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Abstract 

Muscle fatigue is a risk factor for developing shoulder musculoskeletal disorders. The aim 

of this study was to identify shoulder electromyographic indicators that are most indicative 

of muscle fatigue during a laboratory simulated manual handling task. Thirty-two 

participants were equipped with electromyographic electrodes on 10 shoulder muscles and 

moved boxes for 45-minutes. The modified rate of perceived exertion (mRPE) was 

assessed every 5-minutes and multivariate linear regressions were performed between 

myoelectric manifestation of fatigue (MMF) and the mRPE scores. During a manual 

handling task representative of industry working conditions, spectral entropy, median 

frequency, and mobility were the electromyographic indicators that explained the largest 

percentage of the mRPE. Overall, the deltoids, biceps and upper trapezius were the muscles 

that most often showed significant changes over time in their electromyographic indicators. 

The combination of these three indicators may improve the accuracy for the assessment of 

MMF during manual handling. 

 

Keywords: Biomechanics, Entropy, Median frequency, Time-frequency analysis, 

Shoulder 
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Practitioner Summary: To date, muscle fatigue has primarily been assessed during tasks 

done to exhaustion, which are not representative of typical working conditions. During a 

manual handling task representative of industry working conditions, EMG-derived spectral 

entropy, and median frequency, both extracted from time-frequency analysis, and mobility 

extracted from time domain, were the best indicators of the manifestation of muscle fatigue.  
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Abbreviations 

DeltA  Anterior Deltoid 

DeltL  Lateral Deltoid 

DeltP  Posterior Deltoid 

EMG  Electromyography 

ISP  Infraspinatus 

MMF  Manifestation of muscle fatigue 

mRPE  modified Rate of Perceived Exertion 

Pec  Pectoralis 

SSP  Supraspinatus 

Subs  Subscapularis 

UpTrap Upper Trapezius  
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1 Introduction 

Industrial work such as assembling or manual handling involves repetitive movements, 

elevated arm postures, constrained workplaces, and long periods of sustained muscle 

activity. These characteristics act in combination to cause muscle fatigue, and have each 

been identified as risk factors for the development of shoulder musculoskeletal disorders 

(Côté, 2014; Hanvold et al., 2015; Mathiassen, 2006; Mayer et al., 2012; Nordander et al., 

2009; Roquelaure et al., 2009; Svendsen et al., 2004). In western industrialized regions 

such as the province of Quebec in Canada, the societal costs of shoulder musculoskeletal 

disorders represented an average of 600 dollars per year per inhabitant, and a total of 4.7 

billion dollars per year in 2017 (Busque et al., 2020). Therefore, it is essential to determine 

effective methods to assess muscle fatigue in common working activities such as manual 

handling. 

Several methods exist to assess the manifestation of muscle fatigue (MMF). Muscle force 

(Vøllestad, 1997), movement kinematics (Cortes et al., 2014; Côté et al., 2002; Lessi et al., 

2017), electromyography (EMG) (Cifrek et al., 2009; Rampichini et al., 2020; Shair et al., 

2017), as well as potentials evoked in response to electrical stimulation of the motor 

neurons or the muscle itself (Bellemare & Bigland-Ritchie, 1987; McKenzie & Gandevia, 

1991) are altered under muscle fatigue conditions. Among them, EMG is the most suited 

to assess MMF to in-field working environment, since the sensors are wearable, lightweight 

devices, and EMG-based MMF indicators can be measured directly during movement 

execution without hindering task performance (McDonald et al., 2016; Tse et al., 2016). In 

addition, EMG is advantageous in that it can measure localized MMF (Korol et al., 2014, 

2017) as compared to the measurement of muscle force or movement kinematics 
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measurements which are more global assessments. To date, EMG activation level and 

EMG median frequency are the most commonly used indicators of the MMF (Dickerson et 

al., 2007; Gaudet et al., 2018; Karthick et al., 2014; Korol et al., 2014, 2017; McDonald et 

al., 2016, 2018; Merletti & Farina, 2006; Pincivero et al., 2003). Activation level have been 

shown to increase (McDonald et al., 2018; Navaneethakrishna & Ramakrishnan, 2015; 

Patel et al., 2018), while median frequency decreases in the presence of muscle fatigue 

during sustained activities (Karthick et al., 2014; Venugopal et al., 2014). Because of the 

non-stationarity nature of EMG signals during a dynamic task (Farina, 2006), time-

frequency analyses were also introduced to investigate the instantaneous median frequency 

(Farina, 2006; Gaudet et al., 2018; Goubault et al., 2021). More recently, other more 

complex EMG-based  MMF indicators have been introduced to assess MMF during 

sustained contractions (Karthick et al., 2014; Venugopal et al., 2014). Among them, the 

activity corresponding to the variance of the EMG signal increases in the presence of 

muscle fatigue (McDonald et al., 2018; Navaneethakrishna & Ramakrishnan, 2015; Patel 

et al., 2018). The mobility, corresponding to the root square of the ratio between the 

variance of first time derivative and the variance of the EMG signal decreases in the 

presence of muscle fatigue (Karthick et al., 2014). The sample entropy and spectral 

entropy, that detect irregularity in EMG signal, decrease under fatigue conditions (Karthick 

et al., 2014; Venugopal et al., 2014). Interestingly, during fatiguing tasks, previous studies 

have shown a close relationship between the modified rate of perceived exertion (mRPE) 

CR10 (Borg, 1982) and activation level as well as median frequency, where median 

frequency was found to most strongly correlate with mRPE (Ahmad & Kim, 2018; Cruz-

Montecinos et al., 2019; Hummel et al., 2005; Tiggemann et al., 2010; Troiano et al., 2008). 
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However, to the best of our knowledge, very few studies have assessed the extent to which 

EMG-based MMF indicators such as activation level, activity, mobility, sample entropy, 

spectral entropy, and median frequency, explain mRPE variance. This type of assessment 

would enable which indicator could be used to assess muscle fatigue. 

