
Université de Montréal

Imitation from Observation using Behavioral Learning

par

Medric B. Djeafea Sonwa

Département de mathématiques et de statistique
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Discipline

Orientation mathématiques appliquées

November 28, 2022

© Medric B. Djeafea Sonwa, 2022

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Imitation from Observation using Behavioral Learning

présenté par

Medric B. Djeafea Sonwa

a été évalué par un jury composé des personnes suivantes :

Irina Rish

(président-rapporteur)

Eugene Belilovsy

(directeur de recherche)

Guillaume Lajoie

(membre du jury)

Résumé

L’Imitation par observation (IPO) est un paradigme d’apprentissage qui consiste à entraî-
ner des agents autonomes dans un processus de décision markovien (PDM) en observant les
démonstrations d’un expert et sans avoir accès à ses actions. Ces démonstrations peuvent
être des séquences d’états de l’environnement ou des observations visuelles brutes de l’envi-
ronnement. Bien que le cadre utilisant des états à dimensions réduites ait permis d’obtenir
des résultats convaincants avec des approches récentes, l’utilisation d’observations visuelles
reste un défi important en IPO. Une des procédures très adoptée pour résoudre le pro-
blème d’IPO consiste à apprendre une fonction de récompense à partir des démonstrations,
toutefois la nécessité d’analyser l’environnement et l’expert à partir de vidéos pour récom-
penser l’agent augmente la complexité du problème. Nous abordons ce problème avec une
méthode basée sur la représentation des comportements de l’agent dans un espace vecto-
riel en utilisant des vidéos démonstratives. Notre approche exploite les techniques récentes
d’apprentissage contrastif d’images et vidéos et utilise un algorithme de bootstrapping pour
entraîner progressivement une fonction d’encodage de trajectoires à partir de la variation du
comportement de l’agent. Simultanément, cette fonction récompense l’agent imitateur lors
de l’exécution d’un algorithme d’apprentissage par renforcement. Notre méthode utilise un
nombre limité de vidéos démonstratives et nous n’avons pas accès à comportement expert.
Nos agents imitateurs montrent des performances convaincantes sur un ensemble de tâches
de contrôle et démontrent que l’apprentissage d’une fonction de codage du comportement à
partir de vidéos permet de construire une fonction de récompense efficace dans un PDM.

Mots clés: Apprentissage par renforcement, Apprentissage par imitation, Imitation par
observation, Apprentissage contrastif, Reconnaissance d’actions

3

Abstract

Imitation from observation (IfO) is a learning paradigm that consists of training autonomous
agents in a Markov Decision Process (MDP) by observing an expert’s demonstrations and
without access to its actions. These demonstrations could be sequences of environment states
or raw visual observations of the environment. Although the setting using low-dimensional
states has allowed obtaining convincing results with recent approaches, the use of visual
observations remains an important challenge in IfO. One of the most common procedures
adopted to solve the IfO problem is to learn a reward function from the demonstrations, but
the need to understand the environment and the expert’s moves through videos to appro-
priately reward the learning agent increases the complexity of the problem. We approach
this problem with a method that focuses on the representation of the agent’s behaviors in
a latent space using demonstrative videos. Our approach exploits recent techniques of con-
trastive learning of image and video and uses a bootstrapping algorithm to progressively
train a trajectory encoding function from the variation of the agent’s policy. Simultaneously,
this function rewards the imitating agent through a Reinforcement Learning (RL) algorithm.
Our method uses a limited number of demonstrative videos and we do not have access to
any expert policy. Our imitating agents in experiments show convincing performances on a
set of control tasks and demonstrate that learning a behavior encoding function from videos
allows for building an efficient reward function in MDP.

Keywords: Reinforcement learning, Imitation learning, Imitation from observation, Con-
trastive learning, Action recognition

4

Contents

Résumé . 3

Abstract . 4

List of tables . 8

List of figures . 10

List of acronyms and abbreviations . 13

Acknowledgements . 15

Chapter 1. Introduction. 16

1.1. Context: Reinforcement Learning and Imitation from observation 16

1.2. Problems . 18

1.3. Proposal and Contribution . 19

1.4. Working paper . 20

1.5. Outline . 20

Chapter 2. Background . 22

2.1. Reinforcement Learning . 22

2.1.1. Discrete-time finite-horizon stochastic process . 22

2.1.2. Markov decision process. 23

2.1.3. Policy function. 24

5

2.1.4. Policy gradient methods . 25

2.1.5. Q-learning and Deep Q-networks . 27

2.1.6. Deep Deterministic Policy Gradient . 29

2.2. Imitation learning. 31

2.2.1. Behavioral cloning . 33

2.2.2. Inverse reinforcement learning. 33

2.3. Imitation from observation with learned reward function . 34

2.4. Representation learning . 35

2.4.1. Image representation with contrastive learning on multiple views 35

2.4.2. Video representation with next-frame prediction. 36

Chapter 3. Related work . 38

3.1. Imitation from observation . 38

3.2. Self-supervised learning of unlabeled data . 41

Chapter 4. Method . 43

4.1. Overview . 43

4.2. Behavioral learning from videos . 44

4.2.1. Image encoding . 44

4.2.2. Sequence encoding . 45

4.3. Training: Imitation from observation . 46

4.4. Encoding-based agent training . 47

Chapter 5. Experiments and results . 50

5.1. Overview . 50

6

5.2. Network architectures . 50

5.3. Training: Alignment Phase. 52

5.4. Training: Interactive Phase . 52

5.5. General results . 53

5.6. Results of Evaluation on Meta-World . 53

5.7. Trajectory encoding learning . 57

5.8. Ablating the Alignment Phase . 58

5.9. Ablating the use of a Learned Image-Encoder for RL . 60

5.10. Effect of Encoder Training Length in Interactive Phase. 60

Chapter 6. Conclusion and future work . 63

References . 65

7

List of tables

5.1 Architecture of convolutional neural networks gθ1 and gtheta2 . Xin is the size of the
input image. Xout is the size of the output matrix of each layer. C is the number
of channels of the output matrix at each layer. K is the size of the convolution
kernel at each layer. S is the stride of the convolution operation. P is the padding
added initially to the input matrix. 51

5.2 Architecture of the image decoding function qγ based on transposed convolution
operations. Xin is the size of the input image. Xout is the size of the output matrix
of each layer. C is the number of channels of the output matrix at each layer. K is
the size of the convolution kernel at each layer. S is the stride of the convolution
operation. OP is the padding added to the output matrix. The padding added to
the input matrix is always 0. 52

5.3 Hyperparameters of Algorithm 2 . 53

5.4 Evaluation of the average return over 500-step episodes of agents trained with
the Context translation (CT) [47] and ViRL [9] algorithms. We evaluate the
agents on the Reacher Hard, Finger Turn Easy, Hopper Stand, and Walker Run
tasks. For 3 of the environments, our approach exceeds the existing methods by
a wide margin. For Reacher Hard, we are able to achieve rewards on par with
the Expert policy, while our comparison methods completely fail to learn good
policies. Though this is a fairly simple control problem (a visual version of inverse
kinematics), the distribution of starting states and goals is fairly large compared
to other tasks we look at. Our technique of training with failure demonstrations
is particularly advantageous in this setting as we see more of the state space. . . . 54

5.5 Evaluation of the average return over 500-step episodes of our agent (BootIfOL)
where the encoder was trained from scratch and an agent which exploited
EfficientNet-B [66]0 as a backbone model (Eff-BootIfOL). We evaluate these

8

agents on the manipulation tasks: Button Press, Plate Slide, and Drawer Close in
the Meta-world simulator [89]. 55

9

List of figures

1.1 Illustration of our method. An encoder that takes videos of agent trajectories and
embeds them in a "behavioral space" is trained using contrastive learning that
encourages successful trajectories to be near each other. We use this to encode
N expert videos in a region of the behavioral space depicted in blue. The reward
function corresponds to the distance of the agent’s trajectory to the set of expert
trajectories. As the agent progresses, its current trajectories are incorporated as
"negative" examples into the contrastive learning in red. 20

2.1 Description of a system in which events and interactions occur. The system is a
set consisting of an agent and an environment. The environment shows the state
of the system and the agent can observe and modify it with actions. 23

2.2 Schema of inference of the algorithm DrQ-v2 [88]. 31

2.3 Principle of view generation and creation of positive pairs and negative pairs. n

RGB images are collected and translated into the Lab color space. For each image
oi, the view vi

1 is the L component of oi in the Lab space, and the view vi
2 is the ab

component of oi in the Lab space. A positive pair is a pair of view encodings from
the same image. A negative pair is a pair of view encodings from two different
images. 36

4.1 Training architecture of the imitation functions. For each episode, the video is
decomposed in the Lab color space, constituting the L and ab views. Each frame is
encoded by gθ and decoded by qγ. The resulting state sequence s0, ..., st is encoded
using the LSTM fω to provide the sequence encoding zt. zt is then processed by
dϕ and fω to predict future image encodings. 46

4.2 Principle of agent rewarding. At each step, the agent’s trajectory is encoded by
fω and gθ to produce zt. This operation is also done with an expert video sampled

10

from the set of expert video at the beginning of the episode. The reward returned
to the agent at time t is the euclidean distance between zt and ze,t. 47

5.1 Comparison of the actions taken between an expert (top row) policy and imitation
agent (bottom) learned using our proposal. We show learned agents in Hopper
Stand and Drawer Close with the same initial conditions. Observe that for Hopper
Stand the agent behavior of our learned agent is very similar to that of an expert.
For Drawer Close although the learned agent takes a different trajectory than the
expert(e.g. keeping the gripper wider open) it is able to solve the task. 54

5.2 Average returns throughout agent training in Interactive Phase compared to CT
and ViRL agents on Reacher Hard and Hopper Stand tasks. We observe that the
agent progresses quickly in both cases as compared to other baselines. Although
ViRL is able to do well in Hopper Stand, it is unable to tackle all environments
(e.g. Reacher Hard). 55

5.3 Comparison of actions taken between an expert policy (top row) and an imitation
agent policy learned using our proposal. We show these agents acting in the
Reacher Hard, Finger Turn, Walker Run and Button Press tasks. Note also
that for all these tasks, the expert and the agent are placed in identical initial
conditions. 56

5.4 Evolution of the loss term L during the Alignment phase. We evaluate these values
on the trajectories generated from the Hopper Stand, Reacher Hard, Walker Run
and Finger Turn Easy tasks. 57

5.5 Evolution of the loss terms LZ , Lseq, Lae and Ltriplet during the Alignment phase,
during which the encoding functions gθ and fω are trained over expert trajectories
and randomly generated trajectories. 58

5.6 Evaluation of the loss term Lseq during the Interactive phase. This loss is evaluated
during Ntrain training steps during the update of fω and gθ. We notice a slight
increase of this term, and this is due to the progress of the agent policy function
in generating trajectories similar to that of an expert policy. 59

5.7 Ablating the effect of the encoding functions’ training in the Alignment Phase
(described in Section 4.1) on the final performance of the agent on the Reacher
Hard task. alignment is our initial model with the Alignment Phase executed;

11

no-alignment and no-alignment-1550K-step are the models without execution of
the Alignment Phase. In no-alignment-1550K-step, the encoding functions are
updated continuously until the end of the agent’s training. 59

5.8 Ablation studies. We show the average return of the agent on the Reacher Hard
task over 5 episodes of 60 steps. We evaluate whether we can re-use the image
encoding CNN from our imitation function for policy learning (encoding-based)
or whether the RL agent should optimize a new image encoding network (image-
based). We observe that attempting to use the encodings from BootIfOL directly
in the policy network (encoding-based) degrades performance. 61

5.9 Ablation studies. We show the average return of the agent on the Reacher Hard
task over 5 episodes of 60 steps. We evaluate the agent with respect to the training
duration of the encoding functions. If they are not trained after the Alignment
Phase (0-step), the rewards are non-informative. Similarly, if we continue to train
them as the agent begins to converge to a strong policy, they can degrade the
reward signal. 62

12

List of acronyms and abbreviations

RL Reinforcement Learning

IL Imitation Learning

IfO Imitation from Observation

IRL Inverse Reinforcement Learning

BC Behavioral Cloning

MDP Markov Decision Process

GAN Generative Adversarial Network

GAIL Generative Adversarial Imitation Learning

GAIfO Generative Adversarial Imitation from Observation

DQN Deep Q-Network

13

DDQN Double Deep Q-Network

DDPG Deep Deterministic Policy Gradient

CT Context Translation

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

14

Acknowledgements

I would like to express my sincere gratitude to my supervisors Eugene Belilovsky and Johanna
Hansen without whom I would certainly not have been able to complete this work. I am so
grateful for your help, support, and especially your patience during the realization of this
work. I thank you for your advice, your remarks, and for the time spent analyzing and
correcting this work. It helped me a lot to have confidence during my work. I would also
like to thank my friends from Mila and the University of Montreal with whom I participated
in many projects that served as a basis for defining this thesis. I am thinking in particular
of Kavin Patel and Maxime Heuillet with whom I studied approaches of Self-Supervised
Learning and Reinforcement Learning through research projects. I would also like to thank
you for making my stay in Montreal pleasant despite the cold weather and all the assignments.
I want to thank Evelin Fonseca Cruz and Juan Duran with whom I played a lot with robots.
Learning to write Reinforcement Learning algorithms for robots with you was the most fun
part of this Master. To the Mila Community, I would like to say thank you for what you
have built. Thanks to the exchange events and workshops, I was able to discuss my work
with many researchers who gave me critiques and suggestions for improvements. To my
teachers at Mila and the University of Montreal, Glen Berseth, Aaron Courville, Phillipe
Langlais, and Pierre-Luc Bacon, I thank you very much for your advice and teachings. To
my Montreal family, Loïs, Yann, Julien, Tristan, Samuel, Larry, Manuel, and all the others,
I thank you for being by my side, especially during this last year when I was trying to adapt.
You helped me a lot to overcome moments of loneliness. To my brothers, Maurel and Junior
Sonwa, my mom Marlyse Sonwa, and to my uncle Charles Tento and his family, I say thank
you, for the unconditional support, the encouragement, and the congratulations. You have
always believed in me, I am proud to have you as my family. And to my late father, Abraham
Sonwa, you left before I had time to complete this project, but I know that from where you
are, you are proud of me, you always were. I dedicate this work to you.

