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Résumé 

Deux pandémies virales touchent aujourd’hui des millions d’individus : la pandémie du 

Coronavirus Disease 2019 (COVID-19), causée par le Syndrome respiratoire aigu sévère 

coronavirus 2 (SRAS-CoV-2) et celle du Syndrome d’Immunodéficience Acquise (SIDA) 

causée par le Virus de l’Immunodéficience Humaine (VIH). Ces deux maladies diffèrent 

par leur physiopathologie, dont une meilleure compréhension a permis le développement 

de traitements efficaces. Pourtant, ces deux pandémies persistent. Une infection par 

SARS-CoV-2 peut être mortelle en raison d’une réponse immunitaire exacerbée et 

potentiellement retardée. Le VIH à l’inverse échappe continuellement à la réponse 

immunitaire, l’affaiblissant au cours des années jusqu’au développement du SIDA, 

ouvrant la porte à des maladies opportunistes mortelles. L’intérêt global de cette thèse 

était d’étudier comment la réponse immunitaire échoue pour ces deux infections. 

L’objectif de la première étude était de trouver un biomarqueur sanguin robuste et fiable 

pour prédire le risque de mortalité des patients hospitalisés pour la COVID-19. Nous 

avons mesuré la quantité d’ARN viral, de cytokines et de marqueurs de dommages 

tissulaires, ainsi que la réponse humorale contre le virus dans des échantillons de plasma 

de 279 patients à travers trois cohortes. Nous avons trouvé que l’ARN viral mesuré 

environ 11 jours après le début des symptômes, et ajusté pour l’âge et le sexe, peut 

prédire la mortalité dans les 60 jours suivant le début des symptômes. Nous avons 

également trouvé que des fortes concentrations de cytokines inflammatoires et de 

marqueurs de dommages tissulaires, ainsi qu’un faible niveau d’anticorps liant le Region 

Binding Domain (RBD) de la protéine Spike de SARS-CoV-2, sont aussi associées à la 
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mortalité. Dans un deuxième projet, nous nous sommes servis d’outils de réduction de 

dimensionnalités combinant les facteurs associés à la mortalité, permettant une 

stratification des patients en quatre groupes basés uniquement sur leur profil immuno-

virologique plasmatique. Un seul de ces groupes est lié à une plus grande mortalité. Mis 

ensemble, nos travaux permettent une meilleure compréhension de l’hétérogénéité des 

patients hospitalisés pour la COVID-19, incluant l’identification des patients à haut risque 

de mortalité. Ces données pourraient servir à cibler les traitements thérapeutiques selon 

la réponse immunologique du patient. 

Notre troisième étude portait sur l’étude de la dysfonction des lymphocytes T CD4+ 

spécifiques du VIH. Ceux-ci sont affaiblis par l’infection au VIH et perdent leur capacité à 

combattre l’infection. Notre objectif était de caractériser la réponse au blocage du point 

de contrôle immunitaire (BPCI - immunothérapie qui renverse partiellement la dysfonction 

des lymphocytes T) PD-1 parmi les divers types des lymphocytes T CD4+. Nous avons 

d’abord comparé l’état de dysfonction des lymphocytes chez deux cohortes de personnes 

vivant avec le VIH (PVVIH) non-traitées. Pour l’une des deux cohortes, la virémie est 

contrôlée par le système immunitaire (cohorte dite de « Contrôleurs Élites »), à l’inverse 

de la seconde cohorte (dite « Virémique »). Les lymphocytes T CD4+ des personnes 

virémiques perdent leur activité antivirale et ont une forte expression de points de 

contrôles immunitaires. Au contraire, les contrôleurs élites ont une charge virale 

indétectable en l’absence de thérapie antirétrovirale (TAR), et des lymphocytes T CD4+ 

relativement fonctionnels. En réponse au BPCI, les lymphocytes T CD4+ spécifiques du 

VIH démontrent une plus grande réponse chez les PVVIH virémiques, via l’augmentation 

du nombre de cellules produisant des cytokines. Chez ces individus, toutes les fonctions 
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mesurées augmentent, à l’exception des cytokines associées aux cellules T CD4+ 

folliculaires auxiliaires qui sont impliquées dans l’amorçage des réponses 

immunologiques des lymphocytes B. Ces données montrent qu’il existe une réponse 

spécifique des sous-types de lymphocytes T CD4+ aux BPCI. Ce projet démontre 

l’avantage du blocage du ligand de PD-1 (PD-L1) sur les effets hétérogènes au niveau 

unicellulaire, soulignant l’importance de considérer les T CD4+ dans les analyses futures 

des essais cliniques évaluant le bénéfice des BPCI. 

 

Mis ensemble, cette thèse permet une meilleure caractérisation de la réponse 

immunologique contre un virus à infection aiguë et, dans un second temps, un autre à 

infection chronique. Ces études permettent une meilleure compréhension de 

l’hétérogénéité dans la réponse immunologique des personnes infectées qui, si prise en 

compte dans des essais cliniques, pourrait aider à expliquer la variété de l’efficacité des 

traitements. 

 

Mots-clés : SRAS-CoV-2, VIH, infections virales humaines, immunologie, cellules T, 

cytokines, réponse humorale, blocus de point de contrôles immunologiques.  

 

 



VI 

Abstract 

Viral infections are a major cause of disease in humans. Pandemics refer to virulent 

viruses that spread across more than one continent. In the last century, two major such 

pandemics have occurred with still-current repercussions: the acquired immunodeficiency 

syndrome (AIDS) pandemic caused by the Human Immunodeficiency Virus (HIV), and the 

Coronavirus Disease 2019 (COVID-19) pandemic by the severe acute respiratory 

coronavirus 2 (SARS-CoV-2). The diseases caused by both of these viruses are very 

different in their pathophysiology. A better elucidation of these diseases has already 

allowed researchers to develop therapeutic treatments against these infections; however, 

both pandemics caused by these viruses are ongoing. While SARS-CoV-2 proves to 

ultimately be fatal by an exacerbated and perhaps delayed immune response against the 

virus, HIV rather evades the host’s immune response, weakening it over time until 

inducing a severe immunocompromised state, opening the door for fatal opportunistic 

diseases. The overarching goal of this thesis was to study the failings of the immune 

response against each virus, and extract information useful to guide therapeutic practices.  

The objective of the first study was to find a robust and reproducible predictor of fatal 

outcome among patients hospitalized for their COVID-19. We profiled the plasma of a 

total of 279 patients across three independent cohorts to measure SARS-CoV-2 viral 

RNA, antibody responses against the virus and the quantities of inflammatory cytokines 

and markers of tissue damage. We found that plasma viral RNA could reproducibly predict 

fatal outcome on samples collected at 11 days after symptom onset, when adjusted for 

age and sex. Plasma vRNA’s predictive accuracy was maintained at earlier timepoints. 
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We also found that low SARS-CoV-2-region-binding-domain (RBD)-specific IgG, low 

SARS-CoV-2-specific antibody-dependent cellular cytotoxicity, and elevated cytokines 

and injury markers were also strongly associated with mortality. In a second study using 

dimensionality reduction tools, we were able to separate our cohort in four distinct 

« patient clusters », based on their immunovirological plasma profile, with one cluster 

enriched in fatal outcomes. Our findings better characterize the heterogeneity of 

hospitalized COVID-19 cases, and may be useful in directing targeted therapeutic 

treatments. 

In our third study, our objective was to characterize the response of dysfunctional HIV-

specific CD4+ T cells to immune checkpoint blockade (ICB) across multiple subsets. We 

first sought to compare the functional state of HIV-specific CD4+ T cells among two 

cohorts of HIV-infected untreated indivduals, based on their ability to spontaneously 

control viral replication. Elite controllers, who have no detectable viral load in the absence 

of anti-retroviral therapy (ART), had more functional HIV-specific CD4+ T cells than their 

viremic counterparts, as well as lower levels of dysfunction-related transcription factors 

and immune checkpoint expression. We then compared the response of HIV-specific 

CD4+ T cells to ICB and saw greater increase in functionality in the dysfunctional cells of 

viremic individuals. All functions assessed were increased except for B-cell helping T 

follicular-helper-associated functions, underlying subset-specific responses to ICB. This 

effect was largely lost once ART was initiated, suggesting that the use of ICB would be 

optimal right before the initiation of ART. 

Together, our results contribute to a better understanding of two pandemic-causing viral 

infections, and reveal key considerations for therapy.  
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Keywords: SARS-CoV-2, HIV, human viral infections, immunology, T cells, cytokines, 

humoral response, immune checkpoint blockade. 
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Résumé de vulgarisation 

Les infections virales sont une cause majeure de maladie chez l'homme. Lorsqu’un virus 

se propage sur plus d'un continent, on parle de pandémie. Deux grandes pandémies sont 

toujours d’actualité : la pandémie de coronavirus 2019 (COVID-19) causée par le 

coronavirus respiratoire aigu sévère 2 (SRAS-CoV-2), et la pandémie du syndrome de 

l’immunodéficience acquise (SIDA) due au virus de l'immunodéficience humaine (VIH). 

Ces maladies causent la mort par des mécanismes très différents. Alors que le SRAS-

CoV-2 s'avère fatal par une réponse immunitaire exacerbée, tandis que le VIH échappe 

continuellement à la réponse immunitaire de l'hôte, l'affaiblissant au fil du temps jusqu'à 

un état d'immunodépression grave. La caractérisation des mécanismes de ces maladies 

a permis le développement des traitements thérapeutiques. L'objectif principal de cette 

thèse était d'étudier les défaillances de la réponse immunitaire humaine contre chacun de 

ces virus, et d'en extraire les informations utiles pour guider les pratiques thérapeutiques.   

Notre première étude s'est concentrée sur la COVID-19, où nous avons essayé de trouver 

un biomarqueur facile à mesurer dans le sang qui prédisait les cas fatals. Nous avons 

mesuré plusieurs protéines ainsi que la quantité de matériel génétique (ARN) du virus 

dans le sang de 279 patients hospitalisés pour leur COVID-19, prélevés au début de leur 

maladie. Nous avons constaté que l'ARN du SRAS-CoV-2 prédit fiablement la mortalité, 

après ajustement en fonction de l'âge et du sexe. Pour mieux comprendre l'évolution de 

la maladie d'un point de vue immuno-virologique, nous avons utilisé dans notre deuxième 

étude des outils bio-informatiques nous permettant de simultanément considérer tous les 

analytes mesurés. Nous avons constaté qu'il existe quatre " types " de réponses 
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immunitaires, dont l’un est fortement lié à la mortalité. Nos résultats permettent de mieux 

caractériser l'hétérogénéité des cas de COVID-19 hospitalisés, et peuvent être utiles pour 

orienter des traitements thérapeutiques ciblés. 

Notre troisième étude s'est concentrée sur le VIH, où notre objectif était de caractériser la 

réponse des cellules T CD4+ dysfonctionnelles reconnaissant spécifiquement le virus, à 

une immunothérapie appelée blocage du point de contrôle immunitaire (BPCI). Ce 

traitement peut inverser partiellement le dysfonctionnement des cellules T. Nous avons 

d'abord comparé l'état des cellules T CD4+ spécifiques du VIH dans deux cohortes de 

personnes infectées par le VIH et non traitées, en fonction de leur capacité à contrôler 

spontanément la réplication virale. Les contrôleurs élites, qui contrôlent la charge virale 

la rendant indétectable en absence de traitement antirétroviral (TAR), avaient plus de 

cellules T CD4+ fonctionnelles spécifiques du VIH que leurs homologues virémiques, 

incapable de contrôler le virus. Dans les cellules des individus virémiques, le BPCI 

augmentaient plus fortement leurs fonctionnalités. Toutes les fonctions évaluées ont été 

augmentées par BPCI, à l'exception de celles associées aux cellules T folliculaires aidant 

les cellules B, suggérant que les réponses aux BPCI dépend du sous-type de cellules T 

CD4+. Cet effet est largement perdu chez les personnes sous TAR, ce qui suggère que 

l'utilisation du BPCI serait optimale juste avant l'initiation du traitement antirétroviral. 

Cette thèse a permis une caractérisation approfondie de la réponse immunitaire humaine 

contre deux infections virales. Ces résultats permettent de mieux comprendre 

l'hétérogénéité entre les personnes infectées, et pourraient aider à orienter les thérapies 

ciblées. 
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Lay Abstract 

Viral infections are a major cause of disease in humans. Pandemics refer to virulent 

viruses that spread across more than one continent. In the last century, two major such 

pandemics have occurred with still-current repercussions : the Coronavirus Disease 2019 

(COVID-19) pandemic caused by the severe acute respiratory coronavirus 2 (SARS-CoV-

2), and the acquired immunodeficiency syndrome (AIDS) pandemic by the Human 

Immunodeficiency Virus (HIV). These diseases can cause death through very different 

mechanisms : while SARS-CoV-2 proves to ultimately be fatal by an exacerbated and 

perhaps delayed immune response against the virus, HIV rather evades the host’s 

immune response, weakening it over time until inducing an severe immunocompromised 

state. Better elucidation of the mechanisms behind these diseases have already allowed 

researchers to develop therapeutic treatments against these infections ; however, both 

pandemics caused by these viruses are ongoing. The overarching goal of this thesis was 

to study the failings of the immune response against each virus, and extract information 

useful to guide therapeutic practices.   

Our first study focused on COVID-19, where we tried to find a good biomarker of fatal 

outcome that was easy to measure in plasma. We measured multiple proteins and the 

amount of the virus’ genetic material (RNA) in the plasma of 279 patients hospitalized for 

their COVID-19 collected early in their disease. By comparing our measurements, we 

found that SARS-CoV-2 RNA was the best predictor of fatal outcome, when adjusted for 

age and sex. Next, to better understand how the disease evolved from a 

immunovirological perspective, we used bio-informatic tools to simulteaneously consider 
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all our measurements. We found that there are four « types » of patients, and only one 

type is strongly enriched in fatal outcome. Our findings better characterize the 

heterogeneity of hospitalized COVID-19 cases, and may be useful in directing targeted 

therapeutic treatments. 

Our second study focused on HIV, where our objective was to characterize the response 

of dysfunctional CD4+ T cells which specifically recognize the virus, to an immunotherapy 

called immune checkpoint blockade (ICB) which is known to partially reverse dysfunction 

of T cells. We first compared the functional state of HIV-specific CD4+ T cells among two 

cohorts of HIV-infected untreated individuals, based on their ability to spontaneously 

control viral replication. Elite controllers, who have no detectable viral load in the absence 

of anti-retroviral therapy (ART), had more functional HIV-specific CD4+ T cells than their 

viremic counterparts. We then compared the response of HIV-specific CD4+ T cells to 

ICB and saw greater increase in functionality in the dysfunctional cells of viremic 

individuals. All functions assessed were increased except for B-cell helping T follicular-

helper-associated functions, underlying subset-specific responses to ICB. This effect was 

largely lost once ART was initiated, suggesting that the use of ICB would be optimal right 

before the initiation of ART therapy. 

This thesis allowed for an in-depth characterisation of the human immune response 

against two viral infections. These findings allow for a better understanding of the 

heterogeneity among infected people, and could help direct targeted therapies. 
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Chapter 1 – Introduction 

The immune response is an intricate, multi-layered system which affects all parts of the 

human body. It is implicated, at least to some extent, in most (if not all) human diseases. 

In the vast majority of pathogen infections, the immune response is effective in defending 

the host. 

 

The immune response in a physiological context 

The immune response is roughly split between 2 overarching categories: the innate 

immune response and the adaptive immune response. The innate immune response 

reacts to non-specific stimuli and provides an immediate yet unspecific response. The 

adaptive response specifically recognizes one molecular motif (epitope). This allows it to 

target pathogens in a targeted manner, increasing the efficiency of the response. 

However, the adaptive response is slower to fully develop. It is the adaptive immune 

response which creates immunological memory, allowing for long-lasting immunity. Both 

these arms interact extensively and are essential to fight off all kinds of harmful agents, 

like viral, bacterial or fungi infections, cancerous cells, parasites, etc., with the main goal 

of preserving the host. 
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Innate immune response to viral infection 

Globally, the innate immune response includes all aspects of the immune response which 

are not adaptive, meaning that do not require rearrangement of the cell germ-line to 

function (discussed later) (Chaplin, 2010). This very broad category also includes non-

cellular components:  

Non-cellular components 

Physical barriers, including the epithelial cell layers that make up the skin and the 

respiratory, gastrointestinal and genitourinary tracts. The layer of secreted mucous, which 

trap microbes and is constantly refreshed, are also part of this category.  

 

Soluble bioactive small molecules and proteins, which are present in biological fluids and 

naturally possess antimicrobial and/or signalling activity.  

Cytokines are a large group of signalling molecules secreted by (often activated) cell 

groups and which, by binding cell surface receptors, trigger signalling cascades with 

diverse downstream results. They are also central in T cell activation (Curtsinger and 

Mescher, 2010). Chemokines, a subgroup of cytokines, recruit cells by creating a 

gradient that the target cell will follow upstream. Interleukins (IL), another type of 

cytokines, are essential in a number of aspects of the immune response, including 

maintenance, growth, modulation of the immune response, and differentiation of immune 

cells (Justiz Vaillant and Qurie, 2021).  

Interferons are key signalling molecules, and span three distinct families. Type I IFN 

include 13 IFN alpha (IFNa) subtypes, one IFN beta (IFNb) and a number of others, and 
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are the most broadly expressed IFNs. Type II IFN includes IFN gamma (IFNg), mainly 

produced by activated T and NK cells. Finally, the third family are type III IFNs, made up 

of 4 IFN lambdas (IFNl). Type III IFN have similar functions to type I IFN, but their action 

is restricted to epithelial cells, as their receptor is not as common (McNab et al., 2015). 

Each family of IFN binds to their own set of surface receptors to activate a specific 

transcription pattern, leading to the expression of interferon-stimulated genes (ISGs) 

(Platanias, 2005). Some of these are restriction factors (host proteins with direct antiviral 

activity). Some ISGs also reduce transcription and translation mechanisms, in view to slow 

down viral replication, while others increase antigen presentation and the abundance of 

pattern-receptor recognition (PRR) (Altfeld and Gale, 2015), so infected cells are better 

recognized and cleared. In addition, they enable recruitment and activation of immune 

cells like dendritic cells, macrophages and NK cells (Altfeld and Gale, 2015). Together, 

these mechanisms slow viral spread. Finally, ISGs will also play an important role in the 

recruitment and priming of adaptive immunity cells.  

Other small bioactive molecules rather coat a microbe to enhance antiviral activity against 

it (such as phagocytosis). One such example are the surfactant proteins, pulmonary 

proteins which bind to target ligands on pathogens and enhance their clearance by 

immune cells (Nayak et al., 2012). 

Another group still are the exquisitely complex complement proteins. This group of more 

than 30 soluble proteins coats the surface of a microbe to enhance phagocytosis or create 

pores to destroy it. They also elicit proinflammatory mediators (Dunkelberger and Song, 

2010). 
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Pattern-recognition receptors (PRR), expressed on all cell types, bind to pathogen-

associated molecular patterns (PAMPs – molecular structures that are common in 

microbes) and/or danger-associated molecular patterns (DAMPs), molecular structures 

found in cellular debris, for example following damage caused by the infection. Some PRR 

are membrane-bound like the toll-like receptors, which bind to a range of microbial by-

product like lipopolysaccharide (from the membrane of gram negative bacteria) or double-

stranded RNA (during the replication cycle of a virus). Other PRR are rather cytoplasmic 

proteins, like RIG-1-like receptors which bind to viral nucleic acids. Upon binding their 

target PAMP, the PRR initiate intracellular signalling cascades which induce type I 

interferons, cell death or cytokines (Dunkelberger and Song, 2010). 

Although these non-specific functions are widespread throughout the body, there are 

some cell types, activated by the aforementioned mechanisms, which embody the innate 

immune response.  
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Figure 1.1.  Mechanisms of the innate immune response contributing to the elimination of an 
invading pathogen. Upon recognition, a pathogen can be i) phagocytosed and degraded intracellularly ; 
killed by NK cells ; destroyed by bioactive small molecules, either directly (for example through the formation 
of pores by the complement cascade) or through opsonization (pathogen is “tagged” for easier identification 
by phagocytes). PAMPs also contribute to activation of dendritic cells, thus initiation the antigen-
presentation and T cell-priming processes. Included from (Kuby Immunology, seventh edition), in 
accordance with allowed permissions. 

Killing by 
NK cells
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Cellular components 

Natural killer (NK) cells are a subpopulation of lymphocytes which target infected, 

transformed or stressed cells that over express NK activating ligands (NKp46, NKG2D, 

DNAM1) or under-express certain physiological markers (MHC I) as a consequence of 

their state (Bjorkstrom et al., 2021). NK cells can also mediate antibody-dependent cellular 

cytotoxicity through FC receptor FcgRIII (CD16). NK cells kill aberrant cells without 

priming through the release of cytotoxic granules containing granzymes and perforin. 

Perforin forms pores in the target cell’s membrane, allowing for granzyme to penetrate 

within the cell and induce its apoptosis. NK cells also produce IFNg (Bjorkstrom et al., 

2021), IL-2, IL-15, IL18 and type I IFNs (Bjorkstrom et al., 2021), which activate other 

immune responses and promote NK survival, proliferation and activation. 

 

Granulocytes, so called because of their many granules, comprise neutrophils and 

monocytes, among others. 

Neutrophils are short-lived circulating cells with multiple functions. They accumulate in 

large quantities at the site of infection, where they fight off the infecting agent by producing 

reactive oxygen species. (Kennedy and DeLeo, 2009). They are among the major 

phagocytic cells, clearing microbes and particles bound by immunoglobulins and 

complement (Chaplin, 2010). They can also produce a number of inflammatory 

chemokines such as CXCL9/10/11 and CCL2/3/20, depending on the trigger (Tecchio et 

al., 2014). 

Monocytes circulate through the blood, patrolling the vascular endothelium, from which 
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they can rapidly be recruited to an infection site. They first produce inflammatory 

mediators, then differentiate into macrophages, and can replenish the macrophages in 

tissue at steady state. 

Macrophages are long-lived tissue-resident phagocytes and, depending on the 

environmental cues they received, they can be 1) inflammatory, 2) anti-inflammatory or 3) 

healing. These cells are very plastic, meaning they can switch from one state to another. 

1) The combination of IFNg and TNFa activates macrophages. These so-called 

“classically activated” macrophages have enhanced microbicidal activity 

(production of superoxide anions and oxygen or nitrogen radicals) and secrete 

high levels of pro-infammatory cytokines, including IL-1, IL-6 and IL-23 (Mosser 

and Edwards, 2008). These macrophages also express chemokines CXCL9, 

CXCL10, and CXCL11 which, through CXCR3 signalling, attracts NK and T cells 

(Martinez et al., 2009).  

2) The anti-inflammatory population is induced by glucocorticoids and TGFb 

(produced by macrophages following phagocytosis of apoptotic cells in pro-

inflammatory contexts), although they also arise at the later stages of the 

adaptive immune. This population produces high levels of IL-10, and express 

high levels of co-stimulatory molecules CD80 and CD86, implying antigen 

presentation, although less efficiently than DC (Mosser and Edwards, 2008). 

3) Wound-healing macrophages occur through IL-4 stimulation, which allows them 

to produce precursors of key components of the extracellular matrix (Kreider et 

al., 2007). 

 

Finally, the Dendritic cells (DC) bridge the gap between innate and adaptive immune 

responses by principally serving as antigen-presenting cells (APCs). There are three 

major DC populations: 1) conventional or classical DC (cDC)1 and cDC2, 2) plasmacytoid 

DC (pDC) (Collin and Bigley, 2018), and 3) an additional population derived from 
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monocytes (mo-DC). 

1) cDC are specialized in antigen-presentation: immature cDC have high endocytic 

activity, which allows internalization of microbes for degradation into epitopes. 

Upon stimulation by microbial product or inflammatory stimuli, they express major 

histocompatibility complex (MHC)-peptide complexes and co-stimulatory 

molecules at their surface, ready to prime CD4+ T cells (Satpathy et al., 2012). 

While both cDC types can efficiently cross-present and produce IL-12, cDC2 in 

humans also produces IL-23, TNFa, CXCL8/IL-8 and IL10, while cDC1 can also 

present necrotic antigens to T cells (Rhodes et al., 2019). 

2) Through TLR7 and TLR9 in endomoses, pDC sense viral nucleic acids, upon 

which they express high levels of type I IFN, TNF, IL-6 and Granzyme B. pDC are 

rather poor antigen-presentors (Siegal et al., 1999), and express CD4 and 

multiple chemokine receptors, namely CXCR3, CXCR4, CCR2 and CCR7 (Collin 

and Bigley, 2018).  

3) Mo-DC, also known as “inflammatory DC”, are absent at steady state. They 

differentiate from monocytes and egress from the bone marrow via CCR2 to go to 

the site of inflammation. They can secrete IL-1, TNFa, IL-12 and IL-23. 

 

Antigen presentation 

APCs mediate antigen presentation to T cells via the major histocompatibility complex 

(MHC), known has the Human Leukocyte Antigen (HLA) in humans. MHC class I 

molecules bind peptides for presentation to CD8+ T cells, and are expressed on nearly all 

somatic cells in physiological context. Cytosol-derived peptides are processed and loaded 

onto MHC class I, making it ideal to recognize infected cells. MHC class II is used to 

present peptides to CD4+ T cells. Outside the thymus, MHC class II is expressed on APCs 

and phagocytes, although it can be up regulated following IFNg stimulation. It is loaded 

with peptides derived from the processing of intravesicular pathogens or extracellular 
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pathogens, uptaken through phagocytosis, micropinocytosis or receptor-mediated 

endocytosis. APCs load their MHC either by phagocyting some infected cells and 

trafficking to the secondary lymphoid organs densely populated with T cells, or by 

capturing particulate antigen and pathogens trafficked through the lymphatics into the 

lymph nodes (Janeway, 2016). 

Phagocytic APC can, after phagocyting dead cells, process them and present exogenous 

peptides on the MHC class I, in what is called cross-presentation. If the DC was activated 

through PRR ligation or CD4+ T cell help prior to cross-presentation, this results in the 

productive activation of CD8+ T cells (i.e. cross-priming) (Gutierrez-Martinez et al., 2015). 



10 

Adaptive immune response to viral infection 

As mentioned previously, immune cells of the adaptive immune response have a single 

specificity. For this reason, it is slower than the innate, as it requires first the correct 

matching of an antigen with a specific cell, and then the priming of said cell, which normally 

happens between 6-10 days in humans. The two main factions are T cells, expressing a 

T cell receptor (TCR) and B cells, with B cell receptors (BCR). 

 

Figure 1.2 Schematic of a perfect immune response with activation of the adaptive immune 
response in humans. Wiral infection rapidly activates the innate immune response, resulting in 
inflammation. These processes allow efficient activation of both the cellular response mediated by T cells 
and the humoral response from B cells. T cells further aid in increasing antibody specificity and in 
differentiation into plasmablasts, creating a pool of specific antibodies which are replenished over time. 
Meanwhile, virus-specific T cells contract, with a small population of memory T cells persisting. Figure based 
on (Sette and Crotty, 2021). 

T cells 

Based on the chains that compose their TCR, there are two types of T cells: T cells with 

abTCR, which make up around 90% of all circulating T cells and generated in the thymus, 

and those with gdTCR, which are in majority generated in an extrathymic compartment 
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(McVay and Carding, 1996). Because they are the most common, abT cells (herein simply 

referred to as T cells), are the most studied. In the thymus, this population is further 

distinguished between two subsets, on the basis of their co-receptor: cluster of 

differentiation (CD)4+ T cells, known as helper T lymphocytes (TH), and CD8+ T cells, 

known at cytotoxic T lymphocytes (CTL).  

 

The heterodimeric TCR, made of one alpha and one beta chain, is made up of constant 

and hypervariable regions. Multiple V, D and J segments make up the TCRA and TCRB 

loci. Recombination and gene rearrangement of these segments, the addition of 

nucleotides between their junctions, and diversity in alpha and beta chain pairing create 

a highly diverse repertoire of TCRs. These undergo strict selection processes in the 

thymus, where T cells with non-functional rearrangements or autoreactive (meaning they 

react too strongly to epitopes present in the host’s cells) TCRs are eliminated. Fewer than 

5% of T cells survive the selection process, and can enter the circulation as naïve T cells. 

The result of this is a pool of highly diverse naïve T cells, in terms of capacity to recognize 

epitopes.  

In the advent of a primary viral infection, there are three distinct phases that characterize 

the T cell response:   
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Figure 1.3 Phases of the T cell response. To allow for stimulation, never-exposed naïve T cells’ TCR 
must recognize the peptide-MHC complex expressed on an antigen-presenting cell (APC) – signal 1. The 
T cell must also receive co-stimulation mediated by CD28-B7 binding (signal 2) and cytokine signalling from 
the milieu (signal 3). Priming allows for clonal expansion, whereby a single clone (T cell with a given 
specificity) will multiply and create a large pool of activated T cells with effector functions. Once the infection 
cleared, most cells undergo apoptosis except for a small, stable pool of long-lived memory cells maintained 
by IL-15 and IL-7. Figure modified from (Adams et al., 2020). 

 

Upon breaching the barrier, a virus infects a cell and, through activation of the innate 

immune system, inflammation occurs. Antigen-presenting cells (APCs) load their MHC 

with viral epitopes. APCs then present their epitopes to T cells, either on MHC class I for 

CD8+ T cells, or MHC class II for CD4+ T cells, along with critical costimulatory signals 

(B7/CD80/CD86 interaction with CD28) and cytokines. In response to this, newly activated 

T cells enter the expansion phase, where they proliferate in mass and differentiate into 

effector cells, with a distinct epigenetic and transcriptomic profile (Kaech and Cui, 2012; 

Masopust and Schenkel, 2013). Only T cells activated by the APC proliferate, creating a 

pool of clones (i.e. T cells with the same TCR, so the same specificity). This transition is 

characterized by the loss of lymphoid homing molecules CCR7 and CD62L, and gain of 

CCR5, through which they are directed to sites of inflammation. As a result, the effector 

cells exit the lymphoid tissues and, through the circulation, migrate to sites of inflammation 

(Wherry et al., 2004), where they are maintained by IL-2 (Tham et al., 2002). As we will 
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discuss later, these effector T cells are key in aiding the control of viral infections through 

diverse mechanisms.  

After the clearance of the viral infection and resolution of the inflammation, T cells enter 

the contraction phase, where 90-95% of the expanded clones are cleared by apoptosis 

(Prlic and Bevan, 2008). This step is necessary, as sustaining so many effector cells is 

taxing. In the final maintenance phase, a small subset persists as memory T cells, a 

quiescent self-renewing population that can be quickly reactivated to perform effector 

functions upon antigen recognition (Masopust and Schenkel, 2013). IL-7 and IL-15 keeps 

their numbers constant over time (Gasper et al., 2014). Two populations of memory T 

cells are found in circulation : T central memory (which home to secondary lympoid organs 

through the expression of CCR7) and T effector memory (circulate through non-lymphoid 

tissues and express CCR5) (Sallusto et al., 1999). It is also worth noting that 98% of T 

cells are not in the blood, but rather in the tissues; some effector T cells which went to the 

tissues stayed there as persistent tissue-resident memory T cells. They provide the first 

line of defence against tissue-invading pathogens (Thome and Farber, 2015).  

 

CD4+ T cells 

Helper T cells (TH) primarily act to regulate cellular and immune responses. Based on the 

environmental cues received at the time of activation, they will polarize towards different 

archetypes, governed by distinct master transcription factors, and with the ability to 

produce a specific set of cytokines (Becattini et al., 2015). A dominant lineage-specific 

transcription factor will counteract the others, but CD4+ T cells are plastic and undergo 

functional reprogramming. As such, CD4+ T cells show a great degree of plasticity in 
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moving away from one subset and towards another, as well as by having traits of multiple 

subsets at the same time (Becattini et al., 2015). The differentiation of the CD4+ T cell 

subset depends on the pathogen, and an aberrant polarization can result in ineffective 

pathogen clearance (Pirmez et al., 1993).  

 

Regulatory T (Treg) cells can either be natural, meaning that they developed their 

regulatory functions in the thymus, or induced, when they are activated in the presence of 

IL-10. They express the transcription factor FoxP3 and suppress activation through the 

secretion of IL-10 and TGFb, as well as through inhibitory cell-to-cell contacts (Becattini 

et al., 2015).  

 

TH1 cells are the prototypical antiviral subset, and are induced by IL-12 co-stimulation. 

They are characterized the expression of T-bet and/or EOMES and produce IFNg, IL-2, 

TNF-a and lymphotoxin. A subset of Th1 also have cytolytic functions like perforin and 

granzyme B secretion. Th1 cells express CXCR3. (Becattini et al., 2015). 
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Figure 1.4 Overview of CD4+ T helper cell subsets  

 

TH2 cells are induced by IL-4 and express the transcription factor GATA-3. They produce 

IL-4, IL-5, IL-9, IL-13 and GM-CSF. These cells are important to fend off extracellular 

multicellular pathogens, like helminths and nemathods. (Becattini et al., 2015). 

TH17 are induced by TGFb and IL-6, and their transcription factor is RORgC. They 

produce IL-17 and IL-22 (Liang et al., 2006) and express CCR6 and gut-homing integrins. 

(Becattini et al., 2015). 

Th22 also express CCR6, are regulated by AHR and produce IL-22 without IL-17 

(Becattini et al., 2015). They play an essential role in repairing the mucosal barrier. 
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T follicular helper (TFH) provide help to B cells. Their master transcription factor (which is 

a repressor) is Bcl-6, and they produce IL-21 and CXCL13. Their signature chemokine 

receptor, CXCR5, allows them to migrate to germinal centres in lymphoid tissues, where 

they can activate B cells and select high-affinity clones, thus playing a key role in the 

production of high-affinity antibodies (Sallusto, 2016).  

 

The advent of single-cell RNA seq analyses, in conjunction with increasingly precise tools, 

has brought into question the validity of this archetype model. Pure populations of TH 

subsets are rarely observed. Effector CD4+ T cells span a continuum, with a 

transcriptomic profile principally associated to their cell state (for example, proliferation, 

response to IFN, resting) (Kiner et al., 2021). Analyses of transcriptome and chromatin 

availability did not reveal discrete polarizations, supporting the theory of a continuum 

(Cano-Gamez et al., 2020; Kiner et al., 2021). Only Treg and naïve CD4 T cells are 

completely distinct from effector cells (Kiner et al., 2021). 

Tools to study CD4 T cells 

The most specific way to identify virus-specific CD4+ T cells is through the use of MHC-

peptide complexes, most often biotin-labeled and bound to streptavidin, which forms a 

tetravalent complex – tetramer (Nepom, 2012). These tetramers will only bind to specific 

TCRs and do not require additional manipulation of the cells. The multitude of 

immunogenic epitopes harbored by a single pathogen, compounded to the extreme 

diversity of the human MHC II (called HLA class II), make tetramers hard to apply to 
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heterogeneous cohorts. Conversely, they are particularly useful in contexts of limited 

genetic diversity (for example, infections in syngeneic mice) (Nepom, 2012). 

Alternative assays have depended on cytokine production to detect activated cells. At the 

population level, the overall cytokine profile can be measured in the supernatant of 

stimulated cells by ELISA-type assays. To get a sense of the number of virus-specific T 

cells a sample contains, ELISpot can be used, where cytokine production is captured 

within a small vicinity of where it was produced, allowing to “count” the number of cytokine-

producing cells. Finally, intracellular staining can be used to detect cytokines accumulated 

within CD4+ T cells stimulated in the presence of a blocker of protein transport. Although 

more widely applicable than tetramers and high throughput, they rely on the detection of 

a limited set of cytokines, directing the type of virus-specific CD4+ T cell captured (Schmidt 

and Sester, 2013; Reiss et al., 2017). 

A relatively newer method called the activation induced marker (AIM) assay relies on the 

upregulation of surface markers following the activation of a cell by peptide stimulation 

(Reiss et al., 2017). There are multiple combinations of AIM which are employed, based 

on the time of stimulation and the tissue from where the cells are collected. Although the 

type of AIM used influences what the TH populatons are detected (Reiss et al., 2017), 

AIM combinations capture a larger and more diverse pool of virus-specific CD4+ T cells 

than cytokine-based assays (Niessl et al., 2020b). Stimulation with multiple peptides also 

means more virus-specific CD4+ T cells captured than with tetramer staining. 

Preservation of the cell’s transcriptome enables the use of AIM for bulk (Morou et al., 

2019) and single-cell RNA Seq assays (Meckiff et al., 2020b).  
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CD8+ T cells 

In secondary lymphoid organs, dendritic cells presenting peptides prime f naïve CD8+ T 

cells (Zhang and Bevan, 2011). This priming is dependent on CD28 co-stimulation, and 

further enhanced by inflammatory cytokines including type I IFN and co-stimulatory 

ligands. The primary activation of CD8+ T cells can be dependent of CD4+ T cell priming 

of DC (against HSV-1) or independent (as for influenza and LCMV) (Bevan, 2004). 

However, CD4+ T cells promote memory CTL development (Shedlock and Shen, 2003) 

and play a central role in CD8 T cell reactivation upon secondary challenge (Janssen et 

al., 2003). CD4+ T cells also enhances recruitment of CD8+ T cells into infected sites 

(Nakanishi et al., 2009). 

CD8+ T cells’ antiviral function is very direct: once they recognize infected cells (which 

present viral epitopes on their MHC I), they kill the infected cells through secretion of 

perforin and granzymes, similarly to NK cells, or through Fas-FasL-depdendent apoptosis 

induction. Finally, CD8+ T cells also produce pro-inflammatory cytokines like IFNg and 

TNFa. (Zhang and Bevan, 2011) 

B cells 

After their formation, naïve B cells leave the bone marrow and are activated by interacting 

with a cognate CD4+ T cell. When these interactions occur outside the germinal centre 

(GC), the naïve B cells differentiate into antibody secreting cells (plasma cells) which are 

typically short-lived. These quickly-generated cells provide a rapid burst of antibodies 

which mediate early antiviral protection, despite not being highly specific for the invading 

pathogens (MacLennan et al., 2003).  

Alternatively, B cells enter lymphoid organs and present processed antigens (taken from 
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nearby follicular dendritic cells) on their MHC II. They compete for limited TFH help and, 

if successful in their match, migrate to a distinct site within the GC where they proliferate 

and undergo somatic hypermutation. This latter process introduces single nucleotide 

exchanges randomly in the BCR, in an attempt to increase its affinity. B cells will then 

return for more interactions with TFH, and repeated cycles and selections ultimately leads 

to highly specific B cells. These B cells can differentiate into long-lived plasma cells or 

memory B cells and enter the circulation (Crotty, 2011). 

In addition to promoting proliferation and activation of B cells, cytokines and co-stimulation 

from the TFH can lead to class-switch recombination (CSR). CSR happens by rearranging 

the constant region of the immunoglobulin’s heavy chain through DNA excision and 

ligation, changing the class but not the specificity of the antibody (Vaidyanathan and 

Chaudhuri, 2015).  

These different classes of antibodies vary in both conformation and in function (Schroeder 

and Cavacini, 2010). IgM is the first immunoglobulin expressed during B cell development, 

and it is present on antigen-inexperienced naïve B cells. When antigenic stimulation 

occurs, IgM form pentamers, for which their multiple interactions can make up for their 

typically low affinity (due to little SHM at this point). IgM opsonize antigen, which can block 

de novo infection and activate the complement cascade. Another antibody class found on 

naïve B cells are IgD. Circulating levels of IgD are very low and known to react with 

specific bacterial proteins and thus activate B cells. IgG is the predominant class of 

antibody, typically making up 75% of all antibody found in the serum, and is a product of 

CSR. Monomeric IgG can opsonize pathogens, activate the complement cascade, and 

inhibit viral entry. IgG antibodies also bind to the Fc-receptors expressed on multiple 
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immune cells, and activate pathogen-clearing processes like antibody-dependent cellular 

cytotoxicity, antibody-dependent phagocytosis, and release of soluble inhibitors. IgA, also 

a result of CSR, are secreted as monomers or dimers and are predominantly found in 

mucosal surfaces, where they protect from pathogen binding to the mucosal surface and 

may facilitate antigen uptake by dendritic cells for downstream presentation. Finally, IgE 

is strongly associated with hypersensitivity and allergic reaction: it binds with very high 

affinity to a mast-cell receptor, and causes their degranulation. (Schroeder and Cavacini, 

2010) 

 

In summary, there is extensive cross-talk between the different components of both the 

innate and adaptive immune response, which allows for their high efficacy. However, there 

are instances where the immune response can fail, either by being too strong and causing 

immunopathology, or by being outrun by an evolutionary machine of a virus. The immune 

response can be modulated or boosted therapeutically. However, to know what aspects 

need help, we first need to understand how exactly the immune response failed at its task. 

In the following sections, we will discuss the human immune responses against two 

pandemic-causing viruses of acute (SARS-CoV-2) or chronic nature (HIV), and focus on 

what went wrong, with the perspective of zoning in on therapeutic approaches that would 

cure or minimize the repercussions of the infections. 
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Acute viral perturbations : SARS-CoV-2 

In December 2019, a new strain of coronavirus was characterized in Wuhan, China, and 

is thought to have occurred following a zoonotic transmission. Within months, this virus 

called SARS-CoV-2 had spread worldwide. As of December 18th 2021, there have been 

275 million reported cases, with over 5 million deaths, across 222 countries and territories 

(https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?). While 

the advent of protective vaccines has slowed the saturation of hospitals, mutated variants 

keep this pandemic going. It is crucial to study the mechanisms of how this coronavirus 

causes such severe symptoms, how to identify quickly the patients at greatest risk of 

developing critical disease, and how to help them overcome it. 

Viral characteristics 

SARS-CoV-2 is part of the family of coronaviruses (order Nidovirales, suborder 

Coronavirineae, family Coronaviridae, subfamily Orthonocoronavirinae, genera 

betacoronavirus). It is an enveloped positive-sense single-stranded RNA virus with a very 

large genome (>30kb), exclusively infecting mammalian cells (V'Kovski et al., 2021). 

Before the pandemic, we predominantly encountered its milder cousins behind the 

common cold (HCoV-229E, HCoV-OC43, etc.), although other infamous highly-

pathogenic coronaviruses have already caused epidemics (SARS-CoV, MERS). SARS-

CoV-2 virions include the structural proteins Spike (S – viral entry), envelope (E), 

membrane (M – E and M incorporate RNA genome into viral particle during assembly) 

and nucleocapsid (N – encapsulates RNA genome) (V'Kovski et al., 2021)  
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Replication cycle 

SARS-CoV-2’s Spike (S) homotrimeric glycoprotein binds angiotensin converting enzyme 

2 (ACE2) via it’s receptor binding domain (RBD) of the surfaced-exposed S1 part, and 

mediates entry into the cell (Letko et al., 2020). Transmembrane protease serine 2 

(TMPRSS2) facilitates viral entry by cleaving ACE2 (Hoffmann et al., 2020). Once the 

virus is up taken, it first fuses with the cellular membrane, then is released and uncoated. 

Two large open reading frames (ORFs) are immediately translated into polyproteins, 

which are turned into 15 non-structural proteins (nsp), the majority of which form the 

replication and transcription complex (RTC) (Gorbalenya et al., 2006). The RTC includes 

a RNA proofreading function which maintains genome integrity (Gorbalenya et al., 2006). 

Full-length negative-sense genomic copies are produced, which serve as a template to 

produce viral genome to be packaged, as well as to make more RTC and nsp. The 

synthesis of negative-strand RNAs also produces subgenomic negative-strand (sgRNAs). 

They serve as templates for the nested sg positive-strand mRNAs, which go onto produce 

the structural and accessory proteins (V'Kovski et al., 2021).  

The concerted effort of some nsp and host cell factors leads to the formation of viral 

replication organelles. Once the RTC is anchored in their double-membrane wall (Wolff et 

al., 2020), they allow for viral genomic RNA to replicate and be transcribed hidden from 

cellular sensors (Klein et al., 2020; Stertz et al., 2007). Translated structural proteins go 

to the endoplasmic reticulum-to-Golgi intermediate compartment, where they interact with 

N-encapsidated genomic RNA, and bud into the lumen of secretory vesicular 

compartments (Klein et al., 2020). These now complete virions exit the infected cell via 

lysosomal trafficking pathways (Ghosh et al., 2020).The virus can productively infect lung 
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epithelial cells, but also intestinal cells and epithelium of other organs (Wang et al., 2020d; 

Xiao et al., 2020). 

Some of SARS-CoV-2 proteins help in immune evasion. The virus has at least 5 

accessory proteins (not structural, not part of the RTC, and not necessary for replication 

in cell culture but often play roles in a natural host) (V'Kovski et al., 2021). One accessory 

protein, ORF8, binds MHC I to mediate its degradation in vitro (Zhang et al., 2021), and 

ORF3b antagonized IFN (Konno et al., 2020). nsp can also counteract immune 

responses: nsp1 affects cellular translation in the cytoplasm to favour viral over cellular 

RNA, effectively blunting expression of IFN types I and III (Thoms et al., 2020).  

Variants 

The massive worldwide spread of the virus, coupled with massive sequencing efforts of a 

number of countries, has revealed that the SARS-CoV-2 genome has mutated through 

single nucleotide changes, insertion/deletions events, and, perhaps, recombination 

events (Ignatieva et al., 2021). Alinement of 77 801 genome sequences collected globally 

identified 15 018 mutations, of which 14 824 were single-nucleotide polymorphism (Hu et 

al., 2021). As of July 4th 2021, there were 1 295 identified variants (using the Pango 

lineage method(, where variants are a cluster of infections with shared ancestry and 

epidemiologically relevant – i.e., they did not die out) 

(https://www.ecdc.europa.eu/en/covid-19/variants-concern)  (https://cov-

lineages.org/global_report.html). Only a small minority of mutations, however, are 

expected to change the virus’ fitness. Thus, few of these variants are “of concern” meaning 

that mutations they carry affect the viral fitness, transmissibility and/or antigenicity of the 

infecting virus, as well as the severity of the infection : B.1.1.7, B.1.351, N.1.617.2, P.1 
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and the new omicron variant (https://www.ecdc.europa.eu/en/covid-19/variants-concern) 

(https://cov-lineages.org/global_report.html). The variants of interest sometimes have 

convergent mutations (appeared separately in two different variants),  

Figure 1.5 SARS-CoV-2 structure and replication cycle. A) Components and structure of a mature 
SARS-CoV-2 viral particle. Single strand RNA genome is encapsulated by the nucleocapsid proteins (N), 
and contained within a host-derived membrane punctuated by the viral transmembrane structural proteins 
membrane (M) and envelope (E), and the protruding trimeric glycoprotein Spike (S). B) Schematic of SARS-
CoV-2 replication cycle within an infected human cell. Viral particle binding to the host cell is mediated by 
the interaction of viral protein S with host’s ACE2, and viral uptake and fusion is enabled by host factor 
TMPRSS2. Viral particle is then uncoated, and viral RNA is translated into two large open reading frames, 
ORF1a and ORF1b. These are transcribed into the polyproteins, which in turn are processed into non-
structural proteins (nsp). These nsp usher the formation of double-membrane vesicules (DMVs) and form 
the replication and transcription complex (RTC). Viral RNA is replicated and/or transcribed into the nested 
set of subgenomic (sg) mRNAs, which are translated into the structural or accessory proteins. The structural 
proteins enter the endoplasmic reticulum (ER) membranes and transit through the ER-to-Golgi intermediate 
compartments (ERGIC). The ERGIC interact with the new N-encapsidated genomic RNA and buds into the 
lumen of secretory vesicules. Lastly, it is secreted by exocytosis. Figure modified from (V'Kovski et al., 2021) 
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suggesting evolutionary advantages. These mutations primarily affect Spike, and  

resulted in greater infectivity and/or decreased antibody-binding (Harvey et al., 2021). 

Other viral proteins are also changed in variants: deletions in ORF8 detected in a variant 

resulted in enhanced in vitro replication, although no difference in viral loads in 

nasopharyngeal samples (Su et al., 2020). Variants of concern are monitored by public 

health authorities, as they have different susceptibilities to vaccines (Krause et al., 2021) 

and treatments like monoclonal antibodies, and differ in rates of infectivity (Hu et al., 

2021).  

Clinical manifestations 

The progression of COVID-19 has distinct “phases” : then early infection, pulmonary, and 

hyperinflammation phases (Figure 1.6) (Siddiqi and Mehra, 2020). The early phase spans 

inoculation and initial establishment of the infection, characterized by non-specific flu-like 

symptoms. These include fatigue, fever, dry cough, and loss of smell and/or taste, 

although other less frequent symptoms comprise headache, hemoptysis (coughing 

blood), diarrhea, anorexia, sore throat, chest pains, chills, nausea, and vomiting (Hu et 

al., 2021). Clinically, this stage presents lymphopenia. The range of severity is highly 

person-dependent, and the high proportion of infected individuals who were asymptomatic 

or who have mild symptoms likely facilitated interindividual spread. 

 A proportion of infected people progress onto the pulmonary phase, where they develop 

viral pneumonia with replication of the virus in the lower respiratory tract. The leading 

symptom is hypoxemia, or low blood oxygenation (Diagnosis and Treatment Protocol for 

Novel Coronavirus Pneumonia (Trial Version 7), 2020), although it is sometimes not 
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accompanied by hypoxia. Tell-tell signs of lung involvement are also apparent with chest 

imaging, which show bilateral infiltrates or ground glass opacities.  

A minority of people progress onto the final stage of hyperinflammation, characterized by 

extrapulmonary systemic hyperinflammation syndrome. It is at this stage that markers of 

systemic inflammation as well as markers of tissue damage are highest. It is also 

characterized by acute respiratory distress syndrome (ARDS), septic shock and/or multi 

organ failure (Hu et al., 2021).  

Severity classification varied between research groups, so for the purpose of this thesis: 

critical patients are hospitalized individuals requiring mechanical ventilation (i.e. 

they reached the third phase); severe patients are hospitalized and require nasal 

cannula (reached phase II with hypoxia); moderate patients are hospitalized without 

requiring additional oxygen (phase II without hypoxia); mild patients are not 

hospitalized for their SARS-CoV-2 infection, and asymptomatic patients present no 

COVID-19 symptoms (both in phase I). In a report on 72 314 cases among the first in 

China, 80% were mild-to-severe and 20% were critical, 5% of which had terminal disease 

(Hu et al., 2021.) 

Greater severity of COVID-19 is associated to age, male sex, pre-existing chronic 

conditions like diabetes, obesity, hypertension, muco-obstructive lung disease, renal 

failure and heart disease (Brodin, 2021). As apparent with the symptoms, consequences 

of SARS-CoV-2 infection are not exclusive to lungs. Infection can also lead to longer-term 

disease grouped under the umbrella-term “long COVID”, symptoms persisting longer than 

2 months after initial infection. These include persisting fatigue, myalgia, intestinal 

disturbances, skin manifestations, and postural orthostatic tachycardia syndrome (Brodin, 
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2021). 

 
Figure 1.6 Stages of COVID-19 with associated symptoms. The early phase constitutes the 
establishment of the disease, with viral replication in the upper airways. This phase is characterized by mild 
non-specific symptoms and lymphopenia. In the second phase, inflammation occurs in the lungs with 
subsequent loss of respiratory capacity. Patients may start to be hospitalized at this stage, with a few 
fatalities occurring. The final phase is systemic hyperinflammation, characterized by high plasma levels of 
inflammatory cytokines. At this stage, critical patients are usually put on mechanical ventilation. Damages 
can extend to multiple organs, often kidneys and heart. It is during this stage that most COVID-19-related 
deaths occur. Modified from (Siddiqi and Mehra, 2020) 
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thrombosis) are at increased risk of death(Grasselli et al., 2020). The central feature of 

COVID19 pneumonia is low oxygen saturation in the blood (Diagnosis and Treatment 

Protocol for Novel Coronavirus Pneumonia (Trial Version 7), 2020) due to compromised 

lung function. This can arise following decreased lung perfusion (disruption of the blood 

flow to the alveoli) and/or lung ventilation (disruption of air penetrating into the alveoli). 

The cause may be a number of non-exclusive pathophysiological events initiated by 

SARS-CoV-2. 

Pathogenesis 

In the lungs 

The first cell type infected by SARS-CoV-2 are the ciliated cells of the epithelium of the 

nasal cavity (Hou et al., 2020), where ACE2 expression is high. In pre-symptomatic and 

early symptomatic phases, active viral replication is oberserved in the upper respiratory 

tract (Wolfel et al., 2020). It peaks around 3-5 days post symptom onset (Pan et al., 2020; 

Yilmaz et al., 2021), playing an important role in the high transmissibility of the virus.  

The virus then makes its way to the lower respiratory tract, where it can infect a number 

of cells. How the virus gets there is unclear, although micro particles are likely involved 

(Wilson et al., 2020).  

Infection of alveolar pneumocytes (Yao et al., 2020) can disrupt the gas exchange 

interface. Autopsies revealed disrupted membranes of type II pneumocytes in particular 

(Carsana et al., 2020). These foamy-type cells secrete pulmonary surfactants which 

maintain surface tension, preventing alveoli collapse (Fehrenbach, 2001). Such 

surfactants can also play antibacterial and immunomodulatory roles, like Surfactant 
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protein D (SP-D) (Sorensen, 2018). Although SP-D can be produced by multiple cell types, 

detection of SP-D in circulation is often found in acute and chronic lung injury (Gaunsbaek 

et al., 2013), owing to intravascular leakage following loss of the air-lung barrier integrity 

(Hastings et al., 1992). 

 

Figure 1.7 Lung pathogenesis during SARS-CoV-2 infection in humans. A) In the early infection 
(stage I), SARS-CoV-2 infects bronchial epithelial cells, type I and type II alveolar pneumocytes and capillary 
endothelial cells, allowing their replication and spread. Infected cells release inflammatory signalling 
molecules, activating innate immune responses and recruiting help. B) As immunopathology of SARS-CoV-
2 infection progresses due to direct cytotoxicity from the virus and/or killing from immune cells, kinins 
produced from the injured tissue cause vascular smooth muscle relaxation, increasing vascular 
permeability. This leads to angioedema, and can progress to pulmonary edema filling the alveolar space.  
This also leads to downstream activation of coagulation, further spurred on by the proinflammatory cytokine, 
and which can cause microthrombi. Figure from (Osuchowski et al., 2021), used within permissions. 
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ensuing inflammation may be the direct cause of microangiopathy (disease affecting small 

blood vessels) (Varga et al., 2020). Indeed, COVID-19-related alveolar damage is often 

observed alongside thrombotic microangiopathy (Sadegh Beigee et al., 2020), where a 

blood clot blocks a small blood vessel, for example those bringing unsaturated blood to 

get re-oxygenated. These platelet-fibrin microthrombi reduce the alveoli surface area 

participating in the gas exchange (Carsana et al., 2020), effectively reducing lung 

perfusion. 