To date, EMG-based MMF indicators have mostly been studied during fatigue-inducing 

experimental conditions involving high intensity contractions until participants are unable 

to continue due to physical discomfort or inability to meet task requirements (Gaudet et al., 

2018; Karthick et al., 2014, 2016; McDonald et al., 2018; Patel et al., 2018; Yang et al., 

2018). For instance, Gaudet et al., (2018) set a protocol where participants had to repeat 50 

internal and external concentric contractions of the shoulder at a maximal level. Karthick 

et al., (2016, 2014) asked participants to repeat a bicep curl task using a 6 kg load until 

discomfort or failure. McDonald et al., (2018) employed various physically demanding 

manual tasks, such as weighted push, static drill, and static target matching that required 

between 50% and 60% of maximal voluntary isometric contraction (MVIC). To our 

knowledge, Hawley, (2021) used a protocol that better replicates the repetitive lifting task 

observed in industry. In this study, participants had to lift boxes of 30% of their maximum 

lifting capacity at a self-selected pace until volitional fatigue or until a maximum time limit 

of 60 minutes. However, participants lifted boxes without displacement, which is not 

representative of typical workplace activities which might require pivoting or moving 

across the floor with the box. Moreover, they assessed the effect of fatigue on movement 

patterns but not on EMG indicators. Based on observations made in industry (Goubault et 

al., 2020), manual handling workers maintain an average pace of 5 boxes handled per 

minute during a standard workday, without reaching a score higher than 4 on the mRPE. 
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They typically moved boxes of different sizes and masses on multiple pallets with small 

displacements while holding the loads. Such working tasks, composed of both isometric 

and dynamic contractions involving the whole body, require moderate muscle activations 

lower than 30% of their maximum activation (Nussbaum, 2001). Consequently, EMG-

based indicators used to detect MMF in high intensity conditions may not be representative 

of muscle fatigue induced by manual handling in working conditions. Thus, it is essential 

to explore EMG-based MMF indicators in a context of more moderate muscular repetitive 

activity that are more representative of working conditions.  

The aim of this study was to determine EMG indicators that best predict MMF and to assess 

how they vary during a laboratory-based manual handling task mimicking realistic working 

conditions. To this end, EMG was measured in combination with the mRPE (Borg, 1982) 

during a manual handling task consisting of moving boxes of different masses, 

representative of a realistic workplace task. We expected that time-frequency indicators 

such as instantaneous median frequency and instantaneous spectral entropy would be more 

predictive of mRPE and therefore more representative of MMF (Cifrek et al., 2009; Farina, 

2006; Gaudet et al., 2018; Shair et al., 2017). It was also anticipated that median frequency 

and spectral entropy would decrease throughout the manual handling task. Additionally, 

we expected to detect MMF in the biceps, the anterior deltoid, and the upper trapezius, as 

they are prime movers during lifting tasks. 

2 Materials and methods 

2.1 Participants 

Thirty-two male participants (32.7 ± 7.1 years; 177.2 ± 7.5 cm; 80.8 ± 12.1 kg) were 

recruited to this study. To be eligible, participants had to be free of upper-limb and trunk 
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musculoskeletal disorders or any disability as assessed by the Disabilities of the arm, 

shoulder and hand questionnaire (Hudak et al., 1996) and the Quebec Back Pain Disability 

Scale (Kopec et al., 1995). The Physical Activity Readiness Questionnaire was 

administered prior to the experiment (Thomas et al., 1992) to ensure participants’ ability 

to engage in the simulated manual handling task described hereafter. After receiving 

instructions on the full experimental procedure, participants read and signed a written 

informed consent. The protocol was approved by the University of Montreal Ethics 

Committee (16-014-CERES-D). 

2.2 Instrumentation 

Participants were equipped with wireless EMG electrodes (Trigno EMG Wireless System, 

Delsys, USA) positioned on the dominant side, since this side is at higher risk of injury 

than the non-dominant side (Yamamoto et al., 2010). Surface EMG electrodes were 

positioned on the anterior, lateral, and posterior deltoids, biceps brachii, lateral head of the 

triceps brachii, upper trapezius, and pectoralis major (Figure 1A). Electrodes’ location were 

determined according to the Surface ElectroMyoGraphy for the Non-Invasive Assessment 

of Muscles project (SENIAM) recommendations (Hermens et al., 2000). Hair was removed 

with a razor and skin was cleaned with alcohol swabs. Additionally, since the rotator cuff 

muscles are frequently involved in shoulder musculoskeletal disorders among workers 

(Silverstein et al., 2002), participants were equipped with intramuscular EMG electrodes 

inserted into the infraspinatus, supraspinatus, and subscapularis muscles using sterile fine 

needles according to Kadaba et al., (1992) and Perotto, (2011) recommendations (Figure 

1A). Electrode placement was validated by a series of 10 submaximal voluntary 
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contractions during which EMG signals were visually inspected in real-time on a display 

monitor. EMG signals were recorded at a 2000 Hz sampling rate. 

 

Figure 1: A) Participant equipped with EMG electrodes, intramuscular EMGs located in 

the red area. B-C) Schematic representation and picture of the experimental setup. 

Participants moved between the two deposit areas as they transferred the boxes. D) 

Schematic representation of the boxes handling. 

Figure 1 Alt Text: A four-panel figure with A on the top, B on the middle left, C on the 

middle right, and D on the underside. 
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Panel A shows the trunk of a male human in the anterior view (left), lateral view (middle), 

posterior view (right). EMG electrodes are positioned the right side of the person. 

Panel B schematizes a pallet on the right with boxes of different sizes lied on it. There are 

three pallets in a line on the left. The first one has small boxes on it, the second one has 

medium boxes on it, and the third one has large boxes on it. These three pallets are at 80 

cm from each other, and at 150 cm from the right pallet. A workers standing in between 

the right pallet and the three left pallets is moving a box. 

Panel C is a real picture showing a worker reaching a medium box. EMG electrodes are 

positioned on the right side of his trunk. 

Panel D is a schematic graph of the box handling experiment timeline. It shows the time 

spent moving small boxes, then medium boxes, then large boxes, so on and so forth. 

2.3 Experimental prerequisite 

2.3.1 Maximum voluntary isometric contractions 

Prior to performing the simulated manual handling task, a total of 20 (10 contraction 

positions x 2 repetitions each) MVICs were performed for the purpose of EMG signal 

normalization. Contraction positions were selected according to the recommendations of 

Dal Maso et al., (2016), who identified the combination of isometric contractions most 

likely to reach a level of 90% of the participants’ absolute maximum (  
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Table 1 The mRPE is a measure of perceived effort. However, perception of effort is 

exacerbated in the presence of physical fatigue (de Morree et al., 2012; Pageaux et al., 

2015). Therefore, it has been stated that the increase of the perceived level of effort 

indicates an increase of fatigue (Pageaux, 2016). 

