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Résumé

L’apprentissage profond sur les graphes a atteint des niveaux de succès sans précédent
ces dernières années grâce aux réseaux de neurones de graphes (GNN), des architectures de
réseaux de neurones spécialisées qui ont sans équivoque surpassé les approches antérieurs
d’apprentissage définies sur des graphes. Les GNN étendent le succès des réseaux de neurones
aux données structurées en graphes en tenant compte de leur géométrie intrinsèque. Bien
que des recherches approfondies aient été effectuées sur le développement de GNN avec des
performances supérieures à celles des modèles références d’apprentissage de représentation
graphique, les procédures d’analyse comparative actuelles sont insuffisantes pour fournir des
évaluations justes et efficaces des modèles GNN. Le problème peut-être le plus répandu et en
même temps le moins compris en ce qui concerne l’analyse comparative des graphiques est
la couverture de domaine : malgré le nombre croissant d’ensembles de données graphiques
disponibles, la plupart d’entre eux ne fournissent pas d’informations supplémentaires et au
contraire renforcent les biais potentiellement nuisibles dans le développement d’un modèle
GNN. Ce problème provient d’un manque de compréhension en ce qui concerne les aspects
d’un modèle donné qui sont sondés par les ensembles de données de graphes. Par exemple,
dans quelle mesure testent-ils la capacité d’un modèle à tirer parti de la structure du
graphe par rapport aux fonctionnalités des nœuds ? Ici, nous développons une approche
fondée sur des principes pour taxonomiser les ensembles de données d’analyse comparative
selon un profil de sensibilité qui est basé sur la quantité de changement de performance
du GNN en raison d’une collection de perturbations graphiques. Notre analyse basée sur
les données permet de mieux comprendre quelles caractéristiques des données de référence
sont exploitées par les GNN. Par conséquent, notre taxonomie peut aider à la sélection et
au développement de repères graphiques adéquats et à une évaluation mieux informée des
futures méthodes GNN. Enfin, notre approche et notre implémentation dans le package
GTaxoGym 1 sont extensibles à plusieurs types de tâches de prédiction de graphes et à des
futurs ensembles de données.

1. https://github.com/G-Taxonomy-Workgroup/GTaxoGym
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Abstract

Deep learning on graphs has attained unprecedented levels of success in recent years
thanks to Graph Neural Networks (GNNs), specialized neural network architectures that
have unequivocally surpassed prior graph learning approaches. GNNs extend the success
of neural networks to graph-structured data by accounting for their intrinsic geometry.
While extensive research has been done on developing GNNs with superior performance
according to a collection of graph representation learning benchmarks, current benchmark-
ing procedures are insufficient to provide fair and effective evaluations of GNN models.
Perhaps the most prevalent and at the same time least understood problem with respect
to graph benchmarking is domain coverage: Despite the growing number of available graph
datasets, most of them do not provide additional insights and on the contrary reinforce
potentially harmful biases in GNN model development. This problem stems from a lack of
understanding with respect to what aspects of a given model are probed by graph datasets.
For example, to what extent do they test the ability of a model to leverage graph structure
vs. node features? Here, we develop a principled approach to taxonomize benchmarking
datasets according to a sensitivity profile that is based on how much GNN performance
changes due to a collection of graph perturbations. Our data-driven analysis provides a
deeper understanding of which benchmarking data characteristics are leveraged by GNNs.
Consequently, our taxonomy can aid in selection and development of adequate graph
benchmarks, and better informed evaluation of future GNN methods. Finally, our approach
and implementation in the GTaxoGym package 2 are extendable to multiple graph prediction
task types and future datasets.

Keywords: Machine learning, Deep learning, Graph representation learning, Graph neural
networks, Neural networks, Benchmarking, Datasets, Taxonomy, Graph theory, Graph signal
processing

2. https://github.com/G-Taxonomy-Workgroup/GTaxoGym
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Introduction

Machine learning on graphs, commonly referred to as graph representation learning
(GRL), has seen rapid development in recent years [59]. Originally inspired by the success of
convolutional neural networks in regular Euclidean domains, thanks to their ability to lever-
age data-intrinsic geometries, classical graph neural network (GNN) models [27, 79, 148]
extend those principles to irregular graph domain. Further advances in the field have led
to a wide selection of complex and powerful GNN architectures. Some models are provably
more expressive than others [159, 99], can leverage multi-resolution views of graphs [96], or
can account for implicit symmetries in graph data [15]. Comprehensive surveys of graph
neural networks can be found in Bronstein et al. [14], Wu et al. [156], Zhou et al. [165].

Most graph-structured data encode information in two parts: graph structures and node
features. The structure of each graph represents relationships (i.e., edges) between different
nodes, while the node features that accompany this structure represent quantities of interest
at each individual node. For example, in citation networks, nodes represent papers and edges
represent citations between the papers. On such networks, node features often capture the
presence or absence of certain keywords in each paper, encoded in binary feature vectors.
In graphs modeling social networks, each node represents a user, and the corresponding
node features often include user statistics like gender, age, or binary encodings of personal
interests.

Intuitively, the power of GNNs lies in relating local node-feature information to global
graph structure information, typically achieved by applying a cascade of feature aggregation
and transformation steps. In aggregation steps, information is exchanged between neigh-
boring nodes, while transformation steps apply a (multi-layer) perceptron to feature vectors
of each node individually. Such architectures are commonly referred to as Message Passing
Neural Networks (MPNN) [51].

Historically, GNN methods have been evaluated on a small collection of datasets [100],
many of which originated from the development of graph kernels. The limited quantity,
size and variety of these datasets have rendered them insufficient to serve as distinguishing
benchmarks [34, 106]. Therefore, recent work has focused on compiling a set of large(r)
benchmarking datasets across diverse graph domains [34, 68]. Despite these efforts and the



introduction of new datasets, it is still not well understood what aspects of a dataset most
influence the performance of GNNs. Which is more important, the geometric structure of the
graph or node features? Are long-range interactions crucial, or are short-range interactions
sufficient for most tasks?

This lack of understanding in dataset properties make it difficult to determine subsets of
graph datasets that are able to statistically separate GNN model performance despite the
steady increase in the number of available datasets. This phenomenon stems from redun-
dancies in the properties tested for even when an array of datasets are used, as seemingly
different datasets may be employing similar pathways for the propagation of information,
leading to quickly diminishing marginal returns as the number of datasets used for bench-
marking increases. In turn, the small subset of datasets used for benchmarking have stayed
the same for the most part, and have resulted in impaired benchmarking practices in the
field of graph learning [106].

The goal of this work is to propose and apply a framework through which we can method-
ologically define and evaluate the characteristics of benchmarking datasets in terms of their
reliance on particular types of information encoding and propagation. Our framework is
built around testing empirical transformation sensitivity of graph datasets to gauge how
task-related information is encoded in them. We believe that our methodology and the re-
sulting taxonomy can alleviate the problems mentioned above by acting both as a tool to
understand existing and future graph datasets and models better, and as a guide to aid in
the selection of benchmarking datasets that sufficiently express the variation and complexity
of real-world derived graph data.

The rest of the paper is structured as follows: In the first chapter, we introduce relevant
concepts in machine learning and graph theory. We follow this a historical perspective of
machine learning on graphs, where we delve deeper into several branches of work that have
inspired GNNs, the current dominant paradigm in geometric deep learning.

In the second chapter, we survey an array of GNN models from a unified view of neural
message passing: Starting from the original GNN algorithm [53, 126], we motivate the
different approaches that draw from spectral and spatial convolutions, attention mechanisms
and graph isomorphism and serve as common benchmarks today. Understanding how distinct
GNNs operate is fundamental in order to motivate benchmarking: Even though this work
benchmarks graph datasets, the end goal is to arrive at a reliable framework to benchmark
and compare GNN models.

This brings us to the third chapter, which aims for a comprehensive analysis of current
issues on benchmarking, both in machine learning in general and graph learning specifically.
In this chapter, we also motivate the benchmarking process itself as an essential building
block of machine learning research, and explain how our dataset taxonomy relates with prior
work on graph benchmarking.
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The fourth chapter presents the novel research that forms the core of this work. We first
argue the need for a dataset benchmarking framework in graph learning, and specifically
discuss how our work addresses the pain points in graph benchmarking we have discussed
in the previous chapter. We then present our method in detail, and discuss the empirical
findings of our research. We conclude the thesis with a summary of our findings, and provide
suggestions for future research.
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of our results and of course the writing of the article. Naturally, each step also relied on
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27





Chapter 1

Geometric Deep Learning

1.1. An Introduction to Deep Learning
Machine learning aims to build algorithms that “learn” patterns in data through math-

ematical models without explicit programming. Although established as a standalone field
for merely decades, it has close ties and overlaps with statistics and optimization; most of
the mathematical tools we use for machine learning predate the field itself by many years:
The earliest form of regression analysis in the form of the least-squares method dates to the
beginning of 19th century with Legendre and Gauss.

Machine learning incorporates a large variety of learning paradigms, and even more nu-
merous application domains. Most popular learning models can be broadly classified into
several groups: regression analysis, decision tree-based learning, support-vector machines
(SVM) and deep learning (i.e. deep neural networks). These models are unified from an
optimization perspective as the model learning process is equivalent to minimizing a loss
function. The immense body of work on machine learning belies its relatively recent estab-
lishment as a research field, and we certainly cannot provide a justified coverage within the
space of a few pages. More importantly, most of the novel research in this work concerns
the learning paradigm of deep learning, and a specific subgroup of deep learning models
designed for graph data, namely graph neural networks (GNN). Therefore, we will reserve
this introductory section to neural networks and deep learning; we will also introduce SVMs
later on and discuss their influence in the development of GNNs.

1.1.1. The perceptron: Building blocks of neural networks

Deep learning is a class of machine learning methods that are based on artificial neural
networks (ANN). ANNs are built by stacking layers of artificial neurons; the first artificial
neuron was proposed by McCulloch and Pitts [93] in 1943 and implemented by Rosenblatt
[117] as a basic linear classifier called the perceptron (Figure 1.1). The perceptron is a simple



Figure 1.1 – The operations in a perceptron.

computational unit that represents a weighted sum of inputs x and a bias term b put through
a nonlinear activation function σ:

f(x) = σ (b +∑
i

wixi) (1.1.1)

We can represent the weighted sum as w ⋅x in vectorized form. The original perceptron used
the Heaviside step function, meaning any value larger than 0 is mapped to 1 and 0 otherwise,
resulting in the following classifier:

f(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if w ⋅ x + b > 0
0 otherwise

(1.1.2)

Training the perceptron was done via an iterative update rule. Nevertheless, the perceptron
is a weak classifier on its own; Minsky and Papert [97] showed that a perceptron cannot learn
the XOR function in 1969. Later on, it was realized that the strength of the perceptron was
in numbers; stacking multiple layers of perceptrons increased their representational capacity
to the point that they are universal approximators, meaning they can approximate any
continuous function that maps real inputs to real outputs [67]. These stacked layers of
perceptrons are called feedforward neural networks (FNN), Figure 1.2 demonstrates how
hidden layers are built via stacking neurons. The term FNN is often used interchangeably
with multilayer perceptron (MLP), which indicates an FNN where every neuron in one layer
is connected to all neurons of the subsequent layer.

MLPs are composed of an input layer, an output layer, and one or more hidden layers:
A hidden layer is a stack of neurons that take outputs of other neurons as inputs, and whose
outputs are inputs to other neurons in turn. In other words, these neurons do not interact
with the inputs or outputs directly, hence the term “hidden”. A neural network is termed
“deep” if it consists of two or more hidden layers. In matrix form, a hidden takes layer inputs
h(k−1) and performs the following operation to produce outputs h(k):

h(k) = α (b(k) +W(k)h(k−1)) (1.1.3)
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Figure 1.2 – Diagram of a one-hidden-layer MLP, indicating the indices of weights in the
weight matrices W and states at each layer h.

where W(k) ∈ RN(k+1)×N(k) is a weight matrix, and N (k) represents the number of layer
inputs/outputs. The input data x forms the inputs to the first MLP layer, x = h(0).

Typically, MLPs utilize nonlinear activations such as ReLU [44] or sigmoid instead of the
Heaviside step function. In particular, output layers may have different activations than the
rest of the network. Unlike the perceptron, MLPs can have multiple outputs to represent
discrete probability distributions over multiple categories. In such cases, the softmax function
is used to normalize the outputs ŷ:

ŷi = softmax(z)i =
exp (zi)

∑j exp (zj)
, i = 1, . . . , n (1.1.4)

where ŷi indicates the prediction probability for category i.

1.1.2. Training neural networks

Given a set of ground truths y corresponding to our predictions ŷ, we can compute a
scalar loss through a loss function. The loss is a measure of “error” between the ground truth
and prediction, which is objective to minimize through numerical optimization. Developing
loss functions to better accommodate a vast range of machine learning tasks is a research
subfield of its own; for a recent and comprehensive survey we refer the reader to Wang et al.
[150]. For the purposes of this work, the loss function we are concerned with is the cross-
entropy loss, which is the standard loss for classification tasks in deep learning, not restricted
to MLPs:

L(y, ŷ) = −
n−1
∑
i=0

yi log (ŷi) (1.1.5)

where n denotes the number of categories (classes) we’re predicting amongst. Given a
parametrized ML model, the loss can be thought as a function of model parameters W.
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This loss is usually not computed per data point in practice, but over a batch of N exam-
ples:

L(W) =
N

∑
i=1
Li(W) (1.1.6)

Minimization of the loss function in neural networks is done via gradient descent, a
first-order iterative optimization algorithm for differentiable functions. There is an ever-
expanding research literature on developing better-performing gradient descent variants (see
Ruder [121]), but the fundamental principle remains the same for all. Gradient descent
updates a set of parameters (weights) W iteratively by taking a step (determined by the
positive scalar η, the learning rate) in the direction of the negative gradient of the loss
function with respect to the parameters:

W′ =W − η ⋅ ∇WL(W) (1.1.7)

The practical challenge in applying gradient descent to neural networks is the computa-
tion of the gradient with respect to all parameters. Backpropagation [122, 87] is the standard
dynamic programming algorithm for efficient gradient calculation in deep learning models.
An elaborate overview of the modern backpropagation algorithm can be found in Goodfellow
et al. [52], but we can summarize it as the composition of two phases:

(1) Forward Phase: A batch of inputs are fed to the model, which outputs a set of
predictions based on the current model parameters. The loss function L is calculated
for the batch using the predictions and corresponding ground truths.

(2) Backward Phase: The gradients for all parameters are calculated dynamically in
the backward direction, starting from the output layer and ending at the input layer
by recursive application of the chain rule for each parameter. A neural network is
composed of sequences of differentiable computation units; the derivative calculation
for a parameter (represented by edges in/outflowing to the units in network diagrams,
see Figure 1.2) relies on this recursive application of the chain rule based on all
computational paths that go through that edge. In MLPs, we have multiple paths
going through a parameter, meaning we sum the gradients calculated by each path.

This concludes our (very brief) introduction to deep learning. As mentioned, deep learn-
ing research covers so many tools even at the most basic level of building blocks (e.g. loss
functions, activations, neuron types, logic gates etc.) that any attempt to be more exhaus-
tive would detract us from our main focus of graph learning. We will revisit additional tools
in neural networks in later sections where we discuss families of networks that served as the
progenitors of graph neural networks. For a comprehensive review into the theoretical foun-
dations of machine learning and deep learning, Shalev-Shwartz and Ben-David [131] and
Goodfellow et al. [52] respectively are well-established resources for the interested reader,
though there exist plenty of literature that tackle these domains from different perspectives.
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1.2. Introduction to Graph Theory
1.2.1. What is a graph?

Before we dive into geometric deep learning, we need to establish some definitions and
introduce several concepts that we will encounter numerous times in this thesis. Let us begin
by defining the simple graph:
Definition 1.2.1 (Simple graph). A simple graph G = (V ,E) is a collection of vertices V
and edges E .

E ⊂ {{a, b} ∶ a, b ∈ V ;a ≠ b}

where {a, b} denotes that order of vertices does not matter, i.e. (a, b) = (b, a).
Vertices of a graph are also called nodes, we will use these terms interchangeably. In

many cases, we will want to add weights to our edges, resulting in a weighted graph:
Definition 1.2.2 (Weighted graph). A weighted graph G = (V ,E ,w) is a collection of vertices
V and edges E with weights w ∶ E → R such that w(a, b) = w(b, a).

The simple graph is a special weighted graph where each edge has the same weight, e.g.
1. Another extension is adding directionality to the edges, resulting in the directed graph:
Definition 1.2.3 (Directed graph). A directed graph G = (V ,E ,w) is a collection of vertices
V and edges E , (optionally) with weights w.

E ⊂ {(a, b) ∶ a, b ∈ V ;a ≠ b}

where the vertex pairs are ordered, i.e. (a, b) ≠ (b, a).
The concept of a graph can be further extended further. While they are less commonly

used, particularly in the scope of geometric deep learning, some examples to consider are:
Mixed graphs: Graphs with both directed and undirected edges.
Pseudographs: Graphs that permit loops, i.e. {a, a} ∈ E ;a ∈ V
Multigraphs: Graphs that permit multiple edges between vertex pairs.

Note that most of the focus in this work will be on unweighted, undirected graphs.
Therefore, unless weights or directionality is relevant to the definitions or computations at
hand, we will refer to graphs of the unweighted, undirected type for clarity.

1.2.2. Representation of data in graphs

Graphs are particularly suitable mathematical tools to represent and leverage relation-
ships of objects with each other, in addition to the properties of the individual objects. This
is an extension of the representation capabilities of unstructured data (e.g. tabular in the
context of machine learning), which cannot account for relationships and relies on the in-
dividual objects. This improved representational capacity of graph data makes it a better
candidate to analyze many of the complex systems we encounter in the real world.
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We have formally defined what a graph is in the previous section, but the formal definition
of “a set of vertices and edges” is not very useful in itself to model the aforementioned complex
systems. Why is that so? Note that we mentioned two types of information encoded in graph
data: (a) the properties of the individual objects, and (b) the relationships of objects with
each other. A set of vertices and edges only encodes the latter type, we still need to assign
properties to the vertices themselves to represent the objects.

We will find it useful to think about graphs with associated functions (also referred to
as signals) on graph vertices. A graph signal x on vertices V maps each vertex to a real R;
x ∶ V → R. More often than not, multiple functions operate on the vertices, encoding a set
of properties, commonly referred to as node features or feature set. One can also see that
functions on edges z ∶ E → R may also exist, similarly encoding edge properties.

In graph data, information is typically encoded in two forms. Firstly, “feature-based”
information is encoded on vertices and/or edges as we just covered. In addition, information
is implicitly encoded in the graph structure itself, since the existence of an edge between two
vertices implies the presence of a certain relationship between the two corresponding objects.
We will see that the algorithms that are suitable for graph data will need to leverage these
relationships in the coming sections. Let us provide a few real-life examples of graph data
for a more intuitive understanding.

— Molecular representations: Graphs have been used to represent molecular data in
chemistry and biology since early 20th century. In most common uses, vertices rep-
resent individual atoms or functional groups while edges represent molecular bonds.
Vertex properties, i.e. labels, in such a setting may include atom/group type, molecu-
lar weight, free electrons etc., while edge properties may include molecular bond type
and/or distance between the vertices.

— Molecular interactions: Also within the scope of molecular data, interaction graphs
are commonly used in biochemistry to model the interactions of structures. In biolog-
ical systems, actions of proteins are usually regulated by other proteins, for example.
Protein–protein interaction data and cell interactomes (set of all molecular interac-
tions in a cell) are therefore suitable candidates for graph representations.

— Citation networks: Citation networks are one of the most commonly encountered
forms of graph data, due to the ease of generating them from relational databases.
Citation networks are drawn from various domains, where nodes may represent articles
or authors and an edge shows that one article/author has cited the other.

— Social networks: With the increasing popularity and number of social platforms
on the web as well as the rapid increase in large-scale data collection and process-
ing in the last two decades, both the availability and the study of social networks
have skyrocketed in the 21st century. Graphs are natural candidates for representing
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social interactions; vertices commonly represent users, where the space of proper-
ties are almost infinite: demographic information, interests, whether they have used
certain keywords in their posts etc. Edges represent user relationships, such as fol-
low/friendship status, or interactions between users.

On occasion, we will encounter graphs in which node features indeed do not exist. These
types of graphs are mostly found in inductive graph-level tasks where graph properties are
predicted based on patterns in graph connectivity; several such datasets are presented in
Section 4.3.1. The trivial solution when working with such graphs is to assign an indicator
variable to each vertex, i.e. indexing the vertices based on an arbitrary ordering, and assign-
ing the one-hot encoding of their indices to each vertex. Other approaches involve deriving
node features from structure, such as computing the vertex degree, clustering coefficients
and such statistics and assigning a concatenation of these node-level statistics to each node.
Both approaches are also covered in our array of datasets in Section 4.3.1.

1.2.3. Learning tasks on graphs

Machine learning tasks are traditionally categorized into several groups based on the
learning paradigm: Supervised learning aims to predict a target label for a given data point,
while unsupervised learning focuses on discovering patterns on data without target labels.
In addition to supervised tasks, many graph learning tasks exist in a “twilight zone”: In
transductive node/edge prediction tasks, the standard configuration is to have a single graph
with only a portion of nodes possessing target labels; the goal is to predict labels for the rest
of the nodes. These tasks in which a single prediction (in our case, a node over the whole
graph) involves both labeled and unlabeled components is referred to as semi-supervised.

Let us now introduce a broad categorization of learning tasks on graphs, which will assist
us in our inspection of graph benchmarking datasets and tasks later on.

— Node prediction: As we mentioned, node classification involves predicting a label yν

for a node ν ∈ V of a graph in the form of classification or regression. Usually, there is
a labeled training and unlabeled test set of nodes, which compose the complete node
set of the graph: Vtrain ∪Vtest = V . Node classification tasks are typically transductive
(though we will see inductive node classification datasets as well), i.e. the “dataset”
consists of a single large graph. Examples include user property prediction in social
networks (e.g. for advertising purposes) or document classification in citation graphs.

— Edge prediction: Edge prediction tasks are also mostly transductive, similarly pre-
dicting yε for an edge ε ∈ E . We may want to predict edge properties such as the type
of bond in a molecular graph, or interaction strength in a protein-protein interaction
graph.
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— Graph clustering: Also known as community detection, graph clustering is the
grouping of graph nodes into clusters based on some property. It is analogous to the
traditional unsupervised clustering problems in machine learning. Clustering citation
and collaboration graphs to discover subcommunities or fields such as institution or
research area are common. Graph-level clustering tasks also exist, where a set of
graphs is clustered into subcommunities.

— Graph-level prediction: Along with node prediction, graph prediction is the most
popular task type in graph representation learning. Graph prediction is inductive;
the models are trained and tested on sets of graphs. In this sense, graph prediction
is very similar to standard supervised learning, where data points are assumed to be
independent and identically distributed (i.i.d.), an assumption that does not hold in
node or edge prediction tasks. The graphs also tend to be smaller compared to the
transductive tasks: Graph prediction tasks are commonplace in bio/cheminformatics
where graph representations of molecules are used to infer molecular properties such
as solubility, reactivity or toxicity; these graphs are on average much smaller than
citation/social network graphs we see in transductive tasks where graphs may have
millions of nodes.

We now have some insights into what type of data and tasks graph learning represents.
Next, we will introduce a set of mathematical tools for analyzing graphs, and then take a
closer look into the learning process via different machine learning paradigms.

1.2.4. Graph matrices

Graphs for matrix encoding. The most intuitive use of matrices in the context of graphs
is to represent the graph itself, or at least capture certain properties of it. When considering
matrix representations of graphs, it is natural to think in terms of indices. For some graph G,
its matrix representation (for example in the case of adjacency matrix as we will see below)
uses some order of vertices. An actual topological sorting is only possible for directed acyclic
graphs (DAG), so in many cases this ordering of vertices for rows and columns is arbitrary.
In this case, we can refer to some vertex a through its index i in the ordering, νi, w.l.o.g. In
the following definitions, we will use this matrix representation notation, but note that the
information in the matrix depends on the vertices themselves and not the ordering; in this
sense, for some matrix M that encodes graph G with vertices {a, b}, M(a, b) ⇐⇒ M(νi, νj),
where i and j denote the ordering indices of a and b respectively.
Definition 1.2.4 (Adjacency matrix). The adjacency matrix is perhaps the most common
type of matrix associated with a graph. For a weighted graph G = (V ,E ,w), the adjacency
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matrix is defined as:

Aij =A[i,j] =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

wij {νi, νj} ∈ E

0 {νi, νj} ∉ E
(1.2.1)

For unweighted graphs, we have wij = 1 ∀{νi, νj} ∈ E .
Definition 1.2.5 (Degree matrix). Let us consider the neighborhood of some vertex νi ∈ G,
defined as the set of vertices νi has an edge to:

NG(νi) = N (νi) ∶= {νj ∈ V ∶ {νi, νj} ∈ E} (1.2.2)

The degree of a vertex for an unweighted graph is the cardinality of its neighborhood:

deg(νi) ∶= ∣NG(νi)∣

For a weighted graph, it is the sum of the weights between the vertex and its neighbors:

deg(νi) ∶= ∑
νj∈N (νi)

w(νi, νj)

Let us define the degree vector d, where di ∶= deg(νi). The degree matrix is then defined as
an n × n diagonal matrix, which has d as its diagonal:

DG(νi, νj) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

di νi = νj

0 νi ≠ νj

(1.2.3)

Graphs as operators I: Random walks. Matrices are not only used to encode graphs,
however; they can also be used as operators on function or vector spaces on vertices x as Mx.
In addition, they can operate as quadratic forms that map function or vectors on vertices x
to some scalar via x⊺Mx.

The random walk operator is a commonly encountered matrix operator on graphs. The
idea of a random walk is simple: Starting from some vertex a ∈ V , we move to one of its
neighbors b ∈ V , (a, b) ∈ E . However, b is a selected randomly; for unweighted graphs b
is selected from a uniform distribution on the neighbors, if weighted the probabilities are
proportional to the weights. In matrix form, the random walk operator is also known as the
transition matrix.
Definition 1.2.6. Based on the definitions of the adjacency matrix AG (Definition 1.2.4)
and degree matrix DG (Definition 1.2.5), the random walk matrix is defined as:

W =WG ∶=AGD−1
G (1.2.4)

We can then define a function δa to denote the initial probability distribution:

δa(b) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 b = a

0 b ≠ a
(1.2.5)

37



Since we start at vertex a, the corresponding index of δa is 1, and all others 0. To take a
step in our random walk, we multiply W with δa: Wδa. The output will provide a new
δ vector denoting the probabilities of ending up in each vertex after the first time step,
and the values will sum to 1. What happens after t time steps? We can simply apply our
operator t times to find out: W⊺δa.

Graphs as operators II: Graph Laplacian. The graph Laplacian lies at the heart of
spectral graph theory, and is an operator we will familiarize with closely in the coming
chapters.
Definition 1.2.7 (Graph Laplacian). Given a simple, i.e. undirected, unweighted graph G,
the graph Laplacian (also known as Laplacian matrix) L is defined by

Lij =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−1 {νi, νj} ∈ E

∣δ (νi)∣ νi = νj

0 otherwise

(1.2.6)

Equivalently, the graph Laplacian can be defined as

L =D −A (1.2.7)

where D and A are the degree matrix and adjacency matrix of G, respectively.
The definition of the graph Laplacian is quite simple, but its intuition is not obvious,

especially if one is unfamiliar with the Laplace operator (commonly referred to as the Lapla-
cian). Therefore, let us begin by reviewing the Laplacian, and then extending it to its graph
counterpart.
Definition 1.2.8 (Laplacian). Given a multivariate function f ∶ Rn → R, the Laplacian of
f is defined as the divergence of its gradient:

∆f(x) ∶= ∇ ⋅ ∇f(x) (1.2.8)

The gradient operator here takes in a multivariate function f , and outputs a vector field
∇f . The vector at each point ∇f(x) has a direction which points to f ’s steepest ascent at
x, while its magnitude is proportional to the steepness at this point.

