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Résumé 
En raison des relations complexes entre les variables des systèmes biologiques, l’hétérogénéité 

des données biologiques pose un défi pour leur modélisation par des modèles mathématiques 

et statistiques. En réponse, étant conçus pour traiter des données multiniveaux et bruitées, les 

modèles à effets mixtes deviennent de plus en plus populaires en modélisation quantitative de 

systèmes biologiques. L'objectif de cette thèse est de présenter l’application de modèles à effets 

mixtes à différents systèmes biologiques. 

Le deuxième chapitre de ce mémoire vise à déterminer la relation entre la cote de qualité du 

sirop d'érable, divers indicateurs de qualité couramment obtenus par les producteurs ainsi qu'un 

nouvel indicateur, le COLORI, et la concentration en acides aminés (AA). Pour cela, nous avons 

créé deux modèles à effets mixtes : le premier est un modèle ordinal qui prédit directement la 

cote de qualité du sirop d'érable en utilisant la transmittance, COLORI et AA ; le deuxième modèle 

est un modèle non linéaire qui prédit la concentration en AA en utilisant COLORI avec le pH 

comme approximation temporelle. Nos résultats montrent que la concentration en AA est un 

bon prédicteur de la qualité du sirop d'érable et que COLORI est un bon prédicteur de la 

concentration en AA. 

Le troisième chapitre traite de l’utilisation d’un modèle de la pharmacocinétique de population 

(PopPK) pour décrire la dynamique de l'estradiol dans un modèle de pharmacologie quantitative 

des systèmes (QSP) de la différenciation des cellules mammaires en cellules myoépithéliales afin 

de capturer l'hétérogénéité de la population de patients. Nous avons trouvé que la composante 

PopPK du modèle QSP n’a pas ajoutée de grande variation dans la dynamique de patients virtuels, 

ce qui suggère que le modèle QSP inclut intrinsèquement l'hétérogénéité. 

Dans l'ensemble, ce mémoire démontre l'application de modèles à effets mixtes au systèmes 

biologiques pour comprendre l'hétérogénéité des données biologiques. 

Mots-clés : modèles statistiques, modèles mathématiques appliqués à la biologie, modèles à 

effets mixtes, hétérogénéité biologique  
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Abstract  
 

Modelling biological systems with mathematical models has been a challenge due to the 

tendency for biological data to be heavily heterogeneous with complex relationships between 

the variables. Mixed effects models are an increasingly popular choice as a statistical model for 

biological systems since it is designed for multilevel data and noisy data. The aim of this thesis is 

to showcase the range of usage of mixed effects modelling for different biological systems.  

The second chapter aims to determine the relationship between maple syrup quality rating and 

various quality indicator commonly obtained by producers as well as a new indicator, COLORI, 

and amino acid (AA) concentration. For this, we created two mixed effects models: the first is an 

ordinal model that directly predicts maple syrup quality rating using transmittance, COLORI and 

AA; the second model is a nonlinear model that predicts AA concentration using COLORI with pH 

as a time proxy. Our models show that AA concentration is a good predictor for maple syrup 

quality, and COLORI is a good predictor for AA concentration. 

The third chapter involves using a population pharmacokinetics (PopPK) model to estimate 

estradiol dynamics in a quantitative systems pharmacokinetics (QSP) model for mammary cell 

differentiation into myoepithelial cells in order to capture population heterogeneity among 

patients. Our results show that the QSP model inherently includes heterogeneity in its structure 

since the added PopPK estradiol portion of the model does not add large variation in the 

estimated virtual patients.    

Overall, this thesis demonstrates the application of mixed effects models in biology as a way to 

understand heterogeneity in biological data. 

Keywords: statistical models, mathematical models in biology, mixed effects models, biological 

heterogeneity 
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Chapter 1 – Introduction 
 

The coupled improvement of statistical analysis tools and our understanding of complex 

biological systems has heightened interest in the representation of the heterogeneity present in 

biological data. Biological systems naturally present a great amount of noise. Owing to the 

experimental and clinical limitations, the number of confounding factors in biological data is 

generally impossible to tease out, even through careful experimental design. This difficulty is 

particularly pronounced in observational studies. For example, a population of frogs kept in 

captivity and bred from the germ line would still present heterogeneity, while a wild group of 

frogs would experience such a large range of external factors that large noise would be inevitable. 

The question remains as to which statistical tools are optimal to capture these effects in statistical 

and/or mechanistic models.  

The level of statistical complexity often depends on the quality of the available data and the type 

of system being described. As in all modelling, statistical models face the issue of both under and 

over fitting, in which one end would fail to capture critical nuance of the system while the other 

end results in unusable models for future data. This thesis is concerned with mixed effects models 

and their application to heterogeneous biological systems. From a simple extension from a linear 

fixed-model (e.g., linear regression) to nonlinear and general models, mixed-effect models offer 

the ability to capture complexity from several angles and are suitable for describing a wide variety 

of scenarios. This is especially important when using statistical approaches to describe biological 

phenomena and explains why mixed effects modelling has become a popular choice for 

understanding variability within biological data.  

1.1 A few statistical basics 
Before discussing mixed effects models in detail, it is necessary to provide several key definitions 

that will be used throughout this thesis. One of the most foundational applications of statistical 

in biology is hypothesis testing. A parametric hypothesis is an assertion about the unknown 

parameter 𝜃. If all parameters exist in the parameter space Θ ⊆ ℝ, then the null hypothesis is 

referred to as1  
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𝐻଴: 𝜃଴ ∈ Θ଴, 

while the alternative hypothesis is referred to as  

𝐻ଵ: 𝜃 ∈ Θଵ. 

By convention, the null hypothesis is a statement representing ‘no change’, meaning that the 

alternative hypothesis represents change. Hypothesis testing involves partitioning the sample 

space into disjoint sets 𝐶 and 𝐶௖  based on sample points 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) from data such that 

if 𝑥 ∈ 𝐶, we reject 𝐻଴  and if 𝑥 ∈ 𝐶௖, we fail to reject 𝐻଴. It is important to note that we do not 

say that we accept 𝐻଴ or accept 𝐻ଵ, simply that 𝑥 fails to provide sufficient evidence to reject 

𝐻଴ or 𝑥 does provide enough evidence to support 𝐻ଵ more than 𝐻଴, respectively1.  

Before we can select a benchmark to determine the set 𝐶, we must first discuss errors that can 

be made when using hypothesis testing. If 𝐻଴ is incorrectly rejected in favour of 𝐻ଵ, a Type 1 (𝛼) 

error has occurred. Conversely, if we fail to reject 𝐻଴  when it is false, then a type 2 error 

(commonly referred to as 𝛽, but defined in this thesis to be 𝛽෨ to not confuse it with the 𝛽 in 

equations in Section 1.2.1) occurred. Power is then defined as  

1 − 𝛽,෩  

or the probability that type 2 error did not occur. Ideally, 𝐶 would be chosen such that both errors 

are zero, but this situation is unseen in practice1. Instead, the most used values used for Type 1 

error and power are 𝛼 = 0.05 and 1 − 𝛽෨ = 0.82,3, chosen to minimize both errors to acceptable 

levels for most practices.  

In practice, Type 1 errors have more (nonstatistical) consequences than type 2 errors and are the 

focus when performing hypothesis testing. A p-value is the probability of observing a sample 

outcome at least as extreme as the one already sampled under the assumption of 𝐻଴
1. A 

calculated p-value is then compared to the pre-determined 𝛼-level. If the p-value is smaller than 

𝛼, that is to say that the probability of obtaining a sample at most as extreme as the current 

sample under the assumption of 𝐻଴ is smaller than some accepted level 𝛼, then it is safe enough 

to reject 𝐻଴.  For better or for worse, p-values are perhaps one of the most well-known statistical 

terms. 
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There are divergent philosophies when it comes to hypothesis testing and its application in 

practice. In contrast to classic frequentist hypothesis testing, the information theoretic (IT) 

approach examines several hypotheses simultaneously to identify the best model using some 

information criteria4. In the sections below, we will briefly compare and contrast these 

approaches, particularly with respect to data size requirements (Section 1.3.1.1) and model 

discrimination (Section 1.3.3). 

Though we will be specifying notations throughout this thesis, we list some of the most used ones 

here for clarification.  

 Individual units (𝑖 = 1, … , 𝑛): The smallest items of measurement used in the equation(s) 

(e.g., patients in a study of patients in different hospitals). 

 

 If units (𝑖 ) are grouped, the first level of grouping is 𝑗 = 1, … , 𝐽 . The second level of 

grouping (of units 𝑗) is then given by 𝑘 = 1, … , 𝐾, with subsequent levels of grouping 

defined in text.  

 

 Layers of groups (including the bottommost layer of units) are called levels. Occasionally 

𝑘 will be used to represent responses per unit 𝑖. If so, the notation will be written as [𝑘] 

for clarity. In general, indexing will go from left to right with the largest unit starting on 

the leftmost position e.g., 𝑦௝௜[௞] is the 𝑦 for the 𝑗th group, 𝑖th unit at [𝑘]th time. 𝑘 will 

never be used for both grouping and time in the same equation.  

 

 Response variable 𝒀 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡)் is a vector of responses (outcome measurements) 

for each unit 𝑖. 

 

 Predictor variables are represented by 𝑿, an 𝑛 × 𝑀 matrix containing the measured data. 

𝑿 (as well as matrices defined in text) are design matrices, where the rows represent each 

unit 𝑖 and the columns are predictor variable 𝑚 = 1, … , 𝑀. The cells could be data values 

or indicator variables (ones and zeros).  
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 Regression parameters used for non-mixed effects models will be denoted as 𝛽௠. We will 

write the intercept parameter 𝛽଴ separately. For mixed effects models, fixed effects will 

be denoted as 𝜃 and random effects will be 𝑢௜. Other parameters may be introduced if 

there are more levels.  

 

 Covariates in this thesis will be defined as characteristics of the units within a study that 

will affect the outcome of the model prediction. Common example is the body weight of 

a patient. It must be stressed that, in this thesis, covariate will not be used as a synonym 

for predictor variables.  

We will now lay the theoretical foundation of linear and nonlinear mixed effects models (Section 

1.2) before discussing their use in practice, particularly in application to biological systems 

(Section 1.3).  

1.2 Statistical foundations of mixed effects models 
A mixed effects model is a type of statistical model that contains both fixed effects and random 

effects. Fixed effects are model parameters that have one fixed population value, meaning that 

every individual within this population uses the same parameter value. Simpler models, like linear 

regression, solely use fixed effects as their parameters.  

Generalized linear models (GLM) are defined as 

𝐸(𝒀) = 𝝁, 

𝜼 = 𝑔(𝝁) = 𝛽଴𝟏௡ + 𝑿𝜷 

(1.1) 

where 𝒀 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡)்  is a vector of the response variable and 𝑦௜  has a distribution that 

belongs to the exponential family, 𝑿  is the 𝑛 × 𝑚  matrix of 𝑚  predictive variables and 𝑛 

responses, 𝜷 = (𝛽ଵ, 𝛽ଶ, … 𝛽௠)் is the vector of the (unknown) slope parameters predicted in the 

model, 𝛽଴  is the (unknown) intercept parameter, and 𝟏௡ = (1,1, … ,1)் . Though commonly 

taken to be a normal random variable, 𝒀 does not have to be normally distributed. The expected 

value of 𝒀 

𝝁 = (𝜇ଵ, 𝜇ଶ, … , 𝜇௡)், 
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is fitted to some function 𝜼 = 𝑔(𝝁)  called the linked function. The variance of 𝒀 is the variance-

covariance matrix of 𝒀, 𝑉𝑎𝑟(𝒀) = 𝑉. The form of 𝜼 in Eq. (1.1) is also commonly written in its 

matrix form 𝑿𝜷, where the intercept parameter 𝛽଴ is integrated in 𝜷 and the one vector 𝟏௡ is 

the first column of 𝑿.  

More conveniently, Eq. (1.1) can be rewritten as 

𝐸(𝒀) = ℎ(𝛽଴𝟏௡ + 𝑿𝜷) (1.2) 

where ℎ is the inverse link function. While not necessary, for many GLMs the link function is 

bijective within the correct domain, i.e., ℎ = 𝑔ିଵ, which is quite convenient. Common GLMs 

include exponential, logistic and Poisson models.  

The most common link function is simply the identity function 𝑔(𝝁) = 𝝁. When combined with 

a normally distributed response variable, this gives the more familiar form of the multivariate 

linear model 

𝒀 = 𝛽଴𝟏௡ + 𝑿𝜷 + 𝜖, (1.3) 

where 𝜖 = (𝜖ଵ, 𝜖ଶ, … , 𝜖௡)்  with 𝜖௜~𝑁(0, 𝜎ଶ), 𝑖 = 1, … , 𝑛  the vector of residual (unobserved) 

random errors1. In Eq. (1.3), the 𝜷 parameters represent the fixed-effects parameters, as defined 

above. 

A simple linear model (LM) is the simplest version of a GLM where there is only one predictor 

and one response, and 𝑦 is normally distributed. A LM can then be defined as 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝜖. (1.4) 

In the LM in Eq. (1.4) above, there is only one predictor (𝑥) with its one slope parameter 𝛽ଵ that 

represents the fixed effect. For example, if one were to predict height (𝑦) of a population children 

based on age (𝑥), the regression slope 𝛽ଵ determined by this model is the fixed (population) 

effect. GLMs like Eq. (1.3) are simple to use and easy to interpret but are not without faults. One 

of the limitations of a fixed effects-only model presents itself when we want to examine how an 

individual within a population would behave. Returning to the example of children’s heights, we 

note that the regression slope 𝛽ଵ  does not quantify how an individual within the population 
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deviates from the population effect of age has on height. To rectify this drawback, random effects 

can be integrated to help capture and quantify these individual deviations.   

Before we provide a more detailed overview of random effects, we will first define some common 

techniques used for GLMs that allow the models to better accommodate different situations. As 

seen in Eq. (1.3), the GLM is comprised of an intercept parameter and slope parameter(s). The 

intercept represents the value of the response variable if the input from the predictor variables 

is zero and the slopes represent changes in the response with changes to the predictor variable. 

In our example, the intercept 𝛽଴ would predict the average height of a newborn (age=0) whereas 

the slope 𝛽ଵ indicates how much the child grows per year (age increases by 1). In such a simple 

case, there is only one intercept and one slope parameter. This means that the model in the 

example assumes that the population of children is homogenous, as children on average are born 

the same height and grow at the same rate. There are many well-explored techniques for GLM 

that allows more leeway. Changes to the model will include altering the format of either the 

intercept and/or the slope. 

1.2.1 Linear mixed effects models 
 

Variability in data is often attributed to categorical variables that separate the population into 

subsets. In a fixed effects model like the GLM, dummy variables would be then used to quantify 

categorical variables in the model in a process called dummy coding5. Consider the GLM in Eq. 

(1.3) with one continuous predictor 𝑥 and one categorical predictor 𝐷, with three categories (or 

groups) predicting response variable 𝑦. This model would be written as 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑑ଵ + 𝛽ଷ𝑑ଶ + 𝜖, 

where 𝑑ଵ, 𝑑ଶ = {0,1} are two of the three groups of 𝐷. Here, 𝑑ଵ and 𝑑ଶ are called the dummy 

variables and since they are binary, they are used to signify the effects of their respective group. 

Further, only one would be in its ‘1’ state at a time. The third group is represented by the “base 

state” with 𝑑ଵ, 𝑑ଶ = 0. For any categorical predictor variable 𝐷 with 𝑛 groups,  

𝑦 = 𝛽଴ + 𝛽௠𝑑௠ + 𝜖, 
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where 𝑚 = 1, … , 𝑀. The choice of group used as the “base case” does not affect the model5. 

When the model is fitted, the base case is absorbed into the intercept estimate. Notice that 

dummy coding effectively allows the model to change its intercept value 𝛽଴ since when 𝑑௠ is set 

as 0, its term disappears whereas when 𝑑௠  is 1, the term becomes 𝛽௜ , which sums with the 

intercept 𝛽଴. Returning to the example of age versus height in children, we can begin to improve 

the model by dummy coding the sexes. This would allow the model to determine whether the 

height of newborns (age = 0) differs between the sexes.  

Dummy coding represents one extreme in the class of techniques using a categorical predictor 

because it estimates separate models within each level of the predictor and therefore 

corresponds to no pooling6. The other extreme is complete pooling, where the categorical 

variable is excluded completely and the sample is considered to be homogenous6. The 

consequence of not pooling the information for each level of a categorical predictor is poor 

estimation for any levels that have little information or a limited number of data points6.  

Unlike dummy coding, interaction terms are used to change the slope parameters. Consider a 

GLM (Eq. (1.3)) with two predictor variables (𝑥ଵ, 𝑥ଶ) and predictor variable 𝑌. In this case, a model 

that assumes 𝑥ଶ affects 𝑥ଵ is written as 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଵ𝑥ଶ + 𝜖. (1.5)  

It is convention to include the main effects, or non-interaction terms, when using interaction 

terms. Notice that though we stated above that it is 𝑥ଶ that is affecting 𝑥ଵ, there is nothing in the 

equation itself that dictates the direction of the interaction. Instead, the third term above 

(βଷ𝑥ଵ𝑥ଶ) simply assumes that there is some sort of two-way interaction between 𝑥ଵ and 𝑥ଶ. The 

precise nature of the interaction is up for interpretation. While there is no limit to the numbers 

of interactions, interaction terms with more than two predictor variables become harder to 

justify and should be used with caution5. 

Naturally, interaction terms can be combined with dummy variables so the model can vary in 

both intercept and slope parameters. Consider again the categorial predictor variable 𝐷 with 

three groups and one continuous predictor 𝑥. Eq. (1.5) then becomes 
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𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑑ଵ + 𝛽ଷ𝑑ଶ + 𝛽ସ𝑑ଵ𝑥 + 𝛽ହ𝑑ଶ𝑥 + 𝜖. (1.6)  

Dummy variables and interaction terms are the main tools used in GLM fitting to accommodate 

for any heterogeneity in the dependent variable. Notice that while dummy variables can alter the 

intercept parameter 𝛽଴ there is no similar alternative to changing slope variables. Interaction 

terms do not perform this task. Variation among slope parameters between groups of the 

response variable can be achieved through a general linear model like Equation (1.3) by fitting 

multiple linear models, one for each group, with the same predictive variables 𝑿. Each group is 

thus fitted with a linear model that shares the same model structure with the other groups but 

have different parameter values, including the intercept parameter. One cannot dictate which 

parameters are changed. Random effects are model parameters that are random variables as 

opposed to the fixed effects parameters (e.g., 𝛽ଵ). We will now briefly discuss how random 

effects are similar or different from the techniques used above.  

