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Résumé 

Le cancer colorectal est la deuxième cause de décès par cancer au monde. Il a été 

démontré que la thérapie par inhibition du point de contrôle immunitaire traite efficacement le 

cancer colorectal avec microsatellites instables, mais la majorité des tumeurs ne répondent pas 

bien à ce traitement. La recherche s'est ainsi tournée vers des stratégies immunothérapeutiques, 

qui pourraient activer une réponse des lymphocytes T cytotoxiques contre des antigènes 

spécifiques aux tumeurs. Ces antigènes sont mieux identifiés en utilisant la spectrométrie de 

masse, qui permet l'échantillonnage et le séquençage directs de ces peptides. Alors que les 

quelques antigènes spécifiques aux tumeurs identifiés à date sont dérivés de régions codantes du 

génome, des découvertes récentes indiquent qu'une grande proportion d'antigènes spécifiques 

aux tumeurs proviennent de régions prétendument non codantes. Ici, nous avons utilisé une 

nouvelle approche protéogénomique pour identifier les antigènes tumoraux dans une collection 

de lignées cellulaires dérivées du cancer colorectal et d'échantillons de biopsie. L'utilisation de 

bases de données personnalisées sur le cancer en tandem avec des analyses de spectrométrie de 

masse a permis d'identifier plus de 30 000 peptides uniques associés au CMH I et 19 antigènes 

spécifiques aux tumeurs dans des tumeurs avec microsatellites stables et instables, dont plus de 

deux tiers provenaient de régions non codantes. Ces découvertes pourraient bénéficier le 

développement de vaccins à base de cellules T, dans lesquels les cellules T sont amorcées contre 

ces antigènes pour cibler et éradiquer les tumeurs. Un tel vaccin pourrait être utilisé avec les 

thérapies existantes d'inhibition des points de contrôle immunitaire, pour traiter efficacement 

divers sous-types de cancer colorectal avec des pronostics différents. Les études futures devraient 

inclure une évaluation rigoureuse de l'immunogénicité de ces peptides, ainsi que l'optimisation 

des formulations spécifiques de vaccins anticancéreux pour traiter le plus efficacement possible 

le cancer colorectal. 

 

Mots-clés : cancer colorectal, antigène spécifique aux tumeurs, spectrométrie de masse, 

protéogénomique, immunothérapie du cancer 





 

Abstract 

Colorectal cancer is the second leading cause of cancer death worldwide. Immune 

checkpoint inhibition therapy has been shown to effectively treat microsatellite unstable 

colorectal cancer, but the majority of tumors do not respond well to this treatment. Research has 

thus turned to immunotherapeutic strategies, which could activate a cytotoxic T cell response 

against tumor-specific antigens. Such antigens are best identified using mass spectrometry, which 

allows the direct sampling and sequencing of these peptides. While the few tumor-specific 

antigens identified to date are derived from coding regions of the genome, recent findings 

indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding 

regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a 

collection of colorectal cancer-derived cell lines and biopsy samples. Using personalized cancer 

databases in tandem with mass spectrometry analyses resulted in the identification of over 30 

000 unique MHC I-associated peptides and 19 tumor-specific antigens in both microsatellite 

stable and unstable tumors, over two-thirds of which were derived from non-coding regions. 

These findings could benefit the development of T cell-based vaccines, in which T cells are primed 

against these antigens to target and eradicate tumors. Such a vaccine could be used with existing 

immune checkpoint inhibition therapies, to effectively treat varying subtypes of colorectal cancer 

with differing prognoses. Future studies should include rigorous evaluation of the 

immunogenicity of these peptides, as well as the optimization of the specific cancer vaccine 

formulations to most effectively treat colorectal cancer.  

 

Keywords : colorectal cancer, tumor specific antigen, mass spectrometry, proteogenomics, 

cancer immunotherapy 
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Chapter 1 – Introduction 

1.1 Colorectal cancer 

 Cancer is defined as uncontrolled cell growth that can develop in nearly any tissue or organ 

in the body (1). Such growth can disrupt the regular functioning of these tissues or organs and 

lead to grave health consequences. In addition, cancer cells have the ability to migrate, or 

metastasize, spreading throughout the body and causing further damage. Colorectal cancers 

(CRC) are tumors, primarily adenocarcinomas, which develop in the colon or rectum.  They 

represent a large and globally increasing disease burden. While CRC incidence and mortality are 

decreasing in certain countries with evolving treatments and screening methods, many factors 

need to be addressed. Different molecular subtypes have varying responses to treatments and 

much remains to be understood about the intricacies of this illness.  

1.1.1 Colorectal cancer epidemiology  

Colorectal cancer is the third most commonly diagnosed cancer and the second leading 

cause of cancer death worldwide, with over 1.9 million cases and 935 000 deaths estimated in 

2020 alone (2). This represents approximately 10% of all cancer deaths. The incidence of CRC is 

expected to increase as global socioeconomic changes occur, with a predicted 2.2 million cases 

and 1.1 million deaths occurring annually by 2030 (2, 3). In Canada, the predicted incidence in 

2020 was 26 900 cases and 9700 deaths (4). Annual cases of CRC in Canada began declining in 

males and females in the year 2000, however there remains a higher incidence and mortality in 

males, a trend that is reproduced globally (2).   

The incidence of CRC is correlated with high human development indices (HDI), as many 

risk factors of CRC are associated with a “Western” lifestyle (2). Such risk factors include alcohol 

consumption, smoking, decreased physical activity, and eating red or processed meats. “Obesity” 

is often listed as a risk factor; however, the stigma and bias directed towards people who are 

considered “obese” has a profound effect on patients’ mental health, well-being, and access to 

proper medical care (5, 6). This bias in turn could lead to delay in diagnoses, resulting in disease 
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progression and worse clinical outcomes. In contrast, healthier lifestyle choices decrease the risk 

of CRC, as demonstrated by the decrease in incidence in North America in recent years (2, 7).  

In addition to lifestyle changes and disease prevention, CRC mortality has also decreased 

due to screening efforts. As CRC has a slow progression from precancerous lesions to more 

advanced stages of disease (8), and early diagnoses are positively correlated with improved 

prognoses (7), widespread screening efforts are paramount. Both invasive (colonoscopy, 

sigmoidoscopy) and non-invasive (blood test, stool test) measures exist, each with advantages 

and with guidelines varying by country. For example, colonoscopies are the primary screening 

method used in the United States and are considered the “gold standard of screening” and were 

shown to reduce mortality in CRC overall; however, they did not reduce mortality for cancers of 

the proximal colon. In addition, this method is quite expensive and is thus not widely available 

(9). Other non-invasive and more affordable treatments, such as the fecal occult blood test, are 

simpler and widely available, however they are lower in sensitivity.  Advances in artificial 

intelligence are also proving advantageous for CRC detection, diagnosis, and treatment, such as 

deep learning models used to analyze screening images, which are frequently shown to improve 

diagnostic accuracy (10). 

Despite the variety of tests available, roughly 55% of Canadian adults in 2012 and less than 

70% of American adults in 2018 were up to date with CRC screening (11, 12). The United States 

has established screening targets in response, with the Office of Disease Prevention and Health 

Promotion setting the goal of 74.4% of eligible adults being screened by 2030 

(https://health.gov/healthypeople/objectives-and-data/, objective C-07). A retrospective study 

of the age of diagnosis of CRC in the United States demonstrated an increase in diagnoses in 

individuals under 50 from 2004 to 2015. Accordingly, American recommendations adapted to 

suggest screening begin at 45 years of age (13, 14).  

While the overall incidence and mortality rates of CRC are declining in the United States, 

these advances are not seen equally across all populations. The incidence rates of CRC were 

approximately 20% higher in Black individuals compared to non-Hispanic white individuals in 2012 

to 2016, while mortality was nearly 40% higher (7). While approximately half of these disparities 
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are attributable to differences in risk factor prevalence, Black individuals are also less likely to 

receive follow-up care (15). Additionally, Alaska Natives have the highest CRC incidence and 

mortality in the United States, which is at least partially due to inadequate availability of screening 

services (7). In addition to differences in risk factor prevalence and screening and follow-up 

access, systemic racism in healthcare has been well documented in both Canada and the United 

States and cannot be ignored in discussions of incidence and mortality among marginalized 

groups (16, 17). To increase the impact of both cancer screening and treatments it will also be 

necessary to address racism and other forms of discrimination enacted by healthcare providers 

and institutions.  

1.1.2 Colorectal cancer diagnoses and treatments 

 Colorectal cancer typically presents with initial symptoms such as rectal bleeding, pain, or 

alterations in bowel habits (18). Upon diagnosis, tumors are staged with a combination of CT, 

MRI, or endoscopic ultrasound. They may also be analyzed for various biomarkers or molecular 

phenotypes which could influence the course of treatment. To treat colorectal cancer, patients 

typically undergo surgical resection and chemotherapy or radiation, both of which depend on the 

type and location of the tumor. In more recent years, immune checkpoint inhibition (ICI) has 

become an attractive treatment option, in which small molecule inhibitors mitigate the cancer’s 

inhibitory effects on the anti-tumor immune response.  

1.1.3 Colorectal cancer tumorigenesis 

 The proposed adenoma-carcinoma sequence (Figure 1) of CRC describes the transition 

from a normal epithelium to a benign adenoma, followed by the progression to in situ carcinoma 

and finally an invasive and metastatic tumor (19, 20). An adenoma is a type of polyp, or abnormal 

tissue growth, and can be identified in cancer screenings. While not all adenomas will develop 

into  cancer, approximately 90% of sporadic CRC cases begin with adenomas, and as such colon 

polyps are removed if possible (21). Cancer progression can also be measured through TNM 

staging, which evaluates the invasion of the primary tumor both locally and in neighboring lymph 

nodes, as well as whether any distant metastases are present. In the case of CRC, an in situ 

carcinoma progresses to stage I once it has invaded the submucosa, and left untreated it will 
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continue to invade the muscular propria (stage II), the pericolorectal tissues (stage III), and finally 

it could invade the visceral peritoneum or other structures or organs (stage IV)(22). Stage I and II 

tumors are typically treated with surgery alone, whereas later stages are often treated with 

chemotherapy (23). 

 

 

Figure 1. –  Adenoma-carcinoma sequence of colorectal cancer. 

Depiction of the multi-year progression from healthy colon to colon cancer, through the successive 
loss of tumor suppressor genes and activation of oncogenes. Through these stages, normal colon 
epithelium develops first into a polyp, which then progresses to various stages of adenomas, finally 
resulting in a colon carcinoma. Adapted from “The Multi-Hit Model of Colorectal Cancer”, by 
BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates 
 

 

Colonic epithelial stem cells employ multiple strategies to maintain their genomic integrity 

(19). First, these cells rarely replicate, and when they do, they allocate DNA strands in an 

asymmetric fashion such that the older strand is allocated to the progenitor stem cell, as this 

strand likely contains fewer errors. The new strand is allocated to a transit-amplifying cell, which 

will amplify and then be sloughed off after 5-7 days. In addition to their replication strategies, 

colonic epithelial stem cells are located deep in the crypts away from environmental toxins and 

exposure to mutagens, and undergo cell death if damaged, rather than attempting DNA repair. 
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Finally, these cells also express Mdr1 (multidrug resistance 1) at the cell surface, which is able to 

pump out any mutagens that are able to enter the cell (and conversely is a source of chemo-

resistance).  

1.1.4 Molecular subtypes of colorectal cancer 

1.1.4.1 Chromosomal instability 

In spite of these protective mechanisms, several sources of genomic instability contribute 

to colorectal cancer development. The first, known as the chromosomal instability phenotype 

(CIN), follows a predictable series of KRAS activation and the inactivation of three or more tumor 

suppressor genes, which are often APC, p53, and the loss of heterozygosity (LOH) of the long arm 

of chromosome 18. APC, or the adenomatous polyposis coli gene, is the most frequent initial 

mutation in CRC, with 34-70% of sporadic CRC cases possessing a mutation in this gene (24). As 

part of the Wnt signaling pathway, this gene is responsible for blocking cell cycle progression, 

specifically G1/S transition, and this pathway keeps stem cells in an undifferentiated state. The 

Wnt pathway is often dysregulated in CRC, through APC or β-catenin mutations or promoter 

hypermethylation of the APC gene. This results in the accumulation of β-catenin and the retention 

of stem cells at the surface of crypts (rather than their elimination), and this accumulation of 

undifferentiated cells results in polyp formation (19). The subsequent addition of further 

mutations can thus lead to carcinoma development. Additionally, TP53 mutations prevent the G1 

cell cycle arrest and DNA repair normally executed by this gene. TP53 is one of the most 

frequently mutated genes in human cancers, with approximately half of CRC tumors carrying a 

mutation in this gene (25, 26). The chromosome 18 LOH primarily involves the deletion of the 

Deleted in colorectal carcinoma (DCC) gene, resulting in abnormal cell survival. This LOH is 

observed in approximately 70% of CRC.  

1.1.4.2 Microsatellite instability 

 Second, the microsatellite instability (MSI) phenotype of CRC arises from the 

hypermethylation of the MLH1 promoter in 80% of sporadic cases, or the point mutation of a 

gene involved in mismatch repair (MMR). DNA mismatch repair is responsible for repairing 

insertion/deletions and mis-incorporated bases during DNA replication. Microsatellites are small 
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repeating sequences of DNA of approximately 1 to 6 base pairs, which are present in both coding 

and non-coding regions and make up approximately 3% of the human genome. Due to their 

repetitive nature, these sequences are frequently subject to slippage, which under normal 

conditions is repaired by MMR machinery. Deficiencies in this machinery thus result in elongation 

or shortening of these microsatellite sequences, which is a source of genomic instability and is 

termed microsatellite instability. In CRC, MSI is associated with improved prognosis, especially in 

stage II tumors, and is associated with an improved response to ICI compared to the microsatellite 

stable (MSS) tumors (27). MSI is present in 95% of the hereditary Lynch syndrome and 15-20% of 

sporadic CRC and is diagnosed by polymerase chain reaction (PCR) to amplify microsatellite loci, 

immunohistochemical staining of CRC tissues to detect expression of MMR proteins, or through 

more recently developed bioinformatic programs that determine microsatellite status from Next 

Generation Sequencing data (28, 29). MSI tumors arise more frequently in the proximal colon and 

are characterized by lymphocytic infiltration. Due to the defects in MMR that are normally 

responsible for repairing DNA damage, MSI tumors are more chemo-sensitive than their MSS 

counterparts.  

1.1.4.3 CpG island methylator phenotype  

 Finally, a high proportion of hypermethylated genes, known as the CpG island methylator 

phenotype (CIMP), characterizes a subset of CRC tumors. This involves the covalent attachment 

of a methyl group to a cytosine in either a repetitive CG sequence or a CpG-rich area of the 

promoter region of a gene. These regions are normally unmethylated, but their methylation leads 

to gene silencing; this is thus a method of silencing tumor suppressor genes. CRCs with this 

phenotype often have the V600E hotspot mutation in BRAF, a member of the mitogen-activated 

protein kinase (MAPK) pathway. This pathway is involved in cell proliferation, angiogenesis, 

motility, and metastasis, and is frequently dysregulated in cancer. Driver mutations in KRAS, are 

very common and occur in roughly 40% of CRC tumors, and ERK has been shown to be 

overexpressed in CRC (30, 31). The PI3K/AKT pathway can also be activated by mutations in 

PIK3CA (which is mutated in over a quarter of CRC), PTEN (negative regulator), or TGFBRII, which 

is mutated in up to 90% of MSI CRC. Similarly to the MAPK pathway, this signaling sequence is 

involved in angiogenesis, metabolism, growth, and proliferation (32). In addition, this pathway is 
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initiated by insulin or other growth factors binding to the insulin receptor substrate. As such, 

insulin dysregulation due to illnesses such as diabetes or hyperinsulinemia predispose CRC due to 

the overabundance of insulin that activates the PI3K/AKT pathway (33).  

1.1.4.4 Familial CRC 

CRCs can be divided into inherited familial or sporadic disease. The most prevalent 

inherited familial diseases are Lynch syndrome (hereditary non-polyposis colorectal cancer) or 

familial adenomatous polyposis (FAP). Patients with Lynch syndrome carry a germline mutation 

in an MMR gene such as MLH1, MSH2, MSH6, or PMS2, or an EPCAM deletion, resulting in an 80% 

lifetime risk of CRC (as well as an increased risk of other cancers such as endometrial cancer) (19, 

34, 35). Approximately 3-5% of CRC cases are caused by this syndrome. Germline mutations in 

the APC gene cause the autosomal dominant FAP disorder, which causes hundreds or thousands 

of polyps to develop in the patient’s colon beginning on average at the age of 16 (19, 36). Without 

colectomy (bowel resection) intervention, CRC will develop in all patients with FAP (37).  
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1.2 Immune system 

 The immune system serves as the body’s defense against illness, through a complex web 

of biological processes that distinguish self from non-self. It is comprised of two branches: the 

innate and adaptive immune systems. Innate immunity is fast acting and non-specific but does 

not have a memory component. In contrast, the adaptive immune system takes longer to act but 

carries the advantage of specificity and immunological memory. These two branches work 

together to protect the host from a variety of onslaughts including bacteria, viruses, parasites, 

physical objects, and even tumors.  

1.2.1 Innate immune system  

The innate immune response is enacted by a series of distinct but collaborating cell types. Most 

of these cells circulate in the blood until they are recruited to sites of infection. Monocytes (in the 

blood) and macrophages (in the tissues) are responsible for phagocytosis of pathogens, initiating 

inflammation, and recruiting granulocytes to the area of infection or insult. These granulocytes, 

the most important of which are neutrophils, also enact phagocytosis of extracellular pathogens. 

Dendritic cells are responsible for ingesting antigens and then migrating into the lymphoid tissues 

to play a role in the adaptive immune response. Natural killer (NK) cells are considered both 

innate and adaptive cells and arise from a lymphoid progenitor and have a strong cytotoxic 

function. These cells are thought to make up approximately 5-20% of the circulating lymphocytes 

in the body (38). Phagocytosis by innate immune cells typically involves the ingestion of the 

pathogen into a phagosome, which is then acidified and merges with lysosomes to form a 

phagolysosome, in which the contents of the lysosome are also released to kill the pathogen (39).  

1.2.2 Adaptive immune system 

Aside from NK cells, the adaptive immune system consists primary of T and B lymphocytes. While 

B lymphocytes are responsible for an antibody response and attack extracellular components, T 

cells evaluate intracellular components. Both cell types recognize antigens, either through 

antibody/immunoglobulin or B cell receptor (BCR) recognition or T cell receptor (TCR) recognition 

of antigens presented by the major histocompatibility complex (MHC).  Each TCR consists of both 

alpha and beta polypeptide chains which have a variable region, constant region, and a 
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transmembrane region with a small cytoplasmic tail, and the two chains are connected through 

a disulfide bond (39).  

 MHC class I and class II have two corresponding classes of T cells in humans. These two 

types of MHC molecules have different structures and functions but are both highly polymorphic 

and play major roles in the activation of T cells. MHC class I is expressed on the surface of all 

nucleated cells and is responsible for presenting peptides to CD8+ T cells. It consists of three α 

domains and one β-2-microglobulin domain (Figure 2) (40). One of its α chains spans the cell 

membrane. In contrast, MHC class II is only expressed on professional antigen presenting cells, 

namely B and T cells, macrophages, and dendritic cells. MHC class II activates CD4+ T cells and has 

one α and one β chain, both of which span the membrane. The two outermost domains of these 

molecules form a peptide-binding groove, through which they interact with short amino acid 

sequences and present them to the appropriate T cells for activation. MHC II binds longer 

peptides of approximately 13-17 amino acids in length and interacts with and activates CD4+ T 

cells which are responsible for activating other effector cells in response to extracellular 

pathogens. On the other hand, MHC class I binds short peptides of 8-11 amino acids in length and 

activate CD8+ T cells which have a cytotoxic response against primarily intracellular pathogens. 

The CD4+ and CD8+ T cells are so named for the presence of the CD4 and CD8 coreceptors at their 

cell surface, which are required for MHC recognition. In either case, the MHC complex is unstable 

without a bound peptide and thus needs to be presenting an antigen to be present at the cell 

surface (40). The MHC I complex interacts with peptides through the anchor residues near their 

amino and carboxy termini. These peptides can be released from the MHC complex through acidic 

denaturation and can thus be isolated and analyzed.  
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Figure 2. –  MHC structures. 

