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Résumé

Dans ce mémoire de maitrise, nous étudions I’asymptotique spectrale pour les probléemes
d’oscillation de deux fluides incompressibles idéaux remplissant un volume arbitraire avec
une surface supérieure ouverte ou fermée. Dans le premier chapitre, nous introduisons les
notions de base de la géométrie spectrale, illustrons le probleme de Steklov pour un fluide
dans un volume arbitraire ainsi que les principaux résultats qui seront nécessaires pour
comprendre et démontrer les énoncés du manuscrit. Nous dérivons également les principales
relations et équations des petites oscillations d’un fluide incompressible idéal.

La deuxieme partie présente les principaux résultats sur les petites oscillations de deux
liquides a surface supérieure fermée, obtenus par Solomyak, Kopachevsky et leurs collabora-
teurs, qui justifient et vérifient la cohérence des résultats pour le probleme considéré.
Finalement, nous traitons le probléeme avec une surface ouverte. Une question similaire a
été abordée par Kuznetsov. Un canal rectangulaire rempli de deux liquides est un exemple
révélateur vérifiant tous les principaux résultats de la recherche. Entre autres, nous avons
trouvé un cas particulier intéressant dans lequel la famille de solutions correspondant au
parametre spectral disparait. En conclusion, nous trouvons sur les conditions d’existence et
I'unicité des solutions.

Mots clés : géométrie spectrale, petites oscillations de fluides, asymptotique spectrale.

i



Abstract

In this M.Sc. thesis, we investigate the spectral asymptotics for a problem describing os-
cillations of two ideal incompressible fluids filling an arbitrary volume with either open or
closed upper surface. In the first chapter, we introduce the basic notions of spectral geome-
try and illustrate the Steklov problem for fluid in an arbitrary volume, as well as the main
results needed to understand and prove the statements in the manuscript. We also derive
the equations of small oscillations of an ideal incompressible fluid. The second part presents
the main results on small oscillations of two liquids with a closed upper surface, obtained
by Solomyak, Kopachevsky, and their collaborators that justify and verify the consistency of
the findings for the problem under consideration. In the third chapter, we treat the problem
with an open surface. A similar question was previously addressed by Kuznetsov. A rectan-
gular channel filled with two liquids is a telling example that confirms all the main research
results. Interestingly enough, we found a particular case in which the family of solutions
corresponding to the spectral parameter disappears. In conclusion, we describe the condition
of existence and the uniqueness of such solutions.

Keywords: spectral geometry, small fluid oscillations, spectral asymptotics
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Chapter 1

Introduction

The sloshing problem [9] is an eigenvalue problem that describes small surface oscillations of
a fluid in a container. It is a Steklov-type eigenvalue problem e.g. [5], [2] with the spectral
parameter in the boundary conditions. There has been a lot of research on the sloshing
problem for homogeneous fluids e.g. [6], [9]. While the case of multi-layer fluids has been
less explored, some basic results on this subject have been obtained by Kopachevsky [10] and
Karazeeva-Solomyak [8]. These authors considered the oscillations of a multi-layer fluid in
a closed container, where they established the discreteness of the spectrum as well as Weyl’s
law for eigenvalue asymptotics. Exact solutions have also been calculated for some regions
admitting separation of variables.

Recently, Kuznetsov [11] proposed to investigate the sloshing problem for a two-layer fluid in
an open container. In particular, he obtained explicit formulas for the eigenvalue asymptotics
in the case of rectangle. This article has served as a motivation for the present work. In
particular, we show that the two-layer sloshing problem in an open container can be reduced
to the case of a three-layer fluid in a closed container, by adding an auxiliary weightless
layer of fluid on the top. Applying this idea, one can explore a similar problem considered
in [11] using the tools developed in [10] and [8]. Also, we correct an inaccuracy in the
formula obtained in [11] for the coefficient in the leading term in Weyl’s law. Finally, we
consider a limiting case when the ratio between the fluid densities is infinite (this can be
viewed as a model for the situation when the bottom fluid is much heavier than the top
one). In this case, the eigenvalue problem in an open container may fail to have a discrete

spectrum. We provide some relevant examples illustrating this surprising phenomenon, and



provide its justification in terms of an auxiliary Robin-Neumann boundary value problem

with a negative Robin parameter.

1.1. Dirichlet and Neumann eigenvalue problems

Let © C R? be a bounded domain. The Laplace operator A : C®(Q) — C>(Q) is defined

as
’u  Pu  O*u 0%u

A= Fs+ g+ o+t 2,
ox? 0z  0x3 oz

(1.1.1)

where u € C*°(9).
The study of eigenvalues and eigenfunctions of the Laplace operator under different boundary
conditions is a central subject in spectral geometry. The Dirichlet eigenvalue problem is given
by

—Au = Muin €

u=10onS = 9,

and the Neumann eigenvalue problem is given by

—Au=Muin €
%:OOHS:(‘?Q.

Note that for the Neumann eigenvalue problem one needs to assume some regularity of the
boundary, for example, that €2 is a Lipschitz domain.
One of the central questions is to determine spectral parameters A € C such that there exists
a u # 0 satisfying the boundary value problems. The collection of these parameters is called
the Dirichlet / Neumann spectrum of €. These problems have been studied extensively, both
theoretically and from the viewpoint of practical applications (e.g. [13, 15, 1]).
Theorem 1.1.1. The spectrum of the Dirichlet (Neumann) eigenvalue problem in ) is dis-
crete and forms an increasing sequence of real positive (non-negative) eigenvalues of finite
multiplicity

0(=X) <A <A< <A <o S o0

The corresponding eigenfunctions form a complete orthogonal basis in Ly(€).

Define N(\) as the eigenvalue counting function,

N()\) = #{)\k : )\k: < )\},



which is used to study the distribution of the eigenvalues. We denote by Np and Ny the
counting functions for the Dirichlet and Neumann eigenvalue problems, respectively. The
following result holds for Np(\).

Theorem 1.1.2. Let Q C R? be a bounded domain. Then

Np (A
lim b ()

Jim S5 = () ol (2),

where wq is a volume of the unit ball in R? and vol(f2) is the Lebesgue measure of the domain
Q2. The same result holds for Ny (), provided 0f2 is Lipschitz.

Consider the eigenvalue problem for the vibrations of a membrane without external forces.

82u:T0<82u N 82u>’

The equation of motion is

p@ 8;1712 82722
where u(x,t) is the deviation from the equilibrium position and Ty is the tension of the
membrane, z € R?.

We look for a solution in the form
u(z,t) = exp(iwt)U(x),

which leads to the equation
— AU =AU in Q, (1.1.2)

To
rx

where A\ = w? and ¢? =
Note that the boundary conditions are

u=0 on 0N if the membrane is fixed (Dirichlet), or

(1.1.3)
Gu =0

on 0f if the membrane is free (Neumann).
We now consider a rectangular membrane with sides of length a and b.
If the boundary is fixed the eigenvalues and the natural basis of eigenfunctions are given by:

_lrx | D , (12 m? Amab
ulm:sm—smT,/\lm:W <a?+bz ,Np (A) ~ 16 (Ilm=12,...)

and if the membrane is free the eigenvalues and the natural basis of eigenfunctions are given

by

2

Imx mmy 2 m Amab
N _ N _ _2 _
Up = €OS —— €08 — g = T (a2 + 2 ) SNy (A) ~ T (Ilom=0,1,2,...)




1.2. Steklov problem

Steklov problem is an eigenvalue problem where the spectral parameter appears in the bound-
ary condition.

The Steklov eigenvalue problem was first introduced by Russian mathematician Vladimir
Steklov [14]. Early applications considered are the small vibrations of the fluid, a membrane
vibration where the whole mass is distributed along the boundary. This problem has been
studied extensively (e.g. [4, 5, 9] etc.).

The Steklov problem in the bounded domain  C R with a Lipschitz boundary M = 0 is

given by
Au =0 in Q
% = ou on M,

where A is the Laplace operator and o is a spectral parameter.
Theorem 1.2.1. The spectrum of the Steklov problem is discrete and the eigenvalues form
an increasing sequence [14]

0=00<01<09<-+- <0, <+ S 400

and the eigenfunctions form an orthogonal basis in Lo(M).
The next theorem states the Weyl law for the Steklov eigenvalue problem.