The divergence operator, on the other hand, takes in a vector field ν(x) and produces a
scalar field, which can also be defined by a multivariate function. The divergence at a point
x, ∇⋅ν(x), is a scalar quantifying the outward flux of ν from an infinitesimal volume around
the point x. More intuitively, the divergence at x denotes how much “flow” (defined by the
vector field) goes in and out of x; if inflow is greater than the outflow (such as in a sink) at
x, the divergence is negative, and vice versa.
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Circling back to our original definition, the Laplacian is a measure of how the steepness of
a function is changing at a given point; it is essentially the analogue of the second derivative
of the single-variable function for the multivariate case.

The graph Laplacian L is the analogue of the Laplacian operator on graphs, which is
probably not a surprise to the reader at this point. How does L = D − A capture the
same idea though? To understand this, we need to identify the analogous components and
relationships between the components in multivariate functions and graphs.

Points: The vertices ν ∈ V of is analogous to the points in a Euclidean space.

Functions: A function f can be defined on G ∶= (V ,E) such that it maps each vertex ν ∈ V

to a scalar. Along with an ordering of the vertices, the function can be represented by the
following vector:

f = f(ν) ∶= [f(ν1), f(ν2), . . . , f(νn)]

Gradient: Remember that the gradient of a function is essentially a measure of how much
and in which direction a function is changing at each point. Since vertices are analogous
to points, the gradient is analogous to the difference of the function values in two vertices.
Note that in the continuous case, we refer to the change in an infinitesimal region in terms
of proximity to the given point; in the discrete case of graphs, we need to define the gradient
through pairs of vertices that have some sort of relationship between them. In graphs, the
edges are precisely the structures used to capture such relationships, and provide a natural
analogue here. Therefore, we define this gradient on edges, i.e. for some edge ε = (νi, νj) ∈ E

(we revert to the “ordered” edge definition here, where i < j, though the order itself is
arbitrary), we can define the gradient analogue as:

g(ϵk) ∶= f(νi) − f(νj)

Again, using the arbitrary order of vertices, the vector representation of the gradient becomes:

g = g(ε) ∶= [g(ε1), g(ε2), . . . , g(εm)]

The next step is to construct a matrix operator K that computes the gradient of f
according to the definitions above, i.e. maps f to g. K is known as the incidence matrix,
though several variations for directed and undirected graphs exist. In our case, we construct
K as follows, where rows correspond to the ordered vertices, and the columns correspond to
the ordered edges. Note that we again refer to the ordered notation of edges, and consider

39



a < b:

Kij =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−1 νi ∈ εj ∶= (νa, νb), i = a

1 νi ∈ εj ∶= (νa, νb), i = b

0 otherwise

(1.2.9)

Multiplying the transpose of K with the function vector f gives us g: K⊺f = g.

Divergence: Previously, we defined divergence as the difference between inflow and outflow
at a given point, where the flow is defined by the gradient vector field. Since our vertices
are analogous to points, and we define our gradient vector g through the edges, we can
compute the divergence for a vertex νi by the edges it is adjacent to, Ei. The divergence for
a vertex in this case is the sum of all of its outflowing “gradients” encoded in the adjacent
edges, minus the sum of all inflowing gradients; we again have to keep in mind here that
for undirected graphs, this in/outflow is determined by the arbitrary order of the vertices in
matrix form, they do not represent the flow of information in the actual graph. Luckily, K
already encodes this flow information for us: multiplying K with g computes the divergence!
This also validates the notion that divergence (and therefore by definition the Laplacian)
is the analogue of the second-order gradient, since we multiply with K twice, one for the
gradient and the second for the divergence:

∆f(x) ∶= ∇ ⋅ ∇f(x) =KK⊺f(x) = Lf(x) (1.2.10)

The Laplacian L can always be factored as KK⊺, and being able to be factorized in this form
is one of the several definitions of a positive semi-definite matrix. Therefore the Laplacian
is positive semi-definite, meaning it is symmetric and all of its eigenvalues are non-negative.

While we now have an understanding of how L is constructed, it is still not obvious how
we arrive at the L =D−A definition. To do so, let us look at K again. Row Ki∗ corresponds
to vertex νi, and column K∗j corresponds to edge εj; a nonzero Kij indicates that edge εj is
connects to vertex νi.

With these in mind, let us inspect the diagonal of K = KK⊺. Lij is simply the dot
product of the rows i and j of K. The diagonal elements are then multiplication of each
row (corresponding to a vertex) with itself, and is equivalent to the sum of squares of its
elements. Since each entry of the row indicates whether the corresponding edge is incident
to the vertex at hand, the sum of the squares (as we only have {−1,1}), we simply end up
summing up the number of edges adjacent to each vertex, i.e. the degree. Thus we have
shown that the computing the diagonal elements is equivalent to computing D.

Moving on, the off-diagonals Lij,i≠j are essentially the dot product of rows i and j of
K. Remember that nonzero entries of a row indicate incidence to the corresponding edge;
therefore in the dot product the multiplication of individual entries is nonzero only if the
corresponding edge is incident to both rows, i.e. the edge connects the two respective vertices.
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By our definition, a pair of vertices can be connected only by a single edge, and if two vertices
are adjacent, one will have 1 as the corresponding entry, while the other will have -1, resulting
in a dot product of -1 in the case of adjacency and 0 otherwise. Consequently, the off-diagonal
entries will be equivalent to −A.

This sums up our introduction to the graph Laplacian. As mentioned, the graph Lapla-
cian is a very useful tool to understand the behavior of graph functions, and therefore we
will encounter it frequently. Next, we will introduce some graph signal processing tools, and
see how these tools leverage spectral theory in graph learning.

1.2.5. Graph Signal Processing

Graph Signal Processing (GSP) refers to the set of approaches used to encode, extract
and analyze signals x ∶ V → R on graph data. This requires extending classical signal
processing notions such as Fourier transforms, signal filtering and frequency responses to
graphs. This process is conceptually analogous to the extension of deep learning tools to
graph data: Classical signal processing is quintessentially done on regular domains such as
Euclidean data or time; GSP then aims to extend classical signal processing tools to the
graph domain.

Oftentimes, a “classical” time-dependent signal is analyzed through the Fourier transform
in signal processing. This approach translates well to GSP, where the graph Fourier transform
is one of the most commonly used tools. In the context of graph learning, the graph Fourier
transform is essential in motivating graph convolutions and has proven to be elemental
to the development of GNN algorithms in recent years. Therefore, defining the classical
Fourier transform and extending it to graphs serves as a suitable entry point to graph signal
processing. This subsection by no means attempts to be a comprehensive overview of GSP,
it is rather intended to present few GSP tools that are required for us to understand GNNs.
For a more comprehensive overview, we refer the reader to Ortega et al. [104], Ortega [103],
Stankovic et al. [138, 137].

1.2.5.1. The Fourier transform and convolutions. The Fourier transform is com-
monly described as a mathematical transform that decomposes functions in time domain to
functions in frequency domain. In more general terms, it allows us to represent an input
signal (defined in the time domain) as a weighted sum of complex sinusoids. The coefficients
of this weighted sum determine the amplitude of each frequency that constitutes the original
function.

For a function f(x), its Fourier transform

F(f(x)) = f̂(s) = ∫
Rd
f(x)e−2πx⊺sidx (1.2.11)
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decomposes a signal f(x) into a series of complex exponentials e−2πx⊺si, where s can be
interpreted as the frequency of the sinusoidal component represented by the complex expo-
nential. These sinusoidal components are derived from the fundamental relationship between
the trigonometric functions and the complex exponential, as given by Euler’s formula:

eix = cos(x) + i sin(x)

Let us turn our attention to convolutions. Convolution is a mathematical operation on
two functions f and g that produces a third function (f ∗ h) that is the integral of the
product of the two functions after one is reversed and shifted.
Definition 1.2.9 (Convolution (Continuous)).

(f ∗ h)(x) = ∫
Rd
f(y)h(x − y)dy (1.2.12)

The convolution operation is tightly related to the Fourier transform via the convolution
theorem.
Theorem 1.2.10 (Convolution theorem). The Fourier transform of a convolution of two
functions is equal to the element-wise product of the Fourier transforms of the two functions

(f ∗ h)(x) = F−1(F(f(x))⊙F(h(x))) (1.2.13)

where ⊙ denotes the element-wise product. In other words, the convolution operation in one
domain (e.g. frequency/spectral) is equivalent to the element-wise product operation in the
other (e.g. time/vertex) domain.

In a discrete domain t ∈ {0, . . . ,N − 1}, the convolution theorem also applies, where F
refers to the discrete-time Fourier transform (DTFT) instead. However, if at least one of the
sequences are N -periodic (which applies to our discrete domain of N points) we are able to
replace the use of DTFT with DFT with a discrete circular convolution:
Definition 1.2.11 (Convolution (Discrete circular)).

(f ∗N h)(t) =
N−1
∑
τ=0

f(τ)h ((t − τ)mod N) (1.2.14)

The DFT for a discrete sequence (f(x0), f(x1), . . . , f(xN−1)) is then given by:

sk =
1
√
N

N−1
∑
t=0

f (xt) e
− i2π

N
kt

=
1
√
N

N−1
∑
t=0

f (xt) (cos(2π
N
kt) − i sin(2π

N
kt))

(1.2.15)

where sk ∈ {s0, s1, sN−1} corresponding to each element of the above sequence. If the input
sequence and the DFT are real-valued, then the sequence [sk], k ∈ [0, . . . ,N − 1] gives us the
coefficients of a Fourier series, where sk provides the amplitude of each sinusoidal component
e−

i2π
N

k corresponding to frequency 2π
N k. Note that larger k values imply higher-frequency
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Figure 1.3 – A cycle graph where each node corresponds to a point in a time series of
length N .

components, an important property when we extend the Fourier transform and convolutions
to graphs.

The discrete convolution f ∗ h can be viewed as applying a filter h over the series
(f(x0), f(x1), . . . , f(xN−1)); this signal filtering view forms the base of convolutional neural
network (CNN) models, which we will briefly discuss later on. Readers familiar with CNNs
will also note that convolutions are shift equivariant, i.e. shifting a signal and applying a
convolution is equivalent to shifting it after the convolution:

f(t + a) ∗ g(t) = f(t) ∗ g(t + a) = (f ∗ g)(t + a) (1.2.16)

This in turn makes convolutions equivariant to the difference operator:

∆f(t) ∗ g(t) = f(t) ∗∆g(t) =∆(f ∗ g)(t) (1.2.17)

where ∆f(t) = f(t + 1) − f(t).

1.2.5.2. Extending convolutions to graphs. Our coverage of the discrete
convolutions has so far focused on discrete time-varying signals in the form of
f(x0), f(x1), . . . , f(xN−1). As a first step towards extending convolutions to graphs,
we can consider the cycle (chain) graph (Figure 1.3), where each time point t is represented
by a node. The signal on this graph can be represented by a vector f where f[k] = f(k).
The edges then represent the propagation of the signal in time (except the edge from N − 1
to 0, required to keep the domain finite).

The cycle graph is a special type of graph where each vertex has one incoming and
one outgoing edge; time flows in only one direction. This makes its adjacency matrix Ac

equivalent to its random walk graph:

Ac[i, j] =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if j = (i + 1)mod N

0 otherwise
(1.2.18)

Since we also have Dc = I, we have the unnormalized Laplacian in the form of:

Lc = I −Ac (1.2.19)
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Recall our definition of the adjacency matrix (Definition 1.2.4). We see that multiplying
a graph function f with the adjacency matrix operates as a time-shift for the cycle graph:

(Acf) [t] = f [(t + 1)mod N] (1.2.20)

This can be generalized to all graphs in the following form: Multiplying a graph function
with the adjacency matrix propagates the graph signal at each vertex to its neighbors.

We observe a similar phenomenon with the Laplacian of the cycle graph. Instead of time
shifts, it computes the difference between sequential time-steps:

(Lcf) [t] = f [(t + 1)mod N] − f[t] (1.2.21)

When extending to general graphs, the Laplacian L computes the difference between the
signal at a node and its neighbors. In other words, the Laplacian measures the smoothness
of a graph function: A smooth function means the value of the function at a vertex is bound
to be similar to its neighbors. This property makes the Laplacian an indispensable tool in
GSP, and has advantages in designing convolutional filters as we will see later on.

Next up is the convolution operation, which can also be represented in matrix form based
on Equation 1.2.11 (we omit the modulo N since we deal with =< N time steps):

(f ∗ h)(t) =
N−1
∑
τ=0

f(t − τ)h(τ)

=Qhf ,
(1.2.22)

Qh ∈ RN×N here represents the convolution by filter h. How do we design Qh though?
In digital signal processing, filters can be represented by polynomial functions of the shift
operator [104], represented by Ac for the cycle graph:

Qh =
N−1
∑
i=0

αiAi
c (1.2.23)

This representation also satisfies the shift and difference equivariance requirement of convo-
lutions (Eqs. 1.2.16 and 1.2.17):

AcQh =QhAc

LcQh =QhLc

(1.2.24)

For general graphs, this formulation also applies as the adjacency and Laplacian matrices
still function as shift and difference operators respectively. Additionally, we need to factor
in the m node features x ∈ RN×m to arrive at the following filter:

QhX = α0IX + α1AX + α2A2X + ⋅ ⋅ ⋅ + αNANX (1.2.25)

This induces a spatial notion of convolution, where the signal Qhxν for a vertex ν ∈ V

corresponds to a weighted sum of node features aggregated from different hops in each
vertices’ N -hop neighborhood.
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1.2.6. Spectral Theory

Spectral theory can be summarized as the study of eigenvalues and eigenvectors of matri-
ces. It applies to a broader spectrum than just graphs and is used on matrices and operators
on a variety of mathematical spaces, though we will use spectral theory in the context of
graph matrices as described in Section 1.2.4. Let us recall the definitions of the two terms:
For an n×n matrix A, an n×1 vector v is an eigenvector of A with corresponding eigenvalue
λ ∈ R if

Av = λv

and v is not a zero vector.
One advantage we have when dealing with graph matrices is that they are almost al-

ways real valued, and usually symmetric, which come with some nice spectral properties as
demonstrated by the spectral theorem.
Theorem 1.2.12 (Spectral theorem). Let A be an n×n real, symmetric matrix. Then there
exists n real eigenvalues λ1, . . . , λn ∈ R and n corresponding real, orthonormal eigenvectors
v1, . . . ,vn such that:

Avi = λivi

⟨vi,vj⟩ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 i = j

0 i ≠ j

In addition, in many cases, the graph matrices we encounter are positive semi-definite,
such as the Laplacian as we have shown in Equation 1.2.10.

1.2.6.1. The graph Fourier transform. In our construction of graph convolutions, we
have restricted ourselves to the adjacency matrix so far. Just as we can construct convolutions
spatially using the adjacency matrix, we can do so spectrally through the Laplacian and its
connections to the graph Fourier transform. In fact, the spectral paradigm is arguably
dominant over the spatial one when considering graph convolutional networks, as we will
explore in further detail in Section 2.4.

We have covered the second-derivative formulation of the Laplacian for continuous signals
in Equation 1.2.8, and also shown how it is constructed for a graph. Recall that the divergence
of the gradient of a graph signal x on a vertex is equal to the sum of differences of the function
at the vertex and its neighbors:

(Lx)i =∑
j∈V

Aij(xi − xj) (1.2.26)

This formulation also commutes with the difference operation on the cycle graph, which is
simply a special case of Equation 1.2.26.

The eigenvalue problem for the Laplace operator is known as the Helmholtz equation. It
states that all eigenvalues λ of the Laplace operator ∆ have a corresponding eigenfunction
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(equivalent to eigenvectors, but on a function space as opposed to a vector space) f such
that:

−∆f = λf (1.2.27)

The eigenfunctions of the Laplacian operator are of the form:

−∆enxi = n2enxi (1.2.28)

Recall the sinusoidal components of the continuous Fourier transform (Equation 1.2.11),
given by e−2πxsi. The following then holds, where n = −2πs:

−∆e−2πxsi = (−2πs)2e−2πxsi (1.2.29)

This means the eigenfunctions of −∆e−2πxsi are the complex exponentials that form the
sinusoids of the Fourier transform, also known as the Fourier modes. This connection allows
us to extend the Fourier transforms to graphs by eigendecomposing the graph Laplacian
L =UΛU⊺. The graph Fourier transform then becomes:

F(x) =U⊺x = x̂ (1.2.30)

We will provide a more intuitive explanation of the graph Fourier transform in Section 2.4.1,
where we will use the eigenfunctions U to build convolutions in the Fourier domain.

A final relationship we will utilize when building our taxonomy framework is the relation-
ship between the Laplacian eigenvectors and the signal frequencies they capture. Namely,
the eigenvectors corresponding to smaller eigenvalues capture low frequency signals; as the
magnitude of eigenvalues increase, the associated eigenvectors capture higher frequency com-
ponents of the graph signal [124]. Low frequencies also imply localization: If the signal
variation is low, the signal changes more smoothly and nodes that are spatially close tend to
have similar signal values for these components. High-frequency signals on the other hand
may oscillate significantly for proximal nodes, and therefore do not provide much positional
information. We will see that these properties are leveraged when building spectral filters
(e.g. high-pass or low-pass filters) or positional node encodings, two of the many tools we
use in developing and benchmarking GNN algorithms.

1.3. Foundations of Geometric Deep Learning
Until the advent of geometric deep learning, the standard way of dealing with graph data

was to (a) preprocess the graph to eliminate or transform the graph structure to obtain a
simpler representation (such as a vector in R) that is suitable to traditional machine learning,
and (b) apply traditional machine learning algorithms or feedforward neural networks to the
resulting set of representations, as shown in Figure 1.4. This preprocessing step, in most
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Figure 1.4 – A typical pre-GNN deep learning pipeline: The graph is processed by an
encoder to output a vector representation x, which serves as inputs to an MLP. Figure
adapted from Sperduti and Starita [134].

cases, leads to the elimination of most if not all topological information and relationships in
the graph data.

The main motivator of this encoding approach was the fixed input size of machine learning
algorithms in contrast to the variable sizes of graphs. These encodings are usually domain-
specific and nontrivial to build; in molecular biology and chemistry, for example topological
indices [88, 111] are calculated by domain experts to produce the appropriate encodings.
Such encoding processes are however often defined a priori and do not depend on the statis-
tical learning task. This means that the resulting features may not be relevant to the task
at hand: Without prior knowledge of the task, it is possible that the information required is
lost already in the encoding process.

The first steps of geometric deep learning emerged from statistical learning models that
incorporated preprocessing steps that were able to take the graph structure into considera-
tion. We will here cover several of these statistical learning methods that lead to the first
“truly” graph-specialized deep learning algorithm, the Graph Neural Network (GNN) [126].

1.3.1. Recursive Neural Networks

Perhaps the first neural network variant that aims to leverage structural relationships
between entities (represented by nodes) is the Recursive Neural Network (RvNN) [134, 42].
The RvNN paper by Sperduti and Starita proposed implementing an adaptive encoder by
training another neural network alongside the “main” neural network that is used for the
prediction/classification task. This encoder network aimed to learn the best way to encode
the graph data such that the encodings capture the task-relevant information for any given
learning task. The reader may notice that using neural networks as encoders is currently
common or even standard practice in many domains such as computer vision or natural
language processing; for late ’90s, though, it was a novel approach.
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To understand the recursive neural network, let us revisit the standard neuron in a neural
network, and introduce the recurrent neuron. Recall that the output o(s) of a standard neuron
is

o(s) = σ (∑
i

wixi) (1.3.1)

in the form of some nonlinearity (e.g. rectified linear unit, ReLU) σ applied to the
weighted sum of inputs x. For a recurrent neuron with a single self-recurrent connection,
this equation becomes:

o(r)(t) = σ (∑
i

wixi(t) +wso
(r)(t − 1)) (1.3.2)

Here, the term within the nonlinearity again the weighted sum, plus the previous output
multiplied by some self-weight ws. Do note that it is not necessary to use the previous
output; one can use outputs from several steps before, or sum multiple previous steps to
produce the new output.

One major roadblock in the development of these encoder networks was that neither the
standard nor recurrent neural networks are not suitable to capture structural relationships
in graphs – the standard neuron does not take any structure into consideration, while the
recurrent neuron is designed to handle sequential structures only. To overcome this, they
propose the generalized recursive neuron. The generalized recursive neuron extends the
recurrent neuron; instead of incorporating the output of the unit/node in the previous time
step, it incorporates the outputs of the corresponding units for all vertices with outgoing
edges to the input node. Then, the output o(g)(x) of the generalized recursive neuron
corresponding to some vertex x in graph G is computed by

o(g)(x) = f
⎛

⎝

NL

∑
i=1
wili +

out_degreeG(x)

∑
j=1

ŵjo
(g)(outG(x,j))

⎞

⎠
(1.3.3)

where NL is the number of units encoding the label l = ϕG(x) for the current input x,
and ŵj constituting the weights for the recursive connections from each incoming edge. In
other words, the output of the generalized recursive neuron for vertex x is dependent on the
output of its (directed) neighbors. The recurrent neuron is then just a special case of the
generalized recursive neuron, where the graph is essentially a linear linked list (Fig. 1.5a).
Sperduti and Starita [134]’s definition is somewhat counterintuitive here when applied to
temporal graphs, as the direction of the arrows is in reverse time. In any case, the recursive
application of Equation 1.3.3 produces the following set of equations for this linked list; we
make the time variable t explicit here for better interpretability:
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(a) A temporal graph as a linked list (b) A directed graph with a cycle

Figure 1.5 – The recurrent neuron is suitable for sequential data that can be represented by
(acyclic) temporal graphs, while the generalized recurrent neuron can handle cyclical graphs.

o(t = 1) = σ (
NL

∑
j=1
wjx

(1)
j )

o(t) = σ (
NL

∑
j=1
wjx

(t)
j + ŵ1o(t − 1)) t = 2, . . . , k

Due to the sequential/temporal nature of the data, its graph representation does not
have any cycles; it is clear that the recurrent neuron is not designed to deal with cycles. The
generalized recursive neuron must however account for cycles. To borrow the example from
Sperduti and Starita [134], the cyclic graph in Fig. 1.5b is defined by the following system
of equations:

o (x1) = σ (
NL

∑
j=1
wjx

(1)
j )

o (x2) = σ (
NL

∑
j=1
wjx

(2)
j + ŵ1o (x1) + ŵ2o (x4))

o (x3) = σ (
NL

∑
j=1
wjx

(3)
j + ŵ1o (x2))

o (x4) = σ (
NL

∑
j=1
wjx

(4)
j + ŵ1o (x5))

o (x5) = σ (
NL

∑
j=1
wjx

(5)
j + ŵ1o (x3))

o (x6) = σ (
NL

∑
j=1
wjx

(6)
j + ŵ1o (x5))

where the set of outputs for x2, x3, x4 and x5 are interdependent.
Moving on from a single neuron, let us now consider Ng interconnected generalized re-

cursive neurons. We can expand Equation 1.3.3 to a matrix form, with σiν = σ(νi), x ∈ RNL ,
W ∈ RNg×NL , o(g)(x), o(g)(outG(x,j)) ∈ RNg , Ŵj ∈ RNg×Ng :
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(a) DAG (b) Cyclic graph

Figure 1.6 – Neural representations of a (a) directed acyclic graph (DAG) and (b) directed
cyclic graph (with cycle highlighted). Figure adapted from Sperduti and Starita [134].

o(g)(x) = σ
⎛

⎝
Wx +

out_degreeG(x)

∑
j=1

Ŵjo(g)(outG(x,j))
⎞

⎠
(1.3.4)

1.3.1.1. Building the graph encoder. We now proceed with building graph encoders
from generalized recursive neurons. The authors posit two conditions for some graph G and
generalized recursive neuron u:

(1) Number of connections: u must have as many recursive connections as
maxx∈V{out_degreeG(x)}.

(2) Supersource: G must have a supersource, i.e. a vertex from which all other vertices
are reachable. The authors note that in the absence of a supersource, it is possible
to add a vertex s to the graph and add the minimum number of outgoing edges to
existing vertices of the original graph in order to generate a supersource.

With these conditions in place, we build our encoding framework such that output of the
neuron u for the supersource s encapsulates the representation of the whole graph G. Since u
is recursive and its output takes into consideration all outgoing neighbors of s, the resulting
encoder is a network that mirrors the topology of the original graph, where each vertex has
a corresponding generalized recursive neuron. If the graph is acyclic, the resulting encoder
is a feed-forward neural network (Fig. 1.6a), if it has cycles, the network is recurrent instead
(Fig. 1.6b).

1.3.1.2. Training the graph encoder. For supervised learning on graphs, the encoder
we have shown which we designate by Ψ is designed to be trained in conjunction with a feed-
forward neural network Φ as a prediction head in modern terms. The network prediction is
then defined as

o(X) = Φ(Ψ(X)) (1.3.5)
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with the errors to backpropagate as follows, where y = Ψ(X), the output of the encoder
and the input to the prediction head:

∆WΦ = −η
∂Error(Φ(y))

∂WΦ
(1.3.6)

∆WΨ = −η
∂Error(Φ(y))

∂y
∂y
∂WΨ

(1.3.7)

In Sperduti and Starita [134]’s framework, the backpropagation algorithm to be used for
the encoder depends on the type of graphs. If training data consists of DAGs, standard
backpropagation is sufficient; for cyclic graphs, recurrent backpropagation [110] is required.
In addition, when dealing with cyclic graphs, convergence of the encoding network is not
guaranteed. The generalized RvNN framework by Frasconi et al. [42] also avoids cyclic
graphs, and also considers the Sperduti and Starita [134] paper on DAGs. In short, we
see that recursive neural networks are relatively suitable frameworks to process graphs that
lack cycles, but are not well-suited for cyclic graphs. This is a severe restriction; in most
domains where graph learning is ubiquitous, be it biochemistry or social networks, cycles are
commonplace.

1.3.2. Kernel Methods

Graph kernels are arguably the most popular pre-GNN methods in graph learning, and
are still commonly used today. Prediction with graph kernels are used in conjunction with
a family of learning algorithms called kernel machines, the most popular of which is the
support-vector machine (SVM). Without kernels, SVMs are essentially binary linear classi-
fiers: For two classes of linearly separable data in N dimensions, SVM computes an N − 1
dimensional hyperplane with the maximal distance from the nearest data point from each
class. However, through the introduction of slack variables and kernel functions, we adapt
SVMs to detect more complex patterns in data. Kernels function as a form of similarity
measure over all pairs of data instances computed via inner products. This in turn means
we can construct kernel functions for graphs as well.

We will begin with a slight digression into SVMs for a more intuitive understanding
of how they function with and without kernels; some parts of the formulation are omitted
here in the main body to not detract us too much from our focus on graph kernels, but a
more complete version of the SVM formulations are available in Appendix A. We will then
introduce the notion of kernel functions, and cover several useful graph kernels.