Structures of MHC class I (left) and MHC class II (right). The genes associated with these complexes 
are listed below. Adapted from “MHC Class I” and “MHC Class II”, by BioRender.com (2022). 
Retrieved from https://app.biorender.com/biorender-templates 

 

Given that the adaptive immune response needs to recognize and eliminate infections 

from a large array of pathogens which can consist of many different peptide sequences, TCRs 

need to be capable of recognizing a wide range of antigens. This is accomplished through somatic 

DNA recombination that occurs during T cell development. Briefly, the TCR is composed of 

variable (V), diversity (D), joining (J), and constant genes. While there are two distinct types of 

TCRs, αβ and γδ, αβ TCRs make up the majority and their role in the adaptive immune response 

is much better understood. During αβ T cell development, a Vα segment combines with a Jα 

segment, and this VJ region is then transcribed and spliced together to Cα, resulting in mRNA that 

is then translated to yield the TCRα chain protein (Figure 3) (39). In the β chain, the variable region 

is encoded by VDJ segments, which are generated and then spliced together with the Cβ gene. 

Since there are many possible V, D, and J segments, as well as various junctions to be made 

between them, this results in an impressive diversity of putative TCRs. For example, the V, D, and 

J components of the β chain alone have 52, 2, and 13 possible segments, respectively, which does 

not include the ability of the D segments to be read in multiple frames, or the possible junctional 

diversity that could occur. When combined with the diversity of the α chain, there is a presumed 

TCR diversity in the order of 1018 (39).  
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Figure 3. –  T cell receptor loci 

T cell receptor structure (left) and T cell receptor loci for the alpha and beta chains. The numbers 
of different segments for each loci are indicated above the segments. Both the alpha and beta 
chains undergo somatic DNA recombination, and the various combinations of the numerous 
variable (V), joining (J), and diversity (D) segments results in large TCR diversity. Adapted from “T 
Cell Receptor Loci”, by BioRender.com (2022). Retrieved from 
https://app.biorender.com/biorender-templates 

 

MHC complexes need to be able to recognize a wide variety of antigens. As such, different 

alleles of the genes that make up the MHC complex, which mainly occur in the peptide binding 

groove, result in various peptide binding repertoires. MHC is both polygenic (involves multiple 

genes) and polymorphic (has many possible variants). MHC class I in particular is encoded by three 

human leukocyte antigen (HLA) alleles, HLA-A, B, and C, which are codominant. Thus, each 

individual is able to express up to six different HLA alleles, which are highly polymorphic, and each 

have varying peptide-binding specificities. Because of this, an individual’s ability to present a given 

peptide antigen is highly influenced by their HLA alleles.  

1.2.3 MHC I peptide presentation  

Protein homeostasis in the cell involves tightly regulating the processes of protein synthesis, 

transport, and degradation to maintain proteins in the correct concentration and localization in 

the cell. To achieve a balance in concentration, proteins often need to be degraded, which occurs 

primarily through ubiquitin-mediated proteasomal degradation. The proteasome is expressed in 

all cell types, and protein degradation can additionally occur by specialized proteasomes such as 

the immunoproteasome, expressed constitutively in APCs and T cells but also in other cell types 
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upon cytokine signaling such as interferon-g (IFN-g), or the thymoproteasome expressed in 

cortical thymic epithelial cells (41). Additionally, protein products that are defective due to 

improper splicing, folding, or frameshifts, termed defective ribosomal products (DRiPs), are also 

degraded (42). Following proteasomal degradation, peptides are trafficked to the endoplasmic 

reticulum (ER) via the TAP protein and trimmed by aminopeptidases. The corresponding peptides 

are then loaded onto partially folded MHC, which is bound to a series of chaperone proteins 

(Figure 4). Following peptide binding, MHC class I completes its folding and is transported to the 

cell membrane. It is through this pathway that MHC class I presents peptides from intracellular 

proteins. Less frequently MHC class I presents exogenous peptides in a process known as “cross-

presentation”. This process, which occurs most commonly in DCs, involves endocytosis of 

exogenous antigens that can then be loaded onto MHC I through two possible mechanisms (43): 

In the vacuolar pathway, internalized antigens are degraded by proteases and loaded onto MHC 

I entirely within the endosome; in the more dominant endosome-to-cytosol pathway, 

endocytosed antigens are trafficked to the cytosol where they undergo proteasomal degradation 

and peptides are then loaded onto MHC I in the ER. Cross-presentation thus allows DCs to present 

pathogen-derived peptides from which they were not infected, effectively allowing DCs to 

activate an immune response against viruses that infect other cell types (39, 44). This process is 

also key in the activation of an adaptive immune response against tumors (43).  
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Figure 4. –  MHC Class I peptide presentation pathway 

In order for antigens to be presented by MHC I at the surface of an antigen presenting cell, their 
source proteins must first be taken up by the proteasome (1) and undergo proteasomal 
degradation (2). The resulting peptides are then loaded onto MHC I complexes in the endoplasmic 
reticulum (ER) (3), and the peptide-MHC I complexes are then trafficked to the cell surface (4), 
where they can then be recognized by T cell receptors. Adapted from “MHC class I and II 
Pathways”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-
templates 
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1.2.4 T cell receptor rearrangement 

Hematopoietic stem cells are the precursors of both the myeloid cell lineage (dendritic 

cells, macrophages, monocytes, etc) as well as the lymphoid lineage (NK cells, B cells, and T cells). 

After originating from the bone marrow, progenitor cells migrate to the thymus for maturation, 

and undergo a rigorous series of selection prior to their evolution into mature T cells (39). When 

these progenitor cells arrive in the thymus, they have not yet undergone TCR genomic 

rearrangement and have few surface receptors. Following interactions with thymic epithelial cells 

or stromal compartment, these progenitor cells begin to proliferate and express certain surface 

molecules, but not yet CD4 or CD8 – such T cells are termed double negative thymocytes (i.e., 

CD4- and CD8-). As they develop in the ‘double negative’ stage, T cells begin expressing other 

receptors such as CD44 and CD25. As well, they begin the rearrangement of the β chain. The 

rearranged β chain then pairs with a surrogate α chain, termed the pre-T-cell receptor α chain (or 

pTα) (45). This pre-TCR pairs with CD3 to conduct signal intracellularly and allow the cell to 

proliferate and express both CD4 and CD8, thus termed double positive (DP) thymocytes (46). It 

is in this double positive state that the α chain rearranges to finalize the TCR.  

1.2.5 T cell selection 

In order to select only T cells that are capable of recognizing self-peptide presented by 

self-MHC and initiating an effective adaptive immune response, DP T cells undergo a process 

known as positive selection. Essentially, thymocytes will undergo cell death unless their TCR is 

able to recognize self-peptide:self-MHC complexes (47). As DP T cells are sampling these 

complexes, the strength of the signaling that they receive through CD4 or CD8 will determine to 

which of these two lineages they commit. The 10-30% of T cells that are able to recognize self-

peptide:self-MHC will then progress to the single positive stage, in which they are either CD4+ or 

CD8+ (39). While T cells need to be able to recognize self-peptide presented by self-MHC, they 

should not initiate an immune response in response to self-peptides; this is often what is 

dysregulated in cases of autoimmunity. To prevent this, T cells in the thymus that are activated 

by self-antigens will be deleted. In order to test T cell response against a majority of proteins in 

the body, including those that are tissue-specific, this collection of proteins is expressed by certain 

medullary thymic stromal cells, controlled by the autoimmune regulator gene (47). Thus, T cells 
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that react too strongly to a self-peptide will undergo apoptosis. After maturation, T cells will exit 

the thymus and begin circulating in the blood and lymph.  

1.2.6 T cell activation 

While circulating in the body, T cells will continuously sample peptide:MHC complexes 

presented at the surface of cells. Once they are activated by the antigen:MHC complex to which 

they are specific, they will proliferate and differentiate into effector T cells. In the case of CD4+ T 

cells, this differentiation could result in different helper T cell classes, depending on the pathogen. 

For CD8+ T cells, this differentiation results in cytotoxic effector T cells, which proceed to kill 

infected cells presenting the particular antigen. The activation of a T cell does not uniquely consist 

of antigen recognition; it also requires signaling through costimulatory molecules (for example, 

CD28) and cytokine signaling that is important for differentiation into different effector cells (48). 

Aside from cytotoxic or helper effector types, T cells may also differentiate into memory T cells, 

which will be capable of effecting a more rapid response upon a potential second infection.  

1.2.7 Immune checkpoints 

Following an effector immune response, the immune system requires an “off-switch”, or 

some way to halt the T cell response and inflammation once the threat has been removed. There 

are several existing mechanisms to mitigate and “turn off” the immune response. Two such 

mechanisms, termed “immune checkpoints”, are molecules that bind various receptors on T cells 

to inhibit their effector functions. For example, in addition to TCR:MHC binding, T cells require 

additional signals for their activation. The surface receptor CD28 is typically bound by CD80 and 

CD86 costimulatory molecules to advance T cell activation and proliferation. Cytotoxic 

lymphocyte associated protein 4 (CTLA-4) is a competitive binder to CD28. Thus, the binding of 

CTLA-4 to CD28 is able to inhibit the proliferation of T cells in the lymph (49). CTLA-4 is also 

constitutively expressed on regulatory T cells, or Tregs, which mitigate the activity of effector T 

cells. By binding CD28, CTLA-4 prevents T cell costimulation and downstream PI3K/Akt signaling 

(50). These pathways guide the T cell towards aerobic glycolysis and are necessary for T cell 

differentiation and effector function (e.g. cytokine production) (51, 52).  CTLA-4 also removes 

CD80 and CD86 from the surface of APCs through a process known as trans-endocytosis (53). 



 36 

Additionally, programmed death 1 (PD-1) expressed by a variety of immune cells, including 

activated T and B cells, NK cells, macrophages, and DCs (54). PD-1 is bound by its ligands 

programmed death ligand 1 or 2 (PD-L1 or PD-L2) to inhibit T cell proliferation and reduce T cell 

survival. Upon PD-L1 engagement of PD-1, immunoreceptor tyrosine-based switch motif (ITSM) 

is phopshorylated and the subsequent dephosphorylation of CD28 by the recruited Src homology 

region 2 domain containing phosphatase-2 (SHP2) inhibits TCR activation (50). PD-1 expression is 

a mark of T cell exhaustion and is characteristic of chronic infections or cancer. CTLA-4 is thus able 

to inhibit the early stages of an immune response, typically preventing T cell activation in the 

lymph nodes. In contrast, PD-1’s inhibition of T cell proliferation and survival occurs later in 

peripheral tissues. Together, these two immune checkpoints, along with Tregs, maintain 

homeostasis following a normal immune effector response.  

1.2.8 Immune system and cancer 

 Over 20 years ago, Hanahan and Weinberg published the seminal “Hallmarks of Cancer”, 

describing the features through which normal cells transform and become malignant (55). The 

original six hallmarks included genomic instability, epigenetic modifications, cancer cell 

proliferation, enhancement of cancer anti-apoptotic pathways, stimulation of angiogenesis, and 

cancer dissemination. In 2011, they published a follow-up to their original work, in which they 

discussed important advances in the field and proposed two additional emerging hallmarks and 

two enabling characteristics: these were deregulating cellular energetics, avoiding immune 

destruction, genomic instability and mutation, and tumor-promoting inflammation (56). The 

addition of ‘avoiding immune destruction’ and ‘tumor-promoting inflammation’ as characteristics 

of malignancy highlights the important roles of the immune system in cancer, both in its 

prevention and its promotion.  

1.2.9 Tumor microenvironment 

In the early stages of tumor initiation, individual or small groups of cells obtain successive 

mutations which result in their malignant transformation. However, immune cells are able to 

eliminate these cells through various anti-tumorigenic mechanisms. Eventually, certain cancer 

cells are able to progress through the incorporation of immune evasion strategies and the 
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recruitment of immunosuppressive cells (57). This tug-of-war between the effector and 

tolerogenic responses of the immune system decides the fate of the tumor and is highly 

influenced by the tumor microenvironment (TME), the highly heterogeneous region composing 

and surrounding a tumor. This region, which is of course composed of tumor cells but also stroma, 

blood vessels, and immune cells, is able to alter the course of the immune response (Figure 5). 

Many innate immune cells initially execute an anti-tumor response upon cancer development. NK 

cells and granulocytes are able to kill cancer cells through secretion of perforin or granzymes. NK 

cells secrete IFN-g to activate T cell effector functions, as well as recognizing and responding to 

MHC allele loss that frequently occurs in cancer (58). Macrophages are initially also able to directly 

kill cancer cells, and dendritic cells play major roles in both the innate and adaptive immune 

responses to cancer. Unfortunately, an insidious feature of the TME is its ability to reconfigure 

and redirect the innate immune response for its own benefit, through the release of inhibitory 

cytokines. This pro-tumorigenic redirection involves the transition from anti-tumorigenic to 

tumor-associated macrophages, which advance processes such as angiogenesis and tumor-

associated inflammation (59). DCs can also be redirected to tolerize the immune response to the 

tumor, and granulocytes can be coopted to have a pro-metastatic role (58, 60). Tumor cells are 

also able to downregulate their surface expression of MHC I, reducing their overall antigen 

presentation, in addition to the previously described immune checkpoints employed by the 

tumor.  
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Figure 5. –  Tumor microenvironment.  

Overview of the various components of the tumor microenvironment and the cancer-associated 
changes that may occur. 1) Fibroblasts recuited to the tumor microenvironment develop pro-
tumorigenic roles in response to TGF-B signaling; 2) Cancer cells are able to migrate and 
metastasize following cytokine signaling in the tumor microenvironment; 3) Vascular endothelial 
growth factor (VEGF) causes abnormal blood vessel growth, ultimately allowing further tumor 
development; 4) Monocytes are redirected to cancer-associated macrophages following cytokine 
signaling, and Treg recruitment contributes to further immune evasion by inhibiting CD8+ T cell 
function. Adapted from “The Tumor Microenvironment: Overview of Cancer-Associated Changes”, 
by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates 

 

1.2.10 Adaptive immune response to cancer 

The adaptive immune system also plays a significant role in the anti-tumorigenic response. 

Mutations and dysregulation of cancer cells lead to the presentation of mutated or aberrantly 

expressed MHC I-associated peptides (MAPs) at the cell surface. These tumor-associated or 

tumor-specific antigens (TAAs and TSAs, respectively) may be recognized as non-self by the 

immune system, and thus activate a cytotoxic T cell response against these antigens. For over 50 

years, these elusive tumor-associated and -specific antigens, which would allow an immunological 

attack on tumor cells, have been the subject of much study. Notably, Phil Gold and Samuel O. 

Freedman discovered carcinoembryonic antigen (CEA) in 1965, through a series of absorption and 

tolerance experiments using rabbits exposed to human colon carcinomas with normal tissue from 



 39 

the same individual (61). Antisera from rabbits immunized with CRC tumor extract that was 

absorbed with excess normal colon tissue extract formed an antibody-antigen precipitate when 

exposed to CRC tumor extract. Thus, it was demonstrated that some component of the rabbit 

antisera was uniquely responding to a component of the CRC tumor. Further investigation 

revealed that CEA was found in several human cancers, and was expressed in embryos and then 

downregulated in later development, hence its name (62). This family of tumor-associated 

molecules are now the most used tumor marker to date and are often used in CRC screening and 

as a prognostic factor (63, 64). From this ground-breaking study, it was revealed that tumor-

associated markers exist and that more likely remain to be discovered. 

1.2.11 Immune checkpoint inhibition 

Many tumor cells express CTLA-4 or PD-L, which is one of many mechanisms of immune 

evasion possessed by cancer. In light of this, such molecules were naturally targeted as cancer 

immunotherapy. The first immune checkpoint inhibitor, ipilimumab, was an anti-CTLA-4 

monoclonal antibody initially approved for treating advanced melanoma (65-67). Since then, ICI 

has been tested and approved in several other cancers, including CRC (68). Despite the initial 

success of ICI in advanced melanoma, it was soon revealed that not all tumors respond equally, 

even within an individual cancer type. “Immune cold” or “immune desert” TMEs lack immune 

infiltration into the tumor bed which prevents effector T cells from eliminating the cancer; such 

tumors typically do not benefit from ICI therapy (66). In CRC, there is a sharp distinction in 

response to ICI between MSS and MSI subtypes. A 2015 phase II study using a PD-1 inhibitor in 

metastatic CRC demonstrated that patients with MSI tumors had both increased progression-free 

survival and increased overall survival compared to their MSS counterparts (69). In addition, MSI 

tumors are characterized by increased immune infiltration, particularly of tumor-infiltrating 

lymphocytes, and better prognosis. When taken together, these data suggest that MSI tumors 

are presenting more tumor antigens at the cell surface, which is causing the increased 

recruitment of TILs and the improved anti-tumorigenic immune response.  
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1.3 Analyzing MAPs by mass spectrometry 

 The human genome consists of approximately 25 000 genes, 20 000 of which are 

supposedly protein-coding. Given that protein variation can be introduced through alternative 

splicing events, polymorphisms, and post-translational modifications, the human proteome is 

many times more complex than the genome. This complexity is greater still when considering the 

dysregulation that occurs in cancer which potentially produces novel protein products (70). Thus, 

the human cancer proteome could consist of hundreds of thousands of proteins; a portion of 

these would generate MAPs and highly sought-after TSAs. The use of mass spectrometry in this 

regard has led to countless advances in the field. After isolating MAPs from cells through acid 

elution or immunoprecipitation, they are separated by reverse phase chromatography and 

ionized by electrospray ionization prior to mass spectrometry analysis (LC-MS). The peptides, 

suspended in solution, are dispersed as charged droplets. The solvent then evaporates, leading 

to smaller and increasingly charged droplets, from which the ions are eventually ejected in the 

gas phase (71, 72). These newly ionized peptides are then introduced into a mass analyzer which 

measures the mass to charge ratio (m/z) of these ions (Figure 6). The collection of m/z ratios of 

ions isolated at a given time is known as an MS1 spectrum (73). From this initial spectrum, the 

mass spectrometer can isolate a specific isolation window for further ion fragmentation through 

collision with inert gases. This fragmentation typically breaks the peptide apart at amino acid 

junctions, and the resulting m/z differences between peaks in the MS/MS spectrum can be used 

to sequence the peptide. These peptides can be sequenced by correlating the corresponding 

fragment ions with ‘theoretical spectra’ contained in a user-defined database (74). The use of 

MS/MS sequencing ensures unambiguous identification of MAPs presented at the cell surface by 

MHC class I instead of using in silico prediction based on RNASeq and HLA selection, a process 

riddle with an overwhelming number of false positives especially when predicting neoantigens 

(75). And so, rather than attempting to predict in silico the peptides that are presented at the cell 

surface by MHC class I, a process which is riddled with unknowns, mass spectrometry allows the 

direct identification and sequencing of these peptides.  
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Figure 6. –  Schematic of mass spectrometry analysis. 

Depiction of mass spectrometry-based analysis of peptides. Peptides are first ionized by 
electrospray ionization, and precursor ions are then selected by a quadrupole. Precursors are 
transferred to the mass analyzer via the C-trap, after which they are analyzed to generate an MS1 
spectrum. The precursors may also be fragmented in a second quadrupole, and sent back to the 
C-trap and then subsequently the mass analyzer, in order to generated MS2 spectra composed of 
the m/z ratios of a given fragment. Created with BioRender.com 

 

1.3.1 Peptide quantification 

Of course, the advantages of mass spectrometry do not end there. This powerful 

instrument also carries the ability to quantify peptides through various methods. The simplest, 

known as label-free quantification, quantifies the area-under-the-curve of a peptide across the 

MS1 spectra captured throughout an injection, and allows the relative quantification of a given 

peptide across conditions (73). However, this approach is not very precise, and peptides are not 

necessarily detected and identified across all conditions. Metabolic labeling techniques, such as 

Stable Isotope Labeling by Amino acids in Cell culture (SILAC) involve the in vitro labeling of 

proteins with light, medium, and heavy stable isotopes (ie 13C, 15N) of amino acids. The resulting 

peptides can be quantified in the MS1 spectrum to determine their relative intensities across the 

three samples. Unfortunately, the inherent complexity of the corresponding MS1 spectrum 
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means that the same peptide can be sequenced multiple times which limits proteome coverage. 