Theorem 1.2.2. Let Q C R? be a domain with a Lipschitz boundary M = 0$). Then

~ wg1Vol (M) 44
= -1 7
(2m)

N(o) +0 (ad*2) ,

where wy_1 is a volume of the unit ball in R%!,

1.3. Sloshing problem

Sloshing is a small vibration of liquid in a container. Problems of sloshing were studied, for
example, in [9]. In this paper, we consider the main properties of a two-layer fluid in an

open container of the arbitrary shape and study the properties of the solutions. A sloshing



Fig. 1.1. Bounded domain in the Euclidean space

problem in a bounded domain € C R? and Lipschitz boundary W U S = 0% is given by

Au =0 in €2
g on W (1.3.1)
% = \u on S.

The spectrum of the sloshing problem is discrete and the eigenfunctions form an orthogonal
basis in Ly(S) [2].

The boundary value problem (1.3.1) can be also stated in the planar case, where S is a line
segment, () is a simply connected bounded planar domain, the shape of a container or a
canal, and W is a boundary of the € called "wall". The following theorem [2] gives a formula
on the asymptotics of sloshing eigenvalues.

Theorem 1.3.1. Let ) be a simply connected bounded Lipshitz planar domain with the
sloshing surface S = (A, B) of length L and wall W which are C' -regular near the corner
points A and B. Let a and (B be interior angles between W and S at the points A and B,
resp., and assume 0 < § < a < w/2. Then the following asymptotic expansion holds as

k — oo:

/\kL:7r<k—;> —7T82 (Olé—i—;) +r(k), where (k) = o(1)

If, moreover walls are straight near the corners then:
r(k) = O(k'~2=).

The counting function in the planar case is given by

N(o) = “Olf)a +0(1).




Asymptotic formulas for Steklov eigenvalues of curvilinear polygons in terms of their side
lengths and angles are obtained in [3].

Theorem 1.3.2. Let P = P(a,1) be a curvilinear polygon in R? with n vertices Vi,Va, ...V,
number clock-wise, corresponding internal angles 0 < o < 7 at V;, and smooth sides I;
of length l; joining V,—y and V;. Here o = (ov,...,o0,) € [I", where I = (0,7), and
1 = (lh,...,ln) € R}.Let {0} denote the sequence of quasi-eigenvalues (defined in [3])
ordered increasingly with account of multiplicities. Then there exists €y > 0 such that for any

e € (0,6q) the Steklov eigenvalues of P satisfy

Am = 0m +0(M™9), as m — oc.

1.4. Basic equations of a two-layer fluid

Fig. 1.2. Container with two-layer fluid

In this section, we describe the main eigenvalue problem of the small oscillations of a two-
layer fluid in an open container.

We consider a container filled with two ideal incompressible fluids. Our goal is to deduce the
equations of the small vibrations of a two-layer fluid in an open container, in the gravitational

field, without taking into account the forces of surface tension.



The equations of motion of an ideal incompressible fluid can be written in the form of the

Gromeka-Lamb [7]

ov v? 1
E+V§+2wXV——EVp—VU, (1.4.1)

where v is a velocity vector field of the particles of the fluid, w = %V X v is the vector field
of the vorticity of the particle, p and p are respectively the density and the pressure at the
point z € R3 and U is a potential of the external forces.

When the motion is assumed to be infinitely small, we find, neglecting the square of the
velocity and putting w = 0,

ov 1
—_— = —— — . 1.4.2
T pvp VU ( )

The continuity equation for a homogeneous, incompressible fluid is given by
V.-v=0. (1.4.3)

Note that this condition means that for any arbitrarily chosen volume with a closed surface
there can be neither continuing accumulation of fluid within the volume nor continuing loss.
It follows that the net flux of fluid across the surface must be zero. Let us introduce the

velocity-potential u

From (1.4.3) we obtain

Au = 0. (1.4.4)

Let U = gy, where g is a gravitational constant. After integrating (1.4.2) we have

u
]p) = S — gy + F(1), (1.4.5)

where F(t) is an arbitrary function of ¢. It is often convenient to incorporate this arbitrary
function in the value %. This is permissible by (1.4.3), since, the velocity vector field is not
affected.

We consider a surface between two domains 2; and 25 which are filled with different fluids

in coordinates r = (x1,72,5) € R?, where y denotes a vertical direction and the interface is

defined by y = 0.



n

~ 0 . ~

Fig. 1.3. Deviation of fluid at the interface between two media €2; and €2y

If  denotes the elevation of the interface at the time ¢ above the point (z1,22,0), we have

equality of the pressures on both sides.

8U1 auQ
_ it - 2 =D, 1.4.6
i p1<at gn) pz<at gn) P2 (1.4.6)
Taking into account that the time derivative of 1 determines the normal component of the
velocity,
on ou
— = V|y—0 = ——|y=0- 1.4.7
ot V]y=0 By |y=0 ( )
Differentiating (1.4.6) with respect to ¢, we get the following interface condition
82’&1 _ @ o 821,&2 . @
P\ o) — o "ot )
For steady-state oscillations, we define
uy (t,x) = up(x) exp(iwt)
and
ug(t,x) = us(x) exp(iwt).
The condition at the interface between two fluids is
ou ou
pr | —wlur + g | = po | —wPus + g
oy oy
or equivalently
0 0
p1 (—au1 + a“yl) — py <_ou2 + a“;) , (1.4.8)

where 0 = “’77 > () is the spectral parameter. It is the same at all interfaces. If the surface is

open, the density of the upper layer is equal to zero, which yields

P2 <0u2 — 0u2> = 0. (1.4.9)



We now have the equations describing the motion of ideal and incompressible two-layer fluids

in a gravitational field in an open container,

Au; =0 1in Oy

Aus =0 1n Q9

o (85— ) b = (35— ) s (10
(- )

gy =0,

where u; and uy are the velocity-potentials of the fluids in domains €2; and €25, respectively,

n is an outward normal to the boundary, and Fj; is defined as on the Figure.1.2.



Chapter 2

Main results

2.1. Overview

Small oscillations of a multi-layer fluid have previously been studied by Kopachevsky. In
[10], Kopachevsky considered the problem of small oscillations of a multi-layer fluid, taking
into account surface tension forces in the gravitational field, that is, when m 4+ 1 immiscible
fluids (on the Figure 2.1 m = 2 ) with densities pi, pa, ..., pmy1 fill & container completely,
and occupy the equilibrium position in domains €, £k = 1,2,....m + 1, o4, k = 1,2,..., are to
be the coefficients of the surface tension on surface I'y, between the domains € and €.
On the basis of this work, the equation of the vibrations of immiscible liquids in a container
has a real, positive, discrete spectrum {)\;} with the limit point A = +o00. The associated
eigenfunctions form a complete and orthogonal system in the corresponding Hilbert space.

Due to surface tension, in [10] surfaces I'y are supposed to have curvature, but in our work
we do not take into consideration the surface tension. Consequently, the surfaces I'y are
supposed to be straight. Based on the Kopachevsky result, the spectrum of a three-layer
fluid in a closed domain is discrete. It also tells us that when for the domain €2,,,1 py1 =0,

then the spectrum is discrete as well.

2.2. Operator equations

We now construct operator equations for a three-layer liquid in a closed container and a

two-layer fluid in an open container. The sloshing problem of a three-layer fluid in a closed
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" Q3 N Bs
¢n2 Se 2
i T
n
n Qy N B,
Yy ¢n1 Sl 71
v "
ny
Ql Bl
So

Fig. 2.2. Container with three-layer fluid
container is given by
Auyp =0 in
Auy =0 in
Auz =0 in Q3
a’u,g’ 6 =0
P3 (%f’ - UUs) |5 = p2 (aau; - UU?) |2 (22.1)

Bu3| So — 8u2|5'2

ou _ ou
pr (% = om) ls = p2 (55 = owz) Is,

8u1| S1 — 8u2|517 8u2|50 =0

6u1 ’Bl - GUQ‘Bz - ﬁ|33 = 07
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where u; are velocity-potentials in domains €2;, p; are the densities, i € {1,2,3}.

