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Résumé 

La chimiothérapie demeure jusqu’à présent l’approche thérapeutique la plus utilisée pour 

combattre le cancer. Cependant, la chiomiothérapie affecte les cellules normales et détériore 

ainsi de manière importante la santé des patients. En revanche, l’immunothérapie ciblée est une 

approche relativement innovante permettant au système immunitaire de combattre 

spécifiquement les cellules cancéreuses, réduisant ainsi les effets secondaires. Afin de cibler les 

tumeurs de manière efficace, ces approches immunothérapeutiques doivent cibler des peptides 

spécifiques aux tumeurs présentés à la surface des cellules par le complexe majeur 

d’histocompatibilité de classe I (CMH I). Ces peptides spécifiques aux tumeurs sont nommés 

‘néoantigènes ’et sont reconnus par les lymphocytes T pour l’élimination des cellules tumorales . 

Les néoantigènes ‘hybrides’ ont récemment démontré un potentiel thérapeutique important. Ces 

néoantigènes proviennent de différents fragments peptidiques ou encore de gènes de fusion, 

lesquels représentent de puissants oncogènes impliqués dans le développement du cancer.  

Bien que ces néoantigènes hybrides soient très pertinents pour la création de stratégies 

immunothérapeutiques ciblées, leur découverte à grande échelle demeure un défi de taille. 

Jusqu’à ce jour, la spectrométrie de masse représente la méthode la plus directe pour la 

découverte de ces néoantigènes. Cependant, l’inaccessibilité d’outils bio-informatiques pour la 

prédiction et l'identification de ces néoantigènes hybrides identifiés par spectrométrie de masse 

est une problématique importante, ralentissant anisi leur découverte à l’échelle internationale.  

Deux outils bio-informatiques facilement accessibles seront développés dans le contexte de mon 

projet de maîtrise: RHybridFinder (Saab et al. 2021) et FusionchoppeR (manuscript en 

préparation). Ces deux outils se basent sur le language informatique ‘R’, fréquemment utilisé en 

bio-informtique dans le domaine des sciences de la vie. Brièvement, ces outils intègrent l’analyse 

de données générées par spectrométrie de masse (PEAKS), des prédicteurs d'affinité de liaison 

de peptides  aux molécules du CMH (NetMHCpan et MHCFlurry), ainsi que des analyses de 

modélisation 3D des complexes CMH- néoantigènes (RosettaMHC). Le code de ces outils est 

présentement ou sera déposé, dans les ressources bio-informatiques publiques CRAN et Zenodo.  
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Abstract 

Chemotherapy is to this day the main therapeutic strategy for treating cancer. However, 

chemotherapy affects normal tissues as well as the overall health of patients. In contrast, targeted 

immunotherapies allow the immune system to selectively destroy cancer cells, thereby reducing 

secondary effects. To specifically and efficiently target tumour cells, immunotherapies rely on the 

identification of peptides presented on MHC-I (Major Histocompatibility Complex Class I) 

molecules. The peptides specific to tumour cells, also called “neoantigens”, constitute ideal 

targets owing to their communication with the immune system. The recognition of these by the 

immune system leads to lysis of the cell. ‘Hybrid’ neoantigens have recently demonstrated their 

important therapeutic relevance. These are either derived from the ligation of two peptide 

fragments, or from oncogenic driver gene fusions.  

Despite the relevance of these hybrid neoantigens for the development of novel targeted 

immunotherapeutic strategies, their discovery on a large scale remains a challenge. To date, mass 

spectrometry is the main direct method for the identification of these neoantigens. Nevertheless, 

the lack of tools for the prediction and identification of these hybrid neoantigens identified by 

mass spectrometry is an important issue that affects the rate of their discovery on a world-wide 

scale. 

Two easily accessible bio-informatic tools are developed as part of my master’s project: 

RHybridFinder (Saab et al., 2021) and FusionchoppeR (manuscript being prepared). Both tools 

have been developed in R language which is commonly used in the health sciences field. Briefly, 

these tools rely on the use of data generated by mass spectrometry (PEAKS), peptide-HLA binding 

predictors (netMHCpan and MHCflurry) as well as 3D structural modeling analyses of peptide-

MHC-I complexes (RosettaMHC). The code for these tools is currently or will be available soon on 

public repositories CRAN and Zenodo. 

Keywords : hybrid neoantigens, bio-informatic, gene fusions, spliced peptides, RHybridFinder, 

FusionChoppeR, hybrid immunopeptidome 
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Chapter 1 : Literature Review  

1. MHC Class-I Antigen presentation 

1.1. The Players 

1.1.1. The Proteasome  

The proteasome is a protein complex located in the cytoplasm and responsible for the 

degradation of intracellular proteins which are then presented on HLA-I alleles. Protein 

homeostasis (proteostatis) is maintained in large part to the proteasome. Nevertheless, 

proteolysis by the proteasome is essential to many other cellular processes (Fig. 1A) (Thibaudeau 

and Smith, 2019). 

The proteasome is structurally composed of a Regulatory Particle (19S component, S being the 

sedimentation coefficient) and a Catalytic core Particle (20S component) (Fig. 1B) (Sahu and 

Glickman, 2021) The 19S component consists of 19 subunits, 13 non-ATPase Regulatory 

Particles (RPn) and 6 triple A-ATPase Regulatory Particles (RPt) which are responsible for the 

capture, de-ubiquitylation and unfolding of poly-ubiquitylated polypeptide substrates, following 

the opening of the gate. The 20S component on the other hand, is responsible for the 
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processing of polypeptide substrates into shorter peptides with a length ranging up to 15 amino 

acids.  

  

Figure 1. –  The proteasome: its role in biological processes and its structure.  

A) The proteasome’s role is crucial for different cellular processes. Figure from (Thibaudeau and Smith, 2019). B) 3D structural 
representation showing the 19S and 20S components. Only 4 of the 19S subunits are annotated on the figure. The 20S component 
displays the a- and b-rings. The a-rings are on the top and bottom of the 20S and displayed in a darker color whereas the inner b-
rings are clearer. Figure from (Sahu and Glickman, 2021).  

The 20S component is formed by two outer a-rings and two inner b-rings. The a-rings act as 

gates. On the other hand, b-rings consist of 3 main subunits that possess catalytic activities. b1 

has caspase-like function, b2 has trypsin-like function and b5 has chymotrypsin-like function 

(Sahu and Glickman, 2021; Tanaka, 2009) 

Furthermore, two other proteasome subtypes are known. First, the immunoproteasome which is 

constitutively expressed in immune cells and following pro-inflammatory cytokine induction in 

non-immune cells and differs from the standard proteasome in its cooperative integration of 

three b-subunits: b1i, b2i, b5i. These have different size substrate binding pockets and therefore 

can accommodate different types of amino acids especially nonpolar and hydrophobic, 

consequently, the immunoproteasome constitutes a source of peptides suitable for the MHC-I 

presentation pathway (introduced in the next section). Second, the thymoproteasome 
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(proteasome mainly expressed in the thymus), has b1i, b2i and b5t subunits incorporated. In 

mice, thymoproteasome-deficient mice (proteasomes lacking the b5t) showed a reduced 

abundance of CD8+ T cells populations hinting at the thymoproteasome’s role in generating an 

exclusive proportion of peptides (Eshof et al., 2021; P.-M. Kloetzel, 2001; Murata et al., 2018; 

Sahu and Glickman, 2021). 

1.1.2. HLA-I alleles 

The HLA (Human Leukocyte Antigen) class I region on chromosome 6 (6p21) is composed of genes 

encoding HLA-A, B & C molecules. These HLA-I molecules consist of a heavy chain (encoded by 

genes chromosome 6) that has three a domains and a b2-microglobulin domain (encoded by 

chromosome 15). HLA-I molecules are expressed on the surface of all nucleated cells. An 

individual can express up to 6 different HLA-I molecules, 2  from each gene: A, B, C (Fig. 2). HLA-I 

molecules are best known for their association with transplants whereby compatibility between 

the donor and the recipients’ HLAs is important for the success of a transplant (Choo, 2007).  

The history of their discovery dates to the 1950s (Juji, 1988; Park and Terasaki, 2000). Their 

nomenclature as well as their typing was established through a series of workshops and 

conferences (Park and Terasaki, 2000). The HLA genes are highly polymorphic and to date, 24308 

HLA class I (HLA-I) alleles have been identified according to the IPD-IMGT/HLA database compared 

with 266 identified in 1996, and 9182 HLA class II (HLA-II) alleles (Parham and Ohta, 1996; 

Robinson et al., 2019).  
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Figure 2. –  The genes expressing HLA-I alleles. 

The genes that code for the HLA-I alleles are located on the short arm of chromosome 6. 3 HLA-I genes code for 3 types of molecules 
presented on the surface of the cell: A, B & C. The HLA-I molecule is composed of one heavy chain which has three domains: a1, 
a2, a3.  

The HLA-I molecules are commonly represented by the gene coding the HLA allele (here, we focus 

on the HLA- A, B & C genes) followed by an asterisk, and then two digits corresponding to the 

allele family, then a colon and lastly, two digits which correspond to the order at which this 

specific allele was identified. 

In this manuscript, I will refer to these molecules as HLA-I and MHC-I interchangeably. However, 

please note that MHC-I (Major Histocompatibility Class I) designates these molecules in general 

terms across species whereas HLA-I (Human Leukocyte Antigen class I) refers specifically to those 

in humans. 

 

1.2. HLA diversity 

1.2.1. Origins 

The high polymorphic nature of HLA-I alleles allows them to have different peptide binding 

specificities. Populations around the world carry different sets of HLA-I alleles. In evolutionary 
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terms, the HLA-I diversity was explained through a selection process that either (1) favors a strong 

immune response through the heterozygosity of HLA-I allele in order to enhance presentation 

and therefore protection of an individual, or (2) is the result of selection based on pathogens 

present within certain geographical areas and time periods or (3) through a combination of gene 

conversion, linkage disequilibrium and random shift (Parham and Ohta, 1996). Interestingly, 

statistical analyses of population peptide-binding coverage of HLA-I molecules showed that both 

the geography/time & the divergent allele advantage (favoring a strong immune response 

through allele diversity) along with gene conversion explained the diversity of HLA-I alleles (Buhler 

et al., 2016; Pierini and Lenz, 2018). Moreover, because allele homozygosity was not found to 

necessarily pose a disadvantage, optimal protection is thought to be associated with a 

complementarity of HLA-I alleles carried (Kaufman, 2018; Parham and Ohta, 1996). This balance 

is described between generalist and fastidious alleles. The former have a tendency to bind a large 

variety of peptides that confer general protection against a wide array of pathogens whereas the 

latter bind a narrower set of peptides but are more specific in their protection against certain 

pathogens (Kaufman, 2018). Recently, the heterozygosity of HLA-I alleles has also been linked 

with outcome of cancer immunotherapy with Immune checkpoint inhibitors (Chowell et al., 2018, 

2019). In contrast, Manczinger et al. (2021) found no correlation between allele heterozygosity 

and outcome but rather suggested an effect by the size of the HLA-I repertoire, which, if large 

enough could lead to tolerance of tumors (Manczinger et al., 2021). To sum up, balance is key for 

HLA-I alleles. Whether their diversity could be a blessing or a curse in disguise, they are important 

in order to confer protection. 

 

1.2.2. Effect on peptide binding 

 

The diversity of HLA-I alleles impacts the type of peptides that they bind to. The conformation of 

the a1 and a2 domains of the HLA-I molecules creates a peptide binding cleft composed of six 

pockets that engage amino acids within a peptide molecule presented on it  (Nguyen et al., 2021). 

These different pockets are named “A” to “F” and engage amino acids at different positions within 
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a peptide (Fig. 3 and Table 1). Notably, HLA-I alleles have binding specificities that differ between 

them especially on the level of the B and F pockets. These bind amino acids at the 2nd and 9th 

positions of the peptide, respectively. However, this might be different for some HLA-I alleles such 

as HLA-B*08:01 which has binding particularities for peptide residue in fifth position binding its C 

pocket (Barber et al., 1995; Nguyen et al., 2021). Based on peptide binding specificities of 945 

HLA-A & B alleles (with 4 digits (HLA-(A/B)*xx:xx)), 80% of these were clustered into 12 supertypes 

and the rest was considered as unclassified (I. A. Doytchinova et al., 2004; I. Doytchinova and 

Flower, 2003; Hertz and Yanover, 2007; A. Sette and Sidney, 1999; Sidney et al., 2008). In 

summary, the requirement of each HLA-I allele for amino acids in their binding pockets creates 

different sets of HLA-peptide repertoires that that could or not overlap. This in turn affects the 

peptides being presented on the surface of the cell to the immune system.  

 

 

Figure 3. –  3D structure representation of HLA-I peptide binding pockets.  
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Residues within the a1 and a2 domains of the HLA-I molecule form peptide binding pockets which could have their own speicificities 
when it comes to the amino acids at different positions within a peptide. Figure from (Nguyen et al., 2021) 

Pocket Residues Role of the pocket 

A 5, 7, 59, 63, 66, 159, 
163, 167, 171 

Wall of the N-terminal part of the binding cleft, bind P1 
residue 

B 7, 9, 24, 34, 45, 63, 
66, 67, 70, 99 

Bind primary anchor residue P2 

C 9, 70, 73, 74, 97 Bind secondary anchor residue at P3 and P5/P6 when 
presents, face pocket D 

D 99, 114, 155, 156, 
159, 160 

Bind secondary anchor residue at P3 and P5/P6 when 
presents, face pocket C 

E 97, 114, 147, 152, 
156 

Overlap with C/D pockets and contact secondary anchor 
residue at P5/P6 when presents and the C-terminal part of 

the peptide 

F 77, 80, 81, 84, 95, 
123, 143, 146, 147 

Bind primary anchor residue PΩ, wall of the C-terminal part 
of the binding cleft 

Tableau 1. –  HLA-I structural peptide binding pockets. Adapted from (Nguyen et al., 2021). 

 

1.3. The MHC-I presentation pathway 

The roots of MHC-I and its involvement with the immune system could be traced back to 

transplant studies in the 1950s. The findings by Billingham, Brent & Medawar (1953) that the 

immune system of fetal mice is taught to ‘tolerate’ certain antigens presented by the MHC-I was 

phenomenal and has shaped much for our understanding of adaptive immunity (BILLINGHAM et 

al., 1953).  

Moreover, since then, research has intensified to characterize these MHC-I alleles as well as the 

peptides they present: their origin, their specificities, the mechanism by which these are created. 

It is well-known now that the MHC-I presentation pathway is a way for the cell to channel samples 

of its interior state to the outside of the cell (Caron et al., 2011). In healthy cells, peptides on 

MHC-I are derived from normal proteins expressed in the cell, whereas in a pathogenic state such 

as in the case of intracellular pathogens or tumour the peptides presented on the MHC-I molecule 

are influenced by the state of the cell. The MHC Class I presentation pathway consists of the 
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presentation of short peptides (8-12 amino acids) on MHC-I molecules at the surface of the cell. 

After protein digestion by the proteasome, peptides are then degraded further by 

aminopeptidases in order to ‘recycle’ the amino acids. However, few peptides are transported 

into the endoplasmic reticulum with the help of the Transporter associated with Antigen 

Processing (TAP) and loaded onto MHC-I molecule. Then, the peptide on the MHC-I molecule 

might undergo further trimming by ERAP (Endoplasmic Reticulum Aminopeptidases) before the 

complex is transported into the Golgi Apparatus and then presented on the surface of the cell to 

the immune system (CD8+ T cells) (Fig. 4 – not all these steps are shown in this figure)(Carluccio 

et al., 2018) . In other words, the immune system is rummaging through the cell’s ‘trash’ that is 

displayed on the surface of the cell and it destroys what it recognizes as foreign (Hewitt, 2003). 

Rock et al. (2016) have also whimsically likened the process to a presented meal by ‘waiters’ 

(MHC-I molecules) on the surface of the cell which is judged by a patrol officer (representing 

Cytotoxic T Lymphocytes (CTL)) (Rock et al., 2016).  

 

Figure 4. –  MHC Class I Antigen Presentation Pathway. 



 33  

After degradation of a protein by the proteasome into peptides, few of those are transported into the Endoplasmic reticulum 
through TAP (Transporter Associated with Antigen Processing) into the Endoplasmic reticulum whereby the binding of a peptide 
to a fully folded MHC-I molecule determines its presentation will lead to CD8+ T cells. Figure adapted from (McCarthy and 
Weinberg, 2015). 

This pathway is essential for eliminating compromised cells. Therefore, the survival of such cells 

relies upon the disruption of the MHC-I antigen presentation pathway in order to hide from the 

immune system. Mechanisms involved in immune escape consist of direct alterations of MHC loci 

(Loss Of Heterozygosity, gene deletion), epigenetic dysregulation of genes associated with the 

antigen presentation pathway, indirectly - through the manipulation of signaling and transcription 

of these genes. Therefore, disrupting any of the steps of the presentation could be key for 

preventing cell recognition and lysis by lymphocytes which confirms the importance of this 

pathway for targeting tumor cells (Dersh et al., 2020; Pyke et al., 2022).   

1.4. Immunopeptidome 

“Immunopeptidome”, or the collection of immune peptides was first coined by Johnathan 

Yewdell in 2004 and now constitutes an entire investigative field of the peptides bound to MHC-

I (Istrail et al., 2004). 

1.4.1. MHC-I peptides, neo-antigens for immunotherapy 

Tumours have their own immunopeptidomic signatures and the hunt for tumor targets has 

classified tumor targets as Tumour-Associated Antigens (TAA) and Tumour-Specific Antigens 

(TSA). The former are antigens associated with aberrantly expressed normal proteins, these can 

also be expressed by normal tissues. On the other hand, TSAs are derived from “modified” 

proteins and therefore are specific to tumour cells - these are often also called “neoantigens”.  

Because the immunopeptidome can act as a ‘whistleblower’ of neoantigens, targeting these in 

order to harness a tumour-specific immune response is the rationale for the development of 

various immunotherapies. Moreover, to develop these, target (neoantigen) discovery is key and 

relies on factors such as 1) its expression only in tumors, 2) MHC binding, this can be achieved in-

silico in a first step using prediction algorithms. It should nevertheless be validated with peptide-

HLA in-vitro binding affinity measurement and MHC-peptide elution using immunopeptidomic 

protocols. Finally, 3) the ability of the neoantigen to bind multiple HLA alleles. This confers a great 



 34  

advantage in order to circumvent HLA loss of heterozygosity. Also, considering the diversity of 

HLA-I alleles across populations, this helps in the application of cross-HLA-I allele 

immunotherapies (McGranahan and Swanton, 2019; Yarmarkovich et al., 2021).  

To date, clinical trials involving neoantigens are ongoing and have already shown great promise 

in treating melanoma patients (Carreno et al., 2015; Ott et al., 2017; Sahin et al., 2017). Carreno 

et al. (2015) conducted a small phase 1 clinical trial on three patients with stage III resected 

cutaneous melanoma who had also received immune checkpoint inhibitor therapy. The 

researchers vaccinated all three patients using mature autologous dendritic cells pulsed with 

synthetic HLA-A*02:01-peptides derived from non-synonymous mutations, personalized for each 

patient. In their study, they showed that vaccination highly increased CD8+ neoantigen-specific T 

cell responses in PBMCs extracted pre- and post- vaccination and all patients survived (Carreno 

et al., 2015) In 2017, Sahin et al. used RNA-based vaccines containing 10 selected mutations per 

patients encoding 27-mer peptides (the peptides contained 13 amino acids from each side of the 

mutated residue) on 13 stage III and IV melanoma patients. While one patient died due to rapid 

disease progression, a second patient died because of rapid disease progression and a loss of b2-

microglobulin allele, without which an HLA-I molecule is not complete and cannot therefore be 

transported onto the surface. One patient’s vaccination was stopped (due to multiple relapses) 

and received immune checkpoint inhibitor therapy, and eventually experienced a complete 

response. Nevertheless, 9/13 patients were recurrence free after vaccination and exhibited 

strong immune response. Ott et al. (2017) vaccinated 6 patients in stage III and IV melanoma with 

pools of synthetic long peptides spanning 20 neoantigens per patient. Two patients with 

untreated lung metastases had disease recurrence after vaccination and then received 

checkpoint inhibitor therapy. They then exhibited a clinical response and remained recurrence-

free for the remainder the trial phase period. The rest of the patients had no recurrence after 25 

months post-vaccination(Ott et al., 2017). Together, the results of all three of these personalized 

vaccination trials on melanoma patients have demonstrated the safety of neoantigen vaccines 

and the efficacy of these whether alone or with checkpoint inhibitor therapy. 
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1.4.2. HLA polymorphisms & the immunopeptidome 

The binding specificities of HLA-I molecules are often represented by logo plots showing the 

information content or the importance of amino acids at each of the positions of the peptide (Fig. 