). Each contraction was maintained for 5 seconds followed by at least a 1 minute resting 

period. Contraction position order was randomized between participants. Verbal 

encouragement was provided during contractions. 
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Table 1: Description of the MVIC tests 

MVIC Instructions 
MVIC 1 In a seated position, arm flexed at 90º, palm of the hand facing down. Arm 

flexion with resistance at the elbow. 
MVIC 2 In a seated position, arm abducted at 90º, palm of the hand facing down. 

Arm abduction with resistance at the elbow. 
MVIC 3 In a prone position, arm horizontally abducted at 90º, elbow flexed at 90º. 

Horizontal arm abduction with resistance at the elbow. 
MVIC 4 In a seated position, arm at the side, elbow flexed at 30° in supination. 

Elbow flexion with resistance at the wrist. 
MVIC 5 In a seated position, arm at the side, elbow flexed at 30° in supination. 

Elbow extension with resistance at the wrist. 
MVIC 6 In a seated position, arm abducted at 90º, neck side-bent to same side, head 

rotated toward opposite side, palm of the hand facing down. Arm abduction 
with resistance at the head and elbow. 

MVIC 7 In a seated position, arms flexed at 90º, elbows lightly flexed, palms of the 
hands together. Pressing hands together with no external resistance. 

MVIC 8 In a side-lying position, arm at the side, palm of the hand facing down. Arm 
abduction with resistance at the wrist. 

MVIC 9 In a side-lying position, arm at the side, elbow flexed at 90º. Arm external 
rotation with resistance at the wrist. 

MVIC 10 In a prone position, back hand in contact with upper lumbar spine. Arm 
internal rotation with resistance at the hand. 

The isometric contraction positions used to record MVIC were adapted from Boettcher et 
al., (2008). The large number of positions used in this study guarantees that all shoulder 
muscles will contract maximally, ensuring appropriate normalization. 

 

2.3.2 Simulated manual handling task 

The manual handling task used in this experiment was designed to simulate actual 

conditions of pallets loading/unloading performed by workers according to observations 

made in a grocery chain warehouse (Goubault et al., 2020). Cardboard boxes of different 

sizes and weights were used (12 small boxes of 6 kg, l×w×h: 10x8x8 cm; 9 medium boxes 

of 10 kg, 15x12x8 cm; 6 large boxes of 12 kg: 16x14x14 cm). Although the use of fixed 

weight boxes may increase inter-participants variability as participants may have different 

strength capacities, this set-up best replicates a real working environment. Boxes were 

initially arranged in layers on a pallet set according to size (i.e. large boxes at the bottom, 
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medium boxes in the middle, small boxes on the top). Participants were instructed to move 

the boxes to other pallets according to the size of the box, i.e., participants had to move all 

the small boxes to a second pallet, before moving the medium boxes on a third pallet, and 

then moving the large boxes on a fourth pallet (Figure 1B). After moving the boxes to their 

respective pallets, participants had to then move all boxes back to the original pallet (large 

boxes first, followed by medium boxes, and then small boxes). We chose a fixed, non-

randomized order (small-medium-large, large-medium-small) for all participants based on 

observation made in industry, where workers would typically handle boxes of the same 

size in sequential way. This operation was repeated continuously for 45 minutes. 

Participants were asked to maintain a pace of about 5 boxes handled per minute 

representing a total of 225 boxes moved during the continuous 45 minute task. This pace 

is equivalent to unloading 2100 boxes in a 7h workday, which represents 78 pallets of 27 

boxes, and is equivalent to processing approximately 11 orders (186 boxes on average per 

order) (Goubault et al., 2020). The experimenter provided feedback to the participants to 

ensure that they maintained the requested box transfer pace throughout the experiment. 

Every 5 minutes, participants were asked to rate their shoulder and overall perceived effort 

using the mRPE (CR10 Borg scale) (Borg, 1982). The mRPE is a measure of perceived 

effort. However, perception of effort is exacerbated in the presence of physical fatigue 

(de Morree et al., 2012; Pageaux et al., 2015). Therefore, it has been stated that the increase 

of the perceived level of effort indicates an increase of fatigue (Pageaux, 2016). 

2.4 Data Processing 

Data processing was performed with Matlab R2019a (The MathWorks Inc., Natick, MA, 

USA). All EMG data were filtered using the following zero-lag, 2nd order Butterworth 
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filters: 10-400 Hz band-pass filter and 59-61 Hz stop-band filter (Gaudet et al., 2018; 

McDonald et al., 2018). Additionally, intramuscular EMG data were filtered using a 119-

121 Hz stop-band filter because of persistent harmonic frequency artefacts. Data were then 

zero-aligned by subtracting the mean signal value. The 45 minute continuous data were 

split into sub-trials. A trial was defined as moving a layer of boxes of the same weight. 

This led to 8 trials on average for each box weight, for each participant. For each trial, 

EMG indicators were computed only during the times in which the participant was carrying 

a box, when muscle activity is higher. The following EMG indicators were computed as 

detailed below: activation level, activity, mobility, sample entropy, instantaneous spectral 

entropy, and instantaneous median frequency. 

Activation levels were obtained from 9 Hz low-pass filtering of the full-wave rectified 

EMG signals. Maximum voluntary muscle excitation for each muscle was obtained using 

the average of the maximum 2 second non-consecutive window obtained across all MVIC 

tests. This value was then used to normalize muscle activations during the box-handling 

task.  

 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑙𝑒𝑣𝑒𝑙 = !
"
∑ 𝑦#
$!
$"  (1) 

where 𝑥! and 𝑥% represent the muscle activation segment, 𝑁 represents the number of 

elements between 𝑥! and 𝑥%, and 𝑦# represents the EMG envelop of the signal. 

Activity is the measure of the variance (𝜎#) of the signal (Hjorth, 1970; Karthick et al., 

2014; Vidaurre et al., 2009). This was calculated for each muscle activation segment of 

each trial. 
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Mobility is defined as the root square of the ratio between the variance of the first time 

derivative of the signal and the variance of the signal (Hjorth, 1970; Karthick et al., 2014; 

Vidaurre et al., 2009). The first time derivative of the EMG signal was calculated on the 

entire signal using equation (2): 

 𝐸𝑀𝐺!(𝑡) = 	 "#$(&'()*"#$(&)
+&

 (2) 

The variance of the first time derivative of the EMG signal and the variance of the EMG 

signal were then calculated on each muscle activation segment, before calculating the root 

square of the ratio between both. 