Let us now consider the domain €2;.

+

51 Tnl

O B

So

Fig. 2.3. Domain €2 - three-layer fluid

We define the operator (Tq,); : L5(S1) — H'(Q), such that (Tg,)1¢1 = uy, where ¢; €
L4(S1), and uy € H'(€y), is a solution to the following boundary problem

Aul =01in Ql

Ouy _

Bn 150 =0

o 150 (2.2.2)
2l =0

%'Sl = ¢17

where Ly(S1) = {¢ € Lao(S1) @[5, ¢dS = 0}, Ly(S1) is a space of the square-summable
functions defined on S; and H'(€);) is a Sobolev space defined on €. Equation [ 5, @dS =0

in the boundary problem (2.2.2) means incompressibility, because ¢ defines the velocity of

particles on S;.

Now, we consider the domain Q3 and define the operator (Tq,)s : L5(S2) — H'(3), such

! ny
Fig. 2.4. Domain €23 - three-layer fluid

12



that (T, )2¢2 = us for ¢ € L5(S;) and uz € H*(€23) is the solution of the problem

Auz =0 in (23
8u$ |B — 0
(2.2.3)
8u3 |S3 =0
BU3 ’52 - ¢2'
We consider the domain €2; and determine the function uy satisfied
_l’_
52 Tn2
V2
Qy B
s, ot
! ny
Fig. 2.5. Domain (), - three-layer fluid
AUQ =0 in QQ
dug |B =0
(2.2.4)
aU2 |S1 ¢1
8u2 |52 ¢2-

We define operators (Tq,); : L5(S1) — H'(Q) and (Tq,)s : Ly(S2) — H'(Qg), such that
ug1 = (Tay ), 01, us2 = (T, ), P2 , Where usy, ugg satisfy

AUQI =0 in QQ
Quar| , — )

n |B —

0 (2.2.5)
8u21 |51 ¢1
811,21 ‘SQ _ O
AUQQ =0 in QQ
8u22|

(2.2.6)

pls, =0
aU22| Sa ¢2~

13



After decomposing the solution, us = ug; + ugy, we arrive at

Uz = (Tﬁz)l ¢1 + (TQQ)Q P2 (2'2'7)

Let us introduce the operator (C; )y = ;" (To, )k : Ly(Sk) — L5(S;), where v : H'(€;) —
L5(S;) is a trace operator and S; C 012, Sy is a boundary where the normal derivative is
defined. A sign of the ~; is taken as on the Figure.2.2. The action of the operator (C’f;) e will
be defined in the subsection 3.1.1.

We denote u € L,(Sy) @ L5(S2) and u = (¢1, ¢2). The operator equation for a three-layer

fluid in a closed container including spectral parameter is now given by

Au = oBu, (2.2.8)
where
— 0
A= | , (2.2.9)
0 P2 — P3
and
Ch)1 + pa(CFf Ch
B Pl( 1)1+ p2(C1o)1 pa( 12)2 . (2‘2‘10)
p2(Cy)1 p2(Co)2 + p3(Ch)2

For a two-layer fluid in an open container, the equation is given by

Au = oBu, (2.2.11)
where
— 0
a_ PP 7 (2.2.12)
0 P2
and
Ci)1 + pa(CH o
B p1(Ci1 + p2(Cio)1 pa(CHy)2 . (2.2.13)
p2(C)1 p2(Caz)2

Note that the operator equation for two-layer fluids in an open container follows directly
from the operator equation of three-layer fluids in a closed container.

Theorem 2.2.1. The spectrum of the operator equation of two-layer fluids in an open con-
tainer coincides with the spectrum of the operator equation of three-layer fluids in the closed
container, provided the top layer has density equal to zero. [10]

This theorem allows us to apply all results obtained for multi-layer fluids in a closed container

to open containers.

14



2.3. Discreteness of the spectrum

This section covers the properties of operators A and B for a three-layer fluids in closed
container. According to Theorem 2.2.1, the spectral properties are the same for a two-layer
fluid in an open container. We want to prove that the operator equation Au = ABu, where
A is a spectral parameter, has discrete spectrum. Let L5(S)) = {u € Ly(S1) : [g, udS = 0}
and Ly(S2) = {u € Ly(Ss) : [5, udS = 0}.

Lemma 2.3.1. The operator A is positive definite in H = L,(S1) @ L5(Ss).

Lemma 2.3.2. The operator B is non-negative in H = L}(S1) @ L, (Ss).

Lemma 2.3.3. The operator B is self-adjoint in H = L4(S,) @ L5(Ss).

Lemma 2.3.4. The operator B is compact in H = L5(S1) @ L5(Ss).

The results stated here will be proved in the section 3.2. We now immediately arrive at [6]
Theorem 2.3.5. The operator equation Au = ABu of the vibrations of a three-layer fluid

in a closed container has a discrete spectrum
0< A < A< A +oo.

The eigenfunctions form a complete and orthogonal system in H = L},(Sy) @ L5(S2).
Theorem 2.3.6. The operator equation Au = ABu of the vibrations of a two-layer fluid in

an open container has a discrete spectrum
0< A <A< S too.

The eigenfunctions form a complete and orthogonal system in H = L5(S1) @ L5(Ss).

2.4. The Weyl law

We obtain now the counting function for boundary value problem (1.4.10), which is for
two-layer fluid in an open container.
Theorem 2.4.1. The eigenvalue counting function of the sloshing problem for a two-layer
fluid in an open bounded container in R? satisfies the asymptotic relation

ds + ('m)Q [ as
Sy p—1 Sy

1
N(o) ~ — 0% as o — 00, (2.4.1)

15



where p = p1/p2 > 1. This result is a correction to the result obtained in [11] for the
counting function of the spectrum for the sloshing of a two-layer fluid in a vertical cylinder.
In the planar case the following result holds.

Theorem 2.4.2. The eigenvalue counting function of the sloshing problem for a two-layer

fluid in an open bounded container in R? satisfies the asymptotic relation

1 p+1
N(O’)Nﬂ_[S2ds+<p_]->/51dS]O'CLSO'—>OO. (242)
2.5. Examples
2.5.1. Rectangular container
J
xr=20 y=20 T = l,r
Qs
Dy = =h)
0
y = —2h

Fig. 2.6. Rectangular symmetric container

Let p = 2—; > 1, where p; is a density of the fluid in €2; and p, is a density of the fluid in €2y,
u € HY(Qy) and v € H'(€) are the solutions. For a two-layer fluid in an open rectangular

open container, the eigenvalues and eigenfunctions are

- M\/5\/—1+2p+cosh(%2h) sinh (%2 h)+psinh( T22h)
oin = P*1+(1+p)cosh("T"2h)

up () = (Am cosh(%y) + Agy, sinh(%y)) cos(™x) (2.5.1)

U (7,y) = (Agn cosh('y) + Aun sinh(”l—”y)) cos(Tx),
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where Ay,,As,,A3,, Ay, are defined by

16

6( —142p+cosh(2n L)
A ﬁlg\/n ( e ! )sinh(h"l—")—i-n?’psinh@h%)
In n3<71+p+(1+p)cosh(2hﬂl—"))

nb —1+42p+cosh(2h T)
—n3+n3 cosh(2h ) —coth(h %2 )v/213 ( 5 ) sinh(hZ2)

n3(71+p+(1+p) cosh(2h7rl—"))

nb <71+2p+cosh(2h7rl—n))

Asy = — Ay, cosh(27T)

3n3 sinh(hT2)+2 cosh(h"l—")\/ﬁl3 5 sinh(h %) —n3 sinh(3h 1)
A4n = Aln COSh(QhWTn) 3 ! g 3
n (71+p+(1+p)cosh(2h7))
and
o _i\/i\/fl+2p+cosh("l—”2h) sinh("’l—"h)fpsinh(%Qh>
2n l p—1+(1+p) cosh(”l—"2h)
un(xay) - 1n COS (Ty) + Doy SN (Ty) COS(Tx)
vn(2,y) = (Bsn cosh(Zy) + Buy sinh(Ty)) cos(%x),
where By,,B,,B3,,B4, are defined by
. nG(—1+2p+cosh(2h"T")) ;
B B —V213 ié sinh(hZ%)—n3psinh(2n 1)
n = Pln n3(—1+p+(1+p) cosh(Qh%))
6( —142p+cosh(2n T2
—n34n3 cosh(2h T2 )4-coth(h T2 )+/213 t ( preosh(Bh >) sinh(hT1)
Bs,, = — B, cosh(2h™2) : : e :
3n 1n l n3(—1+p+(1+p) cosh(2h%))
n6( —1+2p+cosh(2h Tt
B B, cogh (g > Suh(hi) 2 cosh(hrp) VL2 (St oo ) s i inbiah )
4n = —D1n COS (2h7> n3(—1+p+(1+p) Cosh(2h7rT”)> ’

Here we again have that p = p;/ps > 1.
For the rectangular domain considered above we will compare the counting function based
on the eignevalues in theorem 2.4.2, for the planar case when p = 1.2, [/2h = 0.5.