5). These specificities or “binding motifs” have been established for various alleles since 1992 

(Bassani-Sternberg et al., 2017; Chelvanayagam, 1996; Kubo et al., 1994; Matsumura et al., 1992; 

Rammensee et al., 1995). Furthermore, mutations of immunogenic peptides at specific residues 

leading to immune escape through loss of binding have also contributed to validating these motifs 

(Cardinaud et al., 2011; Draenert et al., 2004; Murakoshi et al., 2018).  

 

Figure 5. –  Example of logo plots. 

Four logo plots for 9-mers for four HLA-I alleles: HLA-A*01:01, HLA-A*02:01, HLA-B*07:02 and HLA-B*44:02. Each of these plots 
represents the collection of peptides associated with these HLA-I molecules. The x-axis represents the positions within a peptide, 
the y-axis represents the bits associated with the different amino acids at different positions within a peptide sequence. The height 
of amino acids is representative of its importance at that position. The amino acids are color-coded based on their properties as 
shown in the legend below the plots. Figures adapted from (Sarkizova et al., 2020). 

Moreover, in recent years, MS sequencing of HLA-I ligands eluted from mono-allelic cell lines has 

further improved the characterization of the specificities of various HLA-I alleles (Abelin et al., 

2017; Trolle et al., 2016). Notably, Sarkizova et al. (2020) have led a large-scale sequencing of the 
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eluted ligands of 95 mono-allelic cell lines. This has allowed to elucidate the binding motifs of 

many alleles that were underrepresented (Sarkizova et al., 2020a).  

1.4.3. Cancer Neoantigens: Personal vs. Public 

Neoantigens can be classified into two categories based on the whether these are specific to a 

patient or not. Personal neoantigens have shown to be great targets for immunotherapies due to 

their specific to the individual. However, because of their specificity to each individual, personal 

neoantigens are expensive. Alternatively, for certain tumors and age ranges the protein driver 

sequence could be the same across individuals, and therefore neoantigens derived from these 

can be shared, these are considered “public” neoantigens. Neoantigens that are shared between 

individuals constitute ideal targets as these can pave the way for an “off-the-shelf” type of cancer 

immunotherapy (Biernacki and Bleakley, 2020; Chandran et al., 2022; Chen et al., 2020; Pearlman 

et al., 2021). The most documented sources of shared neoantigens include recurrent driver 

mutations of oncogenes as well as gene fusions (Biernacki and Bleakley, 2020; Chandran et al., 

2022; Pearlman et al., 2021).  Other modifications that show potential to be sources include post-

translationally modified peptides, such as proteasome spliced peptides which have been shown 

to trigger immune responses in multiple patients (Ebstein et al., 2016; Faridi et al., 2020). 

Therefore, evidently, the identification of shared neoantigens is of great importance. 

1.5. Hybrid immunopeptidome (HIP) 

Since immunopeptidome designates the collection of peptides bound to MHC-I alleles, the 

“hybrid immunopeptidome” (a term coined in this thesis) is meant to represent the hybrid 

peptides bound to MHC-I molecules (Fig. 6). Hybrid refers to the peptide as being formed either 

from the same parent protein or from two parent proteins. The hybrid peptides I will focus on in 

my thesis are gene fusion-derived peptides and peptides derived from proteasome-catalyzed 

peptide splicing. 
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Figure 6. –  Canonical vs. hybrid immunopeptidome.  

(On the left) the canonical immunopeptidome represents the collection of peptides that bind MHC-I molecules and are derived 
from a protein. (On the right) the hybrid immunopeptidome on the other hand is the collection of peptides that bind MHC-I 
molecules but that are derived from two regions within this protein or from two different proteins. 

1.6. Gene fusions 

1.6.1. Gene fusions in pediatric cancers  

Cancer remains the primary cause of death of pediatric patients and despite the improvements 

of survival rates, traditional therapies have been documented to cause various adverse long-term 

effects for these patients (Hamilton et al., 2017; Mulhern and Butler, 2004). Therefore, the 

development of therapies that specifically target the tumours is needed for pediatric patients.  

Pediatric cancers are characterized by a low mutational burden (low number of non-inherited 

mutations per million bases) and an embryonic origin (Vogelstein et al., 2013). Chromosomal 

rearrangements such as gene fusions are frequently observed in pediatric cancers and they are 

hypothesized to be the drivers of these (Dupain et al., 2017; Loupe et al., 2017).  

Moreover, gene fusion events are chromosomal structural rearrangements that involve through 

various mechanisms (translocations, inversion, deletion, etc.) the fusion of genes. A gene fusion 

is formed by the juxtaposition of two genes, a 5’ and a 3’ partner genes (also called head and tail 

genes), often represented by the name of the genes separated by a special character, i.e., ETV6 - 

RUNX1. These can either derive from the same chromosome or from different chromosomes. 

Generally, abnormalities in tumours are selected for their role in ensuring the survival of the cells, 

therefore, gene fusions should be non-random events especially these considered as being driver 

fusions (Latysheva and Babu, 2016; Mitelman et al., 2007; Roukos and Misteli, 2014). Gene fusion 

events can dysregulate protein expression, incur loss of function or generate a chimaeric protein 
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(Fig. 7A). Consequently, to understand the function of a chimaeric protein, it is important to know 

the functions of the parent genes as well as which protein domains are retained in the novel 

chimaeric protein (Fig. 7B) and lastly determine whether a frameshift is incurred or not. That is, 

whether the reading frame is preserved in the second protein (in-frame) or there has been a 

frame shift (also termed “out-of-frame”) that alters the reading frame and the sequence of the 

resulting protein (Fig. 7C).  

 

Figure 7. –  General characteristics of gene fusion events.  

A) Figure adapted from (Roukos and Misteli, 2014) showing the different effects that a translocation can have. Either activity of 
the juxtaposing coding region deregulated due to the fusion of the promoter, or a loss of function is incurred through a fusion that 
disrupts the coding region of the juxtaposing coding region. A last potential effect is through the creation of a chimaeric protein 
composed protein. Examples of the two deregulatory effects of gene fusions are depicted in Panel B) subpanels a) and b) whereas 
the subpanels c) and d) provide examples of chimaeric proteins. Figure adapted from (Abate et al., 2014). Panel C) depicts the 
possible frame-reading shifts caused by these translocations. Based on whether the fusion changes the reading frame of gene 2, 
the resulting protein can be in-frame (no shift) or out-of-frame (frameshifted).  Figure from (Okuda et al., 2017). 

 

Owing to the breakpoints having a tendency of being localized at certain genomic regions which 

are transcriptionally active, or that enhance the susceptibility of breakage (characterized by 

repeats, fragile sites and endonuclease misrecognition sites) the translocations are recurrent 

(Latysheva and Babu, 2016; Roukos and Misteli, 2014). The same rearrangement in several 

pediatric patients has been described in the literature (Biernacki and Bleakley, 2020; Chang et al., 

2019a; LaHaye et al., 2021; Reshmi et al., 2017).  Two pediatric gene fusions which represent ~20-
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25% (ETV6-RUNX1) of pediatric ALL (Acute Lymphoblastic Leukemia) and ~12% (CBFB-MYH11) of 

pediatric AML (Acute myeloid Leukemia) were studied in the context of MHC-I immunogenicity. 

Both were shown to generate specific T cell responses against neoantigens derived from these 

gene fusions (Biernacki et al., 2020a; Zamora et al., 2019a). This begs the question, could certain 

gene fusion-derived neoantigens be shared across cohorts? 

These two gene fusions are associated with a positive clinical outcome however, pediatric 

patients would nevertheless benefit from less harmful and more targeted treatment approaches. 

Also, there remains a large number of pediatric gene fusions that (1) do not involve kinase genes, 

(2) have an unfavorable prognosis and (3) are known to be exclusive to pediatric patients, such as 

those involving NUP98, CBFA2T3, KMT2A (Bolouri et al., 2018). Taken together, given the 

potential for therapeutic treatment of Gene Fusion-derived Neoantigens (GF-Neo) (Biernacki et 

al., 2020a; Yotnda, Garcia, et al., 1998; Zamora et al., 2019a), and the recurrence of gene fusions 

in pediatric cancers, exploring the landscape of GF-Neo of gene fusions in pediatric cancers is 

warranted. 

1.6.2. Beyond the genomic level, towards an immunopeptidomic advantage 

The degradation of intracellular proteins by the proteasome results in peptides that would bind 

the MHC-I alleles on the surface of the cell. A proof-of-concept study by Yang et al. (2019) on 

recovered cancer patients revealed that these patients harbored T-cells specifically reactive to a 

gene fusion peptide (Yang et al., 2019). Therefore, peptides from these chimeric proteins are key 

to the development of immunotherapies. 

1.6.2.1. The junction region is important 

The relevance of the fusion junction region as source of neoantigens was established since 1998 

(Yotnda, Garcia, et al., 1998). The researchers sought to evaluate the immunogenic potential of 

one peptide derived from the junction region of the ETV6-RUNX1 fusion protein, which is the 

result of the t(12;21) translocation. This translocation is present in over 25% of childhood ALL. 

The peptide spanning the junction region RIAECILGM (Fig. 8A) tested in their study was found to 

trigger an immune CTL response in an HLA-A02 restricted manner. This has also been observed in 

a study 21 years later with patient-derived T-cells (Zamora et al., 2019a). Furthermore, a fusion 
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junction neoantigen from CBFB-MYH11 has also been validated for its immunogenicity (Biernacki 

et al., 2020a) (Fig. 8B).  

 

Figure 8. –  The junction region is a source of neoantigens 

The junction peptides from ETV6-RUNX1 and CBFB-MYH11 displayed above that have been shown in the literature to be 
immunogenic highlight the relevance of the junction in acting as a neoantigen source. 

 

1.6.2.2. Gene fusion proteins are a source of neoantigens 

In 1997, Gambacorti-Passerni et al. predicted gene fusion peptides via mapping HLA-I binding 

motifs to fusion proteins in order to extract those that fit certain motifs (Gambacorti-Passerini et 

al., 1997). They mapped junction peptides of 44 gene fusions to HLA-I alleles. Then, they tested 

the binding of their candidates to these in vitro through a stabilization assay and found that 13-

40% were binders. However, they only considered 3 alleles: HLA-I alleles HLA-A*02:01, HLA-

A*03:01 and HLA-C*07:02. One interesting finding was that some fusion peptides derived from 

rare gene fusions fit the binding motif of highly frequent HLA-I alleles. Also, they found that 

fusions involving the same genes but where the rearrangement could be different could generate 

peptides that could bind other alleles. Lastly, they observed that a fusion junction polypeptide, 

could generate more than one HLA-I-peptides (Fig. 9). Particularly, these were mapped to 

different HLA-I alleles. They have called such gene fusions as being heterogenous. One such 

example in their study was ALL1/ENL (Fig. 9), two peptides were predicted (based on motif 

mapping) to bind HLA-A*02:01 and one peptide to HLA-C*07:02. Furthermore, according to their 
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in vitro results these were also deemed as HLA-I binders. To sum up, gene fusions can be a source 

of neoantigens, HLA-I-peptides and gene fusions and these can also generate peptides that bind 

to different HLA-I alleles. 

 

Figure 9. –  “Heterogeneous” gene fusion. 

The figure clearly displays what the authors named as being a “heterogeneous gene fusion”, that is, a fusion protein that could 
generate peptides that are predicted to bind different sets of alleles. In the example is shown the fusion protein sequence of 
ALL1/ENL. Below, are shown three peptide sequences, 2 of which are predicted to bind the same HLA-I allele, and then second one, 
aa completely different HLA-I allele. The figure was created from screenshots of tables from (Gambacorti-Passerini et al., 1997). 

1.6.2.3. Gene fusion peptides in clinical treatments 

In 2005, Bocchia et al. aimed at improving the persistent residual disease (that is the persistence 

of cancer cells associated with the disease) seen in BCR-ABL1 patients treated with tyrosine kinase 

inhibitors (TKIs) or interferon alfa. TKIs are the main drugs used to treatment patients with gene 

fusions involving a kinase. To specifically target cells that express this fusion, they vaccinated 16 

patients who had undergone either of these treatments and have not exhibited full removal of 

the disease. The vaccine included peptides of different lengths that would bind HLA-I and HLA-II 

molecules. Focusing on previously TKI-treated patients and that had stable residual diseases, 

while all 9 patients showed progressive improvements, 5 displayed complete cytogenetic 

remission. Interestingly, 4 of these 5 patients had more than one of HLA I or II appropriate for the 

presentation of the peptides used in the vaccine (M Bocchia et al., 2005). This same peptide 

vaccine was administered to a patient with BCR-ABL1 fusion whose interferon alpha treatment 

had been discontinued after 6 years of continuous treatment and was diagnosed with chronic 

phase Philadelphia positive chronic myeloid leukemia (Philadelphia/Philadelphia chromosome 

refers to the BCR-ABL1 gene fusion).  The patient started responding to the vaccine after vaccine 

boosting. Assessment of vaccine response was done by 1) measuring peptide-specific CD4+ T cells 

in vitro isolated from patient PBMCs (pre- and during vaccination) and 2) by measuring level of 

the fusion transcript in blood or marrow of the patient. After 1 year after the start of vaccination, 

the patient had no residual leukemic Philadelphia positive cells and an undetectable level of BCR-
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ABL1 fusion transcript (Monica Bocchia et al., 2010).  Taken together, this has proven the efficacy 

of neoantigen-based vaccines to specifically target cells expressing the gene fusion and eliminate 

residual disease to prevent potential relapse.  

1.7. Post-translationally spliced peptides 

In 2004, Hanada and colleagues found through extensive experimental validation that the 

proteasome is not only lysing proteins but also ligating their peptide fragments. Throughout their 

experiments they were able to demonstrate that an immunogenic peptide was indeed generated 

by the proteasome through the ligation of two fragments from the same FGF-5 protein but 

separated by ~40 amino acids in the FGF-5 protein (Hanada et al., 2004). By 2016, six 

proteasomally-spliced peptides had already been described in the literature. (Dalet et al., 2011; 

Ebstein et al., 2016; Hanada et al., 2004; Michaux et al., 2014; Vigneron et al., 2004; Warren et 

al., 2006). These included the finding that peptides can also be spliced in a ‘reverse-cis-spliced’ 

manner. In other words, the fragments spliced are in a different order than in the parent protein 

(Fig. 10C). Lastly, while highly debated, it was also posited that the proteasome could splice 

fragments from different parent proteins (Fig. 10D)  (Faridi et al., 2018; Liepe et al., 2016; Specht 

et al., 2020). 

 

Figure 10. –  Peptide hydrolysis and types of proteasomal splicing.  

The event in a) represents the normal peptide hydrolysis reaction by the proteasome whereas b) and c) depict proteasomal-
catalyzed cis peptide splicing whereby fragments different parts of the same protein/substrate get ligated together either In the 
same order as in the substrate or in reverse order. Ligation of fragments derived from two different proteins in shown in d) 
Adapted from (Specht et al., 2020). 

Interestingly, Ebstein (2016) et al. And Faridi et al. both found that multiple patients harbored T 

cells specific against (Ebstein et al., 2016; Faridi et al., 2020). This meant that these spliced 
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peptides are spliced similarly across patients, also hinting at the non-randomness of peptide cis 

splicing.  

 

1.8. Bio-informatic tools 

Hybrid peptides are a novel source of neoantigens and thus constitute key potential targets for 

immunotherapies. Their identification is evidently of great importance and bio-informatic tools 

could facilitate this task.  

 

1.8.1. The need for open-source and accessible software to identify 

potential hybrid peptide by MS 

The identification of proteasome-catalyzed spliced peptides from MS is not straightforward since 

their hybrid nature would not allow for their direct identification with database search of the 

human proteome. Thus, bio-informatic tools are warranted for the identification of these. 

Five algorithms/workflows have been developed for the purpose of identifying spliced peptides: 

SpliceMet, HybridFinder, SPI-delta (Spliced Peptide Identifier - delta version), TagPep, Neo-

Fusion.  

SpliceMet, knowing the protein substrate a database of all possible theoretical spliced peptides 

is created and theoretical m/z values are calculated and for all charge states (z=+1, +2, +3) and 

compared against their measured counterpart MS. Furthermore, a kinetic aspect was considered 

whereby the authors determined that the higher quality in-vitro proteasome catalyzed peptide 

splicing happens up until a maximum timepoint after which the peptides produced are due to a 

re-entry of the fragments into the proteasome. This aids in the formation of an “inclusion list” 

based on the m/z and this kinetic aspect which then are confirmed by comparison with synthetic 

peptides followed by validation with MALDI TOF (Liepe et al., 2010).  

The HybridFinder (2018) workflow, is based on analysis of both database search results and ‘de 

novo’ peptide sequencing in PEAKS software from MS data. ‘De novo’ sequencing refers to a 
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bottom the identification of peptide sequences in PEAKS software (independently of a protein 

database) and relies on forming the best possible combinations of amino acids based on b- and 

y-ions(Ma et al., 2003). HybridFinder uses both results to determine unassigned spectra from de 

novo and then goes through a sequence of checks for whether the sequence is non-spliced/linear 

or not. If not, it divides the sequence and checks whether both fragments are from the same 

protein (cis), or from two different proteins (trans). Then, one sequence from each spectrum is 

picked.  Generally, non-spliced/linear sequences (linear > cis > trans) are more likely and therefore 

in a given spectrum if there are identified linear and spliced candidates, the spliced peptide 

candidates are discarded. Otherwise, in cases of ties the ALC score (Average Local Confidence 

score: a PEAKS-specific score that attributes confidence values for the predicted amino acids at 

each position) for ranking the peptide sequences. Then, a database is formed by concatenating 

the original database used for the search and the one with the spliced peptide candidate followed 

by a second database search (Faridi et al., 2018). 

Mylonas et al. (2018) employed TagPep workflow to compare the estimation of the contribution 

of spliced peptides to the HLA-I ligandome with the original estimations around ~30% (Liepe et 

al., 2016; Mylonas et al., 2018). Tagpep follows a similar workflow to HybridFinder however it 

does not search for trans-spliced peptides and the second database is done in other tools 

(MaxQuant and Comet) rather than in PEAKS again. Their re-analysis of the HLA-I ligandome with 

Tagpep revealed that the actual contribution is between 1 and 3% (Mylonas et al., 2018). 

In 2018, Rolfs et al. developed Neo-Fusion, the first open-source software for the identification 

of spliced peptides (Rolfs et al., 2018). Non-spliced peptides are first identified, and then potential 

decoys. Next, Neo-fusion creates two databases: an N-terminal ion database consisting of b-ions 

and a C-terminal one with y-ions. Then, to determine the peptide fragments that form a spliced 

peptide, it uses open mass search and keeps the sequences that match while discarding those 

that do not. Neo-Fusion also identifies trans-spliced peptides. 

Lastly, another tool developed by Liepe’s lab (2020), is SPI-Delta, this tool was especially 

developed to identify spliced and non-spliced peptides derived from given substrates. For their 

database they have used 55 substrates. First, a custom database is built containing all linear cis-
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spliced sequence possibilities of the substrate. Then, after a search using this database, Mascot 

software ranks and ion scores are used to filter peptides. and linear peptides assigned within a 

spectrum are prioritized to spliced peptides (linear>spliced) (Specht et al., 2020). 

Finally, SpliceMet and SPI-Delta rely on a forward approach and require an initial knowledge of 

the substrates to be used. Therefore, with no prior knowledge of the substrate the workflows of 

Faridi, Mylonas and Rolfs are well-suited for the identification of spliced peptides, as they allow 

for a reverse immunology approach. Nevertheless, it is also clear that this identification cannot 

be done solely computationally but should be done in two steps: 1) a computational identification 

approach followed by 2) the high confidence confirmation of the source and presentation of these 

peptides which is only possible through wet lab experiments (likened to earlier experiments for 

the identification of these) as suggested in our paper and, presented in the next chapter (Saab et 

al., 2021). Keeping in mind that one previously identified spliced peptide also contained another 

post-translational modification(Dalet et al., 2011). Also, the intervening distance (the number of 

amino acids that separate the peptide fragments in the original sequence) is still an issue that was 

not solved. Neo-Fusion uses a default intervening of 25 amino acids. However, the initial spliced 

peptide had an intervening distance of 41 amino acids, whereas others had lower numbers. 