 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 	.
,!"!"#

,$"!"#
 (3) 

where 𝜎!$!
$% represents the variance of the first time derivative of the EMG signal for muscle 

activation segment between 𝑥! and 𝑥%, and 𝜎#$!
$%  is the variance of the EMG signal for 

muscle activation segment between 𝑥! and 𝑥%. 

Sample entropy is the negative natural log of the conditional probability that time series of 

length N, having repeated itself within a tolerance of r for m data points, will also repeat 

itself for m+1 points excluding self-matches (Richman & Moorman, 2000). It is used for 

assessing the complexity of time-series, and randomness of dynamic systems, describing 

the rate of information creation (Pincus, 1991; Richman & Moorman, 2000). A higher 

value is an indication of higher complexity. Sample entropy can then be defined 

mathematically by: 

 𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = 	−ln =&#$"
# (()
&#(()

> (4) 
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With 𝐵*(𝑟) defined as: 

 𝐵*(𝑟) = 	
!

"+*
∑ 𝐶,*(𝑟)"+*
,-!  (5) 

where 𝐵*(𝑟)	is the number of matches of length m and 𝐵*.!* (𝑟) as the subset of 𝐵*(𝑟)	that 

also matches for length m+1. Here m = 2 and r = 0.2 times the standard deviation of the 

signal (Karthick et al., 2014; Zhang et al., 2014). 

For instantaneous spectral entropy and median frequency analysis, the power spectral 

density of signals was obtained from time-frequency transformation since EMG signals are 

non-stationary processes (Farina, 2006). Power spectral density corresponded to the square 

value of the complex magnitude of the Morlet wavelet transformation (wave number: 7, 

frequency range: 1:400 Hz in 1 Hz steps) to the filtered EMG signals (WavCrossSpec 

Matlab package (Grinsted et al., 2004)). Spectral entropy and median frequency were then 

computed on a time-history basis.  

Spectral entropy is defined as Shannon entropy computed over the normalized power 

spectral density curve (Bachiller et al., 2014; McBride et al., 2014). The following formula 

was used to calculate instantaneous spectral entropy, which measures the irregularity of a 

signal, at each time instant: 

 𝑆𝑝𝑒𝑐𝐸𝑛(𝑡) = 	− !
/01(2)

. ∑ 𝑇𝐹𝑅(𝑡). log	[𝑇𝐹𝑅(𝑡)]3
4-! 	 (6) 

where, L is the number of spectral components in the EMG spectrum, TFR is a power 

spectral density calculated in the time-frequency resolution, t is a time instant, n is the 

number of seconds in the trial. 
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Median frequency is defined as the frequency at which the total spectral power is halved. 

The following formulae was used to calculate instantaneous median frequency: 

 ∫ 𝑇𝐹𝑅(𝑡)567
# =	∫ 𝑇𝐹𝑅(𝑡)8

567 =	 !
%∫ 𝑇𝐹𝑅(𝑡)8

! 	 (7) 

TFR is a power spectral density calculated in the time-frequency resolution, t is a time 

instant. 

2.5 Statistical Analysis 

Statistical analyses were carried out with R 3.5.3 software (R Foundation for Statistical 

Computing, Vienna, Austria) using the ‘ez’ package and Matlab. 

A linear-mixed model analysis with repeated measures on the mRPE (shoulder and overall) 

scores was performed to assess the effect of Time (fixed effect) on the mRPE, with 

participant as random effect.  

For each box size and each EMG-based MMF indicator, multivariate linear regressions 

were performed between the 10 muscles as predictors and the mRPE scores as responses 

to determine which indicator(s) best explain variations in the participants’ perceived 

efforts. The indicators used in the regression models corresponded as closely as possible to 

the time instants where mRPE was collected. To account for the issue of multiple statistical 

tests, Bonferroni corrections were applied to the p-values of multivariate linear regressions, 

bringing the statistical significance level to p < 0.0014 (0.05/36). 

A linear-mixed model analysis with repeated measures on the EMG-based MMF indicators 

was also performed for each muscle separately and on each box size to assess the effect of 

time (fixed effect) throughout the different trials, on each EMG-based MMF indicator, 

namely the activation level, the activity, the mobility, the sample entropy, the spectral 



19 

entropy, and the median frequency, with participant as random effect. Bonferroni 

corrections were applied on p-values of linear-mixed models bringing the statistical 

significance level to p < 2.8e-4 (0.05/180). Results are presented with boxplots unless 

otherwise stated. 

3 Results 

3.1 Modified rate of perceived exertion scores 

Statistical analysis showed that time had a significant effect on the mRPE shoulder score 

(t(247) = 3.70, p < 0.001), and on the mRPE overall score (t(230) = 19.07, p < 0.001). As 

represented in Figure 2, both shoulder and overall mRPE scores increased with time. At 

the end of the 45 minute manual handling task, the average shoulder and overall mRPE 

scores were 2.79 ± 1.68 (range: 0.5 to 7, only 1 participant reached 7) and 2.98 ± 1.33 

(range: 1 to 6, only 1 participant reached 6), respectively.  
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Figure 2: Boxplot representation of the mRPE shoulder score (A), and of the mRPE overall 

score (B) as a function of time. The bold line represents the median value, while the box 

represents the 25th to 75th percentile scores and the whiskers represent the 1.5*interquartile 

range on either side of the 25th and 75th percentile scores. 

Figure 2 Alt Text: Two boxplot panels representing the evolution of the mRPE shoulder 

(top) and overall (underside) scores. Each panel displays a boxplot every 5 minutes from 5 

minute of the experiment to 45 minute of the experiment. We observe a progressive 

increase of mRPE scores in both cases. 