1.3.2.1. Linear SVMs. Assume we have p data points from two classes in the form of

(x1, y1), . . . , (xp, yp)
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where xi is some N -dimensional vector, and y ∈ 1,−1. SVM training outputs a decision
function D(x) such that D(x) > 0 Ô⇒ y = 1 and y = −1. otherwise. For the linear SVM,
the decision function defines a separating hyperplane in the form of ⟨w,x⟩+ b, where sign of
the output determines the class:

D(x) = sign(⟨w,x⟩ + b) (1.3.8)

Here, w is an N -dimensional vector that determines the orientation of the hyperplane, and
b is a bias that represents the offset from the origin. For linearly separable training data
(xi, yi), the decision function satisfies

yi(⟨w,xi⟩ + b)

∥w∥
≥M (1.3.9)

and the training objective is to find some w (which we can normalize to unit length) that
maximizes the margin M , resulting in the maximum-margin hyperplane:

M∗ = max
w,∥w∥=1

M

s.t. yi(⟨w,xi⟩ + b) ≥M, i = 1,2, . . . , p
(1.3.10)

The maximum-margin hyperplane separates the data points of the two classes in a way such
that the distance of the hyperplane to the nearest data point from either class is maximized.
Inevitably, some data points will satisfy

min
i
yi(⟨w,xi⟩ + b) =M

∗ (1.3.11)

by defining the maximum margin; these points constitute the support vectors where the
algorithm derives its name from. Now, let us denote wM =

w
M and bM =

b
M . This allows us

to reframe Equation A.1.3 as:

M∗ = max
w,∥w∥=1

M

s.t. yi(⟨wM ,xi⟩ + bM) ≥ 1, i = 1,2, . . . , p
(1.3.12)

Since ∥wM∥ =
∥w∥
M = 1

M , the size of the full margin becomes 2M = 2
∥wM ∥

(as M denotes
the distance denotes the distance from the hyperplane to only one side of the full margin).
Thus, maximizing M is equivalent to minimizing the norm ∥wM∥. We can then once again
reframe our objective as the following optimization problem:

arg min
wM ,bM

1
2∥wM∥

2

s.t. yi(⟨wM ,xi⟩ + bM) ≥ 1, i = 1,2, . . . , p
(1.3.13)

The resulting problem is called is called the hard-margin SVM. It is a convex quadratic
programming (QP) problem, and can be solved directly. However, for high-dimensional
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Figure 1.7 – A linearly separable data with two outliers A and B that significantly reduce
the separation margin from M1 to M2, corresponding to soft-margin classifier D1 and hard-
margin classifier D2.

spaces the solution space grows extremely large. One can instead introduce Lagrange mul-
tipliers λi ≥ 0, i = 1, . . . , p for the inequality constraints, and solve for the Lagrangian dual
of this problem for a more efficient solution (we skip the primal-dual conversion for brevity
here, see Appendix A.1):

arg max
λ

p

∑
i=1
λi −

1
2

p

∑
i=1

p

∑
j=1
λiλjyiyj⟨xi,xj⟩

s.t.
p

∑
i=1
λiyi = 0, i = 1,2, . . . , p

λi ≥ 0, i = 1,2, . . . , p

(1.3.14)

which is also a QP problem that can be solved numerically, and does not depend on w nor
b but only on λ. Also note that we use the inner product of the data points ⟨xi,xj⟩ here, a
property that will prove useful when we leverage kernel functions. The solution λ̂ can then
be used to obtain ŵ corresponding to the maximum-margin hyperplane:

ŵ =
p

∑
i=1
λ̂iyixi (1.3.15)

The hard-margin SVM has several shortcomings. To begin, it is unsuitable for linearly
non-separable data. Furthermore, it is sensitive to outliers. Even in cases where the data
is linearly separable, outliers may alter the separating hyperplane in a way that reduces the
separation margin, as illustrated by Fig 1.7. In such cases, it may be beneficial to relax the
linear separability constraints for outliers in order to obtain a larger margin for the majority
of data points. This brings us to the soft-margin SVM algorithm.
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The soft-margin SVM relaxes the separability constraints by introducing slack variables
ξ1, . . . , ξp ≥ 0 to the constraints in Eq. 1.3.13:

yi(⟨w,xi⟩ + b) ≥ 1 − ξi, i = 1,2, . . . , p (1.3.16)

These slack constraints allow for data points within the margin, or even on the other side
of the decision boundary. For each such data point xi, ξi denotes the distance of the data
point from the margin. Now, we want our classifier to not just maximize the margin (and
hence minimize ∥w∥2 as shown above), but also to reduce the errors by minimizing ξi. We
therefore rewrite our optimization problem in Eq. 1.3.13 as

arg min
w

1
2∥w∥

2 + β
p

∑
i=1
ξi

s.t. yi(⟨w,xi⟩ + b) ≥ 1 − ξi, i = 1,2, . . . , p

ξi ≥ 0, i = 1,2, . . . , p

(1.3.17)

where β denotes a configurable constant that is used to manage the trade-off between the
two terms to optimize. Whenever we have yi(⟨w,xi⟩ + b) < 1 for some xi (meaning this
data point is within the margins), we pay a cost of βξi in the objective function. A point is
misclassified if ξi ≥ 1. A large β keeps classification errors to a minimum but may result in
a reduced margin, while a small β permits more misclassified examples for a larger margin
on the remaining data points.

The dual Lagrangian problem formulation of the soft-margin linear SVM is identical to
its hard-margin counterpart in A.1.12, except the final set of constraints on λ which are
replaced by

β ≥ λi ≥ 0, i = 1,2, . . . , p (1.3.18)

One again solves the convex QP problem to obtain λ̂, and derive ŵ similarly:

ŵ =
p

∑
i=1
λ̂iyixi (1.3.19)

1.3.2.2. Nonlinear SVMs and the kernel trick. So far, we have only considered
SVMs in the input space, i.e. have assumed that the data is (at least partially) separable
using a linear decision boundary. In real world data, this is rarely the case. What happens
when a linear decision boundary does not capture the true decision boundary? Boser et al.
[11] resolve this by the so-called “kernel trick”, which transforms the data from the input
space to a feature space where the data is linearly separable via kernel functions.
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As a starting point, let’s consider some function ϕ that transforms the data x from the
input space RN into the aforementioned feature space, which is no longer necessarily in RN :

arg min
w
,
1
2∥w∥

2

s.t. yi(⟨w, ϕ(xi)⟩ + b) ≥ 1, i = 1,2, . . . , p
(1.3.20)

The resulting dual Lagrangian problem for the soft-margin SVM is:

arg max
λ

p

∑
i=1
λi −

1
2

p

∑
i=1

p

∑
j=1
λiλjyiyj⟨ϕ(xi), ϕ(xj)⟩

s.t.
p

∑
i=1
λiyi = 0

β ≥ λi ≥ 0, i = 1,2, . . . , p

(1.3.21)

The optimization process does not require the explicit feature transform ϕ; the inner products
⟨ϕ(xi), ϕ(xj)⟩ are sufficient to recover λ̂. Similarly, b̂ and the decision function D(x)just
rely on the inner product of the features:

b̂ =
1
∣SV1∣

∑
i∈SV1

(yi − ∑
j∈SV

λ̂iyi⟨ϕ(xi), ϕ(xj)⟩) (1.3.22)

D(x) = sign(⟨ŵ,xi⟩ + b̂) = sign(∑
i∈SV

λ̂iyi⟨ϕ(xi), ϕ(x)⟩ + b̂) (1.3.23)

The kernel trick relies on using a kernel function K ∶ X × X → R such that K(x, y) =
⟨ϕ(xi), ϕ(xj)⟩ instead of explicitly using ϕ. But why is this important, or useful? First of
all, it is often simpler to design kernels than feature maps. Secondly, designing kernels do
not require knowledge of the dimensionality of the feature space. Let us demonstrate with
an example.

Consider a feature map ϕ ∶ R2 → R6, ϕ(z) = (z[1]2, z[2]2,
√

2z[1],
√

2z[2],
√

2z[1]z[2],1).
Instead, one can use the quadratic kernel K(x, y):

K(x, y) = (⟨x, y⟩ + 1)2

= x[1]2y[1]2 + x[2]2y[2]2 + 2x[1]y[1] + 2x[2]y[2] + 2x[1]x[2]y[1]y[2] + 1

= ⟨ϕ(xi), ϕ(xj)⟩

(1.3.24)

Using the corresponding kernel K implicitly computes dot products in R6 while the explicit
computation is only in R2. Not all kernel functions are suitable though, as bound my the
Mercer theorem (1.3.2):
Definition 1.3.1 (Positive-definite kernel). Let X be a nonempty set. A symmetric (i.e.
f(x, y) = f(y,x)) function K ∶ X × X → R is a positive-definite kernel on X if ∀n ∈ Z+,
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x1, . . . ,xn ∈ X , and c1, . . . ,c2 ∈ R, the following holds:
n

∑
i=1

n

∑
j=1
cicjK (xi, xj) ≥ 0

Theorem 1.3.2 (Mercer theorem). If K(x, y) is symmetric, continuous and positive definite,
then there exists a function such that K(x, y) = ⟨ϕ(x), ϕ(y)⟩

Kernel SVM training is based on the dual Lagrangian problem once again; the inner
product of feature maps in Eq. 1.3.21 are replaced by the kernel function:

arg max
λ

p

∑
i=1
λi −

1
2

p

∑
i=1

p

∑
j=1
λiλjyiyjK(xi,xj))

s.t.
p

∑
i=1
λiyi = 0

β ≥ λi ≥ 0, i = 1,2, . . . , p

(1.3.25)

b̂ and D(x) are again computed similarly:

b̂ =
1
∣SV1∣

∑
i∈SV1

(yi − ∑
j∈SV

λ̂iyi⟨K(xi,xj)⟩) (1.3.26)

D(x) = sign(⟨ŵ,xi⟩ + b̂) = sign(∑
i∈SV

λ̂iyiK(xi,x)⟩ + b̂) (1.3.27)

1.3.2.3. Kernel functions and graphs. For Euclidean spaces X ∈ Rd, two com-
monly used kernel functions are the polynomial kernel K(x,y) = (⟨x,y⟩ + 1)q, which
learns a degree-q polynomial decision function, and the radial basis function (RBF) ker-
nel K(x,y) = exp(− ∣x−y∣2

σ2 ), also known as the Gaussian kernel.
However, for a kernel method to be successful on some domain, more than just validity

is required. Gärtner [55] identifies three properties of a “good” kernel for a given domain:

(1) Completeness: A kernel is complete if it takes into account the necessary information
to solve the problem at hand.

(2) Correctness: A kernel that satisfies this property reflects the underlying semantics of
the problem at hand. In other words, the hypotheses that the kernel structure makes
about the problem (and how the kernel will help solve it) are correct.

(3) Appropriateness: A kernel is appropriate for a problem if examples that are close or
identical to each other in terms of their class or output are also close to each other in
the mapped feature space.

A kernel that employs these properties are (a) able to learn underlying concepts in class
distinction well; they are also expected to generalize well. Admittedly, the stated properties
are somewhat abstract, but still are helpful to obtain a sketch of a good kernel given domain-
specific data.
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When looking for suitable kernels for structured data, and in particular graphs, we can
see that the commonly used kernels do not satisfy the above criteria for a number of reasons.
Primarily, standard kernels fail the completeness criteria as they operate on vectors of reals
and cannot leverage structural relationships in graph data. As a result, several different
kernel approaches that do leverage graph structure are proposed.

Diffusion kernels. Kondor and Lafferty [82] borrow ideas from spectral graph theory
to propose diffusion kernels for node-level classification tasks. Diffusion kernels are built on
exponential kernels. For some square matrix H, its exponential is defined as

eβH = lim
n→∞

n

∑
i=0

(βH)i
i! (1.3.28)

This limit always exists, and eβH is a positive definite matrix if H is symmetric. A symmetric
H then can be diagonalized H = T−1DT, the diagonal matrix D can be exponentiated
elementwise easily to compute eβH = T−1eβDT. The matrix H is called the generator matrix.

To construct a matrix H that represents an undirected graph, Kondor and Lafferty [82]
proposes using the negative Laplacian of the graph. Consider an undirected graph G = (V ,E),
where V is the vertex set, and {νi, νj} ∈ E for each pair of vertices νi and νj that have an edge
in between. The negative Laplacian of the graph is simply the negative of our Laplacian
definition in Equation 1.2.6:

Hij =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 {νi, νj} ∈ E

− ∣δ (νi)∣ νi = νj

0 otherwise

(1.3.29)

Consequently, it is symmetric, negative semi-definite and can be similarly utilized as an
operator on functions. The name diffusion kernel, also known as the heat kernel, derives
from an analogy with physics. In classical physics, the continuous Laplacian ∆ is used in
heat equations used to model the diffusion of heat over time in a given region, with equations
of the form

∂

∂t
ψ = µ∆ψ

As they consider kernels of the form Kβ = eβH, differentiating this form with respect to β

results in
d

dβ
Kβ =HKβ

With the use of the negative graph Laplacian as the operator H, describing a similar process
in discrete form over a graph, the analogy becomes clear. The underlying idea is that
unlike standard kernels, the the diffusion process over different vertices will depend on local
structural information embedded in the negative Laplacian, meaning kernel methods like
SVMs will be able to leverage this diffusion process to classify graph structured data.
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Random walk kernels. The kernel function proposed by Kashima et al. [77] uses
random walks over graphs as a global similarity measure instead, leveraging marginalized
kernels [146]. Unlike diffusion kernels, random walk kernel functions take in two graphs with
vertex and edge labels: K(G,G′). The random walk is represented by some hidden variable
h = (h1, . . . , hl), where l represents the length of the random walk. The starting vertex is
drawn from some initial probability distribution ps(h) (assumed to be uniform if no prior
distribution is known), and subsequent vertices in the walk are sampled from the probability
distributions provided by the repeated application of the random walk matrix to the initial
distribution. A constant probability is reserved to terminate the random walk if drawn.

Given a pair of graphs (G,G′), a pair of random walks (h,h′) can be generated. The
traversed vertex and edge labels for a walk can be listed in the form of

νh1eh1νh2eh2 . . .

Assume two non-negative kernel functions K(ν, ν′) and K(ε, ε′) between vertex labels and
edge labels respectively. An example kernel function could just return whether the two
vertices are equivalent:

K(ν, ν′) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ν = ν′

0 ν ≠ ν′
(1.3.30)

For labels in R, the Gaussian kernel is a natural choice. The authors then define a joint
kernel as the product of the label kernels, where z = (G,h):

Kz (z,z
′) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 (ℓ ≠ ℓ′)

K (νh1 , ν
′
h′1
)∏

ℓ
i=2 K (εhi−1hi

, ε′h′i−1
h′i) ×K (νhi

, ν′h′i
) (ℓ = ℓ′)

(1.3.31)

The marginalized kernel is then defined as the expectation of the joint kernel Kz over all
possible h and h′. Note that this computation is intractable since the possible values of l is
infinite. The authors however show that for non-negative kernels K(ν, ν′) and K(ε, ε′) and
a constant nonzero walk termination probability γ, this expectation converges in the limit
of l to infinity if

K(ν, ν′)K(ε, ε′) < 1
(1 − γ)2

We omit additional details here, but the underlying idea is important: Two graphs that
are likely to have similar random walks are more likely to belong to the same class, while
diverging random walks imply distinct classes.

1.3.3. Markov chains

Markov chains, also known as Markov processes, are stochastic models describing se-
quences of events in which the probability of an event depends only on the previous state,
i.e. the result of the previous event. A cornerstone of stochastic modeling and simulation
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methods, they come in discrete and continuous-time flavors. Due to the discrete structures
of graphs, the discrete-time variant is of importance to us.

Discrete-time Markov chains (DTMC) can be thought of as a (finite) number of states
with assigned transition probabilities for each state. One may notice that this formulation
is immediately applicable to graphs; each vertex represents a state, while the edges from the
vertex to its neighbors determine the states it may transition into. For weighted graphs, the
edge weights may encode the transition probabilities to each neighboring state. The reader
may at this point realize that we have already covered a form of Markov process in previous
chapters: The random walk!

Time-homogeneous (i.e. the transition probabilities do not change over time steps)
DTMCs are commonly represented by a transition matrix. Recall the random walk ma-
trix W in Definition 1.2.6 – W is precisely this transition matrix for the Markov chain
representation of the random walk process.

An important property of Markov chains is irreducibility. In an irreducible Markov chain,
any state is reachable from any other state in a finite number of time steps. When applied to
our analogy with graphs, it means an undirected graph is connected, or for the directed case,
strongly connected; the criterion is that any two vertices in the graph are reachable from
each other. When a Markov chain is both irreducible and all its states positive recurrent
(i.e. all states can reach themselves in finite time as well), it can be proven that it has a
stationary distribution π. This is known as the fundamental theorem of Markov chains.
Definition 1.3.3 (Fundamental theorem of Markov chains). For an irreducible and aperiodic
Markov chain with transition matrix P, there exists a unique stationary distribution π such
that πP = π. This also implies that for any initial distribution X0 = x the the average
probability distribution converges to π:

lim
t→∞

P (Xt = y∣X0 = x) = πy

In the context of random walks on graphs, the fundamental theorem implies that for
(strongly) connected graphs, a stationary distribution π exists, and the probability that we
arrive at vertex νi at some time step t approaches πi as t approaches infinity.

We have now shown how Markov chains can be associated with graphs, and how the
random walk operator represents a Markov process over a graph structure. This natural
association led to development of random walker based algorithms on graphs, such as the
well-known PageRank algorithm [13, 105] which models the hyperlink structure of the inter-
net as a Markov chain, and essentially leverages the stationary vector of the web pages to
compute their associated rankings. Page et al. [105] refer to the random walker interpreta-
tion as a “random surfer” that clicks on links in a web page at random; the steady state for
a web page is then the probability of the random surfer arriving at the web page as t→∞.
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To briefly summarize, PageRanks are computed through the recursive algorithm:

X(t + 1) = dWX(t) + (1 − d)1n (1.3.32)

X(t) ∈ Rn denotes the PageRanks for the n web pages at time step t, W is the n×n PageRank
matrix constructed based on the graph representation of the web, d is a decay factor and 1n

is a n-length vector of ones. The final term (1−d)1n prevents “rank sinks”, since clusters of
web pages that do not have outgoing links form loops a random walker cannot escape from.
The decay factor permits a nonzero probability of randomly jumping out of such loops. The
steady state X is then computed as

X = (1 − d)(I − dW)−11n (1.3.33)

The prior work of three authors of the original GNN paper, namely Franco Scarselli, Ah
Chung Tsoi and Markus Hagenbuchner, had focused on extending the PageRank algorithm
with learning capabilities, with limited success. Their first paper on adaptive page ranking
aims to change the steady state through an “optimized” decay vector instead of 1n [144]
to influence the final ranks. It is straightforward to see that changing the decay vector
changes the steady state through Equation 1.3.33. This optimization is done via quadratic
programming, but is intractable for extremely large n, as is the case for the complete web.
The authors then propose several approaches to simplify the problem, such as clustering web
pages to reduce n, and relaxing the original constraints to arrive at suboptimal solutions.

A later iteration of this work focuses on building parametric models that learn the page
ranking function from examples in order to construct customized page rank algorithms for
users [145]. The examples are designed to be subsets of web pages sorted based on spe-
cific page features (e.g. prioritizing certain keywords, domains or URLs) in order to reflect
the desired custom page rank ordering for these subsets. The authors again formulate cus-
tomized page ranking as a quadratic problem, and propose several methods to build problem
constraints out of page features; each page is assumed to have a set of features F , and a
corresponding “focused page rank” for each feature. As an example, the feature may be the
existence of some word, and then the focused page rank for this feature would be high for
pages that include the word. The adaptive page ranks are then parametrized as a linear com-
bination of the focused page ranks. In addition, in order to leverage the global page ranks
(as computed by the original PageRank algorithm) along with the focused ranks, several
cost functions to minimize the difference between the two are considered in the optimization
process.

1.3.4. Convolutional Neural Networks

Convolutional neural networks (CNN) [29, 86] are one of the most ubiquitous families
of neural networks, particularly used for processing regular grid-based data such as images.
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(a) A standard MLP layer (b) A standard CNN layer with sparsity

Figure 1.8 – Fully-connected MLP and sparsely-connected CNN layers. In the CNN, each
unit is connected to only the 3 (determined by kernel size) closest nodes, shown in pink.

Figure 1.9 – An example of a 1D convolutional layer with a kernel size of 3. The kernel is
implemented in the computational graph via sparse connections with shared weights. Edges
of the same color share the same weight. The 0-annotated nodes represent “padding” that
serves as placeholders for spatial edges.

Fundamentally, CNNs are quite similar to FNNs: They consist of computational units that
are composed of trainable parameters and biases, and information is propagated in feedfor-
ward fashion. The main differentiators of CNNs are the convolutional layers. Let us recall
the the discrete convolution from Section 1.2.5.1 (Definition 1.2.11):

(f ∗ h)(t) =
N−1
∑
τ=0

f(τ)h ((t − τ))

CNN layers apply convolutions on local “patches” of image data via a kernel filter. This
kernel consists of a set of trainable parameters that typically cover a small portion of the
actual domain. This is equivalent to saying the filter h is 0 outside this window. We consider
a window of size 2n + 1, such that h(s) = 0 for ∣s∣ > n. We can then modify the discrete
convolution as follows:

(f ∗ h)(t) =
t+n

∑
τ=t−n

f(τ)h(t − τ) (1.3.34)

However, CNNs often deal with data in two dimensions, meaning both our domain and kernel
are 2D. Nevertheless, it is not difficult to extend the discrete convolution to two dimensions,
even if somewhat tiresome notationally:

(f ∗ h)(i, j) =
i+n

∑
τ=i−n

γ+n

∑
j=γ−n

f(τ, γ)h(i − τ, j − γ) (1.3.35)
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In convolutional layers, these mathematical operations are modeled by specialized con-
nectivity structures and weight sharing. Without loss of generality, we will cover the 1-
dimensional case; the model is generalizable to an arbitrary number of dimensions. Consider
the comparison of MLP and CNN network connectivities in Figure 1.8. In a standard MLP,
every two pairs of nodes from sequential layers are connected. In a CNN convolutional layer,
a computational unit s3 is connected only to those that are spatially closest in the grid struc-
ture, forming a receptive field {x2, x3, x4}. This sparse structure mimics the kernel window
that is applied to only a small patches (of size 3 in our example) of data at a time, and
significantly reduces the computational complexity: A fully-connected layer with N inputs
and M outputs requires N ×M parameters, while for a convolutional layer with kernel size
K this number reduces to K ×M , where K << N .

This number is further reduced by parameter sharing, meaning applying the same pa-
rameters (represented by the kernel weights) to different sets of inputs in order to produce
the layer outputs. Parameter sharing is also demonstrated in Figure 1.9, where edges of the
same color share the same parameter. This is equivalent to “sliding” the kernel filter over
the layer inputs and completes our model, and further reduces the number of parameters to
K from K ×M . More importantly, it renders our kernels “convolutional” by implementing
the shift equivariance property of convolutions we established in Section 1.2.5.1: The kernel
in Figure 1.9 would still produce the same output pattern if the inputs were shifted by any
number of units. This property renders convolutional layers excellent “feature extractors”
for images, since the visual features that compose an object (e.g. a human face) can be
detected by the kernel activations no matter where they are positioned in the image.

The kernel formulation of CNN convolutions brought a new perspective to GNNs as
models learning through convolutions. From this perspective, CNNs and GNNs share a
commonality in that they employ inductive biases (e.g. translation equivariance, assumption
of local connections) that make them more efficient learners. In the next chapter, we will see
draw explicit connections between the GNN message-passing framework and convolutions
on graphs.

We have now covered the main areas of prior work on graph structures that have both
inspired the class of neural networks we broadly group under the umbrella term Graph
Neural Network (GNN). Therefore, let us turn our attention to the neural message passing
framework, the cornerstone of all GNN algorithms.
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Chapter 2

Graph Neural Networks: A Survey

2.1. Motivation for Graph Neural Networks
The success of deep neural networks on unstructured data in the 2000s naturally extended

to structured domains in the following years. Recurrent neural networks (RNN) [122, 64]
were hugely successful on sequential data (e.g. text and gene sequences), while convolu-
tional neural networks (CNN) replicated this success on grid-structured data (e.g. images),
revolutionizing the field of computer vision. Therefore, the extension of deep learning to
graph structures was arguably a natural progression. Nevertheless, extending deep learning
to graph structures came with unique challenges. The problem stemmed from the structural
flexibility of graphs compared to sequences and grids. In fact, sequences and grids can be
viewed as specific types of graphs:

— A sequence is essentially a directed path: It consists of a finite ordered set of vertices,
connected by a finite ordered set of edges. The edges are all directed in the same
direction, and each vertex is only connected to the vertex before and after them
(unless they are the start/end vertices, in which case they may have only one edge).
The cycle graph (Fig. 1.3) is the canonical representation of a sequence in graph form.

— In the context of image data and CNNs, a grid is a finite square grid over two-
dimensional Euclidean space R2 that forms a regular tiling. Each vertex (pixel) has
edges to the eight other vertices that are spatially closest to it (Figure 2.1a). The
vertices form a Cartesian plane, where the top-left-most coordinate can be thought
to represent the origin (0,0). In its graph representation, the edges represent spatial
relationships, and therefore an order of vertices can be established.

One important difference of the more general graph domain is that graphs are almost never
regular, as compared in Figure 2.1. Why does this matter? Because RNN and CNN models
are able to leverage precisely these structural regularities. For example, CNNs learn patterns
in image data using convolution kernels; these kernels are 2D grids that mirror the regular
structure of the much larger input space. The learned kernels slide along the input space



(a) An image in euclidean space, which can be viewed
as a grid where each pixel is represented by a vertex
connected to its spatial neighbors.

(b) A non-euclidean graph from the
ENZYMES dataset [10], visualized
by Rossi and Ahmed [118].

Figure 2.1 – Fully-connected MLP and sparsely-connected CNN layers. In the CNN, each
unit is connected to only the 3 (determined by kernel size) closest nodes, shown in pink.

Figure 2.2 – A simplified visualization of standard convolutional kernels failing on graphs.
A 3 × 3 convolution kernel is valid for the left half of the graph, it is not valid for the right.

and perform a Frobenius inner product with different patches of the input space to produce
feature maps. This “sliding” over input space is only possible because of the regularity of
the 2D grid – it does not translate to graphs since if we were to construct some kernel that
mirrors the relationships at a region of the graph, it would fail at another region where the
designed pattern doesn’t apply. A visual representation of this phenomenon is provided in
Figure 2.2, using a standard 2D kernel found in CNNs.

One might note that to handle the irregularities in graph structure, matrix representations
of graphs may prove useful. We could, for example, flatten the adjacency matrix A to form a
vector, and input the vector to an MLP to derive structural information. This approach has
two problems. First, this requires all graphs to have the same number of vertices to maintain
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the fixed input size. More importantly, this approach relies on a fixed order of vertices for all
graphs, i.e. is not permutation invariant. We can define permutation invariance as follows:
Definition 2.1.1 (Permutation invariance). A function f that operates on an adjacency
matrix A is permutation invariant if it satisfies the following:

f(PAP⊺) = f(A) (2.1.1)

where P denotes a permutation matrix.
This brings us to the second main difference between sequence/grid data and graphs: It

is possible to define a natural order of vertices and/or spatial relationships in such structures;
yet since graphs do not lie on a Euclidean domain a natural order or spatial relationships
between vertices rarely exist. To summarize, we have identified two points our deep learning
algorithm on graphs needs to account for: The irregularity of graph structure, and permu-
tation invariance. These requirements gave birth to a new architectural framework in neural
frameworks called neural message passing.

2.2. Neural Message Passing
The defining feature of most GNN architectures is that they use what is now called

neural message passing [51], in which vertices iteratively exchange messages in the form of
vectors (that are updated via the GNN) with their neighbors. Despite being formalized
much later than the emergence of GNNs, it is now accepted that GNN algorithms, including
the earlier ones, employ some sort of neural message passing. Therefore, we will make a
conscious attempt to base our explanations of GNN models on this framework. We will also
use the term message-passing neural networks (MPNN) to refer to GNNs that employ this
mechanism.

In the message-passing framework, each vertex ν ∈ V is assigned a hidden state h(k)ν ,
where k denotes the message-passing iteration, which can be thought of as the sequential
message passing layers in a GNN. The initial state at k = 0 is defined as the feature set x
for each vertex: h(0)ν = xν ,∀ν ∈ V . At each message-passing iteration, each vertex updates
its hidden state by aggregating the hidden states flowing from its neighborhood N (ν):

h(k+1)
ν = UPDATEk

(h(k)ν ,AGG(k)({h(k)u ,∀u ∈ N (ν)}))

= UPDATEk
(h(k)ν ,m(k)

N (ν)
)

(2.2.1)

where UPDATE and AGG are differentiable functions, and are parametrized by neural net-
works. The aggregation function AGG composes the “message” mNν using its neighbors’
states. UPDATE then updates produces an updated state h(k+1)

ν based on the message mNν

and the current state h(k)ν . The output of the final (Kth) message-passing layer is the final
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states for each vertex:
zν = h(K)ν ,∀ν ∈ V

The neural message passing framework can be seen as an extension of the two main
branches of prior work on graphs, recursive neural networks and random walk models. It
extends recursive neural networks as it can be naturally applied on a more general class of
graphs (as opposed to DAGs only), and can be utilized for node-level tasks (since RvNNs
output “global” results that are collected in a supersource). On the other hand, GNNs
extend random walk-based methods by incorporating a gradient-based learning algorithm as
opposed to quadratic programming. In addition, one may note that the message propagation
process is analogous to diffusion on graphs, which we briefly covered in Section 1.3.2.3, where
each node diffuses its state to its neighbors.

At each iteration of message-passing algorithm, a vertex gathers information about the
states of vertices further and further away in terms of connectivity. After k iterations, the
state h(k)ν of vertex ν incorporates information from its k-hop neighborhood Nk(ν), i.e. from
all vertices that are at most k hops away. This is similar to the local feature aggregation
observed in CNNs. The main difference is that the CNN convolutions rely on the spatial
relationships to aggregate information over the 2D grid, while in GNNs this aggregation
behavior depends on graph connectivity.