Therefore, their computational identification should rely on a broad approach followed by 

thorough validation. Moreover, the use of multiple search engines in order to increase confidence 

is a valuable approach before experimental validation, as is done in the workflow of Mylonas et 

al.(Mylonas et al., 2018).  

Nevertheless, the availability of the computational workflows for other researchers in the 

community is indispensable. To our knowledge, no software was widely distributed: open-source 

and available on multiple OS at the time of publication. Moreover, using the HybridFinder 

algorithm (or a similar workflow), has allowed several researchers to identify and confirm the 

source and immunogenicity of their identified spliced peptides (Faridi et al., 2020; Kato et al., 

2021). In summary, the bio-informatic tools for the identification of spliced peptides are 

indispensable and spliced peptides could have great clinical potential as novel anti-cancer targets 

for the development of new immunotherapies targeting cancer cells using these. 



 46  

1.8.2. The need for bio-informatic tools to predict gene fusion derived 

neoantigens 

Two great tools have been developed until now for the prediction of gene fusion-derived 

neoantigens from patient transcriptomic data. These tools first identify the gene fusions and the 

patient’s HLA typing. Then, they apply selection filters based on expression and predicted effects 

of frame retention or shift, followed by peptide sequence prediction and then peptide-MHC-I 

predictions. Integrate-Neo uses an older version of netMHCpan (4.0) and uses the binding affinity 

results while applying a threshold of 500nM for the selection of neoantigens(Zhang et al., 2017). 

On the other hand, pVACtools and specifically pVACfuse (module for gene fusion) follows a similar 

workflow to IntegrateNeo, and even integrates it. However, pVacfuse uses multiple peptide-

MHC-I prediction algorithms. It also uses binding affinity as predictor and emphasizes a 500nM 

threshold. However, it also incorporates interesting additional metrics to score neoantigens, such 

as dissimilarity from self, proteasomal cleavage or abundance. The binding prediction algorithms 

used by pVACtools have two disadvantages: (1) the versions used are trained on older data and 

(2) certain binding prediction algorithms used which are provided by IEDB (Immune Epitope 

DataBase) cannot perform predictions on all peptide lengths and for all alleles (this is also 

indicated on the IEDB website: http://tools.iedb.org/mhci/help/ ). Furthermore, additional tools 

used include netCTL for which also as the netCTL homepage indicated is that it is optimized for 9-

mer peptides (https://services.healthtech.dtu.dk/service.php?NetCTLpan-1.1), and only provides 

approximations for non 9-mer peptides. The recent versions of both netMHCpan and MHCflurry 

not only emphasize the presentation (elution aspect) but are also trained on newer data. Next, 

both older and newer versions of netMHCpan, have predicted a fusion peptide (RIAECILGM) 

derived from the ETV6-RUNX1 gene fusion to be a weak binder to HLA-A*02:01 (surpassing the 

threshold adopted by either tool), however tetramer assay showed strong MHC-restricted 

recognition by T cells (Zamora et al., 2019a). Taken together, we can conclude that 1) applying 

stringent thresholds could lead to missing out valuable fusion peptide candidates, 2) these tools 

do not consider the recurrence of gene fusions, 3) these tools use old versions of the algorithms 

and 4) are not relying on the eluted ligand predictions. 
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1.9. Hypotheses & objectives 

 

The objective of my master’s thesis was to develop bio-informatic tools that would aid in the 

identification of hybrid peptides that bind the MHC-I molecule. Essentially, these hybrid peptides 

are attractive targets for targeted immunotherapy strategies. 

We were particularly interested in the identification of MHC-I peptides derived from gene fusion 

events and proteasomal peptide splicing. We hypothesized that it is possible to develop bio-

informatic tools for the identification of these.  

Of note, because the peptides that undergo proteasome catalyzed splicing cannot be identified 

beforehand, we have hypothesized that using a bottom-up approach through their identification 

from mass spectrometry data of presented MHC-I peptides would constitute an unbiased 

method. Therefore, we aimed to develop a tool in the form of an R package that would be easily 

accessible for the analysis of Mass spectrometry data in order to identify hybrid peptides based 

on a validated workflow. The workflow by Faridi et al. (2018) or a variation of it has been 

instrumental to the discovery of several spliced peptides, (Faridi et al., 2018, 2020; Kato et al., 

2021) Therefore, we aimed to develop a R package for the systematic discovery of spliced 

peptides based on this workflow.  

On the other hand, gene fusion transcripts are commonly detected by RNAseq (Haas et al., 2019), 

therefore, we hypothesized that it would be possible to do that in a forward approach. This would 

entail predicting MHC-I peptides from the gene fusion protein sequence. To do that, we 

developed FusionChoppeR (FCR) that predicts MHCI-fusion junction peptides using a combination 

of two peptide-MHC-I prediction algorithms and a set of HLA-I alleles covering all supertypes. 

Moreover, we hypothesized that due to their hybrid nature, gene fusion-derived peptides would 

bind more than one HLA-I allele. To test that, we took advantage of a database of gene fusion 

transcripts identified in cancer cell lines (LiGEA). Nevertheless, we expected that peptide-MHC-I 

predictions might reveal that fusion peptides could bind more than a single HLA-I allele. 

Therefore, we also sought to take advantage of an immunopeptidomic dataset, specifically the 

one by Sarkizova et al. (Sarkizova et al., 2020a) in order to analyze to whether peptides could bind 
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multiple HLA-I alleles. Finally, to test our hypothesis further on clinically relevant gene fusions, 

our aim was to select a few candidates for computational (clustering, 3D modeling) as well as in-

vitro peptide-HLA-I binding, after applying FCR on 1) a published fusion panel of gene fusions 

found in pediatric patients and 2) a recurrent gene fusion (CBFA2T3-GLIS2) with an unfavorable 

prognosis identified in a cell line (M0E7 cell line). 

  

 

 

 



 49 

Chapter 2: Published Article 

Title : RHybridFinder: An R Package to Process Immunopeptidomic Data 

for Putative Hybrid Peptide Discovery 

Authors 

Frederic Saab1,5, David J. Hamelin1, Qing Ma4, Kevin Kovalchik1, Isabelle Sirois1, Pouya Faridi2, 

Chen Li2, Anthony Purcell2, Peter Kubiniok1,5*, Etienne Caron1,3,6* 

Affiliations 
1CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada 

2Infection and Immunity Program and Department of Biochemistry and Molecular Biology, 

Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia 

3Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC 

H3T 1J4, Canada 

4School of Electrical Engineering and Computer Science, Faculty of Engineering, University of 

Ottawa, ON K1N 6N5, Canada 

5Technical Contact 

6Lead Contact 

*Correspondence: Peter Kubiniok and Etienne Caron. 

Author Contributions 
F.S. & P.K.: R code, conceptualization & authorship, Q.M., D.H., K.K., I.S : validation & conceptualization, 

P.F., C.L., A.P. :conceptualization, authors of the original workflow, E.C.: Conceptualization & authorship 



 50  

 

Figure 11. –  RHybridFinder graphical abstract. 

2.1. Abstract 
The identification of proteasomal spliced peptides (PSPs) in mass spectrometry (MS) data is not 

straightforward since PSP sequences do not fully reflect the same sequence as the parent protein. 

RHybridFinder sequentially searches in candidate spectral sequences for linear cis- and trans- potential 

matches in the proteome from PEAKS results. Here, we provide a protocol for running RHybridFinder for 
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MS-based identification of PSPs, built using R and parallel computing in order to compute the results in an 

efficient manner.  

For complete details on the use and execution of this protocol, please refer to Faridi et al. (2018). 

 

2.2. Before You Begin 
The proteasome is recognized as the core enzymatic machinery of the antigen processing and 

presentation pathway wherein peptides derived from proteasomal proteolysis are selectively 

presented on the cell surface by MHC (Major Histocompatibility Complex)-I molecules (Neefjes et 

al., 2011). Following Hanada’s (2004) groundbreaking discovery of a FGF-5 (Fibroblast Growth 

Factor-5)-derived proteasomally-spliced peptide from a renal cancer patient (Hanada et al., 

2004), other research groups have been able to uncover additional spliced peptides presented by 

MHC class I molecules, referred in this protocol as proteasomal spliced peptides (PSPs) (Dalet et 

al., 2011; Ebstein et al., 2016; Michaux et al., 2014; Vigneron et al., 2004; Berkers et al., 2015). 

More recently, MS-based immunopeptidomics has been used to expedite their identification in a 

systematic manner, including cis- and trans-spliced peptides (Liepe et al., 2010; Berkers et al., 

2015; Liepe et al., 2016; Faridi et al., 2018; Rolfs et al., 2019; Specht et al., 2020). However, MS-

based studies using different approaches have led to a debate around the proportion of these 

PSPs in the MHC class I immunopeptidome (Liepe et al. 2016; Mylonas et al., 2018; Lichti, 2021; 

Willhelm et al., 2021).  

Here, we provide an open access and improved R package built upon the computational workflow 

developed by Faridi et al. (2018) for the analysis of MS data to systematically identify putative 

PSPs (Faridi et al., 2020). Importantly, we do wish to emphasize throughout this protocol that 

while RHybridFinder enables the identification of putative PSPs, we do not claim that it can 

identify high-confidence PSPs that are genuinely spliced by the proteasome in vivo. Therefore, 

PSPs obtained using this protocol should then be experimentally validated using rigorous 

biochemical and immunological assays (Figure 12). 
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Figure 12. –  Overview of suggested workflow for the discovery of PSPs. 

We propose a four-step workflow for the identification of PSPs. The first three steps (blue squares: sample 
preparation, MS data acquisition and RHbridFinder enable computational exploration of putative PSPs 
followed by experimental validations (green square). A non-exhaustive list of possible experiments is shown 
for validating/gaining confidence in the identification of MHC-I peptides that are genuinely catalyzed by 
proteasomal splicing. 

In order to facilitate and optimize how the protocol would be run, we propose a folder structure 

as shown in Figure 13. 

 

Figure 13. –  Recommended folder structure. 

The parent folder includes two child folders. The child folders include the various files that are necessary for running RHybridFinder. 
The dotted line (second_run) indicates that the DB search psm.csv file is added after the second DB search. 

RHybridFinder is available on CRAN (https://cran.r-project.org/package=RHybridFinder) to 

enable more researchers to explore those debated peptides. 
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2.2.1. Data collection 

For demonstration of the output of the different RHybridFinder functions, we have used datasets 

from the HLA Ligand Atlas (Marcu et al., 2021) deposited in PRIDE (Proteomics IDentification 

Database) PXD019643.  

1. Download the following mzML files and analyzed them in PEAKS:  
171002_AM_AUT01-DN17_Liver_W6-32_10%_DDA_3_400-650mz_msms4, 

171002_AM_AUT01-DN17_Liver_W6-32_10%_DDA_3_400-650mz_msms5, 

171002_AM_AUT01-DN17_Liver_W6-32_10%_DDA_3_400-650mz_msms6. 

2.2.2. Analyze these files in PEAKS Installing Rstudio/R 

RHybridFinder package has been developed in RStudio (Rstudio Team, 2020) and implemented in 

R (R Core Team, 2017) programming language.  

2. Download & install Rstudio if not already installed: 

(https://www.rstudio.com/products/rstudio/download/). 

 

2.2.3. Installing and loading RHybridFinder 

Below are the lines needed to install the RHybridFinder package from CRAN (the Comprehensive 

R Archive Network) and then load it. 

 

2.2.3.1. Install and load RHybridFinder by typing “install.packages(“RHybridFinder”) in the R 

console. 
> install.packages(“RHybridFinder“) 

2.2.3.2. Load RhybridFinder by typing “library(RHybridFinder)” in the R console 
> library(RHybridFinder) 
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CRITICAL: if you copy the lines of code from here, keep in mind that you might have to re-write 

the quotation marks yourself. 

2.3. Step-by-step method details 

 

2.3.1. Step 1: Load inputs into R  

Timing: 1 minute 

 
Before running HybridFinder, the inputs need to be loaded into R. We propose the following way 
of loading the files into R in order to facilitate the process 
 

10. Create an object (folder_Exp1) for the path to the parent folder (Mel_Exp1) (but both can be 

named otherwise). 
> folder_Exp1 <- file.path(“/Users/YOURUSERNAME/Desktop/Mel_Exp1”) 

 

11. Import the de novo sequencing as well as the database results, both of which are located in 

the first_run child folder. 

a. de novo sequencing results file 
> denovo_Exp1 <- read.csv(file = file.path(folder_Exp1, “first_run”, 
"all_denovo_candidates.csv"), header=TRUE, sep=",", stringsAsFactors = FALSE) 

b. database search results file 
> db_search_Exp1<- read.csv (file=file.path(folder_Exp1, “first_run”,“DB 
seach psm.csv”), header=TRUE, sep=“,”, stringsAsFactors=FALSE) 

 

12. Create an object for the path to the proteome file, located in the parent folder (folder_Exp1) 

(see refproteome_Exp1, in the example below). The fasta proteome will be imported in R 

during the HybridFinder function. 
> refproteome_Exp1 <- file.path(folder_Exp1, “uniprothuman-20379entries-
Nov2019_validated.fasta”) 
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CRITICAL: Please note that if you copy the file access path (in windows), you will need to switch 

the backslash (“\”) to a normal slash ( “/”).   

Access the datasets included in the R package: The RHybridFinder package also includes 

demonstration datasets from the HLA Ligand Atlas that have already been analyzed in PEAKS. 

These datasets include PEAKS de novo sequencing results and PEAKS database search results.  

 

Note: that due to size constraints the proteome database (.fasta) file is not included in the 

package. It can be downloaded from the Uniprot database.  

 

Note: In the environment tab, the denovo_Human_Liver_AUTD17 and db_Human_Liver_AUTD17 

should appear. Note that if you see <promise>, after clicking on the objects, the data would 

appear. 

 

2.3.2. Step 2: Run HybridFinder  

Timing: 2-5 minutes (with parallelism, 8 cores) - 10-15 minutes (without parallelism) 

 

In order to have a relatively short runtime, we have implemented an option to use parallel 

computing. However, please note that because parallel computing requires a certain amount of 

processing units for proper functioning, it has been made possible to also run HybridFinder 

without parallel computing.  

# access denovo dataset 

> data(package= “RHybridFinder”, “denovo_Human_Liver_AUTD17”) 

# access database search dataset 

> data(package=”RHybridFinder”, “db_Human_Liver_AUTD17”) 
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Based on default parameters in the HybridFinder function, the “all de novo candidates.csv” file 

contains 16,286 peptide sequences and the runtime (parallelism with 8 cores) is of 2 minutes 17 

seconds. ~5 minutes are required for double the number of peptides. Without parallelism, the 

runtime ranged between 10 and 15 minutes for 16,286 peptide sequences.  

 

13. Run Hybridfinder (Please refer to table 1 in order to know more about the inputs needed) 
and export the results in the parent folder.  

 
> HybridFinder_results_Exp1<- HybridFinder(denovo_candidates = denovo_Exp1, db_search 
= db_search_Exp1, proteome_db = refproteome_Exp1,customALCcutoff = NULL, 
with_parallel=TRUE, customCores = 8, export_files= TRUE, export_dir = folder_Exp1) 

 

CRITICAL: if you use the datasets included in the package, please note that they are named 

differently so for instance the “denovo_candidates” and “db_search” parameters should be set 

to the datasets loaded from the package: denovo_Human_Liver_AUTD17 and 

db_Human_Liver_AUTD17, respectively. 

 

CRITICAL: Make sure to store the HybridFinder results in an object (i.e 

HybridFinder_results_Exp1), as the HybridFinder output dataframe will come in handy in the 

second function. 

Note: At the end of the hybrid proteome will be the concatenated hybrid fake proteins with the 

name pattern ‘sp|denovo_HF_fake_protein_[#]’.  

Parameter Description Default value 

de novo_candidates 

the dataframe containing 

the de novo sequencing 

results 

No defaults. Necessary 

input. 

db_search 
the data frame containing 

the database search results 

No defaults. Necessary 

input. 
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db_search 
the data frame containing 

the database search results 

No defaults. Necessary 

input. 

proteome_db 

the file path to the 

proteome used for the 

database search 

No defaults. Necessary 

input. 

(Optional) customALCcutoff 

A custom score cutoff that 

can be set by the user as 

long as it would be at least 

85 

NULL. (ALC cutoff 

calculated automatically as 

median of matching 

peptide sequences of 

assigned spectra). If set 

manually, minimum is 85. 

with_parallel : boolean 

(True or False) 

representing whether 

parallel computing should 

be employed for running 

the function. 

TRUE 

(Optional) customCores 

If with_parallel is set to 

TRUE and the PC has >5 

cores, the user can set a 

custom amount of cores to 

be used by the function. 

6 

(Optional) export_files : 

boolean (True or False) 

by default it is set to False, 

however, if set to True, then 

the following input is 

essential. 

FALSE 

(Optional) export_dir 

file path to the directory 

where the output files 

should be stored. This 

parameter is necessary for 

the export. 

NULL 
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Tableau 2. –  HybridFinder function parameters 

Note: with_parallel is activated if set to true and if the PC has more than 5 cores.  

CRITICAL: Please ensure to have a minimal number of other windows open and to save any work 

in other softwares prior to using HybridFinder with parallelism.   

The function will output a list (Figure 14) containing: (1) the HybridFinder output containing all 

the denovo peptides along with their potential splice type explanation cis-/trans-, (2) a list of the 

step1 hybrid candidate peptides, (3) the hybrid proteome (merged proteome: the original user 

proteome along with the hybrid proteome composed of the concatenated candidate hybrid 

peptide sequences).  

 

Figure 14. –  Screenshot of the HybridFinder function results 

In the results list you will find 3 items: 1) a dataframe containing the HybridFinder output. 2) a character vector containing the 
candidate spliced peptides. 3) a list which is in a seqinr class (Charif et al., 2007) containing the merged hybrid proteome. 

Note: In the example above, export_files have been set to TRUE and the export_dir has been 

defined which means that the files are also automatically exported. If these two parameters were 

not specified or were set to FALSE & NULL, the results are only stored in the 

Exp1_HybridFinder_results. In this case, you can still use “export_HybridFinder_results” as in the 

code below, where HybridFinder_results_Exp1 is the object created above for the storage of 

HybridFinder results. 

> export_HybridFinder_results(HybridFinder_results_Exp1, export_dir= folder_Exp1) 

 

Pause Point: If you would like to conduct the rest of the protocol at a later time, either use the export 

functionality and then load the hybridfinder output in order to use it for the second step. Alternatively, 

save the objects in R in a .rda file as follows and once you want to use it again for the step 4, load 

checknetMHCpan inputs into R. 
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> save (HybridFinder_results_Exp1, file=file.path(folder_Exp1, 

”HybridFinder_results_Exp1.rda”) 

>load (file.path(folder_Exp1, ”HybridFinder_results_Exp1.rda”)) 

2.3.3. Step 3: Database search using hybrid Fasta  

Timing: 1 hour  

An essential interim step must follow the HybridFinder function and consists of running a 

database search in PEAKS with the merged proteome. Importantly, now that a merged hybrid 

proteome has been obtained from the hybridfinder function, it can be used to obtain potential 

PSPs whose quality is comparable with all other database search peptides while filtering all 

peptides at the same FDR (False Discovery Rate) cutoff which can be adjusted by the users in 

PEAKS. In the original workflow by Faridi et al. (2018), the database search peptides in both runs 

were filtered in PEAKS at a 1% FDR. 

 

14. Perform a database search in PEAKS using the original raw MS file (while using the same 
settings as in the beginning) however, this time while using the merged hybrid proteome 
(.fasta) file generated with the HybridFinder function. 

 

2.3.4. Step 4: Load checknetMHCpan inputs into R  

Timing: 1 minute 

 

Prior to running checknetMHCpan, please ensure that netMHCpan (versions 4.0 or 4.1) is 

installed. checknetMHCpan is the last step of the hybrid finder workflow, the function uses the 

database search results from the second PEAKS analysis and provides the binding affinity results 

of all the peptides along with their categorizations. 

15. Create an object for the location of the netMHCpan executable 
> netmhcpan_dir <- file.path(“/usr/local/bin”) 
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16. Create an object (vector) for storing the HLA-I alleles that you would like to have binding 
affinity predictions for. 