1.2.2 Reasoning behind random effects 
Random intercept effects can be used as an analogous method to dummy coding. The results 

obtained will be similar, as both seek to change the intercept parameter value. As previously 

mentioned in Section (1.2.1), dummy coding treats each level as a separate entity and 

consequently does not share information between the levels, while random intercepts generate 

a distribution in which it draws the effects of the levels6. Since the random effects all come from 

the same distribution, all their information contributes to the estimation of the variation and can 

correct estimates for levels with small sample sizes.  

Random effects models offer a sort of comprise between no pooling and complete pooling coined, 

creatively, partial pooling6. We can describe a model with one categorical predictor 𝐶 with 𝑚 

levels, one continuous predictor 𝑥 and 𝑛 individuals by 

𝑦௜~𝑁൫𝛽଴௝௜ + 𝛽ଵ௝௜𝑥௜ , 𝜎௬
ଶ൯, 

𝛽଴௝~𝑁൫𝜇ఉబ
, 𝜎ఉబ

ଶ ൯. 

(1.7) 

(1.8) 

Here, the intercept parameter 𝛽଴௝  for each group 𝑗  is fitted from the same (usually) normal 

distribution with mean 𝜇ఉబ
 and standard deviation 𝜎ఉబ

, both of which are estimated directly from 
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the data. As 𝜎ఉబ
→ ∞, the distribution becomes meaningless and 𝛽଴௝ once again are individually 

estimated as in no pooling; as 𝜎ఉబ
→ 0, estimates of the standard deviation are all pulled to zero, 

yielding the complete pooling estimate6. Note that Eq. (1.7) can be generalized to more than one 

categorical and continuous predictor. In this case, the categorical predictors would have their 

own distributions, similar to Eq. (1.8).  

Armed with this construction, we can now write a linear mixed effects model with random 

intercepts. This model is usually written as 

𝑦௜ = 𝛽଴௝௜ + 𝛽ଵ௝௜𝑥௜ + 𝜖௜ . (1.9) 

Random slope effects are not analogous to interaction terms in the GLM discussed above. Rather, 

interaction terms solely describe interactions between two fixed effects and are thus irrelevant 

to random effects. However, we can derive some contrast between the two concepts as a bridge 

to better understand random slope effects. Random slope effects allow for slope variation within 

groups by generating a different slope parameter for each group (Figure 1.1). A simple linear 

mixed effects model with random slope is given by 

𝑦௜ = 𝛽଴௜ + 𝛽ଵ௝௜𝑥௜ + 𝜖௜ , (1.10) 

 where 𝑗 = 1, … , 𝐽, 𝑖 = 1, … , 𝑛, similar to Eq. (1.7). Interaction terms do not actually change the 

slope parameter. Rather, in conjunction with dummy variables for categorical predictors, 

interaction terms create different terms for the groups in the categorial predictor, essentially 

resulting in similar results as random slope effects. The 5th and 6th terms in Eq. (1.6) given by 

𝛽ସ𝑑ଵ𝑥  and 𝛽ହ𝑑ଶ𝑥  are examples of dummy variables interacting with a continuous variable. 

Partial pooling, as described above, can also apply to random slope effects.  
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Figure 1.1. –  The effects of random intercepts and slopes. eft: a linear mixed effects model fitted 

with random intercepts for the different groups (coloured lines; 5 total). The black line represents 

the global mean value of the distribution of random effects, the solid lines denote the regression 

line, and the dashed lines trace the regression lines back to the 𝑦  intercept. Point colours 

correspond to the data points of each group. All the lines are parallel because they share the 

same slope parameter. Right: A linear mixed effects model fitted with both random intercept and 

slope parameters. Random slope models offer more flexibility to fit the data. Adapted with 

permission from Harrison et al.7.The full linear mixed effects model with both random intercept 

and slope and generalized with a 𝑚 = 1, … , 𝑀 predictor vector is 

𝑦௜ = 𝛽଴௝௜ + 𝛽௠௝௜𝑥௠௜ + 𝜖௜ . (1.11) 

 

Mixed effects models use different conventions for parameters. We define the linear mixed 

effect model of 𝑗 = 1, … , 𝐽 clusters with 𝑖 = 1, … 𝑛 units as 

𝑦௜௝ = 𝑋௜𝜃 + 𝑍௜௝𝑢௜௝ + 𝜖௜௝, 𝑢௝~𝑁(0, 𝜔ଶ),  (1.12) 

 

where  𝑋௜ , 𝑍௜௝  are the matrix elements at positions 𝑖 or 𝑖, 𝑗 of the design matrices of the fixed and 

random effects, respectively, 𝜃 is the vector of fixed effects , 𝑢௝  is the vector of random effects 
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that are normally distributed with 𝜔 as its variance-covariance matrix, 𝜖௜~𝑁(0, 𝜎ଶ𝐼௡೔
), and 𝑁 =

∑𝑛௝ is the total number of observations. 

1.2.3 Nonlinear mixed effects models 
Since nonlinearity is central to many biological interactions and biological noise, we need to 

establish a statistical model that can account for nonlinear terms.  Luckily, linear mixed effects 

models (Eq. (1.11)) can be generalized to nonlinear mixed effects models. To do so, let 𝑦௜[௞] 

denote the [𝑘] th measurement of the response variable under 𝑡௜[௞] (𝑘 = 1, … , 𝐾௜)  and any 

additional conditions 𝑢௜  for the individual 𝑖. By convention, 𝑡௜[௞] usually represents time points 

and 𝑢௜  is an empty vector or the initial value of a predictor variable (e.g., the drug concentration 

at time zero for individual 𝑖). We can then define predictor 𝑥௜[௞] = ൫𝑡௜[௞], 𝑢௜൯, though dependence 

on time 𝑡௜ is not always needed. We define a nonlinear mixed effect for the [𝑘]th observation on 

the 𝑖th individual as 

𝑦௜[௞] = 𝑓൫𝜙௜ , 𝑥௜[௞]൯ + 𝜖௜[௞], (1.13) 

where 𝑦௜[௞] is the [𝑘]th response on the 𝑖th individual, 𝑓 is a nonlinear function of the predictor 

vector 𝑥௜[௞] and a parameter vector 𝜙௜  of length r, and 𝜖௜[௞] is a normally distributed noise term8,9. 

The parameter vector can differ between individuals and is defined as 

𝜙௜ = 𝑑(𝜃, 𝜂௜ , 𝑎௜), (1.14) 

where 𝑑 is a  𝑝-dimensional function, 𝜃 is a  vector of fixed effects length 𝑟, 𝜂௜  is a vector of 

random effects for individual 𝑖 of length 𝑛, and 𝑎௜ is a vector of characteristics associated with 

the individual that does not change with time (i.e., covariates8). The distribution of 𝜂௜  is usually 

independent of but conditional on 𝑎௜, implying that  

𝐸(𝜂௜|𝑎௜) = 𝐸(𝜂௜) = 0 and 𝑣𝑎𝑟(𝜂௜|𝑎௜) = 𝑣𝑎𝑟(𝜂௜) = 𝐷, 

where 𝐷 is the covariance matrix that is the same for all 𝑖 that characterises the magnitude of 

‘unexplained’ variation. A standard assumption is 𝜂௜~𝑁(0, 𝐷), but a log-normal distribution is 

also common8. Put otherwise, 𝜂௜  does not depend on 𝑎௜. 
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A common specific case of Eq. (1.14) is that of a linear relation between 𝜙௜  and its fixed and 

random effects i.e., 

𝜙௜ = 𝑨௜𝜃 + 𝑩௜𝜂௜ , (1.15) 

where 𝑨௜  is a design matrix depending on elements of 𝑎௜  and 𝑩௜  is a design matrix typically 

involving only zeros and ones, which allows some elements of 𝛽௜ to have no associated random 

effects8,9. Equation (1.15) is a very typical form used for repeated measures data where the same 

subjects in the experiments are sampled multiple times over time.  

To completely describe a nonlinear mixed effects model, we need to address inter-occasional 

variation which is variation between time points of a single individual. Inter-occasional variation 

is underdiscussed in literature, especially for linear mixed effects models, but it is relevant and 

widely used, particularly in the pharmaceutical sciences10,11 (see Chapter 3). For linear mixed 

effects models, inter-occasional variation is included by treating time as a categorical 

predictor12,13. In the model in Eq. (1.13), we have instead that  

𝐸൫𝑦௜[௞]ห𝑢௜ , 𝜙௜൯ = 𝑓൫𝑡௜[௞], 𝑢௜ , 𝜙௜൯, 

meaning that 𝑓 represents how individual 𝑖 changes, on average. Thus 𝑓 may not capture the 

inter-individual variation8.  

The full definition of a nonlinear mixed effects model is 

𝑦௜[௞] = 𝑓൫𝑡௜[௞], 𝑢௜ , 𝜙௜൯ + 𝜖ோ,௜[௞] + 𝜖ெ,௜[௞],  (1.16) 

where 𝜖ோ,௜[௞] measures the deviation of the 𝑖[𝑘]th observation (out of all possible observations of 

𝑓൫𝑡௜[௞], 𝑢௜ , 𝜙௜൯) from  𝑓൫𝑡௜[௞], 𝑢௜ , 𝜙௜൯, and 𝜖ெ,௜[௞] is potential measurement error at each time 

point 𝑡௜[௞]. Thus, in an ideal situation there would not be 𝜖ெ,௜[௞]
8, and it is frequently discounted 

when estimating nonlinear mixed effects models in practice11,14. 

Mixed effects models are often called hierarchical models, or multilevel models, since the 

parameters of the individual models also have their own parameters. A two-level hierarchical 

model has been shown previously if we consider the parameters of Eq. (1.13) (or Eq. (1.16)) to 

be estimated by Eq. (1.14). Conventionally, the individual level equation is called level 1 with 
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subsequent levels called level 2, 3 etc. until the population level8. For example, considering 

patients within Montréal, the individual patients would be modeled by the level 1 equation, the 

patients’ hospitals by the level 2 equation, and the city by the level 3, or population level, 

equation. In this example, we have that each fixed effect at the lower level is estimated by Eq. 

(1.14), giving the three-level model  

𝑦௞௝௜ = 𝑓൫𝜙௝௜ , 𝑥௞௝௜൯ + 𝜖௞௝௜, 

𝜙௞௝ = 𝑓൫𝜃௞ , 𝜂௞௝ , 𝑎௞௝൯, 

𝜃௞ = 𝑔(𝑤, 𝑢௞ , 𝑏௞), 

For each observation, 𝑦௜௝௞ denotes the 𝑖th measurement of the response for 𝑗th individual patient 

and 𝑘th hospital. Here, 𝜙௞௝  is the parameter vector for individual patients (level 1), and 𝜃௞  is the 

parameter vector for hospitals (level 2). There is no limit on the number of levels in hierarchical 

models, and they can be extended beyond 3 levels.  

Though the form of a linear mixed effects model is commonly expressed by Eq. (1.10), its form 

can equivalently be derived from Eqs. (1.15) and (1.16) for 𝑓 as a linear equation. Further, for 

simplicity, linear models are usually expressed with the individual and population levels already 

combined. However, linear models are also hierarchical and have multiple levels, like the 

example of the Montréal patients discussed above.  

1.3 Practical aspects of mixed effects models in biology 
In the following sections, we will turn our focus to practical aspects of mixed effects models and 

their application to biological modelling. For most biological systems, variation within the 

population is too high to be realistically quantified using only fixed effects. Biological systems can 

also be very complex, and this complexity may be unknown or beyond the scope of the 

experiment. Mathematical models of biological phenomena are a well-established way to 

understand complexity and to quantify heterogeneity within the system11,14. When constructing 

a mathematical model to describe any biological system, it is impossible to include all the nuances 

and complexities that are present. However, just because some elements in the system are 

ignored in the model does not mean their effects disappear in the data. The residual term in any 
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statistical model contains variability in the data that is not explained by the model. In a perfect 

statistical model, the residual term only contains the natural noise that exist in all data. 

Realistically, the residual term becomes inflated with variability in the data that should have been 

described by the model6. As we will see in Chapter 3, sufficiently mechanistic mathematical 

models can recover much of the noise present in biological systems but come with drawbacks 

that include extensive parameterization and limits with respect to analysis. 

Mixed effects modelling comes with many intrinsic benefits that either correct or augment the 

regression models discussed earlier. One common reason to fit a mixed effects model is to 

control for non-independence among data points. Data collection from complex biological 

systems often requires the use of repeated measurements from individuals within and across 

time7,15. Repeated measurements are not independent and violate basic regression assumptions. 

Simple linear regression has five core assumptions – linearity, normality, independence, 

homoskedasticity and no collinearity1 – and most can be corrected by transforming variables or 

by fitting a more generalized regression. Non-independence, however, is considered the most 

serious issue and cannot be well-addressed by data analysis techniques belonging to GLMs16. 

Failure to take non-independence into account leads to an inflated Type 1 error rate. Fortunately, 

random effects control for non-independence by constraining non-independent units to have the 

same parameters7.  

As stated in Section 1.2.1, mixed effects models are partial pooling models, meaning that the 

parameters for each group within a level (e.g., patients in hospitals) are fitted from the same 

distribution. Partial pooling models share information between parameters for their estimation, 

which is very advantageous for sparse data and large number of grouping. While conventional 

regression models quickly lose inference power when the data is sparse17, mixed effects remains 

robust18.  

Selecting a type of model for fitting requires choosing a model structure suitable for representing 

the data and its system. The specific research question and design will determine whether one 

focuses on the fixed effects and their interactions with no specific expectations on variances or 

correlations. In this case, the random effects in the model fitted for these hypotheses then 
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minimizes residual noise and thus maximize model power19. Population focus20 studies use 

random intercepts and slopes to reduce Type 1 and 2 errors and the chance of overconfident 

estimates (i.e., unrealistically low standard error (SE))4. An example of a population focused study 

comes from Ribba et al.21, who modeled the effects of anti-tumor drugs of tumor size using a 

mixed effects model and studied the variation among the units of interest (patients) captured via 

random effects. Their focus was the overall effect of the drug on tumor size within a population 

of patients with low-grade glioma (a type of brain tumor). Their model was able to describe the 

longitudinal mean tumor diameter of the entire duration of treatment. Their results with the 

same model was consistent for three different types of treatment21. 

We may also be interested in the effect within each subgroup (cluster) in the hierarchy in addition 

to the overall effect in the whole population. Here, the research hypothesis would concern not 

only the fixed effects, but the deviation of each cluster brought by their respective random 

effects. We will call this motivation cluster focus20.  In a meta-analysis following the monitoring 

and surgical treatment of drug-resistant epilepsy by Remick et al.22, a mixed effects model was 

applied to 33 studies from 25 neurosurgical centers in ten countries. Multiple levels of interest, 

including population of patients, nations, treatment centres, and studies, were thus included in 

their hierarchical model. In this case, each cluster is of interest for its effect on the treatment of 

drug-resistant epilepsy, classifying this study as cluster focused22. Put simply, population focus 

experiments are interested in 𝛽 while cluster focused are also interested in 𝑢௜ , 𝑖 = 1, … , 𝑛.  

The actual variation among units is also of particular interest. Rather than reduce unmodeled 

noise, control for non-independence, or investigate effects among each cluster, the main 

motivation in this case is to investigate differences between groups of interest7. By fitting a 

random intercept for the group factor, we can estimate the among-group variance for any trait 

of interest. Combined with the residual variance term, we can then calculate an “intra-class 

correlation coefficient” that measures individual repeatability in our trait. By using random 

effects rather than assigning a fixed effect for every group, we prevent a loss of model power 

from losing a degree of freedom for each group. Furthermore, the results can be better compared 

across studies for the same trait or across traits in the same study. Variance component analysis 

is a widely used tool with the potential to solve complex problems, including those frequently 
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seen in biomedical applications. A good example of studies of actual variation among units is seen 

in the paper by Kang et al., where variance component analysis shows promise as a statistical 

tool for large dataset analysis that replaces classic approaches such as principal component 

analysis23. The novel application of these methods was found to considerably shorten 

computational time. Further, it was shown that variance component analysis captured a wider 

range of sample structures, including both hidden relatedness and population stratification 

within human genome-wide association studies datasets23. 

1.3.1 Model estimation  
A generalized scheme of the pipeline for applying mixed effects models is provided in  

Figure 1.2. In what follows, we will describe these steps in further detail. 

  

Figure 1.2. –  Simplified steps in successfully fitting a mixed effects model. In practice, model 

fitting is seldomly as simple, we will follow this over-generalized schema to cover the large steps 

and obstacles in fitting a mixed effects model.  

 

1.3.1.1 Data requirements 

Estimating random effects can be quite a ‘data hungry’ process. Sample sizes are important for 

any study as they determine how much power its statistical tests hold (see Section 1.1). 

Conversely, to obtain a certain level of power, the study must achieve a corresponding sample 

size.  

Linear mixed effect models require at least five groups for a random intercept term to generate 

robust estimates of variance7. If this condition is not fulfilled, the model may not be able to 

accurately predict the among-population variance or simply collapse into zero, leaving the model 

equivalent to an ordinary GLM. Known as a degenerate model, it is the result of the software 
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used for model fitting converge to a degenerate or singular covariance matrices for the variance 

parameters in which some linear combinations of the random effects are estimated to have no 

variability. In this case, if the fitted model has both random intercepts and slopes, they will have 

a correlation of ±119. More generally, since the number of sample points and groups needed for 

a good fit is dependent on the complexity of the model, overparameterization is the principal 

issue in this case. Overparameterization has serious detrimental consequences for inference19. 

(G)LMM solvers are usually permissive and will eventually converge to an estimate, even if the 

estimates correspond to degenerate or singular covariance matrices. This is often the result of 

convergence on the boundary in overparametrized models19.  

Furthermore, models can be unstable if sample sizes are highly variable among the groups (i.e., 

some groups have very sparse data). Groups with very little data will have poor predictions for 

their random slopes4,7. Generally, if level 2 has 50 clusters, the model becomes susceptible to 

small sample biases of both the variance components and the fixed effect standard effects7,24. 

The current rule of thumb for linear mixed effects models calls for a minimum of 30 clusters at 

each level of analysis18. As expected, statistical power increases with both an increasing number 

of clusters and increasing number of individuals per cluster. When the random effects variance 

is very low, the number of individuals per cluster has a substantial effect on power. However, 

when the random effects variance is not low, increasing the number of individuals has trivial 

returns18,25. For a sufficient number of clusters (>50), the proportions of singletons (clusters with 

a single data point) does not increase bias and only negatively affect Type 1 error rates for >50% 

singletons18.  