Alternatively, quantification can be performed at the MS/MS stage using isobaric peptide labeling 

which allows multiplex quantitative measurements of up to 18 conditions in a single injection 

(76). Tandem mass tag (TMT) is the most popular reagent used in isobaric peptide labeling, which 

involves the covalent addition of the mass tag on the free amino group of lysine and the N 

terminus of peptides. These tags consist of a reporter group and a mass normalization group, 

which have varying distributions of heavy isotopes that give all the tags the same mass but the 

reporter ions resulting from ion fragmentation will vary in m/z (73). Thus, a peptide from 

differentially labeled samples will appear as a single peak in the MS1 spectrum, but upon 

fragmentation the reporter ions will be distinct peaks in the MS2. This allows the relative 

quantification of a peptide between conditions, or even the absolute quantification if a known 

concentration of peptide is used. While TMT or other isobaric labeling approaches allow sample 

multiplexing, which reduces technical variability and increases throughput, the most commonly 

occurring problem with this approach is known as ratio distortion. This can result in several 

peptides being quantified together, and this interference or ratio distortion clouds the 

quantification of these peptides. Fortunately, several methods have been elucidated to address 

this. The most commonly used method is MS3, in which ions undergo another round of 

fragmentation to remove co-isolating peptides (73); the drawback of this approach is a reduction 

in sensitivity and comprehensiveness. Another exciting feature of mass spectrometry is the ability 

to perform targeted analysis of a sample, in which the peptides of interest are known and can be 

selected for fragmentation based on their m/z, charge, or other properties. This technique, known 

as parallel reaction monitoring or PRM, permits the detection of low abundance peptides that 

may not be isolated otherwise (77).  

1.3.2 Databases for mass spectrometry analyses  

In the Journal of the American Society of Mass Spectrometry in 2015, John R. Yates III 

published a comprehensive review summarizing the technological and theoretical advances of 

the past several decades that have revolutionized mass spectrometry (74). In particular, given the 

wealth of data that can be generated in a single mass spectrometry (MS) injection, developments 

in computational methods and technology have been especially integral to the development of 
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MS analyses. For example, incorporating computational calculations and algorithms to interpret 

spectra allowed MS instruments to incorporate faster scanning speed and acquire more spectra 

in a given run. In the past, MS analyses relied on spectral libraries or de novo sequencing to 

identify proteins. Both of these methods carry limitations: spectral libraries are only capable of 

sequencing peptides that have been previously identified and for which the spectra is included in 

the library (78), and de novo sequencing often struggles to distinguish b and y ions, resulting in 

incorrect peptide sequencing (79). Thus, when the human genome was sequenced in the early 

2000s, this had a profound impact on MS analyses. Knowing the entire DNA sequence of the 

human genome allowed these nucleotides to be translated into amino acid sequences. This 

knowledge allowed researchers to use databases containing protein sequences that would be 

used to generate theoretical spectra. A peptide could thus be sequenced by matching an 

experimental spectrum to a theoretical spectrum for a protein sequence contained in the 

reference database. Initially, these databases were constructed using sequences from large, 

publicly available genome and protein databases such as Ensembl, RefSeq, or UniProtKB (80). A 

downfall of these databases is their inability to account for individual mutations such as single 

nucleotide polymorphisms (SNPs) or other unique variations that would not be characterized in 

these repositories. To address this, research groups began integrating genomic sequencing with 

proteomic analyses, which would come to be known as proteogenomics. In this approach, the 

personalized genomic data from an individual sample can be translated into amino acid 

sequences to construct the reference database, which will then be used for MS analyses. In fact, 

the algorithms used to correlate experimental and theoretical spectra were developed in the 

early 1990s alongside efforts to sequence MHC I- and II-associated peptides (81-83). Later, decoy 

sequences (inversed protein sequences from the reference database) were incorporated in order 

for software to calculate the false discovery rate (FDR) of peptide spectrum matches (PSMs). 

Today, there are several commercially available MS analysis software available, including Peaks 

(84, 85), MaxQuant (86), and SEQUEST (83).  
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1.4 Identification of tumor antigens 

The identification of TAs from cell lines or tissues is a “numbers game”; It is known that 

these sequences exist, however, their rarity and the difficulty of MAP identification make them 

elusive. Years of work have led to the development of optimized methods to identify these 

antigens. For example, the isolation of MAPs from cells or tissues is a potential source of major 

material loss if not done carefully. A 2018 study in a B cell lymphoblastoid and an acute myeloid 

leukemia (AML) cell line demonstrated that immunoprecipitation with an anti-MHC class I 

antibody allowed the isolation of approximately six times more MAPs than the other commonly 

used approach of mild acid elution (87). MAPs present a challenge for MS-based identification in 

that they do not require tryptic digestion, which results in basic C-terminal amino acids, as one 

might use in a whole cell extract to digest proteins into peptides. This and the common amino 

acid composition of MAPs means that they are frequently lowly charged, making them more 

challenging to identify in MS analyses. To address this, TMT labeling was recently shown to 

improve MAP identification by enhancing the formation of multiply charged ions and increasing 

peptide hydrophobicity (88). A final challenge presented by identification of tumor antigens is 

that their identification does not guarantee their immunogenicity or their recognition by T cells. 

Peptide immunogenicity may be predicted in silico or evaluated experimentally, in studies 

involving in vitro T cell assays or humanized mice. Importantly, promising results in 

immunogenicity experiments do not guarantee T cell reactivity towards these antigens in the 

patient; it is also required that the patient possess CD8+ T cells specific to these peptides. 

Fortunately, T cell reactivity can also be evaluated using in vitro reactivity assays to determine if 

the blood from cancer patients contains T cells specific to the antigens of interest, or through 

measuring cytokine secretion in ELISA or ELISpot assays (89).  

1.4.1 TAAs  

 TAAs are antigens that are more highly expressed on tumors, but are still presented by 

normal cells. Such antigens typically arise due to genetic or epigenetic changes that result in the 

increased expression and presentation of these sequences in cancer (Figure 7) (90). Given the 

cancer-associated processes that cause their overexpression, such sequences thus have the 
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capacity to be shared among tumors, however they are primarily exonic sequences and their 

expression on normal tissues makes them difficult to employ in the clinic without inducing either 

immune tolerance or adverse autoimmune responses. A subset of these antigens, however, 

known as cancer-testis antigens (CTAs), do show promise. These peptides, such as CEA or 

melanoma-associated antigens (MAGE) are absent from normal tissues with the exception of the 

testis, and show aberrant expression in some cancers (91). While certain TAAs and especially CTAs 

can be shared and immunogenic, research has expanded its purview to investigate TSAs, which 

also have the potential to be shared but could be comparatively absent from all normal tissues. 

1.4.2 Mutated TSAs 

In addition to technical challenges posed by the search for TSAs, researchers are also 

presented with theoretical challenges, such as to which type of TSA to devote their resources as 

well as how such sequences can be identified. Initially the majority of research in this area was 

devoted to the identification of mutated TSAs, or mTSAs; such peptides contain cancer-specific 

mutations, ensuring their tumor-specificity (Figure 7). Moreover, tumors can have enormous 

mutational burdens, carrying thousands of single-nucleotide variants (SNVs), in addition to 

insertion-deletions (INDELs) or gene fusion events.  In cancers with large mutational burdens, 

such as melanoma, this suggests that they should be presenting many neoantigens. Indeed, 

personalized neoantigen vaccines were shown to induce effective anti-tumor T cell responses in 

melanoma patients immunized with a series of mutated peptides (92). In CRC, the abundance of 

neoantigens predicted to be immunoreactive correlated with patient survival (93). While many 

neoantigens would be specific to an individual tumor, the possibility of a neoantigen generated 

from a driver mutation seemed promising, as such a mutation could be shared among many 

cancers. For example, KRAS is mutated in approximately 40% of CRC, and so a neoantigen derived 

from this mutated protein could theoretically be applicable to many patients. In fact, infusion of 

tumor-infiltrating lymphocytes (TILs), which were primarily CD8+ T cells, specific to the G12D 

KRAS mutation resulted in regression of seven lung metastases in the CRC patient from which the 

TILs were derived (94). And yet, the majority of SNVs in a given tumor do not generate antigens 

presented at the cell surface. For example, out of 159 predicted neoantigens with evidence at the 

proteome level in sixteen hepatocellular carcinomas, no neoantigens were detected by MS (95).  
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Figure 7. –  Standard mTSA/neoantigen identification 

Mutated tumor-specific antigens, or neoantigens, are often predicted using Next Generation 
Sequencing to identify cancer-specific mutations, which then undergo HLA binding predictions to 
identify which mutations are promising as neoantigen candidates. In tandem, MHC I peptides are 
eluted from the samples and analyzed by mass spectrometry to identify which predicted 
neoantigens are effectively being presented at the cell surface. Created with BioRender.com  

1.4.3 Aberrantly expressed TSAs 

Given that the neoantigen, or mTSA, yield is so low, particularly in cancers with lower 

mutational burdens, the search for TSAs has turned elsewhere. Cancer cells are ridden with 

mutations and aberrations that make them fundamentally different in a way that is recognizable 

to immune cells, and yet SNVs do not seem to be the answer. INDEL mutations, the second most 

common type of mutation, would presumably result in frameshift events that could generate 

novel MAPs in cancer. In fact, a frameshift peptide derived from TGFBRII was shown to induce 

proliferation of CD4+ T cells from CRC patients (96), while TILs specific for another frameshift 

peptide from the same gene were able to lyse a CRC-derived cell line (97). Although these results 

suggest a certain immunogenicity of these frameshift peptides, neither of these studies 

demonstrated that the peptides of interest were presented at the cell surface by MHC.  

Fortunately, the cancer-specific aberrantly expressed sequences do not end there. SNV and INDEL 

studies, as well as those that study TAAs, have focused exclusively on coding regions of the 

genome. However, exons make up only 2% of the genome, whereas up to 75% of the genome can 
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be transcribed and potentially translated (98). MAPs derived from introns, untranslated regions 

(UTRs), long non-coding RNAs (lncRNAs), and intergenic regions have all been identified by MS 

(99). The translation of these normally-silenced sequences and others arises through processes 

such as epigenetic alterations, slicing aberrations, expression of endogenous retroviral elements 

(EREs), or the aberrant translation of transcripts (100). The profound implication of this is that 

there is a wealth of genomic regions remaining to possibly generate TSAs. In addition to being 

more abundant than mTSAs, aberrantly expressed TSAs (aeTSAs) also have more potential to be 

shared across tumors, since they do not rely on cancer-specific mutations, many of which are 

patient-specific.  

As the proteogenomic search for TSAs expands to all regions of the genome, so too do 

databases expand to include the entirely of the potential protein sequences expressed in all 

genomic regions as well as in all possible reading frames. However, the expansion of database 

size is not without cost; the increase in theoretical spectra in the database will increase required 

computation time, and can reduce identification and PSM quality (80). When confronted with this 

problem, researchers developed various strategies to maintain the ability to identify peptides 

from all genomic regions while decreasing database size. One such approach involved 

constructing a database that consisted of a canonical cancer proteome generated through in silico 

translation of RNA-seq data, as well as cancer-specific sequences, generated by removing any 

sequence present in thymic epithelial cells (TECs), and it was only these cancer-specific sequences 

that were translated into all reading frames (101). This approach, which involves examining the 

entire genome, including non-coding regions, for TSAs, has previously led to the identification of 

aeTSAs in acute lymphoblastic leukemia and lung cancer (101), ovarian cancer (102), and acute 

myeloid leukemia (103). 

1.4.4 TSAs in CRC 

As with other cancers, CRC immunopeptidomic studies have focused exclusively on mTSAs 

or TAAs. One study in MSS CRC organoids demonstrated that out of 304 genes predicted to 

generate neoantigens, only three such antigens were detectable by MS (104). A more recent 

study identified only a single mTSA from an MSI tumor with nearly 4000 non-synonymous 
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mutations (105). A third group compared a large set of paired tumor and normal adjacent tissue 

(NAT) and identified a series of TAAs of interest, however as with these other studies, they 

focused exclusively on coding regions of the genome. Additionally, only one study explicitly 

investigated both MSS and MSI cancers. In summary, no studies have identified aberrantly 

expressed TSAs in CRC to date.  

 

Figure 8. –  Types of tumor antigens 

Representation of the various mechanisms through which different classes of tumor antigens can 
be generated. Small blue balls represent the protein generated under normal conditions, which 
can undergo cancer-induced mutations (red) or other modifications, resulting in translation of 
non-coding sequences (green protein), out-of-frame exons (dark purple protein), or newly 
expressed sequences (light purple protein). Created with BioRender.com 
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1.5 Research Objectives 

 With advancements in the efficacy and sensitivity of mass spectrometry analyses in recent 

years, it is now simpler than ever to sequence thousands of MHC I-associated peptides presented 

at the cell surface, making the immunopeptidome available for study on a silver platter. However, 

there remain vast regions of the genome often unexplored by traditional analyses and database 

construction techniques. In addition, the difference in prognosis between MSS and MSI tumors 

imposes a sense of urgency on the identification of therapies that can bridge the gap in treatment 

efficacy between these two molecular subtypes. We hypothesize that our approach will uncover 

TSAs in CRC, the majority of which will be from non-coding regions and will be identified in MSI 

tumors. Our research objectives were thus as follows:  

1. To elucidate the immunopeptidomes of a series of CRC-derived cell lines and matched 
CRC tumor and normal adjacent tissues using personalized databases for MS-based 
identification 

2. To identify TSAs in both MSS and MSI samples using a stringent identification pipeline  

3. To validate the TSAs in terms of intertumoral distribution, immunogenicity, and tumor 
specificity 
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1.6 Thesis Overview 

 The body of this thesis summarizes the work I completed throughout my Master’s degree, 

culminating in a publication currently under review for Molecular and Cellular Proteomics. In this 

paper, we utilized a novel proteogenomic approach to analyze a series of CRC-derived cell lines 

and matched tumor and NAT. We applied a stringent set of filters to a large dataset of MAPs 

identified by mass spectrometry to identify 19 novel TSAs, the majority of which are aberrantly 

expressed and derive from non-coding sequences. In addition, we were able to identify TSAs in 

both MSS and MSI CRC tissues. The final chapter of this thesis provides a conclusion and 

perspectives on the preceding work, centering its potential in future cancer immunotherapeutic 

strategies.  
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2.1 Abstract 

Colorectal cancer is the second leading cause of cancer death worldwide, and the 

incidence of this disease is expected to increase as global socioeconomic changes occur. Immune 

checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; 

however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer 

immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific 

antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are 

most effectively identified with a mass spectrometry-based approach, which allows the direct 

sampling and sequencing of these peptides. While the few tumor-specific antigens identified to 

date are derived from coding regions of the genome, recent findings indicate that a large 

proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we 

employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal 

cancer-derived cell lines and biopsy samples consisting of matched tumor and normal adjacent 

tissue. The generation of personalized cancer databases paired with mass spectrometry analyses 

permitted the identification of more than 30 000 unique MHC I-associated peptides. We 

identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-

thirds of which were derived from non-coding regions. Many of these peptides were derived from 

source genes known to be involved in colorectal cancer progression, suggesting that antigens 

from these genes could have therapeutic potential in a wide range of tumors. These findings could 

benefit the development of T cell-based vaccines, in which T cells are primed against these 

antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing 

immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes 

of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with 

identifier PXD028309. 
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2.2 Introduction 

CRC is the third most commonly diagnosed cancer and the second leading cause of cancer 

death worldwide, with over 1.8 million cases and 881 000 deaths estimated in 2018 alone (106). 

The incidence of CRC is expected to increase as global socioeconomic changes occur, with a 

predicted 2.2 million cases and 1.1 million deaths occurring annually by 2030 (3, 106). This 

significant disease burden highlights the necessity of developing new and effective treatments.   

The positive correlation between the abundance of TILs and increased overall survival in 

both colon and rectal cancer suggests that T cells can recognize biologically relevant tumor 

antigens in these tumors (107, 108). The potential immunogenicity of these antigens made ICI a 

promising treatment for cancer patients; however, early clinical trials evaluating their efficacy in 

CRC have yielded mixed results. Colorectal tumors characterized by deficiencies in mismatch 

repair proteins resulting in the accumulation of repetitive DNA sequences (microsatellites), 

known as MSI, have shown relative success in phase II clinical trials with anti-PD1 treatment (69).  

In contrast, such treatments have had very little efficacy in clinical trials against MSS tumors that 

do not possess a high mutational burden, which make up approximately 80% of CRC cases (69, 

109).  

Given the significance of the immune response in CRC and the limited success of ICI alone, 

a promising research avenue in recent years has been neoantigen-based vaccines or T cell 

receptor-based therapy, which could be administered with ICI and would ideally bridge the gap 

in treatment efficacy across MSI and MSS tumors. In line with this, TAAs, which are overexpressed 

in cancer cells compared to normal cells, have been previously identified in CRC (110, 111). While 

several TAAs have been tested in vaccine and phase I trials against CRC, most were met with 

“limited success”, likely due to the negative selection of TAA-responsive T cells in the thymus 

(112). In a study by Parkhurst et al., the treatment of metastatic CRC with genetically engineered 

anti- CEA T cells resulted in tumor regression in one individual but “serious inflammatory colitis” 

in all patients, demonstrating that an adverse autoimmune response is another possible 

consequence of targeting TAAs (113).  
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The mixed responses to TAA-based therapy suggest that targeting TSAs would be more 

effective. These antigens may be generated through genetic, epigenetic, and post-translational 

variations, including but not limited to single-nucleotide variants, aberrantly expressed 

transcripts, or novel splicing events, and are exclusively presented by tumor cells (100). The high 

prevalence of single nucleotide variants, splice variants, and INDEL mutations in CRC suggests that 

there is a higher probability of unique antigen presentation by the MHC molecules of tumors 

compared to other cancers with lower mutational loads. These antigens, or MAPs, would make it 

possible to invoke a tumor-specific immune response (114). TSAs have recently been identified in 

CRC and have demonstrated some success in phase I and II vaccine trials. A 2015 vaccine trial 

using frameshift antigens originating from MSI-high tumors demonstrated significant and specific 

immune responses among all patients (115). However, as this study used antigens derived from 

frameshift mutations associated with MSI, these findings do not apply to the majority of CRC 

patients. Other studies identifying TSAs in CRC to date have focused exclusively on mTSAs derived 

from coding regions of the genome (115, 116). An investigation of MSS CRC organoids revealed 

that only 0.5% of non-silent mutations generated mTSAs; this was a significantly lower proportion 

than what was anticipated by HLA-binding prediction software (104). It was recently 

demonstrated that the majority of actionable TSAs arise from non-coding regions of the genome 

and from aberrantly expressed transcripts, rather than somatic mutations (101-103). While 

mTSAs are tumor-specific unless derived from common driver mutations, these aeTSAs are 

particularly noteworthy because they may be shared by multiple tumors. In addition, previous 

studies did not employ MS techniques to quantify the expression of those TSAs on tumor cells, 

which is information that could influence the therapeutic potential of targeting a given TSA (115, 

116).  

In the present study, we use an MS-based approach that leverages personalized databases 

to directly identify TSAs presented by CRC-derived cell lines and tumor biopsies and allows the 

identification of TSAs from non-coding regions. By using this approach, we identify 19 TSAs across 

our samples, as well as a variety of TAAs. Further, we identify TSAs in both MSS and MSI tumors, 

suggesting that MSS tumors present immunologically relevant antigens that could be exploited 

to bridge the gap in treatment efficacy of ICI in various subtypes of CRC. 
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2.3 Experimental Procedures  

2.3.1 Samples 

2.3.1.1 Cell lines 

Four human colorectal cancer cell lines [COLO 205 (ATCC® CCL-222™), HCT 116 (ATCC® 

CCL-247™), RKO (ATCC® CRL-2577™), SW620 [SW-620] (ATCC® CCL-227™)] and one human 

normal fetal small intestine cell line [HIEC¬6 (ATCC® CRL¬3266™)] were obtained from the 

American Type Culture Collection (ATCC). COLO205, HCT116, and SW620 were grown in RPMI-

1640 (Gibco) supplemented with 10% Fetal bovine serum (FBS), RKO was grown in Eagle’s 

Minimum Essential Medium (EMEM) (ATCC) supplemented with 10% FBS, and HIEC-6 was grown 

in OptiMEM 1 Reduced Serum Medium (Gibco) supplemented with 20 mM HEPES (Gibco), 10 mM 

GlutaMAX (Gibco), 10ng/mL epidermal growth factor (EGF) (Gibco), and FBS to a final 

concentration of 4%. All cells were maintained at 37°C with 5% CO2.  