As the disease progresses, vasoactive peptides (kinins) cause vascular smooth muscle 

relaxation, a process normally controlled by ACE2 expressed on pneumocytes 

(Osuchowski et al., 2021). Without ACE2, vascular permeability and angioedema 

increase, processes further enhanced by proinflammatory cytokines TNFa, IL-1 and IL-6, 

as well as nitric oxide release (Osuchowski et al., 2021). Pulmonary oedema fills the 

alveolar spaces, reducing O2 transfer from the air into the blood (diffusion capacity). In 

addition, lung fibrosis also plays a role in lung deterioration. It is primarily driven the TGF-

b, secreted from the injured and/or inflamed lung (Wilson and Wynn, 2009), although the 

excessive amounts found in COVID-19 may also be attributable to CD4+ T cells (Ferreira-

Gomes et al., 2021). 

Through the combination of these events, fluid and fibrin fill the alveoli (Hellman et al., 

2020), which undergo remodeling (Carsana et al., 2020). There Is also 

neovascularisation, complete with increases in several markers of angiogenesis 

(Ackermann et al., 2020). The lungs of patients deceased of COVID-19 are heavier, owing 

to oedema and congestion (Carsana et al., 2020). Lung fibrosis is also frequent in these 

autopsied lungs (Edler et al., 2020). These mechanisms all contribute to the hypoxeamia 
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of severe COVID-19+ patients.  

Throughout the body 

A number of clinical manifestations of COVID-19 are not only found in the respiratory tract 

(reviewed in (Gupta et al., 2020)). SARS-CoV-2 can infect a range of cells types, including 

cardiocytes, olfactory sustentacular, bile duct cells (Wang et al., 2020d). Like with 

intestinal and other epithelia cells, infection can lead to de novo virus production (Xiao et 

al., 2020). Macrophages can also be infected (Wang et al., 2020a). 

Inflammation of endothelial cells, with the resulting hypercoagulability, is also observed 

outside the lungs. Venous thrombosis, seen in 21-69% of critical COVID-19 patients (Klok 

et al., 2020), was much more prevalent than normally observed in ICU (7.5%) (Obi et al., 

2015). In line with the greater incidence of thrombosis, patients with critical COVID-19 

have increased fibrinogen (Thachil et al., 2020) and D-dimer levels than moderate (Lippi 

and Plebani, 2020) or non-COVID-19 pneumonia (Jirak et al., 2021) patients. 

RNAemia (presence of viral RNA in blood products) was an important correlate of both 

disease severity and fatality in COIVD-19 patients (Fajnzylber et al., 2020; Hogan et al., 

2020; Prebensen et al., 2020). The quantity of plasma viral RNA did not correlate with that 

found in nasal swabs (Prebensen et al., 2020), suggesting that factors other than high 

viral presence at the site of infection influence viremia. Plasma SARS-CoV-2 viral RNA 

found in acutely-infected COVID-19+ individuals does not seem infectious (Andersson et 

al., 2020). While autopsies studies have found SARS-CoV-2 across multiple organs, the 

virus’ dissemination seems to be through invasion of endothelia and transport via CD14+ 

monocytes and macrophages (Yao et al., 2021). It is unclear whether direct infection by 

SARS-CoV-2 plays a part in these extrapulmonary symptoms, or if it’s rather circulating 
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viral by-products which trigger immunopathology. Nonetheless, plasma vRNA correlates 

with increased hypertension and respiratory rates, signs of worsening COVID-19 

(Gutmann et al., 2021). 

Antiviral treatment 

The SARS-CoV-2 pandemic has resulted in an enormous use of modelling and artificial 

intelligence to screen drugs for re-purposing.    

Remdesivir, a broad-spectrum antiviral, inhibits the viral RNA-dependent RNA 

polymerase in SARS-CoV-1 and MERS (Agostini et al., 2018). It demonstrated in vitro 

inhibitory activity against SARS-CoV-2 (Wang et al., 2020c) prior to the start of the 

Adaptive Covid-19 Treatment Trial (ACTT-1) clinical trial (Beigel et al., 2020). Remdesivir 

or a saline placebo was administered daily for up to 10 days in 541 and 517 hospitalized 

patients, respectively. Although remdesivir significantly shortened hospitalization times 

and diminished COVID-19 severity (most significantly in the 18 – 40-year-old age group 

and severe cases), there was no significant benefit on survival (Beigel et al., 2020). 

Another antiviral tested comes from the HIV field: Lopinavir, an HIV-1 protease inhibitor 

for which ritonavir increases half-life. Lopinavir has in vitro antiviral activity against SARS-

CoV-1 (Chen et al., 2004), MERS (Sheahan et al., 2020) and SARS-CoV2 (Choy et al., 

2020), and so was tested in a clinical trial by the RECOVERY group (Group, 2020). 1616 

recruited patients received Lopinavir-ritonavir every 12h for up to 10 days, or not (control 

group: n = 3424). There was no association to lower 28-day all-cause mortality, nor to 

other metrics (hospitalization stay, progression), even if administered early in the course 

of the disease (< 7 days after symptom onset).  
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Thus, the antivirals were not effective against SARS-CoV-2 infection. As the cause of 

death from COVID-19 is thought to be primarily due to immunopathology rather than direct 

cytopathology caused by the virus itself, the inflammation may be a better target. The 

three drug categories which improved survival benefit in COVID-19 in clinical trials are 

either immunotherapies or immunomodulatory drugs: the corticosteroid dexamethasone 

(Group et al., 2021b; Group et al., 2020; Tomazini et al., 2020), the two IL-6 blockers 

tocilizumab (Investigators et al., 2021) and sarilumab (Group et al., 2021c), and the Janus 

kinase (JAK) inhibitor Baricitinib (Marconi et al., 2021). To better understand the 

effectiveness of these immunomodulatory drugs, we will first discuss the host immune 

responses against SARS-CoV-2. 

Innate immune responses activated upon SARS-CoV-2 infection 

Critical cases of COVID-19, in the acute phase of the infection, present a distinct plasmatic 

profile than uninfected and convalescent donors (Laing et al., 2020), non-critical COVID-

19 cases (Lucas et al., 2020) or non-COVID-19+ critical sepsis cases (Gutmann et al., 

2021). This “COVID-19 signature” has revealed dysregulation in a number of immune 

pathways:  

A) Aberrantly high activation of the complement cascade 

In the blood, multiple components of the complement cascade increased in the plasma of 

critical COVID-19 individuals in comparison to sepsis cases (Gutmann et al., 2021) or to 

non-critical COVID-19 (Messner et al., 2020). Proteins of this cascade also bind to SARS-

CoV-2 Spike (Gutmann et al., 2021). Furthermore, MBL2 and PTX3 were significantly 

associated to fatality in critical COVID-19+ cases (Gutmann et al., 2021). MBL2, which 

binds glycoproteins on the viral surface (Ip et al., 2005), forms complexes with PTX3 and 
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activates the complement system independently of antigen-antibody complexes (Ma et 

al., 2011). This mechanism may explain the overreaction of the complement cascade in 

critical COVID-19, even with a delay in antibody responses targeting the virus. This 

mechanism can at least partially link the greater severity associated with finding viral 

products in the blood. 

Severe cases of COVID-19 also have greater levels of agents of the complement cascade 

in the BALF (Carvelli et al., 2020).  

B) Delayed acute-phase immune responses 

Evidence shows type I IFN being critical in SARS-CoV-2 infections. Patients with severe 

COVID-19 have an impaired type I IFN response (Hadjadj et al., 2020). In coparison to 

the slu, it is delayed (Galani et al., 2021), which is at least in part due to the activity of the 

viral proteins (Lei et al., 2020). Dendritic cells collected in acute COVID-19 infection 

produced lower levels of type I IFNs as those from healthy controls (Arunachalam et al., 

2020; Zhou et al., 2020a). SARS-CoV-2 is highly sensitive to type I IFN, making this delay 

central in the progression of the infection (Mantlo et al., 2020).  

This delay in type I IFN responses can simultaneously allow for greater viral replication of 

SARS-CoV-2 and delay the priming of the adaptive immune response. 

C) Cytokine storm 

A cytokine storm is a broad term relating to the hyperactivation of the immune response, 

characterized by a huge release of interferons, interleukins, chemokines, etc., and is 

associated to ARDS. The cytokine IL-6, which induces proinflammatory responses, 

correlates with severity and outcome in COVID-19 (D'Alessandro et al., 2020), although 
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this may not be exclusive to COVID-19, and rather a sign of acute infection. For example, 

autopsied lungs of patients with COVID-19 compared to those infected with H1N1 showed 

similarly high IL-6 mRNA levels, whereas CXCL8 and CXCL13 were uniquely elevated in 

the COVID-19 lungs (Ackermann et al., 2020). Increased cytokine signals may have 

indirect consequences of the viral infection : for example, bacterial DNA and LPS, 

potentially stemming from a breach in the lung integrity following SARS-CoV-2 infection, 

correlate positively with inflammatory cytokines (Arunachalam et al., 2020). 

D) Expansion of innate immune cell populations 

Neutrophilia is present in COVID-19 patients (Mathew et al., 2020). The peripheral 

neutrophils include the highly activated subset, the myeloid-derived suppressor cells 

(MDSCs), suggestive of emergency hematopoiesis (Metzemaekers et al., 2021), and a 

high proportion of immature neutrophil granulocytes (Carissimo et al., 2020). The serum 

of COVID-19 patients features high levels of neutrophil extracellular trap (NET) (Zuo et 

al., 2020). Autopsied lungs revealed neutrophil infiltration in some patients (Schaefer et 

al., 2020). These may have been recruited by the high levels of neutrophil-recruiting 

chemokines CXCL1, CXCL2 and CXCL8 found in the BALF of critical cases (Zhou et al., 

2020b) and/or by their exacerbated Th17 responses in lungs (Schaefer et al., 2020). 

Monocytes are also increased in COVID-19 (Lucas et al., 2020) and undergo a shift from 

CD16+ towards the classic CD14+ (Wilk et al., 2020). Monocytes display high levels of IL-

1 and IL-6 in critical cases, associated to bystander effect (Liao et al., 2020), and migrate 

to the lungs in COVID-19 (Liao et al., 2020). Single-cell RNA Seq on monocytes and 

macrophages collected in the BALF of COVID-19 patients reveal increased signatures of 

hypoxia, wounding and FCR signalling, concomitant with decreased antigen presentation 
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(Xu et al., 2020). HLA-DR expression on monocytes is also greater in deceased patients 

following COVID-19 (Wang et al., 2020b). Dendritic cells, specifically plasmacytoid and 

myeloid, are reduced in the blood and lungs of COVID-19 patients (Wilk et al., 2020; Liao 

et al., 2020). Blood pDC have a decreased ability to produce IFNa and TNFa upon 

sitmulation with TLR ligands (Arunachalam et al., 2020), and myeloid cells in general have 

a reduction in their machinery for antigen presentation (Arunachalam et al., 2020). 

Reduction in cytokine profile suggests that the increase in cytokines originates from tissue 

rather than from PBMCs (Arunachalam et al., 2020). These altered phenotypes impede 

DC help of T cells, such as proliferation (Zhou et al., 2020a). Paired single-cell RNA 

sequencing on myeloid cells collected from BALF and blood showed the same defect in 

interferon production among the myeloid cells in the lungs (Xu et al., 2020). However, they 

produced massive amounts of chemokines pertinent for the recruitment of T cells (CXCL9, 

CXCL18).  

These aberrations can have repercussions on the adaptive response. Leukocytes infiltrate 

are observed in autopsied lungs, with perivasuclar T cells and macrophages in the 

alveolar lumen, and lymphocytes and monocytes in the intestitium (Carsana et al., 2020).  

 

Adaptive immune responses activated upon SARS-CoV-2 infection 

T cells 

T cells are central in the antiviral response. Circulating CD4+ and CD8+ T cells both 

present traits of activation, although they are reduced in counts (Mathew et al., 2020). 

Indeed, the ratio of neutrophil-to-lymphocytes has been proposed as a prognostic marker 
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for severity (Ma et al., 2020). While decreases are only observed in the naïve and central 

memory subsets of CD8+ T cells (Mathew et al., 2020), all CD4+ T cell memory 

populations drop, and correlate negatively with CXCL10 (Laing et al., 2020). In spite of 

lymphopenia, all T cell populations had increased markers of cycling (Laing et al., 2020). 

Shared T cell clonotypes between BALF and blood support recruitment from blood into 

the lungs (Xu et al., 2020). Perivascular T lymphocytes in lung endothelium and epithelium 

was observed in severe COVID-19 (Ackermann et al., 2020), suggesting they can also be 

drivers of immunopathology. However, end-stage disease is associated with exacerbated 

neutrophil, and not lymphocyte, infiltration into the lung (Long et al., 2020).  

 

Figure 1.8 Current understanding of the adaptive immune response and viral load kinetics in 
non-critical vs critical SARS-CoV-2 infection in humans. A) Conceptual schematic of a non-critical, 
average infection, whereby the innate immune response is slightly delayed upon viral replication, and are 
of moderate magnitude and short duration. SARS-CoV-2-specific T and B cells arise in response, coinciding 
with the clearance of the virus, and are maintained over time. B) Conceptual schematic of a critical infection, 
characterized by a greater delay in innate immune response upon viral replication. Innate immune response 
in sustained, and SARS-CoV-2-specific T and B cells are delayed, resulting in a longer persistence of the 
virus in the host. While CD8 responses seem lower in critical than non-critical cases, the same was not 
observed for CD4+ T cells. Figured modified from (Sette and Crotty, 2021).  

 

SARS-CoV-2-specific CD8+ T cells also develop quickly upon infection (Schulien et al., 

2021). They express high levels of IFNg, GZMB, TNFa and CD107a (Rydyznski 

A Non-Critical B Critical
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Moderbacher et al., 2020; Schulien et al., 2021). Strong SARS-CoV-2-specific CD8+ T 

cell responses, both in terms of frequency of AIM and in cytokine production, were 

associated to better outcome (Rydyznski Moderbacher et al., 2020). After recovery, 

patients which suffered from a milder form of SARS-CoV-2 infection have greater SARS-

CoV-2-specific CD8+ T cell responses than those which had a critical infection (Lafon et 

al., 2021). This was not observed for SARS-CoV-2-specific CD4+ T cell responses, nor 

for specific IgG amounts.  

SARS-CoV-2-specific CD4+ T cells are of greater magnitude and more often detected 

than their CD8+ counterparts (Grifoni et al., 2020), sometimes as early as 2-4 days post 

symptom onset (Rydyznski Moderbacher et al., 2020). Strong CD4+ responses show a 

stronger associated to lessened severity than neutralizing antibodies (Rydyznski 

Moderbacher et al., 2020). Timing is key : whereas rapid responses of SARS-CoV-2-

specific CD4+ T cells were seen in mild disease (Tan et al., 2021), critical cases of COVID-

19 show a delay in their SARS-CoV-2-specific T cell responses (Zhou et al., 2020a). Spike 

is immunodominant, although CD4+ T cells can recognize most of SARS-CoV-2’s proteins 

(Grifoni et al., 2020). SARS-CoV-2-specific CD4+ T cells expressed high amounts of IFNg 

and IL-2, in line with a prototypical Th1 antiviral population (Rydyznski Moderbacher et 

al., 2020). Single-cell RNA Seq revealed that SARS-CoV-2-specific CD4+ T cells, 

compared to specificities to other viral infections, were enriched in a profile of TFH and 

enhanced cytotoxicity (Meckiff et al., 2020b). SARS-CoV-2-specific cTFH were split 

among two distinct populations. The first population correlated positively with anti-SARS-

CoV-2 antibody responses and is associated with mild disease. The second population, 

of greater proportion in severe disease, has high expression of GZMB and Prf, and is 
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rather negatively correlated with antibody response (Meckiff et al., 2020b). This latter 

population is enriched in the IFN response signature (Meckiff et al., 2020b). SARS-CoV-

2-specific CD4+ T cells of some hospitalized individuals were also enriched in clusters of 

CD4-CTL that underwent large clonal expansion and correlated negatively with SARS-

CoV-2-specific Tregs, more present in mild disease (Meckiff et al., 2020b). Both CD4-

CTLand the cytotoxic cTFH clusters expressed chemokines CCL3/4/5, all involved in 

recruitment of myeloid cells (Meckiff et al., 2020a). SARS-CoV-2-specific CD4+ T cells 

are also CCR6+, so associated with TH17 and TH22. However, IL-17a expression is low 

in these cells, and although they are able to produce IL-22 (Weiskopf et al., 2020), this 

was not associated to reduced severity (Rydyznski Moderbacher et al., 2020). In this case, 

CCR6 expression is likely associated to lung homing, which could have been validated 

with CXCR6 staining. Th2-associated cytokines, like IL-13, IL-5, IL-9 and IL-4, were not 

detected by ICS in SARS-CoV-2-specific CD4+ T cells (Rydyznski Moderbacher et al., 

2020) nor in culture media of SARS-CoV-2 peptide-stimulated PBMCs (Weiskopf et al., 

2020). These observations highlight that Th1, TFH and CTL are likely the key players in 

the anti-SARS-CoV-2 response. 

 

The frequency of B cells is unchanged in COVID-19 infection (compared to uninfected 

controls), but there is an increase in the frequency of plasma blasts (Mathew et al., 2020). 

Both are unchanged in BALF (Liao et al., 2020). Functional SARS-CoV-2-specific B cells 

likely appear quickly, as almost all patients seroconvert by 2 weeks post symptom onset 

(Prevost et al., 2020). Anti-spike IgM, IgA and IgG all occur at similar times (Suthar et al., 

2020). Lymph nodes from deceased COVID-19+ patients revealed the absence of GC 
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and accompanying lack of GC B cells, which coincided with a block in TFH differentiation. 

These absences have been proposed to explain the typically poor durability of the humoral 

response to coronaviruses (Kaneko et al., 2020). In addition, critical COVID-19 cases with 

poor clinical outcome were characterized by a plasma blast dominance over early B cell 

response (Mathew et al., 2020).  

The antibody response is thought to play an important role in SARS-CoV-2, as in many 

viral infections. A lot of attention was initially on neutralizing antibodies, in which the IgM 

isotype is most active (Gasser et al., 2021). Neutralization by plasma of COVID-19 

patients can be detected as soon as 3 days after symptom onset, but is highly variable 

among individuals (Rydyznski Moderbacher et al., 2020). Neutralization was not 

differential between patients which survive their infection and those who do not (Zohar et 

al., 2020), suggesting that the neutralizing capacity of plasma may not be central in 

controlling viral replication once infected. It is increased in severe disease(Chen et al., 

2020), although this may likely be due to increased/sustained antigen load seen in severe 

disease. For example, patients with mild disease also have lower SARS-CoV-2 antibody 

responses than critical patients, when compared within a similar timeframe of acute 

infection (Wang et al., 2020f) or after resolution (Zhou et al., 2020a). Administration of 

neutralizing monoclonal antibodies in a clinical trial demonstrated a relatively small effect 

on viral load (Weinreich et al., 2021).  

Neutralization capacity may not be key in the setting of an acute SARS-COV-2 infection. 

Similar to the T cell responses, patients which succumb to COVID-19 present a delay in 

their IgG antibody response, (Zohar et al., 2020). In a mouse-model of accelerated SARS-

CoV-2-mediated immunopatogenesis, a non-neutralizing yet FCR-permitting antibody, 
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but not a neutralizing with FCR-non-permitting counterpart, was protective against fatality 

(Ullah et al., 2021).  

The presence of antibodies per se, either neutralizing or with Fc function, again may not 

be the main antiviral factor. Patients with primary antibody deficiencies like 

agammaglobulinaemia (Quinti et al., 2020) or on anti-B cell therapies did not exhibit worse 

disease course or outcomes (Montero-Escribano et al., 2020). These patients contrast 

strikingly to those with chronic renal failure, a condition known to delay the generation of 

antigen-specific T cells and antibody responses after challenge (Litjens et al., 2008). 

Patients with chronic renal disease are at greater risk of xritical disease (Suleyman et al., 

2020). The antibody response correlates with the SARS-CoV-2-specific CD4+ T cell 

response (Ullah et al., 2021), so the kinetics and magnitude of the antibody response may 

simply be a reflection of the central CD4+ T cell response. A loss of correlation between 

features of SARS-CoV-2-specific CD4+ T cells and the humoral response, as is seen in 

older patients, was associated with greater severity (Rydyznski Moderbacher et al., 2020).  
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Table 1.1 Reported efficacy of COVID-19 treatments
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Therapeutic immune modulation in COVID-19 

As previously mentioned, the three drug categories improve survival benefit in COVID-19: 

the corticosteroid dexamethasone (Group et al., 2021b; Group et al., 2020; Tomazini et 

al., 2020), the two IL-6 blockers tocilizumab (Investigators et al., 2021) and sarilumab 

(Group et al., 2021c), and the Janus kinase (JAK) inhibitor Baricitinib (Marconi et al., 

2021). 

Dexamethasone 

Dexamethasone is a glucocorticoid, belonging to the family of corticosteroid drugs 

(https://pubchem.ncbi.nlm.nih.gov/compound/Dexamethasone). Binding of this steroid to 

glucocorticoid receptor on cell membrane forms a complex which is translocated to the 

nucleus and interferes with AP-1 and NFbK-inducible genes like IL-1/2/6/8, TNFa and 

IFNg (Chikanza, 2002). It also induces IL-10 production through synthesis of 

glucocorticoid response element. At high doses, dexamethasone attenuates T cell 

responses by disrupting TCR signalling (Van Laethem et al., 2001) and modulating 

calcium signalling (Harr et al., 2009). Dexamethasone also reduces lung edema through 

ameliorated permeability of the pulmonary vasculature (Huang et al., 2014) and up-

regulation of alveolar liquid clearance (Folkesson et al., 2000). Finally, dexamethasone’ 

is also anti-fibrotic, by preventing collagen accumulation upon acute lung injury 

(Wigenstam et al., 2018). 
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Figure 1.9 Rate ratios on outcome based on immunotherapies in acute COVID-19 among 
hospitalized patients. Figure up to date as of September 2021. 

 

Given the inflammatory nature of COVID-19’s pathology, dexamethasone was quickly 

considered as a immunomodulatory therapy. Patients were recruited for a large clinical 

trial in the UK as soon as March 2020 with the results first released in June 2020 (Group 

et al., 2021b). The randomized trial included 6425 patients, split into a moderate-dose 

dexamethasone-treatment group (roughly 1/3) and a group which received usual care 

only. Patients were treated with dexamethasone for up to 10 days or until discharge, and 

primary outcome was all-cause mortality within 28 days of randomization. The trial 

showed a significant reduction in mortality in the treated group (23% vs 26%), with the 

greatest survival benefit observed in the critical patients (29% vs 41%). In contrast, there 

was no survival benefit in the moderate patients, for which treatment was potentially 

harmful due to as serious adverse effects (4 cases in total). Treatment was associated to 

shorter hospital durations and fewer progression in severity. Importantly, the trial showed 

that survival benefit was only observed if treatment was initiated at or after 7 days after 
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symptom onset (although these patients tended to be critical). This suggests that the 

treatment is most effective once edema is already present in the lungs, rather than in the 

acute viral phase. Dexamethasone was associated with delayed viral clearance in cases 

of SARS (Lee et al., 2004), MERS (Arabi et al., 2018) and influenza (Lee et al., 2009). 

Thus, early administration may impede antiviral responses, which in turn may worsen the 

direct pathology of the virus.  

Other smaller clinical trials were also performed with glucocorticoids : in Brazil, an open-

label trial with 299 randomized patients also observed lower disease severity when treated 

with dexamethasone, but no effect on 28-day mortality (Tomazini et al., 2020). However, 

a significant caveat of this study, aside from the relatively smaller sample size, was that 

35% of the untreated group actually received corticosteroids during the study period. 

These same results were observed in a randomized trial with 403 patients in the USA 

(Angus et al., 2020). Another trial in France with 149 patients saw no significant 

associations (Dequin et al., 2020). It is important to note that these studies were 

underpowered, given the heterogeneity of the hospitalized cases of COVID-19. The latter 

two trials used hydrocortisone, reported to be less potent and shorter-acting.  

The results of these findings contributed to the changes in standard of care guidelines in 

many countries, which now recommend the use of glucocorticoids in patients hospitalized 

for COVID-19.   

IL-6 antagonists 

The inflammatory pleiotropic cytokine IL-6 is produced by multiple cell types (including T 

and B cells, DCs, endothelial cells, etc.) in response to infection or tissue damage. 

Through ligation of it’s surface receptors IL-6R, it activates the JAK/STAT3 pathway, 
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triggering processes like cytokine production and cell activation (Velazquez-Salinas et al., 

2019). It is thus central in inflammation, and has been associated with severity and death 

in almost all studies investigating plasma cytokine levels in the acute phases of severe 

COVID-19. 

In parallel with dexamethasone, the use of IL-6 blockers have been assessed in clinical 

trials early in the pandemic. The two humanized monoclonal antibodies used were 

tocilizumab (marketed under Actemera), and sarilumab (Kevzara), both of which target IL-

6R. The largest clinical trial completed to date was again by the RECOVERY group. This 

trial recruited a total of 4116 patients, split equally between treated with IL-6R blockade 

(one or two doses within a 24h time span) or receiving usual care (Group, 2021b). This 

trial primarily used tocilizumab, although sometimes employed sarilumab as well. An 

additional selection criteria was presence of hypoxia and clinical indication of inflammation 

(determined by high levels of plasma CRP at the time of randomization). This trial again 

found a significant survival benefit when treated with IL-6R blocker (see figure 1.9), 

specifically when used concomitantly with dexamethasone. This treatment also reduced 

duration of hospitalization, as well as the incidence of renal replacement therapy like 

hemodialysis (indicative of renal failure). The greatest survival benefit was observed in 

the moderate cases, while no significant benefit was seen in severe and critical cases. 

The most benefit was also seen when in patients treated within 7 days after symptom 

onset, but not if administered later, suggesting an important role of IL-6 in early 

immunopathology. 

Eight smaller clinical trials tested IL-6R blockers in COVID-19 patients, but only REMAP-

CAP, the second-largest trial, saw a significant reduction in mortality, once again 



47 

underscoring that most trials were underpowered.  

JAK inhibitor Baricitinib 

JAK inhibitors disrupt the protein’s phosphorylation of signal transducer and activator of 

transcription (STAT). These latter proteins mediate cytokine signals (Kaplan, 2013), and 

preventing their phosphorylation has a strong anticytokinic effect. Baricitinib selectively 

inhibits JAK1/2, leading to anti-inflammatory profile (Sanchez et al., 2018), and was 

predicted as a useful treatment for COVID-19 by artificial intelligence algorithms (Stebbing 

et al., 2020). It reduced multiple cytokines implicated in COVID-19 pathophysiology (IL-

1b, IL-6, TNFa), allowed for rapid recovery of lymphopenia, and increased antibody 

production (Bronte et al., 2020). Batricinib also has a direct antiviral effect on SARS-CoV-

2 propagation, through interference with viral endocytosis (Stebbing et al., 2020). 

In the large randomized, placebo-controlled double-blind trial (COV-BARRIER) conducted 

across 12 countries, 764 patients received daily batricinib (up to 14 days or until 

discharge), while 761 patients received placebo (Marconi et al., 2021). Recruited patients 

also had at least one elevated plasma marker of inflammation. The study found a 

significant reduction in 28-day all-cause mortality risk in the overall population. When the 

cohorts were stratified, a significant benefit was observed in severe patients (they did not 

include critical patients at enrolment), men, and patients younger than 65 years old. There 

was a significant benefit whether patients were co-treated with systemic corticosteroids or 

not. A second smaller trial did not reach significance for survival benefit, but did show 

significantly shorter hospitalizations, and fewer adverse effects when treated with a 

combination of baricitinib and remdesivir (Kalil et al., 2021). Baricitinib has since been 

approved in Japan, and for emergency use in USA.  
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Convalescent plasma treatment 

Quite early in the pandemic, it was apparent that individuals infected with SARS-CoV-2 

generated a neutralizing antibody response. This spurred on the rationale of convalescent 

plasma treatment (CPT), where these antibody-containing plasma from donors with 

resolved infections could be administered to severe cases of COVID-19. Antibodies can 

help control viral replication by neutralizing de novo cell infection by blocking binding, by 

activating phagocytosis, the complement cascade, ADCC, and by enhancing antigen 

presentation. The use of plasma from donors with resolved infections has been used as 

passive immunity for pneumonia caused by influenza (Hung et al., 2011). 

Once again, the RECOVERY ran the biggest trial (Group, 2021a). Hospitalized patients 

were administered two 275 ml doses of plasma from convalescent donors previously 

tested for high titers of anti-S IgG. In total, 5794 patients received convalescent plasma, 

while 5763 patients were controls. The trial showed no survival benefit in the overall 

cohort, nor in any subsequent stratification (age, sex, respiratory support, use of 

corticosteroids). There was a small trend increased survival if treatment was received less 

than 7 days after symptom onset. This treatment was associated with 16 severe allergic 

reactions, and 13 cases of serious adverse events. 

This lack of effect from convalescent plasma was reported in 10 other studies (Group, 

2021a), including the Canadian CONCOR-1 trial (Begin et al., 2021). This latter study 

noted that increases in ADCC and neutralization capacities of the convalescent plasma 

were independently associated with better outcome. The importance of the quality of the 

plasma was similarly underlined in a second study (Joyner et al., 2021). However, the 

survival benefit noted by this study in the group receiving plasma with high antibody levels 
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may be because they compared it to recipients of plasma with low antibody levels (and 

not to a proper control group). Thus, whether the benefit observed in high-titer 

convalescent plasma was due to actual benefit, or rather because receiving low-titer 

convalescent plasma increased the risk of fatality, could not be determined. 

Taken together, these studies support a lack of survival benefit of using convalescent 

plasma, at least with the patient groups examined. Although the intended benefit of 

convalescent plasma administration was to passively provide anti-SARS-CoV-2 

antibodies, plasma is a complex tissue which can lead to adverse effects. The alternative 

strategy is administrating purified antibodies. 

Monoclonal antibody 

As of May 13th 2022, the Antibody Society’s COVID-19 Biologics tracker 

(antibodysociety.org) reported over 200 potein-based COVID-19 interventions in various 

stages of development and testing. Over 30 anti-SARS-CoV-2 monoclonal antibodies 

have entered clinical trials, and four treatments, either single or combination of two 

monoclonal antibodies, have been approved in at least one country. 

The Cochrane systemic review updated in September 2nd 2021 (evidence up to date as 

of June 17th – no updates as of May 13th 2022) reviewed six randomized controlled trials 

which used neutralizing antibodies (nAbs) to treat COVID-19 (36 ongoing) (Kreuzberger 

et al., 2021). Only two of these evaluated their efficacy in hospitalized patients. The 

ACTIV-3 trial recruited 163 patients treated with a single infusion of bamlanivimab 

(neutralizing monoclonal antibody with high affinity for RBD), and 151 in the placebo 

group. The study found no significant effect on mortality, time to discharge or disease 

progression, although there were serious adverse effects (Group et al., 2021a).  Recently, 
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a study showed the emergence of a mutation in five of six hospitalized COVID-19 patients 

treated with balmanivimab (Peiffer-Smadja et al., 2021), highlighting the risk of escape 

mutations when using monotherapies. The second clinical trial, conducted by the 

RECOVERY group, evaluated the efficacy of two non-competing neutralizing antibodies 

which target RBD : casirivimab and imbedivimab (Group, 2022). A single dose combining 

both antibodies in equal amounts were administered to 4839 hospitalized patients, while 

4946 received the placebo. Overall survival benefit was non-significant ; however, if the 

analysis was restricted to seronegative patients at the time of randomization, the 

treatment resulted in a significant survival benefit as well as decreased progression 

towards severe disease. The authors of the Cochrane study conclude that none of the 

trials (counting both in hospitalized patients nor the four other trials on COVID-19+ mild 

and outpatients) provide meaningful conclusions on the usefulness of monoclonal 

antibodies in treating SARS-CoV-2 (Kreuzberger et al., 2021). This conclusion may be 

overly conservative, as the RECOVERY group highlights that the benefit is in the 

subgroup of patients which have not yet generated an appropriate antibody response. 

This latter group are for example immunocomprised individuals, which may not be able to 

generate an antibody response, and have extended viral shedding.  

The rise of new variants always risk to impede the efficacy of these monoclonal antibodies. 

As of January 2022, the dominant variant is Omicron (subdivided in three main lineages) 

(Viana et al., 2022), which demonstrates mutations in a number of the regions of the Spike 

protein, incluing RBD (Bruel et al., 2022). As neutralizing antibodies target the RBD region, 

these mutations have lead to decreased sensitivity to neutralizing antibodies in vitro (Bruel 

et al., 2022; Ou et al., 2022). Specifically, the RECN-COV-2 cocktail (imdevimab with 
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casirivimab), which had shown most success against the Alpha, Beta, Delta and Gamma 

variants, showed no in vitro neutralization capacity of omicron strains (Bruel et al., 2022; 

Tuccori et al., 2022). The Evosheld cocktail (cilgavimab and tixagevimab) showed better 

neutralization, with high varaibility depending on the omicron strain considered (Bruel et 

al., 2022; Tuccori et al., 2022). Screening of different monoclonal antibodies, as well as 

sequencing the virus in host, becomes necessary to efficitently treat the ongoing viral 

replication (Bruel et al., 2022).  

In summary, treatments which target the inflammatory stages of COVID-19 have a proven 

benefit in survival in large clinical trials. This has only been demonstrated with SARS-

CoV-2-specific monoclonal antibodies in seronegative patients. Other types of treatment, 

such as convalescent plasma therapy and antiviral drugs, have no survival benefit. 

Namely, remsidivir which, although it significantly reduced hospitalization duration, did not 

show a significant effect on fatality (Wang et al., 2020e). This is despite the proven antiviral 

in vitro effect (Wang et al., 2020c).  

The lack of effect from direct-acting antivirals, and targeted effect from monoclonal 

antibodies was unexpected, as these strategies are used against other viral infections. 

For example, the progression of rabies can be blocked by the administration of 

monoclonal antibodies, and the same strategy was employed in Ebola, while direct-acting 

antivirals cure chronic HCV infection. However, SARS-CoV-2 distinguishes itself from 

these viruses by it’s rapidity : the infection is normally resolved in a couple of days. People 

infected with SARS-CoV-2 receive treatment once hospitalized. In our cohorts, the median 

time between onset of symptoms and hospitalization was 5 days, with a range from 3 to 

12 days. Thus, it is likely that the window of time when antivirals would be useful is too 
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short for useful administration, with the exception of immunocompromised individuals with 

enduring infections. Similarly, monoclonal antibodies are only beneficial in people who 

have not yet produced their own SARS-CoV-2-specific antibodies. 

 

In summary, the principal immunological characteristics of severe COVID-19 are a 

delayed type I IFN response and delayed adaptive immune response, both of which favour 

greater and perhaps longer viral replication, resulting in greater damage to the lungs. 

Therapeutic strategies that specifically target the inflammatory response, rather than viral 

replication, are most effective in increasing survival. Other immunpathological 

mechanisms are exacerbated neutrophilia and complement cascade activation. 

Remaining questions were still how the different components are intertwined, and which 

are decisive for patient survival.   

Chronic viral infection : HIV 

During the end of the 1970s and early 1980s, young adults were presenting to clinic with 

rare conditions only observed in cases of severe immunodeficiency. This disease, later 

named Acquired Immunodeficiency Syndrome (AIDS), is caused by the human 

immunodeficiency virus (HIV). This pathogen has fuelled decades of research, resulting 

in a greater understanding of the human immune system and the discovery of effective 

disease-halting treatments, antiretrovirals (ARVs). However, there are no widely-

applicable therapies for cure, nor any protective vaccine. As a consequence, there are 

still 38 million people worldwide living with the virus 

(https://www.who.int/data/gho/data/themes/hiv-aids).  
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Figure 1.10 Milestones in HIV research. Four decades of research, beginning with the discovery of 
HIV, have allowed researchers to make this death-sentence a chronic disease. IPrEx: Iniciativa Profilaxis 
Pre-Exposición study; PrEP, pre-exposure prophylaxis; SMART, Strategies for Management of 
Antiretroviral Therapy; START, Strategic Timing of AntiRetroviral Treatment. Used with permission from 
(Deeks et al., 2015). 

 

Viral characteristics 

HIV is a lentivirus (Ortervirales order, family of retroviridae, subfamily of orthoretrovirinae 

and Lentivirus genus). There are two species of HIV: HIV-1 and HIV-2, which likely 

originated from separate cross-species events (HIV-1 from simian immunodeficiency virus 

(SIV) in chimpanzees and gorillas, and HIV-2 from SIV in sooty mangabeys). While HIV-

2 is less pathogenic and its rates are decreasing worldwide, the more pathogenic HIV-1 

is responsible for the majority of the HIV pandemic. HIV-1 is subdivided in four distinct 

phylogenetic lineages (groups M, N, O and P), with M accounting for the vast majority of 

cases (Keele et al., 2006). M is further subdivided in 9 subclades with distinct geographical 

distributions (Bbosa et al., 2019). The subclade C, accounting for 50% of all HIV-1 

infections, is the most frequent clade of Southern Africa and Southeast Asia, while in the 

Americas, Western Europe and Australia, subtype B is dominant (Bbosa et al., 2019). The 

HIV-1 virion is enveloped by a host-derived double-lipid membrane, punctuated by 
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multiple trimeric spikes, formed by the surface glycoprotein gp120 and the 

transmembrane protein gp41 (collectively called the Env trimer). Gp41 links to the matrix, 

this latter structure, made up of matrix antigen p17, building the inner layer of the virion. 

Within the matrix, the bullet-shaped capsid, made of 1 500 copies of the p24 protein, holds 

the two identical single 9.2 kb strands of RNA that makes up the HIV genome (Toccafondi 

et al., 2021), along with the nucleocapsid proteins that cover the genome. Multiple viral 

enzymes, such as the reverse transcriptase (RT) and integrase (IN) and accessory 

proteins, and some host cellular factors are also included within the capsid. The protease 

is found between the capsid and the matrix (Toccafondi et al., 2021).  

Replication cycle 

HIV primarily infects CD4+ T cells and, to a lesser extent, macrophages given its tropism. 

HIV entry is dependent on surface protein expression of CD4 and CCR5 or CXCR4, 

depending on the tropism of the virion (Kwong et al., 1998). Binding of gp120 with CD4 

changes the conformation of the Env trimer, allowing binding with the second co-receptor 

(Wilen et al., 2012). The hydrophobic fusion protein of gp41 is then exposed and enters 

into the plasma membrane of the target cells. Gp41 then folds itself (second 

conformational change), bringing the cell membrane and virion membrane together and 

allowing their fusion. The capsid fully enters the cytoplasm, protecting the viral genome 

from cellular sensors (Toccafondi et al., 2021). There is debate as to how long the capsid 

lasts before its disassembly (Wilen et al., 2012), but is followed by reverse transcription of 

the genome. This process is done by the viral RT and aided by additional viral proteins 

which form the reverse transcription process (RTC) (Fassati et al., 2003). The DNA strand 

is then created based off the RNA template. The lack of proofreading activity of the RT, 
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as well as cellular enzymes of the apolipoprotein B mRNA editing enzyme catalytic 

popypeptide-like 3 (APOBEC3) family introduce mutational errors and edit cytidine to 

uracil. This results in an extremely high mutation rate (Tazi et al., 2010), estimated at one 

mutation per 1000 – 10 000 nucleotides, which is roughly between 1 and 10 mutations 

per de novo generated genome (Abram et al., 2010). The RTC and HIV DNA make up the 

pre-integration complex. The PIC traffics along the cytoskeleton network to the nucleus’ 

surface, where it is actively transported into the nucleus thanks to the nuclear localization 

signals on the PIC’s component matrix antigen and viral protein r (Vpr) (Lewis et al., 1992). 

Once in the nucleus, the viral integrase (VI) allows for the integration of the viral DNA into 

the host’s genome. The VI assembles with the viral DNA and removes two nucleotides at 

the 3’-ends of the viral DNA. This creates two reactive hydroxyl groups, which the VI then 

uses to join phosphates of the cellular DNA (called strand transfer), creating a gap in the 

cellular DNA. These gaps are closed by the host cell’s repair machinery, sealing in the 

viral genome into that of the cell. This integration is a central reason as to why it is so hard 

to cure HIV; viral replication can be halted here for long intervals of time, making up the 

pool of silent reservoirs of virus.  

If not halted (or after reactivation of the reservoir), transcription of HIV follows, where its 

products depend on the stage of the transcription. Initially, only small, multiply-spliced 

mRNA (<2kb) are produced. Once in the cytoplasm, they are transcribed into the 

regulatory proteins HIV transactivating protein Tat, the regulator of expression of virion 

proteins Rev, and the accessory protein negative regulatory factor Nef. Tat returns to the 

nucleus and, by both modifying the repressing cellular enzymes of the promoter of the 

HIV genome and recruiting cellular elongation factors to newly-formed HIV RNA, allows 
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the generation of incompletely spliced and full-length unspliced HIV mRNAs. Rev binds 

to these longer HIV RNAs and mediates active export (Tazi et al., 2010). Incompletely 

spliced viral mRNA translates into virion infectivity factor (Vif), Vpr, Vpu (viral protein u) 

and Env (cleaved into gp120 and gp41), whereas the unspliced mRNA produces the Gag-

Pol polyprotein (later cleaved into the matrix antigen), the capsid p24, the nucleocapsid, 

viral enzyme proteases, the reverse transcriptase, an RNAse, and the integrase 

(Sundquist and Krausslich, 2012). The full-length mRNA can also be integrated as the 

viral genome into new particles. 

Now that all the virions’ components are de novo produced, the late phase begins, mainly 

coordinated by the poly-protein Gag (Sundquist and Krausslich, 2012): 1)  It’s MA domain 

allows it to bind to the cell membrane and to locally concentrate Env proteins ; 2) it’s NC 

domains binds the full-length HIV genome ; 3) it’s CA domain mediates Gag-Gag 

interactions that create a lattice of Gag proteins forming the immature virion. The new viral 

particle is released through cellular factors recruited by Gag’s p6 domain (Gottlinger et al., 

1991). A final cleavage of the Gag and Gag-Pol poly-protein complexes by the virus’ 

protease produces the structural particles making up the capsid, matrix and nucleocapsid, 

as well as the other viral enzymes (Sundquist and Krausslich, 2012). Only then is the new 

viral particle, with its bullet-shaped core, infectious. 

During chronic untreated infection, viral replication occurs primarily in GC TFH in lymphoid 

tissues and TH17 cells in the gut, both cell types being highly permissive to infection 

(Elhed and Unutmaz, 2010; Kohler et al., 2016; Perreau et al., 2013). However, HIV 

genome can be found throughout the body (Wong and Yukl, 2016). 
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Figure 1.11 HIV structure and replication cycle. A) Components and structure of a mature HIV viral 
particle. Single strand RNA genome is encapsulated by the nucleocapsid proteins, then by the capsid, which 
also includes viral proteins like integrase, reverse transcriptase, Vif, Vpr and Nef. This is contained within 
the matrix and finally encircled by a host-derived membrane punctuated by the viral trimeric Env protein, 
made of gp120 and gp41. B) Schematic of HIV replication cycle within an infected human cell. Viral particle 
binding to the host cell is mediated by the interaction of viral protein Env with host’s CCR5 or CXCR4 and 
CD4, enabling fusion with cell membrane. The viral particle is then uncoated, and viral RNA is reverse 
transcribed. Viral DNA is transported into the nucleus and integrates to the host cell’s genome, where it 
remains transcriptionally silent or proceeds to transcription. Nested viral mRNA is transported into cytoplasm 
and translated into viral proteins. New viral particles are assembled and bud. Maturation finishes in budded 
virion and renders them infectious. Figure modified from (Deeks et al., 2015). 
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Anti Retrovirals (ARVs) 

The first ARV was approved for FDA in 1987, and as of February 2021, there are 23 such 

ARVs spanning 8 functional classes (https://hivinfo.nih.gov/understanding-hiv/fact-

sheets/fda-approved-hiv-medicines). Because of the extremely high propensity for 

mutation of the HIV replication cycle, using only 1 ARV rapidly results in viral escape and 

drug resistance. For this reason, a cocktail of three ARVs from at least two different 

classes is used to treat HIV-infected individuals. Viral tropism and the presence of quasi 

species with resistances can affect the potency of a given regiment (Iacob et al., 2017).  

As seen previously, the very first step of the viral replication cycle is the attachment of the 

virion to the cell surface. This is the step targeted by the two most recent classes of ARVs. 

The first is an attachment Inhibitor, the most recent class of ARV. This class only includes 

one drug (fostemsavir), approved in 2020, which binds the gp120 protein and prevents 

interaction with the cell membrane. The second class is a Post-Attachment Inhibitor, also 

only counts one ARV (ibalizumab), approved in 2018. This drug is a humanized 

monoclonal antibody which, through binding of CD4, leads to a conformational change of 

the CD4-gp120 complex, making it unsuitable for viral entry (Iacob et al., 2017).  

Beyond attachment, two classes of ARVs are entry inhibitors, with again one drug per 

class. The Fusion Inhibitor enfuvirtide (T-20) is a peptide which mimics a domain of gp41, 

competing with the homologous domains of the proteins, effectively disrupting the fusion 

process (Arts and Hazuda, 2012). The CCR5 Antagonist maraviroc binds to cellular CCR5 

and induces a conformational change that make the receptor unable to bind its ligand nor 

the virus (Iacob et al., 2017). The next step of the replication cycle targeted by ARV is the 

reverse transcription. For this step, there are two classes of drugs. Nucleoside Reverse 
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Transcriptase Inhibitors (NRTIs) were the first class of drugs to treat HIV, with zidovudine 

(AZT), and now count five drugs. During the viral RNA-dependent DNA or DNA-dependent 

RNA synthesis, the inclusion of these nucleotide analogs prevent the subsequent addition 

of other nucleotides, resulting in chain termination (Iacob et al., 2017). The Non-

Nucleoside Reverse Transcriptase Inhibitors (nNRTIs) rather bind the viral reverse 

transcriptase (RT) and lead to a conformational change in the substrate-binding site, 

reducing polymerase activity. This class of drugs also includes 5 compounds 

(https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines).  

The class of Integrase Stand Transfer Inhibitor (INSTIs), comprised of three compounds, 

bind the integrase-viral DNA complex to inhibit strand transfer. The final group of ARVs 

are protease Inhibitors, counting six drugs, and block the cleavage of the Gag-Pol poly-

protein. This impedes the maturation of the virion, which is blocked in a non-infectious 

state (Doitsh and Greene, 2016).  

These ARVs only target the active replication cycle of HIV and cannot clear the latent viral 

reservoir. This is why ARVs must be taken for life. 
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Table 1.2   Summary of antiretrovirals approved for treatment of HIV 
Reference : https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines 
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Viral Reservoir 

Upon integration of the HIV genome into its DNA, a small fraction of infected cells do not 

continue on to produce virions; the HIV DNA rather enters a transcriptionally silent state, 

termed latent infection. Since there are no expression of viral, latently infected cells 

escape the immune response, allowing them to persist for years. This process likely 

occurs in activated T cells transitioning to a resting state (Van Lint et al., 2013). All latently 

infected cells are referred to as the HIV’s “reservoir”, and it is thought to be maintained 

mainly through homeostatic proliferation of infected cells during ART (Kuo and Lichterfeld, 

2018), although perhaps also by sporadic reactivation in tissues with low ART penetrance 

(Fletcher et al., 2014). This latter phenomenon may also allow some transcriptional 

activity, and resulting viral by-products may be implicated in the sustained chronic 

inflammation (Niessl et al., 2020b).  

Formation of viral reservois occurs very early upon infection. The “Mississipy-

baby”,infected at her birth from her mother, was off treatment for only 30 hours, yet this 

was sufficient to allow for viral rebound when she was taken off ART (albeit with a 

considerable 27-month delay in rebound) (Ananworanich and Robb, 2014). In the SIVrm 

model, integrated HIV genome in cells of lymph nodes and gastrointestinal tract were 

detectable 3 days post-infection, before blood viremia (Whitney et al., 2014). 

The size of the reservoir is very stable during ART (Siliciano et al., 2003). Upon ART 

interruption, viral loads rebounds from reservoir cells within weeks, with plasma VL 

returning to pre-ART levels (Harrigan et al., 1999). This is thought to occur following 

activation of cells harbouring latent virus (Zevin et al., 2016) and/or from residual viral 

replication in tissues hidden from ART (Martinez-Picado and Deeks, 2016). 
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Disease progression 

Viremic patients 

HIV is transmitted through biological fluids, primarily through sexual intercourse, but also 

through blood exchanges, for example by contaminated blood transfusions and 

pregnancy labour. Although HIV was initially detected mostly in men, new HIV infections 

are detected in similar scale in both men and women. In most infected individuals, three 

distinct clinical phases characterize HIV infection.  

 

The acute phase lasts a couple of weeks, and is further subdivided in smaller time lapses. 

In the first “eclipse” part, a transmitter/founder (TF) virus must pass the mucus layer to 

come into contact with the resident immune cells of the mucosal epithelium. TF viruses 

are different from the quasi species found in the serum of HIV-infected individuals. They 

have increased infectivity and IFN I resistance (Joseph et al., 2015). Furthermore, they 

are preferentially CCR5-tropic, an advantage given the enrichment of CCR5+ CD4+ T 

cells in the gastrointestinal mucosa (Poles et al., 2001). In SIV-infected monkeys, foci of 

infected CD4+ T cells in the female genital tract are observed as soon as 2-4 days after 

challenge (Stieh et al., 2016). Additional immune cells, including the target CD4+ T cells, 

are recruited to the site of infection by the inflammation, further increasing the pool of 

infected cells (Perez-Zsolt et al., 2019). During this phase, lasting 7 to 21 days, there is 

no viral RNA detectable in the blood, and no clinical symptoms (Cohen et al., 2011). The 

reservoir is also established at this time (Whitney et al., 2014). 

Past the eclipse part, infected CD4+ T cells and HIV-bound DC and myeloid cells transport 
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HIV into draining lymph nodes, leading to the systemic dissemination of the virus. This 

phase lasts a few weeks and can be asymptomatic or characterized by acute retroviral 

syndrome (flu-like symptoms such as headache, nausea, and body aches). Infected 

individuals experience a rapid depletion of their CD4+ T cells throughout the body, most 

dramatically in the gut-associated lymphoid tissue (GALT) (Brenchley et al., 2004), while 

HIV viral load peaks. This initial depletion of CD4+ T cells mainly affects the CCR5+ TEM 

while sparing CCR5- naïve and central memory CD4+ T cells (Okoye and Picker, 2013). 

It is thought to arise from direct killing and Fas/Fas ligand-mediated apoptosis (Barber et 

al., 2006). In the final part of the acute phase, the host’s immune response blunts viral 

replication, resulting in a decline of viremia. Blood CD4+ T cell counts are partially 

recovered thanks to replenishment by the TCM population (Okoye and Picker, 2013), 

although the GALT remain highly depleted, particularly within the Th17 population 

(Brenchley et al., 2004; Elhed and Unutmaz, 2010). This loss increases the susceptibility 

to bacterial and fungal infections, while decreasing gut integrity. This leads to microbial 

product translocation from the lumen into the blood stream, establishing a state of chronic 

immune activation (Brenchley et al., 2006). 

The phase that follows is the chronic phase, which lasts anywhere from 3 years (for quick 

progressors) to 20 years (slow progressors) (Poropatich and Sullivan, 2011). The viral 

load decreases to a “steady state”, at relatively constant amounts of copies/ml of blood. 

CD4+ T cells maintain a high turnover rate as they continue to be killed off by several 

mechanisms. An ex vivo study has shown that more than 95% of dying cells are abortively 

infected and cause pyroptosis, a highly-inflammatory form of programmed cell death 

(Doitsh et al., 2014). CD4+ T cells not carrying the co-receptor necessary for HIV’s entry 
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(CCR5 or CXCR4, depending on the tropism) are spared from this process. Given 

CXCR4’s widespread expression, it may partially explain why early emergence of CXCR4-

tropic viruses are associated with pan-CD4+ T cell depletion and quicker progression of 

the disease (Connor et al., 1997; Harouse et al., 1999). Other mechanisms target the 

productively infected CD4+ T cells, like apoptosis by viral protease’s activation of the 

caspase-3 pathways (Doitsh et al., 2014). NK and CD8+ T cells kill infected cells and by-

stander cells coated by viral products released into circulation (if those cytotoxic by-

products themselves do not kill the cells) (Cummins and Badley, 2010). In addition, 

regulatory pathways, like increased proportions of Treg (Presicce et al., 2011) and greater 

expression of immune checkpoints (which will be discussed later) may also play a role in 

the slowing of the replenishment. 

During the chronic phase, there is a lot of active viral replication within the susceptible 

TFH of the GC (Perreau et al., 2013), where the follicular dendritic cells trap a high 

concentration of HIV particles within immune complexes (Smith-Franklin et al., 2002). As 

a result, ongoing chronic inflammation leads to extensive scarring of the lymphoid tissue 

microenvironments (Schacker et al., 2006), disrupting their ability to support T cell 

homeostasis, for example by IL-7 delivery (Estes, 2013). 

The final stage of the infection is AIDS, whereby the infected individual reaches a critically-

low CD4+ T cell count, after the disruption of the regenerative capacity of the immune 

system. AIDS is characterized by the advent of rare diseases only seen in 

immunocompromised individuals, like Kaposi’s sarcoma, cytomegalovirus retinitis, HIV-

related encephalopathy, pneumocystis jiroveci pneumonia, etc. These secondary 

diseases are often what causes the death of infected patients, rather than HIV itself 
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(Bonnet et al., 2005). 

 

The speed of the disease progression is associated with viral load and CD4+ T cell counts 

(Deeks et al., 2013). There are two contexts where viral load (and thus disease 

progression) is blunted: spontaneous or therapeutic control of viral replication.  

Elite controllers 

The proposed definition of an Elite controller (EC), from the International HIV Controllers 

Consortium, is an ART-naïve HIV-infected individual with at least three plasma 

measurements of HIV-RNA below 50 copies/ml for at least one year (Deeks and Walker, 

2007). This definition encompasses a rare group of individuals which are heterogeneous 

in terms of clinical manifestations, genetic background, and immunological factors. 