Previous studies have shown that including random slopes controls for Type 1 error rate and 

gives more power to detect among individual variation7,24. It may thus be tempting to fit the 

maximal number of random slopes to capitalize on this effect. However, as discussed earlier, 

mixed effects models are prone to suffer from small sample bias and maximizing the number of 

random slopes exacerbates the issue as it requires large numbers to accurately estimate variance 

and covariances accurately.  
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Sample size requirements for nonlinear mixed effects models are much harder to determine. 

There is little consensus on a mandatory threshold like for linear models, especially across the 

popular applications for nonlinear mixed effects model. General guidelines based on 

computational methods have been developed to suggest sample sizes based on a multitude of 

conditions3,26. For example, for nonlinear mixed effects models used in pharmacokinetics with 

typical factors including drug half-life, absorption rate, hypothesized differences etc., it has been 

suggested that as few as 𝑛 = 2 datapoints are required per cluster3.  

Lastly, a particularly important consideration when designing experiments is the data required 

to observe a particular effect (see Section 1.1 for the basics of hypothesis testing). Regardless of 

whether a frequentist or information theoretic approach is applied, it is best practice to design a 

global model in which all predictors, interactions, and covariates of interest are included to 

investigate all possible combinations of considered factors and help select the model of best fit. 

While a full global model may be ideal, the data size limitations described above do not permit 

so many predictor terms. Instead, it is advisable to conduct a priori investigations of the biological 

mechanisms to narrow down the number of variables considered to be predictors. This holds 

true for most biological systems, but genetics is one notable exception since there are usually 

sufficient data available in genomics studies23. One may argue that only predictors with strong 

biological reasoning should be included in the model. However, in a complex or understudied 

biological system, previous knowledge may not provide sufficient information14. A general rule 

of thumb to start is 10:1 subject to predictor ratio. Unless there is biological incentive,  it is not 

recommended to include second- and higher-order terms in the model4.  

1.3.1.2 Data exploration 

Once the required data size has been achieved, one may or may not actually choose to do 

exploratory data analysis prior to fitting the model27, depending on the model and hypothesis 

design of a study. For a frequentist approach with a traditional hypothesis, it is still vital to do 

data exploration. Zuur et al. outlines a protocol for data exploration, including testing for outliers, 

homogeneity, normality, zeroes, collinearity, relationships, interactions and independence28 

(Figure 1.3). They encourage expansive exploration and visualizing the results. Not only is it a step 

critical for data cleaning and better understanding of the data but theoretically, it can also be 
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used as prior knowledge to determine optimal predictors. However, advocates of the information 

theory (IT) approach are in principle against data exploration4. They suggest that predictors 

should only be determined from genuine previous knowledge, like pilot studies or literature29. As 

such, the IT approach does not prevent the use of data exploration, but rather calls for not letting 

this information influence predictor selection, thus defeating the purpose of testing for multiple 

hypothesis in the first place.  

 

Figure 1.3. –  Venn diagram of data exploration techniques for the response variable 𝑌  and 

predictor variable 𝑋 suggested by Zuur et al.28.  The centre of the Venn diagram provides criteria 

that is both relevant for 𝑋 and 𝑌, as well as between 𝑋 and 𝑌. Not all techniques recommend 

may be relevant, depending on the model being fitted. For example, GLM does not require 

normality unless a normal distribution is chosen; otherwise there is no need to check for 

normality. Adapted with permission from Zuur et al. 28. 

In practice, it is always a good idea to explore the data. Knowing if the data have, for example, 

collinear predictors will influence the approach to model design and model selection. Options to 

transform data into linear variables may help to simplify every step along the process.  
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1.3.1.3 Hierarchical structure 

Mixed effects models are convenient for hierarchical experimental design. Afterall, the 

motivation behind mixed effects modelling is repeated measures data. By the nature of mixed 

effects modelling, units are grouped together by some variable, which may then be grouped 

again by another variable. Thus, though not specific to mixed effects modelling, interactions 

between predictive variables are as relevant to mixed effects modelling as random parameters. 

A good understanding of interaction terms and how they relate to experimental design is critical 

to building a descriptive model for one’s data. There are two main types of experimental design: 

crossed or nested (Figure 1.4). In a crossed design, factors of the lower level will be associated 

with more than one factor of the higher level. In a fully crossed design, there are observations 

for every combination of factors of the predictors, while in a partially crossed design there are 

samples for only some of the combinations. In contrast, nested design applies a hierarchy in 

which factors of a lower level is associated to only one factor of the higher model. Study designs 

can also be a combination of the two types15. 

 

Figure 1.4.  – Schematic of crossed and nested study designs.  a.) For a crossed design, the groups 

in level 2 are associated with both groups of level 3, whether fully (solid and dashed lines) or 

partially (only solid lines). b.) In a nested design, the groups of level 2 are only associated with a 

single group in level 3 (i.e., level 2 group a and b are only associated with level 3 group A and not 

B). Reproduced and adapted with permission from Schielzeth and Nakagawa15.  
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Though they are called design, the same concepts can also be applied to observed data. Factors 

can be naturally nested through the nature of the subjects; spatial factors are often naturally 

nested. For example, consider the study of the effects of a particular disease within major cities 

of states with different healthcare systems. Since each city can only exist within one state, the 

level of cities is nested within the level of state naturally. In contrast, drug studies are typically 

nested by experimental design, with the level of subjects nested within each drug type. It is also 

possible to design such experiments as a crossed design where each subject would receive 

different drug type however this may lead to too many cofounding factors, such as age or damage 

from previous trials.  

How the model describes the design (i.e., nested, crossed, or a combination thereof) determines 

how variance, or noise, is accounted for in the model.  Recall Section 1.2.1 where we described 

the interactions between any two predictive variables. Interactions between two levels are the 

same as interactions between predictive variables, as levels themselves are categorical predictive 

variables. For example, level 2 in Figure 1.4 is a categorical variable with four groups and level 3 

is a categorical variable with two groups.  

Between any two levels, there are four sources of variances that can potentially be estimated: 

the first two are the main effect variance explained by either level; the third is the interaction 

variance that is explained by level combinations; and the last is whether there is residual variance 

or noise unexplained by the levels nor their interactions. A crossed design allows us to estimate 

all four as long as we include an interaction term in the model15. That is to say that all the variation 

within the data would be contained in one of the four variances, whether they are explained by 

the main effects and interaction effect or unexplained as the residual variance. The interaction 

term, however, may not always be relevant. One may decide to neglect this term if it serves little 

biological meaning, which would lead to the interaction variance being pooled with the residual 

variance as unexplained noise. A nested design does not offer such luxury. By definition, the 

groups in the lower level are only associated with one group in the higher level in a nested design. 

Using Figure 1.4 as an example, the groups a and b in level 2 do not interact with group B in level 

3 (and group c and d to group A), meaning that there is no information on the interactions 

between these groups. As a result, the variation explained by the interaction term is confounded 
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with the variance of level 2’s main effect. Thus, it would not be possible to say whether variation 

of level 2 is caused by differences among level 2 groups solely or in effect of level 3 groups. In 

summary, in a nested design the main effect of the nested level will be pooled with the 

interaction effect15. The main effect of the nesting level (e.g., level 3) and the residual variance 

are not affected. It is important to reiterate here that interactions between two variables (or 

levels) are not estimating random slope parameters. Interactions can occur in regular GLMs but 

are especially relevant in mixed effects modelling due to its hierarchical nature.   

1.3.1.4 Model generation 

Once the desired predictors as selected, one can generate a ‘model set’ of hypotheses. This task 

is theoretically simple with a global model, as the model set can be all possible submodels of the 

global models where parameters are set to zero for different combinations. Then an information 

criterion, like the popular Akaike information criterion (AIC)30, can be used to rank the model set 

and select the model of best fit.  

There are nonetheless several potential obstacles to the use of information criteria in this way. 

There are two possible types of error common to all modelling processes: failure to estimate the 

parameters and overestimation of standard error. If it is the global model that does not converge, 

one should seek to resolve the complexity of the model. Interactions can be removed first, then 

main effects whose results in a priori investigations proved to be weak or biologically less relevant. 

This process would be repeated until the model converges. If all of the predictors are of interest 

and the global model cannot converge, one can break it into submodels, as complex as possible, 

and use these submodels as ‘global models’4. However, this method is less desirable as it may 

lead to too many models for selection.  

1.3.1.5 Random effects estimation 

There are multiple ways to estimate the parameters of a mixed effects model, each providing 

varying degrees of accuracy for different situations. Mixed effects model are estimated either by 

maximum likelihood (ML) or restricted maximum likelihood (REML), the latter of which is used to 

mitigate some of the small sample bias31. ML estimates random and fixed effects simultaneously, 

which can be an issue as the random effects are latent variables in the model. Iterative 
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approaches such as the Expectation-Maximization (EM) algorithm are often used to integrate out 

the random effects in order to estimate the fixed parameters of the model32. Iterative processes 

first estimate the fixed effects, then use these estimates as known information to estimate the 

variance components. The process is repeated until convergence. Though the iterative nature 

dictates an order, estimates are still considered to be estimated simultaneously, since the action 

is performed in one iterative step. However, this order does pose two issues. Firstly, any 

variability in the fixed effect is ignored. More importantly, the degrees of freedom consumed by 

setting the fixed effect is unaccounted for, which heavily penalizes small sample sizes31 and leaves 

the variance component underestimated.  

REML tackles this issue by estimating the fixed and variance components separately. Consider a 

linear mixed effects model with a random intercept and slope with one predictor variable given 

by 

𝑌௝௜ = 𝛽଴௜ + 𝛽ଵ௜𝑥௝௜ + 𝜖௝௜ . 

The first step of REML is to obtain the ordinary least square (OLS) residuals of the model without 

any clustering, i.e., 

𝑌௜ = 𝛽଴ + 𝛽ଵ𝑥௜ + 𝜖௜ . 

By definition, the residual ( 𝜖௜ )  is independent of any predictor variables (i.e., there is no 

correlation between 𝜖  and 𝑥). Then, ML is calculated with the OLS residuals as the outcome 

instead of the original outcome variable to estimate the variance component. Essentially, the 

first step acts as a linear transformation of the original data, making the outcome independent 

of the predictors (𝑥) but now share the same variance. When using the OLS residuals as the 

outcome, the fixed effects no longer need to be considered as they are zero. The effect of 

changing the ML output from the response variable (𝑌) to the OLS residuals is shown in Figure 

1.5, where the top plot (𝑥 vs. 𝑌) is transformed into the bottom plot (𝑥 vs. 𝜖), removing the 

effects of the fixed effects but keeping the variability of the data, conditional on 𝑥. In fact, this 

conditional variance is identical to the variance calculated by using the original response variable 

as the outcome. By estimating the variance component separated from the fixed effects, REML 

avoids the issues related to simultaneous estimation, and result in variance components that are 
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appropriately higher than those estimated by ML with small samples31. Removing the fixed 

effects and estimating the variance components on its own marks the first stage of REML.  

 

Figure 1.5. – The relationships between outcomes, predictors, and residuals.  Comparison of the 

relation between the outcome and the predictor (top panel) and between the OLS residuals and 

the predictor (bottom panel). Reproduced and adapted from McNeish31 with permission.  

The next step estimates the fixed effects using generalized least squares (GLS), which is capable 

of accounting for clustered data. GLS is able to estimate identical fixed effect estimates to ML 

results provided that the covariance structure of the observations is known, which was 

conveniently estimated in the first stage of REML31.  

In general, REML estimates nearly identical fixed effects as ML while achieving better estimates 

of the variance components31. As REML does not completely resolve the issue of inflated Type 1 

error rates for effects, the Kenward-Roger correction33 is brought in to maintain the error rates. 

The full derivation of the Kenward-Roger correction is beyond the scope of this thesis, but we 

include the general concept of the solution. The Kenward-Roger correction is based on the earlier 
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Kackar-Harville correction34, which conceptualizes the issue of inflated Type 1 errors for effects 

as 

𝑉𝑎𝑟(𝛾) = 𝑉𝑎𝑟ோாெ௅(𝛾ො) + 𝑠𝑚𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑖𝑎𝑠, 

or that the true sampling variability of the fixed effects is equal to the REML-estimated variability 

plus some amount of small bias incurred from violating the asymptotic assumptions. Kackar and 

Harville were able to estimate this small sample bias by approximating its very complex 

mathematical form with a Taylor series expansion (see Kackar and Harville34 for the full 

derivation). Multiple iterations of improvements have been made for this technique throughout 

the years, eventually landing with the title Prasad-Rao-Jeske-Kackar-Harville correction31. In 

addition to using the Prasad-Rao-Jeske-Kackar-Harville correction, Kenward and Roger also 

corrected the term 𝑉𝑎𝑟ோாெ௅(𝛾ො). They noted that REML uses GLS to estimate the fixed effects 

after the variance components are estimated. GLS is used under the assumptions that the 

variance components are known, even though they are not. Thus, the sampling variability of the 

variance components are not accounted for. The Kenward-Roger corrections uses another Taylor 

series expansion, this time to  𝑉𝑎𝑟ோாெ௅(𝛾ො) to account for the fact that the variance components 

are estimated and not known. The two expansions provide a more accurate fixed effect standard 

error estimate31. 

1.3.1.6 Estimating nonlinear mixed effects models using Monolix 
There are a few popular software choices for solving nonlinear mixed effects models (NLMEMs). 

Monolix is a relatively new platform designed by Lixoft that uses the stochastic approximation 

expectation-maximization (SAEM) algorithm which, as its name suggests, is the stochastic 

approximation of the EM method mentioned in Section 1.3.1.5. Monolix uses the SAEM algorithm 

because it has been shown to be efficient and robust to a multitude of model and data types.  

EM algorithms have two steps: the expectation (E)-step that involves taking expectation over 

complete-data conditional distribution and the maximization (M)-step that involves complete 

data maximum-likelihood estimations32,35. The E and M steps are iterated until convergence is 

formed. We provide a short definition of the EM algorithm below.  
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Consider the nonlinear mixed effects model defined by Equations (1.13) and (1.14). Let 𝜂 =

(𝜂ଵ, … , 𝜂௡) and 𝑧 = (𝑦, 𝜙) represent the complete data such that 𝜙 represents the missing data. 

Note that 𝜂  are the unobserved random effects and 𝑦  are the response variables.  Let 𝛽 =

(𝜃, 𝐷, 𝜎ଶ), where 𝜃 are the fixed effects, 𝐷 is the variance of 𝜂 and 𝜎ଶ is the variance of 𝑦, for 

which the ML estimate is required35. That is to say 

𝐿൫𝛽መห𝑦൯ ≥ 𝐿(𝛽|𝑦)        ∀𝛽 ∈ Ω, 

where 𝐿(. )  is the likelihood function and Ω  is the parameter space35. We define the map 

𝑄: Ω × Ω → (−∞, ∞) by 

𝑄(𝛽, 𝛽ᇱ) = 𝐸{log 𝑝(𝑧|𝛽ᇱ)|𝑦, 𝛽}, 

where 𝑝 is the probability model for the observations given by the joint distribution. 𝑄(𝛽, 𝛽ᇱ) can 

be thought of as a local approximation to the log-likelihood of 𝛽′ in a neighbourhood of 𝛽35.  

The E-step for each iteration 𝑘  consists of evaluating 

𝑄(𝛽, 𝛽[௞]) = 𝐸{log 𝑝൫𝑧ห𝛽[௞]൯|𝑦, 𝛽}. 

The M-step then finds the parameter that satisfies 

𝛽[௞ାଵ] = arg max 𝑄(𝛽, 𝛽[௞]). 

In 1990, Wei and Tanner36 proposed the Monte Carlo EM (MCEM) algorithm that replaces the E-

step of the original EM algorithm by a Monte Carlo integration. We again provide a simplified 

explanation of the process.  

The E-step at iteration 𝑘 is replaced by the simulation (S)-step36,37. In the S-step, we first perform 

𝑚[௞]  realizations 𝑧௞[௝] (𝑗 = 1, . . , 𝑚[௞])  of the missing data vector under 𝑝൫𝑧ห𝛽[௞]൯ . Then, we 

compute the Monte Carlo approximation of 𝑄(𝜃, 𝜃[௞]) according to  

𝑄෨௞(𝛽) = 𝑚[௞] ෍ log 𝑓൫𝑧௞[௝]; 𝛽൯.

௠[ೖ]

௝ୀଵ

 

The M-step remains unchanged37. 
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The SAEM algorithm builds upon the MCEM algorithm by changing the Monte Carlo 

approximation 𝑄෨௞(𝛽) to  

𝑄෠௞(𝛽) = 𝑄෠௞ିଵ(𝛽) − 𝛾௞ ൮
1

𝑚[௞]
෍ log 𝑓൫𝑧௞[௝]; 𝛽൯

௠[ೖ]

௝ୀଵ

− 𝑄෠௞ିଵ(𝛽)൲, 

where {𝛾௞}௞ஹଵ is a sequence of positive step size37.  

The M step is changed in the SAEM algorithm37. 𝑄෠௞(𝛽)  is maximized in the feasible set Ω , 

meaning that we find a 𝛽௞ାଵ ∈ Ω such that  

𝑄෠௞(𝛽௞ାଵ) ≥ 𝑄෠௞(𝛽)         ∀𝛽 ∈ Ω. 

The convergence of SAEM is dependent on the step size 𝛾௞ and/or the specification of 𝑚[௞] used 

in the process. It is recommended that one decrease 𝛾௞  and and/or increase 𝑚[௞]  over the 

simulation attempts.   

1.3.2 Frequentist approach to model selection  
Model selection is the last but critical step for determining an optimal fitted model for inference. 

Like with conventional GLM, the most familiar techniques for model selection are based off 

predictor selection. Traditional indicators like p-value are used to determine whether a 

parameter in the model is statistically significant or should otherwise be removed from the model.  

On the other hand, information theory design, where an information criterion is used, has been 

rapidly gaining popularity as a superior tool for model selection7.  

Model selection using the frequentist approach to experimental design relies on using p-values. 

In this approach, each predictor is tested for significance and the resulting p-value determines 

whether it should remain in the model. Since adding or removing a predictor changes the 

significance of all other predictors, this approach can only compare two models that differ in a 

single predictor at a time.  

In fixed effects models, t-tests and p-values indicate how significant a predictor is in the model. 