> alleles_Exp1 <- c(“HLA-A*02:01”, “HLA-A*03:01”, “HLA-B*07:02”) 

 

17. Retrieve the hybridfinder output from the HybridFinder function results 
> HF_output_Exp1 <- HybridFinder_results_Exp1[[1]] 

 

18. Import the database search results (from step 3: Database search using hybrid fasta) 
> rerun_db_search_Exp1 <- read.csv(file.path(folder_Exp1, “second_run”, “DB search 
psm.csv”), sep=“,”, head = TRUE, stringsAsFactors = FALSE) 

 

Note: in case your computer’s OS is “Windows” (netMHCpan is not compatible with Windows) 

the web version of netMHCpan (http://www.cbs.dtu.dk/services/NetMHCpan-

4.1/instructions.php) would come in handy. In this case, we propose to use a separate function 

from this package instead (step2_wo_netmhcpan) which outputs a netMHCpan-ready input of 

sequences in .pep format. 

Access the datasets included in the R package: The demonstration datasets from the HLA Ligand 

Atlas included in this package also include datasets for the 

checknetMHCpan/step2_wo_netMHCpan functions. After having run the HybridFinder function 

and stored the results in HyrbidFinder_results_Exp1, PEAKS was run using the merged hybrid 

proteome. Below is a way to retrieve the second PEAKS run dataset included in the package: 

> data(package= “RHybridFinder”, “db_rerun_Human_Liver_AUTD17”) 

Note: The merged proteome used for the second database search is based on the customALCcutoff 

being set to NULL (default parameter value).  

CRITICAL: The merged proteome database would change between different samples, and if the 

customALCcutoff parameter is changed. The same merged hybrid proteome cannot be used for 

separate analyses. 
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2.3.5. Step 5: Run checknetMHCpan 

Timing: ~ 1 minute 

 

The checknetMHCpan function embodies the second major step of the workflow. The 

categorizations of the hybrid peptides from the hybridfinder output are retrieved for matched 

peptides found in the second PEAKS database results. Then, peptide-MHC class I binding 

predictions for the entire database search results (for peptides between 9 and 12 amino acids) 

are computed using netMHCpan and are tidied in order to summarize the results. 

19. Run checknetMHCpan using the code below (Please refer to table 2 in order to know more 
about the inputs needed) and export the results in the same folder: 

> checknetMHCpan_results_Exp1 <- checknetMHCpan(netmhcpan_directory = netmhcpan_dir, 
netmhcpan_alleles = alleles_Exp1, peptide_rerun = rerun_db_search_Exp1, 
HF_step1_output  = HF_output_Exp1, export_files= TRUE, export_dir = folder_Exp1) 

 

Note: checknetMHCpan is compatible with the exports from both netMHCpan 4.0 & netMHCpan 

4.1. 

CRITICAL: if you use the datasets included in the package, please note that they are named 

differently so for instance the “peptide_rerun” parameter should be set to dataset loaded from 

the package db_rerun_Human_Liver_AUTD17. 

After running the code above, a results list should be returned (Figure 15). 

 

Figure 15. –  Screenshot of the checknetMHCpan results list. 

In the results list you will find 3 items: 1) a dataframe containing the netMHCpan results. 2) a dataframe containing the tidied 
netMHCpan results. 3) the database search results with the “Potential_spliceType” for the hybrid peptides retrieved from step1. 
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Table 2. checknetMHCpan function parameters 

Parameter Description Default value 

netmhcpan_directory 

the directory where 

netMHCpan is installed (i.e 

‘/usr/bin’ or ‘/usr/local/bin’, 

depending on where you 

have it installed) 

No defaults. Necessary input. 

netmhcpan_alleles 

a vector composed of the 

alleles the peptides will be 

tested against.  

No defaults. Necessary input. 

peptide_rerun 
the database search results 

from the second peaks run 
No defaults. Necessary input. 

HF_step1_output 

the data frame from the 

HybridFinder function of the 

containing the spliced 

peptide potential 

explanations as well as RT, 

m/z, ALC, Scan & Fraction 

No defaults. Necessary input. 

(Optional) export_files : 

boolean (True or False) 

by default it is set to False, 

however, if set to True, then 

the following input is 

essential. 

FALSE 

(Optional) export_dir 

file path to the directory 

where the output files should 

be stored. This parameter is 

necessary for the export. 

NULL 

 

These results are also exportable with the export_checknetMHCpan_results function. 
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> export_checknetMHCpan_results(step2_RHF_results_Exp1 , export_dir = folder_Exp1) 

 

Note: If you intend on using the web version of netMHCpan (especially useful for windows OS 

users) or another software for peptide binding affinity, the step2_wo_netMHCpan function does 

the same as checknetMHCpan but without running netMHCpan. The function should return a list 

(Figure 16) containing the updated database search results as well as a list of the peptides which 

can be used as input in the web version of netMHCpan. 

 

Figure 16. –  Screenshot of the step2_wo_netMHCpan results list. 

In the results list you will find 2 items: 1) a character vector containing the netMHCpan-ready input. 2) the database search results 
with the “Potential_spliceType” for the hybrid peptides retrieved from step1. 

Expected Outcomes 
 

HybridFinder 
 

The HybridFinder function follows the same rationale as indicated in Faridi et al. (2018). After 

high-confidence de novo peptides are extracted, these are searched sequentially for an exact hit, 

followed by a search of pair fragments within one protein and then within two proteins (Figure 

17). Finally, the sequences of all hybrid peptides are concatenated to create fake proteins, which 

are added at the bottom of the proteome database in order to constitute a merged hybrid 

proteome. 
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Figure 17. –  HybridFinder function. 

HybridFinder extracts high confidence de novo peptides by using a ALC cutoff based on the median ALC of common spectrum 
groups & sequence of peptides between the de novo and the database search. The ALC cutoff is used to filter unassigned de novo 
spectrum groups in order to obtain high confidence de novo spectra. All sequences are then searched in the proteome for the entire 
sequence, those that match are filtered and considered “Linear”, the remainder of the peptide spectrum groups are “cut” in order 
to create peptide fragment combinations. These are then searched in the proteome for whether fragment combinations exist 
within a same protein, matches are considered as cis-spliced and further filtered. Finally, fragment combinations are created from 
those that didn’t match in the previous step and are searched whether they exist in two proteins. If there is a match, these are 
considered as trans-spliced peptides. The remaining uncategorized spectrum groups are considered not to have a biological 
explanation (NBE) and are therefore discarded. 

 

Typically, when the HybridFinder function is run, 3 messages are printed representing each major 

stage of the algorithm and finally ‘Done!’ is printed once the processing is finished. The function 

returns a list containing 3 items: the hybridfinder output (Figure 18) where the predicted splice 

type is displayed, a character vector containing only the list of hybrid candidates (Figure 19) and 

finally the merged hybrid proteome (Figure 20) where the hybrid peptide candidates have been 

concatenated as fake proteins.  
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Figure 18. –  Screenshot of the HybridFinder output dataframe (5 rows) 

The Fraction column represents the LC-MS run, the Scan column is a number representing a unique index for the tandem mass 
spectra (F[Fraction#]:Scan#), m/z is the precursor mass-to-charge ratio, RT is the Retention Time (elution time) for the spectrum, 
Peptide corresponds to the peptide sequences. The Length column represents the number of amino acids for a given peptide, ALC 
(Average Local Confidence), is a score calculated in PEAKS as the total of the residue local confidence scores in the peptide divided 
by the peptide length. These columns are not provided by the HybridFinder function, they are columns found in any PEAKS de novo 
sequencing export.  For more information, please visit the PEAKS user manual. The Potential_spliceType corresponds to the 
resulting categorization from the HybridFinder function. Finally, the proteome_database_used is the filename of the fasta 
proteome provided by the user (this column is mainly for helping the user keep track of the proteome used) in the HybridFinder 
function. 

 

Figure 19. –  Screenshot of the HybridFinder hybrid peptide candidates vector (5 rows) 

 

Figure 20. –  Screenshot of the bottom of the HybridFinder merged hybrid proteome (5 proteins) 

The results might differ if the customALCcutoff score parameter is changed. If the results are 

exported, these are stored in a folder as .csv files and the merged proteome database is saved as 

.fasta file. The peptide sequences predicted as spliced are considered as preliminary candidates. 

Performing the rest of the steps is essential in order to obtain the final list. 
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checknetMHCpan & step2_wo_netMHCpan 

The checknetMHCpan & step2_wo_netMHCpan functions represent the last step in Faridi et al.’s 

(2018) workflow. After a database search is performed using the merged hybrid proteome in step 

1, these two functions can be used. Both of these functions retrieve the potential splice type 

categorization established in step 1. However, with checknetMHCpan the user can directly obtain 

MHC-I binding affinity predictions computed for all peptides between 9 and 12 amino acids using 

netMHCpan (Jurtz et al., 2017; Reynisson et al., 2020).  

The checknetMHCpan function returns two formats of the netMHCpan results and the updated 

database search results from the second run with the potential splice type. The first format of the 

netMHCpan represents the results as they are (Figure 21). The second format is a tidied version 

of the netMHCpan results (Figure 22), where the rows are summarized into different columns, to 

allow quick analysis of the netMHCpan results (especially when more than one HLA-I allele is 

used); in these columns are summed the number of HLA-I alleles that a given peptide is a strong 

or weak binder to as well as the corresponding alleles. Finally, the database search results 

dataframe (from the second PEAKS run) updated with the potential splice type determined in the 

HybridFinder function for each peptide (Figure 23). Additionally, any sequence not identified in 

the hybridfinder output and solely attributed to the fake proteins created is removed. If exported, 

these are stored in a folder containing 2 .csv files and a .tsv (tab-separated values) corresponding 

to these different outputs.  

 

Figure 21. –  Screenshot of the checknetMHCpan netMHCpan results. (5 rows) 

HLA/MHC is the allele, Peptide is the amino acid sequence of the potential ligand, Core is the minimal 9 amino acid sequence core 
to enable HLA binding, Of is the starting position of the Core within the peptide, Gp and Gl are the position and the length of the 
deletions (respectively), if any.  Ip and Il are the position and the length of the insertions (respectively), if any. Icore is the interaction 
core, Identity is PEPLIST (which indicates that peptides were used as input as opposed to proteins in fasta-format). Score is the raw 
prediction, Aff(nM) is the predicted IC50 value in nanoMolar units, %Rank is the percentile rank of the predicted affinity compared 
to a set of random natural ligands. BindLevel is designated by 3 qualifiers: Strong binder, Weak binder, None binder. 
Potential_spliceType is the categorization retrieved from the HybridFinder output on the potential splice type explanation of the 
peptide (i.e linear, cis, trans). 
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Figure 22. –  Screenshot of the checknetMHCpan tidied netMHCpan results (5 rows) 

Peptide is the amino acid sequence of the potential ligand, the strongBinder, weakBinder, noneBinder (this column not shown in 
this figure) columns correspond to the alleles to which a given peptide is a strong/weak/none binder to, respectively. If more than 
one allele, these are separated by commas. For each peptide, there will be %Rank columns per allele (eg. If 3 alleles were specified 
in the checknetMHCpan command, then each peptide will have 3%Rank columns). strongBinder_count, weakBinder_count, 
noneBinder_count represent the number of alleles to which a peptide is a strong/weak/none binder to. Lastly, the 
Potential_spliceType column is the categorization retrieved from the HybridFinder output on the potential splice type explanation 
of the peptide (i.e linear, cis, trans). 

 

 

Figure 23. –  Screenshot of the checknetMHCpan database search results updated with the 

Potential_spliceType column (5 rows) 

Peptide is the amino acid sequence of the potential ligand, X.log10P represents the best -10logP identification score for the 
corresponding peptide. Mass represents the monoisotopic mass of the peptide, Length is the number of amino acid residues that 
constitute the given peptide, ppm is the precursor mass error, the m.z is the precursor mass-to-charge ratio, Z is the precursor 
charge, RT is the Retention Time (elution time) for the spectrum, Area represents the area underthe curve of the peptide feature 
found at the same m/z and retention time as the MS/MS scan, Fraction is the LC-MS run, id represents the precursor ID associated 
with the PSM, Scan is a number representing a unique index for tandem mass spectra (F[Fraction#]:Scan#), from.Chimera (this 
column is not shown in this figure) displays whether the identified peptide is from chimeric spectra, Source.File is the mzML/mzXML 
file used in the PEAKS analysis, PTM is the type of the post-translational modification, Ascore is the localization score assigned to 
modifications on the peptide, Found.By represents the analysis (in this case PEAKS DB). Peptide_no_mods represents the peptide 
sequence without modifications, Potential_spliceType is linear, cis or trans and is retrieved from the HybridFinder function. 

 

The step2_wo_netMHCpan is the equivalent of checknetMHCpan with the exception of 

computing binding affinity. The function returns a netMHCpan-ready list of peptides (Figure 24), 

as well as the updated the database search results (Figure 25). If exported, the results are 

exported into a folder containing a .pep file and a .csv file.  
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Figure 24. –  Screenshot of the step2_wo_netMHCpan netMHCpan-ready input (5 rows) 

 

 

Figure 25. –  Screenshot of the checknetMHCpan database search results updated with the 

Potential_spliceType column. (5 rows) 

The dataframe contains the same columns as in Figure 13. 

 

After running checknetMHCpan or step2_wo_netMHCpan the final list of hybrid candidate 

peptides should be explored for further experimental validation (Figure 9). 

Limitations 

 

The presented package was developed and optimized for exports from PEAKS software. 

Therefore, results from other search engines or de novo sequencing softwares might not work 

while using this package. Limitations related to the workflow include the possible introduction of 

bias towards having results containing a higher proportion of Leucine residues. This is due to the 

workaround proposed by Faridi et al. (2018) which is also used in this package, entailing a switch 

of all Isoleucines to Leucines in the database search and the proteome since de novo sequencing 

does not differentiate between Isoleucine and leucine.  As mentioned above, it is also important 

to emphasize that this protocol does not enable the direct identification of high-confidence PSPs 
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that are genuinely spliced by the proteasome in vivo. However, this protocol enables the 

computational identification of putative PSPs, which should then be validated experimentally in 

a rigorous manner as shown in Figure 9. 

Troubleshooting 

	

Problem 1:  

While installing the .tar.gz file for the package, in case you run into the following error: ”Error in 

install.packages : type == ”both” cannot be used with ’repos = NULL’”  

Potential Solution: 

The solution would be to simply invoke the install.packages function while specifying where the 

package is located, setting the repository (repos) to NULL and setting the type as source (source 

package). 

> install.packages("~/Downloads/RHybridFinder_0.1.0.tar", repos = NULL, Type="source") 

	

Problem 2:  

While running HybridFinder, in case you run into the following error: ”Error in 

prepare_input_for_HF(de novo_candidates, db_search): Please make sure you have the right 

input. N.B: The de novo results data frame should be the first input”. 

Potential Solution: 

• Verify the de novo data frame has been correctly imported. Since the de novo 

results file is in .csv format, the separator should be a comma “,”, stringsAsFactors 

should be set to FALSE and lastly the header should be set to TRUE. Please refer to 

step1: Loading inputs into R. 

• Verify that the HybridFinder parameters are properly typed. The de novo 

sequencing results data frame is indicated first and then the database search 
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results. Alternatively, write the parameters and assigned them their appropriate 

objects (i.e de novo_candidates = de novo_results_human_liver_Exp1). Please 

refer to step2: Run HybridFinder. 

Problem 3:  

While running HybridFinder, in case you run into the following error: ”Error in $<-

.dataframe`(`*tmp`, “db_id”, value = character ( 0 ) ) : replacement has 0 rows, data has[…]” 

Potential Solution: 

Verify the database search data frame, make sure it has been correctly imported. Since the 

database search results file is in .csv format the separator should be a comma “,”, stringsAsFactors 

should be set to FALSE and lastly the header should be set to TRUE. Please refer to step1: Loading 

inputs into R. 

Problem 4:  

While running checknetMHCpan, if the following error is displayed: ”Error in 

checknetMHCpan[…]:Please provide the proper input” 

Potential Solution: 

Verify the that the de novo and database search data frames are not switched. Please refer to 

step 5: Run checknetMHCpan. 

Problem 5:  

While running checknetMHCpan, if the following error is displayed: ”Please check the input 

alleles: […]” 

Potential Solution: 

Ensure that the alleles are in the right format, or that the allele is written correctly (i.e HLA-

A03:01, HLA-A*03:01). Please refer to step 4: Load checknetMHCpan inputs into R. 
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Problem 6: 

While running checknetMHCpan, if the path to netMHCpan is not correct, the following error 

might appear: sh: 1: [/temporary directory/netMHCpan]: not found error in running command 

Potential Solution: 

The issue could either be that the directory does not contains the netMHCpan file or that the 

directory was not well written I.e(‘usr/bin/' vs. ‘/usr/bin’ or ‘/usr/bin/, where the first example is 

wrong and the other two are correct). Please refer to step 4: Load checknetMHCpan inputs into 

R 

Resource Availability 

Lead Contact 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 

Contact, Etienne Caron etienne.caron@umontreal.ca. 

Materials Availability 

This study did not generate new unique reagents. 

Data and Code Availability 

The package is available on CRAN and includes data (PEAKS analyses) from HLA Ligand Atlas (Marcu et al., 

2021) deposited in PRIDE (Proteomics IDentification Database) PXD019643 (were analyzed in 

PEAKS and used in this protocol for demonstration purposes only).	
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Chapter 3: Materials and methods 

Next generation sequencing as well as the development of various bio-informatic tools, 

annotation datasets, etc. have tremendously advanced the identification of gene fusions, 

especially on the genomic level. On the immunopeptidomic level, gene fusion-derived peptides 

are a promising class of tumour specific neoantigens. It is possible to identify immunologically 

relevant peptides derived from a chimaeric protein given the predicted polypeptide sequence, as 

well as assess the heterogeneity of the HLA-I binding of these gene fusion-derived peptides. 

3.1. Develop FusionChoppeR 

In order to investigate the antigenic potential of gene fusions, we have developed 

FusionChoppeR. FusionChoppeR allows the prediction of potential HLA-I peptides (peptides of 8-

12 amino acids) derived from gene fusion proteins (spanning the junction region exclusively) by 

predicting HLA-I binding affinity of fusion junction peptides against 35 HLA-I alleles (Fig. 27) 

covering all the groups (or supertypes) (Annex Table1).  

3.1.1. In silico peptide-HLA-I binding predictions 

In order to predict peptide-HLA-I binding, two algorithms were used: netMHCpan and MHCflurry 

(Fig. 26). While netMHCpan is often used in the immunopeptidomic community, the last 

benchmark performed of peptide-MHC-I prediction algorithm has shown the powerful 

performance of mhcflurry (Zhao and Sher, 2018). NetMHCpan is modeled through an artificial 

neural Network (ANN) and uses the NNAlign_MA algorithm in order to establish the peptide-

MHCI binding specificities from the integration of single-and multi-allele data(Alvarez et al., 

2019). On the other hand, MHCflurry has been trained through a two-step process: an allele-

dependent and an allele-independent one. The allele-dependent step predicts the binding affinity 

of peptide-MHC-I through a neural network ensemble. Then, a predictor trained to distinguish 

between hits and decoy peptides in MS data and is meant to determine cleavability (especially if 

N- and C-terminal flanks are provided). Finally, a logistic regression model is trained on the 

outputs from both steps and generates a presentation score between 0 and 1(O’Donnell et al., 
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2020). In conclusion, the utilization of peptide-MHC-I predictions from both of these tools could 

boost confidence in the predictions obtained. 

 

Figure 26. –  Architectural structure of MHCflurry and netMHCpan. 

Panel A represents the architecture of MHCflurry. Figure adapted from (O’Donnell et al., 2020). Panel B represents netMCpan 
architecture. Figure adapted from (Jurtz et al., 2017) 

3.1.2. Prioritization of gene fusion-derived neoantigens 

NetMHCpan and MHCflurry generate a percentile rank that corresponds to a value between 0 

and 100. This corresponds to the rank of the predicted binding score compared to a set of random 

natural peptides The developers of netMHCpan suggest a percentile rank threshold of 0.5, to 

identify strong peptide-MHC-I binders and 2.0 for weak binders. Integrate-Neo which utilizes 

netMHCpan applies a stringent threshold of 0.5 to select peptide-MHC-I binders (Zhang et al., 

2017). By applying a low threshold (such as 0.5), it is inevitable that there will be potential false 

negatives (which would lead to missing out on potential binders) and in turn, by increasing the 

threshold the introduction of false positives is also inevitable (Annex Table 3). Therefore, 

FusionChoppeR sets a threshold of 2.0. However, it applies it while integrating the results of two 

peptide-MHC-I binding prediction tools: netMHCpan and MHCflurry. Thus, peptide-MHC-I pairs 

are considered by FusionChoppeR (FCR) if they have a percentile rank less or equal to 2.0 by both 

tools. This ensures to balance out the false predictions while boosting confidence in the predicted 

binders. 