3.2 Multivariate linear regressions 

Overall, the results of multivariate regressions revealed that only mobility, spectral entropy 

and median frequency significantly explained the variance of shoulder and overall mRPE 
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scores after Bonferroni corrections in all models (Table 2). One exception was for the 

median frequency where a decreasing trend with the overall mRPE score (p=0.003 versus 

p=0.0014 for significance) was observed for small boxes. It was found that spectral entropy 

was the EMG-based MMF indicator that explained the largest part of the variance in mRPE 

scores in the shoulder and overall across all models (adjusted R2 range between 18% and 

39%) (Table 2). Mobility and median frequency explained between 11% and 37% of the 

variance in the shoulder and overall mRPE scores. Activity explained between 17% and 

21% of variance in shoulder and overall mRPE respectively for the large and medium 

boxes, and did not significantly explain mRPE variance for the small boxes. Finally, 

activation level and sample entropy had no significant relationship with the variance in 

mRPE scores.



22 

Table 2: Results of multivariate linear regressions performed between the 10 muscles as predictors and shoulder/overall 

mRPE scores as responses for each EMG-based MMF indicator and each box size. 

  mRPE Shoulder score  mRPE Overall score 
  F Standard error R² adjusted p-value  F Standard error R² adjusted p-value 

Large 
boxes 

Activation level 2.27 1.18 0.082 0.017  2.37 1.12 0.087 0.013 
Activity 4.09 1.11 0.178 < 0.001  3.71 1.08 0.159 < 0.001 
Mobility 5.26 1.08 0.230* < 0.001  3.69 1.08 0.158 < 0.001 
Sample entropy 1.70 1.20 0.047 0.086  2.41 1.12 0.090 0.011 
Spectral entropy 4.71 1.09 0.206 < 0.001  4.05 1.07 0.176* < 0.001 
Median frequency 4.21 1.11 0.184 < 0.001  2.81 1.11 0.113 0.003 

Medium 
boxes 

Activation level 1.70 1.18 0.047 0.086  2.34 1.11 0.086 0.014 
Activity 4.74 1.08 0.207 < 0.001  3.95 1.05 0.171 < 0.001 
Mobility 6.40 1.03 0.274 < 0.001  6.54 0.98 0.279 <0.001 
Sample entropy 1.30 1.20 0.020 0.239  1.61 1.13 0.041 0.109 
Spectral entropy 8.16 0.99 0.334* < 0.001  9.98 0.91 0.386* < 0.001 
Median frequency 6.23 1.04 0.268 < 0.001  9.50 0.92 0.373 < 0.001 

Small 
boxes 

Activation level 2.53 1.15 0.092 0.008  2.37 1.09 0.083 0.013 
Activity 2.10 1.16 0.068 0.028  2.58 1.08 0.095 0.007 
Mobility 5.48 1.06 0.229 < 0.001  5.68 0.99 0.237 < 0.001 
Sample entropy 2.11 1.16 0.069 0.027  1.21 1.13 0.014 0.291 
Spectral entropy 8.02 0.99 0.317* < 0.001  8.10 0.94 0.320* < 0.001 
Median frequency 5.45 1.06 0.227 < 0.001  7.54 0.95 0.302 < 0.001 

Bold values indicate significant regression after Bonferroni correction. * indicates the higher R2 value in each case.
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3.3 Evolution of EMG indicators over time 

For all box sizes, time had a significant effect on most of the EMG-based MMF indicators. 

Overall, the EMG-based MMF indicators of the anterior, lateral, and posterior deltoids, 

biceps, and upper trapezius were significantly altered over time during the manual handling 

task (statistical results are summarized in supplementary materials Table S1). The mobility, 

spectral entropy and median frequency all demonstrated a similar pattern with respect to 

the significant effect of time (most prominent in the deltoids), whereas there were no 

significant changes in the rotator cuff muscles, unlike activation level and sample entropy. 

Finally, activity was found to have little fluctuation across trials and boxes. 

More specifically, for small and medium boxes (Figure 3 and Figure 4, respectively), the 

spectral entropy and the median frequency of multiple muscles such as the deltoids, upper 

trapezius, and triceps decreased significantly over the time. The mobility also decreased in 

multiple muscles such as the deltoids and upper trapezius, whereas the sample entropy and 

the activation level decreased in the rotator cuff muscles. The activity decreased in the 

anterior deltoid, biceps, upper trapezius and subscapularis. Similar trends were observed 

when participants lifted the large boxes (Figure 5), however, significant changes were less 

frequent.  
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Figure 3: Boxplot representation of the EMG indicators for each muscle during the small 

box trials. Muscles on the right of dashed lines are rotator cuff muscle and have a different 

scale, except for sample entropy where the same scale was used for all muscles. * indicates 

a significant time effect as determined by the linear-mixed model analysis. 
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Figure 3 Alt Text: Six boxplot panels in a row for the six EMG indicators assessed. Each 

panel displays the evolution of the given EMG indicator for the 10 muscles. For each 

muscle, 8 boxplots are displayed for the 8 trials.  
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Figure 4: Boxplot representation of the EMG indicators for each muscle during the medium 

box trials. Muscles on the right of dashed lines are rotator cuff muscle with a special scale 

positioned on the right except for sample entropy where the same scale was used for all 

muscle. * indicates a significant Time effect revealed by the linear-mixed model analysis. 
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Figure 4 Alt Text: Six boxplot panels in a row for the six EMG indicators assessed. Each 

panel displays the evolution of the given EMG indicator for the 10 muscles. For each 

muscle, 8 boxplots are displayed for the 8 trials.  
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Figure 5: Boxplot representation of EMG indicator for each muscle during large box trials. 

Muscles on the right of dashed lines are rotator cuff muscle and have a different scale, 

except for sample entropy where the same scale was used for all muscles. * indicates a 

significant time effect as determined by the linear-mixed model analysis. 
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Figure 5 Alt Text: Six boxplot panels in a row for the six EMG indicators assessed. Each 

panel displays the evolution of the given EMG indicator for the 10 muscles. For each 

muscle, 8 boxplots are displayed for the 8 trials. 

4 Discussion 

The objective of the present study was to determine which shoulder muscle EMG-based 

indicator(s) were most suitable for assessing MMF during a continuous 45 minute 

laboratory-based manual handling task designed to mimic actual working conditions. We 

found a significant increase in the mRPE (shoulder and overall) scores over the course of 

the task, to reach a score close to what can be expected at work (Jakobsen et al., 2014). In 

this experimental protocol, spectral entropy, median frequency, and mobility best 

explained the variance in the mRPE scores, suggesting that these EMG-based indicators 

are the most suitable for the assessment of MMF, as compared to indicators such as 

activation level, activity, and sample entropy. 