15

Chapter 1

Introduction

1.1. Context: Reinforcement Learning and Imitation
from observation

In recent years, Artificial intelligence and Deep learning have allowed the conception of algo-
rithms to solve advanced problems that previously required human analysis. This progress is
mainly perceptible in Computer vision with the introduction of the Convolutional Neural Net-
works (CNNs) which have allowed the development of algorithms of recognition [44, 91, 21]
and detection [26, 70] through raw visual data. We also find this progress in Natural Lan-
guage Processing (NLP) with the introduction of Recurrent Neural Networks (RNNs) that
have been working on interpretation and operations (translation, speech recognition, sen-
timent analysis, text completion, etc.) [8, 19] on human language texts. Among these
challenges, one of the tasks that has long interested research is the design of autonomous
agents to solve specific tasks. Indeed, with the new skills acquired in recent years in Deep
learning and Computer vision, it is natural to ask the question of how to train agents to per-
form tasks in the real world using physical interactions with the environment around them.
This problem is largely studied today by the Reinforcement Learning (RL) [75]. RL is the
branch of Deep learning that studies algorithms to learn an autonomous agent to perform a
task by interacting with its environment. Let’s consider the well-known problem of designing
an autonomous car capable of taking its passengers anywhere without the intervention of a
driver. This problem is modeled in RL by the car which is the autonomous agent and the
city which is the environment in which the agent acts. In this application, the cameras and
sensors placed on the car constitute the agent’s sensors and allow it to observe and measure
a part of the environment. The movements of the car constitute the actions emitted by
the agent in this environment to modify its environment’s state. During the execution of a
task (observation of the environment and emission of actions), the general approach in RL

consists in providing rewards to the agent indicating how useful each action emitted was for
the accomplishment of the task. These rewards are evaluated using a function called Reward
function, and the agent’s goal is to maximize its sum of rewards at the end of each task
execution. A high sum of rewards means that the task has been completed. When choosing
the action, the agent calls a function called Policy function which calculates the optimal
action to take for the current state of the system. To date, there are several RL algorithms
adapted to each specificity of the environment. These specificities vary according to the
environment, the type of interaction, the number of possible actions, etc. The specificity at
the level of the environment resides in the agent’s capacity to fully or partially observe its
environment. Indeed, although it is possible for some tasks to fully observe their environ-
ment, and to better predict the effects of their actions, this situation is rarely present in real
applications. This problem is studied in particular in Visual Question Answering (VQA)
[5, 18, 3] where we have an agent able to move in an environment and which is asked to
answer a question whose answer is obtained after analysis of the environment. The type
of interaction contains several parameters such as the atomicity of the actions (the actions
can be atomic or composed), the continuous character of the interaction (the emission of
the actions can be continuous with the propagation of the effects in all the process) and
the sensitivity related to the precision of the actions. This configuration of the environment
and interactions is at the heart of many learning algorithms for continuous control tasks
[46, 49, 43] where the agent, to perfectly execute the task, has to emit at each instant the
optimal action in order to maximize the total gain. Very often, in real situations, the task
is a mix of a planning problem and a continuous control problem. This case is mainly stud-
ied by Hierarchical Reinforcement Learning (HRL) algorithms [59, 52] which design agents
with many planning levels. The agent is composed of an upper layer, which is in charge of
planning the non-atomic actions necessary for the realization of the task, and of lower layers
which are in charge of executing atomic and continuous actions requiring optimal precision.

The execution process of a continuous control task is modeled in RL by a Markov Decision
Process (MDP) [6] and the classical approach to train an autonomous agent for this task is
via the use of a manually designed reward function that the agent will seek to maximize.
In this process, the agent seeks for each observation of the environment to select the action
that will return the maximum long-term gain. A major problem with this approach is the
necessity of the reward function. In practice, in many cases, it is not always easy to design
such a function, with the consistency that goes with it. However, for many tasks, it is
common to have one person capable of successfully performing the task. One could then ask
how to train a second agent to perform the task by observing the movements of an agent
executing perfectly the task. It is normal to consider this possibility because imitation is
a well-known learning approach used by humans. Imitation from Observation (IfO) is a

17

learning paradigm that consists in using demonstrations of an expert in a task to train a
second imitating agent. In the case of an agent capable of obtaining visual observations of
the environment, these demonstrations are ultimately videos of the expert performing the
task. Contrary to classical RL methods, where we have by definition a reward function that
is used to train the agent, in IfO, it is necessary to exploit only the videos showing examples
of the execution of the task. Many algorithms have been designed for this type of problem
conditioning, but the difficulties related to the training of the agent remain numerous.

1.2. Problems

Imitation from Observation (IfO) [79, 47] involves learning a policy function for an agent to
solve a task using a set of demonstrations of an expert performing the same task. Distinct
from Imitation Learning (IL) [38, 67, 65, 11] which uses sequences of expert observation-
action pairs as demonstrations, in IfO, the demonstrations are only sequences of observations
of the environment by the expert. Depending on the environment and the information avail-
able to the agent, an observation can be a description of the environment at a given time
(joint angles, distance between objects, direction vector coordinates, velocity, etc.) provided
in the form of a low-dimensional state vector of the environment, or a raw visual of the
environment subject to further analysis and processing. The advantage of the IfO formaliza-
tion is that it allows more natural agent learning scenarios, where difficult-to-acquire precise
action data is not available. Furthermore, it more accurately approximates the way in which
humans imitate experts during learning. The two main methods in the literature that have
been used to train IfO problem agents are adversarial methods and reward learning methods
[82]. The adversarial methods [80, 81] adapt ideas from inverse reinforcement learning [36],
proposing a GAN-like architecture [27] where the agent is a trajectory generator associated
with a discriminator function that evaluates how similar the state transitions produced are
to that of an expert.

These methods have proven their effectiveness in the case of low-dimensional state obser-
vations. When dealing with high-dimensional visuals, [80] uses a small stack (of size 3) of
successive images to evaluate fake and real data. However, when using high-dimensional
visual observations instead of low-dimensional state sequences, each video transcribes the
variations of the system states without clearly designating the main and critical features
that describe the environment. The fact of reducing the problem to a classification of small
sequences limits the capacity of the discriminator to analyze and identifies these features de-
scribing optimal actions. Being able to correctly understand and represent the system state
using environment images is essential to evaluate state transitions. Moreover, this approach
limits the understanding of specific behaviors planning their actions over long horizons. On

18

the other hand, reward learning methods [40, 47, 12] are based on the training of a reward
function that will be subsequently used to reward an agent while applying a traditional RL
algorithm. The main interest of such an approach is to learn a reward function that mea-
sures the efficiency of the agent actions based on the expert demonstrations. The different
reward learning methods exploit a precise self-supervised learning objective, such as context
variation between many executions [47], which allows the model to converge to a meaningful
and efficient reward function for training the imitating agent.

1.3. Proposal and Contribution

In this thesis, we present BootIfOL, a novel reward learning IfO algorithm that relies on the
representation of agent behaviors in a latent space using raw pixel-based demonstrations,
illustrated in Figure 1.1. Unlike adversarial approaches, we use the entire observation se-
quences, also called trajectories, with a Long Short-Term Memory (LSTM) neural network
[37] to keep track of the agent’s actions and to represent the induced behavior of the agent at
each sequence timestep. This method directly exploits a limited set of visual demonstrations
from an expert to train an imitating agent, without having access to the expert policy or
actions. Inspired by Berseth et al. [9], we also train the reward function progressively with
new visual trajectories generated by the agent. The trained reward function is based on a
trajectory encoding function which represents the trajectories in the latent space. In con-
trast to [9], our method trains the trajectory encoding function on a set of failure trajectories
before the agent training starts. This helps to ensure the consistency of the reward function
from the beginning of the agent training. We also use Contrastive Multiview Coding [78]
and Dense Predictive Coding [32] methods for self-supervised learning of trajectories. Like
[47, 9], a reward function is trained by interacting with the environment to encourage the
imitating agent’s behavior to be similar to the behavior of the expert. The motivation be-
hind this approach is: (1) To learn and estimate, at each timestep, the system state using
the agent’s visual observations (knowing that the real system state is not accessible); (2) To
identify the behavior induced by the agent over a certain period of task execution and make
sure that this behavior serves the same purpose as the expert. Our method also demonstrates
the interest in a first-round training of the trajectory encoding function in order to provide
meaningful rewards to the agent from the beginning of its training, contrary to other similar
reward learning methods that bypass this step. Our method successfully solves a range of
tasks in the Deepmind Control Suite [77] and the Meta-world environment [89], approaching
the level of sums of rewards per episode obtained by the experts on the same tasks.

19

+1

ω

ω

Fig. 1.1. Illustration of our method. An encoder that takes videos of agent trajectories and
embeds them in a "behavioral space" is trained using contrastive learning that encourages
successful trajectories to be near each other. We use this to encode N expert videos in a
region of the behavioral space depicted in blue. The reward function corresponds to the
distance of the agent’s trajectory to the set of expert trajectories. As the agent progresses,
its current trajectories are incorporated as "negative" examples into the contrastive learning
in red.

1.4. Working paper

This thesis is based on the working paper called Imitation from Observation With Boot-
strapped Contrastive Learning [4] that was accepted at Neurips 2022 3rd Offline RL Work-
shop, and currently submitted to the Conference on Computer Vision and Pattern Recog-
nition (CVPR) 2022. In this work, I was the main contributor, and I participated in the
development and study of the algorithm, the execution of experiments, the analysis of re-
sults, and the reporting of results and interpretations. The code associated to this project
is available at https://github.com/medric49/ifobl.

1.5. Outline

The subjects covered in this thesis are organized as follows: In Chapter 2, we explain the
mathematical foundations of all the approaches we exploit in our work. We present the dif-
ferent properties and algorithms we use in our thesis. In Chapter 3 we discuss the different
works that have been realized in Imitation Learning and Imitation from Observation. Know-
ing the importance of learning and representation of visual data in our work, we also present
recent approaches of Self-supervised learning of data and their principles. In Chapter 4, we
present and explain our proposal. We explain the motivations behind this approach and the
importance of the different parameters. In Chapter 5, we explain and present the results of
the different experiments performed on our proposal in order to validate it. We explain the

20

https://github.com/medric49/ifobl

behavior of this proposal when we vary the defined parameters and we present interpreta-
tions. And finally, in Chapter 6, we summarize the results obtained and we approach the
possible improvements for future work.

21

Chapter 2

Background

2.1. Reinforcement Learning

Reinforcement Learning (RL) is the study of algorithms that train agents to make decisions
to achieve goals during interactions in an environment. In this setting, we distinguish a
system consisting of two entities: the environment and the agent. The environment is the
place where events occur and which manifests the variation of the system states. The agent
is the entity that observes the variations of states and takes actions to influence future states.
When there are several agents that interact simultaneously, we call it a multi-agent system.
In this project, we will only focus on the case of systems with one agent or single-agent
systems.

2.1.1. Discrete-time finite-horizon stochastic process

In order to simplify the study of the process of task executions, RL approach formalizes this
process as a discrete-time stochastic process [75]. The process is discretized into a sequence of
many steps. During a step, the agent observes the environment which presents the current
state of the system. Then, the agent takes a decision and emits an action. This action
causes an event that changes the state of the environment and introduces the next step.
This process is presented in Figure 2.1. When a task has always reachable final states where
no additional action is admissible, we call it finite-horizon task.

For a finite horizon task, an instance of the execution process is called episode. Let us consider
S = {s} the set of system states and A = {a} the set of actions. A finite horizon episode of
T steps is described by the sequence (s0, a0, . . . , st, at, . . . , sT , aT). At step t, the system is in
state st ∈ S and the agent chooses the action at ∈ A. Note that when the agent observes the
environment, it does not always observe the whole system. At a time t, the agent measures

Agent

Environment

System

a
t

s
t

o
t

Observation:

State:

action:

Fig. 2.1. Description of a system in which events and interactions occur. The system is
a set consisting of an agent and an environment. The environment shows the state of the
system and the agent can observe and modify it with actions.

a set of quantities of the environment called observation and represented by ot. It chooses
an action at based only on the sequence of observations (o0, . . . , ot). When ∀ t, ot = st we
say that the system is fully observable. When ∃ t | ot ̸= st, we say that the environment is
partially observable. Thus, the sequence observed by the agent is (o0, a0, . . . , oT , aT).

2.1.2. Markov decision process

The succession of events and states of the system is dictated by a probability function P
called dynamics function, such that at time t, the probability that a state st+1 ∈ S is
reached leaving st is given by P(st+1|s0, a0, . . . , st, at). A discrete-time stochastic process is
said to respect the Markov property [6] when at any time t, the probability of reaching the
state st+1 depends only on the state st and the action at:

∀t P(st+1|s0, a0, . . . , st, at) = P(st+1|st, at) (2.1.1)

In a discrete-time finite-horizon control process, the agent seeks to execute a specific task by
making a sequence of decisions about its actions. In order to help the agent make optimal
decisions, RL approach introduces a function R, called reward function, which at each new
step t ≥ 1, rewards the agent with a value rt = R(st−1, at−1) depending on the previous
state and action. When the episode starts, r0 = 0. This reward function tells the agent how
optimal its action was for the success of the task at the given time. The agent’s objective is
thus to maximize the sum of rewards at each episode. In RL formalism, the reward function
is provided by the system.

Consider a system consisting of an agent and an environment. An agent-environment inter-
action process is called Markov Decision Process (MDP) [6, 75] when it is a discrete-time

23

stochastic process respecting the Markov property and defined by: (1) S the set of system
states, (2) A the set of actions executable by the agent, (3) P the dynamics function of the
system, (4) R is the reward function associated with the system. In this study, we assume
that the execution processes we work on are finite-horizon MDPs.

2.1.3. Policy function

In an MDP, at each new observation ot at step t, the agent selects an action at. The choice
of action is computed using a function called policy and denoted π, such that π(at|ot) is the
probability that the action at is optimal to maximize the total gain at step t. When the
function π is a probability, we call it stochastic policy. When the function π directly returns
the optimal action with at = π(ot), we speak of deterministic policy. In this work, depending
on the context, we will use one or the other of these two forms.