 

3.1.2.1. General scores 
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To compare and select peptides based on their predicted binding of HLA-I alleles, we have 

calculated 2 scores:   

- Strong binder ratio: each peptide-MHCI is predicted by both algorithms, which means that 

based on the percentile threshold (see equation below & Annex Table 4, SBO: Strong 

binder by at least One algorithm, SB: Strong Binder, WB: Weak Binder) generated by each 

of the algorithms an assignment “SB”, ‘WB” is obtained. Since we only consider a peptide 

as binder to an HLA allele if it got a percentile by both algorithms that does not exceed 

2.0, the results can be summarized in 3 different scenarios: 1) either both algorithms agree 

that a peptide is SB to the HLA, or 2) only one of them, or 3) both algorithms agree that a 

peptide is WB.  

 

𝑆𝐵𝑟𝑎𝑡𝑖𝑜 = 		
∑SBO

∑𝑆𝐵 + ∑𝑊𝐵 

 

- Local Contribution to Beta Diversity (LCBD). Considering the multivariate nature of the 

analysis, the LCBD was employed to detect the peptides derived from a fusion that create 

heterogeneity in the HLA-I molecules predicted to be bound. LCBD is defined in ecological 

terms as the contribution of a site to the beta diversity (Borcard et al., 2018). Beta diversity 

was originally developed to assess diversity while working with multivariate data (as 

ecological data usually are, for example assessing the compositional diversity in species 

across sites and the contribution of different sites to it). In the case of gene fusions, 

because from each gene fusion we generate 45 peptides and evaluate the binding 

potential of each one of these to various HLA-I alleles, we obtain a matrix of 45 rows by 

35 columns, where the ‘sites’ are the junction peptides and the species (columns) is the 

set of HLA-I alleles.  In a given matrix where i is a given row, j is a given column, p is the 

total number of columns and n is the total number of sites:   

𝐿𝐶𝐵𝐷! =
𝑆𝑆!

𝑆𝑆"#"$%
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Where SSi is the total sum of squares of the row i (sum of the centred and squared values 

for row i),  

𝑆𝑆! =3 𝑠!&
'

&()
 

And the SStotal is total sum of squares of the entire matrix 

𝑆𝑆"#"$% =3 𝑆𝑆!
*

!()
 

 

The LCBD value is calculated with the package adespatial (Dray et al., 2012), permutation 

tests followed by adjustment of p value. The null hypothesis of the permutation tests 

posits that the abundance is preserved and that the species are distributed at random. 

Therefore, a p adjusted <0.05 (assuming a 95% probability of non-randomness) leads to 

the rejection of the above-mentioned null hypothesis. 

 

 

3.1.2.2. Score for the extraction of the richest non-diverse peptide 

The extraction of the richest non-diverse peptide for section 4.3.2 was based on the proportion 

of categorizations for all HLAs for each peptide by both algorithms (SBO) multiplied by the number 

of supertypes predicted to cover. This score is meant to give a relative quality of the peptide in 

binding all the alleles. (BNDP, Best non-diverse peptide) 

𝐵𝑁𝐷𝑃 = 	𝑆𝐵𝑂 ∗ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠_𝑐𝑜𝑣𝑒𝑟𝑒𝑑 
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3.1.3. FusionChoppeR workflow 

 

Figure 27. –  The workflow of FusionChoppeR. 

A fusion protein sequence is ‘chopped up’ into 45 peptides of 8 to 12 amino acids spanning the junction region. Then, MHC-I binding 
predictions are computed on pairs of each of these peptides with 35 of the most common HLA-I alleles. Applying a common 
threshold on both algorithms, if both algorithms agree that a peptide would bind an HLA-I molecule, the peptide-HLA pair makes 
it to the next step. Finally, prioritization is applied to determine the best candidate(s), their population coverage for different 
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populations is computed, and the appropriate motifs from MS experiments are shown to aid with validation (Sarkizova et al., 
2020a) 

3.1. Database of gene fusions in cancer cell lines 

With the purpose of understanding whether gene fusion-derived peptides would be predicted 

bind multiple HLA-I alleles, we aimed to apply FCR on a large set of gene fusions. We decided to 

use a database of gene fusions identified in cancer cell lines. The LiGeA database is the collection 

of gene fusions identified from paired-end RNA-seq data of 935 cell lines of the Cancer Cell Line 

Encyclopedia (CCLE) (Gioiosa et al., 2018). The database also includes the translated protein 

sequence of gene fusions as well as different annotations relating to the matching of the fusion 

in other databases. We have used the output of FusionCatcher. In order to limit our prospective 

analyses to fusions not found in healthy individuals we have removed all fusions also found in 

GTEX (Genotype Tissue Expression). Additionally, the remaining fusions were queried in fusion 

hub (Panigrahi et al., 2018) and those matched with further fusions found in healthy individuals, 

were removed as well as those in the newer version of the banned list of fusions from the 

‘generate_banned.py’ script in fusionCatcher(Nicorici et al., 2014) on the GitHub repository. Next, 

only gene fusions with a translated protein were kept. Of note, we chose not to use the number 

of algorithms that have detected the fusion as a filter, as we found that certain fusions identified 

by only one algorithm are validated and known to exist in these cell lines. 

To analyse the predicted population and HLA-I allele coverage of gene fusions that are clinically 

relevant. The output from FusionCatcher includes an annotation column that has information on 

where else the fusion is matched as well as whether it involves an oncogene.  We used this 

information to filter the database for gene fusions that 1) involve oncogenes and 2) were matched 

with those found in COSMIC (Catalogue Of Somatic Mutations in Cancer) database. COSMIC 

database is manually curated primary tumour data on gene fusions identified in different samples. 

Therefore, this filtering would allow us to explore the predicted HLA-I binding and population 

coverage of gene fusions in a clinically relevant context. 
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Finally, FCR predictions were being performed on 35 HLA-I alleles (that cover all supertypes), 

therefore we decided to restrict the predictions to each cell line’s encoded HLA-I molecules. This 

would help us explore the predicted gene fusion-derived peptides in a more realistic setting 

where HLA-I molecules encoded are 3 up to 6 per individual. To do that, we found and retrieved 

from the TRON (Scholtalbers et al., 2015) web portal the HLA-I typings of only 70 out of 392 cell 

lines (not all cell lines were found). 

3.2. Population Coverage analysis 

HLA-I frequencies of different populations (collected from ~66800 individuals) were obtained 

from public datasets covering 5 populations and an overall world population (Solberg et al., 2008; 

Weingarten-Gabbay et al., 2021), the calculation of the Cumulative Phenotypic Frequency (CPF) 

was done with Hardy-Weinberg’s assumption of proportions of the HLA genotypes (Dawson et 

al., 2001): 

𝐶𝑃𝐹 = 1 − D1 − 3 𝑝!
!	,	-

E
.

 

H corresponds to the HLA group (A/B/C) which consists of different HLA-I alleles and pi represents 

the frequency of the i alleles belonging to the HLA group set (in a given population). The 

calculation of the CPF for a given peptide predicted to bind multiple HLA-A, -B & C alleles, follows 

(Poran et al., 2020; Weingarten-Gabbay et al., 2021): 

𝐶𝑃𝐹 = 	1 − D1 −3𝑝!
!	,	/

E
.
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3.3. Immunopeptidomic data of mono-allelic cell lines 

In order to analyze the existence of peptides binding multiple HLA-I alleles we have taken 

advantage of a recently published dataset of HLA-I immunopeptidomes of 95 HLA-I alleles (HLA- 

A/B/C/E/G) (Sarkizova et al., 2020a). The number of alleles considered in the experiment expands 

the HLA-I immunopeptidomes profiled to date. In this thesis, we have excluded results from the 

HLA-E & -G alleles. The dataset we have used is published by the authors and has already been 
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filtered for contaminants of different sources (other organisms and negative controls), tryptic 

peptides and peptides appearing in more than 20 alleles. 

Additionally, because we were interested in understanding whether our selected candidates 

could justifiably bind/elute with multiple HLA-I alleles. To do that, we have applied an existing 

protocol for clustering peptides based on sequence similarity(Venema et al., 2021). Firstly, we 

extracted a subset of this large dataset containing only 9-mer peptides that bound the alleles 

predicted and/or tested against experimentally. Of note, is that all these peptides were single 

HLA-I binders (i.e. they did not appear in the immunopeptidome of more than allele). To this, we 

added our candidate peptides. Then, peptide sequence distances were calculated using the 

distPMBEC matrix for MHC-I peptides (Kim et al., 2009) and accounting for molecular entropy. 

Then, non-metric dimensional scaling (NMDS) was computed to reduce the dimensionality of our 

data into two. Next, we clustered the 2-dimensional data (the workflow is depicted in the results 

section, Fig. xfw) using two methodologies: k-means and density-based scanning. To determine 

the ideal number of clusters, k-mean simulations of partitions of 2 to 25 groups (cascadeKM 

function from the vegan package in R) were run. Then, the ideal number of groups was based on 

the partition that optimizes the Calinski-Harabasz criterion. We also used density-based scanning 

(dbscan from fpc package in R) in order to compare results and understand whether this 

methodology has classified any peptides as noise. Lastly, to 1) understand the composition of the 

clusters in which our peptides were grouped, we plot the logo of the peptides within these 

clusters (ggseqlogo from ggseqlogo package in R). And to 2) determine which HLA-I alleles they 

would bind based on sequence similarity we used KNN algorithm. We retrieved which HLA-I 

alleles the 50-closest peptides were bound to in the original immunopeptidome dataset.  

3.4. Gene fusion sequences 

The sequences of the gene fusions KIAA1549-BRAF, GIT2-BRAF, BCR-ABL1, CENPC-ABL1, ATF7IP-

PDGFRB, ZNF274-JAK2, NUP153-ABL1, SPTAN1-ABL1, NOTCH1-ROS1, GOLGA5-JAK2 gene fusions 

were derived from the sequencing results reported in the Children’s Hospital Of Philadelphia 

fusion panel (Chang et al., 2019a). On the other hand, the CBFA2T3-GLIS2 was obtained from the 

LIGEA database (Annex Table 2). 
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3.5. In vitro peptide-HLA-I binding measurement 

Binding affinity was performed by our collaborators at La Jolla Institute for Allergy (Dr. 

Alessanndro Sette & Dr. Sidney and lab). The methodology employed by Dr. Sidney and Dr. Sette 

is the standard for peptide-MHC-I binding measurement. The assay is a competitive inhibition of 

binding assay. The binding of peptide to an MHC-I molecule is assessed through its ability to 

inhibit the binding of a radiolabeled probe peptide to the MHC-I molecule. The IC50, or the 

concentration of the peptide needed to inhibit the binding of the labeled peptide can be deduced 

from plotting the concentrations and inhibition (%). The IC50 values constitute reasonable 

approximations of true Kd (Sidney et al., 2013). The thresholds for peptide-MHC-I binding are 

defined as 500nM for strong binders and 2000nM for weak binders(Alessandro Sette et al., 1994).  

3.6. 3D in silico peptide-MHC I prediction and visualization 

Recently, a tool (RosettaMHC/ MHCpepthreader) for the 3D structure in silico prediction of the 

conformation of the peptide-HLA-I complex has been published in the context SARS-COV2-

derived antigens bound to HLA-A2 (Nerli and Sgourakis, 2020). It has also been used in the context 

of pediatric neuroblastoma antigens presented on different HLA-I alleles (Yarmarkovich et al., 

2021). The tool helped to understand how the conformation of the peptide on the different HLA-

I alleles affected the result of their peptide-centric immunotherapy. RosettaMHC/ 

MHCpepthreader is based on homology modeling and utilizes the python wrapper for Rosetta 

(Chaudhury et al., 2010). In other words, the tool is fed a crystal structure of a peptide-HLA-I 

complex which it uses as template, in order to predict the 3D structural conformation of target 

peptide sequence within the HLA-I binding grove. First, the PDB structure is treated to only keep 

the chain containing the a1 and a2 domains (181 residues) and forces ideal bond lengths and 

angles according to Rosetta Methods. Then, the template and target peptide-HLA-I sequences are 

aligned using ClustalOmega. Afterwards, the target peptide is “threaded” onto the HLA-I 

structured which then goes through a “relax” procedure in order to optimize the structure. 

Finally, binding affinity of peptide-HLA-I is calculated using the InterfaceAnalyzer protocol. Here, 

the selection of the 3D templates was on the methodology described by the original authors (Nerli 

and Sgourakis, 2020) based on the peptide and the HLA-I allele (Fig. 26). After running the 
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simulation, a PDB structure is generated and a binding energy is computed. This structure is then 

visualized and analyzed for peptide-MHC polar interactions using ChimeraX software(Pettersen 

et al., 2020) 

 

Figure 28. –  The process followed for the 3D in silico modeling. 

The modeling starts with ensuring the selection of the most appropriate template(s). To do that, I have archived crystal structures 
in the Protein data bank (Burley et al., 2018), then based on the peptide-HLA-I pairs, the most appropriate PDB structure is chosen 
based on the criteria defined in the original article of RosettaMHC (Nerli and Sgourakis, 2020). Once the model is chosen, the 
simulation is run in RosettaMHC and then the structure is visualized in ChimeraX. 

3.7. Other 

3.7.1. Statistics  

All statistical computations and graphs were performed and created using R programming 

language R v. 4.1.3 on R studio v.1.4.1717 on Mac OS.  

R packages: vegan, adespatial, shiny, reactable, htmltools, plotly, ggpubr, ggplot2. 

3.7.2. Figures 

Figures were created using the online version of Biorender (https://www.biorender.com/). 

3.7.3. Code Availability 

Zenodo download: https://doi.org/10.5281/zenodo.7049144. 
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Chapter 4: Results 

4. Applying FusionChoppeR to explore the neoantigenic potential of 

gene fusions  

4.1. Immunogenic gene fusions  

Firstly, we wanted to explore whether we would be able to predict potential peptides of 8-12 

amino acids containing the fusion junction and with predicted HLA binding affinity using 

FusionChoppeR. We only considered peptides for which immunogenic potential has been 

published previously. Therefore, we only considered the ETV6-RUNX1 and CBFB-MYH11 fusions 

(Biernacki et al., 2020a; Yotnda, Garcia, et al., 1998; Zamora et al., 2019a). We used polypeptide 

sequences of these with FusionChoppeR and ran them against our list of 35 HLA-I alleles. From 

ETV6-RUNX1, two peptide sequences were selected MPIGRIAEC and RIAECILGM and 

REEMEVEHEL from CBFB-MYH11. These were the exact same peptides tested in the literature 

(Fig. 29-30).  

 

Figure 29. –  Analysis of ETV6-RUNX1 using FusionChoppeR GUI. 

* 
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The x-axis displays the amino acids around the junction region, on the y-axis the sequences of the fusion peptides are displayed – 
on the left are the amino acids from ETV6 (protein 1), on the right are the ones from RUNX1 (protein 2). The horizontal bars 
represent the sequences of the peptides with relation to the x-axis. The color and thickness of these horizontal bars is related to 
the number HLA-I molecules the peptides are predicted to bind by both algorithms. The dashed line represents the junction. The 
arrows were added in this document. The arrows represent peptides derived from ETV6-RUNX1 that were tested in the literature. 
The red arrow with an asterisk designates the diverse peptide that FCR has generated a significant LCBD (p adj<0.05) for.  

 

 

Figure 30. –  Analysis of CBFB-MYH11 using FusionChoppeR GUI. 

The x-axis displays the amino acids around the junction region, on the y-axis the sequences of the fusion peptides are displayed – 
on the left are the amino acids from CBFB (protein 1), on the right are the ones from MYH11 (protein 2). The horizontal bars 
represent the sequences of the peptides with relation to the x-axis. The color and thickness of these horizontal bars is related to 
the number HLA-I molecules the peptides are predicted to bind by both algorithms. The dashed lines represent the junction. The 
arrow was added in this document. 

The FCR analyses (Fig.29-30) for ETV6-RUNX1 and CBFB-MYH11, show that are predicted to 

generate 4 and 6 HLA-I peptides, respectively. The peptides predicted to bind the most of HLA-I 

alleles (MPIGRIAEC, REEMEVHEL) as well as a peptide with a significant LCBD (p adj<0.05) 

(RIAECILGM) (LCBD, explained in section the methods section 3.1.2.1 and results section 4.3.2.2) 

are peptides for which immunogenic potential has been published previously peptides.  
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4.2. Prepare the gene fusions database  

To test FCR on a larger dataset of gene fusions, we used the LiGeA database of gene fusions 

identified in cancer cell lines (Gioiosa et al., 2018). The database contains the results of gene 

fusion calling on 935 paired-end RNA seq experiments. For each cell line different fusions are 

detected and their transcript sequence is included as well as whether the tool (FusionCatcher 

(Nicorici et al., 2014)) predicts the fusion to be a True or False positive, the predicted effect of the 

fusion (in-frame or out-of-frame or intronic) and other metadata (whether it involves an 

oncogene, or it has been reported in other databases). First, gene fusions identified in healthy 

tissues were removed (found in GTEX and datasets published by different authors, 

FusionCatcher’s updated gene fusion list) in order to focus on those that are more prone to be 

oncogenic (Oliver et al., 2020). Then, only the fusions that are predicted to be translated into a 

protein were kept. Finally, to add robustness to our analyses we applied a stringent approach by 

removing gene fusions predicted as False positives as well as a polyQ polypeptide derived from a 

reciprocal gene fusion found across >10 cell lines (Fig. 31). At the end of our processing of the 

database, we had 523 fusions spanning across 337 cell lines and 20 different cancer types.  

 

Figure 31. –  Processing LiGeA Cancer cell line database. 

To evaluate the predicted HLA-I binding of gene fusions, the database was curated by removing fusions identified in healthy 
individuals and removing potential false positive identifications and keep protein expressing gene fusions. Additional filtering has 
led to the removal of EP400#NCOR2 and NCOR2#EP400 fusions which are present in many cell lines. Finally, after the processing 
the database included 523 fusions (of which 441 are unique) found in 337 cell lines and spanning 20 cancer types. That is, the total 
number of fusions left is 523, however, because certain gene fusions could exist in more than one cell line (i.e EWSR1-FLI1, see Fig. 
32), we distinguished between this number and the number of unique pairs (i.e EWSR1 + FLI1 is 1 unique pair, ETV6 + RUNX1 is 
another unique pair). Furthermore, because gene fusions could be rearranged differently, we also accounted for the fact that this 
could create distinct fusion polypeptide sequence which could alter the predicted HLA-I peptides, therefore a fusion can have 1 or 
more unique polypeptides (i.e EWSR1-FLI1, see Fig. 32). Lastly, because each cell line is associated with a disease, we also 
enumerate the cancer types covered.  
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Certain fusions were identified were identified in more than one cell line with the same or 

different translated polypeptide sequence, thus a lower number of unique gene pairs totalling 

441. To explain the differences in the numbers in Fig. 31, we illustrate this with EWSR1-FLI1 fusion 

from the database (Fig.32). EWSR1-FLI1 fusion which is essential for the malignant transformation 

in Ewing’s Sarcoma is present in 4 sarcoma cell lines, therefore these are counted as 4 fusions. 

Despite that, it is still considered as being 1 gene pair (EWSR1 and FLI1). Moreover, for the 

peptide-MHC-I predictions, the polypeptide sequence around the junction derived from the 

EWSR1-FLI1 fusion is important. In the case of EWSR1-FLI1, the same sequence is found in 3 out 

of the 4 cell lines which accounts for two unique (different) polypeptide sequences (Fig 32).  

 

Figure 32. –  Example of fusions present in more than one cell line. 

The example shows a gene fusion EWSR1-FLI1 present in 4 sarcoma cell lines (CCLE 182, 341, 862, 906). The example also outlines 
the fact that certain fusions can have a different sequence based on the breakpoint. However, as can also be seen the same 
arrangement is present in 3 out of 4 cell lines. 