However, deciding on whether the predicted variance is significant for a mixed effects model 

proves to be a difficult task. Unlike fixed effects models, there is not a reliable, appropriate 
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denominator degrees of freedom for mixed effects models unless the study design is very simple 

with nicely balanced data38. This is due to inherent uncertainty associated with counting 

parameters in a model that has more than one level, as in nested or crossed design38. For most 

studies, the classical p-value offers little value in predictor evaluation. The most common 

methods for evaluating significance for mixed effects models are also rather ineffectual for small 

datasets.  

For models without random slopes, p-values can be estimated using Markov-chain Monte Carlo 

(MCMC) sampling, which repeatedly samples from the posterior distribution of the model 

parameters. Unfortunately, this caveat is too large to ignore for model selection, and this method 

has fallen out of favour in popular mixed effects model software (e.g., R package ime439)38. The 

most used methods are the likelihood ratio test (LRT) and to use the z-distribution to obtain p-

values from the Wald t-values (t-as-z). LRT is most commonly used to evaluate whether a random 

effect improves the fit of the model when all other parameters are held constant38. LRT has the 

advantage that it can be used for complex model structures as it also does not require an input 

for degrees of freedom. Alternatively, we can use the t-as-z method given the convergence of 

the t distribution to the z distribution as degrees of freedom increase to infinity. Since mixed 

effects models necessitate a robust dataset to produce accurate results, evaluating significance 

by testing the Wald t-values as though they are z-distributed to generate p-values is appealing. 

This method has the added bonus of working with t-tests and p-values. However, there is no 

formal guideline to determine a critical size for a dataset to justify the z-as-t method38.  Both LRT 

and Wald t-values appear to be anti-conservative for smaller sample sizes, so one should be 

cautious if the number of units or groups are small (<40-50).  

Stepwise selection using p-value is by far the most popular approach for null-hypothesis testing7. 

However, there is increasing criticism of this methodological design since stepwise selection can 

overestimate the effect size of significant predictors. This procedure also forces the idea that only 

one combination of predictors can adequately represent the data7, which is an unreasonable 

assumption in regards to the complexity of biological systems. Furthermore, every significance 

test inflates Type 1 errors, and this builds on the shaky LRT estimation for mixed effect models.  
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1.3.3 Information theoretic approach to model selection 
Given the limitations of p-value testing, information theory has become more popular following 

the rise of IT design7. Proponents seek to replace t test and ANOVA tables with information 

criterion, claiming that is it easier to compute and understand, on top of the benefits of IT design. 

Information criterions are used for model selection. After building a set of potential models for 

the data, the next step is to determine which of these models best describe the data, and in turn 

provide the best estimations for future data. Instead of choosing to include or exclude 

parameters in the model, like model selection with p-values, information criterions act as a 

ranking system and sort the set of models from best to worst.  There are several information 

criteria available, each suited for different scenarios.  

1.3.3.1 Akaike information criterion 
First formulated in 197340, the Akaike information criterion (AIC) is one of the most popular 

information criteria. Given a family of approximating model 𝑓ట with unknown parameters 𝜓 ∈ Ψ  

generated from a vector of observations 𝑦 = (𝑦ଵ, … , 𝑦௡) from the true underlying distribution 𝑔, 

AIC is defined as 

  𝐴𝐼𝐶 = 2𝑘 − 2ln൫𝑓(𝑦|𝜓෠(𝑦)൯, (1.17) 

where 𝜓෠(𝑦) is the maximum likelihood estimator based on data 𝑦 and 𝑘 = dim (𝜓) (i.e., the 

number of estimated parameters41,42).  

AIC is an estimator of the Akaike information given by 

 𝐴𝐼 = −2𝐸௬𝐸௬∗𝑙𝑛𝑓(𝑦∗|𝜓෠(𝑦)), 

which assesses a model’s ability to fit future data 𝑦∗ given the parameters  𝜓෠ fitted through data 

𝑦, assuming that the two datasets are independent. In the equation above, 𝑦 and 𝑦∗ are two 

independent datasets generated from the true underlying distribution 𝑔, and 𝐸௬ and 𝐸௬∗  are the 

expectations for the distribution of the respective realization, 𝑦 and 𝑦∗41. Minimising 𝐴𝐼 is the 

equivalent of minimising the expectation of the distance between the true distribution and the 

model distribution, indicating a superior fit of the model. Since AIC is an asymptotically unbiased 
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estimator of 𝐴𝐼, minimising AIC over a set of possible models can be seen as minimising the 

average distance of an approximating model to the underlying truth41,42.  

In practice, AIC calculates a model’s trade-off between the goodness of fit, described by the log-

likelihood ln(𝑓(𝑦|𝜓෠(𝑦)) , and the simplicity of the model described by 𝑘 , or the number of 

parameters used in the model. The consideration of model complexity is critical to evaluating the 

model of best fit. In a regression type model, the likelihood will always increase with the number 

of predictors simply by capturing more noise and decreasing standard error. However, increasing 

the number of predictors runs the risk of overfitting, so the AIC punishes the addition of 

predictors. The terms are multiplied by 2 in Eq. (1.17) as −2ln(𝑓(𝑦|𝜓෠(𝑦))  is known as the 

“deviance”43. AIC is used in model selection by minimising the score, since a lower score would 

mean that the model provides the best balance between predictive power and complexity.  

AIC is a very popular criterion for model selection. Since its publication, there have been many 

variations created for more specific situations. One of the first corrections to the original AIC is a 

correction for small samples derived in 1978 given by 

𝐴𝐼𝐶௖ = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
, 

which converges to AIC as 𝑛, the number of samples, increases44.  

For mixed effects models, the interpretation of AIC is different. The formula stays the same as in 

Eq. (1.17), but the terms 𝑘 and ln൫𝑓(𝑦|𝜓෠(𝑦)൯ differ depending on the research question. Recall 

in Section 1.2.2, we discussed the difference between population and cluster focused hypotheses. 

For inference that focuses on the population parameters, the likelihood function is the marginal 

likelihood and k is the number of fixed parameters, counting mean parameters and variance 

components. For inference that focuses on the clusters, the likelihood is the conditional 

likelihood, and 𝑘 = 𝜌 + 1, where 𝜌 is the effective number of parameters for the mean model.  

The likelihood of a model is 𝐿(𝑦|𝜃, 𝑢), which means that the marginal maximised likelihood for 

population focus AIC is 𝐿൫𝑦ห𝜃෠൯. Since in a population focus the random effects are used to 

capture noise and correlation between the clusters, there is usually no inference or prediction to 
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be done with them20. The marginal likelihood likewise removes the predictive properties that 

would otherwise be taken into consideration in calculating for the AIC. The marginal AIC (𝑚𝐴𝐼𝐶) 

is given by 

𝑚𝐴𝐼𝐶 = 2(𝑝 + 𝑞) − 2 ln 𝐿൫𝑦ห𝜃෠൯, 

where 𝑝 is the number of fixed effects parameter 𝛽, and 𝑞 is the number of variance parameters 

𝜃 of 𝑢20,41. However, if REML was used for estimation (see discussion above), the number of 

parameters is simply 𝑞. As such, mAIC based on REML cannot be used to  compare models with 

differing fixed effects41.  

For cluster focus, 𝑢௜  are the focal point and the parameters to be estimated. Thus, prediction at 

the cluster level is conditional on the clusters and 𝑢௜  act as parameters. The relevant likelihood 

in this case is 𝐿൫𝑦∗ห𝜃෠(𝑦), 𝑢ො൯, where 𝜃෠(𝑦) is the maximum likelihood estimator of 𝜃, and  𝑢ො =

𝐸(𝑢|𝜃෠, 𝑦) is the empirical Bayes estimator. In addition, the conditional AI must accommodate for 

the fact that 𝑦 and 𝑦∗  should, not only share a same true distribution 𝑓, but share the same 

random effects 𝜔 and differ in their error terms. In practice, this translates to the conditional AIC 

(𝑐𝐴𝐼𝐶) given by 

𝑐𝐴𝐼𝐶 = 2(𝜌 + 1) − 2 ln 𝐿(𝑦|𝜃෠(𝑦), 𝑢ො(𝑦)), 

where 𝜌 is the effective degrees of freedom, a general term to describe degrees of freedom when 

it is not straightforward to count the number of parameters45. In the case of a mixed effect model, 

𝜌 = 𝑡𝑟 ൤൬
𝑋௧𝑋 𝑋௧𝑍
𝑍௧𝑋 𝑍௧𝑍 + 𝜎ଶ𝐺(𝜃)ିଵ൰ ቀ𝑋௧𝑋 𝑋௧𝑍

𝑍௧𝑋 𝑍௧𝑍
ቁ൨ 

 i.e., 𝜌 = 𝑡𝑟(𝐻ଵ), where 𝐻ଵ is the hat matrix mapping the observed data 𝑦 into the fitted  𝑦ො =

𝑋𝛽መ + 𝑍𝑢ො  i.e. 𝑦ො = 𝐻ଵ𝑦, and 𝐺(⋅) is the covariance matrix41. As such, cAIC can only be used for 

linear mixed model.  

In general, AIC is a well-developed criterion that has many variants to accommodate and correct 

for different scenarios. AIC does have the tendency to favour overly complex models43, so it is 

wise to be wary of overfitting when using AIC.  
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1.3.3.2 Bayesian information criterion 

The Bayesian information criterion (BIC) is very similar to AIC in form, but its derivation is based 

on a Bayesian framework. The BIC formula is defined as 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2 ln 𝐿(𝜃෠|𝑦), 

where 𝜃෠ is the vector of estimates obtained by maximising the likelihood 𝐿൫𝜃෠ห𝑦൯, 𝑛 is the total 

number of samples, and 𝑘 is the number of parameters46. Like AIC, model selection is done based 

on minimising BIC.  

BIC has the advantage of being consistent, meaning it will asymptotically select the model having 

the correct structure46. If the true model is not one of the models being tested, then the BIC will 

choose the model that is the closest to the true model. BIC works under the assumption that the 

true model is within the pool of candidate models. However, a downside of this assumption is 

that BIC performs worse than AIC when the true model is not included in the selection46. BIC also 

punishes the addition of parameters more harshly than AIC thus favouring models that are more 

parsimonious. For small to moderate dataset sizes, BIC tend to outperform other popular model 

selection criteria and works better for low dimensional models as compared to AIC46.  

No matter the type of information criterion used, one must always determine a set of ‘top models’ 

containing all the models that are assumed to be supported by the data. This group is often 

determined by the change in criterion score from the best model, 

Δ௜ = 𝐴𝐼𝐶௜ − min
௜

𝐴𝐼𝐶௜ , 

where min
௜

𝐴𝐼𝐶௜ is the AIC score of the best model. Note that the equation holds for the other 

variations of AIC or for BIC score. The difference Δ௜ estimates the information loss when using 

model 𝑖. A larger score equates to a less plausible model30.  

For both AIC and BIC, 0-2 difference states that the two models are essentially the same in fit7,46. 

A difference between 4 and 7 should cast some doubts on the model, while a model with a 

difference more than 10 has no support and can be omitted30. Depending on the number of 



42 
 

models tested and their scoring, one may choose to relax or tighten this range. Within this set of 

best models, it is suggested to favour smaller models, especially if using AIC, to avoid overfitting41.  

One benefit of using an information criterion instead of p-values is that information criterions 

can be used to compare linear and nonlinear mixed effect models as well as fixed effect 

regression. Since an information criterion estimates the difference between the true underlying 

distribution and model distribution, it is less affected by the linearity of the model and the 

presence of random effects47.  

1.3.3.3 Weighted criterions 

Sometimes, the score difference between the top ranked models is quite small and just choosing 

the lowest AIC or BIC score may not select the best model in the set. A transformation of the raw 

score with weights can solve the issue.  

For AIC, the weighted AIC is, 

𝑤௜(𝐴𝐼𝐶) =

exp ቆ
1
2

Δ௜(𝐴𝐼𝐶)ቇ

∑ exp ቆ
1
2

Δ௞(𝐴𝐼𝐶)ቇ௄
௞ୀଵ    

, 

where Δ𝐴𝐼𝐶  is the difference between two models’ AIC score. Note that ∑ 𝑤௜(𝐴𝐼𝐶) = 1 . 

Weighted AIC can be interpreted as the probability that model 𝑀௜  is the best model given the 

data and the other models. This of course means that Akaike weights are susceptible to sampling 

variability and may different if the dataset is changed. Now, the ratio between two Akaike 

weights states the probability that the numerator model is the best model within the set i.e., 𝑟 =

௪మ(஺ூ஼)

௪భ(஺ூ஼)
. For example, if the ratio between two model is 1.5, then the numerator model is 1.5 

times more likely than the denominator model to be the best model. Alternatively, we can 

normalize this evidence ratio as 𝑟 =
௪మ(஺ூ஼)

௪భ(஺ூ஼)ା௪మ(஺ூ஼)
48.  

BIC can also be converted into its weighted version by replacing the equation for weighted AIC 

with BIC scores48.  
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1.3.3.4 Model averaging   

In biomedicine, a system’s true structure is very complex7,15, which means that multiple models 

can be plausible and provide multiple predictions. Model averaging is the technique of using 

several models to make inference. Parameter estimation can also be done through model 

averaging, but the practice is currently under scrutiny and not recommended7. While it may be 

tempting to average a large number of statistical models within the set, averaging the weights 

for all the models may cause even the best models to have a small weight. The number of 

models used should be first decided based on the hypothesis; a detailed question require fewer 

models than a wide scoped question. All redundant models should be removed at this step. 

Model averaging should be performed after choosing the ‘best model’ set, and the weights 

used for averaging determined by the weighted criterions. However, over-limiting the set size 

risks excluding the best model in the set4. Thus, model averaging should be used in conjunction 

with model selection to first select an optimal set for averaging.  

A particular complication occurs if a factor of interest is excluded from the top model set. One 

must make the judgement to conclude that the factor poses little influence in the system or 

extend the model set to include at least one model that contains this factor. The latter solution 

may result in a bloated ‘top model set’ and let in overly complex models or too many other 

irrelevant predictors. A tentative solution is to exclude any of the complex models that nest 

models of a lower criterion score, though of course this causes its own issue of potentially 

excluding important models4. Unfortunately, this area remains unclear, and we will have to 

continue to rely on intuition for the time being.  

Once this set of models is defined, there are two methods by which the estimate and error for 

each model’s parameters are weighted. In the natural average method, the parameter estimate 

for each predictor is only averaged over models in which it appears and is weighted by the 

summed weights of these models. In the zero method, the parameter estimate is averaged over 

all models, where the parameter estimate in models without the predictor are replaced with a 

zero. The zero method essentially dilutes the effect size and errors of the parameter estimates. 

The decision between using either of these two techniques is based on the particularities of the 

research question. The zero method is convenient for determining the factors with the strongest 
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effects on the response variable, while the natural average method preserves the strength of 

each parameter so weaker factors of interest can still be studied. Using the natural average 

method also leads more flexibility in the final model, as the inclusion of any factor does not 

influence the calculation of effect size or SE4. 

1.3.4 Structure and goals of this thesis 
This thesis is structured as follows.  

In Chapter 2, we describe a classical approach to mixed effects models by studying maple syrup 

production in Québec and the development of a novel assay to assess syrup quality. This paper 

will be submitted for publication in the peer-reviewed journal ACS Food Science & 

Technology shortly. My contribution to this work was the conception, development, and analysis 

of the models, and writing and editing the manuscript. 

In Chapter 3, we explore the combination of mechanistic mathematical models and a nonlinear 

mixed effects model applied to describe the physiological interactions of estrogen in mammary 

stem cell differentiation. Here the focus is on the degree of noise captured within mechanistic 

models, in contrast to pharmacokinetic models that are estimated using NLMEM but without 

consideration of the underlying physiological system. This paper is published in AIMS 

Mathematics (Le Sauteur-Robitaille, Yu, and Craig, Impact of estrogen population 

pharmacokinetics on a QSP model of mammary stem cell differentiation into myoepithelial cells. 

AIMS Mathematics, 6(10), 10861-10880. 2021. 6(10), 10861-10880. 2021.). My contribution to 

this chapter was the adaptation, analysis, and use of a previously published nonlinear mixed 

effects model into the quantitative systems pharmacology model we developed to generate a 

virtual population to explore the effects of the nonlinear mixed effects model on the physiological 

model, and manuscript writing. 

Finally, in Chapter 4, we provide perspectives on the use of mixed effects models in biological 

applications. 
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Abstract: Maple syrup is produced by boiling sap from the sugar maple tree and is mostly 

comprised of sugar and water. The organic molecules that give maple syrup its distinctive taste 

can also give off-flavour if the syrup is produced too late in the season, rendering the syrup less 

marketable and wasting product and effort. Though certain quantitative measures exist to help 

producers judge when to finish the production season, most rely on heuristic measures. To help 

producers predict the end of the season, we developed two mixed effects models (ordinal and 

nonlinear) that integrate several such quantitative measures. These include transmittance, pH, 

and COLORI, a colorimetric test we developed previously that uses gold nanoparticles 

aggregation to discriminate maple syrup flavour profiles. Our results suggest that these models 

can help guide the maple syrup production season by predicting syrup quality either outright 

(ordinal) or by use of total amino acid concentrations (nonlinear). These models are therefore 

important tools for producers to help mitigate financial and person-time losses at the end of the 

season. 
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2.1 Introduction 
Maple syrup is produced by boiling sap from Acer saccharum (sugar maple tree). The province of 

Quebec, Canada is the largest producer of maple syrup across the world, accounting for 72% of 

global maple syrup production in 20201. In 2020, Quebec producers contributed to around 175 

million pounds (79.4 million kilograms) of maple syrup, which translates to a net worth of more 

than 505 million dollars1.  

While maple syrup is mostly comprised of sugar (66%) and water (33%), it is the last 1% of organic 

molecules, including phenols, pyrazines, minerals, organic acids and amino acids, that give maple 

syrup its distinctive taste2. The process of producing the syrup is demanding and heavily 

dependent on seasonal variations. The Day to Bud Break (DTBB), which marks the number of days 

until sugar maple trees start budding, is one of the most important determinants to syrup quality. 

This is because the maple sap harvest occurs throughout the snow melt days in the beginning of 

the spring season but ends abruptly with the emergence of buds. While syrup quality increases 

up to zero DTBB (the day to bud break), it decreases after this day, rendering syrups produced 

after this point subject to potential losses. Between the start of the production, tapping the 

maple trees for sap, to the final production of syrup, several days pass, thus if not watchful, could 

translate to a waste of efforts and product. The quality of the syrup is graded at the end of the 

season by both the ACER Inspection Division and the “Producteurs et productrices acéricoles du 

Quebec” (PPAQ)3. Together, they assign a grade to the syrup that determines to whom it can be 

sold and its market price.  Every barrel of maple syrup produced in the province of Quebec is 

tested. The highest quality syrups are sold for retail markets (i.e., consumer markets), whereas 

the grades that have not passed a predetermined quality threshold (assuming the quality is not 

so low that it must be thrown out) are sold for industrial markets, resulting in an important 

economic loss for the producers3. Because of the delay between syrup production and syrup 

grading, the few days of delays can result in potential losses for the producers.  