4.1 Validation of the protocol 

The infraspinatus was the muscle that had the highest activation level during the task with 

an average of 16.59 ± 13.92% MVIC. The biceps, the anterior deltoid, and the upper 

trapezius, which are prime movers during lifting tasks (Bouffard et al., 2019), had mean 

activation levels of 12.96 ± 4.09% MVIC, 6.26 ± 2.54% MVIC, and 5.45 ± 1.89% MVIC, 

respectively, indicating that these shoulder muscles were solicited more minimally during 

the task (Day et al., 2012). Mean shoulder and overall mRPE scores were 2.79 ± 1.68 and 

2.98 ± 1.33 respectively at the end of the 45 minute simulated working task, which 

represents a moderate level of perceived exertion (Jakobsen et al., 2014). These scores were 

very close to what would be expected in a real working environment, as Jakobsen et al., 
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(2014) suggested that mRPE scores between 2 and 4 represent moderate effort and scores 

above 4 represent a hard effort during working activities. Thus, our laboratory-based 

experimental protocol succeeded in reproducing a manual handling task whose intensity 

was similar to that which workers are exposed to on a daily basis. Since a degree of muscle 

fatigue imparting risk for injury may be reached well before the workers’ absolute inability 

to perform the task (Enoka & Duchateau, 2008), we suggest that the low level of fatigue 

found in the present study may be clinically significant for overuse injuries. 

4.2 Multivariate linear regression 

In the present study, spectral entropy, median frequency, and mobility best explained the 

mRPE scores with adjusted R2 values in the regression models ranging from 11% to 39%. 

These relatively low values could be explained by the fact that an individual’s perceived 

effort (mRPE) is a composite of central fatigue, neuromuscular junction fatigue, and 

muscular fatigue (Merletti & Farina, 2006). EMG signals could be influenced by these 

three factors in a different proportion, which could explain the range of adjusted R2 values 

obtained in that study. 

Nevertheless, the multivariate linear regression results were consistent regardless of the 

weight of the boxes handled and may enable the assessment of EMG-based MMF in real 

workplace conditions. Regression analyses allowed us to identify that median frequency 

predicted mRPE scores in workplace-like conditions. This result is in agreement with 

previous findings, which show a high positive correlation between the median frequency 

and mRPE scores during the prone bridging test (Cruz-Montecinos et al., 2019), which 

further confirms its potential to assess MMF during low load manual handling tasks. 

Interestingly, spectral entropy, also extracted from time-frequency analysis, was the EMG-
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based MMF indicator that showed the greatest ability to explain the variance of mRPE 

scores. Therefore, this indicator should also be considered when assessing MMF via EMG. 

Finally, the mobility, which can be considered as the time domain approximation of mean 

frequency (Vidaurre et al., 2009) was the third EMG-based MMF indicator demonstrating 

an ability to predict the variance of the mRPE scores. Given that two of the three identified 

indicators were related to frequency content of the EMG signal, this shows that the 

indicators related to the frequency content of EMG signals may be more relevant in the 

explanation of mRPE variance and therefore in the assessment of MMF.  

Typically, a negative linear correlation is expected between median frequency and the 

conduction velocity of the active muscle motor units in the presence of muscle fatigue 

(Cifrek et al., 2009; Farina, 2006; Farina et al., 2004). The reduction of both spectral 

entropy (associated with higher regularity in signal) and mobility values, are both sensitive 

to changes in the frequency content of EMG signals (Karthick et al., 2014). Future studies 

should focus on the combination of these three indicators to improve muscle fatigue 

assessment during real working activities. Conversely, activity, activation level, and 

sample entropy showed inferior ability or did not explain mRPE scores and so according 

to our findings, would not be of use in predicting MMF during low load manual handling 

tasks. In future studies, it would be of interest to perform a similar evaluation on more 

varied low load workplace activities to validate and generalize our findings to workplace 

tasks. 

4.3 Evaluation of Spectral entropy, Median frequency, & Mobility 

Overall, spectral entropy, median frequency, and mobility were the indicators that changed 

significantly throughout the manual handling task in the deltoid muscles, which were the 
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only muscles showing consistent MMF within the different box weights. This result is in 

agreement with their prime mover function during a manual handling task. Alternatively, 

these indicators also changed significantly in the upper trapezius, which is involved in 

lifting boxes (Bouffard et al., 2019). However, this change was only noted in the medium 

size boxes. The biceps did not show MMF despite their strong involvement in manual 

handling (Bouffard et al., 2019), suggesting a higher resistance to fatigue than the anterior 

deltoid and upper trapezius. The spectral entropy of the biceps was found to have an 

increasing trend, which is the opposite of what has been observed in literature (Karthick et 

al., 2014), and may confirm the absence of muscle fatigue in our study. This observation 

may be due to a higher percentage of biceps slow twitch fibre motor units in the participants 

of the present study. Indeed, the mean power frequency of EMG decreased more in 

individuals with a high percentage of fast twitch, while their opposites demonstrated only 

a non-significant slight decrease (Komi & Tesch, 1979; Thorstensson & Karlsson, 1976). 

We suggest that since the biceps is a powerful muscle, it may require higher contraction 

levels for changes in its biochemical and physiological behaviors to occur (Cifrek et al., 

2009), meaning that it could compensate for the increasing muscle fatigue in other muscles 

over the course of the task. The triceps muscles, acting as an antagonist in the present task, 

and the supraspinatus showed MMF less frequently when handling the medium boxes 

compared to the other box sizes. Taken together, these results may suggest that the 

combination of spectral entropy, median frequency, and mobility may improve the 

accuracy in the assessment of MMF. 
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4.4 Evaluation of Activation level, Activity, & Sample Entropy 

Other EMG-based indicators, such as activation level, activity, and sample entropy, had an 

inferior ability or were not significantly related to the variance in mRPE scores, despite 

their significant changes over time during the repeated manual handling task. In addition, 

when a significant effect of time was observed, activation level and activity significantly 

decreased with time, which is the opposite of what is commonly reported with muscle 

fatigue (Al-Mulla et al., 2011; Karthick et al., 2014). Activation level was also found to 

have any significant involvement with the mRPE variance. Consequently, although 

activation level has been employed to assess MMF during low load dynamic activities 

(Korol et al., 2014, 2017), this EMG-based indicator should be interpreted with caution for 

the assessment of muscle fatigue (Cifrek et al., 2009). Finally, sample entropy decreased 

with time in multiple muscles, which is a trend that has also been observed in literature 

(Cui et al., 2017; Karthick et al., 2014; Xie et al., 2010). This was the case for the anterior 

and posterior deltoids for all box sizes, in the rotator cuff muscles for small boxes, and in 

the triceps and upper trapezius muscles for large boxes. However, sample entropy did not 

explain the mRPE variances in regression models. Therefore, even if the variation of 

sample entropy is in accordance with previous studies (Cui et al., 2017; Karthick et al., 

2014; Xie et al., 2010), and that it affects muscles showing MMF with other EMG-based 

indicators, such as the deltoid muscles, it may not represent accurate indicators for the 

assessment of MMF during manual handling tasks. 