4.3. The landscape of predicted gene fusion-derived neoantigens in LiGeA 

From each gene fusion protein, FCR generated through a sliding window approach 45 peptides of 

8 to 12 amino acids, the range of peptide length capable of binding HLA-I (Rock et al., 2016). The 

gene fusions considered span 20 different cancer types (Fig. 33A) and are predicted to generate 

mainly in-frame (85.53%) fusion proteins. Around 13% of the gene fusions are predicted to 

generate out-of-frame fusion proteins (Fig. 33B). Predictions were then computed in FCR for each 

of the peptides with 35 of the most common HLA-I alleles covering all HLA-I supertypes (Annex, 

Table 1). This process was iteratively done for each fusion protein sequence.  
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Then, we were interested in exploring the cross-HLA-I binding potential of these gene fusion-

derived neoantigens, we found that 1 up to 3 out of 35 alleles predicted to be bound represented 

the largest proportion of peptides (78.26%). However, there were peptides predicted to bind 

more than 3 alleles (~21%). Remarkably, one peptide (RVKPPWMAF, from RUNX1#PRDM7 fusion) 

was predicted to bind 25 out of the 35 HLA-I alleles (Fig. 33D).  

 

Figure 33. –  The database statistics and the antigenic landscape of the gene fusion-derived peptides. 

The donut chart in A) displays the proportion of the diseases (associated with the cancer cell lines) observed in the database. The 
predicted effect pie chart in B) is representative of the results of FusionCatcher’s prediction of whether the gene fusion-derived 
peptide conserves the reading frame or not. C) shows the amount of predicted binder peptides per fusion whereas D) is a histogram 
of the number of HLA-I alleles predicted to be bound per fusion peptide. BRCA : Breast invasive carcinoma, SARC : Sarcoma, SKCM 
: Skin Cutaneous Melanoma, OV : Ovarian serous cystadenocarcinoma, PAAD : Pancreatic adenocarcinoma, COAD : Colon 
adenocarcinoma, LUSC : Lung squamous cell carcinoma, BLCA : Bladder Urothelial Carcinoma, LGG : Brain Lower Grade Glioma, 
LCLL : Chronic Lymphocytic Leukemia, HNSC : Head and Neck squamous cell carcinoma, STAD : Stomach adenocarcinoma, DLBC : 
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, MM : Multiple Myeloma Plasma cell leukemia, ESCA : Esophageal carcinoma, 
LIHC : Liver hepatocellular carcinoma, PRAD : Prostate adenocarcinoma, THCA : Thyroid carcinoma, KIRC : Kidney renal clear cell 
carcinoma, CESC : Cervical squamous cell carcinoma and endocervical adenocarcinoma . 

4.3.1. The neoantigen landscape of a fusion polypeptide 

4.3.1.1. Richness difference 

We also wanted to understand the variation of predicted HLA binding across the polypeptide 

sequence surrounding the junction region. This polypeptide sequence consists of 22 amino acids, 

10 amino acids from each side of the junction (Fig. 34).  
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Figure 34. –  Polypeptide sequence surrounding the fusion region. 

The 45 peptides surrounding the fusion region are generated by FCR through a sliding approach taking 10 amino acids from each 
side of the fusion points (fp). This allows to generate peptides of 8-12 amino acids (aas) that strictly include the junction region.  

 

Considering the sliding approach adopted (Fig. 27), we expected for the fact that the predictions 

would generate some redundancies. These redundancies are related to the fact that these 

peptides have a sequence overlap and therefore they are predicted to bind to the same HLA-I 

molecule(s) to some extent. For example, as shown in Fig. 35, based on the HLA-I molecules the 

different peptides are predicted to bind (by two algorithms) the SEDFQPLRY is the peptide with 

the highest richness difference. It shares sequence overlap with the other peptide sequences and 

is predicted to bind the same HLA-I molecules as the other peptides as well as additional ones.  

 

Figure 35. –  Example of richness difference (CBFA2T3-GLIS2 fusion). 
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The peptide sequences from the CBFA2T3-GLIS2 fusion predicted to bind at least one HLA-I molecule by 2 algorithms are shown in 
a tabular format. For each peptide sequence, an x corresponds to it being a binder to the HLA-I molecule mentioned on the top of 
the table. The peptide sequence ‘SEDFQPLRY’ is considered as having the highest richness as it is the peptide that is predicted to 
bind the same molecules as the other peptide as well as additional ones.  

 

Therefore, in order to understand where within the polypeptide sequence (Fig. 34) is the best 

source for the richest peptides in HLA-I binding, we have plotted the richness difference 

proportion of peptides per fusion. In Fig. 36, the proportion of richness difference per location 

within the 22-aa polypeptide sequence are displayed for each fusion. Our results show that the 

highest richness difference across fusions generally is mapped to peptides that start 7 amino acids 

before the breakpoint from the protein 1’s side until 3 amino acids before the breakpoint. This 

could mean that the optimal anchor residues (2 and 9) are generally obtained from both proteins 

at such residues within the polypeptide sequence (Fig. 36). This alludes to the optimal region 

around the fusion junction from protein 1 that would generate potential strong cross-HLA-I 

binding peptides.   
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Figure 36. –  Analysis for understanding the position of the predicted most HLA-I binding with regards 

to the fusion point from Protein 1 side. 

The upper panel shows the area of interest for the analysis of the source within the 22-aa polypeptide sequence. The line plot 
represents the proportion of richness difference per fusion, across fusions according to where the starting amino acid within the 
22-aa polypeptide sequence is. The x-axis is the starting position, the y-axis is the proportion of richness difference. 

 

(%
) 
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4.3.2.2. Diversity of predicted HLA-I binding of fusion-derived peptides 

Then, to understand the diversity of predicted HLA-I-peptides derived from each gene fusion, we 

have used the LCBD indicator with p adj<0.05 to select these (Legendre, 2014). We used the LCBD 

indicator to identify peptides that have a diverse predicted HLA-I binding in comparison with the 

rest of the gene fusion-derived peptides. For example, in the case of CBFA2T3-GLIS2 (Fig. 35) the 

predicted HLA-I binding of its derived peptides is rather “homogeneous”. In contrast, we have 

found that ETV6-RUNX1 consists of two groups of peptides, first group is predicted to bind a set 

of HLA-I molecules, whereas the second is predicted a completely different set of HLA-I molecules 

(Fig. 37). The RIAECILGM peptide has a significant LCBD (p adj <0.05) which means that its 

predicted HLA-I binding is diverse in comparison with the other peptides from the same fusion. 

This means that the ETV6-RUNX1 fusion could have two potentially strong candidates, one with 

highest richness difference (MPIGRIAEC) and one diversly-binding (RIAECILGM). Due to this 

increase in the sets of predicted HLA-I peptides from the ETV6-RUNX1, such gene fusions could 

be considered as “heterogeneous”. Interestingly, immunogenic potential of both peptides with 

patient T cells has been published (Zamora et al., 2019a) 

 

Figure 37. –  Example of diverse predicted HLA-I binding (ETV6-RUNX1). 

The plot shows the predicted binder peptides (to at least one HLA-I molecule by 2 algorithms) from the ETV6-RUNX1 fusion. The 
set of peptides in the blue background: MPIGRAECIL, MPIGRIAECI, MPIGRIAEC, all start from the same Methionine amino acid, and 
have proline as anchor residue. All three of these are predicted to bind HLA-B*07:02 and HLA-B*53:01 which is explained by the 
common proline anchor residue which is characteristic of HLA-B*07:02 (Fig. 5). Among these MPIGRIAEC is the peptide with the 
highest richness difference. On the other hand, the fusion is also predicted to generate a peptide RIAECILGM that is predicted to 
bind a different set HLA-I molecules.  There is no overlap between this set of HLA-I molecules and those predicted to be bound by 
the other peptides from the same fusion. This peptide is shown in a pink background. The RIAECILGM has a significant LCBD value 
(p adj<0.05) and is considered as diversely-binding. 
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To understand whether certain positions within the 22 aa polypeptide sequence are important 

for generating diversely-binding peptides, we firstly identified the heterogeneous fusions from 

the LIGEA database. We found that 44 out of 523 fusions are heterogeneous (~8.4%) and can 

generate one or more peptides with significant LCBD (p adj<0.05). Next, we generated a sequence 

logo the 22 aa polypeptide sequences of these 44 gene fusions in order to understand whether 

there are certain positions that are more prominent for these polypeptides.  

 

Figure 38. –  Logo plot of the polypeptides that have at least one predicted diversely binding peptide 

across fusions. 

The plot shows a sequence logo of the polypeptides that were shown to generate a peptide with a diverse HLA-I profile in 
comparison to the rest of the predicted HLA-I-peptides 

 

Fig. 38 show to that 1) the -8 position from fp1 as well as 2) fp2 could be important for this (Fig. 

zb).  This is possibly accounts for the optimal position of certain residues so as to generate 

peptides with more than 1 set of HLA-I alleles they would be predicted to bind. To sum up, gene 

fusions that generate (or are predicted to generate) diverse HLA-I-peptides, might have certain 

residues at given positions so as to create the generate multiple candidates. Furthermore, these 

gene fusions have great potential for the selection of multiple peptides from these. Also, due to 
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the predicted diverse HLA-I binding nature it is possible to consider that these could boost the 

potential population coverage.  

4.3.2. The predicted HLA-I and population coverage of gene fusion-derived peptides 

To explore the potential population coverage as well as the cross HLA-I binding of gene fusions. 

To do that, we firstly selected subset of gene fusions, those involving oncogenes and those found 

in COSMiC cancer database (from primary samples - COSMIC, as annotated by FusionCatcher 

(Nicorici et al., 2014; Tate et al., 2019)). From 120 fusions, we randomly selected 20 fusions: 7 

that are heterogeneous and 13 that are homogeneous in their HLA-I predicted binding. From each 

heterogeneous gene fusion, all peptides with significant LCBD (p adj<0.05) were selected as well 

as the peptide with the best supertype coverage score (see materials and methods). In the plot 

below (Fig. 39), for each peptide derived from a gene fusion (in the format: [Fusion]_[Peptide 

sequence]) the HLA-I molecules predicted to be bound are shown on the right and their 

associated estimated population coverage worldwide is shown on the left. The results in Fig. 39 

clearly show that these clinically relevant gene fusions are predicted to generate HLA-I binding 

peptides that cover a relatively high estimated population and reaches up to at least 89% 

(YAP1#MAML2)(Fig. 39). Also, when looking at each heterogeneous fusions, it is possible to see 

that the diversely-binding peptide(s) boost(s) the estimated population coverage. 

 



 102  

Figure 39. –  The predicted binding of 27 fusion peptides (from 19 gene fusions) from gene fusions 

involving an oncogene and/or also found in COSMIC. 

(Left Panel) The estimated population coverage (world) of the HLA pairs predicted to bind the peptides shown in the middle (middle 
Panel) as an identifier representing the peptide sequence and the fusion separated by an “_” ([Peptide sequence] _[gene1#gene2]). 
(Right Panel) displays the HLA-I alleles predicted be bound by the peptides in the middle panel. Each square represents an HLA-I 
allele. The * represents a significant effect of heterogeneity of the peptide in comparison with the other peptides from the same 
fusion (adjusted p-value of the local contribution to beta diversity p.adj<0.05). 

 

4.4. Focusing on the gene-fusion derived neoantigens of HLA-typed cell lines 

Applying FCR predictions on gene fusions found in COSMIC and/or involving an oncogene with 35 

of the most frequent HLA-I alleles have demonstrated that GF-Neo are predicted to bind multiple 

HLA-I alleles and could have wide population coverage. Next, we wanted to apply the FCR 

predictions on the actual HLA-I molecules expressed on the surface of each of the cell lines. First, 

we have retrieved the HLA typing of the cell lines from the TRON database. We were able to 

retrieve the HLA typing of 62 cell lines spanning 20 cancer types. The total number of fusions 

across these is 100 fusions (96 unique gene pairs). We found that per disease, across cell lines, 

25-30% of peptides derived from fusions are predicted to bind more than one HLA-I allele of those 

expressed on the surface whereas the biggest proportion of gene fusion-derived peptides are 

predicted to bind just one HLA-I molecule of those expressed (Fig. 40A). Of note, we did not take 

fusion heterogeneity into consideration, as the set of alleles per fusion was of 3 up to 6, which 

would not allow to conduct such analyses. We then, delved deeper by looking at the specific 

fusions, within each cell line and their binding potential with respect to the HLA-I alleles expressed 

on the cell. Our results show that 86% of the gene fusions (83 out of 95) generate a peptide that 

is predicted to bind at least one of the HLA-I alleles expressed on the surface of the cell lines (Fig. 

40B). Consequently, the neoantigens found in these cell lines show strong potential in generating 

peptides that would bind the HLA-I alleles expressed on the surface.  
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Figure 40. –  The predicted (cross-) binding of gene fusion derived peptides of HLA-typed cells. 

A) The proportions of gene fusion-derived peptides binding 1 HLA allele (out of the 6 presented on the surface of the cell) and those 
binding more than one. The x-axis represents the cell lines. The proportions are calculated based on the peptides from the gene 
fusions within each cell line. The heatmap in B) shows the alleles expressed on the surface of the cell predicted to be bound by the 
peptides. The x-axis represents each HLA-I allele from the cell lines’ HLA typing. Due to the possible homo-/heterozygosity of the 
A/B/C genes, cells could present on their surface 3 up to 6 different HLA-I alleles. The y-axis has two sides: on the left, the gene 
fusion and the cell line it was identified in are shown ([gene1#gene2]_[CCLE_]). On the right side, the peptide chosen from a given 
fusion corresponds to the peptide predicted to bind the highest number of the HLA-I alleles expressed out of the 45 possible fusion 
peptides. 

4.5. Analysis of immunopeptidomic data of 92 mono-allelic cell lines  

Our peptide-HLA-I prediction results revealed that GF-Neo are predicted to bind multiple HLA-I 

alleles. Therefore, we asked whether HLA-I peptides can bind more than one HLA-I molecule. To 

do that, we used a recent and extensive dataset of immunopeptidomic (Sarkizova et al., 2020b). 

In their experiments, Sarkizova et al. (2020) generated cell lines expressing single HLA-I alleles 

and then sequenced the peptides presented on the HLA-I alleles of these cell lines. In total, the 

immunopeptidomes of 92 different HLA-I alleles (Fig.41). These 92 HLA-I alleles cover all 12 

supertypes (see section 1.2.2 and Annex table 1) and include alleles that have been less studied 

such as HLA-A*34:01 and HLA-A*74:01 to name a few.  
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Figure 41. –  The 92 alleles considered. Heatmap plot of the HLA-I frequency in different regions and 

supertype group of the 92 HLA-I alleles considered from the dataset. 

 

4.5.1. Peptides could bind HLA-I alleles of different supertypes  

 Our results show that as expected the largest portion of the peptides (~70%) binds 1 HLA-I allele 

(Fig. 42A). Around 18% of the peptides bound (~22000 peptides) two HLA-I alleles. Examining the 

peptides that bound 2 HLA-I alleles (for simplification purposes, we will refer to these as di-allelic 

peptides (diHLAp) henceforth), it is possible to see that HLA-I alleles have different propensities 

of sharing peptide repertoires (fig. 42B). We chose 6 HLA-I alleles HLA-A*01:01, HLA-A*02:05, 

HLA-A*02:07, HLA-A*30:01, HLA-B*15:01, HLA-B*44:02 to display this. We wanted to explore the 

alleles bound by a same peptide. Did these diHLAp bind two HLA-I alleles from the same or 

different supertypes? These six were chosen as they show binding to the same and different 

supertypes as well as HLA-A and HLA-B molecules. The diHLAp that bound A*30:01 (belonging to 

the A01A24 supertypes) as well as those that bound A*02:05 and A*02:07 were found to also 

bind HLA- B and -C molecules. On the other hand, the pie chart for the B*44:02 molecule shows 

that the diHLAps especially (~97%) one other molecule (B*44:03) from the same supertype (Fig. 

42C). This is also similar with A*0101 molecules. However, diHLAp bound to B*1501 bound mainly 

molecules from the same gene (HLA-B) but that belong to different supertypes. The focus here, 

on the supertypes is due to the fact HLA molecules of the same supertype have very similar 

binding preferences in comparison with those of different supertypes. Together, these results 

have shown that peptides could bind multiple HLA-I molecules of same and different supertypes.  
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Despite that this analysis was restricted to peptides binding to two HLA-I molecules but did reveal 

that peptides are able to bind HLA-I molecules belonging to different supertypes, we wanted to 

focus on the supertypes.  

 

Figure 42. –  The HLA-I binding landscape of eluted ligands from experiments on 92 mono-allelic cell 

lines.  

A) histogram displaying the frequency of peptides binding/eluting with one or more HLA-I molecules. The x-axis represents the 
number of HLA-I alleles bound; the y-axis corresponds to the frequency. B) Focusing on peptides that eluted with 2 HLA-I alleles, 

the heatmap displays a log frequency (brightness of the color) of the combination of each allele pair eluting with the same 
peptide (x- and y-axes are each allele). C) Pie charts for 6 HLA-I alleles of the frequencies of HLA-I pairs by the same peptide. 

Above each pie is indicated the HLA-I allele, the number of observations and the supertype it belongs to. Within the pie charts, 
the pie slices are indicated based on their belonging to a supertype. On the left of each pie chart are indicated the percentages. 
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(i.e. Among the peptides binding two HLA-I molecules, of those that bound A0101 (A01 supertype), 89% of these peptides also 
bound A3601 (a01 supertype also). Lastly, ‘Other’ designates the grouping of any HLA-I allele with a percent less than 2%. 

 

Based on that, we also wanted to evaluate the same analysis but from the perspective of 

supertypes. We see a similar trend when the alleles were grouped by supertype. Approximately 

85% of peptides bound 1 supertype (100517 peptides), which means ~15% of peptides bound 

more than one supertype. The large majority bound 2 supertypes (12.3%, 14577 peptides) (Fig. 

43A). We were also interested in exploring peptides that bind HLAs from two different supertypes 

referred to from now as di-Supertype peptides (diSup). Generally, disregarding the unclassified 

supertypes (that we encoded as BX, AX, CX, X refers to the unclassified nature of alleles belonging 

to this supertype) it is possible to see that a large number of diSups that were found to bind an A 

supertype, also bound B (i.e. A01 & B58, A01& B62) or C supertypes (A02 & C1) and same for 

diSups binding B & C supertypes (B07 & C1, B08 & C1, B58 & C1, B58 & C4) (Fig. 43B).Furthermore, 

we still see that the B44, B27, A24 and to a lesser extent A03 bound alleles belonging mainly to B 

supertypes, specifically the unclassified supertypes (Fig. 43C). This meant that for alleles 

belonging to certain supertypes have more restrictive specificities whereas other have more loose 

ones, as also described in the literature (Kaufman, 2018; Manczinger et al., 2021).  Also, this 

further shows that there must be an overlap in the binding specificities of these molecules which 

allows for the peptide to bind.  
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Figure 43. –  The HLA-I supertypes binding landscape of eluted ligands from experiments on 92 mono-

allelic cell lines.  

A) histogram displaying the frequency of peptides binding/eluting with HLA-I molecules belonging to one or more HLA-I molecules. 
The x-axis represents the number of supertypes that the HLA-I molecules bound by the peptides belong to, the y-axis corresponds 
to the frequency. B) Focusing on peptides that eluted with HLA-I alleles, the heatmap displays a Hellinger transformed frequency 
(brightness of the color) of the combination of each supertype pair eluting the same peptide (x- and y-axes are each allele). C) Pie 
charts for the main supertypes of the frequencies of supertype pairs by the same peptide. Above each pie is indicated the supertype, 
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and the number of observations. The pie slices are labeled with the second supertype. On the left of each pie chart are indicated 
the percentages. Lastly, ‘Other’ designates the grouping of any HLA-I allele with a percent less than 2%. 

 

4.6. Analyze the potential of clinically relevant gene fusions to 

generate MHC-I super binders  

4.6.1. Applying FCR on clinically relevant pediatric gene fusions 

4.6.1.1. Selecting 3 cross-HLA-I peptides 

We wished to analyse the cross-HLA-I binding of gene fusion-derived peptides with clinically 

relevant gene fusions experimentally (in vitro). Therefore, we selected sixteen clinically relevant 

gene fusions were selected. These included two positive controls from the literature, (2 fusions: 

ETV6-RUNX1, CBFB-MYH11) (Biernacki et al., 2020b; Yotnda, Firat, et al., 1998; Zamora et al., 

2019b), 9 fusions from a validated fusion panel derived from patient sequencing (9 fusions: 

KIAA1549-BRAF, GIT2-BRAF, CENPC-ABL1, ZNF274-JAK2, NUP153-ABL1, SPTAN1-ABL1, GOLGA5-

JAK2, NOTCH1-ROS1, ATF7IP-PDGFRB) (Chang et al., 2019b), and one gene fusion obtained from 

the M0E7 cell line in the LigeA database (CBFA2T3-GLIS2) (Gioiosa et al., 2018). CBFA2T3-GLIS2 

fusion is found in 30% of non-Down syndrome Acute MegaKaryoblastic Leukemia (non-DS AMKL) 

and is recurrent and especially found in infants (Bolouri et al., 2018; Gruber et al., 2012; Masetti 

et al., 2013; Smith et al., 2020). 
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Figure 44. –  Prioritization of 3 candidate HLA-I binder peptides from 12 clinically relevant pediatric 

gene fusions. 