Let us consider a finite-horizon MDP of the agent represented by its state-action sequence
(s0, a0, . . . , sT , aT) also called trajectory and noted τ . At the end of this process, the sum of
the rewards ∑T

t=0 rt obtained by the agent is called return. To simplify the writing, we note
the return obtained until time t, GT = ∑t

t=0 rt. The objective of the agent controlled by the
policy π is to maximize its return by selecting appropriate actions for any trajectory τ of
the distribution of trajectories τ ∼ P (s0, a0, . . . , sT , aT |π) conditioned by π. Thus, a policy
π is then evaluated by its expected return noted J(π) and defined by:

J(π) = E
τ∼P ({τ}|π)

GT (2.1.2)

Being able to measure the efficiency of a policy π, the objective of RL algorithms is then
to find the optimal policy π∗ from the set of policy functions that maximize the expected
return:

π∗ = argmax
π

J(π) (2.1.3)

When the function π is a parametric function of parameter θ and noted πθ (for example a
neural network), the objective is then to find the optimal parameter θ∗ such that:

θ∗ = argmax
θ

J(πθ) (2.1.4)

The main challenge in RL is to find algorithms that allow to optimize the policy function of
an agent in a reduced computation time. There are two groups of algorithms, model-based
RL algorithms, and model-free RL algorithms.

The model-based RL algorithms [73, 31, 30, 69, 53] focuses on the learning of functions
allowing to estimate the dynamics function P and the reward function R. Indeed, having

24

an accurate estimation of these functions would allow the agent to predict the effect of its
actions and to select actions that maximize the predicted rewards.

The model-free RL algorithms [11, 68, 49, 35] rely on the estimation of the gain value
associated to each action and event based on previous experiences and previous gains.

2.1.4. Policy gradient methods

Consider a differentiable policy function πθ to be optimized to maximize J(πθ). A well-
known approach to optimize θ consists in applying iterations of the gradient ascent [93]
method: θk+1 ← θk + α∇θJ(πθ) where ∇θJ(πθ) is the gradient vector of J(πθ) w.r.t. to θ.
The challenge of this method lies on the calculation process of ∇θJ(πθ). We know that:

J(πθ) = E
τ∼P ({τ}|θ)

GT (2.1.5)

=
∫

τ∼P ({τ}|θ)
P (τ |θ)GT dτ (2.1.6)

∇θJ(πθ) =
∫

τ∼P ({τ}|θ)
∇θP (τ |θ)GT dτ (2.1.7)

=
∫

τ∼P ({τ}|θ)
P (τ |θ)∇θ log P (τ |θ)GT dτ (2.1.8)

= E
τ∼P ({τ}|θ)

[∇θ log P (τ |θ)GT] (2.1.9)

Moreover, consider a trajectory τ = (s0, a0, . . . , sT , aT) realized by the policy πθ, we have:

P (τ |θ) = P (s0, a0, . . . , sT |θ) (2.1.10)

= P (s0)×
T −1∏
t=0

πθ(at|st)P(st+1|st, at)× πθ(aT |sT) (2.1.11)

log P (τ |θ) = log P (s0) +
T∑

t=0
log πθ(at|st) +

T −1∑
t=0

logP(st+1|st, at) (2.1.12)

∇θ log P (τ |θ) =
T∑

t=0
∇θ log πθ(at|st) (2.1.13)

Finally,

∇θJ(πθ) = E
τ∼P ({τ}|θ)

[(
T∑

t=0
∇θ log πθ(at|st)

)
GT

]
(2.1.14)

The result of Equation 2.1.14 allows in practice to evaluate ∇θJ(πθ) using an estimation
over a batch of trajectories. The REINFORCE algorithm thus proposes a simple iteration
scheme:

(1) Collect N trajectories using the current policy πθk
;

25

(2) Estimate ∇θJ(πθ) on the N trajectories by ∇θĴ(πθ);
(3) Update θ with θk+1 ← θk + α∇θĴ(πθ).

Estimation ∇θĴ(πθ) is given by:

∇θĴ(πθ) = 1
N

N∑
n=1

Gn,T

(
T∑

t=0
∇θ log πθk

(an,t|sn,t)
)

(2.1.15)

This algorithm allows to optimize a parametric and differentiable policy function in order to
approximate the optimal policy of the task. Nevertheless, it raises a problem. In Equation
2.1.14, the term T acts as a weight on ∑T

t=0∇θ log πθ(at|st). In practice, when we collect N

trajectories for an iteration, the gradient will be much more influenced by the trajectories
with high returns than by the others.

This situation is not desirable because we would like each step to have a considerable weight
in the gradient, as the agent must be able to learn step-by-step and not episode-by-episode.
Indeed, some steps could have a large amount of information to provide but will then be
shaded by the fact that its episode return is low. To remedy this, ∇θĴ(πθ) is rewritten by
weighing the steps and not the whole episode:

∇θĴ(πθ) = 1
NT

N∑
n=1

T −1∑
t=0
∇θ log πθk

(an,t|sn,t)rn,t+1 ≈ E
τ∼P ({τ}|θ)

[∇θ log πθ(at|st)rt+1] (2.1.16)

Rewriting ∇θĴ(πθ) in the form of Equation 2.1.16 allows in practice to process the agent’s
steps without taking into account the order in their original episodes. Moreover, the steps
influence independently the gradient according to the importance of the obtained reward.
This ability allows the agent to learn from its mistakes on any episode even when it obtains
a low return. Although the use of rewards rt offers better robustness in the estimation of
∇θJ(πθ) it nevertheless causes concern about stability. This parameter does not allow the
agent to anticipate the repercussions of its actions in the future. Indeed, when the agent
selects an action, it first tries to maximize the total return of the episode from the current
time. Weighting using only rt encourages the agent to choose the action that maximizes
the reward after one step, which limits its ability to anticipate the future rewards it might
obtain. To correct this, a method widely used in practice consists in weighting the terms
log πθ(at|st) by δt,p = ∑p

i=1 γi−1rt+i with γ ∈ [0, 1] and p the number of steps in the future.
This method has been introduced by the family of algorithms TD(λ)[74]. The reason for
this value is to inform the agent of the importance of its action in future steps. Using δt,p

allows the agent to select actions that maximize the return from step t, which allows it to see
that actions can have an optimal effect in the future but not in the present. The parameter
γ is called discount factor and is a hyper-parameter of the system that configures the agent’s
level of anticipation. Let us consider this time that the episodes generated by the policy

26

πθ are concatenated: (s0,0, a0,0, . . . , s0,T , a0,T , . . . , sN,0, aN,0, . . . , sN,T , aN,T) and let us use the
notation t̄ to denote the absolute index of a step (sn,t, an,t) in this sequence of concatenated
trajectories. The new estimate of ∇θJ(πθ) on N steps of the sequence is then:

∇θĴ(πθ) = 1
N

N∑
n=1
∇θ log πθk

(at̄n
|st̄n

)δt̄n,p (2.1.17)

The policy gradient methods [76, 68, 86] essentially rely on estimating the gradient of the
expected return. We note that in all variations of these methods, it is necessary to collect
a set of steps at each iteration that will be used to estimate the new gradient. In order
to guarantee the convergence of the method, this collection of steps must always be done
using the current policy. This necessity poses a problem because after using these steps they
become useless. This way of using the data is called online setting, because the data used
are continuously controlled by the algorithm, and the data coming from other distributions
are not exploitable. Another group of algorithms avoids this problem and are called offline
RL algorithms. These are mainly the Q-learning methods.

2.1.5. Q-learning and Deep Q-networks

Let us consider a policy function π executed by an agent in an MDP. Let s ∈ S be a state
of this process, let us define the function Vπ : S → R such that:

Vπ(s) = E
P (st,at,...,sT ,aT |π,st=s)

[
T∑

i=1
γi−1rt+i

]
(2.1.18)

Vπ is called the value function associated with π and computes the expected discounted
return of the agent from a state s. Let us also define Qπ : S ×A → R such that:

Qπ(s, a) = E
P (st,at,...,sT ,aT |π,st=s,at=a)

[
T∑

i=1
γi−1rt+i

]
(2.1.19)

Qπ(s, a) is called the q-value function and computes the expected discounted return of the
agent from a state s and choosing the action a. The introduction of these two functions
allows us to define a new approach of calculating the optimal policy π∗. Consider Q∗ = Qπ∗

the q-value function associated to the optimal policy π∗, we have:

Q∗(s,a) = max
π

Qπ(s, a) (2.1.20)

Moreover, it is also shown that π∗(s) = max
a∈A

Q∗(s,a) [75], so finding the optimal q-value Q∗

would recover π∗. Let Qπ be a q-value function and Vπ a value function associated to a

27

policy π in the set of policy functions. Consider the following equations:

Qπ(s,a) =
∑
s′∈S

P(s′|s, a)[R(s,a) + γmax
a′∈A

Qπ(s′, a′)] (2.1.21)

Vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

P(s′|s, a)[R(s,a) + γVπ(s′)] (2.1.22)

Equations 2.1.21 and 2.1.22 are called Bellman equations [7] and it is shown that (Q∗, V ∗)
is the unique solution of these equations [75, 61]. Knowing that it is possible to define π∗ as
a function of Q∗, the problem is reduced to finding an estimate of Q∗, this approach is called
Q-learning. Several Q-learning algorithms exist to estimate the optimal q-value function of
an MDP. When the sets S and A are finite sets, the simplest method consists in maintaining
a two-dimensional table, where the indices are the couples (s, a) ∈ S × A and the values
are estimates of Q∗(s, a). After initialization of the table Q = Q0, the algorithm loops on 3
operations until the convergence of the table:

(1) Generate one step (st, at, rt+1, st+1);
(2) Calculate the target value of the q-value function y = rt+1 + γmax

a∈A
Qk(st+1, a);

(3) Update the table Qk+1(st,at)← (1− α)Qk(st, at) + αy.

Iteration stops when max
(s,a)

(|Qk+1(s,a)−Qk(s,a)|) ≤ ϵ, and the estimate of the optimal policy
is π : π(s) = argmax

a∈A
Q(s, a). When the set of S states is a continuous space, [63, 50]

proposes the method called Deep Q-Networks (DQN) which consists in using a parametric
and differentiable q-value function Qθ which returns a vector with |A| components where
each component represents the q-value of the couple (s, a) for a given state s ∈ S. In this
configuration, we introduce the q-value loss function objective to minimize LDQN(θ), defined
by:

LDQN(θ) = 1
2 ||Qθ(st,at)− yθ||2 = 1

2 ||Qθ(st,at)− (rt+1 + γmax
a∈A

Qθ(st+1, a))||2 (2.1.23)

Parameter θk is updated at each iteration via the instruction:

θk+1 = θk − α∇θLDQN(θk) (2.1.24)

Moreover, we introduce a memory D called Replay memory or Replay buffer in which are
saved the steps (st, at, rt+1, st+1) generated by the agent. From this set are extracted samples
in the form of batches which allow us to evaluate LDQN(θ) and to update θk. This algorithm,
being an offline RL algorithm, offers the possibility to train the agent with steps generated
a long time ago. The main objective here is to train a precise q-value function. In order to
improve the stability of this algorithm, the approach proposed by [51] consists in introducing
a second q-value function Qθ̄ to compute the target value yθ̄ = rt+1 + γmax

a∈A
Qθ̄(st+1, a). The

use of Qθ̄ to compute the target value has the effect of limiting the variation of the target value

28

distribution and thus of limiting the instability of the ∇θLDQN. Moreover, the parameter θ̄

is updated regularly with a frequency lower than that of θk by the instruction θ̄ ← θk or by
an exponential moving average θ̄ ← ρθ̄ + (1− ρ)θk.

It is also possible to combine the TD(λ) [72] approach with the DQN algorithm in order to
estimate the target yθ̄ on several steps. Indeed, the current method consists in estimating yθ̄

on the reward value following the current step, but the approach called multi-step Q-learning
consists in defining the multi-step target yθ̄,p by:

yθ̄,p =
p∑

i=1
γi−1rt+i + γpmax

a∈A
Qθ̄(st+p, a) (2.1.25)

A fundamental problem with the DQN algorithm and its variations is the term
max
a∈A

Qθ̄(st+1, a) used to evaluate the target value in Equation 2.1.25. This term has
the effect of overestimating the q-value, which in practice is considerably different from the
q-value associated with the current policy function. Thus, in order to limit this effect, the
approach Double Deep Q-Networks [83] (DDQN) proposes to replace the target value by:

yθ̄,θk,p =
p∑

i=1
γi−1rt+i + γpQθ̄(st+1, argmax

a∈A
Qθk

(st+p,a)) (2.1.26)

The interest here is to evaluate the target value using the policy function πθk
(s) =

argmax
a∈A

Qθk
(s), which is optimal for the q-value function Qθk

.

The DQN and DDQN approaches are still limited by the fact that the set A is finite. We
saw in section 2.1.4 that it was possible to parameterize the policy function π and to use
it in continuous spaces. The intuition is then to combine the DQN and policy gradient
methods in order to eliminate the need to work with a finite set of actions. The Actor-Critic
algorithms propose a solution to this limitation, and a method to optimize simultaneously a
differentiable policy function and q-value function.