For collection, cells were rinsed with warm phosphate-buffered saline (PBS) before being 

trypsinized with TrypLE™ Express Enzyme (1X) (Gibco) for 5-15 minutes at 37°C with 5% CO2. 

Harvested material was then spun at 1000rpm for 5 minutes, rinsed once with warm PBS, then 

resuspended in ice-cold PBS. After cell count, replicates of 2 x 108 CRC cells were pelleted and 

frozen at -80°C until further use. MHC class I surface density of the CRC cell lines was determined 

by Qifikit (Agilent) using the W6/32 anti-HLA class I antibody (BioXCell), according to the 

manufacturer’s instructions. 

2.3.1.2 Primary tissues 

Six pairs of primary human samples consisting of matched colon adenocarcinoma tumor 

and NAT were purchased from Tissue Solutions. Tissue samples were taken from patients 

receiving surgery as the first line of treatment and were flash-frozen in liquid nitrogen. More 

information about primary tissue samples can be found in Table 2.   
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2.3.2 RNA extraction and sequencing 

2.3.2.1 RNA extraction 

For RNA extraction of cell lines, 1-2 million cells were collected and washed once with ice-

cold PBS. The cells were then resuspended in Trizol (Invitrogen). Total RNA was isolated using the 

RNeasy Mini kit (Qiagen) or the AllPrep DNA/RNA/miRNA Universal kit (Qiagen) as recommended 

by the manufacturer, for cell lines and tissues, respectively. 

2.3.2.2 RNA sequencing  

500 ng of total RNA was used for library preparation. RNA quality control was assessed 

with the Bioanalyzer RNA 6000 Nano assay on the 2100 Bioanalyzer system (Agilent Technologies) 

and all samples had an RNA integrity number (RIN) above 6.8 for NAT and above 8 for cancer 

samples. Libraries were prepared with the KAPA mRNAseq Hyperprep kit (Roche). Ligation was 

made with Illumina dual-index UMI (IDT). After being validated on a BioAnalyzer DNA1000 chip 

and quantified by QuBit and qPCR, libraries were pooled to equimolar concentration and 

sequenced with the Illumina Nextseq500 using the Nextseq High Output 150 (2x75bp) cycles kit. 

A mean of 129 and 95 million paired-end PF reads were generated for the cell lines and tissue 

samples, respectively. Library preparation and sequencing were performed at the Genomic 

Platform of the Institute for Research in Immunology and Cancer (IRIC).  

2.3.2.3 Bioinformatic analyses 

Sequences were trimmed using Trimmomatic version 0.35 (117) and aligned to the 

reference human genome version GRCh38 (gene annotation from Gencode version 33, based on 

Ensembl 99) using STAR version 2.7.1a (118). Gene expressions were obtained both as read count 

directly from STAR as well as computed using RSEM (119) to obtain normalized gene and 

transcript-level expression, in transcript-per-million (TPM) values, for these stranded RNA 

libraries.   
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2.3.3 Transcriptomics  

2.3.3.1 HLA genotyping  

HLA genotyping of cell lines and tissues was performed using OptiType, an online HLA 

genotyping tool that uses RNA-Seq data to predict a sample’s HLA alleles 

(https://github.com/FRED-2/OptiType) (120). HLA alleles of cell lines were confirmed with what 

is documented in the literature, and if these differed from Optitype predictions, we preferentially 

selected those in the literature. 

2.3.3.2 Microsatellite instability detection 

MSI status of the primary tumor samples was evaluated using the MSIsensor-pro1.0a 

program using paired tumor and NAT (https://github.com/xjtu-omics/msisensor-pro) (121). 

2.3.3.3 Differential expression analysis  

DESeq2 version 1.22.2 (122) was used to normalize gene read counts. Principal component 

analyses (PCA) were generated using normalized log read counts for the first two most significant 

components. The PCA was generated in an unsupervised manner. The 500 genes were those 

presenting the biggest standard deviation based on their expression levels across all samples. 

DESeq2 was only used to normalize the read counts, not to perform a differential expression 

analysis. For differential expression analysis of the cell lines, fold changes were computed 

between the mean expression of the four CRC cell lines compared to the normal cell line (HIEC-

6). Significant differentially expressed genes (DEGs), those with padj < 0.05 and ½log2 fold 

change½ >1, were considered for gene ontology (GO) terms using the Metascape tool (123). For 

paired differential expression analysis of the tissues, TPM normalized values were used to 

compare tumor/NAT pairs. As only a single replicate of the tissues was sequenced, rather than 

filtering by adjusted p-value, we selected only genes that were significantly differentially 

expressed in all six subjects for GO term analysis with ½log2 fold change½ >1. When examining 

differentially expressed genes between MSS and MSI tissues, the same fold change thresholds 

were applied. For GO term analysis of MSI DEGs, genes were selected that were exclusively 

differentially expressed in both MSI tissues (i.e. not considered DEGs in any MSS tissues). For GO 
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term analysis of MSS DEGs, genes were considered if they were differentially expressed in three 

or more MSS tissues. 

2.3.3.4 Transcriptome analysis of tissue samples  

The proportion of various biotypes in the transcriptome of tissue samples was determined 

as previously described (124). Briefly, following quantification and alignment of Ensembl 

annotated transcripts by Kallisto (119), transcripts and repetitive elements were annotated using 

a Kallisto index containing Ensembl annotated transcripts supplemented with genetic repeat 

identifications from the UCSC Table Browser GRCh38 repeat masker database (125). Transcript 

expression was quantified in TPM. 

2.3.3.5 Mutation profiles and genetic variant annotation 

Genetic variant calling was performed for both cell line and primary biopsies using SNPEff 

(https://pcingola.github.io/SnpEff/#snpeff) (126). 

2.3.4 Database generation 

Global cancer databases were constructed as previously described (101). In brief, RNA-

sequencing (RNA-seq) reads were trimmed using Trimmomatic version 0.35 (117) and aligned to 

the reference human genome version GRCh38 (gene annotation from Gencode version 33, based 

on Ensembl 99) using STAR version 2.7.1a (118). Kallisto (https://pachterlab.github.io/kallisto) 

was used to quantify transcript expression in TPM (119). Sample-specific exomes were 

constructed by integrating single nucleotide variants (quality>20) identified with Freebayes 

(https://github.com/ekg/freebayes) into PyGeno (127). Annotated open reading frames with 

TPM > 0 were then translated in silico and added to the canonical proteome in fasta format. We 

selected medullary thymic epithelial cells (mTECs) and TECs as a positive control because they 1) 

express a large collection of self-peptides and 2) establish central tolerance in the thymus 

(negative selection of T cells). mTECs (n=6) and TECs (n=2) were thus used to generate the cancer-

specific proteome for cell lines (GEO accessions GSE127825, GSE127826). The respective NAT for 

each primary tumor sample was used in place of mTECs for this portion of database construction, 

as it approximates ‘normal’ expression for that subject. RNA-seq reads were cut into 33-

nucleotide sequences known as k-mers and only k-mers present <2 in mTECs or matched NAT for 
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cell lines and tissues, respectively, were kept. Overlapping k-mers were assembled into contigs, 

which were then 3-frame translated in silico. Of note, short peptide sequences generated through 

the k-mer approach were then concatenated into longer sequences of approximately ten 

thousand amino acids. To reduce the number of small separate sequences in the cancer-specific, 

these peptides were concatenated using the ‘JJ’ sequence as a separator, which is recognized 

internally by the PeaksX+ software to split sequences upon occurrence of this sequence. Then, 

the canonical proteome and the cancer-specific proteome were concatenated to create the global 

cancer databases. Cell line databases consisted of 3.38 x 106 sequences on average. 

2.3.5 Isolation of MAPs  

CRC cell line pellet samples (2 x 108 cells per replicate, four replicates per cell line) were 

resuspended with PBS up to 2 mL and then solubilized by adding 2 mL of ice-cold 2X lysis buffer 

(1% w/v CHAPS). Tumor and normal adjacent tissue samples (average 568mg) were cut into small 

pieces (cubes, ~3 mm in size) and 5 ml of ice-cold PBS containing protein inhibitor cocktail (Sigma, 

cat#P8340-5ml) was added. Tissues were first homogenized twice for 20 seconds using an Ultra 

Turrax T25 homogenizer (IKA-Labortechnik) set at a speed of 20 000 rpm and then 20 seconds 

using an Ultra Turrax T8 homogenizer (IKA-Labortechnik) set at speed 25 000 rpm. Then, 550 μl 

of ice-cold 10X lysis buffer (5% w/v CHAPS) was added to each sample. After 60-minute incubation 

with tumbling at 4°C, tissue samples and CRC cell line samples were spun at 10 000g for 30 

minutes at 4°C. Supernatants were transferred into tubes containing 1 mg of W6/32 antibody 

covalently-cross-linked protein A magnetic beads and MAPs were immunoprecipitated as 

previously described (128). MAP extracts were then dried using a Speed-Vac and kept frozen 

before MS analyses. 

2.3.6 TMT labeling  

MAP extracts were resuspended in 200mM HEPES buffer pH 8.1. 50 µg of TMT reagent 

(Thermo Fisher Scientific) in anhydrous acetonitrile was added to samples as follows: CRC cell line 

replicates were labeled with TMT6plex (lot #UG287166) channels TMT6-126 to 129; Tissue 

samples were labeled with TMT10plex (lot # UH285228) -126 (NAT) and -127N (tumor). Samples 

were gently vortexed and reacted at room temperature for 1.5 hours. Samples were then 
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quenched with 50% hydroxylamine for 30 minutes at room temperature, then were diluted with 

4%FA/H2O. CRC cell line replicates and individual NAT-tumor pairs were combined. Samples were 

then desalted on homemade C18 membrane (Empore) columns and stored at -20°C until 

injection. Labeling efficiency was calculated using PeaksX+ search results (see ‘MAP identification’ 

section below), by taking the proportion of TMT PSMs over the total number of PSMs. 

2.3.7 Mass spectrometry analyses  

Dried peptide extracts were resuspended in 4% FA and loaded on a homemade C18 

analytical column (20 cm x 150 µm i.d. packed with C18 Jupiter Phenomenex) with a 106-minute 

gradient from 0% to 30% ACN (0.2% FA) and a 600 nL/min flow rate on an EASY-nLC II system. 

Samples were analyzed with an Orbitrap Exploris 480 spectrometer (Thermo Fisher Scientific) in 

positive ion mode with Nanoflex source at 2.8kV. Each full MS spectrum, acquired with a 240 000 

resolution was followed by 20 MS/MS spectra, where the most abundant multiply charged ions 

were selected for MS/MS sequencing with a resolution of 30 000, an automatic gain control target 

of 100%, an injection time of 700ms, and collisional energy of 40%. LC-MS instrument was 

controlled using Xcalibur version 4.4 (Thermo Fisher Scientific, Inc). 

2.3.8 MAP identification 

Database searches were conducted using the PeaksX+ software, version 10.6 

(Bioinformatics Solutions Inc.) (84). Error tolerances for precursor mass and fragment ions were 

set to 10.0ppm and 0.01 Da, respectively. A non-specific digest mode was used. TMT10plex was 

set as a fixed post-translational modification (PTM), and variable modifications included 

phosphorylation (STY), Oxidation (M), Deamidation (NQ), and TMT10plex STY. Peaks searches 

were then loaded into MAPDP (129), which was used to apply the following filters: selecting 

peptides of 8-11 amino acids in length, with rank eluted ligand threshold ≤ 2% based on 

NetMHCpan-4.1b predictions, using a 5% false discovery rate (FDR). FDR was calculated using the 

decoy hits imported from Peaks, which employ the decoy-fusion strategy (85).  
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2.3.8.1 MAP source gene analysis  

GO term analysis was performed for CRC-derived cell lines and primary tissues with the 

Metascape tool (123). A list of source genes was generated for each sample by taking all of the 

source genes associated with the MHC I immunopeptidome of that set of samples and removing 

duplicates (i.e., although a source gene may generate more than one unique peptide, it would 

only be counted once in the source gene analyses). For tissues, only source genes shared by four 

or more tissues were included in this analysis. 

2.3.9 Quantification of MAP coding sequences in RNA-Seq data  

MAP coding sequences (MCSs) were quantified in RNA-seq data as previously described 

(103). Briefly, MCSs were reverse translated into all possible nucleotide sequences with an in-

house python script (deposited on Zenodo at DOI: 3739257). The nucleotide sequences were then 

mapped onto the genome with GSNAP (130) to determine all possible genomic locations able to 

code for a given MAP. MCSs were also mapped onto the transcriptome to account for MAPs 

overlapping splice sites, and portions of the transcriptome corresponding to these MAPs were 

then also mapped onto the reference genome with GSNAP. For MAPs of interest, we performed 

genomic alignment of all reads containing the MCS. GSNAP output was filtered to keep only 

perfect matches between the sequence and reference, resulting in a file containing all possible 

genomic regions able to code for a given MAP. We summed the number of reads containing the 

MCSs at their respective genomic locations in each desired RNA-Seq sample (such as CRC and 

NAT, Genotype Tissue Expression project (GTEx), or the Cancer Genome Atlas (TCGA) samples), 

aligned on the reference genome with STAR. Lastly, all read counts for a given MAP were summed 

and normalized on the total number of reads sequenced in each sample of interest to obtain a 

reads-per-hundred-million (RPHM) count.  

2.3.10 Determination of MAP source transcripts 

 To investigate what proportion of tissue sample MAPs were derived from certain 

transcript biotypes, the most abundant putative source transcript based on kmer-per-hundred-

milion (KPHM) quantification was determined. For peptides from the cancer-specific (kmer) 

database, the MCSs were reverse translated into all possible nucleotide sequences and all 



 62 

possible genomic regions able to code for a given MAP were identified (see ‘Quantification of 

MAP coding sequences in RNA-Seq data’ above). Finally, Kallisto was used to determine the most 

expressed transcript at that location, which was then assigned as the most probable transcript 

for the given peptide. Peptides that had more than one putative source transcript were excluded 

from the analysis.  

2.3.11 Identification of TSA candidates  

TSA candidates were identified through a stringent TSA identification pipeline. First, MAPs 

underwent peptide classification in which the peptide sequence accessions were retrieved from 

the protein database and used to extract the nucleotide sequences of each peptide. RNA-Seq data 

from each cancer and normal samples were transformed into 24-nucleotide-long k-mer databases 

with Jellyfish 2.2.3 (using the –C option) and used to query each TSA candidate coding sequence’s 

24-nucleotide-long k-mer set. The number of reads fully overlapping a given peptide-coding 

sequence was estimated using the k-mer set’s minimum occurrence (𝑘𝑚𝑖𝑛), as in general, one k-

mer always originates from a single RNA-Seq read. We then transformed this kmin value into 

several k-mers detected per 108 reads sequenced (k𝑝ℎ𝑚) using the following formula: k𝑝ℎ𝑚 = 

(kmin × 108)/𝑟𝑡𝑜𝑡, with 𝑟𝑡𝑜𝑡 representing the total number of reads sequenced in a given RNA-

Seq experiment. Peptides were kept only if their RNA coding sequences were expressed at least 

10-fold higher in cancer than in normal (pooled mTEC samples for cell lines, matched NAT for 

tissues), and expressed < 2 KPHM in normal. Subsequent filtering removed any peptides with 

indistinguishable isoleucine/leucine variants; a peptide with an IL variant was kept only if the most 

expressed variant met the above-mentioned criteria. The MCSs of the remaining peptides were 

quantified in RNA-seq data as described above and were kept only if their expression was < 8.55 

RPHM in mTECs and other normal tissues (GTEx). Genomic localization for each peptide was 

assigned by mapping reads containing each MCS to the reference genome (GRCh38.99) using 

BLAT (https://genome.ucsc.edu/cgi-bin/hgBlat). Peptides were excluded if the genomic 

localization was unclear or if they mapped to a hypervariable region (HLA, Ig, or T cell receptor 

(TCR) genes). Finally, the MS/MS spectra of the remaining candidates were manually validated. 

Peptides were classified as mTSAs if their amino acid sequence was different from the reference, 

and if the mutation was not a known germline polymorphism. Peptides were classified as aeTSAs 



 63 

if they were overexpressed ³10-fold in tumor compared to normal and ≤0.2 KPHM in mTECs (and 

NAT in the case of tissues) and as TAAs if they were overexpressed ³10-fold in cancer but the 

expression in mTECs and/or NAT was > 0.2 KPHM. Ultimately, the transcript of origin of each 

TSA/TAA was attributed by selecting the most highly expressed peptide-overlapping transcript 

from the kallisto quantification file (see Database Generation section). 

2.3.11.1 Intertumoral sharing 

To examine the intertumoral distribution of TSA and TAA sequences in other CRC tumors, 

the log(RPHM+1) expression of the peptide coding sequences in 151 colon adenocarcinoma 

(COAD) samples from TCGA was determined (see ‘Quantification of MAP coding sequences in 

RNA-Seq data’).  

2.3.11.2 Immunogenicity prediction 

The predicted immunogenicity of MAPs of interest was determined with the R package 

Repitope v3.0.1 (https://github.com/masato-ogishi/Repitope) (131).  

2.3.12 TSA validation and relative quantification with synthetic peptides  

2.3.12.1 Validation of TSA peptide candidates 

Synthetic peptides of TSA and select TAA sequences were obtained from Genscript. Synthetic 

peptides were solubilized in DMSO to a concentration of 1nmol/µL and all synthetic peptides 

were combined in a stock solution at a concentration of 10picomol/µL. The stock solution was 

desalted in aliquots of 150picomol on homemade C18 membrane (Empore) columns and dried 

using a Speed-Vac. Dried peptide extracts were labeled with a TMT10plex channel as described 

(see ‘TMT labeling’ section), desalted, and dried down in Speed-Vac. Labeled synthetic peptides 

were resuspended in 4% FA and 1picomol of each synthetic peptide was loaded on a homemade 

C18 analytical column (20 cm x 150 µm i.d. packed with C18 Jupiter Phenomenex) with a 76-

minute gradient from 0% to 30% ACN (0.2% FA) and a 600 nL/min flow rate on an EASY-nLC II 

system. Samples were analyzed with an Orbitrap Exploris 480 spectrometer (Thermo Fisher 

Scientific) in positive ion mode with Nanoflex source at 2.8kV. Each full MS spectrum was acquired 

with a 120 000 resolution, and an inclusion list was used to select ions for fragmentation with 



 64 

40% collision energy and an isolation window of 1 m/z. MS/MS were acquired with a resolution 

of 30 000. MS/MS correlations were computed as previously described (102). Briefly, expected 

peptide fragments were computed with pyteomics v4.0.1 

(https://bitbucket.org/levitsky/pyteomics) and reproducibly detected peptide fragments were 

identified. Root scaled intensities of these fragments were correlated between endogenous and 

synthetic peptide scan pairs and SciPy v1.2.1 (https://www.scipy.org/) was used to compute 

Pearson correlation coefficient, p-value, and confidence intervals. Mirror plots of the scan pair 

with the lowest p-value were generated for each peptide using spectrum_utils 

v0.2.1(https://github.com/bittremieux/spectrum_utils). 

2.3.12.2 Relative quantification 

To relatively quantify MAPs of interest in primary tissue samples, synthetic peptides at 

concentrations of 10, 100, or 1000 fmol labeled with TMT 10plex-129N, 130N, and 131N, 

respectively, were spiked into remaining purified MAPs from NAT and CRC tissue samples labeled 

with TMT10plex-126 and 127N, respectively. Note that the channel TMT 10plex-127C was left 

empty to assess contamination. Samples were analyzed with an Orbitrap Fusion Tribrid 

spectrometer (Thermo Fisher Scientific) in positive ion mode with Nanoflex source at 2.4kV. For 

synchronous precursor selection MS3 (SPS-MS3), full MS scans were acquired with a range of 300-

1000 m/z, Orbitrap resolution of 120 000, automatic gain control (AGC) of 5.0e5, and a maximum 

injection time of 50ms, using an inclusion list for the peptides of interest. We used a 3s top speed 

approach for MS2 in the ion trap, with an isolation window of 0.4m/z, collision induced 

dissociation of 35%, a ‘normal’ ion trap scan rate mode, 2.0e4 AGC target, and 50ms maximum 

injection time. This was followed by the selection of eight synchronous precursor ions for MS3 

acquisition, which was done with a scan range of 110-500m/z, Orbitrap resolution of 50 000, AGC 

of 1.0e5, maximum injection time of 300ms, an isolation window of 2.0m/z, and 65% HCD collision 

energy. LC-MS instrument was controlled using Xcalibur version 4.4 (Thermo Fisher Scientific, Inc). 