Characteristics of the infecting virus has also been linked to EC (Navarrete-Munoz et al., 

2020). For example, deletion in Nef in the infecting virus of contaminated blood products 

allowed for the six recipients to maintain virological suppression for 10 to 14 years 

(Deacon et al., 1995). However, fully replication-competent HIV, and without deletion, are 

also found in some EC (Blankson et al., 2007). EC’s reservoirs are less frequent than 

individuals with ART-suppressed HIV (Jiang et al., 2020), although a greater proportion 

of their reservoir lacked lethal sequence defects. Their reservoir also seems selected 

towards deep latency, where the virus integrated in reppresive chromatin area (Battivelli 

et al., 2018), and displayed little mutational escape from CTL, suggesting early seeding 

(Jiang et al., 2020). Taken together, these evidences suggest that, with the exception of 

a few unique cases, host factors play a greater role in the elite control of the virus than its 

sequence, although they are not mutually exclusive. 
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Among clinical factors, not all EC can maintain normal CD4+ T cell counts (Boufassa et 

al., 2011; Hunt et al., 2008). Decreased counts are associated to greater systemic 

inflammation and the advent of non-AIDS-defining events, including cardiovascular 

disease, atherosclerosis, and cancer (Okulicz et al., 2016; Pereyra et al., 2012). The 

duration of time an EC can control the infection can vary anywhere between 1 to at least 

25 years, after which time there is loss of immunological control and progression of the 

disease (Navarrete-Munoz et al., 2020). 

EC are enriched in certain HLA types, providing the first evidence that genetic background 

is key. Class I HLA alleles have the strongest independent association with HIV disease 

outcome, with at least 17 being associated with slower disease progression, and 14 with 

quicker progression towards AIDS (Goulder and Walker, 2012). HLA-B*27 and HLA-B*57 

are overrepresented in EC, with loss of control occurring after viral escape (Kaslow et al., 

1996; Miura et al., 2009). 

These observations highlight the importance of HIV-specific CD8+ T cells in establishing 

and maintaining viral control in the absence of ART. This is further supported by the loss 

of immunological control in EC following a reduction in HIV-specific CD8+ T cell poly 

functionality and viral suppression capacity (Pernas et al., 2018; Rosas-Umbert et al., 

2019).  

HIV-specific CD4+ T cells are comparatively understudied, although protective type II 

HLA, namely HLA-DRB1*15:02 and HLA-DRB1*13:01, have also been associated to 

slower disease progression (Ranasinghe et al., 2013). Beyond this observation, there are 

other clear observations that CD4+ T cells contribute to HIV control. High-affinity in vivo 

CD4+ T cell responses against Gag has been associated to HIV control (Benati et al., 
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2016). EC also maintain robust HIV-specific Th1 responses and strong proliferative 

capacities (Ferre, et al., 2010). 

To further characterize the HIV-specific CD4+ T cell response of EC, we have sequenced  

the transcriptome of a sorted pool of these cells from both EC and CP (Morou et al., 2019). 

We have found that HIV-specific CD4+ T cells of EC have preserved helper differentiation 

capabilities. Furthermore, our work has shown that EC’s HIV-specific CD4+ T cells have 

a preserved pool of HIV-specific Th17 cells, which correlated negatively with a biomarker 

of gut dysbiosis (Morou et al., 2019). Finally, not all of the functional traits of HIV-specific 

CD4+ T cells observed in EC were present in ART. This highlights incomplete restoration 

on ART which, as we shall see, affects more than the HIV-specific T cell response. 

ART-treated patients 

Suppression of viral replication by ART reduces ongoing inflammation and significantly 

restores memory CD4+ T cells in blood and secondary lymphoid tissue, even when 

initiated during the AIDS phase (Autran et al., 1997). Reconstitution of CD4+ T cells take 

several years to reach pre-infection levels (Guihot et al., 2011), although initiation during 

primary infection enhances immune recovery (Le et al., 2013). The amount of CD4+ T cell 

reconstitution is an important  

Among HIV-infected individuals on suppressive ART, serious non-AIDS event (nAEs), 

such as cardiovascular, liver and renal diseases, are the leading causes of disease and 

death (Deeks et al., 2013). These are predicted by multiple biomarkers of inflammation 

and coagulation, highlighting the critical role of chronic inflammation despite ART (Hunt 

et al., 2016; Kuller et al., 2008; Tenorio et al., 2014). This inflammation is thought to be 

driven by residual HIV replication (for example in tissues with low ART penetrance), 
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coinfections, gut mucosal injury with resulting translocation of microbial products, and/or 

tissue fibrosis (Hsu et al., 2013). Higher CD4+ T cell counts at the time of ART initiation 

are associated with greater immune reconstitution, lower residual inflammation, and lower 

prevalence of nAEs (Deeks et al., 2013; Rodger et al., 2013; van Lelyveld et al., 2012). 

This is also observed eith early treatment initiation. While initiation of ART extremely early 

(within the first couple of weeks following infection) does normalize coagulation 

biomarkers to levels seen in uninfected controls, it reduces without normalizing markers 

of monocyte activation from microbial by-products, inflammation and fibrosis (Sereti et al., 

2020).These latter three are associated with death, cardiovascular events and/or disease 

progression in HIV-infected individuals (Hunt et al., 2014). A marker of enterocyte turnover 

(I-FABP), representative of intestinal damage, is increased regardless of ART initiation 

time, and correlate with the amount of integrated HIV detectable in gut tissue (Sereti et 

al., 2020). Thus, while CD4+ T cell depletion leads to immunodeficiency in chronic 

infection, persisting inflammation not eradicated by ART leads to increased morbidity and 

mortality. This remains one of HIV’s critical problems. 

Animal models 

HIV cannot infect species other than humans (unless by using transgenic models). Other 

animal models of chronic infection have been seminal for the understanding of how a 

chronic viral infection leads to the deterioration of the immune response. 

The animal model closest to HIV is SIV infections in non-human primates (NHP). In natural 

hosts of SIV (many species of African monkeys, such as the chimpanzees - SIVcp and 

sooty mangabeys - SIVsm), SIV infection does not develop into a disease. For example, 

SIV infections in sooty mangabeys and African green monkeys present with high viral 
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replication and rapid turnover of infected CD4+ T cells in acute infection, but preserved 

lymph node architectures. They do not have chronic immune activation nor depletion of 

mucosal and peripheral CD4+ T cells (Chahroudi et al., 2012). Conversely, SIV infections 

in Asian monkeys, which are not natural hosts, replicates a number of HIV infections in 

AIDS. The most studied species is the rhesus macaques whom, upon SIV infection 

(SIVrm), maintain high viral loads, rapid turnover and loss of CD4+ T cells, most 

importantly in the GALT (Hatziioannou and Evans, 2012). They also display similar clinical 

syndromes like opportunistic infection (Apetrei et al., 2005). Disease progression in the 

rhesus macaques is much quicker, reaching AIDS within 1-2 years in the absence of ART 

(Hatziioannou and Evans, 2012). 

NHP being large animals and expensive to maintain, a model of chronic infection in mice 

is also highly relevant. The workings of an acute viral infection were studied using the 

Armstrong (Arm) strain of the lymphocytic choriomeningitis virus (LCMV). This acute viral 

infection, which causes severe inflammation in the meninges, is cleared within 10 days 

after inoculation. It is characterized by robust antiviral T cell responses. A mutant of this 

strain (clone 13), was found to generate a chronic infection, cleared 90 days after infection 

(Ahmed et al., 1984). Both strains only differ by 3 amino acids, none of which being within 

the T cell epitope. Thus, we can track anti-viral T cell responses of the same specificity 

between acute and chronic infections. As will be discussed below, much of what we know 

about cues leading up to exhaustion come from these LCMV models. However, LCMV 

clone 13 is ultimately cured, in contrast to HIV and other chronic human viral infections, 

like HCV. Furthermore, major differences between mouse and human immune responses 

can affect the translationability of results. For example, priming and polarization of CD4 T 
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cells are not driven by the exact same signals in both species. Chemokines differ 

substantially between mice and humans. For these reasons, in vivo observations made in 

mice mdels greately benefit from validation using primary cell from humans (Mestas and 

Hughes, 2004).  

Innate immune responses 

Antigen-presenting cells are pivotal for T cell priming. During chronic untreated HIV and 

SIVrm infection, both pDC and mDC are decreased in the blood, the extent of which is 

associated to increased viral loads (Donaghy et al., 2001). The transcriptome of 

monocytes and mDCs were distinct between uninfected individuals versus chronically-

infected untreated individuals. The latter grouped showed increased interferon-response 

genes, as well as subdued singatures of IL-1 signalling and antigen-processing and 

presentation (Murray et al., 2020). Although the impact of these changes on T cell 

responses has been studied in the LCMV model, whose DC compartment present similar 

traits. Dendritic cells after 21 days of chronic infection presented lower levels of CD80, 

CD86 and MHC I (machinery for priming and antigen presentation) than those in the acute 

phase of the infection (Snell et al., 2018). The features of LCMV-specific CD8+ T cells 

primed by chronic-exposed DC were different from the acute-exposed DC; when primed 

by the chronic-exposed, their development depended on IL-21 (rather than IL-2), and they 

had lower immune checkpoint (IC) expression and greater Eomes, TCF-1 and CXCR5 

expression. This suggests that decreased signalling strength enforced a memory-like 

phenotype (Snell et al., 2018). Thus, disruption in T cell priming can also partially explain 

the suboptimal features of the HIV-specific T cell responses discussed next. 
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Adaptive immune responses 

Beyond targets, HIV-specific T cells are highly implicated in fighting the HIV infection. In 

all individuals infected with HIV, the T cell response exerts a certain level of viral control, 

which explains the sharp post-peak decrease of viral load in acute infection. Indeed, 

depletion of either CD4+ T cells (Ortiz et al., 2011) or CD8+ T cells (Matano et al., 1998) 

prior to primary SIV infection abrogates the post-peak decline of viral load in NHPs. 

In the setting of chronic viral infection, the adaptive immune response is quite different 

from the prototypical one seen in acute infections. The persistence of antigens stimulates 

virus-specific cells repetitively, with co-stimulation (in contrast to anergy, where a cell not 

receiving co-stimulation becomes hyporesponsive (Wherry, 2011)). These changes are 

seen in a wealth of chronic infections and across species, like LCMV clone 13 infections 

in mice, SIV infection in primates, and HCV and HBC and HIV in humans (Wherry, 2011).  

 

Figure 1.12 Overview of immune response over time in viremic HIV infection.  
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HIV-specific T cell responses 

HIV-specific CD8+ T cells exert a strong effect on the virus itself. Two decades ago, 

researchers found a temporal association between the advent of HIV-specific CD8+ T 

cells and the post-peak viral load decrease (Koup, 1994). They recognized that these HIV-

specific CD8+ T cells caused the selection of escape variants in HIV-1 (Borrow et al., 

1997). CD8 depletion in the SIV model also showed prolonged depletion of CD4+ T cells 

(Matano et al., 1998). HIV-specific CD8+ T cells in acute HIV infection primarily target 

Env.  

After the immune response fails to clear the primary infection, and we fall into the chronic 

phase, HIV-specific CD8+ T cells enter a distinct differentiation state referred to as 

“exhaustion” (Wherry, 2011). Exhausted virus-specific CD8+ T cells follow a hierarchical 

loss-of-function, preceded by selective elimination of highly-exhausted cells. They are 

also characterized by high and sustained levels of IC, altered transcription factor profile, 

and metabolic derangement. Importantly, they are unable to transition into a long-lived 

quiescent state, rather relying on continuous TCR signalling for maintenance.  

Despite their loss-of-function, exhausted CD8+ T cells are not inert. The residual functions 

they retain drive epitope mutation (Seki and Matano, 2011), and exert some level of viral 

control, since depleting CD8+ T cells in chronic SIV infection exacerbates viral loads and 

progression towards AIDS (Schmitz et al., 1999; Jin et al., 1999). When exhausted CD8+ 

T cells are no longer sustained, containment of viral infection is largely lost (Paley et al., 

2012). 

Advancement in transcriptomic and epigenetic characterization of exhausted CD8+ T cells 

have elucidated its development. The central feature seems to be sustained TCR 
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stimulation (Bucks et al., 2009), resulting in vast epigenetic changes and enhanced 

chromatin accessibility (Sen et al., 2016). TCR-dependent pathways such as NFAT and 

SPRY2 are implicated in CD8+ T cell exhaustion (Martinez et al., 2015), and lack of help 

from CD4+ T cells, whether from depletion (discussed earlier) or skewing (discussed next) 

also seems to contribute (Matloubian et al., 1994). Other mechanisms likely involved in 

exhaustion are desensitization of co-stimulatory pathways (Odorizzi and Wherry, 2012), 

chronic exposure to soluble mediators like type I IFNs (Teijaro et al., 2013; Wilson et al., 

2013; Zhen et al., 2017), and destruction of tissue architecture in secondary lymphoid 

organs (Mueller et al., 2007; Zeng et al., 2011). These changes in chromatin accessibility 

are reversible only for a short time: LCMV-specific CD8+ T cells transferred from 

chronically-infected mice to acutely-infected mice could only form memory T cells if 

transferred early on in the course of the chronic infection (Angelosanto et al., 2012).  

Exhausted CD8+ T cells are divided into two subsets, distinguished by their proliferative, 

self-renew and functional capacities (Im and Ha, 2020). Progenitor exhausted (PE), or 

stem-cell like CD8+ T cells maintain the pool of virus-specific CD8+ T cells in chronic viral 

infection (Im et al., 2016; Utzschneider et al., 2016). They are characterized by expression 

of TCF-1, CCR7, BCL6, EOMES, ICOS, and CD28, and reside in the T-cell zones of 

lymphoid tissues (Im and Ha, 2020). Despite overlap between these cells and the memory 

phenotype, TOX is a notable divergence, being highly expressed and maintained in 

exhausted CD8+ T cells. The expression of this TF is regulated by antigen-induced 

calcium signalling, and when deleted, results in a defect in PE CD8+ T cells (Alfei et al., 

2019). PE can self-renew and = differentiate into a TCF1- terminally differentiated CD8+ 

T cell subset. This latter subset expressed genes related to effector T cells, like Prdm1, 
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Tbx21, and their effector molecules Gzma, Gzmb and Prf1 (He et al., 2016).  

Immune checkpoints (IC), or inhibitory receptors, are negative regulatory pathways which, 

in physiological contexts, are key in modulating the strength of the response, limiting 

immunopathology and autoreactivity (Sharpe et al., 2007). On exhausted CD8+ T cells, 

they are maintained at very high levels and actively involved in the limiting of their effector 

functions (Wherry, 2011). The best characterized inhibitory receptor is PD-1/PD-L1-PD-

L2 axis. 

 

Figure 1.13 Regulation of CD8+ T cell differentiation through transcriptional network in chronic 
viral infections. Persistent TCR stimulation induces NFAT2, BATF and IRF4 expression, where NFAT2 
goes on to activate TOX, and these factors induce PD-1 expression. Stem-cell like subsets highly upregulate 
TCF1, leading to increased BCL6 and EA2 expression ; this axis induces genes related to stemness. In 
contrast, IRF4 with BATF up regulate BLIMP1, which in turn represses TCF1. BLIMP1 and ID2 lead to 
enhanced Gzmb expression and differentiation towards terminally exhausted. Figure from (Im and Ha, 
2020), used within permitted use under the terms of the Creative Commons Attribution Non-Commercial 
License (https://creativecommons.org/licenses/by-nc/4.0/) 
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HIV-specific CD4+ T cells play a central role in the progression of the HIV infection. 

Generally, virus-specific CD4+ T cells help with viral control (seen earlier in the NHP 

model). In the chronic LCMV model, CD4+ T cell depletion prior to infection abrogates the 

ultimate resolution of the infection (Matloubian et al., 1994). In humans, a robust early 

HCV-specific CD4+ T cell response is associated to viral clearance, in contrast to patients 

with low or absent responses who develop a chronic infection (Lindqvist et al., 2012). 

Finally, elite controllers have robust HIV-specific CD4+ T cells (Emu et al., 2005; Pereyra 

et al., 2008), although whether those helped with the initial control of the viral infection, or 

rather their function was preserved in the absence of prolonged viremia, is unclear. 

In chronic HIV infection, HIV-specific CD4+ T cells also undergo a separate differentiation 

state, called “dysfunction”. Like exhaustion, this state is characterized by decreased 

production of IFNg, TNFa and IL-2, and increase IC expression (Wherry, 2011). However, 

dysfunctional CD4+ T cells also have a gain of other functions, such as IL-10 and IL-21 

production (Brooks et al., 2006; Elsaesser et al., 2009). It is interesting to note that, while 

antiviral functions typically associated to Th1 are diminished in dysfunctional cells, 

functions of other polarizations are largely preserved, like B-cell help provided by TFH 

(Oxenius et al., 1998). 

The molecular mechanisms behind the advent of dysfunction of virus-specific CD4+ T 

cells are incompletely understood. Transcriptome and kinetic analysis of LCMV-specific 

CD4+ T cells showed functional differences between chronic and acute infection as early 

as 8 days after infection, namely low TH1-associated functions, high IL-21 mRNA, and a 

IL-10+ population only found in chronic infection (Crawford et al., 2014). The 

transcriptional differentiation pattern of dysfunctional CD4+ T cells was distinct compared 
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to both effector and memory CD4+ T cells. It presented uniquely high IFN-induced genes, 

and regulation of cell cycling and DNA structure, with reduced signatures of DNA repair, 

ribosomal function, and antigen receptors/MHC (Crawford et al., 2014). Some of these 

signatures were commonly enriched in exhausted CD8+ T cells with respect to their 

memory counterparts, like persistently high IFN-responsive signatures, strongly 

associated to NFkB complex, NFAT and Eomes (Crawford et al., 2014). Immune 

checkpoints, increased in both dysfunctional CD4+ T cells and exhausted CD8+ T cells, 

were in some cases common to both cell types (PD-1), and in others qualitatively different: 

CTLA-4, CD200 and BTLA were biased towards CD4+ T cells, while CD244, Tim3 and 

Lag3 were biased to CD8+ T cells (Crawford et al., 2014).  

While some transcription factors were similarly regulated in memory and dysfunctional 

CD4+ T cells in contrast to naïve, dysfunctional CD4+ T cells additionally expressed 

Eomes, Prdm1 (Blimp-1), Ikzf2 (Helios – without FoxP3 co-expression), Nfatc1 and Maf. 

Of note, unlike in exhausted CD8+ T cells where TCF-7 was completely lost, it was 

preserved in dysfunctional CD4+ T cells (Crawford et al., 2014). Among the 

heterogeneous pool of dysfunctional CD4+ T cells, the lineage-specific TF was apparent 

was increased Bcl6, and the clear Th1 enrichment seen in memory CD4+ T cells was 

missing (Crawford et al., 2014). The LCMV clone 13 model showed that chronic type I IFN 

stimulation found in chronic viral infections inhibits development of Th1 responses, 

suggesting that the environment is at least in part responsible to the relative absence of 

Th1 (Osokine et al., 2014).  

To better characterize the function of HIV-specific CD4+ T cells, we analyzed the 

transcriptome of HIV Gag-specific CD4+ T cells from elite controllers and chronic 
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progressors (Morou et al., 2019) (see appendix). The HIV-specific CD4+ T cells of EC had 

increased TH1 and TH17 signatures, with concordant expression of CXCL9/10/11, IL17, 

and IL22. The robust Th17/TH22 HIV-specific CD4+ T cell response was associated 

negatively to immune activation and abundance of Proteobacteria in plasma RNA species. 

EC had up regulation of BCL6 as well as IFN-stimulated genes, in contrast to the LCMV 

model.  

The dysfunctional HIV-specific CD4+ T cells from CP had reduced signatures of T helper 

differentiation, and an enrichment of TOX and TFH signature (including the related genes 

MAF, ICOS, IL-21, CXCL13, TIGIT, CD200, the latter 5 of which also had greater protein 

expression). This signature was enriched in both CXCR5+ and CXCR5- subsets, 

highlighting a skewing towards TFH profile among non-TFH cells. This latter population 

correlated positively with p24-specific antibody titers in CP, suggesting this skewing 

affects their functional roles. Indeed, a subset of HIV-specific CD4+ T expressing CXCR5-

PD-1+ICOS+ has many features of TFH, like BCL6, Maf and CD84 expression, IL-21 and 

CXCL13 production, and the ability to provide B cell help (Del Alcazar et al., 2019). This 

population, present in both LN and blood, was clonally related to TFH and has shared 

epigenetic landscape (including accessible chromatin for CXCR5 promoter region), 

although its transcriptomic profile had greater cellular trafficking signalling (Del Alcazar et 

al., 2019). As such, HIV infection seems to result in a population with higher TFH-

associated characteristics, perhaps as a result of evolutionary advantage. Indeed, in the 

setting of vaccination prior to challenge in the LCMV model, the strong Th1 response 

elicited by the vaccines resulted in catastrophic immunopathology (Penaloza-MacMaster 

et al., 2015). This is not the case in the course of a normal LCMV clone 13 infection, where 
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most virus-specific CD4+ T cells differentiate towards TFH (Fahey et al., 2011). 

Furthermore, these LCMV-specific TFH enable the development of late-arising 

neutralizing antibodies which ultimately allow the mice to control the LCMV infection 

(Greczmiel et al., 2017). Thus, in the LCMV model at least, the skewing of virus-specific 

CD4+ T cells away from the prototypical antiviral Th1 phenotype and towards the B-cell 

helping TFH phenotype provides a clear evolutionary benefit by avoiding 

immunopathogenesis while diversifying immune strategies (Greczmiel and Oxenius, 

2018). The parallels to be drawn between HIV and LCMV clone 13 infections do suggest 

that similar strategies in both species; however, the addition of HIV’s great immune 

escape capacities makes this strategy insufficient. 

Immunotherapy in chronic viral infection : HIV 

Although no immunotherapies are currently FDA-approved solely for their anti-HIV action, 

the use of activating immunotherapies is investigated for two main non-exclusive 

purposes: stimulating the anti-HIV immune response to confer a functional cure – whereby 

the immune response alone can contain viral replication to below-detectable levels – and 

reactivating latent viral reservoirs. 

Immune checkpoints in HIV 

As mentioned in the introduction, IC are cell-surface inhibitory receptors that, upon binding 

their ligand, will trigger immunosuppressive signalling pathways. There are many different 

IC which, through their differential distribution and signalling cascade, affect the immune 

response differently. Of paramount importance is PD-1, both for its suppressive action on 

HIV-specific immune responses, as well as its preferential expression on persistently-

infected cells in the context on ART (Chomont et al., 2009; Fromentin et al., 2019). 
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Characteristics of PD-1 

PD-1 was first described in apoptotic cell lines in 1992, from where it got its name 

(Programed-death 1) (Ishida et al., 1992). Murine models uncovered its essential immune 

halting role, as its deletion led to overt immune activation, namely splenomegaly, B cell 

proliferation and lupus-like arthritis (Nishimura et al., 1999). In 2003, the first evidence 

emerged that PD-1 mediated suppression of antiviral response using an adenovirus (Iwai 

et al., 2003). Only three years later, it was demonstrated that PD-1 expression increased 

in chronic viral infections, in both the murine LCMV Clone 13 model (Barber et al., 2006) 

and in human infections like HIV (Day et al., 2006; Trautmann et al., 2006) and HCV 

(Radziewicz et al., 2007; Urbani et al., 2006). Importantly, all three HIV-related studies 

showed that blockade of the PD-1 pathway in vitro can partially rescue HIV-specific T cell 

function, and a similar observation was made in vivo in the murine model (Barber et al., 

2006). These discoveries were seminal in shaping how we now understand PD-1’s role in 

actively inhibiting antiviral responses. These studies developed alongside cancer-focused 

work, and led to a novel therapeutic concept: immune checkpoint blockade.  

PD-1 is a monomeric surface glycoprotein encoded by PCDC1 gene. In addition to its 

extracellular and transmembrane portions, PD-1 has an immunoreceptor tyrosine-based 

inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM) on its 

intracellular motif (Boussiotis et al., 2014). Upon formation of the immunological synapse 

following MHC-peptide-TCR interaction, it is recruited close to the TCR in a bulls-eye 

formation (TCR in centre, circled by CD28-ICOS mix, then by PD-1)(Hui et al., 2017). 

Upon binding to its ligands PD-L1 or PD-L2, SHP1/2 is recruited to the ITSM (Okazaki et 

al., 2001). Activated SHP-2 is then recruited to the proximally-close intracellular tail of 
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CD28 and ablates its costimulatory signalling (Hui et al., 2017). This mechanism 

effectively increases the threshold that TCR signalling must reach to produce an effector 

function (Andersson et al., 2020), contributing to an overall decrease of effector function, 

also recently shown in vivo (Sandu et al., 2020). PD-1 signalling also induces the 

expression of inhibitory genes, such as BATF, a negative regulator of AP-1, affecting 

cytokine production (Quigley et al., 2010). PD-1 signalling promotes lipolysis and fatty acid 

oxidation over effector-function-preferred glycolysis (Patsoukis et al., 2015). Finally, 

simultaneous engagement of TCR and PD-1 by naïve CD4+ T cells result in induced 

Tregs (Francisco et al., 2009), or a regulatory phenotype if on memory CD4+ T cells 

(Fanelli et al., 2021).  

PD-1 expression can be induced on T cells, NK cells, B cells, macrophages and some DC 

subsets, while the ligands, PD-L1 and PD-L2, are constitutively expressed on DC, 

macrophages, B cells and mesenchymal stem cells, and induced on DC and 

macrophages. On T cells, PD-1 is induced following TCR signalling (as early as 24 hours 

after activation, through calcineurin-activated NFATc1 binding to PD-1’s promoter region 

and by some cytokines, namely IL-6, IL-12 (through STAT binding sites in the promoter 

region) IL-2, and type I IFNs (through IFN-stimulated response element, concurrent with 

TCR stimulation) (Cho et al., 2008). PD-1’s expression is transient in acute infections, 

down regulated concomitantly with antigen clearance following the end of TCR signalling 

and the repressive function of CD8+ memory differentiators T-bet (Kao et al., 2011) and 

Blimp-1 (Kallies et al., 2009; Bally et al., 2016). Conversely, PD-1’s expression is 

maintained at high levels in the context of ongoing antigen exposure, as is the case with 

chronic viral infections and cancer. This high expression can be maintained by FoxO1, a 
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T-bet  antagonizer found at high levels in the nucleus during LCMV Cl 13 infections 

(Staron et al., 2014). High PD-1 expression in LCMV-specific exhausted T cells is 

maintained even after transfer into naïve hosts (Utzschneider et al., 2013), as well as on 

HIV-specific T cells after ART-suppression of viral load (Niessl et al., 2020b). This reflects 

the stable epigenetic profile which is established in exhausted T cells, characterized by 

the unmethylated DNA in sites of PCDC1 regulatory regions (Youngblood et al., 2011). 

This demethylation likely follows an activating mechanism, and can be influenced by the 

cytokine profile (Austin et al., 2014; Bally et al., 2016). 

Immune checkpoints blockade 

Much of what we know of the in vivo effect of blocking the PD-1 pathway comes, of course, 

from animal models.  

Similar to viral infections, cancers must employ immune evasion strategies to avoid 

detection and continue to develop. A number of these mechanisms utilize immune 

checkpoints, for example by creating a microenvironment which favours Treg 

development (Li et al., 2020) or overexpressing their ligands, as is the case for PD-L1/2 

(Pauken et al., 2016; Iwai et al., 2002). Immune checkpoint blockade (ICB) has been 

approved for cancer treatment, where it has been revolutionary. FDA has approved a total 

of seven monoclonal antibodies which antagonize IC for use against various types of 

cancer, targeting the CTLA-4 (one) or PD-1 pathway (three targeting PD-1, and three 

targeting PD-L1). 
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CTLA-4 blockade in cancer 

Although not the focus of this thesis, it is interesting to observe the differences between 

CTLA-4 versus PD-1-targeted ICB, as it helps elucidate their respective mechanisms. 

CTLA-4 is strongly induced by antigen activation and, through its structural similarity to 

CD28competes for binding with CD28’s ligands CD80 and CD86 (Linsley et al., 1994; 

Pentcheva-Hoang et al., 2004). As it has a greater affinity for the ligands, this competition 

disrupts T cell activation of the cell expressing CTLA-4. Through the absence of CD28 

signalling and a CTLA-4-mediated reduction in effector-related transcription factors, 

CTLA-4 promotes anergy (Greenwald et al., 2001). CTLA-4 also hampers the activation 

of neighbouring cells, as CTLA-4-CD80/CD86 interaction results in the internalization of 

the latter ligands on the APCs expressing them (Greenwald et al., 2001; Krummel and 

Allison, 1995; Qureshi et al., 2011). Finally, CTLA-4 is constitutively expressed on Tregs, 

and is necessary for the release of anti-inflammatory cytokines (Senejani et al., 2012) as 

well as interfere with CD80/CD86 expression on APCs (Hou et al., 2015; Qureshi et al., 

2011).  

A monoclonal IgG1k antibody antagonizing CTLA-4 was the first ICB to be FDA approved 

in 2011 (Hodi et al., 2003), and has resulted in greater survival in difference types of 

melanoma (Schadendorf et al., 2015). Although the exact mechanisms by which CTLA-4 

ICB operate are not fully understood, it is T cell mediated, as ICB in T cell-depleted 

animals has no tumoricidal effect (Baksh and Weber, 2015). Interfering with the CTLA-4 

pathway also results in greater T cell responses against neoantigens (antigens not 

normally found in host tissue, but which form following mutations) (Snyder et al., 2014; 

van Rooij et al., 2013). An additional way the IgG1k monoclonal antibody is thought to 
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work is by inducing antibody-dependent cellular cytotoxicity on the Tregs it binds to 

(Sharma et al., 2019), although this has not yet been proven in humans. In summary, 

CTLA-4 blocking antibody tilts the effector/Treg ratio in the tumour microenvironment, 

which allows for recognition and killing of the tumour cells.  

CTLA-4 is thought to act primarily in lymphoid organs, while PD-1 tends to act locally in 

peripheral tissues (Fife and Bluestone, 2008). CLTA-4 also acts earlier in the course of T 

cell activation than PD-1. Both these traits are reflected by the respective comorbidities 

seen in knock-out mice models: knocking out CTLA-4 results in a T cell-mediated 

lymphoproliferative autoimmune disease (Waterhouse et al., 1995), while knocking out 

PD-1 results in heterogeneous and later autoimmune phenotypes. This was further 

enforced by the observation that T cells responding to CTLA-4 blockade were not the 

same as those responding to PD-1 blockade in a mouse tumour model (Wei et al., 2017). 

PD-1 blockade has demonstrated broader clinical utility (Waldman et al., 2020) and has 

outcompeted CTLA-4 blockade in a head-to-head study (Robert et al., 2015; Schachter 

et al., 2017), which led to its approval by the FDA in 2011. PD-1 blockade also 

demonstrates less toxicity than CTLA-4 blockade (Michot et al., 2016), although they are 

generally better tolerated than toxicities associated with traditional chemotherapeutics 

(Hargadon et al., 2018; Nishijima et al., 2017). 

PD-1 blockade in cancer 

As mentioned previously, tumours can over express PD-1’s ligand, thus inhibiting the 

function of responding T cells (Blank et al., 2004). In addition, established tumours can 

induce a dysfunctional state very similar to T cell exhaustion, also by the fact that tumour-

specific T cells are stimulated repeatedly. 
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It was quickly apparent that response to PD-1 blockade varied between patients, even 

within a cohort of patients afflicted by the same cancer. Thus, researchers sought to 

explore biomarkers associated with responsiveness to ICB. Markers associated with 

greater response have been expression of PD-L1 on target tumour (Garon et al., 2015) 

as well as PD-1-expressing T cells in or close to the tumour prior to treatment initiation 

(Tumeh et al., 2014), higher mutational burden (Goodman et al., 2017), IFNg-related 

mRNA profile within the tumour (Ayers et al., 2017), preferential expansion of high avidity 

T cells recognizing neoantigens following ICB (Simon et al., 2017), proliferation of PD-1+ 

CD8+ T cells following ICB (Kamphorst et al., 2017a), etc. Even the microbiome was found 

to impact responsiveness to blockade (Routy et al., 2018). However, contradictory reports 

on most of these biomarkers are frequent, so that predicticting which patients will benefit 

from ICB difficult (Ding and Chen, 2019; Prasad et al., 2018). 

In CD8+ T cells, response to PD-1 blockade is dependent on CD28 co-expression, as PD-

1-SHP-2 complex will directly dephosphorylate CD28 and, only at very high PD-L1 levels, 

components of the TCR signalling cascade (Hui et al., 2017). Dependence on CD28 was 

further shown indirectly in patients with lung cancer (proliferating CD8+ T cells after PD-1 

blockade were CD28+) (Kamphorst et al., 2017b) and directly with the LCMV clone 13 

model (Im et al., 2016; Kamphorst et al., 2017b). 

PD-1 blockade in chronic viral infection 

Most research surrounding the effect of immune checkpoint blockade on CD4+ T cells in 

the context of HIV has focused on its potential as a latency reversing agent (LRA). Latent 

reservoir is enriched in IC-expressing cells, namely LAG-3, TIGIT, and PD-1 (Fromentin 

et al., 2016). As T cell activation reverses latency, and PD-1 blunts T cell activation, the 
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potential of PD-1 as an LRA was very clear. A recent study saw that PD-1 engagement 

inhibited HIV viral transcription, preventing TCR-induced viral reactivation ex vivo from 

primary cells of ART-treated infected individuals (Fromentin et al., 2019). The same study 

further showed that inhibiting PD-1’s signalling, through the addition of a PD-1 blocking 

antibody, increased viral reactivation in the presence of another LRA or TCR stimulation 

(Fromentin et al., 2019). In vivo, administration of ICB in PLWH treated in the context of 

cancer often resulted in viral reactivation (meaning spikes in viral load despite continuous 

ART), but no consistent decrease in the sizes of the reservoirs (Guihot et al., 2018; Scully 

et al., 2018). It is possible that a decrease in reservoir may be observed in tissues, as was 

observed following in the lymph nodes of SIV-infected RM following CTLA-4 blockade 

(Hryniewicz et al., 2006). 

ICB also affected the function of virus-specific cells in chronic viral infections, both in vitro 

and in vivo. The first demonstration was in the mouse LCMV clone 13 model, showing 

that PD-L1 blockade can enhance the exhausted virus-specific CD8 T cell response (in 

terms of proliferation; TNFa and IFNg secretion), leading to decreased viral titers in vivo 

(Barber et al., 2006). This model has allowed to study multiple facets of ICB in viral 

infections. Mechanistically, responsiveness to PD-1 blockade has been shown to be 

dependent of CD28 co-expression in vivo, by knocking out CD28 in LCMV-specific CD8+ 

T cells (Kamphorst et al., 2017b). Responsiveness of exhausted virus-specific CD8+ T 

cells was most pronounced when CD4+ T cells were present, at least in part due to IL-2 

production by these latter cells (West et al., 2013; Aubert et al., 2011). 

One year after the Barber study, increased function in HIV-specific CD8+ T cells following 

PD-1 blockade was described in vitro (Day et al., 2006). As seen in cancer, increased 
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functionality upon blockade was primarily observed in HIV-specific CD8+ T cells with 

intermediate amounts of PD-1. Among HIV-specific CD4+ T cells, increases in function 

upon blockade were noted among populations of different PD-1 levels (Porichis et al., 

2011). In vitro, Porichis et al. thus demonstrate that the benefit of aPD-L1 on an increased 

transcription of IL-2 and IFNg in HIV-specific CD4+ T cells peak at 12 and 24hrs, 

respectively (Porichis et al., 2011). Protein levels (in supernatants of peptide-stimulated 

cell cultures) at 48hrs showed a median 2,9 and 2,2-fold median increase of IFNg and IL-

2 secretion respectively, with the blockade. Interestingly, they also show that IFNg 

secretion from proliferating antigen-specific cells only bear weight after 96hrs. As such, 

PD-L1 has an effect on IFNg and IL-2 secretion on both proliferating and non-proliferating 

cells. Finally, functions beyond the classically antiviral associated cytokines, namely IL-

21 (Porichis et al., 2011) were also observed as increased following blockade, indicating 

that a multitude of CD4+ T cell functions could be affected by ICB. 

In vivo, administration of PD-1 blockade in PLWH resulted in an increase in HIV-specific 

CD8+ T cells in blood in two of six participants, and showed not toxicity (Gay et al., 2017). 

In untreated SIV-infected RM, administration of a PD-1-antagonising antibody resulted in 

expansion and improved functionality of virus-specific CD8+ T cells (Velu et al., 2009). 

These monkeys also demonstrated longer survival, a reduction in viral load (Velu et al., 

2009), reduced interferon signalling and improved gut integrity (Dyavar Shetty et al., 

2012). This was not seen in ART-treated macaques (Mylvaganam et al., 2018). While 

none of these studies looked at the function of SIV-specific CD4+ T cells in response to 

ICB, they did observe replenished TH17 in gut tissue of viremic RM. 

Given the functional heterogeneity of CD4+ T cells, understanding how they respond to 



87 

ICB has been lagging behind CD8+ T cells. However, many of the aforementioned 

evidences suggested they too could be affected. An elegant paper has sought to assess 

which CD4+ subsets responded to PD-L1 blockade. They transferred transgenic LCMV-

specific CD4+ T cells into naive hosts, infected them with LCMV clone 13, administered 

PD-L1 blocking antibody, and then retrieved them for single RNA Seq and CyTOF (Snell 

et al., 2021). ICB favoured a terminally-differentiated profile which expressed TH1-

associated proteins, rather than the TCF-1+ population, with high Bcl6 and CXCR5 

expression (i.e. TFH). ICB also resulted in increased CTL signatures, with accompanying 

high killing capacity from these cells. Importantly, this report highlighted differential 

response to ICB based on the polarization of the CD4+ T cells in mice.  

In summary, the HIV infection creates a chronic infection that decimates the CD4+ T cell 

population, resulting in immunodeficiency with associated persisting inflammation. The 

chronic nature of the viral infection causes dysfunction of the HIV-specific T cell response, 

which could otherwise control the viral infection. Even if CD4+ T cell depletion is halted 

by ART, other aspects of the infection remain: disrupted gut integrity, with the resulting 

inflammation increasing the risks of morbidity and mortality ; dysfunctional T cell response 

; lingering reservoirs, as a consequence dependence on life-long antiretrovirals. 

Strategies which can boost the anti-viral immune response and/or resolve the chronic 

inflammation are still critically lacking in HIV research. One such strategy is the immune 

checkpoint blockade, with promising results in animal models, yet for which multiple 

questions still surround how immune checkpoint blockade affects virus-specific CD4+ T 

cells in humans. In our lab, we specifically sought to understand how immune checkpoint 

blockade may affect their different polarisations in humans.  
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Throughout this introduction, we have seen how a physiological immune response 

functions. We have also overviewed two viral infections which, through differing 

mechanisms, can result in catastrophic immunopathology, sometimes leading to death. 

However, a reccuring theme is heterogeneity : why are only a minority of SARS-CoV-2 

infections fatal ? Why are some individuals able to control the HIV infection in the absence 

of treatment ? What do these differences mean for immunomodulating therapies ? In this 

thesis, I study inter-individual differences in immune responses to SARS-CoV-2 and to 

HIV, and what they mean for outcome, and for therapeutic interventions. 
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Chapter 2 – Hypotheses and objectives 

The immunopathology of both pandemic-causing viruses involve the immune system. The 

immune response, and consequently the immunopathology, can be extremely 

heterogeneous, mirroring the diversity of the people infected. My overarching hypothesis 

for this thesis was that the perturbations on the immune response can explain the 

heterogeneity of infected peoples’ response to viral infection. 

Despite advances in COVID-19 management, there is no consensus on easily 

measurable early metrics to recognize patients at high risk of evolving towards death. The 

explosive increase in correlates of COVID-19 severity further complicates biomarker 

prioritization. Furthermore, while treatment of COVID-19 has markedly improved thanks 

to vaccination and therapeutic options, there is still a need to know which type of patient 

would benefit from which type of treatment. Our two first studies consider infection by 

SARS-CoV-2. We hypothesized that 1) metrics of a dysfunctional immune response can 

be used to predict whom, among acute COVID-19 patients, would succumb to their 

disease, and 2) can be used to describe the diversity in immunopathology. 

Our first objective was to find the best feature, or combination of, captured early in blood 

and analyzable using clinically-applicable tools, to predict fatal outcome within 2 months 

of disease onset among hospitalized COVID-19+ patients. The aims were to i) 

characterize, within our cohort of moderate-to-critical patients, the prevalence and 

quantities of variables associated with high-fatality – specifically, SARS-CoV-2 viral RNA, 

inflammation-associated cytokines ; ii) measure their association to fatal outcome among 

all hospitalized COVID-19 patients or critical patients only ; iii) combine variables 
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associated to fatal outcome within a single multivariable model, with the goal of achieving 

the greatest sensitivity and specificity possible ; iv) validate the robustness of our model 

in 2 independent additional cohorts. 

Our second objective was to understand the heterogeneity in the progression of COVID-

19, and how it associated to different outcomes. The aims were to i) use data 

dimensionality methods to identify subsets of homogeneous immune responses ; ii) study 

the association of outcome with those immune responses, iii) study the differences in the 

kinetics of the immune responses, and iv) compare the transcriptomic profiles among 

these subsets to understand the molecular mechanisms driving these different responses. 

 

While keeping with the theme of diversity in response to viral infection, our third study is 

on HIV infection. CD4+ T helper (TH) cells play a central role in orchestrating the immune 

response. In chronic diseases such as HIV, sustained antigenic exposure and the 

inflammatory milieu leads to dysfunction of both CD4+ and CD8+ T cells. Immune 

checkpoint blockade (ICB) can partially reverse CD8+ T cell dysfunction, and has been 

pursued to restore the HIV-specific response. CD8+ T responses to ICB require TH. 

However, TH function varies depending on their lineage, and how ICB affects these 

different lineages remains unknown. We hypothesized that 1) dysfunctional CD4+ T cells 

would have different sensitivities to blockade of the PD-1 signalling pathway, and ii) these 

differences stem from the characteristics of the patient, as well as those of the lineages 

of HIV-specific CD4+ T cells. 

For the third project, our objective was to measure which functions of HIV-specific CD4+ 
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T cells from viremic individuals are increased following PD-L1 blockade. The aims were 

to i) compare the functional profile of dysfunctional HIV-specific CD4+ T cells from viremic 

patients to the relatively-functional counterparts from spontaneous controllers ; ii) 

characterize their phenotype, in terms of IC and exhaustion-related TF expression, across 

multiple lineages of CD4+ T cells ; iii) measure each lineage’s response to PD-L1 

blockade by measuring the increase of cytokine production in HIV-specific CD4+ T cells 

following PD-L1 blockade. 
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Abstract 

Despite advances in COVID-19 management, identifying patients evolving towards death 

remains challenging. To identify early predictors of mortality within 60 days of symptom 

onset, we performed immunovirological assessments (SARS-CoV-2 viral RNA, 26 

cytokines and tissue injury markers, 6 anti-SARS-CoV-2 antibody responses) on plasma 

from 279 individuals. On samples collected 11 days after symptom onset in a discovery 

cohort, high SARS-CoV-2 vRNA, low RBD-specific IgG, low SARS-CoV-2-specific 

antibody-dependent cellular cytotoxicity, and elevated cytokines and injury markers were 

strongly associated with mortality, including in patients on mechanical ventilation. Model 

selection revealed that a three-variable model of vRNA, with predefined adjustment by 

age and sex, robustly identified patients with fatal outcome (AUC=0.87, adjusted HR for 

log-transformed vRNA=3.5; 95% CI: 2.0-6.2). This model remained robust in independent 

validation and confirmation cohorts. Plasma vRNA’s predictive accuracy was maintained 

at earlier timepoints. Plasma SARS-CoV-2 RNA quantitation can help understand disease 

heterogeneity and identify patients who may benefit from new therapies. 

One Sentence Summary (teaser): Statistical models of plasma immunovirological features 

validate SARS-CoV-2 vRNA as an early predictor of COVID-19 mortality. 
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Context of research 

High amounts of cytokines, tissue damage markers and SARS-CoV-2 viral RNA, as well 

as low antibody responses against SARS-CoV-2 have all been found as significantly 

associated to fatal outcome. However, no study has compared these various and often 

highly correlated biomarkers.  

Using multivariate statistical models, we compared, within the same patients and same 

sampling modalities, the predictive values of these biomarkers. While able to reproduce 

the predictive values of many of the biomarkers, we found that plasma viral RNA was a 

superior predictor, which we then validated in two independent cohorts, either from a 

separate hospital or from a diffence wave of infection. Finally, we found that plasma viral 

RNA remained a robust predictor when measured at multiple early timepoints. 

Taken together, these results highlight SARS-CoV-2 viral RNA measured in plasma as a 

superior predictor of fatality among patients hospitalized for COVID-19. This biomarker to 

may be integrated into clinical practice to delineate high-risk patients, or for stratification 

purposes in clinical trials.  
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Introduction 

Since the beginning of the pandemic, intense efforts have been deployed to define 

correlates of disease severity and to develop therapies targeting the virus or the 

pathogenesis of COVID-19. However, to date, only dexamethasone (1-3) and IL-6 

blockers (tocilizumab (4), sarilumab (5)) have convincingly shown to provide a survival 

benefit in randomized controlled trials. While other immune interventions may benefit 

some subgroups (6), there is currently no consensus on how to predict which critical cases 

are likely to resolve their infection and which are at a greater risk of fatality, in part due to 

the high heterogeneity of patients and the very dynamic changes in biological features (2). 

 Recent reports have identified features linked to severe COVID-19. One is high 

amounts of viral RNA (vRNA) in plasma, which has been associated with greater severity 

and worst outcome for other respiratory pathogens, such as SARS-CoV-1 (7, 8), RSV (9), 

MERS (10), and pandemic-causing strain of influenza A H5N1 (11). Plasma SARS-CoV-

2 vRNA has also been linked with increased risk of severe COVID-19 and mortality (12-

17).  

 Dysregulated immune responses are at least in part responsible for the 

exacerbated pathogenesis occurring in a minority of individuals with SARS-CoV-2 

infection. Elevated cytokine levels were among the first reported markers associated to 

severe COVID-19 disease (17), although inconsistent sampling times sometimes led to 

weak associations with mortality (18). Narrowing the window of sampling early after 

symptom clarifies plasma cytokine patterns (19), reminiscent of the Cytokine Release 

Syndrome (20). Plasma profile around 10 days after symptom onset was highly differential 

for plasma cytokine profiles of critical versus moderate COVID-19 disease (20) and a 
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number of cytokines have been associated with increased mortality (21). 

 Multiple studies support a central role for antibody responses in protective anti-

SARS-CoV-2 immunity. The main viral target of antibody immunity is the trimeric Spike 

glycoprotein, which facilitates SAR-CoV-2 entry into host cells via interaction of its 

receptor-binding domain (RBD) with angiotensin-converting enzyme-2 (ACE-2) (22, 23). 

While most infected patients develop anti-Spike and anti-RBD antibodies (24, 25), delayed 

anti-S IgG antibodies and decreased Fc-effector capacity are associated with increased 

mortality(26). These reports highlight the complexity of the host’s immune response to 

SARS-CoV-2. 

 Despite the remarkable speed with which effective SARS-CoV-2 vaccines have 

been developed and deployed, partial population coverage and, potentially, emergence 

of resistant variants will lead to ongoing occurrence of infections. From a clinical 

perspective, it is therefore essential to identify a minimal set of early blood parameters 

that can be easily and rapidly measured to identify patients at high risk of mortality, while 

prioritizing parameters that may hint at specific categories of therapeutic interventions. 

However, the list of blood correlates of COVID-19 severity has tremendously expanded, 

making such prioritizing a major challenge. Given strong co-upregulation between a 

number of plasma analytes (for example plasma cytokines and chemokines (20)), there 

is a need for streamlined analytical models with few virological and/or immunological 

parameters that provide complementary, rather than redundant, information to better 

stratify individual patient risk.  

 In this study, we simultaneously examined multiple parameters in plasma spanning 

three key aspects of COVID-19 pathogenesis early in disease course (11 ± 4 days post 
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symptom onset, henceforth described as DSO11): SARS-CoV-2 vRNA, 26 cytokines and 

tissue injury markers, and 6 measures of SARS-CoV-2-specific antibody responses. We 

performed uni- and multivariable analysis to identify independent predictors of death. A 

minimal model combining vRNA, age and sex was particularly robust, and very 

reproducible in two additional cohorts, and remained predictive even when the samples 

were collected earlier in disease course. 
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Results 

Study design and patient characteristics 

 We investigated prospectively enrolled hospitalized COVID-19 individuals (n=279) 

with symptomatic infection, a positive SARS-CoV-2 nasopharyngeal swab PCR and 

sampled longitudinally after enrollment. To allow for cross-sectional analysis of early 

plasma markers, we investigated patients for whom research blood samples were 

available at 11 (± 4) days after symptom onset (DSO11) (n=217). Our study population 

was split into a discovery cohort (n=61) in a first hospital, a fully independent validation 

cohort (n=87) in a second hospital (both of which were infected during the first wave), and 

a third confirmation cohort (n=69) also collected in the first hospital, but mostly during the 

second and third waves (see Study Design, Figure S1A). Based on disease severity at 

DSO11, patients were grouped as critical (requiring mechanical ventilation) versus non-

critical (see participant characteristics, Table 1). The discovery cohort included 29 critical 

and 32 non-critical patients. Plasma profiles were compared to 50 asymptomatic 

uninfected donors as a control group (uninfected controls – UC) of non-diseased state. 

 We clinically followed participants for at least 60 days after symptom onset 

(DSO60). The primary outcome, death by DSO60, occurred in 13 patients, with close to 

half fatalities occurring between DSO30 and DSO60 (Figure S1B) and mostly in the critical 

group (Figure S1C).  

 We performed a slightly reduced immunovirological assessment in the validation 

cohort, where 19 cases were critical, and 12 deaths occurred before DSO60, and a 

focused assessment of the confirmation cohort (with 27 critical cases and 11 fatalities) 
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(Table 1). Because of hospital referral coordination, the validation cohort was of older age 

than the discovery one, but with less severe respiratory compromise (Table 1). Other basic 

demographics and prevalent risk factors were consistent with published studies (27) and 

overall showed minor differences between all cohorts. These features did not statistically 

significantly differ between the critical vs non-critical groups except for higher rates of 

admission to ICU and intubation, and duration of hospital stay in critical patients (Table 

1), in line with group definition. Finally, for sensitivity longitudinal measurements of the 

selected statisticial models through different DSO points, we complemented these three 

cohorts with 62 patients who were sampled very early in disease course (before the 

DSO11± 4 days time bracket).   

 

Plasma viral load in early disease is strongly associated with COVID-19 mortality 

 As SARS-CoV-2 vRNA in plasma has been previously linked to mortality, we 

quantified it in the discovery cohort. We designed an ultrasensitive quantitative real time 

PCR (qRT-PCR) targeting the N sequence of its genome with a detection limit of 13 

copies/mL. The assay was highly specific, with no vRNA detected in UC (Figure 1A). At 

DSO11, we detected plasma SARS-CoV-2 vRNA in a significantly greater fraction of 

critical than non-critical patients (Figure 1A). These results suggest that systemic SARS-

CoV-2 viremia is a signature of infection severity and/or itself plays a role in disease 

complications.  

 We next hypothesized that the amount of viral products, rather than their mere 

presence, was associated with severe pathogenesis. SARS-CoV2 vRNA levels were 

higher in critical than non-critical cases (Figure 1B). This difference held when comparing 
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samples with detectable levels only (p=0.002 - Mann-Whitney test). Most patients who 

died had high vRNA compared to survivors (Figure 1C), even when the analysis was 

restricted to critical cases (Figure 1D). In univariate Cox regression analysis (Table 2) we 

found that an increase of 1 unit of log-transformed plasma vRNA led to a 3-fold increase 

in mortality risk [Hazard Ratio (HR)= 3.1 (95% Confidence Interval CI: 1.9-5.1), p < 0.0001 

for all COVID-19 (Figure 1E), and 2.5  (95% CI: 1.4 – 4.7, p=0.004) for critical (Table 2)]. 

The estimated survival proportions for undetectable (<13 copies/ml), low, or high plasma 

vRNA were extracted from Cox models (see methods for details) (28). High plasma vRNA 

was associated with a greater risk of death, whereas there was substantial overlap 

between the subgroups with low or undetectable plasma vRNA (Figure 1F). A similar trend 

was observed in the critical group (Figure 1G). Therefore, plasma SARS-CoV-2 vRNA 

load is not only a correlate of contemporaneous respiratory compromise early in disease 

course, but is also associated with mortality, including in the critical group. 

 

Markers of immune hyperactivation and tissue damage discriminate disease 

trajectories 

 As early elevation of a number of cytokines and chemokines was also associated 

with adverse COVID-19 outcome (19, 20, 29), we used multiplexed beads arrays to 

determine plasma levels of 26 proteins associated with adaptive and/or innate immune 

responses, chemotaxis, or tissue insult related to severe acute respiratory distress 

syndrome (ARDS, See Table S1 for analyte list). Principal component analysis revealed 

that the plasma profile largely delineates UC from COVID-19 patients, and highlighted 

higher cytokine levels and greater heterogeneity in the critical group compared to the non-
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critical group (Figure 2A). The outlier critical case at the upper left corner of the PCA was 

on extracorporeal membrane oxygenation (ECMO) at the time of sampling, a procedure 

known to affect plasma profile(30). Unsupervised hierarchical clustering solely based on 

the 26 measured plasma proteins parsed apart 3 patient clusters: I) mostly critical; II) 

mixed; III) mostly non-critical cases (Figure 2B). 

We next compared the levels of each analyte between groups (Figure S2A-D). Several 

followed a stepwise increase, where non-critical cases had greater cytokine 

concentrations than UC, and critical cases had the greatest amounts (Figure S2A). These 

included pro-inflammatory cytokines and chemokines IL-6, GM-CSF, TNF�, CCL2, and 

CXCL8. Some of the markers of tissue insult (RAGE, Angiopoietin-2)(31) also increased 

with disease severity, likely reflecting the extent of lung and vascular damage. CXCL9, 

CD40L, IFN� and surfactant pulmonary protein D (SP-D) were significantly greater only 

in the critical cases of COVID-19 compared to UC (Figure S2B), while a few markers did 

not differ between all three groups (Figure S2C). Some analytes were significantly 

elevated in COVID-19 groups but did not differ between the critical and non-critical groups, 

such as CXCL10 (IP10), CXCL13, and D-dimer (Figure S2D). Taken together, the plasma 

profile reveals overall higher quantities of cytokines in the plasma of COVID-19 patients 

compared to UC, and select analytes are specifically associated with greater disease 

severity. 

 We reasoned these 26 analytes may be differentially linked to the amount of vRNA 

in plasma. We examined the correlations between individual plasma analytes (Figure 

S2E), as well as their association with vRNA (Figure 2C). Many analytes were co-

upregulated, and several of them also positively correlated with vRNA levels. These latter 
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correlations were particularly robust for cytokines implicated in innate immune responses 

such as IL-6 (Figure S2F) and GM-CSF, the marker of lung damage RAGE (Figure S2G), 

and inflammatory chemokines CXCL8, CXCL10, and CCL2, suggesting a shared trigger 

or overlap in pathways. 