2.1.6. Deep Deterministic Policy Gradient

The necessity to have a finite set of actions by the DQN and DDQN poses a problem knowing
the actions that our agent can emit could be defined in a continuous space. This difficulty
is precisely manifested by the term argmax

a∈A
Qθk

(s,a) in the expression of the DDQN target

value defined in Equation 2.1.26. Deep Deterministic Policy Gradient (DDPG) approach [46]
proposes a combination of a policy gradient and a q-learning method to train respectively a
parametric policy function called Actor and denoted πϕ and a parametric q-value function
called Critic and denoted Qθ. Qθ is trained to approximate the q-value of any pair (s, a)

29

with respect to the policy πϕ, then to minimize the objective loss function Lcritic defined by:

Lcritic(θ) = E
(st,at,rt+1:t+p,st+p)∈D

||Qθ(st, at)−
p∑

i=1
γi−1rt+i + γpQθ̄(st+p, πϕ(st+p))||2 (2.1.27)

πϕ is trained to return the action which maximizes Qθ(s, ·),∀s ∈ S, which means to minimize
the objective loss function Lactor defined by:

Lactor(ϕ) = − E
s∈S,a∼πϕ(A|s))

Qθ(s, a) (2.1.28)

DDPG is an offline algorithm because of the samples (st, at, rt+1:t+p, st+p) coming from the
replay memory D. We notice in this algorithm that it is possible to use a policy function
totally different from πϕ to generate the steps. This technique is called off-policy and allows
to optimize the main policy πϕ called target policy, with the help of a second policy func-
tion called behavior policy, and noted b, which is in charge of generating the steps. Using b

instead of πϕ during the training allows promoting the exploration of the environment and
the diversity of trajectories in the replay memory D. The more diverse D contains trajec-
tories, the more understanding the model has of the system rules and the more accurate
Qθ is. However, if b focuses too much on exploration, D will not contain enough successful
trajectories and the models will not be able to recognize states that lead to success. The
conception of b must therefore take into account this trade-off called exploration-exploitation
trade-off [75]. There are several techniques to define the behavior policy b, but one of the
most common is to add a noise of decreasing amplitude to the actions returned by π:

b(s) = a ∼ N (π(s),ϵn); lim
n→+∞

ϵn → 0 (2.1.29)

with n being the number of training iterations.

DDPG algorithm is one of many other approaches [53, 49, 68] to train agents for continuous
control tasks with states and actions defined in continuous spaces. The results obtained with
this algorithm allow us to deepen the difficulties and explore the cases where this method
can be applied. One of the most studied cases to date (and the one that interests us in this
work) is the resolution of tasks using only pixel-based visual observations of the environment
as inputs. The possibility of solving tasks relying only on visuals is an ultimate goal of RL.
In addition to getting as close as possible to the condition in which humans train to perform
tasks, this configuration allows to make the process of observation acquisition realistic. In
real situations, an agent is more likely to have a raw visual observation of its environment
than a feature-based description of it. For this type of environment, in each process, the
agent’s observations ot are raw images of the scene observed by the agent. [88] proposes the
DrQ-v2 algorithm, which is a DDPG-based method that uses raw visual observations of the
environment as input data of the agent’s policy and applies image augmentation techniques

30

ξ

ɸ θ

θ

Fig. 2.2. Schema of inference of the algorithm DrQ-v2 [88].

on observations to improve the robustness of the policy and value functions. As illustrated at
the Figure 2.2, DrQ-v2 simultaneously trains an image encoder function fξ, a policy function
πϕ and two twin q-value functions Qθ1 and Qθ2 :

- fξ encodes the q last observations ot−q+1:t of the agent during each step t and returns
a low-dimensional encoding et.

- πϕ is the trained target policy and takes as input an observation encoding et.
- Qθ1 and Qθ2 are two q-value functions trained with the loss function Lcritic [25]. The

final q-value of a pair (e,a) is min(Qtheta1(e,a), Qtheta2(e,a)).

This algorithm relies on the use of a stack of recent observations (ot−q+1, . . . , ot) at each
time t. This choice allows the agent to measure physical quantities, such as speed and
acceleration, that can influence the choice of actions. Moreover, this algorithm proposes the
use of data augmentation methods on the observation images received by the image encoder
in order to improve the representation of the images in low-dimensional vectors. We present
the pseudo-code of DrQ-v2 to the Algorithm 1.

2.2. Imitation learning

Learning autonomous agents in the context of an MDP has shown convincing performances
and results are constantly evolving. However, it remains in this configuration some conditions
to be respected which are rather strong and difficult to adapt in real situations. Among the
constitutive components of an MDP, we have the reward function which provides a signal
that indicates to the agent the positive impact of its actions. When learning an agent in
an RL algorithm, the reward function is supposed to be acquired but in practice, it is not
always possible to have a positive or negative signal function that perfectly describes the
effectiveness of each action issued by the agent. In some tasks, it is possible to know what
the final states look like but not exactly the optimal paths to reach them. We can also find
ourselves in a situation where we know how to start the task but the design of the reward
function reflecting the method is difficult. All these situations lead us to conclude that in

31

Algorithm 1: DrQ-v2
Initialize D = {} // Replay memory
Initialize Qθ1 , Qθ2 // Q-value functions
Initialize πϕ // Policy function
Initialize fξ // Image encoding function
while step ≤ Nπ do

o0 ←env.reset()
for t ∈ 0, . . . , T − 1 do

at ←πϕ(fξ(ot−q+1:t)) + ϵstep
ot+1 ←env.step(at)
rt+1 ←R(ot, at)
Save (ot, at, ot+1, rt+1) into D
if step mod Nupdate = 0 then

(oi−q+1:i, ai, oi−q+1+p:i+p, ri+1:i+p) ←sample(D)
ei ←fξ(aug(oi−q+1:i))
ei+p ←fξ(aug(oi−q+1+p:i+p))
ai+p ←πϕ(ei+p) + ϵstep
target ←∑p

j=1 γj−1ri+j + γp min(Qθ̄1(ei+p, ai+p), Qθ̄2(ei+p, ai+p))
Lcritic ←|| Qθ1(ei, ai)− target||2 + ||Qθ2(ei, ai)− target||2
Optimize θ1, θ2, ξ with ∇Lcritic

âi ←πϕ(ei) + ϵstep
Lactor ← -min(Qθ1(ei, âi), Qθ2(ei, âi))
Optimize ϕ with ∇Lactor

Update θ̄1, θ̄2 with θ1, θ2 using exponential moving average
end

end
end

some conditions the necessity of a reward function is a very strong condition. However,
let us consider the fact that we have at our disposal an agent capable of performing the
task, without having access to the policy function describing its behavior. This situation
is perfectly plausible because, for most tasks, it is the existence of a demonstration that
allows us to conclude that the task is feasible. Imitation learning (IL) [38, 67, 65, 11]
studies the problem of training an agent by imitating the behavior of an expert agent. In
this problem, the expert is an agent able to perform the task as many times as desired,
but whose action-decision policy is impossible to have. In the IL paradigm, we assume that
the information accessible from the expert is its observations ot (or states st in case of fully
observable MDP) and a description of its actions at chosen at each step t. Thus, for each
episode of the expert, we have access to its trajectory τe = (s0, a0, . . . , sT , aT) also called
demonstration. Let us note by πe the unknown policy of the expert. Knowing that we do
not have a reward function, the objective of the IL algorithms is to train the agent policy π

using the distribution of expert’s demonstrations τe ∼ P (s0, a0, . . . , sT , aT |πe).

32

2.2.1. Behavioral cloning

Bevioral cloning [65, 11] is an IL approach which learns a policy function by cloning the
decision process of an expert. The learned policy π : S → A is a mapping function trained
by supervised learning on the pairs (st, at) generated by the expert. During training, the
agent learns the mapping process between state and action adopted by the expert and
generalizes to new states. To train an autonomous car, [11] proposes a method of acquiring
expert’s steps that consists in placing cameras at the front of the car (to obtain a visual
of the driver’s observation) and sensors measuring the oration of the steering wheel at each
instant. The trained policy function is then a CNN translating the raw images into steering
wheel orientation inputs. This method has the advantage of exploiting the methodology
of supervised learning which simplifies the problem and leaves a variety of choices on the
algorithm to use.

2.2.2. Inverse reinforcement learning

Inverse reinforcement learning (IRL) [1, 45, 55] proposes to rebuild a reward function that
appropriately rewards the agent as it progresses through the task. Once this function is
reconstructed, it is used to train the agent to perform the task using an IRL algorithm. The
main challenge of this approach is to deduce this function using the demonstrations provided
by the expert. [1] proposes an IRL method based on the approximation of a parametric
function to an optimal reward function of the expert policy. Indeed, let us consider an
expert policy function πe and a target reward function Re such that πe maximizes JRe :

JR(π) = E
τ∼P ({τ}|π)

∑
t

γtR(st,at) (2.2.1)

The objective of this method is to approximate simultaneously πe and Re by respectively
a policy π and a reward function R. We assume to have a feature extractor function f :
S → [0, 1]k which from a state s extracts the only features allowing to measure a reward.
These features are normalized on [0, 1]. We also assume that the explored reward functions
R are limited to functions R : S → [0, 1] associated to a parameter ω ∈ Rk , ||ω||1 ≤ 1, such
that R(s) = ω · f(s). Here, the reward functions are parametric and take as input only the
current state of the system and return a reward in [0, 1]. This configuration of the problem
allows us to rewrite JR of Equation 2.2.1 by Jω:

33

Jω(π) = E
τ∼P ({τ}|π)

∑
t

γtω · f(st) (2.2.2)

= ω · E
τ∼P ({τ}|π)

∑
t

γtf(st) (2.2.3)

= ω · µ(π) (2.2.4)

µ(π) = E
τ∼P ({τ}|π)

∑
t

γtf(st) (2.2.5)

µ(π) is called feature expectations. Our objective is then to minimize ||µ(πe)− µ(π)||.

Let us consider an RL algorithm that allows us to find (or estimate) the optimal policy
function of an MDP defined by a reward function Rω (for example via a DQN or a Policy
gradient algorithm seen in Section 2.1.4). Let us note by L : {ω} → {π}, the operator which
associates to each ω the optimal policy function associated to Rω by the RL algorithm. Thus,
we look for ω and π such that:

ω = argmin
ω
||µ(πe)− µ(L(ω))|| (2.2.6)

π = L(ω) (2.2.7)

To obtain optimal ω and π, [1] in their algorithm, computes in a loop these two values
through Equations 2.2.6 and 2.2.7 until the convergence of π. This algorithm inspires other
methods to train IL agents with fewer constraints related to assumptions.

2.3. Imitation from observation with learned reward
function

Imitation learning is a problem in which we want to train an agent to perform a task using the
demonstrations of an expert performing the same task. The particularity of this problem is
that we have (or we are able to have) a set of demonstrations or trajectories Oe of the expert
containing at each step the state of the expert, and the action performed by the expert:
Oe = (s1, a1, s2, a2, ..., sT , aT). The second particularity in this configuration is that we do
not have a reward function to help reward the agent’s actions. The agent will have to learn to
catch the expert’s behavior using its distribution of trajectories O ∼ p({Oe}). In Imitation
from Observation problems, the agent no longer has access to the actions performed by the
expert in its trajectories. The reward engineering approach consists of exploiting a manually
designed or trained reward function that will help to reward the agent. Although the pretext
task motivating the learning of the reward function differs, one of the most popular practices
consists in evaluating at each step t the distance d(s1:t, se,1:t) between the agent’s trajectory
and the expert’s one [71, 47, 9]. The agent is then rewarded by rt = −d(s1:t, se,1:t). The

34

intuition behind this practice is to require the agent to follow a state path close to the
expert’s (predicted) state. We use this approach in our work.

2.4. Representation learning

2.4.1. Image representation with contrastive learning on multiple
views

A key problem when learning high-dimensional data, such as images, is the representation of
these data in low-dimensional vectors encoding the amount of information needed to identify
the idea transcribed by the data. In a supervised classification of images with a CNN, this
problem is easily solved by the fact that the CNN identifies more easily features that match
the same label. However, in many cases, including ours, the images have neither labels nor
descriptions. Self-supervised learning is a method for learning unlabeled data that relies on
identifying pseudo-classes or sub-distributions appearing in the unlabeled dataset in order
to represent samples in a target feature vector space.

Among the different algorithms of self-supervised learning of images [10, 14, 23], con-
trastive learning methods [57, 90] using views of images have allowed obtaining surprising
performances in recent advances. Let us consider a dataset D = {oi}1≤i≤N of images or
observations on which we want to learn an image encoder function gθ. Contrastive Multi-
view Coding (CMC) [78] is a contrastive learning method whose principle is to transform
each image o ∼ p(D) into M views (v1, v2, ..., vM) using a transformation that preserves
the semantics of the image. Consider an image o, these views (v1, v2, ..., vM) can be lumi-
nosity variations, patches, luminance and chrominance components. In the case of videos,
a view of a video frame can be one of the closest frames of this frame. CMC objective
is to train M encoding functions {gθi

}1≤i≤M for each view type to return similar encod-
ings. In this work, we will focus on the case M = 2, but [78] generalizes this method to
M ≥ 2 views. {gθi

}1≤i≤M are neural networks and are trained on pairs of views. We can
write D = {oi}1≤i≤N = {(vi

1, vi
2)}1≤i≤N , and we consider the distributions x ∼ p({vi

1, vi
2}) of

positive pairs and y ∼ p({vi
1, vj

2}i ̸=j) of negative pairs. Consider hi
k = gk(vi

k), the learning
objective is then to minimize the contrastive loss function L1,2

S given by:

L1,2
S = − E

(h0
1,h0

2,h1
2,...,hn

2)

log sim(h0
1, h0

2))
sim(h0

1, h0
2) + ∑

1≤i≤n
sim(h0

1, hi
2)

 (2.4.1)

where sim(a,b) = exp(aT b
τ∥a∥∥b∥) and τ is the temperature parameter that controls the value

interval of the similarity coefficient. We illustrate the generation of positive and negative

35

v0
1

v0
2

v1
2

vn
2

o0

g𝜃1
g𝜃2

g𝜃2
g𝜃2

h0
1

h0
2

. . .

h1
2

hn
2

positive
negative

negative

L ab ab abRGB

Fig. 2.3. Principle of view generation and creation of positive pairs and negative pairs. n
RGB images are collected and translated into the Lab color space. For each image oi, the
view vi

1 is the L component of oi in the Lab space, and the view vi
2 is the ab component of

oi in the Lab space. A positive pair is a pair of view encodings from the same image. A
negative pair is a pair of view encodings from two different images.

pairs in Figure 2.3. When we switch the position of the views 1 and 2, we obtain a new loss
function L2,1

S . We can the generalize the contrastive loss function to LS by:

LS(θ) = L1,2
S (θ) + L2,1

S (θ) (2.4.2)

The final encoding s of an image o is given by s = gθ(o) = [gθ1(v1), gθ2(v2)]. In this work, we
consider the color space transformation {R, G, B} → {L, ab} [17] where the component L is
the view 1 the component ab is the view 2.