Error tolerances for precursor mass and fragment ions were set to 10.0ppm and 0.5 Da, 

respectively. A non-specific digest mode was used. TMT10plex was set as a fixed PTM, and 

variable modifications included phosphorylation (STY), Oxidation (M), Deamidation (NQ), and 

TMT10plex STY. For quantification, PSMs were filtered to exclude those with contamination in 
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the TMT10plex-127C channel, and to select those within the 70th intensity percentile. MS2 

precursor profiles and intensity profiles of all relevant channels were manually inspected to select 

peptides for quantification. Intensity ratios for each peptide were calculated using the average 

TMT10plex-127N and TMT10plex-126 intensities of good quality PSMs.  

2.3.13 Data analysis and visualization 

Figure 1 was generated with BioRender.com. The majority of other figures were created with 

Python v3.7.6, R v3.6.3, or Origin (Pro)2019b. R packages include:  

Repitope v3.0.1 (https://github.com/masato-ogishi/Repitope) (131),  

UpsetR v1.4.0 (https://github.com/hms-dbmi/UpSetR) (132),  

GSVA v1.38.2 (https://github.com/rcastelo/GSVA) (133),  

ESTIMATE v1.0.13 (https://bioinformatics.mdanderson.org/estimate/) (134).  

2.3.14 Experimental Design and Statistical Rationale  

To effectively elucidate the MHC I immunopeptidome of colorectal cancer, four CRC cell 

lines and six samples from human subjects consisting of both matched tumor and NAT were 

selected. NAT was used as an approximation of healthy tissue, as it is the most effective control 

for each respective tumor. Since no matched samples were available for cell lines, a pool of eight 

TEC samples was used in the creation of global cancer databases, to obtain a wide berth of 

approximate normal RNA expression. All instances of p-values are determined using two-sample 

t-test, except in the determination of significance for immunogenicity scores, in which case the 

Mann-Whitney test was used as the data did not have a normal distribution, as determined by 

the Shapiro test. For t-tests, we performed f-tests to determine whether the dataset had 

significant variation; if yes, then we used the t-test assuming variation, and otherwise the t-test 

assuming no variation was used. For CRC-derived cell lines, four technical replicates of 2 x 108 

cells were prepared, which were TMT labeled and multiplexed prior to injection. Due to limited 

tissue material, half of the purified MAPs from primary samples were injected to obtain global 

immunopeptidomic data, and the remaining sample was used for targeted analysis with synthetic 

peptides to confirm the sequences and abundance of putative TSAs and select TAAs. To select 
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high quality PSMs for quantification, those of low intensity or with contamination in an empty 

TMT channel were excluded. Further, only peptides with favorable MS2 precursor and intensity 

profiles were quantified. 
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2.4 Results 

2.4.1 Immunopeptidomic analyses using a proteogenomic approach 

To determine the composition of the immunopeptidome of colorectal cancer, we analyzed 

a collection of samples comprised of four colorectal cancer-derived cell lines and six sets of 

primary adenocarcinoma samples, which consist of matched tumor and normal adjacent tissue 

(Tables 1 and 2). Paired-end RNA-seq allowed the creation of a global cancer database, consisting 

of a canonical cancer proteome as well as a cancer-specific proteome for each sample, by 

generating cancer-specific kmers which, once combined into contigs, are translated into three 

reading frames to encompass non-canonical sequences from any genomic origin (Figure 8 – green 

box). mTECs present peripheral antigens in the thymus and mediate the negative selection of 

auto-reactive T-cells (135). Thus, in the case of CRC-derived cell lines, cancer-specific kmers were 

obtained following the subtraction of mTEC-derived kmers, which approximated the expression 

of these sequences in healthy tissues. For the primary tissue samples, the cancer-specific kmers 

were generated following subtraction of the sequences from matched NAT. This approach 

enabled the determination of sequences expressed in tumor and not observed in healthy colon 

tissue of the same individual. In addition to database construction, RNA-seq data were also used 

for transcriptomic analysis, including GO term analysis, investigation of immune infiltration, 

mutation profiling, and determination of transcript abundance (Figure 8 – purple box).  
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Figure 9. –  Proteogenomic workflow for the discovery of tumor-specific antigens (TSAs) in both 
colorectal cancer (CRC)-derived cell lines and primary tumor samples 
Illustration of proteogenomic strategies used to identify TSAs. Samples generated from CRC- and 
normal intestine-derived cell lines and matching primary tumor/normal adjacent tissue (NAT) 
biopsies obtained from six individuals were all processed for both RNA sequencing and major 
histocompatibility complex class I (MHC-I) immunoprecipitation (IP). RNA sequencing data were 
used for both the transcriptomic characterization of the samples and the generation of customized 
global cancer proteome databases. For each sample, the MHC-I associated peptides (MAPs) 
isolated via IP were identified via LC-MS/MS using the respective database. After validating both 
the identification and the tumor specificity of our TSA candidates, their therapeutic potentials 
were evaluated though the prediction of both their immunogenicity and inter-tumoral 
distribution. Created with BioRender.com. 
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We used immunoprecipitation to isolate MHC I-peptide complexes, and we labeled the 

eluted MAPs with TMT isobaric labeling reagent, as TMT labeling was recently shown to enhance 

the detection of MAPs by increasing their charge state and hydrophobicity (Figure 8 – blue box) 

(88). We then sequenced and analyzed MAPs by liquid chromatography tandem mass 

spectrometry (LC-MS/MS) and identified using the personalized cancer databases generated 

through RNA-Seq. Identified MAPs then underwent a rigorous series of classifications and 

validations to identify putative TSAs and TAAs. Tumor antigens identified in CRC tissues were then 

validated and quantified with synthetic peptides to determine to what extent they were 

overexpressed on tumor compared to matched NAT, and we also investigated their predicted 

immunogenicity and intertumoral distribution to evaluate their clinical potential (Figure 8 – pink 

box). The TSA and TAA selection process was composed of a stringent set of filters based on 

expression in cancer and normal tissues (Figure 9).  
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Figure 10. –  TA identification flowchart 
 Flowchart depicting workflow and filters used to identify TSA and TAA candidates, as described in 
methods. MHC I-associated peptides were selected based on the overexpression of their RNA 
coding sequences in tumor compared to normal, and their low expression in mTECs and normal 
tissues. Peptides with from hypervariable regions or with unclear I/L variants or genomic 
localizations were discarded. Putative TSAs and TAAs were distinguished based on their expression 
in normal tissues. 

 

 

 

 

 

 

MAPs  

MCS ≥10FC in 
tumor and 

expres s ed ≤2 
KPHM in normal 

MCS <8.55 
RPHM in 

mTECs  and 
normal tis s ues  

(GTEx) 

Good quality 
MS/MS 

Dis card 
unclear I/L 

variants  

Dis card 
peptides  from 
hypervariable 

regions  or 
with unclear 

genomic 
localization 

MCS ≥10FC in 
tumor and 

expres s ed ≤0.2 
KPHM in 
normal 

MCS ≥10FC in 
tumor and 

expres s ed >0.2 
KPHM in 
normal 

TSA TAA 

Validation 
with 

s ynthetic 
peptides  



 71 

We used four CRC-derived cell lines with different HLA alleles and characteristics as 

summarized in Table 1. HCT116 and RKO are derived from primary tumors and are characterized 

by MSI, whereas Colo205 and SW620 are derived from metastases of ascites and lymph node, 

respectively, and are both MSS. Among the four cell lines are mutations in several key genes, such 

as BRAF, RAS, SMAD4, TP53, and PI3CA. These cell lines have a varying MHC I surface expression 

ranging from 1.44 x 105 to 5.07 x 105 MHC I molecules/cell, as determined by Qifikit, and a 

diversity of HLA alleles which were identified using OptiType, an HLA genotyping tool that uses 

RNA-Seq data to predict a sample’s HLA alleles, in combination with the HLA alleles for these cell 

lines documented in the literature (Table 1) (120).  
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Table 1. –  Description of CRC-derived cell lines 

 

All of the primary tumor samples are derived from stage II adenocarcinomas, which vary 

only slightly in tumor grade and TNM (tumor-node-metastases) classification (Table 2). The CRC 

tissue samples had a tumor content of 95-100% and an average mass of 0.6625 g. The tumors all 

originated from the sigmoid colon, with the exception of S1 (cecum) and S5 (ascending colon). 

NAT were collected at least 6cm away from the tumor margins. Similar to the cell lines, the tissue 

samples also possess a variety of HLA alleles. A visualization of the number of HLA alleles unique 

to or shared by cell line and tissue samples is available in Figure 10. There is an average of 1.3 and 

3.2 unique alleles per cell line and tissue, respectively.  

 

 

Cell line Tissue Morphology Disease Biomarkers MHC I 
molecule/cell 

HLA genotyping Mutations of 
interest 

Colo205 Colon; 
derived from 
metastatic 
site: ascites  

Epithelial Dukes' type D, 
colorectal 
adenocarcinoma 

MSS, CIMP 1.44 x 105 ± 
0.00282 x 105 

HLA-A*01:01 HLA-A*02:01 

HLA-B*07:02 HLA-B*08:01 

HLA-C*07:01 HLA-C*07:02 

 
 

BRAF (V600E), 
SMAD4, TP53  

HCT116 Colon Epithelial Colorectal 
carcinoma 

MSI, CIMP 5.07 x 105 ± 
0.30 x 105 

HLA-A*01:01 HLA-A*02:01 

HLA-B*18:01 HLA-B*45:01 

HLA-C*05:01 HLA-C*07:01 

 
 

RAS (G13D), 
PI3CA, CDKN2A, 
CTNNB1 (B-
catenin) 

RKO Colon Epithelial Carcinoma MSI, CIMP 2.82 x 105 ± 
0.11 x 105 

HLA-A*03:01 

HLA-B*18:01 

HLA-C*07:01 

 
 

BRAF (V600E), 
PI3CA 

SW620 Colon; 
derived from 
metastatic 
site: lymph 
node 

Epithelial Dukes' type C, 
colorectal 
adenocarcinoma 

MSS, CIN  1.69 x 105 ± 
0.0017 x 105 

HLA-A*02:01 HLA-A*24:02 

HLA-B*07:02 HLA-B*15:18 

HLA-C*07:02 HLA-C*07:04 

APC, RAS (G12V), 
SMAD4, TP53 
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Table 2. –  Description of primary tumor and matched NAT 

Sample 
ID 

Sex Age Ethnic 
background 

Matrix Diagnosis Histological 
diagnosis 

Stage Tumor 
content 
% 

Mutations 

of interest 

HLA 

S1_N       colon NAT       HLA-A*24:02 

HLA-B*07:02 HLA-B*35:01 

HLA-C*04:01 HLA-C*07:02 

S1_T F 73 Caucasian cecum cancer adenocarcinoma IIC 100 KRAS 
G12D 

S2_N       colon NAT       HLA-A*02:01 HLA-A*03:02 

HLA-B*27:05 HLA-B*58:01 

HLA-C*02:02 HLA-C*07:01 

S2_T M 60 Caucasian Sigmoid Cancer Adenocarcinoma IIA 95  

S3_N       colon NAT       HLA-A*01:01 HLA-A*32:01 

HLA-B*38:01 HLA-B*50:01 

HLA-C*06:02 HLA-C*12:03 

S3_T F 63 Caucasian sigmoid cancer adenocarcinoma IIA 100 KRAS 
Q61H 

S4_N       colon NAT       HLA-A*01:01 HLA-A*11:01 

HLA-B*15:01 HLA-B*57:01 

HLA-C*03:03 HLA-C*06:02 

S4_T F 85 Caucasian sigmoid cancer adenocarcinoma IIA 100 KRAS 
G12D 

S5_N       colon NAT       HLA-A*03:01 HLA-A*30:01 

HLA-B*13:02 HLA-B*52:01 

HLA-C*06:02 HLA-C*12:02 

S5_T F 43 Caucasian ascending 
colon 

cancer adenocarcinoma IIA 95  

S6_N       colon NAT       HLA-A*03:01 HLA-A*23:01 

HLA-B*07:02 HLA-B*18:01 

HLA-C*07:01 HLA-C*07:02 

S6_T 

 

F 48 Caucasian sigmoid cancer adenocarcinoma IIA 95  
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Figure 11. –  Upset plot of HLA alleles 
UpsetR plot displaying the number of HLA alleles unique to a given intersection of samples, 
specifically MAPs that are unique to a given sample or that are uniquely shared by two samples. 
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2.4.2 Transcriptomic analyses reveal heterogeneity between MSI and MSS 

samples  

Because the outcome for CRC patients within a given disease stage differs greatly based 

on the molecular characteristics of the tumor (136, 137), RNA sequencing data were used to 

characterize the molecular heterogenicity of the samples. After first examining the mutational 

status of key biomarkers (such as KRAS, NRAS, or BRAF) which are commonly used to guide 

therapeutic decisions and prognoses in the clinics (138, 139) (Table 1), the microsatellite statuses 

of cell lines and primary samples were respectively determined from the literature (140, 141) and 

using the MSIsensor package (142). While MSI is found in a limited subset of CRC tumors (i.e. 15% 

of sporadic CRC and 90% of nonpolyposis colorectal cancer) (143), in this study, 50% of the 

tumorigenic cell lines and 33% of the primary biopsies present this phenotype (Table 3). Although 

several elements in the literature suggest that MSI and MSS tumors are immunologically different 

(69, 100, 144, 145), this study will provide the first comparison of MSI and MSS colorectal tumors 

at the immunopeptidomic level.  

Table 3. –  MSISensor-pro results for CRC primary tissues 

Sample Number of total 

sites 

Sites with 

enough 

coverage 

Sites with 

enough 

coverage (%) 

MSI sites 

(somatic) 

MSI sites 

(somatic) (%) 

Class(MSI > 

3.5%) 

S1 1011195 111243 11 226 0.20 MSS 

S2 1011195 69004 7 197 0.29 MSS 

S3 1011195 56779 6 104 0.18 MSS 

S4 1011195 45848 5 177 0.39 MSS 

S5 1011195 78340 8 8267 10.55 MSI 

S6 1011195 60715 6 3085 4.08 MSI 
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Principal component analysis of the top 500 varying genes between normal and tumor 

biopsy samples (Figure 11A) or cell lines (Figure 12A) confirms their distinct transcriptomic profile. 

Accordingly, pathway and process enrichment analysis of biopsy samples revealed a 

transcriptomic profile enriched in terms associated with their tumorigenic status (Figure 11B). As 

expected for CRC, the most significantly up- and down-regulated terms are respectively linked to 

cell proliferation (Figure 11B upper panel) and muscle phenotype and contractility (Figure 11B 

lower panel). While the enrichment of terms related to proliferation and cell cycle is a general 

hallmark of cancer (55, 56), the downregulation of muscle-related pathways is inherent to CRC 

and results from the functional dichotomy between poorly differentiated tumor areas and highly 

contractile NAT. In contrast, inter-tumoral transcriptomic differences were mostly explained by 

the MSI/MSS status of the tumor samples of our datasets (Figure 11A and Figure 12A). While MSI 

samples tend to cluster tightly together, MSS tumors appear more dispersed and therefore 

transcriptionally more heterogeneous. Functionally, when analyzed separately, the MSS and MSI 

CRC samples are enriched in very different gene sets. When compared to their corresponding 

NAT, MSI tumors are characterized by a significant up-regulation of various immune-related 

terms (Figure 12B) whereas MSS tumors are more associated with an increased expression of 

genes related to both Wnt and PI3K-Akt signaling (Figure 12C). Although the link of these two 

signaling pathways with CRC is well established in the literature (146), no reference could be 

found to support that their contribution in CRC may differ between MSS and MSI tumors.  
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Figure 12. –  Transcriptomic profile of primary tumor/normal adjacent tissue CRC biopsies 
A) Principal component analysis (PCA) of the top 500 varying genes of each tumor/NAT sample 
following paired-end RNA seq and gene readcount normalization with DESeq2. MSI tissues (as 
determined by MSISensor) are encircled. B) GO term analysis of genes up/downregulated in CRC 
tissues compared to their adjacent NAT. Genes submitted to GO term analysis were those with 
|log2FC| >1 and that were found to be differentially regulated in all samples, using TPM 
normalized values. C) Bar graph showing the mean ESTIMATE immune score of MSS NAT, MSI 
NAT, MSS CRC, and MSI CRC, with standard deviation shown. D) Stacked bar graph showing the 
mean proportion of the transcriptome attributable to five distinct transcript biotypes in NAT vs 
CRC samples, with the differences in the proportion of non-coding transcripts being statistically 
significant between NAT and CRC (non-coding: p = 0.016; coding: p = 0.078; SINE: p = 0.15; LTR: p 
= 0.056; LINE: p = 0.95). E) Scatterplots displaying the SNV counts and INDEL counts of MSS and 
MSI CRC tissues determined by SNPEff genomic annotation, with mean and standard error bars. 
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Figure 13. –  Transcriptomic profile of CRC-derived cell lines and GO term analysis of MSI and MSS 
primary tissue samples 
A) Principal component analysis (PCA) of the top 500 varying genes of CRC-derived cell line and 
one normal intestinal cell line (HIEC-6) following paired-end RNA seq and gene read count 
normalization with DESeq2. Known MSI cell lines are encircled. B) GO term analysis of genes 
up/downregulated in MSI tumors compared to their adjacent NAT. Genes used for GO term 
analysis were those with |log2FC| >1 when compared to their respective NAT using TPM 
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normalized values and that were found to be uniquely differentially expressed in both of the MSI 
tumor samples (i.e. genes that were only up/downregulated in both of the MSI tumors but not any 
of the MSS tumors). C) GO term analysis of genes up/downregulated in MSS tumors compared to 
their NAT. Genes used for GO term analysis were those with |log2FC| >1 when compared to their 
respective NAT using TPM normalized values and that were found to be uniquely differentially 
expressed in three or more of the MSI tumor samples (i.e. genes that were up/downregulated in 
at least three MSS tumors but neither of the MSI tumors). 

 

Next, we estimated the degree of immune infiltration of each sample via two independent 

approaches using the immune infiltration score from the ESTIMATE package, which has been 

shown to effectively predict tumor purity when compared with histological analyses  (134) (Figure 

11C), and with an enrichment score for known TIL markers (147) based on a single-sample Gene 

Set Enrichment Analysis (ssGSEA) (148) (Figure 13A). While all NAT samples presented similar 

levels of immune infiltration, MSI and MSS tumors were respectively characterized by increased 

and decreased immune infiltration scores (Figure 11C and Figure 13A). Consistent with what has 

been previously reported in the literature (144, 149-152), such differences suggest that MSI 

tumors may be more immunogenic than their MSS homologs.  
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Figure 14. –  ssGSEA analysis of immune infiltration in CRC tissues and mutation profile of all samples 

A) ssGSEA analysis of immune infiltration in tumor and matched NAT using expression markers for 
tumor-infiltrating lymphocytes described in Danaher et al. 2017, and the Gene Set Variation 
Analysis (GSVA) R program (https://github.com/rcastelo/GSVA) to estimate immune cell 
enrichment in these tissues. B)  Scatterplots displaying the SNV counts and INDEL counts of MSS 
and MSI CRC-derived cell lines determined by SNPEff genomic annotation, with mean and 
standard error bars. C) Scatterplots displaying the SNV counts and INDEL counts of all MSS and 
MSI samples (cell lines and tissues), determined by SNPEff genomic annotation, with mean and 
standard error bars. (SNV: p = 0.062; INDEL: p = 0.0024).  