 To capture by a single parameter the overall magnitude of the difference in cytokine 

titers between COVID-19 patients and UC, we created a “CytoScore” from the linear 

combination of all 26 analytes (See methods for details). It followed a gradual difference, 

where the non-critical group had lower CytoScores than critical, and UC had the lowest 

scores (Figure 2D). The CytoScore correlated positively with vRNA (Figure 2E) and can 

have value in reducing dimensionality of plasma analyte profiling. 

 As patients who died within DSO60 showed a greater CytoScore than survivors 

(Figure 2F), even when restricted to critical cases (Figure 2G), we applied Cox regressing 

analyses to examine the association between the cytokines and mortality over time. We 

focused on analytes whose concentrations are in the range of robust quantitation by the 

assay (19/26, see methods for details). For each, we calculated the HR associated with a 

1-unit increase of log-transformed concentration (Figure 2H). In addition to the CytoScore, 

several individual analytes were significantly associated with increased fatality risk, with 

Angiopoientin-2, RAGE and CXCL13 showing the highest significance (p < 0.001). 

Furthermore, patients with high CytoScore at DSO11 showed a significantly lower rate of 

predicted survival at DSO60 than the low CytoScore population, both in the entire cohort 

(Figure 2I) and in the critical group (Figure 2J). Therefore, overall cytokine levels as well 

as individual cytokines and markers of tissue damage measured at DSO11 are 1) in 

majority correlated with plasma vRNA and 2) associated with increased risk of mortality 
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among COVID-19 patients.  

Low SARS-CoV-2-specific IgG and limited ADCC associated with COVID-19 mortality 

 As SARS-CoV-2 antibody responses likely play a critical role in protective immunity 

against SARS-CoV-2 (26, 32), we measured plasma SARS-CoV-2-specific antibody 

responses at DSO11. ELISA-based quantification using the SARS-CoV-2 RBD protein 

and isotype-specific secondary antibodies (24, 33) revealed a broad range in relative 

quantities of RBD-specific IgM, IgA or IgG in the non-critical and critical groups at DSO11. 

They did not differ between groups, and were not detected in UC (Figure 3A). These 

observations were corroborated by a flow cytometry-based assay measuring plasma 

binding to full-length Spike protein (Spike Ig) on cell surface (Figure 3B), which similarly 

showed no significant difference between the two COVID-19 groups.  

 We next assessed the SARS-CoV-2 Spike-specific antibody response for two key 

antiviral functions: neutralization (Figure 3C) and antibody-dependent cellular cytotoxicity 

(ADCC, Figure 3D). Here again, the data showed high variability, and no significant 

differences between the critical and non-critical groups for both readouts. All serology 

measurements were interrelated (Figure 3E). In contrast, the serology measurements 

were inversely correlated with plasma vRNA and most cytokines (Figure 3F).  

 To assess potential consequences of defective antibody responses at this early 

time point, we compared SARS-CoV-2-specific antibody responses between survivors 

and non-survivors. For RBD-specific isotypes (Figure 3G), only IgG amounts were 

significantly increased in survivors, although there was a similar trend for IgA as well. 

Spike Ig levels were also higher in survivors (Figure 3H). We observed contrasting 
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patterns with regard to functional humoral responses: while neutralization capacity was 

similar for both outcomes (Figure 3I), ADCC capacity was superior in survivors (Figure 

3J). HR reflected the same observations, where higher ADCC, RBD-specific IgG and 

Spike Ig were associated with increased survival (Figure 3K). We further modeled this by 

comparing the survival curves at DSO60 of patients with low or high RBD-specific IgG 

amounts (Figure 3L), Spike Ig (Figure 3M) or ADCC (Figure 3N) at DSO11, and saw that 

participants with low responses for these three measurements showed an increased 

fatality risk. These observations were maintained when the analysis was restricted to the 

critical group (Figure S3A-C). Taken together, these results highlight that impairment of 

some SARS-CoV-2-specific antibody responses may contribute to mortality.  

Multivariate Cox reveal plasma vRNA as pivotally associated with COVID-19 

mortality 

 As all categories of immunovirological parameters showed some perturbations that 

predicted fatality, we examined whether these alterations provided redundant information 

in terms of mortality risk, or if their combined analysis would improve associations with 

fatal outcome. Within immunovirological categories, we retained only variables significant 

in univariate Cox analysis (p < 0.05; see Table 2), and among those, a global multivariate 

model was used to select top variables (See methods for details). To evaluate predictive 

accuracy of the resulting variables in multivariate models, time-dependent receiver 

operator characteristic (ROC) curves were calculated at DSO60 (principles illustrated in 

Figure S4A). The area under the curve (AUC), a measure of prediction accuracy, was 

examined at all distinct event times by plotting the AUC curve over time (principles 

illustrated in Figure S5A, see methods for details). All final time-dependent Cox models 
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were reassessed in the validation cohort to validate the accuracy of our findings. 

 As large studies have shown associations of older age and male sex with severe 

COVID-19(34), we pre-defined adjustement by age and sex in the models. In the 

discovery cohort, time-dependent ROC for plasma vRNA showed a strong predictive 

capacity at DSO60 (AUC=0.84, 95%CI: 0.72-0.96), and a slight benefit when adjusting for 

age and sex (AUC=0.87, 95%CI:0.76-0.99 (Figure 4A). When applied to the validation 

cohort at DSO60, vRNA again had a good predictive capacity (AUC=0.75; 95%CI:0.59-

0.92), and a benefit when adjusting for age and sex (AUC=0.85; 95%CI: 0.65-1.00) 

(Figure S4B). Therefore, vRNA is a strong predictor of fatality, and adjusting for age and 

sex improves its predictive power.  

 Next, we compared the time-dependent ROC curves for inflammatory and tissue 

damage markers of the discovery cohort (Figure 4C). Multivariate model selection 

retained only 1 analyte: Angiopoientin-2. To compare predictive accuracies at DSO60, we 

selected 3 additional analytes highly significant (p < 0.001) in univariate Cox (Figure 2G): 

CytoScore, CXCL13 and RAGE (Figure 4B). Although no individual inflammatory cytokine 

was selected, the CytoScore had a high AUC (0.83, 95%CI: 0.71-0.95). Of the two 

markers of tissue insult, only Angiopoietin-2 (AUC=0.86; 95%CI: 0.55-1.00) remained 

significant (RAGE: AUC=0.80; 95%CI: 0.33-1.00). The chemokine CXCL13 (AUC=0.82, 

95%CI: 0.70-0.94) also had good predictive accuracy. All AUC values stayed quite stable 

over time (Figure S5D). In the validation cohort, only CXCL13’s AUC remained high 

(AUC=0.84, 95%CI: 0.66-0.98) and significantly discriminatory of mortality (p<0.05) 

(Figures S4C) over time (Figure S5D). These observations confirm that certain markers 

of tissue insult and chemokine, as well as the overall cytokine levels, were associated with 
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mortality risk.  

 For antibody measurements, we observed, within the discovery cohort, overlap of 

the time-dependent ROC of all three measurements significant in univariate Cox (ADCC: 

AUC=0.74, 95%CI: 0.44-1.00; Spike Ig: AUC=0.71, 95%CI: 0.25-1.00; RBD-specific IgG: 

AUC=0.71, 95%CI:0.44-0.97) at DSO60 (Figure 4C). However, the predictive value of all 

3 measurements began to drop around DSO30 (Figure S5E). We then applied the 

analysis to the validation cohort. As the cell-based ADCC assay requires significant 

infrastructure and technical expertise that may not be available in all clinical settings, we 

removed ADCC from the validation list of variables, and substituted it by the technically 

simple RBD-specific IgG, in line with their strong correlation (Figure 3C). The time-

dependent ROC curves in the validation cohort for Spike Ig (AUC=0.60; 95%CI: 0.15-

1.00) and RBD-specific IgG titers (AUC=0.59, 95%CI: 0.06-1.00) were non-significant, 

and lower than in the discovery cohort. RBD-specific IgG titers displayed best predictive 

accuracy of mortality at DSO30 when adjusted for age and sex (RBD-specific IgG: 0.81, 

95%CI: 0.50-1.00) (Figure S5G, Table S2). Taken together, these data reveal that the 

anti-SARS-CoV-2 antibody response is highly associated with mortality within 30 days of 

symptom onset, but less so afterwards. 

 After examining each variable in the setting of their category, we sought to identify 

which single parameter, or combination thereof, is the most robust. All variables selected 

by multivariate model within each category were considered for a global multivariate 

model, and age and sex covariates were forced regardless of their significance. In the 

discovery cohort, the variables selected in the global multivariate model (at DSO60 : 

AUC=0.91, 95%CI: 0.60-1.00) were vRNA (HR = 2.47, 95%CI:1.30-4.68) and 
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Angiopoietin-2 (HR = 4.22, 95%CI: 0.66-26.78), alongside the forced variables age (HR = 

1.06, 95%CI: 0.99-1.10) and sex (HR= 0.94, 95%CI: 0.24,3.70) (Figure 4D). Only vRNA 

(p=0.006) remained independently associated with a higher risk of all-cause mortality 

within DSO60 in the global multivariate model. Of note, this global multivariate model was 

only slightly better than the three-variable model of vRNA, age and sex at DSO60 (AUC: 

0.87, 95%CI: 0.76-0.99) (Figure 4DE). In the validation cohort, the predictive accuracy of 

the model combining vRNA, Angiopoietin-2, age, and sex did not reach statistical 

significance (at DSO60 : AUC:0.86, 95%CI: 0.29-1.00) (Figures 4D). However, the 

exclusion of Angiopoietin-2 improved the model’s discrimination in the validation cohort: 

the three-variable model combining vRNA, age and sex was then significant (AUC=0.85; 

95%CI: 0.66-1.00). In both discovery and validations cohorts, the predictive accuracy of 

this model remained stable over time (Figures 4E,S5G, Table S2). We confirmed the 

predictive accuracy of plasma vRNA in a third cohort, and again saw a significant 

association of the three-variable model with fatality (AUC:0.90, 95%CI: 0.84-0.96) (Table 

S2, Figure 4D).  

 A number of clinical scores and lab measurements have been developed for risk 

stratification of acutely ill patients. We therefore compared the predictive capacity of 

plasma vRNA with that of other measures taken in the clinical setting, namely two metrics 

of organ failure: the quick sequential organ failure assessment score (qSOFA)(35) and 

the ratio of partial arterial oxygen pressure and fraction of inspired oxygen (P/F ratio)(36), 

as well as plasma concentrations of C reactive protein (CRP)(19). All three variables were 

significantly associated to fatality in univariate analysis and when corrected for age and 

sex, but inferior to plasma vRNA (Table S2, Figure S4FG). When combined in a 
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multivariate with this latter parameter, qSOFA, P/F and CRP were no longer significant 

(Table S2).  

 Finally, we assessed the predictive accuracy of plasma vRNA when measured 

outside of the DSO11 timeframe. We observed that as early as DSO5, plasma vRNA was 

already predictive of fatality, and remained so at least until DSO13 (Table S4, Figure 4F). 

This observation highlights the flexibility of using plasma vRNA for risk stratification, 

including at very early time points. 

 Taken together, these data indicate that, at DSO11, measuring plasma SARS-CoV-

2 vRNA in hospitalised COVID-19 patients can be a powerful tool to predict mortality.  
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Discussion 

 In the perspective of clinical translation, it is essential to rigorously select among 

the multitude of markers linked to COVID-19-related mortality. In patients with a spectrum 

of disease severity, we studied perturbations within three categories of plasma molecules: 

circulating SARS-CoV-2 vRNA (14), immune and tissue injury markers (29) and SARS-

CoV-2-specific antibody responses (26), all of which can be probed by quick and 

technically robust assays. Strong associations of early parameters with the primary 

outcome, fatality within 60 days of symptom onset, were observed, and largely maintained 

when the analyses were restricted to the critical group of patients on mechanical 

ventilation. Multivariate analyses demonstrated that, because of collinearity between 

several variables, a limited number of biological features was sufficient to build robust 

models predicting mortality. SARS-CoV-2 vRNA stood out as an early feature strongly 

associated with higher mortality risk. The predictive accuracy of plasma vRNA was 

superior to that observed with the clinical qSOFA and P/F ratio and the clinical CRP 

quantitation. Combined analysis of SARS-CoV-2 vRNA, Angiopoietin-2, age and sex had 

greatest predictive accuracy in a discovery cohort, although a simpler model with vRNA, 

age and sex was almost as robust. This three-parameter model maintained significant and 

very consistent predictive accuracy in a validation cohort and a confirmation cohort. 

Plasma vRNA remained predictive of fatality when sampled as early as DSO5 or late as 

DSO13, indicating that it is an accurate predictor of fatality throughout the typical time of 

COVID-19-associated hospitalization (DSO7) and ICU admission (DSO10) (17, 37). 

 The strength of the association between plasma vRNA levels and mortality risk was 

stronger than previously reported for nasopharyngeal swabs (NSW) (38). In contrast to 
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plasma, quantification of vRNA in NSW is hard to normalize, varies between types of tests, 

and depends on sample quality. Cox models showed a 3-fold increase of fatal outcome 

for every 1-unit increase in log-transformed plasma vRNA quantity. While this association 

is reminiscent of the remarkable predictive value of plasma viral load for disease 

progression in untreated HIV-1 infection (39), no study has thus far convincingly 

demonstrated that therapeutic reduction of SARS-CoV-2 viral loads decreased mortality 

risk. For example, the antiviral remdesivir reduced viral loads in NSW, duration of 

symptoms, and hospitalization, but had no significant impact on survival (40, 41). 

Similarly, although monoclonal anti-Spike antibodies can reduce viral load (42, 43), trials 

have not yet shown benefit in hospitalized patients. Given disease heterogeneity, it will be 

important to determine if such interventions specifically benefit the subgroup of patients 

with high plasma vRNA. 

 The source and precise nature of the plasma vRNA remains to be better 

determined. Viral nucleic acids in the plasma do not prove the presence of replication-

competent viral particles, as they could be viral debris translocated from damaged lung 

tissue. This is supported by the correlation we saw between vRNA and RAGE : as RAGE 

mRNA was not expressed in the PBMCs of severe COVID-19 (29), plasma RAGE likely 

originates from damaged tissue (31). Besides the cytopathic effects of SARS-CoV-2 on 

lung epithelium, immunopathological mechanisms likely play key roles in severe COVID-

19 pathogenesis (44). Systemic vRNA may trigger pathogen-recognition receptors such 

as TLRs, in line with strong co-upregulation of interferon-stimulated genes (ISGs) and 

other inflammatory pathways in vRNA-containing cells (45). This could contribute to the 

strong correlation observed between the amount of vRNA and IL-6, a pathogen-
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associated molecular pattern (PAMP)-triggered inflammatory cytokine (46). 

 Consistent with previous studies (19, 20), we found significant associations 

between levels of several immune and tissue damage markers with both disease severity 

and mortality. Despite strongly significant HR for fatality risk for some analytes, the small 

sample size of our study resulted in sizeable overlaps between confidence intervals and 

variable rankings of HR values between the discovery and validation cohorts. An 

integrated CytoScore partially compensated for individual marker variability by giving an 

overall assessment of the magnitude of the cytokine storm. Notable individual markers 

were associated with fatal outcome, including Angiopoietin-2, CXCL13 and RAGE. While 

Angiopoietin-2 was less strongly correlated with vRNA than RAGE, it appears of 

significant interest in severe COVID-19 (47). This angiogenic factor has pro-inflammatory 

effects on the vascular endothelium, can disrupt vascular integrity and has been 

associated with ARDS (48) and might be a potential druggable target. We also observed 

a strong correlation of these markers of lung and vascular damage with plasma vRNA 

levels, which complement other reports showing a similarly strong association with 

biomarkers of heart and kidney damage (49). 

 Antibody responses likely contribute to viral control in acute SARS-CoV-2 infection 

(16, 26), supported by the negative associations we observed between plasma vRNA and 

SARS-CoV-2-specific antibody responses. Whereas the antibody levels between the 

critical and non-critical groups were similar, mortality was overrepresented among 

patients who, at DSO11, had low RBD-specific IgG and low total Spike-binding Ig, 

although not in those with low RBD-specific IgM response. Low IgG isoform among RBD-

specific antibodies of deceased patients may indicate a disruption in B cell functions 
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requiring T-cell help, like class-switching to IgG, possibly linked to inadequate T follicular 

helper (TFH) and/or germinal centers (GC) disruption (50). CXCL13 is a key chemokine 

for recruitment to the GC of TFH and B cells (51), and plasma CXCL13 is a marker of GC 

activity (52). The positive associations of CXCL13 levels with vRNA loads and fatality risk 

and the inverse correlation of CXCL13 levels with antibody responses may seem 

paradoxical, but high amounts of circulating CXCL13 might disrupt the dynamics of B cell 

recruitment to GCs. In addition, heightened systemic inflammation can impair 

development of adaptive immunity (53, 54). These mechanisms may converge to reduce 

RBD-specific IgG responses in patients who succumb to their infection.  

 Defective early ADCC responses were also significantly associated with fatality, 

whereas we found only a non-significant trend for neutralization capacity. These 

observations support that Fc-mediated functions could be important in controlling SARS-

CoV-2, in line with recent reports showing that compromised Fc receptor binding strongly 

correlated with COVID-19 mortality(26), and Spike-specific humoral responses, including 

higher Fc-effector functions, were enriched among survivors (55). Furthermore, antibodies 

with intact Fc-effector functions were required for optimal protection against infection and 

correlated with decreased viral loads in animal models (56, 57). 

 

 A limitation of our study is that we focused on inpatients who were usually 

hospitalized following worsening of their clinical condition, this occurring typically a few 

days after symptom onset. At this stage, some critical pathogenesis events have likely 

already occurred, which may narrow the window for some targeted interventions. This 

also excluded patients who were discharged early in their hospitalisation. Complementary 
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outpatient studies at very early time points will help identify factors that predict this initial 

worsening, and determine their overlap with the features detailed here.  

 The significant interactions we observed between a number of the features 

measured are compatible with different, non-mutually exclusive mechanisms. Poor 

development of protective antibody responses may allow persistently high levels of viral 

replication, which in turn will lead to a cytokine storm. Conversely, high cytokine levels, 

perhaps driven by systemic vRNA, may disrupt adaptive immune responses. Although our 

observational study does not allow addressing the question of causation between the 

immunovirological alterations observed, these measurements can be useful tools to 

understand heterogeneity in disease trajectories and response to therapy, particularly in 

the context of large, well-controlled randomized controlled trials. High viral loads and low 

levels of SARS-CoV-2-specific IgG may be mitigated through antivirals, monoclonal 

antibodies or convalescent plasma therapy with high IgG content. People with high levels 

of selected cytokines may benefit the most from targeted immunotherapies. While recent 

trials have already resulted in improvement in clinical patient care, the predictive accuracy 

of plasma vRNA we observed and validated in patients hospitalized during the first 

COVID-19 wave was confirmed in patients recruited during the second and third waves. 

Still, it will be important to assess how new therapeutic strategies, affect the potential of 

such immunovirological monitoring not only to predict outcome, but potentially to 

individualize patient management.  

 

  



116 

Material and methods 

Participants and samples 

SARS-CoV-2 positive patients admitted to the Centre Hospitalier de l’Université de 

Montréal (CHUM) or the Jewish General Hospital (JGH) were recruited into the Biobanque 

Québécoise de la COVID-19 (BQC19) (58). Samples from CHUM made up the discovery 

and confirmation cohort, and samples from JGH were the validation cohort. Blood draws 

were performed at baseline and when possible, at Day 2 (± 3 days) and Day 7 (± 3 days) 

after enrollment. The study was approved by the respective IRBs and written, informed 

consent obtained from all participants or, when incapacitated, their legal guardian before 

enrollment and sample collection. Blood draws were also performed on 50 asymptomatic, 

NSW PCR negative uninfected controls (UC).  

COVID-19 hospitalized patients were stratified based on severity of respiratory support at 

the DSO11 timepoint: critical patients required mechanical ventilation (endotracheal, non-

invasive ventilation, extracorporeal membrane oxygenation - ECMO), and non-critical 

patients, encompassing patients with moderate disease required no supplemental oxygen 

and patients with severe disease required nasal cannula for oxygen. Mortality was 

followed up to 60 days. Medical charts were reviewed by two physicians for data collection 

on demographics, co-morbidities, risk factors, severity state, time of infection, etc (see 

Table 1). Median age and range for UC cohort was 37 (32-46), and 30 individuals were 

males (60%).  
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Quantification of SARS-CoV2 RNA 

Absolute copy numbers of SARS-CoV-2 RNA (N region) in plasma samples were 

measured by real time PCR. Total RNA was extracted from 230 μL of plasma collected 

on ACD using the QIAamp Viral RNA Mini Kit (Qiagen Cat. No. 52906). Two master 

reaction mixes with specific primers and probes were prepared for quantification of N gene 

from SARS-CoV-2 and 18S (as a control for efficient extraction and amplification). 

Absolute copy numbers N region in were measured by real time PCR. A positive and no-

template controls were included in all experiments. Purified RNA N transcripts (1328 bp) 

were quantified by Nanodrop and the RNA copy numbers were calculated using the 

ENDMEMO online tool (see STAR methods for details).  

 

Measurements of plasma analytes by beads array 

Duplicates of SARS-CoV-2-inactivated plasma samples were analyzed using a 

customized Human Magnetix Luminex Assay (LXSAHM-26, R&D, see Table S1 for 

analyte list).  

Some cytokines and tissue damage markers were at very low concentrations, and the 

quantification platform we used was not sensitive enough to reliably them in most 

samples. As such, analytes with extrapolated values >90% and negative values>15% 

were identified by � in Figures 2, 3 and S2.  

 

CytoScore 

For k analytes (n=26), the CytoScore for each sample was calculated as follows  
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(∑_(n=1)^k▒(c_(n )-µ_n^UC)/(σ_n^UC ))/k 

where 

cn  is the concentration for analyte n, 

µ_n^UC  is the mean concentration of uninfected control samples for analyte n 

σ_n^UC is the standard deviation of uninfected control samples for analyte n 

 

Serology measurements 

Plasma from uninfected donors were used as negative controls and used to calculate the 

seropositivity threshold in our ELISA and flow cytometry assays. The monoclonal antibody 

CR3022(59) was used as a positive control. 

 

RBD-specific ELISA  

The SARS-CoV-2 RBD ELISA assay used was recently described (24). The seropositivity 

threshold was established using the following formula: mean of all COVID-19 negative 

plasma + (3 standard deviation of the mean of all COVID-19 negative plasma) (see 

supplemental material for details). 

 

Flow cytometry analysis of cell-surface staining  

As recently described(24), plasma from SARS-CoV-2-infected or uninfected individuals 

(1/250 dilution) were added onto 239T cells expressing Spike and GFP. Alexa Fluor-647-
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conjugated goat anti-human IgG (H+L) Abs (Invitrogen) were used as secondary 

antibodies. The seropositivity threshold was established using the following formula: mean 

of all COVID-19 negative plasma + (3 standard deviation of the mean of all COVID-19 

negative plasma + inter-assay coefficient of variability) (see supplemental material for 

details). 

 

Virus neutralization assay 

As recently described(24), 293T-ACE2 target cells were infected with single-round 

luciferase-expressing pseudoparticles bearing the SARS-CoV-2 Spike in presence of 

patient plasma at different dilutions. The neutralization half-maximal inhibitory dilution 

(ID50) represents the plasma dilution to inhibit 50% of the infection of target cells (see 

supplemental material for details). 

 

ADCC assay with SARS-CoV-2 Spike expressing cells 

As previously described(60), patient plasma was tested for antibody-dependent cellular 

cytotoxity (ADCC) activity against SARS-CoV-2 pseudo-infected cells. Target cells (1:1 

ratio of stained CEM.NKr CCR5+ and CEM.NKr. Spike+) and effector cells (stained 

PBMCs) were mixed at a ratio of 1:10. Plasma from COVID-19 (1/500 dilution) were added 

and co-cultures were incubated for 6 hrs. ADCC was calculated by gating on Spike-

expressing live target cells and using the formula: 

%ADCC=  (〖%GFP〗_(targets+effectors)-〖%GFP〗_(targets+effectors+plasma))/〖

%GFP〗_targets   x 100 
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%ADCC obtained with plasma was further normalized to positive control. The specificity 

threshold was established using the following formula: mean of all COVID-19 negative 

plasma + 3 standard deviation of the mean of all COVID-19 negative plasma. 

 

Clinical scores. The qSOFA and P/F ratios were calculated based on data clinically 

collected into the patients’ medical record of the hospital stay. The qSOFA score (quick 

Sepsis Related Organ Failure Assessment) was calculated as previously described (35). 

It uses three criteria, assigning one point for low blood pressure (SBP≤100 mmHg), high 

respiratory rate (≥22 breaths per min), or altered mentation. The ratio of partial arterial 

oxygen pressure and fraction of inspired oxygen (P/F ratio) was approximated based on 

the oxygen saturation measured by pulse oximetry and the fraction of inspired oxygen by 

nonlinear imputation, as described(36). 

 

CRP quantitation. The measurement of C-reactive protein (CRP) in plasma was 

performed by the clinical biochemistry laboratories of the respective hospitals where 

patients were recruited (CHUM and JGH).  

 

Statistical analyses and multivariate models  

Methods for univariate models. The association between of measured variables and time 

to death was analyzed by Cox Proportional Survival Hazard. The dependent variable in 

all survival analyses was time to death during the follow-up, measured in days. Subjects 

were censored upon reaching 60 days of follow-up (no patients withdrew within this 
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timeframe). The time 0 was defined as a day of symptoms onset. Univariate Cox 

Proportional Hazard regression was used to determine the association plasma analytes 

and all-cause mortality at DSO60 for all COVID-19+ patients, as well as critical patients’ 

subgroup only. Analytes were log-transformed when they naturally followed exponential 

distribution, for example vRNA and cytokines. Next, the estimated survival proportions at 

any given point in time for a undetectable (when applicable), low lower interquartile range 

level of detectable) or high (upper interquartile range of detectable) were extracted from 

Cox models(28) and presented in the graphical form(28). 

Part 1. Multivariate Cox model. Potential risk factors were grouped in 3 categories: i) 

vRNA, ii) 26 cytokine variables and iii) 6 antibody variables. Model building was performed 

in three steps. In the first step, univariate models for risk factor of death by DSO60 were 

developed, one for each of the covariates in the category; only risk factors p value <0.05 

were retained. For the second category of 26 cytokines, an additional criterion of variable 

selection was applied to ensure the quality of the measurements: the cytokines with 

extrapolated values >90% and negative values>15% were excluded for future 

investigation. These exclusion criteria were added as the quantification platform we used 

was not sensitive enough to reliably quantify some low-concentration analytes, and we 

wanted to rely on analytes which are well quantified for our multivariate model. 19 

cytokines out of 26 were satisfied these criteria. In the second step, categories for which 

more than one variable had been retained in the first step were focused on; then the 

stepwise Cox model selection based on the Bayesian Information Criterion (BIC) was 

used to obtain the most-parsimonious model (lowest value) for each of these categories. 

This penalized likelihood criterion selects the best variable at predicting data, then adds 
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one additional variable at a time while accounting for potential overfitting, in the end only 

selecting the multivariate model with the lowest BIC value, i.e. the most parsimonious. In 

addition, to keep the risk of overfitting low, no more than six predictor parameters were 

entered in the multivariate model for our sample of 61 patients(61, 62).  

 In the third step, all variables retained in the second step were considered; then the 

BIC was used to obtain a global parsimonious model. Based on the literature (63), age 

and sex are associated with the mortality for COVID-19 patients, however in the small 

homogeneous sample in might be hard to detect these relations. Thus, in each model Age 

and Sex covariates were forced in the multivariate model regardless their significance. 

Potential interactions between each covariate with age and sex were tested to verify if the 

effect is consistent across different age and between sex. Potential presence of 

multicollinearity was assessed by calculating the variance inflation factor (VIF) for each 

variable. This allowed us to identify and treat in separate models subsets of covariates 

which were highly correlated.  

Part 2. Time dependent ROC curve. To evaluate predictive accuracy of survival models 

the time-dependent receiver operator characteristic (ROC) curves for right-censored data 

(64) were calculated, compared across different Cox models and presented in the 

graphical form. The inverse probability of censoring weighting technique (IPCW) was used 

for estimating time-dependent ROC curves (65). The area under the curve (AUC) was 

examined at 60 days as well at all distinct event times by plotting the AUC curve and the 

95% confidence limits over time. The day 48 corresponds the last event (fatality) day in 

the discovery cohort. 

Part 3. Independent cohorts validation. All final multivariate Cox models were reassessed 
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in the validation and confirmation cohorts by executing independently the multivariate 

models with the same list of variables obtained, in the discovery cohort, in steps 2 and 3. 

Then, using the same approach described above, the time dependent ROC curves were 

evaluated in validation dataset to validate our finding.  

Sensitivity analysis. Two additional sensitivity analyses were performed. Firstly, to 

compare predictive capacity of the final selected model vs models with easily available 

clinical measures (qSOFA, P/F and CRP), the univariate and multivariate Cox regressions 

were presented.  Discovery cohort was used for qSOFA and P/F. Three study cohorts 

were combined for the analysis with CRP due to partially available data in each cohort. 

Secondary, to see how the final results were affected by earlier time point measurements 

and shorter time windows, three new data sets were extracted from longitudinal 

measurements of the combined cohorts at DSO[3-7], DSO[8-11] and DSO[12-15] 

timeframe. The final Cox regressions models were repeated for each dataset. 
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Figures 

Figure 3.1 High quantity of SARS-CoV-2 RNA in plasma at DSO11 is associated with increased 
risk of mortality. A) Pie charts representing the fractions of assessed samples which had undetectable 
(aviremic, light shades, <13 copies/mL) or detectable SARS-CoV-2 vRNA (³13 copies/mL, dark shades). 
Numbers in parts refer to the number (and percentages) of patients within each cohort. Non-critical and 
critical subgroups compared by Chi Square test. B) Quantities of N copies of SARS-CoV-2 RNA detected 
per mL of plasma in each cohort. Dotted line is the limit of detection (13 copies/mL). Empty shapes have 
undetectable vRNA (arbitrarily set at 5 copies/mL for representation). CD) Amounts of N copies of SARS-
CoV-2 RNA detected per mL of plasma in patients which survived (white column) or died (grey column) by 
DSO60 for C) total cohort or D) critical subgroup only. Red circles represent critical patients, and blue are 
non-critical. E) HR with 95%CI calculated using Cox regression for an increase of 1 unit of log10-
transformed vRNA (copies/mL). FG) Modelization of the hazard ratio of patients with high (orange, upper 
IQR), low (purple, lower IQR) or undetectable (grey) plasma vRNA in F) all COVID-19 patients or G) Critical 
cases only. B) Kruskall-Wallis with Dunn’s multiple comparisons test. C)  Mann-Whitney test. n = 61 COVID-
19 subjects (13 mortalities) or 29 Critical COVID-19 cases (11 mortalities) and 10 UC. IQR = interquartile 
range, calculated among detectable vRNA quantities only. 
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Figure 3.2 High cytokine titers in plasma at DSO11 discriminates critical disease and is 
associated with increased risk of mortality. A) Principal component analysis (PCA) representation of 

critical and non-critical patients (at DSO11), and UC (at baseline), on the basis of the 26 plasma analytes. 

Color-coded squares represent the mean PC coordinates for each group. Length of arrow indicates 

contribution of analytes to PCs. Numbers in parentheses along axes are the percentage of variance that PC 

accounts for. B) Heatmap analysis of log-transformed concentrations of all 26 plasma analytes (yellow = 

high relative expression; blue = low relative expression), with unsupervised hierarchical clustering of the 
analytes (top dendrogram) or of patients (left dendrogram). Left-most column represents outcome at DS60 

(white = survival, black = deceased). Following column is the severity of the patient at DSO11. C) Table 

showing the Spearman R values and corresponding p values of correlation of each plasma analyte with 

plasma vRNA. Values shaded in grey are non-significant. D) Comparison of CytoScore of each cohort (see 

methods for details on CytoScore). E) Correlation between plasma vRNA and CytoScore. Empty shapes 

are aviremics (<13 copies SARS-CoV-2/mL of plasma). FG) CytoScore of patients whom survived (white 

column) or deceased (grey column) by DSO60 for F) all COVID-19 patients or G) critical subgroup only. H) 

HR with 95%CI calculated using Cox regression for a 1-unit increase of the log10-transformed concentration 
of each plasma analyte with robust detection (see methods for details) and CytoScore. IJ) Modelization of 

the hazard ratio of patients with high (orange, upper IQR) or low (purple, lower IQR) CytoScore in I) all 

COVID-19 patients or J) critical subgroup only. CE) Spearman correlations. D) Kruskall-Wallis with Dunn’s 

multiple comparisons test. F) Mann-Whitney test. For A-B, D-F, color-coded dots represent severity of the 

patient at DSO11 (red = critical, blue = non-critical), or UC cohort (green). BD) Cytokines with titles 

annotated by Æ are poorly detected (See methods for details). n = 61 COVID-19 subjects (13 mortalities) 

or 29 Critical COVID-19 cases (11 mortalities) and 43 UC. IQR = interquartile range, calculated within the 

CytoScores of the COVID-19 discovery cohort.  
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Figure 3.3  Limited IgG responses against SARS-CoV-2 Spike at DSO11 is associated with 
mortality. A) ELISA-based relative quantification of SARS-CoV-2 RBD-specific antibodies’ isotypes IgM 

(left), IgA (center) or IgG (right) in Relative light units (RLU) normalized to an internal control (CR3022). B-
D) Comparison of functional properties of the plasma of all three groups, namely B) plasma capacity to 

recognize the SARS-CoV-2 full Spike (Spike Ig) using a flow cytometry-based assay (Median Fluorescence 

Intensity - MFI); C) plasma neutralization activity (unit = half of maximal inhibitory plasma dilution – ID50); 

D) plasma ADCC activity (unit = % of ADCC-mediated killing). EF) Correlation matrixes with colors 
representing the Spearman R value (blue = negative association -1; red = positive association 1), and p 

values indicated as * in the circles, E) between all serology measurements or F) of serology measurements 

versus plasma vRNA and plasma analytes. G-J) Comparison of serology measurements in patients who 

survived (white column) or deceased (grey column) by DSO60, for G) RBD-specific IgM (left), IgA (center) 

or IgG (right) or H) Full Spike binding, I) Neutralization or J) ADCC. K) Hazard ratio with 95%CI calculated 

using Cox regression for an increase of 1 unit of log10-transformed (square) or 10 units (diamond) of serology 

measurements. L-N) Modelization of the hazard ratio over time of patients with high (orange, upper IQR) or 

low (purple, lower IQR) L) RBD-specific IgG, M) Spike Ig or N) ADCC activity in all COVID-19 patients. A-
D) Kruskall-Wallis with Dunn’s multiple comparison test. EF) Spearman R correlation. F) Cytokines with 

titles annotated by Æ are poorly detected. G-J) Mann-Whitney test. For G-J, color-coded dots represent 

severity of the patient at DSO11 (red = critical, blue = non-critical) and dotted line represents the limit of 

detection. EFL) p <0.05 = * ; p <0.01 = ***; p < 0.001 = ***. n = 61 COVID-19 subjects (13 mortalities) or 29 

Critical COVID-19 cases (11 mortalities) and 43 UC. IQR = interquartile range, calculated within the COVID-
19 discovery cohort. 
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Figure 3.4  Time-dependent ROC curves reveal plasma vRNA as reproducibly associated with 
mortality in both the discovery and validation cohorts. A-C) Time-dependent ROC curves measured 

within the discovery cohort for A) plasma vRNA, age and sex; B) Cytokines and tissue insult markers or C) 
anti-SARS-CoV-2 antibody responses. D) Time-dependent ROC curves of top multivariate models selected 

by BIC stepwise selection in the Discovery (left), Validation (center) and Confirmation cohorts (right). E) 

Time-dependent AUC of multivariate models over time in the Discovery cohort. F) Hazard ratio of plasma 

vRNA when sampled at DSO5, DSO9 or DSO13. HR adjusted for age and sex or not. Discovery : n= 61 ; 
Validation : n=87 ; Confirmation : n = 69. 
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Tables 

Table 3.1  Baseline characteristics of the participants and respiratory support at time 

of immunovirological profiling. † 

  Discovery cohort (n=61) Validation cohort (n=87) Confirmation cohort (n=69) 

  
Non-

Critical 
Critical  

Entire 

cohort 

Non-

Critical 
Critical  

Entire 

cohort 

Non-

Critical 
Critical  

Entire 

cohort 

Variable (n=32) (n=29) (n=61) (n=68) (n=19) (n=87) 
(n=42 or 

24)** 

(n=27 or 

13)** 

(n=69 or 

37)** 

Age 63 (49-80) 62 (51-68) 62 (49-73) 75 (57-88) 70 (55-73) 71 (56-84) 56 (49-71) 70 (57-79) 63 (51-75) 

Sex                   

Male 17 (53%) 20 (69%) 37 (61%) 33 (49%) 11 (58%) 44 (51%) 29 (69%) 16 (59%) 45 (65%) 

Female 15 (47%) 9 (31%) 24 (39%) 35 (51%) 8 (42%) 43 (49%) 13 (31%) 11 (41%) 24 (34%) 

Days since symptom onset 10 (8.5-13) 11 (10-12) 11 (9-12) 10 (8-12) 11 (9-12) 10 (9-12) 11 (10-12) 11 (10-13) 11 (10-13) 

Days since hospital 

admission 

5.5 (3-7) 5 (3-7) 5 (3-7) 4 (2-8) 5 (3-8) 5 (2-8) 5.5 (3-8.5) 5 (0-5) 5 (3-7) 

Respiratory support                   

no O2 20 (62%) 0 (0%) 20 (33%) 48 (71%) 0 (0%) 48 (55%) 23 (55%) 0 (0%) 23 (33%) 

NC 12 (38%) 0 (0%) 12 (20%) 20 (29%) 0 (0%) 20 (23%) 19 (45%) 0 (0%) 19 (28%) 

NIV 0 (0%) 7 (24%) 7 (12%) 0 (0%) 5 (26%) 5 (6%) 0 (0%) 15 (56%) 15 (22%) 

ETI 0 (0%) 20 (69%) 20 (33%) 0 (0%) 14 (74%) 14 (16%) 0 (0%) 12 (44%) 12 (17%) 

ECMO 0 (0%) 2 (7%) 2 (3%)  0 (0%) 0 (0%)  0 (0%)  0 (0%) 0 (0%) 0 (0%) 

Total metabolic risk factors 

(0-4) 

2 (1-3) 2 (1-3) 2 (1-3)             

none 3 (9%) 6 (21%) 9 (15%)             

one or more 29 (91%) 23 (79%) 52 (85%)             
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Overweight, yes* 17 (53%) 21 (72%) 38 (62%)             

Hypertension, yes 20 (63%) 15 (52%) 35 (57%) 42 (62%) 13 (69%) 55 (63%) 9 (38%) 9 (69%) 18 (49%) 

Dyslipidemia, yes 13 (41%) 11 (38%) 24 (39%) 11 (16%) 3 (16%) 14 (16%) 7 (29%) 11 (85%) 18 (49%) 

Diabetes, yes 9 (28%) 10 (35%) 19 (31%) 20 (29%) 9 (47%) 29 (33%) 8 (33%) 11 (85%) 19 (51%) 

Total chronic diseases (0-8) 0 (0-1) 0 (0-1) 0 (0-1)             

non 22 (69%) 17 (59%) 39 (64%)             

one or more 10 (31%) 12 (41%) 22 (36%)             

Chronic renal failure, yes 4 (13%) 6 (21%) 10 (16%) 9 (13%) 2 (11%) 11 (13%) 3 (13%) 3 (23%) 6 (16%) 

Chronic heart failure, yes 2 (6%) 2 (7%) 4 (7%) 12 (18%) 2 (11%) 14 (16%) 2 (8%) 0 (0%) 2 (5%) 

Chronic Respiratory failure, 

yes 

3 (9%) 5 (17%) 8 (13%) 6 (9%) 5 (26%) 11 (13%) 5 (21%) 0 (0%) 5 (14%) 

Chronic Liver failure, yes 0 (0%) 0 (0%) 0 (0%) 2 (3%) 0 (0%) 2 (2%) 0 (0%) 0 (0%) 0 (0%) 

Organ transplant, yes 2 (6%) 2 (7%) 4 (7%)       n/a n/a n/a 

Immunosuppression, yes 5 (16%) 4 (14%) 9 (15%) 2 (3%) 2 (11%) 4 (5%) 0 (0%) 3 (25%) 3 (8%) 

Active cancer, yes 1 (3%) 3 (10%) 4 (7%) 9 (13%) 4 (21%) 13 (15%) 3 (13%) 0 (0%) 3 (8%) 

HIV, yes 1 (3%) 1 (3%) 2 (3%) 1 (2%) 0 (0%) 1 (1%) n/a n/a n/a 

Total risk factors 

(Metabolic/organ, 0-12) 

2 (1-3) 3 (1-4) 2 (1-4)             

non 2 (6%) 6 (21%) 8 (13%)             

one or more 30 (94%) 23 (79%) 53 (87%)             

ICU admission, yes 3 (9%) 27 (93%) 30 (49%) 7 (10%) 17 (90%) 24 (28%) 2 (8%) 12 (80%) 14 (35%) 

Intubation, yes 2 (6%) 22 (76%) 24 (39%) 7 (10%) 17 (90%) 24 (28%) 1 (4%) 9 (75%) 10 (29%) 

Duration of intubation (days) 0 (0-0) 20 (4-27) 0 (0-18)       n/a n/a n/a 

Duration of hospital stay (or 

in-hospital death) 

10.5 (6-16) 26 (14-44) 16 (9-30) 14 (8-

26.5) 

23 (19-48) 18.5 (10-

28) 

10.5 (7.5-

14.5) 

21 (13-34) 12 (8-27) 

Outcome                   
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Death up to 60 days                   

alive 30 (94%) 18 (62%) 48 (79%) 61 (90%) 14 (74%) 75 (86%) 42 (100%) 16 (59%) 58 (84%) 

dead 2 (6%) 11 (38%) 13 (21%) 7 (10%) 5 (26%) 12 (14%) 0 (0%) 11 (41%) 11 (16%) 

 

Note: *N_missing=8 patients for Discovery cohort  

**Only Age, sex and Days since symptom onset variables have complete data in Confirmation 
cohort, otherwise the partial data is available for Confirmation cohort 

 

† Values displayed are medians, with IQR: interquartile range in parentheses for continuous variables, or 
percentages for categorical variables. Percentages are rounded to the nearest unit. 
‡ “Non critical illness” includes hospitalized patients with no oxygen support (no O2) (moderate disease) and 
oxygen support on nasal cannula (NC) only (severe, but non-critical disease).“Critical illness” includes 
hospitalized patients on mechanical ventilation, either : positive pressure non-invasive ventilation (NIV), 
endotracheal intubation (ETI), extracorporeal membrane oxygenation (ECMO). 
¶ Only ICU admission and intubation are different between Non-critical and critical, due to selection bias (at 
p <0.05) in any of the patient characteristic.  
# For continuous variables, statistical test: Mann-Whitney U test, unpaired t test. For categorical variables, 
Chi Square test.  

Values highlighted in yellow are statistically different between critical and non-critical groups. Values 
highlighted in blue are statistically different between discovery and validation cohorts. 

Values highlighted in green are statistically different between discovery and confirmation cohorts. 
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Table 3.2  Univariate Cox proportional hazard regression of single variables measured 

in COVID-19 patient plasma at DSO11.  

  Discovery cohort 

Variable 

All COVID-19+ at DSO11 (n=61) 
Critical COVID-19+ subset at DSO11 

(n=29) 

HR(95%CI) p value HR(95%CI) p value 

1 unit   1 unit   

Viral Load         

vRNA (copies/mL of plasma)* 3.1 (1.9, 5.1) <0.001 2.5 (1.4, 4.7) 0.004 

Serology         

RBD-specific IgG (RLU)* 0.3 (0.1, 0.8) 0.011 0.3 (0.1, 0.7) 0.005 

RBD-specific IgM (RLU)* 0.5 (0.2, 1.4) 0.186 0.4 (0.1, 1.3) 0.144 

RBD-specific IgA (RLU)* 0.4 (0.2, 0.98) 0.045 0.3 (0.1, 0.8) 0.014 

Spike Ig (MFI)* 0.6 (0.5, 0.9) 0.006 0.5 (0.3, 0.8) 0.002 

Neutralization (ID50)* 0.8 (0.6, 1.1) 0.172 0.7 (0.5, 0.9) 0.020 

ADCC (%) ¨ 0.7 (0.5, 0.9) 0.006 0.1 (0.5, 0.9) 0.004 

Cytokines         

Angiopoietin-2* 14.5 (3.4, 62.1) 0.001 6.7 (1.4, 33.0) 0.018 

CCL2/JE/MCP-1* 5.6 (1.7, 18.4) 0.005 2.8 (0.8, 10.2) 0.115 

CCL20/MIP-3 alpha* 2.9 (1.2, 6.8) 0.016 1.4 (0.5, 4.0) 0.578 

CCL7/MCP-3/MARC* 4.0 (1.0, 15.6) 0.050 5.2 (0.9, 30.7) 0.068 

CD40 Ligand/TNFSF5* 5.6 (1.0, 30.8) 0.049 6.7 (0.8, 55.7) 0.080 
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CXCL10/IP-10/CRG-2* 16.7 (0.7, 423.5) 0.088 5.5 (0.2, 161.2) 0.323 

CXCL13/BLC/BCA-1* 6.7 (2.6, 17.2) <0.001 4.3 (1.6, 11.7) 0.005 

IL-8/CXCL8* 5.6 (1.7, 18.6) 0.005 3.8 (1.0, 14.3) 0.048 

CXCL9/MIG* 2.2 (0.8, 6.4) 0.133 1.2 (0.5, 2.9) 0.621 

D-dimer* 5.0 (0.5, 49.9) 0.174 0.4 (0.02, 8.5) 0.548 

G-CSF* 3.3 (1.1, 10.2) 0.034 3.5 (1.1, 10.8) 0.032 

GM-CSF* 9.4 (1.7, 50.7) 0.009 7.3 (1.02, 51.4) 0.047 

IFNa* 2.4 (0.9, 6.5) 0.087 2.4 (0.8, 7.0) 0.114 

IL-1ra/IL-1F3* 8.0 (1.9, 33.7) 0.004 2.8 (0.6, 14.4) 0.214 

IL-23* 13.7 (2.2, 85.6) 0.005 7.2 (1.1, 46.3) 0.038 

IL-6* 2.6 (1.4, 5.0) 0.003 1.5 (0.7, 3.3) 0.315 

SP-D* 5.2 (1.0, 26.3) 0.047 2.2 (0.3, 15.7) 0.433 

TNFa* 16.5 (2.7, 102.5) 0.003 6.6 (0.9, 50.9) 0.069 

RAGE/AGER* 7.9 (2.3, 27.9) 0.001 4.4 (1.01, 18.9) 0.049 

CytoScore** 2.6 (1.6, 4.2) <0.001 1.9 (1.1, 3.4) 0.0335  

 

*Variables are log10 transformed. HR shown are for an increase of 1 unit of log10-transformed variable.  

**Refer to Material and Methods for details.  

¨HR for increase of 10 units. 

RLU = Relative Light Units, normalized to internal control (CR3022) (see methods for details). ADCC = 
antibody-dependent cellular cytotoxicity 
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Supplemental Data 

 
Fig. S3.1  Study design (A) Study Design and analyses performed on the three COVID-19 cohorts 
(discovery, n=61; validation, n=87; and confirmation, n=69) and the uninfected cohort. In addition, 62 
patients who were sampled at very early time points (before DSO7) were included for longitudinal testing of 
selected models. (B) Survival curve in the discovery cohort based on days since symptom onset. (C) Within 
the discovery cohort, Kaplan-Meier analysis of survival in Non-critical (blue) compared to Critical (red) 
subgroups, whose disease severity was assessed at DSO11. Curves compared using Log-rank (Mantel-
Cox) test. n = 61 COVID-19 patients (13 fatalities). 
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Fig. S3.2  Inflammatory cytokines, chemokines and markers of tissue damage are increased in 
critical cases of COVID-19. (A-D) Comparison of cytokine concentrations between critical COVID-19, non-
critical COVID-19 and UC. Cytokines and markers of tissue damage grouped according to differential 
detection: (A) Greatest in critical (Crt), but also higher in non-critical (N-Crt) compared to UC; (B) Similar 
between UC and non-critical, but greater in critical COVID-19; (C) No differences between all three groups; 
(D) Greater in COVID-19 compared to UC, but similar between non-critical and critical. (E) Correlation matrix 
of all 26 plasma analytes and CytoScore (see methods for details on CytoScore). Color of circle represents 
Spearman R value (red = 1, blue = -1) and respective p values are represented by * within circles (p < 0.05 
= *; p < 0.01 =** ; p<0.001=*** ; p<0.0001=****). (FG) Correlation of plasma vRNA and plasma concentration 
of (F) IL-6 or (G) RAGE (pg/mL). (H) Comparison of CytoScore between aviremics (<13 vRNA copies/mL) 
and viremics (³ 13 copies/mL). Mann-Whitney test. A-D) Kruskall-Wallis with Dunn’s multiple comparisons 
test. For A-D, F-H, color-coded dots represent severity of the patient at DSO11 (red = critical, blue = non-
critical, green=UC). For A-E, cytokines with titles annotated by Æ are poorly detected (see methods for 
details). n = 61 COVID-19 subjects (13 mortalities) and 43 UC. 
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Fig. S3.3  Association of poor outcome with low RBD-specific IgG titers is maintained in the 
critical COVID-19 group. (A-C) Modelisation of the predicted survival curves of patients with high (orange) 
or low (purple) (A) RBD-specific IgG, (B) Spike-specific Ig or (C) ADCC activity in critical COVID-19 patients. 
n = 29 Critical COVID-19 cases (11 mortalities). The predicted values were calculated from the respective 
Cox regression models. 
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Fig. S3.4  Reproducibility of predictive accuracy for mortality in the validation and confirmation 
cohorts. A) Concept of time-dependent ROC curves. A ROC is defined by the false-positive rate and true-
positive rate, which depicts relative trade-offs resulting from changing the test threshold. The best possible 
prediction model (100% sensitivity and 100% specificity) would yield a “square curve”, reaching the upper 
left corner (green line). A completely random guess (chance) would give a point along the diagonal dotted 
black line (line of no determination). In the present study, the ROC curves were used compare the predictive 
accuracy of different immunovirological parameters measured in plasma at DSO11. These ROC curves 
were time-dependent, meaning they vary depending on the time between symptom onset and death 
considered. Here, model B is superior to A. ROC curves are further characterized by AUC, a measure of 
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test accuracy (1.0= best possible test; 0.5=no discrimination). (B-G) Time-dependent ROC curves 
measured (B-D) within the validation cohort for (B) plasma vRNA, age and sex, (C) Cytokines and tissue 
insult markers or (D) anti-SARS-CoV-2 antibody responses; (E) within the confirmation cohort for plasma 
vRNA, age and sex; (F) within the discovery cohort for quick SOFA (qSOFA) and P/F ratio; (G) within a 
combination of samples across cohorts (those for whom CRP clinical lab quantitation was available within 
the DSO11 time point) for CRP clinical lab measurements and vRNA in the same subset of patients. (B-G) 
Legends with color-coded variables are on the bottom left of panels, and values in italic are the AUC at 60 
days after symptom onset associated to the variable or model. For (FG), ROC curves of adjusted values 
(age+sex) are in continuous lines, whereas models for univariate analyses are in dashed lines. AUC values 
are given at 30 days or 60 days after symptom onset. (B-D): n = 87; (E) n = 69; (F) n = 61; (G) n = 113. See 
Supplemental Table 2 for details.  
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Fig. S3.5  Predictive accuracy of immunovirological markers over time, in the discovery and 
validation cohorts. A) Concept of time-dependent AUC changes. To observe changing accuracy overtime, 
AUCs for a given measurement were plotted against time to death. AUC values closer to 1 (top) have better 
predictive accuracy; AUC values close to 0.5 have poor prediction accuracy. In this example, measurement 
A maintained the greatest prediction accuracy throughout time, whereas C > B before DSO30, then B > C 
after DSO30. (B) Time-dependent AUC of plasma vRNA, age and sex for validation cohort; (CD) Time-
dependent AUC of plasma cytokines and tissue damage markers for (C) discovery cohort or (D) validation 
cohort; (EF) Time-dependent AUC of SARS-CoV-2 antibody responses for (E) discovery cohort or (F) 
validation cohort. (GH) Time-dependent AUC for top measurements captured by multivariate model analysis 
in the (G) discovery cohort or (H) validation cohort. n = 61 for discovery cohort; 87 for validation cohort. 
Legends with color-coded variables are on the bottom left of panels, and values in italic are the AUC values 
associated to the variable.  
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Table S3.1.  Full list of analytes measured in plasma by beads arrays 

Analyte Bead Region 

Angiopoietin-2 26 
CCL3/MIP-1 alpha 35 
CCL20/MIP-3 alpha 33 
CXCL9/MIG 52 
CXCL13/BCA-1 28 
G-CSF 54 
IFNa 63 
IL-1b/IL-1F2 57 
IL-2 27 
IL-8/CXCL8 18 
IL-17/IL-17A 43 
IL-33 14 
SP-D 62 
CCL2/JE/MCP-1 25 
CCL7/MCP-3/MARC 37 
CD40 Ligand/TNFSF5 74 
CXCL10/IP-10/CGR-2 21 
D-dimer 43 
GM-CSF 46 
IFN-g 29 
IL-1ra/IL-1F3 30 
IL-6 13 
IL-10 22 
IL-23 76 
RAGE/AGER 45 
TNFa 12 
 
Human Magnetic Luminex ® Assays, from R&D Systems 
(Biotechne) 
Premixed Multiplex 
Kit Catalog Numbers : LXSAHM-26 
Kit Lot Number : L134818 
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Table S3.2  Time-dependent AUC for representative variables per category in all three 

cohorts. 