We had mentioned in Section 1.2.2 that graphs embed information in the form of
node/edge features and graph structure. It is obvious that the vertex states in MPNNs
encode feature-based information from its k-hop neighborhoods. In addition, the message-
passing framework leverages structural information in graphs by modulating the information
propagation based on the graph structure, since the states are propagated to only to neigh-
borhoods as determined by graph connectivity.

Our presentation of message-passing in Equation 2.2.1 depends on two functions
UPDATE and AGG, which we have so far discussed in an abstract way. MPNN models
implement these functions using neural networks; different MPNN flavors of differ in their
implementations. We will now explore the original GNN algorithm from the lens of message
passing, and work our way up to more recent and successful implementations that serve as
common baselines in GNN benchmarking. Many of the older MPNNs were not published
with the message-passing framework in consideration; the framing and notation in our
explanations may occasionally differ from the original papers as result.

2.3. The Original GNN
Gori et al. and Scarselli et al. set out to unify ideas from recursive neural networks and

random walk models by proposing the Graph Neural Network (GNN) that is first outlined in
[53], and then further detailed in [126]. Their idea closely resembles the MPNN framework
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we describe: Each vertex in the graph is assigned a state vector h, and an encoding network
is built that mirrors the structure of the graph (Figure 2.3). The “message” is constructed
as simply the sum of all neighboring states:

mN (ν) = AGG({hu,∀u ∈ N (ν)}) = ∑
u∈N (ν)

hu (2.3.1)

Note that we did not need to use a neural network in the aggregation step since in this case,
aggregation is equivalent to a sum. The neural network is used in the update step, however,
with trainable weight matrices W(k)

self and W(k)
neigh, ∈ Rdk×k−1 , and bias b(k) ∈ Rdk :

UPDATE(hν ,mN (ν)) = σ(Wselfhν +WselfmN (ν)) (2.3.2)

For brevity, we omit the iteration superscripts (k) here. Also note that in most GNN layer
formulations, the bias b(k) may be omitted for brevity as well – using biases is the norm in
practice, but since they are simply added to the layer computation at the end they introduce
notational overhead. The full message-passing equation then becomes:

h(k)ν = σ
⎛

⎝
W(k)

self h(k−1)
ν +W(k)

neigh ∑
v∈N (ν)

h(k−1)
v + b(k)

⎞

⎠
(2.3.3)

Note that we also apply an elemental nonlinearity σ (e.g. ReLU) in our update step; this
nonlinearity and bias are not explicitly stated in the paper, but are the current standard in
implementation for optimal performance; we therefore opt to include them.

A common simplification to this MPNN model is using a single matrix W for W(k)
self and

W(k)
neigh, and to include the vertex itself in the aggregation step:

h(k)ν = σ
⎛

⎝
W(k)

∑
v∈N (ν)∪{ν}

h(k−1)
v + b(k)

⎞

⎠
(2.3.4)

This can be thought of adding self-loops to the adjacency matrix. The updates for all vertices
can be represented using matrix notation, with the help of the adjacency matrix:

H(k) = σ ((A + I)H(k−1)W(k)) (2.3.5)

The self-loop GNN formulation in fact operates as a 1-hop convolutional filter, based on
our graph convolution design in Equation 1.2.25. Nonetheless, this simple adjacency matrix
based formulation suffers from several issues:

(1) Despite our somewhat simplified description of the original GNN, the algorithm proves
to be computationally expensive in practice as message propagation continues itera-
tively until convergence.

(2) Computing a simple sum of neighboring states in the AGG step means some vertex
ν with a much higher degree than vertex u will have a hidden state h with a much
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Figure 2.3 – A graph and its Scarselli et al. [126] encoding network representation. The
computational units fW and gW are feedforward neural networks that take in current states
h, vertex labels νn and edge labels emn and updates each state according to the modeled
graph connectivity. The resulting network is a recurrent neural network (RNN), though it
can be simplified into an MPNN form. Final states h′n are then put through the output
network gW to produce node-level outputs o.

higher vertex norm as well: ∥∑v∈N (ν)hv∥ >> ∥∑v′∈N (u)hv′∥. Such sensitivities to node
degrees makes convergence more difficult and may lead to numerical instabilities.

(3) The authors’ formulation requires the parametrized functions to be a contraction map,
which limits the function space that can be used.

(4) When the fixed point is reached, it is likely that individual vertex states converge
to similar values as well as many iterations mean information from even the furthest
away nodes are incorporated into the states for each vertex; this is similar to heat
diffusion in space where at convergence every point is at the same temperature. This
is called the oversmoothing problem, and is commonly observed in other GNN variants
as well.

The next breakthrough in GNNs would be inspired by the introduction of image convolutions
to deep learning via CNNs and would center around improved extensions of convolutional
kernels to graphs.
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2.4. Graph Convolutional Networks (GCN)
The success of CNNs in the image domain and the structural analogies between image

and graph data motivated researchers to generalize convolutional kernels to graph neural
networks. Graph convolutions are usually categorized into two as spectral and spatial con-
volutions. Spectral GCNs define convolutions through spectral filters as commonly used in
graph signal processing; these filters are based on the spectral decomposition of the matrix
representations of graphs such as the Laplacian. Spatial GCNs define the convolution oper-
ation directly on the graph topology instead, and are motivated by information propagation
processes on graphs. We will see that the two approaches are nevertheless connected, and
can in fact be unified under certain conditions. Let us focus on spatial graph convolutions
first; the relationship between the two categories will emerge naturally soon enough as we
explore several variants.

2.4.1. Spectral convolutions on graphs

Spectral convolutions are concerned with the eigendecomposition of graph matrices,
namely the adjacency matrix and the Laplacian. These two matrices are real and sym-
metric by design and therefore are diagonalizable by the spectral theorem (Theorem 1.2.12),
hence the name “spectral”. In Section 1.2.4, we have covered several properties the adjacency
matrix and the graph Laplacian. Recall that multiplying a graph signal x with the adja-
cency/random walk matrix A diffuses/passes the signal to neighbors, while multiplication by
the Laplacian L provides the difference between the signal at a node and its neighbors. In
practice, their symmetric normalized variants, symmetric normalized Laplacian/adjacency
matrix may be used:

Lns =D− 1
2 LD− 1

2 (2.4.1)

Ans =D− 1
2 AD− 1

2 (2.4.2)

Lns = I −Ans (2.4.3)

These symmetric normalized forms retain most of the original matrices’ properties; e.g. the
normalized Laplacian is still real, symmetric and positive semi-definite. However, they have
two useful additional properties [59]:

(1) Lns and Ans have bounded spectra, i.e. their eigenvalues are bounded. This enables
numerical stability and better convergence properties in the optimization process.

(2) Lns and Ans are simultaneously diagonalizable, meanning they share the same set of
eigenvectors. This becomes evident in their diagonalization based on Equation 2.4.3

Lns =UΛU⊺ Ans =U(I −Λ)U⊺ (2.4.4)
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where Λ is the diagonal matrix of the eigenvalues of the normalized Laplacian, and U
the matrix of eigenvectors for both matrices. This property is particularly important
when designing convolutional filters, since a filter matrix commutative with one of the
matrices will imply commutativity with the other.

The Fourier transform is generalized to graphs through the eigendecomposition of its
(normalized) Laplacian: Lns = UΛU⊺, where the eigenfunctions U constitute the graph
Fourier modes (the complex exponentials of the Fourier series composing the function). The
eigenfunctions of the normalized Laplacian form an orthonormal space, i.e. U⊺U = I. Since
in the graph domain we define graph signal/functions over vertices, this replaces the notion of
time in the standard continuous/discrete Fourier transform. The notion of frequency domain
is similarly replaced with spectral domain when we consider graph Fourier transforms. The
graph Fourier transform projects a graph signal x to the orthonormal basis defined by U:

F(x) =U⊺x = x̂ (2.4.5)

This is by formulation the same as Equation 1.2.30, the only difference is that the eigenfunc-
tions are from the normalized Laplacian. The inverse is then defined as:

F(x̂) =Ux̂ (2.4.6)

The convolution theorem (Theorem 1.2.10) is also applicable to graph domain, and proves
useful here. Consider a graph signal x and a filter h; the convolution theorem states that
their convolution can be defined by the inverse Fourier transform of the element-wise product
of their Fourier transforms:

x ∗G h =U(U⊺x⊙U⊺h) (2.4.7)

Note the use of ∗G to represent the convolution operation over the domain of G. Since the
Fourier transform is defined by U as it depends on the Laplacian of graph G, the convolution
operation is defined only on a graph G; the subscript G is usually omitted for brevity.

Now, consider the filter h in the Fourier domain: U⊺h ∈ R∣V ∣. We can diagonalize it as
hθ = diag(U⊺h) and use it to simplify Equation 2.4.7:

x ∗G h =U(U⊺x⊙ hθ) (2.4.8)

=UhθU⊺x (2.4.9)

Spectral convolutional GNNs all follow this definition of graph convolutions and take the
form in Equation 2.4.9; GCN implementations mostly differ on how they define the spectral
filters hθ. The first spectral GCN proposed by Bruna et al. [17] simply uses a trainable
diagonal matrix diag(θh) as its spectral filter. Such nonparametric filters however are not
localized in space, and are computationally expensive for large graphs as they require an
explicit eigendecomposition of the Laplacian.
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A better approach is to parametrize hθ based on the eigenvalues of the normalized Lapla-
cian Λ, i.e. hθ(Λ). This enables the spectral convolution to commute with the normalized
Laplacian, avoiding the expensive eigendecomposition step:

f ∗G h = (Uhθ(Λ)U⊺)x

= hθ(Lns)x
(2.4.10)

Defferrard et al. [27] leverages this property by parametrizing the filters as a polynomial
function of the Laplacian eigenvalues using the Chebyshev expansion [61]. The Chebyshev
polynomials have an efficient recurrent formulation in the form of:

T0(x) = 1

T1(x) = x

Ti(x) = 2xTi−1(x)

(2.4.11)

The spectral filter then takes the form hθ = ∑
K
i=0 θiTi(Λ̃) where Λ̃ = 2Λ

λmax
− I as the diagonal

eigenvalue matrix normalized with the largest eigenvalue λmax. The resulting convolution
operation is:

x ∗G hθ =U(
K

∑
i=0
θiTi(Λ̃))UT x (2.4.12)

This form still relies on the eigendecomposition of Lns, but we can use Equation 2.4.10 to
obtain the form that relies on the Laplacian itself only:

x ∗G hθ =
K

∑
i=0
θiTi(L̃ns)x (2.4.13)

Note that the Chebyshev polynomials are computed up to some order K, which is in fact
an approximation of the original filter; the polynomial is truncated at order K. Furthermore,
constructing spectral filters based on the Kth order polynomials of the Laplacian mean that
our filters are now localized, since multiplication with the Laplacian implies gathering infor-
mation from the immediate neighborhood of each vertex. Increasing orders of the Laplacian
in turn imply aggregate information from further and further away. The form we have ar-
rived is then a weighted sum of the information in each node’s K-hop neighborhood, with
the trainable parameters θi controlling the “importance” assigned to information flowing in
from different hops.

Kipf and Welling [79] propose several simplifications to the Defferrard et al. formulation
to arrive at a more efficient GCN model. This highly successful variant is usually the network
referred to with the term GCN, and is considered a strong baseline model even today.

The authors first limit K = 1, this results in a convolution that is linear on the Laplacian
layer-wise, but richer functions can still be modeled by stacking multiple convolutional layers.
This allows for building deeper GCNs on limited computational budgets, since multiple layers
of higher-order polynomial convolutions lead to an exponential increase in computational
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requirements. They also approximate λmax ≈ 2. These changes simplify Equation 2.4.13 to:

x ∗G hθ = θ0x + θ1(Lns − I)x (2.4.14)

= θ0x + θ1D−
1
2 AD− 1

2 x (2.4.15)

The symmetric normalization we introduced in Equation 2.4.1 is leveraged here: The tran-
sition in 2.4.15 is only possible due to the Laplacian being in its symmetric formalized form,
as per Equation 2.4.3.

To further reduce the number of trainable parameters, the authors set θ = θ0 = −θ1. The
graph convolution then becomes:

x ∗G hθ = θ(I +D− 1
2 AD− 1

2 )x (2.4.16)

The authors note that the repeated application of this convolution may lead to numerical
instabilities, so as a final addition they apply a renormalization trick:

I +D− 1
2 AD− 1

2 → (D + I)− 1
2 (I +A)(D + I)− 1

2

→ D̃− 1
2 ÃD̃− 1

2 = Ãns
(2.4.17)

The renormalization trick simply allows us to obtain the normalized symmetric form of I+A.
This ties the Kipf and Welling GCN very smoothly to the MPNN framework. Recall the
matrix form of the basic GNN in Equation 2.3.5:

H(k) = σ ((A + I)H(k−1)W(k))

= σ (ÃH(k−1)W(k))

Converting Equation 2.4.16 to graph-level matrix form and applying a nonlinearity σ gives
us something very similar:

H(k) = σ (ÃnsH(k−1)W(k)) (2.4.18)

We have recovered the original message-passing GNN (Equation 2.3.5), with the sole dif-
ference being that we use the symmetric normalized variant of the adjacency matrix with
self-loops, Ãns = (I +A)ns.

This very elegant formulation unifies the spectral and spatial views of the GCN into
one: We have defined the graph convolution from a spectral-domain perspective as an ap-
proximation of a function operating on the graph Laplacian eigenvalues Λ, yet the resulting
convolutional layer simply aggregates information from spatially neighboring nodes and itself
to update its state.

To motivate this GCN formulation through the spatial perspective, we can focus on the
aggregation operation of the original GNN. In discussion of the shortcomings of the original
GNN in Section 2.3, we had mentioned that the sum aggregation step (Equation 2.3.1) may
lead to numerical instabilities in (2). A simple alternative to improve upon this is to compute
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Figure 2.4 – A CNN convolution with a 3 × 3 kernel (left) vs spatial graph convolution
(right). The pixel/vertex the convolution is computed for is highlighted in pink, while
the convolved region is highlighted in blue. Each convolves a region equivalent to a 1-hop
neighborhood of the center vertex, which is regular on a Euclidean grid and irregular for a
general graph.

the average of the neighboring states:

mN (ν) =
∑u∈N (ν)hu

∣N (ν)∣
(2.4.19)

The spectral formulation of Kipf and Welling [79] in fact performs a similar averaging oper-
ation through symmetric normalization:

mN (ν) = ∑
v∈N (ν)

hu
√
∣N (ν)∣∣N (u)∣

(2.4.20)

This is how the GCN unifies the two motivating points of view: Replacing the standard
aggregation with the symmetric-normalized version in place of the standard GNN message-
passing aggregation in Equation 2.3.3 is analogous to a first-order approximation of a spectral
graph convolution!
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2.4.2. Spatial convolutions on graphs

We can also motivate spatial graph convolutions without relying on the spectral deriva-
tion. Spatial convolutions form a direct analogy to convolutions in CNNs, as visually demon-
strated in Figure 2.4. CNNs apply n × n filters over identically structured “patches” of the
image; the size of the filter defines the “neighborhood”: A 3 × 3 filter/kernel is equivalent
to the 1-hop neighborhood of the center vertex on the 2D grid. The actual convolution
operation is simply the sum of the elementwise multiplication of the n × n patch with the
n × n kernel. The regularity of the grid once again guarantees that in vectorized form, the
size of the filter and patch will be the same.

Spatial convolutions are similarly defined for each vertex based on the message passing
framework: For a given vertex, the states of its neighborhood and itself can be vectorized
and/or aggregated, and then multiplied with a filter of the same size. There are, however,
two problems with this approach: (a) Unlike images data and CNNs, we cannot guarantee
a fixed size of neighborhood for every vertex since the degrees may vary for each; it is
impossible to directly apply a fixed-size filter directly on the neighborhood. (b) There are
no predetermined orderings of vertices. Spatial GCNs are mostly distinguished by how they
resolve these problems of non-regularity. The literature on spatial GCNs is quite vast, but
the general approach is to aggregate the vertex neighborhood into a fixed size representation.
Citing a few examples here will give us a better idea:

— PATCHY-SAN by Niepert et al. [102] orders the neighborhood nodes based on some
criteria (e.g. degree or PageRank), and selects the first k nodes to keep the neigh-
borhood size fixed. This framework is a direct analogy to the CNN convolution, as
the MPNN aggregation operation is essentially a concatenation: a fixed size of neigh-
borhood is selected and ordered to form a structured local “patch”, which is then
learnable by standard CNNs.

— Learnable graph convolutional network (LGCN) by Gao et al. [45] similarly transforms
graph data into a 2D grid by using some node feature x themselves to order the nodes,
and again picking k nodes with the largest x values to keep the neighborhood fixed.
Afterwards, 1-D CNN kernels are used for learning on the 2-D patches.

— Diffusion-convolutional neural network (DCNN) by Atwood and Towsley [3] performs
a k-step diffusion by computing powers of the transition matrix Pk, where P =D−1A
(Definition 1.2.6):

H(k) = σ(PkX⊙W(k)) (2.4.21)

In DCNN, the hidden representations H(k) are not functions of previous hidden rep-
resentations H(k−1); instead, each hidden representation H(k) is a function of the
kth-hop transitions of the input matrix X. The hidden representations H(1), . . . ,H(k)

are then concatenated at the end.
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— GraphSAGE by Hamilton et al. [60] presents a generalized neighborhood aggregation
framework, in which a fixed-size set of neighbors are sampled uniformly for each vertex,
aggregated to form a representation, and then concatenated with the node features
themselves and fed to a fully-connected layer W and a nonlinear activation. This
formulation naturally fits into the MPNN framework, with UPDATE step defined as:

h(k)
NS(ν)

= AGG(k)({h(k)u ,∀u ∈ NS(ν)})

h(k)ν = σ (W(k) ⋅ [h(k−1)
ν ⊕ h(k)

NS(ν)
])

(2.4.22)

where NS(ν) denotes the sampled neighborhood for vertex ν, and ⊕ denotes concate-
nation. The AGG operator can be implemented by different approaches. The authors
propose applying an element-wise max-pooling:

AGG(k)pool =max ({σ (Wpoolh(k)u ) ,∀u ∈ NS(ν)}) (2.4.23)

Alternatively, one can simply take the mean of the neighborhood and concatenate
with the current state. In fact, by further simplifying Equation 2.4.22 by averaging
the current state as well in the update step, we can recover a form similar to the
spectral GCN convolution with standard normalization (Eq. 2.4.19) as opposed to
symmetric normalization (Eq. 2.4.20):

h(k)ν = σ (W(k) ⋅mean ({hk−1
ν } ∪ {hk−1

u ,∀u ∈ NS(ν)})) (2.4.24)

2.4.3. Addressing oversmoothing in GCNs

Graph convolutions quickly became the norm in GNNs after their inception, as they
proved both faster and more accurate than pre-convolutional GNNs which were formulated
more akin to generalization of recurrent neural networks to graphs [12]. However, initial
GCNs were not able to fully address the problem of GNN oversmoothing we mentioned in
Section 2.3: Stacking many GCN layers mimics many iterations of message-passing, lead-
ing to the individual node representations in the graph converging to a certain value and
becoming indistinguishable. This problem renders very deep GCN models ineffective; Chen
et al. [20] find that most GCN models are most effective in “shallow” forms of as little as two
convolutional layers. This however limits the ability of these models to extract information
from higher-order neighborhoods.

ResGatedGCN by Bresson and Laurent [12] adds residual connections between convolu-
tion layers to handle oversmoothing, a trick borrowed from the successful ResNet [62] family
of CNN architectures. They also incorporate edge gates to modulate the information coming
from each edge. The edge gates consist of learnable parameters, and enable the layers to
learn what edges are important for the graph learning task at hand; we will see that similar
approaches are further explored via graph attention in the next section.
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Chen et al. [20] present GCN II, a more recent model that improves upon the original
GCN through two additional techniques to handle oversmoothing. Recall the original GCN
layer (Equation 2.4.18):

H(k) = σ (ÃnsH(k−1)W(k))

We have mentioned that stacking K standard graph convolutions is equivalent to forming
a Kth-order polynomial filter. Wu et al. [154] show that the standard graph convolution
with the renormalization trick (Eq. 2.4.17) acts as a low-pass filter that applies smoothing
over the graph. Stacking GCN layers is then equivalent to K applications of the smoothing
operation. The analogue of this low pass-filter in the image domain is the blurring operation;
one can then see the oversmoothing problem arising from the repeated application of such
filters more intuitively. The authors define the GCN II layer as follows:

H(k) = σ (((1 − αk) ÃnsH(k−1) + αkH(0)) ((1 − βk) In + βkW(k))) (2.4.25)

The augmentations of GCN II upon the original GCN are two-fold:

(1) The smoothed representation ÃnsH(k−1) is combined with an initial residual connec-
tion to the first layer H(0), where αk modulates the strength of this residual connection.
This residual connection is different from the one proposed in ResGatedGCN among
others in that it is connects the current layer to the initial node representations, not
a previous convolutional layer. This means that even after many message-passing it-
erations, the final node representations retain at least a fraction of their initial states.

(2) The weight matrix W(k) is combined with the identity matrix In (with the strength
of the connection modulated by (1 − βk)), an idea borrowed from ResNet [62] again.
This allows the weight matrices W(k) to have small norms, and essentially acts as a
regularizer. This regularizer prevents node representations from quickly converging
after repeated convolution, and hence alleviates oversmoothing.

Many approaches have been introduced to manage oversmoothing in GNNs, two of which
we have covered in this section as they relate to the construction of our taxonomy later on.
Nonetheless, building efficient and performant deep GCNs (by stacking tens of convolutional
layers similar to large CNNs) remains an open problem and a limiting factor on applying
these learning algorithms to large graphs.

2.5. Graph Attention and Graph Transformers
A more recent line of work has focused on improving neighborhood aggregation via the

attention mechanism Bahdanau et al. [4]. To compare with other message construction ap-
proaches, note that GraphSAGE considers the information flowing into a vertex from each
neighbor equivalent through averaging (Eq. 2.4.19), while the Kipf and Welling uses non-
parametric, pre-determined values computed through symmetric normalization (Eq. 2.4.20).
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Graph attention replaces these values by learnable attention weights measuring the impor-
tances between a node and each of its neighbors:

mN (ν) = ∑
u∈N (ν)

αν,uhu, (2.5.1)

The next state weight for a node ν is then computed as (compare with Eq. 2.3.4):

h(k)ν = σ
⎛

⎝
∑

u∈N (ν)∪{ν}

α
(k)
ν,uW(k)h(k−1)

u

⎞

⎠
(2.5.2)

The attention weight between ν and some neighbor u is computed by concatenating the
hidden states linearly transformed by the weight matrix W(k), and multiplying the con-
catenated matrix with a trainable attention vector a. The output is then passed through a
non-linearity (LeakyReLU is used in practice) and then normalized via softmax across the
vertex neighborhood:

αν,u = softmax (σ (a⊺ [W(k)h(k−1)
ν ⊕W(k)h(k−1)

u ]))

=
exp (σ (a⊺ [W(k)h(k−1)

ν ⊕W(k)h(k−1)
u ]))

∑v∈N (ν) exp (σ (a⊺ [W(k)h(k−1)
ν ⊕W(k)h(k−1)

v ]))

(2.5.3)

Furthermore, the authors propose using multi-headed attention inspired by the Transformer
model [147] for better stability in the learning process. In multi-headed attention, M in-
dependent attention mechanisms are used at a GAT layer, and the resulting features are
concatenated or averaged in each iteration (note that we have omitted the iteration super-
scripts k for notational clarity):

hν = ⊕
M
m=1σ

⎛

⎝
∑

u∈N (ν)∪{ν}

α
(m)
ν,u W(m)hu

⎞

⎠
(2.5.4)

hν = σ
⎛

⎝

1
M

M

∑
m=1

∑
u∈N (ν)∪{ν}

α
(m)
ν,u W(m)hu

⎞

⎠
(2.5.5)

Transformer models and multi-headed attention can be particularly useful for relaxing the
constraints put forth by graph structure. The standard Transformer self-attention on a graph
is in fact equivalent to a form of weighted message-passing between all pairs of vertices (i.e.
a fully connected graph). This results in an increased expressive power and can capture
relationships between far away or even disconnected nodes if such relationships exist, at the
cost of quadratic complexity of O(∣V ∣). Furthermore, treating the graph as fully-connected
essentially destroys structural information embedded in the edge relationships which may
make training more difficult for even large transformer models. The GAT, on the other hand,
provides a trade-off by essentially limiting the attention computation to local neighborhoods.
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More recent work by Yun et al. [162] and Dwivedi and Bresson [33] have improved upon
the GAT model by employing the fully-connected graph view and extending it to edge
features to arrive at a more generalized Graph Transformer (GT). To not lose structural
information in the fully-connected view, Dwivedi and Bresson [33] propose encoding po-
sitional information as node features. This is not trivial, however, since since graphs are
non-Euclidean and don’t have a standard coordinate system to “position” the nodes. The
solution is a generalization of “positional encodings” (PE) from the original Transformer
paper [147]. The intuition behind PEs is that nodes far apart in the graph should have
substantially different PEs, while closer nodes should have similar ones. We can use the
eigendecomposition of the symmetric normalized graph Laplacian (Equation 2.4.3) for this.
An n-node graph will have n×n Laplacian, and taking k eigenvectors after decomposition will
yield an n × k matrix, where each row corresponds to a node in the arbitrary ordering. The
low frequency (i.e. smaller corresponding eigenvalue magnitude) eigenvectors of the Lapla-
cian are well-localized: We can then select the k eigenvectors from the lowest frequency
ones, and assign each node the corresponding 1×k vector as their PEs as an additional input
feature. This approach has proved very successful in practice in transformer-based methods,
but several issues still persist and is a very active area of research. For a more detailed
overview of the recent developments, we refer the reader to Dwivedi and Bresson [33], Lim
et al. [90] and Rampášek et al. [113].

2.6. Graph Isomorphism and GNNs
The concept of graph isomorphism aims to capture whether two graph objects have the

same structure, in informal terms.
Definition 2.6.1 (Graph isomorphism (unlabeled)). Two graphs G and H are isomorphic
if there is a bijection between the nodes of the two graphs

f ∶ VG → VH

such that two vertices ν and u in G are adjacent if and only if f(ν) and f(u) are adjacent
in H:

{ν, u} ∈ EG Ô⇒ {f(ν), f(u)} ∈ EH

In almost all cases, though, our nodes have features to distinguish them, functioning as
node labels. For such labeled graphs we need to consider that the mapping preserves the node
features as well as graph structure. This brings us to our definition of graph isomorphism
for labeled graphs.
Definition 2.6.2 (Graph isomorphism (labeled)). Two graphs G and H, with corresponding
adjacency matrices AG, AH and feature matrices XG, XH are isomorphic if and only if there
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exists a permutation matrix P such that

PAGP⊺ =AH

PXG =XH

While conceptually simple, testing for graph isomorphism is a very difficult problem
from an algorithmic perspective: The optimization procedure involves searching over all
possible permutation matrices P, which has a computational complexity of O(∣V ∣!). The
problem is not NP-complete, yet there are no known solutions in polynomial time either,
and is therefore commonly referred to as an NP-intermediate (NPI) problem. There exist
algorithms to approximately test for graph isomorphism though, the most commonly used
one being the Weisfeiler-Lehman (WL) algorithm.

In the context of graph learning, graph isomorphism proves to be particularly useful in
quantifying the representational capacity of learning algorithms. An intuitive way to think
about this is whether a given algorithm (e.g. a GNN) is able to determine whether two graphs
are isomorphic, i.e. outputs the same representation zG = zH if G and H are isomorphic.
Ideally, an more expressive GNN will be able to distinguish some non-isomorphic pairs of
graphs that a less expressive GNN will not be able to.

In light of this, a natural baseline for GNN expressivity becomes the established standard
in approximate isomorphism testing, namely the 1-WL algorithm. Whether a GNN is as
good as the 1-WL test is the most common baseline of GNN representative power, and the
test itself has some interesting relationships with GNNs. Before we delve into that, however,
let us review the 1-WL algorithm.