 

Because TSAs can arise from a wide range of cancer-specific events/dysregulations (100, 

114) and the immunopeptidome contribution of each antigenic source varies significantly across 

malignancies (100), RNA-seq data were also used to inform which TSA classes might be enriched 

in our samples. By examining the genomic origin of the transcripts, we observed that both the 

proportion and the absolute abundance of non-coding polyadenylated RNAs are significantly 

increased in tumors compared to NATs (Figure 11D). While on average the absolute abundance 

increase is limited to 25%, our data suggest that the tumor-specific gain of non-coding transcripts 

could be higher in MSI tumors than in MSS. Although this comparison remains limited due to the 

low number of MSI samples (n=2), one could expect to identify a higher number of aeTSA deriving 
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from non-coding transcripts in MSI samples compared to MSS. As well, both the SNV burden and 

the INDEL burden are notably increased in MSI samples compared to MSS (an average difference 

of 8326 and 4965 between MSI and MSS mean SNV and INDEL burdens, respectively), an 

observation that is also noted for cell lines (Figure 11E and Figure 13B). Considering both cell line 

and tissue samples together resulted in a statistically significant difference in the number of INDEL 

mutations between MSS and MSI samples (p = 0.0024) (Figure 13C). Because both MSI and INDEL 

accumulation result from defects in the MMR pathway (153), one can hypothesize that the 

number of INDEL-derived TSAs (most likely frameshift-derived antigens) identified in a sample will 

be proportional to its MSI level.  

2.4.3 Immunopeptidomic analyses highlight the diversity of CRC antigens 

 To elucidate the MHC I immunopeptidomes of CRC-derived cell lines and tissues, we 

immunoprecipitated MAPs from four replicates of 2 x 108 cells for each cell line and from each 

tissue sample. We then derivatized each replicate with a separate TMT6plex channel (channels 

126, 127, 128, 129) for cell lines or with TMT10plex-126 and -127N for primary NAT and tissue 

samples, respectively. The four replicates of each cell line, and half of the respective NAT and 

tumor MAPs from each subject, were multiplexed and analyzed by LC-MS/MS. The median 

labeling efficiencies were 72.4% or 87.8% for cell lines and tissue samples, respectively. We 

ascribe the lower efficiency of labeling in cell lines to meager MAP yields. We identified 5281 and 

27 583 unique MAPs in the cell line and tissue datasets, respectively, with a mean of 1433 unique 

MAPs per cell line and 5855 per tissue (Figure 14A, upper panel, and 14B; Supplementary files 1 

and 2).  While the identification varied between each line, the number of MAPs identified was 

strongly correlated with the abundance of MHC I molecules per cell (Figure 14A, lower panel; 

Pearson’s r = 0.96).  
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Figure 15. –  Immunopeptidomics of CRC-derived cell lines and tissues 
A) Top panel: Stacked bar chart displaying the number of unique peptides identified in CRC cell 
lines, and a horizontal line indicating the average number of MAPs per cell line. Bottom panel: 
Scatterplot indicating the correlation between the number of unique MAPs identified in each cell 
line and the presentation of MHC I at the cell surface (Pearson’s r = 0.96). B) Stacked bar chart 
displaying the number of unique peptides identified in primary tissue samples, and a horizontal 
line indicating the average number of MAPs per tissue sample. ‘All peptides’ in A) and B) indicates 
the number of peptides identified with a 5% FDR, while ‘MHC I peptides’ indicates the number of 
peptides identified with the corresponding peptide score, 8-11 amino acids in length, and a rank 
eluted ligand threshold £ 2% using netpanMHC4.1b predictions. C) Bar chart indicating the 
proportion of unique MAPs predicted to bind to a given HLA allele in each sample, using 
NetMHCpan-4.1b predicted affinity. D) GO term analysis of MAP source genes for CRC-derived cell 
lines and primary tissues. For tissues, only source genes shared by four or more tissues were 
included in this analysis. E) Left panel: Stacked bar chart displaying the proportion of MAPs in each 
tissue sample derived from protein-coding, hypervariable gene (immunoglobulin or TCR), or non-
coding transcripts, or those from unannotated transcripts. Right panel: stacked bar chart 
displaying the proportion of non-coding MAPs derived from processed transcripts, retained 
introns, nonstop decay products, nonsense mediated decay products, lncRNA, or those that have 
no annotated transcript. 
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When taking the cell line and tissue samples together, we identified a total of 30 485 

unique MAPs. Within the MAP repertoire of each sample, 32-68% of the peptides are sample-

specific, and very few shared MAPs were observed when comparing only cell line or primary 

samples (Figure 15A and B). This large proportion of unique MAPs can be attributed to the 

diversity of HLA alleles among our samples, which is a major factor influencing which peptides 

can be presented at the cell surface (Figure 14C; Figure 10). On average, the number of MAPs 

shared by any two cell lines or any two tissue samples is 59 or 640 MAPs, respectively. There are 

noteworthy outliers – tissue samples S1 and S6 shared 2079 MAPs (1673 of which are unique to 

these samples (Figure 15C)), thus their MHC I immunopeptidomes have approximately 23% 

similarity, as measured by the Jaccard index. (Figure 15D). The next closest similarity in MAP 

repertoires between two tissues is 1328 MAPs shared by the two MSI tissues (S5 and S6), which 

is only an 11% similarity between their immunopeptidomes. Despite the decreased MAP 

identification in cell lines, these trends are reproduced. For example, HCT116 and RKO share the 

most MAPs, though these peptides represent only 4% similarity, and this is likely a feature of their 

larger peptide repertoires (Figure 15C). In contrast, COLO205 and SW620 share 152 MAPs, 

approximately 10% similarity. 
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Figure 16. –  Overview of unique and shared MAPs in CRC-derived cell line and CRC/NAT tissue 

samples 

A) Venn diagram displaying the overlap of MAPs in the MHC I immunopeptidomes of four CRC-
derived cell lines. B) Venn diagram displaying the overlap of MAPs in the MHC I 
immunopeptidomes of six primary tissue samples. C) UpsetR plot displaying the number of MAPs 
unique to a given intersection of samples, specifically MAPs that are unique to a given sample or 
that are uniquely shared by two samples. D) Heatmap demonstrating the Jaccard index of MAP 
similarity between any two cell line or tissue samples. 
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To contextualize these comparisons, we can again consider the HLA alleles of our samples. 

Out of the 2079 MAPs shared by S1 and S6, 1595 MAPs are predicted to bind the same allele HLA-

B*07:02 in approximately 90% of these cases (Supplementary File 2). In addition, the S1 allele 

HLA-A*24:02 and the S6 allele HLA-A*23:01 have very similar allele-binding motifs as shown by 

HLAthena (154). Similarly, 126 out of 152 MAPs shared by COLO205 and SW620 are bound by the 

allele HLA-A*02:01 for 94 MAPs (Supplementary File 1). Thus, the MHC I immunopeptidomes of 

our samples is majorly influenced by the HLA repertoire.  

At the gene level, we identified peptides derived from over 8000 unique source genes, 

with an average of 1014 and 3168 source genes per cell line and tissue sample, respectively 

(Figure 16A, upper panel). This was highly correlated with the number of MAPs identified (Figure 

16A, lower panel). Roughly 6-14% of the source genes in a given immunopeptidome were sample-

specific (Figure 16B), which could be attributed to sample-specific biological features or it could 

reflect an imperfect sampling of the immunopeptidome (Figure 16E). We do not expect to identify 

every MAP presented at the cell surface, and as a majority of source genes in each sample are 

attributable to only a single MAP (Supplementary files 1 and 2), it is almost certain that additional 

source genes contribute to the MAP repertoire and their corresponding peptides are simply not 

detected. When comparing any two tissue samples, they had on average 32% source gene 

similarity, while comparing any two cell lines resulted in an average of 13% shared gene similarity 

(Figure 16C-E). Thus, distinct cell lines appear to be less homogenous than tissue samples at the 

source gene level. This likely reflects differences in sample composition, as the tissue samples 

have source genes derived from NAT, stroma, infiltrating cells, etc, while cell lines consist of only 

a single cell type. In addition, lower MHC I presentation of cell lines and the resulting decreased 

identification of MAPs means fewer source genes were sampled, lowering the likelihood of 

overlap. Regardless, all samples are more similar at the source gene-level compared to the 

immunopeptidome level, and sample-specific MAPs are being derived from shared source genes.  
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Figure 17. –  Overview of unique and shared MAP source genes in CRC-derived cell line and CRC/NAT 

tissue samples 

A) Top panel: Bar chart displaying the number of unique source genes identified per sample. 
Bottom panel: Scatterplot indicating the correlation between the number of unique MAPs 
identified in each sample and the corresponding number of unique source genes (Pearson’s r = 
0.99). Source genes were identified for peptides from coding sequences; any peptide that mapped 
to more than one source gene was excluded. B) UpsetR plot displaying the number of source genes 
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unique to a given sample or intersection, specifically source genes that are unique to a given 
sample or that are uniquely shared by two samples. C) Venn diagram displaying the overlap of 
source genes in the MHC I immunopeptidomes of four CRC-derived cell lines. D) Venn diagram 
displaying the overlap of source genes in the MHC I immunopeptidomes of six primary tissue 
samples. E) Heatmap demonstrating the Jaccard index of source gene similarity between any two 
cell line or tissue samples. 

 

To obtain an overview of the genomic function of the MHC I immunopeptidome and 

investigate the overlap of source genes, we performed GO term analysis on all the source genes 

identified in the cell lines as well as those identified in four or more tissues. Several common 

features between cell lines and tissues are detectable at the immunopeptidome level, including 

a significant enrichment of genes involved in RNA metabolism, ribonucleoprotein complex 

biogenesis, translation, and cellular responses to stress (Figure 14D). Thus, despite the large 

diversity of HLA alleles between and among our cell lines and tissue samples and the low MAP 

identification in cell lines, there is significant similarity in terms of what genes are contributing to 

the MHC I immunopeptidome.  

To investigate what proportion of MAPs from our tissue samples were from non-coding 

transcripts, we first determined, for each peptide, the most abundant putative source transcript 

(Ensembl Annotation 99). For peptides from the cancer-specific database, we mapped the MCS 

onto the genome, and determined the most expressed transcript at that location (see 

‘Quantification of MAP coding sequences in RNA-Seq data’ in Methods section). We thus 

determined that on average, 95.3% of our MAPs from tissue samples were from protein coding 

transcripts (i.e. UTR or CDR) (Figure 14E, left panel). Approximately 4.2% of peptides are from 

non-coding regions if we include the 2.8% of peptides deriving from unannotated RNA transcripts, 

as these peptides are likely coming from intergenic sequences. Approximately one-third of all 

noncoding MAPs (including those from unannotated transcripts) are derived from nonsense-

mediated decay transcript products, while less than 1% of them are coming from lncRNA, nonstop 

decay products, retained introns, or processed transcripts (transcripts that do not contain open 

reading frames) (Figure 14E, right panel).  
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2.4.4 Identification of tumor-specific and tumor-associated antigens in CRC 

 Following the identification of over 30 000 unique MAPs, we filtered peptide coding 

sequences to select those overexpressed at least 10-fold in cancer and expressed ≤2KPHM in 

pooled TEC samples or matched NAT, for cell lines and primary samples, respectively. A recent 

immunopeptidomic study in AML demonstrated that MCSs with RPHM < 8.55 have less than 5% 

probability to generate MAPs (103).  We thus quantified the expression of the MCSs in RNA-Seq 

data and kept only those that were expressed below 8.55 RPHM in mTECs and other normal 

tissues (GTEx). Following manual validation of the remaining peptides, we classified peptides as 

mTSAs if their amino acid sequence contained a cancer-specific mutation (i.e.  not an SNP). MAPs 

for which the sequence was the same as the reference genome and overexpressed at least 10-

fold in tumor compared to normal were classified as aberrantly expressed TSAs (aeTSAs) if they 

had no or residual RNA expression (≤0.2 KPHM) in mTECs (and NAT in the case of tissues) or as 

TAAs if their expression in mTEC and/or NAT was greater than 0.2 KPHM. 

While the TSA yield in CRC-derived cell lines was relatively meager, possibly due in part to 

low MAP identification, we uncovered an average of three TSAs per primary tissue sample (Figure 

17A). Overall, we identified one putative TSA in a CRC-derived cell line and 18 putative TSAs in 

primary tissues, and the TSA yield from each sample was correlated with the number of MAPs 

identified (Pearson’s r = 0.76) (Supplementary Figure 18). Of these, approximately one-third were 

derived from coding regions, while the majority of the putative TSAs identified originated from 

non-coding regions (Figure 17B). Among the TSAs from coding regions, two were from non-

canonical reading frames, deriving from exon frameshift sequences, and another two were 

mutated TSAs identified in MSS tissues S2 and S3 (Figure 17A and 17B). Among the non-coding 

TSAs, a large proportion originated from intronic or intergenic regions, with a smaller number 

being derived from 5’ UTR, 3’ UTR, or lncRNAs (Figure 17B). The sequences of six aeTSAs (four 

introns, one intergenic, one lncRNA) overlapped ERE sequences (Supplementary file 3). Due to 

the ubiquitous nature of EREs, TSAs derived from aberrant ERE expression are potentially shared 

by tumors and have been shown to be immunogenic (155, 156). Of note, none of our putative 

TSAs were shared between samples, even those with a high proportion of shared MAPs. However, 

we did identify two unique TSAs in different tissues that were derived from the same transcript 
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of COL11A1 (one exon frameshift and one 5’ UTR), which was recently shown to play a role in CRC 

development and prognosis (157). The majority of other TSA source genes have also been shown 

to be biologically relevant in CRC (Table 4).  

 

Figure 18. –  Novel TSAs identified in CRC derive primarily from non-coding regions, while the majority 

of TAAs derive from exons 

A) Bar chart displaying the number of TSAs identified per sample. B) Stacked pie chart identifying 
the genomic origin of TSAs in the inner pie, as well as what proportion of TSAs are mutated in the 
middle pie. The outer pie demonstrates what proportion of TSAs are from coding or non-coding 
sequences. C) Bar chart displaying the number of TAAs identified per sample. D) Stacked pie chart 
identifying the genomic origin of TAAs in the inner pie, and what proportion of TAAs are canonical 
or non-canonical in the middle pie. The outer pie displays what proportion of TAAs are from coding 
or non-coding sequences. E) Heatmap displaying the presence or absence of putative TSAs and 
TAAs in two previous publications on CRC immunopeptidomics (Löffler et al. 2018 and Newey et 
al. 2019), caAtlas, IEDB, and HLA Ligand Atlas (all tissues, and only colon tissue). 
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Figure 19. –  Correlation of MAPs and TSAs 
Scatterplot indicating the correlation between the number of unique MAPs identified in each 
sample and the number of TSAs identified and validated (Pearson’s r = 0.76). 
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Table 4. –  Biological relevance of TSA source genes in CRC 

Source gene Reference Biological relevance in CRC  

COL11A1 - Collagen type XI alpha 1 PMID: 33597969 Upregulated in CRC (mRNA), marker of poor prognosis, 
role in CRC development  

CYP39A1 - ytochrome P450, family 39, 
subfamily A, polypeptide 1 

PMID: 27341022 Expression is increased in CRC with poor prognosis  

DPH6 - Diphthamine biosynthesis 6 
 

No known association 

GRIN2B - Glutamate ionotropic 
receptor NMDA type subunit 2B 

PMID: 27243824 Identified as non-driver hub gene involved in progression 
to stage II CRC  

HKDC1 - Hexokinase domain-
containing protein 1 

PMID: 30005951 HKDC1 contributes to increased metabolism, 
proliferation, and metastasis of CRC cells  

HSPD1 - Heat shock protein family D 
(Hsp60) member 1 

PMID: 28261350; PMID: 
29246022 

Differentially expressed in CRC, potential biomarker for 
diagnosis; Exosomal HSPD1 identified as putative 
diagnostic and prognostic biomarker in CRC 

IPP (KLHL27) - Intracisternal A particle-
promoted polypeptide 

Human Protein Atlas 
(PMID: 28818916) 

Favorable prognostic marker in colorectal cancer; 
unfavorable in renal and liver cancers 

LY6G6F-LY6G6D readthrough - 
Lymphocyte antigen 6 family member 
G6F and G6D 

PMID: 26894861 LY6G6D/F overexpressed in CRC, potential cell surface 
marker  

NKD1 - Naked cuticle homolog 1  PMID: 25446263; 

PMID: 19956716 

Negative feedback regulator of Wnt pathway, intestinal 
tumor marker in mice; mutations in NKD1 alter Wnt 
signaling  

PATJ - PALS1-associated tight junction 
protein 

 
No known association 

PLK1 - Serine/threonine-protein 
kinase PLK1 / polo-like kinase 1 

PMID: 22648245 Overexpressed in CRC, associated with metastasis and 
invasion   

SUCNR1 – Succinate receptor 1 PMID: 32365557 SUCNR1 activation induces Wnt ligand expression and 
activates WNT signaling and EMT in a CRC-derived cell line  

TRPC6 - Transient receptor potential 
cation channel subfamily C member 6 

PMID: 26422106 mRNA expression of TRPC6 lower in CRC than in normal 
tissue, may contribute to tumorigenesis  
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While our primary objective was to identify putative TSAs in CRC, we also identified an 

average of 5.2 TAAs in our CRC tissue samples, though none were identified in our CRC-derived 

cell lines (Figure 17C). In contrast to the primarily non-coding putative TSAs, the majority of the 

TAAs we identified were from canonical, exon-coding sequences, with only a small number being 

derived from introns or intergenic sequences (Figure 17D). Two non-canonical TAAs overlapped 

ERE sequences (Supplementary file 3). Of note, four separate TAAs were identified in more than 

one sample. These shared TAAs were all derived from canonical exons, with source transcripts 

originating from ASPM, MKI67, MMP12, and HI-5, all of which have documented associations with 

cancer (Table 5).  
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Table 5. –  Biological relevance of TAA source genes in CRC 

Source gene Reference Biological relevance in CRC 

ASPM -Abnormal spindle 
microcephaly associated 

PMID: 31966766; Human 
Protein Atlas (PMID: 
28818916)  

Overexpressed in CRC; suggested to be unfavorable prognostic marker 
(involved in mitosis, cell cycle, tumorigenesis); known to be unfavorable 
prognostic marker in liver, lung, endometrial, pancreatic cancers  

BUB1 - Mitotic spindle checkpoint 
kinase 

PMID: 23747338; PMID: 
11782350 

Mutations in BUB1 linked to early onset CRC; inactivation may drive 
metastasis and progression in CRC  

CDCA8 - Cell division cycle 
associated 8 

PMID: 25260804 overexpressed in CRC, associated with cancer progression  

CENPE - Centromere-associated 
protein E  

 
No known association 

CENPF – Centromere protein F PMID: 30550624 phosphorylation changes associated w CRC malignancy; unfavorable 
prognostic marker in other cancers (liver, renal, etc; human protein 
atlas) 

DIAPH3 - Diaphanous related 
formin 3 

Human Protein Atlas 
(PMID: 28818916) 

DIAPH3 is prognostic, high expression is favorable in colorectal cancer 

FANCA - Fanconi anemia group A 
protein 

PMID: 27165003; PMID: 
21286667 

Fanconi anemia predisposes certain cancers; genes in FA pathway 
participate in CRC pathogenesis (involved in HR repair)  

HI-5 - H1.5 linker histone, cluster 
member 

PMID: 16959974 Frequently mutated in CRC   

IDO2 - Indoleamine 2,3-
dioxygenase 2 

PMID: 18418598 
 

Upregulated expression in CRC 

MACC1 - Metastasis-associated in 
colon cancer 1 

PMID: 27424982; PMID: 
25003996 

Promotes growth and metastasis of colorectal cancer; associated with 
carcinogenesis through B-catenin signaling and EMT transition  

MCM10 - Minichromosome 
maintenance 10 replication 
initiation factor 

PMID: 32597491 Decreased mRNA expression in colon and rectal adenocarcinoma 
samples compared to normal tissues 

MGAM2 – Maltase glucoamylase 2 PMID: 30996822 Expressed in GI cancers (TCGA data) 

MKI67 – Marker of proliferation 
Ki-67 

PMID: 26281861; PMID: 
27855388; 

PMID: 30727976; PMID: 
33658388 

Favorable prognostic marker in CRC, IHC staining (2016); favorable 
prognostic marker in stage III and IV CRC, IHC staining (2016); poor 
prognostic marker in CRC based on database meta-analysis (2019); Ki-
67 expression important for tumorigenesis  

MMP12 - Matrix metallopeptidase 
12 

PMID: 27431388 Overexpressed in CRC compared to control, negative prognostic marker 
in CRC 

NOS2 – Nitric oxide synthase 2 Human Protein Atlas 
(PMID: 28818916) 

Cancer enhanced (colorectal cancer); RNA data  

SPC25 (kinetochore protein) PMID: 32351050; Human 
Protein Atlas (PMID: 
28818916) 

Highly expressed in CRC (among other cancers); unfavorable prognostic 
marker in liver cancer, endometrial cancer, and lung cancer   

ZNF215 – Zinc finger protein 215  Human Protein Atlas 
(PMID: 28818916) 

Cytoplasmic expression in subsets of immune cells, most abundant in 
gastrointestinal tract and lymphoid tissues (protein data)  

Bold = validated  
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We initially expected to identify an above-average number of both TSAs and TAAs in MSI 

tissues. This was the case in S5, however the same was not true for the other MSI tissue (Figures 

17A and 17C). This could be due to S6 having a lower ‘degree’ of instability, as reflected in the 

MSIsensor-pro results (Table 3). Further, the sample that had the highest number of identified 

TSAs was S2, an MSS tissue. Thus, the yield of TSAs and TAAs per sample seems to be irrespective 

of MSI status and may be due to other unique biological features of the tumor outside the scope 

of this study.  