Cohort Modela DSO30b DSO60b Overall: 
IAUCc Maximum AUCd 

Time 
Max 
AUCe 

Discovery 
n=61 

vRNA Not-adjusted 0.87 (0.76, 0.98) 0.84 (0.72, 0.96) 0.84 0.90 (0.83, 0.96) 12 
Adjusted 0.93 (0.82, 1.00) 0.87 (0.76, 0.99) 0.90 0.94 (0.84, 1.00) 33 

Ang-2 Not-adjusted 0.85 (0.53, 1.00) 0.86 (0.55, 1.00) 0.82 0.86 (0.55, 1.00) 48 
Adjusted 0.87 (0.54, 1.00) 0.86 (0.54, 1.00) 0.83 0.87 (0.54, 1.00) 27 

IgG  Not-adjusted 0.88 (0.60, 1.00) 0.71 (0.44, 0.97) 0.84 0.92 (0.63, 1.00) 12 
Adjusted 0.93 (0.71, 1.00) 0.76 (0.58, 0.95) 0.88 0.94 (0.71, 1.00) 15 

vRNA 
+Ang2 

Not-adjusted 0.91 (0.58, 1.00) 0.91 (0.60, 1.00) 0.88 0.93 (0.60, 1.00) 43 
Adjusted 0.95 (0.64, 1.00) 0.91 (0.62, 1.00) 0.91 0.96 (0.65, 1.00) 33 

Validation 
n=87 

vRNA Not-adjusted 0.73 (0.55, 0.91) 0.75 (0.59, 0.92) 0.82 0.92 (0.82, 1.00) 12 
Adjusted 0.89 (0.67, 1.00) 0.85 (0.65, 1.00) 0.89 0.93 (0.70, 1.00) 22 

Ang-2 Not-adjusted 0.63 (0.13, 1.00) 0.66 (0.14, 1.00) 0.65 0.95 (0.19, 1.00) 8 
Adjusted 0.83 (0.28, 1.00) 0.80 (0.26, 1.00) 0.79 0.84 (0.29, 1.00) 22 

IgG Not-adjusted 0.52 (0.04, 1.00) 0.59 (0.06, 1.00) 0.53 0.59 (0.08, 1.00) 22 
Adjusted 0.81 (0.50, 1.00) 0.78 (0.48, 1.00) 0.75 0.85 (0.52, 1.00) 22 

vRNA 
+Ang2 

Not-adjusted 0.74 (0.24, 1.00) 0.77 (0.25, 1.00) 0.81 0.96 (0.30, 1.00) 12 
Adjusted 0.87 (0.30, 1.00) 0.86 (0.29, 1.00) 0.90 0.95 (0.32, 1.00) 12 

Confirmation 
n=69 vRNA 

Not-adjusted 0.77 (0.53, 1.00) 0.82 (0.68, 0.97) 0.83 0.98 (0.95, 1.00) 19 

Adjusted 0.90 (0.81, 1.00) 0.90 (0.84, 0.96) 0.91 0.95 (0.85, 1.00) 19 

  

Values are AUC (95%CI), and AUC at p<0.05 are in bold. 
a AUC values given either not adjusted (only variable(s) listed) or adjusted (age and sex). 
b AUC values are given at 30 days or 60 days after symptom onset 
c Integrated AUC (IAUC) is the average of all AUC from DSO10-60. 
d Maximum AUC is the best prediction accuracy of the variable (measured at DSO11) 
e Date since symptom onset at which that maximum AUC was achieved 
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Table S3.3  Comparison between time-dependent AUC for clinically-collected variables 

and plasma vRNA. 

Cohort Variablea HR (95%CI) P value AUC at DSO60b IAUCc 

Discovery 
(n=61) 

vRNAd 
Not 
Adjusted 3.13 (1.90, 5.17) < 0.001 0.84 (0.72, 0.96) 0.84 

Adjusted 3.53 (2.03, 6.16) < 0.001 0.87 (0.76, 0.99) 0.90 

qSOFAe 
Not 
Adjusted 3.25 (1.09, 9.70) 0.03 0.65 (0.43, 0.88) 0.66 

Adjusted 3.35 (1.10, 10.23) 0.03 0.73 (0.58, 0.88) 0.76 

P/Ff 
Not 
Adjusted 0.91 (0.85, 0.98) 0.02 0.73 (0.59, 0.86) 0.78 

Adjusted 0.91 (0.84, 0.98) 0.01 0.80 (0.68, 0.91) 0.84 

vRNA + 
qSOFA 

Adjusted 
vRNA 3.65 (1.79; 7.44) <0.001 0.85 (0.73; 0.97) 0.85 
qSOFA 0.61 (0.13; 2.87) 0.53     

vRNA + P/F 
Adjusted 
vRNA 2.57 (1.46; 4.50) 0.001 0.88 (0.75; 1.00) 0.87 
P/F 0.99 (0.99; 1.003) 0.24     

Merged 
Cohortg 

(n=113, 98 
survivor and 
15 non-
survivor) 

vRNA Not 
Adjusted 2.59 (1.78; 3.76) < 0.001 0.85 (0.74; 0.96) 0.87 

CRPd Not 
Adjusted 4.73 (1.44 ; 15.50) 0.01 0.71 (0.49; 0.93) 0.62 

vRNA + CRP 
Not Adjusted 
vRNA 2.69 (1.79; 4.05) < 0.001 0.87 (0.75; 0.99) 0.86 
CRPd 4.15 (1.17; 14.68) 0.03     

vRNA + CRP 

Adjusted 
vRNA 2.82 (1.72; 4.62) < 0.001 0.91 (0.83; 0.99) 0.93 
CRPd 4.01 (0.97; 16.67) 0.06     
age 1.05 (1.01; 1.09) 0.008     
sex 0.39 (0.10; 1.53) 0.18     

  

Values are Hazard ratio (HR) (95%Confidence interval CI) with p value, and AUC. p<0.05 are in 
bold. 
a AUC values given either not adjusted (only variable(s) listed) or adjusted (age and sex). For 
multivariate models, AUC is given for each parameter within the model. 
b AUC values are given at 60 days after symptom onset 
c Integrated AUC (IAUC) is the average of all AUC from DSO10-60. 
d HR value is given for every increase in 1 log unit. 
e HR value is given for high qSOFA (>=2) vs low qSOFA (<=1) (categorical values). 
f HR values given for every 10 unit increase. 
g Includes patients among the three merged cohorts for whom clinical lab CRP measurements 
were available at DSO11. 
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Table S3.4  Predictive accuracy of plasma vRNA measured at different times after 

symptom onset. 

Median DSO 
[range] 

Total
# 

Non-
surviv
or 

 Modela Hazard Ratio AUC   

HR(95%CI) P-value AUC at DSO60b IAUCc 

DSO5 [3-7] 80 15 Not-adjusted 2.32 (1.52, 3.55) 0.0001 0.76 (0.63, 0.89) 0.82 
      Adjusted 2.03 (1.34, 3.06) 0.0007 0.83 (0.70, 0.96) 0.89 
DSO9 [8-11] 164 21 Not-adjusted 3.03 (2.11, 4.34) < 0.0001 0.86 (0.77, 0.95) 0.87 
      Adjusted 2.82 (1.99, 4.00) < 0.0001 0.89 (0.82, 0.97) 0.90 
DSO13 [12-15] 127 17 Not-adjusted 2.88 (1.80, 4.62) < 0.0001 0.77 (0.64, 0.90) 0.81 
      Adjusted 3.37 (2.05, 5.54) < 0.0001 0.82 (0.68, 0.95) 0.89 

 

# Total of 371 samples collected on 279 patients 
Values are Hazard ratio (HR) (95%Confidence interval CI) with p value, and AUC. p<0.05 are in 
bold. All values relate to plasma vRNA (for an increase of 1 unit of copies/mL) 
a HR and AUC values given either not adjusted (only variable(s) listed) or adjusted (age and sex). 
b AUC values are given at 60 days after symptom onset 
c Integrated AUC (IAUC) is the average of all AUC from DSO10-60. 
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Abstract 

COVID-19 is highly heterogeneous in clinical severity and outcome. Considerable advances have 

uncovered biomolecular traits associated with fatal outcome. However, novel analytical tools are 

needed to rapidly and accurately delineate patient subgroups with various immunovirological 

profiles, analyze diverging disease trajectories and prioritize in-depth molecular studies. 

To find how immunovirological features are interrelated, we profiled 12 plasma analytes (SARS-

CoV-2 vRNA, SARS-COV-2-specifc antibodies, cytokine and tissue injury markers) in 500 acute 

longitudinal plasma samples collected from 214 hospitalized COVID-19 patients. We analyzed 

them simultaneously using PHATE algorithm (potential of heat diffusion for affinity-based 

transition embedding, Moon et al, Nature Biotech 2019), which can reduce multiple input variables 

to two salient features for visualization. We performed whole blood transcriptomic analyses to 

identify molecular signatures associated with survival vs death in a patient cluster identified as 

being at extreme mortality risk. 

PHATE analysis of samples collected 11 days after symptom onset (DSO11) revealed four distinct 

k-means clusters of patients, which aligned with disease severity and outcome. Two groups were 

highly enriched in critical patients requiring mechanical ventilation: a high-fatality critical cluster 1 

accounted for 67% of fatal outcomes (14/21) by DSO60, while critical cluster 2 had good 

prognosis. Clusters 3 and 4 consisted almost entirely of non-critical survivors delineated 

respectively by low and high antibody responses. Averaged trajectories between DSO3 to DSO30 

diverged between clusters. All patients of the high-fatality cluster had detectable plasma vRNA, 

which lingered unlike the critical survivor cluster. Their antibody response had a multiple-day 

delay, while their cytokine profile diverged from the other clusters by DSO8, remaining distinct 

until DSO22.  
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This unbiased approach gives an integrated view of dysregulated immune response components 

in fatal COVID-19, which may be explained through differences in molecular pathways. This 

approach allows to efficiently target detailed investigations on very high-risk patient subgroups 

who may most likely benefit from new therapeutic interventions. 
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Introduction 

COVID-19 is a highly heterogeneous disease which from asymptomatic infection to fatal 

outcome and is caused by SARS-CoV-2 infection. While pre-existing conditions have 

been linked to increased COVID-19 severity (Williamson et al., 2020), it is still unclear 

what mechanisms drive COVID-19 to progress to fatal outcome. 

Research addressing how differences in immune responses can contribute to separate 

outcome has revealed multiple factors likely important. We (Brunet-Ratnasingham et al., 

2021) and others (Pujadas et al., 2020) have shown that SARS-CoV-2 plasma viral RNA 

can predict fatal outcome in COVID-19 patients. However, some patients succombed to 

their infection in the absence of high plasma vRNA or, in reverse, patients with high vRNA 

which survived (Brunet-Ratnasingham et al., 2021), suggesting a role for additional 

factors.  

High amount of inflammatory cytokines, which spur on inflammation, have also been 

linked with fatal outcome (Laing et al., 2020 ; Lucas et al., 2020). These cytokines likely 

play a role in immupathology, since immunomodulatory treatments such as IL-6R 

antagonists (Group, 2021), systemic corticosteroids (Group, 2020) and JAK inhibitors 

(Group, 2021) have a proven benefit for survival. In addition, a delay in antibody response 

(Zohar et al., 2020), possibly linked to disrupted coordination between virus-specific T and 

B cell responses (Rydyznski Moderbacker et al., 2020), has also been observed in 

patients with fatal outcome. However, antibody responses were not as strong predictors 

as viral RNA, the cohort of COVID-19 survivors did present with a wide range antibody 

early in their infection (Brunet-Ratnasingham et al., 2021). Furthermore, monoclonal 

antibodies (Group, 2021) and plasma transfer therapy (Bégin et al., 2021) have not shown 
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a proven benefit of survival, perhaps reflecting a less decisive role for these proteins than 

inflammation, at least by the time treatment can be administered.  

Although interplay between these compartments have been observed (positive 

association between plasma vRNA and cytokines, both of which correlate negatively with 

antibody response), we still lack comprehensive systems biology overview that take into 

account the timing of the disease, of critical importance given the dynamic nature of the 

immune response. As such, we aimed to subdivide patients into meaningful clusters, 

based on their immunovirological plasma profiles early in infection, and track their 

progression over time. We could identify four distinct patients clusters, with one cluster 

highly enriched in fatal outcome. These four patient clusters revealed differences in 

kinetics of antibody development, lingering of plasma vRNA and the amount of 

inflammatory cytokines and tissue damage markers. This unbiased approach allowed for 

better understanding of the heterogeneity of hospitalized COVID-19 patients, with 

implications for choice and timing of therapeutic interventions.  
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  Material and methods 

Participants and samples 

SARS-CoV-2 positive patients admitted to the Centre Hospitalier de l’Université de 

Montréal (CHUM) or the Jewish General Hospital (JGH) were recruited into the Biobanque 

Québécoise de la COVID-19 (BQC19) (58). Samples from CHUM made up the discovery 

and confirmation cohort, and samples from JGH were the validation cohort. Blood draws 

were performed at baseline and when possible, at Day 2 (± 3 days) and Day 7 (± 3 days) 

after enrollment. The study was approved by the respective IRBs and written, informed 

consent obtained from all participants or, when incapacitated, their legal guardian before 

enrollment and sample collection. Blood draws were also performed on 50 asymptomatic, 

NSW PCR negative uninfected controls (UC).  

COVID-19 hospitalized patients were stratified based on severity of respiratory support at 

the DSO11 timepoint: critical patients required mechanical ventilation (endotracheal, non-

invasive ventilation, extracorporeal membrane oxygenation - ECMO), and non-critical 

patients, encompassing patients with moderate disease required no supplemental oxygen 

and patients with severe disease required nasal cannula for oxygen. Mortality was 

followed up to 60 days. Medical charts were reviewed by two physicians for data collection 

on demographics, co-morbidities, risk factors, severity state, time of infection, etc (see 

Table 1). Median age and range for UC cohort was 37 (32-46), and 30 individuals were 

males (60%).  

In the course of acquiring the datasets of Manuscript 1, we screened multiple timepoints 

by most of the same techniques. The longitudinal samples were taken at time of 
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enrollment, and after 2 days, 7 days, 14 days and 30 days, and the measurements were 

plasma vRNA quantities, ELISA-based measurements of RBD-specific IgG, IgM and IgA, 

and all 26 analytes acquired by Luminex (for detailed methods, please see Material and 

Methods of Manuscript 1). Viral RNA measurements and ELISA measurements required 

no correction. 

Quantification of SARS-CoV2 RNA 

Absolute copy numbers of SARS-CoV-2 RNA (N region) in plasma samples were 

measured by real time PCR. Total RNA was extracted from 230 μL of plasma collected 

on ACD using the QIAamp Viral RNA Mini Kit (Qiagen Cat. No. 52906). Two master 

reaction mixes with specific primers and probes were prepared for quantification of N gene 

from SARS-CoV-2 and 18S (as a control for efficient extraction and amplification). 

Absolute copy numbers N region in were measured by real time PCR. A positive and no-

template controls were included in all experiments. Purified RNA N transcripts (1328 bp) 

were quantified by Nanodrop and the RNA copy numbers were calculated using the 

ENDMEMO online tool (see STAR methods for details).  

Measurements of plasma analytes by beads array 

Duplicates of SARS-CoV-2-inactivated plasma samples were analyzed using a 

customized Human Magnetix Luminex Assay (LXSAHM-26, R&D).  

While the first set of CHUM samples had been acquired on a BioPlex, first-wave JGH 

samples and onwards were acquired using a newly-acquired MagPix, as the BioPlex had 

technical problems. 30 samples acquired on the Bioplex were repeated on the MagPix, 

and a linear regression was performed for each analyte between both rounds of 
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acquisition using GraphPad Prism 9. These regressions were then used for batch 

correction of the samples acquired on the BioPlex samples. For certain analytes, the batch 

correction could not be performed for all samples given differences in the lower limits of 

detection between the two machines: there were missing values for the analytes CCL20, 

CCL3, CCL7, IFNa, GM-CSF, IL-10, IL-17A, IL-1b, IL-2, and IL-33. As PHATE requires 

complete datasets, we tried imputing these missing data with two different methods (mean 

imputation and k-Nearest Neighbor Imputation); however, these methods resulted in 

artificial clustering of samples which had missing values. Thus, these analytes were 

excluded. Exploratory analyses revealed that retaining only 8 analytes gave the cleanest 

clusters, as analytes with little discrimination blurred the differences. These 8 final 

analytes included in the analysis were TNFa, CXCL13, IL-6, IL-23, CXCL8/IL-8, 

angiopoietin-2, RAGE and Surfactant Protein D, all of which were significantly associated 

to fatal outcome in our previous work (see Manuscript 1).  

Serology measurements 

Plasma from uninfected donors were used as negative controls and used to calculate the 

seropositivity threshold in our ELISA and flow cytometry assays. The monoclonal antibody 

CR3022(59) was used as a positive control. 

RBD-specific ELISA  

The SARS-CoV-2 RBD ELISA assay used was recently described (24). The seropositivity 

threshold was established using the following formula: mean of all COVID-19 negative 

plasma + (3 standard deviation of the mean of all COVID-19 negative plasma) (see 

supplemental material for details). 
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Bio-informatic analyses 

We collaborated closely with Sacha Morin and Dr. Guy Wolf at MILA and the Université 

de Montréal, whom have expertise in exploratory data analysis and applied mathematics.  

Dimensionality reduction is a necessary step to visualize and explore high dimensional 

datasets. While PCA is the standard algorithm to use in such a case, the resulting 

components are restricted to a linear projection of the input data, thereby limiting the 

expressiveness of the resulting visualizations. Recent advances in dimensionality 

reduction techniques instead favor so-called manifold learning algorithms, such as 

PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding), which can 

compute a nonlinear transformation of the data to effectively represent the latent structure 

of a dataset in low dimensions (Moon et al., 2019). PHATE begins by computing a sample-

sample affinity graph, i.e., a graph connecting pairs of similar samples to form 

“neighborhoods”. It then leverages diffusion geometry to propagate similarities along the 

graph and learn long-range affinities between data points. Data samples are subsequently 

embedded in a low dimensional space (usually, 2 dimensions) by preserving both the local 

and long-range pairwise similarities, meaning the distance between “neighborhoods” are 

meaningful. Intuitively, this can be thought as « unfolding » the sample-sample graph in 

low dimensions while preserving the graph’s intrinsic structure, as captured by diffusion 

affinities. PHATE has been notably used to explore single-cell RNA-seq data (Moon et al., 

2019) as well as clinical data from SARS-CoV-2 positive patients 

(https://www.medrxiv.org/content/10.1101/2021.05.29.21257760v1). 

  

When multiple samples are taken from the same patient at different timepoints, as in our 
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case, one can study the progression of a given patient or a given group of patients on the 

PHATE embedding in what is called a trajectory analysis. In order to visualize and 

compare the typical trajectories of groups (e.g., survivors versus non-survivors), we used 

a rolling window approach over the PHATE coordinates. Specifically, we slide a 4-day 

window over the range DSO 0-28 by increment of 1 DSO. At each window step, and for 

each group separately, we use the average PHATE coordinates of the all samples in that 

window range as the coordinates of the group trajectory. Windows with fewer than 4 

samples in a given group are not displayed. We add the actual DSO marker every 4 days 

on the visualization to better interpret time progression. This analysis was performed on 

the longitudinal plasma samples of a total of 500 samples from hospitalized COVID-19+ 

patients, whom were recruited at the CHUM or the JGH between April 2020 and May 

2021. This analysis included all 12 aforementioned variables and the DSO of the sample, 

which gave the manifold a cleaner structure. The patient clusters were the same as 

identified in the PHATE manifold generated at DSO11. 

In addition to visualizing structure and trajectories, PHATE plots can be useful to visualize 

variables of interest by using them for coloring. Input variables can be used as color 

gradients to observe how they are distributed on the visualization (e.g., high antibody and 

low antibody neighborhoods). Outcome variables can be used in a similar way. Of 

particular interest to visualize categorical outcome variables is the MELD algorithm 

(Burkhardt et al., 2021), which performs a low-pass filtering of said variables over the 

affinity graph in order to smooth them over neighborhoods. The resulting values are used 

to compute a relative likelihood, i.e., the likelihood of a given sample or neighborhood 

belonging to a specific condition of the outcome variable over the others. The relative 
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likelihood of a sample incorporates information from both the condition of said sample and 

the conditions of neighboring samples, and is practical to determine whether a given 

region of the visualization is enriched or depleted in a specific condition. 
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Results 

DSO11 patient samples reveal severity and outcome-driven clusters 

Clustering of samples taken around 11 days after symptom onset (DSO11) revealed four 

patient clusters (Figure 4.2A), with distinct plasma profiles (Fig 4.2B). SARS-CoV-2 vRNA 

was high in Cluster 1 only, although a few positive samples were observed in all clusters. 

RBD-specific antibody responses were absent in cluster 3, and weaker in cluster 1 than 

in clusters 2 and 4. While markers of tissue damage and inflammatory cytokines were 

highest in cluster 1, it was also elevated in cluster 2. Fatal outcome within 60 days of 

symptom onset was most observed in cluster 1, although all clusters counted at least 1 

fatality (Fig 4.2C). MELD confirmed cluster 1’s enrichement for fatality (Fig 4.2D), and 

demonstrated clusters’ 1 and 2’s enrichment for critical cases. 

In summary, the four patient clusters are : a “deceased” cluster (1), characterized by high 

amounts of SARS-CoV-2 vRNA, cytokines, and tissue damage markers, and low amounts 

of antibodies ; a critical survivor cluster (2), with similarly high cytokines and tissue 

damage marker, but lower SARS-CoV-2 vRNA and higher antibody responses ; and two 

non-critical survivor clusters, with equally low amounts of tissue damage markers, 

cytokines and plasma SARS-CoV-2 vRNA, but distinguished by either the presence 

(cluster 4) or absence (cluster 3) of an antibody response. 

Trajectory analyses reveal divergences between patient clusters 

Building on these observations, we were curious to see what differences these plasma 

variables could reveal over time. As the variables we measured were particularly relevant 

in the acute phase of the infection - after which they either cleared (vRNA), returned to 
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baseline levels (cytokines) or plateaued (antibody response) - we limited our analysis to 

samples collected within 30 days of symptom onset.  

We first sought to subdivide the trajectory analysis between categories of analytes, 

although it was not possible to look at vRNA alone, given it is a single variable. The 

embedding of the 8 plasma analytes revealed inflammatory-cytokine-high, intermediate 

and low zones at the top, right and bottom peaks, respectively (Fig 4.3A). While the 

markers of tissue damage RAGE followed similar patterns, Surfactant Protein D (SP-D) 

and Angiopoientin-2 (Ang-2) had more diffused expressions, where only the bottom peak 

had low expression. Within this embedding, trajectory analysis revealed a similar starting 

point for all three survivor clusters, while the deceased cluster 1 was appart (Fig 4.3F). 

The distance between the deceased and survivor clusters was further accentuated at 

DSO8, and only started converging towards the other clusters by DSO20. Meanwhile, the 

non-critical, high-antibody cluster 4 also distinguished itself from the other two clusters, 

and was furthest appart from the deceased cluster. These observations suggest that the 

plasma profile before DSO20 is most discriminatory between fatal and non-fatal outcome, 

at least with regards to the inflammatory cytokines and tissue damage markers 

considered. 

Next, we looked at how the PHATE embedding using the three measures of antibody 

response to SARS-CoV-2 drove the trajectories for the four patient clusters. Analysis of 

local concentrations of the three measurements revealed a low-response zone on the 

right, which progresses to an intermediate zone on the bottom point, then up to a high-

response zone on the left (Fig 4.2B). The patient clusters start their trajectories at different 

sites: both high-fatality cluster 1 and non-critical survivor cluster 3 start in the low-response 
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zone, while clusters 2 and 4 are in the intermediate zone early in their disease course. 

These latter two clusters follow very similar trajectories throughout the disease course, 

ending in the high zone by DSO20. While the deceased cluster 1 also has a similar 

trajectory route as these latter two clusters, it initially trails behind, only catching up by 

DSO16. Finally, the low-antibody cluster 2 remains in the low-response section, and is the 

only patient cluster not to plateau in the high-zone. While confirming the described delayed 

antibody response observed in critical cases (Zohar et al., 2020) (Lucas et al., 2021), 

these observations also reveal a non-fatal group of patients which do not mount an 

antibody response against RBD in acute COVID-19, 

Finally, we combined all variables (Fig 4.2H). This PHATE embedding roughly had 4 

regions: the upper tip of the triangle, with low expression of all variables; the lower right 

tip with high SARS-CoV-2 vRNA, inflammatory cytokines and tissue damage RAGE, and 

low-to-mid antibody responses; the lower left tip, characterised by high antibody 

responses and SP-D levels, intermediate amounts of inflammatory cytokines and low 

vRNA; and finally the center, which was essentially intermediate for all variables (Fig 

SXZ).  The deceased cluster 1’s trajectory mostly localized in the high vRNA zone, 

although this was also the starting point for critical survivor’ cluster 2. This latter cluster 

quickly progressed out of this zone, however, and remained in the middle section, 

progressing towards the high-antibody region. Conversely, both non-critical clusters were 

well appart from the vRNA zone, rather travelling from the low to intermediate antibody 

sections for cluster 3, and the intermediate to high antibody zones for cluster 3. These 

trajectory analyses revealed the strong association of the inflammatory cytokines with 

SARS-CoV-2 vRNA, as they colozalize in a single section of the embedding. It is 
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principally in this region where the fatal-outcome trajectory lies, while the critical survivors 

are able to extract themselves from it quickly through the generation of an antibody 

response.  



170 

Discussion  

Despite the high heterogeneity in outcome following COVID-19, considerable advances 

have uncovered certain immunovirological traits associated with fatal outcome, including 

the presence of RNAemia, delayed antibody responses, and high inflammatory profiles. 

To find how these are interrelated, we profiled 12 analytes in 500 acute longitudinal 

plasma samples collected from 201 hospitalized COVID-19 patients (shown are the 

preliminary analyses; we now have over 300 patients with more than 700 samples), and 

analyzed them simultaneously using PHATE algorithm (potential of heat diffusion for 

affinity-based transition embedding, Moon et al, Nature Biotech 2019), which can reduce 

multiple input variables to two salient features for clustering and visualization. Quantities 

of SARS-CoV-2-specific IgG, IgM, and IgA; TNFa, CXCL13, IL-6, IL-23, CXCL8, 

angiopoientin-2, RAGE, surfactant protein D and RNAemia in plasma sampled 11 days 

after symptom onset (DSO11) revealed four distinct clusters of patients which aligned with 

their disease severities: survivors who required mechanical ventilation (critical), non-

critical survivors, subdivided by high or low antibody responses, and a high-fatality cluster 

which accounted for 67% of all fatal outcomes (14/21) by DSO60. Averaged trajectories 

between DSO3 to DSO30 diverged between clusters. The high-fatality cluster’s antibody 

response had a 4-day delay– with low antibody-mediated killing and neutralization 

capacities - but caught up with the survivor groups by DSO12. Conversely, the early 

cytokine profile (at DSO4) was similar, but the high-fatality cluster diverged by DSO8, and 

remained distinct until DSO22. The high-fatality cluster also uniquely maintained high 

vRNA. This approach offers a new, time-sensitive and unbiaised approach to study the 

characteristics of hospitalised COVID-19 disease and to understand the discting courses 
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the immune response can take in response to SARS-CoV-2 infection.  

In our dataset, we observed that the highest levels of viral RNA were observed at the 

same time as the highest levels of inflammatory cytokines IL-6, IL-23, TNFa and 

chemokine IL-8, (which may indicate cDC activation upon microbial sensing), and low 

amounts of antibodies, a state that was observed in earlier disease. This co-upregulation 

between cytokines and circulating vRNA supports the hypothesis that viral particles or 

debris may contribute to systemic inflammation. Intermediate vRNA was seen with 

intermediate cytokines and chemokines, which could suggest a dose-dependent cytokine 

activation. Ultimately, all clusters converged towards a similar profile by DSO22, by which 

time circulating vRNA is cleared in the vast majority of patients. The convergence may be 

explained by different non-exlusive mechanisms: the analytes included in the analyses 

which, being acute-related molecules, eventually wained to baseline levels and, 

specifically for the high-fatality cluster, the patients whom contributed to the analyses were 

those who survived until at least DSO22, and perhaps had a less inflammatory profile 

compared to those which succumbed quicker. In all cases, our results confirm that early 

plasma profiles are more differential than later profiles (Lucas et al., 2020).   

The four patient clusters had diverging antibody responses: high response, observed in 

critical and non-critical survivors (clusters 2 and 4, respectively), and low antibody 

response in the high fatality cluster 1, and second survivor non-critical cluster 3. High 

antibody is only observed without vRNA, and either with intermediate or no cytokines, 

which suggests that the presence of a strong antibody response may help clearing 

circulating vRNA, thus modulating the cytokine response. Conversely, a delayed antibody 

response has already been shown in the fatal case, although it does not seem that a lack 
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of an early response is fatal in all cases. Furthermore, although mild COVID-19 cases 

have already reported lower antibody responses, presumably due to low antigen exposure 

from the mild nature of the infection, it is likely not the case here, as these patients were 

sick enough to be admitted to hospital. There are instances of patients clearing the viral 

infection in the absence of antibody responses: in cancer patients treated with B-cell-

depleting antibodies (anti-CD20), survival was associated to a robust SARS-CoV-2-

specific CD8+ T cell response (Bange et al., 2021). In future work, we will characterize 

the SARS-CoV-2-specific T cell responses per clusters to see if other adaptive immunity 

mechanisms were key in these patients’ survival.  

As with any data reduction method and due to data sparcity (specifically, we have few 

samples per patient for the trajectory analyses), one limitation of our study is that we lose 

the interpatient variability inherent to any human study. However, this can be partially 

mitigated by univariate analysis at different times. We are also adding 130-plus samples 

to the analysis, increasing our clustering power and granularity to our trajectory analyses. 

An additional current limitation is the descriptive nature of the study: it will be critical to 

include characterisation of cellular components, for example quantities of SARS-CoV-2-

specific CD4, CD8 T and B cells, and transcriptomic profiles of myeloid and NK cells, to 

elucidate the mechanisms behind the antibody and cytokine kinetics. Although samples 

of cryopreserved cells are a limitating factor, cell-based assays will be performed on a 

subset of individuals per cluster. Futhermore, we have sequenced bulk RNA from whole 

blood which can be used to identify differentially expressed genes (DEGs), and point 

towards dysregulated molecular pathways behind the slower antibody kinetics observed 

in clusters 1 and 3. Finally, we have not yet studied how the patients’ demographics or 
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treatment during the time of hospital could have influenced these profiles. However, the 

impact of immunoregulatory drugs, such as systemic corticosteroids and IL-6r 

antagonists, on observed trajectories will also be analyzed.  

In summary, our unbiased approach gives a “big-picture” view of multiple dysregulated 

immune response components in fatal COVID-19, and will allow to target detailed 

investigations of potentially dysredulated immune responses on very high-risk patient 

subgroups who may most likely benefit from new therapeutic interventions. 
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Figures 

  

Figure 4.1 Visualization of complex data using PHATE and MELD. A) Hypothetical experimental 
setting, where the progression of stem cells into different cell types is analyzed by single-cell RNA 
sequencing and rendered as a PHATE visualization. B) Hypothetical tree with color-coded branches, and 
ability of PCA, t-SNE and PHATE to render the structure of this tree. PHATE is superior in revealing global 
and structure of branches, while PCA cannot reveal local features (branches) and t-SNE breaks the 
branches appart and shuffles the pieces within the visualization. C) Hypothethical experimental setting, 
whereby the same cell types are treated with a control (grey) or experimental (red) treatment, and 
perturbations of their transcriptome are analyzed using single-cell RNA sequencing. Application of a 
dimensionality reduction method allows to reduce the n genes (=dimensions) down to a single coordinate 
among two dimensions (dim 1/dim 2), where the localisation of the dot is representative of a specific cell 
state (based on gene expression). Cells which received the treatment (red dots) tend to cluster together in 
the upper left region of the manifold, while the control-treated cells (grey dots) are mostly in the bottom left 
section, indicative of the transcriptomic perturbation by the treatment. The sample-associated relative 
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likelihood measures the probability (in percentage) that a cell in a given region is from the treated (or the 
control) group. This method allows for more reliable clustering and labelling of samples, despite intrinsic 
heterogeneity within a given sample. Panels A and B modified from (Moon et al., 2019) and panel C modified 
from (Burkhardt et al., 2021). 
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Figure 4.2  Unsupervised patient clusters and their trajectories vary between outcome 
and severity. A) PHATE embedding of plasma sample profiles collected at around 11 days after symptom 
onset (+/- 4-day window, 1 sample per patient) of hospitalized COVID-19 patients. Unsupervised K-means 
clustering revealed 4 distinct patient clusters, color-coded. N = 195. B) Heatmap of relative amounts of 
variables per patient. Top rows are categories: patient clusters from A (color-coded) ; outcome, where black 
is deceased, and grey is survival at DSO60 ; and max severity, where critical is red and non-critical, blue. 
For analytes, each row represents a distinct patient. Within categories, variables are ordered by 
unsupervised hierarchical cluster. C) Patients from PHATE embedding color-coded by outcome, where 
black os deceased and grey, survival at DSO60. MELD representation of local enrichment of D) fatality or 
E) critical disease. Average trajectory per color-coded patient cluster (from A) when PHATE embedding was 
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performed using F) plasma analytes only; G) antibody measurements only ; H) all measurements. Numbers 
in the circles represent the days since symptom onset. A-E) n=195 ; F-H) n = 500. 
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Figure 4.3 Variable expression within category-specific PHATE embeddings. Relative expression 
of log-transformed concentrations of A) representative analytes across PHATE embedding of Fig XF or B) 
of all three antibody measurements across PHATE embedding of Fig 4.2G. N = 500 COVID-19+ samples. 
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Figure 4.4 Variable expression within global PHATE embedding. Relative expression of log-
transformed concentrations of all included variables within PHATE embedding of Fig 4.2. Each row is a 
distinct category of variables. N = 500 COVID-19+ samples. 
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Abstract 

Background: Antigen-specific T cell impairment is observed in chronic infections. CD4+ T 

cells are diverse in phenotype and function; how their different lineages are impacted by 

inhibitory immune checkpoints (IC) is unknown.  

Methods: We examined IC expression and function in HIV-specific CD4+ T cells of viremic 

individuals prior to ART initiation and persons with spontaneous or therapy-induced viral 

suppression. We investigated IC patterns associated with exhaustion-related transcription 

factors and chemokine receptors using cytokine-independent activation-induced marker 

assays. We determined effector functions representative of TFH, TH1 and TH17/TH22 

using ultra-sensitive RNA flow cytometric fluorescence in situ hybridization (FISH), and 

their response to IC blockade. 

Findings: The dysfunction-related transcription factor TOX was elevated in HIV-specific 

CD4+ T cells of viremic patients, and its expression was associated with lineage 

differentiation. We observed a hierarchy of PD-1, TIGIT and CD200 expression 

associated with both infection status and effector profile. In vitro responsiveness to PD-

L1 blockade varied with defined CD4+ T cell functions rather than IC expression levels: 

frequencies of cells with TH1- and TH17/TH22-, but not TFH-related functions, increased. 

Response to PD-L1 blockade was strongest in viremic participants and reduced after ART 

initiation.  

Interpretation: Our data highlight a polarization-specific regulation of IC expression and 

differing sensitivities of antigen-specific Thelper subsets to PD-1-mediated inhibition. This 

heterogeneity may direct ICB efficacy on CD4+ T cells in HIV infection. 



187 

Context of research 

Combination antiretroviral therapy (ART) is highly effective in controlling HIV but requires 

life-long medication due to the latent viral reservoir, and does not restore suppressive 

immune responses. In particular, there is no generation of effective HIV-specific T cell 

responses, which are thought to play an important role in controlling HIV in the rare 

individuals who can spontaneously control the virus. Inhibitory immune checkpoints (IC) 

such as PD-1 contribute to T cell dysfunction and failure to control viral infections, 

including HIV, and IC blockade (ICB) represents a potential adjuvant to ART through 

restoration of T cell functions. While most studies have focused on CD8+ T cells, 

increasing evidence shows that the remarkable impact of ICB therapy in a subset of 

cancer patients is enhanced by functional CD4+ T cell help, which can be directly affected 

by ICB. While effective virus-specific CD4+ T cell responses are also thought to be 

important for immune control of HIV, these cells are highly heterogenous. How IC 

expression and function differs across CD4+ T cell lineages and the consequences of this 

diversity for IC blockade (ICB) strategies are still poorly understood. 

 

To compare various stages of immune dysfunction, we examined people living with HIV 

(PLWH) with different levels of viral control pre-ART (including elite controllers who 

spontaneously control virus) and followed a cohort longitudinally post-ART. We used a 

panel of assays to characterize HIV-specific CD4+ T cell subsets, including activation-

induced marker (AIM) assays and flow cytometric detection of mRNAs coding for a wider 

variety of HIV-specific CD4+ T cell functions than what is detected by standard 

procedures. Our experiments indicate a hierarchy of IC (PD-1, TIGIT, CD200) expression 
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on blood HIV-specific CD4+ T cells that depends not only on the person’s infection status 

but also on expression of lineage differentiation markers and effector functions 

representative of CD4+ T cell subsets critical for antiviral responses (TFH, TH1 and 

TH17/TH22 cells). This hierarchy was also present in the putatively functional cells of elite 

controllers. We characterized the expression of the dysfunction-related transcription factor 

TOX, and saw that its association with the key IC PD-1 in the setting of viremia varied 

across CD4+ T cell polarizations. Response to blockade of the PD-1 pathway resulted in 

increased antiviral and mucosal-protective functions, but did not affect TFH-related 

functions. Response to ICB was most prominent in viremic patients, and subdued but not 

fully abrogated in the setting of viral suppression. 

 

These results highlight a previously unrecognized impact of ICB on mucosal immunity-

related CD4+ functions, which are known to be depleted upon HIV infection and not 

restored by ART, and strong links between IC expression patterns and HIV-specific CD4+ 

T cell differentiation. The impact of ICB on CD4+ T cells in HIV infection has primarily 

been studied in the context of viral reservoir reactivation, which are preferentially harbored 

in IC+ cells. Our work emphasizes the importance of considering the differentiation profile 

of the virus-specific CD4+ T cells in studies of ICB blockade, as it may direct ICB efficacy 

in HIV infection. This data may also have implications for CD4+ T cell help in other 

infectious and non-infectious chronic human diseases. 
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Introduction 

CD4+ T helper (TH) cells orchestrate the immune responses against pathogens (1, 2) and 

defects in T helper responses contribute to lack of viral immune control in HIV infection. 

This diverse cell population polarizes towards lineages characterized by expression of 

chemokine receptors and transcription factors (TF), and produce distinct sets of cytokines 

(3). Beyond the prototypical antiviral TH1 subset, HIV-specific CD4+ T cells also include 

mucosal-related TH17/TH22 and B-cell helper TFH, the proportions of which are 

differentially related to spontaneous viral control (4). 

In chronic infections such as HIV, sustained antigenic exposure and inflammation alter 

both CD4+ and CD8+ T cell function. CD8+ T cell exhaustion follows a gradient enforced 

by epigenetic remodeling with limited reversibility (5, 6). TOX is a central transcription 

factor (TF) involved in the development and maintenance of exhausted CD8+ T cells in 

mice (7) and humans (8), although its role in human CD8+ T cells is not limited to 

exhaustion (9). Dysfunctional CD4+ T cells differ from exhausted CD8+ T cells in that they 

present prominent features of altered differentiation: loss of antiviral and mucosal-

protective functions and a skewing towards a T follicular helper (TFH)-like profile (4). Little 

is known about TFs implicated in CD4+ T cells dysfunction, although some, increased in 

mice models, overlap with exhaustion-related TF (10). Another commonality between 

dysfunctional CD4+ and CD8+ T cells is the upregulation of inhibitory immune checkpoints 

(IC) (11), however with some notable differences in the IC hierarchy between the two 

subsets (10, 12-14). IC have dual roles as physiologic regulators of T cell activation and 

mediators of exhaustion (15). PD-1 is the best characterized IC contributing to both HIV-

specific CD4+ and CD8+ T cell dysfunction (16), and correlates with disease progression 
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(12, 14) and loss of antiviral function (16).  

Immune checkpoint blockade (ICB) can partially rescue CD8+ T cell exhaustion, in 

particular blockade of the PD-1 signaling pathway. A population of mildly exhausted CD8+ 

T cells, called “progenitor exhausted”, with stem-like properties and intermediate levels of 

PD-1, respond to ICB(17-19), while terminally exhausted CD8+ T cells, with high PD-1 

and Tim3+ expression, have poor response to ICB (19). Responsiveness of CD4+ T cells 

to ICB is understudied due to their heterogeneity and the paucity of tools to identify them 

in an antigen-specific manner. Although PD-1’s effect on CD4+ T cell function in vivo was 

classically described as IL-2 inhibition (20, 21), studies in animal and human chronic 

infections support broader ramifications. PD-1 blockade enhanced IFNg+ TH1-responses 

specific to Mycobacterium tuberculosis in murine models (22) and patients undergoing 

ICB for cancer therapy (23), and moderately increased IFNg secretion by SIV-specific 

CD4+ T in non-human primates (24). These primates had replenished TH17 in the gut 

and improved gut integrity, which may explain their improved survival through reduced 

immune hyperactivation (25, 26). In vitro, PD-1 blockade enhanced HIV-specific CD4+ T 

cell proliferation as well as IFNg, IL-2, IL-13 and IL-21 production (14). However, the links 

between IC expression among the heterogeneous polarizations of CD4+ T cells and the 

impact of ICB on various effector functions of these cells are still lacking.  

Here, we define the relationships between dysfunction-related characteristics and the 

lineages of HIV-specific CD4+ T cells across disease and treatment status. We pinpoint 

a previously underappreciated heterogeneity across types of CD4+ T cells in both their IC 

and exhaustion-related TF expression patterns, as well as their capacity to respond to 

PD-1 blockade. Greater understanding of ICB’s impact on CD4+ T cells can foster new 
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therapeutic uses for immunotherapeutic interventions. 
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Materials and Methods 

Study Design 

Leukaphereses were obtained from study participants at the Montreal General Hospital, 

Montreal, Canada and at the Centre Hospitalier de l’Université de Montréal (CHUM) in 

Montreal, Canada. The study was approved by the respective IRBs (IRB CHUM: 17.335) 

and participants gave written informed consent prior to enrollment. Samples were 

collected between 2013 and 2019 as part of a multicentric study (MP-37-2018-4029). 

Subject characteristics are summarized in Supplementary Table 1. Chronic Progressors 

(CP) had plasma viral loads of at least 5000 copies/ml and were infected and infected/off 

treatment for at least 3 months at the time of collection of the “Pre-ART” sample. 

Longitudinal “Post-ART” samples were collected in these same subjects, after at least 3 

months on ART and undetectable viral loads. Elite controllers (EC) had spontaneously 

controlled viremia (< 40 viral copies/ml) in the absence of ART. PBMCs were isolated by 

the Ficoll density gradient method and stored in gas phase of a liquid nitrogen tank in 

90%FBS with 10% DMSO.  

 

Antibodies 

All antibodies are listed in Supplementary Tables 2-5. Antibodies are monoclonal and 

raised in mice. All antibodies were validated by manufacturer and titrated with biological 

and/or isotype controls. 
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Activation-induced marker (AIM) assay 

As previously described (4), cryopreserved peripheral blood mononuclear cells (PBMCs) 

were thawed and rested in cell culture media (RPMI supplemented with 10% Human AB 

serum and PenStrep – 50 U/ml of penicillin and 50 µg/ml of streptomycin) at 37°C for 3 

hours at a density of 10M/ml in 24-well plates. 15 minutes prior to stimulation, CD40 

blocking antibody (clone HB14, Miltenyi, cat #: 130-094-133) was added to each well at 

0.5 µg/ml, as well as antibodies staining CXCR5, CXCR3 and CCR6. Cells were either 

left unstimulated or stimulated with overlapping peptide pools of HIV Gag (JPT, PM-HIV-

Gag ULTRA), at a final concentration of 0.5 µg/ml/peptide. Alternatively, 1µg/ml of 

Staphylococcal Enterotoxin B (SEB, Toxin Technology) was used to stimulated the cells 

as a positive control. Cells were stimulated for 9 hours, collected, washed and stained 

with LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit (20 mins, 4°C; Thermofisher, 

#L34965). After washing, cells were incubated with FcR block (10mins, 4°C; Miltenyi) then 

stained with a cocktail of surface markers (30 mins, 4°C; See panel in Supplementary 

Table 2). Washed cells were then fixed with 2% paraformaldehyde (PFA) for 20 mins at 

RT, then washed and resuspended in PBS-2% FBS for flow acquisition on a 5-laser LSRII 

(BD BioSciences). For experiments with intranuclear transcription factor staining, fixation 

and permeabilisation were done using eBioscience™ Foxp3 / Transcription Factor 

Staining Buffer Set (cat#:  00-5523-00) following kit instructions:  surface-stained cells 

were fixed with 1x Fixation/Permeabilisation for 30 min at RT in the dark, then washed 

and resuspended in 1X Permeabilization buffer with intranuclear antibody cocktail for 1h 

at RT in the dark. Analysis was performed using FlowJo (Treestar, V10). Gates were set 

on the unstimulated controls. 
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Combined cytokine/chemokine mRNA-Flow-FISH and protein staining assays 

As previously described(4), PBMCs were thawed and rested for 2-3 hours in 48-well plates 

at 5M in 0.5ml in cell culture medium. 15 minutes prior to stimulation, a PD-L1 blocking 

antibody (29E.2A3(27)) or an isotypic control (IgG2b, clone MPC-11, BioXcell, # BE0086) 

at a concentration of 10 µg/ml were added into culture, along with antibodies staining 

CXCR5, CXCR3 and CCR6. PBMCs were then either left unstimulated or were stimulated 

with an HIV Gag peptide pool (JPT) or SEB for 12 hours. After incubation, cells were 

stained with Fixable Viability Dye eFluor™ 506 (20 min, 4oC; eBioscience, # 65-0866-14) 

before labeling of surface markers with surface antibodies (30 min, 4oC; See panel in 

Supplementary Table 3). Samples were next subjected to the PrimeFlow RNA® assay 

(ThermoFisher) for specific mRNA detection in a 96-well plate as per manufacturer’s 

instructions. All buffers and fixation reagents were provided with the kit, with the exception 

of flow cytometry staining buffer (PBS - 2% FBS). Briefly, after fixation and 

permeabilization, cytokine/chemokine mRNAs were labelled with one of five combinations 

of probes as listed in Supplementary Table 4. The probes were each diluted 1:20 in probe 

diluent and hybridized to the target mRNA for 2 hr at 40oC. Samples were washed to 

remove excess probes and stored overnight in the presence of RNAse inhibitor 1X 

(RNAsin). Signal amplification was achieved by sequential 1.5 hr incubations at 40oC with 

the pre-amplification and amplification mixes. Amplified mRNA was labelled with 

fluorescently-tagged probes for 1 hr at 40oC. Samples were acquired on a BD 

LSRFortessa™. Analysis was performed using FlowJo (Treestar, V10). Gates were set 

on unstimulated controls (see Fig S3b). Net frequencies of HIV-specific responses were 

calculated by subtracting the background expression in the absence of exogenous 

stimulation from the value measured after Gag antigen stimulation. HIV-specific 
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responses were considered positive when the frequency obtained with Gag stimulation 

was at least twice that obtained in the absence of exogenous stimulation. Responses not 

meeting this criterion were characterized as negative. 

 

Delayed Intracellular cytokine staining  

As previously described(28), thawed, rested PBMCs were either left unstimulated or were 

stimulated with an HIV Gag peptide pool (JPT) or SEB. After a 9h stimulation, 1.25 µg/ml 

of brefeldin A (BD GolgiPlug) was added to culture and cells were further incubated for 12 

hours. Cells were collected, washed and stained with AquaVivid Viability dye (20 mins, 

4°C). After washing, cells were incubated with FcR block (10mins, 4°C) then stained for 

cocktail of surface markers (30 mins, 4°C; see supplementary table 5 for panel). Cells 

were washed and fixed with Fixation Solution (eBioscience, #88-8824-00) for 15 mins at 

RT, following which they were washed and stained for intracellular proteins with 1X 

Permeabilization Buffer (eBioscience, #00-8333-56) (30 mins, 4°C). Cells were washed 

once more with 1X Permeabilization buffer, then with PBS – 2%FBS and acquired on the 

BD LSRFortessa. Analysis was performed using FlowJo (Treestar, V10). Gates were set 

on unstimulated controls. 

 

qRT PCR analysis of HIV-specific CD4+ T cells 

These data were collected in a previously published study (4). Briefly, AIM assay was 

conducted as previously explained and CD69+CD40L+CD4+ T cells were live-sorted on 

a FACS Aria cell sorter (BD BioSciences) equipped for handling of biohazardous material, 
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operated at 70 pounds per square inch with a 70-um nozzle (for gating strategy, please 

refer to (4). 5000 cells were collected directly into RLT lysis buffer (Qiagen) and vigorously 

vortexed before flash-freezing. Total RNA was purified using the RNeasy Plus Micro Kit 

(Qiagen). cDNA was synthesized using all RNA available (or 1-5 ng) with the High-

Capacity Reverse Transcription Kit with RNase Inhibitor (Life Technologies) (250 C for 10 

min, 370 C for 120 min, 850 C for 5 min). cDNA equivalent to 1000 sorted cells was 

subjected to gene-specific preamplification using Taqman Preamp MasterMix (Applied 

Biosystems) and 96 pooled TaqMan Assays (Applied Biosystems – for full panels, please 

refer to (4) at final concentration 0.2X (95°C for 10 min, followed by 16 cycles of 95°C for 

15 s and 60°C for 4 min). The preamplified cDNA was diluted 5-fold in DNA suspension 

buffer (Teknova) and was mixed with TaqMan Universal PCR Master mix (Life 

Technologies) and 20X GE sample loading reagent (Fluidigm). 20X Taqman assays were 

diluted 1:1 with 2X assay loading buffer (Fluidigm). Taqman assays mixtures were loaded 

onto a primed 96.96 Dynamic Array chip (Fluidigm). The chip was loaded into the IFC 

Controller, where each sample was mixed with each assay in every possible combination. 

The chip was transferred in a Biomark (Fluidigm) for real-time PCR amplification and 

fluorescence acquisition using single probe (FAM-MGB, reference: ROX) settings and the 

default hot-start protocol with 40 cycles. Cycle thresholds (Ct) were calculated using the 

Fluidigm BioMark software. 

Analysis of the qRT-PCR data obtained on the microfluidic platform was carried out using 

GenEx software (MultiD Analyses, URL: http://www.multid.se). Five endogenous control 

genes were included in the Fluidigm run and the stability of endogenous control genes 

across all experimental samples was evaluated applying the NormFinder algorithm50 in 
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GenEx. The mean expression of the most stable endogenous control genes was used for 

normalization and calculation of -∆Ct values.  Principal component analysis and biplots 

were created using the prcomp and fviz_pca_biplot functions in R programming language. 

 

Statistical analyses 

Statistical analyses were performed with Prism v6.0 (GraphPad) using non-parametric 

tests. The type of statistical test is specified in the figure legends. Permutation test (10 

000 permutations) was calculated using the SPICE software 

(https://niaid.github.io/spice/). Statistical tests were considered two-sided and p<0.05 was 

considered significant. The heatmap, dendrogram and PCA were generated using the fold 

change between the net value of the frequency of a cytokine mRNA detected with PD-L1 

blockade over that seen for the same cytokine with the isotypic control. The prcomp 

function was used for the PCA, and the ggfortify and pheatmap packages were used for 

the dendrogram and heatmap, respectively.  
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Results  

Exhaustion-related transcription factor TOX correlates with PD-1 

expression 

To explore dysfunction among the heterogeneous T helper (TH) populations, we 

compared dysfunctional HIV-specific CD4+ T cells from viremic chronic progressors with 

high viral burden prior to ART (CP; VL > 5000 viral RNA copies/ml) to the relatively 

functional HIV-specific CD4+ T cells from elite controllers who spontaneously suppress 

virus (EC; VL < 40 copies/ml) (patient characteristics in Supplemental Table 1)(4). 

Upregulation of activation-induced markers (AIM) following peptide stimulation allows the 

capture of a broader antigen-specific CD4+ T cell population than cytokine-based 

techniques (29). We stained for co-expression of CD69 and CD40L, an activation-induced 

co-signaling molecule expressed on multiple polarizations but low on bystander activated 

cells (4, 29), after a 9-hour ex vivo stimulation with a peptide pool of HIV’s 

immunodominant antigen, Gag (Fig 1a and Fig S1a). Both cohorts had similar frequencies 

of AIM+ HIV-specific CD4+ T cells (Fig 1b), and PD-1 expression was higher on HIV-

specific CD4+ T cells from CP than EC (Fig 1c, and Fig S1b), as previously reported (12, 

14). 

We considered the exhaustion-related TF TOX, given its association with T cell 

exhaustion(7), and TFs reported in mouse dysfunctional CD4+ T cells (10): Blimp-1 

(Prdm1), Helios, Nfatc1, Batf, Eomes and Tbet. Our previously published high-throughput 

qRT-PCR assay data on sorted HIV-specific CD4+ T cells from CP or EC (4) showed 

increased TOX (Fig 1d), IKZF2 (HELIOS), NFATC1, and PRDM1 (BLIMP-1) (Fig S1c) in 
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HIV-specific CD4+ T cells of CP compared to EC, while BATF and TBX21 were higher in 

EC. EOMES was similar in both cohorts. 

We next performed intra-nuclear protein staining for the TF (which were largely increased 

in CP compared to EC) in HIV-specific CD4+ T cells using the 9h AIM assay (Fig S1d). 

HELIOS was undetectable in the AIM+ population, whereas both NFATc1 and TOX were 

increased in the CP compared to the EC. TOX was most differential based on varying viral 

loads (Fig S1d). As CD4+ T cell dysfunction and viral load are strongly associated in HIV 

infection (4), TOX was best candidate for assessment of dysfunction by flow cytometry. 

We set the TOX+ gate on naïve CD4+ T cells (Fig 1e), and confirmed a greater frequency 

of TOX+ cells in AIM+ HIV-specific CD4+ T cells of the CP cohort compared to EC (Fig 

1f). TOX correlated significantly with PD-1 expression at the patient level (Fig 1g) and at 

the single-cell level (Fig 1h). Of note, EC had a population of TOX+PD-1low cells not 

observed in CP (Fig 1g), losing the correlation between PD-1 and TOX single cell 

expression. These observations suggest TOX and PD-1 are increased jointly in the setting 

of dysfunction, perhaps from common upregulating signals.  

 

Differential PD-1 expression in polarized HIV-specific CD4+ T cells 

Among AIM+ HIV-specific CD4+ T cells, we characterized three polarizations based on 

chemokine-receptors expression: CXCR3, CCR6 and CXCR5, enriched on antiviral TH1, 

mucosal-related TH17/TH22 and B-cell helper TFH, respectively (Fig 2a). Proportions 

were comparable between CP and EC, with the exception of a decreased CCR6+ fraction 

in CP (Fig S2a), as previously reported(4). TOX expression varied among polarizations 
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and the hierarchy was not maintained between both cohorts: while in CP, the CXCR3+ 

polarization had significantly greater TOX levels than CCR6+ and CXCR5+, in EC TOX 

levels were greater in CCR6+ than CXCR5+, and intermediate in CXCR3+ (Fig 2b).  

PD-1 expression also varied among polarizations, mimicking TOX’s pattern in CP:  highest 

PD-1 was again observed on CXCR3+, while CXCR5+ and CCR6+ had comparable levels 

(Fig 2cd). In EC, the hierarchy of PD-1 was similar to that of CP, but contrasted with the 

hierarchy of TOX in EC: CXCR3+ cells had the greatest PD-1 levels, although only 

significantly greater when compared to CCR6+ cells. This is in line with the absence of 

correlation for EC between single-cell expression PD-1 and TOX, and further emphasizes 

that PD-1 and TOX expression are specifically linked in the context of dysfunction. 