4.5 Limitations & Conclusion 

A limitation is that the MMF reported in this study were extracted from EMG-based 

indicators, where EMG evaluates the neuromuscular component of fatigue primarily, and 
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was correlated to mRPE, a more holistic representation of fatigue. However, to our 

knowledge, there is no gold standard measure to evaluate only the neuromuscular 

component of fatigue during functional manual handling tasks. Additionally, the method 

used in this study has been used in other studies, and where EMG-based MMF indicators 

were correlated to mRPE during activities involving a fatigue component (Ahmad & Kim, 

2018; Cruz-Montecinos et al., 2019; Hummel et al., 2005; Korol et al., 2014, 2017). 

 

In conclusion, using an experimental protocol replicating industrial manual handling, we 

found that spectral entropy, and median frequency, both extracted from time-frequency 

analysis of EMG signals, and mobility extracted from the time domain were the EMG-

based MMF indicators with the most promising ability to predict mRPE. In addition, these 

indicators decreased in value in prime mover muscles, as was expected during a fatigue-

inducing task. 
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9 Supplementary material 

Table 3: Statistical results of linear-mixed models for large boxes 

 Activation level Activity Mobility SampEn SpecEn MedFreq 

DeltA t(7) = 19.90,  

p = 2.60e-2 

t(7) = 18.75,  

p = 9.00e-3 

t(7) = 19.75,  

p = 6.14e-3 

t(7) = 17.41,  

p = 1.49e-2 

t(7) = 35.61,  

p = 8.58e-6 

t(7) = 32.31,  

p = 3.56e-5 

DeltL t(7) = 2.34,  

p = 9.38e-1 

t(7) = 6.35,  

p = 5.00e-1 

t(7) = 31.14,  

p = 5.86e-5 

t(7) = 3.49,  

p = 8.36e-1 

t(7) = 21.16,  

p = 3.54e-3 

t(7) = 33.08,  

p = 2.56e-5 

DeltP t(7) = 14.63,  

p = 4.11e-2 

t(7) = 10.27,  

p = 1.74e-1 

t(7) = 6.80,  

p = 4.50e-1 

t(7) = 4.61,  

p = 7.08e-1 

t(7) = 26.39,  

p = 4.29e-4 

t(7) = 14.62,  

p = 4.11e-2 

Biceps t(7) = 15.90,  

p = 2.60e-2 

t(7) = 37.95,  

p = 3.10e-6 

t(7) = 25.91,  

p = 5.23e-4 

t(7) = 9.21,  

p = 2.38e-1 

t(7) = 7.58,  

p = 3.71e-1 

t(7) = 10.95,  

p = 1.41e-1 

Triceps t(7) = 8.78,  

p = 2.69e-1 

t(7) = 3.22,  

p = 8.64e-1 

t(7) = 17.93,  

p = 1.23e-2 

t(7) = 25.59,  

p = 5.95e-4 

t(7) = 9.14,  

p = 2.42e-1 

t(7) = 13.43,  

p = 6.24e-2 

UpTrap t(7) = 43.99,  t(7) = 22.90,  t(7) = 10.99,  t(7) = 48.14,  t(7) = 4.11,  t(7) = 8.41,  
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p = 2.15e-7 p = 1.77e-3 p = 1.39e-1 p = 3.34e-8 p = 7.67e-1 p = 2.98e-1 

Pec t(7) = 26.47,  

p = 4.15e-4 

t(7) = 11.62,  

p = 1.14e-1 

t(7) = 5.90,  

p = 5.52e-1 

t(7) = 16.79,  

p = 1.88e-2 

t(7) = 3.11,  

p = 8.75e-1 

t(7) = 4.67,  

p = 7.01e-3 

SSP t(7) = 14.39,  

p = 4.47e-2 

t(7) = 5.35,  

p = 6.17e-1 

t(7) = 25.48,  

p = 6.24e-4 

t(7) = 14.21,  

p = 4.76e-2 

t(7) = 19.06,  

p = 8.00e-3 

t(7) = 20.28,  

p = 4.99e-3 

ISP t(7) = 17.48,  

p = 1.46e-2 

t(7) = 8.19,  

p = 3.16e-1 

t(7) = 11.74,  

p = 1.09e-1 

t(7) = 21.83,  

p = 2.72e-3 

t(7) = 14.12,  

p = 4.91e-2 

t(7) = 9.43,  

p = 2.23e-1 

Subs t(7) = 6.77,  

p = 4.53e-1 

t(7) = 3.67,  

p = 8.17e-1 

t(7) = 1.44,  

p = 9.84e-1 

t(7) = 11.62,  

p = 1.14e-1 

t(7) = 2.33,  

p = 9.39e-1 

t(7) = 4.17,  

p = 7.59e-1 
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Table 4: Statistical results of linear-mixed models for medium boxes 