The sequences of 12 recurrent and clinically relevant pediatric gene fusions were selected. These validated sequences and have 
different sources: Patient and cell line-derived xenografts, fusion panel based on primary samples or the literature. Fusion peptides 
were generated from these and MHC-I binding predictions were run with both algorithms, these were filtered based on algorithm 
agreement. This step was followed by a step aimed at making sure the sequences are unique in that there is no overlap with self-
peptides. This was done by doing a BLAST search (similarity matching) with human and mouse non-redundant protein database, 
and exact matching by searching the human and mouse proteomes and immunopeptidomes/ One fusion was eliminated because 
it matched with a protein different from its parent proteins. Then, one up to two peptides were selected from each fusion. Then, 
these were narrowed based on the strength of their predictions (essentially through calculating a ratio), comparisons with binding 
motifs, cross-HLA-I binding potential. 

 All 12 fusion sequences went through FCR against 35 of the most common HLA-I alleles (Annex 

table 1, same as used for the database), this has allowed us to obtain 95 predicted peptide-HLA-I 

binders by both algorithms at a percentile threshold of 2. To assess the uniqueness of the peptides 

and thereby limiting risks of cross-reactivity risks, the peptide sequences were searched in the 

immunopeptidomes and proteomes of human and mouse (Consortium et al., 2020; Kubiniok et 

al., 2022). A BLAST (Basic Local Alignment Search Tool) search was also made for these peptides. 

As a result, we have excluded one gene fusion which has one peptide that has aligned (80%) with 

a protein that is not one of the parent proteins. Then, to narrow down the list of peptides to the 

most prominent ones, one up to 2 peptide sequences were selected from each fusion, totalling 

12 peptides. These were further reduced by comparing the scores of the peptide sequences. 

Finally, we have selected 3 peptides based on the predicted ability of these to bind HLA-A & B 

alleles and the ability to bind different HLA-I alleles of the same supertype: SEDFQPLRY (CBFA2T3-
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GLIS2), IALPFKVVV (ATF7IP-PDGFRB) and IPQDTIPVL (ZNF274-JAK2) (see Fig. 37, table 3 for FCR 

predicted for HLA-A&B alleles and Annex table 2 for complete FCR predictions (including C 

alleles)).  

 Fusion Peptide 

Sequence 

HLA-I predicted to 

be bound 

# of 

HLA-I 

Supertypes that 

the HLA-I alleles 

belong to 

# of 

Supertypes 

 ATF7IP-

PDGFRB 

IALPFKVVV A*02:01, A*02:06, 

A*68:02, B*51:01, 

B*58:01 

5 A02, B07, B58 3 

 CBFA2T3-

GLIS2 

SEDFQPLRY A*01:01, A*29:02, 

A*30:02, B*35:01, 

B*40:01, B*44:02, 

B*44:03 

7 A01, A01 A24, 

B07, B44 

4 

 ZNF274-

JAK2 

IPQDTIPVL B*07:02, B*08:01, 

B*35:01, B*51:01, 

B*53:01 

5 B07, B08 2 

 ETV6-

RUNX1 

RIAECILGM A*02:01, A*02:03, 

A*02:06 

3 A02 1 

 CBFB-

MYH11 

REEMEVHEL B*40:01, B*44:02, 

B*44:03 

3 B44 1 

 

Tableau 3. –  FCR predictions of our candidate peptides with HLA-A & HLA-B alleles. 

The table above shows the FCR predicted HLA-I alleles to be bound by the candidate peptides selected and the control peptides. 
Color-coding used to differentiate between the candidate peptides and the control peptides.  

 



 111  

4.6.1.2. Using sequence similarity between candidate peptides and HLA-I peptides 

from the immunopeptidome dataset to hypothesize binding  

As complement to the FCR predictions, we wished to use another computational approach in 

order to determine whether these peptides are likely to bind the predicted HLA-I alleles. This 

approach is based on the dataset of eluted ligands from mono-allelic cell lines analysed in section 

4.5. Essentially, our approach relied on clustering peptides based on peptide sequence similarity 

(Fig. 45). Firstly, we have extracted all 9-mer peptides from these 16 HLA-I alleles (N = 6856 

peptides). These 16 alleles (in step 1 of Fig. 45) are based on the total set of alleles from the FCR 

predictions (table 3). Importantly, for this analysis, the peptide pool used was derived from 

peptides identified in only one allele.  

 

 

Figure 45. –  Using sequence similarity between candidates and eluted MHC-I ligands as complement 

to hypothesize potential HLA-I alleles bound.  

The figure above shows the overall workflow employed to achieve the analysis. Our predictions for our candidates and positive 
controls with FCR yielded a set of 16 HLA-I alleles for the peptides to be tested against. Therefore, we decided to firstly (1) extract 
HLA-I peptides from the immunopeptidomic dataset (used in section 4.5) of these 16 HLA-I alleles. Then, (2) we added our 
candidates and positive controls. Next, we (3) generated a square distance matrix of the pairwise distances between all the 
sequences (6861 rows, 6861 columns). Then, (4) to reduce this matrix into a 2-dimensional one, we compute Non-Metric 
Dimensional Scaling (NMDS) followed by a k-means clustering of the data points. Finally, we (5) looked for our candidates and 
controls within these clusters. By retrieving the HLA-I alleles that the peptides within each cluster bound in the immunopeptidomic 
experiments it would be possible to have an idea as to which HLA-I alleles our candidates and controls would potentially bind. 
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To this list were added the 3 candidate peptides along with the 2 positive control peptides 

(REEMEVHEL from CBFB-MYH11 fusion and RIAECILGM from ETV6-RUNX1 fusion) (N = 6856 + 5 = 

6861 peptides). Then, we implemented the protocol (Venema et al., 2021) consisting of 

calculating a distance matrix based on an established peptide-MHC similarity matrix (Kim et al., 

2009) while accounting for molecular Entropy. This yielded a matrix of 6861 rows and 6861 

columns. Next, to reduce this to 2-dimensions we applied non-metric dimensional scaling 

(NMDS), this would allow to show these peptides in a two-dimensional plot and display peptides 

whose sequences are more similar closer and those that are more different, farther. The optimal 

clustering is a partition of the points on the NMDS axes into 23 groups (see Methods). The 

peptides were then clustered into 23 groups and plotted; each point has a different color based 

on the cluster it belongs to. Finally, we looked at the alleles that the peptides sharing the clusters 

with the peptides we have added (in step 2) have been grouped in to. 1)To better understand the 

peptide sequences of each cluster we constructed logo plots of the peptides within each cluster 

and (2) to predict the HLA-I alleles that our candidates are likely to bind, we retrieved the HLA-I 

alleles of the peptides within these clusters (Fig. 46).  
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Figure 46. –  NMDS of the HLA-I peptides of the 16 HLA-I alleles and the logos of the clusters 

containing the peptides to be tested in vitro. 

The NMDS plot with polygons delimiting the 23 clusters and labeling. The x- and y-axes are the NMDS axes, the two-dimensional 
plot aims at representing the points closest to each by their similarity to each other and dissimilarity to others. The NMDS analysis 
is based on the 16 HLA-I alleles that the peptides were tested against. The peptides whose sequence is displayed based on their 
location on the plot are the peptides that were tested for their binding in vitro. At the bottom of the figures are the logos of the 
clusters that these peptides belong to. 

 

For example, REEMEVHEL was found in cluster 6 (Fig. 46). Cluster 6 is made up of 714 peptides, if 

we retrieve the HLA-I alleles in which the peptides in this cluster were found (in the 

immunopeptidomic dataset), we would be able to understand which HLA-I alleles REEMEVHEL is 

likely to bind, based on the frequency of the HLA-I alleles of the peptides within the same cluster, 

that are higher than 1% (Fig. 47). This same process was done for the other peptides also (Table 

4 and Annex Fig. 1). The analysis clearly shows that the fusion peptides share key residues with 

eluted ligands of different HLA-I alleles . 

 

Figure 47. –  Frequency (%) of HLA-I alleles of the HLA-I peptides within cluster 6. 

Panel A: The plot describes the frequency of the HLA-I alleles of the peptides within cluster 6. A shaded line at 1% was used to 
determine the HLA-I alleles we considered as our predicted binders. Panel B: a sampled list of random peptides in cluster 6 drawn 
up, the second and last residue are in bold to highlight the shared residues also shown in Fig. 46 and common with the candidate 
peptide. Panel C: The logo plot of cluster 6 (of fig 46) is shown side-by-side with the list of peptides. 
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However, because we wanted to get information on the closest HLA-I-peptides to our candidate 

peptides we decided to utilize the K-nearest neighbors algorithm with the aim of focusing on the 

closest 50 peptides (Fig. 48). Doing that, we simply retrieved the HLA-I alleles of these (without 

relying on frequencies), resulting in table 6. This proved that also based on sequence similarities 

to eluted peptides, our candidates are still predicted to bind multiple HLA-I alleles. Of note, 

RIAECILGM’s 50 closest peptides were farther than therefore, we excluded it in this analysis 

(Fig.48). 

 

Figure 48. –  Visualization of our candidate peptides on the NMDS plot with the K-nearest neighbors 

selected for the prediction. 

This plot shows the locations of our candidate peptides on the NMDS plot, as well as the 50-nearest neighboring peptides (using 
the K-NN algorithm) in order to predict the alleles that our candidates will bind. Each candidate peptide location within the points 
is indicated with a segment. The black circles delimit the area from which the nearest neighbors are sampled. Inside the black 
circles are the neighbors shown in black polygons. All our candidate peptides have their nearest neighbors in proximity. RIAECILGM 
is far from its nearest neighbors, therefore, we have not included its predictions. 
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Peptide HLA-I Alleles of the 50 nearest peptides to the candidate peptide 

IALPFKVVV A0206, A6802, B0801, B5101 

SEDFQPLRY A0101, A2902, A3002, B4402, B4403 

IPQDTIPVL B0702, B0801, B3501, B5101, B5301 

REEMEVHEL B4001, B4403 

  

Tableau 4. –  The alleles of the 50-nearest peptides to the candidate peptide 

The table shows the alleles from of the 50-nearest HLA-I-peptides to each candidate peptide. 

To sum up, the use of peptide sequence similarity between our candidate peptides and the HLA-

I peptides of the sequenced immunopeptidomes of the 16 HLA-I alleles, has allowed us to 1) get 

an unbiased confirmation that gene fusion-derived peptides could bind more than 1 HLA-I allele, 

2) obtain further validation on the predicted binding of the candidate peptides to HLA-I alleles.  

 

4.6.2. In-vitro binding results for the cross-HLA-I peptides 

4.6.2.1. In vitro binding results 

To validate the predictions of the HLA-I alleles, an in-vitro binding assay experiment, was 

performed on the peptides selected as well as on the controls selected (see Methods section 3.5). 

The established thresholds for peptide-MHC-I binding are defined as 500nM for strong binders 

and 2000nM for weak binders and anything above 40000 nM is simply not measured (Alessandro 

Sette et al., 1994). Notably, to our surprise, the positive control peptide RIAECILGM with HLA-

A*02:01 that whose immunogenic potential is documented (Zamora et al., 2019b)had a result of 

6722 nM. We reasoned that the low binding affinity does not exclude its immunogenic potential 

as other factors such as stability of the peptide-HLA-I complex could play a big role (Harndahl et 

al., 2012). Also, a recent paper showed that a peptide-HLA-I binding affinity could reach up to 

10000nM and still yield a positive result by tetramer assays with patient-derived T-cells. 
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Therefore, measured binding affinities less than 10000nM were not considered as non-binders. 

Nevertheless, the second control peptide REEMEVHEL of the CBFB-MYH11 bound strongly to 

B*40:01. This was another attestation to the above. 

Despite that, the gene fusion candidates still were found to bind to multiple HLA-I alleles. The 

peptide IALPFKVVV derived from ATF7IP-PDGFRB bound divergent A & B alleles (A*02:06, 

B*08:01, B*51:01) very strongly (IC50<<500nM). It also bound weakly A*02:01 (IC50<2000nM) 

and B*58:01 (IC50<10000nM). On the other hand, the SEDFQPLRY peptide derived from 

CBFA2T3-GLIS2 fusion bound expected alleles but at variable affinities. However, the binding of 

SEDFQPLRY to B*44:02 was strong (IC50<500nM), weaker to A*29:02, B*44:03 (IC50<2000) and 

A*01:01(IC50<10000 nM). Additionally, the gene fusion-derived peptide (IPQDTIPVL) predicted 

to be presented on multiple alleles of the same supertype (B07) did in fact bind these alleles 

(B*07:02, B*35:01 and B*53:01). To sum up, FCR helped in predicting HLA-I binders, and gene 

fusion peptides did bind multiple HLA-I alleles in vitro.  

 

Fusion Peptide HLA Predicted 

by FCR 
(Fig.27) 

Fits MS 

HLA-

binding 

motif ¡ 

(visual 

inspection) 

Predicted 

by 

sequence 

similarity 
(section 

4.6.1.2) 

Measured 

binding 

affinity 

(nM) 

ATF7IP-

PDGFRB 

IALPFKVVV A*02:01 Yes Partially No 1590 

IALPFKVVV A*02:06 Yes Yes Yes 72 

IALPFKVVV A*68 :02 Yes Yes * Yes 21825 

IALPFKVVV B*08:01 No^ No Yes 83 

IALPFKVVV B*51:01 Yes Yes Yes 123 

IALPFKVVV B*58:01 Yes Partially No 5073 
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CBFA2T3-

GLIS2 SEDFQPLRY A*01:01 

Yes Yes * (3rd 

and 9th 

pos) 

Yes 

8729 

SEDFQPLRY A*29:02 Yes Yes Yes 1636 

SEDFQPLRY A*30:02 Yes Yes Yes - 

SEDFQPLRY B*35:01 Yes No No - 

SEDFQPLRY B*40:01 Yes No No - 

SEDFQPLRY B*44:02 Yes Yes Yes 1214 

SEDFQPLRY B*44:03 Yes Yes Yes 408 

ZNF274-

JAK2 

IPQDTIPVL B*07:02 Yes Yes Yes 690 

IPQDTIPVL B*08:01 Yes No Yes 9627 

IPQDTIPVL B*35:01 Yes Yes Yes 224 

IPQDTIPVL B*51:01 Yes Yes Yes 25400 

IPQDTIPVL B*53:01 Yes Yes Yes 1067 

ETV6-

RUNX1 

RIAECILGM A*02:01 Yes Partially N/A 6722 

RIAECILGM A*02:03 Yes Partially  N/A 2171 

RIAECILGM A*02:06 Yes Partially N/A 1675 

CBFB-

MYH11 

REEMEVHEL B*40:01 Yes Yes Yes 20 

REEMEVHEL B*44:02 Yes Yes No 1840 

REEMEVHEL B*44:03 Yes Yes Yes 16623 

Tableau 5. –  Peptide-HLA-I binding predictions and binding affinity measurement result. 

The table shows the results of the peptide-HLA-I binding * ambiguous. ¡motifs established in (Sarkizova et al., 2020b). Color-
coding: green: Measured binding affinity <500n, blue: Measured binding affinity<2000nM, Red: Measured binding 
affinity<10000nM, Grey: Measured binding affinity<40000nM, White Measured binding affinity not measured (>40000nM). ^ 

predicted only by MHCflurry (peptide-MHC-I prediction software). N/A values for ETV6-RUNX1’s predictions by sequence similarity 
are due to its exclusion because the closest peptides were less similar. 

 

4.6.2.2.  In vitro binding affinity results reveal a potential non canonical binding to 

HLA-B*08:01  
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To our surprise, the ATF7IP-PDGFRB peptide (IALPFKVVV) strongly bound the HLA-B*08:01 

molecule in vitro despite that 1) it was not predicted by both algorithms (netMHCpan (%RankEL) 

=2.042, 0.042 value over the %Rank threshold) (Fig. 49B) and 2) the peptide does not fit the 

defined binding motif, however, 3) it was predicted also by sequence similarity to HLA-I peptides 

that bound HLA-B*08:01. The HLA-B*08:01 binding motif has an important secondary anchor 

residue preference at position 5 for a basic amino acid – either an arginine or a lysine (Fig. 49A). 

In IALPFKVVV, a lysine is at the 6th position (Fig. 49A). To understand the binding of the peptide 

to the HLA-I allele a series of substitution experiments were performed on the amino acid 

residues at the 5th and 6th positions of the peptide sequence (Fig. 49C). The 10-fold increase of 

the binding affinity after the K ->E substitution (basic aa -> acidic aa) has revealed that the K in 

the 6th position of IALPFKVVV is indispensable for its binding to the B*08:01 molecule. This meant 

that the B*08:01 molecule is possibly accommodating the peptide by allowing the residue on the 

6th position to bind as anchor residue. Taken together, our results for this peptide show on one 

hand 1) how thresholds could impede the discovery of true peptide-MHC-I binders, 2) binding 

motifs can also be limiting due to potential non-canonical binding and 3) the sequences of gene 

fusion peptides could allow them to have distinct conformations structurally.   
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Figure 49. –  Binding motif and predictions comparisons for the IALPFKVVV peptide along with in vitro 

binding affinity results following a series of substitutions.  

The peptide sequence comparison in panel A with the HLA-B*08:01 binding motif obtained from (Sarkizova et al., 2020a) shows 
that the 9-mer peptide does not conform with the molecule’s preference for a basic residue at position 5. In B) is shown a table of 
the presentation prediction results displayed in percentile values. The generally agreed percentile threshold is 0.5 for differentiating 
between strong and weak binders and 2.0 threshold for differentiating between binders and non-binders. The prediction results 
show that the peptide was not mutually considered as binder by both algorithms. C) represents the measurements of binding 
affinity of the peptide to the HLA-I molecule after a series of substitutions on the amino acids at the 5th and 6th positions of the 
peptide. 

 

4.6.3. In-silico 3D structural modeling of the peptide-HLA complexes 

We aimed at understanding the conformation of the CBFA2T3- GLIS2 peptide (SEDFQPLRY) and 

its binding to the A*01:01 molecule and B*44:03, A*29:02 was not included due to the lack of a 

suitable PDB template to be used. We chose the CBFA2T3-GLIS2 protein to model its binding with 

A*01:01 because its measured binding affinity result was higher than the threshold for weak 

binders (>2000nM). however, it is known that for certain alleles in-vitro binding affinity of a 

peptide-MHC-I complex less than 10000nM is still capable of binding T cells (Reardon et al., 2021). 

Therefore, we modeled its binding with the B*44:03 molecule it strongly bound. Our modeling 

(Fig. 50A) revealed that HLA-B*44:03’s B pocket residues E63, K45, Y9 interact with the anchor 
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residue E2 of SEDFQPLRY (fig. 50B) whereas the F pocket residues N77, Y84, D116, K146 interact 

with Y9 of SEDFQPLRY (Fig. 50C) as similarly shown in the literature for HLA-B*44:03 allele (Rist 

et al., 2013) As for HLA-A*01:01, we also observed that the interactions between the B & F 

pockets (Fig. 51A) were the same as described in the literature for HLA-A*01:01 (Giam et al., 

2015). The aspartate in third position of SEDFQPLRY acts as anchor residue and interacts with the 

B pocket (Fig. 51B). On the other hand, Y9 of SEDFQPLRY interacts with the same residues as those 

in the HLA-A*01:01 molecule (Fig. 51C). This modeling has allowed us to further validate the 

justified binding of the SEDFQPLRY peptide derived from the CBFA2T3-GLIS2 fusion to two alleles: 

HLA-A*01:01, HLA-B*44:03. 