2.4.2. Video representation with next-frame prediction

Learning to represent a sequence of frames [28, 32] is also a crucial task in this work and
for this, we need to introduce the Dense Predictive Coding (DPC) algorithm [32] from
which our algorithm for encoding agent trajectories is inspired. DPC proposes the pretext
task of predicting the next frame using the sequence of previous frames as input. Let us
consider a dataset of videos D = {Oi}1≤i≤N = {oi

0:T}1≤i≤N . Let us define gθ as the image
encoding function that represents each frame in an image encoding space and fω as the
sequence encoder function which represents each sequence of image encodings in a trajectory
encoding space. We, therefore, need to introduce a function dϕ which, from a trajectory
encoding zt of a sequence s0:t, predicts the next image encoding ŝt+1 of that sequence. The
prediction ŝt+1 is then used to predict the next image encoding ŝt+2:

ŝt+1 = dϕ(zt) = dϕ(fω(s1, ..., st)) (2.4.3)

ŝt+2 = dϕ(zt+1) = dϕ(fω(s1, ..., st, ŝt+1)) (2.4.4)

This operation is done K times, where K is a parameter representing the length of the
future. [32] generalizes this method to a spatio-temporal information encoding where each
image encoding is a tuple of encodings of different regions of the frame. In this work, we

36

only explore the case where the image encoding is the representation of the entire image, but
we believe that the original method could contribute to better performance. The learning
objective is to minimize the loss function LZ given by:

LZ(θ, ω, ϕ) = − E
o0:T

 1
K

∑
1≤k≤K

Lt+k

 (2.4.5)

Lt = log sim(ŝt, st)
sim(ŝt, st) + ∑

t′ ̸=t
sim(ŝt, st′) (2.4.6)

Indeed, the loss function is also a contrastive loss function where the positive pairs are the
pairs (ŝt, st) and the negative pairs are the pairs (ŝt, st′)t̸=t′ in a same video.

37

Chapter 3

Related work

Imitation from Observation is a sub-domain of Machine Learning that has been extensively
studied in several papers and different techniques have emerged and demonstrated optimistic
performances on a set of control continuous tasks. In this chapter, we present the main
methods that have emerged, and the motivations behind these methods.

3.1. Imitation from observation

Imitation from observation problem originates from Imitation Learning (IL) problem [38,
67, 65, 11] which consists in training an agent using state-action demonstrations. In IL
configuration, the demonstrations provided to the agent also contain the actions performed
by the expert. A known method to solve this type of problem is the Behavioral Cloning (BC)
[60, 11, 65], which consists in training a policy function to copy the decision process of the
expert represented in the demonstrations. This function is a mapping function from the set
of states of the system to the set of possible actions. The policy function is trained using
supervised learning algorithms on the expert’s demonstration dataset. During the test phase,
the policy function is experimented on unencountered states. The supervised learning and a
large amount of data favor the generalization to these new states. This approach is notably
used by [11] for the learning of an autonomous car with the help of visual observations
coming from several cameras on the car and of the different movements of the driver. The
policy function is a CNN taking as input all the images from the different cameras.

Another IL approach consists in searching and building a reward function from the state-
action sequences provided as a demonstration, it is the Inverse Reinforcement Learning
approach [1, 45, 55]. This approach learns a function that efficiently evaluates each state-
action pair provided by the agent at each step. The particularity of this approach compared
to BC is that the properties of the MDP are exploited and any classical RL algorithm can

be used to train the agent with the learned reward function. [1] proposes in particular an
algorithm that simultaneously trains a reward function and a policy function. The trained
reward function is a differentiable parametric function that is optimized to approximate the
supposed initial reward function that the policy expert tries to maximize intuitively. The
imitation policy is trained to maximize the learned reward function at each update of this
function using a classical RL algorithm. This method remains computationally expensive
because each time the reward function is updated, a new optimal policy is learned. An IL
method proposed to correct this computational cost using a GAN architecture [27].

Generative Adversarial Imitation Learning (GAIL) [36] proposes an adversarial learning
method where the agent is a trajectory generator associated with a discriminator function
evaluating how similar the agent’s state transitions are to the transitions performed by the
expert. The imitation policy is trained to produce transitions similar to the expert’s and
the discriminator function is trained to differentiate the expert’s state transition (real data)
from the agent’s state transitions (fake data).

Although the Imitation Learning paradigm allows to train agents on tasks that do not have
manually designed reward functions, this configuration of the problem remains quite far from
the situation in which humans exploit their ability to imitate experts. The main problem
here is the need to have the expert’s actions in addition to the observations. This information
greatly limits the type of data that can be exploited for learning, especially when only videos
are available. We have at our disposal, through the internet, an incomparable set of videos
of people performing various tasks. It is essential to find a way to make this data useful by
getting rid of the need to have a vector description of the actions associated to each event.

Imitation from observation simplifies the configuration of Imitation learning by imposing
the exploitation of state-only expert demonstrations. The initial dataset does not contain
any information about the actions performed by the expert and it is impossible to access
this information through the expert policy. The agent only has access to observations of
the environment, and in the case of visual observations, the demonstrations are videos.
Depending on the problem, they can be first-person-view demonstrations or third-person-
view demonstrations. Similarly to IRL, one of the approaches to train agents with expert
demonstrations is to learn a reward function. We distinguish two groups of approaches, the
group of adversarial approaches and the group of reward learning approaches. Adversarial
approaches [80, 81], consist in using a GAN-like architecture to train the agent (generator)
and a discriminator function simultaneously. These approaches use the same logic of GAIL
[36]. The discriminator function estimates the probability that the state transitions come
from the learning agent. Similarly, the learning agent trains itself to fool the discriminator.
The probability returned by the discriminator constitutes the agent’s reward. [81] proposes
a variation of this approach which consists in evaluating not a two-step state transition

39

but a transition on several steps. This variation is motivated by the objective of providing
additional information on the expert’s behavior through a small sequence of states. Reward
learning methods [40, 47, 12] consist in searching for a consistent reward function for
training the agent from the expert’s demonstrations. One of these methods is [47] where the
authors propose a method for learning a context translation function which, from the initial
state of the system, predicts the sequence of next states of the system when the agent will act
as an expert. The context translation function takes as input a random demonstration of an
expert (the first episode), and the initial state of the system of another episode (the second
episode). This function is trained to predict the sequence of next states of the second episode
using the first episode and the initial state of the second episode. The objective is to imagine
the future states in the second episode if the expert would execute this episode. Once this
function is learned, it is then used to reward the learning agent at each new episode. At
each step, the agent receives a reward measuring how close it is to the state imagined by
the context translation function. Despite the ingenuity of this method, we notice through
experiments that the context translation model tends to be imprecise on the intermediate
states of the imagined state sequence, yet the intermediate states are used to lead the agent
towards the final state.

With the same objective of learning a reward function, [12] proposes an approach similar
to Generative Adversarial Imitation from Observation [80] which consists in rewarding the
agent at each step according to the probability that the state transition is that of an expert.
The method focuses on the estimation of this probability function and the training is done
only on the expert’s state sequence. Unlike GAIfO, there is no adversarial learning, once
the probability function is trained, it is used to reward the agent in a second phase using
a classical RL algorithm. The main difficulty of this approach is to estimate probabilities
for transition states that do not belong to the distribution of expert states on which the
probability function has been trained. To fix this issue, [12] proposes to add noise to the
states in order to generalize the model to different state distributions and finally to limit
the covariate shift problem [64] and to favor the out-of-distribution generalization [54, 42].
Another approach called ViRL [9] proposes to train the learning agent by directly imitating
the behavior of an expert in a parallel environment. ViRL configures two environments with
similar action properties but with different contexts and physical properties. The goal is to
train an agent by observing an expert acting simultaneously in a different universe. ViRL uses
a Siamese neural network that encodes the visual demonstration of the agent and the expert.
The demonstration encodings of the agent and the expert are evaluated using a triplet loss
function. In order to improve the generalization of the sequence encoding functions, ViRL
applies augmentation processes on the videos. This video augmentation process allows to
generate different positive pairs for the triplet loss function. When the demonstrations are

40

sequences of high-dimensional visual data, the question of the representation of the visual
data in a low-dimensional feature space arises. Using image encodings allows to perform
operations and comparisons on vectors encoding the most important features describing
each image, and makes possible transfer learning [58] to many sub-tasks. In supervised
classification, the existence of labels assigned to each image makes it possible to represent
images as feature vectors via the correspondence between the distribution of vectors and
the target label. However, for the case of visual frames from the demonstrations, we do
not generally have labels associated to each frame. Moreover, assigning labels manually to
each frame is a tedious and arduous task. This problem is notably the main subject of self-
supervised learning which is a branch of machine learning that focuses on the learning and
representation of unlabeled data.

3.2. Self-supervised learning of unlabeled data

In recent years, particular attention has been devoted to the self-supervised problem, because
of the flexibility it offers in the exploitation of image and video datasets. Indeed, self-
supervised learning focuses on the learning and representation of unlabeled data and several
methods have been developed for this problem. The first group of methods is based on the
resolution of a surrogate problem [2, 10, 85, 20] instead of the well-known classification or
detection problems. In general, it consists in creating a pretext task from the initial dataset.
The success of this pretext task is measured using an objective loss function defined on the
unlabeled dataset. As an example, we can take the case of [92] which defines a grayscale
image colorization task. Considering a dataset of colored images, [92] generates a dataset of
grayscale versions of the images, and learns a CNN to generate the initial image with color.

Similarly, [56] proposes the pretext task of solving a puzzle by ordering different patches
extracted from an image. A second group of approaches for this problem is the famous
group of Contrastive learning approaches: [78, 87, 15, 33]. Considering a set of data with
two (or more) samples belonging to the same distribution and others belonging to different
distributions, Contrastive learning approach consists in training a model to identify the pair
of samples from the same distribution (positive pair) among all the other possible pairs
(negative pairs) by minimizing the probability that the negative pairs’ items are from the
same distribution [29, 24]. An example of this approach is SimCLR [14] which introduces a
representation model from different augmented views of the images. [14] shows that image
augmentation has a positive effect on the representation of images when properly combined
with a contrastive loss function. For each image in the dataset, the images are randomly
augmented using a stochastic augmentation function, and the augmented versions of the

41

images constitute positive pairs. A feature extraction function is then trained to extract
similar features for each item of the positive pairs.

Adversarial approaches [22, 23] are also another group of self-supervised learning that exploit
the GAN model [27] but by adding an encoder model. In the initial architecture of a GAN,
we have a generator model which from a noise distribution generates data belonging to a
precise target distribution. This generator model is trained adversarially with a discriminator
model that estimates the probability that the generated data are fake or real. Bidirectional
GAN (BiGAN) [22] proposes a modification of this model by adding an encoder model that
generates noise vectors from real data. The learning objective is then to distinguish pairs of
real noises and fake data from pairs of fake noises and real data. [22] shows that at the end
of the training, the generator model and the encoder model form a stable data auto-encoder.

Another group of approaches exploits recent advances in language models and word embed-
dings [8, 48] as well as Recurrent neural networks (RNN) and Attention models [37, 16, 84]
to encode data of other natures than sequential signals. Concerning image data, iGPT [13]
proposes an image encoding model trained to predict missing pixels on images. [13] uses a
GPT-2 decoder model [62] to learn the remaining pixels of a partially-masked image and
finally predict the missing pixels on the image. The image is transformed to a sequence of
pixels (or small patches of pixels) in order to define an auto-regressive and a BERT objective
[19].

Many other self-supervised learning methods have been developed for learning unlabeled
high-dimensional data and the results obtained continue to be convincing. In our work, the
learning and representation of images and videos represent one of the main challenges to
identify agents’ behaviors in demonstrative videos. In the rest of this work, we show how
to exploit these methods to learn a reward function precise enough for the definition of a
Markov decision process and the training of imitation agents.

42

Chapter 4

Method

We have presented recent advances in Reinforcement Learning, as well as the specifics of
Imitation Learning and Imitation from Observation problems. We have also studied some
methods of Self-supervised learning of images and videos. In this chapter, we combine all
these knowledges together to explain and study our Imitation from Observation algorithm,
and we present the different parameters of this algorithm that have an influence on the final
behavior of the agent.

4.1. Overview

We aim to train an agent to perform a task only using a set of videos De of an expert
performing the same task many times. Our proposal is based on the trajectory matching
objective, which consists of training the agent to have a trajectory similar to that of the
expert. In other words, the only information we seek to extract from the expert’s videos
is its behavior. Our algorithm is divided into two phases, an Alignment Phase and an
Interactive Phase. During the Alignment Phase, we learn a sequence encoding function fω,
which encodes sequences of frames of an agent trajectory, and an associated distance metric
between two sequences of two agent trajectories. We also jointly train an image encoding
function gθ. Note that this image encoding function gθ can also be replaced by a pre-trained
encoder. We discuss the impact of this replacement in Chapter 5. In the Alignment Phase, we
only use trajectories coming from two distributions: the distribution of expert’s trajectories
O ∼ p(De), and a distribution of trajectories O ∼ p(Da) generated by a randomly defined
policy function. During the Interactive Phase, we learn the agent policy π using a standard
Reinforcement Learning (RL) algorithm [75]. To obtain the reward we use the learned
distance (trained during the Alignment Phase) between sequence encodings of the expert
and the current agent. Critically, we fine-tune the image and sequence encoding functions
with additional visual observations from our online interactions with the environment. In this

work, we use DrQ-v2 [88] RL algorithm to train the agent policy, π, and its associated q-value
function, Q, though our method is agnostic to the choice of the RL algorithm. Specifically,
in the Interactive Phase at each new episode of the agent, we sample an expert episode
Oe ∼ p(De) that acts as a reference expert policy. At each agent step, t, we evaluate the
distance between o0:t, the agent’s trajectory until the step t, and oe,0:t the expert’s trajectory
until t by d(o0:t, oe,0:t) = ||fω(gθ(o0:t))− fω(gθ(oe,0:t))||. The reward assigned to the agent at
this step is finally rt = −d(o0:t, oe,0:t). The function fω from the Alignment Phase is trained
only on expert trajectories and random trajectories, thus as the policy of the agent improves,
the distribution of agent trajectories will change, making the distances produced inconsistent
due to the shift of the trajectory distribution. In order to fix this in the Interactive Phase,
we continue to update fω and gθ on the new trajectories generated by the agent during the
training of π. In Section 5.8, we discuss the necessity of the Alignment Phase before training
the agent. The full training process is detailed in Algorithm 2.

