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the inter-block interactions V

H(X) = H0(X)+V (X) (V.11)

Denoting the coarse-grained blocks by h j, it is clear that if dim(X) = m, X = ∪n
j=1h j

and dim(h j) = m/n, m > n. Each such block of units to be coarse-grained will be asso-

ciated with a unit v j described by the coarse-grained degrees of freedom X ′j. If Hb is the

Hamiltonian of a single block, the total contribution of blocks to the block Hamiltonian

is

H0(X) =
n

∑
j=1

Hb(h j) (V.12)

Let’s assume that the RG procedure coarse-grains the variables X into X ′ and that the

new distribution in terms of X ′ is given by

p(X ′) = TrX p(X ′|X)p(X) (V.13)

Since the coarse-graining of the variables in each block is independent from other blocks

(translation invariance), we can write

p(X ′|X) =
n

∏
j=1

p(v j|h j) (V.14)

Furthermore, the distribution within each block p(h j) as well as the distribution of total

block distributions p0 can be written as

p(h j) =
e−βHb(h j)

Zb
(in blocks), Zb = ∑

Xi∈h j

e−βHb(h j) (V.15)

p0 =
e−βH0(X)

Z0
(all blocks), Z0 = ∑

Xi∈X
e−βH0(X) (V.16)
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Assuming that Z0 can be factorized (due to factorisation in Hilbert space?) we have

Z0 = ∑
Xi∈X

eK0(X) = ∑
X1

...∑
Xm

eK0(X) =
n

∏
j=1

∑
Xi∈h j

eKb(h j) =
n

∏
j=1

Zb (V.17)

And we get

e−βHRG(X ′)

Z′
= TrX [p(X ′|X)

e−βH

Z
], (Z invariant under coarse-graining) (V.18)

⇒

e−βHRG(X ′) = TrX [p(X ′|X)e−βH ] (V.19)

= TrX [p(X ′|X)e−β (H0+V ] (V.20)

= TrX [
n

∏
j=1

p(v j|h j)e−β ∑Hb(h j)e−βV ] (V.21)

= TrX [
n

∏
j=1

p(v j|h j)e−βHb(h j)e−βV ] (V.22)

= TrX [
n

∏
j=1

p(v j|h j)(Zb p(h j))e−βV ] (V.23)

= Zn
bTrX [

n

∏
j=1

p(v j|h j)p(h j)e−βV ] (V.24)

= Zn
bTrX [e−βV

n

∏
j=1

p(h j|v j)p(v j)] (V.25)

= Zn
bTrX [e−βV p(X |X ′)p(X ′)] (V.26)

= Zn
b p(X ′)TrX [e−βV p(X |X ′)] (V.27)

= Zn
b p(X ′)〈e−βV 〉 (V.28)

where the average is w.r.t. p(X |X ′). Furthermore, assuming that V is small (in some

sense), the standard procedure is to expand this expression in terms of the cumulants :
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The coarse-grained Hamiltonian of is given by

−βHRG(X ′) = n lnZb + ln p(X ′)+ ln〈e−βV 〉 (V.29)

= n lnZb + ln p(X ′)−β 〈V 〉+ β 2

2
[〈V 2〉−〈V 〉2]+O(V 3) (V.30)

V.1 Real Space Mutual Information

The problem with extracting higher level concepts through coarse-graining is that the

latter is not unique and that depending on the particular scheme chosen for the problem

at hand, RG transformations may lead to very complex calculations. It would, there-

fore, be important to find a way to perform RG transformation when our knowledge of

the microscopic make of a system is limited or even non-existent which will hinder a

meaningful coarse-graining scheme. [39] propose an algorithm (RSMI) based on maxi-

mizing Real Space (formerly known as Block Spin) Mutual Information, that is capable

of identifying the relevant d.o.f , where relevant refers to the terminology of RG. Fur-

thermore, they show that RSMI is capable of performing RG transformations without

prior knowledge of the system and that maximizing mutual information naturally leads

to certain coarse-graining schemes.

The idea of maximizing mutual information and coarse-graining in RG do not seem too

far apart if we take note of the fact that MIM encourages the hidden (coarse-grained)

units to couple to combinations of V that are strongly correlated with the environment

i.e. carry maximum amount of information.

All has been done in the context of RBMs. Also the idea of MIM seems more like a

convenient tool than anything else. Even then, we seem to need to calculate certain mi-

croscopic entities and/or make certain assumptions about the nature of the microscopic

system. For instance... What about other networks?

Consider a system described by a set of variables X , partitioned into the variables X =

(O,E ,B,V,B,E ,O) where V,E ,B,O are the visible/physical , environment, buffer
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and remaining variables, respectively. For simplicity, it is assumed here that B = /0 and

that the variables O are included in E . The d.o.f of a small visible unit V are to be

coarse-grained into new variables H such that the new relevant d.o.f described by H

in V depend on both V and E through the conditional distribution PΛ(H|V ). In order

to maximize the mutual information between the visible units and the environment, the

idea is to define the coarse-grained units H as a composite function of the d.o.f of V .