2.6.1. The Weisfieler-Lehman algorithm

The base and most common variant of the WL algorithm is the 1-WL algorithm; collo-
quially any reference to the algorithm without a prefix usually refers to the 1-WL version.
We can summarize the algorithm as follows; a visualization of the algorithm is also available
in Figure 2.5:

(1) Given two graphs G and H, assign a label to each node in each graph, l(0)G (ν) for
ν ∈ VG and likewise l(0)H (ν) for u ∈ VH . In many graphs, the node degree is used as the
labels, but node features can be used as well.

(2) Assign a new label to each node iteratively by hashing a multi-set that is composed
of (a) the current node label, and (b) the set of labels of its neighbors. W.l.o.g. for
G, we have

l
(i)
G (ν) = HASH (l(i−1)

G (ν),{{l
(i−1)
G (u) ∀u ∈ N (ν)}}) (2.6.1)
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Figure 2.5 – Two iterations of the WL test on a graph. The AGG step aggregates the
neighbor labels for each vertex with its own label, and the UPDATE step hashes the resulting
multiset to a new value. The grey arrow represents the hash operation. Adapted from an
example from Sato [125].

One can note the similarity this step bears to the message-passing step in MPNNs.
The double-brace notation indicates a multi-set, and HASH maps the multi-set to a
new label.

(3) Repeat step (2) for both graphs until some iteration K at which the labels for all
vertices converge:

l
(K)
G (ν) = l

(K−1)
G (ν)∀ν ∈ VG l

(K)
H (u) = l

(K−1)
H (u)∀u ∈ VH

Alternatively, the algorithm can terminate early if the resulting multi-sets are not
equivalent at any point, meaning WL(G) ≠WL(H) and the graphs not isomorphic.

(4) Finally, collect all node labels for each graph in multi-sets:

LG = {{l
(K)
G (ν)∀ν ∈ VG}} LH = {{l

(i−1)
H (u)∀u ∈ VH}}
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Figure 2.6 – A canonical example in which the WL test fails: The test cannot distinguish
that these graphs are non-isomorphic.

If the final multi-sets are equivalent, we have WL(G) = WL(H) implying graph
isomorphism between G and H.

The WL algorithm is highly efficient with convergence guarantees in ∣V ∣ iterations, and
guarantees that a pair of graphs are not isomorphic when the test fails. It also can guarantee
isomorphism for certain families of graphs. However, there are well-known pairs of graphs
where the WL test fails, one canonical example is the hexagon-versus-two-triangles shown in
Figure 2.6. One thing to note is that the WL test failing here relies on the node labels being
identical; the test does fail in the case labels are derived from node degrees, for example, but
will succeed if they employ distinct node features.

2.6.2. The WL algorithm and GNNs

Two lines of work in 2019, namely Morris et al. [99] and Xu et al. [159], focused on for-
malizing the relationship between the 1-WL test and GNNs, based on the MPNN framework
with the AGG and UPDATE operators introduced in Equation 2.2.1. Both papers arrived
at the same two results through their analysis, which can be summarized as follows:

(1) Message-passing GNN architectures are at most as powerful as the WL test in distin-
guishing between non-isomorphic graphs.

(2) Under certain conditions, there exist message-passing GNNs as powerful as the WL
test.

The following theorem from Xu et al. [159] puts forth the first point:
Theorem 2.6.3. Let G1 and G2 be any two non-isomorphic graphs. If a graph neural
network A ∶ G → Rd maps G1 and G2 to different embeddings, the WL isomorphism test also
decides that they are non-isomorphic.

We can provide a proof sketch as follows, and delegate the full proof to the original paper:
The WL test always hashes different multi-sets of neighboring nodes into different labels,
and the same multi-sets to the same label. The GNN is also guaranteed to map the same
inputs to the same outputs at any iteration. This creates a valid mapping ϕ for the WL test
and GNN states operating on any vertex ν ∈ G at some iteration i: h(i)ν = ϕ(l

(i)
ν ). Then, if
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two graphs G1 and G2 have the same multi-set of WL neighborhood labels, they will also
have identical sets of GNN neighborhood features, i.e. the same next states for each vertex.
Assuming we use a permutation invariant graph-level readout function on the final states of
the graphs to determine non-isomorphism, WL(G1) =WL(G2) Ô⇒ A(G1) = A(G2).

This is followed by the second theorem, which establishes conditions for which an MPNN
is as powerful as the WL test:
Theorem 2.6.4. Let A ∶ G → Rd be a GNN. A maps any two graphs G1 and G2 that the WL
test determines as non-isomorphic to different embeddings, if the following conditions hold:

(1) The AGG and UPDATE functions in the iterative update rule

h(k+1)
ν = UPDATEk

(h(k)ν ,AGG(k)({h(k)u ,∀u ∈ N (ν)}))

are injective, i.e. they map distinct inputs to distinct outputs: f(x1) = f(x2) Ô⇒

x1 = x2.

(2) A’s graph-level readout operating on final states (in the form of multi-sets of node
features) is injective.

Proof. Consider a GNN A, with injective aggregation and update functions f and ϕ. Since
the graph-level readout function is also injective, it is sufficient to show that A’s iterative
aggregation process results in different embeddings of node features at iteration k, h(k)ν . The
WL test also applies an injective hash function g to update the node labels l(k)ν :

l
(k+1)
ν = g (l

(k)
ν ,{l

(k)
u ,∀u ∈ N (ν)})

The proof shows through induction that for any iteration k, there exists an injective function
φ such that h(k)ν = φ (l

(k)
ν ). For k = 0, this already holds since the initial features are the

same: h(0)ν = l
(0)
ν .

Assuming this holds for iteration k, let us show that it holds for k+1. Substituting hk
ν = φ (l

k
v)

gives us
h(k+1)

ν = ϕ (φ (l
(k)
ν ) , f({φ (l

(k)
u ) ,∀u ∈ N (ν)}))

Since the composition of injective functions is injective, there exists some injective function
ψ so that

l
(k+1)
ν = ψ (l

(k)
ν ,{l

(k)
u ,∀u ∈ N (ν)})

This gives us
h(k+1)

ν = ψ ○ g−1g (l
(k)
ν ,{l

(k)
u ,∀u ∈ N (ν)}) = ψ ○ g−1 (l

(
νk))

where φ = ψ ○ g−1 is injective as the composition of injective functions.
Recalling h(k)ν = φ (l

(k)
ν ), consider two non-isomorphic graphs G1 and G2. If at some

iteration K, the WL test distinguishes them as non-isomorphic, i.e. recognizes that the
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multi-sets {l(K)ν } are different for G1 and G2. Since φ is injective, then we are guaranteed
that the embeddings {h(K)ν } = {φ (l

(K)
ν )} are also different for G1 and G2. □

A related result from Morris et al. [99] shows that the MPNN formulation in Equa-
tion 2.3.3 is sufficient to match the 1-WL test, if the initial node features of the graphs are
linearly independent. They also extend GNNs to match the k-WL test, an extension of the
1-WL test that is based on distinguishing graphs on tuples of vertices; this is much less
common in practice so we deem both the k-WL test and k-GNNs out of scope, though a
comprehensive review is provided in Morris et al. [99] for the interested reader.

The general problem with most GNN algorithms we have covered so far is that they are
not guaranteed to be as expressive as the WL algorithm. Consider the spectral GCN; the
spectral GCN aggregation rule is defined by the symmetric normalization we introduced in
Equation 2.4.20, which is not an injective function. Similarly, the element-wise max-pooling
in GraphSAGE aggregation (Eq. 2.4.22) is not injective.

Xu et al. [159] propose the Graph Isomorphism Network (GIN) which provably satis-
fies the conditions in 2.6.4. The theoretical guarantees of GIN rely on the fact that sum
aggregation can represent injective (and in fact universal) functions over multi-sets:
Lemma 2.6.5. Assume X is countable. There exists a function f ∶ X → Rn such that
h(X) = ∑x∈X f(x) is unique for each multi-set X ⊂ X of bounded size. Moreover, any
multi-set function g can be decomposed as g(X) = ϕ (∑x∈X f(x)) for some function ϕ.

Proof. Since the multi-set X is countable, there exists a mapping Z ∶ X → N from x ∈ X

to natural numbers. Since the cardinality of multi-sets of X is also bounded, there exists
a number N ∈ N > ∣X ∣ ∀X. Based on this information, one example of such a function is
f(x) = N−Z(x), which provides an h(X) = ∑x∈X f(x) that is injective over multi-sets.

Any multi-set function g is required to be permutation invariant (since it operates on
multi-sets, which are permutation invariant by construction) to be valid; ϕ (∑x∈X f(x)) is
also permutation invariant by default since the inner sum is permutation invariant. Since
h(x) = ∑x∈X f(x) is injective as well, any multi-set function g can be decomposed as g(X) =
ϕ (∑x∈X f(x)). □

On the other hand, injective set functions (such as mean/max aggregation) are not
injective when applied to multi-sets, leading to the deficiencies in GCN and GraphSAGE we
have shown. Based on this lemma, the authors provide the following corollary:
Corollary 2.6.6. Assume X is countable. There exists a function f ∶ X → Rn such that
for infinitely many choices of ϵ, including all irrational numbers, h(c,X) = (1 + ϵ) ⋅ f(c) +
∑x∈X f(x) is unique for each pair (c,X), where c ∈ X and X ⊂ X is a multi-set of bounded
size. Moreover, any function g over such pairs can be decomposed as g(c,X) = φ((1 + ϵ) ⋅
f(c) +∑x∈X f(x)) for some function φ.
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Proof. Consider f(x) = N−Z(x) from our proof of Lemma 2.6.5. Let h(c,X) ≡ (1+ϵ) ⋅f(c)+
∑x∈X f(x). We aim to show that for any (c,X) ≠ (c′,X ′), we have h(c,X) ≠ h(c′,X ′) where
c, c′ ∈ X and X,X ′ ⊂ X , and ϵ is an irrational number.

We prove this by contradiction. We consider two cases:

(1) c = c′, X ≠ X ′. In this case, h(c,X) = h(c′,X ′) Ô⇒ ∑x∈X f(x) = ∑x∈X′ f(x),
which is not possible by Lemma 2.6.5 since ∑x∈X′ f(x) is injective; we have reached a
contradiction.

(2) c ≠ c′. We can rewrite the inequality as:

(1 + ϵ) ⋅ f(c) + ∑
x∈X

f(x) = (1 + ϵ) ⋅ f(c′) + ∑
x∈X′

f(x) (2.6.2)

ϵ ⋅ (f(c) − f(c′)) = (f(c′) + ∑
x∈X′

f(x)) − (f(c) + ∑
x∈X

f(x)) (2.6.3)

Since (f(c) − f(c′)) is a non-zero rational number and ϵ is irrational, the L.H.S of
Equation 2.6.3 is irrational. However, the R.H.S. of Equation 2.6.3 is rational as sums
of rational numbers. Therefore, we have reached a contradiction.

For any function g over the pairs (c,X), φ can be constructed such that g(c,X) =
φ((1 + ϵ) ⋅ f(c) + ∑x∈X f(x)); φ is well-defined as h(c,X) = (1 + ϵ) ⋅ f(c) + ∑x∈X f(x) is
injective. □

Xu et al. [159] then suggest using MLPs to model f and φ, since they can be used to
approximate such function classes as proven by the universal approximation theorem [67].
As composition of injective functions are also injective, a single MLP is sufficient to model
the composition of the two functions: f (k+1) ○ φ(k). Using a learnable parameter or some
scalar as ϵ, the GIN update rule becomes:

h(k+1)
ν =MLP(k)

⎛

⎝
(1 + ϵ(k)) ⋅ h(k)ν + ∑

u∈N (ν)

h(k)u

⎞

⎠
(2.6.4)

GIN now serves as one of the most reliable GNN models in benchmarking due to its
provably better expressivity over other benchmark GNNs. We have briefly discussed the
shortcomings of GCN and GraphSAGE over GIN, but it is still helpful to provide some
pointers on how such models come short.

— As mentioned previously, the mean or max-pooling of neighborhood features we see in
other GNN models are not injective over multi-sets. The authors provide several pairs
of graph structures that mean and/or max-pooling aggregation cannot distinguish
but summation can, shown in Figure 2.7. The general trend is that a neighborhood
representation fails when there are repeating node features.

— Many GNN approaches we discussed use a linear mapping W followed by a nonlin-
earity σ and possibly no bias, i.e. a 1-layer-perceptron; the original GNN (Eq. 2.3.4),
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(a) Mean and max fail (b) Max fails (c) Mean and max fail

Figure 2.7 – Thee pairs of graphs that mean and/or max-pooling cannot distinguish, where
colors indicate different node features. Between the two graphs, nodes v and v′ get the same
embedding even though their corresponding graph structures differ. Figure adapted from
Xu et al. [159].

GCN (Eq. 2.4.18), DCNN (Eq. 2.4.21), GraphSAGE (Eq. 2.4.22) are all examples
of such networks. The authors prove Lemma 2.6.7 (proof delegated to the origi-
nal paper), which indicates that there exists graph neighborhoods (represented by
multi-sets) that these 1-layer perceptrons cannot distinguish; The intuition is that
the 1-layer perceptron is not a universal approximator of multi-set functions.

Lemma 2.6.7. There exists finite multi-sets X1 ≠X2 such that for any linear mapping W,

∑
x∈X1

ReLU(Wx) = ∑
x∈X2

ReLU(Wx)

This sums up our discussion of the development of GNN models from a variety of ap-
proaches. We will now proceed with an overview of graph data, and survey attempts and
current work on benchmarking in graph learning.
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Chapter 3

Graph Datasets and Benchmarking: A Survey

3.1. Motivation for Benchmarking
As with any other machine learning domain, data form the foundations of graph learning

research; graph learning as a field is as useful as its predictive power on graph data. In
consideration of graph learning and machine learning in general, as a scientific field, the
process of benchmarking plays an important role.

Benchmarking in ML is the practice of comparing the predictive performance of ML
algorithms with state-of-the-art (SOTA) over established datasets (called “benchmarks”).
Each benchmark typically consists of a dataset, along with associated task(s) (e.g. sentiment
analysis, node classification, image recognition) and quantitative metrics. Improvements
over benchmarks is considered a noisy but reliable indicator of progress in a given line of
ML research, subfield or even the field itself, thus rendering it as the de facto paradigm for
scientific ML research [80, 128, 112].

Benchmarking is also essential to compare the current success and future potential of
distinct lines of research. For example, the success of artificial neural networks (ANN) over
kernel learning through hand-crafted features or regression models happened long after their
invention. Despite their theoretical capabilities, interest in neural networks were limited for
almost half a century due to computational limitations. Only when these computational
capabilities were partly overcome in the 2000s their theoretical abilities were validated “in
the wild” through surpassing competing approaches in benchmark tests in a variety of fields
(e.g. speech recognition, image classification, sequence prediction) the interest in neural
networks were revived. A more recent example is the success of attention-based models
in sequence or image-based tasks. Attention mechanisms are used for more than a decade
under a variety of names, but have gained immense popularity only in the last few years
when the Transformer architecture matched or even surpassed RNN and CNN-based models
in respective benchmarks in natural language processing (NLP) and computer vision.



In short, benchmarks in ML have a much wider impact on the field itself than measuring
the performance of algorithms; they shape the trajectory of machine learning field itself
by determining how different learning paradigms are viewed, validated or rejected in both
research and industry. This on its own is a sufficient argument for the construction of
benchmarking procedures that are generalizable, fair and robust. Whether we as the machine
learning community have achieved or even have striven for these objectives, however, is highly
debatable.

3.2. State of ML Benchmarking: An Overview
There is little doubt that the benchmarking procedures in machine learning “work” in

a broad sense, since the rapid progress in ML we have seen in the last decade does depend
on our ability to set appropriate benchmarks and improve upon them. It is very difficult
if not outright impossible to argue that machine learning and in particular deep learning
has not been progressing: Putting aside any discussion of the epistemological merits of the
field, deep learning has redefined the state-of-the-art in the wild (and beyond the scope of
benchmarking data) across almost all data-driven domains; in most cases multiple times
through algorithms that learn better, scale better and generalize better in each iteration,
with solid theoretical and empirical justifications. Such progress in a short span of about
a mere decade indicates that we are probably approximately correct – we must be doing at
least some things right in how we define the SOTA across multiple domains and improving
upon them.

Nevertheless, benchmarking is an inherently flawed process. Benchmark datasets are
meant to be representative of their data domain, but it is impossible to capture the com-
plexity of data and problems spanning a domain to just a few datasets. Benchmarks therefore
are meant to be good approximators instead, with the aim of maximal alignment with the
“real world”. For a set of benchmarks to be good approximators, we conjecture the following
criteria:

— Reliability: Benchmark datasets must be reliable in that they are derived from
credible and verifiable sources, and not subject to tampering to knowingly induce
data biases.

— Accuracy: Benchmark datasets must accurately capture the information, relation-
ships and distributions they aim to represent. This implicitly justifies the emergence
of different subfields of machine learning as different types of data (i.e. text, image,
graph) capture different information. Graphs are essentially relational models, for
example, as a result relational data (e.g. social networks, molecular data in chem-
informatics and biochemistry, citation graphs) make more suitable graph learning
benchmarks.
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— Fairness: Benchmark datasets need to align well with objectives of “ethical ML &
AI”, in particular concerning ML research on fields with high social impact. “Unfair”
datasets may lead to skewed interpretations of data and render models unsafe for
deployment in the wild.

— Data Coverage: The set of benchmarks must be selected in order to maximally
cover the data and task space. Selecting multiple datasets that cover overlapping data
and task space leads to quickly diminishing marginal returns, as they all test for the
same elements of a given ML algorithm and naturally reach the same conclusions.
Benchmarking with little coverage may erroneously highlight algorithms that overfit
to small regions of the data space as SOTA.

Verifying the reliability and accuracy of datasets is a well-established process and is
usually done manually. Most high-quality datasets are released with extensive information on
how they are sourced and designed, which can be independently verified to ensure reliability
and accuracy. These are later on empirically validated through usage; the datasets that do
not meet the criteria tend to gradually go out of use. This is not to say these issues are
fully resolved; dataset documentation and standardization is often left to the incentive of
the researchers to self-enforce, leading to questionable practices far too common to ignore.
There is however significant past and ongoing work to address these issues [49, 127, 48].

Evaluating the fairness of datasets is a more complex problem, but is a very active area
of research. ML & AI ethics have branched into its own field; multiple lines of work are
dedicated to evaluate datasets on whether they induce hidden biases that favour or hurt
communities, or lead to models that do not generalize in the wild. The development of ML
& AI ethics has in turn triggered an increased and justified scrutiny on ML datasets. Various
AI fairness studies have covered data bias on race and gender [18, 46, 164], disabilities [73]
and geodiversity [132] among others, particularly in text [46, 30, 164, 73] and image [132, 25]
domains. Expansive surveys on dataset biases and applications in the real world are provided
by Mehrabi et al. [94] and Paullada et al. [108].

Data coverage of datasets, on the other hand, is much more difficult to evaluate. We
therefore dedicate this next subsection to investigating the nature of data coverage, and how
it relates to the state of benchmarking in graph learning.

3.2.1. Data space and coverage

In this thesis, we consider an abstract “data and task space” over which we define the
notion of coverage. We should therefore first present a brief (and mostly informal) discussion
of what we mean by these terms, as they will be fundamental to our reasoning and discussions
in the coming sections. Our construction of the data and task space is analogous to the
concepts of GNN design/task space in You et al. [161], only applied to graph datasets here
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instead of GNN models. Additionally, a similar notion of benchmark dataset space is also
used in Palowitch et al. [106] where data dimensions are constructed using graph metrics.
The reader is therefore referred to those works as well for a more holistic discussion of these
concepts.

Task space. Task space is an abstract space composed of the Cartesian product of the
dimensions (where the term dimension refers to a quantifiable attribute of an object) over
which we define graph learning problems. The task space in graph learning is well-established;
It basically represents the space of different prediction “tasks” we may want to perform over
a given graph. Drawing from existing literature, we can think of two main dimensions over
which the task space is built: (a) Prediction type (e.g. classification vs. regression tasks),
and (b) Prediction level, i.e. what type of structure we are making a prediction about
(node, edge or graph-level). A more detailed discussion on graph tasks is also available in
Section 1.2.3.

Data space. A graph object can also be thought of as being composed of multiple
dimensions: Number of nodes (i.e. size), graph density, longest path, symmetry, existence
of node features, types of node features, application domain are all examples of dimensions
upon which a graph can be defined. The Cartesian product of these dimensions can then
be thought of as a hyperspace over which graphs (or aggregations of them in the form
of datasets) can be defined. Unlike task space, the dimensions of data space are not
well-established in the literature, and remain somewhat abstract.

Note that by this definition, the dimensions of the data space can be arbitrarily large,
making complete coverage over this abstract hyperspace intractable using real-world datasets.
However, we can pick and choose dimensions that are causally relevant towards our goal of
quantifying GNN performance: A data dimension is causally relevant with respect to a task
if changing a graph along that dimension “causes” GNN models to behave differently over
them. The name of a graph dataset for example is completely irrelevant to GNN performance
over said dataset; we can therefore safely assume “dataset name” is not a relevant dimension.
On the other hand, the existence/lack of node features is likely to be a relevant dimension:
A GNN will probably behave differently on a pair of graphs that share the same graph
topology, but with only one possessing meaningful node features. In turn, we can think of
the data space as the set of dimensions over which GNNs behave differently, i.e. those that
are causally relevant.

Ideally, a set of benchmark datasets need to have good coverage over causally relevant
dimensions in order to test the performance of a GNN maximally. However, we will see that
the challenge here lies not necessarily in selecting/creating datasets to cover these dimensions,
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but rather in defining and constructing dimensions that are causally relevant. Evaluating
data space coverage of benchmarks is particularly difficult for a number of reasons:

(1) Unlike previous criteria, we do not have established metrics or methods to evaluate
data coverage. To compare, even if mostly through empirical observations, researchers
are able to measure the reliability and accuracy of individual datasets accurately as
explained above. Similarly, there is an ever-growing body of work on how to detect
and address problems with data fairness. Data coverage, on the other hand, is defined
over an abstract “data and task space” that is not well-defined.

(2) Data coverage cannot be evaluated for individual datasets as each dataset constitutes
a single data point in the data space. Rather, coverage is a measure of to what extent
a collection of datasets (that are selected as benchmarks) can represent the variety
of data in the domain. This requires each dataset to cover distinct areas of the data
and task space, and careful consideration of the interactions and similarities between
distinct datasets is required.

Due to the difficulty of appropriate evaluation procedures and lack of standardized meth-
ods or metrics, the notion of data coverage has often been overlooked in the selection of
benchmarks until recently.

Lack of consideration for data coverage in the selection of benchmarks is closely related
to many of the problems that plague machine learning today. Addressing these benchmark-
ing problems is of utmost importance for a number of reasons. Koch et al. [80] presents
an insightful dissection of this importance of setting good benchmarks: Firstly, establish-
ing appropriate benchmarks pave the way to safe and effective machine learning models,
particularly in mission-critical applications. They also lead to a more accurate measure-
ment of scientific process in the field. Furthermore, they heavily influence the behavior
of researchers and industry practitioners. Since benchmark performance is accepted as an
indicator of progress, researchers and practitioners tend to align their work to maximize
their performance over these benchmarks. A misalignment of the benchmarks with the real
world means the models that maximize performance over benchmarks are suboptimal in the
wild, compromising the goals laid out in the previous statement and misdirecting the field
of machine learning in general.

To gain a better understanding of these problems before we address them, we will first
inspect coverage issues in computer vision benchmarking. As a historically more mature
but arguably similar domain compared to geometric deep learning, a vaster literature is
available on benchmarking issues in CV, serving as a useful guide to analogous problems in
graph learning.
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3.2.2. Data coverage in computer vision benchmarking

Appropriate coverage of the data space has garnered considerable attention in recent
years within the field of computer vision, particularly in the context of transfer learning
[32, 114]. Transfer learning is arguably the current norm in deep learning on image and text
data. In transfer learning, researchers rely on models that have been extensively trained on
large datasets, usually released by technology industry giants with access to large amounts of
computing power. Researchers then fine-tune these “pretrained” models on their own data,
leveraging the features learned by the pretrained models to learn quicker attain desired
metrics faster, with relatively small compute effort.

Nevertheless, there is a recent line of questioning on whether these pretrained models
harm generalization to datasets with substantially different distributions due to the biases
induced by the datasets used in pretraining. In image domains, the largest and best-known
such dataset is ImageNet [28, 123], which has set the standard in CV in transfer learning,
image classification, object detection [71] and image segmentation [63, 19] since its inception
in 2009 due to its sheer size of >1 million images covering 1000 object classes.

The benefits of curation and release of such large datasets and pretrained models are
plenty; they make machine learning research more accessible to the ML community and
individual researchers by delegating the cost of both (a) collection and annotation of massive
datasets and (b) pretraining of large models on these datasets to well-endowed institutions,
and significantly increasing the development speed and rate of discovery in ML research.

There is no free lunch, though [153], and these benefits come at a cost. The size, avail-
ability and industry support behind these large datasets establish them as benchmarks in
rapid fashion, to the point that the evaluation procedures for whole ML subfields become
reliant on them, as in the case of ImageNet. This reliance in turn confines ML research into a
narrow focus of attaining maximal performance on a narrow set of benchmarks, at the cost of
discarding more comprehensive evaluation processes that take generalization and data biases
into account. This may induce biases in the form of architectural overfitting, where model
architecture design decisions are adapted to fit the datasets they are tested on, invalidating
these datasets as reliable benchmarks and possibly hurting model generalization [106, 115].
D’Amour et al. [26] argue that most generalization issues in deep learning can be attrib-
uted to underspecification: In the limited scope of evaluation on a few benchmarks, there
are many different solutions (e.g. different weight configurations of a neural network) that
will perform well over them. However, when these models are released into the real world,
they may behave erratically when the data encountered do not resemble the distributions
the model was evaluated on. The authors support these claims by an extensive empirical
study that explores underspecification with examples drawn from computer vision, medical
imaging, NLP and electronic health data. Torralba and Efros [142] measure cross-dataset
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generalization between six well-known benchmarking image datasets, including ImageNet,
Caltech-101 [37] and PASCAL VOC [36] by training a classifier on one dataset and testing
it on the other five. Their results show dramatic drops in accuracy for distinct pairs of
datasets, indicating significant low generalization due to dataset bias.

ImageNet is subject to particular scrutiny: Tsipras et al. [143] show that labeling pro-
cesses in ImageNet (such as an image with multiple objects having a single class label)
introduces systematic errors which propagates into the models pretrained on them, poten-
tially hurting generalization performance. Recht et al. [116] test generalization of ImageNet-
trained models by replicating the dataset creation process of the original dataset to produce
ImageNet-v2 and find out accuracy drops of more than 10%; they surprisingly also find
that models that perform better on ImageNet also perform better on ImageNet-v2, implying
ImageNet-trained models may not be extremely overfitting even though they cannot account
for the remarkable drops in performance. Engstrom et al. [35] in turn claim the drops in
performance is caused by statistical bias introduced in the creation of ImageNet-v2. In a
similar study, Kornblith et al. [83] test whether models that perform better on ImageNet
perform better on transfer learning tasks. They find that better model architectures are
also better for transfer learning, but many of the reguralization techniques used to improve
ImageNet performance (such as label smoothing [139] and dropout [136]) are detrimental
for transfer learning. Beyer et al. [7] propose an improved labeling framework for ImageNet
to fix the label biases, and find that more recent SOTA models are overfitting to the label
biases in ImageNet, and in turn are less generalizable.

This amount of auditing for a single benchmark dataset underlines the fact that there is
no perfect benchmark. More importantly, these studies warn us of the dangers of low data
coverage in benchmarking by relying in one or few benchmark datasets in order to define
SOTA. Unfortunately, convergence to a few large datasets as benchmarks is the current trend
in ML: Koch et al. [80] and Barbosa-Silva et al. [5] find that despite a steady increase in
the number of available datasets, ML research communities in CV and NLP are becoming
increasingly concentrated on a tiny fraction of these datasets over time for benchmarking,
most of which are top-down introduced by a handful of institutions. Furthermore, many of
these datasets are originally created for a different task than they are used for (e.g. object
detection vs. image classification), likely introducing hidden biases in the adoption process.