 To determine if any of our putative TSAs or TAAs have been previously identified, we 

verified if the peptide sequences were reported in the Immune Epitope Database, caAtlas (158), 

the HLA Ligand Atlas (159), and two previous publications that sought to identify tumor antigens 

in CRC from Löffler et al. 2018 (111) and Newey et al. 2019 (104). Of note, none of the putative 

aeTSAs, mTSAs, or non-canonical TAAs were previously reported in any of these resources. Of the 

26 putative canonical TAAs identified, 24 of them were reported either in the Immune Epitope 

Database (IEDB), caAtlas, Löffler et al. 2018, Newey et al. 2019, or some combination of the four 

(Figure 17E). Eight of these were also reported in the HLA Ligand Atlas, with one of them 

specifically being documented in healthy colon tissue. Interestingly, none of the TAAs previously 

identified in these earlier publications were reported as tumor antigens, and, conversely, six of 

the 12 tumor antigens of interest reported in Löffler et al. were also identified in the 

immunopeptidomes of our work, though they did not pass our TSA or TAA selection criteria, most 

often due to high expression in NAT (Table 6). We have thus identified novel TSAs in colorectal 

cancer that derive primarily from non-coding regions, as well as a selection of mainly coding TAAs, 

some of which have been previously reported as MAPs.  
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Table 6. –  Justifications for exclusion of Löffler et al. 2018 tumor antigens 

Peptide Löffler et al. 2018 

classification  

Löffler et al. 2018 

HLA restriction  

Sample Reason for exclusion  

RLASRPLLL Vaccine candidate B*07 S5 FC < 10 between cancer and NAT 

YRNSYEIEY Vaccine candidate C*07 S1, S2, S6 MCS expression > 2 KPHM in NAT  

APTPARPVL Vaccine candidate requiring 
further validation  

B*07 S1 MCS expression > 8.55 RPHM in 
mTEC 

RLAEPSQMLK Vaccine candidate requiring 
further validation  

A*03 S6 MCS expression > 2 KPHM in NAT  

SPKATGVFTTL Vaccine candidate requiring 
further validation  

B*07 S1, S6 MCS expression > 2 KPHM in NAT  

SVLTQPPSV Vaccine candidate of unclear 
relevance 

A*02 S2 MCS expression > 2 KPHM in NAT  

 

 

2.4.5 RNA expression of putative tumor-specific and tumor-associated 

antigens  

 First, we investigated the expression, in TPM, of the source transcripts in their respective 

tumor samples compared to the matched NAT, as well as the mean average of that transcript in 

the CRC/NAT sample (Figure 19A). This analysis naturally does not include peptides derived from 

intergenic regions. Note that in Figure 19A, both S4 and S5 plots have a canonical TAA point that 

is not visible, as it overlaps with another canonical TAA source transcript; however, these 

sequences were still included in downstream analyses. The average log2FC for the source 

transcripts of our putative TSAs and TAAs in the samples in which they were identified was 3.6 

and 3.2, respectively. In some instances, the source transcript of an aeTSA were only slightly more 

abundant in the tumor than in the NAT, however, this reflects only the overall abundance of the 

entire transcript, and the peptide coding sequences were in fact more abundant in the cancer 

(Figure 20). This was also true for aeTSAs, in which the peptide coding region was either entirely 

absent or lowly expressed in the NAT but was more highly expressed in the cancer tissue.  
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Figure 20. –  RNA expression profiles of putative TSAs and TAAs 

MA plots displaying the log2FC of transcripts, in TPM, in CRC compared to the matched NAT on 
the y-axis and the mean average expression in a given tissue sample (mean of CRC and NAT). 
Highlighted points indicate the source transcripts of putative TAA and TSAs. Both S4 and S5 plots 
have a canonical TAA point that is not visible, as it overlaps with another canonical TAA source 
transcript. B) Heatmap of mean RNA expression in log(rphm+1) of aeTSA coding sequences and 
TAA coding sequences (divided as canonical TAAs (canTAA) and non-canonical TAAs (non-canTAA) 
in normal tissues from Genotype Tissue Expression (GTEx) Portal and in pooled TEC samples. 
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MHClow tissues include those from brain, nerve, and testis, which have been shown to lowly 
express MHC I. A black outline indicates a mean RNA expression >8.55 rphm. 

 

 

 

 

 

 



 98 

 

Figure 21. –  RNA expression of MCS in cancer and NAT 

 Interactive Genome Viewer screenshots of RNA-seq data for two peptides of interest, which act 
as a proof of concept that although the source transcript of a TSA or TAA may not be highly 
overexpressed in cancer compared to NAT, the MAP-coding sequence (MCS) can be significantly 
overexpressed in the tumor. A) MCS for aeTSA sequence SIIETVNSL in S2 RNA-seq data. The source 
transcript of SIIETVNSL has a log2FC of approximately -0.26 in CRC compared to NAT. B) MCS for 
aeTSA sequence GQIELSIYR in S5 RNA-seq data. The source transcript of GQIELSIYR has a log2FC 
of approximately 1.1 in CRC compared to NAT. 
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To evaluate the specificity of our putative tumor antigens, we determined the mean 

expression of the peptide-coding sequences in the large dataset of healthy tissues provided by 

GTEx (Figure 19B). The TSA sequences were not expressed above 8.55 RPHM in any healthy 

tissues, except RIGGVGVEK, an aeTSA identified in S2, which was expressed above threshold in 

the testis. This suggests that this TSA could also be classified as a cancer-testis antigen (CTA), a 

class of aeTSA that is expressed in male germ cells but may also be aberrantly expressed in cancer. 

Due to the absence of MHC I in testis, these antigens are also promising candidates for cancer 

immunotherapy (160). This putative TSA is an LY6G6F-LY6G6D exon frameshift. While these genes 

have not been previously reported as CTAs, another member of the same gene family, LY6K, has 

been reported as a CTA in lung and esophageal cancers (161). TAA expression was below 

threshold in healthy tissues, although it tended to be higher in the esophagus and the transverse 

colon. Seven of these peptides were also expressed above threshold in the testis.  

 

2.4.6 Cancer specificity and predicted immunogenicity of TSAs and TAAs 

Following our identification of putative TSAs and TAAs, we validated all of the TSAs and a 

subset of nine TAAs with synthetic peptides. These TAAs were selected based on favorable initial 

TMT intensity ratios and precursor ion fractions in cancer vs matched NAT. These candidates all 

had MS/MS that correlated well with those of the synthetic peptides, with Pearson correlation 

score ³ 0.6 (Supplementary file 4). We then labeled synthetic peptides with TMT10plex-

129N,130N, and 131 at concentrations of 10, 100, and 1000 fmol, respectively, and spiked into 

remaining purified MAPs from tissue samples that were labeled with TMT126 (NAT) and 127N 

(CRC). SPS-MS3 was then used to quantify peptides of interest in these samples. Despite the 

decreased sensitivity of SPS-MS3, we were able to quantify seven TSAs and seven TAAs. We 

selected good quality PSMs for quantification, and as expected for antigens of this nature, all 

were more abundant in their respective CRC compared to NAT (Table 7). Determining the ratio of 

intensity of TMT127N peptides compared to TMT126 peptides revealed that TSAs had a median 

intensity fold change of 16.96 in CRC compared to NAT, while TAAs had a fold change of 6.93. In 

addition, the TSA with sequence RYLEKFYGL was also overexpressed in the S1 tumor, despite only 
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passing our transcriptomic thresholds for S6. Thus, we were able to demonstrate that the TSA 

identification methodology used in this study successfully identified TSA and TAA sequences that 

are more highly abundant at the surface of cancer cells than that of NAT.  
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Table 7. –  Relative quantification ratios of validated tumor antigens in CRC 

Sequence Nature of antigen Sample Endogenous 
sample 
ratio 

Mean 
intensity 

SPS-MS3 ratio 

(127N/126) 

Synthetic 
calibration 
curve R2 

RMLLSHTGK aeTSA RKO  N.D.  N.D. N.D. N.D. 

LPHRALSGI aeTSA S1 -0.364 N.D. N.D. N.D. 

GTNPTAAVK aeTSA S2 2.095 7238.425242 12.174 1.000 

LRHKLVLNR aeTSA S2 0.307 N.D. N.D. N.D. 

RIGGVGVEK aeTSA S2 1.965 29256.45 6.740 1.000 

SIIETVNSL aeTSA S2 0.288 N.D. N.D. N.D. 

TVNTQQYNTK aeTSA S2 -0.021 N.D. N.D. N.D. 

SVSHLHIFF aeTSA S3 -1.100 N.D. N.D. N.D. 

TTLENLPQK aeTSA S4 0.134 3140.8875 3.783 0.999 

AQKLQVRI aeTSA S5 0.793 N.D. N.D. N.D. 

GQIELSIYR aeTSA S5 0.328 N.D. N.D. N.D. 

HGALSIRSI aeTSA S5 0.777 N.D. N.D. N.D. 

RLMKFLPV aeTSA S5 0.171 N.D. N.D. N.D. 

SLYISEERK aeTSA S5 0.046 N.D. N.D. N.D. 

VQTAVLNV aeTSA S5 1.089 N.D. N.D. N.D. 

VEAPHLPSF aeTSA S6 1.059 43782.84192 41.318 1.000 

RNRQVATAL aeTSA S6 1.090 12174.6625 5.722 1.000 

RNRQVATAL Not assigned S1 0.890 15514.2375 3.507 1.000 

KIGEVIVTK mTSA S2 2.506 70659.6 13.637 1.000 

TRSTIILHL mTSA S3 1.381 34365.32187 48.807 0.997 

VLYRSVLLLK non-canonical TAA S6 0.997 N.D. N.D. N.D. 

TYKYVDINTF canonical TAA S1 1.969 29834.36875 8.226 0.998 

RYLEKFYGL canonical TAA S1 2.840 27614.24286 7.661 0.997 

RYLEKFYGL canonical TAA S6 2.970 106928.2875 16.090 0.999 

KSINEFWNK canonical TAA S2 2.212 56110.11667 5.238 0.999 

RIQLPVVSK canonical TAA S4 1.083 7612.378571 2.073 0.999 

QMAGLRDTY canonical TAA S3 1.140 36090.60294 2.884 0.999 

AQYDQASTKY canonical TAA S4 1.452 N.D. N.D. N.D. 

FVDNQYWRY canonical TAA S4 0.721 5853.986533 10.954 1.000 

SANVSKVSF canonical TAA S5 1.114 12780.925 2.321 0.999 

N.D.: not detected.  
Endogenous sample ratio: 127N/126 ratio in endogenous samples 
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To examine the intertumoral distribution of these TSAs and TAAs in other CRC tumors, we 

plotted the log(RPHM+1) expression of the peptide coding sequences in 151 colon 

adenocarcinoma samples from The Cancer Genome Atlas (TCGA) (Figure 21A). To evaluate the 

sharing potential of our antigens, for each peptide of interest, we first calculated the average of 

log-transformed (log(rphm+1)) values of pooled GTEx (n=2442) and mTEC (n=8) samples. Overall, 

nine TSAs (53%) and nine TAAs (100%) had an expression ≥10-fold above their corresponding 

averaged GTEx/mTEC value in at least 5% of TCGA COAD tumors. This demonstrates that TAAs 

are more frequently shared among COAD TCGA tumors than their TSA counterparts. However, 

this also means that most TSAs are highly shared in these samples. 
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Figure 22. –  Validation of TSAs and TAAs 

A) Heatmap displaying mean RNA expression in log(rphm+1) of TSAs and TAAs in 151 TCGA COAD 
samples. The proportion of TCGA COAD samples expressing the TSA and TAA sequences at least 
10-fold higher than the log-transformed (log(rphm+1)) mean expression of pooled GTEx and mTEC 
samples is displayed on the left. B) rEpitope immunogenicity scores of various groupings of 
validated TSAs and TAAs compared to presumably non-immunogenic thymic peptides reported in 
Adamopoulou et al. 2013. rEpitope suggested threshold of immunogenicity for MHC I peptides 
(0.36) is indicated by the dashed line. E) Predicted prevalence of tumor antigen-binding MHC class 
I alleles in US population (IEDB). 
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Another important consideration in the identification of tumor antigens is whether these 

peptides are able to invoke an effective anti-tumor immune response. Repitope predictions of 

immunogenicity revealed that our aeTSAs are predicted to be significantly more immunogenic 

than a set of thymic peptides which are presumed non-immunogenic (162) (Figure 21B). In 

addition, aeTSAs had significantly higher immunogenicity scores compared to canonical TAAs and 

to coding TAs overall (TSAs and TAAs derived from coding regions). In fact, TAAs from canonical 

regions were predicted to be significantly less immunogenic than thymic peptides (p < 0.01). This 

could be partially due to the low number of TAAs that we validated. If we consider these 

predictions with the entire set of 31 TAAs, this is no longer the case (Figure 22). Considering all 

31 TAAs revealed that MSI TAs are predicted to be more immunogenic than thymic peptides, 

while there is also a statistically significant increase in predicted immunogenicity of TAs derived 

from MSI tissues compared to MSS.  

 

Figure 23. –  Predicted immunogenicity of TSAs and TAAs 

rEpitope immunogenicity scores of various groupings of validated TSAs and all TAAs compared to 
presumably non-immunogenic thymic peptides reported in Adamopoulou et al. 2013. rEpitope 
suggested threshold of immunogenicity for MHC I peptides (0.36) is indicated by the dashed line. 
This figure differs from figure 21B in that it includes all TAAs reported in this work, not only the 
nine that were chosen for validation. 
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Finally, we sought an approximation of the proportion of individuals who possess the 

alleles that are predicted to bind and present our tumor antigens (Figure 21C). Many of the 

antigens in our samples are prevalent, and an estimation with the IEDB population coverage tool 

predicted that 80.64% of the United States population expresses at least one of the alleles 

associated with the TAs identified in this study. 
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2.5 Discussion 

Mass spectrometry is currently the best method to identify MAPs of interest, as it can 

directly sample the MHC I immunopeptidome and eliminates the need for error-prone prediction 

software, which are unable to incorporate the largely misunderstood intricacies of MAP 

processing and presentation (163). Our approach has previously led to the identification of TSAs 

in lung cancer (101), ovarian cancer (102), and acute myeloid leukemia (AML) (103), the majority 

of which are aberrantly expressed and derive from non-coding regions. The addition of TMT 

labeling allows us to both improve MAP identification and quantify peptide abundance between 

samples (88). While TSAs and TAAs have been identified in CRC, studies to date have only taken 

interest in the coding portion of the genome. By elucidating the MHC I immunopeptidomes 

derived from both canonical and non-canonical sequences in CRC cell lines and tumors, we thus 

present, to our knowledge, the first successful identification of aberrantly expressed TSAs in CRC. 

As novelty to our well-established identification workflow, we incorporated matched NAT of the 

respective CRC primary samples in our analysis, thus allowing for the most accurate possible 

‘control’ samples of normal expression of peptide-coding regions. The aeTSAs identified here 

derive primarily from non-coding regions, which has also been previously demonstrated in other 

cancers (101-103).   

 MSI tumors are characterized by more favorable responses to ICI (particularly PD-1 

inhibition) and increased immune infiltration compared to their MSS counterparts (69, 164), 

which was demonstrated in our samples using bioinformatic tools (Figure 11C, Figure 12B). The 

increased mutational load (Figure 11E, Figure 13B and C) and increased immunogenicity of MSI in 

CRC (144) suggested that these tumors would be characterized by a larger TSA or TAA burden. 

While the MSI tissue samples were sources of many TSAs and TAAs, we were able to identify eight 

aeTSAs, two mTSAs, and 18 unique TAAs in MSS tissues (seven of which were validated with 

synthetic peptides). Thus, it could be that the unfavorable response of MSS tumors to ICI is not 

due to a lack of tumor antigens, but rather to a lack of immune activation against these antigens. 

Accordingly, when considering all 31 of our identified TAA sequences, we saw a statistically 

significant decrease in the Repitope immunogenicity scores of TAs derived from MSS tissues 

compared to their MSI counterparts (Figure 22). While this trend was not observable when only 
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considering our validated TAA sequences, this could be attributed to the decrease in sample size 

for both subtypes. Despite a population-level decrease in immunogenicity, there are MSS-derived 

TAs with immunogenicity scores above the suggested threshold, which could still hold promise 

for immunotherapy. The ‘immune cold’ status of MSS tumors could alternatively be resulting from 

a lack of recruitment to the tumor site (165). Fortunately, there is a wide array of strategies 

designed to overcome the lack of immune infiltration into cold tumors, which could perhaps be 

used in combination with ICI or other immunotherapeutic approaches, such as vaccines, making 

use of TSAs such as those described here.  

 Among these TSAs, we identified two mTSAs unique to tumors derived from PLK1 and 

HDSP1, with missense mutations A520T and V345I occurring in 27% and 49% of RNA-Seq reads, 

respectively. The HDSP1 mutation is predicted to be benign by software such as Polyphen and 

CADD (166, 167). While the PLK1 mutation is documented in dbSNP (rs1004523813), it was not 

excluded from our analyses as the mutation is tumor-specific (not present in paired NAT) and it is 

very rare in the population (minor allele frequency <0.01) (168). Further, it is well-documented in 

COSMIC (cancer.sanger.ac.uk) and is predicted to be pathogenic by the Functional Analysis 

through Hidden Markov Models (166, 169). A recent study in immunopeptidomics of CRC 

organoids previously reported the discovery of three mTSAs (104). Unless derived from driver 

mutations, mTSAs are rare and thus it is unlikely that they are shared between tumors, and these 

particular mTSAs are absent from our study. In addition to mutation rarity, differences in peptide 

processing and presentation at least partly attributable to HLA diversity among samples further 

lessens the likelihood of identifying shared mTSAs. However, it is worth mentioning that MAPs 

from the source genes were reported in several of our samples (two, three, and three unique 

peptides from U2SURP, MED25, and FMO5, respectively). When taken together, these 

observations suggest that the overlap of mTSAs between specimens is relatively low, and it is thus 

not surprising to note the absence of previously reported mTSAs in our study, despite the 

relatively high SNV burden among our samples (Figure 11E, Figure 13C). mTSAs are 

immunologically relevant and have the capacity to be immunogenic but due to their lack of 

sharing between individuals, their potential for use in large-scale immunotherapy is limited.   
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 While mTSAs are expected to be rare and unique to a given tumor, it has been shown that 

aeTSAs can be shared among patients (90). Here, we did not identify any common aeTSAs among 

our six patients, however, we did identify two unique aeTSAs in different patients that were 

derived from the same transcript of the COL11A1 gene, which is known to be associated with CRC 

(Table 4). It should be noted that in this study, we worked with only six primary samples, which 

were largely diverse in their HLA alleles, thus reducing the likelihood of shared TSAs. The fact that 

we were still able to identify TSAs from the same transcript is encouraging, as it suggests that this 

transcript is generating biologically relevant peptides across different tumors. It is possible that 

these TSAs could be presented by other tumors with similar alleles, or that this transcript could 

be generating novel TSAs capable of being presented by other HLA alleles not examined here. 

Additionally, the TSA sequence RNRQVATAL was originally identified as a TSA candidate in S6 only. 