Counting function (Weyl law?
Mumerical ws, analytical prediction

120

Analytical
Numerical

100 L T gy 1o

N{sigma)

sigma

Fig. 2.7. Numerical results for a rectangular container
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2.5.2. The case of an extremely heavy fluid

We now consider the situation when the bottom fluid is much heavier than the top one,
which is similar to the condition when p — oco. In case when p is infinite, the eigenvalues

and eigenfunctions are

O1n = 02, = 7+ tanh (%)

n(,y) = Avy i cos(%ha) (2.5.3)

Un(z,y) = 0.

It is apparent that if ©* — oo, then oy, ~ &*, where [ is as on the Figure 2.6. The counting

function gives

N(o) ~ —o. (2.5.4)

™

Note that the counting function for this case is different than the result in Theorem 2.4.2

which predicts %la. This phenomenon is discussed in the following section.

2.5.3. The study of the limiting case

In this section, we consider the solution for a rectangular container as p — oo. Assume

that d and h are arbitrary real numbers, such that d > h. Let ¢, and ¢,, be the normal

ST y=—h

Fig. 2.8. Rectangular container with two fluids
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derivatives defined on boundaries y = —h and y = 0, respectively. Hence, the solution is

o1, = T tanh (T (d — h))

sinh( % (d—2h))

= —_— 2- .
¢1n gb?n sinh(”l—"(d—h)) ( 5 5)
d + 2h,
and
020 = = tanh (7h) 00

len =0 ¢2n 7& 0.
If d = 2h, then we obtain ¢, = 0 and ¢9, # 0 for the first family of solutions. Hence, we

get only one family of eigenfunctions that correspond to o, = %* tanh (%h)

2.6. Existence and uniqueness of the solution

Fig. 2.9. A supplementary problem domain

Consider now an auxiliary problem

Au =0 in €2

iu| =0

B

0 (2.6.1)
%—Uu\sl =0

%|So :¢7

where ¢ > 0. We wish to solve the equations for function ¢ and parameter o.

Proposition 2.6.1. The boundary value problem (2.6.1) satisfies the following two properties

o if o ¢ {7 tan (’rl—"h) :n=1,...}, then a solution exists and is unique.
e ifdn:o =" tan (%h), then a solution exists if and only if (gb(m), coS (%x))L 5o =
2P0
0.
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2.7. General case

Finally, we consider the problem of the existence and uniqueness of the solution with a

negative Robin parameter in general. Let () be an arbitrary domain with smooth boundary.

Fig. 2.10. Arbitrary fluid domain

Au=0
2 gyls, =0 (2.7.1)
%|Sg = Qb,

where o is a parameter. In addition to (2.7.1), we consider the auxiliary problem

Aw =0
%17“51 —0 (2.7.2)
Wl =0
and the sloshing problem
Av =0
P llg, =0 (2.7.3)
g, = 0.
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Proposition 2.7.1. Let {)\;} and vs be the eigenvalues and eigenfunctions of the slosh-
ing problem (2.7.83). The boundary value problem of (2.7.1) possesses the following three
properties

o if 0 ¢ {\;}, then a solution exists and is unique

o if dn: 0 = A\, then a solution exists in case of [, v =0

e otherwise, a solution does not exist.
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Chapter 3

Proofs

In this chapter we explain the theorems and formulas obtained in the previous chapter.

3.1. Operator equations
3.1.1. Operator equation for a three-layer fluid in a closed container

In this section, we provide the construction of the equations in section 2.2. The boundary
value problem (2.2.2) is a Neumann problem, which has a solution unique up to a constant

term [13]. This means we may select u; such that

/S wdS = 0. (3.1.1)

Taking into the account the trace operator ~; : H'(Qy) — L,(S;), we get

uls, =71 (T, )191- (3.1.2)
Finally, for €2y, we conclude
%;1'5'1 = ¢1

uls, = (Cy)1¢1,

(3.1.3)

where (C};)), were already defined.
Similarly, the boundary value problem (2.2.3) is a Neumann value problem where we again

select uz such that

/ usdS = 0. (3.1.4)
Sa



Considering a trace operator 75 : H'(£23) — L5(S,), we get

u3|52 = 7;(T93>2¢2'
For the domain €23, we obtain the following result
8u3 ‘52 - ¢2

—uglg, = (CF)20.

Based on the operators defined previously, we obtain

—usls, = 1 (To)161 + (T, )ad) = (C), 61 + (C), 6
Usls, = 15 (To,)101 + (Ta,)2¢2) = <02_2)1 ¢1 + (02_2)2 G2

Choose uy such, that

/ usdS = 0,
S1
Sa
Summarizing all above, we get
8U1 8u2
3y ——|s1 = ¢1, aﬁybl = ¢1,
Ouy Ous
ay | ¢2a 8y | ¢2’

—usls, = (C5)2d2,  wils, = (C11)1¢1,
—usls, = (C) 61+ (C1), o,
wls, = (Con) 01+ (Cia), 02
Using (2.2.1) and taking into account (3.1.9), we obtain
(%2 —ou) |s, = p1 (61 — o(Ci o)
(% —ow) lss = p2 (140 ((C), 61+ (C), 62))
pr (Gt —ows) Is, = p2 (62 = 0 ((C), 01 + (Ca), 02))
(% —ow) (

ous) |s, = ps (P2 + 0(Cs5) 2¢2)

P2

P3
It follows that

(pr—p2)1 =0 (Pl(Cﬂ)l + /?2(015)1) ¢1 + 0p2(Cha) 202

(p2 = p3) P2 = opa(Cy)191 + 0 (P2(02_2)2 + p3(02+3)2) P2
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Equations (3.1.11) are the operator equations related to a three-layer fluid in a closed con-
tainer. Let u € L5(S)) @ L,(S) and u = (é1,¢2)”. For a closed container, the operator

equation (3.1.11) can be written as

Au = o Bu, (3.1.12)
where
— 0
A=t , (3.1.13)
0 P2 — P3
and
C)1 + po(CF Ch
B— Pl( 11)1 /)2( 12)1 PQ( 12)2 . (3‘1‘14)
p2(Cy)1 p2(C)2 + p3(Ch)2

3.1.2. Operator equation for a two-layer fluid in an open domain

Using (1.4.10), we derive the following for a two-layer fluid in an open domain,

p1 (%j - Uul) s, = P (¢1 - 0(01_1)1¢1)
B o)l (oo () os (CB),0) 0119
(%1;2 - au2> |52 - (¢2 —o ((052)1 1+ (022)2(1)2)) =0.

Hence
Au = oBu, (3.1.16)
where
— 0
A= pP1— P2 7 (3.1.17)
0 P2
and
Ci)i + pa(C Cr;
B_ p1(Cii)1 + p2(Cia)r pa(Cia)2 ‘ (3.1.18)
p2(C§2)1 P2<C£2)2

3.1.3. Proof of Theorem 2.2.1

Note that this result agrees with the physical intuition and that follows by substituting
p3 =0in (2.2.1).

24



If we assume p3 = 0 in (2.2.1), then the system splits into two systems

AU3 =0 in Qg
Bug =0
S —
yls. (3.1.19)
8u3 |8Q =0
BU3| S, = 8u2|52’
and
Aul =0 in Ql
AUQ =0 in QQ
p2 (%2 — ouy) |s, = 0
P1 (%7;1 Uu1> |51 = p2 (8”2 UU2) B (3.1.20)
8u1 | — Bug |
S1 S1
aug |SO — 0
Ouy _

Ouy Oug _
2t |an = 52 [aq = 0.