As we have stated before, benchmarking is a flawed process; every dataset used for
benchmarking will inevitably have certain data defects. However, it is possible to mitigate
the effects of these flaws on the ML benchmarking process through increased data coverage.
Testing model performance on a set of sufficiently numerous and distinct datasets makes it
possible to better approximate how these models will behave in the real world.
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3.3. Benchmarking in Graph Learning
Historically, graph representation learning has in particular suffered from reliance on

a few datasets for benchmarking. This reliance arguably has different underlying reasons:
Primarily, graph learning is a younger domain than its text and image-based counterparts,
and therefore the associated body of work, including work on datasets, is comparatively less.

Another important distinction is that graph data creation is a very arduous task. Im-
age and text data is commonplace in the wild and data gathering is usually simpler; more
effort goes into the annotation process which is usually delegated to crowdsourcing services.
Graph data, on the other hand, is a representational and abstract form of data, and hence
is not encountered in the wild. Graph data is usually either (a) created manually by appli-
cation domain experts (e.g. bio/chemical graphs), or relies on specialized tools to extract
relationships between objects (e.g. crawlers for web graphs).

The citation datasets Cora [92], CiteSeer [50] and Pubmed [130] have been the go-to
benchmarks since the inception of graph learning. All three are transductive node-level clas-
sification datasets (each sample is concerned with classifying an individual vertex in a single
shared graph). For inductive graph-level classification, Yanardag and Vishwanathan [160]
have proposed numerous datasets drawn from bioinformatics, social networks and collabo-
ration networks, which have been established as benchmarks since. Morris et al. [100] later
on incorporated these into the TUDatasets framework, which is a popular graph dataset
collection preferred for its ease of use.

However, recent studies in re-evaluating GNN benchmarking by Dwivedi et al. [34] and
Hu et al. [68] have shown that these datasets are insufficient to serve as standalone bench-
marks. Firstly, the small sizes of a majority of these datasets have proven to be a limitation:
The largest node-level classification dataset (Pubmed) consists of ∼20,000 nodes; in real-life
applications such as GNNs on social networks, the constructed graphs involve millions of
nodes.

For graph-level tasks, we encounter even more extreme examples: In TUDatasets, IMDB-
BINARY consists of 1,000 graphs with an average of 20 nodes per graph. Bioinformatics
datasets on average also have ∼1,000 graphs per dataset (with MUTAG consisting of just
188 (!) graphs) and about 30 nodes/graph. This is not to invalidate these datasets: after all,
molecular graphs are not bound to have more than a few hundred nodes at most, so many
of these do resemble distributions of their application domains. However, the development
of models almost exclusively on these small datasets rendered them less generalizable and
less scalable to larger graphs due to the induced architectural overfitting [34, 68].

In recent years, several new node-level datasets have emerged to address the small-size
bias in graph data. For node-level prediction, PPI, Reddit [58] and Amazon2M [22] have been
proposed, all of which are significantly larger than the “standard” node-level classification
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datasets. However, it was noted that these datasets have comparatively small test sets that
lead to artificially small generalization gaps [68]. For graph-level tasks, recent studies [70, 76]
have started incorporating large-scale cheminformatics datasets from MoleculeNet [157].

Secondly, these benchmarks do not have standardized experimental protocols, meaning
every paper that uses these datasets set their own train/test splits and cross-validation
parameters. This lack of uniformity renders direct comparison of models on the same
dataset difficult due to the discrepancies in the respective benchmarking protocols. The
large datasets that were brought on to alleviate size issues in graph learning also lacked
standardized evaluation methods, leaving this problem unresolved.

Finally, these datasets also induce data biases which do not stem from graph size: Ivanov
et al. [75] show that many graph datasets (including some we have mentioned so far) suf-
fer from isomorphism bias, where datasets have high percentages of isomorphic examples
corresponding to different target classes; models can then incorporate additional structures
to check for isomorphism that increases benchmark performance but do not translate to
better generalization. Furthermore, node and link-level prediction datasets usually consist
of sparse graphs drawn from recommendation, citation and social domains, while many
bio/cheminformatics graphs (e.g. protein or drug pair interaction graphs) the graphs are
very dense. This domain-specific graph structures may induce architectural overfitting and
biases that hurt generalization.

The reader may notice that the issues we have covered are closely related to the problem
of coverage, apart from those concerning standardization of experiment protocols. We have
also demonstrated that coverage may be composed of multiple dimensions: graph size, task
type, application domain, graph density etc. Indeed, the studies by Dwivedi et al. [34] and
Hu et al. [68] are the first to actively address data coverage in graph learning.

In order to address these problems, Hu et al. [68] released Open Graph Benchmark
(OGB), a codebase for benchmarking with a diverse set of datasets focused on scalability,
robustness and reproducibility in graph learning. They tackle data coverage from three
dimensions:

— Graph size: Most pre-OGB graph benchmarks are small-to-medium sized; OGB in-
cludes large graphs with >100 million nodes to cover a large spectrum of graph sizes.

— Application domain: OGB broadly categorizes graphs into three domains: nature,
society and information. Additionally, each dataset is assigned domain-specific data
splits that are more appropriate than random splitting.

— Task categories: In addition to data diversity, OGB takes into account task diversity,
and covers node, edge and graph-level tasks.

The authors then conduct benchmarking experiments and ablation studies on these datasets
using a variety of graph learning models, with a focus on scalability and out-of-distribution
generalization.
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Dwivedi et al. [34] take a different approach and define appropriateness (i.e. data cov-
erage) of a set of datasets through their ability to statistically separate the performance of
GNNs. The “usual” benchmarks of Cora, CiteSeer and TUDatasets as deemed not appropri-
ate as most GNNs perform “almost statistically the same” on them. In turn, they propose
seven medium-to-small scale datasets that cover multiple tasks and application domains,
including synthetic (algorithmically generated) datasets. They proceed with benchmarking
several GNN models and present their findings on how these GNN models are statistically
separated.

These two papers have since proved pivotal in improving the state of benchmarking in
graph representation learning. They are also important in that they explicitly try to address
the data coverage deficiency in graph data. Nevertheless, while both papers empirically show
that their selection of datasets are valid in that they can statistically separate different GNN
models, their selections are based on basic criteria (e.g. task type, application domain, graph
size & density) that do not sufficiently explain GNN behavior on the datasets. Even though
such criteria are strong indicators of GNN behavior on data, they do not necessarily dictate
how a GNN will behave on a given dataset, or whether one GNN model will outperform an-
other on it. Two datasets that vary greatly in graph size/density or application domain may
simply be very close in the data space, and therefore provide no insight into the separability
of GNNs.

More recent papers have taken additional steps forward to arrive at more complete defi-
nitions of graph data spaces. Palowitch et al. [106] explicitly construct a benchmark dataset
space by synthetic graph generation: They define the dimensions through the parameters of
the graph generation algorithm, which involves both standard graph metrics such as graph
size as well as continuous structural variables, e.g. the in/out-cluster edge probabilities).
They also show that most benchmarking datasets including the OGB datasets (which were
introduced to improve data diversity) are concentrated in a small portion of their data
space. However, their work relies on small synthetic datasets, which may not generalize well
to real-world application domains. Furthermore, the graph generator parameters that define
the data space still rely on graph metrics that do not always translate to GNN separability.

You et al. [161] measure how a variety of “anchor” models perform over a collection of
benchmarking datasets, and try to identify datasets that GNNs behave similarly on. They
then demonstrate that best-performing GNNs have similar architectures for tasks that are
similar. The methodology is similar to our work in that its data space implicitly accounts
for information flow, albeit is much limited in application and scope as it is focused on
exploration of the GNN design space rather than the data space itself.

This work therefore aims to address data coverage from the perspective of information
flow that has been overlooked in previous literature. We claim that the real driving force
dictating how GNNs perform on graph data is information flow, i.e. how information is
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embedded and distributed in a graph through GNNs. We then construct a benchmarking
method for graph datasets (as opposed to models) to profile their information flow, and
propose a taxonomy of existing benchmark datasets based on our method. The information
flow perspective provides more insights into how different GNNs will behave on a certain
dataset, and aims to serve as a guide in making informed decisions about benchmarking data
selection.
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Chapter 4

Taxonomization of Graph Benchmarking
Datasets

4.1. Motivation
As we have covered in the previous chapter, recent work in graph benchmarking [34,

68, 106] have focused on compiling a set of large(r) benchmarking datasets across diverse
graph domains, with the objective of reducing data bias and improving data coverage. These
developments have improved the modus operandi of graph learning benchmarking, but still
only provide “educated guesses” on whether a collection of datasets (or the ones put forward
by them) attain sufficient coverage. The dimensions of data and task space considered in
previous work can be grouped into the following categories:

— Tasks: Node, edge and graph-level tasks; regression vs. classification tasks; transduc-
tive vs. inductive tasks

— Application domain: Social networks, bio/cheminformatics, citation graphs, financial
graphs, synthetic graphs

— Graph metrics: Average number of nodes/edges/triangles, graph density,
min/max/average degree, average clustering coefficient

These recent work mostly operate under the assumption that sufficient coverage over these
dimensions will translate to a sufficient coverage of the abstract graph data space, i.e. result
in a collection of graphs that test for different aspects of graph learning models, and provide
maximal separability of different GNNs. While certainly an improvement on its precedents,
this viewpoint is not entirely reliable either. In fact, Dwivedi et al. [34] and Hu et al. [68]’s
criticism of the TUDataset collection verify this unreliability: The TUDataset collection
both leverages many application domains, and incorporates datasets with a large spectrum of
graph metrics [100]; yet both papers have found that most GNNs perform almost identically
over them. The authors improve upon these by making better educated guesses (like stating
TUDataset graphs don’t have sufficient coverage in the size dimension and in turn proposing



larger graphs). Better educated guesses naturally lead to better coverage of the data space;
but this approach is evidently suboptimal: The large body of evidence we have presented so
far indicates that the well-understood dimensions we associate with application domains and
measurable graph metrics fail to efficiently capture the data space, an assertion we validate
further with our supplemental study in Appendix C.1.

4.1.1. Solution formulation

In this work, we argue that the causally relevant dimensions of the data space (see
Section 3.2.1) is better captured by the notion of information flow in graph data: Information
flow refers to how task-related information is encoded and propagated in graph datasets via
GNNs. GNNs make predictions on graphs by leveraging the information flow: Altering this
information flow will change how a GNN leverages it, which will then be reflected in a change
in its predictive ability. This has three important implications:

(1) All causally relevant data dimensions that a GNN model leverages in order to make
a prediction are captured by the information flow induced in the graph by the model.

(2) Datasets with distinct information flows (i.e. a selection that has good coverage of
the relevant data space) have a better chance of statistically separating distinct GNN
algorithms, as different GNN models leverage the information flow in different ways
(see Chapter 2).

(3) By altering different elements of information flow in graph datasets and measuring how
GNN performance changes, we can test for the causal relevance of corresponding data
dimensions. For example, if removing a specific node feature from a graph dataset
reduces GNN performance on a task, then that node feature is causally relevant for
that dataset and task.

Our formulation characterizes a clear relationship between the graph data space that
maximizes GNN separability and the notion of information flow: Distinguishing datasets by
their information flow is equivalent to distinguishing them in the corresponding data space.
Consequently, maximizing data coverage in terms of information flow is a proxy to generating
a data space that is optimal for GNN separability.

Based on this formulation, we aim to provide a structured framework to better charac-
terize the information flow in graph datasets: Where is information embedded in a graph?
Do long-term dependencies exist? How important is graph structure and/or node features?
We propose to use the lens of empirical transformation sensitivity to answer these questions
for graph datasets, and subsequently taxonomize their use as benchmarks in graph represen-
tation learning. Our approach is illustrated in Figure 4.1. Namely, we list our contributions
in this study as:
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Figure 4.1 – Overview of our pipeline to taxonomize graph learning datasets.

(1) We develop a graph dataset taxonomization framework that is extendable to both
new datasets and evaluation of additional graph/task properties,

(2) Using this framework, we provide the first taxonomization of GNN (and GRL) bench-
marking datasets, collected from TUDatasets [100], OGB [68] and other sources,

(3) Through the resulting taxonomy, we provide insights about existing datasets and
guide better dataset selection in future benchmarking of GNN models.

4.2. Method
As a proxy for invariance or sensitivity to graph perturbations, we study the changes in

GNN performance on perturbed versions of each dataset. These perturbations are designed to
eliminate or emphasize particular types of information embedded in the graphs. We define an
empirical sensitivity profile of a dataset as a vector where each element is the performance of
a GNN after a given perturbation, reported as a percentage of the network’s performance on
the original dataset. In particular, we use a set of 13 perturbations, visualized in Figure 4.2.
Of these perturbations, 6 are designed to perturb node features, while keeping the graph
structure intact, whereas the remaining 7 keep the node attributes the same, but manipulate
the graph structure.

For the purpose of these perturbations, we consider all graphs to be undirected and un-
weighted, and assume they all have node features, but not edge features. These assumptions
hold for most datasets we use in this study. However, if necessary, we preprocess the data by
symmetrizing each graph’s adjacency matrix and dropping any edge attributes. With these
assumptions in place, we also focus on classification tasks on node and graph-level, and do
not consider edge prediction tasks or regression tasks in general. Nevertheless, we underline
that our framework can encapsulate such tasks by extending it to datasets with edge fea-
tures and/or applying appropriate metrics when evaluating regression tasks. Formally, let
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(a) original (b) LowPass (c) MidPass (d) HighPass (e) NoNodeFtrs

(f) NodeDeg (g) RandFtrs (h) RandRewire (i) NoEdges (j) FullyConn

(k) Frag. k = 1 (l) Frag. k = 2 (m) Frag. k = 3 (n) FiedlerFrag

Figure 4.2 – Node feature and graph structure perturbations of the first graph in EN-
ZYMES. The color coding of nodes illustrates their feature values, except (k-n) where the
fragment assignment is shown.

G = (V ,E ,X) be an undirected, unweighted, attributed graph with node set V of cardinality
∣V ∣ = n, edge set E ⊂ V × V , and a matrix of d-dimensional node features X ∈ Rn×d. We let
M ∈ Rn×n denote the adjacency matrix of each graph, where M(u,ν) = 1 if (u,ν) ∈ E and
zero otherwise.

Several of our perturbations are based on spectral graph theory, which represents graph
signals in a spectral domain analogous to classical Fourier analysis. We define the graph
Laplacian L ∶= D −M and the symmetric normalized graph Laplacian N ∶= D− 1

2 LD− 1
2 = I −

D− 1
2 MD− 1

2 , where D is the diagonal degree matrix. Both L and N are positive semi-definite
and have an orthonormal eigendecompositions L = ΦΛΦ⊺ and N = Φ̃Λ̃Φ̃⊺. By convention,
we order the eigenvalues and corresponding eigenvectors {(λi, ϕi)}0≤i≤n−1 of L (and similarly
in the case of N) in ascending order 0 = λ0 ≤ λ1 ≤ ⋅ ⋅ ⋅ ≤ λn−1. The eigenvectors {ϕi}0≤i≤n−1

constitute a basis of the space of graph signals and can be considered as generalized Fourier
modes. The eigenvalues {λi}0≤i≤n−1 characterize the variation of these Fourier modes over
the graph and can be interpreted as (squared) frequencies.
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4.2.1. Node Feature Perturbations

We first consider two perturbations that alter local node features, setting them either to
a fixed constant (w.l.o.g., one) for all nodes, or to a one-hot encoding of the degree of the
node. We refer to these perturbations as NoNodeFtrs (since constant node features carry
no additional information) and NodeDeg, respectively. In addition, we consider a random
node feature perturbation (RandFtrs) by sampling a one-dimensional feature for each node
uniformly at random within [−1,1]. Sensitivity to these perturbations, exhibited by a large
decrease in predictive performance, may indicate that a dataset (or task) is dominated by
highly informative node features.

We also develop spectral node feature perturbations. As in Euclidean settings, the Fourier
decomposition can be used to decompose graph signals into a set of canonical signals, called
Fourier modes, which are organized according to increasing variation (or frequency). In
Euclidean Fourier analysis, these modes are sinusoidal waves oscillating at different frequen-
cies. A standard practice in audio signal processing is to remove noise from a signal by
identifying and removing certain Fourier modes or frequency bands. We generalize this tech-
nique to graph datasets and systematically remove certain graph Fourier modes to probe the
importance of the corresponding frequency bands.

In this perturbation, we use the frequencies derived from the symmetric normalized graph
Laplacian Lns and split them into three roughly equal-sized frequency bands (low, mid, high),
i.e., bins of subsequent eigenvalues. To assess the importance of each of the frequency bands,
we then apply hard band-pass filtering to the graph signals (node feature vectors), i.e., we
project the signals on the span of the selected Fourier modes. More specifically, for each band,
we let Iband be a diagonal matrix with diagonal elements equal to one if the corresponding
eigenvalue is in the band, and zero otherwise. Then, the hard band-pass filtered signal is
computed as

Xband = Φ̃IbandΦ̃⊺X. (4.2.1)

The above band-pass filtering perturbation enables a precise selection of the frequency
bands. However, it requires a full eigendecomposition of the normalized graph Laplacian,
which is impractical for large graphs. We therefore provide an alternative approach based
on wavelet bank filtering [23]. This leverages the fact that polynomial filters h of the nor-
malized graph Laplacian directly transform the spectrum via h(Lns) = Φ̃h(Λ̃)Φ̃⊺, yielding
the frequency response h(λ) for any eigenvalue λ of Lns. This is usually done by taking the
symmetrized diffusion matrix

T = 1
2(I +D− 1

2 MD− 1
2 ) =

1
2 (2I −Lns) . (4.2.2)
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By construction, T admits the same eigenbasis as Lns but its eigenvalues are mapped from
[0,2] to [0,1] via the frequency response h(λ) = 1 − λ/2. As a result, large eigenvalues are
mapped to small values (and vice versa). Next, we construct diffusion wavelets [27] that
consist of differences of dyadic powers 2k, k ∈ N0 of T, i.e., Ψk = T2k−1

−T2k , which act as
bandpass filters on the signal. Intuitively, this operator “compares” two neighborhoods of
different sizes (radius 2k−1 and 2k) at each node. Diffusion wavelets are usually maintained
in a wavelet bank WK = {Ψk,ΦK}

K
k=0, which contains additional highpass Ψ0 = I − T and

lowpass ΨK = TK filters. In our experiments, we choose K = 1, resulting in the following
low, mid, and highpass filtered node features:

Xhigh = (I −T)X, Xmid = (T −T2)X, Xlow = T2X. (4.2.3)

These filters correspond to frequency responses hhigh(λ) = λ/2, hmid(λ) = (1−λ/2)−(1−λ/2)2
and hlow(λ) = (1−λ/2)2. Therefore, the low-pass filtering preserves low-frequency information
while suppressing high-frequency information whereas high-pass filtering does the opposite.
The mid-pass filtering suppresses all frequencies. However, it preserves much more middle-
frequency information than it does high- or low-frequency information.

Therefore, this filtering may be interpreted as approximation of the hard band-pass fil-
tering discussed above. From the spatial message passing perspective, low-pass filtering
is equivalent to local averaging of the node features, which has a profound implication on
homophilic and heterophilic characteristics of the datasets (Sec. 4.4.2). Finally, since the
computations needed in (4.2.3) can be carried out via sparse matrix multiplications, they
have the advantage of scaling well to large graphs. Therefore, we utilize the wavelet bank
filtering for the datasets with larger graphs considered in Sec. 4.4.2, while for the smaller
graphs, considered in Sec. 4.4.1, we employ the direct band-pass filtering approach.

4.2.2. Graph Structure Perturbations

The following perturbations act on the graph structure by altering the adjacency matrix.
By removing all edges (NoEdges) or making the graph fully-connected (FullyConn), we
can eliminate the structural information completely and essentially turn the graph into a
set. The difference between the two perturbations lies in whether all nodes are processed
independently or all nodes are processed together. However, FullyConn is only applied to
inductive datasets in Sec. 4.4.1 due to computational limitations. Furthermore, we consider
a degree-preserving random edge rewiring perturbation (RandRewire). In each step, we
randomly sample a pair of edges and randomly exchange their end nodes. We then repeat
this process without replacement until 50% of the edges have been randomly rewired.

To inspect the importance of local vs. global graph structure, we designed the fragmenta-
tion perturbation (Frag-k), which randomly partitions the graph into connected components
consisting of nodes whose distance to a seed node is less than k. Specifically, we randomly
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draw one seed node at a time from the graph and extract its k-hop neighborhood by elimi-
nating all edges between this new fragment and the rest of the graph; we repeat this process
on the remaining graph until the whole graph is processed. A smaller k implies smaller
components, and hence discards the global structure and long-range interactions.

Graph fragmentations can also be constructed using spectral graph theory. In our taxon-
omization, we adopt one such method, which we refer to as Fiedler fragmentation (Fiedler-
Frag) (see [74] and the references therein). In the case when the graph G is connected, ϕ0,
the eigenvector of the graph Laplacian L corresponding to λ0 = 0, is constant. The eigenvec-
tor ϕ1 corresponding to the next smallest eigenvalue, λ1, is known as the Fiedler vector [41].
Since ϕ0 is constant, it follows that ϕ1 has zero average. This motivates partitioning the
graph into two sets of vertices, one where ϕ1 is positive and the other where ϕ1 is negative.
We refer to this process as binary Fiedler fragmentation. This heuristic is used to construct
the ratio cut for a connected graph [57]. The ratio cut partitions a connected graph into two
disjoint connected components V = U ⊍W , such that the objective ∣E(U,W )∣/(∣U ∣ ⋅ ∣W ∣) is
minimized, where E(U,W ) ∶= {(u,w) ∈ E ∶ u ∈ U,w ∈ W} is the set of removed edges when
fragmenting G accordingly. This can be seen as a combination of the min cut objective
(numerator), while encouraging a balanced partition (denominator).

FiedlerFrag is based on iteratively applying binary Fiedler fragmentation. In each step,
we separate out the graph into its connected components and apply binary Fiedler fragmen-
tation to the largest component. We repeat this process until either we reach 200 iterations,
or the size of the largest connected component falls below 20. In contrast to the random
fragmentation Frag-k, this perturbation preserves densely connected regions of the graph and
eliminates connections between them. Thus, FiedlerFrag tests the importance of inter com-
munity message flow. Due to computational limits, we only apply FiedlerFrag to inductive
datasets in Sec. 4.4.1 for which this computation is feasible.

4.2.3. Data-driven Taxonomization by Hierarchical Clustering

To study a systematic classification of the graph datasets, we use Ward’s method [151]
for hierarchical clustering analysis of their sensitivity profiles. The sensitivity profiles are
established empirically by contrasting the performance of a GNN model on a perturbed
dataset and on the original dataset. To quantify this performance change, we use log2-
transformed ratio of test AUROC (area under the ROC curve). Thus a sensitivity profile
for a dataset is a 1-D vector with as many elements as we have perturbation experiments.
A visual representation of our taxonomy method is presented in Figure 4.1.

As we consider a large number of datasets in our taxonomy, we first construct a pertur-
bation sensitivity matrix where each row represents a dataset and each column represents a
perturbation. An entry in this matrix is computed by taking the ratio between the test score
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achieved with the perturbed dataset and the test score achieved with the original dataset.
As our performance metric we use the area under the receiver operating characteristic (AU-
ROC) averaged over 10 random seed runs or 10 cross-validation folds, depending on whether
a dataset has predefined data splits or not. Row-wise hierarchical clustering provides us a
data-driven taxonomization of the datasets.

Using AUROC as our metric, the values of the perturbation sensitivity matrix range
from 0.5 to 1 when a perturbation causes a loss in predictive performance, and from 1 to
2 when it improves it. Therefore we element-wise log2-transform the matrix to balance the
two ranges and map the values onto [−1,1] before hierarchical clustering. Yet, for a more
intuitive presentation, we show the original ratio values as percentages in our plots.

Figure 4.3 – MPNN model blueprint used for all datasets.

MPNN Hyperparameter Selection. We keep the model hyperparameters, illustrated
in Figure 4.3, identical for each dataset and perturbation combination. We use a linear
node embedding layer, 5 graph convolutional layers with residual connections and batch
normalization (only for inductive datasets), followed by global mean pooling (in case of
graph-level prediction tasks), and finally a 2-layer MLP classifier. For training we use Adam
optimizer [78] with learning rate reduction by 0.5 factor upon reaching a validation loss
plateau. Early stopping is done based on validation split performance.
GNN Model Selection. In order to generate sensitivity profiles, we must select suitable
GNN models based on several practical considerations: (i) The model has to be expressive
enough to efficiently leverage aspects of the node features and graph structure that we per-
turb. Otherwise, our analysis will not be able to uncover reliance on these properties. (ii)
The model needs to be general enough to be applicable to a wide variety of datasets, avoid-
ing the need for dataset-specific adjustments that may lead to perturbation profiling that
is not comparable between datasets. Therefore, we did not aim for specialized models that
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maximize performance, but rather models that (i) achieve at least baseline performance com-
parable to published works over all datasets, (ii) have manageable computational complexity
to facilitate large-scale experimentation, and (iii) use well-established and theoretically well-
understood architectures.

With these criteria in mind, we focused on two popular MPNN models in our analysis:
GCN [79] and GIN [159]. The original GCN serves as an ideal starting point as its abilities
and limitations are well-understood. However, we also wanted to perform taxonomization
through a provably more expressive and recent method, which motivated our selection of
GIN as the second architecture. We emphasize that the main focus here is not to provide
a benchmarking of GNN models per se, but rather to address the taxonomization of graph
datasets (and accompanying tasks) used in such benchmarks. Nevertheless, we have also
generated sensitivity profiles by additional models in order to comparatively demonstrate the
robustness of our approach: 2-Layer GIN, ChebNet [27], GatedGCN [12] and GCN II [20];
see Figure 4.6.

Implementation. Our pipeline is built using PyTorch [107] and PyG [39] with Graph-
Gym [161] (provided under MIT License). Its modular & scalable design facilitated here one
of the most extensive experimental evaluation of graph datasets to date.