There are currently some quantitative measurements available to aid producers in the 

determination of syrup quality throughout the production process. These include transmittance 

(colour determination), presence of lead, and °Brix (quantification of the sugar content by 

refractometry)3. These tests can be used in addition to the trained technicians hired by the PPAQ 
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who grade the final product to profile syrup quality. However, despite these indicators, producers 

still heavily rely on their intuition and experience to judge when to stop production. Furthermore, 

because every producer is in a different geographical location, the DTBB is different for each 

producer. For example, if they are further north, they have a later DTBB than someone in the 

south of the province, because they often experience spring later in the year. In other words, the 

quality of the syrup for any batch during the season relies on the producer’s experience but is 

also some kind of guessing game until the syrup is evaluated.  

One of the largest barriers to more accurate testing of the minute differences in organic molecule 

content is the absence of a convenient protocol. In some cases, fluorescence spectroscopy is used 

to evaluate the fluorescent organic molecules in the maple syrup to classify the product into 

normal or off-flavour categories. However, this process is not readily accessible to producers, as 

it requires specialised equipment and training to conduct2.  

Colorimetric tests are an alternative method that have the benefit of being available to untrained 

users, but they also face the issue of being unpractical for the rapid classification of on-site testing 

of the nearly 300,000 barrels of syrup produced annually. Furthermore, colorimetric tests using 

classical dyes are unsuited for detecting the complex changes in flavour profiles of maple syrup. 

To address these limitations, Forest et al.2 created a non-specific colorimetric test, coined COLORI, 

that instead uses gold nanoparticles aggregation to discriminate maple syrup flavour profiles.  

The COLORI test uses gold nanoparticles (AuNPs) which are tiny gold particles the size between 

1 to 100 nanometres (nm). These particles do not have to be spherical but can instead be a variety 

of sizes and shapes, including nanostars and nanoraspberries (such as those used by Forest et 

al.2). AuNPs have several distinct qualities that make them suitable for a multitude of tasks and 

they make excellent biosensors.  

Surface plasmon resonance is one of the more desirable traits of AuNPs4. Surface plasmon 

resonance (SPR) is a phenomenon that has attracted increased interest in recent years. The 

theory behind the mechanism is beyond the scope of this paper, but we will provide a simplified 

description.  
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Incident light, or incoming light from light sources towards a material, will interact with a material 

by refracting, reflecting, or absorbing. In refraction, the light ray changes directions entering and 

exiting the medium whereas the light ray rebounds at the same angle as the angle of the incident 

light ray when reflecting5. Different media will interact with light differently depending on their 

quality, which is described by the refractive index. Formally defined as the ratio of the velocity of 

light in a vacuum to the velocity of light in a material6, a higher value indicates that the medium 

has a smaller refractive angle, or in other words bends towards the perpendicular lines to the 

surface.  When light travels from medium with a relatively higher refractive index to one of a 

lower refractive index, the ray of light tends to reflect as opposed to refract5. When light does 

not cross the boundary and is entirely reflected within the medium, a total internal reflection 

(TIR) occurs. During the occurrence of TIR at the boundary between two nonabsorbing media, 

the fully reflected light ray leaks some of its electrical field into the medium with the lower 

refractive index. This electrical field is known as the evanescent field and its amplitude 

exponentially decays away from the interface. In SPR, the evanescent wave (from the evanescent 

field) excites electrons within the metal layer of a metal and dielectric interface, yielding surface 

plasmons. Surface plasmons are electromagnetic surface waves that propagate parallel to the 

interface. The wave will change in intensity when one of its media changes in property in some 

way. In AuNPs, the SPR is the result from the collective oscillation of the electrons across the 

nanoparticle and is extra convenient as the resonance conditions is satisfied at visible 

wavelengths4. The COLORI test developed by Forest et al. takes advantage of this trait further by 

studying the effects of the aggregation of two or more AuNPs, which would cause a change in 

the observed resonance2. Depending on the presence of varying amino acids in the syrup, the 

changes in resonance, and thus observed colours, can indicate the quality of the syrup.  

In a test of 1818 validated syrup samples from the 2018 harvest, COLORI was shown to detect 

off-flavour maple syrup from normal syrup with 98% accuracy2. It was established that normal 

flavour profiles led to strongly aggregated AuNPs and an absorbance higher than 520 nm, while 

off-flavour syrups showed little to no aggregation and less than 625 nm absorbance. The 

corresponding colours of these scenarios are red and blue, respectively. However, the quality of 
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maple syrup is a gradient and COLORI returns uncertain results if the flavour profile is between 

normal and off-flavours.  

There exists a large range of quality between normal and off-flavours of maple syrup that cannot 

be readily predicted by COLORI. Within this range of quality are several categories that indicate 

broad flavour notes of the maple syrup (Table 2.1). While the categories OK and “Crochet” are 

considered suited for commercial sale directly to consumers, the categories that indicate flavour 

defects (VR1 to VR5) as to PPAQ quality grading standards, are only sold for industrial uses. As 

such, maple syrups with flavour defects are submitted to a market price reduction. VR5, for 

instance, with its buddy flavour profile, receives a particularly high price cut.  

Quality Category Description Prominent Note 

OK No detectable off-flavours N/A 

Crochet Slight defect; still acceptable Any slight off-flavours 

VR1 Defect of natural origins Flavours of wood, sap, over 

caramelization, burnt etc.  

VR2 Microbiological defect Mold, fermentation 

VR4 Defects of artificial tastes Metal, soured, acid, smoke, 

antifoam 

VR5  Defect due to budding Specific bad budding taste 

Table 2.1. –  Summary of the quality ratings for maple syrup flavours.  Adapted from the PPAQ3. 

Current methods for effectively differentiating syrup quality, like COLORI, still have the issue of 

being difficult to use in the field. As one can imagine, working with gold nanoparticles requires 

specialized training. Furthermore, COLORI is not very accurate for quality categories between the 

outer ranges. There is thus a need to investigate the relationship between maple syrup quality 

and its quantitative measurements using mathematical models. 

To establish this relationship, we used mixed effects models, that better represent experiments 

with repeated measures, to predict how COLORI varies as a function of transmittance, pH, and 

the amino acid (AA) concentration, which has been shown before to be a good indicator of syrup 

quality. Experiments designed using repeated measures allocate multiple treatments throughout 
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time to the subjects. Strictly speaking, repeated measures are not an ideal experimental strategy, 

but they are largely unavoidable in practice. By using mixed effects models, we can capitalize on 

the more realistic setting of a repeated measure experimental design. Because repeated 

measures are often used for longitudinal studies, time as a variable is built into the structure of 

a mixed effects model. However, we do not know the DTBB for any given year nor producer, 

implying that we cannot use a true time variable. Thus, we established an ordinal mixed effects 

model that uses transmittance, COLORI and AA as input and quality as output, and a nonlinear 

mixed effects model using some of the quantitative measurements, like pH and COLORI, as inputs 

to predict the amino acid (AA) concentration. Our results suggest that these statistical models 

can be used in parallel to COLORI to prospectively predict maple syrup quality, with potential 

economic benefits to producers. 

2.2 Methods 
 

2.2.1 Ordinal mixed effects model 
We first created a general linear mixed effects model with an ordinal link function (i.e., an ordinal 

mixed effects model) to predict the PPAQ rating grades of maple syrup quality.  Let j = 1, … , J 

denote each producer,  i = 1, … , n୨ be the samples of any given producer j, and Y୧୨ the ordinal 

response for maple syrup quality associated with each producer i  and sample j . Let c =

{1, 2, 3, 4} denote the ordered maple syrup quality ordinal response (i.e., VR5, VR1, “crochet” 

and “aucun”, respectively). We defined the cumulative probabilities of the quality ratings of the 

ordinal outcome Y as 

P୧୨ୡ = P൫Y୧୨ ≤ c൯ = ∑ p୧୨୩
ୡ
୩ୀଵ , 

where p୧୨୩ denotes the individual quality rating probabilities. The ordinal mixed effects model 

given in terms of the cumulative logits γ୧୨ୡ, c = 1, 2, 3 is 

γ୧୨ୡ = log ቆ
P୧୨ୡ

1 − P୧୨ୡ
ቇ = γୡ − [X୧୨θୡ + Z୧୨u୨ୡ], 

 

(2.1) 
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where X୧୨, Z୧୨ are the elements of design matrices of the fixed and random effects, respectively, 

θୡ  is the fixed effects for ordinal response 𝑐  , u୨ୡ  is the vector of random effects for ordinal 

response 𝑐 that are normally distributed with ω as its variance-covariance matrix, ϵ୨~N(0, σଶI୬ౠ
), 

𝛾௖  is the threshold value for 𝑐, and N = ∑n୨  is the total number of observations. We did not 

include any covariates in this model.  

Parameters for the model in Equation (2.1) was fit using the ‘Ordinal’ library and function ‘clmm’ 

in R version 4.1.2 

2.2.2 Nonlinear mixed effects model 
To further investigate the relationship between COLORI and AA concentration, we altered the 

classic nonlinear mixed effects model (NLMEM) by using a proxy variable (pH) to estimate the 

time variable. This was to avoid using the DTBB, which is not known during the season and thus 

cannot be used as an independent model variable. Instead, the nonlinear mixed effects model 

contains three nested equations of pH, COLORI and AA, the structure of which were each 

determined through data exploration. The model is given by 

 

τ = k୮ୌଵpH + k୮ୌଶe୮ୌ+c୮ୌ, (2.2) 

 

COLORI =
kୡ୭୪୭୰୧τ

୦

a୦ + τ୦
,  (2.3) 

 

AA =
k୅୅

COLORI 
+ c୅୅.  (2.4) 

 

Unconventionally, we replaced the time variable in Equation (2.2) by the dummy time variable τ 

through the sum of a linear term of pH, with slope term k୮ୌଵ, an exponential term exp(pH) with 

coefficient k୮ୌଶ, and a constant term c୮ୌ.  τ is used as in input to predict COLORI in Equation 

(2.3) through a Hill function, where h is the Hill coefficient and kୡ୭୪୭୰୧ = 25 as COLORI ranged 
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between 0 and 25 in the experimental setup. Finally, AA was predicted through an inverse 

function of COLORI with a coefficient k୅୅ and constant c୅୅ in Eq. (2.4). 

Parameters in Eq. (2.2) were estimated using random effects to account for noise when using pH 

as an estimate for time. In Eq. (2.3), random effects were used to instead account for any 

differences between producers, including different scales or dates of DTBB. The parameters in 

Eq. (2.4) were all assumed to be fixed effects parameters. This is because COLORI testing 

measures the amino acid content of maple syrup samples and was assumed to not differ 

according to the producers of the syrup. The model in Eqs. (2.2)-(2.4) reflect the relationship 

between COLORI testing results and AA content by having population parameters for all 

producers. In Eq. (2.3), parameters a and k୮ୌ were assumed to have correlated random effects. 

The NLMEM in Equations (2.2)-(2.4) was fitted using Monolix 2021R1. 

2.3 Results 
2.3.1  Ordinal mixed effects model suitable for quality 
prediction 

Firstly, we wanted to evaluate the relationships between the predictive variables (Table 2.2) and 

maple syrup quality. We found that quality increased with increases in transmittance and COLORI, 

while it decreased with increases in AA concentrations (see Table 2.3 for a list of parameter 

estimates of the model in Equation (2.1), including the fixed and random effects and the 

threshold coefficients). Further, our parameter estimates showed that the coefficients for 

COLORI and AA were both highly significant. Conversely, though transmittance was found to have 

an effect, it was not determined to be significant. We nonetheless included transmittance in the 

model as it significantly lowered the Akaike Information Criterion (AIC7) score from 456.85 to 

288.82 from the model with just COLORI and AA as inputs. Other variables, namely pH and °BRIX, 

were not found to be significant nor did they significantly lower the AIC. Thus, to reduce the risk 

of overfitting with additional predictor variables, they were excluded from the final model. 

 

Variable Unit Description 



60 
 

pH - Regular scale of pH limited to relevant range for maple 

syrup (5 to 9) 

°BRIX °Bx 1 °Bx equals 1 gram of sucrose in 100 grams of solution 

(sugar content) 

Transmittance % Fraction of incident light at 560nm which is transmitted 

through the syrup 

COLORI # of drops Number of drops of sap necessary to change the AuNP 

solution (1 to 25) 

Amino Acid (AA) 𝜇𝑔/𝑚𝐿 Total amino acid concentration in maple syrup 

Table 2.2. –  Summary table of the variables relevant to maple syrup.  

Figure 2.1 and Figure 2.2 show the 1D and 2D decision boundaries of the model (Eq. (2.1)), 

respectively. Note that variables not included in each of the graphs were considered to be zero. 

For any given value of the variables (e.g., 40% transmittance, zero COLORI and AA as shown in 

Figure 2.1a), the probability of each quality rating is indicated by the line plots. The model then 

predicts the rating with the highest probability (i.e., VR1). Figure 2.2b shows the 2D extension of 

the same idea, where for any given transmittance and COLORI value (zero AA), the model 

prediction is indicated by the rating plane with the highest probability. Though we cannot display 

the analogous 4D plot with all three variables, the logic follows the same path as the previous 

two examples.  

 

Figure 2.1. –  Prediction probability of maple syrup quality for single predictor variables.  The 

quality category with the highest probability for any given value given a) transmittance, b) 
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COLORI, or c) total amino acid concentration (AA) as predictor. The decision boundary is 

determined by where the lines of the quality category with the highest probability cross.  

 

Figure 2.2. –  Example of decision boundaries with two variables. a) Decision boundaries for 

Transmittance vs. COLORI when Totol Amino Acid (AA) is set to 0. Panel a) is a top-down view of 

the b) probabilily planes for each of the quality ratings. The intersection of the planes marks the 

decision boundaries where the plane with the highest probability is the model outcome for any 

give transmittance and COLORI value (when AA is set to zero). 

The intraclass correlation (ICC)8 for within producers was calculated according to, 

𝐼𝐶𝐶 =
𝑣𝑎𝑟(𝑢ூ஽)

𝑣𝑎𝑟(𝑢ூ஽) + ൬
𝜋ଶ

3
൰

= 0.204. 

The ICC of 0.204 indicated that about 20% of the variability was explained by between producer 

differences. In our model, observations were not heavily dependent on being clustered by 

producer IDs but were not negligible either.    

Fixed effects Estimate Standard Error (SE) p-value 

𝜽𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕𝒕𝒂𝒏𝒄𝒆 0.0143 0.0139 0.30 

𝜽𝑪𝑶𝑳𝑶𝑹𝑰 0.141 0.0333 2.2 × 10^(−5) 

𝜽𝑨𝑨 −0.0560 0.0195 0.0022 

Threshold coefficients    



62 
 

VR5|VR1 −3.36 1.25  

VR1|crochet 0.487 1.01  

Crochet|aucun 2.52 1.06  

Random effects Variance   

𝒖𝑰𝑫 0.844   

Table 2.3. –  Ordinal model estimates, standard errors, and p-values. 

2.3.2 COLORI is a good continuous predictor of AA concentration 
 

Amino acid concentration plays a vital role in determining the flavour profile of maple syrup. The 

ordinal model uses both COLORI and AA concentration as a predictor, which can be considered 

redundant, as the COLORI score is directly linked to AA concentrations. Furthermore, determining 

the AA concentration is a laborious process. We thus extended our results by using AA 

concentration as the response variable.  

Figure 2.3 shows the observations and the model prediction between pH and COLORI for each of 

the 16 producers selected in the study. We found the relevant range of pH values for maple syrup 

to be between 5 and 9. Further, our estimates showed that Equation (2.3) plateaued at 0 and 25 

COLORI for most producers. This may be a consequence of our experimental protocol, as 

explained in the Discussion.  



63 
 

Figure 2.3. –  Observations and model predictions of pH vs. COLORI for all 16 producers. The 

range of pH was chosen between 5 to 9, which is the functional range of maple syrup pH 

described in the data. Black lines: model predictions;  orange circles: data.  

Predicted values of COLORI were then used as inputs to predict total AA concentrations (Figure 

2.4). We found the model’s predictive range to correspond to the whole range of COLORI for 

most of the producers. However, Producer 3 did not have an output for COLORI values under 3, 

and Producer 11 did not have any 0 output.  

The accuracy of predictions COLORI predictions using pH were found to vary greatly between 

producers. In some cases, like that of Producer 4 (Figure 2.3), the model predictions and observed 

measurements were extremely close, sometimes directly overlapping on the prediction curve, 

whereas we found large discrepancies between predictions and actual data for others, like 

Producer 11. For Producer 3, we found outliers for pH values of 5, as this producer had an 

uncharacteristically high COLORI correspondences. These discrepancies may have skewed the 

model estimation. We observed two main trends in the data:  some producers’ observations had 

more slope that was more easily fit to the sigmoid curve of the model (Eq. (2.3)), while sharper 

drops were observed amongst other producers and these were not as easily predicted by the 

model.  
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Despite these two classes of observational trends, the fitted curves for COLORI vs. AA Total 

(Figure 2.4) were found to correspond well to the data from each producer. Aside from one point 

of producer 3 which has a very high AA value (~150 μg/mL), we found no other visual outlier 

points. The model for all producers reached a maximum AA concentration of 50 μg/mL, and only 

producer 5 showed a large deviance between the data points and the model prediction. 

Interestingly, producers that had deviances between the data points and fitted curves for pH vs. 

COLORI were not necessarily predicted to have similar results for COLORI vs. AA Total.   

 

Figure 2.4. –  Observations and model predictions of COLORI vs. AA for all 16 producers. The 

range of COLORI is 0 to 25. The range of Total Amino Acids (AA) concentration (𝜇𝑔/𝑚𝐿) differs 

between producers, but for most producers it ranged between 0 to 50.  

The population estimation results are shown in Figure 2.5. The fit for pH vs. COLORI (Figure 2.5a) 

and COLORI vs. AA Total (Figure 2.5b) were found to be visually similar to their corresponding 

individual graphs (Figure 2.3 and Figure 2.4, respectively). Figure 2.5a shows more clearly that 

the model predicted values undershot lower pH values and overshot observations at higher pH 

values. This issue was exacerbated for high COLORI values because the highest COLORI values 

were assumed to be 25 in the experimental assay and  many data points reached this upper limit. 