4.2. Behavioral learning from videos

4.2.1. Image encoding

Let us consider De = {Oi
e}1≤i≤N the set of videos of the expert and Da = {Oi

a}1≤i≤N a set
of videos generated using a random policy function in the environment. We use the datasets
De and Da to train fω and gθ. gθ consists of two ConvNets gθ1 and gθ2 for each of the views
L and ab. We associate to gθ a decoder function qγ which, based on a state s = gθ(o),
returns an estimate of the initial observation ô. gθ and qγ form an auto-encoder architecture.
The image learning objective contains three loss terms: (1) Ltriplet which enforces image
encodings similarity of adjacent frames, (2) Lae which permits the encoding to be decoded
back to an image, and finally (3) we learn a contrastive multiview encoding following[78]
and using LS loss function as explained in Section 2.4.1. The first term Ltriplet compares the
distance between an anchor image o, a positive image op temporally close to the anchor, and
a negative image on distant from the anchor image in the video:

Ltriplet(θ) = ||s− sp||2 + max(ρ− ||s− sn||2, 0) (4.2.1)

where s = gθ(o), sp = gθ(op). This term allows to create a distance between frames from
the same sequence in order to avoid that frames from the same sequence collapse towards
the same encoding vector. In order to ensure consistency and non-degeneracy of the vectors
returned by gθ, we need to make sure that each state vector s can reconstruct the initial
image o. The training objective of the autoencoder is then to minimize the loss function Lae

44

given by:
Lae(θ, γ) = ||o− qγ(gθ(o))||2 (4.2.2)

Finally, we incorporate CMC objective to enrich the visual representations following [78]
and presented in Section 2.4.1. Specifically we consider the color space transformation
{R, G, B} → {L, ab} where the component L is the view 1,v1, processed by gθ1 , and the
component ab is the view 2,v2, processed by gθ2 . The final encoding s of an image o is given
by:

s = gθ(o) = [gθ1(v1), gθ2(v2)] (4.2.3)

Following the formulation [78], we align the different views using a contrastive learning loss
denoted LS. This process is illustrated in Figure 4.1. Overall the objective function to
minimize for the training of the image encoder is Lframe given by:

Lframe(θ, γ) = LS(θ) + Ltriplet(θ) + Lae(θ, γ) (4.2.4)

4.2.2. Sequence encoding

The training of the sequence encoder function fω requires to consider two objectives: the
encoding of the information necessary to predict the next states with the loss function LZ

described in Equation 2.4.5; the separation of the distributions O ∼ p(De) and O ∼ p(Da).
In order bring semantically closer sequences coming from the same distribution, we use
another contrastive loss that applies to the sequence encoding vectors z returned by fω.
Thus for a sequence O belonging to one of the two trajectory distributions, we consider a
positive sequence Op of the same distribution and k negative samples {On,i}1≤i≤k of different
distributions. The objective function to be minimized is LO:

LO(θ, ω) = − E
(O,Op,{On,i})

log sim(z, zp)
sim(z, zp) +∑

i
sim(z, zn,i)

 (4.2.5)

z = fω(gθ(o0), . . . , gθ(oT)) (4.2.6)

The objective function that we seek to minimize to train the sequence encoder function is
Lseq given by:

Lseq(θ, ω, ϕ) = LZ(θ, ω, ϕ) + LO(θ, ω) (4.2.7)

Finally, for a triplet (O,Op,{On,i}1≤i≤k, the frames used to evaluate Lframe come from the
sequences of the sample, which allows us to compute the objective loss function L:

L(θ, γ, ω, ϕ) = Lframe(θ, γ) + Lseq(θ, ω, ϕ) (4.2.8)

The complete evaluation scheme of the functions g, f and p is shown in Figure 4.1.

45

𝜃

𝜃

ω

ɸ ɸ

.

Ɣ

Fig. 4.1. Training architecture of the imitation functions. For each episode, the video is
decomposed in the Lab color space, constituting the L and ab views. Each frame is encoded
by gθ and decoded by qγ. The resulting state sequence s0, ..., st is encoded using the LSTM
fω to provide the sequence encoding zt. zt is then processed by dϕ and fω to predict future
image encodings.

4.3. Training: Imitation from observation

We use DrQ-v2 algorithm [88], a DDPG-based RL algorithm using stack of successive visual
observations as input, to train the agent policy π and its associated q-value function Q

(see Section 2.1.6). At the end of the Alignment phase, the sequence encoding function fω

and the image encoding function gθ are trained on an expert trajectory dataset De, and a
second trajectory dataset Da generated with a randomly defined policy. This training allows
to bootstrap the encoding functions on some trajectory distributions in order to provide
meaningful rewards from the beginning of the Interactive phase. These encoding functions
allow us to define a distance function d which evaluates the similarity between the agent
behaviors present in two sequences of observation:

d(o0:t, oe,0:t) = ||fω(gθ(o0:t))− fω(gθ(oe,0:t))|| (4.3.1)

Just like [9, 47], as illustrated in Figure 4.2, the reward assigned to the agent at step t is
finally rt:

rt = −d(o0:t, oe,0:t) (4.3.2)

This reward function implicitly evaluates whether, for each step, the agent tries to reach the
same goal as the expert despite the difference in context. At each new training episode of the
agent, we sample an exert episode Oe ∼ p(De) that will be used to evaluate the trajectory
of the agent and compute the rewards.

46

z
e,1

z
a,1

z
e,2

z
e,3

z
e,4

z
e,5

z
e,6

z
e,7

z
e,8

z
e,9

z
a,2

z
a,3

z
a,4

z
a,5

z
a,6

z
a,7

z
a,8

z
a,9

r
1
 = - ||z

e,1
- z

a,1
||r

0
 = 0 r

t
 = - ||z

e,t
- z

a,t
||

Fig. 4.2. Principle of agent rewarding. At each step, the agent’s trajectory is encoded by
fω and gθ to produce zt. This operation is also done with an expert video sampled from the
set of expert video at the beginning of the episode. The reward returned to the agent at
time t is the euclidean distance between zt and ze,t.

Note that in our method, we do not penalize the agent when st is distant from se,t as does
[9]. The reason is that the agent and the expert are not forced to have similar observation
encodings, but only sequences that reflect the same goal and intention. Two sequences can
be visually different but encode the same goal.

Note also that the function fω being trained on the distributions O ∼ De and O ∼
P (o0, ..., oT |πrandom), it is not consistent for the other trajectories generated by the policy π

during the evolution of its parameters. To fix this problem, during the Interactive phase, we
train gθ and fω progressively on the new trajectories generated by the agent’s policy π during
the training of its parameters. During our experiments, we found that the frequency and
the number of training step during which the encoding functions are trained has an impact
on the learning of π. During the Interactive phase, the enconding functions are updated
after every Nupdate in order to create some training delay with respect to π and Q (which are
updated at each step). This parameter reduces the over-training of the encoding functions,
and prevents the learned distance function from keeping a large gap between the agent tra-
jectories and the expert trajectories. During this same phase, we stop updating the encoding
functions after Ntrain training steps. After this number of steps, the parameters θ and ω

are frozen and only π and Q continue to be updated with DrQ-v2. Algorithm 2 presents
the steps of the method in pseudo-code. The size of the set Da of agent trajectories is also
limited to a certain number in order to keep the most recent trajectories for the training
phase of the agent and the encoders.

4.4. Encoding-based agent training

As presented in Section 2.1.6, DrQ-v2 [88] proposes a policy function π and a q-value function
Q that share a same image encoding function that we name E (a convolutional neural

47

Algorithm 2: Imitation from observation with bootstrapped contrastive learning
De = {Oi

e}1≤i≤N = {(oi
e,0,o

i
e,1, ..., oi

e,T)}1≤i≤N

Initialize fω, gθ, qγ, dϕ

// Alignment Phase: Training f, g

while k ≤ Npretrain do
{Oi

e}1≤i≤n ← sample(De)
{Oi}1≤i≤n ← πrandom(env)
Eval. L(θ, γ, ω, ϕ) with ({Oi

e}, {Oi})
Optimize θ, γ, ω, ϕ

end
// Interactive Phase: Training π, Q, f, g

Initialize Da = {}
Initialize D = {}, Q, π // Replay buffer, Q-value function, policy
while step ≤ Nπ do

Oe ← sample(De)
o0 ← env.reset()
for t ∈ 0, .., T − 1 do

at ← π(ot)
ot+1 ← env.step(at)
rt+1 ← −||f(o0:t+1)− f(oe,0:t+1)||
Save (ot, at, ot+1, rt+1) into D
(o, a, o′, r)← sample(D)
Using DrQ-v2 update Q,π with (o, a, o′, r)

end
if (step ≤ Ntrain) and
(step mod Nupdate = 0) then

Save O = {o0:t+1} into Da

{Oi
e}1≤i≤n ← sample(De)

{Oi}1≤i≤n ← sample(Da)
Eval. L(θ, γ, ω, ϕ) with ({Oi

e}, {Oi})
Optimize θ, γ, ω, ϕ

end
end

netwrok). Our current approach consider gθ, an image encoding function that is jointly
learned with the sequence encoding function. We propose a variation of our algorithm which,
instead of training π and Q jointly with E, exploits the image encodings directly returned
by gθ. This choice has the advantage of reducing the computational cost of training E, and
of exploiting knowledge transfer from gθ to pi and Q.

We therefore propose a variation of the Algorithm 2 that uses the image encodings returned
by gθ as observations for the agent. We call this variant of the agent the encoding-based
agent. Knowing that the stability of the distribution of the observations received by the
agent is important, it is primordial that the image encodings keep the same distribution

48

during the whole training of the agent. For this reason, in this variation of the algorithm
training an encoding-based agent, we freeze the θ parameter of gθ so that this function does
not evolve. Knowing that the sequence encoding function fω keeps the same utility, it is not
necessary to freeze its parameters. During the Interactive phase, only Lseq is evaluated and
only the functions fω and dϕ are updated.

We know that modern RL methods that train agents using low dimensional environment
states can achieve surprising performance during task learning. These environment states
are usually accurate measures of the conditions of the environment at a given time (joint
angles, distances between elements, direction of movements, etc.). With this variation of
our algorithm, we get closer to this condition by returning low-dimensional observation
encodings to π and Q from which they can train. The main difficulty of this approach is
the relatively low accuracy of the encodings we return. It will then be necessary to know if
the observation encodings used as environment states are accurate enough to achieve similar
or better performances than our initial algorithm. We explore the performances of this
algorithm in Chapter 5.

49

Chapter 5

Experiments and results

We have a clear idea of the IfO approach that we propose in this thesis. In this chapter,
we study the behavior of our proposal through the different components that constitute it.
We study the different hyper-parameters of our algorithm, while bringing interpretations to
results. We evaluate the necessity of the Alignment phase in the algorithm, as well as the
contribution of pre-trained Convolutional networks.

5.1. Overview

We evaluate our method using a diverse set of continuous control tasks including 4 tasks
(Reacher Hard, Finger Turn Easy, Hopper Stand, and Walker Run) from the DM Control
Suite [77] and 3 tasks (Button Press, Plate Slide, Drawer Close) from the Meta-world en-
vironment [89]. The DM Control tasks require our agent to learn to coordinate multiple
torque-controlled actuators. The Meta-world end-effector is controlled in a 3DOF task space
with a 1DOF parallel jaw gripper modeled on a Sawyer Robot Arm. This environment
setting requires our agent to learn to manipulate external objects with complex physical
interactions with the world. In these manipulation tasks, we now have to model the robot
and object-object interactions, such as in the case of Button Press and Drawer Close where
the constrained object joint must be activated along a single axis. Below we describe the net-
work architecture, details of our training procedures, and the results on these two datasets.
All episode trajectories begin from randomized starting states of the robot and interactive
objects (when applicable).

5.2. Network architectures

Our image encoder function gθ consists of a pair of convolutional neural networks gθ1 and
gθ2 . These models are of similar architectures, but the number of input channels is 1 for

Table 5.1. Architecture of convolutional neural networks gθ1 and gtheta2 . Xin is the size
of the input image. Xout is the size of the output matrix of each layer. C is the number of
channels of the output matrix at each layer. K is the size of the convolution kernel at each
layer. S is the stride of the convolution operation. P is the padding added initially to the
input matrix.

Encoder network

Layer Xin C K S P Xout

Image 64× 64 1,2 - - - -
ConvNet + BatchNorm + LeakyReLU - 64 5 2 0 30× 30
ConvNet + BatchNorm + LeakyReLU - 128 5 2 0 13× 13
ConvNet + BatchNorm + LeakyReLU - 256 5 2 0 5× 5
ConvNet + BatchNorm + LeakyReLU - 512 5 2 0 1× 1
ConvNet + BatchNorm + LeakyReLU - 512 1 1 0 1× 1

ConvNet - 128 1 1 0 1× 1

gθ1 and 2 for gθ2 . We re-use the encoder architecture proposed by [47]. The architecture
is a succession of four 5 × 5 stride-2 convolutional layers with 64, 128, 256, and 512 filters.
These convolutional layers are followed by two 1 × 1 convolutional layers of 512 and 128
filters. All layers before the last are followed by BatchNorm [39] and a Leaky ReLU [34]
activation function (leak = 2). The image decoding function qγ has an inverse architecture
to the encoder, except that transposed convolutional layers are employed for the last 4
layers. Additional network details are presented in Tables 5.1 and 5.2. The sequence encoder
function, fω, is a 2-layer LSTM with 128 as input and output sizes. The output sequence is
followed by a fully connected layer with input and output size of 128. The next-state predictor
is a sequence of two 128 × 128 fully connected layers with Leaky ReLU activation between
the two layers. We employ an image encoding function, gθ, to learn a latent representation
from high-dimensional observations. This function is trained with a self-supervised method
that combines different surrogate objectives. However, much modern research [20, 85, 66]
has shown the benefit of using pre-trained or foundation models trained on a large corpus
for downstream tasks. We illustrate the opportunity of using this strategy with our setup
by employing EfficientNet [78], a convolutional model trained on ImageNet, as a backbone
image encoder. In this setting, the function gθ is composed of the backbone model with the
weights frozen followed by a 3-layer multilayer perceptron (MLP) of size 1280 × 512 × 128
with trainable parameters. Though we utilize EfficientNet-B0 as a backbone, there are many
reasonable choices for pre-trained encoders.