The second system coincides with (1.4.10). The first system does not contain any spectral
parameter and is the Neumann problem with respect to function uz defined by the derivative
of uy on Sy. This means that the spectrum of the operator equation of a three-layer fluid
in a closed domain with the weightless layer at the top coincides with the spectrum of the

operator equation of a two-layer fluid in an open domain.

3.2. Discreteness of the spectrum

3.2.1. Proof of Lemma 2.3.1

Let ¢ = (¢1,02) € L5(S1) @ L, (S2) and A be the operator defined by (3.1.13). We have

(Ap.0)m = (pr—p2)(d1,01) Ly(s)+(p2—p3) (P2:02) 1y (5) = 7 ((¢1,¢1)Lg(sl (¢2,02) 1 52)) = 7?10l

where H = Ly(S1) @ Ly(S2), l|oll7 = ((¢1,¢1)Lg(51) +(¢27¢2)L’2(52)) and v* = min{p; —
P2,02 — P3}-

Therefore, we have shown

(Ao, 0)u > *I[0l%- (3.2.1)
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This proves Lemma 2.3.1.
3.2.2. Proof of Lemma 2.3.2

Let Q C R? be a bounded domain with a Lipschitz boundary 99 and S C 99. Consider
W3 (€2), Sobolev space. This functional space is equipped with the norm [6] defined by
lullfvy) = lullZym) + 1VulllZ,0) (32.2)

for each u € W} (Q).
According to [13, formula (9.13), p. 64], one can define an equivalent norm on W, (Q) by

the formula

2
lullg = ([ ulsds) -+ lIvalll, o
Hence, if we consider a subspace W3 () € W} (Q) defined by

Wi(Q) = {u e WHQ) : /Su|5d5 —0,5 C 89}, (3.2.3)

then the norm
lul[fr o) = NV ulllZ@) (3.2.4)

is equivalent to the usual Sobolev norm.

Let B be the operator defined by (3.1.14), we have

(Bé,o)u = p1 (( 1)1 ¢1>¢1> + P2 ((Cﬁ)l ¢+ ( ) ¢2,¢1>

L’ 51)
P2 (((12‘2)1 1+ (Co), ¢2,¢2) o ((Ch)nda) o (325)
Also, we have that
(Canor) , o = [ (CR1o0)61dS = [ (n]s)ords = (3.2.6)
0 0

/31 (ul\sl)auidS / (u1]s,) u1 dS / un - VurdS = o, un - VurdS = (3.2.7)
/ un - VudS = / V- (u1Vuy)dS = Vuy - Vuy + up Auy )d2 = (3.2.8)

0 0 0

1951
where (C5)r = v (Ta, )k © Ly(Sk) = L5(S:), v« HY(S) — L5(S;) is a trace operator and

¥

S; C 082, 082 is a boundary of the 2. Sy is a boundary, where the normal derivative is
defined.

26



Finally, based on the (3.2.4) and (3.2.3), we have that

(Canoror) , 5, = lluallivya: (3.2.10)
and
(Ch)eb2n) , o = luslliya) (3.2.11)

Let us now calculate

((Cfrz)l ¢1 + (CE)Q ¢2’¢1>L’2(51) = /Sl(—uz)|sl¢1d5 —

9 9
/Sl( )IslauidS /u2|51<u2>d5 /SluszquS.

Here we used the fact that g,% = —% on the surface S; for the domain €25, since we should
1

use an outward normal. Summarizing, we get

((Cﬁ)l o1 + ( ) ¢2,¢1)L/ ) /51 ugn - VuodS. (3.2.12)

According to the same calculations,

((Cz), 01+ (), ¢27¢2)L’2(5‘2) - /32 Usn - ViadS. (3.2.13)

We now have

((Ch), 01+ (Chh), ¢2’¢1>Lg(51> +((@), 0+ (02_2)2@’@)%(&) N

/ usn - VuedS + usn » VuogdS =
Sl SQ

/a usn - VuodS = Vug - Vug + ug Aug)dS) = A Vg - Vued) = HUQH%N(Q )
Q2 2 2

Qo

Finally, we have that

((Ch), 01+ (Ch), 0001) , o)+ ((Co) 01+ (Clatndn) , o = llalliyqy (3:2:14)

Therefore, we conclude

(Bo.o)m = leulHIQ/Vzl(Ql) + PQHWH?/VQI(QQ) + P3HU3H124‘/§(Q3) > 0. (3.2.15)

This proves Lemma 2.3.2.
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3.2.3. Proof of Lemma 2.3.3

We first calculate (B¢,0)y,

(BoO)n =i ((Crnord) , o+ ((Ch), 61+ (Ch), 6201) , o+

Ly (S1)

P2 ((C;Q)1 o1+ (02_2)2 ¢2’02)L/2(52) tps ((0;3)2@’62)%(52) '

Next, we have

(Cined),, o = [ (Cre0)dS = [ wibids.

Let us introduce the function v, such that

Av=20 in Ql
%”SO =0
onls =0
fSl UdS - 0
3%%|S1 = 0.
Hence,
v ov ov
Py 2 D - VudS =
/ Yont 5= ul@n 5= o0, “on 5= o, wn - Vods
/Q V- (u1 Vo)dQ = /Q (Vuy - Vo 4+ ui Av) dS) = /Q (Vuy - Vo +vAuy ) dQ) = /Q V-(vVuy)dQ) =
/ on - VigdS = v%ds 09U g5 — / vy dS.
o on 8n1
Since v|g, = (C1;)161, we have that
(Crnonti), o) = (Canbren) o= (00(Conb) , - (3.2.16)
Similarly,
+ _ +
((023)2952,92)”2(52) = ((023)292’¢2>L/2(52) : (3.2.17)

We continue with ((C’f@)l o1+ (05)2 ¢2,91)L,(S : and introduce v9; such that
2 1

Avgl =0 in QQ

81)21 |

81}21 _ 9
S — Y1
anf 1

Ovay _
<9n§L Sz 0.
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Hence,

((CE)I ¢1 + (sz)z ¢2’91>L’2(5‘1) = /S (—u2)ls,0hdS =

81121 aU21
/51( ’Sla A /“2’5181

1 = —ny) is the outward normal to Qy on S,

where (n
/ ug|g,n - Vg dS = / us|s,n - VugdS =
Sl 802

Vs - Vg dQ) = / vgl%ds

Q2

Finally, we get

8u2
+ + _ Cl2
((Ch), 00+ (Ch), 000) , o) = | vmg, 25,
Following the same method, we get
— _ 6u2
((022)1 o1+ (022>2 9252792)%(52) = Joo, U22%d57
where
A'UQQ =0 in QQ
31122 |
52ls, =0
61;22 |S2 — 92
Hence, we get
Ous Ouy Ougy
foy 2 g 05+ [, v dS = [ wagtds,
where
A’Ug =0 in QQ
@‘B =0
81}2 |S1 — 91
B’UQ |S2 — 0 .

After setting
—vls, = (Cia) 61 + (C1),, 62
vals, = (C) 61 + (Ciz),, b2,

29

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)



we have that

/vgaquS U22d5+ v2 dS / ) a“%zs /vz—ds—
90, ~ On ony So

/Sl(—m)aﬁldSJr/SQ VahpdS = /Sl(—vg)gzﬁldS—i—/SQ VapadS =

/ (), 00+ (C15), ) ads + / C) b1+ (C) 62) 92,

Summarizing (3.2.18), (3.2.19) and (3.2.20), we have

((Ch)o1 + (05)29252791)%(&)

((Cinbr + (Cy)a62,61)

+ ((Co)161 + (Cp)a62,62) |, =

L4(S2)

+ ((C)ib1 + (C)oban)

Ly(S1) (S2)

It follows that (B¢,0)y = (B0,¢)y, which proves Lemma 2.3.3.