 Activation level Activity Mobility SampEn SpecEn MedFreq 

DeltA t(7) = 46.35,  

p = 7.47e-8 

t(7) = 43.14,  

p = 3.14e-7 

t(7) = 67.45,  

p = 4.83e-12 

t(7) = 10.14,  

p = 1.81e-1 

t(7) = 94.77,  

p = 1.29e-17 

t(7) = 101.69,  

p = 4.38e-19 

DeltL t(7) = 14.97,  

p = 3.64e-2 

t(7) = 8.03,  

p = 3.30e-1 

t(7) = 30.16,  

p = 8.88e-5 

t(7) = 16.61,  

p = 2.01e-2 

t(7) = 55.24,  

p = 1.34e-9 

t(7) = 78.56,  

p = 2.71e-14 

DeltP t(7) = 24.35,  

p = 9.91e-4 

t(7) = 18.72,  

p = 9.10e-3 

t(7) = 20.59,  

p = 4.42e-3 

t(7) = 47.33,  

p = 4.81e-8 

t(7) = 71.52,  

p = 7.28e-13 

t(7) = 76.99,  

p = 5.65e-14 

Biceps t(7) = 39.23,  

p = 1.77e-6 

t(7) = 43.83,  

p = 2.30e-7 

t(7) = 24.60,  

p = 8.91e-4 

t(7) = 14.75,  

p = 3.94e-2 

t(7) = 30.32,  

p = 8.29e-5 

t(7) = 19.27,  

p = 7.39e-3 

Triceps t(7) = 14.91,  

p = 3.72e-2 

t(7) = 5.80,  

p = 5.63e-1 

t(7) = 18.80,  

p = 8.84e-3 

t(7) = 39.38,  

p = 1.68e-6 

t(7) = 33.76,  

p = 1.91e-5 

t(7) = 53.47,  

p =3.00e-9 

UpTrap t(7) = 57.56,  

p = 4.63e-10 

t(7) = 16.43,  

p = 2.14e-2 

t(7) = 26.76,  

p = 3.67e-4 

t(7) = 41.01,  

p = 8.06e-7 

t(7) = 26.58,  

p = 3.96e-4 

t(7) = 37.21,  

p = 4.29e-6 

Pec t(7) = 22.69,  t(7) = 8.61,  t(7) = 20.68,  t(7) = 21.49,  t(7) = 17.98,  t(7) = 24.17,  
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p = 1.93e-3 p = 2.82e-1 p = 4.28e-3 p = 3.10e-3 p = 1.21e-2 p = 1.06e-3 

SSP t(7) = 27.43,  

p = 2.79e-4 

t(7) = 21.54,  

p = 3.04e-3 

t(7) = 16.58,  

p = 2.03e-2 

t(7) = 31.08,  

p = 6.02e-5 

t(7) = 33.17,  

p = 2.46e-5 

t(7) = 20.76,  

p = 4.15e-3 

ISP t(7) = 33.91,  

p = 1.79e-5 

t(7) = 7.25,  

p = 4.03e-1 

t(7) = 7.19,  

p = 4.09e-1 

t(7) = 114.58,  

p = 1.03e-21 

t(7) = 5.00,  

p = 6.60e-1 

t(7) = 8.26,  

p = 3.10e-1 

Subs t(7) = 40.64,  

p = 9.51e-7 

t(7) = 28.27,  

p = 1.96e4 

t(7) = 5.52,  

p = 5.97e-1 

t(7) = 31.23,  

p = 6.65e-5 

t(7) = 13.24,  

p = 6.65e-2 

t(7) = 10.16,  

p = 1.79e-1 
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Table 5: Statistical results of linear-mixed models for small boxes 

 Activation level Activity Mobility SampEn SpecEn MedFreq 

DeltA t(7) = 32.83,  

p = 2.85e-5 

t(7) = 86.35,  

p = 6.94e-16 

t(7) = 75.17,  

p = 1.32e-13 

t(7) = 86.96,  

p = 5.20e-16 

t(7) = 123.89,  

p = 1.18e-23 

t(7) = 110.37,  

p = 7.69e-21 

DeltL t(7) = 18.27,  

p = 1.08e-2 

t(7) = 24.26,  

p = 1.03e-3 

t(7) = 26.40,  

p = 4.28e-4 

t(7) = 10.57,  

p = 1.59e-1 

t(7) = 69.50,  

p = 1.86e-12 

t(7) = 78.02,  

p = 3.49e-14 

DeltP t(7) = 18.50,  

p = 9.90e-3 

t(7) = 9.51,  

p = 2.18e-1 

t(7) = 27.15,  

p = 3.13e-4 

t(7) = 51.99,  

p = 5.86e-9 

t(7) = 61.10,  

p = 9.10e-11 

t(7) = 67.43,  

p = 4.88e-12 

Biceps t(7) = 30.36,  

p = 8.16e-5 

t(7) = 58.65,  

p = 2.80e-10 

t(7) = 52.55,  

p = 4.55e-9 

t(7) = 23.53,  

p = 1.38e-3 

t(7) = 26.04,  

p = 4.96e-4 

t(7) = 5.35,  

p = 6.18e-1 

Triceps t(7) = 10.98,  

p = 1.39e-1 

t(7) = 7.23,  

p = 4.05e-1 

t(7) = 14.58,  

p = 4.18e-2 

t(7) = 25.12,  

p = 7.23e-4 

t(7) = 17.36,  

p = 1.52e-2 

t(7) = 29.69,  

p = 1.08e-4 

UpTrap t(7) = 53.72,  

p = 2.67e-9 

t(7) = 34.67,  

p = 1.29e-5 

t(7) = 22.37,  

p = 2.19e-3 

t(7) = 12.60,  

p = 8.24e-2 

t(7) = 14.33,  

p = 4.56e-2 

t(7) = 22.95,  

p = 1.74e-3 

Pec t(7) = 23.54,  t(7) = 10.74,  t(7) = 11.26,  t(7) = 17.71,  t(7) = 8.40,  t(7) = 9.82,  
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p = 1.37e-3 p = 1.51e-1 p = 1.28e-1 p = 1.33e-2 p = 2.98e-1 p = 1.99e-1 

SSP t(7) = 30.16,  

p = 8.87e-5 

t(7) = 6.97,  

p = 4.32e-1 

t(7) = 12.75,  

p = 7.84e-2 

t(7) = 34.85,  

p = 1.19e-5 

t(7) = 4.45,  

p = 7.27e-1 

t(7) = 10.35,  

p = 1.70e-1 

ISP t(7) = 13.93,  

p = 5.24e-2 

t(7) = 6.73,  

p = 4.57e-1 

t(7) = 5.77,  

p = 5.66e-1 

t(7) = 26.60,  

p = 3.93e-4 

t(7) = 2.80,  

p = 9.03e-1 

t(7) = 7.35,  

p = 3.94e-1 

Subs t(7) = 27.42,  

p = 2.80e-4 

t(7) = 12.21,  

p = 9.37e-2 

t(7) = 6.57,  

p = 4.75e-1 

t(7) = 40.39,  

p = 1.06e-6 

t(7) = 4.85,  

p = 6.78e-1 

t(7) = 11.09,  

p = 1.35e-1 

 