Fusion Peptide 

sequence 

HLA HLA-

interacting 

residues 

Peptide 

interacting 

residues 

Polar 

Interactions 

Pockets Binding 

energies 

(RosettaMHC) 

CBFA2T3-

GLIS2 

SEDFQPLRY HLA-

A*01:01 

E63, H70, 

N77, Y84, 

Y99, D116, 

K146, 

W147, 

R156, Y159 

S1, E2, D3, 

Q5, L7, R8, 

Y9 

S1 -> Y159 

E2 -> E63 

D3 -> H70, 

Y99 

Q5 -> R156 

L7 -> N77 

R8 -> N77, 

W147 

Y9 -> N77, 

Y84, D116, 

K146 

A, B, C, D, F -59.61971 

CBFA2T3-

GLIS2 

SEDFQPLRY HLA-

B*44:03 

Y7, Y9, R62, 

E63, K45, 

E76, N77, 

Y84, D116, 

K146, 

W147, 

Y159 

S1, E2, R8, 

Y9 

S1 -> Y7, 

R62, E63, 

Y159 

E2 -> Y9, 

K45, R62 

R8 -> E76, 

W147  

Y9 -> N77, 

Y84, D116, 

K146 

A, B, D, F  -59.4299 
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Tableau 6. –  Results of the analyses from the 3D structural modeling 

 

 

Figure 50. –  3D structural modeling of CBFA2T3-GLIS2 peptide (SEDFQPLRY) with HLA-B*44:03. 

A) represents the top view of 3D structure of the SEDFQPLRY-HLA-B*44:03 complex and displays the polar interactions (hydrogen 
bonds) between the peptide and the HLA molecule. B) In panel B, the structure was zoomed in on the interaction between the HLA-
B*44:03 B pocket and the E2 (glutamine) second amino acid residue in SEDFQPLRY.C) Panel C shows a zoomed in view on the HLA-
B*44:03 F pocket residues interacting with the Y9 (Tyrosine) ninth amino acid residue in SEDFQPLRY. 
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Figure 51. –  3D structural modeling of CBFA2T3-GLIS2 peptide (SEDFQPLRY) with HLA-A*01:01. 

A) represents the top view of 3D structure of the SEDFQPLRY-HLA-A*01:01 complex and displays the polar interactions (hydrogen 
bonds) between the peptide and the HLA molecule. B) In panel B, the structure was zoomed in on the interaction between the HLA-
A*01:01 B pocket and the D3 (Aspartate) second amino acid residue in SEDFQPLRY.C) Panel C shows a zoomed in view on the HLA-
A*01:01 F pocket residues interacting with the Y9 (Tyrosine) ninth amino acid residue in SEDFQPLRY.
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Chapter 5 – Discussion 

5.1.  The identification of hybrid peptides  

5.1.1. Proteasomally-spliced peptides 

The human mind treats a new idea the same way the body treats a strange protein; it 
rejects it. – Sir Peter Medawar 

 

It is not without challenges that a new concept would be accepted. Proteasomally-spliced 

peptides are a “hot topic” in the immunopeptidomic field and an ongoing debate around the 

identification and proportion of these has taken a toll (Admon, 2021; Endert, 2021; Faridi et al., 

s. d.; P. M. Kloetzel, 2022; Mishto, 2020, 2021; Purcell, 2021).  

5.1.1.1. Bio-informatic identification of spliced  

The identification of proteasomally-spliced peptides should rely on ensuring that the peptide 

spectra are of good quality (such as through a comparison of the observed with the calculated 

theoretical retention time, precursor error mass distributions) (Lichti et al., 2022; Wen et al., 

2020). Some other challenges have been mentioned in the published article (chapter 2) include 

isobaric amino acids (Isoleucine and Leucine) and modifications. Also, the ALC (average local 

confidence score) by PEAKS software in denovo analyses could be misleading since as pointed out 

by Lichti et al (2022) the scores for one fragment of the spliced has high values whereas the 

second has lower ones. Other issues include the fact that a cis-spliced peptide searched against 

the proteome database could have more than 1 protein hit, begging the question: is the unique 

source of a spliced peptide a determining factor? Additionally, in vitro experiments that aimed at 

elucidating proteasomal splicing rules had findings contradictory with validated spliced hinting at 

the difficulty of in-vitro experiments to completely replicate the in vivo splicing (Paes et al., 2020). 

That said, it is also difficult to confirm the exact source of a given peptide as these could originate 

also from non-coding regions or from frameshifted translations or even from a gene fusion, 
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therefore, a complete proteogenomic approach would be needed to flag such (Cuevas et al., 

2021; Erhard et al., 2020).  

One of the main insights that have come from the debate include the fact that bio-informatic 

tools should be treated as guiding truths (Endert, 2021). Therefore, research has to be intensified 

on these proteasome spliced peptides to better understand them and in turn continuously 

improve the available tools.  Briefly, no matter the algorithm, experimental validation is extremely 

warranted to confirm identifications; ruling out a genomic source and then validating that the 

proteasome is responsible for the ligation. Several approaches to validate can be used including 

the use of proteasome inhibitors, heavy-stable isotope labeling, T-cell assays (Dalet et al., 2010, 

2011; Ebstein et al., 2016; Faridi et al., 2020; Hanada et al., 2004; Michaux et al., 2014; Platteel, 

Liepe, Eden, et al., 2017; Platteel, Liepe, Textoris-Taube, et al., 2017; Vigneron et al., 2004; Warren 

et al., 2006).  

Nevertheless, while writing this manuscript, a very recent study published has investigated 

spliced peptides using a bioinformatic protocol that resembles RHybridFinder. They have used 

their method to identify proteasome spliced peptides which they were also able to confirm the 

source through rigorous experimentation (Kato et al., 2021).  

5.1.2. Gene fusion-derived peptides 

5.1.2.1. Cross-HLA binding potential of gene fusion peptides 

Similarly to proteasomal spliced peptides, gene fusion peptides are also considered hybrid. Gene 

fusions can generate chimeric proteins which would have novel function and peptides degraded 

from them. Moreover, the junction region can be a source of neoantigens as has been previously 

demonstrated with BCR-ABL1, ETV6-RUNX1, CBFB-MYH11 (Biernacki et al., 2020a; M Bocchia et 

al., 1996; Yotnda, Garcia, et al., 1998; Zamora et al., 2019a).  

To predict the ability of GF-Neo to bind multiple alleles whether of the same supertype or of 

different supertypes, we have firstly developed FCR and then used it to analyze a gene fusion 

database of cancer cell lines. Our prediction results showed that gene fusions can generate 

peptides that are predicted to bind HLA-I alleles belonging to one and more than one supertype 
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with a large majority binding alleles belonging to one up to four supertypes (70% of gene fusions). 

At the extreme, we found 1 gene fusion peptide which was predicted to bind up to 25 HLA-I 

alleles. Of note is that approximatively 6% of fusions (n=27) were not predicted to generate any 

HLA-I binders.  

Additionally, the analysis of gene fusions involving oncogenes and those identified in cosmic has 

shown that these gene fusions are predicted to generate cross-HLA-I peptides that are estimated 

to cover a large population worldwide. 

Since we also aimed at reducing the scope of HLA-I alleles to those presented, we focused on HLA-

typed cancer cell lines allowed us to see that on average 23% of fusion peptides across cell lines 

can bind more than 1 HLA alleles of those expressed on average. Nevertheless, it is noteworthy 

that out of the 100 fusions found in 62 cell lines, we were able to find 86 fusions that are predicted 

to generate at least 1 peptide that binds 1 HLA-I alleles. On the other hand, 12 fusions do not 

generate an HLA-I binder (12%). 

Furthermore, in vitro validation on a small subset of clinically relevant gene fusion peptides 

confirmed the utility of FusionChoppeR in prioritizing gene fusion neoantigens. Notably, the in-

vitro binding results demonstrated that gene fusion-derived peptides can bind different HLA-I 

alleles of the same and different supertypes (ZNF274-JAK2), and HLA-I A & B alleles (CBFA2T3-

GLIS2, ATF7IP-PDGFRB).  HLA-A & HLA-B alleles are considered functionally divergent and to have 

low peptide binding similarities between HLA-A alleles and HLA-B alleles, as demonstrated by Di 

et al. (2020).  

5.1.2.2. Gene fusion peptides constitute a novel type of HLA-I binders 

The ETV6-RUNX1 peptide RIAECILGM which is predicted by netMHCpan to be a weak binder to 

HLA-A*02:01 but a strong binder by MHCflurry, has also shown weak binding affinity in our in 

vitro results despite that it has been described to exert immunogenicity (Yotnda, Garcia, et al., 

1998; Zamora et al., 2019a). The earlier findings by Yotnda et al (1998) that this peptide is 

antigenic to HLA-A*02:01 and immunogenic were disputed by Popovic et al (2011) who obtained 

opposing results from both binding affinity assay, natural processing and T-cell assay (Popovic et 

al., 2011; Yotnda, Garcia, et al., 1998) The authors claimed that the proteasome cleavage did not 
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generate the RIAECILGM peptide and that original T cell response in Yotnda’s work (1998) was 

due to non-specific reactivity of T cells because they use T cell lines instead of T-cell clones. 

However, in a seminal paper by Zamora et al. (2019) the RIAECILGM peptide was shown to trigger 

an immune response from patient derived PBMCs (Zamora et al., 2019a). Therefore, considering 

the contradictory results, further experiments aimed at confirming whether the peptide is 

naturally processed and presented are warranted. 

Furthermore, in our analyses, the CBFA2T3-GLIS2 peptide with the sequence SEDFQPLRY which is 

able to bind multiple HLA-I alleles, was a very interesting finding because, 1) it is derived from a 

gene fusion that is associated with an unfavorable prognosis, 2) it is predicted and able to bind 

highly divergent alleles and 3) in our clustering analysis, the SEDFQPLRY sequence was predicted 

to bind these based on its sequence similarity with peptides eluted with these alleles. (Fig. 37 and 

Table 3). To sum up, this supports the idea that the CBFA2T3-GLIS2 fusion seems to generate a 

very attractive potential target for testing with immunotherapies such as PCARs.  

Another interesting finding was that the gene fusion peptide-HLA IALPFKVVV-HLA-B*08:01 pair 

was not predicted by both algorithms. Moreover, its sequence does not conform with the HLA 

binding motif of HLA-B*08:01 (Fig. 38A-B). Much to our surprise, the peptide bound strongly to 

HLA-B*08:01 in vitro. Substitutions of the residues at the 5th and 6th positions of the peptide 

revealed that the amino acid at the 6th position within the peptide was responsible for this strong 

binding which contradictory to the usual peptides bound by the B*08:01 molecule. This meant 

that structurally it is possible the peptide adopts a specific a conformation to overcome the 

position of the residue. This has two important implications, 1) the reliance on prediction 

algorithms could lead to the disposal of valuable neoantigens and 2) peptides derived from 

fusions have distinct amino acid compositions that probably allow them to circumvent HLA-I 

binding motifs. Therefore, these possibly constitute a novel type of HLA-I binders.  

The only peptide whose predictions and results were consistent with the in-vitro results and the 

literature was the REEMEVHEL peptide of the CBFB-MYH11 fusion (Biernacki et al., 2020b).  

In summary, our results have shown that research is warranted to improve the predictions of 

fusion peptide HLA-I binders. Researchers generally tend to apply stringent thresholds in order to 
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limit their lists to the strongest binding peptides. This could probably lead to the underestimation 

of the gene fusions are underestimated as neoantigen sources. Thus, further studies should focus 

on understanding the antigenic and immunogenic properties of these.  

 

5.2. The Future of hybrid peptides 

5.2.1. Proteasome spliced peptides: a proposition for a proof-of-concept 

Despite the thoroughness of the experiments aimed at proving the existence/identification of 

spliced peptides, doubts are still looming in the immunopeptidomic community around the 

existence of these (Admon, 2021). Thus, alternative methods are warranted. Two important 

aspects still need to be further explored, the proof-of-concept and the evaluation of in-vivo 

proteasome processing vs in-vitro. Focusing on the former. Illustrated below is a strategy 

approach that relies on obtaining proof of splicing through the validation with traditional 

methods. Essentially, a spliced version of the thoroughly and widely characterized ovalbumin 

epitope is synthesized and then digested by the proteasome. If the proteasome does indeed splice 

peptides, then, the canonical ovalbumin epitope should be generated by the proteasome. Testing 

that the proteasome has generated the canonical peptide from its spliced version can be easily 

achieved with SIINFEKL-specific CD8+ T cells as well as with mass spectrometry.  
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Figure 52. –  Proposed proof-of-concept experiment.  

 

Additional methodologies can be incorporated to this approach such as proteasome inhibitors 

and heavy-stable labeling. That is, it would also be possible to devise an experiment where the 

green and purple fragments have been labeled, if proteasomal splicing should occur then, the 

resulting peptide will be doubly labeled, as has been studied before by Berkers et al. (Berkers et 

al., 2015). Furthermore, the use of proteasome inhibitors would help validate that the splicing is 

catalyzed as has been used in the literature(Dalet et al., 2011; Ebstein et al., 2016; Hanada et al., 

2004; Michaux et al., 2014; Vigneron et al., 2004).  

This approach has some visible issues such as the intervening fragment to be used (here -AWNR-

, based on the heavily tested gp100 spliced peptide RTKAWNRQLYPEW) its length, its amino acid 

composition among others. Nevertheless, the ability to demonstrate proteasome splicing through 

obtaining a canonical product could be a game-changer and the start of a new era for proteasome 

peptide splicing. 



 129  

5.2.1. Gene fusion-derived peptides 

5.2.1.1. The prospect of discovering cross-HLA-I binding peptides 

Recently, a peptide-centric CAR (PCAR) has been developed for targeting a neuroblastoma 

PHOX2B-derived neoantigen (Yarmarkovich et al., 2021). They were also able to successfully test 

for its ability to target the peptide while being presented on HLA-A and HLA-B alleles. The authors 

tested the cross-reactivity of the PCAR construct, they found that it was able to specifically target 

the PHOX2B peptide presented on the HLA-I alleles in comparison with other peptides. Given the 

results shown in this manuscript it would be reasonable the prospect of applying PCARs for 

treating pediatric tumours. FCR was developed in order to enable researchers to apply it to 

fusions and facilitate the discovery and selection of neoantigens. The application of PCARs for 

target gene fusion peptides could open the possibility of having off-the shelf treatment for 

pediatric cancers.  

5.2.1.2. Immunoopeptidomic studies on cancer cell lines harboring gene fusions 

The analysis of the LigeA database of gene fusions in cancer cell lines demonstrates the need for 

mass immunopeptidomic experiments on cell lines.  The neoantigenic potential of the different 

gene fusions (in-frame, out-of-frame) can have a great impact on the development of fusion 

neoantigen centric therapies, as well as on our understanding of how these hybrid peptides 

interact with the degradation machinery of the cell. Finally, in order to contribute our analyses 

to the research community, we provide a database with the FusionChoppeR tool that would 

allow to have access to all the results of neoantigen predictions computed on the cell lines. 
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Conclusion 

 

In this project, we have emphasized the relevance of the hybrid immunopeptidome for the 

development of immunotherapies. Also, we have introduced two new tools that we have 

developed for probing these computationally. 

We have also shown that gene fusions can generate peptides that bind multiple HLA-I alleles and 

that gene fusions can be heterogeneous therefore they generate attractive targets. We argued 

the reliance on predictions and demonstrated need for improving peptide-MHC-I predictions for 

gene fusion peptides. We have also shared a database of gene fusion derived peptides of cancer 

cell lines with the research community.  

Additionally, we have proposed a workflow for the validation of proteasome-catalyzed spliced 

peptides (presented in the published manuscript) as well as a novel strategy for the validation of 

proteasomal splicing which could also impact future research.  

Finally, the hybrid immunopeptidome’s shareability among individuals could constitute a novel 

target for an “off-the-shelf” form of immunotherapy. 
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Annex 

 

 

 

Tableau 1. –  (Annex) 35 most common HLA-I (A/B/C) alleles selected for the predictions and the 

supertype they belong to. 

 

 

 

HLA-A Supertype  HLA-B Supertype  HLA-C Supertype 

A*01:01 A01  B*07:02 B07  C*03:02 C1 

A*02:01 A02  B*08:01 B08  C*03:03 C1 

A*02:03 A02  B*15:01 B62  C*03:04 C1 

A*02:06 A02  B*35:01 B07  C*04:01 C4 

A*03:01 A03  B*40:01 B44  C*06:02 C4 

A*11:01 A03  B*44:02 B44  C*07:02 C1 

A*23:01 A24  B*44:03 B44  C*08:01 C1 

A*24:02 A24  B*51:01 B07  C*17:01 C4 

A*26:01 A01  B*53:01 B07    

A*29:02 A01A24  B*57:01 B58    

A*30:01 A01A03  B*58:01 B58    

A*30:02 A01       

A*33:01 A03       

A*68:01 A03       

A*68:02 A02       



 132  

 

 

Fusion Peptide 

Sequence 

HLA-I predicted to be 

bound 

# of 

HLA-I 

Supertypes 

that the HLA-I 

alleles belong 

to 

# of 

Supertypes 

ATF7IP-

PDGFRB 

IALPFKVVV A*02:01, A*02:06, 

A*68:02, B*51:01, 

B*58:01, C*03:02, 

C*03:03, C*03:04, C*06:02, 

C*08:01, C*17:01 

11 A02, B07, B58, 

C1, C2 

5 

CBFA2T3-

GLIS2 

SEDFQPLRY A*01:01, A*29:02, 

A*30:02, B*35:01, 

B*40:01, B*44:02, 

B*44:03, C*04:01, 

C*07:02, C*18:02 

10 A01, A01 A24, 

B07, B44, C2, C1 

6 

ZNF274-

JAK2 

IPQDTIPVL B*07:02, B*08:01, 

B*35:01, B*51:01, 

B*53:01, C*03:02, 

C*03:03, C*03:04, C*04:01, 

C*07:02, C*08:01, C*17:01, 

C*18:02 

13 B07, B08, C1, C2 4 

ETV6-

RUNX1 

RIAECILGM A*02:01, A*02:03, 

A*02:06, C*17:01 

4 A02, C2 2 

CBFB-

MYH11 

REEMEVHEL B*40:01, B*44:02, 

B*44:03, C*04:01, 

C*18:02 

5 B44, C2 2 

 

Tableau 2. –  (Annex) Candidate gene fusion peptides selected for in vitro binding assay along with 

their predictions. 
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The peptides selected for in vitro binding assay. The HLA-C alleles are in italic and lower font because they were not tested. 

 

  Actual 

  Binder Non-binder 

Predicted 

Binder True 
Positive 

False 
Positive 

Non-
binder 

False 
negative 

True 
Negative 

 

 

Tableau 3. –  (Annex) Confusion matrix of possible results of predicted vs. actual result of peptide-

MHC -I binding. 

The table presents all possible scenarios of comparisons between predictions and results. If a peptide is predicted to be binder to 
a MHC-I, in actual results it can either be binder in which case it would be a true positive or a non-binder in which case it would be 
a False positive (predicted to be binder but is not actually). On the other hand, If a peptide is predicted to be non-binder to a MHC-
I, and in actual results it is a binder then this means it is a false negative however if it is non-binder then it is considered a true 
negative.  

 

  NetMHCpan prediction 

  Strong binder 
(SB) 

Weak binder  
(WB) 

Non-binder  
(NB) 

MHCflurry 
prediction 

Strong 
binder (SB) SB SB NB 

Weak binder 
(WB) SB  WB NB 

Non-binder 
(NB) NB 

NB 
NB 
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Tableau 4. –  (Annex) Confusion matrix of netMHCpan and MHCflurry prediction results that explains 

the formula Strong binder ratio in section 3.1.2.1. 

The table presents all possible scenarios of comparisons between peptide-MHC-I predictions of both algorithms: netMHCpan and 
MHCflurry. In that formula, a peptide was considered as SB if at least one algorithm prediction deemed it as SB and the other as 
SB/WB. On the other hand, WB is considered so if both algorithms deem the peptide-MHC-I complex as WB. Finally, any NB led to 
being deemed as non-binder and therefore not considered. 

 

  

Peptide Cluster Alleles of the peptides from the same cluster (>1%) * 

IALPFKVVV 3 A0203, A0206, A6802, B0702, B0801, B5101 

SEDFQPLRY 5 A0101, A2902, A3002, B3501, B4402, B4403, B5801 

IPQDTIPVL 11 A0206, A6802, B0702, B0801, B3501, B4001, B5101, B5301, B5801 

REEMEVHEL 21 B4001, B4402 

   

Tableau 5. –  (Annex) The alleles presented by the peptides of each cluster. 

The table shows for the peptides selected, the alleles of the peptides that within that cluster. *Only alleles of peptides representing 
a percentage greater than 1 % were considered. This table also shown in barplot format in Annex Figure 1. 
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Figure 1. –  (Annex) Barplots of the HLA-I allele frequencies (%) within the clusters of our candidate 

peptides 

Each one of these barplots represents the HLA-I allele frequencies within the clusters of our candidate peptides.
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