51

Table 5.2. Architecture of the image decoding function qγ based on transposed convolution
operations. Xin is the size of the input image. Xout is the size of the output matrix of each
layer. C is the number of channels of the output matrix at each layer. K is the size of the
convolution kernel at each layer. S is the stride of the convolution operation. OP is the
padding added to the output matrix. The padding added to the input matrix is always 0.

Decoder network

Layer Xin C K S OP Xout

Image encoding 1× 1 128 - - - -
ConvNet + LeakyReLU - 512 1 1 0 1× 1

ConvNet + BatchNorm + LeakyReLU - 512 1 1 0 1× 1
TransConvNet + BatchNorm + LeakyReLU - 256 5 2 0 5× 5
TransConvNet + BatchNorm + LeakyReLU - 128 5 2 0 13× 13
TransConvNet + BatchNorm + LeakyReLU - 64 5 2 1 30× 30

TransConvNet - 3 5 2 1 64× 64

5.3. Training: Alignment Phase

For each task, we build a dataset of expert episodic trajectories with colored image obser-
vations at each timestep by running a trained RL agent and rendering visual images of the
environment as needed. We also build a second dataset of trajectories with a randomly de-
fined policy using the same process. In this work, we employ DrQ-v2 agents as our experts
for imitation, though any reasonable expert (image-based RL, planning agents, human, or
animal experts) could be used since we do not need access to the state of the agent. In the
case, where we train an image encoder from scratch (BootIfOL), the demonstration datasets
De and Da, of size 5000× 51× 64× 64 (trajectory × timestep × height × width), are used
as input. In Eff-BootIfOL, where we leverage large-scale pre-training, we utilize smaller
datasets of demonstrations for finetuning: 1500× 61× 224× 224 (trajectory × timestep ×
height × width).

5.4. Training: Interactive Phase

The parameters of the encoding functions are updated during Ntrain = 375K training steps
of the Interactive Phase. After these training steps, the parameters of the encoding functions
are frozen. Our RL agent training is performed over Nπ = 1550K training steps. We employ
DrQ-v2 [88], an image-based RL agent based off of the DDPG [46] architecture, as our RL
policy learner with default hyperparameters. Additional hyperparameters are available in
Table 5.3.

52

Table 5.3. Hyperparameters of Algorithm 2

Parameter Value
Number of expert trajectories (BootIfOL) (N) 5000
Number of expert trajectories (Eff-BootIfOL) (N) 1500
Number of frames in each trajectory (BootIfOL) (T) 61
Number of frames in each trajectory (Eff-BootIfOL) (T) 51
Size of images (BootIfOL) 64× 64
Size of images (Eff-BootIfOL) 224× 224
Number epochs during the Alignment Phase (Npretrain) 8000
Number of videos per batch (n) 16× 2 (pairs)
Total number of training steps during which encoders are trained (Ntrain) 375K
Periodicity of encoder parameter update (in training step) (Nupdate) 50
Total number of agent training steps (Nπ) 1.55 M
Learning rate 1× 10−4

Optimizer Adam [41]

5.5. General results

We perform the training on the Reacher Hard, Finger Turn Easy, Hopper Stand, and Walker
Run tasks from the Deepmind Control Suite [77]. We compare our algorithm to the Context
Translation (CT) [47] method for IfO by varying the number n of expert trajectory samples
used at each training episode to predict the CT agent trajectory. We also baseline against
ViRL [9] and GAIfO [80]. Demonstrated across 4 tasks in DM Control, our method shows
strong performance in learning to complete tasks given visual demonstrations as shown in
Table 5.4, where GAIfO showed poor performance on all tasks. We also show promising
results in complex visual scenes by employing a pre-trained backbone on Meta-world envi-
ronments as shown in Table 5.5. Average episodic returns over RL training in the Interactive
Phase are presented in Figure 5.2. We show visual examples of our agents acting in Hopper
Stand and Drawer Close tasks in Figure 5.1. We present the examples for other tasks in Fig-
ure 5.3. We observe that in tasks such as Walker Run, where a great degree of coordination
between joints is necessary to control the robot, IfO agents struggle to reach even 10% of
the expert’s reward (see Table 5.4).

5.6. Results of Evaluation on Meta-World

Considering the Meta-world environment [89], we study precisely the importance of a pre-
trained convolutional network as a feature extraction model. The visual complexity offered
by Meta-world tasks allows us to evaluate the relevance of an accurate image encoder during

53

Table 5.4. Evaluation of the average return over 500-step episodes of agents trained with
the Context translation (CT) [47] and ViRL [9] algorithms. We evaluate the agents on the
Reacher Hard, Finger Turn Easy, Hopper Stand, and Walker Run tasks. For 3 of the envi-
ronments, our approach exceeds the existing methods by a wide margin. For Reacher Hard,
we are able to achieve rewards on par with the Expert policy, while our comparison methods
completely fail to learn good policies. Though this is a fairly simple control problem (a vi-
sual version of inverse kinematics), the distribution of starting states and goals is fairly large
compared to other tasks we look at. Our technique of training with failure demonstrations
is particularly advantageous in this setting as we see more of the state space.

Agent Avg. return
Reacher Hard Finger turn easy Hopper Stand Walker Run

Expert 850.52± 315.70 893.44± 219.75 880.93± 76.89 789.77± 17.25
BootIfOL (ours) 843.16 ± 274.84 199.76± 399.02 651.33 ± 362.95 79.50 ± 1.25
ViRL 0.44± 1.27 160.2± 366.52 516.27± 417.21 29.31± 24.72
CT (n=10) 97.84± 254.52 238.92 ± 422.07 1.42± 3.22 25.15± 18.71
CT (n=1) 38.04± 127.53 199.48± 396.99 1.01± 1.71 52.42± 34.28
Random 6.64± 16.94 92.6± 202.68 2.44± 5.19 29.93± 4.52

((a)) Hopper Stand

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30

Expert

Agent

((b)) Drawer Close

Fig. 5.1. Comparison of the actions taken between an expert (top row) policy and imitation
agent (bottom) learned using our proposal. We show learned agents in Hopper Stand and
Drawer Close with the same initial conditions. Observe that for Hopper Stand the agent
behavior of our learned agent is very similar to that of an expert. For Drawer Close although
the learned agent takes a different trajectory than the expert(e.g. keeping the gripper wider
open) it is able to solve the task.

54

0.0 0.2 0.4 0.6 0.8 1.0
Total number of training steps 1e6

0

20

40

60

80

Av
g.

 re
tu

rn
 o

ve
r 6

0-
st

ep
 e

pi
so

de
s

ours
CT-10
CT-1
ViRL

((a)) Reacher Hard

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Total number of training steps 1e6

0

10

20

30

40

50

Av
g.

 re
tu

rn
 o

ve
r 6

0-
st

ep
 e

pi
so

de
s

ours
CT-10
CT-1
ViRL

((b)) Hopper Stand

Fig. 5.2. Average returns throughout agent training in Interactive Phase compared to CT
and ViRL agents on Reacher Hard and Hopper Stand tasks. We observe that the agent
progresses quickly in both cases as compared to other baselines. Although ViRL is able to
do well in Hopper Stand, it is unable to tackle all environments (e.g. Reacher Hard).

Table 5.5. Evaluation of the average return over 500-step episodes of our agent (BootIfOL)
where the encoder was trained from scratch and an agent which exploited EfficientNet-
B [66]0 as a backbone model (Eff-BootIfOL). We evaluate these agents on the manipulation
tasks: Button Press, Plate Slide, and Drawer Close in the Meta-world simulator [89].

Agent Avg. return
Button Press Plate Slide Drawer Close

Expert 556.06± 6.46 734.56± 172.51 4223.65± 21.14

Eff-BootIfOL (ours) 434.39 ± 139.74 340.45± 46.56 3949.90 ± 681.42
BootIfOL (ours) 146.56± 17.71 342.40 ± 93.08 2847.10± 1679.56
Random 153.29± 51.68 209.12± 87.38 409.07± 1288.89

the training of the encoding functions. We evaluate our new agent, trained with a learned dis-
tance metric using a pre-trained image encoding, as described in the Network Architectures
section (5.2), on the tasks Button Press, Drawer Close, and Plate Slide of the Meta-world
environment. In Table 5.5, we compare the average return of this agent with our initial
agent. The results in Table 5.5 demonstrate the importance of the image encoding function
for the effectiveness of the learned distance metric. In particular, these results show that the
success of the reward function learning depends on the level of accuracy in the interpretation
of each frame. We observe a particularly weak result concerning the Plate Slide task. We
hypothesize that this failure is due to a difficulty related to the sequence encoding function,
which has a different role. Despite the accuracy of the feature extractor, the task remains
difficult to imitate by our agent.

55

((a)) Reacher Hard

((b)) Finger Turn

((c)) Walker Run

((d)) Button Press

Fig. 5.3. Comparison of actions taken between an expert policy (top row) and an imitation
agent policy learned using our proposal. We show these agents acting in the Reacher Hard,
Finger Turn, Walker Run and Button Press tasks. Note also that for all these tasks, the
expert and the agent are placed in identical initial conditions.

56

1000 2000 3000 4000 5000 6000 7000 8000
Nb. training iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

 v
al

ue

Hopper Stand
Reacher Hard
Walker Run
Finger Turn Easy

Fig. 5.4. Evolution of the loss term L during the Alignment phase. We evaluate these
values on the trajectories generated from the Hopper Stand, Reacher Hard, Walker Run and
Finger Turn Easy tasks.

5.7. Trajectory encoding learning

Another essential element to observe in this algorithm is the behavior of the objective loss
functions linked to the training of the fω and gθ functions. During the Alignment phase,
we aim to train the functions fω and gθ to encode the expert trajectories and the random
trajectories. This training is led by the loss terms LZ , Lseq, Lae, Ltriplet and LS, each of which
brings a learning constraint, limiting the deviance and collapse of the encoding functions.
We present in Figure 5.4 the evolution of the final loss function L during the Alignment
phase estimated on the evaluation dataset.

This evaluation dataset consists of 400 expert videos and 400 random videos. We evaluate
this feature on 4 different tasks from the Deepmind control suite [77]: Hopper Stand, Reacher
Hard, Finger Turn Easy and Walker Run. This objective loss function evolves according to
our expectations. We detail the evolution of the intermediary loss terms in Figure 5.5.

In the Interactive phase, during the training of the imitation agent, the encoding functions are
progressively trained on the new trajectories generated by the agent and on the initial expert
trajectories. We present in Figure 5.6, the evolution of Lseq function during the Interactive
phase. We can see a slight tendency for Lseq to increase with time. This effect is due to
the sequence encoding function, which has more and more difficulties to distinguish expert
sequences from agent sequences. Knowing that the agent policy π improves progressively
with the rewards which are provided to it by the sequence encoding function, π generates
trajectories progressively similar to that of the expert. This progress is the cause of the

57

1000 2000 3000 4000 5000 6000 7000 8000
Nb. training iteration

0

1

2

3

4

5

6
Lo

ss
 v

al
ue

Hopper Stand
Reacher Hard
Walker Run
Finger Turn Easy

((a)) Evaluation of LZ

1000 2000 3000 4000 5000 6000 7000 8000
Nb. training iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue

Hopper Stand
Reacher Hard
Walker Run
Finger Turn Easy

((b)) Evaluation of Lseq

0 1000 2000 3000 4000 5000 6000 7000 8000
Nb. training iteration

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Lo
ss

 v
al

ue

Hopper Stand
Reacher Hard
Walker Run
Finger Turn Easy

((c)) Evaluation of Lae

1000 2000 3000 4000 5000 6000 7000 8000
Nb. training iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue

Hopper Stand
Reacher Hard
Walker Run
Finger Turn Easy

((d)) Evaluation of Ltriplet

Fig. 5.5. Evolution of the loss terms LZ , Lseq, Lae and Ltriplet during the Alignment phase,
during which the encoding functions gθ and fω are trained over expert trajectories and
randomly generated trajectories.

increase of Lseq. This observation allows us to conclude the sink of the agent’s distribution
into that of the expert.

5.8. Ablating the Alignment Phase

In our algorithm, we integrate the Alignment Phase, described in Section 4.1, allowing us
to bootstrap the encoding functions f and g on two trajectory distributions: (1) Expert’s
trajectories, (2) random trajectories. This particularity is not present in most methods such
as GAN-like approaches. We hypothesize that providing, from the beginning of the agent’s
training, significant and consistent rewards offers an important gain on the search for the
optimal imitation policy. We evaluate the importance of this step by removing the Alignment
Phase in two ways: (1) the encoding functions are trained during 375K total training steps
(standard case) in the Interactive Phase; (2) the encoding functions are trained during all
the agent’s training in the Interactive Phase (similarly to ViRL and GAIfO). We present the

58

50000 100000 150000 200000 250000 300000 350000
Nb. training iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

 v
al

ue

Hopper Stand
Reacher Hard
Walker Run
Finger Turn Easy

Fig. 5.6. Evaluation of the loss term Lseq during the Interactive phase. This loss is evalu-
ated during Ntrain training steps during the update of fω and gθ. We notice a slight increase
of this term, and this is due to the progress of the agent policy function in generating tra-
jectories similar to that of an expert policy.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Total number of training steps 1e6

0

20

40

60

80

100

Av
g.

 re
tu

rn
 o

ve
r 6

0-
st

ep
 e

pi
so

de
s

expert
alignment
no-alignment
no-alignment-1550K-step

Fig. 5.7. Ablating the effect of the encoding functions’ training in the Alignment Phase
(described in Section 4.1) on the final performance of the agent on the Reacher Hard task.
alignment is our initial model with the Alignment Phase executed; no-alignment and no-
alignment-1550K-step are the models without execution of the Alignment Phase. In no-
alignment-1550K-step, the encoding functions are updated continuously until the end of the
agent’s training.

results of this experiment in Figure 5.7. We observe that the use of the alignment phase leads
to drastically better performance, highlighting this as a critical phase. Although training
these for the full interactive phase can lead to some progress, it is not nearly as efficient as
the bootstrapped approach that includes the Alignment Phase.