CXCR3, CCR6 and CXCR5 can be co-expressed in various patterns, in line with the 

plastic nature of TH (Fig 2eg). PD-1 expression was highest on the CXCR3+ CCR6- 

subsets (Fig 2fh). We further examined co-expression of classical “master” TFs with 

chemokine receptors, identifying TH1 as CXCR3+ T-BET+EOMES+, TH17 as 

CCR6+ROR-gt+CXCR3- and TH1/TH17 as CCR6+ROR-gt+CXCR3+(Fig S2e) (30). 

TFH’s master regulator BCL-6 was largely undetectable in peripheral CD4+ T cells (Fig 

S2e), as previously reported (31). Among the AIM+ HIV-specific CD4+ T cells, the 

proportions of TH17 and TH1/TH17 were significantly higher in EC, but similar for TH1 

(Fig S2f). PD-1 expression in CP always exceeded that in EC (Fig 2i) and, in both cohorts, 

TH1 cells had greater PD-1 expression than a CCR6+ polarization (Fig 2jk).  

Thus, TOX and PD-1 expression follow similar patterns in the setting of dysfunction only 

; however, the differing hierarchy of PD-1 expression among subsets of HIV-specific CD4+ 

T cells is observed both in CP and in EC. 
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PD-1 levels differ according to HIV-specific CD4+ T cell functions 

We further identified HIV-specific CD4+ T cell subsets by cytokine expression and 

cytotoxic functions. Flow cytometric RNA fluorescent in situ hybridization (RNA-Flow-

FISH) assay can capture hard-to-detect cytokines transcribed by HIV-specific CD4+ T 

upon cognate antigen stimulation, with fluorescence intensity giving a semi-quantitative 

measurement of the number of RNA copies per cell (32). We examined eight cytokines 

plus granzyme B (GZMB) that spanned five functional categories: IFNg and IL-2 for TH1-

associated functions; GZMB for cytotoxic activity; IL-22 and IL-17F for mucosal-related 

TH17/TH22 functions; IL-21, CXCL13 and IL-4 for TFH-associated functions; and IL-10, 

a pleiotropic molecule with mostly inhibitory functions (Fig 3a, Fig S3a). CD69 served as 

a surrogate for recent activation to increase specificity for HIV antigen-induced cytokine 

mRNA (Fig S3b). HIV-specific CD4+ T cells producing IL-4 and IL-10 mRNA had low or 

undetectable frequencies in most participants and were not pursued (Fig S3bc). CPs had 

lower frequencies of IL22 mRNA+ cells, with a trend for lower IL17F and GZMB mRNA+ 

cells (Fig 3b), and fewer mucosal-related cytokine transcripts per cell (Fig 3C). 

Conversely, CP exhibited increased frequencies of TFH-related cytokines IL21 and 

CXCL13 mRNA+ cells (Fig 3b). Polyfunctional cells were observed in both cohorts, with 

only the GZMB+IL2+ populations rarely detected (Fig S3d). The other combinations 

followed the expected trends (Fig 3b): GZMB single-positive cells and all combinations of 

mucosal cytokines were greater in EC, whereas the CP had higher frequencies of TFH-

related cytokines combinations. IFNG single-positive cells were increased in the response 

of CP, consistent with the reported loss of polyfunctionality in HIV-specific TH1 (33). 

Chemokine receptors expression among cytokine mRNA+ HIV-specific CD4+ T cells 
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revealed complex associations between phenotype and function (Fig S3e). While CXCR3 

was expressed on a large majority of GZMB, IL2 and IFNG mRNA+ cells (Fig S4a-c), it 

was also present on most IL21 and CXCL13+ mRNA cells. A minority of TFH-associated 

cytokine+ cells expressed CXCR5, with this proportion being smaller in CP. In contrast, 

almost all IL22 or IL17F mRNA+ cells expressed CCR6. 

Among defined T helper functions, PD-1’s hierarchy was similar to that observed on 

chemokine-receptor-identified polarizations: low on cells producing GZMB and mucosal-

associated cytokines IL22 and IL17F, and high on TH1 (IFNG, IL2) and TFH (IL21, 

CXCL13) cytokine mRNA+ cells (Fig 3d-f). The hierarchy was similar in both cohorts, with 

the exception of particularly low PD-1 on IFNG mRNA+ cells in EC (Fig 3f).  

These results demonstrate that HIV-specific CD4+ T cells can retain at least part of their 

functionality despite high PD-1 expression. Viremia leads to upregulation of this IC on 

functional cells, although the extent of its increase varies among T helper functions. 

 

Differential responsiveness of individual cytokines to PD-1 

blockade 

Given the hierarchical expression of PD-1 among CD4+ T cells of different functions, we 

speculated that responsiveness of these cells to blockade of PD-L1, the major ligand for 

PD-1 in PBMCs, would be heterogeneous as well. On cells from CP, PD-L1 blockade 

increased frequencies of HIV-specific cytokine mRNA+ CD4+ T cells for mucosal and 

antiviral functions (Fig 4ab), only slightly impacted IL21, and no effect on CXCL13 mRNA+ 

cells. Blockade in EC had a globally smaller impact on HIV-specific CD4+ T cells (Fig 
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4cd), with increased frequencies only detected for IL2, IFNG, and IL22. Fold increases 

upon blockade of the 7 functions classified the participants relative to their cohort by 

unsupervised hierarchical clustering (Fig 4e), and in principal component analysis (PCA), 

clearly depicts disease status as the main source of variation (Fig 4f). CP were 

heterogeneous in which type of cytokine-producing cells were increased upon blockade, 

suggesting PD-L1 blockade does not result in a consistent profile of response even for 

one same antigen specificity. Many combinatory subpopulations increased in frequencies 

upon PD-L1 blockade in CP, with the notable exception of CXCL13 mRNA+ cells (Fig 

4ghi). EC had overall lower responses (Fig S4efg). For most constellations, there was at 

least a trend for greater response in CP than in EC in terms of fold change, although the 

spread in our relatively small cohorts did not allow to rank responsiveness to PD-L1 

blockade among subsets. 

To study whether the effects observed on mRNA translated to protein, we performed 

delayed intracellular cytokine staining (d-ICS) following Gag stimulation. Extended 

stimulation before the addition of brefeldin A allows to capture the expression of both 

cytokines produced early, like IL-2 and IFNg as well as molecules induced later, namely 

CXCL13 and IL-21 (28). IL-17F and IL-22 were not detectable (Fig S4ab). Cytokine protein 

and cytokine mRNA expression correlated significantly for the IFNg IL-2 and CXCL13, but 

not for IL-21 (Fig S4c). Frequencies of IFNg+ and IL2+ HIV-specific CD4+ T cells were 

increased upon blockade, but not CXCL13+ cells (Fig S4d), reflecting the lack of response 

to anti-PD-L1 seen at the mRNA level.  

These data demonstrate a heterogeneous capacity of functionally-distinct HIV-specific 

CD4+ T cells to respond to PD-L1 blockade at the transcriptional and translational level, 
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including for polyfunctional cells. 

 

IC co-expression on HIV-specific CD4+ T cells is lineage- and 

function- specific 

To understand the low responsiveness to blockade seen in TFH, we examined expression 

of the other ICs TIGIT and CD200, which are also frequently expressed on TFH cells (34). 

Similar to PD-1, expression of these IC was higher on AIM+ HIV-specific CD4+ T cells of 

CP than EC (Fig 5a-d), and correlated positively with viremia (Fig S5a), demonstrating an 

association between antigen burden and their accumulation, as previously shown for PD-

1 (16) and TIGIT (35). Single-cell expression of TIGIT and CD200 was directly correlated 

with that of PD-1 (Fig 5ef), as well as with each other (Fig S5b). Almost half of AIM+ HIV-

specific CD4+ T cells of CP co-expressed all three IC, whereas only a small fraction was 

triple-positive in EC (Fig 5g), in line with IC co-upregulation in conditions of elevated CD4+ 

T cell dysfunction (10). These IC varied according to subsets of HIV-specific CD4+ T cells 

(Fig S5cd). TIGIT was high on CXCR5+ cells and low on CCR6+ cells in both cohorts, 

and high on the CXCR3+ of CP only (Fig S5e). CD200 expression followed very similar 

patterns (Fig S5f). Consistently, IC expression differed between HIV-specific cytokine 

mRNA+ CD4+ T cells of CP, with high expression on IL21, CXCL13, IFNG and IL2 

mRNA+ cells, and low IC levels on GZMB, IL17F and IL22 mRNA+ cells (Fig 5hi). Notably, 

CD200 was undetectable on mucosal-related cytokine mRNA+ cells. These patterns were 

conserved in EC (Fig S5ef), with once again the exception of IFNG mRNA+ cells, on which 

TIGIT and CD200 levels were low. Thus, TIGIT and CD200 are highly expressed on HIV-

specific CD4+ T cells producing IL-2 or TFH-associated cytokines even in the absence of 
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high viral loads, yet IC accumulate on other cytokine+ cells only in the setting of 

dysfunction, in particular for functions reduced in CP compared to EC.  

Combined ICB strategies targeting different molecules can be more potent than single 

blockade (10, 11). We examined the impact of two clinical-grade ICB antibodies 

developed for immunotherapy, the anti-PD-L1 antibody BMS-936559 and the anti-TIGIT 

antibody BMS-g86207-Ab (Bristol-Myers Squibb) using d-ICS, allowing us to multiplex the 

four cytokines IFNg IL-2, IL-21 and CXCL13 (Fig S5i). Single TIGIT blockade did not 

increase cytokine+ responses for any of the functions studied (Fig S5j). Responses were 

heterogeneous within the CP cohort: depending on the participant, we observed limited 

response to any blockade strategy (Fig S5h, left), detectable responses in the co-blockade 

condition only (Fig S5h, middle) or modest to no benefit of co-blockade compared to single 

PD-1 blockade (Fig S5h, right). Our data suggests co-blockade strategies may generate 

responses in a larger fraction of individuals than single-blockade, although some subjects 

may remain unresponsive. 

Because of the differential response of IFNg and CXCL13 to blockade, we compared its 

impact between monofunctional cells and the population co-expressing CXCL13 and IFNg 

which represented roughly 20% of the overall cytokine-producing populations (Fig S5i). 

The frequency of IFNg single-positive and or double-positive CD4+ T cells increased upon 

PD-L1 blockade, whereas CXCL13 single-positive cells remained refractory (Fig S5jk). 

The double-positive population are also increased upon blockade, highlighting that 

CXCL13 transcription can be susceptible to ICB. The pattern was the same with co-

blockade, at a slightly greater magnitude. 

These observations highlight the accumulation of ICs TIGIT and CD200 on subsets other 
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than TFH in the context of dysfunction. However, high co-expression of TIGIT and PD-1 

does not result in enhanced response to TIGIT and PD-L1 co-blockade compared to single 

PD-L1 blockade in most individuals.  

 

ART-induced viral suppression differentially affects HIV-specific 

CD4+ T cell response to ICB 

As ICB in HIV infection is predominantly being evaluated in ART-suppressed individuals, 

we compared responses in longitudinal samples obtained before and after ART (Fig 6a, 

Fig S6a). ART initiation led to a consistent decrease of the preferentially TFH-associated 

functions IL-21 and CXCL13 in HIV-specific CD4+ T cells (Fig 6b). With the exception of 

the frequency of IL2 mRNA+ CD4+ T cells, which remained constant between both time 

points, the effect of ART was heterogeneous and subject-dependent, with some subjects 

experiencing an increase or a decrease, and others still maintaining stable responses (Fig 

6b). Post-ART, IC expression decreased on all cytokine mRNA+ CD4+ T cells, except for 

the IL2+, on which IC expression was maintained (Fig S6b-d). These results highlight a 

correction of the high IC expression and TFH-like skewing acquired in viremia towards a 

profile more similar to that observed in EC, while other functions are inconsistently 

recovered. 

The increase of IL2 mRNA+ CD4+ T cells upon PD-L1 blockade was also seen following 

ART treatment (Fig 6c), and of similar magnitude to that observed in both CP (Fig 6d) and 

EC (Fig 4d). However, the increases for IFNG and mucosal-related cytokine expression 

were generally less pronounced after ART initiation, albeit with inter-subject variability (Fig 
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6cd). No effect on the frequency of TFH-cytokine+ CD4+ T cells was observed upon 

blockade during ART. 

These data suggest that increased IL-2 production is a maintained benefit of PD-L1 

blockade, while the increase in IFNG and mucosal-related cytokines upon ICB is subdued 

once ART is initiated.  
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Discussion  

Immune checkpoints inhibit T cell activation through multiple mechanisms (36, 37). 

Although recent findings have partially elucidated the molecular features behind these 

effects (5, 37), an understudied topic remains if and how these immune checkpoints 

operate differently among the heterogeneous lineages of CD4+ T cells. Using high-

parameter flow cytometry combining protein and FISH mRNA staining, we assessed HIV-

specific CD4+ T cells of an array of T helper phenotypes and functions otherwise difficult 

to measure. We focused on a palette of TFH, TH1 and TH17/TH22-associated traits. 

These phenotypes, as identified by canonical chemokine receptors and transcription 

factors or by production of effector molecules, presented a hierarchy of relative expression 

levels of TOX, PD-1, TIGIT and CD200. This differential expression was present at all HIV 

disease stages, although the magnitude of expression was associated with viral load. 

Responsiveness to PD-L1 blockade varied according to a defined function of CD4+ T cells 

rather than their levels of IC expression. PD-L1 blockade had more limited effects in 

individuals with spontaneous or therapeutic control of viral replication than in people with 

high antigen load. These data highlight a previously unappreciated heterogeneity of 

responsiveness to ICB among HIV-specific CD4+ T cells. 

TOX expression was greater in HIV-specific CD4+ T cells of CP compared to EC, in line 

with their greater state of dysfunction linked with ongoing antigen stimulation in CP, and 

greater functionality in EC(4). TOX expression is linked to repeated TCR stimulation (7, 

38), a central driver of T cell exhaustion, and was strongly associated to PD-1 levels in 

the presence of viremia. HIV-specific CD4+ T cells from a same subject expressed 

different amounts of IC depending on their polarization, consistent across function-
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dependent (ICS) and function-agnostic (AIM) methods of identification. High expression 

or co-expression of IC did not prevent effector functions, as observed with IC-high 

CXCL13+, IL-21+ and IL-2+ cells. IL-2 markedly increased with PD-L1 blockade, 

consistent with an inhibitory effect by PD-1, while no effect was observed for IL-21 and 

CXCL13. The hierarchy of IC expression between polarizations of HIV-specific CD4+ T 

cells suggest IC may not equally regulate the respective’ CD4+ T cell function. As shown 

in a TCR transfection model system of primary human PBMCs, some T cell functions are 

more resistant to PD-1-mediated inhibition than others (39), while a recent study using 

mouse and human T cell lines demonstrated different sensitivities of gene expression to 

PD-1 inhibition (40). IC may not be inhibitory in all instances: TFH express lower amounts 

of IL-21 and IL-4 following PD-1 ablation in mice (41); TIGIT, although inhibitory when 

expressed on CD8+ or TH1 T cells (42, 43), is associated with strong B cell help and 

cytokine expression in TFH (44); CD200 is associated with lack of pro-inflammatory 

cytokines, yet high IL-4 production in CD4+ T cells (45). Although these reports often find 

IC not inhibiting TFH-related functions, our observation that CXCL13+IFNg+ cells 

increased in frequency upon ICB indicates this TFH function can be negatively modulated 

by PD-1. Co-expression of CXCL13+ cells with a TH1-associated cytokine may 

correspond to a transition into a more plastic cell state which is responsive to ICB, while 

the absence of response in CXCL13 single-positive cells suggest that the cell-intrinsic 

state is associated with response to blockade, rather than single cytokine pathways or IC 

expression.  

Response to PD-L1 blockade was stronger in both breadth and magnitude for the 

dysfunctional HIV-specific CD4+ T cells of the CP compared to the EC and ART cohorts, 
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suggesting that antigen presence sensitizes antigen-specific CD4+ T cells to ICB. Co-

blockade with a TIGIT-blocking antibody further enhanced the effect of PD-L1 blockade 

only in some patients, consistent with the reported varying sensitivity to co-blockade 

among subjects (12, 35, 46), and highlighting the central inhibitory role of PD-1. Of note, 

HIV-specific CD4+T cells may respond directly to ICB by blockade of autologous PD-1 

molecules, as we have shown with live-sorted CD4 T cells subsets and add back co-

culture experiments(14), or indirectly by paracrine mechanisms, like the feed forward loop 

of soluble factors between T cells and antigen-presenting cells (47). While their respective 

contributions would be extremely challenging to delineate on primary human T cells, the 

critical observation remains that different HIV-specific CD4 T cell subsets have a 

differential ability to respond to PD-1 blockade. 

CD4+ T cells expressing mucosal cytokines responded well to PD-L1 blockade, despite 

the low levels of PD-1 expression on these cells overall. This suggests the replenished 

gut in the chronic SIV model may be linked to responsiveness of TH17/TH22 cells (25, 

26), the primary CD4+ T cell population of that anatomical site. In this scenario, bacteria-

specific TH17 may also have responded to ICB (48). Taken together, our data suggests 

that polarizations nudging towards TH1 and TH17 may undergo a more direct inhibition 

by PD-1, explaining their strong responsiveness to ICB. This can procure benefits such 

as direct antiviral control and restored gut integrity, even under conditions of persistent 

antigen. 

As rapid initiation of ART is now the standard of care upon HIV diagnosis, it is crucial to 

know whether the response to PD-L1 blockade changes once viremia is therapeutically 

suppressed. IL-2 response reached the same magnitude as observed at the pre-ART time 
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point, comparable to that seen in EC, in line with the direct inhibitory role PD-1 plays in 

regulating IL-2 (20). Conversely, responses of CD4+ T cells expressing IFNg and 

mucosal-related cytokines to ICB decreased in magnitude once ART was initiated. The 

general lowering of reactivity to ICB in contexts of controlled viremia strongly support a 

role of ongoing antigen presence in sensitizing these cells to this type of treatment. In 

addition, ART may block de novo virus-specific CD4+ T cells, which may be more 

responsive to ICB (49). These observations highlight the important role timing may play 

to maximize benefits of ICB in the context of HIV. 

Although more comprehensive than previous studies looking at HIV-specific CD4+ T cells, 

our observational study focused on a selected set of T helper functions. Furthermore, 

while we utilized in vitro blockade of PBMCs to interrogate the response of multiple CD4+ 

T cell subsets to PD-L1 blockade, most HIV-specific CD4+ T cells reside in tissues, where 

IC can play distinct roles, and cannot address the actively-researched in vivo role of 

ICB(50). Addressing such questions would require tissue samples or animal models. 

Indeed, a clinical safety trial of anti-PD-L1 in ART-treated revealed 2 of 6 HIV-infected 

individuals had increased HIV-specific CD8+ T cell responses in blood (51). In the non-

human primate model (NHP) of Simian Immunodeficiency Virus (SIV) infection, PD-1 

blockade did significantly decreased viral load in chronically-infected NHPs (24). In ART-

treated NHPs, PD-1 blockade and PD-1/CTLA dual blockade resulted in a 5-day delay in 

viral rebound following ART cessation, but was not sufficient to achieve viral control (52), 

suggesting ICB may have to be combined with additional strategies. Indeed, combination 

of ART, an anti-SIV-boosting vaccine and PD-1 blockade was recently shown to suppress 

rebound after ART interruption in rhesus macaques (53). These approaches should be 
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considered with precaution, as restoring function of virus-specific T cells can cause 

depletion of lymphoid organs harboring infected cells, impeding the generation of new 

immune responses (54). 

In summary, we highlight an intrinsic heterogeneity in IC expression among different 

polarizations of HIV-specific CD4+ T cells, revealing a disconnect between classical 

notions of IC and their relevance among CD4+ T cells lineages. This data also shows that 

functional lineages of HIV-specific CD4+ T cells have different capacities to respond to IC 

blockade, with CD4+ T cells expressing mucosal-protective and antiviral-associated 

cytokines responding well, whereas TFH-associated cytokines responded poorly. These 

results emphasize the importance of considering CD4+ T cell differentiation in studies of 

IC blockade in the context of T cell dysfunction, and may have implications for CD4+ T 

cell help in other infectious and non-infectious chronic human diseases. 
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Figures 

 

Figure 5.1 Increased expression of exhaustion-related transcription factors in HIV-specific 
CD4+ T cells of CP compared to EC. a) Representative flow cytometry plots and b) cumulative data of 
AIM+ Gag-specific CD4+ T cells detection via upregulation of the activation-induced markers (AIM) CD69 
and CD40L in a CP (top) and an EC (bottom) 9 hours after stimulation with a HIV Gag peptide pool. c) 
Comparison of PD-1 expression on AIM+ HIV-specific CD4+ T cells in the CP (orange) and EC (blue) 
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cohorts. Representative flow cytometry plot of TCF-1 and TOX staining on total CD4+ T cell (top) or Gag-
specific AIM+ CD4+ T cells (bottom). d) Relative Tox mRNA expression among sorted Gag-specific CD4+ 
T cells of CP (red) or EC (blue), as captured by high-throughput RT-PCR (Fluidigm® - for details, please 
see (Morou et al., 2019). e) Representative example of TOX expression in AIM+ HIV-specific CD4+ T cells 
(shaded) or unstimulated naïve CD4+T cells (dotted line) of both cohorts. Black line is FMO control. f) 
Cumulative data of the frequency of TOX+ cells among AIM+ Gag-specific CD4+ T cells (right) of CP (blue) 
or EC (red), using gating strategy depicted in A. g) Correlation between the frequency of TOX and PD-1 
expression level among AIM+ Gag-specific CD4+ T cells. h) Correlation between the single cell expression 
(as captured by flow cytometry – FI = fluorescence intensity) of TOX and PD-1. Correlation done using 100 
cells per patient for 4 CP and 4 EC. bc) n = 13 CP and 9 EC. d) n = 9 CP and 9 EC. fg) n = 8 CP & 8 EC. 
bcdf) Stats = Mann-Whitney test. GH) Spearman correlation. 
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Figure 5.2  PD-1 expression on HIV-specific CD4+ T cells depends on their polarization. a) 
Representative flow cytometry plots of expression of the chemokine receptors CXCR3, CCR6 and CXCR5 
on AIM+ Gag-specific CD4+ T cells of a CP (top) and an EC (bottom). b) Expression of TOX among 
chemokine-receptor-identified polarizations of Gag-specific CD4+ T cells among CP (red) or EC (blue). c) 
Representative example and d) cumulative data of PD-1 expression among chemokine-receptor-identified 
polarizations of Gag-specific CD4+ T cells. Euler graphs of co-expression for CXCR3, CCR6 and CXCR5 on 
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AIM+ Gag-specific CD4+ T cells in e) CP or g) EC. Values represent median frequencies of subsets within 
total AIM+ Gag-specific CD4+ T cells. TN: triple negative for all three chemokine receptors. PD-1 expression 
in AIM+ HIV-specific CD4+ T cells subsets, as identified by chemokine co-expression patterns in f) CP or 
h) EC. Statistics appear in tables below, with p values < 0.05 highlighted in green. PD-1 expression on 
CD4+ T cell subsets identified by chemokine receptor and master transcription factors, i) in CP vs EC; 
between polarizations of j) CP or k) EC. In D-H n= 13 CP and 9 EC. I-J n = 8 CP and 8 EC. Columns 
correspond to median values with interquartile range. dfhjk) Friedman test with Dunn’s post-test. i) Mann-
Whitney test. Geo MFI: Geometric Mean of Fluorescence Intensity. 
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Figure 5.3 Heterogeneous PD-1 expression among cytokine-producing HIV-specific CD4+ T cells. a) 
Representative flow cytometry plots of IL22 mRNA and CXCL13 mRNA detection in a CP and an EC. 
Cumulative data of the b) net frequencies or c) geometric mean fluorescence intensity of Gag-specific 
cytokine mRNA+ CD4+ T cells in both cohorts. d) Representative examples and cumulative data of PD-1 

GZMB IL2 IFNG IL17F IL22 IL21 CXCL13
0

1000

2000

3000

4000

GZMB IL2 IFNG IL17F IL22 IL21 CXCL13
0

500

1000

1500

2000

IL22 mRNA AF647

a Unstimulated HIV Gag

CP

EC

CP EC

PD-1 BV711

b

c

d

GZMB IL2 IFNG IL17F IL22 IL21 CXCL13
0.0

0.2

0.4

1

2

3

G
ag

-s
pe

ci
fic

 c
yt

ok
in

e 
m

R
N

A
+ 

ce
lls

 (%
 o

f C
D

4+
 T

)

0.004 0.036 0.002

CP

EC

e

CXCL13 mRNA AF750

C
D

69
 B

U
V3

95

CP

EC

f

FMO

GZMB

IL2

IFNG

IL22

IL17F

IL21

CXCL13

GZMB IL2 IFNG IL17F IL22 IL21 CXCL13
0.0

C
yt

ok
in

e 
m

R
N

A
 e

xp
re

ss
io

n
(g

M
FI

 o
n 

G
ag

-s
pe

ci
fic

 c
yt

ok
in

e
 m

R
N

A
+ 

C
D

4 
T)

0.003 0.029

CP

EC

CP

EC

0.001

0.007

F3

GZMB
IL2 0.035
IFNG > 0.99 > 0.99
IL17F > 0.99 > 0.99 > 0.99
IL22 > 0.99 0.039 > 0.99 > 0.99
IL21 0.099 > 0.99 > 0.99 > 0.99 0.11
CXCL13 0.0005 > 0.99 0.22 0.15 0.0005 > 0.99

GZMB IL2 IFNG IL17F IL22 IL21 CXCL13

GZMB
IL2 0.91
IFNG 0.16 > 0.99
IL17F > 0.99 0.48 0.061
IL22 > 0.99 0.18 0.020 > 0.99
IL21 0.12 > 0.99 > 0.99 0.042 0.014
CXCL13 0.0004 0.66 > 0.99 < 0.0001 < 0.0001 > 0.99

GZMB IL2 IFNG IL17F IL22 IL21 CXCL13

P
D

-1
 e

xp
re

ss
io

n 
(g

M
FI

 o
n 

G
ag

-s
pe

ci
fic

cy
to

ki
ne

 m
R

N
A

+ 
C

D
4+

 T
)

5000

10000

15000

P
D

-1
 e

xp
re

ss
io

n 
(g

M
FI

 o
n 

G
ag

-s
pe

ci
fic

cy
to

ki
ne

 m
R

N
A

+ 
C

D
4+

 T
)



224 

expression on Gag-specific cytokine mRNA+ CD4+ T cells in e) CP or f) EC. Statistics appear in tables 
below, with p values < 0.05 highlighted in green. All mRNA data were acquired following a 12-hour 
stimulation with HIV Gag peptide pool. In bcef, n = 9 CP and 8 EC. In ef) only positive responses (at least 
2 fold greater than unstimulated) are considered. Negative responses identified by grey shapes in bc. Bars 
represent medians with interquartile range. bc) Mann Whitney test. ef) Kruskall Wallis, with Dunn’s multiple 
comparisons tests. 
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Figure 5.4  Differential responsiveness of individual HIV-specific CD4+ T cell cytokines to PD-1 
blockade. a) Representative flow cytometry plots of IL22 mRNA following Gag stimulation with PD-L1 
blocking antibody (aPD-L1) or isotypic control (IgG) in a CP and an EC. Cumulative net frequency for all 
cytokine mRNA+ CD4+ T cells in b) CP and c) EC. d) Fold change in the net frequencies of cytokine mRNA+ 
HIV-specific CD4+ T cells upon PD-L1 blockade compared to isotypic control for both cohorts. CP in orange 
and EC in blue. e) Unsupervised hierarchical clustering analysis and heatmap of fold changes per cytokine 
across subjects, with warmer colors representing stronger fold changes. Bottom row corresponds to 
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individual subject IDs. f) Principal component analysis (PCA) representation of CP (orange) and EC (blue) 
responses based on cytokine mRNA fold changes upon PD-L1 blockade. Length of lines to cytokines 
represent contribution to variance of each cytokine; angle of line represents their contribution to either PC1 
and PC2. Red or blue shading regroups CP or EC, respectively. The numbers in parentheses are the 
percentage of variance explained by each principal component. Response of all cytokine mRNA 
combinations to PD-L1 blockade, upon Gag-stimulation among CP, for g) antiviral panel; h) mucosal panel 
or i) TFH panel. n = 9 CP and 8 EC. Columns correspond to median values with interquartile range. bcghi) 
Wilcoxon test. d) Mann-Whitney test. Each donor within a cohort has been separately color coded.  
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Figure 5.5  Differential expression of ICs among functionally-distinct subsets of HIV-specific 
CD4+ T cells. Representative histogram overlays of a) TIGIT or c) CD200 expression on AIM+ Gag-specific 
CD4+ T cells from a CP (red) or an EC (blue). Grey shaded outline represents PD-1 FMO. Fraction of AIM+ 
Gag-specific CD4+ T cells expressing b) TIGIT or d) CD200 of either cohort. Correlation between single-
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cell expression of PD-1 and e) TIGIT or f) CD200 on AIM+ Gag-specific CD4+ T cells from 4 CP and 4 EC 
(100 cells per subject). g) Co-expression patterns between the ICs PD-1, TIGIT and CD200 on AIM+ HIV-
specific CD4+ T cells from both cohorts. Shades of pie parts represent number of ICs; arcs represent IC 
expressed in pie part. Cumulative data of h) TIGIT and i) CD200 expression on cytokine mRNA+ Gag-
specific CD4+ T cells from CP. Statistics appear in tables below, with p values < 0.05 highlighted in green. 
bd) n = 13 CP and 8 EC, only positive responses (at least 2 fold greater than unstimulated) were considered; 
g) n = 9 CP, only positive responses were considered. Columns and pie chart fractions correspond to 
median values, with interquartile range for columns. bd) Mann-Whitney test; ef) Spearman correlation; g) 
permutation test with 10 000 permutations; hi) Friedman test with Dunn’s post-test. FI = Fluorescence 
Intensity. 
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Figure 5.6  Viral suppression on ART differentially affects responsiveness of effector functions 
to PD-L1 blockade. a) Representative examples and b) summary data of net frequency of Gag-specific 
cytokine mRNA+ CD4+ T cells from matched subjects prior to ART (orange) and after ART (purple) following 
a 9hr in vitro stimulation with Gag peptide pool. c) Summary net frequencies of Gag-specific cytokine 
mRNA+ CD4+ T cells stimulated with PD-L1 blocking antibody or isotypic control (IgG) among ART-treated 
individuals. d) Comparison of the fold changes upon PD-L1 blockade between longitudinal samples pre- 
(orange) and post-ART (purple). N = 7 longitudinal samples. Bars represent medians. bcd) Wilcoxon test. 
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Supplementary Materials 

Figure S5.1  Transcriptomic analysis of exhaustion-related transcription factors in HIV-specific 
CD4+ T cells. a) Representative flow cytometry plots of the full gating strategy for the AIM panel on HIV 
Gag-stimulated cells from a CP. Gating strategy includes CD3-low CD69+ as CD3 expression can be 
downregulated following TCR stimulation. b) Representative example of PD-1 expression on AIM+ Gag-
specific CD4+ T cells. Black line is FMO. c) Relative mRNA expression of exhaustion-related TF among 
sorted Gag-specific CD4+ T cells of CP (red) or EC (blue), as captured by high-throughput RT-PCR 
(Fluidigm® - for details, please see (Morou et al., 2019). n = 12 CP and 12 EC. d) Histogram overlay of flow 
cytometry data showing the expression of TF in AIM+ Gag-specific CD4+ T cells of two CP of varying viral 
loads (red, orange) and one EC (blue). Dotted line is expression in unstimulated naïve CD4+ T cells. E) 
Expression of TOX among total unstimulated CD4+ T cells per cohort. c) n = 12 CP and 12 EC. e) n = 8 CP 
and 8 EC. ce) Stats = Mann-Whitney test.  
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Figure S5.2  PD-1 expression on subsets of AIM+ HIV-specific CD4+ T cells. a) Summary of 
expression of the chemokine receptors CXCR3, CCR6 and CXCR5 on AIM+ Gag-specific CD4+ T cells 
from CP (orange) or EC (blue). b) Representative flow cytometry plots depicting gating strategy to identify 
TH17 (CCR6+RORgt+CXCR3-), TH1/TH17 (CCR6+RORgt+CXCR3+), TH1 (CXCR3+CCR6-
Tbet+Eomes+) or TFH (CXCR5+BCL-6+), either in total CD4+ (top row) or AIM+ Gag-specific CD4+ T 
(bottom row). c) Cumulative data of the frequency of TF-identified subsets among AIM+ Gag-specific CD4+ 
T cells. a) n= 13 CP and 9 EC; c) n = 8 CP and 8 EC. Columns correspond to median values with interquartile 
range. ac) Mann-Whitney test.  
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Figure S5.3 Transcription of multiple Thelper cytokines is detected by RNA-Flow-FISH following 
HIV peptide stimulation. a) Representative flow cytometry plots of the full gating strategy for the RNA-
Flow-FISH panels (see methods for details). b) Representative examples of cytokine mRNA+ Gag-specific 
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CD4+ T cells as detected by RNA-Flow-FISH following a 12hr Gag stimulation for a CP. Gates set on 
unstimulated (Unstim) conditions. c) Cumulative data for detection of IL4 mRNA and IL10 mRNA production 
following Gag stimulation in both cohorts. Negative responses (less than 2 fold over unstimulated condition) 
are identified by grey symbols. d) Response of all cytokine mRNA combinations per panel to Gag-stimulation 
in CP compared to EC. e) Euler diagrams of chemokine receptor expression among HIV-specific CD4+ T 
cells identified by production of GZMB, IL2, IFNG, IL17F, IL22, IL21 or CXCL13 mRNA. Values represent 
median frequencies of subsets among cytokine mRNA+ Gag-specific CD4+ T cells from 9 CP (red hues) or 
8 EC (blue hues). n = 9 CP and 8 EC. Columns correspond to median values with interquartile range. Mann-
Whitney, n= 9 CP and 8 EC. 
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Figure S5. 4 Protein data corroborates cytokine mRNA responses of HIV-specific CD4+ T cells. a) 
Representative flow cytometry plots showing detection of protein cytokine production by delayed ICS 
following stimulation with a HIV Gag peptide pool in a CP. b) Correlation between the net frequency of Gag-
specific CD4+ T cells, as detected by cytokine mRNA+ cells by RNA FlowFISH (x axis) or by protein cytokine 
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assessed by delayed ICS (y axis) for IL-2 (left), IFNg (midde) or CXCL13 (right) in CP. n= 8 CP (only donors 
with Gag-specific responses at least 2-fold over unstimulated are shown). Statistical comparison: Spearman 
correlation. d) Frequency of protein cytokine+ cells detected by delayed ICS upon Gag stimulation, either 
with isotype control (IgG) or with PD-L1 blocking antibody (aPD-L1). Response of all cytokine mRNA 
combinations to PD-L1 blockade, upon Gag-stimulation among EC, for e) antiviral panel, f) mucosal panel, or g) 
TFH panel. n = 8 EC. Statistical comparison: Wilcoxon test. Fold change in the net frequencies of cytokine 
mRNA+ Gag-specific CD4+ T cells detected upon PD-L1 blockade compared to isotypic control for both cohorts 
for h) antiviral panel, i) mucosal panel, or j) TFH panel. CP in orange and EC in blue. n= 9 CP and 8 EC (only 
donors with Gag-specific responses at least 2-fold over unstimulated are shown). Statistical comparison: 
Mann-Whitney test. Each donor within a cohort has been separately color coded. Columns correspond to median 
values with interquartile range.n = 10 CP. Stats : Wilcoxon test.  
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Figure S5. 5  Despite high ICs’ TIGIT and CD200 expression among polarizations of HIV-specific 
CD4+T cells, co-blockade of PD-1 and TIGIT does not increase responsiveness to ICB. a) Correlations 
between viral load of CP and their IC expression (PD-1 gMFI on left, % TIGIT+ in middle and % CD200+ on 
right) Gag-specific AIM+ CD4+ T cells. b) Correlation between single-cell expression of TIGIT and CD200 
on AIM+ HIV-specific CD4+ T cells from 4 CP and 4 EC (100 cells per subject). Frequency of c) TIGIT+ or 
d) CD200+ among the three polarizations of the AIM+ Gag-specific CD4+ T cells defined by CXCR3, CCR6 
and CXCR5 expression in both cohorts – CP (red) and EC (blue). Grey circles represent negative responses 
(less than 2 fold over unstimulated condition). Cumulative data of e) TIGIT and f) CD200 expression on 
cytokine mRNA+ Gag-specific CD4+ T cells from EC cohort. Statistics appear in tables below, with p values 
< 0.05 highlighted in green. g) Response (fold change compared to IgG) to all blocking strategies as 
detected by delayed ICS in CP. h) Responses of individuals’ responses (fold change compared to IgG) with 
no benefit of dual blockade over single PD-L1 blockade (left), further enhancement of cytokine production 
by dual blockade over single PD-L1 blockade (middle), or no (or modest) effect of either blockade strategy 
(right). i) Venn representation of IFNg and CXCL13 median co-expression in the CP cohort. j) Net 
frequencies of IFNg single-positive (SP), CXCL13 SP or IFNg/CXCL13 double-positive Gag-specific CD4+ 
T cells following stimulation in the presence of IgG or aPD-L1. Statistical comparison by Wilcoxon test. k) 
Fold change of blocking conditions (compared to IgG) for IFNg SP, CXCL13 SP or DP. bh) Statistical 
comparison by 2-way ANOVA with Tukey's multiple comparison test. a, c-f) n= 13 CP, 9 EC. g-k) N = 10 
CP. Bars represent medians with interquartile range. de) N = 13 CP and 8 EC; fg) n = 8 EC, where only 
positive responses are considered. Friedman’s test with Dunn’s correction. abc) Spearman R correlation. 
Viral load was Log10 transformed. 
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Figure S5.6  ART initiation causes a decrease of IC upon HIV-specific cytokine mRNA+ CD4+ T 
cells. a) gMFI of cytokine mRNA+ in Gag-specific cytokine mRNA+ CD4+ T cells from matched subjects 
prior to ART (ored) and after ART (purple) following a 9hr in vitro stimulation with Gag peptide pool. 
Comparison of IC expression among Gag-specific cytokine mRNA+ CD4+ T from matched donors: b) PD-
1 gMFI, c) frequency of TIGIT+, or d) frequency of CD200+. Only positive responses (at least 2 fold over 
unstimulated condition) were considered. bcd) Wilcoxon test, n = 7 longitudinal samples. gMFI = geometric 
mean fluorescence intensity. 
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Table S5.1 Subject characteristics 

 

Characteristic CP EC ART 

Number of subjects 13 9 7 

Median (IQR) Viral load 
(copies/ml) 

19067 < 40 < 40 

(6235 - 1 000 000) (< 40 - 49) (< 20 - 44) 

Median (IQR) CD4 Count 
(cells/ul) 

329 591 640 

(138 - 1036) (369 - 744) (361-940) 

Median (IQR) documented 
years of HIV infection 

8.5 16.4 9.2 

(0.25 - 23.9) (1.2 - 28.5) (0.9 - 24.9) 

Median (IQR) age (years) 

41 46 43 

(22 - 51) (33 - 59) (37 - 52) 

Gender       

Number of Males (%) 11 (85%) 4 (44%) 6 (86%) 

Number of Females (%) 2 (15%) 5 (56%) 1 (14%) 
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Table S5.2 Flow cytometry panel used in AIM assay 

 

Antigen/Reagent Fluorochrome Clone Manufacturer Cat # 
Volume/test 
(ul)* 

Brilliant Stain 
buffer - - BD 563794 50 

LIVE/DEAD Aquavivid - eBioscience L34966 1 

CD14 V500 M5E2 BD 561391 2 

CD19 V500 H1B19 BD 561121 2 

CD8 V500 SK1 BD 561618 4 

CD3 BUV395 UCHT1 BD 563546 6 

CD4 BUV496 SK3 BD 564651 8 

CD69 BV650 FN05 Biolegend 310934 7.5 

CD154 PE TRAP1 BD 555700 20 

TIGIT APC MBSA43 eBioscience 17-9500 7.5 

PD-1 BV421 EH12.2H75 Biolegend 329920 6 

ICOS PE-Cy7 ISA-3 eBioscience 25-9948 10 

CD200 
PerCP-
efluor710 OX104 eBioscience 46-9200 7.5 

CD45RA BUV737 H1100 BD 564442 4 

CCR6** APC-R700 11A9 BD 565173 7.5 

CXCR3** BV605 G025H7 Biolegend 353728 10 

CXCR5** BB515 RF8B2 BD 564624 10 

* one test : 10M PBMC in 200ul staining buffer 
   

** added in cull culture (0.5ml) 15 min prior to stimulation 
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Table S5.3  Variants of the Flow cytometry panels used in intra-nuclear 

transcription factor staining 

 
Antigen/Reagent Fluorochrome Clone Manufacturer Cat # Volume/test 

(ul)* 

 
Brilliant Stain buffer - - BD 563794 10 

 
LIVE/DEAD Aquavivid - eBioscience L34966 0.5 

 
CD14 BV480 M5E2 BD 746304 1 

 
CD19 BV480 HIB19 BD 746457 0.5 

 
CD8 BV480 RPA-T8 BD 566121 0.5 

 
CD4 BUV496 SK3 BD 564651 4 

 
CD69 BUV395 FN50 BD 564364 2.5 

 
CD154 BV711 24-31 Biolegend 310838 5 

 
TIGIT PE-Cy7 MBSA43 eBioscience 25-9500 2 

 
PD-1 BV605 EH12.2H7 Biolegend 329924 5 

 
T-BET BV421 O4-46 BD 563318 5 

 
CD45RA APC-Fire 750 HI100 Biolegend 304151 0.5 

 
CCR7** BB700 3D12 BD 566438 5 

 
CCR6** BUV737 11A9 BD 564377 0.5 

 
CXCR3** BV785 G025H7 Biolegend 353738 0.5 

TF
 e

xh
au

st
io

n  

NFATc1 AF488 7A6 Biolegend 649604 5 

CXCR5** PE-Dazzle 594 J252D4 Biolegend 356928 5 

TOX PE TXRX10 eBioscience 12-6502-
82 5 

TCF-1 AF647 7F11A10 Biolegend 655204 5 

TF
 P

ol
 

CXCR5** BB515 RF8B2 BD 564624 2 

Eomes PE-eF610 WD1928 eBioscience 61-4877-
42 5 

CD200 PE OXS-104 Biolegend 329206 3 

RORgt AF647 Q21-559 BD 563620 5 

O
pt

im
iz

at
io

n 

Helios PerCP eFluor710 22F6 eBioscience 46-9883 5 

BATF eFluor660 MBM7C7 ThermoFisher 
50-9860-
42 5 

Bcl6 PE K112-91 BD 561522 5 
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Supplementary Table 4: Flow cytometry panel used in mRNA-Flow-FISH assay 

Antigen/Reagent Fluorochrome Clone Manufacturer Cat # Volume/test 
(ul)* 

Brilliant Stain 
buffer - - BD 563794 25 

LIVE/DEAD Efluor-506 - Invitrogen 
65-
0866 0.5 

CD14 BV510 M5E2 Biolegend 301842 3 

CD19 BV510 H1B19 Biolegend 302242 3 

CD56 BV510 NCM16.2 BD 563041 0.5 

CD3 BB700 HIT3a BD 742207 0.5 

CD4 BUV496 SK3 BD 564651 4 

CD8 PE-efluor610 RPA-T8 eBioscience 61-
0088 0.5 

CD69 BUV395 FN50 BD 564364 2.5 

TIGIT  PE-Cy7 MBSA43 eBioscience 25-
9500 5 

PD1 BV711 EH12.2H7 Biolegend 329928 5 

CD200 PE OX-104 Biolegend 329206 3 

CCR6** BUV737 11A9 BD 564377 2 

CXCR3** BV421 G025H7 Biolegend 353716 1 

CXCR5** BV605 J252D4 Biolegend 356929 2 

      
* one test : 5M PBMC in 100ul staining buffer 

   
** added in cull culture (0.5ml) 15 min prior 
to stimulation    
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Table S5.5 Probe panel combination used in mRNA-Flow-FISH assay 

 
Proble Fluoro. Manufacturer Cat # Volume/test (ul)* 

Pr
ob

e 
co

m
bi

na
tio

ns
 

Antiviral panel 

GZMB 
mRNA Type 1 ThermoFisher VA1-3084452 5 

IL2 mRNA Type 4 ThermoFisher VA4-14454 5 

IFNG mRNA Type 6 ThermoFisher VA6-13121 5 

Mucosal panel 

IL22 mRNA Type 1 ThermoFisher VA1-14439 5 

IL17F mRNA Type 4 ThermoFisher VA4-11185 5 

IL10 mRNA Type 6 ThermoFisher VA6-13016 5 

TFH Panel 

IL21 mRNA Type 1 ThermoFisher VA1-14117 5 

IL4 mRNA  Type 4 ThermoFisher VA4-3082434 5 

CXCL13 
mRNA Type 6 ThermoFisher VA6-15752 5 

Modified Mucosal panel 

IL22 mRNA Type 1 ThermoFisher VA1-14439 5 

IL17F mRNA Type 4 ThermoFisher VA4-11185 5 

IFNG mRNA Type 6 ThermoFisher VA6-13121 5 

Modified TFH Panel 

IL21 mRNA Type 1 ThermoFisher VA1-14117 5 

IL2 mRNA Type 4 ThermoFisher VA4-14454 5 

CXCL13 
mRNA Type 6 ThermoFisher VA6-15752 5 

  

* one test : 5M PBMC in 100ul staining buffer 
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Table S5.6 Flow cytometry panel used in delayed intracellular cytokine staining 

(d-ICS) 

Antigen/Reagent Fluorochrome Clone Manufacturer Cat # 
Volume/test 
(ul)* 

Brilliant Stain 
buffer - - BD 563794 25 

LIVE/DEAD Aquavivid - eBioscience L34957 0.5 

CD14 BV510 M5E2 Biolegend 301842 3 

CD19 BV510 H1B19 Biolegend 302242 3 

CD56 BV510 NCAM16.2 BD 563041 0.5 

CD8 BV711 RPA-T8 BioLegend 301044 2 

CD69 BUV395 FN50 BD 564364 2.5 

CD4 BUV496 SK3 BD 564651 4 

CCR7** BV650 G043H7 Biolegend 353234 5 

CD45RA APC-Fire750 HI100 Biolegend 304151 1 

CXCR5** BV421 J252D4 Biolegend 356920 2.5 

IFNg*** PE-Cy7 B27 BD 557643 4 

IL-2*** 
PE-
Dazzle594 

MQ1-
17H12 Biolegend 500344 3.5 

TNFa*** AF488 MAb11 Biolegend 502915 2 

IL-21*** eFluor660 
eBio3A3-
n2 eBioscience 

50-
7219-
42 5 

CXCL13*** PE 53610 R&D IC801P 10 

* one test : 5M PBMC in 100ul staining buffer 
   

** added in cell culture (0.5ml) 15 min prior to stimulation 
  

*** Stained for intracellularly 
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Chapter 6 – Discussion 

Two separate pandemic-causing viruses have been covered in this thesis: SARS-CoV-2 

and HIV. These viruses differ considerably in terms of origin, genetic make-up, replication 

cycle, and pathology. In both cases, patient outcome can differ greatly, with the same 

diversity also found in the immune response to the virus. The study of these differences 

give us an opportunity to understand patient-specific pathophysiology. This discussion is 

separated in three parts, with the first two about the two viruses covered in this thesis. 

The third part will contrast both these viruses. 

PART 1: CHARACTERISTICS OF ACUTE SARS-COV-2 

INFECTION 

The worldwide effort to understand SARS-CoV-2 infection led to an enormous amount of 

evidence quickly becoming available. As a consequence, researchers sometimes had 

diverging conclusions due to different cohorts, inconsistent sampling times, subtle 

divergences in sample processing or protocols, etc. For these reasons, the scientific 

community initially had a hard time getting a clear picture of COVID-19. 

We set off to identify a robust and reproducible predictor of fatality, even among the critical 

subgroup of patients. At the start of this project, we hypothesized that different 

mechanisms could explain a poor outcome (and thus serve as biomarkers): the cytokine 

storm (already linked to severe COVID-19, and reminiscent of sepsis), ARDS (already 

associated to COVID-19), plasma vRNA (linked to severe disease for other respiratory 

viruses (Kim et al., 2016)) and a faulty antibody response (linked to poor outcome for other 

viruses). The sequential sampling, in-depth clinical characterization, and the 

immunovirological plasma profiling of the cohort allowed us to narrow our analysis down 

to a specific timeframe. It turned out to be opportune, as it simultaneously captured the 

lingering plasma vRNA, the delay in antibody response, and the strong association of 

ARDS markers with fatality. As reports before us, we found that high levels of SARS-CoV-

2 viral RNA, cytokines, and markers of ARDS were significantly associated to fatal 
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outcome, as well as low antibody responses. By pitting the fatality-associated markers 

against each other in a multivariate model, we found that plasma vRNA systematically 

was the superior predictor. Testing the models in multiple cohorts underscored the 

robustness of our model as, among the cytokines associated to fatality in our discovery 

cohort, some lost their association in the validation cohort. The robustness of viral RNA 

was validated in two independent cohorts and across different early sampling time points, 

confirming its robustness in predicting fatality, even among the critical subgroup.  

All early longitudinal samples were characterized in the same fashion. Since all this had 

been done on longitudinal samples, we could study the interplay between these aspects 

across disease severity and outcome. This was done by using a combination of 

dimensionality reduction tools, such as PHATE and knn clustering, leading to insights 

about the pathology and dysregulated immune responses in COVID-19. Through this 

approach, we grouped patients not based on clinical features but rather on the progression 

of their immune response to COVID-19, and found that these patients fell among four 

clusters. This type of approach is powerful, in that it can combine different types of 

measures to subcluster patients, bringing us closer to personalized medicine. 

What do our findings suggest about the pathology of COVID-19? 

The significance of SARS-CoV-2 plasma vRNA 

We sequenced the N and E genes of SARS-CoV-2 in plasma. This vRNA is likely not 

complete, as in vitro testing revealed no evidence of infectious virus in the plasma 

(however, the tested samples had low amounts of SARS-CoV-2 vRNA) (Andersson et al., 

2020). We saw a strong non-perfect correlation between both probes (where detection 

with the E probe was slightly inferior), which could suggest fragments of the virus. 

Circulating viral microRNA have been detected early in SARS-CoV-2 infection, and may 

play a role in immune dysregulation in these patients (Meng et al., 2021). However, 

microRNAs are less than 30 nucleotides, much shorter than the 1328 base pairs N 

transcripts we quantified by Nanodrop.  
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Figure 6.1  Integrative DSO11 plasma profile reveals four types of immune response to 
SARS-COV-2. A) Hazard Ratios (HR) showing the risk of mortality within 60 days of symptom 

onset (DSO60) for very increase in 1 log unit of the measurement. Only significant measurements 

included in PHATE embedding are shown. B) Overview of immunovirological plasma profiles and 

clinical features of each patient cluster identified.  

Plasma vRNA correlated poorly with that of nasopharygeal swabs (NSW) (Prebensen et 

al., 2020). While this points to a disconnect between viral quantities in the upper 

respiratory tract and the blood, our findings had a number of parallels with saliva vRNA 

detected by N-specific probes (Silva et al., 2021) Like plasma  vRNA, saliva vRNA was 

higher in critical than non-critical cases, and generally greater in deceased than survivors. 

It also correlated strongly with markers of inflammation such as IL1ra, TNFa, IL-6 and 

CXCL10. The authors speculate that the saliva vRNA may come from SARS-CoV-2-

replication in minor salivary glands, as seen with SARS-CoV-1 (Liu et al., 2011) or from 

viral invasion in the lower respiratory tract (where the virus is then expeled into the oral 

cavity through coughing and mixed with saliva). It is unclear whether saliva and plasma 

vRNA correlate, but there are some differences: saliva vRNA at DSO11 is similar between 

survivors and deceased within the critical subgroup, while we see a significant difference 

with plasma vRNA. Also, it is the absence of clearance rather than higher levels of saliva 

vRNA which is associated to fatal outcome. This suggests that the vRNA quantified in the 

saliva may not come exclusively from the same source as plasma vRNA. 

New evidence indicates that kidneys are directly infected by SARS-CoV-2 in vivo (Diao et 

al., 2021). It is possible that a small fraction of plasma vRNA is indeed infectious, and the 

study which saw no infectivity of plasma SARS-CoV-2 did not test enough samples to 

detect this rare occurrence (Andersson et al., 2020). Once infected, the kidneys may also 

serve as a source of viral RNA, as infectious particles have been detected in the urine of 

an infected COVID-19 patient (Sun et al., 2020). Rather than a surrogate of viral 

replication in the respiratory tract, it may be a sign of viral replication in other organs of 

the body.  

Whether the virus is infectious or not, wandering pieces of virus across the body can prime 

immune responses, for example through pattern-recognition-receptors or through 

activation of the complement cascade, and sustain the immunopathology seen in COVID-
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19. 

Plasma vRNA as a superior predictor to markers of inflammation and tissue 

damage 

Although initiated by SARS-CoV-2’s infection, COVID-19 cases are fatal because of the 

exaggerated immunopathology. IL-6 and TNFa, some of the “favourite” markers of 

inflammation, have often been cited as predictive of fatality (Del Valle et al., 2020), and 

we saw the same in our data. Similarly, hypercoagulability and, in consequence, 

thrombosis are also linked to fatal COVID-19, like high levels of their biomarker D-dimer 

(Xu et al., 2021). Of note, D-dimer was not predictive of fatality in our cohort nor in others 

(Laing et al., 2020), perhaps due to the early timeframe. 

Why is it then that plasma vRNA has a superior predictive value than these other markers? 

We must consider what we mean by “superior”. Many of the other cytokine markers of 

inflammation or ARDS had a significant hazard ratio (HR) over 1, meaning that for every 

1 log increase in the plasma concentration of those markers, there was an increase in risk 

of fatality. When we combined these measurements in a multivariate model, only vRNA 

remained significant: this means that the predictive value of high levels of IL-6, for 

example, is accounted for in the information given by vRNA, likely because of the 

correlation between vRNA and IL-6. Furthermore, high levels of IL-6 falsely predicted a 

death (a survivor with high IL-6 concentrations) and/or falsely predicted a survival (a 

deceased patient with low IL-6) more often than did plasma vRNA. This indicates that 

vRNA is a more accurate biomarker of fatality than IL-6. 

The only biomarkers for whom higher levels predicted survival were RBD-specific 

antibody responses. 