4.3. Graph Learning Benchmarks
4.3.1. Inductive Datasets

MNIST and CIFAR10 [34] are derived from the well-known image classification datasets. The
images are converted to graphs by SLIC superpixelization; node features are the average
pixel coordinates and intensities; edges are constructed based on kNN criterion.
PATTERN and CLUSTER [34] are node-level inductive datasets generated from SBMs [65]. In
PATTERN, the task is to identify nodes of a structurally specific subgraph; CLUSTER has
a semi-supervised clustering task of predicting the true cluster assignment of nodes while
observing only one labelled node per cluster.
IMDB-BINARY [160] is a dataset of ego-networks, where nodes represent actors/actresses and
an edge between two nodes means that the two artists played in a movie together. The task
is to determine which genre (action or romance) each ego-network belongs to.
D&D [31] is a protein dataset where each protein is represented by a graph with rich node
feature set. The task is to classify proteins as enzymes or non-enzymes.
ENZYMES [10] is a dataset of tertiary structures from six enzymatic classes (determined by
Enzyme Commission numbers). Each node represents a secondary structure element (SSE),
and has an edge between its three spatially closest nodes. Node features are the type of SSE,
and the physical and chemical information.
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PROTEINS [10] is a modification of the D&D [31]; the task is the same but the protein graphs
are generated as in ENZYMES.
NCI1 and NCI109 [149] consist of graph representations of chemical compounds; each graph
represents a molecule in which nodes represent atoms and edges represent atomic bonds.
Atom types are one-hot encoded as node features. The tasks are to determine whether
a given compound is active or inactive in inhibiting non-small cell lung cancer (NCI1) or
ovarian cancer (NCI109).
COLLAB [160] is an ego-network dataset of researchers in three different fields of physics. Each
graph is a researcher’s ego-network, where nodes are researchers and an edge between two
nodes means the two researchers have collaborated on a paper. The task is to determine
which field a given researcher ego-network belongs to.
REDDIT-BINARY and REDDIT-MULTI-5K [160] graphs are derived from Reddit communities
(subreddits). These subreddits are Q&A based or discussion-based. Each graph represents
a set of interactions between users through posts and comments; nodes represent users
while an edge implies an interaction between two users. The task for REDDIT-BINARY is to
determine whether the given interaction graph belongs to a Q&A or discussion subreddit.
In REDDIT-MULTI-5K, the graphs are drawn from 5 specific subreddits instead, and the task
is to predict the subreddit a graph belongs to.
MUTAG [1] is a dataset of Nitroaromatic compounds. Each compound is represented by a
graph in which nodes represent atoms with their types one-hot encoded as node features,
and edges represent atomic bonds. The task is to determine whether a given compound has
mutagenic effects on Salmonella typhimurium bacteria.
MalNet-Tiny [43] is a smaller version of MalNet dataset, consisting of function call graphs
of various malware on Android systems using Local Degree Profiles as node features. In
MalNet-Tiny, the task is constrained to classification into 5 different types of malware.
ogbg-molhiv, ogbg-molpcba, ogbg-moltox21 [68] datasets, adopted from Molecu-
leNet [155], are composed of molecular graphs, where nodes represent atoms and edges
represent atomic bonds in-between. Node features include atom type and physical/chemical
information such chirality and charge. The task is to classify molecules on whether they
inhibit HIV replication (ogbg-molhiv) or their toxicity on on 12 different targets such as re-
ceptors and stress response pathways in a multilabel classification setting (ogbg-moltox21).
In ogbg-molpcba the task is 128-way multi-task binary classification derived from 128
bioassays from PubChem BioAssay.
PCQM4Mv2-subset is our derivative of the OGB-LSC PCQM4Mv2 [69] molecular dataset.
The original task is a regression of a quantum physical property – the HOMO-LUMO gap.
For compatibility with our analysis, we quantized the regression task into 20-way classifi-
cation task based on quantils of the training set. As true labels of the original “test-dev”
and “test-challange” dataset splits are kept private by the OGB-LSC challenge organizers,
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and for efficiency of our analysis, we created a custom reduced splits as follows: train set:
random 10% of the original train set; validation set: another random 50,000 graphs from the
original train set; test set: the original validation set. The molecular graphs are featurized
the same way as in ogbg-mol* datasets.
PPI [166, 60] dataset contains a collection of 24 tissue-specific protein-protein interaction net-
works derived from the STRING database [140] using tissue-specific gold-standards from [54].
20 of the networks are used for training, 2 used for validation, and 2 used for testing. In each
network, each protein (node) is associated with 50 different gene signatures as node features.
The multi-label node classification task was to classify each gene (node) in a graph based on
its gene ontology terms.
SYNTHETICnew [38] is a dataset where each graph is based on a random graph G with scalar
node features drawn from the normal distribution. Two classes of graphs are generated from
G by randomly rewiring edges and permuting node attributes; the number of rewirings and
permuted attributes are distinct for the two classes. Noise is added to the node features to
make the tasks more difficult. The task is to determine which class a given graph belongs
to.
Synthie [98] dataset is generated from two Erdös-Rényi graphs G1,2: Two sets of graphs S1,2

are then generated by randomly adding and removing edges from G1,2. Then, 10 graphs were
sampled from these sets and connected by randomly adding edges, resulting in a single graph.
Two classes of these graphs, C1,2 are generated by using distinct sampling probabilities for
the two sets. The two classes are then in turn split into two by generating two sets of vectors
A and B; nodes from a given graph were appended a vector from A as node features if they
were sampled from S1, and B for S2 for one class, and vice versa for the other. The task is
to classify which of these four classes a given graph belongs to.
Small-world and Scale-free [161] datasets are generated by tweaking graph generation
parameters for the real-world-derived small-world [152] and scale-free [66] graphs. Graphs
are generated using a range of Averaging Clustering Coefficient and Average Path Length
parameters. In our experiments, clustering coefficients and PageRank scores constitute node
features while task is to classify graphs based on average path length, where the continuous
path length variable is rendered discrete by 10-way binning.

4.3.2. Transductive Node-level Datasets

WikiNet [109] contains two networks of Wikipedia pages, where edges indicate mutual links
between pages, and node features are bag-of-words (BoW) of informative nouns. The task
is to classify the web pages based on their average monthly traffic bins.
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Table 4.1 – Inductive benchmarks. All datasets are equipped with graph-level classifica-
tion tasks, except PATTERN and CLUSTER which are equipped with inductive node-level
classification tasks.

Dataset # Graphs Avg # Nodes Avg # Edges # Features # Classes Predef. split Ref.

MNIST 70,000 70.57 564.53 3 10 Yes [34]
CIFAR10 60,000 117.63 941.07 5 10 Yes [34]
PATTERN 14,000 118.89 6,078.57 3 2 Yes [34]
CLUSTER 12,000 117.20 4,301.72 7 6 Yes [34]
IMDB-BINARY 1,000 19.77 96.53 – 2 No [160]
D&D 1,178 284.32 715.66 89 2 No [31]
ENZYMES 600 32.63 62.14 21 6 No [10]
PROTEINS 1,113 39.06 72.82 4 2 No [10]
NCI1 4,110 29.87 32.3 37 2 No [149]
NCI109 4,127 29.68 32.13 38 2 No [149]
COLLAB 5,000 74.49 2,457.78 – 3 No [160]
REDDIT-BINARY 2,000 429.63 497.75 – 2 No [160]
REDDIT-MULTI-5K 4,999 508.52 594.87 – 5 No [160]
MUTAG 188 17.93 19.79 7 2 No [1]
MalNet-Tiny 5,000 1,410.3 2,859.94 5 5 No [43]
ogbg-molhiv 41,127 25.5 27.5 9 sets 2 Yes [68]
ogbg-molpcba 437,929 26.0 28.1 9 sets 128x binary Yes [68]
ogbg-moltox21 7,831 18.6 19.3 9 sets 12x binary Yes [68]
PCQM4Mv2-subset 446,405 14.1 14.6 9 sets quantized to 20 Custom [69]
PPI 24 2,372.67 66,136 50 121 Yes [166]
SYNTHETICnew 300 100 196 1 2 No [38]
Synthie 400 95 196.25 15 4 No [98]
Small-world 256 64 694 2 10 No [161]
Scale-free 256 64 501.56 2 10 No [161]

WebKB [109] contains networks of web pages from different universities, where an (directed)
edge is a hyperlink between two web pages, with BoW node features. The task is to classify
the web pages into five categories: student, project, course, staff, and faculty.
Actor [109] is a network of actors, where an edge indicate co-occurrence of two actors on
a same Wikipedia page, with node features represented by keywords about the actor on
Wikipedia. The task is to classify the actor into one of five categories.
WikiCS [95] is a network of Wikipedia articles related to Computer Science, where edges
represent hyperlinks between them, with 300-dimensional word embeddings of the articles.
The task is to classify the articles into one of ten branches of the field.
Flickr [163] is a network of images, where the edges represent common properties between
images, such as locations, gallery, and comments by the same users. The node features are
BoW of image descriptions, and the task is to predict one of 7 tags for an image.
CF (CitationFull) [9] contains citation networks where nodes are papers and edges represent
citations, with node features as BoW of papers. The task is to classify the papers based on
their topics.
DzEu (DeezerEurope) [120] is a network of Deezer users from European countries where nodes
are the users and edges are mutual follower relationships. The task is to predict the gender
of users.
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LFMA (LastFMAsia) [120] is a network of LastFM users from Asian countries where edges
are mutual follower relationships between them. The task is to predict the location of users.
Amazon [133] contains Amazon Computers and Amazon Photo. They are segments of the
Amazon co-purchase graph, where nodes represent goods, edges indicate that two goods are
frequently bought together, node features are bag-of-words encoded product reviews, and
class labels are given by the product category.
Coau (Coauthor) [133] contains Coauthor CS and Coauthor Physics. They are co-authorship
graphs based on the Microsoft Academic Graph from the KDD Cup 2016 challenge 3. Nodes
are authors, and are connected by an edge if they co-authored a paper; node features repre-
sent paper keywords for each author’s papers, and class labels indicate most active fields of
study for each author.
Twitch [119] contains Twitch user-user networks of gamers who stream in a certain language
where nodes are the users themselves and the edges are mutual friendships between them.
The task is to to predict whether a streamer uses explicit language. Due to low baseline
performance even after a thorough hyperparameter search, we excluded Twitch-RU and
Twitch-FR from our main analysis.
Github [119] is a network of GitHub developers where nodes are developers who have starred
at least 10 repositories and edges are mutual follower relationships between them. The task
is to predict whether the user is a web or a machine learning developer.
FBPP (FacebookPagePage) [119] is a network of verified Facebook pages that liked each other,
where nodes correspond to official Facebook pages, edges to mutual likes between sites. The
task is multi-class classification of the site category.

4.4. Results
Each of the 49 datasets we consider is equipped with either a node classification or graph

classification task. In the case of node classification, we further differentiate between the
inductive setting, in which learning is done on a set of graphs and the generalization occurs
from a training set of graphs to a test set, and the transductive setting, in which learning
is done in one (large) graph and the generalization occurs between subsets of nodes in this
graph. Graph classification tasks, by contrast, always appear in an inductive setting. The
only major difference between graph classification and inductive node classification is that
prior to final prediction, the hidden representations of all nodes are pooled into a single
graph-level representation. In the following two subsections, we provide an analysis of the
sensitivity profiles for datasets with inductive and transductive tasks.

4.4.1. Taxonomy of Inductive Benchmarks
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Table 4.2 – Transductive benchmarks with node-level classification tasks.

Dataset # Nodes # Edges # Node # Pred. Predef. Ref.feat. classes split

WikiNet-cham 2,277 72,202 128 5 Yes [109]
WikiNet-squir 5,201 434,146 128 5 Yes [109]
WebKB-Cor 183 298 1,703 10 Yes [109]
WebKB-Wis 251 515 1,703 10 Yes [109]
WebKB-Tex 183 325 1,703 10 Yes [109]
Actor 7,600 30,019 932 10 Yes [109]
WikiCS 11,701 297,110 300 10 Yes [95]
Flickr 89,250 899,756 500 7 Yes [163]
CF-Cora 19,793 126,842 8,710 70 No [9]
CF-CoraML 2,995 16,316 2,879 7 No [9]
CF-CiteSeer 4,230 10,674 602 6 No [9]
CF-DBLP 17,716 105,734 1,639 4 No [9]
CF-PubMed 19,717 88,648 500 3 No [9]
DzEu 28,281 185,504 128 2 No [120]
LFMA 7,624 55,612 128 18 No [120]
Am-Comp 13,752 491,722 767 10 No [133]
Am-Phot 7,650 238,162 745 8 No [133]
Coau-CS 18,333 163,788 6,805 15 No [133]
Coau-Phy 34,493 495,924 8,415 5 No [133]
Twitch-EN 7,126 77,774 128 2 No [119]
Twitch-ES 4,648 123,412 128 2 No [119]
Twitch-DE 9,498 315,774 128 2 No [119]
Twitch-PT 1,912 64,510 128 2 No [119]
Github 37,700 578,006 128 2 No [119]
FBPP 22,470 342,004 128 4 No [119]

Datasets. We examine a total of 24 datasets, 21 of which are equipped with a graph-
classification task (inductive by nature) and the other three are equipped with an inductive
node-classification task. Of these datasets, 18 are derived from real-world data, while the
other six are synthetically generated.

For real-world data, we consider several domains. Biochemistry tasks are the most
ubiquitous, including compound classification based on effects on cancer or HIV inhibi-
tion (NCI1 & NCI109 [149], ogbg-molhiv [68]), protein-protein interaction PPI [166, 60],
multilabel compound classification based on toxicity on biological targets (ogbg-moltox21
[68]), and multiclass classification of enzymes (ENZYMES [68]). We also consider superpixel-
based graph classification as an extension of image classification (MNIST & CIFAR10 [34]),
collaboration datasets (IMDB-BINARY & COLLAB [160]), and social graphs (REDDIT-BINARY &
REDDIT-MULTI-5K [160]).

For synthetic data, we have a concrete understanding of their graph domain properties
and how these properties relate to their respective prediction tasks. This allows us to derive
a deeper understanding of their sensitivity profiles. The six synthetic datasets in our study
make use of a varied set of graph generation algorithms. Small-world [161] is based on
graph generation with the Watz-Strogatz (WS) model; the task is to classify graphs based
on average path length. Scale-free [161] retains the same task definition, but the graph
generation algorithm is an extension of the Barabási-Albert (BA) model proposed by Holme
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(a) Inductive graph datasets (b) Transductive graph datasets

Figure 4.4 – Visualization of (a) inductive and (b) transductive datasets based on PCA of
their perturbation sensitivity profiles according to a GCN model. The datasets are labeled
according to their taxonomization by hierarchical clustering, shown in Figure 4.5 and 4.7,
which corroborates with the emerging clustering in the PCA plots. In the bottom part are
shown the loadings of the first two principal components and (in parenthesis) the percentage
of variance explained by each of them.

and Kim [66]. PATTERN and CLUSTER are node-level classification tasks generated with sto-
chastic block models (SBM) [65]. Synthie [98] graphs are derived by first sampling graphs
from the well-known Erdös-Rényi (ER) model, then deriving each class of graphs by a spe-
cific graph surgery and sampling of node features from a distinct distribution per each class.
Similarly, SYNTHETICnew [38] graphs are generated from a random graph, where different
classes are formed by specific modifications to the original graph structure and node fea-
tures. Further details of dataset definitions and synthetic graph generation algorithms are
provided in Section 4.3.
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(a) Sensitivity profiles by GCN model.

(b) Sensitivity profiles by GIN model; annotated by cluster assignment w.r.t. GCN model.
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(c) Sensitivity profiles by 2-Layer GIN model; annotated by cluster assignment w.r.t. GCN
model.

(d) Sensitivity profiles by ChebNet model; annotated by cluster assignment w.r.t. GCN model.
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(e) Sensitivity profiles by GatedGCN model; annotated by cluster assignment w.r.t. GCN model.

(f) Sensitivity profiles by GCNII model; annotated by cluster assignment w.r.t. GCN model.

Figure 4.5 – Taxonomy of inductive graph learning datasets via graph perturbations. The
categorization into 3 dataset clusters is stable across the following models with only minor
deviations: (a) GCN, (b) GIN, (c) 2-Layer GIN, (d) ChebNet, (e) GatedGCN, (f) GCNII.
Missing performance ratios (due to out-of-memory error) are shown in gray.

General Insights. Here we first itemize the main insights into inductive datasets, and
then proceed with the analysis of individual clusters. Our full taxonomy is shown in Fig-
ures 4.5 and 4.4a.
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— Three distinct groups of datasets. We identify a categorization into three dataset
clusters I-{1,2,3} that emerge from both the hierarchical clustering and PCA. The
datasets in I-{1,2} exhibit stronger node feature dependency and do not appear
to contain crucial information encoded in the graph structure. For them, the node
features are sufficient, even though the structure itself may be non-trivial. The main
differentiating factor between I-1 and I-2 is their relative sensitivity to node feature
perturbations – in particular, how well NodeDeg can substitute the original node
features. On the other hand, datasets in I-3 rely considerably more on graph structure
for correct task prediction. This is also reflected by the first two principal components
(Figure 4.4a), where PC1 approximately corresponds to structural perturbations and
PC2 to node feature perturbations.

— No clear clustering by dataset domain. While datasets that are derived in a
similar fashion cluster together (e.g., REDDIT-* datasets), in general, each of the three
clusters contains datasets from a variety of application domains. Not all molecular
datasets behave alike; e.g., ogbg-mol* datasets in I-2 considerably differ from NCI*
datasets in I-3.

— Synthetic datasets do not fully represent real-world scenarios. CLUSTER,
SYNTHETICnew, and PATTERN lie at the periphery of the PCA embeddings, suggesting
that existing synthetic datasets do not resemble the type of complexity encountered
in real-world data. Hence, one should use synthetic datasets in conjunction with
real-world datasets to comprehensively evaluate GNN performance rather than solely
relying on synthetic ones. Nevertheless, the closest real-world datasets to PATTERN
are REDDIT-BINARY and REDDIT-MULTI-5K. This proximity makes intuitive sense as
all three datasets rely on finding substructures in graphs that infer the labels. We
also note that the sensitivity profiles of all synthetic datasets are well-accounted for
w.r.t. their respective design criteria which validate our approach; we refer the reader
to Sec. 4.4.1 for a more detailed analysis.

— Representative set. One can now select a representative subset of all datasets
to cover the observed heterogeneity among the datasets. Our recommendation:
PCQM4Mv2-subset, CIFAR10 from I-1; D&D, ogbg-molpcba from I-2; NCI1, COLLAB,
REDDIT-MULTI-5K, CLUSTER from I-3.

— Robustness w.r.t. GNN choice. In addition to GCN, we have performed our per-
turbation analysis w.r.t. GIN [159], 2-Layer GIN, ChebNet [27], GatedGCN [12] and
GCN II [20] models as well. These models were selected to cover a variety of inductive
model biases: GIN is a provably 1-WL expressive GNN, ChebNet uses higher-order
approximation of the Laplacian, GatedGCN employs gating akin to attention, and
GCN II leverages skip connections and identity mapping to alleviate oversmoothing
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Figure 4.6 – Pearson correlation between perturbation profiles derived by six GNN models.

of the original GCN. We have also tested a 2-layer GIN to probe the robustness to
number of message-passing layers.
The taxonomies w.r.t. other models (Figure 4.5) are congruent with that of GCN
shown here. Given the differing inductive biases and representational capacity, some
difference in the sensitivity profiles are not only expected but desired to validate their
functions in benchmarking. The resulting profiles can be used for a detailed compar-
ative analysis of these models, but the overall conclusions remain consistent. This
consistency is further validated in Figure 4.6, in which we have conducted correlation
analysis amongst these models. The Pearson correlation coefficients of all pairs are
above 90%, implying that our taxonomy is sufficiently robust w.r.t. different GNNs
and the number of layers.

I-1: Node-feature reliance. The top-most cluster I-1, while indifferent to structural
perturbations, is highly sensitive to node feature perturbations that comprise the left-hand-
side columns in Figure 4.5. The presence of image-based datasets MNIST and CIFAR10 in this
cluster is not surprising, as for superpixel graphs the structure loosely follows a grid layout
for all classes, meaning determining class solely based on structure is difficult. Additionally,
the coordinate information of superpixels is encoded also in the node features, together
with average pixel intensities. A model with powerful enough classifier component is then
sufficient for achieving high accuracy using these node features alone. Furthermore, the
sensitivity of these datasets to MidPass and HighPass indicates that the overall shape of
the signals encoded by low-frequencies is more informative for classifying the image content
than sharp superpixel transitions encoded by high-frequencies. The presence of ENZYMES in
I-1 is likely due to the fact that some of the node features are precomputed using graph
kernels, and therefore are sufficient to distinguish the enzyme classes in the dataset when
structural information is removed. Last but not least, PCQM4Mv2-subset dataset appears
to have a complex task that is dominated by the node feature information, yet the graph
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structure encodes non-negligible information as well. Out of all datasets in the I-1 cluster,
PCQM4Mv2-subset is the most sensitive one to structural perturbations. This corroborates
with the expectation that predicting the HOMO-LUMO gap, which is the energy difference
between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO), is a complex task that heavily depends on atom types, their bonds, and
relative distances.

I-2: Node features contain majority of necessary structural information. For
datasets in I-2, the graph structural information is again not necessary for achieving the
baseline performance if the original node features are present, while the performance deteri-
orates noticably if NoNodeFtrs is applied. However, unlike I-1, these datasets are much less
affected overall by the perturbations on node features. Many of the node features on these
datasets are themselves derived from the graph’s geometry, and it seems MPNNs are able
to use either the graph structure or the node features to compensate for the absence of the
other when encountering perturbed graphs. It appears that the low/mid/high-pass filterings
in particular are able to retain a significant amount of geometric information.

The synthetic graphs of Scale-Free and Small-world (both I-2 datasets) are generated
through different algorithms (WS and BA, respectively), but the node features and tasks
are equivalent: The features are the local clustering coefficient and PageRank score of each
node and the task is to classify graphs based on average path length. Since the encoded
features are derived from graph structure itself, MPNNs are still able to exploit them when
the original graph structure is perturbed. When the MPNNs are forced to rely on graph
structure instead, they are still able to attain AUROCs above random despite some decrease.

For many of the I-2 datasets, NodeDeg allows one to replace geometric information of
original node features with new geometric information, the degree of each vertex, to large
success – for some of them the original AUROC scores are recovered and even surpassed,
possibly due to NodeDeg reinforcing the existing structural signal. This trend is not as
pronounced when the GIN-based model is used, since GIN achieves a comparatively high
level of performance even in the face of NoNodeFtrs, likely due to the higher expressiveness
of GIN compared to GCN in distinguishing of structural patterns.

On the other hand, there are datasets of biochemical origin in this cluster, whose node
features encode chemical and physical attributes, such as atom or amino acid type. Ex-
cept MUTAG, there appears to be some information encoded in these node features that is
irreplaceable by graph structure or node degree information.

I-3: Graph-structure reliance. The I-3 cluster is characterized by strong structural
dependencies, and can be further divided into two subgroups based on their sensitivities to
node feature perturbations.
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The first subgroup, which consists of PATTERN, COLLAB, IMDB-BINARY and REDDIT, is not
affected by node feature perturbations. These datasets do not have any original informative
node features and their tasks appear to be purely structure-based. Indeed, in the case of
PATTERN the task is to detect structural patterns in graphs, rendering node features irrelevant
for the task. On the other hand, structural perturbations such as NoEdges and FullyConn
cause drastic performance drops in this group, since most of its task signals are sourced
from graph structures. This group also exhibits limited to no sensitivity towards Frag-k2
and Frag-k3 perturbations, which test for degrees of reliance on longer range interactions by
limiting information propagation to {2,3} hops. We still see prominent sensitivity to Frag-
k1, though, implying reliance on information from immediate neighbors. We can attribute
the insensitivity for k > 1 to inherent graph properties for some of these datasets: For dense
networks like PATTERN or ego-nets such as IMDB-BINARY and COLLAB, just 1 or 2 hops recover
the original graph – for these graphs, the notion of long-range information does not exist.

The second I-3 subgroup, formed by NCI datasets and Synthie, are the datasets that are
notably affected by all perturbations. For Synthie, this sensitivity stems from its construc-
tion. The four synthetic classes in Synthie are formed by combinations of two distributions
of graph structures and two distributions of node features – elimination of either leads to a
partial collapse in the distinguishability of two classes. The NCI classification tasks, similarly
to related bioinformatics datasets in I-2, show a degree of reliance on the high-dimensional
node features, but additionally, they are also dependent on non-local structure as they are
among the datasets most adversely affected by Frag-k2 and Frag-k3.

Synthetic datasets CLUSTER and SYNTHETICnew are also adversely affected by both struc-
tural and node feature perturbations. However, they stand out due to the magnitude of
this effect. Many of the perturbations lead to a major decrease in AUROC and close-to-
random performance. A closer inspection can provide an explanation. The task of CLUSTER
is semi-supervised clustering of unlabeled nodes into six clusters, and the true cluster labels
are given as node features in only a single node per cluster. NoEdges and FullyConn remove
the cluster structure altogether, while NoNodeFtrs and NodeDeg remove the given cluster
labels, rendering the task unsolvable in either case. In SYNTHETICnew, the two classes are
derived from a “base” graph by a class-specific edge rewiring and node feature permutation,
hence either graph structure or node features should differentiate the classes. Despite such
expectation, we observe that the original node features alone are not sufficient, as structure
perturbations have detrimental impact on the prediction performance. On the other hand
GIN and GCN with NodeDeg can learn to distinguish the two classes even without the orig-
inal node features. Thus, the original node features appear to be unnecessary, while after
bandpass-filtering even provide misleading signal.
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Figure 4.7 – Taxonomization of transductive datasets into 3 clusters based on sensitivity
profiles w.r.t. a GCN-based model.

4.4.2. Taxonomy of Transductive Benchmarks

Datasets. We selected a wide variety of 25 transductive datasets with node classification
task, including citation networks, social networks, and other web page derived networks (see
Section 4.3).

In citation networks, such as CitationFull (CF) [9], nodes and edges correspond to papers
that are linked via citation. In web page derived networks, like WikiNet [109], Actor [109],
and WikiCS [95], they correspond to hyperlinks between pages. In social networks, like Deezer
(DzEu) [120], LastFM (LFMA) [120], Twitch [119], Facebook (FBPP) [119], Github [119], and
Coau [133], nodes and edges are based on a type of relationship, such as mutual-friendship
and co-authorship. Flickr [163] and Amazon [133] are constructed based on other notions
of similarity between entities, such as co-purchasing and image property similarities. WebKB
[109] contains networks of university web pages connected via hyperlinks. It is an example
of a heterophilic dataset [101], since immediate neighbor nodes do not necessarily share the
same labels (which correspond to a user’s role such as faculty or graduate student). By
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contrast, Cora, CiteSeer, and PubMed are known to be homophilic datasets where nodes
within a neighborhood are likely to share the same label. In fact, no less than 60% of nodes
in these networks have neighborhoods that share the same node label as the central node [95].

General Insights. Below we list the main insights into transductive graph datasets and
their taxonomy (Figures 4.7 and 4.4b). We then again proceed with the analysis of individual
clusters.

— Transductive datasets are uniformly insensitive to structural perturba-
tions. Sensitivity profiles of all transductive datasets show high robustness to all
graph structure perturbations. This is in stark contrast with the inductive datasets,
where the largest cluster I-3 is defined by high sensitivity to structural perturbations.
The lowest performance achieved for a transductive dataset due to graph structure
removal is still as high as 92% (Flickr). Furthermore, on average, considering only
the neighborhoods of up to 3-hops (Frag-k3 ) nearly retains the full potential of the
model (99% ± 1.6%), revealing the lack of long-range dependencies in these node-level
datasets. Graph connectivity may not be vital to every dataset/task, e.g., in WikiCS
word embeddings of Wikipedia pages may be sufficient for categorization without hy-
perlinks. Additionally, negligence of the full graph structure might be attributed to
the limitations of the GCN expressivity and issues such as oversquashing [141]. While
these limitations are fundamentally true, our observation of long-range dependencies
on some graph-level tasks like NCI, coupled with our architecture being 5 layers deep
with residual connections, indicate that our GCN model is capable of capturing non-
local information in the 3-hop neighborhoods. Furthermore, our observed long-range
independence in transductive node-level datasets is consistent with the promising re-
sults presented by recent development of scalable GNNs that operate on subgraphs
[21, 163, 40], breaking or limiting long-range connections. While the observation that
no dataset significantly depends on structural information is startling, it corroborates
with the reported strong performance of MLP or similar models augmented with label
propagation to outperform GNNs in several of these transductive datasets. [47, 72].

— Three distinct groups of datasets. The transductive datasets are also categorized
into three clusters as T-{1,2,3}. T-1 consists of heterophilic datasets, such as WebKB
and Actor [101, 91]. These are well-separated from others, as seen in the right half
of the PCA plot (Figure 4.4b), primarily via PC1, which is characterized by perfor-
mance drop due to removal of the original node features (NoNodeFtrs, RandFtrs) and
their replacement by node degrees (NodeDeg). T-3 is indifferent to both node and
structure removal, implying redundancies between node features and graph structure
for their tasks. T-2 datasets, on the other hand, experience significant performance
degradation on NoNodeFtrs and RandFtrs, yet these drops are recovered in NodeDeg.
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This indicates that T-2 datasets have tasks for which structural summary information
is sufficient, perhaps due to homophily.

— Representative set. Many datasets have very close sensitivity profiles, thus factor-
ing in also the graph size and original AUROC (avoiding saturated datasets), we make
the following recommendation: WebKB-Wis, Actor from T-1; WikiNet-cham, WikiCS,
Flickr from T-2; WikiNet-squir, Twitch-EN, Github from T-3.

T-3: Indifference to node and structure removal. The datasets in T-3 are relatively
insensitive to perturbations of graph structure and also to the removal of node features
(NoNodeFtrs and NodeDeg). For example, the Amazon datasets (Am-Phot and Am-Comp)
always achieve near perfect classification performance regardless of the perturbations applied,
suggesting redundancy between node features and graph structure for the corresponding
tasks. For these datasets, in particular, GitHub, Am, and Twitch, more sophisticated, or
combinations of, perturbations might be needed to gauge their essential characteristics.

T-2: Rich node features but substitutable for structural (summary) information.
T-2 contains a broad spectrum of datasets from citation networks (CF), social networks (Coau,
FBPP, LFMA), to web pages (WikiNet, WikiCS). The considerable performance decrease due to
node feature removal suggests the relevance of the node features for their tasks. For example,
it is not surprising that the binary bag-of-words features of CF datasets provide relevant
information to classify papers into different fields of research, as one might expect some
keywords to appear more likely in one field than in another. Furthermore, using the one-hot
encoded node degrees (NodeDeg) always results in better performance over NoNodeFtrs. And
in many cases such as Facebook (FBPP), NodeDeg nearly retains the baseline performance,
suggesting the relevance of node degree information, as a form of structural summary, for
the respective tasks.