We also found bunching at the upper limits of COLORI (Figure 2.5b), though the issue was not as 
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pronounced due to the nature of the hyperbolic curve having little variability for higher COLORI 

values. Nonetheless, at these higher COLORI values, the AA concentration was so low that we do 

not anticipate it affecting the quality determination and thus this does not likely have a 

meaningful impact on the real-world use of the model.  

The probable effective predictive range was found to be between COLORI values of 3 to 20. When 

predicting AA total from pH directly, we found that the predicted curve did not pass through the 

majority of points for pH values around 6.5 (Figure 2.5c), which is consistent with previous results 

(Figure 2.5a) over similar pH range. The few data points that have pH values less than 6 seems to 

have a heavy effect on the model estimation (long tail).  

Figure 2.5. –  Final population NLMEM model.  a.) pH predicting COLORI, b.) COLORI predicting 

Total Amino Acid (AA) and c.) pH predicting total AA.  

2.4 Discussion 
Maple syrup production is a laborious and lengthy process that is heavily dependent on the 

conditions of the yearly sap harvest. Despite the many methods established to facilitate 

estimates of the quality of maple syrup throughout the season, there is still little understanding 

of the relationship between these variables and syrup quality. Differences between yearly 

harvest and even between producers make it difficult to gauge the outcome of any given year’s 

production before the syrup is tasted and judged by professional tasters.  
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The study of Forest et al.2 showed the important relationship between the presence of amino 

acids and the quality of maple syrup, providing COLORI as a new variable. While COLORI was 

accurate when discerning off-flavour syrup to normal syrup, there was uncertainty in its 

prediction of syrup quality between the two extremes.  

To address this shortcoming, here we investigated these relationships using two mathematical 

models, one with maple syrup quality as the output and the other to predict total amino acid 

concentration. Both models are mixed effects model, ordinal linear and nonlinear, respectively, 

that vary between producers. The goal of both models was to determine the relationship 

between the variables created from tests that are already used for maple syrup grading (°BRIX, 

pH, Transmittance), amino acids (COLORI and AA) and syrup quality. We did not use °BRIX as a 

variable for either model because it is heavily correlated to pH and transmittance, and we found 

the inclusion of these latter variables to give better results. Further, the addition of °BRIX did 

risked collinearly and overfitting.  

In the ordinal model (Eq. (2.1)) COLORI and AA were found to be statistically significant predictors, 

and while transmittance was not determined to be a statistically significant input, it lowered the 

model’s AIC score substantially. Thus, the final model used transmittance, COLORI, and AA to 

predict syrup grading (OK, crochet, VR1, and VR5). 

To provide continuous estimates of syrup quality throughout the season, we also established a 

nonlinear model (Equations (2.2)-(2.4)) that used pH as a proxy for time, and COLORI to predict 

AA. While the predictive power of pH was less optimal, our model nonetheless had satisfactory 

results when using COLORI to predict AA concentration. Amino acid concentration is highly 

indicative of maple syrup quality since it dictates the actual flavor of the syrup (separating maple 

syrup from bottom-shelved, common corn syrup)2. The COLORI test is accurate when 

differentiating between off-flavours and normal syrup but is unclear about the ratings in between. 

Our models provide more predictive value to the COLORI test by treating it as a continuous scale 

rather than the dichotomous scale when used on its own.  

One of the challenges faced in model construction is determining outliers (if any). As mentioned 

in Section 2.3.2, there were a non-negligible number of data points with pH of less than 6. These 
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points have enough weight to shift the model estimation away from most data points. However, 

we were hesitant to remove any data points first due to data sparsity. Further, there were enough 

data points that have pH of less than 6 for them to be classified as outliers without substantial 

evidence from the maple syrup production process, indicating that pH less than 6 are outliers. 

For future work, it would be worthwhile to weigh the trade-off of removing points with pH below 

6 and model accuracy.  

Another limitation of our approach is the lack of validating data. In Quebec, the 2021 harvest 

produced very different results where the vast majority of syrup contained little to no amino 

acids. As such, the data was not suitable for validation. The mixed effects nature of our models 

also made cross-validation tricky to perform. Using some data points from each producer as a 

training set and the rest as validation would thin our already sparse dataset. However, if we used 

some producers for model fitting and others for validation, we could not validate the individual 

results we fitted for the producers in the training group. In the future, we plan to validate our 

models to more data as they are collected.  

Mathematical models provide an accessible bridge for people in different fields to use 

quantitative measurements in a way that would not have been previously available to them.  This 

work creates a foundation for an improved understanding of the factors that contribute to high 

quality maple products and facilitates future testing protocols. Importantly, our model will allow 

maple syrup producers to use the highly accurate COLORI test to better predict the quality of the 

syrup they are producing, ultimately reducing waste of product, effort, money, and time. 
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Abstract: Stem cell differentiation cascades are critical components of healthy tissue 

maintenance. Dysregulation in these systems can lead to serious diseases, including cancer. 

Myoepithelial mammary cells are produced from differentiated mammary stem cells in processes 

regulated, in part, by estrogen signalling and concentrations. This signalling cascade therefore 

has particular implications for breast cancer plasticity. To quantify and predict the production of 

mammary myoepithelial cell production by estrogen, we developed a mechanistic, quantitative 

systems pharmacology (QSP) model that includes the explicit characterization of free and 

unbound estrogen concentrations in circulation. Linking this model to a previously developed 

population pharmacokinetics model for ethinyl estradiol, a synthetic form of estrogen included 

in oral contraceptives, we predicted the effects of estrogen on myoepithelial cell development. 

Interestingly, pharmacokinetic intraindividual variability alone did not significantly impact on our 

model’s predictions, suggesting that combinations of physiological and pharmacokinetic 

variability drive heterogeneity in mechanistic QSP models. Our model is one component of an 

improved understanding of mammary myoepithelial cell production and development, and our 

results support the call for mechanistically constructed systems models for disease and 

pharmaceutical modelling. 
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3.1 Introduction  

Stem cell (SC) differentiation cascades are critical components of cellular and tissue maintenance 
1. SCs are pluripotent, largely quiescent, populations that repopulate terminally differentiated 

cells to maintain the latter’s basal concentrations. This continuous and progressive 

differentiation scheme is regulated through cytokine and hormonal signals that control the 

proliferation and maturation of progenitor cell populations. One of the best understood SC 

systems is the hematopoietic compartment, which has been extensively studied since the 

1960s2,3. Hematopoietic stem cells (HSCs) sit at the apex of the blood system and produce some 

100 billion blood cells per day4 in a remarkably regulated hierarchical (or quasi-hierarchical) 

structure. In the hematopoietic system, and other SC compartments, perturbations to this finely 

controlled signalling cascade are responsible for a number of diseases, including complex 

diseases5. For example, myelosuppression (lack of myeloid cells) due to cancer chemotherapy is 

a well-known consequence of cytotoxic anti-cancer treatments6,7. Thus, many mathematical 

models have been conceived to better understand the biology of myeloid cell production from 

HSCs to predict how patients will be affected by drug therapy6,8–10.  

Given the (intended or unintentional) influence of drugs on signalling networks, it is unsurprising 

that pharmaceutical scientists have long been interested in using mathematical modelling during 

preclinical and post-market planning to assess a drug’s action at the target site and to forecast 

potential adverse events11. Historically, the pharmaceutical sciences have been concerned with 

empirical, mixed effects models that can distinguish sources of variability within data, but which 

are limited in their ability to establish mechanistic relationships at the heart of drug effects12. In 

response, quantitative systems pharmacology (QSP) has emerged as a discipline concentrated on 

developing physiological systems models that, when linked to 

pharmacokinetics/pharmacodynamics (PK/PD), provide a holistic understanding of how drugs 

work13. In turn, the broader adoption of QSP has illustrated how cytokines regulate 

hematopoietic production and how best to schedule exogenous cytokines during 
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chemotherapy6,14–16, implement optimal dosing strategies for new cancer immunotherapies17–21, 

and individualized drug schedules for children with attention deficit hyperactivity disorder22, to 

name a few. There is therefore an increasing interest in applying QSP techniques to a broad set 

of unanswered physiological questions to provide a quantitative understanding of regulation 

within SC systems. 

Estrogen is a broadly acting, primary female sex hormone that is also implicated in the regulation 

of mammary cells. Within the mammary differentiation program, estrogen signalling plays a role 

in the maintenance of the mammary stem cell (MaSC) population, differentiation into the various 

types of terminally differentiated mammary cells (myoepithelial, ductal, and alveolar)23,24, and 

the downstream processes that produce each of these cell types. Mammary epithelium is a 

bilayer made up of an inner luminal layer and an outer basal myoepithelial layer25. A better 

understanding of the normal mammary cell differentiation program by signalling molecules 

inducing MaSC differentiation critical to provide a comprehensive view of normal regulation of 

the system, and interrogate how dysfunctionality caused by diseases such as breast cancer, the 

most common cancer and second leading cause of death amongst Canadian women26, disrupts 

healthy regulatory processes and vice versa. Breast cancers are distinguished by the expression 

of certain receptors on mammary cells (i.e. estrogen, progesterone, and HER2). Breast cancer 

heterogeneity is driven by the plasticity of breast cancer cells that transition from epithelial-like 

(less aggressive, more treatable) to mesenchymal-like (more aggressive, more “stem”-like)27. This 

dedifferentiation (i.e. the change from more terminal to more stem-like cells) complicates 

therapy, is characteristic of more aggressive cancers, and is regulated by hormones, including 

estrogen, progesterone, and prolactin28. However, stem and progenitor cells carry more 

proliferation potential than fully mature cells and breast cancer stem-like cells proliferation can 

be reduced by forcing tumour cells to differentiate through the use of hormones29–32. The use of 

QSP modeling can therefore help uncover the interactions regulating the dynamic evolution of 

mammary stem cells to provide a fundamental understanding that can subsequently be 

interpreted experimentally and clinically.  

In this work, we leveraged our previous model of hematopoietic production regulated by 

cytokines7 to establish a model of mammary stem cell differentiation into myoepithelial cells 
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through estrogen signalling. Linking the model with the population PKs of ethinyl estradiol 

allowed us to establish how heterogeneity in PKs affects mammary cell production. Our results 

suggest that our QSP modelling approach inherently incorporates pharmacokinetic variability in 

its construction, in line with our previous results in other stem cell differentiation cascades. These 

results underline the use of QSP models in normal and pathological systems to identify 

mechanisms of disease and provide guidance for drug administration and scheduling. 

3.2 Methods 
3.2.1 Mechanistic model of myoepithelial differentiation cascade 
regulated by estrogen 

We constructed a physiological, QSP model describing the differentiation of mammary stem cells 

transitioning towards mature myoepithelial cells through estrogen regulation (Figure 3.1). Our 

model is based upon the classic G0 model of stem cells, originally developed to explain 

hematopoietic stem cell division33 wherein stem cells are largely dormant, dividing to either self-

renew or differentiate. In the mammary stem cell system, the emerging picture is that MaSCs 

largely lay dormant until puberty, with further lineage-restricted expansion during pregnancy34. 

Estrogen acts in a paracrine fashion to regulate differentiation of MaSCs into epithelial cells and 

certain ER+ luminal cells23,34,35. As a better understanding of mammary cell development is still 

unfolding, we adapted the stem cell models in7,33 to study myoepithelial production from MaSCs.  

 

Let 𝑄(𝑡)  be the concentration of mammary stem cells at time 𝑡 , 𝑀(𝑡)  the concentration of 

myoepithelial cells, 𝐸ி(𝑡) the concentration of free estrogen, and 𝐸௕(𝑡) the concentration of 

bound estrogen. Both free and bound estrogen concentrations were explicitly included as we 

have previously found that cytokine concentrations are far from quasi-equilibrium at 

homeostasis in the hematopoietic system7.  
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Figure 3.1. –  Modelling stem cell systems. A) Schematic representation of the Mackey G0 stem 

cell model 33. Labels indicate the passage through the cell cycle (G0, G1, S, G2, and M). Reproduced 

with permission from 36. B) Schematic representation of the Craig et al. granulopoiesis model 7, 

with hematopoietic stem cell model based on the model in A. Hematopoietic stem cells self-

renew or differentiate into neutrophils or other lineages. After differentiation into the neutrophil 

lineage, they undergo a period of exponential expansion before maturing. Mature neutrophils 

reside in the bone marrow reservoir before egressing out into circulation. These processes are 

modulated by the cytokine granulocyte colony-stimulating factor (G-CSF), as indicated. 

Reproduced under Creative Commons license from 12. C) Schematic of the mammary stem cell 

model developed here. Based on A and B, MaSCs self-renew to maintain population numbers, 

and differentiate into alveolar, ductal, or myoepithelial lines. After differentiating, cells undergo 

a period of exponential expansion, regulated by estrogen concentrations to become 

myoepithelial cells. 

Stem cell compartments maintain their populations through self-renewal via cell division. We 

therefore considered MaSCs that had divided τொ  days ago to re-enter the compartment, and 

modelled the effective amplification resulting from self-renewing mitosis using 
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A୕ (t) =  A୕
∗ = 2eିஓ్ த్, (3.1)  

where 𝜏ொ is the time for cell division, 𝛾ொ  is the apoptotic rate during mitosis, and the factor of 2 

accounts for the formation of two daughter cells from a single MaSC (symmetric cell division). 

The rate at which MaSCs enter the mitotic phase is given by 

β(Q) = f୕

θଶ
ୱమ

θଶ
ୱమ + Qୱమ

, (3.2)  

where 𝑓ொ represents the maximal rate of self-renewal, θଶ is the concentration of SCs eliciting 50% 

of the maximal rate, and 𝑠ଶ is a Hill coefficient that regulates the slope of the stimulatory effects 

curve.   

Decreases in the concentration of MaSCs arise in two ways: by cells entering mitosis at rate β(𝑄) 

or through their exit from the compartment to begin differentiation toward mature cells. We 

modelled the second scenario as dependent on the concentration of free estrogen by  

 

κ൫𝐸௙൯ = κ∗ + ൫κ∗ − κ௠௜௡൯ ൥
𝐸௙

௦భ − ൫𝐸௙
∗൯

௦భ

𝐸௙
௦భ + ൫𝐸௙

∗൯
௦భ

൩. (3.3)  

Here κ∗  represents the homeostatic rate of differentiation, κ௠௜௡  the minimal rate of 

differentiation (included to ensure that differentiation continues in absence of estrogen, which 

is known to occur through signalling by other hormones including progesterone and prolactin), 

𝐸௙
∗ is the homeostatic concentration of free estrogen, and 𝑠ଵ is the Hill coefficient regulating the 

slope of the effect curve. In this model we kept the assumption of Craig et al.7, where κ∗ is found 

at the middle point between its maximum and minimum values. It is therefore defined as 

1/2(κ௠௔௫ + κ௠௜௡) which implies the supremum of κ൫𝐸௙൯ is κ௠௔௫ = 2κ∗ − κ௠௜௡ . We chose to 

use a Hill function to model both the rate of differentiation in Eq. (3.1) and the rate of proliferation 

(see Eq. (3.6) below) given that there are limits to the physiological capacity of cells to divide. This 
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implies that both of these rates will saturate at high concentrations of stimulation. Further, since 

estrogen is but one of a host of hormones acting in this system, the minimal concentration takes 

into account that there are overlapping functions for these signalling molecules and that 

differentiation/proliferation continues in absence of estrogen34. 

We discounted differentiation into alveolar and ductal cells and focused solely on mammary 

myoepithelial cell production. Thus, after differentiating, MaSCs become myoepithelial 

progenitor cells and undergo a period of exponential expansion lasting τெ days. To quantify the 

concentration of cells produced during this proliferative period, we introduced a second 

amplification term specific to the myoepithelial population defined by  

 

𝐴ெ (t) = exp ቈන η௉ ቀ𝐸௙(𝑠)ቁ 𝑑𝑠
௧

௧ିதಾ

቉. (3.4)  

This amplification term accounts for proliferation occurring at rate η௉, regulated by free estrogen 

𝐸௙, during which cells undergo mitosis for τெ days. To facilitate computational implementation, 

we differentiated Eq. (3.4) using Leibniz’s rule to obtain the following differential equation 

dA୑(t)

dt
= A୑(t) ቂη୔ ቀE௙(t)ቁ − η୔ ቀE௙(t − τ୑)ቁቃ, (3.5)  

as in previous work7. The rate of mitosis was described by 

η௉   ቀ𝐸௙(t)ቁ = η௉
∗ + ൫η௉

∗ − η௉
௠௜௡൯

𝑏௉

𝐸௙
∗ ቆ

𝐸௙(𝑡) − 𝐸௙
∗

𝐸௙(𝑡) − 𝑏௉
ቇ, (3.6)  

where η௉
∗  is the homeostatic rate of proliferation, η௉

௠௜௡ is the minimal rate of proliferation, and 

𝑏௉ is the half-maximal concentration of estrogen. Mature myoepithelial cells were modelled to 

apoptose at rate γெ. 

Taken together, the complete model of the mammary myoepithelial cell differentiation program 

regulated by estrogen is described by 



76 
 

𝑑𝑄

𝑑𝑡
= 𝐴ொ(𝑡)β ቀ𝑄൫𝑡 − τொ൯ቁ Q൫𝑡 − τொ൯ − ൬κ ቀ𝐸௙(𝑡)ቁ + β൫𝑄(𝑡)൯൰ Q(𝑡), (3.7)  

𝑑𝑀

𝑑𝑡
= 𝐴ெ(𝑡)κ ቀ𝐸௙(𝑡 − τெ)ቁ Q(𝑡 − τெ) − γெM(𝑡). (3.8)  

  

3.2.2 Population pharmacokinetic and QSP model of estrogen 
 

Pharmacokinetic (PK) models describe drug concentrations over time, and are generally built on 

“compartments” (sections of the body) in which the drug readily distributes and can therefore 

be summarized as having a single concentration at any given time. Population PK (PopPK) models 

aim to characterize variations in PK parameters within a given population using mixed-effect 

models, which are statistical models that contain both fixed (mean) and random (interindividual) 

effects. From data, a structural model (the compartmental PK model) is established by finding 

the best estimates for the population parameter value (fixed effect) with reference to the 

variation within the sample population (random) effects. Parameters are then represented as an 

exponentially distributed random variable by a singular fixed effect (usually referred to as θ) with 

noise parameters denoting the variability between individual subjects and the population value. 

These random effects are generally assumed to be normal or log-normal with zero mean and 

variance Ω. Parameters may also have covariate effects – additional variables that account for 

some of the variation of said parameter, and are particularly relevant in pharmaceutical models 

as drug kinetics are known to be determined by a variety of biological factors often modulated 

by specific patient characteristics e.g., age, body weight, habits, etc.  