 

Causes of delayed antibody responses in fatal cases.  

We saw that at DSO11, low amounts of SARS-Cov-2 RBD-specific antibodies were 

associated with an increased risk of fatality. Our subsequent longitudinal study showed 

that it was not an absence, but rather a delay in antibody production. This delay did not 
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affect the levels of IgM, suggesting normal initial recognition of SARS-CoV-2 by B cells. It 

was specifically the antibodies issued from class switching (IgG), which were delayed in 

our data and others (Zohar et al., 2020).  

This delay in class switching may arise from a defect in B cells. Although cytopenia is 

restricted to T cells in severe COVID-19 (Laing et al., 2020), depletion of circulating IgM+ 

memory B cells had also been associated to fatal COVID-19 (Lenti et al., 2020). However, 

this latter study did not ascertain the specificity of these B cells cells, nor perform 

correlations with SARS-CoV-2-specific antibody titers. The depletion of SARS-CoV-2-

specific B cells would more likely result in an ablated, or at least diminished antibody 

response. Conversely, we only observed a delay in our fatal cohort: IgG titers ultimately 

plateaued to the same extent in survivors and deceased, suggesting another mechanism. 

Class-switching from IgM to IgG is a T-helper-dependent process; the delay may then be 

due to a defect in CD4+ T cells. Germinal centre formation, where most class switching 

and high affinity maturation occurs (Maehara et al., 2018), was defective in early SARS-

CoV-2 due to blocked differentiation of CD4+ T cells into TFH (Kaneko et al., 2020). This 

block was associated to high TNFa production by TH1 in the extra-follicular milieu (Kaneko 

et al., 2020). It is also plausible that the abundant levels of circulating CXCL13 disrupted 

proper recruitment of CXCR5+ cells, which may partially explain the negative correlation 

we observed between this chemokine and antibody responses.  

In addition to this subset-specific effect, global SARS-CoV-2-specific CD4+ T cell 

responses may be affected, as early virus-specific T cell responses were seen in milder 

disease (Tan et al., 2021), (Zhou et al., 2020a). Delayed T cell priming may itself be 

explained by impaired cDC function in acute SARS-CoV-2 (Zhou et al., 2020a). Normally 

the most potent antigen-presenters, the cDC collected in acute COVID-19 patients have 

decreased expression of co-stimulatory molecules and of type I IFNs, and could not 

induce CD4 and CD8 T cell proliferation in vitro (Zhou et al., 2020a). If the clonal 

expansion of SARS-CoV-2-specific CD4+ T cells is delayed, this would indeed also delay 

the production of SARS-CoV-2-specific IgG antibodies. 

While our cross-sectional study identified the fatal cases as lacking an RBD-specific IgG 

response at DSO11, the longitudinal project revealed two separate patient clusters with 
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low antibody responses: the fatal cluster (the same one as identified in the cross-sectional 

study) and a second non-critical survivor cluster. This latter cluster’s qualitative SARS-

CoV-2-specific antibody response seems to also have lower IgM levels. This would imply 

not a defect in class-switching, but rather a low priming of B cells. This is seen in cases 

of mild COVID-19, which have lower SARS-CoV-2-specific antibody titers than critical 

cases (Long et al., 2020), a difference that persists over 1 year after recovery (Yan et al., 

2021). However, it is not known why some non-critical cases generate antibodies while 

others do not. 

Thus, antibody responses are delayed in fatal cases, although they eventually do produce 

these antibodies.  

 

What are the implications of our observations for treatment of SARS-CoV-2? 

Proper identification of subgroups which may benefit from treatment 

As discussed in Chapter 1, many large clinical trials of therapeutic interventions had 

disappointing results. Given the delay in antibody response in fatal cases, the lack of effect 

from treatments involving passive transfer of humoral immunity, either as convalescent 

plasma (Bégin et al., 2021) or from monoclonal antibodies (Group, 2021), was 

unexpected. 

Among hospitalized COVID-19 patients, the delay was observed in a small proportion of 

cases which were critical, where most deaths occurred. Unfortunately, as many of these 

trials measured disease progression as well (sometimes as the primary outcome), they 

excluded by design patients already on mechanical ventilation. The survival benefit may 

have been greater if the trials had different selection criteria.  

These trials sometimes included additional makers to identify patients with high 

inflammation. Our data showed that while these markers are frequently associated to 

critical disease (over non-critical) and to fatal outcome, they are not as accurate as plasma 

SARS-CoV-2 viral RNA (vRNA). In addition, we also observed that vRNA remained 

predictive of fatality even among second and third-wave cases, by which time treatment 
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with dexamethasone and, to a lesser extent, IL-6R blockers, were already implemented 

in Quebec’s clinics. It was also predictive of fatality when sampled earlier than 11 days 

after symptom onset, and remained predictive when only considering critical cases. The 

robustness, flexibility, and simplicity of this measurement makes it a very advantageous 

measurement to identify high-risk patients, perhaps even with dexamethasone and IL-6R 

blockade therapies. 

Beyond clinical trials, implementation of this measurement in clinic may allow for targeted 

treatments. For example, plasma vRNA correlates with inflammatory cytokines, and can 

be used as a proxy of high inflammation. This is relevant since all therapies with proven 

benefits in clinical trials are thought to increase survival through immunomodulation. 

In summary, plasma vRNA may help objectively identify cases with high potential of 

benefiting from immunotherapies.  

Timing in the administration of treatments 

Among treatments with proven efficacy (in terms of benefit for survival), there were often 

differences based on when the treatment was first administered in the course of the 

infection. In the largest RECOVERY trials, dexamethasone showed survival benefit if 

administered at or after 7 days after symptom onset, while IL-6R blockers were most 

beneficial when administered before DSO7, with a similar trend for convalescent plasma. 

Survival benefit of treating with JAK inhibitor Batricinib was not affected by the treatment 

initiation time, and antivirals never increased survival. Our trajectory analysis using 

PHATE may shed some light on these time-dependent different outcomes. 

People generally present at hospital for their COVID-19 infection around 7 days after 

symptom onset (Huang et al., 2020). At this time, peak viral replication has likely already 

passed. We were not able to study the effect on antiviral administration of plasma vRNA, 

as remdesivir was not administered as standard care, except in immunosuppressed 

individuals with extended viral shedding. However, we do know that plasma vRNA is 

detectable before DSO7. If we consider that the high predictive value of vRNA is because 

it may indicate viral dissemination and/or serious damage to lung tissue, then already by 

DSO7 a big extent of the damage directly due to the viral replication is done, and non-
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viral mechanisms maintain the inflammatory loop. Thus, antivirals may not lower fatal 

outcome as it cannot be administered soon enough.  

The survival benefit of IL-6R blockade is greater in moderate cases of COVID-19. We saw 

that these cases had lower levels of IL-6 than critical patients (although still 10-fold greater 

quantities than in the uninfected control cohort). Thus, it is not patients with the highest 

levels of IL-6 which benefit from this treatment. IL-6 correlated strongly with a number of 

other inflammatory processes and the CytoScore, and weaker with markers of ARDS 

(except for RAGE). This may mean that, under a certain threshold, blocking the IL-6 

signalling pathway can be sufficient to attenuate immunopathology, but over that 

threshold, other inflammatory mechanisms significantly contribute to the 

immunopathology. This is also supported by the fact the IL-6R blockade therapy is only 

beneficial when administered before DSO7 (before the hyperinflammatory phase) in 

conjunction with dexamethasone, suggesting a role for IL-6 is spurring on inflammation.  

Dexamethasone benefited critical cases of COVID-19 and if administered after DSO7 – 

i.e. during the hyperinflammatory phase (Group, 2021). This is in line with 

dexamethasone’s anti-inflammatory effect directly upstream of cytokine production. Likely 

important as well is its capacity to reduce edema, key to lung deterioration later in the 

acute disease course. Of note, there was a synergistic effect between dexamethasone 

and IL-6R blockade administration: perhaps when dexamethasone reduces more general 

mechanisms of inflammation, IL-6R blockade has a therapeutic effect. Early 

administration of dexamethasone, by hampering the immune response, may increase 

replication of the virus.  

Finally, the JAK inhibitor Baricitinib had a survival benefit of severe cases of COVID-19, 

no matter the time of administration. This treatment also impedes inflammation, but did 

not affect antibody production, indicating that the adaptive immune response is not 

affected. Even if the immune-mediated control of viral replication is reduced by the drug, 

this may be palliated by its direct antiviral effect.  

These observations highlight how a better understand of COVID-19’s pathology of a can 

help direct treatment. 
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PART II : CHARACTERISTICS OF CHRONIC HIV INFECTION 

Uncontrolled human immunodeficiency virus (HIV) infection is fatal in the majority of cases 

and, although combination antiretroviral therapy (ART) halts this progression, infected 

individuals require life-long treatment. These individuals generate HIV-specific T cell 

responses, however only in a small minority is there spontaneous control of viral 

replication. The highly heterogeneous CD4+ T cells are a central part of this response, 

but the chronic nature of this infection induces their dysfunction, impeding their antiviral 

capabilities by favouring a skewing away from the antiviral TH1 and mucosal-protective 

TH17/TH22 phenotypes, and towards the B-cell helping TFH polarization (Morou et al., 

2019). Dysfunctional CD4+ T cells are also characterized by high levels of immune 

checkpoints (IC) which modulate their effector functions. Signalling through these IC can 

be therapeutically blocked using immune checkpoint blockade (ICB), and can increase 

antiviral potential of dysfunctional CD4+ T cells. However, how ICB impacts the different 

polarizations of CD4+ T cells is still incompletely understood. 

Here, we studied the response of various HIV-specific CD4+ T cell functions to ICB. First, 

we characterized the expression of dysfunction-related transcription factor TOX, and saw 

that it correlated with key IC PD-1 in a setting of viremia. Furthermore, both TOX and PD-

1’s expression varied across CD4+ T cell polarizations. This shows similarities with CD8+ 

T cells, whereby TOX and PD-1 expression are correlated (Sekine et al., 2020), but with 

a CD4 polarization-specific regulation atop of it. Response to blockade of PD-1 signaling 

cascade resulted in increased antiviral and mucosal-protective functions, but did not affect 

TFH-related functions, similar to recent observations in the mouse LCMV clone 13 model 

(at least for Th1 vs TFH) (Snell et al., 2021). Similar observations were made when two 

IC were simultaneously blocked. Response to ICB was most prominent in viremic patients, 

and largely subdued upon ART initiation, suggesting a role of high antigen burden in the 

responsiveness of CD4+ T cells. 
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Figure 6.2  Differential expression of PD-1 on subsets of HIV-specific CD4+ T cells, and 
their respective responses to PD-L1 blockade. A) Characteristics of HIV-infected cohorts, with 
amount of virus in plasma (viral load) represented by curve on the left. Elite controllers (EC, top, 
blue) have undetectable VL without ART. Chronic progressors (CP, middle, orange) have high VL 
without ART. ART-treated individuals (ART, bottom, purple) have therapeutically-suppressed 
undetectable VL. B) Relative proportion of subsets which make up the total pool of HIV-specific 
CD4+ T cells per cohort. C) Relative levels of PD-1 per HIV-specific CD4+ T cell subset. Colour-
coded to cell types presented in B. D) Response to immune checkpoint blockade (ICB, in this 
case, blockade of PD-L1), as measured by increased subset-specific cytokine production. More 
stars mean greater increase of cytokine upon blockade. 
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reduce the size of the reservoir (Le et al., 2013). These effects can translate to fewer co-

morbidities (namely the non-AIDS-related events) and fewer side effects of the infection. 

Of notable importance for HIV research, early-treated individuals may achieve a functional 

cure easier, as their immune system is less impacted by the virus (Saez-Cirion et al., 

2013). 

For these reasons, the use of ICB in vivo in humans has been studied only in the context 

of ART, where the results have been underwhelming (for example, only 2/6 PD-1-inhibitor 

treated individuals had greater HIV-specific T cell responses). In SIV models, the most 

encouraging results were observed in chronically-infected RM, which had decreased viral 

load and, most importantly, improved survival (Velu et al., 2009). In contrast, antviral 

responses were only modestly enhanced following short-term ART (Mylvaganam et al., 

2018), and not at all following long-term ART (Bekerman et al., 2019) in RM.  

These contrasts suggest that a recent exposure to high virus amounts, and thus of 

antigens, may favour a greater response to ICB. This would mimic ICB response in cancer 

research, where clearance of “hot” tumours (i.e. highly inflamed tumour, with T cell 

infiltration – signifying that there is T-cell recognition of the tumour) is greater than that of 

“cold” tumours (no inflammation, no T cell infiltration) (Bonaventura et al., 2019). This was 

also seen in our in vitro PD-L1-blockade treatment, where chronic progressors had greater 

responses prior to ART therapy. It is not clear whether it is the presence of antigens per 

se, or rather the accompanying inflammatory milieu, which drive this better response. 

In summary, administration of ICB with the goal of a lasting enhancement of HIV-specific 

T cell function may be most beneficial (or potentially, only beneficial) either before the 

initiation of ART or during treatment interruption. This is reminiscent of broadly-

neutralizing antibody therapy, where enhanced T-cell responses were only observed if 

ART was interrupted (Niessl et al., 2020a). 

 

How may the effect of ICB on HIV-specific CD4+ T cells synergize with other effects? 
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Reactivation of latent reservoir 

In HIV, CD4+ T cells are most studied for their role as principal hosts of the HIV reservoir. 

Reactivation of a latent reservoir can occur through activation of the host CD4+T cell. 

Immune checkpoint receptors, which effectively diminish T cell activation, are enriched in 

HIV-harbouring CD4+ T cells during ART (Ryan et al., 2016). Recently, the engagement 

of PD-1 with its ligand was shown to directly inhibit HIV-transcription following TCR 

engagement in vitro (Fromentin et al., 2019). The contrary was also true: blocking PD-1-

ligand interaction increases HIV production, even in settings where T cell activation is not 

increased (for example, with the use of latency-reversing agents) (Fromentin et al., 2019). 

Furthermore, TFH in the lymph nodes of ART-treated PLWH, which express high levels of 

PD-1, are a key source of inducible, replication-competent HIV (Perreau et al., 2013). All 

these observations highlight the latency-reversal potential of ICB. 

Cases of ART-treated PLWH receiving ICB as treatment for cancer are now emerging, 

but with contradictory results. PD-1 blockade alone has shown an important decrease in 

HIV-DNA of one treated patient (Guihot et al., 2018). However, another study with three 

patients did not see a consistent effect of different measurements of HIV reservoir, no 

matter whether the patient’s cancer responded to the treatment or not (Scully et al., 2018). 

Of note, this latter study did see spikes of HIV RNA in blood, highlighting that there was 

indeed reactivation of the reservoir, but this did not lead to a clearance over time. 

Studies have also tested the effect of combined PD-1 and CTLA-4 co-blockade, as they 

inhibit T cell activation through different mechanisms and have both been associated to 

viral reactivation in vivo in humans (Wightman et al., 2015). A recent SIV study created a 

long-term ART-treated model, which received ICB during ART, then underwent ART-

treatment interruption (Harper et al., 2020). The authors compared single PD-1 and CTLA-

4 blockades, and the combined treatment. Both PD-1 and CTLA-4 did reactivate latent 

reservoir, but of different clones, suggesting that reservoirs do not have the same 

sensitivity to all ICB (with CTLA-4 blockade reactivating a larger diversity of clones than 

PD-1 blockade). This highlights why a better understanding of which CD4+ T cell subsets 

responds to a given treatment regimen is key to finding the combination best for a greater 

reactivation of the viral reservoir. Unfortunately, none of the regimens were sufficient to 
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prevent viral rebound, underscoring that ICB alone is not enough to achieve a functional 

cure. 

Another key observation of this latter study was that all regimens with PD-1 blockade 

delayed viral rebound by 5 days, while no such delay was observed with CTLA-4 single 

blockade (Harper et al., 2020). Since anti-CTLA-4 reactivated more latent virus than anti-

PD-1 (and decrease of SIV DNA), this delay cannot be due to a greater depletion of the 

reservoir with PD-1 blockade. This suggests that PD-1’s role in enhancing a dysregulated 

immune response probably played a greater part in the delay than the depletion of the 

reservoir.  

 

Effect of other adaptive immune cells 

The best-characterized function of ICB is the reversal of CD8+ T cell . Antigen-specific 

CD8+ T cells in a chronic setting incrementally lose antiviral functions, and are ultimately 

clonally depleted. PD-1 blockade can reverse the effect of exhaustion in HIV-specific 

CD8+ T cells in vitro (Day et al., 2006), and in vivo in SIV models (Velu et al., 2009) and 

humans (Gay et al., 2017). 

A functional CD4+ T cell help has been shown to be indispensable response to ICB in 

CD8+ T cells in patients with cancer (Zuazo et al., 2019) and, in a model of chronic viral 

infection in mice, in virus-specific CD8+ T cells (West et al., 2013). 

Furthermore, increased CD4+ T cell function through blockade of the PD-1 and IL-10 

pathways resulted in increased IFNg production from NK cells stimulated with HIV 

antigens (Porichis et al., 2018). 

Of note, the SIV study also measured improved memory B cell responses, with increased 

titers of SIV-specific antibodies upon PD-L1 blockade (Velu et al., 2009). Indeed, PD-1 

expression is increased on HIV-specific B cells, also characterized as dysfunctional. PD-

1 blockade in vitro led to greater activation of these B cells (Nicholas et al., 2013). Thus, 

the increased antibody response seen in the RM may be due to direct response from B 

cells. However, as TFH function did not seem affected by blockade in our data, it is 
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possible that ICB may not translate to better quality B cell responses.  

Taken together, these reports show how boosting CD4+ T cell help directly favours 

antiviral responses in other immune effector cell populations. 

 

Contribution of the gut microbiome in response to ICB 

A recent paper linked microbiome to the response to ICB (Routy et al., 2018). They 

transplanted fecal matter (FMT) into mice models of cancer patients which either 

responded or not to ICB and then inoculated them with the same tumour, and found that 

mice with the FMT from responders responded to ICB, but not those which received FMT 

from non-responders. That microbiome is key was also reflected in humans, where 

antibiotics during ICB were associated with reduced clinical benefit from ICB (Derosa et 

al., 2018). The exact mechanism of why microbiome influences tumouricidal responses 

induced by ICB are unknown. However, other lines of evidence link bacterium-derived 

products with ICB efficacy. Combined administration of PD-L1 blockade and LPS resulted 

in an increase of functionally-active virus-specific CD8+ T cells in an LCMV model of 

chronic infection (Wang et al., 2019). In this model, LPS through TLR-4 signalling 

increased the antigen-presenting capacities of DCs.  

In addition, an in vitro study showed that bacteria-specific CD4+ T cells can also succumb 

to exhaustion in the context of increased bacterial translocation in common variable 

immunodeficiency (also characterized by a “leaky gut”) (Perreau et al., 2014). These cells 

can be reinvigorated by ICB, as evident by increased frequencies of TH1-specific 

cytokines IFNg and IL-2, but also the mucosal-associated cytokine IL-17A. This indicates 

that the reinvigoration we saw of TH17-associated functions are not limited to HIV-

specificity. 

Thus, there are at least two mechanisms whereby the gut microbiome influences the 

response to ICB: i) activating APC’s antigen-presenting capacities; ii) reversing bacteria-

specific exhaustion, which can contribute to priming virus-specific cells and reactivate the 

HIV reservoirs in the gut.  
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How can we use co-blockade in HIV?  

 

PD-1 with TIGIT co-blockade. 

Accumulation of multiple immune checkpoints is one of the key features of T cell 

exhaustion. Each IC signals through a different pathway; it was a logical progression then 

to assume that by blocking multiple IC pathways, one can further enhance the restoration 

of the T cell function. 

Multiple studies have investigated the effect of simultaneously blocking PD-1 and CTLA-

4 pathways. Mice tumour models showed that these ICB caused the expansion of different 

T cell subsets (Wei et al., 2019; Wei et al., 2017), which is concordant with the ICB 

reactivating different clones of reservoir (see above).  

In contrast, our data from the PD-1 and TIGIT co-blockades do not suggest that each 

blocking strategy reinvigorated different HIV-specific CD4+ T cell. We saw no measurable 

effect with TIGIT blockade alone, and when applied in combination with PD-1, the profile 

of response was very similar to what was observed with single PD-1 blockade, but 

enhanced. These observations are reminiscent of other in vitro studies, where PD-1 

blockade was the only blockade strategy to reinvigorate HIV-specific T cell function when 

used alone, but could be further enhanced from combined strategies (Grabmeier-

Pfistershammer et al., 2017).  

These observations suggest that PD-1 is the central IC in HIV-specific T cell exhaustion, 

and the first block that must be overcome, before being able to observe any benefits from 

other blockade strategies – at least for ICs which signal after TCR binding. 

 

What non-beneficial effects may ICB have in HIV infection? 

Limited duration of effect 

Epigenetic analysis of T cell responses following ICB revealed no changes in the 

epigenetic state of the responding cells using a CD4-depleted mouse model of chronic 
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infection (Pauken et al., 2016). They saw that the beneficial effect of ICB on exhausted 

virus-specific CD8+ T, specifically increased proliferative capacity and effector functions, 

were lost within 11 weeks of infection. Even after transfer of ICB-boosted exhausted CD8+ 

T cells into antigen-free mice, they did not survive for a long time, in line with the 

differences they had compared to the epigenetic landscape to memory T cells. They linked 

this specifically to NFAT signalling without AP-1 (Bengsch and Wherry, 2015; Martinez et 

al., 2015). This would support PD-1’s role in sustaining exhaustion, since PD-1 signalling 

induces BATF, a negative regulator of AP-1 (Quigley et al., 2010).  

Due to the depletion of the CD4+ T cells, the duration of the effect of ICB on dysfunctional 

CD4+ T cells was not assessed (Pauken et al., 2016). However, increased expression of 

BATF was also observed in dysfunctional virus-specific CD4+ T cells (Crawford et al., 

2014). Exhausted CD8+ T cells are epigenetically similar to (presumably) dysfunctional 

CD4+ T cells (Satpathy et al., 2019) (presumably, since this paper identifies dysfunctional 

cells as TFH – but it is the population of CD4+ T cells enriched in tumour 

microenvironment). They also observed no changes in the epigenetic profiles of these 

dysfunctional CD4+ T cells, only their expansion. Since the inflexibility of the epigenetic 

profile upon ICB is the reason that ICB-driven reinvigoration of exhausted CD8+ T cells is 

short-lived, and the same inflexibility is observed in dysfunctional CD4+ T cells, it is likely 

that the beneficial effect ICB can have of CD4+ T cells is also limited in duration. Thus, 

ICB cannot not be used as a long-term therapy to sustain antiviral CD4+ T cells. 

 

Overt immunopathology and secondary effects of ICB 

Outside chronic disease, PD-1 plays a pivotal role in modulating immune responses: 

deletion of PD-1 is a mouse model sets off a number of autoimmune-driven pathologies 

(Nishimura et al., 1999). In the context of cancer therapy, inhibition of the PD-1 pathway, 

immune-related adverse events were reported in 16% of individuals, and up to 55% when 

used in combination with CLTA-4 blockade (Larkin et al., 2015). These events can affect 

the dermatological (rash), gastrointestinal (colitis), endocrine (hypothyroidism), pulmonary 

(pneumonitis), joints (inflammatory arthritis), neurological, ocular, renal and cardiac 

systems (Marin-Acevedo et al., 2019). The gut microbiota has as well been associated to 
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ICB-related toxicity (Andrews et al., 2021) – although the strains associated with it were 

not the same as those linked to response to PD-1 blockade (Routy et al., 2018) 

(Gopalakrishnan et al., 2018) (of note, the types of cancers and the treatments observed 

were not the same, which strongly impacts the efficacy of ICB). In addition, a recent study 

demonstrated that anti-CTLA-4-induced enterocolitis could be avoided by deleting FcyR 

interactions (through mutation of the antagonistic antibody), while preserving the 

beneficial antitumor activity (Bauche et al., 2020). Taken together, these reports propose 

modifying the microbiota (probiotics) or modifying the antagonists used for the blockades 

as strategies to reduce ICB-mediated adverse events. 

Luckily, administration of ICB specifically to PLWH, in the context of cancer treatment, 

seemed well tolerated. A clinical trial with 20 patients treated with durvalumab (PD-L1 

blockade) (Gonzalez-Cao et al., 2020) reported no grade 3 or 4 drug-related adverse 

events, and a second with 30 such patients (pembrolizumab, PD-1 blockade) reported the 

same amount of such events as in a non-infected population (Uldrick et al., 2019). Of note, 

viral blips were common occurrences in these trials. In PLWH without cancer, PD-L1 

blockade also showed low toxicity in the 6 individuals included in the trial (Gay et al., 

2017).  

As discussed previously, non-virus-specific T cells can also respond to ICB. However, 

some chronic viral infection can also reach sites of immune maturation, notably the 

thymus, as is the case for LCMV clone 13 in mice. Initial LCMV clone 13 infection causes 

infiltration of virus-specifc CD8+ T cells in the thymus, which deplete thymocytes. While 

thymocytes are normally reconstituted over time, PD-L1 blockade depletes them anew 

(Elsaesser et al., 2020). The ongoing viral replication in the thymus also resulted in lower 

stringency for negative selection; as a consequence, autoreactive T cells were released 

from the thymus. A similar mechanism of depletion due to chronic infection likely explains 

the thymus depletion in HIV (Davis, 1984). Thus, ICB could lead to the presence of more 

autoreactive cells when administered to PLWH, and potentially of autoimmunity. 

In summary, ICB-associated adverse events are observed in similar frequency in infected 

and non-infected individuals, and future research will likely develop strategies to minimize 

them. However, potential problems specifically associated to ICB in PLWH may be 
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reactivating latent reservoir without subsequent reduction in reservoir, and further 

hampering the already-affected thymus environment. For these reasons, strategies using 

ICB should aim at being short, and only in combination with other therapies, if used as an 

HIV-treatment strategy. 

The impact of ICB on CD4+ T cells have primarily been studied in the context of 

reactivation of viral reservoirs, which are preferentially harboured in IC+ cells. However, 

we show that HIV-specific CD4+ T cells also functionally respond to ICB in multiple ways. 

We also show that the degree of response depends on the polarization of the CD4+ T cell. 

Our work highlights the relevance of considering CD4+ T cell differentiation in studies of 

ICB in HIV, but perhaps as well for other infectious and non-infectious chronic human 

diseases, as understanding which cell types respond to ICB could allow for a more 

targeted usage. Future studies still may study their functional contribution in vivo, as well 

as that of CD4+ T cells of other specificities, whose function may also benefit from ICB. 

While recent studies indicate that ICB may not be sufficient in a cure of HIV, they have 

highlighted significant benefits and open new synergistic opportunities. 
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PART III : CONTRASTS BETWEEN HIV AND SARS-COV-2 

Both viruses can cause sizeable immunopathology in the host they have infected. As we 

have described, there is notable heterogeneity in the immunopathology following infection 

of both SARS-CoV-2 and HIV.  

As with most viral infections, there are similarities in the initial immune response against 

the virus, in terms of the innate response. They are also vulnerable to some overlapping 

pathways. For example, both infections show evidence that a delayed type I IFN response 

is bad, while a rapid, robust T cell response is beneficial. 

Since SARS-CoV-2 is ultimately cleared, there is no exhaustion observed in SARS-CoV-

2-specific T cells. While high PD-1 expression is observed on SARS-CoV-2-specific T 

cells early in infection (led some to think there was exhaustion), it was later shown to be 

simply associated to the cell’s activation (Shahbaz et al., 2021). It would be interesting to 

study whether this phenomenon occurs in immunocompromised individuals with extended 

viral shedding. However, important confounding factors, namely the cause of 

immunosuppression, would likely make interpretation difficult.   

In both studies, the responses of the patients to the virus diverged greatly. Part of it can 

likely be explained by the usual demographic suspects: differences between age groups, 

sexes, co-morbidities, etc. – although our restricted cohorts’ sizes prevented these types 

of analyses. However, it would also be interesting to consider genotypic differences 

between patients. For example, certain polymorphisms were highly associated to fatal 

outcome in COVID-19 (Zhou et al., 2021); does this association stem from inherent 

differences in the immune response? Taking that a step further, genetic ancestry (where 

multiple polymorphisms tend to be passed down together) has recently been linked to cell-

specific differences in response to influenza virus (Randolph et al., 2021). How do such 

differences affect other viral infections? Indeed, considering multiple layers of data 

concomitantly, such as plasmatic profile and genotype, will allow scientists to parse apart 

the granularity among the patients. This is a key step for any outlook on personalized 

medicine. 
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Chapter 7 – Limitations and perspectives 

Both studies have given insight into two separate human viral infections. However, the 

nature of the samples available and/or technical difficulties were sometimes limitations, 

highlighting the opportunity to expand on these findings in future studies.   

 

SARS-CoV-2 

Blood vs tissues 
Given the pandemic context, our lab was only able to obtain small quantities of blood from 

the infected individuals, which were taken at the same time as routine clinical sampling. 

Given the huge time pressure of the pandemic on healthcare workers, their contact with 

infected patients was kept to strict minimum.  

Although we do detect SARS-CoV-2 in the blood and there are coagulopathies, most of 

the aspects of the disease, particularly the immune response, would be most accurately 

captured in tissues such as the respiratory tract. Indeed, samples of lung tissue post-

mortem or bronchoalveolar lavage fluid could have allowed us to link the early 

immunovirological plasma profiles we observed to specific immunopathologies, such as 

whether high amonts of plasma vRNA was indeed linked to the reported infection of the 

kidneys (Farkash et al., 2020). Of equally great interest would have been to collect 

biopsies from secondary lymphoid tissues, for example through fine needle aspirate 

(FNA), where we could have studied the qualitative features of interactions between 

SARS-CoV-2-specific CD4+ T and B cells, to find mechanistic explanations behind the 

different types of aberrant early antibody responses we observed in two of four types of 

patients. For example, a loss of TFH differentiation, with accompagnying absence of GC, 

was linked to fewer SARS-CoV-2-specific B cells (Kaneko et al., 2020), but whether that 

would translate to the delay we observed in the high-fatality cluster, or rather the atypical 

antibody response of the non-critical low antibody cluster, is unclear. While not possible 

to address this is human patients, these question could also be studied using an animal 
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model of SARS-CoV-2 infection.   

Anti-SARS-CoV-2 antibody response 
In our studies, we focused on early RBD-specific antibodies as they can be measured 

quickly and easily by ELISA. We were also able to compare the neutralization and ADCC 

capacities of only a select few samples, since these assays are labour-intensive. The few 

samples we analyzed revealed that reduced ADCC, but not neutralization, was observed 

in fatal COVID-19 cases. Neutralization in SARS-CoV-2 immunity is primarily driven by 

IgM (Gasser et al., 2021), while ADCC is only possible with IgG. The different kinetics we 

observed between the isotypes of RBD-specific antibodies may very well extend to the 

functionality of the humoral response, and this longitudinal information could allow us to 

pick apart which functional profile is most important early in SARS-CoV-2 infection. While 

this has already been partially eluded using a highly-pathogenic mouse model (Ullah et 

al., 2021), the parallel information is lacking in humans. To fully understand a favourable 

humoral response, more antibody-mediated functions should also be studied. 

Once we have identified what traits are associated to fatal outcome, we could also contrast 

it against the humoral response of the patients in the non-critical low-antibody response 

cluster which survive their infection. This may allow us to separate what aspects of the 

faltering humoral response in the fatal cases would truly aid in clearing the virus.  

Once the advantageous humoral response profile identified, we can then look into why it 

is lacking in the fatal cases of COVID-19, which brings us back to the usefulness of tissue 

samples and/or animal models. Building on this, comparing the individual transcriptomic 

profile of these cells through single-cell RNA Seq of cells extracted from tissues, such as 

the antigen-presenting cells and effector T and B cells, may allow us to identify the 

mechanisms behind these different antibody profiles, and may lead to new therapeutic 

strategies.  

Mechanisms behind therapeutic efficacy 

While there has been a survival benefit with dexamethasone, IL-6R antagonists and 

batricinib, the mechanisms by which they operate is not fully understood. Similarly, the 

reason why monoclonal antibody therapies did not show the same efficacy is not known. 
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Although our cohort did include some patients which received dexamethasone, IL-6R 

antagonists and even a few with plasma transfer therapy, we have not sampled enough 

patients for these analyses. Given the heterogeneity of COVID-19, this would likely require 

a very large multi-centric collaboration, with normalized monitoring strategies and 

implementation of unbiased patient identification. Monitoring the immunovirological 

plasma profile of treated individuals, for example by observing changes in the expected 

trajectories (i.e. the immunovirological traits associated with progression of fatal COVID-

19) could pinpoint the beneficial mechanisms of therapies, and perhaps allow the 

development for more targeted treatments.   

HIV 

Working with PBMCs 
Given the absence of small-animal models of HIV infection as well as the difficulty of 

working with large animals which can be infected with SIV, we were limited to ex vivo 

samples and in vitro testing of immune checkpoint blockade. The drawback of this was 

that we could not take into account the systemic effects of ICB, nor of its effect on CD4+ 

T cells in the tissue. Future work which could isolate the response of specific T helper 

subsets’ to ICB may help elucidate the observed benefits of ICB beyond increased 

antiviral control, namely increased survival. It is telling though that a recent report has 

found similarly subset-dependent responses to PD-L1 blockade using the LCMV clone 13 

model, suggesting that our in vitro observation would also translate to in vitro systems. 

In addition, the in vitro set-up we used, whereby PBMCs were exposed to ICB in vitro, is 

not one found in vivo. Thus, we cannot be certain that the effects we observed will have 

biologically-relevant impacts in vivo, a reccuring limitation of in vitro experimentation. 

Nonetheless, in vitro testing is a much more controllable setting, which can be fine-tuned 

to isolate almost a single variable at a time (for example, (Wei et al., 2013)). While our 

current studied focused on the phenotype and corresponding response to ICB of subsets 

of CD4+ T cells, our in vitro setup could be further refined to also control the signals 

received by the CD4+ T cells from APCs. For example, a recent Nature Protocols paper 

describes APC-mimetic scaffolds (APC-ms), liposome-coated silica microrods at the 
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surface of which co-stimulatory molecules are added (Zhang et al., 2020). While the 

authors of this article developed this system for ex vivo amplification of antigen-specific T 

cells for adoptive cell transfer, one can picture using such a system to finely tune the co-

stimulatory molecules received by the CD4+ T cells. Such approaches would help 

elucidate the mechanisms behind response to ICB, such as the contribution of activating 

ligands or immune checkpoints other than PD-1, the effect of varying TCR strengths, the 

contribution of signal 3 molecules (cytokines), etc.  

An additional difficulty with working with PBMCs is our inability to track, at a single-cell 

level, which CD4+ T cell responds to ICB. In our work, we looked at “bulk” increases in 

response to ICB, and deduced what cells it came from based on the phenotype of all 

responding cells. However, with the advent of more powerful single-cell methods such as 

single cell RNA sequencing and single cell ATAC sequencing, the ability to specifically 

identify the cells responding to ICB would allow us to only look at their transcriptome and 

epigenetic profiles, and confirm “bulk” observations. This could be applied to confirm that 

CD8+ T cells responding to ICB are the progenitor-exhausted CD8+ T cells, and see 

whether only a similar “lowly” dysfunctional CD4+ T cell population can respond to ICB. 

The rarity of untreated HIV patients 
Fortunately, few PLWH in Montreal remain untreated. However, the low amount of 

patients we were able to recruit does limit the characterization we were able to 

accomplish. Indeed, the pattern of responsiveness to ICB has high interpatient variability. 

Environmental-related factors have already been observed to affect responsiveness to 

ICB (for example, the microbiome (Routy et al., 2018)). However, we did not have the 

power to identify homogeneous groups of patients in terms of responsiveness to ICB (for 

example, subgroups of patients which responded strongly for certains cytokines, and not 

for others). Such subgrouping, as we were able to do with the PHATE analysis in our 

cohort of COVID-19 patients, could have allowed us to find features beyond the phenotype 

of circulating CD4+ T cells that may have a link with the responsiveness to ICB. The 

increasing number of clinical trials on PLWH receiving ICB for treatment of cancers now 

offer a remarkable opportunity to better understand what influences the response to ICB, 

and whether it is similar in HIV-negative and HIV-positive individuals. 
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Chapter 8 – Significance 

The projects were conducted very much with the optic that patients would benefit clinically 

from the results. 

Our COVID-19 project has not only confirmed previous findings’ association of high 

amounts of plasma SARS-CoV-2 vRNA, cytokines, and tissue damage markers to fatal 

outcome, but has validated across three cohorts, the superior predictive value of vRNA. 

This easily-measured variable can quickly be integrated into clinical, and may help direct 

therapeutic efforts. In the context of clinical trials, inclusion of this metric to subgroup 

patients may highlight the efficacy of new treatments by focusing exclusively on high-risk 

patients. This metric also proved superior to other clinical metrics used to gage the 

severity of ARDS, highlighting that measures which specifically target the virus are better 

suited to predict fatal outcome, than those used to measure severity of symptoms. 

Furthermore, concomitant consideration of these fatality-associated plasma analytes 

segregate hospitalized individuals into four distinct types of immune responses to SARS-

CoV-2. For example, high inflammation or delay in antibody response only occurs in some 

patients. Our observations highlight inherent heterogeneity in immune responses, which 

translates to different outcomes in these patients. 

Our immune checkpoint blockade project of HIV-specific CD4+ T cells has highlighted that 

not all responses to ICB are equal in dysfunctional CD4+ T cells.  Specifically, TFH cells, 

most akin transcriptomically to the progenitor-exhausted CD8+ T cells that do respond to 

ICB, are the most refractory of all studied CD4+ T cell subsets to ICB. These findings 

underscore important differences between CD4+ and CD8+ T cells, and highlight the 
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importance of considering the CD4+ T cells when studying efficacy and side effects, 

specially given the recent inclusion of ICB as treatment for diverse cancers in PLWH.  

Taken together, this work has sought to characterize what the diversity in immune 

responses mean for efficacy of immune therapies. Through a better understanding of 

patient-specific immunopathology, we can tailor treatment to each separate case, serving 

as the first steps towards personalized medicine in viral infections. These studies are all 

the more relevant now, as more and more therapies leveraging the immune system are 

being used in humans.  
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CD4+ T cell responses are critical for durable control of viral 
replication in chronic infections1,2. Virus-specific CD4+ 
T cell immunity is of particular interest for HIV infection, 

which is characterized by functional impairment and destruction of 
CD4+ T cells. While classical models divided CD4+ T cells into dis-
tinct lineages, studies have demonstrated the importance of CD4+ 
T cell plasticity3. Persistent antigen and inflammatory signals cause 
impairment of antigen-specific responses, a state called immune 
exhaustion. Virus-specific CD8+ T cell exhaustion has been exten-
sively investigated4 and represents a bona fide cell differentiation 
program. These studies highlighted the relevance of genome-wide 
transcriptional studies to understand T cell impairment5. Compared 
with CD8+ T cells, less is known on CD4+ T cell dysfunction. Murine 
lymphocytic choriomeningitis virus (LCMV)-specific CD4+ T cells 
in chronic infection, while exhibiting some characteristics shared 
with CD8+ T cells, also present distinct features6,7, including loss of 
a TH1 signature5 and skewing towards a TFH phenotype8,9.

Whether findings in mice can be extrapolated to HIV infection 
in humans is unclear. Some features of virus-specific CD4+ T cells 
are shared between both infections: upregulation of co-inhibitory 
receptors are found in HIV progressors with ongoing viremia 
(chronic progressors) and chronic LCMV infection5,10. Rare sub-
jects who spontaneously suppress HIV (elite controllers) frequently 
exhibit robust virus-specific TH1 responses11 and strong proliferative 
capacity, similarly to mice infected with the acute strain of LCMV. 
However, HIV and LCMV are distinct viruses and there are notable 
differences between species in terms of T cell differentiation mech-

anisms, such as TFH generation12. An issue of critical clinical rele-
vance is the lack of restoration of effective anti-HIV immunity after 
suppressive ART: viral rebound is the rule after cessation of therapy. 
Whether persistent HIV-specific CD4+ T cell dysfunction on ART 
contributes to this failed response is an important, yet unresolved, 
question. The paucity of experimental tools capable of identifying 
highly heterogeneous antigen-specific CD4+ T cells has hampered 
the study of HIV-specific CD4+ T cell help. Intracellular cytokine 
staining (ICS) assays are of limited sensitivity for many non-TH1 
effector functions, and the use of HLA class II tetramers in humans 
is constrained by availability, requirement for pre-defined epitopes 
and genetic diversity.

To determine key pathways and molecules that link HIV-specific 
T cell help to viral control, we here performed genome-wide tran-
scriptional analyses and functional assays of HIV-specific CD4+ 
T cells from HIV-infected humans with diverse viral loads before 
ART initiation and followed a subgroup of them longitudinally after 
viral suppression on therapy.

Results
Links between HIV-specific CD4+ transcriptome profiles and 
viremia. To define molecular features that discriminate HIV-
specific CD4+ T  cells in progressive versus controlled infection, 
we performed a cross-sectional study of 38 chronically infected 
people who were untreated at the time of sampling. These 
included ‘elite controllers’ (ECs, HIV plasma viral load <50 viral 
RNA (vRNA) copies ml–1), ‘viremic controllers’ (VCs, viral load 

Altered differentiation is central to HIV-specific 
CD4+ T cell dysfunction in progressive disease
Antigoni Morou1,2, Elsa Brunet-Ratnasingham1,2, Mathieu Dubé1,3, Roxanne Charlebois1, Eloi Mercier4, 
Sam Darko5, Nathalie Brassard   1, Krystelle Nganou-Makamdop5, Sahaana Arumugam5, 
Gabrielle Gendron-Lepage1,2, Lifei Yang6, Julia Niessl   1,2,3, Amy E. Baxter1,2,3,9, James M. Billingsley7, 
Premeela A. Rajakumar7, François Lefebvre4, R. Paul Johnson7, Cécile Tremblay1,2, Jean-Pierre Routy8, 
Richard T. Wyatt3,6, Andrés Finzi1,2, Daniel C. Douek5 and Daniel E. Kaufmann   1,2,3*

Dysfunction of virus-specific CD4+ T  cells in chronic human infections is poorly understood. We performed genome-wide 
transcriptional analyses and functional assays of CD4+ T cells specific for human immunodeficiency virus (HIV) from HIV-
infected people before and after initiation of antiretroviral therapy (ART). A follicular helper T cell (TFH cell)-like profile char-
acterized HIV-specific CD4+ T cells in viremic infection. HIV-specific CD4+ T cells from people spontaneously controlling the 
virus (elite controllers) robustly expressed genes associated with the TH1, TH17 and TH22 subsets of helper T cells. Viral sup-
pression by ART resulted in a distinct transcriptional landscape, with a reduction in the expression of genes associated with 
TFH cells, but persistently low expression of genes associated with TH1, TH17 and TH22 cells compared to the elite controller 
profile. Thus, altered differentiation is central to the impairment of HIV-specific CD4+ T cells and involves both gain of func-
tion and loss of function.
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between 50 and 5,000 copies ml–1) and ‘chronic progressors’ (CPs, 
viral load ≥5,000 copies ml–1) (for participant characteristics see 
Supplementary Table 1).

We utilized an activation-induced marker (AIM) assay to iden-
tify CD4+ T  cells specific for the Gag protein (hereafter, termed 
HIV-specific CD4+ T cells). Ex vivo stimulated HIV-specific CD4+ 
T cells were identified by the co-upregulation of CD40L and CD69 
on their surface after a 9-h stimulation with an HIV Gag peptide 

pool13 (Fig. 1a and Supplementary Fig. 1a). Combining two mark-
ers enhanced detection of HIV-specific CD4+ T cells by reducing 
background compared to CD40L alone (Supplementary Fig. 1b,c). 
This AIM assay overcomes limitations of cytokine-based tech-
niques for detection of virus-specific cells, allows live-cell sorting 
and captures a broader antigen-specific CD4+ T  cell population 
(Supplementary Fig. 1d). There was no significant difference 
in the magnitude of HIV-specific CD4+ T  cell responses among 
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Fig. 1 | Deep coverage transcriptome analysis of HIV-specific CD4+ T cells from untreated HIV-infected people with distinct disease status. a, 
Representative flow cytometry plots from an EC of detection of HIV-specific CD4+ T cells by an AIM assay on the basis of co-upregulation of CD40L 
and CD69 9 h after stimulation with an HIV Gag peptide pool. b, Quantification of a. Comparison of net frequency (background of no antigen condition 
subtracted) of CD69+CD40L+ Gag-specific CD4+ T cells among the CP, VC and EC groups by Kruskal–Wallis test. Horizontal lines and bars represent 
median and ±interquartile range, respectively (n = 11 CPs, 11 VCs, 13 ECs). c, Paired volcano plot comparisons depicting DEGs as measured by microarray 
analysis of sorted HIV-specific CD4+ T cells in the three groups. Red, pink and blue dots represent DEG with log2|fold change (FC)| > 1 and Padj < 0.05, 
log2|FC| > 1 or Padj < 0.05, respectively. A two-sided moderated t-test followed by the Benjamini–Hochberg method correction was applied (n = 11 CPs, 9 
VCs, 12 ECs). d, Euler diagrams of DEG between each pairwise comparison of the three groups of participants (log2FC > 1, P < 0.05); numbers represent 
DEGs. e, Top significant enriched gene ontology terms from the curated C5 MSigDB via two-sided CAMERA analysis. Blue, red and white color denote 
negative, positive or not significant (as defined by FDR < 0.05 by the Benjamini–Hochberg method), respectively.
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cohorts or correlation with viremia or CD4 count (Fig. 1b and 
Supplementary Fig. 1e,f).

We reasoned that the AIM assay could reveal the transcrip-
tome modulation in response to cognate antigen-mediated TCR 

signaling, reflecting the functional state of CD4+ T cells. We thus 
performed microarray analysis of sorted ex vivo stimulated HIV-
specific CD4+ T  cells. Pairwise comparisons between cohorts  
(Fig. 1c) revealed sets of differentially expressed genes (DEGs) 
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between all three cohorts, with extensive dissimilarities between CPs 
and ECs. Fewer transcriptional differences were detected between 
the VC and EC groups. The majority of DEGs between VCs and ECs 
were also observed in the CPs versus ECs comparison (Fig. 1d). CPs 
and VCs showed the fewest DEGs, suggesting that viremia strongly 
impacts the transcriptional landscape of HIV-specific CD4+ T cells.

We next used CAMERA (correlation adjusted mean rank gene 
set test)14 enrichment analysis to investigate molecular mecha-
nisms underlying HIV-specific T help alterations associated with 
disease status. We compared the identified DEGs to the Molecular 
Signatures Database (MSigDB) C5 collection of curated gene sets, 
which comprises the gene ontology (GO) terms associated with 
biological processes, molecular functions and cellular components 
(Fig. 1e). The ‘Positive regulation of T helper cell differentiation’ 
signature was negatively associated with viremia. Consistently, the 
‘Positive regulation of CD4+ αβ T cell activation’ and ‘Regulation of 
leukocyte migration’ gene sets were significantly under-represented 
in CPs compared with both VCs and ECs, contrasting with upreg-
ulation of the MHC class II protein complex in CPs. Expression 
of genes associated with protein transport and/or processing was 
reduced in CPs. The pathways enriched with viremia included 
processes associated with chromatin modification, mitotic cell  
cycle, DNA packaging, chromosome segregation, response to stress 
and apoptosis.

This approach identifies potential pathways associated with 
HIV-specific CD4+ T  cell dysfunction, and points to a central 
role for altered T  cell differentiation, regulation and activation in  
this impairment.

HIV-specific CD4+ polarization is associated with disease status. 
Given the potential role for altered T  cell differentiation in HIV-
specific CD4+ T cell impairment, we determined features of CD4+ 
T cell differentiation associated with disease status. Using CAMERA 
we compared our sets of DEGs with human helper T polarization 
signatures from the C7 collection in the MSigDB and publicly avail-
able microarray datasets. While the different conditions used in the 
generation of these signatures (for example, activated versus unac-
tivated cells) may complicate the interpretation of such associa-
tions, we observed notable differences among cohorts. Compared 
with CPs, ECs and VCs displayed enriched TH1 and TH17 signa-
tures15–17 (Fig. 2a,b,e,f, Supplementary Fig. 2a and Supplementary 
Tables 2–4). Cardinal genes associated with TH17 cell differentiation 
and function were upregulated in ECs (Fig. 2f). In viremic people 
(CPs, VCs), we noted a striking enrichment of a TFH signature18 
(Fig. 2c,g and Supplementary Fig. 2a) compared with ECs. There 
was congruent upregulation of several key TFH-associated genes 
compared with ECs, with the notable exception of BCL6, which was 
instead upregulated in ECs (Fig. 2g and Supplementary Table 5).  
Although we did not observe a statistically significant enrichment 

of a LCMV-specific CD4+ T cell exhaustion signature5 in CPs com-
pared with ECs (Fig. 2d) (which might be due at least in part to 
the methodological differences), several of the DEGs enriched in 
CPs were well-known exhaustion-associated genes (Fig. 2h and 
Supplementary Table 6). Several interferon-stimulated genes upreg-
ulated in the LCMV model of exhaustion, such as IFH1, IFIT3 and 
IFI44, were upregulated in ECs.

We next used real-time quantitative reverse transcription PCR 
(RT–qPCR) to further quantify levels of key DEGs identified by 
microarrays and selected additional CD4+ T  cell genes. Principal 
component analysis (PCA) discriminated CPs from ECs, whereas 
there was more overlap between CPs and VCs (Fig. 2i). PC1 val-
ues significantly inversely correlated with viremia, showing that 
changes in the CD4+ T cell profile relate to antigen load (Fig. 2j). 
The RT–qPCR data were consistent with the microarray results 
(Supplementary Table 7). They confirmed that genes associated 
with TFH functions and B cell help (CXCL13, SLAMF6, CD84) and 
exhaustion (TIGIT, CD200, LAG3, TOX) were enriched in CPs. This 
contrasted with genes related to TH17 and TH22 functions (IL17F, 
IL22) and the interferon-induced chemokines (CXCL9, CXCL10, 
CXCL11), which were enriched in ECs (Fig. 2i). Expression of 
selected transcription factors was consistent with these observa-
tions (Supplementary Fig. 2b): ECs expressed significantly more 
TBX21 and AHR genes, respectively coding for TH1 and TH22 mas-
ter transcription factors, and in ECs there was a trend for enhanced 
expression of RORC, a master transcription factor of TH17 differen-
tiation. The behavior of the master TFH transcription factor BCL6 
contrasted to most TFH-associated genes: BCL6 was significantly 
upregulated in ECs compared to CPs in contrast to MAF, another 
transcription factor critical for TFH differentiation, which was highly 
expressed in CPs. Helios (IKZF2), a transcription factor overex-
pressed in LCMV-specific CD4+ T  cells in chronic infection, was 
also upregulated in CPs compared to ECs. Examining correlations 
between gene expression revealed positive and negative associa-
tions of genes, many not anticipated by classical dichotomic models 
of TH differentiation. These results are consistent with a complex 
spectrum of differentiation and functional profiles of HIV-specific 
CD4+ T cells (Supplementary Fig. 2c,d).

These data show higher expression of a TFH-like signature in 
HIV-specific CD4+ T cells in progressive infection, contrasting with 
enriched TH1 and TH17 signatures in subjects achieving spontane-
ous viral control.

Upregulation of classical TFH-associated genes in CXCR5neg  
HIV-specific CD4+ of CPs. We next investigated whether the 
enrichment of the TFH signature in HIV-specific CD4+ T cells of CPs 
compared to ECs was due to a higher fraction of HIV-specific circu-
lating TFH cells (cTFH). We used the CD69/CD40L AIM assay to assess 
the percentages of HIV-specific CXCR5+CD45RA– memory CD4+ 

Fig. 3 | An atypical TFH-like transcriptional signature in CXCR5neg HIV-specific CD4+ T cells discriminates chronic progressors from elite controllers. 
a, Representative flow cytometry plots from a CP illustrating the enrichment of CXCR5mem (CXCR5+ CD45RA−) in CD69+CD40L+ Gag-specific CD4+ 
T cells versus total population in a CP subject, assessed 9 h after stimulation with a Gag peptide pool. b, Quantification from a. Comparison between CPs 
and ECs of the percentage of Gag-specific CXCR5mem assessed by flow cytometry (two-sided Mann–Whitney U-test) (n = 10 CPs and 10 ECs) (b) and 
the enrichment score of a TFH tonsil signature (GSE50391) by ssGSEA (two-sided Mann–Whitney U-test) (n = 11 CPs and 12 ECs) (c). Bars represent the 
median ± interquartile range. d, Correlation of single-sample enrichment score for the TFH tonsil signature with viral load by two-tailed Spearman test 
(n = 11 CPs, 9 VCs, 12 ECs). e, Volcano plots depicting differential gene expression between CP and EC among their live-sorted Gag-specific CXCR5mem or 
CXCR5neg subsets, by microarray analysis. Red and pink dots represent DEG with log2|FC| > 1 and Padj < 0.05 or log2|FC| > 1, respectively, and the number 
of DEGs are displayed in the small tables. Two-sided moderated t-test followed by Benjamini–Hochberg correction method (Padj) (n = 5 CPs and 3 ECs). 
f, CAMERA enrichment analysis of the tonsil TFH signature of CXCR5mem or CXCR5neg Gag-specific CD4+ T cells of CPs compared to ECs (n = 5 CPs and 3 
ECs). Two-sided P value by CAMERA and FDR by the Benjamini–Hochberg method. g, Comparison of expression of TFH surface markers on CXCR5mem and 
CXCR5neg HIV-specific CD4+ T cells of CPs and ECs by flow cytometry (n = 10 CPs and 10 ECs). h,i, mRNA expression of TFH-related surface markers (h) or 
transcription factors (i) by RT–qPCR (Fluidigm) (n = 6 CPs and 6 ECs) on sorted CXCR5mem and CXCR5neg HIV-specific CD4+ T cells of CPs and ECs.  
g–i, Two-tailed Mann–Whitney U-test or, for paired comparisons, by two-tailed Wilcoxon matched-pairs signed-ranked test were used to verify 
significance. Only P < 0.05 are displayed for clarity. Bars represent the median ± interquartile range.
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T  cells (CXCR5mem) in both cohorts (Fig. 3a and Supplementary 
Fig. 3a,b). As PD-1 expression on HIV-specific CD4+ T cells corre-
lates with viremia19, PD-1 was omitted as a TFH marker to avoid bias 
towards CPs. We observed only a trend for higher fractions of HIV-
specific CXCR5mem in CPs than in ECs, with considerable overlap 

between groups (Fig. 3b). In contrast, single-subject gene set enrich-
ment analysis (ssGSEA) scores showed a significant enrichment of 
the TFH signature in CPs compared with ECs (Fig. 3c), consistent 
with the cohort-based CAMERA analyses shown in Fig. 2c,g. The  
TFH signature enrichment by ssGSEA correlated directly with viremia  
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(Fig. 3d). These data suggest that differences in percentage of 
CXCR5mem alone are not sufficient to explain the markedly enriched 
TFH signature observed in HIV-specific CD4+ T cells of CPs.