3.2.4. Proof of Lemma 2.3.4

We prove that if ¢,, — ¢ weakly converges, then (B¢,,¢,) — (Bo,p). We have that
(B(¢n - ¢)’¢n - ¢)H = levlnHIQ/VZl(Ql) + p2||02n||?/[/21(92) + p3||v3n||l2/i/21(93)7

where functions vy, vs, and v, satisfy the equations

AUln =0 in Ql
8@1n| So = 0
8;71; |B — O
6U1n |5'1 ¢1n - ¢17

Avgn =0 in Qg

6v2n |

Ovap
017}12"' S1 ¢1n ¢1

gff Sz = Gon — P2,
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Avgn =0 in Q3
6U3n| S5 — O

avgn |

gﬁff S = Pan — P2
We consider the first equation and take an arbitrary function ¢ € W} (). We have

0= (Avi, %)y ) / Bogpd = | V- (Vo )dQ =

01}1n

/Q (V- (Vout) = Vi, - Vi)do = / pmmds /Q Vo, - Vo

By the definition of vy,,

avln avln

L

s - / Vo, - Ved2 = [ 4%
o

s / Vi, - VidQ. (3.2.22)

We then obtain
(@10 = 01,9) 1 (51) = (Wi )ving o) - (3.2.23)

For a fixed n, since 9 is an arbitrary function, we put ) = vy,. It follows from (3.2.23) that

(gbln - ¢1,U1n)y2(51) = (Ulna Uln)Wzl(Ql) . (3224)

Recall the operators (Tq, )1 : Ly(S1) — HY(Q1) and 77 : H(Qy) — L4(S;) defined in sections
2.2 and 3.1. We have
(Vin; P10 = 1) 115,y = (Vinlsys P10 — 1) 1y 5y = ((Cﬁ)1(¢1n — $1),01n — ¢1>L,2(Sl) )
(3.2.25)
where we used the operator (C1;)1 = v; (Tq, )1 defined in the section 2.2 and the relations
Vinlsy = (C11)1(d1n — é1), Vinls, € L5(S1) by the construction of the operators (see section
3.1). Based on the Cauchy-Schwarz inequality, we have

’((CH)I((bln - (bl)?(bln - ¢1)

> H 11 Cbln ¢1)‘ (S1) H¢1n - ¢1||L'2(51) =

Hvln||L/2(Sl)H¢1n - ¢1HL’2(51) (3.2.26)

L4(Sh)

Since [[v1n |l 0, = (V1 Vin)ys 0,y = (Vin, S1n = @) 1ys,), We have

HvlnHWl @) < vinllzy sl — d1llzyesy)- (3.2.27)
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Since vi,|s, € Ly(S1) and vy, € Wi (Q), v, € W3 (Q), where norm (3.2.4) is equivalent to

the norm in W3 (€2) and based on the Sobolev trace restriction theorem [13] we may write

vinllLyes)) < Cllownllig oy

where C' is a positive constant. Therefore, from (3.2.27) it follows that

v1nl iz @) < Clld1n — d1llzyesy)-

Since vy, = (T, )1(d1n — ¢1) in Q4, based on the definition of the operator (Tq,); given in

section 2.2, we have

[(Te,)1(01n — o)l 1) < Cllon — dnlliyesy)- (3.2.28)

Inequality (3.2.28) also holds for any arbitrary function x € L5(S7), because currently we
only used the property of ¢1, — ¢1 to be in L5(S;). From which it follows that the operator
(Tq, )1 is bounded. Based on the Sobolev trace restriction and Rellich-Kondrashov theorems
[13], operator ; is compact [10]. Consequently, the operator (C1;)1 = 71 (T, )1 is compact
[10] as a product of a bounded and a compact operator. It follows then [6] that

(Co1(61n = 61) 610 — 1), =0

L5(51)

as ¢1, — ¢1 weakly converges. Based on the (3.2.24) and (3.2.25) we have
Hvln||3vg<m> -0 (3.2.29)

as ¢1, — ¢1 weakly converges. The same is valid for vy, and vs,. Finally,
(B(¢pp — &),0n — @)y — 0, as ¢, — ¢ weakly converges. (3.2.30)

By Lemma 2.3.2, B is non-negative, so it follows that B has a unique positive and self-adjoint

square root B2 [12] such that B = Bz - Bz. Therefore, we have

(B(én=0).0n—0)i1 = (B?-B? (6—0) bn—0) = (B* (6u=6),B% (6u—6))rr = || B* (0—0)lli1
(3.2.31)
Hence, for any sequence {¢,, : ¢, € H} that converges to ¢ € H weakly, based on the (3.2.30)
and (3.2.31), the sequence {B2¢,} — B2¢. It follows [6, p.13] that B2 is a compact operator
and, as a consequence, B is a compact operator as well, as a square of the compact operator.

This completes the proof of Lemma 2.3.4.
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3.3. The Weyl law
3.3.1. Proof of Theorem 2.4.1 and 2.4.2

In this section, we calculate the asymptotics for eigenvalues of problem 1.4.10 of a two-layer
fluid in an open container. Let @ C R™"! be divided S;,5s,...,S5, by the system of the
smooth surfaces into subregions 2;,82s,...,€,41 as in the Figure 3.1. Let us consider the

following problem [8],

Fig. 3.1. Multi-layer fluid in the closed container

Aup=0inQ, k=1,...p+1

%Zk =0 on 92N 0Ny (3.3.1)

Oup _ Oupy1 _ y—1,.—1
gk = e = Ay (pruk — Prr1Uesr) on S,

where a;, are positive functions, p, are positive constants, n is a normal to 02 and ny is
a normal to the surface S;. Our goal is to determine the counting function for eignevalue
problem (3.3.1). Based on the [8], we have

Theorem 3.3.1. For the counting functions of the spectrum of the spectral problem, one has

A — 40 the asymptotic equation

Ni (A A, B) ~ (27) " A g / ds(r) /5 IRGICERSTS

Ln;(x)
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where ni(l;x,ﬁ) is a counting function for the spectrum of the supplementary problem con-
structed in [8].
If we compare problem (3.3.1) with (2.2.1), then we have o = A™'. Therefore, the asymptotic

formula for a three-layer fluid in a closed container in R?*(m = 2) is

1 [(ps+ p2)° (p2 + p1)” ] 2
N(o) ~ — | — d5+7/ dS| o as 0 — o0. 3.3.2
(@) Am [(P:& — p2)? /s, (p2 = p1)? Jsu ( )
In the planar case [8], m = 1, we have that
1
N(o) ~ — [M ds + (p2+p1)/ dS] o as g — 00. (3.3.3)
7 | (ps — p2) /5. (p2 — p1) /s

From theorem 2.2.1 and theorem 2.4.1, theorem 2.4.2 immediately follows.

3.4. Examples
3.4.1. Rectangular container

We consider a sloshing problem for a two-layer fluid in an open rectangular container
Pu 4 Pu _
Ox? + oy? 0

o o
oz T o =0

?TZ —ou |y:0: 0
(5 = ou) ly=—n=p (22 — ov) |y=n (3.4.1)

%|m:0,l - %LL’:OJ =0

Ou — v
8y‘y:*h - 6y|y:*h

%|y:—2h =0,
where p =2 > 1, u € H'() and v € H' ().
The solutions u and v for the n'* harmonic are given by
un(z,y) = (Aln cosh(™y) + Aay, sinh(%y)) cos(%x) (3.42)
vp(,y) = (Agn cosh('y) + Aun sinh(”l—”y)) cos(Tx).