 

Thus, to account for the effects of interindividual variability (IIV) in estrogen pharmacokinetics, 

we leveraged a previous PopPK model37 that characterized the pharmacokinetics of ethinyl 

estradiol (EE), an estrogen medication which, alongside drospirenone, is one of the active 

compounds in combined oral contraceptives. In the Reif et al. study38, n = 1109 healthy young 
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women received EE 20 µg and drospirenone 3 mg as a combined oral contraceptive. Patients 

were randomized to receive three different cyclical regimens  

1. Flexible (n = 671): one tablet per day for a flexible number of cycles (between 3 to 13  

cycles). The minimum duration of active treatment was 24 days (‘mandatory phase’). 

Afterwards, the cycle could continue up to 120 days or until the subject experienced 3 

consecutive days of breakthrough bleeding or spotting (‘flexible phase’); 

2. Conventional (n = 224): subjects received one dosage per day for 13 cycles. Each cycle 

comprised 24 days of active hormonal intake followed with 4 days of placebo tablets; 

3. Fixed (n = 214): subjects received one dose per day for 3 cycles; each cycle comprised 120 

days of active hormone intake followed by 4 days of placebo tablet; 

during which four blood samples were collected from all subjects in the study, two during week 

3, and two during week 27. EE concentrations were determined by immunoassay with a lower 

limit of quantification of 5.0 pg/ml. Data on age, BMI, body weight (BW), and cigarette and 

alcohol consumption were collected at both weeks, and data was then fit by means of nonlinear 

mixed effects modeling using the NONMEM software package to construct the compartmental 

PK model. 

In the analysis by Reif et al., the pharmacokinetics of estradiol were characterized by a three-

compartment population PK model with linear elimination37 given by 

𝑑𝐴ଵ

𝑑𝑡
=   − ൬

𝐶𝐿

𝑉ଵ
+

𝑄ଶ

𝑉ଵ
+

𝑄ଷ

𝑉ଵ
൰ 𝐴ଵ +

𝑄ଶ

𝑉ଶ
𝐴ଶ +

𝑄ଷ

𝑉ଷ
𝐴ଷ, 

𝑑𝐴ଶ

𝑑𝑡
=   −

𝑄ଶ

𝑉ଶ
𝐴ଶ +

𝑄ଶ

𝑉ଵ
𝐴ଵ, 

𝑑𝐴ଷ

𝑑𝑡
=   −

𝑄ଷ

𝑉ଷ
𝐴ଷ +

𝑄ଷ

𝑉ଵ
𝐴ଵ, 

where 𝐴ଵ, 𝐴ଶ, 𝐴ଷ  represent the amount of EE in the central (1) and two peripheral (2, 3) 

compartments. 𝐶𝐿  denotes clearance (in units 𝐿/ℎ ), 𝑄ଶ  the intercompartmental clearance 

between compartments 1 and 2 (in units 𝐿/ℎ), 𝑄ଷ the intercompartmental clearance between 

compartments 1 and 3 (in units 𝐿/ℎ), 𝑉ଵ the central volume of distribution (in units 𝐿), 𝑉ଶ the 
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volume of distribution in compartment 2 (in units 𝐿), and 𝑉ଷ  is the volume of distribution in 

compartment 3 (in units 𝐿). Note that intercompartmental transit can also be represented by 

rate constants 𝑘௜௝ =  
ொ೔ೕ

௏೔
 ,  where 𝑄௜௝  is the intercompartmental clearance between 

compartments i and j and 𝑉௜ is the volume of distribution in compartment i. Reif et al. also found 

covariate relationships on the bioavailability 𝐹 defined by  

𝐹 = 𝐹௪௘௘௞ଷ(1 + 𝐹௪௘௘௞ଶ଻𝑂𝐶𝐴), 

where 𝑂𝐶𝐴 =  ቄ
0  𝑖𝑓 𝑤𝑒𝑒𝑘 3
1             𝑒𝑙𝑠𝑒

, 

and  

𝐶𝐿 =  𝑇𝑉𝐶𝐿 exp(𝐸𝑇𝐴஼௅) (𝐶𝑂2)(𝐶𝑂1) 

for clearance, where 𝐶𝑂1 = 1 + 𝐶𝐿஺ீா(log(𝐴𝐺𝐸) − log(24)) and 𝐶𝑂2 = (1 + 𝐶𝐿஻ௐ(𝐵𝑊 −

62)) are covariates of age and body weight (kg) on clearance. Parameter values of the PopPK 

model are provided in Table 3.1. 

Parameter (units) Interpretation Estimate  %RSE 

Fixed Effects 

  θ  

𝑇𝑉𝐶𝐿/𝐹 (L/h) Oral clearance 25.3 1.24 

𝑉ଵ/𝐹 (L) Apparent volume of central 

compartment 

23.9 13.6 

𝑉ଶ/𝐹 (L) Apparent volume of second 

compartment 

1,330 3.62 

𝑉ଷ/𝐹 (L) Apparent volume of third 

compartment 

23.9 - 

𝑄ଶ/𝐹 (L/h) Intercompartmental clearance to 

Compartment 2 

52.9 7.01 

𝑄ଷ/𝐹 (L/h) Intercompartmental clearance to 

Compartment 3 

8.49 34.3 
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𝑘௔ (1/h) Absorption rate constant 0.295 6.98 

𝐹௪௘௘௞ଷ Relative bioavailability in week 3 1 - 

𝐷𝐹௪௘௘௞ଶ଻ (%) Difference in relative 

bioavailability in week 27 to week 

3 

8.15 11.0 

𝐴𝐿𝐴𝐺 (h) Lag time 0.353 2.78 

Fixed covariate effects 

𝐶𝐿௔௚௘  (%/ln(year)) Influence of age on clearance 20.8 29.1 

𝐶𝐿஻ௐ (%/kg) Influence of body weight on 

clearance 

0.591 20.1 

Interindividual Variability 

  %CV  

𝐼𝐼𝑉஼௅  IIV of clearance 33.4 2.65 

Residual Error    

Proportional error Proportional residual error 24.4 1.38 

Table 3.1. –  Population pharmacokinetic parameters from Reif et al.38. 

A downside of compartmental PK models is their lack of connection to known physiology. To 

improve physiological realism, we integrated the Reif et al. PopPK model38 into our previous 

mechanistic PK framework to further track the concentrations of free and bound estrogen in the 

plasma7. This integrated model is given by 

𝑑𝐸௙

𝑑𝑡
= 𝐸௣௥௢ௗ − 𝑘௥௘௡E௙(𝑡) − 𝑘௕൫(𝑄 + 𝑀)𝑉 − 𝐸௕(𝑡)൯𝐸௙(𝑡)௉௢௪ + 𝑘௨𝐸௕(𝑡)

− (𝑘ଵଶ + 𝑘ଵଷ)𝐸௙ + 𝑘ଶଵ𝐸ଶ + 𝑘ଷଵ𝐸ଷ, 

(3.9) 

𝑑𝐸௕

𝑑𝑡
= −𝑘௜௡௧𝐸௕(𝑡) + 𝑘௕൫(𝑄 + 𝑀)𝑉 − 𝐸௕(𝑡)൯𝐸௙(𝑡)௉௢௪ − 𝑘௨𝐸௕(𝑡), (3.10) 

𝑑𝐸ଶ

𝑑𝑡
= 𝑘ଵଶ𝐸௙ − 𝑘ଶଵ𝐸ଶ, (3.11) 
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𝑑𝐸ଷ

𝑑𝑡
= 𝑘ଵଷ𝐸௙ − 𝑘ଷଵ𝐸ଷ, (3.12) 

where 𝐸௙ and 𝐸௕ are free and bound estrogen concentrations, 𝐸௣௥௢ௗ is the rate of endogenous 

estrogen production, 𝑘௕  and 𝑘௨ are the respective binding and unbinding rates, 𝑘௜௡௧  is the 

internalization rate of bound cytokine, 𝑘௥௘௡  is the elimination rate, 𝑝𝑜𝑤  is a stoichiometric 

constant relating the number of estrogen molecules per receptor, 𝑉 is a scaling factor given by 

𝑉 = 𝑝̂𝐸ெௐ𝐾10௡, 

with 𝑝̂ a constant relating the stoichiometry between estrogen and its receptor, 𝐾 the number 

of estrogen receptors on a cell’s surface, and 10௡ is a factor correcting for cellular units. In the 

equation above, 𝐸ெௐ  represents the molecular weight of estrogen which was calculated by 

dividing its molar mass (𝑀𝑀) by Avogadro’s number. The remaining terms in Eqs. (3.3), (3.5), and 

(3.6) correspond to a reconfiguration of the PopPK model above to be expressed in 

concentrations in the central (𝐸௙), second (𝐸ଶ), and third (𝐸ଷ) compartments, with 𝑘ଵଶ = 𝑄ଶ/𝑉ଵ, 

𝑘ଶଵ = 𝑄ଶ/𝑉ଶ, 𝑘ଵଷ = 𝑄ଷ/𝑉ଵ, 𝑘ଷଵ = 𝑄ଷ/𝑉ଷ, and 𝑘௥௘௡ = 𝐶𝐿/𝑉ଵ, with CL representing linear (renal) 

clearance. 

3.2.3 Parameter estimation 

Since our model was constructed from physiological mechanisms, a majority of the QSP model’s 

parameters were estimated directly from the literature. In absence of direct information about 

mammary stem cells, we made an assumption of a parallel between MaSCs and HSCs and 

leveraged our previous work in Craig et al.7. Estrogen PopPK parameters were obtained directly 

from the estimates in Supplementary Table 1 in Reif et al.38 (Table 3.1). Any remaining 

parameters were calculated to ensure homeostasis in our model as follows. We calculate𝑑 𝜃ଶ 

from the equation for the self-renewal of mammary stem cells β൫𝑄(𝑡)൯ by 

 𝜃ଶ = ඨ
𝑄∗ௌమ𝛽∗

𝑓ொ − 𝛽∗

ೄమ

=
𝑄∗𝛽∗

ଵ
ௌమ

൫𝑓ொ − 𝛽∗൯
ଵ

ௌమ

. (3.13) 
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Setting 𝑄∗  to its estimated homeostatic value (Table 3.2), we calculated the 

homeostatic rate of differentiation as  

𝜅∗ = β∗൫𝐴ொ
∗ − 1൯. (3.14) 

Similarly, the homeostatic amplification factor for myoepithelial cells was calculated from Eq. 

(3.8) by 

𝐴ெ
∗ =

𝑀∗𝛾ெ

𝜅∗𝑄∗
. (3.15) 

Here, 𝐴ெ
∗  quantifies the effective amplification of progenitor cells after differentiation given by 

the ratio of the rate cells leave the progenitor compartment (through 𝑀∗𝛾ெ) to the rate cells 

enter (i.e. 𝜅∗𝑄∗ ) at homeostasis. Assuming there are 10 divisions between stem cells and 

terminally differentiated myoepithelial cells39, the number of proliferating cells is calculated 

explicitly as κ∗𝑄∗2ଵ଴, thus 

η୔
∗ =

(𝐴ெ
∗ − 1)

(10)(2ଵ଴)
. 

The homeostatic concentration of bound estrogen (𝐸௕
∗) was calculated directly from Eq. (3.10) 

using  

(3.16) 

𝐸௕
∗ =

(𝑘ଵଶ + 𝑘ଵଷ)𝐸௙
∗ − 𝑘ଶଵ𝐸ଶ

∗ − 𝑘ଷଵ𝐸ଷ
∗ − 𝐸௣௥௢ௗ + 𝑘௥௘௡𝐸௙

∗ + 𝑘௕(𝑄∗ + 𝑀∗)𝑉൫𝐸௙
∗൯

௉௢௪

𝑘௨ + 𝑘௕൫𝐸௙
∗൯

௉௢௪ , (3.17) 

and the rate of estrogen production from Eq. (3.9)Error! Reference source not found. 

𝐸௣௥௢ௗ = 𝑘௥௘௡𝐸௙
∗ + 𝑘௕൫(𝑄∗ + 𝑀∗)𝑉 − 𝐸௕

∗൯൫𝐸௙
∗൯

௉௢௪
− 𝑘௨𝐸௕

∗ + (𝑘ଵଶ + 𝑘ଵଷ)𝐸௙
∗ − 𝑘ଶଵ𝐸ଶ

∗

− 𝑘ଷଵ𝐸ଷ
∗. 

(3.18) 

Lastly, the homeostatic concentration of estrogen in the second and third compartments, 𝐸ଶ
∗ and 

𝐸ଷ
∗ , were estimated by setting Eqs. (3.11) and (3.12) to 0, given that 𝐸௙

∗  has been previously 

estimated 40. 
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𝐸ଶ
∗ =

kଵଶE୤
∗

kଶଵ
, (3.19) 

𝐸ଷ
∗ =

𝑘ଵଷ𝐸௙
∗

𝑘ଷଵ
. (3.20) 

3.2.4 Model simulations  

Model simulations were carried out using the ddesd function in Matlab 2020a. Unless otherwise 

noted, initial values of all variables were set to their homeostatic values, indicated by superscript 

*. 

3.2.5 Sensitivity analysis 

To investigate the effects of variability in parameters on model predictions, we used partial rank 

correlation coefficient (PRCC) analysis to assess uncertainty and sensitivity on the multi-

dimensional parameter space41. For each investigated parameter, we generated a uniform 

distribution around the mean (or fixed) parameter value. This set of parameter values was then 

included to create a Latin hypercube sampling (LHS) scheme. We next simulated and recorded 

the relevant outputs of the model (specifically 𝑚𝑖𝑛(𝑄(𝑡)) and 𝑚𝑎𝑥(𝑀(𝑡))) using the samples in 

the LHS scheme. Finally, we calculated the PRCC to establish correlations between parameters 

and the model outputs. These correlations were also assessed for statistical significance, given 

an α-level of 0.05. For this analysis, we adapted the approach and code from Marino et al.42.  

3.3 Results 

1.1. Estimated and calculated parameter values of myoepithelial cell production by mammary 

stem cells regulated by estrogen 

Physiological and mechanistic PK parameter values were estimated from literature sources or 

through calculations to ensure homeostasis in the model (see Methods). Table 3.2 and Table 3.3 

summarize all parameter values in these model components.  

 

Parameter Value Units Definition Reference 
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𝜏ொ 24 hours Length of MaSC cell cycle 43 

𝜏ெ 10 days 
Duration of proliferative 

phase 
44 

𝛾ொ 0.1 1/day 
MaSC apoptotic rate during 

mitosis 
45 

𝐴ொ
∗  1.8097 -- Amplification factor 7 

𝛽∗ 0.043 1/day Stem cell rate of self-renewal 7 

𝑓ொ 8 1/day Maximal stem cell renewal 7 

𝜃ଶ  
0.0809 106 cells/kg 

Self-renewal half-effect 

concentration of MaSCs 

Calculations 

from 7 

𝑠ଶ 2 -- 
MaSC self-renewal Hill 

coefficient 
7 

𝑠ଵ 1.5 -- 
MaSC differentiation Hill 

coefficient 
7 

𝜅∗ 0.0348 1/day 
Homeostatic rate of 

differentiation 

Calculated 

(Eq. (14)) 

𝜅௠௜௡ 0.0174 1/day 
Minimal rate of 

differentiation 
46 

𝑄∗ 1.1 106 cells/kg 
Homeostatic concentration of 

MaSC 
7 

𝐴ெ
∗  27697 -- 

Myoepithelial proliferation 

amplification factor  

 

Calculated 

(Eq. (15)) 

η୔
∗ 2.7047 1/day 

Homeostatic rate of 

proliferation of myoepithelial 

progenitors 

Calculated 

(Eq. (16)) 
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𝜂௉
௠௜௡ 1.3523 1/day 

Minimal rate of proliferation 

of myoepithelial progenitors 
47 

𝑏௣ 0.022868 ng/ml 

Half-maximal concentration 

of proliferation of 

myoepithelial progenitors 

7 

𝛾ெ 0.113 1/day 
Apoptotic rate of 

myoepithelial cells 
48 

𝐾 4973 -- 

Number of estrogen 

receptors on 

MaSC/myoepithelial cell 

surface 

49 

𝑉 0.0283 (ng/ml)/(10^9cell/kg) Conversion factor Calculated 

𝑀∗ 9.387 10^9 cells/kg 
Homeostatic concentration of 

myoepithelial cells 
50 

Table 3.2. –  Physiological model parameter values. 

 

Parameter Value Units Definition Reference 

𝐸௣௥௢ௗ 3.2776 1/day 
Rate of endogenous estrogen 

production 

Calculated (Eq. 

(18)) 

𝑘௨ 8.64 1/day Rate of estrogen unbinding 51 

𝑘௕ 23.53536 ng/ml/day Rate of estrogen binding 52 

𝑘௜௡௧ 43.2 1/day Rate of estrogen internalization 52 

𝑘௥௘௡ 35.9335 1/day Rate of renal clearance Calculated 

𝑘ଵଶ 53.1213 1/day 
Transit rate from 1st compartment to 

2nd  
38 
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𝑘ଶଵ 0.9546 1/day 
Transit rate from 2nd compartment to 

1st 
38 

𝑘ଵଷ 8.5255 1/day 
Transit rate from 1st compartment to 

3rd  
38 

𝑘ଷଵ 8.5255 1/day 
Transit rate from 3rd compartment to 

1st 
38 

𝐸௙
∗ 0.080 ng/ml 

Homeostatic concentration of free 

estrogen 
40 

𝐸௕
∗ 0.0093 ng/ml 

Homeostatic concentration of bound 

estrogen 

Calculated (Eq. 

(17)) 

𝐸ଶ
∗ 4.4519 ng/ml 

Homeostatic estrogen concentration 

in 2nd compartment 

Calculated (Eq. 

(19)) 

𝐸ଷ
∗ 0.08 ng/ml 

Homeostatic estrogen concentration 

in 3rd compartment 

Calculated (Eq. 

(20)) 

Table 3.3. –  Additional estrogen pharmacokinetic parameter values. 