It was not considered a TSA in S1 originally due to the level of expression in normal tissue (RNA 

coding sequences not expressed at least 10-fold higher in cancer than in NAT), and yet at the 

immunopeptidomic level it had a 3.5-fold higher intensity in CRC than in NAT.  The fact that this 

peptide could also be considered a tumor antigen in S1 relates to the fact that mRNA abundance 

and protein abundance are not highly correlated (170), and our stringent identification pipeline 

excluded it based on RNA-seq data. This reinforces the need for mass spectrometry to directly 

sample the immunopeptidome, to relatively quantify the abundance of such peptides at the cell 

surface, and to validate the immunogenicity of TSAs in large-scale in vitro studies.   

 Outside of our six tissue samples, the decreased sharing of some TSAs among TCGA COAD 

tumors suggests that certain TSA sequences are not widely shared (Figure 21A). Of the nine TSAs 

that are expressed ≥10-fold above their corresponding averaged GTEx/mTEC value in at least 5% 

of TCGA COAD tumors, three are from intergenic sequences, two from exons, two from exon 

frameshifts, and one each from intronic or 5’ UTR sequences. This small sample size prevents us 

from drawing any conclusions, however, there may be a therapeutic advantage to distinguishing 

highly shared TSAs from those that are less abundant across COAD populations. While high 

tumoral RNA expression of a TSA sequence does not guarantee MHC I presentation of that 

peptide, it does increase the likelihood that a given TA sequence, or perhaps other sequences 

from the same transcript, could have dysregulated MHC I presentation in cancer.  
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 In contrast to TSAs, multiple canonical TAAs are shared between different primary CRC 

samples, with up to three samples presenting the same TAA. Additionally, the same genes can 

generate multiple relevant TAAs across tumor samples, with three unique TAAs being derived not 

only from the ASPM gene but from the same transcript (among these, SANVSKVSF was validated) 

(Table 5; Supplementary file 3). The increased intertumoral sharing of TAA sequences compared 

to TSA sequences is also reflected in TCGA data, in which canonical TAA coding sequences are 

expressed more frequently and more abundantly in colon adenocarcinoma samples compared to 

their TSA counterparts (Figure 21A). This is to be expected due to the very nature of TAAs, which 

are expressed in normal tissues but overexpressed in cases of malignancy, compared to TSAs 

which arise only in cases of mutated or aberrantly expressed sequences. As such, TAAs are more 

challenging to use in immunotherapy approaches as they have been known to induce auto-

immune responses, or even T cell tolerance (171). We also demonstrated that the TAAs identified 

here are predicted to be significantly less immunogenic than the TSAs (Figure 21B). However, 

TAAs can certainly be advantageous as cancer biomarkers, as is the case with CEA, the first TAA 

discovered in colorectal cancer in the mid-1960s (62).  

 We were initially surprised at the lack of CEA-derived TAAs in our tissue samples, despite 

the presence of several CEA-derived MAPs in our dataset (supplementary files 1-2). A closer 

examination revealed that CEA-derived MAPs (for example, those derived from CEACAM5 or 

CEACAM7) were excluded from our analysis following the initial peptide classification, which 

removes MAPs that are not overexpressed at least 10-fold higher in cancer than in matched NAT, 

and those that are expressed more than 2 RPHM in NAT. In the interest of comparing our findings 

with other contemporary studies on CRC immunopeptidomics, we queried our dataset for the 

MAPs identified as potential vaccine candidates in Löffler et al. 2018 (111). Out of the 12 TAAs 

they selected, six of them were identified in our tissue samples. However, five of these peptides 

did not pass the initial classifications in our pipeline (³10FC in cancer compared to NAT and 

£2RPHM in NAT), and the other was found to be expressed more than 8.55 RPHM in mTECs (Table 

6). We would like to note here that our pipeline was designed to identify TSAs, and thus has a 

stringent set of criteria meant to exclude peptides present in normal tissues. As no universal 

thresholds have been established to classify TAAs, differences in thresholds and filtering steps 
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between studies will naturally result in differential TAA identification. Löffler et al. also 

demonstrated T cell responses to their TAAs (111), suggesting that these antigens do have clinical 

potential.    

While this study is not meant to be a comprehensive view of CRC immunopeptidomics, 

the primary goal of our work was to provide a proof of concept that aeTSAs can be identified and 

are more abundantly presented at the cell surface of CRC than of paired NAT. Despite typical 

limitations of immunopeptidomic studies such as the amount of available material (particularly 

for tissue biopsies) and instrument sensitivity, we present here the identification of 19 TSAs. An 

additional drawback of this study was the low MAP identification in CRC cell lines attributable to 

the low MHC I abundance at the cell surface, which decreased the probability of identifying TSAs. 

In the future, MHC I presentation of cell lines could be boosted with IFN-g treatment to increase 

identification, particularly of lowly abundant peptides (172). This approach would be useful to 

investigate, for example, the sharing of tumor antigens across samples, despite the lower 

identification obtained with cell lines. While it should be kept in mind that IFN-g treatment alters 

gene expression (173), studies are currently underway to evaluate the impact of IFN-g, or other 

drug treatments, on TSA presentation and identification. Future investigations will include 

evaluations of TSA and TAA immunogenicity with T cell assays. In addition, expanding the sample 

size with primary tissues sharing common HLA alleles could drastically increase the likelihood of 

identifying shared TSAs. Here, we examine only primary samples of stage 2 non-metastatic CRC. 

Differential peptide presentation could be occurring at other tumor stages due to alterations in 

tumor biology. Expanding the reach of this study could include a large-scale analysis of multiple 

CRC samples as well as the investigation of TSAs in other stages of CRC.  
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2.7 Data Availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium (174) via the PRIDE partner repository (175) with the dataset identifier PXD028309 

and 10.6019/PXD028309. The transcriptomic data discussed in this publication have been 

deposited in NCBI's Gene Expression Omnibus (176) and are accessible through GEO Series 

accession number GSE195985 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 

GSE195985).  
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Chapter 3 – Conclusion and Perspectives 

3.1 Conclusion 

 For this thesis work, I investigated the immunopeptidomes of a series of CRC samples, 

employing various techniques including next generation sequencing, MS analyses, and a stringent 

TSA identification pipeline to identify MAPs of clinical interest. Transcriptomic profiling revealed 

differentially expressed genes between MSI vs MSS CRC, as well as an increased immune 

infiltration and increased mutational burden in MSI samples. We identified over 30 000 unique 

MAPs by mass spectrometry; despite each sample having a large proportion of unique peptides, 

these peptides frequently derived from common source genes, even across cell line and tissue 

samples. Our proteogenomic investigation of CRC-derived cell lines and primary tissue samples 

unveiled 19 novel, primarily non-coding TSAs, as well as a selection of mostly coding TAAs. These 

TAs were shown to not be expressed in normal tissues and demonstrated intertumoral 

distribution among CRC samples from the TCGA database. In addition, TMT isobaric peptide 

labeling provided a convenient approach to compare MAP abundance across tumor and NAT 

samples and to validate the identification of TAs with synthetic peptides. TMT-mediated MS 

quantification revealed that a select subset of TAs were all more abundant at the cell surface of 

CRC tissues compared to NAT, increasing our confidence in their relevance as TAs of interest. 

Despite the increased immune infiltration observed in MSI samples in our study as well as their 

improved prognoses in response to ICI therapy, here, MSI tumors did not consistently present 

more TSAs than MSS tumors. This suggests that the poor response of MSS tumors to ICI is not due 

to a lack of TSAs, but rather a lack of immune activation against these antigens. In line with this, 

the tumor antigens derived from non-coding regions tended to be more immunogenic than those 

from coding regions, and TAs identified in MSI tissues tended to be more immunogenic than those 

identified in MSS samples. While it should be noted that our sample size was relatively small for 

MSI tumors (n = 2), these observations suggest that the quantity of TAs may not be as relevant as 

their quality when it comes to response to immunotherapy (though this requires future 

investigation). Overall, we have identified, to our knowledge, the first aeTSAs in CRC, which we 

have thoroughly validated and demonstrated their promise as therapeutic agents. 
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3.2 Perspectives 

3.2.1 Proteogenomics approach 

In the late 1950s, the central dogma of biology described the linear progression of DNA 

being transcribed into RNA and then translated into protein (177). In the decades that followed, 

much was learned about the ways in which this process could move ‘backward’ (such as the 

reverse transcription of RNA into DNA employed by certain classes of viruses) (178), as well as the 

myriad ways in which DNA, RNA, and proteins may be regulated and modified (179-181). This is 

of course reflected in the differences in magnitude between protein coding genes (approximately 

20 000) and the size of the human proteome (>1 million). A consequence of these highly 

modifiable processes is the resulting lack of correlation that exists between RNA and protein 

abundance for a given transcript and corresponding protein. In fact, the correlation between RNA 

and protein abundance in eukaryotes is only ~40%, meaning that 60% of the variation in protein 

abundance is attributable to other factors, such as post-transcriptional modifications, 

translational regulation, or protein degradation (170, 182). 

Even so, a proteogenomic approach that employs transcriptomic data along with 

proteomic analyses is currently the best way to identify relevant tumor antigens. In our case, this 

involves the construction of databases that contain all RNA sequences present in the 

transcriptomic analyses, and the removal of sequences that are present in the ‘normal’ control, 

in order to identify cancer-specific sequences. While the absence of RNA likely entails the absence 

of protein (as there is no material to be translated), the presence or abundance of RNA carries 

little weight with regard to the resulting presence or abundance of a corresponding protein, and 

this should be kept in mind when pursuing proteogenomic analyses. Thus, it is quite possible that 

in our work we have eliminated candidates based on RNA expression in ‘normal’, when the 

corresponding protein product is absent and thus would be a tumor-specific antigen. However, 

these possible ‘false negatives’ are more favorable than any ‘false positives’ that could result from 

a less stringent database construction.  

 Additionally, this further emphasizes the importance of identifying tumor antigens 

through MS analyses, as the presence of a sequence at the transcriptomic level does not 
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guarantee its translation into a protein, much less its degradation and presentation at the cell 

surface by MHC I. This is also why, in our study, we make use of normal adjacent tissues as the 

best possible control for our primary tumor samples, as they mimic the ‘normal’ expression of the 

same individual, and account for any tissue-specific expression.  

3.2.2 Immunogenicity and T cell reactivity 

While we went to great lengths to validate our TSAs, there are some validations outside 

of the scope of this study that need to be completed before pursuing these antigens in clinical 

trials. For example, our predictions of peptide immunogenicity were purely in silico, and based on 

machine learning algorithms that simulate the behavior of these peptides in TCR-MHC:peptide 

interactions (131). Certain peptide characteristics can be used to predict immunogenicity, such as 

structure (183) or amino acid composition (184), and these predictions can aid in the selection of 

promising candidates for further validation. However, these strategies generate population-level 

predictions of immunogenicity, not individual ones, and do not consider certain peptide features 

such as post-translational modifications or other in vivo immunological factors (185). As such, 

further studies are needed to fully understand the immunogenicity of a given peptide, and this 

should ideally be done with a combination of in vitro and in vivo strategies. For example, HLA 

binding assays can be used to measure peptide affinity, and in vitro T cell assays, such as ELISpot 

or tetramer assays, can be used to measure cytokine responses, T cell proliferation, or T cell 

recognition of the peptide of interest. However, researchers should be cautioned against using 

only a single assay, as they may have conflicting results; a 2018 study demonstrated that MHC I 

tetramer assays can miss fully functional T cell clones that recognized the peptide of interest with 

lower affinity (186). In addition, T cell reactivity assays would be necessary to confirm the validity 

of these antigens, as T cell recognition of TSAs is required for an anti-tumor immune response. 

While it might be assumed that the presence of TILs in the TME guarantees T cell reactivity, this 

is not necessarily the case. It has been demonstrated that TILs in human lung and colorectal 

cancers are not exclusively reactive to tumor antigens, and may be considered “bystanders” in 

the anti-tumor immune response (187). Another study reported that as few as 10% of TILs in 

ovarian and colorectal cancers are reactive to the tumor (188), further emphasizing the need to 

confirm TIL reactivity to tumor antigens. Finally, these immunogenicity evaluations should be 
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confirmed with in vivo studies, such as in HLA transgenic or otherwise humanized mice, which can 

provide a more complete representation of the innate and adaptive immune systems in response 

to an antigen without risking the well-being of patients (89, 189). However, these studies are not 

without drawbacks. For example, even in HLA-transgenic mice, differences in murine and human 

protein sequences could result in an immune response against an antigen in mice that otherwise 

would not occur (89). In addition, many humanized mouse models are not able to completely 

reconstitute all relevant immune cells (e.g., myeloid and red blood cells) (190).  

3.2.3 Cancer vaccines 

The goal of identifying TSAs and TAAs is of course so that they can be of use to individuals 

affected by cancer, either to mitigate or cure the disease. In recent years, cancer immunotherapy 

has become particularly attractive. Of course, these treatments can take many forms. A variety 

of therapies could employ tumor antigens including vaccination, adoptive TIL transfer, or 

engineered T cells that specifically target these antigens at the cell surface of tumors (191). In 

terms of vaccination, many different approaches are possible. In some approaches, whole tumor 

cells are injected into the patient, such that T cells can be activated against the tumor-associated 

components to attack the tumor present in the body (192). Other more specific approaches 

involve injecting purified tumor antigens, or even loading the antigen onto DCs beforehand and 

injecting them such that they can act as antigen presenting cells  to the existing T cells in the 

patient (193).  

Many studies and clinical trials are currently underway evaluating the efficacy of TA-based 

vaccines. In fact, such studies have resulted in a commercially available prostate cancer vaccine, 

which consists of peripheral blood mononuclear cells that have been activated against a prostatic 

acid phosphatase – granulocyte-macrophage colony-stimulating factor fusion protein (194). 

Prostatic acid phosphatase is a cancer antigen expressed in >95% of prostate cancers (195). 

However aside from this, vaccines making use of TAAs have had relatively meagre results (196). 

As previously discussed, the majority of work in this field thus turned to the investigation of 

neoantigens, or mTSAs, despite their lack of intertumoral sharing. A recent study demonstrated 

that treatment with a DNMT inhibitor was able to reinduce cancer-testis antigen expression in 
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mice bearing metastatic CRC tumors, and that combining this inhibitor with an irradiated whole-

cell CRC vaccine (known as GVAX) was able to improve survival compared to the GVAX vaccine 

alone (197). Thus, while several vaccines have been shown to be effective against TAAs or mTSAs, 

no aeTSA vaccines have been developed to date. Moreover, there are many questions remaining 

in terms of how to best formulate such a vaccine.  

As I have demonstrated in this thesis, aeTSAs are being presented at the cell surface of 

CRC, are absent on NAT, and are predicted to be immunogenic, including in tumors with high 

immune infiltration. And yet, the existence of the tumor demonstrates the inability of the 

immune system to effectively eradicate cancer cells. In fact, it has been proposed that the 

immune system remains ignorant of many TSAs given their inefficient presentation by tumor cells 

(198). This inefficient immune activation is three-fold: first, tumor cells have been shown to be 

poor T cell activators, given that they lowly express CD28, which is a necessary costimulatory 

signal for T cell activation. It is thus more likely for T cells to be activated against TSAs cross-

presented by DCs; second, epithelial cells present little MHC in general (199), and this is 

compounded by the various mechanisms of MHC downregulation employed by cancer cells, 

further lowering the likelihood of TSA presentation by tumor cells; and finally, DC cross-

presentation has been demonstrated to be biased to present MAPs derived from stable proteins, 

whereas direct presentation typically presents MAPs derived from DRIPs (42, 200). So, even if 

some TSAs are being effectively cross-presented by DCs, others derived from DRIPs could be 

completely ignored (198). For these reasons, the most effective formulation for an aeTSA vaccine 

would likely be DCs pulsed with aeTSAs, rather than a purified antigen or whole cell formulation.  

While the type of immunotherapy needs to be optimized, the contents of a vaccine would 

also need a sufficient amount of consideration. It is likely that an effective cancer vaccine would 

also need to contain adjuvants to recruit immune cells to the injection site and activate APCs and 

prevent the induction of tolerance in response to the antigen(s) (201). This is the case for the 

previously mentioned prostate cancer vaccine, which contains an antigen fused to granulocyte-

macrophage colony-stimulating factor, which acts as an adjuvant to enhance APC efficacy (194). 

Other possible adjuvants for a cancer vaccine that induce an immune response include pathogen-

associated molecular patterns, or PAMPs, which are recognized by pattern recognition receptors 
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(PRRs) expressed by innate immune cells (201). Such formulations could be improved by 

incorporating more than one tumor antigen, to ensure effective immune activation against the 

tumor, particularly given the inevitable intertumoral variability in terms of expression of these 

antigens. Additionally, cancer vaccines could be paired with existing therapies, such as ICI, or 

other strategies to improve immune infiltration in the tumor. This is particularly the case for MSS 

CRC, for which ICI is ineffective and as these tumors are typically immune ‘cold’.  

Finally, a limitation of our study, and more widely of immunopeptidomic studies, is the 

constraint of peptide presentation and identification imposed by HLA binding specificity. As the 

HLA repertoire of an individual plays a critical role in determining the MAPs they are able to 

present, there is a limitation in the proportion of individuals able to present given TAs. As seen in 

our study, no TSAs were shared among samples, and this is undoubtedly attributable at least in 

part to the large diversity of HLA alleles that these samples possessed, limiting their ability to 

present the same MAPs. There are two separate ideas to be discussed on this matter. The first is 

that, fortunately, HLA molecules are able to bind many peptides and HLA binding repertoires are 

not unique for individual alleles, and there are certainly MAPs that can be bound by multiple 

alleles. In fact, HLA alleles which have largely overlapping binding specificities can be grouped 

together into “supertypes”, meaning that alleles of this supertype are likely capable of binding 

many of the same peptides (202). This is very fortunate when considering the development of TA-

based vaccines, given that over 6000 HLA alleles have been identified (203) and it would be a 

much larger undertaking if each of these alleles had entirely unique binding specificities.  

The second idea to be discussed is the tendency of immunopeptidomic studies to center 

HLA-A*02 alleles, and particularly HLA-A*02:01 due to the prevalence of this allele in the 

Caucasian population, and thus the North American population. A limitation of our study is that, 

while it did not focus exclusively on HLA-A*02 alleles, the primary tissue samples we used were 

derived exclusively from Caucasian subjects, and thus our study is not exempt from the flaws of 

such approaches. In particular, any TAs identified in such studies will primarily benefit certain 

populations i.e., those with HLA-A*02 alleles (204). Further, these studies do not represent the 

global majority, and cancer is a leading cause of death worldwide (205). While it would of course 

be difficult to achieve global representation in a single study, it should be argued that focusing 
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only on the most prominent alleles is a structural form of exclusion that will inevitably contribute 

to health inequities. To address this, studies seeking to identify TAs should approach the 

endeavour with this in mind, and incorporate multiple samples and more alleles to avoid serving 

only a small proportion of the population, as the objective should be to aid as many people as 

possible.  

3.2.4 Remaining questions  

While my thesis work ends here, the study of colorectal cancer immunopeptidomics will 

forge onward. Unfortunately, not all of the important questions could be addressed, but I hope 

the answers to them will be elucidated in the near future. If I were to continue this work, I would 

seek to incorporate more samples into our TSA identification pipeline, for two reasons: first, it 

would likely allow us to obtain more MSI primary tissue samples, whereas in our study only two 

samples were MSI, unfortunately preventing any statistical analyses and a clearer observation of 

trends between MSI and MSS samples, especially in terms of immunogenicity of TAs; and second, 

it would allow us to investigate whether our TAs are shared among other primary samples, 

particularly if we were able to obtain samples with similar HLA alleles to those in our initial study. 

Additionally, while in our study we did not identify any shared TSAs, we did identify two TSAs in 

different primary samples derived from the same transcript. This is especially interesting, as it 

suggests that this transcript is biologically relevant in CRC and is capable of generating multiple 

TSAs with different HLA allele binding specificities. It is thus possible that such a transcript could 

generate more TSAs in different samples. While we approximated the degree of sharing of TA-

coding sequences in TCGA data, the expression of these sequences at the RNA level does not 

guarantee their presentation as MAPs. As such, it would be important to evaluate the degree of 

TSA sharing across many samples in terms of MAP presentation, rather than only RNA expression. 

Finally, while the generation of certain TAs may be linked to processes exclusively dysregulated 

in CRC, it would be interesting to evaluate whether certain TAs may have pan-cancer relevance, 

i.e., whether a TA identified in our study could be a TA in other cancers, especially since we have 

already determined that these sequences are absent or very lowly expressed in normal tissues.
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