For y = 0, — h, — 2h, we have the following algebraic homogeneous equations relative to

Ain,...,Agp, including spectral parameter o,

M[A,Agn Az Ayt =0, (3.4.3)
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where
M- My, M, ’
My, Msy

) T
My, = _m™ ginh (%h) T cosh (%h)_ )

0 0
M12 - )

" sinh (72h)  —77 cosh (7h)

l

Vi = [ () o 1) 7 () o m)] |

1 |porcosh (k) + = psinh (2h)  —posinh (5h) — T pcosh (k)
2 = .
— ™ sinh (72h) = cosh (72h)
To obtain a nontrivial solution [A1,,,A2,,Asn,Asn], we set the determinant det(M) = 0. We

have that det(M) = ao?® + bo + ¢ = 0, where

a=—(=)"1(p—1+(p+1)cosh (521))
b= ()’ psinh (2h) (3.4.4)
c=— (%)4 (p — 1) sinh? (%h) :
It follows that
~bF VD

- 3.4.5
01,2 2% ) ( )

where D = b® — 4ac. We then have

n f\/ 1+2P+COSh(””2h) smh(T”h +psinh(%2h)
n

Oin = 7 p—14+(1+p) cosh(WT h) (3 4 6)
\[\/ 1+2p+cosh(7m2h) s1nh(T”h)fpsmh(M2h) ‘ o

Ogp = — 1

2n l p— 1+(1+p)cosh(T” h)

As ™ — oo, we have that

(3.4.7)

N(o) ~ <<p+1> + 1) vol(D) (3.4.8)
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where vol(D) = [ is a Lebesgue measure of the interface. If

o \/5\/—1 + 2p + cosh (’Tl—"2h> sinh (%@ + psinh (WTth)
1 p—1+(1+ p)cosh (”T”WL)

0 =01n =

: (3.4.9)

then

n6 —1+42p+cosh(2h L)
V213 ( 76 ! )sinh(h”l—")—i-ng’psinh@h%)

n3(71+p+(1+p) cosh(QhWT”))

A2n - Aln

6( —1+42p+cosh(2hE)
—n34n3 cosh(?h%)—coth(h%)\/il?’ - ( s l(;os L ) sinh(h ™)

nS(—1+p+(1+p) cosh(2h”l—"))

nb(—142 +cosh(2h L)
3n3 sinh(h77*)+2 Cosh(h‘"l—”)\/il?’ ( s 7 L ) sinh(hZ2%)—n3 sinh(3h )

[}
n3 (—1+p+(1+p) cosh(2h”7")>

Agn = _Aln COSh(Qh%)

Ayp = Ay cosh(2n7)

(3.4.10)
Finally, we have that
. \/5\/71+2p+cosh(%2h) sinh(Zh)+psinh (T2 2h)
Tin = 7 p—1+(14p) cosh( Z2h)
un(z,y) = (Aln cosh("'y) + Az, sinh(%y)) cos(") (3.4.11)
vp(x,y) = (Agn cosh(™y) + Aun sinh(%y)) cos(%x),
where A1,,As,,As,,As, are defined by 3.4.10. If
o \/5\/—1 + 2p + cosh (%2h> sinh (%h) — psinh (%2h>
0 =09, =——F : (3.4.12)
l p—1+(1+ p)cosh (%Qh)
then
o \/5\/71+2p+cosh(%2h) sinh(%h)fp sinh(%Qh)
Tom = =77 p—1+(1+p) cosh( Z22R)
Up(z,y) = (Bln cosh(™'y) + Bay, sinh(ﬂ—"y)) cos("*x) (3.4.13)
vn(z,y) = (Bgn cosh(™y) + Buy, sinh(’?—”y)) cos("rx),
where
nb —1+42p+cosh(2h T) . . . n
B2n _ Bln—\/il?’ ( i L ) smh(hT)—nSpsmh(QhT)

n3 (71+p+(1+p) cosh(2h7"l—"))

nb —1+42p+cosh(2h L)
—n3+n3 cosh(2h T ) +coth(h =2 )v/213 ( 5 ) sinh(hZ)

n3<71+p+(1+p) cosh(2h7'l—"))

Bs,, = — By, cosh(2h7)

n6( —142p+cosh(2n ER)
—~3n3 sinh(hZ2)+2 cosh(h =2 ) /213 (cr2e . ! )sinh(h"l—")—n?’ sinh(3h )

n3(71+p+(1+p) cosh(2h%))

Byn = — By, cosh(2h7)
(3.4.14)
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3.4.2. The case of the extremely heavy fluid

If p — o0, then the sloshing problem for a two-layer fluid in an open rectangular container
is
9%u Pu
oz T o2 =0
2 2
G T 5s=0

du

oy — U y=0=0
(%y - Uv) ly=—n=0 (3.4.15)
%|x:0,l =0

Ou — v
ay|y=7h - ay|y=7h

%Z|y:—2h - Oa
where u € H'(Qy) and v € H'(Qy).
The solutions for v and v are given by
un(xy) = (Aln cosh(™y) + Agy sinh(%y)) cos(™ )

U (1Y) = (Agn cosh('y) + A sinh(”—l"y)) cos(Tx).

The spectral parameter is determined by the boundary condition, that is, by the equations

M A, Agp, Az, Agn])” =0, (3.4.16)
where matrix M is defined by
I = 0 0
M — — = sinh (Wl—”h) Tt cosh (%h) Tt sinh (%h) — = cosh (”T"h)
- 0 0 —ocosh (%h) — T sinh (Th) osinh (Zh) + 7 cosh (7h)
_ 0 0 — = sinh (%2h) = cosh (%2h)

In order to have a nontrivial solution, we set the determinant det(M) = 0,

det(M) = ac® +bo +c =0, (3.4.17)
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where

Hence, 019 = %, where D = b? — 4ac.

o1, = 7 tanh (”l—")

(3.4.18)
02 = 7 tanh ()
If 0 = 01,, = 09, then
O1n = Oz, = 7 tanh (L”>
un(x,y) = Al% cos(" ') (3.4.19)
vn(z,y) = 0.
As 7' — oo, we have that oy, ~ 7, and
(D
N(o) ~ vol( )a.
T
3.4.3. The study of the limiting case
The differential equations for this case are
A’Ul =0
AUQ =0
(o)l
Bu| = ou (3.4.20)

du _
(87; — O'Ul) ‘yth =0

%1;1 = 0ly=—a
91 = 0]pq,

where u; € H'(Q) and uy € H'(Qy).
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The solution for functions w1, and us, corresponding to the n** harmonic is

U1n(2,y) = (A, cosh(Ty) + By, sinh(7y)) cos(Tx)

(3.4.21)
Uz (2,y) = (Agp cosh(TFy) + By, sinh(Ty)) cos(T ),
from which it follows that
Otlin _ T4 inh (") + Biy cosh(™%)) cos(~a). (3.4.22)
oy [ { l l
We denote
g = Qan| =) — (A sinh(T2h) + B;, cosh(Z2h)) cos(™x
1 ay|y h ay|y h l( (l ) (l )) <l ) (3‘4‘23)

¢2n = ag;" |y=0 = 7rTnBQn COS(WTnx)a

where ¢1,, and ¢, correspond to a o,, because we are considering the solution which cor-
responds to the n*" harmonic. We note, that [ ¢, somdx =0, so ¢1, € L5(S1). Similarly,
Gon € L5(S2), we have that

U2n|y:0 = Agn COS(WTnZL')

(3.4.24)
Pon = 0n Aoy cos(T ) on Ss.
On S;, we have
Winly=—n = (Ain cosh(@h) — Bin sinh(ﬁl—nh)) COS((Z—n:r;). (3.4.25)
Hence, on the surface Sy, taking into account that ¢, = 8%" ly=—n, we have
P cosh(ﬂl—nh) — By, smh(%”h)) cos(%”x) = 0. (3.4.26)
Finally, we have
¢1n = On(Ar, cosh(Tth) — By, sinh(T7h)) cos(™ ) (3.4.27)
Pon = On Aoy cos(TTT).
For 8;;" y=—d = 0, we have
(— A1, sinh(?d) + By, cosh(?d)) cos(wl—nx) =0. (3.4.28)
Hence,
Bin = A, tanh(ﬁl—nd), (3.4.29)