To define the cell subsets that contributed to the TFH transcrip-
tional signature observed in CPs, we applied microarray analysis to 
paired live-sorted subsets of CXCR5mem and CXCR5neg HIV-specific 
CD4+ T  cells from CPs and ECs (Fig. 3e; gating strategy in 
Supplementary Fig. 3a). CXCR5 mRNA expression was consistent 
with protein expression (Fig. 3h). Differences in gene expression 
between CPs and ECs were more significant in the CXCR5neg than 
in the CXCR5mem subsets of HIV-specific CD4+ T  cells (Fig. 3e).  
CPs displayed a marked enrichment of the TFH signature not only in 
the CXCR5mem compartment, but also in the CXCR5neg HIV-specific 
CD4+ T  cell subset (Fig. 3f). We confirmed expression of several 
markers classically associated with TFH cells in CXCR5mem and 
CXCR5neg HIV-specific CD4+ T cells at the mRNA level by RT-qPCR 
or at the protein level by flow cytometry. Consistent with the micro-
array results, upregulation of the TCR co-receptors PD-1, TIGIT, 
CD200 and ICOS on CXCR5neg HIV-specific CD4+ T cells clearly 
differentiated CPs from ECs (Fig. 3g and Supplementary Fig. 3c).  
Surface markers SLAMF6 and CD84 (both associated with help to 
B cells) and BTLA (highly expressed in TFH cells; Fig. 3h) were sig-
nificantly higher in CXCR5neg CD4+ T cells of CPs compared with 
ECs, while the mRNA expression of BCL6 and TCF7 did not differ 
in CXCR5neg CD4+ T cells between the two groups. Transcriptional 
expression of PRDM1 and MAF was significantly higher in CXCR5neg 
CD4+ T cells of CPs compared with ECs (Fig. 3i).

In contrast to ECs, CXCR5 expression in CPs did not clearly 
delineate cells with a TFH transcriptional profile: ICOS, SLAMF6, 
BTLA, CD84, TIGIT, CD200 and the TFH-associated transcription 
factor MAF mRNA levels in CXCR5neg cells were equal or even 
superior to their CXCR5mem autologous counterparts (Fig. 3g–i and 
Supplementary Fig. 3c). These data demonstrate the atypical upreg-
ulation of the ‘TFH-like’ signature in the CXCR5neg HIV-specific 
CD4+ T cells of CPs compared with ECs.

Robust expression of TFH cytokines in CXCR5neg HIV-specific 
CD4+ of CPs. We next sought to elucidate if the enriched TFH sig-
nature in CXCR5mem and CXCR5neg HIV-specific CD4+ T cells of 
CPs compared to ECs is congruent with the enhancement of some 
TFH functions, and to determine the phenotype of these effector 
cells. We assessed mRNA expression of the TFH cytokines CXCL13 
and IL-21 at single-cell resolution using a sensitive flow cytometric 
RNA fluorescent in situ hybridization (RNA-flow-FISH) technique, 

as previously described20,21. This assay is superior to standard ICS 
for detection of IL-21-producing cells20. There were increased fre-
quencies of CXCL13 mRNA+ and IL21 mRNA+ HIV-specific CD4+ 
T  cells in CPs compared to ECs (Fig. 4a,b). This was a distinct 
feature of HIV-specific responses, as the expression after stimu-
lation with the superantigen staphylococcal enterotoxin B (SEB) 
was similar in both cohorts (Fig. 4c) and cytomegalovirus (CMV) 
pp65-specific CD4+ T cells expressed less CXCL13 and IL21 than 
HIV-specific CD4+ T cells in paired comparisons within the same 
humans (Supplementary Fig. 4a). As CD40L is not expressed on 
all antigen-specific CD4+ T cells on activation, we confirmed that 
the differential expression of CXCL13 and IL21 between CPs and 
ECs holds true without combining the RNA-flow-FISH and AIM 
assays and without pre-gating on CD40L+ cells (Supplementary 
Fig. 4b–i). Largely distinct CD4+ T  cell populations produced 
CXCL13 and IL21 mRNAs at the time point examined (Fig. 4d,e). 
We confirmed the increased CXCL13 production in CPs compared 
with ECs at the protein level by measuring CXCL13 concentration 
by ELISA in the supernatant of CD8-depleted peripheral blood 
mononuclear cells (PBMCs) after a 48-h stimulation with HIV 
Gag (Supplementary Fig. 5a). CXCL13+ and IL21+ cells expressed 
high levels of CXCR5 protein compared with total HIV-specific 
CD4+ T cells in ECs. In contrast, the levels of CXCR5 expression 
on CXCL13+ and IL21+ cell were comparable to the total popula-
tion in CPs (Fig. 4f). This gain of TFH-like functions by CXCR5neg 
HIV-specific CD4+ T  cell in CPs was further apparent when we 
compared the ratios of IL21+ and CXCL13+ responses between 
the CXCR5mem and CXCR5neg subsets (Fig. 4g). As the inhibitory 
receptors PD-1 and TIGIT are markers of TFH cells12, and may also 
be associated with exhaustion, we examined their expression on 
CXCL13 mRNA+ and IL21 mRNA+ HIV-specific CD4+ T cells. The 
majority of these cytokine-expressing cells were PD-1+/TIGIT+, 
particularly in CPs (Fig. 4h,i and Supplementary Fig. 5b,c). Thus, 
the expression patterns of the inhibitory co-receptors PD-1 and 
TIGIT were consistent with TFH skewing and may not imply 
exhaustion of these responses.

Finally, we explored possible links between HIV-specific CD4+ 
T  cell help and antibody responses. We assessed plasma levels of 
p24-specific antibodies by ELISA and biolayer interferometry bind-
ing analysis. The results obtained by the two methods were highly 
correlated (Supplementary Fig. 5d). Although p24-specific anti-
body concentrations in the CP and EC groups were similar overall  
(Fig. 4j), we observed a significant correlation between the mag-
nitude of HIV-specific CD4+ T  cell responses and p24-specific 

Fig. 4 | TFH cytokine expression by CXCR5neg HIV-specific CD4+ T cells of chronic progressors. a, Representative RNA-flow-FISH plots from a CP of 
CXCL13 and IL21 mRNA in CD69+CD40L+ CD4+ T cells after a 15-h stimulation with a Gag peptide pool. Numbers represent the frequency of mRNA+ cells 
among (red) CD69+CD40L+ and (gray) total CD4+ T cells (n = 6 CPs and 5 ECs). b,c, Quantification of a. Comparison of frequencies of CXCL13 or IL21 
mRNA+ CD4+ T cells between CPs (n = 6) and ECs (n = 5) obtained as in a after Gag or SEB stimulation. Bars represent median frequencies ± interquartile 
range (two-tailed Mann–Whitney U-test). d,e, RNA-flow-FISH analysis of co-expression of CXCL13 and IL21 mRNA by Gag-specific CD4+ T cells with 
representative plots from CP and EC people (d) and related statistical analysis by permutation test (10,000 permutations) in SPICE (n = 6 CPs and  
5 ECs) (e). Pie slices represent median frequency of CXCL13/IL21 mRNA+ subpopulations. f, Representative histograms from CP and EC people of CXCR5 
expression on CXCL13 or IL21 mRNA+ HIV-specific CD4+ T cells overlaid on total HIV-specific CD4+ T cells (gray). Numbers represent the percentages 
of CXCR5+ cells within each cytokine+ population (n = 6 CPs and 5 ECs). g, Statistical analysis on 6 CPs and 5 ECs of the ratios between the CXCR5mem 
to the CXCR5neg subsets of frequencies of cytokine or chemokine mRNA+ HIV-specific CD4+ T cells (CXCL13, IL21, IL2 and IFNγ) as assessed by RNA flow 
cytometry. Bars represent median frequencies ± interquartile range (two-tailed Mann–Whitney U-test). h,i, Co-expression patterns of PD-1 and TIGIT 
(surface protein antibody labeling) on CXCL13 mRNA+ or IL21 mRNA+ Gag-specific CD4+ T cells identified by RNA-flow-FISH (n = 6 CPs and 5 ECs).  
h, Representative examples of CP and EC people; cytokine/chemokine mRNA+ HIV-specific CD4+ T cells (red dots for CPs, blue dots for ECs) are 
overlaid on total HIV-specific CD4+ T cell subpopulations (gray dots). Numbers represent the percentages of CXCL13 RNA+ or IL21 mRNA+ HIV-specific 
CD4+ T cells located in each quadrant. i, SPICE analysis of PD-1 and TIGIT expression from h on CXCL13 mRNA+ or IL21 mRNA+ HIV-specific CD4+ 
T cells (permutation test, 10,000 permutations). Slices represent median frequency of PD-1 and TIGIT subpopulations. j, Comparison of p24-specific 
antibodies levels in plasma between CPs and ECs as assessed by ELISA. (two-tailed Mann–Whitney U-test (n = 12 CPs and 13 ECs). Bars represent 
medians ± interquartile range. k–m, Correlation between p24-specific antibody levels measured by ELISA and frequencies of total HIV-specific CD4+ 
T cells (k); CXCR5mem HIV-specific CD4+ T cells (l) and CXCR5neg HIV-specific CD4+ T cells (m) assessed by the CD69/CD40L AIM assay after a 9-h 
stimulation with a Gag peptide pool (two-tailed Spearman test, n = 12 CPs and 13 ECs).
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antibodies, which was maintained when only the CP group was 
considered (Fig. 4k). There was no significant association between 
CXCR5mem responses and p24-specific antibodies (Fig. 4l). However, 
there was a significant correlation between CXCR5neg HIV-specific 
CD4+ T cell frequencies and antibody responses in CPs, but not ECs 
(Fig. 4m), which might suggest that the CXCR5neg subset has helper 
T function to B cells in vivo.

These data demonstrate that dysregulated CXCR5neg HIV-
specific CD4+ T  cells in progressive infection gain functions and 
phenotypic features classically attributed to TFH cells.

Mucosal immunity-related cytokines in HIV-specific CD4+ of ECs. 
As we observed an enriched TH17 signature in HIV-specific CD4+  
T cells in ECs compared to CPs, we characterized the expression of 
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IL-17F and IL-22 at the single-cell level. RNA-flow-FISH enabled 
superior detection of these cytokines in HIV-specific CD4+ T cells 
compared with ICS (Fig. 5a,b). We observed more robust IL17F and 
IL22 HIV-specific CD4+ T cell responses in ECs compared with CPs 
(Fig. 5c). In contrast, IL17F and IL22 expression patterns in SEB- 
or CMV-activated CD4+ T cells did not differ between the groups  
(Fig. 5d and Supplementary Fig. 4a). We confirmed the strong 
IL-17F, IL-22 and IL-17A secretion by HIV-specific CD4+ T cells in 
ECs at the protein level, in contrast to low or undetectable produc-
tion in CPs (Fig. 5e and Supplementary Fig. 5e–g).

The IL17F mRNA+ and IL22 mRNA+ subsets constituted 
two partially overlapping, but mostly distinct, cell populations  
(Fig. 5f,g). In both CPs and ECs, these cells preferentially expressed 
CCR6, a chemokine receptor critical for recruitment of TH17 and 
TH22 cells to mucosal tissues (Fig. 5h). Expression of CXCR3, a 
marker of TH1 cells also expressed on CD4+ T cells with mixed TH1 
and TH17 properties that are expanded in some inflammatory dis-
eases17, was low on IL17F and IL22 mRNA+ of both CPs and ECs 
(Fig. 5i and Supplementary Fig. 5h). Performing the RNA-flow-
FISH without the AIM assay and CD40L+ pre-gating showed again 
contrasting patterns of IL17F and IL22 expression between CPs and 
ECs (Supplementary Fig. 4b–i).

Systemic translocation of microbial products plays a critical 
role in immune activation related to HIV pathogenesis22. Loss of 
gut mucosal integrity and TH17 cell depletion have been associated 
with immune activation and disease progression23. We thus investi-
gated possible links between HIV-specific TH17 and TH22 responses 
and systemic immune activation. We observed an inverse correla-
tion between IL22 mRNA expression by HIV-specific CD4+ T cells 
and co-expression of the activation markers HLA-DR and CD38 on 
total CD4+ and CD8+ T cells (Fig. 5j and Supplementary Fig. 5i). We 
identified similar associations for IL17F (Fig. 5k and Supplementary 
Fig. 5j). We next investigated the relationship between preserva-
tion of IL17+ and/or IL22+ HIV-specific CD4+ T cells and micro-
bial translocation by deep sequencing of cell-free RNA fragments 
in plasma—a reflection of the part of the body’s microbiome that 
can access the circulation, the majority of which resides in the gut. 
The total levels of bacterial RNA reads in plasma did not signifi-
cantly differ between the groups of CPs, ECs and uninfected con-
trol donors (UDs) (Fig. 5l). However, we observed a lower plasma 
bacterial RNA species diversity in CPs compared to the EC and UD 
groups (Fig. 5m). These observations may reflect low gut micro-
biome diversity, a state associated with systemic inflammation in 
several diseases24 (Supplementary Fig. 5k, l). IL22 and IL17F tran-
scription in HIV-specific CD4+ T cells was significantly correlated 

with bacterial RNA species diversity (Fig. 5n,o). CPs and ECs quali-
tatively differed in the bacterial RNA profile, forming largely dis-
tinct clusters (Supplementary Fig. 5m). IL22 and IL17F mRNA+ 
levels in HIV-specific CD4+ T  cells inversely correlated with the 
prevalence of Proteobacteria, a phylum of Gram-negative bacteria 
that is increased in the gut microbiome in HIV-infected people25 
and has been proposed as a marker of dysbiosis26 (Fig. 5p,q).

Thus, robust IL22+ and IL17F+ HIV-specific CD4+ T  cells can 
be detected in the blood of ECs, while these responses are severely 
impaired in CPs. Associations of these deficiencies with systemic 
immune activation, reduced plasma bacterial RNA species diversity 
and a skewing towards greater Proteobacteria abundance, suggest 
that these findings in blood reflect perturbed gut homeostasis and a 
loss of protective mucosal immunity.

ART results in a distinct transcriptome of HIV-specific CD4+. 
Finally, we sought to determine whether the observed HIV-
specific CD4+ T  cell profiles were the consequences of ongoing 
viral antigen exposure, or the results of durable cell-fate decision 
programs that would persist after viral suppression on ART. We 
longitudinally followed a subgroup of eight CPs and analyzed a 
second sample obtained while on ART (for participant character-
istics see Supplementary Table 8). Pairwise comparisons between 
the EC, CP pre-ART (CPpre) and CP post-ART (CPpost) cohorts  
(Fig. 6a,b) showed sets of DEGs between all three groups, with 
fewer differences in the CPpre versus CPpost and CPpost versus 
EC than the CPpre versus EC comparison, as might be expected. 
We next focused on selected GO terms and gene signatures that 
were identified as differentially expressed between CPs and ECs in  
Figs. 1 and 2. While initiation of ART in CPs modulated the activ-
ity of several pathways regulating apoptosis and gene expression 
towards the levels observed in EC, differences in the ‘Positive regu-
lation of T helper cell differentiation’, ‘Positive regulation of CD4+ αβ 
T cell activation’ and ‘Regulation of leukocyte migration’ persisted  
(Fig. 6c). We therefore examined how ART affected helper T polar-
ization signatures. Expression of the TFH signature in HIV-specific 
CD4+ T  cells was markedly reduced by ART, to levels similar to 
that found in ECs (Fig. 6d), while expression of the TH1, TH17 
and LCMV exhaustion signatures was little affected by therapy: 
the differences clearly persisted between CPpost and EC (Fig. 
6e,f and Supplementary Fig. 6a). Expression of selected individ-
ual genes of interest was also consistent with these findings when 
expression levels in EC were considered as references (Fig. 6g,  
Supplementary Fig. 6b and Supplementary Tables 9 and 10). While 
the results should be considered as trends, given the limited size 

Fig. 5 | Increased expression of cytokines related to mucosal immunity in HIV-specific CD4+ T cells of elite controllers compared to chronic 
progressors. a,b, Representative flow cytometry plots depicting detection of IL22 and IL17F in CD69+CD40L+ CD4+ T cells in one EC after stimulation 
with a Gag peptide pool by delayed ICS for cytokine protein and RNA-flow-FISH for cytokine mRNA, respectively. Numbers represent frequencies of 
mRNA+ HIV-specific CD4+ T cells among CD69+CD40L+ (blue) and total CD4+ T cells (gray) (n = 8 CPs and 8 ECs). c,d, Statistical comparison from a 
of frequencies of cytokine mRNA+ CD4+ T cells between CPs and EC after a Gag peptide pool (n = 8 CPs and 8 ECs) (c) or SEB stimulation (n = 6 CPs 
and 8 ECs) (d). e, Statistical comparison of IL-22 and IL-17F protein levels detected by Luminex beads array in the supernatant of CD8-depleted PBMCs 
48 h after stimulation with a Gag peptide pool (n = 8 CPs and 8 ECs). Bars represent median ± interquartile range. P values by two-tailed Mann–Whitney 
U-test (c–e). f, Representative flow cytometry plots of co-expression patterns of IL22 mRNA and IL17F mRNA in HIV-specific CD4+ T cells in CP and EC 
people (n = 6 CPs and 6 ECs). g, Statistical analysis from f by SPICE (by permutation test, 10,000 permutations). Slices represent median frequency of 
IL22/IL17F mRNA+ subpopulations of HIV-specific CD4+ T cells (n = 6 CPs and 6 ECs). h,i, Comparison of the frequencies of CCR6 and CXCR3 expression 
on IL22 mRNA+ and IL17F mRNA+ HIV-specific CD4+ T cells compared to total HIV-specific CD4+ T cells in CPs (n = 6) and ECs (n = 6) by two-tailed 
Mann–Whitney U-test and by two-tailed Wilcoxon matched-pairs signed-ranked test. Only P < 0.05 are displayed for clarity. Bars represent median with 
interquartile range. j,k, Correlation of IL22 (j) and IL-17F (k) mRNA levels assessed by RT–qPCR on sorted HIV Gag-specific CD4+ T cells and ex vivo CD4+ 
T cell activation measured by HLA-DR and CD38 co-expression (two-tailed Spearman test; n = 10 CPs, 6 VCs, 12 ECs). l,m, Statistical comparisons of 
microbial translocation in plasma of CP, EC and UD cohorts: quantitation of bacterial RNA reads in plasma (transcripts per million, TPM) (l); bacterial 
RNA species diversity (Shannon entropy score) (m) (Kruskal–Wallis test; n = 10 CPs, 8 ECs and 6 UDs). Bars represent median ± interquartile range. n,o, 
Correlation between bacterial RNA species diversity in plasma and frequencies of HIV-specific IL22+ CD4+ T cells (n) and HIV-specific IL17F+ CD4+ T cells 
(o) (two-tailed Spearman test; n = 10 CPs and 8 ECs). p,q, Correlation between abundance of Proteobacteria translocation and frequencies of HIV-specific 
IL22+ CD4+ T cells (p) and HIV-specific IL17F+ CD4+ T cells (q) (two-tailed Spearman test; n = 10 CPs and 8 ECs).
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of the cohorts, expression of some genes appeared corrected by 
ART (for example, CXCL13), whereas others are not restored (for 
example, IL22).

These data demonstrate that suppressive ART results in a tran-
scriptional landscape of HIV-specific CD4+ T cells distinct from the 
profiles of both untreated CPs and ECs. We identified gene modules 
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susceptible to manipulation of antigen load, while others were unre-
sponsive to antiviral therapy alone.

Discussion
The molecular features of virus-specific CD4+ T  cells associated 
with pathogen containment are poorly understood in chronic 
human infections. We used genome-wide transcriptional analyses 
following ex vivo stimulation with HIV antigen to uncover differ-
ences in HIV-specific CD4+ T cell differentiation and function in 
chronically infected humans with various viremia levels. An atypi-
cal enrichment of a TFH-like signature in CXCR5neg HIV-specific 
CD4+ T cells characterized progressive infection. In contrast, elite 
control of viral replication was associated with robust HIV-specific 
TH22 and TH17 responses, which correlated negatively with immune 
activation and correlated positively with a greater diversity of bacte-
rial RNA species in plasma and lower Proteobacteria abundance. 
None of these differences were detected in SEB or CMV pp65-
reactive cells, revealing antigen-specific TCR signaling-driven pro-
cesses. Suppressive ART in chronic progressors elicited a distinct 
HIV-specific CD4+ T cell transcriptome, revealing, in comparison 
to elite controllers, the presence of viremia-sensitive (for example, 
TFH signature) and viremia-unresponsive (for example, TH1, TH17 
and TH22 signatures) gene modules. These data suggest that HIV-
specific CD4+ T cell dysregulation does not represent a mere loss of 
helper T functions, as classically defined for immune exhaustion, 
but an adaptation to environmental cues combined with persistent 
changes, likely resulting from durable cell-fate decision programs.

At first sight, the marked TFH signature18 identified in CPs con-
trasts with the murine LCMV model, in which TFH responses in 
chronic infection are critical for delayed viral control8. The extraor-
dinary ability of HIV to generate escape mutations and elude autol-
ogous antibody neutralization likely contributes to these opposite 
associations between TFH differentiation and disease outcome. A 
study showed that TFH cells in chronic LCMV infection are capable 
of supporting generation of neutralizing antibody effective against 
the contemporaneous virus9. In contrast, the immune system lags 
behind the evolution of autologous HIV strains27. Kinetics of viral 
evolution in HIV infection may thus overcome the ability of adap-
tive TFH skewing to contribute to delayed viral control. While tech-
nical limitations have so far hampered investigation of HIV-specific 
germinal center TFH in lymph nodes, robust expansion of total ger-
minal center TFH populations was demonstrated in viremic HIV-
infected people and simian immunodeficiency virus (SIV)-infected 
macaques, albeit with qualitative defects28–31.

Genes classically associated with TFH cells that are enriched in 
the CXCR5neg HIV-specific CD4+ T cells of CPs include IL21 and 
CXCL13. HIV p24-specific antibody titers in plasma correlated 
with frequencies of CXCR5neg HIV-specific CD4+ T cells, suggesting 
that these responses may provide help to B cells in vivo. Studies in 
murine models have shown that CXCR5−/− CD4+ T cells are able to 
take over some helper B functions32,33, resulting in the generation of 
low-affinity binding antibodies9. Acquisition of TFH-like properties 

by CXCR5neg CD4+ T  cells has also been reported in rheumatoid 
arthritis34 and cancer35 and combines B help function with migra-
tion to inflamed tissues. These analogies suggest shared pathways of 
CD4+ T cell differentiation between diverse diseases associated with 
chronic inflammation.

Damage to the gut mucosa with associated microbial transloca-
tion22 and increased inflammatory properties of the enteric micro-
biota36 are major drivers of HIV-associated chronic inflammation. 
We observed that HIV-specific TH17 and TH22 responses were 
abundant in ECs and rare in CPs. IL-17F and IL-17A are closely 
related cytokines recruiting neutrophils to sites of inflammation. 
IL-22 promotes intestinal barrier function37 and supports comple-
ment-mediated elimination of pathobionts38. Lack of HIV-specific 
TH17 and TH22 responses was associated with CD4+ and CD8+ 
T  cell activation and a reduced diversity of translocated bacterial 
RNA in plasma, with over-representation of Proteobacteria. These 
results are consistent with studies in SIV infection showing prefer-
ential translocation of Proteobacteria compared to other phylums 
from the gut lumen into tissues, resulting in enhanced immune acti-
vation39. Our data do not establish causal links between features of 
HIV-specific CD4+ T cells and microbial translocation. It is more 
likely that both the lack of HIV-specific TH17/TH22 responses and 
the altered translocated microbiome result from persistent insults 
to the gastrointestinal tract. The paucity of HIV-specific IL-17+ and 
IL-22+ CD4+ T cells observed in CPs may result from high suscep-
tibility of TH17 and TH22 subsets to HIV infection37,40 and/or altera-
tion of CD4+ T cell differentiation41. Together with the analysis of 
bacterial RNA fragments in plasma, these CD4+ T cell data suggest 
that studies of peripheral blood can provide useful insight into the 
systemic consequences of perturbed gut homeostasis. Probiotic and 
IL-21 therapy in ART-treated SIV-infected macaques was associ-
ated with enhanced polyfunctional TH17 expansion and reduced 
markers of microbial translocation and dysbiosis compared to ART 
alone42. It will be important to determine whether such interven-
tions restore HIV-specific CD4+ T cell profiles.

This work raises questions that will need to be addressed in further 
studies. AIM assays require activation to enable cell identification. 
While we believe that analyzing the transcriptional profile modulated 
by TCR signaling is highly relevant for analysis of T cell responses, 
it will be important to investigate other populations of HIV-specific 
CD4+ T cells that do not co-upregulate CD69 and CD40L, for exam-
ple, by other AIM markers or by tetramers. Experiments in animal 
models will be required to define the ontogeny of CXCR5neg CD4+ 
T cells with TFH-like features and whether they transitioned through 
a bona fide TFH stage during their development. Longitudinal studies 
from the time of acute infection may identify events in the genesis or 
persistence of HIV-specific CD4+ T cell dysregulation. Investigations 
of human gut and lymph node biopsies, while challenging, would 
define the relationships between features of HIV-specific CD4+ 
T cells in blood and other anatomical compartments.

In summary, this work identifies extensive alterations in HIV-
specific CD4+ T cell transcriptional profiles and demonstrates that 

Fig. 6 | Distinct transcriptional imprint with reduction in TFH-associated gene expression but poor correction of TH1, TH17 and TH22 gene levels 
after suppression of viremia by ART. a, Paired volcano plot comparisons depicting DEGs as measured by microarray analysis of sorted HIV-specific 
CD4+ T cells in 8 CPs before and after ART and 12 ECs. Red, pink and blue dots represent DEG with log2|FC| > 1 and Padj < 0.05, log2FC > 1 or Padj < 0.05, 
respectively. Moderated two-sided t-test followed by Benjamini–Hochberg method. b, Euler diagrams of DEG between each pairwise comparison of the 
three groups of participants (log2|FC| > 1, P < 0.05); numbers represent DEGs. c, Significant enriched gene ontology terms from the curated C5 MSigDB 
via CAMERA analysis. Blue, red and white color denote negative, positive or not significant (as defined by FDR < 0.05), respectively. Two-sided P value 
by CAMERA and FDR by Benjamini–Hochberg method. d–f, Barcode plots of enriched helper T polarization gene sets by CAMERA in paired comparisons 
between the three groups (n = 8 CPpre, 8 CPpost and 12 EC). Red and blue lines denote positive and negative enrichment, respectively. TH1 signature: 
GSE59295 (TH1 versus TH2), TH17 signature: GSE49703 (TH17 versus TH1), TFH signature: GSE50391 (CXCR5high CD45RO versus CXCR5neg tonsil samples). 
Two-sided P value by CAMERA and FDR by Benjamini–Hochberg method. g, Differential expression of genes associated with CD4+ T cell differentiation 
and function in HIV-specific CD4+ T cells of CPs before and after treatment compared to ECs. Red and purple denote logarithmic fold change for 
comparisons CPpre versus EC and CPpost versus EC, respectively, by microarray analysis in 8 CP before/after ART and 12 ECs.
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skewed lineage differentiation is a key feature of altered CD4+ T cell 
help in the setting of high viral load, in which atypical gain of function 
is combined with classical exhaustion features. The data also reveal 

distinct features of HIV-specific CD4+ T cells after successful ART. 
The identified molecular features may therefore help direct selec-
tive interventions to improve immune function. Given the paucity of 
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transcriptome datasets available on pathogen-specific CD4+ T cells 
in humans, our results will also provide useful benchmark compari-
sons for other infectious diseases and vaccine-induced responses.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41590-019-0418-x.
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Methods
Participants and samples. Leukaphereses were obtained from study participants 
at the Montreal General Hospital, Montreal, Canada; at the Centre Hospitalier 
de l’Université de Montréal, Montreal, Canada; and at Massachusetts General 
Hospital, Boston, USA. The study was approved by the respective institutional 
review boards, written informed consent obtained from all participants before 
enrollment and PBMC samples obtained by leukapheresis. Samples were collected 
between 2013 and 2018. Subject characteristics are summarized in Supplementary 
Table 1. ‘Chronic progressors’ (CPs) were defined as people with a viral load of 
more than 5,000 vRNA copies per ml of plasma; ‘viremic controllers’ (VCs) were 
defined as people with more than 50 and less than 5,000 vRNA per ml plasma; 
and ‘elite controllers’ (ECs) were defined as subjects who spontaneously controlled 
viremia to below 50 RNA copies per ml plasma in the absence of therapy. CPs, VCs 
and ECs were either treatment naïve or untreated for at least 3 months. Eight CPs 
were followed longitudinally and a second sample was obtained at least 6 months 
after initiation of ART therapy and suppression of viral loads below 50 copies ml–1 
(Supplementary Table 8). PBMCs were isolated by the Ficoll density gradient 
method and stored in liquid nitrogen.

Antibodies. For details of antibodies used, see Supplementary Tables 11–20  
and descriptions of use below. In all cases, antibodies are monoclonal  
and raised in mice unless otherwise stated. All antibodies are commercially 
available, were validated by the suppliers and titrated using biological and/or 
isotype controls.

CD40L/CD69 AIM assay for live-cell sorting of HIV Gag-specific CD4+ 
T cells. Cryopreserved PBMCs were thawed and rested at 37 °C for 3 h. Cells were 
aliquoted into wells of a 24-well plate, at a total of 15 × 106 cells per well in RPMI 
medium supplemented with 10% Human AB (HAB) serum and Pen-Strep. For 
each assay, we used a no exogenous stimulation (No Ag) condition as control and 
an HIV-specific stimulation with an overlapping peptide pool corresponding to 
HIV Gag (JPT, PM-HIV-Gag ULTRA) or HCMVA pp65 (JPT, PM-PP65) at a 
final concentration of 0.5 μg ml–1 per peptide. A CD40 blocking antibody (Miltenyi 
Biotec, clone HB14) was added to each well 15 min before stimulation at a final 
concentration of 0.5 μg ml−1. Following a 9-h stimulation, the cells were stained for 
30 min at 4 °C before live-cell sorting on a FACS Aria cell sorter (BD BioSciences) 
equipped for handling of biohazardous material. Two panels of antibodies were 
used to isolate live-cells subsets according to combinations of surface markers. 
In the first panel for isolation of total CD69+CD40L+ Gag-specific CD4+ T cells, 
PBMCs were stained as indicated in Supplementary Table 11. The gating strategy 
for cell sorting is illustrated in Supplementary Fig. 1. In the second panel used for 
isolation of CXCR5mem and CXCR5neg subsets of CD69+CD40L+ Gag-specific CD4+ 
T cells, PBMCs were stained as indicated in Supplementary Table 12. The gating 
strategy for cell sorting is illustrated in Supplementary Fig. 3. The FACS Aria was 
operated at 70 pounds per square inch with a 70-μm nozzle. For all populations, 
5,000 cells were collected directly into RLT lysis buffer (Qiagen).

Phenotyping of Gag-specific CD4+ T cells identified by the CD69/CD40L AIM 
assay. PBMCs were thawed and plated in 24-well plates at 10 × 106 cells ml–1 in 
RPMI + 10% HAB Serum (HAB) and rested for 3 h at 37 °C. Before stimulation, 
CD40 blocking antibody was added directly into culture at a final concentration 
of 0.5 μg ml−1, as well as antibodies against CXCR5, CCR6 and CXCR3. Cells 
were incubated for 15 min, then left unstimulated or stimulated either with 
an overlapping peptide pool corresponding to HIV Gag (JPT, PM-HIV-Gag 
ULTRA), at a final concentration of 0.5 μg ml–1 per peptide, or with staphylococcal 
enterotoxin B (SEB) as a positive control (1 μg ml−1). Cells were stimulated for 
9 h, collected and stained for 30 min at 4 °C with the antibodies in Supplementary 
Table 13. Cells were washed, fixed for 20 min in 2% paraformaldehyde, washed 
and resuspended in 1% FCS/PBS for flow acquisition on a five-laser LSR II flow 
cytometer (BD BioSciences).

Phenotyping of immune activation markers. PBMCs were thawed and rested 
overnight at 37 °C. The next day, cells were washed and stained with viability dye 
(20 min at 4 °C) and surface markers (20 min at 4 °C) (Supplementary Table 14). 
Fluorescence minus one staining was used to define the cut-off for positivity. Cells 
were washed, fixed for 1 h in 2% paraformaldehyde, washed and resuspended in 1% 
FCS/PBS for flow acquisition on a five-laser LSR II flow cytometer  
(BD BioSciences).

Standard ICS for cytokine measurements. PBMCs were incubated for 6 h with 
an HIV Gag peptide pool at a concentration of 0.5 μg ml–1 per peptide in the 
presence of 2.5 µg ml−1 brefeldin A (BD GolgiPlug) and (0.3 µl ml−1) monensin (BD 
GolgiStop). For delayed ICS assays, 2.5 µg ml−1 brefeldin A (BD GolgiPlug) and 
(0.3 µl ml−1) monensin (BD GolgiStop) were added 9 h after stimulation with the 
Gag peptide pool, and cells were cultured for an additional 12 h. Unstimulated cells 
were used as negative control and SEB (0.5 µg ml−1) as positive control. Cells were 
then stained with viability dye (20 min at 4 °C), surface markers (20 min at 4 °C), 
fixed with Fixation Solution (eBioscience) and stained for intracellular proteins 
in permeabilization 1× buffer (eBioscience) (30 min at 4 °C) as described in 

Supplementary Tables 15 and 16. Cells were acquired on an LSR II flow cytometer 
(BD Biosciences).

Gene expression analysis. Whole-transcriptome analysis by microarrays. Total 
RNA was purified using the RNeasy Plus Micro Kit (Qiagen). RNA integrity 
was assessed using a 2100 Bioanalyzer (Agilent Technologies). Sense-strand 
complementary DNA was synthesized from total RNA using a fixed volume of 
3 µl. Fragmentation and labeling were performed to produce single strand DNA 
(ssDNA) with the Applied Biosystems GeneChip WT Pico Terminal Labeling 
Kit according to manufacturer’s instructions (Applied Biosystems). After 
fragmentation and labeling, 5 µg DNA target was hybridized on GeneChip Clariom 
D, human (ThermoFisher Scientific) and incubated at 45 °C in the Genechip 
Hybridization oven 640 (Affymetrix) for 17 h at 60 r.p.m. GeneChips were then 
washed in a GeneChips Fluidics Station 450 (Affymetrix) using Applied Biosystems 
Hybridization Wash and Stain kit according to the manufacturer’s instructions 
(Applied Biosystems). The microarrays were finally scanned on a GeneChip 
scanner 3000 (Affymetrix).

Validation of transcriptional expression by Fluidigm. Total RNA was purified 
using the RNeasy Plus Micro Kit (Qiagen). cDNA was synthesized using all RNA 
available (or 1–5 ng) with the High-Capacity Reverse Transcription Kit with 
RNase Inhibitor (Life Technologies) (25 °C for 10 min, 37 °C for 120 min, 85 °C 
for 5 min). cDNA equivalent to 1,000 sorted cells was subjected to gene-specific 
preamplification using TaqMan PreAmp MasterMix (Applied Biosystems) and 96 
pooled TaqMan Assays (Applied Biosystems) (Supplementary Tables 21–23) diluted 
1:5 (95 °C for 10 min, followed by 16 cycles of 95 °C for 15 s and 60 °C for 4 min). 
The preamplified cDNA was diluted fivefold in DNA suspension buffer (Teknova) 
and was mixed with TaqMan Universal PCR Master Mix (Life Technologies) and 
20X GE sample loading reagent (Fluidigm). 20X TaqMan assays were diluted 1:1 
with 2X assay loading buffer (Fluidigm). Taqman assay mixtures were loaded onto 
a primed 96.96 Dynamic Array chip (Fluidigm). The chip was loaded into the 
IFC Controller, where each sample was mixed with each assay in every possible 
combination. The chip was transferred in a Biomark (Fluidigm) for real-time 
PCR amplification and fluorescence acquisition using single probe (FAM-MGB, 
reference: ROX) settings and the default hot-start protocol with 40 cycles. Cycle 
thresholds (Ct) were calculated using the Fluidigm Biomark software v.1.4.2.

Combined cytokine/chemokine mRNA-flow-FISH and protein-staining assays. 
For experiments combining the AIM assay with mRNA-flow-FISH, PBMCs were 
either left unstimulated or were stimulated with an HIV Gag peptide pool (JPT) or 
SEB for 15 h. A CD40 blocking antibody (Miltenyi Biotec, clone HB14) was added 
15 min prior to stimulation at a final concentration of 0.5 μg ml−1. For experiments 
evaluating mRNA expression without CD40 blocking antibody, PBMCs were 
stimulated for 12 h. After stimulation, cells were stained with a viability dye 
(20 min, 4 °C, Fixable LiveDead, eBioscience) and then surface markers were 
labeled (30 min, 4 °C) with antibodies (see panels in Supplementary Tables 
17–20). Samples were next subjected to the PrimeFlow RNA assay (Affymetrix/
eBioscience/ThermoFisher) for specific mRNA detection as per manufacturer’s 
instructions. All buffers and fixation reagents were provided with the kit, with 
the exception of flow cytometry staining buffer (2% FBS/PBS). After fixation 
and permeabilization, cytokine/chemokine mRNAs were labeled with sets of 
probe pairs, as listed in Supplementary Tables 17–20. The probes were diluted 
1:5 in diluent and hybridized to the target mRNA for 2 h at 40 °C. Samples were 
washed to remove excess probes and stored overnight in the presence of RNAsin. 
Signal amplification was achieved as previously described20 by sequential 1.5-h, 
40 °C incubations with the preamplification and amplification mix. Amplified 
mRNA was labeled with fluorescently tagged probes for 1 h at 40 °C. A negative 
control probe and a positive control probe (against house-keeping gene RPL13A) 
were included in each experiment. Gates were set on the unstimulated control 
where appropriate or scrambled probes. Samples were acquired on an LSR II (BD 
Bioscience) or a BD LSRFortessa (experiments without CD40 blocking antibody). 
Analysis was performed using FlowJo (Treestar, v.10) and SPICE v.5.35 software.

Measurements of cytokine secretion by beads arrays and ELISA. One million 
CD8 T cell-depleted PBMCs (Dynabeads CD8, StemCell) were incubated with an 
HIV Gag peptide pool (1 μg ml–1 per peptide) or left unstimulated and incubated 
at 37 °C in RPMI supplemented with 10% HAB and Pen-Strep. Cytokine secretion 
in supernatants was measured 48 h after stimulation on a Luminex beads array 
platform, as previously described19,20. Measurements were performed in duplicates 
using the Human High Sensitivity Cytokine Premixed Kit B (R&D Systems)  
for IL-17A and IL-22 or for IL-17F on a Bio-plex 200 array system (Bio-Rad 
Laboratories) as per manufacturer’s instructions. CXCL13 was measured separately 
with the Human CXCL13 Quantikine ELISA Kit (R&D Systems),  
as per manufacturer’s instructions.

Measurement of p24-specific antibodies by ELISA. The anti-p24 ELISA was 
performed as follows: 96-well plates (Thermo Scientific Nunc, FluoroNunc/
LumiNunc, MaxiSorp Surface) were coated with 0.1 µg ml−1 of recombinant p24 
(NIH, catalog no. 12028) or BSA (Bioshop, catalog no. ALB001.100) in PBS 
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overnight at 4 °C. Plates were blocked for 90 min at room temperature (RT) with 
blocking buffer (TBS, Tween 0.1%, BSA 2%) and then washed four times with 
washing buffer (TBS, Tween 0.1%). Dilutions of human sera (1/1,000, 1/3,000, 
1/6,000) or rabbit anti-HIV p24 antiserum (NIH, catalog no. 4250) in washing 
buffer containing 0.1% of BSA were incubated for 2 h at RT. Plates were washed 
four times with washing buffer before incubation for 90 min at RT with HRP-
conjugated secondary antibodies: goat anti-human IgG HRP (Invitrogen, catalog 
no. 31413) or anti-IgG rabbit HRP (Invitrogen, catalog no. 31462). Plates were then 
washed four times with washing buffer before revealing with standard enhanced 
chemiluminescence reagent (Perkin Elmer, NEL105001EA) with a TriStar 
luminometer (LB 941, Berthold Technologies).

Plasma microbiome sequencing. Circulating total RNA and DNA were isolated 
from frozen plasma using RNAzolBD (MRCgene) according to the manufacturer’s 
recommendations. After RNA fragmentation and reverse transcription using 
random hexamers, the obtained transcripts, as well as the isolated plasma DNA, 
were individually incorporated into barcoded cDNA libraries on the basis of 
the Illumina TruSeq platform. Libraries were validated by microelectrophoresis, 
quantified, pooled and clustered on Illumina patterned flow cells. Clustered flow 
cells were sequenced on an Illumina HiSeq 4000 in 75-base paired reads.

Gene expression data analysis. Microarrays. The preprocessing of the microarray 
data was done in R (v.3.3.3, ref. 43) using the oligo package (v.1.38.0, ref. 44). 
Specifically, the CEL files were loaded in R and the rma function was applied for 
background subtraction, normalization and summarization. Quality control was 
performed by inspecting various diagnostic plots of the intensity distribution and 
correlation structure of control and regular probes. After review of the QC plots, 
three outliers were removed. Combat (sva package v.3.30.1) has been applied 
for batch normalization of samples using four replicates as reference for the 
normalization. The normalized data were used for the subsequent subanalyses 
CPpre versus EC, CPpre versus CPpost and CPpost versus EC.

Differential expression. Differential analysis of gene expression was done by the 
R package limma45. Using the lmFit function, a linear model was fit to each gene 
separately. Moderated t-tests were performed between each group. P values were 
adjusted using the Benjamini–Hochberg method for multiple test correction.

CAMERA. TH1 signature (GSE59295; TH1 versus TH2) was available in the C7 
collection of MSigDB. The TH17 signature (GSE49703; TH17 versus TH1), TFH 
signature (GSE50391; CXCR5high CD45RO versus CXCR5− tonsil samples) and 
LCMV exhaustion signature (GSE41866; LCMV Clone 13 D30 versus Armstrong 
D30-Exhausted versus Memory) were created using the GEO2R online tool 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/). For each signature, a gene-set test was 
performed using the camera function from the limma package, accounting for 
intergene correlation.

Venn diagrams were created using the online tool Eulerr.co (R package v.4.1.0, 
https://cran.r-project.org/package=eulerr)46. Unsupervised hierarchical clustering 
was performed using the in heatmap2 function in R43 on relative signal intensity 
values applying the Euclidean distance metric and complete linkage clustering 
method. Barcode plots were generated with the barcodeplot function from the 
limma package.

RT–qPCR results. Analysis of the RT–qPCR data obtained on the microfluidic 
platform was carried out using GenEx software (MultiD Analyses: http://www.
multid.se). Five endogenous control genes were included in the Fluidigm run and 
the stability of endogenous control genes across all experimental samples was 
evaluated applying the NormFinder algorithm47 in GenEx. The mean expression 
of the most stable endogenous control genes was used for normalization and 
calculation of −∆Ct values. PCA, biplots and correlograms were created 
using the prcomp, fviz_pca_biplot and corrplot functions, respectively, in R 
programming language.

Statistical analyses of flow cytometry, beads array and RT–qPCR results. 
Statistical analyses were performed using Prism v.6.0 (GraphPad) using non-
parametric tests. Two-group comparisons were performed using the Mann–
Whitney U-test and pairwise comparisons were performed using the Wilcoxon 
matched-pair test. For comparisons between three groups, Kruskal–Wallis 
or Friedman one-way analysis of variance with Dunn’s post-test was used. 

Permutation test (10,000 permutations) was applied for pie-chart comparison using 
the SPICE software. For correlations, Spearman’s R correlation coefficient was 
applied. Statistical tests were two-sided and P < 0.05 were considered significant.

Bioinformatic analysis of deep-sequencing results of cell-free RNA fragments 
in plasma. Raw, paired-end Illumina reads were first trimmed for low quality bases 
and adapter contamination with Trimmomatic48. As a first pass to remove host-
derived sequences, trimmed reads were first aligned against the HG38 genome 
with Bowtie 2 (ref. 49) and then aligned to HG38 transcriptome with the splice 
aware aligner, STAR50. Unaligned paired-end reads were then assembled into 
contigs using Trinity51. Trinity contigs were then aligned against HG38 again to 
further remove host-derived sequences with BLAST+ (ref. 52). Remaining contigs 
were then aligned against the NCBI nucleotide database53 and quantified with 
Salmon54. Taxonomic information was assigned for each contig and TPM values 
were collapsed at the species level for each sample for downstream analysis. TPM 
values for each sample were collapsed on the genus taxonomic level and Morisita–
Horn dissimilarity indexes were calculated on a pairwise basis using the R package 
vegan55. The pairwise dissimilarity matrix was then clustered and the heat map was 
produced with gplots56.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Microarray data generated during the current study were deposited in the Gene 
Expression Omnibus public depository with the accession number GSE128297 for 
the SuperSeries, and the following accession numbers for the Subseries: GSE129872 
(HIV-specific CD4+ T cells samples from CPs, VCs and ECs), GSE128280 
(CXCR5mem and CXCR5neg HIV-specific CD4+ T cells from CPs and ECs), 
GSE128296 (HIV-specific CD4+ T cells samples from CPs before/after ART and 
ECs). mRNA expression data by high-throughput RT–qPCR are available in the 
Supplementary Material. All the datasets that support the findings of this study are 
available from the corresponding author upon reasonable request.
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Targeting Mitochondria
to Revive Dysfunctional
Regulatory T Cells
Elsa Brunet-Ratnasingham,1,2

Mathieu Dubé,1 and
Daniel E. Kaufmann1,3,*

Immunometabolism is important to
T cell dysfunction in chronic infec-
tions. A recent publication in The
Journal of Clinical Investigation
(2018;128:5083–5094) [1] shows
reduced mitochondrial fitness in
regulatory CD4+ T cells (Tregs) of
patients with HIV and failed immune
restoration on antiretroviral therapy
(ART). This defect can be reversed
by IL-15, revealing a new immuno-
therapy target for regulatory T cell
restoration.

HIV-Mediated Immune
Dysfunction Also Affects
Regulatory CD4+ T Cells
T helper CD4+ T cells provide key signals to
other immune cell types and, therefore, are
strongly implicated in the orchestration of
effective immunity. Whereas most CD4+ T
cell subsets have a stimulatory role, Tregs
instead inhibit T cell activation and prolifera-
tion to limit immunopathology and mediate
self-tolerance. Reduced Treg frequency or
function is linked to immune dysfunction.
Alternatively, aberrant ratios between other
CD4+ T cell subsets and Tregs can also
result in immunopathology. A recent publi-
cation by Younes et al. [1] describes a dys-
functional state of Tregs that may have a role
in the inability of some patients with HIV to
normalize their CD4+ T cell counts despite
suppression of viremia on ART.

Immune Nonresponders Have
Increased Cycling CD4+ T cells,
but Reduced Tregs
During HIV infection, CD4+ T cell popula-
tions are depleted in various anatomic

compartments, contributing to the
increased susceptibility of infected indi-
viduals to opportunistic infections and
non-AIDS-related comorbidities. By
arresting viral replication, ART initiation
allows the reconstitution of blood CD4+

T cell counts in a biphasic fashion: a first
quick increase in circulating CD4+ T cells
is thought to be the result of lymphocyte
egress out of lymphoid tissues, where
they were retained due to high inflamma-
tion; the second, slower increase is due to
CD4+ T cell homeostatic proliferation and
thymic generation of new naive CD4+ T
cells. In most individuals, these mecha-
nisms allow near-normalization of blood
CD4+ T cell counts. A fraction of patients,
called immune nonresponders (INRs), fail
to reconstitute CD4+ T cell counts, a phe-
notype associated with increased non-
AIDS-related comorbidities, such as car-
diovascular disease, cancer, osteoporo-
sis, and neurocognitive dysfunction [2].
Intriguingly, compared with immune
responders (IR), INRs present an uncom-
monly high proportion of cycling CD4+ T
cells that do not appear to effectively
replenish the CD4+ T cell compartment
[2].

The relationships between the increased
systemic inflammation, high frequency of
cycling CD4+ T cells, and inability to nor-
malize CD4+ T cell counts in INR remain to
be elucidated. To address this question,
Younes et al. used a surrogate surface
marker that allows sorting of unfixed
cycling CD4+ T cells (CD71) instead of
the classical intracellular Ki67, a protein
selectively expressed in the nuclei of pro-
liferating cells, and compared their tran-
scriptomic profile in IRs, INRs, and healthy
controls (HC). Cells from INRs showed a
reduced Treg signature, lower expression
of FOXP3-upregulated genes and dimin-
ished production of TGF-b, all indicative
of lower Treg activity. These findings were
attributed to lower frequencies of Tregs in
the cycling subset of CD4+ T cells in INRs
compared to IRs. Although it is known

that Tregs expand following HIV infection
both in number and relative frequency,
their role remains controversial: Tregs
may be beneficial in that they reduce
systemic activation, yet detrimental if they
reduce the effectiveness of the HIV-
specific T cell response [3].

IL-15 Can Resolve Regulatory T
Cell Mitochondrial Dysfunction
and Apoptosis
Younes et al. observed that, as well as the
reduced Treg signature, cycling CD4+ T
cells in INRs were characterized by the
upregulation of apoptotic genes; in vitro
experiments confirmed a profound loss
of viability of these cells. The authors next
turned to mitochondrial metabolism, given
its role in cell survival. A series of elegant
transcriptomic and flow cytometry analy-
ses provided evidence that impairment of
mitochondrial oxidative phosphorylation
(OXPHOS; Box 1), a critical pathway for
Treg development and maintenance
[4,5], was a central component of this
defect. Consistent with the observed apo-
ptosis signature in cycling CD4+T cells, the
inability of dysfunctional mitochondria to
fuel proliferation may condemn Tregs or
other cycling CD4+ T cells to cell death,
impeding further the reconstitution of CD4+

T cell counts in INRs.

Finally, Younes et al. tested in vitro an
intervention that has a therapeutic poten-
tial in humans: because IL-15 enforces
the use of OXPHOS and fatty acid oxida-
tion (FAO) in memory CD8+ T cells [6], the
authors assessed whether this cytokine
could also restore mitochondrial fitness in
the cycling Tregs from INRs. Incubation of
Tregs from INRs with IL-15 corrected the
mitochondrial mass, OXPHOS potential,
and levels of PGC1a and TFAM, the latter
two of which are mitochondria-related
regulators of biogenesis and OXPHOS,
respectively. These changes were asso-
ciated with completion of the stalled cell
cycling and sustained proliferation.
Whether IL-15 exposure allows
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restoration of other aspects of Treg dys-
function, for example TGF-b production,
or impacts non-Treg cycling CD4+ T cells
are interesting future directions for
research. Indeed, stimulating IL-15 treat-
ment in animal models of HIV infection
resulted in the increased proliferation of
CD4+ T cells [7], but whether this inter-
vention leads to a lasting increase in CD4+

T cells and/or potential modulation of their
phenotype remain to be addressed.

Concluding Remarks
The potential clinical relevance of this
study is underlined by the current lack
of satisfactory therapy for patients who
are INRs, in whom no additional interven-
tion has shown consistent benefit beyond
ART alone. IL-15 and some of its powerful

derivatives (e.g., IL-15 superagonists) are
currently in clinical trials in both cancer
and HIV infection. Besides increasing
CD8+ T cell and natural killer (NK) cell
responses, this pleiotropic cytokine acts
as a latency-reversing agent for HIV [8]
and SIV. IL-15 administration to maca-
ques infected with a chimeric SHIV virus
increased functional T cells in blood and
mucosa, and resulted in higher infiltration
of CD8+ T cells and reduced viral RNA in
lymph nodes [7]. The findings of Younes
et al. described here indicate that impor-
tant additional parameters should be con-
sidered: does IL-15 affect the functional
profile of CD4+ T cells? A preponderance
of Tregs over Th17 cells in the gut mucosa
was associated with faster disease pro-
gression in INRs, because functional

Th17 cells have a key role in protecting
the gut mucosa and preventing microbial
translocation [9]. The effects of IL-15 on
Th17 cells are context dependent and,
given that only a few steps separate dif-
ferentiation between Tregs and Th17, it
will be important to determine whether IL-
15 favors Tregs over Th17 cells in the gut
in the context of HIV, with potential reper-
cussions on gut mucosa integrity and
systemic activation. Thus, this important
article provides a new immunometabolic
perspective on persistent immune dys-
function in HIV infection. The results raise
hope that adjuvant interventions, involving
either IL-15, agonists of the IL-15 path-
way, or other drugs impacting mitochon-
drial function, could boost restoration of
T-helper cells in a subpopulation of

Box 1. Different Metabolic Pathways Fuel CD4+ T Cell Subsets

The relative importance of metabolic pathways differs with the maintenance and functional differentiation of CD4+ T cell lineages [4,5] (Figure I). CD4+ T cell subsets
with inflammatory functions (Th1, Th2, and Th17) require ATP and biosynthetic molecules to proliferate and perform effector functions. These effector CD4+ T cells
primarily use glycolysis in the cytoplasm, where glucose is taken up and used for ATP, but, more importantly, to provide metabolites for the pentose phosphate
pathway (PPP) (synthesis of growth molecules and control of oxidative stress) and fatty acid synthesis (FAS) (de novo lipid synthesis necessary for cell growth). Tregs
are more flexible and can use fatty acid oxidation (FAO), where fatty acids are trafficked to the mitochondria for processing, then utilized in the tricarboxylic acid cycle
(TCA). Derivatives from both these pathways are utilized by the electron transport chain (ETC) to generate ATP in a process called OXPHOS. Finally, amino acid
metabolism (AAM) regroups anabolic and catabolic pathways of amino acids and is implicated in an array of survival, growth, activating, or inhibiting functions.
Shared fuel substrates and metabolites result in a complex interplay between these different pathways.

Proinflammatory
effector CD4+ T cells

An�-inflammatory
regulatory CD4+ T cells

Glucose Glucose

Glycolysis

PPP

FAS

TCA ETC

FAO

Energy
Lipid

Nucleo�des
Amino acids
Ribose

Fa�y
acid

Energy

Figure I. The Metabolism of Regulatory T Cells (Tregs) Differs from That of Proinflammatory CD4+ T Cells. Proinflammatory CD4+ T cells tend to
primarily use glycolysis to generate energy and metabolites. By contrast, Tregs are more flexible, and can use the more energetically efficient fatty acid oxidation (FAO)
pathway. Abbreviations: ETC, electron transport chain; FAS, fatty acid synthesis; PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle.
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patients with HIV who continue to be at
higher risk of clinical complications in this
era of highly effective ART.
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