Thus, given Monte-Carlo (MC) samples (V,E )i, the objective is to maximize the mutual

information

IΛ(H : E ) = ∑
H,E

PΛ(H,E )log
PΛ(H,E )

PΛ(H)P(E )
(V.31)

We make the assumption that the collective distribution of the variables X is given by a

Boltzmann distribution

P(X) = P(V,B,E ) =
e−H(xi)

Z
(V.32)

In practice, both P(X) and its marginalizations

P(V ) = ∑
BE

P(X) (V.33)

and

P(V,E ) = ∑
B

P(X) (V.34)

are given by MC samples (V,B,E )i and restrictions thereof. To this end, two RBMs are

used to approximate the distributions P(V.E ) and P(V ) through contrastive divergence

(CD).

Θ-RBM CD−→ΘV,E −→ PΘ(V,E )

Θ-RBM CD−→ΘV −→ PΘ(V )

As seen above, the conditional distribution P(H|V ) has a central role is coarse-graining.

The core of the RSMI algorithm is to find the parameters of this distribution in such a

why that the mutual information between a third RBM is used to find the visible units
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(through H) and the environment is maximized

Λ-RBM
MIM(SGD)−→ Λ = (ai,bi,λi j)−→ PΛ(H|V ) =

e−E(H,V )

∑H e−E(H,V )

where E(H,V ) is given by the RBM Hamiltonian with parameters (ai,bi,λi j) as pre-

viously defined. This is done through SGD. The distribution P(E ) can be removed from

the expression for mutual information above as it does not depend on any parameters.

The function to be maximized after a series of manipulations is

AΛ(H : E ) = ∑
H,E

PΛ(H,E )log
PΛ(H,E )

PΛ(H)

= ∑
H,E

PΛ(H,E )log
∑V P(V,E )PΛ(H|V )

∑V ′,E ′ PΛ(H,E ′,V ′)

= ∑
H,E

PΛ(H,E )log
∑V P(V,E )PΛ(H|V )

∑V ′,E ′ PΛ(H|V ′)P(E ′,V ′)

= ∑
H,E

PΛ(H,E )log
∑V PΘ(V,E )PΛ(H,V )/PΛ(V )

∑V ′ PΛ(H,V ′)PΘ(V ′)/PΛ(V ′)

= ∑
H,E

PΛ(H,E )log
∑V e−EΘ(V,E )−EΛ(H,V )+EΛ(V )

∑V ′ e−EΛ(H,V ′)−EΘ(V ′)+EΛ(V ′)

= ∑
H,E

PΛ(H,E )log
∑V e−EΛ,Θ(V,E ,H)

∑V ′ e−EΛ,Θ(H,V ′)

= ∑
H,E

PΛ(H,E )log
∑V e−EΛ,Θ(V,H)−∆E

∑V ′ e−EΛ,Θ(H,V ′)

= ∑
H,E

PΛ(H,E )log〈−∆E〉H ≈ ∑
H,E

PΛ(H,E )〈−∆E〉H

where ∆E = EΛ,Θ(V,E ,H)−EΛ,Θ(V,H) and the average is taken over a system with

energy EΛ,Θ(V,H) with fixed H. The above surrogate function can be rewritten further

AΛ(H : E )≈ ∑
H,E

∑
V

P(V,E )PΛ(H|V )〈−∆E〉H (V.35)

To simplify this function further [39] replace the sums ∑E ∑V with the average of N(E ,V )
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MC samples (E ,V )i, and use the Λ-RBM and a sample (V )i to draw a sample (H(V ))i

according to the probability distribution P(H|V )

AΛ(H : E )≈ 1
N(E ,V,H(V ))i)

∑
(V,E ,H(V ))i

〈−∆E〉H (V.36)

It should be pointed out that there are two distinct issues here : The purpose of casting

RG and coarse-graining in information theoretical terms is to use the machinery of DL

to solve physics problems where there is a lack of insight in either the microscopic

interactions or the inner workings of the system as a whole. Here, it is argued that when

we do not know of meaningful coarse-graining schemes, MIM will do the job of finding

the most perfect coarse-graining scheme, provide us with the GR flow thereby giving

us an insight in the whole universality class of systems that may or may not appear

macroscopically similar.

The fact that this has been shown successful in proving that the principle of MIM re-

produces what we already know about the RG flow and critical exponents of 1d and 2d

Ising model, the passage from RG to information theory seems a bit artificial (at least

in the context of RSMI). Yes, the two processes are reminiscent of each other but there

is no natural reason to find the parameters of an RBM that maximize MI between the

hidden units and the environment. This being said, if the goal of this investigation is to

gain insights into the recent years’ scaling laws, the question to answer is whether RG is

the proper framework for DL, i.e. whether DL algorithms do some kind of sophisticated

RG transformations which can then be used to explain the scaling laws.
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