3.3.1 Effects of repeated oral estrogen administration on 
myoepithelial cell production for an average individual 

To provide a rationale for the use of estrogen as a means to induce myoepithelial differentiation 

of mammary stem cells, we first investigated the homeostatic regulation of the differentiation 

cascade. For this, we discounted interindividual variability, set all PK parameters to their fixed (θ) 

values (see Methods), and administered a single dose of 20μg of ethinyl estradiol (as in 38). This 

single dose caused a small rise in myoepithelial cell counts, peaking around 10 days after 

administration, despite estrogen concentrations in most compartments returning to the 

homeostatic concentrations within 1-2 days (Figure 3.2).  
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Figure 3.2. –  Single dose of oral estrogen weakly induces mammary stem cell differentiation into 

myoepithelial cells. Effects of a single 20𝜇𝑔 dose of ethinyl estradiol on A) mammary stem cells, 

B) myoepithelial cells, C) free estrogen, D) bound estrogen, E) estrogen concentrations in the 

second compartment, and F) estrogen concentrations in the third compartment in an average 

individual. 

These results suggest that a single 20μg dose of estrogen is not enough to sufficiently stimulate 

myoepithelial cell production, as myoepithelial cell concentrations peaked at only 1.06-times 

their homeostatic values. Therefore, we next interrogated the effects of exogenous, oral 

estrogen administration by simulating daily doses of 20μg  of ethinyl estradiol (as in 38). As 

expected, the concentrations of free estrogen in the central and peripheral compartments 

rapidly attained steady-state during the dosing period (Figure 3.3C-F). The rise in free estrogen 

concentrations induced the continued differentiation of MaSC (Figure 3.3A), during which 

mammary myoepithelial cell concentrations nearly doubled, again peaking around 10 days after 

administration. 

A B C

D E F
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Figure 3.3. –  Multiple administrations of oral estrogen stimulate mammary myoepithelial 

production. Effects of a 14 repeated 20𝜇𝑔 doses of ethinyl estradiol on A) mammary stem cells, 

B) myoepithelial cells, C) free estrogen, D) bound estrogen, E) estrogen concentrations in the 

second compartment, and F) estrogen concentrations in the third compartment in an average 

individual. 

3.3.2 Effects of pharmacokinetic variability on mammary stem cell 
differentiation 

Up to this point, we have explored the effects of estrogen stimulation on mammary stem cell 

differentiation for a single average individual. However, given the variability estimated in our 

adapted PopPK model38, we next sought to understand how population heterogeneity affects a 

QSP model of MaSC differentiation. We have previously shown that interindividual variability has 

little to no effect on pharmacokinetic and pharmacodynamic variability in a similar model of 

hematopoietic differentiation, likely due to the inherent heterogeneity captured in mechanistic 

QSP models53. Therefore, to study the effects of interindividual variability in the context of 

mammary stem cell differentiation, we generated 300 virtual patients by sampling from a normal 

A B C

D E F
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distribution of body weights (BWs) centered around the mean BW of 63kg reported in Reif et 

al.38, with a standard deviation of 8.6kg informed by two recent surveys carried out by the NCD 

Risk Factor Collaboration54,55. We chose to generate virtual patients using body weight as it was 

found to be a covariate of clearance in the original PopPK analysis38. The effects of IIV on 

clearance (also estimated by Reif et al.) were also investigated and found to be consistent with 

the results of the body weight analysis. Normality in the generated body weights was confirmed 

using Shapiro-Wilk and Shapiro-Francia normality tests (p-value of 0.5565 at the 5% significance 

level, see Figure 3.4)56.  

 

Figure 3.4. –  Distribution of body weights in generated virtual population. Virtual patients were 

generated by sampling from a normal distribution with mean body weight as reported in Reif et 

al.38 and standard deviation informed by population sampling54,55.  

We next again simulated a single oral dose for each virtual patient to quantify the degree to which 

pharmacokinetic variability affected our model’s predictions. Across both cellular populations 

and all estrogen compartments, we observed no effect of pharmacokinetic variability on our 

predictions (Figure 3.5).   
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Figure 3.5. –  Pharmacokinetic variability has little to no impact on QSP model predictions in 

cohort of 300 virtual patients after single administration of estrogen. Effects of a single 20𝜇𝑔 

dose of ethinyl estradiol on A) mammary stem cells, B) myoepithelial cells, C) free estrogen, D) 

bound estrogen, E) estrogen concentrations in the second compartment, and F) estrogen 

concentrations in the third compartment in a virtual cohort of 300 patients. Virtual patients were 

generated by sampling from a distribution of bodyweight, a covariate for clearance in the PopPK 

model37 (see Methods). Black solid lines: mean model prediction in cohort of 300 virtual patients; 

shaded pink regions: range of responses in virtual patient cohort. 

These results were further recapitulated when we considered repeated daily doses in the same 

virtual population. This additional heterogeneity had very little discernable impact on either the 

MaSCs or the myoepithelial cells (Figure 3.6A and Figure 3.6B), and virtually no impact in any of 

the estrogen compartments (Figure 3.6C-F). This is notable given that the bound estrogen 

concentrations drive all the pharmacodynamic effects in our model and, despite observing no IIV 

impact on bound estrogen concentrations, there are nonetheless observable (but small) amounts 

of heterogeneity in the MaSC and myoepithelial populations after repeated administrations.  

A B C

D E F
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Figure 3.6. –  Pharmacokinetic variability has little to no impact on QSP model predictions in 

cohort of 300 virtual patients after repeated daily doses of estrogen. Effects of 14 repeated 20𝜇𝑔 

doses of ethinyl estradiol on A) mammary stem cells, B) myoepithelial cells, C) free estrogen, D) 

bound estrogen, E) estrogen concentrations in the second compartment, and F) estrogen 

concentrations in the third compartment in a virtual cohort of 300 patients. Virtual patients were 

generated by sampling from a distribution of bodyweight, a covariate for clearance in the PopPK 

model37 (see Methods). Black solid lines: mean model prediction in cohort of 300 virtual patients; 

shaded pink regions: range of responses in virtual patient cohort. 

3.3.3 Sensitivity analysis 

Sensitivity of model predictions to parameter variability was assessed using partial rank 

correlation coefficients (PRCC), as described in the Methods. To perform the PRCC analysis, we 

included several of our model parameters to assess their effect on the stem cell and 

myoepithelial cell populations after the introduction of a single dose of estradiol. Physiological 

parameters included were the time delays (τொ and τெ) and death rates (γொ and γ୑) for both cell 

populations, in addition to β∗  and 𝑏௣  to assess effects related to mitosis and proliferation. 

A B C

D E F
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Further, since our virtual population was generated from body weights that impact on the rate 

of renal clearance, we also investigated the effects of variability in 𝑘௥௘௡ to assess the degree to 

which our model is sensitive to this important parameter. 

We generated our LHS scheme by creating uniform distributions around mean estimated 

parameter values (Table 3.1-6), with maximum and minimum values for the distributions set to 

be the mean value ±25%. With a sample size of 100, we ran the PRCC analysis for the effect on 

the minimum stem cell concentration ( 𝑚𝑖𝑛 𝑄(𝑡) ) and the maximum myoepithelial cell 

concentration (𝑚𝑎𝑥 𝑀(𝑡)). 

 

Figure 3.7. –   Individual correlation coefficient for each parameter with its p-value significance 

from the PRCC analysis. The sensitivity of model predictions to parameter changes was assessed 

using partial rank correlation coefficient analysis and Latin hypercube sampling. Correlation 

coefficients between each parameter and A) the minimum stem cell concentration and B) the 

maximum myoepithelial cell concentration after a single dose of estradiol. * indicates a p-value 

smaller or equal to 0.05, ** p-value smaller or equal to 0.01 but greater than 0.001, and **** a 

p-value smaller or equal to 0.0001 (calculated at a level of significance of 𝛼 = 0.05).  

As shown in Figure 3.7, renal clearance was found to be the most sensitive parameter in our 

model, strongly impacting on both minimal MaSC and maximal mature cell concentrations. This 

analysis therefore further supports the use of body weight to generate the virtual cohort, as 

variations in bodyweight directly affect 𝑘௥௘௡. 
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3.4 Discussion 

Mammary stem cell plasticity is a contributing factor to the development of aggressive breast 

cancer subtypes. Given the frequency of estrogen receptor positive breast cancer, a quantitative 

understanding of the regulation of the mammary cell differentiation program controlled by 

estrogen is needed to provide insights into how this regulation can be therapeutically targeted. 

In this work, we created a QSP model to study both mammary stem cell and myoepithelial cell 

populations and their regulation by estrogen signalling. Our model takes into account 

physiologically relevant pharmacokinetics by explicitly accounting for both unbound and bound 

estrogen concentrations in addition to empirically determined population pharmacokinetics.  

 

By investigating the effects of single and repeated oral ethinyl estradiol doses in an average 

patient, we demonstrated the small effect of a single dose on both cell populations included in 

our model. However, in the two-week regimen of daily doses, we observed a doubling in the 

concentration of mammary myoepithelial cells, suggesting that repeated administrations are 

required to sustainably induce MaSC differentiation into this cell type. Since the process of 

dedifferentiation relies on hormones such as estrogen and could therefore be affected by an 

increase in estrogen concentrations, it has been proposed that forcing cancer cells to 

differentiate can ultimately reduce cancer aggressivity and proliferation capacities. Thus, our 

results support continued work investigating the regulation of the mammary stem cell niche.  

Importantly, we also observed that PK variability in clearance provided little to no impact on our 

QSP model by generating a population of 300 virtual patients based on the integrated population 

pharmacokinetic model. In this cohort, both the single dose and repeated administrations over 

14 days did not show meaningful variation in cell population and even less variation in the 

estrogen compartments. This suggests that sources of empirically determined PK variability may 

be accounted for within QSP models constructed from physiological first principles. Indeed, PK 

variability was shown to insignificantly affect our model predictions. As our PRCC analysis showed, 

the effect of renal clearance was found to be most significantly correlated with changes in model 

output. However, other physiological parameters were also found to be sensitive, and future 

studies should explore combinations of physiological parameters to assess their effects on driving 
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heterogeneity in our model. Interestingly, we have previously shown similar results when 

integrating PopPK/PD estimates into our similar model of neutrophil production53. There, 

estimated pharmacodynamic variability had a much larger impact on heterogeneous model 

outcomes than interindividual variability estimated through PopPK analyses, as in the present 

study. It should also be noted that we did not explore the effects of age or interoccasion 

variability, which was found in Reif et al.38 to be related to heterogeneity in clearance.  

 

As noted, mammary stem cells can additionally differentiate into alveolar and ductal cell types, 

and the MaSC differentiation program is regulated by other hormones including progesterone 

and prolactin. Future studies will incorporate these considerations to increase the physiological 

realism and applicability of our system, and focus on experimental validation. Nonetheless, our 

approach establishes a theoretical framework with which we can explore how dysregulated 

mammary stem cell signalling can lead to malignancy and, as such, is an important element of 

preclinical and translational studies as part of a precision medicine in breast cancer. 
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Chapter 4 – Discussion 
The application of mixed effects models continues to grow in relevance for understanding 

biological systems1. This thesis demonstrates the use of mixed effects modelling for two 

drastically different situations. The second chapter featured the use of mixed effects within a 

linear model with cumulative linkage in addition to a nonlinear mixed effects model to examine 

two very similar situations from slightly different angles, while the third concerned the more 

classical scenario of a population pharmacokinetics model integrated within a physiological 

quantitative systems pharmacology model (albeit in a non-standard way). In each of the three 

models studied within this thesis, mixed effects modelling was used primarily to capture inter-

individual variation rather than an interest in the variation itself.  

Linear mixed effects modelling is by far the most used approach when comparing linear and 

nonlinear mixed effects models1,2. This model is similar enough to classical linear regression, 

making it relatively easier to learn and apply. The general preference towards linear models also 

stems from their ease of interpretation and the facility of visualization2. Further, there is also 

more and powerful software available for linear mixed effects modelling; the large software 

support base also helps to guide new users3,4.  

In Chapter 2, the ordinal model described by Eq. (2.1) is simply an extension to the more classic 

linear mixed effects model introduced in Eq. (1.11). By using a cumulative link function, we simply 

extended the common linear mixed effects model to an ordinal response variable. We applied 

this model to estimate a mixed intercept to account for variability among maple syrup producers 

and used mixed effects to capture the differences between producers caused by uncontrolled 

variables such as the latitude of the producer’s orchard. Our results showed that COLORI and 

total amino acid concentrations are strong predictors for syrup quality. It also showed that 

transmittance provides valuable information as a predictor variable even though it itself is not a 

great predictor.  This result is unexpected and therefore warrants further investigation. The 

model is more accessible to producers during any given season and provides a greater range in 

quality prediction than a COLORI test.  
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The second model in Chapter 2 (Eqs. (2.2)-(2.4)) is a nonlinear mixed effects model with a 

modification to the time variable. This modelling choice was made as we could not use time as 

an independent variable as the maple syrup production season varies year to year and there is 

no way to determining the end date of a season during the season. The nonlinear nature of the 

model allowed us to use another explanatory variable (pH) as a proxy for time. We again 

accounted for variability among producers by estimating parameters for the parameters in the 

time proxy and COLORI as mixed effects parameters. Equations (2.2)-(2.4)were built based on a 

priori data exploration.  Our results showed that COLORI is, unsurprisingly, an excellent predictor 

for amino acid concentration. pH serves as a decent time proxy. Since pH tests are easy and 

accessible to the producers, this model can provide an immediate estimation of the amino acid 

concentration with minimum effort. With COLORI results, good estimations of amino acid 

concentration can be fitted.  

Both models from the second chapter of this thesis did not have any prior framework, especially 

the nonlinear model in Eqs. (2.2)-(2.4), so it was important for us to follow the protocol described 

in the Figure 1.2 when constructing these models. We were able to use the method of starting 

with a global model combining all explanatory variables to fit every variable combination to find 

the best AIC score (see Eq. (1.17)). Due to the linearity of the model, we were also able to use 

variable significance as an indicator for model validation. In contrast, the nonlinear model (Eqs. 

(2.2)-(2.4)) was more reliant on data exploration since both the structure of the model and the 

relationship between variables were unknown. For this, correlation plots between all variables 

were explored, under the requirement that COLORI be included in the model. Different curves 

were fitted for COLORI versus total amino acid concentration to find a representative equation. 

For all other variables, we fit different curves between pairs of variables to determine which 

variable(s) were suitable as the time proxy and which were highly correlated with COLORI. While 

the outcomes of both models were similar, each model required more attention to different 

portions in the model building process.  

The use of mixed effects model is also highly prevalent in pharmacokinetic modelling in the form 

of population pharmacokinetics (PopPK) models that rely on nonlinear mixed effects models5,6. 

In fact, it could be posited that the PopPK models had a hand in establishing some of the 
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theoretical basis of NLMEMs as they developed concurrently. During drug development and after 

a drug reaches the market, PopPK models are used to analyse information from a patient pool 

that is reflective of a target population. By estimating inter-individual variability, PopPK models 

tell us which parameters vary significantly within the population, indicating that there may be a 

need to administer drugs differently to certain populations. Covariates within the PopPK model 

allow is to further characterize subgroups of the population, for example elder or female patients 

(or both), that may have otherwise been overlooked. Mixed effects modelling also allow more 

sparse data to be used due to its ‘partial pooling’ nature (see Section 1.2.2) which is advantageous 

when data collecting is difficult, a scenario that is more common than not7.  

We explored the use of NLMEM in PopPK models in Chapter 3 to study the effects of estradiol on 

myoepithelial mammary cell production. Unlike the two models built in Chapter 2, PopPK models 

are well defined in their structure. The estradiol PopPK model is a three compartment PK model 

with one central compartment and two peripheral compartments. The central compartment 

represents any physiological space in which there is easy access to estradiol, usually the plasma 

in which circulating estradiol can quickly move around the body. The peripheral compartments 

are physiological spaces, like fat or organs, to which estradiol can enter and become inaccessible8. 

The central compartment portion of the estradiol PopPK model was integrated into the main 

structural model equal for free estrogen. By including the PopPK model, the dynamics of estradiol 

are represented more realistically. This model does not assume that any absorbed estradiol is 

constantly available in the blood, ready to be bound to receptors. The addition of PK variability 

made little to no impact on the QSP model’s predictions suggesting that, though PopPK models 

account for inter-individual variability, some of this heterogeneity may not be due necessarily to 

physiological noise but instead to measurement errors or other sources of noise. Further, the 

integration of PK models within physiologically constructed quantitative systems pharmacology 

(QSP) models may not need to rely heavily on PopPK analyses, as QSP models inherently account 

for physiological variability driving heterogenous drug outcomes. 

One of the main issues we faced throughout this thesis was the lack of validation data.  Like all 

mathematical models, mixed effects models can only be as good as the data on which they are 

built. Mixed effects models have the advantage over regression by being able to share 
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information among the groups via partial pooling. In general, mixed effects models can be built 

upon less data. Even so, there is a limit to how little the training dataset can be before model 

estimation quality deteriorates, or worse, not converge at all. For our maple syrup study 

described in Chapter 2, we could not afford to split the data into a training and testing set without 

risking the fit of the model. Luckily, we did not face such issues for our breast cancer model. 

Because the PopPK model for estradiol was previously built and the rest of the QSP model was 

structural (i.e., constructed based off physiological knowledge), all of the available data was used 

as validation data. However, we did face a lack of data to provide estimates of the physiological 

parameters in the QSP model, and this may affect our results. 

A rather unique issue we had in Chapter 2 was the time variable, or rather lack thereof, in the 

models of maple syrup production. NLMEMs are designed for repeated measures which, by 

definition, involve a time variable. In our breast cancer model in Chapter 3, the beginning of time 

is marked by the administration of ethinyl estradiol. The simulations were then performed for a 

pre-determined set of time that was relevant to the dynamics we were studying. Maple syrup 

production seasons do not have such well defined beginnings nor ends. The season is dictated by 

its end date, the day of bud break, which is unknown until after the season’s completion. The 

start and progression of the season is heavily dependent on the orchard’s location and the annual 

weather patterns. Thus, we did not have access to a time variable that did not require either the 

user to guess the time value or to wait after the season ends for the exact time scale of that 

season. Both of these scenarios would defeat the purpose of the modelling exercise, as they are 

retrospective instead of prospective. Our solution to this issue was to replace the time variable 

with a proxy variable. However, there are more sophisticated methods that should be explored 

in the future.  

In this thesis, we explored the use of mixed effects modelling in a classic case, pharmacokinetics, 

and a more novel case, maple syrup quality. Though quite different, the fact that both studies 

can be tackled by the same model type showcases the versatility of NLMEM. Our results highlight 

that biological systems often have intrinsic, uncontrollable variability to which NLMEMs excels at 

capturing. Thus, as experimental protocols in biomedicine continue to generate vast amount of 

data, the popularity of NLMEMs in biological systems will only increase, with important 
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consequences to our understanding of the system under study and individual- and population-

level effects on this system. 
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