59

5.9. Ablating the use of a Learned Image-Encoder for
RL

To date, in our experiments, the RL agent is learned through a dissociate policy function
π and q-value function Q as proposed [88]. In this architecture, the policy function π is
composed of a CNN E that internally encodes the observation images, followed by an MLP
that feeds the image encodings to return actions. E is shared between the policy pi and
the associated q value function Q, which feeds encoding-action pairs to return q-values. A
natural question is whether we can directly link our learned image encoding function gθ to pi

and Q by dropping the CNN E. The interest of this approach is to transfer the learning of
the g to the agent in order to learn directly the extracted features. We know that in modern
RL approaches, using low-dimensional state vectors generally improves agent performance
and efficiency, because of higher precision in the description of the state. We are interested
in learning if our learned observation feature descriptions - optimized with a pixel-based
reconstruction loss - provide enough information about the state to enable an RL policy to
learn efficient and quality control policies without needing access to either the true simulator
state or raw pixels. Specifically, we replace E with an MLP shared between π and Q. The
image encodings returned by g are the input data of the MLP E. Note in this experiment we
freeze the parameters of gθ with respect to the RL update and call this ablation the encoding-
based agent. We present in Figure 5.8 the average return of the original image-based agent
and the encoding-based agent on the Reacher Hard task over training. This leads us to
believe that the image encodings returned by g present biases that limit the understanding
of the environment by the policy, thus preventing this policy from achieving performance
similar to agents with access to image-based states directly. We suppose that this bias is
because g and f are trained jointly with learning objectives that are not optimized for the
policy function.

5.10. Effect of Encoder Training Length in Interactive
Phase

In the Interactive Phase, we train the trajectory and image encodings for Ntrain steps before
switching to only using a standard RL algorithm. We now study how the length of this phase
affects the final reward reached by the agent. We evaluated our algorithm with Ntrain set to
a period of 0, 100K, 375K, and 1550K total training steps. Updates to encoder parameters
happen every Nupdate = 50 steps. The results of these experiments on the Reacher Hard task
are presented in Figure 5.9. We observe that when the encoding functions are not updated
during the Interactive Phase, learning does not proceed, as the rewards provided by the

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Total number of training steps 1e6

0

20

40

60

80

100

Av
g.

 re
tu

rn
 o

ve
r 6

0-
st

ep
 e

pi
so

de
s

expert
image-based
encoding-based

Fig. 5.8. Ablation studies. We show the average return of the agent on the Reacher Hard
task over 5 episodes of 60 steps. We evaluate whether we can re-use the image encoding CNN
from our imitation function for policy learning (encoding-based) or whether the RL agent
should optimize a new image encoding network (image-based). We observe that attempting
to use the encodings from BootIfOL directly in the policy network (encoding-based) degrades
performance.

Alignment Phase are not sufficient. Increasing the number of Ntrain steps initially has a
positive effect on average returns per episode, reaching close to the expert return per episode
in the case of Ntrain = 375K steps. However, when the encoding functions are not frozen
training during the Interactive Phase, the learned reward function becomes brittle due to
changing state encoding. Thus we observe that Ntrain = 1550K steps eventually led to a
collapse in the policy.

61

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Total number of training steps 1e6

0

20

40

60

80

100

Av
g.

 re
tu

rn
 o

ve
r 6

0-
st

ep
 e

pi
so

de
s

expert
375K-step
100K-step
1550K-step
O-step

Fig. 5.9. Ablation studies. We show the average return of the agent on the Reacher Hard
task over 5 episodes of 60 steps. We evaluate the agent with respect to the training duration
of the encoding functions. If they are not trained after the Alignment Phase (0-step), the
rewards are non-informative. Similarly, if we continue to train them as the agent begins to
converge to a strong policy, they can degrade the reward signal.

62

Chapter 6

Conclusion and future work

We present a new method of Imitation from Observation that relies on the encoding of agent
behavior using exemplar demonstrations from visual observations. This method uses self-
supervised learning of states and sequences to progressively train a reward function for use
by a reinforcement learning agent. We demonstrate the strength of this method on a set
of 7 simulated robotic tasks which have access to a limited set of expert demonstrations.
We note that our adopted problem framework: imitation from image observations, though
important for its potential practical applications, is challenging from both the computational
and observational perspectives for tasks that require precise control. In this paper, we explore
this challenge by training our agents with access to information from task-specific and pre-
trained image encoders and show that the fidelity of the encoding function is critically
important for downstream control tasks. Our approach to increase the performance of the
learned representation is to keep the data generated by the agent during the Interactive
Phase.

During the experiments, we studied the evolution of the loss terms used to train the encoding
functions, and we evaluated the final loss term during the Alignment and Interactive phases.
At this point, one question that arises is the importance of each loss term. Indeed, in the
definition of our objective loss function, all terms have the same importance and influence
the final encoding function sequence at the same level. In order to complete this work, we
leave in future work the analysis of the importance of the different components of the loss
function.

During the Alignment and Interactive phases, we always used the same number of expert
sequences and agent sequences. In practice, the number of sequences we use allows us to
evaluate the feasibility of the method, and the ideal is to minimize this number. In two
groups of experiments, we exploited 2× 5000 and 2× 1500 sequences, and this variation did

not show significant impacts. We believe that a thorough study of the minimum number of
usable trajectories would clarify this point.

In this work, our expert trajectory dataset is composed of a set of trajectories that vary in
terms of the initial condition of the agent and the position of objects in the scene. Although
this context variation is significant, it remains very optimistic compared to the variations
encountered in real applications. For future work, we think it would be important to bring
randomness in each episode on several dimensions of the context. These variations can be in
the decoration of the environment’s background, the camera’s angle of view, or the presence
of other dynamic objects independent of the agent.

Finally, we have mainly studied in this work, continuous control tasks executed in fully
observable environments. We believe that this work will contribute to the development of
hierarchical reinforcement learning techniques in partially observable environments. Indeed,
in these types of problems, the agent has to plan a set of tasks or reach a certain global goal.
Since our proposal mainly studies continuous control tasks, it would be important to study
how this could be adapted to more complex architectures, and how to exploit Imitation from
Observation in environments that require exploration and discovery beforehand.

64

References

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In Pro-
ceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[2] Dosovitskiy Alexey, Philipp Fischer, Jost Tobias, Martin Riedmiller Springenberg, and Thomas Brox.
Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Trans.
Pattern Analysis and Machine Intelligence, 99, 2015.

[3] Ankesh Anand, Eugene Belilovsky, Kyle Kastner, Hugo Larochelle, and Aaron Courville. Blindfold
baselines for embodied qa. arXiv preprint arXiv:1811.05013, 2018.

[4] Anonymous. Imitation from observation with bootstrapped contrastive learning. In 3rd Offline RL
Workshop: Offline RL as a ”Launchpad”, 2022.

[5] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international conference
on computer vision, pages 2425–2433, 2015.

[6] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pages 679–684,
1957.

[7] Richard E Bellman and Stuart E Dreyfus. Applied dynamic programming, volume 2050. Princeton uni-
versity press, 2015.

[8] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. Advances
in neural information processing systems, 13, 2000.

[9] Glen Berseth, Florian Golemo, and Christopher Pal. Towards learning to imitate from a single video
demonstration. arXiv preprint arXiv:1901.07186, 2019.

[10] Piotr Bojanowski and Armand Joulin. Unsupervised learning by predicting noise. In International Con-
ference on Machine Learning, pages 517–526. PMLR, 2017.

[11] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[12] Wei-Di Chang, Juan Camilo Gamboa Higuera, Scott Fujimoto, David Meger, and Gregory Dudek. Il-
flow: Imitation learning from observation using normalizing flows. arXiv preprint arXiv:2205.09251,
2022.

[13] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, pages 1691–1703.
PMLR, 2020.

[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. In International conference on machine learning, pages 1597–
1607. PMLR, 2020.

[15] Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. Advances in Neural
Information Processing Systems, 34:11834–11845, 2021.

[16] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[17] Christine Connolly and Thomas Fleiss. A study of efficiency and accuracy in the transformation from
rgb to cielab color space. IEEE transactions on image processing, 6(7):1046–1048, 1997.

[18] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied
question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–10, 2018.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[20] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pages 1422–
1430, 2015.

[21] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition. In International conference
on machine learning, pages 647–655. PMLR, 2014.

[22] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

[23] Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. Advances in neural
information processing systems, 32, 2019.

[24] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with convolutional neural networks. Advances in neural information pro-
cessing systems, 27, 2014.

[25] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[26] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587, 2014.

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM,
63(11):139–144, 2020.

[28] Daniel Gordon, Kiana Ehsani, Dieter Fox, and Ali Farhadi. Watching the world go by: Representation
learning from unlabeled videos. arXiv preprint arXiv:2003.07990, 2020.

[29] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

[30] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

[31] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

[32] Tengda Han, Weidi Xie, and Andrew Zisserman. Video representation learning by dense predictive
coding. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,
pages 0–0, 2019.

66

[33] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsuper-
vised visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729–9738, 2020.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[35] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep
reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

[36] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural infor-
mation processing systems, 29, 2016.

[37] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[38] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

[39] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.

[40] Daiki Kimura, Subhajit Chaudhury, Ryuki Tachibana, and Sakyasingha Dasgupta. Internal model from
observations for reward shaping. arXiv preprint arXiv:1806.01267, 2018.

[41] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[42] Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect out-of-
distribution data. Advances in neural information processing systems, 33:20578–20589, 2020.

[43] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

[45] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with gauss-
ian processes. Advances in neural information processing systems, 24, 2011.

[46] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[47] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learning
to imitate behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1118–1125. IEEE, 2018.

[48] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing systems,
26, 2013.

[49] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937. PMLR, 2016.

[50] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

67

[51] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[52] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. Advances in neural information processing systems, 31, 2018.

[53] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE, 2018.

[54] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

[55] Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

[56] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pages 69–84. Springer, 2016.

[57] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

[58] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22(10):1345–1359, 2009.

[59] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic locomotion
skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics (TOG), 36(4):1–13,
2017.

[60] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

[61] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons, 2014.

[62] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

[63] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In European conference on machine learning, pages 317–328. Springer, 2005.

[64] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the thir-
teenth international conference on artificial intelligence and statistics, pages 661–668. JMLR Workshop
and Conference Proceedings, 2010.

[65] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings, 2011.

[66] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[67] Stefan Schaal. Learning from demonstration. Advances in neural information processing systems, 9,
1996.

[68] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897. PMLR, 2015.

68

[69] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine Learning,
pages 8583–8592. PMLR, 2020.

[70] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. Over-
feat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

[71] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey Levine,
and Google Brain. Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE in-
ternational conference on robotics and automation (ICRA), pages 1134–1141. IEEE, 2018.

[72] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–
44, 1988.

[73] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

[74] Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. Advances in neural information processing systems, 8, 1995.

[75] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
[76] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for

reinforcement learning with function approximation. Advances in neural information processing systems,
12, 1999.

[77] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

[78] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European conference
on computer vision, pages 776–794. Springer, 2020.

[79] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

[80] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018.

[81] Faraz Torabi, Garrett Warnell, and Peter Stone. Imitation learning from video by leveraging proprio-
ception. arXiv preprint arXiv:1905.09335, 2019.

[82] Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from observation.
arXiv preprint arXiv:1905.13566, 2019.

[83] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[84] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing sys-
tems, 30, 2017.

[85] Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In
Proceedings of the IEEE international conference on computer vision, pages 2794–2802, 2015.

[86] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

[87] Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Darrell. What should not be contrastive in
contrastive learning. arXiv preprint arXiv:2008.05659, 2020.

69

[88] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[89] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In
Conference on Robot Learning (CoRL), 2019.

[90] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pages 12310–
12320. PMLR, 2021.

[91] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In European
conference on computer vision, pages 818–833. Springer, 2014.

[92] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European conference
on computer vision, pages 649–666. Springer, 2016.

[93] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Pro-
ceedings of the 20th international conference on machine learning (icml-03), pages 928–936, 2003.

70

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms and abbreviations
	Acknowledgements
	Chapter 1. Introduction
	1.1. Context: Reinforcement Learning and Imitation from observation
	1.2. Problems
	1.3. Proposal and Contribution
	1.4. Working paper
	1.5. Outline

	Chapter 2. Background
	2.1. Reinforcement Learning
	2.1.1. Discrete-time finite-horizon stochastic process
	2.1.2. Markov decision process
	2.1.3. Policy function
	2.1.4. Policy gradient methods
	2.1.5. Q-learning and Deep Q-networks
	2.1.6. Deep Deterministic Policy Gradient

	2.2. Imitation learning
	2.2.1. Behavioral cloning
	2.2.2. Inverse reinforcement learning

	2.3. Imitation from observation with learned reward function
	2.4. Representation learning
	2.4.1. Image representation with contrastive learning on multiple views
	2.4.2. Video representation with next-frame prediction

	Chapter 3. Related work
	3.1. Imitation from observation
	3.2. Self-supervised learning of unlabeled data

	Chapter 4. Method
	4.1. Overview
	4.2. Behavioral learning from videos
	4.2.1. Image encoding
	4.2.2. Sequence encoding

	4.3. Training: Imitation from observation
	4.4. Encoding-based agent training

	Chapter 5. Experiments and results
	5.1. Overview
	5.2. Network architectures
	5.3. Training: Alignment Phase
	5.4. Training: Interactive Phase
	5.5. General results
	5.6. Results of Evaluation on Meta-World
	5.7. Trajectory encoding learning
	5.8. Ablating the Alignment Phase
	5.9. Ablating the use of a Learned Image-Encoder for RL
	5.10. Effect of Encoder Training Length in Interactive Phase

	Chapter 6. Conclusion and future work
	References