WebKB-Tex, although clustered into T-2 is more of an outlier that does not clearly fit into
any of the existing clusters. As we will discuss more in T-1, WebKB-Tex considerably benefits
from HighPass, while LowPass and MidPass severely decrease its performance.

T-1: Heterophilic datasets. Three of the four datasets in T-1 (Actor, WebKB-Cor, and
WebKB-Wis) are commonly referred to as heterophilic datasets [101, 91]. While WebKB-Tex
(T-2) is also known to be heterophilic, it is isolated from T-1 mainly due to its insensitivity
to node feature removal, suggesting the structure alone is sufficient for its prediction task.

Our results show that in heterophilic datasets such as T-1 and WebKB-Tex, LowPass
node feature filtering, realized by local aggregation (Eq. 4.2.3), significantly degrades the
performance, unlike other homophilic datasets. By contrast, HighPass results in better
performance than LowPass. In the case of WekbKB-Tex, HighPass significantly improves the
performance over the baseline. This observation is related to recent findings [91] that in
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the case of extreme heterophily, local information, this time in form of the neighborhood
patterns, may suffice to infer the correct node labels.

Finally, despite heterophilic datasets [91, 2, 141, 101] attracting much recent attention,
this type of datasets (T-1 and WebKB-Tex) is lacking in availability compared to the others
(T-{2,3}), which exhibit homophily but with different levels of reliance on node features.
Thus, there is a need to collect and generate more real-world heterophilic datasets.

4.5. Discussion
Our results quantify the extent to which graph features or structures are more important

for the downstream tasks, an important question brought up in classical works on graph ker-
nels [84, 129]. We observed that more than half of the datasets contain rich node features.
On average, excluding these features reduces GNN prediction performance more than exclud-
ing the entire graph structures, especially for transductive node-level tasks. Furthermore,
low-frequency information in node features appears to be essential in most datasets that rely
on node features. Historically, most graph data aimed to capture closeness among entities,
which has prompted development of local aggregation approaches, such as label propagation,
personalized page rank, and diffusion kernels [81, 24], all of which share a common principle
of low pass filtering. High-frequency information, on the other hand, may be important in
recently emerging application areas, such as combinatorial optimization, logical reasoning or
biochemical property prediction, which require complex non-local representations.

Further, despite the recent interest in development of new methods that could lever-
age long-range dependencies and heterophily, the availability of adequate benchmarking
datasets remains lacking or less readily accessible. Meanwhile, some recent efforts such
as GraphWorld [106] aim to comprehensively profile a GNN’s performance using a collection
of synthetic datasets that cover an entire parametric space. Notably, our analysis demon-
strates that synthetic tasks do not fully resemble the complexity of real-world applications.
Hence, benchmarking made purely by synthetic datasets should be taken with caution, as
the behavior might not be representative of real-world scenarios.

As a comprehensive benchmarking framework, our work provides several potential use
cases beyond the taxonomy analysis presented here. One such usage is understanding the
characteristics of any new datasets and how they are related to existing ones. For example,
DeezerEurope (DzEu) is a relatively new dataset [120] that is less commonly benchmarked
and studied than the other datasets we consider. The inclusion of DzEu in T-1 suggested
its heterophilic nature, which indeed has been recently demonstrated [89]. On the other
hand, since the sensitivity profiles naturally suggest the invariances that are important for
different datasets from a practical standpoint, they could provide valuable guidance to the
development of self-supervised learning and data augmentations for GNNs [158].
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Finally, we observed that overall patterns in sensitivity profiles remain similar regardless
whether we used GCN, GIN or the other 4 models to derive them. Subtle differences in
sensitivity profiles w.r.t. different GNN models are not only expected but also desired when
comparing models that have distinct levels of expressivity. While we expect overall patterns
to be similar, more expressive models should provide enhanced resolution. One could then
contrast taxonomization w.r.t. first-order GNNs (such as those we used) with provably more
expressive higher-order GNNs, Transformer-based models with global attention, and others.
We hope our work will also inspire future work to empirically validate expressivity of new
graph learning methods in this vein, beyond classical benchmarking.
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Conclusion

As the field of graph representation learning rapidly grows, the importance of setting up
comprehensive and informative benchmarking processes that evaluate these developments
increases in tandem. Nevertheless, it is still difficult today to make informed decisions
about benchmarking data selection in the relatively short history of graph learning, primarily
due to a limited understanding of how datasets differ in their encoding and propagation of
information.

The first contribution of this thesis is to present a comprehensive overview of how we
have arrived at graph neural networks as the presiding paradigm in geometric deep learning,
from a broadly historical perspective. We showed that development of graph learning as a
field has relied on a unique amalgamation of research areas in computer science, drawing
from graph theory, signal processing and stochastic models in addition to machine learning.
In our further enquiry into machine learning on graphs, we have covered traditional machine
learning algorithms such as kernel methods in addition to discussing the influences of pre-
GNN deep learning methods of recurrent, recursive and convolutional neural networks.

We then reviewed a number of GNN algorithms that have proven both influential and
performative, and thus (a) commonly serve as points of reference for researchers developing
new GNN algorithms, and (b) some of which we have in turn used when constructing our
taxonomy. In doing so, we also took care to provide models that cover a spectrum of
inductive biases such as spatial and spectral convolutions, edge gates, attention and graph
isomorphism. We have also made a conscious attempt to present these models from the lens
of neural message passing, in the spirit of Gilmer et al. [51] and Hamilton [59].

Our second contribution is to provide a much-needed analysis of current shortcomings of
benchmarking processes in graph representation learning. We follow a top-down approach
and conjecture criteria on what constitutes a set of benchmark datasets appropriate in ma-
chine learning, and identify the issue of “insufficient data coverage”, i.e. seemingly different
benchmarks testing for similar properties of a machine learning algorithm and offer no dif-
ferentiability. We argue that data coverage is not a well-understood problem, yet its harmful
effects on generalization performance of deep learning algorithms are unmistakable. We then
zero in on benchmarking problems in GRL, where most traditional graph benchmarks consist



of small graphs and lack unified experimental protocols which lead to noisy benchmarking
procedures. We then shift our focus to how data coverage issues manifest themselves in
GRL benchmarking and how these issues have been partially addressed to date. Our obser-
vation is that the criteria for “variety” and coverage in graph datasets, as proposed by recent
literature, is usually limited to application domains and basic graph data metrics such as
graph size, which are insufficient to ensure that benchmarks processes are able to statistically
separate different GNN models.

As our third and main contribution in this work, we present a solution to this problem
by constructing a method for defining and analyzing the information flow in graph data,
and come up with the most complete taxonomy of graph datasets in literature based on
the analysis of this information flow on a multitude of datasets, covering graph and node
prediction tasks, on inductive and transductive datasets. The core principle of our method
is to gauge the essential characteristics of a given dataset with respect to its accompanying
prediction task by inspecting the downstream effects caused by perturbing its graph data.
The resulting sensitivities to the diverse set of perturbations serve as “fingerprints” that
allow to identify datasets with similar characteristics.

Finally, using our taxonomy, we derive several insights into the current common bench-
marks used in the field of graph representation learning, and make recommendations on
selection of representative benchmarking suits. Our analysis also puts forward a foundation
for evaluating new benchmarking datasets that will likely emerge in the field. With this
in mind we have taken care to ensure that our methodology provides not just a snapshot
of the current state of benchmarking in graph representation learning, but also a dynamic
framework that can grow as the field progresses further by its application to future graph
datasets and models. We also facilitate the dynamic nature of our methodology by providing
the source code for our taxonomy; we hope that this will make it easier for researchers to
both use our framework in developing their benchmarks, and further extend it to suit their
needs.
Limitations and Future Work. Our perturbation-based approach has a fundamental
limitation in the sense that we cannot test the significance of a property that we cannot
systematically perturb or that the reference GNN model cannot capture. Therefore, de-
signing more sophisticated perturbation strategies for gauging specific characteristics and
relations could bring further insight into the datasets and GNN models alike. New pertur-
bations may gauge the usefulness of geometric substructures such as cycles [6] or the effects
of graph bottlenecks, e.g., by rewiring graphs to modify their “curvatures” [141]. Other
interesting perturbations could include graph sparsification (edge removal) [135] and graph
pooling/coarsening (edge contraction) [16, 8].

A number of OGB node-level datasets are not included in this study due to memory
cost of typical MPNNs. Conducting an analysis based on recent scalable GNN models [40]
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would be an interesting avenue of future research. Further, we only considered classifica-
tion tasks, omitting regression tasks, as their evaluation metrics are not easily comparable.
One way to circumvent this issue would be to quantize regression tasks into classification
tasks by binning their continuous targets. Additionally, we disregarded edge features in two
OGB molecular datasets we used. In a future work, edge features could be leveraged by
an edge-feature aware generalization of MPNNs. The importance of edge features can then
be analyzed by introducing new edge-feature perturbations. We also limited our analysis
to node-level and graph-level tasks, but this framework could be further extended to link-
prediction or edge-level tasks. While our perturbations could be used in this new scenario
as well, new perturbations, such as the above-mentioned graph sparsification, would need to
be considered. Similarly, hallmark models for link and relation predictions, outside MPNNs,
should be considered.
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Appendix A

Derivation of Support-Vector Machine (SVM)
Algorithms

A.1. Hard-margin SVM
Let us start from the most basic and intuitive case, the linear SVM [11]. Assume that

we have p data points from two classes in the form of

(x1, y1), . . . , (xp, yp)

where xi is some N -dimensional vector, and y ∈ 1,−1. SVM training outputs a decision
function D(x) such that D(x) > 0 Ô⇒ y = 1 and y = −1. otherwise. For the linear SVM,
the decision function defines a separating hyperplane in the form of ⟨w,x⟩+ b, where sign of
the output determines the class:

D(x) = sign(⟨w,x⟩ + b) (A.1.1)

Here, w is an N -dimensional vector that determines the orientation of the hyperplane, and
b is a bias that represents the offset from the origin. For linearly separable training data
(xi, yi), the decision function satisfies

yi(⟨w,xi⟩ + b)

∥w∥
≥M (A.1.2)

and the training objective is to find some w (which we can normalize to unit length) that
maximizes the margin M , resulting in the maximum-margin hyperplane:

M∗ = max
w,∥w∥=1

M

s.t. yi(⟨w,xi⟩ + b) ≥M, i = 1,2, . . . , p
(A.1.3)

The maximum-margin hyperplane separates the data points of the two classes in a way such
that the distance of the hyperplane to the nearest data point from either class is maximized.



Inevitably, some data points will satisfy

min
i
yi(⟨w,xi⟩ + b) =M

∗ (A.1.4)

by defining the maximum margin; these points constitute the support vectors where the
algorithm derives its name from. Now, let us denote wM =

w
M and bM =

b
M . This allows us

to reframe Equation A.1.3 as:

M∗ = max
w,∥w∥=1

M

s.t. yi(⟨wM ,xi⟩ + bM) ≥ 1, i = 1,2, . . . , p
(A.1.5)

Since ∥wM∥ =
∥w∥
M = 1

M , the size of the full margin becomes 2M = 2
∥wM ∥

(as M denotes
the distance denotes the distance from the hyperplane to only one side of the full margin).
Thus, maximizing M is equivalent to minimizing the norm ∥wM∥. We can then once again
reframe our objective as the following optimization problem:

arg min
wM ,bM

1
2∥wM∥

2

s.t. yi(⟨wM ,xi⟩ + bM) ≥ 1, i = 1,2, . . . , p
(A.1.6)

The resulting problem is now a convex quadratic programming (QP) problem, and can
be solved directly. However, for high-dimensional spaces the solution space grows extremely
large. One can instead solve for the Lagrangian dual of this problem for a more efficient
solution.

Introducing Lagrange multipliers λi ≥ 0, i = 1, . . . , p for the inequality constraints above
gives us the primal Lagrangian function below. Now that the reframing of the problem is
complete, with slight abuse of notation, let’s revert wM to w, and bM to b for the sake of
clarity.

L(w, b,λ) = 1
2∥w∥

2 +
p

∑
i=1
λi(1 − yi(⟨w,xi⟩ + b)) (A.1.7)

The Lagrangian dual is then given by

ϕ(λ) = inf
w∈RN ,b∈R

L(w, b,λ) (A.1.8)

We can obtain the dual by setting the gradient of L w.r.t. w and b to 0, which gives us

w =
p

∑
i=1
λiyixi (A.1.9)

p

∑
i=1
λiyi = 0 (A.1.10)

Substituting these into the primal Lagrangian in A.1.7, we get the simpler dual Lagrangian:

ϕ(λ) =
p

∑
i=1
λi −

1
2

p

∑
i=1

p

∑
j=1
λiλjyiyj⟨xi,xj⟩ (A.1.11)
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The dual Lagrangian does not depend on w nor b, but only on λ. Also, the stationary point,
which is a minimum for the primal Lagrangian, is a maximum for the dual. The resulting
dual problem is then

arg max
λ

p

∑
i=1
λi −

1
2

p

∑
i=1

p

∑
j=1
λiλjyiyj⟨xi,xj⟩

s.t.
p

∑
i=1
λiyi = 0, i = 1,2, . . . , p

λi ≥ 0, i = 1,2, . . . , p

(A.1.12)

which is also a QP problem that can be solved numerically. The solution λ̂ can then be used
to obtain ŵ corresponding to the maximum-margin hyperplane via A.1.9:

ŵ =
p

∑
i=1
λ̂iyixi (A.1.13)

By the dual feasability and complementary slackness conditions in the Karush–Kuhn–Tucker
(KKT) conditions [85], we have the following properties respectively:

λ̂i ≥ 0, i = 1,2, . . . , p

λ̂i(1 − yi(⟨ŵ,xi⟩ + b)) = 0, i = 1,2, . . . , p
(A.1.14)

This implies
λ̂i > 0 Ô⇒ 1 − yi(⟨ŵ,xi⟩ + b̂) = 0 (A.1.15)

meaning λ̂i is positive only when yi(⟨ŵ,xi⟩ + b) = 1, i.e for the support vectors that lie on
the margin by definition, as per Eqs. A.1.4 and A.1.5. This allows us to refine Eq. A.1.13 to
account for only the support vectors:

SV = {λ̂i > 0, i ∈ [1,2, . . . , p]}

ŵ = ∑
i∈SV

λ̂iyixi
(A.1.16)

b̂ is also obtained from the support vectors via A.1.15; while one support vector may be
sufficient, in practice the average for all support vectors are computed for stability:

b̂ =
1
∣SV∣ ∑i∈SV

(yi − ⟨ŵ,xi⟩) (A.1.17)

One can classify some new data point x ∈ RN using the resulting decision function

sign(⟨ŵ,xi⟩ + b̂) = sign(∑
i∈SV

λ̂iyi⟨xi,x⟩ + b̂) (A.1.18)

A.2. Soft-margin SVM
The hard-margin SVM algorithm introduced above does have some shortcomings. To

begin, it is unsuitable for linearly non-separable data as aforementioned. Furthermore, it is
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Figure A.1 – A linearly separable data with two outliers A and B that significantly reduce
the separation margin from M1 to M2, corresponding to soft-margin classifier D1 and hard-
margin classifier D2.

sensitive to outliers. Even in cases where the data is linearly separable, outliers may alter
the separating hyperplane in a way that reduces the separation margin, as illustrated by
Fig A.1. In such cases, it may be beneficial to relax the linear separability constraints for
outliers in order to obtain a larger margin for the majority of data points. This brings us to
the soft-margin SVM algorithm.

The soft-margin SVM relaxes the separability constraints by introducing slack variables
ξ1, . . . , ξp ≥ 0 to the constraints in Eq. A.1.6:

yi(⟨w,xi⟩ + b) ≥ 1 − ξi, i = 1,2, . . . , p (A.2.1)

These slack constraints allow for data points within the margin, or even on the other side
of the decision boundary. For each such data point xi, ξi denotes the distance of the data
point from the margin. Now, we want our classifier to not just maximize the margin (and
hence minimize ∥w∥2 as shown above), but also to reduce the errors by minimizing ξi. We
therefore rewrite our optimization problem in Eq. A.1.6 as

arg min
w

1
2∥w∥

2 + β
p

∑
i=1
ξi

s.t. yi(⟨w,xi⟩ + b) ≥ 1 − ξi, i = 1,2, . . . , p

ξi ≥ 0, i = 1,2, . . . , p

(A.2.2)

where β denotes a configurable constant that is used to manage the trade-off between the
two terms to optimize. Whenever we have yi(⟨w,xi⟩ + b) < 1 for some xi (meaning this
data point is within the margins), we pay a cost of βξi in the objective function. A point is
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Figure A.2 – Three possible types of support vectors for non-linearly separable data: SV1,
SV2, SV3 as defined in Equation A.2.7.

misclassified if ξi ≥ 1. A large β keeps classification errors to a minimum but may result in
a reduced margin, while a small β permits more misclassified examples for a larger margin
on the remaining data points.

The dual Lagrangian problem formulation of the soft-margin linear SVM is identical to
its hard-margin counterpart in A.1.12, except the final set of constraints on λ which are
replaced by

β ≥ λi ≥ 0, i = 1,2, . . . , p (A.2.3)

One again solves the convex QP problem to obtain λ̂, and derive ŵ similarly:

ŵ =
p

∑
i=1
λ̂iyixi (A.2.4)

By the KKT conditions we have:

λ̂i (1 − ξ̂i − yi (⟨ŵ,xi⟩ + b̂)) = 0

(C − λ̂i) ξ̂i = 0
(A.2.5)

Considering these equations along with A.2.3 gives:

β ≥ λi ≥ 0 Ô⇒ 1 − yi (⟨ŵ,xi⟩ + b̂) = 0 (A.2.6)

This results in three types of support vectors inferred from λ̂i > 0, as illustrated in Fig. A.2:

SV1 = {β > λ̂i > 0, i ∈ [1,2, . . . , p]}

SV2 = {λ̂i = β, ξ̂ < 1, i ∈ [1,2, . . . , p]}

SV3 = {λ̂i = β, ξ̂ ≥ 1, i ∈ [1,2, . . . , p]}

(A.2.7)
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SV1: Margin support vectors, correctly classified
SV2: Within margin, correctly classified
SV2: Opposite side of decision boundary, misclassified

Then, ŵ can be rewritten using the union of the support vectors above, as they all have
λ̂i > 0. b̂, however, would be computed only using the margin support vectors SV1:

ŵ = ∑
i∈SV1∪SV2∪SV3

λ̂iyixi (A.2.8)

b̂ =
1
∣SV1∣

∑
i∈SV1

(yi − ⟨ŵ,xi⟩) (A.2.9)
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Appendix B

Additional Taxonomy Visualizations

B.1. Correlations of Perturbations

(a) Inductive benchmarks (b) Transductive benchmarks

Figure B.1 – Pearson correlation coefficients of the log2 performance fold change between
different perturbations (w.r.t. a GCN model).

We compute the Pearson correlation between all pairs of perturbations based on the
log2 performance fold change. The results in Figure B.1 indicate that many perturbations
correlate with each other to some extend. For both transductive and inductive benchmarks,
the perturbations roughly cluster into two groups, separating node feature perturbations
(see Section 4.2.1) and graph structure perturbations (see Section 4.2.2). In particular,
perturbations that replace the original node features with other less informative features,
including RandFtrs, NoNodeFtrs, and NodeDeg, highly correlate with one another (Pearson



r ≥ 0.6). Similarly, perturbations that severely break the graphs apart, including NoEdges,
Frag-k1, and FiedlerFrag, are highly correlated (Pearson r ≥ 0.8).
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Appendix C

Supplementary Studies

C.1. Distribution of Classical Graph Properties in
Benchmarking Datasets

In this work we use perturbation sensitivity profiles derived from a GNN’s prediction
performance in order to gauge how task-related information is encoded in the graph datasets.
In this section we explore an alternative approach. We analyze classical graph properties
in multiple datasets and their classes to investigate whether we can establish a meaningful
taxonomy without a dependence on a particular GNN method, while using well-established
graph properties.

A static analysis of the graph properties alone is insufficient without taking into account
the prediction task as well. The graph domain that a dataset X is sampled from (e.g.,
drug-like molecules, proteins, ego networks, citation networks) may exhibit varying range of
properties (e.g., density, node degree distribution, local/global clustering coefficients, number
of triangles, graph diameter, girth, maximum clique, etc.), however these do not take into
account node features in attributed graphs, and could be irrelevant to the prediction task
Y . Therefore, we look at the difference in graph properties compared among the individual
classes of Y .

Particularly, we look at all 9 inductive binary-classification datasets from our dataset se-
lection (Table 4.1). Within each class (the negative and positive label) of these 9 datasets we
computed the average value of 9 graph properties computed by the NetworkX package [56].
The results are presented in Table C.1 and Figure C.1. Primarily, the computed graph prop-
erties vary more between datasets than between classes. The marginal graph properties of
the positive and negative class are very similar to each other, especially for the SYNTHET-
ICnew dataset. The largest difference between the classes appears to be the average size
of the graphs, which is captured by the average number of nodes and edges. Therefore we



Table C.1 – Classical graph properties among positive and negative classes of 9 graph-
classification datasets. The difference between datasets dominates within-dataset differences
between classes.

Num. Num. Density Connectivity Diameter Approx. Centrality Cluster. Num.
nodes edges max clique coeff. triangles

IMDB-BINARY (class=0) 20.11 96.78 0.559 3.828 1.838 10.30 0.559 0.943 307.73
IMDB-BINARY (class=1) 19.43 96.29 0.482 3.388 1.884 10.01 0.482 0.951 476.25
REDDIT-BINARY (class=0) 641.25 735.95 0.012 0.556 5.646 3.22 0.012 0.054 35.96
REDDIT-BINARY (class=1) 218.00 259.56 0.032 0.423 3.778 2.95 0.032 0.041 13.71
D&D (class=0) 341.88 870.23 0.019 1.110 20.843 4.95 0.019 0.479 617.07
D&D (class=1) 183.72 449.43 0.040 1.140 17.460 4.79 0.040 0.480 302.55
PROTEINS (class=0) 50.00 94.06 0.142 1.196 13.837 3.85 0.142 0.473 34.30
PROTEINS (class=1) 22.94 41.52 0.315 1.420 7.278 3.80 0.315 0.575 17.24
NCI1 (class=0) 25.65 27.65 0.100 0.924 11.265 2.02 0.100 0.002 0.03
NCI1 (class=1) 34.07 36.94 0.078 0.796 11.917 2.05 0.078 0.004 0.07
NCI109 (class=0) 25.61 27.61 0.100 0.913 11.061 2.02 0.100 0.002 0.02
NCI109 (class=1) 33.69 36.59 0.079 0.794 11.644 2.05 0.079 0.004 0.07
MUTAG (class=0) 13.94 14.62 0.169 1.000 7.016 2.00 0.169 0.000 0.00
MUTAG (class=1) 19.94 22.40 0.123 1.000 8.824 2.00 0.123 0.000 0.00
SYNTHETICnew (class=0) 100.00 196.42 0.040 0.993 7.333 3.00 0.040 0.024 5.39
SYNTHETICnew (class=1) 100.00 196.08 0.040 0.993 7.213 3.00 0.040 0.022 4.54
ogbg-molhiv (class=0) 25.20 27.13 0.104 0.931 11.016 2.02 0.104 0.002 0.03
ogbg-molhiv (class=1) 34.18 36.69 0.084 0.824 12.183 2.01 0.084 0.001 0.01

Figure C.1 – PCA plot of 9 binary graph-level classification datasets represented by their
per-class graph properties. In the bottom, the loadings of the first two principal components
are shown.

argue that basing a taxonomy on dataset or class-level marginal graph properties is grossly
insufficient as it completely fails to capture the nature of the prediction task.

Alternatively, one could conduct a correlation analysis between classical graph properties
(averaged per class) and the outcome Y . However, that would again only take into account

156



the marginal properties, assume linear relationship (as correlation captures only a linear
relationship), and would rely on a fixed set of computable graph properties. These appear
to be fundamental limitations compared to the perturbation analysis presented in the main
text, that would result in a grossly skewed taxonomy.

C.2. Impact of random initialization on Frag-k pertur-
bations

Our Frag-k perturbation is potentially sensitive to the random initializations of the ini-
tial seed nodes used in the fragmentation procedure. To measure this sensitivity of Frag-k
perturbations to node initializations, we computed the variance of AUROC results across ten
experiments with different random seeds for both GCN and GIN models. Here, we analysed
five datasets, the performance on which was significantly altered by Frag-k in the original
analysis, namely, CLUSTER, PATTERN, PPI, Synthie, and SYNTHETICnew. The vari-
ances are within 5%, with the only exception being SYNTHETICnew. We hypothesize that
this is due to the randomness of the constructions of the SYNTHETICnew dataset. Thus, over-
all, the Frag-k approach is sufficiently stable for datasets whose constructions involve little
randomness.

Table C.1 – Variances of AUROC across ten different random seeds for Frag-k for GCN.

Dataset Perturbation AUROC Avg. AUROC Std. AUC Std./Avg. (%)

CLUSTER Frag-k1 0.637 0.001 0.165
CLUSTER Frag-k2 0.913 0.000 0.039
CLUSTER Frag-k3 0.913 0.000 0.037
PATTERN Frag-k1 0.769 0.001 0.095
PATTERN Frag-k2 0.933 0.000 0.016
PATTERN Frag-k3 0.933 0.000 0.021
PPI Frag-k1 0.620 0.003 0.529
PPI Frag-k2 0.647 0.012 1.807
PPI Frag-k3 0.720 0.011 1.519
SYNTHETICnew Frag-k1 0.704 0.126 17.908
SYNTHETICnew Frag-k2 0.533 0.078 14.701
SYNTHETICnew Frag-k3 0.715 0.089 12.492
Synthie Frag-k1 0.962 0.015 1.581
Synthie Frag-k2 0.870 0.029 3.334
Synthie Frag-k3 0.876 0.036 4.164
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Table C.2 – Variances of AUROC across ten different random seeds for Frag-k for GIN.

Dataset Perturbation AUROC Avg. AUROC Std. AUC Std./Avg. (%)

CLUSTER Frag-k1 0.643 0.001 0.162
CLUSTER Frag-k2 0.910 0.001 0.101
CLUSTER Frag-k3 0.910 0.001 0.130
PATTERN Frag-k1 0.780 0.001 0.091
PATTERN Frag-k2 0.934 0.000 0.013
PATTERN Frag-k3 0.934 0.000 0.019
PPI Frag-k1 0.617 0.002 0.376
PPI Frag-k2 0.644 0.009 1.476
PPI Frag-k3 0.704 0.013 1.843
SYNTHETICnew Frag-k1 0.708 0.081 11.407
SYNTHETICnew Frag-k2 0.532 0.071 13.276
SYNTHETICnew Frag-k3 0.757 0.064 8.411
Synthie Frag-k1 0.985 0.008 0.810
Synthie Frag-k2 0.945 0.011 1.213
Synthie Frag-k3 0.920 0.025 2.677
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Appendix D

Les différentes parties et leur ordre
d’apparition

J’ajoute ici les différentes parties d’un mémoire ou d’une thèse ainsi que leur ordre
d’apparition tel que décrit dans le guide de présentation des mémoires et des thèses de
la Faculté des études supérieures. Pour plus d’information, consultez le guide sur le site web
de la facutlé (www.fes.umontreal.ca).



Ordre des éléments constitutifs du mémoire ou de la thèse
1. La page de titre obligatoire
2. La page d’identification des membres du jury obligatoire
3. Le résumé en français et les mots clés français obligatoires
4. Le résumé en anglais et les mots clés anglais obligatoires
5. Le résumé dans une autre langue que l’anglais obligatoire

ou le français (si le document est écrit dans
une autre langue que l’anglais ou le français)

6. Le résumé de vulgarisation facultatif
7. La table des matières, la liste des tableaux, obligatoires

la liste des figures ou autre
8. La liste des sigles et des abréviations obligatoire
9. La dédicace facultative
10. Les remerciements facultatifs
11. L’avant-propos facultatif
12. Le corps de l’ouvrage obligatoire
13. Les index facultatif
14. Les références bibliographiques obligatoires
15. Les annexes facultatifs
16. Les documents spéciaux facultatifs
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