39



and ¢y, = 24=| __, = T (— Ay, sinh(Zh) + By, cosh(Z*h)) cos(Zx). It follows then

9y
Ay, cos(TR O1n Cos,}rlfli
1 ( 1 ) Ingn smh(h( (dd)h)) (3430)
Bin COS( l ) ¢1n mn sinh(%F (d—h)) ©
bon = 637 y=0 = T Bay cos(7x), so
[
By, cos(@x) —(bQ. (3.4.31)
[ ™
b1 = 3;; y—h = 8“2"\y__h = T(—=Ag,sinh(h) + By, cosh(T2h)) cos(Tx). It follows
then
Agy c08(“) = (@2 cosh(Toh) = d1,) (8.4.32)
1, COS 5 COS n) o E Y 4.
? l ? " sinh(T2h)
Finally, we get
™ cosh(7*d
Al” COS(TI) - ¢1" ™ smh("”s (d— 31))
sinh( " d)
By, cos(Trx) = ¢1a W
1 ( l ) 7n sinh( =2 (d—h)) (3.4.33)
Aoy cos(TEx) = (¢n cosh(Th) — gbl)m#
Ba,, cos(tx) = Wlncﬁgn
Based on (3.4.33), we have (3.4.27) as an operator equation A¢ = 0, B¢, where
10
A= , (3.4.34)
01
and
1 cosh(*(d—h)) 0
| mn sinh(Z*(d—h))
B= | L o | (3.4.35)
mn sinh(7*h) mn sinh(5*h)
and ¢ = (A1, d2,)". The eigenvalues are then
01, = T tanh (T*(d — h)
: (5 ) (3.4.36)
02 = = tanh (Zh) .
If 0,, = 01, we have that
sinh (T2 (d — 2h
sinh (”l—”(d - h))
If 0,, = 09, we have that
¢1n - 0
(3.4.38)
¢2n 7& 0.
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Finally,

o1, = 7 tanh (’Tl—”(d - h))
sinh( 72 (d—2h))

P1n = P2 sinh (%2 (d—h))
d+ 20,

02 = T tanh (7h)

¢1n =0 ¢ # 0.

3.5. Existence and uniqueness of the solution

3.5.1. Proof of Proposition 2.6.1

The tentative assumption for our solution is [11]

)+ By cosh(wlny)> cos(?x).

u(z,y) = Z (An sinh(ﬂl—ny

n=1

From this, it follows that

%Z(:L“,y) =21 T (An cosh('y) + B, Sinh(%y)) cos(™x)
U(.CE,O) = Zn:l Bn COS(%%)
Su(@,0) = Ty A, cos(Fa).

The boundary condition on S is

o ouls, = n;l (WlnAn - aBn> cos(?x) = 0.

Hence, for each n, we have that

For y = —h, we have that

n

l

n=1

Let

~| N

oz) =2,

Op, COS (Wlnx) ,
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a—y(:c, —h)=> W—ln <An cosh(ﬁl—nh) — B, sinh(ﬂlnh)> cos(—z) = ¢.

(3.4.39)

(3.4.40)

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)



where ¢,, =< ¢, cos (“T”x) > ,(l0,))- Hence

> ? (An cosh(WTnh) - B, sinh(wlnh)> cos(?x) = ?% Cos (T:c) (3.5.7)
n=1 el
and
T (An cosh(“h) — B, Sinh(ﬂlnh)) = ?cbn, (3.5.8)

and when taking into account (3.5.4),

2
cosh <7Tl”h> B, <a ~ ™ tanh (”l"h)) = Z6n (3.5.9)

This condition must be satisfied for an arbitrary positive integer n. If

o # 7rTn tanh (Wlnh)

for each n, then we can calculate A,, and B, to define the solution

2¢ 1
l ncosh(%h) (0—% tanh(ﬂ—"h))

B, =
(3.5.10)
A, =

#O'Bn.
If there exists an n such that o = 7 tanh (“Z—”h), then for this particular n

2
cosh <7Tlnh> B, (cr - WZ—ntanh <7Tlnh)> =0= Tgbn (3.5.11)

So if ¢,, # 0, a solution does not exist. In order to have a solution we must require that ¢,, = 0
and that B, is arbitrary. We return to the spectral problem of sloshing in a rectangular
container and consider the case when d # 2h. We change h in such way that m and n satisfy
the following condition

7rTn tanh <7Tln(d - h)> = ? tanh (T) . (3.5.12)

As d # 2h, it follows that m # n. For domain §2;, the solution

A
U, = ——— cosh (m(d + y)) cos(@x). (3.5.13)
cosh (”T”d) ! l
¢ on S satisfies
Juy ™m A /TN ™m
O =—— —_p = ————F———sinh ( d—nh )COS —). 3.5.14
3y 500m = 7 o gy (= ) s (35.14)
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The solution which corresponds to =* tanh ( “mh) is

)

Um =

Cy cosh (2 (
' }E l cos(#az). (3.5.15)

(h)

So, we have that

< G,V > / OV, = B/ cos ( ) cos ( lmx) =0, as m # n. (3.5.16)

Consequently, there is always a solution for d # 2h for a rectangular container. This cocludes

the proof of Proposition 2.6.1.

3.6. General case

3.6.1. Proof of Proposition 2.7.1

We would like to understand the conditions for existence of a solution to the equations

Au =0
gz 0U|51 =0 (361)
87;:|52 = ¢)

where o is a parameter. In addition to (3.6.1), we consider the following boundary problem

AP =0
Pls, =0 (3.6.2)
%|52 = (b

The solution to this problem exists if ¢ € L,(S) [13].

Let us represent the solution as

u=uw-+p, (3.6.3)
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where the function § is known and defined by (3.6.2). We have that

0=Au=Aw+p)=Lw+Af =Aw

Aw=0

u_ gulg, =0=2% —|— —ow —ofls, =0 (3.6.4)
s, =0

e —owls, = oflsy,

o 0 0 0
£‘52:¢:£+£|31:£+¢

(3.6.5)
&g, = 0.
Finally, w satisfies the system
Aw =10
%o — gwlg, = ofls, (3.6.6)
a*:|52 =0,
where [ is again defined from (3.6.2). We consider the following sloshing problem
Av =0
& Mg, =0 (3.6.7)
g, = 0.
The spectrum is discrete 0 < A\; < Ay < -+ < A\, < ..., and the eigenfunctions vy, vo, ...

form an orthogonal basis in Ly(Sy). In fact, if A\; # \; and v;,v; are the corresponding

eigenfunctions, we have that

0= / 0; Av;dQ = / - (v;V;) — Vo, - Vo, )dQ = 0. (3.6.8)
Since
Oy 81)3 ov; B
/Qv.(vzwj)dsz / GdS = [ wrdst [ wFlds = [ w(u)ds =, /5 viv;dS,

we obtain that

Aj Js, viv;dS = [q Vv - Vu;dQ
j Js, Vilj Q j (3.6.9)
)\i fSl UjUidS = fQ V’Uj : VUZdQ
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Hence,
(A — Ay) /S vjvidS = 0, (3.6.10)
1

Assuming w = a’v, and using the summation Einstein convention, we have

Aw = Aa*v, = a*Nvg = a®0 =0
(3.6.11)

%’52 = GS%S‘SQ = 0.

We consider the conditions on the surface Sy

g—: —owl|s, = 0fls, = as% — 0a’vg|g, = a®(Asvs) — 0a’vslg, = a®(As — 0)vss,

a®(As — 0)vsls, = af|s, -

(3.6.12)
Since the function § is known and defined by (2.7.2), it can be expanded in Fourier series
on S
Bls, = b"ves, . (3.6.13)
Consequently,
a’(As — o) = ob’. (3.6.14)
If o ¢ {\s}, then we can uniquely define
a® = Aisg. (3.6.15)

So a solution exists and is unique. If there exists an s such as ¢ = ), in order to have the

solution, need b° to satisfy b* = 0. So
| fundS =0. (3.6.16)
We have
0= JqusABdQ = [V - (v;VB) — Vv, - VBdQ =
Joa Vs Z2dS — [, Vv, - VBAQ = [g, v,6dS — [o Vs - VBdQ

(3.6.17)
0= [y BAVAY = [,V - (BVw,) — VB - Vu,dQ =
Joq B22dS — [ VB - Vu,dQ = [g A\vy8dS — [o Vo, - VBdAL.
It follows then
s /S 0,8 = /S 0.0, (3.6.18)

This completes the proof of Proposition 2.7.1.
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Conclusions

In this paper, we studied the problem of small vibrations of a two-layer fluid in an open con-
tainer. This question can be considered as an operator equation with a spectral parameter,
for which the spectrum is discrete and the eigenfunctions form an orthogonal basis in the
corresponding functional space. We have concluded that this problem is a special case of the
multi-layer fluid in a closed domain. In parallel, we defined the conditions for the existence

and uniqueness of the solution of problems with Robin conditions.
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